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A B S T R A C T

We present a study on lunar interior temperature and heat production by 1D geothermal inversion. With the
layered structure and thermal state of the lunar interior reported by lunar seismic and magnetic sounding re-
search, a forward modeling of deep temperature is given based on the theory of thermal conduction. Then, the
particle swarm optimization (PSO) method is applied to implement the inversion of lunar interior heat pro-
duction. A six-layer model is solved using a global heat flux of 12mW/m2 and a near-surface temperature of
250 K. The inversion results show that the crust has an average heat production of approximately 210 nW/m3,
the mantle has a depleted heat production varying from 3.7 to 8.1 nW/m3, and the heat production in the lunar
core varies from 30 to 36 nW/m3. The distribution of heat production indicates that the present radioisotopes are
mainly concentrated in the lunar crust. Different from previous estimates, the heat release in the lunar core may
be considerable, similar to the average heat production in the Moon, implying that the residual heat from lunar
accretion or radioactive decay is probably substantial; in contrast, perhaps the core was involved to a limit in the
material exchange with the mantle. In addition, the obtained heat flux at the core-mantle boundary meets the
value required for the core adiabatic process, indicating that the core convection may have stopped.

1. Introduction

In the 1970s, the Apollo missions investigated the lunar interior
through the Apollo Lunar Surface Experiments Package (ALSEP), which
contained a passive seismic experiment, active seismic experiment,
lunar surface gravimeter, lunar surface magnetometer, and heat flow
experiment. Both the passive seismic experiment and the lunar surface
magnetometer were installed in the ALSEP of Apollo 12 and Apollo 15.
The Apollo 12 landing site was close to the lunar equator, and that of
Apollo 15 was at approximately 30 degrees north latitude. After pro-
cessing the data measured by the passive seismic experiment, the moon
was supposed to be composed of a crust, mantle, and core. In addition,
shear wave attenuation indicates that the material was possibly melted
below a depth of 1000 km. On the other hand, the variable magnetic
field measured by the lunar surface magnetometer could reflect the
electrical conductivity of the lunar interior. Together with the labora-
tory examinations of conductivity-temperature relationships for dif-
ferent minerals, the interior temperature was revealed from the elec-
trical conductivity. Among the early studies, Sonett and Duba (1975),
Sonett (1982), and Hood and Sonett (1982) reported the temperature
constraints of the deep Moon based on the magnetic sounding mea-
surements of the Apollo 12 near the equator. Langseth et al. (1976)

presented a global heat flux of 18mW/m2 based on the measurements
of the Apollo 15 and 17 heat-flow sites. Later, however, Warren and
Rasmussen (1987) gave a revised global heat flux of 12mW/m2. The
heat flow experiments of the Apollo 15 and 17 also revealed that the
subsurface temperature was ∼250 K at the heat flow sites and that the
diurnal variation was negligible below about 80 cm (Langseth et al.,
1976). Similarly, Vasavada et al. (1999) reported the stable near-sur-
face temperature to be 250 K at the lunar equator using a 1-D two-layer
thermal model.

Since the data analysis methods have greatly improved in the past
twenty years, numerous researchers have reprocessed the Apollo data
to better reveal the lunar interior. Lognonné et al. (2003) suggested a
new lunar seismic model. Gagnepain-Beyneix et al. (2006) reported a
seismic model of the lunar mantle and constraints on temperature and
mineralogy, indicating the crustal thickness to be 30 km. Khan et al.
(2004) and Weber et al. (2011) reanalyzed Apollo lunar seismograms,
suggesting the presence of a solid inner and fluid outer core overlain by
a partially molten layer. Later, Siegler and Smrekar (2014) used the
Apollo heat flow data and a new three-dimensional thermal conduction
model to examine effects of crustal thickness, density, and radioisotope
abundance. They found that measured heat flux can be greatly altered
by deep subsurface radiogenic content and crustal density. They also
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reported an approximately 9–13 mW/m2 mantle heat flux, which
equals a total mantle heat production of 2.8–4.1× 1011 W, being
slightly less than earth’s.

