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Preface

The methods of (Co-) Homological Algebra provide a framework for Al-
gebraic Geometry and Algebraic Analysis. The following two books were
published during the late 1950’s:

[CE] Cartan, H., Eilenberg, S., Homological Algebra, Princeton University Press
(1956), and

[G]  Godement, R., Topologie Alg´ebraique et Th´eorie des Faisceaux, Hermann,
Paris (1958).

If you are capable of learning from either of these two books, I am afraid that
The Heart of Cohomology, referred to hereafter as [THOC], is not for you. One
of the goals of [THOC] is to provide young readers with elemental aspects of
the algebraic treatment of cohomologies.

During the 1990’s

[GM] Gelfand, S.I., Manin, Yu., I., Methods of Homological Algebra, Springer–
Verlag, (1996), and

[W]  Weibel, C.A., An Introduction to Homological Algebra, Cambridge Univer-
sity Press, (1994)

were published. The notion of a derived category is also treated in [GM] and
[W].

In June, 2004, the author was given an opportunity to give a short course ti-
tled “Introduction to Derived Category” at the University of Antwerp, Antwerp,
Belgium. This series of lectures was supported by the European Science Foun-
dation, Scientific Programme of ESF. The handwritten lecture notes were dis-
tributed to attending members. [THOC] may be regarded as an expanded ver-
sion of the Antwerp Lecture Notes. The style of [THOC] is more lecture-like
and conversational. Prof. Fred van Oystaeyen is responsible for the title “The
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Heart of Cohomology”. In an effort to satisfy the intent of the title of this book,
a more informal format has been chosen.

After each Chapter was written, the handwritten manuscript was sent to
Dr. Daniel Larsson in Lund, Sweden, to be typed. As each Chapter was typed,
we discussed his suggestions and questions. Dr. Larsson’s contribution to
[THOC] is highly appreciated.

We will give a brief introduction to each Chapter. In Chapter I we cover some
of the basic notions in Category Theory. As general references we recommend

[BM] Mitchell, B., The Theory of Categories, Academic Press, 1965, and

[SH] Schubert, H., Categories, Springer-Verlag, 1972.

The original paper on the notion of a category

[EM] Eilenberg, S., MacLane, S., General Theory of Natural Equivalences, Trans.
Amer. Math. Soc. 58, (1945), 231–294

is still a very good reference. Our emphasis is on Yoneda’s Lemma and the
Yoneda Embedding. For example, for contravariant functors F and G from a
category C to the category Set of sets, the Yoneda embedding

˜ : C � Ĉ := SetC
◦

gives an interpretation for the convenient notation F (G) as

F̃ (G) = HomĈ (G, F )

(See Remark 5.)
We did not develop a cohomology theory based on the notion of a site.

However, for a covering {Ui → U} of an object U in a site C , the higher
Čech cohomology with coefficient F ∈ Ob(AbC ◦

) is the derived functor of the
kernel of ∏

F (Ui)
d0

−→
∏

F (Ui × Uj).

This higher Čech cohomology associated with the covering of U is the coho-
mology of the Čech complex

Cj({Ui → U}, F ) =
∏

F (Ui0 ×U · · · ×U Uij ).

One can continue the corresponding argument as shown in 3.4.3.
In Chapter II, the orthodox treatment of the notion of a derived functor for

a left exact functor is given. In 2.11 through Note 15, a more general invariant
than the cohomology is introduced. Namely for a sequence of objects and
morphisms in an abelian category, when the composition d2 = 0 need not
hold, we define two complexifying functors on the sequence. The cohomology
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of the complexified sequence is the notion of a precohomology generalizing
cohomology. The half-exactness and the self-duality of precohomologies are
proved. As a general reference for this Chapter,

[HS] Hilton, P.J., Stammbach, U., A Course in Homological Algebra, Graduate
Texts in Mathematics, Springer-Verlag, 1971

is also recommended.
In Chapter III, we focus on the spectral sequences associated with a dou-

ble complex, the spectral sequences of composite functors, and the spectral
sequences of hypercohomologies. For the theory of spectral sequences, in

[LuCo] Lubkin, S., Cohomology of Completions, North-Holland, North-Holland
Mathematics Studies 42, 1980

one can find the most general statements on abutments of spectral sequences.
In [THOC], the interplay of the above three kinds of spectral sequences and
their applications to sheaf cohomologies are given.

In Chapter IV, an elementary introduction to a derived category is given.
Note that diagram (3.14) in Chapter IV comes from [GM]. The usual octahedral
axiom for a triangulated category is replaced by the simpler (and maybe more
natural) triangular axiom:

C ′
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A schematic picture for the derived functors RF between derived categories
carrying a distinguished triangle to distinguished triangle may be expressed as

• •

• • • •

C(f)[1] •

• B[1] RF ���������� • RFB[1]

C(f) RFC(f)

A[1] B RFA[1] RFB

A RFA .

As references for Chapter IV,

[HartRes] Hartshorne, R., Residues and Duality, Lecture Notes Math.

[V] Verdier, J.L., Catégories triangulées, in Cohomologie Étale, SGA4 1
2
, Lec-

ture Notes Math. 569, Springer-Verlag, 1977, 262–312.

need to be mentioned.
In Chapter V, applications of the materials in Chapters III and IV are given.

The first half of Chapter V is focused on the background for the explicit com-
putation of zeta invariances associated with the Weierstrass family. We wish
to compute the homologies with compact supports of the closed fibre of the
hyperplane

ZY 2 = 4X3 − g2XZ2 − g3Z
3

in P
2(A), A := Ẑp[g2, g3], where X, Y, Z are homogeneous coordinates (or the

open subfamily, i.e., the pre-image of Spec((Z/pZ)[g2, g3]∆), i.e., localized
at the discriminant ∆ := g3

2 − 27g2
3 , p �= 2, 3). Let U be the affine open

family in the above fibre, i.e., “Z = 1”. Then we are interested in a set of
generators and relations for the A†⊗Z Q-module H1

c(U, A†⊗Z Q). For p in the
base Spec((Z/pZ)[g2, g3]) (or Spec((Z/pZ)[g2, g3]∆), the universal spectral
sequence is induced so as to compute the zeta function of the fibre over p (or
elliptic curve over p).

We also decided to include a letter from Prof. Dwork in 5.2.4 in Chapter V
since we could not find the contents of this letter elsewhere.

In the second half of Chapter V, only some of the cohomological aspects of
D-modules are mentioned. None of the microlocal aspects of D-modules are

Verlag, 1966, and
20, Springer-
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treated in this book. One may consider the latter half materials of Chapter V
as examples and exercises of the spectral sequences and derived categories in
Chapters III and IV.

Lastly, I would like to express my gratitude to my mathematician friends in
the U.S.A., Japan and Europe. I will not try to list the names of these people
here fearing that the names of significant people might be omitted. However,
I would like to mention the name of my teacher and Ph.D. advisor, Prof. Saul
Lubkin. I would like to apologize to him, however, because I was not able to
learn as much as he exposed me to during my student years in the late 1970’s.
(I wonder where my Mephistopheles is.) In a sense, this book is my humble
delayed report to Prof. Lubkin.

Tomo enpouyori kitari
mata tanoshi karazuya. . .

Goro Kato

Thanksgiving Holiday with my Family and Friends, 2005
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Chapter 1

CATEGORY

1.1 Categories and Functors
The notion of a category is a concise concept shared among "groups and

group homomorphisms", "set and set-theoretic mappings", "topological spaces
and continuous mappings", e t c.

Definition 1. A category C consists of objects, denoted as X, Y, Z, . . . , and
morphisms, denoted as f, g, φ, ψ, α, β, . . . . For objects X and Y in the category
C , there is induced the set HomC (X, Y ) of morphisms from X to Y . If

φ ∈ HomC (X, Y ) we write φ : X → Y or X
φ−→ Y . Then, for φ : X → Y

and ψ : Y → Z, the composition ψ ◦ φ : X → Z is defined. Furthermore,

for X
φ−→ Y

ψ−→ Z
γ−→ W , the associative law γ ◦ (ψ ◦ φ) = (γ ◦ ψ) ◦ φ

holds. For each object X there exists a morphism 1X : X → X such that
for f : X → Y and for g : Z → X we have f ◦ 1X = f and 1X ◦ g = g.
Lastly, the sets HomC (X, Y ) are pairwise disjoint. Namely, if HomC (X, Y ) =
HomC (X ′, Y ′), then X = X ′ and Y = Y ′.

Note 1. When X is an object of a category C we also write X ∈ Ob(C ), the
class of objects in C . Note that a category is said to be small if Ob(C ) is a set.

Example 1. The category Ab of abelian groups consists of abelian groups and
group homomorphisms as morphisms. The category Set of sets consists of sets
and set-theoretic maps as morphisms. Next let T be a topological space. Then
there is an induced category T consisting of the open sets of T as objects. For
open sets U, V ⊂ T , the induced set HomT (U, V ) of morphisms from U and
V consists of the inclusion map ι : U ↪→ V if U ⊂ V , and HomT (U, V ) an
empty set if U � V .

Remark 1. For the category Ab we have the familiar element-wise definitions
of the kernel and the image of a group homomorphism f from a group G to

1



2 Category

a group H . We also have the notions of a monomorphism, called an injective
homomorphism, and of an epimorphism, called a surjective homomorphism in
the category Ab. For a general category C we need to give appropriate defini-
tions without using elements for the above mentioned concepts. For example,
φ : X → Y in C is said to be an epimorphism if f ◦ φ = g ◦ φ implies f = g
where f, g : Y → Z. (This definition of an epimorphism is reasonable since
the agreement f ◦φ = g ◦φ only on the set-theoretic image of φ guarantees that
f = g.) Similarly, φ : X → Y is said to be a monomorphism if φ ◦ f = φ ◦ g
implies f = g where f, g : W → X . (This is reasonable since there can not be
two different paths from W to Y .) In order to give a categorical definition of an

image of a morphism, we need to define the notion of a subobject. Let W
φ−→ X

and W ′ φ′
−→ X be monomorphisms. Then define a pre-order (W ′, φ′) ≤ (W, φ)

if and only if there exists a morphism ψ : W ′ → W satisfying φ ◦ ψ = φ′.
Notice that ψ is a uniquely determined monomorphism. If (W, φ) ≤ (W ′, φ′)
also holds, we have a monomorphism ψ′ : W → W ′ satisfying φ′ ◦ψ′ = φ and
so φ ◦ ψ ◦ ψ′ = φ′ ◦ ψ′ = φ = φ ◦ 1W . Since φ is a monomorphism we have
ψ ◦ ψ′ = 1W . Similarly, we also have ψ′ ◦ ψ = 1W ′ . This means that ψ is an
isomorphism, and (W, φ), (W ′, φ′) are said to be equivalent. A subobject of
X is defined as an equivalence class of such pairs (W, φ). A categorical, i.e.,
element-free, definition of the image of a morphism φ : X → Y may be given
as follows. Consider a factorization of φ

X
φ ��

φ′
���

��
��

��
� Y

Y ′

ι


(1.1)

where (Y ′, ι) is a subobject of Y . For another such factorization (Y ′′, ι′), if
there exists a morphism j : Y ′ → Y ′′ satisfying ι = ι′ ◦ j, then (Y ′, ι) is said
to be the image of φ. Intuitively speaking, shrink Y as much as possible to Y ′

so that factorization is still possible. Namely, the image of φ is the smallest
subobject (Y ′, ι) to satisfy the commutative diagram (1.1). On the other hand,
the kernel of φ : X → Y can be characterized as the largest subobject (X ′, ι)
of satisfying φ ◦ ι = 0 in

X
φ �� Y

X ′

ι



φ′

����������
(1.2)



Categories and Functors 3

1.1.1 Cohomology in Ab

For a sequence

X
φ �� Y

ψ �� Z

in Ab, the cohomology group at Y is defined as the quotient group of Y

ker ψ
/

im φ (1.3)

provided imφ ⊂ kerψ, i.e., for y = φ(x) ∈ im φ we have ψ(y) = 0, or in still
other words, ψ(y) = ψ(φ(x)) = (ψ ◦ φ)(x) = 0.

1.1.2 The functor HomC (·, ·)
Let us take a close look at the set of morphisms HomC (X, Y ) in Definition

1. First consider HomC (X, X). Recall that there is a special morphism from X
to X , call it 1X , satisfying the following. For any φ : X → Y and ψ : Z → X
we have 1X ◦ ψ = ψ and φ ◦ 1X = φ in

Z
ψ �� X

1X �� X
φ �� Y. (1.4)

Then 1X is said to be an identity morphism as in Definition 1, (i).
Next delete Y in the expression HomC (X, Y ) to get HomC (X, ·). Then,

regard HomC (X, ·) as an assignment

HomC (X, ·) : C −→ Set

Y �−→ HomC (X, Y ).
(1.5)

Similarly we can consider

HomC (·, Y ) : C −→ Set

X �−→ HomC (X, Y ).
(1.6)

That is, when you substitute Y in the deleted spot of HomC (X, ·), you get the
set HomC (X, Y ) of morphisms. For two objects Y and Y ′ we have two sets
HomC (X, Y ) and HomC (X, Y ′). Then for a morphism β : Y → Y ′ consider
the diagram

X
φ

����
��
��
�� β◦φ

���
��

��
��

�

Y
β �� Y ′

(1.7)



4 Category

This diagram indicates that forφ ∈ HomC (X, Y ), we getβ◦φ ∈ HomC (X, Y ′).
Schematically, we express this situation as:

β : Y

HomC (X,·)
�� ��
��
��

�� Y ′ in C

HomC (X, β) : HomC (X, Y ) �� HomC (X, Y ′) in Set

(1.8)

where HomC (X, β)(φ) := β ◦ φ.
On the other hand, when X is deleted from HomC (X, Y ), we get (1.6). But

for X
α−→ X ′, i.e., considering

X

ψ◦α ��






α �� X ′

ψ����
��
��
��

Y

(1.9)

ψ ∈ HomC (X ′, Y ) induces ψ ◦ α ∈ HomC (X, Y ). Schematically,

α : X

HomC (·,Y )
��
��
��
��

�� X ′ in C

HomC (α, Y ) : HomC (X, Y ) HomC (X ′, Y ) in Set��

(1.10)

Notice that the direction of the morphism in (1.10) is changed as compared with
HomC (X, β) in (1.8).

Definition 2. Let C and C ′ be categories. A covariant functor from C to C ′

denoted as F : C � C ′, is an assignment of an object FX in C ′ to each object
X in C and a morphism Fα from FX to FX ′ to each morphism α : X → X ′

in C satisfying:

(Func1) For X
α−→ X ′ α′

−→ X ′′ in C we have

F (α′ ◦ α) = Fα′ ◦ Fα.

(Func2) For 1X : X → X we have F1X = 1FX : FX → FX .

Condition (Func1) may schematically be expressed as the commutativity of

X
α ��

α′◦α ���
��

��
��

� X ′

α′

��

FX
Fα ��

F (α′◦α) ���
��

��
��

��
FX ′

Fα′

��
X ′′ FX ′′

in C in C ′

(1.11)



Opposite Category 5

Example 2. In Definition 2, let C ′ = Set and let F = HomC (X, ·). Then one
notices from (1.8) that HomC (X, ·) : C � Set is a covariant functor.

Note 2. Similarly, a contravariant functor F : C � C ′ can be defined as
in Definition 2 with the following exception: For α : X → X ′ in C , Fα
is a morphism from FX ′ to FX in C ′, i.e., as in (1.10) the direction of the
morphism is changed. Notice that HomC (·, Y ) is a contravariant functor from
C to Set.

Before we begin the next topic, let us confirm that the covariant functor
HomC (X, ·) : C � Set satisfies Condition (Func2) of Definition 2. To demon-
strate this: for 1Y : Y → Y , indeed

HomC (X, 1Y ) : HomC (X, Y ) → HomC (X, Y )

is to be the identity morphism on HomC (X, Y ), i.e.,

HomC (X, 1Y ) = 1HomC (X,Y ).

Let α ∈ HomC (X, Y ) be an arbitrary morphism. Then consider

X
α

����
��
��
�

1Y ◦α=α

���
��

��
��

Y
1Y �� Y

(1.12)

which is a special case of (1.7). As shown in (1.8), the definition of

HomC (X, 1Y ) : HomC (X, Y ) → HomC (X, Y )

is α �→ 1Y ◦ α = α. Namely, HomC (X, 1Y ) is an identity on HomC (X, Y ).

1.2 Opposite Category
Next, we will define the notion of an opposite category (or dual category).

Let C be a category. Then the opposite category C ◦ has the same objects as
C . This means that the dual object X◦ in C ◦ of an object X in C satisfies
X◦ = X . We will use the same X even when X is an object of C ◦. Let X and
Y be objects in C ◦, then the set of morphisms from X to Y in C ◦ is defined as
the set of morphisms from Y to X in C , i.e.,

HomC ◦(X, Y ) = HomC (Y,X). (2.1)

Note that C ◦ is also called the dual category of C . Recall that

HomC (X, ·) : C � Set
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is a covariant functor. Let us replace C by C ◦. Then we have

HomC ◦(X, ·) : C ◦ � Set.

Let Y
φ−→ Y ′ be a morphism in C . Then in C ◦ we have Y

φ◦
←− Y ′. The

covariant functor HomC ◦(X, ·) takes Y
φ◦
←− Y ′ in C ◦ without changing the

direction of φ◦ to

HomC ◦(X, Y ) HomC ◦(X, Y ′)��

in Set. From (2.1) we get

HomC ◦(X, Y ) = HomC (Y, X) HomC ◦(X, Y ′) = HomC (Y ′, X)�� .

Schematically, we have

In C ◦ : Y

◦
��
��
��
��

Y ′φ◦
��

In C : Y
φ �� Y ′

◦

��
��
��

.

(2.2a)

Applying HomC ◦(X, ·) to the top row and HomC (·, X) to the bottom row, we
get:

HomC ◦(X, Y ) HomC ◦(X, Y ′)��

HomC (Y, X) HomC (Y ′, X)��

(2.2b)

in Set. Generally, for a covariant functor F : C � C ′, there is induced a
contravariant functor F : C ◦ � C ′. On the other hand, F : C � C ′◦

becomes contravariant.

1.2.1 Presheaf on T

In Example 1, we defined the category T associated with a topological space
T . Let us consider a contravariant functor F from T to a category A . Namely,
for U ↪→ V in T , we have FU ← FV in A . (As noted, F : T ◦ � A is a
covariant functor.) Then F is said to be a presheaf defined on T with values
in A . In the category of presheaves on T

T̂ := A T ◦
, (2.3)

an object is a covariant functor (presheaf) from T ◦ to A , and a morphism f of
presheaves F and G is defined as follows. To every object U of T , f assigns
a morphism

fU : FU → GU (2.4)



Forgetful Functors 7

in A . Generally, for categories C and C ′, let

Ĉ = C ′C (2.5)

be the category of (covariant) functors as its objects. For functors F and G, a
morphism f : F → G is called a natural transformation from F to G and is
defined as an assignment fU : FU → GU for an object U in C . Additionally
f must satisfy the following condition: for every U

α−→ V in C , the diagram

FU
fU ��

Fα
��

GU

Gα
��

FV
fV �� GV

(2.6a)

commutes, i.e., fV ◦Fα = Gα ◦ fU in C ′. Therefore, a morphism f : F → G
in T̂ = A T ◦

must satisfy the following in addition to (2.4). For ι : U ↪→ V
in T (i.e., U ←↩ V in T ◦),

FU
fU �� GU

FV
fV ��

Fι



GV

Gι


(2.6b)

must commute. Important examples of T̂ are the cases when A = Set and
A = Ab. We will return to this topic when the notion of a site is introduced.

1.3 Forgetful Functors
Let A be an abelian group. By forgetting the abelian group structure, A

can be regarded as just a set. Namely, we have an assignment S : Ab � Set.
For a group homomorphism φ : A → B in Ab, assign the set-theoretic map
Sφ : SA → SB. One may wish to check axioms (Func1) and (Func2) of
Definition 2 for the assignment S. Consequently S is a covariant functor from
Ab to Set. This functor S is said to be a forgetful functor from Ab to Set.

Definition 3. Let C ′ and C be categories. Then C ′ is a subcategory of C when
the following conditions are satisfied.

(Subcat1) Ob(C ′) ⊂ Ob(C ) and for all objects X and Y in C ′,

HomC ′(X, Y ) ⊂ HomC (X, Y ).

(Subcat2) The composition of morphisms in C ′
′ the identity morphisms

1X in C ′ are also identity morphisms in C .
Cof morphisms in C , and for all objects X in

is coming from the composition
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Example 3. Let V′ be the category of finite-dimensional vector spaces over a
field 	 and let V be the category of vector spaces over 	 and where the morphisms
are the 	-linear transformations. Then V′ is a subcategory of V. Let Top be the
category of topological spaces where the morphisms are continuous mappings.
Then Top is a subcategory of Set.

Remark 2. Note that we have HomV′(X, Y ) = HomV(X, Y ), since the 	-
linearity has nothing to do with dimensions. In general, when a subcategory
C ′ of a category C satisfies HomC ′(X, Y ) = HomC (X, Y ) for all X and Y
in C ′, C ′ is said to be a full subcategory of C .

1.4 Embedddings
Let B and C be categories. Even though B is not a subcategory of C , one

can ask whether B can be embedded in C (whose definition will be given in the
following). Let F be a covariant functor from B to C . Then for f : X → Y
in B we have FX → FY in C . Namely, for an element f of HomB(X, Y )
we obtain Ff in HomC (FX, FY ). That is we have the following map F̄ :

F̄ : HomB(X, Y ) �� HomC (FX, FY )

f � �� F̄ (f) = Ff

(4.1)

If F̄ is injective, F : B � C is said to be faithful, and if F̄ is surjective, F
is said to be full. Furthermore, F is said to be an embedding (or imbedding) if
F̄ is not only injective on morphisms, but also F is injective on objects. That
is, F : B � C is said to be an embedding if F is a faithful functor and if
FX = FY implies X = Y . Then B may be regarded as a subcategory of
C . We also say that F : B � C is fully faithful when F is full and faithful.
A functor F : B � C is said to represent C when the following condition is
satisfied: For every object X ′ of C there exists an object X in B so that there
exists an isomorphism from FX to X ′. If a fully faithful functor F : B � C
represents C then F is said to be an equivalence. Furthermore, an equivalence F
is said to be an isomorphism if F induces an injective correspondence between
the objects of B and C . The notion of an equivalence F can be characterized
by the following.

Proposition 3. A functor F : B � C is an equivalence if and only if there
exists a functor F ′ : C � B satisfying

(Eqv) F ′◦F and F ◦ F ′ are isomorphic to the identity functors 1B and 1C ,
respectively.

Proof. Let f : Z → Z ′ be a morphism in C . Since F represents C , there are

objects X and X ′ in B so that FX
i−→ Z and FX ′ j−→ Z ′ are isomorphisms in C .
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Then we have the morphism j−1 ◦f ◦ i : FX → FX ′. Define f̃ := j−1 ◦f ◦ i.
Since F is fully faithful there exists a unique morphism f̃ ′ : X → X ′ in B
satisfying F f̃ ′ = f̃ . Then define F ′f := f̃ ′. Namely, we have F ′Z = X
and F ′Z ′ = X ′. Note that F ′ becomes a functor from C to B. From the
commutative diagram

FX
≈
i

��

f̃ :=j−1◦f◦i
��

Z

f
��

FX ′ ≈
j

�� Z ′

(4.2)

in C , we get the commutative diagram in B

F ′FX
≈

F ′i
��

��

F ′Z = X

F ′f :=f̃ ′

��
F ′FX ′ ≈

F ′j
�� F ′Z ′ = X ′.

(4.3)

From the definition of F ′, i.e., F ′Z = X and (4.2), we also get

FF ′Z
≈
i

��

��

Z

f

��
FF ′Z ′ ≈

j
�� Z ′.

(4.4)

We obtain F ′ ◦ F ≈ 1B and F ◦ F ′ ≈ 1C .
Conversely, assume (Eqv). For an object Z of C we have an isomorphism

(F ◦ F ′)Z ≈−→ 1C Z = Z. Let X = F ′Z. Then FX
≈−→ Z. Therefore, F

represents C . Consider F̄ of (4.1), i.e.,

F̄ : HomB(X, X ′) → HomC (FX, FX ′).

Suppose that F̄ f = F̄ g for f, g ∈ HomB(X, X ′). We have Ff = Fg

which implies F ′Ff = F ′Fg. Since F ′ ◦ F
≈−→ 1B, f = g. Therefore

F is faithful. Let φ ∈ HomC (FX, FX ′). Since F represents C , we have

isomorphisms F (F ′FX) ≈
i

�� FX and F (F ′FX ′) ≈
j

�� FX ′ . That is,

we have the commutative diagram

FF ′FX
≈
i

��

F (F ′φ)
��

FX

φ
��

FF ′FX ′ ≈
j

�� FX ′.

(4.5)
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Then F ′φ : F ′FX → F ′FX ′, i.e., F ′φ ∈ HomB(X, X ′) satisfying

F̄ (F ′φ) = (F ◦ F ′)φ = 1C φ = φ.

Therefore, F is full.

Remark 3. When there is an equivalence F : B � C , B may be identi-
fied with C in the following sense. If there are objects X and X ′ in B hav-

ing isomorphisms FX
i−→ Z and FX ′ j−→ Z then we get the isomorphisms

F ′FX
F ′i−−→ F ′Z and F ′FX ′ F ′j−−→ F ′Z. Namely,

X
≈

F ′i
�� F ′Z X ′≈

F ′j
�� .

Considering Z ′ as isomorphic to Z we can conclude that there is a bijective
correspondence between isomorphic classes of B and C .

1.5 Representable Functors
First recall from (1.9) that HomC (·, X) is a contravariant functor from C to

Set. Let G also be a contravariant functor from C to Set. Namely, HomC (·, X)
and G are objects of Ĉ = SetC

◦
as in (2.5) and (2.6a). For G ∈ Ob(Ĉ ), if

there exists an object X in C so that HomC (·, X) is isomorphic to G in the
category Ĉ , then G is said to be a representable functor. We also say that G

and X̃ := HomC (·, X) are naturally equivalent. That is, there is a natural
transformation α : X̃ → G (i.e., α is a morphism in Ĉ ) which gives an
isomorphism for every object Y in C

αY : X̃(Y ) = HomC (Y,X) → GY. (5.1)

Such an α is said to be a natural equivalence.

1.5.1 Yoneda’s Lemma
Let F be an arbitrary contravariant functor from a category C to Set. For two

objects F and X̃ = HomC (·, X) of Ĉ = SetC
◦
, consider the set HomĈ (X̃, F )

of all morphisms in Ĉ from X̃ to F , i.e., HomĈ (X̃, F ) is the set of all the

natural transformations from X̃ to F . The Yoneda Lemma asserts that there is
an isomorphism (i.e., a bijection) between the sets HomĈ (X̃, F ) and FX . If

an element of HomĈ (X̃, F ) is written vertically as

F

X̃



(5.2)
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the reader with a scheme-theoretic background might consider such a morphism
as (5.2) as an X̃-rational point on F , suggesting HomĈ (X̃, F ) ≈ F (X̃). As the

functor ˜ : C � Ĉ will later be shown to be an embedding, the identification
of X̃ with X would be appropriate. Namely, FX might be interpreted as the
set of all the X-rational points on F .

Proposition 4 (Yoneda’s Lemma). For a contravariant functor F from a cate-
gory C to the category Set of sets, there is a bijection

HomĈ (X̃, F ) ≈ FX, (5.3)

where X is an arbitrary object of C .

Proof. Let r ∈ HomĈ (X̃, F ), i.e., r : X̃ → F is a natural transformation. For
X itself, we have

rX : X̃X → FX. (5.4)

Then for 1X ∈ X̃X = HomC (X, X), rX(1X) is an element of FX . Namely,
we obtain a map α from HomĈ (X̃, F ) to FX defined by α(r) = rX(1X). We

will show that this map α is a bijection. Define a map from FX to HomĈ (X̃, F )
as follows. Let x ∈ FX . Then we need a natural transformation φx from
X̃ to F . That is, for an arbitrary object Y of C we need a map φx,Y from
X̃Y = HomC (Y,X) to FY . Consider the following commutative diagrams:

Y

f
��

f=1X◦f

���
��

��
��

�

X
1X

�� X

(5.5a)

X̃X = HomC (X, X) ��

HomC (f, X)
��

FX

Ff

��
X̃Y = HomC (Y, X) �� FY.

(5.5b)

Then for f ∈ X̃Y = HomC (Y, X), Ff : FX → FY gives (Ff)(x) ∈ FY .
That is, for x ∈ FX , the map φx,Y from X̃Y → FY is given by f �→ (Ff)(x).
We are ready to compute the compositions of these maps. First we will prove
α(φx) = x. By definition of α, α(φx) = φx,X(1X). That is, for φx : X̃ → F ,
φx,X is the map from X̃X → FX . Then, by the definition of φx,X , we have
φx,X(1X) = (F1X)(x) = 1FX(x) = x. Conversely, let r ∈ HomĈ (X̃, F ).
Then α(r) = rX(1X) ∈ FX . We need to show φrX(1X) = r as natural

transformations in HomĈ (X̃, F ). That is, for an arbitrary object Y in C , we
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Figure 1.1. Nobuo Yoneda. Provided by Iwanami-Shoten, Inc.

must show φrX(1X),Y = rY as maps from X̃Y = HomC (Y,X) to FY . Now

we will compute: for f ∈ X̃Y = HomC (Y, X), the definition of φx,Y implies
φrX(1X),Y (f) = (Ff)(rX(1X)). In (5.5b) we regard (Ff)(rX(1X)) as the

clockwise image of 1X ∈ X̃X . Next, we will consider the counterclockwise
route of (5.5b) for 1X ∈ X̃X . First (5.5a) implies that

HomC (f, X)(1X) = f ∈ X̃Y.

For the given r ∈ HomĈ (X̃, F ) the commutativity of (5.5b) implies

rY (f) = (Ff)(rX(1X))

for any Y ∈ Ob(C ) and for any f ∈ X̃Y .

Note 5. Notice that the Yoneda Lemma is also valid for a covariant functor
F : C � Set and X̃ = HomC (X, ·).
Remark 4. For the Yoneda bijection HomĈ (X̃, F ) ≈ FX , consider the case
where the contravariant functor F is representable and represented by X ′ ∈
Ob(C ). Namely, we have

HomĈ (X̃, F ) ≈ HomĈ (X̃, X̃ ′) ≈ X̃ ′X ≈ FX.

Since X̃ ′X = HomC (X, X ′),

HomĈ (X̃, X̃ ′) ≈ HomC (X, X ′). (5.6)

Notice that X̃ = HomC (·, X) is a contravariant functor from C to Set but the
functor ˜ from C to Ĉ is covariant as seen from (5.6). From the bijection in
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(5.6), the functor ˜ is fully faithful. And for any two objects X and X ′ in
C , if X̃ = X̃ ′ in Ĉ , we must have X̃Y = X̃ ′Y for any object Y of C . Then
HomC (Y,X) = HomC (Y,X ′) implies X = X ′ by Definition 1 of a category.
Namely, ˜ is an embedding. The functor

˜ : C � Ĉ

is called the Yoneda embedding.

Remark 5. Consider the following diagram of categories and functors:

Ĉ

F̃ , contrav.

����
����

����
����

����
��

C

˜covar.


��
��
��
��
��

F

contrav.
�������������������� Set

(5.7)

where F̃ = HomĈ (·, F ) : Ĉ � Set is a contravariant functor. The commu-
tativity of (5.7) is equivalent to the statement of Yoneda’s Lemma (Proposition
4). If F̃ is used, the Yoneda bijection (5.3) becomes the lifting formula of

(F, X) ∈ Ĉ × C to (F̃ , X̃) ∈ ˆ̂
C × Ĉ :

F̃ X̃ ≈ FX. (5.8)

Then for f : Y → X in C , φ : F → F ′ in Ĉ and φ̃ : F̃ → F̃ ′ in ˆ̂
C we have

the commutative diagram in Set:

F ′X
F ′f �� F ′Y

FX

φX

����������� Ff ��



FY

φY

����������

F̃ ′X̃ ′

≈

F̃ ′f̃ �� F̃ ′Ỹ

≈



F̃ X̃

≈



φ̃
X̃

���������� F̃ f̃ �� F̃ Ỹ

≈



φ̃
Ỹ

����������

(5.9)

where all the vertical morphisms are Yoneda’s isomorphisms (bijections) in Set.
Notice also that ∼ (C ) := {X̃ | X ∈ Ob(C ) } forms a subcategory of Ĉ .

1.6 Abelian Categories
In the category Ab of abelian groups, for a group G consisting of one element

G = {0G}, there is only one morphism in HomAb(G′, G) for each G′ ∈ Ob(Ab).
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In the category Set, a set of one element plays the same role. Namely, in
general, for a category C , an object Z of C is said to be a terminal object
if the set HomC (X, Z) has exactly one element for each X . An object A is
said to be an initial object if the set HomC (A, X) has exactly one element for
every X ∈ Ob(C ). An object 0 of C is said to be a zero object for C if 0
is both terminal and initial. Notice that for terminal objects Z and Z ′ in C
we have fZ

Z′ : Z → Z ′ and fZ′
Z : Z ′ → Z and we have 1Z : Z → Z and

1Z′ : Z ′ → Z ′. Then since HomC (Z, Z) has only one element fZ′
Z ◦ fZ

Z′ = 1Z

and similarly we have fZ
Z′ ◦ fZ′

Z = 1Z′ . Consequently, for any terminal object
fZ

Z′ : Z → Z ′ is an isomorphism in C . The same is true for an initial and a
zero object of a category. For any objects X and Y in C , we have fX

0 : X → 0
and g0

Y : 0 → Y obtaining g0
Y ◦ fX

0 : X → Y . This uniquely determined
morphism 0X

Y := g0
Y ◦ fX

0 is said to be a zero morphism. But in Remark 1 we
have used the notion of a zero morphism to define the notion of a kernel.

A category A is said to be an abelian category if the following (Ab.1) through
(Ab.6) are satisfied.

(Ab.1) For any X and Y in A , HomA (X, Y ) is an object in Ab, i.e., an abelian
group with respect to a binary composition +X,Y on the setHomA (X, Y ).
Namely, for objects X, X ′, Y, Y ′ of A and morphisms given as

X ′ h �� X
f ��
g

�� Y
k �� Y ′ (6.1)

we have k ◦ (f + g) = k ◦ f + k ◦ g in HomA (X, Y ′) and

(f + g) ◦ h = f ◦ h + g ◦ h

in HomA (X ′, Y ).

(Ab.2) A zero object0 exists in A . ThenHomA (0,0) is the trivial abelian group.

(Ab.3) For any objects X and Y in A  the  direct  sum  (coproduct)  X⊕Y  exists  in
A . That is, X ⊕ Y is an object in A

HomA (X, ·) × HomA (Y, ·) : A � Ab. (6.2)

Namely, for an object Z in A , there is an isomorphism

X̃ ⊕ Y Z := HomA (X⊕Y, Z) ≈−→ HomA (X, Z)×HomA (Y,Z). (6.3)

(Ab.4) For a morphism f : X → Y in A , the object kerf exists in A . We
have already mentioned the kernel of a morphism in Remark 1. Here is a

which is representing the follow-
ing covariant functor from A to Ab:
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definition of a kernel. The kernel ker f of a morphism f : X → Y is an
object which represents the following contravariant functor:

ker(HomA (·, X) → HomA (·, Y )) : A � Ab. (6.4)

Namely,

k̃er fZ := HomA (Z, ker f) ≈−→ ker(HomA (Z, X) → HomA (Z, Y )).
(6.5)

(Ab.5)

ker(HomA (Y, ·) → HomA (X, ·)) : A � Ab. (6.6)

Then (6.6) is represented by the object coker f :

c̃oker fZ := HomA (coker f, Z) ≈−→ ker(HomA (Y,Z) → HomA (X, Z)).
(6.7)

Remark 6. Before we mention the last condition for a category to be an abelian
category, let us recall a few universal mapping properties for the notions that
appeared in (Ab.3)–(Ab.5). The direct sum of X and Y is a pair of morphisms
i : X → X ⊕ Y and j : Y → X ⊕ Y satisfying the following universal
property. Namely, for each pair of morphisms i′ : X → Z and j′ : Y → Z
there is a unique morphism α : X ⊕ Y → Z making the diagram

X
i ��

i′ ���
��

��
��

��
X ⊕ Y

α

��

Y
j��

j′����
��

��
��

�

Z

commutative, i.e., (6.3) in (Ab.3). Another example may be an element of the
right hand-side of (6.5). That is, if g : Z → X satisfies f ◦ g = 0, then there is
a unique h : Z → ker f satisfying g = i◦h where i : ker f → X as in Remark
1. Namely, (6.3), (6.5) and (6.7) are exactly the universal mapping properties
of the direct sum, the kernel and cokernel, respectively.

Now we return to the last condition (Ab.6). First notice that ker f
i−→ X is a

monomorphism. This is because: if φ, ψ : K → ker f satisfy i ◦ φ = i ◦ ψ
from K to X then composing with f : X → Y we get f ◦ i ◦φ = f ◦ i ◦ψ = 0
from K to Y . By the universal property of ker f

i−→ X or by (6.5), there
is a unique ι : K → ker f satisfying i ◦ ι = i ◦ φ = i ◦ ψ : K → X
concluding that ι = φ = ψ. Consequently i : ker f → X is a monomorphism.
By (Ab.5) coker i exists in A . Define the coimage of f : X → Y as the
cokernel of i : ker f → X , i.e., coim f := coker i. Next, let Z = coker f

the functor
For a morphism f : X → Y , the object coker f exists in A . Consider
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in (6.7). Then 1coker f ∈ HomA (coker f, coker f) determines the element
π ∈ HomA (Y, coker f) satisfying π ◦ f = 0. We define im f := ker π. The
universal property for ker π or (6.5) implies that there is a unique morphism
g : X → ker π = im f making the following diagram commutative.

ker f
i �� X

π′

��

f ��

g

���
�

�
�

� Y
π �� coker f

coker i
h ����� kerπ

i′



coim f im f

(6.8)

Furthermore, by the universality for coker i, g ◦ i = 0 implies that there is
a unique morphism h : coker i → ker π = im f making the above diagram
commutative. Define coim f := coker i.

A category A satisfying (Ab.1)–(Ab.5) is said to be an abelian category if
the factorization morphism

(Ab.6) h : coim f → im f is an isomorphism. Note that such an h is uniquely
determined. This is because for another h′ : coimf → imf, the equality
i′◦h◦π′ = i′◦h′◦π′ = f implies h◦π′ ′ ′ ′

since π′ is an epimorphism, we get h = h′.

Note 6. When A is an abelian category, the opposite category as defined in 1.2,
A ◦ is also abelian. This is because the dual statement of (Ab.2) is the same
as (Ab.2), the dual object of the direct sum, which is called the direct product,
is isomorphic to the direct sum, and (Ab.4)–(Ab.6) are dual to each other. We
introduced the category C ′C in (2.5) whose objects are functors from C to
C ′ and morphisms are natural transformations of functors. If C ′ is an abelian
category and if C is a small category (i.e., if Ob(C ) is a set), then C ′C inherits
the property of being abelian from C ′. For an abelian category A , the category
Co(A ) of cochain complexes becomes an abelian category. A definition of the
category Co(A ) will be given in Chapter II.

1.6.1 Embeddings of Abelian Categories
First recall from (4.1) that for a functor F : C � C ′ we have the map

F̄ : HomC (X, Y ) → HomC ′(FX, FY ). (6.9)

If C and C ′ are abelian categories, for f, g ∈ HomC (X, Y ), we have that
f + g ∈ HomC (X, Y ) and Ff +Fg ∈ HomC ′(FX, FY ). Then F : C � C ′

is said to be an additive functor if F̄ is a group homomorphism. Namely, in
HomC ′(FX, FY )

F̄ (f + g) = F̄ f + F̄ g, (6.10)

= h ◦π since i is a monomorph-
ism  Then,
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i.e., in C ′ we have F (f + g) = Ff + Fg.
The Embedding Theorem now states the following: there is a functor ′

from a small abelian category A to the category Ab of abelian groups. Then
′ : A � Ab is an additive functor and for an exact sequence

· · · �� Xi−1
�� Xi

�� Xi+1
�� · · ·

in A the sequence

· · · �� X ′
i−1

�� X ′
i

�� X ′
i+1

�� · · ·

is exact in Ab. See Lubkin, S., Imbedding of Abelian Categories, Trans. Amer.
Math. Soc. 97 (1960), pp. 410–417, for a proof. Consequently, this embedding
theorem implies

(i) for an object X in A its image X ′ is an abelian group,

(ii) the image Y ′ of a subobject Y of X is a subgroup of X ′,

(iii) for a morphism X
f−→ Z in A the ker f , coker f , im f and coimfare

identified with ker f ′, coker f ′, im f ′ and coim f ′ of X ′ f ′
−→ Z ′ in Ab.

Moreover, the identification of A with the subcategory A ′ = ′(A ), diagram
chasing in terms of elements may be carried out in Ab for a diagram in an abelian
category. Recall that we have the Yoneda embedding ˜ : A � Â = SetA

◦

defined by X �→ HomA (·, X) = X̃ ∈ Ob(Â ). A category is said to be
additive if (Ab.1)–(Ab.3) are satisfied. For an additive category A and an
additive functor F : A � Ab, Yoneda’s lemma states that

HomÂ (X̃, F ) ≈−→ FX (6.11)

is a group isomorphism. Let us revisit (Ab.4). First, recall that

˜ : A � Â = SetA
◦

is a covariant functor. For X
f−→ Y in A we have

X̃ = HomA (·, X)
f̃−→ Ỹ = HomA (·, Y )

in AbA ◦
= Â . Since Â is abelian for an abelian category A the kernel of f̃

exists in Â . Namely, (6.5) may be read as

k̃er f = ker f̃ (6.12)

in Â = AbA ◦
.
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Remark 7. Let A be an abelian category and let

· · · �� Xi−1
di−1 �� Xi

di �� Xi+1
di+1 �� · · · (6.13)

be a sequence of objects and morphisms in A . Then (6.13) is said to be an exact
sequence if ker di = im di−1. If one prefers to regard (6.13) as a sequence in
Ab, the equality ker di = im di−1 is set-theoretic. Moreover

0 �� X ′ d′ �� X
d �� X ′′ �� 0

is exact in A if and only if d′ is a monomorphism, d is an epimorphism and
ker d = im d′. Then

0 �� X ′ d′ �� X
d �� X ′′ �� 0

is said to be a short exact sequence. Let F : A � B be a covariant (or
contravariant) functor of abelian categories. For an exact sequence

0 �� ker f
i �� X

f �� Y

if

0 �� F ker f
Fi �� FX

Ff �� FY

is exact in B, i.e., F ker f = kerFf , F is said to be a kernel preserving functor.
Notice that F is kernel preserving if and only if F is a left exact functor in the
following sense: for every short exact sequence

0 �� X ′ d′ �� X
d �� X ′′ �� 0

in A ,

0 �� FX ′ Fd′ �� FX
Fd �� FX ′′

is exact in B.

Remark 8. In (6.12) the equality k̃er f = ker f̃ in Â implies that ˜ : A � Â
is a kernel preserving functor. Namely for

0 �� ker f
i �� X

f �� Y

in A we have

0 �� ker f̃
ĩ �� X̃

f̃ �� Ỹ .

That is, the Yoneda embedding ˜ : A � Â is a left exact covariant functor
which takes an object X ∈ Ob(A ) to a left exact contravariant (or, covariant)
functor X̃ = HomA (·, X) (or, X̃ = HomA (X, ·)) from the abelian category
A to Ab.
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1.7 Adjoint Functors
Let F : C � C ′ and G : C ′ � C be functors. Consider the following

diagrams:

C

����
��

��
��

F �������������������� C ′

Ỹ�� 	

	

	

	


Set

(7.1)

and

C

X̃ ����
��

��
��

C ′G�� �� �� �� �� �� �� �� �� ��

�� 	

	

	

	


Set

(7.2)

Let Y be an arbitrary object of C ′. Then by the functor ˜ : C ′ � Ĉ ′ =
SetC

′
, Ỹ is an object of Ĉ ′, i.e., Ỹ is a functor from C ′ to Set defined by

Ỹ = HomC ′(·, Y ). (If the reader chooses to review some material for this
discussion we suggest Section 1.5 to Remark 5.) Then the composition Ỹ F is
an object of Ĉ = SetC . If there exists an object X ′ in C representing

Ỹ F : C � Set, (7.3)

we get an isomorphism (called a natural equivalence)

X̃ ′ ≈−→ Ỹ F, (7.4)

making (7.1) commutative. Moreover, if this representing object X ′ happens
to be the image of Y under the functor G from C ′ to C , i.e.,

G̃Y
≈−→ Ỹ F (7.5)

in Ĉ = SetC , then G is said to be the (right) adjoint to F and F is said to be
the (left) adjoint to G. Let us rewrite (7.5) as

HomC (·, GY ) ≈−→ HomC ′(F ·, Y ) (7.6)

in Ĉ . Namely, for every object X of C and for every object Y of C ′

HomC (X, GY ) ≈−→ HomC ′(FX, Y ) (7.7)

in Set.
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Remark 9. Let F : C � C ′ be adjoint to G : C ′ � C . Then from the
commutative diagram as in (7.1) we have

C

G̃Y ����
��

��
��

F �������������������� C ′

Ỹ�� 	

	

	

	


Set

,

(7.8)

i.e., G̃Y ≈ Ỹ F in Ĉ . Let Y = FX in (7.8). We get G̃FX ≈ F̃XF . This is
nothing but the substitution Y = FX in (7.7), obtaining

HomC (X, GFX) ≈ HomC ′(FX, FX).

The identity 1FX determines a morphism from X to GFX in C . Namely,
1F ∈ Ob(C ′C ) determines the natural transformation α : 1C → GF in C C .
Similarly, evaluate G̃Y ≈ Ỹ F at X = GY , i.e., substituting X = GY in
(7.7), to obtain HomC (GY, GY ) ≈ HomC ′(FGY, Y ). Then 1GY determines
βY : FGY → Y in C ′ inducing β : FG → 1C ′ .

