
Universitext

Mathematical 
Analysis II

Vladimir A. Zorich

Second Edition



Universitext



Universitext

Series Editors

Sheldon Axler
San Francisco State University, San Francisco, CA, USA

Vincenzo Capasso
Università degli Studi di Milano, Milano, Italy

Carles Casacuberta
Universitat de Barcelona, Barcelona, Spain

Angus MacIntyre
Queen Mary University of London, London, UK

Kenneth Ribet
University of California, Berkeley, CA, USA

Claude Sabbah
CNRS, École Polytechnique, Palaiseau, France

Endre Süli
University of Oxford, Oxford, UK

Wojbor A. Woyczyński
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Prefaces

Preface to the Second English Edition

Science has not stood still in the years since the first English edition of this book
was published. For example, Fermat’s last theorem has been proved, the Poincaré
conjecture is now a theorem, and the Higgs boson has been discovered. Other events
in science, while not directly related to the contents of a textbook in classical math-
ematical analysis, have indirectly led the author to learn something new, to think
over something familiar, or to extend his knowledge and understanding. All of this
additional knowledge and understanding end up being useful even when one speaks
about something apparently completely unrelated.1

In addition to the original Russian edition, the book has been published in En-
glish, German, and Chinese. Various attentive multilingual readers have detected
many errors in the text. Luckily, these are local errors, mostly misprints. They have
assuredly all been corrected in this new edition.

But the main difference between the second and first English editions is the addi-
tion of a series of appendices to each volume. There are six of them in the first and
five of them in the second. So as not to disturb the original text, they are placed at the
end of each volume. The subjects of the appendices are diverse. They are meant to be
useful to students (in mathematics and physics) as well as to teachers, who may be
motivated by different goals. Some of the appendices are surveys, both prospective
and retrospective. The final survey contains the most important conceptual achieve-
ments of the whole course, which establish connections between analysis and other
parts of mathematics as a whole.

1There is a story about Erdős, who, like Hadamard, lived a very long mathematical and human
life. When he was quite old, a journalist who was interviewing him asked him about his age. Erdős
replied, after deliberating a bit, “I remember that when I was very young, scientists established that
the Earth was two billion years old. Now scientists assert that the Earth is four and a half billion
years old. So, I am approximately two and a half billion years old.”

v
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I was happy to learn that this book has proven to be useful, to some extent, not
only to mathematicians, but also to physicists, and even to engineers from technical
schools that promote a deeper study of mathematics.

It is a real pleasure to see a new generation that thinks bigger, understands more
deeply, and is able to do more than the generation on whose shoulders it grew.

Moscow, Russia V. Zorich
2015

Preface to the First English Edition

An entire generation of mathematicians has grown up during the time between the
appearance of the first edition of this textbook and the publication of the fourth
edition, a translation of which is before you. The book is familiar to many people,
who either attended the lectures on which it is based or studied out of it, and who
now teach others in universities all over the world. I am glad that it has become
accessible to English-speaking readers.

This textbook consists of two parts. It is aimed primarily at university students
and teachers specializing in mathematics and natural sciences, and at all those who
wish to see both the rigorous mathematical theory and examples of its effective use
in the solution of real problems of natural science.

The textbook exposes classical analysis as it is today, as an integral part of Mathe-
matics in its interrelations with other modern mathematical courses such as algebra,
differential geometry, differential equations, complex and functional analysis.

The two chapters with which this second book begins, summarize and explain in
a general form essentially all most important results of the first volume concerning
continuous and differentiable functions, as well as differential calculus. The pres-
ence of these two chapters makes the second book formally independent of the first
one. This assumes, however, that the reader is sufficiently well prepared to get by
without introductory considerations of the first part, which preceded the resulting
formalism discussed here. This second book, containing both the differential calcu-
lus in its generalized form and integral calculus of functions of several variables,
developed up to the general formula of Newton–Leibniz–Stokes, thus acquires a
certain unity and becomes more self-contained.

More complete information on the textbook and some recommendations for its
use in teaching can be found in the translations of the prefaces to the first and second
Russian editions.

Moscow, Russia V. Zorich
2003
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Preface to the Sixth Russian Edition

On my own behalf and on behalf of future readers, I thank all those, living in dif-
ferent countries, who had the possibility to inform the publisher or me personally
about errors (typos, errors, omissions), found in Russian, English, German and Chi-
nese editions of this textbook.

As it turned out, the book has been also very useful to physicists; I am very
happy about that. In any case, I really seek to accompany the formal theory with
meaningful examples of its application both in mathematics and outside of it.

The sixth edition contains a series of appendices that may be useful to students
and lecturers. Firstly, some of the material is actually real lectures (for example,
the transcription of two introductory survey lectures for students of first and third
semesters), and, secondly, this is some mathematical information (sometimes of cur-
rent interest, such as the relation between multidimensional geometry and the theory
of probability), lying close to the main subject of the textbook.

Moscow, Russia V. Zorich
2011

Prefaces to the Fifth, Fourth, Third and Second Russian Editions

In the fifth edition all misprints of the fourth edition have been corrected.

Moscow, Russia V. Zorich
2006

In the fourth edition all misprints that the author is aware of have been corrected.

Moscow, Russia V. Zorich
2002

The third edition differs from the second only in local corrections (although in
one case it also involves the correction of a proof) and in the addition of some
problems that seem to me to be useful.

Moscow, Russia V. Zorich
2001

In addition to the correction of all the misprints in the first edition of which the
author is aware, the differences between the second edition and the first edition of
this book are mainly the following. Certain sections on individual topics – for ex-
ample, Fourier series and the Fourier transform – have been recast (for the better,
I hope). We have included several new examples of applications and new substantive
problems relating to various parts of the theory and sometimes significantly extend-
ing it. Test questions are given, as well as questions and problems from the midterm
examinations. The list of further readings has been expanded.
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Further information on the material and some characteristics of this second part
of the course are given below in the preface to the first edition.

Moscow, Russia V. Zorich
1998

Preface to the First Russian Edition

The preface to the first part contained a rather detailed characterization of the course
as a whole, and hence I confine myself here to some remarks on the content of the
second part only.

The basic material of the present volume consists on the one hand of multiple in-
tegrals and line and surface integrals, leading to the generalized Stokes’ formula and
some examples of its application, and on the other hand the machinery of series and
integrals depending on a parameter, including Fourier series, the Fourier transform,
and the presentation of asymptotic expansions.

Thus, this Part 2 basically conforms to the curriculum of the second year of study
in the mathematics departments of universities.

So as not to impose rigid restrictions on the order of presentation of these two
major topics during the two semesters, I have discussed them practically indepen-
dently of each other.

Chapters 9 and 10, with which this book begins, reproduce in compressed and
generalized form, essentially all of the most important results that were obtained
in the first part concerning continuous and differentiable functions. These chapters
are starred and written as an appendix to Part 1. This appendix contains, however,
many concepts that play a role in any exposition of analysis to mathematicians.
The presence of these two chapters makes the second book formally independent
of the first, provided the reader is sufficiently well prepared to get by without the
numerous examples and introductory considerations that, in the first part, preceded
the formalism discussed here.

The main new material in the book, which is devoted to the integral calculus of
several variables, begins in Chap. 11. One who has completed the first part may
begin the second part of the course at this point without any loss of continuity in the
ideas.

The language of differential forms is explained and used in the discussion of the
theory of line and surface integrals. All the basic geometric concepts and analytic
constructions that later form a scale of abstract definitions leading to the generalized
Stokes’ formula are first introduced by using elementary material.

Chapter 15 is devoted to a similar summary exposition of the integration of dif-
ferential forms on manifolds. I regard this chapter as a very desirable and system-
atizing supplement to what was expounded and explained using specific objects in
the mandatory Chaps. 11–14.

The section on series and integrals depending on a parameter gives, along with
the traditional material, some elementary information on asymptotic series and
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asymptotics of integrals (Chap. 19), since, due to its effectiveness, the latter is an
unquestionably useful piece of analytic machinery.

For convenience in orientation, ancillary material or sections that may be omitted
on a first reading, are starred.

The numbering of the chapters and figures in this book continues the numbering
of the first part.

Biographical information is given here only for those scholars not mentioned in
the first part.

As before, for the convenience of the reader, and to shorten the text, the end of a
proof is denoted by �. Where convenient, definitions are introduced by the special
symbols := or =: (equality by definition), in which the colon stands on the side of
the object being defined.

Continuing the tradition of Part 1, a great deal of attention has been paid to both
the lucidity and logical clarity of the mathematical constructions themselves and the
demonstration of substantive applications in natural science for the theory devel-
oped.

Moscow, Russia V. Zorich
1982
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Chapter 9
*Continuous Mappings (General Theory)

In this chapter we shall generalize the properties of continuous mappings established
earlier for numerical-valued functions and mappings of the type f : Rm→ R

n and
discuss them from a unified point of view. In the process we shall introduce a number
of simple, yet important concepts that are used everywhere in mathematics.

9.1 Metric Spaces

9.1.1 Definition and Examples

Definition 1 A setX is said to be endowed with a metric or a metric space structure
or to be a metric space if a function

d :X×X→R (9.1)

is exhibited satisfying the following conditions:

a) d(x1, x2)= 0⇔ x1 = x2,
b) d(x1, x2)= d(x2, x1) (symmetry),
c) d(x1, x3)≤ d(x1, x2)+ d(x2, x3) (the triangle inequality),

where x1, x2, x3 are arbitrary elements of X.

In that case, the function (9.1) is called a metric or distance on X.
Thus a metric space is a pair (X,d) consisting of a set X and a metric defined on

it.
In accordance with geometric terminology the elements of X are called points.
We remark that if we set x3 = x1 in the triangle inequality and take account of

conditions a) and b) in the definition of a metric, we find that

0≤ d(x1, x2),

that is, a distance satisfying axioms a), b), and c) is nonnegative.
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2 9 *Continuous Mappings (General Theory)

Let us now consider some examples.

Example 1 The set R of real numbers becomes a metric space if we set d(x1, x2)=
|x2 − x1| for any two numbers x1 and x2, as we have always done.

Example 2 Other metrics can also be introduced on R. A trivial metric, for example,
is the discrete metric in which the distance between any two distinct points is 1.

The following metric on R is much more substantive. Let x �→ f (x) be a nonneg-
ative function defined for x ≥ 0 and vanishing for x = 0. If this function is strictly
convex upward, then, setting

d(x1, x2)= f
(|x1 − x2|

)
(9.2)

for points x1, x2 ∈R, we obtain a metric on R.
Axioms a) and b) obviously hold here, and the triangle inequality follows from

the easily verified fact that f is strictly monotonic and satisfies the following in-
equalities for 0< a < b:

f (a + b)− f (b) < f (a)− f (0)= f (a).

In particular, one could set d(x1, x2) =√|x1 − x2| or d(x1, x2) = |x1−x2|
1+|x1−x2| . In

the latter case the distance between any two points of the line is less than 1.

Example 3 Besides the traditional distance

d(x1, x2)=
√√√√

n∑

i=1

∣∣xi1 − xi2
∣∣2 (9.3)

between points x1 = (x1
1 , . . . , x

n
1 ) and x2 = (x1

2 , . . . , x
n
2 ) in R

n, one can also intro-
duce the distance

dp(x1, x2)=
(
n∑

i=1

∣∣xi1 − xi2
∣∣p
)1/p

, (9.4)

where p ≥ 1. The validity of the triangle inequality for the function (9.4) follows
from Minkowski’s inequality (see Sect. 5.4.2).

Example 4 When we encounter a word with incorrect letters while reading a text,
we can reconstruct the word without too much trouble by correcting the errors,
provided the number of errors is not too large. However, correcting the error and
obtaining the word is an operation that is sometimes ambiguous. For that reason,
other conditions being equal, one must give preference to the interpretation of the
incorrect text that requires the fewest corrections. Accordingly, in coding theory
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the metric (9.4) with p = 1 is used on the set of all finite sequences of length n
consisting of zeros and ones.

Geometrically the set of such sequences can be interpreted as the set of ver-
tices of the unit cube I = {x ∈ Rn | 0 ≤ xi ≤ 1, i = 1, . . . , n} in R

n. The distance
between two vertices is the number of interchanges of zeros and ones needed to
obtain the coordinates of one vertex from the other. Each such interchange repre-
sents a passage along one edge of the cube. Thus this distance is the shortest path
along the edges of the cube from one of the vertices under consideration to the
other.

Example 5 In comparing the results of two series of n measurements of the same
quantity the metric most commonly used is (9.4) with p = 2. The distance between
points in this metric is usually called their mean-square deviation.

Example 6 As one can easily see, if we pass to the limit in (9.4) as p→+∞, we
obtain the following metric in R

n:

d(x1, x2)= max
1≤i≤n

∣∣xi1 − xi2
∣∣. (9.5)

Example 7 The set C[a, b] of functions that are continuous on a closed interval
becomes a metric space if we define the distance between two functions f and g to
be

d(f,g)= max
a≤x≤b

∣∣f (x)− g(x)∣∣. (9.6)

Axioms a) and b) for a metric obviously hold, and the triangle inequality follows
from the relations

∣∣f (x)− h(x)∣∣≤ ∣∣f (x)− g(x)∣∣+ ∣∣g(x)− h(x)∣∣≤ d(f,g)+ d(g,h),
that is,

d(f,h)= max
a≤x≤b

∣
∣f (x)− h(x)∣∣≤ d(f,g)+ d(g,h).

The metric (9.6) – the so-called uniform or Chebyshev metric in C[a, b] – is
used when we wish to replace one function by another (for example, a polynomial)
from which it is possible to compute the values of the first with a required degree of
precision at any point x ∈ [a, b]. The quantity d(f,g) is precisely a characterization
of the precision of such an approximate computation.

The metric (9.6) closely resembles the metric (9.5) in R
n.

Example 8 Like the metric (9.4), for p ≥ 1 we can introduce in C[a, b] the metric

dp(f, g)=
(∫ b

a

|f − g|p(x)dx
)1/p

. (9.7)
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It follows from Minkowski’s inequality for integrals, which can be obtained from
Minkowski’s inequality for the Riemann sums by passing to the limit, that this is
indeed a metric for p ≥ 1.

The following special cases of the metric (9.7) are especially important: p = 1,
which is the integral metric; p = 2, the metric of mean-square deviation; and p =
+∞, the uniform metric.

The space C[a, b] endowed with the metric (9.7) is often denoted Cp[a, b]. One
can verify that C∞[a, b] is the space C[a, b] endowed with the metric (9.6).

Example 9 The metric (9.7) could also have been used on the set R[a, b] of
Riemann-integrable functions on the closed interval [a, b]. However, since the inte-
gral of the absolute value of the difference of two functions may vanish even when
the two functions are not identically equal, axiom a) will not hold in this case. Nev-
ertheless, we know that the integral of a nonnegative function ϕ ∈R[a, b] equals
zero if and only if ϕ(x)= 0 at almost all points of the closed interval [a, b].

Therefore, if we partition R[a, b] into equivalence classes of functions, regarding
two functions in R[a, b] as equivalent if they differ on at most a set of measure zero,
then the relation (9.7) really does define a metric on the set R̃[a, b] of such equiv-
alence classes. The set R̃[a, b] endowed with this metric will be denoted R̃p[a, b]
and sometimes simply by Rp[a, b].

Example 10 In the set C(k)[a, b] of functions defined on [a, b] and having continu-
ous derivatives up to order k inclusive one can define the following metric:

d(f,g)=max{M0, . . . ,Mk}, (9.8)

where

Mi = max
a≤x≤b

∣∣f (i)(x)− g(i)(x)∣∣, i = 0,1, . . . , k.

Using the fact that (9.6) is a metric, one can easily verify that (9.8) is also a
metric.

Assume for example that f is the coordinate of a moving point considered
as a function of time. If a restriction is placed on the allowable region where
the point can be during the time interval [a, b] and the particle is not allowed
to exceed a certain speed, and, in addition, we wish to have some assurance
that the accelerations cannot exceed a certain level, it is natural to consider the
set {maxa≤x≤b |f (x)|,maxa≤x≤b |f ′(x)|,maxa≤x≤b |f ′′(x)|} for a function f ∈
C(2)[a, b] and using these characteristics, to regard two motions f and g as close
together if the quantity (9.8) for them is small.

These examples show that a given set can be metrized in various ways. The
choice of the metric to be introduced is usually controlled by the statement of the
problem. At present we shall be interested in the most general properties of metric
spaces, the properties that are inherent in all of them.
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9.1.2 Open and Closed Subsets of a Metric Space

Let (X,d) be a metric space. In the general case, as was done for the case X = R
n

in Sect. 7.1, one can also introduce the concept of a ball with center at a given point,
open set, closed set, neighborhood of a point, limit point of a set, and so forth.

Let us now recall these concepts, which are basic for what is to follow.

Definition 2 For δ > 0 and a ∈X the set

B(a, δ)= {x ∈X | d(a, x) < δ}

is called the ball with center a ∈X of radius δ or the δ-neighborhood of the point a.

This name is a convenient one in a general metric space, but it must not be iden-
tified with the traditional geometric image we are familiar with in R

3.

Example 11 The unit ball in C[a, b] with center at the function that is identically 0
on [a, b] consists of the functions that are continuous on the closed interval [a, b]
and whose absolute values are less than 1 on that interval.

Example 12 Let X be the unit square in R
2 for which the distance between two

points is defined to be the distance between those same points in R
2. Then X is a

metric space, while the square X considered as a metric space in its own right can
be regarded as the ball of any radius ρ ≥√2/2 about its center.

It is clear that in this way one could construct balls of very peculiar shape. Hence
the term ball should not be understood too literally.

Definition 3 A setG⊂X is open in the metric space (X,d) if for each point x ∈G
there exists a ball B(x, δ) such that B(x, δ)⊂G.

It obviously follows from this definition that X itself is an open set in (X,d).
The empty set ∅ is also open. By the same reasoning as in the case of Rn one can
prove that a ball B(a, r) and its exterior {x ∈ X : d(a, x) > r} are open sets. (See
Examples 3 and 4 of Sect. 7.1.)

Definition 4 A set F ⊂ X is closed in (X,d) if its complement X\F is open in
(X,d).

In particular, we conclude from this definition that the closed ball

B̃(a, r) := {x ∈X | d(a, x)≤ r}

is a closed set in a metric space (X,d).
The following proposition holds for open and closed sets in a metric space (X,d).
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Proposition 1 a) The union
⋃
α∈AGα of the sets in any system {Gα,α ∈A} of sets

Gα that are open in X is an open set in X.
b) The intersection

⋂n
i=1Gi of any finite number of sets that are open in X is an

open set in X.
a′) The intersection

⋂
α∈A Fα of the sets in any system {Fα,α ∈ A} of sets Fα

that are closed in X is a closed set in X.
b′) The union

⋃n
i=1Fi of any finite number of sets that are closed inX is a closed

set in X.

The proof of Proposition 1 is a verbatim repetition of the proof of the correspond-
ing proposition for open and closed sets in R

n, and we omit it. (See Proposition 1 in
Sect. 7.1.)

Definition 5 An open set in X containing the point x ∈X is called a neighborhood
of the point x in X.

Definition 6 Relative to a set E ⊂X, a point x ∈X is called

an interior point of E if some neighborhood of it is contained in X,
an exterior point of E if some neighborhood of it is contained in the complement
of E in X,
a boundary point of E if it is neither interior nor exterior to E (that is, every
neighborhood of the point contains both a point belonging to E and a point not
belonging to E).

Example 13 All points of a ball B(a, r) are interior to it, and the set CXB̃(a, r)=
X\B̃(a, r) consists of the points exterior to the ball B(a, r).

In the case of R
n with the standard metric d the sphere S(a, r) := {x ∈ R

n |
d(a, x)= r ≥ 0} is the set of boundary points of the ball B(a, r).1

Definition 7 A point a ∈X is a limit point of the set E ⊂X if the set E ∩O(a) is
infinite for every neighborhood O(a) of the point.

Definition 8 The union of the set E and the set of all its limit points is called the
closure of the set E in X.

As before, the closure of a set E ⊂X will be denoted E.

Proposition 2 A set F ⊂ X is closed in X if and only if it contains all its limit
points.

Thus

(F is closed in X)⇐⇒ (F = F in X).

1In connection with Example 13 see also Problem 2 at the end of this section.
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We omit the proof, since it repeats the proof of the analogous proposition for the
case X =R

n discussed in Sect. 7.1.

9.1.3 Subspaces of a Metric Space

If (X,d) is a metric space and E is a subset of X, then, setting the distance between
two points x1 and x2 of E equal to d(x1, x2), that is, the distance between them
in X, we obtain the metric space (E,d), which is customarily called a subspace of
the original space (X,d).

Thus we adopt the following definition.

Definition 9 A metric space (X1, d1) is a subspace of the metric space (X,d) if
X1 ⊂X and the equality d1(a, b)= d(a, b) holds for any pair of points a, b in X1.

Since the ball B1(a, r) = {x ∈ X1 | d1(a, x) < r} in a subspace (X1, d1) of the
metric space (X,d) is obviously the intersection

B1(a, r)=X1 ∩B(a, r)

of the set X1 ⊂ X with the ball B(a, r) in X, it follows that every open set in X1

has the form

G1 =X1 ∩G,
where G is an open set in X, and every closed set F1 in X1 has the form

F1 =X1 ∩ F,

where F is a closed set in X.
It follows from what has just been said that the properties of a set in a metric

space of being open or closed are relative properties and depend on the ambient
space.

Example 14 The open interval |x|< 1, y = 0 of the x-axis in the plane R
2 with the

standard metric in R
2 is a metric space (X1, d1), which, like any metric space, is

closed as a subset of itself, since it contains all its limit points in X1. At the same
time, it is obviously not closed in R

2 =X.

This same example shows that openness is also a relative concept.

Example 15 The set C[a, b] of continuous functions on the closed interval [a, b]
with the metric (9.7) is a subspace of the metric space Rp[a, b]. However, if we
consider the metric (9.6) on C[a, b] rather than (9.7), this is no longer true.
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9.1.4 The Direct Product of Metric Spaces

If (X1, d1) and (X2, d2) are two metric spaces, one can introduce a metric d on the
direct productX1×X2. The commonest methods of introducing a metric inX1×X2
are the following. If (x1, x2) ∈X1 ×X2 and (x′1, x′2) ∈X1 ×X2, one may set

d
(
(x1, x2),

(
x′1, x′2

))=
√
d2

1

(
x1, x

′
1

)+ d2
2

(
x2, x

′
2

)
,

or

d
(
(x1, x2),

(
x′1, x′2

))= d1
(
x1, x

′
1

)+ d2
(
x2, x

′
2

)
,

or

d
(
(x1, x2),

(
x′1, x′2

))=max
{
d1
(
x1, x

′
2

)
, d2
(
x2, x

′
2

)}
.

It is easy to see that we obtain a metric on X1 ×X2 in all of these cases.

Definition 10 if (X1, d1) and (X2, d2) are two metric spaces, the space (X1 ×
X2, d), where d is a metric on X1 × X2 introduced by any of the methods just
indicated, will be called the direct product of the original metric spaces.

Example 16 The space R
2 can be regarded as the direct product of two copies of

the metric space R with its standard metric, and R
3 is the direct product R2×R

1 of
the spaces R2 and R

1 =R.

9.1.5 Problems and Exercises

1. a) Extending Example 2, show that if f : R+ → R+ is a continuous function
that is strictly convex upward and satisfies f (0)= 0, while (X,d) is a metric space,
then one can introduce a new metric df on X by setting df (x1, x2)= f (d(x1, x2)).

b) Show that on any metric space (X,d) one can introduce a metric d ′(x1, x2)=
d(x1,x2)

1+d(x1,x2)
in which the distance between the points will be less than 1.

2. Let (X,d) be a metric space with the trivial (discrete) metric shown in Ex-
ample 2, and let a ∈ X. For this case, what are the sets B(a,1/2), B(a,1),
B(a,1), B̃(a,1), B(a,3/2), and what are the sets {x ∈X | d(a, x)= 1/2}, {x ∈X |
d(a, x)= 1}, B(a,1)\B(a,1), B̃(a,1)\B(a,1)?
3. a) Is it true that the union of any family of closed sets is a closed set?

b) Is every boundary point of a set a limit point of that set?
c) Is it true that in any neighborhood of a boundary point of a set there are points

in both the interior and exterior of that set?
d) Show that the set of boundary points of any set is a closed set.

4. a) Prove that if (Y, dY ) is a subspace of the metric space (X,dX), then for any
open (resp. closed) set GY (resp. FY ) in Y there is an open (resp. closed) set GX
(resp. FX) in X such that GY = Y ∩GX , (resp. FY = Y ∩ FX).
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b) Verify that if the open sets G′Y and G′′Y in Y do not intersect, then the corre-
sponding sets G′X and G′′X in X can be chosen so that they also have no points in
common.

5. Having a metric d on a set X, one may attempt to define the distance d(A,B)
between sets A⊂X and B ⊂X as follows:

d(A,B)= inf
a∈A,b∈B d(a, b).

a) Give an example of a metric space and two nonintersecting subsets of it A
and B for which d(A,B)= 0.

b) Show, following Hausdorff, that on the set of closed sets of a metric space
(X,d) one can introduce the Hausdorff metric D by assuming that for A⊂ X and
B ⊂X

D(A,B) :=max
{

sup
a∈A
d(a,B), sup

b∈B
d(A,b)

}
.

9.2 Topological Spaces

For questions connected with the concept of the limit of a function or a mapping,
what is essential in many cases is not the presence of any particular metric on the
space, but rather the possibility of saying what a neighborhood of a point is. To
convince oneself of that it suffices to recall that the very definition of a limit or the
definition of continuity can be stated in terms of neighborhoods. Topological spaces
are the mathematical objects on which the operation of passage to the limit and the
concept of continuity can be studied in maximum generality.

9.2.1 Basic Definitions

Definition 1 A setX is said to be endowed with the structure of a topological space
or a topology or is said to be a topological space if a system τ of subsets of X is
exhibited (called open sets in X) possessing the following properties:

a) ∅ ∈ τ ; X ∈ τ .
b) (∀α ∈A(τα ∈ τ))=⇒⋃α∈A τα ∈ τ .
c) (τi ∈ τ ; i = 1, . . . , n)=⇒⋂ni=1 τi ∈ τ .

Thus, a topological space is a pair (X, τ) consisting of a set X and a system τ

of distinguished subsets of the set having the properties that τ contains the empty
set and the whole set X, the union of any number of sets of τ is a set of τ , and the
intersection of any finite number of sets of τ is a set of τ .

As one can see, in the axiom system a), b), c) for a topological space we have
postulated precisely the properties of open sets that we already proved in the case of
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a metric space. Thus any metric space with the definition of open sets given above
is a topological space.

Thus defining a topology on X means exhibiting a system τ of subsets of X
satisfying the axioms a), b), and c) for a topological space.

Defining a metric inX, as we have seen, automatically defines the topology on X
induced by that metric. It should be remarked, however, that different metrics on X
may generate the same topology on that set.

Example 1 Let X = R
n (n > 1). Consider the metric d1(x1, x2) defined by relation

(9.5) in Sect. 9.1, and the metric d2(x1, x2) defined by formula (9.3) in Sect. 9.1.
The inequalities

d1(x1, x2)≤ d2(x1, x2)≤√nd1(x1, x2),

obviously imply that every ball B(a, r) with center at an arbitrary point a ∈ X,
interpreted in the sense of one of these two metrics, contains a ball with the same
center, interpreted in the sense of the other metric. Hence by definition of an open
subset of a metric space, it follows that the two metrics induce the same topology
on X.

Nearly all the topological spaces that we shall make active use of in this course
are metric spaces. One should not think, however, that every topological space can
be metrized, that is, endowed with a metric whose open sets will be the same as
the open sets in the system τ that defines the topology on X. The conditions under
which this can be done form the content of the so-called metrization theorems.

Definition 2 If (X, τ) is a topological space, the sets of the system τ are called the
open sets, and their complements in X are called the closed sets of the topological
space (X, τ).

A topology τ on a set X is seldom defined by enumerating all the sets in the
system τ . More often the system τ is defined by exhibiting only a certain set of
subsets of X from which one can obtain any set in the system τ through union and
intersection. The following definition is therefore very important.

Definition 3 A base of the topological space (X, τ) (an open base or base for the
topology) is a family B of open subsets of X such that every open set G ∈ τ is the
union of some collection of elements of the family B.

Example 2 If (X,d) is a metric space and (x, τ ) the topological space correspond-
ing to it, the set B= {B(a, r)} of all balls, where a ∈ X and r > 0, is obviously a
base of the topology τ . Moreover, if we take the system B of all balls with positive
rational radii r , this system is also a base for the topology.

Thus a topology can be defined by describing only a base of that topology. As
one can see from Example 2, a topological space may have many different bases for
the topology.
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Definition 4 The minimal cardinality among all bases of a topological space is
called its weight.

As a rule, we shall be dealing with topological spaces whose topologies admit a
countable base (see, however, Problems 4 and 6).

Example 3 If we take the system B of balls in R
k of all possible rational radii r =

m
n
> 0 with centers at all possible rational points (m1

n1
, . . . ,

mk
nk
) ∈ Rk , we obviously

obtain a countable base for the standard topology of Rk . It is not difficult to verify
that it is impossible to define the standard topology in R

k by exhibiting a finite
system of open sets. Thus the standard topological space R

k has countable weight.

Definition 5 A neighborhood of a point of a topological space (X, τ) is an open set
containing the point.

It is clear that if a topology τ is defined on X, then for each point the system of
its neighborhoods is defined.

It is also clear that the system of all neighborhoods of all possible points of
topological space can serve as a base for the topology of that space. Thus a topology
can be introduced on X by describing the neighborhoods of the points of X. This is
the way of defining the topology in X that was originally used in the definition of a
topological space.2 Notice, for example, that we have introduced the topology in a
metric space itself essentially by saying what a δ-neighborhood of a point is. Let us
give one more example.

Example 4 Consider the set C(R,R) of real-valued continuous functions defined
on the entire real line. Using this set as foundation, we shall construct a new set
– the set of germs of continuous functions. We shall regard two functions f,g ∈
C(R,R) as equivalent at the point a ∈ R if there is a neighborhood U(a) of that
point such that ∀x ∈ U(a) (f (x)= g(x)). The relation just introduced really is an
equivalence relation (it is reflexive, symmetric, and transitive). An equivalence class
of continuous functions at the point a ∈ R is called germ of continuous function at
that point. If f is one of the functions generating the germ at the point a, we shall
denote the germ itself by the symbol fa . Now let us define a neighborhood of a
germ. Let U(a) be a neighborhood of the point a and f a function defined on U(a)
generating the germ fa at a. This same function generates its germ fx at any point
x ∈ U(a). The set {fx} of all germs corresponding to the points x ∈ U(a) will be
called a neighborhood of the germ fa . Taking the set of such neighborhoods of all
germs as the base of a topology, we turn the set of germs of continuous functions
into a topological space. It is worthwhile to note that in the resulting topological

2The concepts of a metric space and a topological space were explicitly stated early in the twen-
tieth century. In 1906 the French mathematician M. Fréchet (1878–1973) introduced the concept
of a metric space, and in 1914 the German mathematician F. Hausdorff (1868–1942) defined a
topological space.
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Fig. 9.1

space two different points (germs) fa and ga may not have disjoint neighborhoods
(see Fig. 9.1).

Definition 6 A topological space is Hausdorff if the Hausdorff axiom holds in it:
any two distinct points of the space have nonintersecting neighborhoods.

Example 5 Any metric space is obviously Hausdorff, since for any two points
a, b ∈ X such that d(a, b) > 0 their spherical neighborhoods B(a, 1

2d(a, b)),
B(b, 1

2d(a, b)) have no points in common.
At the same time, as Example 4 shows, there do exist non-Hausdorff topological

spaces. Perhaps the simplest example here is the topological space (X, τ) with the
trivial topology τ = {∅,X}. If X contains at least two distinct points, then (X, τ) is
obviously not Hausdorff. Moreover, the complement X\x of a point in this space is
not an open set.

We shall be working exclusively with Hausdorff spaces.

Definition 7 A set E ⊂ X is (everywhere) dense in a topological space (X, τ) if
for any point x ∈X and any neighborhood U(x) of it the intersection E ∩U(X) is
nonempty.

Example 6 If we consider the standard topology in R, the set Q of rational numbers
is everywhere dense in R. Similarly the set Qn of rational points in R

n is dense
in R

n.

One can show that in every topological space there is an everywhere dense set
whose cardinality does not exceed the weight of the topological space.

Definition 8 A metric space having a countable dense set is called a separable
space.

Example 7 The metric space (Rn, d) in any of the standard metrics is a separable
space, since Q

n is dense in it.

Example 8 The metric space (C([0,1],R), d) with the metric defined by (9.6)
is also separable. For, as follows from the uniform continuity of the functions
f ∈ C([0,1],R), the graph of any such function can be approximated as closely
as desired by a broken line consisting of a finite number of segments whose nodes
have rational coordinates. The set of such broken lines is countable.
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We shall be dealing mainly with separable spaces.
We now remark that, since the definition of a neighborhood of a point in a topo-

logical space is verbally the same as the definition of a neighborhood of a point in
a metric space, the concepts of interior point, exterior point, boundary point, and
limit point of a set, and the concept of the closure of a set, all of which use only the
concept of a neighborhood, can be carried over without any changes to the case of
an arbitrary topological space.

Moreover, as can be seen from the proof of Proposition 2 in Sect. 7.1, it is also
true that a set in a Hausdorff space is closed if and only if it contains all its limit
points.

9.2.2 Subspaces of a Topological Space

Let (X, τX) be a topological space and Y a subset of X. The topology τX makes
it possible to define the following topology τY in Y , called the induced or relative
topology on Y ⊂X.

We define an open set in Y to be any set GY of the form GY = Y ∩GX , where
GX is an open set in X.

It is not difficult to verify that the system τY of subsets of Y that arises in this
way satisfies the axioms for open sets in a topological space.

As one can see, the definition of open sets GY in Y agrees with the one we
obtained in Sect. 9.1.3 for the case when Y is a subspace of a metric space X.

Definition 9 A subset Y ⊂ X of a topological space (X, τ) with the topology τY
induced on Y is called a subspace of the topological space X.

It is clear that a set that is open in (Y, τY ) is not necessarily open in (X, τX).

9.2.3 The Direct Product of Topological Spaces

If (X1, τ1) and (X2, τ2) are two topological spaces with systems of open sets τ1 =
{G1} and τ2 = {G2}, we can introduce a topology on X1×X2 by taking as the base
the sets of the form G1 ×G2.

Definition 10 The topological space (X1 × X2, τ1 × τ2) whose topology has the
base consisting of sets of the form G1 ×G2, where Gi is an open set in the topo-
logical space (Xi, τi), i = 1,2, is called the direct product of the topological spaces
(X1, τ1) and (X2, τ2).

Example 9 If R = R
1 and R

2 are considered with their standard topologies, then,
as one can see, R2 is the direct product R1 × R

1. For every open set in R
2 can be

obtained, for example, as the union of “square” neighborhoods of all its points. And
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squares (with sides parallel to the axes) are the products of open intervals, which are
open sets in R.

It should be noted that the sets G1 ×G2, where G1 ∈ τ1 and G2 ∈ τ2, constitute
only a base for the topology, not all the open sets in the direct product of topological
spaces.

9.2.4 Problems and Exercises

1. Verify that if (X,d) is a metric space, then (X, d
1+d ) is also a metric space, and

the metrics d and d
1+d induce the same topology on X. (See also Problem 1 of the

preceding section.)
2. a) In the set N of natural numbers we define a neighborhood of the number
n ∈N to be an arithmetic progression with difference d relatively prime to n. Is the
resulting topological space Hausdorff?

b) What is the topology of N, regarded as a subset of the set R of real numbers
with the standard topology?

c) Describe all open subsets of R.

3. If two topologies τ1 and τ2 are defined on the same set, we say that τ2 is stronger
than τ1 if τ1 ⊂ τ2, that is τ2 contains all the sets in τ1 and some additional open sets
not in τ1.

a) Are the two topologies on N considered in the preceding problem compara-
ble?

b) If we introduce a metric on the set C[0,1] of continuous real-valued functions
defined on the closed interval [0,1] first by relation (9.6) of Sect. 9.1, and then by
relation (9.7) of the same section, two topologies generally arise on C[a, b]. Are
they comparable?

4. a) Prove in detail that the space of germs of continuous functions defined in
Example 4 is not Hausdorff.

b) Explain why this topological space is not metrizable.
c) What is the weight of this space?

5. a) State the axioms for a topological space in the language of closed sets.
b) Verify that the closure of the closure of a set equals the closure of the set.
c) Verify that the boundary of any set is a closed set.
d) Show that if F is closed and G is open in (X, τ), then the set G\F is open in

(X, τ).
e) If (Y, τY ) is a subspace of the topological space (X, τ), and the set E is such

that E ⊂ Y ⊂X and E ∈ τX , then E ∈ τY .

6. A topological space (X, τ) in which every point is a closed set is called a topo-
logical space in the strong sense or a τ1-space. Verify the following statements.

a) Every Hausdorff space is a τ1-space (partly for this reason, Hausdorff spaces
are sometimes called τ2-spaces).
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b) Not every τ1-space is a τ2-space. (See Example 4.)
c) The two-point space X = {a, b} with the open sets {∅,X} is not a τ1-space.
d) In a τ1-space a set F is closed if and only if it contains all its limit points.

7. a) Prove that in any topological space there is an everywhere dense set whose
cardinality does not exceed the weight of the space.

b) Verify that the following metric spaces are separable: C[a, b], C(k)[a, b],
R1[a, b], Rp[a, b] (for the formulas giving the respective metrics see Sect. 9.1).

c) Verify that if max is replaced by sup in relation (9.6) of Sect. 9.1 and regarded
as a metric on the set of all bounded real-valued functions defined on a closed inter-
val [a, b], we obtain a nonseparable metric space.

9.3 Compact Sets

9.3.1 Definition and General Properties of Compact Sets

Definition 1 A set K in a topological space (X, τ) is compact (or bicompact3) if
from every covering of K by sets that are open in X one can select a finite number
of sets that cover K .

Example 1 An interval [a, b] of the set R of real numbers in the standard topology
is a compact set, as follows immediately from the lemma of Sect. 2.1.3 asserting
that one can select a finite covering from any covering of a closed interval by open
intervals.

In general an m-dimensional closed interval Im = {x ∈Rm | ai ≤ xi ≤ bi, i = 1,
. . . ,m} in R

m is a compact set, as was established in Sect. 7.1.3.

It was also proved in Sect. 7.1.3 that a subset of Rm is compact if and only if it
is closed and bounded.

In contrast to the relative properties of being open and closed, the property of
compactness is absolute, in the sense that it is independent of the ambient space.
More precisely, the following proposition holds.

Proposition 1 A subset K of a topological space (X, τ) is a compact subset of X if
and only if K is compact as a subset of itself with the topology induced from (X, τ).

Proof This proposition follows from the definition of compactness and the fact that
every set GK that is open in K can be obtained as the intersection of K with some
set GX that is open in X. �

3The concept of compactness introduced by Definition 1 is sometimes called bicompactness in
topology.
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Thus, if (X, τX) and (Y, τY ) are two topological spaces that induce the same
topology on K ⊂X ∩ Y , then K is simultaneously compact or not compact in both
X and Y .

Example 2 Let d be the standard metric on R and I = {x ∈ R | 0< x < 1} the unit
interval in R. The metric space (I, d) is closed (in itself) and bounded, but is not a
compact set, since for example, it is not a compact subset of R.

We now establish the most important properties of compact sets.

Lemma 1 (Compact sets are closed) If K is a compact set in a Hausdorff space
(X, τ), then K is a closed subset of X.

Proof By the criterion for a set to be closed, it suffices to verify that every limit
point of K , x0 ∈X, belongs to K .

Suppose x0 /∈K . For each point x ∈K we construct an open neighborhoodG(x)
such that x0 has a neighborhood disjoint from G(x). The set G(x), x ∈ K , of all
such neighborhoods forms an open covering of K , from which one can select a
finite covering G(x1), . . . ,G(xn). Now if Oi(x0) is a neighborhood of x0 such that
G(xi)∩Oi(x0)=∅, the setO(x)=⋂ni=1Oi(x0) is also a neighborhood of x0, and
G(xi) ∩O(x0) = ∅ for all i = 1, . . . , n. But this means that K ∩O(x0) = ∅, and
then x0 cannot be a limit point for K . �

Lemma 2 (Nested compact sets) IfK1 ⊃K2 ⊃ · · · ⊃Kn ⊃ · · · is a nested sequence
of nonempty compact sets, then the intersection

⋂∞
i=1Ki is nonempty.

Proof By Lemma 1 the sets Gi = K1\Ki , i = 1, . . . , n, . . . are open in K1. If the
intersection

⋂∞
i=1Ki is empty, then the sequence G1 ⊂G2 ⊂ · · · ⊂Gn ⊂ · · · forms

a covering of K1. Extracting a finite covering from it, we find that some element
Gm of the sequence forms a covering of K1. But by hypothesis Km =K1\Gm �=∅.
This contradiction completes the proof of Lemma 2. �

Lemma 3 (Closed subsets of compact sets) A closed subset F of a compact set K
is itself compact.

Proof Let {Gα,α ∈ A} be an open covering of F . Adjoining to this collection the
open set G=K\F , we obtain an open covering of the entire compact set K . From
this covering we can extract a finite covering ofK . SinceG∩F =∅, it follows that
the set {Gα,α ∈A} contains a finite covering of F . �

9.3.2 Metric Compact Sets

We shall establish below some properties of metric compact sets, that is, metric
spaces that are compact sets with respect to the topology induced by the metric.
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Definition 2 The set E ⊂ X is called an ε-grid in the metric space (X,d) if for
every point x ∈X there is a point e ∈E such that d(e, x) < ε.

Lemma 4 (Finite ε-grids) If a metric space (K,d) is compact, then for every ε > 0
there exists a finite ε-grids in X.

Proof For each point x ∈K we choose an open ball B(x, ε). From the open cover-
ing ofK by these balls we select a finite covering B(x1, ε), . . . ,B(xn, ε). The points
x1, . . . , xn obviously form the required ε-grid. �

In analysis, besides arguments that involve the extraction of a finite covering, one
often encounters arguments in which a convergent subsequence is extracted from an
arbitrary sequence. As it happens, the following proposition holds.

Proposition 2 (Criterion for compactness in a metric space) A metric space (K,d)
is compact if and only if from each sequence of its points one can extract a subse-
quence that converges to a point of K .

The convergence of the sequence {xn} to some point a ∈ K , as before, means
that for every neighborhood U(a) of the point a ∈ K there exists an index N ∈ N
such that xn ∈U(a) for n >N .

We shall discuss the concept of limit in more detail below in Sect. 9.6.
We preface the proof of Proposition 2 with two lemmas.

Lemma 5 If a metric space (K,d) is such that from each sequence of its points one
can select a subsequence that converges in K , then for every ε > 0 there exists a
finite ε-grid.

Proof If there were no finite ε0-grid for some ε0 > 0, one could construct a sequence
{xn} of points in K such that d(xn, xi) > ε0 for all n ∈N and all i ∈ {1, . . . , n− 1}.
Obviously it is impossible to extract a convergent subsequence of this sequence. �

Lemma 6 If the metric space (K,d) is such that from each sequence of its points
one can select a subsequence that converges in K , then every nested sequence of
nonempty closed subsets of the space has a nonempty intersection.

Proof If F1 ⊃ · · · ⊃ Fn ⊃ · · · is the sequence of closed sets, then choosing one point
of each, we obtain a sequence x1, . . . , xn, . . . , from which we extract a convergent
subsequence {xni }. The limit a ∈ K of this sequence, by construction, necessarily
belongs to each of the closed sets Fi , i ∈N. �

We can now prove Proposition 2.

Proof We first verify that if (K,d) is compact and {xn} a sequence of points in
it, one can extract a subsequence that converges to some point of K . If the se-
quence {xn} has only a finite number of different values, the assertion is obvious.
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Therefore we may assume that the sequence {xn} has infinitely many different val-
ues. For ε1 = 1/1, we construct a finite 1-grid and take a closed ball B̃(a1,1)
that contains an infinite number of terms of the sequence. By Lemma 3 the ball
B̃(a1,1) is itself a compact set, in which there exists a finite ε2 = 1/2-grid and a
ball B̃(a2,1/2) containing infinitely many elements of the sequence. In this way a
nested sequence of compact sets B̃(a1,1) ⊃ B̃(a2,1/2) ⊃ · · · ⊃ B̃(an,1/n) ⊃ · · ·
arises, and by Lemma 2 has a common point a ∈ K . Choosing a point xn1 of the
sequence {xn} in the ball B̃(a1,1), then a point xn2 in B̃(a2,1/2) with n2 > n1, and
so on, we obtain a subsequence {xni } that converges to a by construction.

We now prove the converse, that is, we verify that if from every sequence {xn} of
points of the metric space (K,d) one can select a subsequence that converges in K ,
then (K,d) is compact.

In fact, if there is some open covering {Gα,α ∈ A} of the space (K,d) from
which one cannot select a finite covering, then using Lemma 5 to construct a finite
1-grid in K , we find a closed ball B̃(a1,1), that also cannot be covered by a finite
collection of sets of the system {Bα,α ∈A}.

The ball B̃(a1,1) can now be regarded as the initial set, and, constructing a finite
1/2-grid in it, we find in it a ball B̃(a2,1/2) that does not admit covering by a finite
number of sets in the system {Gα,α ∈A}.

The resulting nested sequence of closed sets B̃(a1,1) ⊃ B̃(a2,1/2) ⊃ · · · ⊃
B̃(an,1/n) ⊃ · · · has a common point a ∈ K by Lemma 6, and the construction
shows that there is only one such point. This point is covered by some set Gα0

of the system; and since Gα0 is open, all the sets B̃(an,1/n) must be contained
in Gα0 for sufficiently large values of n. This contradiction completes the proof of
the proposition. �

9.3.3 Problems and Exercises

1. A subset of a metric space is totally bounded if for every ε > 0 it has a finite
ε-grid.

a) Verify that total boundedness of a set is unaffected, whether one forms the
grid from points of the set itself or from points of the ambient space.

b) Show that a subset of a complete metric space is compact if and only if it is
totally bounded and closed.

c) Show by example that a closed bounded subset of a metric space is not always
totally bounded, and hence not always compact.

2. A subset of a topological space is relatively (or conditionally) compact if its
closure is compact.

Give examples of relatively compact subsets of Rn.
3. A topological space is locally compact if each point of the space has a relatively
compact neighborhood.

Give examples of locally compact topological spaces that are not compact.
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4. Show that for every locally compact, but not compact topological space (X, τX)
there is a compact topological space (Y, τY ) such that X ⊂ Y , Y\X consists of a
single point, and the space (X, τx) is a subspace of the space (Y, τY ).

9.4 Connected Topological Spaces

Definition 1 A topological space (X, τ) is connected if it contains no open-closed
sets4 except X itself and the empty set.

This definition will become more transparent to intuition if we recast it in the
following form.

A topological space is connected if and only if it cannot be represented as the
union of two disjoint nonempty closed sets (or two disjoint nonempty open sets).

Definition 2 A set E in a topological space (X, τ) is connected if it is connected as
a topological subspace of (X, τ) (with the induced topology).

It follows from this definition and Definition 1 that the property of a set of be-
ing connected is independent of the ambient space. More precisely, if (X, τX) and
(Y, τY ) are topological spaces containing E and inducing the same topology on E,
then E is connected or not connected simultaneously in both X and Y .

Example 1 Let E = {x ∈ R | x �= 0}. The set E− = {x ∈ E | x < 0} is nonempty,
not equal to E, and at the same time open-closed in E (as is E+ = {x ∈R | x > 0}),
if E is regarded as a topological space with the topology induced by the standard
topology of R. Thus, as our intuition suggests, E is not connected.

Proposition (Connected subsets of R) A nonempty set E ⊂ R is connected if and
only if for any x and z belonging to E, the inequalities x < y < z imply that y ∈E.

Thus, the only connected subsets of the line are intervals (finite or infinite): open,
half-open, and closed.

Proof Necessity. LetE be a connected subset of R, and let the triple of points a, b, c
be such that a ∈ E, b ∈ E, but c /∈ E, even though a < c < b. Setting A= {x ∈ E |
x < c}, B = {x ∈ E | x > c}, we see that a ∈ A, b ∈ B , that is, A �= ∅, B �= ∅,
and A ∩ B =∅. Moreover E = A ∪ B , and both sets A and B are open in E. This
contradicts the connectedness of E.

Sufficiency. LetE be a subspace of R having the property that together with any pair
of points a and b belonging to it, every point between them in the closed interval
[a, b] also belongs to E. We shall show that E is connected.

4That is, sets that are simultaneously open and closed.
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Suppose that A is an open-closed subset of E with A �= ∅ and B = E\A �= ∅.
Let a ∈ A and b ∈ B . For definiteness we shall assume that a < b. (We certainly
have a �= b, since A ∩ B =∅.) Consider the point c1 = sup{A ∩ [a, b]}. Since A �
a ≤ c1 ≤ b ∈ B , we have c1 ∈E. Since A is closed in E, we conclude that c1 ∈A.

Considering now the point c2 = inf{B ∩ [c1, b]} we conclude similarly, since B
is closed, that c2 ∈ B . Thus a ≤ c1 < c2 ≤ b, since c1 ∈A, c2 ∈ B , and A∩B =∅.
But it now follows from the definition of c1 and c2 and the relation E =A∪B that
no point of the open interval ]c1, c2[ can belong to E. This contradicts the original
property of E. Thus the set E cannot have a subset A with these properties, and that
proves that E is connected. �

9.4.1 Problems and Exercises

1. a) Verify that if A is an open-closed subset of (X, τ), then B =X\A is also such
a set.

b) Show that in terms of the ambient space the property of connectedness of a set
can be expressed as follows: A subset E of a topological space (X, τ) is connected
if and only if there is no pair of open (or closed) subsets G′X , G′′X that are disjoint
and such that E ∩G′X �=∅, E ∩G′′X �=∅, and E ⊂G′X ∪G′′X .

2. Show the following:

a) The union of connected subspaces having a common point is connected.
b) The intersection of connected subspaces is not always connected.
c) The closure of a connected subspace is connected.

3. One can regard the group GL(n) of nonsingular n×nmatrices with real entries as
an open subset in the product space R

n2
, if each element of the matrix is associated

with a copy of the set R of real numbers. Is the space GL(n) connected?
4. A topological space is locally connected if each of its points has a connected
neighborhood.

a) Show that a locally connected space may fail to be connected.
b) The set E in R

2 consists of the graph of the function x �→ sin 1
x

(for x �= 0)
plus the closed interval {(x, y) ∈ R2 | x = 0 ∧ |y| ≤ 1} on the y-axis. The set E is
endowed with the topology induced from R

2. Show that the resulting topological
space is connected but not locally connected.

5. In Sect. 7.2.2 we defined a connected subset of R
n as a set E ⊂ R

n any two
of whose points can be joined by a path whose support lies in E. In contrast to
the definition of topological connectedness introduced in the present section, the
concept we considered in Chap. 7 is usually called path connectedness or arcwise
connectedness. Verify the following:

a) A path-connected subset of Rn is connected.
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b) Not every connected subset of Rn with n > 1 is path connected. (See Prob-
lem 4.)

c) Every connected open subset of Rn is path connected.

9.5 Complete Metric Spaces

In this section we shall be discussing only metric spaces, more precisely, a class of
such spaces that plays an important role in various areas of analysis.

9.5.1 Basic Definitions and Examples

By analogy with the concepts that we already know from our study of the space Rn,
we introduce the concepts of fundamental (Cauchy) sequences and convergent se-
quences of points of an arbitrary metric space.

Definition 1 A sequence {xn;n ∈ N} of points of a metric space (X,d) is a fun-
damental or Cauchy sequence if for every ε > 0 there exists N ∈ N such that
d(xm,xn) < ε for any indices m,n ∈N larger than N .

Definition 2 A sequence {xn;n ∈ N} of points of a metric space (X,d) converges
to the point a ∈X and a is its limit if limn→∞ d(a, xn)= 0.

A sequence that has a limit will be called convergent, as before.
We now give the basic definition.

Definition 3 A metric space (X,d) is complete if every Cauchy sequence of its
points is convergent.

Example 1 The set R of real numbers with the standard metric is a complete met-
ric space, as follows from the Cauchy criterion for convergence of a numerical se-
quence.

We remark that, since every convergent sequence of points in a metric space is
obviously a Cauchy sequence, the definition of a complete metric space essentially
amounts to simply postulating the Cauchy convergence criterion for it.

Example 2 If the number 0, for example, is removed from the set R, the remaining
set R\0 will not be a complete space in the standard metric. Indeed, the sequence
xn = 1/n, n ∈N, is a Cauchy sequence of points of this set, but has no limit in R\0.

Example 3 The space R
n with any of its standard metrics is complete, as was ex-

plained in Sect. 7.2.1.
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Example 4 Consider the set C[a, b] of real-valued continuous functions on a closed
interval [a, b] ⊂R, with the metric

d(f,g)= max
a≤x≤b

∣∣f (x)− g(x)∣∣ (9.9)

(see Sect. 9.1, Example 7). We shall show that the metric space C[a, b] is complete.

Proof Let {fn(x) : n ∈N} be a Cauchy sequence of functions in C[a, b], that is

∀ε > 0 ∃N ∈N ∀m ∈N ∀n ∈N ((m >N ∧ n >N)=⇒
=⇒∀x ∈ [a, b] (∣∣fm(x)− fn(x)

∣
∣< ε
))
. (9.10)

For each fixed value of x ∈ [a, b], as one can see from (9.10), the numerical
sequence {fn(x);n ∈ N} is a Cauchy sequence and hence has a limit f (x) by the
Cauchy convergence criterion.

Thus

f (x) := lim
n→∞fn(x), x ∈ [a, b]. (9.11)

We shall verify that the function f (x) is continuous on [a, b], that is, f ∈ C[a, b].
It follows from (9.10) and (9.11) that the inequality

∣∣f (x)− fn(x)
∣∣≤ ε ∀x ∈ [a, b] (9.12)

holds for n >N .
We fix the point x ∈ [a, b] and verify that the function f is continuous at this

point. Suppose the increment h is such that (x + h) ∈ [a, b]. The identity

f (x + h)− f (x)= f (x + h)− fn(x + h)+ fn(x + h)− fn(x)+ fn(x)− f (x)

implies the inequality

∣∣f (x + h)− f (x)∣∣≤ ∣∣f (x + h)− fn(x + h)
∣∣+

+ ∣∣fn(x + h)− fn(x)
∣∣+ ∣∣fn(x)− f (x)

∣∣. (9.13)

By virtue of (9.12) the first and last terms on the right-hand side of this last
inequality do not exceed ε if n > N . Fixing n > N , we obtain a function fn ∈
C[a, b], and then choosing δ = δ(ε) such that |fn(x + h)− fn(x)|< ε for |h|< δ,
we find that |f (x + h)− f (x)|< 3ε if |h|< δ. But this means that the function f
is continuous at the point x. Since x was an arbitrary point of the closed interval
[a, b], we have shown that f ∈C[a, b]. �

Thus the space C[a, b] with the metric (9.9) is a complete metric space. This is
a very important fact, one that is widely used in analysis.
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Fig. 9.2

Example 5 If instead of the metric (9.9) we consider the integral metric

d(f,g)=
∫ b

a

|f − g|(x)dx (9.14)

on the same set C[a, b], the resulting metric space is no longer complete.

Proof For the sake of notational simplicity, we shall assume [a, b] = [−1,1] and
consider, for example, the sequence {fn ∈ C[−1,1];n ∈ N} of functions defined as
follows:

fn(x)=

⎧
⎪⎨

⎪⎩

−1, if − 1≤ x ≤−1/n,

nx, if − 1/n < x < 1/n,

1, if 1/n≤ x ≤ 1.

(See Fig. 9.2.)
It follows immediately from properties of the integral that this sequence is a

Cauchy sequence in the sense of the metric (9.14) in C[−1,1]. At the same time, it
has no limit in C[−1,1]. For if a continuous function f ∈ C[−1,1] were the limit
of this sequence in the sense of metric (9.14), then f would have to be constant on
the interval −1≤ x < 0 and equal to −1 while at the same time it would have to be
constant and equal to 1 on the interval 0 < x ≤ 1, which is incompatible with the
continuity of f at the point x = 0. �

Example 6 It is slightly more difficult to show that even the set R[a, b] of real-
valued Riemann-integrable functions defined on the closed interval [a, b] is not
complete in the sense of the metric (9.14).5 We shall show this, using the Lebesgue
criterion for Riemann integrability of a function.

Proof We take [a, b] to be the closed interval [0,1], and we shall construct a Cantor
set on it that is not a set of measure zero. Let Δ ∈ ]0,1/3[. We remove from the
interval [0,1] the middle piece of it of length Δ. More precisely, we remove the

5In regard to the metric (9.14) on R[a, b] see the remark to Example 9 in Sect. 9.1.
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Δ/2-neighborhood of the midpoint of the closed interval [0,1]. On each of the two
remaining intervals, we remove the middle piece of length Δ · 1/3. On each of the
four remaining closed intervals we remove the middle piece of length Δ · 1/32, and
so forth. The length of the intervals removed in this process is Δ+Δ · 2/3+Δ ·
4/32+· · ·+Δ · (2/3)n+· · · = 3Δ. Since 0<Δ< 1/3 we have 1−3Δ> 0, and, as
one can verify, it follows from this that the (Cantor) set K remaining on the closed
interval [0,1] does not have measure zero in the sense of Lebesgue.

Now consider the following sequence: {fn ∈R[0,1];n ∈ N}. Let fn be a func-
tion equal to 1 everywhere on [0,1] except at the points of the intervals removed at
the first n steps, where it is set equal to zero. It is easy to verify that this sequence is
a Cauchy sequence in the sense of the metric (9.14). If some function f ∈R[0,1]
were the limit of this sequence, then f would have to be equal to the characteristic
function of the set K at almost every point of the interval [0,1]. Then f would have
discontinuities at all points of the set K . But, since K does not have measure 0, one
could conclude from the Lebesgue criterion that f /∈R[0,1]. Hence R[a, b] with
the metric (9.14) is not a complete metric space. �

9.5.2 The Completion of a Metric Space

Example 7 Let us return again to the real line and consider the set Q of rational
numbers with the metric induced by the standard metric on R.

It is clear that a sequence of rational numbers converging to
√

2 in R is a Cauchy
sequence, but does not have a limit in Q, that is, Q is not a complete space with
this metric. However, Q happens to be a subspace of the complete metric space R,
which it is natural to regard as the completion of Q. Note that the set Q⊂ R could
also be regarded as a subset of the complete metric space R

2, but it does not seem
reasonable to call R2 the completion of Q.

Definition 4 The smallest complete metric space containing a given metric space
(X,d) is the completion of (X,d).

This intuitively acceptable definition requires at least two clarifications: what is
meant by the “smallest” space, and does it exist?

We shall soon be able to answer both of these questions; in the meantime we
adopt the following more formal definition.

Definition 5 If a metric space (X,d) is a subspace of a complete metric space (Y, d)
and the set X ⊂ Y is everywhere dense in Y , the space (Y, d) is called a completion
of the metric space (X,d).

Definition 6 We say that the metric space (X1, d1) is isometric to the metric space
(X2, d2) if there exists a bijective mapping f :X1→X2 such that d2(f (a), f (b))=
d1(a, b) for any points a and b in X1. (The mapping f : X1 → X2 is called an
isometry in that case.)
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It is clear that this relation is reflexive, symmetric, and transitive, that is, it is
an equivalence relation between metric spaces. In studying the properties of metric
spaces we study not the individual space, but the properties of all spaces isometric
to it. For that reason one may regard isometric spaces as identical.

Example 8 Two congruent figures in the plane are isometric as metric spaces, so
that in studying the metric properties of figures we abstract completely, for example,
from the location of a figure in the plane, identifying all congruent figures.

By adopting the convention of identifying isometric spaces, one can show that if
the completion of a metric space exists at all, it is unique.

As a preliminary, we verify the following statement.

Lemma The following inequality holds for any quadruple of points a, b, u, v of the
metric space (X,d):

∣
∣d(a, b)− d(u, v)∣∣≤ d(a,u)+ d(b, v). (9.15)

Proof By the triangle inequality

d(a, b)≤ d(a,u)+ d(u, v)+ d(b, v).
By the symmetry of the points, this relation implies (9.15). �

We now prove uniqueness of the completion.

Proposition 1 If the metric spaces (Y1, d1) and (Y2, d2) are completions of the
same space (X,d), then they are isometric.

Proof We construct an isometry f : Y1 → Y2 as follows. For x ∈ X we set
f (x) = x. Then d2(f (x1), f (x2)) = d(f (x1), f (x2)) = d(x1, x2) = d1(x1, x2) for
x1, x2 ∈X. If y1 ∈ Y1\X, then y1 is a limit point for X, since X is everywhere dense
in Y1. Let {xn;n ∈N} be a sequence of points of X converging to y1 in the sense of
the metric d1. This sequence is a Cauchy sequence in the sense of the metric d1. But
since the metrics d1 and d2 are both equal to d on X, this sequence is also a Cauchy
sequence in (Y2, d2). The latter space is complete, and hence this sequence has a
limit y2 ∈ Y2. It can be verified in the standard manner that this limit is unique. We
now set f (y1)= y2. Since any point y2 ∈ Y2\X, just like any point y1 ∈ Y1\X, is the
limit of a Cauchy sequence of points in X, the mapping f : Y1→ Y2 so constructed
is surjective.

We now verify that

d2
(
f
(
y′1
)
, f
(
y′′1
))= d1

(
y′1, y′′1

)
(9.16)

for any pair of points y′1, y′′1 of Y1.
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If y′1 and y′′1 belong to X, this equality is obvious. In the general case we take
two sequences {x′n;n ∈ N} and {x′′n;n ∈ N} converging to y′1 and y′′1 respectively. It
follows from inequality (9.15) that

d1
(
y′1, y′′1

)= lim
n→∞d1

(
x′n, x′′n

)
,

or, what is the same,

d1
(
y′1, y′′1

)= lim
n→∞d

(
x′n, x′′n

)
. (9.17)

By construction these same sequences converge to y′2 = f (y′1) and y′′2 = f (y′′2 )
respectively in the space (Y2, d2). Hence

d2
(
y′2, y′′2

)= lim
n→∞d

(
x′n, x′′n

)
. (9.18)

Comparing relations (9.17) and (9.18), we obtain Eq. (9.16). This equality then
simultaneously establishes that the mapping f : Y1 → Y2 is injective and hence
completes the proof that f is an isometry. �

In Definition 5 of the completion (Y, d) of a metric space (X,d) we required
that (X,d) be a subspace of (Y, d) that is everywhere dense in (Y, d). Under the
identification of isometric spaces one could now broaden the idea of a completion
and adopt the following definition.

Definition 5′ A complete metric space (Y, dY ) is a completion of the metric space
(X,dX) if there is a dense subspace of (Y, dY ) isometric to (X,dX).

We now prove the existence of a completion.

Proposition 2 Every metric space has a completion.

Proof If the initial space itself is complete, then it is its own completion.
We have already essentially demonstrated the idea for constructing the comple-

tion of an incomplete metric space (X,dX) when we proved Proposition 1.
Consider the set of Cauchy sequences in the space (X,dX). Two such sequences

{x′n;n ∈ N} and {x′′n;n ∈ N} are called equivalent or confinal if dX(x′n, x′′n)→ 0 as
n→∞. It is easy to see that confinality really is an equivalence relation. We shall
denote the set of equivalence classes of Cauchy sequences by S. We introduce a
metric in S by the following rule. If s′ and s′′ are elements of S, and {x′n;n ∈N} and
{x′′n;n ∈N} are sequences from the classes s′ and s′′ respectively, we set

d
(
s′, s′′
)= lim

n→∞dX
(
x′n, x′′n

)
. (9.19)

It follows from inequality (9.15) that this definition is unambiguous: the limit
written on the right exists (by the Cauchy criterion for a numerical sequence) and is
independent of the choice of the individual sequences {x′n;n ∈ N} and {x′′n;n ∈ N}
from the classes s′ and s′′.
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The function d(s′, s′′) satisfies all the axioms of a metric. The resulting metric
space (S, d) is the required completion of the space (X,dX). Indeed, (X,dX) is
isometric to the subspace (SX, d) of the space (S, d) consisting of the equivalence
classes of fundamental sequences that contain constant sequences {xn = x ∈ X;
n ∈N}. It is natural to identify such a class s ∈ S with the point x ∈X. The mapping
f : (X,dX)→ (SX, d) is obviously an isometry.

It remains to be verified that (SX, d) is everywhere dense in (S, d) and that (S, d)
is a complete metric space.

We first verify that (SX, d) is dense in (S, d). Let s be an arbitrary element of S
and {xn;n ∈ N} a Cauchy sequence in (X,dX) belonging to the class s ∈ S. Taking
ξn = f (xn), n ∈ N, we obtain a sequence {ξn;n ∈ N} of points of (SX, d) that has
precisely the element s ∈ S as its limit, as one can see from (9.19).

We now prove that the space (S, d) is complete. Let {sn;n ∈ N} be an arbitrary
Cauchy sequence in the space (S, d). For each n ∈ N we choose an element ξn in
(SX, d) such that d(sn, ξn) < 1/n. Then the sequence {ξn;n ∈N}, like the sequence
{sn;n ∈ N}, is a Cauchy sequence. But in that case the sequence {xn = f−1(ξn);
n ∈ N} will also be a Cauchy sequence. The sequence {xn;n ∈ N} defines an ele-
ment s ∈ S, to which the given sequence {sn;n ∈N} converges by virtue of relation
(9.19). �

Remark 1 Now that Propositions 1 and 2 have been proved, it becomes understand-
able that the completion of a metric space in the sense of Definition 5′ is indeed the
smallest complete space containing (up to isometry) the given metric space. In this
way we have justified the original Definition 4 and made it precise.

Remark 2 The construction of the set R of real numbers, starting from the set Q
of rational numbers could have been carried out exactly as in the construction of
the completion of a metric space, which was done in full generality above. That is
exactly how the transition from Q to R was carried out by Cantor.

Remark 3 In Example 6 we showed that the space R[a, b] of Riemann-integrable
functions is not complete in the natural integral metric. Its completion is the impor-
tant space L[a, b] of Lebesgue-integrable functions.

9.5.3 Problems and Exercises

1. a) Prove the following nested ball lemma. Let (X,d) be a metric space and
B̃(x1, r1) ⊃ · · · ⊃ B̃(xn, rn) ⊃ · · · a nested sequence of closed balls in X whose
radii tend to zero. The space (X,d) is complete if and only if for every such sequence
there exists a unique point belonging to all the balls of the sequence.

b) Show that if the condition rn → 0 as n→∞ is omitted from the lemma
stated above, the intersection of a nested sequence of balls may be empty, even in a
complete space.
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2. a) A set E ⊂X of a metric space (X,d) is nowhere dense in X if it is not dense
in any ball, that is, if for every ball B(x, r) there is a second ball B(x1, r1)⊂ B(x, r)
containing no points of the set E.

A set E is of first category in X if it can be represented as a countable union of
nowhere dense sets.

A set that is not of first category is of second category in X.
Show that a complete metric space is a set of second category (in itself).
b) Show that if a function f ∈C(∞)[a, b] is such that ∀x ∈ [a, b] ∃n ∈N ∀m> n

(f (m)(x)= 0), then the function f is a polynomial.

9.6 Continuous Mappings of Topological Spaces

From the point of view of analysis, the present section and the one following contain
the most important results in the present chapter.

The basic concepts and propositions discussed here form a natural, some-times
verbatim extension to the case of mappings of arbitrary topological or metric spaces,
of concepts and propositions that are already well known to us in. In the process,
not only the statement but also the proofs of many facts turn out to be identical
with those already considered; in such cases the proofs are naturally omitted with a
reference to the corresponding propositions that were discussed in detail earlier.

9.6.1 The Limit of a Mapping

a. The Basic Definition and Special Cases of It

Definition 1 Let f : X→ Y be a mapping of the set X with a fixed base B = {B}
in X into a topological space Y . The point A ∈ Y is the limit of the mapping f :
X→ Y over the base B, and we write limB f (x) = A, if for every neighborhood
V (A) of A in Y there exists an element B ∈ B of the base B whose image under the
mapping f is contained in V (A).

In logical symbols Definition 1 has the form

lim
B
f (x)=A := ∀V (A)⊂ Y ∃B ∈ B (f (B)⊂ V (A)).

We shall most often encounter the case in which X, like Y , is a topological space
and B is the base of neighborhoods or deleted neighborhoods of some point a ∈X.
Retaining our earlier notation x→ a for the base of deleted neighborhoods {Ů (a)}
of the point a, we can specialize Definition 1 for this base:

lim
x→a f (x)=A := ∀V (A)⊂ Y ∃Ů (a)⊂X

(
f
(
Ů (a)

)⊂ V (A)).
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If (X,dX) and (Y, dY ) are metric spaces, this last definition can be restated in
ε–δ language:

lim
x→a f (x)=A := ∀ε > 0 ∃δ > 0 ∀x ∈X

(
0< dX(a, x) < δ =⇒ dY

(
A,f (x)

)
< ε
)
.

In other words,

lim
x→a f (x)=A⇐⇒ lim

x→a dY
(
A,f (x)

)= 0.

Thus we see that, having the concept of a neighborhood, one can define the con-
cept of the limit of a mapping f :X→ Y into a topological or metric space Y just
as was done in the case Y =R or, more generally, Y =R

n.

b. Properties of the Limit of a Mapping

We now make some remarks on the general properties of the limit.
We first note that the uniqueness of the limit obtained earlier no longer holds

when Y is not a Hausdorff space. But if Y is a Hausdorff space, then the limit is
unique and the proof does not differ at all from the one given in the special cases
Y =R or Y =R

n.
Next, if f :X→ Y is a mapping into a metric space, it makes sense to speak of

the boundedness of the mapping (meaning the boundedness of the set f (X) in Y ),
and of ultimate boundedness of a mapping with respect to the base B in X (meaning
that there exists an element B of B on which f is bounded).

It follows from the definition of a limit that if a mapping f : X→ Y of a set X
with base B into a metric space Y has a limit over the base B, then it is ultimately
bounded over that base.

c. Questions Involving the Existence of the Limit of a Mapping

Proposition 1 (Limit of a composition of mappings) Let Y be a set with base BY
and g : Y → Z a mapping of Y into a topological space Z having a limit over the
base BY .

Let X be a set with base BX and f :X→ Y a mapping of X into Y such that for
every element BY ∈ BY there exists an element BX ∈ BX whose image is contained
in BY , that is, f (BX)⊂ BY .

Under these hypotheses the composition g ◦ f :X→ Z of the mappings f and
g is defined and has a limit over the base BX , and

lim
BX
g ◦ f (x)= lim

BY
g(y).



30 9 *Continuous Mappings (General Theory)

For the proof see Theorem 5 of Sect. 3.2.
Another important proposition on the existence of the limit is the Cauchy crite-

rion, to which we now turn. This time we will be discussing a mapping f :X→ Y

into a metric space, and in fact a complete metric space.
In the case of a mapping f :X→ Y of the set X into a metric space (Y, d) it is

natural to adopt the following definition.

Definition 2 The oscillation of the mapping f : X→ Y on a set E ⊂ X is the
quantity

ω(f,E)= sup
x1,x2∈E

d
(
f (x1), f (x2)

)
.

The following proposition holds.

Proposition 2 (Cauchy criterion for existence of the limit of a mapping) Let X be
a set with a base B, and let f : X→ Y be a mapping of X into a complete metric
space (Y, d).

A necessary and sufficient condition for the mapping f to have a limit over the
base B is that for every ε > 0 there exists an element B in B on which the oscillation
of the mapping is less than ε.

More briefly:

∃ lim
B
f (x)⇐⇒∀ε > 0 ∃B ∈ B (ω(f,B) < ε).

For the proof see Theorem 4 of Sect. 3.2.
It is useful to remark that the completeness of the space Y is needed only in the

implication from the right-hand side to the left-hand side. Moreover, if Y is not a
complete space, it is usually this implication that breaks down.

9.6.2 Continuous Mappings

a. Basic Definitions

Definition 3 A mapping f : X→ Y of a topological space (X, τX) into a topo-
logical space (Y, τY ) is continuous at a point a ∈ X if for every neighborhood
V (f (a)) ⊂ Y of the point f (a) ∈ Y there exists a neighborhood U(a) ⊂ X of the
point a ∈X whose image f (U(a)) is contained in V (f (a)).

Thus,

f :X→ Y is continuous at a ∈X :=
= ∀V (f (a)) ∃U(a) (f (U(a))⊂ V (f (a))).
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In the case when X and Y are metric spaces (X,dX) and (Y, dY ), Definition 3
can of course be stated in ε–δ language:

f :X→ Y is continuous at a ∈X :=
= ∀ε > 0 ∃δ > 0 ∀x ∈X (dX(a, x) < δ =⇒ dY

(
f (a), f (x)

)
< ε
)
.

Definition 4 The mapping f :X→ Y is continuous if it is continuous at each point
x ∈X.

The set of continuous mappings from X into Y will be denoted C(X,Y ).

Theorem 1 (Criterion for continuity) A mapping f :X→ Y of a topological space
(X, τX) into a topological space (Y, τY ) is continuous if and only if the pre-image
of every open (resp. closed) subset of y is open (resp. closed) in X.

Proof Since the pre-image of a complement is the complement of the pre-image, it
suffices to prove the assertions for open sets.

We first show that if f ∈ C(X,Y ) and GY ∈ τY , then GX = f−1(GY ) be-
longs to τX . If GX = ∅, it is immediate that the pre-image is open. If GX �= ∅

and a ∈ GX , then by definition of continuity of the mapping f at the point a,
for the neighborhood GY of the point f (a) there exists a neighborhood UX(a)
of a ∈ X such that f (UX(a)) ⊂ GY . Hence UX(a) ⊂ GX = f−1(GY ). Since
GX =⋃a∈GX UX(a), we conclude that GX is open, that is, GX ∈ τX .

We now prove that if the pre-image of every open set in Y is open in X, then
f ∈ C(X,Y ). But, taking any point a ∈ X and any neighborhood VY (f (a)) of its
image f (a) in Y , we discover that the set UX(a) = f−1(VY (f (a))) is an open
neighborhood of a ∈ X, whose image is contained in VY (f (a)). Consequently we
have verified the definition of continuity of the mapping f :X→ Y at an arbitrary
point a ∈X. �

Definition 5 A bijective mapping f :X→ Y of one topological space (X, τX) onto
another (Y, τY ) is a homeomorphism if both the mapping itself and the inverse map-
ping f−1 : Y →X are continuous.

Definition 6 Topological spaces that admit homeomorphisms onto one another are
said to be homeomorphic.

As Theorem 1 shows, under a homeomorphism f : X→ Y of the topological
space (X, τX) onto (Y, τY ) the systems of open sets τX and τY correspond to each
other in the sense that GX ∈ τX⇔ f (GX)=GY ∈ τY .

Thus, from the point of view of their topological properties homeomorphic
spaces are absolutely identical. Consequently, homeomorphism is the same kind
of equivalence relation in the set of all topological spaces as, for example, isometry
is in the set of metric spaces.



32 9 *Continuous Mappings (General Theory)

b. Local Properties of Continuous Mappings

We now exhibit the local properties of continuous mappings. They follow immedi-
ately from the corresponding properties of the limit.

Proposition 3 (Continuity of a composition of continuous mappings) Let (X, τX),
(Y, τY ) and (Z, τZ) be topological spaces. If the mapping g : Y → Z is continuous
at a point b ∈ Y and the mapping f : X→ Y is continuous at a point a ∈ X for
which f (a)= b, then the composition of these mappings g ◦ f :X→ Z is continu-
ous at a ∈X.

This follows from the definition of continuity of a mapping and Proposition 1.

Proposition 4 (Boundedness of a mapping in a neighborhood of a point of conti-
nuity) If a mapping f : X→ Y of a topological space (X, τ) into a metric space
(Y, d) is continuous at a point a ∈ X, then it is bounded in some neighborhood of
that point.

This proposition follows from the ultimate boundedness (over a base) of a map-
ping that has a limit.

Before stating the next proposition on properties of continuous mappings, we
recall that for mappings into R or Rn we defined the quantity

ω(f ;a) := lim
r→0

ω
(
f,B(a, r)

)

to be the oscillation of f at the point a. Since both the concept of the oscillation
of a mapping on a set and the concept of a ball B(a, r) make sense in any metric
space, the definition of the oscillation ω(f,a) of the mapping f at the point a also
makes sense for a mapping f :X→ Y of a metric space (X,dX) into a metric space
(Y, dY ).

Proposition 5 A mapping f :X→ Y of a metric space (X,dX) into a metric space
(Y, dY ) is continuous at the point a ∈X if and only if ω(f,a)= 0.

This proposition follows immediately from the definition of continuity of a map-
ping at a point.

c. Global Properties of Continuous Mappings

We now discuss some of the important global properties of continuous mappings.

Theorem 2 The image of a compact set under a continuous mapping is compact.
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Proof Let f :K→ Y be a continuous mapping of the compact space (K, τK) into
a topological space (Y, τY ), and let {GαY ,α ∈ A} be a covering of f (K) by sets
that are open in Y . By Theorem 1, the sets {GαX = f−1(GαY ),α ∈ A} form an open
covering of K . Extracting a finite covering Gα1

X , . . . ,G
αn
X , we find a finite covering

G
α1
Y , . . . ,G

αn
Y of f (K)⊂ Y . Thus f (K) is compact in Y . �

Corollary A continuous real-valued function f :K→R on a compact set assumes
its maximal value at some point of the compact set (and also its minimal value, at
some point).

Proof Indeed, f (K) is a compact set in R, that is, it is closed and bounded. This
means that inff (K) ∈ f (K) and supf (K) ∈ f (K). �

In particular, if K is a closed interval [a, b] ⊂ R, we again obtain the classical
theorem of Weierstrass.

Cantor’s theorem on uniform continuity carries over verbatim to mappings that
are continuous on compact sets. Before stating it, we must give a necessary defini-
tion.

Definition 7 A mapping f :X→ Y of a metric space (X,dX) into a metric space
(Y, dY ) is uniformly continuous if for every ε > 0 there exists δ > 0 such that the
oscillation ω(f,E) of f on each set E ⊂X of diameter less than δ is less than ε.

Theorem 3 (Uniform continuity) A continuous mapping f :K→ Y of a compact
metric space K into a metric space (Y, dY ) is uniformly continuous.

In particular, ifK is a closed interval in R and Y =R, we again have the classical
theorem of Cantor, the proof of which given in Sect. 4.2.2 carries over with almost
no changes to this general case.

Let us now consider continuous mappings of connected spaces.

Theorem 4 The image of a connected topological space under a continuous map-
ping is connected.

Proof Let f : X→ Y be a continuous mapping of a connected topological space
(X, τX) onto a topological space (Y, τY ). Let EY be an open-closed subset of Y . By
Theorem 1, the pre-image EX = f−1(EY ) of the set EY is open-closed in X. By the
connectedness of X, either EX =∅ or EX =X. But this means that either EY =∅

or EY = Y = f (X). �

Corollary If a function f :X→R is continuous on a connected topological space
(X, τ) and assumes values f (a) = A ∈ R and f (b) = B ∈ R, then for any num-
ber C between A and B there exists a point c ∈X at which f (c)= C.
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Proof Indeed, by Theorem 4 f (X) is a connected set in R. But the only connected
subsets of R are intervals (see the Proposition in Sect. 9.4). Thus the point C belongs
to f (X) along with A and B . �

In particular, if X is a closed interval, we again have the classical intermediate-
value theorem for a continuous real-valued function.

9.6.3 Problems and Exercises

1. a) If the mapping f :X→ Y is continuous, will the images of open (or closed)
sets in X be open (or closed) in Y ?

b) If the image, as well as the inverse image, of an open set under the mapping
f :X→ Y is open, does it necessarily follow that f is a homeomorphism?

c) If the mapping f : X→ Y is continuous and bijective, is it necessarily a
homeomorphism?

d) Is a mapping satisfying b) and c) simultaneously a homeomorphism?

2. Show the following.

a) Every continuous bijective mapping of a compact space into a Hausdorff
space is a homeomorphism.

b) Without the requirement that the range be a Hausdorff space, the preceding
statement is in general not true.

3. Determine whether the following subsets of Rn are (pairwise) homeomorphic as
topological spaces: a line, an open interval on the line, a closed interval on the line;
a sphere; a torus.
4. A topological space (X, τ) is arcwise connected or path connected if any two
of its points can be joined by a path lying in X. More precisely, this means that for
any points A and B in X there exists a continuous mapping f : I →X of a closed
interval [a, b] ⊂R into X such that f (a)=A and f (b)= B .

a) Show that every path connected space is connected.
b) Show that every convex set in R

n is path connected.
c) Verify that every connected open subset of Rn is path connected.
d) Show that a sphere S(a, r) is path connected in R

n, but that it may fail to be
connected in another metric space, endowed with a completely different topology.

e) Verify that in a topological space it is impossible to join an interior point of a
set to an exterior point without intersecting the boundary of the set.

9.7 The Contraction Mapping Principle

Here we shall establish a principle that, despite its simplicity, turns out to be an
effective way of proving many existence theorems.
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Definition 1 A point a ∈X is a fixed point of a mapping f :X→X if f (a)= a.

Definition 2 A mapping f :X→X of a metric space (X,d) into itself is called a
contraction if there exists a number q , 0< q < 1, such that the inequality

d
(
f (x1), f (x2)

)≤ qd(x1, x2) (9.20)

holds for any points x1 and x2 in X.

Theorem (Picard6–Banach7 fixed-point principle) A contraction mapping f :X→
X of a complete metric space (X,d) into itself has a unique fixed point a.

Moreover, for any point x0 ∈ X the recursively defined sequence x0, x1 =
f (x0), . . . , xn+1 = f (xn), . . . converges to a. The rate of convergence is given by
the estimate

d(a, xn)≤ qn

1− q d(x1, x0). (9.21)

Proof We shall take an arbitrary point x0 ∈X and show that the sequence x0, x1 =
f (x0), . . . , xn+1 = f (xn), . . . is a Cauchy sequence. The mapping f is a contrac-
tion, so that by Eq. (9.20)

d(xn+1, xn)≤ qd(xn, xn−1)≤ · · · ≤ qnd(x1, x0)

and

d(xn+k, xn) ≤ d(xn, xn+1)+ · · · + d(xn+k−1, xn+k)≤

≤ (qn + qn+1 + · · · + qn+k−1)d(x1, x0)≤ qn

1− q d(x1, x0).

From this one can see that the sequence x0, x1, . . . , xn, . . . is indeed a Cauchy
sequence.

The space (X,d) is complete, so that this sequence has a limit limn→∞ xn =
a ∈X.

It is clear from the definition of a contraction mapping that a contraction is always
continuous, and therefore

a = lim
n→∞xn+1 = lim

n→∞f (xn)= f
(

lim
n→∞xn

)
= f (a).

Thus a is a fixed point of the mapping f .

6Ch.É. Picard (1856–1941) – French mathematician who obtained many important results in the
theory of differential equations and analytic function theory.
7S. Banach (1892–1945) – Polish mathematician, one of the founders of functional analysis.
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The mapping f cannot have a second fixed point, since the relations ai = f (ai),
i = 1,2, imply, when we take account of (9.20), that

0≤ d(a1, a2)= d
(
f (a1), f (a2)

)≤ qd(a1, a2),

which is possible only if d(a1, a2)= 0, that is, a1 = a2.
Next, by passing to the limit as k→∞ in the relation

d(xn+k, xn)≤ qn

1− q d(x1, x0),

we find that

d(a, xn)≤ qn

1− q d(x1, x0). �

The following proposition supplements this theorem.

Proposition (Stability of the fixed point) Let (X,d) be a complete metric space
and (Ω, τ) a topological space that will play the role of a parameter space in what
follows.

Suppose to each value of the parameter t ∈Ω there corresponds a contraction
mapping ft : X→ X of the space X into itself and that the following conditions
hold.

a) The family {ft ; t ∈ Ω} is uniformly contracting, that is, there exists q ,
0< q < 1, such that each mapping ft is a q-contraction.

b) For each x ∈X the mapping ft (x) :Ω→X is continuous as a function of t
at some point t0 ∈Ω , that is limt→t0 ft (x)= ft0(x).

Then the solution a(t) ∈X of the equation x = ft (x) depends continuously on t
at the point t0, that is, limt→t0 a(t)= a(t0).

Proof As was shown in the proof of the theorem, the solution a(t) of the equation
x = ft (x) can be obtained as the limit of the sequence {xn+1 = ft (xn);n= 0,1, . . .}
starting from any point x0 ∈X. Let x0 = a(t0)= ft0(a(t0)).

Taking account of the estimate (9.21) and condition a), we obtain

d
(
a(t), a(t0)

)= d(a(t), x0
)≤

≤ 1

1− q d(x1, x0)= 1

1− q d
(
ft
(
a(t0)
)
, ft0
(
a(t0)
))
.

By condition b), the last term in this relation tends to zero as t → t0. Thus it has
been proved that

lim
t→t0

d
(
a(t), a(t0)

)= 0, that is lim
t→t0

a(t)= a(t0). �
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Example 1 As an important example of the application of the contraction map-
ping principle we shall prove, following Picard, an existence theorem for the so-
lution of the differential equation y′(x)= f (x, y(x)) satisfying an initial condition
y(x0)= y0.

If the function f ∈ C(R2,R) is such that
∣∣f (u, v1)− f (u, v2)

∣∣≤M|v1 − v2|,
whereM is a constant, then, for any initial condition

y(x0)= y0, (9.22)

there exists a neighborhood U(x0) of x0 ∈ R and a unique function y = y(x) de-
fined in U(x0) satisfying the equation

y′ = f (x, y) (9.23)

and the initial condition (9.22).

Proof Equation (9.23) and the condition (9.22) can be jointly written as a single
relation

y(x)= y0 +
∫ x

x0

f
(
t, y(t)

)
dt. (9.24)

Denoting the right-hand side of this equality by A(y), we find that A :
C(V (x0),R)→ C(V (x0),R) is a mapping of the set of continuous functions de-
fined on a neighborhood V (x0) of x0 into itself. Regarding C(V (x0),R) as a metric
space with the uniform metric (see formula (9.6) from Sect. 9.1), we find that

d(Ay1,Ay2) = max
x∈V̄ (x0)

∣∣∣∣

∫ x

x0

f
(
t, y1(t)

)
dt −
∫ x

x0

f
(
t, y2(t)

)
dt

∣∣∣∣≤

≤ max
x∈V̄ (x0)

∣∣∣∣

∫ x

x0

M
∣∣y1(t)− y2(t)

∣∣dt
∣∣∣∣≤M|x − x0|d(y1, y2).

If we assume that |x − x0| ≤ 1
2M , then the inequality

d(Ay1,Ay2)≤ 1

2
d(y1, y2)

is fulfilled on the corresponding closed interval I , where d(y1, y2)=maxx∈I |y1(x)−
y2(x)|. Thus we have a contraction mapping

A :C(I,R)→C(I,R)

of the complete metric space (C(I,R), d) (see Example 4 of Sect. 9.5) into itself,
which by the contraction mapping principle must have a unique fixed point y =Ay.
But this means that the function in C(I,R) just found is the unique function defined
on I � x0 and satisfying Eq. (9.24). �
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Example 2 As an illustration of what was just said, we shall seek a solution of the
familiar equation

y′ = y
with the initial condition (9.22) on the basis of the contraction mapping principle.

In this case

Ay = y0 +
∫ x

x0

y(t)dt,

and the principle is applicable at least for |x − x0| ≤ q < 1.
Starting from the initial approximation y(x) ≡ 0, we construct successively the

sequence 0, y1 =A(0), . . . , yn+1(t)=A(yn(t)), . . . of approximations

y1(t) = y0,

y2(t) = y0
(
1+ (x − x0)

)
,

y3(t) = y0

(
1+ (x − x0)+ 1

2
(x − x0)

2
)
,

...

yn+1(t) = y0

(
1+ (x − x0)+ 1

2! (x − x0)
2 + · · · + 1

n! (x − x0)
n

)
,

...

from which it is already clear that

y(x)= y0ex−x0 .

The fixed-point principle stated in the theorem above also goes by the name of
the contraction mapping principle. It arose as a generalization of Picard’s proof
of the existence theorem for a solution of the differential equation (9.23), which
was discussed in Example 1. The contraction mapping principle was stated in full
generality by Banach.

Example 3 (Newton’s method of finding a root of the equation f (x)= 0) Suppose a
real-valued function that is convex and has a positive derivative on a closed interval
[α,β] assumes values of opposite signs at the endpoints of the interval. Then there
is a unique point a in the interval at which f (a)= 0. In addition to the elementary
method of finding the point a by successive bisection of the interval, there also
exist more sophisticated and rapid methods of finding it, using the properties of the
function f . Thus, in the present case, one may use the following method, proposed
by Newton and called Newton’s method or the method of tangents. Take an arbitrary
point x0 ∈ [α,β] and write the equation y = f (x0)+ f ′(x0)(x − x0) of the tangent
to the graph of the function at the point (x0, f (x0)). We then find the point x1 =
x0 − [f ′(x0)]−1 · f (x0) where the tangent intersects the x-axis (Fig. 9.3). We take
x1 as the first approximation of the root a and repeat this operation, replacing x0
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Fig. 9.3

by x1. In this way we obtain a sequence

xn+1 = xn −
[
f ′(xn)

]−1 · f (xn) (9.25)

of points that, as one can verify, will tend monotonically to a in the present case.
In particular, if f (x) = xk − a, that is, when we are seeking k

√
a, where a > 0,

the recurrence relation (9.25) has the form

xn+1 = xn − x
k
n − a
kxk−1
n

,

which for k = 2 becomes the familiar expression

xn+1 = 1

2

(
xn + a

xn

)
.

The method (9.25) for forming the sequence {xn} is called Newton’s method.
If instead of the sequence (9.25) we consider the sequence obtained by the recur-

rence relation

xn+1 = xn −
[
f ′(x0)

]−1 · f (xn), (9.26)

we speak of the modified Newton’s method.8 The modification amounts to comput-
ing the derivative once and for all at the point x0.

Consider the mapping

x �→A(x)= x − [f ′(x0)
]−1 · f (x). (9.27)

By Lagrange’s theorem

∣∣A(x2)−A(x1)
∣
∣= ∣∣[f ′(x0)

]−1 · f ′(ξ)∣∣ · |x2 − x1|,
where ξ is a point lying between x1 and x2.

8In functional analysis it has numerous applications and is called the Newton–Kantorovich method.
L.V. Kantorovich (1912–1986) – eminent Soviet mathematician, whose research in mathematical
economics earned him the Nobel Prize.



40 9 *Continuous Mappings (General Theory)

Thus, if the conditions

A(I)⊂ I (9.28)

and
∣∣[f ′(x0)

]−1 · f ′(x)∣∣≤ q < 1, (9.29)

hold on some closed interval I ⊂R, then the mapping A : I→ I defined by relation
(9.27) is a contraction of this closed interval. Then by the general principle it has
a unique fixed point on the interval. But, as can be seem from (9.27), the condition
A(a)= a is equivalent to f (a)= 0.

Hence, when conditions (9.28) and (9.29) hold for a function f , the modi-
fied Newton’s method (9.26) leads to the required solution x = a of the equation
f (x)= 0 by the contraction mapping principle.

9.7.1 Problems and Exercises

1. Show that condition (9.20) in the contraction mapping principle cannot be re-
placed by the weaker condition

d
(
f (x1), f (x2)

)
< d(x1, x2).

2. a) Prove that if a mapping f : X→ X of a complete metric space (X,d) into
itself is such that some iteration of it f n : X→ X is a contraction, then f has a
unique fixed point.

b) Verify that the mapping A :C(I,R)→ C(I,R) in Example 2 is such that for
any closed interval I ⊂R some iteration An of the mapping A is a contraction.

c) Deduce from b) that the local solution y = y0ex−x0 found in Example 2 is
actually a solution of the original equation on the entire real line.

3. a) Show that in the case of a function on [α,β] that is convex and has a positive
derivative and assumes values of opposite signs at the endpoints, Newton’s method
really does give a sequence {xn} that converges to the point a ∈ [α,β] at which
f (a)= 0.

b) Estimate the rate of convergence of the sequence (9.25) to the point a.



Chapter 10
*Differential Calculus from a More General
Point of View

10.1 Normed Vector Spaces

Differentiation is the process of finding the best local linear approximation of a func-
tion. For that reason any reasonably general theory of differentiation must be based
on elementary ideas connected with linear functions. From the course in algebra the
reader is well acquainted with the concept of a vector space, as well as linear de-
pendence and independence of systems of vectors, bases and dimension of a vector
space, vector subspaces, and so forth. In the present section we shall present vec-
tor spaces with a norm, or as they are described, normed vector spaces, which are
widely used in analysis. We begin, however, with some examples of vector spaces.

10.1.1 Some Examples of Vector Spaces in Analysis

Example 1 The real vector space R
n and the complex vector space C

n are classi-
cal examples of vector spaces of dimension n over the fields of real and complex
numbers respectively.

Example 2 In analysis, besides the spaces R
n and C

n exhibited in Example 1,
we encounter the space closest to them, which is the space  of sequences x =
(x1, . . . , xn, . . .) of real or complex numbers. The vector-space operations in , as
in R

n and C
n, are carried out coordinatewise. One peculiarity of this space, when

compared with R
n or C

n is that any finite subsystem of the countable system of
vectors {xi = (0, . . . ,0, xi = 1,0, . . .), i ∈N} is linearly independent, that is,  is an
infinite-dimensional vector space (of countable dimension in the present case).

The set of finite sequences (all of whose terms are zero from some point on) is a
vector subspace 

0
of the space , also infinite-dimensional.

Example 3 Let F [a, b] be the set of numerical-valued (real- or complex-valued)
functions defined on the closed interval [a, b]. This set is a vector space over the
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corresponding number field with respect to the operations of addition of functions
and multiplication of a function by a number.

The set of functions of the form

eτ (x)=
{

0, if x ∈ [a, b] and x �= τ,
1, if x ∈ [a, b] and x = τ

is a continuously indexed system of linearly independent vectors in F [a, b].
The set C[a, b] of continuous functions is obviously a subspace of the space

F [a, b] just constructed.

Example 4 If X1 and X2 are two vector spaces over the same field, there is a nat-
ural way of introducing a vector-space structure into their direct product X1 ×X2,
namely by carrying out the vector-space operations on elements x = (x1, x2) ∈
X1 ×X2 coordinatewise.

Similarly one can introduce a vector-space structure into the direct product X1×
· · ·×Xn of any finite set of vector spaces. This is completely analogous to the cases
of Rn and C

n.

10.1.2 Norms in Vector Spaces

We begin with the basic definition.

Definition 1 Let X be a vector space over the field of real or complex numbers.
A function ‖‖ : X→ R assigning to each vector x ∈ X a real number ‖x‖ is

called a norm in the vector space X if it satisfies the following three conditions:

a) ‖x‖ = 0⇔ x = 0 (nondegeneracy);
b) ‖λx‖ = |λ|‖x‖ (homogeneity);
c) ‖x1 + x2‖ ≤ ‖x1‖ + ‖x2‖ (the triangle inequality).

Definition 2 A vector space with a norm defined on it is called a normed vector
space.

Definition 3 The value of the norm at a vector is called the norm of that vector.

The norm of a vector is always nonnegative and, as can be seen by a), equals zero
only for the zero vector.

Proof Indeed, by c), taking account of a) and b), we obtain for every x ∈X,

0= ‖0‖ = ∥∥x + (−x)∥∥≤ ‖x‖ + ‖−x‖ = ‖x‖ + |−1|‖x‖ = 2‖x‖. �
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By induction, condition c) implies the following general inequality.

‖x1 + · · · + xn‖ ≤ ‖x1‖ + · · · + ‖xn‖, (10.1)

and taking account of b), one can easily deduce from c) the following useful in-
equality.

∣∣‖x1‖ − ‖x2‖
∣∣≤ ‖x1 − x2‖. (10.2)

Every normed vector space has a natural metric

d(x1, x2)= ‖x1 − x2‖. (10.3)

The fact that the function d(x1, x2) just defined satisfies the axioms for a metric
follows immediately from the properties of the norm. Because of the vector-space
structure in X the metric d in X has two additional special properties:

d(x1 + x, x2 + x)=
∥
∥(x1 + x)− (x2 + x)

∥
∥= ‖x1 − x2‖ = d(x1, x2),

that is, the metric is translation-invariant, and

d(λx1, λx2)= ‖λx1 − λx2‖ =
∥∥λ(x1 − x2)

∥∥= |λ|‖x1 − x2‖ = |λ|d(x1, x2),

that is, it is homogeneous.

Definition 4 If a normed vector space is complete as a metric space with the natural
metric (10.3), it is called a complete normed vector space or Banach space.

Example 5 If for p ≥ 1 we set

‖x‖p :=
(
n∑

i=1

∣∣xi
∣∣p
) 1
p

(10.4)

for x = (x1, . . . , xn) ∈Rn, it follows from Minkowski’s inequality that we obtain a
norm on R

n. The space R
n endowed with this norm will be denoted R

n
p .

One can verify that

‖x‖p2 ≤ ‖x‖p1, if 1≤ p1 ≤ p2, (10.5)

and that

‖x‖p→max
{∣∣x1
∣∣, . . . ,

∣∣xn
∣∣} (10.6)

as p→+∞. Thus, it is natural to set

‖x‖∞ :=max
{∣∣x1
∣∣, . . . ,

∣∣xn
∣∣}. (10.7)

It then follows from (10.4) and (10.5) that

‖x‖∞ ≤ ‖x‖p ≤ ‖x‖1 ≤ n‖x‖∞ for p ≥ 1. (10.8)
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It is clear from this inequality, as in fact it is from the very definition of the norm
‖x‖p in Eq. (10.4), that Rnp is a complete normed vector space.

Example 6 The preceding example can be usefully generalized as follows. If X =
X1 × · · · ×Xn is the direct product of normed vector spaces, one can introduce the
norm of a vector x = (x1, . . . , xn) in the direct product by setting

‖x‖p :=
(
n∑

i=1

‖xi‖p
) 1
p

, p ≥ 1, (10.9)

where ‖xi‖ is the norm of the vector xi ∈Xi .
Naturally, inequalities (10.8) remain valid in this case as well.
From now on, when the direct product of normed spaces is considered, unless

the contrary is explicitly stated, it is assumed that the norm is defined in accordance
with formula (10.9) (including the case p =+∞).

Example 7 Let p ≥ 1. We denote by p the set of sequences x = (x1, . . . , xn, . . .) of
real or complex numbers such that the series

∑∞
n=1 |xn|p converges, and for x ∈ p

we set

‖x‖p :=
( ∞∑

n=1

∣
∣xn
∣
∣p
) 1
p

. (10.10)

Using Minkowski’s inequality, one can easily see that p is a normed vector
space with respect to the standard vector-space operations and the norm (10.10).
This is an infinite-dimensional space with respect to which R

n
p is a vector subspace

of finite dimension.
All the inequalities (10.8) except the last are valid for the norm (10.10). It is not

difficult to verify that p is a Banach space.

Example 8 In the vector space C[a, b] of numerical-valued functions that are con-
tinuous on the closed interval [a, b], one usually considers the following norm:

‖f ‖ := max
x∈[a,b]

∣∣f (x)
∣∣. (10.11)

We leave the verification of the norm axioms to the reader. We remark that this
norm generates a metric on C[a, b] that is already familiar to us (see Sect. 9.5), and
we know that the metric space that thereby arises is complete. Thus the vector space
C[a, b] with the norm (10.11) is a Banach space.

Example 9 One can also introduce another norm in C[a, b]

‖f ‖p :=
(∫ b

a

|f |p(x)dx
) 1
p

, p ≥ 1, (10.12)

which becomes (10.11) as p→+∞.
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It is easy to see (for example, Sect. 9.5) that the space C[a, b] with the norm
(10.12) is not complete for 1≤ p <+∞.

10.1.3 Inner Products in Vector Spaces

An important class of normed spaces is formed by the spaces with an inner product.
They are a direct generalization of Euclidean spaces.

We recall their definition.

Definition 5 We say that a Hermitian form is defined in a vector space X (over the
field of complex numbers) if there exists a mapping 〈, 〉 : X × X→ C having the
following properties:

a) 〈x1, x2〉 = 〈x2, x1〉,
b) 〈λx1, x2〉 = λ〈x1, x2〉,
c) 〈x1 + x2, x3〉 = 〈x1, x3〉 + 〈x2, x3〉,

where x1, x2, x3 are vectors in X and λ ∈C.

It follows from a), b), and c), for example, that

〈x1, λx2〉 = 〈λx2, x1〉 = λ〈x2, x1〉 = λ〈x2, x1〉 = λ〈x1, x2〉;
〈x1, x2 + x3〉 = 〈x2 + x3, x1〉 = 〈x2, x1〉 + 〈x3, x1〉 = 〈x1, x2〉 + 〈x1, x3〉;

〈x, x〉 = 〈x, x〉, that is, 〈x, x〉 is a real number.

A Hermitian form is called nonnegative if

d) 〈x, x〉 ≥ 0

and nondegenerate if

e) 〈x, x〉 = 0⇔ x = 0.

If X is a vector space over the field of real numbers, one must of course consider
a real-valued form 〈x1, x2〉. In this case a) can be replaced by 〈x1, x2〉 = 〈x2, x1〉,
which means that the form is symmetric with respect to its vector arguments x1

and x2.
An example of such a form is the dot product familiar from analytic geometry

for vectors in three-dimensional Euclidean space. In connection with this analogy
we make the following definition.

Definition 6 A nondegenerate nonnegative Hermitian form in a vector space is
called an inner product in the space.
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Example 10 An inner product of vectors x = (x1, . . . , xn) and y = (y1, . . . , yn)

in R
n can be defined by setting

〈x, y〉 :=
n∑

i=1

xiyi, (10.13)

and in C
n by setting

〈x, y〉 :=
n∑

i=1

xiyi . (10.14)

Example 11 In 2 the inner product of the vectors x and y can be defined as

〈x, y〉 :=
∞∑

i=1

xiyi .

The series in this expression converges absolutely since

2
∞∑

i=1

∣∣xiyi
∣∣≤

∞∑

i=1

∣∣xi
∣∣2 +

∞∑

i=1

∣∣yi
∣∣2.

Example 12 An inner product can be defined in C[a, b] by the formula

〈f,g〉 :=
∫ b

a

(f · ḡ)(x)dx. (10.15)

It follows easily from properties of the integral that all the requirements for an
inner product are satisfied in this case.

The following important inequality, known as the Cauchy–Bunyakovskii inequal-
ity, holds for the inner product:

∣∣〈x, y〉∣∣2 ≤ 〈x, x〉 · 〈y, y〉, (10.16)

where equality holds if and only if the vectors x and y are collinear.

Proof Indeed, let a = 〈x, x〉, b = 〈x, y〉, and c = 〈y, y〉. By hypothesis a ≥ 0 and
c ≥ 0. If c > 0, the inequalities

0≤ 〈x + λy,x + λy〉 = a + b̄λ+ bλ̄+ cλλ̄

with λ=− b
c

imply
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0≤ a − b̄b
c
− bb̄
c
+ bb̄
c

or

0≤ ac− bb̄= ac− |b|2, (10.17)

which is the same as (10.16).
The case a > 0 can be handled similarly.
If a = c = 0, then, setting λ=−b in (10.17), we find 0 ≤ −b̄b − bb̄ =−2|b|2,

that is, b= 0, and (10.16) is again true.
If x and y are not collinear, then 0< 〈x+λy,x+λy〉 and consequently inequality

(10.16) is a strict inequality in this case. But if x and y are collinear, it becomes
equality as one can easily verify. �

A vector space with an inner product has a natural norm:

‖x‖ :=√〈x, x〉 (10.18)

and metric

d(x, y) := ‖x − y‖.
Using the Cauchy–Bunyakovskii inequality, we verify that if 〈x, y〉 is a nonde-

generate nonnegative Hermitian form, then formula (10.18) does indeed define a
norm.

Proof In fact,

‖x‖ =√〈x, x〉 = 0⇔ x = 0,

since the form 〈x, y〉 is nondegenerate.
Next,

‖λx‖ =√〈λx,λx〉 =
√
λλ̄〈x, x〉 = |λ|√〈x, x〉 = |λ|‖x‖.

We verify finally that the triangle inequality holds:

‖x + y‖ ≤ ‖x‖ + ‖y‖.
Thus, we need to show that

√〈x + y, x + y〉 ≤√〈x, x〉 +√〈y, y〉,
or, after we square and cancel, that

〈x, y〉 + 〈y, x〉 ≤ 2
√〈x, x〉 · 〈y, y〉.

But

〈x, y〉 + 〈y, x〉 = 〈x, y〉 + 〈x, y〉 = 2 Re〈x, y〉 ≤ 2
∣
∣〈x, y〉∣∣,



48 10 *Differential Calculus from a More General Point of View

and the inequality to be proved now follows immediately from the Cauchy–
Bunyakovskii inequality (10.16). �

In conclusion we note that finite-dimensional vector spaces with an inner product
are usually called Euclidean or Hermitian (unitary) spaces according as the field of
scalars is R or C respectively. If a normed vector space is infinite-dimensional, it
is called a Hilbert space if it is complete in the metric induced by the natural norm
and a pre-Hilbert space otherwise.

10.1.4 Problems and Exercises

1. a) Show that if a translation-invariant homogeneous metric d(x1, x2) is defined
in a vector space X, then X can be normed by setting ‖x‖ = d(0, x).

b) Verify that the norm in a vector space X is a continuous function with respect
to the topology induced by the natural metric (10.3).

c) Prove that if X is a finite-dimensional vector space and ‖x‖ and ‖x‖′ are two
norms on X, then one can find positive numbersM,N such that

M‖x‖ ≤ ‖x‖′ ≤N‖x‖ (10.19)

for any vector x ∈X.
d) Using the example of the norms ‖x‖1 and ‖x‖∞ in the space , verify that

the preceding inequality generally does not hold in infinite-dimensional spaces.

2. a) Prove inequality (10.5).
b) Verify relation (10.6).
c) Show that as p→+∞ the quantity ‖f ‖p defined by formula (10.12) tends

to the quantity ‖f ‖ given by formula (10.11).

3. a) Verify that the normed space p considered in Example 7 is complete.
b) Show that the subspace of p consisting of finite sequences (ending in zeros)

is not a Banach space.

4. a) Verify that relations (10.11) and (10.12) define a norm in the space C[a, b]
and convince yourself that a complete normed space is obtained in one of these
cases but not in the other.

b) Does formula (10.12) define a norm in the space R[a, b] of Riemann-
integrable functions?

c) What factorization (identification) must one make in R[a, b] so that the quan-
tity defined by (10.12) will be a norm in the resulting vector space?

5. a) Verify that formulas (10.13)–(10.15) do indeed define an inner product in the
corresponding vector spaces.

b) Is the form defined by formula (10.15) an inner product in the space R[a, b]
of Riemann-integrable functions?
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c) Which functions in R[a, b] must be identified so that the answer to part b)
will be positive in the quotient space of equivalence classes?

6. Using the Cauchy–Bunyakovskii inequality, find the greatest lower bound of the
values of the product (

∫ b
a
f (x)dx)(

∫ b
a
(1/f )(x)dx) on the set of continuous real-

valued functions that do not vanish on the closed interval [a, b].

10.2 Linear and Multilinear Transformations

10.2.1 Definitions and Examples

We begin by recalling the basic definition.

Definition 1 If X and Y are vector spaces over the same field (in our case, either R
or C), a mapping A :X→ Y is linear if the equalities

A(x1 + x2) = A(x1)+A(x2),

A(λx) = λA(x)

hold for any vectors x, x1, x2 in X and any number λ in the field of scalars.
For a linear transformation A :X→ Y we often write Ax instead of A(x).

Definition 2 A mapping A :X1× · · · ×Xn→ Y of the direct product of the vector
spaces X1, . . . ,Xn into the vector space Y is multilinear (n-linear) if the mapping
y = A(x1, . . . , xn) is linear with respect to each variable for all fixed values of the
other variables.

The set of n-linear mappings A : X1 × · · · × Xn → Y will be denoted
L(X1, . . . ,Xn;Y).

In particular for n= 1 we obtain the set L(X;Y) of linear mappings from X1 =
X into Y .

For n = 2 a multilinear mapping is called bilinear, for n = 3, trilinear, and so
forth.

One should not confuse an n-linear mapping A ∈ L(X1, . . . ,Xn;Y) with a linear
mapping A ∈ L(X;Y) of the vector space X = X1 × · · · ×Xn (in this connection
see Examples 9–11 below).

If Y = R or Y = C, linear and multilinear mappings are usually called linear
or multilinear functionals. When Y is an arbitrary vector space, a linear mapping
A : X→ Y is usually called a linear transformation from X into Y , and a linear
operator in the special case when X = Y .

Let us consider some examples of linear mappings.
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Example 1 Let 
0

be the vector space of finite numerical sequences. We define

a transformation A : 
0
→ 

0
as follows:

A
(
(x1, x2, . . . , xn,0, . . .)

) := (1x1,2x2, . . . , nxn,0, . . .).

Example 2 We define the functional A :C[a, b]→R by the relation

A(f ) := f (x0),

where f ∈ C([a, b],R) and x0 is a fixed point of the closed interval [a, b].

Example 3 We define the functional A :C([a, b],R)→R by the relation

A(f ) :=
∫ b

a

f (x)dx.

Example 4 We define the transformation A : C([a, b],R)→ C([a, b],R) by the
formula

A(f ) :=
∫ x

a

f (t)dt,

where x is a point ranging over the closed interval [a, b].

All of these transformations are obviously linear.
Let us now consider some familiar examples of multilinear mappings.

Example 5 The usual product (x1, . . . , xn) �→ x1 · . . . · xn of n real numbers is a
typical example of an n-linear functional A ∈ L(R, . . . ,R︸ ︷︷ ︸

n

;R).

Example 6 The inner product (x1, x2)
A�−→〈x1, x2〉 in a Euclidean vector space over

the field R is a bilinear function.

Example 7 The cross product (x1, x2)
A�−→[x1, x2] of vectors in three-dimensional

Euclidean space E3 is a bilinear transformation, that is, A ∈ L(E3,E3;E3).

Example 8 If X is a finite-dimensional vector space over the field R, {e1, . . . , en} is
a basis in X, and x = xiei is the coordinate representation of the vector x ∈X, then,
setting

A(x1, . . . , xn)= det

⎛

⎜
⎝

x1
1 · · · xn1
...

. . .
...

x1
n · · · xnn

⎞

⎟
⎠ ,

we obtain an n-linear function A :Xn→R.



10.2 Linear and Multilinear Transformations 51

As a useful supplement to the examples just given, we investigate in addition
the structure of the linear mappings of a product of vector spaces into a product of
vector spaces.

Example 9 Let X =X1 × · · · ×Xm be the vector space that is the direct product of
the spaces X1, . . . ,Xm, and let A : X→ Y be a linear mapping of X into a vector
space Y. Representing every vector x = (x1, . . . , xm) ∈X in the form

x = (x1, . . . , xm)=
= (x1,0, . . . ,0)+ (0, x2,0, . . . ,0)+ · · · + (0, . . . ,0, xm) (10.20)

and setting

Ai(xi) :=A
(
(0, . . . ,0, xi,0, . . . ,0)

)
(10.21)

for xi ∈ Xi , i = {1, . . . ,m}, we observe that the mappings Ai : Xi → Y are linear
and that

A(x)=A1(x1)+ · · · +Am(xm). (10.22)

Since the mapping A :X =X1×· · ·×Xm→ Y is obviously linear for any linear
mappings Ai :Xi→ Y , we have shown that formula (10.22) gives the general form
of any linear mapping A ∈ L(X =X1 × · · · ×Xm;Y).
Example 10 Starting from the definition of the direct product Y = Y1 × · · · × Yn of
the vector spaces Y1, . . . , Yn and the definition of a linear mapping A :X→ Y , one
can easily see that any linear mapping

A :X→ Y = Y1 × · · · × Yn
has the form x �→ Ax = (A1x, . . . ,Anx)= (y1, . . . , yn)= y ∈ Y , where Ai : X→
Yi are linear mappings.

Example 11 Combining Examples 9 and 10, we conclude that any linear mapping

A :X1 × · · · ×Xm =X→ Y = Y1 × · · · × Yn
of the direct productX =X1×· · ·×Xm of vector spaces into another direct product
Y = Y1 × · · · × Yn has the form

y =
⎛

⎜
⎝

y1
...

yn

⎞

⎟
⎠=
⎛

⎜
⎝

A11 · · · A1m
...

. . .
...

An1 · · · Anm

⎞

⎟
⎠

⎛

⎜
⎝

x1
...

xm

⎞

⎟
⎠=Ax, (10.23)

where Aij :Xj → Yi are linear mappings.
In particular, if X1 = X2 = · · · = Xm = R and Y1 = Y2 = · · · = Yn = R, then

Aij : Xj → Yi are the linear mappings R � x �→ aij x ∈ R, each of which is given
by a single number aij . Thus in this case relation (10.23) becomes the familiar
numerical notation for a linear mapping A :Rm→R

n.
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10.2.2 The Norm of a Transformation

Definition 3 Let A :X1 × · · · ×Xn→ Y be a multilinear transformation mapping
the direct product of the normed vector spaces X1, . . . ,Xn into a normed space Y .

The quantity

‖A‖ := sup
x1,..,xn
xi �=0

|A(x1, . . . , xn)|Y
|x1|X1 × · · · × |xn|Xn

, (10.24)

where the supremum is taken over all sets x1, . . . , xn of nonzero vectors in the spaces
X1, . . . ,Xn, is called the norm of the multilinear transformation A.

On the right-hand side of Eq. (10.24) we have denoted the norm of a vector x
by the symbol | · | subscripted by the symbol for the normed vector space to which
the vector belongs, rather than the usual symbol ‖ · ‖ for the norm of a vector. From
now on we shall adhere to this notation for the norm of a vector; and, where no
confusion can arise, we shall omit the symbol for the vector space, taking for granted
that the norm (absolute value) of a vector is always computed in the space to which
it belongs. In this way we hope to introduce for the time being some distinction
in the notation for the norm of a vector and the norm of a linear or multilinear
transformation acting on a normed vector space.

Using the properties of the norm of a vector and the properties of a multilinear
transformation, one can rewrite formula (10.24) as follows:

‖A‖ = sup
x1,..,xn
xi �=0

∣∣∣∣A
(
x1

|x1| , . . . ,
xn

|xn|
)∣∣∣∣= sup

e1,...,en

∣∣A(e1, . . . , en)
∣∣, (10.25)

where the last supremum extends over all sets e1, . . . , en of unit vectors in the spaces
X1, . . . ,Xn respectively (that is, |ei | = 1, i = 1, . . . , n).

In particular, for a linear transformation A : X→ Y , from (10.24) and (10.25)
we obtain

‖A‖ = sup
x �=0

|Ax|
|x| = sup

|e|=1
|Ae|. (10.26)

It follows from Definition 3 for the norm of a multilinear transformation A that
if ‖A‖<∞, then the inequality

∣∣A(x1, . . . , xn)
∣∣≤ ‖A‖|x1| × · · · × |xn| (10.27)

holds for any vectors xi ∈Xi , i = 1, . . . , n.
In particular, for a linear transformation we obtain

|Ax| ≤ ‖A‖|x|. (10.28)

In addition, it follows from Definition 3 that if the norm of a multilinear trans-
formation is finite, it is the greatest lower bound of all numbers M for which the
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inequality
∣
∣A(x1, . . . , xn)

∣
∣≤M|x1| × · · · × |xn| (10.29)

holds for all values of xi ∈Xi , i = 1, . . . , n.

Definition 4 A multilinear transformation A : X1 × · · · × Xn→ Y is bounded if
there exists M ∈ R such that inequality (10.29) holds for all values of x1, . . . , xn in
the spaces X1, . . . ,Xn respectively.

Thus the bounded transformations are precisely those that have a finite norm.
On the basis of relation (10.26) one can easily understand the geometric meaning

of the norm of a linear transformation in the familiar case A :Rm→R
n. In this case

the unit sphere in R
m maps under the transformation A into some ellipsoid in R

n

whose center is at the origin. Hence the norm of A in this case is simply the largest
of the semiaxes of the ellipsoid.

On the other hand, one can also interpret the norm of a linear transformation as
the least upper bound of the coefficients of dilation of vectors under the mapping,
as can be seen from the first equality in (10.26).

It is not difficult to prove that for mappings of finite-dimensional spaces the norm
of a multilinear transformation is always finite, and hence in particular the norm of
a linear transformation is always finite. This is no longer true in the case of infinite-
dimensional spaces, as can be seen from the first of the following examples.

Let us compute the norms of the transformations considered in Examples 1–8.

Example 1′ If we regard 
0

as a subspace of the normed space p , in which the

vector en = (0, . . . ,0︸ ︷︷ ︸
n−1

,1,0 . . .) has unit norm, then, since Aen = nen, it is clear that

‖A‖ =∞.

Example 2′ If |f | =maxa≤x≤b |f (x)| ≤ 1, then |Af | = |f (x0)| ≤ 1, and |Af | = 1
if f (x0)= 1, so that ‖A‖ = 1.

We remark that if we introduce, for example, the integral norm

|f | =
∫ b

a

|f |(x)dx

on the same vector space C([a, b],R), the result of computing ‖A‖ may change
considerably. Indeed, set [a, b] = [0,1] and x0 = 1. The integral norm of the func-
tion fn = xn on [0,1] is obviously 1

n+1 , while Afn =Axn = xn|x=1 = 1. It follows
that ‖A‖ =∞ in this case.

Throughout what follows, unless the contrary is explicitly stated, the space
C([a, b],R) is assumed to have the norm defined by the maximum of the absolute
value of the function on the closed interval [a, b].
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Example 3′ If |f | =maxa≤x≤b |f (x)| ≤ 1, then

|Af | =
∣∣∣
∣

∫ b

a

f (x)dx

∣∣∣
∣≤
∫ b

a

|f |(x)dx ≤
∫ b

a

1 dx = b− a.

But for f (x)≡ 1, we obtain |A1| = b− a, and therefore ‖A‖ = b− a.

Example 4′ If |f | =maxa≤x≤b |f (x)| ≤ 1, then

max
a≤x≤b

∣
∣
∣
∣

∫ x

a

f (t)dt

∣
∣
∣
∣≤ max

a≤x≤b

∫ x

a

|f |(t)dt ≤ max
a≤x≤b(x − a)= b− a.

But for |f |(t)≡ 1, we obtain

max
a≤x≤b

∫ x

a

1 dt = b− a,

and therefore in this example ‖A‖ = b− a.

Example 5′ We obtain immediately from Definition 3 that ‖A‖ = 1 in this case.

Example 6′ By the Cauchy–Bunyakovskii inequality

∣∣〈x1, x2〉
∣∣≤ |x1| · |x2|,

and if x1 = x2, this inequality becomes equality. Hence ‖A‖ = 1.

Example 7′ We know that

∣
∣[x1, x2]

∣
∣= |x1||x2| sinϕ,

where ϕ is the angle between the vectors x1 and x2, and therefore ‖A‖ ≤ 1. At the
same time, if the vectors x1 and x2 are orthogonal, then sinϕ = 1. Thus ‖A‖ = 1.

Example 8′ If we assume that the vectors lie in a Euclidean space of dimension n,
we note that A(x1, . . . , xn) = det(x1, . . . , xn) is the volume of the parallelepiped
spanned by the vectors x1, . . . , xn, and this volume is maximal if the vectors
x1, . . . , xn are made pairwise orthogonal while keeping their lengths constant.

Thus,
∣∣det(x1, . . . , xn)

∣∣≤ |x1| · . . . · |xn|,
equality holding for orthogonal vectors. Hence in this case ‖A‖ = 1.

Let us now estimate the norms of the operators studied in Examples 9–11. We
shall assume that in the direct product X = X1 × · · · × Xm of the normed spaces
X1, . . . ,Xm the norm of the vector x = (x1, . . . , xm) is introduced in accordance
with the convention in Sect. 10.1 (Example 6).
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Example 9′ Defining a linear transformation

A :X1 × · · · ×Xm =X→ Y,

as has been shown, is equivalent to defining the m linear transformations Ai :Xi→
Y given by the relations Aixi =A((0, . . . ,0, xi,0, . . . ,0)), i = 1, . . . ,m. When this
is done, formula (10.22) holds, by virtue of which

|Ax|Y ≤
m∑

i=1

|Aixi |Y ≤
m∑

i=1

‖Ai‖|xi |Xi ≤
(
m∑

i=1

‖Ai‖
)

|x|X.

Thus we have shown that

‖A‖ ≤
m∑

i=1

‖Ai‖.

On the other hand, since

|Aixi | =
∣∣A
(
(0, . . . ,0, xi,0, . . . ,0)

)∣∣≤
≤ ‖A‖∣∣(0, . . . ,0, xi,0, . . . ,0)

∣∣
X
= ‖A‖|xi |Xi ,

we can conclude that the estimate

‖Ai‖ ≤ ‖A‖
also holds for all i = 1, . . . ,m.

Example 10′ Taking account of the norm introduce in Y = Y1 × · · · × Yn, in this
case we immediately obtain the two-sided estimates

‖Ai‖ ≤ ‖A‖ ≤
n∑

i=1

‖Ai‖.

Example 11′ Taking account of the results of Examples 9 and 10, one can conclude
that

‖Aij‖ ≤ ‖A‖ ≤
m∑

i=1

n∑

j=1

‖Aij‖.

10.2.3 The Space of Continuous Transformations

From now on we shall not be interested in all linear or multilinear transformations,
only continuous ones. In this connection it is useful to keep in mind the following
proposition.
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Proposition 1 For a multilinear transformation A :X1× · · ·×Xn→ Y mapping a
product of normed spaces X1, . . . ,Xn into a normed space Y the following condi-
tions are equivalent:

a) A has a finite norm,
b) A is a bounded transformation,
c) A is a continuous transformation,
d) A is continuous at the point (0, . . . ,0) ∈X1 × · · · ×Xn.

Proof We prove a closed chain of implications a)⇒ b)⇒ c)⇒ d)⇒ a).
It is obvious from relation (10.27) that a)⇒ b).
Let us verify that b) ⇒ c), that is, that (10.29) implies that the operator A is

continuous. Indeed, taking account of the multilinearity of A, we can write that

A(x1 + h1, x2 + h2, . . . , xn + hn)−A(x1, x2, . . . , xn)=
=A(h1, x2, . . . , xn)+ · · · +A(x1, x2, . . . , xn−1, hn)=
+A(h1, h2, x3, . . . , xn)+ · · · +A(x1, . . . , xn−2, hn−1, hn)+
+ · · · +A(h1, . . . , hn).

From (10.29) we now obtain the estimate

∣∣A(x1 + h1, x2 + h2, . . . , xn + hn)−A(x1, x2, . . . , xn)
∣∣≤

≤M(|h1| · |x2| · . . . · |xn| + · · · + |x1| · |x2| · . . . · |xn−1| · |hn| +
+ · · · + |h1| · . . . · |hn|

)
,

from which it follows that A is continuous at each point (x1, . . . , xn) ∈X1 × · · · ×
Xn.

In particular, if (x1, . . . , xn)= (0, . . . ,0) we obtain d) from c).
It remains to be shown that d)⇒ a).
Given ε > 0 we find δ = δ(ε) > 0 such that |A(x1, . . . , xn)|< ε when max{|x1|,

. . . , |xn|}< δ. Then for any set e1, . . . , en of unit vectors we obtain

∣∣A(e1, . . . , en)
∣∣= 1

δn

∣∣A(δe1, . . . , δen)
∣∣<

ε

δn
,

that is, ‖A‖< ε
δn
<∞. �

We have seen above (Example 1) that not every linear transformation has a finite
norm, that is, a linear transformation is not always continuous. We have also pointed
out that continuity can fail for a linear transformation only when the transformation
is defined on an infinite-dimensional space.
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From here on L(X1, . . . ,Xn;Y) will denote the set of continuous multilinear
transformations mapping the direct product of the normed vector spacesX1, . . . ,Xn
into the normed vector space Y .

In particular, L(X;Y) is the set of continuous linear transformations from X

into Y .
In the set L(X1, . . . ,Xn;Y) we introduce a natural vector-space structure:

(A+B)(x1, . . . , xn) :=A(x1, . . . , xn)+B(x1, . . . , xn)

and

(λA)(x1, . . . , xn) := λA(x1, . . . , xn).

It is obvious that if A,B ∈ L(X1, . . . ,Xn;Y), then (A + B) ∈ L(X1, . . . ,Xn;Y)
and (λA) ∈ L(X1, . . . ,Xn;Y).

