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Prefaces

Preface to the Second English Edition

Science has not stood still in the years since the first English edition of this book
was published. For example, Fermat’s last theorem has been proved, the Poincaré
conjecture is now a theorem, and the Higgs boson has been discovered. Other events
in science, while not directly related to the contents of a textbook in classical math-
ematical analysis, have indirectly led the author to learn something new, to think
over something familiar, or to extend his knowledge and understanding. All of this
additional knowledge and understanding end up being useful even when one speaks
about something apparently completely unrelated.1

In addition to the original Russian edition, the book has been published in En-
glish, German, and Chinese. Various attentive multilingual readers have detected
many errors in the text. Luckily, these are local errors, mostly misprints. They have
assuredly all been corrected in this new edition.

But the main difference between the second and first English editions is the addi-
tion of a series of appendices to each volume. There are six of them in the first and
five of them in the second. So as not to disturb the original text, they are placed at the
end of each volume. The subjects of the appendices are diverse. They are meant to be
useful to students (in mathematics and physics) as well as to teachers, who may be
motivated by different goals. Some of the appendices are surveys, both prospective
and retrospective. The final survey contains the most important conceptual achieve-
ments of the whole course, which establish connections between analysis and other
parts of mathematics as a whole.

1There is a story about Erdős, who, like Hadamard, lived a very long mathematical and human
life. When he was quite old, a journalist who was interviewing him asked him about his age. Erdős
replied, after deliberating a bit, “I remember that when I was very young, scientists established that
the Earth was two billion years old. Now scientists assert that the Earth is four and a half billion
years old. So, I am approximately two and a half billion years old.”

v
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I was happy to learn that this book has proven to be useful, to some extent, not
only to mathematicians, but also to physicists, and even to engineers from technical
schools that promote a deeper study of mathematics.

It is a real pleasure to see a new generation that thinks bigger, understands more
deeply, and is able to do more than the generation on whose shoulders it grew.

Moscow, Russia V. Zorich
2015

Preface to the First English Edition

An entire generation of mathematicians has grown up during the time between the
appearance of the first edition of this textbook and the publication of the fourth
edition, a translation of which is before you. The book is familiar to many people,
who either attended the lectures on which it is based or studied out of it, and who
now teach others in universities all over the world. I am glad that it has become
accessible to English-speaking readers.

This textbook consists of two parts. It is aimed primarily at university students
and teachers specializing in mathematics and natural sciences, and at all those who
wish to see both the rigorous mathematical theory and examples of its effective use
in the solution of real problems of natural science.

Note that Archimedes, Newton, Leibniz, Euler, Gauss, Poincaré, who are held
in particularly high esteem by us, mathematicians, were more than mere math-
ematicians. They were scientists, natural philosophers. In mathematics resolving
of important specific questions and development of an abstract general theory are
processes as inseparable as inhaling and exhaling. Upsetting this balance leads to
problems that sometimes become significant both in mathematical education and in
science in general.

The textbook exposes classical analysis as it is today, as an integral part of the
unified Mathematics, in its interrelations with other modern mathematical courses
such as algebra, differential geometry, differential equations, complex and func-
tional analysis.

Rigor of discussion is combined with the development of the habit of working
with real problems from natural sciences. The course exhibits the power of con-
cepts and methods of modern mathematics in exploring specific problems. Various
examples and numerous carefully chosen problems, including applied ones, form
a considerable part of the textbook. Most of the fundamental mathematical notions
and results are introduced and discussed along with information, concerning their
history, modern state and creators. In accordance with the orientation toward natural
sciences, special attention is paid to informal exploration of the essence and roots of
the basic concepts and theorems of calculus, and to the demonstration of numerous,
sometimes fundamental, applications of the theory.

For instance, the reader will encounter here the Galilean and Lorentz transforms,
the formula for rocket motion and the work of nuclear reactor, Euler’s theorem
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on homogeneous functions and the dimensional analysis of physical quantities, the
Legendre transform and Hamiltonian equations of classical mechanics, elements of
hydrodynamics and the Carnot’s theorem from thermodynamics, Maxwell’s equa-
tions, the Dirac delta-function, distributions and the fundamental solutions, convo-
lution and mathematical models of linear devices, Fourier series and the formula
for discrete coding of a continuous signal, the Fourier transform and the Heisenberg
uncertainty principle, differential forms, de Rham cohomology and potential fields,
the theory of extrema and the optimization of a specific technological process, nu-
merical methods and processing the data of a biological experiment, the asymptotics
of the important special functions, and many other subjects.

Within each major topic the exposition is, as a rule, inductive, sometimes pro-
ceeding from the statement of a problem and suggestive heuristic considerations
concerning its solution, toward fundamental concepts and formalisms. Detailed at
first, the exposition becomes more and more compressed as the course progresses.
Beginning ab ovo the book leads to the most up-to-date state of the subject.

Note also that, at the end of each of the volumes, one can find the list of the main
theoretical topics together with the corresponding simple, but nonstandard problems
(taken from the midterm exams), which are intended to enable the reader both de-
termine his or her degree of mastery of the material and to apply it creatively in
concrete situations.

More complete information on the book and some recommendations for its use in
teaching can be found below in the prefaces to the first and second Russian editions.

Moscow, Russia V. Zorich
2003



viii Prefaces

Preface to the Sixth Russian Edition

On my own behalf and on behalf of future readers, I thank all those, living in dif-
ferent countries, who had the possibility to inform the publisher or me personally
about errors (typos, errors, omissions), found in Russian, English, German and Chi-
nese editions of this textbook.

As it turned out, the book has been also very useful to physicists; I am very
happy about that. In any case, I really seek to accompany the formal theory with
meaningful examples of its application both in mathematics and outside of it.

The sixth edition contains a series of appendices that may be useful to students
and lecturers. Firstly, some of the material is actually real lectures (for example,
the transcription of two introductory survey lectures for students of first and third
semesters), and, secondly, this is some mathematical information (sometimes of cur-
rent interest, such as the relation between multidimensional geometry and the theory
of probability), lying close to the main subject of the textbook.

Moscow, Russia V. Zorich
2011

Preface to the Second Russian Edition

In this second edition of the book, along with an attempt to remove the misprints
that occurred in the first edition,2 certain alterations in the exposition have been
made (mainly in connection with the proofs of individual theorems), and some new
problems have been added, of an informal nature as a rule.

The preface to the first edition of this course of analysis (see below) contains a
general description of the course. The basic principles and the aim of the exposition
are also indicated there. Here I would like to make a few remarks of a practical
nature connected with the use of this book in the classroom.

Usually both the student and the teacher make use of a text, each for his own
purposes.

At the beginning, both of them want most of all a book that contains, along with
the necessary theory, as wide a variety of substantial examples of its applications
as possible, and, in addition, explanations, historical and scientific commentary, and
descriptions of interconnections and perspectives for further development. But when
preparing for an examination, the student mainly hopes to see the material that will
be on the examination. The teacher likewise, when preparing a course, selects only
the material that can and must be covered in the time alloted for the course.

In this connection, it should be kept in mind that the text of the present book
is noticeably more extensive than the lectures on which it is based. What caused

2No need to worry: in place of the misprints that were corrected in the plates of the first edition
(which were not preserved), one may be sure that a host of new misprints will appear, which so
enliven, as Euler believed, the reading of a mathematical text.
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this difference? First of all, the lectures have been supplemented by essentially an
entire problem book, made up not so much of exercises as substantive problems of
science or mathematics proper having a connection with the corresponding parts
of the theory and in some cases significantly extending them. Second, the book
naturally contains a much larger set of examples illustrating the theory in action than
one can incorporate in lectures. Third and finally, a number of chapters, sections, or
subsections were consciously written as a supplement to the traditional material.
This is explained in the sections “On the introduction” and “On the supplementary
material” in the preface to the first edition.

I would also like to recall that in the preface to the first edition I tried to warn
both the student and the beginning teacher against an excessively long study of
the introductory formal chapters. Such a study would noticeably delay the analysis
proper and cause a great shift in emphasis.

To show what in fact can be retained of these formal introductory chapters in
a realistic lecture course, and to explain in condensed form the syllabus for such
a course as a whole while pointing out possible variants depending on the student
audience, at the end of the book I give a list of problems from the midterm exam,
along with some recent examination topics for the first two semesters, to which this
first part of the book relates. From this list the professional will of course discern the
order of exposition, the degree of development of the basic concepts and methods,
and the occasional invocation of material from the second part of the textbook when
the topic under consideration is already accessible for the audience in a more general
form.

In conclusion I would like to thank colleagues and students, both known and un-
known to me, for reviews and constructive remarks on the first edition of the course.
It was particularly interesting for me to read the reviews of A.N. Kolmogorov and
V.I. Arnol’d. Very different in size, form, and style, these two have, on the profes-
sional level, so many inspiring things in common.

Moscow, Russia V. Zorich
1997

From the Preface to the First Russian Edition

The creation of the foundations of the differential and integral calculus by Newton
and Leibniz three centuries ago appears even by modern standards to be one of the
greatest events in the history of science in general and mathematics in particular.

Mathematical analysis (in the broad sense of the word) and algebra have inter-
twined to form the root system on which the ramified tree of modern mathematics
is supported and through which it makes its vital contact with the nonmathematical
sphere. It is for this reason that the foundations of analysis are included as a neces-
sary element of even modest descriptions of so-called higher mathematics; and it is
probably for that reason that so many books aimed at different groups of readers are
devoted to the exposition of the fundamentals of analysis.
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This book has been aimed primarily at mathematicians desiring (as is proper) to
obtain thorough proofs of the fundamental theorems, but who are at the same time
interested in the life of these theorems outside of mathematics itself.

The characteristics of the present course connected with these circumstances re-
duce basically to the following:

In the Exposition Within each major topic the exposition is as a rule inductive,
sometimes proceeding from the statement of a problem and suggestive heuristic
considerations toward its solution to fundamental concepts and formalisms.

Detailed at first, the exposition becomes more and more compressed as the course
progresses.

An emphasis is placed on the efficient machinery of smooth analysis. In the ex-
position of the theory I have tried (to the extent of my knowledge) to point out the
most essential methods and facts and avoid the temptation of a minor strengthening
of a theorem at the price of a major complication of its proof.

The exposition is geometric throughout wherever this seemed worthwhile in or-
der to reveal the essence of the matter.

The main text is supplemented with a rather large collection of examples, and
nearly every section ends with a set of problems that I hope will significantly com-
plement even the theoretical part of the main text. Following the wonderful prece-
dent of Pólya and Szegő, I have often tried to present a beautiful mathematical result
or an important application as a series of problems accessible to the reader.

The arrangement of the material was dictated not only by the architecture
of mathematics in the sense of Bourbaki, but also by the position of analysis
as a component of a unified mathematical or, one should rather say, natural-
science/mathematical education.

In Content This course is being published in two books (Part 1 and Part 2).
The present Part 1 contains the differential and integral calculus of functions of

one variable and the differential calculus of functions of several variables.
In differential calculus we emphasize the role of the differential as a linear stan-

dard for describing the local behavior of the variation of a variable. In addition to
numerous examples of the use of differential calculus to study functional relations
(monotonicity, extrema) we exhibit the role of the language of analysis in writing
simple differential equations – mathematical models of real-world phenomena and
the substantive problems connected with them.

We study a number of such problems (for example, the motion of a body of vari-
able mass, a nuclear reactor, atmospheric pressure, motion in a resisting medium)
whose solution leads to important elementary functions. Full use is made of the lan-
guage of complex variables; in particular, Euler’s formula is derived and the unity
of the fundamental elementary functions is shown.

The integral calculus has consciously been explained as far as possible using intu-
itive material in the framework of the Riemann integral. For the majority of applica-
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tions, this is completely adequate.3 Various applications of the integral are pointed
out, including those that lead to an improper integral (for example, the work in-
volved in escaping from a gravitational field, and the escape velocity for the Earth’s
gravitational field) or to elliptic functions (motion in a gravitational field in the pres-
ence of constraints, pendulum motion).

The differential calculus of functions of several variables is very geometric. In
this topic, for example, one studies such important and useful consequences of the
implicit function theorem as curvilinear coordinates and local reduction to canonical
form for smooth mappings (the rank theorem) and functions (Morse’s lemma), and
also the theory of extrema with constraint.

Results from the theory of continuous functions and differential calculus are sum-
marized and explained in a general invariant form in two chapters that link up nat-
urally with the differential calculus of real-valued functions of several variables.
These two chapters open the second part of the course. The second book, in which
we also discuss the integral calculus of functions of several variables up to the gen-
eral Newton–Leibniz–Stokes formula thus acquires a certain unity.

We shall give more complete information on the second book in its preface. At
this point we add only that, in addition to the material already mentioned, it contains
information on series of functions (power series and Fourier series included), on in-
tegrals depending on a parameter (including the fundamental solution, convolution,
and the Fourier transform), and also on asymptotic expansions (which are usually
absent or insufficiently presented in textbooks).

We now discuss a few particular problems.

On the Introduction I have not written an introductory survey of the subject,
since the majority of beginning students already have a preliminary idea of differen-
tial and integral calculus and their applications from high school, and I could hardly
claim to write an even more introductory survey. Instead, in the first two chapters
I bring the former high-school student’s understanding of sets, functions, the use
of logical symbolism, and the theory of a real number to a certain mathematical
completeness.

This material belongs to the formal foundations of analysis and is aimed pri-
marily at the mathematics major, who may at some time wish to trace the logical
structure of the basic concepts and principles used in classical analysis. Mathemat-
ical analysis proper begins in the third chapter, so that the reader who wishes to
get effective machinery in his hands as quickly as possible and see its applications
can in general begin a first reading with Chap. 3, turning to the earlier pages when-
ever something seems nonobvious or raises a question which hopefully I also have
thought of and answered in the early chapters.

On the Division of Material The material of the two books is divided into chap-
ters numbered continuously. The sections are numbered within each chapter sepa-

3The “stronger” integrals, as is well known, require fussier set-theoretic considerations, outside the
mainstream of the textbook, while adding hardly anything to the effective machinery of analysis,
mastery of which should be the first priority.
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rately; subsections of a section are numbered only within that section. Theorems,
propositions, lemmas, definitions, and examples are written in italics for greater
logical clarity, and numbered for convenience within each section.

On the Supplementary Material Several chapters of the book are written as a
natural extension of classical analysis. These are, on the one hand, Chaps. 1 and 2
mentioned above, which are devoted to its formal mathematical foundations, and on
the other hand, Chaps. 9, 10, and 15 of the second part, which give the modern view
of the theory of continuity, differential and integral calculus, and finally Chap. 19,
which is devoted to certain effective asymptotic methods of analysis.

The question as to which part of the material of these chapters should be included
in a lecture course depends on the audience and can be decided by the lecturer, but
certain fundamental concepts introduced here are usually present in any exposition
of the subject to mathematicians.

In conclusion, I would like to thank those whose friendly and competent profes-
sional aid has been valuable and useful to me during the work on this book.

The proposed course was quite detailed, and in many of its aspects it was co-
ordinated with subsequent modern university mathematics courses – such as, for
example, differential equations, differential geometry, the theory of functions of
a complex variable, and functional analysis. In this regard my contacts and dis-
cussions with V.I. Arnol’d and the especially numerous ones with S.P. Novikov
during our joint work with the so-called “experimental student group in natural-
science/mathematical education” in the Department of Mathematics at MSU, were
very useful to me.

I received much advice from N.V. Efimov, chair of the Section of Mathemati-
cal Analysis in the Department of Mechanics and Mathematics at Moscow State
University.

I am also grateful to colleagues in the department and the section for remarks on
the mimeographed edition of my lectures.

Student transcripts of my recent lectures which were made available to me were
valuable during the work on this book, and I am grateful to their owners.

I am deeply grateful to the official reviewers L.D. Kudryavtsev, V.P. Petrenko,
and S.B. Stechkin for constructive comments, most of which were taken into ac-
count in the book now offered to the reader.

Moscow, Russia V. Zorich
1980
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Chapter 1
Some General Mathematical Concepts
and Notation

1.1 Logical Symbolism

1.1.1 Connectives and Brackets

The language of this book, like the majority of mathematical texts, consists of ordi-
nary language and a number of special symbols from the theories being discussed.
Along with the special symbols, which will be introduced as needed, we use the
common symbols of mathematical logic ¬, ∧, ∨, ⇒, and ⇔ to denote respectively
negation (not) and the logical connectives and, or, implies, and is equivalent to.1

For example, take three statements of independent interest:

L. If the notation is adapted to the discoveries. . . , the work of thought is mar-
velously shortened. (G. Leibniz)2

P. Mathematics is the art of calling different things by the same name. (H. Poinca-
ré).3

G. The great book of nature is written in the language of mathematics. (Galileo).4

Then, according to the notation given above, Table 1.1 relates L, P , G.

1The symbol & is often used in logic in place of ∧. Logicians more often write the implication
symbol ⇒ as → and the relation of logical equivalence as ←→ or ↔. However, we shall adhere
to the symbolism indicated in the text so as not to overburden the symbol →, which has been
traditionally used in mathematics to denote passage to the limit.
2G.W. Leibniz (1646–1716) – outstanding German scholar, philosopher, and mathematician to
whom belongs the honor, along with Newton, of having discovered the foundations of the in-
finitesimal calculus.
3H. Poincaré (1854–1912) – French mathematician whose brilliant mind transformed many areas
of mathematics and achieved fundamental applications of it in mathematical physics.
4Galileo Galilei (1564–1642) – Italian scholar and outstanding scientific experimenter. His works
lie at the foundation of the subsequent physical concepts of space and time. He is the father of
modern physical science.
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2 1 Some General Mathematical Concepts and Notation

Table 1.1

Notation Meaning

L⇒ P L implies P

L⇔ P L is equivalent to P

((L⇒ P )∧ (¬P ))⇒ (¬L) If P follows from L and P is false, then L is false

¬((L⇔G)∨ (P ⇔G)) G is not equivalent either to L or to P

We see that it is not always reasonable to use only formal notation, avoiding
colloquial language.

We remark further that parentheses are used in the writing of complex statements
composed of simpler ones, fulfilling the same syntactical function as in algebraic
expressions. As in algebra, in order to avoid the overuse of parentheses one can
make a convention about the order of operations. To that end, we shall agree on the
following order of priorities for the symbols:

¬, ∧, ∨, ⇒, ⇔ .

With this convention the expression ¬A ∧ B ∨ C ⇒ D should be interpreted
as (((¬A) ∧ B) ∨ C)⇒ D, and the relation A ∨ B ⇒ C as (A ∨ B)⇒ C, not as
A∨ (B⇒ C).

We shall often give a different verbal expression to the notation A⇒ B , which
means that A implies B , or, what is the same, that B follows from A, saying that
B is a necessary criterion or necessary condition for A and A in turn is a sufficient
condition or sufficient criterion for B , so that the relation A⇔ B can be read in any
of the following ways:

A is necessary and sufficient for B;
A holds when B holds, and only then;
A if and only if B;
A is equivalent to B .

Thus the notation A⇔ B means that A implies B and simultaneously B im-
plies A.

The use of the conjunction and in the expression A∧B requires no explanation.
It should be pointed out, however, that in the expression A ∨ B the conjunction

or is not exclusive, that is, the statement A ∨ B is regarded as true if at least one
of the statements A and B is true. For example, let x be a real number such that
x2 − 3x + 2= 0. Then we can write that the following relation holds:

(
x2 − 3x + 2= 0

)⇔ (x = 1)∨ (x = 2).

1.1.2 Remarks on Proofs

A typical mathematical proposition has the form A⇒ B , where A is the assump-
tion and B the conclusion. The proof of such a proposition consists of constructing
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a chain A⇒ C1 ⇒ ·· · ⇒ Cn ⇒ B of implications, each element of which is either
an axiom or a previously proved proposition.5

In proofs we shall adhere to the classical rule of inference: if A is true and
A⇒ B , then B is also true.

In proof by contradiction we shall also use the law of excluded middle, by virtue
of which the statement A∨¬A (A or not-A) is considered true independently of the
specific content of the statement A. Consequently we simultaneously accept that
¬(¬A)⇔A, that is, double negation is equivalent to the original statement.

1.1.3 Some Special Notation

For the reader’s convenience and to shorten the writing, we shall agree to denote the
end of a proof by the symbol �.

We also agree, whenever convenient, to introduce definitions using the special
symbol := (equality by definition), in which the colon is placed on the side of the
object being defined.

For example, the notation

∫ b

a

f (x)dx := lim
λ(P )→0

σ(f ;P, ξ)

defines the left-hand side in terms of the right-hand side, whose meaning is assumed
to be known.

Similarly, one can introduce abbreviations for expressions already defined. For
example

n∑

i=1

f (ξi)Δxi =: σ(f ;P, ξ)

introduces the notation σ(f ;P, ξ) for the sum of special form on the left-hand side.

1.1.4 Concluding Remarks

We note that here we have spoken essentially about notation only, without analyzing
the formalism of logical deductions and without touching on the profound questions
of truth, provability, and deducibility, which form the subject matter of mathematical
logic.

How are we to construct mathematical analysis if we have no formalization of
logic? There may be some consolation in the fact that we always know more than

5The notation A⇒ B⇒C will be used as an abbreviation for (A⇒ B)∧ (B ⇒ C).
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we can formalize at any given time, or perhaps we should say we know how to do
more than we can formalize. This last sentence may be clarified by the well-known
proverb of the centipede who forgot how to walk when asked to explain exactly how
it dealt with so many legs.

The experience of all the sciences convinces us that what was considered clear
or simple and unanalyzable yesterday may be subjected to reexamination or made
more precise today. Such was the case (and will undoubtedly be the case again)
with many concepts of mathematical analysis, the most important theorems and
machinery of which were discovered in the seventeenth and eighteenth centuries,
but which acquired its modern formalized form with a unique interpretation that is
probably responsible for its being generally accessible, only after the creation of the
theory of limits and the fully developed theory of real numbers needed for it in the
nineteenth century.

This is the level of the theory of real numbers from which we shall begin to
construct the whole edifice of analysis in Chap. 2.

As already noted in the preface, those who wish to make a rapid acquaintance
with the basic concepts and effective machinery of differential and integral calculus
proper may begin immediately with Chap. 3, turning to particular places in the first
two chapters only as needed.

1.1.5 Exercises

We shall denote true assertions by the symbol 1 and false ones by 0. Then to each
of the statements ¬A, A∧B , A∨B , and A⇒ B one can associate a so-called truth
table, which indicates its truth or falsehood depending on the truth of the statements
A and B . These tables are a formal definition of the logical operations ¬, ∧, ∨, ⇒.
Here they are:

1. Check whether all of these tables agree with your concept of the corresponding
logical operation. (In particular, pay attention to the fact that if A is false, then the
implication A⇒ B is always true.)
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2. Show that the following simple, but very useful relations, which are widely used
in mathematical reasoning, are true:

a) ¬(A∧B)⇔¬A∨¬B;
b) ¬(A∨B)⇔¬A∧¬B;
c) (A⇒ B)⇔ (¬B⇒¬A);
d) (A⇒ B)⇔ (¬A∨B);
e) ¬(A⇒ B)⇔A∧¬B .

1.2 Sets and Elementary Operations on Them

1.2.1 The Concept of a Set

Since the late nineteenth and early twentieth centuries the most universal language
of mathematics has been the language of set theory. This is even manifest in one of
the definitions of mathematics as the science that studies different structures (rela-
tions) on sets.6

“We take a set to be an assemblage of definite, perfectly distinguishable objects
of our intuition or our thought into a coherent whole.” Thus did Georg Cantor,7 the
creator of set theory, describe the concept of a set.

Cantor’s description cannot, of course, be considered a definition, since it appeals
to concepts that may be more complicated than the concept of a set itself (and in any
case, have not been defined previously). The purpose of this description is to explain
the concept by connecting it with other concepts.

The basic assumptions of Cantorian (or, as it is generally called, “naive”) set
theory reduce to the following statements.

10. A set may consist of any distinguishable objects.
20. A set is unambiguously determined by the collection of objects that comprise

it.
30. Any property defines the set of objects having that property.

If x is an object, P is a property, and P(x) denotes the assertion that x has
property P , then the class of objects having the property P is denoted {x | P(x)}.
The objects that constitute a class or set are called the elements of the class or set.

The set consisting of the elements x1, . . . , xn is usually denoted {x1, . . . , xn}.
Wherever no confusion can arise we allow ourselves to denote the one-element set
{a} simply as a.

The words “class”, “family”, “totality”, and “collection” are used as synonyms
for “set” in naive set theory.

6Bourbaki, N. “The architecture of mathematics” in: N. Bourbaki, Elements of the history of math-
ematics, translated from the French by John Meldrum, Springer, New York, 1994.
7G. Cantor (1845–1918) – German mathematician, the creator of the theory of infinite sets and the
progenitor of set-theoretic language in mathematics.
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The following examples illustrate the application of this terminology:

– the set of letters “a” occurring in the word “I”;
– the set of wives of Adam;
– the collection of ten decimal digits;
– the family of beans;
– the set of grains of sand on the Earth;
– the totality of points of a plane equidistant from two given points of the plane;
– the family of sets;
– the set of all sets.

The variety in the possible degree of determinacy in the definition of a set leads
one to think that a set is, after all, not such a simple and harmless concept.

And in fact the concept of the set of all sets, for example, is simply contradictory.

Proof Indeed, suppose that for a set M the notation P(M) means that M is not an
element of itself.

Consider the class K = {M | P(M)} of sets having property P .
If K is a set either P(K) or ¬P(K) is true. However, this dichotomy does not

apply to K . Indeed, P(K) is impossible; for it would then follow from the definition
of K that K contains K as an element, that is, that¬P(K) is true; on the other hand,
¬P(K) is also impossible, since that means that K contains K as an element, which
contradicts the definition of K as the class of sets that do not contain themselves as
elements.

Consequently K is not a set. �

This is the classical paradox of Russell,8 one of the paradoxes to which the naive
conception of a set leads.

In modern mathematical logic the concept of a set has been subjected to detailed
analysis (with good reason, as we see). However, we shall not go into that anal-
ysis. We note only that in the current axiomatic set theories a set is defined as a
mathematical object having a definite collection of properties.

The description of these properties constitutes an axiom system. The core of
axiomatic set theory is the postulation of rules by which new sets can be formed
from given ones. In general any of the current axiom systems is such that, on the
one hand, it eliminates the known contradictions of the naive theory, and on the
other hand it provides freedom to operate with specific sets that arise in different
areas of mathematics, most of all, in mathematical analysis understood in the broad
sense of the word.

Having confined ourselves for the time being to remarks on the concept of a
set, we pass to the description of the set-theoretic relations and operations most
commonly used in analysis.

Those wishing a more detailed acquaintance with the concept of a set should
study Sect. 1.4.2 in the present chapter or turn to the specialized literature.

8B. Russell (1872–1970) – British logician, philosopher, sociologist and social activist.
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Fig. 1.1

1.2.2 The Inclusion Relation

As has already been pointed out, the objects that comprise a set are usually called the
elements of the set. We tend to denote sets by uppercase letters and their elements
by the corresponding lowercase letters.

The statement, “x is an element of the set X” is written briefly as

x ∈X (or X 
 x),

and its negation as

x /∈X (or X �
 x).

When statements about sets are written, frequent use is made of the logical oper-
ators ∃ (“there exists” or “there are”) and ∀ (“every” or “for any”) which are called
the existence and generalization quantifiers respectively.

For example, the string ∀x ((x ∈A)⇔ (x ∈ B)) means that for any object x the
relations x ∈ A and x ∈ B are equivalent. Since a set is completely determined by
its elements, this statement is usually written briefly as

A= B,

read “A equals B”, and means that the sets A and B are the same.
Thus two sets are equal if they consist of the same elements.
The negation of equality is usually written as A �= B .
If every element of A is an element of B , we write A ⊂ B or B ⊃ A and say

that A is a subset of B or that B contains A or that B includes A. In this con-
nection the relation A ⊂ B between sets A and B is called the inclusion relation
(Fig. 1.1).

Thus

(A⊂ B) := ∀x ((x ∈A)⇒ (x ∈ B)
)
.

If A⊂ B and A �= B , we shall say that the inclusion A⊂ B is strict or that A is
a proper subset of B .

Using these definitions, we can now conclude that

(A= B)⇔ (A⊂ B)∧ (B ⊂A).



8 1 Some General Mathematical Concepts and Notation

Fig. 1.2

If M is a set, any property P distinguishes in M the subset

{
x ∈M | P(x)

}

consisting of the elements of M that have the property.
For example, it is obvious that

M = {x ∈M | x ∈M}.
On the other hand, if P is taken as a property that no element of the set M has, for
example, P(x) := (x �= x), we obtain the set

∅= {x ∈M | x �= x},
called the empty subset of M .

1.2.3 Elementary Operations on Sets

Let A and B be subsets of a set M .

a. The union of A and B is the set

A∪B := {
x ∈M | (x ∈A)∨ (x ∈ B)

}
,

consisting of precisely the elements of M that belong to at least one of the sets A

and B (Fig. 1.2).
b. The intersection of A and B is the set

A∩B := {
x ∈M | (x ∈A)∧ (x ∈ B)

}
,

formed by the elements of M that belong to both sets A and B (Fig. 1.3).
c. The difference between A and B is the set

A\B := {
x ∈M | (x ∈A)∧ (x /∈ B)

}
,

consisting of the elements of A that do not belong to B (Fig. 1.4).
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Fig. 1.3

Fig. 1.4

Fig. 1.5

The difference between the set M and one of its subsets A is usually called
the complement of A in M and denoted CMA, or CA when the set in which the
complement of A is being taken is clear from the context (Fig. 1.5).

Example As an illustration of the interaction of the concepts just introduced, let us
verify the following relations (the so-called de Morgan9 rules):

CM(A∪B) = CMA∩CMB, (1.1)

CM(A∩B) = CMA∪CMB. (1.2)

Proof We shall prove the first of these equalities by way of example:
(
x ∈ CM(A∪B)

)⇒ (
x /∈ (A∪B)

)⇒ (
(x /∈A)∧ (x /∈ B)

)⇒
⇒ (x ∈CMA)∧ (x ∈CMB)⇒ (

x ∈ (CMA∩CMB)
)
.

Thus we have established that

CM(A∪B)⊂ (CMA∩CMB) . (1.3)

9A. de Morgan (1806–1871) – Scottish mathematician.
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On the other hand,
(
x ∈ (CMA∩CMB)

)⇒ (
(x ∈CMA)∧ (x ∈CMB)

)⇒
⇒ (

(x /∈A)∧ (x /∈ B)
)⇒ (

x /∈ (A∪B)
)⇒

⇒ (
x ∈ CM(A∪B)

)
,

that is,

(CMA∩CMB)⊂ CM(A∪B). (1.4)

Equation (1.1) follows from (1.3) and (1.4). �

d. The direct (Cartesian) product of sets. For any two sets A and B one can form a
new set, namely the pair {A,B} = {B,A}, which consists of the sets A and B and
no others. This set has two elements if A �= B and one element if A= B .

This set is called the unordered pair of sets A and B , to be distinguished from the
ordered pair (A,B) in which the elements are endowed with additional properties
to distinguish the first and second elements of the pair {A,B}. The equality

(A,B)= (C,D)

between two ordered pairs means by definition that A= C and B =D. In particular,
if A �= B , then (A,B) �= (B,A).

Now let X and Y be arbitrary sets. The set

X× Y := {
(x, y) | (x ∈X)∧ (y ∈ Y)

}
,

formed by the ordered pairs (x, y) whose first element belongs to X and whose
second element belongs to Y , is called the direct or Cartesian product of the sets X

and Y (in that order!).
It follows obviously from the definition of the direct product and the remarks

made above about the ordered pair that in general X × Y �= Y ×X. Equality holds
only if X = Y . In this last case we abbreviate X×X as X2.

The direct product is also called the Cartesian product in honor of Descartes,10

who arrived at the language of analytic geometry in terms of a system of coordi-
nates independently of Fermat.11 The familiar system of Cartesian coordinates in
the plane makes this plane precisely into the direct product of two real axes. This
familiar object shows vividly why the Cartesian product depends on the order of the
factors. For example, different points of the plane correspond to the pairs (0,1) and
(1,0).

10R. Descartes (1596–1650) – outstanding French philosopher, mathematician and physicist who
made fundamental contributions to scientific thought and knowledge.
11P. Fermat (1601–1665) – remarkable French mathematician, a lawyer by profession. He was
one of the founders of a number of areas of modern mathematics: analysis, analytic geometry,
probability theory, and number theory.
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In the ordered pair z = (x1, x2), which is an element of the direct product Z =
X1 ×X2 of the sets X1 and X2, the element x1 is called the first projection of the
pair z and denoted pr1 z, while the element x2 is the second projection of z and is
denoted pr2 z.

By analogy with the terminology of analytic geometry, the projections of an or-
dered pair are often called the (first and second) coordinates of the pair.

1.2.4 Exercises

In Exercises 1, 2, and 3 the letters A, B , and C denote subsets of a set M .
1. Verify the following relations.

a) (A⊂ C)∧ (B ⊂ C)⇔ ((A∪B)⊂ C);
b) (C ⊂A)∧ (C ⊂ B)⇔ (C ⊂ (A∩B));
c) CM(CMA)=A;
d) (A⊂ CMB)⇔ (B ⊂ CMA);
e) (A⊂ B)⇔ (CMA⊃ CMB).

2. Prove the following statements.

a) A∪ (B ∪C)= (A∪B)∪C =:A∪B ∪C;
b) A∩ (B ∩C)= (A∩B)∩C =:A∩B ∩C;
c) A∩ (B ∪C)= (A∩B)∪ (A∩C);
d) A∪ (B ∩C)= (A∪B)∩ (A∪C).

3. Verify the connection (duality) between the operations of union and intersection:

a) CM(A∪B)= CMA∩CMB;
b) CM(A∩B)= CMA∪CMB .

4. Give geometric representations of the following Cartesian products.

a) The product of two line segments (a rectangle).
b) The product of two lines (a plane).
c) The product of a line and a circle (an infinite cylindrical surface).
d) The product of a line and a disk (an infinite solid cylinder).
e) The product of two circles (a torus).
f) The product of a circle and a disk (a solid torus).

5. The set Δ = {(x1, x2) ∈ X2 | x1 = x2} is called the diagonal of the Cartesian
square X2 of the set X. Give geometric representations of the diagonals of the sets
obtained in parts a), b), and e) of Exercise 4.
6. Show that

a) (X× Y =∅)⇔ (X =∅)∨ (Y =∅), and if X× Y �=∅, then
b) (A×B ⊂X× Y)⇔ (A⊂X)∧ (B ⊂ Y),
c) (X× Y)∪ (Z × Y)= (X ∪Z)× Y ,
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d) (X× Y)∩ (X′ × Y ′)= (X ∩X′)× (Y ∩ Y ′).
Here ∅ denotes the empty set, that is, the set having no elements.

7. By comparing the relations of Exercise 3 with relations a) and b) from Exercise 2
of Sect. 1.1, establish a correspondence between the logical operators ¬, ∧, ∨ and
the operations C, ∩, and ∪ on sets.

1.3 Functions

1.3.1 The Concept of a Function (Mapping)

We shall now describe the concept of a functional relation, which is fundamental
both in mathematics and elsewhere.

Let X and Y be certain sets. We say that there is a function defined on X with
values in Y if, by virtue of some rule f , to each element x ∈ X there corresponds
an element y ∈ Y .

In this case the set X is called the domain of definition of the function. The
symbol x used to denote a general element of the domain is called the argument
of the function, or the independent variable. The element y0 ∈ Y corresponding to
a particular value x0 ∈ X of the argument x is called the value of the function at
x0, or the value of the function at the value x = x0 of its argument, and is denoted
f (x0). As the argument x ∈ X varies, the value y = f (x) ∈ Y , in general, varies
depending on the values of x. For that reason, the quantity y = f (x) is often called
the dependent variable.

The set

f (X) := {
y ∈ Y | ∃x ((x ∈X)∧ (y = f (x)

))}

of values assumed by a function on elements of the set X will be called the set of
values or the range of the function.

The term “function” has a variety of useful synonyms in different areas of math-
ematics, depending on the nature of the sets X and Y : mapping, transformation,
morphism, operator, functional. The commonest is mapping, and we shall also use
it frequently.

For a function (mapping) the following notations are standard:

f :X→ Y, X
f−→Y.

When it is clear from the context what the domain and range of a function are,
one also uses the notation x �→ f (x) or y = f (x), but more frequently a function in
general is simply denoted by the single symbol f .

Two functions f1 and f2 are considered identical or equal if they have the same
domain X and at each element x ∈ X the values f1(x) and f2(x) are the same. In
this case we write f1 = f2.
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If A ⊂ X and f : X→ Y is a function, we denote by f |A or f |A the function
ϕ : A→ Y that agrees with f on A. More precisely, f |A(x) := ϕ(x) if x ∈ A. The
function f |A is called the restriction of f to A, and the function f :X→ Y is called
an extension or a continuation of ϕ to X.

We see that it is sometimes necessary to consider a function ϕ : A→ Y defined
on a subset A of some set X while the range ϕ(A) of ϕ may also turn out be a subset
of Y that is different from Y . In this connection, we sometimes use the term domain
of departure of the function to denote any set X containing the domain of a function,
and domain of arrival to denote any subset of Y containing its range.

Thus, defining a function (mapping) involves specifying a triple (X,Y,f ), where

X is the set being mapped, or domain of the function;
Y is the set into which the mapping goes, or a domain of arrival of the function;
f is the rule according to which a definite element y ∈ Y is assigned to each
element x ∈X.

The asymmetry between X and Y that appears here reflects the fact that the
mapping goes from X to Y , and not the other direction.

Now let us consider some examples of functions.

Example 1 The formulas l = 2πr and V = 4
3πr3 establish functional relationships

between the circumference l of a circle and its radius r and between the volume V

of a ball and its radius r . Each of these formulas provides a particular function
f : R+ → R+ defined on the set R+ of positive real numbers with values in the
same set.

Example 2 Let X be the set of inertial coordinate systems and c :X→R the func-
tion that assigns to each coordinate system x ∈X the value c(x) of the speed of light
in vacuo measured using those coordinates. The function c :X→R is constant, that
is, for any x ∈X it has the same value c. (This is a fundamental experimental fact.)

Example 3 The mapping G :R2 →R
2 (the direct product R2 =R×R=Rt ×Rx

of the time axis Rt and the spatial axis Rx ) into itself defined by the formulas

x′ = x − vt,

t ′ = t,

is the classical Galilean transformation for transition from one inertial coordinate
system (x, t) to another system (x′, t ′) that is in motion relative to the first at
speed v.

The same purpose is served by the mapping L :R2 →R
2 defined by the relations

x′ = x − vt
√

1− ( v
c
)2

,
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t ′ = t − ( v

c2 )x
√

1− ( v
c
)2

.

This is the well-known (one-dimensional) Lorentz12 transformation, which plays
a fundamental role in the special theory of relativity. The speed c is the speed of
light.

Example 4 The projection pr1 : X1 × X2 → X1 defined by the correspondence

X1 × X2 
 (x1, x2)
pr1�−→x1 ∈ X1 is obviously a function. The second projection

pr2 :X1 ×X2 →X2 is defined similarly.

Example 5 Let P(M) be the set of subsets of the set M . To each set A ∈ P(M) we
assign the set CMA ∈ P(M), that is, the complement to A in M . We then obtain a
mapping CM : P(M)→ P(M) of the set P(M) into itself.

Example 6 Let E ⊂M . The real-valued function χE :M →R defined on the set M

by the conditions (χE(x) = 1 if x ∈ E) ∧ (χE(x) = 0 if x ∈ CME) is called the
characteristic function of the set E.

Example 7 Let M(X;Y) be the set of mappings of the set X into the set Y and x0
a fixed element of X. To any function f ∈M(X;Y) we assign its value f (x0) ∈ Y

at the element x0. This relation defines a function F :M(X;Y)→ Y . In particular,
if Y = R, that is, Y is the set of real numbers, then to each function f :X→R the
function F :M(X;R)→R assigns the number F(f )= f (x0). Thus F is a function
defined on functions. For convenience, such functions are called functionals.

Example 8 Let Γ be the set of curves lying on a surface (for example, the surface
of the earth) and joining two given points of the surface. To each curve γ ∈ Γ one
can assign its length. We then obtain a function F : Γ → R that often needs to be
studied in order to find the shortest curve, or as it is called, the geodesic between the
two given points on the surface.

Example 9 Consider the set M(R;R) of real-valued functions defined on the entire
real line R. After fixing a number a ∈ R, we assign to each function f ∈M(R;R)

the function fa ∈M(R;R) connected with it by the relation fa(x)= f (x+ a). The
function fa(x) is usually called the translate or shift of the function f by a. The
mapping A :M(R;R)→M(R;R) that arises in this way is called the translation
of shift operator. Thus the operator A is defined on functions and its values are also
functions fa =A(f ).

12H.A. Lorentz (1853–1928) – outstanding Dutch theoretical physicist. Poincaré called these trans-
formations Lorentz transformations in honor of Lorentz, who stimulated the research of symme-
tries in Maxwell’s equations. They were used by Einstein in 1905 in the formulation of his theory
of special relativity.
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This last example might seem artificial if not for the fact that we encounter real

operators at every turn. Thus, any radio receiver is an operator f
F�−→ f̂ that trans-

forms electromagnetic signals f into acoustic signals f̂ ; any of our sensory organs
is an operator (transformer) with its own domain of definition and range of values.

Example 10 The position of a particle in space is determined by an ordered triple
of numbers (x, y, z) called its spatial coordinates. The set of all such ordered triples
can be thought of as the direct product R×R×R=R

3 of three real lines R.
A particle in motion is located at some point of the space R

3 having coordinates
(x(t), y(t), z(t)) at each instant t of time. Thus the motion of a particle can be
interpreted as a mapping γ : R→ R

3, where R is the time axis and R
3 is three-

dimensional space.
If a system consists of n particles, its configuration is defined by the position of

each of the particles, that is, it is defined by an ordered set (x1, y1, z1;x2, y2, z2; . . . ;
xn, yn, zn) consisting of 3n numbers. The set of all such ordered sets is called the
configuration space of the system of n particles. Consequently, the configuration
space of a system of n particles can be interpreted as the direct product R3 ×R

3 ×
· · · ×R

3 =R
3n of n copies of R3.

To the motion of a system of n particles there corresponds a mapping γ : R→
R

3n of the time axis into the configuration space of the system.

Example 11 The potential energy U of a mechanical system is connected with the
mutual positions of the particles of the system, that is, it is determined by the config-
uration that the system has. Let Q be the set of possible configurations of a system.
This is a certain subset of the configuration space of the system. To each position
q ∈Q there corresponds a certain value U(q) of the potential energy of the system.
Thus the potential energy is a function U : Q→ R defined on a subset Q of the
configuration space with values in the domain R of real numbers.

Example 12 The kinetic energy K of a system of n material particles depends on
their velocities. The total mechanical energy of the system E, defined as E =K+U ,
that is, the sum of the kinetic and potential energies, thus depends on both the con-
figuration q of the system and the set of velocities v of its particles. Like the con-
figuration q of the particles in space, the set of velocities v, which consists of n

three-dimensional vectors, can be defined as an ordered set of 3n numbers. The or-
dered pairs (q, v) corresponding to the states of the system form a subset Φ in the
direct product R3n×R

3n =R
6n, called the phase space of the system of n particles

(to be distinguished from the configuration space R
3n).

The total mechanical energy of the system is therefore a function E : Φ → R

defined on the subset Φ of the phase space R
6n and assuming values in the domain

R of real numbers.
In particular, if the system is isolated, that is, no external forces are acting on it,

then by the law of conservation of energy, at each point of the set Φ of states of the
system the function E will have the same value E0 ∈R.
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Fig. 1.6

1.3.2 Elementary Classification of Mappings

When a function f :X→ Y is called a mapping, the value f (x) ∈ Y that it assumes
at the element x ∈ Y is usually called the image of x.

The image of a set A⊂X under the mapping f :X→ Y is defined as the set

f (A) := {
y ∈ Y | ∃x ((x ∈A)∧ (y = f (x)

))}

consisting of the elements of Y that are images of elements of A.
The set

f−1(B) := {
x ∈X | f (x) ∈ B

}

consisting of the elements of X whose images belong to B is called the pre-image
(or complete pre-image) of the set B ⊂ Y (Fig. 1.6).

A mapping f :X→ Y is said to be

surjective (a mapping of X onto Y ) if f (X)= Y ;
injective (or an imbedding or injection) if for any elements x1, x2 of X

(
f (x1)= f (x2)

)⇒ (x1 = x2),

that is, distinct elements have distinct images;
bijective (or a one-to-one correspondence) if it is both surjective and injective.

If the mapping f :X→ Y is bijective, that is, it is a one-to-one correspondence
between the elements of the sets X and Y , there naturally arises a mapping

f−1 : Y →X,

defined as follows: if f (x) = y, then f−1(y) = x that is, to each element y ∈ Y

one assigns the element x ∈ X whose image under the mapping f is y. By the
surjectivity of f there exists such an element, and by the injectivity of f , it is unique.
Hence the mapping f−1 is well-defined. This mapping is called the inverse of the
original mapping f .
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Fig. 1.7

It is clear from the construction of the inverse mapping that f−1 : Y →X is itself
bijective and that its inverse (f−1)−1 :X→ Y is the same as the original mapping
f :X→ Y .

Thus the property of two mappings of being inverses is reciprocal: if f−1 is
inverse for f , then f is inverse for f−1.

We remark that the symbol f−1(B) for the pre-image of a set B ⊂ Y involves
the symbol f−1 for the inverse function; but it should be kept in mind that the pre-
image of a set is defined for any mapping f :X→ Y , even if it is not bijective and
hence has no inverse.

1.3.3 Composition of Functions and Mutually Inverse Mappings

The operation of composition of functions is on the one hand a rich source of new
functions and on the other hand a way of resolving complex functions into simpler
ones.

If the mappings f : X → Y and g : Y → Z are such that one of them (in our
case g) is defined on the range of the other (f ), one can construct a new mapping

g ◦ f :X→Z,

whose values on elements of the set X are defined by the formula

(g ◦ f )(x) := g
(
f (x)

)
.

The compound mapping g ◦ f so constructed is called the composition of the
mapping f and the mapping g (in that order!).

Figure 1.7 illustrates the construction of the composition of the mappings f

and g.
You have already encountered the composition of mappings many times, both in

geometry, when studying the composition of rigid motions of the plane or space,
and in algebra in the study of “complicated” functions obtained by composing the
simplest elementary functions.

The operation of composition sometimes has to be carried out several times in
succession, and in this connection it is useful to note that it is associative, that is,

h ◦ (g ◦ f )= (h ◦ g) ◦ f.



18 1 Some General Mathematical Concepts and Notation

Proof Indeed,

h ◦ (g ◦ f )(x)= h
(
(g ◦ f )(x)

)= h
(
g
(
f (x)

))=
= (h ◦ g)

(
f (x)

)= (
(h ◦ g) ◦ f

)
(x). �

This circumstance, as in the case of addition and multiplication of several num-
bers, makes it possible to omit the parentheses that prescribe the order of the pair-
ings.

If all the terms of a composition fn ◦ · · · ◦ f1 are equal to the same function f ,
we abbreviate it to f n.

It is well known, for example, that the square root of a positive number a can be
computed by successive approximations using the formula

xn+1 = 1

2

(

xn + a

xn

)

,

starting from any initial approximation x0 > 0. This none other than the successive
computation of f n(x0), where f (x) = 1

2 (x + a
x
). Such a procedure, in which the

value of the function computed at the each step becomes its argument at the next
step, is called a recursive procedure. Recursive procedures are widely used in math-
ematics.

We further note that even when both compositions g ◦ f and f ◦ g are defined,
in general

g ◦ f �= f ◦ g.

Indeed, let us take for example the two-element set {a, b} and the mappings f :
{a, b} → a and g : {a, b} → b. Then it is obvious that g ◦ f : {a, b} → b while
f ◦ g : {a, b}→ a.

The mapping f : X → X that assigns to each element of X the element itself,

that is x
f�−→y, will be denoted eX and called the identity mapping on X.

Lemma

(g ◦ f = eX)⇒ (g is surjective)∧ (f is injective).

Proof Indeed, if f :X→ Y,g : Y →X, and g ◦ f = eX :X→X, then

X = eX(X)= (g ◦ f )(X)= g
(
f (X)

)⊂ g(Y )

and hence g is surjective.
Further, if x1 ∈X and x2 ∈X, then

(x1 �= x2)⇒
(
eX(x1) �= eX(x2)

)⇒ (
(g ◦ f )(x1) �= (g ◦ f )(x2)

)⇒
⇒ (

g
(
f (x1)

)) �= g
(
f (x2)

)⇒ (
f (x1) �= f (x2)

)
,

and therefore f is injective. �
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Using the operation of composition of mappings one can describe mutually in-
verse mappings.

Proposition The mappings f : X→ Y and g : Y → X are bijective and mutually
inverse to each other if and only if g ◦ f = eX and f ◦ g = eY .

Proof By the lemma the simultaneous fulfillment of the conditions g ◦ f = eX and
f ◦ g = eY guarantees the surjectivity and injectivity, that is, the bijectivity, of both
mappings.

These same conditions show that y = f (x) if and only if x = g(y). �

In the preceding discussion we started with an explicit construction of the inverse
mapping. It follows from the proposition just proved that we could have given a less
intuitive, yet more symmetric definition of mutually inverse mappings as those map-
pings that satisfy the two conditions g ◦f = eX and f ◦g = eY . (In this connection,
see Exercise 6 at the end of this section.)

1.3.4 Functions as Relations. The Graph of a Function

In conclusion we return once again to the concept of a function. We note that it has
undergone a lengthy and rather complicated evolution.

The term function first appeared in the years from 1673 to 1692 in works of
G. Leibniz (in a somewhat narrower sense, to be sure). By the year 1698 the term had
become established in a sense close to the modern one through the correspondence
between Leibniz and Johann Bernoulli.13 (The letter of Bernoulli usually cited in
this regard dates to that same year.)

Many great mathematicians have participated in the formation of the modern
concept of functional dependence.

A description of a function that is nearly identical to the one given at the be-
ginning of this section can be found as early as the work of Euler (mid-eighteenth
century) who also introduced the notation f (x). By the early nineteenth century it
had appeared in the textbooks of S. Lacroix.14 A vigorous advocate of this concept
of a function was N.I. Lobachevskii,15 who noted that “a comprehensive view of

13Johann Bernoulli (1667–1748) – one of the early representatives of the distinguished Bernoulli
family of Swiss scholars; he studied analysis, geometry and mechanics. He was one of the founders
of the calculus of variations. He gave the first systematic exposition of the differential and integral
calculus.
14S.F. Lacroix (1765–1843) – French mathematician and educator (professor at the École Normale
and the École Polytechnique, and member of the Paris Academy of Sciences).
15N.I. Lobachevskii (1792–1856) – great Russian scholar, to whom belongs the credit – shared with
the great German scientist C.F. Gauss (1777–1855) and the outstanding Hungarian mathematician
J. Bólyai (1802–1860) – for having discovered the non-Euclidean geometry that bears his name.
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theory admits only dependence relationships in which the numbers connected with
each other are understood as if they were given as a single unit.”16 It is this idea of
precise definition of the concept of a function that we are about to explain.

The description of the concept of a function given at the beginning of this section
is quite dynamic and reflects the essence of the matter. However, by modern canons
of rigor it cannot be called a definition, since it uses the concept of a correspondence,
which is equivalent to the concept of a function. For the reader’s information we
shall show here how the definition of a function can be given in the language of set
theory. (It is interesting that the concept of a relation, to which we are now turning,
preceded the concept of a function, even for Leibniz.)

a. Relations

Definition 1 A relation R is any set of ordered pairs (x, y).
The set X of first elements of the ordered pairs that constitute R is called the

domain of definition of R, and the set Y of second elements of these pairs the range
of values of R.

Thus, a relation can be interpreted as a subset R of the direct product X × Y . If
X ⊂X′ and Y ⊂ Y ′, then of course R⊂X × Y ⊂X′ × Y ′, so that a given relation
can be defined as a subset of different sets.

Any set containing the domain of definition of a relation is called a domain of
departure for that relation. A set containing the region of values is called a domain
of arrival of the relation.

Instead of writing (x, y) ∈R, we often write xRy and say that x is connected
with y by the relation R.

If R⊂X2, we say that the relation R is defined on X.
Let us consider some examples.

Example 13 The diagonal

Δ= {
(a, b) ∈X2 | a = b

}

is a subset of X2 defining the relation of equality between elements of X. Indeed,
aΔb means that (a, b) ∈Δ, that is, a = b.

Example 14 Let X be the set of lines in a plane.
Two lines a ∈ X and b ∈ X will be considered to be in the relation R, and we

shall write aRb, if b is parallel to a. It is clear that this condition distinguishes a set
R of pairs (a, b) in X2 such that aRb. It is known from geometry that the relation
of parallelism between lines has the following properties:

aRa (reflexivity);

16Lobachevskii, N.I. Complete Works, Vol. 5, Moscow–Leningrad: Gostekhizdat, 1951, p. 44 (Rus-
sian).
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aRb⇒ bRa (symmetry);
(aRb)∧ (bRc)⇒ aRc (transitivity).

A relation R having the three properties just listed, that is, reflexivity,17 sym-
metry, and transitivity, is usually called an equivalence relation. An equivalence
relation is denoted by the special symbol∼, which in this case replaces the letter R.
Thus, in the case of an equivalence relation we shall write a ∼ b instead of aRb and
say that a is equivalent to b.

Example 15 Let M be a set and X = P(M) the set of its subsets. For two arbitrary
elements a and b of X = P(M), that is, for two subsets a and b of M , one of the
following three possibilities always holds: a is contained in b;b is contained in a;
a is not a subset of b and b is not a subset of a.

As an example of a relation R on X2, consider the relation of inclusion for sub-
sets of M , that is, make the definition

aRb := (a ⊂ b).

This relation obviously has the following properties:

aRa (reflexivity);
(aRb)∧ (bRc)⇒ aRc (transitivity);
(aRb)∧ (bRa)⇒ aΔb, that is, a = b (antisymmetry).

A relation between pairs of elements of a set X having these three properties is
usually called a partial ordering on X. For a partial ordering relation on X, we often
write a � b and say that b follows a.

If the condition

∀a ∀b ((aRb)∨ (bRa)
)

holds in addition to the last two properties defining a partial ordering relation, that
is, any two elements of X are comparable, the relation R is called an ordering, and
the set X with the ordering defined on it is said to be linearly ordered.

The origin of this term comes from the intuitive image of the real line R on which
a relation a ≤ b holds between any pair of real numbers.

b. Functions and Their Graphs

A relation R is said to be functional if

(xRy1)∧ (xRy2)⇒ (y1 = y2).

17For the sake of completeness it is useful to note that a relation R is reflexive if its domain of
definition and its range of values are the same and the relation aRa holds for any element a in the
domain of R.
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A functional relation is called a function.
In particular, if X and Y are two sets, not necessarily distinct, a relation R ⊂

X×Y between elements x of X and y of Y is a functional relation on X if for every
x ∈ X there exists a unique element y ∈ Y in the given relation to x, that is, such
that xRy holds.

Such a functional relation R⊂X× Y is a mapping from X into Y , or a function
from X into Y .

We shall usually denote functions by the letter f . If f is a function, we shall

write y = f (x) or x
f�−→y, as before, rather than xfy, calling y = f (x) the value

of f at x or the image of x under f .
As we now see, assigning an element y ∈ Y “corresponding” to x ∈X in accor-

dance with the “rule” f , as was discussed in the original description of the concept
of a function, amounts to exhibiting for each x ∈X the unique y ∈ Y such that xfy,
that is, (x, y) ∈ f ⊂X× Y .

The graph of a function f :X→ Y , as understood in the original description, is
the subset Γ of the direct product X× Y whose elements have the form (x, f (x)).
Thus

Γ := {
(x, y) ∈X× Y | y = f (x)

}
.

In the new description of the concept of a function, in which we define it as a
subset f ⊂X × Y , of course, there is no longer any difference between a function
and its graph.

We have exhibited the theoretical possibility of giving a formal set-theoretic defi-
nition of a function, which reduces essentially to identifying a function and its graph.
However, we do not intend to confine ourselves to that way of defining a function.
At times it is convenient to define a functional relation analytically, at other times
by giving a table of values, and at still other times by giving a verbal description of a
process (algorithm) making it possible to find the element y ∈ Y corresponding to a
given x ∈X. With each method of presenting a function it is meaningful to ask how
the function could have been defined using its graph. This problem can be stated as
the problem of constructing the graph of the function. Defining numerical-valued
functions by a good graphical representation is often useful because it makes the
basic qualitative properties of the functional relation visualizable. One can also use
graphs (nomograms) for computations; but, as a rule, only in cases where high pre-
cision is not required. For precise computations we do use the table definition of a
function, but more often we use an algorithmic definition that can be implemented
on a computer.

1.3.5 Exercises

1. The composition R2 ◦R1 of the relations R1 and R2 is defined as follows:

R2 ◦R1 :=
{
(x, z) | ∃y (xR1y ∧ yR2z)

}
.
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In particular, if R1 ⊂X× Y and R2 ⊂ Y ×Z, then R=R2 ◦R1 ⊂X×Z, and

xRz := ∃y ((y ∈ Y)∧ (xR1y)∧ (yR2z)
)
.

a) Let ΔX be the diagonal of X2 and ΔY the diagonal of Y 2. Show that if the
relations R1 ⊂X×Y and R2 ⊂ Y ×X are such that (R2 ◦R1 =ΔX)∧ (R1 ◦R2 =
ΔY ), then both relations are functional and define mutually inverse mappings of X

and Y .
b) Let R⊂X2. Show that the condition of transitivity of the relation R is equiv-

alent to the condition R ◦R⊂R.
c) The relation R′ ⊂ Y ×X is called the transpose of the relation R⊂X× Y if

(yR′x)⇔ (xRy).
Show that a relation R⊂X2 is antisymmetric if and only if R∩R′ ⊂ΔX .
d) Verify that any two elements of X are connected (in some order) by the rela-

tion R⊂X2 if and only if R∪R′ =X2.

2. Let f :X→ Y be a mapping. The pre-image f−1(y)⊂X of the element y ∈ Y

is called the fiber over y.

a) Find the fibers for the following mappings:

pr1 :X1 ×X2 →X1, pr2 :X1 ×X2 →X2.

b) An element x1 ∈X will be considered to be connected with an element x2 ∈
X by the relation R⊂ X2, and we shall write x1Rx2 if f (x1)= f (x2), that is, x1
and x2 both lie in the same fiber.

Verify that R is an equivalence relation.
c) Show that the fibers of a mapping f : X → Y do not intersect one another

and that the union of all the fibers is the whole set X.
d) Verify that any equivalence relation between elements of a set makes it pos-

sible to represent the set as a union of mutually disjoint equivalence classes of ele-
ments.

3. Let f : X→ Y be a mapping from X into Y . Show that if A and B are subsets
of X, then

a) (A⊂ B)⇒ (f (A)⊂ f (B)) �= (A⊂ B).
b) (A �=∅)⇒ (f (A) �=∅),
c) f (A∩B)⊂ f (A)∩ f (B),
d) f (A∪B)= f (A)∪ f (B);

if A′ and B ′ are subsets of Y , then

e) (A′ ⊂ B ′)⇒ (f−1(A′)⊂ f−1(B ′)),
f) f−1(A′ ∩B ′)= f−1(A′)∩ f−1(B ′),
g) f−1(A′ ∪B ′)= f−1(A′)∪ f−1(B ′);

if Y ⊃A′ ⊃ B ′, then

h) f−1(A′\B ′)= f−1(A′)\f−1(B ′),
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i) f−1(CY A′)= CXf−1(A′);

and for any A⊂X and B ′ ⊂ Y

j) f−1(f (A))⊃A,
k) f (f−1(B ′))⊂ B ′.

4. Show that the mapping f :X→ Y is

a) surjective if and only if f (f−1(B ′))= B ′ for every set B ′ ⊂ Y ;
b) bijective if and only if

(
f−1(f (A)

)=A
)∧ (f (f−1(B ′

))= B ′
)

for every set A⊂X and every set B ′ ⊂ Y .

5. Verify that the following statements about a mapping f :X→ Y are equivalent:

a) f is injective;
b) f−1(f (A))=A for every A⊂X;
c) f (A∩B)= f (A)∩ f (B) for any two subsets A and B of X;
d) f (A)∩ f (B)=∅⇔A∩B =∅;
e) f (A\B)= f (A)\f (B) whenever X ⊃A⊃ B .

6. a) If the mappings f : X→ Y and g : Y → X are such that g ◦ f = eX , where
eX is the identity mapping on X, then g is called a left inverse of f and f a right
inverse of g. Show that, in contrast to the uniqueness of the inverse mapping, there
may exist many one-sided inverse mappings.

Consider, for example, the mappings f : X→ Y and g : Y → X, where X is a
one-element set and Y a two-element set, or the mappings of sequences given by

(x1, . . . , xn, . . .)
fa�−→ (a, x1, . . . , xn, . . .),

(y2, . . . , yn, . . .)
g←−� (y1, y2, . . . , yn, . . .).

b) Let f :X→ Y and g : Y → Z be bijective mappings. Show that the mapping
g ◦ f :X→ Z is bijective and that (g ◦ f )−1 = f−1 ◦ g−1.

c) Show that the equality

(g ◦ f )−1(C)= f−1(g−1(C)
)

holds for any mappings f :X→ Y and g : Y →Z and any set C ⊂Z.
d) Verify that the mapping F :X× Y → Y ×X defined by the correspondence

(x, y) �→ (y, x) is bijective. Describe the connection between the graphs of mutually
inverse mappings f :X→ Y and f−1 : Y →X.

7. a) Show that for any mapping f :X→ Y the mapping F :X→X× Y defined

by the correspondence x
F�−→(x, f (x)) is injective.

b) Suppose a particle is moving at uniform speed on a circle Y ; let X be the

time axis and x
f�−→y the correspondence between the time x ∈X and the position
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y = f (x) ∈ Y of the particle. Describe the graph of the function f : X → Y in
X× Y .

8. a) For each of the examples 1–12 considered in Sect. 1.3 determine whether the
mapping defined in the example is surjective, injective, or bijective or whether it
belongs to none of these classes.

b) Ohm’s law I = V/R connects the current I in a conductor with the potential
difference V at the ends of the conductor and the resistance R of the conductor.
Give sets X and Y for which some mapping O :X→ Y corresponds to Ohm’s law.
What set is the relation corresponding to Ohm’s law a subset of?

c) Find the mappings G−1 and L−1 inverse to the Galilean and Lorentz trans-
formations.

9. a) A set S ⊂ X is stable with respect to a mapping f : X → X if f (S) ⊂ S.
Describe the sets that are stable with respect to a shift of the plane by a given vector
lying in the plane.

b) A set I ⊂X is invariant with respect to a mapping f :X→X if f (I)= I .
Describe the sets that are invariant with respect to rotation of the plane about a fixed
point.

c) A point p ∈X is a fixed point of a mapping f :X→X if f (p)= p. Verify
that any composition of a shift, a rotation, and a similarity transformation of the
plane has a fixed point, provided the coefficient of the similarity transformation is
less than 1.

d) Regarding the Galilean and Lorentz transformations as mappings of the plane
into itself for which the point with coordinates (x, t) maps to the point with coordi-
nates (x ′, t ′), find the invariant sets of these transformations.

10. Consider the steady flow of a fluid (that is, the velocity at each point of the flow
does not change over time). In time t a particle at point x of the flow will move
to some new point ft (x) of space. The mapping x �→ ft (x) that arises thereby on
the points of space occupied by the flow depends on time and is called the mapping
after time t . Show that ft2 ◦ ft1 = ft1 ◦ ft2 = ft1+t2 and ft ◦ f−t = eX .

1.4 Supplementary Material

1.4.1 The Cardinality of a Set (Cardinal Numbers)

The set X is said to be equipollent to the set Y if there exists a bijective mapping
of X onto Y , that is, a point y ∈ Y is assigned to each x ∈ X, the elements of Y

assigned to different elements of X are different, and every point of Y is assigned to
some point of X.

Speaking fancifully, each element x ∈X has a seat all to itself in Y , and there are
no vacant seats y ∈ Y .
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It is clear that the relation XRY thereby introduced is an equivalence relation.
For that reason we shall write X ∼ Y instead of XRY , in accordance with our earlier
convention.

The relation of equipollence partitions the collection of all sets into classes of
mutually equivalent sets. The sets of an equivalence class have the same number of
elements (they are equipollent), and sets from different equivalence classes do not.

The class to which a set X belongs is called the cardinality of X, and also the
cardinal or cardinal number of X. It is denoted cardX. If X ∼ Y , we write card
X = cardY .

The idea behind this construction is that it makes possible a comparison of
the numbers of elements in sets without resorting to an intermediate count, that
is, without measuring the number by comparing it with the natural numbers N =
{1,2,3, . . .}. Doing the latter, as we shall soon see, is sometimes not even theoreti-
cally possible.

The cardinal number of a set X is said to be not larger than the cardinal number
of a set Y , and we write cardX ≤ cardY , if X is equipollent to some subset of Y .

Thus,

(cardX ≤ cardY) := ∃Z ⊂ Y (cardX = cardZ).

If X ⊂ Y , it is clear that cardX ≤ cardY . It turns out, however, that the relation
X ⊂ Y does not exclude the inequality cardY ≤ cardX, even when X is a proper
subset of Y .

For example, the correspondence x �→ x
1−|x| is a bijective mapping of the interval

−1 < x < 1 of the real axis R onto the entire axis.
The possibility of being equipollent to a proper subset of itself is a characteristic

of infinite sets that Dedekind18 even suggested taking as the definition of an infinite
set. Thus a set is called finite (in the sense of Dedekind) if it is not equipollent to
any proper subset of itself; otherwise, it is called infinite.

Just as the relation of inequality orders the real numbers on a line, the inequality
just introduced orders the cardinal numbers of sets. To be specific, one can prove
that the relation just constructed has the following properties:

10 (cardX ≤ cardY)∧ (cardY ≤ cardZ)⇒ (cardX ≤ cardZ) (obvious).
20 (cardX ≤ cardY) ∧ (cardY ≤ cardX) ⇒ (cardX = cardY) (the Schröder–

Bernstein theorem19).
30 ∀X ∀Y (cardX ≤ cardY)∨ (cardY ≤ cardX) (Cantor’s theorem).

Thus the class of cardinal numbers is linearly ordered.

18R. Dedekind (1831–1916) – German algebraist who took an active part in the development of the
theory of a real number. He was the first to propose the axiomatization of the set of natural numbers
usually called the Peano axiom system after G. Peano (1858–1932), the Italian mathematician who
formulated it somewhat later.
19F. Bernstein (1878–1956) – German mathematician, a student of G. Cantor. E. Schröder (1841–
1902) – German mathematician.
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We say that the cardinality of X is less than the cardinality of Y and write
cardX < cardY , if cardX ≤ cardY but cardX �= cardY . Thus (cardX < cardY) :=
(cardX ≤ cardY)∧ (cardX �= cardY).

As before, let ∅ be the empty set and P(X) the set of all subsets of the set X.
Cantor made the following discovery:

Theorem cardX < cardP(X).

Proof The assertion is obvious for the empty set, so that from now on we shall
assume X �=∅.

Since P(X) contains all one-element subsets of X, cardX ≤ cardP(X).
To prove the theorem it now suffices to show that cardX �= cardP(X) if X �=∅.
Suppose, contrary to the assertion, that there exists a bijective mapping f :X→

P(X). Consider the set A = {x ∈ X : x /∈ f (x)} consisting of the elements x ∈ X

that do not belong to the set f (x) ∈ P(X) assigned to them by the bijection. Since
A ∈ P(X), there exists a ∈ X such that f (a) = A. For the element a the relation
a ∈ A is impossible by the definition of A, and the relation a /∈ A is impossible,
also by the definition of A. We have thus reached a contradiction with the law of
excluded middle. �

This theorem shows in particular that if infinite sets exist, then even “infinities”
are not all the same.

1.4.2 Axioms for Set Theory

The purpose of the present subsection is to give the interested reader a picture of an
axiom system that describes the properties of the mathematical object called a set
and to illustrate the simplest consequences of those axioms.

10. (Axiom of extensionality) Sets A and B are equal if and only if they have the
same elements.

This means that we ignore all properties of the object known as a “set” except
the property of having elements. In practice it means that if we wish to establish that
A= B , we must verify that ∀x ((x ∈A)⇔ (x ∈ B)).

20. (Axiom of separation) To any set A and any property P there corresponds a
set B whose elements are those elements of A, and only those, having prop-
erty P .

More briefly, it is asserted that if A is a set, then B = {x ∈A | P(x)} is also a set.
This axiom is used very frequently in mathematical constructions, when we se-

lect from a set the subset consisting of the elements having some property.
For example, it follows from the axiom of separation that there exists an empty

subset ∅X = {x ∈X | x �= x} in any set X. By virtue of the axiom of extensionality
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we conclude that ∅X =∅Y for all sets X and Y , that is, the empty set is unique. We
denote this set by ∅.

It also follows from the axiom of separation that if A and B are sets, then A\B =
{x ∈ A | x /∈ B} is also a set. In particular, if M is a set and A a subset of M , then
CMA is also a set.

30. (Union axiom) For any set M whose elements are sets there exists a set
⋃

M ,
called the union of M and consisting of those elements and only those that
belong to some element of M .

If we use the phrase “family of sets” instead of “a set whose elements are sets”
the axiom of union assumes a more familiar sound: there exists a set consisting of
the elements of the sets in the family. Thus, a union of sets is a set, and x ∈⋃M ⇔
∃X ((X ∈M)∧ (x ∈X)).

When we take account of the axiom of separation, the union axiom makes it
possible to define the intersection of the set M (or family of sets) as the set

⋂
M :=

{
x ∈

⋃
M | ∀X (

(X ∈M)⇒ (x ∈X)
)}

.

40. (Pairing axiom) For any sets X and Y there exists a set Z such that X and Y

are its only elements.

The set Z is denoted {X,Y } and is called the unordered pair of sets X and Y .
The set Z consists of one element if X = Y .

As we have already pointed out, the ordered pair (X,Y ) differs from the un-
ordered pair by the presence of some property possessed by one of the sets in the
pair. For example, (X,Y ) := {{X,X}, {X,Y }}.

Thus, the unordered pair makes it possible to introduce the ordered pair, and the
ordered pair makes it possible to introduce the direct product of sets by using the
axiom of separation and the following important axiom.

50. (Power set axiom) For any set X there exists a set P(X) having each subset of
X as an element, and having no other elements.

In short, there exists a set consisting of all the subsets of a given set.
We can now verify that the ordered pairs (x, y), where x ∈ X and y ∈ Y , really

do form a set, namely

X× Y := {
p ∈P

(
P(X)∪P(Y )

) | (p = (x, y)
)∧ (x ∈X)∧ (y ∈ Y)

}
.

Axioms 10–50 limit the possibility of forming new sets. Thus, by Cantor’s the-
orem (which asserts that cardX < cardP(X)) there is an element in the set P(X)

that does not belong to X. Therefore the “set of all sets” does not exist. And it was
precisely on this “set” that Russell’s paradox was based.

In order to state the next axiom we introduce the concept of the successor X+
of the set X. By definition X+ =X ∪ {X}. More briefly, the one-element set {X} is
adjoined to X.
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Further, a set is called inductive if the empty set is one of its elements and the
successor of each of its elements also belongs to it.

60. (Axiom of infinity) There exist inductive sets.

When we take Axioms 10–40 into account, the axiom of infinity makes it possible
to construct a standard model of the set N0 of natural numbers (in the sense of
von Neumann),20 by defining N0 as the intersection of all inductive sets, that is, the
smallest inductive set. The elements of N0 are

∅, ∅
+ =∅∪ {∅} = {∅}, {∅}+ = {∅} ∪ {{∅}}, . . . ,

which are a model for what we denote by the symbols 0,1,2, . . . and call the natural
numbers.

70. (Axiom of replacement) Let F(x, y) be a statement (more precisely, a formula)
such that for every x0 in the set X there exists a unique object y0 such that
F(x0, y0) is true. Then the objects y for which there exists an element x ∈ X

such that F(x, y) is true form a set.

We shall make no use of this axiom in our construction of analysis.
Axioms 10–70 constitute the axiom system known as the Zermelo–Fraenkel ax-

ioms.21

To this system another axiom is usually added, one that is independent of Ax-
ioms 10–70 and used very frequently in analysis.

80. (Axiom of choice) For any family of nonempty and mutually nonintersecting
sets there exists a set C such that for each set X in the family X ∩C consists of
exactly one element.

In other words, from each set of the family one can choose exactly one represen-
tative in such a way that the representatives chosen form a set C.

The axiom of choice, known as Zermelo’s axiom in mathematics, has been the
subject of heated debates among specialists.

1.4.3 Remarks on the Structure of Mathematical Propositions
and Their Expression in the Language of Set Theory

In the language of set theory there are two basic, or atomic types of mathematical
statements: the assertion x ∈ A, that an object x is an element of a set A, and the

20J. von Neumann (1903–1957) – American mathematician who worked in functional analysis, the
mathematical foundations of quantum mechanics, topological groups, game theory, and mathemat-
ical logic. He was one of the leaders in the creation of the first computers.
21E. Zermelo (1871–1953) – German mathematician. A. Fraenkel (1891–1965) – German (later,
Israeli) mathematician.
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assertion A = B , that the sets A and B are identical. (However, when the axiom
of extensionality is taken into account, the second statement is a combination of
statements of the first type: (x ∈A)⇔ (x ∈ B).)

A complex statement or logical formula can be constructed from atomic state-
ments by means of logical operators – the connectors ¬, ∧, ∨⇒ and the quantifiers
∀, ∃ – by use of parentheses ( ). When this is done, the formation of any statement,
no matter how complicated, reduces to carrying out the following elementary logical
operations:

a) forming a new statement by placing the negation sign before some statement
and enclosing the result in parentheses;

b) forming a new statement by substituting the necessary connectors ∧, ∨, and
⇒ between two statements and enclosing the result in parentheses.

c) forming the statement “for every object x property P holds”, (written as
∀x P (x)) or the statement “there exists an object x having property P ” (written
as ∃x P (x)).

For example, the cumbersome expression

∃x (P(x)∧ (∀y (P(y)⇒ (y = x)
)))

means that there exists an object having property P and such that if y is any ob-
ject having this property, then y = x. In brief: there exists a unique object x having
property P . This statement is usually written ∃!x P (x), and we shall use this abbre-
viation.

To simplify the writing of a statement, as already pointed out, one attempts to
omit as many parentheses as possible while retaining the unambiguous interpreta-
tion of the statement. To this end, in addition to the priority of the operators ¬, ∧,
∨,⇒ mentioned earlier, we assume that the symbols in a formula are most strongly
connected by the symbols ∈, =, then ∃, ∀, and then the connectors ¬, ∧, ∨, ⇒.

Taking account of this convention, we can now write

∃!x P (x) := ∃x (P(x)∧ ∀y (P(y)⇒ y = x
))

.

We also make the following widely used abbreviations:

(∀x ∈X) P := ∀x (x ∈X⇒ P(x)
)
,

(∃x ∈X) P := ∃x (x ∈X ∧ P(x)
)
,

(∀x > a) P := ∀x (x ∈R∧ x > a⇒ P(x)
)
,

(∃x > a) P := ∃x (x ∈R∧ x > a ∧ P(x)
)
.

Here R, as always, denotes the set of real numbers.
Taking account of these abbreviations and the rules a), b), c) for constructing

complex statements, we can, for example, give an unambiguous expression
(

lim
x→A

f (x)= a
)
:= ∀ε > 0 ∃δ > 0 ∀x ∈R

(
0 < |x − a|< δ⇒ ∣

∣f (x)−A
∣
∣< ε

)
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of the fact that the number A is the limit of the function f : R→ R at the point
a ∈R.

For us perhaps the most important result of what has been said in this subsection
will be the rules for forming the negation of a statement containing quantifiers.

The negation of the statement “for some x, P(x) is true” means that “for any x,
P(x) is false”, while the negation of the statement “for any x, P(x) is true” means
that “there exists an x such that P(x) is false”.

Thus,

¬∃x P (x)⇔∀x ¬P(x),

¬∀x P (x)⇔ ∃x ¬P(x).

We recall also (see the exercises in Sect. 1.1) that

¬(P ∧Q)⇔¬P ∨¬Q,

¬(P ∨Q)⇔¬P ∧¬Q,

¬(P ⇒Q)⇔ P ∧¬Q.

On the basis of what has just been said, one can conclude, for example, that

¬((∀x > a)P
)⇔ (∃x > a)¬P.

It would of course be wrong to express the right-hand side of this last relation as
(∃x ≤ a)¬P .

Indeed,

¬((∀x > a)P
) := ¬(∀x (x ∈R∧ x > a⇒ P(x)

))⇔
⇔ ∃x (¬(x ∈R∧ x > a⇒ P(x)

))⇔
⇔ ∃x ((x ∈R∧ x > a)∧¬P(x)

)=: (∃x > a)¬P.

If we take into account the structure of an arbitrary statement mentioned above,
we can now use the negations just constructed for the simplest statements to form
the negation of any particular statement.

For example,

¬
(

lim
x→a

f (x)=A
)
⇔ ∃ε > 0 ∀δ > 0 ∃x ∈R

(
0 < |x − a|< δ ∧ ∣∣f (x)−A

∣
∣≥ ε

)
.

The practical importance of the rule for forming a negation is connected, in par-
ticular, with the method of proof by contradiction, in which the truth of a statement
P is deduced from the fact that the statement ¬P is false.
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1.4.4 Exercises

1. a) Prove the equipotence of the closed interval {x ∈R | 0≤ x ≤ 1} and the open
interval {x ∈ R | 0 < x < 1} of the real line R both using the Schröder–Bernstein
theorem and by direct exhibition of a suitable bijection.

b) Analyze the following proof of the Schröder–Bernstein theorem:

(cardX ≤ cardY)∧ (cardY ≤ cardX)⇒ (cardX = cardY).

Proof It suffices to prove that if the sets X,Y , and Z are such that X ⊃ Y ⊃ Z and
cardX = cardZ, then cardX = cardY . Let f : X→ Z be a bijection. A bijection
g :X→ Y can be defined, for example, as follows:

g(x)=
{

f (x), if x ∈ f n(X)\f n(Y ) for some n ∈N,

x otherwise.

Here f n = f ◦· · ·◦f is the nth iteration of the mapping f and N is the set of natural
numbers. �

2. a) Starting from the definition of a pair, verify that the definition of the direct
product X× Y of sets X and Y given in Sect. 1.4.2 is unambiguous, that is, the set
P(P(X)∪P(Y )) contains all ordered pairs (x, y) in which x ∈X and y ∈ Y .

b) Show that the mappings f :X→ Y from one given set X into another given
set Y themselves form a set M(X,Y ).

c) Verify that if R is a set of ordered pairs (that is, a relation), then the first
elements of the pairs belonging to R (like the second elements) form a set.

3. a) Using the axioms of extensionality, pairing, separation, union, and infinity,
verify that the following statements hold for the elements of the set N0 of natural
numbers in the sense of von Neumann:

10 x = y⇒ x+ = y+;
20 (∀x ∈N0) (x+ �=∅);
30 x+ = y+ ⇒ x = y;
40 (∀x ∈N0) (x �=∅⇒ (∃y ∈N0) (x = y+)).

b) Using the fact that N0 is an inductive set, show that the following statements
hold for any of its elements x and y (which in turn are themselves sets):

10 cardx ≤ cardx+;
20 card∅ < cardx+;
30 cardx < cardy⇔ cardx+ < cardy+;
40 cardx < cardx+;
50 cardx < cardy⇒ cardx+ ≤ cardy;
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60 x = y⇔ cardx = cardy;
70 (x ⊂ y)∨ (x ⊃ y).

c) Show that in any subset X of N0 there exists a (minimal) element xm such
that (∀x ∈X) (cardxm ≤ cardx). (If you have difficulty doing so, come back to this
problem after reading Chap. 2.)

4. We shall deal only with sets. Since a set consisting of different elements may
itself be an element of another set, logicians usually denote all sets by uppercase
letters. In the present exercise, it is very convenient to do so.

a) Verify that the statement

∀x ∃y ∀z (z ∈ y⇔∃w (z ∈w ∧w ∈ x)
)

expresses the axiom of union, according to which y is the union of the sets belonging
to x.

b) State which axioms of set theory are represented by the following statements:

∀x ∀y ∀z ((z ∈ x⇔ z ∈ y)⇔ x = y
)
,

∀x ∀y ∃z ∀v (v ∈ z⇔ (v = x ∨ v = y)
)
,

∀x ∃y ∀z (z ∈ y⇔∀u (u ∈ z⇒ u ∈ x)
)
,

∃x (∀y (¬∃z (z ∈ y)⇒ y ∈ x
)∧

∧ ∀w (
w ∈ x⇒∀u (∀v (v ∈ u⇔ (v =w ∨ v ∈w)

)⇒ u ∈ x
)))

.

c) Verify that the formula

∀z (z ∈ f ⇒ (∃x1 ∃y1
(
x1 ∈ x ∧ y1 ∈ y ∧ z= (x1, y1)

)))∧
∧ ∀x1

(
x1 ∈ x⇒∃y1 ∃z

(
y1 ∈ y ∧ z= (x1, y1)∧ z ∈ f

))∧
∧ ∀x1 ∀y1 ∀y2

(∃z1 ∃z2
(
z1 ∈ f ∧ z2 ∈ f ∧ z1 = (x1, y1)∧ z2 = (x1, y2)

)⇒
⇒ y1 = y2

)

imposes three successive restrictions on the set f : f is a subset of x × y; the pro-
jection of f on x is equal to x; to each element x1 of x there corresponds exactly
one y1 in y such that (x1, y1) ∈ f .

Thus what we have here is a definition of a mapping f : x→ y.
This example shows yet again that the formal expression of a statement is by no

means always the shortest and most transparent in comparison with its expression
in ordinary language. Taking this circumstance into account, we shall henceforth
use logical symbolism only to the extent that it seems useful to us to achieve greater
compactness or clarity of exposition.

5. Let f :X→ Y be a mapping. Write the logical negation of each of the following
statements:
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a) f is surjective;
b) f is injective;
c) f is bijective.

6. Let X and Y be sets and f ⊂X× Y . Write what it means to say that the set f is
not a function.



Chapter 2
The Real Numbers

Mathematical theories, as a rule, find uses because they make it possible to trans-
form one set of numbers (the initial data) into another set of numbers constituting
the intermediate or final purpose of the computations. For that reason numerical-
valued functions occupy a special place in mathematics and its applications. These
functions (more precisely, the so-called differentiable functions) constitute the main
object of study of classical analysis. But, as you may already have sensed from your
school experience, and as will soon be confirmed, any description of the properties
of these functions that is at all complete from the point of view of modern mathe-
matics is impossible without a precise definition of the set of real numbers, on which
these functions operate.

Numbers in mathematics are like time in physics: everyone knows what they are,
and only experts find them hard to understand. This is one of the basic mathemati-
cal abstractions, which seems destined to undergo significant further development.
A very full separate course could be devoted to this subject. At present we intend
only to unify what is basically already known to the reader about real numbers from
high school, exhibiting as axioms the fundamental and independent properties of
numbers. In doing this, our purpose is to give a precise definition of real numbers
suitable for subsequent mathematical use, paying particular attention to their prop-
erty of completeness or continuity, which contains the germ of the idea of passage
to the limit – the basic nonarithmetical operation of analysis.

2.1 The Axiom System and Some General Properties of the Set
of Real Numbers

2.1.1 Definition of the Set of Real Numbers

Definition 1 A set R is called the set of real numbers and its elements are real
numbers if the following list of conditions holds, called the axiom system of the
real numbers.
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(I) (AXIOMS FOR ADDITION) An operation

+ :R×R→R,

(the operation of addition) is defined, assigning to each ordered pair (x, y) of el-
ements x, y of R a certain element x + y ∈ R, called the sum of x and y. This
operation satisfies the following conditions:

1+. There exists a neutral, or identity element 0 (called zero) such that

x + 0= 0+ x = x

for every x ∈R.
2+. For every element x ∈R there exists an element −x ∈R called the negative of

x such that

x + (−x)= (−x)+ x = 0.

3+. The operation + is associative, that is, the relation

x + (y + z)= (x + y)+ z

holds for any elements x, y, z of R.
4+. The operation + is commutative, that is,

x + y = y + x

for any elements x, y of R.

If an operation is defined on a set G satisfying Axioms 1+, 2+, and 3+, we say
that a group structure is defined on G or that G is a group. If the operation is called
addition, the group is called an additive group. If it is also known that the opera-
tion is commutative, that is, condition 4+ holds, the group is called commutative or
Abelian.1

Thus, Axioms 1+–4+ assert that R is an additive abelian group.

(II) (AXIOMS FOR MULTIPLICATION) An operation

• :R×R→R,

(the operation of multiplication) is defined, assigning to each ordered pair (x, y) of
elements x, y of R a certain element x · y ∈ R, called the product of x and y. This
operation satisfies the following conditions:

1N.H. Abel (1802–1829) – outstanding Norwegian mathematician, who proved that the general
algebraic equation of degree higher than four cannot be solved by radicals.
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1•. There exists a neutral, or identity element 1 ∈R\0 (called one) such that

x · 1= 1 · x = x

for every x ∈R.
2•. For every element x ∈ R\0 there exists an element x−1 ∈ R, called the inverse

or reciprocal of x, such that

x · x−1 = x−1 · x = 1.

3•. The operation • is associative, that is, the relation

x · (y · z)= (x · y) · z
holds for any elements x, y, z of R.

4•. The operation • is commutative, that is,

x · y = y · x
for any elements x, y of R.

We remark that with respect to the operation of multiplication the set R\0, as one
can verify, is a (multiplicative) group.

(I, II) (THE CONNECTION BETWEEN ADDITION AND MULTIPLICATION) Multi-
plication is distributive with respect to addition, that is

(x + y)z= xz+ yz

for all x, y, z ∈R.

We remark that by the commutativity of multiplication, this equality continues to
hold if the order of the factors is reversed on either side.

If two operations satisfying these axioms are defined on a set G, then G is called
a field.

(III) (ORDER AXIOMS) Between elements of R there is a relation ≤, that is, for
elements x, y ∈ R one can determine whether x ≤ y or not. Here the following
conditions must hold:

0≤. ∀x ∈R (x ≤ x).
1≤. (x ≤ y)∧ (y ≤ x)⇒ (x = y).
2≤. (x ≤ y)∧ (y ≤ z)⇒ (x ≤ z).
3≤. ∀x ∈R ∀y ∈R (x ≤ y)∨ (y ≤ x).

The relation ≤ on R is called inequality.
A set on which there is a relation between pairs of elements satisfying Ax-

ioms 0≤, 1≤, and 2≤, as you know, is said to be partially ordered. If in addition
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Axiom 3≤ holds, that is, any two elements are comparable, the set is linearly or-
dered. Thus the set of real numbers is linearly ordered by the relation of inequality
between elements.

(I, III) (THE CONNECTION BETWEEN ADDITION AND ORDER ON R) If x, y, z are
elements of R, then

(x ≤ y)⇒ (x + z≤ y + z).

(II, III) (THE CONNECTION BETWEEN MULTIPLICATION AND ORDER ON R) If x

and y are elements of R, then

(0≤ x)∧ (0≤ y)⇒ (0≤ x · y).

(IV) (THE AXIOM OF COMPLETENESS (CONTINUITY)) If X and Y are nonempty
subsets of R having the property that x ≤ y for every x ∈X and every y ∈ Y , then
there exists c ∈R such that x ≤ c ≤ y for all x ∈X and y ∈ Y .

We now have a complete list of axioms such that any set on which these axioms
hold can be considered a concrete realization or model of the real numbers.

This definition does not formally require any preliminary knowledge about num-
bers, and from it “by turning on mathematical thought” we should, again formally,
obtain as theorems all the other properties of real numbers. On the subject of this
axiomatic formalism we would like to make a few informal remarks.

Imagine that you had not passed from the stage of adding apples, cubes, or other
named quantities to the addition of abstract natural numbers; you had not studied the
measurement of line segments and arrived at rational numbers; you did not know the
great discovery of the ancients that the diagonal of a square is incommensurable with
its side, so that its length cannot be a rational number, that is, that irrational numbers
are needed; you did not have the concept of “greater” or “smaller” that arises in the
process of measurement; you did not picture order to yourself using, for example,
the real line. If all these preliminaries had not occurred, the axioms just listed would
not be perceived as the outcome of intellectual progress; they would seem at the
very least a strange, and in any case arbitrary, fruit of the imagination.

In relation to any abstract system of axioms, at least two questions arise immedi-
ately.

First, are these axioms consistent? That is, does there exist a set satisfying all the
conditions just listed? This is the problem of consistency of the axioms.

Second, does the given system of axioms determine the mathematical object
uniquely? That is, as the logicians would say, is the axiom system categorical? Here
uniqueness must be understood as follows. If two people A and B construct models
independently, say of number systems RA and RB , satisfying the axioms, then a
bijective correspondence can be established between the systems RA and RB , say
f :RA→RB , preserving the arithmetic operations and the order, that is,

f (x + y) = f (x)+ f (y),
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f (x · y) = f (x) · f (y),

x ≤ y ⇔ f (x)≤ f (y).

In this case, from the mathematical point of view, RA and RB are merely distinct
but equally valid realizations (models) of the real numbers (for example, RA might
be the set of infinite decimal fractions and RB the set of points on the real line). Such
realizations are said to be isomorphic and the mapping f is called an isomorphism.
The result of this mathematical activity is thus not about any particular realization,
but about each model in the class of isomorphic models of the given axiom system.

We shall not discuss the questions posed above, but instead confine ourselves to
giving informative answers to them.

A positive answer to the question of consistency of an axiom system is always
of a hypothetical nature. In relation to numbers it has the following appearance:
Starting from the axioms of set theory that we have accepted (see Sect. 1.4.2), one
can construct the set of natural numbers, then the set of rational numbers, and finally
the set R of real numbers satisfying all the properties listed.

The question of the categoricity of the axiom system for the real numbers can
be established. Those who wish to do so may obtain it independently by solving
Exercises 23 and 24 at the end of this section.

2.1.2 Some General Algebraic Properties of Real Numbers

We shall show by examples how the known properties of numbers can be obtained
from these axioms.

a. Consequences of the Addition Axioms

10. There is only one zero in the set of real numbers.

Proof If 01 and 02 are both zeros in R, then by definition of zero,

01 = 01 + 02 = 02 + 01 = 02. �

20. Each element of the set of real numbers has a unique negative.

Proof If x1 and x2 are both negatives of x ∈R, then

x1 = x1 + 0= x1 + (x + x2)= (x1 + x)+ x2 = 0+ x2 = x2. �

Here we have used successively the definition of zero, the definition of the neg-
ative, the associativity of addition, again the definition of the negative, and finally,
again the definition of zero.
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30. In the set of real numbers R the equation

a + x = b

has the unique solution

x = b+ (−a).

Proof This follows from the existence and uniqueness of the negative of every ele-
ment a ∈R:

(a + x = b)⇔ (
(x + a)+ (−a)= b+ (−a)

)⇔
⇔ (

x + (
a + (−a)

)= b+ (−a)
)⇔ (

x + 0= b+ (−a)
)⇔

⇔ (
x = b+ (−a)

)
. �

The expression b + (−a) can also be written as b − a. This is the shorter and
more common way of writing it, to which we shall adhere.

b. Consequences of the Multiplication Axioms

10. There is only one multiplicative unit in the real numbers.
20. For each x �= 0 there is only one reciprocal x−1.
30. For a ∈R\0, the equation a · x = b has the unique solution x = b · a−1.

The proofs of these propositions, of course, merely repeat the proofs of the corre-
sponding propositions for addition (except for a change in the symbol and the name
of the operation); they are therefore omitted.

c. Consequences of the Axiom Connecting Addition and Multiplication

Applying the additional axiom (I, II) connecting addition and multiplication, we
obtain further consequences.

10. For any x ∈R

x · 0= 0 · x = 0.

Proof

(
x · 0= x · (0+ 0)= x · 0+ x · 0)⇒ (

x · 0= x · 0+ (−(x · 0)
)= 0

)
. �

From this result, incidentally, one can see that if x ∈R\0, then x−1 ∈R\0.

20. (x · y = 0)⇒ (x = 0)∨ (y = 0).
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Proof If, for example, y �= 0, then by the uniqueness of the solution of the equation
x · y = 0 for x, we find x = 0 · y−1 = 0. �

30. For any x ∈R

−x = (−1) · x.

Proof x+(−1) ·x = (1+(−1)) ·x = 0 ·x = x ·0= 0, and the assertion now follows
from the uniqueness of the negative of a number. �

40. For any x ∈R

(−1)(−x)= x.

Proof This follows from 30 and the uniqueness of the negative of −x. �

50. For any x ∈R

(−x) · (−x)= x · x.

Proof

(−x)(−x)= (
(−1) · x)(−x)= (

x · (−1)
)
(−x)= x

(
(−1)(−x)

)= x · x.

Here we have made successive use of the preceding propositions and the commuta-
tivity and associativity of multiplication. �

d. Consequences of the Order Axioms

We begin by noting that the relation x ≤ y (read “x is less than or equal to y”) can
also be written as y ≥ x (“y is greater than or equal to x”); when x �= y, the relation
x ≤ y is written x < y (read “x is less than y”) or y > x (read “y is greater than x”),
and is called strict inequality.

10. For any x and y in R precisely one of the following relations holds:

x < y, x = y, x > y.

Proof This follows from the definition of strict inequality just given and Axioms 1≤
and 3≤. �

20. For any x, y, z ∈R

(x < y)∧ (y ≤ z)⇒ (x < z),

(x ≤ y)∧ (y < z)⇒ (x < z).
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Proof We prove the first assertion as an example. By Axiom 2≤, which asserts that
the inequality relation is transitive, we have

(x ≤ y)∧ (y < z)⇔ (x ≤ y)∧ (y ≤ z)∧ (y �= z)⇒ (x ≤ z).

It remains to be verified that x �= z. But if this were not the case, we would have

(x ≤ y)∧ (y < z)⇔ (z≤ y)∧ (y < z)⇔ (z≤ y)∧ (y ≤ z)∧ (y �= z).

By Axiom 1≤ this relation would imply

(y = z)∧ (y �= z),

which is a contradiction. �

e. Consequences of the Axioms Connecting Order with Addition and
Multiplication

If in addition to the axioms of addition, multiplication, and order, we use Ax-
ioms (I, III) and (II, III), which connect the order with the arithmetic operations,
we can obtain, for example, the following propositions.

10. For any x, y, z,w ∈R

(x < y)⇒ (x + z) < (y + z),

(0 < x)⇒ (−x < 0),

(x ≤ y)∧ (z≤w)⇒ (x + z)≤ (y +w),

(x ≤ y)∧ (z < w)⇒ (x + z < y +w).

Proof We shall verify the first of these assertions.
By definition of strict inequality and the axiom (I, III) we have

(x < y)⇒ (x ≤ y)⇒ (x + z)≤ (y + z).

It remains to be verified that x + z �= y + z. Indeed,

(
(x + z)= (y + z)

)⇒ (
x = (y + z)− z= y + (z− z)= y

)
,

which contradicts the assumption x < y. �

20. If x, y, z ∈R, then

(0 < x)∧ (0 < y)⇒ (0 < xy),

(x < 0)∧ (y < 0)⇒ (0 < xy),
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(x < 0)∧ (0 < y)⇒ (xy < 0),

(x < y)∧ (0 < z)⇒ (xz < yz),

(x < y)∧ (z < 0)⇒ (yz < xz).

Proof We shall verify the first of these assertions. By definition of strict inequality
and the axiom (II, III) we have

(0 < x)∧ (0 < y)⇒ (0≤ x)∧ (0≤ y)⇒ (0≤ xy).

Moreover, 0 �= xy since, as already shown,

(x · y = 0)⇒ (x = 0)∨ (y = 0).

Let us further verify, for example, the third assertion:

(x < 0)∧ (0 < y)⇒ (0 <−x)∧ (0 < y)⇒
⇒ (

0 < (−x) · y)⇒ (
0 <

(
(−1) · x)y)⇒

⇒ (
0 < (−1) · (xy)

)⇒ (
0 <−(xy)

)⇒ (xy < 0). �

The reader is now invited to prove the remaining relations independently and also
to verify that if nonstrict inequality holds in one of the parentheses on the left-hand
side, then the inequality on the right-hand side will also be nonstrict.

30. 0 < 1.

Proof We know that 1 ∈ R\0, that is 0 �= 1. If we assume 1 < 0, then by what was
just proved,

(1 < 0)∧ (1 < 0)⇒ (0 < 1 · 1)⇒ (0 < 1).

But we know that for any pair of numbers x, y ∈ R exactly one of the possibilities
x < y, x = y, x > y actually holds. Since 0 �= 1 and the assumption 1 < 0 implies
the relation 0 < 1, which contradicts it, the only remaining possibility is the one in
the statement of the proposition. �

40. (0 < x)⇒ (0 < x−1) and (0 < x)∧ (x < y)⇒ (0 < y−1)∧ (y−1 < x−1).

Proof Let us verify the first of these assertions. First of all, x−1 �= 0. Assuming
x−1 < 0, we obtain

(
x−1 < 0

)∧ (0 < x)⇒ (
x · x−1 < 0

)⇒ (1 < 0).

This contradiction completes the proof. �

We recall that numbers larger than zero are called positive and those less than
zero negative.
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Thus we have shown, for example, that 1 is a positive number, that the product
of a positive and a negative number is a negative number, and that the reciprocal of
a positive number is also positive.

2.1.3 The Completeness Axiom and the Existence of a Least Upper
(or Greatest Lower) Bound of a Set of Numbers

Definition 2 A set X ⊂ R is said to be bounded above (resp. bounded below) if
there exists a number c ∈R such that x ≤ c (resp. c ≤ x) for all x ∈X.

The number c in this case is called an upper bound (resp. lower bound) of the
set X. It is also called a majorant (resp. minorant) of X.

Definition 3 A set that is bounded both above and below is called bounded.

Definition 4 An element a ∈ X is called the largest or maximal (resp. smallest or
minimal) element of X if x ≤ a (resp. a ≤ x) for all x ∈X.

We now introduce some notation and at the same time give a formal expression
to the definition of maximal and minimal elements:

(a =maxX) := (
a ∈X ∧ ∀x ∈X (x ≤ a)

)
,

(a =minX) := (
a ∈X ∧ ∀x ∈X (a ≤ x)

)
.

Along with the notation maxX (read “the maximum of X”) and minX (read “the
minimum of X”) we also use the respective expressions maxx∈X x and minx∈X x.

It follows immediately from the order Axiom 1≤ that if there is a maximal (resp.
minimal) element in a set of numbers, it is the only one.

However, not every set, not even every bounded set, has a maximal or minimal
element.

For example, the set X = {x ∈R | 0≤ x < 1} has a minimal element. But, as one
can easily verify, it has no maximal element.

Definition 5 The smallest number that bounds a set X ⊂R from above is called the
least upper bound (or the exact upper bound) of X and denoted supX (read “the
supremum of X”) or supx∈X x.

This is the basic concept of the present subsection. Thus

(s = supX) := ∀x ∈X
(
(x ≤ s)∧ (∀s′ < s ∃x′ ∈X

(
s′ < x′

)))
.

The expression in the first set of parentheses on the right-hand side here says that
s is an upper bound for X; the expression in the second set says that s is the smallest
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number having this property. More precisely, the expression in the second set of
parentheses asserts that any number smaller than s is not an upper bound of X.

The concept of the greatest lower bound (or exact lower bound) of a set X is
introduced similarly as the largest of the lower bounds of X.

Definition 6

(i = infX) := ∀x ∈X
(
(i ≤ x)∧ (∀i ′ > i ∃x′ ∈X

(
x′ < i′

)))
.

Along with the notation infX (read “the infimum of X”) one also uses the nota-
tion infx∈X x for the greatest lower bound of X.

Thus we have given the following definitions:

supX := min
{
c ∈R | ∀x ∈X (x ≤ c)

}
,

infX := max
{
c ∈R | ∀x ∈X (c ≤ x)

}
.

But we said above that not every set has a minimal or maximal element. There-
fore the definitions we have adopted for the least upper bound and greatest lower
bound require an argument, provided by the following lemma.

Lemma (The least upper bound principle) Every nonempty set of real numbers that
is bounded from above has a unique least upper bound.

Proof Since we already know that the minimal element of a set of numbers is
unique, we need only verify that the least upper bound exists.

Let X ⊂ R be a given set and Y = {y ∈ R | ∀x ∈ X (x ≤ y)}. By hypothesis,
X �= ∅ and Y �= ∅. Then, by the completeness axiom there exists c ∈ R such that
∀x ∈X ∀y ∈ Y (x ≤ c ≤ y). The number c is therefore both a majorant of X and a
minorant of Y . Being a majorant of X, c is an element of Y . But then, as a minorant
of Y , it must be the minimal element of Y . Thus c=minY = supX. �

Naturally the existence and uniqueness of the greatest lower bound of a nonempty
set of numbers that is bounded from below is analogous, that is, the following propo-
sition holds.

Lemma (X nonempty and bounded below)⇒ (∃! infX).

We shall not take time to give the proof.
We now return to the set X = {x ∈ R | 0 ≤ x < 1}. By the lemma just proved it

must have a least upper bound. By the very definition of the set X and the definition
of the least upper bound, it is obvious that supX ≤ 1.

To prove that supX = 1 it is thus necessary to verify that for any number q < 1
there exists x ∈ X such that q < x; simply put, this means merely that there are
numbers between q and 1. This of course, is also easy to prove independently (for
example, by showing that q < 2−1(q + 1) < 1), but we shall not do so at this point,
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since such questions will be discussed systematically and in detail in the next sec-
tion.

As for the greatest lower bound, it always coincides with the minimal element
of a set, if such an element exists. Thus, from this consideration alone we have
infX = 0 in the present example.

Other, more substantive examples of the use of the concepts introduced here will
be encountered in the next section.

2.2 The Most Important Classes of Real Numbers
and Computational Aspects of Operations with Real
Numbers

2.2.1 The Natural Numbers and the Principle of Mathematical
Induction

a. Definition of the Set of Natural Numbers

The numbers of the form 1,1+ 1, (1+ 1)+ 1, and so forth are denoted respectively
by 1,2,3, . . . and so forth and are called natural numbers.

Such a definition will be meaningful only to one who already has a complete
picture of the natural numbers, including the notation for them, for example in the
decimal system of computation.

The continuation of such a process is by no means always unique, so that the
ubiquitous “and so forth” actually requires a clarification provided by the funda-
mental principle of mathematical induction.

Definition 1 A set X ⊂ R is inductive if for each number x ∈ X, it also contains
x + 1.

For example, R is an inductive set; the set of positive numbers is also inductive.
The intersection X =⋂

α∈A Xα of any family of inductive sets Xα , if not empty,
is an inductive set.

Indeed,
(

x ∈X =
⋂

α∈A

Xα

)

⇒ (∀α ∈A (x ∈Xα)
)⇒

⇒ (∀α ∈A
(
(x + 1) ∈Xα

))⇒
(

(x + 1) ∈
⋂

α∈A

Xα =X

)

.

We now adopt the following definition.

Definition 2 The set of natural numbers is the smallest inductive set containing 1,
that is, the intersection of all inductive sets that contain 1.
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The set of natural numbers is denoted N; its elements are called natural numbers.
From the set-theoretic point of view it might be more rational to begin the natural

numbers with 0, that is, to introduce the set of natural numbers as the smallest
inductive set containing 0; however, it is more convenient for us to begin numbering
with 1.

The following fundamental and widely used principle is a direct corollary of the
definition of the set of natural numbers.

b. The Principle of Mathematical Induction

If a subset E of the set of natural numbers N is such that 1 ∈ E and together with
each number x ∈E, the number x + 1 also belongs to E, then E =N.

Thus,

(E ⊂N)∧ (1 ∈E)∧ (x ∈E⇒ (x + 1) ∈E
)⇒E =N.

Let us illustrate this principle in action by using it to prove several useful prop-
erties of the natural numbers that we will be using constantly from now on.

10. The sum and product of natural numbers are natural numbers.

Proof Let m,n ∈ N; we shall show that (m + n) ∈ N. We denote by E the set of
natural numbers n for which (m + n) ∈ N for all m ∈ N. Then 1 ∈ E since (m ∈
N)⇒ ((m+ 1) ∈N) for any m ∈N. If n ∈E, that is, (m+n) ∈N, then (n+ 1) ∈E

also, since (m+ (n+1))= ((m+n)+1) ∈N. By the principle of induction, E =N,
and we have proved that addition does not lead outside of N.

Similarly, taking E to be the set of natural numbers n for which (m · n) ∈ N for
all m ∈N, we find that 1 ∈E, since m · 1=m, and if n ∈E, that is, m · n ∈N, then
m · (n+ 1) = mn+m is the sum of two natural numbers, which belongs to N by
what was just proved above. Thus (n ∈E)⇒ ((n+ 1) ∈E), and so by the principle
of induction E =N. �

20. (n ∈N)∧ (n �= 1)⇒ ((n− 1) ∈N).

Proof Consider the set E consisting of all real numbers of the form n− 1, where
n is a natural number different from 1; we shall show that E = N. Since 1 ∈ N, it
follows that 2 := (1+ 1) ∈N and hence 1= (2− 1) ∈E.

If m ∈ E, then m = n − 1, where n ∈ N; then m+ 1 = (n + 1) − 1, and since
n + 1 ∈ N, we have (m + 1) ∈ E. By the principle of induction we conclude that
E =N. �

30. For any n ∈N the set {x ∈N | n < x} contains a minimal element, namely

min{x ∈N | n < x} = n+ 1.
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Proof We shall show that the set E of n ∈N for which the assertion holds coincides
with N.

We first verify that 1 ∈E, that is,

min{x ∈N | 1 < x} = 2.

We shall also verify this assertion by the principle of induction. Let

M = {
x ∈N | (x = 1)∨ (2≤ x)

}
.

By definition of M we have 1 ∈M . Then if x ∈M , either x = 1, in which case
x + 1= 2 ∈M , or else 2 ≤ x, and then 2 ≤ (x + 1), and once again (x + 1) ∈M .
Thus M = N, and hence if (x �= 1) ∧ (x ∈ N), then 2 ≤ x, that is, indeed min{x ∈
N | 1 < x} = 2. Hence 1 ∈E.

We now show that if n ∈E, then (n+ 1) ∈E.
We begin by remarking that if x ∈ {x ∈N | n+ 1 < x}, then

(x − 1)= y ∈ {y ∈N | n < y}.
For, by what has already been proved, every natural number is at least as large as 1;
therefore (n+1 < x)⇒ (1 < x)⇒ (x �= 1), and then by the assertion in 20 we have
(x − 1)= y ∈N.

Now let n ∈E, that is, min{y ∈N | n < y} = n+ 1. Then x − 1≥ y ≥ n+ 1 and
x ≥ n+ 2. Hence,

(
x ∈ {x ∈N | n+ 1 < x})⇒ (x ≥ n+ 2)

and consequently, min{x ∈N | n+ 1 < x} = n+ 2, that is, (n+ 1) ∈E.
By the principle of induction E =N, and 30 is now proved. �

As immediate corollaries of 20 and 30 above, we obtain the following properties
(40, 50, and 60) of the natural numbers.

40. (m ∈N)∧ (n ∈N)∧ (n < m)⇒ (n+ 1≤m).

50. The number (n+ 1) ∈ N is the immediate successor of the number n ∈ N; that
is, if n ∈N, there are no natural numbers x satisfying n < x < n+ 1.

60. If n ∈N and n �= 1, then (n− 1) ∈N and (n− 1) is the immediate predecessor
of n in N; that is, if n ∈ N, there are no natural numbers x satisfying n− 1 <

x < n.

We now prove one more property of the set of natural numbers.

70. In any nonempty subset of the set of natural numbers there is a minimal element.

Proof Let M ⊂N. If 1 ∈M , then minM = 1, since ∀n ∈N (1≤ n).
Now suppose 1 /∈ M , that is, 1 ∈ E = N\M . The set E must contain a natu-

ral number n such that all natural numbers not larger than n belong to E, but
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(n + 1) ∈ M . If there were no such n, the set E ⊂ N, which contains 1, would
contain along with each of its elements n, the number (n + 1) also; by the prin-
ciple of induction, it would therefore equal N. But the latter is impossible, since
N\E =M �=∅.

The number (n+ 1) so found must be the smallest element of M , since there are
no natural numbers between n and n+ 1, as we have seen. �

2.2.2 Rational and Irrational Numbers

a. The Integers

Definition 3 The union of the set of natural numbers, the set of negatives of natural
numbers, and zero is called the set of integers and is denoted Z.

Since, as has already been proved, addition and multiplication of natural numbers
do not take us outside N, it follows that these same operations on integers do not
lead outside of Z.

Proof Indeed, if m,n ∈ Z, either one of these numbers is zero, and then the sum
m + n equals the other number, so that (m + n) ∈ Z and m · n = 0 ∈ Z, or both
numbers are non-zero. In the latter case, either m,n ∈N and then (m+ n) ∈N⊂ Z

and (m · n) ∈N⊂ Z, or (−m), (−n) ∈N and then m · n= ((−1)m)((−1)n) ∈N or
(−m),n ∈ N and then (−m · n) ∈ N, that is, m · n ∈ Z, or, finally, m,−n ∈ N and
then (−m · n) ∈N and once again m · n ∈ Z. �

Thus Z is an Abelian group with respect to addition. With respect to multiplica-
tion Z is not a group, nor is Z\0, since the reciprocals of the integers are not in Z

(except the reciprocals of 1 and −1).

Proof Indeed, if m ∈ Z and m �= 0,1, then assuming first that m ∈ N, we have
0 < 1 < m, and, since m ·m−1 = 1 > 0, we must have 0 < m−1 < 1 (see the con-
sequences of the order axioms in the previous subsection). Thus m−1 /∈ Z. The case
when m is a negative integer different from −1 reduces immediately to the one
already considered. �

When k =m ·n−1 ∈ Z for two integers m,n ∈ Z, that is, when m= k ·n for some
k ∈ Z, we say that m is divisible by n or a multiple of n, or that n is a divisor of m.

The divisibility of integers reduces immediately via suitable sign changes, that is,
through multiplication by −1 when necessary, to the divisibility of the correspond-
ing natural numbers. In this context it is studied in number theory.

We recall without proof the so-called fundamental theorem of arithmetic, which
we shall use in studying certain examples.

A number p ∈N, p �= 1, is prime if it has no divisors in N except 1 and p.
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The fundamental theorem of arithmetic Each natural number admits a represen-
tation as a product

n= p1 · · ·pk,

where p1, . . . , pk are prime numbers. This representation is unique except for the
order of the factors.

Numbers m,n ∈ Z are said to be relatively prime if they have no common divi-
sors except 1 and –1.

It follows in particular from this theorem that if the product m · n of relatively
prime numbers m and n is divisible by a prime p, then one of the two numbers is
also divisible by p.

b. The Rational Numbers

Definition 4 Numbers of the form m · n−1, where m,n ∈ Z, are called rational.

We denote the set of rational numbers by Q.
Thus, the ordered pair (m,n) of integers defines the rational number q =m · n−1

if n �= 0.
The number q =m · n−1 can also be written as a quotient2 of m and n, that is, as

a so-called rational fraction m
n

.
The rules you learned in school for operating with rational numbers in terms of

their representation as fractions follow immediately from the definition of a rational
number and the axioms for real numbers. In particular, “the value of a fraction is
unchanged when both numerator and denominator are multiplied by the same non-
zero integer”, that is, the fractions mk

nk
and m

n
represent the same rational number. In

fact, since (nk)(k−1n−1)= 1, that is (n · k)−1 = k−1 · n−1, we have (mk)(nk)−1 =
(mk)(k−1n−1)=m · n−1.

Thus the different ordered pairs (m,n) and (mk,nk) define the same rational
number. Consequently, after suitable reductions, any rational number can be pre-
sented as an ordered pair of relatively prime integers.

On the other hand, if the pairs (m1, n1) and (m2, n2) define the same rational
number, that is, m1 · n−1

1 = m2 · n−1
2 , then m1n2 = m2n1, and if, for example, m1

and n1 are relatively prime, it follows from the corollary of the fundamental theorem
of arithmetic mentioned above that n2 · n−1

1 =m2 ·m−1
1 = k ∈ Z.

We have thus demonstrated that two ordered pairs (m1, n1) and (m2, n2) define
the same rational number if and only if they are proportional. That is, there exists
an integer k ∈ Z such that, for example, m2 = km1 and n2 = kn1.

2The notation Q comes from the first letter of the English word quotient, which in turn comes from
the Latin quota, meaning the unit part of something, and quat, meaning how many.
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c. The Irrational Numbers

Definition 5 The real numbers that are not rational are called irrational.

The classical example of an irrational real number is
√

2, that is, the number
s ∈ R such that s > 0 and s2 = 2. By the Pythagorean theorem, the irrationality of√

2 is equivalent to the assertion that the diagonal and side of a square are incom-
mensurable.

Thus we begin by verifying that there exists a real number s ∈ R whose square
equals 2, and then that s /∈Q.

Proof Let X and Y be the sets of positive real numbers such that ∀x ∈X (x2 < 2),
∀y ∈ Y (2 < y2). Since 1 ∈X and 2 ∈ Y , it follows that X and Y are nonempty sets.

Further, since (x < y)⇔ (x2 < y2) for positive numbers x and y, every element
of X is less than every element of Y . By the completeness axiom there exists s ∈R

such that x ≤ s ≤ y for all x ∈X and all y ∈ Y .
We shall show that s2 = 2.
If s2 < 2, then, for example, the number s + 2−s2

3s
, which is larger than s, would

have a square less than 2. Indeed, we know that 1 ∈ X, so that 12 ≤ s2 < 2, and
0 < Δ := 2− s2 ≤ 1. It follows that

(

s + Δ

3s

)2

= s2 + 2 · Δ

3s
+
(

Δ

3s

)2

< s2 + 3 · Δ

3s
< s2 + 3 · Δ

3s
= s2 +Δ= 2.

Consequently, (s + Δ
3s

) ∈X, which is inconsistent with the inequality x ≤ s for all
x ∈X.

If 2 < s2, then the number s − s2−2
3s

, which is smaller than s, would have a
square larger than 2. Indeed, we know that 2 ∈ Y , so that 2 < s2 ≤ 22 or 0 < Δ :=
s2 − 2 < 3 and 0 < Δ

3 < 1. Hence,

(

s − Δ

3s

)2

= s2 − 2 · Δ

3s
+
(

Δ

3s

)2

> s2 − 3 · Δ

3s
= s2 −Δ= 2,

and we have now contradicted the fact that s is a lower bound of Y .
Thus the only remaining possibility is that s2 = 2.
Let us show, finally, that s /∈Q. Assume that s ∈Q and let m

n
be an irreducible

representation of s. Then m2 = 2 · n2, so that m2 is divisible by 2 and therefore m

also is divisible by 2. But, if m= 2k, then 2k2 = n2, and for the same reason, n must
be divisible by 2. But this contradicts the assumed irreducibility of the fraction m

n
. �

We have worked hard just now to prove that there exist irrational numbers. We
shall soon see that in a certain sense nearly all real numbers are irrational. It will be
shown that the cardinality of the set of irrational numbers is larger than that of the
set of rational numbers and that in fact the former equals the cardinality of the set
of real numbers.



52 2 The Real Numbers

Among the irrational numbers we make a further distinction between the so-
called algebraic irrational numbers and the transcendental numbers.

A real number is called algebraic if it is the root of an algebraic equation

a0x
n + · · · + an−1x + an = 0

with rational (or equivalently, integer) coefficients.
Otherwise the number is called transcendental.
We shall see that the cardinality of the set of algebraic numbers is the same as

that of the set of rational numbers, while the cardinality of the set of transcendental
numbers is the same as that of the set of real numbers. For that reason the difficulties
involved in exhibiting specific transcendental numbers – more precisely, proving
that a given number is transcendental – seem at first sight paradoxical and unnatural.

For example, it was not proved until 1882 that the classical geometric number π

is transcendental,3 and one of the famous Hilbert4 problems was to prove the tran-
scendence of the number αβ , where α is algebraic, (α > 0) ∧ (α �= 1) and β is an
irrational algebraic number (for example, α = 2, β =√2).

2.2.3 The Principle of Archimedes

We now turn to the principle of Archimedes,5 which is important in both its theoret-
ical aspect and the application of numbers in measurement and computations. We
shall prove it using the completeness axiom (more precisely, the least-upper-bound
principle, which is equivalent to the completeness axiom). In other axiom systems
for the real numbers this fundamental principle is frequently included in the list of
axioms.

We remark that the propositions that we have proved up to now about the natural
numbers and the integers have made no use at all of the completeness axiom. As

3The number π equals the ratio of the circumference of a circle to its diameter in Euclidean geom-
etry. That is the reason this number has been conventionally denoted since the eighteenth century,
following Euler by π , which is the initial letter of the Greek word περιϕέρια – periphery (cir-
cumference). The transcendence of π was proved by the German mathematician F. Lindemann
(1852–1939). It follows in particular from the transcendence of π that it is impossible to construct
a line segment of length π with compass and straightedge (the problem of rectification of the cir-
cle), and also that the ancient problem of squaring the circle cannot be solved with compass and
straightedge.
4D. Hilbert (1862–1943) – outstanding German mathematician who stated 23 problems from dif-
ferent areas of mathematics at the 1900 International Congress of Mathematicians in Paris. These
problems came to be known as the “Hilbert problems”. The problem mentioned here (Hilbert’s sev-
enth problem) was given an affirmative answer in 1934 by the Soviet mathematician A.O. Gel’fond
(1906–1968) and the German mathematician T. Schneider (1911–1989).
5Archimedes (287–212 BCE) – brilliant Greek scholar, about whom Leibniz, one of the founders of
analysis said, “When you study the works of Archimedes, you cease to be amazed by the achieve-
ments of modern mathematicians.”
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will be seen below, the principle of Archimedes essentially reflects the properties of
the natural numbers and integers connected with completeness. We begin with these
properties.

10. Any nonempty subset of natural numbers that is bounded from above contains
a maximal element.

Proof If E ⊂ N is the subset in question, then by the least-upper-bound lemma,
∃! supE = s ∈ R. By definition of the least upper bound there is a natural number
n ∈ E satisfying the condition s − 1 < n≤ s. But then, n=maxE, since a natural
number that is larger than n must be at least n+ 1, and n+ 1 > s. �

Corollaries 20 The set of natural numbers is not bounded above.

Proof Otherwise there would exist a maximal natural number. But n < n+ 1. �

30. Any nonempty subset of the integers that is bounded from above contains a
maximal element.

Proof The proof of 10 can be repeated verbatim, replacing N with Z. �

40. Any nonempty subset of integers that is bounded below contains a minimal ele-
ment.

Proof One can, for example, repeat the proof of 10, replacing N by Z and using the
greatest-lower-bound principle instead of the least-upper-bound principle.

Alternatively, one can pass to the negatives of the numbers (“change signs”) and
use what has been proved in 30. �

50. The set of integers is unbounded above and unbounded below.

Proof This follows from 30 and 40, or directly from 20. �

We can now state the principle of Archimedes.

60. (The principle of Archimedes). For any fixed positive number h and any real
number x there exists a unique integer k such that (k − 1)h≤ x < kh.

Proof Since Z is not bounded above, the set {n ∈ Z | x
h

< n} is a nonempty subset
of the integers that is bounded below. Then (see 40) it contains a minimal element k,
that is (k − 1) ≤ x/h < k. Since h > 0, these inequalities are equivalent to those
given in the statement of the principle of Archimedes. The uniqueness of k ∈ Z

satisfying these two inequalities follows from the uniqueness of the minimal element
of a set of numbers (see Sect. 2.1.3). �
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And now some corollaries:

70. For any positive number ε there exists a natural number n such that 0 < 1
n

< ε.

Proof By the principle of Archimedes there exists n ∈ Z such that 1 < ε · n. Since
0 < 1 and 0 < ε, we have 0 < n. Thus n ∈N and 0 < 1

n
< ε. �

80. If the number x ∈R is such that 0≤ x and x < 1
n

for all n ∈N, then x = 0.

Proof The relation 0 < x is impossible by virtue of 70. �

90. For any numbers a, b ∈ R such that a < b there is a rational number r ∈ Q

such that a < r < b.

Proof Taking account of 70, we choose n ∈ N such that 0 < 1
n

< b − a. By the
principle of Archimedes we can find a number m ∈ Z such that m−1

n
≤ a < m

n
. Then

m
n

< b, since otherwise we would have m−1
n
≤ a < b ≤ m

n
, from which it would

follow that 1
n
≥ b− a. Thus r = m

n
∈Q and a < m

n
< b. �

100. For any number x ∈ R there exists a unique integer k ∈ Z such that k ≤ x <

k + 1.

Proof This follows immediately from the principle of Archimedes. �

The number k just mentioned is denoted [x] and is called the integer part of x.
The quantity {x} := x − [x] is called the fractional part of x. Thus x = [x] + {x},
and {x} ≥ 0.

2.2.4 The Geometric Interpretation of the Set of Real Numbers
and Computational Aspects of Operations with Real
Numbers

a. The Real Line

In relation to real numbers we often use a descriptive geometric language connected
with a fact that you know in general terms from school. By the axioms of geometry
there is a one-to-one correspondence f : L→ R between the points of a line L

and the set R of real numbers. Moreover this correspondence is connected with
the rigid motions of the line. To be specific, if T is a parallel translation of the
line L along itself, there exists a number t ∈ R (depending only on T ) such that
f (T (x))= f (x)+ t for each point x ∈ L.

The number f (x) corresponding to a point x ∈ L is called the coordinate of x. In
view of the one-to-one nature of the mapping f : L→R, the coordinate of a point is
often called simply a point. For example, instead of the phrase “let us take the point
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whose coordinate is 1” we say “let us take the point 1”. Given the correspondence
f : L→R, we call the line L the coordinate axis or the number axis or the real line.
Because f is bijective, the set R itself is also often called the real line and its points
are called points of the real line.

As noted above, the bijective mapping f : L→ R that defines coordinates on L

has the property that under a parallel translation T the coordinates of the images
of points of the line L differ from the coordinates of the points themselves by a
number t ∈R, the same for every point. For this reason f is determined completely
by specifying the point that is to have coordinate 0 and the point that is to have
coordinate 1, or more briefly, by the point 0, called the origin, and the point 1. The
closed interval determined by these points is called the unit interval. The direction
determined by the ray with origin at 0 containing 1 is called the positive direction
and a motion in that direction (from 0 to 1) is called a motion from left to right. In
accordance with this convention, 1 lies to the right of 0 and 0 to the left of 1.

Under a parallel translation T that moves the origin x0 to the point x1 = T (x0)

with coordinate 1, the coordinates of the images of all points are one unit larger
than those of their pre-images, and therefore we locate the point x2 = T (x1) with
coordinate 2, the point x3 = T (x2) with coordinate 3, . . . , and the point xn+1 =
T (xn) with coordinate n+ 1, as well as the point x−1 = T −1(x0) with coordinate
−1, . . . , the point x−n−1 = T −1(x−n) with coordinate−n−1. In this way we obtain
all points with integer coordinates m ∈ Z.

Knowing how to double, triple, . . . the unit interval, we can use Thales’ theorem
to partition this interval into n congruent subintervals. By taking the subinterval
having an endpoint at the origin, we find that the coordinate of its other end, which
we denote by x, satisfies the equation n · x = 1, that is, x = 1

n
. From this we find all

points with rational coordinates m
n
∈Q.

But there still remain points of L, since we know there are intervals in-
commensurable with the unit interval. Each such point, like every other point of the
line, divides the line into two rays, on each of which there are points with integer
or rational coordinates. (This is a consequence of the original geometric principle
of Archimedes.) Thus a point produces a partition, or, as it is called, a cut of Q

into two nonempty sets X and Y corresponding to the rational points (points with
rational coordinates) on the left-hand and right-hand rays. By the axiom of com-
pleteness, there is a number c that separates X and Y , that is, x ≤ c ≤ y for all
x ∈ X and all y ∈ Y . Since X ∪ Y = Q, it follows that supX = s = i = infY . For
otherwise, s < i and there would be a rational number between s and i lying neither
in X nor in Y . Thus s = i = c. This uniquely determined number c is assigned to
the corresponding point of the line.

The assignment of coordinates to points of the line just described provides a
visualizable model for both the order relation in R (hence the term “linear ordering”)
and for the axiom of completeness or continuity in R, which in geometric language
means that there are no “holes” in the line L, which would separate it into two pieces
having no points in common. (Such a separation could only come about by use of
some point of the line L.)

We shall not go into further detail about the construction of the mapping f : L→
R, since we shall invoke the geometric interpretation of the set of real numbers only
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for the sake of visualizability and perhaps to bring into play the reader’s very useful
geometric intuition. As for the formal proofs, just as before, they will rely either on
the collection of facts we have obtained from the axioms for the real numbers or
directly on the axioms themselves.

Geometric language, however, will be used constantly.
We now introduce the following notation and terminology for the number sets

listed below:

]a, b[ := {x ∈R | a < x < b} is the open interval ab;
[a, b] := {x ∈R | a ≤ x ≤ b} is the closed interval ab;
]a, b] := {x ∈R | a < x ≤ b} is the half-open interval ab containing b;
[a, b[ := {x ∈R | a ≤ x < b} is the half-open interval ab containing a.

Definition 6 Open, closed, and half-open intervals are called numerical intervals
or simply intervals. The numbers determining an interval are called its endpoints.

The quantity b–a is called the length of the interval ab. If I is an interval, we
shall denote its length by |I |. (The origin of this notation will soon become clear.)

The sets

]a,+∞[ := {x ∈R | a < x}, ]−∞, b[ := {x ∈R | x < b}
[a,+∞[ := {x ∈R | a ≤ x}, ]−∞, b] := {x ∈R | x ≤ b}

and ]−∞,+∞[ := R are conventionally called unbounded intervals or infinite in-
tervals.

In accordance with this use of the symbols +∞ (read “plus infinity”) and −∞
(read “minus infinity”) it is customary to denote the fact that the numerical set X is
not bounded above (resp. below), by writing supX =+∞ (infX =−∞).

Definition 7 An open interval containing the point x ∈R will be called a neighbor-
hood of this point.

In particular, when δ > 0, the open interval ]x − δ, x + δ[ is called the δ-
neighborhood of x. Its length is 2δ.

The distance between points x, y ∈ R is measured by the length of the interval
having them as endpoints.

So as not to have to investigate which of the points is “left” and which is “right”,
that is, whether x < y or y < x and whether the length is y− x or x− y, we can use
the useful function

|x| =
⎧
⎨

⎩

x when x > 0,

0 when x = 0,

−x when x < 0,

which is called the modulus or absolute value of the number.
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Definition 8 The distance between x, y ∈R is the quantity |x − y|.

The distance is nonnegative and equals zero only when the points x and y are
the same. The distance from x to y is the same as the distance from y to x, since
|x − y| = |y − x|. Finally, if z ∈ R, then |x − y| ≤ |x − z| + |z − y|. That is, the
so-called triangle inequality holds.

The triangle inequality follows from a property of the absolute value that is also
called the triangle inequality (since it can be obtained from the preceding triangle
inequality by setting z= 0 and replacing y by −y). To be specific, the inequality

|x + y| ≤ |x| + |y|
holds for any numbers x and y, and equality holds only when the numbers x and y

are both negative or both positive.

Proof If 0≤ x and 0≤ y, then 0≤ x + y, |x + y| = x + y, |x| = x, and |y| = y, so
that equality holds in this case.

If x ≤ 0 and y ≤ 0, then x + y ≤ 0, |x + y| = −(x + y) = −x − y, |x| = −x,
|y| = −y, and again we have equality.

Now suppose one of the numbers is negative and the other positive, for example,
x < 0 < y. Then either x < x+y ≤ 0 or 0≤ x+y < y. In the first case |x+y|< |x|,
and in the second case |x + y|< |y|, so that in both cases |x + y|< |x| + |y|. �

Using the principle of induction, one can verify that

|x1 + · · · + xn| ≤ |x1| + · · · + |xn|,
and equality holds if and only if the numbers x1, . . . , xn are all nonnegative or all
nonpositive.

The number a+b
2 is often called the midpoint or center of the interval with end-

points a and b, since it is equidistant from the endpoints of the interval.
In particular, a point x ∈R is the center of its δ-neighborhood ]x − δ, x + δ[ and

all points of the δ-neighborhood lie at a distance from x less than δ.

b. Defining a Number by Successive Approximations

In measuring a real physical quantity, we obtain a number that, as a rule, changes
when the measurement is repeated, especially if one changes either the method of
making the measurement or the instrument used. Thus the result of measurement is
usually an approximate value of the quantity being sought. The quality or precision
of a measurement is characterized, for example, by the magnitude of the possible
discrepancy between the true value of the quantity and the value obtained for it
by measurement. When this is done, it may happen that we can never exhibit the
exact value of the quantity (if it exists theoretically). Taking a more constructive
position, however, we may (or should) consider that we know the desired quantity
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completely if we can measure it with any preassigned precision. Taking this position
is tantamount to identifying the number with a sequence6 of more and more precise
approximations by numbers obtained from measurement. But every measurement
is a finite set of comparisons with some standard or with a part of the standard
commensurable with it, so that the result of the measurement will necessarily be
expressed in terms of natural numbers, integers, or, more generally, rational num-
bers. Hence theoretically the whole set of real numbers can be described in terms of
sequences of rational numbers by constructing, after due analysis, a mathematical
copy or, better expressed, a model of what people do with numbers who have no
notion of their axiomatic description. The latter add and multiply the approximate
values rather than the values being measured, which are unknown to them. (To be
sure, they do not always know how to say what relation the result of these operations
has to the result that would be obtained if the computations were carried out with
the exact values. We shall discuss this question below.)

Having identified a number with a sequence of approximations to it, we should
then, for example, add the sequences of approximate values when we wish to add
two numbers. The new sequence thus obtained must be regarded as a new number,
called the sum of the first two. But is it a number? The subtlety of the question
resides in the fact that not every randomly constructed sequence is the sequence
of arbitrarily precise approximations to some quantity. That is, one still has to learn
how to determine from the sequence itself whether it represents some number or not.
Another question that arises in the attempt to make a mathematical copy of opera-
tions with approximate numbers is that different sequences may be approximating
sequences for the same quantity. The relation between sequences of approximations
defining a number and the numbers themselves is approximately the same as that
between a point on a map and an arrow on the map indicating the point. The arrow
determines the point, but the point determines only the tip of the arrow, and does not
exclude the use of a different arrow that may happen to be more convenient.

A precise description of these problems was given by Cauchy,7 who carried out
the entire program of constructing a model of the real numbers, which we have only
sketched. One may hope that after you study the theory of limits you will be able to
repeat these constructions independently of Cauchy.

What has been said up to now, of course, makes no claim to mathematical rigor.
The purpose of this informal digression has been to direct the reader’s attention to
the theoretical possibility that more than one natural model of the real numbers may
exist. I have also tried to give a picture of the relation of numbers to the world around
us and to clarify the fundamental role of natural and rational numbers. Finally, I
wished to show that approximate computations are both natural and necessary.

6If n is the number of the measurement and xn the result of that measurement, the correspondence
n �→ xn is simply a function f : N→ R of a natural-number argument, that is, by definition a se-
quence (in this case a sequence of numbers). Section 3.1 is devoted to a detailed study of numerical
sequences.
7A. Cauchy (1789–1857) – French mathematician, one of the most active creators of the language
of mathematics and the machinery of classical analysis.
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The next part of the present section is devoted to simple but important estimates
of the errors that arise in arithmetic operations on approximate quantities. These
estimates will be used below and are of independent interest.

We now give precise statements.

Definition 9 If x is the exact value of a quantity and x̃ a known approximation to
the quantity, the numbers

Δ(x̃) := |x − x̃|
and

δ(x̃) := Δ(x̃)

|x̃|
are called respectively the absolute and relative error of approximation by x̃. The
relative error is not defined when x̃ = 0.

Since the value x is unknown, the values of Δ(x̃) and δ(x̃) are also unknown.
However, one usually knows some upper bounds Δ(x̃) < Δ and δ(x̃) < δ for these
quantities. In this case we say that the absolute or relative error does not exceed Δ or
δ respectively. In practice we need to deal only with estimates for the errors, so that
the quantities Δ and δ themselves are often called the absolute and relative errors.
But we shall not do this.

The notation x = x̃ ±Δ means that x̃ −Δ≤ x ≤ x̃ +Δ.
For example,

gravitational constant G= (6.672598± 0.00085)× 10−11 N ·m2/kg2,
speed of light in vacuo c= 299 792 458 m/s (exactly),
Planck’s constant h= (6.6260755± 0.0000040)× 10−34 J · s,
charge of an electron e= (1.60217733± 0.00000049)× 10−19 C,
rest mass of an electron me = (9.1093897± 0.0000054)× 10−31 kg.

The main indicator of the precision of a measurement is the relative error in
approximation, usually expressed as a percent.

Thus in the examples just given the relative errors are at most (in order):

13× 10−5; 0; 6× 10−7; 31× 10−8; 6× 10−7

or, as percents of the measured values,

13× 10−3 %; 0 %; 6× 10−5 %; 31× 10−6 %; 6× 10−5 %.

We now estimate the errors that arise in arithmetic operations with approximate
quantities.

Proposition If

|x − x̃| =Δ(x̃), |y − ỹ| =Δ(ỹ),
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then

Δ(x̃ + ỹ) := ∣
∣(x + y)− (x̃ + ỹ)

∣
∣≤Δ(x̃)+Δ(ỹ), (2.1)

Δ(x̃ · ỹ) := |x · y − x̃ · ỹ| ≤ |x̃|Δ(ỹ)+ |ỹ|Δ(x̃)+Δ(x̃) ·Δ(ỹ); (2.2)

if, in addition,

y �= 0, ỹ �= 0 and δ(ỹ)= Δ(ỹ)

|ỹ| < 1,

then

Δ

(
x̃

ỹ

)

:=
∣
∣
∣
∣
x

y
− x̃

ỹ

∣
∣
∣
∣≤

|x̃|Δ(ỹ)+ |ỹ|Δ(x̃)

ỹ2
· 1

1− δ(ỹ)
. (2.3)

Proof Let x = x̃ + α and y = ỹ + β . Then

Δ(x̃ + ỹ) = ∣
∣(x + y)− (x̃ + ỹ)

∣
∣= |α + β| ≤ |α| + |β| =Δ(x̃)+Δ(ỹ),

Δ(x̃ · ỹ) = |xy − x̃ · ỹ| = ∣
∣(x̃ + α)(ỹ + β)− x̃ · ỹ∣∣=

= |x̃β + ỹα+ αβ| ≤ |x̃||β| + |ỹ||α| + |αβ| =
= |x̃|Δ(ỹ)+ |ỹ|Δ(x̃)+Δ(x̃) ·Δ(ỹ),

Δ

(
x̃

ỹ

)

=
∣
∣
∣
∣
x

y
− x̃

ỹ

∣
∣
∣
∣=

∣
∣
∣
∣
xỹ − yx̃

yỹ

∣
∣
∣
∣=

=
∣
∣
∣
∣
(x̃ + α)ỹ − (ỹ + β)x̃

ỹ2

∣
∣
∣
∣ ·
∣
∣
∣
∣

1

1+ β/ỹ

∣
∣
∣
∣≤

|x̃||β| + |ỹ||α|
ỹ2

· 1

1− δ(ỹ)
=

= |x̃|Δ(ỹ)+ |ỹ|Δ(x̃)

ỹ2
· 1

1− δ(ỹ)
. �

These estimates for the absolute errors imply the following estimates for the
relative errors:

δ(x̃ + ỹ)≤ Δ(x̃)+Δ(ỹ)

|x̃ + ỹ| , (2.1′)

δ(x̃ · ỹ)≤ δ(x̃)+ δ(ỹ)+ δ(ỹ) · δ(ỹ), (2.2′)

δ

(
x̃

ỹ

)

≤ δ(x̃)+ δ(ỹ)

1− δ(ỹ)
. (2.3′)

In practice, when working with sufficiently good approximations, we have Δ(x̃) ·
Δ(ỹ) ≈ 0, δ(x̃) · δ(ỹ) ≈ 0, and 1 − δ(ỹ) ≈ 1, so that one can use the following
simplified and useful, but formally incorrect, versions of formulas (2.2), (2.3), (2.2′),
and (2.3′):

Δ(x̃ · ỹ) ≤ |x̃|Δ(ỹ)+ |ỹ|Δ(x̃),
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Δ

(
x̃

ỹ

)

≤ |x̃|Δ(ỹ)+ ỹΔ(x̃)

ỹ2
,

δ(x̃ · ỹ) ≤ δ(x̃)+ δ(ỹ),

δ

(
x̃

ỹ

)

≤ δ(x̃)+ δ(ỹ).

Formulas (2.3) and (2.3′) show that it is necessary to avoid dividing by a number
that is near zero and also to avoid using rather crude approximations in which ỹ or
1− δ(ỹ) is small in absolute value.

Formula (2.1′) warns against adding approximate quantities if they are close to
each other in absolute value but opposite in sign, since then |x̃ + ỹ| is close to zero.

In all these cases, the errors may increase sharply.
For example, suppose your height has been measured twice by some device,

and the precision of the measurement is ±0.5 cm. Suppose a sheet of paper was
placed under your feet before the second measurement. It may nevertheless happen
that the results of the measurement are as follows: H1 = (200± 0.5) cm and H2 =
(199.8± 0.5) cm respectively.

It does not make sense to try to find the thickness of the paper in the form of the
difference H2−H1, from which it would follow only that the thickness of the paper
is not larger than 0.8 cm. That would of course be a crude reflection (if indeed one
could even call it a “reflection”) of the true situation.

However, it is worthwhile to consider another more hopeful computational effect
through which comparatively precise measurements can be carried out with crude
devices. For example, if the device just used for measuring your height was used to
measure the thickness of 1000 sheets of the same paper, and the result was (20±
0.5) cm, then the thickness of one sheet of paper is (0.02± 0.0005) cm, which is
(0.2± 0.005) mm, as follows from formula (2.1).

That is, with an absolute error not larger than 0.005 mm, the thickness of one
sheet is 0.2 mm. The relative error in this measurement is at most 0.025 or 2.5 %.

This idea can be developed and has been proposed, for example, as a way of
detecting a weak periodic signal amid the larger random static usually called white
noise.

c. The Positional Computation System

It was stated above that every real number can be presented as a sequence of ratio-
nal approximations. We now recall a method, which is important when it comes to
computation, for constructing in a uniform way a sequence of such rational approx-
imations for every real number. This method leads to the positional computation
system.

Lemma If a number q > 1 is fixed, then for every positive number x ∈ R there
exists a unique integer k ∈ Z such that

qk−1 ≤ x < qk.
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Proof We first verify that the set of numbers of the form qk , k ∈ N, is not bounded
above. If it were, it would have a least upper bound s, and by definition of the least
upper bound, there would be a natural number m ∈ N such that s

q
< qm ≤ s. But

then s < qm+1, so that s could not be an upper bound of the set.
Since 1 < q , it follows that qm < qn when m < n for all m,n ∈ Z. Hence we have

also shown that for every real number c ∈ R there exists a natural number N ∈ N

such that c < qn for all n > N .
It follows that for any ε > 0 there exists M ∈ N such that 1

qm < ε for all natural
numbers m > M .

Indeed, it suffices to set c= 1
ε

and N =M ; then 1
ε

< qm when m > M .
Thus the set of integers m ∈ Z satisfying the inequality x < qm for x > 0 is

bounded below. It therefore has a minimal element k, which obviously will be the
one we are seeking, since, for this integer, qk−1 ≤ x < qk .

The uniqueness of such an integer k follows from the fact that if m,n ∈ Z and,
for example, m < n, then m≤ n− 1. Hence if q > 1, then qm ≤ qn−1.

Indeed, it can be seen from this remark that the inequalities qm−1 ≤ x < qm and
qn−1 ≤ x < qn, which imply qn−1 ≤ x < qm, are incompatible if m �= n. �

We shall use this lemma in the following construction. Fix q > 1 and take an
arbitrary positive number x ∈ R. By the lemma we find a unique number p ∈ Z

such that

qp ≤ x < qp+1. (2.4)

Definition 10 The number p satisfying (2.4) is called the order of x in the base q

or (when q is fixed) simply the order of x.

By the principle of Archimedes, we find a unique natural number αp ∈ N such
that

αpqp ≤ x < αpqp + qp. (2.5)

Taking (2.4) into account, one can assert that αp ∈ {1, . . . , q − 1}.
All of the subsequent steps in our construction will repeat the step we are about

to take, starting from relation (2.5).
It follows from relation (2.5) and the principle of Archimedes that there exists a

unique number αp−1 ∈ {0,1, . . . , q − 1} such that

αpqp + αp−1q
p−1 ≤ x < αpqp + αp−1q

p−1 + qp−1. (2.6)

If we have made n such steps, obtaining the relation

αpqp + αp−1q
p−1 + · · · + αp−nq

p−n ≤
≤ x < αpqp + αp−1q

p−1 + · · · + αp−nq
p−n + qp−n,
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then by the principle of Archimedes there exists a unique number αp−n−1 ∈
{0,1, . . . , q − 1} such that

αpqp + · · · + αp−nq
p−n + αp−n−1q

p−n−1 ≤
≤ x < αpqp + · · · + αp−nq

p−n + αp−n−1q
p−n−1 + qp−n−1.

Thus we have exhibited an algorithm by means of which a sequence of numbers
αp,αp−1, . . . , αp−n, . . . from the set {0,1, . . . , q − 1} is placed in correspondence
with the positive number x. Less formally, we have constructed a sequence of ratio-
nal numbers of the special form

rn = αpqp + · · · + αp−nq
p−n, (2.7)

and such that

rn ≤ x < rn + 1

qn−p
. (2.8)

In other words, we construct better and better approximations from below
and from above to the number x using the special sequence (2.7). The symbol
αp . . . αp−n . . . is a code for the entire sequence {rn}. To recover the sequence {rn}
from this symbol it is necessary to indicate the value of p, the order of x.

For p ≥ 0 it is customary to place a period or comma after α0; for p < 0, the
convention is to place |p| zeros left of αp and a period or comma right of the leftmost
zero (we recall that αp �= 0).

For example, when q = 10,

123.45 := 1× 102 + 2× 101 + 3× 100 + 4× 10−1 + 5× 10−2,

0.00123 := 1× 10−3 + 2× 10−4 + 3× 10−5;
and when q = 2,

1000.001 := 1 · 23 + 1 · 2−3.

Thus the value of a digit in the symbol αp . . . αp−n . . . depends on the position it
occupies relative to the period or comma.

With this convention, the symbol αp . . . α0 . . . makes it possible to recover the
whole sequence of approximations.

It can be seen by inequalities (2.8) (verify this!) that different sequences {rn} and
{r ′n}, and therefore different symbols αp . . . α0 . . . and α′p . . . α′0 . . . , correspond to
different numbers x and x′.

We now answer the question whether some real number x ∈ R corresponds to
every symbol αp . . . α0 . . . . The answer turns out to be negative.

We remark that by virtue of the algorithm just described for obtaining the num-
bers αp−n ∈ {0,1, . . . , q − 1} successively, it cannot happen that all these numbers
from some point on are equal to q − 1.
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Indeed, if

rn = αpqp + · · · + αp−kq
p−k + (q − 1)qp−k−1 + · · · + (q − 1)qp−n

for all n > k, that is,

rn = rk + 1

qk−p
− 1

qn−p
, (2.9)

then by (2.8) we have

rk + 1

qk−p
− 1

qn−p
≤ x < rk + 1

qk−p
.

Then for any n > k

0 < rk + 1

qk−p
− x <

1

qn−p
,

which, as we know from 80 above, is impossible.
It is also useful to note that if at least one of the numbers αp−k−1, . . . , αp−n is

less than q − 1, then instead of (2.9) we can write

rn < rk + 1

qk−p
− 1

qn−p

or, what is the same

rn + 1

qn−p
< rk + 1

qk−p
. (2.10)

We can now prove that any symbol αn . . . α0 . . . , composed of the numbers αk ∈
{0,1, . . . , q−1}, and in which there are numbers different from q−1 with arbitrarily
large indices, corresponds to some number x ≥ 0.

Indeed, from the symbol αp . . . αp−n . . . let us construct the sequence {rn} of the
form (2.7). By virtue of the relations r0 ≤ r1 ≤ rn ≤ · · · , taking account of (2.9) and
(2.10), we have

r0 ≤ r1 ≤ · · · ≤ · · ·< · · · ≤ rn + 1

qn−p
≤ · · · ≤ r1 + 1

q1−p
≤ r0 + 1

q−p
. (2.11)

The strict inequalities in this last relation should be understood as follows: ev-
ery element of the left-hand sequence is less than every element of the right-hand
sequence. This follows from (2.10).

If we now take x = supn∈N rn(= infn∈N(rn + q−(n−p))), then the sequence {rn}
will satisfy conditions (2.7) and (2.8), that is, the symbol αp . . . αp−n . . . corresponds
to the number x ∈R.

Thus, we have established a one-to-one correspondence between the positive
numbers x ∈ R and symbols of the form αp . . . α0, . . . if p ≥ 0 or 0,0 . . .0︸ ︷︷ ︸

|p| zeros

αp . . .
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if p < 0. The symbol assigned to x is called the q-ary representation of x; the num-
bers that occur in the symbol are called its digits, and the position of a digit relative
to the period is called its rank.

We agree to assign to a number x < 0 the symbol for the positive number −x,
prefixed by a negative sign. Finally, we assign the symbol 0.0 . . .0 . . . to the num-
ber 0.

In this way we have constructed the positional q-ary system of writing real num-
bers.

The most useful systems are the decimal system (in common use) and for tech-
nical reasons the binary system (in electronic computers). Less common, but also
used in some parts of computer engineering are the ternary and octal systems.

Formulas (2.7) and (2.8) show that if only a finite number of digits are retained
in the q-ary expression of x (or, if we wish, we may say that the others are replaced
with zeros), then the absolute error of the resulting approximation (2.7) for x does
not exceed one unit in the last rank retained.

This observation makes it possible to use the formulas obtained in Paragraph b
to estimate the errors that arise when doing arithmetic operations on numbers as a
result of replacing the exact numbers by the corresponding approximate values of
the form (2.7).

This last remark also has a certain theoretical value. To be specific, if we identify
a real number x with its q-ary expression, as was suggested in Paragraph b, once
we have learned to perform arithmetic operations directly on the q-ary symbols, we
will have constructed a new model of the real numbers, seemingly of greater value
from the computational point of view.

The main problems that need to be solved in this direction are the following:
To two q-ary symbols it is necessary to assign a new symbol representing their

sum. It will of course be constructed one step at a time. To be specific, by adding
more and more precise rational approximations of the original numbers, we shall
obtain rational approximations corresponding to their sum. Using the remark made
above, one can show that as the precision of the approximations of the terms in-
creases, we shall obtain more and more q-ary digits of the sum, which will then not
vary under subsequent improvements in the approximation.

This same problem needs to be solved with respect to multiplication.
Another, less constructive, route for passing from rational numbers to all real

numbers is due to Dedekind.
Dedekind identifies a real number with a cut in the set Q of rational numbers,

that is, a partition of Q into two disjoint sets A and B such that a < b for all a ∈A

and all b ∈ B . Under this approach to real numbers our axiom of completeness
(continuity) becomes a well-known theorem of Dedekind. For that reason the axiom
of completeness in the form we have given it is sometimes called Dedekind’s axiom.

To summarize, in the present section we have exhibited the most important
classes of numbers. We have shown the fundamental role played by the natural
and rational numbers. It has been shown how the basic properties of these numbers
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follow from the axiom system8 we have adopted. We have given a picture of various
models of the set of real numbers. We have discussed the computational aspects of
the theory of real numbers: estimates of the errors arising during arithmetical oper-
ations with approximate magnitudes, and the q-ary positional computation system.

2.2.5 Problems and Exercises

1. Using the principle of induction, show that

a) the sum x1+· · ·+xn of real numbers is defined independently of the insertion
of parentheses to specify the order of addition;

b) the same is true of the product x1 · · ·xn;
c) |x1 + · · · + xn| ≤ |x1| + · · · + |xn|;
d) |x1 · · ·xn| = |x1| · · · |xn|;
e) ((m,n ∈N)∧ (m < n))⇒ ((n−m) ∈N);
f) (1+ x)n ≥ 1+ nx for x >−1 and n ∈ N, equality holding only when n= 1

or x = 0 (Bernoulli’s inequality);
g) (a+b)n = an+ n

1!a
n−1b+ n(n−1)

2! an−2b2+· · ·+ n(n−1)···2
(n−1)! abn−1+bn (New-

ton’s binomial formula).

2. a) Verify that Z and Q are inductive sets.
b) Give examples of inductive sets different from N,Z,Q, and R.

3. Show that an inductive set is not bounded above.
4. a) Show that an inductive set is infinite (that is, equipotent with one of its subsets
different from itself).

b) The set En = {x ∈N | x ≤ n} is finite. (We denote cardEn by n.)

5. (The Euclidean algorithm) a) Let m,n ∈ N and m > n. Their greatest common
divisor (gcd(m,n) = d ∈ N) can be found in a finite number of steps using the
following algorithm of Euclid involving successive divisions with remainder.

m = q1n+ r1 (r1 < n),

n = q2r1 + r2 (r2 < r1),

r1 = q3r2 + r3 (r3 < r2),
...

rk−1 = qk+1rk + 0.

Then d = rk .

8It was stated by Hilbert in almost the form given above at the turn of the twentieth century. See for
example Hilbert, D. Foundations of Geometry, Chap. III, §13. (Translated from the second edition
of Grundlagen der Geometrie, La Salle, Illinois: Open Court Press, 1971. This section was based
on Hilbert’s article “Über den Zahlbegriff” in Jahresbericht der deutschen Mathematikervereini-
gung 8 (1900).)
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b) If d = gcd(m,n), one can choose numbers p,q ∈ Z such that pm+ qn= d ;
in particular, if m and n are relatively prime, then pm+ qn= 1.

6. Try to give your own proof of the fundamental theorem of arithmetic (Para-
graph a in Sect. 2.2.2).
7. Show that if the product m · n of natural numbers is divisible by a prime p, that
is, m · n= p · k, where k ∈N, then either m or n is divisible by p.
8. It follows from the fundamental theorem of arithmetic that the set of prime num-
bers is infinite.
9. Show that if the natural number n is not of the form km, where k,m ∈ N, then
the equation xm = n has no rational roots.
10. Show that the expression of a rational number in any q-ary computation system
is periodic, that is, starting from some rank it consists of periodically repeating
groups of digits.
11. Let us call an irrational number α ∈ R well approximated by rational numbers
if for any natural numbers n,N ∈ N there exists a rational number p

q
such that

|α− p
q
|< 1

Nqn .

a) Construct an example of a well-approximated irrational number.
b) Prove that a well-approximated irrational number cannot be algebraic, that is,

it is transcendental (Liouville’s theorem).9

12. Knowing that m
n
:=m · n−1 by definition, where m ∈ Z and n ∈ N, derive the

“rules” for addition, multiplication, and division of fractions, and also the condition
for two fractions to be equal.
13. Verify that the rational numbers Q satisfy all the axioms for real numbers except
the axiom of completeness.
14. Adopting the geometric model of the set of real numbers (the real line), show
how to construct the numbers a + b, a − b, ab, and a

b
in this model.

15. a) Illustrate the axiom of completeness on the real line.
b) Prove that the least-upper-bound principle is equivalent to the axiom of com-

pleteness.

16. a) If A⊂ B ⊂R, then supA≤ supB and infA≥ infB .
b) Let R⊃X �=∅ and R⊃ Y �=∅. If x ≤ y for all x ∈X and all y ∈ Y , then

X is bounded above, Y is bounded below, and supX ≤ infY .
c) If the sets X, Y in b) are such that X ∪ Y =R, then supX = infY .
d) If X and Y are the sets defined in c), then either X has a maximal element

or Y has a minimal element. (Dedekind’s theorem.)
e) (Continuation.) Show that Dedekind’s theorem is equivalent to the axiom of

completeness.

17. Let A+B be the set of numbers of the form a+ b and A ·B the set of numbers
of the form a · b, where a ∈A⊂R and b ∈ B ⊂R. Determine whether it is always
true that

9J. Liouville (1809–1882) – French mathematician, who wrote on complex analysis, geometry,
differential equations, number theory, and mechanics.
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a) sup(A+B)= supA+ supB ,
b) sup(A ·B)= supA · supB .

18. Let −A be the set of numbers of the form −a, where a ∈ A ⊂ R. Show that
sup(−A)=− infA.
19. a) Show that for n ∈ N and a > 0 the equation xn = a has a positive root
(denoted n

√
a or a1/n).

b) Verify that for a > 0, b > 0, and n,m ∈N

n
√

ab= n
√

a · n
√

b and
n

√
m
√

a = n·m√a.

c) (a
1
n )m = (am)

1
n =: am/n and a1/n · a1/m = a1/n+1/m.

d) (am/n)−1 = (a−1)m/n =: a−m/n.
e) Show that for all r1, r2 ∈Q

ar1 · ar2 = ar1+r2 and
(
ar1

)r2 = ar1r2 .

20. a) Show that the inclusion relation is a partial ordering relation on sets (but not
a linear ordering!).

b) Let A, B , and C be sets such that A⊂ C, B ⊂ C, A\B �=∅, and B\A �=∅.
We introduce a partial ordering into this triple of sets as in a). Exhibit the maximal
and minimal elements of the set {A,B,C}. (Pay attention to the non-uniqueness!)

21. a) Show that, just like the set Q of rational numbers, the set Q(
√

n) of numbers
of the form a + b

√
n, where a, b ∈Q and n is a fixed natural number that is not the

square of any integer, is an ordered set satisfying the principle of Archimedes but
not the axiom of completeness.

b) Determine which axioms for the real numbers do not hold for Q(
√

n) if the
standard arithmetic operations are retained in Q(

√
n) but order is defined by the

rule (a+b
√

n≤ a′ +b′
√

n) := ((b < b′)∨ ((b= b′)∧ (a ≤ a′))). Will Q(
√

n) now
satisfy the principle of Archimedes?

c) Order the set P[x] of polynomials with rational or real coefficients by spec-
ifying that

Pm(x)= a0 + a1x + · · · + amxm � 0, if am > 0.

d) Show that the set Q(x) of rational fractions

Rm,n = a0 + a1x + · · · + amxm

b0 + b1x + · · · + bnxn

with coefficients in Q or R becomes an ordered field, but not an Archimedean or-
dered field, when the order relation Rm,n � 0 is defined to mean ambn > 0 and
the usual arithmetic operations are introduced. This means that the principle of
Archimedes cannot be deduced from the other axioms for R without using the axiom
of completeness.
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22. Let n ∈ N and n > 1. In the set En = {0,1, . . . , n− 1} we define the sum and
product of two elements as the remainders when the usual sum and product in R are
divided by n. With these operations defined on it, the set En is denoted Zn.

a) Show that if n is not a prime number, then there are nonzero numbers m,k

in Zn such that m · k = 0. (Such numbers are called zero divisors.) This means that
in Zn the equation a · b= c · b does not imply that a = c, even when b �= 0.

b) Show that if p is prime, then there are no zero divisors in Zp and Zp is a
field.

c) Show that, no matter what the prime p, Zp cannot be ordered in a way
consistent with the arithmetic operations on it.

23. Show that if R and R
′ are two models of the set of real numbers and f :R→R

′
is a mapping such that f (x + y)= f (x)+ f (y) and f (x · y)= f (x) · f (y) for any
x, y ∈R, then

a) f (0)= 0′;
b) f (1)= 1′ if f (x) �≡ 0′, which we shall henceforth assume;
c) f (m)=m′ where m ∈ Z and m′ ∈ Z

′, and the mapping f : Z→ Z
′ is injec-

tive and preserves the order.
d) f (m

n
) = m′

n′ , where m,n ∈ Z, n �= 0, m′, n′ ∈ Z′, n′ �= 0′, f (m) = m′,
f (n)= n′. Thus f :Q→Q

′ is a bijection that preserves order.
e) f :R→R

′ is a bijective mapping that preserves order.

