What the electromagnetic vector potential describes
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An explicit physical interpretation of the electromagnetic vector potential is here pointed
out—as field momentum available for exchange with kinetic momenta of charged matter. It
is shown that the vector potential can be quite as directly measurable, without recourse to
only quantum-mechanical effects, as are scalar potential differences and the force fields E,
B. This suggests, in keeping with quantum electrodynamics, that the equations for potentials
may be regarded as more “basic” than the Maxwell equations—but only because the
potentials most directly represent interaction energy-momenta through which fields and

charges become observable.

Any electromagnetic field may be described by giving
E, B(r, t) or by giving potentials A, ¢(r, t) from which B,
E are derivable, via

B=VXA, E=-V¢—0A/cot. n

However, only E, B are usually regarded as “real” physical
fields. It remains quite customary to make statements! that
at least the vector potential A has no physical meaning—to
regard its introduction as no more than a mathematical
convenience, useful as a step in solving the Maxwell equa-
tions for E, B. The author has contradicted such statements
to several generations of students, on the basis of some quite
elementary findings, and has lately been urged to make
these known to a wider, and perhaps more critical, audi-
ence.

A reason for hesitation has been doubt that questions
about “reality” have any effective meaning for physics; it
seems enough that a concept be useful, as is A in electro-
magnetism. That point of view is well expressed by Feyn-
man,? who goes on to stress the unavoidable role of A in
quantum theory. The best-known explicit example of such
a role is provided by the Bohm-Aharonov effect,? which
seems to have led to agreement that the vector potential
acquires physical meaning only through its quantum-
mechanical effects. The effort here will be to show that A
has always had a more explicit physical meaning, and direct
measurability, already in “classical” situations.

A IN THE POINT-CHARGE EQUATION OF
MOTION

It is the “operational” definitions of E and B, their de-
tectability through forces gE and v X (gB/c) on a test-
charge ¢, that is supposed to lend them “reality.” Their
definition thus stems from the equation of motion for a point
charge.

d(Mv)/dt = q[E + v X B/c], )

with E, B to be evaluated at positions r,(¢) of the point
particle. Even when care is taken to evaluate the mass M (v)
of the particle “relativistically,” this equation is actually
valid only at speeds low enough for “retardation” effects
in the charge’s moving Coulomb (self-) field—with the
consequent possibility of freeing radiation—to remain
undetectable. This serves to emphasize that it is through
their role in *“quasistatic” situations—in the limit v —
0—that the fields become unambiguously identifiable. It
is generally conceded sufficient to carry out the primary
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defining measurements at low speeds and for static fields.
Like all physical concepts, the E and B present in different
situations gain their extended meanings through processes
of generalization*—such as are encompassed in the Max-
well equations.

Operational definitions of ¢, A should now be expected
to stem from the equation of motion (2) when it is reex-
pressed in terms of the field description by the potentials,
through substitutions from (1):

£ IMy+ @A) = ~Vglp - (/) - AL ()

This is also the form that follows most directly from the
variational principle, and the Lagrangian or Hamiltonian
representations of mechanics—all dealing with energy and
momentum exchanges without requiring an explicit con-
ception of forces, as for the Newtonian prescription (2).
Equation (3) gives changes in the “conjugate” momentum,
P = Mv + gA/c, that are generated wherever there are
gradients in an “interaction energy” g[¢ — v-A/c]. The
discrimination and definition of the conjugate momentum
is very important to physical theory in general, as is illus-
trated by the fact that it is p, and not Mv, that must be given
the Schrodinger representation, + (h/i) V, in transcriptions
to wave mechanics. It is Ap, rather than A(MYv), that is the
subject of the fundamental uncertainty principle when the
particle is charged and in an electromagnetic field.

In contrast to treatments of the vector potential, an op-
erational definition of the scalar potential ¢ has always been
admitted—as “potential energy” per unit charge, “stored”
whenever charge is brought into a preexistent field, and
equated to the work needed to do this. The connection is

-usually made explicit by evaluating the work rate (power

being supplied) as it follows from the equation of motion
(2) or (3):

ar

dr

Here, T in the particle’s kinetic energy and the last equality
holds only in a static field—the variation with time arising
only as the particle moves into new positions in the static
field. This is sufficient to consider for defining measure-
ments just as it is taken to be for the definitions of E and B.
Then a conserved energy,’

Eov—-Saol@l @

H =T+ q¢(r), aconstant, (5)

becomes definable—to describe the balance of the energies

© 1978 American Association of Physics Teachers 499



as these are exchanged between the motion and the
“store.”