Thus L(X1, . . . ,Xn;Y) can be regarded as a vector space.

Proposition 2 The norm of a multilinear transformation is a norm in the vector
space L(X1, . . . ,Xn;Y) of continuous multilinear transformations.

Proof We observe first of all that by Proposition 1 the nonnegative number ‖A‖<
∞ is defined for every transformation A ∈ L(X1, . . . ,Xn;Y).

Inequality (10.27) shows that

‖A‖ = 0⇔A= 0.

Next, by definition of the norm of a multilinear transformation

‖λA‖ = sup
x1,...,xn
xi �=0

(λA)(x1, . . . , xn)|
|x1| · . . . · |xn| =

= sup
x1,...,xn
xi �=0

|λ||A(x1, . . . , xn)|
|x1| · . . . · |xn| = |λ|‖A‖.

Finally, if A and B are elements of the space L(X1, . . . ,Xn;Y), then

‖A+B‖ = sup
x1,...,xn
xi �=0

|(A+B)(x1, . . . , xn)|
|x1| · . . . · |xn| =

= sup
x1,...,xn
xi �=0

|A(x1, . . . , xn)+B(x1, . . . , xn)|
|x1| · . . . · |xn| ≤

≤ sup
x1,...,xn
xi �=0

|A(x1, . . . , xn)|
|x1| · . . . · |xn| + sup

x1,...,xn
xi �=0

|B(x1, . . . , xn)|
|x1| · . . . · |xn| = ‖A‖ + ‖B‖. �
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From now on when we use the symbol L(X1, . . . ,Xn;Y) we shall have in mind
the vector space of continuous n-linear transformations normed by this transforma-
tion norm. In particular L(X,Y ) is the normed space of continuous linear transfor-
mations from X into Y .

We now prove the following useful supplement to Proposition 2.

Supplement If X, Y , and Z are normed spaces and A ∈ L(X;Y) and B ∈
L(Y ;Z), then

‖B ◦A‖ ≤ ‖B‖ · ‖A‖.

Proof Indeed,

‖B ◦A‖ = sup
x �=0

|(B ◦A)x|
|x| ≤ sup

x �=0

‖B‖|Ax|
|x| =

= ‖B‖ sup
x �=0

|Ax|
|x| = ‖B‖ · ‖A‖. �

Proposition 3 If Y is a complete normed space, then L(X1, . . . ,Xn;Y) is also a
complete normed space.

Proof We shall carry out the proof for the space L(X;Y) of continuous linear trans-
formations. The general case, as will be clear from the reasoning below, differs only
in requiring a more cumbersome notation.

Let A1,A2, . . . ,An, . . . be a Cauchy sequence in L(X;Y). Since for any x ∈ X
we have

|Amx −Anx| =
∣∣(Am −An)x

∣∣≤ ‖Am −An‖|x|,
it is clear that for any x ∈ X the sequence A1x,A2x, . . . ,Anx, . . . is a Cauchy se-
quence in Y . Since Y is complete, it has a limit in Y , which we denote by Ax.

Thus,

Ax := lim
n→∞Anx.

We shall show that A :X→ Y is a continuous linear transformation.
The linearity of A follows from the relations

lim
n→∞An(λ1x1 + λ2x2) = lim

n→∞(λ1Anx1 + λ2Anx2)=
= λ1 lim

n→∞Anx1 + λ2 lim
n→∞Anx2.

Next, for any fixed ε > 0 and sufficiently large values ofm,n ∈N we have ‖Am−
An‖< ε, and therefore

|Amx −Anx| ≤ ε|x|
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at each vector x ∈ X. Letting m tend to infinity in this last relation and using the
continuity of the norm of a vector, we obtain

|Ax −Anx| ≤ ε|x|.
Thus ‖A−An‖ ≤ ε, and since A=An + (A−An), we conclude that

‖A‖ ≤ ‖An‖ + ε.
Consequently, we have shown that A ∈ L(X;Y) and ‖A−An‖→ 0 as n→∞, that
is, A= limn→∞An in the sense of the norm of the space L(X;Y). �

In conclusion, we make one special remark relating to the space of multilinear
transformations, which we shall need when studying higher-order differentials.

Proposition 4 For each m ∈ {1, . . . , n} there is a bijection between the spaces

L
(
X1, . . . ,Xm;L(Xm+1, . . . ,Xn;Y)

)
and L(X1, . . . ,Xn;Y)

that preserves the vector-space structure and the norm.

Proof We shall exhibit this isomorphism.
Let B ∈ L(X1, . . . ,Xm;L(Xm+1, . . . ,Xn;Y)), that is, B(x1, . . . , xm) ∈

L(Xm+1, . . . ,Xn;Y).
We set

A(x1, . . . , xn) :=B(x1, . . . , xm)(xm+1, . . . , xn). (10.30)

Then

‖B‖ = sup
x1,...,xm
xi �=0

‖B(x1, . . . , xm)‖
|x1| · . . . · |xm| =

= sup
x1,...,xm
xi �=0

supxm+1,...,xn
xj �=0

|B(x1,...,xm)(xm+1,...,xn)|
|xm+1|·...·|xn|

|x1| · . . . · |xm| =

= sup
x1,...,xn
xk �=0

|A(x1, . . . , xn)|
|x1| · . . . · |xn| = ‖A‖.

We leave to the reader the verification that relation (10.30) defines an isomor-
phism of these vector spaces. �

Applying Proposition 4 n times, we find that the space

L
(
X1;L

(
X2; . . . ;L(Xn;Y)

) · · · )

is isomorphic to the space L(X1, . . . ,Xn;Y) of n-linear transformations.
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10.2.4 Problems and Exercises

1. a) Prove that if A : X→ Y is a linear transformation from the normed space
X into the normed space Y and X is finite-dimensional, then A is a continuous
operator.

b) Prove the proposition analogous to that stated in a) for a multilinear operator.

2. Two normed vector spaces are isomorphic if there exists an isomorphism be-
tween them (as vector spaces) that is continuous together with its inverse transfor-
mation.

a) Show that normed vector spaces of the same finite dimension are isomorphic.
b) Show that for the infinite-dimensional case assertion a) is generally no longer

true.
c) Introduce two norms in the space C([a, b],R) in such a way that the identity

mapping of C([a, b],R) is not a continuous mapping of the two resulting normed
spaces.

3. Show that if a multilinear transformation of n-dimensional Euclidean space is
continuous at some point, then it is continuous everywhere.
4. Let A : En→ En be a linear transformation of n-dimensional Euclidean space
and A∗ :En→En the adjoint to this transformation.
Show the following.

a) All the eigenvalues of the operator A ·A∗ :En→En are nonnegative.
b) If λ1 ≤ · · · ≤ λn are the eigenvalues of the operator A ·A∗, then ‖A‖ =√λn.
c) If the operator A has an inverse A−1 :En→En, then ‖A−1‖ = 1√

λ1
.

d) If (aij ) is the matrix of the operator A : En→ En in some basis, then the
estimates

max
1≤i≤n

√√√√
n∑

j=1

(
aij

)2 ≤ ‖A‖ ≤
√√√√

n∑

i,j=1

(
aij

)2 ≤√n‖A‖

hold.

5. Let P[x] be the vector space of polynomials in the variable x with real coeffi-
cients. We define the norm of the vector P ∈ P[x] by the formula

|P | =
√∫ 1

0
P 2(x)dx.

a) Is the operatorD : P[x]→ P[x] given by differentiation (D(P (x)) := P ′(x))
continuous in the resulting space?

b) Find the norm of the operator F : P[x]→ P[x] of multiplication by x, which
acts according to the rule F(P (x))= x · P(x).
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6. Using the example of projection operators in R
2, show that the inequality ‖B ◦

A‖ ≤ ‖B‖ · ‖A‖ may be a strict inequality.

10.3 The Differential of a Mapping

10.3.1 Mappings Differentiable at a Point

Definition 1 Let X and Y be normed spaces. A mapping f :E→ Y of a set E ⊂X
into Y is differentiable at an interior point x ∈ E if there exists a continuous linear
transformation L(x) :X→ Y such that

f (x + h)− f (x)= L(x)h+ α(x;h), (10.31)

where α(x;h)= o(h) as h→ 0, x + h ∈E.1

Definition 2 The function L(x) ∈ L(X;Y) that is linear with respect to h and satis-
fies relation (10.31) is called the differential, the tangent mapping, or the derivative
of the mapping f :E→ Y at the point x.

As before, we shall denote L(x) by df (x), Df (x), or f ′(x).
We thus see that the general definition of differentiability of a mapping at a point

is a nearly verbatim repetition of the one already familiar to us from Sect. 8.2, where
it was considered in the case X = R

m, Y = R
n. For that reason, from now on we

shall allow ourselves to use such concepts introduced there as increment of a func-
tion, increment of the argument, and tangent space at a point without repeating the
explanations, preserving the corresponding notation.

We shall, however, verify the following proposition in general form.

Proposition 1 If a mapping f : E→ Y is differentiable at an interior point x of a
set E ⊂X, its differential L(x) at that point is uniquely determined.

Proof Thus we are verifying the uniqueness of the differential.
Let L1(x) and L2(x) be linear mappings satisfying relation (10.31), that is

f (x + h)− f (x)−L1(x)h= α1(x;h),
f (x + h)− f (x)−L2(x)h= α2(x;h),

(10.32)

where αi(x;h)= o(h) as h→ 0, x + h ∈E, i = 1,2.

1The notation “α(x;h)= o(h) as h→ 0, x + h ∈E”, of course, means that

lim
h→0,x+h∈E

∣∣α(x;h)∣∣
Y
· |h|−1

X = 0.
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Then, setting L(x)= L2(x)−L1(x) and α(x;h)= α2(x;h)−α1(x;h) and sub-
tracting the second equality in (10.32) from the first, we obtain

L(x)h= α(x;h).

HereL(x) is a mapping that is linear with respect to h, and α(x;h)= o(h) as h→ 0,
x + h ∈E. Taking an auxiliary numerical parameter λ, we can now write

∣
∣L(x)h

∣
∣= |L(x)(λh)||λ| = |α(x;λh)||λh| |h| → 0 as λ→ 0.

Thus L(x)h= 0 for any h �= 0 (we recall that x is an interior point of E). Since
L(x)0= 0, we have shown that L1(x)h= L2(x)h for every value of h. �

If E is an open subset of X and f :E→ Y is a mapping that is differentiable at
each point x ∈E, that is, differentiable on E, by the uniqueness of the differential of
a mapping at a point, which was just proved, a function E � x �→ f ′(x) ∈ L(X;Y)
arises on the set E, which we denote f ′ : E→ L(X;Y). This mapping is called
the derivative of f , or the derivative mapping relative to the original mapping
f : E→ Y . The value f ′(x) of this function at an individual point x ∈ E is the
continuous linear transformation f ′(x) ∈ L(X;Y) that is the differential or deriva-
tive of the function f at the particular point x ∈E.

We note that by the requirement of continuity of the linear mapping L(x)
Eq. (10.31) implies that a mapping that is differentiable at a point is necessarily
continuous at that point.

The converse is of course not true, as we have seen in the case of numerical
functions.

We now make one more important remark.

Remark If the condition for differentiability of the mapping f at some point a is
written as

f (x)− f (a)= L(x)(x − a)+ α(a;x),

where α(a;x) = o(x − a) as x → a, it becomes clear that Definition 1 actually
applies to a mapping f : A→ B of any affine spaces (A,X) and (B,Y ) whose
vector spaces X and Y are normed. Such affine spaces, called normed affine spaces,
are frequently encountered, so that it is useful to keep this remark in mind when
using the differential calculus.

Everything that follows, unless specifically stated otherwise, applies equally to
both normed vector spaces and normed affine spaces, and we use the notation for
vector spaces only for the sake of simplicity.
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10.3.2 The General Rules for Differentiation

The following general properties of the operation of differentiation follow from Def-
inition 1. In the statements belowX, Y , and Z are normed spaces and U and V open
sets in X and Y respectively.

a. Linearity of Differentiation

If the mappings fi : U → Y , i = 1,2, are differentiable at a point x ∈ U , a linear
combination of them (λ1f1 + λ2f2) :U→ Y is also differentiable at x, and

(λ1f1 + λ2f2)
′(x)= λ1f

′
1(x)+ λ2f

′
2(x).

Thus the differential of a linear combination of mappings is the corresponding
linear combination of their differentials.

b. Differentiation of a Composition of Mappings (Chain Rule)

If the mapping f :U→ V is differentiable at a point x ∈U ⊂X, and the mapping
g : V → Z is differentiable at f (x) = y ∈ V ⊂ Y , then the composition g ◦ f of
these mappings is differentiable at x, and

(g ◦ f )′(x)= g′(f (x)) ◦ f ′(x).
Thus, the differential of a composition is the composition of the differentials.

c. Differentiation of the Inverse of a Mapping

Let f : U → Y be a mapping that is continuous at x ∈ U ⊂ X and has an inverse
f−1 : V →X that is defined in a neighborhood of y = f (x) and continuous at that
point.

If the mapping f is differentiable at x and its tangent mapping f ′(x) ∈ L(X;Y)
has a continuous inverse [f ′(x)]−1 ∈ L(Y ;X), then the mapping f−1 is differen-
tiable at y = f (x) and

[
f−1]′(f (x)

)= [f ′(x)]−1
.

Thus, the differential of an inverse mapping is the linear mapping inverse to the
differential of the original mapping at the corresponding point.

We omit the proofs of a, b, and c, since they are analogous to the proofs given in
Sect. 8.3 for the case X =R

m, Y =R
n.
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10.3.3 Some Examples

Example 1 If f : U→ Y is a constant mapping of a neighborhood U = U(x)⊂X
of the point x, that is, f (U)= y0 ∈ Y , then f ′(x)= 0 ∈ L(X;Y).

Proof Indeed, in this case it is obvious that

f (x + h)− f (x)− 0h= y0 − y0 − 0= 0= o(h). �

Example 2 If the mapping f :X→ Y is a continuous linear mapping of a normed
vector space X into a normed vector space Y , then f ′(x) = f ∈ L(X;Y) at any
point x ∈A.

Proof Indeed,

f (x + h)− f (x)− f h= f x + f h− f x − f h= 0. �

We remark that strictly speaking f ′(x) ∈ L(T Xx;T Yf (x)) here and h is a vector
of the tangent space TXx . But parallel translation of a vector to any point x ∈X is
defined in a vector space, and this allows us to identify the tangent space TXx with
the vector space X itself. (Similarly, in the case of an affine space (A,X) the space
TAa of vectors “attached” to the point a ∈A can be identified with the vector space
X of the given affine space.) Consequently, after choosing a basis in X, we can
extend it to all the tangent spaces TXx . This means that if, for example, X = R

m,
Y =R

n, and the mapping f ∈ L(Rm;Rn) is given by the matrix (aji ), then at every
point x ∈ R

m the tangent mapping f ′(x) : TRmx → TRnf (x) will be given by the
same matrix.

In particular, for a linear mapping x
f�−→ax = y from R to R with x ∈ R and

h ∈ TRx ∼R, we obtain the corresponding mapping TRx � h f ′�−→ah ∈ TRf (x).
Taking account of these conventions, we can provisionally state the result of

Example 2 as follows: The mapping f ′ : X→ Y that is the derivative of a linear
mapping f : X→ Y of normed spaces is constant, and f ′(x) = f at each point
x ∈X.

Example 3 From the chain rule for differentiating a composition of mappings and
the result of Example 2 one can conclude that if f : U → Y is a mapping of a
neighborhood U = U(x) ⊂ X of the point x ∈ X and is differentiable at x, while
A ∈ L(Y ;Z), then

(A ◦ f )′(x)=A ◦ f ′(x).
For numerical functions, when Y =Z =R, this is simply the familiar possibility

of moving a constant factor outside the differentiation sign.
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Example 4 Suppose once again that U = U(x) is a neighborhood of the point x in
a normed space X, and let

f :U→ Y = Y1 × · · · × Yn
be a mapping of U into the direct product of the normed spaces Y1, . . . , Yn.

Defining such a mapping is equivalent to defining the n mappings fi : U → Yi ,
i = 1, . . . , n, connected with f by the relation

x �→ f (x)= y = (y1, . . . , yn)=
(
f1(x), . . . , fn(x)

)
,

which holds at every point of U .
If we now take account of the fact that in formula (10.31) we have

f (x + h)− f (x)= (f1(x + h)− f1(x), . . . , fn(x + h)− fn(x)
)
,

L(x)h= (L1(x)h, . . . ,Ln(x)h
)
,

α(x;h)= (α1(x;h), . . . , αn(x;h)
)
,

then, referring to the results of Example 6 of Sect. 10.1 and Example 10 of
Sect. 10.2, we can conclude that the mapping f is differentiable at x if and only
if all of its components fi : U → Yi are differentiable at x, i = 1, . . . , n; and when
the mapping f is differentiable, we have the equality

f ′(x)= (f ′1(x), . . . , f ′n(x)
)
.

Example 5 Now let A ∈ L(X1, . . . ,Xn;Y), that is, A is a continuous n-linear trans-
formation from the product X1 × · · · ×Xn of the normed vector spaces X1, . . . ,Xn
into the normed vector space Y .

We shall prove that the mapping

A :X1 × · · · ×Xn =X→ Y

is differentiable and find its differential.

Proof Using the multilinearity of A, we find that

A(x + h)−A(x) = A(x1 + h1, . . . , xn + hn)−A(x1, . . . , xn)=
= A(x1, . . . , xn)+A(h1, x2, . . . , xn)+
+ · · · +A(x1, . . . , xn−1, hn)+A(h1, h2, x3, . . . , xn)+
+ · · · +A(x1, . . . , xn−2, hn−1, hn)+
+ · · · +A(h1, . . . , hn)−A(x1, . . . , xn).

Since the norm in X =X1 × · · · ×Xn satisfies the inequalities

|xi |Xi ≤ |x|X ≤
n∑

i=1

|xi |Xi ,
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and the norm ‖A‖ of the transformation A is finite and satisfies

∣∣A(ξ1, . . . , ξn)
∣∣≤ ‖A‖|ξ1| × · · · × |ξn|,

we can conclude that

A(x + h)−A(x)=A(x1 + h1, . . . , xn + hn)−A(x1, . . . , xn)=
=A(h1, x2, . . . , xn)+ · · · +A(x1, . . . , xn−1, hn)+ α(x;h),

where α(x;h)= o(h) as h→ 0.
But the transformation

L(x)h=A(h1, x2, . . . , xn)+ · · · +A(x1, . . . , xn−1, hn)

is a continuous transformation (because A is continuous) that is linear in h =
(h1, . . . , hn).

Thus we have established that

A′(x)h=A′(x1, . . . , xn)(h1, . . . , hn)=
=A(h1, x2, . . . , xn)+ · · · +A(x1, . . . , xn−1, hn),

or, more briefly,

dA(x1, . . . , xn)=A(dx1, x2, . . . , xn)+ · · · +A(x1, . . . , xn−1,dxn). �

In particular, if:

a) x1 · . . . · xn is the product of n numerical variables, then

d(x1 · . . . · xn)= dx1 · x2 · . . . · xn + · · · + x1 · . . . · xn−1 · dxn;
b) 〈x1, x2〉 is the inner product in E3, then

d〈x1, x2〉 = 〈dx1, x2〉 + 〈x1,dx2〉;
c) [x1, x2] is the vector cross product in E3, then

d[x1, x2] = [dx1, x2] + [x1,dx2];
d) (x1, x2, x3) is the scalar triple product in E3, then

d(x1, x2, x3)= (dx1, x2, x3)+ (x2,dx2, x3)+ (x2, x2,dx3);
e) det(x1, . . . , xn) is the determinant of the matrix formed from the coordinates

of n vectors x1, . . . , xn in an n-dimensional vector space X with a fixed basis, then

d
(
det(x1, . . . , xn)

)= det(dx1, x2, . . . , xn)+ · · · + det(x1, . . . , xn−1,dxn).
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Example 6 LetU be the subset of L(X;Y) consisting of the continuous linear trans-
formations A : X→ Y having continuous inverse transformations A−1 : Y → X

(belonging to L(Y ;X)). Consider the mapping

U �A �→A−1 ∈ L(Y ;X),
which assigns to each transformation A ∈U its inverse A−1 ∈ L(Y ;X).

Proposition 2 proved below makes it possible to determine whether this mapping
is differentiable.

Proposition 2 If X is a complete space and A ∈U , then for any h ∈ L(X;Y) such
that ‖h‖< ‖A−1‖−1, the transformation A+h also belongs to U and the following
relation holds:

(A+ h)−1 =A−1 −A−1hA−1 + o(h) as h→ 0. (10.33)

Proof Since

(A+ h)−1 = (A(E +A−1h
))−1 = (E +A−1h

)−1
A−1, (10.34)

it suffices to find the operator (E + A−1h)−1 inverse to (E + A−1h) ∈ L(X;X),
where E is the identity mapping eX of X into itself.

Let Δ := −A−1h. Taking account of the supplement to Proposition 2 of
Sect. 10.2, we can observe that ‖Δ‖ ≤ ‖A−1‖ · ‖h‖, so that by the assumptions
made with respect to the operator h we may assume that ‖Δ‖ ≤ q < 1.

We now verify that

(E −Δ)−1 =E +Δ+Δ2 + · · · +Δn + · · · , (10.35)

where the series on the right-hand side is formed from the linear operators Δn =
(Δ ◦ · · · ◦Δ) ∈ L(X;X).

Since X is a complete normed vector space, it follows from Proposition 3 of
Sect. 10.2 that the space L(X;X) is also complete. It then follows immediately
from the relation ‖Δn‖ ≤ ‖Δ‖n ≤ qn and the convergence of the series

∑∞
n=0 q

n

for |q|< 1 that the series (10.35) formed from the vectors in that space converges.
The direct verification that

(
E +Δ+Δ2 + · · · )(E −Δ)=
= (E +Δ+Δ2 + · · · )− (Δ+Δ2 +Δ3 + · · · )=E

and

(E −Δ)(E +Δ+Δ2 + · · · )=
= (E +Δ+Δ2 + · · · )− (Δ+Δ2 +Δ3 + · · · )=E

shows that we have indeed found (E −Δ)−1.
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It is worth remarking that the freedom in carrying out arithmetic operations on
series (rearranging the terms!) in this case is guaranteed by the absolute convergence
(convergence in norm) of the series under consideration.

Comparing relations (10.34) and (10.35), we conclude that

(A+ h)−1 =A−1 −A−1hA−1 + (A−1h
)2
A−1 −

− · · · + (−1)n
(
A−1h

)n
A−1 + · · · (10.36)

for ‖h‖ ≤ ‖A−1‖−1.
Since

∥
∥
∥
∥
∥

∞∑

n=2

(−A−1h
)n
A−1

∥
∥
∥
∥
∥
≤
∞∑

n=2

∥
∥A−1h

∥
∥n
∥
∥A−1

∥
∥≤

≤ ∥∥A−1
∥
∥3‖h‖2

∞∑

m=0

qm = ‖A
−1‖3

1− q ‖h‖
2,

Eq. (10.33) follows in particular from (10.36). �

Returning now to Example 6, we can say that when the space X is complete the

mapping A
f�−→A−1 under consideration is necessarily differentiable, and

df (A)h= d
(
A−1)h=−A−1hA−1.

In particular, this means that if A is a nonsingular square matrix and A−1 is its
inverse, then under a perturbation of the matrix A by a matrix h whose elements are
close to zero, we can write the inverse matrix (A+ h)−1 in first approximation in
the following form:

(A+ h)−1 ≈A−1 −A−1hA−1.

More precise formulas can obviously be obtained starting from Eq. (10.36).

Example 7 Let X be a complete normed vector space. The important mapping

exp : L(X;X)→ L(X;X)
is defined as follows:

expA :=E + 1

1!A+
1

2!A
2 + · · · + 1

n!A
n + · · · , (10.37)

if A ∈ L(X;X).
The series in (10.37) converges, since L(X;X) is a complete space and

‖ 1
n!A

n‖ ≤ ‖A‖n
n! , while the numerical series

∑∞
n=0

‖A‖n
n! converges.
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It is not difficult to verify that

exp(A+ h)= expA+L(A)h+ o(h) as h→∞, (10.38)

where

L(A)h = h+ 1

2! (Ah+ hA)+
1

3!
(
A2h+AhA+ hA2)+

+ · · · + 1

n!
(
An−1h+An−2hA+ · · · +AhAn−2 + hAn−1)+ · · ·

and ‖L(A)‖ ≤ exp‖A‖ = e‖A‖, that is, L(A) ∈ L(L(X;X),L(X;X)).
Thus, the mapping L(X;X) � A �→ expA ∈ L(X;X) is differentiable at every

value of A.
We remark that if the operators A and h commute, that is, Ah= hA, then, as one

can see from the expression for L(A)h, in this case we have L(A)h= (expA)h. In
particular, for X =R or X =C, instead of (10.38) we again obtain

exp(A+ h)= expA+ (expA)h+ o(h) as h→ 0. (10.39)

Example 8 We shall attempt to give a mathematical description of the instantaneous
angular velocity of a rigid body with a fixed point o (a top). Consider an orthonormal
frame {e1, e2, e3} at the point o rigidly attached to the body. It is clear that the
position of the body is completely characterized by the position of this orthoframe,
and the triple {ė1, ė2, ė3} of instantaneous velocities of the vectors of the frame
obviously give a complete characterization of the instantaneous angular velocity of
the body. The position of the frame itself {e1, e2, e3} at time t can be given by an
orthogonal matrix (αji ), i, j = 1,2,3 composed of the coordinates of the vectors
e1, e2, e3 with respect to some fixed orthonormal frame in space. Thus, the motion
of the top corresponds to a mapping t �→O(t) from R (the time axis) into the group
SO(3) of special orthogonal 3× 3 matrices. Consequently, the angular velocity of
the body, which we have agreed to describe by the triple {ė1, ė2, ė3}, is the matrix
Ȯ(t) =: (ωji )(t) = (α̇ji )(t), which is the derivative of the matrix O(t) = (αji )(t)
with respect to time.

Since O(t) is an orthogonal matrix, the relation

O(t)O∗(t)=E (10.40)

holds at any time t , where O∗(t) is the transpose of O(t) and E is the identity
matrix.

We remark that the product A · B of matrices is a bilinear function of A and B ,
and the derivative of the transposed matrix is obviously the transpose of the deriva-
tive of the original matrix. Differentiating (10.40) and taking account of these things,
we find that

Ȯ(t)O∗(t)+O(t)Ȯ∗(t)= 0
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or

Ȯ(t)=−O(t)Ȯ∗(t)O(t), (10.41)

since O∗(t)O(t)=E.
In particular, if we assume that the frame {e1, e2, e3} coincides with the spatial

frame of reference at time t , then O(t)=E, and it follows from (10.41) that

Ȯ(t)=−Ȯ∗(t), (10.42)

that is, the matrix Ȯ(t)=:Ω(t)= (ωji ) of coordinates of the vectors {ė1, ė2, ė3} in
the basis {e1, e2, e3} turns out to be skew-symmetric:

Ω(t)=
⎛

⎜
⎝

ω1
1 ω2

1 ω3
1

ω1
2 ω2

2 ω3
2

ω1
3 ω2

3 ω3
3

⎞

⎟
⎠=
⎛

⎜
⎝

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞

⎟
⎠ .

Thus the instantaneous angular velocity of a top is actually characterized by three
independent parameters, as follows in our line of reasoning from relation (10.40)
and is natural from the physical point of view, since the position of the frame
{e1, e2, e3}, and hence the position of the body itself, can be described by three
independent parameters (in mechanics these parameters may be, for example, the
Euler angles).

If we associate with each vector ω= ω1e1+ω2e2+ω3e3 in the tangent space at
the point o a right-handed rotation of space with angular velocity |ω| about the axis
defined by this vector, it is not difficult to conclude from these results that at each
instant of time t the body has an instantaneous angular velocity and that the velocity
at that time can be adequately described by the instantaneous angular velocity vector
ω(t) (see Problem 5 below).

10.3.4 The Partial Derivatives of a Mapping

Let U =U(a) be a neighborhood of the point a ∈X =X1 × · · · ×Xm in the direct
product of the normed spaces X1, . . . ,Xm, and let f : U → Y be a mapping of U
into the normed space V . In this case

y = f (x)= f (x1, . . . , xm), (10.43)

and hence, if we fix all the variables but xi in (10.43) by setting xk = ak for k ∈
{1, . . . ,m}\i, we obtain a function

f (a1, . . . , ai−1, xi, ai+1, . . . , am)=: ϕi(xi), (10.44)

defined in some neighborhood Ui of ai in X.
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Definition 3 Relative to the original mapping (10.43) the mapping ϕi : Ui→ Y is
called the partial mapping with respect to the variable xi at a ∈X.

Definition 4 If the mapping (10.44) is differentiable at xi = ai , its derivative at that
point is called the partial derivative or partial differential of f at a with respect to
the variable xi .

We usually denote this partial derivative by one of the symbols

∂if (a), Dif (a),
∂f

∂xi
(a), f ′xi (a).

In accordance with these definitions Dif (a) ∈ L(Xi;Y). More precisely,
Dif (a) ∈ L(T Xi(ai);T Y(f (a))).

The differential df (a) of the mapping (10.43) at the point a (if f is differen-
tiable at that point) is often called the total differential in this situation in order to
distinguish it from the partial differentials with respect to the individual variables.

We have already encountered all these concepts in the case of real-valued func-
tions of m real variables, so that we shall not give a detailed discussion of them. We
remark only that by repeating our earlier reasoning, taking account of Example 9 in
Sect. 9.2, one can prove easily that the following proposition holds in general.

Proposition 3 If the mapping (10.43) is differentiable at the point a = (a1, . . . , am)

∈ X1 × · · · × Xm = X, it has partial derivatives with respect to each variable at
that point, and the total differential and the partial differentials are related by the
equation

df (a)h= ∂1f (a)h1 + · · · + ∂mf (a)hm, (10.45)

where h= (h1, . . . , hm) ∈ TX1(a1)× · · · × TXm(am)= TX(a).

We have already shown by the example of numerical functions that the existence
of partial derivatives does not in general guarantee the differentiability of the func-
tion (10.43).

10.3.5 Problems and Exercises

1. a) Let A ∈ L(X;X) be a nilpotent operator, that is, there exists k ∈ N such
that Ak = 0. Show that the operator (E − A) has an inverse in this case and that
(E −A)−1 =E +A+ · · · +Ak−1.

b) Let D : P[x] → P[x] be the operator of differentiation on the vector space
P[x] of polynomials. Remarking that D is a nilpotent operator, write the operator
exp(aD), where a ∈R, and show that exp(aD)(P (x))= P(x + a)=: Ta(P (x)).
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c) Write the matrices of the operators D : Pn[x] → Pn[x] and Ta : Pn[x] →
Pn[x] from part b) in the basis ei = xn−i

(n−i)! ,1 ≤ i ≤ n, in the space Pn[x] of real
polynomials of degree n in one variable.

2. a) IfA,B ∈ L(X;X) and ∃B−1 ∈ L(X;X), then exp(B−1AB)= B−1(expA)B .
b) If AB = BA, then exp(A+B)= exp A · expB .
c) Verify that exp 0 = E and that expA always has an inverse, namely

(expA)−1 = exp(−A).
3. Let A ∈ L(X;X). Consider the mapping ϕA :R→ L(X;X) defined by the cor-
respondence R � t �→ exp(tA) ∈ L(X;X). Show the following.

a) The mapping ϕA is continuous.
b) ϕA is a homomorphism of R as an additive group into the multiplicative group

of invertible operators in L(X;X).
4. Verify the following.

a) If λ1, . . . , λn are the eigenvalues of the operator A ∈ L(Cn;Cn), then
expλ1, . . . , expλn are the eigenvalues of expA.

b) det(expA)= exp(trA), where trA is the trace of the operatorA ∈ L(Cn,Cn).
c) If A ∈ L(Rn,Rn), then det(expA) > 0.
d) If A∗ is the transpose of the matrix A ∈ L(Cn,Cn) and Ā is the matrix whose

elements are the complex conjugates of those of A, then (expA)∗ = expA∗ and
expA= exp Ā.

e) The matrix
(−1 0

1 −1

)
is not of the form expA for any 2× 2 matrix A.

5. We recall that a set endowed with both a group structure and a topology is called
a topological group or continuous group if the group operation is continuous. If
there is a sense in which the group operation is even analytic, the topological group
is called a Lie group.2

A Lie algebra is a vector spaceX with an anticommutative bilinear operation [ , ] :
X ×X→ X satisfying the Jacobi identity: [[a, b], c] + [[b, c], a] + [[c, a], b] = 0
for any vectors a, b, c ∈X. Lie groups and algebras are closely connected with each
other, and the mapping exp plays an important role in establishing this connection
(see Problem 1 above).

An example of a Lie algebra is the oriented Euclidean spaceE3 with the operation
of the vector cross product. For the time being we shall denote this Lie algebra by
LA1.

a) Show that the real 3× 3 skew-symmetric matrices form a Lie algebra (which
we denote LA2) if the product of the matrices A and B is defined as [A,B] =
AB −BA.

2For the precise definition of a Lie group and the corresponding reference see Problem 8 in
Sect. 15.2.
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b) Show that the correspondence

Ω =
⎛

⎝
0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

⎞

⎠↔ (ω1,ω2,ω3)= ω

is an isomorphism of the Lie algebras LA2 and LA1.
c) Verify that if the skew-symmetric matrix Ω and the vector ω correspond to

each other as shown in b), then the equalityΩr= [ω, r] holds for any vector r ∈E3,
and the relation PΩP−1↔ Pω holds for any matrix P ∈ SO(3).

d) Verify that if R � t �→ O(t) ∈ SO(3) is a smooth mapping, then the matrix
Ω(t)=O−1(t)Ȯ(t) is skew-symmetric.

e) Show that if r(t) is the radius vector of a point of a rotating top and Ω(t) is
the matrix (O−1Ȯ)(t) found in d), then ṙ(t)= (Ωr)(t).

f) Let r and ω be two vectors attached at the origin of E3. Suppose a right-
handed frame has been chosen in E3, and that the space undergoes a right-handed
rotation with angular velocity |ω| about the axis defined by ω. Show that ṙ(t) =
[ω, r(t)] in this case.

g) Summarize the results of d), e), and f) and exhibit the instantaneous angular
velocity of the rotating top discussed in Example 8.

h) Using the result of c), verify that the velocity vector ω is independent of the
choice of the fixed orthoframe in E3, that is, it is independent of the coordinate
system.

6. Let r = r(s) = (x1(s), x2(s), x3(s)) be the parametric equations of a smooth
curve inE3, the parameter being arc length along the curve (the natural parametriza-
tion of the curve).

a) Show that the vector e1(s)= dr
ds (s) tangent to the curve has unit length.

b) The vector de1
ds (s) = d2r

ds2 (s) is orthogonal to e1. Let e2(s) be the unit vector

formed from de1
ds (s). The coefficient k(s) in the equality de1

ds (s)= k(s)e2(s) is called
the curvature of the curve at the corresponding point.

c) By constructing the vector e3(s)= [e1(s), e2(s)]we obtain a frame {e1, e2, e3}
at each point, called the Frenet frame3 or companion trihedral of the curve. Verify
the following Frenet formulas:

de1

ds
(s) = k(s)e2(s),

de2

ds
(s) = −k(s)e1(s) κ(s)e3(s),

de3

ds
(s) = −κ(s)e2(s).

3J.F. Frenet (1816–1900) – French mathematician.
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Explain the geometric meaning of the coefficient κ(s) called the torsion of the
curve at the corresponding point.

10.4 The Finite-Increment Theorem and Some Examples
of Its Use

10.4.1 The Finite-Increment Theorem

In our study of numerical functions of one variable in Sect. 5.3.2 we proved the
finite-increment theorem for them and discussed in detail various aspects of this
important theorem of analysis. In the present section the finite-increment theorem
will be proved in its general form. So that its meaning will be fully obvious, we
advise the reader to recall the discussion in that subsection and also to pay attention
to the geometric meaning of the norm of a linear operator (see Sect. 10.2.2).

Theorem 1 (The finite-increment theorem) Let f : U → Y be a continuous map-
ping of an open set U of a normed space X into a normed space Y .

If the closed interval [x, x+h] = {ξ ∈X | ξ = x+ θh,0≤ θ ≤ 1} is contained in
U and the mapping f is differentiable at all points of the open interval ]x, x+h[ =
{ξ ∈X | ξ = x + θh,0< θ < 1}, then the following estimate holds:

∣∣f (x + h)− f (x)∣∣
Y
≤ sup
ξ∈]x,x+h[

∥∥f ′(ξ)
∥∥
L(X,Y )|h|X. (10.46)

Proof We remark first of all that if we could prove the inequality

∣∣f
(
x′′
)− f (x′)∣∣≤ sup

ξ∈[x′,x′′]

∥∥f ′(ξ)
∥∥∣∣x′′ − x′∣∣ (10.47)

in which the supremum extends over the whole interval [x′, x′′], for every closed
interval [x′, x′′] ⊂ ]x, x + h[, then, using the continuity of f and the norm together
with the fact that

sup
ξ∈[x′,x′′]

∥∥f ′(ξ)
∥∥≤ sup

ξ∈]x,x+h[
∥∥f ′(ξ)

∥∥,

we would obtain inequality (10.46) in the limit as x′ → x and x′′ → x + h.
Thus, it suffices to prove that

∣∣f (x + h)− f (x)∣∣≤M|h|, (10.48)

whereM = sup0≤θ≤1 ‖f ′(x+ θh)‖ and the function f is assumed differentiable on
the entire closed interval [x, x + h].
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The very simple computation

∣∣f (x3)− f (x1)
∣∣≤ ∣∣f (x3)− f (x2)

∣∣+ ∣∣f (x2)− f (x1)
∣∣≤

≤M|x3 − x2| +M|x2 − x1| =M
(|x3 − x2| + |x2 − x1|

)=
=M|x3 − x1|,

which uses only the triangle inequality and the properties of a closed interval, shows
that if an inequality of the form (10.48) holds on the portions [x1, x2] and [x2, x3]
of the closed interval [x1, x3], then it also holds on [x1, x3].

Hence, if estimate (10.48) fails for the closed interval [x, x + h], then by succes-
sive bisections, one can obtain a sequence of closed intervals [ak, bk] ⊂ ]x, x + h[
contracting to some point x0 ∈ [x, x + h] such that (10.48) fails on each inter-
val [ak, bk]. Since x0 ∈ [ak, bk], consideration of the closed intervals [ak, x0] and
[x0, bk] enables us to assume that we have found a sequence of closed intervals of
the form [x0, x0 + hk] ⊂ [x, x + h], where hk→ 0 as k→∞ on which

∣∣f (x0 + hk)− f (x0)
∣∣>M|hk|. (10.49)

If we prove (10.48) with M replaced by M + ε, where ε is any positive number,
we will still obtain (10.48) as ε→ 0, and hence we can also replace (10.49) by

∣∣f (x0 + hk)− f (x0)
∣∣> (M + ε)|hk| (10.49′)

and we can now show that this is incompatible with the assumption that f is differ-
entiable at x0.

Indeed, by the assumption that f is differentiable,

∣∣f (x0 + hk)− f (x0)
∣∣= ∣∣f ′(x0)hk + o(hk)

∣∣≤
≤ ∥∥f ′(x0)

∥∥|hk| + o
(|hk|
)≤ (M + ε)|hk|

as hk→ 0. �

The finite-increment theorem has the following useful, purely technical corollary.

Corollary If A ∈ L(X;Y), that is, A is a continuous linear mapping of the normed
space X into the normed space Y and f : U → Y is a mapping satisfying the hy-
potheses of the finite-increment theorem, then

∣∣f (x + h)− f (x)−Ah∣∣≤ sup
ξ∈]x,x+h[

∥
∥f ′(ξ)−A∥∥|h|.

Proof For the proof it suffices to apply the finite-increment theorem to the mapping

t �→ F(t)= f (x + th)−Ath
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of the unit interval [0,1] ⊂R into Y , since

F(1)− F(0) = f (x + h)− f (x)−Ah,
F ′(θ) = f ′(x + θh)h−Ah for 0< θ < 1,

∥∥F ′(θ)
∥∥ ≤ ∥∥f ′(x + θh)−A∥∥|h|,

sup
0<θ<1

∥∥F ′(θ)
∥∥ ≤ sup

ξ∈]x,x+h[
∥∥f ′(ξ)−A∥∥|h|.

�

Remark As can be seen from the proof of Theorem 1, in its hypotheses there is no
need to require that f be differentiable as a mapping f : U→ Y ; it suffices that its
restriction to the closed interval [x, x + h] be a continuous mapping of that interval
and differentiable at the points of the open interval ]x, x + h[.

This remark applies equally to the corollary of the finite-increment theorem just
proved.

10.4.2 Some Applications of the Finite-Increment Theorem

a. Continuously Differentiable Mappings

Let

f :U→ Y (10.50)

be a mapping of an open subset U of a normed vector space X into a normed
space Y . If f is differentiable at each point x ∈ U , then, assigning to the point x
the mapping f ′(x) ∈ L(X;Y) tangent to f at that point, we obtain the derivative
mapping

f ′ :U→ L(X;Y). (10.51)

Since the space L(X;Y) of continuous linear transformations from X into Y is,
as we know, a normed space (with the transformation norm), it makes sense to speak
of the continuity of the mapping (10.51).

Definition When the derivative mapping (10.51) is continuous in U , the mapping
(10.50), in complete agreement with our earlier terminology, will be said to be con-
tinuously differentiable.

As before, the set of continuously differentiable mappings of type (10.50) will be
denoted by the symbol C(1)(U,Y ), or more briefly, C(1)(U), if it is clear from the
context what the range of the mapping is.

Thus, by definition

f ∈ C(1)(U,Y )⇔ f ′ ∈C(U,L(X;Y)).
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Let us see what continuous differentiability of a mapping means in different par-
ticular cases.

Example 1 Consider the familiar situation when X = Y =R, and hence f :U→R

is a real-valued function of a real argument. Since any linear mapping A ∈ L(R;R)
reduces to multiplication by some number a ∈ R, that is, Ah = ah and obviously
‖A‖ = |a|, we find that f ′(x)h= a(x)h, where a(x) is the numerical derivative of
the function f at the point x.

Next, since
(
f ′(x + δ)− f ′(x))h= f ′(x + δ)h− f ′(x)h=

= a(x + δ)h− a(x)h= (a(x + δ)− a(x))h, (10.52)

it follows that
∥
∥f ′(x + δ)− f ′(x)∥∥= ∣∣a(x + δ)− a(x)∣∣

and hence in this case continuous differentiability of the mapping f is equivalent to
the concept of a continuously differentiable numerical function (of classC(1)(U,R))
studied earlier.

Example 2 This time suppose that X is the direct product X1× · · ·×Xn of normed
spaces. In this case the mapping (10.50) is a function f (x) = f (x1, . . . , xm) of m
variables xi ∈Xi , i = 1, . . . ,m, with values in Y .

If the mapping f is differentiable at x ∈ U , its differential df (x) at that point is
an element of the space L(X1 × · · · ×Xm =X;Y).

The action of df (x) on a vector h = (h1, . . . , hm), by formula (10.45), can be
represented as

df (x)h= ∂1f (x)h1 + · · · + ∂mf (x)hm,
where ∂if (x) :Xi→ Y , i = 1, . . . ,m, are the partial derivatives of the mapping f
at the point x under consideration.

Next,

(
df (x + δ)− df (x)

)
h=

m∑

i=1

(
∂if (x + δ)− ∂if (x)

)
hi. (10.53)

But by the properties of the standard norm in the direct product of normed spaces
(see Example 6 in Sect. 10.1.2) and the definition of the norm of a transformation,
we find that
∥∥∂if (x + δ)− ∂if (x)

∥∥
L(Xi ;Y) ≤

∥∥df (x + δ)− df (x)
∥∥
L(X;Y) ≤

≤
m∑

i=1

∥
∥∂if (x + δ)− ∂if (x)

∥∥
L(Xi ;Y). (10.54)
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Thus in this case the differentiable mapping (10.50) is continuously differentiable
in U if and only if all its partial derivatives are continuous in U .

In particular, if X = R
m and Y = R, we again obtain the familiar concept of

a continuously differentiable numerical function of m real variables (a function of
class C(1)(U,R), where U ⊂R

m).

Remark It is worth noting that in writing (10.52) and (10.53) we have made es-
sential use of the canonical identification TXx ∼ X, which makes it possible to
compare or identify vectors lying in different tangent spaces.

We shall now show that continuously differentiable mappings satisfy a Lipschitz
condition.

Proposition 1 If K is a convex compact set in a normed space X and f ∈
C(1)(K,Y ), where Y is also a normed space, then the mapping f : K → Y sat-
isfies a Lipschitz condition on K , that is, there exists a constantM > 0 such that the
inequality

∣∣f (x2)− f (x1)
∣∣≤M|x2 − x1| (10.55)

holds for any points x1, x2 ∈K .

Proof By hypothesis f ′ : K → L(X;Y) is a continuous mapping of the compact
set K into the metric space L(X;Y). Since the norm is a continuous function on a
normed space with its natural metric, the mapping x �→ ‖f ′(x)‖, being the compo-
sition of continuous functions, is itself a continuous mapping of the compact set K
into R. But such a mapping is necessarily bounded. Let M be a constant such that
‖f ′(x)‖ ≤M at any point x ∈K . Since K is convex, for any two points x1 ∈K and
x2 ∈K the entire interval [x1, x2] is contained in K . Applying the finite-increment
theorem to that interval, we immediately obtain relation (10.55). �

Proposition 2 Under the hypotheses of Proposition 1 there exists a non-negative
function ω(δ) tending to 0 as δ→+0 such that

∣∣f (x + h)− f (x)− f ′(x)h∣∣≤ ω(δ)|h| (10.56)

at any point x ∈K for |h|< δ if x + h ∈K .

Proof By the corollary to the finite-increment theorem we can write
∣
∣f (x + h)− f (x)− f ′(x)h∣∣≤ sup

0<θ<1

∥∥f ′(x + θh)− f ′(x)∥∥|h|

and, setting

ω(δ)= sup
x1,x2∈K|x1−x2|<δ

∥
∥f ′(x2)− f ′(x1)

∥∥,
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we obtain (10.56) in view of the uniform continuity of the function x �→ f ′(x),
which is continuous on the compact set K . �

b. A Sufficient Condition for Differentiability

We shall now show that by using the general finite-increment theorem, we can obtain
a general sufficient condition for differentiability of a mapping in terms of its partial
derivatives.

Theorem 2 Let U be a neighborhood of the point x in a normed space X =X1 ×
· · · ×Xm, which is the direct product of the normed spaces X1 × · · · ×Xm, and let
f : U→ Y be a mapping of U into a normed space Y . If the mapping f has partial
derivatives with respect to all its variables in U , then it is differentiable at the point
x if the partial derivatives are all continuous at that point.

Proof To simplify the writing we carry out the proof for the case m= 2. We verify
immediately that the mapping

Lh= ∂1f (x)h1 + ∂2f (x)h2,

which is linear in h= (h1, h2), is the total differential of f at x.
Making the elementary transformations

f (x + h)− f (x)−Lh=
= f (x1 + h1, x2 + h2)− f (x1, x2)− ∂1f (x)h1 − ∂2f (x)h2 =
= f (x1 + h1, x2 + h2)− f (x1, x2 + h2)− ∂1f (x1, x2)h1 +
+ f (x1, x2 + h2)− f (x1, x2)− ∂2f (x1, x2)h2,

by the corollary to Theorem 1 we obtain
∣
∣f (x1 + h1, x2 + h2)− f (x1, x2)− ∂1f (x1, x2)h1 − ∂2f (x1, x2)h2

∣
∣≤

≤ sup
0<θ1<1

∥∥∂1f (x1 + θ1h1, x2 + h2)− ∂1f (x1, x2)
∥∥|h1| +

+ sup
0<θ2<1

∥∥∂2f (x1, x2 + θ2h2)− ∂2f (x1, x2)
∥∥|h2|. (10.57)

Since max{|h1|, |h2} ≤ |h|, it follows obviously from the continuity of the par-
tial derivatives ∂1f and ∂2f at the point x = (x1, x2) that the right-hand side of
inequality (10.57) is o(h) as h= (h1, h2)→ 0. �

Corollary A mapping f : U → Y of an open subset U of the normed space X =
X1 × · · · ×Xm into a normed space Y is continuously differentiable if and only if
all the partial derivatives of the mapping f are continuous.
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Proof We have shown in Example 2 that when the mapping f : U → Y is differ-
entiable, it is continuously differentiable if and only if its partial derivatives are
continuous.

We now see that if the partial derivatives are continuous, then the mapping f is
automatically differentiable, and hence (by Example 2) also continuously differen-
tiable. �

10.4.3 Problems and Exercises

1. Let f : I→ Y be a continuous mapping of the closed interval I = [0,1] ⊂R into
a normed space Y and g : I→R a continuous real-valued function on I . Show that
if f and g are differentiable in the open interval ]0,1[ and the relation ‖f ′(t)‖ ≤
g′(t) holds at points of this interval, then the inequality |f (1)−f (0)| ≤ g(1)−g(0)
also holds.
2. a) Let f : I→ Y be a continuously differentiable mapping of the closed interval
I = [0,1] ⊂ R into a normed space Y . It defines a smooth path in Y . Define the
length of that path.

b) Recall the geometric meaning of the norm of the tangent mapping and give
an upper bound for the length of the path considered in a).

c) Give a geometric interpretation of the finite-increment theorem.

3. Let f : U→ Y be a continuous mapping of a neighborhood U of the point a in
a normed space X into a normed space Y. Show that if f is differentiable in U\a
and f ′(x) has a limit L ∈ L(X;Y) as x→ a, then the mapping f is differentiable
at a and f ′(a)= L.
4. a) Let U be an open convex subset of a normed space X and f : U → Y a
mapping ofU into a normed space Y. Show that if f ′(x)≡ 0 onU , then the mapping
f is constant.

b) Generalize the assertion of a) to the case of an arbitrary domain U (that is,
when U is an open connected subset of X).

c) The partial derivative ∂f
∂y

of a smooth function f :D→R defined in a domain

D ⊂R
2 of the xy-plane is identically zero. Is it true that f is then independent of y

in this domain? For which domains D is this true?

10.5 Higher-Order Derivatives

10.5.1 Definition of the nth Differential

Let U be an open set in a normed space X and

f :U→ Y (10.58)

a mapping of U into a normed space Y .
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If the mapping (10.58) is differentiable in U , then the derivative of f , given by

f ′ :U→ L(X;Y), (10.59)

is defined in U .
The space L(X;Y) =: Y1 is a normed space relative to which the mapping

(10.59) has the form (10.58), that is, f ′ : U → Y1, and it makes sense to speak
of differentiability for it.

If the mapping (10.59) is differentiable, its derivative

(
f ′
)′ :U→ L(X;Y1)= L

(
X;L(X;Y))

is called the second derivative or second differential of f and denoted f ′′ or f (2).
In general, we adopt the following inductive definition.

Definition 1 The derivative of order n ∈ N or nth differential of the mapping
(10.58) at the point x ∈ U is the mapping tangent to the derivative of f of order
n− 1 at that point.

If the derivative of order k ∈N at the point x ∈U is denoted f (k)(x), Definition 1
means that

f (n)(x) := (f (n−1))′(x). (10.60)

Thus, if f (n)(x) is defined, then

f (n)(x) ∈ L(X;Yn)= L
(
X;L(X;Yn−1)

)=
= · · · = L

(
X;L(X; . . . ;L(X;Y)) . . .).

Consequently, by Proposition 4 of Sect. 10.2, f (n)(x), the differential of order n of
the mapping (10.58) at the point x can be interpreted as an element of the space
L(X, . . . ,X︸ ︷︷ ︸

n factors

;Y) of continuous n-linear transformations.

We note once again that the tangent mapping f ′(x) : TXx→ T Yf (x) is a map-
ping of tangent spaces, each of which, because of the affine or vector-space structure
of the spaces being mapped, we have identified with the corresponding vector space
and said on that basis that f ′(x) ∈ L(X;Y). It is this device of regarding elements
f ′(x1) ∈ L(T Xx1;T Yf (x1)) and f ′(x2) ∈ L(T Xx2 , T Yf (x2)), which lie in different
spaces, as vectors in the same space L(X;Y) that provides the basis for defining
higher-order differentials of mappings of normed vector spaces. In the case of an
affine or vector space there is a natural connection between vectors in the differ-
ent tangent spaces corresponding to different points of the original space. In the
final analysis, it is this connection that makes it possible to speak of the continuous
differentiability of both the mapping (10.58) and its higher-order differentials.
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10.5.2 Derivative with Respect to a Vector and Computation
of the Values of the nth Differential

When we are making the abstract Definition 1 specific, the concept of the derivative
with respect to a vector may be used to advantage. This concept is introduced for
the general mapping (10.58) just as was done earlier in the case X =R

m, Y =R.

Definition 2 If X and Y are normed vector spaces over the field R, the derivative
of the mapping (10.58) with respect to the vector h ∈ TXx ∼X at the point x ∈ U
is defined as the limit

Dhf (x) := lim
R�t→0

f (x + th)− f (x)
t

,

provided this limit exists.

It can be verified immediately that

Dλhf (x)= λDhf (x) (10.61)

and that if the mapping f is differentiable at the point x ∈ U , it has a derivative at
that point with respect to every vector; moreover

Dhf (x)= f ′(x)h, (10.62)

and, by the linearity of the tangent mapping,

Dλ1h1+λ2h2f (x)= λ1Dh1f (x)+ λ2Dh2f (x). (10.63)

It can also be seen from Definition 2 that the value Dhf (x) of the derivative of
the mapping f : U → Y with respect to a vector is an element of the vector space
T Yf (x) ∼ Y , and that if L is a continuous linear transformation from Y to a normed
space Z, then

Dh(L ◦ f )(x)= L ◦Dhf (x). (10.64)

We shall now try to give an interpretation to the value f (n)(h1, . . . , hn) of the
nth differential of the mapping f at the point x on the set (h1, . . . , hn) of vectors
hi ∈ TXx ∼X, i = 1, . . . , n.

We begin with n= 1. In this case, by formula (10.62)

f ′(x)(h)= f ′(x)h=Dhf (x).
We now consider the case n= 2. Since f (2)(x) ∈ L(X;L(X;Y)), fixing a vector

h1 ∈X, we assign a linear transformation (f (2)(x)h1) ∈ L(X;Y) to it by the rule

h1 �→ f (2)(x)h1.
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Then, after computing the value of this operator at the vector h2 ∈X, we obtain an
element of Y :

f (2)(x)(h1, h2) :=
(
f (2)(x)h1

)
h2 ∈ Y. (10.65)

But

f (2)(x)h= (f ′)′(x)h=Dhf ′(x),
and therefore

f (2)(x)(h1, h2)=
(
Dh1f

′(x)
)
h2. (10.66)

If A ∈ L(X;Y) and h ∈ X, this pairing with Ah can be regarded not only as a
mapping h �→Ah from X into Y , but as a mapping A �→Ah from L(X;Y) into Y ,
the latter mapping being linear, just like the former.

Comparing relations (10.62), (10.64), and (10.66), we can write
(
Dh1f

′(x)
)
h2 =Dh1

(
f ′(x)h2

)=Dh1Dh2f (x).

Thus we finally obtain

f (2)(x)(h1, h2)=Dh1Dh2f (x).

Similarly, one can show that the relation

f (n)(x)(h1, . . . , hn) :=
(
. . .
(
f (n)(x)h1

)
. . . hn

)=Dh1Dh2 · · ·Dhnf (x) (10.67)

holds for any n ∈ N, the differentiation with respect to the vectors being carried
out sequentially, starting with differentiation with respect to hn and ending with
differentiation with respect to h1.

10.5.3 Symmetry of the Higher-Order Differentials

In connection with formula (10.67), which is perfectly adequate for computation as
it now stands, the question naturally arises: To what extent does the result of the
computation depend on the order of differentiation?

Proposition If the form f (n)(x) is defined at the point x for the mapping (10.58), it
is symmetric with respect to any pair of its arguments.

Proof The main element in the proof is to verify that the proposition holds in the
case n= 2.

Let h1 and h2 be two arbitrary fixed vectors in the space TXx ∼ X. Since U is
open in X, the following auxiliary function of t is defined for all values of t ∈ R
sufficiently close to zero:

Ft(h1, h2)= f
(
x + t (h1 + h2)

)− f (x + th1)− f (x + th2)+ f (x).
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We consider also the following auxiliary function:

g(v)= f (x + t (h1 + v)
)− f (x + tv),

which is certainly defined for vectors v that are collinear with the vector h2 and such
that |v| ≤ |h2|.

We observe that

Ft (h1, h2)= g(h2)− g(0).
We further observe that, since the function f : U → Y has a second differential

f ′′(x) at the point x ∈U , it must be differentiable at least in some neighborhood of
x. We shall assume that the parameter t is sufficiently small that the arguments on
the right-hand side of the equality that defines Ft(h1, h2) lie in that neighborhood.

We now make use of these observations and the corollary of the mean-value
theorem in the following computations:

∣
∣Ft(h1, h2)− t2f ′′(x)(h1, h2)

∣
∣=

= ∣∣g(h2)− g(0)− t2f ′′(x)(h1, h2)
∣∣≤

≤ sup
0<θ2<1

∥∥g′(θ2h2)− t2f ′′(x)h1
∥∥|h2| =

= sup
0<θ2<1

∥∥(f ′
(
x + t (h1 + θ2h2)

)− f ′(x + tθ2h2)
)
t − t2f ′′(x)h1

∥∥|h2|.

By definition of the derivative mapping we can write that

f ′
(
x + t (h1 + θ2h2)

)= f ′(x)+ f ′′(x)(t (h1 + θ2h2)
)+ o(t)

and

f ′(x + tθ2h2)= f ′(x)+ f ′′(x)(tθ2h2)+ o(t)
as t→ 0. Taking this relation into account, one can continue the preceding compu-
tation, finding after cancellation that

∣∣Ft(h1, h2)− t2f ′′(x)(h1, h2)
∣∣= o(t2)

as t→ 0. But this equality means that

f ′′(x)(h2, h2)= lim
t→0

Ft(h1, h2)

t2
.

Since it is obvious that Ft (h1, h2)= Ft(h2, h1), it follows from this relation that
f ′′(x)(h1, h2)= f ′′(x)(h2, h1).

One can now complete the proof of the proposition by induction, repeating ver-
batim what was said in the proof that the values of the mixed partial derivatives are
independent of the order of differentiation. �
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Thus we have shown that the nth differential of the mapping (10.58) at the point
x ∈U is a symmetric n-linear transformation

f (n)(x) ∈ L(T Xx, . . . , T Xx;T Yf (x))∼ L(X, . . . ,X;Y)
whose value on the set (h1, . . . , hn) of vectors hi ∈ TXx =X, i = 1, . . . , n, can be
computed by formula (10.67).

If X is a finite-dimensional space having a basis {e1, . . . , ek} and hj = hij ei is
the expansion of the vector hj , j = 1, . . . , n, with respect to that basis, then by the
multilinearity of f (n)(x) we can write

f (n)(x)(h1, . . . , hn)= f (n)(x)
(
h
i1
1 ei1, . . . , h

in
n ein
)=

= f (n)(x)(ei1 , . . . , ein)hi11 · . . . · hinn .
Using our earlier notation ∂i1···inf (x) for De1 · · ·Denf (x), we find finally that

f (n)(x)(h1, . . . , hn)= ∂i1···inf (x)hi11 · · ·hinn ,
where as usual summation extends over the repeated indices on the right-hand side
within their range of variation, that is, from 1 to k.

Let us agree to use the following abbreviation:

f (n)(x)(h, . . . , h)=: f (n)(x)hn. (10.68)

In particular, if we are discussing a finite-dimensional spaceX and h= hiei , then

f (n)(x)hn = ∂i1···inf (x)hi1 · . . . · hin,
which is already very familiar to us from the theory of numerical functions of several
variables.

10.5.4 Some Remarks

In connection with the notation (10.68) consider the following example, which is
quite useful and will be used in the next section.

Example Let A ∈ L(X1, . . . ,Xn;Y), that is, y = A(x1, . . . , xn) is a continuous n-
linear transformation from the product of the normed vector spaces X1, . . . ,Xn into
the normed vector space Y .

It was shown in Example 5 of Sect. 10.3 that A is a differentiable mapping A :
X1 × · · · ×Xn→ Y and

A′(x1, . . . , xn)(h1, . . . , hn)=A(h1, x2, . . . , xn)+ · · · +A(x1, . . . , xn−1, hn).
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Thus, if X1 = · · · =Xn =X and A is symmetric, then

A′(x, . . . , x)(h, . . . , h)= nA(x, . . . , x︸ ︷︷ ︸
n−1

, h)=: (nAxn−1)h.

Hence, if we consider the function F :X→ Y defined by the condition

X � x �→ F(x)=A(x, . . . , x)=:Axn,
it turns out to be differentiable and

F ′(x)h= (nAxn−1)h,

that is, in this case

F ′(x)= nAxn−1,

where Axn−1 :=A(x, . . . , x︸ ︷︷ ︸
n−1

, ·).

In particular, if the mapping (10.58) has a differential f (n)(x) at a point x ∈ U ,
then the function F(h)= f (n)(x)hn is differentiable, and

F ′(h)= nf (n)(x)hn−1. (10.69)

To conclude our discussion of the concept of an nth-order derivative, it is useful
to add the remark that if the original function (10.58) is defined on a set U in a
space X that is the direct product of normed spaces X1, . . . ,Xm, one can speak
of the first-order partial derivatives ∂1f (x), . . . , ∂mf (x) of f with respect to the
variables xi ∈Xi , i = 1, . . . ,m, and the higher-order partial derivatives ∂i1···inf (x).

On the basis of Theorem 2 of Sect. 10.4, we obtain by induction in this case that
if all the partial derivatives ∂i1···inf (x) of a mapping f : U→ Y are continuous at
a point x ∈ X =X1 × · · · ×Xm, then the mapping f has an nth order differential
f (n)(x) at that point.

If we also take account of the result of Example 2 from the same section,
we can conclude that the mapping U � x �→ f (n)(x) ∈ L(X, . . . ,X︸ ︷︷ ︸

n factors

;Y) is contin-

uous if and only if all the nth-order partial derivatives U � x �→ ∂i1···inf (x) ∈
L(Xi1, . . . ,Xin;Y) of the original mapping f : U → Y are continuous (or, what
is the same, the partial derivatives of all orders up to n inclusive are continuous).

The class of mappings (10.58) having continuous derivatives up to order n in-
clusive in U is denoted C(n)(U,Y ), or, where no confusion can arise, by the briefer
symbol C(n)(U) or even C(n).

In particular, if X =X1× · · · ×Xn, the conclusion reached above can be written
in abbreviated form as

(
f ∈C(n))⇐⇒ (∂i1···inf ∈C, i1, . . . , in = 1, . . . ,m),

where C, as always, denotes the corresponding set of continuous functions.
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10.5.5 Problems and Exercises

1. Carry out the proof of Eq. (10.64) in full.
2. Give the details at the end of the proof that f (n)(x) is symmetric.
3. a) Show that if the functions Dh1Dh2f and Dh2Dh1f are defined and contin-
uous at a point x ∈ U for a pair of vectors h1, h2 and the mapping (10.58) in the
domain U , then the equality Dh1Dh2f (x)=Dh2Dh1f (x) holds.

b) Show using the example of a numerical function f (x, y) that, although the

continuity of the mixed partial derivatives ∂2f
∂x∂y

and ∂2f
∂y∂x

implies by a) that they are
equal at this point, it does not in general imply that the second differential of the
function exists at the point.

c) Show that, although the existence of f (2)(x, y), guarantees that the mixed

partial derivatives ∂2f
∂x∂y

and ∂2f
∂y∂x

exist and are equal, it does not in general guarantee
that they are continuous at that point.

4. Let A ∈ L(X, . . . ,X;Y) where A is a symmetric n-linear transformation. Find
the successive derivatives of the function x �→Axn :=A(x, . . . , x) up to order n+1
inclusive.

10.6 Taylor’s Formula and the Study of Extrema

10.6.1 Taylor’s Formula for Mappings

Theorem 1 If a mapping f : U → Y from a neighborhood U = U(x) of a point
x in a normed space X into a normed space Y has derivatives up to order n − 1
inclusive in U and has an nth order derivative f (n)(x) at the point x, then

f (x + h)= f (x)+ f ′(x)h+ · · · + 1

n!f
(n)(x)hn + o(|h|n) (10.70)

as h→ 0.

Equality (10.70) is one of the varieties of Taylor’s formula, written here for rather
general classes of mappings.

Proof We prove Taylor’s formula by induction.
For n= 1 it is true by definition of f ′(x).
Assume formula (10.70) is true for some (n− 1) ∈N.
Then by the mean-value theorem, formula (10.69) of Sect. 10.5, and the induction

hypothesis, we obtain
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∣∣∣∣f (x + h)−
(
f (x)+ f ′(x)h+ · · · + 1

n!f
(n)(x)hn

)∣∣∣∣≤

≤ sup
0<θ<1

∥∥∥∥f
′(x + θh)−

(
f ′(x)+ f ′′(x)(θh)+

+ · · · + 1

(n− 1)!f
(n)(x)(θh)n−1

)∥∥∥∥|h| = o
(|θh|n−1)|h| = o(|h|n)

as h→ 0. �

We shall not take the time here to discuss other versions of Taylor’s formula,
which are sometimes quite useful. They were discussed earlier in detail for numeri-
cal functions. At this point we leave it to the reader to derive them (see, for example,
Problem 1 below).

10.6.2 Methods of Studying Interior Extrema

Using Taylor’s formula, we shall exhibit necessary conditions and also sufficient
conditions for an interior local extremum of real-valued functions defined on an
open subset of a normed space. As we shall see, these conditions are analogous to
the differential conditions already known to us for an extremum of a real-valued
function of a real variable.

Theorem 2 Let f :U→R be a real-valued function defined on an open set U in a
normed space X and having continuous derivatives up to order k − 1≥ 1 inclusive
in a neighborhood of a point x ∈U and a derivative f (k)(x) of order k at the point
x itself.

If f ′(x)= 0, . . . , f (k−1)(x)= 0 and f (k)(x) �= 0, then for x to be an extremum
of the function f it is:

necessary that k be even and that the form f (k)(x)hk be semidefinite,4 and
sufficient that the values of the form f (k)(x)hk on the unit sphere |h| = 1 be
bounded away from zero; moreover, x is a local minimum if the inequalities

f (k)(x)hk ≥ δ > 0

hold on that sphere, and a local maximum if

f (k)(x)hk ≤ δ < 0.

4This means that the form f (k)(x)hk cannot take on values of opposite signs, although it may
vanish for some values h �= 0. The equality f (i)(x) = 0, as usual, is understood to mean that
f (i)(x)h= 0 for every vector h.
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Proof For the proof we consider the Taylor expansion (10.70) of f in a neighbor-
hood of x. The assumptions enable us to write

f (x + h)− f (x)= 1

k!f
(k)(x)hk + α(h)|h|k,

where α(h) is a real-valued function, and α(h)→ 0 as h→ 0.
We first prove the necessary conditions.
Since f (k)(x) �= 0, there exists a vector h0 �= 0 on which f (k)(x)hk0 �= 0. Then

for values of the real parameter t sufficiently close to zero,

f (x + th0)− f (x) = 1

k!f
(k)(x)(th0)

k + α(th0)|th0|k =

=
(

1

k!f
(k)(x)hk0 ± α(th0)|h0|k

)
tk

and the expression in the outer parentheses has the same sign as f (k)(x)hk0.
For x to be an extremum it is necessary for the left-hand side (and hence also the

right-hand side) of this last equality to be of constant sign when t changes sign. But
this is possible only if k is even.

This reasoning shows that if x is an extremum, then the sign of the difference
f (x + th0)− f (x) is the same as that of f (k)(x)hk0 for sufficiently small t ; hence
in that case there cannot be two vectors h0, h1 at which the form f (k)(x) assumes
values with opposite signs.

We now turn to the proof of the sufficiency conditions. For definiteness we con-
sider the case when f (k)(x)hk ≥ δ > 0 for |h| = 1. Then

f (x + h)− f (x) = 1

k!f
(k)(x)hk + α(h)|h|k =

=
(

1

k!f
(k)(x)

(
h

|h|
)k
+ α(h)

)
|h|k ≥

(
1

k!δ+ α(h)
)
|h|k,

and, since α(h)→ 0 as h→ 0, the last term in this inequality is positive for all
vectors h �= 0 sufficiently close to zero. Thus, for all such vectors h,

f (x + h)− f (x) > 0,

that is, x is a strict local minimum.
The sufficient condition for a strict local maximum is verified similarly. �

Remark 1 If the spaceX is finite-dimensional, the unit sphere S(x,1) with center at
x ∈X, being a closed bounded subset of X, is compact. Then the continuous func-
tion f (k)(x)hk = ∂i1...ik f (x)hi1 · . . . · hik (a k-form) has both a maximal and a min-
imal value on S(x,1). If these values are of opposite sign, then f does not have an
extremum at x. If they are both of the same sign, then, as was shown in Theorem 2,
there is an extremum. In the latter case, a sufficient condition for an extremum can
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obviously be stated as the equivalent requirement that the form f (k)(x)hk be either
positive- or negative-definite.

It was this form of the condition that we encountered in studying real-valued
functions on R

n.

Remark 2 As we have seen in the example of functions f : Rn → R, the semi-
definiteness of the form f (k)hk exhibited in the necessary conditions for an ex-
tremum is not a sufficient criterion for an extremum.

Remark 3 In practice, when studying extrema of differentiable functions one nor-
mally uses only the first or second differentials. If the uniqueness and type of ex-
tremum are obvious from the meaning of the problem being studied, one can restrict
attention to the first differential when seeking an extremum, simply finding the point
x where f ′(x)= 0.

10.6.3 Some Examples

Example 1 Let L ∈ C(1)(R3,R) and f ∈ C(1)([a, b],R). In other words,
(u1, u2, u3) �→ L(u1, u2, u3) is a continuously differentiable real-valued function
defined in R

3 and x �→ f (x) a smooth real-valued function defined on the closed
interval [a, b] ⊂R.

Consider the function

F : C(1)([a, b],R)→R (10.71)

defined by the relation

C(1)
([a, b],R) � f �→ F(f )=

∫ b

a

L
(
x,f (x), f ′(x)

)
dx ∈R. (10.72)

Thus, (10.71) is a real-valued functional defined on the set of functions f ∈
C(1)([a, b],R).

The basic variational principles connected with motion are known in physics
and mechanics. According to these principles, the actual motions are distinguished
among all the conceivable motions in that they proceed along trajectories along
which certain functionals have an extremum. Questions connected with the extrema
of functionals are central in optimal control theory. Thus, finding and studying the
extrema of functionals is a problem of intrinsic importance, and the theory associ-
ated with it is the subject of a large area of analysis – the calculus of variations.
We have already done a few things to make the transition from the analysis of the
extrema of numerical functions to the problem of finding and studying extrema of
functionals seem natural to the reader. However, we shall not go deeply into the
special problems of variational calculus, but rather use the example of the func-
tional (10.72) to illustrate only the general ideas of differentiation and study of local
extrema considered above.
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We shall show that the functional (10.72) is a differentiable mapping and find its
differential.

We remark that the function (10.72) can be regarded as the composition of the
mappings

F1 :C(1)
([a, b],R)→ C

([a, b],R) (10.73)

defined by the formula

F1(f )(x)= L
(
x,f (x), f ′(x)

)
(10.74)

followed by the mapping

C
([a, b],R) � g �→ F2(g)=

∫ b

a

g(x)dx ∈R. (10.75)

By properties of the integral, the mapping F2 is obviously linear and continuous,
so that its differentiability is clear.

We shall show that the mapping F1 is also differentiable, and that

F ′1(f )h(x)= ∂2L
(
x,f (x), f ′(x)

)
h(x)+ ∂3L

(
x,f (x), f ′(x)

)
h′(x) (10.76)

for h ∈ C(1)([a, b],R).
Indeed, by the corollary to the mean-value theorem, we can write in the present

case
∣∣∣∣∣
L
(
u1 +Δ1, u2 +Δ2, u3 +Δ3)−L(u1, u2, u3)−

3∑

i=1

∂iL
(
u1, u2, u3)Δi

∣∣∣∣∣
≤

≤ sup
0<θ<1

∥∥(∂1L(u+ θΔ)− ∂1L(u), ∂2L(u+ θΔ)− ∂2L(u),

∂3L(u+ θΔ)− ∂3L(u)
)∥∥ · |Δ| ≤

≤ 3 max
0≤θ≤1
i=1,2,3

∣∣∂iL(u+ θu)− ∂iL(u)
∣∣ · max
i=1,2,3

∣∣Δi
∣∣, (10.77)

where u= (u1, u2, u3) and Δ= (Δ1,Δ2,Δ3).
If we now recall that the norm |f |C(1) of the function f in C(1)([a, b],R) is

max{|f |C, |f ′|C} (where |f |C is the maximum absolute value of the function on the
closed interval [a, b]), then, setting u1 = x, u2 = f (x), u3 = f ′(x), Δ1 = 0, Δ2 =
h(x), and Δ3 = h′(x), we obtain from inequality (10.77), taking account of the
uniform continuity of the functions ∂iL(u1, u2, u3), i = 1,2,3, on bounded subsets
of R3, that

max
a≤x≤b

∣∣L
(
x,f (x)+ h(x), f ′(x)+ h′(x))−L(x,f (x), f ′(x))−

− ∂2L
(
x,f (x), f ′(x)

)
h(x)− ∂3L

(
X,f (x)f ′(x)

)
h′(x)

∣∣=
= o(|h|C(1) ) as |h|C(1)→ 0.
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But this means that Eq. (10.76) holds.
By the chain rule for differentiating a composite function, we now conclude that

the functional (10.72) is indeed differentiable, and

F ′(f )h=
∫ b

a

((
∂2L
(
x,f (x)f ′(x)

)
h(x)+ ∂3L

(
x,f (x), f ′(x)

))
h′(x)

)
dx.

(10.78)
We often consider the restriction of the functional (10.72) to the affine space

consisting of the functions f ∈ C(1)([a, b],R) that assume fixed values f (a)= A,
f (b)= B at the endpoints of the closed interval [a, b]. In this case, the functions h
in the tangent space T C(1)f must have the value zero at the endpoints of the closed
interval [a, b]. Taking this fact into account, we may integrate by parts in (10.78)
and bring it into the form

F ′(f )h=
∫ b

a

(
∂2L
(
x,f (x), f ′(x)

)− d

dx
∂3L
(
x,f (x)f ′(x)

)
)
h(x)dx, (10.79)

of course under the assumption that L and f belong to the corresponding class C(2).
In particular, if f is an extremum (extremal) of such a functional, then by

Theorem 2 we have F ′(f )h = 0 for every function h ∈ C(1)([a, b],R) such that
h(a)= h(b)= 0. From this and relation (10.79) one can easily conclude (see Prob-
lem 3 below) that the function f must satisfy the equation

∂2L
(
x,f (x), f ′(x)

)− d

dx
∂3L
(
x,f (x), f ′(x)

)= 0. (10.80)

This is a frequently-encountered form of the equation known in the calculus of
variations as the Euler–Lagrange equation.

Let us now consider some specific examples.

Example 2 (The shortest-path problem) Among all the curves in a plane joining two
fixed points, find the curve that has minimal length.

The answer in this case is obvious, and it rather serves as a check on the formal
computations we will be doing later.

We shall assume that a fixed Cartesian coordinate system has been chosen in
the plane, in which the two points are, for example, (0,0) and (1,0). We confine
ourselves to just the curves that are the graphs of functions f ∈ C(1)([0,1],R) as-
suming the value zero at both ends of the closed interval [0,1]. The length of such
a curve

F(f )=
∫ 1

0

√
1+ (f ′)2(x)dx (10.81)

depends on the function f and is a functional of the type considered in Example 1.
In this case the function L has the form

L
(
u1, u2, u3)=

√
1+ (u3

)2
,



10.6 Taylor’s Formula and the Study of Extrema 93

and therefore the necessary condition (10.80) for an extremal here reduces to the
equation

d

dx

(
f ′(x)

√
1+ (f ′)2(x)

)
= 0,

from which it follows that

f ′(x)
√

1+ (f ′)2(x) ≡ const (10.82)

on the closed interval [0,1].
Since the function u√

1+u2
is not constant on any interval, Eq. (10.82) is possible

only if f ′(x)≡ const on [a, b]. Thus a smooth extremal of this problem must be a
linear function whose graph passes through the points (0,0) and (1,0). It follows
that f (x)≡ 0, and we arrive at the closed interval of the line joining the two given
points.

Example 3 (The brachistochrone problem) The classical brachistochrone problem,
posed by Johann Bernoulli I in 1696, was to find the shape of a track along which
a point mass would pass from a prescribed point P0 to another fixed point P1 at a
lower level under the action of gravity in the shortest time.

We neglect friction, of course. In addition, we shall assume that the trivial case
in which both points lie on the same vertical line is excluded.

In the vertical plane passing through the points P0 and P1 we introduce a rect-
angular coordinate system such that P0 is at the origin, the x-axis is directed ver-
tically downward, and the point P1 has positive coordinates (x1, y1). We shall find
the shape of the track among the graphs of smooth functions defined on the closed
interval [0, x1] and satisfying the condition f (0) = 0, f (x1) = y1. At the moment
we shall not take time to discuss this by no means uncontroversial assumption (see
Problem 4 below).

If the particle began its descent from the point P0 with zero velocity, the law of
variation of its velocity in these coordinates can be written as

v =√2gx. (10.83)

Recalling that the differential of the arc length is computed by the formula

ds =
√
(dx)2 + (dy)2 =

√
1+ (f ′)2(x)dx, (10.84)

we find the time of descent

F(f )= 1√
2g

∫ x1

0

√
1+ (f ′)2(x)

x
dx (10.85)

along the trajectory defined by the graph of the function y = f (x) on the closed
interval [0, x1].
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For the functional (10.85)

L
(
u1, u2, u3)=

√
1+ (u3)2

u1
,

and therefore the condition (10.80) for an extremum reduces in this case to the
equation

d

dx

(
f ′(x)

√
x(1+ (f ′)2(x)

)
= 0,

from which it follows that

f ′(x)
√

1+ (f ′)2(x) = c
√
x, (10.86)

where c is a nonzero constant, since the points are not both on the same vertical line.
Taking account of (10.84), we can rewrite (10.86) in the form

dy

ds
= c√x. (10.87)

However, from the geometric point of view

dx

ds
= cosϕ,

dy

ds
= sinϕ, (10.88)

where ϕ is the angle between the tangent to the trajectory and the positive x-axis.
By comparing Eq. (10.87) with the second equation in (10.88), we find

x = 1

c2
sin2 ϕ. (10.89)

But it follows from (10.88) and (10.89) that

dy

dϕ
= dy

dx
· dx

dϕ
= tanϕ

dx

dϕ
= tanϕ

d

dϕ

(
sin2 ϕ

c2

)
= 2

sin2 ϕ

c2
,

from which we find

y = 2

c2
(2ϕ − sin 2ϕ)+ b. (10.90)

Setting 2/c2 =: a and 2ϕ =: t , we write relations (10.89) and (10.90) as

x = a(1− cos t),

y = a(t − sin t)+ b. (10.91)

Since a �= 0, it follows that x = 0 only for t = 2kπ , k ∈ Z. It follows from the
form of the function (10.91) that we may assume without loss of generality that the
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parameter value t = 0 corresponds to the point P0 = (0,0). In this case Eq. (10.90)
implies b= 0, and we arrive at the simpler form

x = a(1− cos t),

y = a(t − sin t)
(10.92)

for the parametric definition of this curve.
Thus the brachistochrone is a cycloid having a cusp at the initial point P0 where

the tangent is vertical. The constant a, which is a scaling coefficient, must be chosen
so that the curve (10.92) also passes through the point P1. Such a choice, as one can
see by sketching the curve (10.92), is by no means always unique, and this shows
that the necessary condition (10.80) for an extremum is in general not sufficient.
However, from physical considerations it is clear which of the possible values of
the parameter a should be preferred (and this, of course, can be confirmed by direct
computation).

10.6.4 Problems and Exercises

1. Let f :U→ Y be a mapping of classC(n)(U ;Y) from an open setU in a normed
space X into a normed space Y . Suppose the closed interval [x, x + h] is entirely
contained in U , that f has a differential of order (n+ 1) at the points of the open
interval ]x, x + h[, and that ‖f (n+1)(ξ)‖ ≤M at every point ξ ∈ ]x, x + h[.

a) Show that the function

g(t)= f (x + th)−
(
f (x)+ f ′(x)(th)+ · · · + 1

n!f
(n)(x)(th)n

)

is defined on the closed interval [0,1] ⊂ R and differentiable on the open interval
]0,1[, and that the estimate

∥∥g′(t)
∥∥≤ 1

n!M|th|
n|h|

holds for every t ∈ ]0,1[.
b) Show that |g(1)− g(0)| ≤ 1

(n+1)!M|h|n+1.
c) Prove the following version of Taylor’s formula:
∣∣∣
∣f (x + h)−

(
f (x)+ f ′(x)h+ · · · + 1

n!f
(n)(x)hn

)∣∣
∣
∣≤

M

(n+ 1)! |h|
n+1.

d) What can be said about the mapping f : U → Y if it is known that
f (n+1)(x)≡ 0 in U?

2. a) If a symmetric n-linear operator A is such that Axn = 0 for every vector
x ∈ X, then A(x1, . . . , xn) ≡ 0, that is, A equals zero on every set x1, . . . , xn of
vectors in X.
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b) If a mapping f :U→ Y has an nth-order differential f (n)(x) at a point x ∈U
and satisfies the condition

f (x + h)= L0 +L1h+ · · · + 1

n!Lnh
n + α(h)|h|n,

where Li , i = 0,1, . . . , n, are i-linear operators, and α(h)→ 0 as h→ 0, then
Li = f (i)(x), i = 0,1, . . . , n.

c) Show that the existence of the expansion for f given in the preceding problem
does not in general imply the existence of the nth order differential f (n)(x) (for
n > 1) for the function at the point x.

d) Prove that the mapping L(X;Y) � A �→ A−1 ∈ L(X;Y) is infinitely dif-
ferentiable in its domain of definition, and that (A−1)(n)(A)(h1, . . . , hn) =
(−1)nA−1h1A

−1h2 · . . . ·A−1hnA
−1.

3. a) Let ϕ ∈ C([a, b],R). Show that if the condition

∫ b

a

ϕ(x)h(x)dx = 0

holds for every function h ∈ C(2)([a, b],R) such that h(a) = h(b) = 0, then
ϕ(x)≡ 0 on [a, b].

b) Derive the Euler–Lagrange equation (10.80) as a necessary condition for
an extremum of the functional (10.72) restricted to the set of functions f ∈
C(2)([a, b],R) assuming prescribed values at the endpoints of the closed interval
[a, b].
4. Find the shape y = f (x), a ≤ x ≤ b, of a meridian of the surface of revolution
(about the x-axis) having minimal area among all surfaces of revolution having
circles of prescribed radius ra and rb as their sections by the planes x = a and x = b
respectively.
5. a) The function L in the brachistochrone problem does not satisfy the condi-
tions of Example 1, so that we cannot justify a direct application of the results of
Example 1 in this case. Show by repeating the derivation of formula (10.79) with
necessary modifications that this equation and Eq. (10.80) remain valid in this case.

b) Does the equation of the brachistochrone change if the particle starts from the
point P0 with a nonzero initial velocity (the motion is frictionless in a closed pipe)?

c) Show that if P is an arbitrary point of the brachistochrone corresponding
to the pair of points P0, P1, the arc of that brachistochrone from P0 to P is the
brachistochrone of the pair P0, P .

d) The assumption that the brachistochrone corresponding to a pair of points
P0, P1 can be written as y = f (x), is not always justified, as was revealed by the
final formulas (10.92). Show by using the result of c) that the derivation of (10.92)
can be carried out without any such assumption as to the global structure of the
brachistochrone.

e) Locate a point P1 such that the brachistochrone corresponding to the pair of
points P0,P1 in the coordinate system introduced in Example 3 cannot be written
in the form y = f (x).
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f) Locate a point P1 such that the brachistochrone corresponding to the pair
of points P0, P1 in the coordinate system introduced in Example 3 has the form
y = f (x), and f /∈ C(1)([a, b],R). Thus it turns out that in this case the functional
(10.85) we are interested in has a greatest lower bound on the set C(1)([a, b],R),
but not a minimum.

g) Show that the brachistochrone of a pair of points P0, P1 of space is a smooth
curve.

6. Let us measure the distance d(P0,P1) of the point P0 of space from the point P1
in a homogeneous gravitational field by the time required for a point mass to move
from one point to the other along the brachistochrone corresponding to the points.

a) Find the distance from the point P0 to a fixed vertical line, measured in this
sense.

b) Find the asymptotic behavior of the function d(P0,P1) as the point P1 is
raised along a vertical line, approaching the height of the point P0.

c) Determine whether the function d(P0,P1) is a metric.

10.7 The General Implicit Function Theorem

In this concluding section of the chapter we shall illustrate practically all of the
machinery we have developed by studying an implicitly defined function. The reader
already has some idea of the content of the implicit theorem, its place in analysis,
and its applications from Chap. 8. For that reason, we shall not go into detail here
with preliminary explanations of the essence of the matter preceding the formalism.
We note only that this time the implicitly defined function will be constructed by an
entirely different method, one that relies on the contraction mapping principle. This
method is often used in analysis and is quite useful because of its computational
efficiency.

Theorem Let X, Y , and Z be normed spaces (for example, Rm, Rn, and R
k), Y be-

ing a complete space. Let W = {(x, y) ∈X× Y | |x − x0|< α ∧ |y − y0|< β} be a
neighborhood of the point (x0, y0) in the product X× Y of the spaces X and Y .

Suppose that the mapping F :W →Z satisfies the following conditions:

1. F(x0, y0)= 0;
2. F(x, y) is continuous at (x0, y0);
3. F ′(x, y) is defined in W and continuous at (x0, y0);
4. F ′y(x0, y0) is an invertible5 transformation.

Then there exists a neighborhood U = U(x0) of x0 ∈ X, a neighborhood V =
V (y0) of y0 ∈ Y , and a mapping f :U→ V such that:

1′. U × V ⊂W ;

5That is, ∃[F ′y(x0, y0)]−1 ∈ L(Z;Y ).
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2′. (F (x, y)= 0 in U × V )⇔ (y = f (x), where x ∈U and f (x) ∈ V );
3′. y0 = f (x0);
4′. f is continuous at x0.

In essence, this theorem asserts that if the linear mapping F ′y is invertible at a
point (hypothesis 4), then in a neighborhood of this point the relation F(x, y)= 0
is equivalent to the functional dependence y = f (x) (conclusion 2′).

Proof 10 To simplify the notation and obviously with no loss of generality, we may
assume that x0 = 0, y0 = 0, and consequently

W = {(x, y) ∈X× Y | |x|< α ∧ |y|< β}.

20 The main role in the proof is played by the auxiliary family of functions

gx(y) := y −
(
F ′y(0,0)

)−1 · F(x, y), (10.93)

which depend on the parameter x ∈ S, |x|< α, and are defined on the set {y ∈ Y |
|y|< β}.

Let us discuss formula (10.93). We first determine whether the mappings gx are
unambiguously defined and where their values lie.

The mapping F is defined for (x, y) ∈W , and its value F(x, y) at the pair (x, y)
lies in Z. The partial derivative F ′y(x, y) at any point (x, y) ∈W , as we know, is a
continuous linear mapping from Y into Z.

By hypothesis 4 the mapping F ′y(0,0) : Y → Z has a continuous inverse

(F ′y(0,0))−1 : Z→ Y . Hence the composition (F ′y(0,0))−1 · F(x, y) really is de-
fined, and its values lie in Y .

Thus, for any x in the α-neighborhood BX(0, α) := {x ∈X | |x|< α} of the point
0 ∈ X, the function gx is a mapping gx : BY (0, β)→ Y from the β-neighborhood
BY (0, β) := {y ∈ Y | |y|< β} of the point 0 ∈ Y into Y .

The connection of the mappings (10.93) with the problem of solving the equation
F(x, y)= 0 for y obviously consists of the following: the point yx is a fixed point
of gx if and only if F(x, yx)= 0.

Let us state this important observation firmly:

gx(yx)= yx⇐⇒ F(x, yx)= 0. (10.94)

Thus, finding and studying the implicitly defined function y = yx = f (x) reduces
to finding the fixed points of the mappings (10.93) and studying the way in which
they depend on the parameter x.

30 We shall show that there exists a positive number γ <min{α,β} such that for
each x ∈X satisfying the condition |x|< γ < α, the mapping gx : BY (0, γ )→ Y of
the ball BY (0, γ ) := {y ∈ Y | |y|< γ < β} into Y is a contraction with a coefficient
of contraction that does not exceed, say 1/2. Indeed, for each fixed x ∈ BX(0, α)
the mapping gx : BY (0, β)→ Y is differentiable, as follows from hypothesis 3 and
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the theorem on differentiation of a composite mapping. Moreover,

g′x(y)= eY −
(
F ′y(0,0)

)−1 · (F ′y(x, y)
)=

= (F ′y(0,0)
)−1(

F ′y(0,0)− F ′y(x, y)
)
. (10.95)

By the continuity of F ′y(x, y) at the point (0,0) (hypothesis 3), there exists a
neighborhood {(x, y) ∈ X × Y | |x| < γ < α ∧ |y| < γ < β} of (0,0) ∈ X × Y in
which

∥
∥g′x(y)

∥
∥≤ ∥∥(F ′y(0,0)

)−1∥∥ · ∥∥F ′y(0,0)− F ′y(x, y)
∥
∥<

1

2
. (10.96)

Here we are using the relation

(
F ′y(0,0)

)−1 ∈ L(Z;Y), that is,
∥
∥(F ′y(0,0)

)−1∥∥<∞.
Throughout the following we shall assume that |x| < γ and |y| < γ , so that

estimate (10.96) holds.
Thus, at any x ∈ BX(0, γ ) and for any y1, y2 ∈ BY (0, γ ), by the mean-value

theorem, we indeed now find that

∣∣gx(y1)− gx(y2)
∣∣≤ sup

ξ∈]y1,y2[
∥∥g′(ξ)

∥∥|y1 − y2|< 1

2
|y1 − y2|. (10.97)

40. In order to assert the existence of a fixed point yx for the mapping gx , we
need a complete metric space that maps into (but not necessarily onto) itself under
this mapping.

We shall verify that for any ε satisfying 0 < ε < γ there exists δ = δ(ε) in the
open interval ]0, γ [ such that for any x ∈ BX(0, δ) the mapping gx maps the closed
ball By(0, ε) into itself, that is, gx(BY (0, ε))⊂ BY (0, ε).

Indeed, we first choose a number δ ∈ ]0, γ [ depending on ε such that

∣∣gx(0)
∣∣= ∥∥(F ′y(0,0)

)−1 · F(x,0)∥∥≤ ∥∥(F ′y(0,0)
)−1∥∥∣∣F(x,0)

∣∣<
1

2
ε (10.98)

for |x|< δ.
This can be done by hypotheses 1 and 2, which guarantee that F(0,0) = 0 and

F(x, y) is continuous at (0,0).
Now if |x|< δ(ε) < γ and |y| ≤ ε < γ , we find by (10.97) and (10.98) that

∣∣gx(y)
∣∣≤ ∣∣gx(y)− gx(0)

∣∣+ ∣∣gx(0)
∣∣<

1

2
|y| + 1

2
ε < ε,

and hence for |x|< δ(ε)
gx
(
BY (0, ε)

)⊂ BY (0, ε). (10.99)
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Being a closed subset of the complete metric space Y , the closed ball BY (0, ε) is
itself a complete metric space.

50 Comparing relations (10.97) and (10.99), we can now assert by the fixed-
point principle (Sect. 9.7) that for each x ∈ BX(0, δ(ε))=: U there exists a unique
point y = yx =: f (x) ∈ BY (0, ε) =: V that is a fixed point of the mapping gx :
BY (0, ε)→ BY (0, ε).

By the basic relation (10.94), it follows from this that the function f : U → V

so constructed has property 2′ and hence also property 3′, since F(0,0) = 0 by
hypothesis 1.

Property 1′ of the neighborhoods U and V follows from the fact that, by con-
struction, U × V ⊂ BX(0, α)×BY (0, β)=W .

Finally, the continuity of the function y = f (x) at x = 0, that is, property 4′,
follows from 2′ and the fact that, as was shown in part 40 of the proof, for every
ε > 0 (ε < γ ) there exists δ(ε) > 0 (δ(ε) < γ ) such that gx(BY (0, ε)) ⊂ BY (0, ε)
for any x ∈ BX(0, δ(ε)), that is, the unique fixed point yx = f (x) of the mapping
gx : BY (0, ε)→ BY (0, ε) satisfies the condition |f (x)|< ε for |x|< δ(ε). �

We have now proved the existence of the implicit function. We now prove a
number of extensions of these properties of the function, generated by properties of
the original function F .

Extension 1 (Continuity of the implicit function) If in addition to hypotheses 2
and 3 of the theorem it is known that the mappings F :W → Z and F ′y are contin-
uous not only at the point (x0, y0) but in some neighborhood of this point, then the
function f :U→ V will be continuous not only at x0 ∈U but in some neighborhood
of this point.

Proof By properties of the mapping L(Y ;Z) �A �→A−1 ∈ L(Z;Y) it follows from
hypotheses 3 and 4 of the theorem (see Example 6 of Sect. 10.3) that at each point
(x, y) in some neighborhood of (x0, y0) the transformation f ′y(x, y) ∈ L(Y ;Z) is
invertible. Thus under the additional hypothesis that F is continuous all points (x̃, ỹ)
of the form (x, f (x)) in some neighborhood of (x0, y0) satisfy hypotheses 1–4,
previously satisfied only by the point (x0, y0).

Repeating the construction of the implicit function in a neighborhood of these
points (x̃, ỹ), we would obtain a function y = f̃ (x) that is continuous at x̃ and by 2′
would coincide with the function y = f (x) in some neighborhood of x. But that
means that f itself is continuous at x̃. �

Extension 2 (Differentiability of the implicit function) If in addition to the hypothe-
ses of the theorem it is known that a partial derivative F ′x(x, y) exists in some neigh-
borhood W of (x0, y0) and is continuous at (x0, y0), then the function y = f (x) is
differentiable at x0, and

f ′(x0)=−
(
F ′y(x0, y0)

)−1 · (F ′x(x0, y0)
)
. (10.100)
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Proof We verify immediately that the linear transformation L ∈ L(X;Y) on the
right-hand side of formula (10.100) is indeed the differential of the function y =
f (x) at x0.

As before, to simplify the notation, we shall assume that x0 = 0 and y0 = 0, so
that f (0)= 0.

We begin with a preliminary computation.

∣∣f (x)− f (0)−Lx∣∣=
= ∣∣f (x)−Lx∣∣=
= ∣∣f (x)+ (F ′y(0,0)

)−1 · (F ′x(0,0)
)
x
∣
∣=

= ∣∣(F ′y(0,0)
)−1(

F ′x(0,0)x + F ′y(0,0)f (x)
)∣∣=

= ∣∣(F ′y(0,0)
)−1(

F
(
x,f (x)

)− F(0,0)− F ′x(0,0)x − F ′y(0,0)f (x)
)∣∣≤

≤ ∥∥(F ′y(0,0)
)−1∥∥
∣
∣(F
(
x,f (x)

)− F(0,0)− F ′x(0,0)x − F ′y(0,0)f (x)
)∣∣≤

≤ ∥∥(F ′y(0,0)
)−1∥∥ · α(x,f (x))(|x| + ∣∣f (x)∣∣),

where α(x, y)→ 0 as (x, y)→ (0,0).
These relations have been written taking account of the relation F(x,f (x))≡ 0

and the fact that the continuity of the partial derivatives F ′x and F ′y at (0,0) guaran-
tees the differentiability of the function F(x, y) at that point.

For convenience in writing we set a := ‖L‖ and b := ‖(F ′y(0,0))−1‖.
Taking account of the relations

∣
∣f (x)

∣
∣= ∣∣f (x)−Lx +Lx∣∣≤ ∣∣f (x)−Lx∣∣+ |Lx| ≤ ∣∣f (x)−Lx∣∣+ a|x|,

we can extend the preliminary computation just done and obtain the relation

∣∣f (x)−Lx∣∣≤ bα(x,f (x))((a + 1)|x| + ∣∣f (x)−Lx∣∣),

or

∣∣f (x)−Lx∣∣≤ (a + 1)b

1− bα(x,f (x))α
(
x,f (x)

)|x|.

Since f is continuous at x = 0 and f (0)= 0, we also have f (x)→ 0 as x→ 0,
and therefore α(x,f (x))→ 0 as x→ 0.

It therefore follows from the last inequality that

∣
∣f (x)− f (0)−Lx∣∣= ∣∣f (x)−Lx∣∣= o(|x|) as x→ 0. �

Extension 3 (Continuous differentiability of the implicit function) If in addition to
the hypotheses of the theorem it is known that the mapping F has continuous partial
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derivatives F ′x and F ′y in some neighborhood W of (x0, y0), then the function y =
f (x) is continuously differentiable in some neighborhood of x0, and its derivative
is given by the formula

f ′(x)=−(F ′y
(
x,f (x)

))−1 · (F ′x
(
x,f (x)

))
. (10.101)

Proof We already know from formula (10.100) that the derivative f ′(x) exists and
can be expressed in the form (10.101) at an individual point x at which the transfor-
mation F ′y(x, f (x)) is invertible.

It remains to be verified that under the present hypotheses the function f ′(x) is
continuous in some neighborhood of x = x0.

The bilinear mapping (A,B) �→A ·B – the product of linear transformations A
and B – is a continuous function.

The transformation B = −F ′x(x, f (x)) is a continuous function of x, being the
composition of the continuous functions x �→ (x, f (x)) �→ −F ′x(x, f (x)).

The same can be said about the linear transformation A−1 = F ′y(x, f (x)).
It remains only to recall (see Example 6 of Sect. 10.3) that the mappingA−1 �→A

is also continuous in its domain of definition.
Thus the function f ′(x) defined by formula (10.101) is continuous in some

neighborhood of x = x0, being the composition of continuous functions. �

We can now summarize and state the following general proposition.

Proposition If in addition to the hypotheses of the implicit function theorem it
is known that the function F belongs to the class C(k)(W,Z), then the function
y = f (x) defined by the equation F(x, y)= 0 belongs to C(k)(U,Y ) in some neigh-
borhood U of x0.

Proof The proposition has already been proved for k = 0 and k = 1. The general
case can now be obtained by induction from formula (10.101) if we observe that
the mapping L(Y ;Z) � A �→ A−1 ∈ L(Z;Y) is (infinitely) differentiable and that
when Eq. (10.101) is differentiated, the right-hand side always contains a deriva-
tive of f one order less than the left-hand side. Thus, successive differentiation of
Eq. (10.101) can be carried out a number times equal to the order of smoothness of
the function F . �

In particular, if

f ′(x)h1 =−
(
F ′y
(
x,f (x)

))−1 · (F ′x
(
x,f (x)

))
h1,

then

f ′′(x)(h1, h2) = −d
(
F ′y
(
x,f (x)

))−1
h2F

′
x

(
x,f (x)

)
h1 −

− (F ′y
(
x,f (x)

))−1 d
(
F ′x
(
x,f (x)

)
h1
)
h2 =
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= (F ′y
(
x,f (x)

))−1 dF ′y
(
x,f (x)

)
h2
(
F ′y
(
x,f (x)

))−1 ×
× F ′x
(
x,f (x)

)
h1 −

(
F ′y
(
x,f (x)

))−1 ×
× ((F ′′xx

(
x,f (x)

)+ F ′′xy
(
x,f (x)

)
f ′(x)

)
h1
)
h2 =

= (F ′y
(
x,f (x)

))−1((
F ′′yx
(
x,f (x)

)+ F ′′yy
(
x,f (x)

)
f ′(x)

)
h2
)×

× (F ′y
(
x,f (x)

))−1
F ′x
(
x,f (x)

)
h1 −

(
F ′y
(
x,f (x)

))−1 ×
× ((F ′′xx

(
x,f (x)

)+ F ′′xy
(
x,f (x)

)
f ′(x)

)
h1
)
h2.

In less detailed, but more readable notation, this means that

f ′′(x)(h1, h2)=
(
F ′y
)−1[((

F ′′yx +F ′′yyf ′
)
h2
)(
F ′y
)−1
F ′xh1−

((
F ′′xx +F ′′yyf ′

)
h1
)
h2
]
.

(10.102)
In this way one could theoretically obtain an expression for the derivative of an

implicit function to any order; however, as can be seen even from formula (10.102),
these expressions are generally too cumbersome to be conveniently used. Let us
now see how these results can be made specific in the important special case when
X =R

m, Y =R
n, and Z =R

n.
In this case the mapping z= F(x, y) has the coordinate representation

z1 = F 1
(
x1, . . . , xm, y1, . . . , yn

)
,

...

zn = Fn(x1, . . . , xm, y1, . . . , yn
)
.

(10.103)

The partial derivatives F ′x ∈ L(Rm;Rn) and F ′y ∈ L(Rn;Rn) of the mapping are
defined by the matrices

F ′x =

⎛

⎜⎜
⎝

∂F 1

∂x1 · · · ∂F 1

∂xm

...
. . .

...
∂Fn

∂x1 · · · ∂Fn

∂xm

⎞

⎟⎟
⎠ , F ′y =

⎛

⎜⎜
⎝

∂F 1

∂y1 · · · ∂F 1

∂yn

...
. . .

...
∂Fn

∂y1 · · · ∂Fn

∂yn

⎞

⎟⎟
⎠ ,

computed at the corresponding point (x, y).
As we know, the condition that F ′x and F ′y be continuous is equivalent to the

continuity of all the entries of these matrices.
The invertibility of the linear transformation F ′y(x0, y0) ∈ L(Rn;Rn) is equiva-

lent to the nonsingularity of the matrix that defines this transformation.
Thus, in the present case the implicit function theorem asserts that if

1)

F 1(x1
0 , . . . , x

m
0 , y

1
0 , . . . , y

n
0 )= 0,

...

F n(x1
0 , . . . , x

m
0 , y

1
0 , . . . , y

n
0 )= 0;
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2) F i(x1, . . . , xm, y1, . . . , yn), i = 1, . . . , n, are continuous functions at the
point (x1

0 , . . . , x
m
0 , y

1
0 , . . . , y

n
0 ) ∈Rm ×R

n;

3) all the partial derivatives ∂F i

∂yj
(x1, . . . , xm, y1, . . . , yn), i = 1, . . . , n, j =

1, . . . , n, are defined in a neighborhood of (x1
0 , . . . , x

m
0 , y

1
0 , . . . , y

n
0 ) and are con-

tinuous at this point;
4) the determinant

∣∣
∣
∣
∣
∣
∣
∣
∣

∂F 1

∂y1 · · · ∂F 1

∂yn

...
. . .

...

∂Fn

∂y1 · · · ∂Fn

∂yn

∣∣
∣
∣
∣
∣
∣
∣
∣

of the matrix F ′y is nonzero at the point (x1
0 , . . . , x

m
0 , y

1
0 , . . . , y

n
0 ); then there ex-

ist a neighborhood U of x0 = (x1
0 , . . . , x

m
0 ) ∈ R

m, a neighborhood V of y0 =
(y1

0 , . . . , y
n
0 ) ∈Rn, and a mapping f :U→ V having a coordinate representation

y1 = f 1
(
x1, . . . , xm

)
,

...

yn = f n(x1, . . . , xm
)
,

(10.104)

such that

1′) inside the neighborhood U × V of (x1
0 , . . . , x

m
0 , y

1
0 , . . . , y

n
0 ) ∈ Rm ×R

n the
system of equations

⎧
⎪⎪⎨

⎪⎪⎩

F 1
(
x1, . . . , xm, y1, . . . , yn

)= 0,
...

F n
(
x1, . . . , xm, y1, . . . , yn

)= 0

is equivalent to the functional relation f :U→ V expressed by (10.104);
2′)

y1
0 = f 1

(
x1

0 , . . . , x
m
0

)
,

...

yn0 = f n
(
x1

0 , . . . , x
m
0

);

3′) the mapping (10.104) is continuous at (x1
0 , . . . , x

m
0 , y

1
0 , . . . , y

n
0 ).

If in addition it is known that the mapping (10.103) belongs to the class C(k),
then, as follows from the proposition above, the mapping (10.104) will also belong
to C(k), of course within its own domain of definition.
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In this case formula (10.101) can be made specific, becoming the matrix equality

⎛

⎜⎜⎜
⎝

∂f 1

∂x1 · · · ∂f 1

∂xm

...
. . .

...

∂f n

∂x1 · · · ∂f n

∂xm

⎞

⎟⎟⎟
⎠
=−

⎛

⎜⎜⎜
⎝

∂F 1

∂y1 · · · ∂F 1

∂yn

...
. . .

...

∂Fn

∂y1 · · · ∂Fn

∂yn

⎞

⎟⎟⎟
⎠

−1⎛

⎜⎜
⎝

∂F 1

∂x1 · · · ∂F 1

∂xm

...
. . .

...

∂Fn

∂x1 · · · ∂Fn

∂xm

⎞

⎟⎟
⎠ ,

in which the left-hand side is computed at (x1, . . . , xm) and the right-hand side
at the corresponding point (x1, . . . , xm, y1, . . . , yn), where yi = f i(x1, . . . , xm),
i = 1, . . . , n.

If n= 1, that is, when the equation

F
(
x1, . . . , xm, y

)= 0

is being solved for y, the matrix F ′y consists of a single entry – the number
∂F
∂y
(x1, . . . , xm, y). In this case y = f (x1, . . . , xm), and

(
∂f

∂x1
, . . . ,

∂f

∂xm

)
=−
(
∂F

∂y

)−1(
∂F

∂x1
, . . . ,

∂F

∂xm

)
. (10.105)

In this case formula (10.102) also simplifies slightly; more precisely, it can be
written in the following more symmetric form:

f ′′(x)(h1, h2)=−
(F ′′xx + F ′′xyf ′)h1F

′
yh2 − (F ′′yx + F ′′yyf ′)h2F

′
xh1

(F ′y)2
. (10.106)

And if n = 1 and m = 1, then y = f (x) is a real-valued function of one real
argument, and formulas (10.105) and (10.106) simplify to the maximum extent,
becoming the numerical equalities

f ′(x) = −F
′
x

F ′y
(x, y),

f ′′(x) = − (F
′′
xx + F ′′xyf ′)F ′y − (F ′′yx + F ′′yyf ′)F ′x

(F ′y)2
(x, y)

for the first two derivatives of the implicit function defined by the equation
F(x, y)= 0.

10.7.1 Problems and Exercises

1. a) Assume that, along with the function f : U → Y given by the implicit func-
tion theorem, we have a function f̃ : Ũ→ Y defined in some neighborhood Ũ of x0



106 10 *Differential Calculus from a More General Point of View

and satisfying y0 = f̃ (x0) and F(x, f̃ (x))≡ 0 in Ũ . Prove that if f̃ is continuous
at x0, then the functions f and f̃ are equal on some neighborhood of x0.

b) Show that the assertion in a) is generally not true without the assumption that
f̃ is continuous at x0.

2. Analyze once again the proof of the implicit function theorem and the extensions
to it, and show the following.

a) If z = F(x, y) is a continuously differentiable complex-valued function of
the complex variables x and y, then the implicit function y = f (x) defined by the
equation F(x, y)= 0 is differentiable with respect to the complex variable x.

b) Under the hypotheses of the theorem X is not required to be a normed space,
and may be any topological space.

3. a) Determine whether the form f ′′(x)(h1, h2) defined by relation (10.102) is
symmetric.

b) Write the forms (10.101) and (10.102) for the case of numerical functions
F(x1, x2, y) and F(x, y1, y2) in matrix form.

c) Show that if R � t �→ A(t) ∈ L(Rn;Rn) is family of nonsingular matrices
A(t) depending on the parameter t in an infinitely smooth manner, then

d2A−1

dt2
= 2A−1

(
dA

dt
A−1
)2

−A−1 d2A

dt2
A−1, where A−1 =A−1(t)

denotes the inverse of the matrix A=A(t).
4. a) Show that Extension 1 to the theorem is an immediate corollary of the stabil-
ity conditions for the fixed point of the family of contraction mappings studied in
Sect. 9.7.

b) Let {At :X→X} be a family of contraction mappings of a complete normed
space into itself depending on the parameter t , which ranges over a domain Ω in
a normed space T . Show that if At(x) = ϕ(t, x) is a function of class C(n)(Ω ×
X,X), then the fixed point x(t) of the mapping At belongs to class C(n)(Ω,X) as
a function of t .

5. a) Using the implicit function theorem, prove the following inverse function the-
orem.

Let g :G→X be a mapping from a neighborhoodG of a point y0 in a complete
normed space Y into a normed space X. If

10 the mapping x = g(y) is differentiable in G,
20 g′(y) is continuous at y0,
30 g′(y0) is an invertible transformation,

then there exists a neighborhood V ⊂ Y of y0 and a neighborhood U ⊂ X of x0

such that g : V →U is bijective, and its inverse mapping f :U→ V is continuous
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in U and differentiable at x0; moreover,

f ′(x0)=
(
g′(y0)

)−1
.

b) Show that if it is known, in addition to the hypotheses given in a), that the
mapping g belongs to the class C(n)(V ,U), then the inverse mapping f belongs to
C(n)(U,V ).

c) Let f : Rn→ R
n be a smooth mapping for which the matrix f ′(x) is non-

singular at every point x ∈ Rn and satisfies the inequality ‖(f ′)−1(x)‖< C with a
constant C that is independent of x. Show that f is a bijective mapping.

d) Using your experience in solving c), try to give an estimate for the radius
of a spherical neighborhood U = B(x0, r) centered at x0 in which the mapping
f :U→ V studied in the inverse function theorem is necessarily defined.

6. a) Show that if the linear mappings A ∈ L(X;Y) and B ∈ L(X;R) are such that
kerA⊂ kerB (here ker, as usual, denotes the kernel of a transformation), then there
exists a linear mapping λ ∈ L(Y ;R), such that B = λ ·A.

b) Let X and Y be normed spaces and f :X→R and g :X→ Y smooth func-
tions on X with values in R and Y respectively. Let S be the smooth surface defined
in X by the equation g(x)= y0. Show that if x0 ∈ S is an extremum of the function
f |S , then any vector h tangent to S at X0 simultaneously satisfies two conditions:
f ′(x0)h= 0 and g′(x0)h= 0.

c) Prove that if x0 ∈ S is an extremum of the function f |S then f ′(x0) = λ ·
g′(x0), where λ ∈ L(Y ;R).

d) Show how the classical Lagrange necessary condition for an extremum with
constraint of a function on a smooth surface in R

n follows from the preceding result.

7. As is known, the equation zn + c1z
n−1 + · · · + cn = 0 with complex coefficients

has in general n distinct complex roots. Show that the roots of the equation are
smooth functions of the coefficients, at least where all the roots are distinct.
8. a) Following Hadamard, prove that a continuous locally invertible mapping f :
R
n→ R

n is globally invertible (i.e., it is bijective) if and only if f (x)→∞ as
x→∞. Convince yourself that we can consider here any normed space instead
of Rn. How should we interpret (or reformulate) Hadamard’s conditions if we now
consider the image of Rn or a normed space under a homeomorphism?

b) Let F :X×Y → Z be a continuous mapping defined on the direct product of
the normed spaces X and Y . Show that the equation F(x, y)= 0 is solvable glob-
ally with respect to y (in the sense that the local continuous solution of y = f (x)
extends as such to the whole space X) exactly when the following two conditions
are fulfilled: the equation has a continuous solution in a neighborhood of every
point (x0, y0) satisfying F(x0, y0) = 0; and in the pair (x, y) satisfying the equa-
tion F(x, y)= 0, the second coordinate can tend to infinity (changing continuously)
only if the first coordinate in its space also tends to infinity.
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c) Following John,6 show that if a continuous locally invertible mapping f :
B→H from the unit ball B to a normed spaceH is such that locally (at every point
of the ball), it changes the element of length no more than k ≥ 1 times (expanding
or contracting), then in the ball of radius k−2, this mapping is injective. (Caution:
an infinite-dimensional normed space can be isometrically embedded into itself as
a proper subspace through a shift of coordinates, but this mapping is not invertible
or locally invertible. It is invertible as a mapping only on its image.)

6F. John (1910–1994), German-born and later a famous American mathematician, student of
R. Courant.



Chapter 11
Multiple Integrals

11.1 The Riemann Integral over an n-Dimensional Interval

11.1.1 Definition of the Integral

a. Intervals in R
n and Their Measure

Definition 1 The set I = {x ∈ Rn | ai ≤ xi ≤ bi, i = 1, . . . , n} is called an interval
or a coordinate parallelepiped in R

n.

If we wish to note that the interval is determined by the points a = (a1, . . . , an)

and b = (b1, . . . , bn), we often denote it Ia,b , or, by analogy with the one-
dimensional case, we write it as a ≤ x ≤ b.

Definition 2 To the interval I = {x ∈Rn | ai ≤ xi ≤ bi, i = 1, . . . , n} we assign the
number |I | :=∏ni=1(b

i − ai), called the volume or measure of the interval.

The volume (measure) of the interval I is also denoted υ(I) and μ(I).

Lemma 1 The measure of an interval in R
n has the following properties.

a) It is homogeneous, that is, if λIa,b := Iλa,λb , where λ≥ 0, then

|λIa,b| = λn|Ia,b|.

b) It is additive, that is, if the intervals I, I1, . . . , Ik are such that I =⋃kj=1 Ij
and no two of the intervals I1, . . . , Ik have common interior points, then |I | =∑k
j=1 |Ij |.
c) If the interval I is covered by a finite system of intervals I1, . . . , Ik , that is,

I ⊂⋃kj=1 Ij , then |I | ≤∑k
j=1 |Ij |.

All these assertions follow easily from Definitions 1 and 2.
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b. Partitions of an Interval and a Base in the Set of Partitions

Suppose we are given an interval I = {x ∈ R
n | ai ≤ xi ≤ bi, i = 1, . . . , n}. Par-

titions of the coordinate intervals [ai, bi], i = 1, . . . , n, induce a partition of the
interval I into finer intervals obtained as the direct products of the intervals of the
partitions of the coordinate intervals.

Definition 3 The representation of the interval I (as the union I =⋃kj=1 Ij of finer
intervals Ij ) just described will be called a partition of the interval I , and will be
denoted by P .

Definition 4 The quantity λ(P ) := max1≤j≤k d(Ij ) (the maximum among the di-
ameters of the intervals of the partition P ) is called the mesh of the partition P .

Definition 5 If in each interval Ij of the partition P we fix a point ξj ∈ Ij , we say
that we have a partition with distinguished points.

The set {ξ1, . . . , ξk}, as before, will be denoted by the single letter ξ , and the
partition with distinguished points by (P, ξ).

In the set P = {(P, ξ)} of partitions with distinguished points on an interval I we
introduce the base λ(P )→ 0 whose elements Bd(d > 0), as in the one-dimensional
case, are defined by Bd := {(P, ξ) ∈P | λ(P ) < d}.

The fact that B = {Bd} really is a base follows from the existence of partitions of
mesh arbitrarily close to zero.

c. Riemann Sums and the Integral

Let f : I → R be a real-valued1 function on the interval I and P = {I1, . . . , Ik} a
partition of this interval with distinguished points ξ = {ξ1, . . . , ξk}.
Definition 6 The sum

σ(f,P, ξ) :=
k∑

i=1

f (ξi)|Ii |

is called the Riemann sum of the function f corresponding to the partition of the
interval I with distinguished points (P, ξ).

Definition 7 The quantity
∫

I

f (x)dx := lim
λ(P )→0

σ(f,P, ξ),

1Please note that in the following definitions one could assume that the values of f lie in any
normed vector space. For example, it might be the space C of complex numbers or the spaces Rn

and C
n.
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provided this limit exists, is called the Riemann integral of the function f over the
interval I .

We see that this definition, and in general the whole process of constructing the
integral over the interval I ⊂R

n is a verbatim repetition of the procedure of defining
the Riemann integral over a closed interval of the real line, which is already familiar
to us. To highlight the resemblance we have even retained the previous notation
f (x)dx for the differential form. Equivalent, but more expanded notations for the
integral are the following:

∫

I

f
(
x1, . . . , xn

)
dx1 · . . . · dxn or

∫
. . .

∫

I︸ ︷︷ ︸
n

f
(
x1, . . . , xn

)
dx1 · . . . · dxn.

To emphasize that we are discussing an integral over a multidimensional domain
I we say that this is a multiple integral (double, triple, and so forth, depending on
the dimension of I ).

d. A Necessary Condition for Integrability

Definition 8 If the finite limit in Definition 7 exists for a function f : I → R, then
f is Riemann integrable over the interval I .

We shall denote the set of all such functions by R(I ).
We now verify the following elementary necessary condition for integrability.

Proposition 1 f ∈R(I )⇒ f is bounded on I .

Proof Let P be an arbitrary partition of the interval I . If the function f is un-
bounded on I , then it must be unbounded on some interval Ii0 of the partition P .
If (P, ξ ′) and (P, ξ ′′) are partitions P with distinguished points such that ξ ′ and ξ ′′
differ only in the choice of the points ξ ′i0 and ξ ′′i0 , then

∣∣σ
(
f,P, ξ ′

)− σ (f,P, ξ ′′)∣∣= ∣∣f (ξ ′i0
)− f (ξ ′′i0

)∣∣|Ii0 |.

By changing one of the points ξ ′i0 and ξ ′′i0 , as a result of the unboundedness of f
in Ii0 , we could make the right-hand side of this equality arbitrarily large. By the
Cauchy criterion, it follows from this that the Riemann sums of f do not have a
limit as λ(P )→ 0. �
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11.1.2 The Lebesgue Criterion for Riemann Integrability

When studying the Riemann integral in the one-dimensional case, we acquainted the
reader (without proof) with the Lebesgue criterion for the existence of the Riemann
integral. We shall now recall certain concepts and prove this criterion.

a. Sets of Measure Zero in R
n

Definition 9 A set E ⊂R
n has (n-dimensional) measure zero or is a set of measure

zero (in the Lebesgue sense) if for every ε > 0 there exists a covering of E by an
at most countable system {Ii} of n-dimensional intervals for which the sum of the
volumes

∑
i |Ii | does not exceed ε.

Lemma 2 a) A point and a finite set of points are sets of measure zero.
b) The union of a finite or countable number of sets of measure zero is a set of

measure zero.
c) A subset of a set of measure zero is itself of measure zero.
d) A nondegenerate2 interval Ia,b ⊂R

n is not a set of measure zero.

The proof of Lemma 2 does not differ from the proof of its one-dimensional
version considered in Sect. 6.1.3, paragraph d. Hence we shall not give the details.

Example 1 The set of rational points in R
n (points all of whose coordinates are

rational numbers) is countable and hence is a set of measure zero.

Example 2 Let f : I → R be a continuous real-valued function defined on an
(n − 1)-dimensional interval I ⊂ R

n−1. We shall show that its graph in R
n is a

set of n-dimensional measure zero.

Proof Since the function f is uniformly continuous on I , for ε > 0 we find δ > 0
such that |f (x1)− f (x2)|< ε for any two points x1, x2 ∈ I such that |x1 − x2|< δ.
If we now take a partition P of the interval I with mesh λ(P ) < δ, then on each
interval Ii of this partition the oscillation of the function is less than ε. Hence,
if xi is an arbitrary fixed point of the interval Ii , the n-dimensional interval Ĩi =
Ii×[f (xi)−ε,f (xi)+ε] obviously contains the portion of the graph of the function
lying over the interval Ii , and the union

⋃
i Ĩi covers the whole graph of the function

over I . But
∑
i |Ĩi | =

∑
i |Ii | · 2ε = 2ε|I | (here |Ii | is the volume of Ii in R

n−1 and
|Ĩi | the volume of Ĩi in R

n). Thus, by decreasing ε, we can indeed make the total
volume of the covering arbitrarily small. �

2That is, an interval Ia,b = {x ∈ R
n | ai ≤ xi ≤ bi , i = 1, . . . , n} such that the strict inequality

ai < bi holds for each i ∈ {1, . . . , n}.
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Remark 1 Comparing assertion b) in Lemma 2 with Example 2, one can conclude
that in general the graph of a continuous function f : Rn−1→ R or a continuous
function f : M → R, where M ⊂ R

n−1, is a set of n-dimensional measure zero
in R

n.

Lemma 3 a) The class of sets of measure zero remains the same whether the in-
tervals covering the set E in Definition 9, that is, E ⊂⋃i Ii , are interpreted as an
ordinary system of intervals {Ii}, or in a stricter sense, requiring that each point of
the set be an interior point of at least one of the intervals in the covering.3

b) A compact set K in R
n is a set of measure zero if and only if for every ε > 0

there exists a finite covering of K by intervals the sum of whose volumes is less
than ε.

Proof a) If {Ii} is a covering of E (that is, E ⊂⋃i Ii and
∑
i |Ii | < ε), then, re-

placing each Ii by a dilation of it from its center, which we denote Ĩi , we obtain
a system of intervals {Ĩi} such that

∑ |Ĩi | < λnε, where λ is a dilation coefficient
that is the same for all intervals. If λ > 1, it is obvious that the system {Ĩi} will
cover E in such a way that every point of E is interior to one of the intervals in the
covering.

b) This follows from a) and the possibility of extracting a finite covering from any
open covering of a compact setK . (The system {Ĩi\∂Ĩi} consisting of open intervals
obtained from the system {Ĩi} considered in a) may serve as such a covering.) �

b. A Generalization of Cantor’s Theorem

We recall that the oscillation of a function f :E→R on the set E has been defined
as ω(f ;E) := supx1,x2∈E |f (x1)− f (x2)|, and the oscillation at the point x ∈E as
ω(f ;x) := limδ→0ω(f ;UδE(x)), where UδE(x) is the δ-neighborhood of x in the
set E.

Lemma 4 If the relation ω(f ;x) ≤ ω0 holds at each point of a compact set K
for the function f : K → R, then for every ε > 0 there exists δ > 0 such that
ω(f ;UδK(x)) < ω0 + ε for each point x ∈K .

When ω0 = 0, this assertion becomes Cantor’s theorem on uniform continuity of
a function that is continuous on a compact set. The proof of Lemma 4 is a verbatim
repetition of the proof of Cantor’s theorem (Sect. 6.2.2) and therefore we do not take
the time to give it here.

3In other words, it makes no difference whether we mean closed or open intervals in Definition 9.
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c. Lebesgue’s Criterion

As before, we shall say that a property holds at almost all points of a set M or almost
everywhere on M if the subset of M where this property does not necessarily hold
has measure zero.

Theorem 1 (Lebesgue’s criterion) f ∈R(I )⇔ (f is bounded on I ) ∧ (f is con-
tinuous almost everywhere on I ).

Proof Necessity. If f ∈R(I ), then by Proposition 1 the function f is bounded on I .
Suppose |f | ≤M on I .

We shall now verify that f is continuous at almost all points of I . To do this, we
shall show that if the set E of its points of discontinuity does not have measure zero,
then f /∈R(I ).

Indeed, representing E in the form E = ⋃∞n=1En, where En = {x ∈ I |
ω(f ;x)≥ 1/n}, we conclude from Lemma 2 that if E does not have measure zero,
then there exists an index n0 such that En0 is also not a set of measure zero. Let P
be an arbitrary partition of the interval I into intervals {Ii}. We break the partition
P into two groups of intervals A and B , where

A=
{
Ii ∈ P | Ii ∩En0 �=∅∧ω(f ; Ii)≥ 1

2n0

}
, and B = P \A.

The system of intervals A forms a covering of the set En0 . In fact, each point
of En0 lies either in the interior of some interval Ii ∈ P , in which case obviously
Ii ∈A, or on the boundary of several intervals of the partition P . In the latter case,
the oscillation of the function must be at least 1

2n0
on at least one of these intervals

(because of the triangle inequality), and that interval belongs to the system A.
We shall now show that by choosing the set ξ of distinguished points in the

intervals of the partition P in different ways we can change the value of the Riemann
sum significantly.

To be specific, we choose the sets of points ξ ′ and ξ ′′ such that in the intervals
of the system B the distinguished points are the same, while in the intervals Ii of
the system A, we choose the points ξ ′i and ξ ′′i so that f (ξ ′i )− f (ξ ′′i ) > 1

3n0
. We then

have

∣∣σ
(
f,P, ξ ′

)− σ (f,P, ξ ′′)∣∣=
∣∣∣∣
∑

Ii∈A

(
f
(
ξ ′i
)− f (ξ ′′i

))|Ii |
∣∣∣∣>

1

3n0

∑

Ii∈A
|Ii |> c > 0.