24. On the basis of the preceding exercise and the axiom of completeness, show
that the axiom system for the set of real numbers determines it completely up to an
isomorphism (method of realizing it), that is, if R and R

′ are two sets satisfying these
axioms, then there exists a one-to-one correspondence f : R→ R

′ that preserves
the arithmetic operations and the order: f (x+ y)= f (x)+ f (y), f (x · y)= f (x) ·
f (y), and (x ≤ y)⇔ (f (x)≤ f (y)).
25. A number x is represented on a computer as

x =±qp

k∑

n=1

αn

qn
,

where p is the order of x and M =∑k
n=1

αn

qn is the mantissa of the number x ( 1
q
≤

M < 1).
Now a computer works only with a certain range of numbers: for q = 2 usually
|p| ≤ 64, and k = 35. Evaluate this range in the decimal system.
26. a) Write out the (6× 6) multiplication table for multiplication in base 6.

b) Using the result of a), multiply “columnwise” in the base-6 system

(532)6

×
(145)6

and check your work by repeating the computation in the decimal system.
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c) Perform the “long” division

(1301)6
∣
∣(25)6

and check your work by repeating the computation in the decimal system.
d) Perform the “columnwise” addition

(4052)6

×
(3125)6

27. Write (100)10 in the binary and ternary systems.
28. a) Show that along with the unique representation of an integer as

(αnαn−1 . . . α0)3,

where αi ∈ {0,1,2}, it can also be written as

(βnβn−1 . . . β0)3,

where β ∈ {−1,0,1}.
b) What is the largest number of coins from which one can detect a counter-

feit in three weighings with a pan balance, if it is known in advance only that the
counterfeit coin differs in weight from the other coins?

29. What is the smallest number of questions to be answered “yes” or “no” that one
must pose in order to be sure of determining a 7-digit telephone number?
30. a) How many different numbers can one define using 20 decimal digits (for
example, two ranks with 10 possible digits in each)? Answer the same question for
the binary system. Which system does a comparison of the results favor in terms of
efficiency?

b) Evaluate the number of different numbers one can write, having at one’s
disposal n digits of a q-ary system. (Answer: qn/q .)

c) Draw the graph of the function f (x)= xn/x over the set of natural-number
values of the argument and compare the efficiency of the different systems of com-
putation.

2.3 Basic Lemmas Connected with the Completeness of the Real
Numbers

In this section we shall establish some simple useful principles, each of which could
have been used as the axiom of completeness in our construction of the real num-
bers.10

10See Problem 4 at the end of this section.
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We have called these principles basic lemmas in view of their extensive applica-
tion in the proofs of a wide variety of theorems in analysis.

2.3.1 The Nested Interval Lemma (Cauchy–Cantor Principle)

Definition 1 A function f : N→ X of a natural-number argument is called a se-
quence or, more fully, a sequence of elements of X.

The value f (n) of the function f corresponding to the number n ∈ N is often
denoted xn and called the nth term of the sequence.

Definition 2 Let X1,X2, . . . ,Xn, . . . be a sequence of sets. If X1 ⊃ X2 ⊃ · · · ⊃
Xn ⊃ · · · , that is Xn ⊃Xn+1 for all n ∈N, we say the sequence is nested.

Lemma (Cauchy–Cantor) For any nested sequence I1 ⊃ I2 ⊃ · · · ⊃ In ⊃ · · · of
closed intervals, there exists a point c ∈R belonging to all of these intervals.

If in addition it is known that for any ε > 0 there is an interval Ik whose length
|Ik| is less than ε, then c is the unique point common to all the intervals.

Proof We begin by remarking that for any two closed intervals Im = [am,bm] and
In = [an, bn] of the sequence we have am ≤ bn. For otherwise we would have an ≤
bn < am ≤ bm, that is, the intervals Im and In would be mutually disjoint, while one
of them (the one with the larger index) is contained in the other.

Thus the numerical sets A = {am |m ∈ N} and B = {bn | n ∈ N} satisfy the hy-
potheses of the axiom of completeness, by virtue of which there is a number c ∈ R

such that am ≤ c ≤ bn for all am ∈ A and all bn ∈ B . In particular, an ≤ c ≤ bn for
all n ∈N. But that means that the point c belongs to all the intervals In.

Now let c1 and c2 be two points having this property. If they are different, say
c1 < c2, then for any n ∈N we have an ≤ c1 < c2 ≤ bn, and therefore 0 < c2− c1 <

bn− an, so that the length of an interval in the sequence cannot be less than c2− c1.
Hence if there are intervals of arbitrarily small length in the sequence, their common
point is unique. �

2.3.2 The Finite Covering Lemma (Borel–Lebesgue Principle,
or Heine–Borel Theorem)

Definition 3 A system S = {X} of sets X is said to cover a set Y if Y ⊂⋃
X∈S X,

(that is, if every element y ∈ Y belongs to at least one of the sets X in the system S).

A subset of a set S = {X} that is a system of sets will be called a subsystem of S.
Thus a subsystem of a system of sets is itself a system of sets of the same type.
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Lemma (Borel–Lebesgue11) Every system of open intervals covering a closed in-
terval contains a finite subsystem that covers the closed interval.

Proof Let S = {U} be a system of open intervals U that cover the closed interval
[a, b] = I1. If the interval I1 could not be covered by a finite set of intervals of the
system S, then, dividing I1 into two halves, we would find that at least one of the
two halves, which we denote by I2, does not admit a finite covering. We now repeat
this procedure with the interval I2, and so on.

In this way a nested sequence I1 ⊃ I2 ⊃ · · · ⊃ In ⊃ · · · of closed intervals arises,
none of which admit a covering by a finite subsystem of S. Since the length of the
interval In is |In| = |I1| · 2−n, the sequence {In} contains intervals of arbitrarily
small length (see the lemma in Paragraph c of Sect. 2.2.4). But the nested interval
theorem implies that there exists a point c belonging to all of the intervals In, n ∈N.
Since c ∈ I1 = [a, b] there exists an open interval ]α,β[ = U ∈ S containing c, that
is, α < c < β . Let ε = min{c − α,β − c}. In the sequence just constructed, we
find an interval In such that |In| < ε. Since c ∈ In and |In| < ε, we conclude that
In ⊂ U = ]α,β[. But this contradicts the fact that the interval In cannot be covered
by a finite set of intervals from the system. �

2.3.3 The Limit Point Lemma (Bolzano–Weierstrass Principle)

We recall that we have defined a neighborhood of a point x ∈ R to be an open
interval containing the point and the δ-neighborhood about x to be the open interval
]x − δ, x + δ[.

Definition 4 A point p ∈R is a limit point of the set X ⊂R if every neighborhood
of the point contains an infinite subset of X.

This condition is obviously equivalent to the assertion that every neighborhood
of p contains at least one point of X different from p itself. (Verify this!)

We now give some examples.
If X = { 1

n
∈R | n ∈N}, the only limit point of X is the point 0 ∈R.

For an open interval ]a, b[ every point of the closed interval [a, b] is a limit point,
and there are no others.

For the set Q of rational numbers every point of R is a limit point; for, as we
know, every open interval of the real numbers contains rational numbers.

11É. Borel (1871–1956) and H. Lebesgue (1875–1941) – well-known French mathematicians who
worked in the theory of functions.
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Lemma (Bolzano–Weierstrass12) Every bounded infinite set of real numbers has at
least one limit point.

Proof Let X be the given subset of R. It follows from the definition of boundedness
that X is contained in some closed interval I ⊂ R. We shall show that at least one
point of I is a limit point of X.

If such were not the case, then each point x ∈ I would have a neighborhood
U(x) containing either no points of X or at most a finite number. The totality of
such neighborhoods {U(x)} constructed for the points x ∈ I forms a covering of
I by open intervals U(x). By the finite covering lemma we can extract a system
U(x1), . . . ,U(xn) of open intervals that cover I . But, since X ⊂ I , this same system
also covers X. However, there are only finitely many points of X in U(xi), and
hence only finitely many in their union. That is, X is a finite set. This contradiction
completes the proof. �

2.3.4 Problems and Exercises

1. Show that

a) if I is any system of nested closed intervals, then

sup
{
a ∈R | [a, b] ∈ I

}= α ≤ β = inf
{
b ∈R | [a, b] ∈ I

}

and

[α,β] =
⋂

[a,b]∈I

[a, b];

b) if I is a system of nested open intervals ]a, b[ the intersection
⋂
]a,b[∈I ]a, b[

may happen to be empty.
Hint :]an, bn[=]0, 1

n
[.

2. Show that

a) from a system of closed intervals covering a closed interval it is not always
possible to choose a finite subsystem covering the interval;

b) from a system of open intervals covering an open interval it is not always
possible to choose a finite subsystem covering the interval;

c) from a system of closed intervals covering an open interval it is not always
possible to choose a finite subsystem covering the interval.

12B. Bolzano (1781–1848) – Czech mathematician and philosopher. K. Weierstrass (1815–1897)
– German mathematician who devoted a great deal of attention to the logical foundations of math-
ematical analysis.
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3. Show that if we take only the set Q of rational numbers instead of the complete
set R of real numbers, taking a closed interval, open interval, and neighborhood of
a point r ∈Q to mean respectively the corresponding subsets of Q, then none of the
three lemmas proved above remains true.
4. Show that we obtain an axiom system equivalent to the one already given if we
take as the axiom of completeness

a) the Bolzano–Weierstrass principle
or

b) the Borel–Lebesgue principle (Heine–Borel theorem).
Hint: The principle of Archimedes and the axiom of completeness in the earlier

form both follow from a).
c) Replacing the axiom of completeness by the Cauchy–Cantor principle leads

to a system of axioms that becomes equivalent to the original system if we also
postulate the principle of Archimedes. (See Problem 21 in Sect. 2.2.2.)

2.4 Countable and Uncountable Sets

We now make a small addition to the information about sets that was provided in
Chap. 1. This addition will be useful below.

2.4.1 Countable Sets

Definition 1 A set X is countable if it is equipollent with the set N of natural num-
bers, that is, cardX = cardN.

Proposition

a) An infinite subset of a countable set is countable.
b) The union of the sets of a finite or countable system of countable sets is a count-

able set.

Proof a) It suffices to verify that every infinite subset E of N is equipollent with N.
We construct the needed bijective mapping f : N→ E as follows. There is a
minimal element of E1 := E, which we assign to the number 1 ∈ N and denote
e1 ∈ E. The set E is infinite, and therefore E2 := E1\e1 is nonempty. We assign
the minimal element of E2 to the number 2 and call it e2 ∈ E2. We then consider
E3 := E\{e1, e2}, and so forth. Since E is an infinite set, this construction cannot
terminate at any finite step with index n ∈ N. As follows from the principle of in-
duction, we assign in this way a certain number en ∈E to each n ∈N. The mapping
f :N→E is obviously injective.



2.4 Countable and Uncountable Sets 75

It remains to verify that it is surjective, that is, f (N) = E. Let e ∈ E. The set
{n ∈ N | n≤ e} is finite, and hence the subset of it {n ∈ E | n≤ e} is also finite. Let
k be the number of elements in the latter set. Then by construction e= ek .

b) If X1, . . . ,Xn, . . . is a countable system of sets and each set Xm = {x1
m, . . . ,

xn
m, . . .} is itself countable, then since the cardinality of the set X =⋃

n∈N Xn, which
consists of the elements xn

m where m,n ∈ N, is not less than the cardinality of each
of the sets Xm, it follows that X is an infinite set. The element xn

m ∈ Xm can be
identified with the pair (m,n) of natural numbers that defines it. Then the cardinality
of X cannot be greater than the cardinality of the set of all such ordered pairs. But the
mapping f : N× N→ N given by the formula (m,n) �→ (m+n−2)(m+n−1)

2 +m, as
one can easily verify, is bijective. (It has a visualizable meaning: we are enumerating
the points of the plane with coordinates (m,n) by successively passing from points
of one diagonal on which m+ n is constant to the points of the next such diagonal,
where the sum is one larger.)

Thus the set of ordered pairs (m,n) of natural numbers is countable. But then
cardX ≤ cardN, and since X is an infinite set we conclude on the basis of a) that
cardX = cardN. �

It follows from the proposition just proved that any subset of a countable set is
either finite or countable. If it is known that a set is either finite or countable, we say
it is at most countable. (An equivalent expression is cardX ≤ cardN.)

We can now assert, in particular, that the union of an at most countable family of
at most countable sets is at most countable.

Corollaries

1) cardZ= cardN.
2) cardN2 = cardN.

(This result means that the direct product of countable sets is countable.)
3) cardQ= cardN, that is, the set of rational numbers is countable.

Proof A rational number m
n

is defined by an ordered pair (m,n) of integers. Two
pairs (m,n) and (m′, n′) define the same rational number if and only if they are
proportional. Thus, choosing as the unique pair representing each rational num-
ber the pair (m,n) with the smallest possible positive integer denominator n ∈ N,
we find that the set Q is equipollent to some infinite subset of the set Z× Z. But
cardZ2 = cardN and hence cardQ= cardN. �

4) The set of algebraic numbers is countable.

Proof We remark first of all that the equality Q×Q= cardN implies, by induction,
that card Q

k = cardN for every k ∈N.
An element r ∈Q

k is an ordered set (r1, . . . , rk) of k rational numbers.
An algebraic equation of degree k with rational coefficients can be written in the

reduced form xk + r1x
k−1 + · · · + rk = 0, where the leading coefficient is 1. Thus
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there are as many different algebraic equations of degree k as there are different
ordered sets (r1, . . . , rk) of rational numbers, that is, a countable set.

The algebraic equations with rational coefficients (of arbitrary degree) also form
a countable set, being a countable union (over degrees) of countable sets. Each such
equation has only a finite number of roots. Hence the set of algebraic numbers is at
most countable. But it is infinite, and hence countable. �

2.4.2 The Cardinality of the Continuum

Definition 2 The set R of real numbers is also called the number continuum,13 and
its cardinality the cardinality of the continuum.

Theorem (Cantor) cardN< cardR.

This theorem asserts that the infinite set R has cardinality greater than that of the
infinite set N.

Proof We shall show that even the closed interval [0,1] is an uncountable set.
Assume that it is countable, that is, can be written as a sequence x1, x2, . . . ,

xn, . . . . Take the point x1 and on the interval [0,1] = I0 fix a closed interval of
positive length I1 not containing the point x1. In the interval I1 construct an interval
I2 not containing x2. If the interval In has been constructed, then, since |In|> 0, we
construct in it an interval In+1 so that xn+1 /∈ In+1 and |In+1|> 0. By the nested set
lemma, there is a point c belonging to all of the intervals I0, I1, . . . , In, . . . . But this
point of the closed interval I0 = [0,1] by construction cannot be any point of the
sequence x1, x2, . . . , xn, . . . . �

Corollaries

1) Q �=R, and so irrational numbers exist.
2) There exist transcendental numbers, since the set of algebraic numbers is

countable.

(After solving Exercise 3 below, the reader will no doubt wish to reinterpret this
last proposition, stating it as follows: Algebraic numbers are occasionally encoun-
tered among the real numbers.)

At the very dawn of set theory the question arose whether there exist sets of
cardinality between countable sets and sets having cardinality of the continuum,
and the conjecture was made, known as the continuum hypothesis, that there are no
intermediate cardinalities.

13From the Latin continuum, meaning continuous, or solid.
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The question turned out to involve the deepest parts of the foundations of mathe-
matics. It was definitively answered in 1963 by the American mathematician P. Co-
hen. Cohen proved that the continuum hypothesis is undecidable by showing that
neither the hypothesis nor its negation contradicts the standard axiom system of set
theory, so that the continuum hypothesis can be neither proved nor disproved within
that axiom system. This situation is very similar to the way in which Euclid’s fifth
postulate on parallel lines is independent of the other axioms of geometry.

2.4.3 Problems and Exercises

1. Show that the set of real numbers has the same cardinality as the points of the
interval ]−1,1[.
2. Give an explicit one-to-one correspondence between

a) the points of two open intervals;
b) the points of two closed intervals;
c) the points of a closed interval and the points of an open interval;
d) the points of the closed interval [0,1] and the set R.

3. Show that

a) every infinite set contains a countable subset;
b) the set of even integers has the same cardinality as the set of all natural num-

bers;
c) the union of an infinite set and an at most countable set has the same cardi-

nality as the original infinite set;
d) the set of irrational numbers has the cardinality of the continuum;
e) the set of transcendental numbers has the cardinality of the continuum.

4. Show that

a) the set of increasing sequences of natural numbers {n1 < n2 < · · · } has the
same cardinality as the set of fractions of the form 0.α1α2 . . .;

b) the set of all subsets of a countable set has cardinality of the continuum.

5. Show that

a) the set P(X) of subsets of a set X has the same cardinality as the set of all
functions on X with values 0,1, that is, the set of mappings f :X→{0,1};

b) for a finite set X of n elements, cardP(X)= 2n;
c) taking account of the results of Exercises 4b) and 5a), one can write

cardP(X)= 2cardX , and, in particular, cardP(N)= 2cardN = cardR;
d) for any set X

cardX < 2cardX, in particular, n < 2n for any n ∈N.

Hint: See Cantor’s theorem in Sect. 1.4.1.
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6. Let X1, . . . ,Xn be a finite system of finite sets. Show that

card

(
m⋃

i=1

Xi

)

=
∑

i1

cardXi1 −
∑

i1<i2

card(Xi1 ∩Xi2)+

+
∑

i1<i2<i3

card(Xi1 ∩Xi2 ∩Xi3)− · · · +

+ (−1)m−1 card(X1 ∩ · · · ∩Xm),

the summation extending over all sets of indices from 1 to m satisfying the inequal-
ities under the summation signs.
7. On the closed interval [0,1] ⊂ R describe the sets of numbers x ∈ [0,1] whose
ternary representation x = 0.α1α2α3 . . . , αi ∈ {0,1,2}, has the property:

a) α1 �= 1;
b) (α1 �= 1)∧ (α2 �= 1);
c) ∀i ∈N (αi �= 1) (the Cantor set).

8. (Continuation of Exercise 7.) Show that

a) the set of numbers x ∈ [0,1] whose ternary representation does not contain 1
has the same cardinality as the set of all numbers whose binary representation has
the form 0.β1β2 . . .;

b) the Cantor set has the same cardinality as the closed interval [0,1].



Chapter 3
Limits

In discussing the various aspects of the concept of a real number we remarked in
particular that in measuring real physical quantities we obtain sequences of approx-
imate values with which one must then work.

Such a state of affairs immediately raises at least the following three questions:

1) What relation does the sequence of approximations so obtained have to the quan-
tity being measured? We have in mind the mathematical aspect of the question,
that is, we wish to obtain an exact expression of what is meant in general by
the expression “sequence of approximate values” and the extent to which such a
sequence describes the value of the quantity. Is the description unambiguous, or
can the same sequence correspond to different values of the measured quantity?

2) How are operations on the approximate values connected with the same opera-
tions on the exact values, and how can we characterize the operations that can
legitimately be carried out by replacing the exact values with approximate ones?

3) How can one determine from a sequence of numbers whether it can be a se-
quence of arbitrarily precise approximations of the values of some quantity?

The answer to these and related questions is provided by the concept of the limit
of a function, one of the fundamental concepts of analysis.

We begin our discussion of the theory of limits by considering the limit of a
function of a natural-number argument (a sequence), in view of the fundamental
role played by these functions, as already explained, and also because all the basic
facts of the theory of limits can actually be clearly seen in this simplest situation.

3.1 The Limit of a Sequence

3.1.1 Definitions and Examples

We recall the following definition.

Definition 1 A function f :N→X whose domain of definition is the set of natural
numbers is called a sequence.
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The values f (n) of the function f are called the terms of the sequence. It is cus-
tomary to denote them by a symbol for an element of the set into which the mapping
goes, endowing each symbol with the corresponding index of the argument. Thus,
xn := f (n). In this connection the sequence itself is denoted {xn}, and also written
as x1, x2, . . . , xn, . . . . It is called a sequence in X or a sequence of elements of X.

The element xn is called the nth term of the sequence.
Throughout the next few sections we shall be considering only sequences f :

N→R of real numbers.

Definition 2 A number A ∈ R is called the limit of the numerical sequence {xn} if
for every neighborhood V (A) of A there exists an index N (depending on V (A))
such that all terms of the sequence having index larger than N belong to the neigh-
borhood V (A).

We shall give an expression in formal logic for this definition below, but we first
point out another common formulation of the definition of the limit of a sequence.

A number A ∈ R is called the limit of the sequence {xn} if for every ε > 0 there
exists an index N such that |xn −A|< ε for all n > N .

The equivalence of these two statements is easy to verify (verify it!) if we remark
that any neighborhood V (A) of A contains some ε-neighborhood of the point A.

The second formulation of the definition of a limit means that no matter what
precision ε > 0 we have prescribed, there exists an index N such that the absolute
error in approximating the number A by terms of the sequence {xn} is less than ε as
soon as n > N .

We now write these formulations of the definition of a limit in the language of
symbolic logic, agreeing that the expression “limn→∞ xn =A” is to mean that A is
the limit of the sequence {xn}. Thus

(
lim

n→∞xn =A
)
:= ∀V (A) ∃N ∈N ∀n > N

(
xn ∈ V (A)

)

and respectively
(

lim
n→∞xn =A

)
:= ∀ε > 0 ∃N ∈N ∀n > N

(|xn −A|< ε
)
.

Definition 3 If limn→∞ xn = A, we say that the sequence {xn} converges to A or
tends to A and write xn→A as n→∞.

A sequence having a limit is said to be convergent. A sequence that does not have
a limit is said to be divergent.

Let us consider some examples.

Example 1 limn→∞ 1
n
= 0, since | 1

n
− 0| = 1

n
< ε when n > N = [ 1

ε
].1

1We recall that [x] is the integer part of the number x. (See Corollaries 70 and 100 of Sect. 2.2.)
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Example 2 limn→∞ n+1
n
= 1, since |n+1

n
− 1| = 1

n
< ε if n > [ 1

ε
].

Example 3 limn→∞(1+ (−1)n

n
)= 1, since |(1+ (−1)n

n
)− 1| = 1

n
< ε when n > [ 1

ε
].

Example 4 limn→∞ sinn
n
= 0, since | sinn

n
− 0| ≤ 1

n
< ε for n > [ 1

ε
].

Example 5 limn→∞ 1
qn = 0 if |q|> 1.

Let us verify this last assertion using the definition of the limit. As was shown in
Paragraph c of Sect. 2.2.4, for every ε > 0 there exists N ∈ N such that 1

|q|N < ε.

Since |q|> 1, we shall have | 1
qn −0|< 1

|q|n < 1
|q|N < ε for n > N , and the condition

in the definition of the limit is satisfied.

Example 6 The sequence 1,2, 1
3 ,4, 1

5 ,6, 1
7 , . . . whose nth term is xn = n(−1)n ,

n ∈N, is divergent.

Proof Indeed, if A were the limit of this sequence, then, as follows from the defini-
tion of limit, any neighborhood of A would contain all but a finite number of terms
of the sequence.

A number A �= 0 cannot be the limit of this sequence; for if ε = |A|
2 > 0, all

the terms of the sequence of the form 1
2k+1 for which 1

2k+1 <
|A|
2 lie outside the

ε-neighborhood of A.
But the number 0 also cannot be the limit, since, for example, there are infinitely

many terms of the sequence lying outside the 1-neighborhood of 0. �

Example 7 One can verify similarly that the sequence 1,−1,+1,−1, . . . , for which
xn = (−1)n, has no limit.

3.1.2 Properties of the Limit of a Sequence

a. General Properties

We assign to this group the properties possessed not only by numerical sequences,
but by other kinds of sequences as well, as we shall see below, although at present
we shall study these properties only for numerical sequences.

A sequence assuming only one value will be called a constant sequence.

Definition 4 If there exists a number A and an index N such that xn = A for all
n > N , the sequence {xn} will be called ultimately constant.

Definition 5 A sequence {xn} is bounded if there exists M such that |xn|< M for
all n ∈N.
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Theorem 1 a) An ultimately constant sequence converges.
b) Any neighborhood of the limit of a sequence contains all but a finite number

of terms of the sequence.
c) A convergent sequence cannot have two different limits.
d) A convergent sequence is bounded.

Proof a) If xn = A for n > N , then for any neighborhood V (A) of A we have
xn ∈ V (A) when n > N , that is, limn→∞ xn =A.

b) This assertion follows immediately from the definition of a convergent se-
quence.

c) This is the most important part of the theorem. Let limn→∞ xn = A1 and
limn→∞ xn = A2. If A1 �= A2, we fix nonintersecting neighborhoods V (A1)

and V (A2) of A1 and A2. These neighborhoods might be, for example, the δ-
neighborhoods of A1 and A2 for δ < 1

2 |A1 − A2|. By definition of limit we find
indices N1 and N2 such that xn ∈ V (A1) for all n > N1 and xn ∈ V (A2) for all
n > N2. But then for N =max{N1,N2} we have xn ∈ V (A1) ∩ V (A2). But this is
impossible, since V (A1)∩ V (A2)=∅.

d) Let limn→∞ xn =A. Setting ε = 1 in the definition of a limit, we find N such
that |xn −A|< 1 for all n > N . Then for n > N we have |xn|< |A| + 1. If we now
take M > max{|x1|, . . . , |xn|, |A| + 1} we find that |xn|< M for all n ∈N. �

b. Passage to the Limit and the Arithmetic Operations

Definition 6 If {xn} and {yn} are two numerical sequences, their sum, product, and
quotient (in accordance with the general definition of sum, product, and quotient of
functions) are the sequences

{
(xn + yn)

}
,

{
(xn · yn)

}
,

{(
xn

yn

)}

.

The quotient, of course, is defined only when yn �= 0 for all n ∈N.

Theorem 2 Let {xn} and {yn} be numerical sequences. If limn→∞ xn = A and
limn→∞ yn = B , then

a) limn→∞(xn + yn)=A+B;
b) limn→∞(xn · yn)=A ·B;
c) limn→∞ xn

yn
= A

B
, provided yn �= 0 (n= 1,2, . . .) and B �= 0.

Proof As an exercise we use the estimates for the absolute errors that arise under
arithmetic operations with approximate values of quantities, which we already know
(Sect. 2.2.4).

Set |A− xn| =Δ(xn), |B − yn| =Δ(yn). Then for case a) we have
∣
∣(A+B)− (xn + yn)

∣
∣≤Δ(xn)+Δ(yn).
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Suppose ε > 0 is given. Since limn→∞ xn =A, there exists N ′ such that Δ(xn) <

ε/2 for all n > N ′. Similarly, since limn→∞ yn = B , there exists N ′′ such that
Δ(yn) < ε/2 for all n > N ′′. Then for n > max{N ′,N ′′} we shall have

∣
∣(A+B)− (xn + yn)

∣
∣< ε,

which, by definition of limit, proves assertion a).
b) We know that

∣
∣(A ·B)− (xn · yn)

∣
∣≤ |xn|Δ(yn)+ |yn|Δ(xn)+Δ(xn) ·Δ(yn).

Given ε > 0 find numbers N ′ and N ′′ such that

∀n > N ′
(

Δ(xn) < min

{

1,
ε

3(|B| + 1)

})

,

∀n > N ′′
(

Δ(yn) < min

{

1,
ε

3(|A| + 1)

})

.

Then for n > N =max{N ′,N ′′} we shall have

|xn|< |A| +Δ(xn) < |A| + 1,

|yn|< |B| +Δ(yn) < |B| + 1,

Δ(xn) ·Δ(yn) < min

{

1,
ε

3

}

·min

{

1,
ε

3

}

≤ ε

3
.

Hence for n > N we have

|xn|Δ(yn) <
(|A| + 1

) · ε

3(|A| + 1)
<

ε

3
,

|yn|Δ(xn) <
(|B| + 1

) · ε

3(|B| + 1)
<

ε

3
,

Δ(xn) ·Δ(yn) <
ε

3
,

and therefore |AB − xnyn|< ε for n > N .
c) We use the estimate

∣
∣
∣
∣
A

B
− xn

yn

∣
∣
∣
∣≤

|xn|Δ(yn)+ |yn|Δ(xn)|
y2
n

· 1

1− δ(yn)
,

where δ(yn)= Δ(yn)
|yn| .

For a given ε > 0 we find numbers N ′ and N ′′ such that

∀n > N ′
(

Δ(xn) < min

{

1,
ε|B|

8

})

,
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∀n > N ′′
(

Δ(yn) < min

{ |B|
4

,
ε ·B2

16(|A| + 1)

})

.

Then for n > max{N ′,N ′′} we shall have

|xn|< |A| +Δ(xn) < |A| + 1,

|yn|> |B| −Δ(yn) > |B| − |B|
4

>
|B|
2

,

1

|yn| <
2

|B| ,

0 < δ(yn)= Δ(yn)

|yn| <
|B|/4

|B|/2
= 1

2
,

1− δ(yn) >
1

2
,

and therefore

|xn| · 1

y2
n

Δ(yn) <
(|A| + 1

) · 4

B2
· ε ·B2

16(|A| + 1)
= ε

4
,

∣
∣
∣
∣

1

yn

∣
∣
∣
∣Δ(xn) <

2

|B| ·
ε|B|

8
= ε

4
,

0 <
1

1− δ(yn)
< 2,

and consequently
∣
∣
∣
∣
A

B
− xn

yn

∣
∣
∣
∣< ε when n > N. �

Remark The statement of the theorem admits another, less constructive method of
proof that is probably known to the reader from the high-school course in the rudi-
ments of analysis. We shall mention this method when we discuss the limit of an
arbitrary function. But here, when considering the limit of a sequence, we wished
to call attention to the way in which bounds on the errors in the result of an arith-
metic operations can be used to set permissible bounds on the errors in the values of
quantities on which an operation is carried out.

c. Passage to the Limit and Inequalities

Theorem 3 a) Let {xn} and {yn} be two convergent sequences with limn→∞ xn =A

and limn→∞ yn = B . If A < B , then there exists an index N ∈ N such that xn < yn

for all n > N .
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b) Suppose the sequences {xn}, {yn}, and {zn} are such that xn ≤ yn ≤ zn for all
n > N ∈N. If the sequences {xn} and {zn} both converge to the same limit, then the
sequence {yn} also converges to that limit.

Proof a) Choose a number C such that A < C < B . By definition of limit, we can
find numbers N ′ and N ′′ such that |xn−A|< C −A for all n > N ′ and |yn−B|<
B−C for all n > N ′′. Then for n > N =max{N ′,N ′′} we shall have xn < A+C−
A= C = B − (B −C) < yn.

b) Suppose limn→∞ xn = limn→∞ zn =A. Given ε > 0 choose N ′ and N ′′ such
that A− ε < xn for all n > N ′ and zn < A+ ε for all n > N ′′. Then for n > N =
max{N ′,N ′′}we shall have A−ε < xn ≤ yn ≤ zn < A+ε, which says |yn−A|< ε,
that is A= limn→∞ yn. �

Corollary Suppose limn→∞ xn = A and limn→∞ yn = B . If there exists N such
that for all n > N we have

a) xn > yn, then A≥ B;
b) xn ≥ yn, then A≥ B;
c) xn > B , then A≥ B;
d) xn ≥ B , then A≥ B .

Proof Arguing by contradiction, we obtain the first two assertions immediately
from part a) of the theorem. The third and fourth assertions are the special cases
of the first two obtained when yn ≡ B . �

It is worth noting that strict inequality may become equality in the limit. For
example 1

n
> 0 for all n ∈N, yet limn→∞ 1

n
= 0.

3.1.3 Questions Involving the Existence of the Limit of a Sequence

a. The Cauchy Criterion

Definition 7 A sequence {xn} is called a fundamental or Cauchy sequence2 if for
any ε > 0 there exists an index N ∈N such that |xm− xn|< ε whenever n > N and
m > N .

Theorem 4 (Cauchy’s convergence criterion) A numerical sequence converges if
and only if it is a Cauchy sequence.

2Bolzano introduced Cauchy sequences in an attempt to prove, without having at his disposal a
precise concept of a real number, that a fundamental sequence converges. Cauchy gave a proof,
taking the nested interval principle, which was later justified by Cantor, as obvious.
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Proof Suppose limn→∞ xn = A. Given ε > 0, we find an index N such that |xn −
A|< ε

2 for n > N . Then if m > N and n > N , we have |xm−xn| ≤ |xm−A|+|xn−
A|< ε

2 + ε
2 = ε, and we have thus verified that the sequence is a Cauchy sequence.

Now let {xk} be a fundamental sequence. Given ε > 0, we find an index N such
that |xm − xk| < ε

3 when m ≥ N and k ≥ N . Fixing m = N , we find that for any
k > N

xN − ε

3
< xk < xN + ε

3
, (3.1)

but since only a finite number of terms of the sequence have indices not larger
than N , we have shown that a fundamental sequence is bounded.

For n ∈N we now set an := infk≥n xk , and bn := supk≥n xk .
It is clear from these definitions that an ≤ an+1 ≤ bn+1 ≤ bn (since the greatest

lower bound does not decrease and the least upper bound does not increase when we
pass to a smaller set). By the nested interval principle, there is a point A common to
all of the closed intervals [an, bn].

Since

an ≤A≤ bn

for any n ∈N and

an = inf
k≥n

xk ≤ xk ≤ sup
k≥n

xk = bk

for k ≥ n, it follows that

|A− xk| ≤ bn − an. (3.2)

But it follows from Eq. (3.1) that

xN − ε

3
≤ inf

k≥n
xk = an ≤ bn = sup

k≥n

xk ≤ xN + ε

3

for n > N , and therefore

bn − an ≤ 2ε

3
< ε (3.3)

for n > m. Comparing Eqs. (3.2) and (3.3), we find that

|A− xk|< ε,

for any k > N , and we have proved that limk→∞ xk =A. �

Example 8 The sequence (−1)n (n= 1,2, . . .) has no limit, since it is not a Cauchy
sequence. Even though this fact is obvious, we shall give a formal verification. The
negation of the statement that {xn} is a Cauchy sequence is the following:

∃ε > 0 ∀N ∈N ∃n > N ∃m > N
(|xm − xn| ≥ ε

)
,
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that is, there exists ε > 0 such that for any N ∈ N two numbers n,m larger than N

exist for which |xm − xn| ≥ ε.
In our case it suffices to set ε = 1. Then for any N ∈ N we shall have |xN+1 −

xN+2| = |1− (−1)| = 2 > 1= ε.

Example 9 Let

x1 = 0.α1, x2 = 0.α1α2, x3 = 0.α1α2α3, . . . , xn = 0.α1α2 . . . αn, . . .

be a sequence of finite binary fractions in which each successive fraction is obtained
by adjoining a 0 or a 1 to its predecessor. We shall show that such a sequence always
converges. Let m > n. Let us estimate the difference xm − xn:

|xm − xn| =
∣
∣
∣
∣
αn+1

2n+1
+ · · · + αm

2m

∣
∣
∣
∣≤

≤ 1

2n+1
+ · · · + 1

2m
= ( 1

2 )n+1 − ( 1
2 )m+1

1− 1
2

<
1

2n
.

Thus, given ε > 0, if we choose N so that 1
2N < ε, we obtain the estimate |xm −

xn| < 1
2n < 1

2N < ε for all m > n > N , which proves that the sequence {xn} is a
Cauchy sequence.

Example 10 Consider the sequence {xn}, where

xn = 1+ 1

2
+ · · · + 1

n
.

Since

|x2n − xn| = 1

n+ 1
+ · · · + 1

n+ n
> n · 1

2n
= 1

2
,

for all n ∈ N, the Cauchy criterion implies immediately that this sequence does not
have a limit.

b. A Criterion for the Existence of the Limit of a Monotonic Sequence

Definition 8 A sequence {xn} is increasing if xn < xn+1 for all n ∈N, nondecreas-
ing if xn ≤ xn+1 for all n ∈N, nonincreasing if xn ≥ xn+1 for all n ∈N, and decreas-
ing if xn > xn+1 for all n ∈ N. Sequences of these four types are called monotonic
sequences.

Definition 9 A sequence {xn} is bounded above if there exists a number M such
that xn < M for all n ∈N.
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Theorem 5 (Weierstrass) In order for a nondecreasing sequence to have a limit it
is necessary and sufficient that it be bounded above.

Proof The fact that any convergent sequence is bounded was proved above under
general properties of the limit of a sequence. For that reason only the sufficiency
assertion is of interest.

By hypothesis the set of values of the sequence {xn} is bounded above and hence
has a least upper bound s = supn∈N xn.

By definition of the least upper bound, for every ε > 0 there exists an element
xN ∈ {xn} such that s − ε < xN ≤ s. Since the sequence {xn} is nondecreasing, we
now find that s − ε < xN ≤ xn ≤ s for all n > N . That is, |s − xn| = s − xn < ε.
Thus we have proved that limn→∞ xn = s. �

Of course an analogous theorem can be stated and proved for a nonincreasing
sequence that is bounded below. In this case limn→∞ xn = infn∈N xn.

Remark The boundedness from above (resp. below) of a nondecreasing (resp. non-
increasing) sequence is obviously equivalent to the boundedness of that sequence.

Let us consider some useful examples.

Example 11 limn→∞ n
qn = 0 if q > 1.

Proof Indeed, if xn = n
qn , then xn+1 = n+1

nq
xn for n ∈ N. Since limn→∞ n+1

nq
=

limn→∞(1+ 1
n
) 1
q
= limn→∞(1+ 1

n
) · limn→∞ 1

q
= 1 · 1

q
= 1

q
< 1, there exists an

index N such that n+1
nq

< 1 for n > N . Thus we shall have xn+1 < xn for n > N , so
that the sequence will be monotonically decreasing from index N on. As one can
see from the definition of a limit, a finite set of terms of a sequence has no effect the
convergence of a sequence or its limit, so that it now suffices to find the limit of the
sequence xN+1 > xN+2 > · · · .

The terms of this sequence are positive, that is, the sequence is bounded below.
Therefore it has a limit.

Let x = limn→∞ xn. It now follows from the relation xn+1 = n+1
nq

xn that

x = lim
n→∞(xn+1)= lim

n→∞

(
n+ 1

nq
xn

)

= lim
n→∞

n+ 1

nq
· lim
n→∞xn = 1

q
x,

from which we find (1− 1
q
)x = 0, and so x = 0. �

Corollary 1

lim
n→∞

n
√

n= 1.

Proof By what was just proved, for a given ε > 0 there exists N ∈ N such that
1 ≤ n < (1 + ε)n for all n > N . Then for n > N we obtain 1 ≤ n

√
n < 1 + ε and

hence limn→∞ n
√

n= 1. �
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Corollary 2

lim
n→∞

n
√

a = 1 for any a > 0.

Proof Assume first that a ≥ 1. For any ε > 0 there exists N ∈ N such that 1≤ a <

(1+ ε)n for all n > N , and we then have 1≤ n
√

a < 1+ ε for all n > N , which says
limn→∞ n

√
a = 1.

For 0 < a < 1, we have 1 < 1
a

, and then

lim
n→∞

n
√

a = lim
n→∞

1

n

√
1
a

= 1

limn→∞ n

√
1
a

= 1.

�

Example 12 limn→∞ qn

n! = 0; here q is any real number, n ∈ N, and n! := 1 · 2 ·
. . . · n.

Proof If q = 0, the assertion is obvious. Further, since | qn

n! | = |q|n
n! , it suffices to

prove the assertion for q > 0. Reasoning as in Example 11, we remark that xn+1 =
q

n+1xn. Since the set of natural numbers is not bounded above, there exists an index
N such that 0 <

q
n+1 < 1 for all n > N . Then for n > N we shall have xn+1 < xn,

and since the terms of the sequence are positive, one can now guarantee that the
limit limn→∞ xn = x exists. But then

x = lim
n→∞xn+1 = lim

n→∞
q

n+ 1
xn = lim

n→∞
q

n+ 1
· lim
n→∞xn = 0 · x = 0. �

c. The Number e

Example 13 Let us prove that the limit limn→∞(1+ 1
n
)n exists.

In this case the limit is a number denoted by the letter e, after Euler. This number
is just as central to analysis as the number 1 to arithmetic or π to geometry. We shall
revisit it many times for a wide variety of reasons.

We begin by verifying the following inequality, sometimes called Jacob Ber-
noulli’s inequality:3

(1+ α)n ≥ 1+ nα for n ∈N and α >−1.

Proof The assertion is true for n= 1. If it holds for n ∈N, then it must also hold for
n+ 1, since we then have

(1+ α)n+1 = (1+ α)(1+ α)n ≥ (1+ α)(1+ nα)=
= 1+ (n+ 1)α + nα2 ≥ 1+ (n+ 1)α.

3Jacob (James) Bernoulli (1654–1705) – Swiss mathematician, a member of the famous Bernoulli
family of scholars. He was one of the founders of the calculus of variations and probability theory.
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By the principle of induction the assertion is true for all n ∈N.
Incidentally, the computation shows that strict inequality holds if α �= 0 and

n > 1. �

We now show that the sequence yn = (1+ 1
n
)n+1 is decreasing.

Proof Let n≥ 2. Using Bernoulli’s inequality, we find that

yn−1

yn

= (1+ 1
n−1 )n

(1+ 1
n
)n+1

= n2n

(n2 − 1)n
· n

n+ 1
=
(

1+ 1

n2 − 1

)n
n

n+ 1
≥

≥
(

1+ n

n2 − 1

)
n

n+ 1
>

(

1+ 1

n

)
n

n+ 1
= 1.

Since the terms of the sequence are positive, the limit limn→∞(1+ 1
n
)n+1 exists.

But we then have

lim
n→∞

(

1+ 1

n

)n

= lim
n→∞

(

1+ 1

n

)n+1(

1+ 1

n

)−1

=

= lim
n→∞

(

1+ 1

n

)n+1

· lim
n→∞

1

1+ 1
n

= lim
n→∞

(

1+ 1

n

)n+1

.
�

Thus we make the following definition:

Definition 10

e := lim
n→∞

(

1+ 1

n

)n

.

d. Subsequences and Partial Limits of a Sequence

Definition 11 If x1, x2, . . . , xn, . . . is a sequence and n1 < n2 < · · · < nk < · · · an
increasing sequence of natural numbers, then the sequence xn1, xn2 , . . . , xnk

, . . . is
called a subsequence of the sequence {xn}.

For example, the sequence 1,3,5, . . . of positive odd integers in their natural
order is a subsequence of the sequence 1,2,3, . . . . But the sequence 3,1,5,7,9, . . .

it not a subsequence of this sequence.

Lemma 1 (Bolzano–Weierstrass) Every bounded sequence of real numbers con-
tains a convergent subsequence.
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Proof Let E be the set of values of the bounded sequence {xn}. If E is finite, there
exists a point x ∈E and a sequence n1 < n2 < · · · of indices such that xn1 = xn2 =· · · = x. The subsequence {xnk

} is constant and hence converges.
If E is infinite, then by the Bolzano–Weierstrass principle it has a limit point x.

Since x is a limit point of E, one can choose n1 ∈ N such that |xn1 − x| < 1. If
nk ∈ N have been chosen so that |xnk

− x|< 1
k

, then, because x is a limit point of
E, there exists nk+1 ∈N such that nk < nk+1 and |xnk+1 − x|< 1

k+1 .

Since limk→∞ 1
k
= 0, the sequence xn1 , xn2, . . . , xnk

, . . . so constructed con-
verges to x. �

Definition 12 We shall write xn →+∞ and say that the sequence {xn} tends to
positive infinity if for each number c there exists N ∈ N such that xn > c for all
n > N .

Let us write this and two analogous definitions in logical notation:

(xn→+∞) := ∀c ∈R ∃N ∈N ∀n > N (c < xn),

(xn→−∞) := ∀c ∈R ∃N ∈N ∀n > N (xn < c),

(xn→∞) := ∀c ∈R ∃N ∈N ∀n > N
(
c < |xn|

)
.

In the last two cases we say that the sequence {xn} tends to negative infinity and
tends to infinity respectively.

We remark that a sequence may be unbounded and yet not tend to positive infin-
ity, negative infinity, or infinity. An example is xn = n(−1)n .

Sequences that tend to infinity will not be considered convergent.
It is easy to see that these definitions enable us to supplement Lemma 1, stating

it in a slightly different form.

Lemma 2 From each sequence of real numbers one can extract either a convergent
subsequence or a subsequence that tends to infinity.

Proof The new case here occurs when the sequence {xn} is not bounded. Then for
each k ∈N we can choose nk ∈N such that |xnk

|> k and nk < nk+1. We then obtain
a subsequence {xnk

} that tends to infinity. �

Let {xk} be an arbitrary sequence of real numbers. If it is bounded below, one
can consider the sequence in = infk≥n xk (which we have already encountered in
proving the Cauchy convergence criterion). Since in ≤ in+1 for any n ∈ N, either
the sequence {in} has a finite limit limn→∞ in = l, or in→+∞.

Definition 13 The number l = limn→∞ infk≥n xk is called the inferior limit of the
sequence {xk} and denoted limk→∞ xk or lim infk→∞ xk . If in →+∞, it is said that
the inferior limit of the sequence equals positive infinity, and we write limk→∞ xk =
+∞ or lim infk→∞ xk = +∞. If the original sequence {xk} is not bounded below,
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then we shall have in = infk≥n xk = −∞ for all n. In that case we say that the
inferior limit of the sequence equals negative infinity and write limk→∞ xk =−∞
or lim infk→∞ xk =−∞.

Thus, taking account of all the possibilities just enumerated, we can now write
down briefly the definition of the inferior limit of a sequence {xk}:

lim
k→∞

xk := lim
n→∞ inf

k≥n
xk.

Similarly by considering the sequence sn = supk≥n xk , we arrive at the definition
of the superior limit of the sequence {xk}:

Definition 14

lim
k→∞xk := lim

n→∞ sup
k≥n

xk.

We now give several examples:

Example 14 xk = (−1)k , k ∈N:

lim
k→∞

xk = lim
n→∞ inf

k≥n
xk = lim

n→∞ inf
k≥n

(−1)k = lim
n→∞(−1)=−1,

lim
k→∞xk = lim

n→∞ sup
k≥n

xk = lim
n→∞ sup

k≥n

(−1)k = lim
n→∞1= 1.

Example 15 xk = k(−1)k , k ∈N:

lim
k→∞

k(−1)k = lim
n→∞ inf

k≥n
k(−1)k = lim

n→∞0= 0,

lim
k→∞k(−1)k = lim

n→∞ sup
k≥n

k(−1)k = lim
n→∞(+∞)=+∞.

Example 16 xk = k, k ∈N:

lim
k→∞

k = lim
n→∞ inf

k≥n
k = lim

n→∞n=+∞,

lim
k→∞ k = lim

n→∞ sup
k≥n

k = lim
n→∞(+∞)=+∞.

Example 17 xk = (−1)k

k
, k ∈N:

lim
k→∞

(−1)k

k
= lim

n→∞ inf
k≥n

(−1)k

k
= lim

n→∞

{− 1
n
, if n= 2m+ 1

− 1
n+1 , if n= 2m

}

= 0,
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lim
k→∞

(−1)k

k
= lim

n→∞ sup
k≥n

(−1)k

k
= lim

n→∞

{
1
n
, if n= 2m

1
n+1 , if n= 2m+ 1

}

= 0.

Example 18 xk =−k2, k ∈N:

lim
k→∞

(−k2)= lim
n→∞ inf

k≥n

(−k2)=−∞.

Example 19 xk = (−1)kk, k ∈N:

lim
k→∞

(−1)kk = lim
n→∞ inf

k≥n
(−1)kk = lim

n→∞(−∞)=−∞,

lim
k→∞(−1)kk = lim

n→∞ sup
k≥n

(−1)kk = lim
n→∞(+∞)=+∞.

To explain the origin of the terms “superior” and “inferior” limit of a sequence,
we make the following definition.

Definition 15 A number (or the symbol −∞ or +∞) is called a partial limit of a
sequence, if the sequence contains a subsequence converging to that number.

Proposition 1 The inferior and superior limits of a bounded sequence are respec-
tively the smallest and largest partial limits of the sequence.4

Proof Let us prove this, for example, for the inferior limit i = limk→∞ xk . What
we know about the sequence in = infk≥n xk is that it is nondecreasing and that
limn→∞ in = i ∈ R. For the numbers n ∈ N, using the definition of the greatest
lower bound, we choose by induction numbers kn ∈ N such that kn < kn+1 and
ikn ≤ xkn < ikn + 1

n
. (Taking i1 we find k1; taking ik1+1 we find k2, etc.) Since

limn→∞ in = limn→∞(in + 1
n
) = i, we can assert, by properties of limits, that

limn→∞ xkn = i. We have thus proved that i is a partial limit of the sequence {xk}.
It is the smallest partial limit since for every ε > 0 there exists n ∈ N such that
i − ε < in, that is i − ε < in = infk≥n xk ≤ xk for any k ≥ n.

The inequality i − ε < xk for k > n means that no partial limit of the sequence
can be less than i − ε. But ε > 0 is arbitrary, and hence no partial limit can be less
than i.

The proof for the superior limit is of course analogous. �

We now remark that if a sequence is not bounded below, then one can select a
subsequence of it tending to −∞. But in this case we also have limk→∞ xk =−∞,
and we can make the convention that the inferior limit is once again the smallest
partial limit. The superior limit may be finite; if so, by what has been proved it

4Here we are assuming the natural relations −∞< x <+∞ between the symbols −∞,+∞ and
numbers x ∈R.



94 3 Limits

must be the largest partial limit. But it may also be infinite. If limk→∞ xk = +∞,
then the sequence is also unbounded from above, and one can select a subsequence
tending to +∞. Finally, if limk→∞ xk = −∞, which is also possible, this means
that supk≥n xk = sn →−∞, that is, the sequence {xn} itself tends to −∞, since
sn ≥ xn. Similarly, if limk→∞ xk =+∞, then xk →+∞.

Taking account of what has just been said we deduce the following proposition.

Proposition 1′ For any sequence, the inferior limit is the smallest of its partial
limits and the superior limit is the largest of its partial limits.

Corollary 3 A sequence has a limit or tends to negative or positive infinity if and
only if its inferior and superior limits are the same.

Proof The cases when limk→∞ xk = limk→∞ xk = +∞ or limk→∞ xk =
limk→∞ xk = −∞ have been investigated above, and so we may assume that
limk→∞ xk = limk→∞ xk = A ∈ R. Since in = infk≥n xk ≤ xn ≤ supk≥n xk = sn
and by hypothesis limn→∞ in = limn→∞ sn = A, we also have limn→∞ xn = A by
properties of limits. �

Corollary 4 A sequence converges if and only if every subsequence of it converges.

Proof The inferior and superior limits of a subsequence lie between those of the
sequence itself. If the sequence converges, its inferior and superior limits are the
same, and so those of the subsequence must also be the same, proving that the
subsequence converges. Moreover, the limit of the subsequence must be the same
as that of the sequence itself.

The converse assertion is obvious, since the subsequence can be chosen as the
sequence itself. �

Corollary 5 The Bolzano–Weierstrass Lemma in its restricted and wider formula-
tions follows from Propositions 1 and 1′ respectively.

Proof Indeed, if the sequence {xk} is bounded, then the points i = limk→∞ xk and
s = limk→∞ xk are finite and, by what has been proved, are partial limits of the
sequence. Only when i = s does the sequence have a unique limit point. When
i < s there are at least two.

If the sequence is unbounded on one side or the other, there exists a subsequence
tending to the corresponding infinity. �

Concluding Remarks We have carried out all three points of the program outlined
at the beginning of this section (and even gone beyond it in some ways). We have
given a precise definition of the limit of a sequence, proved that the limit is unique,
explained the connection between the limit operation and the structure of the set of
real numbers, and obtained a criterion for convergence of a sequence.

We now study a special type of sequence that is frequently encountered and very
useful – a series.
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3.1.4 Elementary Facts About Series

a. The Sum of a Series and the Cauchy Criterion for Convergence of a Series

Let {an} be a sequence of real numbers. We recall that the sum ap + ap+1 + · · · +
aq, (p ≤ q) is denoted by the symbol

∑q
n=p an. We now wish to give a precise

meaning to the expression a1 + a2 + · · · + an + · · · , which expresses the sum of all
the terms of the sequence {an}.

Definition 16 The expression a1 + a2 + · · · + an + · · · is denoted by the symbol∑∞
n=1 an and usually called a series or an infinite series (in order to emphasize its

difference from the sum of a finite number of terms).

Definition 17 The elements of the sequence {an}, when regarded as elements of the
series, are called the terms of the series. The element an is called the nth term.

Definition 18 The sum sn =∑n
k=1 ak is called the partial sum of the series, or,

when one wishes to exhibit its index, the nth partial sum of the series.5

Definition 19 If the sequence {sn} of partial sums of a series converges, we say the
series is convergent. If the sequence {sn} does not have a limit, we say the series is
divergent.

Definition 20 The limit limn→∞ sn = s of the sequence of partial sums of the se-
ries, if it exists, is called the sum of the series.

It is in this sense that we shall henceforth understand the expression

∞∑

n=1

an = s.

Since convergence of a series is equivalent to convergence of its sequence of
partial sums {sn}, applying the Cauchy convergence criterion to the sequence {sn}
yields the following theorem.

Theorem 6 (The Cauchy convergence criterion for a series) The series a1 + · · · +
an + · · · converges if and only if for every ε > 0 there exists N ∈ N such that the
inequalities m≥ n > N imply |an + · · · + am|< ε.

Corollary 6 If only a finite number of terms of a series are changed, the resulting
new series will converge if the original series did and diverge if it diverged.

5Thus we are actually defining a series to be an ordered pair ({an}, {sn}) of sequences connected
by the relation (sn =∑n

k=1 ak) for all n ∈N.
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Proof For the proof it suffices to assume that the number N in the Cauchy conver-
gence criterion is larger than the largest index among the terms that were altered. �

Corollary 7 A necessary condition for convergence of the series a1+· · ·+an+· · ·
is that the terms tend to zero as n→∞, that is, it is necessary that limn→∞ an = 0.

Proof It suffices to set m= n in the Cauchy convergence criterion and use the defi-
nition of the limit of a sequence. �

Here is another proof: an = sn − sn−1, and, given that limn→∞ sn = s, we have
limn→∞ an = limn→∞(sn − sn−1)= limn→∞ sn − limn→∞ sn−1 = s − s = 0.

Example 20 The series 1+ q + q2 + · · · + qn + · · · is often called the geometric
series. Let us investigate its convergence.

Since |qn| = |q|n, we have |qn| ≥ 1 when |q| ≥ 1, and in this case the necessary
condition for convergence is not met.

Now suppose |q|< 1. Then

sn = 1+ q + · · · + qn−1 = 1− qn

1− q

and limn→∞ sn = 1
1−q

, since limn→∞ qn = 0 if |q|< 1.

Thus the series
∑∞

n=1 qn−1 converges if and only if |q|< 1, and in that case its
sum is 1

1−q
.

Example 21 The series 1+ 1
2 + · · · + 1

n
+ · · · is called the harmonic series, since

each term from the second on is the harmonic mean of the two terms on either side
of it (see Exercise 6 at the end of this section).

The terms of the series tend to zero, but the sequence of partial sums

sn = 1+ 1

2
+ · · · + 1

n
,

as was shown in Example 10, diverges. This means that in this case sn →+∞ as
n→∞.

Thus the harmonic series diverges.

Example 22 The series 1 −1+ 1− · · · + (−1)n+1 + · · · diverges, as can be seen
both from the sequence of partial sums 1,0,1,0, . . . and from the fact that the terms
do not tend to zero.

If we insert parentheses and consider the new series

(1− 1)+ (1− 1)+ · · · ,
whose terms are the sums enclosed in parentheses, this new series does converge,
and its sum is obviously zero.
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If we insert the parentheses in a different way and consider the series

1+ (−1+ 1)+ (−1+ 1)+ · · · ,
the result is a convergent series with sum 1.

If we move all the terms that are equal to −1 in the original series two places to
the right, we obtain the series

1+ 1− 1+ 1− 1+ 1− · · · ,
we can then, by inserting parentheses, arrive at the series

(1+ 1)+ (−1+ 1)+ (−1+ 1)+ · · · ,
whose sum equals 2.

These observations show that the usual laws for dealing with finite sums can in
general not be extended to series.

There is nevertheless an important type of series that can be handled exactly like
finite sums, as we shall see below. These are the so-called absolutely convergent
series. They are the ones we shall mainly work with.

b. Absolute Convergence. The Comparison Theorem and Its Consequences

Definition 21 The series
∑∞

n=1 an is absolutely convergent if the series
∑∞

n=1 |an|
converges.

Since |an+· · ·+am| ≤ |an|+ · · · |am|, the Cauchy convergence criterion implies
that an absolutely convergent series converges.

The converse of this statement is generally not true, that is, absolute convergence
is a stronger requirement than mere convergence, as one can show by an example.

Example 23 The series 1− 1+ 1
2 − 1

2 + 1
3 − 1

3 + · · · , whose partial sums are either
1
n

or 0, converges to 0.
At the same time, the series of absolute values of its terms

1+ 1+ 1

2
+ 1

2
+ 1

3
+ 1

3
+ · · ·

diverges, as follows from the Cauchy convergence criterion, just as in the case of
the harmonic series:

∣
∣
∣
∣

1

n+ 1
+ 1

n+ 1
+ · · · + 1

n+ n
+ 1

n+ n

∣
∣
∣
∣=

= 2

(
1

n+ 1
+ · · · + 1

n+ n

)

> 2n · 1

n+ n
= 1.
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To learn how to determine whether a series converges absolutely or not, it suffices
to learn how to investigate the convergence of series with nonnegative terms. The
following theorem holds.

Theorem 7 (Criterion for convergence of series of nonnegative terms) A series a1+
· · · + an+ · · · whose terms are nonnegative converges if and only if the sequence of
partial sums is bounded above.

Proof This follows from the definition of convergence of a series and the criterion
for convergence of a nondecreasing sequence, which the sequence of partial sums
is, in this case: s1 ≤ s2 ≤ · · · ≤ sn ≤ · · · . �

This criterion implies the following simple theorem, which is very useful in prac-
tice.

Theorem 8 (Comparison theorem) Let
∑∞

n=1 an and
∑∞

n=1 bn be two series with
nonnegative terms. If there exists an index N ∈ N such that an ≤ bn for all n > N ,
then the convergence of the series

∑∞
n=1 bn implies the convergence of

∑∞
n=1 an,

and the divergence of
∑∞

n=1 an implies the divergence of
∑∞

n=1 bn.

Proof Since a finite number of terms has no effect on the convergence of a se-
ries, we can assume with no loss of generality that an ≤ bn for every index n ∈ N.
Then An =∑n

k=1 ak ≤∑n
k=1 bk = Bn. If the series

∑∞
n=1 bn converges, then the se-

quence {Bn}, which is nondecreasing, tends to a limit B . But then An ≤ Bn ≤ B for
all n ∈N, and so the sequence An of partial sums of the series

∑∞
n=1 an is bounded.

By the criterion for convergence of a series with nonnegative terms (Theorem 7),
the series

∑∞
n=1 an converges.

The second assertion of the theorem follows from what has just been proved
through proof by contradiction. �

Example 24 Since 1
n(n+1)

< 1
n2 < 1

(n−1)n
for n ≥ 2, we conclude that the series

∑∞
n=1

1
n2 and

∑∞
n=1

1
n(n+1)

converge or diverge together.

But the latter series can be summed directly, by observing that 1
k(k+1)

= 1
k
− 1

k+1 ,

and therefore
∑n

k=1
1

k(k+1)
= 1− 1

n+1 . Hence
∑∞

n=1
1

n(n+1)
= 1. Consequently the

series
∑∞

n=1
1
n2 converges. It is interesting that

∑∞
n=1

1
n2 = π2

6 , as will be proved
below.

Example 25 It should be observed that the comparison theorem applies only to se-
ries with nonnegative terms. Indeed, if we set an =−n and bn = 0, for example, we
have an < bn and the series

∑∞
n=1 bn converges while

∑∞
n=1 an diverges.

Corollary 8 (The Weierstrass M-test for absolute convergence) Let
∑∞

n=1 an and∑∞
n=1 bn be series. Suppose there exists an index N ∈ N such that |an| ≤ bn for all

n > N . Then a sufficient condition for absolute convergence of the series
∑∞

n=1 an

is that the series
∑∞

n=1 bn converge.
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Proof In fact, by the comparison theorem the series
∑∞

n=1 |an| will then converge,
and that is what is meant by the absolute convergence of

∑∞
n=1 an. �

This important sufficiency test for absolute convergence is often stated briefly as
follows: If the terms of a series are majorized (in absolute value) by the terms of a
convergent numerical series, then the original series converges absolutely.

Example 26 The series
∑∞

n=1
sinn
n2 converges absolutely, since | sinn

n2 | ≤ 1
n2 and the

series
∑∞

n=1
1
n2 converges, as we saw in Example 24.

Corollary 9 (Cauchy’s test) Let
∑∞

n=1 an be a given series and α = limn→∞ n
√|an|.

Then the following are true:

a) if α < 1, the series
∑∞

n=1 an converges absolutely;
b) if α > 1, the series

∑∞
n=1 an diverges;

c) there exist both absolutely convergent and divergent series for which α = 1.

Proof a) If α < 1, we can choose q ∈R such that α < q < 1. Fixing q , by definition
of the superior limit, we find N ∈ N such that n

√|an| < q for all n > N . Thus we
shall have |an|< qn for n > N , and since the series

∑∞
n=1 qn converges for |q|< 1,

it follows from the comparison theorem or from the Weierstrass criterion that the
series

∑∞
n=1 an converges absolutely.

b) Since α is a partial limit of the sequence { n
√|an|} (Proposition 1), there exists

a subsequence {ank
} such that limn→∞ nk

√|ank
| = α. Hence if α > 1, there exists

K ∈N such that |ank
|> 1 for all k > K , and so the necessary condition for conver-

gence (an → 0) does not hold for the series
∑∞

n=1 an. It therefore diverges.
c) We already know that the series

∑∞
n=1

1
n

diverges and
∑∞

n=1
1
n2 converges

(absolutely, since | 1
n2 | = 1

n2 ). At the same time, limn→∞ n

√
1
n
= limn→∞ 1

n
√

n
= 1

and limn→∞ n

√
1
n2 = limn→∞ 1

n√
n2
= limn→∞( 1

n
√

n
)2 = 1. �

Example 27 Let us investigate the values of x ∈R for which the series

∞∑

n=1

(
2+ (−1)n

)n
xn

converges.
We compute α = limn→∞ n

√|(2+ (−1)n)nxn| = |x| limn→∞ |2+ (−1)n| = 3|x|.
Thus for |x| < 1

3 the series converges and even absolutely, while for |x| > 3 the
series diverges. The case |x| = 1

3 requires separate consideration. In the present
case that is an elementary task, since for |x| = 1

3 and n even (n = 2k), we have
(2+ (−1)2k)2kx2k = 32k( 1

3 )2k = 1. Therefore the series diverges, since it does not
fulfill the necessary condition for convergence.
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Corollary 10 (d’Alembert’s6 test) Suppose the limit limn→∞ | an+1
an
| = α exists for

the series
∑∞

n=1 an. Then,

a) if α < 1, the series
∑∞

n=1 an converges absolutely;
b) if α > 1, the series

∑∞
n=1 an diverges;

c) there exist both absolutely convergent and divergent series for which α = 1.

Proof a) If α < 1, there exists a number q such that α < q < 1. Fixing q and using
properties of limits, we find an index N ∈N such that | an+1

an
|< q for n > N . Since a

finite number of terms has no effect on the convergence of a series, we shall assume
without loss of generality that | an+1

an
|< q for all n ∈N.

Since
∣
∣
∣
∣
an+1

an

∣
∣
∣
∣ ·
∣
∣
∣
∣

an

an−1

∣
∣
∣
∣ · · ·

∣
∣
∣
∣
a2

a1

∣
∣
∣
∣=

∣
∣
∣
∣
an+1

a1

∣
∣
∣
∣,

we find that |an+1| ≤ |a1| · qn. But the series
∑∞

n=1 |a1|qn converges (its sum is
obviously |a1|q

1−q
), so that the series

∑∞
n=1 an converges absolutely.

b) If α > 1, then from some index N ∈ N on we have |αn+1
an
|> 1, that is, |an|<

|an+1|, and the condition an→ 0, which is necessary for convergence, does not hold
for the series

∑∞
n=1 an.

c) As in the case of Cauchy’s test, the series
∑∞

n=1
1
n

and
∑∞

n=1
1
n2 provide ex-

amples. �

Example 28 Let us determine the values of x ∈R for which the series

∞∑

n=1

1

n!x
n

converges.
For x = 0 it obviously converges absolutely.
For x �= 0 we have limn→∞ | an+1

an
| = limn→∞ |x|

n+1 = 0.
Thus, this series converges absolutely for every value of x ∈R.

Finally, let us consider another special, but frequently encountered class of series,
namely those whose terms form a monotonic sequence. For such series we have the
following necessary and sufficient condition:

Proposition 2 (Cauchy) If a1 ≥ a2 ≥ · · · ≥ 0, the series
∑∞

n=1 an converges if and
only if the series

∑∞
k=0 2ka2k = a1 + 2a2 + 4a4 + 8a8 + · · · converges.

Proof Since

a2 ≤ a2 ≤ a1,

6J.L. d’Alembert (1717–1783) – French scholar specializing in mechanics. He was a member of
the group of philosophers who wrote the Encyclopédie.
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2a4 ≤ a3 + a4 ≤ 2a2,

4a8 ≤ a5 + a6 + a7 + a8 ≤ 4a4,

...

2na2n+1 ≤ a2n+1 + · · · + a2n+1 ≤ 2na2n ,

by adding these inequalities, we find

1

2
(Sn+1 − a1)≤A2n+1 − a1 ≤ Sn,

where Ak = a1 + · · · + ak and Sn = a1 + 2a2 + · · · + 2na2n are the partial sums
of the two series in question. The sequences {Ak} and {Sn} are nondecreasing, and
hence from these inequalities one can conclude that they are either both bounded
above or both unbounded above. Then, by the criterion for convergence of series
with nonnegative terms, it follows that the two series indeed converge or diverge
together. �

This result implies a useful corollary.

Corollary The series
∑∞

n=1
1
np converges for p > 1 and diverges for p ≤ 1.7

Proof If p ≥ 0, the proposition implies that the series converges or diverges simul-
taneously with the series

∞∑

k=0

2k 1

(2k)p
=

∞∑

k=0

(
21−p

)k
,

and a necessary and sufficient condition for the convergence of this series is that
q = 21−p < 1, that is, p > 1.

If p ≤ 0, the divergence of the series
∑∞

n=1
1
np is obvious, since all the terms of

the series are not smaller than 1. �

The importance of this corollary is that the series
∑∞

n=1
1
np is often used as a

comparison series to study the convergence of other series.

c. The Number e as the Sum of a Series

To conclude our study of series we return once again to the number e and obtain a
series the provides a very convenient way of computing it.

7Up to now in this book the number np has been defined formally only for rational values of p, so
that for the moment the reader is entitled to take this proposition as applying only to values of p

for which np is defined.
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We shall use Newton’s binomial formula to expand the expression (1 + 1
n
)n.

Those who are unfamiliar with this formula from high school and have not solved
part g) of Exercise 1 in Sect. 2.2 may omit the present appendix on the number e
with no loss of continuity and return to it after studying Taylor’s formula, of which
Newton’s binomial formula may be regarded as a special case.

We know that e= limn→∞(1+ 1
n
)n.

By Newton’s binomial formula

(

1+ 1

n

)n

= 1+ n

1!
1

n
+ n(n− 1)

2!
1

n2
+ · · · +

+ n(n− 1) · · · (n− k + 1)

k!
1

nk
+ · · · + 1

nn
=

= 1+ 1+ 1

2!
(

1− 1

n

)

+ · · · + 1

k!
(

1− 1

n

)(

1− 2

n

)

× · · · ×

×
(

1− k− 1

n

)

+ · · · + 1

n!
(

1− 1

n

)

· · ·
(

1− n− 1

n

)

.

Setting (1+ 1
n
)n = en and 1+ 1+ · · · 1

2! + · · · + 1
n! = sn, we thus have en < sn

(n= 1,2, . . .).
On the other hand, for any fixed k and n ≥ k, as can be seen from the same

expansion, we have

1+ 1+ 1

2!
(

1− 1

n

)

+ · · · + 1

k!
(

1− 1

n

)

· · ·
(

1− k− 1

n

)

< en.

As n→∞ the left-hand side of this inequality tends to sk and the right-hand side
to e. We can now conclude that sk ≤ e for all k ∈N.

But then from the relations

en < sn ≤ e

we find that limn→∞ sn = e.
In accordance with the definition of the sum of a series, we can now write

e= 1+ 1

1! +
1

2! + · · · +
1

n! + · · · .

This representation of the number e is very well adapted for computation.
Let us estimate the difference e− sn:

0 < e− sn = 1

(n+ 1)! +
1

(n+ 2)! + · · · =

= 1

(n+ 1)!
[

1+ 1

n+ 2
+ 1

(n+ 2)(n+ 3)
+ · · ·

]

<
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<
1

(n+ 1)!
[

1+ 1

n+ 2
+ 1

(n+ 2)2
+ · · ·

]

=

= 1

(n+ 1)!
1

1− 1
n+2

= n+ 2

n!(n+ 1)2
<

1

n!n.

Thus, in order to make the absolute error in the approximation of e by sn less
than, say 10−3, it suffices that 1

n!n < 1
1000 . This condition is already satisfied by s6.

Let us write out the first few decimal digits of e:

e= 2.7182818284590 . . . .

This estimate of the difference e− sn can be written as the equality

e= sn + θn

n!n, where 0 < θn < 1.

It follows immediately from this representation of e that it is irrational. Indeed,
if we assume that e= p

q
, where p,q ∈ N, then the number q!e must be an integer,

while

q!e= q!
(

sq + θq

q!q
)

= q! + q!
1! +

q!
2! + · · · +

q!
q! +

θq

q
,

and then the number θq

q
would have to be an integer, which is impossible.

For the reader’s information we note that e is not only irrational, but also tran-
scendental.

3.1.5 Problems and Exercises

1. Show that a number x ∈ R is rational if and only if its q-ary expression in any
base q is periodic, that is, from some rank on it consists of periodically repeating
digits.
2. A ball that has fallen from height h bounces to height qh, where q is a con-
stant coefficient 0 < q < 1. Find the time that elapses until it comes to rest and the
distance it travels through the air during that time.
3. We mark all the points on a circle obtained from a fixed point by rotations of the
circle through angles of n radians, where n ∈ Z ranges over all integers. Describe
all the limit points of the set so constructed.
4. The expression

n1 + 1

n2 + 1

n3+
. . .

1
nk−1+ 1

nk



104 3 Limits

where nk ∈N, is called a finite continued fraction, and the expression

n1 + 1

n2 + 1

n3+
. . .

is called an infinite continued fraction. The fractions obtained from a continued
fraction by omitting all its elements from a certain one on are called the convergents.
The value assigned to an infinite continued fraction is the limit of its convergents.
Show that:

a) Every rational number m
n

, where m,n ∈N can be expanded in a unique man-
ner as a continued fraction:

m

n
= q1 + 1

q2 + 1

q3+
. . .

1
qn−1+ 1

qn

,

assuming that qn �= 1 for n > 1.
Hint: The numbers q, . . . , qn, called the incomplete quotients or elements, can be

obtained from the Euclidean algorithm

m = n · q1 + r1,

n = r1 · q2 + r2,

r1 = r2 · q3 + r3,

...

by writing it in the form

m

n
= q1 + 1

n/r1
= q1 + 1

q2+
. . .

.

b) The convergents R1 = q1,R2 = q1 + 1
q2

, . . . satisfy the inequalities

R1 < R3 < · · ·< R2k−1 <
m

n
< R2k < R2k−2 < · · ·< R2.

c) The numerators Pk and denominators Qk of the convergents are formed ac-
cording to the following rule:

Pk = Pk−1qk + Pk−2, P2 = q1q2, P1 = q1,

Qk =Qk−1qk +Qk−2, Q2 = q2, Q1 = 1.
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d) The difference of successive convergents can be computed from the formula

Rk −Rk−1 = (−1)k

QkQk−1
(k > 1).

e) Every infinite continued fraction has a determinate value.
f) The value of an infinite continued fraction is irrational.
g)

1+√5

2
= 1+ 1

1+ 1

1+
. . .

.

h) The Fibonacci numbers 1,1,2,3,5,8, . . . (that is, un = un−1 + un−2 and
u1 = u2 = 1), which are obtained as the denominators of the convergents in g),
are given by the formula

un = 1√
5

[(
1+√5

2

)n

−
(

1−√5

2

)n]

.

i) The convergents Rk = Pk

Qk
in g) are such that | 1+

√
5

2 − Pk

Qk
|> 1

Q2
k

√
5

. Compare

this result with the assertions of Exercise 11 in Sect. 2.2.

5. Show that

a) the equality

1+ 1

1! +
1

2! + · · · +
1

n! +
1

n!n = 3− 1

1 · 2 · 2! − · · · −
1

(n− 1) · n · n!
holds for n≥ 2;

b) e= 3−∑∞
n=0

1
(n+1)(n+2)(n+2)! ;

c) for computing the number e approximately the formula e ≈ 1 + 1
1! + 1

2! +
· · · + 1

n! + 1
n!n is much better than the original formula e≈ 1+ 1

1! + 1
2! + · · · + 1

n! .
(Estimate the errors, and compare the result with the value of e given on p. 103.)

6. If a and b are positive numbers and p an arbitrary nonzero real number, then the
mean of order p of the numbers a and b is the quantity

Sp(a, b)=
(

ap + bp

2

) 1
p
.

In particular for p = 1 we obtain the arithmetic mean of a and b, for p = 2 their
square-mean, and for p =−1 their harmonic mean.

a) Show that the mean Sp(a, b) of any order lies between the numbers a and b.
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b) Find the limits of the sequences
{
Sn(a, b)

}
,

{
S−n(a, b)

}
.

7. Show that if a > 0, the sequence xn+1 = 1
2 (xn+ a

xn
) converges to the square root

of a for any x1 > 0.
Estimate the rate of convergence, that is, the magnitude of the absolute error

|xn −√a| = |Δn| as a function of n.
8. Show that

a)

S0(n) = 10 + · · · + n0 = n,

S1(n) = 11 + · · · + n1 = n(n+ 1)

2
= 1

2
n2 + 1

2
n,

S2(n) = 12 + · · · + n2 = n(n+ 1)(2n+ 1)

6
= 1

3
n3 + 1

2
n2 + 1

6
n,

S3(n) = n2(n+ 1)2

4
= 1

4
n4 + 1

2
n3 + 1

4
n2,

and in general that

Sk(n)= ak+1n
k+1 + · · · + a1n+ a0

is a polynomial in n of degree k + 1.
b) limn→∞ Sk(n)

nk+1 = 1
k+1 .

3.2 The Limit of a Function

3.2.1 Definitions and Examples

Let E be a subset of R and a a limit point of E. Let f : E → R be a real-valued
function defined on E.

We wish to write out what it means to say that the value f (x) of the function
f approaches some number A as the point x ∈ E approaches a. It is natural to call
such a number A the limit of the values of the function f , or the limit of f as x

tends to a.

Definition 1 We shall say (following Cauchy) that the function f :E→R tends to
A as x tends to a, or that A is the limit of f as x tends to a, if for every ε > 0 there
exists δ > 0 such that |f (x)−A|< ε for every x ∈E such that 0 < |x − a|< δ.

In logical symbolism these conditions are written as

∀ε > 0 ∃δ > 0 ∀x ∈E
(
0 < |x − a|< δ⇒ ∣

∣f (x)−A
∣
∣< ε

)
.
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If A is the limit of f (x) as x tends to a in the set E, we write f (x) → A

as x → a, x ∈ E, or limx→a,x∈E f (x) = A. Instead of the expression x → a,
x ∈ E, we shall as a rule use the shorter notation E 
 x → a, and instead of
limx→a,x∈E f (x) we shall write limE
x→a f (x).

Example 1 Let E =R\0, and f (x)= x sin 1
x

. We shall verify that

lim
E
x→0

x sin
1

x
= 0.

Indeed, for a given ε > 0 we choose δ = ε. Then for 0 < |x| < δ = ε, taking
account of the inequality |x sin 1

x
| ≤ |x|, we shall have |x sin 1

x
|< ε.

Incidentally, one can see from this example that a function f :E→R may have
a limit as E 
 x→ a without even being defined at the point a itself. This is exactly
the situation that most often arises when limits must be computed; and, if you were
paying attention, you may have noticed that this circumstance is taken into account
in our definition of limit, where we wrote the strict inequality 0 < |x − a|.

We recall that a neighborhood of a point a ∈ R is any open interval containing
the point.

Definition 2 A deleted neighborhood of a point is a neighborhood of the point from
which the point itself has been removed.

If U(a) denotes a neighborhood of a, we shall denote the corresponding deleted
neighborhood by Ů (a).

The sets

UE(a) := E ∩U(a)

ŮE(a) := E ∩ Ů (a)

will be called respectively a neighborhood of a in E and a deleted neighborhood of
a in E.

If a is a limit point of E, then ŮE(a) �=∅ for every neighborhood U(a).

If we temporarily adopt the cumbersome symbols Ů
δ

E(a) and V ε
R
(A) to denote

the deleted δ-neighborhood of a in E and the ε-neighborhood of A in R, then
Cauchy’s so-called “ε–δ-definition” of the limit of a function can be rewritten as

(
lim

E
x→a
f (x)=A

)
:= ∀V ε

R
(A) ∃Ů δ

E(a)
(
f
(
Ů

δ

E(a)
)⊂ V ε

R
(A)

)
.

This expression says that A is the limit of the function f : E → R as x tends
to a in the set E if for every ε-neighborhood V ε

R
(A) of A there exists a deleted

neighborhood Ů
δ

E(a) of a in E whose image f (Ů
δ

E(a)) under the mapping f :
E→R is entirely contained in V ε

R
(A).
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Taking into account that every neighborhood of a point on the real line contains
a symmetric neighborhood (a δ-neighborhood) of the same point, we arrive at the
following expression for the definition of a limit, which we shall take as our main
definition:

Definition 3

(
lim

E
x→a
f (x)=A

)
:= ∀VR(A) ∃ŮE(a)

(
f
(
ŮE(a)

)⊂ VR(A)
)
.

Thus the number A is called the limit of the function f :E→R as x tends to a

while remaining in the set E (a must be a limit point of E) if for every neighborhood
of A there is a deleted neighborhood of a in E whose image under the mapping
f :E→R is contained in the given neighborhood of A.

We have given several statements of the definition of the limit of a function. For
numerical functions, when a and A belong to R, as we have seen, these statements
are equivalent. In this connection, we note that one or another of these statements
may be more convenient in different situations. For example, the original form is
convenient in numerical computations, since it shows the allowable magnitude of
the deviation of x from a needed to ensure that the deviation of f (x) from A will
not exceed a specified value. But from the point of view of extending the concept of
a limit to more general functions the last statement the definition is most convenient.
It shows that we can define the concept of a limit of a mapping f :X→ Y provided
we have been told what is meant by a neighborhood of a point in X and Y , that is,
as we say, a topology is given on X and Y .

Let us consider a few more examples that are illustrative of the main definition.

Example 2 The function

sgnx =
⎧
⎨

⎩

1 if x > 0,

0 if x = 0,

−1 if x < 0

(read “signum x”8) is defined on the whole real line. We shall show that it has no
limit as x tends to 0. The nonexistence of this limit is expressed by

∀A ∈R ∃V (A) ∀Ů (0) ∃x ∈ Ů(0)
(
f (x) /∈ V (A)

)
,

that is, no matter what A we take (claiming to be the limit of sgnx as x→ 0), there
is a neighborhood V (A) of A such that no matter how small a deleted neighborhood
Ů (0) of 0 we take, that deleted neighborhood contains at least one point x at which
the value of the function does not lie in V (A).

8The Latin word for sign.
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Since sgnx assumes only the values −1, 0, and 1, it is clear that no number
distinct from them can be the limit of the function. For any such number has a
neighborhood that does not contain any of these three numbers.

But if A ∈ {−1,0,1} we choose as V (A) the ε-neighborhood of A with ε = 1
2 .

The points −1 and 1 certainly cannot both lie in this neighborhood. But, no matter
what deleted neighborhood Ů(0) of 0 we may take, that neighborhood contains both
positive and negative numbers, that is, points x where f (x) = 1 and points where
f (x)=−1.

Hence there is a point x ∈ Ů (0) such that f (x) /∈ V (A).
If the function f :E→R is defined on a whole deleted neighborhood of a point

a ∈ R, that is, when ŮE(a)= ŮR(a)= Ů (a), we shall agree to write more briefly
x→ a instead of E 
 x→ a.

Example 3 Let us show that limx→0 | sgnx| = 1.
Indeed, for x ∈ R\0 we have | sgnx| = 1, that is, the function is constant and

equal to 1 in any deleted neighborhood Ů (0) of 0. Hence for any neighborhood
V (1) we obtain f (Ů(0))= 1 ∈ V (1).

Note carefully that although the function | sgnx| is defined at the point 0 itself
and | sgn 0| = 0, this value has no influence on the value of the limit in question.
Thus one must not confuse the value f (a) of the function at the point a with the
limit limx→a f (x) that the function has as x→ a.

Let R− and R+ be the sets of negative and positive numbers respectively.

Example 4 We saw in Example 2 that the limit limR
x→0 sgnx does not exist. Re-
marking, however, that the restriction sgn |R− of sgn to R− is a constant function
equal to −1 and sgn |R+ is a constant function equal to 1, we can show, as in Exam-
ple 3, that

lim
R−
x→0

sgnx =−1, and lim
R+
x→0

sgnx = 1,

that is, the restrictions of the same function to different sets may have different limits
at the same point, or even fail to have a limit, as shown in Example 2.

Example 5 Developing the idea of Example 2, one can show similarly that sin 1
x

has
no limit as x→ 0.

Indeed, in any deleted neighborhood Ů (0) of 0 there are always points of the
form 1

−π/2+2πn
and 1

π/2+2πn
, where n ∈ N. At these points the function assumes

the values −1 and 1 respectively. But these two numbers cannot both lie in the ε-
neighborhood V (A) of a point A ∈ R if ε < 1. Hence no number A ∈ R can be the
limit of this function as x→ 0.

Example 6 If

E− =
{

x ∈R | x = 1

−π/2+ 2πn
,n ∈N

}
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and

E+ =
{

x ∈R | x = 1

π/2+ 2πn
,n ∈N

}

,

then, as shown in Example 4, we find that

lim
E−
x→0

sin
1

x
=−1 and lim

E+
x→0
sin

1

x
= 1.

There is a close connection between the concept of the limit of a sequence stud-
ied in the preceding section and the limit of an arbitrary numerical-valued function
introduced in the present section, expressed by the following proposition.

Proposition 1 9 The relation limE
x→a f (x) = A holds if and only if for every
sequence {xn} of points xn ∈E\a converging to a, the sequence {f (xn)} converges
to A.

Proof The fact that (limE
x→a f (x)=A)⇒ (limn→∞ f (xn)=A) follows imme-
diately from the definitions. Indeed, if limE
x→a f (x)=A, then for any neighbor-
hood V (A) of A there exists a deleted neighborhood ŮE(a) of the point a in E

such that for x ∈ ŮE(a) we have f (x) ∈ V (A). If the sequence {xn} of points in
E\a converges to a, there exists an index N such that xn ∈ ŮE(a) for n > N , and
then f (xn) ∈ V (A). By definition of the limit of a sequence, we then conclude that
limn→∞ f (xn)=A.

We now prove the converse. If A is not the limit of f (x) as E 
 x → a, then
there exists a neighborhood V (A) such that for any n ∈N, there is a point xn in the
deleted 1

n
-neighborhood of a in E such that f (xn) /∈ V (A). But this means that the

sequence {f (xn)} does not converge to A, even though {xn} converges to a. �

3.2.2 Properties of the Limit of a Function

We now establish a number of properties of the limit of a function that are constantly
being used. Many of them are analogous to the properties of the limit of a sequence
that we have already established, and for that reason are essentially already known
to us. Moreover, by Proposition 1 just proved, many properties of the limit of a
function follow obviously and immediately from the corresponding properties of
the limit of a sequence: the uniqueness of the limit, the arithmetic properties of the
limit, and passage to the limit in inequalities. Nevertheless, we shall carry out all the
proofs again. As will be seen, there is some value in doing so.

9This proposition is sometimes called the statement of the equivalence of the Cauchy definition of
a limit (in terms of neighborhoods) and the Heine definition (in terms of sequences).

E. Heine (1821–1881) – German mathematician.
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We call the reader’s attention to the fact that, in order to establish the properties
of the limit of a function, we need only two properties of deleted neighborhoods of
a limit point of a set:

B1) ŮE(a) �=∅, that is, the deleted neighborhood of the point in E is nonempty;
B2) ∀Ů ′E(a) ∀Ů ′′E(a) ∃ŮE(a) (ŮE(a)⊂ Ů

′
E(a)∩ Ů

′′
E(a)), that is, the intersection

of any pair of deleted neighborhoods contains a deleted neighborhood. This obser-
vation leads us to a general concept of a limit of a function and the possibility of
using the theory of limits in the future not only for functions defined on sets of
numbers. To keep the discussion from becoming a mere repetition of what was said
in Sect. 3.1, we shall employ some useful new devices and concepts that were not
proved in that section.

a. General Properties of the Limit of a Function

We begin with some definitions.

Definition 4 As before, a function f : E → R assuming only one value is called
constant. A function f : E→ R is called ultimately constant as E 
 x → a if it is
constant in some deleted neighborhood ŮE(a), where a is a limit point of E.

Definition 5 A function f :E→R is bounded, bounded above, or bounded below
respectively if there is a number C ∈ R such that |f (x)| < C, f (x) < C, or C <

f (x) for all x ∈E.
If one of these three relations holds only in some deleted neighborhood ŮE(a),

the function is said to be ultimately bounded, ultimately bounded above, or ulti-
mately bounded below as E 
 x→ a respectively.

Example 7 The function f (x)= sin 1
x
+ x cos 1

x
defined by this formula for x �= 0

is not bounded on its domain of definition, but it is ultimately bounded as x→ 0.

Example 8 The same is true for the function f (x)= x on R.

Theorem 1 a) (f : E → R is ultimately the constant A as E 
 x → a) ⇒
(limE
x→a f (x)=A).

b) (∃ limE
x→a f (x))⇒ (f :E→R is ultimately bounded as E 
 x→ a).
c) (limE
x→a f (x)=A1)∧ (limE
x→a f (x)=A2)⇒ (A1 =A2).

Proof The assertion a) that an ultimately constant function has a limit, and asser-
tion b) that a function having a limit is ultimately bounded, follow immediately
from the corresponding definitions. We now turn to the proof of the uniqueness of
the limit.
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Suppose A1 �= A2. Choose neighborhoods V (A1) and V (A2) having no points
in common, that is, V (A1)∩ V (A2)=∅. By definition of a limit, we have

lim
E
x→a

f (x)=A1 ⇒∃Ů ′E(a)
(
f
(
Ů
′
E(a)

)⊂ V (A1)
)
,

lim
E
x→a

f (x)=A2 ⇒∃Ů ′′E(a)
(
f
(
Ů
′′
E(a)

)⊂ V (A2)
)
.

We now take a deleted neighborhood ŮE(a) of a (which is a limit point of E)
such that ŮE(a)⊂ Ů

′
E(a)∩Ů

′′
E(a). (For example, we could take ŮE(a)= Ů

′
E(a)∩

Ů
′′
E(a), since this intersection is also a deleted neighborhood.)
Since ŮE(a) �= ∅, we take x ∈ ŮE(a). We then have f (x) ∈ V (A1) ∩ V (A2),

which is impossible since the neighborhoods V (A1) and V (A2) have no points in
common. �

b. Passage to the Limit and Arithmetic Operations

Definition 6 If two numerical-valued functions f : E → R and g : E → R have a
common domain of definition E, their sum, product, and quotient are respectively
the functions defined on the same set by the following formulas:

(f + g)(x) := f (x)+ g(x),

(f · g)(x) := f (x) · g(x),
(

f

g

)

(x) := f (x)

g(x)
, if g(x) �= 0 for x ∈E.

Theorem 2 Let f :E→R and g :E→R be two functions with a common domain
of definition.

If limE
x→a f (x)=A and limE
x→a g(x)= B , then

a) limE
x→a(f + g)(x)=A+B;
b) limE
x→a(f · g)(x)=A ·B;
c) limE
x→a(

f
g
)= A

B
, if B �= 0 and g(x) �= 0 for x ∈E.

As already noted at the beginning of Sect. 3.2.2, this theorem is an immediate
consequence of the corresponding theorem on limits of sequences, given Proposi-
tion 1. The theorem can also be obtained by repeating the proof of the theorem on
the algebraic properties of the limit of a sequence. The changes needed in the proof
in order to do this reduce to referring to some deleted neighborhood ŮE(a) of a in
E, where previously we had referred to statements holding “from some N ∈N on”.
We advise the reader to verify this.

Here we shall obtain the theorem from its simplest special case when A= B = 0.
Of course assertion c) will then be excluded from consideration.

A function f : E → R is said to be infinitesimal as E 
 x → a if
limE
x→a f (x)= 0.



3.2 The Limit of a Function 113

Proposition 2 a) If α : E → R and β : E → R are infinitesimal functions as E 

x→ a, then their sum α + β :E→R is also infinitesimal as E 
 x→ a.

b) If α : E → R and β : E → R are infinitesimal functions as E 
 x → a, then
their product α · β :E→R is also infinitesimal as E 
 x→ a.

c) If α : E → R is infinitesimal as E 
 x → a and β : E → R is ultimately
bounded as E 
 x → a, then the product α · β : E → R is infinitesimal as E 

x→ a.

Proof a) We shall verify that
(

lim
E
x→a

α(x)= 0
)
∧
(

lim
E
x→a

β(x)= 0
)
⇒

(
lim

E
x→a
(α + β)(x)= 0

)
.

Let ε > 0 be given. By definition of the limit, we have

(
lim

E
x→a
α(x)= 0

)
⇒

(

∃Ů ′E(a) ∀x ∈ Ů
′
E(a)

(∣
∣α(x)

∣
∣<

ε

2

))

,

(
lim

E
x→a
β(x)= 0

)
⇒

(

∃Ů ′′E(a) ∀x ∈ Ů
′′
E(a)

(∣
∣β(x)

∣
∣<

ε

2

))

.

Then for the deleted neighborhood ŮE(a)⊂ Ů
′
E(a)∩ Ů

′′
E(a) we obtain

∀x ∈ ŮE(a)
∣
∣(α + β)(x)

∣
∣= ∣

∣α(x)+ β(x)
∣
∣≤ ∣∣α(x)

∣
∣+ ∣

∣β(x)
∣
∣< ε.

That is, we have verified that limE
x→a(α + β)(x)= 0.
b) This assertion is a special case of assertion c), since every function that has a

limit is ultimately bounded.
c) We shall verify that

(
lim

E
x→a
α(x)= 0

)
∧ (∃M ∈R ∃ŮE(a) ∀x ∈ ŮE(a)

(∣∣β(x)
∣
∣< M

))⇒

⇒
(

lim
E
x→a

α(x)β(x)= 0
)
.

Let ε > 0 be given. By definition of limit we have

(
lim

E
x→a
α(x)= 0

)
⇒

(

∃Ů ′E(a) ∀x ∈ Ů
′
E(a)

(∣
∣α(x)

∣
∣<

ε

M

))

.

Then for the deleted neighborhood Ů
′′
E(a)⊂ Ů

′
E(a)∩ ŮE(a), we obtain

∀x ∈ Ů
′′
E(a)

∣
∣(α · β)(x)

∣
∣= ∣

∣α(x)β(x)
∣
∣= ∣

∣α(x)
∣
∣
∣
∣β(x)

∣
∣<

ε

M
·M = ε.

Thus we have verified that limE
x→a α(x)β(x)= 0. �

The following remark is very useful:
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Remark 1

(
lim

E
x→a
f (x)=A

)
⇔

(
f (x)=A+ α(x)∧ lim

E
x→a
α(x)= 0

)
.

In other words, the function f :E→R tends to A if and only if it can be repre-
sented as a sum A+ α(x), where α(x) is infinitesimal as E 
 x→ a. (The function
α(x) is the deviation of f (x) from A.)10

This remark follows immediately from the definition of limit, by virtue of which

lim
E
x→a

f (x)=A⇔ lim
E
x→a

(
f (x)−A

)= 0.

We now give the proof of the theorem on the arithmetic properties of the limit
of a function, based on this remark and the properties of infinitesimal functions that
we have established.

Proof a) If limE
x→α f (x) = A and limE
x→a g(x) = B , then f (x) = A + α(x)

and g(x)= B + β(x), where α(x) and β(x) are infinitesimal as E 
 x → a. Then
(f +g)(x)= f (x)+g(x)=A+α(x)+B+β(x)= (A+B)+γ (x), where γ (x)=
α(x)+ β(x), being the sum of two infinitesimals, is infinitesimal as E 
 x→ a.

Thus limE
x→α(f + g)(x)=A+B .
b) Again representing f (x) and g(x) in the form f (x) = A + α(x), g(x) =

B + β(x), we have

(f · g)(x)= f (x)g(x)= (
A+ α(x)

)(
B + β(x)

)=A ·B + γ (x),

where γ (x)= Aβ(x)+ Bα(x)+ α(x)β(x) is infinitesimal as E 
 x → a because
of the properties just proved for such functions.

Thus, limE
x→a(f · g)(x)=A ·B .
c) We once again write f (x) = A + α(x) and g(x) = B + β(x), where

limE
x→a α(x)= 0 and limE
x→a β(x)= 0.

Since B �= 0, there exists a deleted neighborhood ŮE(a), at all points of which
|β(x)|< |B|

2 , and hence |g(x)| = |B + β(x)| ≥ |B| − |β(x)|> |B|
2 . Then in ŮE(a)

we shall also have 1
|g(x)| < 2

|B| , that is, the function 1
g(x)

is ultimately bounded as
E 
 x→ a. We then write

(
f

g

)

(x)− A

B
= f (x)

g(x)
− A

B
= A+ α(x)

B + β(x)
− A

B
=

= 1

g(x)
· 1

B

(
Bα(x)+Aβ(x)

)= γ (x).

10Here is a curious detail. This very obvious representation, which is nevertheless very useful
on the computational level, was specially noted by the French mathematician and specialist in
mechanics Lazare Carnot (1753–1823), a revolutionary general and academician, the father of
Sadi Carnot (1796–1832), who in turn was the creator of thermodynamics.



3.2 The Limit of a Function 115

By the properties of infinitesimals (taking account of the ultimate boundedness of
1

g(x)
) we find that the function γ (x) is infinitesimal as E 
 x → a. Thus we have

proved that limE
x→a(
f
g
)(x)= A

B
. �

c. Passage to the Limit and Inequalities

Theorem 3 a) If the functions f : E → R and g : E → R are such that
limE
x→a f (x) = A, and limE
x→a g(x) = B and A < B , then there exists a
deleted neighborhood ŮE(a) of a in E at each point of which f (x) < g(x).

b) If the relations f (x) ≤ g(x) ≤ h(x) hold for the functions f : E → R, g :
E → R, and h : E → R, and if limE
x→a f (x) = limE
x→a h(x) = C, then the
limit of g(x) exists as E 
 x→ a, and limE
x→α g(x)= C.

Proof a) Choose a number C such that A < C < B . By definition of limit, we find
deleted neighborhoods Ů

′
E(a) and Ů

′′
E(a) of a in E such that |f (x)−A|< C −A

for x ∈ Ů
′
E(a) and |g(x) − B| < B − C for x ∈ Ů

′′
E(a). Then at any point of a

deleted neighborhood ŮE(a) contained in Ů
′
E(a)∩ Ů

′′
E(a), we find

f (x) < A+ (C −A)= C = B − (B −C) < g(x).

b) If limE
x→a f (x)= limE
x→a h(x)= C, then for any fixed ε > 0 there exist
deleted neighborhoods Ů

′
E(a) and Ů

′′
E(a) of a in E such that C − ε < f (x) for

x ∈ Ů
′
E(a) and h(x) < C + ε for x ∈ Ů

′′
E(a). Then at any point of a deleted neigh-

borhood ŮE(a) contained in Ů
′
E(a) ∩ Ů

′′
E(a), we have C − ε < f (x) ≤ g(x) ≤

h(x) < C + ε, that is, |g(x)−C|< ε, and consequently limE
x→a g(x)= C. �

Corollary Suppose limE
x→a f (x)=A and limE
x→a g(x)= B . Let ŮE(a) be a
deleted neighborhood of a in E.

a) If f (x) > g(x) for all x ∈ ŮE(a), then A≥ B;
b) f (x)≥ g(x) for all x ∈ ŮE(a), then A≥ B;
c) f (x) > B for all x ∈ ŮE(a), then A≥ B;
d) f (x)≥ B for all x ∈ ŮE(a), then A≥ B .

Proof Using proof by contradiction, we immediately obtain assertions a) and b) of
the corollary from assertion a) of Theorem 3. Assertions c) and d) follow from a)
and b) by taking g(x)≡ B . �

d. Two Important Examples

Before developing the theory of the limit of a function further, we shall illustrate the
use of the theorems just proved by two important examples.
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Fig. 3.1

Example 9

lim
x→0

sinx

x
= 1.

Here we shall appeal to the definition of sinx given in high school, that is, sinx is
the ordinate of the point to which the point (1,0) moves under a rotation of x radians
about the origin. The completeness of such a definition is entirely a matter of the
care with which the connection between rotations and real numbers is established.
Since the system of real numbers itself was not described in sufficient detail in high
school, one may consider that we need to sharpen the definition of sinx (and the
same is true of cosx).

We shall do so at the appropriate time and justify the reasoning that for now will
rely on intuition.

a) We shall show that

cos2 x <
sinx

x
< 1 for 0 < |x|< π

2
.

Proof Since cos2 x and sinx
x

are even functions, it suffices to consider the case 0 <

x < π/2. By Fig. 3.1 and the definition of cosx and sinx, comparing the area of the
sector �OCD, the triangle  OAB , and the sector �OAB , we have

S�OCD = 1

2
|OC| · | �

CD| = 1

2
(cosx)(x cosx)= 1

2
x cos2 x <

< S OAB = 1

2
|OA| · |BC| = 1

2
· 1 · sinx = 1

2
sinx <

< S�OAB = 1

2
|OA| · | �

AB| = 1

2
· 1 · x = 1

2
x.

Dividing these inequalities by 1
2x, we find that the result is what was asserted. �

b) It follows from a) that

| sinx| ≤ |x|
for any x ∈R, equality holding only at x = 0.
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Proof For 0 < |x|< π/2, as shown in a), we have

| sinx|< |x|.
But | sinx| ≤ 1, so that this last inequality also holds for |x| ≥ π/2 > 1. Only for
x = 0 do we find sinx = x = 0. �

c) It follows from b) that

lim
x→0

sinx = 0.

Proof Since 0 ≤ | sinx| ≤ |x| and limx→0 |x| = 0, we find by the theorem on the
limit of a function and inequalities (Theorem 3) that limx→0 | sinx| = 0, so that
limx→0 sinx = 0. �

d) We shall now prove that limx→0
sinx
x
= 1.

Proof Assuming that |x|< π/2, from the inequality in a) we have

1− sin2 x <
sinx

x
< 1.

But limx→0(1 − sin2 x) = 1 − limx→0 sinx · limx→0 sinx = 1 − 0 = 1, so that
by the theorem on passage to the limit and inequalities, we conclude that
limx→0

sinx
x
= 1. �

Example 10 (Definition of the exponential, logarithmic, and power functions using
limits) We shall now illustrate how the high-school definition of the exponential
and logarithmic functions can be completed by means of the theory of real numbers
and limits.

For convenience in reference and to give a complete picture, we shall start from
the beginning.

a) The exponential function. Let a > 1.

10 For n ∈N we define inductively a1 := a, an+1 := an · a.
In this way we obtain a function an defined on N, which, as can be seen from the

definition, has the property

am

an
= am−n

if m,n ∈N and m > n.
20 This property leads to the natural definitions

a0 := 1, a−n := 1

an
for n ∈N,
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which, when carried out, extend the function an to the set Z of all integers, and then

am · an = am+n

for any m,n ∈ Z.
30 In the theory of real numbers we have observed that for a > 0 and n ∈N there

exists a unique nth root of a, that is, a number x > 0 such that xn = a. For that
number we use the notation a1/n. It is convenient, since it allows us to retain the law
of addition for exponents:

a = a1 = (
a1/n

)n = a1/n · · ·a1/n = a1/n+···+1/n.

For the same reason it is natural to set am/n := (a1/n)m and a−1/n := (a1/n)−1

for n ∈N and m ∈ Z. If it turns out that a(mk)/(nk) = am/n for k ∈ Z, we can consider
that we have defined ar for r ∈Q.

40 For numbers 0 < x, 0 < y, we verify by induction that for n ∈N

(x < y)⇔ (
xn < yn

)
,

so that, in particular,

(x = y)⇔ (
xn = yn

)
.

50 This makes it possible to prove the rules for operating with rational exponents,
in particular, that

a(mk)/(nk) = am/n for k ∈ Z

and

am1/n1 · am2/n2 = am1/n1+m2/n2 .

Proof Indeed, a(mk)/(nk) > 0 and am/n > 0. Further, since

(
a(mk)/(nk)

)nk = ((
a1/(nk)

)mk)nk =
= (

a1/(nk)
)mk·nk = ((

a1/(nk)
)nk)mk = amk

and
(
am/n

)nk = ((
a1/n

)n)mk = amk,

it follows that the first of the inequalities that needed to be verified in connection
with point 40 is now established.

Similarly, since
(
am1/n1 · am2/n2

)n1n2 = (
am1/n1

)n1n2 · (am2/n2
)n1n2 =

= ((
a1/n1

)n1
)m1n2 · ((a1/n2

)n2
)m2n1 = am1n2 · am2n1

= am1n2+m2n1
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and
(
am1/n1+m2/n2

)n1n2 = (
a(m1n2+m2n1)/(n1n2)

)n1n2 =
= ((

a1/(n1n2)
)n1n2

)m1n2+m2n1 = am1n2+m2n1 ,

the second equality is also proved. �

Thus we have defined ar for r ∈Q and ar > 0; and for any r1, r2 ∈Q,

ar1 . ar2 = ar1+r2 .

60 It follows from 40 that for r1, r2 ∈Q

(r1 < r2)⇒
(
ar1 < ar2

)
.

Proof Since (1 < a)⇔ (1 < a1/n) for n ∈ N, which follows immediately from 40,
we have (a1/n)m = am/n > 1 for n,m ∈N, as again follows from 40. Thus for 1 < a

and r > 0, r ∈Q, we have ar > 1.
Then for r1 < r2 we obtain by 50

ar2 = ar1 · ar2−r1 > ar1 · 1= ar1 . �

70 We shall show that for r0 ∈Q

lim
Q
r→r0

ar = ar0 .

Proof We shall verify that ap → 1 as Q 
 p→ 0. This follows from the fact that
for |p|< 1

n
we have by 60

a−1/n < ap < a1/n.

We know that a1/n → 1 (and a−1/n → 1) as n→∞. Then by standard reasoning
we verify that for ε > 0 there exists δ > 0 such that for |p|< δ we have

1− ε < ap < 1+ ε.

We can take 1
n

as δ here if 1− ε < a−1/n and a1/n < 1+ ε.
We now prove the main assertion.
Given ε > 0, we choose δ so that

1− εa−r0 < ap < 1+ εa−r0

for |p|< δ. If now |r − r0|< δ, we have

ar0
(
1− εa−r0

)
< ar = ar0 · ar−r0 < ar0

(
1+ εa−r0

)
,

which says

ar0 − ε < ar < ar0 + ε. �
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Thus we have defined a function ar on Q having the following properties:

a1 = a > 1;
ar1 · ar2 = ar1+r2;

ar1 < ar2 for r1 < r2;
ar1 → ar2 as Q 
 r1 → r2.

We now extend this function to the entire real line as follows.
80 Let x ∈R, s = supQ
r<x ar , and i = infQ
r>x ar . It is clear that s, i ∈R, since

for r1 < x < r2 we have ar1 < ar2 .
We shall show that actually s = i (and then we shall denote this common value

by ax ).

Proof By definition of s and i we have

ar1 ≤ s ≤ i ≤ ar2

for r1 < x < r2. Then 0≤ i − s ≤ ar2 − ar1 = ar1(ar2−r1 − 1) < s(ar2−r1 − 1). But
ap → 1 as Q 
 p→ 0, so that for any ε > 0 there exists δ > 0 such that ar2−r1−1 <

ε/s for 0 < r2− r1 < δ. We then find that 0≤ i− s ≤ ε, and since ε > 0 is arbitrary,
we conclude that i = s. �

We now define ax := s = i.
90 Let us show that ax = limQ
r→x ar .

Proof Taking 80 into account, for ε > 0 we find r ′ < x such that s − ε < ar ′ ≤ s =
ax and r ′′ such that ax = i ≤ ar ′′ < i + ε. Since r ′ < r < r ′′ implies ar ′ < ar < ar ′′ ,
we then have, for all r ∈Q in the open interval ]r ′, r ′′[,

ax − ε < ar < ax + ε. �

We now study the properties of the function ax so defined on R.
100 For x1, x2 ∈R and a > 1, (x1 < x2)⇒ (ax1 < ax2).

Proof On the open interval ]x1, x2[ there exist two rational numbers r1 < r2. If
x1 ≤ r1 < r2 ≤ x2, by the definition of ax given in 80 and the properties of the
function ax on Q, we have

ax1 ≤ ar1 < ar2 ≤ ax2 . �

110 For any x1, x2 ∈R, ax1 · ax2 = ax1+x2 .

Proof By the estimates that we know for the absolute error in the product and by
property 90, we can assert that for any ε > 0 there exists δ′ > 0 such that

ax1 · ax2 − ε

2
< ar1 · ar2 < ax1 · ax2 + ε

2
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for |x1− r1|< δ′, and |x2− r2|< δ′. Making δ′ smaller if necessary, we can choose
δ < δ′ such that we also have

ar1+r2 − ε

2
< ax1+x2 < ar1+r2 + ε

2

for |x1 − r1|< δ and |x2 − r2|< δ, that is, |(x1 + x2)− (r1 + r2)|< 2δ.
But ar1 · ar2 = ar1+r2 , for r1, r2 ∈Q, so that these inequalities imply

ax1 · ax2 − ε < ax1+x2 < ax1 · ax2 + ε.

Since ε > 0 is arbitrary, we conclude that

ax1 · ax2 = ax1+x2 . �

120 limx→x0 ax = ax0 . (We recall that “x→ x0” is an abbreviation of “R 
 x→
x0”.)

Proof We first verify that limx→0 ax = 1. Given ε > 0, we find n ∈N such that

1− ε < a−1/n < a1/n < 1+ ε.

Then by 100, for |x|< 1/n we have

1− ε < a−1/n < ax < a1/n < 1+ ε,

that is, we have verified that limx→0 ax = 1.
If we now take δ > 0 so that |ax−x0 − 1|< εa−x0 for |x − x0|< δ, we find

ax0 − ε < ax = ax0
(
ax−x0 − 1

)
< ax0 + ε,

which verifies that limx→x0 ax = ax0 . �

130 We shall show that the range of values of the function x �→ ax is the set R+
of positive real numbers.

Proof Let y0 ∈ R+. If a > 1, then as we know, there exists n ∈ N such that a−n <

y0 < an.
By virtue of this fact, the two sets

A= {
x ∈R | ax < y0

}
and B = {

x ∈R | y0 < ax
}

are both nonempty. But since (x1 < x2)⇔ (ax1 < ax2) (when a > 1), for any num-
bers x1, x2 ∈ R such that x1 ∈ A and x2 ∈ B we have x1 < x2. Consequently, the
axiom of completeness is applicable to the sets A and B , and it follows that there
exists x0 such that x1 ≤ x0 ≤ x2 for all x1 ∈ A and x2 ∈ B . We shall show that
ax0 = y0.
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If ax0 were less than y0, then, since ax0+1/n → ax0 as n→∞, there would be a
number n ∈N such that ax0+1/n < y0. Then we would have (x0+ 1

n
) ∈A, while the

point x0 separates A and B . Hence the assumption ax0 < y0 is untenable. Similarly
we can verify that the inequality ax0 > y0 is also impossible. By the properties of
real numbers, we conclude from this that ax0 = y0. �

140 We have assumed up to now that a > 1. But all the constructions could be
repeated for 0 < a < 1. Under this condition 0 < ar < 1 if r > 0, so that in 60 and
100 we now find that (x1 < x2)⇒ (ax1 > ax2) where 0 < a < 1.

Thus for a > 0, a �= 1, we have constructed a real-valued function x �→ ax on the
set R of real numbers with the following properties:

1) a1 = a;
2) ax1 · ax2 = ax1+x2 ;
3) ax → ax0 as x→ x0;
4) (ax1 < ax2)⇔ (x1 < x2) if a > 1, and (ax1 > ax2)⇔ (x1 < x2) if 0 < a < 1;
5) the range of values of the mapping x �→ ax is R+ = {y ∈ R | 0 < y}, the set

of positive numbers.

Definition 7 The mapping x �→ ax is called the exponential function with base a.
The mapping x �→ ex , which is the case a = e, is encountered particularly often

and is frequently denoted expx. In this connection, to denote the mapping x �→ ax ,
we sometimes also use the notation expa x.

b) The logarithmic function. The properties of the exponential function show that
it is a bijective mapping expa :R→R+. Hence it has an inverse.

Definition 8 The mapping inverse to expa :R→R+ is called the logarithm to base
a (0 < a,a �= 1), and is denoted

loga :R+ →R.

Definition 9 For base a = e, the logarithm is called the natural logarithm and is
denoted ln :R+ →R.

The reason for the terminology becomes clear under a different approach to log-
arithms, one that is in many ways more natural and transparent, which we shall
explain after constructing the fundamentals of differential and integral calculus.

By definition of the logarithm as the function inverse to the exponential function,
we have

∀x ∈R
(
loga

(
ax
) = x

)
,

∀y ∈R+
(
aloga y = y

)
.

It follows from this definition and the properties of the exponential function in
particular that in its domain of definition R+ the logarithm has the following prop-
erties:
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1′) loga a = 1;
2′) loga(y1 · y2)= loga y1 + loga y2;
3′) loga y→ loga y0 as R+ 
 y→ y0 ∈R+;
4′) (loga y1 < loga y2)⇔ (y1 < y2) if a > 1 and (loga y1 > loga y2)⇔ (y1 < y2)

if 0 < a < 1;
5′) the range of values of the function loga : R+ → R is the set R of all real num-
bers.

Proof We obtain 1′) from property 1) of the exponential function and the definition
of the logarithm.

We obtain property 2′) from property 2) of the exponential function. Indeed, let
x1 = loga y1 and x2 = loga y2. Then y1 = ax1 and y2 = ax2 , and so by 2), y1 · y2 =
ax1 · ax2 = ax1+x2 , from which it follows that loga(y1 · y2)= x1 + x2.

Similarly, property 4) of the exponential function implies property 4′) of the log-
arithm.

It is obvious that 5)⇒ 5′).
Property 3′) remains to be proved.
By property 2′) of the logarithm we have

loga y − loga y0 = loga

(
y

y0

)

,

and therefore the inequalities

−ε < loga y − loga y0 < ε

are equivalent to the relation

loga

(
a−ε

)=−ε < loga

(
y

y0

)

< ε = loga

(
aε
)
,

which by property 4′) of the logarithm is equivalent to

−aε <
y

y0
< aε for a > 1,

aε <
y

y0
< a−ε for 0 < a < 1.

In any case we find that if

y0a
−ε < y < y0a

ε when a > 1

or

y0a
ε < y < y0a

−ε when 0 < a < 1,

we have

−ε < loga y − loga y0 < ε.
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Fig. 3.2

Thus we have proved that

lim
R+
y→y0∈R+

loga y = loga y0. �

Figure 3.2 shows the graphs of the functions ex , 10x , lnx, and log10 x =: logx;
Fig. 3.3 gives the graphs of ( 1

e )x , 0.1x , log1/e x, and log0.1 x.
We now give a more detailed discussion of one property of the logarithm that we

shall have frequent occasion to use.
We shall show that the equality

6′)

loga

(
bα
)= α loga b

holds for any b > 0 and any α ∈R.

Proof 10 The equality is true for α = n ∈ N. For by property 2′) of the logarithm
and induction we find loga(y1 · · ·yn)= loga y1 + · · · + loga yn, so that

loga

(
bn
)= loga b+ · · · + loga b= n loga b.

20 loga(b
−1)=− loga b, for if β = loga b, then

b= aβ, b−1 = a−β and loga

(
b−1)=−β.

30 From 10 and 20 we now conclude that the equality loga(b
α)= α loga b holds

for α ∈ Z.
40 loga(b

1/n)= 1
n

loga b for n ∈ Z. Indeed,

loga b= loga

(
b1/n

)n = n loga

(
b1/n

)
.
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Fig. 3.3

50 We can now verify that the assertion holds for any rational number α = m
n
∈Q.

In fact,
m

n
loga b=m loga

(
b1/n

)= loga

(
b1/n

)m = loga

(
bm/n

)
.

60 But if the equality loga br = r loga b holds for all r ∈ Q, then letting r in
Q tend to α, we find by property 3) for the exponential function and 3′) for the
logarithm that if r is sufficiently close to α, then br is close to bα and loga br is
close to loga bα . This means that

lim
Q
r→α

loga br = loga bα.

But loga br = r loga b, and therefore

loga bα = lim
Q
r→α

loga br = lim
Q
r→α

r loga b= α loga b. �

From the property of the logarithm just proved, one can conclude that the follow-
ing equality holds for any α,β ∈R and a > 0:

6) (aα)β = aαβ .

Proof For a = 1 we have 1α = 1 by definition for all α ∈ R. Thus the equality is
trivial in this case.

If a �= 1, then by what has just been proved we have

loga

((
aα
)β)= β loga

(
aα
)= β · α loga a = β · α = loga

(
aαβ

)
,

which by property 4′) of the logarithm is equivalent to this equality. �

c) The power function. If we take 1α = 1, then for all x > 0 and α ∈ R we have
defined the quantity xα (read “x to power α”).
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Fig. 3.4

Definition 10 The function x �→ xα defined on the set R+ of positive numbers is
called a power function, and the number α is called its exponent.

A power function is obviously the composition of an exponential function and
the logarithm; more precisely

xα = aloga(xα) = aα loga x .

Figure 3.4 shows the graphs of the function y = xα for different values of the
exponent.

3.2.3 The General Definition of the Limit of a Function (Limit
over a Base)

When proving the properties of the limit of a function, we verified that the only
requirements imposed on the deleted neighborhoods in which our functions were
defined and which arose in the course of the proofs were the properties B1) and
B2), mentioned in the introduction to the previous subsection. This fact justifies the
definition of the following mathematical object.

a. Bases; Definition and Elementary Properties

Definition 11 A set B of subsets B ⊂ X of a set X is called a base in X if the
following conditions hold:

B1) ∀B ∈ B (B �=∅);
B2) ∀B1 ∈ B ∀B2 ∈ B ∃B ∈ B (B ⊂ B1 ∩B2).

In other words, the elements of the collection B are nonempty subsets of X and
the intersection of any two of them always contains an element of the same collec-
tion.

In Table 3.1 we list some of the more useful bases in analysis.
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Table 3.1

Notation for
the base

Read Sets (elements) of the
base

Definition of and notation
for elements

x→ a x tends to a Deleted neighborhoods
of a ∈R

Ů (a) := {x ∈R | a − δ1 <

< x < a + δ2 ∧ x �= a},
where δ1 > 0, δ2 > 0

x→∞ x tends to infinity Neighborhoods of
infinity

U(∞) := {x ∈R | δ < |x|},
where δ ∈R

x→ a, x ∈E

or
E 
 x→ a

or
x−→∈E a

x tends to a in E Deleted neighborhoods*

of a in E

ŮE(a) :=E ∩ Ů (a)

x→∞, x ∈E

or
E 
 x→∞
or
x−→∈E∞

x tends to
infinity in E

Neighborhoods** of
infinity in E

UE(∞) :=E ∩U(∞)

*It is assumed that a is a limit point of E

**It is assumed that E is not bounded

If E = E+a = {x ∈ R | x > a} (resp. E = E−a = {x ∈ R | x < a}) we write
x → a + 0 (resp. x → a − 0) instead of x → a, x ∈ E, and we say that x tends
to a from the right (resp. x tends to a from the left) or through larger values
(resp. through smaller values). When a = 0 it is customary to write x→+0 (resp.
x→−0) instead of x→ 0+ 0 (resp. x→ 0− 0).

The notation E 
 x → a + 0 (resp. E 
 x → a − 0) will be used instead of
x → a, x ∈ E ∩ E+a (resp. x → a, x ∈ E ∩ E−a ). It means that x tends to a in E

while remaining larger (resp. smaller) than a.
If

E =E+∞ = {x ∈R | c < x} (
resp. E =E−∞ = {x ∈R | x < c}),

we write x→+∞ (resp. x→−∞) instead of x→∞, x ∈E and say that x tends
to positive infinity (resp. x tends to negative infinity).

The notation E 
 x → +∞ (resp. E 
 x → −∞) will be used instead of
x→∞, x ∈E ∩E+∞ (resp. x→∞, x ∈E ∩E−∞).

When E = N, we shall write (when no confusion can arise), as is customary in
the theory of limits of sequences, n→∞ instead of x→∞, x ∈N.

We remark that all the bases just listed have the property that the intersection of
two elements of the base is itself an element of the base, not merely a set containing
an element of the base. We shall meet with other bases in the study of functions
defined on sets different from the real line.11

11For example, the set of open disks (not containing their boundary circles) containing a given
point of the plane is a base. The intersection of two elements of the base is not always a disk, but
always contains a disk from the collection.
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We note also that the term “base” used here is an abbreviation for what is called
a “filter base”, and the limit over a base that we introduce below is, as far as analysis
is concerned, the most important part of the concept of a limit over a filter,12 created
by the modern French mathematician H. Cartan.

b. The Limit of a Function over a Base

Definition 12 Let f :X→ R be a function defined on a set X and B a base in X.
A number A ∈ R is called the limit of the function f over the base B if for every
neighborhood V (A) of A there is an element B ∈ B whose image f (B) is contained
in V (A).

If A is the limit of f :X→R over the base B, we write

lim
B

f (x)=A.

We now repeat the definition of the limit over a base in logical symbols:

(
lim
B

f (x)=A
)
:= ∀V (A) ∃B ∈ B

(
f (B)⊂ V (A)

)
.

Since we are considering numerical-valued functions at the moment, it is useful
to keep in mind the following form of this fundamental definition:

(
lim
B

f (x)=A
)
:= ∀ε > 0 ∃B ∈ B ∀x ∈ B

(∣∣f (x)−A
∣
∣< ε

)
.

In this form we take an ε-neighborhood (symmetric with respect to A) instead
of an arbitrary neighborhood V (A). The equivalence of these definitions for real-
valued functions follows from the fact mentioned earlier that every neighborhood of
a point contains a symmetric neighborhood of the same point (carry out the proof in
full!).

We have now given the general definition of the limit of a function over a base.
Earlier we considered examples of the bases most often used in analysis. In a specific
problem in which one or another of these bases arises, one must know how to decode
the general definition and write it in the form specific to that base.

Thus,
(

lim
x→a−0

f (x)=A
)
:= ∀ε > 0 ∃δ > 0 ∀x ∈ ]a − δ, a[ (∣∣f (x)−A

∣
∣< ε

)
,

(
lim

x→−∞f (x)=A
)
:= ∀ε > 0 ∃δ ∈R ∀x < δ

(∣
∣f (x)−A

∣
∣< ε

)
.

12For more details, see Bourbaki’s, General topology, Addison-Wesley, 1966.
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In our study of examples of bases we have in particular introduced the concept
of a neighborhood of infinity. If we use that concept, then it makes sense to adopt
the following conventions in accordance with the general definition of limit:

(
lim
B

f (x)=∞
)
:= ∀V (∞) ∃B ∈ B

(
f (B)⊂ V (∞)

)
,

or, what is the same,
(

lim
B

f (x)=∞
)
:= ∀ε > 0 ∃B ∈ B ∀x ∈ B

(
ε <

∣
∣f (x)

∣
∣),

(
lim
B

f (x)=+∞
)
:= ∀ε ∈R ∃B ∈ B ∀x ∈ B

(
ε < f (x)

)
,

(
lim
B

f (x)=−∞
)
:= ∀ε ∈R ∃B ∈ B ∀x ∈ B

(
f (x) < ε

)
.

The letter ε is usually assumed to represent a small number. Such is not the case
in the definitions just given, of course. In accordance with the usual conventions, for
example, we could write

(
lim

x→+∞f (x)=−∞
)
:= ∀ε ∈R ∃δ ∈R ∀x > δ

(
f (x) < ε

)
.

We advise the reader to write out independently the full definition of limit for
different bases in the cases of both finite (numerical) and infinite limits.

In order to regard the theorems on limits that we proved for the special base
E 
 x→ a in Sect. 3.2.2 as having been proved in the general case of a limit over an
arbitrary base, we need to make suitable definitions of what it means for a function
to be ultimately constant, ultimately bounded, and infinitesimal over a given base.

Definition 13 A function f :X→R is ultimately constant over the base B if there
exists a number A ∈R and an element B ∈ B such that f (x)=A for all x ∈ B .

Definition 14 A function f :X→R is ultimately bounded over the base B if there
exists a number c > 0 and an element B ∈ B such that |f (x)|< c for all x ∈ B .

Definition 15 A function f :X→ R is infinitesimal over the base B if limB f (x)

= 0.

After these definitions and the fundamental remark that all proofs of the theorems
on limits used only the properties B1) and B2), we may regard all the properties of
limits established in Sect. 3.2.2 as valid for limits over any base.

In particular, we can now speak of the limit of a function as x →∞ or as x →
−∞ or as x→+∞.

In addition, we have now assured ourselves that we can also apply the theory of
limits in the case when the functions are defined on sets that are not necessarily sets
of numbers; this will turn out to be especially valuable later on. For example, the
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length of a curve is a numerical-valued function defined on a class of curves. If we
know this function on broken lines, we can define it for more complicated curves,
for example, for a circle, by passing to the limit.

At present the main use we have for this observation and the concept of a base
introduced in connection with it is that they free us from the verifications and formal
proofs of theorems on limits for each specific type of limiting passage, or, in our
current terminology, for each specific type of base.

In order to master completely the concept of a limit over an arbitrary base, we
shall carry out the proofs of the following properties of the limit of a function in
general form.

3.2.4 Existence of the Limit of a Function

a. The Cauchy Criterion

Before stating the Cauchy criterion, we give the following useful definition.

Definition 16 The oscillation of a function f :X→R on a set E ⊂X is

ω(f,E) := sup
x1,x2∈E

∣
∣f (x1)− f (x2)

∣
∣,

that is, the least upper bound of the absolute value of the difference of the values of
the function at two arbitrary points x1, x2 ∈E.

Example 11 ω(x2, [−1,2])= 4;

Example 12 ω(x, [−1,2])= 3,

Example 13 ω(x, ]−1,2[)= 3;

Example 14 ω(sgnx, [−1,2])= 2;

Example 15 ω(sgnx, [0,2])= 1;

Example 16 ω(sgnx, ]0,2])= 0.

Theorem 4 (The Cauchy criterion for the existence of a limit of a function) Let X

be a set and B a base in X.
A function f : X→ R has a limit over the base B if and only if for every ε > 0

there exits B ∈ B such that the oscillation of f on B is less than ε.

Thus,

∃ lim
B

f (x)⇔∀ε > 0 ∃B ∈ B
(
ω(f,B) < ε

)
.
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Proof Necessity. If limB f (x)=A ∈ R, then, for all ε > 0, there exists an element
B ∈ B such that |f (x)− A| < ε/3 for all x ∈ B . But then, for any x1, x2 ∈ B we
have

∣
∣f (x1)− f (x2)

∣
∣≤ ∣∣f (x1)−A

∣
∣+ ∣

∣f (x2)−A
∣
∣<

2ε

3
,

and therefore ω(f ;B) < ε.

Sufficiency. We now prove the main part of the criterion, which asserts that if for
every ε > 0 there exists B ∈ B for which ω(f,B) < ε, then the function has a limit
over B.

Taking ε successively equal to 1,1/2, . . . ,1/n, . . . , we construct a sequence
B1,B2, . . . ,Bn . . . of elements of B such that ω(f,Bn) < 1/n, n ∈ N. Since Bn �=
∅, we can choose a point xn in each Bn. The sequence f (x1), f (x2), . . . , f (xn), . . .

is a Cauchy sequence. Indeed, Bn ∩ Bm �= ∅, and, taking an auxiliary point x ∈
Bn ∩ Bm, we find that |f (xn) − f (xm)| < |f (xn) − f (x)| + |f (x) − f (xm)| <
1/n+ 1/m. By the Cauchy criterion for convergence of a sequence, the sequence
{f (xn), n ∈ N} has a limit A. It follows from the inequality established above,
if we let m →∞, that |f (xn) − A| ≤ 1/n. We now conclude, taking account
of the inequality ω(f ;Bn) < 1/n, that |f (x) − A| < ε at every point x ∈ Bn if
n > N = [2/ε] + 1. �

Remark This proof, as we shall see below, remains valid for functions with values in
any so-called complete space Y . If Y =R, which is the case we are most interested
in just now, we can if we wish use the same idea as in the proof of the sufficiency of
the Cauchy criterion for sequences.

Proof Setting mB = infx∈B f (x) and MB = supx∈B f (x), and remarking that
mB1 ≤ mB1∩B2 ≤MB1∩B2 ≤MB2 for any elements B1 and B2 of the base B, we
find by the axiom of completeness that there exists a number A ∈ R separating
the numerical sets {mB} and {MB}, where B ∈ B. Since ω(f ;B)=MB −mB , we
can now conclude that, since ω(f ;B) < ε, we have |f (x)−A|< ε at every point
x ∈ B . �

Example 17 We shall show that when X = N and B is the base n→∞, n ∈ N,
the general Cauchy criterion just proved for the existence of the limit of a function
coincides with the Cauchy criterion already studied for the existence of a limit of a
sequence.

Indeed, an element of the base n→∞, n ∈N, is a set B =N∩U(∞)= {n ∈N |
N < n} consisting of the natural numbers n ∈ N larger than some number N ∈ R.
Without loss of generality we may assume N ∈ N. The relation ω(f ;B) ≤ ε now
means that |f (n1)− f (n2)| ≤ ε for all n1, n2 > N .

Thus, for a function f : N→ R, the condition that for any ε > 0 there exists
B ∈ B such that ω(f ;B) < ε is equivalent to the condition that the sequence {f (n)}
be a Cauchy sequence.
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b. The Limit of a Composite Function

Theorem 5 (The limit of a composite function) Let Y be a set, BY a base in Y , and
g : Y → R a mapping having a limit over the base BY . Let X be a set, BX a base
in X and f : X→ Y a mapping of X into Y such that for every element BY ∈ BY

there exists BX ∈ BX whose image f (BX) is contained in BY .
Under these hypotheses, the composition g ◦ f :X→R of the mappings f and

g is defined and has a limit over the base BX and limBX
(g ◦ f )(x)= limBY

g(y).

Proof The composite function g ◦ f :X→R is defined, since f (X)⊂ Y . Suppose
limBY

g(y) = A. We shall show that limBX
(g ◦ f )(x) = A. Given a neighborhood

V (A) of A, we find BY ∈ BY such that g(BY )⊂ V (A). By hypothesis, there exists
BX ∈ BX such that f (BX) ⊂ BY . But then (g ◦ f )(BX) = g(f (BX)) ⊂ g(BY ) ⊂
V (A). We have thus verified that A is the limit of the function (g ◦f ) :X→R over
the base BX . �

Example 18 Let us find the following limit:

lim
x→0

sin 7x

7x
=?

If we set g(y)= siny
y

and f (x)= 7x, then (g ◦ f )(x)= sin 7x
7x

. In this case Y =
R\0 and X = R. Since limy→0 g(y)= limy→0

siny
y
= 1, we can apply the theorem

if we verify that for any element of the base y → 0 there is an element of the base
x→ 0 whose image under the mapping f (x)= 7x is contained in the given element
of the base y→ 0.

The elements of the base y → 0 are the deleted neighborhoods ŮY (0) of the
point 0 ∈R.

The elements of the base x → 0 are also deleted neighborhoods ŮX(0) of the
point 0 ∈ R. Let ŮY (0) = {y ∈ R | α < y < β,y �= 0} (where α,β ∈ R and α < 0,
β > 0) be an arbitrary deleted neighborhood of 0 in Y . If we take ŮX(0) = {x ∈
R | α

7 < x <
β
7 , x �= 0}, this deleted neighborhood of 0 in X has the property that

f (ŮX(0))= ŮY (0)⊂ ŮY (0).
The hypotheses of the theorem are therefore satisfied, and we can now assert that

lim
x→0

sin 7x

7x
= lim

y→0

siny

y
= 1.

Example 19 The function g(y)= | sgny|, as we have seen (see Example 3), has the
limit limy→0 | sgny| = 1.

The function y = f (x) = x sin 1
x

, which is defined for x �= 0, also has the limit
limx→0 x sin 1

x
= 0 (see Example 1).

However, the function (g ◦ f )(x)= | sgn(x sin 1
x
)| has no limit as x→ 0.

Indeed, in any deleted neighborhood of x = 0 there are zeros of the function
sin 1

x
, so that the function | sgn(x sin 1

x
)| assumes both the value 1 and the value 0 in
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any such neighborhood. By the Cauchy criterion, this function cannot have a limit
as x→ 0.

But does this example not contradict Theorem 5?
Check, as we did in the preceding example, to see whether the hypotheses of the

theorem are satisfied.

Example 20 Let us show that

lim
x→∞

(

1+ 1

x

)x

= e.

Proof Let us make the following assumptions:

Y =N, BY is the base n→∞, n ∈N;
X =R+ = {x ∈R | x > 0}, BX is the base x→+∞;

f :X→ Y is the mapping x
f�−→[x],

where [x] is the integer part of x (that is, the largest integer not larger than x).
Then for any BY = {n ∈ N | n > N} in the base n→∞, n ∈ N there obviously

exists an element BX = {x ∈ R | x > N + 1} of the base x →+∞ whose image
under the mapping x �→ [x] is contained in BY .

The functions g(n)= (1+ 1
n
)n, g1(n)= (1+ 1

n+1 )n, and g2(n)= (1+ 1
n
)n+1, as

we know, have the number e as their limit in the base n→∞, n ∈N.
By Theorem 4 on the limit of a composite function, we can now assert that the

functions

(g ◦ f )(x) =
(

1+ 1

[x]
)[x]

, (g1 ◦ f )=
(

1+ 1

[x] + 1

)[x]
,

(g2 ◦ f ) =
(

1+ 1

[x]
)[x]+1

also have e as their limit over the base x→+∞.
It now remains for us only to remark that

(

1+ 1

[x] + 1

)[x]
<

(

1+ 1

x

)x

<

(

1+ 1

[x]
)[x]+1

for x ≥ 1. Since the extreme terms here tend to e as x →+∞, it follows from
Theorem 3 on the properties of a limit that limx→+∞(1+ 1

x
)x = e. �

Using Theorem 5 on the limit of a composite function, we now show that
limx→−∞(1+ 1

x
)x = e.



134 3 Limits

Proof We write

lim
x→−∞

(

1+ 1

x

)x

= lim
(−t)→−∞

(

1+ 1

(−t)

)(−t)

= lim
t→+∞

(

1− 1

t

)−t

=

= lim
t→+∞

(

1+ 1

t − 1

)t

=

= lim
t→+∞

(

1+ 1

t − 1

)t−1

lim
t→+∞

(

1+ 1

t − 1

)

=

= lim
t→+∞

(

1+ 1

t − 1

)t−1

= lim
u→+∞

(

1+ 1

u

)u

= e.

When we take account of the substitutions u= t−1 and t =−x, these equalities
can be justified in reverse order (!) using Theorem 5. Indeed, only after we have
arrived at the limit limu→+∞(1 + 1

u
)u, whose existence has already been proved,

does the theorem allow us to assert that the preceding limit also exists and has the
same value. Then the limit before that one also exists, and by a finite number of such
transitions we finally arrive at the original limit. This is a very typical example of the
procedure for using the theorem on the limit of a composite function in computing
limits.

Thus, we have

lim
x→−∞

(

1+ 1

x

)x

= e= lim
x→+∞

(

1+ 1

x

)x

.

It follows that limx→∞(1+ 1
x
)x = e. Indeed, let ε > 0 be given.

Since limx→−∞(1+ 1
x
)x = e, there exists c1 ∈R such that |(1+ 1

x
)x − e|< ε for

x < c1.
Since limx→+∞(1+ 1

x
)x = e, there exists c2 ∈R such that |(1+ 1

x
)x − e|< ε for

c2 < x.
Then for |x|> c=max{|c1|, |c2|} we have |(1+ 1

x
)x−e|< ε, which verifies that

limx→∞(1+ 1
x
)x = e. �

Example 21 We shall show that

lim
t→0

(1+ t)1/t = e.

Proof After the substitution x = 1/t , we return to the limit considered in the pre-
ceding example. �

Example 22

lim
x→+∞

x

qx
= 0, if q > 1.
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Proof We know (see Example 11 in Sect. 3.1) that limn→∞ n
qn = 0 if q > 1.

Now, as in Example 20, we can consider the auxiliary mapping f : R+ → N

given by the function [x] (the integer part of x). Using the inequalities

1

q
· [x]
q[x]

<
x

qx
<
[x] + 1

q[x]+1
· q

and taking account of the theorem on the limit of a composite function, we find that
the extreme terms here tend to 0 as x→+∞. We conclude that limx→+∞ x

qx = 0. �

Example 23

lim
x→+∞

loga x

x
= 0.

Proof Let a > 1. Set t = loga x, so that x = at . From the properties of the expo-
nential function and the logarithm (taking account of the unboundedness of an for
n ∈ N) we have (x →+∞)⇔ (t →+∞). Using the theorem on the limit of a
composite function and the result of Example 22, we obtain

lim
x→+∞

loga x

x
= lim

t→+∞
t

at
= 0.

If 0 < a < 1 we set −t = loga x, x = a−t . Then (x →+∞)⇔ (t →+∞), and
since 1/a > 1, we again have

lim
x→+∞

loga x

x
= lim

t→+∞
−t

a−t
=− lim

t→+∞
t

(1/a)t
= 0. �

c. The Limit of a Monotonic Function

We now consider a special class of numerical-valued functions, but one that is very
useful, namely the monotonic functions.

Definition 17 A function f :E→R defined on a set E ⊂R is said to be

increasing on E if

∀x1, x2 ∈E
(
x1 < x2 ⇒ f (x1) < f (x2)

);
nondecreasing on E if

∀x1, x2 ∈E
(
x1 < x2 ⇒ f (x1)≤ f (x2)

);
nonincreasing on E if

∀x1, x2 ∈E
(
x1 < x2 ⇒ f (x1)≥ f (x2)

);
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decreasing on E if

∀x1, x2 ∈E
(
x1 < x2 ⇒ f (x1) > f (x2)

)
.

Functions of the types just listed are said to be monotonic on the set E.
Assume that the numbers (or symbols −∞ or +∞) i = infE and s = supE are

limit points of the set E, and let f : E → R be a monotonic function on E. Then
the following theorem holds.

Theorem 6 (Criterion for the existence of a limit of a monotonic function) A neces-
sary and sufficient condition for a function f :E→R that is nondecreasing on the
set E to have a limit as x→ s, x ∈E, is that it be bounded above. For this function
to have a limit as x → i, x ∈ E, it is necessary and sufficient that it be bounded
below.

Proof We shall prove this theorem for the limit limE
x→s f (x).
If this limit exists, then, like any function having a limit, the function f is ulti-

mately bounded over the base E 
 x→ s.
Since f is nondecreasing on E, it follows that f is bounded above. In fact, we

can even assert that f (x)≤ limE
x→s f (x). That will be clear from what follows.
Let us pass to the proof of the existence of the limit limE
x→s f (x) when f is

bounded above.
Given that f is bounded above, we see that there is a least upper bound of the

values that the function assumes on E \ {s}. Let A = supx∈E\{s} f (x). We shall
show that limE
x→s f (x)=A. Given ε > 0, we use the definition of the least upper
bound to find a point x0 ∈ E \ {s} for which A − ε < f (x0) ≤ A. Then, since f

is nondecreasing on E, we have A− ε < f (x) ≤ A for x0 < x ∈ E \ {s}. But the
set {x ∈ E | x0 < x < s} is obviously an element of the base x → s, x ∈ E (since
s = supE). Thus we have proved that limE
x→s f (x)=A.

For the limit limE
x→i f (x) the reasoning is analogous. In this case we have
limE
x→i f (x)= infx∈E\{i} f (x). �

d. Comparison of the Asymptotic Behavior of Functions

We begin this discussion with some examples to clarify the subject.
Let π(x) be the number of primes not larger than a given number x ∈ R. Al-

though for any fixed x we can find (if only by explicit enumeration) the value of
π(x), we are nevertheless not in a position to say, for example, how the function
π(x) behaves as x→+∞, or, what is the same, what the asymptotic law of distribu-
tion of prime numbers is. We have known since the time of Euclid that π(x)→+∞
as x →+∞, but the proof that π(x) grows approximately like x

lnx
was achieved

only in the nineteenth century by P.L. Chebyshev.13

13P.L. Chebyshev (1821–1894) – outstanding Russian mathematician and specialist in theoretical
mechanics, the founder of a large mathematical school in Russia.
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When it becomes necessary to describe the behavior of a function near some
point (or near infinity) at which, as a rule, the function itself is not defined, we say
that we are interested in the asymptotics or asymptotic behavior of the function in a
neighborhood of the point.

The asymptotic behavior of a function is usually characterized using a second
function that is simpler or better studied and which reproduces the values of the
function being studied in a neighborhood of the point in question with small relative
error.

Thus, as x →+∞, the function π(x) behaves like x
lnx

; as x → 0, the function
sinx
x

behaves like the constant function 1. When we speak of the behavior of the
function x2 + x + sin 1

x
as x→∞, we shall obviously say that it behaves basically

like x2, while in speaking of its behavior as x → 0, we shall say it behaves like
sin 1

x
.

We now give precise definitions of some elementary concepts involving the
asymptotic behavior of functions. We shall make systematic use of these concepts
at the very first stage of our study of analysis.

Definition 18 We shall say that a certain property of functions or a certain relation
between functions holds ultimately over a given base B if there exists B ∈ B on
which it holds.

We have already interpreted the notion of a function that is ultimately constant
or ultimately bounded in a given base in this sense. In the same sense we shall say
from now on that the relation f (x)= g(x)h(x) holds ultimately between functions
f , g, and h. These functions may have at the outset different domains of definition,
but if we are interested in their asymptotic behavior over the base B, all that matters
to us is that they are all defined on some element of B.

Definition 19 The function f is said to be infinitesimal compared with the function
g over the base B, and we write f =B o(g) or f = o(g) over B if the relation f (x)=
α(x)g(x) holds ultimately over the B, where α(x) is a function that is infinitesimal
over B.

Example 24 x2 = o(x) as x→ 0, since x2 = x · x.

Example 25 x = o(x2) as x→∞, since ultimately (as long as x �= 0), x = 1
x
· x2.

From these examples one must conclude that it is absolutely necessary to indicate
the base over which f = o(g).

The notation f = o(g) is read “f is little-oh of g”.
It follows from the definition, in particular, that the notation f =B o(1), which

results when g(x)≡ 1, means simply that f is infinitesimal over B.

Definition 20 If f =B o(g) and g is itself infinitesimal over B, we say that f is an
infinitesimal of higher order than g over B .
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Example 26 x−2 = 1
x2 is an infinitesimal of higher order than x−1 = 1

x
as x→∞.

Definition 21 A function that tends to infinity over a given base is said to be an
infinite function or simply an infinity over the given base.

Definition 22 If f and g are infinite functions over B and f =B o(g), we say that
g is a higher order infinity than f over B.

Example 27 1
x
→∞ as x→ 0, 1

x2 →∞ as x→ 0 and 1
x
= o( 1

x2 ). Therefore 1
x2 is

a higher order infinity than 1
x

as x→ 0.
At the same time, as x→∞, x2 is a higher order infinity than x.

It should not be thought that we can characterize the order of every infinity or
infinitesimal by choosing some power xn and saying that it is of order n.

Example 28 We shall show that for a > 1 and any n ∈ Z

lim
x→+∞

xn

ax
= 0,

that is, xn = o(ax) as x→+∞.

Proof If n ≤ 0 the assertion is obvious. If n ∈ N, then, setting q = n
√

a, we have
q > 1 and xn

ax = ( x
qx )n, and therefore

lim
x→+∞

xn

ax
= lim

x→+∞

(
x

qx

)n

= lim
x→+∞

x

qx
· . . . · lim

x→+∞
x

qx

︸ ︷︷ ︸
n factors

= 0.

We have used (with induction) the theorem on the limit of a product and the result
of Example 22. �

Thus, for any n ∈ Z we obtain xn = o(ax) as x→+∞ if a > 1.

Example 29 Extending the preceding example, let us show that

lim
x→+∞

xα

ax
= 0

for a > 1 and any α ∈R, that is, xα = o(ax) as x→+∞.

Proof Indeed, let us choose n ∈N such that n > α. Then for x > 1 we obtain

0 <
xα

ax
<

xn

ax
.

Using properties of the limit and the result of the preceding example, we find that
limx→+∞ xα

ax = 0. �
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Example 30 Let us show that

lim
R+
x→0

a−1/x

xα
= 0

for a > 1 and any α ∈R, that is, a−1/x = o(xα) as x→ 0, x ∈R+.

Proof Setting x = −1/t in this case and using the theorem on the limit of a com-
posite function and the result of the preceding example, we find

lim
R+
x→0

a−1/x

xα
= lim

t→+∞
tα

at
= 0. �

Example 31 Let us show that

lim
x→+∞

loga x

xα
= 0

for α > 0, that is, for any positive exponent α we have loga x = o(xα) as x→+∞.

Proof If a > 1, we set x = at/α . Then by the properties of power functions and
the logarithm, the theorem on the limit of a composite function, and the result of
Example 29, we find

lim
x→+∞

loga x

xα
= lim

t→+∞
(t/α)

at
= 1

α
lim

t→+∞
t

at
= 0.

If 0 < a < 1, then 1/a > 1, and after the substitution x = a−t/α , we obtain

lim
x→+∞

loga x

xα
= lim

t→+∞
(−t/α)

a−t
=− 1

α
lim

t→+∞
t

(1/a)t
= 0. �

Example 32 Let us show further that

xα loga x = o(1) as x→ 0, x ∈R+

for any α > 0.

Proof We need to show that limR+
x→0 xα loga x = 0 for α > 0. Setting x = 1/t

and applying the theorem on the limit of a composite function and the result of the
preceding example, we find

lim
R+
x→0

xα loga x = lim
t→+∞

loga(1/t)

tα
=− lim

t→+∞
loga t

tα
= 0. �

Definition 23 Let us agree that the notation f =B O(g) or f =O(g) over the base
B (read “f is big-oh of g over B”) means that the relation f (x)= β(x)g(x) holds
ultimately over B where β(x) is ultimately bounded over B.
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In particular f =B O(1) means that the function f is ultimately bounded over B.

Example 33 ( 1
x
+ sinx)x =O(x) as x→∞.

Definition 24 The functions f and g are of the same order over B, and we write
f " g over B, if f =B O(g) and g=B O(f ) simultaneously.

Example 34 The functions (2+ sinx)x and x are of the same order as x→∞, but
(1+ sinx)x and x are not of the same order as x→∞.

The condition that f and g be of the same order over the base B is obviously
equivalent to the condition that there exist c1 > 0 and c2 > 0 and an element B ∈ B
such that the relations

c1
∣
∣g(x)

∣
∣≤ ∣∣f (x)

∣
∣≤ c2

∣
∣g(x)

∣
∣

hold on B , or, what is the same,

1

c2

∣
∣f (x)

∣
∣≤ ∣∣g(x)

∣
∣≤ 1

c1

∣
∣f (x)

∣
∣.

Definition 25 If the relation f (x) = γ (x)g(x) holds ultimately over B where
limB γ (x) = 1, we say that the function f behaves asymptotically like g over B,
or, more briefly, that f is equivalent to g over B.

In this case we shall write f ∼B g or f ∼ g over B.
The use of the word equivalent is justified by the relations

(
f ∼

B
f
)
,

(
f ∼

B
g
)
⇒

(
g∼

B
f
)
,

(
f ∼

B
g
)
∧
(
g∼

B
h
)
⇒

(
f ∼

B
h
)
.

Indeed, the relation f ∼B f is obvious, since in this case γ (x) ≡ 1. Next, if
limB γ (x) = 1, then limB

1
γ (x)

= 1 and g(x) = 1
γ (x)

f (x). Here all we that need to
explain is why it is permissible to assume that γ (x) �= 0. If the relation f (x) =
γ (x)g(x) holds on B1 ∈ B, and 1

2 < |γ (x)|< 3
2 on B2 ∈ B, then we can take B ∈ B

with B ⊂ B1 ∩ B2, on which both relations hold. Outside of B , if convenient, we
may assume that γ (x)≡ 1. Thus we do indeed have (f ∼ g)⇒ (g ∼ f ).

Finally, if f (x)= γ1(x)g(x) on B1 ∈ B and g(x)= γ2(x)h(x) on B2 ∈ B, then
on an element B ∈ B such that B ⊂ B1 ∩ B2, both of these relations hold simulta-
neously, and so f (x)= γ1(x)γ2(x)h(x) on B . But limB γ1(x)γ2(x)= limB γ1(x) ·
limB γ2(x)= 1, and hence we have verified that f ∼B h.
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It is useful to note that since the relation limB γ (x)= 1 is equivalent to γ (x)=
1+ α(x), where limB α(x)= 0, the relation f ∼B g is equivalent to f (x)= g(x)+
α(x)g(x)= g(x)+ o(g(x)) over B.

We see that the relative error |α(x)| = |f (x)−g(x)
g(x)

| in approximating f (x) by a
function g(x) that is equivalent to f (x) over B is infinitesimal over B.

Let us now consider some examples.

Example 35 x2 + x = (1+ 1
x
)x2 ∼ x2 as x→∞.

The absolute value of the difference of these functions
∣
∣(x2 + x

)− x2
∣
∣= |x|

tends to infinity. However, the relative error |x|
x2 = 1

|x| that results from replacing

x2 + x by the equivalent function x2 tends to zero as x→∞.

Example 36 At the beginning of this discussion we spoke of the famous asymptotic
law of distribution of the prime numbers. We can now give a precise statement of
this law:

π(x)= x

lnx
+ o

(
x

lnx

)

as x→+∞.

Example 37 Since limx→0
sinx
x
= 1, we have sinx ∼ x as x→ 0, which can also be

written as sinx = x + o(x) as x→ 0.

Example 38 Let us show that ln(1+ x)∼ x as x→ 0.

Proof

lim
x→0

ln(1+ x)

x
= lim

x→0
ln(1+ x)1/x = ln

(
lim
x→0

(1+ x)1/x
)
= ln e= 1.

Here we have used the relation loga(b
α) = α loga b in the first equality and the

relation limt→b loga t = loga b= loga(limt→b t) in the second. �

Thus, ln(1+ x)= x + o(x) as x→ 0.

Example 39 Let us show that ex = 1+ x + o(x) as x→ 0.

Proof

lim
x→0

ex − 1

x
= lim

t→0

t

ln(1+ t)
= 1.

Here we have made the substitution x = ln(1+ t), ex − 1= t and used the relations
ex → e0 = 1 as x→ 0 and ex �= 1 for x �= 0. Thus, using the theorem on the limit of
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a composite function and the result of the preceding example, we have proved the
assertion. �

Thus, ex − 1∼ x as x→ 0.

Example 40 Let us show that (1+ x)α = 1+ αx + o(x) as x→ 0.

Proof

lim
x→0

(1+ x)α − 1

x
= lim

x→0

eα ln(1+x) − 1

α ln(1+ x)
.
α ln(1+ x)

x
=

= α lim
t→0

et − 1

t
· lim
x→0

ln(1+ x)

x
= α.

In this computation, assuming α �= 0, we made the substitution α ln(1+ x)= t and
used the results of the two preceding examples.

If α = 0, the assertion is obvious. �

Thus, (1+ x)α − 1∼ αx as x→ 0.
The following simple fact is sometimes useful in computing limits.

Proposition 3 If f ∼B f̃ , then limB f (x)g(x) = limB f̃ (x)g(x), provided one of
these limits exists.

Proof Indeed, given that f (x)= γ (x)f̃ (x) and limB γ (x)= 1, we have

lim
B

f (x)g(x)= lim
B

γ (x)f̃ (x)g(x)= lim
B

γ (x) · lim
B

f̃ (x)g(x)= lim
B

f̃ (x)g(x).�

Example 41

lim
x→0

ln cosx

sin(x2)
= 1

2
lim
x→0

ln cos2 x

x2
= 1

2
lim
x→0

ln(1− sin2 x)

x2
=

= 1

2
lim
x→0

− sin2 x

x2
=−1

2
lim
x→0

x2

x2
=−1

2
.

Here we have used the relations ln(1 + α) ∼ α as α → 0, sinx ∼ x as x → 0,
1

sinβ
∼ 1

β
as β → 0, and sin2 x ∼ x2 as x→ 0.

We have proved that one may replace functions by other functions equivalent to
them in a given base when computing limits of monomials. This rule should not be
extended to sums and differences of functions.

Example 42
√

x2 + x ∼ x as x→+∞, but

lim
x→+∞

(√
x2 + x − x

) �= lim
x→+∞(x − x)= 0.
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In fact,

lim
x→+∞

(√
x2 + x − x

)= lim
x→+∞

x√
x2 + x + x

= lim
x→+∞

1
√

1+ 1
x
+ 1

= 1

2
.

We note one more widely used rule for handling the symbols o(·) and O(·) in
analysis.

Proposition 4 For a given base

a) o(f )+ o(f )= o(f );
b) o(f ) is also O(f );
c) o(f )+O(f )=O(f );
d) O(f )+O(f )=O(f );
e) if g(x) �= 0, then o(f (x))

g(x)
= o(

f (x)
g(x)

) and O(f (x))
g(x)

=O(
f (x)
g(x)

).

Notice some peculiarities of operations with the symbols o(·) and O(·) that
follow from the meaning of these symbols. For example 2o(f ) = o(f ) and
o(f )+O(f )=O(f ) (even though in general o(f ) �= 0); also, o(f )=O(f ), but
O(f ) �= o(f ). Here the equality sign is used in the sense of “is”. The symbols o(·)
and O(·) do not really denote a function, but rather indicate its asymptotic behavior,
a behavior that many functions may have simultaneously, for example, f and 2f ,
and the like.

Proof a) After the clarification just given, this assertion ceases to appear strange.
The first symbol o(f ) in it denotes a function of the form α1(x)f (x), where
limB α1(x) = 0. The second symbol o(f ), which one can (or should) equip with
some mark to distinguish it from the first, denotes a function of the form α2(x)f (x),
where limB α2(x) = 0. Then α1(x)f (x) + α2(x)f (x) = (α1(x) + α2(x))f (x) =
α3(x)f (x), where limB α3(x)= 0.

Assertion b) follows from the fact that any function having a limit is ultimately
bounded.

Assertion c) follows from b) and d).
Assertion d) follows from the fact that the sum of ultimately bounded functions

is ultimately bounded.
As for e), we have o(f (x))

g(x)
= α(x)f (x)

g(x)
= α(x)

f (x)
g(x)

= o(
f (x)
g(x)

).
The second part of assertion e) is verified similarly. �

Using these rules and the equivalences obtained in Example 40, we can now find
the limit in Example 42 by the following direct method:

lim
x→+∞

(√
x2 + x − x

) = lim
x→+∞x

(√

1+ 1

x
− 1

)

=

= lim
x→+∞x

(

1+ 1

2
· 1

x
+ o

(
1

x

)

− 1

)

=
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= lim
x→+∞

(
1

2
+ x · o

(
1

x

))

=

= lim
x→+∞

(
1

2
+ o(1)

)

= 1

2
.

We shall soon prove the following important relations, which should be memo-
rized at this point like the multiplication table:

ex = 1+ 1

1!x +
1

2!x
2 + · · · + 1

n!x
n + · · · for x ∈R,

cosx = 1− 1

2!x
2 + 1

4!x
4 + · · · + (−1)k

(2k)! x2k + · · · for x ∈R,

sinx = 1

1!x −
1

3!x
3 + · · · + (−1)k

(2k + 1)!x
2k+1 + · · · for x ∈R,

ln(1+ x) = x − 1

2
x2 + 1

3
x3 + · · · + (−1)n−1

n
xn + · · · for |x|< 1,

(1+ x)α = 1+ α

1!x +
α(α − 1)

2! x2 + · · ·+

+ α(α − 1) · · · (α − n+ 1)

n! xn + · · · for |x|< 1.

On the one hand, these relations can already be used as computational formulas, and
on the other hand they contain the following asymptotic formulas, which generalize
the formulas contained in Examples 37–40:

ex = 1+ 1

1!x +
1

2!x
2 + · · · + 1

n!x
n +O

(
xn+1) as x→ 0,

cosx = 1− 1

2!x
2 + 1

4!x
4 + · · · + (−1)k

(2k)! x2k +O
(
x2k+2) as x→ 0,

sinx = 1

1!x −
1

3!x
3 + · · · + (−1)k

(2k+ 1)!x
2k+1 +O

(
x2k+3) as x→ 0,

ln(1+ x) = x − 1

2
x2 + 1

3
x3 + · · · + (−1)n−1

n
xn +O

(
xn+1) as x→ 0,

(1+ x)α = 1+ α

1!x +
α(α − 1)

2! x2 + · · ·+

+ α(α − 1) · · · (α − n+ 1)

n! xn +O
(
xn+1) as x→ 0.

These formulas are usually the most efficient method of finding the limits of the
elementary functions. When doing so, it is useful to keep in mind that O(xm+1)=
xm+1 ·O(1)= xm · xO(1)= xmo(1)= o(xm) as x→ 0.

In conclusion, let us consider a few examples showing these formulas in action.
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Example 43

lim
x→0

x − sinx

x3
= lim

x→0

x − (x − 1
3!x

3 +O(x5))

x3
= lim

x→0

(
1

3! +O
(
x2)

)

= 1

3! .

Example 44 Let us find

lim
x→∞x2

(
7

√
x3 + x

1+ x3
− cos

1

x

)

.

As x→∞ we have:

x3 + x

1+ x3
= 1+ x−2

1+ x−3
=
(

1+ 1

x2

)(

1+ 1

x3

)−1

=

=
(

1+ 1

x2

)(

1− 1

x3
+O

(
1

x6

))

= 1+ 1

x2
+O

(
1

x3

)

,

7

√
x3 + x

1+ x3
=
(

1+ 1

x2
+O

(
1

x3

))1/7

= 1+ 1

7
· 1

x2
+O

(
1

x3

)

,

cos
1

x
= 1− 1

2! ·
1

x2
+O

(
1

x4

)

,

from which we obtain

7

√
x3 + x

1+ x3
− cos

1

x
= 9

14
· 1

x2
+O

(
1

x3

)

as x→∞.

Hence the required limit is

lim
x→∞x2

(
9

14x2
+O

(
1

x3

))

= 9

14
.

Example 45

lim
x→∞

[
1

e

(

1+ 1

x

)x]x

= lim
x→∞ exp

{

x

(

ln

(

1+ 1

x

)x

− 1

)}

=

= lim
x→∞ exp

{

x2 ln

(

1+ 1

x

)

− x

}

=

= lim
x→∞ exp

{

x2
(

1

x
− 1

2x2
+O

(
1

x3

))

− x

}

=

= lim
x→∞ exp

{

−1

2
+O

(
1

x

)}

= e−1/2.
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3.2.5 Problems and Exercises

1. a) Prove that there exists a unique function defined on R and satisfying the fol-
lowing conditions:

f (1)= a (a > 0, a �= 1),

f (x1) · f (x2)= f (x1 + x2),

f (x)→ f (x0) as x→ x0.

b) Prove that there exists a unique function defined on R+ and satisfying the
following conditions:

f (a)= 1 (a > 0, a �= 1),

f (x1)+ f (x2)= f (x1 · x2),

f (x)→ f (x0) for x0 ∈R+ and R+ 
 x→ x0.