The word “store” may be somewhat more apt than the
usual “potential energy” because g¢(r) actually represents
electromagnetic field energy existing as a part of the total
field energy present whenever a charge g has been placed
ata point r in an external field. It is the only part that de-
pends on the position of the charge and so is the only part
“locally” available for exchange with the particle’s kinetic
energy during motions changing the position. The basis for
such conclusions will be amplified in the next section.

The vector potential is absent from the energy expression
(5) primarily because the magnetic force in (2) is always
perpendicular to the motional displacements, v dt, and so
does no work. The magnetic field only redirects momenta,
and an interpretation of the vector potential from which it
derives must come from the momentum exchanges de-
scribed in (3).

Just as the scalar component ¢ of the potential field be-
came separately identifiable while the energy (5) was
conserved, so the role of the vector potential A becomes least
ambiguous while at least a component® of the conjugate
momentum, p = Mv + gA/c, is conserved. This can be ar-
ranged by constraining v to a trajectory on which the gra-
dients on the right side of (3) vanish—as in the explicit
example to be discussed below. With p constant on it, any
variation of A along the trajectory will require Mv to vary
in compensation and an exchange of momenta between the
kinetic form and a “store” must be taking place. Thus-—just
as g¢ serves as a “store” of field-energy—so gA /¢ measures
a “store” of field momentum available to the charge’s
motion. Those who prefer to call g¢ a potential energy
might adopt the name “potential momentum” for gA/c.

The interpretation here might have been anticipated as
soon as it was learned that—mapped on four-dimensional
space-time in conformity to the principle of relativity—A
and ¢ form the four components of a four-vector, inter-
changeable merely by being viewed from relatively moving
frames of reference, as are components of E and B (already
true in low-velocity “Galilean” relativity!). Any energy, like
q¢, is also the fourth component of a four-vector and,
moreover, this has a vector momentum as its three “spatial”
components.

That the interpretation amounts to more than just the
adoption of suitable names is suggested when the connec-
tions to the usual formulations of field energy and field
momentum are investigated—as in the next section.

FIELD MOMENTUM

Any volume ¢dV(r) of electromagnetic field can be
treated as a mechanical system possessing energy, mo-
mentum, and even mass subject to gravitation. In the
gaugings usually adopted, the energy and the vector mo-

mentum are each distributed over the volume with the re-

spective densities:
w(r,t) = (E2+ B?)/8x, g(rt) = (E X B)/dmc. (6)

The total mass of the field is (W = £dV w)/c?, being con-
stant if there are no fluxes through the surface enclosing the
volume.

The primary interest here is in a system composed of a
point charge g at a fixed position ry, in a static external field
Eo = —V¢, By = V X A (r). The point charge itself con-
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tributes a Coulomb field E; (r — r,). Then the energy in
the entire field E = Eg + E;, B = Bo—obtained by volume
integration of the density w(r), defined as in (6)—may be
expressed as a sum of three contributions:

W= Wo+ W, + Ul(rg). €))

Here W is the mass-energy of the external field Eg, Bg in

‘the absence of g, W,/c? is an invariant Coulomb field-

energy contribution to the rest mass of the charged particle,
and U(r,) arises from the interference (interaction) be-
tween the Coulomb and external fields,

f dV(r) E°(')'E‘jr(r = fq)

after discarding a vamshmg surface divergence (or using
the “Hermiteanship” of —iV) and letting V-E, = 4xqé(r
—ry). It is this result that identifies g¢ as an “interaction”
part of the electromagnetic field energy, the part that varies
with the position r, and so U(ry) serves as a potential energy
available to motions of q.