The existence of such a constant c follows from the fact that the intervals of the
systemA form a covering of the set En0 , which by hypothesis is not a set of measure
zero.

Since P was an arbitrary partition of the interval I , we conclude from the Cauchy
criterion that the Riemann sums σ(f,P, ξ) cannot have a limit as λ(P )→ 0, that
is, f /∈R(I ).
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Sufficiency. Let ε be an arbitrary positive number and Eε = {x ∈ I | ω(f ;x) ≥ ε}.
By hypothesis, Eε is a set of measure zero.

Moreover, Eε is obviously closed in I , so that Eε is compact. By Lemma 3
there exists a finite system I1, . . . , Ik of intervals in R

n such that Eε ⊂⋃ki=1 Ii and
∑k
i=1 |Ii |< ε. Let us set C1 =⋃ki=1 Ii and denote by C2 and C3 the unions of the

intervals obtained from the intervals Ii by dilation with center at the center of Ii and
scaling factors 2 and 3 respectively. It is clear thatEε lies strictly in the interior of C2

and that the distance d between the boundaries of the sets C2 and C3 is positive.
We note that the sum of the volumes of any finite system of intervals lying in C3,

no two of which have any common interior points is at most 3nε, where n is the
dimension of the space R

n. This follows from the definition of the set C3 and prop-
erties of the measure of an interval (Lemma 1).

We also note that any subset of the interval I whose diameter is less than d is
either contained in C3 or lies in the compact setK = I\(C2\∂C2), where ∂C2 is the
boundary of C2 (and hence C2\∂C2 is the set of interior points of C2).

By construction Eε ⊂ I\K , so that at every point x ∈ K we must have
ω(f ;x) < ε. By Lemma 4 there exists δ > 0 such that |f (x1) − f (x2)| < 2ε for
every pair of points x1, x2 ∈K whose distance from each other is at most δ.

These constructions make it possible now to carry out the proof of the sufficient
condition for integrability as follows. We choose any two partitions P ′ and P ′′ of
the interval I with meshes λ(P ′) and λ(P ′′) less than λ=min{d, δ}. Let P be the
partition obtained by intersecting all the intervals of the partitions P ′ and P ′′, that
is, in a natural notation, P = {Iij = I ′i ∩ I ′′j }. Let us compare the Riemann sums
σ(f,P, ξ) and σ(f,P ′, ξ ′). Taking into account the equality |I ′i | =

∑
j |Iij |, we

can write

∣∣σ
(
f,P, ξ ′

)− σ(f,P, ξ)∣∣ =
∣∣∣∣
∑

ij

(
f
(
ξ ′i
)− f (ξij )

)|Iij |
∣∣∣∣≤

≤
∑

1

∣∣f
(
ξ ′i
)− f (ξij )

∣∣|Iij | +
∑

2

∣∣f
(
ξ ′i
)− f (ξij )

∣∣|Iij |.

Here the first sum
∑

1 contains the intervals of the partition P lying in the inter-
vals I ′i of the partition P ′ contained in the set C3, and the remaining intervals of P
are included in the sum

∑
2, that is, they are all necessarily contained in K (after

all, λ(P ) < d).
Since |f | ≤M on I , replacing |f (ξ ′i )− f (ξij )| in the first sum by 2M , we con-

clude that the first sum does not exceed 2M · 3nε.
Now, noting that ξ ′i , ξij ∈ I ′j ⊂K in the second sum and λ(P ′) < δ, we conclude

that |f (ξ ′i )−f (ξij )|< 2ε, and consequently the second sum does not exceed 2ε|I |.
Thus |σ(f,P ′, ξ ′)−σ(f,P, ξ)|< (2M · 3n+ 2|I |)ε, from which (in view of the

symmetry between P ′ and P ′′), using the triangle inequality, we find that

∣∣σ
(
f,P ′, ξ ′

)− σ (f,P ′′, ξ ′′)∣∣< 4
(
3nM + |I |)ε
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for any two partitions P ′ and P ′′ with sufficiently small mesh. By the Cauchy crite-
rion we now conclude that f ∈R(I ). �

Remark 2 Since the Cauchy criterion for existence of a limit is valid in any complete
metric space, the sufficiency part of the Lebesgue criterion (but not the necessity
part), as the proof shows, holds for functions with values in any complete normed
vector space.

11.1.3 The Darboux Criterion

Let us consider another useful criterion for Riemann integrability of a function,
which is applicable only to real-valued functions.

a. Lower and Upper Darboux Sums

Let f be a real-valued function on the interval I and P = {Ii} a partition of the
interval I . We set

mi = inf
x∈Ii

f (x), Mi = sup
x∈Ii

f (x).

Definition 10 The quantities

s(f,P )=
∑

i

mi |Ii | and S(f,P )=
∑

i

M|Ii |

are called the lower and upper Darboux sums of the function f over the interval I
corresponding to the partition P of the interval.

Lemma 5 The following relations hold between the Darboux sums of a function
f : I→R:

a) s(f,P )= infξ σ (f,P, ξ)≤ σ(f,P, ξ)≤ supξ σ (f,P, ξ)= S(f,P );
b) if the partition P ′ of the interval I is obtained by refining intervals of the

partition P, then s(f,P )≤ s(f,P ′)≤ S(f,P ′)≤ S(f,P );
c) the inequality s(f,P1)≤ S(f,P2) holds for any pair of partitions P1 and P2

of the interval I .

Proof Relations a) and b) follow immediately from Definitions 6 and 10, taking
account, of course, of the definition of the greatest lower bound and least upper
bound of a set of numbers.

To prove c) it suffices to consider the auxiliary partition P obtained by intersect-
ing the intervals of the partitions P1 and P2. The partition P can be regarded as a
refinement of each of the partitions P1 and P2, so that b) now implies

s(f,P1)≤ s(f,P )≤ S(f,P )≤ S(f,P2). �
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b. Lower and Upper Integrals

Definition 11 The lower and upper Darboux integrals of the function f : I → R

over the interval I are respectively

J = sup
P

s(f,P ), J = inf
P
S(f,P ),

where the supremum and infimum are taken over all partitions P of the interval I .

It follows from this definition and the properties of Darboux sums exhibited in
Lemma 3 that the inequalities

s(f,P )≤ J ≤ J ≤ S(f,P )
hold for any partition P of the interval.

Theorem 2 (Darboux) For any bounded function f : I→R,
(
∃ lim
λ(P )→0

s(f,P )
) ∧ (

lim
λ(P )→0

s(f,P )= J
)
;

(
∃ lim
λ(P )→0

S(f,P )
) ∧ (

lim
λ(P )→0

S(f,P )= J
)
.

Proof If we compare these assertions with Definition 11, it becomes clear that in
essence all we have to prove is that the limits exist. We shall verify this for the lower
Darboux sums.

Fix ε > 0 and a partition Pε of the interval I for which s(f ;Pε) > J − ε. Let
Γε be the set of points of the interval I lying on the boundary of the intervals of the
partition Pε . As follows from Example 2, Γε is a set of measure zero. Because of
the simple structure of Γε , it is even obvious that there exists a number λε such that
the sum of the volumes of those intervals that intersect Γε is less than ε for every
partition P such that λ(P ) < λε .

Now taking any partition P with mesh λ(P ) < λε , we form an auxiliary partition
P ′ obtained by intersecting the intervals of the partitions P and Pε . By the choice
of the partition Pε and the properties of Darboux sums (Lemma 5), we find

J − ε < s(f,Pε) < s
(
f,P ′
)≤ J .

We now remark that the sums s(f,P ′) and s(f,P ) both contain all the terms
that correspond to intervals of the partition P that do not meet Γε . Therefore, if
|f (x)| ≤M on I , then

∣
∣s
(
f,P ′
)− s(f,P )∣∣< 2Mε

and taking account of the preceding inequalities, we thereby find that for λ(P ) < λε
we have the relation

J − s(f,P ) < (2M + 1)ε.
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Comparing the relation just obtained with Definition 11, we conclude that the limit
limλ(P )→0 s(f,P ) does indeed exist and is equal to J .

Similar reasoning can be carried out for the upper sums. �

c. The Darboux Criterion for Integrability of a Real-Valued Function

Theorem 3 (The Darboux criterion) A real-valued function f : I → R defined on
an interval I ⊂ R

n is integrable over that interval if and only if it is bounded on I
and its upper and lower Darboux integrals are equal.

Thus,

f ∈R(I )⇐⇒ (f is bounded on I )∧ (J = J ).

Proof Necessity. If f ∈R(I ), then by Proposition 1 the function f is bounded on I .
It follows from Definition 7 of the integral, Definition 11 of the quantities J and J ,
and part a) of Lemma 5 that in this case J = J .

Sufficiency. Since s(f,P )≤ σ(f,P, ξ)≤ S(f,P ) when J = J , the extreme terms
in these inequalities tend to the same limit by Theorem 2 as λ(P )→ 0. Therefore
σ(f,P, ξ) has the same limit as λ(P )→ 0. �

Remark 3 It is clear from the proof of the Darboux criterion that if a function is
integrable, its lower and upper Darboux integrals are equal to each other and to the
integral of the function.

11.1.4 Problems and Exercises

1. a) Show that a set of measure zero has no interior points.
b) Show that not having interior points by no means guarantees that a set is of

measure zero.
c) Construct a set having measure zero whose closure is the entire space R

n.
d) A set E ⊂ I is said to have content zero if for every ε > 0 it can be covered

by a finite system of intervals I1, . . . , Ik such that
∑k
i=1 |Ii |< ε. Is every bounded

set of measure zero a set of content zero?
e) Show that if a set E ⊂ R

n is the direct product R× e of the line R and a set
e ⊂ R

n−1 of (n − 1)-dimensional measure zero, then E is a set of n-dimensional
measure zero.

2. a) Construct the analogue of the Dirichlet function in R
n and show that a

bounded function f : I → R equal to zero at almost every point of the interval I
may still fail to belong to R(I ).

b) Show that if f ∈R(I ) and f (x) = 0, at almost all points of the interval I ,
then
∫
I
f (x)dx = 0.
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3. There is a small difference between our earlier definition of the Riemann inte-
gral on a closed interval I ⊂ R and Definition 7 for the integral over an interval
of arbitrary dimension. This difference involves the definition of a partition and the
measure of an interval of the partition. Clarify this nuance for yourself and verify
that

∫ b

a

f (x)dx =
∫

I

f (x)dx, if a < b

and
∫ b

a

f (x)dx =−
∫

I

f (x)dx, if a > b,

where I is the interval on the real line R with endpoints a and b.
4. a) Prove that a real-valued function f : I →R defined on an interval I ⊂R

n is
integrable over that interval if and only if for every ε > 0 there exists a partition P
of I such that S(f ;P)− s(f ;P) < ε.

b) Using the result of a) and assuming that we are dealing with a real-valued
function f : I → R, one can simplify slightly the proof of the sufficiency of the
Lebesgue criterion. Try to carry out this simplification by yourself.

11.2 The Integral over a Set

11.2.1 Admissible Sets

In what follows we shall be integrating functions not only over an interval, but also
over other sets in R

n that are not too complicated.

Definition 1 A set E ⊂ R
n is admissible if it is bounded in R

n and its boundary is
a set of measure zero (in the sense of Lebesgue).

Example 1 A cube, a tetrahedron, and a ball in R
3 (or Rn) are admissible sets.

Example 2 Suppose the functions ϕi : I → R, i = 1,2, defined on an (n − 1)-
dimensional interval I ⊂ R

n are such that ϕ1(x) < ϕ2(x) at every point x ∈ I . If
these functions are continuous, Example 2 of Sect. 11.1 makes it possible to assert
that the domain in R

n bounded by the graphs of these functions and the cylindrical
lateral surface lying over the boundary ∂I of I is an admissible set in R

n.

We recall that the boundary ∂E of a set E ⊂R
n consists of the points x such that

every neighborhood of x contains both points of E and points of the complement of
E in R

n. Hence we have the following lemma.

Lemma 1 For any sets E,E1,E2 ⊂R
n, the following assertions hold:
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a) ∂E is a closed subset of Rn;
b) ∂(E1 ∪E2)⊂ ∂E1 ∪ ∂E2;
c) ∂(E1 ∩E2)⊂ ∂E1 ∪ ∂E2;
d) ∂(E1\E2)⊂ ∂E1 ∪ ∂E2.

This lemma and Definition 1 together imply the following lemma.

Lemma 2 The union or intersection of a finite number of admissible sets is an ad-
missible set; the difference of admissible sets is also an admissible set.

Remark 1 For an infinite collection of admissible sets Lemma 2 is generally not
true, and the same is the case with assertions b) and c) of Lemma 1.

Remark 2 The boundary of an admissible set is not only closed, but also bounded
in R

n, that is, it is a compact subset of Rn. Hence by Lemma 3 of Sect. 11.1, it can
even be covered by a finite set of intervals whose total content (volume) is arbitrarily
close to zero.

We now consider the characteristic function

χE(x)=
{

1, if x ∈E,
0, if x /∈E,

of an admissible set E. Like the characteristic function of any set E, the function
χE(x) has discontinuities at the boundary points of the set E and at no other points.
Hence if E is an admissible set, the function χE(x) is continuous at almost all points
of Rn.

11.2.2 The Integral over a Set

Let f be a function defined on a set E. We shall agree, as before, to denote the
function equal to f (x) for x ∈ E and to 0 outside E by f χE(x) (even though f
may happen to be undefined outside of E).

Definition 2 The integral of f over E is given by
∫

E

f (x)dx :=
∫

I⊃E
f χE(x)dx,

where I is any interval containing E.

If the integral on the right-hand side of this equality does not exist, we say that f
is (Riemann) nonintegrable over E. Otherwise f is (Riemann) integrable over E.

The set of all functions that are Riemann integrable overE will be denoted R(E).
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Definition 2 of course requires some explanation, which is provided by the fol-
lowing lemma.

Lemma 3 If I1 and I2 are two intervals, both containing the set E, then the inte-
grals

∫

I1

f χE(x)dx and
∫

I2

f χE(x)dx

either both exist or both fail to exist, and in the first case their values are the same.

Proof Consider the interval I = I1 ∩ I2. By hypothesis I ⊃ E. The points of dis-
continuity of f χE are either points of discontinuity of f on E, or the result of
discontinuities of χE , in which case they lie on ∂E. In any case, all these points
lie in I = I1 ∩ I2. By Lebesgue’s criterion (Theorem 1 of Sect. 11.1) it follows that
the integrals of fχE over the intervals I , I1, and I2 either all exist or all fail to
exist. If they do exist, we may choose partitions of I , I1, and I2 to suit ourselves.
Therefore we shall choose only those partitions of I1 and I2 obtained as extensions
of partitions of I = I1 ∩ I2. Since the function is zero outside I , the Riemann sums
corresponding to these partitions of I1 and I2 reduce to Riemann sums for the cor-
responding partition of I . It then results from passage to the limit that the integrals
over I1 and I2 are equal to the integral of the function in question over I . �

Lebesgue’s criterion (Theorem 1 of Sect. 11.1) for the existence of the integral
over an interval and Definition 2 now imply the following theorem.

Theorem 1 A function f : E→ R is integrable over an admissible set if and only
if it is bounded and continuous at almost all points of E.

Proof Compared with f , the function f χE may have additional points of discon-
tinuity only on the boundary ∂E of E, which by hypothesis is a set of measure
zero. �

11.2.3 The Measure (Volume) of an Admissible Set

Definition 3 The (Jordan) measure or content of a bounded set E ⊂R
n is

μ(E) :=
∫

E

1 · dx,

provided this Riemann integral exists.

Since
∫

E

1 · dx =
∫

I⊃E
χE(x)dx,
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and the discontinuities of χE form the set ∂E, we find by Lebesgue’s criterion that
the measure just introduced is defined only for admissible sets.

Thus admissible sets, and only admissible sets, are measurable in the sense of
Definition 3.

Let us now ascertain the geometric meaning of μ(E). If E is an admissible set
then

μ(E)=
∫

I⊃E
χE(x)dx =

∫

I⊃E
χE(x)dx =

∫

I⊃E
χE(x)dx,

where the last two integrals are the upper and lower Darboux integrals respectively.
By the Darboux criterion for existence of the integral (Theorem 3) the measure
μ(E) of a set is defined if and only if these lower and upper integrals are equal.
By the theorem of Darboux (Theorem 2 of Sect. 11.1) they are the limits of the
upper and lower Darboux sums of the function χE corresponding to partitions P
of I . But by definition of χE the lower Darboux sum is the sum of the volumes
of the intervals of the partition P that are entirely contained in E (the volume of a
polyhedron inscribed in E), while the upper sum is the sum of the volumes of the
intervals of P that intersect E (the volume of a circumscribed polyhedron). Hence
μ(E) is the common limit as λ(P )→ 0 of the volumes of polyhedra inscribed in
and circumscribed about E, in agreement with the accepted idea of the volume of
simple solids E ⊂R

n.
For n= 1 content is usually called length, and for n= 2 it is called area.

Remark 3 Let us now explain why the measure μ(E) introduced in Definition 3 is
sometimes called Jordan measure.

Definition 4 A set E ⊂ R
n is a set of measure zero in the sense of Jordan or a set

of content zero if for every ε > 0 it can be covered by a finite system of intervals
I1, . . . , Ik such that

∑k
i=1 |Ii |< ε.

Compared with measure zero in the sense of Lebesgue, a requirement that the
covering be finite appears here, shrinking the class of sets of Lebesgue measure
zero. For example, the set of rational points is a set of measure zero in the sense of
Lebesgue, but not in the sense of Jordan.

In order for the least upper bound of the contents of polyhedra inscribed in a
bounded set E to be the same as the greatest lower bound of the contents of poly-
hedra circumscribed about E (and to serve as the measure μ(E) or content of E), it
is obviously necessary and sufficient that the boundary ∂E of E have measure 0 in
the sense of Jordan. That is the motivation for the following definition.

Definition 5 A set E is Jordan-measurable if it is bounded and its boundary has
Jordan measure zero.

As Remark 2 shows, the class of Jordan-measurable subsets is precisely the class
of admissible sets introduced in Definition 1. That is the reason the measure μ(E)
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defined earlier can be called (and is called) the Jordan measure of the (Jordan-
measurable) set E.

11.2.4 Problems and Exercises

1. a) Show that if a set E ⊂ R
n is such that μ(E)= 0, then the relation μ(E)= 0

also holds for the closure E of the set.
b) Give an example of a bounded setE of Lebesgue measure zero whose closure

E is not a set of Lebesgue measure zero.
c) Determine whether assertion b) of Lemma 3 in Sect. 11.1 should be under-

stood as asserting that the concepts of Jordan measure zero and Lebesgue measure
zero are the same for compact sets.

d) Prove that if the projection of a bounded set E ⊂R
n onto a hyperplane R

n−1

has (n− 1)-dimensional measure zero, then the set E itself has n-dimensional mea-
sure zero.

e) Show that a Jordan-measurable set whose interior is empty has measure 0.

2. a) Is it possible for the integral of a function f over a bounded set E, as intro-
duced in Definition 2, to exist if E is not an admissible (Jordan-measurable) set?

b) Is a constant function f : E → R integrable over a bounded but Jordan-
nonmeasurable set E?

c) Is it true that if a function f is integrable over E, then the restriction f |A of
this function to any subset A⊂E is integrable over A?

d) Give necessary and sufficient conditions on a function f :E→R defined on
a bounded (but not necessarily Jordan-measurable) set E under which the Riemann
integral of f over E exists.

3. a) Let E be a set of Lebesgue measure 0 and f :E→R a bounded continuous
function on E. Is f always integrable on E?

b) Answer question a) assuming that E is a set of Jordan measure zero.
c) What is the value of the integral of the function f in a) if it exists?

4. The Brunn–Minkowski inequality. Given two nonempty setsA,B ⊂R
n, we form

their (vector) sum in the sense of Minkowski A+ B := {a + b | a ∈ A,b ∈ B}. Let
V (E) denote the content of a set E ⊂R

n.

a) Verify that if A and B are standard n-dimensional intervals (parallelepipeds),
then

V 1/n(A+B)≥ V 1/n(A)+ V 1/n(B).

b) Now prove the preceding inequality (the Brunn–Minkowski inequality) for
arbitrary measurable compact sets A and B .

c) Show that equality holds in the Brunn–Minkowski inequality only in the fol-
lowing three cases: when V (A+ B)= 0, when A and B are singleton (one-point)
sets, and when A and B are similar convex sets.
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11.3 General Properties of the Integral

11.3.1 The Integral as a Linear Functional

Proposition 1 a) The set R(E) of functions that are Riemann-integrable over a
bounded set E ⊂ R

n is a vector space with respect to the standard operations of
addition of functions and multiplication by constants.

b) The integral is a linear functional
∫

E

:R(E)→R on the set R(E).

Proof Noting that the union of two sets of measure zero is also a set of measure
zero, we see that assertion a) follows immediately from the definition of the integral
and the Lebesgue criterion for existence of the integral of a function over an interval.

Taking account of the linearity of Riemann sums, we obtain the linearity of the
integral by passage to the limit. �

Remark 1 If we recall that the limit of the Riemann sums as λ(P )→ 0 must be the
same independently of the set of distinguished points ξ , we can conclude that

(
f ∈R(E))

∧(
f (x)= 0 almost everywhere on E

)⇒
(∫

E

f (x)dx = 0

)
.

Therefore, if two integrable functions are equal at almost all points of E, then
their integrals over E are also equal. Hence if we pass to the quotient space of
R(E) obtained by identifying functions that are equal at almost all points of E, we
obtain a vector space R̃(E) on which the integral is also a linear function.

11.3.2 Additivity of the Integral

Although we shall always be dealing with admissible sets E ⊂R
n, this assumption

was dispensable in Sect. 11.3.1 (and we dispensed with it). From now on we shall
be talking only of admissible sets.

Proposition 2 Let E1 and E2 be admissible sets in R
n and f a function defined on

E1 ∪E2.

a) The following relations hold:
(
∃
∫

E1∪E2

f (x)dx

)
⇔
(
∃
∫

E1

f (x)dx

)∧(
∃
∫

E2

f (x)dx

)

⇒∃
∫

E1∩E2

f (x)dx.
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b) If in addition it is known that μ(E1 ∩ E2) = 0, the following equality holds
when the integrals exist:

∫

E1∪E2

f (x)dx =
∫

E1

f (x)dx +
∫

E2

f (x)dx.

Proof Assertion a) follows from Lebesgue’s criterion for existence of the Riemann
integral over an admissible set (Theorem 1 of Sect. 11.2). Here it is only necessary
to recall that the union and intersection of admissible sets are also admissible sets
(Lemma 2 of Sect. 11.2).

To prove b) we begin by remarking that

χE1∪E2 = χE1(x)+ χE2(x)− χE1∩E2(x).

Therefore,
∫

E1∪E2

f (x)dx =
∫

I⊃E1∪E2

f χE1∪E2(x)dx =

=
∫

I

f χE1(x)dx +
∫

I

f χE2(x)dx −
∫

I

f χE1∩E2(x)dx =

=
∫

E1

f (x)dx +
∫

E2

f (x)dx.

The essential point is that the integral
∫

I

f χE1∩E2(x)dx =
∫

E1∩E2

f (x)dx,

as we know from part a), exists; and since μ(E1 ∩ E2) = 0, it equals zero (see
Remark 1). �

11.3.3 Estimates for the Integral

a. A General Estimate

We begin with a general estimate of the integral that is also valid for functions with
values in any complete normed space.

Proposition 3 If f ∈R(E), then |f | ∈R(E), and the inequality
∣∣
∣∣

∫

E

f (x)dx

∣∣
∣∣≤
∫

E

|f |(x)dx

holds.
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Proof The relation |f | ∈R(E) follows from the definition of the integral over a set
and the Lebesgue criterion for integrability of a function over an interval.

The inequality now follows from the corresponding inequality for Riemann sums
and passage to the limit. �

b. The Integral of a Nonnegative Function

The following propositions apply only to real-valued functions.

Proposition 4 The following implication holds for a function f :E→R:

(
f ∈R(E))∧ (∀x ∈E (f (x)≥ 0

))⇒
∫

E

f (x)dx ≥ 0.

Proof Indeed, if f (x)≥ 0 on E, then f χE(x)≥ 0 in R
n. Then, by definition,

∫

E

f (x)dx =
∫

I⊃E
f χE(x)dx.

This last integral exists by hypothesis. But it is the limit of nonnegative Riemann
sums and hence nonnegative. �

From Proposition 4 just proved, we obtain successively the following corollaries.

Corollary 1

(
f,g ∈R(E))∧ (f ≤ g on E)⇒

(∫

E

f (x)dx ≤
∫

E

g(x)dx

)
.

Corollary 2 If f ∈R(E) and the inequalities m ≤ f (x) ≤M hold at every point
of the admissible set E, then

mμ(E)≤
∫

E

f (x)dx ≤Mμ(E).

Corollary 3 If f ∈R(E), m= infx∈E f (x), andM = supx∈E f (x), then there is a
number θ ∈ [m,M] such that

∫

E

f (x)dx = θμ(E).

Corollary 4 If E is a connected admissible set and the function f ∈R(E) is con-
tinuous, then there exists a point ξ ∈E such that

∫

E

f (x)dx = f (ξ)μ(E).
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Corollary 5 If in addition to the hypotheses of Corollary 2 the function g ∈R(E)
is nonnegative on E, then

m

∫

E

g(x)dx ≤
∫

E

fg(x)dx ≤M
∫

E

g(x)dx.

Corollary 4 is a generalization of the one-dimensional result and is usually called
by the same name, that is, the mean-value theorem for the integral.

Proof Corollary 5 follows from the inequalities mg(x) ≤ f (x)g(x) ≤Mg(x) tak-
ing account of the linearity of the integral and Corollary 1. It can also be proved
directly by passing from integrals over E to the corresponding integrals over an in-
terval, verifying the inequalities for the Riemann sums, and then passing to the limit.
Since all these arguments were carried out in detail in the one-dimensional case, we
shall not give the details. We note merely that the integrability of the product f · g
of the functions f and g obviously follows from Lebesgue’s criterion. �

We shall now illustrate these relations in practice, using them to verify the fol-
lowing very useful lemma.

Lemma a) If the integral of a nonnegative function f : I → R over the interval I
equals zero, then f (x)= 0 at almost all points of the interval I .

b) Assertion a) remains valid if the interval I in it is replaced by any admissible
(Jordan-measurable) set E.

Proof By Lebesgue’s criterion the function f ∈R(E) is continuous at almost all
points of the interval I . For that reason the proof of a) will be achieved if we show
that f (a)= 0 at each point of continuity a ∈ I of the function f .

Assume that f (a) > 0. Then f (x) ≥ c > 0 in some neighborhood UI (a) of a
(the neighborhood may be assumed to be an interval). Then, by the properties of the
integral just proved,
∫

I

f (x)dx =
∫

UI (a)

f (x)dx +
∫

I\UI (a)
f (x)dx ≥

∫

UI (a)

f (x)dx ≥ cμ(UI (a)
)
> 0.

This contradiction verifies assertion a). If we apply this assertion to the func-
tion f χE and take account of the relation μ(∂E)= 0, we obtain assertion b). �

Remark 2 It follows from the lemma just proved that if E is a Jordan-measurable
set in R

n and R̃(E) is the vector space considered in Remark 1, consisting of equiv-
alence classes of functions that are integrable over E and differ only on sets of
Lebesgue measure zero, then the quantity ‖f ‖ = ∫

E
|f |(x)dx is a norm on R̃(E).

Proof Indeed, the inequality
∫
E
|f |(x)dx = 0 now implies that f is in the same

equivalence class as the identically zero function. �
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11.3.4 Problems and Exercises

1. Let E be a Jordan-measurable set of nonzero measure, f :E→R a continuous
nonnegative integrable function on E, andM = supx∈E f (x). Prove that

lim
n→∞

(∫

E

f n(x)dx

)1/n

=M.

2. Prove that if f,g ∈R(E), then the following are true.

a) Hölder’s inequality

∣
∣
∣
∣

∫

E

(f · g)(x)dx
∣
∣
∣
∣≤
(∫

E

|f |p(x)dx
)1/p(∫

E

|g|q(x)dx
)1/q

,

where p ≥ 1, q ≥ 1, and 1
p
+ 1
q
= 1;

b) Minkowski’s inequality

(∫

E

|f + g|p dx

)1/p

≤
(∫

E

|f |p(x)dx
)1/p

+
(∫

E

|g|p(x)dx
)1/p

,

if p ≥ 1.
Show that
c) the preceding inequality reverses direction if 0<p < 1;
d) equality holds in Minkowski’s inequality if and only if there exists λ≥ 0 such

that one of the equalities f = λg or g = λf holds except on a set of measure zero
in E;

e) the quantity ‖f ‖p = ( 1
μ(E)

∫
E
|f |p(x)dx)1/p , where μ(E) > 0, is a mono-

tone function of p ∈R and is a norm on the space R̃(E) for p ≥ 1.
Find the conditions under which equality holds in Hölder’s inequality.

3. Let E be a Jordan-measurable set in R
n with μ(E) > 0. Verify that if ϕ ∈

C(E,R) and f :R→R is a convex function, then

f

(
1

μ(E)

∫

E

ϕ(x)dx

)
≤ 1

μ(E)

∫

E

(f ◦ ϕ)(x)dx.

4. a) Show that if E is a Jordan-measurable set in R
n and the function f :E→R

is integrable over E and continuous at an interior point a ∈E, then

lim
δ→+0

1

μ(UδE(a))

∫

UδE(a)

f (x)dx = f (a),

where, as usual, UδE(a) is the δ-neighborhood of the point in E.
b) Verify that the preceding relation remains valid if the condition that a is an

interior point of E is replaced by the condition μ(UδE(a)) > 0 for every δ > 0.
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11.4 Reduction of a Multiple Integral to an Iterated Integral

11.4.1 Fubini’s Theorem

Up to now, we have discussed only the definition of the integral, the conditions
under which it exists, and its general properties. In the present section we shall
prove Fubini’s theorem,4 which, together with the formula for change of variable, is
a tool for computing multiple integrals.

Theorem 5 Let X× Y be an interval in R
m+n, which is the direct product of inter-

vals X ⊂R
m and Y ⊂Rn. If the function f :X× Y →R is integrable over X× Y ,

then all three of the integrals

∫

X×Y
f (x, y)dx dy,

∫

X

dx
∫

Y

f (x, y)dy,
∫

Y

dy
∫

X

f (x, y)dx

exist and are equal.

Before taking up the proof of this theorem, let us decode the meaning of the sym-
bolic expressions that occur in the statement of it. The integral

∫
X×Y f (x, y)dx dy

is the integral of the function f over the set X × Y , which we are familiar
with, written in terms of the variables x ∈ X and y ∈ Y . The iterated integral∫
X

dx
∫
Y
f (x, y)dy should be understood as follows: For each fixed x ∈ X the in-

tegral F(x) = ∫
Y
f (x, y)dy is computed, and the resulting function F : X→ R

is then to be integrated over X. If, in the process, the integral
∫
Y
f (x, y)dy does

not exist for some x ∈ X, then F(x) is set equal to any value between the lower
and upper Darboux integrals J (x) = ∫

Y
f (x, y)dy and J (x) = ∫̄

Y
f (x, y)dy, in-

cluding the upper and lower integrals J (x) and J (x) themselves. It will be shown
that in that case F ∈R(X). The iterated integral

∫
Y

dy
∫
X
f (x, y)dx has a similar

meaning.
It will become clear in the course of the proof that the set of values of x ∈X at

which J (x) �= J (x) is a set of m-dimensional measure zero in X.
Similarly, the set of y ∈ Y at which the integral

∫
X
f (x, y)dx may fail to exist

will turn out to be a set of n-dimensional measure zero in Y .
We remark finally that, in contrast to the integral over an (m+ n)-dimensional

interval, which we previously agreed to call a multiple integral, the successively

4G. Fubini (1870–1943) – Italian mathematician. His main work was in the area of the theory of
functions and geometry.
5This theorem was proved long before the theorem known in analysis as Fubini’s theorem, of which
it is a special case. However, it has become the custom to refer to theorems making it possible to
reduce the computation of multiple integrals to iterated integrals in lower dimensions as theorems
of Fubini type, or, for brevity, Fubini’s Theorem.
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computed integrals of the function f (x, y) over Y and then over X or over X and
then over Y are customarily called iterated integrals of the function.

If X and Y are closed intervals on the line, the theorem stated here theoreti-
cally reduces the computation of a double integral over the interval X × Y to the
successive computation of two one-dimensional integrals. It is clear that by apply-
ing this theorem several times, one can reduce the computation of an integral over
a k-dimensional interval to the successive computation of k one-dimensional inte-
grals.

The essence of the theorem we have stated is very simple and consists of the
following. Consider a Riemann sum

∑
i,j f (xi, yj )|Xi | · |Yj | corresponding to a

partition of the interval X × Y into intervals Xi × Yj . Since the integral over the
interval X×Y exists, the distinguished points ξij can be chosen as we wish, and we
choose them as the “direct product” of choices xi ∈ Xi ⊂ X and yj ∈ Yj ∈ Y . We
can then write
∑

i,j

f (xi, yj )|Xi | · |Yj | =
∑

i

|Xi |
∑

j

f (xi, yj )|Yj | =
∑

j

|Yj |
∑

i

f (xi, yj )|Xj |,

and this is the prelimit form of theorem.
We now give the formal proof.

Proof Every partition P of the intervalX×Y is induced by corresponding partitions
PX and PY of the intervals X and Y . Here every interval of the partition P is the
direct product Xi × Yj of certain intervals Xi and Yj of the partitions PX and PY
respectively. By properties of the volume of an interval we have |Xi × Yj | = |Xi | ·
|Yj |, where each of these volumes is computed in the space R

m+n, Rm, or Rn in
which the interval in question is situated.

Using the properties of the greatest lower bound and least upper bound and the
definition of the lower and upper Darboux sums and integrals, we now carry out the
following estimates:

s(f,P ) =
∑

i,j

inf
x∈Xi
y∈Yj

f (x, y)|Xi × Yj | ≤
∑

i

inf
x∈Xi

(∑

j

inf
y∈Yj

f (x, y)|Yj |
)
|Xi | ≤

≤
∑

i

inf
x∈Xi

(∫

Y

f (x, y)dy

)
|Xi | ≤

∑

i

inf
x∈Xi

F (x)|Xi | ≤

≤
∑

i

sup
x∈Xi

F (x)|Xi | ≤
∑

i

sup
x∈Xi

(∫̄

Y

f (x, y)dy

)
|Xi | ≤

≤
∑

i

sup
x∈Xi

(∑

j

sup
y∈Yj

F (x, y)|Yj |
)
|Xi | ≤

≤
∑

i,j

sup
x∈Xi
y∈Yj

f (x, y)|Xi × Yj | = S(f,P ).
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Since f ∈ R(X × Y), both of the extreme terms in these inequalities tend to the
value of the integral of the function over the interval X× Y as λ(P )→ 0. This fact
enables us to conclude that F ∈R(X) and that the following equality holds:

∫

X×Y
f (x, y)dx dy =

∫

X

F(x)dx.

We have carried out the proof for the case when the iterated integration is carried
out first over Y , then overX. It is clear that similar reasoning can be used in the case
when the integration over X is done first. �

11.4.2 Some Corollaries

Corollary 1 If f ∈R(X× Y), then for almost all x ∈X (in the sense of Lebesgue)
the integral

∫
X
f (x, y)dy exists, and for almost all y ∈ Y the integral

∫
X
f (x, y)dx

exists.

Proof By the theorem just proved,

∫

X

(∫̄

Y

f (x, y)dy −
∫

Y

f (x, y)dy

)
dx = 0.

But the difference of the upper and lower integrals in parentheses is nonnegative.
We can therefore conclude by the lemma of Sect. 11.3 that this difference equals
zero at almost all points x ∈X.

Then by the Darboux criterion (Theorem 3 of Sect. 11.1) the integral
∫
Y
f (x, y)dy

exists for almost all values of x ∈X.
The second half of the corollary is proved similarly. �

Corollary 2 If the interval I ⊂R
n is the direct product of the closed intervals Ii =

[ai, bi], i = 1, . . . , n, then

∫

I

f (x)dx =
∫ bn

an
dxn
∫ bn−1

an−1
dxn−1 . . .

∫ b1

a1
f
(
x1, x2, . . . , xn

)
dx1.

Proof This formula obviously results from repeated application of the theorem just
proved. All the inner integrals on the right-hand side are to be understood as in
the theorem. For example, one can insert the upper or lower integral sign through-
out. �

Example 1 Let f (x, y, z)= z sin(x+y). We shall find the integral of the restriction
of this function to the interval I ⊂R

3 defined by the relations 0≤ x ≤ π , |y| ≤ π/2,
0≤ z≤ 1.
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By Corollary 2

∫∫∫

I

f (x, y, z)dx dy dz =
∫ 1

0
dz
∫ π/2

−π/2
dy
∫ π

0
z sin(x + y)dx =

=
∫ 1

0
dz
∫ π/2

−π/2
(−z cos(x + y)∣∣π

x=0

)
dy =

=
∫ 1

0
dz
∫ π/2

−π/2
2z cosy dy =

=
∫ 1

0

(
2z siny

∣
∣y=π/2
y=−π/2

)
dz=

∫ 1

0
4zdz= 2.

The theorem can also be used to compute integrals over very general sets.

Corollary 3 Let D be a bounded set in R
n−1 and E = {(x, y) ∈ R

n | (x ∈ D) ∧
(ϕ1(x)≤ y ≤ ϕ2(x))}. If f ∈R(E), then

∫

E

f (x, y)dx dy =
∫

D

dx
∫ ϕ2(x)

ϕ1(x)

f (x, y)dy. (11.1)

Proof Let Ex = {y ∈ R | ϕ1(x) ≤ y ≤ ϕ2(x)} if x ∈ D and Ex = ∅ if x /∈ D. We
remark that χE(x, y)= χD(x) ·χEx (y). Recalling the definition of the integral over
a set and using Fubini’s theorem, we obtain

∫

E

f (x, y)dx dy =
∫

I⊃E
f χE(x, y)dx dy =

=
∫

Ix⊃D
dx
∫

Iy⊃Ex
f χE(x, y)dy =

=
∫

Ix

(∫

Iy

f (x, y)χEx (y)dy

)
χD(x)dx =

=
∫

Ix

(∫ ϕ2(x)

ϕ1(x)

f (x, y)dy

)
χD(x)dx =

=
∫

D

(∫ ϕ2(x)

ϕ1(x)

f (x, y)dy

)
dx.

The inner integral here may also fail to exist on a set of points in D of Lebesgue
measure zero, and if so it is assigned the same meaning as in the theorem of Fubini
proved above. �

Remark If the set D in the hypotheses of Corollary 3 is Jordan-measurable and the
functions ϕi :D→R, i = 1,2, are continuous and bounded, then the set E ⊂R

n is
Jordan measurable.
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Proof The boundary ∂E of E consists of the two graphs of the continuous functions
ϕi :D→R, i = 1,2, (which by Example 2 of Sect. 11.1) are sets of measure zero)
and the set Z, which is a portion of the product of the boundary ∂D of D ⊂ R

n−1

and a sufficiently large one-dimensional closed interval of length l. By hypothesis
∂D can be covered by a system of (n− 1)-dimensional intervals of total (n− 1)-
dimensional volume less than ε/l. The direct product of these intervals and the
given one-dimensional interval of length l gives a covering of Z by intervals whose
total volume is less than ε. �

Because of this remark one can say that the function f :E→ 1 ∈R is integrable
on a measurable set E having this structure (as it is on any measurable set E).
Relying on Corollary 3 and the definition of the measure of a measurable set, one
can now derive the following corollary.

Corollary 4 If under the hypotheses of Corollary 3 the set D is Jordan-measurable
and the functions ϕi :D→R, i = 1,2, are continuous, then the set E is measurable
and its volume can be computed according to the formula

μ(E)=
∫

D

(
ϕ2(x)− ϕ1(x)

)
dx. (11.2)

Example 2 For the disk E = {(x, y) ∈R2 | x2+ y2 ≤ r2} we obtain by this formula

μ(E) =
∫ r

−r
(√
r2 − y2 − (−

√
r2 − y2

))
dy = 2

∫ r

−r

√
r2 − y2 dy =

= 4
∫ r

0

√
r2 − y2 dy = 4

∫ π/2

0
r cosϕ d(r sinϕ)=

= 4r
∫ π/2

0
r cos2 ϕ dϕ = πr2.

Corollary 5 Let E be a measurable set contained in the interval I ⊂R
n. Represent

I as the direct product I = Ix × Iy of the (n− 1)-dimensional interval Ix and the
closed interval Iy . Then for almost all values y0 ∈ Iy the section Ey0 = {(x, y) ∈E |
y = y0} of the set E by the (n− 1)-dimensional hyperplane y = y0 is a measurable
subset of it, and

μ(E)=
∫

Iy

μ(Ey)dy, (11.3)

whereμ(Ey) is the (n−1)-dimensional measure of the setEy if it is measurable and

equal to any number between the numbers
∫
Ey

1 · dx and ¯∫
Ey

1 · dx if Ey happens to
be a nonmeasurable set.

Proof Corollary 5 follows immediately from the theorem and Corollary 1, if we set
f = χE in both of them and take account of the relation χE(x, y)= χEy (x). �
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A particular consequence of this result is the following.

Corollary 6 (Cavalieri’s6 principle) LetA and B be two solids in R
3 having volume

(that is, Jordan-measurable). Let Ac = {(x, y, z) ∈A | z= c} and Bc = {(x, y, z) ∈
B | z= c} be the sections of the solids A and B by the plane z= c. If for every c ∈R
the sets Ac and Bc are measurable and have the same area, then the solids A and
B have the same volumes.

It is clear that Cavalieri’s principle can be stated for spaces Rn of any dimension.

Example 3 Using formula (11.3), let us compute the volume Vn of the ball B =
{x ∈Rn | |x| ≤ r} of radius r in the Euclidean space R

n.

It is obvious that V1 = 2. In Example 2 we found that V2 = πr2. We shall show
that Vn = cnrn, where cn is a constant (which we shall compute below). Let us
choose some diameter [−r, r] of the ball and for each point x ∈ [−r, r] consider
the section Bx of the ball B by a hyperplane orthogonal to the diameter. Since Bx
is a ball of dimension n − 1, whose radius, by the Pythagorean theorem, equals√
r2 − x2, proceeding by induction and using (11.3), we can write

Vn =
∫ r

−r
cn−1
(
r2 − x2) n−1

2 dx =
(
cn−1

∫ π/2

−π/2
cosn ϕ dϕ

)
rn.

(In passing to the last equality, as one can see, we made the change of variable
x = r sinϕ.)

Thus we have shown that Vn = cnrn, and

cn = cn−1

∫ π/2

−π/2
cosn ϕ dϕ. (11.4)

We now find the constant cn explicitly. We remark that for m≥ 2

Im =
∫ π/2

−π/2
cosm ϕ dϕ =

∫ π/2

−π/2
cosm−2 ϕ

(
1− sin2 ϕ

)
dϕ =

= Im−2 + 1

m− 1

∫ π/2

−π/2
sinϕ d cosm−1 ϕ = Im−2 − 1

m− 1
Im,

that is, the following recurrence relation holds:

Im = m− 1

m
Im−2. (11.5)

6B. Cavalieri (1598–1647) – Italian mathematician, the creator of the so-called method of indivisi-
bles for determining areas and volumes.
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In particular, I2 = π/2. It is clear immediately from the definition of Im that
I1 = 2. Taking account of these values of I1 and I2 we find by the recurrence for-
mula (11.5) that

I2k+1 = (2k)!!
(2k + 1)!! · 2, I2k = (2k − 1)!!

(2k)!! π. (11.6)

Returning to formula (11.4), we now obtain

c2k+1 = c2k
(2k)!!

(2k + 1)!! · 2= c2k−1
(2k)!!

(2k + 1)!! ·
(2k − 1)!!
(2k)!! π = · · · = c1 · (2π)k

(2k + 1)!! ,

c2k = c2k−1
(2k− 1)!!
(2k)!! π = c2k−2

(2k − 1)!!
(2k)!! π ·

(2k − 2)!!
(2k − 1)!! · 2=

= · · · = c2
(2π)k−1

(2k)!! · 2.

But, as we have seen above, c1 = 2 and c2 = π , and hence the final formulas for
the required volume Vn are as follows:

V2k+1 = 2
(2π)k

(2k + 1)!! r
2k+1, V2k = (2π)

k

(2k)!! r
2k, (11.7)

where k ∈N, and the first of these formulas is also valid for k = 0.

11.4.3 Problems and Exercises

1. a) Construct a subset of the square I ⊂ R
2 such that on the one hand its inter-

section with any vertical line and any horizontal line consists of at most one point,
while on the other hand its closure equals I .

b) Construct a function f : I → R for which both of the iterated integrals that
occur in Fubini’s theorem exist and are equal, yet f /∈R(I ).

c) Show by example that if the values of the function F(x) that occurs in Fu-
bini’s theorem, which in the theorem were subjected to the conditions J (x) ≤
F(x) ≤ J (x) at all points where J (x) < J (x), are simply set equal to zero at
those points, the resulting function may turn out to be nonintegrable. (Consider,
for example, the function f (x, y) on R

2 equal to 1 if the point (x, y) is not ra-
tional and to 1 − 1/q at the point (p/q,m/n), both fractions being in lowest
terms.)

2. a) In connection with formula (11.3), show that even if all the sections of a
bounded set E by a family of parallel hyperplanes are measurable, the set E may
yet be nonmeasurable.
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b) Suppose that in addition to the hypotheses of part a) it is known that the
function μ(Ey) in formula (11.3) is integrable over the closed interval Iy . Can we
assert that in this case the set E is measurable?

3. Using Fubini’s theorem and the positivity of the integral of a positive function,

give a simple proof of the equality ∂2f
∂x∂y
= ∂2f
∂y∂x

for the mixed partial derivatives,
assuming that they are continuous functions.
4. Let f : Ia,b → R be a continuous function defined on an interval Ia,b = {x ∈
R
n | ai ≤ xi ≤ bi, i = 1, . . . , n}, and let F : Ia,b→R be defined by the equality

F(x)=
∫

Ia,x

f (t)dt,

where Ia,x ⊂ Ia,b . Find the partial derivatives of this function with respect to the
variables x1, . . . , xn.
5. Let f (x, y) be a continuous function defined on the rectangle I = [a, b] ×
[c, d] ⊂R

2, which has a continuous partial derivative ∂f
∂y

in I .

a) Let F(y) = ∫ b
a
f (x, y)dx. Starting from the equality F(y) =

∫ b
a
(
∫ y
c
∂f
∂y
(x, t)dt+f (x, c))dx, verify the Leibniz rule, according to which F ′(y)=

∫ b
a
∂f
∂y
(x, y)dx.

b) Let G(x,y)= ∫ x
a
f (t, y)dt . Find ∂G

∂x
and ∂G

∂y
.

c) Let H(y)= ∫ h(y)
a

f (x, y)dx, where h ∈C(1)[a, b]. Find H ′(y).

6. Consider the sequence of integrals

F0(x)=
∫ x

0
f (y)dy, Fn(x)=

∫ x

0

(x − y)n
n! f (y)dy, n ∈N,

where f ∈ C(R,R).
a) Verify that F ′n(x)= Fn−1(x),F

(k)
n (0)= 0 if k ≤ n, and F (n+1)

n (x)= f (x).
b) Show that

∫ x

0
dx1

∫ x1

0
dx2 . . .

∫ xn−1

0
f (xn)dxn = 1

n!
∫ x

0
(x − y)nf (y)dy.

7. a) Let f :E→R be a function that is continuous on the set E = {(x, y) ∈ R2 |
0≤ x ≤ 1∧ 0≤ y ≤ x}. Prove that

∫ 1

0
dx
∫ x

0
f (x, y)dy =

∫ 1

0
dy
∫ 1

y

f (x, y)dx.

b) Use the example of the iterated integral
∫ 2π

0 dx
∫ sinx

0 1 ·dy to explain why not
every iterated integral comes from a double integral via Fubini’s theorem.
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11.5 Change of Variable in a Multiple Integral

11.5.1 Statement of the Problem and Heuristic Derivation
of the Change of Variable Formula

In our earlier study of the integral in the one-dimensional case, we obtained an
important formula for change of variable in such an integral. Our problem now is to
find a formula for change of variables in the general case. Let us make the question
more precise.

Let Dx be a set in R
n, f a function that is integrable over Dx , and ϕ :Dt →Dx

a mapping t �→ ϕ(t) of a set Dt ⊂R
n onto Dx . We seek a rule according to which,

knowing f and ϕ, we can find a function ψ in Dt such that the equality

∫

Dx

f (x)dx =
∫

Dt

ψ(t)dt

holds, making it possible to reduce the computation of the integral over Dx to the
computation of an integral over Dt .

We begin by assuming thatDt is an interval I ⊂R
n and ϕ : I→Dx a diffeomor-

phism of this interval onto Dx . To every partition P of the interval I into intervals
I1, I2, . . . , Ik there corresponds a partition of Dx into the sets ϕ(Ii), i = 1, . . . , k.
If all these sets are measurable and intersect pairwise only in sets of measure zero,
then by the additivity of the integral we find

∫

Dx

f (x)dx =
k∑

i=1

∫

ϕ(Ii )

f (x)dx. (11.8)

If f is continuous on Dx , then by the mean-value theorem

∫

ϕ(Ii )

f (x)dx = f (ξi)μ
(
ϕ(Ii)

)
,

where ξi ∈ ϕ(Ii). Since f (ξi)= f (ϕ(τi)), where τi = ϕ−1(ξi), we need only con-
nect μ(ϕ(Ii)) with μ(Ii).

If ϕ were a linear transformation, then ϕ(Ii) would be a parallelepiped whose
volume, as is known from analytic geometry, would be |detϕ′|μ(Ii). But a diffeo-
morphism is locally a nearly linear transformation, and so, if the dimensions of the
intervals Ii are sufficiently small, we may assume μ(ϕ(Ii)) ≈ |detϕ′(τi)||Ii | with
small relative error (it can be shown that for some choice of the point τi ∈ Ii actual
equality will result). Thus

k∑

i=1

∫

ϕ(Ii )

f (x)dx ≈
k∑

i=1

f
(
ϕ(τi)

)∣∣detϕ′(τi)
∣∣|Ii |. (11.9)
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But, the right-hand side of this approximate equality contains a Riemann sum for
the integral of the function f (ϕ(t))|detϕ′(t)| over the interval I corresponding to
the partition P of this interval with distinguished points τ . In the limit as λ(P )→ 0
we obtain from (11.8) and (11.9) the relation

∫

Dx

f (x)dx =
∫

Dt

f
(
ϕ(t)
)∣∣detϕ′(t)

∣∣dt.

This is the desired formula together with an explanation of it. The route just
followed in obtaining it can be traversed with complete rigor (and it is worthwhile
to do so). However, in order to become acquainted with some new and useful general
mathematical methods and facts and avoid purely technical work, we shall depart
from this route slightly in the proof below.

We now proceed to precise statements. We recall the following definition.

Definition 1 The support of a function f :D→ R defined in a domain D ⊂ R
n is

the closure in D of the set of points of x ∈D at which f (x) �= 0.

In this section we shall study the situation when the integrand f :Dx→R equals
zero on the boundary of the domain Dx , more precisely, when the support of the
function f (denoted suppf ) is a compact set7 K contained in Dx . The integrals of
f over Dx and over K , if they exist, are equal, since the function equals zero in Dx
outside of K . From the point of view of mappings the condition suppf =K ⊂Dx
is equivalent to the statement that the change of variable x = ϕ(t) is valid not only in
the set K over which one is essentially integrating, but also in some neighborhood
Dx of that set.

We now state what we intend to prove.

Theorem 1 If ϕ : Dt → Dx is a diffeomorphism of a bounded open set Dt ⊂ R
n

onto a setDx = ϕ(Dt)⊂R
n of the same type, f ∈R(Dx), and suppf is a compact

subset of Dx , then f ◦ ϕ|detϕ′| ∈R(Dt ), and the following formula holds:

∫

Dx=ϕ(Dt )
f (x)dx =

∫

Dt

f ◦ ϕ(t)∣∣detϕ′(t)
∣∣dt. (11.10)

11.5.2 Measurable Sets and Smooth Mappings

Lemma 1 Let ϕ :Dt→Dx be a diffeomorphism of an open set Dt ⊂R
n onto a set

Dx ⊂R
n of the same type. Then the following assertions hold.

a) If Et ⊂Dt is a set of (Lebesgue) measure zero, its image ϕ(Et )⊂Dx is also
a set of measure zero.

7Such functions are naturally called functions of compact support in the domain.



11.5 Change of Variable in a Multiple Integral 139

b) If a set Et contained in Dt along with its closure Et has Jordan measure
zero, its image ϕ(Et )= Ex is contained in Dx along with its closure and also has
measure zero.

c) If a (Jordan) measurable set Et is contained in the domain Dt along with its
closure Et , its image Ex = ϕ(Et ) is Jordan measurable and Ex ⊂Dx .

Proof We begin by remarking that every open subset D in R
n can be represented

as the union of a countable number of closed intervals (no two of which have any
interior points in common). To do this, for example, one can partition the coordinate
axes into closed intervals of lengthΔ and consider the corresponding partition of Rn

into cubes with sides of length Δ. Fixing Δ = 1, take the cubes of the partition
contained in D. Denote their union by F1. Then taking Δ = 1/2, adjoin to F1 the
cubes of the new partition that are contained in D\F1. In that way we obtain a
new set F2, and so forth. Continuing this process, we obtain a sequence F1 ⊂ · · · ⊂
Fn ⊂ · · · of sets, each of which consists of a finite or countable number of intervals
having no interior points in common, and as one can see from the construction,⋃
Fn =D.
Since the union of an at most countable collection of sets of measure zero is a

set of measure zero, it suffices to verify assertion a) for a set Et lying in a closed
interval I ⊂Dt . We shall now do this.

Since ϕ ∈ C(1)(I ) (that is, ϕ′ ∈ C(I)), there exists a constant M such that
‖ϕ′(t)‖ ≤M on I . By the finite-increment theorem the relation |x2 − x1| ≤M|t2 −
t1| must hold for every pair of points t1, t2 ∈ I with images x1 = ϕ(t1), x2 = ϕ(t2).

Now let {Ii} be a covering of Et by intervals such that
∑
i |Ii |< ε. Without loss

of generality we may assume that Ii = Ii ∩ I ⊂ I .
The collection {ϕ(Ii)} of sets ϕ(Ii) obviously forms a covering of Ex = ϕ(Et ).

If ti is the center of the interval Ii , then by the estimate just given for the possible
change in distances under the mapping ϕ, the entire set ϕ(Ii) can be covered by the
interval Ĩi with center xi = −ϕ(ti) whose linear dimensions are M times those of
the interval Ii . Since |Ĩi | =Mn|Ii |, and ϕ(Et )⊂⋃i Ĩi , we have obtained a covering
of ϕ(Et )=Ex by intervals whose total volume is less thanMnε. Assertion a) is now
established.

Assertion b) follows from a) if we take into account the fact that Et (and hence
by what has been proved, Ex = ϕ(Et ) also) is a set of Lebesgue measure zero and
that Et (and hence also Ex ) is a compact set. Indeed, by Lemma 3 of Sect. 11.1
every compact set that is of Lebesgue measure zero also has Jordan measure zero.

Finally, assertion c) is an immediate consequence of b), if we recall the definition
of a measurable set and the fact that interior points of Et map to interior points of
its image Ex = ϕ(Et ) under a diffeomorphism, so that ∂Ex = ϕ(∂Et ). �

Corollary Under the hypotheses of the theorem the integral on the right-hand side
of formula (11.10) exists.

Proof Since |detϕ′(t)| �= 0 in Dt , it follows that supp(f ◦ ϕ · |detϕ′|)= supp(f ◦
ϕ)= ϕ−1(suppf ) is a compact subset inDt . Hence the points at which the function
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f ◦ ϕ · |detϕ′|χDt in R
n is discontinuous have nothing to do with the function χDt ,

but are the pre-images of points of discontinuity of f in Dx . But f ∈R(Dx), and
therefore the set Ex of points of discontinuity of f in Dx is a set of Lebesgue
measure zero. But then by assertion a) of the lemma the set Et = ϕ−1(Ex) has
measure zero. By Lebesgue’s criterion, we can now conclude that f ◦ϕ · |detϕ′|χDt
is integrable on any interval It ⊃Dt . �

11.5.3 The One-Dimensional Case

Lemma 2 a) If ϕ : It → Ix is a diffeomorphism of a closed interval It ⊂R
1 onto a

closed interval Ix ⊂R
1 and f ∈R(Ix), then f ◦ ϕ · |ϕ′| ∈R(It ) and

∫

Ix

f (x)dx =
∫

It

(
f ◦ ϕ · ∣∣ϕ′∣∣)(t)dt. (11.11)

b) Formula (11.10) holds in R
1.

Proof Although we essentially already know assertion a) of this lemma, we shall
use the Lebesgue criterion for the existence of an integral, which is now at our
disposal, to give a short proof here that is independent of the proof given in Part 1.

Since f ∈R(Ix) and ϕ : It → Ix is a diffeomorphism, the function f ◦ ϕ|ϕ′| is
bounded on It . Only the pre-images of points of discontinuity of f on Ix can be
discontinuities of the function f ◦ ϕ|ϕ′|. By Lebesgue’s criterion, the latter form a
set of measure zero. The image of this set under the diffeomorphism ϕ−1 : Ix→ It ,
as we saw in the proof of Lemma 1, has measure zero. Therefore f ◦ ϕ|ϕ′| ∈R(It ).

Now let Px be a partition of the closed interval Ix . Through the mapping ϕ−1

it induces a partition Pt of the closed interval It , and it follows from the uniform
continuity of the mappings ϕ and ϕ−1 that λ(Px)→ 0⇔ λ(Pt )→ 0. We now write
the Riemann sums for the partitions Px and Pt with distinguished points ξi = ϕ(τi):

∑

i

f (ξi)|xi − xi−1| =
∑

i

f ◦ ϕ(τi)
∣∣ϕ(ti)− ϕ(ti−1)

∣∣=

=
∑

i

f ◦ ϕ(τi)
∣∣ϕ′(τi)

∣∣|ti − ti−1|,

and the points ξi can be assumed chosen just so that ξi = ϕ(τi), where τi is the point
obtained by applying the mean-value theorem to the difference ϕ(ti)− ϕ(ti−1).

Since both integrals in (11.11) exist, the choice of the distinguished points in
the Riemann sums can be made to suit our convenience without affecting the limit.
Hence from the equalities just written for the Riemann sums, we find (11.11) for the
integrals in the limit as λ(Px)→ 0(λ(Pt )→ 0).
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Assertion b) of Lemma 2 follows from Eq. (11.11). We first note that in the one-
dimensional case |detϕ′| = |ϕ′|. Next, the compact set suppf can easily be covered
by a finite system of closed intervals contained inDx , no two of which have common
interior points. The integral of f over Dx then reduces to the sum of the integrals
of f over the intervals of this system, and the integral of f ◦ ϕ|ϕ′| over Dt reduces
to the sum of the integrals over the intervals that are the pre-images of the intervals
in this system. Applying Eq. (11.11) to each pair of intervals that correspond under
the mapping ϕ and then adding, we obtain (11.10). �

Remark 1 The formula for change of variable that we proved previously had the
form

∫ ϕ(β)

ϕ(α)

f (x)dx =
∫ β

α

(
(f ◦ ϕ) · ϕ′)(t)dt, (11.12)

where ϕ was any smooth mapping of the closed interval [α,β] onto the interval with
endpoints ϕ(α) and ϕ(β). Formula (11.12) contains the derivative ϕ′ itself rather
than its absolute value |ϕ′|. The reason is that on the left-hand side it is possible that
ϕ(β) < ϕ(α).

However, if we observe that the relations

∫

I

f (x)dx =
{∫ b

a
f (x)dx, if a ≤ b,

− ∫ b
a
f (x)dx, if a > b,

hold, it becomes clear that when ϕ is a diffeomorphism formulas (11.11) and (11.12)
differ only in appearance; in essence they are the same.

Remark 2 It is interesting to note (and we shall certainly make use of this observa-
tion) that if ϕ : It→ Ix is a diffeomorphism of closed intervals, then the formulas

¯∫
Ix

f (x)dx =
∫̄

It

(
f ◦ ϕ∣∣ϕ′∣∣)(t)dt,

∫

Ix

f (x)dx =
∫

It

(
f ◦ ϕ∣∣ϕ′∣∣)(t)dt,

for the upper and lower integrals of real-valued functions are always valid.
Given that fact, we may take as established that in the one-dimensional case

formula (11.10) remains valid for any bounded function f if the integrals in it are
understood as upper or lower Darboux integrals.

Proof We shall assume temporarily that f is a nonnegative function bounded by a
constantM .

Again, as in the proof of assertion a) of Lemma 2, one may take partitions Px
and Pt of the intervals Ix and It respectively that correspond to each other under the
mapping ϕ and write the following estimates, in which ε is the maximum oscillation
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of ϕ on intervals of the partition Pt :

∑

i

sup
x∈Δxi

f (x)|xi − xi−1| ≤

≤
∑

i

sup
t∈Δti

f
(
ϕ(t)
)

sup
t∈Δti

∣∣ϕ′(t)
∣∣|ti − ti−1| ≤

≤
∑

i

sup
t∈Δti

(
f
(
ϕ(t)
) · sup
t∈Δti

∣∣ϕ′(t)
∣∣
)
|Δti | ≤

≤
∑

i

sup
t∈Δti

(
f
(
ϕ(t)
))(∣∣ϕ′(t)

∣
∣+ ε)|Δti | ≤

≤
∑

i

sup
t∈Δti

(
f
(
ϕ(t)
)∣∣ϕ′(t)

∣
∣)|Δti | + ε

∑

i

sup
t∈Δti

f
(
ϕ(t)
)|Δti | ≤

≤
∑

i

sup
t∈Δti

(
f
(
ϕ(t)
)∣∣ϕ′(t)

∣
∣)|Δti | + εM|It |.

Taking account of the uniform continuity of ϕ we obtain from this the relation

¯∫
Ix

f (x)dx ≤
∫̄

It

(
f ◦ ϕ∣∣ϕ′∣∣)(t)dt

as λ(Pt )→ 0. Applying what has just been proved to the mapping ϕ−1 and the
function f ◦ ϕ|ϕ′|, we obtain the opposite inequality, and thereby establish the first
equality in Remark 2 for a nonnegative function. But since any function can be
written as f =max{f,0}−max{−f,0} (a difference of two nonnegative functions)
the equality can be considered to be established in general. The second equality is
verified similarly. �

From the equalities just proved one can of course obtain once again assertion a)
of Lemma 2 for real-valued functions f .

11.5.4 The Case of an Elementary Diffeomorphism in R
n

Let ϕ :Dt →Dx be a diffeomorphism of a domain Dt ⊂ R
n
t onto a domain Dx ⊂

R
n
x with (t1, . . . , tn) and (x1, . . . , xn) the coordinates of points t ∈ Rnt and x ∈ Rnx

respectively. We recall the following definition.

Definition 2 The diffeomorphism ϕ :Dt →Dx is elementary if its coordinate rep-
resentation has the form

x1 = ϕ1(t1, . . . , tn
)= t1,
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...

xk−1 = ϕk−1(t1, . . . , tn
)= tk−1,

xk = ϕk(t1, . . . , tn)= ϕk(t1, . . . , tk, . . . , tn),
xk+1 = ϕk(t1, . . . , tn)= tk+1,

...

xn = ϕn(t1, . . . , tn)= tn.
Thus only one coordinate is changed under an elementary diffeomorphism (the

kth coordinate in this case).

Lemma 3 Formula (11.10) holds for an elementary diffeomorphism.

Proof Up to a relabeling of coordinates we may assume that we are considering a
diffeomorphism ϕ that changes only the nth coordinate. For convenience we intro-
duce the following notation:

(
x1, . . . , xn−1, xn

) =: (x̃, xn); (t1, . . . , tn−1, tn
)=: (t̃ , tn);

Dxn (̃x0) :=
{(
x̃, xn
) ∈Dx | x̃ = x̃0

};
Dtn (̃t0) :=

{(
t̃ ,tn
) ∈Dt | t̃ = t̃0

}
.

Thus Dxn (̃x) and Dtn (̃t) are simply the one-dimensional sections of the sets Dx
and Dt respectively by lines parallel to the nth coordinate axis. Let Ix be an inter-
val in R

n
x containing Dx . We represent Ix as the direct product Ix = Ix̃ × Ixn of

an (n− 1)-dimensional interval Ix̃ and a closed interval Ixn of the nth coordinate
axis. We give a similar representation It = Ĩt × Itn for a fixed interval It in R

n
t

containing Dt .
Using the definition of the integral over a set, Fubini’s theorem, and Remark 2,

we can write
∫

Dx

f (x)dx =
∫

Ix

f · χDx (x)dx =
∫

Ix̃

dx̃
∫

Ixn

f · χDx
(
x̃, xn
)

dxn =

=
∫

Ix̃

dx̃
∫

Dxn (̃x)

f
(
x̃, xn
)

dxn =

=
∫

Ĩt

d̃t
∫

Dtn (̃t)

f
(
t̃ ,ϕn
(
t̃ ,tn
))
∣∣
∣∣
∂ϕn

∂tn

∣∣∣∣
(
t̃ ,tn
)

dtn =

=
∫

Ĩt

d̃t
∫

Itn

(
f ◦ ϕ∣∣detϕ′

∣
∣χDt
)(
t̃ ,tn
)

dtn =

=
∫

It

(
f ◦ ϕ∣∣detϕ′

∣∣χDt
)
(t)dt =

∫

Dt

(
f ◦ ϕ∣∣detϕ′

∣∣)(t)dt.
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In this computation we have used the fact that detϕ′ = ∂ϕn

∂tn
for the diffeomor-

phism under consideration. �

11.5.5 Composite Mappings and the Formula for Change
of Variable

Lemma 4 If Dτ
ψ→Dt

ϕ→Dx are two diffeomorphisms for each of which formula
(11.10) for change of variable in the integral holds, then it holds also for the com-
position ϕ ◦ψ :Dτ →Dx of these mappings.

Proof It suffices to recall that (ϕ ◦ ψ)′ = ϕ′ ◦ ψ ′ and that det(ϕ ◦ ψ)′(τ ) =
detϕ′(t)detψ ′(τ ), where t = ϕ(τ). We then have

∫

Dx

f (x)dx =
∫

Dt

(
f ◦ ϕ∣∣detϕ′

∣
∣)dt =

=
∫

Dτ

(
(f ◦ ϕ ◦ψ)∣∣detϕ′ ◦ψ∣∣∣∣detψ ′

∣∣)(τ )dτ =

=
∫

Dτ

(
f ◦ (ϕ ◦ψ)∣∣det(ϕ ◦ψ)′∣∣)(τ )dτ. �

11.5.6 Additivity of the Integral and Completion of the Proof
of the Formula for Change of Variable in an Integral

Lemmas 3 and 4 suggest that we might use the local decomposition of any diffeo-
morphism as a composition of elementary diffeomorphisms (see Proposition 2 from
Sect. 8.6.4 of Part 1) and thereby obtain the formula (11.10) in the general case.

There are various ways of reducing the integral over a set to integrals over small
neighborhoods of its points. For example, one may use the additivity of the integral.
That is the procedure we shall use. On the basis of Lemmas 1, 3, and 4 we now carry
out the proof of Theorem 1 on change of variable in a multiple integral.

Proof For each point t of the compact set Kt = supp((f ◦ϕ)|detϕ′|)⊂Dt we con-
struct a δ(t)-neighborhood U(t) of it in which the diffeomorphism ϕ decomposes
into a composition of elementary diffeomorphisms. From the δ(t)

2 neighborhoods
Ũ (t) ⊂ U(t) of the points t ∈ Kt we choose a finite covering Ũ (t1), . . . , Ũ (tk) of
the compact set Kt . Let δ = 1

2 min{δ(t1), . . . , δ(tk)}. Then the closure of any set
whose diameter is smaller than δ and which intersects Kt must be contained in at
least one of the neighborhoods Ũ (t1), . . . , Ũ (tk).

Now let I be an interval containing the set Dt and P a partition of the interval
I such that λ(P ) <min{δ, d}, where δ was found above and d is the distance from
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Kt to the boundary of Dt . Let I := {Ii} be the intervals of the partition P that have
a nonempty intersection with Kt . It is clear that if Ii ∈ I , then Ii ⊂Dt and

∫

Dt

(
f ◦ ϕ∣∣detϕ′

∣∣)(t)dt =
∫

I

((
f ◦ ϕ∣∣detϕ′

∣∣)χDt
)
(t)dt =

=
∑

i

∫

Ii

(
f ◦ ϕ∣∣detϕ′

∣∣)(t)dt. (11.13)

By Lemma 1 the image Ei = ϕ(Ii) of the intervals Ii is a measurable set. Then
the set E =⋃i Ei is also measurable and suppf ⊂ E = E ⊂Dx . Using the addi-
tivity of the integral, we deduce from this that

∫

Dx

f (x)dx =
∫

Ix⊃Dx
f χDx (x)dx =

∫

Ix\E
f χDx (x)dx +

∫

E

f χDx (x)dx =

=
∫

E

f χDx (x)dx =
∫

E

f (x)dx =
∑

i

∫

Ei

f (x)dx. (11.14)

By construction every interval Ii ∈ I is contained in some neighborhood U(xj )
inside which the diffeomorphism ϕ decomposes into a composition of elementary
diffeomorphisms. Hence on the basis of Lemmas 3 and 4 we can write

∫

Ei

f (x)dx =
∫

Ii

(
f ◦ ϕ∣∣detϕ′

∣
∣)(t)dt. (11.15)

Comparing relations (11.13), (11.14), and (11.15), we obtain formula (11.10). �

11.5.7 Corollaries and Generalizations of the Formula for Change
of Variable in a Multiple Integral

a. Change of Variable Under Mappings of Measurable Sets

Proposition 1 Let ϕ :Dt →Dx be a diffeomorphism of a bounded open set Dt ⊂
R
n onto a set Dx ⊂ R

n of the same type; let Et and Ex be subsets of Dt and Dx
respectively and such that Et ⊂Dt , Ex ⊂Dx , and Ex = ϕ(Et ). If f ∈R(Ex), then
f ◦ ϕ|detϕ′| ∈R(Et ), and the following equality holds:

∫

Ex

f (x)dx =
∫

Et

(
f ◦ ϕ∣∣detϕ′

∣∣)(t)dt. (11.16)
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Proof Indeed,
∫

Ex

f (x)dx =
∫

Dx

(f χEx )(x)dx =
∫

Dt

((
(f χEx ) ◦ ϕ

)∣∣detϕ′
∣∣)(t)dt =

=
∫

Dt

(
(f ◦ ϕ)∣∣detϕ′

∣∣χEt
)
(t)dt =

∫

Et

(
(f ◦ ϕ)∣∣detϕ′

∣∣)(t)dt.

In this computation we have used the definition of the integral over a set, formula
(11.10), and the fact that χEt = χEx ◦ ϕ. �

b. Invariance of the Integral

We recall that the integral of a function f :E→R over a set E reduces to comput-
ing the integral of the function f χE over an interval I ⊃E. But the interval I itself
was by definition connected with a Cartesian coordinate system in R

n. We can now
prove that all Cartesian systems lead to the same integral.

Proposition 2 The value of the integral of a function f over a set E ⊂ R
n is inde-

pendent of the choice of Cartesian coordinate system in R
n.

Proof In fact the transition from one Cartesian coordinate system in R
n to another

Cartesian system has a Jacobian constantly equal to 1 in absolute value. By Propo-
sition 1 this implies the equality

∫

Ex

f (x)dx =
∫

Et

(f ◦ ϕ)(t)dt.

But this means that the integral is invariantly defined: if p is a point of E having
coordinates x = (x1, . . . , xn) in the first system and t = (t1, . . . , tn) in the second,
and x = ϕ(t) is the transition function from one system to the other, then

f (p)= fx
(
x1, . . . , xn

)= ft
(
t1, . . . , tn

)
,

where ft = fx ◦ ϕ. Hence we have shown that
∫

Ex

fx(x)dx =
∫

Et

ft (t)dt,

where Ex and Et denote the set E in the x and t coordinates respectively. �

We can conclude from Proposition 2 and Definition 3 of Sect. 11.2 for the (Jor-
dan) measure of a set E ⊂ R

n that this measure is independent of the Cartesian
coordinate system in R

n, or, what is the same, that Jordan measure is invariant un-
der the group of rigid Euclidean motions in R

n.
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c. Negligible Sets

The changes of variable or formulas for transforming coordinates used in practice
sometimes have various singularities (for example, one-to-oneness may fail in some
places, or the Jacobian may vanish, or differentiability may fail). As a rule, these
singularities occur on a set of measure zero and so, to meet the demands of practice,
the following theorem is very useful.

Theorem 2 Let ϕ :Dt →Dx be a mapping of a (Jordan) measurable set Dt ⊂R
n
t

onto a set Dx ⊂ R
n
x of the same type. Suppose that there are subsets St and Sx

of Dt and Dx respectively having (Lebesgue) measure zero and such that Dt\St
and Dx\Sx are open sets and ϕ maps the former diffeomorphically onto the latter
and with a bounded Jacobian. Then for any function f ∈R(Dx) the function (f ◦
ϕ)|detϕ′| also belongs to R(Dt\St ) and

∫

Dx

f (x)dx =
∫

Dt\St

(
(f ◦ ϕ)∣∣detϕ′

∣
∣)(t)dt. (11.17)

If, in addition, the quantity |detϕ′| is defined and bounded in Dt , then

∫

Dx

f (x)dx =
∫

Dt

(
(f ◦ ϕ)∣∣detϕ′

∣∣)(t)dt. (11.18)

Proof By Lebesgue’s criterion the function f can have discontinuities in Dx and
hence also in Dx\Sx only on a set of measure zero. By Lemma 1, the image of this
set of discontinuities under the mapping ϕ−1 :Dx\Sx→Dt\St is a set of measure
zero in Dt\St . Thus the relation (f ◦ ϕ)|detϕ′| ∈ R(Dt\St ) will follow immedi-
ately from Lebesgue’s criterion for integrability if we establish that the set Dt\St is
measurable. The fact that this is indeed a Jordan measurable set will be a by-product
of the reasoning below.

By hypothesis Dx\Sx is an open set, so that (Dx\Sx) ∩ ∂Sx =∅. Hence ∂Sx ⊂
∂Dx ∪ Sx and consequently ∂Dx ∪ Sx = ∂Dx ∪ Sx , where Sx = Sx ∪ ∂Sx is the
closure of Sx in R

n
x . As a result, ∂Dx ∪ Sx is a closed bounded set, that is, it is com-

pact in R
n, and, being the union of two sets of measure zero, is itself of Lebesgue

measure zero. From Lemma 3 of Sect. 11.1 we know that then the set ∂Dx ∪ Sx
(and along with it, Sx ) has measure zero, that is, for every ε > 0 there exists a finite
covering I1, . . . , Ik of this set by intervals such that

∑k
i=1 |Ii |< ε. Hence it follows,

in particular, that the set Dx\Sx (and similarly the set Dt\St ) is Jordan measurable:
indeed, ∂(Dx\Sx)⊂ ∂Dx ∪ ∂Sx ⊂ ∂Dx ∪ Sx .

The covering I1, . . . , Ik can obviously also be chosen so that every point x ∈
∂Dx\Sx is an interior point of at least one of the intervals of the covering. Let
Ux =⋃ki=1 Ii . The set Ux is measurable, as is Vx =Dx\Ux . By construction the set
Vx is such that V x ⊂Dx\Sx and for every measurable set Ex ⊂Dx containing the
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compact set V x we have the estimate
∣∣∣∣

∫

Dx

f (x)dx −
∫

Ex

f (x)dx

∣∣∣∣=
∣∣∣∣

∫

Dx\Ex
f (x)dx

∣∣∣∣≤

≤Mμ(Dx\Ex) <M · ε, (11.19)

whereM = supx∈Dx f (x).
The pre-image V t = ϕ−1(V x) of the compact set V x is a compact subset of

Dt\St . Reasoning as above, we can construct a measurable compact set Wt subject
to the conditions V t ⊂Wt ⊂Dt\St and having the property that the estimate

∣
∣
∣
∣

∫

Dt\St

(
(f ◦ ϕ)∣∣detϕ′

∣
∣)(t)dt −

∫

Et

(
(f ◦ ϕ)∣∣detϕ′

∣
∣)(t)dt

∣
∣
∣
∣< ε (11.20)

holds for every measurable set Et such that Wt ⊂Et ⊂Dt\St .
Now let Ex = ϕ(Et ). Formula (11.16) holds for the sets Ex ⊂Dx\Sx and Et ⊂

Dt\St by Lemma 1. Comparing relations (11.16), (11.19), and (11.20) and taking
account of the arbitrariness of the quantity ε > 0, we obtain (11.17).

We now prove the last assertion of Theorem 2. If the function (f ◦ ϕ)|detϕ′|
is defined on the entire set Dt , then, since Dt\St is open in R

n
t , the entire set of

discontinuities of this function in Dt consists of the set A of points of discontinuity
of (f ◦ϕ)|detϕ′||Dt\St (the restriction of the original function toDt\St ) and perhaps
a subset B of St ∪ ∂Dt .

As we have seen, the set A is a set of Lebesgue measure zero (since the integral
on the right-hand side of (11.17) exists), and since St ∪ ∂Dt has measure zero, the
same can be said of B . Hence it suffices to know that the function (f ◦ ϕ)|detϕ′| is
bounded on Dt ; it will then follow from the Lebesgue criterion that it is integrable
over Dt . But |f ◦ ϕ|(t)≤M on Dt , so that the function (f ◦ ϕ)|detϕ′| is bounded
on St , given that the function |detϕ′| is bounded on St by hypothesis. As for the set
Dt\St , the function (f ◦ϕ)|detϕ′| is integrable over it and hence bounded. Thus, the
function (f ◦ϕ)|detϕ′| is integrable over Dt . But the sets Dt and Dt\St differ only
by the measurable set St , whose measure, as has been shown, is zero. Therefore,
by the additivity of the integral and the fact that the integral over St is zero, we can
conclude that the right-hand sides of (11.17) and (11.18) are indeed equal in this
case. �

Example The mapping of the rectangle I = {(r, ϕ) ∈R2 | 0≤ r ≤R ∧ 0≤ ϕ ≤ 2π}
onto the disk K = {(x, y) ∈R2 | x2 + y2 ≤R2} given by the formulas

x = r cosϕ, y = r sinϕ, (11.21)

is not a diffeomorphism: the entire side of the rectangle I on which r = 0 maps to
the single point (0,0) under this mapping; the images of the points (r,0) and (r,2π)
are the same. However, if we consider, for example, the sets I\∂I and K\E, where
E is the union of the boundary ∂K of the disk K and the radius ending at (0,R),
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then the restriction of the mapping (11.21) to the domain I\∂I turns out to be a
diffeomorphism of it onto the domain K\E. Hence by Theorem 2, for any function
f ∈R(K) we can write

∫∫

K

f (x, y)dx dy =
∫∫

I

f (r cosϕ, r sinϕ)r dr dϕ

and, applying Fubini’s theorem

∫∫

K

f (x, y)dx dy =
∫ 2π

0
dϕ
∫ R

0
f (r cosϕ, r sinϕ)r dr.

Relations (11.21) are the well-known formulas for transition from polar coordi-
nates to Cartesian coordinates in the plane.

What has been said can naturally be developed and extended to the polar (spheri-
cal) coordinates in R

n that we studied in Part 1, where we also exhibited the Jacobian
of the transition from polar coordinates to Cartesian coordinates in a space R

n of
any dimension.

11.5.8 Problems and Exercises

1. a) Show that Lemma 1 is valid for any smooth mapping ϕ :Dt →Dx (also see
Problem 8 below in this connection).

b) Prove that if D is an open set in R
m and ϕ ∈ C(1)(D,Rn), then ϕ(D) is a set

of measure zero in R
n when m< n.

2. a) Verify that the measure of a measurable set E and the measure of its image
ϕ(E) under a diffeomorphism ϕ are connected by the relation μ(ϕ(E))= θμ(E),
where θ ∈ [inft∈E |detϕ′(t)|, supt∈E |detϕ′(t)|].

b) In particular, if E is a connected set, there is a point τ ∈ E such that
μ(ϕ(E))= |detϕ′(τ )|μ(E).
3. a) Show that if formula (11.10) holds for the function f ≡ 1, then it holds in
general.

b) Carry out the proof of Theorem 1 again, but for the special case f ≡ 1, sim-
plifying it for this special situation.

4. Without using Remark 2, carry out the proof of Lemma 3, assuming Lemma 2
is known and that two integrable functions that differ only on a set of measure zero
have the same integral.
5. Instead of the additivity of the integral and the accompanying analysis of the
measurability of sets, one can use another device for localization when reducing
formula (11.10) to its local version (that is to the verification of the formula for a
small neighborhood of the points of the domain being mapped). This device is based
on the linearity of the integral.
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a) If the smooth functions e1, . . . , ek are such that 0≤ ei ≤ 1, i = 1, . . . , k, and∑k
i ei(x)≡ 1 on Dx , then

∫
Dx
(
∑k
i=1 eif )(x)dx =

∫
Dx
f (x)dx for every function

f ∈R(Dx).
b) If supp ei is contained in the set U ⊂ Dx , then

∫
Dx
(eif )(x)dx =∫

U
(eif )(x)(dx).
c) Taking account of Lemmas 3 and 4 and the linearity of the integral, one can

derive formula (11.10) from a) and b), if for every open covering {Uα} of the com-
pact set K = suppf ⊂ Dx we construct a set of smooth functions e1, . . . , ek in
Dx such that 0 ≤ ei ≤ 1, i = 1, . . . , k,

∑k
i=1 ei ≡ 1 on K , and for every function

ei ∈ {ei} there is a set Uαi ∈ {Uα} such that supp ei ⊂Uαi .
In that case the set of functions {ei} is said to be a partition of unity on the compact

set K subordinate to the covering {Uα}.
6. This problem contains a scheme for constructing the partition of unity discussed
in Problem 5.

a) Construct a function f ∈ C(∞)(R,R) such that f |[−1,1] ≡ 1 and suppf ⊂
[−1− δ,1+ δ], where δ > 0.

b) Construct a function f ∈ C(∞)(Rn,R) with the properties indicated in a) for
the unit cube in R

n and its δ-dilation.
c) Show that for every open covering of the compact set K ⊂ R

n there exists a
smooth partition of unity on K subordinate to this covering.

d) Extending c), construct a C(∞)-partition of unity in R
n subordinate to a lo-

cally finite open covering of the entire space. (A covering is locally finite if every
point of the set that is covered, in this case R

n, has a neighborhood that intersects
only a finite number of the sets in the covering. For a partition of unity containing
an infinite number of functions {ei} we impose the requirement that every point
of the set on which this partition is constructed belongs to the support of at most
finitely many of the functions {ei}. Under this hypothesis no questions arise as to
the meaning of the equality

∑
i ei ≡ 1; more precisely, there are no questions as to

the meaning of the sum on the left-hand side.)

7. One can obtain a proof of Theorem 1 that is slightly different from the one given
above and relies on the possibility of decomposing only a linear mapping into a
composition of elementary mappings. Such a proof is closer to the heuristic consid-
erations in Sect. 11.5.1 and is obtained by proving the following assertions.

a) Verify that under elementary linear mappings L :Rn→R
n of the form

(
x1, . . . , xk, . . . , xn

) �→ (x1, . . . , xk−1, λxk, xk+1, . . . , xn
)
,

λ �= 0, and
(
x1, . . . , xk, . . . , xn

) �→ (x1, . . . , xk−1, xk + xj , . . . , xn)

the relation μ(L(E))= |detL′|μ(E) holds for every measurable set E ⊂ R
n; then

show that this relation holds for every linear transformation L : Rn→ R
n. (Use

Fubini’s theorem and the possibility of decomposing a linear mapping into a com-
position of the elementary mappings just exhibited.)
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b) Show that if ϕ : Dt → Dx is a diffeomorphism, then μ(ϕ(K)) ≤∫
K
|detϕ′(t)|dt for every measurable compact set K ⊂Dt and its image ϕ(K). (If

a ∈Dt , then ∃(ϕ′(a))−1 and in the representation ϕ(t)= (ϕ′(a) ◦ (ϕ′(a))−1 ◦ ϕ)(t)
the mapping ϕ′(a) is linear while the transformation (ϕ′(a))−1 ◦ ϕ is nearly an
isometry on a neighborhood of a.)

c) Show that if the function f in Theorem 1 is nonnegative, then
∫
Dx
f (x)dx ≤∫

Dt
((f ◦ ϕ)|detϕ′|)(t)dt .
d) Applying the preceding inequality to the function (f ◦ϕ)|detϕ′ and the map-

ping ϕ−1 :Dx→Dt , show that formula (11.10) holds for a nonnegative function.
e) By representing the function f in Theorem 1 as the difference of integrable

nonnegative functions, prove that formula (11.10) holds.

8. Sard’s lemma. Let D be an open set in R
n, let ϕ ∈ C(1)(D,Rn), and let S be the

set of critical points of the mapping ϕ. Then ϕ(S) is a set of (Lebesgue) measure
zero.

We recall that a critical point of a smooth mapping ϕ of a domain D ⊂ R
m into

R
n is a point x ∈ D at which rankϕ′(x) < min{m,n}. In the case m = n, this is

equivalent to the condition detϕ′(x)= 0.

a) Verify Sard’s lemma for a linear transformation.
b) Let I be an interval in the domain D and ϕ ∈ C(1)(D,Rn). Show that there

exists a function α(h), α : Rn→ R such that α(h)→ 0 as h→ 0 and |ϕ(x + h)−
ϕ(x)− ϕ′(x)h| ≤ α(h)|h| for every x, x + h ∈ I .

c) Using b), estimate the deviation of the image ϕ(I) of the interval I under the
mapping ϕ from the same image under the linear mapping L(x)= ϕ(a)+ϕ′(a)(x−
a), where a ∈ I .

d) Based on a), b), and c), show that if S is the set of critical points of the
mapping ϕ in the interval I , then ϕ(S) is a set of measure zero.

e) Now finish the proof of Sard’s lemma.
f) Using Sard’s lemma, show that in Theorem 1 it suffices to require that the

mapping ϕ be a one-to-one mapping of class C(1)(Dt ,Dx).

We remark that the version of Sard’s lemma given here is a simple special case of
a theorem of Sard and Morse, according to which the assertion of the lemma holds
even ifD ⊂R

m and ϕ ∈C(k)(D,Rn), where k =max{m−n+1,1}. The quantity k
here, as an example of Whitney shows, cannot be decreased for any pair of numbers
m and n.

In geometry Sard’s lemma is known as the assertion that if ϕ : D → R
n is

a smooth mapping of an open set D ⊂ R
m into R

n, then for almost all points
x ∈ ϕ(D), the complete pre-image ϕ−1(x) =Mx in D is a surface (manifold) of
codimension n in R

m (that is, m− dimMx = n for almost all x ∈D).
9. Suppose we consider an arbitrary mapping ϕ ∈ C(1)(Dt ,Dx) such that
detϕ′(t) �= 0 in Dt instead of the diffeomorphism ϕ of Theorem 1. Let n(x) =
card{t ∈ supp(f ◦ ϕ) | ϕ(t) = x}, that is, n(x) is the number of points of the sup-
port of the function f ◦ ϕ that map to the point x ∈ Dx under ϕ : Dt → Dx . The
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following formula holds:
∫

Dx

(f · n)(x)dx =
∫

Dt

(
(f ◦ ϕ)∣∣detϕ′

∣∣)(t)dt.

a) What is the geometric meaning of this formula for f ≡ 1?
b) Prove this formula for the special mapping of the annulus Dt = {t ∈ R

2
t |

1 < |t | < 2} onto the annulus Dx = {x ∈ R2
x | 1 < |x| < 2} given in polar coordi-

nates (r, ϕ) and (ρ, θ) in the planes R2
x and R

2
t respectively by the formulas r = ρ,

ϕ = 2θ .
c) Now try to prove the formula in general.

11.6 Improper Multiple Integrals

11.6.1 Basic Definitions

Definition 1 An exhaustion of a set E ⊂R
m is a sequence of measurable sets {En}

such that En ⊂En+1 ⊂E for any n ∈N and
⋃∞
n=1En =E.

Lemma If {En} is an exhaustion of a measurable set E, then:

a) limn→∞μ(En)= μ(E);
b) for every function f ∈R(E) the function f |En also belongs to R(En), and

lim
n→∞

∫

En

f (x)dx =
∫

E

f (x)dx.

Proof Since En ⊂ En+1 ⊂ E, it follows that μ(En) ≤ μ(En+1) ≤ μ(E) and
limn→∞μ(En) ≤ μ(E). To prove a) we shall show that the inequality
limn→∞μ(En)≥ μ(E) also holds.

The boundary ∂E of E has content zero, and hence can be covered by a finite
number of open intervals of total content less than any preassigned number ε > 0.
Let Δ be the union of all these open intervals. Then the set E ∪Δ=: Ẽ is open in
R
m and by construction Ẽ contains the closure of E and μ(Ẽ) ≤ μ(E)+ μ(Δ) <
μ(E)+ ε.

For every set En of the exhaustion {En} the construction just described can
be repeated with the value εn = ε/2n. We then obtain a sequence of open sets
Ẽn = En ∪ Δn such that En ⊂ Ẽn, μ(Ẽn) ≤ μ(En) + μ(Δn) < μ(En) + εn, and⋃∞
n=1 Ẽn ⊃

⋃∞
n=1En ⊃E.

The system of open sets Δ, Ẽ1, Ẽ2, . . . , forms an open covering of the compact
set E.

Let Δ, Ẽ1, Ẽ2, . . . , Ẽk be a finite covering of E extracted from this covering.
Since E1 ⊂ E2 ⊂ · · · ⊂ Ek , the sets Δ,Δ1, . . . ,Δk,Ek also form a covering of E
and hence

μ(E)≤ μ(E)≤ μ(Ek)+μ(Δ)+μ(Δ1)+ · · · +μ(Δk) < μ(Ek)+ 2ε.
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It follows from this that μ(E)≤ limn→∞μ(En).
b) The relation f |E ∈R(En) is well known to us and follows from Lebesgue’s

criterion for the existence of the integral over a measurable set. By hypothesis f ∈
R(E), and so there exists a constant M such that |f (x)| ≤ M on E. From the
additivity of the integral and the general estimate for the integral we obtain

∣∣∣∣

∫

E

f (x)dx −
∫

En

f (x)dx

∣∣∣∣=
∣∣∣∣

∫

E\En
f (x)dx

∣∣∣∣≤Mμ(E\En).

From this, together with what was proved in a), we conclude that b) does indeed
hold. �

Definition 2 Let {En} be an exhaustion of the set E and suppose the function f :
E→R is integrable on the sets En ∈ {En}. If the limit

∫

E

f (x)dx := lim
n→∞

∫

En

f (x)dx

exists and has a value independent of the choice of the sets in the exhaustion of E,
this limit is called the improper integral of f over E.

The integral sign on the left in this last equality is usually written for any function
defined on E, but we say that the integral exists or converges if the limit in Defini-
tion 2 exists. If there is no common limit for all exhaustions of E, we say that the
integral of f over E does not exist, or that the integral diverges.

The purpose of Definition 2 is to extend the concept of integral to the case of an
unbounded integrand or an unbounded domain of integration.

The symbol introduced to denote an improper integral is the same as the symbol
for an ordinary integral, and that fact makes the following remark necessary.

Remark 1 If E is a measurable set and f ∈R(E), then the integral of f over E in
the sense of Definition 2 exists and has the same value as the proper integral of f
over E.

Proof This is precisely the content of assertion b) in the lemma above. �

The set of all exhaustions of any reasonably rich set is immense, and we do not
use all exhaustions. The verification that an improper integral converges is often
simplified by the following proposition.

Proposition 1 If a function f : E→ R is nonnegative and the limit in Definition 2
exists for even one exhaustion {En} of the set E, then the improper integral of f
over E converges.

Proof Let {E′k} be a second exhaustion of E into elements on which f is integrable.
The sets Ekn := E′k ∩ En, n = 1,2, . . . form an exhaustion of the set E′k , and so it
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follows from part b) of the lemma that
∫

E′k
f (x)dx = lim

n→∞

∫

Ekn

f (x)dx ≤ lim
n→∞

∫

En

f (x)dx =A.

Since f ≥ 0 and E′k ⊂E′k+1 ⊂E, it follows that

∃ lim
k→∞

∫

E′k
f (x)dx = B ≤A.

But there is symmetry between the exhaustions {En} and {E′k}, so that A≤ B also,
and hence A= B . �

Example 1 Let us find the improper integral
∫∫

R2 e
−(x2+y2) dx dy.

We shall exhaust the plane R
2 by the sequence of disks En = {(x, y) ∈ R

2 |
x2 + y2 < n2}. After passing to polar coordinates we find easily that

∫∫

En

e−(x2+y2) dx dy =
∫ 2π

0
dϕ
∫ n

0
e−r2

dr = π(1− e−n2)→ π

as n→∞.
By Proposition 1 we can now conclude that this integral converges and equals π .
One can derive a useful corollary from this result if we now consider the exhaus-

tion of the plane by the squares E′n = {(x, y) ∈R2 | |x| ≤ n∧ |y| ≤ n}. By Fubini’s
theorem

∫∫

E′n
e−(x2+y2) dx dy =

∫ n

−n
dy
∫ n

−n
e−(x2+y2) dx =

(∫ n

−n
e−t2 dt

)2

.

By Proposition 1 this last quantity must tend to π as n→∞. Thus, following
Euler and Poisson, we find that

∫ +∞

−∞
e−x2

dx =√π.

Some additional properties of Definition 2 of an improper integral, which are not
completely obvious at first glance, will be given below in Remark 3.

11.6.2 The Comparison Test for Convergence of an Improper
Integral

Proposition 2 Let f and g be functions defined on the set E and integrable over
exactly the same measurable subsets of it, and suppose |f (x)| ≤ g(x) on E. If
the improper integral

∫
E
g(x)dx converges, then the integrals

∫
E
|f |(x)dx and∫

E
f (x)dx also converge.
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Proof Let {En} be an exhaustion of E on whose elements both g and f are inte-
grable. It follows from the Lebesgue criterion that the function |f | is integrable on
the sets En, n ∈N, and so we can write
∫

En+k
|f |(x)dx −

∫

En

|f |(x)dx =
∫

En+k\En
|f |(x)dx ≤

≤
∫

En+k\En
g(x)dx =

∫

En+k
g(x)dx −

∫

En

g(x)dx,

where k and n are any natural numbers. When we take account of Proposition 1 and
the Cauchy criterion for the existence of a limit of a sequence, we conclude that the
integral

∫
E
|f |(x)dx converges.

Now consider the functions f+ := 1
2 (|f | + f ) and f− := 1

2 (|f | − f ). Obviously
0 ≤ f+ ≤ |f | and 0 ≤ f− ≤ |f |. By what has just been proved, the improper inte-
grals of f+ and f− overE both converge. But f = f+−f−, and hence the improper
integral of f over the same set converges as well (and is equal to the difference of
the integrals of f+ and f−). �

In order to make effective use of Proposition 2 in studying the convergence of
improper integrals, it is useful to have a store of standard functions for comparison.
In this connection we consider the following example.

Example 2 In the deleted n-dimensional ball of radius 1, B ⊂ R
n with its center

at 0 removed, consider the function 1/rα , where r = d(0, x) is the distance from
the point x ∈ B\0 to the point 0. Let us determine the values of α ∈ R for which
the integral of r−α over the domain B\0 converges. To do this we construct an
exhaustion of the domain by the annular regions B(ε)= {x ∈ B | ε < d(0, x) < 1}.

Passing to polar coordinates with center at 0, by Fubini’s theorem, we obtain

∫

B(ε)

dx

rα(x)
=
∫

S

f (ϕ)dϕ
∫ 1

ε

rn−1 dr

rα
= c
∫ 1

ε

dr

rα−n+1
,

where dϕ = dϕ1 . . .dϕn−1 and f (ϕ) is a certain product of sines of the angles
ϕ1, . . . , ϕn−2 that appears in the Jacobian of the transition to polar coordinates in R

n,
while c is the magnitude of the integral over s, which depends only on n, not on r
and ε.

As ε→+0 the value just obtained for the integral over B(ε) will have a finite
limit if α < n. In all other cases this last integral tends to infinity as ε→+0.

Thus we have shown that the function 1
dα(0,x) , where d is the distance to the

point 0, can be integrated in a deleted neighborhood of 0 only when α < n, where n
is the dimension of the space.

Similarly one can show that outside the ball B , that is, in a neighborhood of
infinity, this same function is integrable in the improper sense only for α > n.

Example 3 Let I = {x ∈ Rn | 0 ≤ xi ≤ 1, i = 1, . . . , n} be the n-dimensional cube
and Ik the k-dimensional face of it defined by the conditions xk+1 = · · · = xn = 0.
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On the set I\Ik we consider the function 1
dα(x)

, where d(x) is the distance from
x ∈ I\Ik to the face Ik . Let us determine the values of α ∈R for which the integral
of this function over I\Ik converges.

We remark that if x = (x1, . . . , xk, xk+1, . . . , xn) then

d(x)=
√(
xk+1
)2 + · · · + (xn)2.

Let I (ε) be the cube I from which the ε-neighborhood of the face Ik has been
removed. By Fubini’s theorem

∫

I (ε)

dx

dα(x)
=
∫

Ik

dx1 . . .dxk
∫

In−k(ε)

dxk+1 · · ·dxn
((xk+1)2 + · · · + (xn)2)α/2 =

∫

In−k(ε)

du

|u|α ,

where u = (xk+1, . . . , xn) and In−k(ε) is the face In−k ⊂ R
n−k from which the ε-

neighborhood of 0 has been removed.
But it is clear on the basis of the experience acquired in Example 1 that the last

integral converges only for α < n− k. Hence the improper integral under consider-
ation converges only for α < n− k, where k is the dimension of the face near which
the function may increase without bound.

Remark 2 In the proof of Proposition 2 we verified that the convergence of the in-
tegral |f | implies the convergence of the integral of f . It turns out that the con-
verse is also true for an improper integral in the sense of Definition 2, which was
not the case previously when we studied improper integrals on the line. In the
latter case, we distinguished absolute and nonabsolute (conditional) convergence
of an improper integral. To understand right away the essence of the new phe-
nomenon that has arisen in connection with Definition 2, consider the following
example.

Example 4 Let the function f : R+ → R be defined on the set R+ of nonnegative

numbers by the following conditions: f (x)= (−1)n−1

n
, if n− 1≤ x < n, n ∈N.

Since the series
∑∞
n=1

(−1)n−1

n
converges, the integral

∫ A
0 f (x)dx has a limit as

A→∞ equal to the sum of this series.
However, this series does not converge absolutely, and one can make it divergent

to +∞, for example, by rearranging its terms. The partial sums of the new series
can be interpreted as the integrals of the function f over the union En of the closed
intervals on the real line corresponding to the terms of the series. The sets En, taken
all together, however, form an exhaustion of the domain R+ on which f is defined.

Thus the improper integral
∫∞

0 f (x)dx of the function f :R+ →R exists in its
earlier sense, but not in the sense of Definition 2.

We see that the condition in Definition 2 that the limit be independent of the
choice of the exhaustion is equivalent to the independence of the sum of a series
on the order of summation. The latter, as we know, is exactly equivalent to absolute
convergence.
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In practice one nearly always has to consider only special exhaustions of the fol-
lowing type. Let a function f :D→ R defined in the domain D be unbounded in
a neighborhood of some set E ⊂ ∂D. We then remove from D the points lying in
the ε-neighborhood of E and obtain a domain D(ε)⊂D. As ε→ 0 these domains
generate an exhaustion of D. If the domain is unbounded, we can obtain an exhaus-
tion of it by taking the D-complements of neighborhoods of infinity. These are the
special exhaustions we mentioned earlier and studied in the one-dimensional case,
and it is these special exhaustions that lead directly to the generalization of the no-
tion of Cauchy principal value of an improper integral to the case of a space of any
dimension, which we discussed earlier when studying improper integrals on the line.

11.6.3 Change of Variable in an Improper Integral

In conclusion we obtain the formula for change of variable in improper integrals,
thereby making a valuable, although very simple, supplement to Theorems 1 and 2
of Sect. 11.5.

Theorem 1 Let ϕ :Dt→Dx be a diffeomorphism of the open setDt ⊂R
n
t onto the

set Dx ⊂R
n
x of the same type, and let f :Dx→R be integrable on all measurable

compact subsets of Dx . If the improper integral
∫
Dx
f (x)dx converges, then the

integral
∫
Dt
((f ◦ ϕ)|detϕ′|)(t)dt also converges and has the same value.

Proof The open set Dt ⊂ R
n
t can be exhausted by a sequence of compact sets Ekt ,

k ∈ N, contained in N, each of which is the union of a finite number of intervals
in R

n
t (in this connection, see the beginning of the proof of Lemma 1 in Sect. 11.5).

Since ϕ : Dt → Dx is a diffeomorphism, the exhaustion Ekx of Dx , where Ekx =
ϕ(Ekt ), corresponds to the exhaustion {Ekt } of Dt . Here the sets Ekx = ϕ(Ekt ) are
measurable compact sets inDx (measurability follows from Lemma 1 of Sect. 11.5).
By Proposition 1 of Sect. 11.5 we can write

∫

Ekx

f (x)dx =
∫

Ekt

(
(f ◦ ϕ)∣∣detϕ′

∣∣)(t)dt.

The left-hand side of this equality has a limit by hypothesis as k→∞. Hence
the right-hand side also has the same limit. �

Remark 3 By the reasoning just given we have verified that the integral on the right-
hand side of the last equality has the same limit for any exhaustion Dt of the given
special type. It is this proven part of the theorem that we shall be using. But for-
mally, to complete the proof of the theorem in accordance with Definition 2 it is
necessary to verify that this limit exists for every exhaustion of the domain Dt . We
leave this (not entirely elementary) proof to the reader as an excellent exercise. We
remark only that one can already deduce the convergence of the improper integral
of |f ◦ ϕ||detϕ′| over the set Dt (see Problem 7).
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Theorem 2 Let ϕ : Dt → Dx be a mapping of the open sets Dt and Dx . Assume
that there are subsets St and Sx of measure zero contained in Dt and Dx respec-
tively such that Dt\St and Dx\Sx are open sets and ϕ is a diffeomorphism of the
former onto the latter. Under these hypotheses, if the improper integral

∫
Dx
f (x)dx

converges, then the integral
∫
Dt\St ((f ◦ ϕ)|detϕ′|)(t)dt also converges to the same

value. If in addition |detϕ′| is defined and bounded on compact subsets of Dt , then
(f ◦ ϕ)|detϕ′|xs improperly integrable over the set Dt , and the following equality
holds:

∫

Dx

f (x)dx =
∫

Dt\St

(
(f ◦ ϕ)∣∣detϕ′

∣
∣)(t)dt.

Proof The assertion is a direct corollary of Theorem 1 and Theorem 2 of Sect. 11.5,
provided we take account of the fact that when finding an improper integral over
an open set one may restrict consideration to exhaustions that consist of measurable
compact sets (see Remark 3). �

Example 5 Let us compute the integral
∫∫
x2+y2<1

dx dy
(1−x2−y2)α

, which is an improper
integral when α > 0, since the integrand is unbounded in that case in a neighborhood
of the disk x2 + y2 = 1.

Passing to polar coordinates, we obtain from Theorem 2

∫∫

x2+y2<1

dx dy

(1− x2 − y2)α
=
∫∫

0<ϕ<2π
0<r<1

r dr dϕ

(1− r2)α
.

For α > 0 this last integral is also improper, but, since the integrand is nonneg-
ative, it can be computed as the limit over the special exhaustion of the rectangle
I = {(r, ϕ) ∈ R

2 | 0 < ϕ < 2π ∧ 0 < r < 1} by the rectangles In = {(r, ϕ) ∈ R
2 |

0< ϕ < 2π ∧ 0< r < 1− 1
n
}, n ∈N. Using Fubini’s theorem, we find that

∫∫

0<ϕ<2π
0<r<1

r dr dϕ

(1− r2)α
= lim
n→∞

∫ 2π

0
dϕ
∫ 1− 1

n

0

r dr

(1− r2)α
= π

1− α .

By the same considerations, one can deduce that the original integral diverges for
α ≥ 1.

Example 6 Let us show that the integral
∫∫
|x|+|y|≥1

dx dy
|x|p+|y|q converges only under

the condition 1
p
+ 1
q
< 1.

Proof In view of the obvious symmetry it suffices to consider the integral only over
the domain D in which x ≥ 0, y ≥ 0 and x + y ≥ 1.

It is clear that the simultaneous conditions p > 0 and q > 0 are necessary for the
integral to converge. Indeed, if p ≤ 0 for example, we would obtain the following
estimate for the integral over the rectangle IA = {(x, y) ∈ R

2 | 1 ≤ x ≤ A ∧ 0 ≤
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y ≤ 1} alone, which is contained in D:

∫∫

IA

dx dy

|x|p + |y|q =
∫ A

1
dx
∫ 1

0

dy

|x|p + |y|q ≥
∫ A

1
dx
∫ 1

0

dy

1+ |y|q =

= (A− 1)
∫ 1

0

dy

1+ |y|q ,

which shows that as A→∞, this integral increases without bound. Thus from now
on we may assume that p > 0 and q > 0.

The integrand has no singularities in the bounded portion of the domainD, so that
studying the convergence of this integral is equivalent to studying the convergence
of the integral of the same function over, for example, the portion G of the domain
D where xp + yq ≥ a > 0. The number a can be assumed sufficiently large that the
curve xp + yq = a lies in D for x ≥ 0 and y ≥ 0.

Passing to generalized curvilinear coordinates ϕ using the formulas

x = (r cos2 ϕ
)1/p

, y = (r sin2 ϕ
)1/q

,

by Theorem 2 we obtain

∫∫

G

dx dy

|x|p + |y|q =
2

p · q
∫∫

0<ϕ<π/2
a≤r<∞

(
r

1
p
+ 1
q
−2 cos

2
p
−1
ϕ sin

2
q
−1
ϕ
)

dr dϕ.

Using the exhaustion of the domain {(r, ϕ) ∈ R2 | 0 < ϕ < π/2 ∧ a ≤ r <∞}
by intervals IεA = {(r, ϕ) ∈ R2 | 0 < ε ≤ ϕ ≤ π/2− ε ∧ a ≤ r ≤ A} and applying
Fubini’s theorem, we obtain

∫∫

0<ϕ<π/2
a≤r<∞

(
r

1
p
+ 1
q
−2 cos

2
p
−1
ϕ sin

2
q
−1
ϕ
)

dr dϕ =

= lim
ε→0

∫ π/2−ε

ε

cos
2
p
−1
ϕ sin

2
q
−1
ϕ dϕ lim

A→∞

∫ A

a

r
1
p
+ 1
q
−2 dr.

Since p > 0 and q > 0, the first of these limits is necessarily finite and the second
is finite only when 1

p
+ 1
q
< 1. �

11.6.4 Problems and Exercises

1. Give conditions on p and q under which the integral
∫∫

0<|x|+|y|≤1
dx dy
|x|p+|y|q con-

verges.
2. a) Does the limit limA→∞

∫ A
0 cosx2 dx exist?

b) Does the integral
∫
R1 cosx2 dx converge in the sense of Definition 2?
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c) By verifying that

lim
n→∞

∫∫

|x|≤n
sin
(
x2 + y2)dx dy = π

and

lim
n→∞

∫∫

x2+y2≤2πn
sin
(
x2 + y2)dx dy = 0

verify that the integral of sin(x2 + y2) over the plane R
2 diverges.

3. a) Compute the integral
∫ 1

0

∫ 1
0

∫ 1
0

dx dy dz
xp yq zr

.
b) One must be careful when applying Fubini’s theorem to improper integrals

(but of course one must also be careful when applying it to proper integrals). Show

that the integral
∫∫
x≥1,y≥1

x2−y2

(x2+y2)2
dx dy diverges, while both of the iterated inte-

grals
∫∞

1 dx
∫∞

1
x2−y2

(x2+y2)2
dy and

∫∞
1 dy

∫∞
1

x2−y2

(x2+y2)2
dx converge.

c) Prove that if f ∈ C(R2,R) and f ≥ 0 in R
2, then the existence of either of

the iterated integrals
∫∞
−∞ dx

∫∞
−∞ f (x, y)dy and

∫∞
−∞ dy

∫∞
−∞ f (x, y)dx implies

that the integral
∫∫

R2 f (x, y)dx dy converges to the value of the iterated integral in
question.

4. Show that if f ∈ C(R,R), then

lim
h→0

1

π

∫ 1

−1

h

h2 + x2
f (x)dx = f (0).

5. Let D be a bounded domain in R
n with a smooth boundary and S a smooth

k-dimensional surface contained in the boundary of D. Show that if the function
f ∈ C(D,R) admits the estimate |f | < 1

dn−k−ε , where d = d(S, x) is the distance
from x ∈D to S and ε > 0, then the integral of f over D converges.
6. As a supplement to Remark 1 show that it remains valid even if the set E is not
assumed to be measurable.
7. Let D be an open set in R

n and let the function f :D→ R be integrable over
any measurable compact set contained in D.

a) Show that if the improper integral of the function |f | over D diverges, then
there exists an exhaustion {En} ofD such that each set En is an elementary compact
set, consisting of a finite number of n-dimensional intervals and

∫∫
En
|f |(x)dx→

+∞ as n→∞.
b) Verify that if the integral of f over a set converges while the integral of |f |

diverges, then the integrals of f+ = 1
2 (|f | + f ) and f− = 1

2 (|f | − f ) over the set
both diverge.

c) Show that the exhaustion {En} obtained in a) can be distributed in such a way
that
∫
En+1\En f+(x)dx >

∫
En
|f |(x)dx for all n ∈N.

d) Using lower Darboux sums, show that if
∫
E
f+(x)dx > A, then there exists

an elementary compact set F ⊂ E consisting of a finite number of intervals such
that
∫
F
f (x)dx > A.
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e) Deduce from c) and d) that there exists an elementary compact set Fn ⊂
En+1\En for which

∫
Fn
f (x)dx >

∫
En
|f |(x)dx + n.

f) Show using e) that the sets Gn = Fn ∩En are elementary compact sets (that
is, they consist of a finite number of intervals) contained in D that, taken together,
constitute an exhaustion of D, and for which the relation

∫
Gn
f (x)dx→+∞ as

n→∞ holds.

Thus, if the integral of |f | diverges, then the integral of f (in the sense of Defi-
nition 2) also diverges.
8. Carry out the proof of Theorem 2 in detail.
9. We recall that if x = (x1, . . . , xn) and ξ = (ξ1, . . . , ξn), then 〈x, ξ〉 = x1ξ1 +
· · · + xnξn is the standard inner product in R

n. Let A = (aij ) be a symmetric
n × n matrix of complex numbers. We denote by ReA the matrix with elements
Reaij . Writing ReA ≥ 0 (resp. ReA > 0) means that 〈(ReA)x,x〉 ≥ 0 (resp.
〈(ReA)x,x〉> 0) for every x ∈Rn, x �= 0.

a) Show that if ReA≥ 0, then for λ > 0 and ξ ∈Rn we have
∫

Rn

exp

(
−λ

2
〈Ax,x〉 − i〈x, ξ〉

)
dx =

=
(

2π

λ

)n/2
(detA)−1/2 exp

(
− 1

2λ

〈
A−1ξ, ξ

〉
)
.

Here the branch of
√

detA is chosen as follows:

(detA)−1/2 = |detA|−1/2 exp(−i IndA),

IndA = 1

2

n∑

j=1

argμj (A),
∣∣argμj (A)

∣∣≤ π
2
,

where μj (A) are the eigenvalues of A.
b) Let A be a real-valued symmetric nondegenerate (n × n) matrix. Then for

ξ ∈Rn and λ > 0 we have
∫

Rn

exp

(
i
λ

2
〈Ax,x〉 − i〈x, ξ〉

)
dx =

=
(

2π

λ

)n/2
|detA|−1/2 exp

(
− i

2λ

〈
A−1ξ, ξ

〉)
exp

(
iπ

4
sgnA

)
.

Here sgnA is the signature of the matrix, that is,

sgnA= ν+(A)− ν−(A),
where ν+(A) is the number of positive eigenvalues of A and ν−(A) the number of
negative eigenvalues.



Chapter 12
Surfaces and Differential Forms in R

n

In this chapter we discuss the concepts of surface, boundary of a surface, and con-
sistent orientation of a surface and its boundary; we derive a formula for computing
the area of a surface lying in R

n; and we give some elementary information on dif-
ferential forms. Mastery of these concepts is very important in working with line
and surface integrals, to which the next chapter is devoted.

12.1 Surfaces in R
n

The standard model for a k-dimensional surface is Rk .

Definition 1 A surface of dimension k (or k-dimensional surface or k-dimensional
manifold) in R

n is a subset S ⊂ R
n each point of which has a neighborhood1 in S

homeomorphic2 to R
k .

Definition 2 The mapping ϕ : Rk → U ⊂ S provided by the homeomorphism re-
ferred to in the definition of a surface is called a chart or a local chart of the sur-
face S, Rk is called the parameter domain, and U is the range or domain of action
of the chart on the surface S.

A local chart introduces curvilinear coordinates in U by assigning to the point
x = ϕ(t) ∈U the set of numbers t = (t1, . . . , tk) ∈Rk . It is clear from the definition
that the set of objects S described by the definition does not change if Rk is replaced

1As before, a neighborhood of a point x ∈ S ⊂R
n in S is a set Us (x)= S ∩U(x), where U(x) is a

neighborhood of x in R
n. Since we shall be discussing only neighborhoods of a point on a surface

in what follows, we shall simplify the notation where no confusion can arise by writing U or U(x)
instead of US(x).
2On S ⊂ R

n and hence also on U ⊂ S there is a unique metric induced from R
n, so that one can

speak of a topological mapping of U into R
k .
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in it by any topological space homeomorphic to R
k . Most often the standard param-

eter region for local charts is assumed to be an open cube I k or an open ball Bk

in R
k . But this makes no substantial difference.

To carry out certain analogies and in order to make a number of the following
constructions easier to visualize, we shall as a rule take a cube I k as the canonical
parameter domain for local charts on a surface. Thus a chart

ϕ : I k→U ⊂ S (12.1)

gives a local parametric equation x = ϕ(t) for the surface S ⊂ R
n, and the k-

dimensional surface itself thus has the local structure of a deformed standard k-
dimensional interval I k ⊂R

n.
The parametric definition of a surface is especially important for computational

purposes, as will become clear below. Sometimes one can define the entire surface
by a single chart. Such a surface is usually called elementary. For example, the graph
of a continuous function f : I k → R in R

k+1 is an elementary surface. However,
elementary surfaces are more the exception than the rule. For example, our ordinary
two-dimensional terrestrial sphere cannot be defined by only one chart. An atlas of
the surface of the Earth must contain at least two charts (see Problem 3 at the end of
this section).

In accordance with this analogy we adopt the following definition.

Definition 3 A set A(S) := {ϕi : I ki → Ui, i ∈ N} of local charts of a surface S
whose domains of action together cover the entire surface (that is, S =⋃i Ui ) is
called an atlas of the surface S.

The union of two atlases of the same surface is obviously also an atlas of the
surface.

If no restrictions are imposed on the mappings (12.1), the local parametrizations
of the surface, except that they must be homeomorphisms, the surface may be situ-
ated very strangely in R

n. For example, it can happen that a surface homeomorphic
to a two-dimensional sphere, that is, a topological sphere, is contained in R

3, but
the region it bounds is not homeomorphic to a ball (the so-called Alexander horned
sphere).3

To eliminate such complications, which have nothing to do with the questions
considered in analysis, we defined a smooth k-dimensional surface in R

n in Sect. 8.7
to be a set S ⊂ R

n such that for each x0 ∈ S there exists a neighborhood U(x0)

in R
n and a diffeomorphism ψ : U(x0)→ In = {t ∈ Rn | |t |< 1, i = 1, . . . , n} un-

der which the set US(x0) := S ∩ U(x0) maps into the cube I k = In ∩ {t ∈ R
n |

tk+1 = · · · = tn = 0}.
It is clear that a surface that is smooth in this sense is a surface in the sense

of Definition 1, since the mappings x = ψ−1(t1, . . . , tk,0, . . . ,0) = ϕ(t1, . . . , tk)

3An example of the surface described here was constructed by the American topologist
J.W. Alexander (1888–1977).
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obviously define a local parametrization of the surface. The converse, as follows
from the example of the horned sphere mentioned above, is generally not true, if
the mappings ϕ are merely homeomorphisms. However, if the mappings (12.1) are
sufficiently regular, the concept of a surface is actually the same in both the old and
new definitions.

In essence this has already been shown by Example 8 in Sect. 8.7, but considering
the importance of the question, we give a precise statement of the assertion and
recall how the answer is obtained.

Proposition If the mapping (12.1) belongs to class C(1)(I k,Rn) and has maximal
rank at each point of the cube I k , there exists a number ε > 0 and a diffeomorphism
ϕε : Inε → R

n of the cube Inε := {t ∈ R
n | |t i | ≤ εi, i = 1, . . . , n} of dimension n

in R
n such that ϕ|I k∩Inε = ϕε|I k∩Inε .

In other words, it is asserted that under these hypotheses the mappings (12.1) are
locally the restrictions of diffeomorphisms of the full-dimensional cubes Inε to the
k-dimensional cubes I kε = I k ∩ Inε .

Proof Suppose for definiteness that the first k of the n coordinate functions xk =
ϕi(t1, . . . , tk), i = 1, . . . , n, of the mapping x = ϕ(t) are such that det( ∂ϕ

i

∂tj
)(0) �= 0,

i, j = 1, . . . , k. Then by the implicit function theorem the relations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = ϕ1(t1, . . . , tk
)
,

...

xk = ϕk(t1, . . . , tk),
xk+1 = ϕk+1(t1, . . . , tk

)
,

...

xn = ϕn(t1, . . . , tk)

near the point (t0, x0)= (0, ϕ(0)) are equivalent to relations

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1 = f 1(x1, . . . , xk
)
,

...

tk = f k(x1, . . . , xk
)
,

xk+1 = f k+1(x1, . . . , xk
)
,

...

xn = f n(x1, . . . , xk
)
.
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In this case the mapping

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

t1 = f 1(x1, . . . , xk
)
,

...

tk = f k(x1, . . . , xk
)
,

tk+1 = xk+1 − f k+1(x1, . . . , xk
)
,

...

tn = xn − f n(x1, . . . , xk
)

is a diffeomorphism of a full-dimensional neighborhood of the point x0 ∈Rn. As ϕε
we can now take the restriction to some cube Inε of the diffeomorphism inverse to
it. �

By a change of scale, of course, one can arrange to have ε = 1 and a unit cube
Inε in the last diffeomorphism.

Thus we have shown that for a smooth surface in R
n one can adopt the following

definition, which is equivalent to the previous one.

Definition 4 The k-dimensional surface in R
n introduced by Definition 1 is smooth

(of class C(m), m≥ 1) if it has an atlas whose local charts are smooth mappings (of
class C(m), m≥ 1) and have rank k at each point of their domains of definition.

We remark that the condition on the rank of the mappings (12.1) is essential. For
example, the analytic mapping R � t �→ (x1, x2) ∈ R2 defined by x1 = t2, x2 = t3
defines a curve in the plane R

2 having a cusp at (0,0). It is clear that this curve is
not a smooth one-dimensional surface in R

2, since the latter must have a tangent
(a one-dimensional tangent plane) at each point.4

Thus, in particular one should not conflate the concept of a smooth path of class
C(m) and the concept of a smooth curve of class C(m).

In analysis, as a rule, we deal with rather smooth parametrizations (12.1) of
rank k. We have verified that in this case Definition 4 adopted here for a smooth
surface agrees with the one considered earlier in Sect. 8.7. However, while the pre-
vious definition was intuitive and eliminated certain unnecessary complications im-
mediately, the well-known advantage of Definition 4 of a surface, in accordance
with Definition 1, is that it can easily be extended to the definition of an abstract
manifold, not necessarily embedded in R

n. For the time being, however, we shall be
interested only in surfaces in R

n.
Let us consider some examples of such surfaces.

4For the tangent plane see Sect. 8.7.
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Example 1 We recall that if F i ∈ C(m)(Rn,R), i = 1, . . . , n− k, is a set of smooth
functions such that the system of equations

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

F 1(x1, . . . , xk, xk+1, . . . , xn
)= 0,

...

F n−k
(
x1, . . . , xk, xk+1, . . . , xn

)= 0

(12.2)

has rank n − k at each point in the set S of its solutions, then either this system
has no solutions at all or the set of its solutions forms a k-dimensional C(m)-smooth
surface S in R

n.

Proof We shall verify that if S �= ∅, then S does indeed satisfy Definition 4. This
follows from the implicit function theorem, which says that in some neighborhood
of each point x0 ∈ S the system (12.2) is equivalent, up to a relabeling of the vari-
ables, to a system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xk+1 = f k+1(x1, . . . , xk
)
,

...

xn = f n(x1, . . . , xk
)

where f k+1, . . . , f n ∈ C(m). By writing this last system as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = t1,
...

xk = tk,
xk+1 = f k+1(t1, . . . , tk

)
,

...

xn = f n(t1, . . . , tk),
we arrive at a parametric equation for the neighborhood of the point x0 ∈ S on S.
By an additional transformation one can obviously turn the domain into a canonical
domain, for example, into I k and obtain a standard local chart (12.1). �

Example 2 In particular, the sphere defined in R
n by the equation

(
x1)2 + · · · + (xn)2 = r2 (r > 0) (12.3)

is an (n − 1)-dimensional smooth surface in R
n since the set S of solutions of

Eq. (12.3) is obviously nonempty and the gradient of the left-hand side of (12.3)
is nonzero at each point of S.
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When n= 2, we obtain the circle in R
2 given by

(
x1)2 + (x2)2 = r2,

which can easily be parametrized locally by the polar angle θ using the polar coor-
dinates

{
x1 = r cos θ,

x2 = r sin θ.

For fixed r > 0 the mapping θ �→ (x1, x2)(θ) is a diffeomorphism on every inter-
val of the form θ0 < θ < θ0+ 2π , and two charts (for example, those corresponding
to values θ0 = 0 and θ0 =−π ) suffice to produce an atlas of the circle. We could not
get by with one canonical chart (12.1) here because a circle is compact, in contrast
to R

1 or I 1 = B1, and compactness is invariant under topological mappings.
Polar (spherical) coordinates can also be used to parametrize the two-dimensional

sphere
(
x1)2 + (x2)2 + (x3)2 = r2

in R
3. Denoting by ψ the angle between the direction of the vector (x1, x2, x3) and

the positive x3-axis (that is, 0≤ ψ ≤ π ) and by ϕ the polar angle of the projection
of the radius-vector (x1, x2, x3) onto the (x1, x2)-plane, we obtain

⎧
⎪⎨

⎪⎩

x3 = r cosψ,

x2 = r sinψ sinϕ,

x1 = r sinψ cosϕ.

In general polar coordinates (r, θ1, . . . , θn−1) in R
n are introduced via the rela-

tions
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = r cos θ1,

x2 = r sin θ1 cos θ2,

...

xn−1 = r sin θ1 sin θ2 · . . . · sin θn−2 cos θn−1,

xn = r sin θ1 sin θ2 · . . . · sin θn−1 sin θn−1·

(12.4)

We recall the Jacobian

J = rn−1 sinn−2 θ1 sinn−3 θ2 · . . . · sin θn−2 (12.5)

for the transition (12.4) from polar coordinates (r, θ1, . . . , θn−1) to Cartesian coor-
dinates (x1, . . . , xn) in R

n. It is clear from the expression for the Jacobian that it is
nonzero if, for example, 0< θi < π , i = 1, . . . , n− 2, and r > 0. Hence, even with-
out invoking the simple geometric meaning of the parameters θ1, . . . , θn−1, one can
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Fig. 12.1

guarantee that for a fixed r > 0 the mapping (θ1, . . . , θn−1) �→ (x1, . . . , xn), being
the restriction of a local diffeomorphism (r, θ1, . . . , θn−1) �→ (x1, . . . , xn) is itself a
local diffeomorphism. But the sphere is homogeneous under the group of orthogo-
nal transformations of Rn, so that the possibility of constructing a local chart for a
neighborhood of any point of the sphere now follows.

