Classical Doppler Shift Explains the Michelson-Morley Null Result

Nathan Rapport*

June 8, 2022

Abstract

Here we review Michelson-Morley's original analysis of their interferometer experiment and discuss its shortcomings. We derive a formula purely from geometric considerations for classical Doppler shift at an arbitrary angle, and use this to correct the Michelson-Morley fringe shift calculation. After correction, we find that the interferometer's expected fringe shift is zero. We conclude that classical Doppler shift can account for the Michelson-Morley null result.

1 Introduction

The Michelson-Morley experiment [1], conducted multiple times throughout 1887, was devised as an attempt to test the existence of a hypothesized light-carrying-medium permeating space, known as the aether. It was believed that the speed of light is constant in all directions in the frame of the stationary aether (similar to how sound waves are constant in all directions in relation to a stationary observer on Earth's surface), but only in that frame. The failure of the Michelson-Morley interferometer to detect any effect attributable to the aether played a major role in the motivations for the development and acceptance of Einstein's theory of special relativity, proposed in 1905 [2].

In the Michelson-Morley interferometer, shown in figure (2), a collimated light source is directed toward a beam-splitter, which directs the beam toward two separate mirrors along two perpendicular paths each with length d. The light is reflected from each mirror, travels back, recombines, and is sent toward a detector for observation. The collimated light source contains at least two different frequencies of light, so that an interference pattern is formed consisting of multiple "fringes" appearing as rings of higher and lower intensity.

Michelson and Morley hypothesized that if their laboratory was moving at some velocity with respect to the aether's stationary frame, they would observe a visual interference pattern in the form of additional fringes - a separation between areas of intensity. If the aether caused a phase difference between light along the two paths, each full wavelength of phase shift would result in an additional fringe observed. A fringe shift was therefore considered to be the number of wavelengths along which the phase was shifted.

[^0]
2 Historical Background

2.1 Absolute Reference Frames

The concept of an absolute universal frame of reference dates back to ancient Greek philosophers such as Plato, Aristotle, and Ptolemy, who developed a layered model of celestial spheres [3] based on the observation that the positions of celestial objects such as the sun, moon, and planets appeared to change position rapidly in relation to one another, while the stars remained relatively fixed. This led the Greeks to envision layers of celestial spheres, thought to be embedded in an aetherial elemental substance referred to as quintessence, with each celestial sphere rotating independently with respect to its neighbors.

Although the Earth was placed at the center of the universe (incorrectly, as we now understand), the ancient model had its successes. For example, Mercury, Venus, Mars, Jupiter, and Saturn were all placed in their correct ordinal positions. The observation that planets occasionally exhibited retrograde motion (appearing to move backward in relation to their usual direction of travel) led to Ptolemy adding epicycles to his geocentric model to more accurately track these planetary movements. The Ptolemaic system lasted well over 1000 years, but eventually complexity of the epicycles required to maintain the consistency of the model became burdensome, and the Ptolemaic system gave way to the Copernican model [4], published in 1543, which replaced the Earth with the sun as its center.

The ancient Greeks were somewhat divided on the nature of light and vision. One theory, known as the "tactile" theory, postulated that sight originated from the eyes themselves, which sent out very fine, invisible probes to "feel" objects too distant to physically reach. The competing hypothesis, known as "emission" theory, advanced that light was emitted from bright objects Ψ^{1} traveling from there to enter the eyes, producing vision [5]. There was no clear consensus yet on whether the speed of light was finite or infinite.

2.2 The Speed of Light

In 1677, the Danish astronomer Ole Roemer used the timings of eclipses of Jupiter's moon Io, which occur roughly every 42.5 hours, to estimate the velocity of light [6]. Roemer's observations are important to understand, because the observation of the eclipses of Io is analogous to the beam path to mirror 1 in the Michelson-Morley experiment, shown in figure (2). As the Earth and Jupiter orbit the sun, they transition from receding away from the sun to moving toward it. At the beginning and end of this transition period, the relative distance between the planets is unchanged, as shown in figure (1).

Despite the fact that the distance between the planets remains the same, the period between eclipses does not. The period is shorter while the Earth is receding from the sun, and longer while the Earth is moving toward the sun. Roemer understood this to mean that even though the relative distance between the two planets is equal in both cases, light leaving Io would reach the Earth sooner in the first case, since the Earth-Jupiter system was moving toward the light during its period of transit, and would reach the Earth later in the second case, while the Earth-Jupiter system was

[^1]

Figure 1: The Earth-Jupiter system during Roemer's observations
moving away from the light. Roemer was able to express the observed eclipse period in the first case as

$$
\begin{equation*}
T_{\uparrow}=T_{0}\left(1-\frac{v}{c}\right) \tag{1}
\end{equation*}
$$

where T_{\uparrow} is the observed period while the Earth is receding, T_{0} is the absolute period, v is the Earth's orbital velocity, and c is the speed of light. In the second case, the period is expressed as

$$
\begin{equation*}
T_{\downarrow}=T_{0}\left(1+\frac{v}{c}\right) \tag{2}
\end{equation*}
$$

From these two equations, the speed of light can be expressed as \int^{2}

$$
\begin{equation*}
c=\frac{v\left(T_{\downarrow}+T_{\uparrow}\right)}{T_{\downarrow}-T_{\uparrow}} \tag{3}
\end{equation*}
$$

Critically, Roemer was able to correctly interpret his observations by assuming that the speed of light is constant only with respect to an absolute reference frame (that of the sun, in this case), while in the Earth's frame the observed speed of light could be greater or less than its absolute speed. Interestingly, Michelson and Morley mentioned observations of the eclipses of Jupiter in their original paper as a potential means of determining the absolute aethereal motion of the Earth. It is unclear whether they were aware of Roemer's work two centuries prior.

In 1728 , the English astronomer James Bradley applied Roemer's technique to starlight in order to distinguish the true position of stars from their apparent positions at different points in the Earth's orbit [6]. He was attempting to gauge the distance to a star using parallax, but instead he found that the position of the star varied depending on the relative velocity of the Earth to the star rather than its position.

[^2]This was an unusual discovery; as it turned out, the parallax he was attempting to measure was too minute for him to detect, but in the process he discovered another effect varying the star's apparent position, which is now known as Bradley stellar aberration. The aberration caused an effect similar to parallax, except that the star's observed position was ahead of its expected position with parallax.

Again, this discovery required interpreting the observed speed of light from the vantage point of an observer on Earth as being alternately faster or slower (depending on the direction of the Earth's velocity) than the absolute speed of light as emitted from the stars. Thus we see that astronomers several centuries ago were able to successfully account for astronomical observations using purely geometrical arguments that assumed an absolute reference frame for the speed of light, outside of which the observed speed of light could be faster or slower.