It is believed that the most important long-term heat source of the
moon is the radioactive decay of uranium, thorium, and potassium.
Abundances of these isotopes have been measured in returned lunar
samples (LSPET, 1972, 1973; Clark and Keith, 1973; Tatsumoto et al.,
1973), by lunar orbital gamma-ray spectrometers (Metzger et al.,
1972), and by the surface gamma-ray experiment of Veneras 8, 9, and
10 (Keldysh, 1977). The global maps of uranium and thorium were
obtained by the SELENE spacecraft (Yamashita et al., 2010). From
Apollo lunar samples, the K/U ratios average approximately 2000,
which is much lower than for terrestrial rocks. While the Th/U ratios
are always between 3.0 and 4.0 for both terrestrial and lunar material
(Toksöz et al., 1978). To match the measured heat flow value (Langseth
et al., 1976), Toksöz et al. (1978) showed the bulk Uranium con-
centration must be approximately 35 ppb. It should be noted that the
average radioactivity of the Moon is a function of the bulk Uranium
content. It is expected that the magma is enriched in radioisotopes,
transferring heat sources to the surface. Toksöz et al. (1978) suggested
that the heat source may decrease exponentially with depth, leading to
very small heat production values and Uranium contents in the cores of
planets.

Since the lunar dynamo stopped long ago (Weiss and Tikoo, 2014;
Wang et al., 2017), the lunar interior thermal state is critical evidence
supporting the idea. This work aims to reveal the temperature and heat
production of the lunar interior by one-dimensional geothermal inver-
sion of the heat production based on the theory of thermal conduction.
The thermal conduction equation, the boundary conditions and the
inversion algorithm are introduced in Section 2. The results of inversion
are shown in Section 3, followed by the discussion in Section 4 on the
effects of changing parameters on the inversion results. The conclusions
are drawn in the last section.

2. Modeling

2.1. Thermal conduction equation

According to Weber et al. (2011), the crust and the bulk of the
mantle (0–1257 km) are solid. There is a partial melt layer at the
bottom of the mantle (1257–1407 km), overlying the liquid outer core
(1407–1497 km), while the inner core is solid with a radius of 240 km.
On the other hand, palaeomagnetic study shows that the lunar dynamo
has already stopped (Weiss and Tikoo, 2014), indicating that there is no
significant convection in lunar core. Thus, the thermal conduction
process is mainly considered in our model. The time-dependent thermal
conduction equations derived from Wieczorek and Phillips (2000) are

= qC T
t

A · ,p (1)

and

=q T, (2)

where ρ is the density, Cp is the specific heat at constant pressure, T is
the temperature, A is the heat production per unit volume, q is the heat
flux, and λ is the thermal conductivity.

We employ two assumptions for simplicity. First, the lunar model is
spherically symmetric and is divided into several shells and one core.
The properties in each shell are isotropic and homogeneous, and all
parameters therefore vary only with radius (or depth). Second, since the
moon has already cooled, the inner temperature is considered to be
constant over time on a short time scale, and hence we have T t/ 0
in Eq. (1). Based on these two assumptions, the temperature can be
solved:
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where Ts is the subsurface temperature, r is the radius, A is the heat
production per unit volume, is the thermal conductivity, and R is the
radius of the moon. The detailed derivation of Eq. (3) and its discrete
form are shown in the appendix.

Once the heat productions and thermal conductivities of all layers
are given, we can determine the temperature profile of the moon from
Eq. (3), which is the forward calculation in our model. To obtain heat
production, we have to presume the deep temperature along with the
conductivity of the lunar interior to solve the inverse problem of heat
production.