Hint: Look again at the construction of the exponential function and logarithm dis-
cussed in Example 10.

2. a) Establish a one-to-one correspondence ϕ : R→ R+ such that ϕ(x + y) =
ϕ(x) · ϕ(y) for any x, y ∈ R, that is, so that the operation of multiplication in the
image (R+) corresponds to the operation of addition in the pre-image (R). The
existence of such a mapping means that the groups (R,+) and (R+, ·) are identical
as algebraic objects, or, as we say, they are isomorphic.

b) Prove that the groups (R,+) and (R\0, ·) are not isomorphic.

3. Find the following limits.

a) limx→+0 xx ;
b) limx→+∞ x1/x ;
c) limx→0

loga(1+x)

x
;

d) limx→0
ax−1

x
.

4. Show that

1+ 1

2
+ · · · + 1

n
= lnn+ c+ o(1) as n→∞,

where c is a constant. (The number c= 0.57721 . . . is called Euler’s constant.)
Hint: One can use the relation

ln
n+ 1

n
= ln

(

1+ 1

n

)

= 1

n
+O

(
1

n2

)

as n→∞.

5. Show that

a) if two series
∑∞

n=1 an and
∑∞

n=1 bn with positive terms are such that an ∼ bn

as n→∞, then the two series either both converge or both diverge;
b) the series

∑∞
n=1 sin 1

np converges only for p > 1.
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6. Show that

a) if an ≥ an+1 > 0 for all n ∈ N and the series
∑∞

n=1 an converges, then an =
o( 1

n
) as n→∞;

b) if bn = o( 1
n
), one can always construct a convergent series

∑∞
n=1 an such that

bn = o(an) as n→∞;
c) if a series

∑∞
n=1 an with positive terms converges, then the series

∑∞
n=1 An,

where An =
√∑∞

k=n αk−
√∑∞

k=n+1 ak also converges, and an = o(An) as n→∞;

d) if a series
∑∞

n=1 an with positive terms diverges, then the series
∑∞

n=2 An,

where An =
√∑n

k=1 ak −
√∑n−1

k=1 ak also diverges, and An = o(an) as n→∞.
It follows from c) and d) that no convergent (resp. divergent) series can serve as

a universal standard of comparison to establish the convergence (resp. divergence)
of other series.

7. Show that

a) the series
∑∞

n=1 lnan, where an > 0, n ∈ N, converges if and only if the se-
quence {Πn = a1 · · ·an} has a finite nonzero limit.

b) the series
∑∞

n=1 ln(1+ αn), where |αn|< 1, converges absolutely if and only
if the series

∑∞
n=1 αn converges absolutely.

Hint: See part a) of Exercise 5.

8. An infinite product
∏∞

k=1 ek is said to converge if the sequence of numbers Πn =∏n
k=1 ek has a finite nonzero limit Π . We then set Π =∏∞

k=1 ek .
Show that

a) if an infinite product
∏∞

n=1 en converges, then en→ 1 as n→∞;
b) if ∀n ∈N (en > 0), then the infinite product

∏∞
n=1 en converges if and only if

the series
∑∞

n=1 ln en converges;
c) if en = 1+ αn and the αn are all of the same sign, then the infinite product∏∞

n=1(1+ αn) converges if and only if the series
∑∞

n=1 αn converges.

9. a) Find the product
∏∞

n=1(1+ x2n−1).

b) Find
∏∞

n=1 cos x
2n and prove the following theorem of Viète14

π

2
= 1

√
1
2 ·
√

1
2+ 1

2

√
1
2 ·
√

1
2+ 1

2

√
1
2+ 1

2

√
1
2 · · ·

.

c) Find the function f (x) if

f (0)= 1,

14F. Viète (1540–1603) – French mathematician, one of the creators of modern symbolic algebra.
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f (2x)= cos2 x · f (x),

f (x)→ f (0) as x→ 0.

Hint: x = 2 · x
2 .

10. Show that

a) if bn

bn+1
= 1+ βn,n= 1,2, . . . , and the series

∑∞
n=1 βn converges absolutely,

then the limit limn→∞ bn = b ∈R exists;
b) if an

αn+1
= 1+ p

n
+ αn,n= 1,2, . . . , and the series

∑∞
n=1 αn converges abso-

lutely, then an ∼ c
np as n→∞;

c) if the series
∑∞

n=1 an is such that an

an+1
= 1+ p

n
+ αn and the series

∑∞
n=1 αn

converges absolutely, then
∑∞

n=1 an converges absolutely for p > 1 and diverges
for p ≤ 1 (Gauss’ test for absolute convergence of a series).

11. Show that

lim
n→∞

(
1+ an+1

an

)n

≥ e

for any sequence {an}with positive terms, and that this estimate cannot be improved.



Chapter 4
Continuous Functions

4.1 Basic Definitions and Examples

4.1.1 Continuity of a Function at a Point

Let f be a real-valued function defined in a neighborhood of a point a ∈ R. In
intuitive terms the function f is continuous at a if its value f (x) approaches the
value f (a) that it assumes at the point a itself as x gets nearer to a.

We shall now make this description of the concept of continuity of a function at
a point precise.

Definition 0 A function f is continuous at the point a if for any neighborhood
V (f (a)) of its value f (a) at a there is a neighborhood U(a) of a whose image
under the mapping f is contained in V (f (a)).

We now give the expression of this concept in logical symbolism, along with two
other versions of it that are frequently used in analysis.

(f is continuous at a) := (∀V (f (a)
) ∃U(a)

(
f
(
U(a)

)⊂ V
(
f (a)

)))
,

∀ε > 0 ∃U(a) ∀x ∈U(a)
(∣
∣f (x)− f (a)

∣
∣< ε

)
,

∀ε > 0 ∃δ > 0 ∀x ∈R
(|x − a|< δ⇒ ∣

∣f (x)− f (a)
∣
∣< ε

)
.

The equivalence of these statements for real-valued functions follows from the
fact (already noted several times) that any neighborhood of a point contains a sym-
metric neighborhood of the point.

For example, if for any ε-neighborhood V ε(f (a)) of f (a) one can choose
a neighborhood U(a) of a such that ∀x ∈ U(a) (|f (x) − f (a)| < ε), that is,
f (U(a)) ⊂ V ε(f (a)), then for any neighborhood V (f (a)) one can also choose a
corresponding neighborhood of a. Indeed, it suffices first to take an ε-neighborhood
of f (a) with V ε(f (a))⊂ V (f (a)), and then find U(a) corresponding to V ε(f (a)).
Then f (U(a))⊆ V ε(f (a))⊂ V (f (a)).
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150 4 Continuous Functions

Thus, if a function is continuous at a in the sense of the second of these defini-
tions, it is also continuous at a in the sense of the original definition. The converse
is obvious, so that the equivalence of the two statements is established.

We leave the rest of the verification to the reader.
To avoid being distracted from the basic concept being defined, that of continuity

at a point, we assumed for simplicity to begin with that the function f was defined
in a whole neighborhood of a. We now consider the general case.

Let f : E → R be a real-valued function defined on some set E ⊂ R and a a
point of the domain of definition of the function.

Definition 1 A function f : E → R is continuous at the point a ∈ E if for every
neighborhood V (f (a)) of the value f (a) that the function assumes at a there exists
a neighborhood UE(a) of a in E1 whose image f (UE(a)) is contained in V (f (a)).

Thus

(f :E→R is continuous at a ∈E) :=
= (∀V (

f (a)
) ∃UE(a)

(
f
(
UE(a)

)⊂ V
(
f (a)

)))
.

Of course, Definition 1 can also be written in the ε–δ-form discussed above. Where
numerical estimates are needed, this will be useful, and even necessary.

We now write these versions of Definition 1.

(f :E→R is continuous at a ∈E) :=
= (∀ε > 0 ∃UE(a) ∀x ∈UE(a)

(∣
∣f (x)− f (a)

∣
∣< ε

))
,

or

(f :E→R is continuous at a ∈E) :=
= (∀ε > 0 ∃δ > 0 ∀x ∈E

(|x − a|< δ⇒ ∣
∣f (x)− f (a)

∣
∣< ε

))
.

We now discuss in detail the concept of continuity of a function at a point.
10 If a is an isolated point, that is, not a limit point of E, there is a neighbor-

hood U(a) of a containing no points of E except a itself. In this case UE(a)= a,
and therefore f (UE(a)) = f (a) ⊂ V (f (a)) for any neighborhood V (f (a)). Thus
a function is obviously continuous at any isolated point of its domain of definition.
This, however, is a degenerate case.

20 The substantive part of the concept of continuity thus involves the case when
a ∈E and a is a limit point of E. It is clear from Definition 1 that

(f :E→R is continuous at a ∈E, where a is a limit point of E)⇔
⇔

(
lim

E
x→a
f (x)= f (a)

)
.

1We recall that UE(a)=E ∩U(a).
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Proof In fact, if a is a limit point of E, then the base E 
 x → a of deleted neigh-
borhoods ŮE(a)=UE(a)\a of a is defined.

If f is continuous at a, then, by finding a neighborhood UE(a) for the neigh-
borhood V (f (a)) such that f (UE(a)) ⊂ V (f (a)), we will simultaneously have
f (ŮE(a))⊂ V (f (a)). By definition of limit, therefore, limE
x→a f (x)= f (a).

Conversely, if we know that limE
x→a f (x)= f (a), then, given a neighborhood
V (f (a)), we find a deleted neighborhood ŮE(a) such that f (ŮE(a)) ⊂ V (f (a)).
But since f (a) ∈ V (f (a)), we then have also f (UE(a)) ⊂ V (f (a)). By Defini-
tion 1 this means that f is continuous at a ∈E. �

30 Since the relation limE
x→a f (x)= f (a) can be rewritten as

lim
E
x→a

f (x)= f
(

lim
E
x→a

x
)
,

we now arrive at the useful conclusion that the continuous functions (operations)
and only the continuous ones commute with the operation of passing to the limit at
a point. This means that the number f (a) obtained by carrying out the operation f

on the number a can be approximated as closely as desired by the values obtained
by carrying out the operation f on values of x that approximate a with suitable
accuracy.

40 If we remark that for a ∈ E the neighborhoods UE(a) of a form a base Ba

(whether a is a limit point or an isolated point of E), we see that Definition 1 of
continuity of a function at the point a is the same as the definition of the statement
that the number f (a) – the value of the function at a – is the limit of the function
over this base, that is

(f :E→R is continuous at a ∈E)⇔
(

lim
Ba

f (x)= f (a)
)
.

50 We remark, however, that if limBa
f (x) exists, since a ∈ UE(a) for every

neighborhood UE(a), it follows that this limit must necessarily be f (a).
Thus, continuity of a function f : E → R at a point a ∈ E is equivalent to the

existence of the limit of this function over the base Ba of neighborhoods (not deleted
neighborhoods) UE(a) of a ∈E.

Thus

(f :E→R is continuous at a ∈E)⇔
(
∃ lim

Ba

f (x)
)
.

60 By the Cauchy criterion for the existence of a limit, we can now say that a
function is continuous at a point a ∈ E if and only if for every ε > 0 there exists a
neighborhood UE(a) of a in E on which the oscillation ω(f ;UE(a)) of the function
is less than ε.

Definition 2 The quantity ω(f ;a) = limδ→+0 ω(f ;Uδ
E(a)) (where Uδ

E(a) is the
δ-neighborhood of a in E) is called the oscillation of f :E→R at a.
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Formally the symbol ω(f ;X) has already been taken; it denotes the oscillation
of the function on the set X. However, we shall never consider the oscillation of a
function on a set consisting of a single point (it would obviously be zero); therefore
the symbol ω(f ;a), where a is a point, will always denote the concept of oscillation
at a point just defined in Definition 2.

The oscillation of a function on a subset of a set does not exceed its oscillation
on the set itself, so that ω(f ;Uδ

E(a)) is a nondecreasing function of δ. Since it is
nonnegative, either it has a finite limit as δ→+0, or else ω(f ;Uδ

E(a))=+∞ for
every δ > 0. In the latter case we naturally set ω(f ;a)=+∞.

70 Using Definition 2 we can summarize what was said in 60 as follows: a func-
tion is continuous at a point if and only if its oscillation at that point is zero. Let us
make this explicit:

(f :E→R is continuous at a ∈E)⇔ (
ω(f ;a)= 0

)
.

Definition 3 A function f :E→R is continuous on the set E if it is continuous at
each point of E.

The set of all continuous real-valued functions defined on a set E will be denoted
C(E;R) or, more, C(E).

We have now discussed the concept of continuity of a function. Let us consider
some examples.

Example 1 If f : E → R is a constant function, then f ∈ C(E). This is obvious,
since f (E)= c⊂ V (c), for any neighborhood V (c) of c ∈R.

Example 2 The function f (x)= x is continuous on R. Indeed, for any point x0 ∈R

we have |f (x)− f (x0)| = |x − x0|< ε provided |x − x0|< δ = ε.

Example 3 The function f (x)= sinx is continuous on R.
In fact, for any point x0 ∈R we have

| sinx − sinx0| =
∣
∣
∣
∣2 cos

x + x0

2
sin

x − x0

2

∣
∣
∣
∣≤

≤ 2

∣
∣
∣
∣sin

x − x0

2

∣
∣
∣
∣≤ 2

∣
∣
∣
∣
x − x0

2

∣
∣
∣
∣= |x − x0|< ε,

provided |x − x0|< δ = ε.
Here we have used the inequality | sinx| ≤ |x| proved in Example 9 of Para-

graph d) of Sect. 3.2.2.

Example 4 The function f (x)= cosx is continuous on R.
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Indeed, as in the preceding example, for any point x0 ∈R we have

| cosx − cosx0| =
∣
∣
∣
∣−2 sin

x + x0

2
sin

x − x0

2

∣
∣
∣
∣≤

≤ 2

∣
∣
∣
∣sin

x − x0

2

∣
∣
∣
∣≤ |x − x0|< ε,

provided |x − x0|< δ = ε.

Example 5 The function f (x)= ax is continuous on R.
Indeed by property 3) of the exponential function (see Paragraph d in Sect. 3.2.2,

Example 10a), at any point x0 ∈R we have

lim
x→x0

ax = ax0,

which, as we now know, is equivalent to the continuity of the function ax at the
point x0.

Example 6 The function f (x)= loga x is continuous at any point x0 in its domain
of definition R+ = {x ∈R | x > 0}.

In fact, by property 3) of the logarithm (see Paragraph d in Sect. 3.2.2, Example
10b), at each point x0 ∈R+ we have

lim
R+
x→x0

loga x = loga x0,

which is equivalent to the continuity of the function loga x at the point x0.
Now, given ε > 0, let us try to find a neighborhood UR+(x0) of the point x0 so as

to have

| loga x − loga x0|< ε

at each point x ∈UR+(x0).
This inequality is equivalent to the relations

−ε < loga

x

x0
< ε.

For definiteness assume a > 1; then these last relations are equivalent to

x0a
−ε < x < x0a

ε.

The open interval ]x0a
−ε, x0a

ε[ is the neighborhood of the point x0 that we
are seeking. It is useful to note that this neighborhood depends on both ε and the
point x0, a phenomenon that did not occur in Examples 1–4.



154 4 Continuous Functions

Example 7 Any sequence f : N→ R is a function that is continuous on the set N
of natural numbers, since each point of N is isolated.

4.1.2 Points of Discontinuity

To improve our mastery of the concept of continuity, we shall explain what happens
to a function in a neighborhood of a point where it is not continuous.

Definition 4 If the function f :E→R is not continuous at a point of E, this point
is called a point of discontinuity or simply a discontinuity of f .

By constructing the negation of the statement “the function f :E→R is contin-
uous at the point a ∈E”, we obtain the following expression of the definition of the
statement that a is a point of discontinuity of f :

(a ∈E is a point of discontinuity of f ) :=
= (∃V (f (a)

) ∀UE(a) ∃x ∈UE(a)
(
f (x) /∈ V

(
f (a)

)))
.

In other words, a ∈ E is a point of discontinuity of the function f : E → R if
there is a neighborhood V (f (a)) of the value f (a) that the function assumes at a

such that in any neighborhood UE(a) of a in E there is a point x whose image is
not in V (f (a)).

In ε–δ-form, this definition has the following appearance:

∃ε > 0 ∀δ > 0 ∃x ∈E
(|x − a|< δ ∧ ∣∣f (x)− f (a)

∣
∣≥ ε

)
.

Let us consider some examples.

Example 8 The function f (x) = sgnx is constant and hence continuous in the
neighborhood of any point a ∈ R that is different from 0. But in any neighbor-
hood of 0 its oscillation equals 2. Hence 0 is a point of discontinuity for sgnx. We
remark that this function has a left-hand limit limx→−0 sgnx =−1 and a right-hand
limit limx→+0 sgnx = 1. However, in the first place, these limits are not the same;
and in the second place, neither of them is equal to the value of sgnx at the point 0,
namely sgn 0 = 0. This is a direct verification that 0 is a point of discontinuity for
this function.

Example 9 The function f (x)= | sgnx| has the limit limx→0 | sgnx| = 1 as x→ 0,
but f (0) = | sgn 0| = 0, so that limx→0 f (x) �= f (0), and 0 is therefore a point of
discontinuity of the function.

We remark, however, that in this case, if we were to change the value of the
function at the point 0 and set it equal to 1 there, we would obtain a function that is
continuous at 0, that is, we would remove the discontinuity.
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Fig. 4.1

Definition 5 If a point of discontinuity a ∈ E of the function f : E → R is such
that there exists a continuous function f̃ : E→ R such that f |E\a = f̃ |E\a , then a

is called a removable discontinuity of the function f .

Thus a removable discontinuity is characterized by the fact that the limit
limE
x→a f (x)=A exists, but A �= f (a), and it suffices to set

f̃ (x)=
{

f (x) for x ∈E,x �= a,

A for x = a,

in order to obtain a function f̃ :E→R that is continuous at a.

Example 10 The function

f (x)=
{

sin 1
x
, for x �= 0,

0, for x = 0,

is discontinuous at 0. Moreover, it does not even have a limit as x → 0, since, as
was shown Example 5 in Sect. 3.2.1, limx→0 sin 1

x
does not exist. The graph of the

function sin 1
x

is shown in Fig. 4.1.
Examples 8, 9 and 10 explain the following terminology.

Definition 6 The point a ∈ E is called a discontinuity of first kind for the function
f :E→R if the following limits2 exist:

lim
E
x→a−0

f (x)=: f (a − 0), lim
E
x→a+0

f (x)=: f (a + 0),

but at least one of them is not equal to the value f (a) that the function assumes at a.

2If a is a discontinuity, then a must be a limit point of the set E. It may happen, however, that all
the points of E in some neighborhood of a lie on one side of a. In that case, only one of the limits
in this definition is considered.
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Definition 7 If a ∈ E is a point of discontinuity of the function f : E→ R and at
least one of the two limits in Definition 6 does not exist, then a is called a disconti-
nuity of second kind.

Thus what is meant is that every point of discontinuity that is not a discontinuity
of first kind is automatically a discontinuity of second kind.

Let us present two more classical examples.

Example 11 The function

D(x)=
{

1, if x ∈Q,

0, if x ∈R\Q,

is called the Dirichlet function.3

This function is discontinuous at every point, and obviously all of its discontinu-
ities are of second kind, since in every interval there are both rational and irrational
numbers.

Example 12 Consider the Riemann function4

R(x)=
{

1
n
, if x = m

n
∈Q, where m

n
is in lowest terms, n ∈N,

0, if x ∈R\Q.

We remark that for any point a ∈R, any bounded neighborhood U(a) of it, and any
number N ∈ N, the neighborhood U(a) contains only a finite number of rational
numbers m

n
, m ∈ Z, n ∈N, with n < N .

By shrinking the neighborhood, one can then assume that the denominators of
all rational numbers in the neighborhood (except possibly for the point a itself if
a ∈Q) are larger than N . Thus at any point x ∈ Ů(a) we have |R(x)|< 1/N .

We have thereby shown that

lim
x→a

R(x)= 0

at any point a ∈ R\Q. Hence the Riemann function is continuous at any irrational
number. At the remaining points, that is, at points x ∈Q, the function is discontinu-
ous, except at the point x = 0, and all of these discontinuities are discontinuities of
first kind.

3P.G. Dirichlet (1805–1859) – great German mathematician, an analyst who occupied the post of
professor ordinarius at Göttingen University after the death of Gauss in 1855.
4B.F. Riemann (1826–1866) – outstanding German mathematician whose ground-breaking works
laid the foundations of whole areas of modern geometry and analysis.
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4.2 Properties of Continuous Functions

4.2.1 Local Properties

The local properties of functions are those that are determined by the behavior of
the function in an arbitrarily small neighborhood of the point in its domain of defi-
nition.

Thus, the local properties themselves characterize the behavior of a function in
any limiting relation when the argument of the function tends to the point in ques-
tion. For example, the continuity of a function at a point of its domain of definition
is obviously a local property.

We shall now exhibit the main local properties of continuous functions.

Theorem 1 Let f :E→R be a function that is continuous at the point a ∈E. Then
the following statements hold.

10 The function f :E→R is bounded in some neighborhood UE(a) of a.
20 If f (a) �= 0, then in some neighborhood UE(a) all the values of the function

have the same sign as f (a).
30 If the function g :UE(a)→R is defined in some neighborhood of a and, like f ,

is continuous at a, then the following functions are defined in some neighbor-
hood of a and continuous at a:

a) (f + g)(x) := f (x)+ g(x),
b) (f · g)(x) := f (x) · g(x),
c) (

f
g
)(x) := f (x)

g(x)
(provided g(a) �= 0).

40 If the function g : Y → R is continuous at a point b ∈ Y and f is such that
f : E → Y,f (a) = b, and f is continuous at a, then the composite function
(g ◦ f ) is defined on E and continuous at a.

Proof To prove this theorem it suffices to recall (see Sect. 4.1) that the continuity
of the function f or g at a point a of its domain of definition is equivalent to the
condition that the limit of this function exists over the base Ba of neighborhoods of
a and is equal to the value of the function at a: limBa

f (x) = f (a), limBa
g(x) =

g(a).
Thus assertions 10, 20, and 30 of Theorem 1 follow immediately from the defi-

nition of continuity of a function at a point and the corresponding properties of the
limit of a function.

The only explanation required is to verify that the ratio f (x)
g(x)

is actually defined

in some neighborhood ŨE(a) of a. But by hypothesis g(a) �= 0, and by assertion 20

of the theorem there exists a neighborhood ŨE(a) at every point of which g(x) �= 0,
that is, f (x)

g(x)
is defined in ŨE(a).
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Assertion 40 of Theorem 1 is a consequence of the theorem on the limit of a
composite function, by virtue of which

lim
Ba

(g ◦ f )(x)= lim
Bb

g(y)= g(b)= g
(
f (a)

)= (g ◦ f )(a),

which is equivalent to the continuity of (g ◦ f ) at a.
However, to apply the theorem on the limit of a composite function, we must ver-

ify that for any element UY (b) of the base Bb there exists an element UE(a) of the
base Ba such that f (UE(a))⊂UY (b). But in fact, if UY (b)= Y ∩U(b), then by def-
inition of the continuity of f :E→ Y at the point a, given a neighborhood U(b)=
U(f (a)), there is a neighborhood UE(a) of a in E such that f (UE(a))⊂U(f (a)).
Since the range of f is contained in Y , we have f (UE(a))⊂ Y ∩U(f (a))=UY (b),
and we have justified the application of the theorem on the limit of a composite func-
tion. �

Example 1 An algebraic polynomial P(x)= a0x
n+ a1x

n−1 + · · · + an is a contin-
uous function on R.

Indeed, it follows by induction from 30 of Theorem 1 that the sum and prod-
uct of any finite number of functions that are continuous at a point are themselves
continuous at that point. We have verified in Examples 1 and 2 of Sect. 4.1 that
the constant function and the function f (x) = x are continuous on R. It then fol-
lows that the functions axm = a · x · . . . · x︸ ︷︷ ︸

m factors

are continuous, and consequently the

polynomial P(x) is also.

Example 2 A rational function R(x)= P(x)
Q(x)

– a quotient of polynomials – is contin-
uous wherever it is defined, that is, where Q(x) �= 0. This follows from Example 1
and assertion 30 of Theorem 1.

Example 3 The composition of a finite number of continuous functions is continu-
ous at each point of its domain of definition. This follows by induction from asser-
tion 40 of Theorem 1. For example, the function esin2(ln | cosx|) is continuous on all
of R, except at the points π

2 (2k+ 1), k ∈ Z, where it is not defined.

4.2.2 Global Properties of Continuous Functions

A global property of a function, intuitively speaking, is a property involving the
entire domain of definition of the function.

Theorem 2 (The Bolzano–Cauchy intermediate-value theorem) If a function that is
continuous on a closed interval assumes values with different signs at the endpoints
of the interval, then there is a point in the interval where it assumes the value 0.
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In logical symbols, this theorem has the following expression.5

(
f ∈ C[a, b] ∧ f (a) · f (b) < 0

)⇒∃c ∈ [a, b] (f (c)= 0
)
.

Proof Let us divide the interval [a, b] in half. If the function does not assume the
value 0 at the point of division, then it must assume opposite values at the endpoints
of one of the two subintervals. In that interval we proceed as we did with the original
interval, that is, we bisect it and continue the process.

Then either at some step we hit a point c ∈ [a, b] where f (c)= 0, or we obtain
a sequence {In} of nested closed intervals whose lengths tend to zero and at whose
endpoints f assumes values with opposite signs. In the second case, by the nested
interval lemma, there exists a unique point c ∈ [a, b] common to all the intervals.
By construction there are two sequences of endpoints {x′n} and {x′′n} of the inter-
vals In such that f (x′n) < 0 and f (x′′n) > 0, while limn→∞ x′n = limn→∞ x′′n = c.
By the properties of a limit and the definition of continuity, we then find that
limn→∞ f (x′n)= f (c)≤ 0 and limn→∞ f (x′′n)= f (c)≥ 0. Thus f (c)= 0. �

Remarks to Theorem 2 10 The proof of the theorem provides a very simple algo-
rithm for finding a root of the equation f (x)= 0 on an interval at whose endpoints
a continuous function f (x) has values with opposite signs.

20 Theorem 2 thus asserts that it is impossible to pass continuously from positive
to negative values without assuming the value zero along the way.

30 One should be wary of intuitive remarks like Remark 20, since they usually
assume more than they state. Consider, for example, the function equal to −1 on
the closed interval [0,1] and equal to 1 on the closed interval [2, 3]. It is clear
that this function is continuous on its domain of definition and assumes values with
opposite signs, yet never assumes the value 0. This remark shows that the property
of a continuous function expressed by Theorem 2 is actually the result of a certain
property of the domain of definition (which, as will be made clear below, is the
property of being connected).

Corollary to Theorem 2 If the function ϕ is continuous on an open interval and
assumes values ϕ(a)= A and ϕ(b)= B at points a and b, then for any number C

between A and B , there is a point c between a and b at which ϕ(c)= C.

Proof The closed interval I with endpoints a and b lies inside the open interval
on which ϕ is defined. Therefore the function f (x) = ϕ(x) − C is defined and
continuous on I . Since f (a) · f (b) = (A − C)(B − C) < 0, Theorem 2 implies
that there is a point c between a and b at which f (c)= ϕ(c)−C = 0. �

Theorem 3 (The Weierstrass maximum-value theorem) A function that is continu-
ous on a closed interval is bounded on that interval. Moreover there is a point in

5We recall that C(E) denotes the set of all continuous functions on the set E. In the case E = [a, b]
we often write, more briefly, C[a, b] instead of C([a, b]).
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the interval where the function assumes its maximum value and a point where it
assumes its minimal value.

Proof Let f : E → R be a continuous function on the closed interval E = [a, b].
By the local properties of a continuous function (see Theorem 1) for any point
x ∈E there exists a neighborhood U(x) such that the function is bounded on the set
UE(x)=E ∩U(x). The set of such neighborhoods U(x) constructed for all x ∈E

forms a covering of the closed interval [a, b] by open intervals. By the finite cover-
ing lemma, one can extract a finite system U(x1), . . . ,U(xn) of open intervals that
together cover the closed interval [a, b]. Since the function is bounded on each set
E ∩U(xk)=UE(xk), that is, mk ≤ f (x)≤Mk , where mk and Mk are real numbers
and x ∈UE(xk), we have

min{m1, . . . ,mn} ≤ f (x)≤max{M1, . . . ,MN }
at any point x ∈E = [a, b]. It is now established that f (x) is bounded on [a, b].

Now let M = supx∈E f (x). Assume that f (x) < M at every point x ∈ E. Then
the continuous function M − f (x) on E is nowhere zero, although (by the defini-
tion of M) it assumes values arbitrarily close to 0. It then follows that the function

1
M−f (x)

is, on the one hand, continuous on E because of the local properties of con-
tinuous functions, but on the other hand not bounded on E, which contradicts what
has just been proved about a function continuous on a closed interval.

Thus there must be a point xM ∈ [a, b] at which f (xM)=M .
Similarly, by considering m = infx∈E f (x) and the auxiliary function 1

f (x)−m
,

we prove that there exists a point xm ∈ [a, b] at which f (xm)=m. �

We remark that, for example, the functions f1(x)= x and f2(x)= 1
x

are contin-
uous on the open interval E = ]0,1[, but f1 has neither a maximal nor a minimal
value on E, and f2 is unbounded on E. Thus, the properties of a continuous function
expressed in Theorem 3 involve some property of the domain of definition, namely
the property that from every covering of E by open intervals one can extract a finite
subcovering. From now on we shall call such sets compact.

Before passing to the next theorem, we give a definition.

Definition 1 A function f : E → R is uniformly continuous on a set E ⊂ R if for
every ε > 0 there exists δ > 0 such that |f (x1)−f (x2)|< ε for all points x1, x2 ∈E

such that |x1 − x2|< δ.

More briefly,

(f :E→R is uniformly continuous) :=
= (∀ε > 0 ∃δ > 0 ∀x1 ∈E ∀x2 ∈E

(|x1 − x2|< δ⇒ ∣
∣f (x1)− f (x2)

∣
∣< ε

))
.

Let us now discuss the concept of uniform continuity.
10 If a function is uniformly continuous on a set, it is continuous at each point of

that set. Indeed, in the definition just given it suffices to set x1 = x and x2 = a, and
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we see that the definition of continuity of a function f : E→ R at a point a ∈ E is
satisfied.

20 Generally speaking, the continuity of a function does not imply its uniform
continuity.

Example 4 The function f (x)= sin 1
x

, which we have encountered many times, is
continuous on the open interval ]0,1[ = E. However, in every neighborhood of 0
in the set E the function assumes both values −1 and 1. Therefore, for ε < 2, the
condition |f (x1)− f (x2)|< ε does not hold.

In this connection it is useful to write out explicitly the negation of the property
of uniform continuity for a function:

(f :E→R is not uniformly continuous) :=
= (∃ε > 0 ∀δ > 0 ∃x1 ∈E ∃x2 ∈E

(|x1 − x2|< δ ∧ ∣∣f (x1)− f (x2)
∣
∣≥ ε

))
.

This example makes the difference between continuity and uniform continuity
of a function on a set intuitive. To point out the place in the definition of uniform
continuity from which this difference proceeds, we give a detailed expression of
what it means for a function f :E→R to be continuous on E:

(f :E→R is continuous on E) :=
= (∀a ∈E ∀ε > 0 ∃δ > 0 ∀x ∈E

(|x − a|< δ⇒ ∣
∣f (x)− f (a)

∣
∣< ε

))
.

Thus the number δ is chosen knowing the point a ∈E and the number ε, and so
for a fixed ε the number δ may vary from one point to another, as happens in the
case of the function sin 1

x
considered in Example 1, or in the case of the function

loga x or ax studied over their full domain of definition.
In the case of uniform continuity we are guaranteed the possibility of choosing δ

knowing only ε > 0 so that |x− a|< δ implies |f (x)− f (a)|< ε for all x ∈E and
a ∈E.

Example 5 If the function f : E → R is unbounded in every neighborhood of a
fixed point x0 ∈E, then it is not uniformly continuous.

Indeed, in that case for any δ > 0 there are points x1 and x2 in every δ
2 -

neighborhood of x0 such that |f (x1)− f (x2)|> 1 although |x1 − x2|< δ.
Such is the situation with the function f (x) = 1

x
on the set R\0. In this case

x0 = 0. The same situation holds in regard to loga x, which is defined on the set of
positive numbers and unbounded in a neighborhood of x0 = 0.

Example 6 The function f (x) = x2, which is continuous on R, is not uniformly
continuous on R.
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In fact, at the points x′n =
√

n+ 1 and x′′n =
√

n, where n ∈N, we have f (x′n)=
n+ 1 and f (x′′n)= n, so that f (x′n)− f (x′′n)= 1. But

lim
n→∞(

√
n+ 1−√n)= lim

n→∞
1√

n+ 1+√n
= 0,

so that for any δ > 0 there are points x′n and x′′n such that |x′n− x′′n |< δ, yet f (x′n)−
f (x′′n)= 1.

Example 7 The function f (x) = sin(x2), which is continuous and bounded on R,

is not uniformly continuous on R. Indeed, at the points x′n =
√

π
2 (n+ 1) and x′′n =

√
π
2 n, where n ∈N, we have |f (x′n)− f (x′′n)| = 1, while limn→∞ |x′n− x′′n | = 0.

After this discussion of the concept of uniform continuity of a function and com-
parison of continuity and uniform continuity, we can now appreciate the following
theorem.

Theorem 4 (The Cantor–Heine theorem on uniform continuity) A function that is
continuous on a closed interval is uniformly continuous on that interval.

We note that this theorem is usually called Cantor’s theorem in the literature. To
avoid unconventional terminology we shall preserve this common name in subse-
quent references.

Proof Let f : E → R be a given function, E = [a, b], and f ∈ C(E). Since f is
continuous at every point x ∈E, it follows (see 60 in Sect. 4.1.1) that, knowing ε > 0
we can find a δ-neighborhood Uδ(x) of x such that the oscillation ω(f ;Uδ

E(x))

of f on the set Uδ
E(x) = E ∩ Uδ(x), consisting of the points in the domain of

definition E lying in Uδ(x), is less than ε. For each point x ∈ E we construct a
neighborhood Uδ(x) having this property. The quantity δ may vary from one point
to another, so that it would be more accurate, if more cumbersome, to denote the
neighborhood by the symbol Uδ(x)(x), but since the whole symbol is determined by
the point x, we can agree on the following abbreviated notation: U(x) = Uδ(x)(x)

and V (x)=Uδ(x)/2(x).
The open intervals V (x), x ∈ E, taken together, cover the closed interval

[a, b], and so by the finite covering lemma one can select a finite covering
V (x1), . . . , V (xn). Let δ = min{ 1

2δ(x1), . . . ,
1
2δ(xn)}. We shall show that |f (x′)−

f (x′′)|< ε for any points x′, x′′ ∈ E such that |x′ − x′′|< δ. Indeed, since the sys-
tem of open intervals V (x1), . . . , V (xn) covers E, there exists an interval V (xi) of
this system that contains x′, that is |x′ − xi |< 1

2δ(xi). But in that case

∣
∣x′′ − xi

∣
∣≤ ∣∣x′ − x′′

∣
∣+ ∣

∣x′ − xi

∣
∣< δ+ 1

2
δ(xi)≤ 1

2
δ(xi)+ 1

2
δ(xi)= δ(xi).
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Consequently x′, x′′ ∈ U
δ(xi )
E (xi) = E ∩ Uδ(xi )(xi) and so |f (x′) − f (x′′)| ≤

ω(f ;Uδ(xi)
E (xi)) < ε. �

The examples given above show that Cantor’s theorem makes essential use of a
certain property of the domain of definition of the function. It is clear from the proof
that, as in Theorem 3, this property is that from every covering of E by neighbor-
hoods of its points one can extract a finite covering.

Now that Theorem 4 has been proved, it is useful to return once again to the
examples studied earlier of functions that are continuous but not uniformly continu-
ous, in order to clarify how it happens that sin(x2) for example, which is uniformly
continuous on each closed interval of the real line by Cantor’s theorem, is never-
theless not uniformly continuous on R. The reason is completely analogous to the
reason why a continuous function in general fails to be uniformly continuous. This
time we invite our readers to investigate this question on their own.

We now pass to the last theorem of this section, the inverse function theorem.
We need to determine the conditions under which a real-valued function on a closed
interval has an inverse and the conditions under which the inverse is continuous.

Proposition 1 A continuous mapping f : E → R of a closed interval E = [a, b]
into R is injective if and only if the function f is strictly monotonic on [a, b].

Proof If f is increasing or decreasing on any set E ⊂ R whatsoever, the mapping
f : E → R is obviously injective: at different points of E the function assumes
different values.

Thus the more substantive part of Proposition 1 consists of the assertion that ev-
ery continuous injective mapping f : [a, b]→R is realized by a strictly monotonic
function.

Assuming that such is not the case, we find three points x1 < x2 < x3 in [a, b]
such that f (x2) does not lie between f (x1) and f (x3). In that case, either f (x3) lies
between f (x1) and f (x2) or f (x1) lies between f (x2) and f (x3). For definiteness
assume that the latter is the case. By hypothesis f is continuous on [x2, x3]. There-
fore, by Theorem 2, there is a point x′1 in this interval such that f (x′1) = f (x1).
We then have x1 < x′1, but f (x1) = f (x′1), which is inconsistent with the injectiv-
ity of the mapping. The case when f (x3) lies between f (x1) and f (x2) is handled
similarly. �

Proposition 2 Each strictly monotonic function f :X→R defined on a numerical
set X ⊂R has an inverse f−1 : Y →R defined on the set Y = f (X) of values of f ,
and has the same kind of monotonicity on Y that f hαs on X.

Proof The mapping f : X→ Y = f (X) is surjective, that is, it is a mapping of X

onto Y . For definiteness assume that f :X→ Y is increasing on X. In that case

∀x1 ∈X ∀x2 ∈X
(
x1 < x2 ⇔ f (x1) < f (x2)

)
. (4.1)
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Thus the mapping f : X→ Y assumes different values at different points, and
so is injective. Consequently f : X→ Y is bijective, that is, it is a one-to-one cor-
respondence between X and Y . Therefore the inverse mapping f−1 : Y → X is
defined by the formula x = f−1(y) when y = f (x).

Comparing the definition of the mapping f−1 : Y → X with relation (4.1), we
arrive at the relation

∀y1 ∈ Y ∀y2 ∈ Y
(
f−1(y1) < f−1(y2)⇔ y1 < y2

)
, (4.2)

which means that the function f−1 is also increasing on its domain of definition.
The case when f :X→ Y is decreasing on X is obviously handled similarly. �

In accordance with Proposition 2 just proved, if we are interested in the conti-
nuity of the function inverse to a real-valued function, it is useful to investigate the
continuity of monotonic functions.

Proposition 3 The discontinuities of a function f :E→R that is monotonic on the
set E ⊂R can be only discontinuities of first kind.

Proof For definiteness let f be nondecreasing. Assume that a ∈ E is a point of
discontinuity of f . Since a cannot be an isolated point of E,a must be a limit point
of at least one of the two sets E−a = {x ∈ E | x < a} and E+a = {x ∈ E | x > a}.
Since f is nondecreasing, for any point x ∈ E−a we have f (x) ≤ f (a), and the
restriction f |E−a of f to E−a is a nondecreasing function that is bounded from above.
It then follows that the limit

lim
E−a 
x→a

(f |E−a )(x)= lim
E
x→a−0

f (x)= f (a − 0)

exists.
The proof that the limit limE
x→a+0 f (x) = f (a + 0) exists when a is a limit

point of E+a is analogous.
The case when f is a nonincreasing function can be handled either by repeating

the reasoning just given or passing to the function −f , so as to reduce the question
to the case already considered. �

Corollary 1 If a is a point of discontinuity of a monotonic function f : E → R,
then at least one of the limits

lim
E
x→a−0

f (x)= f (a − 0), lim
E
x→a+0

f (x)= f (a + 0)

exists, and strict inequality holds in at least one of the inequalities f (a − 0) ≤
f (a) ≤ f (a + 0) when f is nondecreasing and f (a − 0) ≥ f (a) ≥ f (a + 0) when
f is nonincreasing. The function assumes no values in the open interval defined by
the strict inequality. Open intervals of this kind determined by different points of
discontinuity have no points in common.
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Proof Indeed, if a is a point of discontinuity, it must be a limit point of the set E,
and by Proposition 3 is a discontinuity of first kind. Thus at least one of the bases
E 
 x → a − 0 and E 
 x → a + 0 is defined, and the limit of the function over
that base exists. (When both bases are defined, the limits over both bases exist.)
For definiteness assume that f is nondecreasing. Since a is a point of discontinuity,
strict inequality must actually hold in at least one of the inequalities f (a − 0) ≤
f (a)≤ f (a+ 0). Since f (x)≤ limE
x→a−0 f (x)= f (a− 0), if x ∈E and x < a,
the open interval (f (a− 0), f (a)) defined by the strict inequality f (a− 0) < f (a)

is indeed devoid of values of the function. Analogously, since f (a + 0) ≤ f (x) if
x ∈E and a < x, the open interval (f (a), f (a+ 0)) defined by the strict inequality
f (a) < f (a + 0) contains no values of f .

Let a1 and a2 be two different points of discontinuity of f , and assume a1 < a2.
Then, since the function is nondecreasing,

f (a1 − 0)≤ f (a1)≤ f (a1 + 0)≤ f (a2 − 0)≤ f (a2)≤ f (a2 + 0).

It follows from this that the intervals containing no values of f and corresponding
to different points of discontinuity are disjoint. �

Corollary 2 The set of points of discontinuity of a monotonic function is at most
countable.

Proof With each point of discontinuity of a monotonic function we associate the
corresponding open interval in Corollary 1 containing no values of f . These inter-
vals are pairwise disjoint. But on the line there cannot be more than a countable
number of pairwise disjoint open intervals. In fact, one can choose a rational num-
ber in each of these intervals, so that the collection of intervals is equipollent with
a subset of the set Q of rational numbers. Hence it is at most countable. Therefore,
the set of points of discontinuity, which is in one-to-one correspondence with a set
of such intervals, is also at most countable. �

Proposition 4 (A criterion for continuity of a monotonic function) A monotonic
function f : E → R defined on a closed interval E = [a, b] is continuous if and
only if its set of values f (E) is the closed interval with endpoints f (a) and f (b).6

Proof If f is a continuous monotonic function, the monotonicity implies that all
the values that f assumes on the closed interval [a, b] lie between the values f (a)

and f (b) that it assumes at the endpoints. By continuity, the function must assume
all the values intermediate between f (a) and f (b). Hence the set of values of a
function that is monotonic and continuous on a closed interval [a, b] is indeed the
closed interval with endpoints f (a) and f (b).

Let us now prove the converse. Let f be monotonic on the closed interval [a, b].
If f has a discontinuity at some point c ∈ [a, b], by Corollary 1 one of the open in-
tervals ]f (c− 0), f (c)[ and ]f (c), f (c+ 0)[ is defined and nonempty and contains

6Here f (a)≤ f (b) if f is nondecreasing, and f (b)≤ f (a) if f is nonincreasing.
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no values of f . But, since f is monotonic, that interval is contained in the interval
with endpoints f (a) and f (b). Hence if a monotonic function has a point of dis-
continuity on the closed interval [a, b], then the closed interval with endpoints f (a)

and f (b) cannot be contained in the range of values of the function. �

Theorem 5 (The inverse function theorem) A function f : X → R that is strictly
monotonic on a set X ⊂R has an inverse f−1 : Y →R defined on the set Y = f (X)

of values of f . The function f−1 : Y → R is monotonic and has the same type of
monotonicity on Y that f has on X.

If in addition X is a closed interval [a, b] and f is continuous on X, then the
set Y = f (X) is the closed interval with endpoints f (a) and f (b) and the function
f−1 : Y →R is continuous on it.

Proof The assertion that the set Y = f (X) is the closed interval with endpoints
f (a) and f (b) when X = [a, b] and f is continuous follows from Proposition 4
proved above. It remains to be verified that f−1 : Y →R is continuous. But f−1 is
monotonic on Y,Y is a closed interval, and f−1(Y ) = X = [a, b] is also a closed
interval. We conclude by Proposition 4 that f−1 is continuous on the interval Y with
endpoints f (a) and f (b). �

Example 8 The function y = f (x) = sinx is increasing and continuous on the
closed interval [−π

2 , π
2 ]. Hence the restriction of the function to the closed interval

[−π
2 , π

2 ] has an inverse x = f−1(y), which we denote x = arcsiny; this function is
defined on the closed interval [sin(−π

2 ), sin(π
2 )] = [−1,1], increases from −π

2 to
π
2 , and is continuous on this closed interval.

Example 9 Similarly, the restriction of the function y = cosx to the closed interval
[0,π] is a decreasing continuous function, which by Theorem 5 has an inverse de-
noted x = arccosy, defined on the closed interval [−1,1] and decreasing from π to
0 on that interval.

Example 10 The restriction of the function y = tanx to the open interval X =
]−π

2 , π
2 [ is a continuous function that increases from −∞ to +∞. By the first part

of Theorem 5 it has an inverse denoted x = arctany, defined for all y ∈ R, and
increasing within the open interval ]−π

2 , π
2 [ of its values. To prove that the func-

tion x = arctany is continuous at each point y0 of its domain of definition, we take
the point x0 = arctany0 and a closed interval [x0 − ε, x0 + ε] containing x0 and
contained in the open interval ]−π

2 , π
2 [. If x0 − ε = arctan(y0 − δ1) and x0 + ε =

arctan(y0+ δ2), then for every y ∈R such that y0− δ1 < y < y0+ δ2 we shall have
x0− ε < arctany < x0+ ε. Hence | arctany− arctany0|< ε for −δ1 < y− y0 < δ2.
The former inequality holds in particular if |y − y0|< δ =min{δ1, δ2}, which veri-
fies that the function x = arctany is continuous at the point y0 ∈R.

Example 11 By reasoning analogous to that of the preceding example, we establish
that since the restriction of the function y = cotx to the open interval ]0,π[ is a
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continuous function that decreases from +∞ to −∞, it has an inverse denoted
x = arccoty, defined, continuous, and decreasing on the entire real line R from π

to 0 and assuming values in the range ]0,π[.

Remark In constructing the graphs of mutually inverse functions y = f (x) and x =
f−1(y) it is useful to keep in mind that in a given coordinate system the points with
coordinates (x, f (x))= (x, y) and (y, f−1(y))= (y, x) are symmetric with respect
to the bisector of the angle in the first quadrant.

Thus the graphs of mutually inverse functions, when drawn in the same coordi-
nate system, are symmetric with respect to this angle bisector.

4.2.3 Problems and Exercises

1. Show that

a) if f ∈ C(A) and B ⊂A, then f |B ∈C(B);
b) if a function f : E1 ∪ E2 → R is such that f |Ei

∈ C(Ei), i = 1,2, it is not
always the case that f ∈ C(E1 ∪E2).

c) the Riemann function R, and its restriction R|Q to the set of rational numbers
are both discontinuous at each point of Q except 0, and all the points of discontinuity
are removable (see Example 12 of Sect. 4.1).

2. Show that for a function f ∈C[a, b] the functions

m(x)= min
a≤t≤x

f (t) and M(x)= max
a≤t≤x

f (t)

are also continuous on the closed interval [a, b].
3. a) Prove that the function inverse to a function that is monotonic on an open
interval is continuous on its domain of definition.

b) Construct a monotonic function with a countable set of discontinuities.
c) Show that if functions f : X → Y and f−1 : Y → X are mutually inverse

(here X and Y are subsets of R), and f is continuous at a point x0 ∈X, the function
f−1 need not be continuous at y0 = f (x0) in Y .

4. Show that

a) if f ∈ C[a, b] and g ∈ C[a, b], and, in addition, f (a) < g(a) and f (b) >

g(b), then there exists a point c ∈ [a, b] at which f (c)= g(c);
b) any continuous mapping f : [0,1]→ [0,1] of a closed interval into itself has

a fixed point, that is, a point x ∈ [0,1] such that f (x)= x;
c) if two continuous mappings f and g of an interval into itself commute, that

is, f ◦ g = g ◦ f , then they do not always have a common fixed point;
d) a continuous mapping f :R→R may fail to have a fixed point;
e) a continuous mapping f : ]0,1[→ ]0,1[ may fail to have a fixed point;
f) if a mapping f : [0,1] → [0,1] is continuous, f (0)= 0, f (1)= 1, and (f ◦

f )(x)≡ x on [0,1], then f (x)≡ x.
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5. Show that the set of values of any function that is continuous on a closed interval
is a closed interval.
6. Prove the following statements.

a) If a mapping f : [0,1] → [0,1] is continuous, f (0) = 0, f (1) = 1, and
f n(x) := f ◦ · · · ◦ f

︸ ︷︷ ︸
n factors

(x)≡ x on [0,1], then f (x)≡ x.

b) If a function f : [0,1] → [0,1] is continuous and nondecreasing, then for
any point x ∈ [0,1] at least one of the following situations must occur: either x is a
fixed point, or f n(x) tends to a fixed point. (Here f n(x)= f ◦ · · · ◦ f (x) is the nth
iteration of f .)

7. Let f : [0,1]→R be a continuous function such that f (0)= f (1). Show that

a) for any n ∈ N there exists a horizontal closed interval of length 1
n

with end-
points on the graph of this function;

b) if the number l is not of the form 1
n

there exists a function of this form on
whose graph one cannot inscribe a horizontal chord of length l.

8. The modulus of continuity of a function f :E→R is the function ω(δ) defined
for δ > 0 as follows:

ω(δ)= sup
|x1−x2|<δ
x1,x2∈E

∣
∣f (x1)− f (x2)

∣
∣.

Thus, the least upper bound is taken over all pairs of points x1, x2 of E whose
distance apart is less than δ.

Show that

a) the modulus of continuity is a nondecreasing nonnegative function having the
limit7 ω(+0)= limδ→+0 ω(δ);

b) for every ε > 0 there exists δ > 0 such that for any points x1, x2 ∈ E the
relation |x1 − x2|< δ implies |f (x1)− f (x2)|< ω(+0)+ ε;

c) if E is a closed interval, an open interval, or a half-open interval, the relation

ω(δ1 + δ2)≤ ω(δ1)+ω(δ2)

holds for the modulus of continuity of a function f :E→R;
d) the moduli of continuity of the functions x and sin(x2) on the whole real axis

are respectively ω(δ)= δ and the constant ω(δ)= 2 in the domain δ > 0;
e) a function f is uniformly continuous on E if and only if ω(+0)= 0.

9. Let f and g be bounded functions defined on the same set X. The quantity
Δ= supx∈X |f (x)−g(x)| is called the distance between f and g. It shows how well
one function approximates the other on the given set X. Let X be a closed interval
[a, b]. Show that if f,g ∈ C[a, b], then ∃x0 ∈ [a, b], where Δ = |f (x0)− g(x0)|,
and that such is not the case in general for arbitrary bounded functions.

7For this reason the modulus of continuity is usually considered for δ ≥ 0, setting ω(0)= ω(+0).
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10. Let Pn(x) be a polynomial of degree n. We are going to approximate a bounded
function f : [a, b]→R by polynomials. Let

Δ(Pn)= sup
x∈[a,b]

∣
∣f (x)− Pn(x)

∣
∣ and En(f )= inf

Pn

Δ(Pn),

where the infimum is taken over all polynomials of degree n. A polynomial Pn is
called a polynomial of best approximation of f if Δ(Pn)=En(f ).
Show that

a) there exists a polynomial P0(x)≡ a0 of best approximation of degree zero;
b) among the polynomials Qλ(x) of the form λPn(x), where Pn is a fixed poly-

nomial, there is a polynomial Qλ0 such that

Δ(Qλ0)=min
λ∈R Δ(Qλ);

c) if there exists a polynomial of best approximation of degree n, there also
exists a polynomial of best approximation of degree n+ 1;

d) for any bounded function on a closed interval and any n = 0,1,2, . . . there
exists a polynomial of best approximation of degree n.

11. Prove the following statements.

a) A polynomial of odd degree with real coefficients has at least one real root.
b) If Pn is a polynomial of degree n, the function sgnPn(x) has at most n points

of discontinuity.
c) If there are n + 2 points x0 < x1 < · · · < xn+1 in the closed interval [a, b]

such that the quantity

sgn
[(

f (xi)− Pn(xi)
)
(−1)i

]

assumes the same value for i = 0, . . . , n + 1, then En(f ) ≥ min0≤i≤n+1 |f (xi) −
Pn(xi)|. (This result is known as Vallée Poussin’s theorem.8 For the definition of
En(f ) see Problem 10.)

12. a) Show that for any n ∈ N the function Tn(x) = cos(n arccosx) defined on
the closed interval [−1,1] is an algebraic polynomial of degree n. (These are the
Chebyshev polynomials.)

b) Find an explicit algebraic expression for the polynomials T1, T2, T3, and T4
and draw their graphs.

c) Find the roots of the polynomial Tn(x) on the closed interval [−1,1] and
the points of the interval where |Tn(x)| assumes its maximum value.

d) Show that among all polynomials Pn(x) of degree n whose leading coef-
ficient is 1 the polynomial Tn(x) is the unique polynomial closest to zero, that is,
En(0)=max|x|≤1 |Tn(x)|. (For the definition of En(f ) see Problem 10.)

8Ch.J. de la Vallée Poussin (1866–1962) – Belgian mathematician and specialist in theoretical
mechanics.
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13. Let f ∈ C[a, b].
a) Show that if the polynomial Pn(x) of degree n is such that there are n + 2

points x0 < · · · < xn+1 (called Chebyshev alternant points) for which f (xi) −
Pn(xi) = (−1)iΔ(Pn) · α, where Δ(Pn) = maxx∈[a,b] |f (x)− Pn(x)| and α is a
constant equal to 1 or −1, then Pn(x) is the unique polynomial of best approxima-
tion of degree n to f (see Problem 10).

b) Prove Chebyshev’s theorem: A polynomial Pn(x) of degree n is a polynomial
of best approximation to the function f ∈ C[a, b] if and only if there are at least
n+ 2 Chebyshev alternant points on the closed interval [a, b].

c) Show that for discontinuous functions the preceding statement is in general
not true.

d) Find the polynomials of best approximation of degrees zero and one for the
function |x| on the interval [−1,2].
14. In Sect. 4.2 we discussed the local properties of continuous functions. The
present problem makes the concept of a local property more precise.

Two functions f and g are considered equivalent if there is a neighborhood U(a)

of a given point a ∈R such that f (x)= g(x) for all x ∈U(a). This relation between
functions is obviously reflexive, symmetric, and transitive, that is, it really is an
equivalence relation.

A class of functions that are all equivalent to one another at a point a is called
a germ of functions at a. If we consider only continuous functions, we speak of a
germ of continuous functions at a.

The local properties of functions are properties of the germs of functions.

a) Define the arithmetic operations on germs of numerical-valued functions de-
fined at a given point.

b) Show that the arithmetic operations on germs of continuous functions do not
lead outside this class of germs.

c) Taking account of a) and b), show that the germs of continuous functions
form a ring – the ring of germs of continuous functions.

d) A subring I of a ring K is called an ideal of K if the product of every element
of the ring K with an element of the subring I belongs to I . Find an ideal in the
ring of germs of continuous functions at a.

15. An ideal in a ring is maximal if it is not contained in any larger ideal except
the ring itself. The set C[a, b] of functions continuous on a closed interval forms a
ring under the usual operations of addition and multiplication of numerical-valued
functions. Find the maximal ideals of this ring.



Chapter 5
Differential Calculus

5.1 Differentiable Functions

5.1.1 Statement of the Problem and Introductory Considerations

Suppose, following Newton,1 we wish to solve the Kepler problem2 of two bodies,
that is, we wish to explain the law of motion of one celestial body m (a planet) rela-
tive to another body M (a star). We take a Cartesian coordinate system in the plane
of motion with origin at M (Fig. 5.1). Then the position of m at time t can be char-
acterized numerically by the coordinates (x(t), y(t)) of the point in that coordinate
system. We wish to find the functions x(t) and y(t).

The motion of m relative to M is governed by Newton’s two famous laws: the
general law of motion

ma= F, (5.1)

connecting the force vector with the acceleration vector that it produces via the
coefficient of proportionality m – the inertial mass of the body,3 and the law of
universal gravitation, which makes it possible to find the gravitational action of the
bodies m and M on each other according to the formula

F=G
mM

|r|3 r, (5.2)

1I. Newton (1642–1727) – British physicist, astronomer, and mathematician, an outstanding
scholar, who stated the basic laws of classical mechanics, discovered the law of universal grav-
itation, and developed (along with Leibniz) the foundations of differential and integral calculus.
He was appreciated even by his contemporaries, who inscribed on his tombstone: “Hic depositum
est, quod mortale fuit Isaaci Newtoni” (here lies what was mortal of Isaac Newton).
2J. Kepler (1571–1630) – famous German astronomer who discovered the laws of motion of the
planets (Kepler’s laws).
3We have denoted the mass by the same symbol we used for the body itself, but this will not lead
to any confusion. We remark also that if m$M , the coordinate system chosen can be considered
inertial.
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Fig. 5.1

where r is a vector with its initial point in the body to which the force is applied and
its terminal point in the other body and |r| is the length of the vector r, that is, the
distance between m and M .

Knowing the masses m and M , we can easily use Eq. (5.2) to express the right-
hand side of Eq. (5.1) in terms of the coordinates x(t) and y(t) of the body m at
time t , and thereby take account of all the data for the given motion.

To obtain the relations on x(t) and y(t) contained in Eq. (5.1), we must learn
how to express the left-hand side of Eq. (5.1) in terms of x(t) and y(t).

Acceleration is a characteristic of a change in velocity v(t). More precisely, it is
simply the rate at which the velocity changes. Therefore, to solve the problem we
must first of all learn how to compute the velocity v(t) at time t possessed by a body
whose motion is described by the radius-vector r(t)= (x(t), y(t)).

Thus we wish to define and learn how to compute the instantaneous velocity of a
body that is implicit in the law of motion (5.1).

To measure a thing is to compare it to a standard. In the present case, what can
serve as a standard for determining the instantaneous velocity of motion?

The simplest kind of motion is that of a free body moving under inertia. This is
a motion under which equal displacements of the body in space (as vectors) occur
in equal intervals of time. It is the so-called uniform (rectilinear) motion. If a point
is moving uniformly, and r(0) and r(1) are its radius-vectors relative to an inertial
coordinate system at times t = 0 and t = 1 respectively, then at any time t we shall
have

r(t)− r(0)= v · t, (5.3)

where v = r(1)− r(0). Thus the displacement r(t)− r(0) turns out to be a linear
function of time in this simplest case, where the role of the constant of proportional-
ity between the displacement r(t)−r(0) and the time t is played by the vector v that
is the displacement in unit time. It is this vector that we call the velocity of uniform
motion. The fact that the motion is rectilinear can be seen from the parametric rep-
resentation of the trajectory: r(t)= r(0)+ v · t , which is the equation of a straight
line, as you will recall from analytic geometry.

We thus know the velocity v of uniform rectilinear motion given by Eq. (5.3). By
the law of inertia, if no external forces are acting on a body, it moves uniformly in a
straight line. Hence if the action of M on m were to cease at time t , the latter would
continue its motion, in a straight line at a certain velocity from that time on. It is
natural to regard that velocity as the instantaneous velocity of the body at time t .
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Fig. 5.2

However, such a definition of instantaneous velocity would remain a pure ab-
straction, giving us no guidance for explicit computation of the quantity, if not for
the circumstance of primary importance that we are about to discuss.

While remaining within the circle we have entered (logicians would call it a “vi-
cious” circle) when we wrote down the equation of motion (5.1) and then undertook
to determine what is meant by instantaneous velocity and acceleration, we never-
theless remark that, even with the most general ideas about these concepts, one can
draw the following heuristic conclusions from Eq. (5.1). If there is no force, that is,
F≡ 0, then the acceleration is also zero. But if the rate of change a(t) of the velocity
v(t) is zero, then the velocity v(t) itself must not vary over time. In that way, we
arrive at the law of inertia, according to which the body indeed moves in space with
a velocity that is constant in time.

From this same Eq. (5.1) we can see that forces of bounded magnitude are capa-
ble of creating only accelerations of bounded magnitude. But if the absolute magni-
tude of the rate of change of a quantity P(t) over a time interval [0, t] does not ex-
ceed some constant c, then, in our picture of the situation, the change |P(t)−P(0)|
in the quantity P over time t cannot exceed c · t , that is, in this situation, the quantity
changes by very little in a small interval of time. (In any case, the function P(t) turns
out to be continuous.) Thus, in a real mechanical system the parameters change by
small amounts over a small time interval.

In particular, at all times t close to some time t0 the velocity v(t) of the body
m must be close to the value v(t0) that we wish to determine. But in that case, in
a small neighborhood of the time t0 the motion itself must differ by only a small
amount from uniform motion at velocity v(t0), and the closer to t0, the less it differs.

If we photographed the trajectory of the body m through a telescope, depend-
ing on the power of the telescope, we would see approximately what is shown in
Fig. 5.2.

The portion of the trajectory shown in Fig. 5.2c corresponds to a time interval so
small that it is difficult to distinguish the actual trajectory from a straight line, since
this portion of the trajectory really does resemble a straight line, and the motion
resembles uniform rectilinear motion. From this observation, as it happens, we can
conclude that by solving the problem of determining the instantaneous velocity (ve-
locity being a vector quantity) we will at the same time solve the purely geometric
problem of defining and finding the tangent to a curve (in the present case the curve
is the trajectory of motion).

Thus we have observed that in this problem we must have v(t) ≈ v(t0) for t

close to t0, that is, v(t)→ v(t0) as t → t0, or, what is the same, v(t)= v(t0)+ o(1)
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as t → t0. Then we must also have

r(t)− r(t0)≈ v(t0) · (t − t0)

for t close to t0. More precisely, the value of the displacement r(t)− r(t0) is equiv-
alent to v(t0)(t − t0) as t → t0, or

r(t)− r(t0)= v(t0)(t − t0)+ o
(
v(t0)(t − t0)

)
, (5.4)

where o(v(t0)(t − t0)) is a correction vector whose magnitude tends to zero faster
than the magnitude of the vector v(t0)(t − t0) as t → t0. Here, naturally, we must
except the case when v(t0)= 0. So as not to exclude this case from consideration in
general, it is useful to observe that4 |v(t0)(t− t0)| = |v(t0)||t− t0|. Thus, if |v(t0)| �=
0, then the quantity |v(t0)(t − t0)| is of the same order as |t − t0|, and therefore
o(v(t0)(t − t0))= o(t − t0). Hence, instead of (5.4) we can write the relation

r(t)− r(t0)= v(t0)(t − t0)+ o(t − t0), (5.5)

which does not exclude the case v(t0)= 0.
Thus, starting from the most general, and perhaps vague ideas about velocity, we

have arrived at Eq. (5.5), which the velocity must satisfy. But the quantity v(t0) can
be found unambiguously from Eq. (5.5):

v(t0)= lim
t→t0

r(t)− r(t0)
t − t0

. (5.6)

Therefore both the fundamental relation (5.5) and the relation (5.6) equivalent to it
can now be taken as the definition of the quantity v(t0), the instantaneous velocity
of the body at time t0.

At this point we shall not allow ourselves to be distracted into a detailed discus-
sion of the problem of the limit of a vector-valued function. Instead, we shall confine
ourselves to reducing it to the case of the limit of a real-valued function, which has
already been discussed in complete detail. Since the vector r(t) − r(t0) has coor-
dinates (x(t)− x(t0), y(t)− y(t0)), we have r(t)−r(t0)

t−t0
= (

x(t)−x(t0)
t−t0

,
y(t)−y(t0)

t−t0
) and

hence, if we regard vectors as being close together if their coordinates are close
together, the limit in (5.6) should be interpreted as follows:

v(t0)= lim
t→t0

r(t)− r(t0)
t − t0

=
(

lim
t→t0

x(t)− x(t0)

t − t0
, lim
t→t0

y(t)− y(t0)

t − t0

)

,

and the term o(t − t0) in (5.5) should be interpreted as a vector depending on t such
that the vector o(t−t0)

t−t0
tends (coordinatewise) to zero as t → t0.

4Here |t − t0| is the absolute value of the number t − t0 while |v| is the absolute value, or length
of the vector v.
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Finally, we remark that if v(t0) �= 0, then the equation

r− r(t0)= v(t0) · (t − t0) (5.7)

defines a line, which by the circumstances indicated above should be regarded as
the tangent to the trajectory at the point (x(t0), y(t0)).

Thus, the standard for defining the velocity of a motion is the velocity of uniform
rectilinear motion defined by the linear relation (5.7). The standard motion (5.7) is
connected with the motion being studied as shown by relation (5.5). The value v(t0)

at which (5.5) holds can be found by passing to the limit in (5.6) and is called the
velocity of motion at time t0. The motions studied in classical mechanics, which are
described by the law (5.1), must admit comparison with this standard, that is, they
must admit of the linear approximation indicated in (5.5).

If r(t) = (x(t), y(t)) is the radius-vector of a moving point m at time t , then
ṙ(t)= (ẋ(t), ẏ(t))= v(t) is the vector that gives the rate of change of r(t) at time t ,
and r̈(t) = (ẍ(t), ÿ(t)) = a(t) is the vector that gives the rate of change of v(t)

(acceleration) at time t , then Eq. (5.1) can be written in the form

m · r̈(t)= F(t),

from which we obtain in coordinate form for motion in a gravitational field
⎧
⎨

⎩

ẍ(t)=−GM x(t)

[x2(t)+y2(t)]3/2 ,

ÿ(t)=−GM y(t)

[x2(t)+y2(t)]3/2 .
(5.8)

This is a precise mathematical expression of our original problem. Since we
know how to find ṙ(t) from r(t) and then how to find r̈(t), we are already in a
position to answer the question whether a pair of functions (x(t), y(t)) can describe
the motion of the body m about the body M . To answer this question, one must find
ẍ(t) and ÿ(t) and check whether Eqs. (5.8) hold. The system (5.8) is an example of
a system of so-called differential equations. At this point we can only check whether
a set of functions is a solution of the system. How to find the solution or, better ex-
pressed, how to investigate the properties of solutions of differential equations, is
studied in a special and, as one can now appreciate, critical area of analysis – the
theory of differential equations.

The operation of finding the rate of change of a vector quantity, as has been
shown, reduces to finding the rates of change of several numerical-valued functions
– the coordinates of the vector. Thus we must first of all learn how to carry out
this operation easily in the simplest case of real-valued functions of a real-valued
argument, which we now take up.

5.1.2 Functions Differentiable at a Point

We begin with two preliminary definitions that we shall shortly make precise.
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Definition 01 A function f : E → R defined on a set E ⊂ R is differentiable at a
point a ∈ E that is a limit point of E if there exists a linear function A · (x − a) of
the increment x − a of the argument such that f (x)− f (a) can be represented as

f (x)− f (a)=A · (x − a)+ o(x − a) as x→ a, x ∈E. (5.9)

In other words, a function is differentiable at a point a if the change in its values
in a neighborhood of the point in question is linear up to a correction that is infinites-
imal compared with the magnitude of the displacement x − a from the point a.

Remark As a rule we have to deal with functions defined in an entire neighborhood
of the point in question, not merely on a subset of the neighborhood.

Definition 02 The linear function A · (x − a) in Eq. (5.9) is called the differential
of the function f at a.

The differential of a function at a point is uniquely determined; for it follows
from (5.9) that

lim
E
x→a

f (x)− f (a)

x − a
= lim

E
x→a

(

A+ o(x − a)

x − a

)

=A,

so that the number A is unambiguously determined due to the uniqueness of the
limit.

Definition 1 The number

f ′(a)= lim
E
x→a

f (x)− f (a)

x − a
(5.10)

is called the derivative of the function f at a.

Relation (5.10) can be rewritten in the equivalent form

f (x)− f (a)

x − a
= f ′(a)+ α(x),

where α(x)→ 0 as x→ a, x ∈E, which in turn is equivalent to

f (x)− f (a)= f ′(a)(x − a)+ o(x − a) as x→ a, x ∈E. (5.11)

Thus, differentiability of a function at a point is equivalent to the existence of its
derivative at the same point.

If we compare these definitions with what was said in Sect. 5.1.1, we can con-
clude that the derivative characterizes the rate of change of a function at the point
under consideration, while the differential provides the best linear approximation to
the increment of the function in a neighborhood of the same point.

If a function f : E→ R is differentiable at different points of the set E, then in
passing from one point to another both the quantity A and the function o(x − a) in
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Eq. (5.9) may change (a result at which we have already arrived explicitly in (5.11)).
This circumstance should be noted in the very definition of a differentiable function,
and we now write out this fundamental definition in full.

Definition 2 A function f : E → R defined on a set E ⊂ R is differentiable at a
point x ∈E that is a limit point of E if

f (x + h)− f (x)=A(x)h+ α(x;h), (5.12)

where h �→A(x)h is a linear function in h and α(x;h)= o(h) as h→ 0, x+h ∈E.

The quantities

Δx(h) := (x + h)− x = h

and

Δf (x;h) := f (x + h)− f (x)

are called respectively the increment of the argument and the increment of the func-
tion (corresponding to this increment in the argument).

They are often denoted (not quite legitimately, to be sure) by the symbols Δx

and Δf (x) representing functions of h.
Thus, a function is differentiable at a point if its increment at that point, regarded

as a function of the increment h in its argument, is linear up to a correction that is
infinitesimal compared to h as h→ 0.

Definition 3 The function h �→A(x)h of Definition 2, which is linear in h, is called
the differential of the function f : E→ R at the point x ∈ E and is denoted df (x)

or Df (x).

Thus, df (x)(h)=A(x)h.
From Definitions 2 and 3 we have

Δf (x;h)− df (x)(h)= α(x;h),

and α(x;h)= o(h) as h→ 0, x + h ∈ E; that is, the difference between the incre-
ment of the function due to the increment h in its argument and the value of the
function df (x), which is linear in h, at the same h, is an infinitesimal of higher
order than the first in h.

For that reason, we say that the differential is the (principal) linear part of the
increment of the function.

As follows from relation (5.12) and Definition 1,

A(x)= f ′(x)= lim
h→0

x+h,x∈E

f (x + h)− f (x)

h
,
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and so the differential can be written as

df (x)(h)= f ′(x)h. (5.13)

In particular, if f (x)≡ x, we obviously have f ′(x)≡ 1 and

dx(h)= 1 · h= h,

so that it is sometimes said that “the differential of an independent variable equals
its increment”.

Taking this equality into account, we deduce from (5.13) that

df (x)(h)= f ′(x)dx(h), (5.14)

that is,

df (x)= f ′(x)dx. (5.15)

The equality (5.15) should be understood as the equality of two functions of h.
From (5.14) we obtain

df (x)(h)

dx(h)
= f ′(x), (5.16)

that is, the function df (x)
dx

(the ratio of the functions df (x) and dx) is constant and
equals f ′(x). For this reason, following Leibniz, we frequently denote the derivative
by the symbol df (x)

dx
, alongside the notation f ′(x) proposed by Lagrange.5

In mechanics, in addition to these symbols, the symbol ϕ̇(t) (read “phi-dot of t”)
is also used to denote the derivative of the function ϕ(t) with respect to time t .

5.1.3 The Tangent Line; Geometric Meaning of the Derivative
and Differential

Let f :E→R be a function defined on a set E ⊂R and x0 a given limit point of E.
We wish to choose the constant c0 so as to give the best possible description of the
behavior of the function in a neighborhood of the point x0 among constant functions.
More precisely, we want the difference f (x)− c0 to be infinitesimal compared with
any nonzero constant as x→ x0, x ∈E, that is

f (x)= c0 + o(1) as x→ x0, x ∈E. (5.17)

This last relation is equivalent to saying limE
x→x0 f (x)= c0. If, in particular,
the function is continuous at x0, then limE
x→x0 f (x)= f (x0), and naturally c0 =
f (x0).

5J.L. Lagrange (1736–1831) – famous French mathematician and specialist in theoretical mechan-
ics.
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Now let us try to choose the function c0 + c1(x − x0) so as to have

f (x)= c0 + c1(x − x0)+ o(x − x0) as x→ x0, x ∈E. (5.18)

This is obviously a generalization of the preceding problem, since the formula (5.17)
can be rewritten as

f (x)= c0 + o
(
(x − x0)

0) as x→ x0, x ∈E.

It follows immediately from (5.18) that c0 = limE
x→x0 f (x), and if the function
is continuous at this point, then c0 = f (x0).

If c0 has been found, it then follows from (5.18) that

c1 = lim
E
x→x0

f (x)− c0

x − x0
.

And, in general, if we were seeking a polynomial Pn(x0;x) = c0 + c1(x − x0) +
· · · + cn(x − x0)

n such that

f (x)= c0 + c1(x − x0)+ · · · + cn(x − x0)
n + o

(
(x − x0)

n
)

as x→ x0, x ∈E,

(5.19)
we would find successively, with no ambiguity, that

c0 = lim
E
x→x0

f (x),

c1 = lim
E
x→x0

f (x)− c0

x − x0
,

...

cn = lim
E
x→x0

f (x)− [c0 + · · · + cn−1(x − x0)
n−1]

(x − x0)n
,

assuming that all these limits exist. Otherwise condition (5.19) cannot be fulfilled,
and the problem has no solution.

If the function f is continuous at x0, it follows from (5.18), as already pointed
out, that c0 = f (x0), and we then arrive at the relation

f (x)− f (x0)= c1(x − x0)+ o(x − x0) as x→ x0, x ∈E,

which is equivalent to the condition that f (x) be differentiable at x0.
From this we find

c1 = lim
E
x→x0

f (x)− f (x0)

x − x0
= f ′(x0).

We have thus proved the following proposition.

Proposition 1 A function f : E → R that is continuous at a point x0 ∈ E that is
a limit point of E ⊂ R admits a linear approximation (5.18) if and only if it is
differentiable at the point.
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Fig. 5.3

The function

ϕ(x)= c0 + c1(x − x0) (5.20)

with c0 = f (x0) and c1 = f ′(x0) is the only function of the form (5.20) that satisfies
(5.18).

Thus the function

ϕ(x)= f (x0)+ f ′(x0)(x − x0) (5.21)

provides the best linear approximation to the function f in a neighborhood of x0 in
the sense that for any other function ϕ(x) of the form (5.20) we have f (x)−ϕ(x) �=
o(x − x0) as x→ x0, x ∈E.

The graph of the function (5.21) is the straight line

y − f (x0)= f ′(x0)(x − x0), (5.22)

passing through the point (x0, f (x0)) and having slope f ′(x0).
Since the line (5.22) provides the optimal linear approximation of the graph of

the function y = f (x) in a neighborhood of the point (x0, f (x0)), it is natural to
make the following definition.

Definition 4 If a function f : E→ R is defined on a set E ⊂ R and differentiable
at a point x0 ∈E, the line defined by Eq. (5.22) is called the tangent to the graph of
this function at the point (x0, f (x0)).

Figure 5.3 illustrates all the basic concepts we have so far introduced in connec-
tion with differentiability of a function at a point: the increment of the argument,
the increment of the function corresponding to it, and the value of the differential.
The figure shows the graph of the function, the tangent to the graph at the point
P0 = (x0, f (x0)), and for comparison, an arbitrary line (usually called a secant)
passing through P0 and some point P �= P0 of the graph of the function.

The following definition extends Definition 4.
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Definition 5 If the mappings f : E→ R and g : E→ R are continuous at a point
x0 ∈E that is a limit point of E and f (x)− g(x)= o((x− x0)

n) as x→ x0, x ∈E,
we say that f and g have nth order contact at x0 (more precisely, contact of order
at least n).

For n= 1 we say that the mappings f and g are tangent to each other at x0.

According to Definition 5 the mapping (5.21) is tangent at x0 to a mapping f :
E→R that is differentiable at that point.

We can now also say that the polynomial Pn(x0;x) = c0 + c1(x − x0)+ · · · +
cn(x − x0)

n of relation (5.19) has contact of order at least n with the function f .
The number h= x − x0, that is, the increment of the argument, can be regarded

as a vector attached to the point x0 and defining the transition from x0 to x = x0+h.
We denote the set of all such vectors by TR(x0) or TRx0 .6 Similarly, we denote by
TR(y0) or TRy0 the set of all displacement vectors from the point y0 along the y-
axis (see Fig. 5.3). It can then be seen from the definition of the differential that the
mapping

df (x0) : TR(x0)→ TR
(
f (x0)

)
, (5.23)

defined by the differential h �→ f ′(x0)h= df (x0)(h) is tangent to the mapping

h �→ f (x0 + h)− f (x0)=Δf (x0;h), (5.24)

defined by the increment of a differentiable function.
We remark (see Fig. 5.3) that if the mapping (5.24) is the increment of the ordi-

nate of the graph of the function y = f (x) as the argument passes from x0 to x0+h,
then the differential (5.23) gives the increment in the ordinate of the tangent to the
graph of the function for the same increment h in the argument.

5.1.4 The Role of the Coordinate System

The analytic definition of a tangent (Definition 4) may be the cause of some vague
uneasiness. We shall try to state what it is exactly that makes one uneasy. However,
we shall first point out a more geometric construction of the tangent to a curve at
one of its points P0 (see Fig. 5.3).

Take an arbitrary point P of the curve different from P0. The line determined
by the pair of points P0 and P , as already noted, is called a secant in relation to
the curve. We now force the point P to approach P0 along the curve. If the secant
tends to some limiting position as we do so, that limiting position of the secant is
the tangent to the curve at P0.

Despite its intuitive nature, such a definition of the tangent is not available to us
at the moment, since we do not know what a curve is, what it means to say that

6This is a slight deviation from the more common notation Tx0R or Tx0 (R).
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“a point tends to another point along a curve”, and finally, in what sense we are to
interpret the phrase “limiting position of the secant”.

Rather than make all these concepts precise, we point out a fundamental differ-
ence between the two definitions of tangent that we have introduced. The second
was purely geometric, unconnected (at least until it is made more precise) with
any coordinate system. In the first case, however, we have defined the tangent to
a curve that is the graph of a differentiable function in some coordinate system.
The question naturally arises whether, if the curve is written in a different coordi-
nate system, it might not cease to be differentiable, or might be differentiable but
yield a different line as tangent when the computations are carried out in the new
coordinates.

This question of invariance, that is, independence of the coordinate system, al-
ways arises when a concept is introduced using a coordinate system. The ques-
tion applies in equal measure to the concept of velocity, which we discussed in
Sect. 5.1.1 and which, as we have mentioned already, includes the concept of a
tangent.

Points, vectors, lines, and so forth have different numerical characteristics in dif-
ferent coordinate systems (coordinates of a point, coordinates of a vector, equation
of a line). However, knowing the formulas that connect two coordinate systems, one
can always determine from two numerical representations of the same type whether
or not they are expressions for the same geometric object in different coordinate
systems. Intuition suggests that the procedure for defining velocity described in
Sect. 5.1.1 leads to the same vector independently of the coordinate system in which
the computations are carried out. At the appropriate time in the study of functions
of several variables we shall give a detailed discussion of questions of this sort. The
invariance of the definition of velocity with respect to different coordinate systems
will be verified in the next section.

Before passing to the study of specific examples, we now summarize some of the
results.

We have encountered the problem of the describing mathematically the instanta-
neous velocity of a moving body.

This problem led us to the problem of approximating a given function in the
neighborhood of a given point by a linear function, which on the geometric level led
to the concept of the tangent. Functions describing the motion of a real mechanical
system are assumed to admit such a linear approximation.

In this way we have distinguished the class of differentiable functions in the class
of all functions.

The concept of the differential of a function at a point has been introduced. The
differential is a linear mapping defined on displacements from the point under con-
sideration that describes the behavior of the increment of a differentiable function
in a neighborhood of the point, up to a quantity that is infinitesimal in comparison
with the displacement.

The differential df (x0)h = f ′(x0)h is completely determined by the number
f ′(x0), the derivative of the function f at x0, which can be found by taking the
limit
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f ′(x0)= lim
E
x→x0

f (x)− f (x0)

x − x0
.

The physical meaning of the derivative is the rate of change of the quantity f (x)

at time x0; its geometrical meaning is the slope of the tangent to the graph of the
function y = f (x) at the point (x0, f (x0)).

5.1.5 Some Examples

Example 1 Let f (x)= sinx. We shall show that f ′(x)= cosx.

Proof

lim
h→0

sin(x + h)− sinx

h
= lim

h→0

2 sin(h
2 ) cos(x + h

2 )

h
=

= lim
h→0

cos

(

x + h

2

)

· lim
h→0

sin(h
2 )

(h
2 )

= cosx.

Here we have used the theorem on the limit of a product, the continuity of the
function cosx, the equivalence sin t ∼ t as t → 0, and the theorem on the limit of a
composite function. �

Example 2 We shall show that cos′ x =− sinx.

Proof

lim
h→0

cos(x + h)− cosx

h
= lim

h→0

−2 sin(h
2 ) sin(x + h

2 )

h
=

= − lim
h→0

sin

(

x + h

2

)

· lim
h→0

sin(h
2 )

(h
2 )

=− sinx.
�

Example 3 We shall show that if f (t)= r cosωt , then f ′(t)=−rω sinωt .

Proof

lim
h→0

r cosω(t + h)− r cosωt

h
= r lim

h→0

−2 sin(ωh
2 ) sinω(t + h

2 )

h
=

= −rω lim
h→0

sinω(t + h

2
) · lim

h→0

sin(ωh
2 )

(ωh
2 )

=

= −rω sinωt. �

Example 4 If f (t)= r sinωt , then f ′(t)= rω cosωt .
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Proof The proof is analogous to that of Examples 1 and 3. �

Example 5 (The instantaneous velocity and instantaneous acceleration of a point
mass) Suppose a point mass is moving in a plane and that in some given coordinate
system its motion is described by differentiable functions of time

x = x(t), y = y(t)

or, what is the same, by a vector

r(t)= (
x(t), y(t)

)
.

As we have explained in Sect. 5.1.1, the velocity of the point at time t is the vector

v(t)= ṙ(t)= (
ẋ(t), ẏ(t)

)
,

where ẋ(t) and ẏ(t) are the derivatives of x(t) and y(t) with respect to time t .
The acceleration a(t) is the rate of change of the vector v(t), so that

a(t)= v̇(t)= r̈(t)= (
ẍ(t), ÿ(t)

)
,

where ẍ(t) and ÿ(t) are the derivatives of the functions ẋ(t) and ẏ(t) with respect
to time, the so-called second derivatives of x(t) and y(t).

Thus, in the sense of the physical problem, functions x(t) and y(t) that describe
the motion of a point mass must have both first and second derivatives.

In particular, let us consider the uniform motion of a point along a circle of
radius r . Let ω be the angular velocity of the point, that is, the magnitude of the
central angle over which the point moves in unit time.

In Cartesian coordinates (by the definitions of the functions cosx and sinx) this
motion is written in the form

r(t)= (
r cos(ωt + α), r sin(ωt + α)

)
,

and if r(0)= (r,0), it assumes the form

r(t)= (r cosωt, r sinωt).

Without loss of generality in our subsequent deductions, for the sake of brevity,
we shall assume that r(0)= (r,0).

Then by the results of Examples 3 and 4 we have

v(t)= ṙ(t)= (−rω sinωt, rω cosωt).

From the computation of the inner product
〈
v(t), r(t)

〉=−r2ω sinωt cosωt + r2ω cosωt sinωt = 0,

as one should expect in this case, we find that the velocity vector v(t) is orthogonal
to the radius-vector r(t) and is therefore directed along the tangent to the circle.



5.1 Differentiable Functions 185

Fig. 5.4

Next, for the acceleration, we have

a(t)= v̇(t)= r̈(t)= (−rω2 cosωt,−rω2 sinωt
)
,

that is, a(t)=−ω2r(t), and the acceleration is thus indeed centripetal, since it has
the direction opposite to that of the radius-vector r(t).

Moreover,

∣
∣a(t)

∣
∣= ω2

∣
∣r(t)

∣
∣= ω2r = |v(t)|2

r
= v2

r
,

where v = |v(t)|.
Starting from these formulas, let us compute, for example, the speed of a low-

altitude satellite of the Earth. In this case r equals the radius of the earth, that is,
r = 6400 km, while |a(t)| = g, where g ≈ 10 m/s2 is the acceleration of free fall at
the surface of the earth.

Thus, v2 = |a(t)|r ≈ 10 m/s2 × 64 × 105 m = 64 × 106 (m/s)2, and so v ≈
8× 103 m/s.

Example 6 (The optic property of a parabolic mirror) Let us consider the parabola
y = 1

2p
x2 (p > 0, see Fig. 5.4), and construct the tangent to it at the point (x0, y0)=

(x0,
1

2p
x2

0).

Since f (x)= 1
2p

x2, we have

f ′(x0)= lim
x→x0

1
2p

x2 − 1
2p

x2
0

x − x0
= 1

2p
lim

x→x0
(x + x0)= 1

p
x0.

Hence the required tangent has the equation

y − 1

2p
x2

0 =
1

p
x0(x − x0)

or

1

p
x0(x − x0)− (y − y0)= 0, (5.25)

where y0 = 1
2p

x2
0 .
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The vector n= (− 1
p
x0,1), as can be seen from this last equation, is orthogonal

to the line whose equation is (5.25). We shall show that the vectors ey = (0,1)

and ef = (−x0,
p
2 − y0) form equal angles with n. The vector ey is a unit vector

directed along the y-axis, while ef is directed from the point of tangency (x0, y0)=
(x0,

1
2px2

0) to the point (0,
p
2 ), which is the focus of the parabola. Thus

cos êyn = 〈ey,n〉
|ef ||n| =

1

|n| ,

cos êf n = 〈ef ,n〉
|ey ||n| =

1
p
x2

0 + p
2 − 1

2p
x2

0

|n|
√

x2
0 + (

p
2 − 1

2p
x2

0)2
=

p
2 + 1

2p
x2

0

|n|
√

(
p
2 + 1

2p
x2

0)2
= 1

|n| .

Thus we have shown that a wave source located at the point (0,
p
2 ), the focus of

the parabola, will emit a ray parallel to the axis of the mirror (the y-axis), and that
a wave arriving parallel to the axis of the mirror will pass through the focus (see
Fig. 5.4).

Example 7 With this example we shall show that the tangent is merely the best
linear approximation to the graph of a function in a neighborhood of the point of
tangency and does not necessarily have only one point in common with the curve,
as was the case with a circle, or in general, with convex curves. (For convex curves
we shall give a separate discussion.)

Let the function be given by

f (x)=
{

x2 sin 1
x
, if x �= 0,

0 if x = 0.

The graph of this function is shown by the thick line in Fig. 5.5.
Let us find the tangent to the graph at the point (0,0). Since

f ′(0)= lim
x→0

x2 sin 1
x
− 0

x − 0
= lim

x→0
x sin

1

x
= 0,

the tangent has the equation y − 0= 0 · (x − 0), or simply y = 0.
Thus, in this example the tangent is the x-axis, which the graph intersects in-

finitely many times in any neighborhood of the point of tangency.
By the definition of differentiability of a function f : E→ R at a point x0 ∈ E,

we have

f (x)− f (x0)=A(x0)(x − x0)+ o(x − x0) as x→ x0, x ∈E.

Since the right-hand side of this equality tends to zero as x → x0, x ∈ E, it
follows that limE
x→x0 f (x) = f (x0), so that a function that is differentiable at a
point is necessarily continuous at that point.

We shall show that the converse, of course, is not always true.
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Fig. 5.5

Fig. 5.6

Example 8 Let f (x)= |x|, (Fig. 5.6). Then at the point x0 = 0 we have

lim
x→x0−0

f (x)− f (x0)

x − x0
= lim

x→−0

|x| − 0

x − 0
= lim

x→−0

−x

x
=−1,

lim
x→x0+0

f (x)− f (x0)

x − x0
= lim

x→+0

|x| − 0

x − 0
= lim

x→+0

x

x
= 1.

Consequently, at this point the function has no derivative and hence is not differ-
entiable at the point.

Example 9 We shall show that ex+h − ex = exh+ o(h) as h→ 0.
Thus, the function exp(x) = ex is differentiable and d exp(x)h = exp(x)h, or

dex = ex dx, and therefore exp′ x = expx, or dex

dx
= ex .

Proof

ex+h − ex = ex
(
eh − 1

)= ex
(
h+ o(h)

)= exh+ o(h).

Here we have used the formula eh − 1 = h + o(h) obtained in Example 39 of
Sect. 3.2.4. �

Example 10 If a > 0, then ax+h − ax = ah(lna)h + o(h) as h→ 0. Thus dax =
ax(lna)dx and dax

dx
= ax lna.
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Proof

ax+h − ax = ax
(
ah − 1

)= ax
(
eh lna − 1

)=
= ax

(
h lna + o(h lna)

)= ax(lna)h+ o(h) as h→ 0. �

Example 11 If x �= 0, then ln |x+h|− ln |x| = 1
x
h+ o(h) as h→ 0. Thus d ln |x| =

1
x

dx and d ln |x|
dx

= 1
x

.

Proof

ln |x + h| − ln |x| = ln

∣
∣
∣
∣1+

h

x

∣
∣
∣
∣.

For |h|< |x| we have |1+ h
x
| = 1+ h

x
, and so for sufficiently small values of h we

can write

ln |x + h| − ln |x| = ln

(

1+ h

x

)

= h

x
+ o

(
h

x

)

= 1

x
h+ o(h)

as h→ 0. Here we have used the relation ln(1+ t)= t + o(t) as t → 0, shown in
Example 38 of Sect. 3.2.4. �

Example 12 If x �= 0 and 0 < a �= 1, then loga |x + h| − loga |x| = l
x lna

h+ o(h) as

h→ 0. Thus, d loga |x| = l
x lna

dx and d loga |x|
dx

= l
x lna

.

Proof

loga |x + h| − loga |x| = loga

∣
∣
∣
∣1+

h

x

∣
∣
∣
∣= loga

(

1+ h

x

)

=

= 1

lna
ln

(

1+ h

x

)

= 1

lna

(
h

x
+ o

(
h

x

))

= l

x lna
h+ o(h).

Here we have used the formula for transition from one base of logarithms to
another and the considerations explained in Example 11. �

5.1.6 Problems and Exercises

1. Show that

a) the tangent to the ellipse

x2

a2
+ y2

b2
= 1
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at the point (x0, y0) has the equation

xx0

a2
+ yy0

b2
= 1;

b) light rays from a source located at a focus F1 = (−√a2 − b2,0) or F2 =
(
√

a2 − b2,0) of an ellipse with semiaxes a > b > 0 are gathered at the other focus
by an elliptical mirror.

2. Write the formulas for approximate computation of the following values:

a) sin(π
6 + α) for values of α near 0;

b) sin(30◦ + α◦) for values of α◦ near 0;
c) cos(π

4 + α) for values of α near 0;
d) cos(45◦ + α◦) for values of α◦ near 0.

3. A glass of water is rotating about its axis at constant angular velocity ω. Let
y = f (x) denote the equation of the curve obtained by cutting the surface of the
liquid with a plane passing through its axis of rotation.

a) Show that f ′(x)= ω2

g
x, where g is the acceleration of free fall. (See Exam-

ple 5.)
b) Choose a function f (x) that satisfies the condition given in part a). (See Ex-

ample 6.)
c) Does the condition on the function f (x) given in part a) change if its axis of

rotation does not coincide with the axis of the glass?

4. A body that can be regarded as a point mass is sliding down a smooth hill under
the influence of gravity. The hill is the graph of a differentiable function y = f (x).

a) Find the horizontal and vertical components of the acceleration vector that
the body has at the point (x0, y0).

b) For the case f (x) = x2 when the body slides from a great height, find the
point of the parabola y = x2 at which the horizontal component of the acceleration
is maximal.

5. Set

Ψ0(x)=
{

x, if 0≤ x ≤ 1
2 ,

1− x, if 1
2 ≤ x ≤ 1,

and extend this function to the entire real line so as to have period 1. We denote the
extended function by ϕ0. Further, let

ϕn(x)= 1

4n
ϕ0
(
4nx

)
.
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The function ϕn has period 4−n and a derivative equal to +1 or −1 everywhere
except at the points x = k

22n+1 , k ∈ Z. Let

f (x)=
∞∑

n=1

ϕn(x).

Show that the function f is defined and continuous on R, but does not have a
derivative at any point. (This example is due to the well-known Dutch mathemati-
cian B.L. van der Waerden (1903–1996). The first examples of continuous functions
having no derivatives were constructed by Bolzano (1830) and Weierstrass (1860).)

5.2 The Basic Rules of Differentiation

Constructing the differential of a given function or, equivalently, the process of find-
ing its derivative, is called differentiation.7

5.2.1 Differentiation and the Arithmetic Operations

Theorem 1 If functions f : X → R and g : X → R are differentiable at a point
x ∈X, then

a) their sum is differentiable at x, and

(f + g)′(x)= (
f ′ + g′

)
(x);

b) their product is differentiable at x, and

(f · g)′(x)= f ′(x) · g(x)+ f (x) · g′(x);
c) their quotient is differentiable at x if g(x) �= 0, and

(
f

g

)′
(x)= f ′(x)g(x)− f (x)g′(x)

g2(x)
.

Proof In the proof we shall rely on the definition of a differentiable function and
the properties of the symbol o(·) proved in Sect. 3.2.4.

7Although the problems of finding the differential and finding the derivative are mathematically
equivalent, the derivative and the differential are nevertheless not the same thing. For that reason,
for example, there are two terms in French – dérivation, for finding the derivative, and différentia-
tion, for finding the differential.
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a) (f + g)(x + h)− (f + g)(x)=
= (

f (x + h)+ g(x + h)
)− (

f (x)+ g(x)
)=

= (
f (x + h)− f (x)

)+ (
g(x + h)− g(x)

)=
= (

f ′(x)h+ o(h)
)+ (

g′(x)h+ o(h)
)= (

f ′(x)+ g′(x)
)
h+ o(h)=

= (
f ′ + g′

)
(x)h+ o(h).

b) (f · g)(x + h)− (f · g)(x)=
= f (x + h)g(x + h)− f (x)g(x)=
= (

f (x)+ f ′(x)h+ o(h)
)(

g(x)+ g′(x)h+ o(h)
)− f (x)g(x)=

= (
f ′(x)g(x)+ f (x)g′(x)

)
h+ o(h).

c) Since a function that is differentiable at a point x ∈ X is continuous at that
point, taking account of the relation g(x) �= 0 and the properties of continuous func-
tions, we can guarantee that g(x + h) �= 0 for sufficiently small values of h. In the
following computations it is assumed that h is small:

(
f

g

)

(x + h)−
(

f

g

)

(x)=

= f (x + h)

g(x + h)
− f (x)

g(x)
= 1

g(x)g(x + h)

(
f (x + h)g(x)− f (x)g(x + h)

)=

=
(

1

g2(x)
+ o(1)

)
((

f (x)+ f ′(x)h+ o(h)
)
g(x)−

− f (x)
(
g(x)+ g′(x)h+ o(h)

))=

=
(

1

g2(x)
+ o(1)

)
((

f ′(x)g(x)− f (x)g′(x)
)
h+ o(h)

)=

= f ′(x)g(x)− f (x)g′(x)

g2(x)
h+ o(h).

Here we have used the continuity of g at the point x and the relation g(x) �= 0 to
deduce that

lim
h→0

1

g(x)g(x + h)
= 1

g2(x)
,

that is,

1

g(x)g(x + h)
= 1

g2(x)
+ o(1),

where o(1) is infinitesimal as h→ 0, x + h ∈X. �

Corollary 1 The derivative of a linear combination of differentiable functions
equals the same linear combination of the derivatives of these functions.
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Proof Since a constant function is obviously differentiable and has a derivative
equal to 0 at every point, taking f ≡ const = c in statement b) of Theorem 1, we
find (cg)′(x)= cg′(x).

Now, using statement a) of Theorem 1, we can write

(c1f + c2g)′(x)= (c1f )′(x)+ (c2g)′(x)= c1f
′(x)+ c2g

′(x).

Taking account of what has just been proved, we verify by induction that

(c1f1 + · · · + cnfn)
′(x)= c1f

′
1(x)+ · · · + cnf

′
n(x). �

Corollary 2 If the functions f1, . . . , fn are differentiable at x, then

(f1 · · ·fn)
′(x)= f ′1(x)f2(x) · · ·fn(x)+

+ f1(x)f ′2(x)f3(x) · · ·fn(x)+ · · · + f1(x) · · ·fn−1(x)f ′n(x).

Proof For n= 1 the statement is obvious.
If it holds for some n ∈ N, then by statement b) of Theorem 1 it also holds for

(n+ 1) ∈N. By the principle of induction, we conclude that the formula is valid for
any n ∈N. �

Corollary 3 It follows from the relation between the derivative and the differential
that Theorem 1 can also be written in terms of differentials. To be specific:

a) d(f + g)(x)= df (x)+ dg(x);
b) d(f · g)(x)= g(x)df (x)+ f (x)dg(x);
c) d(

f
g
)(x)= g(x)df (x)−f (x)dg(x)

g2(x)
if g(x) �= 0.

Proof Let us verify, for example, statement a).

d(f + g)(x)h = (f + g)′(x)h= (
f ′ + g′

)
(x)h=

= (
f ′(x)+ g′(x)

)
h= f ′(x)h+ g′(x)h=

= df (x)h+ dg(x)h= (
df (x)+ dg(x)

)
h,

and we have verified that d(f + g)(x) and df (x)+ dg(x) are the same function. �

Example 1 (Invariance of the definition of velocity) We are now in a position to
verify that the instantaneous velocity vector of a point mass defined in Sect. 5.1.1
is independent of the Cartesian coordinate system used to define it. In fact we shall
verify this for all affine coordinate systems.

Let (x1, x2) and (x̃1, x̃2) be the coordinates of the same point of the plane in two
different coordinate systems connected by the relations

x̃1 = a1
1x1 + a1

2x2 + b1,

x̃2 = a2
1x1 + a2

2x2 + b2.
(5.26)
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Since any vector (in affine space) is determined by a pair of points and its co-
ordinates are the differences of the coordinates of the terminal and initial points of
the vector, it follows that the coordinates of a given vector in these two coordinate
systems must be connected by the relations

ṽ1 = a1
1v1 + a1

2v2,

ṽ2 = a2
1v1 + a2

2v2.
(5.27)

If the law of motion of the point is given by functions x1(t) and x2(t) in one
system of coordinates, it is given in the other system by functions x̃1(t) and x̃2(t)

connected with the first set by relations (5.26).
Differentiating relations (5.26) with respect to t , we find by the rules for differ-

entiation

˙̃x1 = a1
1 ẋ1 + a1

2 ẋ2,

˙̃x2 = a2
1 ẋ1 + a2

2 ẋ2.

(5.28)

Thus the coordinates (v1, v2)= (ẋ1, ẋ2) of the velocity vector in the first system

and the coordinates (ṽ1, ṽ2)= ( ˙̃x1
, ˙̃x2

) of the velocity vector in the second system
are connected by relations (5.27), telling us that we are dealing with two different
expressions for the same vector.

Example 2 Let f (x)= tanx. We shall show that f ′(x)= 1
cos2 x

at every point where

cosx �= 0, that is, in the domain of definition of the function tanx = sinx
cosx

.
It was shown in Examples 1 and 2 of Sect. 5.1 that sin′(x)= cosx and cos′ x =

− sinx, so that by statement c) of Theorem 1 we find, when cosx �= 0,

tan′ x =
(

sin

cos

)′
(x)= sin′ x cosx − sinx cos′ x

cos2 x
=

= cosx cosx + sinx sinx

cos2 x
= 1

cos2 x
.

Example 3 cot′ x =− 1
sin2 x

wherever sinx �= 0, that is, in the domain of definition
of cotx = cosx

sinx
.

Indeed,

cot′ x =
(

cos

sin

)′
(x)= cos′ x sinx − cosx sin′ x

sin2 x
=

= − sinx sinx − cosx cosx

sin2 x
=− 1

sin2 x
.

Example 4 If P(x) = c0 + c1x + · · · + cnx
n is a polynomial, then P ′(x) = c1 +

2c2x + · · · + ncnx
n−1.
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Indeed, since dx
dx
= 1, by Corollary 2 we have dxn

dx
= nxn−1, and the statement

now follows from Corollary 1.

5.2.2 Differentiation of a Composite Function (Chain Rule)

Theorem 2 (Differentiation of a composite function) If the function f :X→ Y ⊂
R is differentiable at a point x ∈X and the function g : Y → R is differentiable at
the point y = f (x) ∈ Y , then the composite function g ◦ f :X→R is differentiable
at x, and the differential d(g ◦ f )(x) : TR(x)→ TR(g(f (x))) of their composition
equals the composition df (y) ◦ df (x) of their differentials

df (x) : TR(x)→ TR
(
y = f (x)

)
and dg

(
y = f (x)

) : TR(y)→ TR
(
g(y)

)
.

Proof The conditions for differentiability of the functions f and g have the form

f (x + h)− f (x) = f ′(x)h+ o(h) as h→ 0, x + h ∈X,

g(y + t)− g(y) = g′(y)t + o(t) as t → 0, y + t ∈ Y.

We remark that in the second equality here the function o(t) can be considered
to be defined for t = 0, and in the representation o(t)= γ (t)t , where γ (t)→ 0 as
t → 0, y+ t ∈ Y , we may assume γ (0)= 0. Setting f (x)= y and f (x+h)= y+ t ,
by the differentiability (and hence continuity) of f at the point x we conclude that
t → 0 as h→ 0, and if x + h ∈X, then y + t ∈ Y . By the theorem on the limit of a
composite function, we now have

γ
(
f (x + h)− f (x)

)= α(h)→ 0 as h→ 0, x + h ∈X,

and thus if t = f (x + h)− f (x) then

o(t)= γ
(
f (x + h)− f (x)

)(
f (x + h)− f (x)

)=
= α(h)

(
f ′(x)h+ o(h)

)= α(h)f ′(x)h+ α(h)o(h)=
= o(h)+ o(h)= o(h) as h→ 0, x + h ∈X,

(g ◦ f )(x + h)− (g ◦ f )(x)= g
(
f (x + h)

)− g
(
f (x)

)=
= g(y + t)− g(y)= g′(y)t + o(t)=
= g′

(
f (x)

)(
f (x + h)− f (x)

)+ o
(
f (x + h)− f (x)

)=
= g′

(
f (x)

)(
f ′(x)h+ o(h)

)+ o
(
f (x + h)− f (x)

)=
= g′

(
f (x)

)(
f ′(x)h

)+ g′
(
f (x)

)(
o(h)

)+ o
(
f (x + h)− f (x)

)
.

Since we can interpret the quantity g′(f (x))(f ′(x)h) as the value dg(f (x)) ◦
df (x)h of the composition h

dg(y)◦df (x)�−→ g′(f (x)) · f ′(x)h of the mappings h
df (x)�→
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f ′(x)h, τ
dg(y)�→ g′(y)τ at the displacement h, to complete the proof it remains only

for us to remark that the sum

g′
(
f (x)

)(
o(h)

)+ o
(
f (x + h)− f (x)

)

is infinitesimal compared with h as h→ 0, x+ h ∈X, or, as we have already estab-
lished,

o
(
f (x + h)− f (x)

)= o(h) as h→ 0, x + h ∈X.

Thus we have proved that

(g ◦ f )(x + h)− (g ◦ f )(x)=
= g′

(
f (x)

) · f ′(x)h+ o(h) as h→ 0, x + h ∈X. �

Corollary 4 The derivative (g ◦ f )′(x) of the composition of differentiable real-
valued functions equals the product g′(f (x)) ·f ′(x) of the derivatives of these func-
tions computed at the corresponding points.

There is a strong temptation to give a short proof of this last statement in Leibniz’
notation for the derivative, in which if z= z(y) and y = y(x), we have

dz

dx
= dz

dy
· dy

dx
,

which appears to be completely natural, if one regards the symbol dz
dy

or dy
dx

not as a
unit, but as the ratio of dz to dy or dy to dx.

The idea for a proof that thereby arises is to consider the difference quotient

Δz

Δx
= Δz

Δy
· Δy

Δx

and then pass to the limit as Δx→ 0. The difficulty that arises here (which we also
have had to deal with in part!) is that Δy may be 0 even if Δx �= 0.

Corollary 5 If the composition (fn ◦ · · · ◦ f1)(x) of differentiable functions y1 =
f1(x), . . . , yn = fn(yn−1) exists, then

(fn ◦ · · · ◦ f1)
′(x)= f ′n(yn−1)f

′
n−1(yn−2) · · ·f ′1(x).

Proof The statement is obvious if n= 1.
If it holds for some n ∈ N, then by Theorem 2 it also holds for n+ 1, so that by

the principle of induction, it holds for any n ∈N. �

Example 5 Let us show that for α ∈ R we have dxα

dx
= αxα−1 in the domain x > 0,

that is, dxα = αxα−1 dx and

(x + h)α − xα = αxα−1h+ o(h) as h→ 0.
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Proof We write xα = eα lnx and apply the theorem, taking account of the results of
Examples 9 and 11 from Sect. 5.1 and statement b) of Theorem 1.

Let g(y)= ey and y = f (x)= α ln(x). Then xα = (g ◦ f )(x) and

(g ◦ f )′(x)= g′(y) · f ′(x)= ey · α
x
= eα lnx · α

x
= αxα−1. �

Example 6 The derivative of the logarithm of the absolute value of a differentiable
function is often called its logarithmic derivative.

Since F(x) = ln |f (x)| = (ln◦| | ◦ f )(x), by Example 11 of Sect. 5.1, we have
F ′(x)= (ln |f |)′(x)= f ′(x)

f (x)
.

Thus

d
(
ln |f |)(x)= f ′(x)

f (x)
dx = df (x)

f (x)
.

Example 7 (The absolute and relative errors in the value of a differentiable function
caused by errors in the data for the argument) If the function f is differentiable
at x, then

f (x + h)− f (x)= f ′(x)h+ α(x;h),

where α(x;h)= o(h) as h→ 0.
Thus, if in computing the value f (x) of a function, the argument x is determined

with absolute error h, the absolute error |f (x + h)− f (x)| in the value of the func-
tion due to this error in the argument can be replaced for small values of h by the
absolute value of the differential |df (x)h| = |f ′(x)h| at displacement h.

The relative error can then be computed as the ratio |f ′(x)h|
f (x)| = |df (x)h|

|f (x)| or as the

absolute value of the product |f ′(x)
f (x)

||h| of the logarithmic derivative of the function
and the magnitude of the absolute error in the argument.

We remark by the way that if f (x)= lnx, then d lnx = dx
x

, and the absolute error
in determining the value of a logarithm equals the relative error in the argument.
This circumstance can be beautifully exploited for example, in the slide rule (and
many other devices with nonuniform scales). To be specific, let us imagine that with
each point of the real line lying right of zero we connect its coordinate y and write
it down above the point, while below the point we write the number x = ey . Then
y = lnx. The same real half-line has now been endowed with a uniform scale y and
a nonuniform scale x (called logarithmic). To find lnx, one need only set the cursor
on the number x and read the corresponding number y written above it. Since the
precision in setting the cursor on a particular point is independent of the number x

or y corresponding to it and is measured by some quantity Δy (the length of the
interval of possible deviation) on the uniform scale, we shall have approximately
the same absolute error in determining both a number x and its logarithm y; and
in determining a number from its logarithm we shall have approximately the same
relative error in all parts of the scale.
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Example 8 Let us differentiate a function u(x)v(x), where u(x) and v(x) are dif-
ferentiable functions and u(x) > 0. We write u(x)v(x) = ev(x) lnu(x) and use Corol-
lary 5. Then

dev(x) lnu(x)

dx
= ev(x) lnu(x)

(

v′(x) lnu(x)+ v(x)
u′(x)

u(x)

)

=

= u(x)v(x) · v′(x) lnu(x)+ v(x)u(x)v(x)−1 · u′(x).

5.2.3 Differentiation of an Inverse Function

Theorem 3 (The derivative of an inverse function) Let the functions f :X→ Y and
f−1 : Y → X be mutually inverse and continuous at points x0 ∈ X and f (x0) =
y0 ∈ Y respectively. If f is differentiable at x0 and f ′(x0) �= 0, then f−1 is also
differentiable at the point y0, and

(
f−1)′(y0)=

(
f ′(x0)

)−1
.

Proof Since the functions f : X→ Y and f−1 : Y → X are mutually inverse, the
quantities f (x)− f (x0) and f−1(y)− f−1(y0), where y = f (x), are both nonzero
if x �= x0. In addition, we conclude from the continuity of f at x0 and f−1 at y0 that
(X 
 x→ x0)⇔ (Y 
 y→ y0). Now using the theorem on the limit of a composite
function and the arithmetic properties of the limit, we find

lim
Y
y→y0

f−1(y)− f−1(y0)

y − y0
= lim

X
x→x0

x − x0

f (x)− f (x0)
=

= lim
X
x→x0

1

(
f (x)−f (x0)

x−x0
)
= 1

f ′(x0)
.

Thus we have shown that the function f−1 : Y → X has a derivative at y0 and
that

(
f−1)′(y0)=

(
f ′(x0)

)−1
. �

Remark 1 If we knew in advance that the function f−1 was differentiable at y0,
we would find immediately by the identity (f−1 ◦ f )(x) = x and the theorem on
differentiation of a composite function that (f−1)′(y0) · f ′(x0)= 1.

Remark 2 The condition f ′(x0) �= 0 is obviously equivalent to the statement that
the mapping h �→ f ′(x0)h realized by the differential df (x0) : TR(x0)→ TR(y0)

has the inverse mapping [df (x0)]−1 : TR(y0)→ TR(x0) given by the formula τ �→
(f ′(x0))

−1τ .
Hence, in terms of differentials we can write the second statement in Theorem 3

as follows:
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If a function f is differentiable at a point x0 and its differential df (x0) :
TR(x0)→ TR(y0) is invertible at that point, then the differential of the function
f−1 inverse to f exists at the point y0 = f (x0) and is the mapping

df−1(y0)=
[
df (x0)

]−1 : TR(y0)→ TR(x0),

inverse to df (x0) : TR(x0)→ TR(y0).

Example 9 We shall show that arcsin′ y = 1√
1−y2

for |y| < 1. The functions sin :
[−π/2,π/2] → [−1,1] and arcsin : [−1,1] → [−π/2,π/2] are mutually inverse
and continuous (see Example 8 of Sect. 4.2) and sin′(x) = cosx �= 0 if |x| < π/2.
For |x|< π/2 we have |y|< 1 for the values y = sinx. Therefore, by Theorem 3

arcsin′ y = 1

sin′ x
= 1

cosx
= 1
√

1− sin2 x
= 1
√

1− y2
.

The sign in front of the radical is chosen taking account of the inequality cosx > 0
for |x|< π/2.

Example 10 Reasoning as in the preceding example, one can show (taking account
of Example 9 of Sect. 4.2) that

arccos′ y =− 1
√

1− y2
for |y|< 1.

Indeed,

arccos′ y = 1

cos′ x
=− 1

sinx
=− 1√

1− cos2 x
=− 1

√
1− y2

.

The sign in front of the radical is chosen taking account of the inequality sinx > 0
if 0 < x < π .

Example 11 arctan′ y = 1
1+y2 , y ∈R.

Indeed,

arctan′ y = 1

tan′ x
= 1

( 1
cos2 x

)
= cos2 x = 1

1+ tan2 x
= 1

1+ y2
.

Example 12 arccot′ y =− 1
1+y2 , y ∈R.

Indeed

arccot′ y = 1

cot′ x
= 1

(− 1
sin2 x

)
=− sin2 x =− 1

1+ cot2 x
=− 1

1+ y2
.
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Example 13 We already know (see Examples 10 and 12 of Sect. 5.1) that the func-
tions y = f (x)= ax and x = f−1(y)= loga y have the derivatives f ′(x)= ax lna

and (f−1)′(y)= l
y lna

.
Let us see how this is consistent with Theorem 3:

(
f−1)′(y) = 1

f ′(x)
= 1

ax lna
= l

y lna
,

f ′(x) = 1

(f−1)′(y)
= 1

( l
y lna

)
= y lna = ax lna.

Example 14 The hyperbolic and inverse hyperbolic functions and their derivatives.
The functions

sinhx = 1

2

(
ex − e−x

)
,

coshx = 1

2

(
ex + e−x

)

are called respectively the hyperbolic sine and hyperbolic cosine8 of x.
These functions, which for the time being have been introduced purely formally,

arise just as naturally in many problems as the circular functions sinx and cosx.
We remark that

sinh(−x) = − sinhx,

cosh(−x) = coshx,

that is, the hyperbolic sine is an odd function and the hyperbolic cosine is an even
function.

Moreover, the following basic identity is obvious:

cosh2 x − sinh2 x = 1.

The graphs of the functions y = sinhx and y = coshx are shown in Fig. 5.7.
It follows from the definition of sinhx and the properties of the function ex that

sinhx is a continuous strictly increasing function mapping R in a one-to-one manner
onto itself. The inverse function to sinhx thus exists, is defined on R, is continuous,
and is strictly increasing.

This inverse is denoted arsinhy (read “area-sine of y”).9 This function is easily
expressed in terms of known functions. In solving the equation

1

2

(
ex − e−x

)= y

8From the Latin phrases sinus hyperbolici and cosinus hyperbolici.
9The full name is area sinus hyperbolici (Lat.); the reason for using the term area here instead of
arc, as in the case of the circular functions, will be explained later.
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Fig. 5.7

for x, we find successively

ex = y +
√

1+ y2

(ex > 0, and so ex �= y −√
1+ y2) and

x = ln
(
y +

√
1+ y2

)
.

Thus,

arsinhy = ln
(
y +

√
1+ y2

)
, y ∈R.

Similarly, using the monotonicity of the function y = coshx on the two inter-
vals R− = {x ∈ R | x ≤ 0} and R+ = {x ∈ R | x ≥ 0}, we can construct functions
arcosh− y and arcosh+ y, defined for y ≥ 1 and inverse to the function coshx on
R− and R+ respectively.

They are given by the formulas

arcosh− y = ln
(
y −

√
y2 − 1

)
,

arcosh+ y = ln
(
y +

√
y2 − 1

)
.

From the definitions given above, we find

sinh′ x = 1

2

(
ex + e−x

)= coshx,

cosh′ x = 1

2

(
ex − e−x

)= sinhx,

and by the theorem on the derivative of an inverse function, we find

arsinh′ y = 1

sinh′ x
= 1

coshx
= 1
√

1+ sinh2 x
= 1
√

1+ y2
,

arcosh′− y = 1

cosh′ x
= 1

sinhx
= 1

−
√

cosh2 x − 1
=− 1

√
y2 − 1

, y > 1,
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arcosh′+ y = 1

cosh′ x
= 1

sinhx
= 1
√

cosh2 x − 1
= 1
√

y2 − 1
, y > 1.

These last three relations can be verified by using the explicit expressions for the
inverse hyperbolic functions arsinhy and arcoshy.

For example,

arsinh′ y = 1

y +√
1+ y2

(

1+ 1

2

(
1+ y2)−1/2 · 2y

)

=

= 1

y +√
1+ y2

·
√

1+ y2 + y
√

1+ y2
= 1
√

1+ y2
.

Like tanx and cotx one can consider the functions

tanhx = sinhx

coshx
and cothx = coshx

sinhx
,

called the hyperbolic tangent and hyperbolic cotangent respectively, and also the
functions inverse to them, the area tangent

artanhy = 1

2
ln

1+ y

1− y
, |y|< 1,

and the area cotangent

arcothy = 1

2
ln

y + 1

y − 1
, |y|> 1.

We omit the solutions of the elementary equations that lead to these formulas.
By the rules for differentiation we have

tanh′ x = sinh′ x coshx − sinhx cosh′ x
cosh2 x

=

= coshx coshx − sinhx sinhx

cosh2 x
= 1

cosh2 x
,

coth′ x = cosh′ x sinhx − coshx sinh′ x
sinh2 x

=

= sinhx sinhx − coshx coshx

sinh2 x
=− 1

sinh2 x
.

By the theorem on the derivative of an inverse function

artanh′ y = 1

tanh′ x
= 1

( 1
cosh2 x

)
= cosh2 x =

= 1

1− tanh2 x
= 1

1− y2
, |y|< 1,
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arcoth′ y = 1

coth′ x
= 1

(− 1
sinh2 x

)
=− sinh2 x =

= − 1

coth2 x − 1
=− 1

y2 − 1
, |y|> 1.

The last two formulas can also be verified by direct differentiation of the explicit
formulas for the functions artanhy and arcothy.

5.2.4 Table of Derivatives of the Basic Elementary Functions

We now write out (see Table 5.1) the derivatives of the basic elementary functions
computed in Sects. 5.1 and 5.2.

5.2.5 Differentiation of a Very Simple Implicit Function

Let y = y(t) and x = x(t) be differentiable functions defined in a neighborhood
U(t0) of a point t0 ∈ R. Assume that the function x = x(t) has an inverse t = t (x)

defined in a neighborhood V (x0) of x0 = x(t0). Then the quantity y = y(t), which
depends on t , can also be regarded as an implicit function of x, since y(t)= y(t (x)).
Let us find the derivative of this function with respect to x at the point x0, assuming
that x′(t0) �= 0. Using the theorem on the differentiation of a composite function and
the theorem on differentiation of an inverse function, we obtain

y′x
∣
∣
x=x0

= dy(t (x))

dx

∣
∣
∣
∣
x=x0

= dy(t)

dt

∣
∣
∣
∣
t=t0

· dt (x)

dx

∣
∣
∣
∣
x=x0

=
dy(t)

dt
|t=t0

dx(t)
dt
|t=t0

= y′t (t0)
x′t (t0)

.

(Here we have used the standard notation f (x)|x=x0 := f (x0).)
If the same quantity is regarded as a function of different arguments, in order to

avoid misunderstandings in differentiation, we indicate explicitly the variable with
respect to which the differentiation is carried out, as we have done here.

Example 15 (The law of addition of velocities) The motion of a point along a line
is completely determined if we know the coordinate x of the point in our chosen
coordinate system (the real line) at each instant t in a system we have chosen for
measuring time. Thus the pair of numbers (x, t) determines the position of the point
in space and time. The law of motion is written in the form of a function x = x(t).

Suppose we wish to express the motion of this point in terms of a different co-
ordinate system (x̃, t̃ ). For example, the new real line may be moving uniformly
with speed −v relative to the first system. (The velocity vector in this case may be
identified with the single number that defines it.) For simplicity we shall assume
that the coordinates (0,0) refer to the same point in both systems; more precisely,
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Table 5.1

Function f (x) Derivative f ′(x) Restrictions on domain of x ∈R

1. C (const) 0

2. xα αxα−1 x > 0 for α ∈R

x ∈R for α ∈N

3. ax ax lna x ∈R (a > 0, a �= 1)

4. loga |x| 1
x lna

x ∈R\0 (a > 0, a �= 1)

5. sinx cosx

6. cosx − sinx

7. tanx 1
cos2 x

x �= π
2 + πk, k ∈ Z

8. cotx − 1
sin2 x

x �= πk, k ∈ Z

9. arcsinx 1√
1−x2

|x|< 1

10. arccosx − 1√
1−x2

|x|< 1

11. arctanx 1
1+x2

12. arccotx − 1
1+x2

13. sinhx coshx

14. coshx sinhx

15. tanhx 1
cosh2 x

16. cothx − 1
sinh2 x

x �= 0

17. arsinhx = ln(x +√1+ x2) 1√
1+x2

18. arcoshx = ln(x ±√x2 − 1) ± 1√
x2−1

|x|> 1

19. artanhx = 1
2 ln 1+x

1−x
1

1−x2 |x|< 1

20. arcothx = 1
2 ln x+1

x−1
1

x2−1
|x|> 1

that at time t̃ = 0 the point x̃ = 0 coincided with the point x = 0 at which the clock
showed t = 0.

Then one of the possible connections between the coordinate systems (x, t) and
(x̃, t̃ ) describing the motion of the same point observed from different coordinate
systems is provided by the classical Galilean transformations:

x̃ = x + vt,

t̃ = t.
(5.29)

Let us consider a somewhat more general linear connection

x̃ = αx + βt,

t̃ = γ x + δt,
(5.30)

assuming, of course, that this connection is invertible, that is, the determinant of the
matrix

( α β

γ δ

)
is not zero.
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Let x = x(t) and x̃ = x̃(t̃ ) be the law of motion for the point under observation,
written in these coordinate systems.

We remark that, knowing the relation x = x(t), we find by formula (5.30) that

x̃(t)= αx(t)+ βt,

t̃(t)= γ x(t)+ δt,
(5.31)

and since the transformation (5.30) is invertible, after writing

x = α̃x̃ + β̃ t̃ ,

t = γ̃ x̃ + δ̃t̃ ,
(5.32)

knowing x̃ = x̃(t̃ ), we find

x(t̃)= α̃x̃(t̃ )+ β̃ t̃ ,

t (t̃)= γ̃ x̃(t̃ )+ δ̃t̃ .
(5.33)

It is clear from relations (5.31) and (5.33) that for the given point there exist
mutually inverse functions t̃ = t̃ (t) and t = t (t̃).

We now consider the problem of the connection between the velocities

V (t)= dx(t)

dt
= ẋt (t) and Ṽ (t)= dx̃(t̃ )

dt̃
= ˙̃xt̃ (t̃)

of the point computed in the coordinate systems (x, t) and (x̃, t̃) respectively.
Using the rule for differentiating an implicit function and formula (5.31), we have

dx̃

dt̃
=

dx̃
dt
dt̃
dt

= α dx
dt
+ β

γ dx
dt
+ δ

or

Ṽ (t̃)= αV (t)+ β

γV (t)+ δ
, (5.34)

where t̃ and t are the coordinates of the same instant of time in the systems (x, t)

and (x̃, t̃ ). This is always to be kept in mind in the abbreviated notation

Ṽ = αV + β

γV + δ
(5.35)

for formula (5.34).
In the case of the Galilean transformations (5.29) we obtain the classical law of

addition of velocities from formula (5.35)

Ṽ = V + v. (5.36)
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It has been established experimentally with a high degree of precision (and this
became one of the postulates of the special theory of relativity) that in a vacuum
light propagates with a certain velocity c that is independent of the state of motion
of the radiating body. This means that if an explosion occurs at time t = t̃ = 0 at
the point x = x̃ = 0, the light will reach the points x with coordinates such that
x2 = (ct)2 after time t in the coordinate system (x, t), while in the system (x̃, t̃ )

this event will correspond to time t̃ and coordinates x̃, where again x̃2 = (ct̃)2.
Thus, if x2 − c2t2 = 0, then x̃2 − ct̃2 = 0 also, and conversely. By virtue of

certain additional physical considerations, one must consider that, in general

x2 − c2t2 = x̃2 − c2t2, (5.37)

if (x, t) and (x̃, t̃ ) correspond to the same event in the different coordinate systems
connected by relation (5.30). Conditions (5.37) give the following relations on the
coefficients α,β, γ , and δ of the transformation (5.30):

α2 − c2γ 2 = 1,

αβ − c2γ δ = 0, (5.38)

β2 − c2δ2 = −c2.

If c= 1, we would have, instead of (5.38),

α2 − γ 2 = 1,

β

δ
= γ

α
, (5.39)

β2 − δ2 = −1,

from which it follows easily that the general solution of (5.39) (up to a change of
sign in the pairs (α, β) and (γ, δ)) can be given as

α = coshϕ, γ = sinhϕ, β = sinhϕ, δ = coshϕ,

where ϕ is a parameter.
The general solution of the system (5.38) then has the form

(
α β

γ δ

)

=
(

coshϕ c sinhϕ
1
c

sinhϕ coshϕ

)

and the transformation (5.30) can be made specific:

x̃ = coshϕx + c sinhϕt,

t̃ = 1

c
sinhϕx + coshϕt.

(5.40)

This is the Lorentz transformation.
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In order to clarify the way in which the free parameter ϕ is determined, we recall
that the x̃-axis is moving with speed−v relative to the x-axis, that is, the point x̃ = 0
of this axis, when observed in the system (x, t) has velocity −v. Setting x̃ = 0 in
(5.40), we find its law of motion in the system (x, t):

x =−c tanhϕt.

Therefore,

tanhϕ = v

c
. (5.41)

Comparing the general law (5.35) of transformation of velocities with the Lorentz
transformation (5.40), we obtain

Ṽ = coshϕV + c sinhϕ

1
c

sinhϕV + coshϕ
,

or, taking account of (5.41),

Ṽ = V + v

1+ vV

c2

. (5.42)

Formula (5.42) is the relativistic law of addition of velocities, which for
|vV | $ c2, that is, as c →∞, becomes the classical law expressed by formula
(5.36).

The Lorentz transformation (5.40) itself can be rewritten taking account of rela-
tion (5.41) in the following more natural form:

x̃ = x + vt
√

1− ( v
c
)2

,

t̃ = t + v

c2 x
√

1− ( v
c
)2

,

(5.43)

from which one can see that for |v| $ c, that is, as c→∞, they become the classical
Galilean transformations (5.29).

5.2.6 Higher-Order Derivatives

If a function f : E→ R is differentiable at every point x ∈ E, then a new function
f ′ : E→ R arises, whose value at a point x ∈ E equals the derivative f ′(x) of the
function f at that point.

The function f ′ :E→R may itself have a derivative (f ′)′ :E→R on E, called
the second derivative of the original function f and denoted by one of the following
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two symbols:

f ′′(x),
d2f (x)

dx2
,

and if we wish to indicate explicitly the variable of differentiation in the first case,
we also write, for example, f ′′xx(x).

Definition By induction, if the derivative f (n−1)(x) of order n− 1 of f has been
defined, then the derivative of order n is defined by the formula

f (n)(x) := (
f (n−1)

)′
(x).

The following notations are conventional for the derivative of order n:

f (n)(x),
dnf (x)

dxn
.

Also by convention, f (0)(x) := f (x).
The set of functions f : E → R having continuous derivatives up to order

n inclusive will be denoted C(n)(E,R), and by the simpler symbol C(n)(E), or
Cn(E,R) and Cn(E) respectively wherever no confusion can arise.

In particular C(0)(E)= C(E) by our convention that f (0)(x)= f (x).
Let us now consider some examples of the computation of higher-order deriva-

tives.

Examples
f (x) f ′(x) f ′′(x) · · · f (n)(x)

16) ax ax lna ax ln2 a · · · ax lnn a

17) ex ex ex · · · ex

18) sinx cosx − sinx · · · sin(x + nπ/2)

19) cosx − sinx − cosx · · · cos(x + nπ/2)

20) (1+ x)α α(1+ x)α−1 α(α − 1)(1+ x)α−2 · · · α(α− 1) · · · (α − n+ 1)(1+ x)α−n

21) xα αxα−1 α(α− 1)xα−2 · · · α(α − 1) · · · (α − n+ 1)xα−n

22) loga |x| 1
lna

x−1 −1
lna

x−2 · · · (−1)n−1(n−1)!
lna

x−n

23) ln |x| x−1 (−1)x−2 · · · (−1)n−1(n− 1)!x−n

Example 24 (Leibniz’ formula) Let u(x) and v(x) be functions having derivatives
up to order n inclusive on a common set E. The following formula of Leibniz holds
for the nth derivative of their product:

(uv)(n) =
n∑

m=0

(
n

m

)

u(n−m)v(m). (5.44)

Leibniz’ formula bears a strong resemblance to Newton’s binomial formula, and
in fact the two are directly connected.
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Proof For n = 1 formula (5.44) agrees with the rule already established for the
derivative of a product.

If the functions u and v have derivatives up to order n+1 inclusive, then, assum-
ing that formula (5.44) holds for order n, after differentiating the left- and right-hand
sides, we find

(uv)(n+1) =
n∑

m=0

(
n

m

)

u(n−m+1)v(m) +
n∑

m=0

(
n

m

)

u(n−m)v(m+1) =

= u(n+1)v(0) +
n∑

k=1

((
n

k

)

+
(

n

k − 1

))

u((n+1)−k)v(k) + u(0)v(n+1) =

=
n+1∑

k=0

(
n+ 1

k

)

u((n+1)−k)v(k).

Here we have combined the terms containing like products of derivatives of the
functions u and v and used the binomial relation

( n
k

)+ ( n
k−1

)= (
n+1
k

)
.

Thus by induction we have established the validity of Leibniz’ formula. �

Example 25 If Pn(x)= c0 + c1x + · · · + cnx
n, then

Pn(0) = c0,

P ′n(x) = c1 + 2c2x + · · · + ncnx
n−1 and P ′n(0)= c1,

P ′′n (x) = 2c2 + 3 · 2c3x + · · · + n(n− 1)cnx
n−2 and P ′′n (0)= 2!c2,

P (3)
n (x) = 3 · 2c3 + · · ·n(n− 1)(n− 2)cnx

n−3 and P (3)
n (0)= 3!c3,

...

P (n)
n (x) = n(n− 1)(n− 2) · · ·2cn and P (n)

n (0)= n!cn,

P (k)
n (x) = 0 for k > n.

Thus, the polynomial Pn(x) can be written as

Pn(x)= P (0)
n (0)+ 1

1!P
(1)
n (0)x + 1

2!P
(2)
n (0)x2 + · · · + 1

n!P
(n)
n (0)xn.

Example 26 Using Leibniz’ formula and the fact that all the derivatives of a poly-
nomial of order higher than the degree of the polynomial are zero, we can find the
nth derivative of f (x)= x2 sinx:

f (n)(x) = sin(n)(x) · x2 +
(

n

1

)

sin(n−1) x · 2x +
(

n

2

)

sin(n−2) x · 2=

= x2 sin

(

x + n
π

2

)

+ 2nx sin

(

x + (n− 1)
π

2

)

+
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+
(

−n(n− 1) sin

(

x + n
π

2

))

=

= (
x2 − n(n− 1)

)
sin

(

x + n
π

2

)

− 2nx cos

(

x + n
π

2

)

.

Example 27 Let f (x)= arctanx. Let us find the values f (n)(0) (n= 1,2, . . .).

Since f ′(x)= 1

1+ x2
, it follows that (1+ x2)f ′(x)= 1.

Applying Leibniz’ formula to this last equality, we find the recursion relation
(
1+ x2)f (n+1)(x)+ 2nxf (n)(x)+ n(n− 1)f (n−1)(x)= 0,

from which one can successively find all the derivatives of f (x).
Setting x = 0, we obtain

f (n+1)(0)=−n(n− 1)f (n−1)(0).

For n= 1 we find f (2)(0)= 0, and therefore f (2n)(0)= 0. For derivatives of odd
order we have

f (2m+1)(0)=−2m(2m− 1)f (2m−1)(0)

and since f ′(0)= 1, we obtain

f (2m+1)(0)= (−1)m(2m)!.
Example 28 (Acceleration) If x = x(t) denotes the time dependence of a point mass
moving along the real line, then dx(t)

dt = ẋ(t) is the velocity of the point, and then
dẋ(t)

dt
= d2x(t)

dt2 = ẍ(t) is its acceleration at time t .
If x(t)= αt+β , then ẋ(t)= α and ẍ(t)≡ 0, that is, the acceleration in a uniform

motion is zero. We shall soon verify that if the second derivative equals zero, then the
function itself has the form αt + β . Thus, in uniform motions, and only in uniform
motions, is the acceleration equal to zero.

But if we wish for a body moving under inertia in empty space to move uniformly
in a straight line when observed in two different coordinate systems, it is necessary
for the transition formulas from one inertial system to the other to be linear. That
is the reason why, in Example 15, the linear formulas (5.30) were chosen for the
coordinate transformations.

Example 29 (The second derivative of a simple implicit function) Let y = y(t) and
x = x(t) be twice-differentiable functions. Assume that the function x = x(t) has a
differentiable inverse function t = t (x). Then the quantity y(t) can be regarded as
an implicit function of x, since y = y(t)= y(t (x)). Let us find the second derivative
y′′xx assuming that x′(t) �= 0.

By the rule for differentiating such a function, studied in Sect. 5.2.5, we have

y′x =
y′t
x′t

,
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so that

y′′xx =
(
y′x
)′
x
= (y′x)′t

x′t
=

(
y′t
x′t

)′t
x′t

=
y′′t t x′t−y′t x′′t t

(x′t )2

x′t
= x′t y′′t t − x′′t t y′t

(x′t )3
.

We remark that the explicit expressions for all the functions that occur here,
including y′′xx , depend on t , but they make it possible to obtain the value of y′′xx at
the particular point x after substituting for t the value t = t (x) corresponding to the
value x.

For example, if y = et and x = ln t , then

y′x =
y′t
x′t
= et

1/t
= tet, y′′xx =

(y′x)′t
x′t

= et + tet

1/t
= t (t + 1)et .

We have deliberately chosen this simple example, in which one can explicitly
express t in terms of x as t = ex and, by substituting t = ex into y(t) = et , find
the explicit dependence of y = eex

on x. Differentiating this last function, one can
justify the results obtained above.

It is clear that in this way one can find the derivatives of any order by successively
applying the formula

y
(n)
xn =

(y
(n−1)

xn−1 )′t
x′t

.

5.2.7 Problems and Exercises

1. Let α0, α1, . . . , αn be given real numbers. Exhibit a polynomial Pn(x) of degree
n having the derivatives P

(k)
n (x0)= αk , k = 0,1, . . . , n, at a given point x0 ∈R.

2. Compute f ′(x) if

a) f (x)=
{

exp(− 1
x2 ) for x �= 0,

0 for x = 0;
b) f (x)=

{
x2 sin 1

x
for x �= 0,

0 for x = 0.

c) Verify that the function in part a) is infinitely differentiable on R, and that
f (n)(0)= 0.

d) Show that the derivative in part b) is defined on R but is not a continuous
function on R.

e) Show that the function

f (x)=
{

exp(− 1
(1+x)2 − 1

(1−x)2 ) for − 1 < x < 1,

0 for 1≤ |x|
is infinitely differentiable on R.
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3. Let f ∈ C(∞)(R). Show that for x �= 0

1

xn+1
f (n)

(
1

x

)

= (−1)n
dn

dxn

(

xn−1f

(
1

x

))

.

4. Let f be a differentiable function on R. Show that

a) if f is an even function, then f ′ is an odd function;
b) if f is an odd function, then f ′ is an even function;
c) (f ′ is odd) ⇔ (f is even).

5. Show that

a) the function f (x) is differentiable at the point x0 if and only if f (x) −
f (x0) = ϕ(x)(x − x0), where ϕ(x) is a function that is continuous at x0 (and in
that case ϕ(x0)= f ′(x0));

b) if f (x)− f (x0) = ϕ(x)(x − x0) and ϕ ∈ C(n−1)(U(x0)), where U(x0) is a
neighborhood of x0, then f (x) has a derivative (f (n)(x0)) of order n at x0.

6. Give an example showing that the assumption that f−1 be continuous at the point
y0 cannot be omitted from Theorem 3.
7. a) Two bodies with masses m1 and m2 respectively are moving in space under
the action of their mutual gravitation alone. Using Newton’s laws (formulas (5.1)
and (5.2) of Sect. 5.1), verify that the quantity

E =
(

1

2
m1v

2
1 +

1

2
m2v

2
2

)

+
(

−G
m1m2

r

)

=:K +U,

where v1 and v2 are the velocities of the bodies and r the distance between them,
does not vary during this motion.

b) Give a physical interpretation of the quantity E =K+U and its components.
c) Extend this result to the case of the motion of n bodies.

5.3 The Basic Theorems of Differential Calculus

5.3.1 Fermat’s Lemma and Rolle’s Theorem

Definition 1 A point x0 ∈E ⊂R is called a local maximum (resp. local minimum)
and the value of a function f : E → R at that point a local maximum value (resp.
local minimum value) if there exists a neighborhood UE(x0) of x0 in E such that at
any point x ∈UE(x0) we have f (x)≤ f (x0) (resp. f (x)≥ f (x0)).

Definition 2 If the strict inequality f (x) < f (x0) (resp. f (x) > f (x0)) holds at
every point x ∈ UE(x0)\x0 = ŮE(x0), the point x0 is called strict local maximum
(resp. strict local minimum) and the value of the function f : E→ R a strict local
maximum value (resp. strict local minimum value).
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Fig. 5.8

Definition 3 The local maxima and minima are called local extrema and the values
of the function at these points local extreme values of the function.

Example 1 Let

f (x)=
{

x2, if − 1≤ x < 2,

4, if 2≤ x

(see Fig. 5.8). For this function

x =−1 is a strict local maximum;
x = 0 is a strict local minimum;
x = 2 is a local maximum;

the points x > 2 are all local extrema, being simultaneously maxima and minima,
since the function is locally constant at these points.

Example 2 Let f (x)= sin 1
x

on the set E =R\0.
The points x = (π

2 + 2kπ)−1, k ∈ Z, are strict local maxima, and the points
x = (−π

2 + 2kπ)−1, k ∈ Z, are strict local minima for f (x) (see Fig. 4.1).

Definition 4 An extremum x0 ∈ E of the function f : E → R is called an in-
terior extremum if x0 is a limit point of both sets E− = {x ∈ E | x < x0} and
E+ = {x ∈E | x > x0}.

In Example 2, all the extrema are interior extrema, while in Example 1 the point
x =−1 is not an interior extremum.

Lemma 1 (Fermat) If a function f : E → R is differentiable at an interior ex-
tremum, x0 ∈E, then its derivative at x0 is 0 : f ′(x0)= 0.

Proof By definition of differentiability at x0 we have

f (x0 + h)− f (x0)= f ′(x0)h+ α(x0;h)h,

where α(x0;h)→ 0 as h→ x, x0 + h ∈E.
Let us rewrite this relation as follows:

f (x0 + h)− f (x0)=
[
f ′(x0)+ α(x0;h)

]
h. (5.45)
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Since x0 is an extremum, the left-hand side of Eq. (5.45) is either non-negative
or nonpositive for all values of h sufficiently close to 0 and for which x0 + h ∈E.

If f ′(x0) �= 0, then for h sufficiently close to 0 the quantity f ′(x0) + α(x0;h)

would have the same sign as f ′(x0), since α(x0;h)→ 0 as h→ 0, x0 + h ∈E.
But the value of h can be both positive or negative, given that x0 is an interior

extremum.
Thus, assuming that f ′(x0) �= 0, we find that the right-hand side of (5.45)

changes sign when h does (for h sufficiently close to 0), while the left-hand side
cannot change sign when h is sufficiently close to 0. This contradiction completes
the proof. �

Remarks on Fermat’s Lemma 10. Fermat’s lemma thus gives a necessary condition
for an interior extremum of a differentiable function. For noninterior extrema (such
as the point x =−1 in Example 1) it is generally not true that f ′(x0)= 0.

20. Geometrically this lemma is obvious, since it asserts that at an extremum of a
differentiable function the tangent to its graph is horizontal. (After all, f ′(x0) is the
tangent of the angle the tangent line makes with the x-axis.)

30. Physically this lemma means that in motion along a line the velocity must be
zero at the instant when the direction reverses (which is an extremum!).

This lemma and the theorem on the maximum (or minimum) of a continuous
function on a closed interval together imply the following proposition.

Proposition 1 (Rolle’s10 theorem) If a function f : [a, b] → R is continuous on a
closed interval [a, b] and differentiable on the open interval ]a, b[ and f (a)= f (b),
then there exists a point ξ ∈ ]a, b[ such that f ′(ξ)= 0.

Proof Since the function f is continuous on [a, b], there exist points xm,xM ∈
[a, b] at which it assumes its minimal and maximal values respectively. If f (xm)=
f (xM), then the function is constant on [a, b]; and since in that case f ′(x)≡ 0, the
assertion is obviously true. If f (xm) < f (xM), then, since f (a)= f (b), one of the
points xm and xM must lie in the open interval ]a, b[. We denote it by ξ . Fermat’s
lemma now implies that f ′(ξ)= 0. �

5.3.2 The Theorems of Lagrange and Cauchy on Finite
Increments

The following proposition is one of the most frequently used and important methods
of studying numerical-valued functions.

Theorem 1 (Lagrange’s finite-increment theorem) If a function f : [a, b] → R is
continuous on a closed interval [a, b] and differentiable on the open interval, ]a, b[,

10M. Rolle (1652–1719) – French mathematician.
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Fig. 5.9

there exists a point ξ ∈ ]a, b[ such that

f (b)− f (a)= f ′(ξ)(b− a). (5.46)

Proof Consider the auxiliary function

F(x)= f (x)− f (b)− f (a)

b− a
(x − a),

which is obviously continuous on the closed interval [a, b] and differentiable on the
open interval ]a, b[ and has equal values at the endpoints: F(a) = F(b) = f (a).
Applying Rolle’s theorem to F(x), we find a point ξ ∈ ]a, b[ at which

F ′(ξ)= f ′(ξ)− f (b)− f (a)

b− a
= 0. �

Remarks on Lagrange’s Theorem 10. In geometric language Lagrange’s theorem
means (see Fig. 5.9) that at some point (ξ, f (ξ)), where ξ ∈ ]a, b[, the tangent to
the graph of the function is parallel to the chord joining the points (a, f (a)) and
(b, f (b)), since the slope of the chord equals f (b)−f (a)

b−a
.

20. If x is interpreted as time and f (b) − f (a) as the amount of displacement
over the time b− a of a particle moving along a line, Lagrange’s theorem says that
the velocity f ′(x) of the particle at some time ξ ∈ ]a, b[ is such that if the particle
had moved with the constant velocity f ′(ξ) over the whole time interval, it would
have been displaced by the same amount f (b)− f (a). It is natural to call f ′(ξ) the
average velocity over the time interval [a, b].

30. We note nevertheless that for motion that is not along a straight line there
may be no average speed in the sense of Remark 20. Indeed, suppose the particle is
moving around a circle of unit radius at constant angular velocity ω = 1. Its law of
motion, as we know, can be written as

r(t)= (cos t, sin t).

Then

ṙ(t)= v(t)= (− sin t, cos t)

and |v| =
√

sin2 t + cos2 t = 1.
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The particle is at the same point r(0)= r(2π)= (1,0) at times t = 0 and t = 2π ,
and the equality

r(2π)− r(0)= v(ξ)(2π − 0)

would mean that v(ξ)= 0. But this is impossible.
Even so, we shall learn that there is still a relation between the displacement over

a time interval and the velocity. It consists of the fact that the full length L of the
path traversed cannot exceed the maximal absolute value of the velocity multiplied
by the time interval of the displacement. What has just been said can be written in
the following more precise form:

∣
∣r(b)− r(a)

∣
∣≤ sup

t∈]a,b[
∣
∣ṙ(t)

∣
∣|b− a|. (5.47)

As will be shown later, this natural inequality does indeed always hold. It is also
called Lagrange’s finite-increment theorem, while relation (5.46), which is valid
only for numerical-valued functions, is often called the Lagrange mean-value the-
orem (the role of the mean in this case is played by both the value f ′(ξ) of the
velocity and by the point ξ between a and b).

40. Lagrange’s theorem is important in that it connects the increment of a func-
tion over a finite interval with the derivative of the function on that interval. Up to
now we have not had such a theorem on finite increments and have characterized
only the local (infinitesimal) increment of a function in terms of the derivative or
differential at a given point.

Corollaries of Lagrange’s Theorem

Corollary 1 (Criterion for monotonicity of a function) If the derivative of a function
is nonnegative (resp. positive) at every point of an open interval, then the function is
nondecreasing (resp. increasing) on that interval.

Proof Indeed, if x1 and x2 are two points of the interval and x1 < x2, that is, x2 −
x1 > 0, then by formula (5.46)

f (x2)− f (x1)= f ′(ξ)(x2 − x1), where x1 < ξ < x2,

and therefore, the sign of the difference on the left-hand side of this equality is the
same as the sign of f ′(ξ). �

Naturally an analogous assertion can be made about the nonincreasing (resp.
decreasing) nature of a function with a nonpositive (resp. negative) derivative.

Remark By the inverse function theorem and Corollary 1 we can conclude, in par-
ticular, that if a numerical-valued function f (x) on some interval I has a derivative
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that is always positive or always negative, then the function is continuous and mono-
tonic on I and has an inverse function f−1 that is defined on the interval I ′ = f (I)

and is differentiable on it.

Corollary 2 (Criterion for a function to be constant) A function that is continuous
on a closed interval [a, b] is constant on it if and only if its derivative equals zero at
every point of the interval [a, b] (or only the open interval ]a, b[).

Proof Only the fact that f ′(x) ≡ 0 on ]a, b[ implies that f (x1) = f (x2) for all
x1, x2,∈ [a, b] is of interest. But this follows from Lagrange’s formula, according
to which

f (x2)− f (x1)= f ′(ξ)(x2 − x1)= 0,

since ξ lies between x1 and x2, that is, ξ ∈ ]a, b[, and so f ′(ξ)= 0. �

Remark From this we can draw the following conclusion (which as we shall see,
is very important for integral calculus): If the derivatives F ′1(x) and F ′2(x) of two
functions F1(x) and F2(x) are equal on some interval, that is, F ′1(x) = F ′2(x) on
the interval, then the difference F1(x)− F2(x) is constant.

The following proposition is a useful generalization of Lagrange’s theorem, and
is also based on Rolle’s theorem.

Proposition 2 (Cauchy’s finite-increment theorem) Let x = x(t) and y = y(t) be
functions that are continuous on a closed interval [α,β] and differentiable on the
open interval ]α,β[.

Then there exists a point τ ∈ [α,β] such that

x′(τ )
(
y(β)− y(α)

)= y′(τ )
(
x(β)− x(α)

)
.

If in addition x′(t) �= 0 for each t ∈ ]α,β[, then x(α) �= x(β) and we have the equal-
ity

y(β)− y(α)

x(β)− x(α)
= y′(τ )

x′(τ )
. (5.48)

Proof The function F(t) = x(t)(y(β) − y(α)) − y(t)(x(β) − x(α)) satisfies the
hypotheses of Rolle’s theorem on the closed interval [α,β]. Therefore there exists
a point τ ∈ ]α,β[ at which F ′(τ ) = 0, which is equivalent to the equality to be
proved. To obtain relation (5.48) from it, it remains only to observe that if x′(t) �= 0
on ]α,β[, then x(α) �= x(β), again by Rolle’s theorem. �

Remarks on Cauchy’s Theorem 10. If we regard the pair x(t), y(t) as the law
of motion of a particle, then (x′(t), y′(t)) is its velocity vector at time t , and
(x(β)− x(α), y(β)− y(α)) is its displacement vector over the time interval [α,β].
The theorem then asserts that at some instant of time τ ∈ [α,β] these two vectors
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are collinear. However, this fact, which applies to motion in a plane, is the same kind
of pleasant exception as the mean-velocity theorem in the case of motion along a
line. Indeed, imagine a particle moving at uniform speed along a helix. Its velocity
makes a constant nonzero angle with the vertical, while the displacement vector can
be purely vertical (after one complete turn).

20. Lagrange’s formula can be obtained from Cauchy’s by setting x = x(t)= t ,
y(t)= y(x)= f (x), α = a, β = b.

5.3.3 Taylor’s Formula

From the amount of differential calculus that has been explained up to this point
one may obtain the correct impression that the more derivatives of two functions
coincide (including the derivative of zeroth order) at a point, the better these func-
tions approximate each other in a neighborhood of that point. We have mostly been
interested in approximations of a function in the neighborhood of a point by a poly-
nomial Pn(x) = Pn(x0;x) = c0 + c1(x − x0) + · · · + cn(x − x0)

n, and that will
continue to be our main interest. We know (see Example 25 in Sect. 5.2.6) that an
algebraic polynomial can be represented as

Pn(x)= Pn(x0)+ P ′n(x0)

1! (x − x0)+ · · · + P
(n)
n (x0)

n! (x − x0)
n,

that is, ck = P
(k)
n (x0)

k! (k = 0,1, . . . , n). This can easily be verified directly.
Thus, if we are given a function f (x) having derivatives up to order n inclusive

at x0, we can immediately write the polynomial

Pn(x0;x)= Pn(x)= f (x0)+ f ′(x0)

1! (x − x0)+ · · · + f (n)(x0)

n! (x − x0)
n, (5.49)

whose derivatives up to order n inclusive at the point x0 are the same as the corre-
sponding derivatives of f (x) at that point.

Definition 5 The algebraic polynomial given by (5.49) is the Taylor11 polynomial
of order n of f (x) at x0.

We shall be interested in the value of

f (x)− Pn(x0;x)= rn(x0;x) (5.50)

of the discrepancy between the polynomial Pn(x) and the function f (x), which is
often called the remainder, more precisely, the nth remainder or the nth remainder

11B. Taylor (1685–1731) – British mathematician.
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term in Taylor’s formula:

f (x)= f (x0)+ f ′(x0)

1! (x − x0)+ · · · + f (n)(x0)

n! (x − x0)
n + rn(x0;x). (5.51)

The equality (5.51) itself is of course of no interest if we know nothing more
about the function rn(x0;x) than its definition (5.50).

We shall now use a highly artificial device to obtain information on the remainder
term. A more natural route to this information will come from the integral calculus.

Theorem 2 If the function f is continuous on the closed interval with end-points
x0 and x along with its first n derivatives, and it has a derivative of order n + 1
at the interior points of this interval, then for any function ϕ that is continuous on
this closed interval and has a nonzero derivative at its interior points, there exists a
point ξ between x0 and x such that

rn(x0;x)= ϕ(x)− ϕ(x0)

ϕ′(ξ)n! f (n+1)(ξ)(x − ξ)n. (5.52)

Proof On the closed interval I with endpoints x0 and x we consider the auxiliary
function

F(t)= f (x)− Pn(t;x) (5.53)

of the argument t . We now write out the definition of the function F(t) in more
detail:

F(t)= f (x)−
[

f (t)+ f ′(t)
1! (x − t)+ · · · + f (n)(t)

n! (x − t)n
]

. (5.54)

We see from the definition of the function F(t) and the hypotheses of the theorem
that F is continuous on the closed interval I and differentiable at its interior points,
and that

F ′(t) = −
[

f ′(t)− f ′(t)
1! + f ′′(t)

1! (x − t)− f ′′(t)
1! (x − t)+

+ f ′′′(t)
2! (x − t)2 − · · · + f (n+1)(t)

n! (x − t)n
]

=−f (n+1)(t)

n! (x − t)n.

Applying Cauchy’s theorem to the pair of functions F(t), ϕ(t) on the closed
interval I (see relation (5.48)), we find a point ξ between x0 and x at which

F(x)− F(x0)

ϕ(x)− ϕ(x0)
= F ′(ξ)

ϕ′(ξ)
.

Substituting the expression for F ′(ξ) here and observing from comparison of
formulas (5.50), (5.53) and (5.54) that F(x) − F(x0) = 0 − F(x0) = −rn(x0;x),
we obtain formula (5.52). �
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Setting ϕ(t)= x − t in (5.52), we obtain the following corollary.

Corollary 1 (Cauchy’s formula for the remainder term)

rn(x0;x)= 1

n!f
(n+1)(ξ)(x − ξ)n(x − x0). (5.55)

A particularly elegant formula results if we set ϕ(t)= (x − t)n+1 in (5.52):

Corollary 2 (The Lagrange form of the remainder)

rn(x0;x)= 1

(n+ 1)!f
(n+1)(ξ)(x − x0)

n+1. (5.56)

We remark that when x0 = 0 Taylor’s formula (5.51) is often called MacLaurin’s
formula.12

Let us consider some examples.

Example 3 For the function f (x)= ex with x0 = 0 Taylor’s formula has the form

ex = 1+ 1

1!x +
1

2!x
2 + · · · + 1

n!x
n + rn(0;x), (5.57)

and by (5.56) we can assume that

rn(0;x)= 1

(n+ 1)!e
ξ · xn+1,

where |ξ |< |x|.
Thus

∣
∣rn(0;x)

∣
∣= 1

(n+ 1)!e
ξ · |x|n+1 <

|x|n+1

(n+ 1)!e
|x|. (5.58)

But for each fixed x ∈ R, if n→∞, the quantity |x|n+1

(n+1)! , as we know (see Exam-
ple 12 of Sect. 3.1.3), tends to zero. Hence it follows from the estimate (5.58) and
the definition of the sum of a series that

ex = 1+ 1

1!x +
1

2!x
2 + · · · + 1

n!x
n + · · · (5.59)

for all x ∈R.

12C. MacLaurin (1698–1746) – British mathematician.
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Example 4 We obtain the expansion of the function ax for any a, 0 < a, a �= 1,
similarly:

ax = 1+ lna

1! x + ln2 a

2! x2 + · · · + lnn a

n! xn + · · · .

Example 5 Let f (x) = sinx. We know (see Example 18 of Sect. 5.2.6) that
f (n)(x) = sin(x + π

2 n), n ∈ N, and so by Lagrange’s formula (5.56) with x0 = 0
and any x ∈R we find

rn(0;x)= 1

(n+ 1)! sin

(

ξ + π

2
(n+ 1)

)

xn+1, (5.60)

from which it follows that rn(0;x) tends to zero for any x ∈R as n→∞. Thus we
have the expansion

sinx = x − 1

3!x
3 + 1

5!x
5 − · · · + (−1)n

(2n+ 1)!x
2n+1 + · · · (5.61)

for every x ∈R.

Example 6 Similarly, for the function f (x)= cosx, we obtain

rn(0;x)= 1

(n+ 1)! cos

(

ξ + π

2
(n+ 1)

)

xn+1 (5.62)

and

cosx = 1− 1

2!x
2 + 1

4!x
4 − · · · + (−1)n

(2n)! x
2n + · · · (5.63)

for x ∈R.

Example 7 Since sinh′ x = coshx and cosh′ x = sinhx, formula (5.56) yields the
following expression for the remainder in the Taylor series of f (x)= sinhx:

rn(0;x)= 1

(n+ 1)!f
(n+1)(ξ)xn+1,

where f (n+1)(ξ)= sinh ξ if n is even and f (n+1)(ξ)= cosh ξ if n is odd. In any case
|f (n+1)(ξ)| ≤ max{| sinhx|, | coshx|}, since |ξ | < |x|. Hence for any given value
x ∈R we have rn(0, x)→ 0 as n→∞, and we obtain the expansion

sinhx = x + 1

3!x
3 + 1

5!x
5 + · · · + 1

(2n+ 1)!x
2n+1 + · · · , (5.64)

valid for all x ∈R.
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Example 8 Similarly we obtain the expansion

coshx = 1+ 1

2!x
2 + 1

4!x
4 + · · · + 1

(2n)!x
2n + · · · , (5.65)

valid for any x ∈R.

Example 9 For the function f (x)= ln(1+ x) we have f (n)(x)= (−1)n−1(n−1)!
(1+x)n

, so
that the Taylor series of this function at x0 = 0 is

ln(1+ x)= x − 1

2
x2 + 1

3
x3 − · · · + (−1)n−1

n
xn + rn(0;x). (5.66)

This time we represent rn(0;x) using Cauchy’s formula (5.55):

rn(0;x)= 1

n!
(−1)nn!
(1+ ξ)n

(x − ξ)nx,

or

rn(0;x)= (−1)nx

(
x − ξ

1+ ξ

)n

, (5.67)

where ξ lies between 0 and x.
If |x|< 1, it follows from the condition that ξ lies between 0 and x that
∣
∣
∣
∣
x − ξ

1+ ξ

∣
∣
∣
∣=

|x| − |ξ |
|1+ ξ | ≤

|x| − |ξ |
1− |ξ | = 1− 1− |x|

1− |ξ | ≤ 1− 1− |x|
1− |0| = |x|. (5.68)

Thus for |x|< 1
∣
∣rn(0;x)

∣
∣≤ |x|n+1, (5.69)

and consequently the following expansion is valid for |x|< 1:

ln(1+ x)= x − 1

2
x2 + 1

3
x3 − · · · + (−1)n−1

n
xn + · · · . (5.70)

We remark that outside the closed interval |x| ≤ 1 the series on the right-hand
side of (5.70) diverges at every point, since its general term does not tend to zero if
|x|> 1.