It might still be remarked that while g has a velocity v=
t,(t), it generates a B, = v X E;/c—with E; now a moving
Coulomb field. That produces an additional interaction
energy density Bo-B,/4x which, after appropriate identi-
fications, supplements (8) to the interaction energy:

U=gql¢—v-Ac], 9

a result of some interest on two counts. First, it coincides
with the form taken by the interaction energy in (3). Sec-
ond, after ¢ — v-A/c is “dilated” by the usual factor com-
mon to masses and energies as viewed from relatively
moving frames, it becomes identical with the scalar po-
tential ¢, by itself, that exists relative to the instantaneous
rest frame of g. That such outcomes are only to be expected
emerges with more formai completeness, if not more per-
spicuously, when the equations of motion are derived”’ in
manifestly Lorentz-covariant forms.

Now the volume-integrated resultant, gdV g, of the field
momenta (6), in the entire field E = Eg + Eg, By that led
to (7), is to be considered. Again there will be a contribution
from the interaction between the external field and Eg,
amounting to

P(r,) = $dV(r) 22

U(r,)

E Vo = qo(r,), (8)

(r—ry X Bo(r)
4me

(10)

This is the part of the total field momentum that changes
to other (quasistatic equilibrium) values when the position

14 is changed. The difference must be imparted to the ki-

netic momentum of the particle in any motion changing
r,—when the particle and the external field are isolated
except from each other, thus forming a system which must
conserve its total momentum.

The result (10) can be made more explicit by introducing
the sources j(r) = (¢/4m) V X By that the magnetostatic
field must have, according to Ampere’s law, and letting E,
= —V¢, with ¢4 = g/|[r —r,|. Then

By X V¢, =
we

- §

dv
— ¢,V X B
4wc %4 0

4 g dAVi
f clr—r4l°
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The last integral should be recognized as just the vector
potential A(ry)—in the “solenoidal” gauge usual in statics
(V-A = 0)—that arises from the same sources as does By,
so that Bo = V X A. Thus

P(rg) = qA(rg)/c (12)

represents the field momentum available to motions of g,
as concluded in the preceding section.

The derivation here has called attention to the fact that
gauging field momenta as in (6), for static fields, corre-
sponds to using the special divergenceless (“solenoidal”)
gauge for the vector potential in (12). It is perhaps the wide
choices of gauge permitted for representing the vector po-
tential that have led some to deny it physical meaning.
However, choices must be made in representing measure-
ments on any continuously variable physical quantity.
Changing the gauge of A has no physical consequences, and
the “gauge invariance” of descriptions by potentials is no
reason for denying them physical meaning. All the conju-
gate momenta, Hamiltonians and Lagrangians of me-
chanics in general permit similarly wide choices of
gauge.*

As in the example to be presented in the next section, the
field momentum (12) may become available at points rg
completely outside the space of Bo. All that is necessary for
the integtal (10) not to vanish is that the Coulomb field, of
the charge localized at r,, should overlap on the By distri-
bution.

The last remark indicates that a localization of an “in-
teraction” field energy and/or field momentum outside a
field with which the charge is interacting is really owed to
the fact that even a point charge is, in a sense, not entirely
localizable where only the charge exists. Part of the mass
of the charged matter is distributed more widely, wherever
its self-field penetrates, and interactions (~Eg-Eo/47 and
E, X Bo/4wc) exist wherever the self-field overlaps on an
external one. The g¢ and gA/c are joint properties of the
superposed fields arising from their interference—impor-
tant because they determine the processes through which
fields and charges become observable. Expressions like (6)
still provide the best descriptions of a field and its mass-
energy distribution when it is isolated—but even those
descriptions are results of the observing procedures (they
are thus derived!?). The picture here can be completed by
adding such facts as that, when g¢ <0, there is a positive
“binding energy” of the two entities: point charge g and
external field ¢.

MEASURABILITY OF A

The direct measurability of ¢ (within an additive “gauge
constant”) is well known—particularly as equal to the ki-
netic energy gained by a charge in “falling” through a po-
tential difference. Every measurement of E as a force per
unit charge can be reinterpreted in terms of an energy gain
from ¢.