2.2. Parameters in the model

In Eq. (3), there are two boundary conditions to determine: the
near-surface temperature and the near-surface heat flux. For a one-di-
mensional quasi-static lunar model, the boundary conditions should not
change with time. Vasavada et al. (1999) calculated the near-surface
temperature on the Moon and obtained that diurnal mean temperature
tends to be constant below 0.3m depth. At the lunar equator, the mean
subsurface temperature is approximately 250 K, which is used in our
model as the value of temperature at 0 km depth. Langseth et al. (1976)
presented a global heat flux of 18mW/m2. Later, Warren and
Rasmussen (1987) revised the model and estimated that the global
mean heat flux is 12mW/m2, which is used in our model as the value of
heat flux at 0 km depth.

The near-surface heat flux constrains the total heat production of
the lunar interior. For a layered lunar model, we have

=
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where Vi is the volume of each shell, Ai is the heat production per unit
volume, R is the radius of the Moon, and qs is the global mean near-
surface heat flux. Eq. (4) shows there is a linear constraint on the heat
production of all layers, which has to be considered in the inversion
calculation.

Moreover, in order to solve the inverse problem of heat production,
the thermal conductivity of each layer has to be assumed. Branlund and
Hofmeister (2012) measured the thermal conductivity of feldspars and
gave values ranging from 1.5–1.9 Wm−1 K−1, changing little with
temperature. Based on the previous assumption by Wieczorek and
Phillips (2000) and Siegler and Smrekar (2014), we assume that the
crust has an average thermal conductivity of 2 Wm−1 K−1 and that the
mantle has a conductivity of 3 Wm−1 K−1. The conductivity is not
considered to change with temperature. It is still difficult to determine
the thermal conductivity of the lunar core. According to Sanloup et al.
(2000), the lunar core mainly consists of Fe-S alloy. In addition, Weber
et al. (2011) estimated that the temperature in the lunar core is ap-
proximately 1500–1750 K, with the total content of sulfur in the core
varying from 4wt% to 8wt%. Therefore, the core is assumed to have a
high thermal conductivity of 10 Wm−1 K−1 in our model so that our
calculated temperature in the lunar core corresponds to the estimation
of Weber et al. (2011). Although the estimation for the conductivity of
the lunar core may have a large error, it actually has a limited effect on
the temperature due to the low value of heat flux within the core.

2.3. Objective function

The basic idea of the inversion algorithm is to minimize the residual
error between the calculated temperature and the reference tempera-
ture by modifying the layered model of heat production repeatedly.

With Eq. (3), a temperature curve can be calculated from a given
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model of heat production and conductivity. Comparing this curve to the
presumed reference temperature, we can obtain the RMSE of the fitting
curve with the function

=
=n

T F1 ( ) ,
i

n

i i
1

2

(5)

where ε is the root-mean-square error, n is the number of reference
points, Ti is the temperature calculated by Eq. (3), and Fi is the reference
temperature obtained from the temperature profile of Hood and Sonett
(1982).

Until recently, it is still impractical to directly measure the deep
temperature of the Moon. Hence, we choose an indirect solution to
determine the deep reference temperature. Hood and Sonett (1982)
presented two temperature profiles calculated from the lunar electrical
conductivity profile. The deep electrical conductivity is obtained from
the magnetic sounding experiments (Sonett and Duba, 1975; Duba
et al., 1976). Then, the deep temperature is calculated from electrical
conductivity profiles with laboratory determined conductivity-tem-
perature relationships (Duba et al., 1976). The temperature profiles
presented in Hood and Sonett (1982) use two different conductivity-
temperature relations for pyroxene in the lunar mantle: 1.9 wt% Al2O3
and 6.8 wt% Al2O3. We pick the medians between the higher and lower
limits of temperature profile as the reference temperature in our model.
In each profile, the medians are picked as reference points every 25 km
in the range of 500–1300 km, so each profile derives 33 points (shown
in Fig. 1), which are enough to obtain stable inversion results.

Every time a temperature curve is calculated, the layered model of
heat production will be slightly modified based on the RMSE of cal-
culated temperature to reduce the residual error of the new curve in the
next iteration. After a large number of iterations, the model tends to be
stable, and the residual error reaches a minimum. To accelerate the
model convergence and to avoid the residual error being trapped in a
local minimum, a suitable optimization algorithm is required in the
inversion algorithm.