2.3 The Aether

From the observation that light refracted and diffracted around surfaces as a wave, and that waves propagate through mediums, Christopher Huygens presented a wave theory of light in his 1690 book, Treatise of Light [6], which posited an aether, similar to air, as a medium for light to propagate. Light was understood to propagate at speeds much faster than sound (for example, from the observation that lightning is seen before thunder), so the aether was hypothesized to be a very sparse yet rigid elastic medium permeating the universe. Using these assumptions, and positing that light's velocity was slowed in materials so that $v=c / n$ where v is the velocity of light through a material, and n is some refractive index for the material such that $n>1$, Huygens was able to use his model to derive the known laws of reflection and refraction.

Huygens' model was successful in many ways, however, there were a number of observations his model did not account for, such as the fact that light did not appear to diffract into shadows ${ }^{3}$, and the fact that light could be polarized by different materials, which was incompatible with existing observations of wave behavior. These inconsistencies led Newton to formulate a competing corpuscular model of light [7], which proposed that light consisted of particles of varying sizes and shapes to account for their varying reflectivity and polarization when interacting with materials.

In this paper we will asssume a model of photons similar to that envisioned by Newton: as solid, massy, hard, impenetrable, moveable particles, that exist in a single position at any given time, and have a physical radius and a physical, spinning surface. We will further assume that the energy of a photon is determined entirely by the frequency of its spin, and not by its velocity.

Newton's model of light does not explicitly require an aether, since in his model particles travel directly from one location to another rather than inducing vibrations in an aether medium; however, we will nevertheless postulate the existence of an aether (similar to that envisioned by Le Sage, comprised of "ultramundane corpuscles") as well as an absolute reference frame in which the aether is stationary. There is a deep, fundamental connection between the aether and the force of gravity, which we will explore in separate work.

[^3]
2.4 Action at a Distance

When light encounters a new medium, some portion of the light is reflected, while another portion is refracted toward the line normal to the surface. From the observation that polished surfaces reflect light coherently despite the fact that on a microscopic scale, these surfaces must have many imperfections, Newton posited that light must be interacting with surfaces at a distance before making contact, over an area larger than that of the imperfections, rather than interacting with the surfaces directly. Likewise, his laws of gravitation required instantaneous action at a distance to account for the orbital motions of planets. Despite the "corrections" to these orbits required by general relativity ${ }^{\text {h }}$, it is well-understood that the speed of gravitational attraction must exceed the speed of light by many orders of magnitude to correctly compute planetary orbit. $\left\{5\right.$, despite the recent detection by LIGO of "gravitational waves" ${ }^{6}$.

From his observation that light reflected off surfaces at equal angles, Newton hypothesized that surfaces must exert a force against light at a normal angle to reflect them away. During refraction, on the other hand, light bent into surfaces toward the normal, as if an opposite normal force was pulling light into the surface. By considering momentum to be conserved along the direction parallel to the surface, Newton established the formula $p \sin \alpha=p^{\prime} \sin \beta$, where p and α are light's momentum and angle (relative to the normal) entering a new medium, and p^{\prime} and β are light's momentum and angle within the new medium, so that

$$
\begin{equation*}
\frac{p^{\prime}}{p}=\frac{\sin \alpha}{\sin \beta}>1 \tag{4}
\end{equation*}
$$

Newton understandably concluded that light must have a greater velocity within the material [6] (as one would expect with a force pulling light into the material). However, the velocity of light is measurably slower in materials, indicative of an inverse relationship between momentum and speed. We can find this relation from our modern formulation of light's momentum given by de Broglie's formula

$$
\begin{equation*}
p=\frac{h}{\lambda}=\frac{h f}{c}=\frac{E}{c} \propto \frac{1}{c} \tag{5}
\end{equation*}
$$

Using this inverse relationship, we can express the ratio between momentums as

$$
\begin{equation*}
\frac{p^{\prime}}{p}=\frac{c}{v}=n>1 \tag{6}
\end{equation*}
$$

where c is the velocity of light in a vacuum, v is the velocity of light in the material, and n is considered the refractive index of the material. This in turn correctly yields Snell's law for light moving from a vacuum into a new medium: $\sin \alpha=n \sin \beta$.

[^4]We observe light to refract in an analogous manner around celestial bodies. As light is drawn toward a gravitational source, its wavelength is blue-shifted, indicating an increase in momentum, while its trajectory is refracted toward the gravitational source, indicating a decrease in velocity. We deduce that in both cases (the refraction of light into a medium and the refraction of light around celestial bodies) that light is traveling from a region in which the aether is more dense to a region in which the aether is less dens ${ }^{7}$. This attraction to regions of lower density is consistent with the principle that Nature takes the path of least resistance. The bending of light rays also remains consistent with Fermat's principle of least time, that "Nature always acts by the shortest course".

The decrease in the velocity of light associated with a corresponding increase in momentum seems paradoxical compared to classical physics. However, it is likely consistent with the behavior of an incompressible fluid moving against a drag force, creating an effect similar to that observed in water flowing through a pipe with varying diameter sections. An increase in diameter causes a decrease in velocity, while a decrease in diameter causes an increase in velocity. This effect is counter-intuitive to many, yet it is entirely classical.

In any case, action at a distance appears to reliably describe the motions of celestial objects under gravitational attraction, the deflections of light around gravitational sources, and the refraction of light through various mediums. In the absence of a relativistic theory of light, one might profitably deduce that - similar to other observed particles - particles of light carry mass. Furthermore, these particles must interact at highly superluminal velocities.

2.5 Emission Theories

Following the relativistic experiments of Michelson-Morley, Fizeau, Sagnac, HafaleKeating, and others, we are left with three possible options for emission theories of light. Either the velocity of light is: dependent on both the source and the observer ${ }^{8}$, dependent on the observer but not the sourct $⿷^{9}$, or is dependent on neither the source nor the observe ${ }^{10}$

The ballistic theory is Newtonian and easily explains the results of Michelson and Morley. However, it is clearly violated by the Sagnac experiment ${ }^{11}$ (since it would predict no observable interference), as well as variety of other observations including Bradley's stellar aberration as discussed earlier. Thus, it must be discounted.

Relativity certainly explains the results of Michelson and Morley, although it is less unambiguously clear whether the results of Sagnac and Hafele-Keating really support the theory as relativists claim ${ }^{12}$. Furthermore, relativity encounters serious issues in

[^5]dealing with scenarios such as the twin paradox in its attempts to remove absolute frames of reference from physics.

The general theory of relativity, which is invoked to resolve many of these paradoxes, suffers from its own deficiencies, including the creation of "singularities" within black holes, violations of the equivalence principle for charged particles (which are predicted to radiate in one frame but not another), and requiring an infinite amount of energy to assemble an electron, which in turn predicts an infinite electron mass, due to its assumption of mass-energy equivalence.

The aether theory, as we will see, not only fits early observations of light such as the timings of eclipses and Bradley stellar aberration, but can also simply account for "relativistic" observations such as the Michelson-Morley experiment.

3 The Michelson-Morley Experiment

3.1 Michelson-Morley's Fringe Shift Analysis

Here we will review the original derivation [1] of Michelson-Morley's fringe shift calculation. Michelson-Morley's experimental apparatus could be rotated in different orientations with respect to the hypothesized aether, however, to simplify our analysis we will consider the case in which the laboratory is moving in parallel along the path to mirror 1 with respect to the aether, as shown in figure (2).