Example 10 For the function (1+x)a , where α ∈R, we have f (n)(x)= α(α−1) · · ·
(α − n+ 1)(1+ x)α−n, so that Taylor’s formula at x0 = 0 for this function has the
form

(1+ x)α = 1+ α

1!x +
α(α − 1)

2! x2 + · · · +

+ α(α − 1) · · · (α − n+ 1)

n! xn + rn(0;x). (5.71)
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Using Cauchy’s formula (5.55), we find

rn(0;x)= α(α − 1) · · · (α − n)

n! (1+ ξ)α−n−1(x − ξ)nx, (5.72)

where ξ lies between 0 and x.
If |x|< 1, then, using the estimate (5.68), we have

∣
∣rn(0;x)

∣
∣≤

∣
∣
∣
∣α

(

1− α

1

)

· · ·
(

1− α

n

)∣
∣
∣
∣(1+ ξ)α−1|x|n+1. (5.73)

When n is increased by 1, the right-hand side of Eq. (5.73) is multiplied by |(1−
α

n+1 )x|. But since |x| < 1, we shall have |(1 − α
n+1 )x| < q < 1, independently of

the value of α, provided |x|< q < 1 and n is sufficiently large.
It follows from this that rn(0;x)→ 0 as n→∞ for any α ∈ R and any x in

the open interval |x| < 1. Therefore the expansion obtained by Newton (Newton’s
binomial theorem) is valid on the open interval |x|< 1:

(1+ x)α = 1+ α

1!x +
α(α − 1)

2! x2 + · · · + α(α − 1) · · · (α − n+ 1)

n! xn + · · · .
(5.74)

We remark that d’Alembert’s test (see Paragraph b of Sect. 3.1.4) implies that for
|x|> 1 the series (5.74) generally diverges if α /∈N. Let us now consider separately
the case when α = n ∈N.

In this case f (x)= (1+x)α = (1+x)n is a polynomial of degree n and hence all
of its derivatives of order higher than n are equal to 0. Therefore Taylor’s formula,
together with, for example, the Lagrange form of the remainder, enables us to write
the following equality:

(1+ x)n = 1+ n

1!x +
n(n− 1)

2! x2 + · · · + n(n− 1) · · ·1
n! xn, (5.75)

which is the Newton binomial theorem known from high school for a natural-
number exponent:

(1+ x)n = 1+
(

n

1

)

x +
(

n

2

)

x2 + · · · +
(

n

n

)

xn.

Thus we have defined Taylor’s formula (5.51) and obtained the forms (5.52),
(5.55), and (5.56) for the remainder term in the formula. We have obtained the rela-
tions (5.58), (5.60), (5.62), (5.69), and (5.73), which enable us to estimate the error
in computing the important elementary functions using Taylor’s formula. Finally,
we have obtained the power-series expansions of these functions.

Definition 6 If the function f (x) has derivatives of all orders n ∈ N at a point x0,
the series

f (x0)+ 1

1!f
′(x0)(x − x0)+ · · · + 1

n!f
(n)(x0)(x − x0)

n + · · ·

is called the Taylor series of f at the point x0.
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It should not be thought that the Taylor series of an infinitely differen-
tiable function converges in some neighborhood of x0, for given any sequence
c0, c1, . . . , cn, . . . of numbers, one can construct (although this is not simple to do)
a function f (x) such that f (n)(x0)= cn, n ∈N.

It should also not be thought that if the Taylor series converges, it necessarily
converges to the function that generated it. A Taylor series converges to the function
that generated it only when the generating function belongs to the class of so-called
analytic functions.

Here is Cauchy’s example of a nonanalytic function:

f (x)=
{

e−1/x2
, if x �= 0,

0, if x = 0.

Starting from the definition of the derivative and the fact that xke−1/x2 → 0 as
x→ 0, independently of the value of k (see Example 30 in Sect. 3.2), one can verify
that f (n)(0) = 0 for n = 0,1,2, . . . . Thus, the Taylor series in this case has all its
terms equal to 0 and hence its sum is identically equal to 0, while f (x) �= 0 if x �= 0.

In conclusion, we discuss a local version of Taylor’s formula.
We return once again to the problem of the local representation of a function

f : E→ R by a polynomial, which we began to discuss in Sect. 5.1.3. We wish to
choose the polynomial Pn(x0;x) = x0 + c1(x − x0) + · · · + cn(x − x0)

n so as to
have

f (x)= Pn(x)+ o
(
(x − x0)

n
)

as x→ x0, x ∈E,

or, in more detail,

f (x)= c0 + c1(x − x0)+ · · · + cn(x − x0)
n + o

(
(x − x0)

n
)

as x→ x0, x ∈E.

(5.76)
We now state explicitly a proposition that has already been proved in all its es-

sentials.

Proposition 3 If there exists a polynomial Pn(x0;x) = c0 + c1(x − x0) + · · · +
cn(x − x0)

n satisfying condition (5.76), that polynomial is unique.

Proof Indeed, from relation (5.76) we obtain the coefficients of the polynomial suc-
cessively and completely unambiguously

c0 = lim
E
x→x0

f (x),

c1 = lim
E
x→x0

f (x)− c0

x − x0
,

...

cn = lim
E
x→x0

f (x)− [c0 + · · · + cn−1(x − x0)
n−1]

(x − x0)n
. �

We now prove the local version of Taylor’s theorem.
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Proposition 4 (The local Taylor formula) Let E be a closed interval having x0 ∈R

as an endpoint. If the function f : E → R has derivatives f ′(x0), . . . , f
(n)(x0) up

to order n inclusive at the point x0, then the following representation holds:

f (x) = f (x0)+ f ′(x0)

1! (x − x0)+ · · · + f (n)(x0)

n! (x − x0)
n +

+ o
(
(x − x0)

n
)

as x→ x0, x ∈E. (5.77)

Thus the problem of the local approximation of a differentiable function is solved
by the Taylor polynomial of the appropriate order.

Since the Taylor polynomial Pn(x0;x) is constructed from the requirement
that its derivatives up to order n inclusive must coincide with the corresponding
derivatives of the function f at x0, it follows that f (k)(x0) − P

(k)
n (x0;x0) = 0

(k = 0,1, . . . , n) and the validity of formula (5.77) is established by the following
lemma.

Lemma 2 If a function ϕ : E → R, defined on a closed interval E with endpoint
x0, is such that it has derivatives up to order n inclusive at x0 and ϕ(x0)= ϕ′(x0)=
· · · = ϕ(n)(x0)= 0, then ϕ(x)= o((x − x0)

n) as x→ x0, x ∈E.

Proof For n= 1 the assertion follows from the definition of differentiability of the
function ϕ at x0, by virtue of which

ϕ(x)= ϕ(x0)+ ϕ′(x0)(x − x0)+ o(x − x0) as x→ x0, x ∈E,

and, since ϕ(x0)= ϕ′(x0)= 0, we have

ϕ(x)= o(x − x0) as x→ x0, x ∈E.

Suppose the assertion has been proved for order n = k − 1 ≥ 1. We shall show
that it is then valid for order n= k ≥ 2.

We make the preliminary remark that since

ϕ(k)(x0)=
(
ϕ(k−1)

)′
(x0)= lim

E
x→x0

ϕ(k−1)(x)− ϕ(k−1)(x0)

x − x0
,

the existence of ϕ(k)(x0) presumes that the function ϕ(k−1)(x) is defined on E, at
least near the point x0. Shrinking the closed interval E if necessary, we can assume
from the outset that the functions ϕ(x),ϕ′(x), . . . , ϕ(k−1)(x), where k ≥ 2, are all
defined on the whole closed interval E with endpoint x0. Since k ≥ 2, the function
ϕ(x) has a derivative ϕ′(x) on E, and by hypothesis

(
ϕ′
)′
(x0)= · · · =

(
ϕ′
)(k−1)

(x0)= 0.

Therefore, by the induction assumption,

ϕ′(x)= o
(
(x − x0)

k−1) as x→ x0, x ∈E.
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Then, using Lagrange’s theorem, we obtain

ϕ(x)= ϕ(x)− ϕ(x0)= ϕ′(ξ)(x − x0)= α(ξ)(ξ − x0)
(k−1)(x − x0),

where ξ lies between x0 and x, that is, |ξ − x0|< |x − x0|, and α(ξ)→ 0 as ξ →
x0, ξ ∈ E. Hence as x → x0, x ∈ E, we have simultaneously ξ → x0, ξ ∈ E, and
α(ξ)→ 0. Since

∣
∣ϕ(x)

∣
∣≤ ∣∣α(ξ)

∣
∣|x − x0|k−1|x − x0|,

we have verified that

ϕ(x)= o
(
(x − x0)

k
)

as x→ x0, x ∈E.

Thus, the assertion of Lemma 2 has been verified by mathematical induction. �

Relation (5.77) is called the local Taylor formula since the form of the remainder
term given in it (the so-called Peano form)

rn(x0;x)= o
(
(x − x0)

n
)
, (5.78)

makes it possible to draw inferences only about the asymptotic nature of the con-
nection between the Taylor polynomial and the function as x→ x0, x ∈E.

Formula (5.77) is therefore convenient in computing limits and describing the
asymptotic behavior of a function as x → x0, x ∈ E, but it cannot help with the
approximate computation of the values of the function until some actual estimate of
the quantity rn(x0;x)= o((x − x0)

n) is available.
Let us now summarize our results. We have defined the Taylor polynomial

Pn(x0;x)= f (x0)+ f ′(x0)

1! (x − x0)+ · · · + f (n)(x0)

n! (x − x0)
n,

written the Taylor formula

f (x)= f (x0)+ f ′(x0)

1! (x − x0)+ · · · + f (n)(x0)

n! (x − x0)
n + rn(x0;x),

and obtained the following very important specific form of it:
If f has a derivative of order n+ 1 on the open interval with endpoints x0 and x,

then

f (x) = f (x0)+ f ′(x0)

1! (x − x0)+ · · · + f (n)(x0)

n! (x − x0)
n +

+ f (n+1)(ξ)

(n+ 1)! (x − x0)
n+1, (5.79)

where ξ is a point between x0 and x.
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If f has derivatives of orders up to n≥ 1 inclusive at the point x0, then

f (x)= f (x0)+ f ′(x0)

1! (x−x0)+· · ·+ f (n)(x0)

n! (x−x0)
n+o

(
(x−x0)

n
)
. (5.80)

Relation (5.79), called Taylor’s formula with the Lagrange form of the remainder,
is obviously a generalization of Lagrange’s mean-value theorem, to which it reduces
when n= 0.

Relation (5.80), called Taylor’s formula with the Peano form of the remainder,
is obviously a generalization of the definition of differentiability of a function at a
point, to which it reduces when n= 1.

We remark that formula (5.79) is nearly always the more substantive of the two.
For, on the one hand, as we have seen, it enables us to estimate the absolute mag-
nitude of the remainder term. On the other hand, when, for example, f (n+1)(x) is
bounded in a neighborhood of x0, it also implies the asymptotic formula

f (x)= f (x0)+ f ′(x0)

1! (x − x0)+ · · · + f (n)(x0)

n! (x − x0)
n +O

(
(x − x0)

n+1).

(5.81)
Thus for infinitely differentiable functions, with which classical analysis deals in the
overwhelming majority of cases, formula (5.79) contains the local formula (5.80).

In particular, on the basis of (5.81) and Examples 3–10 just studied, we can now
write the following table of asymptotic formulas as x→ 0:

ex = 1+ 1

1!x +
1

2!x
2 + · · · + 1

n!x
n +O

(
xn+1),

cosx = 1− 1

2!x
2 + 1

4!x
4 − · · · + (−1)n

(2n)! x
2n +O

(
x2n+2),

sinx = x − 1

3!x
3 + 1

5!x
5 − · · · + (−1)n

(2n+ 1)!x
2n+1 +O

(
x2n+3),

coshx = 1+ 1

2!x
2 + 1

4!x
4 + · · · + 1

(2n)!x
2n +O

(
x2n+2),

sinhx = x + 1

3!x
3 + 1

5!x
5 + · · · + 1

(2n+ 1)!x
2n+1 +O

(
x2n+3),

ln(1+ x) = x − 1

2
x2 + 1

3
x3 − · · · + (−1)n

n
xn +O

(
xn+1),

(1+ x)α = 1+ α

1!x +
α(α − 1)

2! x2 + · · · + α(α − 1) · · · (α − n+ 1)

n! xn

+O
(
xn+1).

Let us now consider a few more examples of the use of Taylor’s formula.

Example 11 We shall write a polynomial that makes it possible to compute the val-
ues of sinx on the interval −1≤ x ≤ 1 with absolute error at most 10−3.
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One can take this polynomial to be a Taylor polynomial of suitable degree ob-
tained from the expansion of sinx in a neighborhood of x0 = 0. Since

sinx = x − 1

3!x
3 + 1

5!x
5 − · · · + (−1)n

(2n+ 1)!x
2n+1 + 0 · x2n+2 + r2n+2(0;x),

where by Lagrange’s formula

r2n+2(0;x)= sin(ξ + π
2 (2n+ 3))

(2n+ 3)! x2n+3,

we have, for |x| ≤ 1,

|r2n+2(0;x)| ≤ 1

(2n+ 3)! ,

but 1
(2n+3)! < 10−3 for n≥ 2. Thus the approximation sinx ≈ x − 1

3! + 1
5!x

5 has the
required precision on the closed interval |x| ≤ 1.

Example 12 We shall show that tanx = x + 1
3x3 + o(x3) as x→ 0. We have

tan′ x = cos−2 x,

tan′′ x = 2 cos−3 x sinx,

tan′′′ x = 6 cos−4 x sin2 x + 2 cos−2 x.

Thus, tan 0= 0, tan′ 0= 1, tan′′ 0= 0, tan′′′ 0= 2, and the relation now follows
from the local Taylor formula.

Example 13 Let α > 0. Let us study the convergence of the series
∑∞

n=1 ln cos 1
nα .

For α > 0 we have 1
nα → 0 as n→∞. Let us estimate the order of a term of the

series:

ln cos
1

nα
= ln

(

1− 1

2! ·
1

n2α
+ o

(
1

n2α

))

=−1

2
· 1

n2α
+ o

(
1

n2α

)

.

Thus we have a series of terms of constant sign whose terms are equivalent to
those of the series

∑∞
n=1

−1
2n2α . Since this last series converges only for α > 1

2 , when

α > 0 the original series converges only for α > 1
2 (see Problem 15b) below).

Example 14 Let us show that ln cosx =− 1
2x2 − 1

12x4 − 1
45x6 +O(x8) as x→ 0.

This time, instead of computing six successive derivatives, we shall use the
already-known expansions of cosx as x→ 0 and ln(1+ u) as u→ 0:
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ln cosx = ln

(

1− 1

2!x
2 + 1

4!x
4 − 1

6!x
6 +O

(
x8)

)

= ln(1+ u)=

= u− 1

2
u2 + 1

3
u3 +O

(
u4)=

=
(

− 1

2!x
2 + 1

4!x
4 − 1

6!x
6 +O

(
x8)

)

−

− 1

2

(
1

(2!)2
x4 − 2 · 1

2!4!x
6 +O

(
x8)

)

+ 1

3

(

− 1

(2!)3
x6 +O

(
x8)

)

=

= −1

2
x2 − 1

12
x4 − 1

45
x6 +O

(
x8).

Example 15 Let us find the values of the first six derivatives of the function ln cosx

at x = 0.
We have (ln cos)′x = − sinx

cosx
, and it is therefore clear that the function has deriva-

tives of all orders at 0, since cos 0 �= 0. We shall not try to find functional expressions
for these derivatives, but rather we shall make use of the uniqueness of the Taylor
polynomial and the result of the preceding example.

If

f (x)= c0 + c1x + · · · + cnx
n + o

(
xn
)

as x→ 0,

then

ck = f (k)(0)

k! and f (k)(0)= k!ck.

Thus, in the present case we obtain

(ln cos)(0)= 0, (ln cos)′(0)= 0, (ln cos)′′(0)=−1

2
· 2!,

(ln cos)(3)(0)= 0, (ln cos)(4)(0)=− 1

12
· 4!,

(ln cos)(5)(0)= 0, (ln cos)(6)(0)=− 1

45
· 6!.

Example 16 Let f (x) be an infinitely differentiable function at the point x0, and
suppose we know the expansion

f ′(x)= c′0 + c′1x + · · · + c′nxn +O
(
xn+1)

of its derivative in a neighborhood of zero. Then, from the uniqueness of the Taylor
expansion we have

(
f ′
)(k)

(0)= k!c′k,
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and so f (k+1)(0)= k!c′k . Thus for the function f (x) itself we have the expansion

f (x)= f (0)+ c′0
1! x +

1!c′1
2! x2 + · · · + n!c′n

(n+ 1)!x
n+1 +O

(
xn+2),

or, after simplification,

f (x)= f (0)+ c′0
1

x + c′1
2

x2 + · · · + c′n
n+ 1

xn+1 +O
(
xn+2).

Example 17 Let us find the Taylor expansion of the function f (x)= arctanx at 0.
Since f ′(x)= 1

1+x2 = (1+ x2)−1 = 1− x2+ x4− · · · + (−1)nx2n+O(x2n+2),
by the considerations explained in the preceding example,

f (x)= f (0)+ 1

1
x − 1

3
x3 + 1

5
x5 − · · · + (−1)n

2n+ 1
x2n+1 +O

(
x2n+3),

that is,

arctanx = x − 1

3
x3 + 1

5
x5 − · · · + (−1)n

2n+ 1
x2n+1 +O

(
x2n+3).

Example 18 Similarly, by expanding the function arcsin′ x = (1− x2)−1/2 by Tay-
lor’s formula in a neighborhood of zero, we find successively,

(1+ u)−1/2 = 1+ −
1
2

1! u+ −
1
2 (− 1

2 − 1)

2! u2 + · · · +

+ −
1
2 (− 1

2 − 1) · · · (− 1
2 − n+ 1)

n! un +O
(
un+1),

(1− x)−1/2 = 1+ 1

2
x2 + 1 · 3

22 · 2!x
4 + · · · +

+ 1 · 3 · · · (2n− 1)

2n · n! x2n +O
(
x2n+2),

arcsinx = x + 1

2 · 3x3 + 1 · 3
22 · 2! · 5x5 + · · · +

+ (2n− 1)!!
(2n)!!(2n+ 1)

x2n+1 +O
(
x2n+3),

or, after elementary transformations,

arcsinx = x + 1

3!x
3 + [3!!]

2

5! x5 + · · · + [(2n− 1)!!]2
(2n+ 1)! x2n+1 +O

(
x2n+3).

Here (2n− 1)!! := 1 · 3 · · · (2n− 1) and (2n)!! := 2 · 4 · · · (2n).
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Example 19 We use the results of Examples 5, 12, 17, and 18 and find

lim
x→0

arctanx − sinx

tanx − arcsinx
= lim

x→0

[x − 1
3x3 +O(x5)] − [x − 1

3!x
3 +O(x5)]

[x + 1
3x3 +O(x5)] − [x + 1

3!x3 +O(x5)] =

= lim
x→0

− 1
6x3 +O(x5)

1
6x3 +O(x5)

=−1.

5.3.4 Problems and Exercises

1. Choose numbers a and b so that the function f (x) = cosx − 1+ax2

1+bx2 is an in-
finitesimal of highest possible order as x→ 0.
2. Find limx→∞ x[ 1

e − ( x
x+1 )x].

3. Write a Taylor polynomial of ex at zero that makes it possible to compute the
values of ex on the closed interval −1≤ x ≤ 2 within 10−3.
4. Let f be a function that is infinitely differentiable at 0. Show that

a) if f is even, then its Taylor series at 0 contains only even powers of x;
b) if f is odd, then its Taylor series at 0 contains only odd powers of x.

5. Show that if f ∈ C(∞)[−1,1] and f (n)(0) = 0 for n = 0,1,2, . . . , and there
exists a number C such that sup−1≤x≤1 |f (n)(x)| ≤ n!C for n ∈ N, then f ≡ 0 on
[−1,1].
6. Let f ∈ C(n)(]−1,1[) and sup−1<x<1 |f (x)| ≤ 1. Let mk(I)= infx∈I |f (k)(x)|,
where I is an interval contained in ]−1,1[. Show that

a) if I is partitioned into three successive intervals I1, I2, and I3 and μ is the
length of I2, then

mk(I)≤ 1

μ

(
mk−1(I1)+mk−1(I3)

);

b) if I has length λ, then

mk(I)≤ 2k(k+1)/2kk

λk
;

c) there exists a number αn depending only on n such that if |f ′(0)| ≥ αn, then
the equation f (n)(x)= 0 has at least n− 1 distinct roots in ]−1,1[.
Hint: In part b) use part a) and mathematical induction; in c) use a) and prove by
induction that there exists a sequence xk1 < xk2 < · · · < xkk

of points of the open
interval ]−1,1[ such that f (k)(xki

) · f (k)(xki+1) < 0 for 1≤ i ≤ k − 1.
7. Show that if a function f is defined and differentiable on an open interval I and
[a, b] ⊂ I , then
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a) the function f ′(x) (even if it is not continuous!) assumes on [a, b] all the
values between f ′(a) and f ′(b) (the theorem of Darboux);13

b) if f ′′(x) also exists in ]a, b[, then there is a point ξ ∈ ]a, b[ such that f ′(b)−
f ′(a)= f ′′(ξ)(b− a).

8. A function f (x) may be differentiable on the entire real line, without having a
continuous derivative f ′(x) (see Example 7 in Sect. 5.1.5).

a) Show that f ′(x) can have only discontinuities of second kind.
b) Find the flaw in the following “proof” that f ′(x) is continuous.

Proof Let x0 be an arbitrary point on R and f ′(x0) the derivative of f at the point
x0. By definition of the derivative and Lagrange’s theorem

f ′(x0)= lim
x→x0

f (x)− f (x0)

x − x0
= lim

x→x0
f ′(ξ)= lim

ξ→x0
f ′(ξ),

where ξ is a point between x0 and x and therefore tends to x0 as x→ x0. �
9. Let f be twice differentiable on an interval I . Let M0 = supx∈I |f (x)|, M1 =
supx∈I |f ′(x)| and M2 = supx∈I |f ′′(x)|. Show that

a) if I = [−a, a], then

∣
∣f ′(x)

∣
∣≤ M0

a
+ x2 + a2

2a
M2;

b)

{
M1 ≤ 2

√
M0M2, if the length of I is not less than 2

√
M0/M2,

M1 ≤√2M0M2, if I =R;
c) the numbers 2 and

√
2 in part b) cannot be replaced by smaller numbers;

d) if f is differentiable p times on R and the quantities M0 and Mp =
supx∈R |f (p)(x)| are finite, then the quantities Mk = supx∈R |f (k)(x)|, 1 ≤ k < p,
are also finite and

Mk ≤ 2k(p−k)/2M
1−k/p

0 Mk/p
ρ .

Hint: Use Exercises 6b) and 9b) and mathematical induction.
10. Show that if a function f has derivatives up to order n+1 inclusive at a point x0
and f (n+1)(x0) �= 0, then in the Lagrange form of the remainder in Taylor’s formula

rn(x0;x)= 1

n!f
(n)
(
x0 + θ(x − x0)

)
(x − x0)

n,

where 0 < θ < 1 and the quantity θ = θ(x) tends to 1
n+1 as x→ x0.

11. Let f be a function that is differentiable n times on an interval I . Prove the
following statements.

13G. Darboux (1842–1917) – French mathematician.
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a) If f vanishes at (n + 1) points of I , there exists a point ξ ∈ I such that
f (n)(ξ)= 0.

b) If x1, x2, . . . , xp are points of the interval I , there exists a unique polynomial
L(x) (the Lagrange interpolation polynomial) of degree at most (n− 1) such that
f (xi) = L(xi), i = 1, . . . , n. In addition, for x ∈ I there exists a point ξ ∈ I such
that

f (x)−L(x)= (x − x1) · · · (x − xn)

n! f (n)(ξ).

c) If x1 < x2 < · · ·< xp are points of I and ni , 1≤ i ≤ p, are natural numbers
such that n1 + n2 + · · · + np = n and f (k)(xi) = 0 for 0 ≤ k ≤ ni − 1, then there
exists a point ξ in the closed interval [x1, xp] at which f (n−1)(ξ)= 0.

d) There exists a unique polynomial H(x) (the Hermite interpolating polyno-
mial)14 of degree (n− 1) such that f (k)(xi)=H(k)(xi) for 0≤ k ≤ ni − 1. More-
over, inside the smallest interval containing the points x and xi , i = 1, . . . , p, there
is a point ξ such that

f (x)=H(x)+ (x − x1)
n1 · · · (x − xp)np

n! f (n)(ξ).

This formula is called the Hermite interpolation formula. The points xi, i =
1, . . . , p, are called interpolation nodes of multiplicity ni respectively. Special cases
of the Hermite interpolation formula are the Lagrange interpolation formula, which
is part b) of this exercise, and Taylor’s formula with the Lagrange form of the re-
mainder, which results when p = 1, that is, for interpolation with a single node of
multiplicity n.

12. Show that

a) between two real roots of a polynomial P(x) with real coefficients there is a
root of its derivative P ′(x);

b) if the polynomial P(x) has a multiple root, the polynomial P ′(x) has the
same root, but its multiplicity as a root of P ′(x) is one less than its multiplicity as a
root of P(x);

c) if Q(x) is the greatest common divisor of the polynomials P(x) and P ′(x),
where P ′(x) is the derivative of P(x), then the polynomial P(x)

Q(x)
has the roots of

P(x) as its roots, all of them being roots of multiplicity 1.

13. Show that

a) any polynomial P(x) admits a representation in the form c0 + c1(x − x0)+
· · · + cn(x − x0)

n;
b) there exists a unique polynomial of degree n for which f (x)−P(x)= o((x−

x0)
n) as E 
 x→ x0. Here f is a function defined on a set E and x0 is a limit point

of E.

14Ch. Hermite (1822–1901) – French mathematician who studied problems of analysis; in partic-
ular, he proved that e is transcendental.
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14. Using induction on k, 1 ≤ k, we define the finite differences of order k of the
function f at x0:

Δ1f (x0;h1) := Δf (x0;h1)= f (x0 + h1)− f (x0),

Δ2f (x0;h1, h2) := ΔΔf (x0;h1, h2)=
= (

f (x0 + h1 + h2)− f (x0 + h2)
)−

− (
f (x0 + h1)− f (x0)

)=
= f (x0 + h1 + h2)− f (x0 + h1)− f (x0 + h2)+ f (x0),

...

Δkf (x0;h1, . . . , hk) := Δk−1gk(x0;h1, . . . , hk−1),

where gk(x)=Δ1f (x;hk)= f (x + hk)− f (x).

a) Let f ∈ C(n−1)[a, b] and suppose that f (n)(x) exists at least in the open in-
terval ]a, b[. Show that if all the points x0, x0+h1, x0+h2, x0+h1+h2, . . . , x0+
h1 + · · · + hn lie in [a, b], then inside the smallest closed interval containing all of
them there is a point ξ such that

Δnf (x0;h1, . . . , hn)= f (n)(ξ)h1 · · ·hn.

b) (Continuation.) If f (n)(x0) exists, then the following estimate holds:

∣
∣Δnf (x0;h1, . . . , hn)− f (n)(x0)h1 · · ·hn

∣
∣≤

≤ sup
x∈]a,b[

∣
∣f (n)(x)− f (n)(x0)

∣
∣ · |h1| · · · |hn|.

c) (Continuation.) Set Δnf (x0;h, . . . , h)=:Δnf (x0;hn). Show that if f (n)(x0)

exists, then

f (n)(x0)= lim
h→0

Δnf (x0;hn)

hn
.

d) Show by example that the preceding limit may exist even when f (n)(x0) does
not exist.

Hint: Consider, for example, Δ2f (0;h2) for the function

f (x)=
{

x3 sin 1
x
, x �= 0,

0, x = 0,

and show that

lim
h→0

Δ2f (0;h2)

h2
= 0.
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15. a) Applying Lagrange’s theorem to the function 1
xα , where α > 0, show that

the inequality

1

n1+α
<

1

α

(
1

(n− 1)α
− 1

nα

)

holds for n ∈N and α > 0.
b) Use the result of a) to show that the series

∑∞
n=1

1
nσ converges for σ > 1.

5.4 The Study of Functions Using the Methods of Differential
Calculus

5.4.1 Conditions for a Function to be Monotonic

Proposition 1 The following relations hold between the monotonicity properties of
a function f : E→ R that is differentiable on an open interval ]a, b[ = E and the
sign (positivity) of its derivative f ′ on that interval:

f ′(x) > 0⇒ f is increasing ⇒ f ′(x)≥ 0,

f ′(x)≥ 0⇒ f is nondecreasing ⇒ f ′(x)≥ 0,

f ′(x)≡ 0⇒ f ≡ const. ⇒ f ′(x)≡ 0,

f ′(x)≤ 0⇒ f is nonincreasing ⇒ f ′(x)≤ 0,

f ′(x) < 0⇒ f is decreasing ⇒ f ′(x)≤ 0.

Proof The left-hand column of implications is already known to us from Lagrange’s
theorem, by virtue of which f (x2)− f (x1)= f ′(ξ)(x2 − x1), where x1, x2 ∈ ]a, b[
and ξ is a point between x1 and x2. It can be seen from this formula that for x1 < x2
the difference f (x2)− f (x1) is positive if and only if f ′(ξ) is positive.

The right-hand column of implications can be obtained immediately from the
definition of the derivative. Let us show, for example, that if a function f that is
differentiable on ]a, b[ is increasing, then f ′(x)≥ 0 on ]a, b[. Indeed,

f ′(x)= lim
h→0

f (x + h)− f (x)

h
.

If h > 0, then f (x + h) − f (x) > 0; and if h < 0, then f (x + h) − f (x) < 0.
Therefore the fraction after the limit sign is positive.

Consequently, its limit f ′(x) is nonnegative, as asserted. �

Remark 1 It is clear from the example of the function f (x) = x3 that a strictly
increasing function has a nonnegative derivative, not necessarily one that is always
positive. In this example, f ′(0)= 3x2|x=0 = 0.
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Remark 2 In the expression A⇒ B , as we noted at the appropriate point, A is a
sufficient condition for B and B a necessary condition for A. Hence, one can make
the following inferences from Proposition 1.

A function is constant on an open interval if and only if its derivative is identically
zero on that interval.

A sufficient condition for a function that is differentiable on an open interval to
be decreasing on that interval is that its derivative be negative at every point of the
interval.

A necessary condition for a function that is differentiable on an open interval to
be nonincreasing on that interval is that its derivative be nonpositive on the interval.

Example 1 Let f (x)= x3 − 3x + 2 on R. Then f ′(x)= 3x2 − 3= 3(x2 − 1), and
since f ′(x) < 0 for |x|< 1 and f ′(x) > 0 for |x|> 1, we can say that the function
is increasing on the open interval ]−∞,−1[, decreasing on ]−1,1[, and increasing
again on ]1,+∞[.

5.4.2 Conditions for an Interior Extremum of a Function

Taking account of Fermat’s lemma (Lemma 1 of Sect. 5.3), we can state the follow-
ing proposition.

Proposition 2 (Necessary conditions for an interior extremum) In order for a point
x0 to be an extremum of a function f :U(x0)→R defined on a neighborhood U(x0)

of that point, a necessary condition is that one of the following two conditions hold:
either the function is not differentiable at x0 or f ′(x0)= 0.

Simple examples show that these necessary conditions are not sufficient.

Example 2 Let f (x) = x3 on R. Then f ′(0) = 0, but there is no extremum at
x0 = 0.

Example 3 Let

f (x)=
{

x for x > 0,

2x for x < 0.

This function has a bend at 0 and obviously has neither a derivative nor an ex-
tremum at 0.

Example 4 Let us find the maximum of f (x) = x2 on the closed interval [−2,1].
It is obvious in this case that the maximum will be attained at the endpoint −2, but
here is a systematic procedure for finding the maximum. We find f ′(x)= 2x, then
we find all points of the open interval ]−2,1[ at which f ′(x)= 0. In this case, the
only such point is x = 0. The maximum of f (x) must be either among the points
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where f ′(x) = 0, or at one of the endpoints, about which Proposition 2 is silent.
Thus we need to compare f (−2) = 4, f (0) = 0, and f (1) = 1, from which we
conclude that the maximal value of f (x)= x2 on the closed interval [−2,1] equals
4 and is assumed at −2, which is an endpoint of the interval.

Using the connection established in Sect. 5.4.1 between the sign of the deriva-
tive and the nature of the monotonicity of the function, we arrive at the following
sufficient conditions for the presence or absence of a local extremum at a point.

Proposition 3 (Sufficient conditions for an extremum in terms of the first derivative)
Let f :U(x0)→R be a function defined on a neighborhood U(x0) of the point x0,
which is continuous at the point itself and differentiable in a deleted neighborhood
Ů (x0). Let Ů−(x0)= {x ∈U(x0) | x < x0} and Ů+(x0)= {x ∈U(x0) | x > x0}.

Then the following conclusions are valid:

a) (∀x ∈ Ů−(x0) (f ′(x) < 0)) ∧ (∀x ∈ Ů+(x0) (f ′(x) < 0)) ⇒ (f has no
extremum at x0);

b) (∀x ∈ Ů−(x0) (f ′(x) < 0)) ∧ (∀x ∈ Ů+(x0) (f ′(x) > 0))⇒ (x0 is a strict
local minimum of f );

c) (∀x ∈ Ů−(x0) (f ′(x) > 0)) ∧ (∀x ∈ Ů+(x0) (f ′(x) < 0))⇒ (x0 is a strict
local maximum of f );

d) (∀x ∈ Ů−(x0) (f ′(x) > 0)) ∧ (∀x ∈ Ů+(x0) (f ′(x) > 0)) ⇒ (f has no
extremum at x0).

Briefly, but less precisely, one can say that if the derivative changes sign in pass-
ing through the point, then the point is an extremum, while if the derivative does not
change sign, the point is not an extremum.

We remark immediately, however, that these sufficient conditions are not neces-
sary for an extremum, as one can verify using the following example.

Example 5 Let

f (x)=
{

2x2 + x2 sin 1
x

for x �= 0,

0 for x = 0.

Since x2 ≤ f (x) ≤ 3x2, it is clear that the function has a strict local minimum
at x0 = 0, but the derivative f ′(x) = 4x + 2x sin 1

x
− cos 1

x
is not of constant sign

in any deleted one-sided neighborhood of this point. This same example shows the
misunderstandings that can arise in connection with the abbreviated statement of
Proposition 3 just given.

We now turn to the proof of Proposition 3.

Proof a) It follows from Proposition 2 that f is strictly decreasing on Ů−(x0). Since
it is continuous at x0, we have lim

Ů−(x0)
x→x0
f (x) = f (x0), and consequently

f (x) > f (x0) for x ∈ Ů−(x0). By the same considerations we have f (x0) > f (x)
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for x ∈ Ů+(x0). Thus the function is strictly decreasing in the whole neighborhood
U(x0) and x0 is not an extremum.

b) We conclude to begin with, as in a), that since f (x) is decreasing on Ů−(x0)

and continuous at x0, we have f (x) > f (x0) for x ∈ Ů−(x0). We conclude from the
increasing nature of f on Ů+(x0) that f (x0) < f (x) for x ∈ Ů+(x0). Thus f has a
strict local minimum at x0.

Statements c) and d) are proved similarly. �

Proposition 4 (Sufficient conditions for an extremum in terms of higher-order
derivatives) Suppose a function f : U(x0)→ R defined on a neighborhood U(x0)

of x0 has derivatives of order up to n inclusive at x0 (n≥ 1).
If f ′(x0)= · · · = f (n−1)(x0)= 0 and f (n)(x0) �= 0, then there is no extremum at

x0 if n is odd. If n is even, the point x0 is a local extremum, in fact a strict local
minimum if f (n)(x0) > 0 and a strict local maximum if f (n)(x0) < 0.

Proof Using the local Taylor formula

f (x)− f (x0)= 1

n!f
(n)(x0)(x − x0)

n + α(x)(x − x0)
n, (5.82)

where α(x)→ 0 as x→ x0, we shall reason as in the proof of Fermat’s lemma. We
rewrite Eq. (5.82) as

f (x)− f (x0)=
(

1

n!f
(n)(x0)+ α(x)

)

(x − x0)
n. (5.83)

Since f (n)(x0) �= 0 and α(x)→ 0 as x → x0, the sum f (n)(x0)+ α(x) has the
sign of f (n)(x0) when x is sufficiently close to x0. If n is odd, the factor (x − x0)

n

changes sign when x passes through x0, and then the sign of the right-hand side of
Eq. (5.83) also changes sign. Consequently, the left-hand side changes sign as well,
and so for n= 2k+ 1 there is no extremum.

If n is even, then (x−x0)
n > 0 for x �= x0 and hence in some small neighborhood

of x0 the sign of the difference f (x)− f (x0) is the same as the sign of f (n)(x0), as
is clear from Eq. (5.83). �

Let us now consider some examples.

Example 6 (The law of refraction in geometric optics (Snell’s law)15) According to
Fermat’s principle, the actual trajectory of a light ray between two points is such
that the ray requires minimum time to pass from one point to the other compared
with all paths joining the two points.

It follows from Fermat’s principle and the fact that the shortest path between two
points is a straight line segment having the points as endpoints that in a homoge-
neous and isotropic medium (having identical structure at each point and in each
direction) light propagates in straight lines.

15W. Snell (1580–1626) – Dutch astronomer and mathematician.
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Fig. 5.10

Now consider two such media, and suppose that light propagates from point A1

to A2, as shown in Fig. 5.10.
If c1 and c2 are the velocities of light in these media, the time required to traverse

the path is

t (x)= 1

c1

√
h2

1 + x2 + 1

c2

√
h2

2 + (a − x)2.

We now find the extremum of the function t (x):

t ′(x)= 1

c1

x
√

h2
1 + x2

− 1

c2

a − x
√

h2
2 + (a − x)2

= 0,

which in accordance with the notation of the figure, yields c−1
1 sinα1 = c−1

2 sinα2.
It is clear from physical considerations, or directly from the form of the function

t (x), which increases without bound as x→∞, that the point where t ′(x)= 0 is an
absolute minimum of the continuous function t (x). Thus Fermat’s principle implies
the law of refraction sinα1

sina2
= c1

c2
.

Example 7 We shall show that for x > 0

xα − αx + α − 1 ≤ 0, when 0 < α < 1, (5.84)

xα − αx + α − 1 ≥ 0, when α < 0 or 1 < α. (5.85)

Proof Differentiating the function f (x) = xα − αx + α − 1, we find f ′(x) =
α(xα−1−1) and f ′(x)= 0 when x = 1. In passing through the point 1 the derivative
passes from positive to negative values if 0 < α < 1 and from negative to positive
values if α < 0 or α > 1. In the first case the point 1 is a strict maximum, and in
the second case a strict minimum (and, as follows from the monotonicity of f on
the intervals 0 < x < 1 and 1 < x, not merely a local minimum). But f (1)= 0 and
hence both inequalities (5.84) and (5.85) are established. In doing so, we have even
shown that both inequalities are strict if x �= 1. �

We remark that if x is replaced by 1 + x, we find that (5.84) and (5.85) are
extensions of Bernoulli’s inequality (Sect. 2.2; see also Problem 2 below), which
we already know for a natural-number exponent α.
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By elementary algebraic transformations one can obtain a number of classical
inequalities of great importance for analysis from the inequalities just proved. We
shall now derive these inequalities.

a. Young’s Inequalities16

If a > 0 and b > 0, and the numbers p and q such that p �= 0,1, q �= 0,1 and
1
p
+ 1

q
= 1, then

a1/pb1/q ≤ 1

p
a + 1

q
b, if p > 1, (5.86)

a1/pb1/q ≥ 1

p
a + 1

q
b, if p < 1, (5.87)

and equality holds in (5.86) and (5.87) only when a = b.

Proof It suffices to set x = a
b

and α = 1
p

in (5.84) and (5.85), and then introduce the

notation 1
q
= 1− 1

p
. �

b. Hölder’s Inequalities17

Let xi ≥ 0, yi ≥ 0, i = 1, . . . , n, and 1
p
+ 1

q
= 1. Then

n∑

i=1

xiyi ≤
(

n∑

i=1

x
p
i

)1/p( n∑

i=1

y
q
i

)1/q

for p > 1, (5.88)

and

n∑

i=1

xiyi ≥
(

n∑

i=1

x
p
i

)1/p( n∑

i=1

y
q
i

)1/q

for p < 1,p �= 0. (5.89)

In the case p < 0 it is assumed in (5.89) that xi > 0 (i = 1, . . . , n). Equality is
possible in (5.88) and (5.89) only when the vectors (x

p

1 , . . . , x
p
n ) and (y

p

1 , . . . , y
q
n )

are proportional.

Proof Let us verify the inequality (5.88). Let X = ∑n
i=1 x

p
i > 0 and Y =

∑n
i=1 y

q
i > 0. Setting a = x

p
i

X
and b= y

q
i

Y
in (5.86), we obtain

xiyi

X1/pY 1/q
≤ 1

p

x
p
i

X
+ 1

q

y
q
i

Y
.

16W.H. Young (1882–1946) – British mathematician.
17O. Hölder (1859–1937) – German mathematician.
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Summing these inequalities over i from 1 to n, we obtain
∑n

i=1 xiyi

X1/pY 1/q
≤ 1,

which is equivalent to relation (5.88).
We obtain (5.89) similarly from (5.87). Since equality occurs in (5.86) and (5.87)

only when a = b, we conclude that it is possible in (5.88) and (5.89) only when a
proportionality x

p
i = λy

q
i or y

q
i = λx

p
i holds. �

c. Minkowski’s Inequalities18

Let xi ≥ 0, yi ≥ 0, i = 1, . . . , n. Then

(
n∑

i=1

(xi + yi)
p

)1/p

≤
(

n∑

i=1

x
p
i

)1/p

+
(

n∑

i=1

y
p
i

)1/p

when p > 1, (5.90)

and
(

n∑

i=1

(xi + yi)
p

)1/p

≥
(

n∑

i=1

x
p
i

)1/p

+
(

n∑

i=1

y
p
i

)1/p

when p < 1,p �= 0. (5.91)

Proof We apply Hölder’s inequality to the terms on the right-hand side of the iden-
tity

n∑

i=1

(xi + yi)
p =

n∑

i=1

xi(xi + yi)
p−1 +

n∑

i=1

yi(xi + yi)
p−1.

The left-hand side is then bounded from above (for p > 1) or below (for p < 1)
in accordance with inequalities (5.88) and (5.89) by the quantity

(
n∑

i=1

x
p
i

)1/p( n∑

i=1

(xi + yi)
p

)1/q

+
(

n∑

i=1

y
p
i

)1/p( n∑

i=1

(xi + yi)
p

)1/q

.

After dividing these inequalities by (
∑n

i=1(xi + yi)
p)1/q , we arrive at (5.90) and

(5.91).
Knowing the conditions for equality in Hölder’s inequalities, we verify that

equality is possible in Minkowski’s inequalities only when the vectors (x1, . . . , xn)

and (y1, . . . , yn) are collinear. �

For n = 3 and p = 2, Minkowski’s inequality (5.90) is obviously the triangle
inequality in three-dimensional Euclidean space.

18H. Minkowski (1864–1909) – German mathematician who proposed a mathematical model
adapted to the special theory of relativity (a space with a sign-indefinite metric).
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Fig. 5.11

Example 8 Let us consider another elementary example of the use of higher-order
derivatives to find local extrema. Let f (x)= sinx. Since f ′(x)= cosx and f ′′(x)=
− sinx, all the points where f ′(x) = cosx = 0 are local extrema of sinx, since
f ′′(x) = − sinx �= 0 at these points. Here f ′′(x) < 0 if sinx > 0 and f ′′(x) > 0
if sinx < 0. Thus the points where cosx = 0 and sinx > 0 are local maxima and
those where cosx = 0 and sinx < 0 are local minima for sinx (which, of course,
was already well-known).

5.4.3 Conditions for a Function to be Convex

Definition 1 A function f : ]a, b[ → R defined on an open interval ]a, b[ ⊂ R is
convex if the inequalities

f (α1x1 + α2x2)≤ α1f (x1)+ α2f (x2) (5.92)

hold for any points x1, x2 ∈ ]a, b[ and any numbers α1 ≥ 0, α2 ≥ 0 such that α1 +
α2 = 1. If this inequality is strict whenever x1 �= x2 and α1α2 �= 0, the function is
strictly convex on ]a, b[.

Geometrically, condition (5.92) for convexity of a function f : ]a, b[→R means
that the points of any arc of the graph of the function lie below the chord subtended
by the arc (see Fig. 5.11).

In fact, the left-hand side of (5.92) contains the value f (x) of the function at
the point x = α1x1 + α2x2 ∈ [x1, x2] and the right-hand side contains the value at
the same point of the linear function whose (straight-line) graph passes through the
points (x1, f (x1)) and (x2, f (x2)).

Relation (5.92) means that the set E = {(x, y) ∈R
2 | x ∈ ]a, b[, f (x) < y} of the

points of the plane lying above the graph of the function is convex; hence the term
“convex”, as applied to the function itself.

Definition 2 If the opposite inequality holds for a function f : ]a, b[ → R, that
function is said to be concave on the interval ]a, b[, or, more often, convex upward
in the interval, as opposed to a convex function, which is then said to be convex
downward on ]a, b[.
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Since all our subsequent constructions are carried out in the same way for a
function that is convex downward or convex upward, we shall limit ourselves to
functions that are convex downward.

We first give a new form to the inequality (5.92), better adapted for our purposes.
In the relations x = α1x1 + α2x2, α1 + α2 = 1, we have

α1 = x2 − x

x2 − x1
, α2 = x − x1

x2 − x1
,

so that (5.92) can be rewritten as

f (x)≤ x2 − x

x2 − x1
f (x1)+ x − x1

x2 − x1
f (x2).

Taking account of the inequalities x1 ≤ x ≤ x2 and x1 < x2, we multiply by x2− x1
and obtain

(x2 − x)f (x1)+ (x1 − x2)f (x)+ (x − x1)f (x2)≥ 0.

Remarking that x2− x1 = (x2− x)+ (x− x1) we obtain from the last inequality,
after elementary transformations,

f (x)− f (x1)

x − x1
≤ f (x2)− f (x)

x2 − x
(5.93)

for x1 < x < x2 and any x1, x2 ∈ ]a, b[.
Inequality (5.93) is another way of writing the definition of convexity of the

function f (x) on an open interval ]a, b[. Geometrically, (5.93) means (see Fig. 5.11)
that the slope of the chord I joining (x1, f (x1)) to (x, f (x)) is not larger than (and
in the case of strict convexity is less than) the slope of the chord II joining (x, f (x))

to (x2, f (x2)).
Now let us assume that the function f : ]a, b[ → R is differentiable on ]a, b[.

Then, letting x in (5.93) tend first to x1, then to x2, we obtain

f ′(x1)≤ f (x2)− f (x1)

x2 − x1
≤ f ′(x2),

which establishes that the derivative of f is monotonic.
Taking this fact into account, for a strictly convex function we find, using La-

grange’s theorem, that

f ′(x1) < f ′(ξ1)= f (x)− f (x1)

x − x1
<

f (x2)− f (x)

x2 − x
= f ′(ξ2)≤ f ′(x2)

for x1 < ξ1 < x < ξ2 < x2, that is, strict convexity implies that the derivative is
strictly monotonic.

Thus, if a differentiable function f is convex on an open interval ]a, b[, then f ′
is nondecreasing on ]a, b[; and in the case when f is strictly convex, its derivative
f ′ is increasing on ]a, b[.
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These conditions turn out to be not only necessary, but also sufficient for convex-
ity of a differentiable function.

In fact, for a < x1 < x < x2 < b, by Lagrange’s theorem

f (x)− f (x1)

x − x1
= f ′(ξ1),

f (x2)− f (x)

x2 − x
= f ′(ξ2),

where x1 < ξ1 < x < ξ2 < x2; and if f ′(ξ1) ≤ f ′(ξ2), then condition (5.93) for
convexity holds (with strict convexity if f ′(ξ1) < f ′(ξ2)).

We have thus proved the following proposition.

Proposition 5 A necessary and sufficient condition for a function f : ]a, b[ → R

that is differentiable on the open interval ]a, b[ to be convex (downward) on that
interval is that its derivative f ′ be nondecreasing on ]a, b[. A strictly increasing f ′
corresponds to a strictly convex function.

Comparing Proposition 5 with Proposition 3, we obtain the following corollary.

Corollary A necessary and sufficient condition for a function f : ]a, b[→R having
a second derivative on the open interval ]a, b[ to be convex (downward) on ]a, b[ is
that f ′′(x) ≥ 0 on that interval. The condition f ′′(x) > 0 on ]a, b[ is sufficient to
guarantee that f is strictly convex.

We are now in a position to explain, for example, why the graphs of the simplest
elementary functions are drawn with one form of convexity or another.

Example 9 Let us study the convexity of f (x)= xα on the set x > 0. Since f ′′(x)=
α(α − 1)xα−2, we have f ′′(x) > 0 for α < 0 or α > 1, that is, for these values of
the exponent α the power function xα is strictly convex (downward). For 0 < α < 1
we have f ′′(x) < 0, so that for these exponents it is strictly convex upward. For
example, we always draw the parabola f (x)= x2 as convex downward. The other
cases α = 0 and α = 1 are trivial: x0 ≡ 1 and x1 = x. In both of these cases the
graph of the function is a ray (see Fig. 5.18 on p. 251).

Example 10 Let f (x) = ax , 0 < a, a �= 1. Since f ′′(x) = ax ln2 a > 0, the expo-
nential function ax is strictly convex (downward) on R for any allowable value of
the base a (see Fig. 5.12).

Example 11 For the function f (x) = loga x we have f ′′(x) = − l
x2 lna

, so that the
function is strictly convex (downward) if 0 < a < 1, and strictly convex upward if
1 < a (see Fig. 5.13).

Example 12 Let us study the convexity of f (x)= sinx (see Fig. 5.14).
Since f ′′(x) = − sinx, we have f ′′(x) < 0 on the intervals π · 2k < x <

π(2k + 1) and f ′′(x) > 0 on π(2k − 1) < x < π · 2k, where k ∈ Z. It follows
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Fig. 5.12

Fig. 5.13

Fig. 5.14

from this, for example, that the arc of the graph of sinx on the closed interval
0 ≤ x ≤ π

2 lies above the chord it subtends everywhere except at the endpoints;
therefore sinx > 2

π
x for 0 < x < π

2 .

We now point out another characteristic of a convex function, geometrically
equivalent to the statement that a convex region of the plane lies entirely on one
side of a tangent line to its boundary.

Proposition 6 A function f : ]a, b[ → R that is differentiable on the open interval
]a, b[ is convex (downward) on ]a, b[ if and only if its graph contains no points
below any tangent drawn to it. In that case, a necessary and sufficient condition for
strict convexity is that all points of the graph except the point of tangency lie strictly
above the tangent line.

Proof Necessity. Let x0 ∈ ]a, b[. The equation of the tangent line to the graph at
(x0, f (x0)) has the form

y = f (x0)+ f ′(x0)(x − x0),

so that

f (x)− y(x)= f (x)− f (x0)− f ′(x0)(x − x0)=
(
f ′(ξ)− f ′(x0)

)
(x − x0),
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where ξ is a point between x and x0. Since f is convex, the function f ′(x) is
nondecreasing on ]a, b[ and so the sign of the difference f (ξ)− f ′(x0) is the same
as the sign of the difference x − x0. Therefore f (x)− y(x) ≥ 0 at each point x ∈
]a, b[. If f is strictly convex, then f ′ is strictly increasing on ]a, b[ and so f (x)−
y(x) > 0 for x ∈ ]a, b[ and x �= x0.

Sufficiency. If the inequality

f (x)− y(x)= f (x)− f (x0)− f ′(x0)(x − x0)≥ 0 (5.94)

holds for any points x, x0 ∈ ]a, b[, then

f (x)− f (x0)

x − x0
≤ f ′(x0) for x < x0,

f (x)− f (x0)

x − x0
≥ f ′(x0) for x0 < x.

Thus, for any triple of points x1, x, x2 ∈ ]a, b[ such that x1 < x < x2 we obtain

f (x)− f (x1)

x − x1
≤ f (x2)− f (x)

x2 − x
,

and strict inequality in (5.94) implies strict inequality in this last relation, which, as
we see, is the same as the definition (5.93) for convexity of a function. �

Let us now consider some examples.

Example 13 The function f (x)= ex is strictly convex. The straight line y = x + 1
is tangent to the graph of this function at (0,1), since f (0) = e0 = 1 and f ′(0) =
ex |x=0 = 1. By Proposition 6 we conclude that for any x ∈R

ex ≥ 1+ x,

and this inequality is strict for x �= 0.

Example 14 Similarly, using the strict upward convexity of lnx, one can verify that
the inequality

lnx ≤ x − 1

holds for x > 0, the inequality being strict for x �= 1.

In constructing the graphs of functions, it is useful to distinguish the points of
inflection of a graph.

Definition 3 Let f : U(x0) → R be a function defined and differentiable on a
neighborhood U(x0) of x0 ∈ R. If the function is convex downward (resp. upward)
on the set Ů−(x0)= {x ∈U(x0) | x < x0} and convex upward (resp. downward) on
Ů+(x0) = {x ∈ U(x0) | x > x0}, then (x0, f (x0)) is called a point of inflection of
the graph.
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Thus when we pass through a point of inflection, the direction of convexity of
the graph changes. This means, in particular, that at the point (x0, f (x0)) the graph
of the function passes from one side of the tangent line to the other.

An analytic criterion for the abscissa x0 of a point of inflection is easy to surmise,
if we compare Proposition 5 with Proposition 3. To be specific, one can say that if f

is twice differentiable at x0, then since f ′(x) has either a maximum or a minimum
at x0, we must have f ′′(x0)= 0.

Now if the second derivative f ′′(x) is defined on U(x0) and has one sign every-
where on Ů−(x0) and the opposite sign everywhere on Ů+(x0), this is sufficient for
f ′(x) to be monotonic in Ů−(x0) and monotonic in Ů+(x0) but with the opposite
monotonicity. By Proposition 5, a change in the direction of convexity occurs at
(x0, f (x0)), and so that point is a point of inflection.

Example 15 When considering the function f (x)= sinx in Example 12 we found
the regions of convexity and concavity for its graph. We shall now show that the
points of the graph with abscissas x = πk, k ∈ Z, are points of inflection.

Indeed, f ′′(x)=− sinx, so that f ′′(x)= 0 at x = πk, k ∈ Z. Moreover, f ′′(x)

changes sign as we pass through these points, which is a sufficient condition for a
point of inflection (see Fig. 5.14 on p. 244).

Example 16 It should not be thought that the passing of a curve from one side of
its tangent line to the other at a point is a sufficient condition for the point to be a
point of inflection. It may, after all, happen that the curve does not have any constant
convexity on either a left- or a right-hand neighborhood of the point. An example is
easy to construct, by improving Example 5, which was given for just this purpose.

Let

f (x)=
{

2x3 + x3 sin 1
x2 for x �= 0,

0 for x = 0.

Then x3 ≤ f (x) ≤ 3x3 for 0 ≤ x and 3x3 ≤ f (x) ≤ x3 for x ≤ 0, so that the
graph of this function is tangent to the x-axis at x = 0 and passes from the lower
half-plane to the upper at that point. At the same time, the derivative of f (x)

f ′(x)=
{

6x2 + 3x2 sin 1
x2 − 2 cos 1

x2 for x �= 0,

0 for x = 0

is not monotonic in any one-sided neighborhood of x = 0.

In conclusion, we return again to the definition (5.92) of a convex function and
prove the following proposition.

Proposition 7 (Jensen’s inequality)19 If f : ]a, b[ → R is a convex function,
x1, . . . , xn are points of ]a, b[, and α1, . . . , αn are nonnegative numbers such that

19J.L. Jensen (1859–1925) – Danish mathematician.
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α1 + · · · + αn = 1, then

f (α1x1 + · · · + αnxn)≤ α1f (x1)+ · · · + αnf (xn). (5.95)

Proof For n = 2, condition (5.95) is the same as the definition (5.92) of a convex
function.

We shall now show that if (5.95) is valid for n=m− 1, it is also valid for n=m.
For the sake of definiteness, assume that αn �= 0 in the set α1, . . . , αn. Then β =

α2 + · · · + αn > 0 and α2
β
+ · · · + αn

β
= 1. Using the convexity of the function, we

find

f (α1x1 + · · · + αnxn) = f

(

α1x1 + β

(
α2

β
x2 + · · · + αn

β
xn

))

≤

≤ α1f (x1)+ βf

(
α2

β
x2 + · · · + αn

β
xn

)

,

since α1 + β = 1 and (α2
β

x1 + · · · + αn

β
xn) ∈ ]a, b[.

By the induction hypothesis, we now have

f

(
α2

β
x2 + · · · + αn

β
xn

)

≤ α2

β
f (x2)+ · · · + αn

β
f (xn).

Consequently

f (α1x1 + · · · + αnxn) ≤ α1f (x1)+ βf

(
α2

β
x2 + · · · + αn

β
xn

)

≤

≤ α1f (x1)+ α2f (x2)+ · · · + αnf (xn).

By induction we now conclude that (5.95) holds for any n ∈N. (For n= 1, relation
(5.95) is trivial.) �

We remark that, as the proof shows, a strict Jensen’s inequality corresponds to
strict convexity, that is, if the numbers α1, . . . , αn are nonzero, then equality holds
in (5.95) if and only if x1 = · · · = xn.

For a function that is convex upward, of course, the opposite relation to inequality
(5.95) is obtained:

f (α1x1 + · · · + αnxn)≥ α1f (x1)+ · · · + αnf (xn). (5.96)

Example 17 The function f (x)= lnx is strictly convex upward on the set of posi-
tive numbers, and so by (5.96)

α1 lnx1 + · · · + αn lnxn ≤ ln(α1x1 + · · · + αnxn)

or,
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x
α1
1 · · ·xαn

n ≤ α1x1 + · · · + αnxn (5.97)

for xi ≥ 0, αi ≥ 0, i = 1, . . . , n, and
∑n

i=1 αi = 1.
In particular, if α1 = · · · = αn = 1

n
, we obtain the classical inequality

n
√

x1 · · ·xn ≤ x1 + · · · + xn

n
(5.98)

between the geometric and arithmetic means of n nonnegative numbers. Equality
holds in (5.98), as noted above, only when x1 = x2 = · · · = xn. If we set n = 2,
α1 = 1

p
, α2 = 1

q
, x1 = a, x2 = b in (5.97), we again obtain the known equality

(5.86).

Example 18 Let f (x)= xp , x ≥ 0, p > 1. Since such a function is convex, we have
(

n∑

i=1

αixi

)p

≤
n∑

i=1

αix
p
i .

Setting q = p
p−1 , αi = b

q
i (
∑n

i=1 b
q
i )−1, and xi = aib

−1/(p−1)
i

∑n
i=1 b

q
i here, we ob-

tain Hölder’s inequality (5.88):

n∑

i=1

aibi ≤
(

n∑

i=1

a
p
i

)1/p( n∑

i=1

b
q
i

)1/q

,

where 1
p
+ 1

q
= 1 and p > 1.

For p < 1 the function f (x)= xp is convex upward, and so analogous reasoning
can be carried out in Hölder’s other inequality (5.89).

5.4.4 L’Hôpital’s Rule

We now pause to discuss a special, but very useful device for finding the limit of a
ratio of functions, known as l’Hôpital’s rule.20

Proposition 8 (l’Hôpital’s rule) Suppose the functions f : ]a, b[ → R and g :
]a, b[→R are differentiable on the open interval ]a, b[ (−∞≤ a < b ≤+∞) with
g′(x) �= 0 on ]a, b[ and

f ′(x)

g′(x)
→A as x→ a + 0 (−∞≤A≤+∞).

20G.F. de l’Hôpital’s (1661–1704) – French mathematician, a capable student of Johann Bernoulli,
a marquis for whom the latter wrote the first textbook of analysis in the years 1691–1692. The
portion of this textbook devoted to differential calculus was published in slightly altered form by
l’Hôpital’s under his own name. Thus “l’Hôpital’s rule” is really due to Johann Bernoulli.
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Then

f (x)

g(x)
→A as x→ a + 0

in each of the following two cases:

10 (f (x)→ 0)∧ (g(x)→ 0) as x→ a + 0,

or

20 g(x)→∞ as x→ a + 0.

A similar assertion holds as x→ b− 0.

L’Hôpital’s rule can be stated succinctly, but not quite accurately, as follows. The
limit of a ratio of functions equals the limit of the ratio of their derivatives if the
latter exists.

Proof If g′(x) �= 0, we conclude on the basis of Rolle’s theorem that g(x) is strictly
monotonic on ]a, b[. Hence, shrinking the interval ]a, b[ if necessary by shifting
toward the endpoint a, we can assume that g(x) �= 0 on ]a, b[. By Cauchy’s theorem,
for x, y ∈ ]a, b[ there exists a point ξ ∈ ]a, b[ such that

f (x)− f (y)

g(x)− g(y)
= f ′(ξ)

g′(ξ)
.

Let us rewrite this equality in a form convenient for us at this point:

f (x)

g(x)
= f (y)

g(x)
+ f ′(ξ)

g′(ξ)

(

1− g(y)

g(x)

)

.

As x→ a + 0, we shall make y tend to a + 0 in such a way that

f (y)

g(x)
→ 0 and

g(y)

g(x)
→ 0.

This is obviously possible under each of the two hypotheses 10 and 20 that we are
considering. Since ξ lies between x and y, we also have ξ → a + 0. Hence the
right-hand side of the last inequality (and therefore the left-hand side also) tends
to A. �

Example 19 limx→0
sinx
x
= limx→0

cosx
1 = 1.

This example should not be looked on as a new, independent proof of the relation
sinx
x
→ 1 as x→ 0. The fact is that in deriving the relation sin′ x = cosx we already

made use of the limit just calculated.
We always verify the legitimacy of applying l’Hôpital’s rule after we find the

limit of the ratio of the derivatives. In doing so, one must not forget to verify con-
dition 10 or 20. The importance of these conditions can be seen in the following
example.
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Example 20 Let f (x) = cosx, g(x) = sinx. Then f ′(x) = − sinx, g′(x) = cosx,
and f (x)

g(x)
→+∞ as x→+0, while f ′(x)

g′(x)
→ 0 as x→+0.

Example 21

lim
x→+∞

lnx

xα
= lim

x→+∞
( 1
x
)

αxα−1
= lim

x→+∞
1

αxα
= 0 for α > 0.

Example 22

lim
x→+∞

xα

ax
= lim

x→+∞
αxα−1

ax lna
= · · · = lim

x→+∞
α(α − 1) · · · (α − n+ 1)xa−n

ax(lna)n
= 0

for a > 1, since for n > α and a > 1 it is obvious that xα−n

ax → 0 if x→+∞.

We remark that this entire chain of equalities was hypothetical until we arrived
at an expression whose limit we could find.

5.4.5 Constructing the Graph of a Function

A graphical representation is often used to gain a visualizable description of a func-
tion. As a rule, such a representation is useful in discussing qualitative questions
about the behavior of the function being studied.

For precise computations graphs are used more rarely. In this connection what
is important is not so much a scrupulous reproduction of the function in the form
of a graph as the construction of a sketch of the graph of the function that correctly
reflects the main elements of its behavior. In this subsection we shall study some
general devices that are encountered in constructing a sketch of the graph of a func-
tion.

a. Graphs of the Elementary Functions

We recall first of all what the graphs of the main elementary functions look like.
A complete mastery of these is needed for what follows (Figs. 5.12–5.18).

b. Examples of Sketches of Graphs of Functions (Without Application
of the Differential Calculus)

Let us now consider some examples in which a sketch of the graph of a function can
be easily constructed if we know the graphs and properties of the simplest elemen-
tary functions.
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Fig. 5.15

Fig. 5.16

Fig. 5.17

Fig. 5.18

Example 23 Let us construct a sketch of the graph of the function

h= logx2−3x−2 2.

Taking account of the relation

y = logx2−3x+2 2= 1

log2(x
2 − 3x + 2)

= 1

log2(x − 1)(x − 2)
,
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Fig. 5.19

we construct successively the graph of the quadratic trinomial y1 = x2 − 3x + 2,
then y2 = log2 y1(x), and then y = 1

y2(x)
(Fig. 5.19).

The shape of this graph could have been “guessed” in a different way: by first
determining the domain of definition of the function logx2−3x+2 2 = (log2(x

2 −
3x+2))−1, then finding the behavior of the function under approach to the boundary
points of the domain of definition and on intervals whose endpoints are the boundary
points of the domain of definition, and finally drawing a “smooth curve” taking
account of the behavior thus determined at the ends of the interval.

Example 24 The construction of a sketch of the graph of the function

y = sin
(
x2)

can be seen in Fig. 5.20.
We have constructed this graph using certain characteristic points for this func-

tion, the points where sin(x2)=−1, sin(x2)= 0, or sin(x2)= 1. Between two ad-
jacent points of this type the function is monotonic. The form of the graph near the
point x = 0, y = 0 is determined by the fact that sin(x2)∼ x2 as x→ 0. Moreover,
it is useful to note that this function is even.

Since we will be speaking only of sketches rather than a precise construction
of the graph of a function, let us agree for the sake of brevity to understand that
“constructing the graph of a function” is equivalent to “constructing a sketch of the
graph of the function”.

Example 25 Let us construct the graph of the function

y = x + arctan
(
x3 − 1

)
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Fig. 5.20

(Fig. 5.21). As x →−∞ the graph is well approximated by the line y = x − π
2 ,

while for x→+∞ it is approximated by y = x + π
2 .

We now introduce a useful concept.

Definition 4 The line c0 + c1x is called an asymptote of the graph of the function
y = f (x) as x→−∞ (or x→+∞) if f (x)− (c0 + c1x)= o(1) as x→−∞ (or
x→+∞).

Thus in the present example the graph has the asymptote y = x− π
2 as x→−∞

and y = x + π
2 as x→+∞.

If |f (x)| →∞ as x → a − 0 (or as x → a + 0) it is clear that the graph of the
function will move ever closer to the vertical line x = a as x approaches a. We call
this line a vertical asymptote of the graph, in contrast to the asymptotes introduced
in Definition 4, which are always oblique.

Thus, the graph in Example 23 (see Fig. 5.19) has two vertical asymptotes and
one horizontal asymptote (the same asymptote as x→−∞ and as x→+∞).

It obviously follows from Definition 4 that

c1 = lim
x→−∞

f (x)

x
,

c0 = lim
x→−∞

(
f (x)− c1x

)
.

In general, if f (x)− (c0 + c1x + · · · + cnx
n)= o(1) as x→−∞, then
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Fig. 5.21

cn = lim
x→−∞

f (x)

xn
,

cn−1 = lim
x→−∞

f (x)− cnx
n

xn−1
,

...

c0 = lim
x→−∞

(
f (x)− (

c1x + · · · + cnx
n
))

.

These relations, written out here for the case x →−∞, are of course also valid
in the case x →+∞ and can be used to describe the asymptotic behavior of the
graph of a function f (x) using the graph of the corresponding algebraic polynomial
c1 + c1x + · · · + cnx

n.
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Fig. 5.22

Example 26 Let (ρ,ϕ) be polar coordinates in the plane and suppose a point is
moving in the plane in such a way that

ρ = ρ(t)= 1− e−t cos
π

2
t,

ϕ = ϕ(t)= 1− e−t sin
π

2
t

at time t (t ≥ 0). Draw the trajectory of the point.
In order to do this, we first draw the graphs of ρ(t) and ϕ(t) (Figs. 5.22a and

5.22b).
Then, looking simultaneously at both of the graphs just constructed, we can de-

scribe the general form of the trajectory of the point (Fig. 5.22c).

c. The Use of Differential Calculus in Constructing the Graph of a Function

As we have seen, the graphs of many functions can be drawn in their general features
without going beyond the most elementary considerations. However, if we want to
make the sketch more precise, we can use the machinery of differential calculus in
cases where the derivative of the function being studied is not too complicated. We
shall illustrate this using examples.

Example 27 Construct the graph of the function y = f (x) when

f (x)= |x + 2|e−1/x.

The function f (x) is defined for x ∈ R\0. Since e−1/x → 1 as x →∞, it follows
that

|x + 2|e−1/x ∼
{
−(x + 2) as x→−∞,

(x + 2) as x→+∞.
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Fig. 5.23

Table 5.2 Interval ]−∞,−2[ ]−2,0[ ]0,+∞[
Sign of f ′(x) − + +
Behavior of f (x) +∞↘ 0 0↗+∞ 0↗+∞

Next, it is obvious that |x + 2|e−1/x →+∞ as x →−0, and |x + 2|e−1/x → 0
as x →+0. Finally, it is clear that f (x)≥ 0 and f (−2)= 0. On the basis of these
observations, one can already make a first draft of the graph (Fig. 5.23a).

Let us now see for certain whether this function is monotonic on the intervals
]−∞,−2[, [−2,0[, and ]0,+∞[, whether it really does have these asymptotics,
and whether the convexity of the graph is correctly shown.

Since

f ′(x)=
⎧
⎨

⎩

− x2+x+2
x2 e−1/x, if x <−2,

x2+x+2
x2 e−1/x, if − 2 < x and x �= 0,

and f ′(x) �= 0, we can form Table 5.2.
On the regions of constant sign of the derivative, as we know, the function ex-

hibits the corresponding monotonicity. In the bottom row of the table the symbol
+∞↘ 0 denotes a monotonic decrease in the values of the function from +∞ to
0, and 0↗+∞ denotes monotonic increase from 0 to +∞.

We observe that f ′(x)→−4e−1/2 as x→−2− 0 and f ′(x)→ 4e−1/2 as x→
−2+ 0, so that the point (−2,0) must be a cusp in the graph (a bend of the same
type as in the graph of the function |x|), and not a regular point, as depicted in
Fig. 5.23a). Next, f ′(x)→ 0 as x→+0, so that the graph should emanate from the
origin tangentially to the x-axis (remember the geometric meaning of f ′(x)!).

We now make the asymptotics of the function as x →−∞ and x →+∞ more
precise.

Since e−1/x = 1− x−1 + o(x−1) as x→∞, it follows that

|x + 2|e−1/x ∼
{
−x − 1+ o(1) as x→−∞,

x + 1+ o(1) as x→+∞,



5.4 Differential Calculus Used to Study Functions 257

Table 5.3

Interval ]−∞,−2[ ]−2,0[ ]0,2/3[ ]2/3,+∞[
Sign of f ′′(x) − + + −
Convexity of f (x) Upward Downward Downward Upward

so that in fact the oblique asymptotes of the graph are y =−x − 1 as x→−∞ and
y = x + 1 as x→+∞.

From these data we can already construct a quite reliable sketch of the graph, but
we shall go further and find the regions of convexity of the graph by computing the
second derivative:

f ′′(x)=
{− 2−3x

x4 e−1/x, if x <−2,

2−3x

x4 e−1/x, if − 2 < x and x �= 0.

Since f ′′(x)= 0 only at x = 2/3, we have Table 5.3.
Since the function is differentiable at x = 2/3 and f ′′(x) changes sign as x passes

through that point, the point (2/3, f (2/3)) is a point of inflection of the graph.
Incidentally, if the derivative f ′(x) had had a zero, it would have been possible

to judge using the table of values of f ′(x) whether the corresponding point was an
extremum. In this case, however, f ′(x) has no zeros, even though the function has
a local minimum at x =−2. It is continuous at that point and f ′(x) changes from
negative to positive as x passes through that point. Still, the fact that the function
has a minimum at x =−2 can be seen just from the description of the variation of
values of f (x) on the corresponding intervals, taking into account, of course, the
relation f (−2)= 0.

We can now draw a more precise sketch of the graph of this function (Fig. 5.23b).
We conclude with one more example.

Example 28 Let (x, y) be Cartesian coordinates in the plane and suppose a moving
point has coordinates

x = t

1− t2
, y = t − 2t3

1− t2

at time t (t ≥ 0). Describe the trajectory of the point.
We begin by sketching the graphs of each of the two coordinate functions x =

x(t) and y = y(t) (Figs. 5.24a and 5.24b).
The second of these graphs is somewhat more interesting than the first, and so

we shall describe how to construct it.
We can see the behavior of the function y = y(t) as t →+0, t → 1 − 0, t →

1+ 0, and the asymptote y(t)= 2t + o(1) as t →+∞ immediately from the form
of the analytic expression for y(t).

After computing the derivative

ẏ(t)= 1− 5t2 + 2t4

(1− t2)2
,
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Fig. 5.24

Table 5.4

Interval ]0, t1[ ]t1,1[ ]1, t2[ ]t2,+∞[
Sign of ẏ(t) + − − +
Behavior of y(t) 0↗ y(t1) y(t1)↘−∞ +∞↘ y(t2) y(t2)↗+∞

we find its zeros: t1 ≈ 0.5 and t2 ≈ 1.5 in the region t ≥ 0.
Then, by compiling Table 5.4 we find the regions of monotonicity and the local

extreme values y(t1)≈ 1
3 (a maximum) and y(t2)≈ 4 (a minimum).

Now, by studying both graphs x = x(t) and y = y(t) simultaneously, we make a
sketch of the trajectory of the point in the plane (Fig. 5.24c).

This sketch can be made more precise. For example, one can determine the
asymptotics of the trajectory.

Since limt→1
y(t)
x(t)

=−1 and limt→1(y(t)+ x(t))= 2, the line y =−x + 2 is an
asymptote for both ends of the trajectory, corresponding to t approaching 1. It is
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also clear that the line x = 0 is a vertical asymptote for the portion of the trajectory
corresponding to t →+∞.

We find next

y′x =
ẏt

ẋt

= 1− 5t2 + 2t4

1+ t2
.

As one can easily see, the function 1−5u+2u2

1+u
decreases monotonically from 1 to −1

as u increases from 0 to 1 and increases from −1 to +∞ as u increases from 1 to
+∞.

From the monotonic nature of y′x , one can draw conclusions about the convexity
of the trajectory on the corresponding regions. Taking account of what has just been
said, one can construct the following, more precise sketch of the trajectory of the
point (Fig. 5.24d).

If we had considered the trajectory for t < 0 as well, the fact that x(t) and y(t)

are odd functions would have added to the curves already drawn in the xy-plane the
curves obtained from them by reflection in the origin.

We now summarize some of these results as very general recommendations for
the order in which to proceed when constructing the graph of a function given ana-
lytically. Here they are:

10 Give the domain of definition of the function.
20 Note the specific properties of the function if they are obvious (for example,
evenness or oddness, periodicity, identity to some well-known functions up to sim-
ple coordinate changes).
30 Determine the asymptotic behavior of the function under approach to boundary
points of the domain of definition and, in particular, find asymptotes if they exist.
40 Find the intervals of monotonicity of the function and exhibit its local extreme
values.
50 Determine the convexity properties of the graph and indicate the points of in-
flection.
60 Note any characteristic points of the graph, in particular points of intersection
with the coordinate axes, provided there are such and they are amenable to compu-
tation.

5.4.6 Problems and Exercises

1. Let x = (x1, . . . , xn) and α = (α1, . . . , αn), where xi ≥ 0, αi > 0 for i = 1, . . . , n

and
∑n

i=1 αi = 1. For any number t �= 0 we consider the mean of order t of the
numbers x1, . . . , xn with weights αi :

Mt(x,α)=
(

n∑

i=1

αxx
t
i

)1/t

.
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In particular, when α1 = · · · = αn = 1
n

, we obtain the harmonic, arithmetic, and
quadratic means for t =−1,1,2 respectively.
Show that

a) limt→0 Mt(x,α)= x
α1
1 · · ·xαn

n , that is, in the limit one can obtain the geomet-
ric mean;

b) limt→+∞Mt(x,α)=max1≤i≤n xi ;
c) limt→−∞Mt(x,α)=min1≤i≤n xi ;
d) Mt(x,α) is a nondecreasing function of t on R and is strictly increasing if

n > 1 and the numbers xi are all nonzero.

2. Show that |1+ x|p ≥ 1+ px + cpϕp(x), where cp is a constant depending only
on p,

ϕp(x)=
{
|x|2 for |x| ≤ 1,

|x|p for |x|> 1,
if 1 < p ≤ 2,

and ϕp(x)= |x|ρ on R if 2 < p.
3. Verify that cosx < ( sinx

x
)3 for 0 < |x|< π

2 .
4. Study the function f (x) and construct its graph if

a) f (x)= arctan log2 cos(πx + π
4 );

b) f (x)= arccos( 3
2 − sinx);

c) f (x)= 3
√

x(x + 3)2;
d) Construct the curve defined in polar coordinates by the equation ϕ = ρ

ρ2+1
,

ρ ≥ 0, and exhibit its asymptotics;
e) Show how, knowing the graph of the function y = f (x), one can obtain the

graph of the following functions f (x)+ B , Af (x), f (x + b), f (ax), and, in par-
ticular −f (x) and f (−x).

5. Show that if f ∈ C(]a, b[) and the inequality

f

(
x1 + x2

2

)

≤ f (x1)+ f (x2)

2

holds for any points x1, x2 ∈ ]a, b[, then the function f is convex on ]a, b[.
6. Show that

a) if a convex function f :R→R is bounded, it is constant;
b) if

lim
x→−∞

f (x)

x
= lim

x→+∞
f (x)

x
= 0,

for a convex function f :R→R, then f is constant.
c) for any convex function f defined on an open interval a < x < +∞ (or

−∞< x < a), the ratio f (x)
x

tends to a finite limit or to infinity as x tends to infinity
in the domain of definition of the function.

7. Show that if f : ]a, b[→R is a convex function, then
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a) at any point x ∈ ]a, b[ it has a left-hand derivative f ′− and a right-hand deriva-
tive f ′+, defined as

f ′−(x) = lim
h→−0

f (x + h)− f (x)

h
,

f ′+(x) = lim
h→+0

f (x + h)− f (x)

h
,

and f ′−(x)≤ f ′+(x);
b) the inequality f ′+(x1)≤ f ′−(x2) holds for x1, x2 ∈ ]a, b[ and x1 < x2;
c) the set of cusps of the graph of f (x) (for which f ′−(x) �= f ′+(x)) is at most

countable.

8. The Legendre transform21 of a function f : I →R defined on an interval I ⊂R

is the function

f ∗(t)= sup
x∈I

(
tx − f (x)

)
.

Show that

a) The set I ∗ of values of t ∈ R for which f ∗(t) ∈ R (that is, f ∗(t) �= ∞) is
either empty or consists of a single point, or is an interval of the line, and in this last
case the function f ∗(t) is convex on I ∗.

b) If f is a convex function, then I∗ �=∅, and for f ∗ ∈C(I ∗)
(
f ∗
)∗ = sup

t∈I∗

(
xt − f ∗(t)

)= f (x)

for any x ∈ I . Thus the Legendre transform of a convex function is involutive, (its
square is the identity transform).

c) The following inequality holds:

xt ≤ f (x)+ f ∗(t) for x ∈ I and t ∈ I ∗.

d) When f is a convex differentiable function, f ∗(t) = txt − f (xt ), where xt

is determined from the equation t = f ′(x). Use this relation to obtain a geometric
interpretation of the Legendre transform f ∗ and its argument t , showing that the
Legendre transform is a function defined on the set of tangents to the graph of f .

e) The Legendre transform of the function f (x)= 1
α
xα for α > 1 and x ≥ 0 is

the function f ∗(t) = 1
β
tβ , where t ≥ 0 and 1

α
+ 1

β
= 1. Taking account of c), use

this fact to obtain Young’s inequality, which we already know:

xt ≤ 1

α
xα + 1

β
tβ.

21A.M. Legendre (1752–1833) – famous French mathematician.



262 5 Differential Calculus

f) The Legendre transform of the function f (x) = ex is the function f ∗(t) =
t ln t

e
, t > 0, and the inequality

xt ≤ ex + t ln
t

e

holds for x ∈R and t > 0.

9. Curvature and the radius and center of curvature of a curve at a point. Suppose a
point is moving in the plane according to a law given by a pair of twice-differentiable
coordinate functions of time: x = x(t), y = y(t). In doing so, it describes a certain
curve, which is said to be given in the parametric form x = x(t), y = y(t). A special
case of such a definition is that of the graph of a function y = f (x), where one may
take x = t , y = f (t). We wish to find a number that characterizes the curvature of
the curve at a point, as the reciprocal of the radius of a circle serves as an indication
of the amount of bending of the circle. We shall make use of this comparison.

a) Find the tangential and normal components at and an respectively of the ac-
celeration a= (ẍ(t), ÿ(t)) of the point, that is, write a as the sum at + an, where at

is collinear with the velocity vector v(t) = (ẋ(t), ẏ(t)), so that at points along the
tangent to the trajectory and an is directed along the normal to the trajectory.

b) Show that the relation

r= |v(t)|
|an(t)|

holds for motion along a circle of radius r .
c) For motion along any curve, taking account of b), it is natural to call the

quantity

r(t)= |v(t)|
|an(t)|

the radius of curvature of the curve at the point (x(t), y(t)).
Show that the radius of curvature can be computed from the formula

r(t)= (ẋ2 + ẏ2)3/2

|ẋÿ − ẍẏ| .

d) The reciprocal of the radius of curvature is called the absolute curvature of a
plane curve at the point (x(t), y(t)). Along with the absolute curvature we consider
the quantity

k(t)= ẋÿ − ẍẏ

(ẋ2 + ẏ2)3/2
,

called the curvature.
Show that the sign of the curvature characterizes the direction of turning of the

curve relative to its tangent. Determine the physical dimension of the curvature.
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e) Show that the curvature of the graph of a function y = f (x) at a point
(x, f (x)) can be computed from the formula

k(x)= y′′(x)

[1+ (y′)2]3/2
.

Compare the signs of k(x) and y′′(x) with the direction of convexity of the graph.
f) Choose the constants a, b, and R so that the circle (x − a)2 + (y − b)2 =R2

has the highest possible order of contact with the given parametrically defined curve
x = x(t), y = y(t). It is assumed that x(t) and y(t) are twice differentiable and that
(ẋ(t0), ẏ(t0)) �= (0,0).

This circle is called the osculating circle of the curve at the point (x0, y0). Its
center is called the center of curvature of the curve at the point (x0, y0). Verify that
its radius equals the radius of curvature of the curve at that point, as defined in b).

g) Under the influence of gravity a particle begins to slide without any prelim-
inary impetus from the tip of an iceberg of parabolic cross-section. The equation
of the cross-section is x + y2 = 1, where x ≥ 0, y ≥ 0. Compute the trajectory of
motion of the particle until it reaches the ground.

5.5 Complex Numbers and the Connections Among
the Elementary Functions

5.5.1 Complex Numbers

Just as the equation x2 = 2 has no solutions in the domain Q of rational numbers,
the equation x2 =−1 has no solutions in the domain R of real numbers. And, just
as we adjoin the symbol

√
2 as a solution of x2 = 2 and connect it with rational

numbers to get new numbers of the form r1+
√

2r2, where r1, r2 ∈Q, we introduce
the symbol i as a solution of x2 =−1 and attach this number, which lies outside the
real numbers, to real numbers and arithmetic operations in R.

One remarkable feature of this enlargement of the field R of real numbers, among
many others, is that in the resulting field C of complex numbers, every algebraic
equation with real or complex coefficients now has a solution.

Let us now carry out this program.

a. Algebraic Extension of the Field R

Thus, following Euler, we introduce a number i, the imaginary unit, such that
i2 = −1. The interaction between i and the real numbers is to consist of the fol-
lowing. One may multiply i by numbers y ∈ R, that is, numbers of the form iy

necessarily arise, and one may add such numbers to real numbers, that is, numbers
of the form x + iy occur, where x, y ∈R.
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If we wish to have the usual operations of a commutative addition and a commu-
tative multiplication that is distributive with respect to addition defined on the set
of objects of the form x + iy (which, following Gauss, we shall call the complex
numbers), then we must make the following definitions:

(x1 + iy1)+ (x2 + iy2) := (x1 + x2)+ i(y1 + y2) (5.99)

and

(x1 + iy1) · (x2 + iy2) := (x1x2 − y1y2)+ i(x1y2 + x2y1). (5.100)

Two complex numbers x1 + iy1 and x2 + iy2 are considered equal if and only if
x1 = x2 and y1 = y2.

We identify the real numbers x ∈ R with the numbers of the form x + i · 0, and
i with the number 0+ i · 1. The role of 0 in the complex numbers, as can be seen
from Eq. (5.99), is played by the number 0+ i · 0= 0 ∈ R; the role of 1, as can be
seen from Eq. (5.100), is played by 1+ i · 0= 1 ∈R.

It follows from properties of the real numbers and definitions (5.99) and (5.100)
that the set of complex numbers is a field containing R as a subfield.

We shall denote the field of complex numbers by C and typical elements of it
usually by z and w.

The only nonobvious point in the verification that C is a field is the assertion
that every non-zero complex number z= x + iy has an inverse z−1 with respect to
multiplication (a reciprocal), that is z · z−1 = 1. Let us verify this.

We call the number x − iy the conjugate of z= x + iy, and we denote it z̃.
We observe that z · z= (x2+ y2)+ i · 0= x2+ y2 �= 0 if z �= 0. Thus z−1 should

be taken as 1
x2+y2 · z̄= x

x2+y2 − i
y

x2+y2 .

b. Geometric Interpretation of the Field C

We remark that once the algebraic operations (5.99) and (5.100) on complex num-
bers have been introduced, the symbol i, which led us to these definitions, is no
longer needed. We can identify the complex number z = x + iy with the ordered
pair (x, y) of real numbers, called respectively the real part and the imaginary part
of the complex number z. (The notation for this is x = Re z, y = Im z.)

But then, regarding the pair (x, y) as the Cartesian coordinates of a point of the
plane R

2 =R×R, one can identify complex numbers with the points of this plane
or with two-dimensional vectors having coordinates (x, y).

In such a vector interpretation the coordinatewise addition (5.99) of complex
numbers corresponds to vector addition. Moreover such an interpretation naturally
leads to the idea of the absolute value or modulus |z| of a complex number as the
absolute value or length of the vector (x, y) corresponding to it, that is

|z| =
√

x2 + y2, if z= x + iy, (5.101)
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and also to a way of measuring the distance between complex numbers z1 and z2 as
the distance between the points of the plane corresponding to them, that is, as

|z1 − z2| =
√

(x1 − x2)2 + (y1 − y2)2. (5.102)

The set of complex numbers, interpreted as the set of points of the plane, is called
the complex plane and also denoted by C, just as the set of real numbers and the real
line are both denoted by R.

Since a point of the plane can also be defined in polar coordinates (r, ϕ) con-
nected with Cartesian coordinates by the relations

x = r cosϕ,

y = r sinϕ,
(5.103)

the complex number

z= x + iy (5.104)

can be represented in the form

z= r(cosϕ + i sinϕ). (5.105)

The expressions (5.104) and (5.105) are called respectively the algebraic and
trigonometric (polar) forms of the complex number.

In the expression (5.105) the number r ≥ 0 is called the modulus or absolute
value of the complex number z (since, as one can see from (5.103), r = |z|), and ϕ

the argument of z. The argument has meaning only for z �= 0. Since the functions
cosϕ and sinϕ are periodic, the argument of a complex number is determined only
up to a multiple of 2π , and the symbol Arg z denotes the set of angles of the form
ϕ + 2πk, k ∈ Z, where ϕ is any angle satisfying (5.105). When it is desirable for
every complex number to determine uniquely some angle ϕ ∈Arg z, one must agree
in advance on the range from which the argument is to be chosen. This range is
usually either 0≤ ϕ < 2π or −π < ϕ ≤ π . If such a choice has been made, we say
that a branch (or the principal branch) of the argument has been chosen. The values
of the argument within the chosen range are usually denoted arg z.

The trigonometric form (5.105) for writing complex numbers is convenient in
carrying out the operation of multiplication of complex numbers. In fact, if

z1 = r1(cosϕ1 + i sinϕ1),

z2 = r2(cosϕ2 + i sinϕ2),

then

z1 · z2 = (r1 cosϕ1 + ir1 sinϕ1)(r2 cosϕ2 + ir2 sinϕ2)=
= (r1r2 cosϕ1 cosϕ2 − r1r2 sinϕ1 sinϕ2)+
+ i(r1r2 sinϕ1 cosϕ2 + r1r2 cosϕ2 sinϕ2),
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or

z1 · z2 = r1r2
(
cos(ϕ2 + ϕ2)+ i sin(ϕ1 + ϕ2)

)
. (5.106)

Thus, when two complex numbers are multiplied, their moduli are multiplied and
their arguments are added.

We remark that what we have actually shown is that if ϕ1 ∈ Arg z1 and ϕ2 ∈
Arg z2, then ϕ1 + ϕ2 ∈ Arg(z1 · z2). But since the argument is defined only up to a
multiple of 2π , we can write that

Arg(z1 · z2)=Arg z1 +Arg z2, (5.107)

interpreting this equality as set equality, the set on the right-hand side being the set
of all numbers of the form ϕ1 + ϕ2, where ϕ1 ∈ Arg z1 and ϕ2 ∈ Arg z2. Thus it is
useful to interpret the sum of the arguments in the sense of the set equality (5.107).

With this understanding of equality of arguments, one can assert, for example,
that two complex numbers are equal if and only if their moduli and arguments are
equal.

The following formula of de Moivre22 follows by induction from formula
(5.106):

if z= r(cosϕ + i sinϕ), then zn = rn(cosnϕ + i sinnϕ). (5.108)

Taking account of the explanations given in connection with the argument of a
complex number, one can use de Moivre’s formula to write out explicitly all the
complex solutions of the equation zn = a.

Indeed, if

a = ρ(cosψ + i sinψ)

and, by formula (5.108)

zn = rn(cosnϕ + i sinnϕ),

we have r = n
√

ρ and nϕ = ψ + 2πk, k ∈ Z, from which we have ϕk = ψ
n
+ 2π

n
k.

Different complex numbers are obviously obtained only for k = 0,1, . . . , n − 1.
Thus we find n distinct roots of a:

zk = n
√

ρ

(

cos

(
ψ

n
+ 2π

n
k

)

+ i sin

(
ψ

n
+ 2π

n
k

))

(k = 0,1, . . . , n− 1).

In particular, if a = 1, that is, ρ = 1 and ψ = 0, we have

zk = n
√

k1= cos

(
2π

n
k

)

+ i sin

(
2π

n
k

)

(k = 0,1, . . . , n− 1).

These points are located on the unit circle at the vertices of a regular n-gon.

22A. de Moivre (1667–1754) – British mathematician.
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In connection with the geometric interpretation of the complex numbers them-
selves, it is useful to recall the geometric interpretation of the arithmetic operations
on them.

For a fixed b ∈C, the sum z+b can be interpreted as the mapping of C into itself
given by the formula z �→ z+ b. This mapping is a translation of the plane by the
vector b.

For a fixed a = |a|(cosϕ + i sinϕ) �= 0, the product az can be interpreted as the
mapping z→ az of C into itself, which is the composition of a dilation by a factor
of |a| and a rotation through the angle ϕ ∈Arga. This is clear from formula (5.106).

5.5.2 Convergence in C and Series with Complex Terms

The distance (5.102) between complex numbers enables us to define the ε-
neighborhood of a number z0 ∈ C as the set {z ∈ C | |z − z0| < ε}. This set is
a disk (without the boundary circle) of radius ε centered at the point (x0, y0) if
z0 = xi + iy0.

We shall say that a sequence {zn} of complex numbers converges to z0 ∈ C if
limn→∞ |zn − z0| = 0.

It is clear from the inequalities

max
{|xn − x0|, |yn − y0|

}≤ |zn − z0| ≤ |xn − x0| + |yn − y0| (5.109)

that a sequence of complex numbers converges if and only if the sequences of real
and imaginary parts of the terms of the sequence both converge.

By analogy with sequences of real numbers, a sequence of complex numbers {zn}
is called a fundamental or Cauchy sequence if for every ε > 0 there exists an index
N ∈N such that |zn − zm|< ε for all n,m > N .

It is clear from inequalities (5.109) that a sequence of complex numbers is a
Cauchy sequence if and only if the sequences of real and imaginary parts of its
terms are both Cauchy sequences.

Taking the Cauchy convergence criterion for sequences of real numbers into ac-
count, we conclude on the basis of (5.109) that the following proposition holds.

Proposition 1 (The Cauchy criterion) A sequence of complex numbers converges if
and only if it is a Cauchy sequence.

If we interpret the sum of a series of complex numbers

z1 + z2 + · · · + zn + · · · (5.110)

as the limit of its partial sums sn = z1 + · · · + zn as n→∞, we also obtain the
Cauchy criterion for convergence of the series (5.110).
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Proposition 2 The series (5.110) converges if and only if for every ε > 0 there exists
N ∈N such that

|zm + · · · + zn|< ε (5.111)

for any natural numbers n≥m > N .

From this one can see that a necessary condition for convergence of the series
(5.110) is that zn → 0 as n→∞. (This, however, is also clear from the very defini-
tion of convergence.)

As in the real case, the series (5.110) is absolutely convergent if the series

|z1| + |z2| + · · · + |zn| + · · · (5.112)

converges.
It follows from the Cauchy criterion and the inequality

|zm + · · · + zn| ≤ |zm| + · · · + |zn|
that if the series (5.110) converges absolutely, then it converges.

Examples The series

1) 1+ 1
1!z+ 1

2!z
2 + · · · + 1

n!z
n + · · · ,

2) z− 1
3!z

3 + 1
5!z

5 − · · · , and
3) 1− 1

2!z
2 + 1

4!z
4 − · · ·

converge absolutely for all z ∈C, since the series

1′) 1+ 1
1! |z| + 1

2! |z|2 + · · · ,
2′) |z| + 1

3! |z|3 + 1
5! |z|5 + · · · ,

3′) 1+ 1
2! |z|2 + 1

4! |z|4 + · · · ,
all converge for any value of |z| ∈ R. We remark that we have used the equality
|zn| = |z|n here.

Example 4 The series 1+ z+ z2+ · · · converges absolutely for |z|< 1 and its sum
is s = 1

1−z
. For |z| ≥ 1 it does not converge, since in that case the general term does

not tend to zero.

Series of the form

c0 + c1(z− z0)+ · · · + cn(z− z0)
n + · · · (5.113)

are called power series.
By applying the Cauchy criterion (Sect. 3.1.4) to the series

|c0| +
∣
∣c1(z− z0)

∣
∣+ · · · + ∣

∣cn(z− z0)
n
∣
∣+ · · · , (5.114)



5.5 Complex Numbers and Elementary Functions 269

we conclude that this series converges if

|z− z0|<
(

lim
n→∞

n
√|cn|

)−1
,

and that the general term does not tend to zero if |z − z0| ≥ (limn→∞ n
√|cn|)−1.

From this we obtain the following proposition.

Proposition 3 (The Cauchy–Hadamard23 formula) The power series (5.113) con-
verges inside the disk |z−z0|< R with center at z0 and radius given by the Cauchy–
Hadamard formula

R = 1

limn→∞ n
√|cn|

. (5.115)

At any point exterior to this disk the power series diverges.
At any point interior to the disk, the power series converges absolutely.

Remark In regard to convergence on the boundary circle |z− z0| =R Proposition 3
is silent, since all the logically admissible possibilities really can occur.

Examples The series

5)
∑∞

n=1 zn,
6)

∑∞
n=1

1
n
zn,

and

7)
∑∞

n=1
1
n2 zn

converge in the unit disk |z| < 1, but the series 5) diverges at every point z where
|z| = 1. The series 6) diverges for z= 1 and (as one can show) converges for z=−1.
The series 7) converges absolutely for |z| = 1, since | 1

n2 zn| = 1
n2 .

One must keep in mind the possible degenerate case when R = 0 in (5.115),
which was not taken account of in Proposition 3. In this case, of course, the entire
disk of convergence degenerates to the single point z0 of convergence of the series
(5.113).

The following result is an obvious corollary of Proposition 3.

Corollary (Abel’s first theorem on power series) If the power series (5.113) con-
verges at some value z∗, then it converges, and indeed even absolutely, for any value
of z satisfying the inequality |z− z0|< |z∗ − z0|.

The propositions obtained up to this point can be regarded as simple extensions
of facts already known to us. We shall now prove two general propositions about

23J. Hadamard (1865–1963) – well-known French mathematician.
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series that we have not proved up to now in any form, although we have partly
discussed some of the questions they address.

Proposition 4 If a series z1 + z2 + · · · + zn + · · · of complex numbers converges
absolutely, then a series zn1 + zn2 + · · · + znk

+ · · · obtained by rearranging24 its
terms also converges absolutely and has the same sum.

Proof Using the convergence of the series
∑∞

n=1 |zn|, given a number ε > 0, we
choose N ∈N such that

∑∞
n=N+1 |zn|< ε.

We then find an index K ∈N such that all the terms in the sum SN = z1+· · ·+zN

are among the terms of the sum s̃k = zn1 + · · · + znk
for k > K . If s =∑∞

n=1 zn, we
find that for k > K

|s − s̃k| ≤ |s − sN | + |sN − s̃k| ≤
∞∑

n=N+1

|zn| +
∞∑

n=N+1

|zn|< 2ε.

Thus we have shown that s̃k → s as k →∞. If we apply what has just been
proved to the series |z1| + |z2| + · · · + |zn| + · · · and |zn1 | + |zn2 | + · · · + |znk

| +
· · · , we find that the latter series converges. Thus Proposition 4 is now completely
proved.

Our next proposition will involve the product of two series

(a1 + a2 + · · · + an + · · · ) · (b1 + b2 + · · · + bn + · · · ).
The problem is that if we remove the parentheses and form all possible pair-wise
products aibj , there is no natural order for summing these products, since we have
two indices of summation. The set of pairs (i, j), where i, j ∈ N, is countable, as
we know. Therefore we could write down a series having the products aibj as terms
in some order. The sum of such a series might depend on the order in which these
terms are taken. But, as we have just seen, in absolutely convergent series the sum
is independent of any rearrangement of the terms. Thus, it is desirable to determine
when the series with terms aibj converges absolutely. �

Proposition 5 The product of absolutely convergent series is an absolutely conver-
gent series whose sum equals the product of the sums of the factor series.

Proof We begin by remarking that whatever finite sum
∑

aibj of terms of the form
aibj we take, we can always find N such that the product of the sums AN = a1 +
· · · + aN and BN = b1 + · · · + bN contains all the terms in that sum. Therefore

∣
∣
∣
∑

aibj

∣
∣
∣≤

∑
|aibj | ≤

N∑

i,j=1

|aibj | =
N∑

i=1

|ai | ·
N∑

j=1

|bj | ≤
∞∑

i=1

|ai | · |
∞∑

j=1

|bj |,

24The term with index k in this series is the term znk
with index nk in the original series. Here the

mapping N 
 k �→ nk ∈N is assumed to be a bijective mapping on the set N.
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from which it follows that the series
∑∞

i,j=1 aibj converges absolutely and that its
sum is uniquely determined independently of the order of the factors. In that case the
sum can be obtained, for example, as the limit of the products of the sums An = a1+
· · ·+ an and Bn = b1+ · · ·+ bn. But AnBn →AB as n→∞, where A=∑∞

n=1 an

and B =∑∞
n=1 bn, which completes the proof of Proposition 5. �

The following example is very important.

Example 8 The series
∑∞

n=0
1
n!a

n and
∑∞

m=0
1
m!b

m converge absolutely. In the
product of these series let us group together all monomials of the form anbm having
the same total degree n+m= k. We then obtain the series

∞∑

k=0

( ∑

n+m=k

1

n!a
n 1

m!b
m

)

.

But

∑

m+n=k

1

n!m!a
nbm = 1

k!
k∑

n=0

k!
n!(k − n)!a

nbk−n = 1

k! (a + b)k,

and therefore we find that

∞∑

n=0

1

n!a
n ·

∞∑

m=0

1

m!b
m =

∞∑

k=0

1

k! (a + b)k. (5.116)

5.5.3 Euler’s Formula and the Connections Among
the Elementary Functions

In Examples 1)–3) we established the absolute convergence in C of the series ob-
tained by extending into the complex domain the Taylor series of the functions ex ,
sinx, and cosx, which are defined on R. For that reason, the following definitions
are natural ones to make for the functions ez, cos z, and sin z in C:

ez = exp z := 1+ 1

1!z+
1

2!z
2 + 1

3!z
3 + · · · , (5.117)

cos z := 1− 1

2!z
2 + 1

4!z
4 − · · · , (5.118)

sin z := z− 1

3!z
3 + 1

5!z
5 − · · · . (5.119)
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Following Euler,25 let us make the substitution z = iy in Eq. (5.117). By suitably
grouping the terms of the partial sums of the resulting series, we find that

1+ 1

1! (iy)+ 1

2! (iy)2 + 1

3! (iy)3 + 1

4! (iy)4 + 1

5! (iy)5 + · · · =

=
(

1− 1

2!y
2 + 1

4!y
4 − · · ·

)

+ i

(
1

1!y −
1

3!y
3 + 1

5!y
5 − · · ·

)

,

that is,

eiy = cosy + i siny. (5.120)

This is the famous Euler formula.
In deriving it we used the fact that i2 = −1, i3 = −i, i4 = 1, i5 = i, and so

forth. The number y in formula (5.120) may be either a real number or an arbitrary
complex number.

It follows from the definitions (5.118) and (5.119) that

cos(−z) = cos z,

sin(−z) = − sin z,

that is, cos z is an even function and sin z is an odd function. Thus

e−iy = cosy − i siny.

Comparing this last equality with formula (5.120), we obtain

cosy = 1

2

(
eiy + e−iy

)
,

siny = 1

2i

(
eiy − e−iy

)
.

Since y is any complex number, it would be better to rewrite these equalities
using notation that leaves no doubt of this fact:

cos z= 1

2

(
eiz + e−iz

)
,

sin z= 1

2i

(
eiz − e−iz

)
.

(5.121)

Thus, if we assume that exp z is defined by relation (5.117), then formulas
(5.121), which are equivalent to the expansions (5.118) and (5.119), like the for-

25L. Euler (1707–1783) – eminent mathematician and specialist in theoretical mechanics, of Swiss
extraction, who lived the majority of his life in St. Petersburg. In the words of Laplace, “Euler is
the common teacher of all mathematicians of the second half of the eighteenth century.”
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mulas

coshy = 1

2

(
ez + e−z

)
,

sinh z= 1

2

(
ez − e−z

)
,

(5.122)

can be taken as the definitions of the corresponding circular and hyperbolic func-
tions. Disregarding all the considerations about trigonometric functions that led us
to this step, which have not been rigorously justified (even though they did lead
us to Euler’s formula), we can now perform a typical mathematical trick and take
formulas (5.121) and (5.122) as definitions and obtain from them in a completely
formal manner all the properties of the circular and trigonometric functions.

For example, the fundamental identities

cos2 z+ sin2 z = 1,

cosh2 z− sinh2 z = 1,

like the parity properties, can be verified immediately.
The deeper properties, such as, for example, the formula for the cosine and sine

of a sum follow from the characteristic property of the exponential function:

exp(z1 + z2)= exp(z1) · exp(z2), (5.123)

which obviously follows from the definition (5.117) and formula (5.116). Let us
derive the formulas for the cosine and sine of a sum:

On the one hand, by Euler’s formula

ei(z1+z2) = cos(z1 + z2)+ i sin(z1 + z2). (5.124)

On the other hand, by the property of the exponential function and Euler’s formula

ei(z1+z2) = eiz1eiz2 = (cos z1 + i sin z1)(cos z2 + i sin z2)=
= (cos z1 cos z2 − sin z1 sin z2)+ i(sin z1 cos z2 + cos z2 sin z2). (5.125)

If z1 and z2 were real numbers, then, equating the real and imaginary parts of the
numbers in formulas (5.124) and (5.125), we would now have obtained the required
formulas. Since we are trying to prove them for any z1, z2 ∈C, we use the fact that
cos z is even and sin z is odd to obtain yet another equality:

e−i(z1+z2) = (cos z1 cos z2 − sin z1 sin z2)− i(sin z1 cos z2 + cos z1 sin z2). (5.126)

Comparing (5.125) and (5.126), we find

cos(z1 + z2) = 1

2

(
ei(z1+z2) + e−i(z1+z2)

)= cos z1 cos z2 − sin z1 sin z2,



274 5 Differential Calculus

sin(z1 + z2) = 1

2i

(
ei(z1+z2) − e−i(z1+z2)

)= sin z1 cos z2 + cos z1 sin z2.

The corresponding formulas for the hyperbolic functions cosh z and sinh z could
be obtained in a completely analogous manner. Incidentally, as can be seen from
formulas (5.121) and (5.122), these functions are connected with cos z and sin z by
the relations

cosh z = cos iz,

sinh z = −i sin iz.

However, to obtain even such geometrically obvious facts as the equality
sinπ = 0 or cos(z+2π)= cos z from the definitions (5.121) and (5.122) is very dif-
ficult. Hence, while striving for precision, one must not forget the problems where
these functions naturally arise. For that reason, we shall not attempt at this point
to overcome the potential difficulties connected with the definitions (5.121) and
(5.122) when describing the properties of the trigonometric functions. We shall re-
turn to these functions after presenting the theory of integration. Our purpose at
present was only to demonstrate the remarkable unity of seemingly completely dif-
ferent functions, which would have been impossible to detect without going into the
domain of complex numbers.

If we take as known that for x ∈R

cos(x + 2π) = cosx, sin(x + 2π) = sinx,

cos 0 = 1, sin 0 = 0,

then from Euler’s formula (5.120) we obtain the relation

eiπ + 1= 0, (5.127)

in which all the most important constants of the different areas of mathematics are
represented: 1 (arithmetic), π (geometry), e (analysis), and i (algebra).

From (5.123) and (5.127), as well as from (5.120), one can see that

exp(z+ i2π)= exp z,

that is, the exponential function is a periodic function on C with the purely imagi-
nary period T = i2π .

Taking account of Euler’s formula, we can now represent the trigonometric no-
tation (5.105) for a complex number in the form

z= reiϕ,

where r is the modulus of z and ϕ its argument.
The formula of de Moivre now becomes very simple:

zn = rneinϕ. (5.128)
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Fig. 5.25

Fig. 5.26

Fig. 5.27

5.5.4 Power Series Representation of a Function. Analyticity

A function w = f (z) of a complex variable z with complex values w, defined on
a set E ⊂ C, is a mapping f : E → C. The graph of such a function is a subset
of C×C= R

2 ×R
2 = R

4, and therefore is not visualizable in the traditional way.
To compensate for this loss to some extent, one usually keeps two copies of the
complex plane C, indicating points of the domain of definition in one and points of
the range of values in the other.

In the examples below the domain E and its image under the corresponding
mapping are indicated.

Example 9 See Fig. 5.25.

Example 10 See Fig. 5.26.

Example 11 See Fig. 5.27.

These correspondences follow from the equalities i = eiπ/2, z = reiϕ , and iz =
rei(r+π/2), that is, a rotation through angle π

2 has occurred.

Example 12 See Fig. 5.28.
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Fig. 5.28

Fig. 5.29

Fig. 5.30

Fig. 5.31

For, if z= reiϕ , then z2 = r2ei2ϕ .

Example 13 See Fig. 5.29.

Example 14 See Fig. 5.30.

It is clear from Examples 12 and 13 that under this function the unit disk maps
into itself, but is covered twice.

Example 15 See Fig. 5.31.

If z= reiϕ , then by (5.128), we have zn = rneinϕ , so that in this case the image
of the disk of radius r is the disk of radius rn, each point of which is the image of n

points in the original disk (located, as it happens, at the vertices of a regular n-gon).
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The only exception is the point w = 0, whose pre-image is the point z= 0. How-
ever, as z→ 0, the function zn is an infinitesimal of order n, and so we say that at
z= 0 the function has a zero of order n. Taking account of this kind of multiplicity,
one can now say that the number of pre-images of every point w under the map-
ping z �→ zn = w is n. In particular, the equation zn = 0 has the n coincident roots
z1 = · · · = zn = 0.

In accordance with the general definition of continuity, a function f (z) of
a complex variable is called continuous at a point z0 ∈ C if for any neighbor-
hood V (f (z0)) of its value f (z0) there exists a neighborhood U(z0) such that
f (z) ∈ V (f (z0)) for all z ∈U(z0). In short,

lim
z→z0

f (z)= f (z0).

The derivative of a function f (z) at a point z0, as for the real-valued case, is
defined as

f ′(z0)= lim
z→z0

f (z)− f (z0)

z− z0
, (5.129)

if this limit exists.
The equality (5.129) is equivalent to

f (z)− f (z0)= f ′(z0)(z− z0)+ o(z− z0) (5.130)

as z→ z0, corresponding to the definition of differentiability of a function at the
point z0.

Since the definition of differentiability in the complex-valued case is the same
as the corresponding definition for real-valued functions and the arithmetic proper-
ties of the fields C and R are the same, one may say that all the general rules for
differentiation hold also in the complex-valued case.

Example 16

(f + g)′(z) = f ′(z)+ g′(z),

(f · g)′(z) = f ′(z)g(z)+ f (z)g′(z),

(g ◦ f )′(z) = g′
(
f (z)

) · f ′(z),

so that if f (z) = z2, then f ′(z) = 1 · z+ z · 1 = 2z, or if f (z) = zn, then f ′(z) =
nzn−1, and if

Pn(z)= c0 + c1(z− z0)+ · · · + cn(z− z0)
n,

then

P ′n(z)= c1 + 2c2(z− z0)+ · · · + ncn(z− z0)
n−1.
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Theorem 1 The sum f (z) =∑∞
n=0 cn(z − z0)

n of a power series is an infinitely
differentiable function inside the entire disk in which convergence occurs. Moreover,

f (k)(z)=
∞∑

n=0

dk

dzk

(
cn(z− z0)

n
)
, k = 0,1, . . . ,

and

cn = 1

n!f
(n)(z0), n= 0,1, . . . .

Proof The expressions for the coefficient follows in an obvious way from the ex-
pressions for f (k)(z) for k = n and z= z0.

As for the formula for f (k)(z), it suffices to verify this formula for k = 1, since
the function f ′(z) will then be the sum of a power series.

Thus, let us verify that the function ϕ(z) =∑∞
n=1 ncn(z− z0)

n−1 is indeed the
derivative of f (z).

We begin by remarking that by the Cauchy–Hadamard formula (5.115) the radius
of convergence of the derived series is the same as the radius of convergence R of
the original power series for f (z).

For simplicity of notation from now on we shall assume that z0 = 0, that
is, f (z) =∑∞

n=0 cnz
n, ϕ(z) =∑∞

n=1 ncnz
n−1 and that these series converge for

|z|< R.
Since a power series converges absolutely on the interior of its disk of conver-

gence, we note (and this is crucial) that the estimate |ncnz
n−1| = n|cn||z|n−1 ≤

n|cn|rn−1 holds for |z| ≤ r < R, and that series
∑∞

n=1 n|cn|rn−1 converges. Hence,
for any ε > 0 there exists an index N such that

∣
∣
∣
∣
∣

∞∑

n=N+1

ncnz
n−1

∣
∣
∣
∣
∣
≤

∞∑

n=N+1

ncnr
n−1 ≤ ε

3

for |z| ≤ r .
Thus at any point of the disk |z| < r the function ϕ(z) is within ε

3 of the N th
partial sum of the series that defines it.

Now let ζ and z be arbitrary points of this disk. The transformation

f (ζ )− f (z)

ζ − z
=

∞∑

n=1

cn

ζ n − zn

ζ − z
=

=
∞∑

n=1

cn

(
ζ n−1 + ζ n−2z+ · · · + ζzn−2 + zn−1)

and the estimate |cn(ζ
n−1 + · · · + zn−1)| ≤ |cn|nrn−1 enable us to conclude, as

above, that the difference quotient we are interested in is equal within ε
3 to the
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partial sum of the series that defines it, provided |ζ | < r and |z| < r . Hence, for
|ζ |< r and |z|< r we have

∣
∣
∣
∣
f (ζ )− f (z)

ζ − z
− ϕ(z)

∣
∣
∣
∣≤

∣
∣
∣
∣
∣

N∑

n=1

cn

ζ n − zn

ζ − z
−

N∑

n=1

ncnz
n−1

∣
∣
∣
∣
∣
+ 2

ε

3
.

If we now fix z and let ζ tend to z, passing to the limit in the finite sum, we see
that the right-hand side of this last inequality will be less than ε for ζ sufficiently
close to z, and hence the left-hand side will be also.

Thus, for any point z in the disk |z|< r < R, we have verified that f ′(z)= ϕ(z).
Since r is arbitrary, this relation holds for any point of the disk |z|< R. �

This theorem enables us to specify the class of functions whose Taylor series
converge to them.

A function is analytic at a point z0 ∈C if it can be represented in a neighborhood
of the point in the following (“analytic”) form:

f (z)=
∞∑

n=0

cn(z− z0)
n,

that is, as the sum of a power series in z− z0.
It is not difficult to verify (see Problem 7 below) that the sum of a power series

is analytic at any interior point of the disk of convergence of the series.
Taking account of the definition of analyticity, we deduce the following corollary

from the definition of analyticity.

Corollary a) If a function is analytic at a point, then it is infinitely differentiable at
that point, and its Taylor series converges to it in a neighborhood of the point.

b) The Taylor series of a function defined in a neighborhood of a point and in-
finitely differentiable at that point converges to the function in some neighborhood
of the point if and only if the function is analytic.

In the theory of functions of a complex variable one can prove a remarkable fact
that has no analogue in the theory of functions of a real variable. It turns out that if a
function f (z) is differentiable in a neighborhood of a point z0 ∈C, then it is analytic
at that point. This is certainly an amazing fact, since it then follows from the theorem
just proved that if a function f (z) has one derivative f ′(z) in a neighborhood of a
point, it also has derivatives of all orders in that neighborhood.

At first sight this result is just as surprising as the fact that by adjoining to R a
root i of the one particular equation z2 = −1 we obtain a field C in which every
algebraic polynomial P(z) has a root. We intend to make use of the fact that an
algebraic equation P(z)= 0 has a solution in C, and for that reason we shall prove it
as a good illustration of the elementary concepts of complex numbers and functions
of a complex variable introduced in this section.
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Fig. 5.32

5.5.5 Algebraic Closedness of the Field C of Complex Numbers

If we prove that every polynomial P(z)= c0+c1z+· · ·+cnz
n, n≥ 1, with complex

coefficients has a root in C, then there will be no need to enlarge the field C because
some algebraic equation is not solvable in C. In this sense the assertion that every
polynomial P(z) has a root establishes that the field C is algebraically closed.

To obtain a clear idea of the reason why every polynomial has a root in C while
there can fail to be a root in R, we use the geometric interpretation of complex
numbers and functions of a complex variable.

We remark that

P(z)= zn

(
c0

zn
+ c1

zn−1
+ · · · + cn−1

z
+ cn

)

,

so that P(z) = cnz
n + o(zn) as |z| →∞. Since we are interested in finding a root

of the equation P(z)= 0, dividing both sides of the equation by cn, we may assume
that the leading coefficient cn of P(z) equals 1, and hence

P(z)= zn + o
(
zn
)

as |z| →∞. (5.131)

If we recall (Example 15) that the circle of radius r maps to the circle of radius rn

with center at 0 under the mapping z �→ zn, we see that for sufficiently large values
of r the image of the circle |z| = r under the mapping w = P(z) will be, with small
relative error, the circle |w| = rn in the w-plane (Fig. 5.32). What is important is
that, in any case, it will be a curve that encloses the point w = 0.

If the disk |z| ≤ r is regarded as a film stretched over the circle |z| = r , this
film is mapped into a film stretched over the image of that disk under the mapping
w = P(z). But, since the latter encloses the point w = 0, some point of that film
must coincide with w = 0, and hence there is a point z0 in the disk |z|< r that maps
to w = 0 under the mapping w = P(z), that is, P(z0)= 0.

This intuitive reasoning leads to a number of important and useful concepts of
topology (the index of a path with respect to a point, and the degree of a mapping),
by means of which it can be made into a complete proof that is valid not only
for polynomials, as one can see. However, these considerations would unfortunately
distract us from the main subject we are now studying. For that reason, we shall give
another proof that is more in the mainstream of the ideas we have already mastered.
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Theorem 2 Every polynomial

P(z)= c0 + c1z+ · · · + cnz
n

of degree n≥ 1 with complex coefficients has a root in C.

Proof Without loss of generality, we may obviously assume that cn = 1.
Let μ= infz∈C |P(z)|. Since P(z)= zn(1+ cn−1

z
+ · · · + c0

zn ), we have

∣
∣P(z)

∣
∣≥ |z|n

(

1− |cn−1|
|z| − · · · − |c0|

|z|n
)

,

and obviously |P(z)| > max{1,2μ} for |z| > R if R is sufficiently large. Conse-
quently, the points of a sequence {zk} at which 0 < |P(zk)| − μ < 1

k
lie inside the

disk |z| ≤R.
We shall verify that there is a point z0 in C (in fact, in this disk) at which

|P(z0)| = μ. To do this, we remark that if zk = xk + iyk , then max{|xk|, |yk|} ≤
|zk| ≤ R and hence the sequences of real numbers {xk} and {yk} are bounded.
Choosing first a convergent subsequence {xkl

} from {xk} and then a convergent
subsequence {yklm

} from {ykl
}, we obtain a subsequence zklm

= xklm
+ iyklm

of
the sequence {zk} that has a limit limm→∞ zklm

= limm→∞ xklm
+ i limm→∞ yklm

=
x0 + iy0 = z0, and since |zklm

| → |z0| as m→∞, it follows that |z0| ≤ R. So as to
avoid cumbersome notation, and not have to pass to subsequences, we shall assume
that the sequence {zk} itself converges. It follows from the continuity of P(z) at
z0 ∈C that limk→∞P(zk)= P(z0). But then26 |P(z0)| = limk→∞ |P(zk)| = μ.

We shall now assume that μ > 0, and use this assumption to derive a contra-
diction. If P(z0) �= 0, consider the polynomial Q(z) = P(z+z0)

P (z0)
. By construction

Q(0)= 1 and |Q(z)| = |P(z+z0)||P(z0)| ≥ 1.
Since Q(0)= 1, the polynomial Q(z) has the form

Q(z)= 1+ qkz
k + qk+1z

k+1 + · · · + qnz
n,

where |qk| �= 0 and 1 ≤ k ≤ n. If qk = ρeiψ , then for ϕ = π−ψ
k

we shall have qk ·
(eiϕ)k = ρeiψei(π−ψ) = ρeiπ =−ρ =−|qk|. Then, for z= reiϕ we obtain

∣
∣Q
(
reiϕ

)∣
∣ ≤ ∣

∣1+ qkz
k
∣
∣+ (∣

∣qk+1z
k+1

∣
∣+ · · · + ∣

∣qnz
n
∣
∣
)=

= ∣
∣1− rk|qk|

∣
∣+ rk+1(|qk+1| + · · · + |qn|rn−k−1)=

= 1− rk
(|qk| − r|qk+1| − · · · − rn−k|qn|

)
< 1,

26Observe that on the one hand we have shown that from every sequence of complex numbers
whose moduli are bounded one can extract a convergent subsequence, while on the other hand we
have given another possible proof of the theorem that a continuous function on a closed interval
has a minimum, as was done here for the disk |z| ≤R.
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if r is sufficiently close to 0. But |Q(z)| ≥ 1 for z ∈ C. This contradiction shows
that P(z0)= 0. �

Remark 1 The first proof of the theorem that every algebraic equation with complex
coefficients has a solution in C (which is traditionally known as the fundamental
theorem of algebra) was given by Gauss, who in general breathed real life into the
so-called “imaginary” numbers by finding a variety of profound applications for
them.

Remark 2 A polynomial with real coefficients P(z)= a0+· · ·+ anz
n, as we know,

does not always have real roots. However, compared with an arbitrary polynomial
having complex coefficients, it does have the unusual property that if P(z0) = 0,
then P(z0)= 0 also. Indeed, it follows from the definition of the complex conjugate
and the rules for adding complex numbers that (z1 + z0)= z1 + z2. It follows from
the trigonometric form of writing a complex number and the rules for multiplying
complex numbers that

(z1 · z2) =
(
r1eiϕ1 · r2eiϕ2

)= r1r2ei(ϕ1+ϕ2) =
= r1r2e−i(ϕ1+ϕ2) = r1e−iϕ1 · r2e−iϕ2 = z1 · z2.

Thus,

P(z0)= a0 + · · · + anz
n
0 = a0 + · · · + anz

n
0 = a0 + · · · + anz

n
0 = P(z0),

and if P(z0)= 0, then P(z0)= P(z0)= 0.

Corollary 1 Every polynomial P(z)= c0+· · ·+cnz
n of degree n≥ 1 with complex

coefficients admits a representation in the form

P(z)= cn(z− z1) · · · (z− zn), (5.132)

where z1, . . . , zn ∈ C (and the numbers z1, . . . , zn are not necessarily all distinct).
This representation is unique up to the order of the factors.

Proof From the long division algorithm for dividing one polynomial P(z) by an-
other polynomial Q(z) of lower degree, we find that P(z)= q(z)Q(z)+r(z), where
q(z) and r(z) are polynomials, the degree of r(z) being less than the degree m of
Q(z). Thus if m= 1, then r(z)= r is simply a constant.

Let z1 be a root of the polynomial P(z). Then P(z) = q(z)(z − z1) + r , and
since P(z1) = r , it follows that r = 0. Hence if z1 is a root of P(z), we have the
representation P(z)= (z− z1)q(z). The degree of the polynomial q(z) is n−1, and
we can repeat the reasoning with q(z) if n−1≥ 1. By induction we find that P(z)=
c(z− z1) · · · (z− zn). Since we must have czn = cnz

n, it follows that c= cn. �

Corollary 2 Every polynomial P(z)= a0+· · ·+ anz
n with real coefficients can be

expanded as a product of linear and quadratic polynomials with real coefficients.
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Proof This follows from Corollary 1 and Remark 2, by virtue of which for any
root zk of P(z) the number z̄k is also a root. Then, carrying out the multiplication
(z − zk)(z − z̄k) in the product (5.132), we obtain the quadratic polynomial z2 −
(zk + z̄k)z+ |zk|2 with real coefficients. The number cn, which equals an, is a real
number in this case and can be moved inside one of the sets of parentheses without
changing the degree of that factor. �

By multiplying out all the identical factors in (5.132), we can rewrite that prod-
uct:

P(z)= cn(z− z1)
k1 · · · (z− zp)kρ . (5.133)

The number kj is called the multiplicity of the root zj .
Since P(z)= (z− zj )

kj Q(z), where Q(zj ) �= 0, it follows that

P ′(z)= kj (z− zj )
kj−1Q(z)+ (z− zj )

kj Q′(z)= (z− zj )
kj−1R(z),

where R(zj )= kjQ(zj ) �= 0. We thus arrive at the following conclusion.

Corollary 3 Every root zj of multiplicity kj > 1 of a polynomial P(z) is a root of
multiplicity kj − 1 of the derivative P ′(z).

Not yet being in a position to find the roots of the polynomial P(z), we can use
this last proposition and the representation (5.133) to find a polynomial p(z)= (z−
z1) · · · (z− zp) whose roots are the same as those of P(z) but are of multiplicity 1.

Indeed, by the Euclidean algorithm, we first find the greatest common divisor
q(z) of P(z) and P ′(z). By Corollary 3, the expansion (5.133), and Theorem 2,
the polynomial q(z) is equal, apart from a constant factor, to (z− z1)

k1−1 · · · (z−
zp)kp−1. Hence by dividing P(z) by q(z) we obtain, apart from a constant factor
that can be removed by dividing out the coefficient of zp , a polynomial p(z) =
(z− z1) · · · (z− zp).

Now consider the ratio R(x)= P(x)
Q(x)

of two polynomials, where Q(x) �≡ const. If
the degree of P(x) is larger or equal than that of Q(x), we apply the division algo-
rithm and represent P(x) as p(x)Q(x)+ r(x), where p(x) and r(x) are polynomi-
als, the degree of r(x) being less than that of Q(x). Thus we obtain a representation
of the form R(x)= p(x)+ r(x)

Q(x)
, where the fraction r(x)

Q(x)
is now a proper fraction

in the sense that the degree of r(x) is less than that of Q(x).
The corollary we are about to state involves the representation of a proper fraction

as a sum of fractions called partial fractions.

Corollary 4 a) If Q(z) = (z − z1)
k1 · · · (z − zp)kp and P(z)

Q(z)
is a proper fraction,

there exists a unique representation of the fraction P(z)
Q(z)

in the form

P(z)

Q(z)
=

p∑

j=1

( kj∑

k=1

ajk

(z− zj )k

)

. (5.134)
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b) If P(x) and Q(x) are polynomials with real coefficients and

Q(x)= (x − x1)
k1 · · · (x − xl)

kl
(
x2 + p1x + q1

)m1 · · · (x2 + pnx + qn

)mn,

there exists a unique representation of the proper fraction P(x)
Q(x)

in the form

P(x)

Q(x)
=

l∑

j=1

( kj∑

k=1

ajk

(x − xj )k

)

+
n∑

j=1

( mj∑

k=1

bjkx + cjk

(x2 + pjx + qj )k

)

, (5.135)

where ajk, bjk , and cjk are real numbers.

We remark that there is a universal method of finding the expansions (5.134) and
(5.135) known as the method of undetermined coefficients, although this method is
not always the shortest way. It consists of putting all the terms on the right-hand side
of (5.134) or (5.135) over a common denominator, then equating the coefficients of
the resulting numerator to the corresponding coefficients of P(x). The system of
linear equations that results always has a unique solution because of Corollary 4.

Since we shall as a rule be interested in the expansion of a specific fraction, which
we shall obtain by the method of undetermined coefficients, we require nothing
more from Corollary 4 than the assurance that it is always possible to do so. For that
reason, we shall not bother to go through the proof. It is usually couched in algebraic
language in a course of modern algebra and in analytic language in a course in the
theory of functions of a complex variable.

Let us consider a specially chosen example to illustrate what has just been ex-
plained.

Example 17 Let

P(x) = 2x6 + 3x5 + 6x4 + 6x3 + 10x2 + 3x + 2,

Q(x) = x7 + 3x6 + 5x5 + 7x4 + 7x3 + 5x2 + 3x + 1.

Find the partial-fraction expansion (5.135) of the fraction P(x)
Q(x)

.
First of all, the problem is complicated by the fact that we do not know the

factors of the polynomial Q(x). Let us try to simplify the situation by eliminating
any multiple roots there may be of Q(x). We find

Q′(x)= 7x6 + 18x5 + 25x4 + 28x3 + 21x2 + 10x + 3.

By a rather fatiguing, but feasible computation using the Euclidean algorithm,
we find the greatest common divisor

d(x)= x4 + 2x3 + 2x2 + 2x + 1

of Q(x) and Q′(x). We have written the greatest common divisor with leading co-
efficient 1.
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Dividing Q(x) by d(x), we obtain the polynomial

q(x)= x3 + x2 + x + 1,

which has the same roots as Q(x), but each with multiplicity 1. The root −1 is
easily guessed. After q(x) is divided by x + 1, we find a quotient of x2 + 1. Thus

q(x)= (x + 1)
(
x2 + 1

)
,

and then by successively dividing d(x) by x2+1 and x+1, we find the factorization
of d(x);

d(x)= (x + 1)2(x2 + 1
)
,

and then the factorization

Q(x)= (x + 1)3(x2 + 1
)2

.

Thus, by Corollary 4b, we are seeking an expansion of the fraction P(x)
Q(x)

in the form

P(x)

Q(x)
= a11

x + 1
+ a12

(x + 1)2
+ a13

(x + 1)3
+ b11x + c11

x2 + 1
+ b12x + c12

(x2 + 1)2
.

Putting the right-hand side over a common denominator and equating the coeffi-
cients of the resulting numerator to those of P(x), we arrive at a system of seven
equations in seven unknowns, solving which, we finally obtain

P(x)

Q(x)
= 1

x + 1
− 2

(x + 1)2
+ 1

(x + 1)3
+ x − 1

x2 + 1
+ x + 1

(x2 + 1)2
.

5.5.6 Problems and Exercises

1. Using the geometric interpretation of complex numbers

a) explain the inequalities |z1 + z2| ≤ |z1| + |z2| and |z1| + · · · + |zn| ≤ |z1| +
· · · + |zn|;

b) exhibit the locus of points in the plane C satisfying the relation |z − 1| +
|z+ 1| ≤ 3;

c) describe all the nth roots of unity and find their sum;
d) explain the action of the transformation of the plane C defined by the formula

z �→ z̄.

2. Find the following sums:

a) 1+ q + · · · + qn;
b) 1+ q + · · · + qn + · · · for |q|< 1;
c) 1+ eiϕ + · · · + einϕ ;
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d) 1+ reiϕ + · · · + rneinϕ ;
e) 1+ reiϕ + · · · + rneinϕ + · · · for |r|< 1;
f) 1+ r cosϕ + · · · + rn cosnϕ;
g) 1+ r cosϕ + · · · + rn cosnϕ + · · · for |r|< 1;
h) 1+ r sinϕ + · · · + rn sinnϕ;
i) 1+ r sinϕ + · · · + rn sinnϕ + · · · for |r|< 1.

3. Find the modulus and argument of the complex number limn→∞(1 + z
n
)n and

verify that this number is ez.
4. a) Show that the equation ew = z in w has the solution w = ln |z| + i Arg z. It is
natural to regard w as the natural logarithm of z. Thus w = Ln z is not a functional
relation, since Arg z is multi-valued.

b) Find Ln 1 and Ln i.
c) Set zα = eα Ln z. Find 1π and ii .
d) Using the representation w = sin z= 1

2i
(eiz − e−iz), obtain an expression for

z= arcsinw.
e) Are there points in C where | sin z| = 2?

5. a) Investigate whether the function f (z) = 1
1+z2 is continuous at all points of

the plane C.
b) Expand the function 1

1+z2 in a power series around z0 = 0 and find its radius
of convergence.

c) Solve parts a) and b) for the function 1
1+λ2z2 , where λ ∈R is a parameter.

Can you make a conjecture as to how the radius of convergence is determined by
the relative location of certain points in the plane C? Could this relation have been
understood on the basis of the real line alone, that is, by expanding the function

1
1+λ2x2 , where λ ∈R and x ∈R?

6. a) Investigate whether the Cauchy function

f (z)=
{

e−1/z2
, z �= 0,

0, z= 0

is continuous at z= 0.
b) Is the restriction f |R of the function f in a) to the real line continuous?
c) Does the Taylor series of the function f in a) exist at the point z0 = 0?
d) Are there functions analytic at a point z0 ∈ C whose Taylor series converge

only at the point z0?
e) Invent a power series

∑∞
n=0 cn(z− z0)

n that converges only at the one point
z0.

7. a) Making the formal substitution z−a = (z−z0)+ (z0−a) in the power series∑∞
n=0 An(z− a)n and gathering like terms, obtain a series

∑∞
n=0 Cn(z− z0)

n and
expressions for its coefficients in terms of Ak and (z0 − a)k , k = 0,1, . . . .

b) Verify that if the original series converges in the disk |z− a|< R and |z0 −
a| = r < R, then the series defining Cn, n= 0,1, . . . , converge absolutely and the
series

∑∞
n=0 Cn(z− z0)

n converges for |z− z0|< R − r .
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Fig. 5.33

c) Show that if f (z)=∑∞
n=0 An(z− a)n in the disk |z− a|< R and |z0− a|<

R, then in the disk |z− z0|< R− |z0 − a| the function f admits the representation
f (z)=∑∞

n=0 Cn(z− z0)
n.

8. Verify that

a) as the point z ∈ C traverses the circle |z| = r > 1 the point w = z + z−1

traverses an ellipse with center at zero and foci at ±2;
b) when a complex number is squared (more precisely, under the mapping w �→

w2), such an ellipse maps to an ellipse with a focus at 0, traversed twice;
c) under squaring of complex numbers, any ellipse with center at zero maps to

an ellipse with a focus at 0.

5.6 Some Examples of the Application of Differential Calculus
in Problems of Natural Science

In this section we shall study some problems from natural science that are very dif-
ferent from one another in their statement, but which, as will be seen, have closely
related mathematical models. That model is none other than a very simple differ-
ential equation for the function we are interested in. From the study of one such
example – the two-body problem – we really began the construction of differential
calculus. The study of the system of equations we obtained for this problem was
inaccessible at the time. Here we shall consider some problems that can be solved
completely at our present level of knowledge. In addition to the pleasure of seeing
mathematical machinery in action in a specific case, from the series of examples
in this section we shall in particular acquire additional confidence in both the nat-
uralness with which the exponential function expx arises and in the usefulness of
extending it to the complex domain.

5.6.1 Motion of a Body of Variable Mass

Consider a rocket moving in a straight line in outer space, far from gravitating bodies
(Fig. 5.33).

Let M(t) be the mass of the rocket (including fuel) at time t , V (t) its velocity
at time t , and ω the speed (relative to the rocket) with which fuel flows out of the
nozzle of the rocket as it burns.

We wish to establish the connection among these quantities.
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Under these assumptions, we can regard the rocket with fuel as a closed system
whose momentum (quantity of motion) remains constant over time.

At time t the momentum of the system is M(t)V (t).
At time t + h the momentum of the rocket with the remaining fuel is M(t +

h)V (f + h) and the momentum ΔI of the mass of fuel ejected over that time
|ΔM| = |M(t + h)−M(t)| = −(M(t + h)−M(t)) lies between the bounds

(
V (t)−ω

)|ΔM|< ΔI <
(
V (t + h)−ω

)|ΔM|,

that is, ΔI = (V (t)− ω)|ΔM| + α(h)|ΔM , and it follows from the continuity of
V (t) that α(h)→ 0 as h→ 0.

Equating the momenta of the system at times t and t + h, we have

M(t)V (t)=M(t + h)V (t + h)+ (
V (t)−ω

)|ΔM| + α(h)|ΔM|,

or, after substituting |ΔM| = −(M(t + h)−M(t)) and simplifying,

M(t + h)
(
V (t + h)− V (t)

)=
=−ω

(
M(t + h)−M(t)

)+ α(h)
(
M(t + h)−M(t)

)
.

Dividing this last equation by h and passing to the limit as h→ 0, we obtain

M(t)V ′(t)=−ωM ′(t). (5.136)

This is the relation we were seeking between the functions we were interested in,
V (t), M(t), and their derivatives.

We now must find the relation between the functions V (t) and M(t) themselves,
using the relation between their derivatives. In general a problem of this type is more
difficult than the problem of finding the relations between the derivatives knowing
the relation between the functions. However, in the present case, this problem has a
completely elementary solution.

Indeed, after dividing Eq. (5.136) by M(t), we can rewrite it in the form

V ′(t)= (−ω lnM)′(t). (5.137)

But if the derivatives of two functions are equal on an interval, then the functions
themselves differ by at most a constant on that interval.

Thus it follows from (5.137) that

V (t)=−ω lnM(t)+ c. (5.138)

If it is known, for example, that V (0)= V0, this initial condition determines the
constant c completely. Indeed, from (5.138) we find

c= V0 +ω lnM(0),
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and we then find the formula we were seeking27

V (t)= V0 +ω ln
M(0)

M(t)
. (5.139)

It is useful to remark that if mR is the mass of the body of the rocket and mF is
the mass of the fuel and V is the terminal velocity achieved by the rocket when all
the fuel is expended, substituting M(0)=mR +mF and M(t)=mR, we find

V = V0 +ω ln

(

1+ mF

mR

)

.

This last formula shows very clearly that the terminal velocity is affected not so
much by the ratio mF/mR inside the logarithm as by the outflow speed ω, which
depends on the type of fuel used. It follows in particular from this formula that if
V0 = 0, then in order to impart a velocity V to a rocket whose own mass is mR one
must have the following initial supply of fuel:

mF =mR
(
eV/ω − 1

)
.

5.6.2 The Barometric Formula

This is the name given to the formula that exhibits the dependence of atmospheric
pressure on elevation above sea level.

Let p(h) be the pressure at elevation h. Since p(h) is the weight of the column of
air above an area of 1 cm2 at elevation h, it follows that p(h+Δ) differs from p(h)

by the weight of the portion of the gas lying in the parallelepiped whose base is the
original area of 1 cm2 and the same area at elevation h+Δ. Let ρ(h) be the density
of air at elevation h. Since ρ(h) depends continuously on h, one may assume that
the mass of this portion of air is calculated from the formula

ρ(ξ) g/cm3 · 1 cm2 ·Δ cm= p(ξ)Δg,

where ξ is some height between h and h+Δ. Hence the weight of that mass28 is
g · ρ(ξ)Δ.

Thus,

p(h+Δ)− p(h)=−gρ(ξ)Δ.

27This formula is sometimes connected with the name of K.E. Tsiolkovskii (1857–1935), a Russian
scientist and the founder of the theory of space flight. But it seems to have been first obtained by
the Russian specialist in theoretical mechanics I.V. Meshcherskii (1859–1935) in an 1897 paper
devoted to the dynamics of a point of variable mass.
28Within the region where the atmosphere is noticeable, g may be regarded as constant.
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After dividing this equality by Δ and passing to the limit as Δ→ 0, taking ac-
count of the relation ξ → h, we obtain

p′(h)=−gρ(h). (5.140)

Thus the rate of variation in atmospheric pressure has turned out to be propor-
tional to the density of the air at the corresponding elevation.

To obtain an equation for the function p(h), we eliminate the function ρ(h) from
(5.140). By Clapeyron’s law29 (the ideal gas law) the pressure p, molar volume V ,
and temperature T of the gas (on the Kelvin30 scale) are connected by the relation

pV

T
=R, (5.141)

where R is the so-called universal gas constant. If M is the mass of one mole of air
and V its volume, then ρ = M

V
, so that from (5.141) we find

p = 1

V
·R · T = M

V
· R

M
· T = ρ · R

M
T.

Setting λ= R
M

T , we thus have

p = λ(T )ρ. (5.142)

If we now assume that the temperature of the layer of air we are describing is con-
stant, we finally obtain from (5.140) and (5.142)

p′(h)=−g

λ
p(h). (5.143)

This differential equation can be rewritten as

p′(h)

p(h)
=−g

λ

or

(lnp)′(h)=
(

−g

λ
h

)′
,

from which we derive

lnp(h)=−g

λ
h+ c,

or

p(h)= ec · e−(g/λ)h.

29B.P.E. Clapeyron (1799–1864) – French physicist who studied thermodynamics.
30W. Thomson (Lord Kelvin) (1824–1907) – famous British physicist.
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The factor ec can be determined from the known initial condition p(0) = p0,
from which it follows that ec = p0.

Thus, we have found the following dependence of pressure on elevation:

p = p0e−(g/λ)h. (5.144)

For the air at sea level (at zero altitude) and at zero temperature (273 K= 0 ◦C),
by the above formula λ = RT

M
, it would be possible to obtain for λ the value

7.8× 104 (m/s)2. We set g = 10 m/s2. The formula (5.144) acquires a completely
finished form after these numerical values are substituted. In particular, for such val-
ues λ and g, the formula (5.144) shows that the pressure drops by a factor of e (≈ 3)
at the height h= λ

g
= 7.8× 103 m= 7.8 km. It will increase by the same amount,

if one descends to a mine at a depth of order 7.8 km.31

5.6.3 Radioactive Decay, Chain Reactions, and Nuclear Reactors

It is known that the nuclei of heavy elements are subject to sporadic (spontaneous)
decay. This phenomenon is called natural radioactivity.

The main statistical law of radioactivity (which is consequently valid for amounts
and concentrations of a substance that are not too small) is that the number of decay
events over a small interval of time h starting at time t is proportional to h and to the
number N(t) of atoms of the substance that have not decayed up to time t , that is,

N(t + h)−N(t)≈−λN(t)h,

where λ > 0 is a numerical coefficient that is characteristic of the chemical element.
Thus the function N(t) satisfies the now familiar differential equation

N ′(t)=−λN(t), (5.145)

from which it follows that

N(t)=N0e−λt ,

where N0 =N(0) is the initial number of atoms of the substance.
The time T required for half of the initial number of atoms to decay is called

the half-life of the substance. The quantity T can thus be found from the equa-
tion e−λT = 1

2 , that is, T = ln 2
λ
≈ 0.69

λ
. For example, for polonium-210 (Po210) the

half-life T is approximately 138 days, for radium-226 (Ra226), T ≈ 1600 years,
for uranium-235 (U235), T ≈ 7.1× 108 years, and for its isotope U238, T ≈ 4.5×
109 years.

31It should be noted that this barometric formula corresponds only approximately to the real dis-
tribution of pressure and density of the air in Earth’s atmosphere. Some corrections and additions
are given in Problem 2 at the end of this section.
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A nuclear reaction is an interaction of nuclei or of a nucleus with elementary
particles resulting in the appearance of a nucleus of a new type. This may be nu-
clear fusion, in which the coalescence of the nuclei of lighter elements leads to the
formation of nuclei of a heavier element (for example, two nuclei of heavy hydrogen
– deuterium – yield a helium nucleus along with a release of energy); or it may be
the decay of a nucleus and the formation of one or more nuclei of lighter elements.
In particular, such decay occurs in approximately half of the cases when a neutron
collides with a U235 nucleus. The breakup of the uranium nucleus leads to the for-
mation of 2 or 3 new neutrons, which may then participate in further interactions
with nuclei, causing them to split and thereby leading to further multiplication of
the number of neutrons. A nuclear reaction of this type is called a chain reaction.

We shall describe a theoretical mathematical model of a chain reaction in a ra-
dioactive element and obtain the law of variation in the number N(t) of neutrons as
a function of time.

We take the substance to have the shape of a sphere of radius r . If r is not too
small, on the one hand new neutrons will be generated over the time interval h

measured from some time t in a number proportional to h and N(t), while on the
other hand some of the neutrons will be lost, having moved outside the sphere.

If v is the velocity of a neutron, then the only ones that can leave the sphere in
time h are those lying within vh of its boundary, and of those only the ones whose
direction of motion is approximately along a radius. Assuming that those neutrons
constitute a fixed proportion of the ones lying in this zone, and that neutrons are
distributed approximately uniformly throughout the sphere, one can say that the
number of neutrons lost over the time interval h is proportional to N(t) and the
ratio of the volume of this boundary layer to the volume of the sphere.

What has just been said leads to the equality

N(t + h)−N(t)≈ αN(t)h− β

r
N(t)h (5.146)

(since the volume of the boundary layer is approximately 4πr2vh, and the volume
of the sphere is 4

3πr3). Here the coefficients α and β depend only on the particular
radioactive substance.

After dividing by h and passing to the limit in (5.146) as h→ 0, we obtain

N ′(t)=
(

α − β

r

)

N(t), (5.147)

from which

N(t)=N0 exp

{(

α− β

r

)

t

}

.

It can be seen from this formula that when (α − β
r
) > 0, the number of neutrons

will increase exponentially with time. The nature of this increase, independently of
the initial condition N0, is such that practically total decay of the substance occurs
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over a very short time interval, releasing a colossal amount of energy – that is an
explosion.

If (α − β
r
) < 0, the reaction ceases very quickly since more neutrons are being

lost than are being generated.
If the boundary condition between the two conditions just considered holds, that

is, α − β
r
= 0, an equilibrium occurs between the generation of neutrons and their

exit from the reaction, as a result of which the number of neutrons remains approx-
imately constant.

The value of r at which α − β
r
= 0 is called the critical radius, and the mass of

the substance in a sphere of that volume is called the critical mass of the substance.
For U235 the critical radius is approximately 8.5 cm, and the critical mass ap-

proximately 50 kg.
In nuclear reactors, where steam is produced by a chain reaction in a radioactive

substance there is an artificial source of neutrons, providing the fissionable mat-
ter with a certain number n of neutrons per unit time. Thus for an atomic reactor
Eq. (5.147) is slightly altered:

N ′(t)=
(

α − β

r

)

N(t)+ n. (5.148)

This equation can be solved by the same device as Eq. (5.147), since
N ′(t)

(α−β/r)N(t)+n
is the derivative of the function 1

α−β/r
ln[(α − β

r
)N(t) + n] if

α − β
r
�= 0. Consequently the solution of Eq. (5.148) has the form

N(t)=
{

N0e(α−β/r)t − n
α−β/r

[1− e(α−β/r)t ] if α − β
r
�= 0,

N0 + nt if α − β
f
= 0.

It can be seen from this solution that if α− β
r

> 0 (supercritical mass), an explo-

sion occurs. If the mass is pre-critical, however, that is, α − β
r

< 0, we shall very
soon have

N(t)≈ n
β
r
− α

.

Thus, if the mass of radioactive substance is maintained in a pre-critical state but
close to critical, then independently of the power of the additional neutron source,
that is, independently of n, one can obtain higher values of N(t) and consequently
greater power from the reactor. Keeping the process in the pre-critical zone is a
delicate matter and is achieved by a rather complicated automatic control system.

5.6.4 Falling Bodies in the Atmosphere

We are now interested in the velocity v(t) of a body falling to Earth under the
influence of gravity.
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If there were no air resistance, the relation

v̇(t)= g, (5.149)

would hold for fall from relatively low altitudes. This law follows from Newton’s
second law ma = F and the law of universal gravitation, by virtue of which for
h$R (where R is the radius of the Earth)

F(t)=G
Mm

(R + h(t))2
≈G

Mm

R2
= gm.

A body moving in the atmosphere experiences a resistance that depends on the
velocity of the motion, and as a result, the velocity of free fall for a heavy body does
not grow indefinitely, but stabilizes at a certain level. For instance, during skydiving
or parachuting, if the parachute of a skydiver does not open for a long time, the speed
of a midsized skydiver in the lower strata of the atmosphere stabilizes at 50–60 m/s.

We shall assume that under these conditions (that is, for this body and a speed
range from 0 to 60), the resistance force is proportional to the velocity of the body
moving in the air. By equating the acting forces on the body, we arrive at the fol-
lowing equation, which must satisfy the velocity of the free-falling body in the at-
mosphere:

mv̇(t)=mg − αv. (5.150)

Dividing this equation by m and denoting α
m

by β , we finally obtain

v̇(t)=−βv+ g. (5.148′)

We have now arrived at an equation that differs from Eq. (5.148) only in notation.
We remark that if we set −βv(t)+ g = f (t), then, since f ′(t)=−βv′(t), one can
obtain from (5.148′) the equivalent equation

f ′(t)=−βf (t),

which is the same as Eq. (5.143) or (5.145) except for notation. Thus we have once
again arrived at an equation whose solution is the exponential function

f (t)= f (0)e−βt .

It follows from this that the solution of Eq. (5.148′) has the form

v(t)= 1

β
g +

(

v0 − 1

β

)

e−βt ,

and the solution of the basic equation (5.150) has the form

v(t)= m

α
g+

(

v0 − m

α
g

)

e−(α/m)t , (5.151)

where v0 = v(0) is the initial vertical velocity of the body.
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It can be seen from (5.151) that for α > 0 a body falling in the atmosphere reaches
a steady state at which v(t) ≈ m

α
g. Thus, in contrast to fall in airless space, the

velocity of descent in the atmosphere depends not only on the shape of the body, but
also on its mass. As α→ 0, the right-hand side of (5.151) tends to v0 + gt , that is,
to the solution of Eq. (5.149) obtained from (5.150) when α = 0.

Using formula (5.151), one can get an idea of how quickly the limiting velocity
of fall in the atmosphere is reached.

For example, if a parachute is designed to that a person of average size will fall
with a velocity of the order 10 meters per second when the parachute is open, then,
if the parachute opens after a free fall during which a velocity of approximately
50 meters per second has been attained, the person will have a velocity of about
12 meters per second three seconds after the parachute opens.

Indeed, from the data just given and relation (5.151) we find m
α
g ≈ 10, m

α
≈ 1,

v0 = 50 m/s, so that relation (5.151) assumes the form

v(t)= 10+ 40e−t .

Since e3 ≈ 20, for t = 3, we obtain v ≈ 12 m/s.
Note that at the opening of the parachute, which is significantly bigger on the

front surface compared with the body of the skydiver, the force of resistance is
already proportional to the square of the speed. This means that after the opening of
the parachute, the slowdown will be quicker than that obtained from the calculation
with formula (5.151), corresponding to Eq. (5.150).

It is useful to rewrite and solve the equation of type (5.150) with this new assump-
tion of the quadratic dependence of the resistance force on the speed of movement
and to make the necessary correction to the result obtained in the first calculation.32

5.6.5 The Number e and the Function expx Revisited

By examples we have verified (see also Problems 3 and 4 at the end of this section)
that a number of natural phenomena can be described from the mathematical point
of view by the same differential equation, namely

f ′(x)= αf (x), (5.152)

32It should be noted that here, like in many others studied examples of problems of natural science,
we illustrate the calculation method. In the calculation are included some original data (empirical
constants, various assumptions) on which depends the level of concordance of the calculations with
the reality. This data are not given by mathematics but by a corresponding science. For example,
in order to obtain data on the aerodynamic properties of the bodies, in particular the nature of the
change in the resistance force occurring during their movement in the atmosphere, it is necessary
often to perform a long series of experiments in wind tunnels. Mathematics helps to calculate one
or another mathematical model of the phenomenon, it often provides a ready calculation procedure,
but the correctness of the initial data and the adequacy of the model is the work of another relevant
science (biology, chemistry, physics, . . . ).
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whose solution f (x) is uniquely determined when the “initial condition” f (0) is
specified. Then

f (x)= f (0)eαx.

We introduced the number e and the function ex = expx in a rather formal way
earlier, assuring the reader that e really was an important number and expx really
was an important function. It is now clear that even if we had not introduced this
function earlier, it would certainly have been necessary to introduce it as the solution
of the important, though very simple equation (5.152). More precisely, it would have
sufficed to introduce the function that is the solution of Eq. (5.152) for some specific
value of α, for example, α = 1; for the general equation (5.152) can be reduced to
this case by changing to a new variable t connected with x by the relation x = t

α

(α �= 0).
Indeed, we then have

f (x)= f

(
t

α

)

= F(t),
df (x)

dx
=

dF(t)
dt

dx
dt

= αF ′(t)

and instead of the equation f ′(x)= αf (x) we then have αF ′(t)= αF(t), or F ′(t)=
F(t).

Thus, let us consider the equation

f ′(x)= f (x) (5.153)

and denote the solution of this equation satisfying f (0)= 1 by exp x.
Let us check to see whether this definition agrees with our previous definition of

exp x.
Let us try to calculate the value of f (x) starting from the relation f (0)= 1 and

the assumption that f satisfies (5.153). Since f is differentiable, it is continuous.
But then Eq. (5.153) implies that f ′(x) is also continuous. Moreover, it follows
from (5.153) that f also has a second derivative f ′′(x)= f ′(x), and in general that
f is infinitely differentiable. Since the rate of variation f ′(x) of the function f (x)

is continuous, the function f ′ changes very little over a small interval h of variation
of its argument. Therefore f (x0 + h)= f (x0)+ f ′(ξ)h≈ f (x0)+ f ′(x0)h. Let us
use this approximate formula and traverse the interval from 0 to x in small steps of
size h= x

n
, where n ∈N. If x0 = 0 and xk+1 = xk + h, we should have

f (xk+1)≈ f (xk)+ f ′(xk)h.

Taking account of (5.153) and the condition f (0)= 1, we have

f (x)= f (xn)≈ f (xn−1)+ f ′(xn−1)h=
= f (xn−1)(1+ h)≈ (

f (xn−2)+ f ′(xn−2)h
)
(1+ h)=
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Fig. 5.34

= f (xn−2)(1+ h)2 ≈ · · · ≈ f (x0)(1+ h)n =

= f (0)(1+ h)n =
(

1+ x

n

)n

.

It seems natural (and this can be proved) that the smaller the step h= x
n

, the closer
the approximation in the formula f (x)≈ (1+ x

n
)n.

Thus we arrive at the conclusion that

f (x)= lim
n→∞

(

1+ x

n

)n

.

In particular, if we denote the quantity f (1)= limn→∞(1+ 1
n
)n by e and show

that e �= 1, we shall have obtained

f (x)= lim
n→∞

(

1+ x

n

)n

= lim
t→0

(1+ t)x/t = lim
t→0

[
(1+ t)1/t

]x = ex, (5.154)

since we know that uα → vα if u→ v.
This method of solving Eq. (5.153) numerically, which enabled us to obtain for-

mula (5.154), was proposed by Euler long ago, and is called Euler’s polygonal
method. This name is connected with the fact that the computations carried out
in it have a geometric interpretation as the replacement of the solution f (x) of the
equation (or rather its graph) by an approximating graph consisting of a broken line
whose links on the corresponding closed intervals [xk, xk+1] (k = 0, . . . , n− 1) are
given by the equations y = f (xk)+ f ′(xk)(x − xk) (see Fig. 5.34).

We have also encountered the definition of the function expx as the sum of the
power series

∑∞
n=0

1
n!x

n. This definition can also be reached from Eq. (5.153) by
using the following frequently-applied device, called the method of undetermined
coefficients. We seek a solution of Eq. (5.153) as the sum of a power series

f (x)= c0 + c1x + · · · + cnx
n + · · · , (5.155)

whose coefficients are to be determined.
As we have seen (Theorem 1 of Sect. 5.5) Eq. (5.155) implies that cn = f (n)(0)

n!
But, by (5.153), f (0)= f ′(0)= · · · = f (n)(0)= · · · , and since f (0)= 1, we have
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cn = 1
n! , that is, if the solution has the form (5.155) and f (0)= 1, then necessarily

f (x)= 1+ 1

1!x +
1

2!x
2 + · · · + 1

n!x
n + · · · .

We could have verified independently that the function defined by this series is
indeed differentiable (and not only at x = 0) and that it satisfies Eq. (5.153) and the
initial condition f (0) = 1. However, we shall not linger over this point, since our
purpose was only to find out whether the introduction of the exponential function
as the solution of Eq. (5.153) with the initial condition f (0)= 1 was in agreement
with what we had previously meant by the function exp x.

We remark that Eq. (5.153) could have been studied in the complex plane, that
is, we could have regarded x as an arbitrary complex number. When this is done,
the reasoning we have carried out remains valid, although some of the geometric
intuitiveness of Euler’s method may be lost.

Thus it is natural to expect that the function

ez = 1+ 1

1!z+
1

2!z
2 + · · · + 1

n!z
n + · · ·

is the unique solution of the equation

f ′(z)= f (z)

satisfying the condition f (0)= 1.

5.6.6 Oscillations

If a body suspended from a spring is displaced from its equilibrium position, for
example by lifting it and then dropping it, it will oscillate about its equilibrium
position. Let us describe this process in its general form.

Suppose it is known that a force is acting on a point mass m that is free to move
along the x-axis, and that the force F =−kx is proportional33 to the displacement of
the point from the origin. Suppose also that we know the initial position x0 = x(0) of
the point mass and its initial velocity v0 = ẋ(0). Let us find the dependence x = x(t)

of the position of the point on time.
By Newton’s law, this problem can be rewritten in the following purely mathe-

matical form: Solve the equation

mẍ(t)=−kx(t) (5.156)

under the initial conditions x0 = x(0), ẋ(0)= v0.

33In the case of a spring, the coefficient k > 0 characterizing its stiffness is called the modulus.
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Let us rewrite Eq. (5.156) as

ẍ(t)+ k

m
x(t)= 0 (5.157)

and again try to make use of the exponential. Specifically, let us try to choose the
number λ so that the function x(t)= eλt satisfies Eq. (5.157).

Making the substitution x(t)= eλt in (5.157), we obtain
(

λ2 + k

m

)

eλt = 0,

or

λ2 + k

m
= 0, (5.158)

that is, λ1 = −
√
− k

m
, λ2 =

√
− k

m
. Since m > 0, we have the two imaginary num-

bers λ1 =−i

√
k
m

, λ2 = i

√
k
m

when k > 0. We had not reckoned on this possibility;
however, let us continue our study. By Euler’s formula

e−i
√

k/mt = cos

√
k

m
t − i sin

√
k

m
t,

ei
√

k/mt = cos

√
k

m
t + i sin

√
k

m
t.

Since differentiating with respect to the real variable t amounts to differentiating
the real and imaginary parts of the function eλt separately, Eq. (5.157) must be

satisfied by both functions cos
√

k
m

t and sin
√

k
m

t . And this is indeed the case, as
one can easily verify directly. Thus the complex exponential function has enabled
us to guess two solutions of Eq. (5.157), any linear combination of which

x(t)= c1 cos

√
k

m
t + c2 sin

√
k

m
t, (5.159)

is obviously also a solution of Eq. (5.157).
We choose the coefficients c1 and c2 in (5.159) from the condition

x0 = x(0)= c1,

v0 = ẋ(0)=
(

−c1

√
k

m
sin

√
k

m
t + c2

√
k

m
cos

√
k

m
t

)∣
∣
∣
∣
t=0
= c2

√
k

m
.