Moreover, for Y
f−→ Y ′ in C ′ we have the following diagram in Ĉ :

G̃Y

G̃f
��

≈ �� Ỹ F

f̃F
��

G̃Y ′ ≈ ��
Ỹ ′F

.

(7.9)

And for X
g−→ X ′ in C , we have the diagram in Set

G̃Y X
≈ �� Ỹ FX

G̃Y ′X ′

G̃Y g



≈ ��
Ỹ ′FX ′

Ỹ Fg


.

(7.10)

Diagrams (7.9) and (7.10) may be combined in Set as

G̃Y X ′ ≈ ��

G̃Y g�����
��

��
��

G̃fX′

Ỹ FX ′

Ỹ Fg����
��

��
��

�

f̃FX′

��

G̃Y X
≈ ��

G̃fX

��

��

Ỹ FX

f̃FX

��

G̃Y ′X ′

G̃Y ′g�����
��

��
��

≈ ��
Ỹ ′FX ′

Ỹ ′Fg����
��

��
��

�

G̃Y ′X
≈ ��

Ỹ ′FX

(7.11)
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Remark 10. We can also express an adjoint pair

C
F ��������

C ′
G

�� �� �� ��

as follows. Let 1C : C � C and 1C ′ : C ′ � C ′ be identity functors of C and
C ′, respectively. The functor G : C ′ � C is said to be the (right) adjoint to the
functor F : C � C ′ when the following diagram of categories and functors
commute.

C × C ′

1C×G

�� ��
�� ��

�� ��
�� G×1C ′

����
����

����
��

C × C

HomC (·,· ) ����
����

����
��

C ′ × C ′

HomC ′ (·,· )�� �
� �

� �
�

Set

(7.12)

Actually, as noted in (7.7), there is a natural equivalence from the composition of
HomC (·, · ) and 1C ×G to the composition of HomC ′(·, · ) and F×1C ′ in (7.12).
Note that C ×C ′ is the product category of C and C ′ whose objects are ordered
pairs (A, A′) with A ∈ Ob(C ) and A′ ∈ Ob(C ′). The set of morphisms
HomC×C ′((A, A′), (B, B′)) is the product set HomC (A, B)×HomC ′(A′, B′).
The functor HomC (·, · ) is called a bifunctor from C × C to Set defined by

(A, B) ∈ Ob(C × C ) �→ HomC (A, B) ∈ Ob(Set).

1.8 Limits
Let C be C ′ be categories and let F be a (covariant) functor from C ′ to

C . Then we will define the category FnF of (left) fans with fixed objects with
respect to F . An object of FnF is (Y, iYF , F i), where Y is an object of C and
i, j are objects in C ′ making the triangle

Fi

Fφi
j

��

Y

iYF
����������

jY
F ���

��
��

��
�

Fj

(8.1)
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commutative, for φi
j : i → j in C ′. A morphism from (Y, iYF , F i)i∈C ′ to

(Y ′, iY
′

F , F i)i∈C ′ is defined as hY
Y ′ : Y → Y ′ making

Y
iYF ��

hY
Y ′

�� jY
F ����

���
���

���
���

���
��� Fi

Fφi
j

��
Y ′

jY ′
F

��

iY
′

F

���������������������
Fj

(8.2)

commutative, i.e., iYF = iY
′

F ◦hY
Y ′ and jY

F = jY ′
F ◦hY

Y ′ for φi
j : i → j. A terminal

object of FnF is said to be an inverse limit (or projective limit or simply limit)
of F written as lim

←−i∈C ′Fi, or lim
←−

Fi. Namely, lim
←−

Fi ∈ Ob(FnF ):

Fi

Fφi
j

��

lim
←−

Fi

iF

����������

jF ���
��

��
��

�

Fj

(8.3)

commutes and for any object (Y, iYF , F i) inFnF , there exists a unique morphism
hY : Y → lim

←−
Fi making

Y
iYF ��

hY

�� jY
F ����

���
���

���
���

���
���

� Fi

Fφi
j

��
lim
←−

Fi
jF

��

iF

���������������������
Fj

(8.4)

commutative.
There is another way to express (8.1) through (8.4) in terms of the notion of

a representable functor. First, we will define a functor ι : C � C C ′
as follows.

Let Y
f−→ Y ′ be a morphism of objects Y and Y ′ in C . Then ιY

ιf−→ ιY ′ are

in C C ′
. For i ∈ Ob(C ′) define (ιY )(i)

(ιf)i−−−→ (ιY ′)(i) as Y
f−→ Y ′ in C , i.e.,

(ιY )(i) = Y and (ιf)(i) = f for every i ∈ Ob(C ′). Let F : C ′ � C be a
functor as before. We can consider the set HomC C ′ (ιY, F ) ∈ Ob(Set). That
is,

HomC C ′ (ι ·, F ) : C � Set (8.5)
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is a contravariant functor. Then a representing object for this functor (8.5) is an
inverse limit for F . Namely, there is an object lim

←−
Fi in C such that as objects

in Ĉ = SetC

l̃im
←−

Fi
≈−→ HomC C ′ (ι ·, F ) (8.6)

is an isomorphism (a natural equivalence). As objects in Set

HomC (Y, lim
←−

Fi)
≈−→ HomC C ′ (ιY, F ) (8.7)

is an isomorphism for every objects Y of C .
Incidentally, the functor HomC C ′ (ι ·, F ) in (8.5) may be interpreted as the

composition of functors, i.e., HomC C ′ (ι ·, F ) = F̃ ◦ ι as in Section 1.7 (7.8).
See the diagram

C

F̃◦ι
����

��
��

��
��

��
��

��

ι ������������ C C ′

F̃=Hom
CC ′ (·, F )

�� ��
��
��
��
��

Set

(8.8)

Then an inverse limit lim
←−

Fi is an object of C which represents the composition

F̃ ◦ ι = HomC C ′ (ι ·, F ) of ι followed by F̃ in (8.8).

Note 7. Let us observe that (8.7) implies (8.3) and (8.4). In (8.7) let Y = lim
←−

Fi,

i.e.,

HomC (lim
←−

Fi, lim←−
Fi)

≈−→ HomC C ′ (ι lim
←−

Fi, F ).

For an identity morphism 1lim
←−

Fi on the left hand-side, there is

α ∈ HomC C ′ (ι lim
←−

Fi, F ).

For this natural transformation α : ι lim
←−

Fi → F , compute at i
φi

j−→ j in C ′ as

follows

(ι lim
←−

Fi)i := lim
←−

Fi
αi ��

1 lim←− Fi

��

Fi = Fi

Fφi
j

��
(ι lim

←−
Fi)j := lim

←−
Fi

αj �� Fj = Fj

(8.9)
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which is (8.3). Next let −Y
F : ιY → F be a morphism in C C ′

. For i
φi

j−→ j
compute iYF and jY

F as

(ιY )i = Y
iYF ��

1Y

��

Fi = Fi

Fφi
j

��
(ιY )j = Y

jY
F �� Fj = Fj

(8.10)

For this element −Y
F ∈ HomC C ′ (ιY, F ) on the right hand-side of (8.7) there

exists a unique element hY ∈ HomC (Y, lim
←−

Fi). Then (8.9) and (8.10) give

(8.4).

1.9 Dual Notion of Inverse Limit
Let F : C ′ � C be a functor. Consider the following diagram corresponding

to (8.8):

C

Hom
CC ′ (F, ι ·)

����
��

��
��

��
��

��
��

ι ������������ C C ′

F̃ :=Hom
CC ′ (F,·)

�� ��
��
��
��
��

Set

(9.1)

Then a representing object in C for the composed covariant functor

F̃ ◦ ι = HomC C ′ (F, ι ·)
from C to Set is the direct limit (or colimit) lim

−→
Fi of F . Namely, we have the

isomorphism of Ĉ = SetC

l̃im
−→

Fi
≈−→ HomC C ′ (F, ι ·). (9.2)

As objects of Set, for every Y ∈ Ob(C ), we have

l̃im
−→

FiY = HomC (lim
−→

Fi, Y ) ≈−→ HomC C ′ (F, ιY ). (9.3)

That is, for φi
j : i → j in C ′ we have the commutative diagram

Fi

iF

���
��

��
��

�

Fφi
j

��

lim
−→

Fi

Fj

jF

����������

(9.4)
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and in the category FnF of (right) fans with fixed objects with respect to F , the
object of (9.4) is an initial object. Namely, if

Fi
iFY

��







Fφi
j

��

Y

Fj

jF
Y

���������

(9.5)

is an object of FnF (i.e., an element of HomC C ′ (F, ιY ), the right hand-side
of (9.3)), then there is a unique morphism hY from lim

−→
Fi to Y making the

diagram

Fi
iF ��

Fφi
j

�� iFY ����
���

���
���

���
���

���
� lim

−→
Fi

hY

��
Fj

jF
Y

��

jF

���������������������
Y

(9.6)

commutative.

Note 8. For a functor F : C ′ � C , the definition of an inverse limit becomes
the direct product

∏
i∈C ′ Fi if C ′ is a discrete category (that is, if C ′ has no

morphisms except identities). Similarly, a direct sum
⊕

i∈C ′ Fi is a direct limit
of F from a discrete category C ′ to C .

1.10 Presheaves
In Subsection 1.2.1 we defined a presheaf F as a contravariant functor from

the category T associated with a topological space T to the category Set or the
category Ab. We will find it convenient to define the notion of a presheaf as an
object of Ĉ = SetC

◦
for any category C . For example, for an object X of C the

functor X̃ = HomC (·, X) is a presheaf over C . In this section we will consider
mostly the case Ĉ = T̂ with values in Set or Ab. Let F ∈ T̂ = SetT

◦
and let

i : U ↪→ V be an inclusion morphism. Then the induced map Fi : FV → FU
is said to be the restriction map in Set. We often write FV as F (V ). Let U and
V be objects in T (i.e., U and V are open sets in the topology for T ). Then
i : U ∩ V ↪→ U and j : U ∩ V ↪→ V are morphisms in T . The restriction

maps F (U) Fi−→ F (U ∩ V ) and F (V )
Fj−−→ F (U ∩ V ) are induced. We will

give the definition of a presheaf explicitly as follows.
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Definition 4. A functor F : T � Set is a presheaf if (PreSh1)–(PreSh2′) are
satisfied:

(PreSh1) For an open set U , F (U) is a set where an element of F (U)is said to
be a

(PreSh2) For U ⊂ V there is the induced map ρV
U : F (V )→ F (U) called

the restriction map. The following axioms must be satisfied:

(PreSh1′) For U ∈ Ob(T ), ρU
U is the identity map 1F (U) : F (U) → F (U).

(PreSh2′) For open sets W ⊂ U ⊂ V the diagram

F (V )
ρV

U ��

ρV
W ���

��
��

��
��

F (U)

ρU
W�����

��
��
��

F (W )

commutes, i.e., ρU
W ◦ ρV

U = ρV
W .

Note 9. Notice that all the conditions (PreSh1)–(PreSh2′) mean precisely that
F ∈ Ob(T̂ ).

Consider open sets U, U ′, U ′′, . . . containing a point x in the topological
space T . Define an equivalence relation ∼ between s ∈ F (U) and s′ ∈ F (U ′)
as follows: s ∼ s′ if and only if there is an open set V with V ⊂ U ∩U ′ so that
ρU

V (s) = ρU ′
V (s′). The equivalence class sx said to be the germ of s ∈ F (U)

(or s′ ∈ F (U ′)) at x. The set Fx of all the germs at x is said to be the stalk of
F at x. That is, for all open sets containing x, the direct limit

Fx = lim
−→
x∈U

F (U) (10.1)

is the stalk of F at x.

Definition 5. A presheaf F ∈ Ob(T̂ ) is said to be a sheaf when the following
condition (Sheaf) is satisfied:

(Sheaf) Let U be an open set in T . For any open covering {Ui}i∈I of U (i.e.,
each Ui is an open set and U =

⋃
i∈I Ui) and for any sections {si ∈

F (Ui)}i∈I satisfying

ρUi
Ui∩Uj

(si) = ρ
Uj

Ui∩Uj
(sj), for i, j ∈ I (10.2)

there exists a unique s ∈ F (U) such that

ρU
Ui

(s) = si, for all i ∈ I. (10.3)

section of F over U .
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See the diagram below for (10.2) and (10.3).

F (U)
ρU

Ui

�����
���

���
� ρU

Uj

  ��
���

���
��

F (Ui)

ρ
Ui
Ui∩Uj   ��

���
���

��
F (Uj)

ρ
Uj
Uj∩Ui�����

���
���

�

F (Ui ∩ Uj)

(10.4)

Note 10. A presheaf

O(U) = {holomorphic functions over U ⊂ C
n}

is a sheaf. For a non-example consider y = 1/x, where x is a real number
satisfying 0 < x < ∞. Then

B(U) = {locally bounded continuous functions on U ⊂ (0,∞)}

is a presheaf but not a sheaf.

Remarks 1. (1) For the category T̂ of presheaves we let T̃ be the category of
sheaves over T (or over the topological space T ).

(2) In Ab the following

A
α �� B

β ��

β′
�� C

is said to be exact if α is bijective onto the subset B′ of B where

B′ = {b ∈ B | β(b) = β′(b)}.

Then for b ∈ B′ there is a unique element a ∈ A such that α(a) = b.
Consequently (β ◦ α)(a) = (β′ ◦ α)(a). Namely A

α−→ B is the kernel of
β − β′ (categorically speaking, α is an equalizer for β and β′). Then the
sheaf axiom (Sheaf) may be summarized as the exact sequence

F (U)
ρU

Ui ��
∏

i∈I F (Ui)
ρ

Ui
Ui∩Uj��

ρ
Uj
Uj∩Ui

��
∏

i,j∈I F (Ui ∩ Uj) . (10.5)

1.11 Notion of Site
The definitions of a presheaf and a sheaf have nothing to do with the elements

in open sets in the category T induced from a topological space T . We will
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give much more general concepts of a sheaf and a presheaf over a category
which will be called a site.

Let C be a category and let Ĉ = AbC ◦
where as before Ab is the category

of abelian groups. As already mentioned in Section 1.10 an object of Ĉ is a
presheaf with values in Ab. Let U ∈ Ob(C ) and consider a collection Cov(U)
of families of morphisms in C . Each family of morphisms for an object U in
C

{Ui
fi−→ U}i∈I ∈ Cov(U)

is said to be a covering family of U when the following conditions are satisfied:

(Site1) An isomorphism U ′ ≈−→ U is a covering family of U , i.e., the family of
one morphism {U ′ ≈−→ U} ∈ Cov(U).

(Site2) Let {Ui
fi−→ U}i∈I ∈ Cov(U). Then for V → U we have

{Ui ×U V → V } ∈ Cov(V ),

i.e., stable under a pullback. See the diagram below.

Ui
�� U

Ui ×U V



�� V



(11.1)

(Site3) Let {Ui
fi−→ U} ∈ Cov(U) and {Uij

f ′
j−→Ui}∈Cov(Ui). Then the family

of morphisms obtained by the compositions {Uij

fi◦f ′
j−−−→ U} belongs 

to Cov(U).

Then (C , Cov(C )), where Cov(C ) = {Cov(U) | U ∈ Ob(C )} is said to
be a site. A morphism h of sites is a functor from C to C ′ satisfying: for

{Ui
fi−→ U} ∈ Cov(U), we have {hUi

hfi−−→ hU} ∈ Cov(hU) (where Cov(hU)
is an element of Cov(C ′)) and for V → U , h(Ui ×U V ) → hUi ×hU hV is an
isomorphism.

1.12 Sheaves over Site
A presheaf F ∈ Ob(Ĉ ) = Ob(AbC ◦

) is said to be a sheaf over (C , Cov(C ))
if the diagram

F (U) ��
∏

F (Ui)
����
∏

F (Ui ×U Uj)

corresponding to (10.5) is exact. This full subcategory C̃ of sheaves of Ĉ is said
to be a topos over the site (C , Cov(C )). A morphism of sheaves is a morphism
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of presheaves. The above exact diagram may be written as

HomĈ (Û , F ) �� ∏HomĈ (Ûi, F ) ����
∏

HomĈ ( ̂Ui ×U Uj , F ) (12.1)

by Yoneda’s Lemma. See the following diagrams below which correspond to
(10.4).

F

U

s



Ui

si

!!                fi

""�����������
Uj

sj

##!!!!!!!!!!!!!!!!fj

$$�����������

Ui ×U Uj

p1

$$���������� p2

""����������

(12.2a)

such that if si ◦ p1 = sj ◦ p2 ⇒ ∃!s ∈ HomĈ (U, F ) satisfying si = s ◦ fi for
i ∈ I;

F (U)
Ffi

��"""
"""

"""
"" Ffj

  ##
###

###
##

F (Ui)

Fp1   ##
###

###
##

F (Uj)

Fp2��"""
"""

"""
"

F (Ui ×U Uj)

(12.2b)

1.13 Sieve; another notion for a site
Let C be a category, let Ĉ = SetC

◦
be the category of presheaves and

let ˜ : C � Ĉ be the Yoneda embedding. Let U ∈ Ob(C ). Then we are
interested in a subobject of Ũ = HomC (·, U). Note that a subobject of a
category is an equivalence class. (See Remark 1.) Let i : Ŵ ↪→ Ũ be a
subobject of Ũ in Ĉ where Ŵ ∈ Ob(Ĉ ) need not be representable, i.e., Ŵ

may not be replaced by W̃ for some W ∈ Ob(C ). Such a subobject Ŵ is said
to be a sieve of U ∈ Ob(C ). For V ∈ Ob(C ) we have ŨV = HomC (V, U)
and for a monomorphism representing the subobject i : Ŵ ↪→ Ũ , we have the
set-theoretic inclusion iV : ŴV ↪→ ŨV . Namely, to give a sieve Ŵ of U
is to determine a subset ŴV of HomC (V, U) for every V ∈ Ob(C ). By the
Yoneda Lemma we have ŴV = HomĈ (Ṽ , Ŵ ). The following is the Yoneda
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world diagram, identifying an object of C with the represented object of Ĉ :

Ŵ
i �� U

V

φ′

%%$$$$$$$$
φ



in Ĉ

(13.1)

where i ◦ φ′ = iV (φ′) = φ. A pair (C , J(C )) is said to be a site, where
J(C ) = {J(U) | U ∈ Ob(C )} if each set J(U) of sieves for U satisfies the
following conditions.

(Site1′) An identity morphism 1U : U ↪→ U in Ĉ is an element of J(U).

(Site2′) Let Ŵ ∈ J(U). Then for V
φ−→ U in C , Ŵ ×U V ˆ

Ŵ
� � i �� U

Ŵ ×U V
� � ��



V

φ



(13.2)

(Site3′) Suppose Ŵ∈J(U) and let Ŵ ′ ↪→U be a sieve forU in Ĉ . For an arbitrary

V ∈ Ob(C ) and for every V
φ ′
−→ Ŵ in Ĉ , when the pullback of  Ŵ ′ 

under φ = i ◦ φ′, i.e., Ŵ ×U V → V is an element of J (V ), then
Ŵ ′ ↪→ U also belongs to J(U).

Ŵ
� � i′ �� U

Ŵ ×U V ��



V

φ=i◦φ′



(13.3)

Remark 11. Those sieves belonging to J(U) are said to be covering sieves for
U ∈ Ob(C ). Consider the case as in (13.1), a morphism φ : V → U is
factorable through a sieve Ŵ , i.e., φ = i ◦ φ′. Consider the following pullback

→V in C belongs to
the set J(V ) of sieves for V .
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diagram and an arbitrary morphism ψ : X → V :

Ŵ
i �� U

Ŵ ×U V



p2 �� V

φ′

&&���������������������

φ=i◦φ′



X

&&%%%%%%%%%%%%%%%%%%%

ψ


(13.4)

Then ψ can be factored as ψ = p2 ◦ (φ′ ◦ ψ, ψ) where p2 is the projection
onto the second factor. Namely, V X ⊂ (Ŵ ×U V )X holds. Consequently
Ŵ ×U V = V .

Remark 12. Let Ŵ and Ŵ ′ be sieves of U and Ŵ be a subobject of Ŵ ′ which
is represented by a monomorphism ι : Ŵ ↪→ Ŵ ′. If Ŵ is a covering sieve,
i.e., Ŵ ∈ J(U), then so is Ŵ ′. A proof follows from the diagram:

Ŵ ′ � �

i′

''%%
%%%

%%%
%%%

%%%
%%

Ŵ
� �

ι

((&&&&&&&&&&&&&&&&&&�� ��



U

Ŵ ′ ×U V

����
���

���
���

���

Ŵ ×U V



))&&&&&&&&&&&&&
�� V



(13.5)

That is, for an arbitrary morphism φ′ : V → Ŵ , the composition ι ◦ φ′ is
a morphism from V to Ŵ ′. Then from Remark 11 we have the pullbacks

Ŵ ×U V = V and Ŵ ′ ×U V = V . In particular, Ŵ ′ ×U V = V
1V−−→ V

belongs to J(V ) by (Site1′). By (Site3′), i′ : Ŵ ′ ↪→ U is a covering sieve, i.e.,
Ŵ ′ ∈ J(U).
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For covering sieves Ŵ and Ŵ ′ in J(U), the pullback Ŵ ×U Ŵ ′ is a covering
sieve. This follows from the following two-level pullback diagram:

Ŵ ×U Ŵ ′ ��

''''
'''

'''
'''

'''
Ŵ ′ � �

���
��

��
��

��
�

Ŵ
� � ��



U

(Ŵ ×U Ŵ ′) ×U V



''%%
%%%

%%%
%%%

%
�� Ŵ ′ ×U V

���
��

��
��

��
�

Ŵ ×U V ��



V



X

φ′′

**((((((((((((((((((((((((

ψ′′

++))))))))))))))))))))))



(13.6)

Namely, for φ′ : V → Ŵ as in Remark 11, a morphism from X to Ŵ ×U V is

induced. Then for each morphism ψ′′ from X to Ŵ ′ ×U V (and with X
φ′′
−→

Ŵ ×U V ) there exists a unique morphism from X to (Ŵ ×U Ŵ ′)×U V giving
commutativity. That is, each ψ′′ can be factored through (Ŵ ×U Ŵ ′) ×U V .
Consequently, (Ŵ ×U Ŵ ′) ×U V = Ŵ ′ ×U V holds as in Remark 11. Since
Ŵ ′ ∈ J(U), Ŵ ′ ×U V is a covering sieve of V . Therefore, (Ŵ ×U Ŵ ′)×U V

is a covering sieve of V . By (Site3′), Ŵ ×U Ŵ ′ ↪→ U is covering sieve of U .

Note 11. Let (C , Cov(C )) and (C , ′ Cov(C )) be sites. Then ′ Cov(C ) is said
to be finer than Cov(C ) if for each object U of C , Cov(U) ⊂ ′ Cov(U) holds.

Remark 13. Recall from Remark 1 that V
φ−→ U is said to be an epimorphism

when the contravariant functor HomC (·, W ) always induces an injective map
HomC (U, W ) → HomC (V, W ) in the category Set, i.e., f ◦ φ = g ◦ φ in

HomC (V, W ) implies f = g. A family of morphisms {Ui
fi−→ U}i∈I is said

to be an effective epimorphism if for each object W ∈ Ob(C ) the presheaf
W̃ = HomC (·, W ) satisfies the sheaf axiom for this family:

W̃U
�� ∏

i∈I W̃Ui
����
∏

i,j∈I W̃ (Ui ×U Uj)

is exact in the sense of Remarks 1. Furthermore, a family of morphisms

{Ui
fi−→ U}i∈I
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is said to be universal effective epimorphism if for an arbitrary morphism V →
U the family of pullback morphisms {Ui ×U V → V }i∈I is also an effective
epimorphism. For a category C define

Cov(U) = {families of morphisms {Ui → U} of C

which are universal effective epimorphisms}.

Then every presheaf W̃ = HomC (·, W ) ∈ Ĉ becomes a sheaf with respect to

Cov(C ) = {Cov(U) | U ∈ Ob(C )}.

Note that (C , Cov(C )) becomes a site in the sense of Section 1.11, i.e., Cov(U)
satisfies (Site.1)–(Site.3). Then (C , Cov(C )) is said to be a canonical site.

1.14 Sheaves of Abelian Groups
We have considered the category Ĉ = SetC

◦
. In this section we will treat

the case T̂ = AbT̂ ◦
where Ab is the category of abelian groups and T is

the category associated to a topological space T . See Section 1.10 through
Definition 5 and Examples 1.

An object F ∈ Ob(T̂ ) is a contravariant functor from T to Ab. Therefore,
for an object U (i.e., an open set) of T , F (U) is an abelian group and for

a morphism F
φ−→ G in T̂ , F (U)

φU−−→ G(U) is a group homomorphism
φU of abelian groups. Namely, a natural transformation φ (which will be
called a morphism of presheaves) of presheaves F and G induces the group
homomorphism φU over U from F (U) to G(U). Then define

(ker φ)(U) := ker φU = {aU ∈ F (U) | φU (aU ) = 0G(U)}, (14.1)

where 0G(U) is a zero element of the abelian group G(U). For ι : U ↪→ V in
T we have

(ker φ)(U) kerφU ⊂ F (U)
φU �� G(U)

(ker φ)(V ) ker φV ⊂ F (V )

Fι=ρV
U

�
�
�

φV �� G(V )

Gι=′ρV
U


(14.2)

To show that ker φ is a presheaf (a contravariant functor) we need the homo-
morphism (ker φ)ι : (kerφ)(V ) → (ker φ)(U) in (14.2). Let

aV ∈ ker φV ⊂ F (V ).

Then ρV
U (aV ) ∈ F (U). Compute φU (ρV

U (aV )) by the commutativity of (14.2):

φU (ρV
U (aV )) = ′ρV

U (φV (aV )) = ′ρV
U (0G(V )) = 0G(U). (14.3)
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Namely, ρV
U (aV ) ∈ ker φU = (ker φ)(U). Define

((ker φ)ι)(aV ) := ρV
U (aV ) ∈ (ker φ)(U). (14.4)

Consequently for ι : U ↪→ V in T we have in Ab

(ker φ)(V )
(ker φ)ι−−−−→ (ker φ)(U)

aV �−→ ρV
U (aV ). (14.5)

This assignment on an object and a morphism satisfies the presheaf axioms
(PreSh1)–(PreSh2′) in Definition 4, i.e., kerφ ∈ AbT ◦

= T̂ .
When F and G are sheaves, we will show that the presheaf kerφ becomes a

sheaf. Let F
φ−→ G be a morphism of sheaves. For an open set U let U = ∪i∈IUi

be an arbitrary covering of U where U, Ui ∈ Ob(T ). For si ∈ (ker φ)(Ui),
i ∈ I , assume ρUi

Ui∩Uj
(si) = ρ

Uj

Ui∩Uj
(sj). Since si, sj belong to F (Ui) and

F (Uj) respectively, there exists a unique s ∈ F (U) satisfying ρU
Ui

(s) = si for
all i ∈ I . We need to show that this s belongs to (ker φ)(U). Consider the
following commutative diagram:

(ker φ)(U) ker φU ⊂ F (U)
φU ��

ρU
Ui

��

G(U)
′ρU

Ui
��

F (Ui)
φUi �� G(Ui).

(14.6)

For s ∈ F (U) in (14.6) we have φUi(ρ
U
Ui

(s)) = φUi(si) = 0G(Ui). In the
the other direction in (14.6) we must have ′ρU

Ui
(φU (s)) = 0G(Ui) by the com-

mutativity. For 0G(U) ∈ G(U) we also have ′ρU
Ui

(0G(U)) = 0G(Ui). By the
uniqueness in Definition 5 we have that φU (s) = 0G(U), i.e.,

s ∈ kerφU = (ker φ)(U).

Consequently, the presheaf kerφ is a sheaf.

Let F
φ−→ G be a morphism of presheaves. Then as before, for U ∈ Ob(T )

we have the group homomorphism F (U)
φU−−→ G(U) in Ab. Define

(im φ)(U) := im φU = {φU (sU ) ∈ G(U) | sU ∈ F (U)}. (14.7)

Then im φ : T ◦ � Ab is a presheaf. Even if F and G are sheaves, im φ need
not be a sheaf. In the following we will show why imφ is not in general a
sheaf. As before let U = ∪i∈IUi be an open covering of U . Suppose that for
s′i ∈ (im φ)(Ui) = imφUi , i ∈ I , ′ρUi

Ui∩Uj
(s′i) = ρ

Uj

Ui∩Uj
(s′j) holds. Consider
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the following commutative diagram:

F (Ui)
ρ

Ui
Ui∩Uj

  ��
���

���
��

φUi

��

F (Uj)
ρ

Uj
Ui∩Uj

�����
���

���
�

φUj

��

F (Ui ∩ Uj)

φUi∩Uj

��

imφUi� �

��

im φUj� �

��
G(Ui)

′ρ
Ui
Ui∩Uj

,,*
**

**
**

**
**

**
**

**
*

G(Uj)

′ρ
Uj
Ui∩Uj

--++
++
++
++
++
++
++
++
++

im φUi∩Uj� �

��
G(Ui ∩ Uj)

(14.8)

By regarding s′i ∈ (im φ)(Ui) and s′j ∈ (im φ)(Uj) as the sections of the sheaf
G over Ui and Uj we find a unique s′ ∈ G(U) satisfying ′ρU

Ui
(s′) = s′i ∈ im φUi

for all i ∈ I . The sheaf condition on im φ is to claim s′ ∈ (im φ)(U) = im φU .
Namely, in order for im φ to be a sheaf, φU : F (U) → G(U) needs to be
epimorphic for all U . As we will show in Chapter III, even if φ : F → G is an
epimorphism of sheaves, the induced homomorphism φU : F (U) → G(U) of
abelian groups need not be an epimorphism in Ab.

We define the presheaf coker φ of a morphism of presheaves φ : F → G by

(cokerφ)(U) := coker φU = G(U)/ im φU . (14.9)

Even when φ : F → G is a morphism of sheaves, coker φ need not be a sheaf.
We will demonstrate this situation as follows. As before we let U = ∪i∈IUi.
Suppose that the class s̄′Ui

∈ coker φUi of s′Ui
∈ G(Ui) is 0Ui . Namely,

s̄′Ui
= s′Ui

+ im φUi = 0Ui .

Then we have s′Ui
∈ im φUi . Suppose that the induced homomorphisms of the

restriction maps satisfy

′ρUi
Ui∩Uj

(0Ui) = ′ρ
Uj

Ui∩Uj
(0Uj ) (14.10)

in coker φUi∩Uj = G(Ui ∩ Uj)/ im φUi∩Uj . Namely, each s′Ui
∈ im φUi satis-

fies ′ρUi
Ui∩Uj

(s′Ui
) = ′ρ

Uj

Ui∩Uj
(s′Uj

) as in the above paragraph. Since im φ need
not be a sheaf, coker φ also need not be a sheaf.
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1.15 The Sheafification Functor
For the inclusion functor from the category T̃ of sheaves to the category

T̂ = AbT ◦
, i.e.,

ι : T̃ � T̂ (15.1)

we will construct a functor
sh : T̂ � T̃ (15.2)

so that the inclusion functor ι may be the (right) adjoint to the functor sh as in
Section 1.7. That is, in the diagram

T̂
sh ��������������������

ι̃G ����
��

��
��

T̃

G̃=HomT̃ (·, G)�� ��
��
��
��

Ab

(15.3)

we have in ˆ̂
T = AbT̂ ◦

ι̃G ≈ G̃ ◦ sh, (15.4)

where (15.4) means that for any presheaf F

ι̃G(F ) = HomT̂ (F, ιG) ≈ (G̃ ◦ sh)(F ) = HomT̃ (shF, G). (15.5)

Compare (15.4) with (7.5) and (15.3) with (7.8).
Let F be a presheaf, and let U be an open set. Then define (shF )(U) as the

set of all mappings s from U to the direct product
∏

x∈U Fx of stalks satisfying
s(x) ∈ Fx and the following gluing condition (Glue) for condition (Sheaf) in
Definition 5.

(Glue) For x ∈ U , there is an open set W contained in U and there exists a
section t ∈ F (W ) so that for every point x′ ∈ W , s(x′) is the germ of
t at x′, i.e., we have tx′ = s(x′) ∈ Fx′ .

We will show that shF is indeed a sheaf. Let U = ∪i∈IUi be any covering of
U . For si ∈ shF (Ui), i ∈ I , suppose ρ̄Ui

Ui∩Uj
(si) = ρ̄

Uj

Ui∩Uj
(sj) holds where ρ̄

is induced by ρ̄U
V = shF (ι) : shF (U) → shF (V ) for ι : V ↪→ U . Then by

(Glue) there exist W ⊂ Ui ∩ Uj and t ∈ F (W ) satisfying

ρ̄Ui
W (si)(x′) = tx′ = ρ̄

Uj

W (sj)(x′)

for all x′ ∈ W . This t can be used to glue si ∈ shF (Ui) and sj ∈ shF (Uj) to
get si∪j ∈ shF (Ui ∪ Uj). Consequently, we obtain an s ∈ shF (U) to satisfy
ρ̄U

Ui
(s) = si.
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1.15.1 Universality for shF

The isomorphism in (15.5), i.e., HomT̂ (F, ιG) ≈ HomT̃ (shF, G), implies
that for φ ∈ HomT̂ (F, ιG) there exists a unique morphism ψ : shF → G of

sheaves. Namely, in the category T̂ of presheaves we have

F
θ ��

φ ���
��

��
��

� shF

ψ..,
,

,
,

ιG

(15.6)

where the morphism θ (which is a natural transformation of objects in T̂ ) is
defined as follows. For an open set U , we have θU : F (U) → shF (U) in Ab
defined by

θU (s) : U −→
∏

x∈U

Fx, s ∈ F (U)

x �−→ sx.

Such an object shF satisfying the above universal mapping property, which is
uniquely determined, can be used as a definition of a sheafification of a presheaf.
That is, the sheafification shF of a presheaf F is a sheaf shF satisfying (15.5)
for any sheaf G i.e., (15.6).

Remark 14. The inclusion functor ι which regards a sheaf just as a presheaf is
a left exact functor from T̃ to T̂ in the following sense. For an exact sequence

0 �� F ′ φ �� F
ψ �� F ′′ �� 0

as sheaves, we have only the following exactness

0 �� ιF ′ ιφ �� ιF
ιψ �� ιF ′′

as presheaves. This means that for an open set U the sequence of presheaves

0 �� F ′(U)
φU �� F (U)

ψU �� F ′′(U)

is exact in Ab. This topic will be treated in Chapter III.



Chapter 2

DERIVED FUNCTORS

2.1 Complexes
Let A be an abelian category. We will define the category Co(A ) of

(cochain) complexes as follows. An object in Co(A ) is a sequence of objects
and morphisms

. . . �� Aj−1 dj−1
�� Aj dj

�� Aj+1 dj+1
�� . . . (1.1)

such that Aj ∈ Ob(A ) and dj ∈ HomA (Aj , Aj+1) satisfying dj ◦ dj−1 = 0
for all j ∈ Z, the set of integers. We often write the object in (1.1) as A•. A
morphism between objects A• and B• in Co(A ) is defined as a collection of
morphisms f j : Aj → Bj in A for j ∈ Z so that in

. . . �� Aj−1

fj−1

��

dj−1
�� Aj

fj

��

dj
�� Aj+1

fj+1

��

dj+1
�� . . .

. . . �� Bj−1
′dj−1

�� Bj
′dj

�� Bj+1
′dj+1

�� . . .

(1.2)

we have that f j ◦ dj−1 = ′dj−1 ◦ f j−1 for all j ∈ Z. We often write (1.2) as
f• : A• → B•.

2.2 Cohomology
Let A• ∈ Ob(Co(A )). Since dj ◦ dj−1 = 0, imdj−1 ⊂ ker dj holds.

Therefore, we can consider the quotient object

ker dj
/

im dj−1. (2.1)

39
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Since ker dj ⊂ Aj , the object (2.1) is a subquotient object of Aj . We define
the j-th cohomology Hj(A•) as

Hj(A•) := ker dj
/

im dj−1.

Then for each j

Hj : Co(A ) � A

A• �−→ Hj(A •)
(2.2)

is a functor. Let f• : A• → B• be a morphism in Co(A ). Then the induced
morphism Hj(f•) : Hj(A•) → Hj(B•) in A is given as follows. For

x̄ ∈ Hj(A•) = ker dj
/

im dj−1,

where x̄ is the class of x ∈ ker dj , we have that Hj(f•)x̄ = f j(x), where f j(x)
is the class of f j(x) in ker ′dj

/
im ′dj−1. Notice that since the commutativity

of the diagram (1.2), i.e.,

′dj(f j(x)) = f j+1(dj(x)),

for x ∈ ker dj , we have ′dj(f j(x)) = 0 in Bj+1. See the following diagram
for the above computation.

. . . di−1
�� Aj

fj

��

dj
�� Aj+1

fj+1

��

dj+1
�� . . .

ker dj

canonical epimorphism
��

��

//---------------

Hj(A•) = ker dj
/

im dj−1

Hj(f•)
��

Hj(B•) = ker ′dj
/

im ′dj−1

ker ′dj

canonical epimorphism



 !

00&&&
&&&

&&&
&&&

&&&

. . .
′di−1

�� Bj
′dj

�� Bj+1
′dj+1

�� . . .

(2.3)

Namely, Hj : Co(A ) � A is a covariant functor which is said to be a coho-
mological functor.
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Notation 12. Let Co+(A ) be the category whose objects consist of complexes
bounded from below, i.e., A• = (Aj)j≥0:

. . . �� 0 �� 0 �� A0 d0
�� A1 d1

�� . . . , Aj ∈ Ob(A ),

is an object of Co+(A ).

2.3 Homotopy
Let A• and B• be objects in Co(A ) and let f• and g• be morphisms from A•

to B•. The functor Hj induces the morphisms H(f•) and Hj(g•) from Hj(A•)
to Hj(B•) in A . We ask when we get Hj(f•) = Hj(g•). Using the notation
in Section 2.2, for an arbitrary x̄ ∈ Hj(A•), the equality Hj(f•) = Hj(g•) can
be phrased as: for x̄ ∈ Hj(A•) = ker dj

/
im dj−1,

Hj(f•)x̄ = f j(x) = gj(x) = Hj(g•)x̄ (3.1)

in Hj(B•). Namely, (3.1) means that the cohomology classes of f j(x) and
gj(x) are the same, i.e., f j(x) − gj(x) ∈ im ′dj−1. Let sj : Aj → Bj−1 be a
morphism in A . Then ′dj−1 ◦ sj + sj+1 ◦ dj is a morphism from Aj to Bj ,
j ∈ Z. We then assert: if

f j − gj = ′dj−1 ◦ sj + sj+1 ◦ dj , (3.2)

then Hj(f•) = Hj(g•) holds. See the diagram below.

. . . �� Aj−1

fj−1

��
gj−1

��

dj−1
�� Aj

sj

11���
���

���
���

�

fj

��
gj

��

dj
�� Aj+1

sj+1

11���
���

���
���

�
fj+1

��
gj+1

��

dj+1
�� . . .

. . . �� Bj−1
′dj−1

�� Bj
′dj

�� Bj+1
′dj+1

�� . . . .

(3.3)

For x ∈ ker dj , let us compute (3.2) as follows:

(f j −gj)(x) = f j(x)−gj(x) = ′dj−1(sj(x))+sj+1(dj(x)) = ′dj−1(sj(x)).

Since sj(x) ∈ Bj−1 we have f j(x) − gj(x) ∈ im ′dj−1. That is, (3.2),
implies Hj(f•) = Hj(g•). Morphisms f•, g• ∈ HomCo(A )(A•, B•) are said
to be homotopic if we have Hj(f•) = Hj(g•) as morphisms from Hj(A•) to
Hj(B•). When f• is homotopic to g•, we write f• ∼ g•. Notice that ∼ is an
equivalence relation in the set HomCo(A )(A•, B•). We define

K(A ) := Co(A )
/
∼ . (3.4)

That is, the objects of K(A ) are precisely the objects of Co(A ) and morphisms
are the homotopy equivalence classes of morphisms as we defined above. Then
the functor Hj : Co(A ) � A in Section 2.1 can be extended to

′Hj : K(A ) � A (3.5)
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defined by ′Hj(f•) = Hj(f•). We will use the same Hj for both functors from
Co(A ) and from K(A ) to A .

2.4 Exactness
Let A and B be abelian categories. Recall the following from Section 1.4:

a functor F : A � B is said to be additive if the induced homomorphism F̄
by F is a group homomorphism from HomA (A, B) to HomB(FA, FB) for
A, B ∈ Ob(A ). Our interest is to measure the loss of exactness as F takes an
object of A into an object of B. Namely, for an exact sequence

. . . �� Aj−1 dj−1
�� Aj dj

�� Aj+1 dj+1
�� . . .

in A , we measure the loss of exactness of

. . . �� FAj−1 Fdj−1
�� FAj Fdj

�� FAj+1 Fdj+1
�� . . .

in B by calculating the cohomology Hj(FA•) = kerFdj
/

im Fdj−1, a sub-
quotient object of FAj . For a complex A• ∈ Ob(Co(A )) (since F is a functor)
we have 0 = F (dj ◦ dj−1) = Fdj ◦ Fdj−1. That is FA• is a complex, i.e.,
FA• ∈ Ob(Co(B)). Next for any complex A• of objects and morphisms of
A , we can decompose the complex A• as follows:

0

��.
..

..
..

.. 0

���
��

��
��

� 0

��/
//

//
//

/ im dj−1

����������

���
��

��
��

� im dj

�����������

��.
..

..
..

.

. . . �� Aj−1

dj−1

��.
..

..
..

.

����������
dj−1

�� Aj

dj

��0
00

00
00

0

����������
dj

�� Aj+1

��/
//

//
//

/

		11111111
dj+1

�� . . .
		11111111

ker dj
" #

����������

��0
00

00
00

0 ker dj+1
$ %

��,,,,,,,,

��2
22

22
22

22

0

��,,,,,,,,,
0

����������
0

(4.1)

where all the diagonal short sequences are exact. Therefore, it is sufficient to
consider the effect of F on a short exact sequence

0 �� A′ φ �� A
ψ �� A′′ �� 0 (4.2)

in A to measure the loss of the exactness of

0 �� FA′ Fφ �� FA
Fψ �� FA′′ �� 0 (4.3)
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in B. A functor F : A � B is said to be exact when (4.3) is exact in B at
FA′, FA and FA′′. Namely, Fφ is a monomorphism, kerFψ = im Fφ and
Fψ is an epimorphism in B. When only

0 �� FA′ Fφ �� FA
Fψ �� FA′′

is exact, i.e., Fψ need not be an epimorphism, F is said to be a left exact functor.
Similarly, when

FA′ Fφ �� FA
Fψ �� FA′′ �� 0

is exact in B, F is said to be a right exact functor. When only at FA, the
exactness is preserved (i.e., if we only have imFφ = ker Fψ in (4.3)), F is
said to be half-exact.

2.5 Injective Objects
[Injective Objects] Let A be an abelian category. Then for objects A and B

in A , HomA (B, A) is an abelian group (i.e., condition (A.1) of Section 1.6).
Then the contravariant functor HomA (·, A) is a left exact functor from A to
Ab. That is, for an arbitrary short exact sequence in A

0 �� C ′ φ �� C
ψ �� C ′′ �� 0 (5.1)

we have the exact sequence in Ab

0 �� HomA (C ′′, A)
ψ∗

�� HomA (C,A)
φ∗

�� HomA (C ′, A) , (5.2)

where, for instance, φ∗ := HomA (φ, A). One may like to interpret the exact-
ness of (5.2) through the following commutative diagram:

A

0 �� C ′

��������� φ �� C



ψ �� C ′′ ��

2200000000

0.

(5.3)

An injective object I in A is an object to guarantee the exactness of the functor
HomA (·, I) : A � Ab. That is, in the diagram

I

0 �� C ′

f ′
���������� φ �� C

f



(5.4)
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any morphism f ′ : C ′ → I can be lifted to f : C → I satisfying f ′ = f ◦ φ.
Namely, the induced morphism φ∗ in (5.2) from φ becomes an epimorphism:
also

HomA(C, I)
φ∗

�� HomA (C ′, I) �� 0

is exact. That is, an object I is said to be an injective object if

HomA (·, I) : A � Ab

becomes an exact functor.
Dually, an object P is said to be a projective object of A if the covariant

functor HomA (P, ·) : A � Ab becomes exact. Namely, for a short exact
sequence in A as in (5.1) the induced sequence in Ab:

0 �� HomA (P, C ′)
φ∗ �� HomA (P, C)

ψ∗ �� HomA (P, C ′′) �� 0 , (5.5)

is exact, where, for instance, φ∗ := HomA (P, φ).

Note 13. Let F : C � C ′ be adjoint to G : C ′ � C . Suppose that F takes
monomorphisms in C to monomorphisms in C ′ (e.g., F is an exact functor).
Then G takes injective objects of C ′ to injective objects of C . We will prove
this assertion as follows. Let I ′ be an injective object of C ′ and let

0 �� C ′ φ �� C
ψ �� C ′′ �� 0

be an arbitrary short exact sequence in C . By the assumption, we have the exact
sequence

0 �� FC ′ Fφ �� FC
Fψ �� FC ′′

in C ′. Since the contravariant functor HomC ′(·, I ′) is an exact functor, we get
the exact sequence

HomC ′(FC ′′, I ′)
(Fψ)∗ �� HomC ′(FC, I ′)

(Fφ)∗ �� HomC ′(FC ′, I ′) �� 0

in Ab. Consider,

HomC ′(FC ′′, I ′) �� HomC ′(FC ′, I ′) �� HomC ′(FC ′, I ′) �� 0

0 �� HomC (C ′′, GI ′)

≈


ψ∗
�� HomC (C,GI ′)

≈


φ∗
�� HomC (C ′, GI ′)

≈


���� 0

(5.6)

where the vertical homomorphisms are isomorphisms (i.e., (7.7) in Chapter I).
Therefore, φ∗ in the induced sequence in (5.6) becomes an epimorphism. In
general, since HomC (·, GI ′) is left exact, we conclude that HomC (·, GI ′) is
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an exact functor. Namely, GI ′ is an injective object of C for an injective object
I ′ in C ′.
Note 14. An abelian category C is said to have enough injectives if for an
arbitrary object A of C there exists a monomorphism from A to an injective
object I of C . Namely A is a subobject of I . A category is said to have enough
projectives if an arbitrary A is a quotient object of a projective object P of
C . Namely, there exists an epimorphism from P to A. An injective object of
C is projective object in the dual category C ◦. Consequently, C has enough
injectives if and only if C ◦ has enough projectives. We can prove the following
assertion: as in Note 13, let F : C � C ′ be adjoint to G : C ′ � C and assume
that C ′ has enough injectives. We have: if G takes injective objects of C ′ into
injective objects of C then F takes monomorphisms in C to monomorphisms in

C ′. Let C ′ φ−→ C be a monomorphism in C . We shall prove that Fφ : FC ′ →
FC ′ is a monomorphism in C ′. We have a monomorphism FC ′ φ′

−→ I ′ in
C ′, where I ′ is an injective object of C ′. Then GI ′ is injective in C . Since

HomC (·, GI ′) is an exact functor. For 0 → C ′ φ−→ C, the induced

HomC (C,GI ′)
φ∗

�� HomC (C ′, GI ′) �� 0

is an epimorphism. Since F and G are mutually adjoint, this epimorphism
induces the epimorphism

HomC ′(FC, I ′)
(Fφ)∗ �� HomC ′(FC ′, I ′) �� 0.