2.4. Particle swarm optimization

Particle swarm optimization (PSO) as proposed by Kennedy and
Eberhart (1995) is applied in our inversion calculation. This algorithm

uses a swarm of particles representing numerous random models to
search for the global best model by fast iteration, which performs well
in such a nonlinear inverse problem. Additionally, PSO is easily im-
plemented in brief computer codes and requires a low memory foot-
print.

The general ideas of PSO are as follows (Poli et al., 2007). First,
initialize a large number of random particles in N-dimensional space.
Each particle has its position xi and velocity vi on N dimensions. Each
dimension represents one variable in the model to be solved. Second,
calculate the fitness function for each particle with their current posi-
tions. The global best fitness among all particles is denoted gbest, and its
position is denoted pg. The individual best fitness for each particle is
called pbest, and their positions are defined as pi . Third, calculate a new
velocity and new position for each particle with pg and pi by Eq. (6)
(Clerc and Kennedy, 2002). Finally, finish the iteration if gbest meets
the criterion or if the number of iterations meets the maximum;
otherwise go to step two and repeat the iteration.

+ +

+

v v U p x U p x

x x v

0.7298( (0, 2.05) ( ) (0, 2.05) ( ))
,i i i i g i

i i i

(6)

where i is the ordinal number of particles, vi and xi are the velocity and
position of the particle of order i, pi is the individual best position of the
particle of order i, pg is the global best position for all particles, and

U (0, 2.05) is a vector of random numbers uniformly distributed in [0,
2.05] with N dimensions. The vector U is randomly generated in each
iteration, and is the element-wise multiplication between the two
vectors.

In the inversion calculation of heat production, the particle position
in each dimension represents the heat production of each layer, hence
an N-layer model corresponds to a particle with N dimensions. The
particle velocity represents the slight change of heat production in each
iteration. The fitness of each particle is the RMSE of calculated tem-
perature. With the procedures presented in Poli et al. (2007), an in-
version algorithm of heat production is implemented. The main pro-
cedures of the inverse algorithm are as follows.

(1) Initialize a position matrix of random particles (models) with a size
of P×N, where P is the particle number, the number of random
models, and N is the layer number (P=1200, and N=6 in our
model). The elements in the matrix are dimensionless heat pro-
duction. The initial elements in the position matrix are randomly
distributed in 0–1.

(2) Initialize a velocity matrix with the same size of P×N and set the
initial dimensionless velocities of each particle randomly dis-
tributed in 0–1.

(3) Using Eq. (4), convert the dimensionless elements in the position
matrix into the heat production and then calculate the temperature
curve for each particle with Eq. (3).

(4) Calculate the RMSE of temperature curves with Eq. (5) as the fitness
of particles.

(5) For each particle, if its current fitness is less than its individual best
fitness (pbest), replace pbest and its corresponding position pi with
current values.

(6) For all particles, if the current best fitness is less than the global best
fitness (gbest), replace gbest and its corresponding position pg with
current values.

(7) Calculate the velocities of all particles and their new positions with
Eq. (6).

(8) If the maximum number of iterations is reached, go to the next step,
and otherwise go to step (3).

(9) Output the best model of heat production and its RMSE of the
temperature curves corresponding to pg and gbest.

Fig. 1. The reference temperature points derived from the medians of the en-
velope of temperature profiles in Hood and Sonett (1982). The blue points are
the medians of the profile using the conductivity-temperature relation for
pyroxene with 6.8 wt% Al2O3, while the red points correspond to pyroxene with
1.9 wt% Al2O3. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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2.5. Tests for the algorithm

As shown in Fig. 2, two tests for the inversion algorithm were
conducted to inspect its reliability. The test models are two different
artificial eight-layer models along with their calculated temperature
curves. The first group is shown in (A1) and (A2), and the second group
is shown in (B1) and (B2). Three thousand particles are used to solve
these two models.