Thus the function

x(t)= x0 cos

√
k

m
t + v0

√
m

k
sin

√
k

m
t (5.160)

is the required solution.
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By making standard transformations we can rewrite (5.160) in the form

x(t)=
√

x2
0 + v2

0
m

k
sin

(√
k

m
t + α

)

, (5.161)

where

α = arcsin
x0√

x2
0 + v2

0
m
k

.

Thus, for k > 0 the point will make periodic oscillations with period T = 2π
√

m
k

,

that is, with frequency 1
T
= 1

2π

√
k
m

, and amplitude
√

x2
0 + v2

0
m
k

. We state this be-
cause it is clear from physical considerations that the solution (5.160) is unique.
(See Problem 5 at the end of this section.)

The motion described by (5.161) is called a simple harmonic oscillation, and
Eq. (5.157) the equation of a simple harmonic oscillator.

Let us now turn to the case when k < 0 in Eq. (5.158). Then the two func-

tions eλ1t = exp(−
√
− k

m
t) and eλ2t = exp(

√
− k

m
t) are real-valued solutions of

Eq. (5.157) and the function

x(t)= c1eλ1t + c2eλ2t (5.162)

is also a solution. We choose the constants c1 and c2 from the conditions
{

x0 = x(0)= c1 + c2,

v0 = ẋ(0)= c1λ1 + c2λ2.

This system of linear equations always has a unique solution, since its determi-
nant λ2 − λ1 is not 0.

Since the numbers λ1 and λ2 are of opposite sign, it can be seen from (5.162)
that for k < 0 the force F = −kx not only has no tendency to restore the point to
its equilibrium position at x = 0, but in fact as time goes on, carries it an unlimited
distance away from this position if x0 or v0 is nonzero. That is, in this case x = 0 is
a point of unstable equilibrium.

In conclusion let us consider a very natural modification of Eq. (5.156), in which
the usefulness of the exponential function and Euler’s formula connecting the basic
elementary functions shows up even more clearly.

Let us assume that the particle we are considering moves in a medium (the air
or a liquid) whose resistance cannot be neglected. Suppose the resisting force is
proportional to the velocity of the point. Then, instead of Eq. (5.156) we must write

mẍ(t)=−αẋ(t)− kx(t),

which we rewrite as

ẍ(t)+ α

m
ẋ(t)+ k

m
x(t)= 0. (5.163)



5.6 Examples of Differential Calculus in Natural Science 301

If once again we seek a solution of the form x(t)= eλt, we arrive at the quadratic
equation

λ2 + α

m
λ+ k

m
= 0,

whose roots are λ1,2 =− α
2m
±
√

α2−4mk
2m

.
The case when α2 − 4mk > 0 leads to two real roots λ1 and λ2, and the solution

can be found in the form (5.162).
We shall study in more detail the case in which we are more interested, when

α2 − 4mk < 0. Then both roots λ1 and λ2 are complex, but not purely imaginary:

λ1 = − α

2m
− i

√
4mk − α2

2m
,

λ2 = − α

2m
+ i

√
4mk − α2

2m
.

In this case Euler s formula yields

eλ1t = exp

(

− α

2m
t

)

(cosωt − i sin(ωt),

eλ2t = exp

(

− α

2m
t

)

(cosωt + i sinωt),

where ω =
√

4mk−α2

2m
. Thus we find the two real-valued solutions exp(− α

2m
) cosωt

and exp(− α
2m

) sinωt of Eq. (5.163), which would have been very difficult to guess.
We then seek a solution of the original equation in the form of a linear combination
of these two

x(t)= exp

(

− α

2m
t

)

(c1 cosωt + c2 sinωt), (5.164)

choosing c1 and c2 so that the initial conditions x(0)= x0 and ẋ(0)= v0 are satis-
fied.

The system of linear equations that results, as one can verify, always has a unique
solution. Thus, after transformations, we obtain the solution of the problem from
(5.164) in the form

x(t)=A exp

(

− α

2m
t

)

sin(ωt + a), (5.165)

where A and a are constants determined by the initial conditions.
It can be seen from this formula that, because of the factor exp(− α

2m
t), when

α > 0 and m > 0, the oscillations will be damped and the rate of damping of
the amplitude depends on the ratio α

m
. The frequency of the oscillations 1

2π
ω =

1
2π

√
k
m
− ( α

2m
)2 will not vary over time. The quantity ω also depends only on the
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ratios k
m

and α
m

, which, however, could have been foreseen from the form (5.163) of
the original equation. When α = 0, we again return to undamped harmonic oscilla-
tions (5.161) and Eq. (5.157).

5.6.7 Problems and Exercises

1. Efficiency in rocket propulsion.

a) Let Q be the chemical energy of a unit mass of rocket fuel and ω the out-
flow speed of the fuel. Then 1

2ω2 is the kinetic energy of a unit mass of fuel when
ejected. The coefficient α in the equation 1

2ω2 = αQ is the efficiency of the pro-
cesses of burning and outflow of the fuel. For engines of solid fuel (smokeless pow-
der) ω = 2 km/s and Q = 1000 kcal/kg, and for engines of liquid fuel (gasoline
with oxygen) ω = 3 km/s and Q = 2500 kcal/kg. Determine the efficiency α for
these cases.

b) The efficiency of a rocket is defined as the ratio of its final kinetic energy

mR
v2

2 to the chemical energy of the fuel burned mFQ. Using formula (5.139), obtain
a formula for the efficiency of a rocket in terms of mR, mF, Q, and α (see part a)).

c) Evaluate the efficiency of an automobile with a liquid-fuel jet engine, if the
automobile is accelerated to the usual city speed limit of 60 km/h.

d) Evaluate the efficiency of a liquid-fuel rocket carrying a satellite into low
orbit around the earth.

e) Determine the final speed for which rocket propulsion using liquid fuel is
maximally efficient.

f) Which ratio of masses mF/mR yields the highest possible efficiency for any
kind of fuel?

2. The barometric formula.

a) Using the data from Sect. 5.6.2, obtain a formula for a correction term to take
account of the dependence of pressure on the temperature of the air column, if the
temperature is subject to variation (for example, seasonal) within the range ±40 °C.

b) Use formula (5.144) to determine the dependence of pressure on elevation at
temperatures of −40 °C, 0 °C, and 40 °C, and compare these results with the results
given by your approximate formula from part a).

c) The change in temperature of the atmosphere at an altitude of 10–11 km is
well described by the following empirical formula: T (h)= T0−αh, where T0 is the
temperature at sea level (at h= 0 m), the coefficient α = 6.5× 10−3 K/m, and h is
the height in meters. Deduce under these conditions the formula for the dependence
of the pressure on the height. (T0 it is often given the value 288 K, corresponding to
15 °C.)

d) Find the pressure in a mine shaft at depths of 1 km, 3 km and 9 km using
formula (5.144) and the formula that you obtained in c).
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e) Independently of altitude, air consists of approximately 1/5 oxygen. The par-
tial pressure of oxygen is also approximately 1/5 of the air pressure. A certain
species of fish can live under a partial pressure of oxygen not less than 0.15 atmo-
spheres. Should one expect to find this species in a river at sea level? Could it be
found in a river emptying into Lake Titicaca at an elevation of 3.81 km?

3. Radioactive decay.

a) By measuring the amount of a radioactive substance and its decay products in
ore samples of the Earth, assuming that no decay products were originally present,
one can estimate the age of the Earth (at least from the time when the substance
appeared). Suppose that in a rock there are m grams of a radioactive substance and
r grams of its decay product. Knowing the half-life T of the substance, find the time
elapsed since the decay began and the amount of radioactive substance in a sample
of the same volume at the initial time.

b) Atoms of radium in an ore constitute approximately 10−12 of the total number
of atoms. What was the radium content 105, 106, and 5× 109 years ago? (The age
of the Earth is estimated at 5× 109 years.)

c) In the diagnosis of kidney diseases one often measures the ability of the kid-
neys to remove from the blood various substances deliberately introduced into the
body, for example creatin (the “clearance test”). An example of an opposite process
of the same type is the restoration of the concentration of hemoglobin in the blood
of a donor or of a patient who has suddenly lost a large amount of blood. In all these
cases the decrease in the quantity of the substance introduced (or, conversely, the
restoration of an insufficient quantity) is subject to the law N =N0e−t/τ , where N

is the amount (in other words, the number of molecules) of the substance remaining
in the body after time t has elapsed from the introduction of the amount N0 and
τ is the so-called lifetime: the time elapsed when 1/e of the quantity originally in-
troduced remains in the body. The lifetime, as one can easily verify, is 1.44 times
larger than the half-life, which is the time elapsed when half of the original quantity
of the substance remains.

Suppose a radioactive substance leaves the body at a rate characterized by the
lifetime τ0, and at the same time decays spontaneously with lifetime τd. Show that
in this case the lifetime τ characterizing the time the substance remains in the body
is determined by the relation τ−1 = τ−1

0 + τ−1
d .

d) A certain quantity of blood containing 201 mg of iron has been taken from a
donor. To make up for this loss of iron, the donor was ordered to take iron sulfate
tablets three times a day for a week, each tablet containing 67 mg of iron. The
amount of iron in the donor’s blood returns to normal according to an exponential
law with lifetime equal to approximately seven days. Assuming that the iron from
the tablets enters the bloodstream most rapidly immediately after the blood is taken,
determine approximately the portion of the iron in the tablets that will enter the
blood over the time needed to restore the normal iron content in the blood.

e) A certain quantity of radioactive phosphorus P32 was administered to diag-
nose a patient with a malignant tumor, after which the radioactivity of the skin
of the thigh was measured at regular time intervals. The decrease in radioactivity
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was subject to an exponential law. Since the half-life of phosphorus is known to be
14.3 days, it was possible to use the data thus obtained to determine the lifetime
for the process of decreasing radioactivity as a result of biological causes. Find this
constant if it has been established by observation that the lifetime for the overall
decrease in radioactivity was 9.4 days (see part c) above).

4. Absorption of radiation. The passage of radiation through a medium is accom-
panied by partial absorption of the radiation. In many cases (the linear theory) one
can assume that the absorption in passing through a layer two units thick is the same
as the absorption in successively passing through two layers, each one unit thick.

a) Show that under this condition the absorption of radiation is subject to the
law I = I0e−kl , where I0 is the intensity of the radiation falling on the absorbing
substance, I is the intensity after passing through a layer of thickness l, and k is a
coefficient having the physical dimension inverse to length.

b) In the case of absorption of light by water, the coefficient k depends on the
wave length of the incident light, for example as follows: for ultraviolet k = 1.4×
10−2 cm−1; for blue k = 4.6× 10−4 cm−1; for green k = 4.4× 10−4 cm−1; for red
k = 2.9× 10−3 cm−1. Sunlight is falling vertically on the surface of a pure lake 10
meters deep. Compare the intensities of these components of sunlight listed above
the surface of the lake and at the bottom.

5. Show that if the law of motion of a point x = x(t) satisfies the equation mẍ +
kx = 0 for harmonic oscillations, then

a) the quantity E = mẋ2(t)
2 + mx2(t)

2 is constant (E = K + U is the sum of the

kinetic energy K = mẋ2(t)
2 of the point and its potential energy U = kx2(t)

2 at time t );
b) if x(0)= 0 and ẋ(0)= 0, then x(t)≡ 0;
c) there exists a unique motion x = x(t) with initial conditions x(0) = x0 and

ẋ(0)= v0;
d) Verify that if the point moves in a medium with friction and x = x(t) satisfies

the equation mẍ + αẋ + kx = 0, α > 0, then the quantity E (see part a)) decreases.
Find its rate of decrease and explain the physical meaning of the result, taking ac-
count of the physical meaning of E.

6. Motion under the action of a Hooke34 central force (the plane oscillator).
To develop Eq. (5.156) for a linear oscillator in Sect. 5.6.6 and in Problem 5 let us
consider the equation mr̈(t)=−kr(t) satisfied by the radius-vector r(t) of a point
of mass m moving in space under the attraction of a centripetal force proportional to
the distance |r(t)| from the center with constant of proportionality (modulus) k > 0.
Such a force arises if the point is joined to the center by a Hooke elastic connection,
for example, a spring with constant k.

34R. Hooke (1635–1703) – British scientist, a versatile scholar and experimenter. He discovered
the cell structure of tissues and introduced the word cell. He was one of the founders of the math-
ematical theory of elasticity and the wave theory of light; he stated the hypothesis of gravitation
and the inverse-square law for gravitational interaction.
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a) By differentiating the vector product r(t)× ṙ(t), show that the motion takes
place in the plane passing through the center and containing the initial position
vector r0 = r(t0) and the initial velocity vector ṙ0 = ṙ(t0) (a plane oscillator). If
the vectors r0 = r(t0) and ṙ0 = ṙ(t0) are collinear, the motion takes place along
the line containing the center and the vector r0 (the linear oscillator considered in
Sect. 5.6.6).

b) Verify that the orbit of a plane oscillator is an ellipse and that the motion is
periodic. Find the period of revolution.

c) Show that the quantity E =mṙ2(t)+ kr2(t) is conserved (constant in time).
d) Show that the initial data r0 = r(t0) and ṙ0 = ṙ(t0) completely determine the

subsequent motion of the point.

7. Ellipticity of planetary orbits. The preceding problem makes it possible to regard
the motion of a point under the action of a central Hooke force as taking place in
a plane. Suppose this plane is the plane of the complex variable z = x + iy. The
motion is determined by two real-valued functions x = x(t), y = y(t) or, what is the
same, by one complex-valued function z= z(t) of time t . Assuming for simplicity
in Problem 6 that m = 1 and k = 1, consider the simplest form of the equation of
such motion z̈(t)=−z(t).

a) Knowing from Problem 6 that the solution of this equation corresponding to
the specific initial data z0 = z(t0), ż0 = ż(t0) is unique, find it in the form z(t) =
c1eit + c2e−it and, using Euler’s formula, verify once again that the trajectory of
motion is an ellipse with center at zero. (In certain cases it may become a circle or
degenerate into a line segment – determine when.)

b) Taking account of the invariance of the quantity |ż(t)|2 + |z(t)|2 during the
motion of a point z(t) subject to the equation z̈(t)=−z(t), verify that, in terms of
a new (time) parameter τ connected with t by a relation τ = τ(t) such that dτ

dt
=

|z(t)|2, the point w(t)= z2(t) moves subject to the equation d2w

dτ 2 =−c w

|w|3 , where
c is a constant and w = w(t(τ )). Thus motion in a central Hooke force field and
motion in a Newtonian gravitational field turn out to be connected.

c) Compare this with the result of Problem 8 of Sect. 5.5 and prove that planetary
orbits are ellipses.

d) If you have access to a computer, looking again at Euler’s method, explained
in Sect. 5.6.5, first compute several values of ex using this method. (Observe that
this method uses nothing except the definition of the differential, more precisely the
formula f (xn)≈ f (xn−1)+ f ′(xn−1)h, where h= xn − xn−1.)

Now let r(t) = (x(t), y(t)), r0 = r(0) = (1,0), ṙ0 = ṙ(0) = (0,1) and r̈(t) =
− r(t)
|r(t)|3 . Using the formulas

r(tn) ≈ r(tn−1)+ v(tn−1)h,

v(tn) ≈ v(tn−1)+ a(tn−1)h,

where v(t)= ṙ(t), a(t)= v̇(t)= r̈(t), use Euler’s method to compute the trajectory
of the point. Observe its shape and how it is traversed by a point as time passes.
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5.7 Primitives

In differential calculus, as we have verified on the examples of the previous section,
in addition to knowing how to differentiate functions and write relations between
their derivatives, it is also very valuable to know how to find functions from rela-
tions satisfied by their derivatives. The simplest such problem, but, as will be seen
below, a very important one, is the problem of finding a function F(x) knowing its
derivative F ′(x)= f (x). The present section is devoted to an introductory discus-
sion of that problem.

5.7.1 The Primitive and the Indefinite Integral

Definition 1 A function F(x) is a primitive of a function f (x) on an interval if F

is differentiable on the interval and satisfies the equation F ′(x)= f (x), or, what is
the same, dF(x)= f (x)dx.

Example 1 The function F(x)= arctanx is a primitive of f (x)= 1
1+x2 on the entire

real line, since arctan′ x = 1
1+x2 .

Example 2 The function F(x)= arccot 1
x

is a primitive of f (x)= 1
1+x2 on the set

of positive real numbers and on the set of negative real numbers, since for x �= 0

F ′(x)=− 1

1+ ( 1
x
)2
·
(

− 1

x2

)

= 1

1+ x2
= f (x).

What is the situation in regard to the existence of a primitive, and what is the set
of primitives of a given function?

In the integral calculus we shall prove the fundamental fact that every function
that is continuous on an interval has a primitive on that interval.

We present this fact for the reader’s information, but in the present section we
shall essentially use only the following characteristic of the set of primitives of a
given function on an interval, already known to us (see Sect. 5.3.1) from Lagrange’s
theorem.

Proposition 1 If F1(x) and F2(x) are two primitives of f (x) on the same interval,
then the difference F1(x)− F2(x)is constant on that interval.

The hypothesis that F1 and F2 are being compared on a connected interval is
essential, as was pointed out in the proof of this proposition. One can also see this
by comparing Examples 1 and 2, in which the derivatives of F1(x) = arctanx and
F2(x)= arccot 1

x
agree on the entire domain R\0 that they have in common. How-

ever,

F1(x)− F2(x)= arctanx − arccot
1

x
= arctanx − arctanx = 0,
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for x > 0 while F1(x)− F2(x) ≡−π for x < 0. For if x < 0, we have arccot 1
x
=

π + arctanx.
Like the operation of taking the differential, which has the name “differentia-

tion” and the mathematical notation dF(x) = F ′(x)dx, the operation of finding a
primitive has the name “indefinite integration” and the mathematical notation

∫
f (x)dx, (5.166)

called the indefinite integral of f (x) on the given interval.
Thus we shall interpret the expression (5.166) as a notation for any of the primi-

tives of f on the interval in question.
In the notation (5.166) the sign

∫
is called the indefinite integral sign, f is called

the integrand, and f (x)dx is called a differential form.
It follows from Proposition 1 that if F(x) is any particular primitive of f (x) on

the interval, then on that interval
∫

f (x)dx = F(x)+C, (5.167)

that is, any other primitive can be obtained from the particular primitive F(x) by
adding a constant.

If F ′(x)= f (x), that is, F is a primitive of f on some interval, then by (5.167)
we have

d
∫

f (x)dx = dF(x)= F ′(x)dx = f (x)dx. (5.168)

Moreover, in accordance with the concept of an indefinite integral as any primi-
tive, it also follows from (5.167) that

∫
dF(x)=

∫
F ′(x)dx = F(x)+C. (5.169)

Formulas (5.168) and (5.169) establish a reciprocity between the operations of
differentiation and indefinite integration. These operations are mutually inverse up
to the undetermined constant C that appears in (5.169).

Up to this point we have discussed only the mathematical nature of the constant C
in (5.167). We now give its physical meaning using a simple example. Suppose a
point is moving along a line in such a way that its velocity v(t) is known as a
function of time (for example, v(t) ≡ v). If x(t) is the coordinate of the point at
time t , the function x(t) satisfies the equation ẋ(t)= v(t), that is, x(t) is a primitive
of v(t). Can the position of a point on a line be recovered knowing its velocity
over a certain time interval? Clearly not. From the velocity and the time interval
one can determine the length s of the path traversed during this time, but not the
position on the line. However, the position will also be completely determined if it
is given at even one instant, for example, t = 0, that is, we give the initial condition
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x(0) = x0. Until the initial condition is given, the law of motion could be any law
of the form x(t)= x̃(t)+ c, where x̃(t) is any particular primitive of v(t) and c is
an arbitrary constant. But once the initial condition x(0)= x̃(0)+ c = x0 is given,
all the indeterminacy disappears; for we must have x(0) = x̃(0) + c = x0, that is,
c= x0 − x̃(0) and x(t)= x0 + [x̃(t)− x̃(0)]. This last formula is entirely physical,
since the arbitrary primitive x̃ appears in it only as the difference that determines
the path traversed or the magnitude of the displacement from the known initial point
x(0)= x0.

5.7.2 The Basic General Methods of Finding a Primitive

In accordance with the definition of the expression (5.166) for the indefinite inte-
gral, this expression denotes a function whose derivative is the integrand. From this
definition, taking account of (5.167) and the laws of differentiation, one can assert
that the following relations hold:

a.
∫
(
αu(x)+ βv(x)

)
dx = α

∫
u(x)dx + β

∫
v(x)dx + c. (5.170)

b.
∫

(uv)′ dx =
∫

u′(x)v(x)dx +
∫

u(x)v′(x)dx + c. (5.171)

c. If

∫
f (x)dx = F(x)+ c

on an interval Ix and ϕ : It → Ix is a smooth (continuously differentiable) mapping
of the interval It into Ix , then

∫
(f ◦ ϕ)(t)ϕ′(t)dt = (F ◦ ϕ)(t)+ c. (5.172)

The equalities (5.170), (5.171), and (5.172) can be verified by differentiating the
left- and right-hand sides using the linearity of differentiation in (5.170), the rule
for differentiating a product in (5.171), and the rule for differentiating a composite
function in (5.172).

Just like the rules for differentiation, which make it possible to differentiate lin-
ear combinations, products, and compositions of known functions, relations (5.170),
(5.171), and (5.172), as we shall see, make it possible in many cases to reduce the
search for a primitive of a function either to the construction of primitives for sim-
pler functions or to primitives that are already known. A set of such known primi-
tives can be provided, for example, by the following short table of indefinite inte-
grals, obtained by rewriting the table of derivatives of the basic elementary functions
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(see Sect. 5.2.3):
∫

xα dx = 1

α + 1
xα+1 + c (α �= −1),

∫
1

x
dx = ln |x| + c,

∫
ax dx = 1

lna
ax + c (0 < a �= 1),

∫
ex dx = ex + c,

∫
sinx dx = − cosx + c,

∫
cosx dx = sinx + c,

∫
1

cos2 x
dx = tanx + c,

∫
1

sin2 x
dx = − cotx + c,

∫
1√

1− x2
dx =

{
arcsinx + c,

− arccosx + c̃,

∫
1

1+ x2
dx =

{
arctanx + c,

− arccotx + c̃,
∫

sinhx dx = coshx + c,

∫
coshx dx = sinhx + c,

∫
1

cosh2 x
dx = tanhx + c,

∫
1

sinh2 x
dx = − cothx + c,

∫
1√

x2 ± 1
dx = ln

∣
∣x +

√
x2 ± 1

∣
∣+ c,

∫
1

1− x2
dx = 1

2
ln

∣
∣
∣
∣
1+ x

1− x

∣
∣
∣
∣+ c.

Each of these formulas is used on the intervals of the real line R on which the cor-
responding integrand is defined. If more than one such interval exists, the constant
c on the right-hand side may change from one interval to another.
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Let us now consider some examples that show relations (5.170), (5.171) and
(5.172) in action. We begin with a preliminary remark.

Given that, once a primitive has been found for a given function on an interval
the other primitives can be found by adding constants, we shall agree to save writing
below by adding the arbitrary constant only to the final result, which is a particular
primitive of the given function.

a. Linearity of the Indefinite Integral

This heading means that by relation (5.170) the primitive of a linear combination
of functions can be found as the same linear combination of the primitives of the
functions.

Example 3
∫
(
a0 + a1x + · · · + anx

n
)

dx =

= a0

∫
1 dx + a1

∫
x dx + · · · + an

∫
xn dx =

= c+ a0x + 1

2
a1x

2 + · · · + 1

n+ 1
anx

n+1.

Example 4

∫ (

x + 1√
x

)2

dx =
∫ (

x2 + 2
√

x + 1

x

)

dx =

=
∫

x2 dx + 2
∫

x1/2 dx +
∫

1

x
dx =

= 1

3
x3 + 4

3
x3/2 + ln |x| + c.

Example 5
∫

cos2 x

2
dx =

∫
1

2
(1+ cosx)dx = 1

2

∫
(1+ cosx)dx =

= 1

2

∫
1 dx + 1

2

∫
cosx dx = 1

2
x + 1

2
sinx + c.

b. Integration by Parts

Formula (5.171) can be rewritten as

u(x)v(x)=
∫

u(x)dv(x)+
∫

v(x)du(x)+ c
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or, what is the same, as
∫

u(x)dv(x)= u(x)v(x)−
∫

v(x)du(x)+ c. (5.171′)

This means that in seeking a primitive for the function u(x)v′(x) one can reduce
the problem to finding a primitive for v(x)u′(x), throwing the differentiation onto
the other factor and partially integrating the function, as shown in (5.171′), sepa-
rating the term u(x)v(x) when doing so. Formula (5.171′) is called the formula for
integration by parts.

Example 6
∫

lnx dx = x lnx −
∫

x d lnx = x lnx −
∫

x · 1

x
dx =

= x lnx −
∫

1 dx = x lnx − x + c.

Example 7
∫

x2ex dx =
∫

x2 dex = x2ex −
∫

ex dx2 = x2ex − 2
∫

xex dx =

= x2ex − 2
∫

x dex = x2ex − 2

(

xex −
∫

ex dx

)

=

= x2ex − 2xex + 2ex + c= (
x2 − 2x + 2

)
ex + c.

c. Change of Variable in an Indefinite Integral

Formula (5.172) shows that in seeking a primitive for the function (f ◦ ϕ)(t) · ϕ′(t)
one may proceed as follows:

∫
(f ◦ ϕ)(t) · ϕ′(t)dt =

∫
f
(
ϕ(t)

)
dϕ(t)=

=
∫

f (x)dx = F(x)+ c= F
(
ϕ(t)

)+ c,

that is, first make the change of variable ϕ(t) = x in the integrand and pass to the
new variable x, then, after finding the primitive as a function of x, return to the old
variable t by the substitution x = ϕ(t).

Example 8

∫
t dt

1+ t2
= 1

2

∫
d(t2 + 1)

1+ t2
= 1

2

∫
dx

x
= 1

2
ln |x| + c= 1

2
ln
(
t2 + 1

)+ c.
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Example 9

∫
dx

sinx
=
∫

dx

2 sin x
2 cos x

2

=
∫

d( x
2 )

tan x
2 cos2 x

2

=

=
∫

du

tanu cos2 u
=
∫

d(tanu)

tanu
=
∫

dv

v
=

= ln |v| + c= ln | tanu| + c= ln

∣
∣
∣
∣tan

x

2

∣
∣
∣
∣+ c.

We have now considered several examples in which properties a, b, and c of the
indefinite integral have been used individually. Actually, in the majority of cases,
these properties are used together.

Example 10

∫
sin 2x cos 3x dx = 1

2

∫
(sin 5x − sinx)dx =

= 1

2

(∫
sin 5x dx −

∫
sinx dx

)

=

= 1

2

(
1

5

∫
sin 5x d(5x)+ cosx

)

=

= 1

10

∫
sinudu+ 1

2
cosx =− 1

10
cosu+ 1

2
cosx + c=

= 1

2
cosx − 1

10
cos 5x + c.

Example 11

∫
arcsinx dx = x arcsinx −

∫
x d arcsinx =

= x arcsinx −
∫

x√
1− x2

dx = x arcsinx + 1

2

∫
d(1− x2)√

1− x2
=

= x arcsinx + 1

2

∫
u−1/2 du= x arcsinx + u1/2 + c=

= x arcsinx +
√

1− x2 + c.

Example 12

∫
eax cosbx dx = 1

a

∫
cosbx deax =
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= 1

a
eax cosbx − 1

a

∫
eax d cosbx =

= 1

a
eax cosbx + b

a

∫
eax sinbx dx =

= 1

a
eax cosbx + b

a2

∫
sinbx deax =

= 1

a
eax cosbx + b

a2
eax sinbx − b

a2

∫
eax d sinbx =

= a cosbx + b sinbx

a2
− b2

a2

∫
eax cosbx dx.

From this result we conclude that
∫

eax cosbx dx = a cosbx + b sinbx

a2 + b2
eax + c.

We could have arrived at this result by using Euler’s formula and the fact that the
primitive of the function e(a+ib)x = eax cosbx + ieax sinbx is

1

a + ib
e(a+ib)x = a − ib

a2 + b2
e(a+ib)x =

= a cosbx + b sinbx

a2 + b2
eax + i

a sinx − b cosbx

a2 + b2
eax.

It will be useful to keep this in mind in the future. For real values of x this
can easily be verified directly by differentiating the real and imaginary parts of the
function 1

a+ib
e(a+ib)x .

In particular, we also find from this result that

∫
eax sinbx dx = a sinbx − b cosbx

a2 + b2
eax + c.

Even the small set of examples we have considered suffices to show that in seek-
ing primitives for even the elementary functions one is often obliged to resort to
auxiliary transformations and clever devices, which was not at all the case in find-
ing the derivatives of compositions of the functions whose derivatives we knew. It
turns out that this difficulty is not accidental. For example, in contrast to differen-
tiation, finding the primitive of an elementary function may lead to a function that
is no longer a composition of elementary functions. For that reason, one should
not conflate the phrase “finding a primitive” with the sometimes impossible task
of “expressing the primitive of a given elementary function in terms of elementary
functions”. In general, the class of elementary functions is a rather artificial object.
There are very many special functions of importance in applications that have been
studied and tabulated at least as well as, say sinx or ex .
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For example, the sine integral Six is the primitive
∫ sinx

x
dx of the function sinx

x
that tends to zero as x → 0. There exists such a primitive, but, like all the other
primitives of sinx

x
, it is not a composition of elementary functions.

Similarly, the function

Cix =
∫

cosx

x
dx,

specified by the condition Cix→ 0 as x→∞ is not elementary. The function Cix
is called the cosine integral.

The primitive
∫ dx

lnx
of the function 1

lnx
is also not elementary. One of the primi-

tives of this function is denoted lix and is called the logarithmic integral. It satisfies
the condition lix→ 0 as x→+0. (More details about the functions Six, Cix, and
lix will be given in Sect. 6.5.)

Because of these difficulties in finding primitives, rather extensive tables of in-
definite integrals have been compiled. However, in order to use these tables success-
fully and avoid having to resort to them when the problem is very simple, one must
acquire some skill in dealing with indefinite integrals.

The remainder of this section is devoted to integrating some special classes of
functions whose primitives can be expressed as compositions of elementary func-
tions.

5.7.3 Primitives of Rational Functions

Let us consider the problem of integrating
∫

R(x)dx, where R(x)= P(x)
Q(x)

is a ratio
of polynomials.

If we work in the domain of real numbers, then, without going outside this do-
main, we can express every such fraction, as we know from algebra (see formula
(5.135) in Sect. 5.5.4) as a sum

P(x)

Q(x)
= p(x)+

l∑

j=1

( kj∑

k=1

ajk

(x − xj )k

)

+
n∑

j=1

( mj∑

k=1

bjkx + cjk

(x2 + pjx + qj )k

)

, (5.173)

where p(x) is a polynomial (which arises when P(x) is divided by Q(x), but only
when the degree of P(x) is not less than the degree of Q(x)), ajk , bjk , and cjk are
uniquely determined real numbers, and Q(x)= (x−x1)

k1 · · · (x−xl)
kl (x2+p1x+

q1)
m1 · · · (x2 + pnx + qn)

mn .
We have already discussed how to find the expansion (5.173) in Sect. 5.5. Once

the expansion (5.173) has been constructed, integrating R(x) reduces to integrating
the individual terms.

We have already integrated a polynomial in Example 1, so that it remains only to
consider the integration of fractions of the forms

1

(x − a)k
and

bx + c

(x2 + px + q)k
, where k ∈N.
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The first of these problems can be solved immediately, since

∫
1

(x − a)k
dx =

{
1

−k+1 (x − a)−k+1 + c for k �= 1,

ln |x − a| + c for k = 1.
(5.174)

With the integral
∫

bx + c

(x2 + px + q)k
dx

we proceed as follows. We represent the polynomial x2 + px + q as (x + 1
2p)2 +

(q− 1
4p2), where q− 1

4p2 > 0, since the polynomial x2+px+ q has no real roots.
Setting x + 1

2p = u and q − 1
4p2 = a2, we obtain

∫
bx + c

(x2 + px + q)k
dx =

∫
αu+ β

(u2 + a2)k
du,

where α = b and β = c− 1
2bp.

Next,
∫

u

(u2 + a2)k
du = 1

2

∫
d(u2 + a2)

(u2 + a2)k
=

=
{

1
2(1−k)

(u2 + a2)−k+1 for k �= 1,

1
2 ln(u2 + a2) for k = 1,

(5.175)

and it remains only to study the integral

Ik =
∫

du

(u2 + a2)k
. (5.176)

Integrating by parts and making elementary transformations, we have

Ik =
∫

du

(u2 + a2)k
= u

(u2 + a2)k
+ 2k

∫
u2 du

(u2 + a2)k+1
=

= u

(u2 + a2)k
+ 2k

∫
(u2 + a2)− a2

(u2 + a2)k+1
du= u

(u2 + a2)k
+ 2kIk − 2ka2Ik+1,

from which we obtain the recursion relation

Ik+1 = 1

2ka2

u

(u2 + a2)k
+ 2k− 1

2ka2
Ik, (5.177)

which makes it possible to lower the exponent k in the integral (5.176). But I1 is
easy to compute:

I1 =
∫

du

u2 + a2
= 1

a

∫
d( u

a
)

1+ (u
a
)2
= 1

a
arctan

u

a
+ c. (5.178)
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Thus, by using (5.177) and (5.178), one can also compute the primitive (5.176).
Thus we have proved the following proposition.

Proposition 2 The primitive of any rational function R(x)= P(x)
Q(x)

can be expressed
in terms of rational functions and the transcendental functions ln and arctan. The
rational part of the primitive, when placed over a common denominator, will have
a denominator containing all the factors of the polynomial Q(x) with multiplicities
one less than they have in Q(x).

Example 13 Let us calculate
∫

2x2 + 5x + 5

(x2 − 1)(x + 2)
dx.

Since the integrand is a proper fraction, and the factorization of the denominator
into the product (x− 1)(x+ 1)(x+ 2) is also known, we immediately seek a partial
fraction expansion

2x2 + 5x + 5

(x − 1)(x + 1)(x + 2)
= A

x − 1
+ B

x + 1
+ C

x + 2
. (5.179)

Putting the right-hand side of Eq. (5.179) over a common denominator,we have

2x2 + 5x + 5

(x − 1)(x + 1)(x + 2)
= (A+B +C)x2 + (3A+B)x + (2A− 2B −C)

(x − 1)(x + 1)(x + 2)
.

Equating the corresponding coefficients in the numerators, we obtain the system

⎧
⎨

⎩

A+B +C = 2,

3A+B = 5,

2A− 2B −C = 5,

from which we find (A,B,C)= (2,−1,1).
We remark that in this case these numbers could have been found in one’s head.

Indeed, multiplying (5.179) by x−1 and then setting x = 1 in the resulting equality,
we would have A on the right-hand side, while the left-hand side would have been
the value at x = 1 of the fraction obtained by striking out the factor x − 1 in the
denominator, that is, A= 2+5+5

2·3 = 2. One could proceed similarly to find B and C.
Thus,

∫
2x2 + 5x + 5

(x2 − 1)(x + 2)
dx = 2

∫
dx

x − 1
−
∫

dx

x + 1
+
∫

dx

x + 2
=

= 2 ln |x − 1| − ln |x + 1| + ln |x + 2| + c

= ln

∣
∣
∣
∣
(x − 1)2(x + 2)

x − 1

∣
∣
∣
∣+ c.
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Example 14 Let us compute a primitive of the function

R(x)= x7 − 2x6 + 4x5 − 5x4 + 4x3 − 5x2 − x

(x − 1)2(x2 + 1)2
.

We begin by remarking that this is an improper fraction, so that, removing the
parentheses and finding the denominator Q(x) = x6 − 2x5 + 3x4 − 4x3 + 3x2 −
2x + 1, we divide the numerator by it, after which we obtain

R(x)= x + x5 − x4 + x3 − 3x2 − 2x

(x − 1)2(x2 + 1)2
,

and we then seek a partial-fraction expansion of the proper fraction

x5 − x4 + x3 − 3x2 − 2x

(x − 1)2(x2 + 1)2
= A

(x − 1)2
+ B

x − 1
+ Cx +D

(x2 + 1)2
+ Ex + F

x2 + 1
. (5.180)

Of course the expansion could be obtained in the canonical way, by writing out
a system of six equations in six unknowns. However, instead of doing that, we shall
demonstrate some other technical possibilities that are sometimes used.

We find the coefficient A by multiplying Eq. (5.180) by (x− 1)2 and then setting
x = 1. The result is A =−1. We then transpose the fraction A

(x−1)2 , in which A is
now the known quantity −1, to the left-hand side of Eq. (5.180). We then have

x4 + x3 + 2x2 + x − 1

(x − 1)(x2 + 1)2
= B

x − 1
+ Cx +D

(x2 + 1)2
+ Ex + F

x2 + 1
(5.181)

from which, multiplying (5.181) by x − 1 and then setting x = 1, we find B = 1.
Now, transposing the fraction 1

x−1 to the left-hand side of (5.181), we obtain

x2 + x + 2

(x2 + 1)2
= Cx +D

(x2 + 1)2
+ Ex + F

x2 + 1
. (5.182)

Now, after putting the right-hand side of (5.182) over a common denominator,
we equate the numerators

x2 + x + 2=Ex3 + Fx2 + (C +E)x + (D + F),

from which it follows that
⎧
⎪⎪⎨

⎪⎪⎩

E = 0,

F = 1,

C +E = 1,

D+ F = 2,

or (C,D,E,F )= (1,1,0,1).
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We now know all the coefficients in (5.180). Upon integration, the first two frac-
tions yield respectively 1

x−1 and ln |x − 1|. Then

∫
Cx +D

(x2 + 1)2
dx = x + 1

(x2 + 1)2
dx =

= 1

2

∫
d(x2 + 1)

(x2 + 1)2
+
∫

dx

(x2 + 1)2
= −1

2(x2 + 1)
+ I2,

where

I2 =
∫

dx

(x2 + 1)2
= 1

2

x

(x2 + 1)2
+ 1

2
arctanx,

which follows from (5.177) and (5.178).
Finally,

∫
Ex + F

x2 + 1
dx =

∫
1

x2 + 1
dx = arctanx.

Gathering all the integrals, we finally have
∫

R(x)dx = 1

2
x2 + 1

x − 1
+ x

2(x2 + 1)2
+ ln |x − 1| + 3

2
arctanx + c.

Let us now consider some frequently encountered indefinite integrals whose
computation can be reduced to finding the primitive of a rational function.

5.7.4 Primitives of the Form
∫

R(cosx, sinx)dx

Let R(u, v) be a rational function in u and v, that is a quotient of polynomials
P(u,v)
Q(u,v)

, which are linear combinations of monomials umvn, where m = 0,1,2 . . .

and n= 0,1, . . . .
Several methods exist for computing the integral

∫
R(cosx, sinx)dx, one of

which is completely general, although not always the most efficient.

a.

We make the change of variable t = tan x
2 . Since

cosx = 1− tan2 x
2

1+ tan2 x
2

, sinx = 2 tan x
2

1+ tan2 x
2

,

dt = dx

2 cos2 x
2

, that is, dx = 2 dt

1+ tan2 x
2

,
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it follows that
∫

R(cosx, sinx)dx =
∫

R

(
1− t2

1+ t2
,

2t

1+ t2

)
2

1+ t2
dt,

and the problem has been reduced to integrating a rational function.
However, this way leads to a very cumbersome rational function; for that reason

one should keep in mind that in many cases there are other possibilities for rational-
izing the integral.

b.

In the case of integrals of the form
∫

R(cos2 x, sin2 x)dx or
∫

r(tanx)dx, where
r(u) is a rational function, a convenient substitution is t = tanx, since

cos2 x = 1

1+ tan2 x
, sin2 x = tan2 x

1+ tan2 x
,

dt = dx

cos2 x
, that is, dx = dt

1+ t2
.

Carrying out this substitution, we obtain respectively

∫
R
(
cos2 x, sin2 x

)
dx =

∫
R

(
1

1+ t2
,

t2

1+ t2

)
dt

1+ t2
,

∫
r(tanx)dx =

∫
r(t)

dt

1+ t2
.

c.

In the case of integrals of the form
∫

R
(
cosx, sin2 x

)
sinx dx or

∫
R
(
cos2 x, sinx

)
cosx dx.

One can move the functions sinx and cosx into the differential and make the sub-
stitution t = cosx or t = sinx respectively. After these substitutions, the integrals
will have the form

−
∫

R
(
t,1− t2)dt or

∫
R
(
1− t2, t

)
dt.

Example 15
∫

dx

3+ sinx
=
∫

1

3+ 2t

1+t2

· 2 dt

1+ t2
=
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= 2
∫

dt

3t2 + 2t + 3
= 2

3

∫
d(t + 1

3 )

(t + 1
3 )2 + 8

9

= 2

3

∫
du

u2 + ( 2
√

2
3 )2

=

= 1√
2

arctan
3u

2
√

2
+ c= 1√

2
arctan

3t + 1

2
√

2
+ c=

= 1√
2

arctan
3 tan x

2 + 1

2
√

2
+ c.

Here we have used the universal change of variable t = tan x
2 .

Example 16

∫
dx

(sinx + cosx)2
=
∫

dx

cos2 x(tanx + 1)2
=

=
∫

d tanx

(tanx + 1)2
=
∫

dt

(t + 1)2
=− 1

t + 1
+ c=

= c− 1

1+ tanx
.

Example 17

∫
dx

2 sin2 3x − 3 cos2 3x + 1
=
∫

dx

cos2 3x(2 tan2 3x − 3+ (1+ tan2 3x))
=

= 1

3

∫
d tan 3x

3 tan2 3x − 2
= 1

3

∫
dt

3t2 − 2
=

= 1

3 · 2
√

2

3

∫ d
√

3
2 t

3
2 t2 − 1

=

= 1

3
√

6

∫
du

u2 − 1
= 1

6
√

6
ln

∣
∣
∣
∣
u− 1

u+ 1

∣
∣
∣
∣+ c=

= 1

6
√

6
ln

∣
∣
∣
∣

√
3
2 t − 1

√
3
2 t + 1

∣
∣
∣
∣+ c=

= 1

6
√

6
ln

∣
∣
∣
∣
tan 3x −

√
2
3

tan 3x +
√

2
3

∣
∣
∣
∣+ c.
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Example 18

∫
cos3 x

sin7 x
dx =

∫
cos2 x d sinx

sin7 x
=
∫

(1− t2)dt

t7 =

=
∫
(
t−7 − t−5)dt =−1

6
t−6 + 1

4
t−4 + c= 1

4 sin4 x
− 1

6 sin6 x
+ c.

5.7.5 Primitives of the Form
∫

R(x,y(x))dx

Let R(x, y) be, as in Sect. 5.7.4, a rational function. Let us consider some special
integrals of the form

∫
R
(
x, y(x)

)
dx,

where y = y(x) is a function of x.
First of all, it is clear that if one can make a change of variable x = x(t) such

that both functions x = x(t) and y = y(x(t)) are rational functions of t , then x′(t)
is also a rational function and

∫
R
(
x, y(x)

)
dx =

∫
R
(
x(t), y

(
x(t)

))
x′(t)dt,

that is, the problem will have been reduced to integrating a rational function.
Consider the following special choices of the function y = y(x).

a.

If y = n

√
ax+b
cx+d

, where n ∈N, then, setting tn = ax+b
cx+d

, we obtain

x = d · tn − b

a − c · tn , y = t,

and the integrand rationalizes.

Example 19

∫
3

√
x − 1

x + 1
dx =

∫
t d

(
t3 + 1

1− t3

)

= t · t
3 + 1

1− t3
dt −

∫
t3 + 1

1− t3
dt =

= t · t
3 + 1

1− t3
−
∫ (

2

1− t3
− 1

)

dt =

= t · t
3 + 1

1− t3
+ t − 2

∫
dt

(1− t)(1+ t + t2)
=
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= 2t

1− t3
− 2

∫ (
1

3(1− t)
+ 2+ t

3(1+ t + t2)

)

dt =

= 2t

1− t3
+ 2

3
ln |1− t | − 2

3

∫
(t + 1

2 )+ 3
2

(t + 1
2 )2 + 3

4

dt =

= 2t

1− t3
+ 2

3
ln |1− t | − 1

3
ln

[(

t + 1

2

)

+ 3

4

]

−

− 2√
3

arctan
2√
3

(

t + 1

2

)

+ c, where t = 3

√
x − 1

x + 1
.

b.

Let us now consider the case when y =√ax2 + bx + c, that is, integrals of the form

∫
R
(
x,
√

ax2 + bx + c
)

dx.

By completing the square in the trinomial ax2+bx+ c and making a suitable linear
substitution, we reduce the general case to one of the following three simple cases:

∫
R
(
t,
√

t2 + 1
)

dt,

∫
R
(
t,
√

t2 − 1
)

dt,

∫
R
(
t,
√

1− t2
)

dt. (5.183)

To rationalize these integrals it now suffices to make the following substitutions,
respectively:

√
t2 + 1 = tu+ 1, or

√
t2 + 1= tu− 1, or

√
t2 + 1= t − u;

√
t2 − 1 = u(t − 1), or

√
t2 − 1= u(t + 1), or

√
t2 − 1= t − u;

√
1− t2 = u(1− t), or

√
1− t2 = u(1+ t), or

√
1− t2 = tu± 1.

These substitutions were proposed long ago by Euler (see Problem 3 at the end
of this section).

Let us verify, for example, that after the first substitution we will have reduced
the first integral to the integral of a rational function.

In fact, if
√

t2 + 1= tu+ 1, then t2 + 1= t2u2 + 2tu+ 1, from which we find

t = 2u

1− u2

and then
√

t2 + 1= 1+ u2

1− u2
.
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Thus t and
√

t2 + 1 have been expressed rationally in terms of u, and consequently
the integral has been reduced to the integral of a rational function.

The integrals (5.183) can also be reduced, by means of the substitutions t =
sinhϕ, t = coshϕ, and t = sinϕ (or t = cosϕ) respectively, to the following forms:

∫
R(sinhϕ, coshϕ) coshϕ dϕ,

∫
R(coshϕ, sinhϕ) sinhϕ dϕ

and
∫

R(sinϕ, cosϕ) cosϕ dϕ or −
∫

R(cosϕ, sinϕ) sinϕ dϕ.

Example 20
∫

dx

x +√x2 + 2x + 2
=
∫

dx

x +√
(x + 1)2 + 1

=
∫

dt

t − 1+√t2 + 1
.

Setting
√

t2 + 1= u− t , we have 1= u2 − 2tu, from which it follows that t =
u2−1

2u
. Therefore

∫
dt

t − 1+√t2 + 1
= 1

2

∫
1

u− 1

(

1+ 1

u2

)

du= 1

2

∫
1

u− 1
du+

+ 1

2

∫
du

u2(u− 1)

= 1

2
ln |u− 1| + 1

2

∫ (
1

u− 1
− 1

u2
− 1

u

)

du=

= 1

2
ln |u− 1| + 1

2
ln

∣
∣
∣
∣
u− 1

u

∣
∣
∣
∣+

1

2u
+ c.

It now remains to retrace the path of substitutions: u= t+√t2 + 1 and t = x+1.

c. Elliptic Integrals

Another important class of integrals consists of those of the form
∫

R
(
x,
√

P(x)
)

dx, (5.184)

where P(x) is a polynomial of degree n > 2. As Abel and Liouville showed, such
an integral cannot in general be expressed in terms of elementary functions.

For n = 3 and n = 4 the integral (5.184) is called an elliptic integral, and for
n > 4 it is called hyperelliptic.

It can be shown that by elementary substitutions the general elliptic integral can
be reduced to the following three standard forms up to terms expressible in elemen-
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tary functions:
∫

dx
√

(1− x2)(1− k2x2)
, (5.185)

∫
x2 dx

√
(1− x2)(1− k2x2)

, (5.186)

∫
dx

(1+ hx2)
√

(1− x2)(1− k2x2)
, (5.187)

where h and k are parameters, the parameter k lying in the interval ]0,1[ in all three
cases.

By the substitution x = sinϕ these integrals can be reduced to the following
canonical integrals and combinations of them:

∫
dϕ

√
1− k2 sin2 ϕ

, (5.188)

∫ √
1− k2 sin2 ϕ dϕ, (5.189)

∫
dϕ

(1+ h sin2 ϕ)
√

1− k2 sin2 ϕ
. (5.190)

The integrals (5.188), (5.189) and (5.190) are called respectively the elliptic in-
tegral of first kind, second kind, and third kind (in the Legendre form).

The symbols F(k,ϕ) and E(k,ϕ) respectively denote the particular elliptic in-
tegrals (5.188) and (5.189) of first and second kind that satisfy F(k, 0) = 0 and
E(k,0)= 0.

The functions F(k,ϕ) and E(k,ϕ) are frequently used, and for that reason very
detailed tables of their values have been compiled for 0 < k < 1 and 0≤ ϕ ≤ π/2.

As Abel showed, it is natural to study elliptic integrals in the complex domain, in
intimate connection with the so-called elliptic functions, which functions, which are
related to the elliptic integrals exactly as the function sinx, for example, is related
to the integral

∫ dϕ√
1−ϕ2

= arcsinϕ.

5.7.6 Problems and Exercises

1. Ostrogradskii’s35 method of separating off the rational part of the integral of a
proper rational fraction.

35M.V. Ostrogradskii (1801–1861) – prominent Russian specialist in theoretical mechanics and
mathematician, one of the founders of the applied area of research in the Petersburg mathematical
school.
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Let P(x)
Q(x)

be a proper rational fraction, let q(x) be the polynomial having the same

roots as Q(x), but with multiplicity 1, and let Q1(x)= Q(x)
q(x)

.
Show that

a) the following formula of Ostrogradskii holds:
∫

P(x)

Q(x)
dx = P1(x)

Q1(x)
+
∫

p(x)

q(x)
dx, (5.191)

where P1(x)
Q1(x)

and p(x)
q(x)

are proper rational fractions and
∫ p(x)

q(x)
dx is a transcendental

function.
(Because of this result, the fraction P1(x)

Q1(x)
in (5.191) is called the rational part of

the integral
∫

P(x)
Q(x)

dx.)
b) In the formula

P(x)

Q(x)
=
(

P1(x)

Q1(x)

)′
+ p(x)

q(x)

obtained by differentiating Ostrogradskii’s formula, the sum at the right hand side
can be given the denominator Q(x) after suitable cancellations.

c) The polynomials q(x), Q1(x), and then also the polynomials p(x), P1(x) can
be found algebraically, without even knowing the roots of Q(x). Thus the rational
part of the integral (5.191) can be found completely without even computing the
whole primitive.

d) Separate off the rational part of the integral (5.191) if

P(x) = 2x6 + 3x5 + 6x4 + 6x3 + 10x2 + 3x + 2,

Q(x) = x7 + 3x6 + 5x5 + 7x4 + 7x3 + 5x2 + 3x + 1

(see Example 17 in Sect. 5.5).

2. Suppose we are seeking the primitive
∫

R(cosx, sinx)dx, (5.192)

where R(u, v)= P(u,v)
Q(u,v)

is a rational function.
Show that

a) if R(−u,v)=R(u, v), then R(u, v) has the form R1(u
2, v);

b) if R(−u,v) = −R(u, v), then R(u, v) = u · R2(u
2, v) and the substitution

t = sinx rationalizes the integral (5.192);
c) If R(−u,−v)= R(u, v), then R(u, v)= R3(

u
v
, v2), and the substitution t =

tanx rationalizes the integral (5.192).

3. Integrals of the form
∫

R
(
x,
√

ax2 + bx + c
)

dx. (5.193)
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a) Verify that the integral (5.193) can be reduced to the integral of a rational
function by the following Euler substitutions:

t =√ax2 + bx + c±√ax, if a > 0,

t =
√

x−x1
x−x2

if x2 and x2 are real roots of the trinomial ax2 + bx + c.

b) Let (x0, y0) be a point of the curve y2 = ax2 + bx + c and t the slope of the
line passing through (x0, y0) and intersecting this curve in the point (x, y). Express
the coordinates (x, y) in terms of (x0, y0) and t and connect these formulas with
Euler’s substitutions.

c) A curve defined by an algebraic equation P(x, y)= 0 is unicursal if it admits
a parametric description x = x(t), y = y(t) in terms of rational functions x(t) and
y(t). Show that the integral

∫
R(x, y(x))dx, where R(u, v) is a rational function

and y(x) is an algebraic function satisfying the equation P(x, y) = 0 that defines
the unicursal curve, can be reduced to the integral of a rational function.

d) Show that the integral (5.193) can always be reduced to computing integrals
of the following three types:

∫
P(x)√

ax2 + bx + c
dx

∫
dx

(x − x0)k ·
√

ax2 + bx + c
,

∫
(Ax +B)dx

(x2 + px + a)m · √ax2 + bx + c
.

4. a) Show that the integral
∫

xm
(
a + bxn

)p dx

whose differential is a binomial, where m, n, and p are rational numbers, can be
reduced to the integral

∫
(a + bt)ptq dt, (5.194)

where p and q are rational numbers.
b) The integral (5.194) can be expressed in terms of elementary functions if one

of the three numbers p, q , and p + q is an integer. (Chebyshev showed that there
were no other cases in which the integral (5.194) could be expressed in elementary
functions.)

5. Elliptic integrals.

a) Any polynomial of degree three with real coefficients has a real root x0, and
can be reduced to a polynomial of the form t2(at4 + bt3 + ct2 + dt + e), where
a �= 0, by the substitution x − x0 = t2.

b) If R(u, v) is a rational function and P a polynomial of degree 3 or 4, the func-
tion R(x,

√
P(x)) can be reduced to the form R1(t,

√
at4 + bt3 + · · · + e), where

a �= 0.
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c) A fourth-degree polynomial ax4 + bx3 + · · · + e can be represented as a
product a(x2+p1x + q1)(x

2+p2x + q2) and can always be brought into the form
(M1+N1t

2)(M2+N2t
2)

(γ t+1)2 by a substitution x = αt+β
γ t+1 .

d) A function R(x,
√

ax4 + bx3 + · · · + e) can be reduced to the form

R1
(
t,

√
A
(
1+m1t2

)(
1+m2t2

))

by a substitution x = αt+β
γ t+1 .

e) A function R(x,
√

y) can be represented as a sum R1(x, y)+ R2(x,y)√
y

, where
R1 and R2 are rational functions.

f) Any rational function can be represented as the sum of even and odd rational
functions.

g) If the rational function R(x) is even, it has the form r(x2); if odd, it has the
form xr(x2), where r(x) is a rational function.

h) Any function R(x,
√

y) can be reduced to the form

R1(x, y)+ R2(x
2, y)√
y

+ R3(x
2, y)√
y

x.

i) Up to a sum of elementary terms, any integral of the form
∫

R(x,
√

P(x))dx,
where P(x) is a polynomial of degree four, can be reduced to an integral

∫
r(t2)dt

√
A(1+m1t2)(1+m2t2)

,

where r(t) is a rational function and A=±1.
j) If |m1| > |m2| > 0, one of the substitutions

√
m1t = x,

√
m1t =

√
1− x2,√

m1t = x√
1−x2

, and
√

m1t = 1√
1−x2

will reduce the integral
∫

r(t2)dt√
A(1+m1t

2)(1+m2t
2)

to the form
∫

r̃(x2)dx√
(1−x2)(1−k2x2)

, where 0 < k < 1 and r̃ is a rational function.

k) Derive a formula for lowering the exponents 2n and m for the integrals

∫
x2n dx

√
(1− x2)(1− k2x2)

,

∫
dx

(x2 − a)m ·√(1− x2)(1− k2x2)
.

l) Any elliptic integral
∫

R
(
x,
√

P(x)
)

dx,

where P is a fourth-degree polynomial, can be reduced to one of the canonical forms
(5.185), (5.186), (5.187), up to a sum of terms consisting of elementary functions.

m) Express the integral
∫ dx√

1+x3
in terms of canonical elliptic integrals.

n) Express the primitives of the functions 1√
cos 2x

and 1√
cosα−cosx

in terms of
elliptic integrals.
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6. Using the notation introduced below, find primitives of the following nonelemen-
tary special functions, up to a linear function Ax +B;

a) Ei(x)=
∫

ex

x
dx (the exponential integral);

b) Si(x)=
∫

sinx

x
dx (the sine integral);

c) Ci(x)=
∫

cosx

x
dx (the cosine integral);

d) Shi(x)=
∫

sinhx

x
dx (the hyperbolic sine integral);

e) Chi(x)=
∫

coshx

x
dx (the hyperbolic cosine integral);

f) S(x)=
∫

sinx2 dx

g) C(x)=
∫

cosx2 dx

⎫
⎪⎬

⎪⎭
(the Fresnel integrals);

h) Φ(x)=
∫

e−x2
dx (the Euler–Poisson integral);

i) li(x)=
∫

dx

lnx
(the logarithmic integral).

7. Verify that the following equalities hold, up to a constant:

a) Ei(x)= li(x);
b) Chi(x)= 1

2 [Ei(x)+ Ei(−x)];
c) Shi(x)= 1

2 [Ei(x)− Ei(−x)];
d) Ei(ix)= Ci(x)+ i Si(x);
e) eiπ/4Φ(xe−iπ/4)= C(x)+ iS(x).

8. A differential equation of the form

dy

dx
= f (x)

g(y)

is called an equation with variables separable, since it can be rewritten in the form

g(y)dy = f (x)dx,

in which the variables x and y are separated. Once this is done, the equation can be
solved as

∫
g(y)dy =

∫
f (x)dx + c,

by computing the corresponding integrals.
Solve the following equations:

a) 2x3yy′ + y2 = 2;
b) xyy′ = √1+ x2;
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c) y′ = cos(y + x), setting u(x)= y(x)+ x;
d) x2y′ − cos 2y = 1, and exhibit the solution satisfying the condition y(x)→ 0

as x→+∞.
e) 1

x
y′(x)= Si(x);

f) y′(x)
cosx

= C(x).

9. A parachutist has jumped from an altitude of 1.5 km and opened the parachute at
an altitude of 0.5 km. For how long a time did he fall before opening the parachute?
Assume the limiting velocity of fall for a human being in air of normal density is
50 m/s. Solve this problem assuming that the air resistance is proportional to:

a) the velocity;
b) the square of the velocity.

Neglect the variation of pressure with altitude.

10. It is known that the velocity of outflow of water from a small aperture at the
bottom of a vessel can be computed quite precisely from the formula 0.6

√
2gH ,

where g is the acceleration of gravity and H the height of the surface of the water
above the aperture.
A cylindrical vat is set upright and has an opening in its bottom. Half of the water
from the full vat flows out in 5 minutes. How long will it take for all the water to
flow out?
11. What shape should a vessel be, given that it is to be a solid of revolution, in
order for the surface of the water flowing out of the bottom to fall at a constant rate
as water flows out its bottom? (For the initial data, see Exercise 10.)
12. In a workshop with a capacity of 104 m3 fans deliver 103 m3 of fresh air per
minute, containing 0.04 % CO2, and the same amount of air is vented to the outside.
At 9:00 AM the workers arrive and after half an hour, the content of CO2 in the air
rises to 0.12 %. Evaluate the carbon dioxide content of the air by 2:00 PM.



Chapter 6
Integration

6.1 Definition of the Integral and Description of the Set
of Integrable Functions

6.1.1 The Problem and Introductory Considerations

Suppose a point is moving along the real line, with s(t) being its coordinate at time t

and v(t)= s′(t) its velocity at the same instant t . Assume that we know the position
s(t0) of the point at time t0 and that we receive information on its velocity. Having
this information, we wish to compute s(t) for any given value of time t > t0.

If we assume that the velocity v(t) varies continuously, the displacement of
the point over a small time interval can be computed approximately as the prod-
uct v(τ)Δt of the velocity at an arbitrary instant τ belonging to that time interval
and the magnitude Δt of the time interval itself. Taking this observation into ac-
count, we partition the interval [t0, t] by marking some times ti (i = 0, . . . , n) so that
t0 < t1 < · · ·< tn = t and so that the intervals [ti−1, ti] are small. Let Δti = ti − ti−1
and τi ∈ [ti−1, ti]. Then we have the approximate equality

s(t)− s(t0)≈
n∑

i=1

v(τi)Δti .

According to our picture of the situation, this approximate equality will become
more precise if we partition the closed interval [t0, t] into smaller and smaller inter-
vals. Thus we must conclude that in the limit as the length λ of the largest of these
intervals tends to zero we shall obtain an exact equality

lim
λ→0

n∑

i=1

v(τi)Δti = s(t)− s(t0). (6.1)

This equality is none other than the Newton–Leibniz formula (fundamental the-
orem of calculus), which is fundamental in all of analysis. It enables us on the one
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Fig. 6.1

hand to find a primitive s(t) numerically from its derivative v(t), and on the other
hand to find the limit of sums

∑n
i=1 v(τi)Δti on the left-hand side from a primitive

s(t) found by any means whatever.
Such sums, called Riemann sums, are encountered in a wide variety of situations.
Let us attempt, for example, following Archimedes, to find the area under the

parabola y = x2 above the closed interval [0,1] (see Fig. 6.1). Without going into
detail here as to the meaning of the area of a figure, which we shall take up later,
like Archimedes, we shall work by the method of exhausting the figure with simple
figures – rectangles, whose areas we know how to compute. After partitioning the
closed interval [0,1] by points 0= x0 < x1 < · · ·< xn = 1 into tiny closed intervals
[xi−1, xi], we can obviously compute the required area σ as the sum of the areas of
the rectangles shown in the figure:

σ ≈
n∑

i=1

x2
i−1Δxi;

here Δxi = xi − xi−1. Setting f (x)= x2 and ξi = xi−1, we rewrite the formula as

σ ≈
n∑

i=1

f (ξi)Δxi.

In this notation we have, in the limit,

lim
λ→0

n∑

i=1

f (ξi)Δxi = σ (6.2)

where, as above, λ is the length of the longest interval [xi−1, xi] in the partition.
Formula (6.2) differs from (6.1) only in the notation. Forgetting for a moment the

geometric meaning of f (ξi)Δxi and regarding x as time and f (x) as velocity, we
find a primitive F(x) for the function f (x) and then, by formula (6.1) we find that
σ = F(1)− F(0).

In our case f (x)= x2, so that F(x)= 1
3x3 + c, and σ = F(1)− F(0)= 1

3 .
This is Archimedes’ result, which he obtained by a direct computation of the

limit in (6.2).
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A limit of integral sums is called an integral. Thus the Newton–Leibniz for-
mula (6.1) connects the integral with the primitive.

We now turn to precise formulations and the verification of what was obtained
above on the heuristic level from general considerations.

6.1.2 Definition of the Riemann Integral

a. Partitions

Definition 1 A partition P of a closed interval [a, b], a < b, is a finite system of
points x0, . . . , xn of the interval such that a = x0 < x1 < · · ·< xn = b.

The intervals [xi−1, xi], (i = 1, . . . , n) are called the intervals of the partition P .
The largest of the lengths of the intervals of the partition P , denoted λ(P ), is

called the mesh of the partition.

Definition 2 We speak of a partition with distinguished points (P, ξ) on the closed
interval [a, b] if we have a partition P of [a, b] and a point ξi ∈ [xi−1, xi] has been
chosen in each of the intervals of the partition [xi−1, xi] (i = 1, . . . , n).

We denote the set of points (ξ1, . . . , ξn) by the single letter ξ .

b. A Base in the Set of Partitions

In the set P of partitions with distinguished points on a given interval [a, b], we
consider the following base B = {Bd}. The element Bd , d > 0, of the base B consists
of all partitions with distinguished points (P, ξ) on [a, b] for which λ(P ) < d .

Let us verify that {Bd}, d > 0 is actually a base in P .
First Bd �= ∅. In fact, for any number d > 0, it is obvious that there exists a

partition P of [a, b] with mesh λ(P ) < d (for example, a partition into n congruent
closed intervals). But then there also exists a partition (P, ξ) with distinguished
points for which λ(P ) < d .

Second, if d1 > 0, d2 > 0, and d = min{d1, d2}, it is obvious that Bd1 ∩ Bd2 =
Bd ∈ B.

Hence B = {Bd} is indeed a base in P .

c. Riemann Sums

Definition 3 If a function f is defined on the closed interval [a, b] and (P, ξ) is a
partition with distinguished points on this closed interval, the sum

σ(f ;P, ξ) :=
n∑

i=1

f (ξi)Δxi, (6.3)
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where Δxi = xi − xi−1, is the Riemann sum of the function f corresponding to the
partition (P, ξ) with distinguished points on [a, b].

Thus, when the function f is fixed, the Riemann sum σ(f ;P, ξ) is a function
Φ(p)= σ(f ;p) on the set P of all partitions p = (P, ξ) with distinguished points
on the closed interval [a, b].

Since there is a base B in P , one can ask about the limit of the function Φ(p)

over that base.

d. The Riemann Integral

Let f be a function defined on a closed interval [a, b].
Definition 4 The number I is the Riemann integral of the function f on the closed
interval [a, b] if for every ε > 0 there exists δ > 0 such that

∣
∣
∣
∣
∣
I −

n∑

i=1

f (ξi)Δxi

∣
∣
∣
∣
∣
< ε

for any partition (P, ξ) with distinguished points on [a, b] whose mesh λ(P ) is less
than δ.

Since the partitions p = (P, ξ) for which λ(P ) < δ form the element Bδ of the
base B introduced above in the set P of partitions with distinguished points, Defi-
nition 4 is equivalent to the statement

I = lim
B

Φ(p),

that is, the integral I is the limit over B of the Riemann sums of the function f

corresponding to partitions with distinguished points on [a, b].
It is natural to denote the base B by λ(P )→ 0, and then the definition of the

integral can be rewritten as

I = lim
λ(P )→0

n∑

i=1

f (ξi)Δxi. (6.4)

The integral of f (x) over [a, b] is denoted
∫ b

a

f (x)dx,

in which the numbers a and b are called respectively the lower and upper limits of
integration. The function f is called the integrand, f (x)dx is called the differential
form, and x is the variable of integration. Thus

∫ b

a

f (x)dx := lim
λ(P )→0

n∑

i=1

f (ξi)Δxi. (6.5)



6.1 Definition of the Integral 335

Definition 5 A function f is Riemann integrable on the closed interval [a, b] if the
limit of the Riemann sums in (6.5) exists as λ(P )→ 0 (that is, the Riemann integral
of f is defined).

The set of Riemann-integrable functions on a closed interval [a, b] will be de-
noted R[a, b].

Since we shall not be considering any integrals except the Riemann integral for a
while, we shall agree for the sake of brevity to say simply “integral” and “integrable
function” instead of “Riemann integral” and “Riemann-integrable function”.

6.1.3 The Set of Integrable Functions

By the definition of the integral (Definition 4) and its reformulation in the forms
(6.4) and (6.5), an integral is the limit of a certain special function Φ(p) =
σ(f ;P, ξ), the Riemann sum, defined on the set P of partitions p = (P, ξ) with
distinguished points on [a, b]. This limit is taken with respect to the base B in P
that we have denoted λ(P )→ 0.

Thus the integrability or nonintegrability of a function f on [a, b] depends on
the existence of this limit.

By the Cauchy criterion, this limit exists if and only if for every ε > 0 there exists
an element Bδ ∈ B in the base such that

∣
∣Φ
(
p′
)−Φ

(
p′′
)∣∣< ε

for any two points p′,p′′ in Bδ .
In more detailed notation, what has just been said means that for any ε > 0 there

exists δ > 0 such that
∣
∣σ
(
f ;P ′, ξ ′)− σ

(
f ;P ′′, ξ ′′)∣∣< ε

or, what is the same,

∣
∣
∣
∣
∣

n′∑

i=1

f
(
ξ ′i
)
Δx′i −

n′′∑

i=1

f
(
ξ ′′i
)
Δx′′i

∣
∣
∣
∣
∣
< ε (6.6)

for any partitions (P ′, ξ ′) and (P ′′, ξ ′′) with distinguished points on the interval
[a, b] with λ(P ′) < δ and λ(P ′′) < δ.

We shall use the Cauchy criterion just stated to find first a simple necessary con-
dition, then a sufficient condition for Riemann integrability.

a. A Necessary Condition for Integrability

Proposition 1 A necessary condition for a function f defined on a closed interval
[a, b] to be Riemann integrable on [a, b] is that f be bounded on [a, b].
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In short,
(
f ∈R[a, b])⇒ (

f is bounded on [a, b]).

Proof If f is not bounded on [a, b], then for any partition P of [a, b] the func-
tion f is unbounded on at least one of the intervals [xi−1, xi] of P . This means
that, by choosing the point ξi ∈ [xi−1, xi] in different ways, we can make the
quantity |f (ξi)Δxi | as large as desired. But then the Riemann sum σ(f ;P, ξ) =∑n

i=1 f (ξi)Δxi can also be made as large as desired in absolute value by changing
only the point ξi in this interval.

It is clear that there can be no possibility of a finite limit for the Riemann sums in
such a case. That was in any case clear from the Cauchy criterion, since relation (6.6)
cannot hold in that case, even for arbitrarily fine partitions. �

As we shall see, the necessary condition just obtained is far from being both
necessary and sufficient for integrability. However, it does enable us to restrict con-
sideration to bounded functions.

b. A Sufficient Condition for Integrability and the Most Important Classes
of Integrable Functions

We begin with some notation and remarks that will be used in the explanation to
follow.

We agree that when a partition P

a = x0 < x1 < · · ·< xn = b

is given on the interval [a, b], we shall use the symbol Δi to denote the interval
[xi−1, xi] along with Δxi as a notation for the difference xi − xi−1.

If a partition P̃ of the closed interval [a, b] is obtained from the partition P by
the adjunction of new points to P , we call P̃ a refinement of P .

When a refinement P̃ of a partition P is constructed, some (perhaps all) of the
closed intervals Δi = [xi−1, xi] of the partition P themselves undergo partitioning:
xi−1 = xi0 < · · · < xini

= xi . In that connection, it will be useful for us to label
the points of P̃ by double indices. In the notation xij the first index means that
xij ∈ Δi , and the second index is the ordinal number of the point on the closed
interval Δi . It is now natural to set Δxij := xij − xij−1 and Δij := [xij−1, xij ].
Thus Δxi =Δxi1 + · · · +Δxini

.
As an example of a partition that is a refinement of both the partition P ′ and P ′′

one can take P̃ = P ′ ∪ P ′′, obtained as the union of the points of the two partitions
P ′ and P ′′.

We recall finally that, as before, ω(f ;E) denotes the oscillation of the function
f on the set E, that is

ω(f ;E) := sup
x′,x′′∈E

∣
∣f
(
x′
)− f

(
x′′
)∣
∣.
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In particular, ω(f ;Δi) is the oscillation of f on the closed interval Δi . This oscil-
lation is necessarily finite if f is a bounded function.

We now state and prove a sufficient condition for integrability.

Proposition 2 A sufficient condition for a bounded function f to be integrable on
a closed interval [a, b] is that for every ε > 0 there exists a number δ > 0 such that

n∑

i=1

ω(f ;Δi)Δxi < ε

for any partition P of [a, b] with mesh λ(P ) < δ.

Proof Let P be a partition of [a, b] and P̃ a refinement of P . Let us estimate the
difference between the Riemann sums σ(f ; P̃ , ξ̃ )− σ(f ;P, ξ). Using the notation
introduced above, we can write

∣
∣σ(f ; P̃ , ξ̃ )− σ(f ;P, ξ)

∣
∣ =

∣
∣
∣
∣
∣

n∑

i=1

ni∑

j=1

f (ξij )Δxij −
n∑

i=1

f (ξi)Δxi

∣
∣
∣
∣
∣
=

=
∣
∣
∣
∣
∣

n∑

i=1

ni∑

j=1

f (ξij )Δxij −
n∑

i=1

ni∑

j=1

f (ξi)Δxij

∣
∣
∣
∣
∣
=

=
∣
∣
∣
∣
∣

n∑

i=1

ni∑

j=1

(
f (ξij )− f (ξi)

)
Δxij

∣
∣
∣
∣
∣
≤

≤
n∑

i=1

ni∑

j=1

∣
∣f (ξij )− f (ξi)

∣
∣Δxij ≤

≤
n∑

i=1

ni∑

j=1

ω(f ;Δi)Δxij =
n∑

i=1

ω(f ;Δi)Δxi.

In this computation we have used the relation Δxi =∑ni

j=1 Δxij and the inequality
|f (ξij )− f (ξi)| ≤ ω(f ;Δi), which holds because ξij ∈Δij ⊂Δi and ξi ∈Δi .

It follows from the estimate for the difference of the Riemann sums that if the
function satisfies the sufficient condition given in the statement of Proposition 2,
then for any ε > 0 we can find δ > 0 such that

∣
∣σ(f ; P̃ , ξ̃ )− σ(f ;P, ξ)

∣
∣<

ε

2

for any partition P of [a, b] with mesh λ(P ) < δ, any refinement P̃ of P , and any
choice of the sets of distinguished points ξ and ξ̃ .

Now if (P ′, ξ ′) and (P ′′, ξ ′′) are arbitrary partitions with distinguished points
on [a, b] whose meshes satisfy λ(P ′) < δ and λ(P ′′) < δ, then, by what has just
been proved, the partition P̃ = P ′ ∪ P ′′, which is a refinement of both of them,
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must satisfy

∣
∣σ(f ; P̃ , ξ̃ )− σ

(
f ;P ′, ξ ′)∣∣ < ε

2
,

∣
∣σ(f ; P̃ , ξ̃ )− σ

(
f ;P ′′, ξ ′′)∣∣ < ε

2
.

It follows that
∣
∣σ
(
f ;P ′, ξ ′)− σ

(
f ;P ′′, ξ ′′)∣∣< ε,

provided λ(P ′) < δ and λ(P ′′) < δ. Therefore, by the Cauchy criterion, the limit of
the Riemann sums exists:

lim
λ(P )→0

n∑

i=1

f (ξi)Δxi,

that is f ∈R[a, b]. �

Corollary 1 (f ∈ C[a, b])⇒ (f ∈R[a, b]), that is, every continuous function on
a closed interval is integrable on that closed interval.

Proof If a function is continuous on a closed interval, it is bounded there, so that
the necessary condition for integrability is satisfied in this case. But a continuous
function on a closed interval is uniformly continuous on that interval. Therefore, for
every ε > 0 there exists δ > 0 such that ω(f ;Δ) < ε

b−a
on any closed interval Δ⊂

[a, b] of length less than δ. Then for any partition P with mesh λ(P ) < δ we have

n∑

i=1

ω(f ;Δi)Δxi <
ε

b− a

n∑

i=1

Δxi = ε

b− a
(b− a)= ε.

By Proposition 2, we can now conclude that f ∈R[a, b]. �

Corollary 2 If a bounded function f on a closed interval [a, b] is continuous ev-
erywhere except at a finite set of points, then f ∈R[a, b].

Proof Let ω(f ; [a, b]) ≤ C <∞, and suppose f has k points of discontinuity on
[a, b]. We shall verify that the sufficient condition for integrability of the function f

is satisfied.
For a given ε > 0 we choose the number δ1 = ε

8C·k and construct the δ1-
neighborhood of each of the k points of discontinuity of f on [a, b]. The com-
plement of the union of these neighborhoods in [a, b] consists of a finite number of
closed intervals, on each of which f is continuous and hence uniformly continuous.
Since the number of these intervals is finite, given ε > 0 there exists δ2 > 0 such
that on each interval Δ whose length is less than δ2 and which is entirely contained
in one of the closed intervals just mentioned, on which f is continuous, we have
ω(f ;Δ) < ε

2(b−a)
. We now choose δ =min{δ1, δ2}.
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Let P be an arbitrary partition of [a, b] for which λ(P ) < δ. We break the sum∑n
i=1 ω(f ;Δi)Δxi corresponding to the partition P into two parts:

n∑

i=1

ω(f ;Δi)Δxi =
∑′

ω(f ;Δi)Δxi +
∑′′

ω(f ;Δi)Δxi.

The sum
∑′ contains the terms corresponding to intervals Δi of the partition having

no points in common with any of the δ1-neighborhoods of the points of discontinu-
ity. For these intervals Δi we have ω(f ;Δi) < ε

2(b−a)
, and so

∑′
ω(f ;Δi)Δxi <

ε

2(b− a)

∑′
Δxi ≤ ε

2(b− a)
(b− a)= ε

2
.

The sum of the lengths of the remaining intervals of the partition P , as one can
easily see, is at most (δ + 2δ1 + δ)k ≤ 4 ε

8C·k · k = ε
2C

, and therefore

∑′′
ω(f ;Δi)Δxi ≤ C

∑′′
Δxi < C · ε

2C
= ε

2
.

Thus we find that for λ(P ) < δ,

n∑

i=1

ω(f ;Δi)Δxi < ε,

that is, the sufficient condition for integrability holds, and so f ∈R[a, b]. �

Corollary 3 A monotonic function on a closed interval is integrable on that inter-
val.

Proof It follows from the monotonicity of f on [a, b] that ω(f ; [a, b])= |f (b)−
f (a)|. Suppose ε > 0 is given. We set δ = ε

|f (b)−f (a)| . We assume that f (b) −
f (a) �= 0, since otherwise f is constant, and there is no doubt as to its integrability.
Let P be an arbitrary partition of [a, b] with mesh λ(P ) < δ.

Then, taking account of the monotonicity of f , we have

n∑

i=1

ω(f ;Δi)Δxi < δ

n∑

i=1

ω(f ;Δi)= δ

n∑

i=1

∣
∣f (xi)− f (xi−1)

∣
∣=

= δ

∣
∣
∣
∣
∣

n∑

i=1

(
f (xi)− f (xi−1)

)
∣
∣
∣
∣
∣
= δ

∣
∣f (b)− f (a)

∣
∣= ε.

Thus f satisfies the sufficient condition for integrability, and therefore f ∈
R[a, b]. �

A monotonic function may have a (countably) infinite set of discontinuities on a
closed interval. For example, the function defined by the relations
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f (x)=
{

1− 1
2n−1 for 1− 1

2n−1 ≤ x < 1− 1
2n , n ∈N,

1 for x = 1

on [0,1] is nondecreasing and has a discontinuity at every point of the form 1− 1
2n ,

n ∈N.

Remark We note that, although we are dealing at the moment with real-valued func-
tions on an interval, we have made no use of the assumption that the functions are
real-valued rather than complex-valued or even vector-valued functions of a point of
the closed interval [a, b], either in the definition of the integral or in the propositions
proved above, except Corollary 3.

On the other hand, the concept of upper and lower Riemann sums, to which we
now turn, is specific to real-valued functions.

Definition 6 Let f : [a, b] → R be a real-valued function that is defined and
bounded on the closed interval [a, b], let P be a partition of [a, b], and let Δi

(i = 1, . . . , n) be the intervals of the partition P . Let mi = infx∈Δi
f (x) and

Mi = supx∈Δi
f (x) (i = 1, . . . , n).

The sums

s(f ;P) :=
n∑

i=1

miΔxi

and

S(f ;P) :=
n∑

i=1

MiΔxi

are called respectively the lower and upper Riemann sums of the function f on the
interval [a, b] corresponding to the partition P of that interval.1 The sums s(f ;P)

and S(f ;P) are also called the lower and upper Darboux sums corresponding to
the partition P of [a, b].

If (P, ξ) is an arbitrary partition with distinguished points on [a, b], then obvi-
ously

s(f ;P)≤ σ(f ;P, ξ)≤ S(f ;P). (6.7)

Lemma 1

s(f ;P)= inf
ξ

σ (f ;P, ξ),

S(f ;P)= sup
ξ

σ (f ;P, ξ).

1The term “Riemann sum” here is not quite accurate, since mi and Mi are not always values of the
function f at some point ξi ∈Δi .
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Proof Let us verify, for example, that the upper Darboux sum corresponding to
a partition P of the closed interval [a, b] is the least upper bound of the Riemann
sums corresponding to the partitions with distinguished points (P, ξ), the supremum
being taken over all sets ξ = (ξ1, . . . , ξn) of distinguished points.

In view of (6.7), it suffices to prove that for any ε > 0 there is a set ξ of distin-
guished points such that

S(f ;P) < σ(f ;P, ξ)+ ε. (6.8)

By definition of the numbers Mi , for each i ∈ {1, . . . , n} there is a point ξ i ∈Δi

at which Mi < f (ξ i)+ ε
b−a

. Let ξ = (ξ1, . . . , ξn). Then

n∑

i=1

MiΔxi <

n∑

i=1

(

f (ξ i)+
ε

b− a

)

Δxi =
n∑

i=1

f (ξ i)Δxi + ε,

which completes the proof of the second assertion of the lemma. The first assertion
is verified similarly. �

From this lemma and inequality (6.7), taking account of the definition of the
Riemann integral, we deduce the following proposition.

Proposition 3 A bounded real-valued function f : [a, b] → R is Riemann-integra-
ble on [a, b] if and only if the following limits exist and are equal to each other:

I = lim
λ(P )→0

s(f ;P), I = lim
λ(P )→0

S(f ;P). (6.9)

When this happens, the common value I = I = I is the integral

∫ b

a

f (x)dx.

Proof Indeed, if the limits (6.9) exist and are equal, we conclude by the properties
of limits and by (6.7) that the Riemann sums have a limit and that

I = lim
λ(P )→0

σ(f ;P, ξ)= I .

On the other hand, if f ∈R[a, b], that is, the limit

lim
λ(P )→0

σ(f ;P, ξ)= I

exists, we conclude from (6.7) and (6.8) that the limit limλ(P )→0 S(f ;P)= I exists
and I = I .

Similarly one can verify that limλ(P )→0 s(f ;P)= I = I . �

As a corollary of Proposition 3, we obtain the following sharpening of Proposi-
tion 2.
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Proposition 2′ A necessary and sufficient condition for a function f : [a, b] → R

defined on a closed interval [a, b] to be Riemann integrable on [a, b] is the following
relation:

lim
λ(P )→0

n∑

i=1

ω(f ;Δi)Δxi = 0. (6.10)

Proof Taking account of Proposition 2, we have only to verify that condition (6.10)
is necessary for f to be integrable.

We remark that ω(f ;Δi)=Mi −mi , and therefore

n∑

i=1

ω(f ;Δi)Δxi =
n∑

i=1

(Mi −mi)Δxi = S(f ;P)− s(f ;P),

and (6.10) now follows from Proposition 3 if f ∈R[a, b]. �

c. The Vector Space R[a,b]
Many operations can be performed on integrable functions without going outside
the class of integrable functions R[a, b].

Proposition 4 If f,g ∈R[a, b], then

a) (f + g) ∈R[a, b];
b) (αf ) ∈R[a, b], where α is a numerical coefficient;
c) |f | ∈R[a, b];
d) f |[c,d] ∈R[c, d] if [c, d] ⊂ [a, b];
e) (f · g) ∈R[a, b].

We are considering only real-valued functions at the moment, but it is worthwhile
to note that properties a), b), c), and d) turn out to be valid for complex-valued and
vector-valued functions. For vector-valued functions, in general, the product f · g is
not defined, so that property e) is not considered for them. However, this property
continues to hold for complex-valued functions.

We now turn to the proof of Proposition 4.

Proof a) This assertion is obvious since

n∑

i=1

(f + g)(ξi)Δxi =
n∑

i=1

f (ξi)Δxi +
n∑

i=1

g(ξi)Δxi.

b) This assertion is obvious, since

n∑

i=1

(αf )(ξi)Δxi = α

n∑

i=1

f (ξi)Δxi.
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c) Since ω(|f |;E)≤ ω(f ;E), we can write

n∑

i=1

ω(|f |;Δi)Δxi ≤
n∑

i=1

ω(f ;Δi)Δxi,

and conclude by Proposition 2 that (f ∈R[a, b])⇒ (|f | ∈R[a, b]).
d) We want to verify that the restriction f |[c,d| to [c, d] of a function f that is

integrable on the closed interval [a, b] is integrable on [c, d] if [c, d] ⊂ [a, b]. Let
π be a partition of [c, d]. By adding points to π , we extend it to a partition P of the
closed interval [a, b] so as to have λ(P ) ≤ λ(π). It is clear that one can always do
this.

We can then write
∑

π
ω(f |[c,d];Δi)Δxi ≤

∑

P
ω(f ;Δi)Δxi,

where
∑

π is the sum over all the intervals of the partition π and
∑

P the sum over
all the intervals of P .

By construction, as λ(π)→ 0 we have λ(P )→ 0 also, and so by Proposition 2′
we conclude from this inequality that (f ∈ R[a, b])⇒ (f ∈ R[c, d]) if [c, d] ⊂
[a, b].

e) We first verify that if f ∈R[a, b], then f 2 ∈R[a, b].
If f ∈R[a, b], then f is bounded on [a, b]. Let |f (x)| ≤ C <∞ on [a, b]. Then

∣
∣f 2(x1)− f 2(x2)

∣
∣= ∣

∣
(
f (x1)+ f (x2)

) · (f (x1)− f (x2)
)∣
∣≤ 2C

∣
∣f (x1)− f (x2)

∣
∣,

and therefore ω(f 2;E)≤ 2Cω(f ;E) if E ⊂ [a, b]. Hence

n∑

i=1

ω
(
f 2;Δi

)
Δxi ≤ 2C

n∑

i=1

ω(f ;Δi)Δxi,

from which we conclude by Proposition 2′ that

(
f ∈R[a, b])⇒ (

f 2 ∈R[a, b]).
We now turn to the general case. We write the identity

(f · g)(x)= 1

4

[
(f + g)2(x)− (f − g)2(x)

]
.

From this identity and the result just proved, together with a) and b), which have
already been proved, we conclude that

(
f ∈R[a, b])∧ (g ∈R[a, b])⇒ (

f · g ∈R[a, b]). �

You already know what a vector space is from your study of algebra. The real-
valued functions defined on a set can be added and multiplied by a real number,
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both operations being performed pointwise, and the result is another real-valued
function on the same set. If functions are regarded as vectors, one can verify that
all the axioms of a vector space over the field of real numbers hold, and the set of
real-valued functions is a vector space with respect to the operations of pointwise
addition and multiplication by real numbers.

In parts a) and b) of Proposition 4 it was asserted that addition of integrable
functions and multiplication of an integrable function by a number do not lead out-
side the class R[a, b] of integrable functions. Thus R[a, b] is itself a vector space –
a subspace of the vector space of real-valued functions defined on the closed interval
[a, b].

d. Lebesgue’s Criterion for Riemann Integrability of a Function

In conclusion we present, without proof for the time being, a theorem of Lebesgue
giving an intrinsic description of a Riemann-integrable function.

To do this, we introduce the following concept, which is useful in its own right.

Definition 7 A set E ⊂ R has measure zero or is of measure zero (in the sense of
Lebesgue) if for every number ε > 0 there exists a covering of the set E by an at
most countable system {Ik} of intervals, the sum of whose lengths

∑∞
k=1 |Ik| is at

most ε.
Since the series

∑∞
k=1 |Ik| converges absolutely, the order of summation of the

lengths of the intervals of the covering does not affect the sum (see Proposition 4 of
Sect. 5.5.2), so that this definition is unambiguous.

Lemma 2 a) A single point and a finite number of points are sets of measure zero.
b) The union of a finite or countable number of sets of measure zero is a set of

measure zero.
c) A subset of a set of measure zero is itself of measure zero.
d) A closed interval [a, b] with a < b is not a set of measure zero.

Proof a) A point can be covered by one interval of length less than any preassigned
number ε > 0; therefore a point is a set of measure zero. The rest of a) then follows
from b).

b) Let E =⋃
n En be an at most countable union of sets En of measure zero.

Given ε > 0, for each En we construct a covering {In
k } of En such that

∑
k |In

k |<
ε

2n .
Since the union of an at most countable collection of at most countably many

sets is itself at most countable, the intervals In
k , k,n ∈N, form an at most countable

covering of the set E, and

∑

n,k

∣
∣In

k

∣
∣<

ε

2
+ ε

22
+ · · · + ε

2n
+ · · · = ε.
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The order of summation
∑

n,k |In
k | on the indices n and k is of no importance,

since the series converges to the same sum for any order of summation if it converges
in even one ordering. Such is the case here, since any partial sums of the series are
bounded above by ε.

Thus E is a set of measure zero in the sense of Lebesgue.
c) This statement obviously follows immediately from the definition of a set of

measure zero and the definition of a covering.
d) Since every covering of a closed interval by open intervals contains a finite

covering, the sum of the lengths of which obviously does not exceed the sum of the
lengths of the intervals in the original covering, it suffices to verify that the sum of
the lengths of open intervals forming a finite covering of a closed interval [a, b] is
not less than the length b− a of that closed interval.

We shall carry out an induction on the number of intervals in the covering.
For n= 1, that is, when the closed interval [a, b] is contained in one open interval

(α,β), it is obvious that α < a < b < β and β − α > b− a.
Suppose the statement is proved up to index k ∈ N inclusive. Consider a cover-

ing consisting of k + 1 open intervals. We take an interval (α1, α2) containing the
point a. If α2 ≥ b, then α2 − α1 > b − a, and the result is proved. If a < α2 < b,
the closed interval [α2, b] is covered by a system of at most k intervals, the sum of
whose lengths, by the induction assumption, must be at least b− α2. But

b− a = (b− α2)+ α2 − a < (b− α2)+ (α2 − α1),

and so the sum of the lengths of all the intervals of the original covering of the
closed interval [a, b] was greater than its length b− a. �

It is interesting to note that by a) and b) of Lemma 2 the set Q of rational points
on the real line R is a set of measure zero, which seems rather surprising at first
sight, upon comparison with part d) of the same lemma.

Definition 8 If a property holds at all points of a set X except possibly the points
of a set of measure zero, we say that this property holds almost everywhere on X or
at almost every point of X.

We now state Lebesgue’s criterion for integrability.

Theorem A function defined on a closed interval is Riemann integrable on that
interval if and only if it is bounded and continuous at almost every point.

Thus,
(
f ∈R[a, b])⇔ (

f is bounded on [a, b])∧
∧ (f is continuous almost everywhere on [a, b]).

It is obvious that one can easily derive Corollaries 1, 2, and 3 and Proposition 4
from the Lebesgue criterion and the properties of sets of measure zero proved in
Lemma 2.
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We shall not prove the Lebesgue criterion here, since we do not need it to work
with the rather regular functions we shall be dealing with for the present. However,
the essential ideas involved in the Lebesgue criterion can be explained immediately.

Proposition 2′ contained a criterion for integrability expressed by relation (6.10).
The sum

∑n
i=1 ω(f ;Δi)Δxi can be small on the one hand because of the fac-

tors ω(f ;Δi), which are small in small neighborhoods of points of continuity
of the function. But if some of the closed intervals Δi contain points of discon-
tinuity of the function,then ω(f ;Δi) does not tend to zero for these points, no
matter how fine we make the partition P of the closed interval [a, b]. However,
ω(f ;Δi) ≤ ω(f ; [a, b]) <∞ since f is bounded on [a, b]. Hence the sum of the
terms containing points of discontinuity will also be small if the sum of the lengths
of the intervals of the partition that cover the set of points of discontinuity is small;
more precisely, if the increase in the oscillation of the function on some intervals
of the partition is compensated for by the smallness of the total lengths of these
intervals.

A precise realization and formulation of these observations amounts to the
Lebesgue criterion.

We now give two classical examples to clarify the property of Riemann integra-
bility for a function.

Example 1 The Dirichlet function

D(x)=
{

1 for x ∈Q,

0 for x ∈R\Q,

on the interval [0,1] is not integrable on that interval, since for any partition P of
[0,1] one can find in each interval Δi of the partition both a rational point ξ ′i and an
irrational point ξ ′′i . Then

σ
(
f ;P, ξ ′

)=
n∑

i=1

1 ·Δxi = 1,

while

σ
(
f ;P, ξ ′′

)=
n∑

i=1

0 ·Δxi = 0.

Thus the Riemann sums of the function D(x) cannot have a limit as λ(P )→ 0.
From the point of view of the Lebesgue criterion the nonintegrability of the

Dirichlet function is also obvious, since D(x) is discontinuous at every point of
[0,1] which, as was shown in Lemma 2, is not a set of measure zero.

Example 2 Consider the Riemann function

R(x)=
{

1
n
, if x ∈Q and x = m

n
is in lowest terms, n ∈N,

0, if x ∈R\Q.
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We have already studied this function in Sect. 4.1.2, and we know that R(x) is
continuous at all irrational points and discontinuous at all rational points except 0.
Thus the set of points of discontinuity of R(x) is countable and hence has mea-
sure zero. By the Lebesgue criterion, R(x) is Riemann integrable on any interval
[a, b] ⊂ R, despite there being a discontinuity of this function in every interval of
every partition of the interval of integration.

Example 3 Now let us consider a less classical problem and example.
Let f : [a, b] → R be a function that is integrable on [a, b], assuming values in

the interval [c, d] on which a continuous function g : [c, d] → R is defined. Then
the composition g ◦ f : [a, b] → R is obviously defined and continuous at all the
points of [a, b] where f is continuous. By the Lebesgue criterion, it follows that
(g ◦ f ) ∈R[a, b].

We shall now show that the composition of two arbitrary integrable functions is
not always integrable.

Consider the function g(x) = | sgn |(x). This function equals 1 for x �= 0 and 0
for x = 0. By inspection, we can verify that if we take, say the Riemann function
f on the closed interval [1, 2], then the composition (g ◦ f )(x) on that interval is
precisely the Dirichlet function D(x). Thus the presence of even one discontinuity
of the function g(x) has led to nonintegrability of the composition g ◦ f .

6.1.4 Problems and Exercises

1. The theorem of Darboux.

a) Let s(f ;P) and S(f ;P) be the lower and upper Darboux sums of a real-
valued function f defined and bounded on the closed interval [a, b] and correspond-
ing to a partition P of that interval. Show that

s(f ;P1)≤ S(f ;P2)

for any two partitions P1 and P2 of [a, b].
b) Suppose the partition P̃ is a refinement of the partition P of the interval

[a, b], and let Δi1, . . . ,Δik be the intervals of the partition P that contain points of
the partition P̃ that do not belong to P . Show that the following estimates hold:

0 ≤ S(f ;P)− S(f ; P̃ )≤ ω
(
f ; [a, b]) · (Δxi1 + · · · +Δxik ),

0 ≤ s(f ; P̃ )− s(f ;P)≤ ω
(
f ; [a, b]) · (Δxi1 + · · · +Δxik ).

c) The quantities I = supP s(f ;P) and I = infP S(f ;P) are called respectively
the lower Darboux integral and the upper Darboux integral of f on the closed
interval [a, b]. Show that I ≤ I .
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d) Prove the theorem of Darboux:

I = lim
λ(P )→0

s(f ;P), I = lim
λ(P )→0

S(f ;P).

e) Show that (f ∈R[a, b])⇔ (I = I ).
f) Show that f ∈R[a, b] if and only if for every ε > 0 there exists a partition P

of [a, b] such that S(f ;P)− s(f ;P) < ε.

2. The Cantor set of Lebesgue measure zero.

a) The Cantor set described in Problem 7 of Sect. 2.4 is uncountable. Verify that
it nevertheless is a set of measure 0 in the sense of Lebesgue. Show how to modify
the construction of the Cantor set in order to obtain an analogous set “full of holes”
that is not a set of measure zero. (Such a set is also called a Cantor set.)

b) Show that the function on [0,1] defined to be zero outside a Cantor set and
1 on the Cantor set is Riemann integrable if and only if the Cantor set has measure
zero.

c) Construct a nondecreasing continuous and nonconstant function on [0,1] that
has a derivative equal to zero everywhere except at the points of a Cantor set of
measure zero.

3. The Lebesgue criterion.

a) Verify directly (without using the Lebesgue criterion) that the Riemann func-
tion of Example 2 is integrable.

b) Show that a bounded function f belongs to R[a, b] if and only if for any two
numbers ε > 0 and δ > 0 there is a partition P of [a, b] such that the sum of the
lengths of the intervals of the partition on which the oscillation of the function is
larger than ε is at most δ.

c) Show that f ∈R[a, b] if and only if f is bounded on [a, b] and for any ε > 0
and δ > 0 the set of points in [a, b] at which f has oscillation larger than ε can be
covered by a finite set of open intervals the sum of whose lengths is less than δ (the
du Bois-Reymond criterion).2

d) Using the preceding problem, prove the Lebesgue criterion for Riemann in-
tegrability of a function.

4. Show that if f,g ∈ R[a, b] and f and g are real-valued, then max{f,g} ∈
R[a, b] and min{f,g} ∈R[a, b].
5. Show that

a) if f,g ∈ R[a, b] and f (x) = g(x) almost everywhere on [a, b], then∫ b

a
f (x)dx = ∫ b

a
g(x)dx;

b) if f ∈R[a, b] and f (x)= g(x) almost everywhere on [a, b], then g can fail
to be Riemann-integrable on [a, b], even if g is defined and bounded on [a, b].

2P. du Bois-Reymond (1831–1889) – German mathematician.
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6. Integration of vector-valued functions.

a) Let r(t) be the radius-vector of a point moving in space, r0 = r(0) the initial
position of the point, and v(t) the velocity vector as a function of time. Show how
to recover r(t) from r0 and v(t).

b) Does the integration of vector-valued functions reduce to integrating real-
valued functions?

c) Is the criterion for integrability stated in Proposition 2′ valid for vector-valued
functions?

d) Is Lebesgue’s criterion for integrability valid for vector-valued functions?
e) Which concepts and facts from this section extend to functions with complex

values?

6.2 Linearity, Additivity and Monotonicity of the Integral

6.2.1 The Integral as a Linear Function on the Space R[a,b]

Theorem 1 If f and g are integrable functions on the closed interval [a, b], a linear
combination of them αf + βg is also integrable on [a, b], and

∫ b

a

(αf + βg)(x)dx = α

∫ b

a

f (x)dx + β

∫ b

a

g(x)dx. (6.11)

Proof Consider a Riemann sum for the integral on the left-hand side of (6.11), and
transform it as follows:

n∑

i=1

(αf + βg)(ξi)Δxi = α

n∑

i=1

f (ξi)Δxi + β

n∑

i=1

g(ξi)Δxi. (6.12)

Since the right-hand side of this last equality tends to the linear combination of
integrals that makes up the right-hand side of (6.11) if the mesh λ(P ) of the partition
tends to 0, the left-hand side of (6.12) must also have a limit as λ(P )→ 0, and that
limit must be the same as the limit on the right. Thus (αf + βg) ∈ R[a, b] and
Eq. (6.11) holds. �

If we regard R[a, b] as a vector space over the field of real numbers and the inte-
gral

∫ b

a
f (x)dx as a real-valued function defined on vectors of R[a, b], Theorem 1

asserts that the integral is a linear function on the vector space R[a, b].
To avoid any possible confusion, functions defined on functions are usually

called functionals. Thus we have proved that the integral is a linear functional on
the vector space of integrable functions.
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6.2.2 The Integral as an Additive Function of the Interval
of Integration

The value of the integral
∫ b

a
f (x)dx = I (f ; [a, b]) depends on both the integrand

and the closed interval over which the integral is taken. For example, if f ∈R[a, b],
then, as we know, f |[α,β] ∈R[α,β] if [α,β] ⊂ [a, b], that is, the integral

∫ β

α
f (x)dx

is defined, and we can study its dependence on the closed interval [α,β] of integra-
tion.

Lemma 1 If a < b < c and f ∈R[a, c], then f |[a,b] ∈R[a, b], f |[b,c] ∈R[b, c],
and the following equality3 holds;

∫ c

a

f (x)dx =
∫ b

a

f (x)dx +
∫ c

b

f (x)dx. (6.13)

Proof We first note that the integrability of the restrictions of f to the closed inter-
vals [a, b] and [b, c] is guaranteed by Proposition 4 of Sect. 6.1.

Next, since f ∈ R[a, c], in computing the integral
∫ c

a
f (x)dx as the limit of

Riemann sums we may choose any convenient partitions of [a, c]. We shall now
consider only partitions P of [a, c] that contain the point b. Obviously any such
partition with distinguished points (P, ξ) generates partitions (P ′, ξ ′) and (P ′′, ξ ′′)
of [a, b] and [b, c] respectively, and P = P ′ ∪ P ′′ and ξ = ξ ′ ∪ ξ ′′.

But then the following equality holds between the corresponding Riemann sums:

σ(f ;P, ξ)= σ
(
f ;P ′, ξ ′)+ σ

(
f ;P ′′, ξ ′′).

Since λ(P ′)≤ λ(P ) and λ(P ′′)≤ λ(P ), for λ(P ) sufficiently small, each of these
Riemann sums is close to the corresponding integral in (6.13), which consequently
must hold. �

To widen the application of this result slightly, we temporarily revert once again
to the definition of the integral.

We defined the integral as the limit of Riemann sums

σ(f ;P, ξ)=
n∑

i=1

f (ξi)Δxi, (6.14)

corresponding to partitions with distinguished points (P, ξ) of the closed interval of
integration [a, b]. A partition P consisted of a finite monotonic sequence of points
x0, x1, . . . , xn, the point x0 being the lower limit of integration a and xn the upper
limit of integration b. This construction was carried out assuming that a < b. If we

3We recall that f |E denotes the restriction of the function f to a set E contained in the domain
of definition of f . Formally we should have written the restriction of f to the intervals [a, b] and
[b, c], rather than f , on the right-hand side of Eq. (6.13).
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now take two arbitrary points a and b without requiring a < b and, regarding a as
the lower limit of integration and b as the upper, carry out this construction, we shall
again obtain a sum of the form (6.14), in which now Δxi > 0 (i = 1, . . . , n) if a < b

and Δxi < 0 (i = 1, . . . , n) if a > b, since Δxi = xi − xi−1. Thus for a > b the sum
(6.14) will differ from the Riemann sum of the corresponding partition of the closed
interval [b, a] (b < a) only in sign.

From these considerations we adopt the following convention: if a > b, then
∫ b

a

f (x)dx := −
∫ a

b

f (x)dx. (6.15)

In this connection, it is also natural to set
∫ a

a

f (x)dx := 0. (6.16)

After these conventions, taking account of Lemma 1, we arrive at the following
important property of the integral.

Theorem 2 Let a, b, c ∈R and let f be a function integrable over the largest closed
interval having two of these points as endpoints. Then the restriction of f to each of
the other closed intervals is also integrable over those intervals and the following
equality holds:

∫ b

a

f (x)dx +
∫ c

b

f (x)dx +
∫ a

c

f (x)dx = 0. (6.17)

Proof By the symmetry of Eq. (6.17) in a, b, and c, we may assume without loss of
generality that a =min{a, b, c}.

If max{a, b, c} = c and a < b < c, then by Lemma 1
∫ b

a

f (x)dx +
∫ c

b

f (x)dx −
∫ c

a

f (x)dx = 0,

which, when we take account of the convention (6.15) yields (6.17).
If max{a, b, c} = b and a < c < b, then by Lemma 1

∫ c

a

f (x)dx +
∫ b

c

f (x)dx −
∫ b

a

f (x)dx = 0,

which, when we take account of (6.15), again yields (6.17).
Finally, if two of the points a, b, and c are equal, then (6.17) follows from the

conventions (6.15) and (6.16). �

Definition 1 Suppose that to each ordered pair (α,β) of points α,β ∈ [a, b] a num-
ber I (α,β) is assigned so that

I (α, γ )= I (α,β)+ I (β, γ )

for any triple of points α,β, γ ∈ [a, b].
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Then the function I (α,β) is called an additive (oriented) interval function de-
fined on intervals contained in [a, b].

If f ∈R[A,B], and a, b, c ∈ [A,B], then, setting I (a, b)= ∫ b

a
f (x)dx, we con-

clude from (6.17) that

∫ c

a

f (x)dx =
∫ b

a

f (x)dx+
∫ c

b

f (x)dx, (6.18)

that is, the integral is an additive interval function on the interval of integration.
The orientation of the interval in this case amounts to the fact that we order the
pair of endpoints of the interval by indicating which is to be first (the lower limit of
integration) and which is to be second (the upper limit of integration).

6.2.3 Estimation of the Integral, Monotonicity of the Integral,
and the Mean-Value Theorem

a. A General Estimate of the Integral

We begin with a general estimate of the integral, which, as will become clear later,
holds for integrals of functions that are not necessarily real-valued.

Theorem 3 If a ≤ b and f ∈R[a, b], then |f | ∈R[a, b] and the following inequal-
ity holds:

∣
∣
∣
∣

∫ b

a

f (x)dx

∣
∣
∣
∣≤

∫ b

a

|f |(x)dx. (6.19)

If |f |(x)≤C on [a, b] then

∫ b

a

|f |(x)dx ≤ C(b− a). (6.20)

Proof For a = b the assertion is trivial, and so we shall assume that a < b.
To prove the theorem it now suffices to recall that |f | ∈ R[a, b] (see Propo-

sition 4 of Sect. 6.1), and write the following estimate for the Riemann sum
σ(f ;P, ξ):
∣
∣
∣
∣
∣

n∑

i=1

f (ξi)Δxi

∣
∣
∣
∣
∣
≤

n∑

i=1

∣
∣f (ξi)

∣
∣|Δxi | =

n∑

i=1

∣
∣f (ξi)

∣
∣Δxi ≤ C

n∑

i=1

Δxi = C(b− a).

Passing to the limit as λ(P )→ 0, we obtain

∣
∣
∣
∣

∫ b

a

f (x)dx

∣
∣
∣
∣≤

∫ b

a

|f |(x)dx ≤C(b− a). �
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b. Monotonicity of the Integral and the First Mean-Value Theorem

The results that follow are specific to integrals of real-valued functions.

Theorem 4 If a ≤ b, f1, f2 ∈R[a, b], and f1(x)≤ f2(x) at each point x ∈ [a, b],
then

∫ b

a

f1(x)dx ≤
∫ b

a

f2(x)dx. (6.21)

Proof For a = b the assertion is trivial. If a < b, it suffices to write the following
inequality for the Riemann sums:

n∑

i=1

f1(ξi)Δxi ≤
n∑

i=1

f2(ξi)Δxi,

which is valid since Δxi > 0 (i = 1, . . . , n), and then pass to the limit as λ(P )→ 0.
Theorem 4 can be interpreted as asserting that the integral is monotonic as a

function of the integrand.
Theorem 4 has a number of useful corollaries. �

Corollary 1 If a ≤ b, f ∈R[a, b]; and m≤ f (x)≤M at each x ∈ [a, b], then

m · (b− a)≤
∫ b

a

f (x)dx ≤M · (b− a), (6.22)

and, in particular, if 0≤ f (x) on [a, b], then

0≤
∫ b

a

f (x)dx.

Proof Relation (6.22) is obtained by integrating each term in the inequality m ≤
f (x)≤M and using Theorem 4. �

Corollary 2 If f ∈ R[a, b], m = infx∈[a,b] f (x), and M = supx∈[a,b] f (x), then
there exists a number μ ∈ [m,M] such that

∫ b

a

f (x)dx = μ · (b− a). (6.23)

Proof If a = b, the assertion is trivial. If a �= b, we set μ= 1
b−a

∫ b

a
f (x)dx. It then

follows from (6.22) that m≤ μ≤M if a < b. But both sides of (6.23) reverse sign
if a and b are interchanged, and therefore (6.23) is also valid for b < a. �

Corollary 3 If f ∈C[a, b], there is a point ξ ∈ [a, b] such that
∫ b

a

f (x)dx = f (ξ)(b− a). (6.24)
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Proof By the intermediate-value theorem for a continuous function, there is a
point ξ on [a, b] at which f (ξ)= μ if

m= min
x∈[a,b]f (x)≤ μ≤ max

x∈[a,b]f (x)=M.

Therefore (6.24) follows from (6.23). �

The equality (6.24) is often called the first mean-value theorem for the integral.
We, however, reserve that name for the following somewhat more general proposi-
tion.

Theorem 5 (First mean-value theorem for the integral) Let f,g ∈ R[a, b], m =
infx∈[a,b] f (x), and M = supx∈[a,b] f (x). If g is nonnegative (or nonpositive) on
[a, b], then

∫ b

a

(f · g)(x)dx = μ

∫ b

a

g(x)dx, (6.25)

where μ ∈ [m,M].
If, in addition, it is known that f ∈ C[a, b], then there exists a point ξ ∈ [a, b]

such that
∫ b

a

(f · g)(x)dx = f (ξ)

∫ b

a

g(x)dx. (6.26)

Proof Since interchanging the limits of integration leads to a simultaneous sign
reversal on both sides of Eq. (6.25), it suffices to verify this equality for the case
a < b. Reversing the sign of g(x) also reverses the signs of both sides of (6.25), so
that we may assume without loss of generality that g(x)≥ 0 on [a, b].

Since m= infx∈[a,b] f (x) and M = supx∈[a,b] f (x), we have, for g(x)≥ 0,

mg(x)≤ f (x)g(x)≤Mg(x).

Since m · g ∈R[a, b], f · g ∈ R[a, b], and M · g ∈ R[a, b], applying Theorem 4
and Theorem 1, we obtain

m

∫ b

a

g(x)dx ≤
∫ b

a

f (x)g(x)dx ≤M

∫ b

a

g(x)dx. (6.27)

If
∫ b

a
g(x)dx = 0, it is obvious from these inequalities that (6.25) holds.

If
∫ b

a
g(x)dx �= 0, then, setting

μ=
(∫ b

a

g(x)dx

)−1

·
∫ b

a

(f · g)(x)dx,

we find by (6.27) that

m≤ μ≤M,

but this is equivalent to (6.25).
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The equality (6.26) now follows from (6.25) and the intermediate-value theorem
for a function f ∈ C[a, b], if we take account of the fact that when f ∈ C[a, b], we
have

m= min
x∈[a,b]f (x) and M = max

x∈[a,b]f (x). �

We remark that (6.23) results from (6.25) if g(x)≡ 1 on [a, b].

c. The Second Mean-Value Theorem for the Integral

The so-called second mean-value theorem4 is significantly more special and delicate
in the context of the Riemann integral.

So as not to complicate the proof of this theorem, we shall carry out a useful
preparatory discussion that is of independent interest.

Abel’s transformation. This is the name given to the following transformation of
the sum

∑n
i=1 aibi . Let Ak =∑k

i=1 ai ; we also set A0 = 0. Then

m∑

i=l

aibi =
n∑

i=1

(Ai −Ai−1)bi =
n∑

i=1

Aibi −
n∑

i=1

Ai−1bi =

=
n∑

i=1

Aibi −
n−1∑

i=0

Aibi+1 =Anbn −A0b1 +
n−1∑

i=1

Ai(bi − bi+1).

Thus
n∑

i=1

aibi = (Anbn −A0b1)+
n−1∑

i=1

Ai(bi − bi+1), (6.28)

or, since A0 = 0,

n∑

i=1

aibi =Anbn +
n−1∑

i=1

Ai(bi − bi+1). (6.29)

Abel’s transformation provides an easy verification of the following lemma.

Lemma 2 If the numbers Ak =∑k
i=1 ai (k = 1, . . . , n) satisfy the inequalities m≤

Ak ≤M and the numbers bi (i = 1, . . . , n) are nonnegative and bi ≥ bi+1 for i =
1, . . . , n− 1, then

mb1 ≤
n∑

i=1

aibi ≤Mb1. (6.30)

4Under an additional hypothesis on the function, one that is often completely acceptable, Theo-
rem 6 in this section could easily be obtained from the first mean-value theorem. On this point, see
Problem 3 at the end of Sect. 6.3.
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Proof Using the fact that bn ≥ 0 and bi − bi+1 ≥ 0 for i = 1, . . . , n− 1, we obtain
from (6.29),

n∑

i=1

aibi ≤Mbn +
n−1∑

i=1

M(bi − bi+1)=Mbn +M(b1 − bn)=Mb1.

The left-hand inequality of (6.30) is verified similarly. �

Lemma 3 If f ∈R[a, b], then for any x ∈ [a, b] the function

F(x)=
∫ x

a

f (t)dt (6.31)

is defined and F(x) ∈C[a, b].

Proof The existence of the integral in (6.31) for any x ∈ [a, b] is already known
from Proposition 4 of Sect. 6.1; therefore it remains only for us to verify that the
function F(x) is continuous. Since f ∈R[a, b], we have |f | ≤ C <∞ on [a, b].
Let x ∈ [a, b] and x+h ∈ [a, b]. Then, by the additivity of the integral and inequal-
ities (6.19) and (6.20) we obtain

∣
∣F(x + h)− F(x)

∣
∣ =

∣
∣
∣
∣

∫ x+h

a

f (t)dt −
∫ x

a

f (t)dt

∣
∣
∣
∣=

=
∣
∣
∣
∣

∫ x+h

x

f (t)dt

∣
∣
∣
∣≤

∣
∣
∣
∣

∫ x+h

x

∣
∣f (t)

∣
∣dt

∣
∣
∣
∣≤ C|h|.

Here we have used inequality (6.20) taking account of the fact that for h < 0 we
have

∣
∣
∣
∣

∫ x+h

x

∣
∣f (t)

∣
∣dt

∣
∣
∣
∣=

∣
∣
∣
∣−

∫ x

x+h

∣
∣f (t)

∣
∣dt

∣
∣
∣
∣=

∫ x

x+h

∣
∣f (t)

∣
∣dt.

Thus we have shown that if x and x + h both belong to [a, b], then
∣
∣F(x + h)− F(x)

∣
∣≤C|h| (6.32)

from which it obviously follows that the function F is continuous at each point of
[a, b]. �

We now prove a lemma that is a version of the second mean-value theorem.

Lemma 4 If f,g ∈R[a, b] and g is a nonnegative nonincreasing function on [a, b]
then there exists a point ξ ∈ [a, b] such that

∫ b

a

(f · g)(x)dx = g(a)

∫ ξ

a

f (x)dx. (6.33)
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Before turning to the proof, we note that, in contrast to relation (6.26) of the first
mean-value theorem, it is the function f (x) that remains under the integral sign in
(6.33), not the monotonic function g.

Proof To prove (6.33), as in the cases considered above, we attempt to estimate the
corresponding Riemann sum.

Let P be a partition of [a, b]. We first write the identity

∫ b

a

(f · g)dx =
n∑

i=1

∫ xi

xi−1

(f · g)(x)dx =

=
n∑

i=1

g(xi−1)

∫ xi

xi−1

f (x)dx +
n∑

i=1

∫ xi

xi−1

[
g(x)− g(xi−1)

]
f (x)dx

and then show that the last sum tends to zero as λ(P )→ 0.
Since f ∈ R[a, b], it follows that |f (x)| ≤ C <∞ on [a, b]. Then, using the

properties of the integral already proved, we obtain

∣
∣
∣
∣
∣

n∑

i=1

∫ xi

xi−1

[
g(x)− g(xi−1)

]
f (x)dx

∣
∣
∣
∣
∣
≤

n∑

i=1

∫ xi

xi−1

∣
∣g(x)− g(xi)

∣
∣
∣
∣f (x)

∣
∣dx ≤

≤ C

n∑

i=1

∫ xi

xi−1

∣
∣g(x)− g(xi−1)

∣
∣dx ≤

≤ C

n∑

i=1

ω(g;Δi)Δxi → 0

as λ(P )→ 0, because g ∈R[a, b] (see Proposition 2 of Sect. 6.1). Therefore

∫ b

a

(f · g)(x)dx = lim
λ(P )→0

n∑

i=1

g(xi−1)

∫ xi

xi−1

f (x)dx. (6.34)

We now estimate the sum on the right-hand side of (6.34). Setting

F(x)=
∫ x

a

f (t)dt,

by Lemma 3 we obtain a continuous function on [a, b].
Let

m= min
x∈[a,b]F(x) and M = max

x∈[a,b]F(x).
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Since
∫ xi

xi−1
f (x)dx = F(xi)− F(xi−1), it follows that

n∑

i=1

g(xi−1)

∫ xi

xi−1

f (x)dx =
n∑

i=1

(
F(xi)− F(xi−1)

)
g(xi−1). (6.35)

Taking account of the fact that g is nonnegative and nonincreasing on [a, b], and
setting

ai = F(xi)− F(xi−1), bi = g(xi−1),

we find by Lemma 2 that

mg(a)≤
n∑

i=1

(
F(xi)− F(xi−1)

)
g(xi−1)≤Mg(a), (6.36)

since

Ak =
k∑

i=1

ai = F(xk)− F(x0)= F(xk)− F(a)= F(xk).

Having now shown that the sums (6.35) satisfy the inequalities (6.36), and re-
calling relation (6.34), we have

mg(a)≤
∫ b

a

(f · g)(x)dx ≤Mg(a). (6.37)

If g(a)= 0, then, as inequalities (6.37) show, the relation to be proved (6.33) is
obviously true.

If g(a) > 0, we set

μ= 1

g(a)

∫ b

a

(f · g)(x)dx.

It follows from (6.37) that m ≤ μ ≤ M , and from the continuity of F(x) =∫ x

a
f (t)dt on [a, b] that there exists a point ξ ∈ [a, b] at which F(ξ)= μ. But that

is precisely what formula (6.33) says. �

Theorem 6 (Second mean-value theorem for the integral) If f,g ∈R[a, b| and g

is a monotonic function on [a, b], then there exists a point ξ ∈ [a, b| such that

∫ b

a

(f · g)(x)dx = g(a)

∫ ξ

a

f (x)dx + g(b)

∫ b

ξ

f (x)dx. (6.38)

The equality (6.38) (like (6.33), as it happens) is often called Bonnet’s formula.5

5P.O. Bonnet (1819–1892) – French mathematician and astronomer. His most important mathe-
matical works are in differential geometry.
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Proof Let g be a nondecreasing function on [a, b]. Then G(x) = g(b) − g(x) is
nonnegative, nondecreasing, and integrable on [a, b]. Applying formula (6.33), we
find

∫ b

a

(f ·G)(x)dx =G(a)

∫ ξ

a

f (x)dx. (6.39)

But
∫ b

α

(f ·G)dx = g(b)

∫ b

a

f (x)dx −
∫ b

a

(f · g)(x)dx,

G(a)

∫ ξ

a

f (x)dx = g(b)

∫ ξ

a

f (x)dx − g(a)

∫ ξ

a

f (x)dx.

Taking account of these relations and the additivity of the integral, we obtain the
equality (6.38), which was to be proved, from (6.39).

If g is a nonincreasing function, setting G(x)= g(x)− g(b), we find that G(x)

is a nonnegative, nonincreasing, integrable function on [a, b]. We then obtain (6.39)
again, and then formula (6.38). �

6.2.4 Problems and Exercises

1. Show that if f ∈R[a, b] and f (x) ≥ 0 on [a, b], then the following statements
are true.

a) If the function f (x) assumes a positive value f (x0) > 0 at a point of conti-
nuity x0 ∈ [a, b], then the strict inequality

∫ b

a

f (x)dx > 0

holds.
b) The condition

∫ b

a
f (x)dx = 0 implies that f (x) = 0 at almost all points of

[a, b].
2. Show that if f ∈R[a, b], m= inf]a,b[ f (x), and M = sup]a,b[ f (x), then

a)
∫ b

a
f (x)dx = μ(b− a), where μ ∈ [m,M] (see Problem 5a of Sect. 6.1);

b) if f is continuous on [a, b], there exists a point ξ ∈ ]a, b[ such that

∫ b

a

f (x)dx = f (ξ)(b− a).

3. Show that if f ∈ C[a, b], f (x)≥ 0 on [a, b], and M =max[a,b] f (x), then

lim
n→∞

(∫ b

a

f n(x)dx

)1/n

=M.
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4. a) Show that if f ∈R[a, b], then |f |p ∈R[a, b] for p ≥ 0.

b) Starting from Hölder’s inequality for sums, obtain Hölder’s inequality for
integrals:6

∣
∣
∣
∣

∫ b

a

(f · g)(x)dx

∣
∣
∣
∣≤

(∫ b

a

|f |p(x)dx

)1/p

·
(∫ b

a

|g|q(x)dx

)1/q

,

if f,g ∈R[a, b], p > 1, q > 1, and 1
p
+ 1

q
= 1.

c) Starting from Minkowski’s inequality for sums, obtain Minkowski’s inequal-
ity for integrals:

(∫ b

a

|f + g|p(x)dx

)1/p

≤
(∫ b

a

|f |p(x)dx

)1/p

+
(∫ b

a

|g|p(x)dx

)1/p

,

if f,g ∈ R[a, b] and p ≥ 1. Show that this inequality reverses direction if 0 <

p < 1.
d) Verify that if f is a continuous convex function on R and ϕ an arbitrary

continuous function on R, then Jensen’s inequality

f

(
1

c

∫ c

0
ϕ(t)dt

)

≤ 1

c

∫ c

0
f
(
ϕ(t)

)
dt

holds for c �= 0.

6.3 The Integral and the Derivative

6.3.1 The Integral and the Primitive

Let f be a Riemann-integrable function on a closed interval [a, b]. On this interval
let us consider the function

F(x)=
∫ x

a

f (t)dt, (6.40)

often called an integral with variable upper limit.
Since f ∈R[a, b], it follows that f |[a,x] ∈R[a, x] if [a, x] ⊂ [a, b]; therefore

the function x �→ F(x) is unambiguously defined for x ∈ [a, b].

6The algebraic Hölder inequality for p = q = 2 was first obtained in 1821 by Cauchy and bears his
name. Hölder’s inequality for integrals with p = q = 2 was first discovered in 1859 by the Russian
mathematician B.Ya. Bunyakovskii (1804–1889). This important integral inequality (in the case
p = q = 2) is called Bunyakovskii’s inequality or the Cauchy–Bunyakovskii inequality. One also
some-times sees the less accurate name “Schwarz inequality” after the German mathematician
H.K.A. Schwarz (1843–1921), in whose work it appeared in 1884.
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If |f (t)| ≤ C <+∞ on [a, b] (and f , being an integrable function, is bounded
on [a, b]), it follows from the additivity of the integral and the elementary estimate
of it that

∣
∣F(x + h)− F(x)

∣
∣≤ C|h|, (6.41)

if x, x + h ∈ [a, b].
Actually, we already discussed this while proving Lemma 3 in the preceding

section.
It follows in particular from (6.41) that the function F is continuous on [a, b], so

that F ∈ C[a, b].
We now investigate the function F more thoroughly.
The following lemma is fundamental for what follows.

Lemma 1 If f ∈ R[a, b] and the function f is continuous at a point x ∈ [a, b],
then the function F defined on [a, b] by (6.40) is differentiable at the point x, and
the following equality holds:

F ′(x)= f (x).

Proof Let x, x + h ∈ [a, b]. Let us estimate the difference F(x + h) − F(x). It
follows from the continuity of f at x that f (t) = f (x) + Δ(t), where Δ(t)→ 0
as t → x, t ∈ [a, b]. If the point x is held fixed, the function Δ(t) = f (t)− f (x)

is integrable on [a, b], being the difference of the integrable function t �→ f (t) and
the constant f (x). We denote by M(h) the quantity supt∈I (h) |Δ(t)|, where I (h) is
the closed interval with endpoints x, x + h ∈ [a, b]. By hypothesis M(h)→ 0 as
h→ 0.

We now write

F(x + h)− F(x) =
∫ x+h

a

f (t)dt −
∫ x

a

f (t)dt =
∫ x+h

x

f (t)dt =

=
∫ x+h

x

(
f (x)+Δ(t)

)
dt =

=
∫ x+h

x

f (x)dt +
∫ x+h

x

Δ(t)dt = f (x)h+ α(h)h,

where we have set
∫ x+h

x

Δ(t)dt = α(h)h.

Since
∣
∣
∣
∣

∫ x+h

x

Δ(t)dt

∣
∣
∣
∣≤

∣
∣
∣
∣

∫ x+h

x

∣
∣Δ(t)

∣
∣dt

∣
∣
∣
∣≤

∣
∣
∣
∣

∫ x+h

x

M(h)dt

∣
∣
∣
∣=M(h)|h|,

it follows that |α(h)| ≤M(h), and so α(h)→ 0 as h→ 0 (in such a way that x+h ∈
[a, b]).
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Thus we have shown that if the function f is continuous at a point x ∈ [a, b], then
for displacements h from x such that x + h ∈ [a, b] the following equality holds:

F(x + h)− F(x)= f (x)h+ α(h)h, (6.42)

where α(h)→ 0 as h→ 0.
But this means that the function F(x) is differentiable on [a, b] at the point x ∈

[a, b] and that F ′(x)= f (x). �

A very important immediate corollary of Lemma 1 is the following.

Theorem 1 Every continuous function f : [a, b] → R on the closed interval [a, b]
has a primitive, and every primitive of f on [a, b] has the form

F(x)=
∫ x

a

f (t)dt + c, (6.43)

where c is a constant.

Proof We have the implication (f ∈C[a, b])⇒ (f ∈R[a, b]), so that by Lemma 1
the function (6.40) is a primitive for f on [a, b]. But two primitives F(x) and F(x)

of the same function on a closed interval can differ on that interval only by a con-
stant; hence F(x)= F(x)+ c. �

For later applications it is convenient to broaden the concept of primitive slightly
and adopt the following definition.

Definition 1 A continuous function x �→ F(x) on an interval of the real line is
called a primitive (or generalized primitive) of the function x → f (x) defined on
the same interval if the relation F ′(x)= f (x) holds at all points of the interval, with
only a finite number of exceptions.

Taking this definition into account, we can assert that the following theorem
holds.

Theorem 1′ A function f : [a, b] → R that is defined and bounded on a closed
interval [a, b] and has only a finite number of points of discontinuity has a (gen-
eralized) primitive on that interval, and any primitive of f on [a, b] has the form
(6.43).

Proof Since f has only a finite set of points of discontinuity, f ∈R[a, b], and by
Lemma 1 the function (6.40) is a generalized primitive for f on [a, b]. Here we have
taken into account, as already pointed out, the fact that by (6.41) the function (6.40)
is continuous on [a, b]. If F(x) is another primitive of f on [a, b], then F(x)−F(x)

is a continuous function and constant on each of the finite number of intervals into
which the discontinuities of f divide the closed interval [a, b]. But it then follows
from the continuity of F(x)− F(x) on all of [a, b] that F(x)− F(x) ≡ const on
[a, b]. �
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6.3.2 The Newton–Leibniz Formula

Theorem 2 If f : [a, b] → R is a bounded function with a finite number of points
of discontinuity, then f ∈R[a, b] and

∫ b

a

f (x)dx =F(b)−F(a), (6.44)

where F : [a, b]→R is any primitive of f on [a, b].

Proof We already know that a bounded function on a closed interval having only a
finite number of discontinuities is integrable (see Corollary 2 after Proposition 2 in
Sect. 6.1). The existence of a generalized primitive F(x) of the function f on [a, b]
is guaranteed by Theorem 1′, by virtue of which F(x) has the form (6.43). Setting
x = a in (6.43), we find that F(a)= c, and so

F(x)=
∫ x

a

f (t)dt +F(a).

In particular
∫ b

a

f (t)dt =F(b)−F(a),

which, up to the notation for the variable of integration, is exactly formula (6.44),
which was to be proved. �

Relation (6.44), which is fundamental for all of analysis, is called the Newton–
Leibniz formula (or the fundamental theorem of calculus).

The difference F(b)−F(a) of values of any function is often written F(x)|ba . In
this notation, the Newton–Leibniz formula assumes the form

∫ b

a

f (x)dx =F(x)
∣
∣b
a
.

Since both sides of the formula reverse sign when a and b are interchanged, the
formula is valid for any relation between the magnitudes of a and b, that is, both for
a ≤ b and for a ≥ b.

In exercises of analysis the Newton–Leibniz formula is mostly used to compute
the integral on the left-hand side, and that may lead to a some-what distorted idea
of its use. The actual situation is that particular integrals are rarely found using a
primitive; more often one resorts to direct computation on a computer using highly
developed numerical methods. The Newton–Leibniz formula occupies a key po-
sition in the theory of mathematical analysis itself, since it links integration and
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differentiation. In analysis it has a very far-reaching extension in the form of the
so-called generalized Stokes’ formula.7

An example of the use of the Newton–Leibniz formula in analysis itself is pro-
vided by the material in the next subsection.

6.3.3 Integration by Parts in the Definite Integral and Taylor’s
Formula

Proposition 1 If the functions u(x) and v(x) are continuously differentiable on a
closed interval with endpoints a and b, then

∫ b

a

(
u · v′)(x)dx = (u · v)

∣
∣b
a
−
∫ b

a

(
v · u′)(x)dx. (6.45)

It is customary to write this formula in abbreviated form as

∫ b

a

udv = u · v∣∣b
a
−
∫ b

a

v du

and call it the formula for integration by parts in the definite integral.

Proof By the rule for differentiating a product of functions, we have

(u · v)′(x)= (
u′ · v)(x)+ (

u · v′)(x).

By hypothesis, all the functions in this last equality are continuous, and hence inte-
grable on the interval with endpoints a and b. Using the linearity of the integral and
the Newton–Leibniz formula, we obtain

(u · v)(x)
∣
∣b
α
=
∫ b

a

(
u′ · v)(x)dx +

∫ b

a

(
u · v′)(x)dx. �

As a corollary we now obtain the Taylor formula with integral form of the re-
mainder.

Suppose on the closed interval with endpoints a and x the function t �→ f (t) has
n continuous derivatives. Using the Newton–Leibniz formula and formula (6.45),
we carry out the following chain of transformations, in which all differentiations
and substitutions are carried out on the variable t :

f (x)− f (a) =
∫ x

a

f ′(t)dt =−
∫ x

a

f ′(t)(x − t)′ dt =

7G.G. Stokes (1819–1903) – British physicist and mathematician.
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= −f ′(t)(x − t)
∣
∣x
a
+
∫ x

a

f ′′(t)(x − t)dt =

= f ′(a)(x − a)− 1

2

∫ x

a

f ′′(t)
(
(x − t)2)′ dt =

= f ′(a)(x − a)− 1

2
f ′′(t)(x − t)2

∣
∣x
a
+ 1

2

∫ x

a

f ′′′(t)(x − t)2 dt =

= f ′(a)(x − a)+ 1

2
f ′′(a)(x − a)2 − 1

2 · 3
∫ x

a

f ′′′(t)
(
(x − t)3)′ dt =

= · · · =
= f ′(a)(x − a)+ 1

2
f ′′(a)(x − a)2 + · · · +

+ 1

2 · 3 · · · (n− 1)
f (n−1)(a)(x − a)n−1 + rn−1(a;x),

where

rn−1(a;x)= 1

(n− 1)!
∫ x

a

f (n)(t)(x − t)n−1 dt. (6.46)

Thus we have proved the following proposition.

Proposition 2 If the function t �→ f (t) has continuous derivatives up to order n

inclusive on the closed interval with endpoints a and x, then Taylor’s formula holds:

f (x)= f (a)+ 1

1!f
′(a)(x − a)+ · · · + 1

(n− 1)!f
(n−1)(a)(x − a)n−1 + rn−1(a;x)

with remainder term rn−1(a;x) represented in the integral form (6.46).

We note that the function (x − t)n−1 does not change sign on the closed interval
with endpoints a and x, and since t → f (n)(t) is continuous on that interval, the
first mean-value theorem implies that there exists a point ξ such that

rn−1(a;x) = 1

(n− 1)!
∫ x

a

f (n)(t)(x − t)n−1 dt =

= 1

(n− 1)!f
(n)(ξ)

∫ x

a

(x − t)n−1 dt =

= 1

(n− 1)!f
(n)(ξ)

(

−1

n
(x − t)n

)∣
∣
∣
∣

x

a

= 1

n!f
(n)(ξ)(x − a)n.

We have again obtained the familiar Lagrange form of the remainder in Taylor’s
theorem. By Problem 2d) of Sect. 6.2, we may assume that ξ lies in the open interval
with endpoints a and x.
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This reasoning can be repeated, taking the expression f (n)(ξ)(x − ξ)n−k , where
k ∈ [1, n], outside the integral in (6.46). The Cauchy and Lagrange forms of the
remainder term that result correspond to the values k = 1 and k = n.

6.3.4 Change of Variable in an Integral

One of the basic formulas of integral calculus is the formula for change of variable
in a definite integral. This formula is just as important in integration theory as the
formula for differentiating a composite function is in differential calculus. Under
certain conditions, the two formulas can be linked by the Newton–Leibniz formula.

Proposition 3 If ϕ : [α,β]→ [a, b] is a continuously differentiable mapping of the
closed interval α ≤ t ≤ β into the closed interval a ≤ x ≤ b such that ϕ(α)= a and
ϕ(β)= b, then for any continuous function f (x) on [a, b] the function f (ϕ(t))ϕ′(t)
is continuous on the closed interval [α,β], and

∫ b

a

f (x)dx =
∫ β

α

f
(
ϕ(t)

)
ϕ′(t)dt. (6.47)

Proof Let F(x) be a primitive of f (x) on [a, b]. Then, by the theorem on differ-
entiation of a composite function, the function F(ϕ(t)) is a primitive of the func-
tion f (ϕ(t))ϕ′(t), which is continuous, being the composition and product of con-
tinuous functions on the closed interval [α,β]. By the Newton–Leibniz formula∫ b

a
f (x)dx = F(b)− F(a) and

∫ β

α
f (ϕ(t))ϕ′(t)dt = F(ϕ(β))− F(ϕ(α)). But by

hypothesis ϕ(α)= a and ϕ(β)= b, so that Eq. (6.47) does indeed hold. �

It is clear from formula (6.47) how convenient it is that we have not just the sym-
bol for the function, but the entire differential f (x)dx in the symbol for integration,
which makes it possible to obtain the correct integrand automatically when the new
variable x = ϕ(t) is substituted in the integral.

So as not to complicate matters with a cumbersome proof, in Proposition 3 we
deliberately shrank the true range of applicability of (6.47) and obtained it by the
Newton–Leibniz formula. We now turn to the basic theorem on change of variable,
whose hypotheses differ somewhat from those of Proposition 3. The proof of this
theorem will rely directly on the definition of the integral as the limit of Riemann
sums.

Theorem 3 Let ϕ : [α,β] → [a, b] be a continuously differentiable strictly mono-
tonic mapping of the closed interval α ≤ t ≤ β into the closed interval a ≤ x ≤ b

with the correspondence ϕ(α) = a, ϕ(β) = b or ϕ(α) = b, ϕ(β) = a at the
endpoints. Then for any function f (x) that is integrable on [a, b] the function
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f (ϕ(t))ϕ′(t) is integrable on [α,β] and

∫ ϕ(β)

ϕ(α)

f (x)dx =
∫ β

α

f
(
ϕ(t)

)
ϕ′(t)dt. (6.48)

Proof Since ϕ is a strictly monotonic mapping of [α,β] onto [a, b] with endpoints
corresponding to endpoints, every partition Pt (α = t0 < · · ·< tn = β) of the closed
interval [α,β] generates a corresponding partition Px of [a, b] by means of the im-
ages xi = ϕ(ti) (i = 0, . . . , n); the partition Px may be denoted ϕ(Pt ). Here x0 = a

if ϕ(α)= a and x0 = b if ϕ(α)= b. It follows from the uniform continuity of ϕ on
[α,β] that if λ(Pt )→ 0, then λ(Px)= λ(ϕ(Pt )) also tends to zero.

Using Lagrange’s theorem, we transform the Riemann sum σ(f ;Px, ξ) as fol-
lows:

n∑

i=1

f (ξi)Δxi =
n∑

i=1

f (ξi)(xi − xi−1)=

=
n∑

i=1

f
(
ϕ(τi)

)
ϕ′(τ̃i)(ti − ti−1)=

n∑

i=1

f
(
ϕ(τi)

)
ϕ′(τ̃i)Δti .

Here xi = ϕ(ti), ξi = ϕ(τi), ξi lies in the closed interval with endpoints xi−1

and xi , and the points τi and τ̃i lie in the interval with endpoints ti−1 and ti (i =
1, . . . , n).

Next

n∑

i=1

f
(
ϕ(τi)

)
ϕ′(τ̃i )Δti =

n∑

i=1

f
(
ϕ(τi)

)
ϕ′(τi)Δti +

+
n∑

i=1

f
(
ϕ(τi)

)(
ϕ′(τ̃i )− ϕ′(τi)

)
Δti.

Let us estimate this last sum. Since f ∈R[a, b], the function f is bounded on
[a, b]. Let |f (x)| ≤ C on [a, b]. Then

∣
∣
∣
∣
∣

n∑

i=1

f
(
ϕ(τ)

)(
ϕ′(τ̃i )− ϕ′(τi)

)
Δti

∣
∣
∣
∣
∣
≤ C ·

n∑

i=1

ω
(
ϕ′;Δi

)
Δti,

where Δi is the closed interval with endpoints ti−1 and ti .
This last sum tends to zero as λ(Pt )→ 0, since ϕ′ is continuous on [α,β].
Thus we have shown that

n∑

i=1

f (ξi)Δxi =
n∑

i=1

f
(
ϕ(τi)

)
ϕ′(τi)Δti + α,
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where α→ 0 as λ(Pt )→ 0. As already pointed out, if λ(Pt )→ 0, then λ(Px)→ 0
also. But f ∈R[a, b], so that as λ(Px)→ 0 the sum on the left-hand side of this
last equality tends to the integral

∫ ϕ(β)

ϕ(α) f (x)dx. Hence as λ(Pt )→ 0 the right-hand
side of the equality also has the same limit.

But the sum
∑n

i=1 f (ϕ(τi))ϕ
′(τi)Δti can be regarded as a completely arbitrary

Riemann sum for the function f (ϕ(t))ϕ′(t) corresponding to the partition Pt with
distinguished points τ = (τ1, . . . , τn), since in view of the strict monotonicity of ϕ,
any set of points τ can be obtained from some corresponding set ξ = (ξ1, . . . , ξn) of
distinguished points in the partition Px = ϕ(Pt ).

Thus, the limit of this sum is, by definition, the integral of the function
f (ϕ(t))ϕ′(t) over the closed interval [α,β], and we have simultaneously proved
both the integrability of f (ϕ(t))ϕ′(t) on [α,β] and formula (6.48). �

6.3.5 Some Examples

Let us now consider some examples of the use of these formulas and the theorems
on properties of the integral proved in the last two sections.

Example 1

∫ 1

−1

√
1− x2 dx =

∫ π/2

−π/2

√
1− sin2 t cos t dt =

∫ π/2

−π/2
cos2 t dt =

= 1

2

∫ π/2

−π/2
(1+ cos 2t)dt = 1

2

(

t + 1

2
sin 2t

)∣
∣
∣
∣

π/2

−π/2
= π

2
.

In computing this integral we made the change of variable x = sin t and then,
after finding a primitive for the integrand that resulted from this substitution, we
applied the Newton–Leibniz formula.

Of course, we could have proceeded differently. We could have found the rather
cumbersome primitive 1

2x
√

1− x2 + 1
2 arcsinx for the function

√
1− x2 and then

used the Newton–Leibniz formula. This example shows that in computing a defi-
nite integral one can fortunately sometimes avoid having to find a primitive for the
integrand.

Example 2 Let us show that

a)
∫ π

−π

sinmx cosnx dx = 0, b)
∫ π

−π

sin2 mx dx = π,

c)
∫ π

−π

cos2 nx dx = π

for m,n ∈N.
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a)
∫ π

−π

sinmx cosnx dx = 1

2

∫ π

−π

(
sin(n+m)x − sin(n−m)x

)
dx =

= 1

2

(

− 1

n+m
cos(n+m)x + 1

n−m
cos(n−m)x

)∣
∣
∣
∣

π

−π

=

= 0,

if n−m �= 0. The case when n−m = 0 can be considered separately, and in this
case we obviously arrive at the same result.

b)
∫ π

−π

sin2 mx dx = 1

2

∫ π

−π

(1− cos 2mx)dx = 1

2

(

x − 1

2m
sin 2mx

)∣
∣
∣
∣

π

−π

= π.

c)
∫ π

−π

cos2 nx dx = 1

2

∫ π

−π

(1+ cos 2nx)dx = 1

2

(

x + 1

2n
sin 2nx

)∣∣
∣
∣

π

−π

= π.

Example 3 Let f ∈R[−a, a]. We shall show that

∫ a

−a

f (x)dx =
{

2
∫ a

0 f (x)dx, if f is an even function,

0, if f is an odd function.

If f (−x)= f (x), then
∫ a

−a

f (x)dx =
∫ 0

−a

f (x)dx +
∫ a

0
f (x)dx =

∫ 0

a

f (−t)(−1)dt +
∫ a

0
f (x)dx =

=
∫ a

0
f (−t)dt +

∫ a

0
f (x)dx =

∫ a

0

(
f (−x)+ f (x)

)
dx =

= 2
∫ a

0
f (x)dx.

If f (−x)=−f (x), we obtain from the same computations that
∫ a

−a

f (x)dx =
∫ a

0

(
f (−x)+ f (x)

)
dx =

∫ a

0
0 dx = 0.

Example 4 Let f be a function defined on the entire real line R and having period T ,
that is f (x + T )= f (x) for all x ∈R.

If f is integrable on each finite closed interval, then for any a ∈ R we have the
equality

∫ a+T

a

f (x)dx =
∫ T

0
f (x)dx,
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that is, the integral of a periodic function over an interval whose length equals the
period T of the function is independent of the location of the interval of integration
on the real line:

∫ a+T

a

f (x)dx =
∫ 0

a

f (x)dx +
∫ T

0
f (x)dx +

∫ a+T

T

f (x)dx =

=
∫ T

0
f (x)dx +

∫ 0

a

f (x)dx +
∫ a

0
f (t + T ) · 1 dt =

=
∫ T

0
f (x)dx +

∫ 0

a

f (x)dx +
∫ a

0
f (t)dt =

∫ T

0
f (x)dx.

Here we have made the change of variable x = t + T and used the periodicity of
the function f (x).

Example 5 Suppose we need to compute the integral
∫ 1

0 sin(x2)dx, for example
within 10−2.

We know that the primitive
∫

sin(x2)dx (the Fresnel integral) cannot be ex-
pressed in terms of elementary functions, so that it is impossible to use the Newton–
Leibniz formula here in the traditional sense.

We take a different approach. When studying Taylor’s formula in differential
calculus, we found as an example (see Example 11 of Sect. 5.3) that on the interval
[–1, 1] the equality

sinx ≈ x − 1

3!x
3 + 1

5!x
5 =: P(x)

holds within 10−3.
But if | sinx − P(x)| < 10−3 on the interval [–1, 1], then | sin(x2)− P(x2)| <

10−3 also, for 0≤ x ≤ 1.
Consequently,

∣
∣
∣
∣

∫ 1

0
sin
(
x2)dx−

∫ 1

0
P
(
x2)dx

∣
∣
∣
∣≤

∫ 1

0

∣
∣sin

(
x2)−P

(
x2)∣∣dx <

∫ 1

0
10−3 dx < 10−3.

Thus, to compute the integral
∫ 1

0 sin(x2)dx with the required precision, it suffices

to compute the integral
∫ 1

0 P(x2)dx. But

∫ 1

0
P
(
x2)dx =

∫ 1

0

(

x2 − 1

3!x
3 + 1

5!x
10
)

dx =

=
(

1

3!x
3 − 1

3!7x7 + 1

5!11
x11

)∣∣
∣
∣

1

0
= 1

3
− 1

3!7 +
1

5!11
=

= 0.310± 10−3,
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and therefore

∫ 1

0
sin
(
x2)dx = 0.310± 2× 10−3 = 0.31± 10−2.

Example 6 The quantity μ= 1
b−a

∫ b

a
f (x)dx is called the integral average value of

the function on the closed interval [a, b].
Let f be a function that is defined on R and integrable on any closed interval.

We use f to construct the new function

Fδ(x)= 1

2δ

∫ x+δ

x−δ

f (t)dt,

whose value at the point x is the integral average value of f in the δ-neighborhood
of x.

We shall show that Fδ(x) (called the average of f ) is, compared to f , more regu-
lar. More precisely, if f is integrable on any interval [a, b], then Fδ(x) is continuous
on R, and if f ∈ C(R), then Fδ(x) ∈C(1)(R).

We verify first that Fδ(x) is continuous:

∣
∣Fδ(x + h)− Fδ(x)

∣
∣= 1

2δ

∣
∣
∣
∣

∫ x+δ+h

x+δ

f (t)dt +
∫ x−δ

x−δ+h

f (t)dt

∣
∣
∣
∣≤

≤ 1

2δ

(
C|h| +C|h|)= C

δ
|h|,

if |f (t)| ≤ C, for example, in the 2δ-neighborhood of x and |h| < δ. It is obvious
that this estimate implies the continuity of Fδ(x).

Now if f ∈ C(R), then by the rule for differentiating a composite function

d

dx

∫ ϕ(x)

a

f (t)dt = d

dϕ

∫ ϕ

a

f (t)dt · dϕ

dx
= f

(
ϕ(x)

)
ϕ′(x),

so that from the expression

Fδ(x)= 1

2δ

∫ x+δ

a

f (t)dt − 1

2δ

∫ x−δ

a

f (t)dt

we find that

F ′δ(x)= f (x + δ)− f (x − δ)

2δ
.

After the change of variable t = x + u in the integral, the function Fδ(x) can be
written as

Fδ(x)= 1

2δ

∫ δ

−δ

f (x + u)du.
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If f ∈ C(R), then, applying the first mean-value theorem, we find that

Fδ(x)= 1

2δ
f (x + τ) · 2δ = f (x + τ),

where |τ | ≤ δ. It follows that

lim
δ→+0

F(δ)(x)= f (x),

which is completely natural.

6.3.6 Problems and Exercises

1. Using the integral, find

a) limn→∞[ n

(n+1)2 + · · · + n

(2n)2 ];
b) limn→∞ 1α+2α+···+nα

nα+1 , if α ≥ 0.

2. a) Show that any continuous function on an open interval has a primitive on that
interval.

b) Show that if f ∈ C(1)[a, b], then f can be represented as the difference of
two nondecreasing functions on [a, b] (see Problem 4 of Sect. 6.1).

3. Show that if the function g is smooth, then the second mean-value theorem (The-
orem 6 of Sect. 6.2) can be reduced to the first mean-value theorem through integra-
tion by parts.
4. Show that if f ∈C(R), then for any fixed closed interval [a, b], given ε > 0 one
can choose δ > 0 so that the inequality |Fδ(x)− f (x)| < ε holds on [a, b], where
Fδ is the average of the function studied in Example 6.
5. Show that

∫ x2

1

et

t
dt ∼ 1

x2
ex2

as x→+∞.

6. a) Verify that the function f (x)= ∫ x+1
x

sin(t2)dt has the following representa-
tion as x→∞:

f (x)= cos(x2)

2x
− cos(x + 1)2

2(x + 1)
+O

(
1

x2

)

.

b) Find limx→∞ xf (x) and limx→∞ xf (x).

7. Show that if f : R→ R is a periodic function that is integrable on every closed
interval [a, b] ⊂R, then the function

F(x)=
∫ x

a

f (t)dt

can be represented as the sum of a linear function and a periodic function.
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8. a) Verify that for x > 1 and n ∈N the function

Pn(x)= 1

π

∫ π

0

(
x +

√
x2 − 1 cosϕ

)n dϕ

is a polynomial of degree n (the nth Legendre polynomial).
b) Show that

Pn(x)= 1

π

∫ π

0

dψ

(x −√x2 − 1 cosψ)n
.

9. Let f be a real-valued function defined on a closed interval [a, b] ⊂ R and
ξ1, . . . , ξm distinct points of this interval. The values of the Lagrange interpolat-
ing polynomial of degree m− 1

Lm−1(x) :=
m∑

j=1

f (ξj )
∏

i �=j

x − ξi

ξj − ξi

are equal to the values of the function at the points ξ1, . . . , ξm (the nodes of the
interpolation), and if f ∈C(m)[a, b], then

f (x)−Lm−1(x)= 1

m!f
(m)
(
ζ(x)

)
ωm(x),

where ωm(x)=∏m
i=1 (x − ξi) and ζ(x) ∈ ]a, b[ (see Exercise 11 in Sect. 5.3).

Let ξi = b+a
2 + b−a

2 θi ; then θi ∈ [−1,1], i = 1, . . . ,m.

a) Show that
∫ b

a

Lm−1(x)dx = b− a

2

m∑

i=1

cif (ξi),

where

ci =
∫ 1

−1

(∏

i �=j

t − θi

θj − θi

)

dt.

In particular

α1)
∫ b

a
L0(x)dx = (b− a)f (a+b

2 ), if m= 1, θ1 = 0;

α2)
∫ b

a
L1(x)dx = b−a

2 [f (a)+ f (b)], if m= 2, θ1 =−1, θ2 = 1;

α3)
∫ b

a
L2(x)dx = b−a

6 [f (a) + 4f (a+b
2 ) + f (b)], if m = 3, θ1 = −1, θ2 = 0,

θ3 = 1.

b) Assuming that f ∈ C(m)[a, b] and setting Mm = maxx∈[a,b] |f (m)(x)|, esti-
mate the magnitude Rm of the absolute error in the formula

∫ b

a

f (x)dx =
∫ b

a

Lm−1(x)dx +Rm (*)
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and show that |Rm| ≤ Mm
m!

∫ b
a
|ωm(x)|dx.

c) In cases α1), α2), and α3) formula (*) is called respectively the rectangular,
trapezoidal, and parabolic rule. In the last case it is also called Simpson’s rule.8

Show that the following formulas hold in cases α1), α2), and α3):

R1 = f ′(ξ1)

4
(b− a)2, R2 =−f ′′(ξ2)

12
(b− a)3,

R3 =−f (4)(ξ3)

2880
(b− a)5,

where ξ1, ξ2, ξ3 ∈ [a, b] and the function f belongs to a suitable class C(k)[a, b].
d) Let f be a polynomial P . What is the highest degree of polynomials P for

which the rectangular, trapezoidal, and parabolic rules respectively are exact?
Let h= b−a

n
, xk = a + hk (k = 0,1, . . . , n), and yk = f (xk).

e) Show that in the rectangular rule

∫ b

a

f (x)dx = h(y0 + y1 + · · · + yn−1)+R1

the remainder has the form R1 = f ′(ξ)
2 (b− a)h, where ξ ∈ [a, b].

f) Show that in the trapezoidal rule

∫ b

a

f (x)dx = h

2

[
(y0 + yn)+ 2(y1 + y2 + · · · + yn−1)

]+R2

the remainder has the form R2 =−f ′′(ξ)
12 (b− a)h2, where ξ ∈ [a, b].

g) Show that in Simpson’s rule (the parabolic rule)

∫ b

a

f (x)dx = h

3

[
(y0 + yn)+ 4(y1 + y3 + · · · + yn−1)+

+ 2(y2 + y4 + · · · + yn−2)
]+R3,

which can be written for even values of n, the remainder R3 has the form

R3 =−f (4)(ξ)

180
(b− a)h4,

where ξ ∈ [a, b].
h) Starting from the relation

π = 4
∫ 1

0

dx

1+ x2
,

8T. Simpson (1710–1761) – British mathematician.
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compute π within 10−3, using the rectangular, trapezoidal, and parabolic rules. Note
carefully the efficiency of Simpson’s rule, which is, for that reason, the most widely
used quadrature formula. (That is the name given to formulas for numerical inte-
gration in the one-dimensional case, in which the integral is identified with the area
of the corresponding curvilinear trapezoid.)

10. By transforming formula (6.46), obtain the following forms for the remainder
term in Taylor’s formula, where we have set h= x − a:

a) hn

(n−1)!
∫ 1

0 f (n)(a + τh)(1− τ)n−1 dτ ;

b) hn

n!
∫ 1

0 f (n)(x − h n
√

t)dt .

11. Show that the important formula (6.48) for change of variable in an integral
remains valid without the assumption that the function in the substitution is mono-
tonic.

6.4 Some Applications of Integration

There is a single pattern of ideas that often guides the use of integration in applica-
tions; for that reason it is useful to expound this pattern once in its pure form. The
first subsection of this section is devoted to that purpose.

6.4.1 Additive Interval Functions and the Integral

In discussing the additivity of the integral over intervals in Sect. 6.2 we introduced
the concept of an additive (oriented) interval function. We recall that this is a func-
tion (α,β) �→ I (α,β) that assigns a number I (α,β) to each ordered pair of points
(α,β) of a fixed closed interval [a, b], in such a way that the following equality
holds for any triple of points α,β, γ ∈ [a, b]:

I (α, γ )= I (α,β)+ I (β, γ ). (6.49)

It follows from (6.49) when α = β = γ that I (α,α) = 0, while for α = γ we
find that I (α,β)+ I (β,α)= 0, that is, I (α,β)=−I (β,α). This relation shows the
effect of the order of the points α,β .

Setting

F(x)= I (a, x),

by the additivity of the function I we have

I (α,β)= I (a,β)− I (a,α)=F(β)−F(α).

Thus, every additive oriented interval function has the form

I (α,β)=F(β)−F(α), (6.50)
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where x �→F(x) is a function of points on the interval [a, b].
It is easy to verify that the converse is also true, that is, any function x �→ F(x)

defined on [a, b] generates an additive (oriented) interval function by formula
(6.50).

We now give two typical examples.

Example 1 If f ∈ R[a, b], the function F(x) = ∫ x

a
f (t)dt generates via formula

(6.50) the additive function

I (α,β)=
∫ β

α

f (t)dt.

We remark that in this case the function F(x) is continuous on the closed interval
[a, b].

Example 2 Suppose the interval [0,1] is a weightless string with a bead of unit mass
attached to the string at the point x = 1/2.

Let F(x) be the amount of mass located in the closed interval [0, x] of the string.
Then by hypothesis

F(x)=
{

0 for x < 1/2,

1 for 1/2≤ x ≤ 1.

The physical meaning of the additive function

I (α,β)=F(β)−F(α)

for β > α is the amount of mass located in the half-open interval ]α,β].
Since the function F is discontinuous, the additive function I (α,β) in this case

cannot be represented as the Riemann integral of a function – a mass density. (This
density, that is, the limit of the ratio of the mass in an interval to the length of the
interval, would have to be zero at any point of the interval [a, b] except the point
x = 1/2, where it would have to be infinite.)

We shall now prove a sufficient condition for an additive interval function to be
generated by an integral, one that will be useful in what follows.

Proposition 1 Suppose the additive function I (α,β) defined for points α,β of a
closed interval [a, b] is such that there exists a function f ∈R[a, b] connected with
I as follows: the relation

inf
x∈[α,β]f (x)(β − α)≤ I (α,β)≤ sup

x∈[α,β]
f (x)(β − α)

holds for any closed interval [α,β] such that a ≤ α ≤ β ≤ b. Then

I (a, b)=
∫ b

a

f (x)dx.
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Proof Let P be an arbitrary partition a = x0 < · · ·< xn = b of the closed interval
[a, b], let mi = infx∈[xi−1,xi ] f (x), and let Mi = supx∈[xi−1,xi ] f (x).

For each interval [xi−1, xi] of the partition P we have by hypothesis

miΔxi ≤ I (xi−1, xi)≤MiΔxi.

Summing these inequalities and using the additivity of the function I (α,β), we
obtain

n∑

i=1

miΔxi ≤ I (a, b)≤
n∑

i=1

MiΔxi.

The extreme terms in this last relation are familiar to us, being the upper and
lower Darboux sums of the function f corresponding to the partition P of the closed
interval [a, b]. As λ(P )→ 0 they both have the integral of f over the closed interval
[a, b] as their limit. Thus, passing to the limit as λ(P )→ 0, we find that

I (a, b)=
∫ b

a

f (x)dx. �

Let us now illustrate Proposition 1 in action.

6.4.2 Arc Length

Suppose a particle is moving in space R
3 and suppose its law of motion is known to

be r(t)= (x(t), y(t), z(t)), where x(t), y(t), and z(t) are the rectangular Cartesian
coordinates of the point at time t .

We wish to define the length l[a, b] of the path traversed during the time interval
a ≤ t ≤ b.

Let us make some concepts more precise.

Definition 1 A path in R
3 is a mapping t �→ (x(t), y(t), z(t)) of an interval of the

real line into R
3 defined by functions x(t), y(t), z(t) that are continuous on the

interval.

Definition 2 If t �→ (x(t), y(t), z(t)) is a path for which the domain of the parame-
ter t is the closed interval [a, b] then the points

A= (
x(a), y(a), z(a)

)
and B = (

x(b), y(b), z(b)
)

in R
3 are called the initial point and terminal point of the path.