That is, in particular, for φ′ ∈ HomC ′(FC ′, I ′), there is f ∈ HomC ′(FC, I ′)
satisfying (Fφ)∗f = φ′. Namely, f ◦ Fφ = φ′ in the following diagram

I ′

FC ′

φ′
����������� Fφ �� FC

f

�
�
�

0

����������

(5.7)

implying that Fφ : FC ′ → FC is a monomorphism.
Remark 15. We summarize Note 13 and Note 14 as follows. For the adjoint
pair F and G, when C ′ has enough injectives, we have: F preserves monomor-
phisms if and only if G preserves injectives.

2.6 Resolutions
Let A be an abelian category and A• and B• be complexes, i.e., objects in

Co(A ), and let f• be a morphism from A• to B•. As was shown in Section
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2.2 the morphism Hj(f•) : Hj(A•) → Hj(B•) is induced. When Hj(f•) is
an isomorphism, j ∈ Z, f• : A• → B• is said to be a quasi-isomorphism. For
a single object A ∈ Ob(A ), we regard A as

. . . �� 0 �� 0 �� A �� 0 �� 0 �� . . . ,

i.e., an object of Co(A ). When a complex I• consisting of injective objects
Ij , j ≥ 0, of A is quasi-isomorphic to the complex A, I• is said to be an
injective resolution of A. That is, the morphism (. . . , 0, ε, 0, . . . ) of Co(A ) in
the diagram

. . . �� 0

0

��

�� A

ε
��

�� 0

0
��

�� 0

0
��

�� . . .

. . . �� 0 �� I0 d0
�� I1 d1

�� I2 d2
�� . . .

(6.1)

induces isomorphisms Hj(A•) ≈−→ Hj(I•), j ∈ Z. Namely, I• is exact at each
Ij , i.e., Hj(I•) = 0, j �= 0 and for j = 0 the induced morphism

H0(A) = A
ε−→ H0(I•) = ker d0

is an isomorphism. Consequently, we have the isomorphism A ≈ im ε =
ker d0. We often write an injective resolution of A as

0 �� A
ε �� I0 d0

�� I1 d1
�� . . . (6.2)

Namely, one may say that I• ∈ Co(A ) is an injective resolution of an object A
of A when (6.2) is an exact sequence in C , and each Ij is an injective object.
Notice that every object has an injective resolution in a category with enough
injectives in the sense of Note 13.

2.7 Derived Functors
Let A be an abelian category and let F be an additive left exact functor

from A to another abelian category B. Assume that A has enough injectives.
For an injective resolution I• of an object A in A , FI• is a complex, i.e.,
FI• ∈ Co(B). We define the j-th right derived functor of F at A as

RjFA := Hj(FI•) = ker Fdj
/

im Fdj−1 (7.1)

where

FI• : · · · �� 0 �� FI0 Fd0
�� FI1 Fd1

�� · · · .

Let I• and J• be two injective resolutions of an object A in A . To justify
the notation RjFA in (7.1) of the right derived functor of F at A, we will prove
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that Hj(FI•) and Hj(FJ•) are isomorphic for j ≥ 0. Let us consider

I0 d0
�� I1 d1

�� I2 �� . . .

0 �� A

ε

���������

ε′

��





J0
′d0

�� J1
′d1

�� J2 �� . . .

(7.2)

For the monomorphism ε′ in (7.2), the injectiveness of I0 implies that there exists
a morphism f0 from J0 to I0. Namely, we have the following commutative
diagrams

I0 0 �� A
ε ��

ε′ 33





 I0

g0

���
�
�

0 �� A
ε′ ��

ε
����������
J0

f0

�
�
�

J0

where the second diagram is obtained by the injectiveness of J0. Then d0 ◦ f0

is a morphism from J0 to I1. From the diagram

I0 d0
�� I1

J0

f0


d0◦f0

443333333333333 ′d0
�� J1

we get

I0 d0
�� I1

J0

f0


d0◦f0

554444444444444444444444444

''''
'''

'''
'''

''' ker ′d1

0 �� im ′d0

f ′

665555555555555555
�� J1

f1

�
�
�
�
�
�
�

(7.3)

In order to show the existence of a morphism f1 : J1 → I1 in (7.3), first we will
define a morphism f ′ : im ′d0 → I1 as follows. By using an Exact Embedding
Theorem of an abelian category into the category of abelian groups, we define
f ′ for an element ′d0(y0) ∈ im ′d0 where y0 ∈ J0, by

f ′(′d0(y0)) := (d0 ◦ f0)(y0).
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Since I1 is an injective object we get a morphism f1 : J1 → I1 as shown
in (7.3). By exchanging the role of I1 and J1 we get similarly a morphism
g1 : I1 → J1. Thus we obtain

I0

g0

��

d0
�� I1

g1

��

d1
�� I2

g2

��

�� . . .

0 �� A

ε

44"""""""""""""

ε′

  ((
(((

(((
(((

((

J0

f0



′d0
�� J1

f1



′d1
�� J2

f2



�� . . .

Then we have

FI•
Fg• ��

FJ•
Ff•
��

in Co(B). We would like to show that the induced morphisms on cohomologies
are isomorphisms. That is, we will prove the following:

Hj(Ff•) ◦ Hj(Fg•) = Hj(Ff• ◦ Fg•) =

= Hj(F (f• ◦ g•)) = 1Hj(FI•)

Hj(Fg•) ◦ Hj(Ff•) = Hj(Fg• ◦ Ff•) =

= Hj(F (g• ◦ f•)) = 1Hj(FJ•)

(7.4)

For f• ◦ g• : I• → I• and 1I• : I• → I•, if F (f• ◦ g•) and F (1I•)
are homotopic, their induced morphisms on cohomologies are the same, i.e.,
Hj(F (f• ◦ g•)) = Hj(F1I•). For functors Hj and F , Hj(F1I•) = 1Hj(FI•),
i.e., the top equation of (7.4). Similarly, Hj(F (g• ◦ f•)) = 1Hj(FJ•), the
bottom equation of (7.4). Our goal is to prove F (f• ◦ g•) ∼ F1I• and
F (g• ◦ f•) ∼ F1J• . Notice that in general for a homotopy equivalence
f1 ∼ f2 (namely, f1 − f2 = ′d ◦ s + s ◦ d by the definition (3.2)), we have
F (f1 − f2) = Ff1 − Ff2 = F (′d ◦ s + s ◦ d) = F ′d ◦ Fs + Fs ◦ Fd
where F is an additive functor. That is f1 ∼ f2 implies Ff1 ∼ Ff2. In our
case f• ◦ g• ∼ 1I• implies F (f• ◦ g•) ∼ F1I• . Let hi = 1Ij − f j ◦ gj ,
j = 0, 1, 2, . . . . Consider the following diagram.

. . . �� 0 �� I0

h0

��

d0
�� I1

h1

��

s1

771
1
1
1
1
1
1
1
1

d1
�� I2

h2

��

s2

771
1
1
1
1
1
1
1
1

�� . . .

0 �� A

ε

���������

ε′

33





. . . �� 0 �� I0
′d0

�� I1
′d1

�� I2 �� . . .

(7.5)
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For the natural epimorphism I0 π0

−→ I0
/

ker d0 we get the isomorphism

I0
/

ker d0 ≈−→ im d0

in the abelian category A . That is, we have the monomorphism

I0
/

ker d0 ≈ im d0 d̃0

−→ I1,

i.e.,

0 �� I0
/

ker d0

h̃0

��

d̃0 �� I1

s1

��� �
�

�
�

�

I0

(7.6)

where h̃0(x0) = h0(x0) for x0 = π0(x0), x0 ∈ I0. Since I0 is injective there
exists a morphism s1 : I1 → I0 as shown in (7.6). In the diagram

I0

h0

��

π0

���
��

��
��

��
d0

�� I1

s1

88

6
7

8
9

�
�

��3:;4<=

I0
/

ker d0

d̃0

""���������

h̃0

����
��

��
��

�

I0

(7.7)

we have

h0 = 1I0 − f0 ◦ g0 = h̃0 ◦ π0 = (s1 ◦ d̃0) ◦ π0 = s1 ◦ (d̃0 ◦ π0) = s1 ◦ d0.

As in (7.5), since I−1 = I−2 = · · · = 0, 1I0 − f0 ◦ g0 = s1 ◦ d0 is (3.2) for
j = 0. Namely, 1I0 is homotopic to f0 ◦ g0. In order to get s2 : I2 → I1 we
need to be more careful since for the monomorphism

0 �� I1
/

ker d1 d̃1 �� I2,

h̃1 : I1
/

ker d1 → I1 will not become a morphism. As for h̃0, since the top
sequence in (7.5) is exact, we have im ε = ker d0 and I0

/
ker d0 ≈ I0

/
im ε.

Then

h̃0(ε(a)) = h0(ε(a)) = (1I0 − f0 ◦ g0)(ε(a)) =

= (1I0 ◦ ε − (f0 ◦ g0) ◦ ε)(a) = (ε − ε)(a) = 0.
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Therefore h̃0(x0) = h0(x0) was fine. Namely, since h̃1 does not take im d0 to

zero, h̃1 will not be well-defined. For x0 ∈ I0 we need to define

˜(h1 − d0 ◦ s1) : I1
/

ker d1 (≈ I1
/

im d0) −→ I1

as follows:

˜(h1 − d0 ◦ s1)(d0(x0)) = (h1 − d0 ◦ s1)(d0(x0)) =

= (h1 ◦ d0)(x0) − (d0 ◦ s1 ◦ d0)(x0) =

= ((1I1 − f1 ◦ g1) ◦ d0)(x0)−
− d0 ◦ (1I0 − f0 ◦ g0)(x0) =

= (1I1 ◦ d0 − d0 ◦ 1I0)(x0)+

+ (d0 ◦ (f0 ◦ g0) − (f1 ◦ g1) ◦ d0)(x0) =
= 0.

For the diagram

0 �� I1
/

ker d1

˜(h1−d0◦s1)
��

d̃1 �� I2

s2

��� �
�

�
�

�

I1

(7.8)

we obtain s2 : I2 → I1. Then from the diagram

I1

s1

--++
++
++
++
++
++
++
++
++

d1
��

π1

���
��

��
��

��

h1−d0◦s1

��

I2

s2

88

I1
/

ker d2

d̃1

""���������

�

����
��

��
��

�

I0 d0
�� I1

(7.9)

where we have put � = ˜(h1 − d0 ◦ s1) to simplify readability of the diagram,
we have

h1−d0 ◦s1 = ˜(h1 − d0 ◦ s1)◦π1 = (s2 ◦ d̃1)◦π1 = s2 ◦ (d̃1 ◦π1) = s2 ◦d1,

obtaining h1 = d0 ◦ s1 + s2 ◦ d1. That is,

1I1 − f1 ◦ g1 = d0 ◦ s1 + s2 ◦ d1.
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Consequently, 1I1 is homotopic to f1 ◦ g1. The above method is valid for
general j proving 1I• ∼ f• ◦ g•. As noted earlier, for an additive functor F ,
F (f• ◦ g•) is homotopic to F1I• . Then we get Hj(F (f• ◦ g•)) = Hj(F1I•)
which was to be proved, i.e., (7.4). For injective resolutions I• and J• of an
object A ∈ Ob(A ) we have an isomorphism Hj(FI•) ≈ Hj(FJ•). The
isomorphic object RjFA is the j-th right derived functor of F at A (see (7.1)).

Remark 16. Let F : A � B be a covariant left exact functor. Namely, for a
short exact sequence

0 �� A′ �� A �� A′′ �� 0

in A , we have the exact sequence

0 �� FA′ �� FA �� FA′′

in B. Then as the contravariant functor F : A � B◦, F becomes right exact.
As a covariant functor F : A ◦ � B◦, F becomes right exact as well. As
noted in Section 2.5, an injective resolution of A in A is a projective resolution
of A in A ◦. Let P• = I• be the projective resolution of A in A ◦, and let
P• → A, where η = ε◦ : P0 → A → 0 in A ◦ for 0 → A

ε−→ I0 in A . Then
F : A ◦ � B◦ induces the complex FP• → FA:

. . . �� FPj+1
Fdj+1�� FPj

Fdj�� FPj−1
Fdj−1�� . . . �� FP0

Fη

��

�� 0 �� . . .

FA

(7.10)

The subquotient object
ker Fdj

/
imFdj+1 (7.11)

is said to be the j-th left derived functor of F at A denoted as LjFA. See the
following:

A
F ������������������

◦
�� ��
��
��

B

◦
�� ��
��
��

A
RjF ������������������

◦
�� ��
��
��

B

◦
�� ��
��
��

A ◦ F ���������������� B◦ A ◦ LjF ���������������� B◦

(7.12)

Those subquotient objects RjFA and LjFA, j = 0, 1, 2, . . . , are generally
referred to as the cohomologies and homologies of F at A, respectively. That
is, for a complex C• in an abelian category

. . . �� C−j d−j
�� C−j+1 �� . . . d−2

�� C−1 d−1
�� C0 d0

��

d0
�� C1 �� . . . �� Cj �� Cj+1 �� . . .
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the subquotient ker dj
/

im dj−1, j ≥ 0, is said to be the j-th cohomology of
the complex, and the subquotient ker d−j

/
im d−j−1 is the j-the homology of

C•. Namely, H−j(C•) = Hj(C•) and Hj(C•) = H−j(C•).

2.8 Properties of Derived Functors
For an additive left exact functor F of abelian categories A and B, i.e.,

F : A � B, we defined the derived functor RjF : A � B, j = 0, 1, 2, . . . ,
in Section 2.7. We will compute R0FA. Namely, for an injective resolution of

A, 0 → A
ε−→ I0 d0

−→ I1 d1

−→ . . . , R0FA is the 0-th cohomology of the complex
FI•, i.e., H0(FI•) = kerFd0. Since F is left exact,

0 �� FA
Fε �� FI0 Fd0

�� F im d0

is exact sequence. Then ker Fd0 = im Fε and Fε is a monomorphism. Con-
sequently, we have ker Fd0 = im Fε ≈ FA for any object A of A . Therefore
we obtain,

(D.F.0) R0F ≈ F .

For a morphism f : A → B in A we have the induced morphism

RjF : RjFA → RjFB

in B. Namely, RjF is actually a functor. This means that there are injective
resolutions I• and J• of A and B, respectively, so that

Ij dj
��

fj

��

Ij+1

fj+1

��
J j

′dj
�� J j+1

(8.1)

may be commutative for all j = 0, 1, 2, . . . . Furthermore, for a short exact
sequence

0 �� A′ φ �� A
ψ �� A′′ �� 0

we have not only

RjFA′ RjFφ �� RjFA
RjFψ�� RjFA′′,

but also ∂j : RjFA′′ → Rj+1FA′ so that
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(D.F.1)

0 �� R0FA′ R0Fφ �� R0FA
R0Fψ�� R0FA′′ ∂0

�� R1FA′ R
1Fφ �� . . .

. . . ∂j−1
�� RjFA′ RjFφ �� RjFA

RjFψ�� RjFA′′ ∂j
�� Rj+1FA′ �� . . .

may be an exact sequence in B.
A proof of (D.F.1) can be done as follows. For A′ and A′′ let ε′ and ε′′ be

monomorphisms into injective objects ′I0 and ′′I0 as in Section 2.6 (i.e., the
initial terms of injective resolutions for A′ and A′′). Then let I0 := ′I0 ⊕ ′′I0

to obtain

0 0

0 �� A′′



ε′′ �� ′′I0



0 �� A

ψ



ε ��

′′ε

443333333333

′ε

  (
((((((((( I0

π0



′I0
⊕ ′′I0

0 �� A′ ε′ ��

φ



′I0

ι0



0



0



(8.2)

where ι0 : ′I0 → I0 = ′I0⊕ ′′I0 is defined by ι0(x′) = (x′, 0) ∈ ′I0⊕ ′′I0 and
π0 : I0 = ′I0 ⊕ ′′I0 → ′′I0 is the projection defined by π0(x′, x′′) = x′′. Then
ι0 is a monomorphism and π0 is an epimorphism satisfying ker π0 = im ι0.

Next we will show that there is a monomorphism ε : A → I0. For 0 → A′ φ−→ A
and ε′ : A′ → ′I0 there exists a morphism ′ε : A → ′I0 satisfying ε′ = ′ε ◦ φ
(i.e., (5.4)). Let ′′ε = ε′′ ◦ ψ : A → ′′I0. Then define ε : A → I0 = ′I0 ⊕ ′′I0

by ε(a) = (′ε(a), ′′ε(a)) for a ∈ A, obtaining the commutative diagram (8.2).
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Next consider the following diagram.

0 0 0

0 �� A′′



ε′′ �� ′′I0



′′d0
�������������

��>
>>

>>
>>

>>
′′I1



′′I0
/

im ε′′

""���������

0 �� A

ψ



ε �� I0

π0



d0
�������������

��>>
>>>

>>>
>> I1

π1



I0
/

im ε

""����������



0 �� A′ ε′ ��

φ



′I0

ι0



′d0
�������������

��>
>>

>>
>>

>>
′I1

ι1



′I0
/

im ε′

""���������



0



0



0



(8.3)

As we constructed 0 → ′I0 → I0 → ′′I0 for 0 → A′ → A → A′′ → 0, for the
short exact sequence

0 �� ′I0
/

im ε′ �� I0
/

im ε �� ′′I0
/

im ε′′ �� 0 (8.4)

in the third column of (8.3), we obtain 0 → ′I1 → I1 → ′′I1 → 0 as shown
in the fourth column of (8.3). We define ′d0, d0 and ′′d0 as the compositions
′I0 → ′I0

/
im ε′ → ′I1, I0 → I0

/
im ε → I1 and ′′I0 → ′′I0

/
im ε′′ → ′′I1,

respectively. Thus we can obtain the exact splitting sequence of complexes

0 �� ′I•
ι• �� I•

π•
�� ′′I• �� 0 (8.5)

which are injective resolutions of A′, A and A′′, respectively. Therefore, we
obtain the exact sequence of complexes

0 �� F ′I•
Fι• �� FI•

Fπ•
�� ′′FI• �� 0. (8.6)
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By taking cohomologies of (8.6), we get

∂j−1
����� Hj(F ′I•) �� Hj(FI•) �� Hj(F ′′I•) ∂j

�����

∂j
����� Hj+1(F ′I•) �� . . .

(8.7)

We wish to define the connecting morphism ∂j in (8.7) from

Hj(F ′′I•) = RjFA′′ −→ Hj+1(F ′I•) = Rj+1FA′

(in the long exact sequence (D.F.1)). In the commutative diagram

0 0 0 0

. . . F ′′dj−1
�� F ′′Ij F ′′dj

��



F ′′Ij+1F ′′dj+1
��



F ′′Ij+2 ��



· · · : F ′′I•



. . . Fdj−1
�� FIj Fdj

��

Fπj



FIj+1 Fdj+1
��

Fπj+1



FIj+2 ��



· · · : FI•

Fπ•



. . . F ′dj−1
�� F ′Ij F ′dj

��

Fιj



F ′Ij+1 F ′dj+1
��



F ′Ij+2 ��

Fιj+1



· · · : F ′I•

Fι•



0



0



0



0



(8.8)

let
′′yj ∈ RjFA′′ = Hj(F ′′I•) = kerF ′′dj

/
imF ′′dj−1

where ′′yj ∈ ker F ′′dj . Since Fπj is epimorphic, there is a yj ∈ FIj satisfying
Fπj(yj) = ′′yj . Then Fπj+1(Fdj(yj)) ∈ F ′′Ij+1 equals

F ′′dj(Fπj(yj)) = F ′′dj(′′yj) = 0.

Namely, Fdj(yj) ∈ kerFπj+1. The exactness of the second column implies
that Fdj(yj) = Fιj+1(′yj+1) for some ′yj+1 ∈ F ′Ij+1. Having obtained
′yj+1 in F ′Ij+1, first we need to confirm ′yj+1 ∈ kerF ′dj+1 to get the coho-
mological class ′yj+1 ∈ Rj+1FA′ = Hj+1(F ′I•). The commutativity of the
lower right-hand-side square of (8.8) implies

Fιj+2(F ′dj+1(′yj+1)) = Fdj+1(Fιj+1(′yj+1)) = Fdj+1(Fdj(yj)) =

= (Fdj+1 ◦ Fdj)(yj) = F (dj+1 ◦ dj)(yj) = 0.
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Since Fιj+2 is a monomorphism, we have F ′dj+1(′yj+1) = 0, i.e., we have
′yj+1 ∈ kerF ′dj+1, inducing, ′yj+1 ∈ Hj+1(F ′I•) = Rj+1FA′. Then we
define the connecting morphism ∂j : RjFA′′ → Rj+1FA′ as follows:

∂j(′′yj) = ′yj+1. (8.9)

One may wish to check that the definition of ∂j in (8.9) is well-defined.
Lastly, as an exercise, the reader may want to prove the exactness of the

long sequence of (D.F.1). Namely, (D.F.1) is exact if im RjFφ = ker RjFψ,
im RjFψ = ker ∂j and im ∂j = ker Rj+1Fφ, j = 0, 1, 2, . . . . Since we have
R0F ≈ F , which is left exact, the case j = 0:

0 → R0FA′ → R0FA → R0FA′′

is exact. Furthermore, since RjF is a functor, RjFψ◦RjFφ = RjF (ψ◦φ) = 0
holds, i.e.,

im RjFφ ⊂ ker RjFψ.

The remaining portion on the exactness can be proved by "diagram chasing".
Next we will prove the third property (D.F.2) of derived functors. Let us

consider the following commutative diagram.

0 �� A′ φ ��

f
��

A
ψ ��

g

��

A′′ ��

h
��

0

0 �� B′ λ �� B
µ �� B′′ �� 0

(8.10)

From (D.F.1), we have two horizontal long exact sequences

. . . �� RjFA′ R
jFφ��

RjFf

��

RjFA
RjFψ��

RjFg

��

RjFA′′ ∂j
��

RjFh

��

Rj+1FA′

Rj+1Ff

��

�� . . .

. . . �� RjFB′R
jFλ�� RjFB

RjFµ�� RjFB′′ δj
�� Rj+1FB′ �� . . .

(8.11)

with the induced vertical morphisms. The commutativity of the first two squares
comes from commutativity of the diagram (8.10).

(D.F.2) We will prove that the third square of (8.11)

RjFA′′ ∂j
��

RjFh
��

Rj+1FA′

Rj+1Ff
��

RjFB′′ δj
�� Rj+1FB′
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is commutative. We will give a direct proof (D.F.2) as follows.

Proof of (D.F.2). Let ′I•, I• and ′′I• be injective resolutions of A′, A and A′′

and let ′J•, J• and ′′J• be injective resolutions of B′, B and B′′, respectively,
as constructed in (8.5), so that the diagram

0 �� ′I•
ι• ��

f•

��

I•
π•

��

g•

��

′′I•

h•

��

�� 0

0 �� ′J• q• �� J• p• �� ′′sJ• �� 0

(8.12)

becomes commutative. That is, we have the following diagram:

0 0

0 0

A′′



h ���
���

���
ε′′ �� ′′I•



h• ����
���

��

B′′



α′′
��



′′J•



A

ψ



g ���
���

���
�

ε �� I•
π•

g• ����
���

���

B

µ



α ��



J•

p•



A′

φ



f ���
��

��
��

ε′ �� ′I•

f• ���
���

���

ι•

B′

λ



α′
��



′J•

q•



0



0

0



0



(8.13)
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Then the functor F : A � B induces the commutative diagram of complexes.

0

F ′′I•



Fh•

99???
????

????
? 0

F ′′J•



FI•

Fπ•



Fg•

99???
????

????
??

FJ•

Fp•



F ′I•

Fι•



Ff•

99???
????

????
?

0



F ′J•

Fq•



0



(8.14)

Then, by taking cohomologies of (8.14), the commutative diagram (8.12) can
be written

Rj+1FA′′

Rj+1Fh

::@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@

RjFA′′

RjFh

��A
AA

AA
AA

AA
AA

AA
AA

AA
AA

A

∂j

���
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

Rj+1FA

Rj+1Fg

::@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@

Rj+1Fψ



RjFA

RjFψ



RjFg

��A
AA

AA
AA

AA
AA

AA
AA

AA
AA

A Rj+1FB′′

RjFB′′

δj

��BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

BB
BB

Rj+1FA′

Rj+1Ff

::@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@

Rj+1Fφ



RjFA′

RjFφ



RjFf

��A
AA

AA
AA

AA
AA

AA
AA

AA
AA

A Rj+1FB

Rj+1Fµ



RjFB

RjFµ



Rj+1FB′

Rj+1Fλ



RjFB′

RjFλ



(8.15)
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Notice that the commutativity of (D.F.2) is the commutativity of the rhombus
in the middle of (8.15). That is, we will prove that

(Rj+1Ff ◦ ∂j)(′′yj) = (δj ◦ RjFh)(′′yj), (8.16)

where ′′yj ∈ RjFA′′ and

′′yj ∈ ker(F ′′dj : F ′′Ij F ′′dj

−−−→ F ′′Ij+1).

The right side of (8.16) is δj(Fhj(′′yj)), and the left side is Rj+1Ff(′yj) as
defined in (8.9). From the following diagram at degrees j and j + 1 of (8.14)

0 0

. . . �� F ′′Ij



Fhj

���
��

��
��

��
0

F ′′dj
A �� F ′′J j+1



Fhj+1

���
��

��
��

��
� 0 �� . . .

. . .



�� F ′′J j



F ′′dj
B ��



F ′′J j+1



�� . . .

. . . �� FIj

Fπj

Fgj

���
��

��
��

��

Fdj
A �� FJ j+1

Fπj+1

Fgj+1

���
��

��
��

��
�

�� . . .

. . . ��



FJ j

Fpj



Fdj
B ��



FJ j+1 ��

Fpj+1



. . .

. . . �� F ′Ij

F ιj

Ffj

���
��

��
��

��

F ′dj
A �� F ′J j+1

Fιj+1

Ffj+1

���
��

��
��

��
�

�� . . .

. . .



�� F ′J j

Fqj



F ′dj
B ��



F ′J j+1

Fqj+1



�� . . .

0 0

0



0



(8.17)
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For ′′yj ∈ F ′′Ij , the diagram chasing in (8.17) becomes

′′yj ��

Fhj

��>>
>>

>>
> 0

Fhj(′′yj)

∃yj
�



�

Fgj

;;!
!!

!!
!!

!!
!!

!!
!

Fdj
A �� Fdj

A(yj)
�



∃zj
�



� Fdj
B ��



Fdj
B(zj)

Fgj(yj)

′yj+1
�

C

Ffj+1

���
��

��
��

��
��

��
��

′zj+1
�

Fgj+1



Ff j+1(′yj+1)

(8.18)

The cohomology class on the the left hand-side of (8.16) is determined by

Ff j+1(′yj+1) ∈ F ′J j+1,

and the cohomology class on the right hand-side of (8.16) is determined by
′zj+1 ∈ F ′J j+1. In order to prove (8.16) we need to show

′zj+1 − Ff j+1(′yj+1) ∈ im Fdj
B.

Notice that ′zj+1 − Ff j+1(′yj+1) is an element of F ′J j+1 at the lower right
of (8.17). Then Fqj+1 takes this element to

Fqj+1(′zj+1) − Fqj+1(Ff j+1(′yj+1)) = Fdj
B(zj) − Fgj+1(Fιj+1(′yj+1))

in FJ j+1. Since Fιj+1(′yj+1) = Fdj
A(yj), the above equation can be contin-

ued as

Fqj+1(′zj+1) − Fqj+1(Ff j+1(′yj+1)) = Fdj
B(zj) − Fgj+1(Fιj+1(′yj+1))

= Fdj
B(zj) − Fgj+1(Fdj

A(yj)).

Furthermore, by the commutativity of the middle square of (8.17), we can can
continue as

Fdj
B(z′) − Fdj

B(Fgj(yj)) = Fdj
B(zj − Fgj(yj)).
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For zj − Fgj(yj) ∈ FJ j , the map Fpj takes this element to

Fpj(zj − Fgj(yj)) = Fhj(′′yj) − Fpj(Fgj(yj))

= Fhj(′′yj) − Fhj(Fπj(yj)).

Since Fπj(yj) = ′′yj , the above equals Fhj(′′yj) − Fhj(Fπj(yj)) = 0.
Namely, we get zj −Fgj(yj) ∈ ker Fpj . Since (8.17) is vertically exact, there
exists ′zj ∈ F ′J j satisfying Fqj(′zj) = zj−Fgj(yj). In order to prove (8.16),
we need to show that ′zj+1 and Ff j+1(′yj+1) belong to the same cohomology
class. Namely, we must show

F ′dj
B(′zj) = ′zj+1 − Ff j+1(′yj+1). (8.19)

Since Fqj+1 is a monomorphism, instead of (8.19), it is enough to show

Fqj+1(F ′dj
B(′zj) − ′zj+1 + Ff j+1(′yj+1)) = 0. (8.20)

We will compute the left side of (8.20) as follows

Fqj+1(F ′dj
B(′zj)) − Fqj+1(′zj+1) + Fqj+1(Ff j+1(′yj+1)),

which (since Fqj(′zj) = zj − Fgj(yj) ∈ ker Fpj) equals

Fdj
B(Fqj(′zj)) − Fdj

B(zj) + Fgj+1(Fdj
A(yj))

= Fdj
B(zj − Fgj(yj)) − Fdj

B(zj) + Fdj
B(Fgj(yj)) = 0

by the commutativity of the middle square of (8.17). Consequently (D.F.2) is
proved.

Property (D.F.3)

Let I be an injective object of A . then we can consider the following trivial
resolution of I:

. . . �� 0

��

�� I

ε

��

�� 0

��

�� . . .

. . . �� 0 �� I �� 0 �� . . .

(8.21)

By the definition

RjFI = Hj( . . . �� 0 �� FI �� 0 �� . . . ) =

=

{
0 for j = 1, 2, . . .

F I for j = 0.

Namely, for an injective object I

(D.F.3) RjFI = 0 for j = 1, 2, . . . .
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2.9 Axioms for Derived Functors
The properties (D.F.0) through (D.F.3) of derived functors (RjF )j≥0 of a

left exact additive functor F of abelian categories A and B can be used as
the characterization of derived functors. For a positive integer j, let T j be an
additive functor from an abelian category A to another abelian category B.
Then the sequence (T j)j≥0 of functors is said to an exact connected sequence
of functors from A to B if (D.F.1) and (D.F.2) are satisfied for (T j)j≥o (i.e.,
replace RjF by T j in (D.F.1) and (D.F.2)). Let C := BA . Let CSe(C ) and
ECSe(C ) be the category of connected sequences (i.e., without the exactness
of (D.F.1) in B) and the category of exact connected sequences of functors,
respectively. A morphism f∗ = (f j)j≥0 between objects T ∗ := (T j)j≥0 and
S∗ := (Sj)j≥0 of CSe(C ) (or ECSe(C )) is a sequence of natural transforma-
tions f j : T j → Sj , j ≥ 0. Then T ∗ is said to be universal in CSe(C ) when
the following condition is satisfied.

(UCS) For an object S∗ in CSe(C ) and for a natural transformation h :T 0→S0,
there exists a unique morphism f∗ from T ∗ to S∗ satisfying f0 = h.

Let ′T ∗ := (′T j)j≥0 be another object of CSe(C ) and let g0 : ′T 0 → T 0 be
any natural transformation. From (UCS) there is a unique f∗ : ′T ∗ → T ∗

satisfying f0 = g0. By reversing the role we also get a unique ′f∗ : T ∗ → ′T ∗

satisfying ′f0 = ′g0 : T 0 → ′T 0. Then we have ′f∗ ◦ f∗ : ′T ∗ → ′T ∗

and f∗ ◦ ′f∗ : T ∗ → T ∗ satisfying ′f0 ◦ f0 = ′g0 ◦ g0 : ′T 0 → ′T 0 and
f0 ◦ ′f0 : T 0 → T 0. The uniqueness of the morphism in (UCS) and the
identities 1T ∗ and 1′T ∗ being morphisms in CSe(C ) imply that a universal
connected sequence of functors T ∗ is determined by T 0 up to a canonical
isomorphism. This universal object T ∗ is said to be the derived functors of T 0.

Let F be a left exact additive functor from an abelian category A with enough
injectives to an abelian category B. Consequently, if T ∗ = (T j)j≥0 is an exact
connected sequence of functors from A to B satisfying (D.F.0), T 0 ≈ F and
(D.F.3), T j(I) = 0 for an injective object I of A , j ≥ 1, then T ∗ are the
derived functors of F (i.e., of T 0). Namely, if T ∗ = (T j)j≥0 is a connected
sequence of functors from A to B and if a natural transformation h0 from R0F
to T 0 is given, then there exists a unique morphism of connected sequences of
functors

h∗ = (hj)j≥0 : R∗F = (RjF )j≥0 −→ T ∗ = (T j)j≥0 (9.1)

so that we may have the commutative diagram

RjFA′′ ∂j
��

hj

��

Rj+1FA′

hj+1

��
T jA′′ dj

�� T j+1A′.

(9.2)
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A characterization of the derived functors of a left exact functor F from an
abelian category A to an abelian category B is the following:

(1) A connected sequence of functors (T j)j≥0;

(2) There is a natural transformation h : F → T 0;

(3) The universal property is satisfied, i.e., for another connected sequence of
functors ′T ∗ := (′T j)j≥0 and a natural transformation g : F → ′T 0 there
exists a unique morphism λ : T 0 → ′T 0 so that

F
≈
h

��

g
���

��
��

��
� T 0

λ���
�

�
�

′T 0

commutes.

2.10 The Derived Functors (Extj)j≥0

Let A be an abelian category with enough injectives. Recall from Section
1.6 that for A and B in Ob(A ), HomA (B, A) is an abelian group (condition
(Ab.1)) and that HomA (·, A) : A � Ab is a left exact additive contravariant
functor. For an injective object I , HomA (·, I) is an exact functor. (See Section
2.5.) The j-th derived functor Rj HomA ◦(·, A) of HomA ◦(·, A) : A ◦ � Ab
is defined by

Rj HomA ◦(·, A)B = Rj HomA ◦(B, A) := Hj(HomA ◦(I•, A)) (10.1)

where I• is an injective resolution of B in A ◦ (i.e., I• is a projective resolution
of B in A ). The j-th derived functor Rj HomA (B, ·) of the left additive
covariant functor HomA (B, ·) : A � Ab is defined by

Rj HomA (B, ·)A = Rj HomA (B, A) := Hj(HomA (B, J•)) (10.2)

where J• is an injective resolution of A in A . Note that HomA (B, J•) is the
complex

HomA (B, J0)
′d0

∗ �� HomA (B, J1)
′d1

∗ �� . . .
′dj−1

∗ �� HomA (B, J j)
′dj

∗ �� . . .

(10.3)
in Ab, and that HomA ◦(I•, A) is the complex

· · · dj ∗
�� HomA ◦(Ij , A) dj−1 ∗

�� . . . d1 ∗
�� HomA ◦(I1, A) d0 ∗

�� HomA ◦(I0, A),
(10.4)



64 Derived Functors

or

HomA (P0, A)
d∗
0 �� HomA (P1, A)

d∗
1 �� . . .

d∗
j−1 �� HomA (Pj , A)

d∗
j �� . . .

(10.5)
where P• = I• as in Remark 15. Furthermore, one can consider the complex

(Cj)j≥0 :=
( ⊕

l+l′=j

HomA (Pl, I
l′)
)
j≥0

(see the Section on double complexes in Chapter III),

C0
(d∗0,′d0

∗)
�� C1

(d∗1,′d1
∗)

�� . . .
(d∗j−1,′dj−1

∗ )
�� Cj

(d∗j ,′dj
∗)

�� . . . (10.6)

Then we have

Hj(HomA (B, J•)) ≈ Hj(HomA ◦(I•, A)) = Hj(HomA (P•, A)) ≈
≈ Hj(C•).

Namely, all the cohomology groups of the complexes are (10.3), (10.4), (10.5)
and (10.6) are isomorphic to each other. See H. Cartan–S. Eilenberg, Homo-
logical Algebra, Princeton University Press, 1956, Chapter VI for a proof. This
isomorphic object in Ab is written as Extj

A (A, B), the j-th derived functor in
the sense of (10.1) (and (10.2)). Consequently, Extj

A (A, B) satisfies (D.F.0),
i.e., for j ≥ 1 Ext0A (A, B) ≈ HomA (A, B), (D.F.1), (D.F.2) and (D.F.3), i.e.,

Extj
A (B, I) = Extj

A (P, A) = Extj
A ◦(I, A) = 0

for an injective object I and a projective object P .

2.11 Precohomology
For a complex (C•, d•) in an abelian category A , the subquotient object

Hj(C•) = ker dj
/

im dj−1, i.e., the j-th cohomology of C• exists. For a
sequence C∗ of objects and morphisms in A

. . . �� Cj−1 dj−1
�� Cj dj

�� Cj+1 dj+1
�� . . . (11.1)

which need not satisfy dj ◦ dj−1 = 0, we will define a new invariant as a
generalization of the notion of cohomology as follows. First, we will introduce
two functors denoted as K2 and I−2, complexifying the sequence C∗ as in (11.1)
to obtain complexes K2C∗ and I−2C∗.
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2.11.1 Definitions of Complexifying Functors
Let Se(A ) be the category of sequences C∗ as in (11.1). A morphism in f∗

from C∗ to ′C∗ in Se(A ) is a sequence of morphisms f j : Cj → ′Cj in A so
that the diagram

. . . �� Cj dj
��

fj

��

Cj+1 dj+1
��

fj+1

��

. . .

. . . �� ′Cj
′dj

�� ′Cj+1
′dj+1

�� . . .

(11.2)

is commutative, i.e., ′dj ◦ f j = f j+1 ◦ dj for j ∈ Z, the ring of integers. We
will define two functors K2 and I−2 from Se(A ) to the category Co(A ) of
(cochain) complexes as follows. For C∗ ∈ Ob(Se(A )) we define

{
K2C∗ :=

(
ker(dj+1 ◦ dj)

)
j∈Z

I−2C∗ :=
(
C∗/ im(dj−1 ◦ dj−2)

)
j∈Z

.
(11.3)

Then (K2C∗, K2d∗) and (I−2C∗, I−2d∗) become complexes: the induced mor-
phisms K2d∗ and I−2d∗ are defined as

K2dj(xj) := dj |ker dj+1◦dj (xj),

for xj ∈ ker(dj+1 ◦ dj), i.e., the restriction of dj on the subobject

ker(dj+1 ◦ dj),

and
I−2dj([xj ]) := [dj(xj)],

where [xj ] denotes the class of xj ∈ Cj in

Cj
/

im(dj−1 ◦ dj−2),

respectively. Note that

ker I−2dj = {[xj ] ∈ Cj
/

im(dj−1 ◦ dj−2) | dj(xj − dj−1xj−1) = 0,

for some xj−1 ∈ Cj−1},

and

im I−2dj−1 = {[xj ] ∈ Cj
/

im(dj−1 ◦ dj−2) | xj = dj−1(xj−1),

for some xj−1 ∈ Cj−1}.
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We have the following diagram:

0

����
��

��
��

� 0

..��
��
��
��
�

· · · �� ker ∂j

(π◦ι)j

��

ιj����
��
��
��

K2dj
�� ker ∂j+1

��

ιj+1����
��

��
��

�� · · ·

· · · �� Cj

πj

���
��

��
��

�
dj

�� Cj+1

πj+1

��2
22

22
22

2
�� · · ·

· · · �� Cj/Bj−1

��2
22

22
22

22
I−2dj

�� Cj+1/Bj

���
��

��
��

�
�� · · ·

0 0,

(11.4a)

where we have put ∂j := dj+1◦dj and Bj := im ∂j−1 to simplify the diagrams.
This can also be described schematically as

K2C∗

ι•

�����
��
��
��

(π◦ι)•

��

C∗

π•
���

��
��

��
��

I−2C∗.

(11.4b)

2.11.2 Self-Duality of Precohomology
For C∗ in Se(A ) we have the two complexifying functors K2 and I−2 as

shown in Subsection 2.11.1. Therefore, we can consider the cohomologies of
the complexes K2C∗ and I−2C∗:

{
Hj(K2C∗) = kerK2dj

/
im K2dj−1

Hj(I−2C∗) = ker I−2dj
/

im I−2dj−1.
(11.5)

Then the self-duality theorem states that the morphism (π ◦ ι)• of complexes:
K2C∗ → I−2C∗ in (11.4a) induces an isomorphism on the cohomologies in
(11.5). Define hjC∗ := Hj(I−2C∗) ≈ Hj(K2C∗) which is said to be the j-th
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precohomology of the sequence C∗ in Se(A ). We have the diagram of functors:

Co(A )
Hj

����
��

��
��

��

Se(A )

K2 ��&'
&'&'

&'&'

hj
������������������������

I−2
""

()()()()()

A

Co(A )
Hj

��
*+

*+
*+

*+
*+

(11.6)

2.11.3 Proof of Self-Duality Theorem
Let ′hj(C∗) := Hj(K2C∗) and let

Φ : ′hj(C∗) → hj(C∗) = Hj(I−2C∗)

be the induced morphism from (π ◦ ι)• : K2C∗ → I−2C∗ in (11.4a). Namely,
for x̄ ∈ ′hj(C∗) we have

Φ(x̄) = πj(ιj(x))

where ιj and πj are shown in (11.4a), i.e., ιj : ker(dj+1 ◦ dj) → Cj is the
canonical monomorphism and πj : Cj → Cj

/
im(dj−1◦dj−2) is the canonical

epimorphism. Note that x ∈ ker(dj+1 ◦ dj) satisfies

K2dj(x) = dj(x) = 0

and that Φ(x̄) = πj(ιj(x)) = [x] is in the j-th cohomology object hj(C∗) =
Hj(I−2C∗) where [x] ∈ ker I−2dj , i.e., dj(x−dj−1xj−1) = 0 for some xj−1 ∈
Cj−1 as noted in Subsection 2.11.1. We will show that Φ is a monomorphism.
Let Φ(x̄) = [x] = 0 in hj(C∗). As noted earlier x = dj−1(xj−1) for some
xj−1 ∈ Cj−1. We need to check that xj−1 ∈ K2Cj−1 = ker dj ◦ dj−1. We
compute as follows:

dj(dj−1(xj−1)) = dj(x) = 0.

Next we will show that Φ is an epimorphism. Let [x] be an arbitrary element
of hj(C∗) = Hj(I−2C∗). Since [x] is in ker I−2dj , dj(x− dj−1xj−1) = 0 for
some xj−1 ∈ Cj−1. Then we have Φ(x − dj−1xj−1) = [x − dj−1xj−1] = [x]
for x − dj−1xj−1 ∈ K2Cj = ker dj+1 ◦ dj .

2.11.4 Half-Exactness of Precohomology
Let

0 �� ′C∗ α∗
�� C∗ β∗

�� ′′C∗ �� 0 (11.7)
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be exact in Se(A ). Then we the following exact sequence in A :

hj(′C∗) α̃j �� hj(C∗)
β̃j

�� hj(′′C∗) (11.8)

for j ∈ Z where α̃j := Hj(I−2α∗) and β̃j := Hj(I−2β∗). By the self-duality
of pre-cohomologies, (11.8) may also be written as

′hj(′C∗) α̂j �� ′hj(C∗)
β̂j

�� ′hj(′′C∗) (11.9)

for j ∈ Z where α̂j := Hj(K2α∗) and β̂j := Hj(K2β∗). Namely, we will
prove the half-exactness of the precohomology functor from Se(A ) to A , i.e.,

ker β̃j = im α̃j . Let [x] ∈ ker β̃j , i.e., β̃j([x]) = [βj(x)] = 0 in

hj(′′C∗) = ker I−2′′dj
/

im I−2′′dj−1.

Namely, [βj(x)] ∈ im I−2′′dj−1. As noted earlier in Subsection 2.11.1, there
exists y′′ ∈ ′′Cj−1 to satisfy dj−1(y′′) = βj(x). Since βj−1 is epimorphic
there exists y ∈ Cj−1 to satisfy βj−1(y) = y′′. Then we have

βj(dj−1(y) − x) = βj(dj−1(y)) − βj(x) = ′′dj−1(βj−1(y)) − βj(x) =

= ′′dj−1(y′′) − βj(x) = 0.

Namely, dj−1(y)−x ∈ kerβj . The exactness of (11.7) at C∗ implies that there
exists y′ ∈ ′Cj satisfying αj(y′) = dj−1(y) − x. We will prove

I−2′dj([y′]) = 0,

i.e., [y′] ∈ ker I−2′dj . By the remark on ker I−2′dj in Subsection 2.11.1 there
exists z′ ∈ ′Cj−1 satisfying ′djy′ − ′dj(′dj−1(z′)) = 0. Then

αj+1′djy′ − αj+1′dj ′dj−1z′ = αj+1′djy′ − djdj−1αj−1z′

= dj(αj(y′) − dj−1αj−1z′).

Therefore, it is enough to show that [αj(y′)] is in ker I−2dj , i.e., that we have
[dj−1(y) − x] ∈ ker I−2dj . Choose y − x◦ ∈ Cj−1 where x◦ is chosen to
satisfy djx − djdj−1x◦ = 0 for [x] ∈ ker I−2dj . Then

dj(dj−1y − x − dj−1(y − x◦)) = djdj−1y − djx − djdj−1(y − x◦) =

= dj(dj−1y − x − dj−1(y − x◦)) = 0.