Example 3 The cylinder

(
x1)2 + · · · + (xk)2 = r2 (r > 0),

for k < n is an (n− 1)-dimensional surface in R
n that is the direct product of the

(k−1)-dimensional sphere in the plane of the variables (x1, . . . , xk) and the (n−k)-
dimensional plane of the variables (xk+1, . . . , xn).

A local parametrization of this surface can obviously be obtained if we take
the first k − 1 of the n − 1 parameters (t1, . . . , tn−1) to be the polar coordinates
θ1, . . . , θk−1 of a point of the (k− 1)-dimensional sphere in R

k and set tk, . . . , tn−1

equal to xk+1, . . . , xn respectively.

Example 4 If we take a curve (a one-dimensional surface) in the plane x = 0 of R3

endowed with Cartesian coordinates (x, y, z), and the curve does not intersect the
z-axis, we can rotate the curve about the z-axis and obtain a 2-dimensional surface.
The local coordinates can be taken as the local coordinates of the original curve (the
meridian) and, for example, the angle of revolution (a local coordinate on a parallel
of latitude).

In particular, if the original curve is a circle of radius a with center at (b,0,0),
for a < b we obtain the two-dimensional torus (Fig. 12.1). Its parametric equation
can be represented in the form

⎧
⎪⎨

⎪⎩

x = (b+ a cosψ) cosϕ,

y = (b+ a cosψ) sinϕ,

z= a sinψ,

where ψ is the angular parameter on the original circle – the meridian – and ϕ is the
angle parameter on a parallel of latitude.

It is customary to refer to any surface homeomorphic to the torus of revolution
just constructed as a torus (more precisely, a two-dimensional torus). As one can
see, a two-dimensional torus is the direct product of two circles. Since a circle can
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be obtained from a closed interval by gluing together (identifying) its endpoints,
a torus can be obtained from the direct product of two closed intervals (that is, a
rectangle) by gluing the opposite sides together at corresponding points (Fig. 12.2).

In essence, we have already made use of this device earlier when we established
that the configuration space of a double pendulum is a two-dimensional torus, and
that a path on the torus corresponds to a motion of the pendulum.

Example 5 If a flexible ribbon (rectangle) is glued along the arrows shown
in Fig. 12.3a, one can obtain an annulus (Fig. 12.3c) or a cylindrical surface
(Fig. 12.3b), which are the same from a topological point of view. (These two sur-
faces are homeomorphic.) But if the ribbon is glued together along the arrows shown
in Fig. 12.4a, we obtain a surface in R

3 (Fig. 12.4b) called a Möbius band.5

Local coordinates on this surface can be naturally introduced using the coordi-
nates on the plane in which the original rectangle lies.

Example 6 Comparing the results of Examples 4 and 5 in accordance with the nat-
ural analogy, one can now prescribe how to glue a rectangle (Fig. 12.5a) that com-
bines elements of the torus and elements of the Möbius band. But, just as it was
necessary to go outside R2 in order to glue the Möbius band without tearing or self-
intersections, the gluing prescribed here cannot be carried out in R

3. However, this
can be done in R

4, resulting in a surface in R
4 usually called the Klein bottle.6 An

attempt to depict this surface has been undertaken in Fig. 12.5b.

Fig. 12.3

5A.F. Möbius (1790–1868) – German mathematician and astronomer.
6F.Ch. Klein (1849–1925) – outstanding German mathematician, the first to make a rigorous in-
vestigation of non-Euclidean geometry. An expert in the history of mathematics and one of the
organizers of the “Encyclopädie der mathematischen Wisaenschaftm”.
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Fig. 12.4

Fig. 12.5

This last example gives some idea of how a surface can be intrinsically described
more easily than the same surface lying in a particular space R

n. Moreover, many
important surfaces (of different dimensions) originally arise not as subsets of Rn,
but, for example, as the phase spaces of mechanical systems or the geometric image
of continuous transformation groups of automorphisms, as the quotient spaces with
respect to groups of automorphisms of the original space, and so on, and so forth.
We confine ourselves for the time being to these introductory remarks, waiting to
make them more precise until Chap. 15, where we shall give a general definition
of a surface not necessarily lying in R

n. But already at this point, before the def-
inition has even been given, we note that by a well-known theorem of Whitney7

any k-dimensional surface can be mapped homeomorphically onto a surface ly-
ing in R

2k+1. Hence in considering surfaces in R
n we really lose nothing from the

point of view of topological variety and classification. These questions, however,
are somewhat off the topic of our modest requirements in geometry.

12.1.1 Problems and Exercises

1. For each of the sets Eα given by the conditions

Eα =
{
(x, y) ∈R2

∣∣ x2 − y2 = α},
Eα =

{
(x, y, z) ∈R3

∣∣ x2 − y2 = α},
Eα =

{
(x, y, z) ∈R3

∣∣ x2 + y2 − z2 = α},
Eα =

{
z ∈C ∣∣ ∣∣z2 − 1

∣
∣= α},

7H. Whitney (1907–1989) – American topologist, one of the founders of the theory of fiber bun-
dles.
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depending on the value of the parameter α ∈R, determine

a) whether Eα is a surface;
b) if so, what the dimension of Eα is;
c) whether Eα is connected.

2. Let f :Rn→R
n be a smooth mapping satisfying the condition f ◦ f = f .

a) Show that the set f (Rn) is a smooth surface in R
n.

b) By what property of the mapping f is the dimension of this surface deter-
mined?

3. Let e0, e1, . . . , en be an orthonormal basis in the Euclidean space R
n+1, let x =

x0e0+ x1e1+ · · ·+ xnen, let {x} be the point (x0, x1, . . . , xn), and let e1, . . . , en be
a basis in R

n ⊂R
n+1.

The formulas

ψ1 = x − x
0e0

1− x0
for x �= e0, ψ2 = x − x

0e0

1+ x0
for x �= −e0

define the stereographic projections

ψ1 : Sn\{e0}→R
n, ψ : Sn\{−e0}→R

n

from the points {e0} and {−e0} respectively.

a) Determine the geometric meaning of these mappings.
b) Verify that if t ∈ R

n and t �= 0, then (ψ2 ◦ ψ−1
1 )(t) = t

|t |2 , where ψ−1
1 =

(ψ1|Sn\{e0})−1.
c) Show that the two charts ψ−1

1 = ϕ1 : Rn→ Sn\{e0} and ψ−1
2 = ϕ2 : Rn→

Sn\{−e0} form an atlas of the sphere Sn ⊂R
n+1.

d) Prove that every atlas of the sphere must have at least two charts.

12.2 Orientation of a Surface

We recall first of all that the transition from one frame e1, . . . , en in R
n to a sec-

ond frame ẽ1, . . . , ẽn is effected by means of the square matrix obtained from the
expansions ẽj = aijei . The determinant of this matrix is always nonzero, and the set
of all frames divides into two equivalence classes, each class containing all possi-
ble frames such that for any two of them the determinant of the transition matrix is
positive. Such equivalence classes are called orientation classes of frames in R

n.
To define an orientation means to fix one of these orientation classes. Thus, the

oriented space R
n is the space R

n itself together with a fixed orientation class of
frames. To specify the orientation class it suffices to exhibit any of the frames in it,
so that one can also say that the oriented space R

n is Rn together with a fixed frame
in it.



12.2 Orientation of a Surface 173

Fig. 12.6

A frame in R
n generates a coordinate system in R

n, and the transition from one
such coordinate system to another is effected by the matrix (aji ) that is the transpose
of the matrix (aij ) that connects the two frames. Since the determinants of these
two matrices are the same, everything that was said above about orientation can be
repeated on the level of orientation classes of coordinate systems in R

n, placing in
one class all the coordinate systems such that the transition matrix between any two
systems in the same class has a positive Jacobian.

Both of these essentially identical approaches to describing the concept of an
orientation in R

n will also manifest themselves in describing the orientation of a
surface, to which we now turn.

We recall, however, another connection between coordinates and frames in the
case of curvilinear coordinate systems, a connection that will be useful in what is to
follow.

Let G and D be diffeomorphic domains lying in two copies of the space R
n en-

dowed with Cartesian coordinates (x1, . . . , xn) and (t1, . . . , tn) respectively. A dif-
feomorphism ϕ :D→G can be regarded as the introduction of curvilinear coordi-
nates (t1, . . . , tn) into the domain G via the rule x = ϕ(t), that is, the point x ∈G
is endowed with the Cartesian coordinates (t1, . . . , tn) of the point t = ϕ−1(x) ∈D.
If we consider a frame e1, . . . , en of the tangent space TRnt at each point t ∈ D
composed of the unit vectors along the coordinate directions, a field of frames
arises in D, which can be regarded as the translations of the orthogonal frame of
the original space R

n containing D, parallel to itself, to the points of D. Since
ϕ : D→ G is a diffeomorphism, the mapping ϕ′(t) : TDt → TGx=ϕ(t) of tangent
spaces effected by the rule TDt � e �→ ϕ′(t)e= ξ ∈ TGx , is an isomorphism of the
tangent spaces at each point t . Hence from the frame e1, . . . , en in TDt we obtain
a frame ξ1 = ϕ′(t)e1, . . . , ξn = ϕ′(t)en in TGx , and the field of frames on D trans-
forms into a field of frames on G (see Fig. 12.6). Since ϕ ∈ C(1)(D,G), the vector
field ξ(x) = ξ(ϕ(t)) = ϕ′(t)e(t) is continuous in G if the vector field e(t) is con-
tinuous in D. Thus every continuous field of frames (consisting of n continuous
vector fields) transforms under a diffeomorphism to a continuous field of frames.
Now let us consider a pair of diffeomorphisms ϕi : Di → G, i = 1,2, which in-
troduce two systems of curvilinear coordinates (t11 , . . . , t

n
1 ) and (t12 , . . . , t

n
2 ) into the

same domain G. The mutually inverse diffeomorphisms ϕ−1
2 ◦ ϕ1 : D1→ D2 and

ϕ−1
1 ◦ ϕ2 :D2→D1 provide mutual transitions between these coordinate systems.

The Jacobians of these mappings at corresponding points ofD1 andD2 are mutually
inverse to each other and consequently have the same sign. If the domain G (and
together with it D1 and D2) is connected, then by the continuity and nonvanishing
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of the Jacobians under consideration, they have the same sign at all points of the
domains D1 and D2 respectively.

Hence the set of all curvilinear coordinate systems introduced in a connected do-
main G by this method divide into exactly two equivalence classes when each class
is assigned systems whose mutual transitions are effected with a positive Jacobian.
Such equivalence classes are called the orientation classes of curvilinear coordinate
systems in G.

To define an orientation inG means by definition to fix an orientation class of its
curvilinear coordinate systems.

It is not difficult to verify that curvilinear coordinate systems belonging to the
same orientation class generate continuous fields of frames in G (as described
above) that are in the same orientation class of the tangent space TGx at each point
x ∈G. It can be shown in general that, if G is connected, the continuous fields of
frames on G divide into exactly two equivalence classes if each class is assigned
the fields whose frames belong to the same orientation class of frames of the space
TGx at each point x ∈G (in this connection, see Problems 3 and 4 at the end of this
section).

Thus the same orientation of a domainG can be defined in two completely equiv-
alent ways: by exhibiting a curvilinear coordinate system in G, or by defining any
continuous field of frames in G, all belonging to the same orientation class as the
field of frames generated by this coordinate system.

It is now clear that the orientation of a connected domain G is completely de-
termined if a frame that orients TGx is prescribed at even one point x ∈ G. This
circumstance is widely used in practice. If such an orienting frame is defined at
some point x0 ∈G, and a curvilinear coordinate system ϕ :D→G is taken in G,
then after constructing the frame induced by this coordinate system in TGx0 , we
compare it with the orienting frame in TGx . If the two frames both belong to the
same orientation class of TGx0 , we regard the curvilinear coordinates as defining
the same orientation on G as the orienting frame. Otherwise, we regard them as
defining the opposite orientation.

If G is an open set, not necessarily connected, since what has just been said is
applicable to any connected component of G, it is necessary to define an orienting
frame in each component of G in order to orient G. Hence, if there are m compo-
nents, the set G admits 2m different orientations.

What has just been said about the orientation of a domainG⊂R
n can be repeated

verbatim if instead of the domain G we consider a smooth k-dimensional surface S
in R

n defined by a single chart (see Fig. 12.7). In this case the curvilinear coordinate
systems on S also divide naturally into two orientation classes in accordance with
the sign of the Jacobian of their mutual transition transformations; fields of frames
also arise on S; and the orientation can also be defined by an orienting frame in
some tangent plane TSx0 to S.

The only new element that arises here and requires verification is the implicitly
occurring proposition that follows.
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Fig. 12.7

Proposition 1 The mutual transitions from one curvilinear coordinate system to
another on a smooth surface S ⊂ R

n are diffeomorphisms of the same degree of
smoothness as the charts of the surface.

Proof In fact, by the proposition in Sect. 12.1, we can regard any chart I k→ U ⊂
S locally as the restriction to I k ∩ O(t) of a diffeomorphism F : O(t)→ O(x)

from some n-dimensional neighborhood O(t) of the point t ∈ I k ⊂ R
n to an n-

dimensional neighborhood O(x) of x ∈ S ⊂ R
n, F being of the same degree of

smoothness as ϕ. If now ϕ1 : I k1 → U1 and ϕ2 : I k2 → U2 are two such charts, then
the action of the mapping ϕ−1

2 ◦ ϕ1 (the transition from the first coordinate system
to the second) which arises in the common domain of action can be represented
locally as ϕ−1

2 ◦ ϕ1(t
1, . . . , tk) = F−1

2 ◦ F(t1, . . . , tk,0, . . . ,0), where F1 and F2
are the corresponding diffeomorphisms of the n-dimensional neighborhoods. �

We have studied all the essential components of the concept of an orientation
of a surface using the example of an elementary surface defined by a single chart.
We now finish up this business with the final definitions relating to the case of an
arbitrary smooth surface in R

n.
Let S be a smooth k-dimensional surface in R

n, and let ϕi : I ki → Ui , ϕj : I kj →
Uj be two local charts of the surface S whose domains of action intersect, that is,
Ui ∩Uj �=∅. Then between the sets I kij = ϕ−1

i (Uj ) and I kji = ϕ−1
j (Ui), as was just

proved, there are natural mutually inverse diffeomorphisms ϕij : I kij → I kji and ϕji :
I kji→ I kij that realize the transition from one local curvilinear coordinate system on
S to the other.

Definition 1 Two local charts of a surface are consistent if their domains of ac-
tion either do not intersect, or have a nonempty intersection for which the mutual
transitions are effected by diffeomorphisms with positive Jacobian in their common
domain of action.

Definition 2 An atlas of a surface is an orienting atlas of the surface if it consists
of pairwise consistent charts.
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Definition 3 A surface is orientable if it has an orienting atlas. Otherwise it is
nonorientable.

In contrast to domains of Rn or elementary surfaces defined by a single chart, an
arbitrary surface may turn out to be nonorientable.

Example 1 The Möbius band, as one can verify (see Problems 2 and 3 at the end of
this section), is a nonorientable surface.

Example 2 The Klein bottle is also a nonorientable surface, since it contains a
Möbius band. This last fact can be seen immediately from the construction of the
Klein bottle shown in Fig. 12.5.

Example 3 A circle and in general a k-dimensional sphere are orientable, as can be
proved by exhibiting directly an atlas of the sphere consisting of consistent charts
(see Example 2 of Sect. 12.1).

Example 4 The two-dimensional torus studied in Example 4 of Sect. 12.1 is also an
orientable surface. Indeed, using the parametric equations of the torus exhibited in
Example 4 of Sect. 12.1, one can easily exhibit an orienting atlas for it.

We shall not go into detail, since a more visualizable method of controlling the
orientability of sufficiently simple surfaces will be exhibited below, making it easy
to verify the assertions in Examples 1–4.

The formal description of the concept of orientation of a surface will be finished
if we add Definitions 4 and 5 below to Definitions 1, 2, and 3.

Two orienting atlases of a surface are equivalent if their union is also an orienting
atlas of the surface.

This relation is indeed an equivalence relation between orienting atlases of an
orientable surface.

Definition 4 An equivalence class of orienting atlases of a surface under this rela-
tion is called an orientation class of atlases or simply an orientation of the surface.

Definition 5 An oriented surface is a surface with a fixed orientation class of atlases
(that is, a fixed orientation of the surface).

Thus orienting a surface means exhibiting a particular orientation class of ori-
enting atlases of the surface by some means or other.

Some special manifestations of the following proposition are already familiar to
us.

Proposition 2 There exist precisely two orientations on a connected orientable sur-
face.
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Fig. 12.8

They are usually called opposite orientations.
The proof of Proposition 2 will be given in Sect. 15.2.3.
If an orientable surface is connected, an orientation of it can be defined by speci-

fying any local chart of the surface or an orienting frame in any of its tangent planes.
This fact is widely used in practice.

When a surface has more than one connected component, such a local chart or
frame is naturally to be exhibited in each component.

The following way of defining an orientation of a surface embedded in a space
that already carries an orientation is widely used in practice. Let S be an orientable
(n− 1)-dimensional surface embedded in the Euclidean space R

n with a fixed ori-
enting frame e1, . . . , en in R

n. Let TSx be the (n − 1)-dimensional plane tangent
to S at x ∈ S, and n the vector orthogonal to TSx , that is, the vector normal to the
surface S at x. If we agree that for the given vector n the frame ξ1, . . . , ξn−1 is to be
chosen in TSx so that the frames (e1, . . . , en) and (n, ξ1, . . . , ξn−1) = (ẽ1, . . . , ẽn)
belong to the same orientation class on R

n, then, as one can easily see, such frames
(ξ1, . . . , ξn) of the plane TSx will themselves all turn out to belong to the same ori-
entation class for this plane. Hence in this case defining an orientation class for TSx
and along with it an orientation on a connected orientable surface can be done by
defining the normal vector n (Fig. 12.8).

It is not difficult to verify (see Problem 4) that the orientability of an (n − 1)-
dimensional surface embedded in the Euclidean space R

n is equivalent to the exis-
tence of a continuous field of nonzero normal vectors on the surface.

Hence, in particular, the orientability of the sphere and the torus follow obviously,
as does the nonorientability of the Möbius band, as was stated in Examples 1–4.

In geometry the connected (n− 1)-dimensional surfaces in the Euclidean space
R
n on which there exists a (single-valued) continuous field of unit normal vectors

are called two-sided.
Thus, for example, a sphere, torus, or plane in R

3 is a two-sided surface, in
contrast to the Möbius band, which is a one-sided surface in this sense.

To finish our discussion of the concept of orientation of a surface, we make sev-
eral remarks on the practical use of this concept in analysis.

In the computations that are connected in analysis with oriented surfaces in R
n

one usually finds first some local parametrization of the surface S without bothering
about orientation. In some tangent plane TSx to the surface one then constructs a
frame ξ1, . . . , ξn−1 consisting of (velocity) vectors tangent to the coordinate lines
of a chosen curvilinear coordinate system, that is, the orienting frame induced by
this coordinate system.
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If the space R
n has been oriented and an orientation of S has been defined by a

field of normal vectors, one chooses the vector n of the given field at the point x
and compares the frame n, ξ1, . . . , ξn−1 with the frame e1, . . . , en that orients the
space. If these are in the same orientation class, the local chart defines the required
orientation of the surface in accordance with our convention. If these two frames are
inconsistent, the chosen chart defines an orientation of the surface opposite to the
one prescribed by the normal n.

It is clear that when there is a local chart of an (n− 1)-dimensional surface, one
can obtain a local chart of the required orientation (the one prescribed by the fixed
normal vector n to the two-sided hypersurface embedded in the oriented space R

n)
by a simple change in the order of the coordinates.

In the one-dimensional case, in which a surface is a curve, the orientation is more
often defined by the tangent vector to the curve at some point; in that case we often
say the direction of motion along the curve rather than “the orientation of the curve”.

If an orienting frame has been chosen in R
2 and a closed curve is given, the

positive direction of circuit around the domain D bounded by the curve is taken to
be the direction such that the frame n,v, where n is the exterior normal to the curve
with respect toD and v is the velocity of the motion, is consistent with the orienting
frame in R

2.
This means, for example, that for the traditional frame drawn in the plane a pos-

itive circuit is “counterclockwise”, in which the domain is always “on the left”.
In this connection the orientation of the plane itself or of a portion of the plane

is often defined by giving the positive direction along some closed curve, usually a
circle, rather than a frame in R

2.
Defining such a direction amounts to exhibiting the direction of shortest rota-

tion from the first vector in the frame until it coincides with the second, which is
equivalent to defining an orientation class of frames on the plane.

12.2.1 Problems and Exercises

1. Is the atlas of the sphere exhibited in Problem 3c) of Sect. 12.1 an orienting atlas
of the sphere?
2. a) Using Example 4 of Sect. 12.1, exhibit an orienting atlas of the two-
dimensional torus.

b) Prove that there does not exist an orienting atlas for the Möbius band.
c) Show that under a diffeomorphism f :D→ D̃ an orientable surface S ⊂D

maps to an orientable surface S̃ ⊂ D̃.

3. a) Verify that the curvilinear coordinate systems on a domainG⊂R
n belonging

to the same orientation class generate continuous fields of frames in G that deter-
mine frames of the same orientation class on the space TGx at each point x ∈G.

b) Show that in a connected domain G ⊂ R
n the continuous fields of frames

divide into exactly two orientation classes.



12.3 The Boundary of a Surface and Its Orientation 179

c) Use the example of the sphere to show that a smooth surface S ⊂R
n may be

orientable even those there is no continuous field of frames in the tangent spaces
to S.

d) Prove that on a connected orientable surface one can define exactly two dif-
ferent orientations.

4. a) A subspace R
n−1 has been fixed, a vector v ∈ R

n\Rn−1 has been chosen,
along with two frames (ξ1, . . . , ξn−1) and (̃ξ1, . . . , ξ̃n−1) of the subspace R

n−1.
Verify that these frames belong to the same orientation class of frames of R

n−1

if and only if the frames (v, ξ1, . . . , ξn−1) and (v, ξ̃1, . . . , ξ̃n−1) define the same
orientation on R

n.
b) Show that a smooth hypersurface S ⊂ R

n is orientable if and only if there
exists a continuous field of unit normal vectors to S. Hence, in particular, it follows
that a two-sided surface is orientable.

c) Show that if gradF �= 0, then the surface defined by F(x1, . . . , xm) = 0 is
orientable (assuming that the equation has solutions).

d) Generalize the preceding result to the case of a surface defined by a system
of equations.

e) Explain why not every smooth two-dimensional surface in R
3 can be defined

by an equation F(x, y, z)= 0, where F is a smooth surface having no critical points
(a surface for which gradF �= 0 at all points).

12.3 The Boundary of a Surface and Its Orientation

12.3.1 Surfaces with Boundary

Let Rk be a Euclidean space of dimension k endowed with Cartesian coordinates
t1, . . . , tk . Consider the half-space Hk := {t ∈Rk | t1 ≤ 0} of the space R

k . The hy-
perplane ∂Hk := {t ∈Rk | t1 = 0} will be called the boundary of the half-space Hk .

We remark that the set H̊ k := Hk\∂Hk , that is, the open part of Hk , is an ele-
mentary k-dimensional surface. The half-space Hk itself does not formally satisfy
the definition of a surface because of the presence of the boundary points from ∂Hk .
The set Hk is the standard model for surfaces with boundary, which we shall now
describe.

Definition 1 A set S ⊂R
n is a (k-dimensional) surface with boundary if every point

x ∈ S has a neighborhood U in S homeomorphic either to R
k or to Hk .

Definition 2 If a point x ∈U corresponds to a point of the boundary ∂Hk under the
homeomorphism of Definition 1, then x is called a boundary point of the surface
(with boundary) S and of its neighborhood U . The set of all such boundary points
is called the boundary of the surface S.
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As a rule, the boundary of a surface S will be denoted ∂S. We note that for k = 1
the space ∂Hk consists of a single point. Hence, preserving the relation ∂Hk =
R
k−1, we shall from now on take R

0 to consist of a single point and regard ∂R0 as
the empty set.

We recall that under a homeomorphism ϕij :Gi →Gj of the domain Gi ⊂ R
k

onto the domain Gj ⊂R
k the interior points of Gi map to interior points of the im-

age ϕij (Gi) (this is a theorem of Brouwer). Consequently, the concept of a boundary
point of the surface is independent of the choice of the local chart, that is, the con-
cept is well defined.

Formally Definition 1 includes the case of the surface described in Definition 1
of Sect. 12.1. Comparing these definitions, we see that if S has no boundary points,
we return to our previous definition of a surface, which can now be regarded as
the definition of a surface without boundary. In this connection we note that the
term “surface with boundary” is normally used when the set of boundary points is
nonempty.

The concept of a smooth surface S (of class C(m)) with boundary can be intro-
duced, as for surfaces without boundary, by requiring that S have an atlas of charts of
the given smoothness class. When doing this we assume that for charts of the form
ϕ : Hk → U the partial derivatives of ϕ are computed at points of the boundary
∂Hk only over the domain Hk of definition of the mapping ϕ, that is, these deriva-
tives are sometimes one-sided, and that the Jacobian of the mapping ϕ is nonzero
throughout Hk .

Since R
k can be mapped to the cube I k = {t ∈ Rk | |t i | < 1, i = 1, . . . , k} by a

diffeomorphism of class C(∞) and in such a way that Hk maps to the portion I kH of
the cube I k defined by the additional condition t1 ≤ 0, it is clear that in the definition
of a surface with boundary (even a smooth one) we could have replaced R

k by I k

and Hk by I kH or by the cube Ĩ k with one of its faces attached: I k−1 := {t ∈ Rk |
t1 = 1, |t i |< 1, i = 2, . . . , k}, which is obviously a cube of dimension one less.

Taking account of this always-available freedom in the choice of canonical local
charts of a surface, comparing Definitions 1 and 2 and Definition 1 of Sect. 12.1, we
see that the following proposition holds.

Proposition 1 The boundary of a k-dimensional surface of class C(m) is itself a
surface of the same smoothness class, and is a surface without boundary having
dimension one less than the dimension of the original surface with boundary.

Proof Indeed, if A(S)= {(Hk,ϕi,Ui)}∪ {(Rk, ϕj ,Uj )} is an atlas for the surface S
with boundary, then A(∂S) = {(Rk−1, ϕi |∂Hk=Rk−1, ∂Ui)} is obviously an atlas of
the same smoothness class for ∂S. �

We now give some simple examples of surfaces with boundary.

Example 1 A closed n-dimensional ball B
n

in R
n is an n-dimensional surface

with boundary. Its boundary ∂B
n

is the (n− 1)-dimensional sphere (see Figs. 12.8
and 12.9a). The ball B

n
, which is often called in analogy with the two-dimensional

case an n-dimensional disk, can be homeomorphically mapped to half of an
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Fig. 12.9

Fig. 12.10

Fig. 12.11

n-dimensional sphere whose boundary is the equatorial (n− 1)-dimensional sphere
(Fig. 12.9b).

Example 2 The closed cube I
n

in R
n can be homeomorphically mapped to the

closed ball ∂B
n

along rays emanating from its center. Consequently I
n
, like B

n
is

an n-dimensional surface with boundary, which in this case is formed by the faces
of the cube (Fig. 12.10). We note that on the edges, which are the intersections of
the faces, it is obvious that no mapping of the cube onto the ball can be regular (that
is, smooth and of rank n).

Example 3 If the Möbius band is obtained by gluing together two opposite sides of
a closed rectangle, as described in Example 5 of Sect. 12.1, the result is obviously a
surface with boundary in R

3, and the boundary is homeomorphic to a circle (to be
sure, the circle is not knotted in R

3).
Under the other possible gluing of these sides the result is a cylindrical surface

whose boundary consists of two circles. This surface is homeomorphic to the usual
planar annulus (see Fig. 12.3 and Example 5 of Sect. 12.1). Figures 12.11a, 12.11b,
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Fig. 12.12

Fig. 12.13

12.12a, 12.12b, 12.13a, and 12.13b, which we will use below, show pairwise home-
omorphic surfaces with boundary embedded in R

2 and R
3. As one can see, the

boundary of a surface may be disconnected, even when the surface itself is con-
nected.

12.3.2 Making the Orientations of a Surface and Its Boundary
Consistent

If an orienting orthoframe e1, . . . , ek that induces Cartesian coordinates x1, . . . , xk

is fixed in R
k , the vectors e2, . . . , ek define an orientation on the boundary ∂Hk =

R
k−1 of ∂Hk = {x ∈ Rk | x1 ≤ 0} which is regarded as the orientation of the half-

space Hk consistent with the orientation of the half-space Hk given by the frame
e1, . . . , ek .

In the case k = 1 where ∂Hk =R
k−1 =R

0 is a point, a special convention needs
to be made as to how to orient the point. By definition, the point is oriented by
assigning a sign + or − to it. In the case ∂H 1 = R

0, we take (R0,+), or more
briefly +R0.

We now wish to determine what is meant in general by consistency of the orien-
tation of a surface and its boundary. This is very important in carrying out compu-
tations connected with surface integrals, which will be discussed below.

We begin by verifying the following general proposition.

Proposition 2 The boundary ∂S of a smooth orientable surface S is itself a smooth
orientable surface (although possibly not connected).

Proof After we take account of Proposition 1 all that remains is to verify that
∂S is orientable. We shall show that if A(S) = {(Hk,ϕi,Ui)} ∪ {(Rk, ϕj ,Uj )}
is an orienting atlas for a surface S with boundary, then the atlas A(∂S) =
{(Rk−1, ϕi |∂Hk=Rk−1, ∂Ui)} of the boundary also consists of pairwise consistent
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charts. To do this it obviously suffices to verify that if t̃ = ψ(t) is a diffeomor-
phism with positive Jacobian from an Hk-neighborhood UHk(t0) of the point t0 in
∂Hk onto an Hk-neighborhood ŨHk (̃t0) of the point t̃0 ∈ ∂Hk , then the mapping
ψ |∂U

Hk
(t0) from the Hk-neighborhood U∂Hk (t0) = ∂UHk (t0) of t0 ∈ ∂Hk onto the

Hk-neighborhood Ũ∂Hk (̃t0) = ∂ŨHk (̃t0) of t̃0 = ψ(t0) ∈ ∂Hk also has a positive
Jacobian.

We remark that at each point t0 = (0, t20 , . . . , tk0 ) ∈ ∂Hk the Jacobian J of the
mapping ψ has the form

J (t0)=

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂ψ1

∂t1
0 · · · 0

∂ψ2

∂t1
∂ψ2

∂t2
· · · ∂ψ2

∂tk

...
...

. . .
...

∂ψk

∂t1
∂ψk

∂t2
· · · ∂ψk

∂tk

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= ∂ψ
1

∂t1

∣
∣
∣
∣
∣
∣
∣
∣

∂ψ2

∂t2
· · · ∂ψ2

∂tk

...
. . .

...

∂ψk

∂t2
· · · ∂ψk

∂tk

∣
∣
∣
∣
∣
∣
∣
∣

,

since for t1 = 0 we must also have t̃ 1 =ψ1(0, t2, . . . , tk)≡ 0 (boundary points map
to boundary points under a diffeomorphism). It now remains only to remark that
when t1 < 0 we must also have t̃ = ψ1(t1, t2, . . . , tk) < 0 (since t̃ = ψ(t) ∈ Hk),
so that the value of ∂ψ

1

∂t1
(0, t2, . . . , tk) cannot be negative. By hypothesis J (t0) > 0,

and since ∂ψ1

∂t1
(0, t2, . . . , tk) > 0 it follows from the equality given above connect-

ing the determinants that the Jacobian of the mapping ψ |∂U
Hk
= ψ(0, t2, . . . , tk) is

positive. �

We note that the case of a one-dimensional surface (k = 1) in Proposition 2 and
Definition 3 below must be handled by a special convention in accordance with the
convention adopted at the beginning of this subsection.

Definition 3 If A(S) = {(Hk,ϕi,Ui)} ∩ {(Rk, ϕj ,Uj )} is an orienting atlas of
standard local charts of the surface S with boundary ∂S, then A(∂S) = {(Rk−1,

ϕ|∂Hk=Rk−1, ∂Ui)} is an orienting atlas for the boundary. The orientation of ∂S that
it defines is said to be the orientation consistent with the orientation of the surface.

To finish our discussion of orientation of the boundary of an orientable surface,
we make two useful remarks.

Remark 1 In practice, as already noted above, an orientation of a surface embedded
in R

n is often defined by a frame of tangent vectors to the surface. For that reason,
the verification of the consistency of the orientation of the surface and its boundary
in this case can be carried out as follows. Take a k-dimensional plane TSx0 tangent to
the smooth surface S at the point x0 ∈ ∂S. Since the local structure of S near x0 is the
same as the structure of the half-space Hk near 0 ∈ ∂Hk , directing the first vector
of the orthoframe ξ1, ξ2, . . . , ξ k ∈ TSx0 along the normal to ∂S and in the direction
exterior to the local projection of S on TSx0 , we obtain a frame ξ2, . . . , ξ k in the
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(k − 1)-dimensional plane T ∂Sx0 tangent to ∂S at x0, which defines an orientation
of T ∂Sx0 , and hence also of ∂S, consistent with orientation of the surface S defined
by the given frame ξ1, ξ2, . . . , ξ k .

Figures 12.9–12.12 show the process and the result of making the orientations of
a surface and its boundary consistent using a simple example.

We note that this scheme presumes that it is possible to translate a frame that
defines the orientation of S to different points of the surface and its boundary, which,
as examples show, may be disconnected.

Remark 2 In the oriented space R
k we consider the half-space Hk− = Hk = {x ∈

R
k | x1 ≤ 0} and Hk+ = {x ∈Rk | x1 ≥ 0} with the orientation induced from R

k . The
hyperplane Γ = {x ∈ Rk | x1 = 0} is the common boundary of Hk− and Hk+. It is
easy to see that the orientations of the hyperplane Γ consistent with the orientations
of Hk− and Hk+ are opposite to each other. This also applies to the case k = 1, by
convention.

Similarly, if an oriented k-dimensional surface is cut by some (k−1)-dimensional
surface (for example, a sphere intersected by its equator), two opposite orientations
arise on the intersection, induced by the parts of the original surface adjacent to it.

This observation is often used in the theory of surface integrals.
In addition, it can be used to determine the orientability of a piecewise-smooth

surface.
We begin by giving the definition of such a surface.

Definition 4 (Inductive definition of a piecewise-smooth surface) We agree to call
a point a zero-dimensional surface of any smoothness class.

A piecewise smooth one-dimensional surface (piecewise smooth curve) is a curve
in R

n which breaks into smooth one-dimensional surfaces (curves) when a finite or
countable number of zero-dimensional surfaces are removed from it.

A surface S ⊂ R
n of dimension k is piecewise smooth if a finite or countable

number of piecewise smooth surfaces of dimension at most k − 1 can be removed
from it in such a way that the remainder decomposes into smooth k-dimensional
surfaces Si (with boundary or without).

Example 4 The boundary of a plane angle and the boundary of a square are
piecewise-smooth curves.

The boundary of a cube or the boundary of a right circular cone in R
3 are two-

dimensional piecewise-smooth surfaces.

Let us now return to the orientation of a piecewise-smooth surface.
A point (zero-dimensional surface), as already pointed out, is by convention ori-

ented by ascribing the sign + or − to it. In particular, the boundary of a closed
interval [a, b] ⊂ R, which consists of the two points a and b is by convention con-
sistent with the orientation of the closed interval from a to b if the orientation is
(a,−), (b,+), or, in another notation, −a, +b.
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Now let us consider a k-dimensional piecewise smooth surface S ⊂R
n (k > 0).

We assume that the two smooth surfaces Si1 and Si2 in Definition 4 are ori-
ented and abut each other along a smooth portion Γ of a (k − 1)-dimensional sur-
face (edge). Orientations then arise on Γ , which is a boundary, consistent with the
orientations of Si1 and Si2 . If these two orientations are opposite on every edge
Γ ⊂ Si1 ∩ Si2 , the original orientations of Si1 and Si2 are considered consistent. If
Si1 ∩ Si2 is empty or has dimension less than (k− 1), all orientations of Si1 and Si2
are consistent.

Definition 5 A piecewise-smooth k-dimensional surface (k > 0) will be considered
orientable if up to a finite or countable number of piecewise-smooth surfaces of
dimension at most (k − 1) it is the union of smooth orientable surfaces Si any two
of which have a mutually consistent orientation.

Example 5 The surface of a three-dimensional cube, as one can easily verify, is an
orientable piecewise-smooth surface. In general, all the piecewise-smooth surfaces
exhibited in Example 4 are orientable.

Example 6 The Möbius band can easily be represented as the union of two ori-
entable smooth surfaces that abut along a piece of the boundary. But these surfaces
cannot be oriented consistently. One can verify that the Möbius band is not an ori-
entable surface, even from the point of view of Definition 5.

12.3.3 Problems and Exercises

1. a) Is it true that the boundary of a surface S ⊂R
n is the set S\S, where S is the

closure of S in R
n?

b) Do the surfaces S1 = {(x, y) ∈ R2 | 1< x2 + y2 < 2} and S2 = {(x, y) | 0<
x2 + y2} have a boundary?

c) Give the boundary of the surfaces S1 = {(x, y) ∈ R2 | 1 ≤ x2 + y2 < 2} and
S2 = {(x, y) ∈R2 | 1≤ x2 + y2}.
2. Give an example of a nonorientable surface with an orientable boundary.
3. a) Each face I k = {x ∈Rk | |xi |< 1, i = 1, . . . , k} is parallel to the correspond-
ing (k − 1)-dimensional coordinate hyperplane in R

k , so that one may consider the
same frame and the same coordinate system in the face as in the hyperplane. On
which faces is the resulting orientation consistent with the orientation of the cube
I k induced by the orientation of Rk , and on which is it not consistent? Consider
successively the cases k = 2, k = 3, and k = n.

b) The local chart (t1, t2) �→ (sin t2 cos t2, sin t2 sin t2, cos t1) acts in a certain
domain of the hemisphere S = {(x, y, z) ∈ R

3 | x2 + y2 + z2 = 1 ∧ z > 0}, and
the local chart t �→ (cos t, sin t,0) acts in a certain domain of the boundary ∂S of
this hemisphere. Determine whether these charts give a consistent orientation of the
surface S and its boundary ∂S.
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c) Construct the field of frames on the hemisphere S and its boundary ∂S in-
duced by the local charts shown in b).

d) On the boundary ∂S of the hemisphere S exhibit a frame that defines the
orientation of the boundary consistent with the orientation of the hemisphere given
in c).

e) Define the orientation of the hemisphere S obtained in c) using a normal
vector to S ⊂R

3.

4. a) Verify that the Möbius band is not an orientable surface even from the point
of view of Definition 5.

b) Show that if S is a smooth surface in R
n, determining its orientability as a

smooth surface and as a piecewise-smooth surface are equivalent processes.

5. a) We shall say that a set S ⊂ R
n is a k-dimensional surface with boundary if

for each point x ∈ S there exists a neighborhood U(x) ∈ Rn and a diffeomorphism
ψ : U(x)→ In of this neighborhood onto the standard cube In ⊂ R

n under which
ψ(S ∩ U(x)) coincides either with the cube I k = {t ∈ In | tk+1 = · · · = tn = 0} or
with a portion of it I k ∩ {t ∈Rn | tk ≤ 0} that is a k-dimensional open interval with
one of its faces attached.

Based on what was said in Sect. 12.1 in the discussion of the concept of a surface,
show that this definition of a surface with boundary is equivalent to Definition 1.

b) Is it true that if f ∈ C(l)(Hk,R), where Hk = {x ∈ R
k | x1 ≤ 0}, then for

every point x ∈ ∂Hk one can find a neighborhood of it U(x) in R
k and a function

F ∈ C(l)(U(x),R) such that F |Hk∩U(x) = f |Hk∩U(x)?
c) If the definition given in part a) is used to describe a smooth surface with

boundary, that is, we regard ψ as a smooth mapping of maximal rank, will this
definition of a smooth surface with boundary be the same as the one adopted in
Sect. 12.3?

12.4 The Area of a Surface in Euclidean Space

We now turn to the problem of defining the area of a k-dimensional piecewise-
smooth surface embedded in the Euclidean space R

n, n≥ k.
We begin by recalling that if ξ1, . . . , ξ k are k vectors in Euclidean space Rk , then

the volume V (ξ1, . . . , ξ k) of the parallelepiped spanned by these vectors as edges
can be computed as the determinant

V (ξ1, . . . , ξ k)= det
(
ξ
j
i

)
(12.6)

of the matrix J = (ξ ji ) whose rows are formed by the coordinates of these vectors
in some orthonormal basis e1, . . . , ek of Rk . We note, however, that in actual fact
formula (12.6) gives the so-called oriented volume of the parallelepiped rather than
simply the volume. If V �= 0, the value of V given by (12.6) is positive or negative
according as the frames e1, . . . , ek and ξ1, . . . , ξ k belong to the same or opposite
orientation classes of Rk .
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Fig. 12.14

We now remark that the product JJ ∗ of the matrix J and its transpose J ∗ has
elements that are none other than the matrix G = (gij ) of pairwise inner products
gij = 〈ξ i , ξ j 〉 of these vectors, that is, the Gram matrix8 of the system of vectors
ξ1, . . . , ξ k . Thus

detG= det
(
JJ ∗
)= detJ detJ ∗ = (detJ )2, (12.7)

and hence the nonnegative value of the volume V (ξ1, . . . , ξ k) can be obtained as

V (ξ1, . . . , ξ k)=
√

det
(〈ξ i , ξ j 〉

)
. (12.8)

This last formula is convenient in that it is essentially coordinate-free, containing
only a set of geometric quantities that characterize the parallelepiped under consid-
eration. In particular, if these same vectors ξ1, . . . , ξ k are regarded as embedded in
n-dimensional Euclidean space R

n (n ≥ k), formula (12.8) for the k-dimensional
volume (or k-dimensional surface area) of the parallelepiped they span remains un-
changed.

Now let r :D→ S ⊂ R
n be a k-dimensional smooth surface S in the Euclidean

space R
n defined in parametric form r= r(t1, . . . , tk), that is, as a smooth vector-

valued function r(t)= (x1, . . . , xn)(t) defined in the domainD ⊂R
k . Let e1, . . . , ek

be the orthonormal basis in R
k that generates the coordinate system (t1, . . . , tk).

After fixing a point t0 = (t10 , . . . , tk0 ) ∈D, we take the positive numbers h1, . . . , hk

to be so small that the parallelepiped I spanned by the vectors hiei ∈ TDt0 , i =
1, . . . , k, attached at the point t0 is contained in D.

Under the mapping D→ S a figure IS on the surface S, which we may provi-
sionally call a curvilinear parallelepiped, corresponds to the parallelepiped I (see
Fig. 12.14, which corresponds to the case k = 2, n= 3). Since

r
(
t10 , . . . , t

i−1
0 , t i0 + hi, t i+1

0 , . . . , tk0
)− r
(
t10 , . . . , t

i−1
0 , t i0, t

i+1
0 , . . . , tk0

)

= ∂r
∂t i
(t0)h

i + o(hi),

8See the footnote on p. 497.
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a displacement in R
n from r(t0) that can be replaced, up to o(hi), by the partial dif-

ferential r
∂ti
(t0)h

i =: ṙihi as hi→ 0 corresponds to displacement from t0 by hiei .
Thus, for small values of hi , i = 1, . . . , k, the curvilinear parallelepiped IS differs
only slightly from the parallelepiped spanned by the vectors h1ṙ1, . . . , h

i ṙk tangent
to the surface S at r(t0). Assuming on that basis that the volumeΔV of the curvilin-
ear parallelepiped IS must also be close to the volume of the standard parallelepiped
just exhibited, we find the approximate formula

ΔV ≈
√

det(gij )(t0)Δt
1 · . . . ·Δtk, (12.9)

where we have set gij (t0)= 〈ṙi , ṙj 〉(t0) and Δti = hi , i, j = 1, . . . , k.
If we now tile the entire space R

k containing the parameter domain D with k-
dimensional parallelepipeds of small diameter d , take the ones that are contained
in D, compute an approximate value of the k-dimensional volume of their images
using formula (12.9), and then sum the resulting values, we arrive at the quantity

∑

α

√
det(gij )(tα)Δt

1 · . . . ·Δtk,

which can be regarded as an approximation to the k-dimensional volume or area of
the surface S under consideration, and this approximate value should become more
precise as d→ 0. Thus we adopt the following definition.

Definition 1 The area (or k-dimensional volume) of a smooth k-dimensional sur-
face S given parametrically by D � t → r(t) ∈ S and embedded in the Euclidean
space R

n is the quantity

Vk(S) :=
∫

D

√
det
(〈ṙi , ṙj 〉

)
dt1 · · ·dtk. (12.10)

Let us see how formula (12.10) looks in the cases that we already know about.
For k = 1 the domain D ⊂ R

1 is an interval with certain endpoints a and b
(a < b) on the line R

1, and S is a curve in R
n in this case. Thus for k = 1 formula

(12.10) becomes the formula

V1(S)=
∫ b

a

∣∣ṙ(t)
∣∣dt =

∫ b

a

√(
ẋ1
)2 + · · · + (ẋn)2(t)dt

for computing the length of a curve.
If k = n, then S is an n-dimensional domain in R

n diffeomorphic to D. In this
case the Jacobian matrix J = x′(t) of the mapping D � (t1, . . . , tn) = t �→ r(t) =
(x1, . . . , xn)(t) ∈ S is a square matrix. Now using relation (12.7) and the formula
for change of variable in a multiple integral, one can write

Vn(S)=
∫

D

√
detG(t)dt =

∫

D

∣∣detx′(t)
∣
∣dt =

∫

S

dx = V (S).
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That is, as one should have expected, we have arrived at the volume of the domain
S in R

n.
We note that for k = 2, n= 3, that is, when S is a two-dimensional surface in R

3,
one often replaces the standard notation gij = 〈ṙi , ṙj 〉 by the following: σ := V2(S),
E := g11 = 〈ṙ1, ṙ1〉, F := g12 = g21 = 〈ṙ1, ṙ2〉, G := g22 = 〈ṙ2, ṙ2〉; and one writes
u,v respectively instead of t1, t2. In this notation formula (12.10) assumes the form

σ =
∫∫

D

√
EG− F 2 dudv.

In particular, if u = x, v = y, and the surface S is the graph of a smooth real-
valued function z = f (x, y) defined in a domain D ⊂ R

2, then, as one can easily
compute,

σ =
∫∫

D

√
1+ (f ′x

)2 + (f ′y
)2 dx dy.

We now return once again to Definition 1 and make a number of remarks that
will be useful later.

Remark 1 Definition 1 makes sense only when the integral on the right-hand side
of (12.10) exists. It demonstrably exists, for example, if D is a Jordan-measurable
domain and r ∈ C(1)(D,Rn).

Remark 2 If the surface S in Definition 1 is partitioned into a finite number of sur-
faces S1, . . . , Sm with piecewise smooth boundaries, the same kind of partition of
the domain D into domains D1, . . . ,Dm corresponding to these surfaces will corre-
spond to this partition. If the surface S had area in the sense of Eq. (12.10), then the
quantities

Vk(Sα)=
∫

Dα

√
det〈ṙi , ṙj 〉(t)dt

are defined for each value of α = 1, . . . ,m.
By the additivity of the integral, it follows that

Vk(S)=
∑

α

Vk(Sα).

We have thus established that the area of a k-dimensional surface is additive in
the same sense as the ordinary multiple integral.

Remark 3 This last remark allows us to exhaust the domain D when necessary, and
thereby to extend the meaning of the formula (12.10), in which the integral may
now be interpreted as an improper integral.

Remark 4 More importantly, the additivity of area can be used to define the area of
an arbitrary smooth or even piecewise smooth surface (not necessarily given by a
single chart).
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Definition 2 Let S be an arbitrary piecewise smooth k-dimensional surface in R
n.

If, after a finite or countable number of piecewise smooth surfaces of dimension at
most k − 1 are removed, it breaks up into a finite or countable number of smooth
parametrized surfaces S1, . . . , Sm, . . . , we set

Vk(S) :=
∑

α

Vk(Sα).

The additivity of the multiple integral makes it possible to verify that the quantity
Vk(S) so defined is independent of the way in which the surface S is partitioned into
smooth pieces S1, . . . , Sm, . . . , each of which is contained in the range of some local
chart of the surface S.

We further remark that it follows easily from the definitions of smooth and piece-
wise smooth surfaces that the partition of S into parametrized pieces, as described
in Definition 2, is always possible, and can even be done while observing the natural
additional requirement that the partition be locally finite. The latter means that any
compact setK ⊂ S can intersect only a finite number of the surfaces S1, . . . , Sm, . . . .
This can be expressed more vividly in another way: every point of S must have a
neighborhood that intersects at most a finite number of the sets S1, . . . , Sm, . . . .

Remark 5 The basic formula (12.10) contains a system of curvilinear coordinates
t1, . . . , tk . For that reason, it is natural to verify that the quantity Vk(S) defined by
(12.10) (and thereby also the quantity Vk(S) from Definition 2) is invariant under a
diffeomorphic transition D̃ � (̃t 1, . . . , t̃ k) �→ t = (t1, . . . , tk) ∈ D to new curvilin-
ear coordinates t̃ 1, . . . , t̃ k varying in the domain D̃ ⊂R

k .

Proof For the verification it suffices to remark that the matrices

G= (gij )=
(〈
∂r
∂t i
,
∂r
∂tj

〉)
and G̃= (g̃ij )=

(〈
∂r
∂t̃ i
,
∂r
∂t̃j

〉)

at corresponding points of the domains D and D̃ are connected by the relation G̃=
J ∗GJ , where J = ( ∂tj

∂t̃ i
) is the Jacobian matrix of the mapping D̃ � t̃ �→ t ∈ D

and J ∗ is the transpose of the matrix J . Thus, det G̃(t̃)= detG(t)(detJ )2(t̃), from
which it follows that

∫

D

√
detG(t)dt =

∫

D̃

√
detG

(
t (t̃)
)∣∣J ( t̃ )

∣∣ d̃t =
∫

D̃

√
det G̃( t̃ ) d̃t . �

Thus, we have given a definition of the k-dimensional volume or area of a k-
dimensional piecewise-smooth surface that is independent of the choice of coordi-
nate system.

Remark 6 We precede the remark with a definition.
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Definition 3 A set E embedded in a k-dimensional piecewise-smooth surface S is
a set of k-dimensional measure zero or has area zero in the Lebesgue sense if for
every ε > 0 it can be covered by a finite or countable system S1, . . . , Sm, . . . of
(possibly intersecting) surfaces Sα ⊂ S such that

∑
α Vk(Sα) < ε.

As one can see, this is a verbatim repetition of the definition of a set of measure
zero in R

k .
It is easy to see that in the parameter domain D of any local chart ϕ :D→ S of

a piecewise-smooth surface S the set ϕ−1(E)⊂D ⊂R
k of k-dimensional measure

zero corresponds to such a set E. One can even verify that this is the characteristic
property of sets E ⊂ S of measure zero.

In the practical computation of areas and the surface integrals introduced below,
it is useful to keep in mind that if a piecewise-smooth surface S̃ has been obtained
from a piecewise-smooth surface S by removing a set E of measure zero from S,
then the areas of S̃ and S are the same.

The usefulness of this remark lies in the fact that it is often easy to remove such
a set of measure zero from a piecewise-smooth surface in such a way that the result
is a smooth surface S̃ defined by a single chart. But then the area of S̃ and hence the
area of S also can be computed directly by formula (12.10).

Let us consider some examples.

Example 1 The mapping ]0,2π [ � t �→ (R cos t,R sin t) ∈ R
2 is a chart for the

arc S̃ of the circle x2 + y2 = R2 obtained by removing the single point E = (R,0)
from that circle. Since E is a set of measure zero on S, we can write

V1(S)= V1(S̃)=
∫ 2π

0

√
R2 sin2 t +R2 cos2 t dt = 2πR.

Example 2 In Example 4 of Sect. 12.1 we exhibited the following parametric rep-
resentation of the two-dimensional torus S in R

3:

r(ϕ,ψ)= ((b+ a cosψ) cosϕ, (b+ a cosψ) sinϕ,a sinψ
)
.

In the domain D = {(ϕ,ψ) | 0 < ϕ < 2π,0 < ψ < 2π} the mapping (ϕ,ψ) �→
r(ϕ,ψ) is a diffeomorphism. The image S̃ of the domain D under this diffeomor-
phism differs from the torus by the set E consisting of the coordinate line ϕ = 2π
and the line ψ = 2π . The set E thus consists of one parallel of latitude and one
meridian of longitude of the torus, and, as one can easily see, has measure zero.
Hence the area of the torus can be found by formula (12.10) starting from this para-
metric representation, considered within the domain D.

Let us carry out the necessary computations:

ṙϕ =
(−(b+ a cosψ) sinϕ, (b+ a cosψ) cosϕ,0

)
,

ṙψ = (−a sinψ) cosϕ,−a sinψ sinϕ,a cosψ),

g11 = 〈ṙϕ, ṙϕ〉 = (b+ a cosψ)2,
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g12 = g21 = 〈ṙϕ, ṙψ 〉 = 0,

g22 = 〈ṙψ, ṙψ 〉 = a2,

detG =
∣
∣∣∣
g11 g12
g21 g22

∣
∣∣∣= a2(b+ a cosψ)2.

Consequently,

V2(S)= V2(S̃)=
∫ 2π

0
dϕ
∫ 2π

0
a(b+ a cosψ)dψ = 4π2ab.

In conclusion we note that the method indicated in Definition 2 can now be used
to compute the areas of piecewise-smooth curves and surfaces.

12.4.1 Problems and Exercises

1. a) Let P and P̃ be two hyperplanes in the Euclidean space R
n, D a subdo-

main of P , and D̃ the orthogonal projection of D on the hyperplane P̃ . Show
that the (n − 1)-dimensional areas of D and D̃ are connected by the relation
σ(D̃)= σ(D) cosα, where α is the angle between the hyperplanes P and P̃ .

b) Taking account of the result of a), give the geometric meaning of the formula

dσ =
√

1+ (f ′x)2 + (f ′y)2 dx dy for the element of area of the graph of a smooth

function z= f (x, y) in three-dimensional Euclidean space.
c) Show that if the surface S in Euclidean space R

3 is defined as a smooth
vector-valued function r = r(u, v) defined in a domain D ⊂ R

2, then the area of
the surface S can be found by the formula

σ(S)=
∫∫

D

∣∣[r′u, r′v
]∣∣dudv,

where [r′u, r′v] is the vector product of ∂r
∂u

and ∂r
∂v

.
d) Verify that if the surface S ⊂R

3 is defined by the equation F(x, y, z)= 0 and
the domain U of the surface S projects orthogonally in a one-to-one manner onto
the domain D of the xy-plane, we have the formula

σ(U)=
∫∫

D

gradF

|F ′z|
dx dy.

2. Find the area of the spherical rectangle formed by two parallels of latitude and
two meridians of longitude of the sphere S ⊂R

3.
3. a) Let (r, ϕ,h) be cylindrical coordinates in R

3. A smooth curve lying in the
plane ϕ = ϕ0 and defined there by the equation r= r(s), where s is the arc length
parameter, is revolved about the h-axis. Show that the area of the surface obtained
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by revolving the piece of this curve corresponding to the closed interval [s1, s2] of
variation of the parameter s can be found by the formula

σ = 2π
∫ s2

s1

r(s)ds.

b) The graph of a smooth nonnegative function y = f (x) defined on a closed
interval [a, b] ⊂ R+ is revolved about the x-axis, then about the y-axis. In each of
these cases, write the formula for the area of the corresponding surface of revolution
as an integral over the closed interval [a, b].
4. a) The center of a ball of radius 1 slides along a smooth closed plane curve of
length L. Show that the area of the surface of the tubular body thereby formed is
2π · 1 ·L.

b) Based on the result of part a), find the area of the two-dimensional torus
obtained by revolving a circle of radius a about an axis lying in the plane of the
circle and lying at distance b > a from its center.

5. Describe the helical surface defined in Cartesian coordinates (x, y, z) in R
3 by

the equation

y = x tan
z

h
= 0, |z| ≤ π

2
h,

and find the area of the portion of it for which r2 < x2 + y2 ≤R2.

6. a) Show that the area Ωn−1 of the unit sphere in R
n is 2(

√
π)n

Γ ( n2 )
, where Γ (a) =

∫∞
0 e−xxα−1 dx. (In particular, if n is even, then Γ (n2 )= ( n−2

2 )!, while if n is odd,

Γ (n2 )= (n−2)!!
2
n−1

2

√
π .)

b) By verifying that the volume Vn(r) of the ball of radius r in R
n is (

√
π)n

Γ ( n+2
2 )
rn,

show that dVn
dr |r=1 =Ωn−1.

c) Find the limit as n→∞ of the ratio of the area of the hemisphere {x ∈ Rn |
|x| = 1∧ xn > 0} to the area of its orthogonal projection on the plane xn = 0.

d) Show that as n→∞, the majority of the volume of the n-dimensional ball is
concentrated in an arbitrarily small neighborhood of the boundary sphere, and the
majority of the area of the sphere is concentrated in an arbitrarily small neighbor-
hood of its equator.

e) Show that the following beautiful corollary on concentration phenomena fol-
lows from the observation made in d).

A regular function that is continuous on a sphere of large dimension is nearly
constant on it (recall pressure in thermodynamics).

Specifically, let us consider, for example, functions satisfying a Lipschitz condi-
tion with a fixed constant. Then for any ε > 0 and δ > 0 there exists N such that
for n > N and any function f : Sn→ R there exists a value c with the following
properties: the area of the set on which the value of f differs from c by more than ε
is at most δ times the area of the whole sphere.
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7. a) Let x1, . . . , xk be a system of vectors in Euclidean space Rn, n≥ k. Show that
the Gram determinant of this system can be represented as

det
(〈xi, xj 〉

)=
∑

1≤i1<···<ik≤n
P 2
i1···ik ,

where

Pi1···ik = det

⎛

⎜
⎜
⎝

x
i1
1 · · · x

ik
1

...
. . .

...

x
i1
k · · · x

ik
k

⎞

⎟
⎟
⎠ .

b) Explain the geometric meaning of the quantities Pi1···ik from a) and state the
result of a) as the Pythagorean theorem for measures of arbitrary dimension k,
1≤ k ≤ n.

c) Now explain the formula

σ =
∫

D

√√√√√√√
∑

1≤i1<···<ik≤n
det2

⎛

⎜
⎜
⎝

∂xi1

∂t1
· · · ∂xi1

∂tk

...
. . .

...

∂xik

∂t1
· · · ∂xik

∂tk

⎞

⎟
⎟
⎠dt1 · · ·dtk

for the area of a k-dimensional surface given in the parametric form x =
x(t1, . . . , tk), t ∈D ⊂R

k .

8. a) Verify that the quantity Vk(S) in Definition 2 really is independent of the
method of partitioning the surface S into smooth pieces S1, . . . , Sm, . . . .

b) Show that a piecewise-smooth surface S admits the locally finite partition
into pieces S1, . . . , Sm, . . . described in Definition 2.

c) Show that a set of measure 0 can always be removed from a piecewise-smooth
surface S so as to leave a smooth surface S̃ = S\E that can be described by a single
standard local chart ϕ : I→ S.

9. The length of a curve, like the high-school definition of the circumference of a
circle, is often defined as the limit of the lengths of suitably inscribed broken lines.
The limit is taken as the length of the links in the inscribed broken lines tend to
zero. The following simple example, due to H. Schwarz, shows that the analogous
procedure in an attempt to define the area of even a very simple smooth surface in
terms of the areas of polyhedral surfaces “inscribed” in it, may lead to an absurdity.

In a cylinder of radius R and height H we inscribe a polyhedron as follows.
Cut the cylinder into m equal cylinders each of height H/m by means of horizontal
planes. Break each of them+1 circles of intersection (including the upper and lower
bases of the original cylinder) into n equal parts so that the points of division on each
circle lie beneath the midpoints of the points of division of the circle immediately
above. We now take a pair of division points of each circle and the point lying
directly above or below the midpoint of the arc whose endpoints they are.
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These three points form a triangle, and the set of all such triangles forms a poly-
hedral surface inscribed in the original cylindrical surface (the lateral surface of a
right circular cylinder). In shape this polyhedron resembles the calf of a boot that
has been crumpled like an accordion. For that reason it is often called the Schwarz
boot.

a) Show that if m and n are made to tend to infinity in such a way that the
ratio n2/m tends to zero, then the area of the polyhedral surface just constructed
will increase without bound, even though the dimensions of each of its faces (each
triangle) tend to zero.

b) If n and m tend to infinity in such a way that the ratio m/n2 tends to some
finite limit p, the area of the polyhedral surfaces will tend to a finite limit, which
may be larger than, smaller than, or (when p = 0) equal to the area of the original
cylindrical surface.

c) Compare the method of introducing the area of a smooth surface described
here with what was just done above, and explain why the results are the same in the
one-dimensional case, but in general not in the two-dimensional case. What are the
conditions on the sequence of inscribed polyhedral surfaces that guarantee that the
two results will be the same?

10. The isoperimetric inequality. Let V (E) denote the volume of a set E ⊂R
n, and

A+B the (vector) sum of the sets A,B ⊂R
n. (The sum in the sense of Minkowski

is meant. See Problem 4 in Sect. 11.2.)
Let B be a ball of radius h. Then A+B =:Ah is the h-neighborhood of the set A.
The quantity

lim
h→0

V (Ah)− V (A)
h

=: μ+(∂A)

is called the Minkowski outer area of the boundary ∂A of A.

a) Show that if ∂A is a smooth or sufficiently regular surface, then μ+(∂A)
equals the usual area of the surface ∂A.

b) Using the Brunn–Minkowski inequality (Problem 4 of Sect. 11.2), obtain now
the classical isoperimetric inequality in R

n:

μ+(∂A)≥ nv 1
n V

n−1
n (A)=: μ(SA);

here V is the volume of the unit ball in R
n, and μ(SA) the area of the ((n − 1)-

dimensional) surface of the ball having the same volume as A.
The isoperimetric inequality means that a solid A ⊂ R

n has boundary area
μ+(∂A) not less than that of a ball of the same volume.

12.5 Elementary Facts About Differential Forms

We now give an elementary description of the convenient mathematical machinery
known as differential forms, paying particular attention here to its algorithmic poten-
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tial rather than the details of the theoretical constructions, which will be discussed
in Chap. 15.

12.5.1 Differential Forms: Definition and Examples

Having studied algebra, the reader is well acquainted with the concept of a linear
form, and we have already made extensive use of that concept in constructing the
differential calculus. In that process we encountered mostly symmetric forms. In the
present subsection we will be discussing skew-symmetric (anti-symmetric) forms.

We recall that a form L : Xk→ Y of degree or order k defined on ordered sets
ξ1, . . . , ξ k of vectors of a vector space X and assuming values in a vector space Y
is skew-symmetric or anti-symmetric if the value of the form changes sign when any
pair of its arguments are interchanged, that is,

L(ξ1, . . . , ξ i , . . . , ξ j , . . . , ξ k)=−L(ξ1, . . . , ξ j , . . . , ξ i , . . . , ξ k).

In particular, if ξ i = ξ j then the value of the form will be zero, regardless of the
other vectors.

Example 1 The vector (cross) product [ξ1, ξ2] of two vectors in R
3 is a skew-

symmetric bilinear form with values in R
3.

Example 2 The oriented volume V (ξ1, . . . , ξ k) of the parallelepiped spanned by the
vectors ξ1, . . . , ξ k of Rk , defined by Eq. (12.6) of Sect. 12.4, is a skew-symmetric
real-valued k-form on R

k .

For the time being we shall be interested only in real-valued k-forms (the case
Y = R), even though everything that will be discussed below is applicable to the
more general situation, for example, when Y is the field C of complex numbers.

A linear combination of skew-symmetric forms of the same degree is in turn a
skew-symmetric form, that is, the skew-symmetric forms of a given degree consti-
tute a vector space.

In addition, in algebra one introduces the exterior product ∧ of skew-symmetric
forms, which assigns to an ordered pair Ap,Bq of such forms (of degrees p and q
respectively) a skew-symmetric form Ap ∧Bq of degree p+ q . This operation is

associative: (Ap ∧Bq)∧Cr =Ap ∧ (Bq ∧Cr),
distributive: (Ap +Bp)∧Cq =Ap ∧Cq +Bp ∧Cq ,
skew-commutative: Ap ∧Bq = (−1)pqBq ∧Ap .

In particular, in the case of 1-formsA and B , we have anticommutativityA∧B =
−B ∧A, for the operations, like the anticommutativity of the vector product shown
in Example 1. The exterior product of forms is in fact a generalization of the vector
product.
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Without going into the details of the definition of the exterior product, we take
as known for the time being the properties of this operation just listed and observe
that in the case of the exterior product of 1-forms L1, . . . ,Lk ∈ L(Rn,R) the result
L1 ∧ · · · ∧Lk is a k-form that assumes the value

L1 ∧ · · · ∧Lk(ξ1, . . . , ξ k)=

∣∣∣∣∣∣∣

L1(ξ1) · · · Lk(ξ1)
...

. . .
...

L1(ξ k) · · · Lk(ξ k)

∣∣∣∣∣∣∣
= det

(
Lj (ξ i )

)
(12.11)

on the set of vectors ξ1, . . . , ξ k .
If relation (12.11) is taken as the definition of the left-hand side, it follows from

properties of determinants that in the case of linear formsA, B , and C, we do indeed
have A∧B =−B ∧A and (A+B)∧C =A∧C +B ∧C.

Let us now consider some examples that will be useful below.

Example 3 Let πi ∈ L(Rn,R), i = 1, . . . , n, be the projections. More precisely, the
linear function πi : Rn→ R is such that on each vector ξ = (ξ1, . . . , ξn) ∈ R

n it
assumes the value πi(ξ)= ξ i of the projection of that vector on the corresponding
coordinate axis. Then, in accordance with formula (12.11) we obtain

πi1 ∧ · · · ∧ πik (ξ1, . . . , ξ k)=

∣∣∣∣
∣∣∣∣

ξ
i1
1 · · · ξ

ik
1

...
. . .

...

ξ
i1
k · · · ξ

ik
k

∣∣∣∣
∣∣∣∣

. (12.12)

Example 4 The Cartesian coordinates of the vector product [ξ1, ξ2] of the vectors
ξ1 = (ξ1

1 , ξ
2
1 , ξ

3
1 ) and ξ2 = (ξ1

2 , ξ
2
2 , ξ

3
2 ) in the Euclidean space R

3, as is known, are
defined by the equality

[ξ1, ξ2] =
(∣∣∣∣∣
ξ2

1 ξ3
1

ξ2
2 ξ3

2

∣∣∣∣∣
,

∣∣∣∣∣
ξ3

1 ξ1
1

ξ3
2 ξ1

2

∣∣∣∣∣
,

∣∣∣∣∣
ξ1

1 ξ2
1

ξ1
2 ξ2

2

∣∣∣∣∣

)

.

Thus, in accordance with the result of Example 3 we can write

π1([ξ1, ξ2]
) = π2 ∧ π3(ξ1, ξ2),

π2([ξ1, ξ2]
) = π3 ∧ π1(ξ1, ξ2),

π3([ξ1, ξ2]
) = π1 ∧ π2(ξ1, ξ2).

Example 5 Let f :D→R be a function that is defined in a domainD ⊂R
n and dif-

ferentiable at x0 ∈D. As is known, the differential df (x0) of the function at a point
is a linear function defined on displacement vectors ξ from that point. More pre-
cisely, on vectors of the tangent space TDx0 to D (or Rn) at the point under consid-
eration. We recall that if x1, . . . , xn are the coordinates in R

n and ξ = (ξ1, . . . , ξn),
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then

df (x0)(ξ)= ∂f

∂x1
(x0)ξ

1 + · · · + ∂f

∂xn
(x0)ξ

n =Dξf (x0).

In particular dxi(ξ) = ξ i , or, more formally, dxi(x0)(ξ) = ξ i . If f1, . . . , fk are
real-valued functions defined in G and differentiable at the point x0 ∈ G, then in
accordance with (12.11) we obtain

df 1 ∧ · · · ∧ df k(ξ1, . . . , ξ k)=

∣
∣
∣
∣
∣
∣
∣

df 1(ξ1) · · · df k(ξ1)
...

. . .
...

df 1(ξ k) · · · df k(ξ k)

∣
∣
∣
∣
∣
∣
∣

(12.13)

at the point x0 for the set ξ1, . . . , ξ k of vectors in the space TGx0 ; and, in particular,

dxi1 ∧ · · · ∧ dxik (ξ1, . . . , ξ k)=

∣
∣
∣
∣
∣∣∣∣

ξ
i1
1 · · · ξ

ik
1

...
. . .

...

ξ
i1
k · · · ξ

ik
k

∣
∣
∣
∣
∣∣∣∣

. (12.14)

In this way skew-symmetric forms of degree k defined on the space TDx0 ≈
TRnx0

≈ R
n have been obtained from the linear forms df1, . . . ,dfk defined on this

space.

Example 6 If f ∈ C(1)(D,R), where D is a domain in R
n, then the differential

df (x) of the functions f is defined at any point x ∈ D, and this differential, as
has been stated, is a linear function df (x) : TDx → TRf (x) ≈ R on the tangent
space TDx to D at x. In general the form df (x)= f ′(x) varies in passage from one
point to another in D. Thus a smooth scalar-valued function f :D→R generates a
linear form df (x) at each point, or, as we say, generates a field of linear forms inD,
defined on the corresponding tangent spaces TDx .

Definition 1 We shall say that a real-valued differential p-form ω is defined in the
domain D ⊂ R

n if a skew-symmetric form ω(x) : (TDx)p→ R is defined at each
point x ∈D.

The number p is usually called the degree or order of ω. In this connection the
p-form ω is often denoted ωp .

Thus, the field of the differential df of a smooth function f :D→R considered
in Example 6 is a differential 1-form in D, and ω= dxi1 ∧ · · · ∧ dxip is the simplest
example of a differential form of degree p.

Example 7 Suppose a vector field D ⊂ R
n is defined, that is, a vector F(x) is at-

tached to each point x ∈ D. When there is a Euclidean structure in R
n this vector

field generates the following differential 1-form ω1
F in D.
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If ξ is a vector attached to x ∈D, that is, ξ ∈ TDx , we set

ω1
F(x)(ξ )=

〈
F(x), ξ

〉
.

It follows from properties of the inner product that ω1
F(x)= 〈F(x), ·〉 is indeed a

linear form at each point x ∈D.
Such differential forms arise very frequently. For example, if F is a continuous

force field in D and ξ an infinitesimal displacement vector from the point x ∈ D,
the element of work corresponding to this displacement, as is known from physics,
is defined precisely by the quantity 〈F(x), ξ 〉.

Thus a force field F in a domainD of the Euclidean space Rn naturally generates
a differential 1-form ω1

F in D, which it is natural to call the work form of the field F
in this case.

We remark that in Euclidean space the differential df of a smooth function f :
D→ R in the domain D ⊂ R

n can also be regarded as the 1-form generated by a
vector field, in this case the field F = gradf . In fact, by definition gradf is such
that df (x)(ξ )= 〈gradf (x), ξ 〉 for every vector ξ ∈ TDx .

Example 8 A vector field V defined in a domain D of the Euclidean space R
n can

also be regarded as a differential form ωn−1
V of degree n− 1. If at a point x ∈D we

take the vector field V(x) and n− 1 additional vectors ξ1, . . . , ξn ∈ TDx attached to
the point x, then the oriented volume of the parallelepiped spanned by the vectors
V(x), ξ1, . . . , ξn−1, which is the determinant of the matrix whose rows are the co-
ordinates of these vectors, will obviously be a skew-symmetric (n− 1)-form with
respect to the variables ξ1, . . . , ξn−1.

For n= 3 the form ω2
V is the usual scalar triple product (V(x), ξ1, ξ2) of vectors,

one of which V(x) is given, resulting in a skew-symmetric 2-form ω2
V = (V, ·, ·).

For example, if a steady flow of a fluid is taking place in the domain D and
V(x) is the velocity vector at the point x ∈ D, the quantity (V(x), ξ1, ξ2) is the
element of volume of the fluid passing through the (parallelogram) area spanned
by the small vectors ξ1 ∈ TDx and ξ2 ∈ TDx in unit time. By choosing different
vectors ξ1 and ξ2, we shall obtain areas (parallelograms) of different configuration,
differently situated in space, all having one vertex at x. For each such area there
will be, in general, a different value (V(x), ξ1, ξ2) of the form ω2

V(x). As has been
stated, this value shows how much fluid has flowed through the surface in unit time,
that is, it characterizes the flux across the chosen element of area. For that reason
we often call the form ω2

V (and indeed its multidimensional analogue ωn−1
V ) the flux

form of the vector field V in D.

12.5.2 Coordinate Expression of a Differential Form

Let us now investigate the coordinate expression of skew-symmetric algebraic and
differential forms and show, in particular, that every differential k-form is in a certain
sense a linear combination of standard differential forms of the form (12.14).
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To abbreviate the notation, we shall assume summation over the range of allow-
able values for indices that occur as both superscripts and subscripts (as we did
earlier in similar situations).

Let L be a k-linear form in R
n. If a basis e1, . . . , en is fixed in R

n, then each
vector ξ ∈Rn gets a coordinate representation ξ = ξ iei in that basis, and the form L
acquires the coordinate expression

L(ξ1, . . . , ξ k)= L
(
ξ
i1
1 ei1, . . . , ξ

ik
k eik
)= L(ei1, . . . , eik )ξ i11 · · · ξ ikk . (12.15)

The numbers ai1,...,ik = L(ei1, . . . , eik ) characterize the form L completely if the
basis in which they have been obtained is known. These numbers are obviously
symmetric or skew-symmetric with respect to their indices if and only if the form L
possesses the corresponding type of symmetry.

In the case of a skew-symmetric form L the coordinate representation can be
transformed slightly. To make the direction of that transformation clear and natural,
let us consider the special case of (12.15) that occurs when L is a skew-symmetric
2-form in R

3. Then for the vectors ξ1 = ξ i11 ei1 and ξ2 = ξ i22 ei2 , where i1, i2 = 1,2,3,
we obtain

L(ξ1, ξ2) = L
(
ξ
i1
1 ei1, ξ

i2
2 ei2
)= L(ei1, ei2)ξ i11 ξ

i2
2 =

= L(e1, e1)ξ
1
1 ξ

1
2 +L(e1, e2)ξ

1
1 ξ

2
2 +L(e1, e3)ξ

1
1 ξ

3
2 +

+L(e2, e1)ξ
2
1 ξ

1
2 +L(e2, e2)ξ

2
1 ξ

2
2 +L(e2, e3)ξ

2
1 ξ

3
2 +

+L(e3, e1)ξ
3
1 ξ

1
2 +L(e3, e2)ξ

3
1 ξ

2
2 +L(e3, e3)ξ

3
1 ξ

3
2 =

= L(e1, e2)
(
ξ1

1 ξ
2
2 − ξ2

1 ξ
1
2

)+L(e1, e3)
(
ξ3

1 ξ
3
2 − ξ3

1 ξ
2
1

)+

+L(e2, e3)
(
ξ2

1 ξ
3
2 − ξ3

1 ξ
2
2

)=
∑

1≤i1<i2≤3

L(ei1, ei2)

∣∣
∣∣∣
ξ
i1
1 ξ

i2
1

ξ
i1
2 ξ

i2
2

∣∣
∣∣∣
,

where the summation extends over all combinations of indices i1 and i2 that satisfy
the inequalities written under the summation sign.

Similarly in the general case we can also obtain the following representation for
a skew-symmetric form L:

L(ξ1, . . . , ξ k)=
∑

1≤i1<···<ik≤n
L(ei1, . . . , eik )

∣∣∣∣∣∣∣
∣

ξ
i1
1 · · · ξ

ik
1

...
. . .

...

ξ
i1
k · · · ξ

ik
k

∣∣∣∣∣∣∣
∣

. (12.16)

Then, in accordance with formula (12.12) this last equality can be rewritten as

L(ξ1, . . . , ξ k)=
∑

1≤i1<···<ik≤in
L(ei1, . . . , eik )π

i1 ∧ · · · ∧ πik (ξ1, . . . , ξ k).
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Thus, any skew-symmetric form L can be represented as a linear combination

L=
∑

1≤i1<···<ik≤in
ai1···ikπi1 ∧ · · · ∧ πik (12.17)

of the k-forms πi1 ∧ · · · ∧ πik , which are the exterior product formed from the
elementary 1-forms π1, . . . , πn in R

n.
Now suppose that a differential k-form ω is defined in some domain D ⊂ R

n

along with a curvilinear coordinate system x1, . . . , xn. At each point x ∈D we fix
the basis e1(x), . . . , en(x) of the space TDx , formed from the unit vectors along the
coordinate axes. (For example, if x1, . . . , xn are Cartesian coordinates in R

n, then
e1(x), . . . , en(x) is simply the frame e1, . . . , en in R

n translated parallel to itself
from the origin to x.) Then at each point x ∈ D we find by formulas (12.14) and
(12.16) that

ω(x)(ξ1, . . . , ξ k)=
=

∑

1≤i1<···<ik≤n
ω
(
ei1(x), . . . , eik (x)

)
dxi1 ∧ · · · ∧ dxik (ξ1, . . . , ξ k)

or

ω(x)=
∑

1≤i1<···<ik≤n
ai1···ik (x)dxi1 ∧ · · · ∧ dxik . (12.18)

Thus, every differential k-form is a combination of the elementary k-forms dxi1∧
· · · ∧ dxik formed from the differentials of the coordinates. As a matter of fact, that
is the reason for the term “differential form”.

The coefficients ai1···ik (x) of the linear combination (12.18) generally depend on
the point x, that is, they are functions defined in the domain in which the form ωk is
given.

In particular, we have long known the expansion of the differential

df (x)= ∂f

∂x1
(x)dx1 + · · · + ∂f

∂xn
(x)dxn, (12.19)

and, as can be seen from the equalities

〈F, ξ 〉 = 〈F i1ei1(x), ξ
i2 ei2(x)

〉=
= 〈ei1(x), ei2(x)

〉
F i1(x)ξ i2 = gi1i2(x)F i1(x)ξ i2 =

= gi1i2(x)F i1(x)dxi2(ξ),

the expansion

ω1
F(x)=

〈
F(x), ·〉= (gi1i (x)F i1(x)

)
dxi = ai(x)dxi (12.20)
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also holds. In Cartesian coordinates this expansion looks especially simple:

ω1
F(x)=

〈
F(x), ·〉=

n∑

i=1

F i(x)dxi. (12.21)

Next, the following equality holds in R
3:

ω2
V(x)(ξ1, ξ2) =

∣∣
∣
∣
∣
∣
∣

V 1(x) V 2(x) V 3(x)

ξ1
1 ξ2

1 ξ3
1

ξ1
2 ξ2

2 ξ3
2

∣∣
∣
∣
∣
∣
∣
=

= V 1(x)

∣
∣
∣
∣
∣
ξ2

1 ξ3
1

ξ2
2 ξ3

2

∣
∣
∣
∣
∣
+ V 2(x)

∣
∣
∣
∣
∣
ξ3

1 ξ1
1

ξ3
2 ξ1

2

∣
∣
∣
∣
∣
+ V 3(x)

∣
∣
∣
∣
∣
ξ1

1 ξ2
1

ξ1
2 ξ2

2

∣
∣
∣
∣
∣
,

from which it follows that

ω2
V(x)= V 1(x)dx2 ∧ dx3 + V 2(x)dx3 ∧ dx1 + V 3(x)dx1 ∧ dx2. (12.22)

Similarly, expanding the determinant of order n for the form ωn−1
V by minors

along the first row, we obtain the expansion

ωn−1
V =

n−1∑

i=1

(−1)i+1V i(x)dx1 ∧ · · · ∧
�

dxi ∧ · · · ∧ dxn, (12.23)

where the sign � stands over the differential that is to be omitted in the indicated
term.

12.5.3 The Exterior Differential of a Form

All that has been said up to now about differential forms essentially involved each
individual point x of the domain of definition of the form and had a purely algebraic
character. The operation of (exterior) differentiation of such forms is specific to
analysis.

Let us agree from now on to define the 0-forms in a domain to be functions
f :D→R defined in that domain.

Definition 2 The (exterior) differential of a 0-form f , when f is a differentiable
function, is the usual differential df of that function.

If a differential p-form (p ≥ 1) defined in a domain D ⊂R
n

ω(x)= ai1···ip (x)dxi1 ∧ · · · ∧ dxip
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has differentiable coefficients ai1···ip (x), then its (exterior) differential is the form

dω(x)= dai1···ip (x)∧ dxi1 ∧ · · · ∧ dxip .

Using the expansion (12.19) for the differential of a function, and relying on the
distributivity of the exterior product of 1-forms, which follows from relation (12.11),
we conclude that

dω(x) = ∂ai1···ip
∂xi

(x)dxi ∧ dxi1 ∧ · · · ∧ dxip =

= αii1···ip (x)dxi ∧ dxi1 ∧ · · · ∧ dxip ,

that is, the (exterior) differential of a p-form (p ≥ 0) is always a form of degree
p+ 1.

We note that Definition 1 given above for a differential p-form in a domain
D ⊂ R

n, as one can now understand, is too general, since it does not in any way
connect the forms ω(x) corresponding to different points of the domain D. In ac-
tuality, the only forms used in analysis are those whose coordinates ai1···ip (x) in
a coordinate representation are sufficiently regular (most often infinitely differen-
tiable) functions in the domain D. The order of smoothness of the form ω in the
domain D ⊂ R

n is customarily characterized by the smallest order of smoothness
of its coefficients. The totality of all forms of degree p ≥ 0 with coefficients of class
C(∞)(D,R) is most often denoted Ωp(D,R) or Ωp .

Thus the operation of differentiation of forms that we have defined effects a map-
ping d :Ωp→Ωp+1.

Let us consider several useful specific examples.

Example 9 For a 0-form ω = f (x, y, z) – a differentiable function – defined in a
domain D ⊂R

3, we obtain

dω= ∂f
∂x

dx + ∂f
∂y

dy + ∂f
∂z

dz.

Example 10 Let

ω(x, y)= P(x, y)dx +Q(x,y)dy
be a differential 1-form in a domain D of R

2 endowed with coordinates (x, y).
Assuming that P and Q are differentiable in D, by Definition 2 we obtain

dω(x, y) = dP ∧ dx + dQ∧ dy =

=
(
∂P

∂x
dx + ∂P

∂y
dy

)
∧ dx +

(
∂Q

∂x
dx + ∂Q

∂y
dy

)
∧ dy =

= ∂P
∂y

dy ∧ dx + ∂Q
∂x

dx ∧ dy =
(
∂Q

∂x
− ∂P
∂y

)
(x, y)dx ∧ dy.
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Example 11 For a 1-form

ω= P dx +Qdy +R dz

defined in a domain D in R
3 we obtain

dω=
(
∂R

∂y
− ∂Q
∂z

)
dy ∧ dz+

(
∂P

∂z
− ∂R
∂x

)
dz∧ dx +

(
∂Q

∂x
− ∂P
∂y

)
dx ∧ dy.

Example 12 Computing the differential of the 2-form

ω= P dy ∧ dz+Qdz∧ dx +R dx ∧ dy,

where P,Q, and R are differentiable in the domain D ⊂R
3, leads to the relation

dω=
(
∂P

∂x
+ ∂Q
∂y
+ ∂R
∂z

)
dx ∧ dy ∧ dz.

If (x1, x2, x3) are Cartesian coordinates in the Euclidean space R
3 and x �→

f (x), x �→ F(x) = (F 1,F 2,F 3)(x), and x �→ V = (V 1,V 2,V 3)(x) are smooth
scalar and vector fields in the domain D ⊂ R

3, then along with these fields, we
often consider the respective vector fields

gradf =
(
∂f

∂x1
,
∂f

∂x2
,
∂f

∂x3

)
– the gradient of f, (12.24)

curl F=
(
∂F 3

∂x2
− ∂F

2

∂x3
,
∂F 1

∂x3
− ∂F

3

∂x1
,
∂F 2

∂x1
− ∂F

1

∂x2

)
– the curl of F, (12.25)

and the scalar field

div V= ∂V
1

∂x1
+ ∂V

2

∂x2
= ∂V

3

∂x3
– the divergence of V. (12.26)

We have already mentioned the gradient of a scalar field earlier. Without dwelling
on the physical content of the curl and divergence of a vector field at the moment,
we note only the connections that these classical operators have with the operation
of differentiating forms.

In the oriented Euclidean space R3 there is a one-to-one correspondence between
vector fields and 1- and 2-forms:

F↔ ω1
F = 〈F, ·〉, V↔ ω2

V(V, ·, ·).
We remark also that every 3-form in the domain D ⊂ R

3 has the form ρ(x1, x2,

x3)dx1 ∧ dx2 ∧ dx3. Taking this circumstance into account, one can introduce the
following definitions for gradf , curl F, and div V:

f �→ ω0(= f ) �→ dω0(= df )= ω1
g �→ g := gradf, (12.24′)
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F �→ ω1
F �→ dω1

F = ω2
r �→ r := curl F, (12.25′)

V �→ ω2
V �→ dω2

V = ω3
ρ �→ ρ := div V. (12.26′)

Examples 9, 11, and 12 show that when we do this in Cartesian coordinates, we
arrive at the expressions (12.24), (12.25), and (12.26) above for gradf , curl F, and
div V. Thus these operators in field theory can be regarded as concrete manifesta-
tions of the operation of differentiation of exterior forms, which is carried out in
a single manner on forms of any degree. More details on the gradient, curl, and
divergence will be given in Chap. 14.

12.5.4 Transformation of Vectors and Forms Under Mappings

Let us consider in more detail what happens with functions (0-forms) under a map-
ping of their domains.

Let ϕ : U → V be a mapping of the domain U ⊂ R
m into the domain V ⊂ R

n.
Under the mapping ϕ each point t ∈ U maps to a definite point x = ϕ(t) of the
domain V .

If a function f is defined on V , then, because of the mapping ϕ : U → V a
function ϕ∗f naturally arises on the domain U , defined by the relation

(
ϕ∗f
)
(t) := f (ϕ(t)),

that is, to find the value of ϕ∗f at a point t ∈ U one must send t to the point x =
ϕ(t) ∈ V and compute the value of f at that point.

Thus, if the domain U maps to the domain V under the mapping ϕ : U → V ,
then the set of functions defined on V maps (in the opposite direction) to the set of
functions defined on U under the correspondence f �→ ϕ∗f just defined.

In other words, we have shown that a mapping ϕ∗ :Ω0(V )→Ω0(U) transform-
ing 0-forms defined on V into 0-forms defined on U naturally arises from a mapping
ϕ :U→ V .

Now let us consider the general case of transformation of forms of any degree.
Let ϕ : U → V be a smooth mapping of a domain U ⊂ R

m
t into a domain

V ⊂R
n
x , and ϕ′(t) : TUt → TVx=ϕ(t) the mapping of tangent spaces corresponding

to ϕ, and let ω be a p-form in the domain V . Then one can assign to ω the p-form
ϕ∗ω in the domain U defined at t ∈U on the set of vectors τ 1, . . . ,τp ∈ TUt by the
equality

ϕ∗ω(t)(τ 1, . . . ,τp) := ω
(
ϕ(t)
)(
ϕ′1τ 1, . . . , ϕ

′
pτp
)
. (12.27)

Thus to each smooth mapping ϕ : U → V there corresponds a mapping ω∗ :
Ωp(V )→Ωp(U) that transforms forms defined on V into forms defined on U . It
obviously follows from (12.27) that

ϕ∗
(
ω′ +ω′′) = ϕ∗(ω′)+ ϕ∗(ω′′), (12.28)
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ϕ∗(λω) = λϕ∗ω, if λ ∈R. (12.29)

Recalling the rule (ψ ◦ ϕ)′ = ψ ′ ◦ ϕ′ for differentiating the composition of the
mappings ϕ :U→ V , ψ : V →W , we conclude in addition from (12.27) that

(ψ ◦ ϕ)∗ = ϕ∗ ◦ψ∗ (12.30)

(the natural reverse path: the composition of the mappings)

ψ∗ :Ωp(W)→Ωp(V ), ϕ∗ :Ωp(V )→Ωp(U).

Now let us consider how to carry out the transformation of forms in practice.

Example 13 In the domain V ⊂ R
n
x let us take the 2-form ω = dxi1 ∧ dxi2 . Let

xi = xi(t1, . . . , tm), i = 1, . . . , n, be the coordinate expression for the mapping ϕ :
U→ V of a domain U ⊂R

m
t into V .

We wish to find the coordinate representation of the form ϕ∗ω in U . We take
a point t ∈ U and vectors τ 1,τ 2 ∈ TUt . The vectors ξ1 = ϕ′(t)τ 1 and ξ2 =
ϕ′(t)τ 2 correspond to them in the space TVx=ϕ(t). The coordinates (ξ1

1 , . . . , ξ
n
1 )

and (ξ1
2 , . . . , ξ

n
2 ) of these vectors can be expressed in terms of the coordinates

(τ 1
1 , . . . , τ

m
1 ) and (τ 1

2 , . . . , τ
m
2 ) of τ 1 and τ 2 using the Jacobian matrix via the for-

mulas

ξ i1 =
∂xi

∂tj
(t)τ

j

1 , ξ i2 =
∂xi

∂tj
(t)τ

j

2 , i = 1, . . . , n.

(The summation on j runs from 1 to m.)
Thus,

ϕ∗ω(t)(τ 1,τ 2) := ω
(
ϕ(t)
)
(ξ1, ξ2)= dxi1 ∧ dxi2(ξ1, ξ2)=

=
∣∣∣∣∣
ξ
i1
1 ξ

i2
1

ξ
i1
2 ξ

i2
2

∣∣∣∣∣
=
∣∣∣∣∣∣

∂xi1

∂tj1
τ
j1
1

∂xi2

∂tj2
τ
j2
1

∂xi1

∂tj1
τ
j1
2

∂xi2

∂tj2
τ
j2
2

∣∣∣∣∣∣
=

=
m∑

j1,j2=1

∂xi1

∂tj1

∂xi2

∂tj2

∣∣∣∣∣
τ
j1
1 τ

j2
1

τ
j1
2 τ

j2
2

∣∣∣∣∣
=

=
m∑

j1,j2=1

∂xi1

∂tj1

∂xi2

∂tj2
dt j1 ∧ dt j2(τ 1,τ 2)=

=
∑

1≤j1<j2≤m

(
∂xi1

∂tj1

∂xi2

∂tj2
− ∂x

i1

∂tj2

∂xi2

∂tj1

)
dt j1 ∧ dt j2(τ 1,τ 2)=

=
∑

1≤j1<j2≤m

∣
∣∣∣
∣∣

∂xi1

∂tj1
∂xi2

∂tj1

∂xi1

∂tj2
∂xi2

∂tj2

∣
∣∣∣
∣∣
(t)dt j1 ∧ dt j2(τ 1,τ 2).
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Consequently, we have shown that

ϕ∗
(
dxi1 ∧ dxi2

)=
∑

1≤i1<i2≤m

∂(xi1 , xi2)

∂(tj1 , tj2)
(t)dt j1 ∧ dt j2 .

If we use properties (12.28) and (12.29) for the operation of transformation of
forms9 and repeat the reasoning of the last example, we obtain the following equal-
ity:

ϕ∗
( ∑

1≤i1<···<ip≤n
ai1,...,ip (x)dx

i1 ∧ · · · ∧ dxip
)
=

=
∑

1≤i1<···<ip≤n
1≤j1<···<jp≤m

ai1,...,ip
(
x(t)
)∂(xi1 , . . . , xip )
∂(tj1 , . . . , tjp )

dt j1 ∧ · · · ∧ dt jp . (12.31)

We remark that if we make the formal change of variable x = x(t) in the form
that is the argument of ϕ∗ on the left, express the differentials dx1, . . . ,dxn in terms
of the differentials dt1, . . . ,dtm, and gather like terms in the resulting expression,
using the properties of the exterior product, we obtain precisely the right-hand side
of Eq. (12.31).

Indeed, for each fixed choice of indices i1, . . . , ip we have

ai1,...,ip (x)dx
i1 ∧ · · · ∧ dxip =

= ai1,...,ip
(
x(t)
)(∂xi1

∂tj1
dt j1
)
∧ · · · ∧

(
∂xip

∂tjp
dt jp
)
=

= ai1,...,ip
(
x(t)
)∂xi1

∂tj1
· . . . · ∂x

ip

∂tjp
dt j1 ∧ · · · ∧ dt jp =

=
∑

1<j1<···jp≤m
ai1,...,ip

(
x(t)
)∂(xi1 , . . . , xip )
∂(tj1 , . . . , tjp )

dt j1 ∧ · · · ∧ dt jp .

Summing such equalities over all ordered sets 1≤ i1 < · · ·< ip ≤ n, we obtain the
right-hand side of (12.31).

Thus we have proved the following proposition, of great technical importance.

Proposition If a differential form ω is defined in a domain V ⊂R
n and ϕ :U→ V

is a smooth mapping of a domain U ⊂ R
m into V , then the coordinate expression

9If (12.29) is used pointwise, one can see that

ϕ∗
(
a(x)ω

)= a(ϕ(t))ϕ∗ω.
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of the form ϕ∗ω can be obtained from the coordinate expression

∑

1≤i1<···<ip≤n
ai1,...,ip (x)dx

i1 ∧ · · · ∧ dxip

of the form ω by the direct change of variable x = ϕ(t) (with subsequent transfor-
mations in accordance with the properties of the exterior product).

Example 14 In particular, if m= n= p, relation (12.31) reduces to the equality

ϕ∗
(
dx1 ∧ · · · ∧ dxn

)= detϕ′(t)dt1 ∧ · · · ∧ dtn. (12.32)

Hence, if we write f (x)dx1 ∧ · · · ∧ dxn in a multiple integral instead of
f (x)dx1 · · ·dxn, the formula

∫

V=ϕ(U)
f (x)dx =

∫

U

f
(
ϕ(t)
)

detϕ′(t)dt

for change of variable in a multiple integral via an orientation-preserving diffeomor-
phism (that is, when detϕ′(t) > 0) could be obtained automatically by the formal
substitution x = ϕ(t), just as happened in the one-dimensional case, and it could be
given the following form:

∫

ϕ(U)

ω=
∫

U

ϕ∗ω. (12.33)

We remark in conclusion that if the degree p of the form ω in the domain V ⊂R
n
x

is larger than the dimension m of the domain U ⊂ R
m that is mapped into V via

ϕ :U→ V , then the form ϕ∗ω on U corresponding to ω is obviously zero. Thus the
mapping ϕ∗ :Ωp(V )→Ωp(U) is not necessarily injective in general.

On the other hand, if ϕ : U → V has a smooth inverse ϕ−1 : V → U , then by
(12.30) and the equalities ϕ−1 ◦ϕ = eU ,ϕ ◦ϕ−1 = eV , we find that (ϕ)∗ ◦ (ϕ−1)∗ =
e∗U and (ϕ−1)∗ ◦ ϕ∗ = e∗V . And, since e∗U and e∗V are the identity mappings on
Ωp(U) andΩp(V ) respectively, the mappings ϕ∗ :Ωp(V )→Ωp(U) and (ϕ−1)∗ :
Ωp(U)→Ωp(V ), as one would expect, turn out to be inverses of each other. That
is, in this case, the mapping ϕ∗ :Ωp(V )→Ωp(U) is bijective.

We note finally that along with the properties (12.28)–(12.30) the mapping ϕ∗
that transfers forms, as one can verify, also satisfies the relation

ϕ∗(dω)= d
(
ϕ∗ω
)
. (12.34)

This theoretically important equality shows in particular that the operation of
differentiation of forms, which we defined in coordinate notation, is actually inde-
pendent of the coordinate system in which the differentiable form ω is written. This
will be discussed in more detail in Chap. 15.
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12.5.5 Forms on Surfaces

Definition 3 We say that a differential p-form ω is defined on a smooth surface
S ⊂ R

n if a p-form ω(x) is defined on the vectors of the tangent plane TSx to S at
each point x ∈ S.

Example 15 If the smooth surface S is contained in the domain D ⊂ R
n in which

a form ω is defined, then, since the inclusion TSx ⊂ TDx holds at each point x ∈ S,
one can consider the restriction of ω(x) to TSx . In this way a form ω|S arises, which
it is natural to call the restriction of ω to S.

As we know, a surface can be defined parametrically, either locally or globally.
Let ϕ :U→ S = ϕ(U)⊂D be a parametrized smooth surface in the domain D and
ω a form onD. Then we can transfer the form ω to the domain U of parameters and
write ϕ∗ω in coordinate form in accordance with the algorithm given above. It is
clear that the form ϕ∗ω in U obtained in this way coincides with the form ϕ∗(ω|S).

We remark that, since ϕ′(t) : TUt → TSx is an isomorphism between TUt and
TSx at every point t ∈U , we can transfer forms both from S to U and from U to S,
and so just as the smooth surfaces themselves are usually defined locally or globally
by parameters, the forms on them, in the final analysis, are usually defined in the
parameter domains of local charts.

Example 16 Let ω2
V be the flux form considered in Example 8, generated by the

velocity field V of a flow in the domain D of the oriented Euclidean space R
3. If S

is a smooth oriented surface inD, one may consider the restriction ω2
V|S of the form

ω2
V to S. The form ω2

V|S so obtained characterizes the flux across each element of
the surface S.

If ϕ : I→ S is a local chart of the surface S, then, making the change of variable
x = ϕ(t) in the coordinate expression (12.22) for the form ω2

V, we obtain the coor-
dinate expression for the form ϕ∗ω2

V = ϕ∗(ω2
V|S), which is defined on the square I ,

in these local coordinates of the surface.

Example 17 Let ω1
F be the work form considered in Example 7, generated by the

force field F acting in a domain D of Euclidean space. Let ϕ : I → ϕ(I) ⊂ D be
a smooth path (ϕ is not necessarily a homeomorphism). Then, in accordance with
the general principle of restriction and transfer of forms, a form ϕ∗ω1

F arises on the
closed interval I , whose coordinate representation a(t)dt can be obtained by the
change of variable x = ϕ(t) in the coordinate expression (12.21) for the form ω1

F.

12.5.6 Problems and Exercises

1. Compute the values of the differential forms ω in R
n given below on the indi-

cated sets of vectors:
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a) ω= x2 dx1 on the vector ξ = (1,2,3) ∈ TR(3,2,1).
b) ω = dx1 ∧ dx3 + x1 dx2 ∧ dx4 on the ordered pair of vectors ξ1, ξ2 ∈

TR4
(1,0,0,0).

c) ω= df , where f = x1 + 2x2 + · · · + nxn, and ξ = (1,−,1, . . . , (−1)n−1) ∈
TRn(1,1,...,1).

2. a) Verify that the form dxi1∧· · ·∧dxik is identically zero if the indices i1, . . . , ik
are not all distinct.

b) Explain why there are no nonzero skew-symmetric forms of degree p > n on
an n-dimensional vector space.

c) Simplify the expression for the form

2 dx1 ∧ dx3 ∧ dx2 + 3 dx3 ∧ dx1 ∧ dx2 − dx2 ∧ dx3 ∧ dx1.

d) Remove the parentheses and gather like terms:
(
x1 dx2 + x2 dx1)∧ (x3 dx1 ∧ dx2 + x2 dx1 ∧ dx3 + x1 dx2 ∧ dx3).

e) Write the form df ∧ dg, where f = ln(1 + |x|2), g = sin |x|, and x =
(x1, x2, x3) as a linear combination of the forms dxi1 ∧ dxi2 , 1≤ i1 < i2 ≤ 3.

f) Verify that in R
n

df 1 ∧ · · · ∧ df n(x)= det

(
∂f i

∂xj

)
(x)dx1 ∧ · · · ∧ dxn.

g) Carry out all the computations and show that for 1≤ k ≤ n

df 1 ∧ · · · ∧ df k =
∑

1≤i1<i2<···<ik≤n
det

∣∣∣∣∣∣

∂f 1

∂xi1
· · · ∂f 1

∂xik

∂f k

∂xi1
· · · ∂f k

∂xik

∣∣∣∣∣∣
dxi1 ∧ · · · ∧ dxik .

3. a) Show that a form α of even degree commutes with any form β , that is, α∧β =
β ∧ α.

b) Let ω =∑n
i=1 dpi ∧ dqi and ωn = ω ∧ · · · ∧ ω (n factors). Verify that ωn =

n!dp1 ∧ dq1 ∧ · · · ∧ dpn ∧ dqn = (−1)
n(n−1)

2 dp1 ∧ · · · ∧ dpn ∧ dq1 ∧ · · · ∧ dqn.

4. a) Write the form ω = df , where f (x) = (x1)2 + (x2)2 + · · · + (xn)2, as a
combination of the forms dx1, . . . ,dxn and find the differential dω of ω.

b) Verify that d2f ≡ 0 for any function f ∈ C(2)(D,R), where d2 = d ◦ d, and
d is exterior differentiation.

c) Show that if the coefficients ai1,...,ik of the form ω = ai1,...,ik (x)dxi1 ∧ · · · ∧
dxik belongs to the class C(2)(D,R), then d2ω≡ 0 in the domain D.

d) Find the exterior differential of the form y dx−x dy
x2+y2 in its domain of definition.

5. If the product dx1 · · ·dxn in the multiple integral
∫
D
f (x)dx1 · · ·dxn is inter-

preted as the form dx1 ∧ · · · ∧ dxn, then, by the result of Example 14, we have the
possibility of formally obtaining the integrand in the formula for change of variable
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in a multiple integral. Using this recommendation, carry out the following changes
of variable from Cartesian coordinates:

a) to polar coordinates in R
2,

b) to cylindrical coordinates in R
3,

c) to spherical coordinates in R
3.

6. Find the restriction of the following forms:

a) dxi to the hyperplane xi = 1.
b) dx ∧ dy to the curve x = x(t), y = y(t), a < t < b.
c) dx ∧ dy to the plane in R

3 defined by the equation x = c.
d) dy ∧ dz+ dz∧ dx + dx ∧ dy to the faces of the standard unit cube in R

3.

e) ωi = dx1 ∧ · · · ∧ dxi−1 ∧
�

dxi ∧ dxi+1 ∧ · · · ∧ dxn to the faces of the standard
unit cube in R

n. The symbol� stands over the differential dxi that is to be omitted
in the product.

7. Express the restriction of the following forms to the sphere of radius R with
center at the origin in spherical coordinates on R

3:

a) dx,
b) dy,
c) dy ∧ dz.

8. The mapping ϕ :R2→R
2 is given in the form (u, v) �→ (u ·v,1)= (x, y). Find:

a) ϕ∗(dx),
b) ϕ∗(dy),
c) ϕ∗(y dx).

9. Verify that the exterior differential d : Ωp(D)→ Ωp+1(D) has the following
properties:

a) d(ω1 +ω2)= dω1 + dω2,
b) d(ω1 ∧ ω2)= dω1 ∧ ω2 + (−1)degω1ω1 ∧ dω2, where degω1 is the degree of

the form ω1.
c) ∀ω ∈Ωp d(dω)= 0.
d) ∀f ∈Ω0 df =∑n

i=1
∂f

∂xi
dxi .

Show that there is only one mapping d :Ωp(D)→Ωp+1(D) having proper-
ties a), b), c), and d).

10. Verify that the mapping ϕ∗ : Ωp(V )→ Ωp(U) corresponding to a mapping
ϕ :U→ V has the following properties:

a) ϕ∗(ω1 +ω2)= ϕ∗ω1 + ϕ∗ω2.
b) ϕ∗(ω1 ∧ω2)= ϕ∗ω1 ∧ ϕ∗ω2.
c) dϕ∗ω= ϕ∗ dω.
d) If there is a mapping ψ : V →W , then (ψ ◦ ϕ)∗ = ϕ∗ ◦ψ∗.

11. Show that a smooth k-dimensional surface is orientable if and only if there
exists a k-form on it that is not degenerate at any point.



Chapter 13
Line and Surface Integrals

13.1 The Integral of a Differential Form

13.1.1 The Original Problems, Suggestive Considerations,
Examples

a. The Work of a Field

Let F(x) be a continuous force field acting in a domainG of the Euclidean space Rn.
The displacement of a test particle in the field is accompanied by work. We ask how
we can compute the work done by the field in moving a unit test particle along a
given trajectory, more precisely, a smooth path γ : I→ γ (I )⊂G.

We have already touched on this problem when we studied the applications of the
definite integral. For that reason we can merely recall the solution of the problem
at this point, noting certain elements of the construction that will be useful in what
follows.

It is known that in a constant field F the displacement by a vector ξ is associated
with an amount of work 〈F, ξ 〉.

Let t �→ x(t) be a smooth mapping γ : I → G defined on the closed interval
I = {t ∈R | a ≤ t ≤ b}.

We take a sufficiently fine partition of the closed interval [a, b]. Then on each
interval Ii = {t ∈ I | ti−1 ≤ t ≤ ti} of the partition we have the equality x(t) −
x(ti) ≈ x′(t)(ti − ti−1) up to infinitesimals of higher order. To the displacement
vector τi = ti+1 − ti from the point ti (Fig. 13.1) there corresponds a displacement
of x(ti) in R

n by the vector Δxi = xi+1 − xi , which can be regarded as equal to
the tangent vector ξ i = ẋ(ti)τi to the trajectory at x(ti) with the same precision.
Since the field F(x) is continuous, it can be regarded a locally constant, and for that
reason we can compute the work ΔAi corresponding to the (time) interval Ii with
small relative error as

ΔAi ≈
〈
F(xi), ξ i

〉
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Fig. 13.1

or

ΔAi ≈
〈
F
(
x(ti)
)
, ẋ(ti)τi

〉
.

Hence,

A=
∑

i

ΔAi ≈
∑

i

〈
F
(
x(ti)
)
, ẋ(ti)

〉
Δti

and so, passing to the limit as the partition of the closed interval I is refined, we find
that

A=
∫ b

a

〈
F
(
x(t)
)
, ẋ(t)
〉
dt. (13.1)

If the expression 〈F(x(t)), ẋ(t)〉dt is rewritten as 〈F(x),dx〉, then, assuming the
coordinates in R

n are Cartesian coordinates, we can give this expression the form
F 1 dx1 + · · · + Fn dxn, after which we can write (13.1) as

A=
∫

γ

F 1 dx1 + · · · + Fn dxn (13.2)

or as

A=
∫

γ

ω1
F. (13.2′)

Formula (13.1) provides the precise meaning of the integrals of the work 1-form
along the path γ written in formulas (13.2) and (13.2′).

Example 1 Consider the force field F = (− y

x2+y2 ,
x

x2+y2 ) defined at all points of

the plane R
2 except the origin. Let us compute the work of this field along the

curve γ1 defined as x = cos t , y = sin t , 0 ≤ t ≤ 2π , and along the curve defined
by x = 2+ cos t , y = sin t , 0 ≤ t ≤ 2π . According to formulas (13.1), (13.2), and
(13.2′), we find

∫

γ1

ω1
F =
∫

γ1

− y

x2 + y2
dx + x

x2 + y2
dy =
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=
∫ 2π

0

(
− sin t · (− sin t)

cos2 t + sin2 t
+ cos t · cos t

cos2 t + sin2 t

)
dt = 2π

and
∫

γ2

ω1
F =
∫

γ2

−y dx + x dy

x2 + y2
=
∫ 2π

0

− sin t (− sin t)+ (2+ cos t)(cos t)

(2+ cos t)2 + sin2 t
dt =

=
∫ 2π

0

1+ 2 cos t

5+ 4 cos t
dt =
∫ π

0

1+ 2 cos t

5+ 4 cos t
dt +
∫ 0

π

1+ 2 cos(2π − u)
5+ 4 cos(2π − u) du=

=
∫ π

0

1+ 2 cos t

5+ 4 cos t
dt −
∫ π

0

1+ 2 cosu

5+ 4 cosu
du= 0.

Example 2 Let r be the radius vector of a point (x, y, z) ∈R3 and r = |r|. Suppose
a force field F = f (r)r is defined everywhere in R

3 except at the origin. This is a
so-called central force field. Let us find the work of F on a path γ : [0,1] → R

3\0.
Using (13.2), we find
∫

γ

f (r)(x dx + y dy + zdz) = 1

2

∫

γ

f (r)d
(
x2 + y2 + z2)=

= 1

2

∫ 1

0
f
(
r(t)
)

dr2(t)= 1

2

∫ 1

0
f
(√
u(t)
)

du(t)=

= 1

2

∫ r2
1

r2
0

f (
√
u)du=Φ(r0, r1).

Here, as one can see, we have set x2(t) + y2(t) + z2(t) = r2(t), r2(t) = u(t),
r0 = r(0), and r1 = r(1).

Thus in any central field the work on a path γ has turned out to depend only on
the distances r0 and r1 of the beginning and end of the path from the center 0 of the
field.

In particular, for the gravitational field 1
r3 r of a unit point mass located at the

origin, we obtain

Φ(r0, r1)= 1

2

∫ r2
1

r2
0

1

u3/2
du= 1

r0
− 1

r1
.

b. The Flux Across a Surface

Suppose there is a steady flow of liquid (or gas) in a domain G of the oriented
Euclidean space R

3 and that x �→V(x) is the velocity field of this flow. In addition,
suppose that a smooth oriented surface S has been chosen in G. For definiteness we
shall suppose that the orientation of S is given by a field of normal vectors. We ask
how to determine the (volumetric) outflow or flux of fluid across the surface S. More
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Fig. 13.2

precisely, we ask how to find the volume of fluid that flows across the surface S per
unit time in the direction indicated by the orienting field of normals to the surface.

To solve the problem, we remark that if the velocity field of the flow is constant
and equal to V, then the flow per unit time across a parallelogram Π spanned by
vectors ξ1 and ξ2 equals the volume of the parallelepiped constructed on the vectors
V, ξ1, ξ2. If η is normal to Π and we seek the flux across Π in the direction of η,
it equals the scalar triple product (V, ξ1, ξ2), provided η and the frame ξ1, ξ2 give
Π the same orientation (that is, if η, ξ1, ξ2 is a frame having the given orientation
in R

3). If the frame ξ1, ξ2 gives the orientation opposite to the one given by η inΠ ,
then the flow in the direction of η is −(V, ξ1, ξ2).

We now return to the original statement of the problem. For simplicity let us
assume that the entire surface S admits a smooth parametrization ϕ : I → S ⊂G,
where I is a two-dimensional interval in the plane R

2. We partition I into small
intervals Ii (Fig. 13.2). We approximate the image ϕ(Ii) of each such interval by
the parallelogram spanned by the images ξ1 = ϕ′(ti)τ 1 and ξ2 = ϕ′(ti)τ 2 of the
displacement vectors τ 1,τ 2 along the coordinate directions. Assuming that V(x)
varies by only a small amount inside the piece of surface ϕ(Ii) and replacing ϕ(Ii)
by this parallelogram, we may assume that the flux ΔFi across the piece ϕ(Ii) of
the surface is equal, with small relative error, to the flux of a constant velocity field
V(xi)=V(ϕ(ti)) across the parallelogram spanned by the vectors ξ1, ξ2.

Assuming that the frame ξ1, ξ2 gives the same orientation on S as η, we find

ΔFi ≈
(
V(xi), ξ1, ξ2

)
.

Summing the elementary fluxes, we obtain

F =
∑

i

ΔFi ≈
∑

i

ω2
V(xi)(ξ1, ξ2),

where ω2
V(x)= (V(x), ·, ·) is the flux 2-form (studied in Example 8 of Sect. 12.5).

If we pass to the limit, taking ever finer partitions P of the interval I , it is natural to
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assume that

F := lim
λ(P )→0

∑
ω2

V(xi)(ξ1, ξ2)=:
∫

S

ω2
V. (13.3)

This last symbol is the integral of the 2-form ω2
V over the oriented surface S.

Recalling (formula (12.22) of Sect. 12.5) the coordinate expression for the flux
form ω2

V in Cartesian coordinates, we may now also write

F =
∫

S

V 1 dx2 ∧ dx3 + V 2 dx3 ∧ dx1 + V 3 dx1 ∧ dx2. (13.4)

We have discussed here only the general principle for solving this problem. In
essence all we have done is to give the precise definition (13.3) of the flux F and
introduced certain notation (13.3) and (13.4); we have still not obtained any effective
computational formula similar to formula (13.1) for the work.

We remark that formula (13.1) can be obtained from (13.2) by replacing
x1, . . . , xn with the functions (x1, . . . , xn)(t)= x(t) that define the path γ . We re-
call (Sect. 12.5) that such a substitution can be interpreted as the transfer of the form
ω defined in G to the closed interval I = [a, b].

In a completely analogous way, a computational formula for the flux can be ob-
tained by direct substitution of the parametric equations of the surface into (13.4).

In fact,

ω2
V(xi)(ξ1, ξ2)= ωV

(
ϕ(ti)
)(
ϕ′(ti)τ 1, ϕ

′(ti)τ 2
)= (ϕ∗ω2

V

)
(ti)(τ 1,τ 2)

and
∑

i

ω2
V(xi)(ξ1, ξ2)=

∑

i

(
ϕ∗ω2

V

)
(ti)(τ 1,τ 2).

The form ϕ∗ω2
V is defined on a two-dimensional interval I ⊂ R

2. Any 2-form
in I has the form f (t)dt1 ∧ dt2, where f is a function on I depending on the form.
Therefore

ϕ∗ω2
V(ti)(τ 1,τ 2)= f (ti)dt1 ∧ dt2(τ 1,τ 2).

But dt1 ∧ dt2(τ 1,τ 2) = τ 1
1 · τ 2

2 is the area of the rectangle Ii spanned by the
orthogonal vectors τ 1,τ 2.

Thus,
∑

i

f (ti)dt
1 ∧ dt2(τ 1,τ 2)=

∑

i

f (ti)|Ii |.

As the partition is refined we obtain in the limit
∫

I

f (t)dt1 ∧ dt2 =
∫

I

f (t)dt1 dt2, (13.5)

where, according to (13.3), the left-hand side contains the integral of the 2-form
ω2 = f (t)dt1 ∧ dt2 over the elementary oriented surface I , and the right-hand side
the integral of the function f over the rectangle I .
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It remains only to recall that the coordinate representation f (t)dt1 ∧ dt2 of the
form ϕ∗ω2

V is obtained from the coordinate expression for the form ω2
V by the direct

substitution x = ϕ(t), where ϕ : I→G is a chart of the surface S.
Carrying out this change of variable, we obtain from (13.4)

F =
∫

S=ϕ(I)
ω2

V =
∫

I

ϕ∗ω2
V =

=
∫

I

⎛

⎝V 1(ϕ(t)
)
∣
∣
∣
∣
∣
∣

∂x2

∂t1
∂x3

∂t1

∂x2

∂t2
∂x3

∂t2

∣
∣
∣
∣
∣
∣
+ V 2(ϕ(t)

)
∣
∣
∣
∣
∣
∣

∂x3

∂t1
∂x1

∂t1

∂x3

∂t2
∂x1

∂t2

∣
∣
∣
∣
∣
∣
+

+ V 3(ϕ(t)
)
∣
∣
∣
∣
∣
∣

∂x1

∂t1
∂x2

∂t1

∂x1

∂t2
∂x2

∂t2

∣
∣
∣
∣
∣
∣

⎞

⎠ dt1 ∧ dt2.

This last integral, as Eq. (13.5) shows, is the ordinary Riemann integral over the
rectangle I .

Thus we have found that

F =
∫

I

∣∣∣∣
∣∣∣∣

V 1(ϕ(t)) V 2(ϕ(t)) V 3(ϕ(t))

∂ϕ1

∂t1
(t)

∂ϕ2

∂t1
(t)

∂ϕ3

∂t1
(t)

∂ϕ1

∂t2
(t)

∂ϕ2

∂t2
(t)

∂ϕ3

∂t2
(t)

∣∣∣∣
∣∣∣∣

dt1 dt2, (13.6)

where x = ϕ(t)= (ϕ1, ϕ2, ϕ3)(t1, t2) is a chart of the surface S defining the same
orientation as the field of normals we have given. If the chart ϕ : I → S gives S the
opposite orientation, Eq. (13.6) does not generally hold. But, as follows from the
considerations at the beginning of this subsection, the left- and right-hand sides will
differ only in sign in that case.

The final formula (13.6) is obviously merely the limit of the sums of the elemen-
tary fluxes ΔFi ≈ (V(xi), ξ1, ξ2) familiar to us, written accurately in the coordi-
nates t1 and t2.

We have considered the case of a surface defined by a single chart. In general
a smooth surface can be decomposed into smooth pieces Si having essentially no
intersections with one another, and then we can find the flux through S as the sum
of the fluxes though the pieces Si .

Example 3 Suppose a medium is advancing with constant velocity V = (1,0,0).
If we take any closed surface in the domain of the flow, then, since the density of
the medium does not change, the amount of matter in the volume bounded by this
surface must remain constant. Hence the total flux of the medium through such a
surface must be zero.

In this case, let us check formula (13.6) by taking S to be the sphere x2 + y2 +
z2 =R2.
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Up to a set of area zero, which is therefore negligible, this sphere can be defined
parametrically

x = R cosψ cosϕ,

y = R cosψ sinϕ,

z = R sinψ,

where 0< ϕ < 2π and −π/2<ψ < π/2.
After these relations and the relation V = (1,0,0) are substituted in (13.6), we

obtain

F =
∫

I

∣
∣
∣
∣
∣
∣

∂x1

∂t1
∂x2

∂t1

∂x1

∂t2
∂x2

∂t2

∣
∣
∣
∣
∣
∣

dϕ dψ =R2
∫ π/2

−π/2
cos2ψ dψ

∫ 2π

0
cosϕ dϕ = 0.

Since the integral equals zero, we have not even bothered to consider whether it
was the inward or outward flow we were computing.

Example 4 Suppose the velocity field of a medium moving in R
3 is defined in

Cartesian coordinates x, y, z by the equality V(x, y, z) = (V 1,V 2,V 3)(x, y, z) =
(x, y, z). Let us find the flux through the sphere x2+ y2+ z2 =R2 into the ball that
it bounds (that is, in the direction of the inward normal) in this case.

Taking the parametrization of the sphere given in the last example, and carrying
out the substitution in the right-hand side of (13.6), we find that

∫ 2π

0
dϕ
∫ π/2

−π/2

∣∣∣∣∣
∣∣

R cosψ cosϕ R cosψ sinϕ R sinψ

−R cosψ sinϕ R cosψ cosϕ 0

R sinψ cosϕ −R sinψ sinϕ R cosψ

∣∣∣∣∣
∣∣

dϕ =

=
∫ 2π

0
dϕ
∫ π/2

−π/2
R3 cosψ dψ = 4πR3.

We now check to see whether the orientation of the sphere given by the curvi-
linear coordinates (ϕ,ψ) agrees with that given by the inward normal. It is easy to
verify that they do not agree. Hence the required flux is given by F =−4πR3.

In this case the result is easy to verify: the velocity vector V of the flow has
magnitude equal to R at each point of the sphere, is orthogonal to the sphere, and
points outward. Therefore the outward flux from the inside equals the area of the
sphere 4πR2 multiplied by R. The flux in the opposite direction is then −4πR3.

13.1.2 Definition of the Integral of a Form over an Oriented
Surface

The solution of the problems considered in Sect. 13.1.1 leads to the definition of the
integral of a k-form over a k-dimensional surface.
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First let S be a smooth k-dimensional surface in R
n, defined by one standard

chart ϕ : I → S. Suppose a k-form ω is defined on S. The integral of the form ω

over the parametrized surface ϕ : I→ S is then constructed as follows.
Take a partition P of the k-dimensional standard interval I ⊂ R

n induced by
partitions of its projections on the coordinate axes (closed intervals). In each in-
terval Ii of the partition P take the vertex ti having minimal coordinate val-
ues and attach to it the k vectors τ 1, . . . ,τ k that go along the direction of
the coordinate axes to the k vertices of Ii adjacent to ti (Fig. 13.2). Find the
vectors ξ1 = ϕ′(ti)τ 1, . . . , ξ k = ϕ′(ti)τ k of the tangent space TSxi=ϕ(ti ), then
compute ω(xi)(ξ1, . . . , ξ k) =: (ϕ∗ω)(ti)(τ 1, . . . ,τ k), and form the Riemann sum∑
i ω(xi)(ξ1, . . . , ξ k). Then pass to the limit as the mesh λ(P ) of the partition tends

to zero.
Thus we adopt the following definition:

Definition 1 (Integral of a k-form ω over a given chart ϕ : I → S of a smooth k-
dimensional surface.)

∫

S

ω := lim
λ(P )→0

∑

i

ω(xi)(ξ1, . . . , ξ k)= lim
λ(P )→0

∑

i

(
ϕ∗ω
)
(ti)(τ 1, . . . ,τ k). (13.7)

If we apply this definition to the k-form f (t)dt1 ∧ · · · ∧ dtk on I (when ϕ is the
identity mapping), we obviously find that

∫

I

f (t)dt1 ∧ · · · ∧ dtk =
∫

I

f (t)dt1 · · ·dtk. (13.8)

It thus follows from (13.7) that

∫

S=ϕ(I)
ω=
∫

I

ϕ∗ω, (13.9)

and the last integral, as Eq. (13.8) shows, reduces to the ordinary multiple integral
over the interval I of the function f corresponding to the form ϕ∗ω.

We have derived the important relations (13.8) and (13.9) from Definition 1, but
they themselves could have been adopted as the original definitions. In particular, if
D is an arbitrary domain in R

n (not necessarily an interval), then, so as not to repeat
the summation procedure, we set

∫

D

f (t)dt1 ∧ · · · ∧ dtk :=
∫

D

f (t)dt1 · · ·dtk, (13.8′)

and for a smooth surface given in the form ϕ :D→ S and a k-form ω on it we set

∫

S=ϕ(D)
ω :=

∫

D

ϕ∗ω. (13.9′)
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If S is an arbitrary piecewise-smooth k-dimensional surface and ω is a k-form
defined on the smooth pieces of S, then, representing S as the union

⋃
i Si of smooth

parametrized surfaces that intersect only in sets of lower dimension, we set
∫

S

ω :=
∑

i

∫

Si

ω. (13.10)

In the absence of substantive physical or other problems that can be solved using
(13.10), such a definition raises the question whether the magnitude of the integral of
the partition

⋃
i Si is independent of the choice of the parametrization of its pieces.

Let us verify that this definition is unambiguous.

Proof We begin by considering the simplest case in which S is a domain Dx in R
k

and ϕ :Dt→Dx is a diffeomorphism of a domainDt ⊂R
k ontoDx . InDx = S the

k-form ω has the form f (x)dx1 ∧ · · · ∧ dxk . Then, on the one hand (13.8) implies
∫

Dx

f (x)dx1 ∧ · · · ∧ dxk =
∫

Dx

f (x)dx1 · · ·dxk.

On the other hand, by (13.9′) and (13.8′),
∫

Dx

ω :=
∫

Dt

ϕ∗ω=
∫

Dt

f
(
ϕ(t)
)

detϕ′(t)dt1 · · ·dtk.

But if detϕ′(t) > 0 inDt , then by the theorem on change of variable in a multiple
integral we have

∫

Dx=ϕ(Dt )
f (x)dx1 · · ·dxk =

∫

Dt

f
(
ϕ(t)
)

detϕ′(t)dt1 · · ·dtk.

Hence, assuming that there were coordinates x1, . . . , xk in S =Dx and curvilin-
ear coordinates t1, . . . , tk of the same orientation class, we have shown that the value
of the integral

∫
S
ω is the same, no matter which of these two coordinate systems is

used to compute it.
We note that if the curvilinear coordinates t1, . . . , tk had defined the opposite ori-

entation on S, that is, detϕ′(t) < 0, the right- and left-hand sides of the last equality
would have had opposite signs. Thus, one can say that the integral is well-defined
only in the case of an oriented surface of integration.

Now let ϕx : Dx → S and ϕt : Dt → S be two parametrizations of the same
smooth k-dimensional surface S and ω a k-form on S. Let us compare the integrals

∫

Dx

ϕ∗xω and
∫

Dt

ϕ∗t ω. (13.11)

Since ϕt = ϕx ◦ (ϕ−1
x ◦ϕt )= ϕx ◦ϕ, where ϕ = ϕ−1

x ◦ϕt :Dt→Dx is a diffeomor-
phism ofDt ontoDx , it follows that ϕ∗t ω= ϕ∗(ϕ∗xω) (see Eq. (12.30) of Sect. 12.5).
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Hence one can obtain the form ϕ∗t ω in Dt by the change of variable x = ϕ(t) in the
form ϕ∗xω. But, as we have just verified, in this case the integrals (13.11) are equal
if detϕ′(t) > 0 and differ in sign if detϕ′(t) < 0.

Thus it has been shown that if ϕt : Dt → S and ϕx : Dx → S are parametriza-
tions of the surface S belonging to the same orientation class, the integrals (13.11)
are equal. The fact that the integral is independent of the choice of curvilinear coor-
dinates on the surface S has now been verified.