More particles, as well as more iterations, contribute to more stable
results in the PSO, but also consume much more time. The result tends
to converge to a local optimum if the particle number is not large en-
ough. The specific numbers of particles and iterations depend on the
dimension of the particle coordinates, which is also the layer number of
the heat production in this problem. The inversion results shown in
Fig. 2(A1) and (B1) are much closer to the ideal models compared with
the direct calculation. With a sufficient quantity of particles, the results
solved by PSO are considerably stable and robust. The mean relative
error between the inversion results and the ideal model in Fig. 2 is less
than 2%. Although the direct calculation of heat production using Eqs.
(1) and (2) is continuous, it is actually rather sensitive to the refence
temperature and is less reliable. Therefore, it is necessary to use the
inversion algorithm to calculate the layered model of heat production.

3. Results

3.1. Six-layer models of the heat production

The inverted heat production is divided into a total of six layers
shown in Fig. 3(A). The depth of the crust-mantle boundary (at a depth
of 40 km) and core-mantle boundary (at a depth 1407 km) are based on
the seismic inversion of Weber et al. (2011). The mantle is uniformly
divided into four layers to reduce the fitting error of temperature. Since
no reference temperature is available in the lunar core, the core is not
divided into the inner and outer layers, and otherwise, the solution of
heat production will not be convergent within the core.

As discussed in Section 2.2, the boundary conditions are the near-
surface temperature, which is 250 K, and the global mean heat flux,
which is 12mW/m2. Thermal conductivity is presumed to be 2
Wm−1 K−1 in the crust, 3 Wm−1 K−1 in the mantle and 10 Wm−1 K−1

in the core. Using 1200 particles in PSO, two models of heat production
are separately solved with two groups of reference temperature (Fig. 3).

Fig. 3(A) shows that the crust has the highest heat production (200
nW/m3 for the higher reference temperature and 220 nW/m3 for the
lower reference temperature) among all six layers, while the heat
production in mantle is much lower than that for the crust, with an

Fig. 2. Two test models for the inversion algorithm. (A1) An ideal model in which only one layer has a much higher value of heat production, while other layers have
lower values. (A2) The temperature corresponding to the model in A1. (B1) An ideal model in which half of the layers have higher heat production, while the others
have lower values. (B2) The temperature corresponding to the model in B1. The red lines in (A1) and (B1) are heat production directly calculated from the ideal
temperature without using PSO. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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average value of ∼6 nW/m3. The heat production in the lunar core is
36 nW/m3 for the higher reference temperature and 30 nW/m3 for the
lower reference temperature, between the values in the crust and
mantle. In addition, the overall mean heat production (the green da-
shed line) is 20.7 nW/m3. Obviously, the lunar mantle has a consider-
able depletion, while the crust has abundant heat production. It is in-
teresting that heat production in the core is close to the mean value,
which might suggest that the lunar core has limited material exchange
with the mantle. In Fig. 3(B), the RMSEs between the calculated tem-
perature and the reference temperature are ∼0.7 K, so the results fit the
reference temperature very well. The temperature at the crust-mantle
boundary is 410 K on average. It is between 1522 K and 1712 K at the
core-mantle boundary and increases slowly along depth within the
core, ending up between 1578 K and 1778 K at the center of the Moon.
The average temperature of the lunar core in our model accords with
the estimation of Weber et al. (2011).

The heat flux in Fig. 3(C) decreases rapidly from 12mW/m2 to
∼4mW/m2 in the lunar crust but varies little in the mantle. At the core-
mantle boundary, the heat flux remains ∼3.5mW/m2. Because of the
low heat production in the whole mantle, there is no large difference
between the heat flux at the crust-mantle boundary and that at the core-
mantle boundary. The mantle heat flux calculated in our model is less
than the assumed value in Siegler and Smrekar (2014) but agrees with
that in Langseth et al. (1976).

The shape of the temperature gradient in Fig. 3(D) is similar to that

of the heat flux. Its discontinuities on both the crust-mantle boundary
and the core-mantle boundary result from the discontinuous thermal
conductivities in different layers.