Therefore, hj : Se(A ) � A is an half-exact functor.
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Note 15. We will give an example of a short exact sequence of objects

0 �� ′
Z
∗ ��

Z
∗ �� ′′

Z
∗ �� 0

in Se(A ) so that the induced long sequence is not exact. That is, a precohomol-
ogy sequence (hj) is not an exact connected sequence of functors. Consider
the diagram

...
...

...

0 �� 0 ��



0 ��



0 ��



0

0 ��
Z

id ��



Z
��



0 ��



0 (2)

0 ��
Z

id ��

id



Z
��

id



0 ��



0 (1)

0 �� 0 ��



Z
id ��

id



Z
��



0 (0)

0 �� 0 ��



0 ��



0 ��



0

...



...



...



(11.10)
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Complexifying (11.10) by I−2, we obtain the following short exact sequence
of complexes.

...
...

...

0 �� 0 ��



0 ��



0 ��



0

0 ��
Z

��



0 ��



0 ��



0 (2)

0 ��
Z

id ��

id



Z
��



0 ��



0 (1)

0 �� 0 ��



Z
id ��

id



Z
��



0 (0)

...



...



...



Then we get

0 �� h0(′Z∗) �� h0(Z∗) �� h0(′′Z∗) �� h1(′Z∗)

0 0 Z 0

Namely (hj) is not an exact connected sequence of functors.



Chapter 3

SPECTRAL SEQUENCES

3.1 Definition of Spectral Sequence
A spectral sequence in an abelian category A consists of doubly indexed

objects of A :
Ep,q

r (1.1)

where p, q, r ∈ Z. Then Ep,q
r may be considered as an object located at the p−

and q− axises with coordinates (p, q) at the level r. See the following figure.

� q

� p
• E2,2

2

� q

� p
• E4,1

1

� q

� p
• E2,3

0

�r

......

........

.............. ....

.......... ......

There are morphisms among objects in (1.1) as follows:

· · · �� Ep−r,q+r−1
r

dp−r,q+r−1
r �� Ep,q

r
dp,q

r �� Ep+r,q−r+1
r

�� · · · (1.2)

71
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so that the sequence of objects in (1.2) may form a complex. Namely, we
can consider the cohomology at any object Ep,q

r in (1.2). Then there is an
isomorphism

ηp,q
r : ker dp,q

r

/
im dp−r,q+r−1

r
≈ �� Ep,q

r+1. (1.3)

That is, a sequence {Ep,q
r } is said to be a doubly indexed cohomological spectral

sequence in the abelian category A when condition (1.1), (1.2) and (1.3) are
satisfied. If a spectral sequence begins with Ep,q

r0 , we sometimes write such a
spectral sequence as

{(Ep,q
r , dp,q

r , ηp,q
r ), r ≥ r0, p, q, r, r0 ∈ Z}.

Note 16. Let us familiarize ourselves with the behavior of a spectral sequence
Ep,q

0 , Ep,q
1 , . . . . From (1.2) we have

Ep,q−1
0 = Ep−0,q+0−1

0

dp,q−1
0 �� Ep,q

0

dp,q
0 �� Ep+0,q−0+1

0 = Ep,q+1
0

.

Namely, in the (p, q)-coordinate the "slope" is ∞:

Ep,q+1
0

Ep,q
0



Ep−1,q
1

dp−1,q
1 �� Ep,q

1

dp,q
1 �� Ep+1,q

1

Ep,q−1
0


(1.4)

and the "length" of dp,q
0 is 1. For r = 1, we have

Ep−1,q
1 = Ep−1,q+1−1

1

dp−1,q
1 �� Ep,q

1

dp,q
1 �� Ep+1,q−1+1

1 = Ep+1,q
1

having slope 0 and length still 1. See (1.4) for Ep,q
0 and Ep,q

1 . For r = 2, we
have

Ep−2,q+1
2 = Ep−2,q+2−1

2

dp−2,q+1
2 �� Ep,q

2

dp,q
2 �� Ep+2,q−2+1

2 = Ep+2,q−1
2

,

i.e., the slope is −2−1
2 = −1

2 , and the length is
√

22 + (2 − 1)2 =
√

5. For
the general term as in (1.2), the slope of dp,q

r in the (p, q)-coordinates is given
by −r+1

r = − r−1
r and the length of dp,q

r is
√

r2 + (r − 1)2 =
√

2r2 − 2r + 1.
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Namely, the larger r becomes, the closer to −1 the slope becomes and the
longer dp,q

r becomes. Also notice that the isomorphism ηp,q
r in (1.3) implies the

following diagram:

Ep−r−1,q+1
r+1

d

<<DDDD
DDDDD

DDDDD
DDD

Ep−r,q+r−1
r+1 Ep,q

r+1 d

<<DDDD
DDDDD

DDDDD
DDD Ep+r,q−r+1

r+1

ker dp,q
r

/
im dp−r,q+r−1

r

≈ η


Ep+r+1,q−r
r+1

ker dp,q
r



� �

��
Ep−r,q+r−1

r

≈ η



d �� Ep,q
r

d �� Ep+r,q−r+1
r

≈ η



(1.5)

namely,

�

......................... .........................

dp−3,q+2
3

dp−2,q+1
2

dp−1,q
1

dp,q
1

dp,q
2

dp,q
3

For example, if Ep,q
2 = 0, unless p, q ≥ 0 (such a spectral sequence is said

to be a first quadrant spectral sequence), then beyond r0 = max(1 + q, p), we
have

Ep,q
r0+1

≈ �� Ep,q
r0+2

≈ �� · · · ≈ �� Ep,q
∞ .
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As explicit examples of first quadrant spectral sequences, let us consider E2,4
2

and E7,11
2 . Our computation begins with

E0,5
2

d0,5
2 �� E2,4

2

d2,4
2 �� E4,3

2

E5,12
2

d5,12
2 �� E7,11

2

d7,11
2 �� E9,10

2 .

(1.6)

All terms of (1.6) are still in the first quadrant, i.e., none of them is zero (object).
Therefore E2,4

3 and E7,11
3 are sub-quotient objects of E2,4

2 and E7,11
2 , respec-

tively. As for E2,4
3 the next level E2,4

4 is a subobject of E2,4
3 since d−1,6

3 = 0.
Even though the next level E2,4

5 is still a subobject of E2,4
4 , and the next level

E2,4
6 is still a subobject of E2,4

5 , we have

0 = E−4,9
6

�� E2,4
6

�� E8,−1
6 = 0.

Namely,

E2,4
6

≈
η2,4
6

�� E2,4
7

≈
η2,4
7

�� · · · ≈ �� E2,4
∞ .

On the other hand, for E7,11
2 , E7,11

9 is a subobject of E7,11
8 and then

E7,11
13

≈ �� E7,11
14

≈ �� · · · .

In general, an abutment of a spectral sequence (Ep,q
r , dp,q

r , ηp,q
r ), r ≥ r0 is a

sequence
(En, τp,q)n,p,q∈Z (1.7)

satisfying the following conditions (1), (2) and (3):

(1) En is a filtered object of A , i.e., En and Fp(En) are objects of A such that

· · · ⊂ Fp+1(En) ⊂ Fp(En) ⊂ Fp−1(En) ⊂ · · ·

are subobjects of En. Then we define the p-th graded piece Gp(En) as
Gp(En) := Fp(En)

/
Fp+1(En). The sequence G•(En) = (Gp(En))p∈Z is

said to be the associated sequence to the filtered object (En, F•(En)) in A .

(2) Ep,q
∞ exists in A .

(3) There is an isomorphism τp,q : Ep,q
∞

≈−→ Gp(En) where n = p + q.
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When Ep,q
∞ and

⊕
p+q=n Ep,q

∞ are objects of the abelian category A , we can let
En =

⊕
p+q=n Ep,q

∞ . Then define a filtration of En as

Fp(En) :=
⊕

p+q=n
p′≥p

Ep′,q
∞ .

We have an isomorphism Gp(En) ≈−→ Ep,q
∞ .

Remark 17. For a spectral sequence (Ep,q
r , dp,q

r , ηp,q
r ), we will construct subob-

jectsZ1(Ep,q
r ), Z2(Ep,q

r ), . . . , andB1(Ep,q
r ), B2(Ep,q

r ), . . . ,ofEp,q
r as follows.

The subobject Z1(Ep,q
r ) consists of all those u ∈ Ep,q

r satisfying dp,q
r (u) = 0

in Ep+r,q−r+1
r , and the subobject B1(Ep,q

r ) consists of all those u such that
u = dp−r,q+r−1

r (u′) for some u′ ∈ Ep−r,q+r−1
r . Then the isomorphism in (1.3)

ηp,q
r : Z1(Ep,q

r )
/
B1(Ep,q

r ) ≈−→ Ep,q
r+1

sends the class [u] to ηp,q
r ([u]) ∈ Ep,q

r+1 which is denoted also as [u]. For
[u] ∈ Ep,q

r+1 to be an element of Z1(Ep,q
r+1), we must have dp,q

r+1([u]) = 0 in

Ep+r+1,q−r
r+1 . Similarly, the isomorphism ηp,q

r+1 gives an element [[u]] ∈ Ep,q
r+2.

Define a subobject Z2(Ep,q
r ) of Z1(Ep,q

r ) as follows: u ∈ Z1(Ep,q
r ) belongs to

Z2(Ep,q
r ) if dp,q

r+1([u]) = 0. Define Z3(Ep,q
r ) as the subobject of Z1(Ep,q

r ) as
follows: u ∈ Z1(Ep,q

r ) belongs to Z3(Ep,q
r ) if dp,q

r+1([u]) = 0 and dp,q
r+2([[u]]) =

0. If you let Z0(Ep,q
r ) = Ep,q

r , we have

Ep,q
r = Z0(Ep,q

r ) ⊃ Z1(Ep,q
r ) ⊃ Z2(Ep,q

r ) ⊃ · · · . (1.8)

On the other hand, let B0(Ep,q
r ) = {0} and let B1(Ep,q

r ) = imdp−r,q+r−1
r .

Then define the subobject B2(Ep,q
r ) of Ep,q

r as follows: u ∈ Ep,q
r belongs to

B2(Ep,q
r ) if [u] in Ep,q

r+1 belongs to im dp−r−1,q+r
r+1 . Similarly, u ∈ Ep,q

r belongs

to B3(Ep,q
r ) if [[u]] ∈ Ep,q

r+2 belongs to im dp−r−2,q+r+1
r+2 . Then we have

· · · ⊃ B2(Ep,q
r ) ⊃ B1(Ep,q

r ) ⊃ B0(Ep,q
r ) = {0}. (1.9)

Combining (1.8) and (1.9), we obtain

Ep,q
r = Z0(Ep,q

r ) ⊃ Z1(Ep,q
r ) ⊃ · · · ⊃ B2(Ep,q

r ) ⊃ B1(Ep,q
r ) ⊃ {0}.

(1.10)
Then we have the isomorphism

Zs(Ep,q
r )

/
Bs(Ep,q

r ) ≈−→ Ep,q
r+s. (1.11)

Let Z∞(Ep,q
r ) :=

⋂
s Zs(Ep,q

r ) and B∞(Ep,q
r ) :=

⋃
s Bs(Ep,q

r ). Then we
have

Ep,q
∞ ≈ Z∞(Ep,q

r )
/
B∞(Ep,q

r ), (1.12)
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independent of r, i.e., for i ≥ 0 there is an isomorphism

Z∞(Ep,q
r )

/
B∞(Ep,q

r ) ≈ Z∞(Ep,q
r+i)

/
B∞(Ep,q

r+i). (1.13)

These isomorphisms in (1.11), (1.12) and (1.13) can be proved inductively from
the following diagram:

0 �� B2(Ep,q
r ) ��

≈ φ

��

Z2(Ep,q
r ) ��

≈ ψ

��

Z2(Ep,q
r )

/
B2(Ep,q

r ) ��

≈ ψ̄
��

0

0 �� B1(Ep,q
r+1) �� Z1(Ep,q

r+1) �� Ep,q
r+2

�� 0

(1.14)

where the isomorphism ψ̄ is induced by the isomorphisms φ and ψ.

3.2 Filtered Complexes
Let C• be a complex in an abelian category A , i.e., an object of Co(A ). A

filtration on C• is defined as follows. For all p and j in Z, Fp(Cj) is a subobject
of Cj satisfying Fp(Cj) ⊃ Fp+1(Cj), and dj : Cj → Cj+1 also satisfying

dj |Fp(Cj)(Fp(Cj)) ⊂ Fp(Cj+1)

for all j, p ∈ Z. Then the subcomplexes {Fp(C•)}p∈Z satisfy

Fp(C•) ⊃ Fp+1(C•).

A complex C• with such a filtration is said to be a filtered complex. Then the
short exact sequence

0 �� Fp+1(C•) ι �� Fp(C•) π �� Fp(C•)
/
Fp+1(C•) �� 0

Gp(C•)

(2.1)

induces the long exact sequence

. . . �� Hj(Fp+1(C•)) �� Hj(Fp(C•)) ��

�� Hj(Gp(C•)) �� Hj+1(Fp+1(C•)) �� . . .
(2.2)

Then define {
V p,j−p := Hj(Fp(C•))
Ep,j−p := Hj(Gp(C•)).

(2.3)
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We can re-write the long exact sequence (2.2) as

(V p,j−p) tp,j−p
�� (V p,j−p)

hp,j−p�����
���

���
�

(Ep,j−p)
kp,j−p

==����������
(2.4)

where
tp,j−p := Hj(Fp(C•) �

� ι �� Fp−1(C•)) ,

and
hp,j−p := Hj(Fp(C•) π−−−−→ Gp(C•))

and kp,j−p is the connecting morphism ∂j in Chapter II. Note also that the
bi-degrees of tp,j−p, hp,j−p and kp,j−p are (−1, +1), (0, 0) and (+1, 0) re-
spectively. Namely, a filtered complex (C•, (Fp(C•))p∈Z) induces a spec-
tral sequence beginning Ep,q

1 , p + q = j. When Ep,q
r is the initial term, the

bi-degree of kp,q becomes (r,−r + 1). Then the composition hp,q ◦ kp,q is
dp,q : Ep,q

r → Ep+r,q−e+1
r . (The long exact sequence in (2.4) induced by a

filtered complex is an example of an exact couple. See Lubkin, Cohomology of
completions [LuCo].)

3.3 Double Complexes
Let A be an abelian category. For (p, q) ∈ Z × Z, let Cp,q be an object of

A and let dp,q
(1,0) : Cp,q → Cp+1,q and dp,q

(0,1) : Cp,q → Cp,q+1 be morphisms

satisfying dp+1,q
(1,0) ◦ dp,q

(1,0) = 0 and dp,q+1
(0,1) ◦ dp,q

(0,1) = 0. Namely, (C•,q, d•,q
(1,0))

and (Cp,•, dp,•
(0,1)) are complexes. In the following diagram:

...
...

. . . �� Cp,q+1



dp+1,q
(1,0) �� Cp+1,q+1



�� . . .

. . . �� Cp,q

dp,q
(0,1)



dp,q
(1,0) �� Cp+1,q ��

dp+1,q
(0,1)



. . .

...



...



(3.1)
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we also let dp+1,q
(0,1) ◦ dp,q

(1,0) = dp+1,q
(1,0) ◦ dp,q

(0,1) be satisfied. Then

(Cp,q, dp,q
(1,0), d

p,q
(0,1))p,q∈Z

is said to be a double complex in A . Next, for a double complex we associate
a complex as follows. Let

Cn =
⊕

p+q=n

Cp,q. (3.2)

For the inclusion ιp,q : Cp,q ↪→ Cn, define dn : Cn → Cn+1 as

dn|Cp,q = ιp+1,q ◦ dp,q
(1,0) + (−1)nιp,q+1 ◦ dp,q

(0,1). (3.3)

Then we have dn+1 ◦ dn = 0 where dn is understood as the sum of those mor-
phisms in (3.3). Namely, we have obtained the complex (C•, d•) associated
with the double complex (C•,•, d•,•

(1,0), d
•,•
(0,1)). Next we will define an appropri-

ate filtration on the associated complex (C•, d•) so that we may have a filtered
complex (C•, (Fp(C•))p∈Z). Define

Fp(Cn) :=
⊕

p′≥p

Cp′,n−p′ =
⊕

p′+q=n
p′≥p

Cp′,q (3.4)

for p, q, n ∈ Z. Then Fp(Cn) is a subobject of Cn satisfying

Fp(Cn) ⊃ Fp+1(Cn)

and also dn : Cn → Cn+1 satisfies dn|Fp(Cn)(Fp(Cn)) ⊂ Fp(Cn+1). Namely,
we have obtained the filtered complex associated with the double complex. As
before, we have the short exact sequence

0 �� Fp+1(Cn) �� Fp(Cn) �� Gp(Cn) �� 0 .

Notice that

Gp(Cn) = Fp(Cn)
/
Fp+1(Cn) =

⊕

p′≥p

Cp′,n−p′
/ ⊕

p′≥p+1

Cp′,n−p′ ≈ Cp,n−p.

That is, dn : Cn → Cn+1 induces dn : Fp(Cn) → Fp+1(Cn) which induces
Gp(Cn) ≈ Cp,n−p → Cp,n+1−p ≈ Gp(Cn+1). Namely, we get

Cn+1 ⊃ Cp,n+1−p Cp,q+1 ≈ Gp(Cn+1)

Cn ⊃ Cp,n−p

dn



dp,n−p
(0,1)



Cp,q ≈ Gp(Cn)

dp,q
(0,1)

 

(3.5)
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From the exact couple in (2.2) and (2.4), we have

Ep,q
1 = Hn(Gp(C•)) and V p,n−p = Hn(

⊕

p′≥p

Cp′,•−p′) (3.6)

where

Hn(Gp(C•)) = Hn−p
↑ (Cp,•) = Hq

↑(C
p,•) = ker dp,q

(0,1)

/
im dp,q−1

(0,1) .

Namely, we have the spectral sequence of slope zero and of length 1 at level 1:

E0,1
1 = H1

↑(C
0,•)

d0,1
1 �� E1,1

1 = H1
↑(C

1,•) �� . . .

E0,0
1 = H0

↑(C
0,•) �� E1,0

1 = H0
↑(C

1,•) �� . . . .

(3.7)

Since Ep,q
1 is obtained by taking cohomologies in the direction of the q-axis

(i.e., vertically), we may begin at level zero. Namely, the initial term begins

Ep,q
0 = Cp,q (3.8)

whose level zero is expressed as:

...
...

E0,1
0 = C0,1



E1,1
0 = C1,1



E0,0
0 = C0,0

d0,0
0 =d0,0

(0,1)



E1,0
0 = C1,0

d1,0
0 =d1,0

(0,1)



That is, Hq
↑(E

p,•
0 ) ≈ Ep,q

1 holds. Furthermore, we have Ep,q
2 = Hp

→(E•,q
1 ).

Consequently, we obtain

Ep,q
2 = Hp

→(E•,q
1 ) = Hp

→(Hq
↑(C

•,•)). (3.9)

3.3.1 Abutment of Double Complex Spectral Sequence
For the filtration of Cn defined in (3.4), let us assume Fp(Cn) = 0 if p is

greater than a certain p0 depending upon n, and Fp(Cn) = Cn if p is less than
a certain p′0 also depending upon n. Note that for a double complex in the first
quadrant, i.e., Cp,q = 0 unless p, q ≥ 0, the above conditions are satisfied. For
the exact sequence

0 �� Fp(Cn) �� Cn �� Cn
/
Fp(Cn) �� 0, (3.10)
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the j-th cohomology V p,j−p = Hj(Fp(C•)) = 0 for p > p0 in (2.3). Then
in (2.4), the morphism tp,j−p = Hj(Fp(C•) ↪→ Fp−1(C•)) becomes an iso-
morphism. The exact sequence (2.2) implies that Ep,j−p = Hj(Gp(C•)) = 0.
Namely, for any j and p, there exists r0 such that

Ep,j−p
r0

≈ Ep,j−p
r0+1 ≈ · · · ≈ Ep,j−p

∞ .

Also, for such a filtration on Cn we have V p,j−p = Hj(Fp(C•)) = 0 as noted
in the above, and Hj(Fp(C•)) ≈ Hj(C•) for a small p. Then the induced
filtration on Hj(C•) also satisfies the finiteness conditions of the filtration of
Cn in the above.

For the long exact sequence (2.4), we can derive another long exact sequence:

(V p,j−p
r )

(tp,j−p
r ) �� (V p,j−p

r )

(hp,j−p
r )��EEE

EEE
EEE

E

(Ep,j−p
r )

(kp,j−p
r )

==BBBBBBBBBB
(3.11)

where V p,j−p
1 = im tp,j−p and

Ep,j−p
1 = ker(hp,j−p ◦ kp,j−p)

/
im(hp−1,j−p ◦ kp−1,j−p),

i.e., the cohomology of

Ep−1,j−p hp−1,j−p◦kp−1,j−p
�� Ep,j−p hp,j−p◦kp,j−p

�� Ep+1,j−p

and the higher V p,j−p
r and Ep,j−p

r can be defined inductively. Namely,

Er = k−1(im tr)
/
h(t−r(0))

and Er → Er is the induced morphism by h ◦ t−r ◦ k where the double indices
are omitted. Therefore, the long exact sequence (3.11) becomes

V p+1,j−p−1
r0

tp+1,j−p+1
r0 �� V p,j−p

r0

hp,j−p
r0

77FF
FF
FF
FF
FF
FF
FF
FF
FF
F

V p+r0,j−p−r0+1
r0

Ep,j−p
r0 ≈ Ep,j−p

∞

kp,j−p
r0

//-------------

(3.12)
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where we have V p+1,j−p−1
r0 = Fp+1(Hj(C•)), V p,j−p

r0 = Fp(Hj(C•)) and
V p+r0,j−p−r0+1

r0 = Fp+r0(H
j+1(C•)). As mentioned above the induced filtra-

tion on Hj(C•) also satisfies the finiteness conditions. We can find a large r0

so that we may have

Ep,j−p
r0

≈ Ep,j−p
∞ ≈ Gp(Hj(C•)) = Fp(Hj(C•))

/
Fp+1(Hj(C•)).

Therefore, Hj(C•) is an abutment of the spectral sequence of a double complex
(C•,•, d•,•).

3.3.2 Composite Functors
Let A , B and C be abelian categories. We also assume that A and B have

enough injectives. Let F : A � B and G : B � C be left exact additive
functors. Furthermore, assume that for every injective object I of A we have

RjG(FI) = 0, for j > 0. (3.13)

Since we have (D.F.0) in Section 2.8, the diagram

A
F ����������������

G◦F
��,-

,-,-
,-,-

,-,-
,-

B

G
�� ��
��
��

C

induces the commutative diagram

A
R0F ����������������

R0(G◦F ) ��,-
,-,-

,-,-
,-,-

,-
B

R0G
�� ��
��
��

C

i.e., R0G ◦ R0F ≈ G ◦ F ≈ R0(G ◦ F ). Note that this commutativity will
play an important role for the notion of a derived category in Chapter IV.

3.3.3 Cartan–Eilenberg Resolution
For an arbitrary object A of A , let (I•, d•) be an injective resolution of A.

For the functor F : A � B in Subsection 3.3.2, FI• is a complex in B.
Then an injective resolution Q•,• of the complex FI• is said to be a Cartan–
Eilenberg resolution of FI•. That is, for p, q ∈ Z, Qp,q is an injective object
so that (Qp,q)p,q∈Z forms a double complex in B, and furthermore Qp,• is
an injective resolution of FIp. Namely, in the following diagram in the first
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quadrant

...
...

...
...

· · · �� 0



�� Q0,1



�� Q1,1



�� Q2,1



�� · · ·

· · · �� 0



�� Q0,0

d0,0
(0,1)



d0,0
(1,0) �� Q1,0

d1,0
(0,1)



d1,0
(1,0) �� Q2,0

d2,0
(0,1)



�� · · ·

· · · �� 0



�� FI0 Fd0
��

ε0



FI1 Fd1
��

ε1



FI2 ��

ε2



· · ·

(3.14)

each vertical sequence is the injective resolution of FIp. We will prove that
such a resolution Q•,• of FI• exists. First, decompose the complex FI• as
follows:

0

��

0

��
ker Fdj

ιj

��

kerFdj+1

ιj+1

��
· · · �� FIj Fdj

��

ρj

��

������������
FIj+1

ρj+1

��

�� · · ·

imFdj

��

αj+1

,,,,,,,,,,
im Fdj+1

��
0

""����������
0 0

(3.15)

From (3.15) we extract the short exact sequences

0 �� kerFdj ιj �� FIj
ρj

�� imFdj �� 0

0 �� im Fdj−1 αj
�� kerFdj πj

�� ker Fdj
/

im Fdj−1 �� 0

Hj(FI•)

(3.16)

where πj is the canonical epimorphism. For the objects imFdj−1 and Hj(FI•)
of the abelian category B with enough injectives, let ′I• and ′′I• be injective



Double Complexes 83

resolutions of im Fdj−1 and Hj(FI•) respectively. Then in the second exact
sequence of (3.14) the direct product of ′I• and ′′I• becomes an acyclic complex
consisting of injective objects. Consequently, we obtain an injective resolution
of kerFdj . From the first exact sequence in (3.16) we similarly obtain an
injective resolution of FIj which we denote as Qj,•. Note that we have

Fdj = ιj+1 ◦ αj+1 ◦ ρj

in (3.15). From the above construction of Qj,•, for j = 0, 1, 2, . . . , we obtain
the double complex Q•,• consisting of injective objects of B so that in the
following diagram:

· · · �� Qj−1,•
dj−1,•
(1,0) �� Qj,•

dj,•
(1,0) �� Qj+1,• �� · · ·

· · · �� FIj−1

εj−1



Fdj−1
�� FIj

εj



Fdj
�� FIj+1

εj+1



�� · · ·

(3.17)

(Qj,•, dj,•
(0,1)) is an injective resolution ofFIj . Furthermore, ker dj,•

(1,0), im dj−1,•
(1,0)

and ker dj,•
(1,0)

/
im dj−1,•

(1,0) are injective resolutions of the objects ker dj , im dj−1

and Hj(FI•), respectively.

3.3.4 Spectral Sequence of Composite Functor
For the double complex Q•,• in the first quadrant, G : B � C gives the

double complex GQ•,• in C as follows:

...
...

...

GQ0,2



�� GQ1,2



�� GQ2,2



�� · · ·

GQ0,1



�� GQ1,1



�� GQ2,1



�� · · ·

GQ0,0



�� GQ1,0



�� GQ2,0



�� · · ·

(3.18)

Since 0 → FIp εp

−→ Qp,• is an injective resolution as noted, the hypothesis
RqG(FIp) = 0 in (3.13) implies Hq(GQp,•) = 0 for q = 1, 2, . . . . That is,
the vertical sequences in (3.18) are exact. Namely, cohomologies in the q-axis
direction are all zero for q ≥ 1. Using the notation in Section 3.3, we have
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Hq
↑(CQp,•) = 0 for q ≥ 1. Therefore, Ep,q

1 can be computed as follows:

Ep,q
1 = Hq

↑(GQp,•) =






0, for q ≥ 1
H0

↑(GQp,•) = R0G(FIp) ≈ G(FIp),
for q = 0.

(3.19)

Let us draw the spectral sequence (3.19) at level 1 of slope 0 as follows:

· · · �� 0 �� 0
d0,1
1 �� 0

d1,1
1 �� 0

d2,1
1 �� · · ·

· · · �� 0 �� E0,0
1

d0,0
1 �� E1,0

1

d1,0
1 �� E2,0

1
�� · · ·

· · · �� 0 �� G(FI0)
d0,0
1 �� G(FI1)

d1,0
1 �� G(FI2) �� · · ·

(3.20)

Then the Ep,0
2 terms are the cohomologies of the complex

(E•,0
1 , d•,0

1 ) = (G(FI•), G(Fd•)).

Namely, we have

Ep,0
2 = Hp

→(E•,0
1 ) =

= Hp
→(H0

↑(GQ•,•)) =

= Hp
→(R0G(FI•)) ≈

≈ Hp
→((G ◦ F )I•) =

= ker dp,0
1

/
im dp−1,0

1 =

= ker(G ◦ F )dp
/

im(G ◦ F )dp−1 =
= Hp

→((G ◦ F )I•) =
= Rp(G ◦ F )A.

(3.21)

The spectral sequence (3.21) at level 2 with slope −1
2 has non-vanishing terms

on the p-axis as follows:

0

d−2,1
2

''''
'''

'''
'''

'''
''' 0

d−1,1
2

>>--
---

---
---

---
---

- 0

d1,1
2

>>--
---

---
---

---
---

- 0

0 E0,0
2

d0,0
2

>>--
---

---
---

---
---

- E1,0
2

d1,0
2

>>--
---

---
---

---
---

- E2,0
2

d2,0
2

''''
'''

'''
'''

'''
'''

E3,0
2

0 0 0 0

(3.22)
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Consequently, we get Ep,0
2 ≈ Ep,0

3 ≈ · · · ≈ Ep,0
∞ . Then the spectral sequence

associated with the double complex (3.18) abuts upon Ep+q = En, the total
cohomology Hn(

⊕
p+q=• GQp,q). From (3.20) the terms with q = 0 are the

only non-vanishing terms. Namely, we have

Ep = Hp(
⊕

p+0=•
GQp,0) = Rp(G ◦ F )A.

Since τp,0 : Gp(Ep) ≈ Ep,0
∞ , where Ep :=

⊕
p+q=p Ep,q

∞ ≈ Ep,0
∞ , we have

Ep,0
∞ ≈ Ep,0

2 = Rp(G ◦ F )A as the abutment Ep.
For the double complex (3.18), Cp,q := GQp,q, define another filtration on

Cn =
⊕

p+q=n Cp,q =
⊕

p+q=n GQp,q as follows:

′FpCn :=
⊕

q+p′=n
p′≥p

Cq,p′ =
⊕

p+p′=n
p′≥p

GQq,p′ . (3.23)

Just as for the previous filtration FpCn the following spectral sequences are
induced:

′Ep,q
0 := Cq,p = GQq,p

′Ep,q
1 := Hq

→(GQ•,p)
′Ep,q

2 := Hp
↑(H

q
→(GQ•,•)),

(3.24)

abutting upon Rn(G ◦ F )A as well. Recall that the injective resolution of the
middle object of (3.16) was the direct sum of the injective resolutions of the
left and right objects. Namely, the short exact sequence in (3.16) is a split exact
sequence. Hence we have ′Ep,q

1 = G(Hq
→(Q•,p)) ≈←− Hq

→(GQ•,p). Then ′Ep,q
2

in (3.24) becomes

′Ep,q
2 = Hp

↑(H
q
→(GQ•,•)) ≈

≈ Hp
↑(G(Hq

→(Q•,•))) ≈
≈ RpG(Hq

→(FI•)),

(3.25)

where the last isomorphism holds since Hq
→(Q•,•) is an injective resolution

of Hq
→(FI•). Furthermore, since I• is an injective resolution of A, we have

Hq
→(FI•) = RqFA. That is, ′Ep,q

2 = RpG(RqFA), completing the proof
of: a spectral sequence associated with a double complex implies a spectral
sequence induced by a composite functor,

Ep,q
2 = RpG(RqFA) abutting upon Rn(G ◦ F )A, (3.26)

where n = p + q.
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3.3.5 The converse
Let A• be an object of the subcategory Co+(A ) of bounded from below

objects of Co(A ) as in Notation 12 in Chapter II. Namely, an object A• of
Co+(A ) is a complex satisfying Aj = 0 for j < 0. We will prove that the j-th
cohomology Hj(A•) is the j-th derived functor of the 0-th cohomology of this
complex. That is,

Hj(A•) = RjH0
A•(A•) = Rj ker(A0 d0

−→ A1). (3.27)

First we will characterize an injective object of Co+(A ) as follows. An object
I• of Co+(A ) is injective if each Ij is an injective object of A , and

· · · �� 0 �� I0 d0
�� I1 d1

�� I2 d2
�� · · · (3.28)

is exact, i.e., ker dj = im dj−1 for j = 0, 1, 2, . . . , where d−1 is the zero
morphism and ker d0 is an injective object of A . In order to prove the statement
(3.27) we will use the Buchsbaum Theorem which asserts the following. For
this exact connected sequence of functors Hj : Co+(A ) � A , Hj becomes

the derived functor of H0(A•) = ker(A0 d0

−→ A1) if the following condition is
satisfied:

For an arbitrary object A• of Co+(A ), there exists a subobject ′A•

of A• satisfying Hj(′A•) = 0, for j ≥ 1.
(3.29)

We construct such a subobject ′A• as follows. Define ′A• as given in the
diagram below:

A• : · · · �� Aj−2 dj−2
�� Aj−1

��

��

dj−1
�� Aj dj

�� · · ·

′A• : · · · �� ′Aj−2
′dj−2

�� ′Aj−1
′dj−1

�� ′Aj
′dj

�� · · ·

Aj−2

dj−2

���
��

��
��

� Aj−1
⊕

ker dj d̃ �� Aj

Aj−1,
. /

ι
??���������

(3.30)

where we have put d̃ := dj−1 ⊕ ι. Then ′A• is a subobject of A•. From (3.30)
we have ′dj−2 = ι ◦dj−2 and ′dj−1 = dj−1 ⊕ ι, and the other ′d• are the same
as d•. Since ker ′dj = ker dj and ker dj ⊂ im ′dj−1 = im(dj ⊕ ι) we get
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Hj(′A•) = ker ′dj
/

im ′dj−1 = 0. Therefore,

Hj(A•) = RjH0
A•A• = Rj ker(A0 d0

−→ A1).

We will interpret the spectral sequence associated with a double complex as
the spectral sequence induced by the composite functors as shown below.

Co+(Co+(A ))
H0

↑ ����������������

H0
→◦H0

↑ >>0101
0101

0101
0101

0101
01

Co+(A )

H0
→

�� ��
��
��

A

(3.31)

Namely, H0
↑ is the cohomology in the q-axis direction of a double complex as

a complex of a complex in Co+(Co+(A )),

C•,• : · · · �� C•,0 �� C•,1 �� C•,2 �� · · · �� C•,q �� · · · .

Then for the left exact functor H0
↑ and for the injective object I•,• of the category

Co+(Co+(A )),
H0

↑(I
•,•) = ker(I•,0 → I•,1)

is an injective object of Co+(A ). We get the derived functors of H0
→,

RjH0
→(H0

↑(I
•,•)) = 0 for j ≥ 1.

Therefore we can apply the spectral sequence of a composite functor to the
diagram (3.31) obtaining

′Ep,q
2 = Hp

→(Hq
↑(C

•,•)) = RpH0
→(RqH0

↑(C
•,•)). (3.32)

Next we pay attention to the abutment of this spectral sequence. From the
definitions in (3.2) and (3.3) we have

C0 = C0,0

C1 = C1,0 ⊕ C0,1,

where d0 : C0 → C1 is given by d0 := d0,0
(1,0) ⊕ d0,0

(0,1). That is,

(H0
→ ◦ H0

↑)(C
•,•) = ker d0 = H0(C•),

where C• is the complex defined by Cn :=
⊕

p+q=n Cp,q as in (3.2). Therefore,
the spectral sequence (3.32) abuts upon Rn(H0

→◦H0
↑)(C

•,•) = RnH0(C•), i.e.,
the total cohomology Hn(C•).
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3.3.6 Hyperderived Functors
Let F be a left exact covariant additive functor from an abelian category A

to an abelian category B. Then for an object A• of Co+(A ), FA• is an object

· · · �� 0 �� FA0 Fd0
�� FA1 Fd1

�� · · ·

of Co+(B). This assignment induced by F is a functor Co+F from Co+(A )
to Co+(B). Then we get the following commutative diagram of categories and
functors:

Co+(A ) Co+F ����������������

H0

��
��
��
��
��
��
��
��

F̄

��&'
&'

&'
&'

&'
&'

&'
&'

&'
&'

&'
&'

&'
Co+(B)

H0

��
��
��
��
��
��
��
��

A
F ������������������������ B

(3.33)

where (F ◦H0)A• = F (ker d0) for an object A• of Co+(A ). Since F is a left
exact functor, we have

(F ◦ H0)A• = F (ker d0) = ker(FA0 Fd0

−−→ FA1). (3.34)

Namely, H0(Co+FA•) = F (H0A•) holds. We write the composite functor as
F̄ . Since F and H0 are left exact, F̄ is a left exact functor from Co+(A ) to
B. We apply (3.26) to the spectral sequence associated with those composite
functors in (3.34) obtaining:

Ep,q
2 = RpH0(RqCo+F )(A•) = Hp((RqCo+F )(A•))

′Ep,q
2 = RpF ((RqH0)(A•)) = RpF (Hq(A•))

(3.35)

abutting to RnF̄A•, n = p+q. For those spectral sequences in (3.35) to exist we
need to confirm the following. For an injective object I• of Co+(A ), the higher
derived functors of H0 and F evaluated at FI• in Co+(B) and H0(I•) in A ,
respectively, must vanish. We will prove the corresponding, the clockwise and
counter clockwise statements of the diagram (3.33). That is, we will confirm

{
RpH0(FI•) = Hp(FI•) = 0, p ≥ 1
RpF (H0I•) = RpF (ker d0) = 0, p ≥ 1.

(3.36)

The first assertion of (3.36) means that the complex FI• is exact for p ≥ 1.

By the definition, ker(I0 d0

−→ I1) is an injective object of A . Then we get two
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injective resolutions of ker d0 = ker(I0 d0

−→ I1) in the sense of Section 2.6 in
the previous Chapter. Namely, we have

I0 d0
�� I1 d1

�� I2 d2
�� · · ·

ker d0

ε
��GGGGGGGG

ε′

��%%
%%%

%

ker d0 �� 0 �� 0 �� · · ·

(3.37)

From those injective resolutions of ker d0, we get two complexes

FI0 Fd0
�� FI1 Fd1

�� FI2 Fd2
�� · · ·

F ker d0 �� 0 �� 0 �� · · ·
(3.38)

From the second sequence, Hp(F ker d0 → 0 → 0 → · · · ) = 0 for p ≥ 1.
Namely,

Hp(F ker d0 → 0 → 0 → · · · ) = RpF (ker d0) = 0, for p ≥ 1,

proving the second assertion. Since the derived functor is independent of the
choice of injective resolution, the derived functor RpF (ker d0) can be computed
via the first complex of (3.38). That is, RpF (ker d0) = Hp(FI•) = 0, for
p ≥ 1, proving the first assertion of (3.36).

Consequently, the abutment RnF̄A•, where F̄ = H0 ◦ Co+F = F ◦ H0, of
the spectral sequences (3.35) is said to be the n-th hyperderived functor of F
evaluated at A•. We often write RnF̄A• simply as RnFA•.

The derived functor RqCo+FA• of Co+F : Co+(A ) � Co+(B) is the
complex

RqFA0 RqFd0
�� RqFA1 RqFd1

�� RqFA2 RqFd2
�� · · ·

inCo+(B). Namely, (RqCo+F )q≥0 satisfies (D.F.0) through (D.F.3) in Chapter
II. Therefore, we can begin the spectral sequence Ep,q

2 in (3.35) from Ep,q
1 :

E0,q
1

d0,q
1 �� E1,q

1

d1,q
1 �� · · · dp−1,q

1 �� Ep,q
1

dp,q
1 �� · · ·

RqFA0 RqFd0
�� RqFA1 RqFd1

�� · · · RqFdp−1
�� RqFAp �� · · ·

(3.39)

i.e., Ep,q
2 = Hp(E•,q

1 ). That is, from the commutative diagram (3.33), we get
the useful spectral sequences

{
Ep,q

1 = RqFAp

′Ep,q
2 = RpF (Hq(A•)).

(3.40)
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3.3.7 Hyperderived to Composite Functor
Let A , B, and C be abelian categories such that A and B have enough

injectives. For left exact functors F : A � B and G : B � C , the diagram

A
F ����������������

G◦F
��&'

&'
&'

&'
&'

&'
&'

&'
&'

B

G

�� ��
��
��
��
��

C

(3.41)

induces the commutative diagram

Co+(B) Co+G ����������������

H0

��
��
��
��
��
��
��
��

Ḡ

��&'
&'

&'
&'

&'
&'

&'
&'

&'
&'

&'
&'

&'
Co+(C )

H0

��
��
��
��
��
��
��
��

B
G ������������������������ C

(3.42)

Then for an object A• = FI•, where I• is an injective resolution of A in A ,
the spectral sequences in (3.40) become

{
Ep,q

1 = RqGAp

′Ep,q
2 = RpG(Hp(A•))

(3.43)

with the abutment RnḠA•, where n = p + q. The assumption (3.13), i.e.,
RjG(FI) = 0, j > 0, for an injective object I of A implies

Ep,q
1 = RqGAp = RqG(FIp) = 0, for q > 1

in (3.43). Therefore, Ep,0
2 can be computed by taking the cohomology of

· · · �� Ep−1,0
1

�� Ep,0
1

�� Ep+1,0
1

�� · · ·

· · · �� (G ◦ F )Ip−1 �� (G ◦ F )Ip �� (G ◦ F )Ip+1 �� · · ·

(3.44)

Namely, Ep,0
2 = Hp(E•,0

1 ) = Hp(R0(G ◦F )I•) ≈ Hp((G ◦F )I•). By the de-
finition (7.1) of the derived functor, we get Ep,0

2 = Rp(G◦F )A. Consequently,
we obtain Ep,0

2 = Rp(G ◦ F )A ≈ Ep,0
∞ ≈ Ep = RpḠA•, the abutment. On

the other hand, ′Ep,q
2 in (3.43) can be computed as follows.

′Ep,q
2 = RpG(Hq(FI•)) = RpG(RqFA)
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abutting upon En = RnḠA• ≈ En,0
2 = Rn(G ◦ F )A. Namely, we get the

spectral sequence of a composite functor from the hyperderived functor spectral
sequences.

3.4 Cohomology of Sheaves over Topological Space
As in Section 1.10 in Chapter I, let T be a topological space and let T be

the category of open sets of T . Let T̃ be the full subcategory consisting of
sheaves, as defined in Definition 5, of the category T̂ of presheaves over T to
an abelian category A . In Section 1.10 the stalk of F ∈ Ob(T̃ ) ⊂ Ob(T̂ ) at
x ∈ T is defined as the direct limit Fx = lim

−→
FU , where the limit is taken over

all open sets U such that x ∈ U . For a short exact sequence

0 �� F ′ φ �� F
ψ �� F ′′ �� 0 (4.1)

of sheaves over T , we have the induced sequence

F ′U
φU �� FU

ψU �� F ′′U (4.2)

in the abelian category A . We will prove that by taking the direct limit lim
−→

(over U with x ∈ U ) of the sequence (4.2) we obtain the short exact sequence
(in A )

0 �� F ′
x

φx �� Fx
ψx �� F ′′

x
�� 0 (4.3)

of stalks at x. Namely, we will show that

lim
−→

: T̃ � A

is an exact functor. By the definition in Definition 5 in Chapter I, the induced
morphism

φx : F ′
x → Fx

is a monomorphism. Then we canonically get

0 �� F ′
x

φx �� Fx
πx �� coker φx

�� 0 .
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From the following four short exact sequences

0 �� F ′
x

φx �� Fx
πx �� coker φx

�� 0

0 �� lim
−→

FU
lim
−→

φU

��

id



id

��

lim
−→

FU
lim
−→

πU

��

id



id

��

(coker φ)x
��

≈



≈
��

0

0 �� F ′
x

φx ��

id
��

Fx
πx ��

id

��

(sh coker φ)x
��

≈
��

0

0 �� F ′
x

φx �� Fx
ψx �� F ′′

x
�� 0

(4.4)

we get the exactness in (4.3). Note that coker φ is the sheaf associated with
(coker φ)U = cokerφU as in (14.9) in Chapter I, and sh coker φ is the sheaf
associated with the presheaf coker φ as in (15.1) also in Chapter I.

3.4.1 Left Exactness of Global Section Functor
For a sheaf F and an open set U of T we assign an object FU in A . Namely,

we have the functor
T̃ × T � A (4.5)

defined by
(F, U) � �������� FU .

This functor is covariant in T̃ and contravariant in T . For an open set U of
T , the covariant functor induced by (4.5), ·U : T̃ � A is denoted by Γ(U, ·).
That is, Γ(U, F ) = FU . Then for the exact sequence (4.1), we have the exact
sequence

0 �� Γ(U, F ′) �� Γ(U, F ) �� Γ(U, F ′′)

0 �� FU ′ �� FU �� F ′′U.

(4.6)

Namely, Γ(U, ·) : T̃ � A is a left exact functor, and is said to be a global
section functor. One can prove the left exactness of Γ(U, ·) by the exactness
of (4.3) and the sheaf axiom (Sheaf) in Definition 5 in Chapter I. On the other
hand, decompose the functor Γ(U, ·) as

T̃
ι ��������������������

Γ(U,·) ����
��

��
��

T̂

(·,U)�� ��
��
��
��

A ,

(4.7)
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where ι is the inclusion functor as in Section 1.15 and (·, U) is defined by:

For F ∈ Ob(T̂ ), (·, U)F = (F, U) := FU.

We have shown that in Section 1.14 the presheaf (ker ψ)U = kerψU of the

sheaf morphism F
ψ−→ F ′′ is a sheaf. Namely, Γ(U, kerψ) is the kernel of

ψU : FU → F ′′U , i.e., ker(ιF → ιF ′′) in T̂ . Therefore, the composition
of this left exact functor ι with the exact functor (·, U) is the left exact functor
Γ(U, ·). That is, for the exact sequence (4.1) of sheaves, the epimorphism ψx

at each point does not guarantee the epimorphism of φU : FU → F ′′U .