The time for light to traverse the round trip path to mirror 1 is given by

$$
\begin{align*}
t_{1}^{\prime} & =\frac{d}{c+v}+\frac{d}{c-v} \\
& =\frac{2 d c}{c^{2}-v^{2}} \\
& =\frac{2 d}{c} \cdot \frac{1}{1-\frac{v^{2}}{c^{2}}} \tag{7}\\
& =\frac{2 d}{c} \cdot \gamma^{2} \\
& =t \gamma^{2}
\end{align*}
$$

where γ is the Lorentz factor given by $\gamma=\frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}}$ and t is the expected round trip time in the stationary aether frame (i.e., in an apparatus with no aethereal "wind").
difference in synchronization is an optomechanical effect rather than a dilation of time itself. The Hafele-Keating experiment is, if anything, evidence against the theory of relativity since - all reference frames being equal - each plane travels the same distance, therefore one should be able to argue that one plane's clock should run ahead as easily as the other. Or, one might expect both clocks to remain synchronized since each travels the same distance at the same speed, and should experience the same amount of time dilation. The fact that this is not observed is evidence that the planes are traveling in opposing directions within a frame (the Earth's) that is rotating with respect to a separate frame of reference. Nevertheless, these experiments are commonly interpreted as evidence for relativity rather than against.

Figure 2: Michelson-Morley experimental setup

Since $c^{2}=\left(c^{\prime}\right)^{2}+v^{2}$ by the Pythagorean theorem, the observed speed of light from the laboratory frame in the mirror 2 path is slower than the speed of light in the stationary aether frame and is given by $c^{\prime}=\sqrt{c^{2}-v^{2}}$. This holds for both directions and is due to the fact that the actual path the speed of light is taking is longer than the observed path in the laboratory frame.

The time for light to traverse the round trip path to mirror 2 is given by

$$
\begin{align*}
t_{2}^{\prime} & =\frac{2 d}{\sqrt{c^{2}-v^{2}}} \\
& =\frac{2 d}{c} \cdot \frac{1}{\sqrt{1-\frac{v^{2}}{c^{2}}}} \tag{8}\\
& =\frac{2 d}{c} \cdot \gamma \\
& =t \gamma
\end{align*}
$$

It is important to note that in neither case is the speed of light c actually changing. Light is emitted at speed c with respect to the stationary aether frame regardless of the laboratory's velocity v. However, because the laboratory is moving, the light appears to travel faster or slower from the laboratory perspective depending on its direction.

The situation for light in this scenario is analogous to the way sound waves travel in Earth's atmosphere. Regardless of our velocity within the Earth's atmosphere, sound waves always travel at the same speed with respect to the frame of a stationary observer on the ground. However, in a fast-moving vehicle, a jet for example, the sound waves generated by the jet traveling in the same direction of the jet appear to be moving more slowly, from the jet's perspective, while sound waves moving away from the jet in the generation of the exhaust appear to be moving more quickly.

Because the speed of light is constant with respect to the stationary aether frame in both scenarios, according to Michelson and Morley ${ }^{13}$ the optical path difference for the light is given by $c t_{2}^{\prime}-c t_{1}^{\prime}$, and the fringe shift is given by ${ }^{14}$

$$
\begin{equation*}
\delta_{n}=\frac{c t_{1}^{\prime}-c t_{2}^{\prime}}{\lambda_{d}}=\frac{2 d}{\lambda_{d}}\left(\gamma^{2}-\gamma\right)>0 \tag{9}
\end{equation*}
$$

where λ_{d} is the distance between fringes.

3.2 Longitudinal and Transverse Doppler Shift

To understand the effect of longitudinal Doppler shift in the interferometer, let us analyze the mirror 1 path. From our previous discussion, the observed round-trip time for a beam of light to travel down the mirror 1 path is given by:

$$
\begin{equation*}
t_{1}^{\prime}=t \gamma^{2} \tag{10}
\end{equation*}
$$

Next we calculate the observed wavelength, adjusted for longitudinal Doppler shift. The observed round-trip time down path 1 can be expressed as

$$
\begin{equation*}
t_{1}^{\prime}=\frac{d}{c+v}+\frac{d}{c-v} \tag{11}
\end{equation*}
$$

Since $c_{1}^{\prime}=\frac{2 d}{t_{1}^{\prime}}$, this implies

$$
\begin{align*}
\frac{1}{c_{1}^{\prime}} & =\frac{1}{2}\left(\frac{1}{c+v}+\frac{1}{c-v}\right) \\
& =\frac{1}{2 c}\left(\frac{1}{1+\frac{v}{c}}+\frac{1}{1-\frac{v}{c}}\right) \tag{12}
\end{align*}
$$

Substituting $c^{\prime}=f \lambda^{\prime}$ and $c=f \lambda_{S}$, we have:

$$
\begin{align*}
\frac{1}{\lambda_{1}^{\prime}} & =\frac{1}{2 \lambda_{S}}\left(\frac{1}{1-\frac{v}{c}}+\frac{1}{1+\frac{v}{c}}\right) \tag{13}\\
& =\frac{\gamma^{2}}{\lambda_{S}}
\end{align*}
$$

[^6]Thus,

$$
\begin{equation*}
\lambda_{1}^{\prime}=\frac{\lambda_{S}}{\gamma^{2}} \tag{14}
\end{equation*}
$$

The observed, or optical distance traveled along the mirror 1 path is then given by:

$$
\begin{align*}
c_{1}^{\prime} t_{1}^{\prime} & =\left(f \lambda_{1}^{\prime}\right) t_{1}^{\prime} \\
& =f\left(\frac{\lambda_{S}}{\gamma^{2}}\right)\left(t \gamma^{2}\right) \tag{15}\\
& =\left(f \lambda_{S}\right) t \\
& =c t
\end{align*}
$$

For $t=\frac{2 d}{c}$, we have $c_{1}^{\prime} t_{1}^{\prime}=2 d$. This is an important, if somewhat obvious result: The optical distance traveled along the mirror 1 path is the same as the distance traveled in the stationary case without any aethereal motion.