The fact that the integral (13.10) over an oriented piecewise-smooth surface S
is independent of the method of partitioning

⋃
i Si into smooth pieces follows from

the additivity of the ordinary multiple integral (it suffices to consider a finer partition
obtained by superimposing two partitions and verify that the value of the integral
over the finer partition equals the value over each of the two original partitions). �

On the basis of these considerations, it now makes sense to adopt the following
chain of formal definitions corresponding to the construction of the integral of a
form explained in Definition 1.

Definition 1′ (Integral of a form over an oriented surface S ⊂R
n.)

a) If the form f (x)dx1 ∧ · · · ∧ dxk is defined in a domain D ⊂R
k , then

∫

D

f (x)dx1 ∧ · · · ∧ dxk :=
∫

D

f (x)dx1 · · ·dxk.

b) If S ⊂ R
n is a smooth k-dimensional oriented surface, ϕ : D → S is a

parametrization of it, and ω is a k-form on S, then

∫

S

ω := ±
∫

D

ϕ∗ω,

where the + sign is taken if the parametrization ϕ agrees with the given orientation
of S and the – sign in the opposite case.

c) If S is a piecewise-smooth k-dimensional oriented surface in R
n and ω is a

k-form on S (defined where S has a tangent plane), then

∫

S

ω :=
∑

i

∫

Si

ω,

where S1, . . . , Sm, . . . is a decomposition of S into smooth parametrizable k-
dimensional pieces intersecting at most in piecewise-smooth surfaces of smaller
dimension.

We see in particular that changing the orientation of a surface leads to a change
in the sign of the integral.
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13.1.3 Problems and Exercises

1. a) Let x, y be Cartesian coordinates on the plane R
2. Exhibit the vector field

whose work form is ω=− y

x2+y2 dx + x

x2+y2 dy.

b) Find the integral of the form ω in a) along the following paths γi :

[0,π] � t γ1−→ (cos t, sin t) ∈R2; [0,π] � t γ2−→ (cos t,− sin t) ∈R2;
γ3 consists of a motion along the closed intervals joining the points (1,0), (1,1),
(−1,1), (−1,0) in that order; γ4 consists of a motion along the closed intervals
joining (1,0), (1,−1), (−1,−1), (−1,0) in that order.

2. Let f be a smooth function in the domain D ⊂ R
n and γ a smooth path in D

with initial point p0 ∈D and terminal point p1 ∈D. Find the integral of the form
ω= df over γ .
3. a) Find the integral of the form ω= dy ∧ dz+ dz∧ dx over the boundary of the
standard unit cube in R

3 oriented by an outward-pointing normal.
b) Exhibit a velocity field for which the form ω in a) is the flux form.

4. a) Let x, y, z be Cartesian coordinates in R
n. Exhibit a velocity field for which

the flux form is

ω= x dy ∧ dz+ y dz∧ dx + zdx ∧ dy

(x2 + y2 + z2)3/2
.

b) Find the integral of the form ω in a) over the sphere x2 + y2 + z2 = R2

oriented by the outward normal.
c) Show that the flux of the field (x,y,z)

(x2+y2+z2)3/2
across the sphere (x− 2)2+ y2+

z2 = 1 is zero.
d) Verify that the flux of the field in c) across the torus whose parametric equa-

tions are given in Example 4 of Sect. 12.1 is also zero.

5. It is known that the pressure P , volume V , and temperature T of a given quantity
of a substance are connected by an equation f (P,V,T )= 0, called the equation of
state in thermodynamics. For example, for one mole of an ideal gas the equation
of state is given by Clapeyron’s formula PV

T
−R = 0, where R is the universal gas

constant.
Since P,V,T are connected by the equation of state, knowing any pair of them,

one can theoretically determine the remaining one. Hence the state of any system
can be characterized, for example, by points (V ,P ) of the plane R

2 with coordi-
nates V,P . Then the evolution of the state of the system as a function of time will
correspond to some path γ in this plane.

Suppose the gas is located in a cylinder in which a frictionless piston can move.
By changing the position of the piston, we can change the state of the gas enclosed
by the piston and the cylinder walls at the cost of doing mechanical work. Con-
versely, by changing the state of the gas (heating it, for example) we can force the
gas to do mechanical work (lifting a weight by expanding, for example). In this
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Fig. 13.3

problem and in Problems 6, 7, and 8 below, all processes are assumed to take place
so slowly that the temperature and pressure are able to average out at each particular
instant of time; thus at each instant of time the system satisfies the equation of state.
These are the so-called quasi-static processes.

a) Let γ be a path in the VP-plane corresponding to a quasi-static transition of
the gas enclosed by the piston and the cylinder walls from state V0,P0 to V1,P1.
Show that the quantity A of mechanical work performed on this path is defined by
the line integral A= ∫

γ
P dV .

b) Find the mechanical work performed by one mole of an ideal gas in passing
from the state V0,P0 to state V1,P1 along each of the following paths (Fig. 13.3):
γOLI , consisting of the isobar OL (P = P0) followed by the isochore LI (V = V1);
γOKI , consisting of the isochore OK (V = V0) followed by the isobar KI (P = P1);
γOI , consisting of the isotherm T = const (assuming that P0V0 = P1V1).

c) Show that the formula obtained in a) for the mechanical work performed by
the gas enclosed by the piston and the cylinder walls is actually general, that is, it
remains valid for the work of a gas enclosed in any deformable container.

6. The quantity of heat acquired by a system in some process of varying its states,
like the mechanical work performed by the system (see Problem 5), depends not
only on the initial and final states of the system, but also on the transition path. An
important characteristic of a substance and the thermodynamic process performed
by (or on) it is its heat capacity, the ratio of the heat acquired by the substance to
the change in its temperature. A precise definition of heat capacity can be given as
follows. Let x be a point in the plane of states F (with coordinates V,P or V,T
or P,T ) and e ∈ TFx a vector indicating the direction of displacement from the
point x. Let t be a small parameter. Let us consider the displacement from the state
x to the state x+ te along the closed interval in the plane F whose endpoints are
these states. LetΔQ(x, te) be the heat acquired by the substance in this process and
ΔT (x, te) the change in the temperature of the substance.

The heat capacity C = C(x, e) of the substance (or system) corresponding to the
state x and the direction e of displacement from that state is

C(x, te)= lim
t→0

ΔQ(x, te)
ΔT (x, te)

.

In particular, if the system is thermally insulated, its evolution takes place without
any exchange of heat with the surrounding medium. This is a so-called adiabatic
process. The curve in the plane of states F corresponding to such a process is called
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an adiabatic. Hence, zero heat capacity of the system corresponds to displacement
from a given state x along an adiabatic.

Infinite heat capacity corresponds to displacement along an isotherm T = const.
The heat capacities at constant volume CV = C(x, eV ) and at constant pressure

CP = C(x, eP ), which correspond respectively to displacement along an isochore
V = const and an isobar P = const, are used particularly often. Experiment shows
that in a rather wide range of states of a given mass of substance, each of the quan-
tities CV and CP can be considered practically constant. The heat capacity corre-
sponding to one mole of a given substance is customarily called the molecular heat
capacity and is denoted (in contrast to the others) by upper case letters rather than
lower case. We shall assume that we are dealing with one mole of a substance.

Between the quantity ΔQ of heat acquired by the substance in the process, the
change ΔU in its internal energy, and the mechanical work ΔA it performs, the
law of conservation of energy provides the connection ΔQ = ΔU + ΔA. Thus,
under a small displacement te from state x ∈ F the heat acquired can be found as
the value of the form δQ := dU + P dV at the point x on the vector te ∈ T Fx (for
the formula P dV for the work see Problem 5c)). Hence if T and V are regarded
as the coordinates of the state and the displacement parameter (in a nonisothermal
direction) is taken as T , then we can write

C = lim
t→0

ΔQ

ΔT
= ∂U
∂T
+ ∂U
∂V
· dV

dT
+ P dV

dT
.

The derivative dV
dT determines the direction of displacement from the state x ∈ F

in the plane of states with coordinates T and V . In particular, if dV
dT = 0 then the

displacement is in the direction of the isochore V = const, and we find that CV =
∂U
∂T

. If P = const, then dV
dT = ( ∂V∂T )P=const. (In the general case V = V (P,T ) is the

equation of state f (P,V,T )= 0 solved for V .) Hence

CP =
(
∂U

∂T

)

V

+
((
∂U

∂V

)

T

+ P
)(
∂V

∂T

)

P

,

where the subscripts P , V , and T on the right-hand side indicate the parameter
of state that is fixed when the partial derivative is taken. Comparing the resulting
expressions for CV and CP , we see that

CP −CV =
((
∂U

∂V

)

T

+ P
)(
∂V

∂T

)

P

.

By experiments on gases (the Joule1–Thomson experiments) it was established
and then postulated in the model of an ideal gas that its internal energy depends only
on the temperature, that is, ( ∂U

∂V
)T = 0. Thus for an ideal gas CP −CV = P(∂V∂T )P .

1G.P. Joule (1818–1889) – British physicist who discovered the law of thermal action of a current
and also determined, independently of Mayer, the mechanical equivalent of heat.
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Taking account of the equation PV =RT for one mole of an ideal gas, we obtain the
relation CP −CV =R from this, known as Mayer’s equation2 in thermodynamics.

The fact that the internal energy of a mole of gas depends only on temperature
makes it possible to write the form δQ as

δQ= ∂U
∂T

dT + P dV = CV dT + P dV.

To compute the quantity of heat acquired by a mole of gas when its state varies
over the path γ one must consequently find the integral of the form CV dT + P dV
over γ . It is sometimes convenient to have this form in terms of the variables V and
P . If we use the equation of state PV = RT and the relation CP − CV = R, we
obtain

δQ= CP P
R

dV +CV V
R

dP.

a) Write the formula for the quantity Q of heat acquired by a mole of gas as its
state varies along the path γ in the plane of states F .

b) Assuming the quantities CP and CV are constant, find the quantity Q corre-
sponding to the paths γOLI, γOKI , and γOI in Problem 5b).

c) Find (following Poisson) the equation of the adiabatic passing through the
point (V0,P0) in the plane of states F with coordinates V and P. (Poisson found that
PV CP /CV = const on an adiabatic. The quantity CP /CV is the adiabatic constant
of the gas. For air CP /CV ≈ 1.4.) Now compute the work one must do in order to
confine a thermally isolated mole of air in the state (V0,P0) to the volume V1 = 1

2V0.

7. We recall that a Carnot cycle3 of variation in the state of the working body of a
heat engine (for example, the gas under the piston in a cylinder) consists of the fol-
lowing (Fig. 13.4). There are two energy-storing bodies, a heater and a cooler (for
example, a steam boiler and the atmosphere) maintained at constant temperatures T1
and T2 respectively (T1 > T2). The working body (gas) of this heat engine, having
temperature T1 in State 1, is brought into contact with the heater, and by decreas-
ing the external pressure along an isotherm, expands quasi-statically and moves to
State 2. In the process the engine borrows a quantity of heatQ1 from the heater and
performs mechanical work A12 against the external pressure. In State 2 the gas is
thermally insulated and forced to expand quasi-statically to State 3, until its tem-
perature reaches T2, the temperature of the cooler. In this process the engine also
performs a certain quantity of work A23 against the external pressure. In State 3 the
gas is brought into contact with the cooler and compressed isothermically to State 4
by increasing the pressure. In this process work is done on the gas (the gas itself per-
forms negative work A34), and the gas gives up a certain quantity of heat Q2 to the

2J.P. Mayer (1814–1878) – German scholar, a physician by training; he stated the law of conserva-
tion and transformation of energy and found the mechanical equivalent of heat.
3N.L.S. Carnot (1796–1832) – French engineer, one of the founders of thermodynamics.
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Fig. 13.4

cooler. State 4 is chosen so that it is possible to return from it to State 1 by a quasi-
static compression along an adiabatic. Thus the gas is returned to State 1. In the
process it is necessary to perform some work on the gas (and the gas itself performs
negative work A41). As a result of this cyclic process (a Carnot cycle) the internal
energy of the gas (the working body of the engine) obviously does not change (af-
ter all, we have returned to the initial state). Therefore the work performed by the
engine is A=A12 +A23 +A34 +A41 =Q1 −Q2.

The heat Q1 acquired from the heater went only partly to perform the work A.
It is natural to call the quantity η = A

Q1
= Q1−Q2

Q1
the efficiency of the heat engine

under consideration.

a) Using the results obtained in a) and c) of Problem 6, show that the equality
Q1
T1
= Q2

T2
holds for a Carnot cycle.

b) Now prove the following theorem, the first of Carnot’s two famous theorems.
The efficiency of a heat engine working along a Carnot cycle depends only on the
temperatures T1 and T2 of the heater and cooler. (It is independent of the structure
of the engine or the form of its working body.)

8. Let γ be a closed path in the plane of states F of the working body of an arbitrary
heat engine (see Problem 7) corresponding to a closed cycle of work performed by
it. The quantity of heat that the working body (a gas, for example) exchanges with
the surrounding medium and the temperature at which the heat exchange takes place
are connected by the Clausius inequality

∫
γ
δQ
T
≤ 0. Here δQ is the heat exchange

form mentioned in Problem 6.

a) Show that for a Carnot cycle (see Problem 7), the Clausius inequality becomes
equality.

b) Show that if the work cycle γ can be run in reverse, then the Clausius in-
equality becomes equality.

c) Let γ1 and γ2 be the parts of the path γ on which the working body of a
heat engine acquires heat from without and imparts it to the surrounding medium
respectively. Let T1 be the maximal temperature of the working body on γ1 and T2
its minimal temperature on γ2. Finally, let Q1 be the heat acquired on γ1 and Q2

the heat given up on γ2. Based on Clausius’ inequality, show that Q2
Q1
≤ T2
T1

.

d) Obtain the estimate η ≤ T1−T2
T1

for the efficiency of any heat engine (see Prob-
lem 7). This is Carnot’s second theorem. (Estimate separately the efficiency of a
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steam engine in which the maximal temperature of the steam is at most 150 °C, that
is, T1 = 423 K, and the temperature of the cooler – the surrounding medium – is of
the order 20 °C, that is T2 = 291 K.)

e) Compare the results of Problems 7b) and 8d) and verify that a heat engine
working in a Carnot cycle has the maximum possible efficiency for given values of
T1 and T2.

9. The differential equation dy
dx = f (x)

g(y)
is said to have variables separable. It is usu-

ally rewritten in the form g(y)dy = f (x)dx, in which “the variables are separated,”
then “solved” by equating the primitives

∫
g(y)dy = ∫ f (x)dx. Using the language

of differential forms, now give a detailed mathematical explanation for this algo-
rithm.

13.2 The Volume Element. Integrals of First and Second Kind

13.2.1 The Mass of a Lamina

Let S be a lamina in Euclidean space R
n. Assume that we know the density ρ(x)

(per unit area) of the mass distribution on S. We ask how one can determine the total
mass of S.

In order to solve this problem it is necessary first of all to take account of the fact
that the surface density ρ(x) is the limit of the ratio Δm of the quantity of mass on
a portion of the surface in a neighborhood of x to the area Δσ of that same portion
of the surface, as the neighborhood is contracted to x.

By breaking S into small pieces Si and assuming that ρ is continuous on S, we
can find the mass of Si , neglecting the variation of ρ within each small piece, from
the relation

Δmi ≈ ρ(xi)Δσi,
in which Δσi is the area of the surface Si and xi ∈ Si .

Summing these approximate equalities and passing to the limit as the partition is
refined, we find that

m=
∫

S

ρ dσ. (13.12)

The symbol for integration over the surface S here obviously requires some clar-
ification so that computational formulas can be derived from it.

We note that the statement of the problem itself shows that the left-hand side
of Eq. (13.12) is independent of the orientation of S, so that the integral on the
right-hand side must have the same property. At first glance this appears to contrast
with the concept of an integral over a surface, which was discussed in detail in
Sect. 13.1. The answer to the question that thus arises is concealed in the definition
of the surface element dσ , to whose analysis we now turn.
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13.2.2 The Area of a Surface as the Integral of a Form

Comparing Definition 1 of Sect. 13.1 for the integral of a form with the construction
that led us to the definition of the area of a surface (Sect. 12.4), we see that the
area of a smooth k-dimensional surface S embedded in the Euclidean space R

n and
given parametrically by ϕ : D→ S, is the integral of a form Ω , which we shall
provisionally call the volume element on the surface S. It follows from relation
(12.10) of Sect. 12.4 that Ω (more precisely ϕ∗Ω) has the form

ω=
√

det(gij )(t)dt
1 ∧ · · · ∧ dtk, (13.13)

in the curvilinear coordinates ϕ :D→ S (that is, when transferred to the domainD).
Here gij (t)= 〈 ∂ϕ∂ti , ∂ϕ∂tj 〉, i, j = 1, . . . , k.

To compute the area of S over a domain D̃ in a second parametrization ϕ̃ :
D̃→ S, one must correspondingly integrate the form

ω̃=
√

det(g̃ij )(t̃)dt̃
1 ∧ · · · ∧ dt̃ k, (13.14)

where g̃ij (t̃)= 〈 ∂ϕ∂t̃ i , ∂ϕ∂t̃j 〉, i, j = 1, . . . , k.

We denote by ψ the diffeomorphism ϕ−1 ◦ ϕ̃ : D̃→D that provides the change
from t̃ coordinates to t coordinates on S. Earlier we have computed (see Remark 5
of Sect. 12.4) that

√
det(g̃ij )(t̃)=

√
det(gij )(t) ·

∣∣detψ ′(t)
∣∣. (13.15)

At the same time, it is obvious that

ψ∗ω=
√

det(gij )
(
ψ(t̃)
)
,detψ ′(t̃)dt̃1 ∧ · · · ∧ dt̃ k . (13.16)

Comparing the equalities (13.13)–(13.16), we see that ψ∗ω= ω̃ if detψ ′(t̃) > 0
and ψ∗ω=−ω̃ if detψ ′(t̃) < 0. If the forms ω and ω̃ were obtained from the same
formΩ on S through the transfers ϕ∗ and ϕ̃∗, then we must always have the equality
ψ∗(ϕ∗Ω)= ϕ̃∗Ω or, what is the same, ψ∗ω= ω̃.

We thus conclude that the forms on the parametrized surface S that one must
integrate in order to obtain the areas of the surface are different: they differ in sign
if the parametrizations define different orientations on S; these forms are equal for
parametrizations that belong to the same orientation class for the surface S.

Thus the volume element Ω on S must be determined not only by the surface S
embedded in R

n, but also by the orientation of S.
This might appear paradoxical: in our intuition, the area of a surface should not

depend on its orientation!
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But after all, we arrived at the definition of the area of a parametrized surface via
an integral, the integral of a certain form. Hence, if the result of our computations is
to be independent of the orientation of the surface, it follows that we must integrate
different forms when the orientation is different.

Let us now turn these considerations into precise definitions.

13.2.3 The Volume Element

Definition 1 If Rk is an oriented Euclidean space with inner product 〈, 〉, the volume
element on R

k corresponding to a particular orientation and the inner product 〈, 〉
is the skew-symmetric k-form that assumes the value 1 on an orthonormal frame of
some orientation class.

The value of the k-form on the frame e1, . . . , ek obviously determines this form.
We remark also that the form Ω is determined not by an individual orthonormal

frame, but only by its orientation class.

Proof In fact, if e1, . . . , ek and ẽ1, . . . , ẽk are two such frames in the same orien-
tation class, then the transition matrix O from the second basis to the first is an
orthogonal matrix with detO = 1. Hence

Ω(e1, . . . , ek)= detO ·Ω(ẽ1, . . . , ẽk)=Ω(ẽ1, . . . , ẽk). �

If an orthonormal basis e1, . . . , ek is fixed in R
k and π1, . . . , πk are the

projections of R
k on the corresponding coordinate axes, obviously π1 ∧ · · · ∧

πk(e1, . . . , ek)= 1 and

Ω = π1 ∧ · · · ∧ πk.
Thus,

Ω(ξ1, . . . , ξ k)=

∣∣
∣∣∣∣∣

ξ1
1 · · · ξk1
...

. . .
...

ξ1
k · · · ξkk

∣∣
∣∣∣∣∣
.

This is the oriented volume of the parallelepiped spanned by the ordered set of
vectors ξ1, . . . , ξ k .

Definition 2 If the smooth k-dimensional oriented surface S is embedded in a Eu-
clidean space R

n, then each tangent plane TSx to S has an orientation consistent
with the orientation of S and an inner product induced by the inner product in R

n;
hence there is a volume elementΩ(x). The k-formΩ that arises on S in this way is
the volume element on S induced by the embedding of S in R

n.
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Definition 3 The area of an oriented smooth surface is the integral over the surface
of the volume element corresponding to the orientation chosen for the surface.

This definition of area, stated in the language of forms and made precise, is of
course in agreement with Definition 1 of Sect. 12.4, which we arrived at by consid-
eration of a smooth k-dimensional surface S ⊂R

n defined in parametric form.

Proof Indeed, the parametrization orients the surface and all its tangent planes TSx .
If ξ1, . . . , ξ k is a frame of a fixed orientation class in TSx , it follows from Defini-
tions 2 and 3 for the volume element Ω that Ω(x)(ξ1, . . . , ξ k) > 0. But then (see
Eq. (12.7) of Sect. 12.4)

Ω(x)(ξ1, . . . , ξ k)=
√

det
(〈ξ i , ξ j 〉

)
. (13.17)

�

We note that the form Ω(x) itself is defined on any set ξ1, . . . , ξ k of vectors in
TSx , but Eq. (13.17) holds only on frames of a given orientation class in TSx .

We further note that the volume element is defined only on an oriented surface, so
that it makes no sense, for example, to talk about the volume element on a Möbius
band in R

3, although it does make sense to talk about the volume element of each
orientable piece of this surface.

Definition 4 Let S be a k-dimensional piecewise-smooth surface (orientable or not)
in R

n, and S1, . . . , Sm, . . . a finite or countable number of smooth parametrized
pieces of it intersecting at most in surfaces of dimension not larger than k − 1 and
such that S =⋃i Si .

The area (or k-dimensional volume) of S is the sum of the areas of the sur-
faces Si .

In this sense we can speak of the area of a Möbius band in R
3 or, what is the

same, try to find its mass if it is a material surface with matter having unit density.
The fact that Definition 4 is unambiguous (that the area obtained is independent

of the partition S1, . . . , Sm, . . . of the surface) can be verified by traditional reason-
ing.

13.2.4 Expression of the Volume Element in Cartesian Coordinates

Let S be a smooth hypersurface (of dimension n − 1) in an oriented Euclidean
space Rn endowed with a continuous field of unit normal vectors η(x), x ∈ S, which
orients it. Let V be the n-dimensional volume in R

n andΩ the (n− 1)-dimensional
volume element on S.

If we take a frame ξ1, . . . , ξn−1 in the tangent space TSx from the orientation
class determined by the unit normal n(x) to TSx , we can obviously write the follow-
ing equality:

V (x)(η, ξ1, . . . , ξn−1)=Ω(x)(ξ1, . . . , ξn−1). (13.18)
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Proof This fact follows from the fact that under the given hypotheses both sides
are nonnegative and equal in magnitude because the volume of the parallelepiped
spanned by η, ξ1, . . . , ξn−1 is the area of the base Ω(x)(ξ1, . . . , ξn−1) multiplied
by the height |η| = 1. �

But,

V (x)(η, ξ1, . . . , ξn−1)=

=

∣
∣
∣
∣
∣
∣
∣
∣
∣

η1 · · · ηn

ξ1
1 · · · ξn1
...

. . .
...

ξ1
n−1 · · · ξnn−1

∣
∣
∣
∣
∣
∣
∣
∣
∣

=

=
n∑

i=1

(−1)i−1ηi(x)dx1 ∧ · · · ∧
�

dxi ∧ · · · ∧ dxn(ξ1, . . . , ξn−1).

Here the variables x1, . . . , xn are Cartesian coordinates in the orthonormal ba-
sis e1, . . . , en that defines the orientation, and the frown over the differential dxi

indicates that it is to be omitted.
Thus we obtain the following coordinate expression for the volume element on

the oriented hypersurface S ⊂R
n:

Ω =
n∑

i=1

(−1)i−1ηi(x)dx1 ∧ · · · ∧
�

dxi ∧ · · · ∧ dxn(ξ1, . . . , ξn−1). (13.19)

At this point it is worthwhile to remark that when the orientation of the surface
is reversed, the direction of the normal η(x) reverses, that is, the formΩ is replaced
by the new form −Ω .

It follows from the same geometric considerations that for a fixed value of i ∈
{1, . . . , n}

〈
η(x), ei

〉
Ω(ξ1, . . . , ξn−1)= V (x)(ei , ξ1, . . . , ξn−1). (13.20)

This last equality means that

ηi(x)Ω(x)= (−1)i−1 dx1 ∧ · · · ∧
�

dxi ∧ · · · ∧ dxn(ξ1, . . . , ξn−1). (13.21)

For a two-dimensional surface S in R
n the volume element is most often denoted

dσ or dS. These symbols should not be interpreted as the differentials of some forms
σ and S; they are only symbols. If x, y, z are Cartesian coordinates on R

3, then in
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this notation relations (13.19) and (13.21) can be written as follows:

dσ = cosα1 dy ∧ dz+ cosα2 dz∧ dx + cosα3 dx ∧ dy,

cosα1 dσ = dy ∧ dz, (oriented areas of the projections

cosα2 dσ = dz∧ dx, on the coordinate planes).

cosα3 dσ = dx ∧ dy,

Here (cosα1, cosα2, cosα3)(x) are the direction cosines (coordinates) of the unit
normal vector η(x) to S at the point x ∈ S. In these equalities (as also in (13.19) and
(13.21)) it would of course have been more correct to place the restriction sign |S on
the right-hand side so as to avoid misunderstanding. But, in order not to make the
formulas cumbersome, we confine ourselves to this remark.

13.2.5 Integrals of First and Second Kind

Integrals of type (13.12) arise in a number of problems, a typical representative of
which is the problem considered above of determining the mass of a surface whose
density is known. These integrals are often called integrals over a surface or integrals
of first kind.

Definition 5 The integral of a function ρ over an oriented surface S is the integral
∫

S

ρΩ (13.22)

of the differential form ρΩ , whereΩ is the volume element on S (corresponding to
the orientation of S chosen in the computation of the integral).

It is clear that the integral (13.22) so defined is independent of the orientation
of S, since a reversal of the orientation is accompanied by a corresponding replace-
ment of the volume element.

We emphasize that it is not really a matter of integrating a function, but rather
integrating a form ρΩ of special type over the surface S with the volume element
defined on it.

Definition 6 If S is a piecewise-smooth (orientable or non-orientable) surface and
ρ is a function on S, then the integral (13.22) of ρ over the surface S is the sum∑
i

∫
Si
ρΩ of the integrals of ρ over the parametrized pieces S1, . . . , Sm, . . . of the

partition of S described in Definition 4.
The integral (13.22) is usually called a surface integral of first kind.

For example, the integral (13.12), which expresses the mass of the surface S in
terms of the density ρ of the mass distribution over the surface, is such an integral.
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To distinguish integrals of first kind, which are independent of the orientation of
the surface, we often refer to integrals of forms over an oriented surface as surface
integrals of second kind.

We remark that, since all skew-symmetric forms on a vector space whose degrees
are equal to the dimension of the space are multiples of one another, there is a
connection ω = ρΩ between any k-form ω defined on a k-dimensional orientable
surface S and the volume elementΩ on S. Here ρ is some function on S depending
on ω. Hence

∫

S

ω=
∫

S

ρΩ.

That is, every integral of second kind can be written as a suitable integral of first
kind.

Example 1 The integral (13.2′) of Sect. 13.1, which expresses the work on the path
γ : [a, b]→R

n, can be written as the integral of first kind
∫

γ

〈F, e〉ds, (13.23)

where s is arc length on γ , ds is the element of length (a 1-form), and e is a unit
velocity vector containing all the information about the orientation of γ . From the
point of view of the physical meaning of the problem solved by the integral (13.23),
it is just as informative as the integral (13.1) of Sect. 13.1.

Example 2 The flux (13.3) of Sect. 13.1 of the velocity field V across a surface
S ⊂ R

n oriented by unit normals n(x) can be written as the surface integral of first
kind

∫

S

〈V,n〉dσ. (13.24)

The information about the orientation of S here is contained in the direction of the
field of normals n.

The geometric and physical content of the integrand in (13.24) is just as transpar-
ent as the corresponding meaning of the integrand in the final computational formula
(13.6) of Sect. 13.1.

For the reader’s information we note that quite frequently one encounters the
notation ds := e ds and dσ := n dσ , which introduce a vector element of length and
a vector element of area. In this notation the integrals (13.23) and (13.24) have the
form

∫

γ

〈F,ds〉 and
∫

S

〈V,dσ 〉,

which are very convenient from the point of view of physical interpretation. For
brevity the inner product 〈A,B〉 of the vectors A and B is often written A ·B.
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Example 3 Faraday’s law4 asserts that the electromotive force arising in a closed
conductor Γ in a variable magnetic field B is proportional to the rate of variation of
the flux of the magnetic field across a surface S bounded by Γ . Let E be the electric
field intensity. A precise statement of Faraday’s law can be given as the equality

∮

Γ

E · ds=− ∂
∂t

∫

S

B · dσ .

The circle in the integration sign over Γ is an additional reminder that the integral
is being taken over a closed curve. The work of the field over a closed curve is
often called the circulation of the field along this curve. Thus by Faraday’s law
the circulation of the electric field intensity generated in a closed conductor by a
variable magnetic field equals the rate of variation of the flux of the magnetic field
across a surface S bounded by Γ , taken with a suitable sign.

Example 4 Ampère’s law5

∮

Γ

B · ds= 1

ε0c2

∫

S

j · dσ

(where B is the magnetic field intensity, j is the current density vector, and ε0 and
c are dimensioning constants) asserts that the circulation of the intensity of a mag-
netic field generated by an electric current along a contour Γ is proportional to the
strength of the current flowing across the surface S bounded by the contour.

We have studied integrals of first and second kind. The reader might have no-
ticed that this terminological distinction is very artificial. In reality we know how to
integrate, and we do integrate, only differential forms. No integral is ever taken of
anything else (if the integral is to claim independence of the choice of the coordinate
system used to compute it).

13.2.6 Problems and Exercises

1. Give a formal proof of Eqs. (13.18) and (13.20).
2. Let γ be a smooth curve and ds the element of arc length on γ .

a) Show that
∣∣∣
∣

∫

γ

f (s)ds

∣∣∣
∣≤
∫

γ

∣∣f (s)
∣∣ds

for any function f on γ for which both integrals are defined.

4M. Faraday (1791–1867) – outstanding British physicist, creator of the concept of an electromag-
netic field.
5A.M. Ampère (1775–1836) – French physicist and mathematician, one of the founders of modern
electrodynamics.
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b) Verify that if |f (s)| ≤M on γ and l is the length of γ , then
∣∣∣∣

∫

γ

f (x)ds

∣∣∣∣≤Ml.

c) State and prove assertions analogous to a) and b) in the general case for an
integral of first kind taken over a k-dimensional smooth surface.

3. a) Show that the coordinates (x1
0 , x

2
0 , x

3
0) of the center of masses distributed with

linear density ρ(x) along the curve γ should be given by the relations

xi0

∫

γ

ρ(x)ds =
∫

γ

xiρ(x)ds, i = 1,2,3.

b) Write the equation of a helix in R
3 and find the coordinates of the center of

mass of a piece of this curve, assuming that the mass is distributed along the curve
with constant density equal to 1.

c) Exhibit formulas for the center of masses distributed over a surface S with
surface density ρ and find the center of masses that are uniformly distributed over
the surface of a hemisphere.

d) Exhibit the formulas for the moment of inertia of a mass distributed with
density ρ over the surface S.

e) The tire on a wheel has mass 30 kg and the shape of a torus of outer diameter
1 m and inner diameter 0.5 m. When the wheel is being balanced, it is placed on
a balancing lathe and rotated to a velocity corresponding to a speed of the order
of 100 km/hr, then stopped by brake pads rubbing against a steel disk of diameter
40 cm and width 2 cm. Estimate the temperature to which the disk would be heated
if all the kinetic energy of the spinning tire went into heating the disk when the
wheel was stopped. Assume that the heat capacity of steel is c= 420 J/(kg-K).

4. a) Show that the gravitational force acting on a point mass m0 located at
(x0, y0, z0) due to a material curve γ having linear density ρ is given by the for-
mula

F =Gm0

∫

γ

ρ

|r|3 r ds,

where G is the gravitational constant and r is the vector with coordinates (x −
x0, y − y0, z− z0).

b) Write the corresponding formula in the case when the mass is distributed over
a surface S.

c) Find the gravitational field of a homogeneous material line.
d) Find the gravitational field of a homogeneous material sphere. (Exhibit the

field both outside the ball bounded by the sphere and inside the ball.)
e) Find the gravitational field created in space by a homogeneous material ball

(consider both exterior and interior points of the ball).
f) Regarding the Earth as a liquid ball, find the pressure in it as a function of

the distance from the center. (The radius of the Earth is 6400 km, and its average
density is 6 g/cm3.)
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5. Let γ1 and γ2 be two closed conductors along which currents J1 and J2 re-
spectively are flowing. Let ds1 and ds2 be the vector elements of these conductors
corresponding to the directions of current in them. Let the vector R12 be directed
from ds1 to ds2, and R21 =−R12.

According to the Biot–Savart law6 the force dF12 with which the first element
acts on the second is

dF12 = J1J2

c2
0|R12|2

[
ds2, [ds1,R12]

]
,

where the brackets denote the vector product of the vectors and c0 is a dimensioning
constant.

a) Show that, on the level of an abstract differential form, it could happen that
dF12 �= −dF21 in the differential Biot–Savart formula, that is, “the reaction is not
equal and opposite to the action.”

b) Write the (integral) formulas for the total forces F12 and F21 for the interac-
tion of the conductors γ1 and γ2 and show that F12 =−F21.

6. The co-area formula (the Kronrod–Federer formula).
LetMm and Nn be smooth surfaces of dimensions m and n respectively, embed-

ded in a Euclidean space of high dimension (Mm and Nn may also be abstract Rie-
mannian manifolds, but that is not important at the moment). Suppose that m≥ n.

Let f :Mm→ Nn be a smooth mapping. When m > n, the mapping df (x) :
TxM

m→ Tf (x)N
n has a nonempty kernel ker df (x). Let us denote by T ⊥x Mm the

orthogonal complement of ker df (x), and by J (f, x) the Jacobian of the mapping
df (x)|T ⊥x Mm : T ⊥x Mm→ Tf (x)N

n. If m= n, then J (f, x) is the usual Jacobian.
Let dvk(p) denote the volume element on a k-dimensional surface at the point p.

We shall assume that v0(E)= cardE, where vk(E) is the k-volume of E.

a) Using Fubini’s theorem and the rank theorem (on the local canonical form
of a smooth mapping) if necessary, prove the following formula of Kronrod and
Federer:

∫
Mm
J (f, x)dvm(x)=

∫
Nn
vm−n(f−1(y))dvn(y).

b) Show that if A is a measurable subset ofMm, then
∫

A

J (f, x)dvm(x)=
∫

Nn
vm−n

(
A∩ f−1(y)

)
dvn(y).

This is the general Kronrod–Federer formula.
c) Prove the following strengthening of Sard’s theorem (which in its simplest

version asserts that the image of the set of critical points of a smooth mapping has
measure zero). (See Problem 8 of Sect. 11.5.)

Suppose as before that f :Mm→Nn is a smooth mapping and K is a compact
set inMm on which rank df (x) < n for all x ∈K .

Then
∫
Nn
vm−n(K ∩f−1(y))dvn(y)= 0. Use this result to obtain in addition the

simplest version of Sard’s theorem stated above.

6Biot (1774–1862), Savart (1791–1841) – French physicists.
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d) Verify that if f : D→ R and u : D→ R are smooth functions in a regular
domain D ⊂R

n and u has no critical points in D, then
∫

D

f dv =
∫

R

dt
∫

u−1(t)

f
dσ

|∇u| .

e) Let Vf (t) be the measure (volume) of the set {x ∈D | f (x) > t}, and let the
function f be nonnegative and bounded in the domain D.

Show that
∫
D
f dv =− ∫

R
t dVf (t)=

∫∞
0 Vf (t)dt .

f) Let ϕ ∈ C(1)(R,R+) and ϕ(0) = 0, while f ∈ C(1)(D,R) and V|f |(t)
is the measure of the set {x ∈ D | |f (x)| > t}. Verify that

∫
D
ϕ ◦ f dv =∫∞

0 ϕ′(t)V|f |(t)dt .

13.3 The Fundamental Integral Formulas of Analysis

The most important formula of analysis is the Newton–Leibniz formula (funda-
mental theorem of calculus). In the present section we shall obtain the formulas of
Green, Gauss–Ostrogradskii, and Stokes, which on the one hand are an extension of
the Newton–Leibniz formula, and on the other hand, taken together, constitute the
most-used part of the machinery of integral calculus.

In the first three subsections of this section, without striving for generality in our
statements, we shall obtain the three classical integral formulas of analysis using
visualizable material. They will be reduced to one general Stokes formula in the
fourth subsection, which can be read formally independently of the others.

13.3.1 Green’s Theorem

Green’s7 theorem is the following.

Proposition 1 Let R2 be the plane with a fixed coordinate grid x, y, and let D be
a compact domain in this plane bounded by piecewise-smooth curves. Let P andQ
be smooth functions in the closed domain D. Then the following relation holds:

∫∫

D

(
∂Q

∂x
− ∂P
∂y

)
dx dy =

∫

∂D

P dx +Qdy, (13.25)

in which the right-hand side contains the integral over the boundary ∂D of the
domain D oriented consistently with the orientation of the domain D itself.

7G. Green (1793–1841) – British mathematician and mathematical physicist. Newton’s grave in
Westminster Abbey is framed by five smaller gravestones with brilliant names: Faraday, Thomson
(Lord Kelvin), Green, Maxwell, and Dirac.
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Fig. 13.5

We shall first consider the simplest version of (13.25) in which D is the square
I = {(x, y) ∈ R

2 | 0 ≤ x ≤ 1,0 ≤ y ≤ 1} and Q ≡ 0 in I . Then Green’s theorem
reduces to the equality

∫∫

I

∂P

∂y
dx dy =−

∫

∂I

P dx, (13.26)

which we shall prove.

Proof Reducing the double integral to an iterated integral and applying the funda-
mental theorem of calculus, we obtain

∫∫

D

∂P

∂y
dx dy =

∫ 1

0
dx
∫ 1

0

∂P

∂y
dy =

=
∫ 1

0

(
P(x,1)− P(x,2))dx =−

∫ 1

0
P(x,0)dx +

∫ 1

0
P(x,1)dx.

The proof is now finished. What remains is a matter of definitions and interpre-
tation of the relation just obtained. The point is that the difference of the last two
integrals is precisely the right-hand side of relation (13.26).

Indeed, the piecewise-smooth curve ∂I breaks into four pieces (Fig. 13.5), which
can be regarded as parametrized curves

γ1 : [0,1] → R
2, where x

γ1�−→ (x,0),

γ2 : [0,1] → R
2, where y

γ2�−→ (1, y),

γ3 : [0,1] → R
2, where x

γ3�−→ (x,1),

γ4 : [0,1] → R
2, where y

γ4�−→ (0, y).

By definition of the integral of the 1-form ω= P dx over a curve

∫

γ1

P(x, y)dx :=
∫

[0,1]
γ ∗1
(
P(x, y)dx

) :=
∫ 1

0
P(x,0)dx,

∫

γ2

P(x, y)dx :=
∫

[0,1]
γ ∗2
(
P(x, y)dx

) :=
∫ 1

0
0 dy = 0,
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∫

γ3

P(x, y)dx :=
∫

[0,1]
γ ∗3
(
P(x, y)dx

) :=
∫ 1

0
P(x,1)dx,

∫

γ4

P(x, y)dx :=
∫

[0,1]
γ ∗4
(
P(x, y)dx

) :=
∫ 1

0
0 dy = 0,

and, in addition, by the choice of the orientation of the boundary of the domain,
taking account of the orientations of γ1, γ2, γ3, γ4, it is obvious that

∫

∂I

ω=
∫

γ1

ω+
∫

γ2

ω+
∫

−γ3

ω+
∫

−γ4

ω=
∫

γ1

ω+
∫

γ2

ω−
∫

γ3

ω−
∫

γ4

ω,

where −γi is the curve γi taken with the orientation opposite to the one defined
by γi .

Thus Eq. (13.26) is now verified. �

It can be verified similarly that

∫∫

I

∂Q

∂x
dx dy =

∫

∂I

Qdy. (13.27)

Adding (13.26) and (13.27), we obtain Green’s formula

∫∫

I

(
∂Q

∂x
− ∂P
∂y

)
dx dy =

∫

∂I

P dx +Qdy (13.25′)

for the square I .
We remark that the asymmetry of P and Q in Green’s formula (13.25) and in

Eqs. (13.26) and (13.27) comes from the asymmetry of x and y: after all, x and y
are ordered, and it is that ordering that gives the orientation in R

2 and in I .
In the language of forms, the relation (13.25′) just proved can be rewritten as

∫

I

dω=
∫

∂I

ω, (13.25′′)

where ω is an arbitrary smooth form on I . The integrand on the right-hand side here
is the restriction of the form ω to the boundary ∂I of the square I .

The proof of relation (13.26) just given admits an obvious generalization: IfDy is
not a square, but a “curvilinear quadrilateral” whose lateral sides are vertical closed
intervals (possibly degenerating to a point) and whose other two sides are the graphs
of piecewise-smooth functions ϕ1(x) ≤ ϕ2(x) over the closed interval [a, b] of the
x-axis, then

∫∫

Dy

∂P

∂y
dx dy =−

∫

∂Dy

P dx. (13.26′)
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Fig. 13.6

Similarly, if there is such a “quadrilateral” Dx with respect to the y-axis, that is,
having two horizontal sides, then for it we have the equality

∫∫

Dx

∂Q

∂x
dx dy =

∫

∂Dx

Qdy. (13.27′)

Now let us assume that the domain D can be cut into a finite number of domains
of type Dy (Fig. 13.6). Then a formula of the form (13.26′) also holds for that
region D.

Proof In fact, by additivity, the double integral over the domain D is the sum of
the integrals over the pieces of type Dy into which D is divided. Formula (13.26′)
holds for each such piece, that is, the double integral over that piece equals the
integral of P dx over the oriented boundary of the piece. But adjacent pieces induce
opposite orientations on their common boundary, so that when the integrals over
the boundaries are added, all that remains after cancellation is the integral over the
boundary ∂D of the domain D itself. �

Similarly, if D admits a partition into domains of type Dx , an equality of type
(13.27′) holds for it.

We agree to call domains that can be cut both into pieces of type Dx and into
pieces of type Dy elementary domains. In fact, this class is sufficiently rich for all
practical applications.

By writing both relations (13.26′) and (13.27′) for a simple domain, we obtain
(13.25) by adding them.

Thus, Green’s theorem is proved for simple domains.
We shall not undertake any further sharpenings of Green’s formula at this point

(on this account see Problem 2 below), but rather demonstrate a second, very fruitful
line of reasoning that one may pursue after establishing Eqs. (13.25′) and (13.25′′).

Suppose the domain C has been obtained by a smooth mapping ϕ : I→ C of the
square I . If ω is a smooth 1-form on C, then

∫

C

dω :=
∫

I

ϕ∗ dω=
∫

I

dϕ∗ω !=
∫

∂I

ϕ∗ω=:
∫

∂C

ω. (13.28)

The exclamation point here distinguishes the equality we have already proved
(see (13.25′′)); the extreme terms in these equalities are definitions or direct conse-
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quences of them; the remaining equality, the second from the left, results from the
fact that exterior differentiation is independent of the coordinate system.

Hence Green’s formula also holds for the domain C.
Finally, if it is possible to cut any oriented domain D into a finite number of

domains of the same type as C, the considerations already described involving the
mutual cancellation of the integrals over the portions of the boundaries of the Ci
inside D imply that

∫

D

dω=
∑

i

∫

Ci

dω=
∑

i

∫

∂Ci

ω=
∫

∂D

ω, (13.29)

that is, Green’s formula also holds for D.
It can be shown that every domain with a piecewise-smooth boundary belongs

to this last class of domains, but we shall not do so, since we shall describe below
(Chap. 15) a useful technical device that makes it possible to avoid such geometric
complications, replacing them by an analytic problem that is comparatively easy to
solve.

Let us consider some examples of the use of Green’s formula.

Example 1 Let us set P =−y, Q= x in (13.25). We then obtain
∫

∂D

−y dx + x dy =
∫

D

2 dx dy = 2σ(D),

where σ(D) is the area ofD. Using Green’s formula one can thus obtain the follow-
ing expression for the area of a domain on the plane in terms of line integrals over
the oriented boundary of the domain:

σ(D)= 1

2

∫

∂D

−y dx + x dy =−
∫

∂D

y dx =
∫

∂D

x dy.

It follows in particular from this that the work A = ∫
γ
P dV performed by a

heat engine in changing the state of its working substance over a closed cycle γ
equals the area of the domain bounded by the curve γ in the PV-plane of states (see
Problem 5 of Sect. 13.1).

Example 2 Let B = {(x, y) ∈R2 | x2 + y2 ≤ 1} be the closed disk in the plane. We
shall show that any smooth mapping f : B→ B of the closed disk into itself has at
least one fixed point (that is, a point p ∈ B such that f (p)= p).

Proof Assume that the mapping f has no fixed points. Then for every point p ∈ B
the ray with initial point f (p) passing through the point p and the point ϕ(p) ∈
∂B where this ray intersects the circle bounding B are uniquely determined. Thus
a mapping ϕ : B → ∂B would arise, and it is obvious that the restriction of this
mapping to the boundary would be the identity mapping. Moreover, it would have



13.3 The Fundamental Integral Formulas of Analysis 243

the same smoothness as the mapping f itself. We shall show that no such mapping
ϕ can exist.

In the domain R
2\0 (the plane with the origin omitted) let us consider the form

ω= −y dx+x dy
x2+y2 that we encountered in Sect. 13.1. It can be verified immediately that

dω= 0. Since ∂B ⊂R
2\0, given the mapping ϕ : B→ ∂B , one could obtain a form

ϕ∗ω on B , and dϕ∗ω= ϕ∗(dω)= ϕ∗0= 0. Hence by Green’s formula
∫

∂B

ϕ∗ω=
∫

B

dϕ∗ω= 0.

But the restriction of ϕ to ∂B is the identity mapping, and so
∫

∂B

ϕ∗ω=
∫

∂B

ω.

This last integral, as was verified in Example 1 of Sect. 13.1, is nonzero. This con-
tradiction completes the proof of the assertion. �

This assertion is of course valid for a ball of any dimension (see Example 5
below). It also holds not only for smooth mappings, but for all continuous mappings
f : B→ B. In this general form it is called the Brouwer fixed-point theorem.8

13.3.2 The Gauss–Ostrogradskii Formula

Just as Green’s formula connects the integral over the boundary of a plane domain
with a corresponding integral over the domain itself, the Gauss–Ostrogradskii for-
mula given below connects the integral over the boundary of a three-dimensional
domain with an integral over the domain itself.

Proposition 2 Let R3 be three-dimensional space with a fixed coordinate system
x, y, z and D a compact domain in R

3 bounded by piecewise-smooth surfaces. Let
P,Q, and R be smooth functions in the closed domain D.

Then the following relation holds:

∫∫∫

D

(
∂P

∂x
+ ∂Q
∂y
+ ∂R
∂z

)
dx dy dz=

=
∫∫

∂D

P dy ∧ dz+Qdz∧ dx +R dx ∧ dy. (13.30)

8L.E.J. Brouwer (1881–1966) – well-known Dutch mathematician. A number of fundamental the-
orems of topology are associated with his name, as well as an analysis of the foundations of math-
ematics that leads to the philosophico-mathematical concepts called intuitionism.
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Fig. 13.7

The Gauss–Ostrogradskii formula (13.30) can be derived by repeating the deriva-
tion of Green’s formula step by step with obvious modifications. So as not to do a
verbatim repetition, let us begin by considering not a cube in R

3, but the domainDx
shown in Fig. 13.7, which is bounded by a lateral cylindrical surface S with genera-
tor parallel to the z-axis and two caps S1 and S2 which are the graphs of piecewise-
smooth functions ϕ1 and ϕ2 defined in the same domain G⊂ R

2
xy . We shall verify

that the relation
∫∫∫

Dz

∂R

∂z
dx dy dz=

∫∫

∂Dz

R dx ∧ dy (13.31)

holds for Dz.

Proof
∫∫∫

Dz

∂R

∂z
dx dy dz=

=
∫∫

G

dx dy
∫ ϕ2(x,y)

ϕ1(x,y)

∂R

∂z
dz=

=
∫∫

G

(
R
(
x, y,ϕ2(x, y)

)−R(x, y,ϕ1(x, y)
))

dx dy =

=−
∫∫

G

(R
(
x, y,ϕ1(x, y)

)
dx dy +

∫∫

G

(R
(
x, y,ϕ2(x, y)

)
dx dy.

The surfaces S1 and S2 have the following parametrizations:

S1 : (x, y) �−→
(
x, y,ϕ1(x, y)

)
,

S2 : (x, y) �−→
(
x, y,ϕ2(x, y)

)
.

The curvilinear coordinates (x, y) define the same orientation on S2 that is in-
duced by the orientation of the domain Dz, and the opposite orientation on S1.
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Hence if S1 and S2 are regarded as pieces of the boundary of Dz oriented as in-
dicated in Proposition 2, these last two integrals can be interpreted as integrals of
the form R dx ∧ dy over S1 and S2.

The cylindrical surface S has a parametric representation (t, z) �→ (x(t), y(t), z),
so that the restriction of the form R dx ∧ dy to S equals zero, and so consequently,
its integral over S is also zero.

Thus relation (13.31) does indeed hold for the domain Dz. �

If the oriented domain D can be cut into a finite number of domains of the
type Dz, then, since adjacent pieces induce opposite orientations on their common
boundary, the integrals over these pieces will cancel out, leaving only the integral
over the boundary ∂D.

Consequently, formula (13.31) also holds for domains that admit this kind of
partition into domains of type Dz.

Similarly, one can introduce domainsDy andDx whose cylindrical surfaces have
generators parallel to the y-axis or x-axis respectively and show that if a domain D
can be divided into domains of type Dy or Dx , then the relations

∫∫∫

D

∂Q

∂y
dx dy dz =

∫∫

∂D

Qdz∧ dx, (13.32)

∫∫∫

D

∂P

∂x
dx dy dz =

∫∫

∂D

P dy ∧ dz. (13.33)

Thus, if D is a simple domain, that is, a domain that admits each of the three
types of partitions just described into domains of types Dx , Dy , and Dz, then, by
adding (13.31), (13.32), and (13.33), we obtain (13.30) for D.

For the reasons given in the derivation of Green’s theorem, we shall not undertake
the description of the conditions for a domain to be simple or any further sharpening
of what has been proved (in this connection see Problem 8 below or Example 12 in
Sect. 17.5).

We note, however, that in the language of forms, the Gauss–Ostrogradskii for-
mula can be written in coordinate-free form as follows:

∫

D

dω=
∫

∂D

ω, (13.30′)

where ω is a smooth 2-form in D.
Since formula (13.30′) holds for the cube I = I 3 = {(x, y, z) ∈ R3 | 0 ≤ 1 ≤ 1,

0 ≤ y ≤ 1,0 ≤ z ≤ 1}, as we have shown, its extension to more general classes of
domains can of course be carried out using the standard computations (13.28) and
(13.29).

Example 3 (The law of Archimedes) Let us compute the buoyant force of a homo-
geneous liquid on a body D immersed in it. We choose the Cartesian coordinates
x, y, z in R

3 so that the xy-plane is the surface of the liquid and the z-axis is di-
rected out of the liquid. A force ρgzn dσ is acting on an element dσ of the surface S
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of D located at depth z, where ρ is the density of the liquid, g is the acceleration
of gravity, and n is a unit outward normal to the surface at the point of the surface
corresponding to dσ . Hence the resultant force can be expressed by the integral

F=
∫∫

S

ρgzn dσ.

If n= ex cosαx+ey cosαy+ez cosαz, then n dσ = ex dy∧dz+ey dz∧dx+ez dx∧
dy (see Sect. 13.2.4). Using the Gauss–Ostrogradskii formula (13.30), we thus find
that

F = exρg
∫∫

S

zdy ∧ dz+ eyρg
∫∫

S

zdz∧ dx + ezρg
∫∫

S

zdx ∧ dy =

= exρg
∫∫∫

D

0 dx dy dz+ eyρg
∫∫∫

D

0 dx dy dz+

+ ezρg
∫∫∫

D

dx dy dz= ρgV ez,

where V is the volume of the bodyD. Hence P = ρgV is the weight of a volume of
the liquid equal to the volume occupied by the body. We have arrived at Archimedes’
law: F= P ez.

Example 4 Using the Gauss–Ostrogradskii formula (13.30), one can give the fol-
lowing formulas for the volume V (D) of a body D bounded by a surface ∂D.

V (D) = 1

3

∫∫

∂D

x dy ∧ dz+ y dz∧ dx + zdx ∧ dy =

=
∫∫

∂D

x dy ∧ dz=
∫∫

∂D

y dz∧ dx =
∫∫

∂D

zdx ∧ dy.

13.3.3 Stokes’ Formula in R
3

Proposition 3 Let S be an oriented piecewise-smooth compact two-dimensional
surface with boundary ∂S embedded in a domain G ⊂ R

3, in which a smooth 1-
form ω= P dx +Qdy +R dz is defined. Then the following relation holds:

∫

∂S

P dx +Qdy +R dz=
∫∫

S

(
∂R

∂y
− ∂Q
∂z

)
dy ∧ dz+

+
(
∂P

∂z
− ∂R
∂x

)
dz∧ dx +

(
∂Q

∂x
− ∂P
∂y

)
dx ∧ dy,

(13.34)
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Fig. 13.8

where the orientation of the boundary ∂S is chosen consistently with the orientation
of the surface S.

In other notation, this means that

∫

S

dω=
∫

∂ω

ω. (13.34′)

Proof If C is a standard parametrized surface ϕ : I→ C in R
3, where I is a square

in R
2, relation (13.34) follows from Eqs. (13.28) taking account of what has been

proved for the square and Green’s formula.
If the orientable surface S can be cut into elementary surfaces of this type, then

relation (13.34) is also valid for it, as follows from Eqs. (13.29) with D replaced
by S. �

As in the preceding cases, we shall not prove at this point that, for example, a
piecewise-smooth surface admits such a partition.

Let us show what this proof of formula (13.34) would look like in coordinate
notation. To avoid expressions that are really too cumbersome, we shall write out
only the first, main part of its two expressions, and with some simplifications even
in that. To be specific, let us introduce the notation x1, x2, x3 for the coordinates of
a point x ∈R3 and verify only that

∫

∂S

P (x)dx1 =
∫∫

S

∂P

∂x2
dx2 ∧ dx1 + ∂P

∂x3
dx3 ∧ dx1,

since the other two terms on the left-hand side of (13.34) can be studied similarly.
For simplicity we shall assume that S can be obtained by a smooth mapping x = x(t)
of a domainD in the plane R2 of the variables t1, t2 and bounded by a smooth curve
γ = ∂D parametrized via a mapping t = t (τ ) by the points of the closed interval
α ≤ τ ≤ β (Fig. 13.8). Then the boundary Γ = ∂S of the surface S can be written as
x = x(t (τ )), where τ ranges over the closed interval [α,β]. Using the definition of
the integral over a curve, Green’s formula for a plane domain D, and the definition
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of the integral over a parametrized surface, we find successively

∫

Γ

P (x)dx1 :=
∫ β

α

P
(
x
(
t (τ )
))(∂x1

∂t1

dt1

dτ
+ ∂x

1

∂t2

dt2

dτ

)
dτ =

=
∫

γ

(
P
(
x(t)
)∂x1

∂t1

)
dt1 +

(
P
(
x(t)
)∂x1

∂t2

)
dt2

!=

!=
∫∫

D

[
∂

∂t1

(
P
∂x1

∂t2

)
− ∂

∂t2

(
P
∂x1

∂t1

)]
dt1 ∧ dt2 =

=
∫∫

D

(
∂P

∂t1

∂x1

∂t2
− ∂P
∂t2

∂x1

∂t1

)
dt1 ∧ dt2 =

=
∫∫

D

3∑

i=1

(
∂P

∂xi

∂xi

∂t1

∂x1

∂t2
− ∂P
∂xi

∂xi

∂t2

∂x1

∂t1

)
dt1 ∧ dt2 =

=
∫∫

D

[(
∂P

∂x2

∂x2

∂t1
+ ∂P
∂x3

∂x3

∂t1

)
∂x1

∂t2
−

−
(
∂P

∂x2

∂x2

∂t2
+ ∂P
∂x3

∂x3

∂t2

)
∂x1

∂t1

]
dt1 ∧ dt2 =

=
∫∫

D

⎛

⎝ ∂P
∂x2

∣∣∣
∣∣∣

∂x2

∂t1
∂x2

∂t2

∂x1

∂t1
∂x1

∂t2

∣∣∣
∣∣∣
+ ∂P
∂x3

∣∣∣
∣∣∣

∂x3

∂t1
∂x3

∂t2

∂x1

∂t1
∂x1

∂t2

∣∣∣
∣∣∣

⎞

⎠ dt1 ∧ dt2 =

=:
∫∫

S

(
∂P

∂x2
dx2 ∧ dx1 + ∂P

∂x3
dx3 ∧ dx1

)
.

The colon here denotes equality by definition, and the exclamation point denotes
a transition that uses the Green’s formula already proved. The rest consists of iden-
tities.

Using the basic idea of the proof of formula (13.34′), we have thus verified
directly (without invoking the relation ϕ∗ d = dϕ∗, but essentially proving it for
the case under consideration) that formula (13.34) does indeed hold for a simple
parametrized surface. We have carried out the reasoning formally only for the term
P dx, but it is clear that the same thing could also be done for the other two terms
in the 1-form in the integrand on the left-hand side of (13.34).

13.3.4 The General Stokes Formula

Despite the differences in the external appearance of formulas (13.25), (13.30), and
(13.34), their coordinate-free expressions (13.25′′), (13.29), (13.30′), and (13.34′)
turn out to be identical. This gives grounds for supposing that we have been dealing
with particular manifestations of a general rule, which one can now easily guess.
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Proposition 4 Let S be an oriented piecewise smooth k-dimensional compact sur-
face with boundary ∂S in the domain G⊂R

n, in which a smooth (k− 1)-form ω is
defined.

Then the following relation holds:

∫

S

dω=
∫

∂S

ω, (13.35)

in which the orientation of the boundary ∂S is that induced by the orientation of S.

Proof Formula (13.35) can obviously be proved by the same general computations
(13.28) and (13.29) as Stokes’ formula (13.34′) provided it holds for a standard k-
dimensional interval I k = {x = (x1, . . . , xk) ∈Rk | 0≤ xi ≤ 1, i = 1, . . . , k}. Let us
verify that (13.35) does indeed hold for I k .

Since a (k−1)-form on I k has the form ω=∑i ai(x)dx
1∧· · ·∧

�

dxi ∧· · ·∧dxk

(summation over i = 1, . . . , k, with the differential dxi omitted), it suffices to prove

(13.35) for each individual term. Let ω = a(x)dx1 ∧ · · · ∧
�

dxi ∧ · · · ∧ dxk . Then
dω= (−1)i−1 ∂a

∂xi
(x)dx1∧· · ·∧dxi ∧· · ·∧dxk . We now carry out the computation:

∫

I k
dω =

∫

I k
(−1)i−1 ∂a

∂xi
(x)dx1 ∧ · · · ∧ dxk =

= (−1)i−1
∫

I k−1
dx1 · · ·

�

dxi · · ·dxk
∫ 1

0

∂a

∂xi
(x)dxi =

= (−1)i−1
∫

I k−1

(
a
(
x1, . . . , xi−1,1, xi+1, . . . , xk

)−

− a(x1, . . . , xi−1,0, xi+1, . . . xk
))

dx1 · · ·
�

dxi · · ·dxk =

= (−1)i−1
∫

I k−1
a
(
t1, . . . , t i−1,1, t i , . . . , tk−1)dt1 · · ·dtk−1 +

+ (−1)i
∫

I k−1
a
(
t1, . . . , t i−1,0, t i , . . . , tk−1)dt1 · · ·dtk−1.

Here I k−1 is the same as I k in R
k , only it is a (k − 1)-dimensional interval in

R
k−1. In addition, we have relabeled the variables x1 = t1, . . . , xi−1 = t i−1, xi+1 =
t i , . . . , xk = tk−1.

The mappings

I k−1 � t = (t1, . . . , tk−1) �−→ (t1, . . . , t i−1,1, t i , . . . , tk−1) ∈ I k,
I k−1 � t = (t1, . . . , tk−1) �−→ (t1, . . . , t i−1,0, t i , . . . , tk−1) ∈ I k

are parametrizations of the upper and lower faces Γi1 and Γi0 of the interval I k

respectively orthogonal to the xi axis. These coordinates define the same frame
e1, . . . , ei−1, ei+1, . . . , ek orienting the faces and differing from the frame e1, . . . , ek
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of Rk in the absence of ei . On Γi1 the vector ei is the exterior normal to I k , as the
vector −ei is for the face Γi0. The frame ei , e1, . . . , ei−1, ei+1, . . . , ek becomes the
frame e1, . . . , ek after i − 1 inter-changes of adjacent vectors, that is, the agreement
or disagreement of the orientations of these frames is determined by the sign of
(−1)i−1. Thus, this parametrization defines an orientation on Γi1 consistent with
the orientation of I k if taken with the corrective coefficient (−1)i−1 (that is, not
changing the orientation when i is odd, but changing it when i is even).

Analogous reasoning shows that for the face Γi0 it is necessary to take a correc-
tive coefficient (−1)i to the orientation defined by this parametrization of the face
Γi0.

Thus, the last two integrals (together with the coefficients in front of them) can
be interpreted respectively as the integrals of the form ω over the faces Γi1 and Γi0
of I k with the orientation induced by the orientation of I k .

We now remark that on each of the remaining faces of I k one of the coordinates
x1, . . . , xi−1, xi+1, . . . , xk is constant. Hence the differential corresponding to it is
equal to zero on such a face. Thus, the form dω is identically equal to zero and its
integral equals zero over all faces except Γi0 and Γi1.

Hence we can interpret the sum of the integrals over these two faces as the in-
tegral of the form ω over the entire boundary ∂I k of the interval I k oriented in
consistency with the orientation of the interval I k itself.

The formula
∫

Ik

dω=
∫

∂Ik
ω,

and along with it formula (13.35), is now proved. �

As one can see, formula (13.35) is a corollary of the Newton–Leibniz formula
(fundamental theorem of calculus), Fubini’s theorem, and a series of definitions
of such concepts as surface, boundary of a surface, orientation, differential form,
differentiation of a differential form, and transference of forms.

Formulas (13.25), (13.30), and (13.34), the formulas of Green, Gauss–
Ostrogradskii, and Stokes respectively, are special cases of the general formula
(13.35). Moreover, if we interpret a function f defined on a closed interval
[a, b] ⊂ R as a 0-form ω, and the integral of a 0-form over an oriented point as the
value of the function at that point taken with the sign of the orientation of the point,
then the Newton–Leibniz formula itself can be regarded as an elementary (but inde-
pendent) version of (13.35). Consequently, the fundamental relation (13.35) holds
in all dimensions k ≥ 1.

Formula (13.35) is often called the general Stokes formula. As historical infor-
mation, we quote here some lines from the preface of M. Spivak to his book (cited
in the bibliography below):

The first statement of the Theorem9 appears as a postscript to a letter, dated July 2, 1850,
from Sir William Thomson (Lord Kelvin) to Stokes. It appeared publicly as question 8 on

9The classical Stokes theorem (13.34) is meant.



13.3 The Fundamental Integral Formulas of Analysis 251

the Smith’s Prize Examination for 1854. This competitive examination, which was taken an-
nually by the best mathematics students at Cambridge University, was set from 1849 to 1882
by Professor Stokes; by the time of his death the result was known universally as Stokes’
theorem. At least three proofs were given by his contemporaries: Thomson published one,
another appeared in Thomson and Tait’s Treatise on Natural Philosophy, and Maxwell pro-
vided another in Electricity and Magnetism. Since this time the name of Stokes has been
applied to much more general results, which have figured so prominently in the develop-
ment of certain parts of mathematics that Stokes’ theorem may be considered a case study
in the value of generalization.

We note that the modern language of differential forms originates with Élie Car-
tan,10 but the form (13.35) for the general Stokes’ formula for surfaces in R

n seems
to have been first proposed by Poincaré. For domains in n-dimensional space Rn Os-
trogradskii already knew the formula, and Leibniz wrote down the first differential
forms.

Thus it is not an accident that the general Stokes formula (13.35) is sometimes
called the Newton–Leibniz–Green–Gauss–Ostrogradskii–Stokes Poincaré formula.
One can conclude from what has been said that this is by no means its full name.

Let us use this formula to generalize the result of Example 2.

Example 5 Let us show that every smooth mapping f : B → B of a closed ball
B ⊂R

m into itself has at least one fixed point.

Proof If the mapping f had no fixed points, then, as in Example 2, one could con-
struct a smooth mapping ϕ : B→ ∂B that is the identity on the sphere ∂B . In the
domain R

m\0, we consider the vector field r
|r|m , where r is the radius-vector of the

point x = (x1, . . . , xm) ∈Rm\0, and the flux form

ω=
〈

r
|r|m ,n

〉
Ω =

m∑

i=1

(−1)i−1xi dx1 ∧ · · · ∧
�

dxi ∧ · · · ∧ dxm

((x1)2 + · · · + (xm)2)m/2

corresponding to this field (see formula (13.19) of Sect. 13.2). The flux of such a
field across the boundary of the ball B = {x ∈ R | |x| = 1} in the direction of the
outward normal to the sphere ∂B is obviously equal to the area of the sphere ∂B ,
that is,

∫
∂B
ω �= 0. But, as one can easily verify by direct computation, dω = 0 in

R
m\0, from which, by using the general Stokes formula, as in Example 2, we find

that
∫

∂B

ω=
∫

∂B

ϕ∗ω=
∫

B

dϕ∗ω=
∫

B

ϕ∗ dω=
∫

B

ϕ∗0= 0.

This contradiction finishes the proof. �

10Élie Cartan (1869–1951) – outstanding French geometer.
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13.3.5 Problems and Exercises

1. a) Does Green’s formula (13.25) change if we pass from the coordinate system
x, y to the system y, x?

b) Does formula (13.25′′) change in this case?

2. a) Prove that formula (13.25) remains valid if the functions P and Q are con-
tinuous in a closed square I , their partial derivatives ∂P

∂y
and ∂Q

∂x
are continuous

at interior points of I , and the double integrals exist, even if as improper integrals
(13.25′).

b) Verify that if the boundary of a compact domain D consists of piecewise-
smooth curves, then under assumptions analogous to those in a), formula (13.25)
remains valid.

3. a) Verify the proof of (13.26′) in detail.
b) Show that if the boundary of a compact domain D ⊂ R

2 consists of a finite
number of smooth curves having only a finite number of points of inflection, then
D is a simple domain with respect to any pair of coordinate axes.

c) Is it true that if the boundary of a plane domain consists of smooth curves,
then one can choose the coordinate axes in R

2 such that it is a simple domain relative
to them?

4. a) Show that if the functions P and Q in Green’s formula are such that
∂Q
∂x
− ∂P

∂y
= 1, then the area σ(D) of the domain D can be found using the for-

mula σ(D)= ∫
∂D
P dx +Qdy.

b) Explain the geometric meaning of the integral
∫
γ
y dx over some (possibly

nonclosed) curve in the plane with Cartesian coordinates x, y. Starting from this,
give a new interpretation of the formula σ(D)=− ∫

∂D
y dx.

c) As a check on the preceding formula, use it to find the area of the domain

D =
{
(x, y) ∈R2

∣∣∣
x2

a2
+ y

2

b2
≤ 1

}
.

5. a) Let x = x(t) be a diffeomorphism of the domain Dt ⊂ R
2
t onto the domain

Dx ⊂R
2
x . Using the results of Problem 4 and the fact that a line integral is indepen-

dent of the admissible change in the parametrization of the path, prove that
∫

Dx

dx =
∫

Dt

∣∣x′(t)
∣∣dt,

where dx = dx1 dx2, dt = dt1 dt2, |x′(t)| = detx′(t).
b) From a) derive the formula

∫

Dx

f (x)dx =
∫

Dt

f
(
x(t)
)∣∣detx′(t)

∣
∣dt

for change of variable in a double integral.
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6. Let f (x, y, t) be a smooth function satisfying the condition ( ∂f
∂x
)2 + ( ∂f

∂y
)2 �= 0

in its domain of definition. Then for each fixed value of the parameter t the equation
f (x, y, t) = 0 defines a curve γt in the plane R

2. Then a family of curves {γt }
depending on the parameter t arises in the plane. A smooth curve Γ ⊂ R

2 defined
by parametric equations x = x(t), y = y(t), is the envelope of the family of curves
{γt } if the point x(t0), y(t0) lies on the corresponding curve γt0 and the curves Γ
and γt0 are tangent at that point, for every value of t0 in the common domain of
definition of {γt } and the functions x(t), y(t).

a) Assuming that x, y are Cartesian coordinates in the plane, show that the func-
tions x(t), y(t) that define the envelope must satisfy the system of equations

⎧
⎨

⎩

f (x, y, t)= 0,

∂f

∂t
(x, y, t)= 0,

and from the geometric point of view the envelope itself is the boundary of the
projection (shadow) of the surface f (x, y, t)= 0 of R3

(x,y,t) on the plane R
2
(x,y).

b) A family of lines x cosα + y sinα − p(α) = 0 is given in the plane with
Cartesian coordinates x and y. The role of the parameter is played here by the polar
angle α. Give the geometric meaning of the quantity p(α), and find the envelope of
this family if p(α)= c+ a cosα + b sinα, where a, b, and c are constants.

c) Describe the accessible zone of a shell that can be fired from an adjustable
cannon making any angle α ∈ [0,π/2] to the horizon.

d) Show that if the function p(α) of b) is 2π -periodic, then the corresponding
envelope Γ is a closed curve.

e) Using Problem 4, show that the length L of the closed curve Γ obtained in d)
can be found by the formula

L=
∫ 2π

0
p(α)dα.

(Assume that p ∈ C(2).)
f) Show also that the area σ of the region bounded by the closed curve Γ ob-

tained in d) can be computed as

σ = 1

2

∫ 2π

0

(
p2 − ṗ2)(α)dα, ṗ(α)= dp

dα
(α).

7. Consider the integral
∫
γ

cos(r,n)
r

ds, in which γ is a smooth curve in R
2, r is the

radius-vector of the point (x, y) ∈ γ, r = |r| =√x2 + y2, n is the unit normal vector
to γ at (x, y) varying continuously along γ , and ds is arc length on the curve. This
integral is called Gauss’ integral.

a) Write Gauss’ integral in the form of a flux
∫
γ
〈V,n〉ds of the plane vector

field V across the curve γ .
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b) Show that in Cartesian coordinates x and y Gauss’ integral has the form
± ∫

γ
−y dx+x dy
x2+y2 familiar to us from Example 1 of Sect. 13.1, where the choice of

sign is determined by the choice of the field of normals n.
c) Compute Gauss’ integral for a closed curve γ that encircles the origin once

and for a curve γ bounding a domain that does not contain the origin.
d) Show that cos(r,n)

r
ds = dϕ, where ϕ is the polar angle of the radius-vector r,

and give the geometric meaning of the value of Gauss’ integral for a closed curve
and for an arbitrary curve γ ⊂R

2.

8. In deriving the Gauss–Ostrogradskii formula we assumed that D is a simple do-
main and the functions P,Q,R belong to C(1)(D,R). Show by improving the rea-
soning that formula (13.30) holds if D is a compact domain with piecewise smooth
boundary, P,Q,R ∈ C(D,R), ∂P

∂x
,
∂Q
∂y
, ∂R
∂z
∈ C(D,R), and the triple integral con-

verges, even if it is an improper integral.
9. a) If the functions P ,Q, andR in formula (13.30) are such that ∂P

∂x
+ ∂Q
∂y
+ ∂R
∂z
=

1, then the volume V (D) of the domain D can be found by the formula

V (D)=
∫∫

∂D

P dy ∧ dz+Qdz∧ dx +R dx ∧ dy.

b) Let f (x, t) be a smooth function of the variables x ∈DX ⊂R
n
x , t ∈Dt ⊂R

n
t

and ∂f
∂x
= ( ∂f

∂x1 , . . . ,
∂f
∂xn
) �= 0. Write the system of equations that must be satisfied by

the (n− 1)-dimensional surface in R
n
x that is the envelope of the family of surfaces

{St } defined by the conditions f (x, t)= 0, t ∈Dt (see Problem 6).
c) Choosing a point on the unit sphere as the parameter t , exhibit a family of

planes in R
3 depending on the parameter t whose envelope is the ellipsoid x2

a2 +
y2

b2 + z2

c2 = 1.
d) Show that if a closed surface S is the envelope of a family of planes

cosα1(t)x + cosα(t)y + cosα3(t)z− p(t)= 0,

where α1, α2, α3 are the angles formed by the normal to the plane and the coordinate
axes and the parameter t is a variable point of the unit sphere S2 ⊂R

3, then the area
σ of the surface S can be found by the formula σ = ∫

S2 p(t)dσ .
e) Show that the volume of the body bounded by the surface S considered in d)

can be found by the formula V = 1
3

∫
S
p(t)dσ .

f) Test the formula given in e) by finding the volume of the ellipsoid x2

a2 + y2

b2 +
z2

c2 ≤ 1.
g) What does the n-dimensional analogue of the formulas in d) and e) look like?

10. a) Using the Gauss–Ostrogradskii formula, verify that the flux of the field r/r3

(where r is the radius-vector of the point x ∈R3 and r = |r|) across a smooth surface
S enclosing the origin and homeomorphic to a sphere equals the flux of the same
field across an arbitrarily small sphere |x| = ε.

b) Show that the flux in a) is 4π .
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c) Interpret Gauss’ integral
∫
S

cos(r,n)
r

ds in R
3 as the flux of the field r/r3

across the surface S.
d) Compute Gauss’ integral over the boundary of a compact domain D ⊂ R

3,
considering both the case when D contains the origin in its interior and the case
when the origin lies outside D.

e) Comparing Problems 7 and 10a)–d), give an n-dimensional version of
Gauss’ integral and the corresponding vector field. Give an n-dimensional statement
of problems a)–d) and verify it.

11. a) Show that a closed rigid surface S ⊂ R
3 remains in equilibrium under the

action of a uniformly distributed pressure on it. (By the principles of statics the
problem reduces to verifying the equalities

∫∫
S

n dσ = 0,
∫∫
S
[r,n]dσ = 0, where n

is a unit normal vector, r is the radius-vector, and [r,n] is the vector product of r
and n.)

b) A solid body of volume V is completely immersed in a liquid having spe-
cific gravity 1. Show that the complete static effect of the pressure of the liquid on
the body reduces to a single force F of magnitude V directed vertically upward and
attached to the center of mass C of the solid domain occupied by the body.

12. Let Γ : I k→D be a smooth (not necessarily homeomorphic) mapping of an
interval I k ⊂R

k into a domainD of Rn, in which a k-form ω is defined. By analogy
with the one-dimensional case, we shall call a mapping Γ a k-cell or k-path and by
definition set

∫
Γ
ω = ∫

I k
Γ ∗ω. Study the proof of the general Stokes formula and

verify that it holds not only for k-dimensional surfaces but also for k-cells.
13. Using the generalized Stokes formula, prove by induction the formula for
change of variable in a multiple integral (the idea of the proof is shown in Prob-
lem 5a)).
14. Integration by parts in a multiple integral.
Let D be a bounded domain in R

m with a regular (smooth or piecewise smooth)
boundary ∂D oriented by the outward unit normal n= (n1, . . . , nm).
Let f,g be smooth functions in D.

a) Show that
∫

D

∂if dv =
∫

∂D

f ni dσ.

b) Prove the following formula for integration by parts:
∫

D

(∂if )g dv =
∫

∂D

fgni dσ −
∫

D

f (∂ig)dv.



Chapter 14
Elements of Vector Analysis and Field Theory

14.1 The Differential Operations of Vector Analysis

14.1.1 Scalar and Vector Fields

In field theory we consider functions x �→ T (x) that assign to each point x of a
given domain D a special object T (x) called a tensor. If such a function is defined
in a domain D, we say that a tensor field is defined in D. We do not intend to give
the definition of a tensor at this point: that concept will be studied in algebra and
differential geometry. We shall say only that numerical functions D � x �→ f (x) ∈
R and vector-valued functions Rn ⊃D � x �→ V (x) ∈ TRnx ≈ R

n are special cases
of tensor fields and are called scalar fields and vector fields respectively in D (we
have used this terminology earlier).

A differential p-form ω in D is a function R
n ⊃D � x �→ ω(x) ∈ L((Rn)p,R)

which can be called a field of forms of degree p in D. This also is a special case of
a tensor field.

At present we are primarily interested in scalar and vector fields in domains of
the oriented Euclidean space Rn. These fields play a major role in many applications
of analysis in natural science.

14.1.2 Vector Fields and Forms in R
3

We recall that in the Euclidean vector space R
3 with inner product 〈 , 〉 there is a

correspondence between linear functionals A :R3→R and vectors A ∈R3 consist-
ing of the following: Each such functional has the form A(ξ)= 〈A, ξ〉, where A is
a completely definite vector in R

3.
If the space is also oriented, each skew-symmetric bilinear functional B: R3 ×

R
3→ R can be uniquely written in the form B(ξ1, ξ2) = (B, ξ1, ξ2), where B is

a completely definite vector in R
3 and (B, ξ1, ξ2), as always, is the scalar triple
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product of the vectors B, ξ1, and ξ2, or what is the same, the value of the volume
element on these vectors. Thus, in the oriented Euclidean vector space R

3 one can
associate with each vector a linear or bilinear form, and defining the linear or bilinear
form is equivalent to defining the corresponding vector in R

3.
If there is an inner product in R

3, it also arises naturally in each tangent space
TR3

x consisting of the vectors attached to the point R3, and the orientation of R3

orients each space TR3
x .

Hence defining a 1-form ω1(x) or a 2-form ω2(x) in TR3
x under the conditions

just listed is equivalent to defining some vector A(x) ∈ TR3
x corresponding to the

form ω1(x) or a vector B(x) ∈ TR3
x corresponding to the form ω2(x).

Consequently, defining a 1-form ω1 or a 2-form ω2 in a domain D of the ori-
ented Euclidean space R

3 is equivalent to defining the vector field A or B in D
corresponding to the form.

In explicit form, this correspondence amounts to the following:

ω1
A(x)(ξ ) =

〈
A(x), ξ

〉
, (14.1)

ω2
B(x)(ξ1, ξ2) =

(
B(x), ξ1, ξ2

)
, (14.2)

where A(x), B(x), ξ , ξ1, and ξ2 belong to TDx .
Here we see the work form ω1 = ω1

A of the vector field A and the flux form
ω2 = ω2

B of the vector field B, which are already familiar to us.
To a scalar field f :D→R, we can assign a 0-form and a 3-form inD as follows:

ω0
f = f, (14.3)

ω3
f = f dV, (14.4)

where dV is the volume element in the oriented Euclidean space R
3.

In view of the correspondences (14.1)–(14.4), definite operations on vector and
scalar fields correspond to operations on forms. This observation, as we shall soon
verify, is very useful technically.

Proposition 1 To a linear combination of forms of the same degree there corre-
sponds a linear combination of the vector and scalar fields corresponding to them.

Proof Proposition 1 is of course obvious. However, let us write out the full proof,
as an example, for 1-forms:

α1ω
1
A1
+ α2ω

1
A2
= α1〈A1, ·〉 + α〈A2, ·〉 =
= 〈α1A1 + α2A2, ·〉 = ω2

α1A1+α2A2
. �

It is clear from the proof that α1 and α2 can be regarded as functions (not neces-
sarily constant) in the domain D in which the forms and fields are defined.

As an abbreviation, let us agree to use, along with the symbols 〈 , 〉 and [ , ] for
the inner product and the vector product of vectors A and B in R

3, the alternative
notation A ·B and A×B wherever convenient.
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Proposition 2 If A, B, A1, and B1 are vector fields in the oriented Euclidean
space R

3, then

ω1
A1
∧ω1

A2
= ω2

A1×A2
, (14.5)

ω1
A ∧ω2

B = ω3
A·B. (14.6)

In other words, the vector product A1 × A2 of fields A1 and A2 that generate
1-forms corresponds to the exterior product of the 1-forms they generate, since it
generates the 2-form that results from the product.

In the same sense the inner product of the vector fields A and B that generate a
1-form ω1

A and a 2-form ω2
B corresponds to the exterior product of these forms.

Proof To prove these assertions, fix an orthonormal basis in R
3 and the Cartesian

coordinates x1, x2, x3 corresponding to it.
In Cartesian coordinates

ω1
A(x)(ξ )=A(x) · ξ =

3∑

i=1

Ai(x)ξ i =
3∑

i=1

Ai(x)dxi(ξ ),

that is,

ω1
A =A1 dx1 +A2 dx2 +A3 dx3, (14.7)

and

ω2
B(x)(ξ1, ξ2)=

∣∣∣∣∣∣∣

B1(x) B2(x) B3(x)

ξ1
1 ξ2

1 ξ3
1

ξ1
2 ξ2

2 ξ3
2

∣∣∣∣∣∣∣
=

= (B1(x)dx2 ∧ dx3 +B2 dx3 ∧ dx1 +B3(x)dx1 ∧ dx2)(ξ1, ξ2),

that is,

ω2
B = B1 dx2 ∧ dx3 +B2 dx3 ∧ dx1 +B3 dx1 ∧ dx2. (14.8)

Therefore in Cartesian coordinates, taking account of expressions (14.7) and
(14.8), we obtain

ω1
A1
∧ω1

A2
= (A1

1 dx1 +A2
1 dx2 +A3

1 dx3)∧ (A1
2 dx1 +A2

2 dx2 +A3
2 dx3)=

= (A2
1A

3
2 −A3

1A
2
2

)
dx2 ∧ dx3 + (A3

1A
1
2 −A1

1A
3
2

)
dx3 ∧ dx1 +

+ (A1
1A

2
2 −A2

1A
1
2

)
dx1 ∧ dx2 =

= ω2
B,

where B=A1 ×A2.
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Coordinates were used in this proof only to make it easier to find the vector B
of the corresponding 2-form. The equality (14.5) itself, of course, is independent of
the coordinate system.

Similarly, multiplying Eqs. (14.7) and (14.8), we obtain

ω1
A ∧ω2

B =
(
A1B1 +A2B2 +A3B3)dx1 ∧ dx2 ∧ dx3 = ω3

ρ.

In Cartesian coordinates dx1 ∧ dx2 ∧ dx3 is the volume element in R
3, and the

sum of the pairwise products of the coordinates of the vectors A and B, which
appears in parentheses just before the 3-form, is the inner product of these vectors
at the corresponding points of the domain, from which it follows that ρ(x)=A(x) ·
B(x). �

14.1.3 The Differential Operators grad, curl, div, and ∇
Definition 1 To the exterior differentiation of 0-forms (functions), 1-forms, and 2-
forms in oriented Euclidean space R

3 there correspond respectively the operations
of finding the gradient (grad) of a scalar field and the curl and divergence (div) of
a vector field. These operations are defined by the relations

dω0
f =: ω1

gradf , (14.9)

dω1
A =: ω2

curl A, (14.10)

dω1
B =: ω3

div B. (14.11)

By virtue of the correspondence between forms and scalar and vector fields in R
3

established by Eqs. (14.1)–(14.4), relations (14.9)–(14.11) are unambiguous defini-
tions of the operations grad, curl, and div, performed on scalar and vector fields
respectively. These operations, the operators of field theory as they are called, cor-
respond to the single operation of exterior differentiation of forms, but applied to
forms of different degree.

Let us give right away the explicit form of these operators in Cartesian coordi-
nates x1, x2, x3 in R

3.
As we have explained, in this case

ω0
f = f, (14.3′)

ω1
A =A1 dx1 +A2 dx2 +A3 dx3, (14.7′)

ω2
B = B1 dx2 ∧ dx3 +B2 dx3 ∧ dx1 +B3 dx1 ∧ dx2, (14.8′)

ω3
ρ = ρ dx1 ∧ dx2 ∧ dx3. (14.4′)

Since

ω1
gradf := dω0

f = df = ∂f

∂x1
dx1 + ∂f

∂x2
dx2 + ∂f

∂x3
dx3,
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it follows from (14.7′) that in these coordinates

gradf = e1
∂f

∂x1
+ e2

∂f

∂x2
+ e3

∂f

∂x3
, (14.9′)

where e1, e2, e3 is a fixed orthonormal basis of R3.
Since

ω2
curl A := dω1

A = d
(
A1 dx1 +A2 dx2 +A3 dx3)=

=
(
∂A3

∂x2
− ∂A

2

∂x3

)
dx2 ∧ dx3 +

(
∂A1

∂x3
− ∂A

3

∂x1

)
dx3 ∧ dx1 +

+
(
∂A2

∂x1
− ∂A

1

∂x2

)
dx1 ∧ dx2,

it follows from (14.8′) that in Cartesian coordinates

curl A= e1

(
∂A3

∂x2
− ∂A

2

∂x3

)
+ e2

(
∂A1

∂x3
− ∂A

3

∂x1

)
+ e3

(
∂A2

∂x1
− ∂A

1

∂x2

)
. (14.10′)

As an aid to memory this last relation is often written in symbolic form as

curl A=

∣∣∣∣∣∣∣

e1 e2 e3
∂

∂x1
∂

∂x2
∂

∂x3

A1 A2 A3

∣∣∣∣∣∣∣
. (14.10′′)

Next, since

ω3
div B := dω2

B = d
(
B1 dx2 ∧ dx3 +B2 dx3 ∧ dx1 +B3 dx1 ∧ dx2)=

=
(
∂B1

∂x1
+ ∂B

2

∂x2
+ ∂B

3

∂x3

)
dx1 ∧ dx2 ∧ dx3,

it follows from (14.4′) that in Cartesian coordinates

div B= ∂B
1

∂x1
+ ∂B

2

∂x2
+ ∂B

3

∂x3
. (14.11′)

One can see from the formulas (14.9′), (14.10′), and (14.11′) just obtained that
grad, curl, and div are linear differential operations (operators). The grad operator
is defined on differentiable scalar fields and assigns vector fields to the scalar fields.
The curl operator is also vector-valued, but is defined on differentiable vector fields.
The div operator is defined on differentiable vector fields and assigns scalar fields
to them.

We note that in other coordinates these operators will have expressions that are
in general different from those obtained above in Cartesian coordinates. We shall
discuss this point in Sect. 14.1.5 below.

We remark also that the vector field curl A is sometimes called the rotation of A
and written rot A.
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As an example of the use of these operators we write out the famous1 system of
equations of Maxwell,2 which describe the state of the components of an electro-
magnetic field as functions of a point x = (x1, x2, x3) in space and time t .

Example 1 (The Maxwell equations for an electromagnetic field in a vacuum)

1. div E= ρ
ε0
. 2. div B= 0.

3. curl E=−∂B

∂t
. 4. curl B= j

ε0c2
+ 1

c2

∂E
∂t
.

(14.12)

Here ρ(x, t) is the electric charge density (the quantity of charge per unit vol-
ume), j(x, t) is the electrical current density vector (the rate at which charge is
flowing across a unit area), E(x, t) and B(x, t) are the electric and magnetic field
intensities respectively, and ε0 and c are dimensioning constants (and in fact c is the
speed of light in a vacuum).

In mathematical and especially in physical literature, along with the operators
grad, curl, and div, wide use is made of the symbolic differential operator nabla
proposed by Hamilton (the Hamilton operator)3

∇ = e1
∂

∂x1
+ e2

∂

∂x2
+ e3

∂

∂x3
, (14.13)

where {e1, e2, e3} is an orthonormal basis of R3 and x1, x2, x3 are the corresponding
Cartesian coordinates.

By definition, applying the operator ∇ to a scalar field f (that is, to a function),
gives the vector field

∇f = e1
∂f

∂x1
+ e2

∂f

∂x2
+ e3

∂f

∂x3
,

which coincides with the field (14.9′), that is, the nabla operator is simply the grad
operator written in a different notation.

1On this subject the famous American physicist and mathematician R. Feynman (1918–1988)
writes, with his characteristic acerbity, “From a long view of the history of mankind – seen from,
say, ten thousand years from now – there can be little doubt that the most significant event of the
19th century will be judged as Maxwell’s discovery of the laws of electrodynamics. The American
Civil War will pale into provincial insignificance in comparison with this important scientific event
of the same decade.” Richard R. Feynman, Robert B. Leighton, and Matthew Sands, The Feynman
Lectures on Physics: Mainly Electromagnetism and Matter, Addison-Wesley, Reading, MA, 1964.
2J.C. Maxwell (1831–1879) – outstanding Scottish physicist; he created the mathematical theory
of the electromagnetic field and is also famous for his research in the kinetic theory of gases, optics
and mechanics.
3W.R. Hamilton (1805–1865) – famous Irish mathematician and specialist in mechanics; he stated
the variational principle (Hamilton’s principle) and constructed a phenomenological theory of optic
phenomena; he was the creator of the theory of quaternions and the founder of vector analysis (in
fact, the term “vector” is due to him).
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Using, however, the vector form in which ∇ is written, Hamilton proposed a sys-
tem of formal operations with it that imitates the corresponding algebraic operations
with vectors.

Before we illustrate these operations, we note that in dealing with ∇ one must
adhere to the same principles and cautionary rules as in dealing with the usual
differentiation operator D = d

dx . For example, ϕDf equals ϕ df
dx and not d

dx (ϕf )

or f dϕ
dx . Thus, the operator operates on whatever is placed to the right of it; left

multiplication in this case plays the role of a coefficient, that is, ϕD is the new
differential operator ϕ d

dx , not the function dϕ
dx . Moreover, D2 = D · D, that is,

D2f =D(Df )= d
dx (

d
dx f )= d2

dx2 f .
If we now, following Hamilton, deal with ∇ as if it were a vector field defined

in Cartesian coordinates, then, comparing relations (14.13), (14.9′), (14.10′′), and
(14.11′), we obtain

gradf = ∇f, (14.14)

curl A = ∇ ×A, (14.15)

div B = ∇ ·B. (14.16)

In this way the operators grad, curl, and div, can be written in terms of the Hamil-
ton operator and the vector operations in R

3.

Example 2 Only the curl and div operators occurred in writing out the Maxwell
equations (14.12). Using the principles for dealing with ∇ = grad, we rewrite the
Maxwell equations as follows, to compensate for the absence of grad in them:

1. ∇ ·E= ρ
ε0
. 2. ∇ ·B= 0.

3. ∇ ×E=−∂B
∂t
. 4. ∇ ×B= j

ε0c2
+ 1

c2

∂E
∂t
.

(14.12′)

14.1.4 Some Differential Formulas of Vector Analysis

In the oriented Euclidean space R3 we have established the connection (14.1)–(14.4)
between forms on the one hand and vector and scalar fields on the other. This con-
nection enabled us to associate corresponding operators on fields with exterior dif-
ferentiation (see formulas (14.5), (14.6), and (14.9)–(14.11)).

This correspondence can be used to obtain a number of basic differential formu-
las of vector analysis.

For example, the following relations hold:

curl(fA)= f curl A−A× gradf, (14.17)

div(fA)=A · gradf + f div A, (14.18)

div(A×B)= B · curl A−A · curl B. (14.19)
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Proof We shall verify this last equality:

ω3
div A×B = dω2

A×B = d
(
ω1

A ∧ω1
B

)= dω1
A ∧ω1

B −ω1
A ∧ dω1

B =
= ω2

curl A ∧ω1
B −ω1

A ∧ω2
curl B = ω3

B·curl A −ω3
A·curl B = ω3

B·curl A−A·curl B.

The first two relations are verified similarly. Of course, the verification of all
these equalities can also be carried out by direct differentiation in coordinates. �

If we take account of the relation d2ω= 0 for any form ω, we can also assert that
the following equalities hold:

curl gradf = 0, (14.20)

div curl A= 0. (14.21)

Proof Indeed:

ω2
curl gradf = dω1

gradf = d(dω0
f )= d2ω0

f = 0,
ω3

div curl A = dω2
curl A = d(dω1

A)= d2ω1
A = 0. �

In formulas (14.17)–(14.19) the operators grad, curl, and div are applied once,
while (14.20) and (14.21) involve the second-order operators obtained by successive
execution of two of the three original operations. Besides the rules given in (14.20)
and (14.21), one can also consider other combinations of these operators:

grad div A, curl curl A, div gradf. (14.22)

The operator div grad is applied, as one can see, to a scalar field. This operator is
denoted Δ (Delta) and is called the Laplace operator4 or Laplacian.

It follows from (14.9′) and (14.11′) that in Cartesian coordinates

Δf = ∂2f

∂(x1)2
+ ∂2f

∂(x2)2
+ ∂2f

∂(x3)2
. (14.23)

Since the operator Δ acts on numerical functions, it can be applied component-
wise to the coordinates of vector fields A= e1A

1+ e2A
2+ e3A

3, where e1, e2, and
e3 are an orthonormal basis in R

3. In that case

ΔA= e1ΔA
1 + e2ΔA

2 + e3ΔA
3.

Taking account of this last equality, we can write the following relation for the
triple of second-order operators (14.22):

curl curl A= grad div A−ΔA, (14.24)

4P.S. Laplace (1749–1827) – famous French astronomer, mathematician, and physicist; he made
fundamental contributions to the development of celestial mechanics, the mathematical theory of
probability, and experimental and mathematical physics.



14.1 The Differential Operations of Vector Analysis 265

whose proof we shall not take the time to present (see Problem 2 below). The equal-
ity (14.24) can serve as the definition of ΔA in any coordinate system, not neces-
sarily orthogonal.

Using the language of vector algebra and formulas (14.14)–(14.16), we can write
all the second-order operators (14.20)–(14.22) in terms of the Hamilton operator ∇:

curl gradf =∇ ×∇f = 0,

div curl A=∇ · (∇ ×A)= 0,

grad div A=∇(∇ ·A),
curl curl A=∇ × (∇ ×A),

div gradf =∇ · ∇f.
From the point of view of vector algebra the vanishing of the first two of these

operators seems completely natural.
The last equality means that the following relation holds between the Hamilton

operator ∇ and the Laplacian Δ:

Δ=∇2.

14.1.5 ∗Vector Operations in Curvilinear Coordinates

a.

Just as, for example, the sphere x2+y2+z2 = a2 has a particularly simple equation
R = a in spherical coordinates, vector fields x �→A(x) in R

3 (or Rn) often assume
a simpler expression in a coordinate system that is not Cartesian. For that reason we
now wish to find explicit formulas from which one can find grad, curl, and div in a
rather extensive class of curvilinear coordinates.

But first it is necessary to be precise as to what is meant by the coordinate ex-
pression for a field A in a curvilinear coordinate system.

We begin with two introductory examples of a descriptive character.

Example 3 Suppose we have a fixed Cartesian coordinate system x1, x2 in the Eu-
clidean plane R

2. When we say that a vector field (A1,A2)(x) is defined in R
2, we

mean that some vector A(x) ∈ TR2
x is connected with each point x = (x1, x2) ∈R2,

and in the basis of TR2
x consisting of the unit vectors e1(x), e2(x) in the coordinate

directions we have the expansion A(x)=A1(x)e1(x)+A2(x)e2(x) (see Fig. 14.1).
In this case the basis {e1(x), e2(x)} of TR2

x is essentially independent of x.

Example 4 In the case when polar coordinates (r, ϕ) are defined in the same
plane R

2, at each point x ∈ R2\0 one can also attach unit vectors e1(x) = er (x),
e2 = eϕ(x) (Fig. 14.2) in the coordinate directions. They also form a basis in TR2

x
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Fig. 14.1

Fig. 14.2

with respect to which one can expand the vector A(x) of the field A attached to
x :A(x)=A1(x)e1(x)+A2(x)e2(x). It is then natural to regard the ordered pair of
functions (A1,A2)(x) as the expression for the field A in polar coordinates.

Thus, if (A1,A2)(x)≡ (1,0), this is a field of unit vectors in R
2 pointing radially

away from the center 0.
The field (A1,A2)(x)≡ (0,1) can be obtained from the preceding field by rotat-

ing each vector in it counterclockwise by the angle π/2.
These are not constant fields in R

2, although the components of their coordinate
representation are constant. The point is that the basis in which the expansion is
taken varies synchronously with the vector of the field in a transition from one point
to another.

It is clear that the components of the coordinate representation of these fields in
Cartesian coordinates would not be constant at all. On the other hand, a truly con-
stant field (consisting of a vector translated parallel to itself to all points of the plane)
which does have constant components in a Cartesian coordinate system, would have
variable components in polar coordinates.

b.

After these introductory considerations, let us consider more formally the problem
of defining vector fields in curvilinear coordinate systems.

We recall first of all that a curvilinear coordinate system t1, t2, t3 in a domain
D ⊂R

3 is a diffeomorphism ϕ :Dt→D of a domainDt in the Euclidean parameter
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space R
3
t onto the domain D, as a result of which each point x = ϕ(t) ∈D acquires

the Cartesian coordinates t1, t2, t3 of the corresponding point t ∈Dt .
Since ϕ is a diffeomorphism, the tangent mapping ϕ′(t) : TR3

t → TT3
x=ϕ(t)

is a vector-space isomorphism. To the canonical basis ξ1(t) = (1,0,0), ξ2(t) =
(0,1,0), ξ3(t) = (0,0,1) of TR3

t corresponds the basis of TR3
x=ϕ(t) consisting of

the vectors ξ i (x)= ϕ′(t)ξ i (t)= ∂ϕ(t)

∂t i
, i = 1,2,3, giving the coordinate directions.

To the expansion A(x)= α1ξ1(x)+α2ξ2(x)+α3ξ3(x) of any vector A(x) ∈ TR3
x in

this basis there corresponds the same expansion A(t)= α1ξ1(t)+α2ξ2(t)+α3ξ3(t)

(with the same components α1, α2, α3!) of the vector A(t) = (ϕ′)−1A(x) in the
canonical basis ξ1(t), ξ2(t), ξ3(t) in TR3

t . In the absence of a Euclidean struc-
ture in R

3, the numbers α1, α2, α3 would be the most natural coordinate expression
for the vector A(x) connected with this curvilinear coordinate system.

c.

However, adopting such a coordinate representation would not be quite consistent
with what we agreed to in Example 4. The point is that the basis ξ1(x), ξ2(x), ξ3(x)

in TR3
x corresponding to the canonical basis ξ1(t), ξ2(t), ξ3(t) in TR3

t , although
it consists of vectors in the coordinate directions, is not at all required to consist of
unit vectors in those directions, that is, in general 〈ξ i , ξ i〉(x) �= 1.

We shall now take account of this circumstance which results from the presence
of a Euclidean structure in R

3 and consequently in each vector space TR3
x also.

Because of the isomorphism ϕ′(t) : TR3
t → TR3

x=ϕ(t) we can transfer the Eu-

clidean structure of TR3
x into TR3

t by setting 〈τ1, τ2〉 := 〈ϕ′τ1, ϕ′τ2〉 for every pair
of vectors τ1, τ2 ∈ TR3

t . In particular, we obtain from this the following expression
for the square of the length of a vector:

〈τ, τ 〉 = 〈ϕ′(t)τ, ϕ′(t)τ 〉=
〈
∂ϕ(t)

∂t i
τ i ,
∂ϕ(t)

∂tj
τ j
〉
=

=
〈
∂ϕ

∂ti
,
∂ϕ

∂tj

〉
(t)τ iτ j = 〈ξ i , ξ j 〉(t)τ iτ i = gij (t)dt i (τ )dt j (τ ).

The quadratic form

ds2 = gij (t)dt i dt j (14.25)

whose coefficients are the pairwise inner products of the vectors in the canonical
basis determines the inner product on TR3

t completely. If such a form is defined
at each point of a domain Dt ⊂ R

3
t , then, as is known from geometry, one says

that a Riemannian metric is defined in this domain. A Riemannian metric makes
it possible to introduce a Euclidean structure in each tangent space TR3

t (t ∈ Dt)
within the context of rectilinear coordinates t1, t2, t3 in R

3
t , corresponding to the

“curved” embedding ϕ :Dt→D of the domain Dt in the Euclidean space R
3.
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If the vectors ξ i (x)= ϕ′(t)ξ i (t)= ∂ϕ

∂ti
(t), i = 1,2,3, are orthogonal in TR3

x , then
gij (t)= 0 for i �= j . This means that we are dealing with a triorthogonal coordinate
grid. In terms of the space TR3

t it means that the vectors ξ i (t), i = 1,2,3, in the
canonical basis are mutually orthogonal in the sense of the inner product in TR3

t

defined by the quadratic form (14.25). In what follows, for the sake of simplicity,
we shall consider only triorthogonal curvilinear coordinate systems. For them, as
has been noted, the quadratic form (14.25) has the following special form:

ds2 =E1(t)
(
dt1
)2 +E2(t)

(
dt2
)2 +E3(t)

(
dt3
)2
, (14.26)

where Ei(t)= gii(t), i = 1,2,3.

Example 5 In Cartesian coordinates (x, y, z), cylindrical coordinates (r, ϕ, z), and
spherical coordinates (R,ϕ, θ) on Euclidean space R

3 the quadratic form (14.25)
has the respective forms

ds2 = dx2 + dy2 + dz2 = (14.26′)

= dr2 + r2 dϕ2 + dz2 = (14.26′′)

= dR2 +R2 cos2 θ dϕ2 +R2 dθ2. (14.26′′′)

Thus, each of these coordinate systems is a triorthogonal system in its domain of
definition.

The vectors ξ1(t), ξ2(t), ξ3(t) of the canonical basis (1,0,0), (0,1,0), (0,0,1)
in TR3

t , like the vectors ξ i (x) ∈ TR3
x corresponding to them, have the following

norm:5 |ξ i | = √gii . Hence the unit vectors (in the sense of the square-norm of a
vector) in the coordinate directions have the following coordinate representation for
the triorthogonal system (14.26):

e1(t)=
(

1√
E1
,0,0

)
, e2(t)=

(
0,

1√
E2
,0

)
, e3(t)=

(
0,0,

1√
E3

)
.

(14.27)

Example 6 It follows from formulas (14.27) and the results of Example 5 that for
Cartesian, cylindrical, and spherical coordinates, the triples of unit vectors along the
coordinate directions have respectively the following forms:

ex = (1,0,0), ey = (0,1,0), ez = (0,0,1); (14.27′)

er = (1,0,0), eϕ =
(

0,
1

r
,0

)
, ez = (0,0,1); (14.27′′)

5In the triorthogonal system (14.26) we have |ξ i | =
√
Ei =Hi , i = 1,2,3. The quantities H1, H2,

H3 are usually called the Lamé’ coefficient or Lamé’ parameters. G. Lamé (1795–1870) French
engineer, mathematician, and physicist.
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eR = (1,0,0), eϕ =
(

0,
1

R cos θ
,0

)
, eθ =

(
0,0,

1

R

)
. (14.27′′′)

Examples 3 and 4 considered above assumed that the vector of the field was ex-
panded in a basis consisting of unit vectors along the coordinate directions. Hence
the vector A(t) ∈ TR3

t corresponding to the vector A(x) ∈ TR3
x of the field should

be expanded in the basis e1(t), e2(t), e3(t) consisting of unit vectors in the coordi-
nate directions, rather than in the canonical basis ξ1(t), ξ2(t), ξ3(t).

Thus, abstracting from the original space R
3, one can assume that a Riemannian

metric (14.25) or (14.26) and a vector field t �→ A(t) are defined in the domain
Dt ⊂R

3
t and that the coordinate representation (A1,A2,A3)(t) of A(t) at each point

t ∈ Dt is obtained from the expansion of the vector A(t) = Ai(t)ei (t) of the field
corresponding to this point with respect to unit vectors along the coordinate axes.

d.

Let us now investigate forms. Under the diffeomorphism ϕ : Dt → D every form
in D automatically transfers to the domain Dt . This transfer, as we know, occurs
at each point x ∈D from the space TR3

x into the corresponding space TR3
t . Since

we have transferred the Euclidean structure into TR3
t from TR3

x , it follows from
the definition of the transfer of vectors and forms that, for example, to a given form
ω1

A(x)= 〈A(x), ·〉 defined in TR3
x there corresponds exactly the same kind of form

ω1
A(t)= 〈A(t), ·〉 in TR3

t , where A(x)= ϕ′(t)A(t). The same can be said of forms
of the type ω2

B and ω3
ρ , to say nothing of forms ω0

f – that is, functions.
After these clarifications, the rest of our study can be confined to the domain

Dt ⊂ R
3
t , abstracting from the original space R

3 and assuming that a Riemannian
metric (14.25) is defined in Dt and that scalar fields f , ρ and vector fields A, B
are defined in Dt along with the forms ω0

f , ω1
A, ω2

B, ω3
ρ , which are defined at each

point t ∈ Dt in accordance with the Euclidean structure on TR3
t defined by the

Riemannian metric.

Example 7 The volume element dV in curvilinear coordinates t1, t2, t3, as we
know, has the form

dV =√detgij (t)dt
1 ∧ dt2 ∧ dt3.

For a triorthogonal system

dV =√E1E2E3(t)dt
1 ∧ dt2 ∧ dt3. (14.28)

In particular, in Cartesian, cylindrical, and spherical coordinates, respectively, we
obtain

dV = dx ∧ dy ∧ dz= (14.28′)

= r dr ∧ dϕ ∧ dz= (14.28′′)
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=R2 cos θ dR ∧ dϕ ∧ dθ. (14.28′′′)

What has just been said enables us to write the form ω3
ρ = ρ dV in different

curvilinear coordinate systems.

e.

Our main problem (now easily solvable) is, knowing the expansion A(t) =
Ai(t)ei (t) for a vector A(t) ∈ TR3

t with respect to the unit vectors ei (t) ∈ TR3
t ,

i = 1,2,3, of the triorthogonal coordinate system determined by the Riemannian
metric (14.26), to find the expansion of the forms ω1

A(t) and ω2
B(t) in terms of the

canonical 1-forms dt i and the canonical 2-forms dt i ∧ dt j respectively.
Since all the reasoning applies at every given point t , we shall abbreviate the

notation by suppressing the letter t that shows that the vectors and forms are attached
to the tangent space at t .

Thus, e1, e2, e3 is a basis in TR3
t consisting of the unit vectors (14.27) along the

coordinate directions, and A = A1e1 + A2e2 + A3e3 is the expansion of A ∈ TR3
t

in that basis.
We remark first of all that formula (14.27) implies that

dtj (ei )= 1√
Ei
δij , where δij =

{
0, if i �= j,
1, if i = j, (14.29)

dt i ∧ dt j (ek, el )= 1
√
EiEj

δ
ij
kl , where δijkl =

{
0, if (i, j) �= (k, l),
1, if (i, j)= (k, l). (14.30)

f.

Thus, if ω1
A := 〈A, ·〉 = a1 dt1 + a2 dt2 + a3 dt3, then on the one hand

ω1
A(ei )= 〈A, ei〉 =Ai,

and on the other hand, as one can see from (14.29),

ω1
A(ei )=

(
a1 dt1 + a2 dt2 + a3 dt3

)
(ei )= ai · 1√

Ei
.

Consequently, ai =Ai√Ei , and we have found the expansion

ω1
A =A1

√
E1 dt1 +A2

√
E2 dt2 +A3

√
E3 dt3 (14.31)

for the form ω1
A corresponding to the expansion A = A1e1 + A2e2 + A3e3 of the

vector A.
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Example 8 Since in Cartesian, spherical, and cylindrical coordinates we have re-
spectively

A = Axex +Ayey +Azez =
= Arer +Aϕeϕ +Azez =
= AReR +Aϕeϕ +Aθeθ ,

as follows from the results of Example 6,

ω1
A =Ax dx +Ay dy +Az dz= (14.31′)

=Ar dr +Aϕr dϕ +Az dz= (14.31′′)

=AR dR +AϕR cosϕ dϕ +AθR dθ. (14.31′′′)

g.

Now let B= B1e1+B2e2+B3e3 and ω2
B = b1 dt2∧dt3+b2 dt3∧dt1+b3 dt1∧dt2.

Then, on the one hand,

ω2
B(e2, e3) := dV (B, e2, e3)=

=
3∑

i−1

Bi dV (ei , e2, e3)= B1 · (e1, e2, e3)= B1,

where dV is the volume element in TR3
t see (14.28) and (14.27)).

On the other hand, by (14.30) we obtain

ω2
B(e2, e3) =

(
b1 dt2 ∧ dt3 + b2 dt3 ∧ dt1 + b3 dt1 ∧ dt2

)
(e2, e3)=

= b1 dt2 ∧ dt3(e2, e3)= b1√
E2E3

.

Comparing these results, we conclude that b1 = B1√E2E3. Similarly, we verify
that b2 = B2√E1E3 and b3 = B3√E1E2.

Thus we have found the representation

ω2
B = B1

√
E2E3 dt2 ∧ dt3 +B2

√
E3E1 dt3 ∧ dt1 +B3

√
E1E2 dt1 ∧ dt2 =

=√E1E2E3

(
B1

√
E1

dt2 ∧ dt3 + B2

√
E2

dt3 ∧ dt1 + B3

√
E3

dt1 ∧ dt2
)

(14.32)

of the form ω2
B corresponding to the vector B= B1e1 +B2e2 +B3e3.
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Example 9 Using the notation introduced in Example 8 and formulas (14.26′),
(14.26′′) and (14.26′′′), we obtain in Cartesian, cylindrical, and spherical coordi-
nates respectively

ω2
B = Bx dy ∧ dz+By dz∧ dx +Bz dx ∧ dy = (14.32′)

= Brr dϕ ∧ dz+Bϕ dz∧ dr +Bzr dr ∧ dϕ = (14.32′′)

= BRR2 cos θ dϕ ∧ dθ +BϕR dθ ∧ dR +BθR cos θ dR ∧ dϕ. (14.32′′′)

h.

We add further that on the basis of (14.28) we can write

ω3
ρ = ρ

√
E1E2E3 dt1 ∧ dt2 ∧ dt3. (14.33)

Example 10 In particular, for Cartesian, cylindrical, and spherical coordinates re-
spectively, formula (14.33) has the following forms:

ω3
ρ = ρ dx ∧ dy ∧ dz= (14.33′)

= ρr dr ∧ dϕ ∧ dz= (14.33′′)

= ρR2 cos θ dR ∧ dϕ ∧ dθ. (14.33′′′)

Now that we have obtained formulas (14.31)–(14.33), it is easy to find the coordi-
nate representation of the operators grad, curl, and div in a triorthogonal curvilinear
coordinate system using Definitions (14.9)–(14.11).

Let gradf =A1e1 +A2e2 +A3e3. Using the definitions, we write

ω1
gradf := dω0

f := df := ∂f
∂t1

dt1 + ∂f
∂t2

dt2 + ∂f
∂t3

dt3.

From this, using formula (14.31), we conclude that

gradf = 1√
E1

∂f

∂t1
e1 + 1√

E2

∂f

∂t2
e2 + 1√

E3

∂f

∂t3
e3. (14.34)

Example 11 In Cartesian, cylindrical, and spherical coordinates respectively,

gradf = ∂f
∂x

ex + ∂f
∂y

ey + ∂f
∂z

ez = (14.34′)

= ∂f
∂r

er + 1

r

∂f

∂ϕ
eϕ + ∂f

∂z
ez = (14.34′′)

= ∂f
∂R

eR + 1

R cos θ

∂f

∂ϕ
eϕ + 1

R2

∂f

∂θ
eθ . (14.34′′′)
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Suppose given a field A(t)= (A1e1 +A2e2 + A3e3)(t). Let us find the coordi-
nates B1,B2,B3 of the field curl A(t)= B(t)= (B1e1 +B2e2 +B3e3)(t).

Based on the definition (14.10) and formula (14.31), we obtain

ω2
curl A := dω1

A = d
(
A1
√
E1 dt1 +A2

√
E2 dt2 +A3

√
E3 dt3

)=

=
(
∂A3√E3

∂t2
− ∂A

2√E2

∂t3

)
dt2 ∧ dt3 +

+
(
∂A1√E1

∂t3
− ∂A

3√E3

∂t1

)
dt3 ∧ dt1 +

+
(
∂A2√E2

∂t1
− ∂A

1√E1

∂t2

)
dt1 ∧ dt2.

On the basis of (14.32) we now conclude that

B1 = 1√
E2E3

(
∂A3√E3

∂t2
− ∂A

2√E2

∂t3

)
,

B2 = 1√
E3E1

(
∂A1√E1

∂t3
− ∂A

3√E3

∂t1

)
,

B3 = 1√
E1E2

(
∂A2√E2

∂t1
− ∂A

1√E1

∂t2

)
,

that is,

curl A= 1√
E1E2E3

∣∣∣∣
∣∣∣

√
E1e1

√
E2e2

√
E3e3

∂

∂t1
∂

∂t2
∂

∂t3√
E1A

1 √
E2A

2 √
E3A

3

∣∣∣∣
∣∣∣
. (14.35)

Example 12 In Cartesian, cylindrical, and spherical coordinates respectively

curl A=
(
∂Az

∂y
− ∂Ay
∂z

)
ex +
(
∂Ax

∂z
− ∂Az
∂x

)
ey +
(
∂Ay

∂x
− ∂Ax
∂y

)
ez = (14.35′)

= 1

r

(
∂Az

∂ϕ
− ∂rAϕ

∂z

)
er +
(
∂Ar

∂z
− ∂Az
∂r

)
eϕ + 1

r

(
∂rAϕ

∂r
− ∂Ar
∂ϕ

)
ez =
(14.35′′)

= 1

R cos θ

(
∂Aθ

∂ϕ
− ∂Aϕ cos θ

∂θ

)
eR + 1

R

(
∂AR

∂θ
− ∂RAθ

∂R

)
eϕ+

+ 1

R

(
∂RAϕ

∂R
− 1

cos θ

∂AR

∂ϕ

)
eθ . (14.35′′′)
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i.

Now suppose given a field B(t)= (B1e1 +B2e2 +B3e3)(t). Let us find an expres-
sion for div B.

Starting from the definition (14.11) and formula (14.32), we obtain

ωdivB := dω2
B = d(B1

√
E2E3 dt2 ∧ dt3 +

+B2
√
E3E1 dt3 ∧ dt1 +B3

√
E1E2 dt1 ∧ dt2 =

=
(
∂
√
E2E3B

1

∂t1
+ ∂
√
E3E1B

2

∂t2
+ ∂
√
E1E2B

3

∂t3

)
dt1 ∧ dt2 ∧ dt3.

On the basis of formula (14.33) we now conclude that

div B= 1√
E1E2E3

(
∂
√
E2E3B

1

∂t1
+ ∂
√
E3E1B

2

∂t2
+ ∂
√
E1E2B

3

∂t3

)
. (14.36)

In Cartesian, cylindrical, and spherical coordinates respectively, we obtain

div B= ∂Bx
∂x
+ ∂By
∂y
+ ∂Bz
∂z
= (14.36′)

= 1

r

(
∂rBr

∂r
+ ∂Bϕ
∂ϕ

)
+ ∂Bz
∂z
= (14.36′′)

= 1

R2 cos θ

(
∂R2 cos θBR

∂R
+ ∂RBϕ

∂ϕ
+ ∂R cos θBθ

∂θ

)
. (14.36′′′)

j.

Relations (14.34) and (14.36) can be used to obtain an expression for the Laplacian
Δ= div grad in an arbitrary triorthogonal coordinate system:

Δf = div gradf =

= div

(
1√
E1

∂f

∂t1
e1 + 1√

E2

∂f

∂t2
e2 + 1√

E3

∂f

∂t3
e3

)
=

= 1√
E1E2E3

(
∂

∂t1

(√
E2E3

E1

∂f

∂t1

)
+

+ ∂

∂t2

(√
E3E1

E2

∂f

∂t2

)
+ ∂

∂t3

(√
E1E2

E3

∂f

∂t3

))
. (14.37)
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Example 13 In particular, for Cartesian, cylindrical, and spherical coordinates, we
obtain respectively

Δf = ∂
2f

∂x2
+ ∂

2f

∂y2
+ ∂

2f

∂z2
= (14.37′)

= 1

r

∂

∂r

(
r
∂f

∂r

)
+ 1

r2

∂2f

∂ϕ2
+ ∂

2f

∂z2
= (14.37′′)

= 1

R2

∂

∂R

(
R2 ∂f

∂R

)
+ 1

R2 cos2 θ

∂2f

∂ϕ2
+ 1

R2 cos θ

∂

∂θ

(
cos θ

∂f

∂θ

)
. (14.37′′′)

14.1.6 Problems and Exercises

1. The operators grad, curl, and div and the algebraic operations.
Verify the following relations:
for grad:

a) ∇(f + g)=∇f +∇g,
b) ∇(f · g)= f∇g+ g∇f ,
c) ∇(A ·B)= (B · ∇)A+ (A · ∇)B+B× (∇ ×A)+A× (∇ ×B),
d) ∇( 1

2 A2)= (A · ∇)A+A× (∇ ×A);

for curl:

e) ∇ × (fA)= f∇ ×A+∇f ×A,
f) ∇ × (A×B)= (B · ∇)A− (A · ∇)B+ (∇ ·B)A− (∇ ·A)B;

for div:

g) ∇ · (fA)=∇f ·A+ f∇ ·A,
h) ∇ · (A×B)= B · (∇ ×A)−A · (∇ ×B)

and rewrite them in the symbols grad, curl, and div.
(Hints. A ·∇ =A1 ∂

∂x1 +A2 ∂

∂x2 +A3 ∂

∂x3 ;B ·∇ �= ∇ ·B; A× (B×C)= B(A ·C)−
C(A ·B).)
2. a) Write the operators (14.20)–(14.22) in Cartesian coordinates.

b) Verify relations (14.20) and (14.21) by direct computation.
c) Verify formula (14.24) in Cartesian coordinates.
d) Write formula (14.24) in terms of ∇ and prove it, using the formulas of vector

algebra.

3. From the system of Maxwell equations in Example 2 deduce that ∇ · j=− ∂ρ
∂t

.
4. a) Exhibit the Lamé parametersH1,H2,H3 of Cartesian, cylindrical, and spher-
ical coordinates in R

3.
b) Rewrite formulas (14.28), (14.34)–(14.37), using the Lamé parameters.

5. Write the field A= grad 1
r
, where r =√x2 + y2 + z2 in
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a) Cartesian coordinates x, y, z;
b) cylindrical coordinates;
c) spherical coordinates.
d) Find curl A and div A.

6. In cylindrical coordinates (r, ϕ, z) the function f has the form ln 1
r
. Write the

field A= gradf in

a) Cartesian coordinates;
b) cylindrical coordinates;
c) spherical coordinates.
d) Find curl A and div A.

7. Write the formula for transformation of coordinates in a fixed tangent space
TR3

ρ , p ∈R3, when passing from Cartesian coordinates in R
3 to

a) cylindrical coordinates;
b) spherical coordinates;
c) an arbitrary triorthogonal curvilinear coordinate system.
d) Applying the formulas obtained in c) and formulas (14.34)–(14.37), verify

directly that the vector fields gradf , curl A, and the quantities div A and Δf are
invariant relative to the choice of the coordinate system in which they are computed.

8. The space R
3, being a rigid body, revolves about a certain axis with constant

angular velocity ω. Let v be the field of linear velocities of the points at a fixed
instant of time.

a) Write the field v in the corresponding cylindrical coordinates.
b) Find curl v.
c) Indicate how the field curl v is directed relative to the axis of rotation.
d) Verify that | curl v| = 2ω at each point of space.
e) Interpret the geometric meaning of curl v and the geometric meaning of the

constancy of this vector at all points of space for the situation in d).

14.2 The Integral Formulas of Field Theory

14.2.1 The Classical Integral Formulas in Vector Notation

a. Vector Notation for the Forms ω1
A and ω2

B

In the preceding chapter we noted (see Sect. 13.2, formulas (13.23) and (13.24)) that
the restriction of the work form ω1

F of a field F to an oriented smooth curve (path)
γ or the restriction of the flux form ω2

V of a field V to an oriented surface S can be
written respectively in the following forms:

ω1
F|γ = 〈F, e〉ds, ω2

V|S = 〈V,n〉dσ,
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where e is the unit vector that orients γ , codirectional with the velocity vector of the
motion along γ , ds is the element (form) of arc length on γ , n is the unit normal
vector to S that orients the surface, and dσ is the element (form) of area on S.

In vector analysis we often use the vector element of length of a curve ds := e ds
and the vector element of area on a surface dσ := n dσ . Using this notation, we can
now write:

ω1
A|γ = 〈A, e〉ds = 〈A,ds〉 =A · ds, (14.38)

ω2
B|S = 〈B,n〉dσ = 〈B,dσ 〉 = B · dσ . (14.39)

b. The Newton–Leibniz Formula

Let f ∈ C(1)(D,R), and let γ : [a, b]→D be a path in the domain D.
Applied to the 0-form ω0

f , Stokes’ formula

ˆ
∂γ

ω0
f =

ˆ
γ

dω0
f

means, on the one hand, the equality
ˆ
∂γ

f =
ˆ
γ

df ,

which agrees with the classical formula

f
(
γ (b)
)− f (γ (a))=

ˆ b

a

df
(
γ (t)
)

of Newton–Leibniz (the fundamental theorem of calculus). On the other hand, by
definition of the gradient, it means that

ˆ
∂γ

ω0
f =

ˆ
γ

ω1
gradf . (14.40)

Thus, using relation (14.38), we can rewrite the Newton–Leibniz formula as

f
(
γ (b)
)− f (γ (a))=

ˆ
γ

(gradf ) · ds. (14.40′)

In this form it means that

the increment of a function on a path equals the work done by the gradient of the function
on the path.

This is a very convenient and informative notation. In addition to the obvious
deduction that the work of the field gradf along a path γ depends only on the
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endpoints of the path, the formula enables us to make a somewhat more subtle ob-
servation. To be specific, motion over a level surface f = c of f takes place without
any work being done by the field gradf since in this case gradf · dσ = 0. Then,
as the left-hand side of the formula shows, the work of the field gradf depends not
even on the initial and final points of the path but only on the level surfaces of f to
which they belong.

c. Stokes’ Formula

We recall that the work of a field on a closed path is called the circulation of the field
on that path. To indicate that the integral is taken over a closed path, we often write¸
γ

F · ds rather than the traditional notation
´
γ

F · ds. If γ is a curve in the plane, we

often use the symbols
fl
γ

and
ff
γ

, in which the direction of traversal of the curve γ
is indicated.

The term circulation is also used when speaking of the integral over some finite
set of closed curves. For example, it might be the integral over the boundary of a
compact surface with boundary.

Let A be a smooth vector field in a domainD of the oriented Euclidean space R3

and S a (piecewise) smooth oriented compact surface with boundary in D. Applied
to the 1-form ω1

A, taking account of the definition of the curl of a vector field, Stokes’
formula means the equality

ˆ
∂S

ω1
A =

ˆ
S

ω2
curl A. (14.41)

Using relation (14.39), we can rewrite (14.41) as the classical Stokes formula

˛
∂S

A · ds=
¨
S

(curl A) · dσ . (14.41′)

In this notation it means that

the circulation of a vector field on the boundary of a surface equals the flux of the curl of
the field across the surface.

As always, the orientation chosen on ∂S is the one induced by the orientation
of S.

d. The Gauss–Ostrogradskii Formula

Let V be a compact domain of the oriented Euclidean space R
3 bounded by a

(piecewise-) smooth surface ∂V , the boundary of V . If B is a smooth field in V ,
then in accordance with the definition of the divergence of a field, Stokes’ formula
yields the equality ˆ

∂V

ω2
B =

ˆ
V

ω3
div B. (14.42)
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Using relation (14.39) and the notation ρ dV for the form ω3
ρ in terms of the

volume element dV in R
3, we can rewrite Eq. (14.42) as the classical Gauss–

Ostrogradskii formula

¨
∂V

B · dσ =
˚

V

div B dV. (14.42′)

In this form it means that

the flux of a vector field across the boundary of a domain equals
the integral of the divergence of the field over the domain itself.

e. Summary of the Classical Integral Formulas

In sum, we have arrived at the following vector notation for the three classical inte-
gral formulas of analysis:

ˆ
∂γ

f =
ˆ
γ

(∇f ) · ds (the Newton–Leibniz formula), (14.40′′)
ˆ
∂S

A · ds=
ˆ
S

(∇ ×A) · dσ (Stokes’ formula), (14.41′′)
ˆ
∂V

B · dσ =
ˆ
V

(∇ ·B)dV (the Gauss–Ostrogradskii formula). (14.42′′)

14.2.2 The Physical Interpretation of div, curl, and grad

a. The Divergence

Formula (14.42′) can be used to explain the physical meaning of div B(x) – the
divergence of the vector field B at a point x in the domain V in which the field is
defined. Let V (x) be a neighborhood of x (for example, a ball) contained in V . We
permit ourselves to denote the volume of this neighborhood by the same symbol
V (x) and its diameter by the letter d .