3.4.2 Derived Functors of Global Section Functor
We need to show that the category T̃ of sheaves over T to A is an abelian

category. That is, we must verify (A.1) through (A.6) in Section 1.6 for T̃ .
We will give an explanation (not a proof) for this fact. Let φ : F → G
be a morphism of sheaves in T̃ . We have already proved that the presheaf

ker φU = ker(FU
φU−−→ GU) is a sheaf. (See Section 1.14). Let coker φ, im φ

and coim φ be the associated sheaves to the presheaves as defined in Section
1.14. For example, coker φ = sh(presheaf U �→ coker φU ) in Subsection
1.15.1. Then, in A , we have (ker φ)x = lim

−→
(ker φU ) = ker(lim

−→
φ) = ker φx,

(im φ)x = im φx, (cokerφ)x = coker φx and (coim φ)x = coimφx. By
using the fact that a sheaf morphism φ : F → G is determined locally, i.e., an
isomorphism at each stalk Fx ≈ Gx induces an isomorphism of sheaves F

≈−→
G (namely, the converse: (4.3) implying (4.1)), we obtain an isomorphism
coim φ ≈ im φ.

Let I be a sheaf so that HomT̃ (·, I) is an exact functor from T̃ to the
category Ab of abelian groups. That is, I is an injective object in T̃ satisfying
the universal mapping property in Section 2.5. Then I is said to be an injective
sheaf . The j-th derived functor of the left exact functor Γ(U, ·) : T̃ � A at
F ∈ Ob(T̃ ) is defined by

RjΓ(U, ·)F = Hj(Γ(U, I•)) (4.8)

where I• is an injective resolution of F as in Section 2.6. Then the j-th derived
functor defined by (4.8) is written as Hj(U, F ) which is called the j-th coho-
mology object over U (the j-th cohomology group if A = Ab) with coefficient
in F .

Next we will introduce another kind of a sheaf which plays the same role as
far as cohomologies are concerned. A sheaf F ∈ Ob(T̃ ) is said to be a flabby
sheaf if for open sets U and V satisfying U ⊂ V , the restriction morphism

ρV
U : Γ(V, F ) −→ Γ(U,F ) (4.9)
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is an epimorphism. Very important examples of flabby sheaves are the sheaves
B and C of hyperfunctions and microfunctions, respectively. We will come
back to the cohomological aspects of those sheaves in Chapter V. We will prove
that for two resolutions of a sheaf F ∈ Ob(T̃ ); one by injective sheaves and
the other by flabby sheaves:

{
F

ε−→ I•

F
ε′−→ F •,

(4.10)

the induced complexes Γ(U, I•) and Γ(U,F •) have isomorphic cohomolo-
gies. Namely, Hj(Γ(U, I•)) and Hj(Γ(U,F •)) are isomorphic objects of A .
Namely, complexes Γ(U, I•) and Γ(U,F •) are quasi-isomorphic. Re-write
(3.33) as

Co+(T̃ )
Co+Γ(U,·) ����������������

H0

��
��
��
��
��
��
��
��

Co+(A )

H0

��
��
��
��
��
��
��
��

T̃
Γ(U,·) ������������������������ A

(4.11)

Then apply the spectral sequences (3.40) to the above commutative diagram
(4.11) to get

{
Ep,q

1 = RqΓ(U, ·)(F p) = Hq(U,F p)
′Ep,q

2 = RpΓ(U, ·)(Hq(F •)) = Hp(U,Hq(F •)).
(4.12)

Note that the functor H0 : Co+(T̃ ) � T̃ is associated with the presheaf

H0(F •(U)) = ker(F 0(U)
d0

U−−→ F 1(U)), which is a left exact functor from
Co+(T̃ ) to T̃ and that Hq(F •) is the q-th derived functor of H0. Note
also that Hq(F •) may be regarded as the associated sheaf to the presheaf
Hq(F •(U)) = ker(F q(U) → F q+1(U))

/
im(F q−1(U) → F q(U)). Since

F • is acyclic, i.e., Hq(F •) = 0 for q ≥ 1, we have ′Ep,q
2 = 0 for q ≥ 1

in (4.12), and ′Ep,0 = Hp(U,H0(F •)) ≈ Hp(U, F ). By the definition of
Hp(U, F ) in (4.8) we have

Hp(U, F ) := RpΓ(U, ·)F := Hp(Γ(U, I•)). (4.13)

On the other hand, for each flabby sheaf F p, we have that Hq(U,F q) = 0,
for q ≥ 1. (Afterwards we will give a sketch of the proof.) Then Ep,q

1 =
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Hq(U,F p) = 0 for q ≥ 1 in (4.12). That is, we have

· · · �� Γ(U,F p−1) �� Γ(U,F p) �� Γ(U,F p+1) �� · · ·

· · · �� Ep−1,0
1

dp−1,0
1 �� Ep,0

1

dp,0
1 �� Ep+1,0

1
�� · · ·

(4.14)

Therefore, Ep,0
2 is the cohomology Hp(E•,0

1 ), i.e., Ep,0
2 = Hp(Γ(U,F •)).

Since we have Ep,0
2 ≈ Ep,0

3 ≈ · · · ≈ Ep,0
∞ and Ep =

⊕
p′+0=p Ep′,0

∞ ≈ Ep,0
∞ ,

we get Ep,0
2 = Hp(Γ(U,F •)) = Ep. Consequently,

′Ep,0
2 ≈ Hp(U, F ) = Hp(Γ(U, I•)) ≈ Ep = Hp(Γ(U,F •)).

Namely, the derived functors

Hp(U, F ) = RpΓ(U, ·)F
can also be defined in terms of a flabby resolution of F .

Notes 17. (1) As observed in the above proof, Ep,q
1 = Hq(U,F p) = 0 for

q ≥ 1 implies the isomorphism between the derived functor Hp(U, F ) and
the cohomology Hp(Γ(U,F •)) of the complex Γ(U,F •). That is, any
resolution ′I• of F satisfying Hq(U, ′Ip) = 0 for q ≥ 1 provides an iso-
morphism between Hp(U, F ) = Hp(Γ(U, I•)) and Hp(Γ(U, ′I•)). Such an
object as ′Ip is said to be an F -acyclic object.

(2) In general, complexes G• and ′G• of an abelian category are said to be
quasi-isomorphic when their cohomologies Hq(G•) and Hq(′G•) are iso-
morphic. Therefore, for quasi-isomorphic complexes G and ′G•, the spec-
tral sequences of hyperderived functors of a left exact functor F give the
isomorphism

′Ep,q
2 (G•) = RpF (HqG•) ≈ ′Ep,q

2 (′G•) = RpF (Hq(′G•)). (4.15)

Consequently, their abutments, their hyperderived functors, RnFG• and
RnF ′G• are isomorphic. In particular, for quasi-isomorphic complexes of
sheaves G• and ′G•, their hypercohomologies of sheaves Hn(U, G•) and
Hn(U, ′G•) are isomorphic. Notice that if I• and F • are resolutions of a
sheaf F by injective sheaves and flabby sheaves, respectively, their hyper-
cohomologies Hn(U, I•) and Hn(U,F •) are isomorphic. This is because
Hq(I•) = 0 and Hq(F •) = 0 for q ≥ 1. On the other hand, either
from (3.40) or from (4.12), Ep,q

1 (I•) = Hq(U, Ip) = 0 and Ep,q
1 (F •) =

Hq(U,F p) = 0 for q ≥ 1. Then their isomorphic abutments, the hyper-
cohomologies, Hn(U, I•) and Hn(U,F •) become the isomorphic coho-
mologies of complexes: Hn(Γ(U, I•)) = Hn(U, F ) and Hn(Γ(U,F •)), as
shown in (1).
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(3) We will sketch a proof of Hq(U,F ) = 0, q ≥ 1, for a flabby sheaf F .
Embed F into an injective sheaf I . Then we have the exact sequence of
sheaves

0 �� F
ι �� I

π �� I/F �� 0 .

Then, the exactness of (4.3) implies that there exists W to obtain the epi-
morphism I(W ) πW−−→ (I/F )(W ) −→ 0. For W ⊂ V , the flabbyness of F
and also I implies the following commutative diagram

0 0 0

F (W )



ιW �� I(W )



πW �� (I/F )(W )

�
�
�

�� 0

F (V )



ιV �� I(V )



πV �� (I/F )(W )

�
�
�

�� 0

(4.16)

Namely, I/F is also a flabby sheaf. Then for the exact sequence

0 → F → I → I/F → 0

of sheaves, (D.F.1) in Section 2.8 becomes the long exact sequence

0 �� Γ(U,F )
ιU �� Γ(U, I)

πU �� Γ(U, I/F ) ��

�� H1(U,F ) �� H1(U, I) �� H1(U, I/F ) ��

�� H2(U,F ) �� H2(U, I) �� H2(U, I/F ) �� · · ·

(4.17)

Then one can prove that πU : Γ(U, I) → Γ(U, I/F ) is an epimorphism.
Therefore, H1(U,F ) = 0. Since I is an injective object of T̃ we have
Hj(U, I) = RjΓ(U, ·)I = 0 for j ≥ 1. Hence, in (4.17) we get

Hj+1(U,F ) ≈←− Hj(U, I/F )

for j ≥ 1. Since I/F is also flabby, the induction implies Hj(U,F ) = 0
for j ≥ 1.

3.4.3 Čech Cohomology
Let F be a presheaf over a topological space T , i.e., F ∈ Ob(T̂ ), where

T̂ = A T ◦
as in Section 3.4. Namely, F is simply a contravariant functor from

the category T induced by the topological space T to the abelian category
A . Let I be an index set. For each i ∈ I , let Ui be an open set of T ,
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i.e., Ui ∈ Ob(T ). Then the inclusion ι : Ui ↪→ T induces the morphism

F (T )
ρT

Ui−−→ F (Ui) in A which is said to be the restriction morphism. Assume
that (Ui, i ∈ I) is a covering of T , i.e., T = ∪i∈IUi. For ιiji : Ui ∩ Uj ↪→ Ui,
let us write ρi

ij : F (Ui) → F (Ui ∩ Uj). Similarly, e.g.,

ρij
ijk : F (Uij) → F (Uijk)

where Uij = Ui ∩ Uj and Uijk = Ui ∩ Uj ∩ Uk. Then we have the following
sequence of restriction morphisms:

∏
F (Ui)

ρj
ij ��

ρi
ij ��

∏
F (Uij)

ρjk
ijk ��

ρik
ijk ��

ρij
ijk ��

∏
F (Uijk)

ρjkl
ijkl ��

ρikl
ijkl ��

ρijl
ijkl ��

ρijk
ijkl ��

· · ·
(4.18)

Let d0 := ρj
ij − ρi

ij , and d1 := ρjk
ijk − ρik

ijk + ρij
ijk, e t c. Then, e.g., for (fi) ∈∏

i∈I F (Ui), we have

d0((fi)) = ρj
ij(fj) − ρi

ij(fi)

and for (fij) ∈
∏

i,j∈I F (Uij), we have

d1((fij)) = ρjk
ijk(fjk) − ρik

ijk(fik) + ρij
ijk(fij).

In general, define

dn =ρ
i1i2···in+1

i0i1···in+1
− ρ

i0i2···in+1

i0i1···in+1
+ · · · + (−1)jρ

i0···ij−1ij+1···in+1

i0i1···in+1
+

+ · · · + (−1)n+1ρi0i1···in
i0i1···in+1

.
(4.19)

Let
Cj(Ui, i ∈ I; F ) = Cj(U , F ) =

∏

i0,...,ij∈I

F (Ui0···ij ),

where we, for ease of notation, write U := (Ui, i ∈ I). Then (4.18) becomes

C0(U , F ) d0
�� C1(U , F ) d1

�� C2(U , F ) d2
�� · · · (4.20)

Since dj+1 ◦dj = 0 is satisfied in (4.20), C•(U , F ) is a complex which is said
to be a Čech complex. The cohomology

Hj(C•(U , F )) := ker dj
/

imdj−1 (4.21)
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of (4.20) is said to be the j-th Čech cohomology object (Čech cohomology group
if A is the category Ab of abelian groups) of the covering U = (Ui, i ∈ I) of
T which is written as Hj(U , T, F ) or Hj(U , F ).

As we noted in (3.27), the j-th cohomology (4.21) is the j-th derived functor
of the 0-th cohomology of the complex C•(U , F ) = C•(Ui, i ∈ I; F ). Let
us study H0(C•(U , F )). Namely, we compute ker d0 = H0(C•(U , F )) of
(4.20) as follows. Let (fi) ∈ C0(U , F ) =

∏
F (Ui) satisfying

d0((fi)) = ρj
ij(fj) − ρi

ij(fi) = 0

for i, j ∈ I . Therefore, if this presheaf F is a sheaf, then there exists a unique
f ∈ F (T ) satisfying ρT

i (f) = fi for all i ∈ I . (See Definition 5 in Chapter I.)
That is, we have the following diagram

T̃
ι ����������������

Γ(T,·)

����
��

��
��

��
��

��
��

��
��

T̂

H0(U ,·)=H0(C•(U ,·))=ker d0

��
��
��
��
��
��
��
��

A

,

(4.22)

i.e., for F ∈ Ob(T̃ ), H0(U , ιF ) = Γ(T, F ) = R0Γ(T, ·)F . Recall that
for an exact sequence 0 → F ′ → F → F ′′ → 0 in T̃ , we only have the
exact sequence 0 → ιF ′ → ιF → ιF ′′ in T̂ . Then for an injective sheaf
I (an injective object of T̃ ), we have RqH0(U , ·)ιI = Hq(U , ιI) = 0 for
q ≥ 1 (which however requires a proof). We get the following induced spectral
sequence from (3.26):

Ep,q
2 = Hp(U , RqιF ) (4.23)

abutting to Hn(T, F ) = RnΓ(T, ·)F .
Next, suppose that 0 → F ′ → F → F ′′ → 0 is an exact sequence of

presheaves. We have the exact sequence 0 → F ′(U) → F (U) → F ′′(U) → 0
for an arbitrary open set U . Then we also have the exact sequence

0 �� Cj(U , F ′) �� Cj(U , F ) �� Cj(U , F ′′) �� 0

0 ��
∏

F ′(Ui0···ij ) ��
∏

F (Ui0···ij ) ��
∏

F ′′(Ui0···ij ) �� 0

(4.24)

for an open set Ui0···ij . Namely, we get the exact sequence of complexes

0 �� C•(U , F ′) �� C•(U , F ) �� C•(U , F ′′) �� 0 . (4.25)
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Then for (D.F.1) in Section 2.8 we get the following long exact sequence

0 �� H0(U , F ′) �� H0(U , F ) �� H0(U , F ′′) �� · · ·

· · · �� Hj(U , F ′) �� Hj(U , F ) �� Hj(U , F ′′) �� · · ·

.

(4.26)

For coverings U = (Ui, i ∈ I) and U ′ = (U ′
i′ , i

′ ∈ I ′) of T , i.e., T =
∪i∈IUi = ∪i′∈I′U

′
i′ , if there is a mapping ρ : I ′ → I satisfying U ′

i′ ⊂ Uρ(i′)
for all i′ ∈ I ′, U ′ is said to be a refinement of U . Then the inclusion

Ui′0i′1···i′j = Ui′0
∩Ui′1

∩· · ·∩Ui′j
↪→ Uρ(i′0)···ρ(i′j)

= Uρ(i′0)∩· · ·∩Uρ(i′j)
(4.27)

induces the restriction morphism

F (Uρ(i′0)ρ(i′1)···ρ(i′j)
) −→ F (Ui′0i′1···i′j ). (4.28)

For a sequence of refinements

U U ′�� U ′′�� · · ·�� (4.29)

we get the induced sequence of complexes and their cohomologies of these
complexes

C•(U , F ) �� C•(U ′, F ) �� C•(U ′′, F ) �� · · · (4.30)

and

Hj(U , F ) �� Hj(U ′, F ) �� Hj(U ′′, F ) �� · · · , (4.31)

respectively. Then define

Ȟj(T, F ) := lim
−→

( Hj(U , F ) �� Hj(U ′, F ) �� · · · ), (4.32)

which is said to be the j-th Čech cohomology object of T of the presheaf F .
Since we have H0(U , ιF ) = Γ(T, F ), i.e., (4.22), for j = 0 we get

Ȟ0(T, ιF ) = Γ(T, F ) (4.33)

in the diagram

T̃
ι ����������������

Γ(T,·)

��
��

��
��

��
��

��
��

��
��

��
T̂

Ȟ0(T,·)

��
��
��
��
��
��
��
��

A .

(4.34)
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By applying the spectral sequence (3.26) associated with composite functor to
the above diagram, we have

Ep,q
2 = RpȞ0(T, ·)(RqιF ) = RpȞ0(T, RqιF ) (4.35)

abutting upon Hn(T, F ). Note that the definition of the Čech cohomology of
T at F is given as a direct limit, i.e., (4.32). On the other hand, Hp(U , ·)
is defined as the cohomology of the complex C•(U , F ). Then, from (3.27)
we have that the p-th cohomology Hp(U , ·) of the complex C•(U , ·) is the
p-th derived functor RpH0(U , ·) of the 0-th cohomology H0(U , ·). However,
as we mentioned in (17) (3), Hp(U , F ) = 0, p ≥ 1 for an injective F (for
a flabby sheaf). Consequently, since the direct limit is exact, RpȞ0(T, ·) in
the spectral sequence (4.35) coincides with the Čech cohomology Ȟp(T, ·).
Namely, Ȟp(T, ·) becomes the derived functor. Let us re-write (4.35) as

Ep,q
2 = Ȟp(T, RqιF ) (4.36)

abutting upon Hn(T, F ), n = p + q. The coefficient sheaf RqιF in (4.36) can
be computed as follows. Since ι is left exact, we have R0ιF ≈ ιF by (D.F.0)
in Section 2.8. Therefore, for an open set U ∈ Ob(T ),

R0ιF (U) = ιF (U) ≈ F (U) ≈ Γ(U, F ).

Since Hp(U, F ) = RpΓ(U, ·)F , we get RpιF (U) ≈ Hp(U, F ).
Let us study the spectral sequence (4.23) to understand the spectral sequence

in (4.35). The Ep,q
2 -term of (4.23) is, by definition the (4.21), given by

Ep,q
2 = Hp(C•(U , RqιF )), (4.37)

where C•(U , RqιF ) =
∏

RqιF (Ui0i1···ip). In the above, we computed

RqιF (Ui0i1···ip)

as Hq(Ui0i1···ip , F ). When Hq(Ui0i1···ip , F ) = 0 for q ≥ 1 we have Ep,q
2 = 0

for q ≥ 1 in (4.37). Then we get

0 = Ep−2,1
2 → Ep,0

2 → Ep+2,−1
2 → 0.

Consequently, we have Ep,0
2 ≈ Ep,0

3 ≈ Ep,0
∞ ≈ Ep ≈ Hp(T, F ). That is,

Ep,0
2 = Hp(U , R0ιF ) ≈ Hp(U , ιF ) = Hp(U , F ) ≈ Hp(T, F ). Summariz-

ing: under the condition Hq(Ui0i1···ip , F ) = 0 for q ≥ 1, the Čech cohomology
of the covering U coincides with the derived functor of the global section func-
tor Γ(T, ·), i.e., Hp(U , F ) ≈ Hp(T, F ). In particular, for Hq(Ui0i1···ip , F ) = 0
for q ≥ 1, the Čech cohomology in (4.32) of T is isomorphic to the derived
functor, i.e., Ȟp(T, R0ιF ) ≈ Ȟp(T, F ) ≈ Hp(T, F ).
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3.4.4 Edge Homomorphisms
As observed in the above, Ep,q

2 -terms play a role in obtaining a morphism
(or an isomorphism) between initial terms and abutments. Let us begin with
Ep,q

2 -terms of a first quadrant spectral sequence for p = 0, 1, 2 and q = 0, 1, 2
as follows:

0

d−1,2
2

��%%
%%%

%%%
%%%

%%%
%%% E0,2

2

d0,2
2

''''
'''

'''
'''

'''
'''

0

d−1,1
2

��%%
%%%

%%%
%%%

%%%
%%% E0,1

2

d0,1
2

''''
'''

'''
'''

'''
'''

E1,1
2

d1,1
2

''''
'''

'''
'''

'''
'''

E2,1
2

E0,0
2 E1,0

3 E2,0
2 E3,0

2

(4.38)

Notice that the slope of dp,q
2 is −1

2 as seen in Section 3.1. Since

0
d−2,1
2−−−→ E0,0

2

d0,0
2−−→ 0 and 0

d−1,1
2−−−→ E1,0

2

d1,0
2−−→ 0,

we have E0,0
2 ≈ E0,0

∞ ≈ E0 and E1,0
2 ≈ E1,0

∞ ↪→ E1,0
∞ ⊕ E0,1

∞ = E1, re-
spectively. Namely, we have the monomorphism ι1 : E1,0

2 ↪→ E1 given by
ι1(x

1,0
2 ) = (x1,0

2 , 0) for x1,0
2 ∈ E1,0

2 . Next, as for E0,1
2 we have

0
d−2,2
2−−−→ E0,1

2

d0,1
2−−→ E2,0

2 .

Hence, E0,1
3 ≈ ker d0,1

2 . Namely, we have ker d0,1
2 ≈ E0,1

3 ↪→ E0,1
2 . Notice

that we have E0,1
3 ≈ E0,1

∞ since

0
d−3,3
3−−−→ E0,1

3

d0,1
3−−→ 0.

Therefore we have E1 = E1,0
∞ ⊕ E0,1

∞ ≈ E1,0
3 ⊕ E0,1

3
π2−→ E0,1

3 , where
π2(x

1,0
3 , x0,1

3 ) = x0,1
3 . Combining the above ι : E0,1

3 = ker d0,1
2 → E0,1

2

with π2 : E1 → E0,1
3 , we get E1 ι◦π2−−→ E0,1

3 . Next, for

E0,1
2

d0,1
2−−→ E2,0

2

d2,0
2−−→ 0

in (4.38), E2,0
3 is the cohomology E2,0

2 / im d0,1
2 . That is, we have the epimor-

phism π : E2,0
2 → E2,0

3 . Then, as before, we have E2,0
3 ≈ E2,0

∞ . Since the
abutment is E2 = E0,2

∞ ⊕ E1,1
∞ ⊕ E2,0

∞ , we get E2,0
3

ι3−→ E2. The composition
ι3 ◦ π is the morphism E2,0

2
ι3◦π−−−→ E2. Consequently, we obtain the following



102 Spectral Sequences

commutative diagram of initial terms and abutments:

0

��
E1,0

2

ι1

��
E1

ι◦π1 �� E0,1
2

d0,1
2 �� E2,0

2

π

��

ι3◦π �� E2

E0,1
∞ ⊕ E1,0

∞ E0,2
∞ ⊕ E1,1

∞ ⊕ E2,0
∞

E0,1
3 ⊕ E1,0

3

≈


π1 �� E0,1
3

2�

ι



E2,0
∞

ι3

��������������

(4.39)

For general p and q, we will study the edge terms Ep,0
2 and E0,q

2 on the p-axis
and q-axis, respectively. Let us begin with Ep,0

2 on the p-axis. Since we have

Ep−2,1
2

dp−2,1
2−−−−→ Ep,0

2

dp,0
2−−→ 0,

the cohomology at Ep,0
2 gives the natural epimorphisms

Ep,0
2

π−→ Ep,0
3

π−→ Ep,0
4

π−→ · · ·Ep,0
p

π−→ Ep,0
p+1,

and beyond Ep,0
p+1 are the isomorphisms, i.e., Ep,0

p+1 ≈ Ep,0
p+2 ≈ Ep,0

∞ . By
combining all those epimorphisms and isomorphisms with the monomorphism
ι : Ep,0

∞ ↪→ Ep, we get the morphism from Ep,0
2 to the abutment:

Ep,0
2

ι◦πp−1

−−−−→ Ep (4.40)

which is said to be the edge morphism. Next, as for E0,q
2 on the q-axis, we have

0 −→ E0,q
2

d0,q
2−−→ E2,q−1

2 .

The cohomology E0,q
3 at E0,q

2 gives the monomorphism ι : E0,q
3 ↪→ E0,q

2 . By
combining those induced monomorphisms with the isomorphisms

E0,q
∞ ≈ E0,q

q+3 ≈ E0,q
q+2,

we have
Eq ιq◦π−−−→ E0,q

2 , (4.41)
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where π : Eq → E0,q
∞ . The morphism (4.41) is the other edge morphism to

E0,q
2 on the q-axis from the abutment Eq.
The trivial cases of the edge morphisms applied to (4.36) are, e.g., at the

edge (the origin) E0,0
2 , we have 0 → E0,0

2 → 0. Since E0,0
2 ≈ E0,0

∞ ≈ E0 we
get E0,0

2 = Ȟ0(T, F ) ≈ E0 = H0(T, F ). Another example 0 → E1,0
2

ι1−→ E1

becomes 0 → Ȟ1(T, F ) → H1(T, F ).

3.4.5 Relative Cohomology of Sheaves
Let U be an open set of a topological space T , i.e., U ∈ Ob(T ) and let

F be a sheaf over T to an abelian category A (or the category Ab of abelian
groups), i.e., F ∈ Ob(T̃ ). Then for V ←↩ U we have the restriction morphism

ρV
U : F (V ) = Γ(V, F ) → F (U) = Γ(U, F ). (4.42)

Define Γ(V, U, F ) := ker ρV
U . The following sequence

0 �� Γ(V, U, F ) �� Γ(V, F )
ρV

U �� Γ(U, F ) (4.43)

is exact. When F is a flabby sheaf, ρV
U becomes epimorphic. (See (4.9).)

Hence, F is flabby if and only if H1(V, U, F ) = 0. This is because: for a
flabby resolution of F , F → F •, the long exact sequence

0 �� Γ(V, U, F ) �� Γ(V, F ) �� Γ(U, F ) ��

�� H1(V, U, F ) �� H1(V, F ) �� · · ·

· · · �� Hj(V, U, F ) �� Hj(V, F ) �� Hj(U, F ) ��

�� Hj+1(V, U, F ) �� · · ·

(4.44)

is induced from the short exact sequence of complexes

0 �� Γ(V, U,F •) �� Γ(V, F •) �� Γ(U,F •) �� 0 . (4.45)

Namely, Hj(V, U, F ) = Hj(Γ(V, U,F •)) and Γ(V, U, ·) is a left exact functor
from T̃ to A . That is, Hj(V, U, ·) is the derived functor of Γ(V, U, ·) for j ≥ 0.
Then for an exact sequence of sheaves

0 �� F ′ �� F �� F ′′ �� 0 (4.46)

we get the long exact sequence of relative cohomologies

0 �� H0(V, U, F ′) �� H0(V, U, F ) �� H0(V, U, F ′′) �� · · ·

· · · �� Hj(V, U, F ′) �� Hj(V, U, F ) �� Hj(V, U, F ′′) �� · · · .

(4.47)
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Notice that for W ⊃ V ⊃ U in T we have the exact sequence

0 �� H0(W, V, F ) �� H0(W, U, F ) �� H0(V, U, F ) �� · · ·

· · · �� Hj(W, V, F ) �� Hj(W, U, F ) �� Hj(V, U, F ) �� · · ·
(4.48)

generalizing (4.44). Furthermore, for a closed set C in T satisfying C ⊂ U ,
the induced morphism from the restriction becomes the excision isomorphism

Hj(T, U, F ) ≈−→ Hj(T − C,U − C,F ). (4.49)

For open sets U and U ′ we also have the Mayer–Vietoris sequence:

0 �� H0(T, U ∪ U ′, F ) ��
H0(T, U, F )⊕

H0(T, U ′, F )
�� H0(T, U ∩ U ′, F ) �� · · ·

· · · �� Hj(T, U ∪ U ′, F ) ��
Hj(T, U, F )⊕

Hj(T, U ′, F )
�� Hj(T, U ∩ U ′, F ) �� · · ·

(4.50)

Even more generally, for U ⊂ V and U ′ ⊂ V ′, we have: for j ≥ 0,

· · · �� Hj(V ∪ V ′, U ∪ U ′, F ) ��
Hj(V ′, U, F )⊕

Hj(V ′, U ′, F )
��

�� Hj(V ∩ V ′, U ∩ U ′, F ) �� · · · .

3.4.6 Spectral Sequences and Relative Hypercohomologies
Let F • be a complex of sheaves. Namely,

F 0 d0
�� F 1 d1

�� F 2 d2
�� · · ·

is a sequence of sheaves and morphisms of (pre-) sheaves satisfying

dj ◦ dj−1 = 0, for j ≥ 1.

The sheaf version of the commutative diagram (3.33) becomes

Co+(T̃ )
H0

����������������

H0(T,U,·)

��
��
��
��
��
��
��
��

T̃

H0(T,U,·)

�� ��
��
��
��
��
��
��
��

Co+(A ) H0
���������������� A

(4.51)
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where for a complex F • of sheaves in Co+(T̃ ), H0(F •) is the associated 0-th
cohomology sheaf of F •. Then we have

ker(H0(T, U, F 0) → H0(T, U, F 1)) = H0(T, U,H0(F •)), (4.52)

which is

= {f ∈ Γ(T, F 0) | ρT
U (f) = 0, d0(f) = 0 in Γ(T, F 1)} =

= H0(T, U, ker(F 0 d0

−→ F 1)).
(4.53)

The commutativity of (4.51) means the equality of (4.52). The spectral se-
quences in Subsection 3.3.6 corresponding to the diagram (4.51) become

Ep,q
2 = Hp((Hq(T, U, F j))j≥0), or

Ep,q
1 = Hq(T, U, F p)

(4.54a)

and
′Ep,q

2 = Hp(T, U,Hq(F •)) (4.54b)

abutting upon the relative hypercohomology Hn(T, U, F •) with coefficient in
the complex F • of sheaves. Notice also that

· · · �� Ep−1,q
1

dp−1,q
1 �� Ep,q

1

dp,q
1 �� Ep+1,q

1
�� · · ·

· · · �� Hq(T, U, F p−1) �� Hq(T, U, F p) �� Hq(T, U, F p+1) �� · · · .

Remarks 2. (1) For a given K ∈ Ob(T̃ ), if a complex F • is a cyclic res-
olution of K, i.e., Hj(F •) = 0 for j ≥ 1 and K = ker(F 0 → F 1),
from (4.54b) we have ′Ep,q

2 = Hp(T, U,Hq(F •)) = 0 for q ≥ 1 and
′Ep,0

2 = Hp(T, U, K). Consequently we get ′Ep,0
2 ≈ ′Ep,0

∞ ≈ Ep, i.e.,
Hp(T, U, K) ≈ Hp(T, U, F •).

(2) If F • and G• are quasi-isomorphic, the isomorphism Hq(F •) ≈ H(G•)
induces the isomorphisms on the ′Ep,q

2 -terms and the abutments

Hn(T, U, F •) ≈ Hn(T, U, G•).

(See Note 17 (2).)

(3) When Hq(T, U, F p) = 0 for q ≥ 1, the spectral sequence in (4.54a) becomes
Ep,q

1 = Hq(T, U, F p) = 0, q ≥ 1. Namely, we have

Ep,0
2 = Hp(E•,0

1 ) = Hp(H0(T, U, F •)).
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Therefore, the relative hypercohomology Hn(T, U, F •), the abutment, is
isomorphic to

En,0
2 = Hn(Γ(T, U, F •)).

In particular, when F • ∈ Ob(Co+(T̃ )) is a cyclic resolution of K satisfying
Hq(T, U, F p) = 0 for q ≥ 1, then the induced morphism from En,0

2 to the
abutment is the natural isomorphism

Hn(T, U, K) ≈ Hn(H0(T, U, F •)). (4.55)

For example, let T be a differentiable manifold and let Ω•
T be the complex

of the sheaves Ωp
T of germs of p-forms on T . Then the De Rham-Theorem

states that the cohomology of the complex Γ(T, Ω•
T ) of global sections,

the abutment, and the cohomology with coefficient in the constant sheaf

R := ker(Ω0
T

d0

−→ Ω1
T ) are isomorphic, i.e.,

Hn(Γ(T, Ω•
T )) ≈ Hn(T, Ω•

T ) ≈ Hn(T, R). (4.56)

3.4.7 Leray Spectral Sequence
Let f : T → S be a continuous map of topological spaces T and S and let

T̃ and S̃ be the categories of sheaves over T and S, respectively. Then we
will define a functor

f∗ : T̃ → S̃ (4.57)

as follows. For a sheaf F over T , define

f∗F (V ) := F (f−1(V )) (4.58)

where V is an open set of S. Since f−1(V ∩ V ′) = f−1(V ) ∩ f−1(V ′), the
presheaf f∗F (V ) defined by (4.58) becomes a sheaf, i.e., condition (Sheaf) in
Definition 5 in Chapter I is satisfied. Note that f∗ : T̃ � S̃ is a left exact
functor since Γ(f−1(V ), ·) is left exact, i.e., (4.6). Therefore,

H0(f−1(V ), F ) ≈ Γ(f−1(V ), F ).

Then the derived functor Hj(f−1(V ), F ) is a presheaf over S. Define Rjf∗F
as the associated sheaf to this presheaf:

V � Hj(f−1(V ), F ). (4.59)

The notation Rjf∗, the derived functor of f∗ is supported by the facts that
R0f∗ ≈ f∗ as functors and that for an injective sheaf IS over S,

Rjf∗IS = 0,
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i.e., (Rjf∗IS)y = lim
−→y∈V

Hj(f−1(V ), IS) = 0. Consider the following com-

mutative diagram:

T̃
f∗ ��������������������

Γ(T,·)

��
��

��
��

��
��

��
��

��
��

��
��

S̃

Γ(S,·)

��
��
��
��
��
��
��
��

A = Ab

(4.60)

where Γ(S, f∗F ) = Γ(f−1(S), F ) = Γ(T, F ). Then for an injective sheaf IT

over T we have that f∗IT is a Γ(S, ·)-acyclic object of S̃ . (See Notes 17 (1).)
Namely, RqΓ(S, ·)(f∗IT ) = Hq(f−1(S), IT ) = Hq(T, IT ) = 0 for q ≥ 1.
Therefore, from (3.26) we have the following spectral sequence of a composite
functor:

Ep,q
2 = Hp(S, Rqf∗F ) (4.61)

abutting upon En = Hn(T, F ), n = p + q. This spectral sequence is said to
be the Leray spectral sequence induced by f : T → S. The derived functor
Rqf∗F is said to be the higher direct image of the direct image f∗F of F by
f . Furthermore, by considering f∗ as a functor from T̃ to the category Ŝ of
presheaves over S, the diagram

T̃
f∗ ����������������

H0(T,·)

����
��

��
��

��
��

��
��

��
��

Ŝ

Ȟ0(S,·)

��
��
��
��
��
��
��
��

A

(4.62)

implies the spectral sequence

Ep,q
2 = Ȟp(S, (Rqf∗)pre-sh(F )) (4.63)

abutting upon Hn(T, F ). Similarly, for H0(U , ·) : Ŝ � A instead of Ȟ0(S, ·)
we get

Ep,q
2 = Hp(U , (Rqf∗)pre-sh(F )) (4.64)

with abutment Hn(T, F ), where U is a covering of S.
We will generalize (4.61) to the relative hypercohomology case. So, let

f : T → S be a continuous map of topological spaces and let U and V be
open sets of T and S, respectively. For F • ∈ Ob(Co+(T̃ )) let us consider the
presheaf over S defined by

W � Hq(f−1(W ), f−1(W ) ∩ U, F •). (4.65)
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Let Rqf∗,S,V (T, U, F •) be the associated sheaf to the presheaf defined by (4.65).
We have the following generalized Leray spectral sequence:

Ep,q
2 = Hp(S, V,Rqf∗,S,V (T, U, F •)) (4.66)

abutting upon Hn(T, f−1(V )∪U, F •). This spectral sequence is said to be the
second Leray spectral sequence of relative hypercohomology. See the following
diagram for (4.66):

Co+(T̃ )
R0f∗,S,V (T,U,·)

������������������������

Γ(T,f−1(V )∪U,·)

  34
3434

3434
3434

3434
3434

3434
3434

Co+(S̃ )

Γ(S,V,·)

��
��
��
��
��
��
��
��

A .

(4.67)

See S. Lubkin and G. Kato, Second Leray spectral sequence of relative hyper-
cohomology, Proc. Nat. Acad. Sci. U.S.A 75 (1978), no 10, 4666–4667.

3.5 Higher Derived Functors of lim
←−

In Section 1.8 we defined an inverse limit of a covariant functor F : C ′ � C ,

i.e., F ∈ Ob(C C ′
). In this Section we consider the case C ′ = Z, where i

φ−→ j
for i ≥ j in Z. Then in C for F ∈ Ob(C Z), we have Fi → Fj, which will be

written as F i Fφ−−→ F j in this Section. First of all, let C be an abelian category.
In what will follow we will define the derived functor of the inverse limit lim

←−
which is a functor from C Z to C .

Secondly, assume that the direct product
∏

i∈Z
F i exists in C where

∏
: C Z � C

is a functor. Using an exact embedding in Subsection 1.6.1; (ai) ∈
∏

i∈Z
F i

belongs to lim
←−

F i if aj = Fφ(ai) for all i
φ−→ j. (See Section 1.8).

Now we compute the derived functor Rj lim
←−

of

lim
←−

: C Z � C (5.1)

by constructing a complex

C• : C0 d0
�� C1 d1

�� · · ·
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so that H0(C•) = ker d0 = lim
←−

F i. Consequently we get

Hj(C•) = RjH0(C•) = Rj lim
←−

F i. (5.2)

Here is a construction of C•: for F = (F i) ∈ Ob(C Z) define





C0 =
∏

i∈Z
F i

C1 =
∏

i∈Z
F i

Cj = 0, for j = 2, 3, . . . ,

(5.3)

where d0 : C0 → C1 is defined by

πi ◦ d0 = Fφ ◦ πi+1 − πi (5.4)

in the diagram

0 �� C0 d0
��

π
��.

..
..

..
.

πi+1

��

C1

πi

��

d1
�� 0 �� · · ·

· · · �� F i+1 �� F i �� · · ·

(5.5)

and π being the projection, i.e., πi((ai)) = ai. Namely, for (ai) ∈ C0

d0((ai)) = (d0
i (ai)) = (Fφ(ai+1) − ai) ∈ C1 =

∏

i∈Z

F i.

Then we get

H0(C•) = ker d0 = {(ai) ∈ C0 | d0(ai) = (0i)} =

= {(ai) ∈ C0 | Fφ(ai+1) = ai} =

= lim
←−

F i ⊂ C0 =
∏

i∈Z

F i.
(5.6)

Next,

H1(C•) R1H0(C•) R1 lim
←−

F i

ker d1
/

im d0 C1
/

im d0 coker d0,

(5.7)

and
Hj(C•) = Rj lim

←−
F i = 0, for j ≥ 2. (5.8)
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We often write lim
←−

(j) or lim
←−

j for the higher derived functors Rj lim
←−

of lim
←−

from

C Z to C .
Furthermore, let us assume that the functor

∏
: C Z � C

is exact. Then, for a short exact exact sequence in C Z

0 �� ′F �� F �� ′′F �� 0,

namely

0 �� (′F i) �� (F i) �� (′′F i) �� 0,

we get the exact sequence

0 �� ∏ ′F i

def

�� ∏F i ��

def

∏ ′′F i ��

def

0

0 �� ′C• �� C• �� ′′C• �� 0.

(5.9)

in C . Following (5.4) we have the induced diagram

...
...

...

0



0



0



0 �� ′C1 ��

′d1



C1 ��

d1



′′C1 ��

′′d1



0

0 �� ′C0 ��

′d0



C0 ��

d0



′′C0 ��

′′d0



0

0



0



0



(5.10)

Then from (5.10) we have the following exact sequence

0 �� ker ′d0 �� ker d0 �� ker ′′d0 ��

�� coker ′d0 �� coker d0 �� coker ′′d0 �� 0.

(5.11)
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Note that the above assertion, i.e., (5.10) implies (5.11), is referred to as the
Snake Lemma. That is, (5.11) becomes the exact sequence

0 �� lim
←−

′F i �� lim
←−

F i �� lim
←−

′′F i ��

�� lim
←−

(1) ′F i �� lim
←−

(1) F i �� lim
←−

(1) ′′F i �� 0

(5.12)

indicating the left exactness of lim
←−

and the right exactness of lim
←−

(1).

3.5.1 Cohomology and Inverse Limit
An inverse system from Z to C is a covariant functor F from Z to an abelian

category C as in Section 3.5, i.e., F ∈ Ob(C Z). In this section we consider the
case where C is replaced by the category Co+(C ) of complexes of C . Namely,
for each i ∈ Z, F •

i is a complex satisfying:

F •
i

F •φi
j−−−→ F •

j , for all i
φi

j−→ j in Z, (5.13)

and for each i ∈ Z,

F •
i : · · · dp−1

i �� F p
i

dp
i �� F p+1

i

dp+1
i �� · · · (5.14)

satisfies dp+1
i ◦ dp

i = 0 for all p ≥ 0. That is, we are considering an object of
the category Co+(C )Z.

Let us considering the following first quadrant double complex with only
first and second non-zero rows:

...
...

...
...

0



0



0



0



0 �� ∏F 0
i

∏
d0

i ��

d1



∏
F 1

i

∏
d1

i ��

d1



· · · ��
∏

F p
i

∏
dp

i��

d1



∏
F p+1

i
��



· · ·

0 �� ∏F 0
i

∏
d0

i ��

d0



∏
F 1

i

∏
d1

i ��

d0



· · · ��
∏

F p
i

∏
dp

i��

d0



∏
F p+1

i
��



· · ·

0



0



0



0



(5.15)



112 Spectral Sequences

where

(
∏

dp
i )((a

p
i )) = (

∏
dp

i )(. . . , a
p
i , a

p
i+1, . . . ) =

= (. . . ,dp
i (a

p
i ), d

p
i+1(a

p
i+1), . . . ) =

∏
(dp

i (a
p
i )) ∈

∏
F p+1

i .

Let D•,• be the double complex in (5.15), i.e., D•,• = (Dp,q)p,q≥0, Dp,q = 0
unless p ≥ 0 and q = 0, 1. Then from (3.9) and (3.24), we have the spectral
sequences induced by two different filtrations

Ep,q
2 = Hp

→(Hq
↑(D

•,•)) = Hp(lim
←−

(q)F •
i )

′Ep,q
2 = Hp

↑(H
q
→(D•,•)) = lim

←−
(p)(Hq(F •

i ))
(5.16)

abutting upon En = Hn(D•) where Dn =
⊕

p+q=n Dp,q as in (3.2). Let us

study {Ep,1
2 } and {Ep,0

2 } in detail. (Note Ep,q
2 = 0 for q �= 0, 1.) We have the

following spectral sequence diagram with slope −1
2 :

0

>>HHH
HHHH

HHHH
HHHH

HHH 0

>>���
����

����
����

����
��

0

''--
---

---
---

---
---

- Ep−2,1
2

dp−2,1
2

>>HHH
HHH

HHH
HHH

HHH
HHH

Ep−1,1
2

dp−1,1
2

>>--
---

---
---

---
--

Ep,1
2

dp,1
2

>>HHH
HHH

HHH
HHH

HHH
HHH

Ep−2,0
2

>>���
����

����
����

����
� Ep−1,0

2

>>HHH
HHHH

HHHH
HHHH

HHHH
Ep,0

2

>>���
����

����
����

����
�� Ep+1,0

2 Ep+2,0
2

0 0 0

(5.17)

Then from (5.17), Ep,0
3 can be computed as

Ep,0
3 = Ep,0

2

/
imdp−2,1

2 ,

and Ep,0
3 ≈ Ep,0

4 ≈ Ep,0
∞ . We get

Ep−2,1
2

dp−2,1
2

��2
22

22
22

2

Ep,0
2

π �� Ep,0
3 ≈ Ep,0

∞
� � ι �� Ep.

(5.18)

From (5.17), the cohomology Ep−1,1
3 at Ep−1,1

2 is just ker dp−1,1
2 . Then we

have Ep−1,1
3 ≈ Ep−1,1

4 ≈ · · · ≈ Ep−1,1
∞ . Since the abutment

E(p−1)+1 = Ep = Ep−1,1
∞

⊕
Ep,0

∞ ,
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we get

Ep π1 �� Ep−1,1
∞ ≈ Ep−1,1

3 = ker dp−1,1
2

� � ι1 �� Ep−1,1
2

.

Consequently, we obtain

· · · �� Ep−1,1
2 dp−2,1

2

''''
'''

'''
''

Ep,0
2

ι◦π �� Ep �� Ep−1,1
2

�� · · ·

· · · �� Hp−2(lim
←−

(1)F •
i )

����
���

�

Hp(lim
←−

F •
i ) �� Ep �� Hp−1(lim

←−
(1)F •

i ) �� · · ·

(5.19)

Next, we will study ′Ep,q
2 of (5.16). The non-zero terms of ′Ep,q

2 are the first
two columns {′E0,q

2 } and {′E1,q
2 }. From the spectral sequence {′Ep,q

2 } diagram
like the one (5.15) for {Ep,q

2 }, we have 0 = ′E−1,q
2 → ′E1,q−1

2 → ′E3,q−2
2 = 0

which implies

′E1,q−1
2 ≈ · · · ≈ ′E1,q−1

∞
� � ι1 �� Eq = ′E1,q−1

∞ ⊕ ′E0,q
∞ .

Similarly, ′E0,q
2 ≈ ′E0,q

∞
π2←− Eq. That is, we get

0 �� ′E1,q−1
2

ι2 �� Eq π2 �� ′E0,q
2

�� 0

0 �� lim
←−

(1)(Hq−1(F •
i )) �� Eq �� lim

←−
(Hq(F •

i )) �� 0.

(5.20)

In (5.19), if
Ep−2,1

2 = Hp−2(lim
←−

(1)F •
i ) = 0

and
Ep−1,1

2 = Hp−1(lim
←−

(1)F •
i ) = 0,

then we have the isomorphism from the abutment Ep to Ep,0
2 = Hp(lim

←−
F •

i ).

In (5.20), if ′E1,q−1
2 = lim

←−
(1)(Hq−1(F •

i )) = 0, then we get

Eq ≈−→ lim
←−

Hq(F •
i ) = ′E0,q

2 .