Demonstrating the measurability of A is plainly most
urgent for a situation having a space with A > 0, yetE =
0 and B = 0 in it. Such a space exists outside an effectively
infinite solenoid carrying some current / in n loops per unit
length along a cylinder having some radius 7 = a. Then the
A everywhere has only an azimuthal component, 4 = 4,
in parallel to I, and

A(r < a) = 2xnlrfc, A(r > a) = 2znla*/cr. (13)
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Whereas inside the solenoid A(r < a) has the well-known
curl B = B, = 4xnljc, parallel to the cylindrical axis, the
A(r > a) outside has no curl and B(r > a) =0. ‘

The situation here is one suggested by Aharanov and
Bohm?3 for testing the existence of a quantum-mechanical
effect on de Broglic waves of electrons passing around
the solenoid. The wave amplitudes are proportional to
exp(ip-r/h) when p = My, as in the absence of A(r), but
must be generalized to:

expl(i/h) f dr - p(r)] = exp[(i/h) J dr - (Mv + gA/c)]
(14)

in the neighborhood of the solenoid [see the remarks fol-
lowing (3)]. Chambers? detected the phase shifts § dr-
(gA/ch) in a “double-slit” interference experiment, using
an equivalent of the solenoid (a permanently magnetized
iron “whisker,” small enough to fit between slits close
enough to each other to produce a distinct interference
pattern). Thus a physical meaning of A, as a de Broglie
wave “phase-shifter,” was established. According to the
interpretation of A proposed here, momentum exchanges
between Mv and field momentum gA(r)/c played the es-
sential role in shifting the phase.

For a purely classical measurement of A(r > a), a
“macroscopic’” bead bearing a charge ¢ might be placed at
the radius r > a. According to the discussions above, this
cannot be done without adding gA(r)/c to the field mo-
mentum present. The bead can be constrained to a trajec-
tory on which p = mv + qA(r)/c = p,is conserved, by let-
ting it slide freely on a circular fiber of insulator material
that coincides with an 4 = A, field line at radius r. The
solenoidal A is constant along such a circle, there will be no
gradient in the azimuthal component of (3), and indeed

dp,/dt = (d/dt) (mv + qAfc) =0 (15)

on the trajectory. With the uniform A, there will also be no
momentum exchanges between mv and gA/c to observe—
unless the equilibrium being maintained by the “agency”
supplying a steady solenoid current / is disturbed. This can
be done simply by interrupting the solenoid circuit and
letting 7 and A die out. Then A(z) — 0 exponentially, with
a time constant prolonged by the self-inductance of the
solenoid. As for all such “macroscopic” processes, even the
exponential decays of I() and A(r) can easily be made slow
enough for any radiative effects to remain undetectable. A
“quasistatic equilibrium” can be assumed at every stage,
and this, together with the cylindrical symmetry, leads to
a persistence of the relative spatial distribution (13) of the
field—proportional to the /(¢) throughout the decay. Thus
the “adiabatic” constancy (15) of p = mv(t) + qA(t)/c
persists, and the value of this constant is just p = g4 (t=
0)/c if the bead is started from rest. Then its observable
kinetic momentum, mv(¢t — ), after 4 — 0 is given by

(16)

The result is the desired measurement of the (initial) A, as
equal to a momentum gain, just as the scalar potential ¢ can
be measured by kinetic energy gains.

The kinetic momentum gain in such processes as the
above is well known, and the conclusion can be accepted
without an actual experimental test. For example, the so-
called “betatron principle” relies on the existence of similar
momentum gains, but the conventional calculations leave
the role of the vector potential unméntioned. Again the

p=mo(t —> =) =qA(t = 0)/c.
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“quasistatic equilibrium” is presumed and one speaks of the
changing magnetic flux 7a2B(r < a) = 4w2nla?/c within
the trajectory » > a. This induces a Faraday emf

2arE = 2xrE, = —4xn2nl(t)a?/c? an

along the trajectory—with E,> 0if /() < 0 as above. The
electric force thus produced leads to

d(mv)/dt = qE = (g/c)[~2nnia?/cr) (18)
and
mv = (g/c)[2wnla?/cr] (19)

from a start with v = 0 and a finish with I = 0. It only takes
noticing further that the square bracket here is just A(r >
a) of (13) and then the long-known result (19) could have
always been regarded as a measurement of a vector po-
tential.

The calculation using B values not at the site of the
charge treats the field as having “action-at-a-distance,”
something possible to do only in at least “quasistatic”
equilibria, and contradicting tenets on which field theories,
particularly relativistic ones, are based. That such mo-
mentum gains as (19) arise at the cost of field momentum
is generally accepted, but then the question of how, in the
above situation, field momentum can be localized where g
= E X B/4xc of (6) vanishes must be answered—as done
by the findings (10) and (12).