By the mean-value theorem and the formula (14.42′) we obtain the following
relation for the triple integral

¨
∂V (x)

B · dσ = div B
(
x′
)
V (x),

where x′ is a point in the neighborhood V (x). If d→ 0, then x′ → x, and since B
is a smooth field, we also have div B(x′)→ div B(x). Hence

div B(x)= lim
d→0

˜
∂V (x)

B · dσ

V (x)
. (14.43)
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Let us regard B as the velocity field for a flow (of liquid or gas). Then, by the
law of conservation of mass, a flux of this field across the boundary of the domain
V or, what is the same, a volume of the medium diverging across the boundary of
the domain, can arise only when there are sinks or sources (including those asso-
ciated with a change in the density of the medium). The flux is equal to the total
power of all these factors, which we shall collectively call “sources”, in the domain
V (x). Hence the fraction on the right-hand side of (14.43) is the mean intensity (per
unit volume) of sources in the domain V (x), and the limit of that quantity, that is,
div B(x), is the specific intensity (per unit volume) of the source at the point x. But
the limit of the ratio of the total amount of some quantity in the domain V (x) to
the volume of that domain as d→ 0 is customarily called the density of that quan-
tity at x, and the density as a function of a point is usually called the density of the
distribution of the given quantity in a portion of space.

Thus, we can interpret the divergence div B of a vector field B as the density
of the distribution of sources in the domain of the flow, that is, in the domain of
definition of the field B.

Example 1 If, in particular, div B ≡ 0, that is, there are no sources, then the flux
across the boundary of the region must be zero: the amount flowing in equals the
amount flowing out. And, as formula (14.42′) shows, this is indeed the case.

Example 2 A point electric charge of magnitude q creates an electric field in space.
Suppose the charge is located at the origin. By Coulomb’s law6 the intensity E =
E(x) of the field at the point x ∈R3 (that is, the force acting on a unit test charge at
the point x) can be written as

E= q

4πε0

r
|r|3 ,

where ε0 is a dimensioning constant and r is the radius-vector of the point x.
The field E is defined at all points different from the origin. In spherical coor-

dinates E = q
4πε0

1
R2 eR , so that by formula (14.36′′′) of the preceding section, one

can see immediately that div E = 0 everywhere in the domain of definition of the
field E.

Hence, if we take any domain V not containing the origin, then by formula
(14.42′) the flux of E across the boundary ∂V of V is zero.

Let us now take the sphere SR = {x ∈ R3 | |x| = R} of radius R with center at
the origin and find the outward flux (relative to the ball bounded by the sphere) of
E across this surface. Since the vector eR is itself the unit outward normal to the
sphere, we find

ˆ
SR

E · dσ =
ˆ
SR

q

4πε0

1

R2
dσ = q

4πε0R2
· 4πR2 = q

ε0
.

6Ch.O. Coulomb (1736–1806) – French physicist. He discovered experimentally the law
(Coulomb’s law) of interaction of charges and magnetic fields using a torsion balance that he
invented himself.
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Thus, up to the dimensioning constant ε0, which depends on the choice of the
system of physical units, we have found the amount of charge in the volume bounded
by the sphere.

We remark that under the hypotheses of Example 2 just studied the left-hand
side of formula (14.42′) is well-defined on the sphere ∂V = SR , but the integrand
on the right-hand side is defined and equal to zero everywhere in the ball V except
at one point – the origin. Nevertheless, the computations show that the integral on
the right-hand side of (14.42′) cannot be interpreted as the integral of a function that
is identically zero.

From the formal point of view one could dismiss the need to study this situation
by saying that the field E is not defined at the point 0 ∈ V , and hence we do not have
the right to speak about the equality (14.42′), which was proved for smooth fields
defined in the entire domain V of integration. However, the physical interpretation
of (14.42′) as the law of conservation of mass shows that, when suitably interpreted,
it ought to be valid always.

Let us study the indeterminacy of div E at the origin in Example 2 more atten-
tively to see what is causing it. Formally the original field E is not defined at the
origin, but, if we seek div E from formula (14.43), then, as Example 2 shows, we
would have to assume that div E(0)=+∞. Hence the integrand on the right-hand
side of (14.42) would be a “function” equal to zero everywhere except at one point,
where it is equal to infinity. This corresponds to the fact that there are no charges
at all outside the origin, and we somehow managed to put the entire charge q into
a space of volume zero – into the single point 0, at which the charge density nat-
urally became infinite. Here we are encountering the so-called Dirac7 δ-function
(delta-function).

The densities of physical quantities are needed ultimately so that one can find the
values of the quantities themselves by integrating the density. For that reason there
is no need to define the δ-function at each individual point; it is more important
to define its integral. If we assume that physically the “function” δx0(x)= δ(x0;x)
must correspond to the density of a distribution, for example the distribution of mass
in space, for which the entire mass, equal to 1 in magnitude, is concentrated at the
single point x0, it is natural to set

ˆ
V

δ(x0, x)dV =
{

1, when x0 ∈ V,
0, when x0 /∈ V.

Thus, from the point of view of a mathematical idealization of our ideas of the
possible distribution of a physical quantity (mass, charge, and the like) in space, we
must assume that its distribution density is the sum of an ordinary finite function
corresponding to a continuous distribution of the quantity in space and a certain set

7P.A.M. Dirac (1902–1984) – British theoretical physicist, one of the founders of quantum me-
chanics. More details on the Dirac δ-function will be given in Sects. 17.4.4 and 17.5.4.
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of singular “functions” (of the same type as the Dirac δ-function) corresponding to
a concentration of the quantity at individual points of space.

Hence, starting from these positions, the results of the computations in Exam-
ple 2 can be expressed as the single equality div E= q

ε0
δ(0;x). Then, as applied to

the field E, the integral on the right-hand side of (14.42′) is indeed equal either to
q/ε0 or to 0, according as the domain V contains the origin (and the point charge
concentrated there) or not.

In this sense one can assert (following Gauss) that the flux of electric field in-
tensity across the surface of a body equals (up to a factor depending on the units
chosen) the sum of the electric charges contained in the body. In this same sense
one must interpret the electric charge density ρ in the Maxwell equations consid-
ered in Sect. 14.1 (formula (14.12)).

b. The Curl

We begin our study of the physical meaning of the curl with an example.

Example 3 Suppose the entire space, regarded as a rigid body, is rotating with con-
stant angular speed ω about a fixed axis (let it be the x-axis). Let us find the curl of
the field v of linear velocities of the points of space. (The field is being studied at
any fixed instant of time.)

In cylindrical coordinates (r, ϕ, z) we have the simple expression v(r, ϕ, z) =
ωreϕ . Then by formula (14.35′′) of Sect. 14.1, we find immediately that curl v =
2ωez. That is, curl v is a vector directed along the axis of rotation. Its magnitude 2ω
equals the angular velocity of the rotation, up to the coefficient 2, and the direction
of the vector, taking account of the orientation of the whole space R

3, completely
determines the direction of rotation.

The field described in Example 3 in the small resembles the velocity field of
a funnel (sink) or the field of the vorticial motion of air in the neighborhood of a
tornado (also a sink, but one that drains upward). Thus, the curl of a vector field
at a point characterizes the degree of vorticity of the field in a neighborhood of the
point.

We remark that the circulation of a field over a closed contour varies in direct
proportion to the magnitude of the vectors in the field, and, as one can verify using
the same Example 3, it can also be used to characterize the vorticity of the field.
Only now, to describe completely the vorticity of the field in a neighborhood of a
point, it is necessary to compute the circulation over contours lying in three different
planes. Let us now carry out this program.

We take a disk Si(x) with center at the point x and lying in a plane perpendicular
to the ith coordinate axis, i = 1,2,3. We orient Si(x) using a normal, which we take
to be the unit vector ei along this coordinate axis. Let d be the diameter of Si(x).
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From formula (14.41′) for a smooth field A we find that

(curl A) · ei = lim
d→0

¸
∂Si(x)

A · ds

Si(x)
, (14.44)

where Si(x) denotes the area of the disk under discussion. Thus the circulation of
the field A over the boundary ∂Si per unit area in the plane orthogonal to the ith
coordinate axis characterizes the ith component of curl A.

To clarify still further the meaning of the curl of a vector field, we recall that
every linear transformation of space is a composition of dilations in three mutually
perpendicular directions, translation of the space as a rigid body, and rotation as a
rigid body. Moreover, every rotation can be realized as a rotation about some axis.
Every smooth deformation of the medium (flow of a liquid or gas, sliding of the
ground, bending of a steel rod) is locally linear. Taking account of what has just been
said and Example 3, we can conclude that if there is a vector field that describes the
motion of a medium (the velocity field of the points in the medium), then the curl of
that field at each point gives the instantaneous axis of rotation of a neighborhood of
the point, the magnitude of the instantaneous angular velocity, and the direction of
rotation about the instantaneous axis. That is, the curl characterizes completely the
rotational part of the motion of the medium. This will be made slightly more precise
below, where it will be shown that the curl should be regarded as a sort of density
for the distribution of local rotations of the medium.

c. The Gradient

We have already said quite a bit about the gradient of a scalar field, that is, about the
gradient of a function. Hence at this point we shall merely recall the main things.

Since ω1
gradf (ξ) = 〈gradf, ξ〉 = df (ξ) =Dξf , where Dξf is the derivative of

the function f with respect to the vector ξ , it follows that gradf is orthogonal to the
level surfaces of f , and at each point it points in the direction of most rapid increase
in the values of the function. Its magnitude |gradf | gives the rate of that growth
(per unit of length in the space in which the argument varies).

The significance of the gradient as a density will be discussed below.

14.2.3 Other Integral Formulas

a. Vector Versions of the Gauss–Ostrogradskii Formula

The interpretation of the curl and gradient as vector densities, analogous to the inter-
pretation (14.43) of the divergence as a density, can be obtained from the following
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classical formulas of vector analysis, connected with the Gauss–Ostrogradskii for-
mula.

ˆ
V

∇ ·B dV =
ˆ
∂V

dσ ·B (the divergence theorem), (14.45)

ˆ
V

∇ ×A dV =
ˆ
∂V

dσ ×A (the curl theorem), (14.46)

ˆ
V

∇f dV =
ˆ
∂V

dσf (the gradient theorem). (14.47)

The first of these three relations coincides with (14.42′) up to notation and is the
Gauss–Ostrogradskii formula. The vector equalities (14.46) and (14.47) follow from
(14.45) if we apply that formula to each component of the corresponding vector
field.

Retaining the notation V (x) and d used in Eq. (14.43), we obtain from formulas
(14.45)–(14.47) in a unified manner,

∇ ·B(x)= lim
d→0

´
∂V (x)

dσ ·B
V (x)

, (14.43′)

∇ ×A(x)= lim
d→0

´
∂V (x)

dσ ×A

V (x)
, (14.48)

∇f (x)= lim
d→0

´
∂V (x)

dσf

V (x)
. (14.49)

The right-hand sides of (14.45)–(14.47) can be interpreted respectively as the
scalar flux of the vector field B, the vector flux of the vector field A, and the
vector flux of the scalar field f across the surface ∂V bounding the domain V .
Then the quantities div B, curl A, and gradf on the left-hand sides of Eqs. (14.43′),
(14.48), and (14.49) can be interpreted as the corresponding source densities of these
fields.

We remark that the right-hand sides of Eqs. (14.43′), (14.48), and (14.49) are
independent of the coordinate system. From these we can once again derive the
invariance of the gradient, curl, and divergence.

b. Vector Versions of Stokes’ Formula

Just as formulas (14.45)–(14.47) were the result of combining the Gauss–Ostro-
gradskii formula with the algebraic operations on vector and scalar fields, the fol-
lowing triple of formulas can be obtained by combining these same operations with
the classical Stokes formula (which appears as the first of the three relations).



14.2 The Integral Formulas of Field Theory 285

Let S be a (piecewise-) smooth compact oriented surface with a consistently
oriented boundary ∂S, let dσ be the vector element of area on S, and ds the vector
element of length on ∂S. Then for smooth fields A, B, and f , the following relations
hold:

ˆ
S

dσ · (∇ ×A) =
ˆ
∂S

ds ·A, (14.50)

ˆ
S

(dσ ×∇)×B =
ˆ
∂S

ds×B, (14.51)

ˆ
S

dσ ×∇f =
ˆ
∂S

dsf. (14.52)

Formulas (14.51) and (14.52) follow from Stokes’ formula (14.50). We shall not
take time to give the proofs.

c. Green’s Formulas

If S is a surface and n a unit normal vector to S, then the derivative Dnf of the
function f with respect to n is usually denoted ∂f

∂n
in field theory. For example,

〈∇f,dσ 〉 = 〈∇f,n〉dσ = 〈gradf,n〉dσ = Dnf dσ = ∂f
∂n

dσ . Thus, ∂f
∂n

dσ is the
flux of gradf across the element of surface dσ .

In this notation we can write the following formulas of Green, which are very
widely used in analysis:

ˆ
V

∇f · ∇g dV +
ˆ
V

g∇2f dV =
ˆ
∂V

(g∇f ) · dσ

(
=
ˆ
∂V

g
∂f

∂n
dσ

)
, (14.53)

ˆ
V

(
g∇2f − f∇2g

)
dV =

=
ˆ
∂V

(g∇f − f∇g) · dσ

(
=
ˆ
∂V

(
g
∂f

∂n
− f ∂g

∂n

)
dσ

)
. (14.54)

In particular, if we set f = g in (14.53) and g ≡ 1 in (14.54), we find respectively,

ˆ
V

|∇f |2 dV +
ˆ
V

fΔf dV =
ˆ
∂V

fΔf · dσ

(
=
ˆ
∂V

f
∂f

∂n
dσ

)
, (14.53′)

ˆ
V

Δf dV =
ˆ
∂V

∇f · dσ

(
=
ˆ
∂V

∂f

∂n
dσ

)
. (14.54′)

This last equality is often called Gauss’ theorem. Let us prove, for example, the
second of Eqs. (14.53) and (14.54):
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Proof

ˆ
∂V

(g∇f − f∇g) · dσ =
ˆ
V

∇ · (g∇f − f∇g)dV =

=
ˆ
V

(∇g · ∇f + g∇2f −∇f · ∇g− f∇2g
)

dV =

=
ˆ
V

(
g∇2f − f∇2g

)
dV =

ˆ
V

(gΔf − fΔg)dV.

In this formula we have used the Gauss–Ostrogradskii formula and the relation
∇ · (ϕA)=∇ϕ ·A+ ϕ∇ ·A. �

14.2.4 Problems and Exercises

1. Using the Gauss–Ostrogradskii formula (14.45), prove relations (14.46) and
(14.47).
2. Using Stokes’ formula (14.50), prove relations (14.51) and (14.52).
3. a) Verify that formulas (14.45), (14.46), and (14.47) remain valid for an un-
bounded domain V if the integrands in the surface integrals are of order O( 1

r3 ) as

r→∞. (Here r = |r|, and r is the radius-vector in R
3.)

b) Determine whether formulas (14.50), (14.51), and (14.52) remain valid for a
noncompact surface S ⊂R

3 if the integrands in the line integrals are of orderO( 1
r2 )

as r→∞.
c) Give examples showing that for unbounded surfaces and domains Stokes’

formula (14.41′) and the Gauss–Ostrogradskii formula (14.42′) are in general not
true.

4. a) Starting from the interpretation of the divergence as a source density, explain
why the second of the Maxwell equations (formula (14.12) of Sect. 14.1) implies
that there are no point sources in the magnetic field (that is, there are no magnetic
charges).

b) Using the Gauss–Ostrogradskii formula and the Maxwell equations (formula
(14.12) of Sect. 14.1), show that no rigid configuration of test charges (for example
a single charge) can be in a stable equilibrium state in the domain of an electrostatic
field that is free of the (other) charges that create the field. (It is assumed that no
forces except those exerted by the field act on the system.) This fact is known as
Earnshaw’s theorem.

5. If an electromagnetic field is steady, that is, independent of time, then the system
of Maxwell equations (formula (14.12) of Sect. 14.1) decomposes into two indepen-
dent parts – the electrostatic equations ∇ ·E= ρ

ε0
, ∇×E= 0, and the magnetostatic

equations ∇ ×B= j
ε0c

2 , ∇ ·B= 0.
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The equation ∇ · E = ρ/ε0, where ρ is the charge density, transforms via the
Gauss–Ostrogradskii formula into

´
s

E · dσ =Q/ε0, where the left-hand side is the
flux of the electric field intensity across the closed surface S and the right-hand side
is the sumQ of the charges in the domain bounded by S, divided by the dimension-
ing constant ε0. In electrostatics this relation is usually called Gauss’ law. Using
Gauss’ law, find the electric field E

a) created by a uniformly charged sphere, and verify that outside the sphere it is
the same as the field of a point charge of the same magnitude located at the center
of the sphere;

b) of a uniformly charged line;
c) of a uniformly charged plane;
d) of a pair of parallel planes uniformly charged with charges of opposite sign;
e) of a uniformly charged ball.

6. a) Prove Green’s formula (14.53).
b) Let f be a harmonic function in the bounded domain V (that is, f satisfies

Laplace’s equation Δf = 0 in V ). Show, starting from (14.54′) that the flux of the
gradient of this function across the boundary of the domain V is zero.

c) Verify that a harmonic function in a bounded connected domain is determined
up to an additive constant by the values of its normal derivative on the boundary of
the domain.

d) Starting from (14.53′), prove that if a harmonic function in a bounded domain
vanishes on the boundary, it is identically zero throughout the domain.

e) Show that if the values of two harmonic functions are the same on the bound-
ary of a bounded domain, then the functions are equal in the domain.

f) Starting from (14.53), verify the following principle of Dirichlet. Among all
continuous differentiable functions in a domain assuming prescribed values on the
boundary, a harmonic function in the region is the only one that minimizes the
Dirichlet integral (that is, the integral of the squared-modulus of the gradient over
the domain).

7. a) Let r(p, q)= |p − q| be the distance between the points p and q in the Eu-
clidean space R

3. By fixing p, we obtain a function rp(q) of q ∈ R
3. Show that

Δr−1
p (q)= 4πδ(p;q), where δ is the δ-function.
b) Let g be harmonic in the domain V . Setting f = 1/rp in (14.54) and taking

account of the preceding result, we obtain

4πg(p)=
ˆ
S

(
g∇ 1

rp
− 1

rp
∇g
)
· dσ .

Prove this equality precisely.
c) Deduce from the preceding equality that if S is a sphere of radius R with

center at p, then

g(p)= 1

4πR2

ˆ
S

g dσ.

This is the so-called mean-value theorem for harmonic functions.



288 14 Elements of Vector Analysis and Field Theory

d) Starting from the preceding result, show that if B is the ball bounded by the
sphere S considered in part c) and V (B) is its volume, then

g(p)= 1

V (B)

ˆ
B

g dV.

e) If p and q are points of the Euclidean plane R
2, then along with the func-

tion 1
rp

considered in a) above (corresponding to the potential of a charge located

at p), we now take the function ln 1
rp

(corresponding to the potential of a uniformly

charged line in space). Show that Δ ln 1
rp
= 2πδ(p;q), where δ(p;q) is now the

δ-function in R
2.

f) By repeating the reasoning in a), b), c), and d), obtain the mean-value theorem
for functions that are harmonic in plane regions.

8. Cauchy’s multi-dimensional mean-value theorem.
The classical mean-value theorem for the integral (“Lagrange’s theorem”) asserts

that if the function f : D→ R is continuous on a compact, measurable, and con-
nected set D ⊂R

n (for example, in a domain), then there exists a point ξ ∈D such
that ˆ

D

f (x)dx = f (ξ) · |D|,
where |D| is the measure (volume) of D.

a) Now let f,g ∈C(D,R), that is, f and g are continuous real-valued functions
in D. Show that the following theorem (“Cauchy’s theorem”) holds: There exists
ξ ∈D such that

g(ξ)

ˆ
D

f (x)dx = f (ξ)
ˆ
D

g(x)dx.

b) Let D be a compact domain with smooth boundary ∂D and f and g two
smooth vector fields in D. Show that there exists a point ξ ∈D such that

div g(ξ) · Flux f
∂D
= div f(ξ) · Flux g

∂D

,

where Flux
∂D

is the flux of a vector field across the surface ∂D.

14.3 Potential Fields

14.3.1 The Potential of a Vector Field

Definition 1 Let A be a vector field in the domain D ⊂R
n. A function U :D→R

is called a potential of the field A if A= gradU in D.
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Definition 2 A field that has a potential is called a potential field.

Since the partial derivatives of a function determine the function up to an additive
constant in a connected domain, the potential is unique in such a domain up to an
additive constant.

We briefly mentioned potentials in the first part of this course. Now we shall
discuss this important concept in somewhat more detail. In connection with these
definitions we note that when different force fields are studied in physics, the po-
tential of a field F is usually defined as a function U such that F=−gradU . This
potential differs from the one given in Definition 1 only in sign.

Example 1 At a point of space having radius-vector r the intensity F of the grav-
itational field due to a point mass M located at the origin can be computed from
Newton’s law as

F=−GM r
r3
, (14.55)

where r = |r|.
This is the force with which the field acts on a unit mass at this point of space. The

gravitational field (14.55) is a potential field. Its potential in the sense of Definition 1
is the function

U =GM 1

r
. (14.56)

Example 2 At a point of space having radius-vector r the intensity E of the electric
field due to a point charge q located at the origin can be computed from Coulomb’s
law

E= q

4πε0

r
r3

Thus such an electrostatic field, like the gravitational field, is a potential field. Its
potential ϕ in the sense of physical terminology is defined by the relation

ϕ = q

4πε0

1

r
.

14.3.2 Necessary Condition for Existence of a Potential

In the language of differential forms the equality A = gradU means that ω1
A =

dω0
U = dU , from which it follows that

dω1
A = 0, (14.57)

since d2ω0
U = 0. This is a necessary condition for the field A to be a potential field.
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In Cartesian coordinates this condition can be expressed very simply. If A =
(A1, . . . ,An) and A= gradU , then Ai = ∂U

∂xi
, i = 1, . . . , n, and if the potential U is

sufficiently smooth (for example, if its second-order partial derivatives are continu-
ous), we must have

∂Ai

∂xj
= ∂A

j

∂xi
, i, j = 1, . . . , n, (14.57′)

which simply means that the mixed partial derivatives are equal in both orders:

∂2U

∂xi∂xj
= ∂2U

∂xj ∂xi
.

In Cartesian coordinates ω1
A =
∑n
i=1A

i dxi , and therefore the equalities (14.57)
and (14.57′) are indeed equivalent in this case.

In the case of R3 we have dω1
A = ω2

curl A, so that the necessary condition (14.57)
can be rewritten as

curl A= 0,

which corresponds to the relation curl gradU = 0, which we already know.

Example 3 The field A = (x, xy, xyz) in Cartesian coordinates in R
3 cannot be a

potential field, since, for example, ∂xy
∂x
�= ∂x
∂y

.

Example 4 Consider the field A= (Ax,Ay) given by

A=
(
− y

x2 + y2
,

x

x2 + y2

)
, (14.58)

defined in Cartesian coordinates at all points of the plane except the origin. The
necessary condition for a field to be a potential field ∂Ax

∂y
= ∂Ay

∂x
is fulfilled in this

case. However, as we shall soon verify, this field is not a potential field in its domain
of definition.

Thus the necessary condition (14.57), or, in Cartesian coordinates (14.57′), is in
general not sufficient for a field to be a potential field.

14.3.3 Criterion for a Field to be Potential

Proposition 1 A continuous vector field A in a domain D ⊂ R
n is a potential field

inD if and only if its circulation (work) around every closed curve γ contained inD
is zero: ˛

γ

A · ds= 0. (14.59)
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Proof Necessity. Suppose A= gradU . Then by the Newton–Leibniz formula (For-
mula (14.40′) of Sect. 14.2),

˛
γ

A · ds=U(γ (b))−U(γ (a)),

where γ : [a, b] →D. If γ (a) = γ (b), that is, when the path γ is closed, it is ob-
vious that the right-hand side of this last equality vanishes, and hence the left-hand
side does also.

Sufficiency. Suppose condition (5) holds. Then the integral over any (not necessar-
ily closed) path in D depends only on its initial and terminal points, not on the path
joining them. Indeed, if γ1 and γ2 are two paths having the same initial and termi-
nal points, then, traversing first γ1, then −γ2 (that is, traversing γ2 in the opposite
direction), we obtain a closed path γ whose integral, by (14.59), equals zero, but
is also the difference of the integrals over γ1 and γ2. Hence these last two integrals
really are equal.

We now fix some point x0 ∈D and set

U(x)=
ˆ x

x0

A · ds, (14.60)

where the integral on the right is the integral over any path in D from x0 to x. We
shall verify that the function U so defined is the required potential for the field A.
For convenience, we shall assume that a Cartesian coordinate system (x1, . . . , xn)

has been chosen in R
n. Then A · ds = A1 dx1 + · · · + An dxn. If we move away

from x along a straight line in the direction hei , where ei is the unit vector along the
xi -axis, the function U receives an increment equal to

U(x + hei )−U(x)=
ˆ xi+hi

xi
Ai
(
x1, . . . , xi−1, t, xi+1, . . . , xn

)
dt,

equal to the integral of the form A · ds over this path from x to x + hei . By the
continuity of A and the mean-value theorem, this last equality can be written as

U(x + hei )−U(x)=Ai
(
x1, . . . , xi−1, xi + θh, xi+1, . . . , xn

)
h,

where 0≤ θ ≤ 1. Dividing this last equality by h and letting h tend to zero, we find

∂U

∂xi
(x)=Ai(x),

that is, A= gradU . �

Remark 1 As can be seen from the proof, a sufficient condition for a field to be a
potential field is that (14.59) hold for smooth paths or, for example, for broken lines
whose links are parallel to the coordinate axes.
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We now return to Example 4. Earlier (Example 1 of Sect. 8.1) we computed that
the circulation of the field (14.58) over the circle x2 + y2 = 1 traversed once in the
counterclockwise direction was 2π(�= 0).

Thus, by Proposition 1 we can conclude that the field (14.58) is not a potential
field in the domain R

2\0.
But surely, for example,

grad arctan
y

x
=
(
− y

x2 + y2
,

x

x2 + y2

)
,

and it would seem that the function arctan y
x

is a potential for (14.58). What is this,
a contradiction?! There is no contradiction as yet, since the only correct conclusion
that one can make in this situation is that the function arctan y

x
is not defined in the

entire domain R
2\0. And that is indeed the case: Take for example, the points on

the y-axis. But then, you may say, we could consider the function ϕ(x, y), the polar
angular coordinate of the point (x, y). That is practically the same thing as arctan y

x
,

but ϕ(x, y) is also defined for x = 0, provided the point (x, y) is not at the origin.
Throughout the domain R

2\0 we have

dϕ =− y

x2 + y2
dx + x

x2 + y2
dy.

However, there is still no contradiction, although the situation is now more delicate.
Please note that in fact ϕ is not a continuous single-valued function of a point in
the domain R

2\0. As a point encircles the origin counterclockwise, its polar angle,
varying continuously, will have increased by 2π when the point returns to its starting
position. That is, we arrive at the original point with a new value of the function,
different from the one we began with. Consequently, we must give up either the
continuity or the single-valuedness of the function ϕ in the domain R

2\0.
In a small neighborhood (not containing the origin) of each point of the domain

R
2\0 one can distinguish a continuous single-valued branch of the function ϕ. All

such branches differ from one another by an additive constant, a multiple of 2π .
That is why they all have the same differential and can all serve locally as potentials
of the field (14.58). Nevertheless, the field (14.58) has no potential in the entire
domain R

2\0.
The situation studied in Example 4 turns out to be typical in the sense that the

necessary condition (14.57) or (14.57′) for the field A to be a potential field is locally
also sufficient. The following proposition holds.

Proposition 2 If the necessary condition for a field to be a potential field holds in
a ball, then the field has a potential in that ball.

Proof For the sake of intuitiveness we first carry out the proof in the case of a disk
D = {(x, y) ∈ R2 | x2 + y2 < r} in the plane R

2. One can arrive at the point (x, y)
of the disk from the origin along two different two-link broken lines γ1 and γ2 with
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Fig. 14.3

links parallel to the coordinate axes (see Fig. 14.3). SinceD is a convex domain, the
entire rectangle I bounded by these lines is contained in D.

By Stokes’ formula, taking account of condition (14.57), we obtain
ˆ
∂I

ω1
A =

ˆ
I

dω1
A = 0.

By the remark to Proposition 1 we can conclude from this that the field A is
a potential field in D. Moreover, by the proof of sufficiency in Proposition 1, the
function (14.60) can again be taken as the potential, the integral being interpreted
as the integral over a broken line from the center to the point in question with links
parallel to the axes. In this case the independence of the choice of path γ1, γ2 for
such an integral followed immediately from Stokes’ formula for a rectangle.

In higher dimensions it follows from Stokes’ formula for a two-dimensional rect-
angle that replacing two adjacent links of the broken line by two links forming the
sides of a rectangle parallel to the original does not change the value of the integral
over the path. Since one can pass from one broken-line path to any other broken-line
path leading to the same point by a sequence of such reconstructions, the potential
is unambiguously defined in the general case. �

14.3.4 Topological Structure of a Domain and Potentials

Comparing Example 4 and Proposition 2, one can conclude that when the necessary
condition (14.57) for a field to be a potential field holds, the question whether it
is always a potential field depends on the (topological) structure of the domain in
which the field is defined. The following considerations (here and in Sect. 14.3.5
below) give an elementary idea as to exactly how the characteristics of the domain
bring this about.

It turns out that if the domain D is such that every closed path in D can be
contracted to a point of the domain without going outside the domain, then the
necessary condition (14.57) for a field to be a potential field in D is also sufficient.
We shall call such domains simply connected below. A ball is a simply connected
domain (and that is why Proposition 2 holds). But the punctured plane R

2\0 is
not simply connected, since a path that encircles the origin cannot be contracted



294 14 Elements of Vector Analysis and Field Theory

Fig. 14.4

to a point without going outside the region. This is why not every field in R
2\0

satisfying (14.57′), as we saw in Example 4, is necessarily a potential field in R
2\0.

We now turn from the general description to precise formulations. We begin by
stating clearly what we mean we speak of deforming or contracting a path.

Definition 3 A homotopy (or deformation) in D from a closed path γ0 : [0,1] →
D to a closed path γ1 : [0,1] → D is a continuous mapping Γ : I 2 → D of the
square I 2 = {(t1, t2) ∈R2 | 0≤ t i ≤ 1, i = 1,2} into D such that Γ (t1,0)= γ0(t

1),
Γ (t1,1)= γ1(t

1), and Γ (0, t2)= Γ (1, t2) for all t1, t2 ∈ [0,1].

Thus a homotopy is a mapping Γ : I 2 → D (Fig. 14.4). If the variable t2 is
regarded as time, according to Definition 3 at each instant of time t = t2 we have
a closed path Γ (t1, t)= γt (Fig. 14.4).8 The change in this path with time is such
that at the initial instant t = t2 = 0 it coincides with γ0 and at time t = t2 = 1 it
becomes γ1.

Since the condition γt (0)= Γ (0, t)= Γ (1, t)= γt (1), which means that the path
γt is closed, holds at all times t ∈ [0,1], the mapping Γ : I 2 → D induces the
same mappings β0(t

1) := Γ (t1,0)= Γ (t1,1)=: β1(t
1) on the vertical sides of the

square I 2.
The mapping Γ is a formalization of our intuitive picture of gradually deforming

γ0 to γ1.
It is clear that time can be allowed to run backwards, and then we obtain the path

γ0 from γ1.

Definition 4 Two closed paths are homotopic in a domain if they can be obtained
from each other by a homotopy in that domain, that is a homotopy can be con-
structed in that domain from one to the other.

8Orienting arrows are shown along certain curves in Fig. 14.4. These arrows will be used a little
later; for the time being the reader should not pay any attention to them.
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Remark 2 Since the paths we have to deal with in analysis are as a rule paths of
integration, we shall consider only smooth or piecewise-smooth paths and smooth
or piecewise-smooth homotopies among them, without noting this explicitly.

For domains in R
n one can verify that the presence of a continuous homotopy of

(piecewise-) smooth paths guarantees the existence of (piecewise-) smooth homo-
topies of these paths.

Proposition 3 If the 1-form ω1
A in the domain D is such that dω1

A = 0, and the
closed paths γ0 and γ1 are homotopic in D, then

ˆ
γ0

ω1
A =

ˆ
γ1

ω1
A.

Proof Let Γ : I 2→ D be a homotopy from γ0 to γ1 (see Fig. 14.4). If I0 and I1
are the bases of the square I 2 and J0 and J1 its vertical sides, then by definition of
a homotopy of closed paths, the restrictions of Γ to I0 and I1 coincide with γ0 and
γ1 respectively, and the restrictions of Γ to J0 and J1 give some paths β0 and β1
inD. Since Γ (0, t2)= Γ (1, t2), the paths β0 and β1 are the same. As a result of the
change of variables x = Γ (t), the form ω1

A transfers to the square I 2 as some 1-form
ω = Γ ∗ω1

A. In the process dω = dΓ ∗ω1
A = Γ ∗ dω1

A = 0, since dω1
A = 0. Hence, by

Stokes’ formula ˆ
∂I 2
ω=

ˆ
I 2

dω= 0.

But
ˆ
∂I 2
ω=

ˆ
I0

ω+
ˆ
J1

ω−
ˆ
I1

ω−
ˆ
J0

ω=

=
ˆ
γ0

ω1
A +

ˆ
β1

ω1
A −

ˆ
γ2

ω1
A −

ˆ
β0

ω1
A =

ˆ
γ0

ω1
A −

ˆ
γ1

ω1
A. �

Definition 5 A domain is simply connected if every closed path in it is homotopic
to a point (that is, a constant path).

Thus simply connected domains are those in which every closed path can be
contracted to a point.

Proposition 4 If a field A defined in a simply connected domain D satisfies the
necessary condition (14.57) or (14.57′) to be a potential field, then it is a potential
field in D.

Proof By Proposition 1 and Remark 1 it suffices to verify that Eq. (14.59) holds for
every smooth path γ in D. The path γ is by hypothesis homotopic to a constant
path whose support consists of a single point. The integral over such a one-point
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path is obviously zero. But by Proposition 3 the integral does not change under a
homotopy, and so Eq. (14.59) must hold for γ . �

Remark 3 Proposition 4 subsumes Proposition 2. However, since we had certain
applications in mind, we considered it useful to give an independent constructive
proof of Proposition 2.

Remark 4 Proposition 2 was proved without invoking the possibility of a smooth
homotopy of smooth paths.

14.3.5 Vector Potential. Exact and Closed Forms

Definition 6 A field A is a vector potential for a field B in a domain D ⊂R
3 if the

relation B= curl A holds in the domain.

If we recall the connection between vector fields and forms in the oriented Eu-
clidean space R

3 and also the definition of the curl of a vector field, the rela-
tion B = curl A can be rewritten as ω2

B = dω1
A. It follows from this relation that

ω3
div B = dω2

B = d2ω1
A = 0. Thus we obtain the necessary condition

div B= 0, (14.61)

which the field B must satisfy in D in order to have a vector potential, that is, in
order to be the curl of a vector field A in that domain.

A field satisfying condition (14.61) is often, especially in physics, called a
solenoidal field.

Example 5 In Sect. 14.1 we wrote out the system of Maxwell equations. The second
equation of this system is exactly Eq. (14.61). Thus, the desire naturally arises to
regard a magnetic field B as the curl of some vector field A – the vector potential
of B. When solving the Maxwell equations, one passes to exactly such a vector
potential.

As can be seen from Definitions 1 and 6, the questions of the scalar and vector
potential of vector fields (the latter question being posed only in R

3) are special
cases of the general question as to when a differential p-form ωp is the differential
dωp−1 of some form ωp−1.

Definition 7 A differential form ωp is exact in a domain D if there exists a form
ωp−1 in D such that ωp = dωp−1.

If the form ωp is exact in D, then dωp = d2ωp−1 = 0. Thus the condition

dω= 0 (14.62)

is a necessary condition for the form ω to be exact.
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Fig. 14.5

As we have already seen (Example 4), not every form satisfying this condition is
exact. For that reason we make the following definition.

Definition 8 The differential form ω is closed in a domainD if it satisfies condition
(14.62) there.

The following theorem holds.

Theorem (Poincaré’s lemma) If a form is closed in a ball, then it is exact there.

Here we are talking about a ball in R
n and a form of any order, so that Proposi-

tion 2 is an elementary special case of this theorem.
The Poincaré lemma can also be interpreted as follows: The necessary condition

(14.62) for a form to be exact is also locally sufficient, that is, every point of a
domain in which (14.62) holds has a neighborhood in which ω is exact.

In particular, if a vector field B satisfies condition (14.61), it follows from the
Poincaré lemma that at least locally it is the curl of some vector field A.

We shall not take the time at this point to prove this important theorem (those
who wish to do so can read it in Chap. 15). We prefer to conclude by explaining
in general outline the connection between the problem of the exactness of closed
forms and the topology of their domains of definition (based on information about
1-forms).

Example 6 Consider the plane R
2 with two points p1 and p2 removed (Fig. 14.5),

and the paths γ0, γ1, and γ2 whose supports are shown in the figure. The path γ2 can
be contracted to a point inside D, and therefore if a closed form ω is given in D,
its integral over γ2 is zero. The path γ0 cannot be contracted to a point, but without
changing the value of the integral of the form, it can be homotopically converted
into the path γ1.
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The integral over γ1 obviously reduces to the integral over one cycle enclosing
the point p1 clockwise and the double of the integral over a cycle enclosing p2
counterclockwise. If T1 and T2 are the integrals of the form ω over small circles
enclosing the points p1 and p2 and traversed, say, counterclockwise, one can see that
the integral of the form ω over any closed path in D will be equal to n1T1 + n2T2,
where n1 and n2 are certain integers indicating how many times we have encircled
each of the holes p1 and p2 in the plane R

2 and in which direction.
Circles c1 and c2 enclosing p1 and p2 serve as a sort of basis in which every

closed path γ ⊂ D has the form γ = n1c1 + n2c2, up to a homotopy, which has
no effect on the integral. The quantities

´
ci
ω = Ti are called the cyclic constants

or the periods of the integral. If the domain is more complicated and there are k
independent elementary cycles, then in agreement with the expansion γ = n1c1 +
· · · + nkck , it results that

´
γ
ω = n1T1 + · · · + nkTk . It turns out that for any set

T1, . . . , Tk of numbers in such a domain one can construct a closed 1-form that will
have exactly that set of periods. (This is a special case of de Rham’s theorem – see
Chap. 15.)

For the sake of visualization, we have resorted here to considering a plane do-
main, but everything that has been said can be repeated for any domain D ⊂R

n.

Example 7 In an anchor ring (the solid domain in R
3 enclosed by a torus) all closed

paths are obviously homotopic to a circle that encircles the hole a certain number of
times. This circle serves as the unique non-constant basic cycle c.

Moreover, everything that has just been said can be repeated for paths of higher
dimension. If instead of one-dimensional closed paths – mappings of a circle or,
what is the same, mappings of the one-dimensional sphere – we take mappings
of a k-dimensional sphere, introduce the concept of homotopy for them, and ex-
amine how many mutually nonhomotopic mappings of the k-dimensional sphere
into a given domain D ⊂ R

n exist, the result is a certain characteristic of the do-
main D which is formalized in topology as the so-called kth homotopy group of
D and denoted πk(D). If all the mappings of the k-dimensional sphere into D are
homotopic to a constant mapping, the group πk(D) is considered trivial. (It con-
sists of the identity element alone.) It can happen that π1(D) is trivial and π2(D) is
not.

Example 8 If D is taken to be the space R
3 with the point 0 removed, obviously

every closed path in D can be contracted to a point, but a sphere enclosing the
point 0 cannot be homotopically converted to a point.

It turns out that the homotopy group πk(D) has less to do with the periods of a
closed k-form than the so-called homology group Hk(D). (See Chap. 15.)

Example 9 From what has been said we can conclude that, for example, in the do-
main R

3\0 every closed 1-form is exact (R3\0 is a simply connected domain), but
not very closed 2-form is exact. In the language of vector fields, this means that
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every irrotational field A in R
3\0 is the gradient of a function, but not every source-

free field B(div B= 0) is the curl of some field in this domain.

Example 10 To balance Example 9 we take the anchor ring. For the anchor ring the
group π1(D) is not trivial (see Example 7), but π2(D) is trivial, since every mapping
f : S2→D of the two-sphere into D can be contracted to a constant mapping (any
image of a sphere can be contracted to a point). In this domain not every irrotational
field is a potential field, but every source-free field is the curl of some field.

14.3.6 Problems and Exercises

1. Show that every central field A= f (r)r is a potential field.
2. Let F = −gradU be a potential force field. Show that the stable equilibrium
positions of a particle in such a field are the minima of the potential U of that field.
3. For an electrostatic field E the Maxwell equations (formula (14.12) of Sect. 14.1),
as already noted, reduce to the pair of equations ∇ ·E= ρ

ε0
and ∇ ×E= 0.

The condition ∇ × E= 0 means, at least locally, that E=−gradϕ. The field of
a point charge is a potential field, and since every electric field is the sum (or inte-
gral) of such fields, it is always a potential field. Substituting E=−∇ϕ in the first
equation of the electrostatic field, we find that its potential satisfies Poisson’s equa-
tion9 Δϕ = ρ

ε0
. The potential ϕ determines the field completely, so that describing

E reduces to finding the function ϕ, the solution of the Poisson equation.
Knowing the potential of a point charge (Example 2), solve the following prob-

lem.

a) Two charges+q and−q are located at the points (0,0,−d/2) and (0,0, d/2)
in R

3 with Cartesian coordinates (x, y, z). Show that at distances that are large
relative to d the potential of the electrostatic field has the form

ϕ = 1

4πε0

z

r3
qd + o

(
1

r3

)
,

where r is the absolute value of the radius-vector r of the point (x, y, z).
b) Moving very far away from the charges is equivalent to moving the charges

together, that is, decreasing the distance d . If we now fix the quantity qd =: p and
decrease d , then in the limit we obtain the function ϕ = 1

4πε0

z

r3p in the domain

R
3\0. It is convenient to introduce the vector p equal to p in absolute value and

directed from−q to+q . We call the pair of charges−q and+q and the construction
obtained by the limiting procedure just described a dipole, and the vector p the

9S.D. Poisson (1781–1849) – French scientist, specializing in mechanics and physics; his main
work was on theoretical and celestial mechanics, mathematical physics, and probability theory.
The Poisson equation arose in his research into gravitational potential and attraction by spheroids.
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dipole moment. The function ϕ obtained in the limit is called the dipole potential.
Find the asymptotics of the dipole potential as one moves away from the dipole
along a ray forming angle θ with the direction of the dipole moment.

c) Let ϕ0 be the potential of a unit point charge and ϕ1 the dipole potential
having dipole moment p1. Show that ϕ1 =−(p1 · ∇)ϕ0.

d) We can repeat the construction with the limiting passage that we carried out
for a pair of charges in obtaining the dipole for the case of four charges (more pre-
cisely, for two dipoles with moments p1 and p2) and obtain a quadrupole and a
corresponding potential. In general we can obtain a multipole of order j with poten-

tial ϕj = (−1)j (pj · ∇)(Pj−1·∇) · · · (p1 · ∇)ϕ0 =∑i+k+l=j Q
j
ikl

∂j ϕ0
∂xi∂

yk
∂
zl

, where

Q
j
ikl are the so-called components of the multipole moment. Carry out the com-

putations and verify the formula for the potential of a multipole in the case of a
quadrupole.

e) Show that the main term in the asymptotics of the potential of a cluster of
charges with increasing distance from the cluster is 1

4πε0

Q
r

, where Q is the total
charge of the cluster.

f) Show that the main term of the asymptotics of the potential of an electrically
neutral body consisting of charges of opposite signs (for example, a molecule) at a
distance that is large compared to the dimensions of the body is 1

4πε0

p·er
r2 . Here er

is a unit vector directed from the body to the observer; p=∑qidi , where qi is the
magnitude of the ith charge and di is its radius-vector. The origin is chosen at some
point of the body.

g) The potential of any cluster of charges at a great distance from the cluster
can be expanded (asymptotically) in functions of multipole potential type. Show
this using the example of the first two terms of such a potential (see d), e), and
f)).

4. Determine whether the following domains are simply connected.

a) the disk {(x, y) ∈R2 | x2 + y2 < 1};
b) the disk with its center removed {(x, y) ∈R2 | 0< x2 + y2 < 1};
c) a ball with its center removed {(x, y, z) ∈R3 | 0< x2 + y2 + z2 < 1};
d) an annulus {(x, y) ∈R2 | 1

2 < x
2 + y2 < 1};

e) a spherical annulus {(x, y, z) ∈R3 | 1
2 < x

2 + y2 + z2 < 1};
f) an anchor ring in R

3.

5. a) Give the definition of homotopy of paths with endpoints fixed.
b) Prove that a domain is simply connected if and only if every two paths in

it having common initial and terminal points are homotopic in the sense of the
definition given in part a).

6. Show that

a) every continuous mapping f : S1 → S2 of a circle S1 (a one-dimensional
sphere) into a two-dimensional sphere S2 can be contracted in S2 to a point (a
constant mapping);
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b) every continuous mapping f : S2→ S1 is also homotopic to a single point;
c) every mapping f : S1 → S1 is homotopic to a mapping ϕ �→ nϕ for some

n ∈ Z, where ϕ is the polar angle;
d) every mapping of the sphere S2 into an anchor ring is homotopic to a mapping

to a single point;
e) every mapping of a circle S1 into an anchor ring is homotopic to a closed path

encircling the hole in the anchor ring n times, for some n ∈ Z.

7. In the domain R
3\0 (three-dimensional space with the point 0 removed) con-

struct:

a) a closed but not exact 2-form;
b) a source-free vector field that is not the curl of any vector field in that domain.

8. a) Can there be closed, but not exact forms of degree p < n− 1 in the domain
D =R

n\0 (the space R
n with the point 0 removed)?

b) Construct a closed but not exact form of degree p = n− 1 in D =R
n\0.

9. If a 1-form ω is closed in a domain D ⊂ R
n, then by Proposition 2 every point

x ∈D has a neighborhood U(x) inside which ω is exact. From now on ω is assumed
to be a closed form.

a) Show that if two paths γi : [0,1] → D, i = 1,2, have the same initial and
terminal points and differ only on an interval [α,β] ⊂ [0,1] whose image under
either of the mappings γi is contained inside the same neighborhood U(x), then´
γ1
ω= ´

γ1
ω.

b) Show that for every path [0,1] � t �→ γ (t) ∈D one can find a number δ > 0
such that if the path γ̃ has the same initial and terminal point as γ and differs from
γ at most by δ, that is max0≤t≤1 |γ (t)− γ (t)| ≤ δ, then

´
γ̃
ω= ´

γ
ω.

c) Show that if two paths γ1 and γ2 with the same initial and terminal points are
homotopic in D as paths with fixed endpoints, then

´
γ 1ω =

´
γ 2ω for any closed

form ω in D.

10. a) It will be proved below that every continuous mapping Γ : I 2→D of the
square I 2 can be uniformly approximated with arbitrary accuracy by a smooth map-
ping (in fact by a mapping with polynomial components). Deduce from this that if
the paths γ1 and γ2 in the domain D are homotopic, then for every ε > 0 there exist
smooth mutually homotopic paths γ̃1 and γ̃2 such that max0≤t≤1 |γ̃i (t)− γi(t)| ≤ ε,
i = 1,2.

b) Using the results of Example 9, show now that if the integrals of a closed
form in D over smooth homotopic paths are equal, then they are equal for any paths
that are homotopic in this domain (regardless of the smoothness of the homotopy).
The paths themselves, of course, are assumed to be as regular as they need to be for
integration over them.

11. a) Show that if the forms ωp,ωp−1, and ω̃p−1 are such that ωp = dωp−1 =
dω̃p−1, then (at least locally) one can find a form ωp−2 such that ω̃p−1 = ωp−1 +
dωp−2. (The fact that any two forms that differ by the differential of a form have the
same differential obviously follows from the relation d2ω= 0.)
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b) Show that the potential ϕ of an electrostatic field (Problem 3) is determined
up to an additive constant, which is fixed if we require that the potential tend to zero
at infinity.

12. The Maxwell equations (formula (14.12) of Sect. 14.1) yield the following pair
of magnetostatic equations: ∇ ·B= 0, ∇ ×B=− j

ε0c
2 . The first of these shows that

at least locally, B has a vector potential A, that is, B=∇ ×A.

a) Describe the amount of arbitrariness in the choice of the potential A of the
magnetic field B (see Problem 11a)).

b) Let x, y, z be Cartesian coordinates in R
3. Find potentials A for a uniform

magnetic field B directed along the z-axis, each satisfying one of the following
additional requirements: the field A must have the form (0,Ay,0); the field A must
have the form (Ax,0,0); the field A must have the form (Ax,Ay,0); the field A
must be invariant under rotations about the z-axis.

c) Show that the choice of the potential A satisfying the additional require-
ment ∇ ·A= 0 reduces to solving Poisson’s equation; more precisely, to finding a
scalar-valued function ψ satisfying the equation Δψ = f for a given scalar-valued
function f .

d) Show that if the potential A of a static magnetic field B is chosen so that
∇ ·A= 0, it will satisfy the vector Poisson equation ΔA=− i

ε0c
2 . Thus, invoking

the potential makes it possible to reduce the problem of finding electrostatic and
magnetostatic fields to solving Poisson’s equation.

13. The following theorem of Helmholtz10 is well known: Every smooth field F
in a domain D of oriented Euclidean space R

3 can be decomposed into a sum
F = F1 + F2 of an irrotational field F1 and a solenoidal field F2. Show that the
construction of such a decomposition can be reduced to solving a certain Poisson
equation.
14. Suppose a given mass of a certain substance passes from a state characterized
thermodynamically by the parameters V0, P0(T0) into the state V , P , (T ). Assume
that the process takes place slowly (quasi-statically) and over a path γ in the plane of
states (with coordinates V,P ). It can be proved in thermodynamics that the quantity
S = ´

γ
δQ
T

, where δQ is the heat exchange form, depends only on the initial point
(V0,P0) and the terminal point (V ,P ) of the path, that is, after one of these points is
fixed, for example (V0,P0), S becomes a function of the state (V ,P ) of the system.
This function is called the entropy of the system.

a) Deduce from this that the form ω= δQ
T

is exact, and that ω= dS.
b) Using the form of δQ given in Problem 6 of Sect. 13.1 for an ideal gas, find

the entropy of an ideal gas.

10H.L.F. Helmholtz (1821–1894) – German physicist and mathematician; one of the first to dis-
cover the general law of conservation of energy. Actually, he was the first to make a clear distinction
between the concepts of force and energy.
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14.4 Examples of Applications

To show the concepts we have introduced in action, and also to explain the physical
meaning of the Gauss–Ostrogradskii–Stokes formula as a conservation law, we shall
examine here some illustrative and important equations of mathematical physics.

14.4.1 The Heat Equation

We are studying the scalar field T = T (x, y, z, t) of the temperature of a body being
observed as a function of the point (x, y, z) of the body and the time t . As a result
of heat transfer between various parts of the body the field T may vary. However,
this variation is not arbitrary; it is subject to a particular law which we now wish to
write out explicitly.

Let D be a certain three-dimensional part of the observed body bounded by a
surface S. If there are no heat sources inside S, a change in the internal energy of
the substance in D can occur only as the result of heat transfer, that is, in this case
by the transfer of energy across the boundary S of D.

By computing separately the variation in internal energy in the volumeD and the
flux of energy across the surface S, we can use the law of conservation of energy to
equate these two quantities and obtain the needed relation.

It is known that an increase in the temperature of a homogeneous mass m by
ΔT requires energy cmΔT , where c is the specific heat capacity of the substance
under consideration. Hence if our field T changes by ΔT = T (x, y, z, t + Δt) −
T (x, y, z, t) over the time interval Δt , the internal energy in D will have changed
by an amount ˚

D

cρΔT dV, (14.63)

where ρ = ρ(x, y, z) is the density of the substance.
It is known from experiments that over a wide range of temperatures the quantity

of heat flowing across a distinguished area dσ = n dσ per unit time as the result of
heat transfer is proportional to the flux −gradT · dσ of the field −gradT across
that area (the gradient is taken with respect to the spatial variables x, y, z). The
coefficient of proportionality k depends on the substance and is called its coefficient
of thermal conductivity. The negative sign in front of gradT corresponds to the fact
that the energy flows from hotter parts of the body to cooler parts. Thus, the energy
flux (up to terms of order o(Δt))

Δt

¨
s

−k gradT · dσ (14.64)

takes place across the boundary S of D in the direction of the external normal over
the time interval Δt .
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Equating the quantity (14.63) to the negative of the quantity (14.64), dividing
by Δt , and passing to the limit as Δt→ 0, we obtain

˚
D

cρ
∂T

∂t
dV =

¨
S

k gradT · dσ . (14.65)

This equality is the equation for the function T . Assuming T is sufficiently
smooth, we transform (14.65) using the Gauss–Ostrogradskii formula:

˚
D

cρ
∂T

∂t
dV =

˚
D

div(k gradT )dV.

Hence, since D is arbitrary, it follows obviously that

cρ
∂T

∂t
= div(k gradT ). (14.66)

We have now obtained the differential version of the integral equation (14.65).
If there were heat sources (or sinks) in D whose intensities have density

F(x, y, z, t), instead of (14.65) we would write the equality
˚

D

cρ
∂T

∂t
dV =

¨
S

k gradT · dσ +
˚

D

F dV, (14.65′)

and then instead of (14.66) we would have the equation

cρ
∂T

∂t
= div(k gradT )+ F. (14.66′)

If the body is assumed isotropic and homogeneous with respect to its heat con-
ductivity, the coefficient k in (14.66) will be constant, and the equation will trans-
form to the canonical form

∂T

∂t
= a2ΔT + f, (14.67)

where f = F
cρ

and a2 = k
cρ

is the coefficient of thermal diffusivity. The equation
(14.67) is usually called the heat equation.

In the case of steady-state heat transfer, in which the field T is independent of
time, this equation becomes Poisson’s equation

ΔT = ϕ, (14.68)

where ϕ =− 1
a2 f ; and if in addition there are no heat sources in the body, the result

is Laplace’s equation

ΔT = 0. (14.69)

The solutions of Laplace’s equation, as already noted, are called harmonic
functions. In the thermophysical interpretation, harmonic functions correspond to
steady-state temperature fields in a body in which the heat flows occur without any
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sinks or sources inside the body itself, that is, all sources are located outside the
body. For example, if we maintain a steady temperature distribution T |∂V = τ over
the boundary ∂V of a body, then the temperature field in the body V will eventually
stabilize in the form of a harmonic function T . Such an interpretation of the solu-
tions of the Laplace equation (14.69) enables us to predict a number of properties
of harmonic functions. For example, one must presume that a harmonic function
in V cannot have local maxima inside the body; otherwise heat would only flow
away from these hotter portions of the body, and they would cool off, contrary to
the assumption that the field is stationary.

14.4.2 The Equation of Continuity

Let ρ = ρ(x, y, z, t) be the density of a material medium that fills a space being
observed and v= v(x, y, z, t) the velocity field of motion of the medium as function
of the point of space (x, y, z) and the time t .

From the law of conservation of mass, using the Gauss–Ostrogradskii formula,
we can find an interconnection between these quantities.

LetD be a domain in the space being observed bounded by a surface S. Over the
time interval Δt the quantity of matter in D varies by an amount

˚
D

(
ρ(x, y, z, t +Δt)− ρ(x, y, z, t))dV.

Over this small time interval Δt , the flow of matter across the surface S in the
direction of the outward normal to S is (up to o(Δt))

Δt ·
¨
S

ρv · dσ .

If there were no sources or sinks in D, then by the law of conservation of matter,
we would have ˚

D

Δρ dV =−Δt
¨
S

ρv · dσ

or, in the limit as Δt→ 0
˚

D

∂ρ

∂t
dV =−

¨
S

ρv · dσ .

Applying the Gauss–Ostrogradskii formula to the right-hand side of this equality
and taking account of the fact that D is an arbitrary domain, we conclude that the
following relation must hold for sufficiently smooth functions ρ and v:

∂ρ

∂t
=−div(ρv), (14.70)

called the equation of continuity of a continuous medium.
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In vector notation the equation of continuity can be written as

∂ρ

∂t
+∇ · (ρv)= 0, (14.70′)

or, in more expanded form,

∂ρ

∂t
+ v · ∇ρ + ρ∇ · v= 0. (14.70′′)

If the medium is incompressible (a liquid), the volumetric outflow of the medium
across a closed surface S must be zero:¨

S

v · dσ = 0,

from which (again on the basis of the Gauss–Ostrogradskii formula) it follows that
for an incompressible medium

div v= 0. (14.71)

Hence, for an incompressible medium of variable density (a mixture of water and
oil) Eq. (14.70′′) becomes

∂ρ

∂t
+ v · ∇ρ = 0. (14.72)

If the medium is also homogeneous, then ∇ρ = 0 and therefore ∂ρ
∂t
= 0.

14.4.3 The Basic Equations of the Dynamics of Continuous Media

We shall now derive the equations of the dynamics of a continuous medium moving
in space. Together with the functions ρ and v already considered, which will again
denote the density and the velocity of the medium at a given point (x, y, z) of space
and at a given instant t of time, we consider the pressure p = p(x, y, z, t) as a
function of a point of space and time.

In the space occupied by the medium we distinguish a domain D bounded by a
surface S and consider the forces acting on the distinguished volume of the medium
at a fixed instant of time.

Certain force fields (for example, gravitation) are acting on each element ρ dV
of mass of the medium. These fields create the so-called mass forces. Let F =
F(x, y, z, t) be the density of the external fields of mass force. Then a force Fρ dV
acts on the element from the direction of these fields. If this element has an acceler-
ation a at a given instant of time, then by Newton’s second law, this is equivalent to
the presence of another mass force called inertia, equal to −aρ dV .

Finally, on each element dσ = n dσ of the surface S there is a surface tension
due to the pressure of the particles of the medium near those in D, and this surface
force equals −p dσ (where n is the outward normal to S).
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By d’Alembert’s principle, at each instant during the motion of any material sys-
tem, all the forces applied to it, including inertia, are in mutual equilibrium, that is,
the force required to balance them is zero. In our case, this means that

˚
D

(F− a)ρ dV −
¨
S

p dσ = 0. (14.73)

The first term in this sum is the equilibrant of the mass and inertial forces, and
the second is the equilibrant of the pressure on the surface S bounding the volume.
For simplicity we shall assume that we are dealing with an ideal (nonviscous) fluid
or gas, in which the pressure on the surface dσ has the form p dσ , where the number
p is independent of the orientation of the area in the space.

Applying formula (14.47) from Sect. 14.2, we find by (14.73) that
˚

D

(F− a)ρ dV −
˚

D

gradp dv = 0,

from which, since the domain D is arbitrary, it follows that

ρa= ρF− gradp. (14.74)

In this local form the equation of motion of the medium corresponds perfectly to
Newton’s law of motion for a material particle.

The acceleration a of a particle of the medium is the derivative dv
dt of the velocity

v of the particle. If x = x(t), y = y(t), z = z(t) is the law of motion of a particle
in space and v = v(x, y, z, t) is the velocity field of the medium, then for each
individual particle we obtain

a= dv
dt
= ∂v
∂t
+ ∂v
∂x

dx

dt
+ ∂v
∂y

dy

dt
+ ∂v
∂z

dz

dt

or

a= ∂v
∂t
+ (v · ∇)v.

Thus the equation of motion (14.74) assumes the following form

dv
dt
= F− 1

ρ
gradp (14.75)

or
∂v
∂t
+ (v · ∇)v= F− 1

ρ
∇p. (14.76)

Equation (14.76) is usually called Euler’s hydrodynamic equation.
The vector equation (14.76) is equivalent to a system of three scalar equations

for the three components of the vector v and the pair of functions ρ and p.
Thus, Euler’s equation does not completely determine the motion of an ideal

continuous medium. To be sure, it is natural to adjoin to it the equation of continuity
(14.70), but even then the system is underdetermined.
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To make the motion of the medium determinate one must also add to Eqs. (14.70)
and (14.76) some information on the thermodynamic state of the medium (for ex-
ample, the equation of state f (p,ρ,T )= 0 and the equation for heat transfer). The
reader may obtain some idea of what these relations can yield in the final subsection
of this section.

14.4.4 The Wave Equation

We now consider the motion of a medium corresponding to the propagation of an
acoustic wave. It is clear that such a motion is also subject to Eq. (14.76); this
equation can be simplified due to the specifics of the phenomenon.

Sound is an alternating state of rarefaction and compression of a medium, the
deviation of the pressure from its mean value in a sound wave being very small –
of the order of 1 %. Therefore acoustic motion consists of small deviations of the
elements of volume of the medium from the equilibrium position at small velocities.
However, the rate of propagation of the disturbance (wave) through the medium is
comparable with the mean velocity of motion of the molecules of the medium and
usually exceeds the rate of heat transfer between the different parts of the medium
under consideration. Thus, an acoustic motion of a volume of gas can be regarded
as small oscillations about the equilibrium position occurring without heat transfer
(an adiabatic process).

Neglecting the term (v · ∇)v in the equation of motion (14.76) in view of the
small size of the macroscopic velocities v, we obtain the equality

ρ
∂v
∂t
= ρF−∇p.

If we neglect the term of the form ∂ρ
∂t

v for the same reason, the last equality
reduces to the equation

∂

∂t
(ρv)= ρF−∇p.

Applying the operator ∇ (on x, y, z coordinates) to it, we obtain

∂

∂t
(∇ · ρv)=∇ · ρF−Δp.

Using the equation of continuity (14.70′) and introducing the notation ∇ · ρF=
−Φ , we arrive at the equation

∂2ρ

∂t2
=Φ +Δp. (14.77)
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If we can neglect the influence of the exterior fields, Eq. (14.77) reduces to the
relation

∂2ρ

∂t2
=Δp (14.78)

between the density and pressure in the acoustic medium. Since the process is adi-
abatic, the equation of state f (p,ρ,T ) = 0 reduces to a relation ρ = ψ(p), from

which it follows that ∂
2ρ

∂t2
=ψ ′(p) ∂2p

∂t2
+ψ ′′(p)( ∂p

∂t
)2 Since the pressure oscillations

are small in an acoustic wave, one may assume thatψ ′(p)≡ψ ′(p0), where p0 is the

equilibrium pressure. Then ψ ′′ = 0 and ∂2ρ

∂t2
≈ ψ ′(p) ∂2p

∂t2
. Taking this into account,

from (14.78) we finally obtain

∂2p

∂t2
= a2Δp, (14.79)

where a = (ψ ′(p0))
−1/2. This equation describes the variation in pressure in a

medium in a state of acoustic motion. Equation (14.79) describes the simplest wave
process in a continuous medium. It is called the homogeneous wave equation. The
quantity a has a simple physical meaning: it is the speed of propagation of an acous-
tic disturbance in the medium, that is, the speed of sound in it (see Problem 4).

In the case of forced oscillations, when certain forces are acting on each element
of volume of the medium, the three-dimensional density of whose distribution is
given, Eq. (14.79) is replaced by the relation

∂2p

∂t2
= a2Δp+ f (14.80)

corresponding to Eq. (14.77), which for f �≡ 0 is called the inhomogeneous wave
equation.

14.4.5 Problems and Exercises

1. Suppose the velocity field v of a moving continuous medium is a potential field.
Show that if the medium is incompressible, the potential ϕ of the field v is a har-
monic function, that is, Δϕ = 0 (see (14.71).
2. a) Show that Euler’s equation (14.76) can be rewritten as

∂v
∂t
+ grad

(
1

2
v2
)
− v× curl v= F− 1

ρ
gradp

(see Problem 1 of Sect. 14.1).
b) Verify on the basis of the equation of a) that an irrotational flow (curl v= 0)

of a homogeneous incompressible liquid can occur only in a potential field F.
c) It turns out (Lagrange’s theorem) that if at some instant the flow in a po-

tential field F = gradU is irrotational, then it always has been and always will be
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irrotational. Such a flow consequently is at least locally a potential flow, that is,
v= gradϕ. Verify that for a potential flow of a homogeneous incompressible liquid
taking place in a potential field F, the following relation holds at each instant of
time:

grad

(
∂ϕ

∂t
+ v

2

2
+ p
ρ
−U
)
= 0.

d) Derive the so-called Cauchy integral from the equality just obtained:

∂ϕ

∂t
+ v

2

2
+ p
ρ
−U =Φ(t),

a relation that asserts that the left-hand side is independent of the spatial coordinates.
e) Show that if the flow is also steady-state, that is, the field v is independent of

time, the following relation holds

v2

2
+ p
ρ
−U = const,

called the Bernoulli integral.

3. A flow whose velocity field has the form v= (vx, vy,0) is naturally called plane-
parallel or simply a planar flow.

a) Show that the conditions div v= 0, curl v= 0 for a flow to be incompressible
and irrotational have the following forms:

∂vx

∂x
+ ∂vy
∂y
= 0,

∂vx

∂y
− ∂vy
∂x
= 0.

b) Show that these equations at least locally guarantee the existence of functions
ψ(x, y) and ϕ(x, y) such that (−vy, vx)= gradψ and (vx, vy)= gradϕ.

c) Verify that the level curves ϕ = c1 and ψ = c2 of these functions are orthogo-
nal and show that in the steady-state flow the curves ψ = c coincide with the trajec-
tories of the moving particles of the medium. It is for that reason that the function
ψ is called the current function, in contrast to the function ϕ, which is the velocity
potential.

d) Show, assuming that the functions ϕ and ψ are sufficiently smooth, that they
are both harmonic functions and satisfy the Cauchy–Riemann equations:

∂ϕ

∂x
= ∂ψ
∂y
,

∂ϕ

∂y
=−∂ψ

∂x
.

Harmonic functions satisfying the Cauchy–Riemann equations are called conjugate
harmonic functions.

e) Verify that the function f (z) = (ϕ + iψ)(x, y), where z = x + iy, is a dif-
ferentiable function of the complex variable z. This determines the connection of
the planar problems of hydrodynamics with the theory of functions of a complex
variable.
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4. Consider the elementary version ∂2p

∂t2
= a2 ∂2p

∂x2 of the wave equation (14.79). This
is the case of a plane wave in which the pressure depends only on the x-coordinate
of the point (x, y, z) of space.

a) By making the change of variable u= x−at , v = x+at , reduce this equation

to the form ∂2p
∂u∂v
= 0 and show that the general form of the solution of the original

equation is p = f (x + at)+ g(x − at), where f and g are arbitrary functions of
class C(2).

b) Interpret the solution just obtained as two waves f (x) and g(x) propagating
left and right along the x-axis with velocity a.

c) Assuming that the quantity a is the velocity of propagation of a distur-
bance even in the general case (14.79), and taking account of the relation a =
(ψ ′(p0))

−1/2, find, following Newton, the velocity cN of sound in air, assuming
that the temperature in an acoustic wave is constant, that is, assuming that the
process of acoustic oscillation is isothermic. (The equation of state is ρ = μp

RT
,

R = 8.31 J
deg·mole is the universal gas constant, and μ = 28.8 g

mole is the molec-
ular weight of air. Carry out the computation for air at a temperature of 0 °C, that
is, T = 273 K. Newton found that cN = 280 m/s.)

d) Assuming that the process of acoustic vibrations is adiabatic, find, following
Laplace, the velocity cL of sound in air, and thereby sharpen Newton’s result cN .
(In an adiabatic process p = cργ . This is Poisson’s formula from Problem 6 of

Sect. 13.1. Show that if cN =
√
p
ρ

, then cL =
√
γ
p
�

. For air γ ≈ 1.4. Laplace found

cL = 330 m/s, which is in excellent agreement with experiment.)

5. Using the scalar and vector potentials one can reduce the Maxwell equations
((14.12) of Sect. 14.1) to the wave equation (more precisely, to several wave equa-
tions of the same type). By solving this problem, you will verify this statement.

a) It follows from the equation ∇ ·B= 0 that at least locally B=∇ ×A, where
A is the vector potential of the field B.

b) Knowing that B=∇ ×A, show that the equation ∇ ×E=− ∂B
∂t

implies that
at least locally there exists a scalar function ϕ such that E=−∇ϕ − ∂A

∂t
.

c) Verify that the fields E=−∇ϕ− ∂A
∂t

and B=∇×A do not change if instead

of ϕ and A we take another pair of potentials ϕ̃ and Ã such that ϕ̃ = ϕ − ∂ψ
∂t

and
Ã=A+∇ψ , where ψ is an arbitrary function of class C(2).

d) The equation ∇ · E = ρ
ε0

implies the first relation −∇2ϕ − ∂
∂t
∇ · A = ρ

∂ε0
between the potentials ϕ and A.

e) The equation c2∇ ×B− E
∂t
= j
∂ε0

implies the second relation

−c2∇2A+ c2∇(∇ ·A)+ ∂

∂t
∇ϕ + ∂

2A
∂t2
= j
ε0

between the potentials ϕ and A.
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f) Using c), show that by solving the auxiliary wave equationΔψ+f = 1
c2
∂2ψ

∂t2
,

without changing the fields E and B one can choose the potentials ϕ and A so that

they satisfy the additional (so-called gauge) condition ∇ ·A=− 1
c2
∂ϕ
∂t

.
g) Show that if the potentials ϕ and A are chosen as stated in f), then the required

inhomogeneous wave equations

∂2ϕ

∂t2
= c2Δϕ + ρc

2

ε0
,

∂2A
∂t2
= c2ΔA+ j

ε0

for the potentials ϕ and A follow from d) and e). By finding ϕ and A, we also find
the fields E=∇ϕ, B=∇ ×A.



Chapter 15
*Integration of Differential Forms on Manifolds

15.1 A Brief Review of Linear Algebra

15.1.1 The Algebra of Forms

Let X be a vector space and Fk :Xk→ R a real-valued k-form on X. If e1, . . . , en
is a basis in X and x1 = xi1ei1, . . . , xk = xik eik is the expansion of the vectors
x1, . . . , xk ∈X with respect to this basis, then by the linearity of Fk , with respect to
each argument

Fk(x1, . . . , xk)= Fk
(
xi1ei1, . . . , x

ik eik
)=

= Fk(ei1, . . . , eik )xi1 · . . . · xik = ai1...ik xi1 · . . . · xik . (15.1)

Thus, after a basis is given in X, one can identify the k-form Fk :Xk→ R with
the set of numbers ai1...ik = Fk(ei1, . . . , eik ).

If ẽ1, . . . , ẽn is another basis in X and ãj1...jk = Fk(ẽj1, . . . , ẽjk ), then, setting
ẽj = cij ei , j = 1, . . . , n, we find the (tensor) law

ãj1...jk = Fk
(
c
i1
j1
ei1, . . . , c

ik
jk
eik
)= ai1...ik ci1j1 · . . . · c

ik
jk

(15.2)

for transformation of the number sets ai1...ik , ãj1...jk corresponding to the same
form Fk .

The set Fk := {Fk : Xk→ R} of k-forms on a vector space X is itself a vector
space relative to the standard operations

(
Fk1 + Fk2

)
(x) := Fk1 (x)+ Fk2 (x), (15.3)

(
λFk
)
(x) := λFk(x) (15.4)

of addition of k-forms and multiplication of a k-form by a scalar.

© Springer-Verlag Berlin Heidelberg 2016
V.A. Zorich, Mathematical Analysis II, Universitext,
DOI 10.1007/978-3-662-48993-2_7

313

http://dx.doi.org/10.1007/978-3-662-48993-2_7


314 15 *Integration of Differential Forms on Manifolds

For forms Fk and F l of arbitrary degrees k and l the following tensor product
operation ⊗ is defined:

(
Fk ⊗ F l)(x1, . . . , xk, xk+1, . . . , xk+l ) :=
= Fk(x1, . . . , xk)F

l(xk+1, . . . , xk+l ). (15.5)

Thus Fk⊗F l is a form Fk+l of degree k+ l. The following relations are obvious:

(
λFk
)⊗ F l = λ(Fk ⊗ F l), (15.6)

(
Fk1 + Fk2

)⊗ F l = Fk1 ⊗ F l + Fk2 ⊗ F l, (15.7)

Fk ⊗ (F l1 + F l2
) = Fk ⊗ F l1 + Fk ⊗ F l2, (15.8)

(
Fk ⊗ F l)⊗ Fm = Fk ⊗ (F l ⊗ Fm). (15.9)

Thus the set F = {Fk} of forms on the vector space X is a graded algebra F =⊕
k Fk with respect to these operations, in which the vector-space operations are

carried out inside each space Fk occurring in the direct sum, and if Fk ∈ Fk,F l ∈
F l , then Fk ⊗ F l ∈Fk+l .

Example 1 LetX∗ be the dual space toX (consisting of the linear functionals onX)
and e1, . . . , en the basis of X∗ dual to the basis e1, . . . , en in X, that is, ei(ej )= δij .

Since ei(x) = ei(xj ej ) = xj ei(ej ) = xj δij = xi , taking account of (15.1) and

(15.9), we can write any k-form Fk :Xk→R as

Fk = ai1...ik ei1 ⊗ · · · ⊗ eik . (15.10)

15.1.2 The Algebra of Skew-Symmetric Forms

Let us now consider the space Ωk of skew-symmetric forms in Fk , that is, ω ∈Ωk
if the equality

ω(x1, . . . , xi, . . . , xj , . . . , xk)=−ω(x1, . . . , xj , . . . , xi, . . . , xk)

holds for any distinct indices i, j ∈ {1, . . . , n}.
From any form Fk ∈ Fk one can obtain a skew-symmetric form using the oper-

ation A :F→Ωk of alternation, defined by the relation

AFk(x1, . . . , xk) := 1

k!F
k(xi1 , . . . , xik )δ

i1...ik
1...k , (15.11)
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where

δ
i1...ik
1...k =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1, if the permutation

(
i1 · · · ik
1 · · · k

)
is even,

−1, if the permutation

(
i1 · · · ik
1 · · · k

)
is odd,

0, if

(
i1 · · · ik
1 · · · k

)
is not a permutation.

If Fk is a skew-symmetric form, then, as one can see from (15.11), AFk = Fk .
Thus A(AFk) = AFk and Aω = ω if ω ∈Ωk . Hence A : Fk→Ωk is a mapping
of Fk onto Ωk .

Comparing Definitions (15.3), (15.4), and (15.11), we obtain

A
(
Fk1 + Fk2

) = AFk1 +AFk2 , (15.12)

A
(
λFk
) = λAFk. (15.13)

Example 2 Taking account of relations (15.12) and (15.13), we find by (15.10) that

AFk = ai1...ikA
(
ei1 ⊗ · · · ⊗ eik ),

so that it is of interest to find A(ei1 ⊗ · · · ⊗ eik ).
From Definition (15.11), taking account of the relation ei(x)= xi , we find

A
(
ej1 ⊗ · · · ⊗ ejk )(x1, . . . , xk)=

= 1

k!e
j1(xi1) · . . . · ejk (xik )δi1...ik1...k =

= 1

k!x
j1
i1
· . . . · xjkik δ

i1...ik
1...k =

1

k!

∣
∣∣∣∣∣∣∣

x
j1
1 · · · x

jk
1

...
. . .

...

x
j1
k · · · x

jk
k

∣
∣∣∣∣∣∣∣

. (15.14)

The tensor product of skew-symmetric forms is in general not skew-symmetric,
so that we introduce the following exterior product in the class of skew-symmetric
forms:

ωk ∧ωl := (k + l)!
k!l! A

(
ωk ⊗ωl). (15.15)

Thus ωk ∧ωl is a skew-symmetric form ωk+l of degree k + l.
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Example 3 Based on the result (15.14) of Example 2, we find by Definition (15.15)
that

ei1 ∧ ei2(x1, x2)= 2!
1!1!A

(
ei1 ⊗ ei2)(x1, x2)=

=
∣∣∣∣
ei1(x1) ei2(x1)

ei1(x2) ei2(x2)

∣∣∣∣=
∣∣∣∣∣
x
i1
1 x

i2
1

x
i1
2 x

i2
2

∣∣∣∣∣
. (15.16)

Example 4 Using the equality obtained in Example 3, relation (15.14), and the def-
initions (15.11) and (15.15), we can write

ei1 ∧ (ei2 ∧ ei3)(x1, x2, x3)=

= (1+ 2)!
1!2! A

(
ei1 ⊗ (ei2 ⊗ ei3))(x1, x2, x3)=

= 3!
1!2!e

i1(xj1)
(
ei2 ∧ ei3)(xj2, xj3)δj1j2j31 2 3 =

1

2!x
i1
j1

∣
∣
∣
∣∣∣

x
i2
j2

x
i3
j2

x
i2
j3

x
i3
j3

∣
∣
∣
∣∣∣
δ
j1j2j3
1 2 3 =

= xi11

∣∣∣∣∣
x
i2
2 x

i3
2

x
i2
3 x

i3
3

∣∣∣∣∣
− xi12

∣∣∣∣∣
x
i2
1 x

i3
1

x
i2
3 x

i3
3

∣∣∣∣∣
+ xi13

∣∣∣∣∣
x
i2
1 x

i3
1

x
i2
2 x

i3
2

∣∣∣∣∣
=

=

∣∣∣∣∣∣∣∣

x
i1
1 x

i2
1 x

i3
1

x
i1
2 x

i2
2 x

i3
2

x
i1
3 x

i2
3 x

i3
3

∣∣∣∣∣∣∣∣

.

A similar computation shows that

ei1 ∧ (ei2 ∧ ei3)= (ei1 ∧ ei2)∧ ei3 . (15.17)

Using the expansion of the determinant along a column, we conclude by induc-
tion that

ei1 ∧ · · · ∧ eik (x1, . . . , xk)=

∣
∣∣∣∣∣∣

ei1(x1) · · · eik (x1)
...

. . .
...

ei1(xk) · · · eik (xk)

∣
∣∣∣∣∣∣
, (15.18)

and, as one can see from the computations just carried out, formula (15.18) holds
for any 1-forms ei1, . . . , eik (not just the basis forms of the space X∗).

Taking the properties of the tensor product and the alternation operation listed
above into account, we obtain the following properties of the exterior product of
skew-symmetric forms:

(
ωk1 +ωk2

)∧ωl = ωk1 ∧ωl +ωk2 ∧ωl, (15.19)
(
λωk
)∧ωl = λ(ωk ∧ωl), (15.20)
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ωk ∧ωl = (−1)klωl ∧ωk, (15.21)
(
ωk ∧ωl)∧ωm = ωk ∧ (ωl ∧ωm). (15.22)

Proof Equalities (15.19) and (15.20) follow obviously from relations (15.6)–(15.8)
and (15.12) and (15.13).

From relations (15.10)–(15.14) and (15.17), for every skew-symmetric form ω=
ai1...ik e

i1 ⊗ · · · ⊗ eik we obtain

ω=Aω= ai1...ikA
(
ei1 ⊗ · · · ⊗ eik )= 1

k!ai1...ik e
i1 ∧ · · · ∧ eik .

Using the equalities (15.19) and (15.20) we see that it now suffices to verify
(15.21) and (15.22) for the forms ei1 ∧ · · · ∧ eik .

Associativity (15.22) for such forms was already established by (15.17).
We now obtain (15.21) immediately from (15.18) and the properties of determi-

nants for these particular forms. �

Along the way we have shown that every form ω ∈Ωk can be represented as

ω=
∑

1≤i1<i2<···<ik≤n
ai1...ik e

i1 ∧ · · · ∧ eik . (15.23)

Thus, the set Ω = {Ωk} of skew-symmetric forms on the vector space X relative
to the linear vector-space operations (15.3) and (15.4) and the exterior multiplication
(15.15) is a graded algebra Ω =⊕dimX

k=0 Ωk . The vector-space operations on Ω are
carried out inside each vector space Ωk , and if ωk ∈Ωk , ωl ∈Ωl , then ωk ∧ ωl ∈
Ωk+1.

In the direct sum ⊕Ωk the summation runs from zero the dimension of the
space X, since the skew-symmetric forms ωk : Xk → R of degree larger than the
dimension of X are necessarily identically zero, as one can see by (15.21) (or from
relations (15.23) and (15.8)).

15.1.3 Linear Mappings of Vector Spaces and the Adjoint
Mappings of the Conjugate Spaces

Let X and Y be vector spaces over the field R of real numbers (or any other field, so
long as it is the same field for both X and Y ), and let l :X→ Y be a linear mapping
of X into Y , that is, for every x, x1, x2 ∈X and every λ ∈R,

l(x1 + x2)= l(x1)+ l(x2) and l(λx)= λl(x). (15.24)

A linear mapping l : X→ Y naturally generates its adjoint mapping l∗ : FY →
FX from the set of linear functionals on Y(FY ) into the analogous set FX . If FkY is



318 15 *Integration of Differential Forms on Manifolds

a k-form on Y , then by definition

(
l∗FkY
)
(x1, . . . , xk) := FkY (lx1, . . . , lxk). (15.25)

It can be seen by (15.24) and (15.25) that l∗FkY is a k-form FkX on X, that is,
l∗(FkY )⊂FkX . Moreover, if the form FkY was skew-symmetric, then (l∗FkY )= FkX is
also skew-symmetric, that is, l∗(ΩkY ) ⊂ΩkX . Inside each vector space FkY and ΩkY
the mapping l∗ is obviously linear, that is,

l∗
(
Fk1 + Fk2

)= l∗Fk1 + l∗Fk2 and l∗
(
λFk
)= λl∗Fk. (15.26)

Now comparing definition (15.25) with the definitions (15.5), (15.11), and
(15.15) of the tensor product, alternation, and exterior product of forms, we con-
clude that

l∗
(
Fp ⊗ Fq) = (l∗Fp)⊗ (l∗Fq), (15.27)

l∗
(
AFp
) = A(l∗Fp), (15.28)

l∗
(
ωp ∧ωq) = (l∗ωp)∧ (l∗ωq). (15.29)

Example 5 Let e1, . . . , em be a basis in X, ẽ1, . . . , ẽn a basis in Y , and l(ei) =
c
j
i ẽj , i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}. If the k-form FkY has the coordinate representa-

tion

FkY (y1, . . . , yk)= bj1...jk yj11 · . . . · yjkk
in the basis ẽ1, . . . , ẽn, where bj1...jk = FkY (ẽj1 , . . . , ẽjk ), then

(
l∗FkY
)
(x1, . . . , xk)= ai1...ik xi11 · . . . · xikk ,

where ai1...ik = bj1...jkCj1i1 · . . . ·C
jk
ik

, since

ai1...ik =:
(
l∗FkY
)
(ei1, . . . , eik ) := FkY (lei1, . . . , leik )=

= FkY
(
C
j1
i1
ẽj1, . . . ,C

jk
ik
ẽjk
)= FkY (ẽj1, . . . , ẽjk )Cj1i1 · . . . ·C

jk
ik
.

Example 6 Let e1, . . . , em and ẽ1, . . . , ẽn be the bases of the conjugate spaces X∗
and Y ∗ dual to the bases in Example 5. Under the hypotheses of Example 5 we
obtain

(
l∗ẽj
)
(x)= (l∗ẽj )(xiei

)= ẽj (xilei
)= xi c̃j (cki ẽk

)=
= xicki ẽj (ẽk)= xicki δjk = cji xi = cji ei(x).

Example 7 Retaining the notation of Example 6 and taking account of relations
(15.22) and (15.29), we now obtain



15.1 A Brief Review of Linear Algebra 319

l∗
(
ẽj1 ∧ · · · ∧ ẽjk ) = l∗ẽj1 ∧ · · · ∧ l̃∗ejk =

= (cj1i1 ei1
)∧ · · · ∧ (cjkik eik

)= cj1i1 · . . . · c
jk
ik
ei1 ∧ · · · ∧ eik =

=
∑

1≤i1<···<ik≤m

∣∣∣∣∣∣∣∣

c
j1
i1
· · · c

jk
i1

...
. . .

...

c
j1
ik
· · · c

jk
ik

∣∣∣∣∣∣∣∣

ei1 ∧ · · · ∧ eik .

Keeping Eq. (15.26) in mind, we can conclude from this that

l∗
( ∑

1≤j1<···<jk≤n
bj1...jk ẽ

j1 ∧ · · · ∧ ẽjk
)
=

=
∑

1≤i1<···<ik≤m
1≤j1<···<ik≤m

bj1 . . . jk

∣
∣
∣
∣
∣
∣
∣
∣

c
j1
i1
· · · c

jk
i1

...
. . .

...

c
j1
ik
· · · c

jk
ik

∣
∣
∣
∣
∣
∣
∣
∣

ei1 ∧ · · · ∧ eik =

=
∑

1≤i1<···<ik≤m
ai1···ik ei1 ∧ · · · ∧ eik .

15.1.4 Problems and Exercises

1. Show by examples that in general

a) Fk ⊗ F l �= F l ⊗ Fk ;
b) A(Fk ⊗ F l) �=AFk ⊗AF l ;
c) if Fk,F l ∈Ω , then it is not always true that Fk ⊗ F l ∈Ω .

2. a) Show that if e1, . . . , en is a basis of the vector space X and the linear func-
tionals e1, . . . , en on X (that is elements of the conjugate space X∗) are such that
ej (ei)= δji , then e1, . . . , en is a basis in X∗.

b) Verify that one can always form a basis of the space Fk = Fk(X) from k-
forms of the form ei1 ⊗ · · · ⊗ eik , and find the dimension (dimFk) of this space,
knowing that dimX = n.

c) Verify that one can always form a basis of the space Ωk from forms of the
form ei1 ∧ · · · ∧ eik , and find dimΩk knowing that dimX = n.

d) Show that if Ω =⊕k=n
k=0=Ωk , then dimΩ = 2n.

3. The exterior (Grassmann)1 algebra G over a vector space X and a field P (usu-
ally denoted

∧
(X) in agreement with the symbol ∧ for the multiplication operation

1H. Grassmann (1809–1877) – German mathematician, physicist and philologist; in particular, he
created the first systematic theory of multidimensional and Euclidean vector spaces and gave the
definition of the inner product of vectors.
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inG) is defined as the associative algebra with identity 1 having the following prop-
erties:

10 G is generated by the identity and X, that is, any subalgebra of G containing
1 and X is equal to G;

20 x ∧ x = 0 for every vector x ∈X;
30 dimG= 2dimX .

a) Show that if e1, . . . , en is a basis in X, then the set 1, e1, . . . , en, e1 ∧
e2, . . . , en−1∧ en, . . . , e1∧· · ·∧ en of elements ofG of the form ei1 ∧· · ·∧ eik = eI ,
where I = {i1 < · · ·< ik} ⊂ {1,2, . . . , n}, forms a basis in G.

b) Starting from the result in a) one can carry out the following formal construc-
tion of the algebra G=∧(X).

For the subsets I = {i1, . . . , ik} of {1,2, . . . , n} shown in a) we form the formal
elements eI , (by identifying e{i} with ei , and e∅ with 1), which we take as a basis of
the vector space G over the field P . We define multiplication in G by the formula

(∑

I

aI eI

)(∑

J

bJ eJ

)
=
∑

I,J

aI bJ ε(I, J )eI∪J ,

where ε(I, J ) = sgn
∏
i∈I,j∈J (j − i). Verify that the Grassmann algebra

∧
(X) is

obtained in this way.
c) Prove the uniqueness (up to isomorphism) of the algebra

∧
(X).

d) Show that the algebra
∧
(X) is graded:

∧
(X) = ⊕k=n

k=0
∧k
(X), where

∧k
(X) is the linear span of the elements of the form ei1 ∧ · · · ∧ eik ; here if a ∈

∧p
(X) and b ∈∧q(X), then a ∧ b ∈∧p+q(X). Verify that a ∧ b= (−1)pqb ∧ a.

4. a) Let A : X→ Y be a linear mapping of X into Y . Show that there exists a
unique homomorphism

∧
(A) :∧(X)→∧(Y ) from

∧
(X) into

∧
(Y ) that agrees

with A on the subspace
∧′
(X)⊂∧(X) identified with X.

b) Show that the homomorphism
∧
(A) maps

∧k
(X) into

∧k
(Y ). The restric-

tion of
∧
(A) to

∧k
(X) is denoted by

∧k
(A).

c) Let {ei : i = 1, . . . ,m} be a basis in X and {ej : j = 1, . . . , n} a basis in Y ,
and let the matrix (aij ) correspond to the operator A in these bases. Show that if
{eI : I ⊂ {1, . . . ,m}}, {eJ : J ⊂ {1, . . . , n}} are the corresponding bases of the spaces
∧
(X) and

∧
(Y ), then the matrix of the operator

∧k
(A) has the form aIJ = det(aij ),

i ∈ I , j ∈ J , where card I = cardJ = k.
d) Verify that if A : X→ Y,B : Y → Z are linear operators, then the equality

∧
(B ◦A)=∧(B) ◦∧(A) holds.
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15.2 Manifolds

15.2.1 Definition of a Manifold

Definition 1 A Hausdorff topological space whose topology has a countable base2

is called an n-dimensional manifold if each of its points has a neighborhood U
homeomorphic either to all of Rn or to the half-space Hn = {x ∈Rn | x1 ≤ 0}.

Definition 2 A mapping ϕ : Rn→ U ⊂M (or ϕ :Hn→ U ⊂M) that realizes the
homeomorphism of Definition 1 is a local chart of the manifold M,Rn (or Hn) is
called the parameter domain, and U the range of the chart on the manifoldM .

A local chart endows each point x ∈ U with the coordinates of the point t =
ϕ−1(x) ∈ Rn corresponding to it. Thus, a local coordinate system is introduced in
the region U ; for that reason the mapping ϕ, or, in more expanded notation, the pair
(U,ϕ) is a map of the region U in the ordinary meaning of the term.

Definition 3 A set of charts whose ranges taken together cover the entire manifold
is called an atlas of the manifold.

Example 1 The sphere S2 = {x ∈ R3 | |x| = 1} is a two-dimensional manifold. If
we interpret S2 as the surface of the Earth, then an atlas of geographical maps will
be an atlas of the manifold S2.

The one-dimensional sphere S1 = {x ∈ R2 | |x| = 1} – a circle in R
2 – is obvi-

ously a one-dimensional manifold. In general, the sphere Sn = {x ∈Rn+1 | |x| = 1}
is an n-dimensional manifold. (See Sect. 12.1.)

Remark 1 The object (the manifold M) introduced by Definition 1 obviously does
not change if we replace R

n and Hn by any parameter domains in R
n homeomor-

phic to them. For example, such a domain might be the open cube In = {x ∈ Rn |
0 < xi < 1, i = 1, . . . , n} and the cube with a face attached Ĩ n = {x ∈ R

n | 0 <
x1 ≤ 1,0< xi < 1, i = 2, . . . , n}. Such standard parameter domains are used quite
often.

It is also not difficult to verify that the object introduced by Definition 1 does
not change if we require only that each point x ∈M have a neighborhood U in M
homeomorphic to some open subset of the half-space Hn.

Example 2 IfX is anm-dimensional manifold with an atlas of charts {(Uα,ϕα)} and
Y is an n-dimensional manifold with atlas {(Vβ,ψβ)}, thenX×Y can be regarded as
an (m+ n)-dimensional manifold with the atlas {(Wαβ,χαβ)}, where Wαβ = Uα ×
Vβ and the mapping χαβ = (ϕα,ψβ) maps the direct product of the domains of
definition of ϕα and ψβ into Wαβ .

2See Sect. 9.2 and also Remarks 2 and 3 in the present section.
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Fig. 15.1

In particular, the two-dimensional torus T 2 = S1 × S1 (Fig. 12.1) or the n-di-
mensional torus T n = S1 × · · · × S1

︸ ︷︷ ︸
n factors

is a manifold of the corresponding dimension.

If the ranges Ui and Uj of two charts (Ui, ϕi) and (Uj ,ϕj ) of a manifold M in-
tersect, that is, Ui ∩Uj �=∅, mutually inverse homeomorphisms ϕij : Iij → Iji and
ϕji : Iji → Iij naturally arise between the sets Iij = ϕ−1

i (Uj ) and Iji = ϕ−1
j (Ui).

These homeomorphisms are given by ϕij = ϕ−1
j ◦ ϕi |Iij and ϕji = ϕ−1

i ◦ ϕj |Iji .
These homeomorphisms are often called changes of coordinates, since they effect
a transition from one local coordinate system to another system of the same kind in
their common range Ui ∩Uj (Fig. 15.1).

Definition 4 The number n in Definition 1 is the dimension of the manifold M and
is usually denoted dimM .

Definition 5 If a point ϕ−1(x) on the boundary ∂Hn of the half-space Hn corre-
sponds to a point x ∈ U under the homeomorphism ϕ : Hn→ U , then x is called
a boundary point of the manifold M (and of the neighborhood U ). The set of all
boundary points of a manifold M is called the boundary of this manifold and is
usually denoted ∂M .

By the topological invariance of interior points (Brouwer’s theorem3) the con-
cepts of dimension and boundary point of a manifold are unambiguously defined,
that is, independent of the particular local charts used in Definitions 4 and 5. We
have not proved Brouwer’s theorem, but the invariance of interior points under dif-
feomorphisms is well-known to us (a consequence of the inverse function theorem).
Since it is diffeomorphisms that we shall be dealing with, we shall not digress here
to discuss Brouwer’s theorem.

3This theorem asserts that under a homeomorphism ϕ : E→ ϕ(E) of a set E ⊂ R
n onto a set

ϕ(E)⊂R
n the interior points of E map to interior points of ϕ(E).
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Fig. 15.2

Example 3 The closed ball B
n = {x ∈Rn | |x| ≤ 1} or, as we say, the n-dimensional

disk, is an n-dimensional manifold whose boundary is the (n − 1)-dimensional
sphere Sn−1 = {x ∈Rn | |x| = 1}.

Remark 2 A manifoldM having a nonempty set of boundary points is usually called
a manifold with boundary, the term manifold (in the proper sense of the term) be-
ing reserved for manifolds without boundary. In Definition 1 these cases are not
distinguished.

Proposition 1 The boundary ∂M of an n-dimensional manifold with boundary M
is an (n− 1)-dimensional manifold without boundary.

Proof Indeed, ∂Hn = R
n−1, and the restriction to ∂Hn of a chart of the form ϕi :

Hn→Ui belonging to an atlas ofM generates an atlas of ∂M . �

Example 4 Consider the planar double pendulum (Fig. 15.2) with arm a shorter
than arm b, both being free to oscillate, except that the oscillations of b are limited in
range by barriers. The configuration of such a system is characterized at each instant
of time by the two angles α and β . If there were no constraints, the configuration
space of the double pendulum could be identified with the two-dimensional torus
T 2 = S1

α × S1
β .

Under these constraints, the configuration space of the double pendulum is
parametrized by the points of the cylinder S1

α × I 1
β , where S1

α is the circle, corre-

sponding to all possible positions of the arm a, and I 1
β = {β ∈ R | |β| ≤ Δ} is the

interval within which the angle β may vary, characterizing the position of the arm b.
In this case we obtain a manifold with boundary. The boundary of this manifold

consists of the two circles S1
α × {−Δ} and S1

α × {Δ}, which are the products of the
circle S1

α and the endpoints {−Δ} and {Δ} of the interval I 1
β .

Remark 3 It can be seen from Example 4 just considered that coordinates some-
times arise naturally onM (α and β in this example), and they themselves induce a
topology on M . Hence, in Definition 1 of a manifold, it is not always necessary to
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require in advance thatM have a topology. The essence of the concept of a manifold
is that the points of some set M can be parametrized by the points of a set of sub-
domains of Rn. A natural connection then arises between the coordinate systems
that thereby arise on parts of M , expressed in the mappings of the corresponding
domains of Rn. Hence we can assume that M is obtained from a collection of do-
mains of R

n by exhibiting some rule for identifying their points or, figuratively
speaking, exhibiting a rule for gluing them together. Thus defining a manifold es-
sentially means giving a set of subdomains of Rn and a rule of correspondence for
the points of these subdomains. We shall not take the time to make this any more
precise by formalizing the concept of gluing or identifying points, introducing a
topology onM , and the like.

Definition 6 A manifold is compact (resp. connected) if it is compact (resp. con-
nected) as a topological space.

The manifolds considered in Examples 1–4 are compact and connected. The
boundary of the cylinder S1

α × I 1
β in Example 4 consists of two independent cir-

cles and is a one-dimensional compact, but not connected, manifold. The boundary
Sn−1 = ∂Bn of the n-dimensional disk of Example 3 is a compact manifold, which
is connected for n > 1 and disconnected (it consists of two points) if n= 1.

Example 5 The space R
n itself is obviously a connected noncompact manifold

without boundary, and the half-space Hn provides the simplest example of a con-
nected noncompact manifold with boundary. (In both cases the atlas can be taken to
consist of the single chart corresponding to the identity mapping.)

Proposition 2 If a manifoldM is connected, it is path connected.

Proof After fixing a point x0 ∈M , consider the set Ex0 of points of M that can be
joined to x0 by a path inM . The set Ex0 , as one can easily verify from the definition
of a manifold, is both open and closed inM . But that means that Ex0 =M . �

Example 6 If to each real n× n matrix we assign the point of Rn
2

whose coordi-
nates are obtained by writing out the elements of the matrix in some fixed order,
then the group GL(n,R) of nonsingular n× n matrices becomes a manifold of di-
mension n2. This manifold is noncompact (the elements of the matrices are not
bounded) and nonconnected. This last fact follows from the fact that GL(n,R) con-
tains matrices with both positive and negative determinants. The points of GL(n,R)
corresponding to two such matrices cannot be joined by a path. (On such a path
there would have to be a point corresponding to a matrix whose determinant is
zero.)

Example 7 The group SO(2,R) of orthogonal mappings of the plane R2 having de-
terminant equal to 1 consists of matrices of the form

( cosα sinα
− sinα cosα

)
and hence can be

regarded as a manifold that is identified with the circle – the domain of variation of
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the angular parameter α. Thus SO(2,R) is a one-dimensional compact connected
manifold. If we also allow reflections about lines in the plane R

2, we obtain the
group O(2,R) of all real orthogonal 2× 2 matrices. It can be naturally identified
with two different circles, corresponding to matrices with determinants +1 and −1
respectively. That is,O(2,R) is a one-dimensional compact, but not connected man-
ifold.

Example 8 Let a be a vector in R
2 and Ta the group of rigid motions of the plane

generated by a. The elements of Ta are translations by vectors of the form na, where
n ∈ Z. Under the action of the elements g of the group Ta each point x of the plane
is displaced to a point g(x) of the form x+na. The set of all points to which a given
point x ∈R2 passes under the action of the elements of this group of transformations
is called its orbit. The property of points of R2 of belonging to the same orbit is
obviously an equivalence relation on R

2, and the orbits are the equivalence classes
of this relation. A domain in R

2 containing one point from each equivalence class
is called a fundamental domain of this group of automorphisms (for a more precise
statement see Problem 5d)).

In the present case we can take as a fundamental domain a strip of width |a|
bounded by two parallel lines orthogonal to a. We need only take into account that
these lines themselves are obtained from each other through translations by a and
–a respectively. Inside a strip of width less than |a| and orthogonal to a there are no
equivalent points, so that all orbits having representatives in that strip are endowed
uniquely with the coordinates of their representatives. Thus the quotient set R2/Ta
consisting of orbits of the group Ta becomes a manifold. From what was said above
about a fundamental domain, one can easily see that this manifold is homeomorphic
to the cylinder obtained by gluing the boundary lines of a strip of width |a| together
at equivalent points.

Example 9 Now let a and b be a pair of orthogonal vectors of the plane R
2 and

Ta,b the group of translations generated by these vectors. In this case a fundamental
domain is the rectangle with sides a and b. Inside this rectangle the only equivalent
points are those that lie on opposite sides. After gluing the sides of this fundamental
rectangle together, we verify that the resulting manifold R

2/Ta,b is homeomorphic
to the two-dimensional torus.

Example 10 Now consider the group Ga,b of rigid motions of the plane R
2 gener-

ated by the transformations a(x, y)= (x + 1,1− y) and b(x, y)= (x, y + 1).
A fundamental domain for the group Ga,b is the unit square whose horizon-

tal sides are identified at points lying on the same vertical line, but whose vertical
sides are identified at points symmetric about the center. Thus the resulting manifold
R

2/Ga,b turns out to be homeomorphic to the Klein bottle (see Sect. 12.1).
We shall not take time to discuss here the useful and important examples studied

in Sect. 12.1.
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15.2.2 Smooth Manifolds and Smooth Mappings

Definition 7 An atlas of a manifold is smooth (of class C(k) or analytic) if all the
coordinate-changing functions for the atlas are smooth mappings (diffeomorphisms)
of the corresponding smoothness class.

Two atlases of a given smoothness (the same smoothness for both) are equivalent
if their union is an atlas of this smoothness.

Example 11 An atlas consisting of a single chart can be regarded as having any
desired smoothness. Consider in this connection the atlas on the line R

1 generated
by the identity mapping R

1 � x �→ ϕ(x) = x ∈ R1, and a second atlas – generated
by any strictly monotonic function R

1 � x �→ ϕ̃(x) ∈ R
1, mapping R

1 onto R
1.

The union of these atlases is an atlas having smoothness equal to the smaller of the
smoothnesses of ϕ̃ and ϕ̃−1.

In particular, if ϕ̃(x) = x3, then the atlas consisting of the two charts {x, x3} is
not smooth, since ϕ̃−1(x)= x1/3. Using what has just been said, we can construct
infinitely smooth atlases in R

1 whose union is an atlas of a preassigned smoothness
class C(k).

Definition 8 A smooth manifold (of class C(k) or analytic) is a manifoldM with an
equivalence class of atlases of the given smoothness.

After this definition the following terminology is comprehensible: topological
manifold (of class C(0)), C(k)-manifold, analytic manifold.

To give the entire equivalence class of atlases of a given smoothness on a mani-
foldM it suffices to give any atlas A of this equivalence class. Thus we can assume
that a smooth manifold is a pair (M,A), where M is a manifold and A an atlas of
the given smoothness onM .

The set of equivalent atlases of a given smoothness on a manifold is often called
a structure of this smoothness on the manifold. There may be different smooth struc-
tures of even the same smoothness on a given topological manifold (see Example 11
and Problem 3).

Let us consider some more examples in which our main attention is directed to
the smoothness of the coordinate changes.

Example 12 The one-dimensional manifold RP
1 called the real projective line, is

the pencil of lines in R
2 passing through the origin, with the natural notion of dis-

tance between two lines (measured, for example, by the magnitude of the smaller
angle between them). Each line of the pencil is uniquely determined by a nonzero
direction vector (x1, x2), and two such vectors give the same line if and only if
they are collinear. Hence RP

1 can be regarded as a set of equivalence classes of
ordered pairs (x1, x2) of real numbers. Here at least one of the numbers in the pair
must be nonzero, and two pairs are considered equivalent (identified) if they are pro-
portional. The pairs (x1, x2) are usually called homogeneous coordinates on RP

1.
Using the interpretation of RP1 in homogeneous coordinates, it is easy to construct
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an atlas of two charts on RP
1. Let Ui , i = 1,2, be the lines (classes of pairs (x1, x2))

in RP
1 for which xi �= 0. To each point (line) p ∈ U1 there corresponds a unique

pair (1, x
2

x1 ) determined by the number t21 = x2

x1 . Similarly the points of the region U2

are in one-to-one correspondence with pairs of the form ( x
1

x2 ,1) and are determined

by the number t12 = x1

x2 . Thus local coordinates arise in U1 and U2, which obviously

correspond to the topology introduced above on RP
1. In the common range U1∩U2

of these local charts the coordinates they introduce are connected by the relations
t12 = (t21 )−1 and t21 = (t12 )−1, which shows that the atlas is not only C(∞) but even
analytic.

It is useful to keep in mind the following interpretation of the manifold RP
1.

Each line of the original pencil of lines is completely determined by its intersec-
tion with the unit circle. But there are exactly two such points, diametrically op-
posite to each other. Lines are near if and only if the corresponding points of the
circle are near. Hence RP1 can be interpreted as a circle with diametrically opposite
points identified (glued together). If we take only a semicircle, there is only one
pair of identified points on it, the end-points. Gluing them together, we again ob-
tain a topological circle. Thus RP

1 is homeomorphic to the circle as a topological
space.

Example 13 If we now consider the pencil of lines passing through the origin in R
3,

or, what is the same, the set of equivalence classes of ordered triples of points
(x1, x2, x3) of real numbers that are not all three zero, we obtain the real pro-
jective plane RP

2. In the regions U1, U2, and U3 where x1 �= 0, x2 �= 0, x3 �=
0 respectively, we introduce local coordinate systems (1, x

2

x1 ,
x3

x1 ) = (1, t21 , t31 ) ∼
(t21 , t

3
1 ), (

x1

x2 ,1,
x3

x2 ) = (t12 ,1, t32 ) ∼ (t12 , t32 ), and ( x
1

x3 ,
x2

x1 ,1) = (t13 , t23 ,1) ∼ (t13 , t23 ),
which are obviously connected by the relations tji = (t ij )−1, tji = tjk (t ik)−1, which
apply in the common portions of the ranges of these charts.

For example, the transition from (t21 , t
3
1 ) to (t12 , t

3
2 ) in the domainU1∩U2 is given

by the formulas

t12 =
(
t21
)−1
, t32 = t31 ·

(
t21
)−1
.

The Jacobian of this transformation is −(t21 )−3, and since t21 = x2

x1 , it is defined
and nonzero at points of the set U1 ∩U2 under consideration.

Thus RP
2 is a two-dimensional manifold having an analytic atlas consisting of

three charts.
By the same considerations as in Example 12, where we studied the projective

line RP
1, we can interpret the projective plane RP

2 as the two-dimensional sphere
S2 ⊂ R

2 with antipodal points identified, or as a hemisphere, with diametrically
opposite points of its boundary circle identified. Projecting the hemisphere into the
plane, we obtain the possibility of interpreting RP

2 as a (two-dimensional) disk with
diametrically opposite points of its boundary circle identified.
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Example 14 The set of lines in the plane R
2 can be partitioned into two sets: U ,

the nonvertical lines, and V , the nonhorizontal lines. Each line in U has an equation
of the form y = u1x + u2, and hence is characterized by the coordinates (u1, u2),
while each line in V has an equation x = v1y+ v2 and is determined by coordinates
(v1, v2). For lines in the intersection U ∩V have the coordinate transformation v1 =
u−1

1 , v2 =−u2u
−1
1 and u1 = v−1

1 , u2 =−v2v
−1
1 . Thus this set is endowed with an

analytic atlas consisting of two charts.
Every line in the plane has an equation ax + by + c = 0 and is characterized

by a triple of numbers (a, b, c), proportional triples defining the same line. For that
reason, it might appear that we are again dealing with the projective plane RP

2

considered in Example 13. However, whereas in RP
2 we admitted any triples of

numbers not all zero, now we do not admit triples of the form (0,0, c) where c �= 0.
A single point in RP

2 corresponds to the set of all such triples. Hence the manifold
obtained in our present example is homeomorphic to the one obtained from RP

2 by
removing one point. If we interpret RP2 as a disk with diametrically opposite points
of the boundary circle identified, then, deleting the center of the circle, we obtain, up
to homeomorphism, an annulus whose outer circle is glued together at diametrically
opposite points. By a simple incision one can easily show that the result is none
other than the familiar Möbius band.

Definition 9 Let M and N be C(k)-manifolds. A mapping f :M→N is l-smooth
(a C(l)-mapping) if the local coordinates of the point f (x) ∈ N are C(l)-functions
of the local coordinates of x ∈M .

This definition has an unambiguous meaning (one that is independent of the
choice of local coordinates) if l ≤ k.

In particular, the smooth mappings ofM into R
1 are smooth functions onM , and

the smooth mappings of R1 (or an interval of R1) intoM are smooth paths onM .
Thus the degree of smoothness of a function f :M→N on a manifoldM cannot

exceed the degree of smoothness of the manifold itself.

15.2.3 Orientation of a Manifold and Its Boundary

Definition 10 Two charts of a smooth manifold are consistent if the transition from
the local coordinates in one to the other in their common range is a diffeomorphism
whose Jacobian is everywhere positive.

In particular, if the ranges of two local charts have empty intersection, they are
considered consistent.

Definition 11 An atlas A of a smooth manifold (M,A) is an orienting atlas of M
if it consists of pairwise consistent charts.
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Definition 12 A manifold is orientable if it has an orienting atlas. Otherwise it is
nonorientable.

Two orienting atlases of a manifold will be regarded as equivalent (in the sense
of the question of orientation of the manifold considered just now) if their union is
also an orienting atlas of the manifold. It is easy to see that this relation really is an
equivalence relation.

Definition 13 An equivalence class of orienting atlases of a manifold in the relation
just defined is called an orientation class of atlases of the manifold or an orientation
of the manifold.

Definition 14 An oriented manifold is a manifold with this class of orientations of
its atlases, that is, with a fixed orientation on the manifold.

Thus orienting the manifold means exhibiting (by some means or other) a certain
orientation class of atlases on it. To do this, for example, it suffices to exhibit any
specific orienting atlas from the orientation class.

Various methods used in practice to define an orientation of manifolds embedded
in R

n are described in Sects. 12.2 and 12.3.

Proposition 3 A connected manifold is either nonorientable or admits exactly two
orientations.

Proof Let A and Ã be two orienting atlases of the manifold M with diffeomorphic
transitions from the local coordinates of charts of one to charts of the other. Assume
that there is a point p0 ∈M and two charts of these atlases whose ranges Ui0 and
Ũi0 contain p0; and suppose the Jacobian of the change of coordinates of the charts
at points of the parameter space corresponding to the point p0 is positive. We shall
show that then for every point p ∈M and any charts of the atlases A and Ã whose
ranges contain p the Jacobian of the coordinate transformation at corresponding
coordinate points is also positive.

We begin by making the obvious observation that if the Jacobian of the transfor-
mation is positive (resp. negative) at the point p for any pair of charts containing
p in the atlases A and Ã, then it is positive (resp. negative) at p for any such pair
of charts, since inside each given atlas the coordinate transformations occur with
positive Jacobian, and the Jacobian of a composition of two mappings is the product
of the Jacobians of the individual mappings.

Now let E be the subset of M consisting of the points p ∈M at which the coor-
dinate transformations from the charts of one atlas to those of the other have positive
Jacobian.

The set E is nonempty, since p0 ∈E. The set E is open in M . Indeed, for every
point p ∈ E there exist ranges Ui and Ũj of certain charts of the atlases A and Ã
containing p. The sets Ui and Ũj are open in M , so that the set Ui ∩ Ũj is open
in M . On the connected component of the set Ui ∩ Ũj containing p, which is open
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in Ui ∩ Ũj and inM , the Jacobian of the transformation cannot change sign without
vanishing at some point. That is, in some neighborhood of p the Jacobian remains
positive, which proves that E is open. But E is also closed inM . This follows from
the continuity of the Jacobian of a diffeomorphism and the fact that the Jacobian of
a diffeomorphism never vanishes.

ThusE is a nonempty open-closed subset of the connected setM . HenceE =M ,
and the atlases A and Ã define the same orientation onM .

Replacing one coordinate, say t1 by −t1 in every chart of the atlas A, we obtain
the orienting atlas−A belonging to a different orientation class. Since the Jacobians
of the coordinate transformations from an arbitrary chart to the charts of A and −A
have opposite signs, every atlas that orientsM is equivalent either to A or to −A. �

Definition 15 A finite sequence of charts of a given atlas will be called a chain of
charts if the ranges of any pair of charts having adjacent indices have a nonempty
intersection (Ui ∩Ui+1 �=∅).

Definition 16 A chain of charts is contradictory or disorienting if the Jacobian of
the coordinate transformation from each chart in the chain to the next is positive
and the ranges of the first and last charts of the chain intersect, but the coordinate
transformation from the last to the first has negative Jacobian.

Proposition 4 A manifold is orientable if and only if there does not exist a contra-
dictory chain of charts on it.

Proof Since every manifold decomposes into connected components whose orienta-
tions can be defined independently, it suffices to prove Proposition 4 for a connected
manifoldM .

Necessity. Suppose the connected manifold M is orientable and A is an atlas defin-
ing an orientation. From what has been said and Proposition 3, every smooth local
chart of the manifoldM connected with the charts of the atlas A is either consistent
with all the charts of A or consistent with all the charts of −A. This can easily be
seen from Proposition 3 itself, if we restrict charts of A to the range of the chart we
have taken, which can be regarded as a connected manifold oriented by one chart. It
follows from this that there is no contradictory chain of charts onM .

Sufficiency. It follows from Definition 1 that there exists an atlas on the manifold
consisting of a finite or countable number of charts. We take such an atlas A and
number its charts. Consider the chart (U1, ϕ1) and any chart (Ui, ϕi) such that
U1 ∩ Ui �= ∅. Then the Jacobians of the coordinate transformations ϕ1i and ϕi1
are either everywhere negative or everywhere positive in their domains of defini-
tion. The Jacobians cannot have values of different signs, since otherwise one could
exhibit connected subsets U− and U+ in U1∪Ui where the Jacobian is negative and
positive respectively, and the chain of charts (U1, ϕ1), (U+, ϕ1), (Ui, ϕi), (U−, ϕi)
would be contradictory.
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Thus, changing the sign of one coordinate if necessary in the chart (Ui, ϕi), we
could obtain a chart with the same range Ui and consistent with (U1, ϕ1). After that
procedure, two charts (Ui, ϕi) and (Uj ,ϕj ) such that U1 ∩ Ui �=∅, U1 ∩ Uj �=∅,
Ui ∩ Uj �= ∅ are themselves consistent: otherwise we would have constructed a
contradictory chain of three charts.

Thus, all the charts of an atlas whose ranges intersect U1 can now be considered
consistent with one another. Taking each of those charts now as the standard, one
can adjust the charts of the atlas not covered in the first stage so that they are con-
sistent. No contradictions arise when we do this, since by hypothesis, there are no
contradictory chains on the manifold. Continuing this process and taking account of
the connectedness of the manifold, we construct on it an atlas consisting of pairwise
consistent charts, which proves the orientability of the manifold. �

This criterion for orientability of the manifold, like the considerations used in its
proof, can be applied to the study of specific manifolds. Thus, the manifold RP

1

studied in Example 12 is orientable. From the atlas shown there it is easy to obtain
an orienting atlas of RP

1. To do this, it suffices to reverse the sign of the local
coordinates of one of the two charts constructed there. However, the orientability of
the projective line RP

1 obviously also follows from the fact that the manifold RP
1

is homeomorphic to a circle.
The projective plane RP

2 is nonorientable: every pair of charts in the atlas con-
structed in Example 13 is such that the coordinate transformations have domains
of positivity and domains of negativity of the Jacobian. As we saw in the proof of
Proposition 4, it follows from this that a contradictory chain of charts on RP

2 exists.
For the same reason the manifold considered in Example 14 is nonorientable,

which, as was noted, is homeomorphic to a Möbius band.

Proposition 5 The boundary of an orientable smooth n-dimensional manifold is an
orientable (n− 1)-dimensional manifold admitting a structure of the same smooth-
ness as the original manifold.

Proof The proof of Proposition 5 is a verbatim repetition of the proof of the analo-
gous Proposition 2 of Sect. 12.3.2 for surfaces embedded in R

n. �

Definition 17 If A(M) = {(Hn,ϕi,Ui)} ∪ {(Rn,ϕj ,Uj )} is an atlas that orients
the manifold M , then the charts A(∂M) = {(Rn−1, ϕi |∂Hn=Rn−1, ∂Ui)} provide an
orienting atlas for the boundary ∂M of M . The orientation of the boundary defined
by this atlas is called the orientation of the boundary induced by the orientation of
the manifold.

Important techniques for defining the orientation of a surface embedded in R
n

and the induced orientation of its boundary, which are frequently used in practice,
were described in detail in Sects. 12.2 and 12.3.
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15.2.4 Partitions of Unity and the Realization of Manifolds
as Surfaces in R

n

In this subsection we shall describe a special construction called a partition of unity.
This construction is often the basic device for reducing global problems to local
ones. Later on we shall demonstrate it in deriving Stokes’ formula on a manifold,
but here we shall use the partition of unity to clarify the possibility of realizing any
manifold as a surface in R

n of sufficiently high dimension.

Lemma One can construct a function f ∈ C(∞)(R,R) on R such that f (x) ≡ 0
for |x| ≥ 3, f (x)≡ 1 for |x| ≤ 1, and 0< f (x) < 1 for 1< |x|< 3.

Proof We shall construct one such function using the familiar function g(x) =
{
e(−1/x2) for x �=0,
0 for x=0.

Previously (see Exercise 2 of Sect. 5.2) we verified that g ∈
C(∞)(R,R) by showing that g(n)(0)= 0 for every value n ∈N.

In such a case the nonnegative function

G(x)=
{

e−(x−1)−2 · e−(x+1)−2
for |x|< 1,

0 for |x| ≥ 1

also belongs to C(∞)(R,R), and along with it the function

F(x)=
∫ x

−∞
G(t)dt

/∫ +∞

−∞
G(t)dt+

belongs to this class, since F ′(x)=G(x)/ ∫∞−∞G(t)dt .
The function F is strictly increasing on [−1,1], F(x) ≡ 0 for x ≤ −1, and

F(x)≡ 1 for x ≥ 1.
We can now take the required function to be

f (x)= F(x + 2)+ F(−x − 2)− 1. �

Remark If f : R→ R is the function constructed in the proof of the lemma, then
the function

θ
(
x1, . . . , xn

)= f (x1 − a1) · . . . · f (xn − an)

defined in R
n is such that θ ∈ C(∞)(Rn,R), 0 ≤ θ ≤ 1, at every point x ∈ R

n,
θ(x) ≡ 1 on the interval I (a) = {x ∈ R

n | |xi − ai | ≤ 1, i = 1, . . . , n}, and the
support supp θ of the function θ is contained in the interval Ĩ (a) = {x ∈ R

n |
|xi − ai | ≤ 3, i = 1, . . . , n}.

Definition 18 Let M be a C(k)-manifold and X a subset of M . The system E =
{eα,α ∈A} of functions eα ∈C(k)(M,R) is a C(k) partition of unity on X if
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10 0≤ eα(x)≤ 1 for every function eα ∈E and every x ∈M ;
20 each point x ∈ X has a neighborhood U(x) in M such that all but a finite

number of functions of E are identically zero on U(x);
30 ∑

eα∈E eα(x)≡ 1 on X.
We remark that by condition 20 only a finite number of terms in this last sum are

nonzero at each point x ∈X.

Definition 19 Let O = {oβ,β ∈ B} be an open covering of X ⊂M . We say that
the partition of unity E = {eα,α ∈ A} on X is subordinate to the covering O if the
support of each function in the system E is contained in at least one of the sets of
the system O.

Proposition 6 Let {(Ui, ϕi), i = 1, . . . ,m} be a finite set of charts of some C(k)

atlas of the manifoldM , whose ranges Ui , i = 1, . . . ,m, form a covering of a com-
pact set K ⊂M . Then there exists a C(k) partition of unity on K subordinate to the
covering {Ui, i = 1, . . . ,m}.

Proof For any point x0 ∈K we first carry out the following construction. We choose
successively a domain Ui containing x0 corresponding to a chart ϕi : Rn→ Ui (or
ϕi :Hn→ Ui ), the point t0 = ϕ−1

i (x0) ∈Rn (or Hn), the function θ(t − t0) (where
θ(t) is the function shown in the remark to the lemma), and the restriction θt0 of
θ(t − t0) to the parameter domain of ϕi .

Let It0 be the intersection of the unit cube centered at t0 ∈ R
n with the pa-

rameter domain of ϕi . Actually θt0 differs from θ(t − t0) and It0 differs from the
corresponding unit cube only when the parameter domain of the chart ϕi is the
half-space Hn. The open sets ϕi(It ) constructed at each point x ∈K and the point
t = ϕ−1

i (x), taken for all admissible values of i = 1,2, . . . ,m, form an open cov-
ering of the compact set K . Let {ϕij (Itj ), j = 1,2, . . . , l} be a finite covering of K
extracted from it. It is obvious that ϕij (Itj ) ⊂ Uij . We define on Uij the function

θ̃i (x)= θtj ◦ ϕ−1
tj
(x). We then extend θ̃j (x) to the entire manifold M by setting the

function equal to zero outside Uij . We retain the previous notation θ̃j for this func-
tion extended toM . By construction θ̃j ∈ C(k)(M,R), supp θ̃j ⊂Uij ,0≤ θ̃j (x)≤ 1
on M , and θ̃j (x)≡ 1 on ϕij (Itj )⊂ Uij . Then the functions e1(x)= θ̃1(x), e2(x)=
θ̃2(x)(1− θ̃1(x)), . . . , el(x)= θ̃l(x) ·(1− θ̃l−1(x)) · . . . ·(1− θ̃1(x)) form the required
partition of unity. We shall verify only that

∑l
j=1 ej (x)≡ 1 on K , since the system

of functions {e1, . . . , el} obviously satisfies the other conditions required of a parti-
tion of unity on K subordinate to the covering {Ui1, . . . ,Uil } ⊂ {Ui, i = 1, . . . ,m}.
But

1−
l∑

j=1

ej (x)=
(
1− θ̃1(x)

) · . . . · (1− θ̃1(x)
)≡ 0 on K,

since each point x ∈K is covered by some set ϕij (Itj ) on which the corresponding
function θ̃j is identically equal to 1. �
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Corollary 1 IfM is a compact manifold and A a C(k) atlas onM , then there exists
a finite partition of unity {e1, . . . , el} onM subordinate to a covering of the manifold
by the ranges of the charts of A.

Proof Since M is compact, the atlas A can be regarded as finite. We now have the
hypotheses of Proposition 6, if we set K =M in it. �

Corollary 2 For every compact set K contained in a manifold M and every open
set G⊂M containing K , there exists a function f :M→R with smoothness equal
to that of the manifold and such that f (x)≡ 1 on K and suppf ⊂G.

Proof Cover each point x ∈K by a neighborhood U(x) contained in G and inside
the range of some chart of the manifold M . From the open covering {U(x), x ∈K}
of the compact set K extract a finite covering, and construct a partition of unity
{e1, . . . , el} onK subordinate to it. The function f =∑l

i=1 ei is the one required. �

Corollary 3 Every (abstractly defined) compact smooth n-dimensional manifoldM
is diffeomorphic to some compact smooth surface contained in R

N of sufficiently
large dimension N .

Proof So as not to complicate the idea of the proof with inessential details,we carry
it out for the case of a compact manifold M without boundary. In that case there is
a finite smooth atlas A= {ϕi : I → Ui, i = 1, . . . ,m} on M , where I is an open n-
dimensional cube in R

n. We take a slightly smaller cube I ′ such that I ′ ⊂ I and the
set {U ′i = ϕi(I ′), i = 1, . . . ,m} still forms a covering of M . Setting K = I ′, G= I ,
and M = R

n in Corollary 2, we construct a function f ∈ C(∞)(Rn,R) such that
f (t)≡ 1 for t ∈ I ′ and suppf ⊂ I .

We now consider the coordinate functions t1i (x), . . . , t
n
i (x) of the mappings ϕ−1

i :
UI → I , i = 1, . . . ,m, and use them to introduce the following function onM :

yki (x)=
{
(f ◦ ϕ−1

i )(x) · tki (x) for x ∈Ui,
0 for x /∈Ui,

i = 1, . . . ,m; k = 1, . . . , n.

At every point x ∈M the rank of the mappingM � x �→ y(x)= (y1
1 , . . . , y

n
1 , . . . ,

y1
m, . . . , y

n
m)(x) ∈Rm·n is maximal and equal to n. Indeed, if x ∈U ′i , then ϕ−1

i (x)=
t ∈ I ′, f ◦ ϕ−1

i (x)= 1, and yki (ϕi(t))= tki , k = 1, . . . , n.
If finally, we consider the mappingM � x �→ Y(x)= (y(x), f ◦ϕ−1

1 (x), . . . , f ◦
ϕ−1
m (x)) ∈Rm·n+m, setting f ◦ ϕ−1

i (x)≡ 0 outside Ui , i = 1, . . . ,m, then this map-
ping, on the one hand will obviously have the same rank n as the mapping x �→ y(x);
on the other hand it will be demonstrably a one-to-one mapping of M onto the im-
age of M in R

m·n+m. Let us verify this last assertion. Let p,q be different points
of M . We find a domain U ′i from the system {U ′i , i = 1, . . . ,m} covering M that
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contains the point p. Then f ◦ ϕ−1
i (p)= 1. If f ◦ ϕ−1

i (q) < 1, then Y(p) �= Y(q).
If f ◦ϕ−1

i (q)= 1, then p,q ∈Ui , yki (p)= tk(p), yki (q)= tk(q), and tki (p) �= tki (q)
for at least one value of k ∈ {1, . . . , n}. That is, Y(p) �= Y(q) in this case. �

For information on the general Whitney embedding theorem for an arbitrary
manifold as a surface in R

n the reader may consult the specialized geometric lit-
erature.