3.2. Estimating radioisotope abundance

High heat production in the lunar crust indicates a high radioisotope
abundance, while low heat production in the mantle indicates a de-
pleted radioisotope abundance (Langseth et al., 1976). However, the
heat production in this model includes contributions from all kinds of
underground heat sources. Two major heat sources are the heat from
radioactive decay and the residual heat from lunar accretion. According
to Turcotte and Schubert (2014), 20% of Earth’s internal heat comes
from planetary accretion, while the other 80% is mainly produced by
the radioactive decay of 238U, 232Th and 40K. Hence, we assume that the
Moon has similar proportions with those of the Earth. In this case, the
heat from radioisotope decay contributes to 80% of the calculated heat
production, and the abundances of 238U, 232Th and 40K can be calcu-
lated by Eq. (7) (Turcotte and Schubert, 2014; Warren and Wasson,
1979)

+ + × = ×
=

c c c A
c c c

(94.6 26.4 29.2 ) 10 80%
: : 1.0: 3.7: 1.1

U Th K
6

U Th K (7)

where ρ is the density of rocks (kg/m3), c is the radioisotope abundance
(ppb), and A is the heat production (nW/m3).

Fig. 3. The inversion results of lunar heat production
and the corresponding forward responses. (A) Two
sets of heat production obtained by inversion. The
red line is calculated from the higher reference tem-
perature, while the blue line is calculated from the
lower reference temperature. The green dashed line
is the mean heat production. (B) The calculated
temperature curves. The red line fits the reference
temperature in the red shade, corresponding to the
temperature profile calculated with the mineral as-
sumption for pyroxene with 1.9 wt% Al2O3 in Hood
and Sonett (1982). Similarly, the blue shade of re-
ference temperature corresponds to pyroxene with
6.8 wt% Al2O3. (C) The heat flux calculated with Eq.
(2). (D) The temperature gradient calculated from the
temperature curves in (B). (For interpretation of the
references to colour in this figure legend, the reader
is referred to the web version of this article.)
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The radioisotope abundances calculated by the heat production are
listed in Table 1. Yamashita et al. (2010) presented a global map of
uranium distribution and gave an average uranium abundance of
∼300 ppb along with an average thorium abundance of ∼1200 ppb.
The abundances of uranium and thorium calculated in our model are
272.2 ppb and 1007.3 ppb, which are close to their observations.

4. Discussion

To discuss the effects of all the used parameters on the inverted
results in our model, we change the value of the subsurface tempera-
ture, the heat flux, the thermal conductivity, and the internal tem-
perature reference, separately. The corresponding results are shown in
Fig. 4 and in Fig. 5. Three sets of comparisons with different near-
surface temperatures, global heat fluxes and thermal conductivities are
shown in Fig. 4(A)–(C), respectively. Two sets of comparisons with
different deep temperature reference envelopes are shown in Fig. 5.

In Fig. 4, Ts and qs are the near-surface temperature and the global
mean heat flux, respectively. The normal conductivities are the values
used in Section 3.1, which are 2 Wm−1 K−1 in the crust, 3 Wm−1 K−1

in the mantle and 10 Wm−1 K−1 in the core. We took the subsurface
temperature of 150 K obtained in polar region (Paige et al., 2010) to
approximate the temperature without the influence of the long-term
solar radiation. It should be noted that the variation of the subsurface
temperature and the heat flux in Fig. 4 cannot be interpreted as the

latitude variation, since all other parameters do not change.
According to Fig. 4(A) and (B), the changes in Ts and qs both result

in the change in heat production only at a depth from 0 to 381 km. With
higher Ts or qs, the heat production in the crust also increases, and it is
more sensitive to the change in global heat flux than that in near-sur-
face temperature. The trend is that lower subsurface temperature cor-
responds to lower heat production in crust but higher heat production
in upper mantle, and the heat production in mantle is always much less
than that in crust. With higher qs the heat production in the crust in-
creases, and it is more sensitive to the change in global heat flux than
that in subsurface temperature. It is worth noting that the heat pro-
ductions at a depth larger than 381 km have no response to the changes
in Ts or qs. This is because the calculated deep heat production is
dominated by the deep reference temperature and the thermal con-
ductivity, see Figs. 4(C) and 5.