Consequently, we would get the commutativity of H∗ and lim
←−

, i.e.,

Hp(lim
←−

F •
i

≈−→ lim
←−

Hp(F •
i ). (5.21)
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3.5.2 Vanishing of lim
←−

(1) Fi

Let us recall: for F ∈ C Z, i.e., an inverse system (Fi)i∈Z, the first cohomol-
ogy

H1(C•) = R1H0(C•) ≈ R1 lim
←−

Fi = lim
←−

(1)Fi

of the complex

C0 =
∏

i∈Z
Fi

d0
�� C1 =

∏
i∈Z

Fi
d1

�� 0 �� · · ·

is the cokernel coker d0 ≈
∏

Fi/ imd0. Recall also that d0 : C0 → C1 is
defined as d0((ai)) = Fφ(ai+1) − ai ∈ C1 =

∏
Fi for (ai) ∈ C0 =

∏
Fi,

where i + 1
φ−→ i and Fi+1

Fφ−−→ Fi. We let φi+1
i = Fφ in what follows. For an

arbitrary (xi) ∈ C1, we ask whether there is (ai) ∈ C0 to satisfy the following
system d0((ai)) = (xi) of equations:






φ1
0(a1) − a0 = x0, i.e., φ1

0(a1) = x0 + a0

φ2
1(a2) − a1 = x1, i.e., φ2

1(a2) = x1 + a1
...

...
...

φi+1
i (ai+1) − ai = xi, i.e., φi+1

i (ai+1) = xi + ai
...

...
...

(5.22)

When φi+1
i : Fi+1 → Fi is an epimorphism for i = 0, 1, 2, . . . , it follows from

(5.22) that one can find (ai) ∈ C0 satisfying d0((ai)) = (xi) ∈ C1. Then
d0 : C0 → C1 is an epimorphism. That is, lim

←−
(1)Fi = coker d0 = 0.

More generally, for the inverse system F = (Fi) ∈ Ob(C Z)

· · · �� Fi+1
φi+1

i �� Fi

φi
i−1 �� Fi−1

�� · · · φ2
1 �� F1

φ1
0 �� F0 (5.23)

when the sequence im φ1
0 ⊃ im φ2

0 ⊃ · · · becomes stationary, where

φi
0 := φ1

0 ◦ φ2
1 ◦ · · · ◦ φi

i−1,

i.e., there exists i0 ∈ Z to satisfy

im φi0
0 = im φj

0, for all j ≥ i0, (5.24)
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then d0 : C0 → C1 is epimorphic. This is because for a given (xi) ∈ C1, one
can choose (ai) ∈ C0 as follows:






a0 = −(x0 + φ1
0(x1) + φ2

0(x2) + · · · + φi0
0 (xi0))

a1 = −(x1 + φ2
1(x2) + φ3

1(x3) + · · · + φi0
1 (xi0))

a2 = −(x2 + φ3
2(x3) + φ4

2(x4) + · · · + φi0
2 (xi0))

...
ai0−1 = −(xi0−1 + φi0

i0−1(xi0))
ai0 = −xi0

ai = 0, for i ≥ i0 + 1

(5.25)

Then

d0((ai)) = (φ1
0(a1) − a0, φ

2
1(a2) − a1, φ

3
2(a3) − a2, . . . ) =

=
(
− φ1

0(x1) − φ2
0(x2) − · · · − φi0

0 (xi0)+

+ φ1
0(x1) + φ2

0(x2) + · · · + φi0
0 (xi0) + x0, . . . ,

− φi0−1
i0−2(xi0−1) − φi0

i0−2(xi0) + φi0−1
i0−2(xi0−1) + φi0

i0−2(xi0) + xi0−2,

− φi0
i0−1(xi0) + φi0

i0
(xi0) + xi0−1, xi0 , . . .

)
=

= (x0, x1, . . . , xi0−1, xi0 , xi0+1, . . . ) = (xi).

Note that for the inverse system (Fi, φ
i
j) the condition in (5.24) is said to be the

Mittag-Leffler condition for (Fi) ∈ Ob(C Z) at F0. Furthermore, if (Hq−1F •
i )

satisfies the Mittag-Leffler condition, we have lim
←−

(1)Hq−1F •
i = 0. Then we

obtain the isomorphism in (5.21).
Let us re-write the spectral sequences in (5.16) induced by the double com-

plex (5.15) as

Ep,q
2 = Hp(lim

←−
(q)F •

i ) = RpH0(Rq lim
←−

F •
i )

′Ep,q
2 = lim

←−
(p)(HqF •

i ) = Rp lim
←−

(RqH0(F •
i )).

(5.26)

We can consider

Co+(C )Z

lim
←− ����������������

H0

��
��
��
��
��
��
��
��

K0

��&'
&'

&'
&'

&'
&'

&'
&'

&'
&'

&'
&'

&'
Co+(C )

H0

��
��
��
��
��
��
��
��

C Z

lim
←− ������������������������ C .

(5.27)
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Then the spectral sequences in (5.26) abut upon the total cohomology

Hn(D•) = RnK0((F •
i ))

where D• is the complex associated with the double complex (5.15). (See
Section 3.3.) Note also that the cohomology functor H0 commutes with the left
exact functor lim

←−
= H0

C• , the cohomology of the complex constructed as C•

in (5.5).



Chapter 4

DERIVED CATEGORIES

4.1 Defining Derived Categories
4.1.1 Concepts Leading to Derived Categories

Let A be an abelian category and let Co+(A ) be the category of bounded
from below complexes as before. Then as in Section 2.2 we can define the
cohomology functor Hj : Co+(A ) � A for j ∈ Z

+. For a morphism

f• : (A•, d•
A) → (B•, d•

B)

of complexes in Co+(A ) we have Hj(f•) : Hj(A•) → Hj(B•) in A . In
Section 2.3 we found that for homotopic morphisms f• and g• from A• to
B• their induced morphisms Hj(f•) and Hj(g•) are the same morphism from
Hj(A•) to Hj(B•). That is, as the functor Hj from the homotopy category
K+(A ) = Co+(A )/∼ as defined in Section 2.3, Hj([f•]) is independent of
the choice of representative f•.

Next, let A and B be abelian categories and let F : A � B be an additive
left exact functor. The question to ask is whether the assignment from f• to
Ff• is a functor from K+(A ) to K+(B) or not. The answer is positive: we
need to prove the implication

f• ∼ g• =⇒ Ff• ∼ Fg•.

For the additive functor F we get

F (f j − gj) = Ff j − Fgj = F (′dj−1) ◦ Fsj + Fsj+1 ◦ Fdj ,

where sj : Aj → Bj−1 are homotopy morphisms as in (3.2) in Chapter II.
Namely, Ff• is homotopic to Fg•.

A morphism f• : A• → ′A•of complexes is said to be a quasi-isomorphism
when the induced morphism Hj(f•) : Hj(A•) → Hj(′A•) is an isomorphism

117
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in A for each j. Let us recall the diagram (3.33) in Subsection 3.3.6 in Chapter
III:

Co+(A ) Co+F ����������������

F̄

��&'
&'

&'
&'

&'
&'

&'
&'

&'
&'

&'
&'

H0

��
��
��
��
��
��
��
��

Co+(B)

H0

��
��
��
��
��
��
��
��

A
F ������������������������ B.

(1.1)

The image of a morphism f• : A• → B• in Co+(A ) under the functor Co+F
in the above diagram is Ff• : FA• → FB• in Co+(B), i.e.,

A•

f•

��

FA•

Ff•

��

Co+F ����������

B• FB•

(1.2)

Then we get the morphism between the associated spectral sequences as in
(3.40) in Chapter III with hypercohomologies:

Ep,q
1 (A•) = RqFAp

��

Ep,q
2 (A•) = Hp(· · · → RqFAp → · · · )

��

or

Ep,q
1 (B•) = RqFBp Ep,q

2 (B•) = Hp(· · · → RqFBp → · · · )

and the other one

′Ep,q
2 (A•) = RpF (Hq(A•))

��
′Ep,q

2 (B•) = RpF (Hq(B•)).

(1.3)

We also have the morphism

En(A•) = RnF̄A• �� En(B•) = RnF̄B• (1.4)

between the abutments. Notice that for a quasi-isomorphism f• : A• → B•,
the morphism between ′Ep,q

2 (A•) and ′Ep,q
2 (B•) in (1.3) becomes an isomor-

phism. Then the morphism of the abutments in (1.4) is an isomorphism. Also
note that the abutment En(A•) = RnF̄ (A•) in (1.4) is not simply the coho-
mology Hn(FA•) of the complex FA• as an object of Co+(B). However, if
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Ep,q
1 (A•) = RqFAp = 0 for q ≥ 1 (i.e., Ap is an F -acyclic object, or Ap is an

injective object), we would have

En,0
2 (A•) = Hn(E•,0

1 ) = Hn(FA•) ≈ En(A•),

the abutment. Namely, we are preparing to define a new category where a quasi-
isomorphism is invertible (i.e, an isomorphism), and a homotopy equivalence
class of morphisms matters. Such a category is said to be a derived category of
A .

4.1.2 Definition of Derived Category
Let A be an abelian category. We constructed K(A ) from the abelian

category Co(A ) of complexes, where

HomK(A )(A
•, B•) = HomCo(A )(A

•, B•)
/
(homotopy equivalence). (1.5)

The derived category D(A ) is defined by the category obtained by localizing
K(A ) at the set (QIS) of quasi-isomorphisms:

D(A ) := K(A )(QIS). (1.6)

Namely, there is a functor QA : K(A ) � D(A ) such that QA assigns quasi-
isomorphisms inK(A ) to isomorphisms inD(A ). ThenQA : K(A ) � D(A )
satisfies the universal property as follows: if F : K(A ) � D assigns quasi-
isomorphisms of K(A ) to isomorphisms of D then there is a unique functor
G : D(A ) � D satisfying the commutativity F = G ◦ QA in the diagram

K(A ) F ������������������������

QA ��&'
&'

&'
&'

&'
D

D(A ).
G

��*+
*+

*+
(1.7)

The functor QA : K(A ) � D(A ) is said to be a localizing functor. The above
D(A ) can also be written as

D(A ) := K(A )[(QIS)−1].

We will list properties that (QIS) satisfies:

QIS.1 If s• and t•are quasi-isomorphisms, the compositions•◦t• is alsoaquasi-
isomorphism.

QIS.2 For a diagram
B•

s•

��
A• f•

�� ′B•
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in K(A ), where s• is a quasi-isomorphism, there exists a morphism ′f• and
a quasi-isomorphism ′s• satisfying the commutativity f• ◦ ′s• = s• ◦ ′f•

of the diagram

′A•
′f•

��

′s•

��

B•

s•

��
A• f•

�� ′B•.

QIS.3 For two morphisms f• and g• from A• to ′ •

(qis.3.1) For a quasi-isomorphism s• : ′B• → B•, we have s• ◦ f• = s• ◦ g•.

(qis.3.2) For a quasi-isomorphism t• : ′A• → A•, we have f• ◦ t• = g• ◦ t•.

Since the derived category D(A ) is the localized category of K(A ) at (QIS),
objects of D(A ) are those of K(A ) (hence of Co(A )). Namely, an object of
D(A ) is a complex. On the other hand, a morphism φ from A• to B• in
D(A ) is an equivalence class of a pair (f•, s•) of a morphism f• and a quasi-
isomorphism s• given as in the diagram:

A• f•
��

φ ���
��

��
��

�
′B•

B•

s•


(1.8)

for an object ′B•. The equivalence relation between such pairs (f•, s•) and
(g•, t•) is defined as follows. That is, for (f•, s•) and (g•, t•) given as

A•

g•

''''
'''

'''
'''

'''
'

f•
@@*

**
**

**
B•

s•

00:::
:::

:::
:::

:::
:

t•7711
11
11
1

′B• ′′B•,

(1.9)

(f•, s•) is equivalent to (g•, t•), written as (f•, s•) ∼ (g•, t•), if and only
if there are quasi-isomorphisms h• : ′B• → ′′′B• and u• : ′′B• → ′′′B•

satisfying the commutativity of the diagram

A•

g•

>>���
����

����
����

����

f•
,,I

II
II

II
B•

s•

������
����

����
����

���

t•--11
11
11
1

′B•

h•
��J

J
J

J
′′B•

u•
AAK
K
K
K

′′′B•

(1.10)

B , the following (qis.3.1)
and (qis.3.2) are equivalent:
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for an object ′′′B• of D(A ). When we write the localization of K(A ) at (QIS)
like the localization of the ring Z of integers at (Z − {0}), we have

f•

s•
=

h• ◦ f•

h• ◦ s•
=

u• ◦ g•

u• ◦ t•
=

g•

t•
. (1.11)

That is, using the direct limit we have

HomD(A )(A
•, B•) =





lim
−→
′B•





A•

��L
LL

LL
L B•

q-iBBMM
MM
MM

′B•









, (1.12)

where "q-i" means quasi-isomorphism. Let us write the equivalence class φ of
(f•, s•) by f•/s•. Then we will define the composition of morphisms in the
derived category as follows. Let φ = f•/s• and ψ = g•/t• be morphisms of
D(A ) given as

A• f•
��

φ
���

��
��

��
��

�
′B•

′g• ����� ′′C•

B•

s•



g• ��

ψ
��.

..
..

..
..

.
′C•

′s•

�
�
�
�

C•.

t•


(1.13)

Then by QIS.2 in the above, there are ′g• : ′B• → ′′C• and ′s• : ′C• → ′′C• as
shown in (1.13) where ′s• is a quasi-isomorphism. We define the composition
ψ ◦ φ : A• → C• in D(A ) by

ψ ◦ φ := (′g• ◦ f•)
/
(′s• ◦ t•). (1.14)

The reader may be interested in showing the independence of the choice of
representatives (f•, s•) and (g•, t•) for the composition defined in (1.14), i.e.,
the well-definedness.

Next, we will define an addition � in HomD(A )(A•, B•). Let f•/s• and
′f•/′s• be elements of HomD(A )(A•, B•). Then from

A• f•
�� ′B• A•

′f•
�� ′′B•

�

B•

s•



B•

′s•



(1.15)
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we extract

′B• r• ����� ′′′B•

B•

s•



′s• �� ′′B•.

′r•

�
�
�
�

(1.16)

Then by QIS.2 we can complete the square in (1.16) by quasi-isomorphisms r•

and ′r•. Define f•/s• � ′f•/′s• by

f•/s• � ′f•/′s• := (r• ◦ f• + ′r• ◦ ′f•)
/
t•, (1.17)

where t• = r• ◦ s• = ′r• ◦ ′s•. Namely, the addition in (1.15) equals

A• r•◦f•+′r•◦′f•
�� ′′′B•

B•

t•=r•◦s•=′r•◦′s•


(1.18)

4.2 Derived Categorical Derived Functors
Let F : A � B be a additive left exact functor of abelian categories A and

B. Let A• ∈ Ob(D+(A )), i.e., A• is a complex satisfying Aj = 0 for j < 0.
Then consider a Cartan–Eilenberg resolution of A• as in Subsection 3.3.3:

...
...

...

I0,1



�� I1,1



�� · · · �� Ip,1



�� · · ·

I0,0



�� I1,0



�� · · · �� Ip,0



�� · · ·

A0

ε0



d0
�� A1

ε1



d1
�� · · · �� Ap

εp



dp
�� · · ·

(2.1)

Namely, all the Ip,q, p, q ≥ 0 are injective objects of A satisfying Hq
↑(I

p,•) = 0,

q ≥ 1 and H0
↑(I

p,•) = Ap (i.e., Ap εp

−→ Ip,• is an injective resolution of Ap).
We associate the spectral sequence

Ep,q
1 = Hq

↑(I
p,•) = 0, q ≥ 1 (2.2)
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to the double complex I•,• = (Ip,q)p,q∈Z+ . (See Section 3.3.) We have the

slope zero E•,0
1 -term sequence

E0,0
1

d0,0
1 �� E1,0

1

d1,0
1 �� E2,0

1

d2,0
1 �� · · ·

A0 d0
�� A1 d1

�� A2 d2
�� · · ·

(2.3)

Therefore, Ep,0
2 = Hp(E•,0

1 ) = Hp(A•) holds. Since we have

0 = Ep−2,1
2 → Ep,0

2 → Ep+2,−1
2 = 0,

we get Ep,0
2 ≈ Ep,0

∞
≈−→ Ep. The abutment Ep is the total cohomology Hp(I•)

of the single complex I• where In =
⊕

p+q=n Ip,q of the double complex I•,•.
That is, we obtain a complex I• consisting of injective objects In, n ≥ 0, which
is quasi-isomorphic to A•, i.e.,

Ep,0
2 = Hp(A•) ≈−→ Hp(I•) = Ep.

For an additive left exact functor F from A to B we can give the definition
of the derived functor RF from D+(A ) to D+(B) as we did in Section 2.7 in
Chapter II as follows. Let I• be an injective complex which is quasi-isomorphic
to A• ∈ Ob(D+(A )). Define the derived functor RFA• of A• by FI• ∈
Ob(D+(A )), i.e.,

RFA• := FI•. (2.4)

Define also

R
jFA• := Hj(FI•). (2.5)

Note that for an injective object Ip we haveEp,q
1 = RqFIp = 0, q ≥ 1. Then the

abutment RjF̄A•, the hyperderived functor, is isomorphic to the cohomology
Hj(E•,0

1 ) = Hj(R0FI•) = Hj(FI•). Therefore, the right hand-side of (2.5)
is isomorphic to the hyperderived functor, i.e.,

R
jFA• ≈−→ RjF̄A•. (2.6)

Let us observe that for the additive left exact functor F : A � B, a

quasi-isomorphism A• s•−→ I• is assigned to FA• Fs•−−→ FI•. By taking the

cohomology the induced morphism becomes Hj(FA•)
Hj(Fs•)−−−−−→ Hj(FI•).
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Namely, for the quasi-isomorphism A• s•−→ I• we have the following diagram

FA• Fs• ��

Hj

��
��
��
��
��

RFA• := FI•

Hj(FA•)
Hj(Fs•)

��
R

jFA• ≈ �� RjF̄A•

≈
��

Hj(FI•).

(2.7)

Let us re-write the above diagram for the case of an injective resolution A
ε−→ I•

of a single object A ∈ Ob(A ):

FA
Fε ��

Hj

��
��
��
��
��

RFA := FI•

Hj(FA)
Hj(Fε)

�� Hj(FI•) : RjFA

R
jFA.

(2.8)

The right hand-side of the lower part of the above diagram (2.8) indicates that
the derived functor, as defined in Chapter II, coincides with the notion of the
derived functor in the sense of the derived category. Since the left hand-side
of the lower part of (2.8) is the cohomology of the single object FA we have
Hj(FA) = 0 for j ≥ 1 and H0(FA) ≈ FA.

Next we will confirm that two quasi-isomorphisms s• and r• from A• to two
injective complexes

I•
′r• �������� K•

A•

s•



r• �� J•

′s•

�
�
�
�
�
�

(2.9)

provide the isomorphic objects FI• and FJ• in D+(B). By QIS.2 in Subsec-
tion 4.1.2 (whose proof is not given here), we can complete the square as in
(2.9) by quasi-isomorphisms ′s• and ′r• where the complex K• is the direct
sum of I• and J•. Then the functor F takes the commutative diagram (2.9) to
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the following commutative diagram

FI•
F ′r• �� FK•

FA•

Fs•



Fr• �� FJ•

F ′s•



(2.10)

whose cohomologies are

Hj(FI•)
Hj(F ′r•) �� Hj(FK•)

Hj(FA•)

Hj(Fs•)



Hj(Fr•) �� Hj(FJ•).

Hj(F ′s•)



(2.11)

The first row of (2.11) is Hj(FI•) = RjF̄ I• → Hj(FK•) = RjF̄K• (as
shown in Subsection 4.1.2) since Ep,q

1 (I•) = RqFIp = 0 and

Ep,q
1 (K•) = RqFKp = 0

for q ≥ 1. On the other hand, for the quasi-isomorphism ′r• : I• → K•, the
isomorphism between the ′Ep,q

2 -terms

′Ep,q
2 (I•) = RpF (Hq(I•)) ≈−→ ′Ep,q

2 (K•) = RpF (Hq(K•))

induces the isomorphism between abutments

Ej(I•) = RjF̄ I•

and Ej(K•) = RjF̄K•. Consequently the morphism F ′r• : FI• → FK•

(and similarly, F ′s• : FJ• → FK•) is a quasi-isomorphism. (See Subsection
4.1.1 for the above argument.) Therefore, we get the isomorphism between
Hj(FI•) and Hj(FJ•). Hence, the definition of RFA• in (2.4) is independent
of the choice of quasi-isomorphism from A• to an injective complex I•. Note
also that Hj(Fs•) and Hj(Fr•) need not be isomorphisms for j ≥ 1.



126 Derived Categories

The process from Co(A ) to D(A ) through K(A ) is and from F : A � B
to RF : D(A ) � D(A ) are summarized in the following diagram:

D(A ) RF ������������������ D(B)

K(A )

QA


��
��
��

KF ������������������ K(B)

QB


��
��
��

Co(A )

H0

��
��
��
��

qA


��
��
��

CoF ���������������� Co(B)

qB


��
��
��

H0

�� ��
��
��

A

incl.


��
��
��

F ���������������������� B,

incl.


��
��
��

(2.12)

where qA is defined by (1.5). Namely, for g ◦ f ∼ 1 we have [g ◦ f ] = [1], i.e.,
[g] ◦ [f ] = 1 in K(A ). The functor QA assign a quasi-isomorphism in K(A )
to an isomorphism in D(A ). That is, for objects A• and B• in K(A ) consider

A•

r•q-i

��

f•

���
��

��
��

��
��

��
��

��
B•

t•q-i

��
I• J•

(2.13)

in K(A ) where q-i is a quasi-isomorphism, and I• and J• are injective com-
plexes as in Section 4.2. Then the functor QA assigns the morphism to

A•

QA r•≈

��

φ =f•/t• ��

QA f•

���
��

��
��

��
��

��
��

��
B•

QA t•≈

��
I• �� J•

(2.14)

in D(A ) where all the quasi-isomorphisms become isomorphism. Note that
in D(A ) we can have the morphism QA f• ◦ (QA r•)−1 : I• → J•. Finally



Derived Categorical Derived Functors 127

RF : D(A ) � D(B) takes the diagram (2.14) to

RFA• RFφ ��

����
���

���
���

���

≈
��

RFB•

≈
��

RFI• RFJ•

FI• �� FJ•

(2.15)

where in D(B) we can define RFφ : RFA• → RFB• by

F (QA f• ◦ (QA t•)−1) = F (QA f•) ◦ F ((QA t•)−1) = Ff•/Ft•.

As an application of the concept of a derived category, we consider the case
of a composite functor as in Subsection 3.3.2. Namely, let F be a left exact
additive functor of abelian categories A and B with enough injectives and let
G : B � C also be a left exact functor to the abelian category C . Furthermore,
assume that the image object FI in B of an injective object I of A is G-acyclic,
i.e., RjG(FI) = 0 for j ≥ 1. As in Subsection 3.3.2, for the diagram

A
F ����������������

G◦F

����
��

��
��

��
��

��
��

��
��

B

G

��
��
��
��
��
��
��
��

C

we have the commutative diagram for the 0-th derived functors

A
R0F ����������������

R0(G◦F )

����
��

��
��

��
��

��
��

��
��

B

R0G

��
��
��
��
��
��
��
��

C ,

(2.16)

i.e., R0(G ◦ F ) ≈ G ◦ F ≈ R0G ◦ R0F . The concept of a derived category
enables this commutativity even for higher cohomologies. That is, we have
the commutative diagram of the derived categories associated with the above
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(2.16):

D+(A ) RF ����������������

R(G◦F )

��56
56

56
56

56
56

56
56

56
56

56
56

D+(B)

RG

��
��
��
��
��
��
��
��

D+(C ),

(2.17)

i.e, we have
R(G ◦ F ) = RG ◦ RF. (2.18)

We will prove (2.18) as follows. For an object A• of D+(A ), let I• be an
injective complex which is quasi-isomorphic to A•. By the definition of the
derived functor RFA• of F , we have RFA• = FI•. Next we will compute
RG(FI•) as follows. The cohomology R

jG(FI•) of the complex RG(FI•) in
D+(C ) is the hyperderived functor RjḠ(FI•). One of the spectral sequences
having the hyperderived functor RjḠ(FI•) as the abutment is

Ep,q
1 = RqG(FIp) (2.19)

as in (3.43). By the G-acyclicity assumption on FIp we have Ep,q
1 = 0 for q ≥ 1

where Ep,0
1 = R0G(FIp) ≈ G(FIp). The spectral sequence of Ep,q

1 -terms
with slope zero becomes

· · · �� Ep−1,0
1

�� Ep,0
1

�� Ep+1,0
1

�� · · ·

· · · �� (G ◦ F )Ip−1 �� (G ◦ F )Ip �� (G ◦ F )Ip+1 �� · · · .

(2.20)

Then Ep,q
2 = Hp((G ◦ F )I•) satisfying Ep,0

2 ≈ Ep,0
∞ ≈ Ep = RpḠ(FI•).

Summarizing the above we get

Ep,0
2 = R

p(G ◦ F )A• :=
:= Hp((G ◦ F )I•) ≈
≈ Ep = RpḠ(FI•) =
= R

pG(FI•).

Namely, the two complexes R(G ◦ F )A• and RG(FI•) = RG(RFA•) are
quasi-isomorphic. Therefore, as objects in D+(C ) we have

R(G ◦ F )A• ≈ RG(RFA•).
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4.3 Triangles
Let A be an abelian category. We will define an autofunctor [n] on the

category Co(A ) of complexes as follows:

[n] : Co(A ) � Co(A ) (3.1)

is defined by [n]A• := A•+n and [n]d•
A• := (−1)nd•+n

A• for

(A•, d•
A•) ∈ Ob(Co(A )).

We usually write A[n]• and dA• [n]• for [n]A• and [n]d•
A• respectively. Namely,

A[n]j = Aj+n and dA• [n]j = (−1)ndj+n
A• . For example, for [1] : Co(A ) �

Co(A ) a morphism f• : A• → B• in Co(A ), i.e., more explicitly

· · · �� Aj
dj

A• ��

fj

��

Aj+1 ��

fj+1

��

· · ·

· · · �� Bj
dj

B• �� Bj+1 �� · · · ,

[1]f• = f [1]• : A[1]• → B[1]• becomes

· · · �� Aj+1
−dj+1

A• ��

fj+1

��

Aj+2 ��

fj+2

��

· · ·

· · · �� Bj+1
−dj+1

B• �� Bj+2 �� · · · .

Let f• : A• → B• and g• : B• → C• be two morphisms of complexes

in K(A ). Then we have A• f•
−→ B• g•−→ C•. When there is a morphism

h• : C• → A[1]• in K(A ),

A• �� B• �� C• �� A[1]• (3.2)

is said to be a triangle in K(A ). We sometimes write such a triangle (3.2) as

A•

f•
���

��
��

��
� C•h•

[1]
��

B•
g•

����������
(3.3)

A morphism of triangles is (α•, β•, γ•, α[1]•) of the commutative diagram of
the top and bottom triangles of

A•

α•

��

f•
�� B•

β•

��

g• �� C•

γ•

��

h•
�� A[1]•

α[1]•

��
′A•

′f•
�� ′B•

′g• �� ′C•
′h•

�� ′A[1]•

(3.4)
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in K(A ). When α•, β• and γ• are isomorphisms of K(A ), triangles

A• �� B• �� C• �� A[1]•

and
′A• �� ′B• �� ′C• �� ′A[1]•

are said to be isomorphic triangles.
For an arbitrarily given morphism f• : A• → B• of complexes, we can

construct a complex C•
f• and morphisms b• and a• so that

A• �� B• b• �� C•
f•

a•
�� A[1]• (3.5)

may become a triangle. Define the complex C•
f• by

Cj
f• := Aj+1 ⊕ Bj = A[1]j ⊕ Bj (3.6)

and dj
C• : Cj

f• → Cj+1
f• by

dj
C•

(
xj+1

yj

)
=

[
dA• [1]j 0
f [1]j dj

B•

](
xj+1

yj

)
=

=
(

−dj+1
A• (xj+1)

f j+1(xj+1) + dj
B•(yj)

)
∈ Cj+1

f•

(3.7)

Then we have

dj+1
C• ◦ dj

C•

((
xj+1

yj

))
=

=
(

dj+2
A• ◦ dj+1

A• (xj+1)
f j+2(−dj+1

A• (xj+1)) + dj+1
B• (f j+1(xj+1) + dj

B•(yj))

)
=

=
(

0
0

)
∈ Cj+2

f•

from the commutativity of the diagram

· · · �� Aj

fj

��

dj
A• ��

fj

��

Aj+1

fj+1

��

dj+1
A• �� Aj+2

fj+2

��

�� · · ·

· · · �� Bj
dj

B• �� Bj+1
dj+1

B• �� Bj+2 �� · · · .

(3.8)

Namely, (C•
f• , d•

C•) is a complex. For C•
f• = A[1]•⊕B• define b• : B• → C•

f•

and a• : C•
f• → A[1]• in (3.5) by b• :=

[ 0•
1•

B•

]
and a• := [1A• [1]•, 0•]. Then
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(3.5) becomes a triangle. Notice that 0 → B• → C•
f• → A[1]• → 0 is an

exact sequence in Co(A ). A triangle A• → B• → C• → A[1]• is said to be a

distinguished triangle when for a morphism ′A• ′f•
−−→ ′B• of complexes there

is an isomorphism of triangles

A• f•
��

≈
��

B• g• ��

≈
��

C• h•
��

≈
��

A[1]•

≈
��

′A•
′f•

�� ′B•
′b• �� C•

′f•
′a•

�� ′A[1]•

(3.9)

in K(A ).
The complex C•

f• in (3.5) is said to be the mapping cone of f• : A• → B•.
Notice that C•

f• depends upon a homotopy equivalence class. Namely, if we
have f•

1 ∼ f•
2 then there is an isomorphism C•

f•
1
≈ C•

f•
2

in K(A ). For f• :
A• → B•, we will define another complex ′C•

f• so that the associated triangles

A• f•
�� B•

′b•

��

b• �� C•
f•

a•
�� A[1]•

A• ι• �� ′C•
f•

π•
�� C•

f•
a•

�� A[1]•

(3.10)

become isomorphic triangles. Define the complex by
′C•

f• := A• ⊕ A[1]• ⊕ B•, (3.11)

where d•
′C• : ′Cj

f• → ′Cj+1
f• is defined as




dj

A• −1j+1 0
0 dA• [1]j 0
0 f [1]• dj

B•








xj

xj+1

yj



 =




dj

A•(xj) − xj+1

−dj+1
A• (xj+1)

f j+1(xj+1) − dj
B•(yj)



 . (3.12)

Then by the commutative diagram (3.8) we have dj+1
′C• ◦ dj

′C• = 0 obtaining
the complex ′C•

f• which is said to be the mapping cylinder of f• : A• → B•.
Morphisms ι•, π• and ′b• in (3.11) are given by

ι• :=




1•

0
0



 , π• :=
[
0 1• 0
0 0 1•

]
, and ′b• =




0
0
1•



 . (3.13)

Define ′a• : ′C•
f• → B• by

′aj




xj

xj+1

yj



 := f j(xj) + yj .
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Then we have ′a• ◦ ′b• = 1B• . Notice, however, that ′b• ◦ ′a• is not 1′C•
f• , but

homotopic to 1C•
f• , i.e., ′b• ◦ ′a• ∼ 1C•

f• . That is, by defining

s• : ′C•
f• → ′C•

f• [−1]

in the diagram

· · · �� ′Cj−1
f•

�� ��

�� ′Cj
f•

sj

��"""
"""

"""
"""

"

1j

C•
f• ��

′bj◦′aj

��

dj
′C• �� Cj+1

f• ��

sj+1

��"""
"""

"""
"""

"

�� ��

�� · · ·

· · · �� ′Cj−1
f•

dj−1
′C•

�� ′Cj
f• �� ′Cj+1

f• �� · · ·

as sj
( xj

xj+1

yj

)
=

(
0
xj

0

)
, we get

1j
′C•

f•
− ′bj ◦ ′ak = sj+1 ◦ dj

′C• + dj−1
′C• ◦ sj ,

i.e., ′bj ◦ ′aj is homotopic to 1′C•
f• . The cohomology

Hj(′b• ◦ ′a•) = Hj(′b•) ◦ Hj(′a•) = Hj(1′C•
f• ) = 1Hj(′C•

f•)

implies that the quasi-isomorphisms ′a• and ′b• are isomorphisms in D(A ).
Summarizing the above computation: for a morphism f• : A• → B• in

Co(A ) we have the commutative diagram

0 �� B• b• ��

′b•

��

C•
f•

a•
�� A[1]• �� 0

0 �� A• ι• �� ′C•
f•

′a•

��

π•
�� C•

f• �� 0

A• �� B•

(3.14)

satisfying ′a• ◦ ′b• = 1B• and ′b• ◦ ′a• ∼ 1C•
f• . In D(A ), ′a• and ′b• are

isomorphisms between B• and ′C•
f• .

4.4 Triangles for Exact Sequences
For a short exact sequence

0 �� ′A• �� A• �� ′′A• �� 0 (4.1)
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in the category Co+(A ) of complexes of an abelian category A , through the
connecting morphisms ∂j : Hj(′′A•) → Hj+1(′A•), j ≥ 0, we get the long
exact sequence on cohomology

0 �� H0(′A•) �� H0(A•) �� H0(′′A•) ∂0
�� H1(′A•) �� · · · .

Our next topic is the long exact sequence associated with a distinguished triangle
of D(A ). By the definition such a triangle is isomorphic to a triangle in D(A )

of the form A• f•
−→ B• b•−→ C•

f•
a•
−→ A[1]•. Furthermore, it is isomorphic to a

triangle A• ι•−→ ′C•
f•

π•
−→ C•

f•
a•
−→ A[1]• as is shown in Section 4.3. In K(A ),

such a distinguished triangle is quasi-isomorphic to A• ι•−→ ′C•
f•

π•
−→ C•

f•
a•
−→

A[1]•.
Extract the following split short exact sequence from (3.14)

0 �� A• ι• �� ′C•
f•

π•
�� C•

f• �� 0 (4.2)

in Co(A ). Then in A we obtain the long exact sequence

· · · �� Hj(A•)
Hj(ι•) �� Hj(′C•

f•)
Hj(π•)�� Hj(C•

f•) ∂j
��

∂j
�� Hj+1(A•)

Hj+1(ι•) �� · · ·

(4.3)

where ∂j : Hj(C•
f•) → Hj+1(A•) is the connecting morphism as defined in

(8.9) in Chapter II. Then we will prove

∂j = Hj(a•) (4.4)

where a• : C•
f• → A[1]• is in the triangle A• → ′C•

f• → C•
f•

a•
−→ A[1]•.

Recall that the definition of the connecting morphism ∂j is ∂j(′′cj) = ′cj+1 as in
(8.9) in Chapter II, where ′′cj ∈ ker dj

C• ⊂ Cj
f• and ′cj+1 ∈ ker dj+1

A• ⊂ Aj+1.
Note that

dj
C•(′′cj) = dj

C•

(
xj+1

yj

)
=

(
−dj+1

A• (xj+1)
f j+1(xj+1) + dj

B•(yj)

)
=

(
0
0

)

as in (3.7). Namely,
{

dj+1
A• (xj+1) = 0

f j+1(xj+1) + dj
B•(yj) = 0.

(4.5)
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On the other hand, recall that ′cj+1 in ∂j(′′cj) = ′cj+1 satisfies

ιj+1(′cj+1) =




−′cj+1

0
0



 = dj
′C•(cj).

Those cj and ′′cj are related as

πj(cj) = ′′cj =
(

xj+1

yj

)
.

By Definition (3.12) of dj
′C• ,

dj
′C•(cj) = dj

′C•




xj

xj+1

yj



 =




dj

A•(xj) − xj+1

−dj+1
A• (xj+1)

f j+1(xj+1) + dj
B•(yj)



 . (4.6)

From (4.5), the second and third rows are zero. In order to have



−′cj+1

0
0



 = dj
′C•




xj

xj+1

yj



 ,

we must have −′cj+1 = dj
A•(xj) − xj+1, i.e., the first row of (4.6). Conse-

quently, we get

∂j(′′cj) = ′cj+1 = xj+1 − dj
A•(xj) =

= xj+1 − dj
A•(xj) =

= xj+1 =

= Hj(a•)
(

xj+1

yj

)
=

= Hj(a•)(′′cj).

That is, a distinguished triangle induces the long exact sequence of cohomolo-
gies.

As we saw, a distinguished triangle is isomorphic to

A• ι•−→ ′C•
f•

π•
−→ C•

f•
a•
−→ A[1]•.

For the short exact sequence (4.2) in Co(A ), we have the long exact sequence

(4.3). Let 0 → A• f•
−→ B• g•−→ C• → 0 be an arbitrary short exact sequence of
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complexes in Co(A ). We need quasi-isomorphisms ′g• and h• in the following
diagram.

A• f•
�� B• g• �� C• h•

�� A[1]•

A• ι• �� ′C•
f•

′a•



π•
�� C•

f•

′g•



a•
�� A[1].

(4.7)

Define ′g• : C•
f• = A[1]•⊕B• → C• in (4.7) by ′gj(xj+1, yj) = gj(yj). Then

define h• : C• → A[1]• to satisfy h• ◦ ′g• = a• in (4.7). Note that since is g•

is epimorphic, for zj ∈ Cj , there is yj ∈ Bj to satisfy hj(zj) = hj(g(yj)).
By the above definition of ′g• we get

hj(zj) = hj(g(yj)) = hj(′gj(xj+1, yj)) = aj(xj+1, yj) = xj+1.

From the distinguished triangle A• ι•−→ ′C•
f•

π•
−→ C•

f•
a•
−→ A[1]• we obtain the

long exact sequence in (4.3). We still need to prove that ′g• : C•
f• → C• is a

quasi-isomorphism; then we can replace the long exact sequence (4.3) by the
long exact sequence

· · · �� Hj(A•) �� Hj(B•) �� Hj(C•) �� Hj+1(A•) �� · · ·

associated with 0 → A• → B• → C• → 0. (We have already proved that
′a• : ′C•

f• → B• is a quasi-isomorphism in (4.3).) As we noted in the above,
′g• : C•

f• → C• is epimorphic. For the short exact sequence

0 �� ker ′g• �� C•
f•

′g• �� C• �� 0 (4.8)

in Co(A ), we get the corresponding long exact sequence

· · · �� Hj(ker ′g•) �� Hj(C•
f•) �� Hj(C•) �� Hj+1(ker ′g•) �� · · · .

We need to prove Hj(ker ′g•) = 0 to conclude the quasi-isomorphism from

C•
f•

′g•−−→ C•. First we have ker ′g• = A[1]• ⊕ ker g•. Since

0 → A• f•
−→ B• g•−→ C• → 0

is exact, we have ker ′g• = A[1]• ⊕ im f•. The differential d•
ker ′g• of the

complex ker ′g•:

dj
ker ′g• : A[1]j ⊕ im f j → A[1]j+1 ⊕ im f j+1 (4.9)
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is defined as

dj
ker ′g•(x

j+1, f j(xj)) := (−dj+1
A• (xj+1), f j+1(xj+1 + dj

A•(xj))). (4.10)

Then we have
dj+1

ker ′g• ◦ dj
ker ′g• = 0,

i.e., imdj−1
ker ′g• ⊂ ker dj

ker ′g• . An element (xj+1, f(xj)) ∈ A[1]j ⊕ im f j of

ker dj
ker ′g• satisfies −dj+1

A• (xj+1) = 0 and f j+1(xj+1 + dj
A•(xj)) = 0. Since

f• is a monomorphism, we get

xj+1 + dj
A•(xj) = 0.

For (xj+1, f j(xj)) ∈ ker dj
ker ′g• , let us compute dj−1

ker ′g• :

dj−1
ker ′g•(x

j , 0) = (−dj
A•(xj), f j(xj + dj−1

A• (0))) = (xj+1, f j(xj)).

Namely, ker dj
ker ′g• ⊂ im dj−1

ker ′g• holds. Consequently, Hj(ker ′g•) = 0, i.e.,

we get the isomorphism Hj(C•
f•) → Hj(C•). That is, C•

f•
′g•−−→ C• is a

quasi-isomorphism.

4.4.1 Properties of Distinguished Triangles
Distinguished triangles in K(A ) have the following properties, and these

properties characterize the totality of distinguished triangles.

(D.T.1) A triangle A• 1A•−−→ A• → 0• → A[1]• is a distinguished triangle.

Proof. This is because: by (D.T.4)

0•
f•
−→ A• 1A•−−→ C•

f• = A• → 0• = 0[1]•

is a distinguished triangle. This distinguished triangle is the triangle shifted
left by 1, i.e.,

0[−1]•
f•
−→ A• 1A•−−→ A• → 0•

of the triangle A• 1•A−→ A• → 0• → A[1]•. The proof will be complete after
(D.T.4) is proved.

(D.T.3) For an arbitrary morphism f• : A• → B•, there exist C•, g• : B•→C•

and h• : C• → A[1]• so that

A• f•
−→ B• g•−→ C• h•

−→ A[1]•

distinguished triangle.
(D.T.2) A triangle which is isomorphic to a distinguished triangle is also a
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is a distinguished triangle.

Proof. We have already constructed such an object C• as C•
f• , morphisms

g•, h• as b• and a•, respectively, in (3.5). Namely, C• = C•
f• , b =

[ 0•
1•

B•

]

and a• = [1A• [1]•, 0•].

(D.T.4) A triangle A• f•
−→ B• g•−→ C• h•

−→ A[1]•

B• g•−→ C• h•
−→ A[1]•

−f [1]•−−−−→ B[1]•

is a distinguished triangle.

Proof.

(⇒) From (D.T.2) we may prove the statement for a distinguished triangle

of the form A• f•
−→ B• b•−→ C•

f•
a•
−→ A[1]•. Then for the triangle

B• b•−→ C•
f•

a•
−→ A[1]•

−f [1]•−−−−→ B[1]• to be distinguished it is enough to
prove an isomorphism between the following triangles:

B• b• �� C•
f•

a•
�� A[1]•

γ•

��

−f [1]• �� B[1]•

B• b• �� C•
f•

c• �� C•
b•

′b• �� B[1]•,

(4.11)

where C•
b• is the cone of b• : B• → C•

f• . Namely, C•
b• := B[1]•⊕C•

f•

and the differential d•
b• on C•

b• is given by

d•
b• :=

[
d•

B[1]• 0•

b[1]• d•
C•

]

as in (3.7). Furthermore, for C•
f• = A[1]• ⊕ B•, we have

b[1]• =
[

0•

1B• [1]•

]
and d•

C• =
[
dA• [1]• 0•

f [1]• d•
B•

]
.

More explicitly, we can write the differential d•
b• defined above, as

d•
b• =




d•

B[1]• 0• 0•

0• d•
A[1]• 0•

1B• [1]• f [1]• d•
B•



 . (4.12)

As we computed in (3.8) we can confirm dj+1
b• ◦ dj

b• = 0.

and only if
is a distinguished triangle if
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Next we will define γ• : A[1]• → C•
b• so that γ• becomes an isomor-

phism in K(A ). For

γ• : A[1]• → C•
b• = B[1]• ⊕ C•

f• = B[1]• ⊕ A[1]• ⊕ B•,

if we define

γ• :=




f [1]•

1A• [1]•

0•



 , (4.13)

γ• is a morphism of complexes. Then γ• also becomes a morphism of
triangles, i.e., γ• ◦ a• = c• in K(A ). This is because c• and γ• ◦ a• are
homotopic in Co(A ). Namely, for c• and γ• ◦ a• from C•

f• to C•
b• :

· · · �� Cj−1
f•

�� ��

�� Cj
f•

sj

���
�

�
�

�� ��

�� Cj+1
f• ��

sj+1

���
�

�
�

�� ��

�� · · ·

· · · �� Cj−1
b•

�� Cj
b•

�� Cj+1
b•

�� · · · ,

(4.14)

we need s• : C•
f• → Cb• [−1]• to satisfy

c• − γ• ◦ a• = s[1]• ◦ d•
C• − db• [−1]• ◦ s•. (4.15)

Such an s• is:

s• :=




0• 1•B•

0• 0•

0• 0•



 , (4.16)

i.e., sj
(

aj+1

bj

)
=

(
bj

0
0

)
. Then for

(
aj+1

bj

)
∈ Cj

f• , the right and the left

hand-sides of (4.15) become



−f j+1(aj+1)

0
bj



 .

Consequently, c• andγ•◦a• are homotopic, i.e., γ• becomes a morphism
of triangles. Lastly, we will prove that γ• is an isomorphism in K(A ).
ForC•

b• = B[1]•⊕A[1]•⊕B• define δ• : C•
b• → A[1]• as the projection,

i.e.,

δj




bj+1

aj+1

bj



 = aj+1.

Then we have

(δj ◦ γj)(aj+1) = δj




f j+1(aj+1)

aj+1

0



 = aj+1,
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i.e., δ• ◦ γ• = 1•A[1]• . On the other hand, since we get

(δj ◦ γj)




bj+1

aj+1

bj



 = γj+1(aj+1) =




f j+1(aj+1)

aj+1

0



 ,

we look for a homotopy morphism tj : Cj
b• → Cj−1

b• satisfying

γ• ◦ δ• − 1•C•
b•

= t[1]• ◦ d•
b• − db• [−1]• ◦ t•.

Choose such a t• as

t• :=




0• 0• 1•B•

0• 0• 0•

0• 0• 0•



 .

Then we can confirm that γ• ◦ δ• is indeed homotopic to 1•C•
b•

.

(⇐) The converse of (D.T.4) can be proved by the repeated use (e.g., six
times) of the above first half of the assertion. That is, we get the distin-
guished triangle

A[2]•
f [2]• �� B[2]•

g[2]• �� C[2]•
h[2]• �� A[3]•

which is isomorphic to A• f•
−→ B• g•−→ C• h•

−→ A[1]•.

Recall that the proof of (D.T.1) can be completed by (D.T.4).

(D.T.5) For two distinguished triangles

A• f•
−→ B• g•−→ C• h•

−→ A[1]•

and
′A• ′f•

−−→ ′B• ′g•−−→ ′C• ′h•
−−→ ′A[1]•,

if α• : A• → ′A• and β• : B• → ′B• are given satisfying ′f•◦α• = β•◦f•,
then there exists γ• : C• → ′C• making the diagram

A• f•
��

α•

��

B• g• ��

β•

��

C• h•
��

γ•

���
�
� A[1]•

α[1]•

��
′A•

′f•
�� ′B•

′g• �� ′C•
′h•

�� ′A[1]•

(4.17)

commutative.
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Proof. It is enough to prove the commutativity of diagram (4.17) for the
case where C• = C•

f• and ′C• = C•
′f• . Then we can let

γ• := α[1]• ⊕ β• : C•
f• → C•

′f•

to get b•◦β• = (α[1]•⊕β•)◦′b• where b• : B• → C•
f• and ′b• : ′B• → C•

′f•

defined by

b• :=
[

0•

1•B•

]
, and ′b• :=

[
0•

1•′B•

]
,

respectively.