Next, we can calculate the effect of transverse Doppler shift along the mirror 2 path. From the previous section, the observed time for a beam of light traveling along the mirror 2 path is given by:

$$
\begin{equation*}
t_{2}^{\prime}=t \gamma \tag{16}
\end{equation*}
$$

Figure 3: Transverse Doppler shift for a moving source
To calculate the observed wavelength, consider figure (3). An emission source traveling at velocity v and emitting wavefronts with period T_{S}, covers a distance of $3 v T_{S}$, corresponding to the base of the triangle. The height of the triangle is three observed wavelengths, $3 \lambda_{O}$. And the hypotenuse of the triangle is the radius of the outermost wavefront, which is equal to three stationary wavelengths, $3 \lambda_{S}$. Canceling out the 3 's, we can express the relation between the three quantities as:

$$
\begin{equation*}
\lambda_{O}^{2}=\lambda_{S}^{2}-\left(v T_{S}\right)^{2} \tag{17}
\end{equation*}
$$

Since $T_{S}=\frac{\lambda_{S}}{c}$, this becomes:

$$
\begin{align*}
\lambda_{O}^{2} & =\lambda_{S}^{2}-\left(\frac{v \lambda_{S}}{c}\right)^{2} \\
& =\lambda_{S}^{2}\left(1-\left(\frac{v}{c}\right)^{2}\right) \tag{18}
\end{align*}
$$

Solving for λ_{O}, we have our result for transverse Doppler shift:

$$
\begin{equation*}
\lambda_{O}=\lambda_{S} \sqrt{1-\left(\frac{v}{c}\right)^{2}}=\frac{\lambda_{S}}{\gamma} \tag{19}
\end{equation*}
$$

Thus, the observed wavelength for the mirror 2 path is:

$$
\begin{equation*}
\lambda_{2}^{\prime}=\frac{\lambda_{S}}{\gamma} \tag{20}
\end{equation*}
$$

This wavelength contraction, given by equation (19), is mathematically equivalent to the Lorentz contraction in special relativity; however, the nature of this contraction is classical, not relativistic: The beam's wavelength is contracting in the transverse direction along mirror 2 (rather than the arm of the apparatus contracting longitudinally along mirror 1 , as the theory of relativity holds), and this wavelength contraction is derived purely from geometric considerations.

The optical distance traveled along the mirror 2 path is then given by:

$$
\begin{align*}
c_{2}^{\prime} t_{2}^{\prime} & =\left(f \lambda_{2}^{\prime}\right) t_{2}^{\prime} \\
& =f\left(\frac{\lambda_{S}}{\gamma}\right)(t \gamma) \tag{21}\\
& =\left(f \lambda_{S}\right) t \\
& =c t
\end{align*}
$$

While it is obvious from the experimental setup that both optical distances are equal, it is nevertheless worthwhile to see how the calculation is performed.

3.3 Corrected Fringe Shift Analysis

Michelson and Morley did not observe any fringe shift during the course of their experiments ${ }^{15}$, and this null result was taken as evidence against the aether hypothesis.

The fatal flaw in the Michelson-Morley experiment was the expectation that a difference in the travel times of the two beams of light would create an interference pattern. However, an interferometer does not measure differences in propagation times; rather, it measures differences in phase, and a difference in propagation time does not necessarily correspond to a difference in phase if the wavelength of light cannot be assumed to remain constant throughout.

In fact, the wavelength of light cannot be assumed constant throughout the experiment, because in order to have a difference in propagation time, there must also be

[^7]a corresponding change in the observed speed of light down each path. By taking the speed of light to be the same along both optical paths, Michelson and Morley assumed their conclusion (technically speaking, Einstein's conclusion), which is that the speed of light is constant. This is a logical fallacy known as "begging the question". Simply put, equation (9) is meaningless; it does not compute the phase shift.

If we assume that the energy of light given by $E=h f$ remains constant throughout the experiment (after all, there is no reason for its energy to change), then its frequency must be considered constant. Thus, in order for the apparent speed of light to change, its apparent wavelength must change, since $c^{\prime}=\lambda^{\prime} f$, which will of course affect its phase. Thus, we cannot simply calculate fringe shift using the absolute speed of light-we must calculate the observed speed of light along each direction of travel, which affects the apparent wavelength of light along each direction of travel.

It can be difficult to imagine that two beams of light may arrive at the same position ${ }^{16}$ at different times (in the laboratory frame), yet still not produce any interference. However, it is well-known that in the case of a beam of light traveling through glass, and a parallel beam traveling along the same path through air, the two beams will arrive out-of-phase at a detector ${ }^{17}$ and produce interference. This is observed despite the fact that their geometric paths were the same, because their optical paths were not.

Similarly, we can imagine that two beams may arrive in-phase despite having taken different geometrical paths. From the view of the stationary aether frame, the two beams in the interferometer were traveling at the same speed but arrived at different times (and different places) due to a difference in their geometric paths. Nevertheless, due to the effect of Doppler shift they arrived in-phase, because their optical paths were equal.

The observed round-trip time down either path can be expressed as

$$
\begin{equation*}
t^{\prime}=\frac{d}{c_{\uparrow}^{\prime}}+\frac{d}{c_{\downarrow}^{\prime}} \tag{22}
\end{equation*}
$$

where c_{\uparrow} represents the forward trip and c_{\downarrow} represents the return trip for either beam.

Since $c^{\prime}=\frac{2 d}{t^{\prime}}$, this implies

$$
\begin{equation*}
\frac{1}{c^{\prime}}=\frac{1}{2}\left(\frac{1}{c_{\uparrow}^{\prime}}+\frac{1}{c_{\downarrow}^{\prime}}\right) \tag{23}
\end{equation*}
$$

Since $c^{\prime}=\lambda^{\prime} f$, this implies

$$
\begin{equation*}
\frac{1}{\lambda^{\prime}}=\frac{1}{2}\left(\frac{1}{\lambda_{\uparrow}^{\prime}}+\frac{1}{\lambda_{\downarrow}^{\prime}}\right) \tag{24}
\end{equation*}
$$

[^8]For the mirror 1 path,

$$
\begin{align*}
\frac{1}{\lambda^{\prime}} & =\frac{1}{2}\left(\frac{1}{\lambda_{\uparrow}^{\prime}}+\frac{1}{\lambda_{\downarrow}^{\prime}}\right) \\
& =\frac{1}{2 \lambda_{S}}\left(\frac{1}{1-\frac{v}{c}}+\frac{1}{1+\frac{v}{c}}\right) \tag{25}\\
& =\frac{\gamma^{2}}{\lambda_{S}}
\end{align*}
$$

in which we have made use of our equation (41) for longitudinal Doppler shift to express $\lambda_{\uparrow}^{\prime}=\lambda_{S}\left(1-\frac{v}{c}\right)$ and $\lambda_{\downarrow}^{\prime}=\lambda_{S}\left(1+\frac{v}{c}\right)$. Thus,

$$
\begin{equation*}
\lambda_{1}^{\prime}=\frac{\lambda_{S}}{\gamma^{2}} \tag{26}
\end{equation*}
$$

For the mirror 2 path,

$$
\begin{align*}
\frac{1}{\lambda^{\prime}} & =\frac{1}{2}\left(\frac{1}{\lambda_{\uparrow}^{\prime}}+\frac{1}{\lambda_{\downarrow}^{\prime}}\right) \\
& =\frac{1}{2 \lambda_{S}}\left(\frac{2}{\sqrt{1-\left(\frac{v}{c}\right)^{2}}}\right) \tag{27}\\
& =\frac{\gamma}{\lambda_{S}}
\end{align*}
$$

in which we have made use of our equation (42) for transverse Doppler shift to express $\lambda_{\uparrow}^{\prime}=\lambda_{\downarrow}^{\prime}=\lambda_{S} \sqrt{1-\left(\frac{v}{c}\right)^{2}}$. Thus,

$$
\begin{equation*}
\lambda_{2}^{\prime}=\frac{\lambda_{S}}{\gamma} \tag{28}
\end{equation*}
$$