15.2.5 Problems and Exercises

1. Verify that the object (a manifold) introduced by Definition 1 does not change if
we require only that each point x ∈M have a neighborhood U(x)⊂M homeomor-
phic to an open subset of the half-space Hn.
2. Show that

a) the manifold GL(n,R) of Example 6 is noncompact and has exactly two con-
nected components;

b) the manifold SO(n,R) (see Example 7) is connected;
c) the manifoldO(n,R) is compact and has exactly two connected components.

3. Let (M,A) and (M̃, Ã) be manifolds with smooth structures of the same degree
of smoothness C(k) on them. The smooth manifolds (M,A) and (M̃, Ã) (smooth
structures) are considered isomorphic if there exists a C(k) mapping f :M → M̃

having a C(k) inverse f−1 : M̃→M in the atlases A, Ã.

a) Show that all structures of the same smoothness on R
1 are isomorphic.

b) Verify the assertions made in Example 11, and determine whether they con-
tradict a).

c) Show that on the circle S1 (the one-dimensional sphere) any two C(∞) struc-
tures are isomorphic. We note that this assertion remains valid for spheres of dimen-
sion not larger than 6, but on S7, as Milnor4 has shown, there exist nonisomorphic
C(∞) structures.

4. Let S be a subset of an n-dimensional manifold M such that for every point
x0 ∈ S there exists a chart x = ϕ(t) of the manifold M whose range U contains x0,
and the k-dimensional surface defined by the relations tk+1 = 0, . . . , tn = 0 corre-
sponds to the set S ∩ U in the parameter domain t = (t1, . . . , tn) of ϕ. In this case
S is called a k-dimensional submanifold of M .

a) Show that a k-dimensional manifold structure naturally arises on S, induced
by the structure ofM and having the same smoothness as the manifoldM .

b) Verify that the k-dimensional surfaces S in R
n are precisely the k-dimensional

submanifolds of Rn.

4J. Milnor (b. 1931) – one of the most outstanding modern American mathematicians; his main
works are in algebraic topology and the topology of manifolds.
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c) Show that under a smooth homeomorphic mapping f : R1→ T 2 of the line
R

1 into the torus T 2 the image f (R1) may be an everywhere dense subset of T 2

and in that case will not be a one-dimensional submanifold of the torus, although it
will be an abstract one-dimensional manifold.

d) Verify that the extent of the concept “submanifold” does not change if we
consider S ⊂ M a k-dimensional submanifold of the n-dimensional manifold M
when there exists a local chart of the manifoldM whose range contains x0 for every
point x0 ∈ S and some k-dimensional surface of the space Rn corresponds to the set
S ∩U in the parameter domain of the chart.

5. Let X be a Hausdorff topological space (manifold) and G the group of homeo-
morphic transformations of X. The group G is a discrete group of transformations
of X if for every two (possibly equal) points x1, x2 ∈ X there exist neighborhoods
U1 and U2 of them respectively, such that the set {g ∈G | g(U1)∩U2 �=∅} is finite.

a) It follows from this that the orbit {g(x) ∈X | g ∈G} of every point x ∈X is
discrete, and the stabilizer Gx = {g ∈G | g(x)= x} of every point x ∈X is finite.

b) Verify that if G is a group of isometries of a metric space, having the two
properties in a), then G is a discrete group of transformations of X.

c) Introduce the natural topological space (manifold) structure on the set X/G
of orbits of the discrete group G.

d) A closed subset F of the topological space (manifold)X with a discrete group
G of transformations is a fundamental domain of the group G if it is the closure of
an open subset of X and the sets g(F ), where g ∈ G, have no interior points in
common and form a locally finite covering of X. Show using Examples 8–10 how
the quotient space X/G (of orbits) of the group G can be obtained from F by
“gluing” certain boundary points.

6. a) Using the construction of Examples 12 and 13, construct n-dimensional pro-
jective space RP

n.
b) Show that RPn is orientable if n is odd and nonorientable if n is even.
c) Verify that the manifolds SO(3,R) and RP

3 are homeomorphic.

7. Verify that the manifold constructed in Example 14 is indeed homeomorphic to
the Möbius band.
8. a) A Lie group5 is a groupG endowed with the structure of an analytic manifold
such that the mappings (g1, g2) �→ g1 · g2 and g �→ g−1 are analytic mappings of
G×G and G into G. Show that the manifolds in Examples 6 and 7 are Lie groups.

b) A topological group (or continuous group) is a group G endowed with the
structure of a topological space such that the group operations of multiplication and
inversion are continuous as mappings G × G→ G, and G→ G in the topology
of G. Using the example of the group Q of rational numbers show that not every
topological group is a Lie group.

5S. Lie (1842–1899) – outstanding Norwegian mathematician, creator of the theory of continuous
groups (Lie groups), which is now of fundamental importance in geometry, topology, and the math-
ematical methods of physics; one of the winners of the International Lobachevskii Prize (awarded
in 1897 for his work in applying group theory to the foundations of geometry).
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c) Show that every Lie group is a topological group in the sense of the definition
given in b).

d) It has been proved6 that every topological group G that is a manifold is a
Lie group (that is, as a manifold G admits an analytic structure in which the group
becomes a Lie group). Show that every group manifold (that is, every Lie group) is
an orientable manifold.

9. A system of subsets of a topological space is locally finite if each point of the
space has a neighborhood intersecting only a finite number of sets in the system. In
particular, one may speak of a locally finite covering of a space.

A system of sets is said to be a refinement of a second system if every set of the
first system is contained in at least one of the sets of the second system. In particular
it makes sense to speak of one covering of a set being a refinement of another.

a) Show that every open covering of Rn has a locally finite refinement.
b) Solve problem a) with R

n replaced by an arbitrary manifoldM .
c) Show that there exists a partition of unity on R

n subordinate to any preas-
signed open covering of Rn.

d) Verify that assertion c) remains valid for an arbitrary manifold.

15.3 Differential Forms and Integration on Manifolds

15.3.1 The Tangent Space to a Manifold at a Point

We recall that to each smooth path R � t γ�−→x(t) ∈ Rn (a motion in R
n) passing

through the point x0 = x(t0) ∈ R
n at time t0 we have assigned the instantaneous

velocity vector ξ = (ξ1, . . . , ξn) : ξ(t)= ẋ(t)= (ẋ1, . . . , ẋn)(t0). The set of all such
vectors ξ attached to the point x0 ∈ R

n is naturally identified with the arithmetic
space Rn and is denoted TRnx0

(or Tx0(R
n)). In TRnx0

one introduces the same vector
operations on elements ξ ∈ TRnx0

as on the corresponding elements of the vector
space R

n. In this way a vector space TRnx0
arises, called the tangent space to R

n at
the point x0 ∈Rn.

Forgetting about motivation and introductory considerations, we can now say
that formally TRnx0

is a pair (x0,R
n) consisting of a point x0 ∈Rn and a copy of the

vector space R
n attached to it.

Now let M be a smooth n-dimensional manifold with an atlas A of at least C(1)

smoothness. We wish to define a tangent vector ξ and a tangent space TMp0 to the
manifoldM at a point p0 ∈M .

To do this we use the interpretation of the tangent vector as the instantaneous ve-

locity of a motion. We take a smooth path R
n � t γ�−→p(t) ∈M on the manifold M

passing through the point p0 = p(t0) ∈M at time t0. The parameters of charts (that

6This is the solution to Hilbert’s fifth problem.
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is, local coordinates) of the manifoldM will be denoted by the letter x here, with the
subscript of the corresponding chart and a superscript giving the number of the co-
ordinate. Thus, in the parameter domain of each chart (Ui, ϕi) whose range Ui con-

tains p0, the path t
γi�−→ϕ−1

i ◦ p(t)= xi(t) ∈Rn (or Hn) corresponds to the path γ .

This path is smooth by definition of the smooth mapping R � t γ�−→p(t) ∈M .
Thus, in the parameter domain of the chart (Ui, ϕi), where ϕi is a mapping p =

ϕi(xi), there arises a point xi(t0) = ϕ−1
i (p0) and a vector ξi = ẋi (t0) ∈ TRnxi (t0).

In another such chart (Uj ,ϕj ) these objects will be respectively the point xj (t0)=
ϕ−1
j (p0) and the vector ξj = ẋj (t0) ∈ TRnxj (t0). It is natural to regard these as the

coordinate expressions in different charts of what we would like to call a tangent
vector ξ to the manifoldM at the point p0 ∈M .

Between the coordinates xi and xj there are smooth mutually inverse transition
mappings

xi = ϕji(xj ), xj = ϕij (xi), (15.30)

as a result of which the pairs (xi(t0), ξi), (xj (t0), ξj ) turn out to be connected by the
relations

xi(t0)= ϕji
(
xj (t0)

)
, xj (t0)= ϕij

(
xi(t0)

)
, (15.31)

ξi = ϕ′ji
(
xj (t0)

)
ξj , ξj = ϕ′ij

(
xi(t0)

)
ξi . (15.32)

Equality (15.32) obviously follows from the formulas

ẋi (t)= ϕ′ji
(
xj (t)
)
ẋj (t), ẋj (t)= ϕ′ij

(
xi(t)
)
ẋi (t),

obtained from (15.30) by differentiation.

Definition 1 We shall say that a tangent vector ξ to the manifold M at the point
p ∈M is defined if a vector ξi is fixed in each space TRnxi tangent to R

n at the point
xi corresponding to p in the parameter domain of a chart (Ui, ϕi), where Ui � p, in
such a way that (15.32) holds.

If the elements of the Jacobian matrix ϕ′ji of the mapping ϕji are written out

explicitly as
∂xki
∂xmj

, we find the following explicit form for the connection between

the two coordinate representations of a given vector ξ :

ξki =
n∑

m=1

∂xki

∂xmj
ξmj , k = 1,2, . . . , n, (15.33)

where the partial derivatives are computed at the point xj = ϕ−1
j (p) corresponding

to p.
We denote by TMp the set of all tangent vectors to the manifold M at the point

p ∈M .
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Definition 2 If we introduce a vector-space structure on the set TMp by identifying
TMp with the corresponding space TRnxi (or THnxi ), that is, the sum of vectors in
TMp is regarded as the vector whose coordinate representation in TRnxi (or THnxi )
corresponds to the sum of the coordinate representations of the terms, and multipli-
cation of a vector by a scalar is defined analogously, the vector space so obtained is
usually denoted either TMp or TpM , and is called the tangent space to the manifold
M at the point p ∈M .

It can be seen from formulas (15.32) and (15.33) that the vector-space structure
introduced in TMp is independent of the choice of individual chart, that is, Defini-
tion 2 is unambiguous in that sense.

Thus we have now defined the tangent space to a manifold. There are various
interpretations of a tangent vector and the tangent space (see Problem 1). For exam-
ple, one such interpretation is to identify a tangent vector with a linear functional.
This identification is based on the following observation, which we make in R

n.
Each vector ξ ∈ TRnx0

is the velocity vector corresponding to some smooth path
x = x(t), that is, ξ = ẋ(t)|t=t0 with x0 = x(t0). This makes it possible to define the
derivative Dξf (x0) of a smooth function f defined on R

n (or in a neighborhood of
x0) with respect to the vector ξ ∈ TRnx0

. To be specific,

Dξf (x0) := d

dt
(f ◦ x)(t)∣∣

t=t0, (15.34)

that is,

Dξf (x0)= f ′(x0)ξ, (15.35)

where f ′(x0) is the tangent mapping to f (the differential of f ) at a point x0.
The functional Dξ : C(1)(Rn,R)→ R assigned to the vector ξ ∈ TRnx0

by the
formulas (15.34) and (15.35) is obviously linear with respect to f . It is also clear
from (15.35) that for a fixed function f the quantity Dξf (x0) is a linear function
of ξ , that is, the sum of the corresponding linear functionals corresponds to a sum
of vectors, and multiplication of a functional Dξ by a number corresponds to multi-
plying the vector ξ by the same number. Thus there is an isomorphism between the
vector space TRnx0

and the vector space of corresponding linear functionals Dξ . It
remains only to define the linear functional Dξ by exhibiting a set of characteristic
properties of it, in order to obtain a new interpretation of the tangent space TRnx0

,
which is of course isomorphic to the previous one.

We remark that, in addition to the linearity indicated above, the functional Dξ
possesses the following property:

Dξ(f · g)(x0)=Dξf (x0) · g(x0)+ f (x0) ·Dξg(x0). (15.36)

This is the law for differentiating a product.
In differential algebra an additive mapping a �→ a′ of a ring A satisfying

the relation (a · b)′ = a′ · b + a · b′ is called derivation (more precisely deriva-
tion of the ring A). Thus the functional Dξ : C(1)(Rn,R) is a derivation of the
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ring C(1)(Rn,R). But Dξ is also linear relative to the vector-space structure of
C(1)(Rn,R).

One can verify that a linear functional l :C(∞)(Rn,R)→R possessing the prop-
erties

l(αf + βg) = αl(f )+ βl(g), α,β ∈R, (15.37)

l(f · g) = l(f )g(x0)+ f (x0)l(g), (15.38)

has the form Dξ , where ξ ∈ TRnx0
. Thus the tangent space TRnx0

to R
n at x0 can be

interpreted as a vector space of functionals (derivations) on C(∞)(Rn,R) satisfying
conditions (15.37) and (15.38).

The functions Dek f (x0)= ∂
∂xk
f (x)|x=x0 that compute the corresponding partial

derivative of the function f at x0 correspond to the basis vectors e1, . . . , en of the
space TRnx0

. Thus, under the functional interpretation of TRnx0
one can say that the

functionals { ∂
∂x1 , . . . ,

∂
∂xn
}|x=x0 form a basis of TRnx0

.

If ξ = (ξ1, . . . , ξn) ∈ TRnx0
, then the operator Dξ corresponding to the vector ξ

has the form Dξ = ξk ∂
∂xk

.

In a completely analogous manner the tangent vector ξ to an n-dimensional C(∞)
manifold M at a point p0 ∈M can be interpreted (or defined) as the element of
the space of derivations l on C(∞)(M,R) having properties (15.37) and (15.38),
x0 of course being replaced by p0 in relation (15.38), so that the functional l is
connected with precisely the point p0 ∈M . Such a definition of the tangent vector
ξ and the tangent space TMp0 does not formally require the invocation of any local
coordinates, and in that sense it is obviously invariant. In coordinates (x1, . . . , xn)

of a local chart (Ui, ϕi) the operator l has the form ξ1
i
∂

∂x1
i

+ · · · + ξni ∂
∂xni
= Dξi .

The numbers (ξ1
i , . . . , ξ

n
i ) are naturally called the coordinates of the tangent vector

l ∈ TMp0 in coordinates of the chart (Ui, ϕi). By the laws of differentiation, the
coordinate representations of the same functional l ∈ TMp0 in the charts (Ui, ϕi),
(Uj ,ϕj ) are connected by the relations

n∑

k=1

ξki
∂

∂xki

=
n∑

m=1

ξmj
∂

∂xmj
=

n∑

k=1

(
n∑

m=1

∂xki

∂xmj
ξmj

)
∂

∂xki

, (15.33′)

which of course duplicate (15.33).

15.3.2 Differential Forms on a Manifold

Let us now consider the space T ∗Mp conjugate to the tangent space TMp , that is,
T ∗Mp is the space of real-valued linear functionals on TMp .

Definition 3 The space T ∗Mp conjugate to the tangent space TMp to the manifold
M at the point p ∈M is called the cotangent space toM at p.
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If the manifoldM is a C(∞) manifold, f ∈ C(∞)(M,R), and lξ is the derivation
corresponding to the vector ξ ∈ TM0, then for a fixed f ∈ C(∞)(M,R) the mapping
ξ �→ lξ f will obviously be an element of the space T ∗Mp . In the case M = R

n we
obtain ξ �→Dξf (p)= f ′(p)ξ , so that the resulting mapping ξ �→ lξ f is naturally
called the differential of the function f at p, and is denoted by the usual symbol
df (p).

If TRn
ϕ−1
α (p)

(or THn
ϕ−1
α (p)

when p ∈ ∂M) is the space corresponding to the

tangent space TMp in the chart (Uα,ϕα) on the manifold M , it is natural to re-

gard the space T ∗Rn
ϕ−1
α (p)

conjugate to TRj
ϕ−1
α (p)

as the representative of the space

T ∗Mp in this local chart. In coordinates (x1
α, . . . , x

n
α) of a local chart (Uα,ϕα)

the dual basis {dx1, . . . ,dxn} in the conjugate space corresponds to the basis
{ ∂
∂x1
α
, . . . , ∂

∂xnα
} of TRn

ϕ−1
α (p)

(or THn
ϕ−1
α (p)

if p ∈ ∂M). We recall that dxi(ξ)= ξ i , so

that dxi( ∂
∂xj
)= δij . The expressions for these dual bases in another chart (Uβ,ϕβ)

may turn out to be not so simple, for ∂

∂x
j
β

= ∂xiα

∂x
j
β

∂
∂xiα

, dxiα = ∂xiα

∂x
j
β

dxjβ .

Definition 4 We say that a differential form ωm of degree m is defined on an n-
dimensional manifold M if a skew-symmetric form ωm(p) : (TMp)

m→ R is de-
fined on each tangent space TMp toM,p ∈M .

In practice this means only that a corresponding m-form ωα(xα), where xα =
ϕ−1
α (p), is defined on each space TRn

ϕ−1
α (p)

(or THn
ϕ−1
α (p)

) corresponding to TM0

in the chart (Uα,ϕα) of the manifold M . The fact that two such forms ωα(xα) and
ωβ(xβ) are representatives of the same form ω(p) can be expressed by the relation

ωα(xα)
(
(ξ1)α, . . . , (ξm)α

)= ωβ(xβ)
(
(ξ1)β, . . . , (ξm)β

)
, (15.39)

in which xα and xβ are the representatives of the point p ∈M , and (ξ1)α, . . . , (ξm)α
and (ξ1)β, . . . , (ξm)β are the coordinate representations of the vectors ξ1, . . . , ξm ∈
TMp in the charts (Uα,ϕα), (Uβ,ϕβ) respectively.

In more formal notation this means that

xα = ϕβα(xβ), xβ = ϕαβ(xα), (15.31′)

ξα = ϕ′βα(xβ)ξβ, ξβ = ϕ′αβ(xα)ξα, (15.32′)

where, as usual, ϕβα and ϕαβ are respectively the functions ϕ−1
α ◦ ϕβ and ϕ−1

β ◦ ϕα
for the coordinate transitions, and the tangent mappings to them ϕ′βα =: (ϕβα)∗,
ϕ′αβ =: (ϕαβ)∗ provide an isomorphism of the tangent spaces to R

n (or Hn) at the
corresponding points xα and xβ . As stated in Sect. 15.1.3, the adjoint mappings
(ϕ′βα)∗ =: ϕ∗βα and (ϕ′αβ)∗ =: ϕ∗αβ provide the transfer of the forms, and the relation
(15.39) means precisely that

ωα(xα)= ϕ∗αβ(xα)ωβ(xβ), (15.39′)

where α and β are indices (which can be interchanged).
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The matrix (cji ) of the mapping ϕ′αβ(xα) is known: (cji )= (
∂x
j
β

∂xiα
)(xα). Thus, if

ωα(xα)=
∑

1≤i1<···<im≤n
ai1,...,im dxi1α ∧ · · · ∧ dximα (15.40)

and

ωβ(xβ)=
∑

1≤j1<···<jm≤n
bj1,...,jm dxj1β ∧ · · · ∧ dxjmβ , (15.41)

then according to Example 7 of Sect. 15.1 we find that

∑

1≤i1<···<im≤n
ai1...im dxi1α ∧ · · · ∧ dximα =

=
∑

1≤i1<···<im≤n
1≤j1<···<jm≤n

bj1...jm

∂(x
j1
β , . . . , x

jm
β )

∂(x
i1
α , . . . , x

im
α )
(xα)dx

i1
α ∧ · · · ∧ dximα , (15.42)

where ∂( )
∂( )

, as always, denotes the determinant of the matrix of corresponding partial
derivatives.

Thus different coordinate expressions for the same form ω can be obtained from
each other by direct substitution of the variables (expanding the corresponding dif-
ferentials of the coordinates followed by algebraic transformations in accordance
with the laws of exterior products).

If we agree to regard the form ωα as the transfer of a form ω defined on a mani-
fold to the parameter domain of the chart (Uα,ϕα), it is natural to write ωα = ϕ∗αω
and consider that ωα = ϕ∗α ◦(ϕ−1

β )
∗ωβ = ϕ∗αβωβ , where the composition ϕ∗α ◦(ϕ−1

β )
∗

in this case plays the role of a formal elaboration of the mapping ϕ∗αβ = (ϕ−1
β ◦ϕα)∗.

Definition 5 A differential m-form ω on an n-dimensional manifold M is a C(k)

form if the coefficients ai1...im(xα) of its coordinate representation

ωα = ϕ∗αω=
∑

1≤i1<···<im≤n
ai1...im(xα)dx

i1
α ∧ · · · ∧ dximα

are C(k) functions in every chart (Uα,ϕα) of an atlas that defines a smooth structure
onM .

It is clear from (15.42) that Definition 5 is unambiguous if the manifoldM itself
is a C(k+1) manifold, for example ifM is a C(∞) manifold.

For differential forms defined on a manifold the operations of addition, multipli-
cation by a scalar, and exterior multiplication are naturally defined pointwise. (In
particular, multiplication by a function f :M→R, which by definition is regarded
as a form of degree zero, is defined.) The first two of these operations turn the set
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Ωmk of m-forms of class C(k) on M into a vector space. In the case k = ∞ this
vector space is usually denoted Ωm. It is clear that exterior multiplication of forms
ωm1 ∈Ωm1

k and ωm2 ∈Ωm2
k yields a form ωm1+m2 = ωm1 ∧ωm2 ∈Ωm1+m2

k .

15.3.3 The Exterior Derivative

Definition 6 The exterior differential is the linear operator d :Ωmk →Ωm+1
k−1 pos-

sessing the following properties:
10 On every function f ∈Ω0

k the differential d : Ω0
k → Ω1

k−1 equals the usual
differential df of this function.

20 d : (ωm1 ∧ωm2)= dωm1 ∧ωm2 + (−1)m1ωm1 ∧ dωm2 , where ωm1 ∈Ωm1
k and

ωm2 ∈Ωm2
k .

30 d2 := d ◦ d= 0.

This last equality means that d(dω) is zero for every form ω.
Requirement 30 thus presumes that we are talking about forms whose smooth-

ness is at least C(2).
In practice this means that we are considering a C(∞) manifold M and the oper-

ator d mapping Ωm to Ωm+1.
A formula for computing the operator d in local coordinates of a specific chart

(and at the same time the uniqueness of the operator d) follows from the relation

d

( ∑

1≤i1<···<im≤n
ci1...im(x)dx

i1 ∧ · · · ∧ dxim
)
=

=
∑

1≤i1<···<im≤n
dci1...im(x)∧ dxi1 ∧ · · · ∧ dxim +

+
( ∑

1≤i1<···<im≤n
ci1...,im d

(
dxi1 ∧ · · · ∧ dxim

)= 0

)
. (15.43)

The existence of the operator d now follows from the fact that the operator de-
fined by (15.43) in a local coordinate system satisfies conditions 10, 20, and 30 of
Definition 6.

It follows in particular from what has been said that if ωα = ϕ∗αω and ωβ = ϕ∗βω
are the coordinate representations of the same form ω, that is, ωα = ϕ∗αβωβ , then
dωα and dωβ will also be the coordinate representations of the same form (dω),
that is, dωα = ϕ∗αβ dωβ . Thus the relation d(ϕ∗αβωβ) = ϕ∗αβ(dωβ) holds, which in
abstract form asserts the commutativity

dϕ∗ = ϕ∗d (15.44)

of the operator d and the operation ϕ∗ that transfers forms.
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15.3.4 The Integral of a Form over a Manifold

Definition 7 Let M be an n-dimensional smooth oriented manifold on which the
coordinates x1, . . . , xn and the orientation are defined by a single chart ϕx :Dx→
M with parameter domain Dx ⊂R

n. Then
∫

M

ω :=
∫

Dx

a(x)dx1 ∧ · · · ∧ dxn, (15.45)

where the left-hand side is the usual integral of the form ω over the oriented man-
ifold M and the right-hand side is the integral of the function f (x) over the do-
main Dx .

If ϕt : Dt →M is another atlas of M consisting of a single chart defining the
same orientation on M as ϕx :Dx→M , then the Jacobian detϕ′(t) of the function
x = ϕ(t) of the coordinate change is everywhere positive in Dt . The form

ϕ∗
(
a(x)dx1 ∧ · · · ∧ dxn

)= a(x(t))detϕ′(t)dt1 ∧ · · · ∧ dtn

inDt corresponds to the form ω. By the theorem on change of variables in a multiple
integral we have the equality

∫

Dx

a(x)dx1 · · ·dxn =
∫

Dt

a
(
x(t)
)

detϕ′(t)dt1 · · ·dtn,

which shows that the left-hand side of (15.45) is independent of the coordinate sys-
tem chosen inM .

Thus, Definition 7 is unambiguous.

Definition 8 The support of a form ω defined on a manifoldM is the closure of the
set of points x ∈M where ω(x) �= 0.

The support of a form ω is denoted by suppω. In the case of 0-forms, that is,
functions, we have already encountered this concept. Outside the support the coor-
dinate representation of the form in any local coordinate system is the zero form of
the corresponding degree.

Definition 9 A form ω defined on a manifoldM is of compact support if suppω is
a compact subset ofM .

Definition 10 Let ω be a form of degree n and compact support on an n-
dimensional smooth manifold M oriented by the atlas A. Let ϕi : Di → Ui ,
{(Ui, ϕ), i = 1, . . . ,m} be a finite set of charts of the atlas A whose ranges
U1, . . . ,Um cover suppω, and let e1, . . . , ek be a partition of unity subordinate to
that covering on suppω. Repeating some charts several times if necessary, we can
assume that m= k, and that supp ei ⊂Ui , i = 1, . . . ,m.
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The integral of a form ω of compact support over the oriented manifold M is the
quantity

∫

M

ω :=
m∑

i=1

∫

Di

ϕ∗i (eiω), (15.46)

where ϕ∗i (eiω) is the coordinate representation of the form eiω|Ui in the domain Di
of variation of the coordinates of the corresponding local chart.

Let us prove that this definition is unambiguous.

Proof Let Ã= {ϕ̃j : D̃j → Ũj } be a second atlas defining the same smooth struc-
ture and orientation on M as the atlas A, let Ũ1, . . . , Ũm̃ be the corresponding cov-
ering of suppω, and let ẽ1, . . . , ẽm̃ a partition of unity on suppω subordinate to this
covering. We introduce the functions fij = ei ẽj , i = 1, . . . ,m, j = 1, . . . , m̃, and
we set ωij = fijω.

We remark that suppωij ⊂ Wij = Ui ∩ Ũj . From this and from the fact that
Definition 7 of the integral over an oriented manifold given by a single chart is
unambiguous it follows that

∫

Di

ϕ∗i (ωij )=
∫

ϕ−1
i (Wij )

ϕ∗i (ωij )=
∫

ϕ̃−1
j (Wij )

ϕ̃∗j (ωij )=
∫

D̃j

ϕ̃∗j (ωij ).

Summing these equalities on i from 1 to m and on j from 1 to m̃, taking account
of the relation

∑m
i=1 fij = ẽj ,

∑m̃
j=1 fij = ei , we find the identities we are interested

int. �

15.3.5 Stokes’ Formula

Theorem Let M be an oriented smooth n-dimensional manifold and ω a smooth
differential form of degree n− 1 and compact support onM . Then

∫

∂M

ω=
∫

M

dω, (15.47)

where the orientation of the boundary ∂M of the manifold M is induced by the
orientation of the manifold M. If ∂M =∅, then

∫
M

dω= 0.

Proof Without loss of generality we may assume that the domains of variation of
the coordinates (parameters) of all local charts of the manifoldM are either the open
cube I = {x ∈ Rn | 0 < xi < 1, i = 1, . . . , n}, or the cube Ĩ = {x ∈ Rn | 0 < x1 ≤
1∧ 0< xi < 1, i = 1, . . . , n} with one (definite!) face adjoined to the cube I .

By the partition of unity the assertion of the theorem reduces to the case when
suppω is contained in the range U of a single chart of the form ϕ : I → U or
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ϕ : Ĩ→U . In the coordinates of this chart the form ω has the form

ω=
n∑

i=1

ai(x)dx
1 ∧ · · · ∧

�

dxi ∧ · · · ∧ dxn,

where the frown�, as usual, means that the corresponding factor is omitted.
By the linearity of the integral, it suffices to prove the assertion for one term of

the sum:

ωi = ai(x)dx1 ∧ · · · ∧
�

dxi ∧ · · · ∧ dxn. (15.48)

The differential of such a form is the n-form

dωi = (−1)i−1 ∂ai

∂xi
(x)dx1 ∧ · · · ∧ dxn. (15.49)

For a chart of the form ϕ : I → U both integrals in (15.47) of the correspond-
ing forms (15.48) and (15.49) are zero: the first because suppai ⊂ I and the sec-
ond for the same reason, if we take into account Fubini’s theorem and the relation∫ 1

0
∂ai
∂xi

dxi = ai(1)− ai(0)= 0. This argument also covers the case when ∂M =∅.

Thus it remains to verify (15.47) for a chart ϕ : Ĩ→U .
If i > 1, both integrals are also zero for such a chart, which follows from the

reasoning given above.
And if i = 1, then
∫

M

dω1 =
∫

U

dω1 =
∫

Ĩ

∂a1

∂x1
(x)dx1 · · ·dxn =

=
∫ 1

0
· · ·
∫ 1

0

(∫ 1

0

∂a1

∂x1
(x)dx1

)
dx2 · · ·dxn =

=
∫ 1

0
· · ·
∫ 1

0
a1
(
1, x2, . . . , xn

)
dx2 · · ·dxn =

∫

∂U

ω1 =
∫

∂M

ω1.

Thus formula (15.47) is proved for n > 1.
The case n= 1 is merely the Newton–Leibniz formula (the fundamental theorem

of calculus), if we assume that the endpoints α and β of the oriented interval [α,β]
are denoted α− and β+ and the integral of a 0-form g(x) over such an oriented point
is equal to −g(α) and +g(β) respectively. �

We now make some remarks on this theorem.

Remark 1 Nothing is said in the statement of the theorem about the smoothness
of the manifold M and the form ω. In such cases one usually assumes that each
of them is C(∞). It is clear from the proof of the theorem, however, that formula
(15.47) is also true for forms of class C(2) on a manifoldM admitting a form of this
smoothness.
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Remark 2 It is also clear from the proof of the theorem, as in fact it was already from
the formula (15.47), that if suppω is a compact set contained strictly insideM , that
is, suppω ∩ ∂M =∅, then

∫
M

dω= 0.

Remark 3 If M is a compact manifold, then for every form ω on M the support
suppω, being a closed subset of the compact setM , is compact. Consequently in this
case every form ω on M is of compact support and Eq. (15.47) holds. In particular,
if M is a compact manifold without boundary, then the equality

∫
M

dω = 0 holds
for every smooth form onM .

Remark 4 For arbitrary forms ω (not of compact support) on a manifold that is not
itself compact, formula (15.47) is in general not true.

Let us consider, for example, the form ω = x dy−y dx
x2+y2 in a circular annulus M =

{(x, y) ∈ R2 | 1 ≤ x2 + y2 ≤ 2}, endowed with standard Cartesian coordinates. In
this case M is a compact two-dimensional oriented manifold, whose boundary ∂M
consists of the two circles Ci = {(x, y) ∈R2 | x2 + y2 = i}, i = 1,2. Since dω= 0,
we find by formula (15.47) that

0=
∫

M

dω=
∫

C2

ω−
∫

C1

ω,

where both circles C1 and C2 are traversed counterclockwise. We know that
∫

C1

ω=
∫

C2

ω= 2π �= 0.

Hence, if we consider the manifold M̃ =M\C1, then ∂M̃ = C2 and
∫

M̃

dω= 0 �= 2π =
∫

∂M̃

ω.

15.3.6 Problems and Exercises

1. a) We call two smooth paths γi : R→M , i = 1,2 on a smooth manifold M
tangent at a point p ∈M if γ1(0)= γ2(0)= p and the relation

∣∣ϕ−1 ◦ γ1(t)− ϕ−1 ◦ γ2(t)
∣∣= o(t) as t→ 0 (15.50)

holds in each local coordinate system ϕ : Rn→ U (or ϕ : Hn→ U ) whose range
U contains p. Show that if (15.50) holds in one of these coordinate systems, then
it holds in any other local coordinate system of the same type on the smooth mani-
foldM .

b) The property of being tangent at a point p ∈M is an equivalence relation on
the set of smooth paths onM passing through p. We call an equivalence class a bun-
dle of tangent paths at p ∈M . Establish the one-to-one correspondence exhibited
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in Sect. 15.3.1 between vectors of TMp and bundles of tangent paths at the point
p ∈M .

c) Show that if the paths γ1 and γ2 are tangent at p ∈M and f ∈ C(1)(M,R),
then

df ◦ γ1

dt
(0)= df ◦ γ2

dt
(0).

d) Show how to assign a functional l = lξ (=Dξ) : C(∞)(M,R)→R possessing
properties (15.37) and (15.38), where x0 = p, to each vector ξ ∈ TMp . A functional
possessing these properties is called a derivation at the point p ∈M .

Verify that differentiation l at the point p is a local operation, that is, if f1, f2 ∈
C(∞) and f1(x)≡ f2(x) in some neighborhood of p, then lf1 = lf2.

e) Show that if x1, . . . , xn are local coordinates in a neighborhood of the point
p, then l =∑n

i=1(lx
i) ∂
∂xi

, where ∂
∂xi

is the operation of computing the partial

derivative with respect to xi at the point x corresponding to p. (Hint. Write
the function f |U(p) :M→R in local coordinates; remember that the expansion
f (x) = f (0) + ∑n

i=1 x
igi(x) holds for the function f ∈ C(∞)(Rn,R), where

gi ∈ C(∞)(Rn,R) and gi(0)= ∂f

∂xi
(0), i = 1, . . . , n.)

f) Verify that if M is a C(∞) manifold, then the vector space of derivations at
the point p ∈M is isomorphic to the space TMp tangent to M at p constructed in
Sect. 15.3.1.

2. a) If we fix a vector ξ(p) ∈ TMp at each point p ∈M of a smooth manifold M ,
we say that a vector field is defined on the manifoldM . LetX be a vector field onM .
Since by the preceding problem every vectorX(p)= ξ ∈ TMp can be interpreted as
differentiation at the corresponding point p, from any function f ∈C(∞)(M,R) one
can construct a function Xf (p) whose value at every point p ∈M can be computed
by applying X(p) to f , that is, to differentiating f with respect to the vector X(p)
in the field X. A field X on M is smooth (of class C(∞)) if for every function
f ∈ C(∞)(M,R) the function Xf also belongs to C(∞)(M,R).

Give a local coordinate expression for a vector field and the coordinate definition
of a smooth (C(∞)) vector field on a smooth manifold equivalent to the one just
given.

b) Let X and Y be two smooth vector fields on the manifold M . For functions
f ∈ C(∞)(M,R) we construct the functional [X,Y ]f = X(Yf ) − Y(Xf ). Verify
that [X,Y ] is also a smooth vector field onM . It is called the Poisson bracket of the
vector fields X and Y .

c) Give a Lie algebra structure to the smooth vector fields on a manifold.

3. a) Let X and ω be respectively a smooth vector field and a smooth 1-form on a
smooth manifold M . Let ωX denote the application of ω to the vector of the field
X at corresponding points ofM . Show that ωX is a smooth function onM .

b) Taking account of Problem 2, show that the following relation holds:

dω1(X,Y )=X(ω1Y
)− Y (ω1X

)−ω1([X,Y ]),
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where X and Y and smooth vector fields, dω1 is the differential of the form ω1,
and dω1(X,Y ) is the application of dω1 to pairs of vectors of the fields X and Y
attached at the same point.

c) Verify that the relation

dω(X1, . . . ,Xm+1)=

=
m+1∑

i=1

(−1)i+1Xiω(X1, . . . ,
�

Xi, . . . ,Xm+1)+

+
∑

1≤i<j≤m+1

(−1)i+jω
([Xi,Xj ],X1, . . . ,

�

Xi, . . . ,
�

Xj , . . . ,Xm+1
)

holds for the general case of a form ω of order m. Here the frown � denotes an
omitted term, [Xi,Xj ] is the Poisson bracket of the fields Xi and Xj , and Xiω

represents differentiation of the function ω(X1, . . . ,
�

Xi, . . . ,Xm+1) with respect to
the vectors of the field Xi . Since the Poisson bracket is invariantly defined, the
resulting relation can be thought of as a rather complicated but invariant definition
of the exterior differential operator d :Ω→Ω .

d) Let ω be a smooth m-form on a smooth n-dimensional manifold M . Let
(ξ1, . . . , ξm+1)i be vectors in R

n corresponding to the vectors ξ1, . . . , ξm+1 ∈ TMp

in the chart ϕi : Rn→ U ⊂M . We denote by Πi the parallelepiped formed by the
vectors (ξ1, . . . , ξm+1)i in R

n, and let λΠi be the parallelepiped spanned by the
vectors (λξ1, . . . , λξm+1)i . We denote the images ϕi(Πi) and ϕi(λΠi) of these par-
allelepipeds inM by Π and λΠ respectively. Show that

dω(p)(ξ1, . . . , ξm+1)= lim
λ→0

1

λn+1

∫

∂(λΠ)

ω.

4. a) Let f :M→ N be a smooth mapping of a smooth m-dimensional manifold
M into a smooth n-dimensional manifold N . Using the interpretation of a tangent
vector to a manifold as a bundle of tangent paths (see Problem 1), construct the
mapping f∗(p) : TMp→ TNf (p) induced by f .

b) Show that the mapping f∗ is linear and write it in corresponding local coor-
dinates on the manifolds M and N . Explain why f∗(p) is called the differential of
f at p or the mapping tangent to f at that point.

Let f be a diffeomorphism. Verify that f∗[X,Y ] = [f∗X,f∗Y ]. Here X and Y
are vector fields onM and [·, ·] is their Poisson bracket (see Problem 2).

c) As is known from Sect. 15.1, the tangent mapping f∗(p) : TMp→ TNq=f (p)
of tangent spaces generates the adjoint mapping f ∗(p) of the conjugate spaces and
in general a mapping of k-forms defined on TNf (p) and TMp .

Let ω be a k-form on N . The k-form f ∗ω onM is defined by the relation

(
f ∗ω
)
(p)(ξ1, . . . , ξk) := ω

(
f (p)

)
(f∗ξ1, . . . , f∗ξk),
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where ξ1, . . . , ξk ∈ TMp . In this way a mapping f ∗ :Ωk(N)→Ωk(M) arises from
the spaceΩk(N) of k-forms defined onN into the spaceΩk(M) of k-forms defined
onM .

Verify the following properties of the mapping f ∗, assumingM and N are C(∞)
manifolds:

10 f ∗ is a linear mapping;
20 f ∗(ω1 ∧ω2)= f ∗ω1 ∧ f ∗ω2;
30 d ◦ f ∗ = f ∗ ◦ d, that is d(f ∗ω)= f ∗(dω);
40 (f2 ◦ f1)

∗ = f ∗1 ◦ f ∗2 .

d) Let M and N be smooth n-dimensional oriented manifolds and ϕ :M→ N

a diffeomorphism of M onto N. Show that if ω is an n-form on N with compact
support, then

∫

ϕ(M)

ω= ε
∫

M

ϕ∗ω,

where ε = { 1, if ϕ preserves orientation,
−1, if ϕ reverses orientation.

e) Suppose A ⊃ B . The mapping i : B → A that assigns to each point x ∈ B
that same point as an element of A is called the canonical embedding of B in A.

If ω is a form on a manifold M and M ′ is a submanifold of M , the canonical
embedding i : M ′ → M generates a form i∗ω on M ′ called the restriction of ω
toM ′. Show that the proper expression of Stokes’ formula (15.47) should be

∫

M

dω=
∫

∂M

i∗ω,

where i : ∂M→M is the canonical embedding of ∂M inM , and the orientation of
∂M is induced fromM .

5. a) LetM be a smooth (C(∞)) oriented n-dimensional manifold and Ωnc (M) the
space of smooth (C(∞)) n-forms with compact support on M. Show that there exists
a unique mapping

∫
M
:Ωnc (M)→R having the following properties:

10 the mapping
∫
M

is linear;
20 if ϕ : In→ U ⊂M (or ϕ : Ĩ n→ U ⊂M) is a chart of an atlas defining the

orientation ofM , suppω⊂U , and ω= a(x)dx1∧· · ·∧dxn in the local coordinates
x1, . . . , xn of this chart, then

∫

M

ω=
∫

In
a(x)dx1, . . . ,dxn

(
or
∫

M

ω=
∫

Ĩ n
a(x)dx1, . . . ,dxn

)
,

where the right-hand side contains the Riemann integral of the function a over the
corresponding cube In (or Ĩ n).

b) Can the mapping just exhibited always be extended to a mapping
∫
M
:

Ωn(M)→R of all smooth n-forms onM , retaining both of these properties?
c) Using the fact that every open covering of the manifold M has an at most

countable locally finite refinement and the fact that there exists a partition of unity
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subordinate to any such covering (see Problem 9), define the integral of an n-form
over an oriented smooth n-dimensional (not necessarily compact) manifold so that
it has properties 10 and 20 above when applied to the forms for which the integral is
finite. Show that for this integral formula (15.47) does not hold in general, and give
conditions on ω that are sufficient for (15.47) in the case when M = R

n and in the
case whenM =Hn.

6. a) Using the theorem on existence and uniqueness of the solution of the differen-
tial equation ẋ = v(x) and also the smooth dependence of the solution on the initial
data, show that a smooth bounded vector field v(x) ∈Rn can be regarded as the ve-
locity field of a steady-state flow. More precisely, show that there exists a family of
diffeomorphisms ϕt :Rn→R

n depending smoothly on the parameter t (time) such
that ϕt (x) is an integral curve of the equation for each fixed value of x ∈Rn, that is,
∂ϕt (x)
∂t
= v(ϕt (x)) and ϕ0(x)= x. The mapping ϕt : Rn→ R

n obviously character-
izes the displacement of the particles of the medium at time t . Verify that the family
of mappings ϕt : Rn→ R

n is a one-parameter group of diffeomorphisms, that is,
(ϕt )

−1 = ϕ−t , and ϕt2 ◦ ϕt1 = ϕt1+t2 .
b) Let v be a vector field on R

n and ϕt a one-parameter group of diffeomor-
phisms of Rn generated by v. Verify that the relation

lim
t→0

1

t

(
f
(
ϕt (x)

)− f (x))=Dv(x)f

holds for every smooth function f ∈ C(∞)(Rn,R).
If we introduce the notation v(f ) := Dvf , in consistency with the notation of

Problem 2, and recall that f ◦ ϕt =: ϕ∗t f , we can write

lim
t→0

1

t

(
ϕ∗t f − f

)
(x)= v(f )(x).

c) Differentiation of a smooth form ω of any degree defined in R
n along the

field v is now naturally defined. To be specific, we set

v(ω)(x) := lim
t→0

1

t

(
ϕ∗t ω−ω

)
(x).

The form v(ω) is called the Lie derivative of the form ω along the field v and
usually denoted Lvω. Define the Lie derivative LXω of a form ω along the field X
on an arbitrary smooth manifoldM .

d) Show that the Lie derivative on a C(∞) manifold M has the following prop-
erties.

10 LX is a local operation, that is, if the fieldsX1 andX2 and the forms ω1 and ω2
are equal in a neighborhood U ⊂M of the point x, then (LX1ω1)(x)= (LX2ω2)(x).

20 LXΩ
k(M)⊂Ωk(M).

30 LX :Ωk(M)→Ωk(M) is a linear mapping for every k = 0,1,2, . . . .
40 LX(ω1 ∧ω2)= (LXω1)∧ω2 +ω1 ∧LXω2.
50 If f ∈Ω0(M), then LXf = df (X)=:Xf .
60 If f ∈Ω0(M), then LXdf = d(Xf ).
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e) Verify that the properties 10–60 determine the operation LX uniquely.

7. Let X be a vector field and ω a form of degree k on the smooth manifoldM .
The inner product of the field X and the form ω is the (k − 1)-form de-

noted by iXω or X&ω and defined by the relation (iXω)(X1, . . . ,Xk−1) :=
ω(X,X1, . . . ,Xk−1), where X1, . . . ,Xk−1 are vector fields onM . For 0-forms, that
is, functions onM , we set X&f = 0.

a) Show that if the form ω (more precisely, ω|U ) has the form

∑

1≤i1<···<ik≤n
ai1···ik (x)dxi1 ∧ · · · ∧ dxik = 1

k!ai1...ikdx
i1 ∧ · · · ∧ dxik

in the local coordinates x1, . . . , xn of the chart ϕ : Rn→ U ⊂M , and X =Xi ∂
∂xi

,
then

iXω= 1

(k − 1)!X
iaii2...ik dxi2 ∧ · · · ∧ dxik .

b) Verify further that if df = ∂f

∂xi
dxi , then iX df =Xi ∂f

∂xi
=X(f )≡DXf .

c) Let X(M) be the space of vector fields on the manifold M and Ω(M) the
ring of skew-symmetric forms on M . Show that there exists only one mapping i :
X(M)×Ω(M)→Ω(M) having the following properties:

10 i is a local operation, that is, if the fields X1 and X2 and the forms ω1 and ω2
are equal in a neighborhood U of x ∈M , then (iX1ω1)(x)= (iX2ω2)(x);

20 iX(Ω
k(M))⊂Ωk−1(M);

30 iX :Ωk(M)→Ωk−1(M) is a linear mapping;
40 if ω1 ∈ Ωk1(M) and ω2 ∈ Ωk2(M), then iX(ω1 ∧ ω2) = iXω1 ∧ ω2 +

(−1)k1ω1 ∧ iXω2;
50 if ω ∈Ω1(M), then iXω= ω(X), and if f ∈Ω0(M), then iXf = 0.

8. Prove the following assertions.

a) The operators d, iX , and LX (see Problems 6 and 7) satisfy the so-called
homotopy identity

LX = iXd+ diX, (15.51)

where X is any smooth vector field on the manifold.
b) The Lie derivative commutes with d and iX , that is,

LX ◦ d= d ◦LX, LX ◦ iX = iX ◦LX.
c) [LX, iY ] = i[X,Y ], [LX,LY ] = L[X,Y ], where, as always, [A,B] = A ◦ B −

B ◦A for any operators A and B for which the expression A ◦B−B ◦A is defined.
In this case, all brackets [ , ] are defined.

d) LXfω= fLXω+ df ∧ iXω, where f ∈Ω0(M) and ω ∈Ωk(M).
(Hint. Part a) is the main part of the problem. It can be verified, for example, by

induction on the degree of the form on which the operators act.)
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15.4 Closed and Exact Forms on Manifolds

15.4.1 Poincaré’s Theorem

In this section we shall supplement what was said about closed and exact differential
forms in Sect. 14.3 in connection with the theory of vector fields in R

n. As before,
Ωp(M) denotes the space of smooth real-valued forms of degree p on the smooth
manifoldM and Ω(M)=⋃p Ωp(M).

Definition 1 The form ω ∈Ωp(M) is closed if dω= 0.

Definition 2 The form ω ∈ Ωp(M), p > 0, is exact if there exists a form α ∈
Ωp−1(M) such that ω= dα.

The set of closed p-forms on the manifold M will be denoted Zp(M), and the
set of exact p-forms onM will be denoted Bp(M).

The relation7 d(dω) = 0 holds for every form ω ∈ Ω(M), which shows that
Zp(M) ⊃ Bp(M). We already know from Sect. 14.3 that this inclusion is gener-
ally strict.

The important question of the solvability (for α) of the equation dα = ω given
the necessary condition dω= 0 on the form ω turns out to be closely connected with
the topological structure of the manifoldM . This statement will be deciphered more
completely below.

Definition 3 We shall call a manifold M contractible (to the point x0 ∈ M) or
homotopic to a point if there exists a smooth mapping h : M × I → M where
I = {t ∈R | 0≤ t ≤ 1} such that h(x,1)= x and h(x,0)= x0.

Example 1 The space R
n can be contracted to a point by the mapping h(x, t)= tx.

Theorem 1 (Poincaré) Every closed (p + 1)-form (p ≥ 0) on a manifold that is
contractible to a point is exact.

Proof The nontrivial part of the proof consists of the following “cylindrical” con-
struction, which remains valid for every manifoldM .

Consider the “cylinder”,M × I , which is the direct product ofM and the closed
unit interval I , and the two mappings ji :M→M × I , where ji(x) = (x, i), i =
0,1, which identify M with the bases of the cylinder M × I . Then there naturally
arise mappings j∗i : Ωp(M × I )→ Ωp(M), reducing to the replacement of the
variable t in a form of Ωp(M × I ) by the value i (= 0,1), and, of course, di = 0.

7Depending on the way in which the operator d is introduced this property is either proved, in
which case it is called the Poincaré lemma, or taken as part of the definition of the operator d.
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We construct a linear operator K :Ωp+1(M × I )→Ωp(M), which we define
on monomials as follows:

K
(
a(x, t)dxi1 ∧ · · · ∧ dxip+1

) := 0,

K
(
a(x, t)dt ∧ dxi1 ∧ · · · ∧ dxip

) :=
(∫ 1

0
a(x, t)dt

)
dxi1 ∧ · · · ∧ dxip .

The main property of the operator K that we need is that the relation

K(dω)+ d(Kω)= j∗1ω− j∗0ω (15.52)

holds for every form ω ∈Ωp+1(M × I ).
It suffices to verify this relation for monomials, since all the operators K , d, j∗1 ,

and j∗0 are linear.
If ω= a(x, t)dxi1 ∧ · · · ∧ dxip+1 , then Kω= 0, d(Kω)= 0, and

dω = ∂a
∂t

dt ∧ dxi1 ∧ · · · ∧ dxip+1 + [terms not containing dt],

K(dω) =
(∫ 1

0

∂a

∂t
dt

)
dxi1 ∧ · · · ∧ dxip+1 =

= (a(x,1)− a(x,0))dxi1 ∧ · · · ∧ dxip+1 = j∗1ω− j∗0ω,
and relation (15.52) is valid.

If ω= a(x, t)dt ∧ dxi1 ∧ · · · ∧ dxip , then j∗1ω= j∗0ω= 0. Then

K(dω) = K
(
−
∑

i0

∂a

∂xi0
dt ∧ dxi0 ∧ dxi1 ∧ · · · ∧ dxip

)
=

= −
∑

i0

(∫ 1

0

∂a

∂xi0
dt

)
dxi0 ∧ · · · ∧ dxip ,

d(Kω) = d

((∫ 1

0
a(x, t)dt

)
dxi1 ∧ · · · ∧ dxip

)
=

=
∑

i0

∂

∂xi0

(∫ 1

0
a(x, t)dt

)
dxi0 ∧ dxi1 ∧ · · · ∧ dxip =

=
∑

i0

(∫ 1

0

∂a

∂xi0
dt

)
dxi0 ∧ dxi1 ∧ · · · ∧ dxip .

Thus relation (15.52) holds in this case also.8 Now let M be a manifold that is
contractible to the point x0 ∈M , let h :M× I→M be the mapping in Definition 3,

8For the justification of the differentiation of the integral with respect to xi0 in this last equality,
see, for example, Sect. 17.1.
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and let ω be a (p + 1)-form on M . Then obviously h ◦ j1 :M→M is the identity
mapping and h ◦ j0 :M → x0 is the mapping of M to the point x0, so that (j∗1 ◦
h∗)ω= ω and (j∗0 ◦ h∗)ω= 0. Hence it follows from (15.52) that in this case

K
(
d
(
h∗ω
))+ d

(
K
(
h∗ω
))= ω. (15.53)

If in addition ω is a closed form onM , then, since d(h∗ω)= h∗(dω)= 0, we find
by (15.53) that

d
(
K
(
h∗ω
))= ω.

Thus the closed form ω is the exterior derivative of the form α = K(h∗ω) ∈
Ωp(M), that is, ω is an exact form onM . �

Example 2 Let A, B , and C be smooth real-valued functions of the variables
x, y, z ∈ R

3. We ask how to solve the following system of equations for P , Q,
and R:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂R

∂y
− ∂Q
∂z
=A,

∂P

∂z
− ∂R
∂x
= B,

∂Q

∂x
− ∂P
∂y
= C.

(15.54)

An obvious necessary condition for the consistency of the system (15.54) is that
the functions A, B , and C satisfy the relation

∂A

∂x
+ ∂B
∂y
+ ∂C
∂z
= 0,

which is equivalent to saying that the form

ω=Ady ∧ dz+B dz∧ dx +C dx ∧ dy

is closed in R
3.

The system (15.54) will have been solved if we find a form

α = P dx +Qdy +R dz

such that dα = ω.
In accordance with the recipes explained in the proof of Theorem 1, and taking

account of the mapping h constructed in Example 1, we find, after simple computa-
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tions,

α =K(h∗ω)=
(∫ 1

0
A(tx, ty, tz)t dt

)
(y dz− zdy)+

+
(∫ 1

0
B(tx, ty, tz)t dt

)
(zdx − x dz)+

+
(∫ 1

0
C(tx, ty, tz)t dt

)
(x dy − y dx).

One can also verify directly that dα = ω.

Remark The amount of arbitrariness in the choice of a form α satisfying the con-
dition dα = ω is usually considerable. Thus, along with α, any form α + dη will
obviously also satisfy the same equation.

By Theorem 1 any two forms α and β on a contractible manifold M satisfying
dα = dβ = ω differ by an exact form. Indeed, d(α−β)= 0, that is, the form (α−β)
is closed onM and hence exact, by Theorem 1.

15.4.2 Homology and Cohomology

By Poincaré’s theorem every closed form on a manifold is locally exact. But it is by
no means always possible to glue these local primitives together to obtain a single
form. Whether this can be done depends on the topological structure of the manifold.
For example, the closed form in the punctured plane R

2\0 given by ω= −y dx+x dy
x2+y2 ,

studied in Sect. 14.3, is locally the differential of a function ϕ = ϕ(x, y) – the polar
angle of the point (x, y). However, extending that function to the domain R

2\0 leads
to multivaluedness if the closed path over which the extension is carried out encloses
the hole – the point 0. The situation is approximately the same with forms of other
degrees. “Holes” in manifolds may be of different kinds, not only missing points,
but also holes such as one finds in a torus or a pretzel. The structure of manifolds of
higher dimensions can be rather complicated. The connection between the structure
of a manifold as a topological space and the relationship between closed and exact
forms on it is described by the so-called (co)homology groups of the manifold.

The closed and exact real-valued forms on a manifold M form the vector spaces
Zp(M) and Bp(M) respectively, and Zp(M)⊃ Bp(M).

Definition 4 The quotient space

Hp(M) := Zp(M)/Bp(M) (15.55)

is called the p-dimensional cohomology group of the manifold M (with real coeffi-
cients).
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Thus, two closed forms ω1,ω2 ∈ Zp(M) lie in the same cohomology class, or
are cohomologous, if ω1−ω2 ∈ Bp(M), that is, if they differ by an exact form. The
cohomology class of the form ω ∈Zp(M) will be denoted [ω].

Since Zp(M) is the kernel of the operator dp : Ωp(M) → Ωp+1(M), and
Bp(M) is the image of the operator dp−1 :Ωp−1(M)→Ωp(M), we often write

Hp(M)=Ker dp/ Im dp−1.

Computing cohomologies, as a rule, is difficult. However, certain trivial general
observations can be made.

It follows from Definition 4 that if p > dimM , then Hp(M)= 0.
It follows from Poincaré’s theorem that ifM is contractible then Hp(M)= 0 for

p > 0.
On any connected manifold M the group H 0(M) is isomorphic to R, since

H 0(M)= Z0(M), and if df = 0 holds for the function f :M→R on a connected
manifoldM , then f = const.

Thus, for example, it results for Rn thatHp(Rn)= 0 for p > 0 andH 0(Rn)∼R.
This assertion (up to the trivial last relation) is equivalent to Theorem 1 with M =
R
n and is also called Poincaré’s theorem.
The so-called homology groups have a more visualizable geometrical relation to

the manifoldM .

Definition 5 A smooth mapping c : Ip →M of the p-dimensional cube I ⊂ R
p

into the manifoldM is called a singular p-cube onM .

This is a direct generalization of the concept of a smooth path to the case of an
arbitrary dimension p. In particular, a singular cube may consist of a mapping of
the cube I to a single point.

Definition 6 A p-chain (of singular cubes) on a manifold M is any finite formal
linear combination

∑
k αkck of singular p-cubes onM with real coefficients.

Like paths, singular cubes that can be obtained from each other by a diffeomor-
phic change of the parametrization with positive Jacobian are regarded as equivalent
and are identified. If such a change of parameter has negative Jacobian, then the cor-
responding oppositely oriented singular cubes c and c− are regarded as negatives of
each other, and we set c− =−c.

The p-chains on M obviously form a vector space with respect to the standard
operations of addition and multiplication by a real number. We denote this space by
Cp(M).

Definition 7 The boundary ∂I of the p-dimensional cube Ip in R
p is the (p− 1)-

chain

∂I :=
l∑

i=0

p∑

j=1

(−1)i+j cij (15.56)
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in R
p , where cij : Ip−1 → R

p is the mapping of the (p − 1)-dimensional cube
into R

p induced by the canonical embedding of the corresponding face of Ip in R
p .

More precisely, if Ip−1 = {x̃ ∈Rp−1 | 0≤ x̃m ≤ 1,m= 1, . . . , p−1}, then cij (x̃)=
(x̃1, . . . , x̃j−1, i, x̃j+1, . . . , x̃p−1) ∈Rp .

It is easy to verify that this formal definition of the boundary of a cube agrees
completely with the operation of taking the boundary of the standard oriented
cube Ip (see Sect. 12.3).

Definition 8 The boundary ∂c of the singular p-cube c is the (p− 1)-chain

∂c :=
1∑

i=0

p∑

j=1

(−1)i+j c ◦ cij .

Definition 9 The boundary of a p-chain
∑
k αkck on the manifoldM is the (p−1)-

chain

∂

(∑

k

αkck

)
:=
∑

k

αk∂ck.

Thus on any space of chains Cp(M) we have defined a linear operator

∂ = ∂p :Cp(M)→Cp−1(M).

Using relation (15.56), one can verify the relation ∂(∂I)= 0 for the cube. Con-
sequently ∂ ◦ ∂ = ∂2 = 0 in general.

Definition 10 A p-cycle on a manifold is a p-chain z for which ∂z= 0.

Definition 11 A boundary p-cycle on a manifold is a p-chain that is the boundary
of some (p+ 1)-chain.

Let Zp(M) and Bp(M) be the sets of p-cycles and boundary p-cycles on the
manifold M . It is clear that Zp(M) and Bp(M) are vector spaces over the field R

and that Zp(M)⊃ Bp(M).

Definition 12 The quotient space

Hp(M) := Zp(M)/Bp(M) (15.57)

is the p-dimensional homology group of the manifold M (with real coefficients).

Thus, two cycles z1, z2 ∈ Zp(M) are in the same homology class, or are homol-
ogous, if z1 − z2 ∈ Bp(M), that is, they differ by the boundary of some chain. We
shall denote the homology class of a cycle z ∈Zp(M) by [z].
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As in the case of cohomology, relation (15.57) can be rewritten as

Hp(M)=Ker ∂p/ Im ∂p+1.

Definition 13 If c : I →M is a singular p-cube and ω is a p-form on the mani-
foldM , then the integral of the form ω over this singular cube is

∫

c

ω :=
∫

I

c∗ω. (15.58)

Definition 14 If
∑
k αkck is a p-chain and ω is a p-form on the manifold M ,

the integral of the form over such a chain is interpreted as the linear combination∑
k αk
∫
ck
ω of the integrals over the corresponding singular cubes.

It follows from Definitions 5–8 and 13–14 that Stokes’ formula
∫

c

dω=
∫

∂c

ω (15.59)

holds for the integral over a singular cube, where c and ω have dimension p and
degree p − 1 respectively. If we take account of Definition 9, we conclude that
Stokes’ formula (15.59) is valid for integrals over chains.

Theorem 2 a) The integral of an exact form over a cycle equals zero.
b) The integral of a closed form over the boundary of a chain equals zero.
c) The integral of a closed form over a cycle depends only on the cohomology

class of the form.
d) If the closed p-forms ω1 and ω2 and the p-cycles z1 and z2 are such that

[ω1] = [ω2] and [z1] = [z2], then
∫

z1

ω1 =
∫

z2

ω2.

Proof a) By Stokes’ formula
∫
z
ω dz= ∫

∂z
ω= 0, since ∂z= 0.

b) By Stokes’ formula
∫
∂c
ω= ∫

c
dω= 0, since dω= 0.

c) follows from b).
d) follows from a).
e) follows from c) and d). �

Corollary The bilinear mapping Ωp(M) × Cp(M)→ R defined by (ω, c) �→∫
c
ω induces a bilinear mapping Zp(M) × Zp(M)→ R and a bilinear mapping

Hp(M)×Hp(M)→R. The latter is given by the formula

([ω], [z]) �→
∫

z

ω, (15.60)

where ω ∈Zp(M) and z ∈ Zp(M).
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Theorem 3 (de Rham9) The bilinear mapping Hp(M) × Hp(M)→ R given by
(15.60) is nondegenerate.10

We shall not take the time to prove this theorem here, but we shall find some
reformulations of it that will enable us to present in explicit form some corollaries
of it that are used in analysis.

We remark first of all that by (15.60) each cohomology class [ω] ∈ Hp(M)
can be interpreted as a linear function [ω]([z]) = ∫

z
ω. Thus a natural mapping

Hp(M)→H ∗p(M) arises, where H ∗p(M) is the vector space conjugate to Hp(M).
The theorem of de Rham asserts that this mapping is an isomorphism, and in this
sense Hp(M)=H ∗p(M).

Definition 15 If ω is a closed p-form and z is a p-cycle on the manifold M , then
the quantity per(z) := ∫

z
ω is called the period (or cyclic constant) of the form ω

over the cycle z.

In particular, if the cycle z is homologous to zero, then, as follows from asser-
tion b) of Theorem 2, we have per(z)= 0. For that reason the following connection
exists between periods:

[∑

k

αkzk

]
= 0=⇒

∑

k

αk per(zk)= 0, (15.61)

that is, if a linear combination of cycles is a boundary cycle, or, what is the same, is
homologous to zero, then the corresponding linear combination of periods is zero.

The following two theorems of de Rham hold; taken together, they are equivalent
to Theorem 3.

Theorem 4 (de Rham’s first theorem) A closed form is exact if and only if all its
periods are zero.

Theorem 5 (de Rham’s second theorem) If a number per(z) is assigned to each p-
cycle z ∈Zp(M) on the manifoldM in such a way that condition (15.61) holds, then
there is a closed p-form ω onM such that

∫
z
ω= per(z) for every cycle z ∈Zp(M).

15.4.3 Problems and Exercises

1. Verify by direct computation that the form α obtained in Example 2 does indeed
satisfy the equation dα = ω.

9G. de Rham (1903–1969) – Belgian mathematician who worked mainly in algebraic topology.
10We recall that a bilinear form L(x, y) is nondegenerate if for every fixed nonzero value of one of
the variables the resulting linear function of the other variable is not identically zero.
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2. a) Prove that every simply-connected domain in R
2 is contractible on itself to a

point.
b) Show that the preceding assertion is generally not true in R

3.

3. Analyze the proof of Poincaré’s theorem and show that if the smooth mapping
h :M × I→M is regarded as a family of mappings ht :M→M depending on the
parameter t , then for every closed form ω on M all the forms h∗t ω, t ∈ I , will be in
the same cohomology class.
4. a) Let t �→ ht ∈ C(∞)(M,N) be a family of mappings of the manifold M into
the manifold N depending smoothly on the parameter t ∈ I ⊂ R. Verify that for
every form ω ∈Ω(N) the following homotopy formula holds:

∂

∂t

(
h∗t ω
)
(x)= dh∗t (iXω)(x)+ h∗t (iX dω)(x). (15.62)

Here x ∈M,X is a vector field on N with X(x, t) ∈ TNht (x),X(x, t) is the velocity
vector for the path t ′ �→ ht ′(x) at t ′ = t , and the operation iX of taking the inner
product of a form and a vector field is defined in Problem 7 of the preceding section.

b) Obtain the assertion of Problem 3 from formula (15.62).
c) Using formula (15.62), prove Poincaré’s theorem (Theorem 1) again.
d) Show that if K is a manifold that is contractible to a point, then Hp(K ×

M)=Hp(M) for every manifoldM and any integer p.
e) Obtain relation (15.51) of Sect. 15.3 from formula (15.62).

5. a) Show, using Theorem 4, and also by direct demonstration, that if a closed
2-form on the sphere S2 is such that

∫
S2 ω= 0, then ω is exact.

b) Show that the group H 2(S2) is isomorphic to R.
c) Show that H 1(S2)= 0.

6. a) Let ϕ : S2→ S2 be the mapping that assigns to each point x ∈ S2 the antipo-
dal point −x ∈ S2. Show that there is a one-to-one correspondence between forms
on the projective plane RP

2 and forms on the sphere S2 that are invariant under the
mapping ϕ, that is, ϕ∗ω= ω.

b) Let us represent RP2 as the quotient space S2/Γ , where Γ is the group of
transformations of the sphere consisting of the identity mapping and the antipodal
mapping ϕ. Let π : S2 → RP

2 = S2/Γ be the natural projection, that is π(x) =
{x,−x}. Show that π ◦ ϕ = π and verify that

∀η ∈Ωp(S2) (ϕ∗η= η)⇐⇒∃ω ∈Ωp(RP2) (π∗ω= η).

c) Now show, using the result of Problem 5a), that H 2(RP2)= 0.
d) Prove that if the function f ∈ C(S2,R) is such that f (x)− f (−x)≡ const,

then f ≡ 0. Taking account of Problem 5c), deduce from this that H 1(RP2)= 0.

7. a) Representing RP
2 as a standard rectangleΠ with opposite sides identified as

shown by the orienting arrows in Fig. 15.3, show that ∂Π = 2c′ − 2c, ∂c= P −Q,
and ∂c′ = P −Q.
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Fig. 15.3

b) Deduce from the observations in the preceding part of the problem that
there are no nontrivial 2-cycles on RP

2. Then show by de Rham’s theorem that
H 2(RP2)= 0.

c) Show that the only nontrivial 1-cycle on RP
2 (up to a constant factor) is

the cycle c′ − c, and since c′ − c = 1
2∂Π , deduce from de Rham’s theorem that

H 1(RP2)= 0.

8. Find the groups H 0(M), H 1(M), and H 2(M) if

a) M = S1 – the circle;
b) M = T 2 – the two-dimensional torus;
c) M =K2 – the Klein bottle.

9. a) Prove that diffeomorphic manifolds have isomorphic (co)homology groups
of the corresponding dimension.

b) Using the example of R2 and RP
2, show that the converse is generally not

true.

10. Let X and Y be vector spaces over the field R and L(x, y) a nondegenerate
bilinear form L : X × Y → R. Consider the mapping X→ Y ∗ given by the corre-
spondence X � x �→ L(x, ·) ∈ Y ∗.

a) Prove that this mapping is injective.
b) Show that for every system y1, . . . , yk of linearly independent vectors in Y

there exist vectors x1, . . . , xk such that xi(yj ) = L(xi, yj ) = δij , where δij = 0 if

i �= j and δij = 1 if i = j .
c) Verify that the mapping X→ Y ∗ is an isomorphism of the vector spaces X

and Y ∗.
d) Show that de Rham’s first and second theorems together mean thatHp(M)=

H ∗p(M) up to isomorphism.



Chapter 16
Uniform Convergence and the Basic Operations
of Analysis on Series and Families of Functions

16.1 Pointwise and Uniform Convergence

16.1.1 Pointwise Convergence

Definition 1 We say that the sequence {fn;n ∈ N} of functions fn : X→ R con-
verges at the point x ∈X if the sequence of values at x, {fn(x);n ∈N}, converges.

Definition 2 The set of points E ⊂ X at which the sequence {fn;n ∈ N} of func-
tions fn :X→R converges is called the convergence set of the sequence.

Definition 3 On the convergence set of the sequence of functions {fn;n ∈ N}
there naturally arises a function f : E → R defined by the relation f (x) :=
limn→∞ fn(x). This function is called the limit function of the sequence {fn;n ∈N}
or the limit of the sequence {fn;n ∈N}.

Definition 4 If f :E→R is the limit of the sequence {fn;n ∈N}, we say that the
sequence of functions converges (or converges pointwise) to f on E.

In this case we write f (x)= limn→∞ fn(x) on E or fn→ f on E as n→∞.

Example 1 Let X = {x ∈ R | x ≥ 0} and let the functions fn : X→ R be given by
the relation fn(x)= xn, n ∈N. The convergence set of this sequence of functions is
obviously the closed interval I = [0,1] and the limit function f : I →R is defined
by

f (x)=
{

0, if 0≤ x < 1,

1, if x = 1.

Example 2 The sequence of functions fn(x) = sinn2x
n

on R converges on R to the
function f :R→ 0 that is identically 0.
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Example 3 The sequence fn(x) = sinnx
n2 also has the identically zero function f :

R→ 0 as its limit.

Example 4 Consider the sequence fn(x)= 2(n+ 1)x(1− x2)n on the closed inter-
val I = [0,1]. Since nqn→ 0 for |q|< 1, this sequence tends to zero on the entire
closed interval I .

Example 5 Let m,n ∈N, and let fm(x) := limn→∞(cosm!πx)2n. If m!x is an inte-
ger, then fm(x)= 1, and if m!x /∈ Z, obviously fm(x)= 0.

We shall now consider the sequence {fm;m ∈ N} and show that it converges on
the entire real line to the Dirichlet function

D(x)=
{

0, if x /∈Q,
1, if x ∈Q.

Indeed, if x /∈ Q, then m!x /∈ Z, and fm(x) = 0 for every value of m ∈ N, so that
f (x) = 0. But if x = p

q
, where p ∈ Z and q ∈ N, then m!x ∈ Z for m ≥ q , and

fm(x)= 1 for all such m, which implies f (x)= 1.
Thus limm→∞ fm(x)=D(x).

16.1.2 Statement of the Fundamental Problems

Limiting passages are encountered at every step in analysis, and it is often impor-
tant to know what kind of functional properties the limit function has. The most
important properties for analysis are continuity, differentiability, and integrability.
Hence it is important to determine whether the limit is a continuous, differentiable,
or integrable function if the prelimit functions all have the corresponding property.
Here it is especially important to find conditions that are sufficiently convenient in
practice and which guarantee that when the functions converge, their derivatives or
integrals also converge to the derivative or integral of the limit function.

As the simple examples examined above show, without some additional hypothe-
ses the relation “fn→ f on [a, b] as n→∞” does not in general imply either the
continuity of the limit function, even when the functions fn are continuous, or the
relation f ′n→ f ′ or

∫ b
a
fn(x)dx→

∫ b
a
f (x)dx, even when all these derivatives and

integrals are defined.
Indeed,
in Example 1 the limit function is discontinuous on [0,1] although all the prelimit

functions are continuous there;
in Example 2 the derivatives n cosn2x of the prelimit functions in general do not

converge, and hence cannot converge to the derivative of the limit function, which
in this case is identically zero;

in Example 4 we have
∫ 1

0 fn(x)dx = 1 for every value of n ∈ N, while
∫ 1

0 f (x)dx = 0;
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in Example 5 each of the functions fm equals zero except at a finite set of points,
so that

∫ b
a
fm(x)dx = 0 on every closed interval [a, b] ⊂R, while the limit function

D is not integrable on any closed interval of the real line.
At the same time:
in Examples 2, 3, and 4 both the prelimit and the limit functions are continuous;
in Example 3 the limit of the derivatives cosnx

n
of the functions in the sequence

sinnx
n2 does equal the derivative of the limit of that sequence;

in Example 1 we have
∫ 1

0 fn(x)dx→
∫ 1

0 f (x)dx as n→∞.
Our main purpose is to determine the cases in which the limiting passage under

the integral or derivative sign is legal.
In this connection, let us consider some more examples.

Example 6 We know that for any x ∈R

sinx = x − 1

3!x
3 + 1

5!x
5 − · · · + (−1)m

(2m+ 1)!x
2m+1 + · · · , (16.1)

but after the examples we have just considered, we understand that the relations

sin′ x =
∞∑

m=0

(
(−1)m

(2m+ 1)!x
2m+1
)′
, (16.2)

∫ b

a

sinx dx =
∞∑

m=0

∫ b

a

(−1)m

(2m+ 1)!x
2m+1 dx, (16.3)

require verification in general.
Indeed, if the equality

S(x)= a1(x)+ a2(x)+ · · · + am(x)+ · · ·
is understood in the sense that S(x)= limn→∞ Sn(x), where Sn(x)=∑n

m=1 am(x),
then by the linearity of differentiation and integration, the relations

S′(x) =
∞∑

m=1

a′n(x),

∫ b

a

S(x)dx =
∞∑

m=1

∫ b

a

am(x)dx

are equivalent to

S′(x) = lim
n→∞S

′
n(x),

∫ b

a

S(x)dx = lim
n→∞

∫ b

a

Sn(x)dx,

which we must now look upon with caution.
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In this case both relations (16.2) and (16.3) can easily be verified, since it is
known that

cosx = 1− 1

2!x
2 + 1

4!x
4 − · · · + (−1)m

(2m)! x
2m + · · · .

However, suppose that Eq. (16.1) is the definition of the function sinx. After all,
that was exactly the situation with the definition of the functions sin z, cos z, and
ez for complex values of the argument. At that time we had to get the properties of
the new function (its continuity, differentiability, and integrability), as well as the
legality of the equalities (16.2) and (16.3) directly from the fact that this function is
the limit of the sequence of partial sums of this series.

The main concept by means of which sufficient conditions for the legality of the
limiting passages will be derived in Sect. 16.3, is the concept of uniform conver-
gence.

16.1.3 Convergence and Uniform Convergence of a Family
of Functions Depending on a Parameter

In our discussion of the statement of the problems above we confined ourselves
to consideration of the limit of a sequence of functions. A sequence of functions
is the most important special case of a family of functions ft (x) depending on a
parameter t . It arises when t ∈N. Sequences of functions thus occupy the same place
occupied by the theory of limit of a sequence in the theory of limits of functions.
We shall discuss the limit of a sequence of functions and the connected theory of
convergence of series of functions in Sect. 16.2. Here we shall discuss only those
concepts involving functions depending on a parameter that are basic for everything
that follows.

Definition 5 We call a function (x, t) �→ F(x, t) of two variables x and t defined
on the set X × T a family of functions depending on the parameter t if one of the
variables t ∈ T is distinguished and called the parameter.

The set T is called the parameter set or parameter domain, and the family it-
self is often written in the form ft (x) or {ft ; t ∈ T }, distinguishing the parameter
explicitly.

As a rule, in this book we shall have to consider families of functions for which
the parameter domain T is one of the sets N or R or C of natural numbers, real num-
bers, or complex numbers or subsets of these. In general, however, the set T may be
a set of any nature. Thus in Examples 1–5 above we had T = N. In Examples 1–4
we could have assumed without loss of content that the parameter n is any positive
number and the limit was taken over the base n→∞, n ∈R+.
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Definition 6 Let {ft : X→ R; t ∈ T } be a family of functions depending on a pa-
rameter and let B be a base in the set T of parameter values.

If the limit limB ft (x) exists for a fixed value x ∈ X, we say that the family of
functions converges at x.

The set of points of convergence is called the convergence set of the family of
functions in a given base B.

Definition 7 We say that the family of functions converges on the set E ⊂ X over
the base B if it converges over that base at each point x ∈E.

The function f (x) := limB ft (x) on E is called the limit function or the limit of
the family of functions ft on the set E over the base B.

Example 7 Let ft (x) = e−(x/t)2 , x ∈ X = R, t ∈ T = R\0, and let B be the base
t→ 0. This family converges on the entire set R, and

lim
t→0

ft (x)=
{

1, if x = 0,

0, if x �= 0.

We now give two basic definitions.

Definition 8 We say that the family {ft ; t ∈ T } of functions ft :X→ R converges
pointwise (or simply converges) on the set E ⊂ X over the base B to the function
f :E→R if limB ft (x)= f (x) at every point x ∈E.

In this case we shall often write (ft −→
B
f on E).

Definition 9 The family {ft ; t ∈ T } of functions ft : X→ R converges uniformly
on the set E ⊂X over the base B to the function f :E→R if for every ε > 0 there
exists an element B in the base B such that |f (x)− ft (x)|< ε at every value t ∈ B
and at every point x ∈E.

In this case we shall frequently write (ft⇒
B
f on E).

We give also the formal expression of these important definitions:
(
ft −→

B
f on E

)
:= ∀ε > 0 ∀x ∈E ∃B ∈ B ∀t ∈ B (∣∣f (x)− ft (x)

∣∣< ε
)
,

(
ft⇒

B
f on E

)
:= ∀ε > 0 ∃B ∈ B ∀x ∈E ∀t ∈ B (∣∣f (x)− ft (x)

∣∣< ε
)
.

The relation between convergence and uniform convergence resembles the rela-
tion between continuity and uniform continuity on a set.

To explain better the relationship between convergence and uniform convergence
of a family of functions, we introduce the quantity Δt(x)= |f (x)− ft (x)|, which
measures the deviation of the value of the function ft from the value of the func-
tion f at the point x ∈ E. Let us consider also the quantity Δt = supx∈E Δt(x),
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Fig. 16.1

which characterizes, roughly speaking, the maximum deviation (although there may
not be a maximum) of the function ft from the corresponding values of f over all
x ∈E. Thus, at every point x ∈E we have Δt(x)≤Δt .

In this notation these definitions obviously can be written as follows:
(
ft −→

B
f on E

)
:= ∀x ∈E (

Δt(x)→ 0 over B
)
,

(
ft⇒

B
f on E

)
:= (Δt→ 0 over B).

It is now clear that
(
ft⇒

B
f on E

)
=⇒
(
ft −→

B
f on E

)
,

that is, if the family ft converges uniformly to f on the setE, it converges pointwise
to f on that set.

The converse is in general not true.

Example 8 Let us consider the family of functions ft : I → R defined on the
closed interval I = {x ∈ R | 0 ≤ x ≤ 1} and depending on the parameter t ∈ ]0,1].
The graph of the functions y = ft (x) is shown in Fig. 16.1. It is clear that
limt→0 ft (x) = 0 at every point x ∈ I , that is, ft → f ≡ 0 as t → 0. At the same
time Δt = supx∈I |f (x) − ft (x)| = supx∈I |ft (x)| = 1, that is, Δt � 0 as t → 0,
and hence the family converges, but not uniformly.

In such cases we shall say for convenience that the family converges nonuni-
formly to the limit function.

If the parameter t is interpreted as time, then convergence of the family of func-
tions ft on the set E to the function f means that for any preassigned precision
ε > 0 one can exhibit a time tε for each point x ∈E starting from which (that is, for
t > tε) the values of all functions ft at x will differ from f (x) by less than ε.

Uniform convergence means that there is a time tε , starting from which (that is,
for t > tε) the relation |f (x)− ft (x)|< ε holds for all x ∈E.

The figure of a traveling bulge of large deviation depicted in Fig. 16.1 is typical
for nonuniform convergence.
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Example 9 The sequence of functions fn(x) = xn − x2n defined on the closed in-
terval 0 ≤ x ≤ 1, as one can see, converges to zero at each point as n→∞.
To determine whether this convergence is uniform, we find the quantity Δn =
max0≤x≤1 |fn(x)|. Since f ′n(x) = nxn−1(1 − 2xn) = 0 for x = 0 and x = 2−1/n,
it is clear that Δn = fn(2−1/n) = 1/4. Thus Δn � 0 as n→∞ and our sequence
converges to the limit function f (x)≡ 0 nonuniformly.

Example 10 The sequence of functions fn = xn on the interval 0≤ x ≤ 1 converges
to the function

f (x)=
{

0, if 0≤ x < 1,

1, if x = 1

nonuniformly, since for each n ∈N
Δn = sup

0≤x≤1

∣
∣f (x)− fn(x)

∣
∣= sup

0≤x<1

∣
∣f (x)− fn(x)

∣
∣=

= sup
0≤x<1

∣
∣fn(x)

∣
∣= sup

0≤x<1

∣
∣xn
∣
∣= 1.

Example 11 The sequence of functions fn(x) = sinn2x
n

studied in Example 2 con-
verges to zero uniformly on the entire set R as n→∞, since in this case

∣∣f (x)− fn(x)
∣∣= ∣∣fn(x)

∣∣=
∣∣∣∣
sinn2x

n

∣∣∣∣≤
1

n
,

that is, Δn ≤ 1/n, and hence Δn→ 0 as n→∞.

16.1.4 The Cauchy Criterion for Uniform Convergence

In Definition 9 we stated what it means for a family of functions ft to converge uni-
formly on a set to a given function on that set. Usually, when the family of functions
is defined the limit function is not yet known, so that it makes sense to adopt the
following definition.

Definition 10 We shall say that the family {ft ; t ∈ T } of functions ft :X→R con-
verges on the set E ⊂X uniformly over the base B if it converges on that set and the
convergence to the resulting limit function is uniform in the sense of Definition 9.

Theorem (Cauchy criterion for uniform convergence) Let {ft ; t ∈ T } be a family
of functions ft : X→ R depending on a parameter t ∈ T , and B a base in T .
A necessary and sufficient condition for the family {ft ; t ∈ T } to converge uniformly
on the set E ⊂X over the base B is that for every ε > 0 there exists an element B
of the base B such that |ft1(x) − ft2(x)| < ε for every value of the parameters
t1, t2 ∈ B and every point x ∈E.
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In formal language this means that ft converges uniformly on E over the base
B⇐⇒∀ε > 0 ∃B ∈ B ∀t1, t2 ∈ B ∀x ∈E (|ft1(x)− ft2(x)|< ε).

Proof Necessity. The necessity of these conditions is obvious, since if f : E→ R

is the limit function and ft ⇒ f on E over B, there exists an element B in the base
B such that |f (x)− ft (x)|< ε/2 for every t ∈ B and every x ∈ E. Then for every
t1, t2 ∈ B and every x ∈E we have

∣
∣ft1(x)− ft2(x)

∣
∣≤ ∣∣f (x)− ft1(x)

∣
∣+ ∣∣f (x)− ft2(x)

∣
∣< ε/2+ ε/2= ε.

Sufficiency. For each fixed value of x ∈ E we can regard ft (x) as a function of
the variable t ∈ T . If the hypotheses of the theorem hold, then the hypotheses of
the Cauchy convergence criterion for the existence of a limit over the base B are
fulfilled.

Hence, the family {ft ; t ∈ T } converges at least pointwise to some function f :
E→R on the set E over the base B.

If we now pass to the limit in the inequality |ft1(x) − ft2(x)| < ε, which
is valid for any t1 and t2 ∈ B and every x ∈ E, one can obtain the inequality
|f (x)− ft2(x)| ≤ ε for every t2 ∈ B and every x ∈E, and this, up to an inessential
relabeling and the change of the strict inequality to the nonstrict, coincides exactly
with the definition of uniform convergence of the family {ft ; t ∈ T } to the function
f :E→R on the set E over the base B. �

Remark 1 The definitions of convergence and uniform convergence that we have
given for families of real-valued functions ft : X→ R of course remain valid for
families of functions ft : X→ Y with values in any metric space Y . The natural
modification that one must make in the definitions in this case amounts to replacing
|f (x)− ft (x)| by dY (f (x), ft (x)), where dY is the metric in Y .

For normed vector spaces Y , in particular for Y =C or Y =R
m or Y =C

m, even
these formal changes are not needed.

Remark 2 The Cauchy criterion of course remains valid for families of functions
ft :X→ Y with values in a metric space Y provided Y is a complete metric space.
As can be seen from the proofs, the hypothesis that Y be complete is needed only
for the sufficiency part of the criterion.

16.1.5 Problems and Exercises

1. Determine whether the sequences of functions considered in Examples 3–5 con-
verge uniformly.
2. Prove Eqs. (16.2) and (16.3).
3. a) Show that the sequence of functions considered in Example 1 converges uni-
formly on every closed interval [0,1− δ] ⊂ [0,1], but converges nonuniformly on
the interval [0,1[.
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b) Show that the same is true for the sequence considered in Example 9.
c) Show that family of functions ft considered in Example 8 converges uni-

formly as t→ 0 on every closed interval [δ,1] ⊂ [0,1] but nonuniformly on [0,1].
d) Investigate the convergence and uniform convergence of the family of func-

tions ft (x)= sin(tx) as t→ 0 and then as t→∞.
e) Characterize the convergence of the family of functions ft (x)= e−tx2

as t→
+∞ on an arbitrary fixed set E ⊂R.

4. a) Verify that if a family of functions converges (resp. converges uniformly) on
a set, then it also converges (resp. converges uniformly) on any subset of the set.

b) Show that if the family of functions ft : X→ R converges (resp. converges
uniformly) on a set E over a base B and g : X→ R is a bounded function, then
the family g · ft :X→R also converges (resp. converges uniformly) on E over the
base B.

c) Prove that if the families of functions ft :X→R, gt :X→R converge uni-
formly on E ⊂X over the base B, then the family ht = αft + βgt , where α,β ∈R,
also converges uniformly on E over B.

5. a) In the proof of the sufficiency of the Cauchy criterion we passed to the limit
limB ft1(x)= f (x) over the base B in T . But t1 ∈ B , and B is a base in T , not in B .
Can we pass to this limit in such a way that t1 remains in B?

b) Explain where the completeness of R was used in the proof of the Cauchy
criterion for uniform convergence of a family of functions ft :X→R.

c) Notice that if all the functions of the family {ft :X→R; t ∈ T } are constant,
then the theorem proved above is precisely the Cauchy criterion for the existence of
the limit of the function ϕ : T →R over the base B in T .

6. Prove that if the family of continuous functions ft ∈C(I,R) on the closed inter-
val I = {x ∈R | a ≤ x ≤ b} converges uniformly on the open interval ]a, b[, then it
converges uniformly on the entire closed interval [a, b].

16.2 Uniform Convergence of Series of Functions

16.2.1 Basic Definitions and a Test for Uniform Convergence
of a Series

Definition 1 Let {an :X→C;n ∈N} be a sequence of complex-valued (in particu-
lar real-valued) functions. The series

∑∞
n=1 an(x) converges or converges uniformly

on the set E ⊂ X if the sequence {sm(x)=∑m
n=1 an(x);n ∈ N} converges or con-

verges uniformly on E.

Definition 2 The function sm(x) =∑m
n=1 an(x), as in the case of numerical se-

ries, is called the partial sum or, more precisely, the mth partial sum of the series∑∞
n=1 an(x).
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Definition 3 The sum of the series is the limit of the sequence of its partial sums.
Thus, writing

s(x)=
∞∑

n=1

an(x) on E

means that sm(x)→ s(x) on E as m→∞, and writing

the series
∞∑

n=1

an(x) converges uniformly on E

means that sm(x)⇒ s(x) on E as m→∞.
Investigating the pointwise convergence of a series amounts to investigating the

convergence of a numerical series, and we are already familiar with that.

Example 1 Earlier we defined the function exp :C→C by the relation

exp z :=
∞∑

n=0

1

n!z
n, (16.4)

after first verifying that the series on the right converges for every value z ∈C.
In the language of Definitions 1–3 one can now say that the series (16.4) of

functions an(z) = 1
n!z
n converges on the entire complex plane, and the function

exp z is its sum.
By Definitions 1 and 2 just adopted a two-way connection is established between

series and their sequences of partial sums: knowing the terms of the series, we obtain
the sequence of partial sums, and knowing the sequence of partial sums, we can
recover all the terms of the series: the nature of the convergence of the series is
identified with the nature of the convergence of its sequence of partial sums.

Example 2 In Example 5 of Sect. 16.1 we constructed a sequence {fm;m ∈ N} of
functions that converge to the Dirichlet function D(x) on R. If we set a1(x)= f1(x)

and an(x) = fn(x) − fn−1(x) for n > 1, we obtain a series
∑∞
n=1 an(x) that will

converge on the entire number line, and
∑∞
n=1 an(x)=D(x).

Example 3 It was shown in Example 9 of Sect. 16.1 that the sequence of functions
fn(x)= xn− x2n converges, but nonuniformly, to zero on the closed interval [0,1].
Hence, setting a1(x)= f1(x) and an(x)= fn(x)− fn−1(x) for n > 1, we obtain a
series

∑∞
n=1 an(x) that converges to zero on the closed interval [0,1], but converges

nonuniformly.
The direct connection between series and sequences of functions makes it pos-

sible to restate every proposition about sequences of functions as a corresponding
proposition about series of functions.

Thus, in application to the sequence {sn : X→ C;n ∈ N} the Cauchy criterion
proved in Sect. 16.1 for uniform convergence of a sequence on a set E ⊂X means
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that

∀ε > 0 ∃N ∈N ∀n1, n2 >N ∀x ∈E
(∣∣sn1(x)− sn2(x)

∣∣< ε
)
. (16.5)

From this, taking account of Definition 1, we obtain the following theorem.

Theorem 1 (Cauchy criterion for uniform convergence of a series) The series∑∞
n=1 an(x) converges uniformly on a set E if and only if for every ε > 0 there

exists N ∈N such that
∣
∣an(x)+ · · · + am(x)

∣
∣< ε, (16.6)

for all natural numbers m, n satisfying m≥ n >N and every point x ∈E.

Proof Indeed, setting n1 =m, n2 = n− 1 in (16.5) and assuming that sn(x) is the
partial sum of the series, we obtain inequality (16.6), from which relation (16.5) in
turn follows with the same notation and hypotheses of the theorem. �

Remark 1 We did not mention the range of values of the functions an(x) in the
statement of Theorem 1, taking for granted that it was R or C. But actually the
range of values could obviously be any normed vector space, for example, Rn or Cn,
provided only that the space is complete.

Remark 2 If under the hypotheses of Theorem 1 all the functions an(x) are con-
stant, we obtain the familiar Cauchy criterion for convergence of a numerical series∑∞
n=1 an.

Corollary 1 (Necessary condition for uniform convergence of a series) A necessary
condition for the series

∑∞
n=1 an(x) to converge uniformly on a set E is that an⇒ 0

on E as n→∞.

Proof This follows from the definition of uniform convergence of a sequence to
zero and inequality (16.6) if we set m= n in it. �

Example 4 The series (16.4) converges on the complex plane C nonuniformly, since
supz∈C | 1

n!z
n| = ∞ for every n ∈ N, while by the necessary condition for uniform

convergence, the quantity supx∈E |an(x)| must tend to zero when uniform conver-
gence occurs.

Example 5 The series
∑∞
n=1

zn

n
, as we know, converges in the unit disk K = {z ∈

C | |z|< 1}. Since | zn
n
|< 1

n
for z ∈K , we have z

n

n
⇒ 0 on K as n→∞. The neces-

sary condition for uniform convergence is satisfied; however, this series converges
nonuniformly on K . In fact, for any fixed n ∈ N, by the continuity of the terms of
the series, if z is sufficiently close to 1, we can get the inequalities

∣
∣∣∣
zn

n
+ · · · + z

2n

2n

∣
∣∣∣>

1

2

∣
∣∣∣
1

n
+ · · · + 1

2n

∣
∣∣∣>

1

4
.
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From this we conclude by the Cauchy criterion that the series does not converge
uniformly on K .

16.2.2 The Weierstrass M-Test for Uniform Convergence
of a Series

Definition 4 The series
∑∞
n=1 an(x) converges absolutely on the set E if the corre-

sponding numerical series converges absolutely at each point x ∈E.

Proposition 1 If the series
∑∞
n=1 an(x) and

∑∞
n=1 bn(x) are such that |an(x)| ≤

bn(x) for every x ∈ E and for all sufficiently large indices n ∈ N, then the uniform
convergence of the series

∑∞
n=1 bn(x) on E implies the absolute and uniform con-

vergence of the series
∑∞
n=1 an(x) on the same set E.

Proof Under these assumptions for all sufficiently large indices n andm (let n≤m)
at each point x ∈E we have

∣∣an(x)+ · · · + am(x)
∣∣≤ ∣∣an(x)

∣∣+ · · · + ∣∣am(x)
∣∣≤

≤ bn(x)+ · · · + bm(x)=
∣
∣bn(x)+ · · · + bm(x)

∣
∣.

By the Cauchy criterion and the uniform convergence of the series
∑∞
n=1 bn(x),

for each ε > 0 we can exhibit an index N ∈ N such that |bn(x)+ · · · + bm(x)|< ε
for all m ≥ n > N and all x ∈ E. But then it follows from the inequalities just
written and the Cauchy criterion that the series

∑∞
n=1 an(x) and

∑∞
n=1 |an(x)| both

converge uniformly. �

Corollary 2 (Weierstrass’ M-test for uniform convergence of a series) If for the
series

∑∞
n=1 an(x) one can exhibit a convergent numerical series

∑∞
n=1Mn such

that supx∈E |an(x)| ≤ Mn for all sufficiently large indices n ∈ N, then the series∑∞
n=1 an(x) converges absolutely and uniformly on the set E.

Proof The convergent numerical series can be regarded as a series of constant func-
tions on the set E, which by the Cauchy criterion converges uniformly on E. Hence
the Weierstrass test follows from Proposition 1 if we set bn(x)=Mn in it. �

The Weierstrass M-test is the simplest and at the same time the most frequently
used sufficient condition for uniform convergence of a series.

As an example of its application, we prove the following useful fact.

Proposition 2 If a power series
∑∞
n=0 cn(z − z0)

n converges at a point ζ �= z0,
then it converges absolutely and uniformly in any disk Kq = {z ∈ C | |z − z0| <
q|ζ − z0|}, where 0< q < 1.
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Proof By the necessary condition for convergence of a numerical series it fol-
lows from the convergence of the series

∑∞
n=0 cn(ζ − z0)

n that cn(ζ − z)n→ 0
as n→∞. Hence for all sufficiently large values of n ∈ N we have the estimates
|cn(z − z0)

n| = |cn(ζ − z0)
n| · | z−z0

ζ−z0
|n ≤ |cn(ζ − z0)

n| · qn < qn in the disk Kq .

Since the series
∑∞
n=0 q

n converges for |q| < 1, the estimates |cn(z − z0)
n| < qn

and the Weierstrass M-test now imply Proposition 2. �

Comparing this proposition with the Cauchy–Hadamard formula for the radius
of convergence of a power series (see Eq. (5.115)), we arrive at the following con-
clusion.

Theorem 2 (Nature of convergence of a power series) A power series
∑∞
n=0 cn(z−

z0)
n converges in the disk K = {z ∈ C | |z− z0|<R} whose radius of convergence

is determined by the Cauchy–Hadamard formula1 R = (limn→∞ n
√|cn|)−1 Outside

this disk the series diverges. On any closed disk contained in the interior of the
disk K of convergence of the series, a power series converges absolutely and uni-
formly.

Remark 3 As Examples 1 and 5 show, the power series need not converge uniformly
on the entire disk K . At the same time, it may happen that the power series does
converge uniformly even on the closed disk K .

Example 6 The radius of convergence of the series
∑∞
n=1

zn

n2 is 1. But if |z| ≤ 1,

then | zn
n2 | ≤ 1

n2 , and by the Weierstrass M-test this series converges absolutely and

uniformly in the closed disk K = {z ∈C | |z| ≤ 1}.

16.2.3 The Abel–Dirichlet Test

The following pairs of related sufficient conditions for uniform convergence of a
series are somewhat more specialized and are essentially connected with the real-
valuedness of certain components of the series under consideration. But these con-
ditions are more delicate than the WeierstrassM-test, since they make it possible to
investigate series that converge, but nonabsolutely.

Definition 5 The family F of functions f : X→ C is uniformly bounded on a set
E ⊂ X if there exists a number M ∈ R such that supx∈E |f (x)| ≤ M for every
f ∈F .

1In the exceptional case when limn→∞ n
√|cn| =∞, we take R = 0 and the disk K degenerates to

the single point z0.
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Definition 6 The sequence of functions {bn : X → R;n ∈ N} is called non-
decreasing (resp. nonincreasing) on the set E ⊂ X if the numerical sequence
{bn(x);n ∈N} is nondecreasing (resp. nonincreasing) for every x ∈E. Nondecreas-
ing and nonincreasing sequences of functions on set are called monotonic sequences
on the set.

We recall (if necessary, see Sect. 5.2.3) the following identity, called Abel’s trans-
formation:

m∑

k=n
akbk =Ambm −An−1bn +

m−1∑

k=n
Ak(bk − bk+1), (16.7)

where ak =Ak −Ak−1, k = n, . . . ,m.
If bn, bn+1, . . . , bm is a monotonic sequence of real numbers, then, even if

an, an+1, . . . , am are complex numbers or vectors of a normed space, one can obtain
the following estimate, which we need, from the identity (16.7):

∣∣∣∣∣

m∑

k=n
akbk

∣∣∣∣∣
≤ 4 max

n−1≤k≤m
|Ak| ·max

{|bn|, |bm|
}
. (16.8)

Proof In fact,

|Ambm| + |An−1bn| +
∣∣∣∣∣

m−1∑

k=n
Ak(bk − bk−1)

∣∣∣∣∣
≤

= max
n−1≤k≤m

|Ak| ·
(

|bm| + |bn| +
m−1∑

k=n
|bk − bk+1|

)

=

= max
n−1≤k≤m

|Ak| ·
(|bm| + |bn| + |bn − bm|

)≤

≤ 4 max
n−1≤k≤m

|Ak| ·max
(|bn|, |bm|

)
.

In the equality that occurs in this computation we used the monotonicity of the
numerical sequence bk . �

Proposition 3 (The Abel–Dirichlet test for uniform convergence) A sufficient con-
dition for uniform convergence on E of a series

∑∞
n=1 an(x)bn(x) whose terms

are products of complex-valued functions an : X→ C and real-valued functions
bn :X→R is that either of the following pairs of hypotheses be satisfied:

α1) the partial sums sk(x) =∑k
n=1 an(x) of the series

∑∞
n=1 an(x) are uni-

formly bounded on E;
β1) the sequence of functions bn(x) tends monotonically and uniformly to zero

on E;
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or

α2) the series
∑∞
n=1 an(x) converges uniformly on E;

β2) the sequence of functions bn(x) is monotonic and uniformly bounded on E.

Proof The monotonicity of the sequence bn(x) allows us to write an estimate anal-
ogous to (16.8) for each x ∈E:

∣
∣
∣
∣
∣

m∑

k=n
ak(x)bk(x)

∣
∣
∣
∣
∣
≤ 4 max

n−1≤k≤m
∣
∣Ak(x)

∣
∣ ·max

{∣∣bn(x)
∣
∣,
∣
∣bm(x)

∣
∣}, (16.8′)

where we take sk(x)− sn−1(x) as Ak(x).
If the hypotheses α1) and β1) hold, then, on the one hand, there exists a constant

M such that |Ak(x)| ≤M for all k ∈ N and all x ∈ E, while on the other hand, for
any number ε > 0 we have max{|bn(x)|, |bm(x)|}< ε

4M for all sufficiently large n
and m and all x ∈ E. Hence it follows from (16.8) that |∑m

k=n ak(x)bk(x)|< ε for
all sufficiently large n and m and all x ∈ E, that is, the Cauchy criterion holds for
this series.

In the case of hypotheses α2) and β2) the quantity max{|bn(x)|, |bm(x)|} is
bounded. At the same time, by the uniform convergence of the series

∑∞
n=1 an(x)

and the Cauchy criterion, for every ε > 0 we have |Ak(x)| = |sk(x)− sn−1(x)|< ε
for all sufficiently large n and k > n and all x ∈ E. Taking this into account, we
again conclude from (16.8) that the Cauchy criterion for uniform convergence holds
for this series. �

Remark 4 In the case when the functions an and bn are constants Proposition 3
becomes the Abel–Dirichlet criterion for convergence of numerical series.

Example 7 Let us consider the convergence of the series

∞∑

n=1

1

nα
einx . (16.9)

Since
∣∣∣
∣

1

nα
einx
∣∣∣
∣=

1

nα
, (16.10)

the necessary condition for uniform convergence does not hold for the series (16.9)
when α ≤ 0, and it diverges for every x ∈R. Thus we shall assume α > 0 from now
on.

If α > 1, we conclude from the Weierstrass M-test and (16.10) that the series
(16.9) converges absolutely and uniformly on the entire real line R.

To study the convergence for 0 < α ≤ 1 we use the Abel–Dirichlet test, setting
an(x) = einx and bn(x) = 1

nα
. Since the constant functions bn(x) are monotonic
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when α > 0 and obviously tend to zero uniformly for x ∈ R, it remains only to
investigate the partial sums of the series

∑∞
n=1 einx .

For convenience in citing results below, we shall consider the sums
∑n
k=0 eikx ,

which differ from the sums of our series only in the first term, which is 1.
Using the formula for the sum of a finite geometric series and Euler’s formula,

we obtain successively for x �= 2πm, m ∈ Z,

n∑

k=0

eikx = ei(n+1)x − 1

eix − 1
= sin n+1

2 x

sin x2
· ei

n+1
2 x

ei
x
2
=

= sin n+1
2 x

sin x2
ei
n
2 x = sin n+1

2 x

sin x2

(
cos
n

2
x + i sin

n

2
x

)
. (16.11)

Hence, for every n ∈N
∣
∣
∣
∣
∣

n∑

k=0

eikx
∣
∣
∣
∣
∣
≤ 1

| sin x2 |
, (16.12)

from which it follows by the Abel–Dirichlet criterion that for 0< α ≤ 1 the series
(16.9) converges uniformly on every set E ⊂ R on which infx∈E | sin x2 | > 0. In
particular the series (16.9) simply converges for every x �= 2πm, m ∈ Z. If x =
2πm, then ein2πm = 1, and the series (16.9) becomes the numerical series

∑∞
n=1

1
nα

,
which diverges for 0< α ≤ 1.

We shall show that from what has been said, one can conclude that for 0< α ≤ 1
the series (16.9) cannot converge uniformly on any set E whose closure con-
tains points of the form 2πm, m ∈ Z. For definiteness, suppose 0 ∈ E. The series∑∞
n=1

1
nα

diverges for 0 < α ≤ 1. By the Cauchy criterion, there exists ε > 0 such
that for every N ∈ N, no matter how large, one can find numbers m ≥ n > N such
that | 1

nα
+· · ·+ 1

mα
|> ε0 > 0. By the continuity of the functions eikx on R, it follows

that one can choose a point x ∈E close enough to 0 so that

∣∣∣∣
einx

nα
+ · · · + eimx

mα

∣∣∣∣> ε0.

But by the Cauchy criterion for uniform convergence this means that the series
(16.9) cannot converge uniformly on E.

To supplement what has just been said, we note that, as one can see from (16.10),
the series (16.9) converges nonabsolutely for 0< α ≤ 1.

Remark 5 It is useful for what follows to remark that, separating the real and imag-
inary parts in (16.11), we obtain the following relations:

n∑

k=0

coskx = cos n2x · sin n+1
2 x

sin x2
, (16.13)
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n∑

k=0

sin kx = sin n2x · sin n+1
2 x

sin x2
, (16.14)

which hold for x �= 2πm, m ∈ Z.

As another example of the use of the Abel–Dirichlet test we prove the following
proposition.

Proposition 4 (The so-called second Abel theorem on power series) If a power
series

∑∞
n=0 cn(z− z0)

n converges at a point ζ ∈C, then it converges uniformly on
the closed interval with endpoints z0 and ζ .

Proof We represent the points of this interval in the form z0 + (ζ − z0)t , where
0 ≤ t ≤ 1. Substituting this expression in the power series, we obtain the series∑∞
n=0 cn(ζ − z0)

ntn. By hypothesis, the numerical series
∑∞
n=0 cn(ζ − z0)

n con-
verges, and the sequence of functions tn is monotonic and uniformly bounded on
the closed interval [0,1]. Hence conditions α2) and β2) in the Abel–Dirichlet test
are satisfied, and the proposition is proved. �

16.2.4 Problems and Exercises

1. Investigate the nature of the convergence on the sets E ⊂ R for different values
of the real parameter α in the following series:

a)
∑∞
n=1

cosnx
nα

.
b)
∑∞
n=1

sinnx
nα

.

2. Prove that the following series converge uniformly on the indicated sets:

a)
∑∞
n=1

(−1)n

n
xn for 0≤ x ≤ 1.

b)
∑∞
n=1

(−1)n

n
e−nx for 0≤ x ≤+∞.

c)
∑∞
n=1

(−1)n

n+x for 0≤ x ≤+∞.

3. Show that if a Dirichlet series
∑∞
n=1

cn
nx

converges at a point x0 ∈ R, then it
converges uniformly on the set x ≥ x0 and absolutely if x > x0 + 1.

4. Verify that the series
∑∞
n=1

(−1)n−1x2

(1+x2)n
converges uniformly on R, and the series

∑∞
n=1

x2

(1+x2)n
converges on R, but nonuniformly.

5. a) Using the example of the series from Problem 2, show that the Weierstrass
M-test is a sufficient condition but not a necessary one for the uniform convergence
of a series.

b) Construct a series
∑∞
n=1 an(x) with nonnegative terms that are continuous on

the closed interval 0 ≤ x ≤ 1 and which converges uniformly on that closed inter-
val, while the series

∑∞
n=1Mn formed from the quantities M = max0≤x≤1 |an(x)|

diverges.
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6. a) State the Abel–Dirichlet test for convergence of a series mentioned in Re-
mark 4.

b) Show that the condition that {bn} be monotonic in the Abel–Dirichlet test
can be weakened slightly, requiring only that the sequence {bn} be monotonic up to
corrections {βn} forming an absolutely convergent series.

7. As a supplement to Proposition 4 shows, following Abel, that if a power series
converges at a boundary point of the disk of convergence, its sum has a limit in that
disk when the point is approached along any direction not tangential to the boundary
circle.

16.3 Functional Properties of a Limit Function

16.3.1 Specifics of the Problem

In this section we shall give answers to the questions posed in Sect. 16.1 as to when
the limit of a family of continuous, differentiable, or integrable functions is a func-
tion having the same property, and when the limit of the derivatives or integrals of
the functions equals the derivative or integral of the limiting function of the family.

To explain the mathematical content of these questions, let us consider, for ex-
ample, the connection between continuity and passage to the limit.

Let fn(x)→ f (x) on R as n→∞, and suppose that all the functions in the
sequence {fn: n ∈ N} are continuous at the point x0 ∈ R. We are interested in the
continuity of the limit function f at the same point x0. To answer that question, we
need to verify the equality limx→x0 f (x)= f (x0), which in terms of the original se-
quence can be rewritten as the relation limx→x0(limn→∞ fn(x))= limn→∞ fn(x0),
or, taking account of the given continuity of fn at x0, as the following relation,
subject to verification:

lim
x→x0

(
lim
n→∞fn(x)

)
= lim
n→∞
(

lim
x→x0

fn(x)
)
. (16.15)

On the left-hand side here the limit is first taken over the base n→∞, then over
the base x→ x0, while on the right-hand side the limits over the same bases are
taken in the opposite order.

When studying functions of several variables we saw that Eq. (16.15) is by no
means always true. We also saw this in the examples studied in the two preceding
sections, which show that the limit of a sequence of continuous functions is not
always continuous.

Differentiation and integration are special operations involving passage to the
limit. Hence the question whether we get the same result if we first differentiate
(or integrate) the functions of a family, then pass to the limit over the parameter
of the family or first find the limit function of the family and then differentiate (or
integrate) again reduces to verifying the possibility of changing the order of two
limiting passages.
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16.3.2 Conditions for Two Limiting Passages to Commute

We shall show that if at least one of two limiting passages is uniform, then the
limiting passages commute.

Theorem 1 Let {Ft ; t ∈ T } be a family of functions Ft : X→ C depending on a
parameter t ; let BX be a base in X and BT a base in T . If the family converges uni-
formly on X over the base BT to a function F :X→C and the limit limBX Ft (x)=
At exists for each t ∈ T , then both repeated limits limBX(limBT Ft (x)) and
limBT (limBX Ft (x)) exist and the equality

lim
BX

(
lim
BT
Ft (x)

)
= lim

BT

(
lim
BX
Ft (x)

)
(16.16)

holds.

This theorem can be conveniently written as the following diagram

Ft (x)

BX
BT

F (x)

∃ BX

At
∃
BT

A

(16.17)

in which the hypotheses are written above the diagonal and the consequences below
it. Equality (16.16) means that this diagram is commutative, that is, the final result
A is the same whether the operations corresponding to passage over the upper and
right-hand sides are carried out or one first passes down the left-hand side and then
to the right over the lower side.

Let us prove this theorem.

Proof Since Ft ⇒ F on X over BT , by the Cauchy criterion, for every ε > 0 there
exists BT in BT such that

∣∣Ft1(x)− Ft2(x)
∣∣< ε (16.18)

for every t1, t2 ∈ BT and every x ∈X.
Passing to the limit over BX in this inequality, we obtain the relation

|At1 −At2 | ≤ ε, (16.19)

which holds for every t1, t2 ∈ BT . By the Cauchy criterion for existence of the limit
of a function it now follows that At has a certain limit A over BT . We now verify
that A= limBX F (x).
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Fixing t2 ∈ BT , we find an element BX in BX such that
∣∣Ft2(x)−At2

∣∣< ε (16.20)

for all x ∈ BX .
Keeping t2 fixed, we pass to the limit in (16.18) and (16.19) over BT with respect

to t1. We then find
∣∣F(x)− Ft2(x)

∣∣ ≤ ε, (16.21)

|A−At2 | ≤ ε, (16.22)

and (16.22) holds for all x ∈X.
Comparing (16.20)–(16.22), and using the triangle inequality, we find

∣
∣F(x)−A∣∣< 3ε

for every x ∈ BX . We have thus verified that A= limBX F (x). �

Remark 1 As the proof shows, Theorem 1 remains valid for functions Ft :X→ Y

with values in any complete metric space.

Remark 2 If we add the requirement that the limit limBT At = A exists to the hy-
potheses of Theorem 1, then, as the proof shows, the equality limBX F (x) = A
can be obtained even without assuming that the space Y of values of the functions
Ft :X→ Y is complete.

16.3.3 Continuity and Passage to the Limit

We shall show that if functions that are continuous at a point of a set converge
uniformly on that set, then the limit function is also continuous at that point.

Theorem 2 Let {ft ; t ∈ T } be a family of functions ft : X→ C depending on the
parameter t ; let B be a base in T . If ft ⇒ f on X over the base B and the functions
ft are continuous at x0 ∈X, then the function f :X→C is also continuous at that
point.

Proof In this case the diagram (16.17) assumes the following specific form:

ft (x)

x→x0

B
f (x)

x→x0

ft (x0)
B

f (x0)
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Here all the limiting passages except the vertical passage on the right are defined
by the hypotheses of Theorem 2 itself. The nontrivial conclusion of Theorem 1 that
we need is precisely that limx→x0 f (x)= f (x0). �

Remark 3 We have not said anything specific as to the nature of the set X. In fact it
may be any topological space provided the base x→ x0 is defined in it. The values
of the functions ft may lie in any metric space, which, as follows from Remark 2,
need not even be complete.

Corollary 1 If a sequence of functions that are continuous on a set converges uni-
formly on that set, then the limit function is continuous on the set.

Corollary 2 If a series of functions that are continuous on a set converges uniformly
on that set, then the sum of the series is also continuous on the set.

As an illustration of the possible use of these results, consider the following.

Example 1 Abel’s method of summing series.
Comparing Corollary 2 with Abel’s second theorem (Proposition 4 of Sect. 16.2),

we draw the following conclusion.

Proposition 1 If a power series
∑∞
n=0 cn(z− z0)

n converges at a point ζ , it con-
verges uniformly on the closed interval [z0, ζ ] from z0 to ζ , and the sum of the series
is continuous on that interval.

In particular, this means that if a numerical series
∑∞
n=0 cn converges, then the

power series
∑∞
n=0 cnx

n converges uniformly on the closed interval 0 ≤ x ≤ 1 of
the real axis and its sum s(x) =∑∞n=0 cnx

n is continuous on that interval. Since
s(1) =∑∞n=0 cn, we can thus assert that if the series

∑∞
n=0 cn converges, then the

following equality holds:

∞∑

n=0

cn = lim
x→1−0

∞∑

n=0

cnx
n. (16.23)

It is interesting that the right-hand side of Eq. (16.23) may have a meaning even
when the series on the left diverges in its traditional sense. For example, the series
1 − 1 + 1 − · · · corresponds to the series x − x2 + x3 − · · · , which converges to
x/(1+ x) for |x|< 1. As x→ 1, this function has the limit 1/2.

The method of summing a series known as Abel summation consists of ascribing
to the left-hand side of (16.23) the value of the right-hand side if it is defined. We
have seen that if the series

∑∞
n=0 cn converges in the traditional sense, then its clas-

sical sum will be assigned to it by Abel summation. At the same time, for example,
Abel’s method assigns to the series

∑∞
n=0(−1)n, which diverges in the traditional

sense, the natural average value 1/2.
Further questions connected with Example 1 can be found in Problems 5–8 be-

low.
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Example 2 Earlier, when discussing Taylor’s formula, we showed that the following
expansion holds:

(1+ x)α = 1+ α
1!x +

α(α − 1)

2! x2 + · · · + α(α − 1) · · · (α − n+ 1)

n! xn + · · · .
(16.24)

We can verify that for α > 0 the numerical series

1+ α
1! +

α(α − 1)

2! + · · · + α(α − 1) · · · (α − n+ 1)

n! + · · ·

converges. Hence by Abel’s theorem, if α > 0, the series (16.24) converges uni-
formly on the closed interval 0≤ x ≤ 1. But the function (1+ x)α is continuous at
x = 1, and so one can assert that if α > 0, then Eq. (16.24) holds also for x = 1.

In particular, we can assert that for α > 0

(
1− t2)α = 1− α

1! t
2 + α(α − 1)

2! t4 −

− · · · + (−1)n · α(α − 1) · · · (α − n+ 1)

n! t2n + · · · (16.25)

and this series converges to (1− t2)α uniformly on [−1,1].
Setting α = 1

2 and t2 = 1− x2 in (16.25), for |x| ≤ 1 we find

|x| = 1−
1
2

1!
(
1− x2)+

1
2 (

1
2 − 1)

2!
(
1− x2)2 − · · · , (16.26)

and the series of polynomials on the right-hand side converges to |x| uniformly on
the closed interval [−1,1]. Setting Pn(x) := Sn(x)− Sn(0), where Sn(x) is the nth
partial sum of the series, we find that for any prescribed tolerance ε > 0 there is a
polynomial P(x) such that P(0)= 0 and

max
−1≤x≤1

∣∣|x| − P(x)∣∣< ε. (16.27)

Let us now return to the general theory.
We have shown that continuity of functions is preserved under uniform passage

to the limit. The condition of uniformity in passage to the limit is, however, only
a sufficient condition in order that the limit of continuous functions also be a con-
tinuous function (see Examples 8 and 9 of Sect. 16.1). At the same time there is a
specific situation in which the convergence of continuous functions to a continuous
function guarantees that the convergence is uniform.

Proposition 2 (Dini’s2 theorem) If a sequence of continuous functions on a com-
pact set converges monotonically to a continuous function, then the convergence is
uniform.

2U. Dini (1845–1918) – Italian mathematician best known for his work in the theory of functions.
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Proof For definiteness suppose that fn is a nondecreasing sequence converging
to f . We fix an arbitrary ε > 0, and for every point x of the compact set K we
find an index nx such that 0 ≤ f (x)− fnx (x) < ε. Since the functions f and fnx
are continuous on K , the inequality 0 ≤ f (ξ) − fnx (ξ) < ε holds in some neigh-
borhood U(x) of x ∈ K . From the covering of the compact set K by these neigh-
borhoods one can extract a finite covering U(x1), . . . ,U(xk) and then fix the in-
dex n(ε)=max{nx1, . . . , nxk }. Then for any n > n(ε), by the fact that the sequence
{fn;n ∈N} is nondecreasing, we have 0≤ f (ξ)−fn(ξ) < ε at every point ξ ∈K . �

Corollary 3 If the terms of the series
∑∞
n=1 an(x) are nonnegative functions an :

K → R that are continuous on a compact set K and the series converges to a
continuous function on K , then it converges uniformly on K .

Proof The partial sums sn(x)=∑n
k=1 ak(x) of this series satisfy the hypotheses of

Dini’s theorem. �

Example 3 We shall show that the sequence of functions fn(x)= n(1−x1/n) tends
to f (x) = ln 1

x
as n→+∞ uniformly on each closed interval [a, b] contained in

the interval 0< x <∞.

Proof For fixed x > 0 the function xt = et lnx is convex with respect to t , so that the

ratio xt−x0

t−0 (the slope of the chord) is nonincreasing as t→+0 and tends to lnx.

Hence fn(x)↗ ln 1
x

for x > 0 as n→+∞. By Dini’s theorem it now follows
that the convergence of fn(x) to ln 1

x
is uniform on each closed interval [a, b] ⊂

]0,+∞[. �

We note that the convergence is obviously not uniform on the interval 0< x ≤ 1,
for example, since ln 1

x
is unbounded in that interval, while each of the functions

fn(x) is bounded (by a constant depending on n).

16.3.4 Integration and Passage to the Limit

We shall show that if functions that are integrable over a closed interval converge
uniformly on that interval, then the limit function is also integrable and its integral
over that interval equals the limit of the integrals of the original functions.

Theorem 3 Let {ft ; t ∈ T } be a family of functions ft : [a, b] → C defined on a
closed interval a ≤ x ≤ b and depending on the parameter t ∈ T , and let B be a
base in T . If the functions of the family are integrable on [a, b] and ft ⇒ f on
[a, b] over the base B, then the limit function f : [a, b] → C is also integrable on
[a, b] and

∫ b

a

f (x)dx = lim
B

∫ b

a

ft (x)dx.
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Proof Let p = (P, ξ) be a partition P of the closed interval [a, b]with distinguished
points ξ = {ξ1, . . . , ξn}. Consider the Riemann sums Ft(p)=∑n

i=1 ft (ξi)Δxi , t ∈
T , and F(p)=∑n

i=1 f (ξi)Δxi . Let us estimate the difference F(p)−Ft (p). Since
ft ⇒ f on [a, b] over the base B, for every ε > 0 there exists an element B of B
such that |f (x) − ft (x)| < ε

b−a at any t ∈ B and any point x ∈ [a, b]. Hence for
t ∈ B we have

∣∣F(p)− Ft(p)
∣∣=
∣∣∣
∣
∣

n∑

i=1

(
f (ξi)− ft (ξi)

)
Δxi

∣∣∣
∣
∣
≤

n∑

i=1

∣∣f (ξi)− ft (ξi)
∣∣Δxi < ε,

and this estimate holds not only for every t ∈ B , but also for every partition p in the
set P = {(P, ξ)} of partitions of the closed interval [a, b] with distinguished points.
Thus Ft ⇒ F on P over the base B. Now, taking the traditional base λ(P )→ 0
in P , we find by Theorem 1 that the following diagram is commutative:

n∑

i=1

ft (ξi)Δxi =: Ft(p)

λ(P )→0

B
F(p) :=

∃ λ(P )→0

n∑

i=1

f (ξi)Δxi

∫ b

a

ft (x)dx =:At
B

A :=
∫ b

a

ft (x)dx

which proves Theorem 3. �

Corollary 4 If the series
∑∞
n=1 fn(x) consisting of integrable functions on a closed

interval [a, b] ⊂R converges uniformly on that closed interval, then its sum is also
integrable on [a, b] and

∫ b

a

( ∞∑

n=1

fn(x)

)

dx =
∞∑

n=1

∫ b

a

fn(x)dx.

Example 4 When we write sinx
x

in this example, we shall assume that this ratio
equals 1 when x = 0.

We have noted earlier that the function Si(x) = ∫ x0 sin t
t

dt is not an elementary
function. Using the theorem just proved, we can nevertheless obtain a very simple
representation of this function as a power series.

To do this, we remark that

sin t

t
=
∞∑

n=0

(−1)n

(2n+ 1)! t
2n, (16.28)

and the series on the right-hand side converges uniformly on every closed interval
[−a, a] ⊂ R. The uniform convergence of the series follows from the Weierstrass
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M-test, since |t |2n
(2n+1)! ≤ a2n

(2n+1)! for |t | ≤ a, while the numerical series
∑∞
n=0

a2n

(2n+1)!
converges.

By Corollary 4 we can now write

Si(x) =
∫ x

0

( ∞∑

n=0

(−1)n

(2n+ 1)! t
2n

)

dt =

=
∞∑

n=0

(∫ x

0

(−1)n

(2n+ 1)! t
2n dt

)
=
∞∑

n=0

(−1)nx2n+1

(2n+ 1)!(2n+ 1)
.

The series just obtained also turns out to converge uniformly on every closed
interval of the real line, so that, for any closed interval [a, b] of variation of the
argument x and any preassigned absolute error tolerance, one can choose a polyno-
mial – a partial sum of this series – that makes it possible to compute Si(x) with less
than the given error at every point of the closed interval [a, b].

16.3.5 Differentiation and Passage to the Limit

Theorem 4 Let {ft ; t ∈ T } be a family of functions ft : X→ C defined on a con-
vex bounded set X (in R, C, or any other normed space) and depending on the
parameter t ∈ T ; let B be a base in T . If the functions of the family are differen-
tiable on X, the family of derivatives {f ′t ; t ∈ T } converges uniformly on X to a
function ϕ :X→C, and the original family {ft ; t ∈ T } converges at even one point
x0 ∈ X, then it converges uniformly on the entire set X to a differentiable function
f :X→C, and f ′ = ϕ.

Proof We begin by showing that the family {ft ; t ∈ T } converges uniformly on the
set X over the base B. We use the mean-value theorem in the following estimates:
∣∣ft1(x)− ft2(x)

∣∣≤
≤ ∣∣(ft1(x)− ft2(x)

)− (ft1(x0)− ft2(x0)
)∣∣+ ∣∣ft1(x0)− ft2(x0)

∣∣≤
≤ sup
ξ∈[x0,x]

∣∣f ′t1(ξ)− f ′t2(ξ)
∣∣|x − x0| +

∣∣ft1(x0)− ft2(x0)
∣∣=Δ(x, t1, t2).

By hypothesis the family {f ′t ; t ∈ T } converges uniformly on X over the base B,
and the quantity ft (x0) has a limit over the same base as a function of t , while
|x − x0| is bounded for x ∈ X. By the necessity part of the Cauchy criterion for
uniform convergence of the family of functions f ′t and the existence of the limit
function ft (x0), for every ε > 0 there exists B in B such that Δ(x, t1, t2) < ε for
any t1, t2 ∈ B and any x ∈X. But, by the estimates just written, this means that the
family of functions {ft ; t ∈ T } satisfies the hypotheses of the Cauchy criterion and
consequently converges on X over the base B to a function f :X→C.
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Again using the mean-value theorem, we now obtain the following estimates:

∣
∣(ft1(x + h)− ft1(x)− f ′t1(x)h

)− (ft2(x + h)− ft2(x)− f ′t2(x)h
)∣∣=

= ∣∣(ft1 − ft0)(x + h)− (ft1 − ft2)(x)− (ft1 − ft2)′(x)h
∣∣≤

≤ sup
0<θ<1

∣∣(ft1 − ft2)′(x + θh)
∣∣|h| + ∣∣(ft1 − ft2)′(x)

∣∣|h| =

=
(

sup
0<θ<1

∣∣f ′t1(x + θh)− f ′t2(x + θh)
∣∣+ ∣∣f ′t1(x)− f ′t2(x)

∣∣
)
|h|.

These estimates, which are valid for x, x + h ∈X show, in view of the uniform
convergence of the family {f ′t ; t ∈ T } on X, that the family {Ft ; t ∈ T } of functions

Ft (h)= ft (x + h)− ft (x)− f
′
t (x)h

|h| ,

which we shall consider with a fixed value of x ∈ X, converges over the base B
uniformly with respect to all values of h �= 0 such that x + h ∈X.