4.4.2 Property (D.T.6) of Distinguished Triangle
Let f• : A• → B• and g• : B• → C• be given. Then by (D.T.3) we get

distinguished triangles corresponding to f• and g•. Also for g•◦f• : A• → C•

we have a distinguished triangle. That is, for the middle commutative triangular
diagram, we obtain three distinguished triangles

C•
f•

f̃•

CCN
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N
N

N

a•

33J
JJ

JJ
JJ

JJ
JJ

JJ
JJ

JJ
J

C•
g•

b[1]•◦′b•��� � � � � � � � � � � � � � � � � � � � � � � �

′b•

DDOOOO
OOOO

OOOO
OOOO

OOOO
OOO

B•

b•
EE???????????????????????

g•

���
��

��
��

��

A•

f•
����������� g•◦f•

�� C•

c•

		FFFFFFFFFFFFFFFFFF

′c•

FFPP
PP
PP
PP
PP
PP
PP
PP
PP
PP
PP
PP
P

C•
g•◦f•

′a•

GGQQQQQQQQQQQQQQQQQQQQQQQQQ

g̃•

667
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7
7

7

(4.18)

Then we assert:

(D.T.6) There exist f̃• : C•
f• → C•

g•◦f• and g̃• : C•
g•◦f• → C•

g•

C•
f•

f̃•
�� C•

g•◦f•
g̃• �� C•

g•
b[1]•◦′b• �� Cf• [1]• (4.19)

as shown in (4.18) and satisfying a• = ′a• ◦ f̃• and c• = g̃• ◦ ′c•.

to form
the distinguished triangle
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Then we also have f• ◦ ′a• = ′b• ◦ g̃• and f̃• ◦ b• = ′c• ◦ g•.

Proof. We need to find such an f̃• : C•
f• → C•

g•◦f• so as to make C•
g• and C•

f̃•

isomorphic. Since C•
f• = A[1]• ⊕ B• and C•

g•◦f• = A[1]• ⊕ C•, the natural

choice for f̃• is

f̃• :=
[
1A• [1]• 0•

0• g•

]
, (4.20)

i.e., f̃ j(aj+1, bj) = (aj+1, gj(bj)). Since g̃• is from C•
g•◦f• = A[1]• ⊕ C• to

C•
g• = B[1]• ⊕ C•, g̃• should be

g̃• :=
[
f [1]• 0•

0• 1•C•

]
. (4.21)

Let us prove that there is an isomorphism between the following triangles:

C•
f•

f̃•
�� C•

g•◦f•
g̃• �� C•

g•
b[1]•◦′b• ��

δ•

��

Cf• [1]•

C•
f•

f̃•
�� C•

g•◦f•
∗c• �� C•

f̃•
′′c• �� Cf• [1]•

Since δ• is from C•
g• = B[1]• ⊕ C to

C•
f̃• = Cf• [1]• ⊕ C•

g•◦f• = (A[1]• ⊕ B•)[1] ⊕ (A[1]• ⊕ C•) =

= A[2]• ⊕ B[1]• ⊕ A[1]• ⊕ C•,

δ• needs to be an identity morphism. To be precise,

δ• :=





0• 0•

1B• [1]• 0•

0• 0•

0• 1•C•



 .

On the other hand

′δ• : C•
f̃• = A[2]• ⊕ B[1]• ⊕ A[1]• ⊕ C• −→ C•

g• = B[1]• ⊕ C•

needs to be defined so that the image (0, bj+1, 0, cj) of (bj+1, cj) by δ• may be
(bj+1, cj) by ′δ•. Hence, let

′δ• :=
[
0• 1B• [1]• f [1]• 0•

0• 0• 0• 1•C•

]
.
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Then we have ′δ• ◦ δ• = 1•C•
g•

. Since δ• ◦ ′δ• does not equal 1•C•
f̃•

we need to

prove that δ• ◦ ′δ• is homotopic to 1•C•
f̃•

. If we define sj : Cj

f̃• → Cj−1

f̃• by

s• :=





0• 0• 1A• [1]• 0•

0• 0• 0• 0•

0• 0• 0• 0•

0• 0• 0• 0•



 ,

then we obtain

1•C•
f̃•

− δ• ◦ ′δ• = s[1]• ◦ d•
f̃• − df̃• [−1]• ◦ s•.

That is, in K(A ), δ• is an isomorphism. One can confirm that ′δ• is a morphism
of triangles, i.e., g̃• = ′δ• ◦ ∗c•. Confirm also that the commutativity of all the
triangular diagrams in (4.18). Finally, two-way two paths connecting B• and
C•

g•◦f• also satisfy the commutativity.

4.4.3 Remarks on Diagram (4.18)
There are other ways to write diagram (4.18) for (D.T.6). For example, we

can write (4.18) as

B•

b•

HH77
77
77
77
77
77
77
77
77
77
77
77
77
77
7 g•

''''
'''

'''
'''

'''
'

A•

f•
)):::::::::::::::
g•◦f•

�� C•

′c•

BBMM
MM
MM
MM
MM
MM
MM
MM
MM
MM
MM
MM
MM
MM
MM

c•

��
C•

f•

a•



f̃• ���
������ C•

g•
b[1]•◦′b•��� � � � � � � � � � � � � � �

′b•

IIAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

C•
g•◦f•

′a•

JJAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA g̃•

���������

(4.22)
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or as

C•
f•

a•

����
��
��
��
��
��
��
��
��
��
��
��
��
�� f̃•

���
����

B•

b•
44���������

g•

���
��

��
��

��
��

��
��

��
��

��
�

C•
g•◦f•

g̃•

,,I
I

I
I

I
I

I
I

′a•

00:::
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::
:

A•

f•

!!8888888888888888

g•◦f•
<<RRRR

RRRR
RRRR

RRRR
RRRR C•

g•

′b•
��--------------------------------------

b[1]•◦′b•

KK.
.

.
.

.
.

.
.

.
.

.
.

.
.

.

C•

′c•

667777777777777777777777 c•

LLSSSSSSSSSSSSSSSSSSSSSSSS

(4.23)

The property (or axiom) (D.T.6) is said to be the octahedral property (or axiom)
because of the octahedral shape of the diagram (4.22).

4.4.4 Distinguished Triangles in Derived Categories
First we will define a distinguished triangle in the derived category D(A )

via the notion of a distinguished triangle in K(A ). Let φ• : A• → B• and
ψ• : B• → C• be morphisms in D(A ). For a morphism λ• : C• → A[1]• we
have the triangle

A• φ•
�� B• ψ•

�� C• λ•
�� A[1]• (4.24)

in D(A ). Then the triangle (4.24) is said to be a distinguished triangle in D(A )
when the following are satisfied: for a distinguished triangle

′A• f•
�� ′B• g• �� ′C• h•

�� ′A[1]• (4.25a)

in K(A ) there is an isomorphism of D(A ) from triangle (4.25a) to triangle
(4.24). That is, for the localizing functor

QA : K(A ) � D(A )

as in (1.7), the triangle

′A• QA f•
�� ′B• QA g• �� ′C• QA h•

�� ′A[1]• (4.25b)

in D(A ) is isomorphic to triangle (4.24).
Let us verify some of the properties (D.T.1) through (D.T.6). Let

φ• : A• → B•
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be a morphism in D(A ). Choose a representative (f•, s•) of φ• = f•/s• as in
(1.12). Namely, we have

′B•

A•

f•
����������

φ•
�� B•,

s•



which give us the following diagram

A• f•
�� ′B•

′b• �� C•
f•

a•
�� A[1]•

A•

1•
A•



φ•
�� B•

s•



′b•◦s•/1C•
f•

�� C•
f•

1C•
f•



a•/1•
A[1]• �� A[1]•.

1•
A[1]•


(4.26a)

The first row of (4.26a) becomes a distinguished triangle in K(A ) by the con-
struction of the mapping cone of f• in (3.5). Then the functor QA : K(A ) �
D(A ) takes this distinguished triangle to the triangle in D(A )

A• f•/1′B• �� ′B•
′b•/1•

C•
f•

�� C•
f•

a•/1A[1]• �� A[1]• (4.26b)

as QA s• becomes an isomorphism in D(A ). Namely, the triangle of D(A ) in
the second row of (4.26a) and the above triangle (4.26b) are isomorphic. That
is, an arbitrary morphism φ• : A• → B• of the derived category D(A ) can
be embedded into a distinguished triangle, i.e., property (D.T.3) of Subsection
4.4.1.

Next, let us verify (D.T.6) for the derived category D(A ). In D(A ), let
φ• : A• → B• and ψ• : B• → C• be morphisms. Then we have

ψ• ◦ φ• : A• → C•.

We also let φ• = f•/s• and ψ• = g•/t• as in (1.13). Then from (1.13), we get

B•
g•/t•

����
���

���
���

��

A•

f•/s•
���������������

′g•◦f•/′s•◦t•
�� C•.

(4.27)

By using the notation in (1.13), we have in K(A )

′B•
′g•

����
���

���
���

��

A•

f•
���������������
′g•◦f•

�� ′′C•.

(4.28)
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Note that there are quasi-isomorphisms s• : B• → ′B• and ′s•◦t• : C• → ′′C•.
By (D.T.6) for K(A ) in Subsection 4.4.2, for the three distinguished triangles
corresponding to f•, ′g• and ′g• ◦ f•

D•

f̃•

::@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@

[1]

���
��

��
��

��
��

��
��

� F •[1]

h̃•
��

[1]

MMSSSSS
SSSSS

SSSSS
SSSSS

SS

′B•

NNRRRRRRRRRRRRRRRRRRRRR

����
���

��

A•

���������
�� ′′C•

������������������

OOTT
TT
TT
TT
TT
TT
TT
TT
TT
TT

E•

[1]

PPUUUUUUUUUUUUUUUUUUUU

g̃•

!!888888888888888888888888888888888888888

(4.29)

we have the distinguished triangle in K(A )

D• f̃•
�� E• g̃• �� F • h̃•

�� D[1]•, (4.30)

as in (4.29), where D• = C•
f• , E• = C•

′g•◦f• and F • = C•
′g• . By the construc-

tion of the distinguished triangle in D(A ) for a morphism, i.e., (4.27), we have
in D(A )

D•

f̃•

::@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

@@
@@

[1]

��0
00

00
00

00
00

00
00

0
C•

g•
[1]

˜̃
h•

��� � � � � � � � � � � � � � � � � � � � � � �
[1]

MM44444
44444

44444
44444

44

′B•

EERRRRRRRRRRRRRRRRRRRRR

g•/t•

����
���

��

A•

f•/s• ���������
′g•◦f•/′s•◦t•

�� ′′C•

������������������

OOTT
TT
TT
TT
TT
TT
TT
TT
TT
TT

E•.

[1]

PPUUUUUUUUUUUUUUUUUUUU

˜̃g•

!!8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

8
8

(4.31)
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Since C•
g• = B[1]• ⊕ C• and C•

′g• = ′B[1]• ⊕ ′′C• and since B• → ′B• and
C• → ′′C• are quasi-isomorphisms, the functor QA : K(A ) � D(A ) takes
the distinguished triangle (4.29) to the triangle isomorphic to the triangle in
D(A )

D• = C•
f•

f̃•
−→ E• = C•

′g•◦f•
˜̃g•−→ C•

g• ≈ C•
′g•

˜̃
h•
−→ D[1]•, (4.32)

where, explicitly,
˜̃g• = (s[1]• ⊕ (′s• ◦ t•))−1 ◦ g̃•

and
˜̃
h• = (′b• ◦ s•/1•Cf• ) ◦ (b•/1•B[1]•)

as in (4.26a). Namely, the triangle in (4.31)

D• f̃•
−→ E• ˜̃g•−→ C•

g•
˜̃
h•
−→ D[1]•

is distinguished in D(A ), i.e., (D.T.6) for D(A ).
As for (D.T.4), the corresponding claim of (D.T.4) for D(A ) follows from

the diagram in (4.26a). Namely,

′B• �� C•
f• �� A[1]•

−f [1]• �� ′B[1]•

B• ��

s•



C•
f• ��

1•



A[1]•

1•



−φ[1]• �� B[1]•

s[1]•


(4.33)

if the first row triangle is distinguished in K(A ) then since s• is a quasi-
isomorphism, the second row triangle of (4.33) is a distinguished triangle in
D(A ). The converse is also confirmed in a similar way.

We will now confirm (D.T.5). That is, for two distinguished triangles in
D(A ) and morphisms α• and β• of D(A )

A•

α•

��

φ•
�� B•

β•

��

ψ•
�� C•

γ•

���
�
�

λ•
�� A[1]•

α[1]•

��
′A•

′φ•
�� ′B•

′ψ•
�� ′C•

′λ•
�� ′A[1]•

(4.34)

satisfying ′φ• ◦ α• = β• ◦ φ•, we need to construct γ• : C• → ′C• to satisfy
′ψ• ◦ β• = γ• ◦ ψ•. First, replace the above distinguished triangles of D(A )
by distinguished triangles of K(A ) that are mutually isomorphic in D(A ) as a
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pair. Let α• := ′α•/u• and β• := ′β•/v•. Consider the following diagram:

′′A•
′′f•

������� ′′B• ������� ′′C• �������� ′′A[1]•

A•

′α•
QQ9999999

f•

α•
@@V

VV
VV

VV
�� B•

′β•
QQ++++++++

β•
@@*

**
**

**
*

g• �� C•

′γ•
QQ9

9
9

9

γ•
@@V

V
V

V
�� A[1]•

����������

α[1]• ��0
00

00
00

0

′A•
′f•

��

u•



′B•
′g•

��

v•



′C•
′h•

��

w•

�
�
�
�
�
�
�

′A[1]•

u[1]•



(4.35)

where u• and v• are quasi-isomorphisms. Then by (QIS.2) in Subsection 4.1.2,
for

′′A•
′′′f•

�������� ′′′B•

′A•

u•



v•◦′f•
�� ′′B•

′u•

�
�
�
�
�
�

(4.36)

the far right square extracted from the above (4.35), we can have a quasi-
isomorphism ′u• and a morphism ′′′f• as indicated in (4.36). Since ′u• and v•

are both quasi-isomorphisms, we may claim that there exists an

′′f• : ′′A• → ′′B•

in (4.35) making the far right square commutative. By (D.T.3) for K(A ) we
get a distinguished triangle

′′A•
′′f•

�� ′′B•
′′g• �� ′′C•

′′h•
�� ′′A[1]•.

Then by (D.T.5) for K(A ) we obtain ′γ• : C• → ′′C• as in (4.35) and also by
(D.T.5) for K(A ), we have a quasi-isomorphism w• : C• → ′′C• as in (4.35).
Then let γ• := ′γ•/w• : C• → ′C• as in (4.35). (Note that the details of the
proof are left to be completed.)



Chapter 5

COHOMOLOGICAL ASPECTS OF ALGEBRAIC
GEOMETRY AND ALGEBRAIC ANALYSIS

5.1 Exposition
The most fundamental object of study in Algebraic Geometry is the set of

(or the number) of solutions of a system of (polynomial) equations. That is, for
a system of equations






f1(x1, x2, . . . , xn) = 0
f2(x1, x2, . . . , xn) = 0

...

fl(x1, x2, . . . , xn) = 0

(1.1)

with coefficients in a commutative ring A with identity, we seek for solutions
in an algebra B over A, i.e., (b1, b2 . . . , bn) ∈ Bn := B × B × · · · × B︸ ︷︷ ︸

n

. Such

a solution is said to be a B-rational point. In terms of commutative algebra we
can rephrase the above as follows. For a finitely generated A-algebra C,

A[X1, X2, . . . , Xn] Ψ−→ C → 0,

where the A-algebra homomorphism is the canonical one defined by Ψ(Xk) =
xk, 1 ≤ k ≤ n, a B-rational point is an A-algebra homomorphism s to make
the diagram

A[X1, X2, . . . , Xn]
/
(f1, f2, . . . , fl)

s

''--
---

---
---

---
---

-

A

ι



φ �� B

(1.2)
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commutative, where the A-algebra homomorphism φ is defining the algebra
structure of B. Namely, for the finitely generated A-algebra C

C = A[x1, x2, . . . , xn] A[X1, X2, . . . , Xn]
/

ker Ψ≈��

A[X1, X2, . . . , Xn]
/
(f1, f2, . . . , fl)

the set HomA(C,B) of all the A-algebra homomorphisms is the set of all B-
rational points of C. That is, for s ∈ HomA(C,B), the commutative diagram
gives

s(fk(x1, x2, . . . , xn)) = s(
∑

ai1···inxi1
1 xi2

2 · · ·xin
n ) =

=
∑

ai1···ins(x1)i1s(x2)i2 · · · s(xn)in =

=
∑

ai1···inbi1
1 bi2

2 · · · bin
n = 0.

(1.3)

In general for a scheme X over a commutative ring A, the set of scheme mor-
phisms from an A-algebra B to X is the set of B-rational points on X:

X

��
Spec A Spec B.��

s

//---------------
(1.4)

We often write X(B) for the set of B-rational points on X . Compare the above
rational point notation with the formulation of Yoneda’s Lemma in Chapter I.

For example, let Z be the ring of integers and let p be a prime. From

Z ⊃ pZ ⊃ p2
Z ⊃ · · · , (1.5)

we get the sequence

· · · �� Z/p3
Z �� Z/p2

Z �� Z/pZ. (1.6)

The inverse limit of (1.6) is said to be the ring of p-adic integers denoted as Ẑp.
We have the fan as in (8.3) in Chapter I:

Z/pn+1
Z

��

Ẑp

αn+1

����������������

αn

����
���

���
���

���

Z/pn
Z.

(1.7)
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For a Ẑp-rational point s on a scheme X , i.e., s ∈ X(Ẑp), the composition
s ◦ Spec αn of the morphisms in

X

Spec Ẑp

s



Spec Z/pn
Z

Spec αn��

s◦Spec αn

��HHHHHHHHHHHHHHHHH
(1.8)

gives a solution in Z/pn
Z, i.e., a Z/pn

Z-rational point on X for every n ≥ 1.
we simply write, e.g., Ẑp for Spec Ẑp.

More generally, let us consider the system of l-homogeneous polynomi-
als f1, f2, . . . , fl with coefficients in a finite field Fp := Z/pZ and let I =
(f1, f2, . . . , fl) be the ideal in Fp[X1, X2, . . . , Xn] generated by the fi. Then
let Ū(Fp) be the set of Fp-rational points on Ū = Proj(Fp[X1, X2, . . . , Xn]/I).
Define also

Nk = |Ū(Fpk)| = the number of Fpk -rational points on Ū ,

i.e., the number of morphisms in HomFp(Fpk , Ū)
(1.9)

where Fpk is the extension field of Fp of degree k. Then the zeta function ZŪ

of the projective variety Ū over Fp is defined by
{

d
dT (log ZŪ (T )) =

∑∞
k=0 Nk+1T

k,

where ZŪ (0) = 1.
(1.10)

General conjectures on the zeta function associated with an algebraic variety
defined over a finite field appeared in

∗ Weil, A., Numbers of Solutions of Equations in Finite Fields, Bull. Amer.
Math. Soc. 55, (1949), 297–508.

For cohomology theory and the Weil conjectures, see

∗ Motives, Part 1, Proceedings of Symposia in Pure Mathematics, 55, the
AMS, (1994).

5.2 The Weierstrass Family
We will review some of the basic facts about the Weierstrass family. The

Weierstrass equation
Y 2 = 4X3 − g2X − g3 (2.1)

is obtained from the cubic equations

Y 2 = aX3 + bX2 + cX + d, a �= 0. (2.2)



152 Cohomological Aspects of Algebraic Geometry and Algebraic Analysis

Figure 5.1. Deligne and the author’s shoulder, at the IAS (the Institute for Advanced Study),
1986

Figure 5.2. Lubkin, Weil and the author’s shoulder, at the IAS, Princeton, 1986

That is, let us introduce a new variable X0 through a linear substitution X0 :=
X + b

3a . We can assume b = 0 in (2.2). Namely, we have reduced the general
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cubic equation as (2.2) to

Y 2 = aX3 + cX + d.

Making the linear substitutions Y0 = aY and X0 = aX we get

Y 2
0 = X2

0 + acX0 + a2d, a �= 0.

Therefore, the general cubic equation reduces to the following

Y 2 = X3 + aX + d. (2.3)

Furthermore, if the characteristic is not equal to 2, the linear change Y0 = Y
2

would give

Y 2
0 = X3 +

c

4
X +

d

4
.

Namely, the Weierstrass equation is a normalization by linear changes of coor-
dinates of the cubic equation Y 2 = aX3 + bX2 + cX + d.

In terms of schemes (i.e., geometric terms), we can rephrase the above argu-
ment as follows. Let R be a (commutative) ring with identity and let a be the
ideal of R[g2, g3, X, Y, Z] generated by the homogenized equation

Y 2Z = 4X3 − g2XZ2 − g3Z
3

of (2.1), i.e., a := 〈−Y 2Z + 4X3 − g2XZ2 − g3Z
3〉. Then the Weier-

strass family is the algebraic family over the Euclidean two-space over R,
Spec R[g2, g3] =: A

2(R):

WR := Proj(R[g2, g3, X, Y, Z]
/
a), (2.4)

where R[g2, g3, X, Y, Z] is considered as the graded R[g2, g3]-algebra such that
each of X , Y , Z has degree +1 and the elements of R[g2, g3] all have degree
zero.

Also, put b := 〈−Y 2Z + aX3 + bX2Z + cXZ2 + dZ3〉 and consider the
algebraic family over

Spec(R[a, a−1, b, c, d]) = A
4(R) − {the hypersurface a = 0} :

GR := Proj(R[a, a−1, b, c, d, X, Y, Z]
/
b). (2.5)

If 2 is invertible in R, then the base Spec(R[g2, g3]) of the Weierstrass family
WR is a closed subscheme of the base Spec(R[a, a−1, b, c, d]) of the algebraic
family GR of (2.5). Namely, Spec(R[g2, g3]) is the closed subscheme defined
by the ideal

〈a − 4, b, c + g2, d + g3〉.
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Note that the Weierstrass family WR is the pull-back of GR under the closed
immersion

Spec(R[g2, g3]) ↪→ Spec(R[a, a−1, b, c, d]). (2.6)

On the other hand, we have observed earlier the following: when 2 and
3 are invertible in R, the general cubic equation (2.2) can be reduced to the
Weierstrass equation (2.1). That is, if 6 is invertible in R, we have found an
R-algebra homomorphism

R[g2, g3] → R[a, a−1, b, c, d], (2.7a)

or a morphism of affine schemes over Spec R,

Spec(R[a, a−1, b, c, d]) → Spec(R[g2, g3]) (2.7b)

so that the pull-back of the Weierstrass family WR under (2.7b) is canonically
isomorphic to GR.

Let us apply the Jacobian Criterion to the Weierstrass affine algebraic family
defined by

Spec
(
R[g2, g3, X, Y ]

/
〈−Y 2 + 4X3 − g2X − g3〉

)
(2.8)

over A
2(R) = Spec(R[g2, g3]) to find the set of points in the base space

Spec(R[g2, g3]) over which the fibre is singular. For a point p := (g′2, g
′
3)

in the Euclidean 2-space A
2(R) = Spec(R[g2, g3]), a point (x, y) in the Weier-

strass affine family (2.8) over the point (g′2, g
′
3) is a singular point in the fibre if

and only if the Jacobian Criterion holds: the polynomials
{

∂
∂Y (−Y 2 + 4X3 − g′2X − g′3)
∂

∂X (−Y 2 + 4X3 − g′2X − g′3)
(2.9a)

in k(p)[X, Y ] vanish at the point (x, y) in the fibre of the Weierstrass affine
family (2.8), where k(p) is the residue class field at p = (g′2, g

′
3). Therefore, a

singular point in the fibre must satisfy
{
−2Y = 0
12X2 − g′2 = 0

(2.9b)

and
−Y 2 + 4X3 − g′2X − g′3 = 0. (2.10)

That is, in order to find all the points (g′2, g
′
3) in the base where the fibres of

(2.8) are singular, we must find all the points p ∈ A
2(R) to satisfy (2.9b) and

(2.10). Such a solution exists if and only if
{

12x2 = g′2
4x3 − g′2x − g′3 = 0

(2.11)
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have a simultaneous solution in a universal domain K of κ := k(p). Such a
K can be any fixed algebraically closed field of infinite transcendental degree
over κ = k(p). From the first equation in (2.11), the only solutions are

x = ±1
2

√
g′2
3

. (2.12a)

In order to satisfy the second equation of (2.11), we must have

±4
(

1
2

√
g′2
3

)3

∓ g′2
2

√
g′2
3

− g′3 = 0 (2.12b)

in K. Namely, we have

∓1
3

(g′2
3

) 3
2 = g′3 (2.12c)

Equation (2.12c) has a solution if and only if the square has a solution, i.e.,
(
g′2
)3 − 27

(
g′3
)2 = 0. (2.12d)

Therefore the fibre over a point p ∈ A
2(R) of the affine Weierstrass family

(2.8) has a non-simple point if and only if p is on the hypersurface

∆ := g3
2 − 27g2

3 (2.13)

in A
2(R). That is, the fibre over p ∈ A

2(R) = Spec(R[g2, g3]) contains
a non-simple point if and only if p is on the closed subscheme of A

2(R) =
Spec(R[g2, g3]) defined by the ideal in R[g2, g3] generated by the element
∆ = g3

2 − 27g2
3 .

Let p be on the hypersurface defined by ∆ = g3
2 − g2

3 = 0 in A
2(R) (i.e., the

images of g′2 and g′3 of g2 and g3 in the field κ satisfy
(
g′2
)3 − 27

(
g′3
)2 = 0 in

κ). We shall see how many singular points there are in the fibre over p. We have
observed that a point (x, y), x, y ∈ K, is a singular point if and only if (x, y)
satisfies equations (2.9b) and (2.10) in K, i.e., y = 0 and equations (2.12a) and
(2.12c) hold. If g′3 = 0 then (2.12d) implies g′2 = 0. For g′2 = 0, from (2.12a),
x = 0. Namely, we have a unique singular rational point X = Y = 0 in the
fibre over p. If g′3 �= 0, then there exists only one solution (x, y) satisfying
(2.9b) and (2.10). That is, y = 0 and x equals either

1
2

√
g′2
3

or − 1
2

√
g′2
3

.

Note also that from (2.3) we get

x2 =
g′2
12

. (2.14)
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From equation (2.12c) we conclude y = 0. Then 4x3 − g′2x− g′3 = 0. Substi-
tuting x2 = g′2 of (2.14) into x(4x2 − g′2) − g′3 = 0, we get

x
(4g′2

12
− g′2

)
− g′3 = 0. (2.15)

Namely, assuming g′2 �= 0, we have

x = −3
2

g′3
g′2

. (2.16)

When g′2 = 0,
(
g′2
)3 − 27

(
g′3
)2 = 0 implies that g′3 = 0. This case has already

been considered.
Summarizing the above discussion, for a point p ∈ Spec(R[g2, g3]) the fibre

of the affine family (2.8) over κ = k(p) is singular if and only if the images g′2
and g′3 of g2 and g3 in κ under the natural epimorphism R[g2, g3] � κ satisfy
(2.12d). Then the fibre Spec

(
κ[X, Y ])

/
〈−Y 2 + 4X3 − g2X − g3〉

)
has a

unique non-simple point. This non-simple point is a κ-rational point given by

(x, y) =
(
−3

2
g′3
g′2

, 0
)

(2.17)

for g′2 �= 0 (then g′3 �= 0). In the case where g′2 = g′3 = 0, the rational point is
(0, 0).

The affine family (2.8), i.e.,

Spec
(
R[g2, g3, X, Y ]

/
〈−Y 2 + 4X3 − g2X − g3〉

)

is the open family defined by “Z �= 0” or “Z = 1” in the Weierstrass pro-
jective family WR over A

2(R). Let (x, y, z) be a point on WR satisfying the
homogeneous equation

−Y 2Z + 4X3 − g′2XZ2 − g′3Z
3, (2.18)

where (g′2, g
′
3) corresponds to a point in A

2(R) as mentioned before, and
(x, y, z) is a set of homogeneous coordinates in a universal domain K for
κ = k(p). For (x, y, z) satisfying (2.18), if z = 0 then x = 0. Therefore, the
affine open “X �= 0” of P

2(R), the projective 2-space, meets the Weierstrass
family WR in a subset of the affine open “Z �= 0”. Therefore, there are some
points of WR which are not on the affine family (2.8), i.e., on the open “Z �= 0”
of P

2(R) and on the affine “X �= 0”. Therefore, such a new point on WR that is
not on the affine “Z �= 0” must be on the affine open “Y �= 0”. The intersection
between WR and “Y �= 0” can be obtained by letting Y = 1 in (2.18)

−Z + 4X3 − g2XZ2 − g3Z
3. (2.19)
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By the Jacobian Criterion, a point (x, z) on the affine open (2.19) of WR over
(g′2, g

′
3) is a non-simple point in the fibre if and only if the following polynomials

with coefficients in κ = k(p):
{

∂
∂Z (−Z + 4X3 − g′2XZ2 − g′3Z

3)
∂

∂X (−Z + 4X3 − g′2XZ2 − g′3Z
3)

(2.20a)

vanish at (x, z). That is,
{
−1 − 2g′2XZ − 3g′3Z

2 = 0
12X2 − g′2Z

2 = 0.
(2.20b)

Since we have covered all the non-simple points in the fibres which are on the
affine open “Z �= 0” of WR we will study those points of WR which are not
on the affine open (2.8):

Z = 0.

Notice that the equations in (2.20b) have no solutions in any fibre of WR over any
point (g′2, g

′
3) in A

2(R). This is because z = 0 implies x = 0 from the second
equation of (2.20b). Then the first equation becomes −1−2g′2 ·0−3g3 ·0 = 0,
i.e., 1 = 0. Namely, every point of WR which is a non-simple point in the fibre
over A

2(R) is on the affine open (2.20b). We shall call those points of WR that
are not in the affine open “Z �= 0”, i.e., (2.8), the “points at ∞ of WR”. What
we have observed in the above can be rephrased as all the points at ∞ of WR

are simple points in each fibre. That is, as for singularities, we only need to pay
attention to the “finite points” on the affine family (2.8).

Let us observe that the Weierstrass family WR is the closed subscheme of
P

2
(
Spec(R[g2, g3])

)
determined by Y 2Z = 4X2g2XZ2−g3Z

3. On the other
hand, the Weierstrass affine open family (2.8), i.e., “Z �= 0” is the closed subset
of A

2
(
Spec(R[g2, g3])

)
given by Y 2 = 4X3 − g2X − g3. The closed subset

of the points at ∞ of WR, i.e., “Z = 0”, is the complement of the affine open”

Z �= 0”. For homogeneous coordinates (x, y, z), where x, y and z are in a
universal domain K for κ as before, (x, y, z) is a point on WR if and only if
(x, y, z) satisfies the homogeneous equation

−Y 2Z + 4X3 − g′2XZ2 − g′3Z
3 = 0

in K. Then (x, y, z) is a point at ∞ if and only if (x, y, z) satisfies Z = 0. That
is, if the point of P

2(Spec κ) defined by (x, y, z) is a point at ∞ of WR over
p ∈ Spec(R[g2, g3]), then z = 0. By the equation

−Y 2Z + 4X3 − g′2XZ2 − g′3Z
3 = 0

we then have x = 0. Therefore, for every p there is one and only one point at ∞
of WR ⊂ P

2
(
Spec(R[g2, g3])

)
in the fibre of WR over p. This point is the point
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of the fibre P
2(Spec κ) of P

2
(
Spec(R[g2, g3])

)
over p ∈ Spec(R[g2, g3]), given

by the homogeneous coordinates (0, 1, 0). Consequently, the unique point at
∞ of WR over k(p) is a rational point for every p in the base Spec(R[g2, g3]).
Note also that the closed subscheme of points at infinity of WR over A

2(R) is
isomorphic to A

2(R) over A
2(R), and that the closed subscheme is contained

in the set of simple points of WR over A
2(R).

Summarizing the above discussion, there is one and only one point at infinity
in each fibre. Such a unique point at ∞ in each fibre is a simple point and a κ-
rational point in the fibre over p for every p ∈ A

2(R). Namely, all the singular
phenomena occur on the affine open (Z �= 0), i.e., on the Weierstrass affine
family (2.8).

We will study singular fibres next. We have previously observed that for
p ∈ Spec(R[g2, g3]), the fibre of WR over p is singular if and only if p is on
the closed subscheme

g3
2 − 27g2

3 = 0 (2.21)

of the above base scheme. Or one can say that the images g′2 and g′3 of g2 and
g3 in κ = k(p) satisfy (2.21). Recall that for a polynomial P of degree n over
a field, the discriminant of P is defined by

∆ :=
∏

1≤i,j≤n
i�=j

(�i − �j), (2.22)

where �1, �2, . . . , �n are the roots of P in an algebraic closure. Then the three
roots of the polynomial 4X3 − g2X − g3 are not distinct if and only if equation
(2.21) holds. That is, the affine curve over the field κ

Y 2 = 4X3 − g2X − g3

is non-singular if and only if 4X3 − g2X − g3 has three distinct roots, i.e., is a
separable polynomial.

5.2.1 Singular Fibres in the Weierstrass Family
In Section 5.2 we observed that for p ∈ Spec(R[g2, g3]) the fibre of the

Weierstrass family WR corresponding to R is singular if and only if ∆ =
g3
2 − 27g2

3 vanishes at p. Furthermore, all the singular points are on the affine
open

Spec
(
κ[X, Y ]

/
〈Y 2 − 4X3 + g2X − g3〉

)
,

where κ = k(p). We also observed that on this affine open, there exists a
unique singular rational point over κ = k(p). Namely, for each point p on the
closed subscheme ∆ = g3

2 − 27g2
3 = 0 of the base affine scheme A

2(R) =
Spec(R[g2, g3]) for WR, there exists exactly one non-simple κ-rational point
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on the fibre of WR over p. There are two types of singular fibres. Namely,
the first type are singular fibres over points satisfying ∆ = g3

2 − 27g2
3 = 0 but

g2 �= 0 (hence g3 �= 0), and the second type are fibres over points g2 = 0 (hence
g3 = 0). Let p ∈ Spec(R[g2, g3]) satisfying g′2 = g′3 = 0 in κ. Then the fibre
of WR over κ is given by

Y 2Z = 4X3, (2.23)

is an equation of a cusp. If we let W be the fibre of WR over p, then W is
birationally equivalent to P(κ). Note that the fibre W over p has only one
singular point, called the cusp point, x = y = 0. Next, consider the first type,
i.e., (

g′2
)3 − 27

(
g′3
)2 = 0 (2.24)

and g′2 �= 0 and g′3 �= 0. Consider the following affine curve over the a field k

Y 2 = 4(X − r1)(X − r2)(X − r3). (2.25)

Then by the Jacobian Criterion if all r1, r2, r3 are distinct, the affine curve (2.25)
is simple. Equation (2.23) corresponds to the case when all the roots r1, r2, r3

are equal. When 4X3 − g′2X − g′3 is factored linearly in an algebraic closure
κ̄ of κ, only two of their roots r1, r2, r3 in κ̄ are equal. We have observed
that such a double root of 4X3 − g2X − g3 is the unique singular point of

Y 2 = 4X3 − g′2X − g′3 given by (x, y) = (−3
2

g′3
g′2

, 0). Let r be the third root of
the cubic equation:

4X3 − g′2X − g′3 = 4
(
X +

3
2

g′3
g′2

)2(X − r). (2.26)

The constant terms of (2.26) give −g′3 = 4
(
g′2X − g′3

)2(−r), i.e.,

r =
1
9

(
g′2
)2

g′3
.

That is, 4X3 − g′2X − g′3 can be factored linearly over κ as

4X3 − g2X − g3 = 4
(
X +

3
2

g′3
g′2

)2(
X − 1

9

(
g′2
)2

g′3

)
.

Let X0 := X + 3
2

g′3
g′2

Z. Then the fibre of WR over κ is of the form

Y 2Z = 4X2
0 (X0 − cZ),

where 0 �= c ∈ κ. Furthermore let X0 := cX1. Then we get

Y 2Z = 4c3X2
1 (X1 − Z),
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or
Y 2Z = bX2

1 (X1 − Z), (2.27)

where b := 4c3. The unique singular point in the homogeneous coordinates
(X1, Y, Z) on the projective curve (2.27) is (0, 0, 1). A cubic equation as in
(2.27) is said to be a projective line with an ordinary double point. If κ =
k(p) = C, the field of complex numbers, the the classical singular homology
of the fibre W of WR over κ = C becomes

H1(W, C) ≈ C.

For elemental properties of projective geometry, see

∗ Hartshorne, R., Foundations of Projective Geometry, Benjamin, 1967

is recommended. For elliptic curves, for example, see

∗ Silverman, J.H. and Tate, J., Rational Points on Elliptic Curves, Undergrad-
uate Texts in Mathematics, Springer-Verlag, 1992.

5.2.2 Lifted p-adic Homology with Compact Supports of
Fibres of the Weierstrass Family; The case of
varieties over C

The main reference for Chapter V is:

[LuHC] Lubkin, S., Finite Generation of p-Adic Homology with Compact Supports.
Generalization of the Weil Conjectures to Singular, Non-complete Algebraic
Varieties, Journal of Number Theory, 11, (1979), 412–464.

Let X be a complex algebraic variety which is embeddable over C and let
Xtop be the closed points of X with the classical topology. Let Y be non-
singular over C of dimension N so that X may be closed in Y . Then the
definition of the homology of X with compact supports Hc

j(X, C) is the relative
hypercohomology

Hc
j(X, C) := H2N−j(Y, Y − X, Ω•

C).

See [LuHC] in the above. Then since Y is non-singular over C, we have the
canonical isomorphism from H2N−j(Y, Y − X, Ω•

C
) to the classical singular

cohomology H2N−j(Ytop, Ytop − Xtop, C). By applying the Lefschetz duality
to the oriented 2N -dimensional manifold Ytop and the subspace Xtop, we have

H2N−j(Ytop, Ytop − Xtop, C) ≈ Ȟj
c(Xtop, C) (2.28)

where the right hand-side of (2.28) is the classical Čech cohomology. Since X
is an algebraic variety, we have

Ȟj
c(Xtop, C) ≈ Hj

c(Xtop, C). (2.29)
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Since all these cohomology groups are finitely generated over C, passing to
duality over C, we obtain,

H2N−j(Ytop, Ytop − Xtop, C) ≈ Hc
j(Xtop, C). (2.30)

That is, we have Hc
j(X, C) ≈ Hc

j(Xtop, C).
In particular, if X is an embeddable complete complex algebraic variety,

then we get Hc
j(X, C) ≈ Hj(Xtop, C), the classical singular homology. This

is because singular homology with compact supports is the same as ordinary
singular homology. When X is a fibre of the Weierstrass family over p where
k(p) = C, then Hc

j(X, C) is isomorphic to the usual singular homology of X
with complex coefficient. Namely, we have






Hc
0(X, C) ≈ Hc

2(X, C) ≈ C,

Hc
1(X, C) ≈






C ⊕ C, for an elliptic curveX

C, for a projective line with

ordinary double point

0, for a projective line with a cusp,

Hc
j(X, C) = 0, for j �= 0, 1, 2.

(2.31)

Next, let us consider varieties over characteristic zero fields. Let K be a field
of characteristic zero and let L be an extension field of K. For an algebraic
variety X over K which is embeddable over K, X×K L is an algebraic variety
over L and is embeddable over L. Let Y be non-singular over K containing X
as a closed subvariety. Then Y ×K L contains X ×K L as a closed subvariety
over L. Then Y ×K L is affine over Y and the direct image of Ω•

L(Y ×K L)
is Ω•

K(Y ) ⊗K L. Therefore, we have an isomorphism

Hj(Y, Y − X, Ω•
K(Y )) ⊗K L ≈

≈ Hj(Y ×K L, (Y ×K L) − (X ×K L),Ω•
L(Y ×K L)), (2.32)

namely,
Hc

j(X, K) ⊗K L ≈ Hc
j(X ×K L, L) (2.33)

as vector spaces over L for all j. In the constant characteristic zero one can
generalize the above as follows. Let K and L be rings containing the field
Q of rational numbers. For a ring homomorphism from K to L, we have a
right-half-plane spectral sequence

Torp(Hc
q(X, K), L)
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abutting upon Hc
n(X, L).

When K can be embedded in C, (2.32) implies

Hc
j(X, K) ⊗K C ≈ Hc

j(X ×K C, C). (2.34)

We have shown that the right hand-side Hc
j(X×K C, C) is the classical complex

homology with compact supports of the complex variety X ×K C. If X is
complete, then it is the classical complex homology of X ×K C. In the case
where K is an arbitrary field of characteristic zero, let K0 be a subfield of
K which is finitely generated over Q so that there may exist an embeddable
algebraic variety X0 over K0 satisfying X0 ×K0 K ≈ X as varieties over K.
Then, by (2.33), we get

Hc
j(X, K) ≈ Hc

j(X0, K0) ⊗K0 K.

For Hc
j(X0, K0) we can use (2.34).

Such a method of reducing characteristic zero varieties to the case of varieties
over C is called the Lefschetz principle.

We next consider homologies with compact supports of fibres of the Weier-
strass family in characteristic zero. From what we have discussed in the above,
we obtain the following: Let R be a commutative ring with identity and let
X be a fibre of the Weierstrass family WR at p ∈ Spec(R[g2, g3]) where the
characteristic of κ = k(p) is zero. Then we have





Hc
0(X, κ) ≈ Hc

2(X, κ) ≈ κ,

Hc
1(X, κ) ≈






κ ⊕ κ, if X is an elliptic curve

(namely, X is a non-singular fibre)

κ, for a projective line with

ordinary double point

0, if X is a projective line with a cusp,

Hc
j(X, κ) = 0, for j �= 0, 1, 2.

(2.35)

Let us now consider the case where the characteristic of the field k(p) at
p ∈ Spec(R[g2, g3]) is p �= 0. As before, let X be a fibre of WR over p in the
base. Let O be a complete discrete valuation ring with mixed characteristics
having k as the residue class field and K as the quotient field of O . Then for a
non-singular and proper lifting XK over K of the fibre X over k (i.e., XK is
an elliptic curve), we have

Hc
j(X, K) = H2N−j(X, K)
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by taking Y = X . The right hand-side is the lifted p-adic cohomology in

[LuPWC] Lubkin, S., A p-Adic Proof of Weil’s Conjectures, Ann. of Math. (2) 87,
(1968), 105–255,

and H2N−j(X, K) is the hypercohomology H2N−j(XK , K) in [LuPWC]. That
is, we obtain Hc

j(X, K) ≈ Hc
j(XK , K). Therefore, we get

{
Hc

0(X, K) ≈ Hc
2(X, K) ≈ K

Hc
1(X, K) ≈ K ⊕ K if X is non-singular.

If X is a singular fibre, by direct computation we obtain

Hc
j(X, K) ≈

{
K for j = 0, 2
0 for j �= 0, 2

Hc
1(X, K) ≈






K if X is a projective line with

an ordinary double point

0 if X is projective line with a cusp.

5.2.3 The Universal Coefficient Spectral Sequence
Let O be a complete discrete valuation ring with the quotient field of char-

acteristic zero and the residue class field k. (If O is a field then K = O = k.)
Then we have the following spectral sequence in [LuHC] especially (26) on
page 426.

Theorem 18. Let A be an O-algebra and let B be an A-algebra. We also let
A := (A ⊗O k)red and B := (B ⊗O k)red. For a scheme X over A which
is embeddable over A, let XB := X ×Spec(A) Spec(B). Then there exists a
right-half-plane homological spectral sequence called the universal coefficient
spectral sequence:

E2
p,q := TorA†⊗OK

p (Hc
q(X, A† ⊗O K), B† ⊗O K) (2.36)

abutting to Hc
n(XB, B† ⊗O K).

We are interested in a special case of the spectral sequence (2.36) as follows.
Let F : A → A be an endomorphism of A so that F induces the p-th power
endomorphism of A = A/pA, where p is the characteristic of k = k(O). Then
there is a unique ring homomorphism

A −→ W (A), (2.37)

where W (A) is the Witt vector on A = A/pA. See
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[LuBW] Lubkin, S., Generalization of p-Adic Cohomology; Bounded Witt
vectors, Compositio Math. 34, (1977)

for Witt vector cohomology1, and for the †-completion, see [LuPWC]. Let
p ∈ Spec(A), where k(p) is a perfect field. Then there exists a natural homo-
morphism from A to the Witt vector on k(p), i.e.,

A −→ W (k(p))

where W (k(p)) is the unique mixed characteristic complete discrete valuation
ring having k(p) as its residue class field. For our Weierstrass family case, we
let A := Ẑp[g2, g3]. For a maximal ideal p ∈ Spec(A) (i.e., a closed point),
k(p) is a finite field. Let g′2 and g′3 be the images of g2 and g3 in k(p). We can
construct the Witt vector W (k(p)) as follows. Each if g′2 and g′3 is either a root
of unity of order prime to p or else zero. Let � be an element of k(p) which is
a multiplicative generator of the cyclic group k(p) − {0}. Then each element
of k(p), including g′2 and g′3, is either a power of � or else zero. Let a be the
multiplicative order of �. Embed Ẑp as a subring of C and let ′� be any fixed
root of unity in C of order exactly a. Then the subring generated by Ẑp and ′�

in C is the Witt vector W (k(p)) = Ẑp[′�]. For g′2 = �i, let ′g′2 = (′�)i (and
similarly for ′g′3). For g′2 = 0, let ′g′2 = 0.