It is also true that a Faraday-induced electric force, E =
—~dA/cdt of (17) and (1) does appear on the trajectory.
However, a magnetic field is also needed there for E X
B/4xc # 0. A magnetic field there could only have arisen
from a secondary *“Maxwell induction,” via V. X B =
dE/cdt, requiring 7 > 0 in the slow changes—yet the mo-
mentum gains of (18) occur even from uniformly changing
currents, with I = 0. Even when I = 0, the Maxwell-in-
duced B is part of the negligible radiation field. It has the
direction parallel to the cylinder axis and helps form a cy-
lindrical wave of radiation, propagating a radially directed
momentum that is cancelled by the constraint force keeping
the charge on the circular trajectory. That such radiation
pressure is completely undetectable in such low-frequency
radiation is well known. All “alternating current” theory
is based on the negligibility of such radiations.

SOME THEORETICAL IMPLICATIONS

The direct detectability of the potentials ¢ and A, com-
parable to that of E and B, makes is possible to regard de-
scriptions of electromagnetic fields by potentials quite as
“fundamental” as descriptions by E and B. Indeed, the
potentials might be considered the more “basic,” with (1)
providing definitions of E and B as “derived” concepts.
Potentials represent field energies and field momenta, per
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unit charge, as those participate in the universal conserva-
tion of energy and momentum, whereas force and work rate
per unit charge, can be regarded as merely convenient terms
for the transfer rates.

The equations from which the Lorentz potentials A,
(A,9) arising from given sources j, (j,0) are derived,

824, = —4xjje, 9,A4,=0, (20)

can displace the Maxwell equations at the basis of elec-
tromagnetic theory. The Maxwell equations follow from
(20) whenever the antisymmetric field tensor F,,, (E,B) =
3,4, — 8,4, is defined. The equations (20) follow the more
directly from the Variational Principle applicable to all fully
formulated systems. They follow, as “Euler-Lagrange”
equations with constraints, from a Lagrangian density best
specified using the 4, as “generalized coordinates” and
d,A, as “generalized velocities™:

L =—(0,4,)2/87 + j,A,/c. 1)

It is true that, because of the gauge invariance characteristic
of Langrangians, the “free field” Lagrangian (with j, = 0)
can be reexpressed in terms of F,, (E,B). However, integral
representations would be needed for the “interaction Lag-
rangian” j,A4,c.® The variational principle is also applicable
to quantum-mechanical descriptions, which only require
operator values for 4,. This accounts for the quite indis-
pensable role? of 4, in quantum electrodynamics.

A forthright one of numerous examples may be found on p. 65 of F.
Rohrlich’s definitive treatise on Classical Charged Particles (Addi-
son-Wesley, Reading, MA, 1965). Some textbooks avoid the issue.

2R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures
(Addison-Wesley, Palo Alto, CA, 1965), p. 15-14.

3Y. Aharanov and D. Bohm, Phys. Rev. 115, 485 (1959). Its experimental
confirmation was first achieved by R. E. Chambers, Phys. Rev. Lett.
5, 3 (1960).

4Note remarks about “continua” of operational definitions on p. 35 in, E.
J. Konopinski, Classical Descriptions of Motion (Freeman, San
Francisco, 1969).

5In the general case of nonstatic fields, H = T + g¢ (r,t) is known as an
“Hamiltonian” energy—more often “gauged” so as to include the in-
variant rest energy of the particle, in relativistic formulations. In the
latter, dH/dt = OH/dt = qd¢p/dt is equivalent to a “fourth component™
of a four-vector equation of motion having equivalents of (3) for its
“spatial” components in four-dimensional space-time. The conjugate
momentum p = Mv + gA/c and H/c form the four components of a°
four-vector just as Mv and (T + mc2)/c do—and also A,¢.

$Vector potentials must be measured a component at a time, just as the
magnetic force v X (¢B/c) measures only a magnetic field component
transverse to v, for a given “test velocity™ v.

7Such matters are enlarged upon in the author’s book, in preparation:
Electromagnetic Fields and Relativistic Particles.

®Integrated over a point charge, this is just the negative of the interaction
energy (9).
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