Definition 3 A path is closed if it has both an initial and terminal point, and these
points coincide.
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Definition 4 If Γ : I → R
3 is a path, the image Γ (I) of the interval I in R

3 is
called the support of the path.

The support of an abstract path may turn out to be not at all what we would like
to call a curve. There are examples of paths whose supports, for example, contain
an entire three-dimensional cube (the so-called Peano “curves”). However, if the
functions x(t), y(t), and z(t) are sufficiently regular (as happens, for example, in
the case of a mechanical motion, when they are differentiable), we are guaranteed
that nothing contrary to our intuition will occur, as one can verify rigorously.

Definition 5 A path Γ : I →R
3 for which the mapping I → Γ (I) is one-to-one is

called a simple path or parametrized curve, and its support is called a curve in R
3.

Definition 6 A closed path Γ : [a, b]→R
3 is called a simple closed path or simple

closed curve if the path Γ : [a, b[→R
3 is simple.

Thus a simple path differs from an arbitrary path in that when moving over its
support we do not return to points reached earlier, that is, we do not intersect our
trajectory anywhere except possibly at the terminal point, when the simple path is
closed.

Definition 7 The path Γ : I → R
3 is called a path of a given smoothness if the

functions x(t), y(t), and z(t) have that smoothness.
(For example, the smoothness C[a, b], C(1)[a, b], or C(k)[a, b].)

Definition 8 A path Γ : [a, b]→R
3 is piecewise smooth if the closed interval [a, b]

can be partitioned into a finite number of closed intervals on each of which the
corresponding restriction of the mapping Γ is defined by continuously differentiable
functions.

It is smooth paths, that is, paths of class C(1) and piecewise smooth paths that we
intend to study just now.

Let us return to the original problem, which we can now state as the problem of
defining the length of a smooth path Γ : [a, b]→R

3.
Our initial ideas about the length l[a, b] of the path traversed during the time

interval α ≤ t ≤ β are as follows: First, if α < β < γ , then

l[α,γ ] = l[α,β] + l[β,γ ],
and second, if v(t)= (ẋ(t), ẏ(t), ż(t)) is the velocity of the point at time t , then

inf
x∈[α,β]

∣
∣v(t)

∣
∣(β − α)≤ l[α,β] ≤ sup

x∈[α,β]
∣
∣v(t)

∣
∣(β − α).

Thus, if the functions x(t), y(t), and z(t) are continuously differentiable on
[a, b], by Proposition 1 we arrive in a deterministic manner at the formula

l[a, b] =
∫ b

a

∣
∣v(t)

∣
∣dt =

∫ b

a

√
ẋ2(t)+ ẏ2(t)+ ż2(t)dt, (6.51)
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which we now take as the definition of the length of a smooth path Γ : [a, b]→R
3.

If z(t)≡ 0, the support lies in a plane, and formula (6.51) assumes the form

l[a, b] =
∫ b

a

√
ẋ2(t)+ ẏ2(t)dt. (6.52)

Example 3 Let us test formula (6.52) on a familiar object. Suppose the point moves
according to the law

x =R cos 2πt,

y =R sin 2πt.
(6.53)

Over the time interval [0,1] the point will traverse a circle of radius R, that is, a
path of length 2πR if the length of a circle can be computed from this formula.

Let us carry out the computation according to formula (6.52):

l[0,1] =
∫ 1

0

√
(−2πR sin 2πt)2 + (2πR cos 2πt)2 dt = 2πR.

Despite the encouraging agreement of the results, the reasoning just carried out
contains some logical gaps that are worth paying attention to.

The functions cosα and sinα, if we use the high-school definition of them, are
the Cartesian coordinates of the image p of the point p0 = (1,0) under a rotation
through angle α.

Up to sign, the quantity α is measured by the length of the arc of the circle
x2 + y2 = 1 between p0 and p. Thus, in this approach to trigonometric functions
their definition relies on the concept of the length of an arc of a circle and hence, in
computing the circumference of a circle above, we were in a certain sense complet-
ing a logical circle by giving the parametrization in the form (6.53).

However, this difficulty, as we shall now see, is not fundamental, since a
parametrization of the circle can be given without resorting to trigonometric func-
tions at all.

Let us consider the problem of computing the length of the graph of a function
y = f (x) defined on a closed interval [a, b] ⊂R. We have in mind the computation
of the length of the path Γ : [a, b]→R

2 having the special parametrization

x �→ (
x,f (x)

)
,

from which one can conclude that the mapping Γ : [a, b] → R
2 is one-to-one.

Hence, by Definition 5 the graph of a function is a curve in R
2.

In this case formula (6.52) can be simplified, since by setting x = t and y = f (t)

in it, we obtain

l[a, b] =
∫ b

a

√
1+ [

f ′(t)
]2 dt. (6.54)
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In particular, if we consider the semicircle

y =
√

1− x2, −1≤ x ≤ 1,

of the circle x2 + y2 = 1, we obtain for it

l =
∫ +1

−1

√

1+
[ −x√

1− x2

]2

dx =
∫ 1

−1

dx√
1− x2

. (6.55)

But the integrand in this last integral is an unbounded function, and hence does
not exist in the traditional sense we have studied. Does this mean that a semicircle
has no length? For the time being it means only that this parametrization of the
semicircle does not satisfy the condition that the functions ẋ and ẏ be continuous,
under which formula (6.52), and hence also formula (6.54), was written. For that
reason we must either consider broadening the concept of integral or passing to a
parametrization satisfying the conditions under which (6.54) can be applied.

We remark that if we consider this parametrization on any closed interval of the
form [−1+ δ,1− δ], where −1 <−1+ δ < 1− δ < 1, then formula (6.54) applies
on that interval, and we find the length

l[−1+ δ,1− δ] =
∫ 1−δ

−1+δ

dx√
1− x2

for the arc of the circle lying above the closed interval [−1+ δ,1− δ].
It is therefore natural to consider that the length l of the semicircle is the limit

limδ→+0 l[−1+ δ,1− δ]. One can interpret the integral in (6.55) in the same sense.
We shall study this naturally arising extension of the concept of a Riemann integral
in the next section.

As for the particular problem we are studying, without even changing the
parametrization one can find, for example, the length l[− 1

2 , 1
2 ] of an arc of the unit

circle subtended by a chord congruent to the radius of the circle. Then (from geo-
metric considerations alone) it must be that l = 3 · l[− 1

2 , 1
2 ].

We remark also that
∫

dx√
1− x2

=
∫

(1− x2 + x2)dx√
1− x2

=
∫ √

1− x2 dx − 1

2

∫
x d(1− x2)√

1− x2
=

= 2
∫ √

1− x2 dx − x
√

1− x2,

and therefore

l[−1+ δ,1− δ] = 2
∫ 1−δ

−1+δ

√
1− x2 dx − (

x
√

1− x2
)∣
∣1−δ

−1+δ
.

Thus,

l = lim
δ→+0

l[−1+ δ,1− δ] = 2
∫ 1

−1

√
1− x2 dx.
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The length of a semicircle of unit radius is denoted π , and we thus arrive at the
following formula

π = 2
∫ 1

−1

√
1− x2 dx.

This last integral is an ordinary (not generalized) Riemann integral and can be
computed with any precision.

If for x ∈ [−1,1] we define arccosx as l[x,1], then by the computations carried
out above

arccosx =
∫ 1

x

dt√
1− t2

,

or

arccosx = x
√

1− x2 + 2
∫ 1

x

√
1− t2 dt.

If we regard arc length as a primitive concept, then we must also regard the
function x �→ arccosx introduced just now and the function x �→ arcsinx, which can
be introduced similarly, as primitive. But the functions x �→ cosx and x �→ sinx can
then be obtained as the inverses of these functions on the corresponding intervals.
In essence, this is what is done in elementary geometry.

The example of the length of a semicircle is instructive not only because while
studying it we made a remark on the definition of the trigonometric functions that
may be of use to someone, but also because it naturally raises the question whether
the number defined by formula (6.51) depends on the coordinate system x, y, z and
the parametrization of the curve when one is finding the length of a curve.

Leaving to the reader the analysis of the role played by three-dimensional Carte-
sian coordinates, we shall examine here the role of the parametrization.

We need to clarify that by a parametrization of a curve in R
3, we mean a defini-

tion of a simple path Γ : I →R
3 whose support is that curve. The point or number

t ∈ I is called a parameter and the interval I the domain of the parameter.
If Γ : I → L and Γ̃ : Ĩ → L are two one-to-one mappings with the same set of

values L, there naturally arise one-to-one mappings Γ̃ −1 ◦Γ : I → Ĩ and Γ −1 ◦ Γ̃ :
Ĩ → I between the domains I and Ĩ of these mappings.

In particular, if there are two parametrizations of the same curve, then there is
a natural correspondence between the parameters t ∈ I and τ ∈ Ĩ , t = t (τ ) or τ =
τ(t), making it possible, knowing the parameter of a point in one parametrization,
to find its parameter in the other parametrization.

Let Γ : [a, b] → L and Γ̃ : [α,β] → L be two parametrizations of the same
curve with the correspondences Γ (a)= Γ̃ (α) and Γ (b)= Γ̃ (β) between their ini-
tial and terminal points. Then the transition functions t = t (τ ) and τ = τ(t) from
one parameter to another will be continuous, strictly monotonic mappings of the
closed intervals a ≤ t ≤ b and α ≤ τ ≤ β onto each other with the initial points and
terminal points corresponding: a↔ α, b↔ β .

Here, if the curves Γ and Γ̃ are defined by the triples (x(t), y(t), z(t)) and
(x̃(t), ỹ(t), z̃(t)) of smooth functions such that |v(t)|2 = ẋ2(t)+ ẏ2(t)+ ż2(t) �= 0



382 6 Integration

on [a, b] and ṽ(τ )|2 = ˙̃x2(τ ) + ˙̃y2(τ ) + ˙̃z2(τ ) �= 0 on [α,β], then one can verify
that in this case the transition functions t = t (τ ) and τ = τ(t) are smooth functions
having positive derivatives on the intervals on which they are defined.

We shall not undertake to verify this assertion here; it will eventually be obtained
as a corollary of the important implicit function theorem. At the moment this asser-
tion is mostly intended as motivation for the following definition.

Definition 9 The path Γ̃ : [α,β] → R3 is obtained from Γ : [a, b] → R
3 by an

admissible change of parameter if there exists a smooth mapping T : [α,β]→ [a, b]
such that T (α)= a, T (β)= b, T ′(τ ) > 0 on [α,β] and Γ̃ = Γ ◦ T .

We now prove a general proposition.

Proposition 2 If a smooth path Γ̃ : [α,β] → R
3 is obtained from a smooth path

Γ : [a, b] → R
3 by an admissible change of parameter, then the lengths of the two

paths are equal.

Proof Let Γ̃ : [α,β] → R
3 and Γ : [a, b] → R

3 be defined respectively by the
triples of smooth functions τ �→ (x̃(τ ), ỹ(τ ), z̃(τ )) and t �→ (x(t), y(t), z(t)), and
let t = t (τ ) be the admissible change of parameter under which

x̃(τ )= x
(
t (τ )

)
, ỹ(τ )= y

(
t (τ )

)
, z̃(τ )= z

(
t (τ )

)
.

Using the definition (6.51) of path length, the rule for differentiating a composite
function, and the rule for change of variable in an integral, we have

∫ b

a

√
ẋ2(t)+ ẏ2(t)+ ż2(t)dt =

=
∫ β

α

√
ẋ2
(
t (τ )

)+ ẏ2
(
t (τ )

)+ ż2
(
t (τ )

)
t ′(τ )dτ =

=
∫ β

α

√[
ẋ
(
t (τ )

)
t ′(τ )

]2 + [
ẏ
(
t (τ )

)
t ′(τ )

]2 + [
ż
(
t (τ )

)
t ′(τ )

]2 dτ =

=
∫ β

α

√
˙̃x2(τ )+ ˙̃y2(τ )+ ˙̃z2(τ )dτ. �

Thus, in particular, we have shown that the length of a curve is independent of a
smooth parametrization of it.

The length of a piecewise smooth path is defined as the sum of the lengths of the
smooth paths into which it can be divided; for that reason it is easy to verify that the
length of a piecewise smooth path also does not change under an admissible change
of its parameter.

To conclude the discussion of the concept of the length of a path and the length
of a curve (which, after Proposition 2, we now have the right to talk about), we
consider another example.
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Fig. 6.2

Example 4 Let us find the length of the ellipse defined by the canonical equation

x2

a2
+ y2

b2
= 1 (a ≥ b > 0). (6.56)

Taking the parametrization x = a sinψ , y = b cosψ , 0≤ψ ≤ 2π , we obtain

l =
∫ 2π

0

√
(a cosψ)2 + (−b sinψ)2 dψ =

∫ 2π

0

√
a2 − (

a2 − b2
)

sin2 ψ dψ =

= 4a

∫ π/2

0

√

1− a2 − b2

a2
sin2 ψ dψ = 4a

∫ π/2

0

√
1− k2 sin2 ψ dψ,

where k2 = 1− b2

a2 is the square of the eccentricity of the ellipse.
The integral

E(k,ϕ)=
∫ ϕ

0

√
1− k2 sin2 ψ dψ

cannot be expressed in elementary functions, and is called an elliptic integral be-
cause of the connection with the ellipse just discussed. More precisely, E(k,ϕ) is
the elliptic integral of second kind in the Legendre form. The value that it assumes
for ϕ = π/2 depends only on k, is denoted E(k), and is called the complete elliptic
integral of second kind. Thus E(k)=E(k,π/2), so that the length of an ellipse has
the form l = 4aE(k) in this notation.

6.4.3 The Area of a Curvilinear Trapezoid

Consider the figure aABb of Fig. 6.2, which is called a curvilinear trapezoid. This
figure is bounded by the vertical line segments aA and bB , the closed interval [a, b]
on the x-axis, and the curve

�

AB , which is the graph of an integrable function y =
f (x) on [a, b].

Let [α,β] be a closed interval contained in [a, b]. We denote by S(α,β) the area
of the curvilinear trapezoid αf (α)f (β)β corresponding to it.
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Our ideas about area are as follows: if a ≤ α < β < γ ≤ b, then

S(α, γ )= S(α,β)+ S(β, γ )

(additivity of areas) and

inf
x∈[α,β]f (x)(β − α)≤ S(α,β)≤ sup

x∈[α,β]
f (x)(β − α).

(The area of an enclosing figure is not less than the area of the figure enclosed.)
Hence by Proposition 1, the area of this figure must be computed from the for-

mula

S(a, b)=
∫ b

a

f (x)dx. (6.57)

Example 5 Let us use formula (6.57) to compute the area of the ellipse given by the
canonical equation (6.56).

By the symmetry of the figure and the assumed additivity of areas, it suffices to
find the area of just the part of the ellipse in the first quadrant, then quadruple the
result. Here are the computations:

S = 4
∫ a

0

√

b2

(

1− x2

a2

)

dx = 4b

∫ π/2

0

√
1− sin2 ta cos t dt =

= 4ab

∫ π/2

0
cos2 t dt = 2ab

∫ π/2

0
(1− cos 2t)dt = πab.

Along the way we have made the change of variable x = a sin t , 0≤ t ≤ π/2.
Thus S = πab. In particular, when a = b = R, we obtain the formula πR2 for

the area of a disk of radius R.

Remark It should be noted that formula (6.57) gives the area of the curvilinear trape-
zoid under the condition that f (x) ≥ 0 on [a, b]. If f is an arbitrary integrable
function, then the integral (6.57) obviously gives the algebraic sum of the areas of
corresponding curvilinear trapezoids lying above and below the x-axis. When this
is done, the areas of trapezoids lying above the x-axis are summed with a positive
sign and those below with a negative sign.

6.4.4 Volume of a Solid of Revolution

Now suppose the curvilinear trapezoid shown in Fig. 6.2 is revolved about the closed
interval [a, b]. Let us determine the volume of the solid that results.

We denote by V (α,β) the volume of the solid obtained by revolving the curvi-
linear trapezoid αf (α)f (β)β (see Fig. 6.2) corresponding to the closed interval
[α,β] ⊂ [a, b].
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According to our ideas about volume the following relations must hold: if a ≤
α < β < γ ≤ b, then

V (α,γ )= V (α,β)+ V (β,γ )

and

π
(

inf
x∈[α,β]f (x)

)2
(β − α)≤ V (α,β)≤ π

(
sup

x∈[α,β]
f (x)

)2
(β − α).

In this last relation we have estimated the volume V (α,β) by the volumes of
inscribed and circumscribed cylinders and used the formula for the volume of a
cylinder (which is not difficult to obtain, once the area of a disk has been found).

Then by Proposition 1

V (a, b)= π

∫ b

a

f 2(x)dx. (6.58)

Example 6 By revolving about the x-axis the semicircle bounded by the closed in-
terval [−R,R] of the axis and the arc of the circle y =√R2 − x2,−R ≤ x ≤R, one
can obtain a three-dimensional ball of radius R whose volume is easily computed
from (6.58):

V = π

∫ R

−R

(
R2 − x2)dx = 4

3
πR3.

More details on the measurement of lengths, areas, and volumes will be given in
Part 2 of this course. At that time we shall solve the problem of the invariance of the
definitions we have given.

6.4.5 Work and Energy

The energy expenditure connected with the movement of a body under the influence
of a constant force in the direction in which the force acts is measured by the product
F · S of the magnitude of the force and the magnitude of the displacement. This
quantity is called the work done by the force in the displacement. In general the
directions of the force and displacement may be noncollinear (for example, when
we pull a sled by a rope), and then the work is defined as the inner product 〈F,S〉 of
the force vector and the displacement vector.

Let us consider some examples of the computation of work and the use of the
related concept of energy.

Example 7 The work that must be performed against the force of gravity to lift a
body of mass m vertically from height h1 above the surface of the Earth to height
h2 is, by the definition just given, mg(h2−h1). It is assumed that the entire operation
occurs near the surface of the Earth, so that the variation of the gravitational force
mg can be neglected. The general case is studied in Example 10.
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Example 8 Suppose we have a perfectly elastic spring, one end of which is attached
at the point 0 of the real line, while the other is at the point x. It is known that the
force necessary to hold this end of the spring is kx, where k is the modulus of the
spring.

Let us compute the work that must be done to move the free end of the spring
from position x = a to x = b.

Regarding the work A(α,β) as an additive function of the interval [α,β] and
assuming valid the estimates

inf
x∈[α,β](kx)(β − α)≤A(α,β)≤ sup

x∈[α,β]
(kx)(β − α),

we arrive via Proposition 1 at the conclusion that

A(a,b)=
∫ b

a

kx dx = kx2

2

∣
∣
∣
∣

b

a

.

This work is done against the force. The work done by the spring during the same
displacement differs only in sign.

The function U(x) = kx2

2 that we have found enables us to compute the work
we do in changing the state of the spring, and hence the work that the spring must
do in returning to its initial state. Such a function U(x), which depends only on the
configuration of the system, is called the potential energy of the system. It is clear
from the construction that the derivative of the potential energy gives the force of
the spring with the opposite sign.

If a point of mass m moves along the axis subject to this elastic force F =−kx,
its coordinate x(t) as a function of time satisfies the equation

mẍ =−kx. (6.59)

We have already verified once (see Sect. 5.6.6) that the quantity

mv2

2
+ kx2

2
=K(t)+U

(
x(t)

)=E, (6.60)

which is the sum of the kinetic and (as we now understand) potential energies of the
system, remains constant during the motion.

Example 9 We now consider another example. In this example we shall encounter a
number of concepts that we have introduced and become familiar with in differential
and integral calculus.

We begin by remarking that by analogy with the function (6.60), which was writ-
ten for a particular mechanical system satisfying Eq. (6.59), one can verify that for
an arbitrary equation of the form

s̈(t)= f
(
s(t)

)
, (6.61)
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Fig. 6.3

where f (s) is a given function, the sum

ṡ2

2
+U(s)=E (6.62)

does not vary over time if U ′(s)=−f (s).
Indeed,

dE

dt
= 1

2

dṡ2

dt
+ dU(s)

dt
= ṡ s̈ + dU

ds
· ds

dt
= ṡ

(
s̈ − f (s)

)= 0.

Thus by (6.62), regarding E as a constant, we obtain successively, first

ṡ =±
√

2
(
E −U(s)

)

(where the sign must correspond to the sign of the derivative ds
dt

), then

dt

ds
=± 1√

2(E −U(s))
,

and finally

t = c1 ±
∫

ds√
2(E −U(s))

.

Consequently, using the law of conservation of the “energy” (6.62) in Eq. (6.61),
we have succeeded theoretically in solving this equation by finding not the function
s(t), but its inverse t (s).

Equation (6.61) arises, for example, in describing the motion of a point along a
given curve. Suppose a particle moves under the influence of the force of gravity
along a narrow ideally smooth track (Fig. 6.3).

Let s(t) be the distance along the track (that is, the length of the path) from a
fixed point O – the origin of the measurement – to the point where the particle is at
time t . It is clear that then ṡ(t) is the magnitude of the velocity of the particle and
s̈(t) is the magnitude of the tangential component of its acceleration, which must
equal the magnitude of the tangential component of the force of gravity at a given
point of the track. It is also clear that the tangential component of the force of gravity
depends only on the point of the track, that is, it depends only on s, since s can be
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Fig. 6.4

regarded as a parameter that parametrizes the curve9 with which we are identifying
the track. If we denote this component of the force of gravity by f (s), we find that

ms̈ = f (s).

For this equation the following quantity will be preserved:

1

2
mṡ2 +U(s)=E,

where U ′(s)=−f (s).
Since the term 1

2mṡ2 is the kinetic energy of the point and the motion along the
track is frictionless, we can guess, avoiding calculations, that the function U(s),
up to a constant term, must have the form mgh(s), where mgh(s) is the potential
energy of a point of height h(s) in the gravitational field.

If the relations ṡ(0)= 0, s(0)= s0, and h(s0)= h0 held at the initial time t = 0,
then by the relations

2E

m
= ṡ2 + 2gh(s)= C

we find that C = 2gh(s0), and therefore ṡ2 = 2g(h0 − h(s)) and

t =
∫ s

s0

ds√
2g(h0 − h(s))

. (6.63)

In particular if, as in the case of a pendulum, the point moves along a circle of
radius R, the length s is measured from the lowest point O of the circle, and the
initial conditions amount to the equality ṡ(0)= 0 at t = 0 and a given initial angle
of displacement −ϕ0 (see Fig. 6.4). Then, as one can verify, expressing s and h(s)

in terms of the angle of displacement ϕ, we obtain

t =
∫ s

s0

ds√
2g(h0 − h(s))

=
∫ ϕ

−ϕ0

R dψ√
2gR(cosψ − cosϕ0)

,

9The parametrization of a curve by its own arc length is called its natural parametrization, and s is
called the natural parameter.
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or

t = 1

2

√
R

g

∫ ϕ

−ϕ0

dψ
√

(sin2 ϕ0
2 − sin2 ψ

2 )

. (6.64)

Thus for a half-period 1
2T of oscillation of the pendulum we obtain

1

2
T = 1

2

√
R

g

∫ ϕ0

−ϕ0

dψ
√

sin2 ϕ0
2 − sin2 ψ

2

, (6.65)

from which, after the substitution sin(ψ/2)
sin(ϕ0/2)

= sin θ , we find

T = 4

√
R

g

∫ π/2

0

dθ
√

1− k2 sin2 θ
, (6.66)

where k2 = sin2 ϕ0
2 .

We recall that the function

F(k,ϕ)=
∫ ϕ

0

dθ
√

1− k2 sin2 θ

is called an elliptic integral of first kind in the Legendre form. For ϕ = π/2 it de-
pends only on k2, is denoted K(k), and is called the complete elliptic integral of first
kind. Thus, the period of oscillation of the pendulum is

T = 4

√
R

g
K(k). (6.67)

If the initial displacement angle ϕ0 is small, we can set k = 0, and then we obtain
the approximate formula

T ≈ 2π

√
R

g
. (6.68)

Now that formula (6.66) has been obtained it is still necessary to examine the
whole chain of reasoning. When we do, we notice that the integrands in the inte-
grals (6.63)–(6.65) are unbounded functions on the interval of integration. We en-
countered a similar difficulty in studying the length of a curve, so that we have an
approximate idea of how to interpret the integrals (6.63)–(6.65).

However, given that this problem has arisen for the second time, we should study
it in a precise mathematical formulation, as will be done in the next section.

Example 10 A body of mass m rises above the surface of the Earth along the trajec-
tory t �→ (x(t), y(t), z(t)), where t is time, a ≤ t ≤ b, and x, y, z are the Cartesian
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coordinates of the point in space. It is required to compute the work of the body
against the force of gravity during the time interval [a, b].

The work A(α,β) is an additive function of the time interval [α,β] ⊂ [a, b].
A constant force F acting on a body moving with constant velocity v performs

work 〈F,vh〉 = 〈F,v〉h in time h, and so the estimate

inf
t∈[α,β]

〈
F
(
p(t)

)
,v(t)

〉
(β − α)≤A(α,β)≤ sup

t∈[α,β]
〈
F
(
p(t)

)
,v(t)

〉
(β − α)

seems natural, where v(t) is the velocity of the body at time t , p(t) is the point in
space where the body is located at time t , and F(p(t)) is the force acting on the
body at the point p = p(t).

If the function 〈F(p(t)),v(t)〉 happens to be integrable, then by Proposition 1 we
must conclude that

A(a,b)=
∫ b

a

〈
F
(
p(t)

)
,v(t)

〉
dt.

In the present case v(t)= (ẋ(t), ẏ(t), ż(t)), and if r(t)= (x(t), y(t), z(t)), then
by the law of universal gravitation, we find

F(p)= F(x, y, z)=G
mM

|r|3 r= GmM

(x2 + y2 + z2)3/2
(x, y, z),

where M is the mass of the Earth and its center is taken as the origin of the coordi-
nate system.

Then,

〈F,v〉(t)=GmM
x(t)ẋ(t)+ y(t)ẏ(t)+ z(t)ż(t)

(x2(t)+ y2(t)+ z2(t))3/2
,

and therefore
∫ b

a

〈F,v〉(t)dt = 1

2
GmM

∫ b

a

(x2(t)+ y2(t)+ z2(t))′

(x2(t)+ y2(t)+ z2(t))3/2
dt =

= − GmM

(x2(t)+ y2(t)+ z2(t))1/2

∣
∣
∣
∣

b

a

=−GmM

|r(t)|
∣
∣
∣
∣

b

a

.

Thus

A(a,b)= GmM

|r(b)| −
GmM

|r(a)| .
We have discovered that the work we were seeking depends only on the magni-

tudes |r(a)| and |r(b)| of the distance of the body of mass m from the center of the
Earth at the initial and final instants of time in the interval [a, b].

Setting

U(r)= GM

r
,
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Fig. 6.5

we find that the work done against gravity in displacing the mass m from any point
of a sphere of radius r0 to any point of a sphere of radius r1 is computed by the
formula

Ar0r1 =m
(
U(r0)−U(r1)

)
.

The function U(r) is called a Newtonian potential. If we denote the radius of the
Earth by R, then, since GM

R2 = g, we can rewrite U(r) as

U(r)= gR2

r
.

Taking this into account, we can obtain the following expression for the work
needed to escape from the Earth’s gravitational field, more precisely, to move a
body of mass m from the surface of the Earth to an infinite distance from the center
of the Earth. It is natural to take that quantity to be the limit limr→+∞ARr .

Thus the escape work is

A=AR∞ = lim
r→+∞ARr = lim

r→+∞m

(
gR2

R
− gR2

r

)

=mgR.

6.4.6 Problems and Exercises

1. Figure 6.5 shows the graph of the dependence F = F(x) of a force acting along
the x-axis on a test particle located at the point x on the axis.

a) Sketch the potential for this force in the same coordinates.
b) Describe the potential of the force −F(x).
c) Investigate to determine which of these two cases is such that the position x0

of the particle is a stable equilibrium position and what property of the potential is
involved in stability.

2. Based on the result of Example 10, compute the velocity a body must have in
order to escape from the gravitational field of the Earth (the escape velocity for the
Earth).
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Fig. 6.6

3. On the basis of Example 9

a) derive the equation Rϕ̈ =−g sinϕ for the oscillations of a mathematical pen-
dulum;

b) assuming the oscillations are small, obtain an approximate solution of this
equation;

c) from the approximate solution, determine the period of oscillation of the pen-
dulum and compare the result with formula (6.68).

4. A wheel of radius r rolls without slipping over a horizontal plane at a uniform
velocity v. Suppose at time t = 0 the uppermost point A of the wheel has coordi-
nates (0,2r) in a Cartesian coordinate system whose x-axis lies in the plane and is
directed along the velocity vector.

a) Write the law of motion t �→ (x(t), y(t)) of the point A.
b) Find the velocity of A as a function of time.
c) Describe graphically the trajectory of A. (This curve is called a cycloid.)
d) Find the length of one arch of the cycloid (the length of one period of this

periodic curve).
e) The cycloid has a number of interesting properties, one of which, discovered

by Huygens10 is that the period of oscillation of a cycloidal pendulum (a ball rolling
in a cycloidal well) is independent of the height to which it rises above the lowest
point of the well. Try to prove this, using Example 9. (See also Problem 6 of the
next section, which is devoted to improper integrals.)

5. a) Starting from Fig. 6.6, explain why, if y = f (x) and x = g(y) are a pair of
mutually inverse continuous nonnegative functions equal to 0 at x = 0 and y = 0
respectively, then the inequality

xy ≤
∫ x

0
f (t)dt +

∫ y

0
g(t)dt

must hold.

10Ch. Huygens (1629–1695) – Dutch engineer, physicist, mathematician, and astronomer.



6.5 Improper Integrals 393

b) Obtain Young’s inequality

xy ≤ 1

p
xp + 1

q
yq

from a) for x, y ≥ 0, p,q > 0, 1
p
+ 1

q
= 1.

c) What geometric meaning does equality have in the inequalities of a) and b)?

6. The Buffon needle problem.11 The number π can be computed in the following
rather surprising way.

We take a large sheet of paper, ruled into parallel lines a distance h apart and we
toss a needle of length l < h at random onto it. Suppose we have thrown the needle
N times, and on n of those times the needle landed across one of the lines. If N

is sufficiently large, then π ≈ 2l
ph

, where p = n
N

is the approximate probability that
the needle will land across a line.

Starting from geometric considerations connected with the computation of area,
try to give a satisfactory explanation of this method of computing π .

6.5 Improper Integrals

In the preceding section we encountered the need for a somewhat broader concept of
the Riemann integral. There, in studying a particular problem, we formed an idea of
the direction in which this should be done. The present section is devoted to carrying
out those ideas.

6.5.1 Definition, Examples, and Basic Properties of Improper
Integrals

Definition 1 Suppose the function x �→ f (x) is defined on the interval [a,+∞[
and integrable on every closed interval [a, b] contained in that interval.

The quantity
∫ +∞

a

f (x)dx := lim
b→+∞

∫ b

a

f (x)dx,

if this limit exists, is called the improper Riemann integral or the improper integral
of the function f over the interval [a,+∞[.

The expression
∫ +∞
a

f (x)dx itself is also called an improper integral, and in that
case we say that the integral converges if the limit exists and diverges otherwise.
Thus the question of the convergence of an improper integral is equivalent to the
question whether the improper integral is defined or not.

11J.L.L. Buffon (1707–1788) – French experimental scientist.
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Example 1 Let us investigate the values of the parameter α for which the improper
integral

∫ +∞

1

dx

xα
(6.69)

converges, or what is the same, is defined.
Since

∫ b

1

dx

xα
=
{

1
1−α

x1−α|b1 for α �= 1,

lnx|b1 for α = 1,

the limit

lim
b→+∞

∫ b

1

dx

xα
= 1

α− 1

exists only for α > 1.
Thus,

∫ ∞

1

dx

xα
= 1

α − 1
, if α > 1,

and for other values of the parameter α the integral (6.69) diverges, that is, is not
defined.

Definition 2 Suppose the function x �→ f (x) is defined on the interval [a,B[ and
integrable on any closed interval [a, b] ⊂ [a,B[. The quantity

∫ B

a

f (x)dx := lim
b→B−0

∫ b

a

f (x)dx,

if this limit exists, is called the improper integral of f over the interval [a,B[.

The essence of this definition is that in any neighborhood of B the function f

may happen to be unbounded.
Similarly, if a function x �→ f (x) is defined on the interval ]A,b] and integrable

on every closed interval [a, b] ⊂ ]A,b], then by definition we set

∫ b

A

f (x)dx := lim
a→A+0

∫ b

a

f (x)dx

and also by definition we set

∫ b

−∞
f (x)dx := lim

a→−∞

∫ b

a

f (x)dx.
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Example 2 Let us investigate the values of the parameter α for which the integral

∫ 1

0

dx

xα
(6.70)

converges.
Since for a ∈ ]0,1]

∫ 1

a

dx

xα
=
{

1
1−α

x1−α|1a, if α �= 1,

lnx|1a, if α = 1,

it follows that the limit

lim
a→+0

∫ 1

a

dx

xα
= 1

1− α

exists only for α < 1.
Thus the integral (6.70) is defined only for α < 1.

Example 3

∫ 0

−∞
ex dx = lim

a→−∞

∫ 0

a

ex dx = lim
a→−∞

(
ex
∣
∣0
a

)= lim
a→−∞

(
1− ea

)= 1.

Since the question of the convergence of an improper integral is answered in the
same way for both integrals over an infinite interval and functions unbounded near
one of the endpoints of a finite interval of integration, we shall study both of these
cases together from now on, introducing the following basic definition.

Definition 3 Let [a,ω[ be a finite or infinite interval and x �→ f (x) a function de-
fined on that interval and integrable over every closed interval [a, b] ⊂ [a,ω[. Then
by definition

∫ ω

a

f (x)dx := lim
b→ω

∫ b

a

f (x)dx, (6.71)

if this limit exists as b→ ω, b ∈ [a,ω[.

From now on, unless otherwise stated, when studying the improper integral
(6.71) we shall assume that the integrand satisfies the hypotheses of Definition 3.

Moreover, for the sake of definiteness we shall assume that the singularity (“im-
propriety”) of the integral arises from only the upper limit of integration. The study
of the case when it arises from the lower limit is carried out word for word in exactly
the same way.

From Definition 3, properties of the integral, and properties of the limit, one can
draw the following conclusions about properties of an improper integral.
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Proposition 1 Suppose x �→ f (x) and x → g(x) are functions defined on an in-
terval [a,ω[ and integrable on every closed interval [a, b] ⊂ [a,ω[. Suppose the
improper integrals

∫ ω

a

f (x)dx, (6.72)

∫ ω

a

g(x)dx (6.73)

are defined.
Then a) if ω ∈R and f ∈R[a,ω], the values of the integral (6.72) are the same,

whether it is interpreted as a proper or an improper integral;
b) for any λ1, λ2 ∈ R the function (λ1f + λ2g)(x) is integrable in the improper

sense on [a,ω[ and the following equality holds:
∫ ω

a

(λ1f + λ2g)(x)dx = λ1

∫ ω

a

f (x)dx + λ2

∫ ω

a

g(x)dx;

c) if c ∈ [a,ω[, then

∫ ω

a

f (x)dx =
∫ c

a

f (x)dx +
∫ ω

c

f (x)dx;

d) if ϕ : [α,γ [ →[a,ω[ is a smooth strictly monotonic mapping with ϕ(α) = a

and ϕ(β)→ ω as β → γ , β ∈ [α,γ [, then the improper integral of the function
t �→ (f ◦ ϕ)(t)ϕ′(t) over [α,γ [ exists and the following equality holds:

∫ ω

a

f (x)dx =
∫ γ

α

(f ◦ ϕ)(t)ϕ′(t)dt.

Proof Part a) follows from the continuity of the function

F(b)=
∫ b

a

f (x)dx

on the closed interval [a,ω] on which f ∈R[a,ω].
Part b) follows from the fact that for b ∈ [a,ω[

∫ b

a

(λ1f + λ2g)(x)dx = λ1

∫ b

a

f (x)dx + λ2

∫ b

a

g(x)dx.

Part c) follows from the equality

∫ b

a

f (x)dx =
∫ c

a

f (x)dx +
∫ b

c
f (x)dx,

which holds for all b, c ∈ [a,ω[.
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Part d) follows from the formula for change of variable in the definite integral:

∫ b=ϕ(β)

a=ϕ(α)

f (x)dx =
∫ β

α

(f ◦ ϕ)(t)ϕ′(t)dt. �

Remark 1 To the properties of the improper integral expressed in Proposition 1 we
should add the very useful rule for integration by parts in an improper integral,
which we give in the following formulation:

If f,g ∈ C(1)[a,ω[ and the limit lim x→ω
x∈[a,ω[ (f · g)(x) exists, then the functions

f · g′ and f ′ · g are either both integrable or both nonintegrable in the improper
sense on [a,ω[, and when they are integrable the following equality holds:

∫ ω

a

(
f · g′)(x)dx = (f · g)(x)

∣
∣ω
a
−
∫ ω

a

(
f ′ · g)(x)dx,

where

(f · g)(x)
∣
∣ω
a
= lim

x→ω
x∈[a,ω[

(f · g)(x)− (f · g)(a).

Proof This follows from the formula

∫ b

a

(
f · g′)(x)dx = (f · g)

∣
∣b
α
−
∫ b

a

(
f ′ · g)(x)dx

for integration by parts in a proper integral. �

Remark 2 It is clear from part c) of Proposition 1 that the improper integrals
∫ ω

a

f (x)dx and
∫ ω

c

f (x)dx

either both converge or both diverge. Thus, in improper integrals, as in series, con-
vergence is independent of any initial piece of the series or integral.

For that reason, when posing the question of convergence of an improper integral,
we sometimes omit entirely the limit of integration at which the integral does not
have a singularity.

With that convention the results obtained in Examples 1 and 2 can be rewritten
as follows:

the integral
∫ +∞ dx

xα converges only for α > 1;
the integral

∫
+0

dx
xα converges only for α < 1.

The sign +0 in the last integral shows that the region of integration is contained
in x > 0.

By a change of variable in this last integral, we immediately find that the integral∫
x0+0

dx
(x−x0)

α converges only for α < 1.
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6.5.2 Convergence of an Improper Integral

a. The Cauchy Criterion

By Definition 3, the convergence of the improper integral (6.71) is equivalent to the
existence of a limit for the function

F(b)=
∫ b

a

f (x)dx (6.74)

as b→ ω, b ∈ [a,ω[.
This relation is the reason why the following proposition holds.

Proposition 2 (Cauchy criterion for convergence of an improper integral) If the
function x �→ f (x) is defined on the interval [a,ω[ and integrable on every closed
interval [a, b] ⊂ [a,ω[, then the integral

∫ ω

a
f (x)dx converges if and only if for

every ε > 0 there exists B ∈ [a,ω[ such that the relation

∣
∣
∣
∣

∫ b2

b1

f (x)dx

∣
∣
∣
∣< ε

holds for any b1, b2 ∈ [a,ω[ satisfying B < b1 and B < b2.

Proof As a matter of fact, we have

∫ b2

b1

f (x)dx =
∫ b2

a

f (x)dx −
∫ b1

a

f (x)dx =F(b2)−F(b1),

and therefore the condition is simply the Cauchy criterion for the existence of a limit
for the function F(b) as b→ ω, b ∈ [a,ω[. �

b. Absolute Convergence of an Improper Integral

Definition 4 The improper integral
∫ ω

a
f (x)dx converges absolutely if the integral∫ ω

a
|f |(x)dx converges.
Because of the inequality

∣
∣
∣
∣

∫ b2

b1

f (x)dx

∣
∣
∣
∣≤

∣
∣
∣
∣

∫ b2

b1

|f |(x)dx

∣
∣
∣
∣

and Proposition 2, we can conclude that if an integral converges absolutely, then it
converges.

The study of absolute convergence reduces to the study of convergence of inte-
grals of nonnegative functions. But in this case we have the following proposition.
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Proposition 3 If a function f satisfies the hypotheses of Definition 3 and f (x)≥ 0
on [a,ω[, then the improper integral (6.71) exists if and only if the function (6.74)
is bounded on [a,ω[.
Proof Indeed, if f (x) ≥ 0 on [a,ω[, then the function (6.74) is nondecreasing on
[a,ω[, and therefore it has a limit as b→ ω, b ∈ [a,ω[, if and only if it is bounded. �

As an example of the use of this proposition, we consider the following corollary
of it.

Corollary 1 (Integral test for convergence of a series) If the function x �→ f (x)

is defined on the interval [1,+∞[, nonnegative, nonincreasing, and integrable on
each closed interval [1, b] ⊂ [1,+∞[, then the series

∞∑

n=1

f (n)= f (1)+ f (2)+ · · ·

and the integral
∫ +∞

1
f (x)dx

either both converge or both diverge.

Proof It follows from the hypotheses that the inequalities

f (n+ 1)≤
∫ n+1

n

f (x)dx ≤ f (n)

hold for any n ∈N. After summing these inequalities, we obtain

k∑

n=1

f (n+ 1)≤
∫ k+1

1
f (x)dx ≤

k∑

n=1

f (n)

or

sk+1 − f (1)≤F(k+ 1)≤ sk,

where sk =∑k
n=1 f (n) and F(b)= ∫ b

1 f (x)dx. Since sk and F(b) are nondecreas-
ing functions of their arguments, these inequalities prove the proposition. �

In particular, one can say that the result of Example 1 is equivalent to the assertion
that the series

∞∑

n=1

1

nα

converges only for α > 1.
The most frequently used corollary of Proposition 3 is the following theorem.
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Theorem 1 (Comparison theorem) Suppose the functions x→ f (x) and x→ g(x)

are defined on the interval [a,ω[ and integrable on any closed interval [a, b] ⊂
[a,ω[.

If

0≤ f (x)≤ g(x)

on [a,ω[, then convergence of the integral (6.73) implies convergence of (6.72) and
the inequality

∫ ω

a

f (x)dx ≤
∫ ω

a

g(x)dx

holds. Divergence of the integral (6.72) implies divergence of (6.73).

Proof From the hypotheses of the theorem and the inequalities for proper Riemann
integrals we have

F(b)=
∫ b

a

f (x)dx ≤
∫ b

a

g(x)dx = G(b)

for any b ∈ [a,ω[. Since both functions F and G are nondecreasing on [a,ω[, the
theorem follows from this inequality and Proposition 3. �

Remark 3 If instead of satisfying the inequalities 0≤ f (x)≤ g(x) the functions f

and g in the theorem are known to be nonnegative and of the same order as x→ ω,
x ∈ [a,ω[, that is, there are positive constants c1 and c2 such that

c1f (x)≤ g(x)≤ c2f (x),

then by the linearity of the improper integral and theorem just proved, in this case
we can conclude that the integrals (6.72) and (6.73) either both converge or both
diverge.

Example 4 The integral
∫ +∞ √

x dx√
1+ x4

converges, since
√

x√
1+ x4

∼ 1

x3/2

as x→+∞.

Example 5 The integral
∫ +∞

1

cosx

x2
dx
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converges absolutely, since
∣
∣
∣
∣
cosx

x2

∣
∣
∣
∣≤

1

x2

for x ≥ 1. Consequently,

∣
∣
∣
∣

∫ +∞

1

cosx

x2
dx

∣
∣
∣
∣≤

∫ +∞

1

∣
∣
∣
∣
cosx

x2

∣
∣
∣
∣dx ≤

∫ +∞

1

1

x2
dx = 1.

Example 6 The integral
∫ +∞

1
e−x2

dx

converges, since e−x2
< e−x for x > 1 and

∫ +∞

1
e−x2

dx <

∫ +∞

1
e−x dx = 1

e
.

Example 7 The integral
∫ +∞ dx

lnx

diverges, since

1

lnx
>

1

x

for sufficiently large values of x.

Example 8 The Euler integral

∫ π/2

0
ln sinx dx

converges, since

| ln sinx| ∼ | lnx|< 1√
x

as x→+0.

Example 9 The elliptic integral

∫ 1

0

dx
√

(1− x2)(1− k2x2)
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converges for 0≤ k2 < 1, since
√(

1− x2
)(

1− k2x2
)∼

√
2
(
1− k2

)
(1− x)1/2

as x→ 1− 0.

Example 10 The integral
∫ ϕ

0

dθ√
cos θ − cosϕ

converges, since

√
cos θ − cosϕ =

√

2 sin
ϕ + θ

2
sin

ϕ − θ

2
∼√

sinϕ(ϕ − θ)1/2

as θ → ϕ − 0.

Example 11 The integral

T = 2

√
L

g

∫ ϕ0

0

dψ
√

sin2 ϕ0
2 sin2 ϕ

2

(6.75)

converges for 0 < ϕ0 < π since as ψ → ϕ0 − 0 we have
√

sin2 ϕ0

2
− sin2 ψ

2
∼√

sinϕ0(ϕ0 −ψ)1/2. (6.76)

Relation (6.75) expresses the dependence of the period of oscillations of a pendu-
lum on its length L and its initial angle of displacement, measured from the radius it
occupies at the lowest point of its trajectory. Formula (6.75) is an elementary version
of formula (6.65) of the preceding section.

A pendulum can be thought of, for example, as consisting of a weightless rod,
one end of which is attached by a hinge while the other end, to which a point mass
is attached, is free.

In that case one can speak of arbitrary initial angles ϕ0 ∈ [0,π]. For ϕ0 = 0 and
ϕ0 = π , the pendulum will not oscillate at all, being in a state of stable equilibrium
in the first case and unstable equilibrium in the second.

It is interesting to note that (6.75) and (6.76) easily imply that T →∞ as ϕ0 →
π − 0, that is, the period of oscillation of a pendulum increases without bound as its
initial position approaches the upper (unstable) equilibrium position.

c. Conditional Convergence of an Improper Integral

Definition 5 If an improper integral converges but not absolutely, we say that it
converges conditionally.
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Example 12 Using Remark 1, by the formula for integration by parts in an improper
integral, we find that

∫ +∞

π/2

sinx

x
dx =−cosx

x

∣
∣
∣
∣

+∞

π/2
−
∫ +∞

π/2

cosx

x2
dx =−

∫ +∞

π/2

cosx

x2
dx,

provided the last integral converges. But, as we saw in Example 5, this integral
converges, and hence the integral

∫ +∞

π/2

sinx

x
dx (6.77)

also converges.
At the same time, the integral (6.77) is not absolutely convergent. Indeed, for

b ∈ [π/2,+∞[ we have

∫ b

π/2

∣
∣
∣
∣
sinx

x

∣
∣
∣
∣dx ≥

∫ b

π/2

sin2 x

x
dx = 1

2

∫ b

π/2

dx

x
− 1

2

∫ b

π/2

cos 2x

x
dx. (6.78)

The integral
∫ +∞

π/2

cos 2x

x
dx,

as can be verified through integration by parts, is convergent, so that as b→+∞,
the difference on the right-hand side of relation (6.78) tends to +∞. Thus, by esti-
mate (6.78), the integral (6.77) is not absolutely convergent.

We now give a special convergence test for improper integrals based on the sec-
ond mean-value theorem and hence essentially on the same formula for integration
by parts.

Proposition 4 (Abel–Dirichlet test for convergence of an integral) Let x �→ f (x)

and x �→ g(x) be functions defined on an interval [a,ω[ and integrable on every
closed interval [a, b] ⊂ [a,ω[. Suppose that g is monotonic.

Then a sufficient condition for convergence of the improper integral

∫ ω

a

(f · g)(x)dx (6.79)

is that the one of the following pairs of conditions hold:

α1) the integral
∫ ω

a
f (x)dx converges,

β1) the function g bounded on [a,ω[,
or

α2) the function F(b)= ∫ b

a
f (x)dx is bounded on [a,ω[,

β2) the function g(x) tends to zero as x→ ω, x ∈ [a,ω[.
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Proof For any b1 and b2 in [a,ω[ we have, by the second mean-value theorem,

∫ b2

b1

(f · g)(x)dx = g(b1)

∫ ξ

b1

f (x)dx + g(b2)

∫ b2

ξ

f (x)dx,

where ξ is a point lying between b1 and b2. Hence by the Cauchy convergence
criterion (Proposition 2), we conclude that the integral (6.79) does indeed converge
if either of the two pairs of conditions holds. �

6.5.3 Improper Integrals with More than One Singularity

Up to now we have spoken only of improper integrals with one singularity caused
either by the unboundedness of the function at one of the endpoints of the interval
of integration or by an infinite limit of integration. In this subsection we shall show
in what sense other possible variants of an improper integral can be taken.

If both limits of integration are singularities of either of these two types, then by
definition

∫ ω2

ω1

f (x)dx :=
∫ c

ω1

f (x)dx +
∫ ω2

c

f (x)dx, (6.80)

where c is an arbitrary point of the open interval ]ω1,ω2[.
It is assumed here that each of the improper integrals on the right-hand side of

(6.80) converges. Otherwise we say that the integral on the left-hand side of (6.80)
diverges.

By Remark 2 and the additive property of the improper integral, the definition
(6.80) is unambiguous in the sense that it is independent of the choice of the point
c ∈ ]ω1,ω2[.

Example 13

∫ 1

−1

dx√
1− x2

=
∫ 0

−1

dx√
1− x2

+
∫ 1

0

dx√
1− x2

=

= arcsinx
∣
∣0−1 + arcsinx

∣
∣1
0 = arcsinx

∣
∣1−1 = π.

Example 14 The integral
∫ +∞

−∞
e−x2

dx

is called the Euler–Poisson integral, and sometimes the Gaussian integral. It obvi-
ously converges in the sense given above. It will be shown later that its value is

√
π .
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Example 15 The integral
∫ +∞

0

dx

xα

diverges, since for every α at least one of the two integrals

∫ 1

0

dx

xα
and

∫ +∞

1

dx

xα

diverges.

Example 16 The integral
∫ +∞

0

sinx

xα
dx

converges if each of the integrals

∫ 1

0

sinx

xα
dx and

∫ +∞

1

sinx

xα
dx

converges. The first of these integrals converges if α < 2, since

sinx

xα
∼ 1

xα−1

as x → +0. The second integral converges if α > 0, as one can verify directly
through an integration by parts similar to the one shown in Example 12, or by citing
the Abel–Dirichlet test. Thus the original integral has a meaning for 0 < α < 2.

In the case when the integrand is not bounded in a neighborhood of one of the
interior points ω of the closed interval of integration [a, b], we set

∫ b

a

f (x)dx :=
∫ ω

a

f (x)dx +
∫ b

ω

f (x)dx, (6.81)

requiring that both of the integrals on the right-hand side exist.

Example 17 In the sense of the convention (6.81)

∫ 1

−1

dx√|x| = 4.

Example 18 The integral
∫ 1
−1

dx
x

is not defined.
Besides (6.81), there is a second convention about computing the integral of a

function that is unbounded in a neighborhood of an interior point ω of a closed
interval of integration. To be specific, we set

PV
∫ b

a

f (x)dx := lim
δ→+0

(∫ ω−δ

a

f (x)dx +
∫ b

ω+δ

f (x)dx

)

, (6.82)
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if the integral on the right-hand side exists. This limit is called, following Cauchy,
the principal value of the integral, and, to distinguish the definitions (6.81) and
(6.82), we put the letters PV in front of the second to indicate that it is the principal
value.

In accordance with this convention we have

Example 19

PV
∫ 1

−1

dx

x
= 0.

We also adopt the following definition:

PV
∫ +∞

−∞
f (x)dx := lim

R→+∞

∫ R

−R

f (x)dx. (6.83)

Example 20

PV
∫ +∞

−∞
x dx = 0.

Finally, if there are several (finitely many) singularities of one kind or another on
the interval of integration, at interior points or endpoints, then the nonsingular points
of the interval are divided into a finite number of such intervals, each containing
only one singularity, and the integral is computed as the sum of the integrals over
the closed intervals of the partition.

It can be verified that the result of such a computation is not affected by the
arbitrariness in the choice of a partition.

Example 21 The precise definition of the logarithmic integral can now be written
as

lix =
{∫ x

0
dt
ln t

, if 0 < x < 1,

PV
∫ x

0
dt
ln t

, if 1 < x.

In the last case the symbol PV refers to the only interior singularity on the interval
]0, x[, which is located at 1. We remark that in the sense of the definition in formula
(6.81) this integral is not convergent.

6.5.4 Problems and Exercises

1. Show that the following functions have the stated properties.

a) Si(x)= ∫ x

0
sin t
t

dt (the sine integral) is defined on all of R, is an odd function,
and has a limit as x→+∞.

b) si(x) = − ∫∞
x

sin t
t

dt is defined on all of R and differs from Six only by a
constant;
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c) Cix = − ∫∞
x

cos t
t

dt (the cosine integral) can be computed for sufficiently
large values of x by the approximate formula Cix ≈ sinx

x
; estimate the region of

values where the absolute error of this approximation is less than 10−4.

2. Show that

a) the integrals
∫ +∞

1
sinx
xα dx,

∫ +∞
1

cosx
xα dx converge only for α > 0, and abso-

lutely only for α > 1;
b) the Fresnel integrals

C(x)= 1√
2

∫ √
x

0
cos t2 dt, S(x)= 1√

2

∫ √
x

0
sin t2 dt

are infinitely differentiable functions on the interval ]0,+∞[, and both have a limit
as x→+∞.

3. Show that

a) the elliptic integral of first kind

F(k,ϕ)=
∫ sinϕ

0

dt
√

(1− t2)(1− k2t2)

is defined for 0≤ k < 1, 0≤ ϕ ≤ π
2 and can be brought into the form

F(k,ϕ)=
∫ ϕ

0

dψ
√

1− k2 sin2 ψ

;

b) the complete elliptic integral of first kind

K(k)=
∫ π/2

0

dψ
√

1− k2 sin2 ψ

increases without bound as k→ 1− 0.

4. Show that

a) the exponential integral Ei(x)= ∫ x

−∞
et

t
dt is defined and infinitely differen-

tiable for x < 0;
b) −Ei(−x)= e−x

x
(1− 1

x
+ 2!

x2 − · · · + (−1)n n!
xn + o( 1

xn )) as x→+∞;

c) the series
∑∞

n=0(−1)n n!
xn does not converge for any value of x ∈R;

d) li(x) ∼ x
lnx

as x →+0. (For the definition of the logarithmic integral li(x)

see Example 21.)

5. Show that

a) the function Φ(x) = 1√
π

∫ x

−x
e−t2

dt , called the error function and often de-

noted erf(x), is defined, even, and infinitely differentiable on R and has a limit as
x→+∞;
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b) if the limit in a) is equal to 1 (and it is), then

erf(x)= 2√
π

∫ x

0
e−t2

dt =

= 1− 2√
π

e−x2
(

1

2x
− 1

22x3
+ 1 · 3

23x5
− 1 · 3 · 5

24x7
+ o

(
1

x7

))

as x→+∞.

6. Prove the following statements.

a) If a heavy particle slides under gravitational attraction along a curve given
in parametric form as x = x(θ), y = y(θ), and at time t = 0 the particle had zero
velocity and was located at the point x0 = x(θ0), y0 = y(θ0), then the following
relation holds between the parameter θ defining a point on the curve and the time t

at which the particle passes this point (see formula (6.63) of Sect. 6.4)

t =±
∫ θ

θ0

√
(x′(θ))2 + (y′(θ))2

2g(y0 − y(θ))
dθ,

in which the improper integral necessarily converges if y′(θ0) �= 0. (The ambiguous
sign is chosen positive or negative according as t and θ have the same kind of
monotonicity or the opposite kind; that is, if an increasing θ corresponds to an
increasing t , then one must obviously choose the positive sign.)

b) The period of oscillation of a particle in a well having cross section in the
shape of a cycloid

x =R(θ + π + sin θ),

y =−R(1+ cos θ),
|θ | ≤ π,

is independent of the level y0 =−R(1+ cos θ0) from which it begins to slide and is
equal to 4π

√
R/g (see Problem 4 of Sect. 6.4).



Chapter 7
Functions of Several Variables: Their Limits
and Continuity

Up to now we have considered almost exclusively numerical-valued functions x �→
f (x) in which the number f (x) was determined by giving a single number x from
the domain of definition of the function.

However, many quantities of interest depend on not just one, but many factors,
and if the quantity itself and each of the factors that determine it can be char-
acterized by some number, then this dependence reduces to the fact that a value
y = f (x1, . . . , xn) of the quantity in question is made to correspond to an ordered
set (x1, . . . , xn) of numbers, each of which describes the state of the corresponding
factor. The quantity assumes this value when the factors determining this quantity
are in these states.

For example, the area of a rectangle is the product of the lengths of its sides. The
volume of a given quantity of gas is computed by the formula

V =R
mT

p
,

where R is a constant, m is the mass, T is the absolute temperature, and p is the
pressure of the gas. Thus the value of V depends on a variable ordered triple of
numbers (m,T ,p), or, as we say, V is a function of the three variables m, T , and p.

Our goal is to learn how to study functions of several variables just as we learned
how to study functions of one variable.

As in the case of functions of one variable, the study of functions of several
numerical variables begins by describing their domains of definition.

7.1 The Space R
m and the Most Important Classes of Its Subsets

7.1.1 The Set Rm and the Distance in It

We make the convention that Rm denotes the set of ordered m-tuples (x1, . . . , xm)

of real numbers xi ∈R (i = 1, . . . ,m).
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Each such m-tuple will be denoted by a single letter x = (x1, . . . , xm) and, in
accordance with convenient geometric terminology, will be called a point of Rm.
The number xi in the set (x1, . . . , xm) will be called the ith coordinate of the point
x = (x1, . . . , xm).

The geometric analogies can be extended by introducing a distance on R
m be-

tween the points x1 = (x1
1 , . . . , xm

1 ) and x2 = (x1
2 , . . . , xm

2 ) according to the formula

d(x1, x2)=
√√
√
√

m∑

i=1

(
xi

1 − xi
2

)2
. (7.1)

The function

d :Rm ×R
m→R

defined by the formula (7.1) obviously has the following properties:

a) d(x1, x2)≥ 0;
b) (d(x1, x2)= 0)⇔ (x1 = x2);
c) d(x1, x2)= d(x2, x1);
d) d(x1, x3)≤ d(x1, x2)+ d(x2, x3).

This last inequality (called, again because of geometric analogies, the triangle
inequality) is a special case of Minkowski’s inequality (see Sect. 5.4.2).

A function defined on pairs of points (x1, x2) of a set X and possessing the prop-
erties a), b), c), and d) is called a metric or distance on X.

A set X together with a fixed metric on it is called a metric space.
Thus we have turned R

m into a metric space by endowing it with the metric given
by relation (7.1).

The reader can get information on arbitrary metric spaces in Chap. 9 (Part 2).
Here we do not wish to become distracted from the particular metric space R

m that
we need at the moment.

Since the space Rm with metric (7.1) will be our only metric space in this chapter,
forming our object of study, we have no need for the general definition of a metric
space at the moment. It is given only to explain the term “space” used in relation to
R

m and the term “metric” in relation to the function (7.1).
It follows from (7.1) that for i ∈ {1, . . . ,m}

∣
∣xi

1 − xi
2

∣
∣≤ d(x1, x2)≤√m max

1≤i≤m

∣
∣xi

1 − xi
2

∣
∣, (7.2)

that is, the distance between the points x1, x2 ∈R
m is small if and only if the corre-

sponding coordinates of these points are close together.
It is clear from (7.2) and also from (7.1) that for m = 1, the set R1 is the same

as the set of real numbers, between whose points the distance is measured in the
standard way by the absolute value of the difference of the numbers.
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7.1.2 Open and Closed Sets in R
m

Definition 1 For δ > 0 the set

B(a; δ)= {
x ∈R

m | d(a, x) < δ
}

is called the ball with center a ∈R
m of radius δ or the δ-neighborhood of the point

a ∈R
m.

Definition 2 A set G ⊂ R
m is open in R

m if for every point x ∈ G there is a ball
B(x; δ) such that B(x; δ)⊂G.

Example 1 R
m is an open set in R

m.

Example 2 The empty set ∅ contains no points at all and hence may be regarded as
satisfying Definition 2, that is, ∅ is an open set in R

m.

Example 3 A ball B(a; r) is an open set in R
m. Indeed, if x ∈ B(a; r), that is,

d(a, x) < r , then for 0 < δ < r − d(a, x), we have B(x; δ)⊂ B(a; r), since

(
ξ ∈ B(x; δ))⇒ (

d(x, ξ) < δ
)⇒

⇒ (
d(a, ξ)≤ d(a, x)+ d(x, ξ) < d(a, x)+ r − d(a, x)= r

)
.

Example 4 A set G = {x ∈ R
m | d(a, x) > r}, that is, the set of points whose dis-

tance from a fixed point a ∈R
m is larger than r , is open. This fact is easy to verify,

as in Example 3, using the triangle inequality for the metric.

Definition 3 The set F ⊂R
m is closed in R

m if its complement G=R
m\F is open

in R
m.

Example 5 The set B(a; r)= {x ∈R
m | d(a, x)≤ r}, r ≥ 0, that is, the set of points

whose distance from a fixed point a ∈ R
m is at most r , is closed, as follows from

Definition 3 and Example 4. The set B(a; r) is called the closed ball with center a

of radius r .

Proposition 1 a) The union
⋃

α∈A Gα of the sets of any system {Gα,α ∈A} of open
sets in R

m is an open set in R
m.

b) The intersection
⋂n

i=1 Gi of a finite number of open sets in R
m is an open set

in R
m.

a′) The intersection
⋂

α∈A Fα of the sets of any system {Fα,α ∈A} of closed sets
Fα in R

m is a closed set in R
m.

b′) The union
⋃n

i=1 Fi of a finite number of closed sets in R
m is a closed set

in R
m.
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Proof a) If x ∈⋃α∈A Gα , then there exists α0 ∈ A such that x ∈ Gα0 , and conse-
quently there is a δ-neighborhood B(x; δ) of x such that B(x; δ) ⊂Gα0 . But then
B(x; δ)⊂⋃

α∈A Gα .
b) Let x ∈⋂n

i=1 Gi . Then x ∈Gi (i = 1, . . . , n). Let δ1, . . . , δn be positive num-
bers such that B(x; δi) ⊂Gi (i = 1, . . . , n). Setting δ = min{δ1, . . . , δn}, we obvi-
ously find that δ > 0 and B(x; δ)⊂⋂n

i=1 Gi .
a′) Let us show that the set C(

⋂
α∈A Fα) complementary to

⋂
α∈A Fα in R

m is
an open set in R

m.
Indeed,

C

(⋂

α∈A

Fα

)

=
⋃

α∈A

(CFα)=
⋃

α∈A

Gα,

where the sets Gα = CFα are open in R
m. Part a′) now follows from a).

b′) Similarly, from b) we obtain

C

(
n⋃

i=1

Fi

)

=
n⋂

i=1

(CFi)=
n⋂

i=1

Gi.
�

Example 6 The set S(a; r)= {x ∈ R
m | d(a, x)= r}, r ≥ 0, is called the sphere of

radius r with center a ∈ R
m. The complement of S(a; r) in R

m, by Examples 3
and 4, is the union of open sets. Hence by the proposition just proved it is open, and
the sphere S(a; r) is closed in R

m.

Definition 4 An open set in R
m containing a given point is called a neighborhood

of that point in R
m.

In particular, as follows from Example 3, the δ-neighborhood of a point is a
neighborhood of it.

Definition 5 In relation to a set E ⊂R
m a point x ∈R

m is

an interior point if some neighborhood of it is contained in E;
an exterior point if it is an interior point of the complement of E in R

m;
a boundary point if it is neither an interior point nor an exterior point.

It follows from this definition that the characteristic property of a boundary point
of a set is that every neighborhood of it contains both points of the set and points
not in the set.

Example 7 The sphere S(a; r), r > 0 is the set of boundary points of both the open
ball B(a; r) and the closed ball B(a; r).
Example 8 A point a ∈ R

m is a boundary point of the set Rm\a, which has no
exterior points.

Example 9 All points of the sphere S(a; r) are boundary points of it; regarded as a
subset of Rm, the sphere S(a; r) has no interior points.
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Definition 6 A point a ∈R
m is a limit point of the set E ⊂R

m if for any neighbor-
hood O(a) of a the intersection E ∩O(a) is an infinite set.

Definition 7 The union of a set E and all its limit points in R
m is the closure of E

in R
m.

The closure of the set E is usually denoted E.

Example 10 The set B(a; r)= B(a; r)∪S(a; r) is the set of limit points of the open
ball B(a; r); that is why B(a; r), in contrast to B(a; r), is called a closed ball.

Example 11 S(a; r)= S(a; r).

Rather than proving this last equality, we shall prove the following useful propo-
sition.

Proposition 2 (F is closed in R
m) ⇔ (F = F in R

m).

In other words, F is closed in R
m if and only if it contains all its limit points.

Proof Let F be closed in R
m, x ∈ R

m, and x /∈ F . Then the open set G = R
m\F

is a neighborhood of x that contains no points of F . Thus we have shown that if
x /∈ F , then x is not a limit point of F .

Let F = F . We shall verify that the set G=R
m\F is open in R

m. If x ∈G, then
x /∈ F , and therefore x is not a limit point of F . Hence there is a neighborhood of
x containing only a finite number of points x1, . . . , xn of F . Since x /∈ F , one can
construct, for example, balls about x, O1(x), . . . ,On(x) such that xi /∈Oi(x). Then
O(x)=⋂n

i=1 Oi(x) is an open neighborhood of x containing no points of F at all,
that is, O(x) ⊂ R

m\F and hence the set Rm\F = R
m\F is open. Therefore F is

closed in R
m. �

7.1.3 Compact Sets in R
m

Definition 8 A set K ⊂R
m is compact if from every covering of K by sets that are

open in R
m one can extract a finite covering.

Example 12 A closed interval [a, b] ⊂R
1 is compact by the finite covering lemma

(Heine–Borel theorem).

Example 13 A generalization to R
m of the concept of a closed interval is the set

I = {
x ∈R

m | ai ≤ xi ≤ bi, i = 1, . . . ,m
}
,
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which is called an m-dimensional interval, or an m-dimensional block or an m-
dimensional parallelepiped.

We shall show that I is compact in R
m.

Proof Assume that from some open covering of I one cannot extract a finite cov-
ering. Bisecting each of the coordinate closed intervals I i = {xi ∈R : ai ≤ xi ≤ bi}
(i = 1, . . . ,m), we break the interval I into 2m intervals, at least one of which
does not admit a covering by a finite number of sets from the open system we
started with. We proceed with this interval exactly as with the original inter-
val. Continuing this division process, we obtain a sequence of nested intervals
I = I1 ⊃ I2 ⊃ · · · ⊃ In ⊃ · · · , none of which admits a finite covering. If In = {x ∈
R

m | ai
n ≤ xi ≤ bi

n, i, . . . ,m}, then for each i ∈ {1, . . . ,m} the coordinate closed in-
tervals ai

n ≤ xi ≤ bi
n (n= 1,2, . . .) form, by construction, a system of nested closed

intervals whose lengths tend to zero. By finding the point ξ i ∈ [ai
n, b

i
n] common to

all of these intervals for each i ∈ {1, . . . ,m}, we obtain a point ξ = (ξ1, . . . , ξm)

belonging to all the intervals I = I1, I2, . . . , In, . . . . Since ξ ∈ I , there is an open
set G in the system of covering sets such that ξ ∈G. Then for some δ > 0 we also
have B(ξ ; δ)⊂G. But by construction and the relation (7.2) there exists N such that
In ⊂ B(ξ ; δ)⊂G for n > N . We have now reached a contradiction with the fact that
the intervals In do not admit a finite covering by sets of the given system. �

Proposition 3 If K is a compact set in R
m, then

a) K is closed in R
m;

b) any closed subset of Rm contained in K is itself compact.

Proof a) We shall show that any point a ∈R
m that is a limit point of K must belong

to K . Suppose a /∈ K . For each point x ∈ K we construct a neighborhood G(x)

such that a has a neighborhood disjoint from G(x). The set {G(x)}, x ∈K , consist-
ing of all such neighborhoods forms an open covering of the compact set K , from
which we can select a finite covering G(x1), . . . ,G(xn). If now Oi(a) is a neigh-
borhood of a such that G(xi)∩Oi(a)=∅, then the set O(a)=⋂n

i=1 Oi(a) is also
a neighborhood of a, and obviously K ∩O(a)=∅. Thus a cannot be a limit point
of K .

b) Suppose F is a closed subset of Rm and F ⊂K . Let {Gα}, α ∈ A, be a cov-
ering of F by sets that are open in Rm. Adjoining to this collection the open set
G=R

m\F , we obtain an open covering of Rm, and in particular, an open covering
of K , from which we select a finite covering of K . This finite covering of K will
also cover the set F . Observing that G ∩ F = ∅, one can say that if G belongs to
this finite covering, we will still have a finite covering of F by sets of the original
system {Gα}, α ∈A, if we remove G. �

Definition 9 The diameter of a set E ⊂R
m is the quantity

d(E) := sup
x1,x2∈E

d(x1, x2).
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Definition 10 A set E ⊂R
m is bounded if its diameter is finite.

Proposition 4 If K is a compact set in R
m, then K is a bounded subset of Rm.

Proof Take an arbitrary point a ∈ R
m and consider the sequence of open balls

{B(a;n)} (n= 1,2, . . .). They form an open covering of Rm and consequently also
of K . If K were not bounded, it would be impossible to select a finite covering of
K from this sequence. �

Proposition 5 The set K ⊂ R
m is compact if and only if K is closed and bounded

in R
m.

Proof The necessity of these conditions was proved in Propositions 3 and 4.
Let us verify that the conditions are sufficient. Since K is a bounded set, there

exists an m-dimensional interval I containing K . As was shown in Example 13,
I is compact in R

m. But if K is a closed set contained in the compact set I , then by
Proposition 3b) it is itself compact. �

7.1.4 Problems and Exercises

1. The distance d(E1,E2) between the sets E1,E2 ⊂R
m is the quantity

d(E1,E2) := inf
x1∈E1,x2∈E2

d(x1, x2).

Give an example of closed sets E1 and E2 in R
m having no points in common for

which d(E1,E2)= 0.
2. Show that

a) the closure E in R
m of any set E ⊂R

m is a closed set in R
m;

b) the set ∂E of boundary points of any set E ⊂R
m is a closed set;

c) if G is an open set in R
m and F is closed in R

m, then G\F is open in R
m.

3. Show that if K1 ⊃K2 ⊃ · · · ⊃Kn ⊃ · · · is a sequence of nested nonempty com-
pact sets, then

⋂∞
i=1 Ki �=∅.

4. a) In the space R
k a two-dimensional sphere S2 and a circle S1 are situated so

that the distance from any point of the sphere to any point of the circle is the same.
Is this possible?

b) Consider problem a) for spheres Sm, Sn of arbitrary dimension in R
k . Under

what relation on m, n, and k is this situation possible?
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7.2 Limits and Continuity of Functions of Several Variables

7.2.1 The Limit of a Function

In Chap. 3 we studied in detail the operation of passing to the limit for a real-valued
function f :X→R defined on a set in which a base B was fixed.

In the next few sections we shall be considering functions f : X→ R
n defined

on subsets of Rm with values in R= R
1 or more generally in R

n, n ∈ N. We shall
now make a number of additions to the theory of limits connected with the specifics
of this class of functions.

However, we begin with the basic general definition.

Definition 1 A point A ∈R
n is the limit of the mapping f :X→R

n over a base B
in X if for every neighborhood V (A) of the point there exists an element B ∈ B of
the base whose image f (B) is contained in V (A).

In brief,
(

lim
B

f (x)=A
)
:= (∀V (A) ∃B ∈ B

(
f (B)⊂ V (A)

))
.

We see that the definition of the limit of a function f : X → R
n is exactly the

same as the definition of the limit of a function f :X→R if we keep in mind what
a neighborhood V (A) of a point A ∈R

n is for every n ∈N.

Definition 2 A mapping f :X→ R
n is bounded if the set f (X)⊂ R

n is bounded
in R

n.

Definition 3 Let B be a base in X. A mapping f : X→ R
n is ultimately bounded

over the base B if there exists an element B of B on which f is bounded.

Taking these definitions into account and using the same reasoning that we gave
in Chap. 3, one can verify without difficulty that

a function f :X→R
n can have at most one limit over a given base B in X;

a function f :X→ R
n having a limit over a base B is ultimately bounded over

that base.

Definition 1 can be rewritten in another form making explicit use of the metric
in R

n, namely

Definition 1′
(

lim
B

f (x)=A ∈R
n
)
:= (∀ε > 0 ∃B ∈ B ∀x ∈ B

(
d
(
f (x),A

)
< ε

))

or
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Definition 1′′
(

lim
B

f (x)=A ∈R
n
)
:=

(
lim
B

(
d
(
f (x),A

))= 0
)
.

The specific property of a mapping f : X→ R
n is that, since a point y ∈ R

n is
an ordered n-tuple (y1, . . . , yn) of real numbers, defining a function f : X → R

n

is equivalent to defining n real-valued functions f i : X→ R (i = 1, . . . , n), where
f i(x)= yi (i = 1, . . . , n).

If A= (A1, . . . ,An) and y = (y1, . . . , yn), we have the inequalities

∣
∣yi −Ai

∣
∣≤ d(y,A)≤√n max

1≤i≤n

∣
∣yi −Ai

∣
∣, (7.3)

from which one can see that

lim
B

f (x)=A⇔ lim
B

f i(x)=Ai (i = 1, . . . , n), (7.4)

that is, convergence in R
n is coordinatewise.

Now let X = N be the set of natural numbers and B the base k →∞, k ∈ N,
in X. A function f :N→R

n in this case is a sequence {yk}, k ∈N, of points of Rn.

Definition 4 A sequence {yk}, k ∈ N, of points yk ∈ Rn is fundamental (a Cauchy
sequence) if for every ε > 0 there exists a number N ∈ N such that d(yk1, yk2) < ε

for all k1, k2 > N .
One can conclude from the inequalities (7.3) that a sequence of points yk =

(y1
k , . . . , yn

k ) ∈R
n is a Cauchy sequence if and only if each sequence of coordinates

having the same labels {yi
k}, k ∈N, i = 1, . . . , n, is a Cauchy sequence.

Taking account of relation (7.4) and the Cauchy criterion for numerical se-
quences, one can now assert that a sequence of points R

n converges if and only
if it is a Cauchy sequence.

In other words, the Cauchy criterion is also valid in R
n.

Later on we shall call metric spaces in which every Cauchy sequence has a limit
complete metric spaces. Thus we have now established that Rn is a complete metric
space for every n ∈N.

Definition 5 The oscillation of a function f :X→R
n on a set E ⊂X is the quan-

tity

ω(f ;E) := d
(
f (E)

)
,

where d(f (E)) is the diameter of f (E).

As one can see, this is a direct generalization of the definition of the oscillation
of a real-valued function, which Definition 5 becomes when n= 1.

The validity of the following Cauchy criterion for the existence of a limit for
functions f :X→R

n with values in R
n results from the completeness of Rn.
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Theorem 1 Let X be a set and B a base in X. A function f :X→ R
n has a limit

over the base B if and only if for every ε > 0 there exists an element B ∈ B of the
base on which the oscillation of the function is less than ε.

Thus,

∃ lim
B

f (x)⇔∀ε > 0 ∃B ∈ B
(
ω(f ;B) < ε

)
.

The proof of Theorem 1 is a verbatim repetition of the proof of the Cauchy crite-
rion for numerical functions (Theorem 4 in Sect. 3.2), except for one minor change:
|f (x1)− f (x2)| must be replaced throughout by d(f (x1), f (x2)).

One can also verify Theorem 1 another way, regarding the Cauchy criterion as
known for real-valued functions and using relations (7.4) and (7.3).

The important theorem on the limit of a composite function also remains valid
for functions with values in R

n.

Theorem 2 Let Y be a set, BY a base in Y , and g : Y → R
n a mapping having a

limit over the base BY .
Let X be a set, BX a base in X, and f :X→ Y a mapping of X into Y such that

for each BY ∈ BY there exists BX ∈ BX such that the image f (BX) is contained
in BY .

Under these conditions the composition g ◦ f :X→ Rn of the mappings f and
g is defined and has a limit over the base BX , and

lim
BX

(g ◦ f )(x)= lim
BY

g(y).

The proof of Theorem 2 can be carried out either by repeating the proof of Theo-
rem 5 of Sect. 3.2, replacing R by R

n, or by invoking that theorem and using relation
(7.4).

Up to now we have considered functions f :X→R
n with values in R

n, without
specifying their domains of definition X in any way. From now on we shall primarily
be interested in the case when X is a subset of Rm.

As before, we make the following conventions.

U(a) is a neighborhood of the point a ∈R
m;

Ů(a) is a deleted neighborhood of a ∈R
m, that is, Ů (a) :=U(a)\a;

UE(a) is a neighborhood of a in the set E ⊂R
m, that is, UE(a) :=E ∩U(a);

ŮE(a) is a deleted neighborhood of a in E, that is, ŮE(a) :=E ∩ Ů (a);
x→ a is the base of deleted neighborhoods of a in R

m;
x→∞ is the base of neighborhoods of infinity, that is, the base consisting of the

sets Rm\B(a; r);
x → a, x ∈ E or (E 
 x → a) is the base of deleted neighborhoods of a in E if

a is a limit point of E;
x →∞, x ∈ E or (E 
 x →∞) is the base of neighborhoods of infinity in E

consisting of the sets E\B(a; r), if E is an unbounded set.
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In accordance with these definitions, one can, for example, give the following
specific form of Definition 1 for the limit of a function when speaking of a function
f :E→R

n mapping a set E ⊂R
m into R

n:
(

lim
E
x→a

f (x)=A
)
:= (∀ε > 0 ∃ŮE(a) ∀x ∈ ŮE(a)

(
d
(
f (x),A

)
< ε

))
.

The same thing can be written another way:
(

lim
E
x→a

f (x)=A
)
:=

= (∀ε > 0 ∃δ > 0 ∀x ∈E
(
0 < d(x, a) < δ⇒ d

(
f (x),A

)
< ε

))
.

Here it is understood that the distances d(x, a) and d(f (x),A) are measured in the
spaces (Rm and R

n) in which these points lie.
Finally,
(

lim
x→∞f (x)=A

)
:= (∀ε > 0 ∃B(a; r) ∀x ∈R

m\B(a; r) (d(f (x),A
)
< ε

))
.

Let us also agree to say that, in the case of a mapping f : X→ R
n, the phrase

“f (x)→∞ in the base B” means that for any ball B(A; r)⊂R
n there exists B ∈ B

of the base B such that f (B)⊂R
n\B(A; r).

Example 1 Let x �→ πi(x) be the mapping πi : Rm → R assigning to each x =
(x1, . . . , xm) in R

m its ith coordinate xi . Thus

πi(x)= xi.

If a = (a1, . . . , am), then obviously

πi(x)→ ai as x→ a.

The function x �→ πi(x) does not tend to any finite value nor to infinity as
x→∞ if m > 1.

On the other hand,

f (x)=
m∑

i=1

(
πi(x)

)2 →∞ as x→∞.

One should not think that the limit of a function of several variables can be found
by computing successively the limits with respect to each of its coordinates. The
following examples show why this is not the case.

Example 2 Let the function f : R2 → R be defined at the point (x, y) ∈ R
2 as fol-

lows:

f (x, y)=
{

xy

x2+y2 , if x2 + y2 �= 0,

0, if x2 + y2 = 0.
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Then f (0, y)= f (x,0)= 0, while f (x, x)= 1
2 for x �= 0.

Hence this function has no limit as (x, y)→ (0,0).
On the other hand,

lim
y→0

(
lim
x→0

f (x, y)
)
= lim

y→0
(0)= 0,

lim
x→0

(
lim
y→0

f (x, y)
)
= lim

x→0
(0)= 0.

Example 3 For the function

f (x, y)=
{

x2−y2

x2+y2 , if x2 + y2 �= 0,

0, if x2 + y2 = 0,

we have

lim
x→0

(
lim
y→0

f (x, y)
)
= lim

x→0

(
x2

x2

)

= 1,

lim
y→0

(
lim
x→0

f (x, y)
)
= lim

y→0

(

−y2

y2

)

=−1.

Example 4 For the function

f (x, y)=
{

x + y sin 1
x
, if x �= 0,

0, if x = 0,

we have

lim
(x,y)→(0,0)

f (x, y)= 0,

lim
x→0

(
lim
y→0

f (x, y)
)
= 0,

yet at the same time the iterated limit

lim
y→0

(
lim
x→0

f (x, y)
)

does not exist at all.

Example 5 The function

f (x, y)=
{

x2y

x4+y2 , if x2 + y2 �= 0,

0, if x2 + y2 = 0,

has a limit of zero upon approach to the origin along any ray x = αt , y = βt .
At the same time, the function equals 1

2 at any point of the form (a, a2), where
a �= 0, and so the function has no limit as (x, y)→ (0,0).
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7.2.2 Continuity of a Function of Several Variables and Properties
of Continuous Functions

Let E be a subset of Rm and f :E→R
n a function defined on E with values in R

n.

Definition 6 The function f : E → R
n is continuous at a ∈ E if for every neigh-

borhood V (f (a)) of the value f (a) that the function assumes at a, there exists a
neighborhood UE(a) of a in E whose image f (UE(a)) is contained in V (f (a)).

Thus

(
f :E→R

n is continuous at a ∈E
) :=

= (∀V (f (a)
) ∃UE(a)

(
f
(
UE(a)

)⊂ V
(
f (a)

)))
.

We see that Definition 6 has the same form as Definition 1 for continuity of a
real-valued function, which we are familiar with from Sect. 4.1. As was the case
there, we can give the following alternate expression for this definition:

(
f :E→R

n is continuous at a ∈E
) :=

= (∀ε > 0 ∃δ > 0 ∀x ∈E
(
d(x, a) < δ⇒ d

(
f (x), f (a)

)
< ε

))
,

or, if a is a limit point of E,

(
f :E→R

n is continuous at a ∈E
) :=

(
lim

E
x→a
f (x)= f (a)

)
.

As noted in Chap. 4, the concept of continuity is of interest precisely in connec-
tion with a point a ∈ E that is a limit point of the set E on which the function f is
defined.

It follows from Definition 6 and relation (7.4) that the mapping f : E → R
n

defined by the relation

(
x1, . . . , xm

)= x
f�−→y = (

y1, . . . , yn
)=

= (
f 1(x1, . . . , xm

)
, . . . , f n

(
x1, . . . , xm

))
,

is continuous at a point if and only if each of the functions yi = f i(x1, . . . , xm) is
continuous at that point.

In particular, we recall that we defined a path in R
n to be a mapping f : I →R

n

of an interval I ⊂R defined by continuous functions f 1(x), . . . , f n(x) in the form

x �→ y = (
y1, . . . , yn

)= (
f 1(x), . . . , f n(x)

)
.

Thus we can now say that a path in R
n is a continuous mapping of an interval

I ⊂R of the real line into R
n.
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By analogy with the definition of oscillation of a real-valued function at a point,
we introduce the concept of oscillation at a point for a function with values in R

n.
Let E be a subset of Rm, a ∈E, and BE(a; r)=E ∩B(a; r).

Definition 7 The oscillation of the function f : E → Rr at the point a ∈ E is the
quantity

ω(f ;a) := lim
r→+0

ω
(
f ;BE(a; r)).

From Definition 6 of continuity of a function, taking account of the properties of
a limit and the Cauchy criterion, we obtain a set of frequently used local properties
of continuous functions. We now list them.

Local Properties of Continuous Functions

a) A mapping f :E→R
n of a set E ⊂R

m is continuous at a point a ∈E if and
only if ω(f ;a)= 0.

b) A mapping f :E→R
n that is continuous at a ∈E is bounded in some neigh-

borhood UE(a) of that point.
c) If the mapping g : Y →R

k of the set Y ⊂R
n is continuous at a point y0 ∈ Y

and the mapping f :X→ Y of the set X ⊂R
m is continuous at a point x0 ∈X and

f (x0) = y0, then the mapping g ◦ f : X → R
k is defined, and it is continuous at

x0 ∈X.
Real-valued functions possess, in addition, the following properties.
d) If the function f :E→R is continuous at the point a ∈E and f (a) > 0 (or

f (a) < 0), there exists a neighborhood UE(a) of a in E such that f (x) > 0 (resp.
f (x) < 0) for all x ∈UE(a).

e) If the functions f : E → R and g : E → R are continuous at a ∈ E, then
any linear combination of them (αf + βg) :E→R, where α,β ∈R, their product
(f · g) :E→R, and, if g(x) �= 0 on E, their quotient (

f
g
) :E→R are defined on

E and continuous at a.

Let us agree to say that the function f :E→ R
n is continuous on the set E if it

is continuous at each point of the set.
The set of functions f : E → R

n that are continuous on E will be denoted
C(E,Rn) or simply C(E), if the range of values of the functions is unambiguously
determined from the context. As a rule, this abbreviation will be used when R

n =R.

Example 6 The functions (x1, . . . , xm)
πi�−→xi(i = 1, . . . ,m), mapping R

m onto R

(projections) are obviously continuous at each point a = (a1, . . . , am) ∈ R
m, since

limx→a πi(x)= ai = πi(a).

Example 7 Any function x �→ f (x) defined on R, for example x �→ sinx, can also

be regarded as a function (x, y)
F�−→f (x) defined, say, on R

2. In that case, if f was



7.2 Limits and Continuity of Functions of Several Variables 423

continuous as a function on R, then the new function (x, y)
F�−→f (x) will be con-

tinuous as a function on R
2. This can be verified either directly from the definition

of continuity or by remarking that the function F is the composition (f ◦ π1)(x, y)

of continuous functions.
In particular, it follows from this, when we take account of c) and e), that the

functions

f (x, y)= sinx + exy, f (x, y)= arctan
(
ln
(|x| + |y| + 1

))
,

for example, are continuous on R
2.

We remark that the reasoning just used is essentially local, and the fact that the
functions f and F studied in Example 7 were defined on the entire real line R or
the plane R

2 respectively was purely an accidental circumstance.

Example 8 The function f (x, y) of Example 2 is continuous at any point of the
space R

2 except (0,0). We remark that, despite the discontinuity of f (x, y) at this
point, the function is continuous in either of its two variables for each fixed value of
the other variable.

Example 9 If a function f : E → R
n is continuous on the set E and Ẽ is a subset

of E, then the restriction f |
Ẽ

of f to this subset is continuous on Ẽ, as follows
immediately from the definition of continuity of a function at a point.

We now turn to the global properties of continuous functions. To state them for
functions f :E→R

n, we first give two definitions.

Definition 8 A mapping f :E→R
n of a set E ⊂R

m into R
n is uniformly contin-

uous on E if for every ε > 0 there is a number δ > 0 such that d(f (x1), f (x2)) < ε

for any points x1, x2 ∈E such that d(x1, x2) < δ.

As before, the distances d(x1, x2) and d(f (x1), f (x2)) are assumed to be mea-
sured in R

m and R
n respectively.

When m = n = 1, this definition is the definition of uniform continuity of
numerical-valued functions that we already know.

Definition 9 A set E ⊂ Rm is pathwise connected if for any pair of its points x0,
x1, there exists a path Γ : I →E with support in E and endpoints at these points.

In other words, it is possible to go from any point x0 ∈ E to any other point
x1 ∈E without leaving E.

Since we shall not be considering any other concept of connectedness for a set
except pathwise connectedness for the time being, for the sake of brevity we shall
temporarily call pathwise connected sets simply connected.

Definition 10 A domain in R
m is an open connected set.
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Example 10 An open ball B(a; r), r > 0, in R
m is a domain. We already know that

B(a; r) is open in R
m. Let us verify that the ball is connected. Let x0 = (x1

0 . . . , xm
0 )

and x1 = (x1
1 , . . . , xm

1 ) be two points of the ball. The path defined by the functions
xi(t)= txi

1+ (1− t)xi
0 (i = 1, . . . ,m), defined on the closed interval 0≤ t ≤ 1, has

x0 and x1 as its endpoints. In addition, its support lies in the ball B(a; r), since, by
Minkowski’s inequality, for any t ∈ [0,1],

d
(
x(t), a

) =
√√
√
√

m∑

i=1

(
xi(t)− ai

)2 =
√√
√
√

m∑

i=1

(
t
(
xi

1 − ai
)+ (1− t)

(
xi

0 − ai
))2 ≤

≤
√√
√
√

m∑

i=1

(
t
(
xi

1 − ai
))2 +

√√
√
√

m∑

i=1

(
(1− t)

(
xi

0 − ai
))2 =

= t ·
√√
√
√

m∑

i=1

(
xi

1 − ai
)2 + (1− t) ·

√√
√
√

m∑

i=1

(
xi

0 − ai
)2

< tr + (1− t)r = r.

Example 11 The circle (one-dimensional sphere) of radius r > 0 is the subset of R2

given by the equation (x1)2 + (x2)2 = r2. Setting x1 = r cos t , x2 = r sin t , we see
that any two points of the circle can be joined by a path that goes along the circle.
Hence a circle is a connected set. However, this set is not a domain in R

2, since it is
not open in R2.

We now state the basic facts about continuous functions in the large.

Global Properties of Continuous Functions

a) If a mapping f :K →R
n is continuous on a compact set K ⊂R

m, then it is
uniformly continuous on K .

b) If a mapping f :K →R
n is continuous on a compact set K ⊂R

m, then it is
bounded on K .

c) If a function f : K → R is continuous on a compact set K ⊂ R
m, then it

assumes its maximal and minimal values at some points of K .
d) If a function f :E→R is continuous on a connected set E and assumes the

values f (a)= A and f (b)= B at points a, b ∈ E, then for any C between A and
B , there is a point c ∈E at which f (c)= C.

Earlier (Sect. 4.2), when we were studying the local and global properties of
functions of one variable, we gave proofs of these properties that extend to the more
general case considered here. The only change that must be made in the earlier
proofs is that expressions of the type |x1 − x2| or |f (x1)− f (x2)| must be replaced
by d(x1, x2) and d(f (x1), f (x2)), where d is the metric in the space where the
points in question are located. This remark applies fully to everything except the
last statement d), whose proof we now give.
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Proof d) Let Γ : I → E be a path that is a continuous mapping of an interval
[α,β] = I ⊂ R such that Γ (α) = a, Γ (β) = b. By the connectedness of E there
exists such a path. The function f ◦ Γ : I → R, being the composition of contin-
uous functions, is continuous; therefore there is a point γ ∈ [α,β] on the closed
interval [α,β] at which f ◦Γ (γ )= C. Set c= Γ (γ ). Then c ∈E and f (c)= C. �

Example 12 The sphere S(0; r) defined in R
m by the equation

(
x1)2 + · · · + (

xm
)2 = r2,

is a compact set.
Indeed, it follows from the continuity of the function

(
x1, . . . , xm

) �→ (
x1)2 + · · · + (

xm
)2

that the sphere is closed, and from the fact that |xi | ≤ r (i = 1, . . . ,m) on the sphere
that it is bounded.

The function

(
x1, . . . , xm

) �→ (
x1)2 + · · · + (

xk
)2 − (

xk+1)2 − · · · − (
xm
)2

is continuous on all of Rm, so that its restriction to the sphere is also continuous,
and by the global property c) of continuous functions assumes its minimal and max-
imal values on the sphere. At the points (1,0, . . . ,0) and (0, . . . ,0,1) this function
assumes the values 1 and −1 respectively. By the connectedness of the sphere (see
Problem 3 at the end of this section), global property d) of continuous functions now
enables us to assert that there is a point on the sphere where this function assumes
the value 0.

Example 13 The open set Rm\S(0; r) for r > 0 is not a domain, since it is not
connected.

Indeed, if Γ : I → R
m is a path one end of which is at the point x0 = (0, . . . ,0)

and the other at some point x1 = (x1
1 , . . . , xm

1 ) such that (x1
1)2 + · · · + (xm

1 )2 > r2,
then the composition of the continuous functions Γ : I → R

m and f : Rm → R,
where

(
x1, . . . , xm

) f�−→(
x1)2 + · · · + (

xm
)2

,

is a continuous function on I assuming values less than r2 at one endpoint and
greater than r2 at the other. Hence there is a point γ on I at which (f ◦Γ )(γ )= r2.
Then the point xγ = Γ (γ ) in the support of the path turns out to lie on the sphere
S(0; r). We have thus shown that it is impossible to get out of the ball B(0; r)⊂R

m

without intersecting its boundary sphere S(0; r).
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7.2.3 Problems and Exercises

1. Let f ∈ C(Rm;R). Show that

a) the set E1 = {x ∈R
m | f (x) < c} is open in R

m;
b) the set E2 = {x ∈R

m | f (x)≤ c} is closed in R
m;

c) the set E3 = {x ∈R
m | f (x)= c} is closed in R

m;
d) if f (x)→+∞ as x→∞, then E2 and E3 are compact in R

m;
e) for any f :Rm→R the set E4 = {x ∈R

m | ω(f ;x)≥ ε} is closed in R
m.

2. Show that the mapping f : Rm → R
n is continuous if and only if the preimage

of every open set in R
n is an open set in Rm.

3. Show that

a) the image f (E) of a connected set E ⊂ R
m under a continuous mapping

f :E→R
n is a connected set;

b) the union of connected sets having a point in common is a connected set;
c) the hemisphere (x1)2 + · · · + (xm)2 = 1, xm ≥ 0, is a connected set;
d) the sphere (x1)2 + · · · + (xm)2 = 1 is a connected set;
e) if E ⊂ R and E is connected, then E is an interval in R (that is, a closed

interval, a half-open interval, an open interval, or the entire real line);
f) if x0 is an interior point and x1 an exterior point in relation to the set M ⊂R

m,
then the support of any path with endpoints x0, x1 intersects the boundary of the
set M .



Chapter 8
The Differential Calculus of Functions of Several
Variables

8.1 The Linear Structure on R
m

8.1.1 R
m as a Vector Space

The concept of a vector space is already familiar to you from your study of algebra.
If we introduce the operation of addition of elements x1 = (x1

1 , . . . , xm
1 ) and x2 =

(x1
2 , . . . , xm

2 ) in R
m by the formula

x1 + x2 =
(
x1

1 + x1
2 , . . . , xm

1 + xm
2

)
, (8.1)

and multiplication of an element x = (x1, . . . , xm) by a number λ ∈ R via the rela-
tion

λx = (
λx1, . . . , λxm

)
, (8.2)

then R
m becomes a vector space over the field of real numbers. Its points can now

be called vectors.
The vectors

ei = (0, . . . ,0,1,0, . . . ,0) (i = 1, . . . ,m) (8.3)

(where the 1 stands only in the ith place) form a maximal linearly independent set
of vectors in this space, as a result of which it turns out to be an m-dimensional
vector space.

Any vector x ∈ R
m can be expanded with respect to the basis (8.3), that is, rep-

resented in the form

x = x1e1 + · · · + xmem. (8.4)

When vectors are indexed, we shall write the index as a subscript, while denoting
its coordinates, as we have been doing, by superscripts. This is convenient for many
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reasons, one of which is that, following Einstein,1 we can make the convention of
writing expressions like (8.4) briefly in the form

x = xiei, (8.5)

taking the simultaneous presence of subscript and superscript with the same letter
to indicate summation with respect to that letter over its range of variation.

8.1.2 Linear Transformations L :Rm →R
n

We recall that a mapping L :X→ Y from a vector space X into a vector space Y is
called linear if

L(λ1x1 + λ2x2)= λ1L(x1)+ λ2L(x2)

for any x1, x2 ∈ X, and λ1, λ2 ∈ R. We shall be interested in linear mappings L :
R

m→R
n.

If {e1, . . . , em} and {ẽ1, . . . , ẽn} are fixed bases of Rm and R
n respectively, then,

knowing the expansion

L(ei)= a1
i ẽ1 + · · · + an

i ẽn = a
j
i ẽj (i = 1, . . . ,m) (8.6)

of the images of the basis vectors under the linear mapping L : Rm → R
n, we can

use the linearity of L to find the expansion of the image L(h) of any vector h =
h1e1 + · · · + hmem = hiei in the basis {ẽ1, . . . , ẽn}. To be specific,

L(h)= L
(
hiei

)= hiL(ei)= hia
j
i ẽj = a

j
i hi ẽj . (8.7)

Hence, in coordinate notation:

L(h)= (
a1
i h

i, . . . , an
i hi

)
. (8.8)

For a fixed basis in R
n the mapping L :Rm→R

n can thus be regarded as a set

L= (
L1, . . . ,Ln

)
(8.9)

of n (coordinate) mappings Lj :Rm→R.
Taking account of (8.8), we easily conclude that a mapping L : Rm → R

n is
linear if and only if each mapping Lj in the set (8.9) is linear.

If we write (8.9) as a column, taking account of relation (8.8), we have

L(h)=
⎛

⎜
⎝

L1(h)
...

Ln(h)

⎞

⎟
⎠=

⎛

⎜
⎝

a1
1 · · · a1

m
...

. . .
...

an
1 · · · an

m

⎞

⎟
⎠

⎛

⎜
⎝

h1

...

hm

⎞

⎟
⎠ . (8.10)

1A. Einstein (1879–1955) – greatest physicist of the twentieth century. His work in quantum theory
and especially in the theory of relativity exerted a revolutionary influence on all of modern physics.
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Thus, fixing bases in R
m and R

n enables us to establish a one-to-one corre-
spondence between linear transformations L : Rm → R

n and m× n-matrices (a
j
i )

(i = 1, . . . ,m, j = 1, . . . , n). When this is done, the ith column of the matrix (a
j
i )

corresponding to the transformation L consists of the coordinates of L(ei), the im-
age of the vector ei ∈ {e1, . . . , em}. The coordinates of the image of an arbitrary
vector h= hiei ∈ R

m can be obtained from (8.10) by multiplying the matrix of the
linear transformation by the column of coordinates of h.

Since Rn has the structure of a vector space, one can speak of linear combinations
λ1f1 + λ2f2 of mappings f1 :X→R

n and f2 :X→R
n, setting

(λ1f1 + λ2f2)(x) := λ1f1(x)+ λ2f2(x). (8.11)

In particular, a linear combination of linear transformations L1 : Rm → R
n and

L2 :Rm→Rn is, according to the definition (8.11), a mapping

h �→ λ1L1(h)+ λ2L2(h)= L(h),

which is obviously linear. The matrix of this transformation is the corresponding
linear combination of the matrices of the transformations L1 and L2.

The composition C = B ◦ A of linear transformations A : Rm → R
n and B :

R
n → R

k is obviously also a linear transformation, whose matrix, as follows from
(8.10), is the product of the matrix of A and the matrix of B (which is multiplied on
the left). Actually, the law of multiplication for matrices was defined in the way you
are familiar with precisely so that the product of matrices would correspond to the
composition of the transformations.

8.1.3 The Norm in R
m

The quantity

‖x‖ =
√(

x1
)2 + · · · + (xm)2 (8.12)

is called the norm of the vector x = (x1, . . . , xm) ∈R
m.

It follows from this definition, taking account of Minkowski’s inequality, that

10 ‖x‖ ≥ 0,
20 (‖x‖ = 0)⇔ (x = 0),
30 ‖λx‖ = |λ| · ‖x‖, where λ ∈R,
40 ‖x1 + x2‖ ≤ ‖x1‖ + ‖x2‖.

In general, any function ‖ ‖ : X → R on a vector space X satisfying condi-
tions 10–40 is called a norm on the vector space. Sometimes, to be precise as to
which norm is being discussed, the norm sign has a symbol attached to it to denote
the space in which it is being considered. For example, we may write ‖x‖Rm or
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‖y‖Rn . As a rule, however, we shall not do that, since it will always be clear from
the context which space and which norm are meant.

We remark that by (8.12)

‖x2 − x1‖ = d(x1, x2), (8.13)

where d(x1, x2) is the distance in R
m between the vectors x1 and x2, regarded as

points of Rm.
It is clear from (8.13) that the following conditions are equivalent:

x→ x0, d(x, x0)→ 0, ‖x − x0‖→ 0.

In view of (8.13), we have, in particular,

‖x‖ = d(0, x).

Property 40 of a norm is called the triangle inequality, and it is now clear why.
The triangle inequality extends by induction to the sum of any finite number of

terms. To be specific, the following inequality holds:

‖x1 + · · · + xk‖ ≤ ‖x1‖ + · · · + ‖xk‖.
The presence of the norm of a vector enables us to compare the size of values of

functions f :X→R
m and g :X→R

n.
Let us agree to write f (x) = o(g(x)) or f = o(g) over a base B in X if

‖f (x)‖Rm = o(‖g(x)‖Rn) over the base B.
If f (x) = (f 1(x), . . . , f m(x)) is the coordinate representation of the mapping

f :X→R
m, then in view of the inequalities

∣
∣f i(x)

∣
∣≤ ∥∥f (x)

∥
∥≤

m∑

i=1

∣
∣f i(x)

∣
∣ (8.14)

one can make the following observation, which will be useful below:
(
f = o(g) over the base B

)⇔ (
f i = o(g) over the base B; i = 1, . . . ,m

)
. (8.15)

We also make the convention that the statement f =O(g) over the base B in X

will mean that ‖f (x)‖Rm =O(‖g(x)‖Rn) over the base B.
We then obtain from (8.14)
(
f =O(g) over the base B

)⇔ (
f i =O(g) over the base B; i = 1, . . . ,m

)
.

(8.16)

Example Consider a linear transformation L : Rm → R
n. Let h = h1e1 + · · · +

hmem be an arbitrary vector in R
m. Let us estimate ‖L(h)‖Rn :

∥
∥L(h)

∥
∥=

∥
∥
∥
∥
∥

m∑

i=1

hiL(ei)

∥
∥
∥
∥
∥
≤

m∑

i=1

∥
∥L(ei)

∥
∥
∣
∣hi
∣
∣≤

(
m∑

i=1

∥
∥L(ei)

∥
∥

)

‖h‖. (8.17)
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Thus one can assert that

L(h)=O(h) as h→ 0. (8.18)

In particular, it follows from this that L(x−x0)= L(x)−L(x0)→ 0 as x→ x0,
that is, a linear transformation L : Rm → R

n is continuous at every point x0 ∈ R
m.

From estimate (8.17) it is even clear that a linear transformation is uniformly con-
tinuous.

8.1.4 The Euclidean Structure on R
m

The concept of the inner product in a real vector space is known from algebra as
a numerical function 〈x, y〉 defined on pairs of vectors of the space and possessing
the properties

〈x, x〉 ≥ 0,

〈x, x〉 = 0⇔ x = 0,

〈x1, x2〉 = 〈x2, x1〉,
〈λx1, x2〉 = λ〈x1, x2〉, where λ ∈R,

〈x1 + x2, x3〉 = 〈x1, x3〉 + 〈x2, x3〉.
It follows in particular from these properties that if a basis {e1, . . . , em} is fixed

in the space, then the inner product 〈x, y〉 of two vectors x and y can be expressed
in terms of their coordinates (x1, . . . , xm) and (y1, . . . , ym) as the bilinear form

〈x, y〉 = gij x
iyj (8.19)

(where summation over i and j is understood), in which gij = 〈ei, ej 〉.
Vectors are said to be orthogonal if their inner product equals 0.
A basis {e1, . . . , em} is orthonormal if gij = δij , where

δij =
{

0, if i �= j,

1, if i = j.

In an orthonormal basis the inner product (8.19) has the very simple form

〈x, y〉 = δij x
iyj ,

or

〈x, y〉 = x1 · y1 + · · · + xm · ym. (8.20)

Coordinates in which the inner product has this form are called Cartesian coor-
dinates.
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We recall that the space Rm with an inner product defined in it is called Euclidean
space.

Between the inner product (8.20) and the norm of a vector (8.12) there is an
obvious connection

〈x, x〉 = ‖x‖2.

The following inequality is known from algebra:

〈x, y〉2 ≤ 〈x, x〉〈y, y〉.
It shows in particular that for any pair of vectors there is an angle ϕ ∈ [0,π] such
that

〈x, y〉 = ‖x‖‖y‖ cosϕ.

This angle is called the angle between the vectors x and y. That is the reason we
regard vectors whose inner product is zero as orthogonal.

We shall also find useful the following simple, but very important fact, known
from algebra:

any linear function L :Rm→R in Euclidean space has the form

L(x)= 〈ξ, x〉,
where ξ ∈R

m is a fixed vector determined uniquely by the function L.

8.2 The Differential of a Function of Several Variables

8.2.1 Differentiability and the Differential of a Function at a Point

Definition 1 A function f : E → R
n defined on a set E ⊂ R

m is differentiable at
the point x ∈E, which is a limit point of E, if

f (x + h)− f (x)= L(x)h+ α(x;h), (8.21)

where L(x) : Rm → Rn is a function2 that is linear in h and α(x;h) = o(h) as
h→ 0, x + h ∈E.

The vectors

Δx(h) := (x + h)− x = h,

Δf (x;h) := f (x + h)− f (x)

2By analogy with the one-dimensional case, we allow ourselves to write L(x)h instead of L(x)(h).
We note also that in the definition we are assuming that Rm and R

n are endowed with the norm of
Sect. 8.1.
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are called respectively the increment of the argument and the increment of the func-
tion (corresponding to this increment of the argument). These vectors are tradition-
ally denoted by the symbols of the functions of h themselves Δx and Δf (x). The
linear function L(x) :Rm→R

n in (8.21) is called the differential, tangent mapping,
or derivative mapping of the function f :E→ R

n at the point x ∈E.
The differential of the function f : E → R

n at a point x ∈ E is denoted by the
symbols df (x), Df (x), or f ′(x).

In accordance with the notation just introduced, we can rewrite relation (8.21) as

f (x + h)− f (x)= f ′(x)h+ α(x;h)

or

Δf (x;h)= df (x)h+ α(x;h).

We remark that the differential is defined on the displacements h from the point
x ∈R

m.
To emphasize this, we attach a copy of the vector space R

m to the point x ∈ R
m

and denote it TxR
m, TR

m(x), or TR
m
x . The space TR

m
x can be interpreted as a set

of vectors attached at the point x ∈R
m. The vector space TR

m
x is called the tangent

space to R
m at x ∈R

m. The origin of this terminology will be explained below.
The value of the differential on a vector h ∈ TR

m
x is the vector f ′(x)h ∈ TR

n
f (x)

attached to the point f (x) and approximating the increment f (x+h)−f (x) of the
function caused by the increment h of the argument x.

Thus df (x) or f ′(x) is a linear transformation f ′(x) : TR
m
x → TR

n
f (x).

We see that, in complete agreement with the one-dimensional case that we stud-
ied, a vector-valued function of several variables is differentiable at a point if its
increment Δf (x;h) at that point is linear as a function of h up to the correction
term α(x;h), which is infinitesimal as h→ 0 compared to the increment of the
argument.

8.2.2 The Differential and Partial Derivatives of a Real-Valued
Function

If the vectors f (x + h), f (x), L(x)h, α(x;h) in R
n are written in coordinates,

Eq. (8.21) becomes equivalent to the n equalities

f i(x + h)− f i(x)= Li(x)h+ αi(x;h) (i = 1, . . . , n) (8.22)

between real-valued functions, in which, as follows from relations (8.9) and (8.15)
of Sect. 8.1, Li(x) : Rm → R are linear functions and αi(x;h) = o(h) as h→ 0,
x + h ∈E, for every i = 1, . . . , n.

Thus we have the following proposition.
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Proposition 1 A mapping f : E→ R
n of a set E ⊂ R

m is differentiable at a point
x ∈E that is a limit point of E if and only if the functions f i :E→R (i = 1, . . . , n)
that define the coordinate representation of the mapping are differentiable at that
point.

Since relations (8.21) and (8.22) are equivalent, to find the differential L(x) of
a mapping f : E→ R

n it suffices to learn how to find the differentials Li(x) of its
coordinate functions f i :E→R.

Thus, let us consider a real-valued function f :E→R, defined on a set E ⊂R
m

and differentiable at an interior point x ∈E of that set. We remark that in the future
we shall mostly be dealing with the case when E is a domain in R

m. If x is an
interior point of E, then for any sufficiently small displacement h from x the point
x+h will also belong to E, and consequently will also be in the domain of definition
of the function f :E→R.

If we pass to the coordinate notation for the point x = (x1, . . . , xm), the vector
h= (h1, . . . , hm), and the linear function L(x)h= a1(x)h1 + · · · + am(x)hm, then
the condition

f (x + h)− f (x)= L(x)h+ o(h) as h→ 0 (8.23)

can be rewritten as

f
(
x1 + h1, . . . , xm + hm

)− f
(
x1, . . . , xm

)=
= a1(x)h1 + · · · + am(x)hm + o(h) as h→ 0, (8.24)

where a1(x), . . . , am(x) are real numbers connected with the point x.
We wish to find these numbers. To do this, instead of an arbitrary displacement h

we consider the special displacement

hi = hiei = 0 · e1 + · · · + 0 · ei−1 + hiei + 0 · ei+1 + · · · + 0 · em

by a vector hi collinear with the vector ei of the basis {e1, . . . , em} in R
m.

When h= hi , it is obvious that ‖h‖ = |hi |, and so by (8.24), for h= hi we obtain

f
(
x1, . . . , xi−1, xi + hi, xi+1, . . . , xm

)− f
(
x1, . . . , xi, . . . , xm

)=
= ai(x)hi + o

(
hi
)

as hi → 0. (8.25)

This means that if we fix all the variables in the function f (x1, . . . , xm) except
the ith one, the resulting function of the ith variable alone is differentiable at the
point xi .

In that way, from (8.25) we find that

ai(x)= lim
hi→0

f (x1, . . . , xi−1, xi + hi, xi+1, . . . , xm)− f (x1, . . . , xi, . . . , xm)

hi
.

(8.26)
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Definition 2 The limit (8.26) is called the partial derivative of the function f (x) at
the point x = (x1, . . . , xm) with respect to the variable xi . We denote it by one of
the following symbols:

∂f

∂xi
(x), ∂if (x), Dif (x), f ′

xi (x).

Example 1 If f (u, v)= u3 + v2 sinu, then

∂1f (u, v) = ∂f

∂u
(u, v)= 3u2 + v2 cosu,

∂2f (u, v) = ∂f

∂v
(u, v)= 2v sinu.

Example 2 If f (x, y, z)= arctan(xy2)+ ez, then

∂1f (x, y, z) = ∂f

∂x
(x, y, z)= y2

1+ x2y4
,

∂2f (x, y, z) = ∂f

∂y
(x, y, z)= 2xy

1+ x2y4
,

∂3f (x, y, z) = ∂f

∂z
(x, y, z)= ez.

Thus we have proved the following result.

Proposition 2 If a function f :E→R defined on a set E ⊂R
m is differentiable at

an interior point x ∈ E of that set, then the function has a partial derivative at that
point with respect to each variable, and the differential of the function is uniquely
determined by these partial derivatives in the form

df (x)h= ∂f

∂x1
(x)h1 + · · · + ∂f

∂xm
(x)hm. (8.27)

Using the convention of summation on an index that appears as both a subscript
and a superscript, we can write formula (8.27) succinctly:

df (x)h= ∂if (x)hi . (8.28)

Example 3 If we had known (as we soon will know) that the function f (x, y, z)

considered in Example 2 is differentiable at the point (0,1,0), we could have written
immediately

df (0,1,0)h= 1 · h1 + 0 · h2 + 1 · h3 = h1 + h3

and accordingly

f
(
h1,1+ h2, h3)− f (0,1,0)= df (0,1,0)h+ o(h)
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or

arctan
(
h1(1+ h2)2)+ eh3 = 1+ h1 + h3 + o(h) as h→ 0.

Example 4 For the function x = (x1, . . . , xm)
πi�−→xi , which assigns to the point

x ∈R
m its ith coordinate, we have

Δπi(x;h)= (
xi + hi

)− xi = hi,

that is, the increment of this function is itself a linear function in h : h πi�−→hi . Thus,
Δπi(x;h) = dπi(x)h, and the mapping dπi(x) = dπi turns out to be actually in-
dependent of x ∈ R

m in the sense that dπi(x)h = hi at every point x ∈ R
m. If we

write xi(x) instead of πi(x), we find that dxi(x)h= dxih= hi .
Taking this fact and formula (8.28) into account, we can now represent the differ-

ential of any function as a linear combination of the differentials of the coordinates
of its argument x ∈R

m. To be specific:

df (x)= ∂if (x)dxi = ∂f

∂x1
dx1 + · · · + ∂f

∂xm
dxm, (8.29)

since for any vector h ∈ TR
m
x we have

df (x)h= ∂if (x)hi = ∂if (x)dxih.

8.2.3 Coordinate Representation of the Differential of a Mapping.
The Jacobi Matrix

Thus we have found formula (8.27) for the differential of a real-valued function
f : E → R. But then, by the equivalence of relations (8.21) and (8.22), for any
mapping f : E → R

n of a set E ⊂ R
m that is differentiable at an interior point

x ∈E, we can write the coordinate representation of the differential df (x) as

df (x)h=
⎛

⎜
⎝

df 1(x)h
...

df n(x)h

⎞

⎟
⎠=

⎛

⎜
⎝

∂if
1(x)hi

...

∂if
n(x)hi

⎞

⎟
⎠=

=

⎛

⎜
⎜
⎝

∂f 1

∂x1 (x) · · · ∂f 1

∂xm (x)
...

. . .
...

∂f n

∂x1 (x) · · · ∂f n

∂xm (x)

⎞

⎟
⎟
⎠

⎛

⎜
⎝

h1

...

hm

⎞

⎟
⎠ . (8.30)
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Definition 3 The matrix (∂if
j (x)) (i = 1, . . . ,m, j = 1, . . . , n) of partial deriva-

tives of the coordinate functions of a given mapping at the point x ∈E is called the
Jacobi matrix3 or the Jacobian4 of the mapping at the point.

In the case when n= 1, we are simply brought back to formula (8.27), and when
n= 1 and m= 1, we arrive at the differential of a real-valued function of one real
variable.

The equivalence of relations (8.21) and (8.22) and the uniqueness of the differ-
ential (8.27) of a real-valued function implies the following result.

Proposition 3 If a mapping f : E → R
n of a set E ⊂ R

m is differentiable at an
interior point x ∈ E, then it has a unique differential df (x) at that point, and the
coordinate representation of the mapping df (x) : TR

m
x → TR

n
f (x) is given by rela-

tion (8.30).

8.2.4 Continuity, Partial Derivatives, and Differentiability
of a Function at a Point

We complete our discussion of the concept of differentiability of a function at a point
by pointing out some connections among the continuity of a function at a point, the
existence of partial derivatives of the function at that point, and differentiability at
the point.

In Sect. 8.1 (relations (8.17) and (8.18)) we established that if L : Rm → R
n is

a linear transformation, then Lh→ 0 as h→ 0. Therefore, one can conclude from
relation (8.21) that a function that is differentiable at a point is continuous at that
point, since

f (x + h)− f (x)= L(x)h+ o(h) as h→ 0, x + h ∈E.

The converse, of course, is not true because, as we know, it fails even in the
one-dimensional case.

Thus the relation between continuity and differentiability of a function at a point
in the multidimensional case is the same as in the one-dimensional case.

The situation is completely different in regard to the relations between partial
derivatives and the differential. In the one-dimensional case, that is, in the case of
a real-valued function of one real variable, the existence of the differential and the
existence of the derivative for a function at a point are equivalent conditions. For
functions of several variables, we have shown (Proposition 2) that differentiability of
a function at an interior point of its domain of definition guarantees the existence of
a partial derivative with respect to each variable at that point. However, the converse
is not true.

3C.G.J. Jacobi (1804–1851) – well-known German mathematician.
4The term Jacobian is more often applied to the determinant of this matrix (when it is square).
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Example 5 The function

f
(
x1, x2)=

{
0, if x1x2 = 0,

1, if x1x2 �= 0,

equals 0 on the coordinate axes and therefore has both partial derivatives at the point
(0,0):

∂1f (0,0) = lim
h1→0

f (h1,0)− f (0,0)

h1
= lim

h1→0

0− 0

h1
= 0,

∂2f (0,0) = lim
h2→0

f (0, h2)− f (0,0)

h2
= lim

h2→0

0− 0

h2
= 0.

At the same time, this function is not differentiable at (0,0), since it is obviously
discontinuous at that point.

The function given in Example 5 fails to have one of its partial derivatives at
points of the coordinate axes different from (0,0). However, the function

f (x, y)=
{

xy

x2+y2 , if x2 + y2 �= 0,

0, if x2 + y2 = 0

(which we encountered in Example 2 of Sect. 7.2) has partial derivatives at all points
of the plane, but it also is discontinuous at the origin and hence not differentiable
there.

Thus the possibility of writing the right-hand side of (8.27) and (8.28) still does
not guarantee that this expression will represent the differential of the function we
are considering, since the function may be nondifferentiable.

This circumstance might have been a serious hindrance to the entire differential
calculus of functions of several variables, if it had not been determined (as will
be proved below) that continuity of the partial derivatives at a point is a sufficient
condition for differentiability of the function at that point.

8.3 The Basic Laws of Differentiation

8.3.1 Linearity of the Operation of Differentiation

Theorem 1 If the mappings f1 : E → R
n and f2 : E → R

n, defined on a set
E ⊂ R

m, are differentiable at a point x ∈ E, then a linear combination of them
(λ1f1+λ2f2) :E→R

n is also differentiable at that point, and the following equal-
ity holds:

(λ1f1 + λ2f2)
′(x)= (

λ1f
′
1 + λ2f

′
2

)
(x). (8.31)
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Equality (8.31) shows that the operation of differentiation, that is, forming
the differential of a mapping at a point, is a linear transformation on the vec-
tor space of mappings f : E → R

n that are differentiable at a given point of the
set E. The left-hand side of (8.31) contains by definition the linear transforma-
tion (λ1f1 + λ2f2)

′(x), while the right-hand side contains the linear combination
(λ1f

′
1 + λ2f

′
2)(x) of linear transformations f ′1(x) : Rm → R

n, and f ′2(x) : Rm →
R

n, which, as we know from Sect. 8.1, is also a linear transformation. Theorem 1
asserts that these mappings are the same.

Proof

(λ1f1 + λ2f2)(x + h)− (λ1f2 + λ2f2)(x)=
= (

λ1f1(x + h)+ λ2f2(x + h)
)− (

λ1f1(x)+ λ2f2(x)
)=

= λ1
(
f1(x + h)− f1(x)

)+ λ2
(
f2(x + h)− f2(x)

)=
= λ1

(
f ′1(x)h+ o(h)

)+ λ2
(
f ′2(x)h+ o(h)

)=
= (

λ1f
′
1(x)+ λ2f

′
2(x)

)
h+ o(h). �

If the functions in question are real-valued, the operations of multiplication and
division (when the denominator is not zero) can also be performed. We have then
the following theorem.

Theorem 2 If the functions f : E→ R and g : E → R, defined on a set E ⊂ R
m,

are differentiable at the point x ∈E, then

a) their product is differentiable at x and

(f · g)′(x)= g(x)f ′(x)+ f (x)g′(x); (8.32)

b) their quotient is differentiable at x if g(x) �= 0, and

(
f

g

)′
(x)= 1

g2(x)

(
g(x)f ′(x)− f (x)g′(x)

)
. (8.33)

The proof of this theorem is the same as the proof of the corresponding parts of
Theorem 1 in Sect. 5.2, so that we shall omit the details.

Relations (8.31), (8.32), and (8.33) can be rewritten in the other notations for the
differential. To be specific:

d
(
λ1f1(x)+ λ2f2

)
(x) = (λ1 df1 + λ2 df2)(x),

d(f · g)(x) = g(x)df (x)+ f (x)dg(x),

d

(
f

g

)

(x) = 1

g2(x)

(
g(x)df (x)− f (x)dg(x)

)
.
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Let us see what these equalities mean in the coordinate representation of the
mappings. We know that if a mapping ϕ :E→R

n that is differentiable at an interior
point x of the set E ⊂R

m is written in the coordinate form

ϕ(x)=
⎛

⎜
⎝

ϕ1(x1, . . . , xm)
...

ϕn(x1, . . . , xm)

⎞

⎟
⎠ ,

then the Jacobi matrix

ϕ′(x)=
⎛

⎜
⎝

∂1ϕ
1 · · · ∂mϕ1

...
. . .

...

∂1ϕ
n · · · ∂mϕn

⎞

⎟
⎠ (x)= (

∂1ϕ
j
)
(x)

will correspond to its differential dϕ(x) :Rm→R
n at this point.

For fixed bases in Rm and Rn the correspondence between linear transformations
L :Rm→R

n and m×n matrices is one-to-one, and hence the linear transformation
L can be identified with the matrix that defines it.

Even so, we shall as a rule use the symbol f ′(x) rather than df (x) to denote the
Jacobi matrix, since it corresponds better to the traditional distinction between the
concepts of derivative and differential that holds in the one-dimensional case.

Thus, by the uniqueness of the differential, at an interior point x of E we obtain
the following coordinate notation for (8.31), (8.32), and (8.33), denoting the equality
of the corresponding Jacobi matrices:

(
∂i

(
λ1f

j

1 + λ2f
j

2

))
(x)= (

λ1∂if
j

1 + λ2∂if
j

2

)
(x)

(i = 1, . . . ,m, j = 1, . . . , n), (8.31′)
(
∂i(f · g)

)
(x)= g(x)∂if (x)+ f (x)∂ig(x) (i = 1, . . . ,m), (8.32′)

(

∂i

(
f

g

))

(x)= 1

g2(x)

(
g(x)∂if (x)− f (x)∂ig(x)

)
(i = 1, . . . ,m). (8.33′)

It follows from the elementwise equality of these matrices, for example, that
the partial derivative with respect to the variable xi of the product of real-valued
functions f (x1, . . . , xm) and g(x1, . . . , xm) should be taken as follows:

∂(f · g)

∂xi

(
x1, . . . , xm

) = g
(
x1, . . . , xm

) ∂f

∂xi

(
x1, . . . , xm

)+

+ f
(
x1, . . . , xm

) ∂g

∂xi

(
x1, . . . , xm

)
.

We note that both this equality and the matrix equalities (8.31′), (8.32′), and
(8.33′) are obvious consequences of the definition of a partial derivative and the
usual rules for differentiating real-valued functions of one real variable. However,
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we know that the existence of partial derivatives may still turn out to be insufficient
for a function of several variables to be differentiable. For that reason, along with
the important and completely obvious equalities (8.31′), (8.32′), and (8.33′), the
assertions about the existence of a differential for the corresponding mapping in
Theorems 1 and 2 acquire a particular importance.

We remark finally that by induction using (8.32) one can obtain the relation

d(f1, . . . , fk)(x)= (f2 · · ·fk)(x)df1(x)+ · · · + (f1 · · ·fk−1)dfk(x)

for the differential of a product (f1 · · ·fk) of differentiable real-valued functions.

8.3.2 Differentiation of a Composition of Mappings (Chain Rule)

a. The Main Theorem

Theorem 3 If the mapping f :X→ Y of a set X ⊂R
m into a set Y ⊂R

n is differ-
entiable at a point x ∈X, and the mapping f : Y →R

k is differentiable at the point
y = f (x) ∈ Y , then their composition g ◦ f :X→R

k is differentiable at x and the
differential d(g ◦f ) : TR

m
x → TR

k
g(f (x)) of the composition equals the composition

dg(y) ◦ df (x) of the differentials

df (x) : TR
m
x → TR

n
f (x)=y, dg(y) : TR

n
y → TR

k
g(y).

The proof of this theorem repeats almost completely the proof of Theorem 2 of
Sect. 5.2. In order to call attention to a new detail that arises in this case, we shall
nevertheless carry out the proof again, without going into technical details that have
already been discussed, however.

Proof Using the differentiability of the mappings f and g at the points x and y =
f (x), and also the linearity of the differential g′(x), we can write

(g ◦ f )(x + h)− (g ◦ f )(x)=
= g

(
f (x + h)

)− g
(
f (x)

)=
= g′

(
f (x)

)(
f (x + h)− f (x)

)+ o
(
f (x + h)− f (x)

)=
= g′(y)

(
f ′(x)h+ o(h)

)+ o
(
f (x + h)− f (x)

)=
= g′(y)

(
f ′(x)h

)+ g′(y)
(
o(h)

)+ o
(
f (x + h)− f (x)

)=
= (

g′(y) ◦ f ′(x)
)
h+ α(x;h),

where g′(y) ◦ f ′(x) is a linear mapping (being a composition of linear mappings),
and

α(x;h)= g′(y)
(
o(h)

)+ o
(
f (x + h)− f (x)

)
.
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But, as relations (8.17) and (8.18) of Sect. 8.1 show,

g′(y)
(
o(h)

)= o(h) as h→ 0,

f (x + h)− f (x)= f ′(x)h+ o(h)=O(h)+ o(h)=O(h) as h→ 0,

and

o
(
f (x + h)− f (x)

)= o
(
O(h)

)= o(h) as h→ 0.

Consequently,

α(x;h)= o(h)+ o(h)= o(h) as h→ 0,

and the theorem is proved. �

When rewritten in coordinate form, Theorem 3 means that if x is an interior point
of the set X and

f ′(x)=
⎛

⎜
⎝

∂1f
1(x) · · · ∂mf 1(x)
...

. . .
...

∂1f
n(x) · · · ∂mf n(x)

⎞

⎟
⎠= (

∂if
j
)
(x),

and y = f (x) is an interior point of the set Y and

g′(y)=
⎛

⎜
⎝

∂1g
1(y) · · · ∂ng

1(y)
...

. . .
...

∂1g
k(y) · · · ∂ng

k(y)

⎞

⎟
⎠= (

∂jg
k
)
(y),

then

(g ◦ f )′(x) =
⎛

⎜
⎝

∂1(g
1 ◦ f )(x) · · · ∂m(g1 ◦ f )(x)

...
. . .

...

∂1(g
k ◦ f )(x) · · · ∂m(gk ◦ f )(x)

⎞

⎟
⎠= (

∂i

(
gl ◦ f

))
(x)=

=
⎛

⎜
⎝

∂1g
1(y) · · · ∂ng

1(y)
...

. . .
...

∂1g
k(y) · · · ∂ng

k(y)

⎞

⎟
⎠

⎛

⎜
⎝

∂1f
1(x) · · · ∂mf 1(x)
...

. . .
...

∂1f
n(x) · · · ∂mf n(x)

⎞

⎟
⎠=

= (
∂jg

l(y) · ∂if
j (x)

)
.

In the equality

(
∂i

(
gl ◦ f

))
(x)= (

∂jg
l
(
f (x)

) · ∂if
j (x)

)
(8.34)

summation is understood on the right-hand side with respect to the index j over its
interval of variation, that is, from 1 to n.
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In contrast to Eqs. (8.31′), (8.32′), and (8.33′), relation (8.34) is nontrivial even
in the sense of elementwise equality of the matrices occurring in it.

Let us now consider some important cases of the theorem just proved.

b. The Differential and Partial Derivatives of a Composite Real-Valued
Function

Let z= g(y1, . . . , yn) be a real-valued function of the real variables y1, . . . , yn, each
of which in turn is a function yj = f j (x1, . . . , xm) (j = 1, . . . , n) of the variables
x1, . . . , xm. Assuming that the functions g and f j are differentiable (j = 1, . . . , n),
let us find the partial derivative ∂(g◦f )

∂xi (x) of the composition of the mappings f :
X→ Y and g : Y →R.

According to formula (8.34), in which l = 1 under the present conditions, we
find

∂i(g ◦ f )(x)= ∂jg
(
f (x)

) · ∂if
j (x), (8.35)

or, in notation that shows more detail,

∂z

∂xi
(x) = ∂(g ◦ f )

∂xi

(
x1, . . . , xm

)= ∂g

∂y1
· ∂y

1

∂xi
+ · · · + ∂g

∂yn
· ∂y

n

∂xi
=

= ∂1g
(
f (x)

) · ∂if
1(x)+ · · · + ∂ng

(
f (x)

) · ∂if
n(x).

c. The Derivative with Respect to a Vector and the Gradient of a Function
at a Point

Consider the stationary flow of a liquid or gas in some domain G of R3. The term
“stationary” means that the velocity of the flow at each point of G does not vary
with time, although of course it may vary from one point of G to another. Sup-
pose, for example, f (x) = f (x1, x2, x3) is the pressure in the flow at the point
x = (x1, x2, x3) ∈G. If we move about in the flow according to the law x = x(t),
where t is time, we shall record a pressure (f ◦ x)(t)= f (x(t)) at time t . The rate
of variation of pressure over time along our trajectory is obviously the derivative
d(f ◦x)

dt
(t) of the function (f ◦ x)(t) with respect to time. Let us find this derivative,

assuming that f (x1, x2, x3) is a differentiable function in the domain G. By the rule
for differentiating composite functions, we find

d(f ◦ x)

dt
(t)= ∂f

∂x1

(
x(t)

)
ẋ1(t)+ ∂f

∂x2

(
x(t)

)
ẋ2(t)+ ∂f

∂x3

(
x(t)

)
ẋ3(t), (8.36)

where ẋi (t)= dxi

dt
(t) (i = 1,2,3).

Since the vector (ẋ1, ẋ2, ẋ3)= v(t) is the velocity of our displacement at time t

and (∂1f, ∂2f, ∂3f )(x) is the coordinate notation for the differential df (x) of the



444 8 Differential Calculus in Several Variables

function f at the point x, Eq. (8.36) can also be rewritten as

d(f ◦ x)

dt
(t)= df

(
x(t)

)
v(t), (8.37)

that is, the required quantity is the value of the differential df (x(t)) of the function
f (x) at the point x(t) evaluated at the velocity vector v(t) of the motion.

In particular, if we were at the point x0 = x(0) at time t = 0, then

d(f ◦ x)

dt
(0)= df (x0) v, (8.38)

where v = v(0) is the velocity vector at time t = 0.
The right-hand side of (8.38) depends only on the point x0 ∈G and the velocity

vector v that we have at that point; it is independent of the specific form of the
trajectory x = x(t), provided the condition ẋ(0) = v holds. That means that the
value of the left-hand side of Eq. (8.38) is the same on any trajectory of the form

x(t)= x0 + vt + α(t), (8.39)

where α(t)= o(t) as t → 0, since this value is completely determined by giving the
point x0 and the vector v ∈ TR

3
x0

attached at that point. In particular, if we wished
to compute the value of the left-hand side of Eq. (8.38) directly (and hence also the
right-hand side), we could choose the law of motion to be

x(t)= x0 + vt, (8.40)

corresponding to a uniform motion at velocity v under which we are at the point
x(0)= x0 at time t = 0.

We now give the following

Definition 1 If the function f (x) is defined in a neighborhood of the point x0 ∈R
m

and the vector v ∈ TR
m
x0

is attached at the point x0, then the quantity

Dvf (x0) := lim
t→0

f (x0 + vt)− f (x0)

t
(8.41)

(if the indicated limit exists) is called the derivative of f at the point x0 with respect
to the vector v or the derivative along the vector v at the point x0.

It follows from these considerations that if the function f is differentiable at the
point x0, then the following equality holds for any function x(t) of the form (8.39),
and in particular, for any function of the form (8.40):

Dvf (x0)= d(f ◦ x)

dt
(0)= df (x0) v. (8.42)
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In coordinate notation, this equality says

Dvf (x0)= ∂f

∂x1
(x0)v

1 + · · · + ∂f

∂xm
(x0)v

m. (8.43)

In particular, for the basis vectors e1 = (1,0, . . . ,0), . . . , em = (0, . . . ,0,1) this
formula implies

Dei
f (x0)= ∂f

∂xi
(x0) (i = 1, . . . ,m).

By virtue of the linearity of the differential df (x0), we deduce from Eq. (8.42)
that if f is differentiable at the point x0, then for any vectors v1, v2 ∈ TR

m
x0

and any
λ1, λ2 ∈ R the function has a derivative at the point x0 with respect to the vector
(λ1v1 + λ2v2) ∈ TR

m
x0

, and that

Dλ1v1+λ2v2f (x0)= λ1Dv1f (x0)+ λ2Dv2f (x0). (8.44)

If Rm is regarded as a Euclidean space, that is, as a vector space with an inner
product, then (see Sect. 8.1) it is possible to write any linear functional L(v) as the
inner product 〈ξ, v〉 of a fixed vector ξ = ξ(L) and the variable vector v.

In particular, there exists a vector ξ such that

df (x0)v = 〈ξ, v〉. (8.45)

Definition 2 The vector ξ ∈ TR
m
x0

corresponding to the differential df (x0) of the
function f at the point x0 in the sense of Eq. (8.45) is called the gradient of the
function at that point and is denoted gradf (x0).

Thus, by definition

df (x0)v =
〈
gradf (x0), v

〉
. (8.46)

If a Cartesian coordinate system has been chosen in R
m, then, by comparing

relations (8.42), (8.43), and (8.46), we conclude that the gradient has the following
representation in such a coordinate system:

gradf (x0)=
(

∂f

∂x1
, . . . ,

∂f

∂xm

)

(x0). (8.47)

We shall now explain the geometric meaning of the vector gradf (x0).
Let e ∈ TR

m
x0

be a unit vector. Then by (8.46)

Def (x0)=
∣
∣gradf (x0)

∣
∣ cosϕ, (8.48)

where ϕ is the angle between the vectors e and gradf (x0).
Thus if gradf (x0) �= 0 and e = ‖gradf (x0)‖−1 gradf (x0), the derivative

Def (x0) assumes a maximum value. That is, the rate of increase of the function f

(expressed in the units of f relative to a unit length in R
m) is maximal and equal

to ‖gradf (x0)‖ for motion from the point x0 precisely when the displacement is
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in the direction of the vector gradf (x0). The value of the function decreases most
sharply under displacement in the opposite direction, and the rate of variation of the
function is zero in a direction perpendicular to the vector gradf (x0).

The derivative with respect to a unit vector in a given direction is usually called
the directional derivative in that direction.

Since a unit vector in Euclidean space is determined by its direction cosines

e= (cosα1, . . . , cosαm),

where αi is the angle between the vector e and the basis vector ei in a Cartesian
coordinate system, it follows that

Def (x0)=
〈
gradf (x0), e

〉= ∂f

∂x1
(x0) cosα1 + · · · + ∂f

∂xm
(x0) cosαm.

The vector gradf (x0) is encountered very frequently and has numerous applica-
tions. For example the so-called gradient methods for finding extrema of functions
of several variables numerically (using a computer) are based on the geometric prop-
erty of the gradient just noted. (In this connection, see Problem 2 at the end of this
section.)

Many important vector fields, such as, for example, a Newtonian gravitational
field or the electric field due to charge, are the gradients of certain scalar-valued
functions, known as the potentials of the fields (see Problem 3).

Many physical laws use the vector gradf in their very statement. For example,
in the mechanics of continuous media the equivalent of Newton’s basic law of dy-
namics ma = F is the relation

ρa=−gradp,

which connects the acceleration a = a(x, t) in the flow of an ideal liquid or gas
free of external forces at the point x and time t with the density of the medium
ρ = ρ(x, t) and the gradient of the pressure p = p(x, t) at the same point and time
(see Problem 4).

We shall discuss the vector gradf again later, when we study vector analysis and
the elements of field theory.

8.3.3 Differentiation of an Inverse Mapping

Theorem 4 Let f : U(x)→ V (y) be a mapping of a neighborhood U(x)⊂R
m of

the point x onto a neighborhood V (y)⊂R
m of the point y = f (x). Assume that f

is continuous at the point x and has an inverse mapping f−1 : V (y)→ U(x) that
is continuous at the point y.

Given these assumptions, if the mapping f is differentiable at x and the tan-
gent mapping f ′(x) : TR

m
x → TR

m
y to f at the point x has an inverse [f ′(x)]−1 :
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TR
m
y → TR

m
x , then the mapping f−1 : V (y)→ U(x) is differentiable at the point

y = f (x), and the following equality holds:

(
f−1)′(y)= [

f ′(x)
]−1

.

Thus, mutually inverse differentiable mappings have mutually inverse tangent
mappings at corresponding points.

Proof We use the following notation:

f (x)= y, f (x + h)= y + t, t = f (x + h)− f (x),

so that

f−1(y)= x, f−1(y + t)= x + h, h= f−1(y + t)− f−1(y).

We shall assume that h is so small that x + h ∈U(x), and hence y + t ∈ V (y).
It follows from the continuity of f at x and f−1 at y that

t = f (x + h)− f (x)→ 0 as h→ 0 (8.49)

and

h= f−1(y + t)− f−1(y)→ 0 as t → 0. (8.50)

It follows from the differentiability of f at x that

t = f ′(x)h+ o(h) as h→ 0, (8.51)

that is, we can even assert that t =O(h) as h→ 0 (see relations (8.17) and (8.18)
of Sect. 8.1).

We shall show that if f ′(x) is an invertible linear mapping, then we also have
h=O(t) as t → 0.

Indeed, we find successively by (8.51) that

[
f ′(x)

]−1
t = h+ [

f ′(x)
]−1

o(h) as h→ 0,

[
f ′(x)

]−1
t = h+ o(h) as h→ 0,

∥
∥[f ′(x)

]−1
t
∥
∥ ≥ ‖h‖ − ∥

∥o(h)
∥
∥ as h→ 0,

∥
∥
[
f ′(x)

]−1
t
∥
∥ ≥ 1

2‖h‖ for ‖h‖< δ,

(8.52)

where the number δ > 0 is chosen so that ‖o(h)‖ < 1
2‖h‖ when ‖h‖ < δ. Then,

taking account of (8.50), that is, the relation h→ 0 as t → 0, we find

‖h‖ ≤ 2
∥
∥
[
f ′(x)

]−1
t
∥
∥=O

(‖t‖) as t → 0,
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which is equivalent to

h=O(t) as t → 0.

From this it follows in particular that

o(h)= o(t) as t → 0.

Taking this relation into account, we find by (8.50) and (8.52) that

h= [
f ′(x)

]−1
t + o(t) as t → 0

or

f−1(y + t)− f−1(y)= [
f ′(x)

]−1
t + o(t) as t → 0. �

It is known from algebra that if the matrix A corresponds to the linear trans-
formation L : Rm → R

m, then the matrix A−1 inverse to A corresponds to the lin-
ear transformation L−1 : Rm → R

m inverse to L. The construction of the elements
of the inverse matrix is also known from algebra. Consequently, the theorem just
proved provides a direct recipe for constructing the mapping (f−1)′(y).

We remark that when m= 1, that is, when R
m =R, the Jacobian of the mapping

f : U(x)→ V (y) at the point x reduces to the single number f ′(x) – the deriva-
tive of the function f at x – and the linear transformation f ′(x) : TRx → TRy

reduces to multiplication by that number: h �→ f ′(x)h. This linear transforma-
tion is invertible if and only if f ′(x) �= 0, and the matrix of the inverse mapping
[f ′(x)]−1 : TRy → TRx also consists of a single number, equal to [f ′(x)]−1, that
is, the reciprocal of f ′(x). Hence Theorem 4 also subsumes the rule for finding the
derivative of an inverse function proved earlier.

8.3.4 Problems and Exercises

1. a) We shall regard two paths t �→ x1(t) and t �→ x2(t) as equivalent at the point
x0 ∈R

m if x1(0)= x2(0)= x0 and d(x1(t), x2(t))= o(t) as t → 0.
Verify that this relation is an equivalence relation, that is, it is reflexive, symmet-

ric, and transitive.
b) Verify that there is a one-to-one correspondence between vectors v ∈ TR

m
x0

and equivalence classes of smooth paths at the point x0.
c) By identifying the tangent space TR

m
x0

with the set of equivalence classes of
smooth paths at the point x0 ∈ R

m, introduce the operations of addition and multi-
plication by a scalar for equivalence classes of paths.

d) Determine whether the operations you have introduced depend on the coor-
dinate system used in R

m.
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2. a) Draw the graph of the function z = x2 + 4y2, where (x, y, z) are Cartesian
coordinates in R3.

b) Let f :G→ R be a numerically valued function defined on a domain G ⊂
R

m. A level set (c-level) of the function is a set E ⊂ G on which the function
assumes only one value (f (E) = c). More precisely, E = f−1(c). Draw the level
sets in R

2 for the function given in part a).
c) Find the gradient of the function f (x, y) = x2 + 4y2, and verify that at any

point (x, y) the vector gradf is orthogonal to the level curve of the function f

passing through the point.
d) Using the results of a), b), and c), lay out what appears to be the shortest path

on the surface z= x2 + 4y2 descending from the point (2,1,8) to the lowest point
on the surface (0,0,0).

e) What algorithm, suitable for implementation on a computer, would you pro-
pose for finding the minimum of the function f (x, y)= x2 + 4y2?

3. We say that a vector field is defined in a domain G of Rm if a vector v(x) ∈ TR
m
x

is assigned to each point x ∈G. A vector field v(x) in G is called a potential field
if there is a numerical-valued function U :G→R such that v(x)= gradU(x). The
function U(x) is called the potential of the field v(x). (In physics it is the function
−U(x) that is usually called the potential, and the function U(x) is called the force
function when a field of force is being discussed.)

a) On a plane with Cartesian coordinates (x, y) draw the field gradf (x, y)

for each of the following functions: f1(x, y) = x2 + y2; f2(x, y) = −(x2 + y2);
f3(x, y)= arctan(x/y) in the domain y > 0; f4(x, y)= xy.

b) By Newton’s law a particle of mass m at the point 0 ∈R
3 attracts a particle of

mass 1 at the point x ∈ R
3 (x �= 0) with force F=−m|r|−3r, where r is the vector−→

Ox (we have omitted the dimensional constant G0). Show that the vector field F(x)

in R
3\0 is a potential field.

c) Verify that masses mi (i = 1, . . . , n) located at the points (ξi, ηi, ζi) (i =
1, . . . , n) respectively, create a Newtonian force field except at these points and that
the potential is the function

U(x, y, z)=
n∑

i=1

mi√
(x − ξi)2 + (y − ηi)2 + (z− ζi)2

.

d) Find the potential of the electrostatic field created by point charges qi (i =
1, . . . , n) located at the points (ξi, ηi, ζi) (i = 1, . . . , n) respectively.

4. Consider the motion of an ideal incompressible liquid in a space free of external
forces (in particular, free of gravitational forces).

Let v = v(x, y, z, t), a = a(x, y, z, t), ρ = ρ(x, y, z, t), and p = p(x, y, z, t) be
respectively the velocity, acceleration, density, and pressure of the fluid at the point
(x, y, z) of the medium at time t .

An ideal liquid is one in which the pressure is the same in all directions at each
point.
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a) Distinguish a volume of the liquid in the form of a small parallelepiped, one
of whose edges is parallel to the vector gradp(x, y, z, t) (where gradp is taken
with respect to the spatial coordinates). Estimate the force acting on this volume
due to the pressure drop, and give an approximate formula for the acceleration of
the volume, assuming the fluid is incompressible.

b) Determine whether the result you obtained in a) is consistent with Euler’s
equation

ρa=−gradp.

c) A curve whose tangent at each point has the direction of the velocity vector
at that point is called a streamline. The motion is called stationary if the functions
v, a, ρ, and p are independent of t . Using b), show that along a streamline in the
stationary flow of an incompressible liquid the quantity 1

2‖v‖2 + p/ρ is constant
(Bernoulli’s law5).

d) How do the formulas in a) and b) change if the motion takes place in the
gravitational field near the surface of the earth? Show that in this case

ρa=−grad(gz+ p).

so that now the quantity 1
2‖v‖2+ gz+p/ρ is constant along each streamline of the

stationary motion of an incompressible liquid, where g is the gravitational acceler-
ation and z is the height of the streamline measured from some zero level.

e) Explain, on the basis of the preceding results, why a load-bearing wing has a
characteristic convex-upward profile.

f) An incompressible ideal liquid of density ρ was used to fill a cylindrical glass
with a circular base of radius R to a depth h. The glass was then revolved about its
axis with angular velocity ω. Using the incompressibility of the liquid, find the equa-
tion z= f (x, y) of its surface in stationary mode (see also Problem 3 of Sect. 5.1).

g) From the equation z= f (x, y) found in part f) for the surface, write a formula
p = p(x, y, z) for the pressure at each point (x, y, z) of the volume filled by the
rotating liquid. Check to see whether the equation ρa=−grad(gz+ p) of part d)
holds for the formula that you found.

h) Can you now explain why tea leaves sink (although not very rapidly!) and
why they accumulate at the center of the bottom of the cup, rather than its side,
when the tea is stirred?

5. Estimating the errors in computing the values of a function.

a) Using the definition of a differentiable function and the approximate equality
Δf (x;h) ≈ df (x)h, show that the relative error δ = δ(f (x);h) in the value of
the product f (x)= x1 · · ·xm of m nonzero factors due to errors in determining the
factors themselves can be found in the form δ ≈∑m

i=1 δi , where δi is the relative
error in the determination of the ith factor.

5Daniel Bernoulli (1700–1782) – Swiss scholar, one of the outstanding physicists and mathemati-
cians of his time.
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b) Using the equality d lnf (x) = 1
f (x)

df (x), obtain the result of part a) again
and show that in general the relative error in a fraction

f1 · · ·fn

g1 · · ·gk

(x1, . . . , xm)

can be found as the sum of the relative errors of the values of the functions
f1, . . . , fn, g1, . . . , gk .

6. Homogeneous functions and Euler’s identity. A function f : G → R defined
in some domain G ⊂ R

m is called homogeneous (resp. positive-homogeneous) of
degree n if the equality

f (λx)= λnf (x)
(
resp. f (λx)= |λ|nf (x)

)

holds for any x ∈R
m and λ ∈R such that x ∈G and λx ∈G.

A function is locally homogeneous of degree n in the domain G if it is a homo-
geneous function of degree n in some neighborhood of each point of G.

a) Prove that in a convex domain every locally homogeneous function is homo-
geneous.

b) Let G be the plane R
2 with the ray L = {(x, y) ∈ R

2 | x = 2 ∧ y ≥ 0} re-
moved. Verify that the function

f (x, y)=
{

y4/x, if x > 2∧ y > 0,

y3, at other points of the domain,

is locally homogeneous in G, but is not a homogeneous function in that domain.
c) Determine the degree of homogeneity or positive homogeneity of the follow-

ing functions with their natural domains of definition:

f1
(
x1, . . . , xm

) = x1x2 + x2x3 + · · · + xm−1xm;

f2
(
x1, x2, x3, x4) = x1x2 + x3x4

x1x2x3 + x2x3x4
;

f3
(
x1, . . . , xm

) = ∣
∣x1 · · ·xm

∣
∣l .

d) By differentiating the equality f (tx)= tnf (x) with respect to t , show that if
a differentiable function f :G→R is locally homogeneous of degree n in a domain
G⊂R

m, it satisfies the following Euler identity for homogeneous functions:

x1 ∂f

∂x1

(
x1, . . . , xm

)+ · · · + xm ∂f

∂xm

(
x1, . . . , xm

)≡ nf
(
x1, . . . , xm

)
.

e) Show that if Euler’s identity holds for a differentiable function f :G→R in
a domain G, then that function is locally homogeneous of degree n in G.

Hint: Verify that the function ϕ(t)= t−nf (tx) is defined for every x ∈G and is
constant in some neighborhood of 1.
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7. Homogeneous functions and the dimension method.
10. The dimension of a physical quantity and the properties of functional relations

between physical quantities.
Physical laws establish interconnections between physical quantities, so that if

certain units of measurement are adopted for some of these quantities, then the units
of measurement of the quantities connected with them can be expressed in a certain
way in terms of the units of measurement of the fixed quantities. That is how the
basic and derived units of different systems of measurement arise.

In the International System, the basic mechanical units of measurement are taken
to be the unit of length (the meter, denoted m), mass (the kilogram, denoted kg), and
time (the second, denoted s).

The expression of a derived unit of measurement in terms of the basic mechanical
units is called its dimension. This definition will be made more precise below.

The dimension of any mechanical quantity is written symbolically as a formula
expressing it in terms of the symbols L, M , and T proposed by Maxwell6 as the
dimensions of the basic units mentioned above. For example, the dimensions of
velocity, acceleration, and force have respectively the forms

[v] = LT −1, [a] = LT −2, [F ] =MLT −2.

If physical laws are to be independent of the choice of units of measurement, one
expression of that invariance should be certain properties of the functional relation

x0 = f (x1, . . . , xk, xk+1, . . . , xn) (*)

between the numerical characteristics of the physical quantities.
Consider, for example, the relation c = f (a, b)=√a2 + b2 between the lengths

of the legs and the length of the hypotenuse of a right triangle. Any change of scale
should affect all the lengths equally, so that for all admissible values of a and b the
relation f (αa,αb)= ϕ(α)f (a, b) should hold, and in the present case ϕ(α)= α.

A basic (and, at first sight, obvious) presupposition of dimension theory is that a
relation (*) claiming physical significance must be such that when the scales of the
basic units of measurement are changed, the numerical values of all terms of the
same type occurring in the formula must be multiplied by the same factor.

In particular, if x1, x2, x3 are basic independent physical quantities and the re-
lation (x1, x2, x3) �→ f (x1, x2, x3) expresses the way a fourth physical quantity
depends on them, then, by the principle just stated, for any admissible values of
x1, x2, x3 the equality

f (α1x1, α2x2, α3x3)= ϕ(α1, α2)α3)f (x2, x2, x3), (**)

must hold with some particular function ϕ.

6J.C. Maxwell (1831–1879) – outstanding British physicist. He created the mathematical theory of
the electromagnetic field, and is also famous for his research in the kinetic theory of gases, optics,
and mechanics.
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The function ϕ in (**) characterizes completely the dependence of the numerical
value of the physical quantity in question on a change in the scale of the basic fixed
physical quantities. Thus, this function should be regarded as the dimension of that
physical quantity relative to the fixed basic units of measurement.

We now make the form of the dimension function more precise.

a) Let x �→ f (x) be a function of one variable satisfying the condition f (αx)=
ϕ(α)f (x), where f and ϕ are differentiable functions.

Show that ϕ(α)= αd .
b) Show that the dimension function ϕ in Eq. (**) always has the form α

d1
1 ·αd2

2 .

α
d3
3 , where the exponents d1, d2, d3 are certain real numbers. Thus if, for exam-

ple, the basic units of L, M , and T are fixed, then the set (d1, d2, d3) of exponents
expressed in the power representation Ld1Md2T d3 can also be regarded as the di-
mension of the given physical quantity.

c) In part b) it was found that the dimension function is always a power function,
that is, it is a homogeneous function of a certain degree with respect to each of the
basic units of measurement. What does it mean if the degree of homogeneity of the
dimension function of a certain physical quantity relative to one of the basic units
of measurement is zero?

20 The Π -theorem and the dimension method.
Let [xi] = Xi (i = 0,1, . . . , n) be the dimensions of the physical quantities oc-

curring in the law (*).
Assume that the dimensions of x0, xk+1, . . . , xn can be expressed in terms of the

dimensions of x1, . . . , xk , that is,

[x0] =X0 =X
p1

0
1 · · ·Xpk

0
k ,

[xk+i] =Xk+i =X
p1

i

1 · · ·Xpk
i

k (i = 1, . . . , n− k).

d) Show that the following relation must then hold, along with (*):

α
p1

0
1 · · ·αpk

0
k x0 = f

(
α1x1, . . . , αkxk,α

p1
1

1 · · ·αpk
1

k xk+1, . . . , α
p1

n−k

1 · · ·αpk
n−k

k xn

)
.

(***)
e) If x1, . . . , xk are independent, we set α1 = x−1

1 , . . . , αk = x−1
k in (***). Verify

that when this is done, (***) yields the equality

x0

x
p1

0
1 · · ·xpk

0
k

= f

(

1, . . . ,1,
xk+1

x
p1

1
1 · · ·xpk

1
k

, . . . ,
xn

x
p1

n−k

1 · · ·xpk
n−k

k

)

,

which is a relation

Π = f (1, . . . ,1,Π1, . . . ,Πn−k) (****)

involving the dimensionless quantities Π,Π1, . . . ,Πn−k .
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Thus we obtain the following

Π-theorem of dimension theory If the quantities x1, . . . , xk in relation (*) are
independent, this relation can be reduced to the function (****) of n − k dimen-
sionless parameters.

f) Verify that if k = n, the function f in relation (*) can be determined up to a
numerical multiple by using the Π -theorem. Use this method to find the expression
c(ϕ0)

√
l/g for the period of oscillation of a pendulum (that is, a mass m suspended

by a thread of length l and oscillating near the surface of the earth, where ϕ0 is the
initial displacement angle).

g) Find a formula P = c
√

mr/F for the period of revolution of a body of mass
m held in a circular orbit by a central force of magnitude F .

h) Use Kepler’s law (P1/P2)
2 = (r1/r2)

3, which establishes for circular orbits
a connection between the ratio of the periods of revolution of planets (or satellites)
and the ratio of the radii of their orbits, to find, as Newton did, the exponent α in
the law of universal gravitation F =Gm1m2

rα .

8.4 The Basic Facts of Differential Calculus of Real-Valued
Functions of Several Variables

8.4.1 The Mean-Value Theorem

Theorem 1 Let f :G→ R be a real-valued function defined in a region G⊂ R
m,

and let the closed line segment [x, x + h] with endpoints x and x + h be con-
tained in G. If the function f is continuous at the points of the closed line segment
[x, x + h] and differentiable at points of the open interval ]x, x + h[, then there
exists a point ξ ∈ ]x, x + h[ such that the following equality holds:

f (x + h)− f (x)= f ′(ξ)h. (8.53)

Proof Consider the auxiliary function

F(t)= f (x + th)

defined on the closed interval 0≤ t ≤ 1. This function satisfies all the hypotheses of
Lagrange’s theorem: it is continuous on [0,1], being the composition of continuous
mappings, and differentiable on the open interval ]0,1[, being the composition of
differentiable mappings. Consequently, there exists a point θ ∈ ]0,1[ such that

F(1)− F(0)= F ′(θ) · 1.

But F(1)= f (x+ h), F(0)= f (x), F ′(θ)= f ′(x+ θh)h, and hence the equal-
ity just written is the same as the assertion of the theorem. �
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We now give the coordinate form of relation (8.53).
If x = (x1, . . . , xm), h = (h1, . . . , hm), and ξ = (x1 + θh1, . . . , xm + θhm),

Eq. (8.53) means that

f (x + h)− f (x) = f
(
x1 + h1, . . . , xm + hm

)− f
(
x1, . . . , xm

)=

= f ′(ξ)h=
(

∂f

∂x1
(ξ), . . . ,

∂f

∂xm
(ξ)

)
⎛

⎝
h1

· · ·
hm

⎞

⎠=

= ∂1f (ξ)h1 + · · · + ∂mf (ξ)hm =

=
m∑

i=1

∂if
(
x1 + θh1, . . . , xm + θhm

)
hi.

Using the convention of summation on an index that appears as both superscript
and subscript, we can finally write

f
(
x1 + h1, . . . , xm + hm

)− f
(
x1, . . . , xm

)=
= ∂if

(
x1 + θh1, . . . , xm + θhm

)
hi, (8.54)

where 0 < θ < 1 and θ depends on both x and h.

Remark Theorem 1 is called the mean-value theorem because there exists a certain
“average” point ξ ∈ ]x, x + h[ at which Eq. (8.53) holds. We have already noted in
our discussion of Lagrange’s theorem (Sect. 5.3.1) that the mean-value theorem is
specific to real-valued functions. A general finite-increment theorem for mappings
will be proved in Chap. 10 (Part 2).

The following proposition is a useful corollary of Theorem 1.

Corollary If the function f :G→ R is differentiable in the domain G ⊂ R
m and

its differential equals zero at every point x ∈G, then f is constant in the domain G.

Proof The vanishing of a linear transformation is equivalent to the vanishing of all
the elements of the matrix corresponding to it. In the present case

df (x)h= (∂1f, . . . , ∂mf )(x)h,

and therefore ∂1f (x)= · · · = ∂mf (x)= 0 at every point x ∈G.
By definition, a domain is an open connected set. We shall make use of this fact.
We first show that if x ∈G, then the function f is constant in a ball B(x; r)⊂G.

Indeed, if (x+h) ∈ B(x; r), then [x, x+h] ⊂ B(x; r)⊂G. Applying relation (8.53)
or (8.54), we obtain

f (x + h)− f (x)= f ′(ξ)h= 0 · h= 0,
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that is, f (x + h)= f (x), and the values of f in the ball B(x; r) are all equal to the
value at the center of the ball.

Now let x0, x1 ∈ G be arbitrary points of the domain G. By the connectedness
of G, there exists a path t �→ x(t) ∈ G such that x(0) = x0 and x(1) = x1. We
assume that the continuous mapping t �→ x(t) is defined on the closed interval 0≤
t ≤ 1. Let B(x0; r) be a ball with center at x0 contained in G. Since x(0)= x0 and
the mapping t �→ x(t) is continuous, there is a positive number δ such that x(t) ∈
B(x0; r)⊂G for 0≤ t ≤ δ. Then, by what has been proved, (f ◦ x)(t)≡ f (x0) on
the interval [0, δ].