Our special case of the universal coefficient spectral sequence is obtained as
follows. As before, let A be an O-algebra and let F be any ring endomorphism
of A so that F may induce the p-th power endomorphism of A/pA. For any
prime ideal of Spec(A ⊗O k)red = Spec(A/pA) = Spec(A), we get a natural
homomorphism A → W (k(p)) as in the above. For our case, A := Ẑp[g2, g3],
and p is a maximal ideal of A. Then we have k(p) = (Z/pZ)[g′2, g

′
3] and

W (k(p)) = Ẑp[′g′2,
′g′3]. The natural homomorphism A → W (k(p)) becomes

Ẑp[g2, g3] −→ Ẑp[′g′2,
′g′3]

defined by g2 �→ ′g′2 and g3 �→ ′g′3. Let B = W
(
k(p)p−∞)

where k(p)p−∞

is the purely inseparable algebraic closure of k(p). Then B = W
(
k(p)p−∞)

is a complete discrete valuation ring of mixed characteristic having k(p)p−∞

as the residue class field, and B ⊗Z Q is a field of characteristic zero. For a
scheme X over Spec(A) which is embeddable over A, the fibre Xp over k(p)
is an algebraic variety over the field k(p). Then let Yp := Xp ×k(p) k(p)p−∞

.
The zeta matrices have coefficients in the quotient field Kp = B ⊗Z Q of
the complete discrete valuation ring B = W (k(p)p−∞

). Then the universal

1Private communication with Pierre Deligne; Boundedness condition in bounded Witt cohomology is not
necessary.
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coefficient spectral sequence in [LuHC] becomes

E2
p,q = TorA†⊗ZQ

p (Hc
q(X, A† ⊗Z Q), Kp) (2.38)

abutting to Hc
n(Yp, Kp). Namely, the lifted p-adic homology with compact

supports of the algebraic family X over Spec(A) computes the lifted p-adic
homology with compact supports of all the fibres in the family. Furthermore, the
zeta endomorphisms of Hc

q(X, A†⊗Z Q) will compute the zeta endomorphisms
of the lifted p-adic homology with compact supports of every fibre Yp. For a
finite field k(p), if the E2

p,q-term of (2.38) is a finite-dimensional vector space
over Kp for all p and q (and if E2

p,q = 0 for all except finitely many p and q),
then the zeta function of the fibre Xp = Yp is given as follows: Letting Pp,q be
the (reverse) characteristic polynomial of the endomorphism of E2

p,q induced
by the (pr)-power map, pr = card(k(p)),

ZXp
(T ) =

∏
p+q=odd Pp,q(T )

∏
p+q=even Pp,q(T )

. (2.39)

See [LuHC] for (2.39). Thus, we can compute the zeta function of every fibre
over a finite field in the algebraic family of X over A. A zeta endomorphism
is said to be a zeta matrix for a free module Hc

q(X, A† ⊗Z Q).
For the explicit computation, one may be interested in the results in the

following papers.

[KaLu] Kato, G. and Lubkin, S., Zeta Matrices of Elliptic Curves, Journal of

[KaChZ] Kato, G., On the Generators of the First Homology with Compact Supports
of the Weierstrass Family in Characteristic Zero, Trans., AMS., 278, (1983),
361–368.

[KaZM] Kato, G., Liftedp-Adic Homology with Compact Supports of the Weierstrass
Family and its Zeta Endomorphism, Journal of Number Theory, 35, No.2,
(1990), 216–223.

5.2.4 Letter from Dwork
Here is the quotation from a letter written by B. Dwork2 which may give more

insight into the connection between Lubkin’s p-adic cohomology and Dwork’s
work on p-adic analysis.

2In the early 1980’s a few letters addressed to the author were received from Professor B. Dwork. Only the
copy of this letter was sent to me (rather than the original one) where the date was cut off in the process of
copying. Hence the exact date cannot be identified.

Number Theory, 15, No. 3, (1982), 318–330.
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“ [. . . ] I have studied the family of elliptic curves

Y 2 = X(1 − X)(1 − λX)

of my book (Springer 1982) and in particular the appendix by Adolphson. I
have also studied X3 +Y 3 +Z3−3ΓXY Z = 0 (§8 Ann. of Math. 80, (1964),
pp 227–299).

I have never made a detailed study of Y 2 = 4X3 − g2X − g3. However the
relation between those different families is well known and one can pass from
the λ to j invariant and vice-versa.

If however I were to start a study of the Weierstrass family, I would suggest
the following: Let k = Q(ζp), ζp

p = 1, πp−1 = −p, π ∈ k. Let L be the ring
of all polynomials in k[t, X] spanned by monomials tlXm such that 3l ≥ m.
Let L be the completion of L in the sense of series

ξ =
∑

3l≥m

Al,mtlXm ∈ k[[t, X]]

which converge in a polydisk |t| < 1 + ε, |X| < 1 + ε.
The key to the study of

Y 2 = f(x)(= 4X3 − g2X − g3)

is the operator

α =ψ ◦ t
p−1
2 F (X, t)

F (X, t) = expπ
(
(4X3 − g2X − g3)t − tp(4X3p − gp

2X
p − gp

3)
)

(say p �= 2, 3).

The cohomology is given by the space

Wg2,g3 = L
/
D1L + D2L ∼= L

/
D1L + D2L (2.40)

(where the isomorphism (2.40) is subject to conditions such as |g3| = |g2| =
|∆| = 1, ∆ = g3

2 − 27g2
3) where

D1 =
1

t−
1
2 expπtf

◦ X
∂

∂X
◦ t−

1
2 expπtf(X)

D2 =
1

t−
1
2 expπtf

◦ t
∂

∂t
◦ t−

1
2 expπtf(X)

i.e.,

D1 = X
∂

∂X
+ πt(12X3 − g2X)

D2 = t
∂

∂t
− 1

2
+ πt(4X3 − g2X − g3).



Exposition on D -Modules 167

Furthermore,

α : ξ ∈ L �−→ ψ
(
ξt

p−1
2 F (X, t)

)

gives by passage to quotients a map of

ᾱ : Wg2,g3 −→ Wg2,g3 .

When we specialize g2, g3 such that g2 = gp
2 , g3 = gp

3 , then ᾱ becomes an
endomorphism, and its characteristic polynomial gives the zeta function of the
reduced curve.

The differential equations of deformation are given by the actions of σg2 , σg3

on Wg2,g3

σg2 =
1

t−
1
2 exp tπf

◦ ∂

∂g2
◦ t−

1
2 exp tπf

σg3 =
1

t−
1
2 exp tπf

◦ ∂

∂g3
◦ t−

1
2 exp tπf

i.e.,

σg2 =
∂

∂g2
− πtX

σg3 =
∂

∂g3
− πt.

The matrix ᾱ (defined above for |g2| = |g3| = |∆| = 1) is no doubt holomorphic
as function of g2, g3 on a set of the type

|g2| < 1 + ε, |∆| > 1 − ε

|g3| < 1 + ε.

An account of this theory at the cochain level (i.e., of α but not of ᾱ) may
be found in Adolphson’s article recently published in Pacific J. Math, “On the
Dwork Trace Formula". ”

Remark 18. See the following paper and references in this paper.

[Dwork] Dwork, B., p-Adic Cycles, Pub. Math. I.H.E.S., 37, (1969), 27–116.

Recent works of K.S. Kedlaya on zeta function computation through p-adic
cohomology can be found in

[Ked] Kedlaya, K.S., Counting Points on Hyperelliptic Curves using Monsky–
Washnitzer Cohomology, Journal of the Ramanujan Math. Soc., 16, (2001),
323–338.
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5.3 Exposition on D-Modules
As in Exposition 5.1 in Chapter V, we will introduce the fundamental notion

in the theory of D-modules where D is the sheaf of differential operators with
holomorphic function coefficients over a complex manifold X or C

n. Refer-
ences for Section 5.3 are as follows:

[KashMT] Kashiwara, M., Algebraic Study of Systems of Partial Differential Equations,
(Master’s Thesis, Tokyo University, December 1970), translated by A. D’
Agnolo and P. Schneiders, Mémoirs de la  Société Mathématique de

 France, Sér. 2 63, (1995), 1–72.

[KashAMS] Kashiwara, M., D-Modules and Microlocal Calculus, (Translation of Daisu
Kaiseki Gairon by Matsumi Saito), Translations of Mathematical Mono-
graphs. Vol 217, AMS (2003).

Let M be a sheaf of germs of D-modules which we call simply a “D-
Module”. Suppose that the sheafM is generated by finitely manyu1, u2, . . . , um

over D . Namely, {u1, u2, . . . , um} is a set of generators for the D-Module M .
Then we have the following epimorphism

Dm ·u �� M �� 0 (3.1)

defined by

(A1U1 ⊕ A2U2 ⊕ · · · ⊕ AmUm) · u = A1u1 + A2u2 + · · · + Amum, (3.2)

where

Uj = [0, . . . , 0,
j
1, 0, . . . , 0], j = 1, 2, . . . , m

is the canonical basis for the free module Dm. By the Noetherianess of D ,
keru of the epimorphism in (3.1) is also finitely generated over D . Let this
epimorphism be ·v:

D l ·v �� keru �� 0 (3.3)

where generators v1, v2, . . . , vl for ker u ⊂ Dm can be written

vj = Pj1U1 + Pj2U2 + · · · + PjmUm, (3.4)

and the epimorphism ·v is given by

(B1V1 ⊕ B2V2 ⊕ · · · ⊕ BmVm) · v = B1v1 + B2v2 + · · · + Bmvm,

with

Vj = [0, . . . , 0,
j
1, 0, . . . , 0] ∈ D l, j = 1, 2, . . . , m.
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From (3.1) and (3.3) we obtain

D l P ����������

·v

��.
..

..
..

. Dm ·u �� M �� 0

ker u
$ %

ι
�����������

(3.5)

where P = ι ◦ v. That is, for [B1, B2, . . . , Bl] ∈ D l we have

([B1, B2, . . . , Bl] · P ) · u =
(
([B1, B2, . . . , Bl] · v)ι

)
· u = 0. (3.6)

Let P be the l×m-matrix associated with (3.4) with the entries in D . Then for
the m × 1-matrix

u =





u1

u2
...

um





the composition P ◦ u of homomorphisms as expressed in (3.6) may be re-
written as follows:






P11u1 + P12u2 + · · · + P1mum = 0
P21u1 + P22u2 + · · · + P2mum = 0

...
...

...
Pl 1u1 + Pl 2u2 + · · · + Pl mum = 0,

(3.7)

which is a system of partial differential equations.
Furthermore, beginning at (3.5) we obtain a free resolution of the D-Module

M :

· · · �� Dr
·Q ��

���
��

��
��

� D l ·P ��

·v

���
��

��
��

� Dm ·u �� M �� 0

ker P

����������

���
��

��
��

� keru

ι
����������

���
��

��
��

�

0

����������
0

����������
0

(3.8)

Let DM be the category of D-Modules over X where morphisms of DM
are D-linear homomorphisms. Let O be the sheaf of germs of holomorphic
functions on X . The sheaf O can be regarded as a D-Module: for P =∑

α fα(z)∂α ∈ Dz (where fα(z) ∈ Oz) and h(z) ∈ Oz at the stalks at z,
Ph ∈ O is defined by

(Ph)(z) =
∑

α

fα(z)∂αh(z),
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where

∂α =
( ∂

∂z1

)α1

· · ·
( ∂

∂zn

)αn

: Oz → Oz

are C-linear partial differential operators. Then we will consider the set

HomDM (M , O) = HomD(M , O) (3.9)

of morphisms in the category of D-Modules. The right hand-side of (3.9) is
the sheaf of vector spaces over C of all D-linear homomorphisms from M to
O . Let f ∈ HomD(M , O) and let f(uj) = fj ∈ O . Then for each 1 ≤ i ≤ l,
we have f(

∑m
j=1 Pijuj) = 0. Namely,

f(
∑

Pijuj) =
∑

Pijf(uj) =
∑

Pijfj = 0.

Therefore, morphisms in HomD(M , O) may be considered as holomorphic
solutions for the system of differential equations expressed as (3.7) of the D-
Module M . The left exact contravariant functor HomD(·,O) is said to be the
solution functor in O from the category DM of D-Modules. On the other
hand, the covariant left exact functor HomD(O, ·) is said to be the de Rham
functor. The D-Module O is often said to be the de Rham Module. Since we
have

O
≈←− D

/
D
( ∂

∂z1

)
+ · · · + D

( ∂

∂zn

)
,

we get the free resolution of O:

Dn
[ ∂
∂z1

,..., ∂
∂zn

]t

�� D
·u �� O �� 0. (3.10)

Namely, as a system of equations we have






(
∂

∂z1

)
u = 0(

∂
∂z2

)
u = 0

...
...(

∂
∂zn

)
u = 0

(3.11)

Such a solution u satisfying (3.11) is a constant. That is, the solution functor
HomD(·,O) takes (3.10) to

0 �� HomD(O, O) ��

≈
��

HomD(D , O) ��

≈
��

HomD(Dn, O) ��

≈
��

· · ·

0 ��
C

�� O
[ ∂
∂z1

,..., ∂
∂zn

]
�� On �� · · · .

(3.12)
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Namely, the sheaf HomD(O, O) of solutions in O of the de Rham Module O
is the constant sheaf C. In general, for the D-Module M represented by the
free resolution

· · · ·Q �� D l ·P ��

��

Dm ��

·u
��

0

· · · �� 0 �� M �� 0

as in (3.8), via the left exact functor HomD(·,O), we get

0 �� HomD(M , O) ũ· �� HomD(Dm, O) P̃ · ��

≈
��

HomD(D l, O)
Q̃· ��

≈
��

· · ·

Om �� O l �� · · · .

(3.13)

That is, the O-solution sheaf HomD(M , O) is the sheaf ker P̃ in (3.13). In
terms of notions in Chapters II of derived functors we have





HomD(M , O) ≈ R0HomD(·,O)M = H 0(HomD(D•, O)) = ker P̃

Ext1
D(M , O) ≈ R1HomD(·,O)M = H 1(HomD(D•, O)) = ker Q̃/ im P̃

...
...

...
...

where D• is any projective (or free) resolution of M . In terms of the notions
in Chapter IV on derived categories, for a quasi-isomorphic complex D• to a
D-Module M , the complex in (3.13) corresponds to

RHomD(·,O)M = RHomD(M , O)

so that its j-th cohomology R
jHomD(M , O) = Ext j

D(M , O), j = 0, 1, 2, . . . .
In addition to the two references at the beginning of this Exposition, the

following books are recommended.

[Bjork] Björk, J.-E., Analytic D-Modules and Applications, Kluwer Acad.
Publ., 1993.

[Borel] Borel, A., et al, Algebraic D-Modules, Perspectives in Math. 2, Academic
Press, 1987.

5.4 Cohomological Aspects of D-Modules
The theory of hyperfunctions was developed by Mikio Sato in the 1950’s as

a generalization of the notion of a Schwartz distribution. See

[Sato] Sato, M., Theory of Hyperfunctions, I, II, J. Fac. Sci. Univ. of Tokyo,
Sec. I, 8, (1959), 139–193, 387–437,
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Figure 5.3. Sato and the head of the author’s son, Kyoto, 1988

where the concept of relative cohomology with the coefficient in the sheaf of
holomorphic functions is needed to define the sheaf of hyperfunctions.

We will give a brief discussion on the sheaf B of (germs of) hyperfunctions
and the sheaf C of (germs of) microfunctions. The serious reader can consult
the following book.

[K3] Kashiwara, M., Kawai, T., Kimura, T., Foundations of Algebraic Analysis,
Princeton Univ. Press, Princeton Math. Series 37, 1986.

Even more ambitious readers can read:

[SKK] Sato, M., Kawai, T., Kashiwara, M., Microfunctions and Pseudo-Differential
Equations, Lect., Notes in Math., 287, (1973), Springer-Verlag, 265–529.

Let O be the sheaf of holomorphic functions over C
n. Then for open sets

W ⊂ V in C
n, we have the restriction homomorphism O(V ) → O(W ) of

abelian groups. As in Subsection 3.4.1, we can interpret this restriction homo-
morphism as the morphism of global section functors:

Γ(V, ·) −→ Γ(W, ·). (4.1)

Then define the functor Γ(V, W, ·) as the kernel of (4.1) evaluated at a sheaf.
Namely, we get

0 �� Γ(V, W, ·) �� Γ(V, ·) �� Γ(W, ·). (4.2)

For a flabby sheaf F (and for an injective sheaf), by the definition we have the
short exact sequence

0 �� Γ(V, W, F ) �� Γ(V, F ) �� Γ(W, F ) �� 0.
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(See Subsection 3.4.2 and Notes 17 in Chapter III.) Let Ω := R
n ∩ V . Then

by taking W = V −Ω in (4.2), the exact sequence (4.2) induces the long exact
sequence of cohomologies:

0 �� Γ(V, V − Ω, O) �� Γ(V, O) �� Γ(V − Ω, O) ��

�� H1(V, V − Ω, O) �� H1(V, O) �� H1(V − Ω, O) ��

�� · · · .

(4.3)

Let V ′ ⊂ V be another open set in C
n and let Ω′ := R

n ∩ V ′. Then we have
the restriction homomorphisms

0 �� Γ(V, V − Ω, ·)

��

�� Γ(V, ·)

��

�� Γ(V − Ω, ·)

��
0 �� Γ(V ′, V ′ − Ω′, ·) �� Γ(V ′, ·) �� Γ(V ′ − Ω′, ·).

The restriction Γ(V, V − Ω, ·) → Γ(V ′, V ′ − Ω′, ·) induces

RjΓ(V, V − Ω, O) �� RjΓ(V ′, V ′ − Ω′, O)

Hj(V, V − Ω, O) �� Hj(V ′, V ′ − Ω′, O).

(4.4)

Namely, V � Hj(V, V − Ω, O) is a presheaf over C
n. Denote the associated

sheaf by H j
Rn(O). The definition of the sheaf B of hyperfunctions (of Sato)

depends upon the following profound theorems of K. Oka and H. Cartan:

Theorem 19 (Oka’s Coherence Theorem). The sheaf O is coherent.

Theorem 20 (Cartan’s Theorem). All the higher cohomologies vanish, i.e.,
Hj(V, O) = 0, j ≥ 1, where V is a domain of holomorphy.

See the following references to understand the meaning of these theorems.

[GrRem] Grauert, H., Remmert, R., Coherent Analytic Sheaves.

[Horm]  H rmander, L., Introduction to Complex Analysis in Several Variables,
North-Holland Math. Library Vol 7, North-Holland Publ. Co., 1973.

[FG]

der Mathematischen Wissenschaften 265, Springer-Verlag, 1984.

Manifolds, Graduate Texts in Mathematics 213, Springer-Verlag, 2002.

Grundlehren

Fritzsche, K., Grauert, H., From Holomorphic Functions to Complex

ö
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Figure 5.4. Kiyoshi Oka. This photo was provided by Mrs. Saori Matsubara (Oka’s daughter).

The only non-trivial associated sheaf H n
Rn(O) is said to be the sheaf B of

(germs of) Sato’s hyperfunctions on R
n, where H j

Rn(O) = 0 for j �= n. Note
that the hyperfunction sheaf B = H n

Rn(O) is the n-th derived functor of

H 0
Rn : (Sheaves over C

n) � (Sheaves over C
n) :

(Sheaves over C
n)

H 0
Rn (·)

����������������

Γ(V,V −Ω,·)

��,-
,-,-

,-,-
,-,-

,-,-
,-,-

,-,-
,-,-

,-,-
(Sheaves over C

n)

Γ(V,·)

��
��
��
��
��
��
��
��

Ab.

(4.5)

Then from (4.5) we get the composite functor spectral sequence

Ep,n
2 = Hp(V, H n

Rn(O))

abutting upon Hp+n(V, V − Ω, O). In particular, for p = 0,

E0,n
2 = Γ(V, H n

Rn(O)) ≈ Hn(V, V − Ω, O)



Cohomological Aspects of D -Modules 175

holds, i.e., V � Hn(V, V −Ω, O) is a sheaf. For an open set U containing V ,
the excision isomorphism (4.49) in Chapter III implies the isomorphism

Hn(U, U − Ω, O) ≈−→ Hn(V, V − Ω, O).

In fact, the original idea of M. Sato was to capture a hyperfunction as the sum
of boundary values of holomorphic functions. See [K3], [Sato], or

[KaStr] Kato, G., Struppa, D.C., Fundamentals of Algebraic Microlocal Analysis,
Pure and Applied Math., No. 217, Marcel Dekker Inc, 1999

for details and the historical background. As in (4.2) the sequence of functors

0 �� Γ(V, V − Ω, ·) �� Γ(V, ·) �� Γ(V − Ω, ·)

induces the following triangle corresponding to the long exact sequence (4.3):

RΓ(V, V − Ω, O)

��2
22

22
22

22
22

22
22

22
2

RΓ(V − Ω, O)
[1]��

RΓ(V, O)

��������������������

in the derived category D(Ab). As noted earlier, for j �= n,

R
jH 0

Rn(O) = 0 (4.6)

and from (4.5) we have Γ(V, V − Ω, O) ≈ Γ(V, H 0
Rn(O)). Therefore from

(2.18) in Chapter IV we get

RΓ(V, V − Ω, O) = R(Γ(V, ·) ◦ H 0
Rn)O =

= (RΓ(V, ·) ◦ RH 0
Rn)O =

= RΓ(V, RH 0
Rn(O)).

By letting B(Ω) := Hn(V, V −Ω, O) = Γ(V, H n
Rn(O)), the sheaf B of hyper-

functions can be regarded as a sheaf over R
n. Then B is a flabby sheaf. Namely,

for open sets Ω ⊂ Ω′ in R
n, the restriction homomorphism is epimorphic

B(Ω′) �� B(Ω) �� 0.

The flabbiness of the hyperfunction sheaf plays an important role in the appli-
cations to partial differential equations.
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Note that hyperfunctions in one the variable case, i.e., n = 1, does not need
cohomology. This is because B(Ω) = H1(V, V − Ω, O) and H1(V, O) = 0
for any V in C. Namely, we have the exact sequence

0 �� Γ(V, V − Ω, O) �� Γ(V, O) �� Γ(V − Ω, O) ��

�� H1(V, V − Ω, O) �� 0
(4.7)

and furthermore, analytic continuation implies Γ(V, O) → Γ(V − Ω, O) is a
monomorphism. That is, by the exactness of (4.7), the global sections of the
sheaf of hyperfunctions over Ω ⊂ R become

O(V − Ω)
/
O(V ) ≈−→ B(Ω) = H1(V, V − Ω, O).

For example, if Ω = {0}, then 1/z ∈ O(V − {0}). The Dirac delta function
as hyperfunction is given by the class

[1/z] ∈ O(V − {0})
/
O(V ).

See the references mentioned earlier for further topics on hyperfunctions.
Next we will give a definition of the sheaf C of (germs of) microfunctions

defined on the cotangential sphere bundle S∗
R

n. Let

SR
n

τ
��.

..
..

..
. S∗

R
n

π
����

��
��

��

R
n

be the canonical projections onto R
n from the tangential sphere bundle SR

n

and the cotangential sphere bundle S∗
R

n. We write (x, η̄) and (x, ξ̄) for points
on SR

n and S∗
R

n, respectively, where η̄ := x + iη0 and ξ̄ := x + iξ∞ as in
[K3]. Let C̃n be a blowing up in C

n along R
n, i.e., C̃n can be regarded as the

disjoint union C̃n = (Cn − R
n) � SR

n. Define

1
2
S∗SR

n := {(x, ξ̄, η̄) | 〈ξ, η〉 ≥ 0}

i.e., half of the fibre product of SR
n and S∗

R
n. We have

1
2
S∗SR

n

π

����
��

��
��

�
τ

����
���

���
��

C̃n SR
n2 ���

τ

����
���

���
��

S∗
R

n

π

�����
���

���
�

C
n

R
n.2 ���
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By various purely codimensionality results we can construct the sheaf C of
microfunctions as follows. For the sheaf τ−1O , SR

n is purely 1-codimensional:

H j
SRn(τ−1O) = 0, j �= 1 (4.8)

where H j
SRn(τ−1O) is the associated sheaf to the presheaf

Ṽ �→ Hj(Ṽ , Ṽ − SR
n ∩ Ṽ , τ−1O)

for an open set Ṽ in C̃n. (This is Proposition 2.1.1 of [K3].) Next, for the sheaf
π−1H 1

SRn(τ−1O) over the above 1
2
S∗SR

n, the projection τ : 1
2
S∗SR

n → S∗
R

n

is purely (n − 1)-codimensional in the following sense:

Rjτ∗(π−1H 1
SRn(τ−1O)) = 0, j �= n − 1. (4.9)

(This is Proposition 2.1.2′ in [K3].) Then the sheaf C is defined by

C := Rn−1τ∗(π−1H 1
SRn(τ−1O)). (4.10)

Next we will prove that the sheaf C as defined in (4.10) can also be expressed
as H n

S∗Rn(π−1O). For the projection

S∗
R

n × C̃n −→ C̃n,

apply the Leray spectral sequence in Subsection 3.4.7 to

(Sheaves over S∗
R

n × C̃n)
π∗ ����������������

Γ+(·)

''�!
�!�!

�!�!
�!�!

�!�!
�!�!

�!�!
�!�!

�!�!
�!�!

(Sheaves over C̃n)

Γ(Ṽ ,Ṽ −Ṽ ∩SR
n,·)

��
��
��
��
��
��
��
��

Ab,

where Γ+(·) := Γ(Ṽ × V ∗, Ṽ × V ∗ − Ṽ × V ∗ ∩ SR
n, ·). That is, the initial

term is given as

Ep,q
2 = Hp(Ṽ , Ṽ − Ṽ ∩ SR

n, Rqπ∗(π−1(τ−1O)))

abutting upon

Hn(Ṽ × V ∗, Ṽ × V ∗ − Ṽ × V ∗ ∩ SR
n, π−1(τ−1O))

where Ṽ and V ∗ are open sets in C̃n and S∗
R

n, respectively. we can take
contractible V ∗ so that Hp(V ∗, τ−1O) = 0 for p �= 0. Then we get

Rqπ∗(π−1τ−1O) =

{
τ−1O for q = 0
0 for q �= 0.
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Namely, only Ep,0
2 are non-trivial:

Ep,0
2 = Hp(Ṽ , Ṽ − Ṽ ∩ SR

n, τ−1O).

From the purely 1-codimensionality of SR
n for τ−1O , i.e., (4.8), we get

π−1H 1
SRn(τ−1O) ≈−→ H 1

π−1(SRn)(π
−1(τ−1O)) ≈ H 1

1
2
S∗Rn(π−1(τ−1O)).

Let us compute the higher direct image

Ep,1
2 = Rpτ∗(H 1

1
2
S∗SRn(π−1(τ−1O)).

Since we have

0 = Ep−2,2
2

�� Ep,1
2

�� Ep+2,0
2 = 0,

Ep,1
2

≈−→ Ep,1
∞ is isomorphic to the abutment

Rp+1(τ∗H 0
1
2
S∗SRn)(π−1(τ−1O)).

Again by the pure (n − 1)-codimensionality of π−1H 1
SRn(τ−1O) for τ , i.e.,

(4.9), we get

En−1,1
2 = Rn−1τ∗(H 1

1
2
S∗SRn(π−1(τ−1O))).

Then the abutment becomes

Rn(τ∗H 0
1
2
S∗SRn)(π−1(τ−1O)).

Since we have 1
2
S∗SR

n = τ−1(S∗
R

n) we get

Rn(τ∗H 0
1
2
S∗SRn)(π−1(τ−1O)) ≈ Rn(H 0

S∗Rnτ∗)(τ−1(π−1O)).

Namely, we get the sheaf

C = Rn−1τ∗(π−1H 1
SRn(τ−1O)) ≈ RnH 0

S∗Rn(π−1O),

i.e., we obtain
C ≈ H n

S∗Rn(π−1O).

See any reference mentioned above for the fundamental exact sequence of
sheaves A , B and C of real analytic functions, hyperfunctions and microfunc-
tions:

0 �� A �� B �� π∗C �� 0.
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5.4.1 The de Rham Functor
Let D be the sheaf of germs of holomorphic (linear) differential operators

over an n-dimensional complex manifold X . Then we have two functors: the
solution functor HomD(·,O), a contravariant functor from the category DM
of D-Modules to the category CV of sheaves of C-vector spaces. Namely, we
have

HomD(·,O) : DM � CV

such that at x ∈ X the stalk HomD(M , O)x = HomDx(Mx, Ox) is a module
over Cx of the constant sheaf C. The other functor HomD(O, ·) is covariant
from DM to CV which has also been mentioned in Exposition 5.3 and called
the de Rham functor. Then define the complex of sheaves of p-forms with
coefficients in a D-Module M as follows:

Ω•(M ) := Ω• ⊗O M ≈ HomO(∧•Θ, M ),

where
dp

M : Ωp ⊗O M −→ Ωp+1 ⊗O M

is defined by

dp
M (ω ⊗ m) = dpω ⊗ m +

n∑

i=1

(dpxi ∧ ω) ⊗
(

∂
∂xi

)
m.

Note that Θ = D (1) is the holomorphic tangent sheaf, i.e., f ∈ D
(1)
x can be

written as
f1

(
∂

∂x1

)
+ f2

(
∂

∂x2

)
+ · · · + fn

(
∂

∂xn

)

using local coordinates (x1, x2, . . . , xn). Also, Ω• is the sheaf of holomorphic
p-forms on X . Then by replacing M by D we get the following free resolution
(4.11) of the right D-Module Ωn:

0 �� D
d0

D �� Ω1 ⊗O D
d1

D �� · · · �� Ωn ⊗O D

ε

��

�� 0

Ωn

(4.11)

where {
d0

D(1D) =
∑n

i=1 dxi ⊗
(

∂
∂xi

)
, and

d1
D(ω ⊗ 1D) = d1(ω) ⊗ 1D − ω ⊗ d0

D(1D)
(4.12)

and in general

dp
D(ω ⊗ 1D) = dp(ω) ⊗ 1D + (−1)pω ⊗ d0

D(1D) (4.13)
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for ω ∈ Ωp and 1D ∈ D . A right D-Module structure of Ωn, the highest form
on X , is defined by

(
fdx1 ∧ · · · ∧ dxn

)(
∂

∂xi

)
=

(
∂

∂xi

)
(f)dx1 ∧ · · · ∧ dxn. (4.14)

Note also that the augmentation ε : Ωn ⊗ D → Ωn in (4.11) is defined by the
right D-Module structure of Ωn in (4.14). On the other hand, Θ = D (1) is
a free O-Module as we noted. The Koszul complex ∧•(Dn) associated with
( ∂

∂x1
, . . . , ∂

∂xn
) becomes a free (projective) resolution of O:

0 D��

ε′

��

D ⊗O ∧1Θδ1
�� D ⊗O ∧2Θδ2

�� · · ·�� D ⊗O ∧nΘ�� 0��

O

(4.15)

where the augmentation ε′ is defined by ε′(1D) = 1D ∈ O , i.e., ε(P ⊗u) = Pu
for P ∈ D and u ∈ O . The morphism δq : D ⊗O ∧qΘ → D ⊗O ∧q−1Θ is
defined by

δq(P ⊗ (θ1 ∧ · · · ∧ θq)) =
q∑

i=1

(−1)i−1Pθi ⊗ (θ1 ∧ · · · ∧ θ̂i ∧ · · · ∧q)

+
∑

1≤i<k≤q

(−1)i+kP ⊗ ([θi, θk] ∧ θ1 ∧ · · · ∧ θ̂i ∧ · · · ∧ θ̂k ∧ · · · ∧ θq)

for P ∈ D and θi ∈ Θ, i = 1, 2, . . . , n, where [θi, θk] = θiθk − θkθi. In
particular, δ1(P ⊗ θ) = Pθ. Namely, im δ1 =

∑n
i=1 D

(
∂

∂xi

)
. Consequently,

the 0-th homology of (4.15) is the isomorphism induced by the augmentation
ε′. That is, O

≈←− D
/(

∂
∂x1

, . . . , ∂
∂xn

)
.

Let us extend HomD(·, ·) to functors from the category DM of left D-
Modules to the derived category D(DM ). Namely, we have

RHomD(·, ·) : D(DM ) � D(CV ).

For example, RHomD(O, M ) can be computed by the free resolution (4.15)
of O as

RHomD(O, M ) = HomD(D ⊗O ∧•Θ, M ) ≈
≈ HomO(∧•Θ, M ) ≈
≈ Ω• ⊗O M = Ω•(M ).

Therefore, in terms of the cohomologies we have

Ext i
D(O, M ) = H j(Ω•(M )).
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Note also that the contravariant functor HomD(·,D) gives the free resolution
of Ωn as in (4.11):

RHomD(O, D) ≈ Ω• ⊗O D .

Namely, we get
{

R
jHomD(O, D) = Ext j

D(O, D) = 0 for j �= n

R
nHomD(O, D) = Extn

D(O, D) ≈ Ωn.
(4.16)

Conversely, (4.11) can be used to compute RHomD(Ωn, D). Namely we
obtain the free resolution (4.15) of O by the functor HomD(·,D) via (4.11):

{
R

jHomD(Ωn, D) = Ext j
D(Ωn, D) = 0 for j �= n

R
nHomD(Ωn, D) ≈ O.

(4.17)

Notice that from (4.16) and (4.17) we have

RHomD(RHomD(O, D),D) ≈ RHomD(Ωn, D) ≈ O, (4.18)

i.e., Extn
D(Extn

D(O, D),D) ≈ O . Also notice that for the free resolution
Ω•(D) ε−→ Ωn of Ωn as given in (4.11), the right exact functor · ⊗D M
induces

0 �� Ω0(D) ⊗ M

≈
��

�� Ω1(D) ⊗ M ��

≈
��

· · · �� Ωn(D) ⊗ M
ε̃ ��

≈
��

Ωn ⊗ M

0 �� Ω0 ⊗ M �� Ω1 ⊗ M �� · · · �� Ωn ⊗ M �� Ωn ⊗ M ,

(4.19)

where in the upper sequence tensor products are over D and in the lower, over
O . The homology and the cohomology of the sequence in (4.19) provide the
isomorphism

TorD
n−j(Ω

n, M ) ≈−→ Ext j
D(O, M ), (4.20)

or Ωn
L

⊗D M ≈ RHomD(O, M ) in terms of derived category notion. Fur-
thermore, for M = O we have

RHomD(O, O) ≈ Ω•.

By the Poincaré Lemma we have

R
jHomD(O, O) = Ext j

D(O, O) = H j(Ω•) =

{
0, j �= 0
C, j = 0.
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That is, as an object of D(CV ), RHomD(O, O) is isomorphic to C.
Let N be a left D-Module and let P• → N be a projective resolution of

N . Then we have

Ext j
D(N , D) = H j(HomD(P•, D)).

Let ′P• be a complex of flat right D-Modules quasi-isomorphic to the complex
HomD(P•, D), i.e., H j(′P•) ≈ H j(HomD(P•, D)). Then let C j(N , M )
be the functor, contravariant in N and covariant in M defined by

H j(′P• ⊗D M ).

Then C j(N , M ) is an exact connected sequence of functors. We have the
following spectral sequence abutting upon C j(N , M ):

Ep,q
2 = TorD

−p(Extq
D(N , D),M ). (4.21)

Note that for a finitely presented D-Module M (i.e., M is coherent as a D-
Module), C j(N , M ) becomes Ext j

D(N , M ). This is because we have

HomD(·,D) ⊗D M = HomD(·,M )

for a finitely generated projective D-Module M . As an object of the derived
category, it is

RHomD(N , D)
L

⊗D M

inducing the spectral sequence (4.21). For N = O and a coherent D-Module
M , the spectral sequence (4.21) gives the isomorphism in (4.20). Notice also
that the universal coefficient spectral sequence (2.38) and the spectral sequence

(4.21) associated to RHomD(N , D)
L

⊗D M are essentially the same. See
[KaStr] for details.

5.4.2 Cohomological Characterization of Holonomic
D-Modules

The notion of the characteristic variety V (M ) of a D-Module M is central
for the microlocal analysis of M . The holonomicity of M is defined in terms
of the dimension of the characteristic variety V (M ). A D-Module M is
said to be holonomic if the dimension of V (M ) is the smallest possible, i.e.,
dimV (M ) = n. Such a system of partial differential equations is called a
maximally overdetermined system. It is known that the holonomicity condition
is equivalent to

Ext j
D(M , D) = 0, j �= n.
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(See any of the references for the proof.) We have already observed in (4.18)
that RHomD(RHomD(O, D),D) = O . We will prove that for a holonomic
D-Module M we have

Extn
D(Extn

D(M , D),D) ≈ M . (4.22)

Note that Ext j
D(M , D) = 0 for j �= n implies the following: for an exact

sequence of holonomic left D-Modules

0 �� M ′ �� M �� M ′′ �� 0,

we get

0 �� Extn
D(M ′′, D) �� Extn

D(M , D) �� Extn
D(M ′, D) �� 0.

That is, the contravariant functorExtn
D(·,D) from the category of left holonomic

D-Modules to the category of right holonomic D-Modules is an exact functor.
In order to prove (4.22), first take a projective resolution of M as

P•
ε−→ M . (4.23)

By the contravariant functor HomD(·,D), from (4.23) we get the complex

′P• : HomD(P•, D)

HomD(M , D).

HomD(ε,D)



Then let

′P0 �� ′P1 �� · · · �� ′Pj �� · · ·

Q0,0



�� Q1,0



�� · · · �� Qj,0



�� · · ·

Q0,−1



�� Q1,−1



�� · · · �� Qj,−1



�� · · ·

...



...



...



(4.24)

be Cartan–Eilenberg resolution of ′P• with projective object Q•,•. Then the
contravariant functor HomD(·,D) carries the double complex (4.24) in the
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fourth quadrant to the following double complex in the second quadrant:

...
...

...

· · · �� ′Q−j,1



�� · · · �� ′Q−1,1



�� ′Q0,1



· · · �� ′Q−j,0



�� · · · �� ′Q−1,0



�� ′Q0,0



· · · �� ′′P−j,0



�� · · · �� ′′P−1,0



�� ′′P0,0



(4.25)

where ′′P−j,0 := HomD(′Pj , D) and ′Q−j,i := HomD(Qj,−i, D). Then we
have the spectral sequences associated with the double complex (4.25). Namely,
by (3.7), (3.8), (3.9),






E−p,q
0 = ′Q−p,q, ′Ep,−q

0 = ′Q−q,p

E−p,q
1 = H q

↑ (′Q−p,•), ′Ep,−q
1 = H −q

→ (′Q•,p)
E−p,q

2 = H −p
→ (H q

↑ (′Q•,•)), ′Ep,−q
2 = H p

↑ (H −q
→ (′Q•,•))

(4.26)

both abutting upon the total cohomology H n(′Q•) where

′Qn :=
⊕

p+q=n

′Q−p,q.

Since HomD(·,D) is a left exact functor we have

E−p,0
1 = H 0

↑ (′Q−p,•) ≈ HomD(′Pp,0, D).

Moreover, for the projective object ′Pp,0, we get

′′P−p,0 = HomD(′Pp,0, D) = HomD(HomD(P−p, D),D) ≈ P−p.

Then from
· · · �� E−p,0

1
�� E

−(p−1),0
1

�� · · ·

· · · �� P−p �� P−(p−1) �� · · · ,

we get E−p,0
2 = 0 for p �= 0, and we have E0,0

2 ≈ M . Note that the diagram
(4.25) is vertically exact; i.e., for q �= 0 we have E−p,q

1 = H q
↑ (′Q−p,•) = 0.
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Let us re-write H q
↑ (′Q−p,•) as follows:

H q
↑ (′Q−p,•) = RqHomD(·,D)′Pp =

= RqHomD(·,D)(HomD(·,D)P−p).

That is, E−p,q
1 associated with the double complex (4.25) can be considered as

the Eq,0
2 -term of the composite functor of

left−DM
HomD(·,D) ����������������

����
����

����
����

����
����

����

right−DM

HomD(·,D)

��
��
��
��
��
��
��
��

left−DM .

(4.27)

Namely, we have

E−p,q
1 (4.25) = Eq,0

2 = RqHomD(·,D)(R0HomD(·,D)(P−p)).

However, for the projective object P−p, we have

HomD(HomD(P−p, D),D) ≈ P−p,

i.e., the composition of two functors in (4.27) is an identity functor on projec-
tives. Since an identity is an exact functor, the abutment Eq = 0 for q ≥ 1.
Therefore, Eq,0

2 = 0 for q ≥ 1. Consequently, E−p,q
1 = H q

↑ (′Q−p,•) = 0 for
q ≥ 1. Then

0 = E−2,1
2 (4.25) �� E0,0

2 (4.25) �� E2,−1
2 (4.25) = 0

implies M ≈ E0,0
∞ ≈ E0 = H 0(′Q•) of (4.25).

Let us compute the second spectral sequence in (4.26) induced by the filtra-
tion as in (3.23). We will draw diagrams as we did in Note 16 in Chapter III.
At the level zero, {′Ep,−q

0 } can be shown as

· · · �� ′Ep,−q
0

�� ′Ep,−q−1
0

�� · · ·

· · · �� ′Q−q,p �� ′Q−q−1,p �� · · · .
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Then we have
...

...

′E2,−q
1



H −q
→ (′Q•,2)



′E1,−q
1



H −q
→ (′Q•,1)



′E0,−q
1



H −q
→ (′Q•,0)



0



0



and
′Ep,q

2 = Extp
D(Extq

D(M , D),D)

abutting upon that (p−q)-th derived functor Ep−q of the identity, i.e., E0 ≈ M
for p − q = 0. From the sequence

· · · �� ′Ep−2,−p+1
2

�� ′Ep,−q
2

�� ′Ep+2,−q−1
2

�� · · ·

0 0

and from ′Ep,−p
∞ = Fp(E0)/Fp+1(E0) = Fp(M )/Fp+1(M ) where M =

E0 =
⊕

p=0 Ep,−p
∞ , we get

′En,n
2 = Extn

D(Extn
D(M , D),D) ≈ En,−n

∞ ≈ M

for a holonomic D-Module M .
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EPILOGUE (INFORMAL)

Thank you, Fred, for inviting me to Antwerpen and for suggesting such a
charming title as The Heart of Cohomology.

To Daniel I send “Thanks" for working with me even while so much was
going on in your life.

Thank you, Marieke Mol for teaching me the innocent poem by Paul van
Ostaijen.

Thank you, Chrissie, for checking my English, and Alex for playing great
piano music of Bach, Beethoven, Mozart, . . . , everyday.

Please allow me to sing a beautiful poem from the Manyoushu Vol 1, 20:

Akanesasu Murasaki Noyuki Shimenoyuki
Numoriwa Mizuya Kimigasodehuru

To the young reader: only elemental 5 − 7 − 5 − 7 − 7 syllables like the
above Manyoushu poem sometimes can sing the beauty.
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B-rational point, 149

F -acyclic object, 95
Čech cohomology, 98, 99

Abelian category, 14, 16
Abutment, 74
Additive category, 17
Additive functor, 16
Adjoint, 19

Category, 1
abelian, 16
additive, 17
derived, 119
dual, 5
homotopy, 41
opposite, 5
small, 1
subcategory, 7
subcategory, full, 8

Category, abelian, 14

Cohomology, 40
Čech, 98, 99
group, 3, 93
object, 93
pre-, 67

Coimage, 15
Cokernel, 15
Complex, 39

Čech, 97
double, 78
filtered, 76

Coproduct, 14
Covering family, 28
Covering sieve, 30

de Rham functor, 170, 179
de Rham Module, 170
Derived category, 119

Direct sum, 25
Discriminant, 158
Distinguished triangle, 131
Double complex, 78
Dual Category, 5

Edge morphism, 102
Effective epimorphism, 32
Embedding, 8
Epimorphism, 2
Equalizer, 27
Equivalence, 8
Exact couple, 77
Exact functor, 43
Exact sequence, 18

short exact sequence, 18

Fan, 21
Filtered complex, 76
Flabby sheaf, 93
Functor

additive, 16
adjoint, 19
contravariant, 5
covariant, 4
de Rham, 170, 179
embedding, 8
equivalence, 8
exact, 43
exact connected sequence, 62
faithful, 8
forgetful functor, 7
full, 8
fully faithful, 8
global section, 92
half-exact, 43
hyperderived, 89
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Derived functor, 93
Direct product, 14, 16, 25
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imbedding, 8
isomorphism, 8
kernel preserving, 18
left derived, 51
left exact, 18, 43, 93
localizing, 119
representable, 10
right derived, 46
right exact, 43
solution, 170

Germ, 26
Global section functor, 92

Higher direct image, 107
Homotopy, 41
Homotopy category, 41, 117
Hypercohomology

relative, 105
sheaves, of, 95

Hyperderived functor, 89

Imbedding, 8
Initial object, 14
Injective object, 43

enough, 45
Injective resolution, 46
Injective sheaf, 93
Inverse limit

inverse system, 111
Inverse system, 111

Kernel, 2, 14

Lefschetz principle, 162
Left derived functor, 51
Left exact functor, 18, 93
Leray spectral sequence, 107

second, 108
Limit, 22

colimit, 24
direct, 24
inverse, 22
projective, 22

Localizing functor, 119

Mapping cone, 131
Mapping cylinder, 131
Mittag–Leffler condition, 115
Monomorphism, 2
Morphism, 1

edge, 102
homotopic, 41
identity morphism, 3
quasi-isomorphism, 46, 94, 95, 117

Natural Equivalence, 19

Natural Equivalene, 10
Natural Transformation, 7

Object
F -acyclic, 95
injective, 43
projective, 44
subobject, 2

Objects, 1
Octahedral

axiom, 143
property, 143

Precohomology, 67
Presheaf, 6

germ, of, 26
restriction map, 26
section, 26
sheafification, 37
stalk, of, 26

Projective object, 44
enough, 45

Quasi-isomorphism, 46, 94, 95, 117

Refinement, 99
Relative hypercohomology, 105
Representable Functor, 10
Resolution, 46

Cartan–Eilenberg, 81
injective, 46

Restriction map, 26
Right derived functor, 46

Section, 26
Sheaf, 26

flabby, 93
injective, 93

Sheafification, 37
Short exact sequence, 18
Sieve, 29

covering, 30
effective epimorphism, 32

Site, 28, 30
canonical, 33
covering family, 28
morphism, 28

Solution functor, 170
Spectral Sequence, 71, 72
Spectral sequence

abutment, of, 74
first quadrant, 73
Leray, 107
Leray, second, 108

Stalk, 26

Terminal object, 14

Index

p-Adic integer, 150
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distinguished, 131

Universal coefficient spectral sequence, 163

Weierstrass family, 153

Yoneda embedding, 13
Yoneda’s Lemma, 10

Zero morphism, 14
Zero object, 14
Zeta matrix, 165
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Triangle, 129