The corrected fringe shift can be expressed as

$$
\begin{align*}
\delta_{n} & =\frac{c_{1}^{\prime} t_{1}^{\prime}-c_{2}^{\prime} t_{2}^{\prime}}{\lambda_{d}} \\
& =\frac{\left(\lambda_{1}^{\prime} f\right) t_{1}^{\prime}-\left(\lambda_{2}^{\prime} f\right) t_{2}^{\prime}}{\lambda_{d}} \\
& =\frac{f}{\lambda_{d}}\left(\lambda_{1}^{\prime} t_{1}^{\prime}-\lambda_{2}^{\prime} t_{2}^{\prime}\right) \tag{29}\\
& =\frac{f t}{\lambda_{d}}\left(\lambda_{1}^{\prime} \gamma^{2}-\lambda_{2}^{\prime} \gamma\right)
\end{align*}
$$

Substituting (26) and (28) into our equation for corrected fringe shift (29), we have

$$
\begin{align*}
\delta_{n} & =\frac{f t}{\lambda_{d}}\left(\lambda_{1}^{\prime} \gamma^{2}-\lambda_{2}^{\prime} \gamma\right) \\
& =\frac{f t}{\lambda_{d}}\left(\left(\frac{\lambda_{S}}{\gamma^{2}}\right) \gamma^{2}-\left(\frac{\lambda_{S}}{\gamma}\right) \gamma\right) \tag{30}\\
& =0
\end{align*}
$$

One might object at this point that the corrected equation for fringe shift is merely a statement of the obvious: that subtracting two equal distances yields zero. However, since many physicists have apparently overlooked the obvious, it is worth emphasizing that the obviousness of an equation doesn't detract from its truth. Furthermore, the equation is consistent with the fact that the experiment did yield a null result.

To hammer the point home, we calculate the phase shift along each path. Phase can be expressed as:

$$
\begin{equation*}
\phi(x, t)=\omega t-k x \tag{31}
\end{equation*}
$$

for a wave traveling a distance x in time t, where $k=\frac{2 \pi}{\lambda}$ is the wave number and $\omega=2 \pi f$ is the angular frequency.

We can compute the phase difference for a round trip (starting from $\phi(0,0)=0$) by substituting $x=2 d, t=t^{\prime}, \omega=2 \pi f$, and $k=\frac{2 \pi}{\lambda^{\prime}}$ into $\phi(x, t)$. For path 1 :

$$
\begin{align*}
\Delta \phi_{1} & =2 \pi\left(f t_{1}^{\prime}-\frac{x}{\lambda_{1}^{\prime}}\right) \\
& =2 \pi\left(f\left(t \gamma^{2}\right)-2 d\left(\frac{\gamma^{2}}{\lambda_{S}}\right)\right) \\
& =\frac{2 \pi}{\lambda_{S}}\left(\left(f \lambda_{S}\right)\left(t \gamma^{2}\right)-2 d \gamma^{2}\right) \tag{32}\\
& =\frac{2 \pi}{\lambda_{S}}\left(c t \gamma^{2}-2 d \gamma^{2}\right) \\
& =\frac{2 \pi}{\lambda_{S}}\left(2 d \gamma^{2}-2 d \gamma^{2}\right) \\
& =0
\end{align*}
$$

keeping in mind $c=f \lambda_{S}$ and $c t=2 d$. The calculation for path 2 is similar:

$$
\begin{align*}
\Delta \phi_{2} & =2 \pi\left(f t_{2}^{\prime}-\frac{x}{\lambda_{2}^{\prime}}\right) \\
& =2 \pi\left(f(t \gamma)-2 d\left(\frac{\gamma}{\lambda_{S}}\right)\right) \\
& =\frac{2 \pi}{\lambda_{S}}\left(\left(f \lambda_{S}\right)(t \gamma)-2 d \gamma\right) \tag{33}\\
& =\frac{2 \pi}{\lambda_{S}}(c t \gamma-2 d \gamma) \\
& =\frac{2 \pi}{\lambda_{S}}(2 d \gamma-2 d \gamma) \\
& =0
\end{align*}
$$

At this point it should be clear that whenever the wavelength and travel time are scaled by factors that are multiplicative inverses of each other, phase will remain invariant. Thus, the expected phase shift for a roundtrip route is zero for each path in the interferometer.

4 Doppler Shift and Phase Analysis

4.1 General Classical Doppler Shift

In figure (4) we have the commonly accepted depiction of classical Doppler shift. This figure is also shown without wave-fronts, which makes it easier to misjudge the resulting wavelengths.

Figure 4: Doppler shift for a moving source
The commonly accepted formulation of Doppler shift in this scenario simply modifies the equation for longitudinal Doppler shift by taking the component of the velocity along the vector from the observer to the source, so the equation for longitudinal Doppler shift,

$$
\begin{equation*}
\lambda_{O}=\lambda_{S}\left(1+\frac{v}{c}\right) \tag{34}
\end{equation*}
$$

becomes:

$$
\begin{equation*}
\lambda_{O}=\lambda_{S}\left(1+\frac{v \cos \theta}{c}\right) \tag{35}
\end{equation*}
$$

Equation (35), however, is not the correct formula for Doppler shift at a general angle. We know that it must not be correct, since for $\theta=\frac{\pi}{2}$, equation 35 predicts zero Doppler shift, but as we have previously established in figure (3), there is clearly an observable wavelength contraction due to Doppler shift at 90 degrees.

For $v \ll c$, there is very little practical difference between equation (35) and the correct general equation. However, when v becomes a non-negligible portion of c (as may be the case in particles traveling in particle accelerators or stars moving around galaxies, for example), the difference between the two equations becomes significant.

Here we present a derivation due to Klinaku [10] of the correct general formula for the Doppler shift for a moving source in relation to an observer at an arbitrary angle. Consider figure (5), in which we have a stationary source at S_{1} emitting wavefronts traveling at speed c every T_{S} seconds. Note that the motion of the source in this figure is exactly the same as in figure (4), only rotated clockwise by angle θ.

We see that after four emissions, the first wavefront reaches an observer at O located at a distance r_{S} from S_{1}. Now, consider the case when the source S_{2} begins at the same position as S_{1}, but is moving at a velocity v along the x-axis. In both cases, the first wavefront reaches the observer at O in time t after four emissions. However, in the moving scenario, the distance r_{O} from the source to the observer is greater, so the four wavefronts must be divided by a larger distance when calculating their wavelength.

By comparing the difference in wavelength between each scenario, we can determine the Doppler shift. Note that our observed wavelength for the stationary source will be the same no matter where we place this source, so we can interpret our general formula as a comparison of two sources, one stationary and one moving, both located at S_{2}.