Let l = sup δ, where the upper bound is taken over all numbers δ ∈ [0,1] such that
(f ◦ x)(t)≡ f (x0) on the interval [0, δ]. By the continuity of the function f (x(t))

we have f (x(l))= f (x0). But then l = 1. Indeed, if that were not so, we could take
a ball B(x(l); r)⊂G, in which f (x)= f (x(l))= f (x0), and then by the continuity
of the mapping t �→ x(t) find Δ > 0 such that x(t) ∈ B(x(l); r) for l ≤ t ≤ l +Δ.
But then (f ◦ x)(t)= f (x(l))= f (x0) for 0≤ t ≤ l +Δ, and so l �= sup δ.

Thus we have shown that (f ◦ x)(t) = f (x0) for any t ∈ [0,1]. In particular
(f ◦ x)(1) = f (x1) = f (x0), and we have verified that the values of the function
f :G→R are the same at any two points x0, x1 ∈G. �

8.4.2 A Sufficient Condition for Differentiability of a Function
of Several Variables

Theorem 2 Let f :U(x)→R be a function defined in a neighborhood U(x)⊂R
m

of the point x = (x1, . . . , xm).
If the function f has all partial derivatives ∂f

∂x1 , . . . ,
∂f

∂xm at each point of the
neighborhood U(x) and they are continuous at x, then f is differentiable at x.

Proof Without loss of generality we shall assume that U(x) is a ball B(x; r). Then,
together with the points x = (x1, . . . , xm) and x + h = (x1 + h1, . . . , xm + hm),
the points (x1, x2 + h2, . . . , xm + hm), . . . , (x1, x2, . . . , xm−1, xm + hm) and the
lines connecting them must also belong to the domain U(x). We shall use this fact,
applying the Lagrange theorem for functions of one variable in the following com-
putation:

f (x + h)− f (x) = f
(
x1 + h1, . . . , xm + hm

)− f
(
x1, . . . , xm

)=
= f

(
x1 + h1, . . . , xm + hm

)− f
(
x1, x2 + h2, . . . , xm + hm

)+
+ f

(
x1, x2 + h2, . . . , xm + hm

)−
− f

(
x1, x2, x3 + h3, . . . , xm + hm

)+ · · · +
+ f

(
x1, x2, . . . , xm−1, xm + hm

)− f
(
x1, . . . , xm

)=
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= ∂1f
(
x1 + θ1h1, x2 + h2, . . . , xm + hm

)
h1 +

+ ∂2f
(
x1, x2 + θ2h2, x3 + h3, . . . , xm + hm

)
h2 + · · · +

+ ∂mf
(
x1, x2, . . . , xm−1, xm + θmhm

)
hm.

So far we have used only the fact that the function f has partial derivatives with
respect to each of its variables in the domain U(x).

We now use the fact that these partial derivatives are continuous at x. Continuing
the preceding computation, we obtain

f (x + h)− f (x) = ∂1f
(
x1, . . . , xm

)
h1 + α1h1 +

+ ∂2f
(
x1, . . . , xm

)
h2 + α2h2 + · · · +

+ ∂mf
(
x1, . . . , xm

)
hm + αmhm,

where the quantities α1, . . . , αm tend to zero as h→ 0 by virtue of the continuity of
the partial derivatives at the point x.

But this means that

f (x + h)− f (x)= L(x)h+ o(h) as h→ 0,

where L(x)h= ∂1f (x1, . . . , xm)h1 + · · · + ∂mf (x1, . . . , xm)hm. �

It follows from Theorem 2 that if the partial derivatives of a function f :G→R

are continuous in the domain G ⊂ R
m, then the function is differentiable at that

point of the domain.
Let us agree from now on to use the symbol C(1)(G;R), or, more simply, C(1)(G)

to denote the set of functions having continuous partial derivatives in the domain G.

8.4.3 Higher-Order Partial Derivatives

If a function f :G→R defined in a domain G⊂R
m has a partial derivative ∂f

∂xi (x)

with respect to one of the variables x1, . . . , xm, this partial derivative is a function
∂if :G→ R, which in turn may have a partial derivative ∂j (∂if )(x) with respect
to a variable xj .

The function ∂j (∂if ) :G→ R is called the second partial derivative of f with
respect to the variables xi and xj and is denoted by one of the following symbols:

∂jif (x),
∂2f

∂xj ∂xi
(x).

The order of the indices indicates the order in which the differentiation is carried
out with respect to the corresponding variables.

We have now defined partial derivatives of second order.
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If a partial derivative of order k

∂i1···ik f (x)= ∂kf

∂xi1 · · ·∂xik
(x)

has been defined, we define by induction the partial derivative of order k+ 1 by the
relation

∂ii1···ik f (x) := ∂i(∂i1···ik f )(x).

At this point a question arises that is specific for functions of several variables:
Does the order of differentiation affect the partial derivative computed?

Theorem 3 If the function f :G→R has partial derivatives

∂2f

∂xi∂xj
(x),

∂2f

∂xj ∂xi
(x)

in a domain G, then at every point x ∈ G at which both partial derivatives are
continuous, their values are the same.

Proof Let x ∈G be a point at which both functions ∂ij f :G→R and ∂jif :G→
R are continuous. From this point on all of our arguments are carried out in the
context of a ball B(x; r)⊂G, r > 0, which is a convex neighborhood of the point x.
We wish to verify that

∂2f

∂xi∂xj

(
x1, . . . , xm

)= ∂2f

∂xj ∂xi

(
x1, . . . , xm

)
.

Since only the variables xi and xj will be changing in the computations to fol-
low, we shall assume for the sake of brevity that f is a function of two variables
f (x1, x2), and we need to verify that

∂2f

∂x1∂x2

(
x1, x2)= ∂2f

∂x2∂x1

(
x1, x2),

if the two functions are both continuous at the point (x1, x2).
Consider the auxiliary function

F
(
h1, h2)= f

(
x1+ h1, x2+ h2)− f

(
x1+ h1, x2)− f

(
x1, x2+ h2)+ f

(
x1, x2),

where the displacement h= (h1, h2) is assumed to be sufficiently small, namely so
small that x + h ∈ B(x; r).

If we regard F(h1, h2) as the difference

F
(
h1, h2)= ϕ(1)− ϕ(0),
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where ϕ(t)= f (x1 + th1, x2 + h2)− f (x1 + th1, x2), we find by Lagrange’s the-
orem that

F
(
h1, h2)= ϕ′(θ1)=

(
∂1f

(
x1 + θ1h

1, x2 + h2)− ∂f
(
x1 + θ1h

1, x2))h1.

Again applying Lagrange’s theorem to this last difference, we find that

F
(
h1, h2)= ∂21f

(
x1 + θ1h

1, x2 + θ2h
2)h2h1. (8.55)

If we now represent F(h1, h2) as the difference

F
(
h1, h2)= ϕ̃(1)− ϕ̃(0),

where ϕ̃(t)= f (x1 + h1, x2 + th2)− f (x1, x2 + th2), we find similarly that

F
(
h1, h2)= ∂12f

(
x1 + θ̃1h

1, x2 + θ̃2h
2)h1h2. (8.56)

Comparing (8.55) and (8.56), we conclude that

∂21f
(
x1 + θ1h

1, x2 + θ2h
2)= ∂12f

(
x1 + θ̃1h

1, x2 + θ̃2h
2), (8.57)

where θ1, θ2, θ̃1, θ̃2 ∈ ]0,1[. Using the continuity of the partial derivatives at the
point (x1, x2), as h→ 0, we get the equality we need as a consequence of (8.57).

∂21f
(
x1, x2)= ∂12f

(
x1, x2). �

We remark that without additional assumptions we cannot say in general that
∂ij f (x) = ∂jif (x) if both of the partial derivatives are defined at the point x (see
Problem 2 at the end of this section).

Let us agree to denote the set of functions f :G→R all of whose partial deriva-
tives up to order k inclusive are defined and continuous in the domain G⊂ R

m by
the symbol C(k)(G;R) or C(k)(G).

As a corollary of Theorem 3, we obtain the following.

Proposition 1 If f ∈ C(k)(G;R), the value ∂i1...ik f (x) of the partial derivative is
independent of the order i1, . . . , ik of differentiation, that is, remains the same for
any permutation of the indices i1, . . . , ik .

Proof In the case k = 2 this proposition is contained in Theorem 3.
Let us assume that the proposition holds up to order n inclusive. We shall show

that then it also holds for order n+ 1.
But ∂i1i2···in+1f (x)= ∂i1(∂i2···in+1f )(x). By the induction assumption the indices

i2, . . . , in+1 can be permuted without changing the function ∂i2···in+1f (x), and hence
without changing ∂i1···in+1f (x). For that reason it suffices to verify that one can
also permute, for example, the indices i1 and i2 without changing the value of the
derivative ∂i1i2···in+1f (x).
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Since

∂i1i2···in+1f (x)= ∂i1i2(∂i3···in+1f )(x),

the possibility of this permutation follows immediately from Theorem 3. By the
induction principle Proposition 1 is proved. �

Example 1 Let f (x)= f (x1, x2) be a function of class C(k)(G;R).
Let h = (h1, h2) be such that the closed interval [x, x + h] is contained in the

domain G. We shall show that the function

ϕ(t)= f (x + th),

which is defined on the closed interval [0,1], belongs to class C(k)[0,1] and find its
derivative of order k with respect to t .

We have

ϕ′(t) = ∂1f
(
x1 + th1, x2 + th2)h1 + ∂2f

(
x1 + th1, x2 + th2)h2,

ϕ′′(t) = ∂11f (x + th)h1h1 + ∂21f (x + th)h2h1 +
+ ∂12f (x + th)h1h2 + ∂22f (x + th)h2h2 =

= ∂11f (x + th)
(
h1)2 + 2∂12f (x + th)h1h2 + ∂22f (x + th)

(
h2)2

.

These relations can be written as the action of the operator (h1∂1 + h2∂2):

ϕ′(t) = (
h1∂1 + h2∂2

)
f (x + th)= hi∂if (x + th),

ϕ′′(t) = (
h1∂1 + h2∂2

)2
f (x + th)= hi1hi2∂i1i2f (x + th).

By induction we obtain

ϕ(k)(t)= (
h1∂1 + h2∂2

)k
f (x + th)= hi1 · · ·hik ∂i1···ik f (x + th)

(summation over all sets i1, . . . , ik of k indices, each assuming the values 1 and 2,
is meant).

Example 2 If f (x)= f (x1, . . . , xm) and f ∈ C(k)(G;R), then, under the assump-
tion that [x, x + h] ⊂ G, for the function ϕ(t) = f (x + th) defined on the closed
interval [0,1] we obtain

ϕ(k)(t)= hi1 · · ·hik ∂i1···ik f (x + th), (8.58)

where summation over all sets of indices i1, . . . , ik , each assuming all values from
1 to m inclusive, is meant on the right.

We can also write formula (8.58) as

ϕ(k)(t)= (
h1∂1 + · · · + hm∂m

)k
f (x + th). (8.59)
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8.4.4 Taylor’s Formula

Theorem 4 If the function f :U(x)→R is defined and belongs to class C(n)(U(x);
R) in a neighborhood U(x) ⊂ R

m of the point x ∈ R
m, and the closed interval

[x, x + h] is completely contained in U(x), then the following equality holds:

f
(
x1 + h1, . . . , xm + hm

)− f
(
x1, . . . , xm

)=

=
n−1∑

k=1

1

k!
(
h1∂1 + · · · + hm∂m

)k
f (x)+ rn−1(x;h), (8.60)

where

rn−1(x;h)=
∫ 1

0

(1− t)n−1

(n− 1)!
(
h1∂1 + · · · + hm∂m

)n
f (x + th)dt. (8.61)

Equality (8.60), together with (8.61), is called Taylor’s formula with integral
form of the remainder.

Proof Taylor’s formula follows immediately from the corresponding Taylor formula
for a function of one variable. In fact, consider the auxiliary function

ϕ(t)= f (x + th),

which, by the hypotheses of Theorem 4, is defined on the closed interval 0≤ t ≤ 1
and (as we have verified above) belongs to the class C(n)[0,1].

Then for τ ∈ [0,1], by Taylor’s formula for functions of one variable, we can
write that

ϕ(τ) = ϕ(0)+ 1

1!ϕ
′(0)τ + · · · + 1

(n− 1)!ϕ
(n−1)(0)τn−1 +

+
∫ 1

0

(1− t)n−1

(n− 1)! ϕ(n)(tτ )τn dt.

Setting τ = 1 here, we obtain

ϕ(1) = ϕ(0)+ 1

1!ϕ
′(0)+ · · · + 1

(n− 1)!ϕ
(n−1)(0)+

+
∫ 1

0

(1− t)n−1

(n− 1)! ϕ(n)(t)dt. (8.62)

Substituting the values

ϕ(k)(0) = (
h1∂1 + · · · + hm∂m

)k
f (x) (k = 0, . . . , n− 1),



462 8 Differential Calculus in Several Variables

ϕ(n)(t) = (
h1∂1 + · · · + hm∂m

)n
f (x + th),

into this equality in accordance with formula (8.59), we find what Theorem 4 as-
serts. �

Remark If we write the remainder term in relation (8.62) in the Lagrange form
rather than the integral form, then the equality

ϕ(1)= ϕ(0)+ 1

1!ϕ
′(0)+ · · · + 1

(n− 1)!ϕ
(n−1)(0)+ 1

n!ϕ
(n)(θ),

where 0 < θ < 1, implies Taylor’s formula (8.60) with remainder term

rn−1(x;h)= 1

n!
(
h1∂1 + · · · + hm∂m

)n
f (x + θh). (8.63)

This form of the remainder term, as in the case of functions of one variable, is
called the Lagrange form of the remainder term in Taylor’s formula.

Since f ∈ C(n)(U(x);R), it follows from (8.63) that

rn−1(x;h)= 1

n!
(
h1∂1 + · · · + hm∂m

)n
f (x)+ o

(‖h‖n) as h→ 0,

and so we have the equality

f
(
x1 + h1, . . . , xm + hm

)− f
(
x1, . . . , xm

)=

=
n∑

k=1

1

k!
(
h1∂1 + · · · + hm∂m

)k
f (x)+ o

(‖h‖n) as h→ 0, (8.64)

called Taylor’s formula with the remainder term in Peano form.

8.4.5 Extrema of Functions of Several Variables

One of the most important applications of differential calculus is its use in finding
extrema of functions.

Definition 1 A function f :E→R defined on a set E ⊂R
m has a local maximum

(resp. local minimum) at an interior point x0 of E if there exists a neighborhood
U(x0) ⊂ E of the point x0 such that f (x) ≤ f (x0) (resp. f (x) ≥ f (x0)) for all
x ∈U(x0).

If the strict inequality f (x) < f (x0) holds for x ∈ U(x0) \ x0 (or, respectively,
f (x) > f (x0)), the function has a strict local maximum (resp. strict local minimum)
at x0.
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Definition 2 The local minima and maxima of a function are called its local ex-
trema.

Theorem 5 Suppose a function f :U(x0)→R defined in a neighborhood U(x0)⊂
R

m of the point x0 = (x1
0 , . . . , xm

0 ) has partial derivatives with respect to each of the
variables x1, . . . , xm at the point x0.

Then a necessary condition for the function to have a local extremum at x0 is that
the following equalities hold at that point:

∂f

∂x1
(x0)= 0, . . . ,

∂f

∂xm
(x0)= 0. (8.65)

Proof Consider the function ϕ(x1) = f (x1, x2
0 , . . . , xm

0 ) of one variable defined,
according to the hypotheses of the theorem, in some neighborhood of the point x1

0
on the real line. At x1

0 the function ϕ(x1) has a local extremum, and since

ϕ′
(
x1

0

)= ∂f

∂x1

(
x1

0 , x2
0 , . . . , xm

0

)
,

it follows that ∂f

∂x1 (x0)= 0.
The other equalities in (8.65) are proved similarly. �

We call attention to the fact that relations (8.65) give only necessary but not
sufficient conditions for an extremum of a function of several variables. An example
that confirms this is any example constructed for this purpose for functions of one
variable. Thus, where previously we spoke of the function x �→ x3, whose derivative
is zero at zero, but has no extremum there, we can now consider the function

f
(
x1, . . . , xm

)= (
x1)3

,

all of whose partial derivatives are zero at x0 = (0, . . . ,0), while the function obvi-
ously has no extremum at that point.

Theorem 5 shows that if the function f : G → R is defined on an open set
G ⊂ R

m, its local extrema are found either among the points at which f is not
differentiable or at the points where the differential df (x0) or, what is the same, the
tangent mapping f ′(x0), vanishes.

We know that if a mapping f :U(x0)→R
n defined in a neighborhood U(x0)⊂

R
m of the point x0 ∈R

m is differentiable at x0, then the matrix of the tangent map-
ping f ′(x0) :Rm→R

n has the form

⎛

⎜
⎝

∂1f 1(x0) · · · ∂mf 1(x0)
...

. . .
...

∂1f
n(x0) · · · ∂mf n(x0)

⎞

⎟
⎠ . (8.66)
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Definition 3 The point x0 is a critical point of the mapping f : U(x0)→ R
n if the

rank of the Jacobi matrix (8.66) of the mapping at that point is less than min{m,n},
that is, smaller than the maximum possible value it can have.

In particular, if n= 1, the point x0 is critical if condition (8.65) holds, that is, all
the partial derivatives of the function f :U(x0)→R vanish.

The critical points of real-valued functions are also called the stationary points
of these functions.

After the critical points of a function have been found by solving the system
(8.65), the subsequent analysis to determine whether they are extrema or not can
often be carried out using Taylor’s formula and the following sufficient conditions
for the presence or absence of an extremum provided by that formula.

Theorem 6 Let f : U(x0)→ R be a function of class C(2)(U(x0);R) defined in a
neighborhood U(x0) ⊂ R

m of the point x0 = (x1
0 , . . . , xm

0 ) ∈ R
m, and let x0 be a

critical point of the function f .
If, in the Taylor expansion of the function at the point x0

f
(
x1

0 + h1, . . . , xm
0 + hm

)=

= f
(
x1

0 , . . . , xm
0

)+ 1

2!
m∑

i,j=1

∂2f

∂xi∂xj
(x0)h

ihj + o
(‖h‖2) (8.67)

the quadratic form

m∑

i,j=1

∂2f

∂xi∂xj
(x0)h

ihj ≡ ∂ij f (x0)h
ihj (8.68)

a) is positive-definite or negative-definite, then the point x0 has a local extremum
at x0, which is a strict local minimum if the quadratic form (8.68) is positive-definite
and a strict local maximum if it is negative-definite;

b) assumes both positive and negative values, then the function does not have an
extremum at x0.

Proof Let h �= 0 and x0 + h ∈U(x0). Let us represent (8.67) in the form

f (x0 + h)− f (x0)= 1

2! ‖h‖
2

[
m∑

i,j=1

∂2f

∂xi∂xj
(x0)

hi

‖h‖
hj

‖h‖ + o(1)

]

, (8.69)

where o(1) is infinitesimal as h→ 0.
It is clear from (8.69) that the sign of the difference f (x0 + h)− f (x0) is com-

pletely determined by the sign of the quantity in brackets. We now undertake to
study this quantity.

The vector e= (h1/‖h‖, . . . , hm/‖h‖) obviously has norm 1. The quadratic form
(8.68) is continuous as a function h ∈ R

m, and therefore its restriction to the unit
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sphere S(0;1)= {x ∈ R
m|‖x‖ = 1} is also continuous on S(0;1). But the sphere S

is a closed bounded subset in R
m, that is, it is compact. Consequently, the form

(8.68) has both a minimum point and a maximum point on S, at which it assumes
respectively the values m and M .

If the form (8.68) is positive-definite, then 0 < m ≤M , and there is a number
δ > 0 such that |o(1)|< m for ‖h‖< δ. Then for ‖h‖< δ the bracket on the right-
hand side of (8.69) is positive, and consequently f (x0 + h) − f (x0) > 0 for 0 <

‖h‖< δ. Thus, in this case the point x0 is a strict local minimum of the function.
One can verify similarly that when the form (8.68) is negative-definite, the func-

tion has a strict local maximum at the point x0.
Thus a) is now proved.
We now prove b).
Let em and eM be points of the unit sphere at which the form (8.68) assumes the

values m and M respectively, and let m < 0 < M .
Setting h = tem, where t is a sufficiently small positive number (so small that

x0 + tem ∈U(x0)), we find by (8.69) that

f (x0 + tem)− f (x0)= 1

2! t
2(m+ o(1)

)
,

where o(1)→ 0 as t → 0. Starting at some time (that is, for all sufficiently small
values of t ), the quantity m+ o(1) on the right-hand side of this equality will have
the sign of m, that is, it will be negative. Consequently, the left-hand side will also
be negative.

Similarly, setting h= teM , we obtain

f (x0 + teM)− f (x0)= 1

2! t
2(M + o(1)

)
,

and consequently for all sufficiently small t the difference f (x0 + teM)− f (x0) is
positive.

Thus, if the quadratic form (8.68) assumes both positive and negative values on
the unit sphere, or, what is obviously equivalent, in R

m, then in any neighborhood
of the point x0 there are both points where the value of the function is larger than
f (x0) and points where the value is smaller than f (x0). Hence, in that case x0 is
not a local extremum of the function. �

We now make a number of remarks in connection with this theorem.

Remark 1 Theorem 6 says nothing about the case when the form (8.68) is semi-
definite, that is, nonpositive or nonnegative. It turns out that in this case the point
may be an extremum, or it may not. This can be seen, in particular from the follow-
ing example.

Example 3 Let us find the extrema of the function f (x, y)= x4 + y4 − 2x2, which
is defined in R

2.
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In accordance with the necessary conditions (8.65) we write the system of equa-
tions

⎧
⎪⎪⎨

⎪⎪⎩

∂f

∂x
(x, y)= 4x3 − 4x = 0,

∂f

∂y
(x, y)= 4y3 = 0,

from which we find three critical points: (−1,0), (0,0), (1,0).
Since

∂2f

∂x2
(x, y)= 12x2 − 4,

∂2f

∂x∂y
(x, y)≡ 0,

∂2f

∂y2
(x, y)= 12y2,

at the three critical points the quadratic form (8.68) has respectively the form

8
(
h1)2

, −4
(
h1)2

, 8
(
h1)2

.

That is, in all cases it is positive semi-definite or negative semi-definite. Theorem 6
is not applicable, but since f (x, y) = (x2 − 1)2 + y4 − 1, it is obvious that the
function f (x, y) has a strict minimum −1 (even a global minimum) at the points
(−1,0), and (1,0), while there is no extremum at (0,0), since for x = 0 and y �= 0,
we have f (0, y) = y4 > 0, and for y = 0 and sufficiently small x �= 0 we have
f (x,0)= x4 − 2x2 < 0.

Remark 2 After the quadratic form (8.68) has been obtained, the study of its def-
initeness can be carried out using the Sylvester7 criterion. We recall that by the
Sylvester criterion, a quadratic form

∑m
ij=1 aij x

ixj with symmetric matrix

⎛

⎜
⎝

a11 · · · a1m
...

. . .
...

am1 · · · amm

⎞

⎟
⎠

is positive-definite if and only if all its principal minors are positive; the form is
negative-definite if and only if a11 < 0 and the sign of the principal minor reverses
each time its order increases by one.

Example 4 Let us find the extrema of the function

f (x, y)= xy ln
(
x2 + y2),

which is defined everywhere in the plane R
2 except at the origin.

7J.J. Sylvester (1814–1897) – British mathematician. His best-known works were on algebra.
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Solving the system of equations
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂f

∂x
(x, y)= y ln

(
x2 + y2)+ 2x2y

x2 + y2
= 0,

∂f

∂y
(x, y)= x ln

(
x2 + y2)+ 2xy2

x2 + y2
= 0,

we find all the critical points of the function

(0,±1); (±1,0);
(

± 1√
2e

,± 1√
2e

)

;
(

± 1√
2e

,∓ 1√
2e

)

.

Since the function is odd with respect to each of its arguments individually, the
points (0,±1) and (±1,0) are obviously not extrema of the function.

It is also clear that this function does not change its value when the signs of both
variables x and y are changed. Thus by studying only one of the remaining critical
points, for example, ( 1√

2e
, 1√

2e
) we will be able to draw conclusions on the nature

of the others.
Since

∂2f

∂x2
(x, y) = 6xy

x2 + y2
− 4x3y

(x2 + y2)2
,

∂2f

∂x∂y
(x, y) = ln

(
x2 + h2)+ 2− 4x2y2

(x2 + y2)2
,

∂2f

∂y2
(x, y) = 6xy

x2 + y2
− 4xy3

(x2 + y2)2
,

at the point ( 1√
2e

, 1√
2e

) the quadratic form ∂ij f (x0)h
ihj has the matrix

(
2 0
0 2

)

,

that is, it is positive-definite, and consequently at that point the function has a local
minimum

f

(
1√
2e

,
1√
2e

)

=− 1

2e
.

By the observations made above on the properties of this function, one can con-
clude immediately that

f

(

− 1√
2e

,− 1√
2e

)

=− 1

2e

is also a local minimum and

f

(
1√
2e

,− 1√
2e

)

= f

(

− 1√
2e

,
1√
2e

)

= 1

2e
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are local maxima of the function. This, however, could have been verified directly,
by checking the definiteness of the corresponding quadratic form. For example, at
the point (− 1√

2e
, 1√

2e
) the matrix of the quadratic form (8.68) has the form

(−2 0
0 −2

)

,

from which it is clear that it is negative-definite.

Remark 3 It should be kept in mind that we have given necessary conditions (Theo-
rem 5) and sufficient conditions (Theorem 6) for an extremum of a function only at
an interior point of its domain of definition. Thus in seeking the absolute maximum
or minimum of a function, it is necessary to examine the boundary points of the
domain of definition along with the critical interior points, since the function may
assume its maximal or minimal value at one of these boundary points.

The general principles of studying noninterior extrema will be considered in
more detail later (see the section devoted to extrema with constraint). It is useful to
keep in mind that in searching for minima and maxima one may use certain simple
considerations connected with the nature of the problem along with the formal tech-
niques, and sometimes even instead of them. For example, if a differentiable func-
tion being studied in R

m must have a minimum because of the nature of the problem
and turns out to be unbounded above, then if the function has only one critical point,
one can assert without further investigation that that point is the minimum.

Example 5 (Huygens’ problem) On the basis of the laws of conservation of energy
and momentum of a closed mechanical system one can show by a simple computa-
tion that when two perfectly elastic balls having mass m1 and m2 and initial veloc-
ities v1 and v2 collide, their velocities after a central collision (when the velocities
are directed along the line joining the centers) are determined by the relations

ṽ1 = (m1 −m2)v1 + 2m2v2

m1 +m2
,

ṽ2 = (m2 −m1)v2 + 2m1v1

m1 +m2
.

In particular, if a ball of mass M moving with velocity V strikes a motionless ball
of mass m, then the velocity v acquired by the latter can be found from the formula

v = 2M

m+M
V, (8.70)

from which one can see that if 0≤m≤M , then V ≤ v ≤ 2V .
How can a significant part of the kinetic energy of a larger mass be communi-

cated to a body of small mass? To do this, for example, one can insert balls with
intermediate masses between the balls of small and large mass: m < m1 < m2 <

· · · < mn < M . Let us compute (after Huygens) how the masses m1,m2, . . . ,mn



8.4 Real-valued Functions of Several Variables 469

should be chosen to that the body m will acquire maximum velocity after succes-
sive central collisions.

In accordance with formula (8.70) we obtain the following expression for the
required velocity as a function of the variables m1,m2, . . . ,mn:

v = m1

m+m1
· m2

m1 +m2
· · · · · mn

mn−1 +mn

· M

mn +M
· 2n+1V. (8.71)

Thus Huygens’ problem reduces to finding the maximum of the function

f (m1, . . . ,mn)= m1

m+m1
· · · · · mn

mn−1 +mn

· M

mn +M
.

The system of equations (8.65), which gives the necessary conditions for an in-
terior extremum, reduces to the following system in the present case:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

m ·m2 −m2
1 = 0,

m1 ·m3 −m2
2 = 0,

...

mn−1 ·M −m2
n = 0,

from which it follows that the numbers m,m1, . . . ,mn,M form a geometric pro-
gression with ratio q equal to n+1

√
M/m.

The value of the velocity (8.71) that results from this choice of masses is given
by

v =
(

2q

1+ q

)n+1

V, (8.72)

which agrees with (8.70) if n= 0.
It is clear from physical considerations that formula (8.72) gives the maximal

value of the function (8.71). However, this can also be verified formally (without
invoking the cumbersome second derivatives. See Problem 9 at the end of this sec-
tion).

We remark that it is clear from (8.72) that if m→ 0, then v → 2n+1V . Thus
the intermediate masses do indeed significantly increase the portion of the kinetic
energy of the mass M that is transmitted to the small mass m.

8.4.6 Some Geometric Images Connected with Functions
of Several Variables

a. The Graph of a Function and Curvilinear Coordinates

Let x, y, and z be Cartesian coordinates of a point in R
3 and let z = f (x, y) be a

continuous function defined in some domain G of the plane R
2 of the variables x

and y.
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By the general definition of the graph of a function, the graph of the function
f : G→ R in our case is the set S = {(x, y, z) ∈ R

3 | (x, y) ∈ G,z = f (x, y)} in
the space R

3.

It is obvious that the mapping G
F→S defined by the relation (x, y) �→

(x, y, f (x, y)) is a continuous one-to-one mapping of G onto S, by which one
can determine every point of S by exhibiting the point of G corresponding to it, or,
what is the same, giving the coordinates (x, y) of this point of G.

Thus the pairs of numbers (x, y) ∈G can be regarded as certain coordinates of
the points of a set S – the graph of the function z= f (x, y). Since the points of S are
given by pairs of numbers, we shall conditionally agree to call S a two-dimensional
surface in R

3. (The general definition of a surface will be given later.)
If we define a path Γ : I → G in G, then a path F ◦ Γ : I → S automatically

appears on the surface S. If x = x(t) and y = y(t) is a parametric definition of
the path Γ , then the path F ◦ Γ on S is given by the three functions x = x(t),
y = y(t), z = z(t) = f (x(t), y(t)). In particular, if we set x = x0 + t , y = y0, we
obtain a curve x = x0 + t , y = y0, z = f (x0 + t, y0) on the surface S along which
the coordinate y = y0 of the points of S does not change. Similarly one can exhibit a
curve x = x0, y = y0+ t , z= f (x0, y0+ t) on S along which the first coordinate x0
of the points of S does not change. By analogy with the planar case these curves on
S are naturally called coordinate lines on the surface S. However, in contrast to the
coordinate lines in G⊂ R

2, which are pieces of straight lines, the coordinate lines
on S are in general curves in R

3. For that reason, the coordinates (x, y) of points of
the surface S are often called curvilinear coordinates on S.

Thus the graph of a continuous function z = f (x, y), defined in a domain G ⊂
R2 is a two-dimensional surface S in R

3 whose points can be defined by curvilinear
coordinates (x, y) ∈G.

At this point we shall not go into detail on the general definition of a surface,
since we are interested only in a special case of a surface – the graph of a func-
tion. However, we assume that from the course in analytic geometry the reader is
well acquainted with some important particular surfaces in R

3 (such as a plane, an
ellipsoid, paraboloids, and hyperboloids).

b. The Tangent Plane to the Graph of a Function

Differentiability of a function z= f (x, y) at the point (x0, y0) ∈G means that

f (x, y)= f (x0, y0)+A(x − x0)+B(y − y0)+

+ o
(√

(x − x0)2 + (y − y0)2
)

as (x, y)→ (x0, y0), (8.73)

where A and B are certain constants.
In R

3 let us consider the plane

z= z0 +A(x − x0)+B(y − y0), (8.74)
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where z0 = f (x0, y0). Comparing equalities (8.73) and (8.74), we see that the graph
of the function is well approximated by the plane (8.74) in a neighborhood of the
point (x0, y0, z0). More precisely, the point (x, y, f (x, y)) of the graph of the func-
tion differs from the point (x, y, z(x, y)) of the plane (8.74) by an amount that is
infinitesimal in comparison with the magnitude

√
(x − x0)2 + (y − y0)2 of the dis-

placement of its curvilinear coordinates (x, y) from the coordinates (x0, y0) of the
point (x0, y0, z0).

By the uniqueness of the differential of a function, the plane (8.74) possessing
this property is unique and has the form

z= f (x0, y0)+ ∂f

∂x
(x0, y0)(x − x0)+ ∂f

∂y
(x0, y0)(y − y0). (8.75)

This plane is called the tangent plane to the graph of the function z= f (x, y) at the
point (x0, y0, f (x0, y0)).

Thus, the differentiability of a function z = f (x, y) at the point (x0, y0)

and the existence of a tangent plane to the graph of this function at the point
(x0, y0, f (x0, y0)) are equivalent conditions.

c. The Normal Vector

Writing Eq. (8.75) for the tangent plane in the canonical form

∂f

∂x
(x0, y0)(x − x0)+ ∂f

∂y
(x0, y0)(y − y0)−

(
z− f (x0, y0)

)= 0,

we conclude that the vector
(

∂f

∂x
(x0, y0),

∂f

∂y
(x0, y0),−1

)

(8.76)

is the normal vector to the tangent plane. Its direction is considered to be the direc-
tion normal or orthogonal to the surface S (the graph of the function) at the point
(x0, y0, f (x0, y0)).

In particular, if (x0, y0) is a critical point of the function f (x, y), then the normal
vector to the graph at the point (x0, y0, f (x0, y0)) has the form (0,0,−1) and con-
sequently, the tangent plane to the graph of the function at such a point is horizontal
(parallel to the xy-plane).

The three graphs in Fig. 8.1 illustrate what has just been said.
Figures 8.1a and c depict the location of the graph of a function with respect to

the tangent plane in a neighborhood of a local extremum (minimum and maximum
respectively), while Fig. 8.1b shows the graph in the neighborhood of a so-called
saddle point.
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Fig. 8.1

d. Tangent Planes and Tangent Vectors

We know that if a path Γ : I → R
3 in R

3 is given by differentiable functions x =
x(t), y = y(t), z = z(t), then the vector (ẋ(0), ẏ(0), ż(0)) is the velocity vector at
time t = 0. It is a direction vector of the tangent at the point x0 = x(0), y0 = y(0),
z0 = z(0) to the curve in R

3 that is the support of the path Γ .
Now let us consider a path Γ : I → S on the graph of a function z = f (x, y)

given in the form x = x(t), y = y(t), z = f (x(t), y(t)). In this particular case we
find that

(
ẋ(0), ẏ(0), ż(0)

)=
(

ẋ(0), ẏ(0),
∂f

∂x
(x0, y0)ẋ(0)+ ∂f

∂y
(x0, y0)ẏ(0)

)

,

from which it can be seen that this vector is orthogonal to the vector (8.76) nor-
mal to the graph S of the function at the point (x0, y0, f (x0, y0)). Thus we have
shown that if a vector (ξ, η, ζ ) is tangent to a curve on the surface S at the point
(x0, y0, f (x0, y0)), then it is orthogonal to the vector (8.76) and (in this sense) lies
in the plane (8.75) tangent to the surface S at the point in question. More precisely
we could say that the whole line x = x0 + ξ t , y = y0 + ηt , z= f (x0, y0)+ ζ t lies
in the tangent plane (8.75).

Let us now show that the converse is also true, that is, if a line x = x0 + ξ t ,
y = y0+ ηt , z= f (x0, y0)+ ζ t , or what is the same, the vector (ξ, η, ζ ), lies in the
plane (8.75), then there is a path on S for which the vector (ξ, η, ζ ) is the velocity
vector at the point (x0, y0, f (x0, y0)).

The path can be taken, for example, to be

x = x0 + ξ t, y = y0 + ηt, z= f (x0 + ξ t, y0 + ηt).

In fact, for this path,

ẋ(0)= ξ, ẏ(0)= η, ż(0)= ∂f

∂x
(x0, y0)ξ + ∂f

∂y
(x0, y0)η.

In view of the equality

∂f

∂x
(x0, y0)ẋ(0)+ ∂f

∂y
(x0, y0)ẏ(0)− ż(0)= 0
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Fig. 8.2

and the hypothesis that

∂f

∂x
(x0, y0)ξ + ∂f

∂y
(x0, y0)η− ζ = 0.

We conclude that
(
ẋ(0), ẏ(0), ż(0)

)= (ξ, η, ζ ).

Hence the tangent plane to the surface S at the point (x0, y0, z0) is formed by the
vectors that are tangents at the point (x0, y0, z0) to curves on the surface S passing
through the point (see Fig. 8.2).

This is a more geometric description of the tangent plane. In any case, one can
see from it that if the tangent to a curve is invariantly defined (with respect to the
choice of coordinates), then the tangent plane is also invariantly defined.

We have been considering functions of two variables for the sake of visualiz-
ability, but everything that was said obviously carries over to the general case of a
function

y = f
(
x1, . . . , xm

)
(8.77)

of m variables, where m ∈N.
At the point (x1

0 , . . . , xm
0 , f (x1

0 , . . . , xm
0 )) the plane tangent to the graph of such

a function can be written in the form

y = f
(
x1

0 , . . . , xm
0

)+
m∑

i=1

∂f

∂xi

(
x1

0 , . . . , xm
0

)(
xi − xi

0

); (8.78)

the vector
(

∂f

∂x1
(x0), . . . ,

∂f

∂xm
(x0),−1

)

is the normal vector to the plane (8.78). This plane itself, like the graph of the func-
tion (8.77), has dimension m, that is, any point is now given by a set (x1, . . . , xm)

of m coordinates.
Thus, Eq. (8.78) defines a hyperplane in R

m+1.
Repeating verbatim the reasoning above, one can verify that the tangent plane

(8.78) consists of vectors that are tangent to curves passing through the point
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(x1
0 , . . . , xm

0 , f (x1
0 , . . . , xm

0 )) and lying on the m-dimensional surface S – the graph
of the function (8.77).

8.4.7 Problems and Exercises

1. Let z= f (x, y) be a function of class C(1)(G;R).

a) If ∂f
∂y

(x, y)≡ 0 in G, can one assert that f is independent of y in G?
b) Under what condition on the domain G does the preceding question have an

affirmative answer?

2. a) Verify that for the function

f (x, y)=
{

xy
x2−y2

x2+y2 , if x2 + y2 �= 0,

0, if x2 + y2 = 0,

the following relations hold:

∂f

∂x∂y
(0,0)= 1 �= −1= ∂2f

∂y∂x
(0,0).

b) Prove that if the function f (x, y) has partial derivatives ∂f
∂x

and ∂f
∂y

in some

neighborhood U of the point (x0, y0), and if the mixed derivative ∂2f
∂x∂y

(or ∂2f
∂y∂x

)

exists in U and is continuous at (x0, y0), then the mixed derivative ∂2f
∂y∂x

(resp. ∂2f
∂xθy

)
also exists at that point and the following equality holds:

∂2f

∂x∂y
(x0, y0)= ∂2f

∂y∂x
(x0, y0).

3. Let x1, . . . , xm be Cartesian coordinates in R
m. The differential operator

Δ=
m∑

i=1

∂2

∂xi2 ,

acting on functions f ∈ C(2)(G;R) according to the rule

Δf =
m∑

i=1

∂2f

∂xi2

(
x1, . . . , xm

)
,

is called the Laplacian.
The equation Δf = 0 for the function f in the domain G ⊂ R

m is called
Laplace’s equation, and its solutions are called harmonic functions in the do-
main G.
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a) Show that if x = (x1, . . . , xm) and

‖x‖ =
√
√
√
√

m∑

i=1

(
xi
)2

,

then for m > 2 the function

f (x)= ‖x‖− 2−m
2

is harmonic in the domain R
m\0, where 0= (0, . . . ,0).

b) Verify that the function

f
(
x1, . . . , xm, t

)= 1

(2a
√

πt)m
· exp

(

−‖x‖
2

4a2t

)

,

which is defined for t > 0 and x = (x1, . . . , xm) ∈Rm, satisfies the heat equation

∂f

∂t
= a2Δf,

that is, verify that ∂f
∂t
= a2∑m

i=1
∂2f

∂xi2
at each point of the domain of definition of

the function.

4. Taylor’s formula in multi-index notation. The symbol α := (α1, . . . , αm) consist-
ing of nonnegative integers αi , i = 1, . . . ,m, is called the multi-index α.

The following notation is conventional:

|α| := α1 + · · · + αm,

α! := α1! · · ·αm!;
finally, if a = (a1, . . . , am), then

aα := a
α1
1 · · ·aαm

m .

a) Verify that if k ∈N, then

(a1 + · · · + am)k =
∑

|α|=k

k!
α1! · · ·αm!a

α1
1 · · ·aαm

m ,

or

(a1 + · · · + am)k =
∑

|α|=k

k!
α!a

α,

where the summation extends over all sets α = (α1, . . . , αm) of nonnegative integers
such that

∑m
i=1 αi = k.
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b) Let

Dαf (x) := ∂ |α|f
(∂x1)α1 · · · (∂xm)αm

(x).

Show that if f ∈ C(k)(G;R), then the equality

∑

i1+···+im=k

∂i1···ik f (x)hi1 · · ·hik =
∑

|α|=k

k!
α!D

αf (x)hα,

where h= (h1, . . . , hm), holds at any point x ∈G.
c) Verify that in multi-index notation Taylor’s theorem with the Lagrange form

of the remainder, for example, can be written as

f (x + h)=
n−1∑

|α|=0

1

α!D
αf (x)hα +

∑

|α|=n

1

α!D
αf (x + θh)hα.

d) Write Taylor’s formula in multi-index notation with the integral form of the
remainder (Theorem 4).

5. a) Let Im = {x = (x1, . . . , xm) ∈ R
m | |xi | ≤ ci, i = 1, . . . ,m} be an m-dimen-

sional closed interval and I a closed interval [a, b] ⊂ R. Show that if the function
f (x, y)= f (x1, . . . , xm, y) is defined and continuous on the set Im×I , then for any
positive number ε > 0 there exists a number δ > 0 such that |f (x,y1)−f (x, y2)|<
ε if x ∈ Im, y1, y2 ∈ I , and |y1 − y2|< δ.

b) Show that the function

F(x)=
∫ b

a

f (x, y)dy

is defined and continuous on the closed interval Im.
c) Show that if f ∈C(Im;R), then the function

F(x, t)= f (tx)

is defined and continuous on Im × I 1, where I 1 = {t ∈R | |t | ≤ 1}.
d) Prove Hadamard’s lemma:
If f ∈ C(1)(Im;R) and f (0) = 0, there exist functions g1, . . . , gm ∈ C(Im;R)

such that

f
(
x1, . . . , xm

)=
m∑

i=1

xigi

(
x1, . . . , xm

)

in Im, and in addition

gi(0)= ∂f

∂xi
(0), i = 1, . . . ,m.
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6. Prove the following generalization of Rolle’s theorem for functions of several
variables.

If the function f is continuous in a closed ball B(0; r), equal to zero on the
boundary of the ball, and differentiable in the open ball B(0; r), then at least one of
the points of the open ball is a critical point of the function.
7. Verify that the function

f (x, y)= (
y − x2)(y − 3x2)

does not have an extremum at the origin, even though its restriction to each line
passing through the origin has a strict local minimum at that point.
8. The method of least squares. This is one of the commonest methods of processing
the results of observations. It consists of the following. Suppose it is known that the
physical quantities x and y are linearly related:

y = ax + b (8.79)

or suppose an empirical formula of this type has been constructed on the basis of
experimental data.

Let us assume that n observations have been made, in each of which both x and y

were measured, resulting in n pairs of values x1, y1; . . . ;xn, yn. Since the measure-
ments have errors, even if the relation (8.79) is exact, the equalities

yk = axk + b

may fail to hold for some of the values of k ∈ {1, . . . , n}, no matter what the coeffi-
cients a and b are.

The problem is to determine the unknown coefficients a and b in a reasonable
way from these observational results.

Basing his argument on analysis of the probability distribution of the magnitude
of observational errors, Gauss established that the most probable values for the co-
efficients a and b with a given set of observational results should be sought by use
of the following least-squares principle:

If δk = (axk + b)− yk is the discrepancy in the kth observation, then a and b

should be chosen so that the quantity

Δ=
n∑

k=1

δ2
k ,

that is, the sum of the squares of the discrepancies, has a minimum.

a) Show that the least-squares principle for relation (8.79) leads to the following
system of linear equations

{
[xk, xk]a + [xk,1]b= [xk, yk],
[1, xk]a + [1,1]b= [1, yk],
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Table 8.1

Temperature, °C Frequency, % Temperature, °C Frequency, %

0 39 20 136

5 54 25 182

10 74 30 254

15 100

for determining the coefficients a and b. Here, following Gauss, we write [xk, xk] :=
x1x1+ · · · + xnxn, [xk,1] := x1 · 1+ · · · + xn · 1, [xk, yk] := x1y1+ · · · + xnyn, and
so forth.

b) Write the system of equations for the numbers a1, . . . , am, b to which the
least-squares principle leads when Eq. (8.79) is replaced by the relation

y =
m∑

i=1

aix
i + b,

(or, more briefly, y = aix
i + b) between the quantities x1, . . . , xm and y.

c) How can the method of least squares be used to find empirical formulas of
the form

y = cx
α1
1 · · ·xαn

n

connecting physical quantities x1, . . . , xm with the quantity y?
d) (M. Germain) The frequency R of heart contractions was measured at differ-

ent temperatures T in several dozen specimens of Nereis diversicolor. The frequen-
cies were expressed in percents relative to the contraction frequency at 15 °C. The
results are given in Table 8.1.

The dependence of R on T appears to be exponential. Assuming R =AebT , find
the values of the constants A and b that best fit the experimental results.

9. a) Show that in Huygens’ problem, studied in Example 5, the function (8.71)
tends to zero if at least one of the variables m1, . . . ,mn tends to infinity.

b) Show that the function (8.71) has a maximum point in R
n and hence the

unique critical point of that function in R
n must be its maximum.

c) Show that the quantity v defined by formula (8.72) is monotonically increas-
ing as n increases and find its limit as n→∞.

10. a) During so-called exterior disk grinding the grinding tool – a rapidly rotating
grinding disk (with an abrasive rim) that acts as a file – is brought into contact with
the surface of a circular machine part that is rotating slowly compared with the disk
(see Fig. 8.3).

The disk K is gradually pressed against the machine part D, causing a layer H of
metal to be removed, reducing the part to the required size and producing a smooth
working surface for the device. In the machine where it will be placed this surface
will usually be a working surface. In order to extend its working life, the metal of the
machine part is subjected to a preliminary annealing to harden the steel. However,
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Fig. 8.3

because of the high temperature in the contact zone between the machine part and
the grinding disk, structural changes can (and frequently do) occur in a certain layer
Δ of metal in the machine part, resulting in decreased hardness of the steel in that
layer. The quantity Δ is a monotonic function of the rate s at which the disk is
applied to the machine part, that is, Δ = ϕ(s). It is known that there is a certain
critical rate s0 > 0 at which the relation Δ = 0 still holds, while Δ > 0 whenever
s > s0. For the following discussion it is convenient to introduce the relation

s =ψ(Δ)

inverse to the one just given. This new relation is defined for Δ > 0.
Here ψ is a monotonically increasing function known experimentally, defined

for Δ≥ 0, and ψ(0)= s0 > 0.
The grinding process must be carried out in such a way that there are no structural

changes in the metal on the surface eventually produced.
In terms of rapidity, the optimal grinding mode under these conditions would

obviously be a set of variations in the rate s of application of the grinding disk for
which

s =ψ(δ),

where δ = δ(t) is the thickness of the layer of metal not yet removed up to time t , or,
what is the same, the distance from the rim of the disk at time t to the final surface
of the device being produced. Explain this.

b) Find the time needed to remove a layer of thickness H when the rate of ap-
plication of the disk is optimally adjusted.

c) Find the dependence s = s(t) of the rate of application of the disk on time

in the optimal mode under the condition that the function Δ
ψ�−→ s is linear: s =

s0 + λΔ.
Due to the structural properties of certain kinds of grinding lathes, the rate s can

undergo only discrete changes. This poses the problem of optimizing the produc-
tivity of the process under the additional condition that only a fixed number n of
switches in the rate s are allowed. The answers to the following questions give a
picture of the optimal mode.
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d) What is the geometric interpretation of the grinding time t (H) = ∫ H

0
dδ

ψ(δ)
that you found in part b) for the optimal continuous variation of the rate s?

e) What is the geometric interpretation of the time lost in switching from the
optimal continuous mode of variation of s to the time-optimal stepwise mode of
variation of s?

f) Show that the points 0= xn+1 < xn < · · ·< x1 < x0 =H of the closed inter-
val [0,H ] at which the rate should be switched must satisfy the conditions

1

ψ(xi+1)
− 1

ψ(xi)
=−

(
1

ψ

)′
(xi)(xi − xi−1) (i = 1, . . . , n)

and consequently, on the portion from xi to xi+1, the rate of application of the disk
has the form s =ψ(xi+1) (i = 0, . . . , n).

g) Show that in the linear case, when ψ(Δ)= s0 + λΔ, the points xi (in part f))
on the closed interval [0,H ] are distributed so that the numbers

s0

λ
<

s0

λ
+ xn < · · ·< s0

λ
+ x1 <

s0

λ
+H

form a geometric progression.

11. a) Verify that the tangent to a curve Γ : I →R
m is defined invariantly relative

to the choice of coordinate system in R
m.

b) Verify that the tangent plane to the graph S of a function y = f (x1, . . . , xm)

is defined invariantly relative to the choice of coordinate system in R
m.

c) Suppose the set S ⊂R
m ×R

1 is the graph of a function y = f (x1, . . . , xm)

in coordinates (x1, . . . , xm, y) in R
m × R

1 and the graph of a function ỹ =
f̃ (x̃1, . . . , x̃m) in coordinates (x̃1, . . . , x̃m, ỹ) in R

m × R
1. Verify that the tangent

plane to S is invariant relative to a linear change of coordinates in R
m ×R1.

d) Verify that the Laplacian Δf =∑m
i=1

∂2f

∂xi2
(x) is defined invariantly relative

to orthogonal coordinate transformations in R
m.

8.5 The Implicit Function Theorem

8.5.1 Statement of the Problem and Preliminary Considerations

In this section we shall prove the implicit function theorem, which is important both
intrinsically and because of its numerous applications.

Let us begin by explaining the problem. Suppose, for example, we have the rela-
tion

x2 + y2 − 1= 0 (8.80)

between the coordinates x, y of points in the plane R
2. The set of all points of R2

satisfying this condition is the unit circle (Fig. 8.4).
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Fig. 8.4

The presence of the relation (8.80) shows that after fixing one of the coordinates,
for example, x, we can no longer choose the second coordinate arbitrarily. Thus
relation (8.80) determines the dependence of y on x. We are interested in the ques-
tion of the conditions under which the implicit relation (8.80) can be solved as an
explicit functional dependence y = y(x).

Solving Eq. (8.80) with respect to y, we find that

y =±
√

1− x2, (8.81)

that is, to each value of x such that |x|< 1, there are actually two admissible values
of y. In forming a functional relation y = y(x) satisfying relation (8.80) one cannot
give preference to either of the values (8.81) without invoking additional require-
ments. For example, the function y(x) that assumes the value +√1− x2 at rational
points of the closed interval [−1,1] and the value −√1− x2 at irrational points
obviously satisfies (8.80).

It is clear that one can create infinitely many functional relations satisfying (8.80)
by varying this example.

The question whether the set defined in R
2 by (8.80) is the graph of a function

y = y(x) obviously has a negative answer, since from the geometric point of view
it is equivalent to the question whether it is possible to establish a one-to-one direct
projection of a circle into a line.

But observation (see Fig. 8.4) suggests that nevertheless, in a neighborhood of a
particular point (x0, y0) the arc projects in a one-to-one manner into the x-axis, and
that it can be represented uniquely as y = y(x), where x �→ y(x) is a continuous
function defined in a neighborhood of the point x0 and assuming the value y0 at x0.
In this aspect, the only bad points are (−1,0) and (1,0), since no arc of the circle
having them as interior points projects in a one-to-one manner into the x-axis. Even
so, neighborhoods of these points on the circle are well situated relative to the y-
axis, and can be represented as the graph of a function x = x(y) that is continuous
in a neighborhood of the point 0 and assumes the value−1 or 1 according as the arc
in question contains the point (−1,0) or (1,0).

How is it possible to find out analytically when a geometric locus of points de-
fined by a relation of the type (8.80) can be represented in the form of an explicit
function y = y(x) or x = x(y) in a neighborhood of a point (x0, y0) on the locus?
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We shall discuss this question using the following, now familiar, method. We
have a function F(x, y) = x2 + y2 − 1. The local behavior of this function in a
neighborhood of a point (x0, y0) is well described by its differential

F ′x(x0, y0)(x − x0)+ F ′y(x0, y0)(y − y0),

since

F(x, y) = F(x0, y0)+ F ′x(x0, y0)(x − x0)+
+ F ′y(x0, y0)(y − y0)+ o

(|x − x0| + |y − y0|
)

as (x, y)→ (x0, y0).
If F(x0, y0)= 0 and we are interested in the behavior of the level curve

F(x, y)= 0

of the function in a neighborhood of the point (x0, y0), we can judge that behavior
from the position of the (tangent) line

F ′x(x0, y0)(x − x0)+ F ′y(x0, y0)(y − y0)= 0. (8.82)

If this line is situated so that its equation can be solved with respect to y, then,
since the curve F(x, y) = 0 differs very little from this line in a neighborhood of
the point (x0, y0), we may hope that it also can be written in the form y = y(x) in
some neighborhood of the point (x0, y0).

The same can be said about local solvability of F(x, y)= 0 with respect to x.
Writing Eq. (8.82) for the specific relation (8.80), we obtain the following equa-

tion for the tangent line:

x0(x − x0)+ y0(y − y0)= 0.

This equation can always be solved for y when y0 �= 0, that is, at all points of the
circle (8.80) except (−1,0) and (1,0). It is solvable with respect to x at all points
of the circle except (0,−1) and (0,1).

8.5.2 An Elementary Version of the Implicit Function Theorem

In this section we shall obtain the implicit function theorem by a very intuitive, but
not very constructive method, one that is adapted only to the case of real-valued
functions of real variables. The reader can become familiar with another method
of obtaining this theorem, one that is in many ways preferable, and with a more
detailed analysis of its structure in Chap. 10 (Part 2), and also in Problem 4 at the
end of the section.

The following proposition is an elementary version of the implicit function the-
orem.
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Proposition 1 If the function F : U(x0, y0) → R defined in a neighborhood
U(x0, y0) of the point (x0, y0) ∈R

2 is such that

10 F ∈ C(p)(U ;R), where p ≥ 1,
20 F(x0, y0)= 0,
30 F ′y(x0, y0) �= 0,

then there exist a two-dimensional interval I = Ix × Iy where

Ix =
{
x ∈R

∣
∣ |x − x0|< α

}
, Iy =

{
y ∈R

∣
∣ |y − y0|< β

}
,

that is a neighborhood of the point (x0, y0) contained in U(x0, y0), and a function
f ∈C(p)(Ix; Iy) such that

F(x, y)= 0⇔ y = f (x), (8.83)

for any point (x, y) ∈ Ix × Iy and the derivative of the function y = f (x) at the
points x ∈ Ix can be computed from the formula

f ′(x)=−[F ′y
(
x,f (x)

)]−1[
F ′x
(
x,f (x)

)]
. (8.84)

Before taking up the proof, we shall give several possible reformulations of the
conclusion (8.83), which should bring out the meaning of the relation itself.

Proposition 1 says that under hypotheses 10, 20, and 30 the portion of the set
defined by the relation F(x, y)= 0 that belongs to the neighborhood Ix × Iy of the
point (x0, y0) is the graph of a function f : Ix → Iy of class C(p)(Ix; Iy).

In other words, one can say that inside the neighborhood I of the point (x0, y0)

the equation F(x, y)= 0 has a unique solution for y, and the function y = f (x) is
that solution, that is, F(x,f (x))≡ 0 on Ix .

It follows in turn from this that if y = f̃ (x) is a function defined on Ix that is
known to satisfy the relation F(x, f̃ (x))≡ 0 on Ix , f̃ (x0)= y0, and this function is
continuous at the point x0 ∈ Ix , then there exists a neighborhood Δ⊂ Ix of x0 such
that f̃ (Δ)⊂ Iy , and then f̃ (x)≡ f (x) for x ∈Δ.

Without the assumption that the function f̃ is continuous at the point x0 and the
condition f̃ (x0)= y0, this last conclusion could turn out to be incorrect, as can be
seen from the example of the circle already studied.

Let us now prove Proposition 1.

Proof Suppose for definiteness that F ′y(x0, y0) > 0. Since F ∈ C(1)(U ;R), it fol-
lows that F ′y(x, y) > 0 also in some neighborhood of (x0, y0). In order to avoid in-
troducing new notation, we can assume without loss of generality that F ′y(x, y) > 0
at every point of the original neighborhood U(x0, y0).

Moreover, shrinking the neighborhood U(x0, y0) if necessary, we can assume
that it is a disk of radius r = 2β > 0 with center at (x0, y0).

Since F ′y(x, y) > 0 in U , the function F(x0, y) is defined and monotonically in-
creasing as a function of y on the closed interval y0−β ≤ y ≤ y0+β . Consequently,

F(x0, y0 − β) < F(x0, y0)= 0 < F(x0, y0 + β).
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By the continuity of the function F in U , there exists a positive number α < β such
that the relations

F(x, y0 − β) < 0 < F(x,y0 + β)

hold for |x − x0| ≤ α.
We shall now show that the rectangle I = Ix × Iy , where

Ix =
{
x ∈R

∣
∣ |x − x0|< α

}
, Iy =

{
y ∈R

∣
∣ |y − y0|< β

}
,

is the required two-dimensional interval in which relation (8.83) holds.
For each x ∈ Ix we fix the vertical closed interval with endpoints (x, y0 − β),

(x, y0 + β). Regarding F(x, y) as a function of y on that closed interval, we ob-
tain a strictly increasing continuous function that assumes values of opposite sign
at the endpoints of the interval. Consequently, for each x ∈ Ix , there is a unique
point y(x) ∈ Iy such that F(x, y(x))= 0. Setting y(x)= f (x), we arrive at relation
(8.83).

We now establish that f ∈C(p)(Ix; Iy).
We begin by showing that the function f is continuous at x0 and that f (x0)= y0.

This last equality obviously follows from the fact that for x = x0 there is a unique
point y(x0) ∈ Iy such that F(x0, y(x0))= 0. At the same time, F(x0, y0)= 0, and
so f (x0)= y0.

Given a number ε, 0 < ε < β , we can repeat the proof of the existence of the
function f (x) and find a number δ, 0 < δ < α such that in the two-dimensional
interval Ĩ = Ĩx × Ĩy , where

Ĩx =
{
x ∈R

∣
∣ |x − x0|< δ

}
, Ĩy =

{
y ∈R

∣
∣ |y − y0|< ε

}
,

the relation
(
F(x, y)= 0 in Ĩ

)⇔ (
y = f̃ (x), x ∈ Ĩx

)
(8.85)

holds with a new function f̃ : Ĩx → Ĩy .
But Ĩx ⊂ Ix , Ĩy−⊂ Iy , and Ĩ ⊂ I , and therefore it follows from (8.83) and (8.85)

that f̃ (x) ≡ f (x) for x ∈ Ĩx ⊂ Ix . We have thus verified that |f (x) − f (x0)| =
|f (x)− y0|< ε for |x − x0|< δ.

We have now established that the function f is continuous at the point x0. But
any point (x, y) ∈ I at which F(x, y) = 0 can also be taken as the initial point of
the construction, since conditions 20 and 30 hold at that point. Carrying out that
construction inside the interval I , we would once again arrive via (8.83) at the cor-
responding part of the function f considered in a neighborhood of x. Hence the
function f is continuous at x. Thus we have established that f ∈ C(Ix; Iy).

We shall now show that f ∈C(1)(Ix; Iy) and establish formula (8.84).
Let the number Δx be such that x + Δx ∈ Ix . Let y = f (x) and y + Δy =

f (x + Δx). Applying the mean-value theorem to the function F(x, y) inside the
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interval I , we find that

0= F
(
x +Δx,f (x +Δx)

)− F
(
x,f (x)

)=
= F(x +Δx,y +Δy)− F(x, y)=
= F ′x(x + θΔx,y + θΔy)Δx + F ′y(x + θΔx,y + θΔy)Δy (0 < θ < 1),

from which, taking account of the relation F ′y(x, y) �= 0 in I , we obtain

Δy

Δx
=−F ′x(x + θΔx,y + θΔy)

F ′y(x + θΔx,y + θΔy)
. (8.86)

Since f ∈ C(Ix; Iy), it follows that Δy → 0 as Δx → 0, and, taking account of
the relation F ∈ C(1)(U ;R), as Δx→ 0 in (8.86), we obtain

f ′(x)=−F ′x(x, y)

F ′y(x, y)
,

where y = f (x). Thus formula (8.84) is now established.
By the theorem on continuity of composite functions, it follows from formula

(8.84) that f ∈ C(1)(Ix; Iy).
If F ∈ C(2)(U ;R), the right-hand side of formula (8.84) can be differentiated

with respect to x, and we find that

f ′′(x)=−[F
′′
xx + F ′′xy · f ′(x)]F ′y − F ′x[F ′′xy + F ′′yy · f ′(x)]

(F ′y)2
, (8.84′)

where F ′x , F ′y , F ′′xx , F ′′xy , and F ′′yy are all computed at the point (x, f (x)).

Thus f ∈ C(2)(Ix; Iy) if F ∈ C(2)(U ;R). Since the order of the derivatives of
f on the right-hand side of (8.84), (8.84′), and so forth, is one less than the order
on the left-hand side of the equality, we find by induction that f ∈ C(p)(Ix; Iy) if
F ∈ C(p)(U,R). �

Example 1 Let us return to relation (8.80) studied above, which defines a circle
in R

2, and verify Proposition 1 on this example.
In this case

F(x, y)= x2 + y2 − 1,

and it is obvious that F ∈C(∞)(R2;R). Next,

F ′x(x, y)= 2x, F ′y(x, y)= 2y,

so that F ′y(x, y) �= 0 if y �= 0. Thus, by Proposition 1, for any point (x0, y0) of this
circle different from the points (−1,0) and (1,0) there is a neighborhood such that
the arc of the circle contained in that neighborhood can be written in the form y =
f (x). Direct computation confirms this, and f (x)=√1− x2 or f (x)=−√1− x2.
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Next, by Proposition 1,

f ′(x0)=−F ′x(x0, y0)

F ′y(x0, y0)
=−x0

y0
. (8.87)

Direct computation yields

f ′(x)=
⎧
⎨

⎩

− x√
1−x2

, if f (x)=√1− x2,

x√
1−x2

, if f (x)=−√1− x2,

which can be written as the single expression

f ′(x)=− x

f (x)
=−x

y
,

and computation with it leads to the same result,

f ′(x0)=−x0

y0
,

as computation from formula (8.87) obtained from Proposition 1.
It is important to note that formula (8.84) or (8.87) makes it possible to compute

f ′(x) without even having an explicit expression for the relation y = f (x), if only
we know that f (x0)= y0. The condition y0 = f (x0) must be prescribed, however,
in order to distinguish the portion of the level curve F(x, y) = 0 that we intend to
describe in the form y = f (x).

It is clear from the example of the circle that giving only the coordinate x0 does
not determine an arc of the circle, and only after fixing y0 have we distinguished
one of the two possible arcs in this case.

8.5.3 Transition to the Case of a Relation F(x1, . . . , xm,y) = 0

The following proposition is a simple generalization of Proposition 1 to the case of
a relation F(x1, . . . , xm, y)= 0.

Proposition 2 If a function F : U → R defined in a neighborhood U ⊂ R
m+1 of

the point (x0, y0)= (x1
0 , . . . , xm

0 , y0) ∈R
m+1 is such that

10 F ∈ C(p)(U ;R),p ≥ 1,
20 F(x0, y0)= F(x1

0 , . . . , xm
0 , y0)= 0,

30 F ′y(x0, y0)= F ′y(x1
0,, . . . , x

m
0 , y0) �= 0,

then there exists an (m+ 1)-dimensional interval I = Im
x × I 1

y , where

Im
x =

{
x = (

x1, . . . , xm
) ∈R

m
∣
∣
∣
∣xi − xi

0

∣
∣< αi, i = 1, . . . ,m

}
,
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I 1
y =

{
y ∈R

∣
∣ |y − y0|< β

}
,

which is a neighborhood of the point (x0, y0) contained in U , and a function f ∈
C(p)(Im

x ; I 1
y ) such that for any point (x, y) ∈ Im

x × I 1
y

F
(
x1, . . . , xm, y

)= 0⇔ y = f
(
x1, . . . , xm

)
, (8.88)

and the partial derivatives of the function y ∈ f (x1, . . . , xm) at the points of Ix can
be computed from the formula

∂f

∂xi
(x)=−[F ′y

(
x,f (x)

)]−1[
F ′x
(
x,f (x)

)]
. (8.89)

Proof The proof of the existence of the interval Im+1 = Im
x × I 1

y and the existence

of the function y = f (x) = f (x1, . . . , xm) and its continuity in Im
x is a verbatim

repetition of the corresponding part of the proof of Proposition 1, with only a single
change, which reduces to the fact that the symbol x must now be interpreted as
(x1, . . . , xm) and α as (α1, . . . , αm).

If we now fix all the variables in the functions F(x1, . . . , xm, y) and f (x1, . . . ,

xm) except xi and y, we have the hypotheses of Proposition 1, where now the role of
x is played by the variable xi . Formula (8.89) follows from this. It is clear from this
formula that ∂f

∂xi ∈ C(Im
x ; I 1

y ) (i = 1, . . . ,m), that is, f ∈ C(1)(Im
x ; I 1

y ). Reasoning

as in the proof of Proposition 1, we establish by induction that f ∈ C(p)(Im
x ; I 1

y )

when F ∈ C(p)(U ;R). �

Example 2 Assume that the function F : G → R is defined in a domain G ⊂
R

m and belongs to the class C(1)(G;R);x0 = (x1
0 , . . . , xm

0 ) ∈ G and F(x0) =
F(x1

0 , . . . , xm
0 ) = 0. If x0 is not a critical point of F , then at least one of the par-

tial derivatives of F at x0 is nonzero. Suppose, for example, that ∂F
∂xm (x0) �= 0.

Then, by Proposition 2, in some neighborhood of x0 the subset of Rm defined
by the equation F(x1, . . . , xm) = 0 can be defined as the graph of a function
xm = f (x1, . . . , xm−1), defined in a neighborhood of the point (x1

0 , . . . , xm−1
0 ) ∈

R
m−1 that is continuously differentiable in this neighborhood and such that

f (x1
0 , . . . , xm−1

0 )= xm
0 .

Thus, in a neighborhood of a noncritical point x0 of F the equation

F
(
x1, . . . , xm

)= 0

defines an (m− 1)-dimensional surface.

In particular, in the case of R3 the equation

F(x, y, z)= 0

defines a two-dimensional surface in a neighborhood of a noncritical point
(x0, y0, z0) satisfying the equation, which, when the condition ∂F

∂z
(x0, y0, z0) �= 0
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holds, can be locally written in the form

z= f (x, y).

As we know, the equation of the plane tangent to the graph of this function at the
point (x0, y0, z0) has the form

z− z0 = ∂f

∂x
(x0, y0)(x − x0)+ ∂f

∂y
(x0, y0)(y − y0).

But by formula (8.89)

∂f

∂x
(x0, y0)=−F ′x(x0, y0, z0)

F ′z(x0, y0, z0)
,

∂f

∂y
(x0, y0)=−

F ′y(x0, y0, z0)

F ′z(x0, y0, z0)
,

and therefore the equation of the tangent plane can be rewritten as

F ′x(x0, y0, z0)(x − x0)+ F ′y(x0, y0, z0)(y − y0)+ F ′z(x0, y0, z0)(z− z0)= 0,

which is symmetric in the variables x, y, z.
Similarly, in the general case we obtain the equation

m∑

i=1

F ′
xi (x0)

(
xi − xi

0

)= 0

of the hyperplane in R
m tangent at the point x0 = (x1

0 , . . . , xm
0 ) to the surface given

by the equation F(x1, . . . , xm)= 0 (naturally, under the assumptions that F(x0)= 0
and that x0 is a noncritical point of F ).

It can be seen from these equations that, given the Euclidean structure on R
m,

one can assert that the vector

gradF(x0)=
(

∂F

∂x1
, . . . ,

∂F

∂xm

)

(x0)

is orthogonal to the r-level surface F(x)= r of the function F at a corresponding
point x0 ∈R

m.
For example, for the function

F(x, y, z)= x2

a2
+ y2

b2
+ z2

c2
,

defined in R
3, the r-level is the empty set if r < 0, a single point if r = 0, and the

ellipsoid

x2

a2
+ y2

b2
+ z2

c2
= r
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if r > 0. If (x0, y0, z0) is a point on this ellipsoid, then by what has been proved, the
vector

gradF(x0, y0, z0)=
(

2x0

a2
,

2y0

b2
,

2z0

c2

)

is orthogonal to this ellipsoid at the point (x0, y0, z0), and the tangent plane to it at
this point has the equation

x0(x − x0)

a2
+ y0(y − y0)

b2
+ z0(z− z0)

c2
= 0,

which, when we take account of the fact that the point (x0, y0, z0) lies on the ellip-
soid, can be rewritten as

x0x

a2
+ y0y

b2
+ z0z

c2
= r.

8.5.4 The Implicit Function Theorem

We now turn to the general case of a system of equations
⎧
⎪⎪⎨

⎪⎪⎩

F 1
(
x1, . . . , xm, y1, . . . yn

)= 0,

...

F n
(
x1, . . . , xm, y1, . . . , yn

)= 0,

(8.90)

which we shall solve with respect to y1, . . . , yn, that is, find a system of functional
relations

⎧
⎪⎪⎨

⎪⎪⎩

y1 = f 1
(
x1, . . . , xm

)
,

...

yn = f n
(
x1, . . . , xm

)
,

(8.91)

locally equivalent to the system (8.90).
For the sake of brevity, convenience in writing, and clarity of statement, let us

agree that x = (x1, . . . , xm), y = (y1, . . . , yn). We shall write the left-hand side of
the system (8.90) as F(x, y), the system of equations (8.90) as F(x, y)= 0, and the
mapping (8.91) as y = f (x).

If

x0 =
(
x1

0 , . . . , xm
0

)
, y0 =

(
y1

0 , . . . , yn
0

)
,

α = (
α1, . . . , αm

)
, β = (

β1, . . . , βn
)
,

the notation |x−x0|< α or |y−y0|< β will mean that |xi−xi
0|< αi (i = 1, . . . ,m)

or |yj − y
j

0 |< βj (j = 1, . . . , n) respectively.
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We next set

f ′(x) =

⎛

⎜
⎜
⎝

∂f 1

∂xl · · · ∂f 1

∂xm

...
. . .

...
∂f n

∂x1 · · · ∂f n

∂xm

⎞

⎟
⎟
⎠ (x), (8.92)

F ′x(x, y) =

⎛

⎜
⎜
⎝

∂F 1

∂x1 · · · ∂F 1

∂xm

...
. . .

...
∂Fn

∂xl · · · ∂Fn

∂xm

⎞

⎟
⎟
⎠ (x, y), (8.93)

F ′y(x, y) =

⎛

⎜
⎜
⎝

∂F 1

∂y1 · · · ∂F l

∂yn

...
. . .

...
∂Fn

∂yl · · · ∂Fn

∂yn

⎞

⎟
⎟
⎠ (x, y). (8.94)

We remark that the matrix F ′y(x, y) is square and hence invertible if and only if
its determinant is nonzero. In the case n= 1, it reduces to a single element, and in
that case the invertibility of F ′y(x, y) is equivalent to the condition that that single
element is nonzero. As usual, we shall denote the matrix inverse to F ′y(x, y) by

[F ′y(x, y)]−1.
We now state the main result of the present section.

Theorem 1 (Implicit function theorem) If the mapping F : U → R
n defined in a

neighborhood U of the point (x0, y0) ∈R
m+n is such that

10 F ∈ C(p)(U ;Rn), p ≥ 1,
20 F(x0, y0)= 0,
30 F ′y(x0, y0) is an invertible matrix,

then there exists an (m+ n)-dimensional interval I = Im
x × In

y ⊂U , where

Im
x =

{
x ∈R

m
∣
∣ |x − x0|< α

}
, I n

y =
{
y ∈R

n
∣
∣ |y − y0|< β

}
,

and a mapping f ∈C(p)(Im
x ; In

y ) such that

F(x, y)= 0⇔ y = f (x), (8.95)

for any point (x, y) ∈ Im
x × In

y and

f ′(x)=−[F ′y
(
x,f (x)

)]−1[
F ′x
(
x,f (x)

)]
. (8.96)

Proof The proof of the theorem will rely on Proposition 2 and the elementary prop-
erties of determinants. We shall break it into stages, reasoning by induction.

For n= 1, the theorem is the same as Proposition 2 and is therefore true.
Suppose the theorem is true for dimension n− 1. We shall show that it is then

valid for dimension n.
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a) By hypothesis 30, the determinant of the matrix (8.94) is nonzero at the point
(x0, y0) ∈ R

m+n and hence in some neighborhood of the point (x0, y0). Conse-
quently at least one element of the last row of this matrix is nonzero. Up to a change
in the notation, we may assume that the element ∂Fn

∂yn is nonzero.
b) Then applying Proposition 2 to the relation

Fn
(
x1, . . . , xm, y1, . . . , yn

)= 0,

we find an interval Ĩ m+n = (Ĩm
x × Ĩ n−1

y )× I 1
y ⊂ U and a function f̃ ∈ C(p)(Ĩm

x ×
Ĩ n−1
y ; I 1

y ) such that

(
Fn
(
x1, . . . , xm, y1, . . . , yn

)= 0 in Ĩ m+n
)⇔

⇔ (
yn = f̃

(
x1, . . . , xm, y1, . . . , yn−1),

(
x1, . . . , xm

) ∈ Ĩm
x ,
(
y1, . . . , yn−1) ∈ Ĩ n−1

y

)
. (8.97)

c) Substituting the resulting expression yn = f̃ (x, y1, . . . , yn−1) for the variable
yn in the first n− 1 equations of (8.90), we obtain n− 1 relations

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Φ1
(
x1, . . . , xm, y1, . . . , yn−1

) :=
= F 1

(
x1, . . . , xm, y1, . . . , yn−1, f̃

(
x1, . . . , xm, y1, . . . , yn−1

))= 0,
...

Φn−1
(
x1, . . . , xm, y1, . . . , yn−1

) :=
= Fn−1

(
x1, . . . , xm, y1, . . . , yn−1, f̃

(
x1, . . . , xm, y1, . . . , yn−1

))= 0.

(8.98)

It is clear that Φi ∈ C(p)(Ĩm
x × Ĩ n−1

y ;R) (i = 1, . . . , n− 1), and

Φi
(
x1

0 , . . . , xm
0 ;y1

0 , . . . , yn−1
0

)= 0 (i, . . . , n− 1),

since f̃ (x1
0 , . . . , xm

0 , y1
0 , . . . , yn−1

0 )= yn
0 and F i(x0, y0)= 0 (i = 1, . . . , n).

By definition of the functions Φk (k = 1, . . . , n− 1),

∂Φk

∂yi
= ∂F k

∂yi
+ ∂F k

∂yn
· ∂f̃

∂yi
(i, k = 1, . . . , n− 1). (8.99)

Further setting

Φn
(
x1, . . . , xm, y1, . . . , y

n−1) :=
= Fn

(
x1, . . . , xm, y1, . . . , yn−1, f̃

(
x1, . . . , xm, y1, . . . , yn−1)),

we find by (8.97) that Φn ≡ 0 in its domain of definition, and therefore

∂Φn

∂yi
= ∂Fn

∂yi
+ ∂Fn

∂yn
· ∂f̃

∂yi
≡ 0 (i = 1, . . . , n− 1). (8.100)
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Taking account of relations (8.99) and (8.100) and the properties of determinants,
we can now observe that the determinant of the matrix (8.94) equals the determinant
of the matrix

⎛

⎜
⎜
⎜
⎝

∂F 1

∂y1 + ∂F 1

∂yn · ∂f̃

∂y1 · · · ∂F 1

∂yn−1 + ∂F 1

∂yn · ∂f̃

∂yn−1
∂F 1

∂yn

...
. . .

...
...

∂Fn

∂yl + ∂Fn

∂yn · ∂f̃

∂y1 · · · ∂Fn

∂yn−l + ∂Fn

∂yn · ∂f̃

∂yn−1
∂Fn

∂yn

⎞

⎟
⎟
⎟
⎠
=

=

⎛

⎜
⎜
⎜
⎜
⎜
⎝

∂Φ1

∂y1 · · · ∂Φ1

∂yn−1
∂F 1

∂yn

...
. . .

...
...

∂Φn−1

∂y1 · · · ∂Φn−1

∂yn−1
∂Fn−1

∂yn

0 · · · 0 ∂Fn

∂yn

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

By assumption, ∂Fn

∂yn �= 0, and the determinant of the matrix (8.94) is nonzero.

Consequently, in some neighborhood of (x1
0 , . . . , xm

0 , y1
0 , . . . yn−1

0 ) the determinant
of the matrix

⎛

⎜
⎜
⎝

∂Φ1

∂y1 · · · ∂Φ1

∂yn−1

...
. . .

...

∂Φn−1

∂y1 · · · ∂Φn−1

∂yn−1

⎞

⎟
⎟
⎠
(
x1, . . . , xm, y1, . . . , yn−1)

is nonzero.
Then by the induction hypothesis there exist an interval Im+n−1 = Im

x × In−1
y ⊂

Ĩm
x × Ĩ n−1

y , which is a neighborhood of (x1
0 , . . . , xm

0 , y1
0 , . . . , yn−1

0 ) in R
m−1, and

a mapping f ∈ C(p)(Im
x ; In−1

y ) such that the system (8.98) is equivalent on the

interval Im+n−1 = Im
x × In−1

y to the relations

⎧
⎪⎨

⎪⎩

y1 = f 1
(
x1, . . . , xm

)
,

...

yn−1 = f n−1
(
x1, . . . , xm

)
.

x ∈ Im
x . (8.101)

d) Since In−1
y ⊂ Ĩ n−1

y , and Im
x ⊂ Ĩ m

x , substituting f 1, . . . , f n−1 from (8.101) in
place of the corresponding variables in the function

yn = f̃
(
x1, . . . , xm, y1, . . . , yn−1)

from (8.97) we obtain a relation

yn = f n
(
x1, . . . , xm

)
(8.102)

between yn and (x1, . . . , xm).
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e) We now show that the system
⎧
⎪⎨

⎪⎩

y1 = f 1
(
x1, . . . , xm

)
,

...

yn = f n
(
x1, . . . , xm

)
,

x ∈ Im
x , (8.103)

which defines a mapping f ∈C(p)(Im
x ; In

y ), where In
y = In−1

y × I 1
y , is equivalent to

the system of equations (8.90) in the neighborhood Im+n = Im
x × In

y .

In fact, inside Ĩ m+n = (Ĩm
x × Ĩ n−1

y )× I 1
y we began by replacing the last equation

of the original system (8.90) with the equality yn = f̃ (x, y1, . . . , yn−1), which is
equivalent to it by virtue of (8.97). From the second system so obtained, we passed
to a third system equivalent to it by replacing the variable yn in the first n − 1
equations with f̃ (x, y1, . . . , yn−1). We then replaced the first n−1 equations (8.98)
of the third system inside Im

x × In−1
y ⊂ Ĩm

x × Ĩ n−1
y with relations (8.101), which are

equivalent to them. In that way, we obtained a fourth system, after which we passed
to the final system (8.103), which is equivalent to it inside Im

x × In−1
y × I 1

y = Im+n,

by replacing the variables y1, . . . , yn−1 with their expressions (8.101) in the last
equation yn = f̃ (x1, . . . , xm, y1, . . . , yn−1) of the fourth system, obtaining (8.102)
as the last equation.

f) To complete the proof of the theorem it remains only to verify formula (8.96).
Since the systems (8.90) and (8.91) are equivalent in the neighborhood Im

x × In
y

of the point (x0, y0), it follows that

F
(
x,f (x)

)≡ 0, if x ∈ Im
x .

In coordinates this means that in the domain Im
x

F k
(
x1, . . . , xm,f 1(x1, . . . , xm

)
, . . . , f n

(
x1, . . . , xm

))≡ 0 (k = 1, . . . , n).

(8.104)
Since f ∈ C(p)(Im

x ; In
y ) and F ∈ C(p)(U ;Rn), where p ≥ 1, it follows that

F(·, f (·)) ∈ C(p)(Im
x ;Rn) and, differentiating the identity (8.104), we obtain

∂F k

∂xi
+

n∑

j=1

∂F k

∂yj
· ∂f

j

∂xi
= 0 (k = 1, . . . , n; i = 1, . . . ,m). (8.105)

Relations (8.105) are obviously equivalent to the single matrix equality

F ′x(x, y)+ F ′y(x, y) · f ′(x)= 0,

in which y = f (x).
Taking account of the invertibility of the matrix F ′y(x, y) in a neighborhood of

the point (x0, y0), we find by this equality that

f ′(x)=−[F ′y
(
x,f (x)

)]−1[
F ′x
(
x,f (x)

)]
,

and the theorem is completely proved. �
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8.5.5 Problems and Exercises

1. On the plane R
2 with coordinates x and y a curve is defined by the relation

F(x, y)= 0, where F ∈C(2)(R2,R). Let (x0, y0) be a noncritical point of the func-
tion F(x, y) lying on the curve.

a) Write the equation of the tangent to this curve at this point (x0, y0).
b) Show that if (x0, y0) is a point of inflection of the curve, then the following

equality holds:
(
F ′′xxF

′2
y − 2F ′′xyF

′
xF

′
y + F ′′yyF

′2
x

)
(x0, y0)= 0.

c) Find a formula for the curvature of the curve at the point (x0, y0).

2. The Legendre transform in m variables. The Legendre transform of x1, . . . , xm

and the function f (x1, . . . , xm) is the transformation to the new variables ξ1, . . . , ξm

and function f ∗(ξ1, . . . , ξm) defined by the relations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξi = ∂f

∂xi

(
x1, . . . , xm

)
(i = 1, . . . ,m),

f ∗(ξ1, . . . , ξm)=
m∑

i=1

ξix
i − f

(
x1, . . . , xm

)
.

(8.106)

a) Give a geometric interpretation of the Legendre transform (8.106) as the tran-
sition from the coordinates (x1, . . . , xm,f (x1, . . . , xm)) of a point on the graph of
the function f (x) to the parameters (ξ1, . . . , ξm,f ∗(ξ1, . . . , ξm)) defining the equa-
tion of the plane tangent to the graph at that point.

b) Show that the Legendre transform is guaranteed to be possible locally if f ∈
C(2) and det( ∂2f

∂xi∂xj ) �= 0.

c) Using the same definition of convexity for a function f (x)= f (x1, . . . , xm)

as in the one-dimensional case (taking x to be the vector (x1, . . . , xm) ∈R
m), show

that the Legendre transform of a convex function is a convex function.
d) Show that

df ∗ =
m∑

i=1

xi dξi +
m∑

i=1

ξi dxi − df =
m∑

i=1

xi dξi,

and deduce from this relation that the Legendre transform is involutive, that is, verify
the equality

(
f ∗
)∗

(x)= f (x).

e) Taking account of d), write the transform (8.106) in the following form, which
is symmetric in the variables:
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⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

f ∗(ξ1, . . . , ξm)+ f
(
x1, . . . , xm

)=
m∑

i=1

ξix
i,

ξi = ∂f

∂xi

(
x1, . . . , xm

)
, xi = ∂f ∗

∂ξi

(ξ1, . . . , ξm)

(8.107)

or, more briefly, in the form

f ∗(ξ)+ f (x)= ξx, ξ =∇f (x), x =∇f ∗(ξ),

where

∇f (x) =
(

∂f

∂x1
, . . . ,

∂f

∂xm

)

(x), ∇f ∗(ξ)=
(

∂r∗

∂ξ1
, . . . ,

∂f ∗

∂ξm

)

(ξ),

ξx = ξix
i =

m∑

i=1

ξix
i .

f) The matrix formed from the second-order partial derivatives of a function
(and sometimes the determinant of this matrix) is called the Hessian of the function
at a given point.

Let dij and d∗ij be the co-factors of the elements ∂2f

∂xi∂xj and ∂2f ∗
∂ξi∂ξj

of the Hessians

⎛

⎜
⎜
⎝

∂2f

∂x1∂x1 · · · ∂2f

∂x1∂xm

...
. . .

...

∂2f

∂xm∂x1 · · · ∂2f
∂xm∂xm

⎞

⎟
⎟
⎠ (x),

⎛

⎜
⎜
⎝

∂2f ∗
∂ξ1∂ξ1

· · · ∂2f ∗
∂ξ1∂ξm

...
. . .

...

∂2f ∗
∂ξm∂ξ1

· · · ∂2f ∗
∂ξm∂ξm

⎞

⎟
⎟
⎠ (ξ)

of the functions f (x) and f ∗(ξ), and let d and d∗ be the determinants of these
matrices. Assuming that d �= 0, show that d · d∗ = 1 and that

∂2f

∂xi∂xj
(x)= d∗ij

d∗
(ξ),

∂2f ∗

∂ξi∂ξj

(ξ)= dij

d
(x).

g) A soap film spanning a wire frame forms a so-called minimal surface, having
minimal area among all the surfaces spanning the contour.

If that surface is locally defined as the graph of a function z = f (x, y), it turns
out that the function f must satisfy the following equation for minimal surfaces:

(
1+ f ′2y

)
f ′′xx − 2f ′xf ′yf ′′xy +

(
1+ f ′2x

)
f ′′yy = 0.

Show that after a Legendre transform is performed this equation is brought into
the form

(
1+ η2)f ∗ηη

′′ + 2ξηf ∗ξη
′′ + (

1+ ξ2)f ∗ξξ
′′ = 0.
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3. Canonical variables and the Hamilton equations.8

a) In the calculus of variations and the fundamental principles of classical me-
chanics the following system of equations, due to Euler and Lagrange, plays an
important role:

⎧
⎪⎨

⎪⎩

(
∂L

∂x
− d

dt

∂L

∂v

)

(t, x, v)= 0,

v = ẋ(t),

(8.108)

where L(t, x, v) is a given function of the variables t , x, v, of which t is usually
time, x the coordinate, and v the velocity.

The system (8.108) consists of two relations in three variables. Usually we wish
to determine x = x(t) and v = v(t) from (8.108), which essentially reduces to de-
termining the relation x = x(t), since v = dx

dt
.

Write the first equation of (8.108) in more detail, expanding the derivative d
dt

taking account of the equalities x = x(t) and v = v(t).
b) Show that if we change from the coordinates t, x, v,L to the so-called canon-

ical coordinates t, x,p,H by performing the Legendre transform (see Problem 2)

⎧
⎨

⎩

p = ∂L

∂v
,

H = pv −L

with respect to the variables v and L to replace them with p and H , then the Euler–
Lagrange system (8.108) assumes the symmetric form

ṗ =−∂H

∂x
, ẋ = ∂H

∂p
, (8.109)

in which it is called system of Hamilton equations.
c) In the multidimensional case, when L = L(t, x1, . . . , xm, v1, . . . , vm) the

Euler–Lagrange system has the form
⎧
⎪⎨

⎪⎩

(
∂L

∂xi
− d

dt

∂L

∂vi

)

(t, x, v)= 0,

vi = ẋi (t) (i = 1, . . . ,m),

(8.110)

where for brevity we have set x = (x1, . . . , xm), v = (v1, . . . , vm).
By performing a Legendre transform with respect to the variables v1, . . . , vm,L,

change from the variables t, x1, . . . , xm, v1, . . . , vm,L to the canonical variables

8W.R. Hamilton (1805–1865) – famous Irish mathematician and specialist in mechanics. He stated
a variational principle (Hamilton’s principle), constructed a phenomenological theory of optic phe-
nomena, and was the creator of quaternions and the founder of vector analysis (in fact, the term
“vector” is due to him).
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t, x1, . . . , xm,p1, . . . , pm,H and show that in these variables the system (8.110)
becomes the following system of Hamilton equations:

ṗi =−∂H

∂xi
, ẋi = ∂H

∂pi

(i = 1, . . . ,m). (8.111)

4. The implicit function theorem.
The solution of this problem gives another proof of the fundamental theorem of this
section, perhaps less intuitive and constructive than the one given above, but shorter.

a) Suppose the hypotheses of the implicit function theorem are satisfied, and let

F i
y(x, y)=

(
∂F i

∂y1
, . . . ,

∂F i

∂yn

)

(x, y)

be the ith row of the matrix F ′y(x, y).
Show that the determinant of the matrix formed from the vectors F i

y(xi, yi) is
nonzero if all the points (xi, yi) (i = 1, . . . , n) lie in some sufficiently small neigh-
borhood U = Im

x × In
y of (x0, y0).

b) Show that, if for x ∈ Im
x there are points y1, y2 ∈ In

y such that F(x, y1) = 0
and F(x, y2) = 0, then for each i ∈ {1, . . . , n} there is a point (x, yi) lying on the
closed interval with endpoints (x, y1) and (x, y2) such that

F i
y(x, yi)(y2 − y1)= 0 (i = 1, . . . , n).

Show that this implies that y1 = y2, that is, if the implicit function f : Im
x → In

y

exists, it is unique.
c) Show that if the open ball B(y0; r) is contained in In

y , then F(x0, y) �= 0 for
‖y − y0‖Rn = r > 0.

d) The function ‖F(x0, y)‖2
Rn is continuous and has a positive minimum value

μ on the sphere ‖y − y0‖Rn = r .
e) There exists δ > 0 such that for ‖x − x0‖Rm < δ we have

∥
∥F(x, y)

∥
∥2
Rn ≥ 1

2
μ, if ‖y − y0‖Rn = r,

∥
∥F(x, y)

∥
∥2
Rn <

1

2
μ, if y = y0.

f) For any fixed x such that ‖x − x0‖ < δ the function ‖F(x, y)‖2
Rn attains a

minimum at some interior point y = f (x) of the open ball ‖y−y0‖Rn ≤ r , and since
the matrix F ′y(x, f (x)) is invertible, it follows that F(x,f (x))= 0. This establishes
the existence of the implicit function f : B(x0; δ)→ B(y0; r).

g) If Δy = f (x +Δx)− f (x), then

Δy =−[F̃ ′y
]−1 · [F̃ ′x

]
Δx,
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where F̃ ′y is the matrix whose rows are the vectors F i
y(xi, yi) (i = 1, . . . , n), (xi, yi)

being a point on the closed interval with endpoints (x, y) and (x +Δx,y +Δy).
The symbol F̃ ′x has a similar meaning.

Show that this relation implies that the function y = f (x) is continuous.
h) Show that

f ′(x)=−[F̃ ′y
(
x,f (x)

)]−1 · [F̃ ′x
(
x,f (x)

)]
.

5. “If f (x, y, z)= 0, then ∂z
∂y
· ∂y

∂x
· ∂x

∂z
=−1.”

a) Give a precise meaning to this statement.
b) Verify that it holds in the example of Clapeyron’s ideal gas equation

P · V
T

= const

and in the general case of a function of three variables.
c) Write the analogous statement for the relation f (x1, . . . , xm) = 0 among m

variables. Verify that it is correct.

6. Show that the roots of the equation

zn + c1z
n−1 + · · · + cn = 0

are smooth functions of the coefficients, at least when they are all distinct.

8.6 Some Corollaries of the Implicit Function Theorem

8.6.1 The Inverse Function Theorem

Definition 1 A mapping f : U → V , where U and V are open subsets of Rm, is a
C(p)-diffeomorphism or a diffeomorphism of smoothness p (p = 0,1, . . .), if

1) f ∈ C(p)(U ;V );
2) f is a bijection;
3) f−1 ∈ C(p)(V ;U).

A C(0)-diffeomorphism is called a homeomorphism.

As a rule, in this book we shall consider only the smooth case, that is, the case
p ∈N or p =∞.

The basic idea of the following frequently used theorem is that if the differential
of a mapping is invertible at a point, then the mapping itself is invertible in some
neighborhood of the point.
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Theorem 1 (Inverse function theorem) If a mapping f :G→R
m of a domain G⊂

R
m is such that

10 f ∈ C(p)(G;Rm), p ≥ 1,
20 y0 = f (x0) at x0 ∈G,
30 f ′(x0) is invertible,

then there exists a neighborhood U(x0) ⊂ G of x0 and a neighborhood V (y0) of
y0 such that f : U(x0)→ V (y0) is a C(p)-diffeomorphism. Moreover, if x ∈ U(x0)

and y = f (x) ∈ V (y0), then

(
f−1)′(y)= (

f ′(x)
)−1

.

Proof We rewrite the relation y = f (x) in the form

F(x, y)= f (x)− y = 0. (8.112)

The function F(x, y) = f (x)− y is defined for x ∈G and y ∈ R
m, that is it is

defined in the neighborhood G×R
m of the point (x0, y0) ∈R

m ×R
m.

We wish to solve Eq. (8.112) with respect to x in some neighborhood of (x0, y0).
By hypotheses 10, 20, 30 of the theorem the mapping F(x, y) has the property that

F ∈C(p)
(
G×R

m;Rm
)
, p ≥ 1,

F (x0, y0)= 0,

F ′x(x0, y0)= f ′(x0) is invertible.

By the implicit function theorem there exist a neighborhood Ix × Iy of (x0, y0)

and a mapping g ∈C(p)(Iy; Ix) such that

f (x)− y = 0⇔ x = g(y) (8.113)

for any point (x, y) ∈ Ix × Iy and

g′(y)=−[F ′x(x, y)
]−1[

F ′y(x, y)
]
.

In the present case

F ′x(x, y)= f ′(x), F ′y(x, y)=−E,

where E is the identity matrix; therefore

g′(y)= (
f ′(x)

)−1
. (8.114)

If we set V = Iy and U = g(V ), relation (8.113) shows that the mappings f :
U → V and g : V →U are mutually inverse, that is, g = f−1 on V .
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Fig. 8.5

Since V = Iy , it follows that V is a neighborhood of y0. This means that under
hypotheses 10, 20, and 30 the image y0 = f (x0) of x0 ∈G, which is an interior point
of G, is an interior point of the image f (G) of G. By formula (8.114) the matrix
g′(y0) is invertible. Therefore the mapping g : V → U has properties 10, 20, and
30 relative to the domain V and the point y0 ∈ V . Hence by what has already been
proved x0 = g(y0) is an interior point of U = g(V ).

Since by (8.114) hypotheses 10, 20, and 30 obviously hold at any point y ∈ V ,
any point x = g(y) is an interior point of U . Thus U is an open (and obviously even
connected) neighborhood of x0 ∈R

m.
We have now verified that the mapping f :U → V satisfies all the conditions of

Definition 1 and the assertion of Theorem 1. �

We shall now give several examples that illustrate Theorem 1.
The inverse function theorem is very often used in converting from one coordi-

nate system to another. The simplest version of such a change of coordinates was
studied in analytic geometry and linear algebra and has the form

⎛

⎜
⎝

y1

...

ym

⎞

⎟
⎠=

⎛

⎜
⎝

a1
1 · · · a1

m
...

. . .
...

am
1 · · · am

m

⎞

⎟
⎠

⎛

⎜
⎝

x1

...

xm

⎞

⎟
⎠

or, in compact notation, yj = a
j
i xi . This linear transformation A : Rm

x → R
m
y has

an inverse A−1 :Rm
y →R

m
x defined on the entire space R

m
y if and only if the matrix

(a
j
i ) is invertible, that is, det(aj

i ) �= 0.
The inverse function theorem is a local version of this proposition, based on the

fact that in a neighborhood of a point a smooth mapping behaves approximately like
its differential at the point.

Example 1 (Polar coordinates) The mapping f :R2+ → R2 of the half-plane R2+ =
{(ρ,ϕ) ∈R

2 | ρ ≥ 0} onto the plane R
2 defined by the formula

x = ρ cosϕ,

y = ρ sinϕ,
(8.115)

is illustrated in Fig. 8.5.
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Fig. 8.6

The Jacobian of this mapping, as can be easily computed, is ρ, that is, it is
nonzero in a neighborhood of any point (ρ,ϕ), where ρ > 0. Therefore formulas
(8.115) are locally invertible and hence locally the numbers ρ and ϕ can be taken as
new coordinates of the point previously determined by the Cartesian coordinates x

and y.
The coordinates (ρ,ϕ) are a well known system of curvilinear coordinates on the

plane – polar coordinates. Their geometric interpretation is shown in Fig. 8.5. We
note that by the periodicity of the functions cosϕ and sinϕ the mapping (8.115) is
only locally a diffeomorphism when ρ > 0; it is not bijective on the entire plane.
That is the reason that the change from Cartesian to polar coordinates always in-
volves a choice of a branch of the argument ϕ (that is, an indication of its range of
variation).

Polar coordinates (ρ,ψ,ϕ) in three-dimensional space R
3 are called spherical

coordinates. They are connected with Cartesian coordinates by the formulas

z= ρ cosψ,

y = ρ sinψ sinϕ,

x = ρ sinψ cosϕ.

(8.116)

The geometric meaning of the parameters ρ, ψ , and ϕ is shown in Fig. 8.6.
The Jacobian of the mapping (8.116) is ρ2 sinψ , and so by Theorem 1 the map-

ping is invertible in a neighborhood of each point (ρ,ψ,ϕ) at which ρ > 0 and
sinψ �= 0.

The sets where ρ = const, ϕ = const, or ψ = const in (x, y, z)-space obviously
correspond to a spherical surface (a sphere of radius ρ), a half-plane passing through
the z-axis, and the surface of a cone whose axis is the z-axis respectively.

Thus in passing from coordinates (x, y, z) to coordinates (ρ,ψ,ϕ), for example,
the spherical surface and the conical surface are flattened; they correspond to pieces
of the planes ρ = const and ψ = const respectively. We observed a similar phe-
nomenon in the two-dimensional case, where an arc of a circle in the (x, y)-plane
corresponded to a closed interval on the line in the plane with coordinates (ρ,ϕ)

(see Fig. 8.5). Please note that this is a local straightening.
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In the m-dimensional case polar coordinates are introduced by the relations

x1 = ρ cosϕ1,

x2 = ρ sinϕ1 cosϕ2,
...

xm−1 = ρ sinϕ1 sinϕ2 · · · sinϕm−2 cosϕm−1,

xm = ρ sinϕ1 sinϕ2 · · · sinϕm−2 sinϕm−1.

(8.117)

The Jacobian of this transformation is

ρm−1 sinm−2 ϕ1 sinm−3 ϕ2 · · · sinϕm−2, (8.118)

and by Theorem 1 it is also locally invertible everywhere where this Jacobian is
nonzero.

Example 2 (The general idea of local rectification of curves) New coordinates are
usually introduced for the purpose of simplifying the analytic expression for the
objects that occur in a problem and making them easier to visualize in the new
notation.

Suppose for example, a curve in the plane R2 is defined by the equation

F(x, y)= 0.

Assume that F is a smooth function, that the point (x0, y0) lies on the curve, that is,
F(x0, y0)= 0, and that this point is not a critical point of F . For example, suppose
F ′y(x, y) �= 0.

Let us try to choose coordinates ξ, η so that in these coordinates a closed interval
of a coordinate line, for example, the line η= 0, corresponds to an arc of this curve.

We set

ξ = x − x0, η= F(x, y).

The Jacobi matrix
(

1 0
F ′x F ′y

)

(x, y)

of this transformation has as its determinant the number F ′y(x, y), which by assump-
tion is nonzero at (x0, y0). Then by Theorem 1, this mapping is a diffeomorphism of
a neighborhood of (x0, y0) onto a neighborhood of the point (ξ, η)= (0,0). Hence,
inside this neighborhood, the numbers ξ and η can be taken as new coordinates of
points lying in a neighborhood of (x0, y0). In the new coordinates, the curve ob-
viously has the equation η = 0, and in this sense we have indeed achieved a local
rectification of it (see Fig. 8.7).
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Fig. 8.7

Fig. 8.8

8.6.2 Local Reduction of a Smooth Mapping to Canonical Form

In this subsection we shall consider only one question of this type. To be specific, we
shall exhibit a canonical form to which one can locally reduce any smooth mapping
of constant rank by means of a suitable choice of coordinates.

We recall that the rank of a mapping f :U →R
n of a domain U ⊂R

m at a point
x ∈ U is the rank of the linear transformation tangent to it at the point, that is, the
rank of the matrix f ′(x). The rank of a mapping at a point is usually denoted rank
f (x).

Theorem 2 (The rank theorem) Let f : U → R
n be a mapping defined in a neigh-

borhood U ⊂ R
m of a point x0 ∈ R

m. If f ∈ C(p)(U ;Rn), p ≥ 1, and the mapping
f has the same rank k at every point x ∈ U , then there exist neighborhoods O(x0)

of x0 and O(y0) of y0 = f (x0) and diffeomorphisms u= ϕ(x), v = ψ(y) of those
neighborhoods, of class C(p), such that the mapping v = ψ ◦ f ◦ ϕ−1(u) has the
coordinate representation

(
u1, . . . , uk, . . . , um

)= u �→ v = (
v1, . . . , vn

)= (
u1, . . . , uk,0, . . . ,0

)
(8.119)

in the neighborhood O(u0)= ϕ(O(x0)) of u0 = ϕ(x0).

In other words, the theorem asserts (see Fig. 8.8) that one can choose coordinates
(u1, . . . , um) in place of (x1, . . . , xm) and (v1, . . . , vn) in place of (y1, . . . , yn) in
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such a way that locally the mapping has the form (8.119) in the new coordinates,
that is, the canonical form for a linear transformation of rank k.

Proof We write the coordinate representation

y1 = f 1
(
x1, . . . , xm

)
,

...

yk = f k
(
x1, . . . , xm

)
,

yk+1 = f k+1
(
x1, . . . , xm

)
,

...

yn = f n
(
x1, . . . , xm

)

(8.120)

of the mapping f : U → R
n
y , which is defined in a neighborhood of the point

x0 ∈ R
m
x . In order to avoid relabeling the coordinates and the neighborhood U , we

shall assume that at every point x ∈ U , the principal minor of order k in the upper
left corner of the matrix f ′(x) is nonzero.

Let us consider the mapping defined in a neighborhood U of x0 by the equalities

u1 = ϕ1
(
x1, . . . , xm

)= f 1
(
x1, . . . , xm

)
,

...

uk = ϕk
(
x1, . . . , xm

)= f k
(
x1, . . . , xm

)
,

uk+1 = ϕk+1
(
x1, . . . , xm

)= xk+1,
...

um = ϕm
(
x1, . . . , xm

)= xm.

(8.121)

The Jacobi matrix of this mapping has the form

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂f 1

∂x1 · · · ∂f 1

∂xk

...
∂f 1

∂xk+1 · · · ∂f 1

∂xm

...
. . .

...
...

...
. . .

...

∂f k

∂x1 · · · ∂f k

∂xk

...
∂f k

∂xk+1 · · · ∂f k

∂xm

...
. . .

...
...

...
. . .

...
... 1 0

0
...

. . .

... 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and by assumption its determinant is nonzero in U .
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By the inverse function theorem, the mapping u = ϕ(x) is a diffeomorphism
of smoothness p of some neighborhood Õ(x0) ⊂ U of x0 onto a neighborhood
Õ(u0)= ϕ(Õ(x0)) of u0 = ϕ(x0).

Comparing relations (8.120) and (8.121), we see that the composite function g =
f ◦ ϕ−1 : Õ(u0)→R

n
y has the coordinate representation

y1 = f 1 ◦ ϕ−1
(
u1, . . . , um

) = u1,
...

yk = f k ◦ ϕ−1
(
u1, . . . , um

)= uk,

yk+1 = f k+1 ◦ ϕ−1
(
u1, . . . , um

)= gk+1
(
u1, . . . , um

)
,

...

yn = f n ◦ ϕ−1
(
u1, . . . , um

)= gn
(
u1, . . . , um

)
.

(8.122)

Since the mapping ϕ−1 : Õ(u0)→ Õ(x0) has maximal rank m at each point u ∈
Õ(u0), and the mapping f : Õ(x0)→R

n
y has rank k at every point x ∈ Õ(x0), it fol-

lows, as is known from linear algebra, that the matrix g′(u)= f ′(ϕ−1(u))(ϕ−1)′(u)

has rank k at every point u ∈ Õ(u0).
Direct computation of the Jacobi matrix of the mapping (8.122) yields

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0
...

. . .
... 0

0 1
...

...
. . .

...
...

...
. . .

...

...

∂gk+1

∂u1 · · · ∂gk+1

∂uk

...
∂gk+1

∂uk+1 · · · ∂gk+1

∂um

...
. . .

...
...

...
. . .

...

...

∂gn

∂u1 · · · ∂gn

∂uk

...
∂gn

∂uk+1 · · · ∂gn

∂um

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Hence at each point u ∈ Õ(u0) we obtain ∂gj

∂ui (u) = 0 for i = k + 1, . . . ,m;

j = k + 1, . . . , n. Assuming that the neighborhood Õ(u0) is convex (which can
be achieved by shrinking Õ(u0) to a ball with center at u0, for example), we can
conclude from this that the functions gj , j = k+ 1, . . . , n, really are independent of
the variables uk+1, . . . , um.
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After this decisive observation, we can rewrite the mapping (8.122) as

y1 = u1,
...

yk = uk,

yk+1 = gk+1
(
u1, . . . , uk

)
,

...

yn = gn
(
u1, . . . , uk

)
.

(8.123)

At this point we can exhibit the mapping ψ . We set

v1 = y1 =: ψ1(y),
...

vk = yk =: ψk(y),

vk+1 = yk+1 − gk+1
(
y1, . . . , yk

) =: ψk+1(y),
...

vn = yn − gn
(
y1, . . . , yk

) =: ψn(y).

(8.124)

It is clear from the construction of the functions gj (j = k + 1, . . . , n) that the
mapping ψ is defined in a neighborhood of y0 and belongs to class C(p) in that
neighborhood.

The Jacobi matrix of the mapping (8.124) has the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 0
...

. . .
... 0

0 1
...

...
. . .

...
...

. . .

...

− ∂gk+1

∂y1 · · · − ∂gk+1

∂yk

... 1 0
...

. . .
...

...
. . .

...

− ∂gn

∂y1 · · · − ∂gn

∂yk

... 0 1

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

.

Its determinant equals 1, and so by Theorem 1 the mapping ψ is a diffeomor-
phism of smoothness p of some neighborhood Õ(y0) of y0 ∈ R

n
y onto a neighbor-

hood Õ(v0)=ψ(Õ(y0)) of v0 ∈R
n
v .

Comparing relations (8.123) and (8.124), we see that in a neighborhood O(u0)⊂
Õ(u0) of u0 so small that g(O(u0))⊂ Õ(y0), the mapping ψ ◦ f ◦ ϕ−1 :O(u0)→
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R
n
y is a mapping of smoothness p from this neighborhood onto some neighborhood

O(v0)⊂ Õ(v0) of v0 ∈R
n
v and that it has the canonical form

v1 = u1,
...

vk = uk,

vk+1 = 0,
...

vn = 0.

(8.125)

Setting ϕ−1(O(u0)) = O(x0) and ψ−1(O(v0)) = O(y0), we obtain the neigh-
borhoods of x0 and y0 whose existence is asserted in the theorem. The proof is now
complete. �

Theorem 2, like Theorem 1, is obviously a local version of the corresponding
theorem from linear algebra.

In connection with the proof just given of Theorem 2, we make the following
remarks, which will be useful in what follows.

Remark 1 If the rank of the mapping f :U →R
n is n at every point of the original

neighborhood U ⊂Rm, then the point y0 = f (x0), where x0 ∈U , is an interior point
of f (U), that is, f (U) contains a neighborhood of this point.

Proof Indeed, from what was just proved, the mapping ψ ◦ f ◦ ϕ−1 : O(u0)→
O(v0) has the form

(
u1, . . . , un, . . . , um

)= u �→ v = (
v1, . . . , vn

)= (
u1, . . . , un

)
,

in this case, and so the image of a neighborhood of u0 = ϕ(x0) contains some neigh-
borhood of v0 =ψ ◦ f ◦ ϕ−1(u0).

But the mappings ϕ : O(x0)→ O(u0) and ψ : O(y0)→ O(v0) are diffeomor-
phisms, and therefore they map interior points to interior points. Writing the original
mapping f as f = ψ−1 ◦ (ψ ◦ f ◦ ϕ−1) ◦ ϕ, we conclude that y0 = f (x0) is an in-
terior point of the image of a neighborhood of x0. �

Remark 2 If the rank of the mapping f :U →R
n is k at every point of a neighbor-

hood U and k < n, then, by Eqs. (8.120), (8.124), and (8.125), in some neighbor-
hood of x0 ∈U ⊂R

m the following n− k relations hold;

f i
(
x1, . . . , xm

)= gi
(
f 1(x1, . . . , xm

)
, . . . , f k

(
x1, . . . , xm

))
(i = k+ 1, . . . , n).

(8.126)
These relations are written under the assumption we have made that the principal

minor of order k of the matrix f ′(x0) is nonzero, that is, the rank k is realized on the
set of functions f 1, . . . , f k . Otherwise one may relabel the functions f 1, . . . , f n

and again have this situation.
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8.6.3 Functional Dependence

Definition 2 A system of continuous functions f i(x) = f i(x1, . . . , xm) (i = 1,

. . . , n) is functionally independent in a neighborhood of a point x0 = (x1
0 , . . . , xm

0 )

if for any continuous function F(y)= F(y1, . . . , yn) defined in a neighborhood of
y0 = (y1

0 , . . . , yn
0 )= (f 1(x0), . . . , f

n(x0))= f (x0), the relation

F
(
f 1(x1, . . . , xm

)
, . . . , f n

(
x1, . . . , xm

))≡ 0

is possible at all points of a neighborhood of x0 only when F(y1, . . . , yn)≡ 0 in a
neighborhood of y0.

The linear independence studied in algebra is independence with respect to linear
relations

F
(
y1, . . . , yn

)= λ1y
1 + · · · + λny

n.

If a system is not functionally independent, it is said to be functionally dependent.
When vectors are linearly dependent, one of them obviously is a linear combina-

tion of the others. A similar situation holds in the relation of functional dependence
of a system of smooth functions.

Proposition 1 If a system f i(x1, . . . , xm) (i = 1, . . . , n) of smooth functions de-
fined on a neighborhood U(x0) of the point x0 ∈ R

m is such that the rank of the
matrix

⎛

⎜
⎜
⎝

∂f 1

∂x1 · · · ∂f 1

∂xm

...
. . .

...
∂f n

∂x1 · · · ∂f n

∂xm

⎞

⎟
⎟
⎠ (x)

is equal to the same number k at every point x ∈U , then

a) when k = n, the system is functionally independent in a neighborhood of x0;
b) when k < n, there exist a neighborhood of x0 and k functions of the system,

say f 1, . . . , f k such that the other n− k functions can be represented as

f i
(
x1, . . . , xm

)= gi
(
f 1(x1, . . . , xm

)
, . . . , f k

(
x1, . . . , xm

))

in this neighborhood, where gi(y1, . . . , yk), (i = k+1, . . . , n) are smooth functions
defined in a neighborhood of y0 = (f 1(x0), . . . , f

n(x0)) and depending only on k

coordinates of the variable point y = (y1, . . . , yn).

Proof In fact, if k = n, then by Remark 1 after the rank theorem, the image of a
neighborhood of the point x0 under the mapping
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y1 = f 1
(
x1, . . . , xm

)
,

...

yn = f n
(
x1, . . . , xm

)
(8.127)

contains a neighborhood of y0 = f (x0). But then the relation

F
(
f 1(x1, . . . , xm

)
, . . . , f n

(
x1, . . . , xm

))≡ 0

can hold in a neighborhood of x0 only if

F
(
y1, . . . , yn

)≡ 0

in a neighborhood of y0. This proves assertion a).
If k < n and the rank k of the mapping (8.127) is realized on the functions

f 1, . . . , f k , then by Remark 2 after the rank theorem, there exists a neighborhood of
y0 = f (x0) and n− k functions gi(y)= gi(y1, . . . , yk) (i = k + 1, . . . , n), defined
on that neighborhood, having the same order of smoothness as the functions of the
original system, and such that relations (8.126) hold in some neighborhood of x0.
This proves b). �

We have now shown that if k < n there exist n − k special functions F i(y) =
yi − gi(y1, . . . , yk) (i = k + 1, . . . , n) that establish the relations

F i
(
f 1(x), . . . , f k(x), f i(x)

)≡ 0 (i = k + 1, . . . , n)

between the functions of the system f 1, . . . , f k, . . . , f n in a neighborhood of the
point x0.

8.6.4 Local Resolution of a Diffeomorphism into a Composition
of Elementary Ones

In this subsection we shall show how, using the inverse function theorem, one can
represent a diffeomorphic mapping locally as a composition of diffeomorphisms,
each of which changes only one coordinate.

Definition 3 A diffeomorphism g :U →R
m of an open set U ⊂R

m will be called
elementary if its coordinate representation is

{
yi = xi, i ∈ {1, . . . ,m}, i �= j,

yj = gj
(
x1, . . . , xm

)
,

that is, under the diffeomorphism g : U → R
m only one coordinate of the point

being mapped is changed.
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Proposition 2 If f :G→R
m is a diffeomorphism of an open set G⊂R

m, then for
any point x0 ∈G there is a neighborhood of the point in which the representation
f = g1 ◦ · · · ◦ gn holds, where g1, . . . , gn are elementary diffeomorphisms.

Proof We shall verify this by induction.
If the original mapping f is itself elementary, the proposition holds trivially for it.
Assume that the proposition holds for diffeomorphisms that alter at most (k− 1)

coordinates, where k − 1 < n. Now consider a diffeomorphism f : G→ R
m that

alters k coordinates:

y1 = f 1
(
x1, . . . , xm

)
,

...

yk = f k
(
x1, . . . , xm

)
,

yk+1 = xk+1,
...

ym = xm.

(8.128)

We have assumed that it is the first k coordinates that are changed, which can
be achieved by linear changes of variable. Hence this assumption causes no loss in
generality.

Since f is a diffeomorphism, its Jacobi matrix f ′(x) is nondegenerate at each
point, for

(
f−1)′(f (x)

)= [
f ′(x)

]−1
.

Let us fix x0 ∈G and compute the determinant of f ′(x0):

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂f 1

∂x1 · · · ∂f 1

∂xk

...
∂f 1

∂xk+1 · · · ∂f 1

∂xm

...
. . .

...
...

...
. . .

...
...

∂f k

∂x1 · · · ∂f k

∂xk

...
∂f k

∂xk+1 · · · ∂f k

∂xm

...
. . .

...
...

...
. . .

...
... 1 0

0
...

. . .

... 0 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(x0)=

∣
∣
∣
∣
∣
∣
∣
∣

∂f 1

∂x1 · · · ∂f 1

∂xk

...
. . .

...

∂f k

∂x1 · · · ∂f k

∂xk

∣
∣
∣
∣
∣
∣
∣
∣

(x0) �= 0.

Thus one of the minors of order k − 1 of this last determinant must be nonzero.
Again, for simplicity of notation, we shall assume that the principal minor of order
k − 1 is nonzero. Now consider the auxiliary mapping g :G→ R

m defined by the
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equalities

u1 = f 1
(
x1, . . . , xm

)
,

...

uk−1 = f k−1
(
x1, . . . , xm

)
,

uk = xk,
...

um = xm.

(8.129)

Since the Jacobian
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂f 1

∂x1 · · · ∂f 1

∂xk−1

...
∂f 1

∂xk · · · ∂f 1

∂xm

...
. . .

...
...

...
. . .

...
...

∂f k−1

∂x1 · · · ∂f k−1

∂xk−1

...
∂f k−1

∂xk · · · ∂f k−1

∂xm

...
. . .

...
...

...
. . .

...
... 1 0

0
...

. . .

... 0 1

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(x0)=

∣
∣
∣
∣
∣
∣
∣
∣

∂f 1

∂x1 · · · ∂f 1

∂xk−1
...

. . .
...

∂f k−1

∂x1 · · · ∂f k−1

∂xk−1

∣
∣
∣
∣
∣
∣
∣
∣

(x0) �= 0

of the mapping g : G→ R
m is nonzero at x0 ∈ G, the mapping g is a diffeomor-

phism in some neighborhood of x0.
Then, in some neighborhood of u0 = g(x0) the mapping inverse to g, x =

g−1(u), is defined, making it possible to introduce new coordinates (u1, . . . , um)

in a neighborhood of x0.
Let h= f ◦ g−1. In other words, the mapping y = h(u) is the mapping (8.128)

y = f (x) written in u-coordinates. The mapping h, being the composition of dif-
feomorphisms, is a diffeomorphism of some neighborhood of u0. Its coordinate
expression obviously has the form

y1 = f 1 ◦ g−1(u)= u1,
...

yk−1 = f k−1 ◦ g−1(u)= uk−1,

yk = f k ◦ g−1(u),

yk+1 = uk+1,
...

ym = um,

that is, h is an elementary diffeomorphism.
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But f = h ◦g, and by the induction hypothesis the mapping g defined by (8.129)
can be resolved into a composition of elementary diffeomorphisms. Thus, the dif-
feomorphism f , which alters k coordinates, can also be resolved into a composition
of elementary diffeomorphisms in a neighborhood of x0, which completes the in-
duction. �

8.6.5 Morse’s Lemma

This same circle of ideas contains an intrinsically beautiful lemma of Morse9 on the
local reduction of smooth real-valued functions to canonical form in a neighborhood
of a nondegenerate critical point. This lemma is also important in applications.

Definition 4 Let x0 be a critical point of the function f ∈ C(2)(U ;R) defined in a
neighborhood U of this point.

The critical point x0 is a nondegenerate critical point of f if the Hessian of the

function at that point (that is, the matrix ∂2f

∂xi∂xj (x0) formed from the second-order
partial derivatives) has a nonzero determinant.

If x0 is a critical point of the function, that is, f ′(x0)= 0, then by Taylor’s for-
mula

f (x)− f (x0)= 1

2!
∑

i,j

∂2f

∂xi∂xj
(x0)

(
xi − xi

0

)(
xj − x

j

0

)+ o
(‖x − x0‖2). (8.130)

Morse’s lemma asserts that one can make a local change of coordinates x = g(y)

such that the function will have the form

(f ◦ g)(y)− f (x0)=−
(
y1)2 − · · · − (

yk
)2 + (

yk+1)2 + · · · + (
ym
)2

when expressed in y-coordinates.
If the remainder term o(‖x − x0‖2) were not present on the right-hand side of

Eq. (8.130), that is, the difference f (x)−f (x0) were a simple quadratic form, then,
a is known from algebra, it could be brought into the indicated canonical form by
a linear transformation. Thus the assertion we are about to prove is a local version
of the theorem on reduction of a quadratic form to canonical form. The proof will
use the idea of the proof of this algebraic theorem. We shall also rely on the inverse
function theorem and the following proposition.

Hadamard’s lemma Let f : U → R be a function of class C(p)(U ;R), p ≥ 1,
defined in a convex neighborhood U of the point 0= (0, . . . ,0) ∈R

m and such that

9H.C.M. Morse (1892–1977) – American mathematician; his main work was devoted to the appli-
cation of topological methods in various areas of analysis.
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f (0)= 0. Then there exist functions gi ∈C(p−1)(U ;R) (i = 1, . . . ,m) such that the
equality

f
(
x1, . . . , xm

)=
m∑

i=1

xigi

(
x1, . . . , xm

)
(8.131)

holds in U , and gi(0)= ∂f

∂xi
(0).

Proof Equality (8.131) is essentially another useful expression for Taylor’s formula
with the integral form of the remainder term. It follows from the equalities

f
(
x1, . . . , xm

)=
∫ 1

0

df (tx1, . . . , txm)

dt
dt =

m∑

i=1

xi

∫ 1

0

∂f

∂xi

(
tx1, . . . , txm

)
dt,

if we set

gi

(
x1, . . . , xm

)=
∫ 1

0

∂f

∂xi

(
tx1, . . . , txm

)
dt (i = 1, . . . ,m).

The fact that gi(0)= ∂f

∂xi (0) (i = 1, . . . ,m) is obvious, and it is also not difficult

to verify that gi ∈ C(p−1)(U ;R). However, we shall not undertake the verification
just now, since we shall later give a general rule for differentiating an integral de-
pending on a parameter, from which the property we need for the functions gi will
follow immediately.

Thus, up to this verification, Hadamard’s formula (8.131) is proved. �

Morse’s lemma If f :G→R is a function of class C(3)(G;R) defined on an open
set G⊂R

m and x0 ∈G is a nondegenerate critical point of that function, then there
exists a diffeomorphism g : V → U of some neighborhood of the origin 0 in R

m

onto a neighborhood U of x0 such that

(f ◦ g)(y)= f (x0)−
[(

y1)2 + · · · + (
yk
)2]+ [(

yk+1)2 + · · · + (
ym
)2]

for all y ∈ V .

Proof By linear changes of variable we can reduce the problem to the case when
x0 = 0 and f (x0)= 0, and from now on we shall assume that these conditions hold.

Since x0 = 0 is a critical point of f , we have gi(0)= 0 in formula (8.131) (i = 1,

. . . ,m). Then, also by Hadamard’s lemma,

gi

(
x1, . . . , xm

)=
m∑

j=1

xjhij

(
x1, . . . , xm

)
,
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where hij are smooth functions in a neighborhood of 0 and consequently

f
(
x1, . . . , xm

)=
m∑

i,j=1

xixjhij

(
x1, . . . , xm

)
. (8.132)

By making the substitution h̃ij = 1
2 (hij + hji) if necessary, we can assume that

hij = hji . We remark also that, by the uniqueness of the Taylor expansion, the con-

tinuity of the functions hij implies that hij (0) = ∂2f

∂xi∂xj (0) and hence the matrix
(hij (0)) is nondegenerate.

The function f has now been written in a manner that resembles a quadratic
form, and we wish, so to speak, to reduce it to diagonal form.

As in the classical case, we proceed by induction.
Assume that there exist coordinates u1, . . . , um in a neighborhood U1 of 0 ∈R

m,
that is, a diffeomorphism x = ϕ(u), such that

(f ◦ ϕ)(u)=±(u1)2 ± · · · ± (
ur−1)2 +

m∑

i,j=r

uiujHij

(
u1, . . . , um

)
(8.133)

in the coordinates u1, . . . , um, where r ≥ 1 and Hij =Hji .
We observe that relation (8.133) holds for r = 1, as one can see from (8.132),

where Hij = hij .
By the hypothesis of the lemma the quadratic form

∑m
i,j=1 xixjhij (0) is non-

degenerate, that is, det(hij (0)) �= 0. The change of variable x = ϕ(u) is carried out
by a diffeomorphism, so that detϕ′(0) �= 0. But then the matrix of the quadratic
form±(u1)2±· · ·±(ur−1)2+∑m

i,j=r uiujHij (0) obtained from the matrix (hij (0))

through right-multiplication by the matrix ϕ′(0) and left-multiplication by the trans-
pose of ϕ′(0) is also nondegenerate. Consequently, at least one of the numbers
Hij (0) (i, j = r, . . . ,m) is nonzero. By a linear change of variable we can bring the
form

∑m
i,j=r uiujHij (0) to diagonal form, and so we may assume that Hrr(0) �= 0

in Eq. (8.133). By the continuity of the functions Hij (u) the inequality Hrr(u) �= 0
will also hold in some neighborhood of u= 0.

Let us set ψ(u1, . . . , um)=√|Hrr(u)|. Then the function ψ belongs to the class
C(1)(U2;R) in some neighborhood U2 ⊂ U1 of u = 0. We now change to coordi-
nates (v1, . . . , vm) by the formulas

vi = ui, i �= r,

vr =ψ
(
u1, . . . , um

)
(

ur +
∑

i>r

uiHir (u
1, . . . , um)

Hrr(u1, . . . , um)

)

.
(8.134)

The Jacobian of the transformation (8.134) at u= 0 is obviously equal to ψ(0),
that is, it is nonzero. Then by the inverse function theorem we can assert that in
some neighborhood U3 ⊂ U2 of u = 0 the mapping v = ψ(u) defined by (8.134)
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is a diffeomorphism of class C(1)(U3;Rm) and therefore the variables (v1, . . . , vm)

can indeed serve as coordinates of points in U3.
We now separate off in Eq. (8.133) all terms

ururHrr

(
u1, . . . , um

)+ 2
m∑

j=r+1

urujHrj

(
u1, . . . , um

)
, (8.135)

containing ur . In the expression (8.135) for the sum of these terms we have used the
fact that Hij =Hji .

Comparing (8.134) and (8.135), we see that we can rewrite (8.135) in the form

±vrvr − 1

Hrr

(∑

i>r

uiHir

(
u1, . . . , um

)
)2

.

The ambiguous sign ± appears in front of vrvr because Hrr =±(ψ)2, the posi-
tive sign being taken if Hrr > 0 and the negative sign if Hrr < 0.

Thus, after the substitution v =ψ(u), the expression (8.133) becomes the equal-
ity

(
f ◦ ϕ ◦ψ−1)(v)=

r∑

i=1

[±(vi
)2]+

∑

i,j>r

vivj H̃ij

(
v1, . . . , vm

)
,

where H̃ij are new smooth functions that are symmetric with respect to the indices
i and j . The mapping ϕ ◦ψ−1 is a diffeomorphism. Thus the induction from r − 1
to r is now complete, and Morse’s lemma is proved. �

8.6.6 Problems and Exercises

1. Compute the Jacobian of the change of variable (8.118) from polar coordinates
to Cartesian coordinates in R

m.
2. a) Let x0 be a noncritical point of a smooth function F : U → R defined in
a neighborhood U of x0 = (x1

0 , . . . , xm
0 ) ∈ R

m. Show that in some neighborhood
Ũ ⊂ U of x0 one can introduce curvilinear coordinates (ξ1, . . . , ξm) such that the
set of points defined by the condition F(x)= F(x0) will be given by the equation
ξm = 0 in these new coordinates.

b) Let ϕ,ψ ∈ C(k)(D;R), and suppose that (ϕ(x) = 0)⇒ (ψ(x) = 0) in the
domain D. Show that if gradϕ �= 0, then there is a decomposition ψ = θ · ϕ in D,
where θ ∈ C(k−1)(D;R).

3. Let f : R2 → R
2 be a smooth mapping satisfying the Cauchy–Riemann equa-

tions

∂f 1

∂x1
= ∂f 2

∂x2
,

∂f 1

∂x2
=−∂f 2

∂x1
.
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a) Show that the Jacobian of such a mapping is zero at a point if and only if
f ′(x) is the zero matrix at that point.

b) Show that if f ′(x) �= 0, then the inverse f−1 to the mapping f is defined in
a neighborhood of f and also satisfies the Cauchy–Riemann equations.

4. Functional dependence (direct proof).

a) Show that the functions πi(x)= xi (i = 1, . . . ,m), regarded as functions of
the point x = (x1, . . . , xm) ∈ R

m, form an independent system of functions in a
neighborhood of any point of Rm.

b) Show that, for any function f ∈ C(Rm;R) the system π1, . . . , πm, f is func-
tionally dependent.

c) If the system of smooth functions f 1, . . . , f k , k < m, is such that the rank
of the mapping f = (f 1, . . . , f k) equals k at a point x0 = (x1

0 , . . . , xm
0 ) ∈R

m, then
in some neighborhood of this point one can complete it to an independent system
f 1, . . . , f m consisting of m smooth functions.

d) If the system

ξ i = f i
(
x1, . . . , xm

)
(i = 1, . . . ,m)

of smooth functions is such that the mapping f = (f 1, . . . , f m) has rank m at the
point x0 = (x1

0 , . . . , xm
0 ), then the variables (ξ1, . . . , ξm) can be used as curvilinear

coordinates in some neighborhood U(x0) of x0, and any function ϕ : U(x0)→ R

can be written as ϕ(x)= F(f 1(x), . . . , f m(x)), where F = ϕ ◦ f−1.
e) The rank of the mapping provided by a system of smooth functions is also

called the rank of the system. Show that if the rank of a system of smooth functions
f i(x1, . . . , xm) (i = 1, . . . , k) is k and the rank of the system f 1, . . . , f m, ϕ is also
k at some point x0 ∈ R

m, then ϕ(x) = F(f 1(x), . . . , f k(x)) in a neighborhood of
the point.

Hint: Use c) and d) and show that

F
(
f 1, . . . , f m

)= F
(
f 1, . . . , f k

)
.

5. Show that the rank of a smooth mapping f :Rm→R
n is a lower semicontinuous

function, that is rank f (x)≥ rankf (x0) in a neighborhood of a point x0 ∈R
m.

6. a) Give a direct proof of Morse’s lemma for functions f :R→R.
b) Determine whether Morse’s lemma is applicable at the origin to the following

functions:

f (x) = x3; f (x)= x sin
1

x
; f (x)= e−1/x2

sin2 1

x
;

f (x, y) = x3 − 3xy2; f (x, y)= x2.

c) Show that nondegenerate critical points of a function f ∈ C(3)(Rm;R) are
isolated: each of them has a neighborhood in which it is the only critical point of f .

d) Show that the number k of negative squares in the canonical representation
of a function in the neighborhood of a nondegenerate critical point is independent
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of the reduction method, that is, independent of the coordinate system in which the
function has canonical form. This number is called the index of the critical point.

8.7 Surfaces in R
n and the Theory of Extrema with Constraint

To acquire an informal understanding of the theory of extrema with constraint,
which is important in applications, it is useful to have some elementary informa-
tion on surfaces (manifolds) in R

n.

8.7.1 k-Dimensional Surfaces in R
n

Generalizing the concept of a law of motion of a point mass x = x(t), we have
previously introduced the concept of a path in R

n as a continuous mapping Γ : I →
R

n of an interval I ⊂ R. The degree of smoothness of the path was defined a the
degree of smoothness of this mapping. The support Γ (I) ⊂ R

n of a path can be a
rather peculiar set in R

n, which it would be a great stretch to call a curve in some
instances. For example, the support of a path might be a single point.

Similarly, a continuous or smooth mapping f : I k → R
n of a k-dimensional in-

terval I k ⊂ R
k , called a singular k-cell in R

n, may have as its image f (I k) not at
all what one would like to call a k-dimensional surface in R

n. For example, it might
again be simply a point.

In order for a smooth mapping f : G→ R
n of a domain G ⊂ R

k to define a
k-dimensional geometric figure in R

n whose points are described by k independent
parameters (t1, . . . , tk) ∈G, it suffices, as we know from the preceding section, to
require that the rank of the mapping f :G→R

n be k at each point t ∈G (naturally,
k ≤ n). In that case the mapping f :G→ f (G) is locally one-to-one (that is, in a
neighborhood of each point t ∈G).

Indeed, suppose rank f (t0)= k and this rank is realized, for example, on the first
k of the n functions

⎧
⎪⎨

⎪⎩

x1 = f 1
(
t1, . . . , tk

)
,

...

xn = f n
(
t1, . . . , tk

)
(8.136)

that define the coordinate expressions for the mapping f :G→R
n.

Then, by the inverse function theorem the variables t1, . . . , tk can be expressed
in terms of x1, . . . , xk in some neighborhood U(t0) of t0. It follows that the set
f (U(t0)) can be written as

xk+1 = ϕk+1(x1, . . . , xk
)
, . . . , xn = ϕn

(
x1, . . . , xk

)

(that is, it projects in a one-to-one manner onto the coordinate plane of x1, . . . , xk),
and therefore the mapping f :U(t0)→ f (U(t0)) is indeed one-to-one.
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Fig. 8.9

However, even the simple example of a smooth one-dimensional path (Fig. 8.9)
makes it clear that the local injectivity of the mapping f : G→ R

n from the pa-
rameter domain G into R

n is by no means necessarily a global injectivity. The tra-
jectory may have multiple self-intersections, so that if we wish to define a smooth
k-dimensional surface in R

n and picture it as a set that has the structure of a slightly
deformed piece of a k-dimensional plane (a k-dimensional subspace of R

n) near
each of its points, it is not enough merely to map a canonical piece G ⊂ R

k of a
k-dimensional plane in a regular manner into R

n. It is also necessary to be sure that
it happens to be globally imbedded in this space.

Definition 1 We shall call a set S ⊂R
n a k-dimensional smooth surface in R

n (or a
k-dimensional submanifold of R

n) if for every point x0 ∈ S there exist a neighbor-
hood U(x0) in R

n and a diffeomorphism ϕ :U(x0)→ In of this neighborhood onto
the standard n-dimensional cube In = {t ∈ R

n | |t i |< 1, i = 1, . . . , n} of the space
R

n under which the image of the set S ∩U(x0) is the portion of the k-dimensional
plane in R

n defined by the relations tk+1 = 0, . . . , tn = 0 lying inside In (Fig. 8.10).

We shall measure the degree of smoothness of the surface S by the degree of
smoothness of the diffeomorphism ϕ.

If we regard the variables t1, . . . , tn as new coordinates in a neighborhood of
U(x0), Definition 1 can be rewritten briefly as follows: the set S ⊂ R

n is a k-

Fig. 8.10
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dimensional surface (k-dimensional submanifold) in R
n if for every point x0 ∈ S

there is a neighborhood U(x0) and coordinates t1, . . . , tn in U(x0) such that in these
coordinates the set S ∩U(x0) is defined by the relations

tk+1 = · · · = tn = 0.

The role of the standard n-dimensional cube in Definition 1 is rather artificial
and approximately the same as the role of the standard size and shape of a page in
a geographical atlas. The canonical location of the interval in the coordinate system
t1, . . . , tn is also a matter of convention and nothing more, since any cube in R

n can
always be transformed into the standard n-dimensional cube by an additional linear
diffeomorphism.

We shall often use this remark when abbreviating the verification that a set S ⊂
R

n is a surface in R
n.

Let us consider some examples.

Example 1 The space R
n itself is an n-dimensional surface of class C(∞). As the

mapping ϕ :Rn→ In here, one can take, for example, the mapping

ξ i = 2

π
arctanxi (i = 1, . . . , n).

Example 2 The mapping constructed in Example 1 also establishes that the sub-
space of the vector space R

n defined by the conditions xk+1 = · · · = xn = 0 is a
k-dimensional surface in R

n (or a k-dimensional submanifold of Rn).

Example 3 The set in R
n defined by the system of relations

⎧
⎪⎨

⎪⎩

a1
1x1 + · · · + a1

kx
k + a1

k+1x
k+1 + · · · + a1

nx
n = 0,

...

an−k
1 x1 + · · · + an−k

k xk + an−k
k+1xk+1 + · · · + an−k

n xn = 0,

provided this system has rank n− k, is a k-dimensional submanifold of Rn.
Indeed, suppose for example that the determinant

∣
∣
∣
∣
∣
∣
∣

a1
k+1 · · · a1

n
...

. . .
...

an−k
k+1 · · · an−k

n

∣
∣
∣
∣
∣
∣
∣

is nonzero. Then the linear transformation

t1 = x1,

...

tk = xk,
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tk+1 = a1
1x1 + · · · + a1

nx
n,

...

tn = an−k
1 x1 + · · · + an−k

n xn,

is obviously nondegenerate. In the coordinates t1, . . . , tn the set is defined by the
conditions tk+1 = · · · = tn = 0, already considered in Example 2.

Example 4 The graph of a smooth function xn = f (x1, . . . , xn−1) defined in a do-
main G⊂R

n−1 is a smooth (n− 1)-dimensional surface in R
n.

Indeed, setting
{

t i = xi (i = 1, . . . , n− 1),

tn = xn − f
(
x1, . . . , xn−1

)
,

we obtain a coordinate system in which the graph of the function has the equation
tn = 0.

Example 5 The circle x2+y2 = 1 in R
2 is a one-dimensional submanifold of R2, as

is established by the locally invertible conversion to polar coordinates (ρ,ϕ) studied
in the preceding section. In these coordinates the circle has equation ρ = 1.

Example 6 This example is a generalization of Example 3 and at the same time, as
can be seen from Definition 1, gives a general form for the coordinate expression of
submanifolds of Rn.

Let F i(x1, . . . , xn) (i = 1, . . . , n− k) be a system of smooth functions of rank
n− k. We shall show that the relations

⎧
⎪⎨

⎪⎩

F 1
(
x1, . . . , xk, xk+1, . . . , xn

)= 0,
...

F n−k
(
x1, . . . , xk, xk+1, . . . , xn

)= 0

(8.137)

define a k-dimensional submanifold S in R
n.

Suppose the condition
∣
∣
∣
∣
∣
∣
∣
∣

∂F 1

∂xk+1 · · · ∂F 1

∂xn

...
. . .

...

∂Fn−k

∂xk+1 · · · ∂Fn−k

∂xn

∣
∣
∣
∣
∣
∣
∣
∣

(x0) �= 0 (8.138)

holds at a point x0 ∈ S. Then by the inverse function theorem the transformation
{

t i = xi (i = 1, . . . , k),

t i = F i−k
(
x1, . . . , xn

)
(i = k + 1, . . . , n)

is a diffeomorphism of a neighborhood of this point.
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In the new coordinates t1, . . . , tn the original system will have the form tk+1 =
· · · = tn = 0; thus, S is a k-dimensional smooth surface in R

n.

Example 7 The set E of points of the plane R
2 satisfying the equation x2 − y2 = 0

consists of two lines that intersect at the origin. This set is not a one-dimensional
submanifold of R2 (verify this!) precisely because of this point of intersection.

If the origin 0 ∈ R
2 is removed from E, then the set E\0 will now obviously

satisfy Definition 1. We remark that the set E\0 is not connected. It consists of four
pairwise disjoint rays.

Thus a k-dimensional surface in R
n satisfying Definition 1 may happen to be a

disconnected subset consisting of several connected components (and these compo-
nents are connected k-dimensional surfaces). A surface in R

n is often taken to mean
a connected k-dimensional surface. Just now we shall be interested in the problem
of finding extrema of functions defined on surfaces. These are local problems, and
therefore connectivity will not manifest itself in them.

Example 8 If a smooth mapping f : G→ R
n of the domain G ⊂ R

n defined in
coordinate form by (8.136) has rank k at the point t0 ∈G, then there exists a neigh-
borhood U(t0)⊂G of this point whose image f (U(t0))⊂ R

n is a smooth surface
in R

n.
Indeed, as already noted above, in this case relations (8.136) can be replaced by

the equivalent system
⎧
⎪⎨

⎪⎩

xk+1 = ϕk+1
(
x1, . . . , xk

)
,

...

xn = ϕn
(
x1, . . . , xk

)
(8.139)

in some neighborhood U(t0) of t0 ∈G. (For simplicity of notation, we assume that
the system f 1, . . . , f k has rank k.) Setting

F i
(
x1, . . . , xn

)= xk+i − ϕk+1(x1, . . . , xk
)

(i = 1, . . . , n− k),

we write the system (8.139) in the form (8.137). Since relations (8.138) are satis-
fied, Example 6 guarantees that the set f (U(t0)) is indeed a k-dimensional smooth
surface in R

n.

8.7.2 The Tangent Space

In studying the law of motion x = x(t) of a point mass in R
3, starting from the

relation

x(t)= x(0)+ x′(0)t + o(t) as t → 0 (8.140)

and assuming that the point t = 0 is not a critical point of the mapping R 
 t �→
x(t) ∈R

3, that is, x′(0) �= 0, we defined the line tangent to the trajectory at the point
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x(0) as the linear subset of R3 given in parametric form by the equation

x − x0 = x′(0)t (8.141)

or the equation

x − x0 = ξ · t, (8.142)

where x0 = x(0) and ξ = x′(0) is a direction vector of the line.
In essence, we did a similar thing in defining the tangent plane to the graph

of a function z = f (x, y) in R
3. Indeed, supplementing the relation z = f (x, y)

with the trivial equalities x = x and y = y, we obtain a mapping R
2 
 (x, y) �→

(x, y, f (x, y)) ∈R
3 to which the tangent at the point (x0, y0) is the linear mapping

⎛

⎝
x − x0
y − y0
z− z0

⎞

⎠=
⎛

⎝
1 0
0 1

f ′x(x0, y0) f ′y(x0, y0)

⎞

⎠
(

x − x0
y − y0

)

, (8.143)

where z0 = f (x0, y0).
Setting t = (x − x0, y − y0) and x = (x − x0, y − y0, z− z0) here, and denoting

the Jacobi matrix in (8.143) for this transformation by x′(0), we remark that its rank
is two and that in this notation relation (8.143) has the form (8.141).

The peculiarity of relation (8.143) is that only the last equality in the set of three
equalities

⎧
⎪⎨

⎪⎩

x − x0 = x − x0,

y − y0 = y − y0,

z− z0 = f ′x(x0, y0)(x − x0)+ f ′y(x0, y − 0)(y − y0),

(8.144)

to which it is equivalent is a nontrivial relation. That is precisely the reason it is
retained as the equation defining the plane tangent to the graph of z = f (x, y) at
(x0, y0, z0).

This observation can now be used to give the definition of the k-dimensional
plane tangent to a k-dimensional smooth surface S ⊂R

n.
It can be seen from Definition 1 of a surface that in a neighborhood of each of

its points x0 ∈ S a k-dimensional surface S can be defined parametrically, that is,
using mappings I k 
 (t1, . . . , tk) �→ (x1, . . . , xn) ∈ S. Such a parametrization can
be taken to be the restriction of the mapping ϕ−1 : In →U(x0) to the k-dimensional
plane tk+1 = · · · = tn = 0 (see Fig. 8.10).

Since ϕ−1 is a diffeomorphism, the Jacobian of the mapping ϕ−1 : In → U(x0)

is nonzero at each point of the cube In. But then the mapping I k 
 (t1, . . . , tk) �→
(x1, . . . , xn) ∈ S obtained by restricting ϕ−1 to this plane must also have rank k at
each point of I k .

Now setting (t1, . . . , tk)= t ∈ I k and denoting the mapping I k 
 t �→ x ∈ S by
x = x(t), we obtain a local parametric representation of the surface S possessing
the property expressed by (8.140), on the basis of which we take Eq. (8.141) as the
equation of the tangent space or tangent plane to the surface S ⊂R

n at x0 ∈ S.
Thus we adopt the following definition.
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Definition 2 If a k-dimensional surface S ⊂ R
n, 1 ≤ k ≤ n, is defined parametri-

cally in a neighborhood of x0 ∈ S by means of a smooth mapping (t1, . . . , tk) =
t �→ x = (x1, . . . , xn) such that x0 = x(0) and the matrix x′(0) has rank k, then the
k-dimensional surface in R

n defined parametrically by the matrix equality (8.141)
is called the tangent plane or tangent space to the surface S at x0 ∈ S.

In coordinate form the following system of equations corresponds to Eq. (8.141):

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1 − x1
0 =

∂x1

∂t1
(0)t1 + · · · + ∂x1

∂tk
(0)tk,

...

xn − xn
0 =

∂xn

∂t1
(0)t1 + · · · + ∂xn

∂tk
(0)tk.

(8.145)

We shall denote10 the tangent space to the surface S at x ∈ S, as before, by TSx .
An important and useful exercise, which the reader can do independently, is to

prove the invariance of the definition of the tangent space and the verification that
the linear mapping t �→ x′(0)t tangent to the mapping t �→ x(t), which defines the
surface S locally, provides a mapping of the space R

k = TR
k
0 onto the plane TSx(0)

(see Problem 3 at the end of this section).
Let us now determine the form of the equation of the tangent plane to the k-

dimensional surface S defined in R
n by the system (8.137). For definiteness we

shall assume that condition (8.138) holds in a neighborhood of the point x0 ∈ S.
Setting (x1, . . . , xk)= u, (xk+1, . . . , xn)= v, (F 1, . . . ,F n−k)= F , we write the

system (8.137) in the form

F(u, v)= 0, (8.146)

and (8.138) as

detF ′v(u, v) �= 0. (8.147)

Using the implicit function theorem, in a neighborhood of the point (u0, v0) =
(x1

0 , . . . , xk
0 , xk+1

0 , . . . , xn
0 ) we pass from relation (8.146) to the equivalent relation

v = f (u), (8.148)

which, when we supplement it with the identity u= u, yields the parametric repre-
sentation of the surface S in a neighborhood of x0 ∈ S:

{
u= u,

v = f (u).
(8.149)

10This is a slight departure from the usual notation TxS or Tx(S).
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On the basis of Definition 2 we obtain from (8.149) the parametric equation
{

u− u0 =E · t,
v− v0 = f ′(u0) · t (8.150)

of the tangent plane; here E is the identity matrix and t = u− u0.
Just as was done in the case of the system (8.144), we retain in the system (8.150)

only the nontrivial equation

v− v0 = f ′(u0)(u− u0), (8.151)

which contains the connection of the variables x1, . . . , xk with the variables
xk+1, . . . , xn that determine the tangent space.

Using the relation

f ′(u0)=−
[
F ′v(u0, v0)

]−1[
F ′u(u0, v0)

]
,

which follows from the implicit function theorem, we rewrite (8.151) as

F ′u(u0, v0)(u− u0)+ F ′v(u0, v0)(v − v0)= 0,

from which, after returning to the variables (x1, . . . , xn)= x, we obtain the equation
we are seeking for the tangent space TSx0 ⊂R

n, namely

F ′x(x0)(x − x0)= 0. (8.152)

In coordinate representation Eq. (8.152) is equivalent to the system of equations
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂F 1

∂x1
(x0)

(
x1 − x1

0

)+ · · · + ∂F 1

∂xn
(x0)

(
xn − xn

0

)= 0,

...

∂F n−k

∂x1
(x0)

(
x1 − x1

0

)+ · · · + ∂Fn−k

∂xn
(x0)

(
xn − xn

0

)= 0.

(8.153)

By hypothesis the rank of this system is n − k, and hence it defines a k-
dimensional plane in R

n.
The affine equation (8.152) is equivalent (given the point x0) to the vector equa-

tion

F ′x(x0) · ξ = 0, (8.154)

in which ξ = x − x0.
Hence the vector ξ lies in the plane TSx0 tangent at x0 ∈ S to the surface S ⊂R

n

defined by the equation F(x)= 0 if and only if it satisfies condition (8.154). Thus
TSx0 can be regarded as the vector space consisting of the vectors ξ that satisfy
(8.154).

It is this fact that motivates the use of the term tangent space.
Let us now prove the following proposition, which we have already encountered

in a special case (see Sect. 6.4).
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Proposition The space TSx0 tangent to a smooth surface S ⊂ R
n at a point x0 ∈ S

consists of the vectors tangent to smooth curves lying on the surface S and passing
through the point x0.

Proof Let the surface S be defined in a neighborhood of the point x0 ∈ S by a system
of equations (8.137), which we write briefly as

F(x)= 0, (8.155)

where F = (F 1, . . . ,F n−k), x = (x1, . . . , xn). Let Γ : I → S be an arbitrary
smooth path with support on S. Taking I = {t ∈ R | |t | < 1}, we shall assume that
x(0) = x0. Since x(t) ∈ S for t ∈ I , after substituting x(t) into Eq. (8.155), we
obtain

F
(
x(t)

)≡ 0 (8.156)

for t ∈ I . Differentiating this identity with respect to t , we find that

F ′x
(
x(t)

) · x′(t)≡ 0.

In particular, when t = 0, setting ξ = x′(0), we obtain

F ′x(x0)ξ = 0,

that is, the vector ξ tangent to the trajectory at x0 (at time t = 0) satisfies Eq. (8.154)
of the tangent space TSx0 .

We now show that for every vector ξ satisfying Eq. (8.154) there exists a smooth
path Γ : I → S that defines a curve on S passing through x0 at t = 0 and having the
velocity vector ξ at time t = 0.

This will simultaneously establish the existence of smooth curves on S passing
through x0, which we assumed implicitly in the proof of the first part of the propo-
sition.

Suppose for definiteness that condition (8.138) holds. Then, knowing the first
k coordinates ξ1, . . . , ξ k of the vector ξ = (ξ1, . . . , ξ k, ξk+1, . . . , ξn), we de-
termine the other coordinates ξk+1, . . . , ξn uniquely from Eq. (8.154) (which
is equivalent to the system (8.153)). Thus, if we establish that a vector ξ̃ =
(ξ1, . . . , ξ k, ξ̃ k+1, . . . , ξ̃ n) satisfies Eq. (8.154), we can conclude that ξ̃ = ξ . We
shall make use of this fact.

Again, as was done above, we introduce for convenience the notation u =
(x1, . . . , xk), v = (xk+1, . . . , xn), x = (x1, . . . , xn) = (u, v), and F(x) = F(u, v).
Then Eq. (8.155) will have the form (8.146) and condition (8.138) will have the
form (8.147). In the subspace R

k ⊂ R
n of the variables x1, . . . , xk we choose a

parametrically defined line

⎧
⎪⎨

⎪⎩

x1 − x1
0 = ξ1t,

...

xk − xk
0 = ξkt,

t ∈R,
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having direction vector (ξ1, . . . , ξ k), which we denote ξu. In more abbreviated no-
tation this line can be written as

u= u0 + ξut. (8.157)

Solving Eq. (8.146) for v, by the implicit function theorem we obtain a smooth
function (8.148), which, when the right-hand side of Eq. (8.157) is substituted as its
argument and (8.157) is taken account of, yields a smooth curve in R

n defined as
follows:

{
u= u0 + ξut,

v = f (u0 + ξut),
t ∈U(0) ∈R. (8.158)

Since F(u,f (u))≡ 0, this curve obviously lies on the surface S. Moreover, it is
clear from Eqs. (8.158) that at t = 0 the curve passes through the point (u0, v0)=
(x1

0 , . . . , xk
0 , xk+1

0 , . . . , xn
0 )= x0 ∈ S.

Differentiating the identity

F
(
u(t), v(t)

)= F
(
u0 + ξut, f (u0 + ξut)

)≡ 0

with respect to t , we obtain for t = 0

F ′u(u0, v0)ξu + F ′v(u0, v0)ξ̃v = 0,

where ξ̃u = v′(0) = (ξ̃ k+1, . . . , ξ̃ n). This equality shows that the vector ξ̃ =
(ξu, ξ̃v)= (ξ1, . . . , ξ k, ξ̃ k+1, . . . , ξ̃ n) satisfies Eq. (8.154). Thus by the remark made
above, we conclude that ξ = ξ̃ . But the vector ξ̃ is the velocity vector at t = 0 for
the trajectory (8.158). The proposition is now proved. �

8.7.3 Extrema with Constraint

a. Statement of the Problem

One of the most brilliant and well-known achievements of differential calculus is the
collection of recipes it provides for finding the extrema of functions. The necessary
conditions and sufficient differential tests for an extremum that we obtained from
Taylor’s theorem apply, as we have noted, to interior extrema.

In other words, these results are applicable only to the study of the behavior
of functions R

n 
 x �→ f (x) ∈ R in a neighborhood of a point x0 ∈ Rn, when the
argument x can assume any value in some neighborhood of x0 in R

n.
Frequently a situation that is more complicated and from the practical point of

view even more interesting arises, in which one seeks an extremum of a function un-
der certain constraints that limit the domain of variation of the argument. A typical
example is the isoperimetric problem, in which we seek a body of maximal volume
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subject to the condition that its boundary surface has a fixed area. To obtain a mathe-
matical expression for such a problem that will be accessible to us, we shall simplify
the statement and assume that the problem is to choose from the set of rectangles
having a fixed perimeter 2p the one having the largest area σ . Denoting the lengths
of the sides of the rectangle by x and y, we write

σ(x,h)= x · y,

x + y = p.

Thus we need to find an extremum of the function σ(x, y) under the condition
that the variables x and y are connected by the equation x + y = p. Therefore, the
extremum is being sought only on the set of points of R2 satisfying this relation.
This particular problem, of course, can be solved without difficulty: it suffices to
write y = p − x and substitute this expression into the formula for σ(x, y), then
find the maximum of the function x(p − x) by the usual methods. We needed this
example only to explain the statement of the problem itself.

In general the problem of an extremum with constraint usually amounts to finding
an extremum for a real-valued function

y = f
(
x1, . . . , xn

)
(8.159)

of n variables under the condition that these variables must satisfy a system of equa-
tions

⎧
⎪⎨

⎪⎩

F 1
(
x1, . . . , xn

)= 0,
...

Fm
(
x1, . . . , xn

)= 0.

(8.160)

Since we are planning to obtain differential conditions for an extremum, we shall
assume that all these functions are differentiable and even continuously differen-
tiable. If the rank of the system of functions F 1, . . . ,Fm is n−k, conditions (8.160)
define a k-dimensional smooth surface S in R

n, and from the geometric point of
view the problem of extremum with constraint amounts to finding an extremum of
the function f on the surface S. More precisely, we are considering the restriction
f |S of the function f to the surface S and seeking an extremum of that function.

The meaning of the concept of a local extremum itself here, of course, remains
the same as before, that is, a point x0 ∈ S is a local extremum of f on S, or, more
briefly f |S , if there is a neighborhood11 US(x0) of x0 in S ⊂ R

n such that f (x) ≥
f (x0) for any point x ∈ US(x0) (in which case x0 is a local minimum) or f (x) ≤
f (x0) (and then x0 is a local maximum). If these inequalities are strict for x ∈
US(x0)\x0, then the extremum, as before, will be called strict.

11We recall that US(x0)= S ∩U(x0), where U(x0) is a neighborhood of x0 in R
n.
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b. A Necessary Condition for an Extremum with Constraint

Theorem 1 Let f :D→ R be a function defined on an open set D ⊂ R
n and be-

longing to C(1)(D;R). Let S be a smooth surface in D.
A necessary condition for a point x0 ∈ S that is noncritical for f to be a local

extremum of f |S is that

TSx0 ⊂ TNx0 , (8.161)

where TSx0 is the tangent space to the surface S at x0 and TNx0 is the tangent space
to the level surface N = {x ∈D | f (x)= f (x0)} of f to which x0 belongs.

We begin by remarking that the requirement that the point x0 be non-critical for
f is not an essential restriction in the context of the problem of finding an extremum
with constraint, which we are discussing. Indeed, even if the point x0 ∈ D were a
critical point of the function f :D→ R or an extremum of the function, it is clear
that it would still be a possible or actual extremum respectively for the function f |S .
Thus, the new element in this problem is precisely that the function f |S may have
critical points and extrema that are different from those of f .

Proof We choose an arbitrary vector ξ ∈ TSx0 and a smooth path x = x(t) on S that
passes through this point at t = 0 and for which the vector ξ is the velocity at t = 0,
that is,

dx

dt
(0)= ξ. (8.162)

If x0 is an extremum of the function f |S , the smooth function f (x(t)) must have
an extremum at t = 0. By the necessary condition for an extremum, its derivative
must vanish at t = 0, that is, we must have

f ′(x0) · ξ = 0, (8.163)

where

f ′(x0)=
(

∂f

∂x1
, . . . ,

∂f

∂xn

)

, ξ = (
ξ1, . . . , ξn

)
.

Since x0 is a noncritical point of f , condition (8.163) is equivalent to the condi-
tion that ξ ∈ TNx0 , for relation (8.163) is precisely the equation of the tangent space
TNx0 .

Thus we have proved that TSx0 ⊂ TNx0 . �

If the surface S is defined by the system of equations (8.160) in a neighborhood
of x0, then the space TSx0 , as we know, is defined by the system of linear equa-
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tions
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂F 1

∂x1
(x0)ξ

1 + · · · + ∂F 1

∂xn (x0)ξ
n = 0,

...

∂Fm

∂x1
(x0)ξ

1 + · · · + ∂Fm

∂xn
(x0)ξ

n = 0.

(8.164)

The space TNx0 is defined by the equation

∂f

∂x1
(x0)ξ

1 + · · · + ∂f

∂xn
(x0)ξ

n = 0, (8.165)

and, since every solution of (8.164) is a solution of (8.165), the latter equation is a
consequence of (8.163).