In addition, with the 10% change in the thermal conductivity from
the crust to the core, the inversion results of heat production change by
approximately 10% as well in Fig. 4(C). Hence, the error of thermal
conductivity has limited effect on the results.

Fig. 5 shows how the uncertainty of reference temperatures affects
the calculated heat productions. Although there is a large difference
between the higher and the lower limits of the temperature envelopes
given by Hood and Sonett (1982), the uncertainty of the temperature is
relatively small (approximately ±100 K) at the depth from 500 to
1300 km. Therefore, by using the median temperature values in this
depth range, the uncertainty of these envelopes will have minimized
influence on the inversion results. Fig. 5(A)–(C) show the results gen-
erated by different fitting curves of deep temperatures with the mineral
assumption for pyroxene with 1.9 wt% Al2O3, while Fig. 5(D)–(F) are
the other group of results with the assumption for pyroxene with 6.8 wt
% Al2O3. The dashed lines and the dotted lines in all six subfigures
represent the results of lower and higher temperature limits, respec-
tively. Despite the reference temperature variations, the general trend
of the heat production does not change that the largest value appears in
crust and the smallest value appears in mantle. The heat production in
mantle varies between ∼0 and 9.6 nW/m3 except for the upper mantle
layer approaching 27.7 nW/m3. The core tends to have a heat pro-
duction of 17.2–61.4 nW/m3. The largest uncertainty of the heat pro-
duction occurs in the crust, varying between 89.3 and 266.0 nW/m3.
Therefore, compared with other parameters used in our model, the deep

Table 1
Radioisotope abundances calculated from the mean heat production in each
layer of the two models.

Layer Depth (km) Densitya

(kg/m3)
Mean heat
production
(nW/m3)

238U
(ppb)

232Th (ppb) 40K (ppb)

Crust 0–40 2750 210 272.2 1007.3 299.5

Mantle 40–381 3340 7.0 7.5 27.6 8.2
381–723 3350 7.5 8.0 29.5 8.8
723–1065 3355 5.7 6.1 22.4 6.7
1065–1407 3440 5.0 5.2 19.2 5.7

Core 1407–1737 5443 33.1 21.7 80.2 23.8

a Estimation from Weber et al. (2011).

Fig. 4. The comparisons of inversion results with different subsurface temperatures, subsurface heat fluxes and thermal conductivities. (A) Using subsurface tem-
peratures of 150 K (blue), 200 K (green) and 250 K (red) with qs = 12mW/m2. (B) Using global heat fluxes of 9mW/m2 (blue), 12mW/m2 (green) and 15mW/m2

(red) with Ts = 250 K. (C) Using 10% lower (blue), 10% higher (red) and the normal thermal conductivities (green) used in Section 3.1, which are 2 W m−1 K−1 in
the crust, 3 W m−1 K−1 in the mantle and 10 W m−1 K−1 in the core, along with Ts = 250 K and qs = 12mW/m2. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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reference temperatures have considerable effects on the inversion re-
sults.

5. Conclusions

This paper reports lunar interior temperature and heat production
along depth by 1D forward modeling and geothermal inversion. The
heat transfer of lunar interior is considered as a thermal conduction
process. Particle swarm optimization is applied to calculate the inver-
sion of heat production, which performs well and presents stable so-
lutions.