Figure 5: Doppler shift for a moving source
From figure (5), defining $\theta=\angle S_{1} S_{2} O$ and using the Pythagorean theorem we can express the relation between distances as

$$
\begin{align*}
r_{S}^{2} & =\left(r_{O} \sin \theta\right)^{2}+\left(r_{O} \cos \theta-v t\right)^{2} \\
& =r_{O}^{2}-2 r_{O}(v t) \cos \theta+(v t)^{2} \tag{36}
\end{align*}
$$

We then apply the following substitutions: $r_{S}=n \lambda_{S}, r_{O}=n \lambda_{O}$ (where n is the number of wavelengths from source to observer), and $v t=v\left(n T_{S}\right)=v n\left(\frac{\lambda_{S}}{c}\right)$. Since a factor of n is applied to each substitution, these cancel and we are left with

$$
\begin{equation*}
\lambda_{S}^{2}=\lambda_{O}^{2}-2 \lambda_{O} v\left(\frac{\lambda_{S}}{c}\right) \cos \theta+\left(\frac{v \lambda_{S}}{c}\right)^{2} \tag{37}
\end{equation*}
$$

Rearranging to solve for λ_{O}, we have:

$$
\begin{align*}
\lambda_{S}^{2}-\left(\frac{v \lambda_{S}}{c}\right)^{2} & =\lambda_{O}^{2}-2 \lambda_{O} v\left(\frac{\lambda_{S}}{c}\right) \cos \theta \\
& =\left(\lambda_{O}-\left(\frac{v \lambda_{S}}{c}\right) \cos \theta\right)^{2}-\left(\left(\frac{v \lambda_{S}}{c}\right) \cos \theta\right)^{2} \tag{38}
\end{align*}
$$

Thus,

$$
\begin{align*}
\left(\lambda_{O}-\left(\frac{v \lambda_{S}}{c}\right) \cos \theta\right)^{2} & =\lambda_{S}^{2}-\left(\frac{v \lambda_{S}}{c}\right)^{2}+\left(\left(\frac{v \lambda_{S}}{c}\right) \cos \theta\right)^{2} \\
& =\lambda_{S}^{2}-\left(\frac{v \lambda_{S}}{c} \sin \theta\right)^{2} \tag{39}\\
& =\lambda_{S}^{2}\left(1-\left(\frac{v}{c} \sin \theta\right)^{2}\right)
\end{align*}
$$

and solving for λ_{O} we have

$$
\begin{equation*}
\lambda_{O}=\lambda_{S}\left(\frac{v}{c} \cos \theta+\sqrt{1-\left(\frac{v}{c} \sin \theta\right)^{2}}\right) \tag{40}
\end{equation*}
$$

Equation (40) is a general formula for Doppler shift at an arbitrary angle. Notice that for $\theta=0$,

$$
\begin{equation*}
\lambda_{O}=\lambda_{S}\left(1+\frac{v}{c}\right) \tag{41}
\end{equation*}
$$

which is the familiar equation for longitudinal Doppler shift, and for $\theta=\frac{\pi}{2}$,

$$
\begin{equation*}
\lambda_{O}=\lambda_{S} \sqrt{1-\left(\frac{v}{c}\right)^{2}}=\frac{\lambda_{S}}{\gamma} \tag{42}
\end{equation*}
$$

where γ is the familiar Lorentz factor. We now understand the origin of this factor to be transverse Doppler shift, in agreement with the Ives-Stilwell experiment.

4.2 Phase Analysis For General Roundtrip Paths

Phase analysis using Doppler shift can also be applied to variations of the MichelsonMorley experiment using different length paths at arbitrary (not necessarily perpendicular) angles, such as the Kennedy-Thorndike experiment, by adjusting one path to rest at an angle of θ from horizontal and analyzing the resulting geometry.

In figure (6), a beam of light is directed along a path that is angle θ from horizontal, and travels with an observed velocity of c^{\prime} in the laboratory frame while traveling through the aether with velocity v. Meanwhile, in the stationary aether frame the beam travels at velocity c. From the geometry of the figure, we can use the Pythagorean theorem to express the relation between these variables:

$$
\begin{align*}
c^{2} & =\left(c^{\prime} \cos \theta-v\right)^{2}+\left(c^{\prime} \sin \theta\right)^{2} \\
& =\left(c^{\prime} \cos \theta\right)^{2}-2 c^{\prime} v \cos \theta+v^{2}+\left(c^{\prime} \sin \theta\right)^{2} \\
& =c^{\prime 2}-2 c^{\prime} v \cos \theta+v^{2} \\
& =\left(c^{\prime}-v \cos \theta\right)^{2}-(v \cos \theta)^{2}+v^{2} \tag{43}\\
& =\left(c^{\prime}-v \cos \theta\right)^{2}+v^{2}\left(1-\cos ^{2} \theta\right) \\
& =\left(c^{\prime}-v \cos \theta\right)^{2}+(v \sin \theta)^{2}
\end{align*}
$$

Figure 6: Real and apparent velocities at arbitrary interferometer angle

Rearranging to solve for c^{\prime}, we have

$$
\begin{align*}
c^{\prime} & =v \cos \theta+c \sqrt{1-\left(\frac{v \sin \theta}{c}\right)^{2}} \tag{44}\\
& =v \cos \theta+\frac{c}{\gamma_{\theta}}
\end{align*}
$$

in which we have defined γ_{θ} as:

$$
\begin{equation*}
\gamma_{\theta}=\frac{1}{\sqrt{1-\left(\frac{v \sin \theta}{c}\right)^{2}}} \tag{45}
\end{equation*}
$$

Using the identity $\cos (\theta+\pi)=-\cos \theta$, we can calculate the observed time t^{\prime} for a
round trip:

$$
\begin{align*}
t^{\prime} & =\frac{d}{\frac{c}{\gamma_{\theta}}+v \cos \theta}+\frac{d}{\frac{c}{\gamma_{\theta}}-v \cos \theta} \\
& =d\left\{\frac{\frac{c}{\gamma_{\theta}}-v \cos \theta}{\left(\frac{c}{\gamma_{\theta}}\right)^{2}-(v \cos \theta)^{2}}+\frac{\frac{c}{\gamma_{\theta}}+v \cos \theta}{\left(\frac{c}{\gamma_{\theta}}\right)^{2}-(v \cos \theta)^{2}}\right\} \\
& =\frac{2 d c}{\gamma_{\theta}}\left\{\frac{1}{\left(\frac{c}{\gamma_{\theta}}\right)^{2}-(v \cos \theta)^{2}}\right\} \tag{46}\\
& =\frac{2 d}{c \gamma_{\theta}}\left\{\frac{1}{1-\left(\frac{v \sin \theta}{c}\right)^{2}-\left(\frac{v \cos \theta}{c}\right)^{2}}\right\} \\
& =\frac{2 d}{c \gamma_{\theta}}\left\{\frac{1}{1-\left(\frac{v}{c}\right)^{2}}\right\} \\
& =\frac{2 d}{c}\left(\frac{\gamma^{2}}{\gamma_{\theta}}\right)
\end{align*}
$$

Thus, for observed time we have the result:

$$
\begin{equation*}
t^{\prime}=t\left(\frac{\gamma^{2}}{\gamma_{\theta}}\right) \tag{47}
\end{equation*}
$$