It follows from these considerations that the relation TSx0 ⊂ TNx0 is equivalent
to the analytic statement that the vector gradf (x0) is a linear combination of the
vectors gradF i(x0) (i = 1, . . . ,m), that is,

gradf (x0)=
m∑

i=1

λi gradF i(x0). (8.166)

Taking account of this way of writing the necessary condition for an extremum of
a function (8.159) whose variables are connected by (8.160), Lagrange proposed
using the following auxiliary function when seeking a constrained extremum:

L(x,λ)= f (x)−
m∑

i=1

λiF
i(x) (8.167)

in n+m variables (x,λ)= (x1, . . . , xm,λ1, . . . , λn).
This function is called the Lagrange function and the method of using it is the

method of Lagrange multipliers.
The function (8.167) is convenient because the necessary conditions for an ex-

tremum of it, regarded as a function of (x,λ) = (x1, . . . , xm,λ1, . . . , λn), are pre-
cisely (8.166) and (8.160).

Indeed,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂L

∂xj
(x,λ)= ∂f

∂xj
(x)−

m∑

i=1

λi

∂F i

∂xj
(x)= 0 (j = 1, . . . , n),

∂L

∂λi

(x,λ)=−F i(x)= 0 (i = 1, . . . ,m).

(8.168)

Thus, in seeking an extremum of a function (8.159) whose variables are sub-
ject to the constraints (8.160), one can write the Lagrange function (8.167) with
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undetermined multipliers and look for its critical points. If it is possible to find
x0 = (x1

0 , . . . , xn
0 ) from the system (8.168) without finding λ= (λ1, . . . , λm), then,

as far as the original problem is concerned, that is what should be done.
As can be seen from (8.166), the multipliers λi (i = 1, . . . ,m) are uniquely de-

termined if the vectors gradF i(x0) (i = 1, . . . ,m) are linearly independent. The
independence of these vectors is equivalent to the statement that the rank of the sys-
tem (8.164) is m, that is, that all the equations in this system are essential (none of
them is a consequence of the others).

This is usually the case, since it is assumed that all the relations (8.160) are
independent, and the rank of the system of functions F 1, . . . ,Fm is m at every
point x ∈X.

The Lagrange function is often written as

L(x,λ)= f (x)+
m∑

i=1

λiF
i(x),

which differs from the preceding expression only in the inessential replacement of
λi by −λi .12

Example 9 Let us find the extrema of a symmetric quadratic form

f (x)=
n∑

i,j=1

aij x
ixj (aij = aji) (8.169)

on the sphere

F(x)=
n∑

i=1

(
xi
)2 − 1= 0. (8.170)

Let us write the Lagrange function for this problem

L(x,λ)=
n∑

i,j=1

aij x
ixj − λ

(
n∑

i=1

(
xi
)2 − 1

)

,

and the necessary conditions for an extremum of L(x,λ), taking account of the
relation aij = aji :

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂L

∂xi
(x,λ)= 2

(
n∑

j=1

aij x
j − λxi

)

= 0 (i = 1, . . . , n),

∂L

∂λ
(x,λ)=−

(
n∑

i=1

(
xi
)2 − 1

)

= 0.

(8.171)

12In regard to the necessary criterion for an extremum with constraint, see also Problem 6 in
Sect. 10.7 (Part 2).
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Multiplying the first equation by xi and summing the first relation over i, we
find, taking account of the second relation, that the equality

n∑

i,j=1

aij x
ixj − λ= 0 (8.172)

must hold at an extremum.
The system (8.171) minus the last equation can be rewritten as

n∑

i=1

aij x
j = λxi (i = 1, . . . , n), (8.173)

from which it follows that λ is an eigenvalue of the linear operator A defined by the
matrix (aij ), and x = (x1, . . . , xn) is an eigenvector of this operator corresponding
to this eigenvalue.

Since the function (8.169), which is continuous on the compact set S = {x ∈R
n |∑n

i=1(x
i)2 = 1}, must assume its maximal value at some point, the system (8.171),

and hence also (8.173), must have a solution. Thus we have established along the
way that every real symmetric matrix (aij ) has at least one real eigenvalue. This
is a result well-known from linear algebra, and is fundamental in the proof of the
existence of a basis of eigenvectors for a symmetric operator.

To show the geometric meaning of the eigenvalue λ, we remark that if λ > 0,
then, passing to the coordinates t i = xi/

√
λ we find, instead of (8.172),

n∑

i,j=1

aij t
i t j = 1, (8.174)

and, instead of (8.170),
n∑

i=1

(
t i
)2 = 1

λ
. (8.175)

But
∑n

i=1(t
i)2 is the square of the distance from origin to the point t =

(t1, . . . , tn), which lies on the quadric surface (8.174). Thus if (8.174) represents,
for example, an ellipsoid, then the reciprocal 1/λ of the eigenvalue λ is the square
of the length of one of its semi-axes.

This is a useful observation. It shows in particular that relations (8.171), which
are necessary conditions for an extremum with constraint, are still not sufficient.
After all, an ellipsoid in R

3 has, besides its largest and smallest semi-axes, a third
semi-axis whose length is intermediate between the two, in any neighborhood of
whose endpoint there are both points nearer to the origin and points farther away
from the origin than the endpoint. This last becomes completely obvious if we con-
sider the ellipses obtained by taking a section of the original ellipsoid by two planes
passing through the intermediate-length semi-axis, one passing through the smallest
semi-axis and the other through the largest. In one of these cases the intermediate
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Fig. 8.11

Fig. 8.12

axis will be the major semi-axis of the ellipse of intersection. In the other it will be
the minor semi-axis.

To what has just been said we should add that if 1/
√

λ is the length of this inter-
mediate semi-axis, then, as can be seen from the canonical equation of an ellipsoid,
λ will be an eigenvalue of the operator A. Therefore the system (8.171), which ex-
presses the necessary conditions for an extremum of the function f |S , will indeed
have a solution that does not give an extremum of the function.

The result obtained in Theorem 1 (the necessary condition for an extremum with
constraint) is illustrated in Fig. 8.11a and 8.11b.

Figure 8.11a explains why the point x0 of the surface S cannot be an extremum
of f |S if S is not tangent to the surface N = {x ∈R

n | f (x)= f (x0)= c0} at x0. It
is assumed here that gradf (x0) �= 0. This last condition guarantees that in a neigh-
borhood of x0 there are points of a higher, c2-level surface of the function f and
also points of a lower, c1-level surface of the function.

Since the smooth surface S intersects the surface N , that is, the c0-level surface
of the smooth function f , it follows that S will intersect both higher and lower level
surfaces of f in a neighborhood of x0. But this means that x0 cannot be an extremum
of f |S .

Figure 8.11b shows why, when N is tangent to S at x0, this point may turn out to
be an extremum. In the figure x0 is a local maximum of f |S .

These same considerations make it possible to sketch a picture whose analytic
expression can show that the necessary criterion for an extremum is not sufficient.

Indeed, in accordance with Fig. 8.12, we set, for example,

f (x, y)= y, F (x, y)= x3 − y = 0.

It is then obvious that y has no extremum at the point (0,0) on the curve S ⊂
R

2 defined by the equation y = x3, even though this curve is tangent to the level
line f (x, y) = 0 of the function f at that point. We remark that gradf (0,0) =
(0,1) �= 0.
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It is obvious that this is essentially the same example that served earlier to illus-
trate the difference between the necessary and sufficient conditions for a classical
interior extremum of a function.

c. A Sufficient Condition for a Constrained Extremum

We now prove the following sufficient condition for the presence or absence of a
constrained extremum.

Theorem 2 Let f :D→ R be a function defined on an open set D ⊂ R
n and be-

longing to the class C(2)(D;R); let S be the surface in D defined by Eqs. (8.160),
where F i ∈ C(2)(D;R) (i = 1, . . . ,m) and the rank of the system of functions
{F 1, . . . ,Fm} at each point of D is m.

Suppose that the parameters λ1, . . . , λm in the Lagrange function

L(x)= L(x;λ)= f
(
x1, . . . , xn

)−
m∑

i=1

λiF
i
(
x1, . . . , xn

)

have been chosen in accordance with the necessary criterion (8.166) for a con-
strained extremum of the function f |S at x0 ∈ S.13

A sufficient condition for the point x0 to be an extremum of the function f |S is
that the quadratic form

∂2L

∂xi∂xj
(x0)ξ

iξ j (8.176)

be either positive-definite or negative-definite for vectors ξ ∈ TSx0 .
If the quadratic form (8.176) is positive-definite on TSx0 , then x0 is a strict local

minimum of f |S ; if it is negative-definite, then x0 is a strict local maximum.
A sufficient condition for the point x0 not to be an extremum of f |S is that the

form (8.176) assume both positive and negative values on TSx0 .

Proof We first note that L(x) ≡ f (x) for x ∈ S, so that if we show that x0 ∈ S is
an extremum of the function L|S , we shall have shown simultaneously that it is an
extremum of f |S .

By hypothesis, the necessary criterion (8.166) for an extremum of f |S at x0 is
fulfilled, so that gradL(x0)= 0 at this point. Hence the Taylor expansion of L(x) in
a neighborhood of x0 = (x1

0 , . . . , xn
0 ) has the form

L(x)−L(x0)= 1

2!
∂2L

∂xi∂xj
(x0)

(
xi − xi

0

)(
xj − x

j

0

)+ o
(‖x − x0‖2) (8.177)

as x→ x0.

13When we keep λ fixed, L(x;λ) becomes a function depending only on x; we allow ourselves to
denote this function L(x).
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We now recall that, in motivating Definition 2, we noted the possibility of a local
(for example, in a neighborhood of x0 ∈ S) parametric definition of a smooth k-
dimensional surface S (in the present case, k = n−m).

In other words, there exists a smooth mapping

R 
 (t1, . . . , tk
)= t �→ x = (

x1, . . . , xn
) ∈R

n

(as before, we shall write it in the form x = x(t)), under which a neighborhood of
the point 0 = (0, . . . ,0) ∈ R

k maps bijectively to some neighborhood of x0 on S,
and x0 = x(0).

We remark that the relation

x(t)− x(0)= x′(0)t + o
(‖t‖) as t → 0,

which expresses the differentiability of the mapping t �→ x(t) at t = 0, is equivalent
to the n coordinate equalities

xi(t)− xi(0)= ∂xi

∂tα
(0)tα + o

(‖t‖) (i = 1, . . . , n), (8.178)

in which the index α ranges over the integers from 1 to k and the summation is over
this index.

It follows from these numerical equalities that
∣
∣xi(t)− xi(0)

∣
∣=O

(‖t‖) as t → 0

and hence
∥
∥x(t)− x(0)

∥
∥
Rn =O

(‖t‖Rk

)
as t → 0. (8.179)

Using relations (8.178), (8.179), and (8.177), we find that as t → 0

L
(
x(t)

)−L
(
x(0)

)= 1

2!∂ijL(x0)∂αxi(0)∂βx(0)tαtβ + o
(‖t‖2). (8.177′)

Hence under the assumption of positive- or negative-definiteness of the form

∂ijL(x0)∂αxi(0)∂βxj (0)tαtβ (8.180)

it follows that the function L(x(t)) has an extremum at t = 0. If the form (8.180)
assumes both positive and negative values, then L(x(t)) has no extremum at t = 0.
But, since some neighborhood of the point 0 ∈R

k maps to a neighborhood of x(0)=
x0 ∈ S on the surface S under the mapping t �→ x(t), we can conclude that the
function L|S also will either have an extremum at x0 of the same nature as the
function L(x(t)) or, like L(x(t)), will not have an extremum.

Thus, it remains to verify that for vectors ξ ∈ TSx0 the expressions (8.176) and
(8.180) are merely different notations for the same object.

Indeed, setting

ξ = x ′(0)t,
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we obtain a vector ξ tangent to S at x0, and if ξ = (ξ1, . . . , ξn), x(t) =
(x1, . . . , xn)(t), and t = (t1, . . . , tk), then

ξ = ∂βxj (0)tβ (j = 1, . . . , n),

from which it follows that the quantities (8.176) and (8.180) are the same. �

We note that the practical use of Theorem 2 is hindered by the fact that only
k = n−m of the coordinates of the vector ξ = (ξ1, . . . , ξn) ∈ TSx0 are independent,
since the coordinates of ξ must satisfy the system (8.164) defining the space TSx0 .
Thus a direct application of the Sylvester criterion to the quadratic form (8.176)
generally yields nothing in the present case: the form (8.176) may not be positive-
or negative-definite on TR

n
x0

and yet be definite on TSx0 . But if we express m coor-
dinates of the vector ξ in terms of the other k coordinates by relations (8.164) and
then substitute the resulting linear forms into (8.176), we arrive at a quadratic form
in k variables whose positive- or negative-definiteness can be investigated using the
Sylvester criterion.

Let us clarify what has just been said by some elementary examples.

Example 10 Suppose we are given the function

f (x, y, z)= x2 − y2 + z2

in the space R
3 with coordinates x, y, z. We seek an extremum of this function on

the plane S defined by the equation

F(x, y, z)= 2x − y − 3= 0.

Writing the Lagrange function

L(x, y, z)= (
x2 − y2 + z2)− λ(2x − y − 3)

and the necessary conditions for an extremum
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂L

∂x
= 2x − 2λ= 0,

∂L

∂y
=−2y + λ= 0,

∂L

∂z
= 2z= 0,

∂L

∂λ
=−(2x − y − 3)= 0,

we find the possible extremum p = (2,1,0).
Next we find the form (8.176):

1

2
∂ijLξ iξ j = (

ξ1)2 − (
ξ2)2 + (

ξ3)2
. (8.181)
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We note that in this case the parameter λ did not occur in this quadratic form,
and so we did not compute it.

We now write the condition ξ ∈ TSp:

2ξ1 − ξ2 = 0. (8.182)

From this equality we find ξ2 = 2ξ1 and substitute it into the form (8.181), after
which it assumes the form

−3
(
ξ1)2 + (

ξ3)2
,

where this time ξ1 and ξ3 are independent variables.
This last form may obviously assume both positive and negative values, and

therefore the function f |S has no extremum at p ∈ S.

Example 11 Under the hypotheses of Example 10 we replace R
3 by R

2 and the
function f by

f (x, y)= x2 − y2,

retaining the condition

2x − y − 3= 0,

which now defines a line S in the plane R
2.

We find p = (2,1) as a possible extremum.
Instead of the form (8.181) we obtain the form

(
ξ1)2 − (

ξ2)2 (8.183)

with the previous relation (8.182) between ξ1 and ξ2.
Thus the form (8.183) now has the form

−3
(
ξ1)2

on TSp , that is, it is negative-definite. We conclude from this that the point p = (2,1)

is a local maximum of f |S .
The following simple examples are instructive in many respects. On them one

can distinctly trace the working of both the necessary and the sufficient conditions
for constrained extrema, including the role of the parameter and the informal role of
the Lagrange function itself.

Example 12 On the plane R
2 with Cartesian coordinates (x, y) we are given the

function

f (x, y)= x2 + y2.
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Let us find the extremum of this function on the ellipse given by the canonical
relation

F(x, y)= x2

a2
+ y2

b2
− 1= 0,

where 0 < a < b.
It is obvious from geometric considerations that minf |S = a2 and maxf |S = b2.

Let us obtain this result on the basis of the procedures recommended by Theorems 1
and 2.

By writing the Lagrange function

L(x, y,λ)= (
x2 + y2)− λ

(
x2

a2
+ y2

b2
− 1

)

and solving the equation dL= 0, that is, the system ∂L
∂x
= ∂L

∂y
= ∂L

∂λ
= 0, we find the

solutions

(x, y,λ)= (±a,0, a2),
(
0,±b, b2).

Now in accordance with Theorem 2 we write and study the quadratic form
1
2 d2Lξ2, the second term of the Taylor expansion of the Lagrange function in a
neighborhood of the corresponding points:

1

2
d2Lξ2 =

(

1− λ

a2

)
(
ξ1)2 +

(

1− λ

b2

)
(
ξ2)2

.

At the points (±a,0) of the ellipse S the tangent vector ξ = (ξ1, ξ2) has the form
(0, ξ2), and for λ= a2 the quadratic form assumes the form

(

1− a2

b2

)
(
ξ2)2

.

Taking account of the condition 0 < a < b, we conclude that this form is positive-
definite and hence at the points (±a,0) ∈ S there is a strict local (and in this case
obviously also global) minimum of the function f |S , that is, minf |S = a2.

Similarly we find the form

(

1− b2

a2

)
(
ξ1)2

,

which corresponds to the points (0,±b) ∈ S, and we find maxf |S = b2.

Remark Note the role of the Lagrange function here compared with the role of the
function f . At the corresponding points on these tangent vectors the differential of f

(like the differential of L) vanishes, and the quadratic form 1
2 d2f ξ2 = (ξ1)2+ (ξ2)2

is positive definite at whichever of these points it is computed. Nevertheless, the
function f |S has a strict minimum at the points (±a,0) and a strict maximum at the
points (0,±b).
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To understand what is going on here, look again at the proof of Theorem 2 and try
to obtain relation (8.176) by substituting f for L in (8.177). Note that an additional
term containing x′′(0) arises here. The reason it does not vanish is that, in contrast
to dL the differential df of f is not identically zero at the corresponding points,
even though its values are indeed zero on the tangent vectors (of the form x′(0)).

Example 13 Let us find the extrema of the function

f (x, y, z)= x2 + y2 + z2

on the ellipsoid S defined by the relation

F(x, y, z)= x2

a2
+ y2

b2
+ z2

c2
− 1= 0,

where 0 < a < b < c.
By writing the Lagrange function

L(x, y, z, λ)= (
x2 + y2 + z2)− λ

(
x2

a2
+ y2

b2
+ z2

c2
− 1

)

,

in accordance with the necessary criterion for an extremum, we find the solutions of
the equation dL= 0, that is, the system ∂L

∂x
= ∂L

∂y
= ∂L

∂z
= ∂L

∂λ
= 0:

(x, y, z, λ)= (±a,0,0, a2),
(
0,±b,0, b2),

(
0,0,±c, c2).

On each respective tangent plane the quadratic form

1

2
d2Lξ2 =

(

1− λ

a2

)
(
ξ1)2 +

(

1− λ

b2

)
(
ξ2)2 +

(

1− λ

c2

)
(
ξ3)2

in each of these cases has the form
(

1− a2

b2

)
(
ξ2)2 +

(

1− a2

c2

)
(
ξ3)2

, (a)

(

1− b2

a2

)
(
ξ1)2 +

(

1− b2

c2

)
(
ξ3)2

, (b)

(

1− c2

a2

)
(
ξ1)2 +

(

1− c2

b2

)
(
ξ2)2

. (c)

Since 0 < a < b < c, it follows from Theorem 2, which gives a sufficient criterion
for the presence or absence of a constrained extremum, that one can conclude that
in cases (a) and (c), we have found respectively minf |S = a2 and maxf |S = c2,
while at the points (0,±b,0) ∈ S corresponding to case (b) the function f |S has no
extremum. This is in complete agreement with the obvious geometric considerations
stated in the discussion of the necessary criterion for a constrained extremum.
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Certain other aspects of the concepts of analysis and geometry encountered in
this section, which are sometimes quite useful, including the physical interpretation
of the problem of a constrained extremum itself, as well as the necessary criterion
(8.166) for it as the resolution of forces at an equilibrium point and the interpretation
of the Lagrange multipliers as the magnitude of the reaction of ideal constraints, are
presented in the problems and exercises that follow.

8.7.4 Problems and Exercises

1. Paths and surfaces.

a) Let f : I → R
2 be a mapping of class C(1)(I ;R2) of the interval I ⊂ R.

Regarding this mapping as a path in R
2, show by example that its support f (I) may

fail to be a submanifold of R2, while the graph of this mapping in R
3 = R

1 × R
2

is always a one-dimensional submanifold of R
3 whose projection into R

2 is the
support f (I) of the path.

b) Solve problem a) in the case when I is an interval in R
k and f ∈C(1)(I ;Rn).

Show that in this case the graph of the mapping f : I → R
n is a smooth k-

dimensional surface in R
k ×R

n whose projection on the subspace R
n equals f (I).

c) Verify that if f1 : I1 → S and f2 : I2 → S are two smooth parametrizations
of the same k-dimensional surface S ⊂Rn, f1 having no critical points in I1 and f2
having no critical points in I2, then the mappings

f−1
1 ◦ f2 : I2 → I1, f−1

2 ◦ f1 : I1 → I2

are smooth.

2. The sphere in R
n.

a) On the sphere S2 = {x ∈R
3 | ‖x‖ = 1} exhibit a maximal domain of validity

for the curvilinear coordinates (ϕ,ψ) obtained from polar coordinates in R
3 (see

formula (8.116) of the preceding section) when ρ = 1.
b) Answer question a) in the case of the (m− 1)-dimensional sphere

Sm−1 = {
x ∈R

m | ‖x‖ = 1
}

in R
m and the coordinates (ϕ1, . . . , ϕm−1) on it obtained from polar coordinates in

R
m (see formula (8.118) of the preceding section) at ρ = 1.

c) Can the sphere Sk ⊂ R
k+1 be defined by a single coordinate system

(t1, . . . , tk), that is, a single diffeomorphism f :G→R
k+1 of a domain G⊂R

k?
d) What is the smallest number of maps needed in an atlas of the Earth’s surface?
e) Let us measure the distance between points of the sphere S2 ⊂ R

3 by the
length of the shortest curve lying on the sphere S2 and joining these points. Such
a curve is the arc of a suitable great circle. Can there exist a local flat map of the
sphere such that all the distances between points of the sphere are proportional (with
the same coefficient of proportionality) to the distances between their images on the
map?
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Fig. 8.13

f) The angle between curves (whether lying on the sphere or not) at their point
of intersection is defined as the angle between the tangents to these curves at this
point.

Show that there exist local flat maps of a sphere at which the angles between the
curves on the sphere and the corresponding curves on the map are the same (see
Fig. 8.13, which depicts the so-called stereographic projection).

3. The tangent space.

a) Verify by direct computation that the tangent manifold TSx0 to a smooth k-
dimensional surface S ⊂ R

n at a point x0 ∈ S is independent of the choice of the
coordinate system in R

n.
b) Show that if a smooth surface S ⊂D maps to a smooth surface S′ ⊂D′ under

a diffeomorphism f :D→D′ of the domain D ⊂R
n onto the domain D′ ⊂R

n and
the point x0 ∈ S maps to x′0 ∈ S′, then under the linear mapping f ′(x0) : Rn → R

n

tangent to f at x0 ∈ D the vector space TSx0 maps isomorphically to the vector
space TS′

x′0
.

c) If under the conditions of the preceding problem the mapping f :D→D′ is
any mapping of class C(1)(D;D′) under which f (S)⊂ S′, then f ′(TSx0)⊂ TS′

x′0
.

d) Show that the orthogonal projection of a smooth k-dimensional surface S ⊂
R

n on to the k-dimensional tangent plane TSx0 to it at x0 ∈ S is one-to-one in some
neighborhood of the point of tangency x0.

e) Suppose, under the conditions of the preceding problem, that ξ ∈ TSx0 and
‖ξ‖ = 1.

The equation x−x0 = ξ t of a line in R
n lying in TSx0 can be used to characterize

each point x ∈ TSx0\x0 by the pair (t, ξ). These are essentially polar coordinates in
TSx0 .

Show that smooth curves on the surface S intersecting only at the point x0 cor-
respond to the lines x − x0 = ξ t in a neighborhood of x0. Verify that, retaining t

as the parameter on these curves, we obtain paths along which the velocity at t = 0
is the vector ξ ∈ TSx0 that determines the line x − x0 = ξ t , from which the given
curve on S is obtained.

Thus the pairs (t, ξ) where ξ ∈ TSx0 , ‖ξ‖ = 1, and t are real numbers from some
neighborhood U(0) of zero in R, can serve as the analogue of polar coordinates in
a neighborhood of x0 ∈ S.

4. Let the function F ∈ C(1)(Rn;R) having no critical points be such that the equa-
tion F(x1, . . . , xn)= 0 defines a compact surface S in R

n (that is, S is compact as
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a subset of Rn). For any point x ∈ S we find a vector η(x)= gradF(x) normal to S

at x. If we force each point x ∈ S to move uniformly with velocity η(x), a mapping
S 
 x �→ x + η(x)t ∈R

n arises.

a) Show that for values of t sufficiently close to zero, this mapping is bijective
and for each such value of t a smooth surface S̃t results from S.

b) Let E be a set in R
n; we define the δ-neighborhood of the set E to be the set

of points in R
n whose distance from E is less than δ.

Show that for values of t close to zero, the equation

F
(
x1, . . . , xn

)= t

defines a compact surface St ⊂ R
n, and show that the surface S̃t lies in the δ(t)-

neighborhood of the surface St , where δ(t)=O(t) as t → 0.
c) With each point x of the surface S = S0 we associate a unit normal vector

n(x)= η(x)

‖η(x)‖
and consider the new mapping S 
 x �→ x + n(x)t ∈R

n.
Show that for all values of t sufficiently close to zero this mapping is bijective,

that the surface
≈
St obtained from S at the specific value of t is smooth, and if t1 �= t2,

then
≈
St1 =∩

≈
St2 =∅.

d) Relying on the result of the preceding exercise, show that there exists
δ > 0 such that there is a one-to-one correspondence between the points of the δ-
neighborhood of the surface S and the pairs (t, x), where t ∈ ]−δ, δ[⊂ R, x ∈ S. If
(t1, . . . , tk) are local coordinates on the surface S in the neighborhood Us(x0) of x0,
then the quantities (t, t1, . . . , tk) can serve as local coordinates in a neighborhood
U(x0) of x0 ∈R

n.
e) Show that for |t | < δ the point x ∈ S is the point of the surface S closest to

(x+n(x)t) ∈R
n. Thus for |t |< δ the surface

≈
St is the geometric locus of the points

of Rn at distance |t | from S.

5. a) Let dp : S→R be the function on the smooth k-dimensional surface S ⊂R
n

defined by the equality dp(x)= ‖p−x‖, where p is a fixed point of Rn, x is a point
of S, and ‖p− x‖ is the distance between these points in R

n.
Show that at the extrema of the function dp(x) the vector p− x is orthogonal to

the surface S.
b) Show that on any line that intersects the surface S orthogonally at the point

q ∈ S, there are at most k points p such that the function dp(x) has q as a degenerate
critical point (that is, a point at which the Hessian of the function vanishes).

c) Show that in the case of a curve S (k = 1) in the plane R
2 (n= 2) the point

p for which the point q ∈ S is a degenerate critical point of dp(x) is the center of
curvature of the curve S at the point q ∈ S.
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6. In the plane R
2 with Cartesian coordinates x, y construct the level curves of the

function f (x, y)= xy and the curve

S = {
(x, y) ∈R

2 | x2 + y2 = 1
}
.

Using the resulting picture, carry out a complete investigation of the problem of
extrema of the function f |S .
7. The following functions of class C(∞)(R2;R) are defined on the plane R

2 with
Cartesian coordinates x, y:

f (x, y)= x2 − y; F(x, y)=
{

x2 − y + e−1/x2
sin 1

x
, if x �= 0,

x2 − y, if x = 0.

a) Draw the level curves of the function f (x, y) and the curve S defined by the
relation F(x, y)= 0.

b) Investigate the function f |S for extrema.
c) Show that the condition that the form ∂ij f (x0)ξ

iξ j be positive-definite or
negative-definite on TSx0 , in contrast to the condition for the form ∂ijL(x0)ξ

iξ j on
TSx0 given in Theorem 2, is still not sufficient for the possible extremum x0 ∈ S to
be an actual extremum of the function f |S .

d) Check to see whether the point x0 = (0,0) is critical for the function f and
whether one can study the behavior of f in a neighborhood of this point using only
the second (quadratic) term of Taylor’s formula, as was assumed in c).

e) Consider the pair of functions F(x, y)= 2x2+y, f (x, y)= x2+y and show
that f may have a strict maximum at a point of the curve F(x, y)= 0, although on
the tangent to the curve at this point the function f has a strict minimum. This again
emphasizes the role of the function of Lagrange in the statement proved above for
the sufficient condition for a relative extremum.

f) Consider the pair of functions F(x, y)= x2 − y3, f (x, y)= y and show that
for L(x, y)= f (x, y)+ λF the equation dL= 0 may not have solution, when the
extremum of f is attained at a singular point of the curve F(x, y)= 0. This can be
taken into consideration studying instead of L, the function L̃(x, y) = λ0f + λF ,
allowing the possibility of λ0 = 0.

8. In determining principal curvatures and principal directions in differential geom-
etry it is useful to know how to find an extremum of a quadratic form hiju

iuj under
the hypothesis that another (positive-definite) form giju

iuj is constant. Solve this
problem by analogy with Example 9 which was discussed above.
9. Let A= [ai

j ] be a square matrix of order n such that

n∑

i=1

(
ai
j

)2 =Hj (j = 1, . . . , n),

where H1, . . . ,Hn is a fixed set of n nonnegative real numbers.
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a) Show that det2 A can have an extremum under these conditions only if the
rows of the matrix A are pairwise orthogonal vectors in R

n.
b) Starting from the equality

det2 A= detA · detA∗,

where A∗ is the transpose of A, show that under the conditions above

max
A

det2 A=H1 · · ·Hn.

c) Prove Hadamard’s inequality for any matrix [ai
j ]:

det2
(
ai
j

)≤
n∏

j=1

(
n∑

i=1

(
ai
j

)2

)

.

d) Give an intuitive-geometric interpretation of Hadamard’s inequality.

10. a) Draw the level surfaces of the function f and the plane S in Example 10.
Explain the result obtained in this example on the figure.

b) Draw the level curves of the function f and the line S in Example 11. Ex-
plain the result obtained in this example on the figure.

11. In Example 6 of Sect. 5.4, starting from Fermat’s principle we obtained Snell’s
law for refraction of light at the interface of two media when the interface is a plane.
Does this law remain valid for an arbitrary smooth interface?
12. a) A point mass in a potential force field can be in an equilibrium position
(also called a state of rest or a stationary state) only at critical (stationary) points
of the potential. In this situation a position of stable equilibrium corresponds to a
strict local minimum of the potential and an unstable equilibrium point to a local
maximum. Verify this.

b) To which constrained extremal problem (solved by Lagrange) does the prob-
lem of the equilibrium position reduce for a point mass in a potential force field (for
example, gravitational) with ideal constraints (for example, a point may be confined
to a smooth surface or a bead may be confined to a smooth thread or a ball to a
track)? The constraint is ideal (there is no friction); this means that its effect on the
point (the reactive force of the constraint) is always normal to the constraint.

c) What physical (mechanical) meaning do the expansion (8.166), the neces-
sary criterion for a constrained extremum, and the Lagrange multiplier have in this
case.

Note that each of the functions of the system (8.160) can be divided by the abso-
lute value of its gradient, which obviously leads to an equivalent system (if its rank
is equal to m everywhere). Hence all the vectors gradF i(x0) on the right-hand side
of (8.166) can be regarded as unit normal vectors to the corresponding surface.

d) Do you agree that the Lagrange method of finding a constrained extremum
becomes obvious and natural after the physical interpretation just given?



Some Problems from the Midterm Examinations

1 Introduction to Analysis
(Numbers, Functions, Limits)

Problem 1 The length of a hoop girdling the Earth at the equator is increased by 1
meter, leaving a gap between the Earth and the hoop. Could an ant crawl through
this gap? How big would the absolute and relative increases in the radius of the
Earth be if the equator were lengthened by this amount? (The radius of the Earth is
approximately 6400 km.)

Problem 2 How are the completeness (continuity) of the real numbers, the un-
boundedness of the series of natural numbers, and Archimedes’ principle related?
Why is it possible to approximate every real number arbitrarily closely by ratio-
nal numbers? Explain using the model of rational fractions (rational functions) that
Archimedes’ principle may fail, and that in such number systems the sequence of
natural numbers is bounded and there exist infinitely small numbers.

Problem 3 Four bugs sitting at the corners of the unit square begin to chase one an-
other with unit speed, each maintaining a course in the direction of the one pursued.
Describe the trajectories of their motions. What is the length of each trajectory?
What is the law of motion (in Cartesian or polar coordinates)?

Problem 4 Draw a flow chart for computing
√

a (a > 0) by the recursive procedure

xn+1 = 1

2

(

xn + a

xn

)

.

How is equation solving related to finding fixed points? How do you find n
√

a?

Problem 5 Let g(x) = f (x) + o(f (x)) as x →∞. Is it also true that f (x) =
g(x)+ o(g(x)) as x→∞?
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Problem 6 By the method of undetermined coefficients (or otherwise) find the first
few (or all) coefficients of the power series for (1+x)α with α =−1,− 1

2 ,0, 1
2 ,1, 3

2 .
(By interpolating the coefficients of like powers of x in such expansions, Newton
wrote out the law for forming the coefficients with any α ∈R. This result is known
as Newton’s binomial theorem.)

Problem 7 Knowing the power-series expansion of the function ex , find by the
method of undetermined coefficients (or otherwise) the first few (or all) terms of
the power-series expansion of the function ln(1+ x).

Problem 8 Compute expA when A is one of the matrices

(
0 0
0 0

)

,

(
0 1
0 0

)

,

⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠ ,

⎛

⎝
1 0 0
0 2 0
0 0 3

⎞

⎠ .

Problem 9 How many terms of the series for ex must one take in order to obtain a
polynomial that makes it possible to compute ex on the interval [–3, 5] within 10−2?

Problem 10 If we know the power expansion of the functions sinx and cosx, find
with the method of the undetermined coefficients (or another one) some few first
terms (or all) the power expansion of the function tanx in a neighborhood of the
point x = 0.

Problem 11 The length of a band tightening the Earth at the Equator have increased
by 1 meter, and after that the band was pulled propping up a vertical column. What
is, roughly speaking, the height of the column if the radius of the Earth ≈6400 km?

Problem 12 Calculate

lim
x→∞

(

e

(

1+ 1

x

)−x)x

.

Problem 13 Sketch the graphs of the following functions:

a) logcosx sinx; b) arctan
x3

(1− x)(1+ x)2
.

2 One-Variable Differential Calculus

Problem 1 Show that if the acceleration vector a(t) is orthogonal to the vector v(t)

at each instant of time t , the magnitude |v(t)| remains constant.

Problem 2 Let (x, t) and (x̃, t̃ ) be respectively the coordinate of a moving point
and the time in two systems of measurement. Assuming the formulas x̃ = αx + βt
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and t̃ = γ x + δt for transition from one system to the other are known, find the
formula for the transformation of velocities, that is, the connection between v = dx

dt

and ṽ = dx̃
dt̃

.

Problem 3 The function f (x) = x2 sin 1
x

for x �= 0, f (0) = 0 is differentiable on
R, but f ′ is discontinuous at x = 0 (verify this). We shall “prove”, however, that if
f : R→ R is differentiable on R, then f ′ is continuous at every point a ∈ R. By
Lagrange’s theorem

f (x)− f (a)

x − a
= f ′(ξ),

where ξ is a point between a and x. Then if x → a, it follows that ξ → a. By
definition,

lim
x→a

f (x)− f (a)

x − a
= f ′(a),

and since this limit exists, the right-hand side of Lagrange’s formula has a limit
equal to it. That is, f ′(ξ) → f ′(a) as ξ → a. The continuity of f ′ at a is now
“proved”. Where is the error?

Problem 4 Suppose the function f has n+1 derivatives at the point x0, and let ξ =
x0 + θx(x − x0) be the intermediate point in Lagrange’s formula for the remainder
term 1

n!f
(n)(ξ)(x − x0)

n, so that 0 < θx < 1. Show that θx → 1
n+1 as x → x0 if

f (n+1)(x0) �= 0.

Problem 5

a) If the function f ∈ C(n)([a, b],R) vanishes at n + 1 points of the interval
[a, b], then there exists in this interval at least one zero of the function f (n), the
derivative of f of order n.

b) Show that the polynomial Pn(x) = dn(x2−1)n

dxn has n roots on the interval

[−1,1]. (Hint: x2−1= (x−1)(x+1) and P
(k)
n (−1)= P

(k)
n (1)= 0, for k = 0, . . . ,

n− 1.)

Problem 6 Recall the geometric meaning of the derivative and show that if the
function f is defined and differentiable on an interval I and [a, b] ⊂ I , then the
function f ′ (not even necessarily continuous!) takes all the values between f ′(a)

and f ′(b) on the interval [a, b].

Problem 7 Prove the inequality

a
α1
1 · · ·aαn

n ≤ α1a1 + · · · + αnan,

where a1, . . . , an, α1, . . . , αn are nonnegative and α1 + · · · + αn = 1.
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Problem 8 Show that

lim
n→∞

(

1+ z

n

)n

= ex(cosy + i siny) (z= x + iy),

so that it is natural to suppose that eiy = cosy + i siny (Euler’s formula) and

ez = exeiy = ex(cosy + i siny).

Problem 9 Find the shape of the surface of a liquid rotating at uniform angular
velocity in a glass.

Problem 10 Show that the tangent to the ellipse x2

a2 + y2

b2 = 1 at the point (x0, y0)

has the equation xx0
a2 + yy0

b2 = 1, and that light rays from a source situated at one

of the foci F1 = (−√a2 − b2,0), F2 = (
√

a2 − b2,0) of an ellipse with semiaxes
a > b > 0 are reflected by an elliptical mirror to the other focus.

Problem 11 A particle subject to gravity, without any initial boost, begins to slide
from the top of an iceberg of elliptic cross-section. The equation of the cross section
is x2 + 5y2 = 1, y ≥ 0. Compute the trajectory of the motion of the particle until it
reaches the ground.

Problem 12 The value

sα(x1, x2, . . . , xn)=
(

xα
1 + xα

2 + · · · + xα
n

n

)1/α

is called the mean of order α of the numbers x1, x2, . . . , xn. In particular, for α =
1,2,−1, we obtain the arithmetic mean, the mean square, and the harmonic mean,
respectively, of these numbers. We will assume that the numbers x1, x2, . . . , xn are
nonnegative and if the exponent α is less than 0, then we will suppose even that they
are positive.

a) Show, using Hölder’s inequality, that if α < β , then

sα(x1, x2, . . . , xn)≤ sβ(x1, x2, . . . , xn),

and equality holds only when x1 = x2 = · · · = xn.
b) Show that if α tends to zero, then the value sα(x1, x2, . . . , xn) tends to

n
√

x1x2 · · ·xn, i.e., to the harmonic mean of these numbers. In view of the result
of problem a), from here, for example, follows the classical inequality between the
geometric and the arithmetic means of nonnegative numbers (write it down).

c) If α→∞, then sα(x1, x2, . . . , xn)→max{x1, x2, . . . , xn}, and for α→−∞,
the value sα(x1, x2, . . . , xn) tends to the lowest of the considered numbers, i.e., to
min{x1, x2, . . . , xn}. Prove this.
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Problem 13 Let r= r(t) denote the law of motion of a point (i.e., its radius vectors
as a function of time). We suppose that it is a continuously differentiable function
on the interval a ≤ t ≤ b.

a) Is it possible, according to Lagrange’s mean value theorem, to claim that there
exists a moment ξ on the interval [a, b] such that r(b) − r(a) = r′(ξ) · (b − a)?
Explain your answer with examples.

b) Let Convex{r′} be the convex hull (of all ends) of the vectors r′(t), t ∈ [a, b].
Show that there exists a vector v ∈ Convex{r′} such that r(b)− r(a)= v · (b− a).

c) The relation |r(b) − r(a)| ≤ sup |r′(t)| · |b − a|, where the upper bound is
taken over t ∈ [a, b] has an obvious physical sense. What is it? Prove this inequality
as a general mathematical fact, developing the classical Lagrange theorem on finite
increments.

3 Integration and Introduction to Several Variables

Problem 1 Knowing the inequalities of Hölder, Minkowski, and Jensen for sums,
obtaining the corresponding inequalities for integrals.

Problem 2 Compute the integral
∫ 1

0 e−x2
dx with a relative error of less than 10 %.

Problem 3 The function erf(x)= 1√
π

∫ x

−x
e−t2

dt , called the probability error inte-

gral, has limit 1 as x→+∞. Draw the graph of this function and find its derivative.
Show that as x→+∞

erf(x)= 1− 2√
π

e−x2
(

1

2x
− 1

22x3
+ 1 · 3

23x5
− 1 · 3 · 5

24x7
+ o

(
1

x7

))

.

How can this asymptotic formula be extended to a series? Are there any values of
x ∈R for which this series converges?

Problem 4 Does the length of a path depend on the law of motion (the parametriza-
tion)?

Problem 5 You are holding one end of a rubber band of length 1 km. A beetle is
crawling toward you from the other end, which is clamped, at a rate of 1 cm/s.
Each time it crawls 1 cm you lengthen the band by 1 km. Will the beetle ever reach
your hand? If so, approximately how much time will it require? (A problem of
L.B. Okun’, proposed to A.D. Sakharov.)

Problem 6 Calculate the work done in moving a mass in the gravitational field of
the Earth and show that this work depends only on the elevation of the initial and
terminal positions. Find the work done in escaping from the Earth’s gravitational
field and the corresponding escape velocity.
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Problem 7 Using the example of a pendulum and a double pendulum explain how
it is possible to introduce local coordinate systems and neighborhoods into the set of
corresponding configurations and how a natural topology thereby arises making it
into the configuration space of a mechanical system. Is this space metrizable under
these conditions?

Problem 8 Is the unit sphere in Rn, R∞0 or C[a, b] compact?

Problem 9 A subset of a given set is called an ε-grid if any point of the set lies at a
distance less than ε from some point of the set. Denote by N(ε) the smallest possible
number of points in an ε-grid for a given set. Estimate the ε-entropy log2 N(ε) of a
closed line segment, a square, a cube, and a bounded region in R

n. Does the quantity
log2 N(ε)

log2(1/ε)
as ε→ 0 give a picture of the dimension of the space under consideration?

Can such a dimension be equal, for example, to 0.5?

Problem 10 On the surface of the unit sphere S in R
3 the temperature T varies

continuously as a function of a point. Must there be points on the sphere where
the temperature reaches a minimum or a maximum? If there are points where the
temperature assumes two given values, must there be points where it assumes inter-
mediate values? How much of this is valid when the unit sphere is taken in the space
C[a, b] and the temperature at the point f ∈ S is given as

T (f )=
(∫ b

a

|f |(x)dx

)−1

?

Problem 11

a) Taking 1.5 as an initial approximation to
√

2, carry out two iterations using
Newton’s method and observe how many decimal places of accuracy you obtain at
each step.

b) By a recursive procedure find a function f satisfying the equation

f (x)= x +
∫ x

0
f (t)dt.

4 Differential Calculus of Several Variables

Problem 1 Local linearization. Consider and prove that local linearization is appli-
cable to the following examples: instantaneous velocity and displacement; simpli-
fication of the equation of motion when the oscillations of a pendulum are small;
computation of linear corrections to the values of exp(A), A−1, det(E), 〈a, b〉 un-
der small changes in the arguments (here A is an invertible matrix, E is the identity
matrix, a and b are vectors, and 〈·, ·〉 is the inner product).
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Problem 2

a) What is the relative error δ = |Δf |
|f | in computing the value of a function

f (x, y, z) at a point (x, y, z) whose coordinates have absolute errors Δx,Δy, and
Δz respectively?

b) What is the relative error in computing the volume of a room whose di-
mensions are as follows: length x = 5 ± 0.05 m, width y = 4 ± 0.04 m, height
z= 3± 0.03 m?

c) Is it true that the relative error of the value of a linear function coincides with
the relative error of the value of its argument?

d) Is it true that the differential of a linear function coincides with the function
itself?

e) Is it true that the relation f ′ = f holds for a linear function f ?

Problem 3

a) One of the partial derivatives of a function of two variables defined in a disk
equals zero at every point. Does that mean that the function is independent of the
corresponding variable in that disk?

b) Does the answer change if the disk is replaced by an arbitrary convex region?
c) Does the answer change if the disk is replaced by an arbitrary region?
d) Let x= x(t) be the law of motion of a point in the plane (or in Rn) in the time

interval t ∈ [a, b]. Let v(t) be its velocity as a function of time and C = conv{v(t) |
t ∈ [a, b]} the smallest convex set containing all the vectors v(t) (usually called
the convex hull of a set that spans it). Show that there is a vector v in C such that
x(b)− x(a)= v · (b− a).

Problem 4

a) Let F(x, y, z)= 0. Is it true that ∂z
∂y
· ∂y

∂x
· ∂x

∂z
=−1? Verify this for the relation

xy
z
− 1= 0 (corresponding to the Clapeyron equation of state of an ideal gas: PV

T
=

R).
b) Now let F(x, y)= 0. Is it true that ∂y

∂x
∂x
∂y
= 1?

c) What can you say in general about the relation F(x1, . . . , xn)= 0?
d) How can you find the first few terms of the Taylor expansion of the implicit

function y = f (x) defined by an equation F(x, y)= 0 in a neighborhood of a point
(x0, y0), knowing the first few terms of the Taylor expansion of the function F(x, y)

in a neighborhood of (x0, y0), where F(x0, y0)= 0 and F ′y(x0, y0) is invertible?

Problem 5

a) Verify that the plane tangent to the ellipsoid x2

a2 + y2

b2 + z2

c2 = 1 at the point
(x0, y0, z0) can be defined by the equation xx0

a2 + yy0
b2 + zz0

c2 = 1.

b) The point P(t) = ( a√
3
, b√

3
, c√

3
) · t emerged from the ellipsoid x2

a2 + y2

b2 +
z2

c2 = 1 at time t = 1. Let p(t) be the point of the same ellipsoid closest to P(t) at
time t . Find the limiting position of p(t) as t →+∞.
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Problem 6

a) In the plane R
2 with Cartesian coordinates (x, y) construct the level curves

of the function f (x, y)= xy and the curve S = {(x, y) ∈ R
2 | x2 + y2 = 1}. Using

the resulting picture, carry out a complete study of the extremal problem for f |S ,
the restriction of f to the circle S.

b) What is the physical meaning of the Lagrange multiplier in Lagrange’s
method of finding extrema with constraints when an equilibrium position is sought
for a point mass in a gravitational field if the motion of the point is constrained by
ideal relations (for example, relations of the form F1(x, y, z)= 0, F2(x, y, z)= 0)?

Problem 7 If in a vector space V one has a nondegenerate bilinear form B(x, y),
then to every linear function g∗ ∈ V ∗ in this space there corresponds a unique vector
g such that g∗(v)= B(g, v), for every vector v ∈ V .

a) Show that if V = R
n, B(x, y) = bij x

ixj , and g∗v = giv
i , then the vector g

has coordinates gj = bij gi , where bij is the inverse of the matrix (bij ).
A symmetric scalar product 〈·, ·〉 in the Euclidean geometry or a skew-scalar

product ω(·, ·) (when the form B is skew-symmetric) in the symplectic geometry
appears most often as a bilinear form B(·, ·).

b) Let B(v1, v2)=
∣
∣ v1

1 v2
1

v1
2 v2

2

∣
∣ be the oriented area of the parallelogram spanned by

the vectors v1, v2 ∈ R
2. Find the vector g = (g1, g1) corresponding to the linear

function g∗ = (g1, g2) and with respect to the form B if we know the coefficients
of g∗.

c) The vector corresponding to the differential of a function f : Rn → R at the
point x relative to the scalar product 〈·, ·〉 of the Euclidean space R

n is called as
usual the gradient of the function f at this point and denoted by gradf . Thus,
df (x)v := 〈gradf, v〉 for every vector v ∈ TxR

n ∼R
n, applied at x.

Therefore,

f ′(x)v = ∂f

∂x1
(x)v1+ · · ·+ ∂f

∂xn
(x)vn = 〈

gradf (x), v
〉= ∣

∣gradf (x)
∣
∣ · |v| cosϕ.

c1) Show that in the standard orthonormal basis, i.e., in Cartesian coordinates,
gradf (x)= (

∂f

∂x1 , . . . ,
∂f
∂xn )(x).

c2) Show that the rate of growth of the function f under a motion from the
point x with unit velocity is maximal when the direction of the movement coin-
cides with the direction of the gradient of the function f at this point and is equal
to |gradf (x)|. When the movement has a perpendicular direction to the vector
gradf (x), the function does not change.

c3) How do the coordinates of the vector gradf (x) in R
2 change if instead

of considering the canonical basis (e1, e2), we take an orthogonal basis (ẽ1, ẽ2) =
(λ1e1, λe2)?

c4) How do we calculate gradf in polar coordinates? Answer: (
∂f
∂r

, 1
r

∂f
∂ϕ

).
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d) In exercise b) above, we considered a skew-symmetric form B(v1, v2) of the
oriented area of the parallelogram in R

2.
Since the vector corresponding to df (x) relative to the symmetric form 〈·, ·〉

is called the gradient gradf (x), the vector corresponding to df (x) relative to the
skew-symmetric form B is called skew-gradient and denoted by sgradf (x). Write
down gradf (x) and sgradf (x) in Cartesian coordinates.

Problem 8

a) Show that in R
3 (and in general in R

2n+1), there are no nondegenerate skew-
symmetric bilinear forms.

b) In the oriented space R
2 there is a nondegenerate skew-symmetric bilinear

form (the oriented area of the parallelogram), as we have seen. In R
2n with coordi-

nates (x1, . . . , xn, . . . , x2n) = (p1, . . . , pn, q1, . . . , qn), such a form ω also exists:
if vi = (p1

i , . . . , p
n
i , q1

i , . . . , qn
i ) (i = 1,2), then

ω(v1, v2)=
∣
∣
∣
∣
∣

p1
1 q1

1

p1
2 q1

2

∣
∣
∣
∣
∣
+ · · · +

∣
∣
∣
∣
∣

pn
1 qn

1

pn
2 qn

2

∣
∣
∣
∣
∣
.

That means that ω(v1, v2) is the sum of the oriented areas of parallelograms
spanned by the projections of the vectors v1, v2 in the coordinate plane (pj , qj )

(j = 1, . . . , n).

b1) Let g∗ be a linear function in R
2n, given with its coefficients g∗ =

(p1, . . . , pn, q1, . . . , qn). Find the coordinates for the vector g mapped by the func-
tion g∗ through the form ω.

b2) The differential of the function f : R2n → R at the point x ∈ R
2n through

the skew-symmetric form ω is associated with a vector called the skew-gradient of
the function f , as we already said, at this point and denoted by sgradf (x). Find the
expression for sgradf (x) in the canonical Cartesian coordinates in the space R

2n.
b3) Find the scalar product 〈gradf (x), sgradf (x)〉.
b4) Show that the vector sgradf (x) is directed along the level surface of the

function f .
b5) The law of motion x = x(t) of a point x in the space R

2n is such that ẋ(t)=
sgradf (x(t)). Show that f (x(t))= const.

b6) Write down the equation ẋ = sgradf (x) in the canonical Cartesian notation
(p1, . . . , pn, q1, . . . , qn) for the coordinates and H = H(p,q) for the function f .
The resulting system, called a system of Hamilton’s equations, is one of the central
objects of mechanics.

Problem 9 Canonical variables and Hamilton’s system of equations.

a) In the calculus of variations and in the fundamental variational principles of
classical mechanics, the following system of Euler–Lagrange equations plays an
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important role:
⎧
⎪⎨

⎪⎩

(
∂L

∂x
− d

dt

∂L

∂v

)

(t, x, v)= 0,

v = ẋ(t),

where L(t, x, v) is a given function in the variables t , x, v, where t usually denotes
time, x the coordinate, and v the velocity. This is a system of two equations in three
variables. From it, one usually wants to find the dependence relations x = x(t)

and v = v(t), which essentially boils down to finding the law of motion x = x(t),
since v = ẋ(t). Write down the first equation of the system in detail, revealing the
derivative d

dt
given that x = x(t) and v = v(t).

b) Show that in transition from the variables t , x, v, L to the canonical variables
t , x, p, H by taking the Legendre transform of

⎧
⎨

⎩

p = ∂L

∂v
,

H = pv −L,

with respect to the variables v, L, interchanging them with the variables p, H , the
Euler–Lagrange system acquires the symmetric form:

ṗ =−∂H

∂x
, ẋ = ∂H

∂p
.

c) In mechanics, we often use the notation q and q̇ , instead of x and v. In many
cases when L(t, q, q̇) = L(t, q1, . . . , qm, q̇1, . . . , q̇m), the Euler–Lagrange system
of equations has the form

(
∂L

∂qi
− d

dt

∂L

∂q̇i

)

(t, q, q̇)= 0 (i = 1, . . . ,m).

Take the Legendre transform with respect to the variables q̇ and L, and go from
the variables t , q , q̇ , L to the canonical variables t , q , p, H and show that this
Euler–Lagrange system transforms into the following Hamilton equations:

ṗi =−∂H

∂qi
, q̇i = ∂H

∂pi
(i = 1, . . . ,m).



Examination Topics

1 First Semester

1.1 Introduction to Analysis and One-Variable Differential
Calculus

1. Real numbers. Bounded (from above or below) numerical sets. The axiom of
completeness and the existence of a least upper (greatest lower) bound of a set.
Unboundedness of the set of natural numbers.
2. Fundamental lemmas connected with the completeness of the set of real numbers
R (nested interval lemma, finite covering, limit point).
3. Limit of a sequence and the Cauchy criterion for its existence. Tests for the exis-
tence of a limit of a monotonic sequence.
4. Infinite series and the sum of an infinite series. Geometric progressions. The
Cauchy criterion and a necessary condition for the convergence of a series. The
harmonic series. Absolute convergence.
5. A test for convergence of a series of nonnegative terms. The comparison theorem.
The series ζ(s)=∑∞

n=1 n−s .
6. The limit of a function. The most important filter bases. Definition of the limit
of a function over an arbitrary base and its decoding in specific cases. Infinitesimal
functions and their properties. Comparison of the ultimate behavior of functions,
asymptotic formulas, and the basic operations with the symbols o(·) and O(·).
7. The connection of passage to the limit with the algebraic operations and the order
relation in R. The limit of sinx

x
as x→ 0.

8. The limit of a composite function and a monotonic function. The limit of (1+
1
x
)x as x→∞.

9. The Cauchy criterion for the existence of the limit of a function.
10. Continuity of a function at a point. Local properties of continuous functions (lo-
cal boundedness, conservation of sign, arithmetic operations, continuity of a com-
posite function). Continuity of polynomials, rational functions, and trigonometric
functions.
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11. Global properties of continuous functions (intermediate-value theorem, max-
ima, uniform continuity).
12. Discontinuities of monotonic functions. The inverse function theorem. Conti-
nuity of the inverse trigonometric functions.
13. The law of motion, displacement over a small interval of time, the instanta-
neous velocity vector, trajectories and their tangents. Definition of differentiability
of a function at a point. The differential, its domain of definition and range of val-
ues. Uniqueness of the differential. The derivative of a real-valued function of a
real variable and its geometric meaning. Differentiability of sinx, cosx, ex , ln |x|,
and xα .
14. Differentiability and the arithmetic operations. Differentiation of polynomials,
rational functions, the tangent, and the cotangent.
15. The differential of a composite function and an inverse function. Derivatives of
the inverse trigonometric functions.
16. Local extrema of a function. A necessary condition for an interior extremum of
a differentiable function (Fermat’s lemma).
17. Rolle’s theorem. The finite-increment theorems of Lagrange and Cauchy
(mean-value theorems).
18. Taylor’s formula with the Cauchy and Lagrange forms of the remainder.
19. Taylor series. The Taylor expansions of ex , cosx, sinx, ln(1+ x), and (1+ x)α

(Newton’s binomial formula).
20. The local Taylor formula (Peano form of the remainder).
21. The connection between the type of monotonicity of a differentiable function
and the sign of its derivative. Sufficient conditions for the presence or absence of a
local extremum in terms of the first, second, and higher-order derivatives.
22. L’Hôpital rule.
23. Convex functions. Differential conditions for convexity. Location of the graph
of a convex function relative to its tangent.
24. The general Jensen inequality for a convex function. Convexity (or concavity) of
the logarithm. The classical inequalities of Cauchy, Young, Hölder, and Minkowski.
25. Legendre transform.
26. Complex numbers in algebraic and trigonometric notation. Convergence of a
sequence of complex numbers and a series with complex terms. The Cauchy crite-
rion. Absolute convergence and sufficient conditions for absolute convergence of a
series with complex terms. The limit limn→∞(1+ z

n
)n.

27. The disk of convergence and the radius of convergence of a power series. The
definition of the functions ez, cos z, sin z (z ∈ C). Euler’s formula and the connec-
tions among the elementary functions.
28. Differential equations as a mathematical model of reality, examples. The
method of undetermined coefficients and Euler’s (polygonal) method.
29. Primitives and the basic methods of finding them (termwise integration of sums,
integration by parts, change of variable). Primitives of the elementary functions.
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2 Second Semester

2.1 Integration. Multivariable Differential Calculus

1. The Riemann integral on a closed interval. Upper and lower sums, their geo-
metric meaning, the behavior under a refinement of the partition, and mutual esti-
mates. Darboux’s theorem, upper and lower Darboux’s integrals and the criterion
for Riemann integrability of real-valued functions on an interval (in terms of sums
of oscillations). Examples of classes of integrable functions.
2. The Lebesgue criterion for Riemann integrability of a function (statement only).
Sets of measure zero, their general properties, examples. The space of integrable
functions and admissible operations on integrable functions.
3. Linearity, additivity and general evaluation of an integral.
4. Evaluating the integral of a real-valued function. The (first) mean-value theorem.
5. Integrals with a variable upper limit of integration, their properties. Existence
of a primitive for a continuous function. The generalized primitive and its general
form.
6. The Newton–Leibniz formula. Change of variable in an integral.
7. Integration by parts in a definite integral. Taylor’s formula with integral remain-
der. The second mean-value theorem.
8. Additive (oriented) interval functions and integration. The general pattern in
which integrals arise in applications, examples: length of a path (and its indepen-
dence of parametrization), area of a curvilinear trapezoid (area under a curve), vol-
ume of a solid of revolution, work, energy.
9. The Riemann–Stieltjes integral. Conditions under which it can be reduced to
the Riemann integral. Singularities and the Dirac delta-function. The concept of a
generalized function.
10. The concept of an improper integral. Canonical integrals. The Cauchy criterion
and the comparison theorem for studying the convergence of an improper integral.
The integral test for convergence of a series.
11. Metric spaces, examples. Open and closed subsets. Neighborhoods of a point.
The induced metric, subspaces. Topological spaces. Neighborhoods of a point, sep-
aration properties (the Hausdorff axiom). The induced topology on subsets. Closure
of a set and description of relatively closed subsets.
12. Compact sets, their topological invariance. Closedness of a compact set and
compactness of a closed subset of a compact set. Nested compact sets. Compact
metric spaces, ε-grids. Criteria for a metric space to be compact and its specific
form in Rn.
13. Complete metric spaces. Completeness of R, C, Rn, Cn, and the space C[a, b]
of continuous functions under uniform convergence.
14. Criteria for continuity of a mapping between topological spaces. Preservation
of compactness and connectedness under a continuous mapping. The classical the-
orems on boundedness, the maximum-value theorem, and the intermediate-value
theorem for continuous functions. Uniform continuity on a compact metric space.



558 Examination Topics

15. The norm (length, absolute value, modulus) of a vector in a vector space; the
most important examples. The space L(X,Y ) of continuous linear transformations
and the norm in it. Continuity of a linear transformation and finiteness of its norm.
16. Differentiability of a function at a point. The differential, its domain of defi-
nition and range of values. Coordinate expression of the differential of a mapping
f : Rm → R

n. The relation between differentiability, continuity, and the existence
of partial derivatives.
17. Differentiation of a composite function and the inverse function. Coordinate
expression of the resulting laws in application to different cases of the mapping
f :Rm→R

n.
18. Derivative along a vector and the gradient. Geometric and physical examples
of the use of the gradient (level surfaces of functions, steepest descent, the tangent
plane, the potential of a field, Euler’s equation for the dynamics of an ideal fluid,
Bernoulli’s law, the work of a wing).
19. Homogeneous functions and the Euler relation. The dimension method.
20. The finite-increment theorem. Its geometric and physical meaning. Examples
of applications (a sufficient condition for differentiability in terms of the partial
derivatives; conditions for a function to be constant in a domain).
21. Higher-order derivatives and their symmetry.
22. Taylor’s formula.
23. Extrema of functions (necessary and sufficient conditions for an interior ex-
tremum).
24. Contraction mappings. The Picard–Banach fixed-point principle.
25. The implicit function theorem.
26. The inverse function theorem. Curvilinear coordinates and rectification. Smooth
k-dimensional surfaces in R

n and their tangent planes. Methods of defining a surface
and the corresponding equations of the tangent space.
27. The rank theorem and functional dependence.
28. Local resolution of a diffeomorphism as the composition of elementary ones
(diffeomorphisms changing only one coordinate).
29. Extrema with constraint (necessary condition). Geometric, algebraic, and phys-
ical interpretation of the method of Lagrange multipliers.
30. A sufficient condition for a constrained extremum.



Appendix A
Mathematical Analysis
(Introductory Lecture)

A.1 Two Words About Mathematics

Mathematics is an abstract science. For example, it teaches how to count and add no
matter of whether we count ravens, capital, or something else. Therefore, mathemat-
ics is one of the most universal and commonly used applied sciences. Mathematics
as a science possesses a large number of features, and therefore it is usually treated
with respect. For example, it teaches us to listen to arguments and appreciate the
truth.

Lomonosov believed that mathematics leads the mind into order, and Galilei said,
“The great book of nature is written in the language of mathematics.” The evidence
of this is obvious: anyone who wants to read this book, must have studied math-
ematics. Among them, there are representatives of natural sciences, technical pro-
fessions, as well as humanities. As examples, there is the chair of mathematics at
the Economics Faculty of Moscow State University, and also there is an Institute of
Economical Mathematics in the system of the Russian Academy of Sciences. There
is even a statement saying that a branch of science contains as much of science as
there is mathematics inside of it. Although this point of view is too strong, it is in
general a quite sharp observation.

Mathematics has the attributes of a language. However, it is clearly not merely a
language (otherwise, it would have been studied by philologists). Mathematics not
only can translate a question into mathematical language, but it usually provides the
method for solving the formulated mathematical problem.

The capability to pose a question correctly is the great art of researchers in gen-
eral and mathematicians in particular.

The great mathematician Henri Poincaré, whose influence is clearly seen in most
courses in contemporary mathematics, remarked with humor, “Mathematics is the
art of calling different things by the same name.” For instance, a point is a barely
visible particle under a microscope, an airplane on air traffic controls radar, a city
on a map, a planet in the sky, and in general all those things, whose dimensions can
be neglected on these scales.
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Therefore, the abstract concepts of mathematics and their relationships, like num-
ber, are very useful in a tremendous sphere of specific phenomena and consistent
patterns.

A.2 Number, Function, Law

The usual reaction to a miracle, “Is it really possible???” quickly and imperceptibly
transforms into, “It could not be otherwise!!!”

We are so used to the fact that 2+ 3 = 5, that we don’t see any miracle there.
But here it is not said that two apples and three apples will add up to five apples,
it is said that this is the case for apples, elephants, and all other things. We already
mentioned this above.

Next, we get used to the fact that a+ b= b+ a, where now the symbols a and b

could mean 2, 3, or any other integer.
A function, or functional dependence, is the next mathematical miracle. It is rel-

atively young as a scientific concept: just a little over three hundred years old. Nev-
ertheless, we are confronted with it in nature and even in everyday life no less than
with elephants or apples.

Every science or every field of human activity deals with a concrete area of ob-
jects and their relations. These relations, laws, or dependences, are described and
studied by mathematics in an abstract and general way, relating the terms function
or functional dependence y = f (x) of the state (value) of one variable (y) to some
other state (or value) of another variable (x).

It is especially important that now we are not dealing with constants, but with
variables x and y and with the rule f relating them. A function is adapted to describe
developing processes and phenomena, the nature of change of their states, and in
general to describe the dependent variable.

Sometimes the rule f of a relation is known (given), e.g., by a government or
by a technological process. We often try then, under the constraints of the acting
rule f , to choose a strategy, i.e., some state (value) available to our choice of the
independent variable x, in order to obtain the most favorable state (value) for us (in
one way or another) of the variable y (given that y = f (x)).

In other cases (and this is even more exciting), we search for the law of nature
relating certain phenomena. Though it is the job of experts in the corresponding
specific branch of science, mathematics might be extremely helpful. Like Sherlock
Holmes, it can deduce the new law f from very limited information accessible to
the experts in this narrow domain. Following the parallel with Sherlock Holmes,
mathematics uses a “deduction method” called differential equations, which were
unknown to ancient mathematicians, and that emerged with the advent of differential
and integral calculus at the seventeenth and eighteenth centuries thanks to the efforts
of Newton, Leibniz, and their predecessors and successors.

So, let us begin a primer of modern mathematics.
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A.3 Mathematical Model of a Phenomenon
(Differential Equations, or We Learn How to Write)

One of the brightest and most long-lived impressions of school mathematics, of
course, is that small miracle when you want to find something unknown to you,
denoting it by the letter x or by the letters x, y, and then you write something like
a · x = b or some system of equations

{
2x + y = 1,

x − y = 2.

After a bit of mathematical hocus-pocus, you discover what was unknown to you:
x = 1, y =−1.

Let us try to learn how to write the equation in a new situation, when we do not
have to find a number but instead the unknown rule relating two variables that are
important for us, i.e., we look for the requisite function. Let us take a look at some
examples.

In order to be more specific, we first shall talk about biology (proliferation of
microorganisms, growth of biomass, ecological limitations, etc.). However, it will
be clear that all this can be transferred to other areas, as for example the growth of
capital, nuclear reactions, atmospheric pressure, and so on.

To warm up, consider the following playful problem:
Consider a primitive organism that replicates itself every second (doubling). Sup-

pose it is put into an empty glass. After one minute, the glass is filled up. How long
will it take to fill up the glass if instead of one organism, two of these organisms are
put into an empty glass?

Now we get closer to our goal, and the promised examples.

Example 1 It is known that under favorable conditions, the reproduction rate of
microorganisms, i.e., the biomass growth rate, is proportional (with a coefficient
of proportionality k) to the current amount of biomass. We need to find the rule
x = x(t) of the change of biomass over time if the initial condition x(0) = x0 is
known.

We expect that if we knew the rule itself x = x(t) of the variable x, we would
know its rate of change at any time t . Without going too far into the discussion about
how we calculate this rate of change from x(t), we shall denote it by x′(t). Since
the function x′ = x′(t) is obtained from the function x(t), in mathematics it is called
the derivative of the function x = x(t) (in order to find out how to calculate the
derivative of a function and much more, it is necessary to learn differential calculus.
This is coming).

Now we are able to write what is given to us:

x′(t)= k · x(t), (A.1)

where x(0)= x0, and we want to find the dependence itself.
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We just wrote down the first differential equation (A.1). In general, equations
containing derivatives are called differential equations (some clarifications and ex-
ceptions are not yet relevant). It is worth noting that the independent variable is
often omitted, in order to simplify the text while writing the equation. For instance,
Eq. (A.1) is written in the form x′ = k · x. If the desired function is denoted by the
letter f or u, then the same equation would have the form f ′ = k · f or u′ = k · u
respectively.

It is now clear that if we learn not only how to write, but also to solve or study
differential equations, we will be able to predict and know many things. That is why
Newton’s sacramental phrase referring to the new calculus, was something like this:
“It is useful to learn how to solve differential equations.”

Problem 1 Write down an equation for the example above of reproduction in a
glass. Which coefficient k, initial condition x(0)= x0, and dependence x = x(t) do
we have?

Having succeeded with the first equation, let us try to encode by a differential
equation several further natural phenomena.

Example 2 Assume now, as is always the case, that there is not infinitely much
food and that the environment cannot support more than M individuals, i.e., that
the biomass does not exceed the value M . Then the growth rate of the biomass
will presumably decrease, for instance proportionally to the remaining conditions
of the environment. As a measure of the remaining conditions, you can consider the
difference M − x(t), or even better consider the dimensionless value 1 − x(t)

M
. In

this situation, instead of Eq. (A.1), we obviously have the equation

x′ = k · x ·
(

1− x(t)

M

)

, (A.2)

which reduces to Eq. (A.1) at the stage when x(t) is much less than M . Conversely,
when x(t) is very close to M , the growth rate becomes close to zero, i.e., the growth
stops, which is natural. After having improved some skills, we shall find out later
precisely how the rule x = x(t) looks in this case.

Problem 2 A body having an initial temperature T0 cools down in an environment
that has a constant temperature C. Let T = T (t) be the rule of variation of temper-
ature of the body over time. Write down the equation that this function must satisfy,
assuming that the cooling rate is proportional to the temperature difference between
the body and the environment.

The velocity v(t), which is the rate of change of the variable x(t), is called the
derivative of the function x(t) and denoted by x′(t).

The acceleration a(t), as you may know, is the rate of change of the velocity v(t).
This means that a(t)= v′(t) = (x′)′(t), i.e., it is the derivative of the derivative of
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the initial function. It is called the second derivative of the initial function and it is
frequently denoted by x′′(t) (some other notation will appear later). If we are able to
find the first derivative, we may repeat the same process to calculate the derivative
x(n)(t) of any order n of the initial function x = x(t).

Example 3 Let x = x(t) be the rule of motion of a point with mass m, i.e., coordi-
nates for the position of the point as function of time. For simplicity, we may assume
that the motion is along a straight line (horizontal or vertical); thus there is only one
coordinate.

The classical Newton’s law m ·a = F , relating the force acting on a point of mass
m with acceleration caused by this action, can be written as

m · x′′(t)= F(t), (A.3)

or in abbreviated form, m · x′′ = F .
If the acting force F(t) is known, then the relation m · x′′ = F can be considered

a differential equation (of second order) with respect to the function x(t).
For example, if F is the force of gravity on Earth’s surface, then F =mg, where

g is the acceleration at free fall. In this case, our equation has the form x′′(t)= g.
As you might know, Galileo discovered that in free fall, x(t) = 1

2gt2 + v0t + x0,
where x0 is the initial position and v0 is the initial speed of the point.

In order to check that this function satisfies the equation, it is necessary to be able
to differentiate a function, i.e., to find its derivative. In our case, we even need the
second derivative.

Just below we shall give a small table of some functions and their derivatives. Its
deduction shall be made later, in the systematic presentation of differential calculus.
Now try yourself to do the following.

Problem 3 Write down the equation of free fall in the atmosphere. In this case,
there will arise a resistance force. Consider it proportional to the first (or second)
rate of change of the movement (the speed in free fall does not grow to infinity due
to the presence of the force of resistance).

You should be convinced by now that it is worthwhile learning how to calculate
derivatives.

A.4 Velocity, Derivative, Differentiation

First, let us consider a familiar situation in which we can trust our intuition (and we
change the notation from x(t) to s(t)).

Suppose that a point moves on the whole numerical real line, s(t) is its coordinate
at the moment t , and v(t) = s′(t) is its velocity at the same moment t . After the
time interval h, from its former position at the moment t , the point is located at the
position s(t +h). In our picture of velocity the quantity s(t +h)− s(t), the distance
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traveled in the time interval h after the moment t , and its velocity at the moment t

are related by the equation

s(t + h)− s(t)≈ v(t) · h; (A.4)

in other words, v(t) ≈ s(t+h)−s(t)
h

, and this approximation becomes closer to an
equality as the interval h decreases its length.

Thus, we have to assume that

v(t) := lim
h→0

s(t + h)− s(t)

h
,

i.e., we define v(t) as the limit of the quotient between the increment of the function
and the increment of its argument as the latter approaches zero.

Now after this example, nothing impedes us from providing the usual definition
for the value f ′(x) for the derivative f ′ of the function f at the point x:

f ′(x) := lim
h→0

f (t + h)− f (t)

h
, (A.5)

i.e., f ′(x) is the limit of the quotient of increments Δf/Δx as Δx approaches zero,
where Δf = f (x + h)− f (x) is the increment of the function with respect to the
increment of its argument Δx = (x + h)− x.

Equation (A.5) can be rewritten in a similar form to (A.4) in the same convenient
and useful form

f (t + h)− f (t)= f ′(t)h+ o(h), (A.6)

where o(h) is some error (of approximation), small in relation to h, as h approaches
zero. (This means that the quotient o(h)/h approaches zero as h goes to zero.)

Now we shall make some concrete calculations.

1. Let f be a constant function, i.e., f (x) ≡ c. Then it is clear that Δf = f (x +
h)− f (x)≡ 0 and f ′(x)≡ 0. This is natural, since the velocity of change is equal
to zero if there is no change.
2. If f (x)= x, then f (x + h)− f (x)= h, and therefore f ′(x)≡ 1. If f (x)= kx,
then f (x + h)− f (x)= kh and f ′ ≡ k.
3. By the way, we can make two very common but extremely useful remarks: if
the function f has its derivative f ′, then the function cf , where c is some arbitrary
constant, has as derivative cf ′, i.e., (cf )′ = cf ′; in the same way, (f +g)′ = f ′ +g′,
i.e, the derivative of a sum is equal to the sum of the derivatives, if these derivatives
are defined.
4. Let f (x)= x2. Then f (x+h)−f (x)= (x+h)2−x2 = 2xh+h2 = 2xh+o(h);
hence f ′(x)= 2x.
5. Analogously, if f (x)= x3, then

f (x + h)− f (x)= (x + h)3 − x3 = 3x2h+ 3xh2 + h3 = 3x2h+ o(h);
therefore, f ′(x)= 3x.
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Table A.1

f (x) f ′(x) f ′′(x) · · · f (n)(x)

ax ax lna ax ln2 a · · · ax lnn a

ex ex ex · · · ex

sinx cosx − sinx · · · sin(x + nπ/2)

cosx − sinx − cosx · · · cos(x + nπ/2)

(1+ x)α α(1+ x)α−1 α(α − 1)(1+ x)α−2 · · · ?

xα αxα−1 α(α − 1)xα−2 · · · ?

6. Now it is clear that in general, if f (x)= xn, then one has

f (x + h)− f (x)= (x + h)n − xn = nxn−1h+ o(h),

and therefore f ′(x)= nxn−1.
7. This implies that if we have a polynomial

P(x)= a0x
n + a1x

n−1 + · · · + an−1x + an,

then

P ′(x)= na0x
n−1 + (n− 1)a1x

n−2 + · · · + an−1.

We calculated the above derivatives following the definitions. To develop and master
the techniques of differentiation you have to practice. Now as examples and for your
illustration we introduce Table A.1 with functions and their derivatives. Later we
shall prove the results.

In Table A.1 e is a number (e= 2.7 . . . ), that appears everywhere in analysis, just
like the number π in geometry. The logarithm with base e is frequently denoted by
ln, instead of loge, and you can find it in the first row of the table in the second and
third columns. The logarithm with this base is called the natural logarithm and it
appears in many formulas.

Problem 4 Assuming that the formula of the first derivative f ′ is correct, verify the
expression for f (n) and complete the table at the places where the question marks
are. After that, calculate the value f (n)(0) in every case.

Problem 5 Try to find the derivative of the function f (x)= ekx and the solution of
Eq. (A.1). Explain at what point in time the initial condition x0 (capital, biomass, or
something else represented by this equation) will double.

A.5 Higher Derivatives, What for?

A wonderful and very useful expansion of the central equation (A.6), which can be
written as

f (x + h)= f (x)+ f ′(x)h+ o(h), (A.7)
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turns into the following formula (Taylor’s formula):

f (x + h)= f (x)+ 1

1!f
′(x)h+ 1

2!f
′′(x)h2 + · · · + 1

n!f
(n)(x)hn + o

(
hn
)
. (A.8)

If we set x = 0 and then replace the letter h by the letter x, we obtain

f (x)= f (0)+ 1

1!f
′(0)x + 1

2!f
′′(0)x2 + · · · + 1

n!f
(n)(0)xn + o

(
xn
)
. (A.9)

For instance, if f (x)= (1+ x)α , following Newton we find that

(1+ x)α = 1+ α

1!x +
α(α − 1)

2! x2 + · · · + α(α − 1) · · · (α − n+ 1)

n! xn + o
(
xn
)
.

(A.10)
Sometimes in the formula (A.9), it is possible to continue the sum to infinity,

removing the reminder term, since it tends to zero as n→∞.
In particular, we have,

ex = 1+ 1

1!x +
1

2!x
2 + · · · + 1

n!x
n + · · · , (A.11)

cosx = 1− 1

2!x
2 + · · · + (−1)k

1

2k!x
2k + · · · , (A.12)

sinx = 1

1!x −
1

3!x
3 + · · · + (−1)k

1

(2k + 1)!x
2k+1 + · · · . (A.13)

We have obtained a representation of relatively complex functions as a sum (an
infinite sum, a series) of simple functions, which can be calculated with the usual
arithmetic operations. The finite pieces of these sums are polynomials. They provide
good approximations of the functions decomposed in such a series.

A.5.1 Again Toward Numbers

We have always tacitly assumed that we are dealing with functions defined on the
set of real numbers. But the right-hand side of Eqs. (A.11), (A.12), and (A.13) make
sense when x is replaced by a complex number z= x+ iy. Then, we are able to say
what the expressions ez, cos z, sin z mean.

Problem 6 Discover, after Euler, the following impressive formula: eiϕ = cosϕ +
i sinϕ, linking these elementary functions and the remarkably beautiful equality
eiπ + 1= 0 resulting from this formula, which combines the basic constants of the
mathematical sciences (arithmetic, algebra, analysis, geometry, and even logic).
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A.5.2 And What to Do Next?

As we say in Russian, “with the fingers”, without details and justifications, you have
been given some idea of differential calculus, which is the core of a first-semester
course in mathematical analysis. Step by step, we have become acquainted with
the concepts of numbers, functions, limits, derivatives, series, which had been only
superficially studied so far.

Now you know why it is necessary to take time to dive into a detailed and careful
consideration of all of these concepts and objects. The understanding of them is nec-
essary for a professional mathematician. For the average user, this is not required.
Most people drive a car without even opening the hood. But that is reasonable, be-
cause someone well versed in engines designed a machine that works reliably.



Appendix B
Numerical Methods for Solving Equations
(An Introduction)

B.1 Roots of Equations and Fixed Points of Mappings

Notice that the equation f (x)= 0 is obviously equivalent to the equation α(x)f (x)

= 0 if α(x) �= 0. The last equation, in turn, is equivalent to the relation x = x −
α(x)f (x), where x can be interpreted as a fixed point of the mapping ϕ(x) := x −
α(x)f (x).

Thus, finding roots of equations is equivalent to finding the fixed points of the
corresponding mappings.

B.2 Contraction Mappings and Iterative Process

A mapping ϕ :X→X from the set X ⊂R to itself is called a contraction mapping
if there exists a number q , 0≤ q < 1, such that for every pair of points x′, x′′, their
images satisfy the inequality |ϕ(x′)− ϕ(x′′)| ≤ q|x′ − x′′|.

It is clear that this definition applies to arbitrary sets, without any changes,
on which the distance d(x′, x′′) between any two points is defined; in our case,
d(x′, x′′)= |x′ − x′′|.

It is also obvious that a contraction mapping is continuous and cannot have more
than one fixed point.

Let ϕ : [a, b] → [a, b] be a contraction mapping from the interval [a, b] into it-
self. We shall show that the iteration process xn+1 = ϕ(xn), starting at any point x0

from this interval, leads to the point x = limn→∞ xn, the fixed point of the map-
ping ϕ.

We notice first that

|xn+1 − xn| ≤ q|xn − xn−1| ≤ · · · ≤ qn|x1 − x0|.
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Therefore, for all natural numbers m, n, with m > n, inserting intermediate points
and using the triangle inequality, we get the estimate

|xm − xn| ≤ |xm − xm−1| + · · · + |xn+1 − xn|

≤ (qm−1 + · · · + qn
)|x1 − x0|< qn

1− q
|x1 − x0|,

and from this it follows that the sequence {xn} is fundamental (i.e., is a Cauchy
sequence).

Hence, by the Cauchy criterion it converges to a point x in the interval [a, b].
This point is a fixed point of the mapping ϕ : [a, b] → [a, b], since by taking the
limit n→∞ in the relation xn+1 = ϕ(xn), we obtain the equality x = ϕ(x).

(Here we used the obvious fact that a contraction mapping is continuous; actually,
it is even uniformly continuous.)

By passing to the limit m→∞ in the relation |xm − xn| < qn

1−q
|x1 − x0|, one

gets the estimate

|x − xn|< qn

1− q
|x1 − x0|

for the deviation value between the approaching point xn and the fixed point x of
the mapping ϕ.

B.3 The Method of Tangents (Newton’s Method)

We presented a theorem stating that a continuous real-valued function from an inter-
val taking values with different signs at the extremes of the interval has at least one
zero in this interval (a point x where f (x) = 0). In its proof, we showed the sim-
plest, but universal, algorithm for finding this point (splitting the interval in half).
The order of the speed of convergence in this case is 2−n.

In the case of a convex differentiable function, the method proposed by Newton
can be much more efficient in terms of speed of convergence.

We draw a tangent to the graph of the given function f at some point (x0, f (x0)),
where x0 ∈ [a, b]. Next, we find the point x1 where the tangent intersects the x-axis.
By repeating this process, we obtain a sequence {xn} of points that quickly con-
verges to the point x such that f (x)= 0. (It is possible to prove that each successive
iteration leads to the doubling of the number of correct digits of x found at the
previous step.)

It is easy to prove analytically (check it!) that the method of tangents reduces to
an iteration process

xn+1 = xn − f (xn)

f ′(xn)
.
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For instance, the solution of the equation xm − a = 0, i.e., the computation of
m
√

a, according to the formula above, reduces to an iteration process

xn+1 = 1

m

(

(m− 1)xn − a

xm−1
n

)

.

In particular, for calculating
√

2 with the method of tangents, we obtain

xn+1 = 1

2

(

xn − a

xn

)

.

As can be seen from the formulas above, Newton’s method looks for fixed points of
the mapping ϕ(x)= x− f (x)

f ′(x)
. It is a special case of the mapping ϕ(x)= x−αf (x),

discussed in the first section, and we obtain it by setting α(x)= 1
f ′(x)

.
Note that in general, the mapping ϕ(x) = x − αf (x) and even the mapping

ϕ(x) = x − f (x)
f ′(x)

involved in the method of tangents do not have to be contrac-
tion mappings. Moreover, as can be shown by simple examples, in the case of a
general function f , the method of tangents does not always lead to a convergent
iteration process.

If in the expression ϕ(x) = x − αf (x), the function α(x) can be chosen in the
given interval so that |ϕ′(x)| ≤ q < 1, then the mapping ϕ : [a, b] → [a, b], of
course, will be a contraction.

In particular, if α can be taken as the constant 1
f ′(x0)

, then we obtain ϕ(x)= x −
f (x)

f ′(x0)
and ϕ′(x)= 1− f ′(x)

f ′(x0)
. If the derivative of the function f is at least continuous

at x0, then in some neighborhood of x0, we have |ϕ′(x)| = |1− f ′(x)
f ′(x0)

| ≤ q < 1. If
the function ϕ maps this neighborhood into itself (although this is not always the
case), then the standard iterative process induced by the contraction mapping ϕ of
this neighborhood will lead to a unique point of the mapping ϕ in this neighborhood
at which the original function f vanishes.



Appendix C
The Legendre Transform
(First Discussion)

C.1 Initial Definition of the Legendre Transform
and the General Young Inequality

We call the Legendre transform of a function f with variable x a new function f ∗
with new variable x∗, defined by the relation

f ∗
(
x∗
)= sup

x

(
x∗x − f (x)

)
, (C.1)

where the supremum is taken with respect to the variable x, for a fixed value of the
variable x∗.

Problem 1

a) Check that the function f ∗ is convex in its domain of definition.
b) Draw a graph of the function f , the line y = kx where k = x∗, and specify

the geometric meaning of the value f ∗(x∗).
c) Find f ∗(x∗) for f (x)= |x| and f (x)= x2.
d) Prove that from the definition (C.1), it follows clearly that the inequality

x∗x ≤ f ∗
(
x∗
)+ f (x) (C.2)

is satisfied for all values of the arguments x, x∗ in the domain of definition of the
functions f and f ∗, respectively.

Relation (C.2) is usually called the general Young’s inequality or the Fenchel–
Young inequality, and the function f ∗, in convex analysis, for instance, is usually
called the Young dual of the function f .
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C.2 Specification of the Definition in the Case of Convex
Functions

If the supremum involved in the definition (C.1) is attained at some inner point x

from the domain of definition of the function f , and this function is smooth (or at
least differentiable), then we find that

x∗ = f ′(x) (C.3)

and therefore

f ∗
(
x∗
)= x∗x − f (x)= xf ′(x)− f (x). (C.4)

Thus in this case, the Legendre transform is specified in the form (C.3), giving
the argument x∗ and (C.4) providing the value f ∗(x∗) of the function f ∗, i.e., the
Legendre transform of the function f . (Notice that the operator xf ′(x)− f (x) was
studied already by Euler.)

Moreover, if the function f is convex, then in the first place, the condition (C.3)
will not only provide a local extremum, but also will be a local maximum (check
it!), which in this case will be the global or absolute maximum.

In the second place, due to the monotonic increase of the derivative of a strictly
convex function, Eq. (C.3) is uniquely solvable with respect to x, for such functions.

If Eq. (C.3) admits an explicit solution x = x(x∗), then on substituting it in (C.4),
we obtain an explicit expression for f ∗(x∗).

Problem 2

a) Find the Legendre transform of the function 1
α
xα , for α > 1, and obtain the

classical Young’s inequality

ab ≤ 1

α
aα + 1

β
bβ, (C.5)

where 1
α
+ 1

β
= 1.

b) What is the domain of definition of the Legendre transform of a smooth
strictly convex function f having the lines ax and bx as asymptotes, for x→+∞
and x→−∞ respectively?

c) Find the Legendre transform of the function ex and prove the inequality

xt ≤ ex + t ln
t

e
. (C.6)

C.3 Involutivity of the Legendre Transform of a Function

As we already noted, Eq. (C.2), or equivalently the inequality

f (x)≥ xx∗ − f ∗
(
x∗
)
, (C.7)
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holds for all values of the arguments x, x∗ in the domains of definition of the func-
tions f and f ∗, respectively.

At the same time, as shown by formulas (C.3) and (C.4), if x and x∗ are linked
by the relation (C.3), then the last inequality, (C.7), becomes an equality, at least in
the case of a smooth strictly convex function f . Recalling the definition (C.1) of the
Legendre transformation, we conclude that in this case,

(
f ∗
)∗ = f. (C.8)

So the Legendre transform of a smooth strictly convex function is involutive, i.e.,
the twofold application of this transform leads to the original function.

Problem 3

a) Is it true that f ∗∗ = f for every smooth function f ?
b) Is it true that f ∗∗∗ = f ∗ for every smooth function f ?
c) Differentiating Eq. (C.4), using (C.3) and provided that f ′′(x) �= 0, show that

x = f ∗(x∗) and therefore f (x)= xx∗ − f ∗(x∗) (involutivity).
d) Check that at the corresponding points x, x∗, linked by Eq. (C.3), we have

f ′′(x)= 1/(f ∗)′′(x∗) and f (3) =−(f ∗)(3)(x∗)/((f ∗)′′)2(x∗).
e) The family of lines px + p4 depending on the parameter p is a family of

tangents to a certain curve (the envelope of this family). Find the equation of this
curve.

C.4 Concluding Remarks and Comments

As part of the discussion about convex functions, we gave the initial presentation of
the Legendre transform at the level of functions of one variable. However, here we
shall facilitate the perception of the Legendre transform and work with it in a number
of important more general cases of applications, such as in theoretical mechanics,
thermodynamics, equations of mathematical physics, calculus of variations, convex
analysis, contact geometry, . . . , and many more yet to be dealt with.

We shall analyze various details and possible developments of the concept of the
Legendre transform. Here we add only the following remark. The argument of the
Legendre transform is a derivative, or equivalently the differential of the original
function, as is shown by Eq. (C.3).

If the argument x is, for instance, a vector of a linear space X equipped with a
scalar product 〈·, ·〉, then the generalization of the definition (C.1) is the equation

f ∗
(
x∗
)= sup

x

(〈
x∗, x

〉− f (x)
)
. (C.9)

If we take x∗ as a linear function on the space X, i.e., assume that x∗ is an
element of the dual space X∗ and the action x∗(x) of x∗ on a vector x is denoted as
before by 〈x∗, x〉, then Eq. (C.9) will continue to be meaningful, since the function
f is defined on the space X, and therefore the Legendre transform f ∗ is defined in
the space X∗, the dual of the space X.



Appendix D
The Euler–MacLaurin Formula

D.1 Bernoulli Numbers

Jacob Bernoulli found that
∑N−1

n=1 nk = 1
k+1

∑k
m=0 Cm

k+1BmNk+1−m, where Cm
n =

n!
m!(n−m)! are the binomial coefficients, and B0,B1,B2, . . . are rational numbers, now
called Bernoulli numbers. These numbers are met in different problems. They have
the generating function z

ez−1 =
∑∞

n=0
Bn

n! z
n, where they occur as coefficients in the

Taylor expansion, and in this way they can be calculated.
These numbers can also be calculated with the following recurrence formula:

B0 = 1, Bn =− 1

n+ 1
Ck+1

n+1Bn−k.

Problem 1 Find the first Bernoulli numbers and check that all Bernoulli numbers
with odd indices, except B1, are equal to zero, and that the signs alternate for the
Bernoulli numbers with even indices. (The function x/(ex − 1)+ x/2 is even.)

Euler discovered the connection Bn =−nζ(1− n) between the Bernoulli num-
bers and the Riemann ζ -function.

D.2 Bernoulli Polynomials

Bernoulli polynomials can be defined by various means. For example, Bernoulli
polynomials are defined recursively by B0(x)≡ 1, B ′n(x)= nBn−1(x), with the con-

dition that
∫ 1

0 Bn(x)dx = 0; they are also defined through the generating function
zexz

ez−1 =
∑∞

n=0
Bn(x)

n! zn, through the formula Bn(x) =∑n
k=0 Ck

nBn−kx
k , or through

Bn(x)=∑n
m=0

1
m+1

∑m
k=0(−1)kCk

m(x + k)n.
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Problem 2

a) Based on the different definitions, compute the first few Bernoulli polynomi-
als, and check the coincidence between them and the fact that Bernoulli numbers
are the values of the Bernoulli polynomials at x = 0.

b) By differentiating the generating function, show that the Bernoulli polynomi-
als Bn(x) defined through this function satisfy the recurrence relation above, which
in turn means that

Bn(x)= Bn + n

∫ x

0
Bn−1(t)dt.

D.3 Some Known Operators and Series of Operators

Problem 3

a) If A is an operator, then we employ the notation 1
A

, as is usual for numbers,
for referring to the operator A−1, the inverse operator of A.

The integration operator
∫

is the inverse of the differentiation operator D (with
a proper setting of the integration constant). Similarly, the sum operator

∑
is the

inverse of the difference operator Δ, whose action is defined as Δf (x) = f (x +
1)− f (x). Specify exactly how to find

∑
f (x).

b) Do you agree with the fact that Bn(x)=D(eD − 1)−1xn?
c) According to Taylor’s formula,

Δf (x)= f (x + 1)− f (x)= f ′(x)

1! + f ′′(x)

2! + · · · =
(

D

1! +
D2

2! + · · ·
)

f (x);

therefore, Δ= eD − 1 and
∑=Δ−1 = (eD − 1)−1, and since z

ez−1 =
∑∞

k=0
Bk

k! z
k ,

then

∑
= B0

D
+ B1

1! +
B2

2! D +
B3

3! D
2 + · · · =

∫
+

∞∑

k=1

Bk

k! D
k.

D.4 Euler–MacLaurin Series and Formula

By applying this operator relation to the function f (x), we guess the Euler–
MacLaurin summation formula, more precisely, not the formula itself but the corre-
sponding series

∑

a≤n<b

f (n)=
∫ b

a

f (x)dx +
∞∑

k=1

Bk

k! f
(k−1)(x)

∣
∣
∣
∣

1

0
,

where a, b, n are integers and k is a natural number.
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These series differ in the way that the Taylor series is different from Taylor’s
formula, which is finite and contains certain information (remainder term) providing
the possibility of estimating the remainder (the value of the approximation error).

When the sum is reduced to a single term, the simplest and at the same time basic
Euler–MacLaurin formula with a remainder term has the form

f (0)=
∫ 1

0
f (x)dx +

m∑

k=1

Bk

k! f
(k−1)(x)

∣
∣
∣
∣

1

0
+ (−1)(m+1)

∫ 1

0

Bm(x)

m! f (m)(x)dx.

It is assumed here that the original function f is smooth enough, for example,
that it possesses continuous derivatives of the required order.

Problem 4 Using the formula of integration by parts, prove by induction the Euler–
MacLaurin formula written above. (Recall that Taylor’s formula with remainder
term of integral type can also be obtained with a simple integration by parts.)

D.5 The General Euler–MacLaurin Formula

The general Euler–MacLaurin formula, providing the value of the sum
∑

a≤n<bf (n),
has the form

∑

a≤n<b

f (n)=
∫ b

a

f (x)dx +
m∑

k=1

Bk

k! f
(k−1)(x)

∣
∣
∣
∣

b

a

+Rm,

where a, b, n are integers and k, m are natural numbers,

Rm = (−1)(m+1)

∫ b

a

Bm({x})
m! f (m)(x)dx,

and {x} is the fractional part of the number x.

Problem 5 Prove this formula, given that every interval [a, b] whose endpoints are
integers can be divided into unit intervals (with length 1) and each unit interval can
be translated to the interval [0,1] with a shift.

D.6 Applications

Problem 6

a) Using the Euler–MacLaurin formula and setting f (x) = xn, show that∑
a≤k<b km−1 = 1

m

∑m
k=0 Ck

mBk(b
m−k − am−k), and in particular, obtain Jacob

Bernoulli’s relation
∑

0≤k<b km−1 = 1
m

∑m
k=0 Ck

mBkb
m−k .
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b) To calculate the asymptotic behavior of a sum or a series, usually the follow-
ing kind of Euler–MacLaurin formula is used:

b∑

n=a

f (n)∼
∫ b

a

f (x)dx + f (a)+ f (b)

2
+

∞∑

k=1

B2k

(2k)!
(
f (2k−1)(b)− f (2k−1)(a)

)
,

where a, b are integers. The formula often remains valid for the extension from the
interval [a, b] to the whole line. In many cases, the integral on the right side can be
calculated in terms of elementary functions, even if the sum on the left side cannot
be expressed. Then all the terms of the asymptotic series can be expressed in terms
of elementary functions. For example,

+∞∑

s=0

1

(z+ s)2
∼
∫ +∞

0

1

(z+ s)2
ds + 1

2z2
+
+∞∑

k=1

B2k

z2k+1
.

Moreover, in this case, the integral can be calculated and is equal to 1
z
.

c) Setting f (x)= x−1, prove the asymptotic formula

n∑

k=1

1

k
= lnn+ γ + 1

2n
+

m∑

k=1

B2k

2kn2k
− θm,n

B2m+2

(2m+ 2)n2m+2
,

where 0 < θm,n < 1, and γ is a constant (Euler’s constant).
d) If we take f (x)= lnx, show that

n∑

k=1

lnk = n lnn− n+ σ − 1

2
lnn+

m∑

k=1

B2k

2k(2k − 1)n2k−1
−Rm,n,

where

Rm,n = φm,n

B2m+2

(2m+ 1)(2m+ 2)n2m+1
,

0 < φm,n < 1, and σ is a constant (in fact, equal to ln
√

2π ).
By raising to powers, we can obtain the asymptotic Stirling’s formula for the

values n! as n→∞.

D.7 Again to the Actual Euler–MacLaurin Formula

Problem 7

a) If a and n are integers such that a < n and f is a slowly changing function at
the interval [a, b], then the sum S = 1

2f (a)+ f (a + 1)+ f (a + 2)+ · · · + f (n−
1)+ 1

2f (n) is a good approximation of the integral I = ∫ b

a
f (x)dx.
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Remember this by drawing a picture showing the geometric meaning of the quan-
tities S and I , and at the same time recalling the numerical methods for calculating
the integral.

b) If j is an integer, then integration by parts gives

∫ j+1

j

f (x)dx =
(

x − j − 1

2

)

f (x)

∣
∣
∣
∣

j+1

j

−
∫ j+1

j

(

x − j − 1

2

)

f ′(x)dx,

or

1

2
f (j)+ 1

2
f (j + 1)=

∫ j+1

j

f (x)dx +
∫ j+1

j

ω1(x)f ′(x)dx,

where ω1(x)= x − [x] − 1
2 = {x} − 1

2 .
(Recall that [x] and {x} are the integer and fractional parts of x, respectively.)
Summing these equalities for j from j = a to j = n− 1, we obtain

S = I +
∫ n

a

ω1(x)f ′(x)dx.

Draw the graph of the function ω1.
c) Now integrate the integral

∫ j+1
j

ω1(x)f ′(x)dx by parts and obtain an expres-

sion with a new integral residue
∫ j+1
j

ω2(x)f ′′(x)dx, where ω2(x) = ∫
ω1(x)dx.

Show the continuity of the function ω2, given that
∫ j+1
j

ω1(x)dx = ∫ 1
0 (x −

1
2 )dx = 0. Take the sum from j = a to j = n − 1, as before, and obtain in one
step a more advanced expression for the value of S with a new integral residue.

d) Continuing with this process, obtain the following Euler–MacLaurin formula:

S = I +
m−1∑

s=1

(−1)s+1ωs+1(0)f (s)(x)

∣
∣
∣
∣

n

a

+ (−1)m+1
∫ n

a

ωm(x)f (m)(x)dx.

e) Check that ωk(x) = 1
k!Bk({x}) and compare the Euler–MacLaurin formula

obtained with the one discussed previously.



Appendix E
Riemann–Stieltjes Integral, Delta Function,
and the Concept of Generalized Functions

Basic Background

E.1 The Riemann–Stieltjes Integral

Specific Objective and Some Heuristic Arguments We have considered a num-
ber of examples of the effective use of the integral in the calculation of areas, vol-
umes of solids of revolution, lengths of paths, work forces, energy . . . . We found the
potential of the gravitational field and computed the escape velocity for Earth. Using
the machinery of the integral calculus, we convinced ourselves of the fact that, for
example, the path length does not depend on its parametrization. At the same time,
we pointed out that certain calculations (e.g., the length of an ellipse) are associated
with nonelementary functions (in this case elliptic functions).

All the quantities mentioned above (length, area, volume, work, . . . ) are addi-
tive like the Riemann integral. We know that every additive function I [α,β] of
the oriented interval [α,β] ⊂ [a, b] has the form I [α,β] = F(β)− F(α) if we set
F(x) = I [a, x] + C. In particular, we can take an arbitrary function F and define
an additive function I [α,β] = F(β) − F(α) from it, considering F(x) = I [a, x].
If the function F is discontinuous on the interval [a, b], then the function I [a, x]
is also discontinuous there. But then it cannot be represented as a Riemann inte-
gral

∫ x

a
p(t)dt of any Riemann integrable function (a density p), because such an

integral, as we know, is continuous at x.
Suppose, for instance, that the interval [−1,1] is a string having a bead of mass 1

in the middle. If I [α,β] is a mass within the interval [α,β] ⊂ [−1,1], then the
function I [−1, x] is equal to zero for 1 ≤ x < 0 and equal to 1 for 0 ≤ x ≤ 1.
If we tried to describe the distribution of the mass in the segment in terms of the
density distribution (i.e., in terms of the limit of the ratio between the mass lying
in a neighborhood of the point and the size of the neighborhood when the latter is
contracted to a point), then we would have to define the density p as p(x)= 0 for
x �= 0 and p(x)=+∞ for x = 0. Physicists and all scientists after Dirac called p a
“function” (this distribution density). Today, we call p a “generalized function” or
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“distribution”. We denote it by δ and it is defined as
∫ β

α
δ(x)dx = 1 if α < 0 < β

and
∫ β

α
δ(x)dx = 0 if α < β < 0 or 0 < α < β , no matter what the numbers α and

β are.
Of course, according to the traditional definition of the integral, e.g., the Riemann

integral, this integral does not make sense (for the simple reason that the integrand
is an unbounded “function”). We make liberal use of the integral symbol here. It is
used only as a replacement of the additive function I [α,β], discussed above, when
we considered the bead on a string.

Example 4 (Center of mass) Recall the fundamental equation mr̈ = F describing
the motion of a point mass m due to the effect of a force F , where r is the radius
vector of the point. If there is a system of n material points, then for each of them
we have the equation mir̈i = Fi . By summing all these equalities, we obtain the
equation

∑n
i=1 mir̈i =∑n

i=1 Fi , which can be rewritten in the form M
∑n

i=1
mi

M
r̈i =∑n

i=1 Fi , or in the form Mr̈M = F , where M =∑n
i=1 mi , F =∑n

i=1 Fi , and r̈M =∑n
i=1

mi

M
r̈i . That means that if the total mass of the system is placed at some point

in the space, with the radius vector being equal to rM =∑n
i=1

mi

M
ri , and under the

influence of the force F =∑n
i=1 Fi , then the mass will move according to Newton’s

law, no matter how complex the mutual motion of the individual parts of the system
is.

The point of the space we found with radius vector
∑n

i=1
mi

M
ri is called the center

of mass of the system of material points.

Now suppose we have the task of finding the center of mass of a material body,
i.e., a region D of space, in which a mass is somehow distributed. Let dv be the
volume element, the concentrated mass dm, and M the total mass of the body D.
Then we suppose that M = ∫

D
dm, and then the center of mass can be found with

the formula 1
M

∫
D

r dm, where r is the radius vector of the mass element.
We still do not know how to integrate over domains in space, and therefore, we

consider the one-dimensional case, which is also quite informative. Thus, instead of
the region D, we consider the interval [a, b] of the coordinate axis R.

Then M = ∫ b

a
dm, and the center of mass is found with the formula 1

M

∫ b

a
x dm,

where x is the coordinate of the mass element dm, which therefore can be written
more precisely as dm(x).

The meaning of what we wrote evidently must be as follows. Take a partition
P of the interval [a, b], with some marked points ξi ∈ [xi−1, xi]. To the interval
[xi−1, xi] corresponds the mass Δmi . We consider the sums

∑
i Δmi ,

∑
i ξiΔmi ,

and passing to the limit as the parameter λ(P ) of the partition tends to zero, we
obtain respectively what is denoted by

∫ b

a
dm and

∫ b

a
x dm.

We arrive at the following generalization of the Riemann integral.

Definition of the Riemann–Stieltjes Integral1 Let f , g be real-, complex-, or
vector-valued functions defined over the interval [a, b] ⊂ R. Let (P, ξ) = (a =

1T.J. Stieltjes (1856–1894) – Dutch mathematician.
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x0 ≤ ξ1 ≤ x1 ≤ · · · ≤ ξn ≤ xn = b) be a partition of this interval with marked
points and parameter λ(P ). We consider the sum

∑n
i=1 f (ξi)Δgi , where Δgi =

g(xi)− g(xi−1).
The Riemann–Stieltjes integral of the function f with respect to the function g

over the interval [a, b] is defined as the following value:

∫ b

a

f (x)dg(x) := lim
λ(P )→0

n∑

i=1

f (ξi)Δgi (E.1)

if the above limit exists.
In particular, when g(x)= x, we return to the standard Riemann integral.

E.2 Case in Which the Riemann–Stieltjes Integral Reduces
to the Riemann Integral

Note also that if the function g is smooth and f is a Riemann-integrable function
over the interval [a, b], then

∫ b

a

f (x)dg(x)=
∫ b

a

f (x)g′(x)dx, (E.2)

i.e., in this case, the computation of the Riemann–Stieltjes integral reduces to the
computation of the Riemann integral of the function fg′ on the same interval.

Indeed, using the smoothness of the function g and the mean value theorem, we
can rewrite the sum at the right side of Eq. (E.1) in the following form:

n∑

i=1

f (ξi)Δgi =
n∑

i=1

f (ξi)
(
g(xi)− g(xi−1)

)=
n∑

i=1

f (ξi)g
′(ξ̃i)(xi − xi−1)=

=
n∑

i=1

f (ξi)g
′(ξi)Δxi +

n∑

i=1

f (ξi)
(
g′(ξ̃i)− g′(ξi)

)
Δxi.

By the uniform continuity of the function g′ on the interval [a, b] and the bound-
edness of the function f , the last sum approaches zero as λ(P )→ 0. The first sum
is the usual integral sum for the integral, which appears at the right side of (E.2).
By our assumptions about the functions f and g, the function fg′ is Riemann in-
tegrable over the interval [a, b]. Thus, the sum above approaches the value of this
integral for λ(P )→ 0, which completes the proof of Eq. (E.2).

Problem 1 We achieved the proof of this equality using the mean value theorem,
which holds for real-valued functions. Using the general finite increment theorem,
complete the proof for vector-valued functions (for instance, complex-valued func-
tions).
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E.3 Heaviside Function and an Example of a Riemann–Stieltjes
Integral Computation

The Heaviside step function is defined through H(x) = 0 for x < 0 and H(x) = 1
for 0 ≤ x. Let us calculate the integral

∫ b

a
f (x)dH(x). Following the defini-

tion (E.1), we write the sum
∑n

i=1 f (ξi)ΔHi =∑n
i=1 f (ξi)(H(xi)−H(xi−1). Be-

cause of the definition of the Heaviside function, this sum is clearly equal to zero if
the point 0 is not contained in the interval [a, b], and equal to f (xi) if the point 0
falls into some of the intervals [xi−1, xi] (more precisely, in the interior of it or at
its endpoint xi ). In the first case, the integral is of course zero.

In the second case, under the limit λ(P ) → 0, the point ξi ∈ [xi−1, xi] ap-
proaches 0. Therefore, if the function f is continuous at 0, then the limit of the
sum above will be f (0).

If the function f is discontinuous at 0, with small changes of the value of ξi it is
possible to change essentially the value of f (ξi), and thus the sums of integrals will
not have a limit for λ(P ).

It is clear that the last calculation has a general nature, since the occurrence of
joint points of discontinuity for the functions f , g involved in the Riemann–Stieltjes
integral leads to the nonexistence of the limit if such a joint point occurs in the
interior of the integration interval.

Therefore, the calculation above shows that if ϕ is, for instance, a function of
class C0(R,R), i.e., a function defined on the whole real line and continuous, that
is identically zero outside of some bounded set, then

∫

R

ϕ(x)dH(x)= ϕ(0). (E.3)

E.4 Generalized Functions

E.4.1 Dirac’s Delta Function. A Heuristic Description

As we previously remarked, physicists among other scientists use the delta function
δ after its introduction by Dirac. This “function” is zero everywhere except at the
origin, where its value is infinity. Along with this (and this is really important),

∫ β

α

δ(x)dx = 1 if α < 0 < β,

and
∫ β

α

δ(x)dx = 0 if α < β < 0 or if 0 < α < β,

for all real values α and β .
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It is natural to assume that the multiplication of the integrating function by a
number leads to the product of this number with the integral. But then, if a function
ϕ is continuous at the origin, given that it is almost constant in some small neighbor-
hood U(0) of the origin and that

∫
U(0)

δ(x)dx = 1, we conclude that the following
relation should hold:

∫

R

ϕ(x)δ(x)dx = ϕ(0). (E.4)

By comparing Eqs. (E.2), (E.3), and (E.4) and continuing this chain of findings,
we conclude that

H ′(x)= δ(x). (E.5)

Of course, it does not fit into our classical setting. However, these considerations
are very constructive, and if one were obliged to write a value H ′(x), then one would
write what we now write, namely 0 if x �= 0 and +∞ if x = 0.

E.5 The Correspondence Between Functions and Functionals

One possible way out of this difficulty consists in the following idea of extension
(generalization) of the concept of “function”.

We shall look at the function through its interaction with other functions. (As
usual, we are not interested in the internal structure of a device, such as a human,
and we consider that we know an object if we know how the object responds to
certain input actions or incoming questions.)

Take an integrable function f on the interval [a, b], and consider the functional
Af (a function over functions) generated by f :

Af (ϕ)=
∫ b

a

f (x)ϕ(x)dx. (E.6)

In order to simplify the technical difficulties, we shall consider smooth test functions
even of class C∞0 [a, b], i.e., infinitely differentiable functions vanishing in a neigh-
borhood of the endpoints. It is even possible to continue both functions f and ϕ as
zero outside the interval [a, b], and instead of writing the integral over the interval,
we can write the integral as

Af (ϕ)=
∫

R

f (x)ϕ(x)dx. (E.7)

Knowing the value of the functional Af on test functions, we can find easily,
if necessary, the value f (x) of the function f at any point where this function is
continuous.

Problem 2

a) Prove that the value 1
2ε

∫ x+ε

x−ε
f (t)dt (integral average) tends to f (x) for

ε→ 0 at every point of continuity of the integrable function f .
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b) Show that the step function δε , equal to zero outside the interval [ε, ε] and
equal to 1

2ε
inside this interval (the function δε imitates Dirac’s δ function), can

be approximated with smooth functions δε with these properties: δε(x) ≥ 0 in R,
δε(x)= 0 for |x| ≥ ε, and

∫
R

δε(x)dx = 1.

c) Show that if ε → 0, then
∫ x+ε

x−ε
f (t)δε(x − t)dt → f (x) at every point of

continuity of the integrating function f .

E.6 Functionals as Generalized Functions

Thus, an integrable function f provides a linear functional Af (a linear function
in the vector space of functions C∞0 [a, b] or C∞0 (R)) defined through the formula
(E.6) or (E.7), and moreover, with the use of the functional Af , the integrable func-
tion f itself can be restored at all its points of continuity (i.e., almost everywhere).
Therefore, the functional Af can be thought of as a different encoding or interpre-
tation of the function f considered in the mirror of functionals.

But in this mirror it is possible to find some other linear functionals that are not
given through the integration of any function. As an example, we have the functional
that we have studied before,

∫
R

ϕ(x)dH(x)= ϕ(0), which we denote by Aδ (given
that we would like to write δ(x)dx instead of dH(x)).

The functionals of the first type are called regular, while those of the second type
are called singular.

We shall consider functionals as generalized functions. This set of functionals
contains our usual functions as a subset, consisting of all regular functionals.

Thus, by relating the Riemann integral and its generalization the Riemann–
Stieltjes integral, we gave an overview of the construction of generalized functions.
We shall not delve into the details of the theory of generalized functions, which are
related, for instance, to different spaces of test functions and the construction of lin-
ear functionals (generalized functions) on them. We prefer to prove the rule for dif-
ferentiating generalized functions. As a final remark showing the usefulness of the
Stieltjes integral, we would like to add here that on the space C[a, b] of continuous
functions ϕ on the interval [a, b], every linear continuous functional (either regular
or singular) can be represented as a Riemann–Stieltjes integral

∫ b

a
ϕ(x)dg(x) for

some properly selected function g. (For instance, the singular functional Aδ repre-
senting the generalized function δ has the form

∫
R

ϕ(x)dH(x), shown in Eq. (E.3).)

We began with an example in which we found the Stieltjes integral
∫ b

a
x dm(x)

in the determination of the center of mass. The integral Mn =
∫ b

a
xn dm(x) is called

the moment of order n relative to a measure (e.g., a probability measure), mass, or
charge distributed over the interval [a, b]. The moments M0, M1, M2 are frequently
met: M0 is the total mass (or measure of charge); M1/M0 provides the center of
mass in mechanics, and M1 is the mathematical expectation (or expected value) of a
random variable in probability theory; M2 is the moment of inertia in mechanics and
the scattering of a random variable with expected value M1 = 0 in probability the-
ory. One of the problems of the theory of moments is the restoration of a distribution
through the computation of the moments.
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E.7 Differentiation of Generalized Functions

Let A be a generalized function. What generalized function A′ should be considered
the derivative of A?

Let us consider first the derivative for regular generalized functions, i.e., for func-
tionals Af generated by a classical function f , in our case a smooth compactly sup-

ported function of class C
(1)
0 . Then it is natural to consider Af ′ the derivative A′f

of Af , generated by the function f ′, the derivative of the original function f .
Using integration by parts, we find that

A′f (ϕ) :=Af ′(ϕ)=
∫

R

f ′(x)ϕ(x)dx = f (x)ϕ(x)
∣
∣∞−∞ −

∫

R

f (x)ϕ′(x)dx =

=−
∫

R

f (x)ϕ′(x)dx =Af

(
ϕ′
)
.

Therefore, we find that in this case,

A′f (ϕ)=−Af

(
ϕ′
)
. (E.8)

This provides a reason to adopt the following definition of derivative:

A′(ϕ) := −A
(
ϕ′
)
. (E.9)

It is indicated here how the functional A′ acts on a function ϕ ∈C
(∞)
0 . Therefore,

the functional A′ is well defined.
The action of a linear functional on a function ϕ is frequently written in the form

〈A,ϕ〉, instead of A(ϕ), recalling the scalar product, to emphasize that this product
is linear in both of its variables.

With this notation if f is any generalized function, then according to Eq. (E.9),
we have

〈
f ′, ϕ

〉=−〈f,ϕ′
〉
. (E.10)

E.8 Derivatives of the Heaviside Function and the Delta Function

We shall compute the derivative of the Heaviside function, considering it a general-
ized function acting according to the usual rule of regular generalized functions

〈H,ϕ〉 =
∫

R

H(x)ϕ(x)dx.

Following the definitions (E.9) and (E.10), we have that

〈
H ′, ϕ

〉 := −〈H,ϕ′
〉 :=

∫

R

H(x)ϕ′(x)dx =−
∫ +∞

0
ϕ′(x)=

= −ϕ(x)
∣
∣+∞
0 = ϕ(0).
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We have shown that 〈H ′, ϕ〉 = ϕ(0). However, after the definition of the δ function
we have 〈δ,ϕ〉 = ϕ(0). Hence, we have proved that in terms of generalized func-
tions, we have the equality

H ′ = δ.

Let us compute, for example, δ′ and δ′′, i.e., we determine the action of the fol-
lowing functionals:

〈
δ′, ϕ

〉 := −〈δ,ϕ′〉 := −ϕ′(0);
〈
δ′′, ϕ

〉 := −〈δ′, ϕ′〉 := ϕ′′(0).

It is clear now that in general, we have 〈δ(n), ϕ〉 = (−1)nϕ(n)(0).
We realize that generalized functions are infinitely differentiable. This is their re-

markable property, which has many consequences. This property allows operations
that with usual functions are possible only under very special conditions.

To conclude, we would like to make the following remark of a general nature. Let
X be a vector space and X∗ its dual space, consisting of linear functions on X, and
let X∗∗ be the dual space of X∗. We shall write the value x∗(x) of the function x∗ ∈
X∗ at the vector x ∈ X as a scalar product 〈x∗, x〉, as we did before. By fixing x,
we obtain a linear function with respect to x∗. Thus every element of X can be
interpreted as an element of X∗∗, i.e., we have an embedding I : X→ X∗∗. In the
finite-dimensional case, all the spaces X, X∗, and X∗∗ are isomorphic, and I (X)=
X∗∗. In the general case, I (X) � X∗∗, i.e., I (X) is only a subset of the whole
space X∗∗. This is what is observed in the transition from functions (corresponding
to regular functionals) to generalized functions, which turned out to be a larger
space.



Appendix F
The Implicit Function Theorem
(An Alternative Presentation)

F.1 Formulation of the Problem

The formulation of the problem and the heuristic arguments are discussed, of course,
in a course lecture; but we shall omit this here, since the relevant material can be
read in Sect. 8.5 of Chap. 8.

We shall use a different approach for the proof of the implicit function theorem
here, splendid and independent from that we presented in Sect. 8.5 of Chap. 8. This
theorem assumes a somehow more advanced audience of readers, despite its con-
ceptual simplicity, beauty, and generality. These readers are in general already more
familiar with some general mathematical concepts, presented at the beginning of the
second part of the textbook. In any case, all this information allows us to appreciate
the real generality of the method, which we can show without loss of generality on
simple visual examples in our familiar spaces.

F.2 Some Reminders of Numerical Methods to Solve Equations

By fixing one of the variables in the equation F(x, y)= 0, we obtain an equation in
terms of the other variable. Therefore, it might be useful to remember how to solve
equations f (x)= 0.

1) According to the properties of the given function f , one chooses the methods
of solution.

For instance, if the function f is real-valued, continuous, and taking values with
different signs at the endpoints of the interval [a, b], then we know that in this in-
terval there is at least one root of the equation f (x)= 0, and it is possible to find it
through successive divisions of the interval. By dividing the interval in half, we get
either the root or a half-interval where the function takes values with different signs
at the endpoints. Continuing with this dividing process, we obtain a sequence (the
endpoints of the intervals) converging to the root of this equation.
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2) If f is a smooth convex function, then following Newton’s method, it is pos-
sible to propose in this case a more efficient algorithm, in the sense of speed of
convergence, to find a root.

Newton’s method or the method of tangents works as follows. We build the tan-
gent at the point x0, we find the intersection point with the x-axis, and by repeating
this process, we obtain a sequence of points with a recurrence relation

xn+1 = xn −
(
f ′(xn)

)−1
f (xn) (F.1)

converging rapidly to the root. (Estimate the velocity of convergence. Obtain the
relation xn+1 = 1

2 (xn+ a/xn), allowing you to find the positive root of the equation
x2− a = 0. Find

√
2 according to this formula with the desired accuracy and detect

how many additional correct digits appear at each step.)
3) Equation (F.1) can be written in the form

xn+1 = g(xn), (F.2)

where g(x)= x − (f ′(x))−1f (x). Thus, finding the roots of the equation for f (x)

reduces to finding a fixed point of the mapping g, i.e., a point such that

x = g(x). (F.3)

This reduction, as we know, applies not only to Newton’s method. In fact, the equa-
tion f (x) = 0 is equivalent to the equation λf (x) = 0 (if λ−1 exists), and that is
equivalent to the equation x = x + λf (x). Setting g(x) = x + λf (x) (λ can be a
variable here), we arrive at Eq. (F.3).

The process of solution of (F.3), i.e., finding a fixed point of the mapping g in
accordance with the recursive formula (F.2), is called an iterative process or method
of iterations, as we already know. This means that the value found in the previous
step becomes the argument or input of the function f in the next step. This cyclic
process is suitable for implementation in a computer.

If the iteration process (F.2) is done in a region where |g′(x)| ≤ q < 1, then the
sequence

x0,

x1 = g(x0),

x2 = g(x1)= g2(x0),

...

xn+1 = g(xn)= gn(x0)

is always fundamental (or a Cauchy sequence). Indeed, by applying the mean value
theorem, we have

|xn+1 − xn| ≤ q|xn − xn−1| ≤ · · · ≤ qn|x1 − x0|. (F.4)
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We apply the triangle inequality to it, and we obtain

|xn+m − xn| ≤ |xn − xn+1| + · · · + |xn+m−1 − xn+m| ≤

≤ (qn + · · · + qn+m−1)|x1 − x0| ≤ qn

1− q
|x1 − x0|. (F.5)

It is useful to remark that if we take the limit m→∞ in the last inequality, we
obtain the estimate

|x − xn| ≤ qn

1− q
|x1 − x0|, (F.6)

the deviation or evasion of xn from the fixed point x.

Problem 1 Draw several variants of the curve y = g(x) intersecting the line y = x

and a diagram simulating an iterative process xn+1 = g(xn) for finding a fixed point.

F.2.1 The Principle of the Fixed Point

The last arguments (relating formulas (F.3)–(F.6)) can obviously be applied in any
metric space in which the Cauchy criterion is valid, i.e., where every fundamen-
tal sequence is convergent. Such metric spaces are called complete metric spaces.
For instance, R is a complete metric space with respect to the standard distance
d(x′, x′′)= |x′ − x′′| between points x′, x′′ ∈ R. The interval I = {x ∈ R | |x| ≤ 1}
is also a complete metric space with respect to this metric. If we remove a point
from R or I , then clearly, the resulting metric space will not be complete.

Problem 2

a) Prove the completeness of the spaces Rn, C, Cn.
b) Show that the closed ball B(a, r) = {x ∈ X | d(a, x) ≤ r} with radius r and

center a ∈ X in a complete metric space (X,d) is itself a complete metric space
with respect to the induced metric d from the embedding B ⊂X.

We recall now the following definition.

Definition 1 A mapping g : X → Y from a metric space (X,dX) into another
(Y, dY ) is called a contraction if there exists a number q ∈ [0,1[ such that for arbi-
trary points x′, x′′ ∈X,

dY

(
g
(
x′
)
, g
(
x′′
))≤ qdX

(
x′, x′′

)
.

For example, if g : R→ R is a differentiable function with the property that
everywhere |g′(x)| ≤ q < 1, then by the mean value theorem, we have |g(x′) −
g(x′′)| ≤ q|x′ − x′′|, and therefore g is a contraction mapping. The same can be
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said about a differentiable mapping g : B→ Y from a convex subset B of a normed
space X (for instance, the ball B ⊂R

n) to a normed space Y if ‖g′(x)‖ ≤ q at every
point x ∈ B .

We are able to formulate now the following fixed-point principle.
A contraction mapping g : X→ X of a complete metric space into itself has a

unique fixed point x.
This point can be found through the iterative process xn+1 = g(xn), starting with

any point x0 ∈X. The speed of convergence and the error estimate for the approxi-
mation are given by the inequality

d(x, xn)≤ qn

1− q
d(x1, x0). (F.6′)

The proof of this fact was given above by the deduction of formulas (F.4)–(F.6),
where instead of |x′ − x′′| we have to write everywhere d(x′, x′′).

In order to appreciate the usefulness and scope for generalizing this principle,
consider the following important example.

Example 1 We look for the function y = y(x) satisfying the differential equation
y′ = f (x, y) and the initial condition y(x0)= y0.

Using the formula of Newton–Leibniz, we rewrite the problem in the form of the
following integral equation for the unknown function y(x):

y(x)= y0 +
∫ x

x0

f
(
t, y(t)

)
dt. (F.7)

On the right-hand side there is a mapping g, which acts on the function y(x), and
we look for the fixed “point” of the mapping (action) g.

For example, let f (x, y)= y, x0 = 0, and y0 = 1. Then we deal with the solution
of the equation y′ = y with the initial condition y(0) = 1, and Eq. (F.7) takes the
form

y(x)= 1+
∫ x

0
y(t)dt. (F.8)

We then carry out the iterative process, starting with the function y0(x)≡ 0, and we
successively obtain

y1(x)=1,

y2(x)=1+
∫ x

0
y1(t)dt = 1+ x,

y3(x)=1+
∫ x

0
y2(t)dt = 1+

∫ x

0
(1+ t)dt = 1+ x + 1

2
x2,

...
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yn(x)=1+ 1

1!x + · · · +
1

n!x
n,

...

It is clear, that we obtain the function ex = 1+ 1
1!x + · · · + 1

n!x
n + · · · .

Problem 3 Show that if ‖f (x, y1) − f (x, y2)‖ ≤ M‖y1 − y2‖, then in a neigh-
borhood of the point x0 the iteration process is applicable in the case of the more
general equation (F.7).

In this way, Picard (Émile Picard, 1856–1941) was looking for the solution of the
differential equation y′(x)= f (x, y(x)), with the initial condition y(x0)= y0 as a
fixed point of the mapping (F.7).

Banach (Stefan Banach, 1882–1945) formulated the fixed-point principle in the
abstract form above, and in this form it is often called Banach’s fixed-point principle
or the Banach–Picard principle. However, its origins can be traced back to Newton,
as we have seen.

F.3 The Implicit Function Theorem

F.3.1 Statement of the Theorem

We return now to the main object of our consideration and prove the implicit func-
tion theorem.

Theorem Let X,Y,Z be normed spaces (for example, R
m,Rn,Rm or even

R,R,R), and suppose moreover that Y is a complete metric space with respect
to the metric induced by the norm. Let F :W → Z be a mapping defined in a neigh-
borhood W of the point (x0, y0) ∈X × Y , continuous at (x0, y0), together with the
partial derivative F ′y(x, y), which is supposed to exist in W . If F(x0, y0) = 0 and

there exist (F ′y(x0, y0))
−1 and ‖(F ′y(x0, y0))

−1‖<∞, then there exist a neighbor-
hood U = U(x0) of the point x0 in X, a neighborhood V = V (y0) of the point y0

in Y , and a function f :U → V , continuous at x0, such that U × V ⊂W and

(
F(x, y)= 0 within U × V

)⇔ (
y = f (x), x ∈U

)
. (F.9)

In short, under the conditions of the theorem, the set determined by the relation
F(x, y)= 0 within the neighborhood U × V is the graph of the function y = f (x).
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F.3.2 Proof of the Existence of an Implicit Function

Proof Without loss of generality and for brevity, we may assume that (x0, y0) =
(0,0), which can always be achieved by the change of variables x − x0 and y − y0.

For a fixed x we shall solve the equation F(x, y)= 0 with respect to y. We look
for the solution as the fixed point of the mapping

gx(y)= y − (
F ′y(0,0)

)−1
F(x, y). (F.10)

This is a simplified version of Newton’s formula (F.1), where the coefficient λ

is constant (see the paragraph following formula (F.3)). It is immediately clear that
F(x, y)= 0⇔ gx(y)= y.

The mapping (F.10) is a contraction if (x, y) is near (0,0) ∈X× Y . Indeed,

dgx

dy
(y)=E − (

F ′y(0,0)
)−1

F ′y(x, y). (F.11)

Here E is the identity (unitary) mapping, and since F ′y(x, y) is continuous at the
point (0,0), there exists a number Δ ∈R such that for ‖x‖< Δ and ‖y‖< Δ,

∥
∥
∥
∥

dgx

dy

∥
∥
∥
∥<

1

2
. (F.12)

Finally, note that for every ε ∈ ]0,Δ[ there is δ ∈ ]0,Δ[ such that if ‖x‖ < δ,
then the function gx maps the interval (ball) ‖y‖ ≤ ε into itself.

Indeed, because of F(0,0)= 0 and from Eq. (F.10), we have g0(0)= 0. In view
of the continuity of F at the point (0,0), it follows from (F.10) that there is δ ∈ ]0,Δ[
such that ‖gx(0)‖< 1

2ε for ‖x‖< δ.
Thus, for ‖x‖ < δ, the mapping gx : B(ε)→ Y displaces the center of the in-

terval B(ε) = {y ∈ Y | ‖y‖ ≤ ε} no more than 1
2ε. Therefore, by virtue of (F.12) it

decreases B(ε) by at least a factor of two. Hence, gx(B(ε))⊂ B(ε) for ‖x‖< δ.
By assumption, Y is a complete space, and therefore B(ε)⊂ Y is also a complete

metric space (with respect to the induced metric).
Then by virtue of the fixed-point principle, there is a unique point y = f (x) ∈

B(ε) that is fixed for the mapping gx : B(ε)→ B(ε).
Thus for every x with ‖x‖ < δ, we have found a unique value y = f (x)

(‖f (x)‖< ε) in the neighborhood B(ε) such that F(x,f (x))= 0.
(The cross section of the domain P = {(x, y) ∈X× Y | ‖x‖< δ,‖y‖< ε} pass-

ing through the point (x,0) is the interval (ball) B(ε) in which lies the corresponding
fixed point y = f (x).)

Thus, we have shown that
(
F(x, y)= 0 for ‖x‖< δ and ‖y‖< ε

)⇔ (
y = f (x) for ‖x‖< δ

)
. (F.13)

Note that not only have we obtained the relation (F.9), but also, by virtue of the
construction, for every ε ∈ ]0,Δ[ we can choose δ > 0 such that (F.13) holds. Since



F.3 The Implicit Function Theorem 597

the function f has been found already and is fixed, we have that f (0)= 0 and f is
continuous at x = 0. �

The theorem just proved can be regarded as the existence theorem of the implicit
function y = f (x).

We shall see now what properties of the function F are inherited by the func-
tion f .

F.3.3 Continuity of an Implicit Function

If in addition to the conditions of the theorem, we know that the functions F and
F ′y are continuous not only at the point (x0, y0) but also in some neighborhood of
this point, then the implicit function is also continuous in some neighborhood of this
point.

Proof Indeed, in this case, the conditions of the theorem will be fulfilled at all the
points of the set F(x, y) = 0 near (x0, y0), and each of them could be considered
a starting point (x0, y0). The function f has been found already, and therefore is
fixed.

Warning! Recall the exercise that if the mapping A �→A−1, where A is mapped
to its inverse (for example for a matrix A) is defined on A, then it is defined on a
neighborhood of A. �

F.3.4 Differentiability of an Implicit Function

If in addition to the conditions of the theorem, we know that the function F is dif-
ferentiable at the point (x0, y0), then the implicit function f is also differentiable at
the point x0, and moreover,

f ′(x0)=−
(
F ′y(x0, y0)

)−1
F ′x(x0, y0). (F.14)

Proof Given the differentiability of F at the point (x0, y0), we can write

F(x, y)− F(x0, y0)=
= F ′x(x0, y0)(x − x0)+ F ′y(x0, y0)(y − y0)+ o

(|x − x0| + |y − y0|
)
.

Assuming for simplicity (x0, y0)= (0,0) and considering that we are only moving
along the curve y = f (x), we obtain

0= F ′x(0,0)x + F ′y(0,0)y + o
(|x| + |y|),
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or

y =−(F ′y(0,0)
)−1

F ′x(0,0)x − (
F ′y(0,0)

)−1
o
(|x| + |y|). (F.15)

Since y = f (x)= f (x)− f (0), the formula (F.14) will be justified, if we can show
that in the limit x→ 0, the second term on the right-hand side of (F.15) is o(x).

But

∣
∣
(
F ′y(0,0)

)−1
o
(|x| + |y|)∣∣≤ ∥∥(F ′y(0,0)

)−1∥∥ · ∣∣o(|x| + |y|)∣∣= o
(|x| + |y|).

Further,

∥
∥
(
F ′y(0,0)

)−1
F ′x(0,0)

∥
∥≤ ∥∥(F ′y(0,0)

)−1∥∥ · ∥∥F ′x(0,0)
∥
∥= a <∞.

Therefore, from (F.15) we obtain that |y| ≤ a|x|+α(|x|+|y|), where y = f (x)→ 0
and α = α(x)→ 0 for x→ 0. Hence,

|y| ≤ a + α

1− α
|x|< 2a|x|

for x sufficiently close to 0. Given this, for x→ 0 we obtain from (F.15) that

f (x)=−(F ′y(0,0)
)−1

F ′x(0,0)x + o(x).

In view of f (0)= 0, we have (F.14). �

F.3.5 Continuous Differentiability of an Implicit Function

If in addition to the conditions of the theorem, we know that the functions F ′x and
F ′y are defined and continuous in some neighborhood of the point (x0, y0), then the
implicit function f is also continuously differentiable in some neighborhood of the
point x0.

In short, if F ∈C(1), then f is also in C(1).

Proof In this case, the conditions of differentiability of f and (F.14) are fulfilled
not only at (x0, y0) but at all points of the “curve” F(x, y) = 0 near (x0, y0) (see
the above cautionary “Warning!”). Then, according to formula (F.14), in a neigh-
borhood of the point x0,

f ′(x)=−(F ′y
(
x,f (x)

))−1
F ′x
(
x,f (x)

)
, (F.14′)

from which it is clear that f ′ is continuous. �

Warning! Recall that the mapping A �→A−1 is continuous.
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F.3.6 Higher Derivatives of an Implicit Function

If in addition to the conditions of the theorem, we know that the function F is of
class C(k) in some neighborhood of the point (x0, y0), then the implicit function f

is also of class C(k) in a neighborhood of the point x0.

Proof Suppose, for example, that F is of class C(2). Since f is of class C(1), the
right-hand side of the equality (F.14′) can be differentiated according to the differ-
entiation rule for composite functions (chain rule). We obtain then a formula for
f ′′(x), and from it the continuity of f ′′(x) follows.

Moreover, as on the right-hand side of formula (F.14′), for f ′(x) the first partial
derivatives of F and the function f itself (but not f ′) are involved; in the formula
for f ′′(x), the second partial derivatives of F , f , and f ′ are involved (but not f ′′).

Thus, if F is of class C(3), then we can differentiate f ′′(x), and we arrive again
at a formula for f ′′′(x) in which are involved the third partial derivatives of F , and
also the derivatives of the functions f (f,f ′, f ′′) of order less than three.

By induction, we obtain what we claimed. �

Warning! Recall that the mapping A �→A−1 is differentiable and even infinitely
differentiable.

Problem 4

a) Find f ′′(x) (write down the formula for the computation of f ′′(x)(h1, h2) for
given displacement vectors h1, h2).

b) What does the formula (simplified) for f ′′(x) look like in the case that x, y,
and z= F(x, y) are real or complex variables?

Problem 5 (Method of undetermined coefficients). Suppose that we know the first
(or all) coefficients of the Taylor series of the function F . Find the first (or all)
coefficients of the Taylor series of the implicit function f .

Problem 6

a) Write in coordinate form the formulation of the implicit function theorem for
the cases F :Rm ×R

n→R
n, when m= n= 1 and when n > 1.

b) Let F : Rm → R
n (m > n) be a linear mapping with maximal rank (= n).

What is the dimension of the subspace F−1(0)⊂R
m and what is its codimension?

Let F : Rm → R
n (m > n) be now an arbitrary smooth mapping, F(0) = 0 and

rankF ′(x) = n. Answer the same questions (dimF−1(0) = ?, codimF−1(0) = ?)
with respect to the set F−1(0).
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280–282
Algebraic form of a complex number, 265
Algorithm, Euclidean, 66, 104
Almost everywhere, 345, 348, 359
Alternant, 170
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of a function, 12
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Average of a function, 371
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of choice, 29
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of separation, 27
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union, 28
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Axiom system
categorical, 38
consistent, 38
for set theory, 6, 27
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Zermelo–Fraenkel, 29

Axis
coordinate, 55
number, 55

B
Ball

closed, 411
open, 411

Base
in the set of partitions, 333
of computational system, 65
of logarithm, 122

Base (filter base), 126, 128
Basis of a vector space, 427

orthonormal, 431
Bernoulli numbers, 577
Bernoulli polynomials, 577
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upper (majorant), 44
Branch of the argument of a complex number,

265

C
Canonical variables, 496
Cantor set, 78, 348
Cardinal number, 26
Cardinality of a set, 26, 75
Cardinality of the continuum, 76, 77
Cartesian coordinates, 431
Center of curvature, 263, 541
Center of mass, 584
Change of parameter, admissible, 382
Change of variable, 311, 366
Circle, osculating, 263
Closure of a set, 413, 415
Compact set, 160, 413

in R
m, 424

in R
n, 413–415

Complement of a set, 9
Complex conjugate, 264
Complex number, 264

algebraic form, 265
polar form, 265

Composition
of mappings, 18, 132, 158, 194, 195, 347,

429, 441
of relations, 22

Condition
for a constrained extremum

necessary, 530
sufficient, 533

for a monotonic function, 215, 234
for an extremum, 235–237

of a function of several variables, 463
for convexity, 241–243
for differentiability, 437, 456
for integrability

necessary, 335
necessary and sufficient, 341, 342, 345
sufficient, 336–340

necessary, 2
sufficient, 2

Constant
Euler’s, 146
gravitational, 59
Planck’s, 59

Continuation
of a function, 13

Continuum, 76
Contraction, 593
Contraction mapping, 569

Convergence
absolute, 268
necessary condition, 96
of a sequence, 80
of a series, 95

absolute, 97, 98
of an improper integral, 393

absolute, 398
conditional, 402

Convergence test
Abel–Dirichlet, 403
Cauchy’s, 99
integral, 399
Weierstrass’, 88, 98

Coordinate of a point, 54, 410
Coordinates

Cartesian, 431
curvilinear, 469, 470

in Rm, 515
polar, 500, 501
spherical, 501

Correspondence between functions and
functionals, 587

Cosine
circular, 273
hyperbolic, 199, 274

Cosine integral, 328
Cotangent

hyperbolic, 201
Criterion

Cauchy
for a function, 130, 418
for an improper integral, 398
for sequences, 85, 267, 417
for series, 95, 268

for a constant function, 216, 235
for a constrained extremum

necessary, 530
sufficient, 533

for a monotonic function, 136, 215, 234
for an extremum, 235

necessary, 235, 463
sufficient, 237, 464

for continuity of a monotonic function, 164
for integrability

du Bois-Reymond, 348
Lebesgue, 344, 348

for monotonic sequences, 87
for series of nonnegative terms, 98
integrability

Darboux, 348
necessary, 2
Sylvester’s, 466

Critical point, 464



Subject Index 607

index, 517
nondegenerate, 512, 516

Curvature, 262
Curve

level, 449, 482
parametrized, 378
simple closed, 378
unicursal, 326

Curvilinear coordinates, 469, 470
Cycloid, 392, 408

D
Decay, radioactive, 291–293
Definition of derivative, 589
Delta function, 584, 586
Dependence, functional, 508, 516
Derivative, 176–178, 277, 433, 561, 563

directional, 446
higher-order, 206
logarithmic, 196
of a function of a complex variable, 277
one-sided, 261
partial, 435

higher-order, 457
with respect to a vector, 444

Diameter of a set, 414, 417
Diffeomorphism, 498, 509

elementary, 509
Difference

finite, 233
of sets, 8

Differential equation, 287–302, 328, 561
of harmonic oscillations, 298–302
with variables separable, 328

Differential of a function, 176–183
of several variables, 433–437

Differential of a mapping, 433, 437
Differentiation

and arithmetic operations, 190–194, 277,
439

of a composite function, 194–197, 441
of a power series, 278
of an implicit function, 202–206
of an inverse function, 197–202, 447

Dimension
of a physical quantity, 452–454
of a surface, 517, 518

Directional derivative, 446
Discontinuity, removable, 155
Disk of convergence, 269
Distance

between sets, 415
in Rm, 410
on the real line, 56

Divisor, 49
greatest common, 66

Domain
in Rm, 423
of a function, 12
of a relation, 20

E
Efficiency, 302
Element

inverse, 37
maximal, 44
minimal, 44
negative, 36
neutral, 36, 37
of a set, 7, 8
zero, 36, 39

Energy
kinetic, 15, 304, 386
potential, 15, 304, 386, 388
total, 15, 304, 387

Equality
of functions, 12
of sets, 7

Equation
differential, 175, 287–302, 328, 561
Euler’s (hydrodynamic), 446, 450
heat, 475
Laplace’s, 474

Equations
Cauchy–Riemann, 515
Euler–Lagrange, 496
Hamilton, 496

Error
absolute, 59, 60, 80, 196
relative, 59, 60, 196, 450

Error function, 404
Escape velocity, 391
Euclidean structure, 432
Euler–Lagrange equations, 553
Euler–Lagrange system, 554
Euler–MacLaurin formula, 578–580
Euler’s identity for homogeneous functions,

451
Euler’s substitution, 322
Expansion

partial fraction, 283, 316
Taylor, 208, 220–230, 279

Explosion, 293
Exponent, 118
Exponential function, 187, 294–300

complex, 273, 299
Exponential integral, 328, 407
Extension of a function, 13
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interior, 212, 235
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F
Factorization of a polynomial, 282
Falling bodies, 293
Fenchel–Young inequality, 573
Fiber, 23
Fibonacci numbers, 105
Field

algebraic, 37
Archimedean, 68
ordered, 68
potential, 446, 449, 543
vector, 446

First mean-value theorem, 354
Fixed-point principle, 594
Force function, 449
Formula

barometric, 289–291, 302
Bonnet’s, 358
Cauchy–Hadamard, 269
change of variable

in a definite integral, 366
de Moivre’s, 266, 274
Euler’s, 272
for change of variable in an indefinite

integral, 311
for integration by parts, 310

in an improper integral, 397
Hermite interpolation, 232
integration by parts, 372
Lagrange interpolation, 232
Leibniz’, 207
MacLaurin’s, 219
Meshcherskii’s, 289
Newton–Leibniz, 331, 366, 368, 370
Ostrogradskii’s, 325
quadrature, 375

rectangular, 374
Simpson’s (parabolic), 374
trapezoidal, 374

Taylor’s, 217–230, 461–476
for functions of several variables,

461–476, 513
local, 225, 462
multi-index notation for, 476
with integral form of the remainder,

461, 476, 513
Tsiolkovskii’s, 289
Viète’s, 147

Fraction
continued, 104

convergents, 104
partial, 283, 316

Fractional part, 54
Function, 12–15, 416, 560

additive interval, 350, 386
analytic at a point, 223, 279
asymptotically equivalent to another, 140
bounded, 111, 416, 424

from above, 111
from below, 111

characteristic, 14
concave, 241
constant, 109
continuous, 421–424

at a point, 149–152
on a set, 152, 422

convex, 241–243
downward, 241
upward, 241

decreasing, 136
differentiable at a point, 175, 176
Dirichlet, 156, 346
exponential, 117–122, 187, 273, 274,

294–300
force, 449
harmonic, 474
homogeneous, 451
hyperbolic, 199
implicit, 206, 209, 480–490
increasing, 135
infinite, 138

of higher order, 138
infinitesimal, 112–114

compared with another, 137
of higher order, 137

integrable, 335
inverse, 16, 17, 163–166, 197, 446, 498
Lagrange, 529, 530, 535
locally homogeneous, 451
logarithmic, 122–125
monotonic, 135
nondecreasing, 135
nonincreasing, 135
of a complex variable, 275

continuous, 277
differentiable, 277

of several variables, 409
differentiable, 432

periodic, 189, 265, 274, 369, 372
power, 125, 126
Riemann, 156, 167, 346
sgn, 108
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strictly convex, 241
trigonometric, 379–381
ultimately bounded, 111, 113, 129, 136,

416
ultimately constant, 111
uniformly continuous, 160, 424

Functional, 12, 14, 349
Functional dependence, 508, 516
Functionals as generalized functions, 588
Fundamental theorem of algebra, 281, 282

G
General Euler–MacLaurin formula, 579
General Young’s inequality, 573
Generalized functions, 586
Geodesic, 14
Geometric series, 96
Germ of a function, 170
Gradient, 445, 446
Graph of a function, 19, 168, 241–263

of several variables, 469, 470
Group, 36

Abelian, 36, 49
additive, 36
commutative, 36
multiplicative, 37

H
Half-life, 291, 303
Hamilton’s system of equations, 553
Harmonic mean, 548
Heaviside function, 586
Hessian, 495, 512, 541
Higher derivatives, 565
Hyperbolic cosine, 199
Hyperbolic cosine integral, 328
Hyperbolic sine, 199
Hyperbolic sine integral, 328

I
Ideal of a ring, 170

maximal, 170
of functions, 170

Identity
in a multiplicative group, 37
in the real numbers, 36, 37

Image, 16, 22
Imaginary part of a complex number, 264
Imaginary unit, 263
Imbedding, 16
Implicit function, 596
Implicit function theorem, 595

Increment
of a function, 176, 177, 433
of an argument, 176, 177, 433

Indefinite integral, 306–314
Index of a critical point, 517
Inequality

Bernoulli’s, 66, 89, 238
Cauchy–Bunyakovskii, 360
Hadamard’s, 543
Hölder’s, 239, 248, 360
Jensen’s, 247
Minkowski’s, 240, 360, 410
Schwarz, 360
triangle, 57, 240, 410, 411, 430
Young’s, 239, 261, 393

Inferior limit, 91
Injection, 16
Inner product, 431
Integer part, 54
Integral

cosine, 328
Darboux, 347
definite, 331–335
elliptic, 323, 324, 326, 327, 383, 401

complete, 383, 389, 407
first kind, 324, 389, 407
second kind, 324, 383
third kind, 324

Euler, 401
Euler–Poisson, 328, 404
exponential, 407
Fresnel, 328, 370, 407
Gaussian, 404
hyperbolic cosine, 328
hyperbolic sine, 328
hyperelliptic, 323
improper, 393–397

absolutely convergent, 398
conditionally convergent, 402
convergent, 393
divergent, 393
with more than one singularity, 404

indefinite, 306–314
logarithmic, 314, 328
of a vector-valued function, 340
Riemann, 334, 335
sine, 328
with variable upper limit, 360

Integration, 307, 331
by parts, 310, 364

in a definite integral, 372
by substitution (change of variable), 311,

366
Intersection of sets, 8, 11
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Interval, 56
closed, 56
half-open, 56
multidimensional, 414
numerical, 55
open, 56
unbounded, 56

Isomorphism, 39, 146
Iteration, 32, 168

J
Jacobi matrix, 437, 440, 464
Jacobian, 437

of the transition to polar coordinates, 501

L
Laplacian, 474, 480
Law, 560

Bernoulli’s, 450
Clapeyron’s (ideal gas), 290, 498
Kepler’s, 454
Newton’s, 171, 211, 294, 446, 449
of addition of velocities, 202–206
of refraction, 238, 543
Ohm’s, 25
Snell’s, 237, 543

Least upper bound, 44, 45
Legendre transform, 494, 495, 573
Lemma

Bolzano–Weierstrass, 72, 90, 94
Fermat’s, 212
finite covering, 71
Hadamard’s, 476, 512
least upper bound, 53
Morse’s, 512
on limit points, 72
on nested compact sets, 415

Length
of a curve, 14, 377–379
of a path, 377–379
of an ellipse, 383
of an interval, 52

Level curve, 449, 482
Level of a function, 528, 542
Level set, 449
Level surface, 488
Lifetime, 303
Limit

of a composite function, 132, 418
of a function, 106–136, 416
of a mapping, 416
of a sequence, 79–82, 85

inferior, 91
partial, 93

superior, 91
over a base, 126–130

Limits of integration, 334, 350, 360
Linearity of the integral, 349
Logarithm, 122, 196, 286

natural, 122, 286
Logarithmic integral, 314, 328, 406
Logarithmic scale, 196
Lorentz transformations, 14

M
Mantissa, 69
Mapping, 12, 13, 416

bijective, 16, 24
bounded, 111, 416, 424
constant, 109
continuous, 149–152, 421–424
identity, 18
injective, 16, 24
inverse, 16, 19, 197, 446, 498, 500

left, 24
right, 24

linear, 176, 180, 428, 429, 439, 441, 447,
503

one-to-one, 16
surjective, 16, 24
tangent, 433, 463, 503, 522
ultimately bounded, 111, 416
uniformly continuous, 160, 424

Mass, critical, 293
Maximum, 44, 160, 424, 462

constrained, 527, 537
local, 211, 236, 237, 462–471, 543

Mean
arithmetic, 105, 248, 260
geometric, 248, 260
harmonic, 96, 105, 260
integral, 371
of order p, 105, 259
quadratic, 105, 260

Mean square, 548
Mesh of a partition, 333
Method

dimension, 453
Euler’s, 297
gradient, 446
Lagrange multipliers, 529, 543
of exhaustion, 332
of least squares, 477
of undetermined coefficients, 284, 297
Ostrogradskii’s, 324

Method of tangents, 570, 592
Metric, 410, 411, 424

in Rm, 410, 416
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Minimum, 44, 160, 424, 462
constrained, 527, 537
local, 211, 236, 237, 462–471, 543

Modulus
of a complex number, 264
of a real number, 56
of a vector, 174, 264
of continuity, 168

Modulus of a spring, 298, 304, 386
Monotonicity of the integral, 353
Morphism, 12
Multi-index, 475
Multiplicity of a root, 283

N
Natural logarithm, 565
Necessary condition for convergence, 96
Neighborhood

deleted, 107, 418
of a point, 57, 72, 107, 411, 416

Newton’s method, 570, 592
Node, interpolation, 232, 373
Norm of a vector, 174, 429–432
Normal vector, 471
Nuclear reactor, 293
Number, 560

algebraic, 52, 67, 76
complex, 264
e, 89, 101–103, 122–134, 274, 299
Fibonacci, 105
integer, 49
irrational, 52, 67, 76
natural, 26, 29, 46

von Neumann, 29, 32
negative, 43
π , 52, 274, 374, 381, 393
positive, 43
prime, 49
rational, 50, 54, 75
real, 35
transcendental, 52, 67, 76

Number axis, 55

O
Operation

addition, 36
associative, 17, 36, 37
commutative, 36, 37
distributive, 37
multiplication, 36
of differentiation, 190
on sets, 8, 11

Operator, 12
Laplacian, 474, 480

logical, 7, 30
shift, 14
translation, 14

Orbit, planetary, 305
Order

linear, 38, 55, 68
partial, 37, 68

Order of contact, 181
Orthogonal vectors, 431
Oscillation, 298–302

damped, 301
harmonic, 300, 302
of a function

at a point, 151, 422
on a set, 130, 151, 417

of a particle in a well, 408
of a pendulum, 388, 389, 392, 402, 454
on a set, 336

Oscillator
linear, 304
plane, 305

Osculating circle, 263

P
Pair

ordered, 10, 28
unordered, 10, 28

Parabolic mirror, 185
Parametrization of a curve, 378, 380

natural, 387
Partial derivative, 435
Partial fraction, 283, 316
Partial limit, 93
Partition of an interval, 333

with distinguished points, 333
Path, 377, 421, 423, 448, 470, 517, 540

closed, 377
piecewise smooth, 378
simple, 378
simple closed, 378

Pendulum, 388, 389, 402, 454
cycloidal, 392, 408

Period
of a function, 189, 274, 369
of oscillation, 389, 392, 402, 408, 454
of revolution, 305

π(x), 136–141
Plane, 466, 469

complex, 264, 275
tangent, 470–474, 488, 522, 523

to a surface, 488, 522, 523
Point

boundary, 412
Chebyshev alternant, 170
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critical, 464, 521, 542
degenerate, 541
nondegenerate, 512, 516
saddle point, 471

exterior, 412
fixed, 167, 168
in Rm, 410
interior, 412
limit, 72, 413
local maximum, 211, 236, 237, 462–471
local minimum, 211, 236, 237, 462–471
of discontinuity

of a monotonic function, 164
of first kind, 155
of second kind, 156

of inflection, 246, 494
stationary, 464, 543

Polar coordinates, 500, 501
Polar form of a complex number, 265
Polynomial

Chebyshev, 169
Hermite, 232
Lagrange, 232, 373
Legendre, 373
of best approximation, 169, 170
Taylor, 224–228

Potential
Newtonian, 391, 446
of a force, 386–388, 446
of a vector field, 446, 449, 543

Power series, 268–271
absolutely convergent, 269–271
convergent, 269

Pre-image, 16, 17, 23
Primitive, 306–314, 332, 366, 368

generalized, 362
of a rational function, 314–318

Principal value, 406
Principle

Archimedes’, 52, 62, 74
Bolzano–Weierstrass, 72, 74
Borel–Lebesgue, 71, 74
Cauchy–Cantor, 71, 74
Fermat’s, 238, 543
least upper bound, 67
of induction, 46, 47, 57, 66

Principle of the fixed point, 593
Problem

Buffon needle, 393
Huygens’, 468, 478
Kepler’s (two-body), 171
Okun’s, 549

Procedure
recursive, 18

Product
Cartesian, 10, 28, 32
direct, 10, 28, 32
infinite, 147
inner, 431
of series, 270

Projection, 11, 14, 422
stereographic, 540

Property
global, 158, 424
holding ultimately (over a base), 129–137
local, 157, 170, 422

Q
Quantifier

existence, 7, 30
universal, 7, 30

R
Radioactive decay, 291–293
Radius

critical, 293
of convergence, 269
of curvature, 262

Range
of a function, 12
of a relation, 20

Rank
of a mapping, 503, 516
of a number, 65, 67
of a system of functions, 516

Rational part of an integral, 324, 325
Real part of a complex number, 264
Rearrangement of terms of a series, 97, 270
Rectification, 502
Recursion, 18
Refinement of a partition, 336
Regular, 588
Relation, 5, 20

antisymmetric, 21
equality, 7, 20
equipollence, 26
equivalence, 21, 26
functional, 21, 22
inclusion, 7, 21, 68
order, 21, 55

linear, 21
partial, 21

reflexive, 20
symmetric, 21
transitive, 21, 23
transpose, 23

Remainder in Taylor’s formula, 218–226, 375
Cauchy form, 219, 366
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integral form, 364, 461, 476
Lagrange form, 219–226, 366, 462, 476
Peano form, 226, 462

Resolution of a diffeomorphism, 509
Restriction of a function, 13
Riemann integral, 585
Riemann–Stieltjes integral, 585
Ring

of continuous functions, 170
of germs of continuous functions, 170

Root
multiplicity, 283
nth, 68, 118
of a complex number, 266
of a polynomial, 169, 279–282

multiple, 232, 283
Rule, l’Hôpital’s, 248

S
Saddle point, 471
Secant, 180, 181
Second mean-value theorem, 355, 358
Sequence, 58, 71, 80

bounded, 81, 87
Cauchy, 85, 267, 417
constant, 81
convergent, 80
decreasing, 87
divergent, 80
fundamental, 85, 267, 417
increasing, 87
monotonic, 87
nested, 71, 72

of intervals, 72
nondecreasing, 87
nonincreasing, 87
numerical, 58
of closed intervals, 86
of elements of a set, 58
of nested compact sets, 415
ultimately constant, 81

Series, 95
absolutely convergent, 97
convergent, 95

absolutely, 97
divergent, 95
harmonic, 96
numerical, 95
power, 219, 268–271
Taylor, 220, 279

Set, 5, 26
bounded, 44, 415

from above, 44
from below, 44

Cantor, 348
cardinality, 75
closed, 411–415
connected, 423, 426

pathwise, 423
countable, 74, 75
empty, 8, 27
equipollent to another, 25
finite, 26
inductive, 29, 46, 66
infinite, 26
invariant, 25
level, 449
of integrable functions, 335, 342
of measure zero, 344–346
open, 411–414, 423, 426
stable, 25
unbounded, 418
uncountable, 76

Sine
circular, 107, 273
hyperbolic, 199, 274

Sine integral, 328
Singular, 588
Skew-gradient, 553
Space

configuration, 15
Euclidean, 432
metric, 410

complete, 131, 417
phase, 15
R[a, b], 335, 342, 344, 349
R

m, 409, 419, 427
tangent, 433, 521–526
vector, 342, 343, 349, 427

Sphere, 412, 424, 425, 539
Spherical coordinates, 501
Stationary point, 464
Streamline, 450
Structure

Euclidean, 432
logical, 30

Subsequence, 90
Subset, 7, 28

empty, 8, 27
proper, 7

Substitution, Euler’s, 322
Successor, 28
Sum

Darboux, 340, 347
of a series, 95

partial, 95
Riemann, 332, 341
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lower, 340
upper, 340

Superior limit, 91
Support of a path, 378, 381
Surface, 470, 501, 517, 521, 523

level, 488
minimal, 495

Surjection, 16
Symbol

logical, 1
o, 137
O , 139

System of computation, 46, 61, 70
positional, 61, 65

System of functions
dependent, 508, 516
independent, 508, 516

T
Table

of derivatives, 203
of primitives (indefinite integrals), 309

Tangent, 173–182, 213, 244, 480
hyperbolic, 201

Tangent line, 180
Tangent mapping, 433, 463, 503
Tangent plane, 470–474, 488, 522, 523

to a surface, 488, 522, 523
Tangent space, 433, 521–526
Tangent vector, 472
Test

d’Alembert’s, 100, 222
for extrema, 212
Gauss’, 148

Test functions, 587
Theorem

Abel’s, 269
Bolzano–Cauchy, 158
Cantor uniform-continuity, 162
Cantor–Heine, 162
Cantor’s, 27
Cauchy’s finite-increment, 216
Chebyshev’s, 170
comparison

for integrals, 400
for series, 98

Darboux’, 231, 347
Dedekind’s, 65
finite-increment, 216, 217, 455
fundamental, of arithmetic, 67
Heine–Borel, 71
implicit function, 480–490
Lagrange’s finite-increment, 213–217

Liouville’s, 67
mean-value, 215, 454

first, 354, 372
second, 355, 358, 372, 403

of dimension theory (Π -theorem), 454
rank, 503
Rolle’s, 213, 477
Schröder–Bernstein, 32
Thales’, 55
Vallée Poussin’s, 169
Weierstrass’, 88
Weierstrass maximum-value, 160

Topology, 108
Transform

involutive, 261, 494
Legendre, 261, 494, 495

Transformation, 12
Abel’s, 355
Galilean, 13, 25, 203, 204
linear, 428, 429, 439, 503
Lorentz, 14, 25, 205

Trapezoid, curvilinear, 383
Truth table, 4

U
Union of sets, 8, 11
Unit

multiplicative, 40
Unit, imaginary, 263

V
Value

of a function, 12, 22
average, 371

principal, 406
Variable, canonical, 496
Vector

normal, 471
tangent, 472

Vectors, orthogonal, 431
Velocity

escape, 391
instantaneous, 172–175, 192
of light, 13, 59, 205, 238

Volume of a solid of revolution, 384

W
Work, 385

escape, 391

Z
Zero divisor, 69
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