According to our results, the lunar crust has the highest heat pro-
duction of ∼210 nW/m3, while the lunar mantle has much lower va-
lues. The heat production of the lunar core lies between that of the crust
and mantle and is near the mean heat production within the Moon.
Geiss and Rossi (2013) presented a KREEP layer below the feldspathic
crust. The KREEP layer is enriched in the radioactive elements derived
from the mantle, for which the whole crust is expected to have a con-
siderably high heat production. Our results support that the radioactive
isotopes are highly enriched in the lunar crust from 0 to 40 km. In

addition, although heat production decreases obviously below the lunar
crust, there is an unpredicted high value within the core, indicating that
the residual heat from lunar accretion or the abundances of the radio-
active elements are likely to be substantial in the core and higher than
the previous estimation in Toksöz et al., 1978.

Based on the assumption that the heat released by radioactive decay
contributes to 80% of the total heat at present, we calculate the
radioisotope abundance of uranium, thorium and potassium from the
inversion results of heat production. Identical to the distribution of heat
production, the radioisotopes mostly concentrate in the crust and are
depleted in the mantle. The abundance of uranium in lunar crust is
calculated to be 272 ppb, while that of thorium is 1007 ppb, which are
in accordance with the average observations of Yamashita et al. (2010).

According to Weiss and Tikoo (2014), the intensity and longevity of
the lunar dynamo depend on the heat flux at the core-mantle boundary.
Core convection requires that the heat flux at the core-mantle boundary
exceeds the core adiabat heat flux (between 2 and 10mW/m2). Our
calculated heat flux has a low value of ∼3.5mW/m2 in the range for
the lunar core adiabatic process, suggesting that core convection
probably has been greatly weakened.

Fig. 5. The effects of the reference temperature variations on the inversion results for the mantle pyroxene with 1.9 wt% Al2O3 are shown in (A), (B) and (C) with red
lines, and those for pyroxene with 6.8 wt% Al2O3 are shown in (D), (E) and (F) with blue lines. From left to right subfigures, the heat production, the temperature, and
the heat flux along depth are shown. The dotted and dashed lines represent the upper and lower temperature limit and its inverted results, respectively. The minimum
heat production in the top layer of the mantle are ×1.1 10 7 nW/m3 in (A), and ×2.7 10 5 nW/m3 in (D), which are too small to be shown in the figure. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Appendix A

The spherical coordinates r( , , ) are established with the origin located at the center of the Moon. The physical parameters of the lunar interior
are considered to be isotropic. Therefore, the radius r is the only coordinate that needs to be considered. Since the moon has already cooled, the inner
temperature field can be considered constant over time on a short time scale, which means T t/ 0 in Eq. (1). Hence, Eq. (1) can be written

=A r
r r

r q r( ) 1 d
d

( ( )),2
2

(8)

which can be integrated to give

=q r
r

A r r r r R( ) 1 ( ) d , 0 ,
r

1
1
2 0

2
1

1

(9)

where =q (0) 0, and R is the radius of the moon. Thus, knowing the heat production of each layer, we can determine the heat flux from Eq. (9).
The discrete form of the heat flux in Eq. (9) is
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where q0 is the heat flux at the center of the Moon, A is the heat production per unit volume, and n is the ordinal number.
Integrating Eq. (2), we have

=T r T q r
r

r( ) (0) ( )
( )

d ,
r

1 0

1

(11)

whereT (0) is the central temperature of the moon. However, it is difficult to measure or evaluateT (0) directly. We substitute =r R1 into Eq. (10) and
obtain

= +T T q r
r
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R
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where Ts is the subsurface temperature and is much easier to estimate than the central temperature.
Using Eqs. (10)–(12), we obtain
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i.e., Eq. (3) shown in Section 2.1. We can also write it in discrete form:
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where T0 is the temperature at the center of the moon, λ is the thermal conductivity, and n is the ordinal number.
On the other hand, if we substitute Eq. (2) into Eq. (1), we have

=A r
r r

r r T
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2

In each layer, r rd ( )/d equals zero. In this case, we write

= +A r r
r
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T
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d

d
d

.
2

2 (14)

With Eq. (14), the heat production can also be calculated directly from temperature, which is shown as the red lines in Fig. 2. However, direct
calculation is not recommended because it is rather sensitive to the temperature, and the results may have a large disturbance with a rough
temperature profile.
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