From our previous discussion of the equation for general Doppler shift, we can express the observed wavelength for the foward trip as:

$$
\begin{align*}
\lambda_{\uparrow}^{\prime} & =\lambda_{S}\left(\frac{v}{c} \cos \theta+\sqrt{1-\left(\frac{v \sin \theta}{c}\right)^{2}}\right) \tag{48}\\
& =\lambda_{S}\left(\frac{v}{c} \cos \theta+\frac{1}{\gamma_{\theta}}\right)
\end{align*}
$$

Likewise, the observed wavelength for the return trip is given by:

$$
\begin{equation*}
\lambda_{\downarrow}^{\prime}=\lambda_{S}\left(-\frac{v}{c} \cos \theta+\frac{1}{\gamma_{\theta}}\right) \tag{49}
\end{equation*}
$$

From our previous discussion of observed wavelength, starting with equation (24)
we have:

$$
\begin{align*}
\frac{1}{\lambda^{\prime}} & =\frac{1}{2}\left(\frac{1}{\lambda_{\uparrow}^{\prime}}+\frac{1}{\lambda_{\downarrow}^{\prime}}\right) \\
& =\frac{1}{2 \lambda_{S}}\left\{\frac{1}{\frac{1}{\gamma_{\theta}}+\frac{v}{c} \cos \theta}+\frac{1}{\frac{1}{\gamma_{\theta}}-\frac{v}{c} \cos \theta}\right\} \\
& =\frac{1}{2 \lambda_{S}}\left\{\frac{\frac{1}{\gamma_{\theta}}-\frac{v}{c} \cos \theta}{\frac{1}{\gamma_{\theta}^{2}}-\left(\frac{v}{c} \cos \theta\right)^{2}}+\frac{\frac{1}{\gamma_{\theta}}+\frac{v}{c} \cos \theta}{\frac{1}{\gamma_{\theta}^{2}}-\left(\frac{v}{c} \cos \theta\right)^{2}}\right\} \\
& =\frac{1}{\lambda_{S} \gamma_{\theta}}\left\{\frac{1}{\frac{1}{\gamma_{\theta}^{2}}-\left(\frac{v}{c} \cos \theta\right)^{2}}\right\} \tag{50}\\
& =\frac{1}{\lambda_{S} \gamma_{\theta}}\left\{\frac{1}{1-\left(\frac{v}{c} \sin \theta\right)^{2}-\left(\frac{v}{c} \cos \theta\right)^{2}}\right\} \\
& =\frac{1}{\lambda_{S} \gamma_{\theta}}\left\{\frac{1}{1-\left(\frac{v}{c}\right)^{2}}\right\} \\
& =\frac{1}{\lambda_{S}}\left(\frac{\gamma^{2}}{\gamma_{\theta}}\right)
\end{align*}
$$

Thus, for observed wavelength we have the result:

$$
\begin{equation*}
\lambda^{\prime}=\lambda_{S}\left(\frac{\gamma_{\theta}}{\gamma^{2}}\right) \tag{51}
\end{equation*}
$$

Using equations (51) and (47), we can show that the optical distance traveled is equal to the optical distance without any aethereal motion at all:

$$
\begin{align*}
c^{\prime} t^{\prime} & =\left(f \lambda^{\prime}\right) t^{\prime} \\
& =f\left(\lambda_{S}\left(\frac{\gamma_{\theta}}{\gamma^{2}}\right)\right)\left(t\left(\frac{\gamma^{2}}{\gamma_{\theta}}\right)\right) \tag{52}\\
& =\left(f \lambda_{S}\right) t \\
& =c t
\end{align*}
$$

And since $t=\frac{2 d}{c}$, we also see that the optical distance is $c^{\prime} t^{\prime}=2 d$ as expected. Next, we apply these results to phase shift. Phase shift can be expressed as:

$$
\begin{equation*}
\phi(x, t)=\omega t-k x \tag{53}
\end{equation*}
$$

for a wave traveling a distance x in time t, where $k=\frac{2 \pi}{\lambda}$ is the wave number and $\omega=2 \pi f$ is the frequency.

We can compute the phase difference for a round trip (starting from $\phi(0,0)=0$) by substituting $t=t^{\prime}$ and $k=\frac{2 \pi}{\lambda^{\prime}}$ into $\phi(x, t)$. For $x=2 d$,

$$
\begin{align*}
\Delta \phi & =2 \pi\left(f t^{\prime}-\frac{x}{\lambda^{\prime}}\right) \\
& =2 \pi\left(f\left(\frac{2 d}{c}\right) \frac{\gamma^{2}}{\gamma_{\theta}}-\left(\frac{2 d}{\lambda_{S}}\right) \frac{\gamma^{2}}{\gamma_{\theta}}\right) \tag{54}\\
& =2 \pi\left(\left(\frac{2 d}{\lambda_{S}}\right) \frac{\gamma^{2}}{\gamma_{\theta}}-\left(\frac{2 d}{\lambda_{S}}\right) \frac{\gamma^{2}}{\gamma_{\theta}}\right) \\
& =0
\end{align*}
$$

keeping in mind $c=f \lambda_{S}$. Thus, the expected phase shift for a round-trip route along any arbitrary angle is always zero.

5 Experimental Evidence

The possibility that the Michelson-Morley null result might be explained by Doppler shift was originally proposed by the German physicist Woldemar Voigt in 1887, although Voigt was not able to provide the correct analysis of the experiment at the time and later withdrew his objections after discussion with Lorentz. In 1983, J.P. Wesley published a paper hypothesizing that the Michelson-Morley result could be explained by a Voigt-Doppler effect, which differed slightly from the classical Doppler effect [11]. In 2006, after studying Feist's experiment, Wesley amended his argument and concluded that the Michelson-Morley result is satisfactorily explained by the classical Doppler effect [6]. In 2016, Klinaku published the formula presented in this paper for Doppler shift at an arbitrary angle [10].

Interestingly, it is a common misconception that Michelson and Morley failed to observe any fringe shifts associated with the Earth's sidereal motion; in fact, the original Michelson-Morley paper contains an entire table full of fringe shifts containing evidence of absolute aethereal motion [1]. However, because the fringe shifts only corresponded to a nominal speed of roughly $8 \mathrm{~km} / \mathrm{s}$, which is significantly less than the Earth's known orbital velocity of $30 \mathrm{~km} / \mathrm{s}$, these shifts were nevertheless considered a null result.

In light of the foregoing analysis however, it is interesting that any fringe shift at all could be detected, less experimental error. As it turns out, this fringe shift can be attributed to the fact that the experiment was not conducted in a vacuum, and that the refractive index of air is slightly greater than that of a vacuum. If the analysis of the experiment is expanded to include Fresnel drag (as experimentally determined by D.C. Miller in 1933), then the observed fringe shifts actually correspond to an absolute aetherial motion of greater than $300 \mathrm{~km} / \mathrm{s}$ [12].

Michelson and Morley seem to have suspected unforeseen effects in trying to infer the one-way velocity of light from round-trip measurements, and proposed several variations of the experiment in their original paper that would have directly measured the one-way velocity of light. We have not yet found any literature on whether these proposed experiments were conducted.

Between the 1960's and 1970's, Conklin, Henry, and Smoot measured absolute aetherial motion from the anisotropy of cosmic background radiation from the ground, from balloons, and from airplanes [6].

In the 1970's and 1980's, the Belgian physicist Stefan Marinov conducted a variety of coupled-mirror and toothed-wheel experiments to measure the one-way anisotropy of light, and measured an absolute aetherial motion of roughly $300 \mathrm{~km} / \mathrm{s}$ [13].

In 1991, Roland De Witte (a telecom engineer) measured variations in the one-way travel time of RF signals through a 1.5 km coaxial cable over 178 days, and confirmed that the variations clearly tracked the Earth's sidereal time [14]. A similar experiment was conducted by Torr and Kolen in 1984 [12].

In 1996, Monstein and Wesley measured the aethereal motion from the anisotropy of muon flux [6] (an effect often cited as evidence of relativistic time dilation).

In 2001, Norbert Feist conducted an experiment [15] duplicating the MichelsonMorley null result for sound, using a high-frequency sound generator along with a reflecting surface mounted on the roof of an automobile. He made a series of runs at speeds varying from 0 to $120 \mathrm{~km} / \mathrm{hr}$ at a variety of angles between 0 and 90 degrees, and generated a series of curves validating Klinaku's formula, indicating that the round-trip phase shift for sound is also zero degrees.

In 2013, Randy Wayne at Cornell conducted a reproduction of the Fizeau experiment in which he demonstrated that the interference pattern was more accurately predicted by classical Doppler theory than by Newtonian (Galilean) theory or special relativity [16].

6 Acknowledgments

Thank you Gabriele Wesley-Modest for your assistance.

References

[1] A. A. Michelson and E. W. Morley. On the relative motion of the Earth and the luminiferous ether. American Journal of Science, 34:333-345, November 1887.
[2] H. Minkowski H. Weyl H. A. Lorentz, A. Einstein. The Principle of Relativity. Dover Publications, Inc, 1952.
[3] Celestial spheres, March 2021. Page Version ID: 1012554562.
[4] Nicolaus Copernicus, March 2021. Page Version ID: 1013546200.
[5] R. W. Ditchburn. Light. Courier Corporation, January 1991. Google-Books-ID: HtBv6pvHFNMC.
[6] P. Marquardt J.P. Wesley. Light: A Photon Flux and other topics. Benjamin Wesley, 2006.
[7] Isaac Newton. Opticks Or, A Treatise of the Reflections, Refractions, Inflections, and Colours of Light. August 2010.
[8] R. Rydin. The theory of mercury's anomalous precession. 2011.
[9] Tom van Flandern. The speed of gravity - What the experiments say. Physics Letters A, 250:1-11, December 1998.
[10] Shukri Klinaku. New doppler effect formula. Physics Essays, 29(4), 2016.
[11] J. P. Wesley. Michelson-morley result, a voigt-doppler effect in absolute spacetime. Foundations of Physics, 16(8):817-824, August 1986.
[12] Reginald T. Cahill. The Michelson and Morley 1887 Experiment and the Discovery of Absolute Motion. arXiv:physics/0508174, August 2005. arXiv: physics/0508174.
[13] Reginald T. Cahill. Re-Analysis of the Marinov Light-Speed Anisotropy Experiment. 2007.
[14] Reginald T. Cahill. The Roland De Witte 1991 Detection of Absolute Motion and Gravitational Waves. arXiv:physics/0608205, August 2006. arXiv: physics/0608205.
[15] Norbert Feist. The propagation of light and sound in moving systems. arXiv:physics/0104059, April 2001. arXiv: physics/0104059.
[16] Michael Rutzke Randy Wayne Anthony Maers, Richard Furnas. The fizeau experiment: Experimental investigations of the relativistic doppler effect. The African Review of Physics, 8(43), 2013.

[^0]: *n.rapport@gmail.com

[^1]: ${ }^{1}$ We understand this today to be the correct theory, of course.

[^2]: ${ }^{2}$ To calculate the speed of light with greater accuracy, Roemer would have had to account for the absolute velocity of the solar system, but it is possible to use his data to determine the correct value for the solar system's velocity as well.

[^3]: ${ }^{3}$ If the light was very close to the edge of the object, however, it would bend into shadows to some degree, as Newton noted in his observation of diffraction around the edge of a knife.

[^4]: ${ }^{4}$ These corrections essentially amount to a post-hoc justification for an extremely small "anomalous" precession in Mercury's orbit (amounting to 42 arcseconds per century), which was not accurately computed to begin with (Le Verrier's estimation of Mercury's mass was off by a factor of 2 , for example [8]), and is already accounted for in large part by classical Newtonian effects.
 ${ }^{5}$ There are a variety of observations that easily support this, such as the Poynting-Robertson effect, which could not exist unless there was an aberration between radiation pressure and gravitational force, as well as the fact that introducing an eight-minute time delay (roughly the delay of light from the sun to the Earth) to numerical orbit calculations causes the Earth to roughly double its orbital distance around the sun in a mere 1200 years 9 .
 ${ }^{6}$ If we are to be charitable, we may accept that these experiments are detecting authentic fluctuations in the aetherial wind, but these fluctuations cannot be representative of the ordinary gravitational forces that maintain the orbits of planets and stars.

[^5]: ${ }^{7}$ This is consistent with the mechanism of Le Sage gravity, for example.
 ${ }^{8}$ We may refer to this as ballistic theory, Newtonian theory, or alternatively Ritzian theory, after the physicist Walther Ritz who developed a version of ballistic theory compatible with Maxwell's equations.
 ${ }^{9}$ This is the aether theory, although it does not necessarily require the aether to be a medium distinct from light itself, as we have previously noted.
 ${ }^{10}$ This is, of course, the theory of relativity.
 ${ }^{11} \mathrm{~A}$ rapidly rotating variation of the Michelson-Morley experiment.
 ${ }^{12}$ Relativistic experiments such as the Hafele-Keating experiment can be interpreted as a type of Sagnac interferometer using planes and clocks. The clocks in this scenario perform a function similar to light clocks as envisioned by Max Born-since they rely on an electromagnetic mechanism, the

[^6]: ${ }^{13}$ We discuss the issues with their analysis in section 4
 ${ }^{14}$ In the original Michelson-Morley analysis, this fringe shift was multiplied by 2 since by rotating the interferometer 90 degrees after measurement, Michelson and Morley were able to double their fringe displacement. However, for the purposes of our analysis we do not need to introduce this extra factor.

[^7]: ${ }^{15}$ In fact, this statement is not entirely correct. They did not observe any fringe shift that they were able to attribute to motion of the aether, although they did consistently observe fringe shifts. We will discuss this more in depth later on.

[^8]: ${ }^{16}$ We can consider this position to be the location of the beam-splitter along the return trip.
 ${ }^{17}$ We assume that the source of light is at the same location for both beams, and that the detector is placed at the location where the first beam exits the glass.