We remark that Ft(h)→ 0 as h→ 0 since the function ft is differentiable at
the point x ∈X; and since ft → f and f ′t → ϕ over the base B, we have Ft(h)→
F(h)= f (x+h)−f (x)−ϕ(x)h

|h| over the base B.
Applying Theorem 1, we can now write the commutative diagram

ft (x+h)−ft (x)−f ′t (x)h|h| =: Ft(h)
h→0

B
F(h) :=

h→0

f t (x+h)−f (x)−ϕ(x)h
|h|

0
B

0

The right-hand limiting passage as h→ 0 shows that f is differentiable at x ∈X
and f ′(x)= ϕ(x). �

Corollary 5 If the series
∑∞
n=1 fn(x) of functions fn : X→ C that are differen-

tiable on a bounded convex subset X (contained in R, C, or any other normed
vector space) converges at even one point x ∈ X and the series

∑∞
n=1 f

′
n(x) con-

verges uniformly on X, then
∑∞
n=1 fn(x) also converges uniformly on X, its sum is

differentiable on X, and

( ∞∑

n=1

fn(x)

)′
(x)=

∞∑

n=1

f ′n(x).

This follows from Theorem 4 and the definitions of the sum and uniform conver-
gence of a series, together with the linearity of the operation of differentiation.
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Remark 4 The proofs of Theorems 3 and 4, like the theorems themselves and their
corollaries, remain valid for functions ft : X→ Y with values in any complete
normed vector space Y . For example, Y may be R, C, Rn, Cn, C[a, b], and so
on. The domain of definition X for the functions ft in Theorem 4 also may be any
suitable subset of any normed vector space. In particular, X may be contained in R,
C, Rn, or Cn. For real-valued functions of a real argument (under additional con-
vergence requirements) the proofs of these theorems can be made even simpler (see
Problem 11).

As an illustration of the use of Theorems 2–4 we shall prove the following propo-
sition, which is widely used in both theory and in specific computations.

Proposition 3 Let K ⊂C be the convergence disk for a power series
∑∞
n=0 cn(z−

z0)
n. If K contains more than just the point z0, then the sum of the series f (z) is

differentiable inside K and

f ′(z)=
∞∑

n=1

ncn(z− z0)
n−1. (16.29)

Moreover, the function f (z) : K → C can be integrated over any path γ :
[0,1]→K , and if [0,1] � t γ�−→ z(t) ∈K , z(0)= z0, and z(1)= z, then

∫

γ

f (z)dz=
∞∑

n=0

cn

n+ 1
(z− z0)

n+1. (16.30)

Remark 5 Here
∫
γ
f (z)dz := ∫ 1

0 f (z(t))z
′(t)dt . In particular, if the equality

f (x)=∑∞n=0 an(x− x0)
n holds on an interval −R < x− x0 <R of the real line R,

then
∫ x

x0

f (t)dt =
∞∑

n=0

an

n+ 1
(x − x0)

n+1.

Proof Since limn→∞ n−1
√
n|cn| = limn→∞ n

√|cn|, it follows from the Cauchy–
Hadamard formula (Theorem 2 of Sect. 16.2.2 that the power series

∑∞
n=1 ncn(z−

z0)
n−1 obtained by termwise differentiation of the power series

∑∞
n=0 cn(z− z0)

n,
has the same convergence disk K as the original power series. But by Theorem 2 of
Sect. 16.2.2 the series

∑∞
n=1 ncn(z− z0)

n−1 converges uniformly in any closed disk
Kq contained in the interior ofK . Since the series

∑∞
n=0 cn(z− z0)

n obviously con-
verges at z= z0, Corollary 5 is applicable to it, which justifies the equality (16.29).
Thus it has now been shown that a power series can be differentiated termwise.

Let us now verify that it can also be integrated termwise.
If γ : [0,1] →K is a smooth path in K , there exists a closed disk Kq such that

γ ⊂Kq and Kq ⊂K . On Kq the original power series converges uniformly, so that
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in the equality

f
(
z(t)
)=

∞∑

n=0

cn
(
z(t)− z0

)n

the series of continuous functions on the right-hand side converges uniformly on
the closed interval 0 ≤ t ≤ 1 to the continuous function f (z(t)). Multiplying this
equality by the function z′(t), which is continuous on the closed interval [0,1], does
not violate either the equality itself nor the uniform convergence of the series. Hence
by Theorem 3 we obtain

∫ 1

0
f
(
z(t)
)
z′(t)dt =

∞∑

n=0

∫ 1

0
cn
(
z(t)− z0

)n
z′(t)dt.

But,

∫ 1

0

(
z(t)− z(0))nz′(t)dt = 1

n+ 1

∫ 1

0
d
(
z(t)− z(0))n+1 =

= 1

n+ 1

(
z(1)− z(0))n+1 = 1

n+ 1
(z− z0)

n+1,

and we arrive at Eq. (16.30). �

Since it is obvious that c0 = f (z0) in the expansion f (z) =∑∞n=0 cn(z− z0)
n,

applying Eq. (16.29) successively, we again obtain the relation cn = f (n)(z0)
n! , which

shows that a power series is uniquely determined by its sum and is the Taylor series
of the sum.

Example 5 The Bessel function Jn(x), n ∈N, is a solution of Bessel’s3 equation

x2y′′ + xy′ + (x2 − n2)y = 0.

Let us attempt to solve this equation, for example, for n = 0, as a power series
y =∑∞k=0 ckx

k . Applying formula (16.29) successively, after elementary transfor-
mations, we arrive at the relation

c1 +
∞∑

k=0

(
k2ck + ck−2

)
xk−1 = 0,

from which, by the uniqueness of the power series with a given sum, we find

c1 = 0, k2ck + ck−2 = 0, k = 2,3, . . . .

3F.W. Bessel (1784–1846) – German astronomer.
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From this it is easy to deduce that c2k−1 = 0, k ∈ N, and c2k = (−1)k c0
(k!)222k . If

we assume J0(0)= 1, we arrive at the solution

J0(x)= 1+
∞∑

k=1

(−1)k
x2k

(k!)222k
.

This series converges on the entire line R (and in the entire plane C), so that all the
operations carried out above in order to find its specific form are now justified.

Example 6 In Example 5 we sought a solution of an equation as a power series. But
if a series is given, using formula (16.29), one can immediately check to see whether
it is the solution of a given equation. Thus, by direct computation, one can verify
that the function introduced by Gauss

F(α,β, γ, x)= 1+
∞∑

n=1

α(α + 1) · · · (α + n− 1)β(β + 1) · · · (β + n− 1)

γ (γ + 1) · · · (γ + n− 1)
xn

(the hypergeometric series) is well-defined for |x| < 1 and satisfies the so-called
hypergeometric equation

x(x − 1)y′′ − [γ − (α + β − 1)x
] · y′ + αβ · y = 0.

In conclusion we note that, in contrast to Theorems 2 and 3, the hypotheses of
Theorem 4 require that the family of derivatives, rather than the original family, con-
verge uniformly. We have already seen (Example 2 of Sect. 16.1) that the sequence
of functions fn(x) = 1

n
sinn2x converges to the differentiable function f (x) ≡ 0

uniformly, while the sequence of derivatives f ′n(x) does not converge to f ′(x). The
point is that the derivative characterizes the rate of variation of the function, not the
size of the values of the function. Even when the function changes by an amount
that is small in absolute value, the derivative may formally change very strongly, as
happens in the present case of small oscillations with large frequency. This is the
circumstance that lies at the basis of Weierstrass’ example of a continuous nowhere-
differentiable function, which he gave as the series f (x) =∑∞n=0 a

n cos(bnπx),
which obviously converges uniformly on the entire line R if 0< a < 1. Weierstrass
showed that if the parameter b is chosen so as to satisfy the condition a ·b > 1+ 3

2π ,
then on the one hand f will be continuous, being the sum of a uniformly convergent
series of continuous functions, while on the other hand, it will not have a derivative
at any point x ∈ R. The rigorous verification of this last assertion is rather taxing,
so that those who wish to obtain a simpler example of a continuous function having
no derivative may see Problem 5 in Sect. 5.1.

16.3.6 Problems and Exercises

1. Using power series, find a solution of the equation y′′(x)− y(x)= 0 satisfying
the conditions
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a) y(0)= 0, y(1)= 1;
b) y(0)= 1, y(1)= 0.

2. Find the sum of the series
∑∞
n=1

xn−1

n(n+1) .

3. a) Verify that the function defined by the series

Jn(x)=
∞∑

k=0

(−1)k

k!(k + n)!
(
x

2

)2k+n

is a solution of Bessel’s equation of order n≥ 0 from Example 5.
b) Verify that the hypergeometric series in Example 6 provides a solution of the

hypergeometric equation.

4. Obtain and justify the following expansions, which are suitable for computation,
for the complete elliptic integrals of first and second kind with 0< k < 1.

K(k)=
∫ π/2

0

dϕ
√

1− k2 sin2 ϕ
= π

2

(

1+
∞∑

n=1

(
(2n− 1)!!
(2n)!!

)2

k2n

)

;

E(k)=
∫ π/2

0

√
1− k2 sin2 ϕ dϕ = π

2

(

1−
∞∑

n=1

(
(2n− 1)!!
(2n)!!

)2
k2n

2n− 1

)

.

5. Find

a)
∑n
k=0 r

keikϕ ;

b)
∑n
k=0 r

k coskϕ;

c)
∑n
k=0 r

k sin kϕ.

Show that the following relations hold for |r|< 1:

d)
∑∞
k=0 r

keikϕ = 1
1−r cosϕ−ir sinϕ ;

e) 1
2 +
∑∞
k=1 r

k coskϕ = 1
2 · 1−r2

1−2r cosϕ+r2 ;

f)
∑∞
k=1 r

k sin kϕ = r sinϕ
1−2r cosϕ+r2 .

Verify that the following equations are true in the sense of Abel summation:

g) 1
2 +
∑∞
k=1 coskϕ = 0 if ϕ �= 2πn, n ∈ Z;

h)
∑∞
k=1 sin kϕ = 1

2 cot ϕ2 if ϕ �= 2πn, n ∈ Z.

6. After considering the product of the series

(a0 + a1 + · · · )(b0 + b1 + · · · )= (c0 + c1 + · · · ),
where cn = a0bn + a1bn−1 + · · · + an−1b1 + anb0, and using Proposition 1, show
that if the series

∑∞
n=0 an,

∑∞
n=0 bn, and

∑∞
n=0 cn converge respectively to A, B ,

and C, then A ·B = C.
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7. Let sn = ∑n
k=1 ak and σn = 1

n

∑n
k=1 sk . The series is Cesàro4 summable,

more precisely (c,1)-summable to A, if limn→∞ σn = A. In that case we write∑∞
n=1 ak =A(c,1).
a) Verify that 1− 1+ 1− 1+ · · · = 1

2 (c,1).
b) Show that σn =∑n

k=1(1− k−1
n
)ak .

c) Verify that if
∑∞
k=1 ak =A in the usual sense, then

∑∞
k=1 ak =A(c,1).

d) The (c,2)-sum of the series
∑∞
k=1 ak is the quantity limn→∞ 1

n
(σ1+· · ·+σn)

if this limit exists. In this way one can define the (c, r)-sum of any order r . Show
that if

∑∞
k=1 ak =A(c, r), then

∑∞
k=1 ak =A(c, r + 1).

e) Prove that if
∑∞
k=1 ak =A(c,1), then the series is also Abel summable to A.

8. a) A “theorem of Tauberian type” is the collective description for a class of
theorems that make it possible, by introducing various extra hypotheses, to judge
the behavior of certain quantities from the behavior of certain of their means. An
example of such a theorem involving Cesàro summation of series is the following
proposition, which you may attempt to prove following Hardy.5

If
∑∞
n=1 an =A(c,1) and an =O( 1

n
), then the series

∑∞
n=1 an converges in the

ordinary sense and to the same sum.
b) Tauber’s6 original theorem relates to Abel summation of series and consists

of the following.
Suppose the series

∑∞
n=1 anx

n converges for 0< x < 1 and limx→1−0
∑∞
n=1 an×

xn = A. If limn→∞ a1+2a2+···+nan
n

= 0, then the series
∑∞
n=1 αn converges to A in

the ordinary sense.

9. It is useful to keep in mind that in relation to the limiting passage under the in-
tegral sign there exist theorems that give much freer sufficient conditions for the
possibility of such a passage than those made possible by Theorem 3. These theo-
rems constitute one of the major achievements of the so-called Lebesgue integral.
In the case when the function is Riemann integrable on a closed interval [a, b],
that is, f ∈ R[a, b], this function also belongs to the class L[a, b] of Lebesgue-
integrable functions, and the values of the Riemann integral (R)

∫ b
a
f (x)dx of f

and the Lebesgue integral (L)
∫ b
a
f (x)dx are the same.

In general the space L[a, b] is the completion of R[a, b] (more precisely,
R̃[a, b]) with respect to the integral metric), and the integral (L)

∫ b
a

is the con-

tinuation of the linear functional (R)
∫ b
a

from R[a, b] to L[a, b].
The definitive Lebesgue “dominated convergence” theorem asserts that if a se-

quence {fn;n ∈ N} of functions fn ∈ L[a, b] is such that there exists a non-

4E. Cesàro (1859–1906) – Italian mathematician who studied analysis and geometry.
5G.H. Hardy (1877–1947) – British mathematician who worked mainly in number theory and
theory of functions.
6A. Tauber (b. 1866, year of death unknown) – Austrian mathematician who worked mainly in
number theory and theory of functions.
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negative function F ∈ L[a, b] that majorizes the functions of the sequence, that
is, |fn(x)| ≤ F(x) almost everywhere on [a, b], then the convergence fn → f

at almost all points of the closed interval [a, b] implies that f ∈ L[a, b] and
limn→∞(L)

∫ b
a
fn(x)dx = (L)

∫ b
a
f (x)(dx).

a) Show by example that even if all the functions of the sequence {fn;n ∈N} are
bounded by the same constantM on the interval [a, b], the conditions fn ∈R[a, b],
n ∈ N and fn→ f pointwise on [a, b] still do not imply that f ∈ R[a, b]. (See
Example 5 of Sect. 16.1.)

b) From what has been said about the relation between the integrals (R)
∫ b
a

and

(L)
∫ b
a

and Lebesgue’s theorem show that, under the hypotheses of part a), if it is

known that f ∈R[a, b], then (R)
∫ b
a
f (x)dx = limn→∞(R)

∫ b
a
fn(x)dx. This is a

significant strengthening of Theorem 3.
c) In the context of the Riemann integral one can also state the following version

of Lebesgue’s monotone convergence theorem.
If the sequence {fn;n ∈ N} of functions fn ∈R[a, b] converges to zero mono-

tonically, that is, 0 ≤ fn+1 ≤ fn and fn→ 0 as n→∞ for every x ∈ [a, b], then
(R)
∫ b
a
fn(x)dx→ 0.

Prove this assertion, using where needed the following useful observation.
d) Let f ∈R[a, b], |f | ≤M , and

∫ 1
0 f (x)dx ≥ α > 0. Then the set E = {x ∈

[0,1] | f (x) ≥ α/2} contains a finite number of such intervals the sum of whose
lengths (l) is at least α/(4M).

Prove this, using, for example, the intervals of a partition P of the closed in-
terval [0,1] for which the lower Darboux sum s(f,P ) satisfies the relation 0 ≤∫ 1

0 f (x)dx − s(f,P ) < α/4.

10. a) Show by the examples of Sect. 16.1, that it is not always possible to extract
a subsequence that converges uniformly on a closed interval from a sequence of
functions that converge pointwise on the interval.

b) It is much more difficult to verify directly that it is impossible to extract a
subsequence of the sequence of functions {fn;n ∈ N}, where fn(x) = sinnx, that
converges at every point of [0,2π ]. Prove that this is nevertheless the case. (Use
the result of Problem 9b) and the circumstance that

∫ 2π
0 (sinnkx− sinnk+1x)

2 dx =
2π �= 0 for nk < nk+1.)

c) Let {fn;n ∈N} be a uniformly bounded sequence of functions fn ∈R[a, b].
Let

Fn(x)=
∫ x

a

fn(t)dt (a ≤ x ≤ b).

Show that one can extract a subsequence of the sequence {Fn;n ∈ N} that con-
verges uniformly on the closed interval [a, b].
11. a) Show that if f,fn ∈R([a, b],R) and fn⇒ f on [a, b] as n→∞, then for
every ε > 0 there exists an integer N ∈N such that
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∣∣∣∣

∫ b

a

(f − fn)(x)dx
∣∣∣∣< ε(b− a)

for every n >N .
b) Let fn ∈ C(1)([a, b],R), n ∈ N. Using the formula fn(x) = fn(x0) +∫ x

x0
f ′n(t)dt , show that if f ′n = ϕ on [a, b] and there exists a point x0 ∈ [a, b]

for which the sequence {fn(x0);n ∈ N} converges, then the sequence of functions
{fn;n ∈N} converges uniformly on [a, b] to some function f ∈C(1)([a, b],R) and
f ′n⇒ f ′ = ϕ.

16.4 *Compact and Dense Subsets of the Space of Continuous
Functions

The present section is devoted to more specialized questions, involving the space of
continuous functions, which is ubiquitous in analysis. All these questions, like the
metric of the space of continuous functions7 itself, are closely connected with the
concept of uniform convergence.

16.4.1 The Arzelà–Ascoli Theorem

Definition 1 A family F of functions f :X→ Y defined on a set X and assuming
values in a metric space Y is uniformly bounded on X if the set of values V = {y ∈
Y | ∃f ∈F ∃x ∈X (y = f (x))} of the functions in the family is bounded in Y .

For numerical functions or for functions f : X→ R
n, this simply means that

there exists a constant M ∈ R such that |f (x)| ≤M for all x ∈X and all functions
f ∈ B .

Definition 1′ If the set V ⊂ Y of values of the functions of the family F is totally
bounded (that is, for every ε > 0 there is a finite ε-grid for V in Y ), the family F is
totally bounded.

For spaces Y in which the concept of boundedness and total boundedness are
the same (for example, for R, C, Rn, and C

n and in general in the case of a locally
compact space Y ), the concepts of uniform boundedness and total boundedness are
the same.

Definition 2 Let X and Y be metric spaces. A family F of functions f : X→
Y is equicontinuous on X if for every ε > 0 there exists δ > 0 such that

7If you have not completely mastered the general concepts of Chap. 9, you may assume without
any loss of content in the following that the functions discussed always map R into R or C into C,
or Rm into R

n.
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dY (f (x1), f (x2)) < ε for any function f in the family and any x1, x2 ∈ X such
that dX(x1, x2) < δ.

Example 1 The family of functions {xn;n ∈N} is not equicontinuous on [0,1], but
it is equicontinuous on any closed interval of the form [0, q] where 0< q < 1.

Example 2 The family of functions {sinnx;n ∈ N} is not equicontinuous on any
nondegenerate closed interval [a, b] ⊂R.

Example 3 If the family {fα : [a, b] → R;α ∈ A} of differentiable functions fα
is such that the family {f ′α;α ∈ A} of their derivatives is uniformly bounded by a
constant, then |fα(x2)−fα(x1)| ≤M|x2−x1|, as follows from the mean-value the-
orem, and hence the original family is equicontinuous on the closed interval [a, b].

The connection of these concepts with uniform convergence of continuous func-
tions is shown by the following lemma.

Lemma 1 Let K and Y be metric spaces, with K compact. A necessary condition
for the sequence {fn;n ∈ N} of continuous functions fn :K→ Y to converge uni-
formly on K is that the family {fn;n ∈N} be totally bounded and equicontinuous.

Proof Let fn ⇒ f on K . By Theorem 2 of Sect. 16.3, we conclude that f ∈
C(K,Y ). It follows from the uniform continuity of f on the compact set K that for
every ε > 0 there exists δ > 0 such that (dK(x1, x2) < δ =⇒ dY (f (x1), f (x2)) < ε)

for all x1, x2 ∈ K . Given the same ε > 0 we can find an index N ∈ N such
that dY (f (x), fn(x)) < ε for all n > N and all x ∈ X. Combining these in-
equalities and using the triangle inequality, we find that dK(x1, x2) < δ implies
dY (fn(x1), fn(x2)) < 3ε for every n > N and x1, x2 ∈ K . Hence the family
{fn;n > N} is equicontinuous. Adjoining to this family the equicontinuous family
{f1, . . . , fN } consisting of a finite number of functions continuous on the compact
set K , we obtain an equicontinuous family {fn;n ∈N}.

Total boundedness of F follows from the inequality dY (f (x), fn(x)) < ε, which
holds for x ∈K and n > N , and the fact that f (K) and

⋃N
n=1 fn(K) are compact

sets in Y and hence totally bounded in Y. �

Actually the following general result is true.

Theorem 1 (Arzelà–Ascoli) Let F be a family of functions f :K→ Y defined on
a compact metric space K with values in a complete metric space Y .

A necessary and sufficient condition for every sequence {fn ∈ F;n ∈ N} to con-
tain a uniformly convergent subsequence is that the family F be totally bounded
and equicontinuous.

Proof Necessity. If F were not a totally bounded family, one could obviously con-
struct a sequence {fn;n ∈N} of functions fn ∈F that would not be totally bounded
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and from which (see the lemma) one could not extract a uniformly convergence
subsequence.

If F is not equicontinuous, there exist a number ε0 > 0, a sequence of functions
{fn ∈F;n ∈N}, and a sequence {(x′n, x′′n);n ∈N} of pairs (x′n, x′′n) of points x′n and
x′′n that converge to a point x0 ∈ K as n→∞, but dY (fn(x′n), fn(x′′n)) ≥ ε0 > 0.
Then one could not extract a uniformly convergent subsequence from the sequence
{fn;n ∈N}: in fact, by Lemma 1, the functions of such a subsequence must form an
equicontinuous family.

Sufficiency. We shall assume that the compact setK is infinite, since the assertion is
trivial otherwise. We fix a countable dense subset E inK – a sequence {xn ∈K;n ∈
N}. Such a set E is easy to obtain by taking, for example, the union of the points of
finite ε-grids in K obtained for ε = 1,1/2, . . . ,1/n, . . . .

Let {fn;n ∈N} be an arbitrary sequence of functions of F .
The sequence {fn(x1);n ∈N} of values of these functions at the point x1 is totally

bounded in Y by hypothesis. Since Y is a complete space, it is possible to extract
from it a convergent subsequence {fnk (x1); k ∈N}. The functions of this sequence,
as will be seen, can be conveniently denoted f 1

n , n ∈ N. The superscript 1 shows
that this is the sequence constructed for the point x1.

From this subsequence we extract a further subsequence {f 1
nk
; k ∈ N} which we

denote {f 2
n ;n ∈N} such that the sequence {f 1

nk
(x2); k ∈N} converges.

Continuing this process, we obtain a series {f kn ;n ∈ N}, k = 1,2, . . . of se-
quences. If we now take the “diagonal” sequence {gn = f nn ;n ∈N}, it will converge
at every point of the dense set E ⊂K , as one can easily see.

We shall show that the sequence {gn;n ∈ N} converges at every point of K
and that the convergence is uniform on K . To do this, we fix ε > 0 and choose
δ > 0 in accordance with Definition 2 of equicontinuity of the family F . Let
E1 = {ξ1, . . . , ξk} be a finite subset of E forming a δ-grid on K . Since the se-
quences {gn(ξi);n ∈ N}, i = 1,2, . . . , k, all converge, there exists N such that
dY (gm(ξi), gn(ξi)) < ε for i = 1,2, . . . , k and all m,n≥N .

For each point x ∈K there exists ξj ∈E such that dK(x, ξj ) < δ. By the equicon-
tinuity of the family F , it now follows that dY (gn(x), gn(ξj )) < ε for every n ∈ N.
Using these inequalities, we now find that

dY
(
gm(x), gn(x)

)≤ dY
(
gn(x), gn(ξj )

)+ dY
(
gm(ξj ), gn(ξj )

)+
+ dY
(
gm(x), gm(ξj )

)
< ε+ ε+ ε = 3ε

for all m,n >N .
But x was an arbitrary point of the compact setK , so that, by the Cauchy criterion

the sequence {gn;n ∈N} indeed converges uniformly on K . �
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16.4.2 The Metric Space C(K,Y)

One of the most natural metrics on the set C(K,Y ) of functions f :K→ Y that are
continuous on a compact set K and assume values in a complete metric space Y is
the following metric of uniform convergence.

d(f,g)=max
x∈K dY

(
f (x), g(x)

)
,

where f,g ∈ C(K,Y ), and the maximum exists, since K is compact. The name
metric comes from the obvious fact that d(fn,f )→ 0⇔ fn⇒ f on K .

Taking account of this last relation, by Theorem 2 of Sect. 16.3 and the Cauchy
criterion for uniform convergence we can conclude that the metric space C(K,Y )
with the metric of uniform convergence is complete.

We recall that a precompact subset of a metric space is a subset such that from
every sequence of its points one can extract a Cauchy (fundamental) subsequence.
If the original metric space is complete, such a sequence will even be convergent.

The Arzelà–Ascoli theorem gives a description of the precompact subsets of the
metric space C(K,Y ).

The important theorem we are about to prove gives a description of a large va-
riety of dense subsets of the space C(K,Y ). The natural interest of such subsets
comes from the fact that one can approximate any continuous function f :K→ Y

uniformly with absolute error as small as desired by functions from these subsets.

Example 4 The classical result of Weierstrass, to which we shall often return, and
which is generalized by Stone’s theorem below, is the following.

Theorem 2 (Weierstrass) If f ∈C([a, b],C), there exists a sequence {Pn;n ∈N} of
polynomials Pn : [a, b]→C such that Pn⇒ f on [a, b]. Here, if f ∈ C([a, b],R),
the polynomials can also be chosen from C([a, b],R).

In geometric language this means, for example, that the polynomials with real
coefficients form an everywhere dense subset of C([a, b],R).

Example 5 Although Theorem 2 still requires a nontrivial proof (given below), one
can at least conclude from the uniform continuity of any function f ∈ C([a, b],R)
that the piecewise-linear continuous real-valued functions on the interval [a, b] are
a dense subset of C([a, b],R).

Remark 1 We note that if E1 is everywhere dense in E2 and E2 is everywhere dense
in E3, then E1 is obviously everywhere dense in E3.

This means, for example, that to prove Theorem 2 it suffices to show that a piece-
wise linear function can be approximated arbitrarily closely by a polynomial on the
given interval.
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16.4.3 Stone’s Theorem

Before proving the general theorem of Stone, we first give the following proof of
Theorem 2 (Weierstrass’ theorem) for the case of real-valued functions, which is
useful in helping to appreciate what is to follow.

Proof We first remark that if f,g ∈ C([a, b],R), α ∈R, and the functions f and g
admit a uniform approximation (with arbitrary accuracy) by polynomials, then the
continuous functions f + g, f · g, and αf also admit such an approximation.

On the closed interval [−1,1], as was shown in Example 2 of Sect. 16.3, the
function |x| admits a uniform approximation by polynomials Pn(x)=∑n

k=1 akx
k .

Hence, the corresponding sequence of polynomials M · Pn(x/M) gives a uniform
approximation to |x| on the closed interval |x| ≤M .

If f ∈ C([a, b],R) and M = max |f (x)|, it follows from the inequality ||y| −∑n
k=1 cky

k| < ε for |y| ≤ M that ||f (x)| −∑n
k=1 ckf

k(x)| < ε for a ≤ x ≤ b.
Hence if f admits a uniform approximation by polynomials on [a, b], then∑n
k=1 ckf

k and |f | also admit such an approximation.
Finally, if f and g admit a uniform approximation by polynomials on the closed

interval [a, b], then by what has been said, the functions max{f,g} = 1
2 ((f + g)+

|f − g|) and min{f,g} = 1
2 ((f + g)− |f − g|) also admit such an approximation.

Let a ≤ ξ1 ≤ ξ2 ≤ b, f (x) ≡ 0, gξ1ξ2(x) = x−ξ1
ξ2−ξ1 , h(x) ≡ 1, Φξ1ξ2 =

max{f,gξ1ξ2}, and Fξ1ξ2 = min{h,Φξ1ξ2}. Linear combinations of functions of the
form Fξ1ξ2 obviously generate the entire set of continuous piecewise-linear func-
tions on the closed interval [a, b], from which, by Example 5, Weierstrass’ theorem
follows. �

Before stating Stone’s theorem, we define some new concepts.

Definition 3 A set A of real- (or complex-)valued functions on a set X is called a
real (or complex) algebra of functions on X if

(f + g) ∈A, (f · g) ∈A, (αf ) ∈A
when f,g ∈A and α ∈R (or α ∈C).

Example 6 LetX ⊂C. The polynomials P(z)= c0+c1z+c2z
2+· · ·+cnzn, n ∈N,

obviously form a complex algebra of functions on X.
If we take X = [a, b] ⊂ R, and take only polynomials with real coefficients, we

obtain a real algebra of functions on the closed interval [a, b].

Example 7 The linear combinations of functions enx , n = 0,1,2, . . . with coeffi-
cients in R or C also form a (real or complex respectively) algebra on any closed
interval [a, b] ⊂R.

The same can be said of linear combinations of the functions {einx;n ∈ Z}.
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Definition 4 We shall say that a set S of functions on X separates points on X if
for every pair of distinct points x1, x2 ∈ X there exists a function f ∈ S such that
f (x1) �= f (x2).

Example 8 The set of functions {em;n ∈ N}, and even each individual function in
the set, separates points on R.

At the same time, the 2π -periodic functions {einx;n ∈ Z} separates points of a
closed interval if its length is less than 2π and obviously does not separate the points
of an interval of length greater than or equal to 2π .

Example 9 The real polynomials together form a set of functions that separates rates
the points of every closed interval [a, b], since the polynomial P(x)= x does that
all by itself. What has just been said can be repeated for a set X ⊂ C and the set of
complex polynomials on X. As a single separating function, one can take P(z)= z.

Definition 5 The family F of functions f :X→C does not vanish onX (is nonde-
generate) if for every point x0 ∈X there is a function f0 ∈F such that f0(x0) �= 0.

Example 10 The family F = {1, x, x2, . . .} does not vanish on the closed interval
[0,1], but all the functions of the family F0 = {x, x2, . . .} vanish at x = 0.

Lemma 2 If an algebra A of real (resp. complex) functions on X separates the
points of X and does not vanish on X, then for any two distinct points x1, x2 ∈ X
and any real (resp. complex) numbers c1, c2 there is a function f in A such that
f (x1)= c1 and f (x2)= c2.

Proof It obviously suffices to prove the lemma when c1 = 0, c2 = 1 and when
c1 = 1, c2 = 0.

By the symmetry of the hypotheses on x1 and x2, we consider only the case
c1 = 1, c2 = 0.

We begin by remarking that A contains a special function s separating the points
x1 and x2 that, in addition to the condition s(x1) �= s(x2), also satisfies the condition
s(x1) �= 0.

Let g,h ∈ A, g(x1) �= g(x2), g(x1) = 0, and h(x1) �= 0. There is obviously a
number λ ∈R\0 such that λ(h(x1)− h(x2)) �= g(x2). The function s = g+ λh then
has the required properties.

Now, setting f (x) = s2(x)−s(x2)s(x)

s2(x1)−s(x1)s(x2)
, we obtain a function f in the algebra A

satisfying f (x1)= 1 and f (x2)= 0. �

Theorem 3 (Stone8) Let A be an algebra of continuous real-valued functions de-
fined on a compact set K . If A separates the points of K and does not vanish on K ,
then A is an everywhere-dense subspace of C(K,R).

8M.H. Stone (1903–1989) – American mathematician who worked mainly in topology and func-
tional analysis.
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Proof Let A be the closure of the set A⊂ C(K,R) in C(K,R), that is, A consists
of the continuous functions f ∈ C(K,R) that can be approximated uniformly with
arbitrary precision by functions of A. The theorem asserts that A= C(K,R).

Repeating the reasoning in the proof of Weierstrass’ theorem, we note that if
f,g ∈A and α ∈ R, then the functions f + g, f · g, αf , |f |, max{f,g}, min{f,g}
also belong to A. By induction we can verify that in general if f1, f2, . . . , fn ∈ A,
then max{f1, f2, . . . , fn} and min{f1, f2, . . . , fn} also lie in A.

We now show that for every function f ∈ C(K,R), every point x ∈K , and every
number ε > 0, there exists a function gx ∈ A such that gx(x) = f (x) and gx(t) >
f (t)− ε for every t ∈K .

To verify this, for each point y ∈K we use Lemma 2 to choose a function hy ∈A
such that hy(x) = f (x) and hy(y) = f (y). By the continuity of f and hy on K ,
there exists an open neighborhood Uy of y such that hy(t) > f (t) − ε for every
t ∈Uy . From the covering of the compact setK by the open setsUy we select a finite
covering {Uy1 ,Uy2 , . . . ,Uyn}. Then the function gx = max{hy1 , hy2 , . . . , hyn} ∈ A
will be the desired function.

Now taking such a function gx for each point x ∈ K , we remark that by the
continuity of gx and f , there exists an open neighborhood Vx of x ∈ K such that
gx(t) < f (t)+ ε for every t ∈ Vx . Since K is compact, there exists a finite cover-
ing {Vx1 ,Vx2 , . . . , Vxm} by such neighborhoods. The function g =min{gx1, . . . , gxm}
belongs to A and by construction, satisfies both inequalities

f (t)− ε < g(t) < f (t)+ ε
at every point.

But the number ε > 0 was arbitrary, so that any function f ∈ C(K,R) can be
uniformly approximated on K by functions in A. �

16.4.4 Problems and Exercises

1. A family F of functions f :X→ Y defined on the metric space X and assuming
values in the metric space Y is equicontinuous at x0 ∈ X if for every ε > 0 there
exists δ > 0 such that dX(x, x0) < δ implies dY (f (x), f (x0)) < ε for every f ∈F .

a) Show that if a family F of functions f :X→ Y is equicontinuous at x0 ∈X,
then every function f ∈F is continuous at x0, although the converse is not true.

b) Prove that if the family F of functions f :K→ Y is equicontinuous at each
point of the compact set K , then it is equicontinuous on K in the sense of Defini-
tion 2.

c) Show that if a metric space X is not compact, then equicontinuity of a family
F of functions f :X→ Y at each point x ∈X does not imply equicontinuity of F
on X.

For this reason, if the family F is equicontinuous on a set X in the sense of
Definition 2, we often call it uniformly equicontinuous on the set. Thus, the relation
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between equicontinuity at a point and uniform equicontinuity of a family of func-
tions on a set X is the same as that between continuity and uniform continuity of an
individual function f :X→ Y on the set X.

d) Let ω(f ;E) be the oscillation of the function f :X→ Y on the set E ⊂X,
and B(x, δ) the ball of radius δ with center at x ∈X. What concepts are defined by
the following formulas?

∀ε > 0 ∃δ > 0 ∀f ∈F ω(f ;B(x, δ))< ε,
∀ε > 0 ∃δ > 0 ∀f ∈F ∀x ∈X ω(f ;B(x, δ))< ε.

e) Show by example that the Arzelà–Ascoli theorem is in general not true if
K is not compact: construct a uniformly bounded and equicontinuous sequence
{fn;n ∈N} of functions fn(x)= ϕ(x + n) from which it is not possible to extract a
subsequence that converges uniformly on R.

f) Using the Arzelà–Ascoli theorem, solve Problem 10c) from Sect. 16.3.

2. a) Explain in detail why every continuous piecewise-linear function on a closed
interval [a, b] can be represented as a linear combination of functions of the form
Fξ1ξ2 shown in the proof of Weierstrass’ theorem.

b) Prove Weierstrass’ theorem for complex-valued functions f : [a, b]→C.
c) The quantityMn =

∫ b
a
f (x)xn dx is often called the nth moment of the func-

tion f : [a, b] → C on the closed interval [a, b]. Show that if f ∈ C([a, b],C) and
Mn = 0 for all n ∈N, then f (x)≡ 0 on [a, b].
3. a) Show that the algebra generated by the pair of functions {1, x2} is dense in
the set of all even functions that are continuous on [−1,1].

b) Solve the preceding problem for the algebra generated by the single function
{x} and the set of odd functions that are continuous on [−1,1].

c) Is it possible to approximate every function f ∈ C([0,π],C) uniformly with
arbitrary precision by functions in the algebra generated by the pair of functions
{1, eix}?

d) Answer the preceding question in the case of f ∈C([−π,π],C).
e) Show that the answer to the preceding question is positive if and only if

f (−π)= f (π).
f) Can every function f ∈ C([a, b],C) be uniformly approximated by linear

combinations of the functions {1, cosx, sinx, . . . , cosnx, sinnx, . . .} if [a, b] ⊂
]−π,π[?

g) Can any even function f ∈ C([−π,π],C) be uniformly approximated by
functions of the system {1, cosx, . . . , cosnx, . . .}?

h) Let [a, b] be an arbitrary closed interval on the real line R. Show that the
algebra generated on [a, b] by any nonvanishing strictly monotonic function ϕ(x)
(for example, ex ) is dense in C([a, b],R).

i) For which location of the closed interval [a, b] ⊂ R is the algebra generated
by ϕ(x)= x dense in C([a, b],R)?
4. a) A complex algebra of functions A is self-adjoint if it follows from f ∈ A
that f ∈ A, where f (x) is the value conjugate to f (x). Show that if a complex
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algebra A is nondegenerate on X and separates the points of X, then, given that A
is self-adjoint, one can assert that the subalgebra AR of real-valued functions in A
is also nondegenerate on X and also separates points on X.

b) Prove the following complex version of Stone’s theorem.
If a complex algebra A of functions f : X→ C is nondegenerate on X and

separates the points of X, then, given that it is self-adjoint, one can assert that it is
dense in C(X,C).

c) Let X = {z ∈C | |z| = 1} be the unit circle and A the algebra on X generated
by the function eiϕ , where ϕ is the polar angle of the point z ∈ C. This algebra is
nondegenerate on X and separates the points of X, but is not self-adjoint.

Prove that the equalities
∫ 2π

0 f (eiϕ)einϕ dϕ = 0, n ∈ N, must hold for any func-
tion f : X→ C that admits uniform approximation by elements of A. Using this
fact, verify that the restriction of the function f (z)= z to the circle X is a continu-
ous function on X that does not belong to the closure of the algebra A.



Chapter 17
Integrals Depending on a Parameter

In this chapter the general theorems on families of functions depending on a param-
eter will be applied to the type of family most frequently encountered in analysis –
integrals depending on a parameter.

17.1 Proper Integrals Depending on a Parameter

17.1.1 The Concept of an Integral Depending on a Parameter

An integral depending on a parameter is a function of the form

F(t)=
∫

Et

f (x, t)dx, (17.1)

where t plays the role of a parameter ranging over a set T , and to each value t ∈ T
there corresponds a set Et and a function ϕt (x)= f (x, t) that is integrable over Et
in the proper or improper sense.

The nature of the set T may be quite varied, but of course the most important
cases occur when T is a subset of R,C,Rn, or Cn.

If the integral (17.1) is a proper integral for each value of the parameter t ∈ T ,
we say that the function F in (17.1) is a proper integral depending on a parameter.

But if the integral in (17.1) exists only as an improper integral for some or all
of the values of t ∈ T , we usually call F an improper integral depending on a
parameter.

But these are of course merely terminological conventions.
When x ∈ Rm, Et ⊂ R

m, and m> 1, we say that we are dealing with a multiple
(double, triple, and so forth) integral (17.1) depending on a parameter.

We shall concentrate, however, on the one-dimensional case, which forms the
foundation for all generalizations. Moreover, for the sake of simplicity, we shall
first take Et to be intervals of the real line R independent of the parameter, and we
shall assume that the integral (17.1) over these intervals exists as a proper integral.
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17.1.2 Continuity of an Integral Depending on a Parameter

Proposition 1 Let P = {(x, y) ∈ R2 | a ≤ x ≤ b ∧ c ≤ y ≤ d} be a rectangle in the
plane R

2. If the function f : P →R is continuous, that is, if f ∈ C(P,R), then the
function

F(y)=
∫ b

a

f (x, y)dx (17.2)

is continuous at every point y ∈ [c, d].

Proof It follows from the uniform continuity of the function f on the compact set P
that ϕy(x) := f (x, y)⇒ f (x, y0)=: ϕy0(x) on [a, b] as y→ y0, for y, y0 ∈ [c, d].
For each y ∈ [c, d] the function ϕy(x)= f (x, y) is continuous with respect to x on
the closed interval [a, b] and hence integrable over that interval. By the theorem on
passage to the limit under an integral sign we can now assert that

F(y0)=
∫ b

a

f (x, y0)dx = lim
y→y0

∫ b

a

f (x, y)dx = lim
y→y0

F(y). �

Remark 1 As can be seen from this proof, Proposition 1 on the continuity of the
function (17.2) remains valid if we take any compact set K as the set of values of
the parameter y, assuming, of course, that f ∈ C(I × K,R), where I = {x ∈ R |
a ≤ x ≤ b}.

Hence, in particular, one can conclude that if f ∈ C(I × D,R), where D is
an open set in R

n, then F ∈ C(D,R), since every point y0 ∈ D has a compact
neighborhood K ⊂D, and the restriction of f to I ×K is a continuous function on
the compact set I ×K .

We have stated Proposition 1 for real-valued functions, but of course it and its
proof remain valid for vector-valued functions, for example, for functions assuming
values in C, Rm, or Cm.

Example 1 In the proof of Morse’s lemma (see Sect. 8.6, Part 1) we mentioned the
following proposition, called Hadamard’s lemma.

If a function f belongs to the class C(1)(U,R) in a neighborhood U of the point
x0, then in some neighborhood of x0 it can be represented in the form

f (x)= f (x0)+ ϕ(x)(x − x0), (17.3)

where ϕ is a continuous function and ϕ(x0)= f ′(x0).
Equality (17.3) follows easily from the Newton–Leibniz formula

f (x0 + h)− f (x0)=
∫ 1

0
f ′(x0 + th)dt · h (17.4)
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and Proposition 1 applied to the function F(h)= ∫ 1
0 f
′(x0+ th)dt . All that remains

is to make the substitution h= x − x0 and set ϕ(x)= F(x − x0).
It is useful to remark that Eq. (17.4) holds for x0, h ∈Rn, where n is not restricted

to the value 1. Writing out the symbol f ′ in more detail, and for simplicity setting
x0 = 0, one can write, instead of (17.4)

f
(
x1, . . . , xn

)− f (0, . . . ,0)=
n∑

i=1

∫ 1

0

∂f

∂xi

(
tx1, . . . , txn

)
dt · xi,

and then one should set

ϕ(x)x =
n∑

i=1

ϕi(x)x
i

in Eq. (17.3), where ϕi(x)=
∫ 1

0
∂f

∂xi
(tx)dt .

17.1.3 Differentiation of an Integral Depending on a Parameter

Proposition 2 If the function f : P →R is continuous and has a continuous partial
derivative with respect to y on the rectangle P = {(x, y) ∈ R

2 | a ≤ x ≤ b ∧ c ≤
y ≤ d}, then the integral (17.2) belongs to C(1)([c, d],R), and

F ′(y)=
∫ b

a

∂f

∂y
(x, y)dx. (17.5)

Formula (17.5) for differentiating the proper integral (17.2) with respect to a
parameter is frequently called Leibniz’ formula or Leibniz’ rule.

Proof We shall verify directly that if y0 ∈ [c, d], then F ′(y0) can be computed by
formula (17.5):

∣∣∣∣F(y0 + h)− F(y0)−
(∫ b

a

∂f

∂y
(x, y0)dx

)
h

∣∣∣∣=

=
∣∣∣∣

∫ b

a

(
f (x, y0 + h)− f (x, y0)− ∂f

∂y
(x, y0)h

)
dx

∣∣∣∣≤

≤
∫ b

a

∣∣∣∣f (x, y0 + h)− f (x, y0)− ∂f
∂y
(x, y0)h

∣∣
∣∣dx ≤

≤
∫ b

a

sup
0<θ<1

∣
∣∣∣
∂f

∂y
(x, y0 + θh)− ∂f

∂y
(x, y0)

∣∣∣
∣dx|h| = ϕ(y0, h) · |h|.

By hypothesis ∂f
∂y
∈C(P,R), so that ∂f

∂y
(x, y)⇒ ∂f

∂y
(x, y0) on the closed interval

a ≤ x ≤ b as y→ y0, from which it follows that ϕ(y0, h)→ 0 as h→ 0. �
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Remark 2 The continuity of the original function f is used in the proof only as a
sufficient condition for the existence of all the integrals that appear in the proof.

Remark 3 The proof just given and the form of the mean-value theorem used in it
show that Proposition 2 remains valid if the closed interval [c, d] is replaced by any
convex compact set in any normed vector space. Here one may obviously assume as
well that f takes values in some complete normed vector space.

In particular – and this is sometimes very useful – formula (17.5) is also ap-
plicable to complex-valued functions F of a complex variable and to functions
F(y)= F(y1, . . . , yn) of a vector parameter y = (y1, . . . , yn) ∈Cn.

In this case ∂f
∂y

can of course be written coordinatewise as ( ∂f
∂y1 , . . . ,

∂f
∂yn
), and

then (17.5) yields the corresponding partial derivatives:

∂F

∂yi
(y)=

∫ b

a

∂f

∂yi

(
x, y1, . . . , yn

)
dx

of the function F .

Example 2 Let us verify that the function u(x)= ∫ π0 cos(nϕ − x sinϕ)dϕ satisfies
Bessel’s equation x2u′′ + xu′ + (x2 − n2)u= 0.

Indeed, after carrying out the differentiation with formula (17.5) and making
simple transformations we find

−x2
∫ π

0
sin2 ϕ cos(nϕ − x sinϕ)dϕ + x

∫ π

0
sinϕ sin(nϕ − x sinϕ)dϕ +

+ (x2 − n2)
∫ π

0
cos(nϕ − x sinϕ)dϕ =

=−
∫ π

0

((
x2 sin2 ϕ + n2 − x2) cos(nϕ − x sinϕ)−

− x sinϕ sin(nϕ − x sinϕ)
)

dϕ =
=−(n+ x cosϕ) sin(nϕ − x sinϕ)

∣
∣π
0 = 0.

Example 3 The complete elliptic integrals

E(k)=
∫ π/2

0

√
1− k2 sin2 ϕ dϕ, K(k)=

∫ π/2

0

dϕ
√

1− k2 sin2 ϕ
(17.6)

as functions of the parameter k, 0< k < 1, called the modulus of the corresponding
elliptic integral, are connected by the relations

dE

dk
= E −K

k
,

dK

dk
= E

k(1− k2)
− K
k
.
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Let us verify, for example, the first of these. By formula (17.5)

dE

dk
= −
∫ π/2

0
k sin2 ϕ · (1− k2 sin2 ϕ

)−1/2
dϕ =

= 1

k

∫ π/2

0

(
1− k2 sin2 ϕ

)1/2
dϕ − 1

k

∫ π/2

0

(
1− k2 sin2 ϕ

)−1/2
dϕ = E −K

k
.

Example 4 Formulas (17.5) sometimes make it possible even to compute the inte-
gral. Let

F(α)=
∫ π/2

0
ln
(
α2 − sin2 ϕ

)
dϕ (α > 1).

According to formula (17.5)

F ′(α)=
∫ π/2

0

2α dϕ

α2 − sin2 ϕ
= π√

α2 − 1
,

from which we find F(α)= π ln(α +√α2 − 1)+ c.
The constant c is also easy to find, if we note that, on the one hand F(α) =

π lnα+π ln 2+ c+o(1) as α→+∞, and on the other hand, from the definition of
F(α), taking account of the equality ln(α2 − sin2 ϕ) = 2 lnα + o(1) as α→+∞,
we have F(α) = π lnα + o(1). Hence π ln 2 + c = 0 and so F(α) = π ln 1

2 (α +√
α2 − 1).

Proposition 2 can be strengthened slightly.

Proposition 2′ Suppose the function f : P →R is continuous and has a continuous
partial derivative ∂f

∂y
on the rectangle P = {(x, y) ∈ R2 | a ≤ x ≤ b ∧ c ≤ y ≤ d};

further suppose α(y) and β(y) are continuously differentiable functions on [c, d]
whose values lie in [a, b] for every y ∈ [c, d]. Then the integral

F(y)=
∫ β(y)

α(y)

f (x, y)dx (17.7)

is defined for every y ∈ [c, d] and belongs to C(1)([c, d],R), and the following for-
mula holds:

F ′(y)= f (β(y), y) · β ′(y)− f (α(y), y) · α′(y)+
∫ β(y)

α(y)

∂f

∂y
(x, y)dx. (17.8)

Proof In accordance with the rule for differentiating an integral with respect to the
limits of integration, taking account of formula (17.5), we can say that if α,β ∈
[a, b] and y ∈ [c, d], then the function

Φ(α,β, y)=
∫ β

α

f (x, y)dx
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has the following partial derivatives:

∂Φ

∂β
= f (β, y), ∂Φ

∂α
=−f (α, y), ∂Φ

∂y
=
∫ β

α

∂f

∂y
(x, y)dx.

Taking account of Proposition 1, we conclude that all the partial derivatives of Φ
are continuous in its domain of definition. Hence Φ is continuously differentiable.
Formula (17.8) now follows from the chain rule for differentiation of the composite
function F(y)=Φ(α(y),β(y), y). �

Example 5 Let

Fn(x)= 1

(n− 1)!
∫ x

0
(x − t)n−1f (t)dt,

where n ∈N and f is a function that is continuous on the interval of integration. Let
us verify that F (n)n (x)= f (x).

For n= 1 we have F1(x)=
∫ x

0 f (t)dt and F ′1(x)= f (x).
By formula (17.8) we find for n > 1 that

F ′n(x)=
1

(n− 1)! (x − x)
n−1f (x)+ 1

(n− 2)!
∫ x

0
(x − t)n−2f (t)dt = Fn−1(x).

We now conclude by induction that indeed F (n)n (x)= f (x) for every n ∈N.

17.1.4 Integration of an Integral Depending on a Parameter

Proposition 3 If the function f : P → R is continuous in the rectangle P =
{(x, y) ∈ R

2 | a ≤ x ≤ b ∧ c ≤ y ≤ d}, then the integral (17.2) is integrable over
the closed interval [c, d] and the following equality holds:

∫ d

c

(∫ b

a

f (x, y)dx

)
dy =

∫ b

a

(∫ d

c

f (x, y)dy

)
dx. (17.9)

Proof From the point of view of multiple integrals, Eq. (17.9) is an elementary
version of Fubini’s theorem. However, we shall give a proof of (17.9) that justifies
it independently of Fubini’s theorem.

Consider the functions

ϕ(u)=
∫ u

c

(∫ b

a

f (x, y)dx

)
dy, ψ(u)=

∫ b

a

(∫ u

c

f (x, y)dy

)
dx.

Since f ∈ C(P,R), by Proposition 1 and the continuous dependence of the
integral on the upper limit of integration, we conclude that ϕ and ψ belong to
C([c, d],R). Then, by the continuity of the function (17.2), we find that ϕ′(u) =



17.1 Proper Integrals Depending on a Parameter 411

∫ b
a
f (x,u)dx, and finally by formula (17.5) that ψ ′(u) = ∫ b

a
f (x,u)dx for u ∈

[c, d]. Thus ϕ′(u) = ψ ′(u), and hence ϕ(u) = ψ(u) + C on [c, d]. But since
ϕ(c) = ψ(c) = 0, we have ϕ(u) = ψ(u) on [c, d], from which relation (17.9) fol-
lows for u= d . �

17.1.5 Problems and Exercises

1. a) Explain why the function F(y) in (17.2) has the limit
∫ b
a
ϕ(x)dx if the family

of functions ϕy(x) = f (x, y) depending on the parameter y ∈ Y and integrable
over the closed interval a ≤ x ≤ b converges uniformly on that closed interval to a
function ϕ(x) over some base B in Y (for example, the base y→ y0).

b) Prove that if E is a measurable set in R
m and the function f : E × In→ R

defined on the direct product E × In = {(x, t) ∈ Rm+n | x ∈ E ∧ t ∈ In} of the set
E and the n-dimensional interval In is continuous, then the function F defined by
(17.1) for Et =E is continuous on In.

c) Let P = {(x, y) ∈ R2 | a ≤ x ≤ b ∧ c ≤ y ≤ d}, and let f ∈ C(P,R), α,β ∈
C([c, d], [a, b]). Prove that in that case the function (17.7) is continuous on the
closed interval [c, d].
2. a) Prove that if f ∈ C(R,R), then the function F(x)= 1

2a

∫ a
−a f (x+ t)dt is not

only continuous, but also differentiable on R.
b) Find the derivative of this function F(x) and verify that F ∈ C(1)(R,R).

3. Using differentiation with respect to the parameter, show that for |r|< 1

F(r)=
∫ π

0
ln
(
1− 2r cosx + r2)dx = 0.

4. Verify that the following functions satisfy Bessel’s equation of Example 2:

a) u= xn ∫ π0 cos(x cosϕ) sin2n ϕ dϕ;

b) Jn(x)= xn

(2n−1)!!π
∫ +1
−1 (1− t2)(n−1/2) cosxt dt .

c) Show that the functions Jn corresponding to different values of n ∈ N are
connected by the relation Jn+1 = Jn−1 − 2J ′n.

5. Developing Example 3 and setting k̃ := √1− k2, Ẽ(k) :=E(k̃), K̃(k) :=K(k̃),
show, following Legendre, that

a) d
dk (EK̃ + ẼK −KK̃)= 0.

b) EK̃ + ẼK −KK̃ = π/2.

6. Instead of the integral (17.2), consider the integral

F(y)=
∫ b

a

f (x, y)g(x)dx,

where g is a function that is integrable over the closed interval [a, b](g ∈R[a, b]).
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By repeating the proofs of Propositions 1–3 above verify successively that

a) if the function f satisfies the hypotheses of Proposition 1, then F is continu-
ous on [c, d] (F ∈ C[c, d]);

b) if f satisfies the hypotheses of Proposition 2, then F is continuously differ-
entiable on [c, d] (F ∈C(1)[c, d]), and

F ′(y)=
∫ b

a

∂y

∂y
(x, y)g(x)dx;

c) if f satisfies the hypotheses of Proposition 3, then F is integrable over [c, d]
(F ∈R[c, d]) and

∫ d

c

F(y)dy =
∫ b

a

(∫ d

c

f (x, y)g(x)dy

)
dx.

7. Taylor’s formula and Hadamard’s lemma.

a) Show that if f is a smooth function and f (0)= 0, then f (x)= xϕ(x), where
ϕ is a continuous function and ϕ(0)= f ′(0).

b) Show that if f ∈ C(n) and f (k)(0) = 0 for k = 0,1, . . . , n− 1, then f (x)=
xnϕ(x), where ϕ is a continuous function and ϕ(0)= 1

n!f
(n)(0).

c) Let f be a C(n) function defined in a neighborhood of 0. Verify that the
following version of Taylor’s formula with the Hadamard form of the remainder
holds:

f (x)= f (0)+ 1

1!f
′(0)x + · · · + 1

(n− 1)!f
(n−1)(0)xn−1 + xnϕ(x),

where ϕ is a function that is continuous on a neighborhood of zero, and ϕ(0) =
1
n!f

(n)(0).
d) Generalize the results of a), b), and c) to the case when f is a function of

several variables. Write the basic Taylor formula in multi-index notation:

f (x)=
n−1∑

|α|=0

1

α!D
αf (0)xα +

∑

|α|=n
xαϕα(x),

and note in addition to what was stated in a), b), and c), that if f ∈ C(n+p), that
ϕα ∈ C(p).
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17.2 Improper Integrals Depending on a Parameter

17.2.1 Uniform Convergence of an Improper Integral with Respect
to a Parameter

a. Basic Definition and Examples

Suppose that the improper integral

F(y)=
∫ ω

a

f (x, y)dx (17.10)

over the interval [a,ω] ⊂ R converges for each value y ∈ Y . For definiteness we
shall assume that the integral (17.10) has only one singularity and that it involves
the upper limit of integration (that is, either ω=+∞ or the function f is unbounded
as a function of x in a neighborhood of ω).

Definition We say that the improper integral (17.10) depending on the parameter
y ∈ Y converges uniformly on the set E ⊂ Y if for every ε > 0 there exists a neigh-
borhood U[a,ω[(ω) of ω in the set [a,ω[ such that the estimate

∣
∣∣∣

∫ ω

b

f (x, y)dx

∣
∣∣∣< ε (17.11)

for the remainder of the integral (17.10) holds for every b ∈ U[a,ω[(ω) and every
y ∈E.

If we introduce the notation

Fb(y) :=
∫ b

a

f (x, y)dx (17.12)

for a proper integral approximating the improper integral (17.10), the basic defi-
nition of this section can be restated (and, as will be seen in what follows, very
usefully) in a different form equivalent to the previous one:

uniform convergence of the integral (17.10) on the set E ⊂ Y by definition means
that

Fb(y)⇒ F(y) on E as b→ ω, b ∈ [a,ω[. (17.13)

Indeed,

F(y)=
∫ ω

a

f (x, y)dx := lim
b→ω
b∈[a,ω[

∫ b

a

f (x, y)dx = lim
b→ω
b∈[a,ω[

Fb(y),

and therefore relation (17.11) can be rewritten as
∣
∣F(y)− Fb(y)

∣
∣< ε. (17.14)
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This last inequality holds for every b ∈ U[a,b[(ω) and every y ∈ E, as shown in
(17.13).

Thus, relations (17.11), (17.13), and (17.14) mean that if the integral (17.10)
converges uniformly on a set E of parameter values, then this improper integral
(17.19) can be replaced by a certain proper integral (17.12) depending on the same
parameter y with any preassigned precision, simultaneously for all y ∈E.

Example 1 The integral
∫ +∞

1

dx

x2 + y2

converges uniformly on the entire set R of values of the parameter y ∈ R, since for
every y ∈R

∫ +∞

b

dx

x2 + y2
≤
∫ +∞

b

dx

x2
= 1

b
< ε,

provided b > 1/ε.

Example 2 The integral
∫ +∞

0
e−xy dx,

obviously converges only when y > 0. Moreover it converges uniformly on every
set {y ∈R | y ≥ y0 > 0}.

Indeed, if y ≥ y0 > 0, then

0≤
∫ +∞

b

e−xy dx = 1

y
e−by ≤ 1

y0
e−by0 → 0 as b→+∞.

At the same time, the convergence is not uniform on the entire set R+ = {y ∈
R | y > 0}. Indeed, negating uniform convergence of the integral (17.10) on a set E
means that

∃ε0 > 0 ∀B ∈ [a,ω[ ∃b ∈ [B,ω[ ∃y ∈E
(∣∣∣∣

∫ ω

b

f (x, y)dx

∣∣∣∣> ε0

)
.

In the present case ε0 can be taken as any real number, since
∫ +∞

b

e−xy dx = 1

y
e−by→+∞, as y→+0,

for every fixed value of b ∈ [0,+∞[.
Let us consider a less trivial example, which we shall be using below.

Example 3 Let us show that each of the integrals

Φ(x) =
∫ +∞

0
xαyα+β+1e−(1+x)y dy,
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F(y) =
∫ +∞

0
xαyα+β+1e−(1+x)y dx,

in which α and β are fixed positive numbers, converges uniformly on the set of
nonnegative values of the parameter.

For the remainder of the integral Φ(x) we find immediately that

0 ≤
∫ +∞

b

xαyα+β+1e−(1+x)y dy =

=
∫ +∞

b

(xy)αe−xyyβ+1e−y dy <Mα

∫ +∞

b

yβ+1e−y dy,

where Mα =max0≤u<+∞ uαe−u. Since this last integral converges, it can be made
smaller than any preassigned ε > 0 for sufficiently large values of b ∈ R. But this
means that the integral Φ(x) converges uniformly.

Let us now consider the remainder of the second integral F(y):

0 ≤
∫ +∞

b

xαyα+β+1e−(1+x)y dx =

= yβe−y
∫ +∞

b

(xy)αe−xyy dx = yβe−y
∫ +∞

by

uαe−u du.

Since
∫ +∞

by

uαe−u du≤
∫ +∞

0
uαe−u du <+∞,

for y ≥ 0 and yβe−y→ 0 as y→ 0, for each ε > 0 there obviously exists a number
y0 > 0 such that for every y ∈ [0, y0] the remainder of the integral will be less than
ε even independently of the value of b ∈ [0,+∞[.

And if y ≥ y0 > 0, taking account of the relations Mβ =max0≤y<+∞ yβe−y <
+∞ and 0≤ ∫ +∞

by
uαe−u du≤ ∫ +∞

by0
uαe−u du→ 0 as b→+∞, we conclude that

for all sufficiently large values of b ∈ [0,+∞[ and simultaneously for all y ≥ y0 > 0
the remainder of the integral F(y) can be made less than ε.

Combining the intervals [0, y0] and [y0,+∞[, we conclude that indeed for every
ε > 0 one can choose a number B such that for every b > B and every y ≥ 0 the
corresponding remainder of the integral F(y) will be less than ε.

b. The Cauchy Criterion for Uniform Convergence of an Integral

Proposition 1 (Cauchy criterion) A necessary and sufficient condition for the im-
proper integral (17.10) depending on the parameter y ∈ Y to converge uniformly on
a set E ⊂ Y is that for every ε > 0 there exist a neighborhood U[a,ω[(ω) of the point
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ω such that
∣∣∣∣

∫ b2

b1

f (x, y)dx

∣∣∣∣< ε (17.15)

for every b1, b2 ∈U[a,ω[(ω) and every y ∈E.

Proof Inequality (17.15) is equivalent to the relation |Fb2(y)− Fb2(y)|< ε, so that
Proposition 1 is an immediate corollary of the form (17.13) for the definition of
uniform convergence of the integral (17.10) and the Cauchy criterion for uniform
convergence on E of a family of functions Fb(y) depending on the parameter b ∈
[a,ω[. �

As an illustration of the use of this Cauchy criterion, we consider the following
corollary of it, which is sometimes useful.

Corollary 1 If the function f in the integral (17.10) is continuous on the set [a,ω[×
[c, d] and the integral (17.10) converges for every y ∈ ]c, d[ but diverges for y = c
or y = d , then it converges nonuniformly on the interval ]c, d[ and also on any set
E ⊂ ]c, d[ whose closure contains the point of divergence.

Proof If the integral (17.10) diverges at y = c, then by the Cauchy criterion for con-
vergence of an improper integral there exists ε0 > 0 such that in every neighborhood
U[a,ω[(ω) there exist numbers b1, b2 for which

∣∣∣∣

∫ b2

b1

f (x, c)dx

∣∣∣∣> ε0. (17.16)

The proper integral
∫ b2

b1

f (x, y)dx

is in this case a continuous function of the parameter y on the entire closed interval
[c, d] (see Proposition 1 of Sect. 17.1), so that for all values of y sufficiently close
to c, the inequality

∣∣
∣∣

∫ b2

b1

f (x, y)dx

∣∣
∣∣> ε

will hold along with the inequality (17.16).
On the basis of the Cauchy criterion for uniform convergence of an improper in-

tegral depending on a parameter, we now conclude that this integral cannot converge
uniformly on any subset E ⊂ ]c, d[ whose closure contains the point c.

The case when the integral diverges for y = d is handled similarly. �
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Example 4 The integral
∫ +∞

0
e−tx2

dx

converges for t > 0 and diverges at t = 0, hence it demonstrably converges nonuni-
formly on every set of positive numbers having 0 as a limit point. In particular, it
converges nonuniformly on the whole set {t ∈R | t > 0} of positive numbers.

In this case, one can easily verify these statements directly:

∫ +∞

b

e−tx2
dx = 1√

t

∫ +∞

b
√
t

e−u2
du→+∞ as t→+0.

We emphasize that this integral nevertheless converges uniformly on any set {t ∈
R | t ≥ t0 > 0} that is bounded away from 0, since

0<
1√
t

∫ +∞

b
√
t

e−u2
du≤ 1√

t0

∫ +∞

b
√
t0

e−u2
du→ 0 as b→+∞.

c. Sufficient Conditions for Uniform Convergence of an Improper Integral
Depending on a Parameter

Proposition 2 (The Weierstrass test) Suppose the functions f (x, y) and g(x, y) are
integrable with respect to x on every closed interval [a, b] ⊂ [a,ω[ for each value
of y ∈ Y .

If the inequality |f (x, y)| ≤ g(x, y) holds for each value of y ∈ Y and every
x ∈ [a,ω[ and the integral

∫ ω

a

g(x, y)dx

converges uniformly on Y , then the integral
∫ ω

a

f (x, y)dx

converges absolutely for each y ∈ Y and uniformly on Y .

Proof This follows from the estimates
∣∣∣
∣

∫ b2

b1

f (x, y)dx

∣∣∣∣≤
∫ b2

b1

∣∣f (x, y)
∣∣dx ≤

∫ b2

b1

g(x, y)dx

and Cauchy’s criterion for uniform convergence of an integral (Proposition 1). �

The most frequently encountered case of Proposition 2 occurs when the function
g is independent of the parameter y. It is this case in which Proposition 2 is usually
called the Weierstrass M-test for uniform convergence of an integral.
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Example 5 The integral
∫ ∞

0

cosαx

1+ x2
dx

converges uniformly on the whole set R of values of the parameter α, since
| cosαx

1+x2 | ≤ 1
1+x2 , and the integral

∫∞
0

dx
1+x2 converges.

Example 6 In view of the inequality | sinx e−tx2 | ≤ e−tx2
, the integral

∫ ∞

0
sinx e−tx2

dx,

as follows from Proposition 2 and the results of Example 3, converges uniformly on
every set of the form {t ∈ R | t ≥ t0 > 0}. Since the integral diverges for t = 0, on
the basis of the Cauchy criterion we conclude that it cannot converge uniformly on
any set having zero as a limit point.

Proposition 3 (Abel–Dirichlet test) Assume that the functions f (x, y) and g(x, y)
are integrable with respect to x at each y ∈ Y on every closed interval [a, b] ⊂
[a,ω[.

A sufficient condition for uniform convergence of the integral
∫ ω

a

(f · g)(x, y)dx

on the set Y is that one of the following two pairs of conditions holds:

α1) either there exists a constantM ∈R such that
∣∣∣∣

∫ b

a

f (x, y)dx

∣∣∣∣<M

for any b ∈ [a,ω[ and any y ∈ Y and
β1) for each y ∈ Y the function g(x, y) is monotonic with respect to x on the inter-
val [a,ω[ and g(x, y)⇒ 0 on Y as x→ ω, x ∈ [a,ω[,
or

α2) the integral
∫ ω

a

f (x, y)dx

converges uniformly on the set Y and
β2) for each y ∈ Y the function g(x, y) is monotonic with respect to x on the inter-
val [a,ω[ and there exists a constantM ∈R such that

∣∣g(x, y)
∣∣<M

for every x ∈ [a,ω[ and every y ∈ Y .



17.2 Improper Integrals Depending on a Parameter 419

Proof Applying the second mean-value theorem for the integral, we write

∫ b2

b1

(f · g)(x, y)dx = g(b1, y)

∫ ξ

b1

f (x, y)dx + g(b2, y)

∫ b2

ξ

f (x, y)dx,

where ξ ∈ [b1, b2]. If b1 and b2 are taken in a sufficiently small neighborhood
U[a,ω[(ω) of the point ω, then the right-hand side of this equality can be made
smaller in absolute value than any prescribed ε > 0, and indeed simultaneously for
all values of y ∈ Y . In the case of the first pair of conditions α1), β1) this is obvious.
In the case of the second pair α2), β2), it becomes obvious if we use the Cauchy
criterion for uniform convergence of the integral (Proposition 1).

Thus, again invoking the Cauchy criterion, we conclude that the original integral
of the product f · g over the interval [a,ω[ does indeed converge uniformly on the
set Y of parameter values. �

Example 7 The integral
∫ +∞

1

sinx

xα
dx,

as follows from the Cauchy criterion and the Abel–Dirichlet test for convergence
of improper integrals, converges only for α > 0. Setting f (x,α)= sinx, g(x,α)=
x−α , we see that the pair α1), β1) of hypotheses of Proposition 3 holds for α ≥
α0 > 0. Consequently, on every set of the form {α ∈ R | α ≥ α0 > 0} this integral
converges uniformly. On the set {α ∈R | α > 0} of positive values of the parameter
the integral converges nonuniformly, since it diverges at α = 0.

Example 8 The integral
∫ ∞

0

sinx

x
e−xy dx

converges uniformly on the set {y ∈R | y ≥ 0}.

Proof First of all, on the basis of the Cauchy criterion for convergence of the im-
proper integral one can easily conclude that for y < 0 this integral diverges. Now
assuming y ≥ 0 and setting f (x, y)= sinx

x
, g(x, y)= e−xy , we see that the second

pair α2), β2) of hypotheses of Proposition 3 holds, from which it follows that this
integral converges uniformly on the set {y ∈R | y ≥ 0}. �

Thus we have introduced the concept of uniform convergence of an improper
integral depending on a parameter and indicated several of the most important tests
for such convergence completely analogous to the corresponding tests for uniform
convergence of series of functions. Before passing on, we make two remarks.

Remark 1 So as not to distract the reader’s attention from the basic concept of uni-
form convergence of an integral introduced here, we have assumed throughout that
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the discussion involves integrating real-valued functions. At the same time, as one
can now easily check, these results extend to integrals of vector-valued functions, in
particular to integrals of complex-valued functions. Here one need only note that, as
always, in the Cauchy criterion one must assume in addition that the corresponding
vector space of values of the integrand is complete (this is the case for R, C, Rn,
and C

n); and in the Abel–Dirichlet test, as in the corresponding test for uniform
convergence of series of functions, the factor in the product f · g that is assumed to
be a monotonic function, must of course be real-valued.

Everything that has just been said applies equally to the main results of the fol-
lowing subsections in this section.

Remark 2 We have considered an improper integral (17.10) whose only singular-
ity was at the upper limit of integration. The uniform convergence of an integral
whose only singularity is at the lower limit of integration can be defined and stud-
ied similarly. If the integral has a singularity at both limits of integration, it can be
represented as

∫ ω2

ω1

f (x, y)dx =
∫ c

ω1

f (x, y)dx +
∫ ω2

c

f (x, y)dx,

where c ∈ ]ω1,ω2[, and regarded as uniformly convergent on a set E ⊂ Y if both of
the integrals on the right-hand side of the equality converge uniformly. It is easy to
verify that this definition is unambiguous, that is, independent of the choice of the
point c ∈ ]ω1,ω2[.

17.2.2 Limiting Passage Under the Sign of an Improper Integral
and Continuity of an Improper Integral Depending
on a Parameter

Proposition 4 Let f (x, y) be a family of functions depending on a parameter y ∈ Y
that are integrable, possibly in the improper sense, on the interval a ≤ x < ω, and
let BY be a base in Y .

If

a) for every b ∈ [a,ω[
f (x, y)⇒ ϕ(x) on [a, b] over the base BY

and
b) the integral

∫ ω
a
f (x, y)dx converges uniformly on Y ,

then the limit function ϕ is improperly integrable on [a,ω[ and the following equal-
ity holds:

lim
BY

∫ ω

a

f (x, y)dx =
∫ ω

a

ϕ(x)dx. (17.17)
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Proof The proof reduces to checking the following diagram:

The left vertical limiting passage follows from hypothesis a) and the theorem on
passage to the limit under a proper integral sign (see Theorem 3 of Sect. 16.3).

The upper horizontal limiting passage is an expression of hypothesis b).
By the theorem on the commutativity of two limiting passages it follows from

this that both limits below the diagonal exist and are equal.
The right-hand vertical limit passage is what stands on the left-hand side of

Eq. (17.17), and the lower horizontal limit gives by definition the improper inte-
gral on the right-hand side of (17.17). �

The following example shows that condition a) alone is generally insufficient to
guarantee Eq. (17.17) in this case.

Example 9 Let Y = {y ∈R | y > 0} and

f (x, y)=
{

1/y, if 0≤ x ≤ y,
0, if y < x.

Obviously, f (x, y)⇒ 0 on the interval 0 ≤ x < +∞ as y →+∞. At the same
time, for every y ∈ Y ,

∫ +∞

0
f (x, y)dx =

∫ y

0
f (x, y)dx =

∫ y

0

1

y
dx = 1,

and therefore Eq. (17.17) does not hold in this case.

Using Dini’s theorem (Proposition 2 of Sect. 16.3), we can obtain the following
sometimes useful corollary of Proposition 4.

Corollary 2 Suppose that the real-valued function f (x, y) is nonnegative at each
value of the real parameter y ∈ Y ⊂R and continuous on the interval a ≤ x < ω.

If

a) the function f (x, y) is monotonically increasing as y increases and tends to
a function ϕ(x) on [a,ω[,

b) ϕ ∈ C([a,ω[,R), and
c) the integral

∫ ω
a
ϕ(x)dx converges,

then Eq. (17.17) holds.
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Proof It follows from Dini’s theorem that f (x, y)⇒ ϕ(x) on each closed interval
[a, b] ⊂ [a,ω[.

It follows from the inequalities 0 ≤ f (x, y) ≤ ϕ(x) and the Weierstrass M-test
for uniform convergence that the integral of f (x, y) over the interval a ≤ x < ω
converges uniformly with respect to the parameter y.

Thus, both hypotheses of Proposition 4 hold, and so Eq. (17.17) holds. �

Example 10 In Example 3 of Sect. 16.3 we verified that the sequence of functions
fn(x) = n(1 − x1/n) is monotonically increasing on the interval 0 < x ≤ 1, and
fn(x)↗ ln 1

x
as n→+∞.

Hence, by Corollary 2

lim
n→∞

∫ 1

0
n
(
1− x1/n)dx =

∫ 1

0
ln

1

x
dx.

Proposition 5 If

a) the function f (x, y) is continuous on the set {(x, y) ∈ R2 | a ≤ x < ω ∧ c ≤
y ≤ d}, and

b) the integral F(y) = ∫ ω
a
f (x, y)dx converges uniformly on [c, d], then the

function F(y) is continuous on [c, d].

Proof It follows from hypothesis a) that for any b ∈ [a,ω[ the proper integral

Fb(y)=
∫ b

a

f (x, y)dx

is a continuous function on [c, d] (see Proposition 1 of Sect. 17.1).
By hypothesis b) we have Fb(y)⇒ F(y) on [c, d] as b→ ω, b ∈ [a,ω[, from

which it now follows that the function F(y) is continuous on [c, d]. �

Example 11 It was shown in Example 8 that the integral

F(y)=
∫ +∞

0

sinx

x
e−xy dx (17.18)

converges uniformly on the interval 0≤ y <+∞. Hence by Proposition 5 one can
conclude that F(y) is continuous on each closed interval [0, d] ⊂ [0,+∞[, that is,
it is continuous on the entire interval 0≤ y <+∞. In particular, it follows from this
that

lim
y→+0

∫ +∞

0

sinx

x
e−xy dx =

∫ +∞

0

sinx

x
dx. (17.19)
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17.2.3 Differentiation of an Improper Integral with Respect
to a Parameter

Proposition 6 If

a) the functions f (x, y) and f ′y(x, y) are continuous on the set {(x, y) ∈ R2 |
a ≤ x < ω ∧ c ≤ y ≤ d},

b) the integralΦ(y)= ∫ ω
a
f ′y(x, y)dy converges uniformly on the set Y = [c, d],

and
c) the integral F(y)= ∫ ω

a
f (x, y)dx converges for at least one value of y0 ∈ Y ,

then it converges uniformly on the whole set Y. Moreover the function F(y) is dif-
ferentiable and the following equality holds:

F ′(y)=
∫ ω

a

f ′y(x, y)dx.

Proof By hypothesis a), for every b ∈ [a,ω[ the function

Fb(y)=
∫ b

a

f (x, y)dx

is defined and differentiable on the interval c ≤ y ≤ d and by Leibniz’ rule

(Fb)
′(y)=

∫ b

a

f ′y(x, y)dx.

By hypothesis b) the family of functions (Fb)′(y) depending on the parameter
b ∈ [a,ω[ converges uniformly on [c, d] to the function Φ(y) as b→ ω,b ∈ [a,ω[.

By hypothesis c) the quantity Fb(y0) has a limit as b→ ω, b ∈ [a,ω[.
It follows from this (see Theorem 4 of Sect. 16.3) that the family of functions

Fb(y) itself converges uniformly on [c, d] to the limiting function F(y) as b→ ω,
b ∈ [a,ω[, the function F is differentiable on the interval c ≤ y ≤ d , and the equality
F ′(y)=Φ(y) holds. But this is precisely what was to be proved. �

Example 12 For a fixed value α > 0 the integral

∫ +∞

0
xαe−xy dx

converges uniformly with respect to the parameter y on every interval of the form
{y ∈ R | y ≥ y0 > 0}. This follows from the estimate 0 ≤ xαe−xy < xαe−xy0 <

e−x
y0
2 , which holds for all sufficiently large x ∈R.

Hence, by Proposition 6, the function

F(y)=
∫ +∞

0
e−xy dx
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is infinitely differentiable for y > 0 and

F (n)(y)= (−1)n
∫ +∞

0
xne−xy dx.

But F(y) = 1
y

, and therefore F (n)(y) = (−1)n n!
yn+1 and consequently we can

conclude that
∫ +∞

0
xne−xy dx = n!

yn+1
.

In particular, for y = 1 we obtain

∫ +∞

0
xne−x dx = n!.

Example 13 Let us compute the Dirichlet integral

∫ +∞

0

sinx

x
dx.

To do this we return to the integral (17.18), and we remark that for y > 0

F ′(y)=−
∫ +∞

0
sinxe−xy dx, (17.20)

since the integral (17.20) converges uniformly on every set of the form {y ∈R | y ≥
y0 > 0}.

The integral (17.20) is easily computed from the primitive of the integrand, and
the result is that

F ′(y)=− 1

1+ y2
for y > 0,

from which it follows that

F(y)=− arctany + c for y > 0. (17.21)

We have F(y)→ 0 as y→+∞, as can be seen from relation (17.18), so that
it follows from (17.21) that c = π/2. It now results from (17.19) and (17.21) that
F(0)= π/2. Thus,

∫ +∞

0

sinx

x
dx = π

2
. (17.22)

We remark that the relation “F(y)→ 0 as y→+∞” used in deriving (17.22) is
not an immediate corollary of Proposition 4, since sinx

x
e−xy ⇒ 0 as y→+∞ only

on intervals of the form {x ∈R | x ≥ x0 > 0}, while the convergence is not uniform
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on intervals of the form 0< x < x0: for sinx
x

e−xy→ 1 as x→ 0. But for x0 > 0 we
have

∫ ∞

0

sinx

x
e−xy dx =

∫ x0

0

sinx

x
e−xy dx +

∫ +∞

x0

sinx

x
e−xy dx

and, given ε > 0 we first choose x0 so close to 0 that sinx ≥ 0 for x ∈ [0, x0] and

0<
∫ x0

0

sinx

x
e−xy dx <

∫ x0

0

sinx

x
dx <

ε

2

for every y > 0. Then, after fixing x0, on the basis of Proposition 4, by letting y
tend to +∞, we can make the integral over [x0,+∞[ also less than ε/2 in absolute
value.

17.2.4 Integration of an Improper Integral with Respect
to a Parameter

Proposition 7 If

a) the function f (x, y) is continuous on the set {(x, y) ∈ R2 | a ≤ x < ω ∧ c ≤
y ≤ d} and

b) the integral F(y)= ∫ ω
a
f (x, y)dx converges uniformly on the closed interval

[c, d],
then the function F is integrable on [c, d] and the following equality holds:

∫ d

c

dy
∫ ω

a

f (x, y)dx =
∫ ω

a

dx
∫ d

c

f (x, y)dy. (17.23)

Proof For b ∈ [a,ω[, by hypothesis a) and Proposition 3 of Sect. 17.1 for improper
integrals one can write

∫ d

c

dy
∫ b

a

f (x, y)dx =
∫ b

a

dx
∫ d

c

f (x, y)dy. (17.24)

Using hypothesis b) and Theorem 3 of Sect. 16.3 on passage to the limit under
an integral sign, we carry out a limiting passage on the left-hand side of (17.24) as
b→ ω, b ∈ [a,ω[ and obtain the left-hand side of (17.23). By the very definition
of an improper integral, the right-hand side of (17.23) is the limit of the right-hand
side of (17.24) as b→ ω, b ∈ [a,ω[. Thus, by hypothesis b) we obtain (17.23) from
(17.24) as b→ ω, b ∈ [a,ω[. �

The following example shows that, in contrast to the reversibility of the order of
integration with two proper integrals, condition a) alone is in general not sufficient
to guarantee (17.23).
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Example 14 Consider the function f (x, y)= (2− xy)xy e−xy on the set {(x, y) ∈
R

2 | 0 ≤ x < +∞ ∧ 0 ≤ y ≤ 1}. Using the primitive u2e−u of the function (2 −
u)ue−u, it is easy to compute directly that

0=
∫ 1

0
dy
∫ +∞

0
(2− xy)xy e−xy dx �=

∫ +∞

0
dx
∫ 1

0
(2− xy)xy e−xy dy = 1.

Corollary 3 If

a) the function f (x, y) is continuous on the set P = {(x, y) ∈ R
2 | a ≤ x <

ω ∧ c ≤ y ≤ d} and
b) nonnegative on P , and
c) the integral F(y)= ∫ ω

a
f (x, y)dx is continuous on the closed interval [c, d]

as a function of y,

then Eq. (17.23) holds.

Proof It follows from hypothesis a) that for every b ∈ [a,ω[ the integral

Fb(y)=
∫ b

a

f (x, y)dx

is continuous with respect to y on the closed interval [c, d].
It follows from b) that Fb1(y)≤ Fb2(y) for b1 ≤ b2.
By Dini’s theorem and hypothesis c) we now conclude that Fb ⇒ F on [c, d] as

b→ ω, b ∈ [a,ω[.
Thus the hypotheses of Proposition 7 are satisfied and consequently Eq. (17.23)

indeed holds in the present case. �

Corollary 3 shows that Example 14 results from the fact that the function f (x, y)
is not of constant sign.

In conclusion we now prove a sufficient condition for two improper integrals to
commute.

Proposition 8 If

a) the function f (x, y) is continuous on the set {(x, y) ∈ R2 | a ≤ x < ω ∧ c ≤
y < ω̃},

b) both integrals

F(y)=
∫ ω

a

f (x, y)dx, Φ(x)=
∫ ω̃

c

f (x, y)dy

converge uniformly, the first with respect to y on any closed interval [c, d] ⊂ [c, ω̃],
the second with respect to x on any closed interval [a, b] ⊂ [a,ω[, and

c) at least one of the iterated integrals
∫ ω̃

c

dy
∫ ω

a

|f |(x, y)dx,
∫ ω

a

dx
∫ ω̃

c

|f |(x, y)dy
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converges, then the following equality holds:

∫ ω̃

c

dy
∫ ω

a

f (x, y)dx =
∫ ω

a

dx
∫ ω̃

c

f (x, y)dy. (17.25)

Proof For definiteness suppose that the second of the two iterated integrals in c)
exists.

By condition a) and the first condition in b) one can say by Proposition 7 that
Eq. (17.23) holds for the function f for every d ∈ [c, ω̃[.

If we show that the right-hand side of (17.23) tends to the right-hand side of
(17.25) as d→ ω̃, d ∈ [c, ω̃[, then Eq. (17.25) will have been proved, since the left-
hand side will then also exist and be the limit of the left-hand side of Eq. (17.23) by
the very definition of an improper integral.

Let us set

Φd(x) :=
∫ d

c

f (x, y)dy.

The function Φd is defined for each fixed d ∈ [c, ω̃[ and, since f is continuous,
Φd is continuous on the interval a ≤ x < ω.

By the second of hypotheses b) we have Φd(x)⇒Φ(x) as d→ ω̃, d ∈ [c, ω̃[ on
each closed interval [a, b] ⊂ [a,ω[.

Since |Φd(x)| ≤
∫ ω̃
c
|f |(x, y)dy =: G(x) and the integral

∫ ω
a
G(x)dx, which

equals the second integral in hypothesis c), converges by hypothesis, we conclude
by the Weierstrass M-test for uniform convergence that the integral

∫ ω
a
Φd(x)dx

converges uniformly with respect to the parameter d .
Thus the hypotheses of Proposition 4 hold, and we can conclude that

lim
d→ω̃
d∈[c,ω̃]

Φd(x)dx =
∫ ω

a

Φ(x)dx;

and that was precisely what remained to be verified. �

The following example shows that the appearance of the extra hypothesis c) in
Proposition 8 in comparison with Proposition 7 is not accidental.

Example 15 Computing the integral

∫ +∞

A

x2 − y2

(x2 + y2)2
dx =− x

x2 + y2

∣∣
∣∣

+∞

A

= A

A2 + y2
<

1

A

for A > 0 shows at the same time that for every fixed value of A > 0 it converges
uniformly with respect to the parameter y on the entire set of real numbers R. The
same thing could have been said about the integral obtained from this one by replac-
ing dx with dy. The values of these integrals happen to differ only in sign. A direct
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computation shows that

−π
4
=
∫ +∞

A

dx
∫ +∞

A

x2 − y2

(x2 + y2)2
dy �=

∫ +∞

A

dy
∫ +∞

A

x2 − y2

(x2 + y2)2
dx = π

4
.

Example 16 For α > 0 and β > 0 the iterated integral

∫ +∞

0
dy
∫ +∞

0
xαyα+β−1e−(1+x)y dx =

∫ +∞

0
yβe−y dy

∫ +∞

0
(xy)αe−(xy)y dx

of a nonnegative continuous function exists, as this identity shows: it equals zero for
y = 0 and

∫ +∞
0 yβe−y dy · ∫ +∞0 uαe−u du for y > 0. Thus, in this case hypotheses

a) and c) of Proposition 8 hold. The fact that both conditions of b) hold for this
integral was verified in Example 3. Hence by Proposition 8 we have the equality

∫ +∞

0
dy
∫ +∞

0
xαyα+β+1e−(1+x)y dx =

∫ +∞

0
dx
∫ +∞

0
xαyα+β+1e−(1+x)y dy.

Just as Corollary 3 followed from Proposition 7, we can deduce the following
corollary from Proposition 8.

Corollary 4 If

a) the function f (x, y) is continuous on the set

P = {(x, y) ∈R2 | a ≤ x < ω ∧ c ≤ y ≤ ω̃}, and

b) is nonnegative on P , and
c) the two integrals

F(y)=
∫ ω

a

f (x, y)dx, Φ(x)=
∫ ω̃

c

f (x, y)dy

are continuous functions on [a,ω[ and [c, ω̃[ respectively, and
d) at least one of the iterated integrals

∫ ω̃

c

dy
∫ ω

a

f (x, y)dx,
∫ ω

a

dx
∫ ω̃

a

f (x, y)dy,

exists, then the other iterated integral also exists and their values are the same.

Proof Reasoning as in the proof of Corollary 3, we conclude from hypotheses a),
b), and c) and Dini’s theorem that hypothesis b) of Proposition 8 holds in this case.
Since f ≥ 0, hypothesis d) here is the same as hypothesis c) of Proposition 8. Thus
all the hypotheses of Proposition 8 are satisfied, and so Eq. (17.24) holds. �

Remark 3 As pointed out in Remark 2, an integral having singularities at both limits
of integration reduces to the sum of two integrals, each of which has a singularity
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at only one limit. This makes it possible to apply the propositions and corollaries
just proved to integrals over intervals ]ω1,ω2[ ⊂ R. Here naturally the hypotheses
that were satisfied previously on closed intervals [a, b] ⊂ [a,ω[ must now hold on
closed intervals [a, b] ⊂ ]ω1,ω2[.

Example 17 By changing the order of integration in two improper integrals, let us
show that

∫ +∞

0
e−x2

dx = 1

2

√
π. (17.26)

This is the famous Euler–Poisson integral.

Proof We first observe that for y > 0

J :=
∫ +∞

0
e−u2

du= y
∫ +∞

0
e−(xy)2 dx,

and that the value of the integral in (17.26) is the same whether it is taken over the
half-open interval [0,+∞[ or the open interval ]0,+∞[.

Thus,

∫ +∞

0
y e−y2

dy
∫ +∞

0
e−(xy)2 dx =

∫ +∞

0
e−y2

dy
∫ +∞

0
e−u2

du= J 2,

and we assume that the integration on y extends over the interval ]0,+∞[.
As we shall verify, it is permissible to reverse the order of integration over x and

y in this iterated integral, and therefore

J 2 =
∫ +∞

0
dx
∫ +∞

0
y e−(1+x2)y2

dy = 1

2

∫ +∞

0

dx

1+ x2
= π

4
,

from which Eq. (17.26) follows.
Let us now justify reversing the order of integration.
The function

∫ +∞

0
y e−(1+x2)y2

dy = 1

2

1

1+ x2

is continuous for x ≥ 0, and the function

∫ +∞

0
y e−(1+x2)y2

dx = e−y2 ·J

is continuous for y > 0. Taking account of the general Remark 3, we now conclude
from Corollary 4 that this reversal in the order of integration is indeed legal. �
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17.2.5 Problems and Exercises

1. Let a = a0 < a1 < · · · < an < · · · < ω. We represent the integral (17.10) as the
sum of the series

∑∞
n=1 ϕn(y), where ϕn(y)=

∫ an
an−1

f (x, y)dx. Prove that the inte-
gral converges uniformly on the set E ⊂ Y if and only if to each sequence {an} of
this form there corresponds a series

∑∞
n=1 ϕn(y) that converges uniformly on E.

2. a) In accordance with Remark 1 carry out all the constructions in Sect. 17.2.1
for the case of a complex-valued integrand f .

b) Verify the assertions in Remark 2.

3. Verify that the function J0(x)= 1
π

∫ 1
0

cosxt√
1−b2

dt satisfies Bessel’s equation y′′ +
1
x
y′ + y = 0.

4. a) Starting from the equality
∫ +∞

0
dy

x2+y2 = π
2

1
x

, show that
∫ +∞

0
dy

(x2+y2)n
= π

2 ·
(2n−3)!!
(2n−2)!! · 1

x2n−1 .

b) Verify that
∫ +∞

0
dy

(1+(y2/n))n
= π

2
(2n−3)!!
(2n−2)!!

√
n.

c) Show that (1+ (y2/n))−n↘ e−y2
on R as n→+∞ and that

lim
n→+∞

∫ +∞

0

dy

(1+ (y2/n))n
=
∫ +∞

0
e−y2

dy.

d) Obtain the following formula of Wallis:

lim
n→∞

(2n− 3)!!
(2n− 2)!! =

1√
π
.

5. Taking account of Eq. (17.26), show that

a)
∫ +∞

0 e−x2
cos 2xy dx = 1

2

√
πe−y2

.

b)
∫ +∞

0 e−x2
sin 2xy dx = e−y2 ∫ y

0 et
2

dt .

6. Assuming t > 0, prove the identity

∫ +∞

0

e−tx

1+ x2
dx =

∫ +∞

t

sin(x − t)
x

dx,

using the fact that both of these integrals, as functions of the parameter t , satisfy the
equation ÿ + y = 1/t and tend to zero as t→+∞.
7. Show that

∫ 1

0
K(k)dk =

∫ π/2

0

ϕ

sinϕ
dϕ

(
=
∫ 1

0

arctanx

x
dx

)
,

where K(k)= ∫ π/20
dϕ√

1−k2 sin2 ϕ
is the complete elliptic integral of first kind.
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8. a) Assuming that a > 0 and b > 0 and using the equality

∫ +∞

0
dx
∫ b

a

e−xy dy =
∫ +∞

0

e−ax − e−bx

x
dx,

compute this last integral.
b) For a > 0 and b > 0 compute the integral

∫ +∞

0

e−ax − e−bx

x
cosx dx.

c) Using the Dirichlet integral (17.22) and the equality

∫ +∞

0

dx

x

∫ b

a

sinxy dy =
∫ +∞

0

cosax − cosbx

x2
dx,

compute this last integral.

9. a) Prove that for k > 0

∫ +∞

0
e−kt sin t dt

∫ +∞

0
e−tu2

du=
∫ +∞

0
du
∫ +∞

0
e−(k+u2)t sin t dt.

b) Show that the preceding equality remains valid for the value k = 0.
c) Using the Euler–Poisson integral (17.26), verify that

1√
t
= 2√

π

∫ +∞

0
e−tu2

du.

d) Using this last equality and the relations

∫ +∞

0
sinx2 dx = 1

2

∫ +∞

0

sin t√
t

dt,
∫ +∞

0
cosx2 dx = 1

2

∫ +∞

0

cos t√
t

dt,

obtain the value ( 1
2

√
π
2 ) for the Fresnel integrals

∫ +∞

0
sinx2 dx,

∫ +∞

0
cosx2 dx.

10. a) Use the equality

∫ +∞

0

sinx

x
dx =

∫ +∞

0
sinx dx

∫ +∞

0
e−xy dy

and, by justifying a reversal in the order of integration in the iterated integral, obtain
once again the value of the Dirichlet integral (17.22) found in Example 13.
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b) Show that for α > 0 and β > 0

∫ +∞

0

sinαx

x
cosβx dx =

⎧
⎪⎨

⎪⎩

π
2 , if β < α,
π
4 , if β = α,
0, if β > α.

This integral is often called the Dirichlet discontinuous factor.
c) Assuming α > 0 and β > 0, verify the equality

∫ +∞

0

sinαx

x

sinβx

x
dx =

{ π
2 β, if β ≤ α,
π
2 α, if α ≤ β.

d) Prove that if the numbers α,α1, . . . , αn are positive and α >
∑n
i=1 αi , then

∫ +∞

0

sinαx

x

sinα1x

x
· · · sinαnx

x
dx = π

2
α1α2 · · ·αn.

11. Consider the integral

F(y)=
∫ ω

a

f (x, y)g(x)dx,

where g is a locally integrable function [a,ω[ (that is, for each b ∈ [a,ω[g|[a,b] ∈
R[a, b]). Let the function f satisfy the various hypotheses a) of Propositions 5–8.
If the integrand f (x, y) is replaced by f (x, y) · g(x) in the other hypotheses of
these propositions, the results are hypotheses under which, by using Problem 6 of
Sect. 17.1 and repeating verbatim the proofs of Propositions 5–8, one can conclude
respectively that

a) F ∈ C[c, d];
b) F ∈ C(1)[c, d], and

F ′(y)=
∫ ω

a

∂f

∂y
(x, y)g(x)dx;

c) F ∈R[c, d] and

∫ d

c

F(y)dy =
∫ ω

a

(∫ d

c

f (x, y)g(x)dy

)
dx;

c) F is improperly integrable on [c, ω̃[, and

∫ ω̃

c

F(y)dy =
∫ ω

a

(∫ ω̃

c

f (x, y)g(x)dy

)
dx.

Verify this.
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17.3 The Eulerian Integrals

In this section and the next we shall illustrate the application of the theory devel-
oped above to some specific integrals of importance in analysis that depend on a
parameter.

Following Legendre, we define the Eulerian integrals of first and second kinds
respectively as the two special functions that follow:

B(α,β) :=
∫ 1

0
xα−1(1− x)β−1 dx, (17.27)

Γ (α) :=
∫ +∞

0
xα−1e−x dx. (17.28)

The first of these is called the beta function, and the second, which is the most
frequently used, is the gamma function of Euler.1

17.3.1 The Beta Function

a. Domain of Definition

A necessary and sufficient condition for the convergence of the integral (17.27) at
the lower limit is that α > 0. Similarly, convergence at 1 occurs if and only if β > 0.

Thus the function B(α,β) is defined when both of the following conditions hold
simultaneously:

α > 0 and β > 0.

Remark We are regarding α and β as real numbers here. However, it should be kept
in mind that the most complete picture of the properties of the beta and gamma
functions and the most profound applications of them involve their extension into
the complex parameter domain.

b. Symmetry

Let us verify that

B(α,β)= B(β,α). (17.29)

Proof It suffices to make the change of variable x = 1− t in the integral (17.27). �

1L. Euler (1707–1783), a brilliant scientist and above all a mathematician and specialist in me-
chanics. If one were to select a name, after the names of Newton and Leibniz, for a professional
mathematician, that name would likely be pronounced “Euler”. Euler’s works and ideas still per-
meate almost all areas of modern mathematics. Swiss by birth, he spent a significant part of his life
living and working in Russia, where he was buried.
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c. The Reduction Formula

If α > 1, the following equality holds:

B(α,β)= α− 1

α+ β − 1
B(α − 1, β). (17.30)

Proof Integrating by parts and carrying out some identity transformations for α > 1
and β > 0, we obtain

B(α,β) = − 1

β
xα−1(1− x)β ∣∣10 +

α − 1

β
·
∫ 1

0
xα−2(1− x)β dx =

= α − 1

β

∫ 1

0
xα−2((1− x)β−1 − (1− x)β−1x

)
dx =

= α − 1

β
B(α − 1, β)− α − 1

β
B(α,β),

from which the reduction formula (17.30) follows. �

Taking account of formula (17.29), we can now write the reduction formula

B(α,β)= β − 1

α + β − 1
B(α,β − 1) (17.30′)

on the parameter β , assuming, of course, that β > 1.
It can be seen immediately from the definition of the beta function that B(α,1)=

1
α

, and so for n ∈N we obtain

B(α,n) = n− 1

α + n− 1
· n− 2

α+ n− 2
· . . . · n− (n− 1)

α+ n− (n− 1)
B(α,1)=

= (n− 1)!
α(α + 1) · . . . · (α + n− 1)

. (17.31)

In particular, for m,n ∈N

B(m,n)= (m− 1)!(n− 1)!
(m+ n− 1)! . (17.32)

d. Another Integral Representation of the Beta Function

The following representation of the beta function is sometimes useful:

B(α,β)=
∫ +∞

0

yα−1

(1+ y)α+β dy. (17.33)
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Proof This representation can be obtained from (17.27) by the change of variables
x = y

1+y . �

17.3.2 The Gamma Function

a. Domain of Definition

It can be seen by formula (17.28) that the integral defining the gamma function
converges at zero only for α > 0, while it converges at infinity for all values of
α ∈R, due to the presence of the rapidly decreasing factor e−x .

Thus the gamma function is defined for α > 0.

b. Smoothness and the Formula for the Derivatives

The gamma function is infinitely differentiable, and

Γ (n)(α)=
∫ +∞

0
xα−1 lnn x e−x dx. (17.34)

Proof We first verify that the integral (17.34) converges uniformly with respect to
the parameter α on each closed interval [a, b] ⊂ ]0,+∞[ for each fixed value of
n ∈N.

If 0 < a ≤ α, then (since xα/2 lnn x→ 0 as x→+0) there exists cn > 0 such
that

∣∣xα−1 lnn xe−x
∣∣< x

a
2−1

for 0< x ≤ cn. Hence by the Weierstrass M-test for uniform convergence we con-
clude that the integral

∫ cn

0
xα−1 lnn x e−x dx

converges uniformly with respect to α on the interval [a,+∞[.
If α ≤ b <+∞, then for x ≥ 1,

∣∣xα−1 lnn x e−x
∣∣≤ xb−1

∣∣lnn x
∣∣ e−x,

and we conclude similarly that the integral

∫ +∞

cn

xα−1 lnn x e−x dx

converges uniformly with respect to α on the interval ]0, b].
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Combining these conclusions, we find that the integral (17.34) converges uni-
formly on every closed interval [a, b] ⊂ ]0,+∞[.

But under these conditions differentiation under the integral sign in (17.27) is
justified. Hence, on any such closed interval, and hence on the entire open interval
0< α, the gamma function is infinitely differentiable and formula (17.34) holds. �

c. The Reduction Formula

The relation

Γ (α + 1)= αΓ (α) (17.35)

holds. It is known as the reduction formula for the gamma function.

Proof Integrating by parts, we find that for α > 0

Γ (α + 1) :=
∫ +∞

0
xαe−x dx =−xαe−x

∣
∣+∞
0 + α

∫ +∞

0
xα−1e−x dx =

= α
∫ +∞

0
xα−1e−x dx = αΓ (α). �

Since Γ (1)= ∫ +∞0 e−x dx = 1, we conclude that for n ∈N
Γ (n+ 1)= n!. (17.36)

Thus the gamma function turns out to be closely connected with the number-
theoretic function n!.

d. The Euler–Gauss Formula

This is the name usually given to the following equality:

Γ (α)= lim
n→∞n

α · (n− 1)!
α(α + 1) · . . . · (α + n− 1)

. (17.37)

Proof To prove this formula, we make the change of variable x = ln 1
u

in the integral
(17.28), resulting in the following integral representation of the gamma function:

Γ (α)=
∫ 1

0
lnα−1

(
1

u

)
du. (17.38)

It was shown in Example 3 of Sect. 16.3 that the sequence of functions
fn(u) = n(1 − u1/n) increases monotonically and converges to ln( 1

u
) on the in-

terval 0< u < 1 as n→∞. Using Corollary 2 of Sect. 17.2 (see also Example 10
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of Sect. 17.2), we conclude that for α ≥ 1

∫ 1

0
lnα−1

(
1

u

)
du= lim

n→∞n
α−1
∫ 1

0

(
1− u1/n)α−1 du. (17.39)

Making the change of variable u = vn in the last integral, we find by (17.38),
(17.39), (17.27), (17.29), and (17.31) that

Γ (α) = lim
n→∞n

α

∫ 1

0
vn−1(1− v)α−1 dv =

= lim
n→∞n

αB(n,α)= lim
n→∞n

αB(α,n)=

= lim
n→∞n

α · (n− 1)!
α(α + 1) · . . . · (α + n− 1)

.

Applying the reduction formulas (17.30) and (17.35) to the relation Γ (α) =
limn→∞ nαB(α,n) just proved for α ≥ 1, we verify that formula (17.37) holds for
all α > 0. �

e. The Complement Formula

For 0 < α < 1 the values α and 1− α of the argument of the gamma function are
mutually complementary, so that the equality

Γ (α) · Γ (1− α)= π

sinπα
(0< α < 1) (17.40)

is called the complement formula for the gamma function.

Proof Using the Euler–Gauss formula (17.37) and simple identities, we find that

Γ (α)Γ (1− α) = lim
n→∞

(
nα

(n− 1)!
α(α + 1) · . . . · (α + n− 1)

×

× n1−α (n− 1)!
(1− α)(2− α) · . . . · (n− α)

)
=

= lim
n→∞

(
n

1

α(1+ α
1 ) · . . . · (1+ α

n−1 )
×

× 1

(1− α
1 )(1− α

2 ) · . . . · (1− α
n−1 )(n− α)

)
=

= 1

α
lim
n→∞

1

(1− α2

12 )(1− α2

22 ) · . . . · (1− α2

(n−1)2
)
.
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Hence for 0< α < 1

Γ (α)Γ (1− α)= 1

α

∞∏

n=1

1

1− α2

n2

. (17.41)

But the following expansion is classical:

sinπα = πα
∞∏

n=1

(
1− α

2

n2

)
. (17.42)

(We shall not take the time to prove this formula just now, since it will be obtained
as a simple example of the use of the general theory when we study Fourier series.
See Example 6 of Sect. 18.2.)

Comparing relations (17.41) and (17.42), we obtain (17.40). �

It follows in particular from (17.40) that

Γ

(
1

2

)
=√π. (17.43)

We observe that

Γ

(
1

2

)
=
∫ +∞

0
x−1/2e−x dx = 2

∫ +∞

0
e−u2

du,

and thus we again arrive at the Euler–Poisson integral

∫ +∞

0
e−u2

du= 1

2

√
π.

17.3.3 Connection Between the Beta and Gamma Functions

Comparing formulas (17.32) and (17.36), one may suspect the following connec-
tion:

B(α,β)= Γ (α) · Γ (β)
Γ (α + β) (17.44)

between the beta and gamma functions. Let us prove this formula.

Proof We remark that for y > 0

Γ (α)= yα
∫ +∞

0
xα−1e−xy dx,
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and therefore the following equality also holds:

Γ (α + β) · yα−1

(1+ y)α+β = yα−1
∫ +∞

0
xα+β−1e−(1+y)x dx,

using which, taking account of (17.33), we obtain

Γ (α + β) ·B(α,β) =
∫ +∞

0

Γ (α + β)yα−1

(1+ y)α+β dy =

=
∫ +∞

0

(
yα−1

∫ +∞

0
xα+β−1e−(1+y)x dx

)
dy
!=

!=
∫ +∞

0

(∫ +∞

0
yα−1xα+β−1e−(1+y)x dy

)
dx =

=
∫ +∞

0

(
xβ−1e−x

∫ +∞

0
(xy)α−1e−xyx dy

)
dx =

=
∫ +∞

0

(
xβ−1e−x

∫ +∞

0
uα−1e−u du

)
dx = Γ (α) · Γ (β).

All that remains is to explain the equality distinguished by the exclamation point.
But that is exactly what was done in Example 16 of Sect. 17.2. �

17.3.4 Examples

In conclusion let us consider a small group of interconnected examples in which the
special functions B and Γ introduced here occur.

Example 1
∫ π/2

0
sinα−1 ϕ cosβ−1 ϕ dϕ = 1

2
B

(
α

2
,
β

2

)
. (17.45)

Proof To prove this, it suffices to make the change of variable sin2 ϕ = x in the
integral. �

Using formula (17.44), we can express the integral (17.45) in terms of the gamma
function. In particular, taking account of (17.43), we obtain

∫ π/2

0
sinα−1 ϕ dϕ =

∫ π/2

0
cosα−1 ϕ dϕ =

√
π

2

Γ (α2 )

Γ (α+1
2 )
. (17.46)

Example 2 A one-dimensional ball of radius r is simply an open interval and its
(one-dimensional) volume V1(r) is the length (2r) of that interval. Thus V1(r)= 2r .
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If we assume that the ((n− 1)-dimensional) volume of the (n− 1)-dimensional
ball of radius r is expressed by the formula Vn−1(r)= cn−1r

n−1, then, integrating
over sections (see Example 3 of Sect. 11.4), we obtain

Vn(r)=
∫ r

−r
cn−1
(
r2 − x2) n−1

2 dx =
(
cn−1

∫ π/2

−π/2
cosn ϕ dϕ

)
· rn,

that is, Vn(r)= cnrn, where

cη = 2cn−1

∫ π/2

0
cosn ϕ dϕ.

By relations (17.46) we can rewrite this last equality as

cn =√π Γ (
n+1

2 )

Γ (n+2
2 )
cn−1,

so that

cn = (√π)n−1Γ (
n+1

2 )

Γ (n+2
2 )
· Γ (

n
2 )

Γ (n+1
2 )
· . . . · Γ (

3
2 )

Γ ( 4
2 )
· c1

or, more briefly,

cn = π n−1
2
Γ ( 3

2 )

Γ (n+2
2 )
c1.

But c1 = 2, and Γ ( 3
2 )= 1

2Γ (
1
2 )= 1

2

√
π , so that

cn = π
n
2

Γ (n+2
2 )
.

Consequently,

Vn(r)= π
n
2

Γ (n+2
2 )
rn,

or, what is the same,

Vn(r)= π
n
2

n
2Γ (

n
2 )
rn. (17.47)

Example 3 It is clear from geometric considerations that dVn(r) = Sn−1(r)dr ,
where Sn−1(r) is the (n− 1)-dimensional surface area of the sphere bounding the
n-dimensional ball of radius r in R

n.
Thus Sn−1(r)= dVn

dr (r), and, taking account of (17.47), we obtain

Sn−1(r)= 2π
n
2

Γ (n2 )
rn−1.
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17.3.5 Problems and Exercises

1. Show that

a) B(1/2,1/2)= π ;
b) B(α,1− α)= ∫∞0 xα−1

1+x dx;

c) ∂B
∂α
(α,β)= ∫ 1

0 x
α−1(1− x)β−1 lnx dx;

d)
∫ +∞

0
xp dx

(a+bxq )r = a−r
q
( a
b
)
p+1
q B(

p+1
q
, r − p+1

q
);

e)
∫ +∞

0
dx

n
√

1+xn = π

n sin π
n

;

f)
∫ +∞

0
dx

1+x3 = 2π
3
√

3
;

g)
∫ +∞

0
xα−1 dx

1+x = π
sinπα (0< α < 1);

h)
∫ +∞

0
xα−1 lnn x

1+x dx = dn
dαn (

π
sinπα ) (0< α < 1);

i) the length of the curve defined in polar coordinates by the equation rn =
an cosnϕ, where n ∈N and a > 0, is aB( 1

2 ,
1

2n ).

2. Show that

a) Γ (1)= Γ (2);
b) the derivative Γ ′ of Γ is zero at some point x0 ∈ ]1,2[;
c) the function Γ ′ is monotonically increasing on the interval ]0,+∞[;
d) the function Γ is monotonically decreasing on ]0, x0] and monotonically in-

creasing on [x0,+∞[;
e) the integral

∫ 1
0 (ln

1
u
)x−1 ln ln 1

u
du equals zero if x = x0;

f) Γ (α)∼ 1
α

as α→+0;

g) limn→∞
∫ +∞

0 e−xn dx = 1.

3. Euler’s formula E :=∏n−1
k=1 Γ (

k
n
)= (2π)

n−1
2√
n

.

a) Show that E2 =∏n−1
k=1 Γ (

k
n
)Γ (n−k

n
).

b) Verify that E2 = πn−1

sin π
n

sin 2π
n
·...·sin(n−1) π

n

.

c) Starting from the identity zn−1
z−1 =

∏n−1
k=1(z− ei

2kπ
n ), let z tend to 1 to obtain

n=
n−1∏

k=1

(
1− ei

2kπ
n
)
,

and from this relation derive the relation

n= 2n−1
n−1∏

k=1

sin
kπ

n
.

d) Using this last equality, obtain Euler’s formula.
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4. Legendre’s formula Γ (α)Γ (α + 1
2 )=

√
π

22α−1Γ (2α).

a) Show that B(α,α)= 2
∫ 1/2

0 ( 1
4 − ( 1

2 − x)2)α−1 dx.
b) By a change of variable in this last integral, prove that B(α,α) =

1
22α−1B(

1
2 , α).

c) Now obtain Legendre’s formula.

5. Retaining the notation of Problem 5 of Sect. 17.1, show a route by which the sec-
ond, more delicate part of the problem can be carried out using the Euler integrals.

a) Observe that k̃ = k for k = 1√
2

and

Ẽ =E =
∫ π/2

0

√

1− 1

2
sin2 ϕ dϕ, K̃ =K =

∫ π/2

0

dϕ
√

1− 1
2 sin2 ϕ

.

b) After a suitable change of variable these integrals can be brought into a form
from which it follows that for k = 1/

√
2

K = 1

2
√

2
B(1/4,1/2) and 2E −K = 1

2
√

2
B(3/4,1/2).

c) It now results that for k = 1/
√

2

EK̃ + ẼK −KK̃ = π/2.
6. Raabe’s2 integral

∫ 1
0 lnΓ (x)dx.

Show that

a)
∫ 1

0 lnΓ (x)dx = ∫ 1
0 lnΓ (1− x)dx.

b)
∫ 1

0 lnΓ (x)dx = 1
2 lnπ − 1

π

∫ π/2
0 ln sinx dx.

c)
∫ π/2

0 ln sinx dx = ∫ π/20 ln sin 2x dx − π
2 ln 2.

d)
∫ π/2

0 ln sinx dx =−π2 ln 2.

e)
∫ 1

0 lnΓ (x)dx = ln
√

2π .

7. Using the equality

1

xs
= 1

Γ (s)

∫ +∞

0
ys−1e−xy dy

and justifying the reversal in the order of the corresponding integrations, verify that

a)
∫ +∞

0
cosax
xα

dx = πaα−1

2Γ (α) cos πα2
(0< α < 1).

b)
∫ +∞

0
sinbx
xβ

dx = πbβ−1

2Γ (β) sin
πβ
2

(0< β < 2).

2J.L. Raabe (1801–1859) – Swiss mathematician and physicist.
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c) Now obtain once again the value of the Dirichlet integral
∫ +∞

0
sinx
x

dx and

the value of the Fresnel integrals
∫ +∞

0 cosx2 dx and
∫ +∞

0 sinx2 dx.

8. Show that for α > 1
∫ +∞

0

xα−1

ex − 1
dx = Γ (α) · ζ(α),

where ζ(a)=∑∞n=1
1
nα

is the Riemann zeta function.
9. Gauss’ formula. In Example 6 of Sect. 16.3 we exhibited the function

F(α,β, γ, x) := 1+
∞∑

n=1

α(α + 1) · · · (α + n− 1)β(β + 1) · · · (β + n− 1)

n!γ (γ + 1) · · · (γ + n− 1)
xn,

which was introduced by Gauss and is the sum of this hypergeometric series. It turns
out that the following formula of Gauss holds:

F(α,β, γ,1)= Γ (γ ) · Γ (γ − α − β)
Γ (γ − α) · Γ (γ − β) .

a) By developing the function (1− tx)−β in a series, show that for α > 0, γ −
α > 0, and 0< x < 1 the integral

P(x)=
∫ 1

0
tα−1(1− t)γ−α−1(1− tx)−β dt

can be represented as

P(x)=
∞∑

n=0

Pn · xn,

where Pn = β(β+1)···(β+n−1)
n! · Γ (α+n)·Γ (γ−α)

Γ (γ+n) .
b) Show that

Pn = Γ (α) · Γ (γ − α)
Γ (γ )

· α(α + 1) · · · (α + n− 1)β(β + 1) · · · (β + n− 1)

n!γ (γ + 1) · · · (γ + n− 1)
.

c) Now prove that for α > 0, γ − α > 0, and 0< x < 1

P(x)= Γ (α) · Γ (γ − α)
Γ (γ )

· F(α,β, γ, x).

d) Under the additional condition γ −α−β > 0 justify the possibility of passing
to the limit as x→ 1− 0 on both sides of the last equality, and show that

Γ (α) · Γ (γ − α − β)
Γ (γ − β) = Γ (α) · Γ (γ − α)

Γ (γ )
F (α,β, γ,1),

from which Gauss’ formula follows.
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10. Stirling’s3 formula. Show that

a) ln 1+x
1−x = 2x

∑∞
m=0

x2m

2m+1 for |x|< 1;

b) (n+ 1
2 ) ln(1+ 1

n
)= 1+ 1

3
1

(2n+1)2
+ 1

5
1

(2n+1)4
+ 1

7
1

(2n+1)6
+ · · · ;

c) 1< (n+ 1
2 ) ln(1+ 1

n
) < 1+ 1

12n(n+1) for n ∈N;

d) 1<
(1+ 1

n
)n+1/2

e < e
1

12n

e
1

12(n+1)

;

e) an = n!en
n(n+1/2) is a monotonically decreasing sequence;

f) bn = ane−
1

12n is a monotonically increasing sequence;

g) n! = cnn+1/2e−n+
θn

12n , where 0< θn < 1, and c= limn→∞ an = limn→∞ bn;

h) the relation sinπx = πx∏∞n=1(1− x2

n2 ) with x = 1/2 implies Wallis’ formula

√
π = lim

n→∞
(n!)222n

(2n)! ·
1√
n
;

i) Stirling’s formula holds:

n! = √2πn

(
n

e

)n
e
θn
12n , 0< θn < 1;

j) Γ (x + 1)∼√2πx(xe )
x as x→+∞.

11. Show that Γ (x) =∑∞n=0
(−1)n

n+x · 1
n! +
∫∞

1 tx−1e−t dt . This relation makes it
possible to define Γ (z) for complex z ∈C except at the points 0,−1,−2, . . . .

17.4 Convolution of Functions and Elementary Facts
About Generalized Functions

17.4.1 Convolution in Physical Problems (Introductory
Considerations)

A variety of devices and systems in the living and nonliving natural world carry out
their functions responding to a stimulus f with an appropriate signal f̃ . In other
words, each such device or system is an operator A that transforms the incoming
signal f into the outgoing signal f̃ =Af . Naturally, each such operator has its own
domain of perceivable signals (domain of definition) and its own form of response
to them (range of values). A convenient mathematical model for a large class of
actual processes and machines is a linear operator A that preserves translations.

3J. Stirling (1692–1770) – Scottish mathematician.
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Definition 1 LetA be a linear operator acting on a vector space of real- or complex-
valued functions defined on R. We denote by Tt0 the shift operator or translation
operator acting on the same space according to the rule

(Tt0f )(t) := f (t − t0).
The operator A is translation-invariant (or preserves translations) if

A(Tt0f )= Tt0(Af )
for every function f in the domain of definition of the operator A.

If t is time, the relation A ◦ Tt0 = Tt0 ◦ A can be interpreted as the assumption
that the properties of the device A are time-invariant: the reaction of the device to
the signals f (t) and f (t − t0) differ only in a shift by the amount t0 in time, nothing
more.

For every deviceA the following two fundamental problems arise: first, to predict
the reaction f̃ of the device to an arbitrary input f ; second, knowing the output f̃ ,
to determine, if possible, the input signal f .

At this point we shall solve the first of these two problems heuristically in appli-
cation to a translation-invariant linear operator A. It is a simple, but very important
fact that in order to describe the response f̃ of such a device A to any input signal
f , it suffices to know the response E of A to a pulse δ.

Definition 2 The response E(t) of the deviceA to a unit pulse δ is called the system
function of the device (in optics) or the transient pulse function of the device (in
electrical engineering).

As a rule, we shall use the briefer term “system function”.
Without going into detail just yet, we shall say that a pulse can be imitated, for

example, by the function δα(t) shown in Fig. 17.1, and this imitation is assumed to
become closer as the duration α of the “pulse” gets shorter, preserving the relation
α · 1

α
= 1. Instead of step functions, one may imitate a pulse using smooth functions

(Fig. 17.2) while preserving the natural conditions:

fα ≥ 0,
∫

R

fα(t)dt = 1,
∫

U(0)
fα(t)dt→ 1 as α→ 0,

where U(0) is an arbitrary neighborhood of the point t = 0.
The response of the device A to an ideal unit pulse (denoted, following Dirac,

by the letter δ) should be regarded as a function E(t) to which the response of the
device A to an input approximating δ tends as the imitation improves. Naturally a
certain continuity of the operator A is assumed (not made precise as yet), that is,
continuity of the change in the response f̃ of the device under a continuous change
in the input f .
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Fig. 17.1

Fig. 17.2

Fig. 17.3

For example, if we take a sequence {Δn(t)} of step functions Δn(t) := δ1/n(t)
(Fig. 17.1), then, setting AΔn =: En, we obtain Aδ := E = limn→∞En =
limn→∞AΔn.

Let us now consider the input signal f in Fig. 17.3 and the piecewise constant
function lh(t) =∑i f (τi)δh(t − τi)h. Since lh→ f as h→ 0, one must assume
that

l̃h =Alh→Af = f̃ as h→ 0.

But if the operator A is linear and preserves translates, then

l̃h(t)=
∑

i

f (τi)Eh(t − τi)h,

where Eh =Aδh. Thus, as h→ 0 we finally obtain

f̃ (t)=
∫

R

f (τ)E(t − τ)dτ. (17.48)

Formula (17.48) solves the first of the two problems indicated above. It represents
the response f̃ (t) of the device A in the form of a special integral depending on the
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parameter t . This integral is completely determined by the input signal f (t) and
the system function E(t) of the device A. From the mathematical point of view the
device A and the integral (17.48) are simply identical.

We note incidentally that the problem of determining the input signal from the
output f̃ now reduces to solving the integral equation (17.48) for f .

Definition 3 The convolution of the functions u : R→ C and v : R→ C is the
function u ∗ v :R→C defined by the relation

(u ∗ v)(x) :=
∫

R

u(y)v(x − y)dy, (17.49)

provided this improper integral exists for all x ∈R.

Thus formula (17.48) asserts that the response of a linear device A that preserves
translates to an input given by the function f is the convolution f ∗E of the function
f and the system function E of the device A.

17.4.2 General Properties of Convolution

Now let us consider the basic properties of convolution from a mathematical point
of view.

a. Sufficient Conditions for Existence

We first recall certain definitions and notation.
Let f : G→ C be a real- or complex-valued function defined on an open set

G⊂R.
The function f is locally integrable on G if every point x ∈G has a neighbor-

hood U(x)⊂G in which the function f |U(x) is integrable. In particular, if G= R,
the condition of local integrability of the function f is obviously equivalent to the
relation f |[a,b] ∈R[a, b] for every closed interval [a, b].

The support of the function f (denoted suppf ) is the closure in G of the set
{x ∈G | f (x) �= 0}.

A function f is of compact support (in G) if its support is a compact set.
The set of functions f :G→C having continuous derivatives inG up to orderm

(0≤m≤∞) inclusive, is usually denoted C(m)(G) and the subset of it consisting of
functions of compact support is denoted C(m)0 (G). In the case when G=R, instead

of C(m)(R) and C(m)0 (R) it is customary to use the abbreviation C(m) and C(m)0
respectively.

We now exhibit the most frequently encountered cases of convolution of func-
tions, in which its existence can be established without difficulty.
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Proposition 1 Each of the conditions listed below is sufficient for the existence of
the convolution u ∗ v of locally integrable functions u :R→C and v :R→ C.

1) The functions |u|2 and |v|2 are integrable on R.
2) One of the functions |u|, |v| is integrable on R and the other is bounded on R.
3) One of the functions u and v is of compact support.

Proof 1) By the Cauchy–Bunyakovskii inequality

(∫

R

∣
∣u(y)v(x − y)∣∣dy

)2

≤
∫

R

|u|2(y)dy
∫

R

|v|2(x − y)dy,

from which it follows that the integral (17.49) exists, since

∫ +∞

−∞
|v|2(x − y)dy =

∫ +∞

−∞
|v|2(y)dy.

2) If, for example, |u| is integrable on R and |v| ≤M on R, then

∫

R

∣∣u(y)v(x − y)∣∣dy ≤M
∫

R

|u|(y)dy <+∞.

3) Suppose suppu⊂ [a, b] ⊂R. Then obviously

∫

R

u(y)v(x − y)dy =
∫ b

a

u(y)v(x − y)dy.

Since u and v are locally integrable, this last integral exists for every value of
x ∈R.

The case when the function of compact support is v reduces to the one just con-
sidered by the change of variable x − y = z. �

b. Symmetry

Proposition 2 If the convolution u ∗ v exists, then the convolution v ∗ u also exists,
and the following equality holds:

u ∗ v = v ∗ u. (17.50)

Proof Making the change of variable x − y = z in (17.49), we obtain

u ∗ v(x) :=
∫ +∞

−∞
u(y)v(x − y)dy =

∫ +∞

−∞
v(z)u(x − z)dz=: v ∗ u(x). �
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c. Translation Invariance

Suppose, as above, that Tx0 is the shift operator, that is, (Tx0)f (x)= f (x − x0).

Proposition 3 If the convolution u ∗ v of the functions u and v exists, then the
following equalities hold:

Tx0(u ∗ v)= Tx0u ∗ v = u ∗ Tx0v. (17.51)

Proof If we recall the physical meaning of formula (17.48), the first of these equal-
ities becomes obvious, and the second can then be obtained from the symmetry of
convolution. Nevertheless, let us give a formal verification of the first equality:

(Tx0)(u ∗ v)(x) := (u ∗ v)(x − x0) :=

=
∫ +∞

−∞
u(y)v(x − x0 − y)dy =

∫ +∞

−∞
u(y − x0)v(x − y)dy =

=
∫ +∞

−∞
(Tx0u)(y)v(x − y)dy =:

(
(Tx0u) ∗ v

)
(x). �

d. Differentiation of a Convolution

The convolution of functions is an integral depending on a parameter, and differen-
tiation of it can be carried out in accordance with the general rules for differentiating
such integrals, provided of course suitable hypotheses hold.

The conditions under which the convolution (17.49) of the functions u and v is
continuously differentiable are demonstrably satisfied if, for example, u is continu-
ous and v is a smooth function and one of the two is of compact support.

Proof Indeed, if we confine the variation of the parameter to any finite interval, then
under these hypotheses the entire integral (17.49) reduces to the integral over a finite
closed interval independent of x. Such an integral can be differentiated with respect
to a parameter in accordance with the classical rule of Leibniz. �

In general the following proposition holds:

Proposition 4 If u is a locally integrable function and v is a C(m)0 function of com-
pact support (0≤m≤+∞), then (u ∗ v) ∈C(m), and4

Dk(u ∗ v)= u ∗ (Dkv). (17.52)

4Here D is differentiation, and, as usual Dkv = v(k).
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Proof When u is a continuous function, the proposition follows immediately from
what was just proved above. In its general form it can be obtained if we also keep in
mind the observation made in Problem 6 of Sect. 17.1. �

Remark 1 In view of the commutativity of convolution (formula (17.50)) Proposi-
tion 4 of course remains valid if u and v are interchanged, preserving the left-hand
side of Eq. (17.52).

Formula (17.52) shows that convolution commutes with the differentiation op-
erator, just as it commutes with translation (formula (17.51)). But while (17.51) is
symmetric in u and v, one cannot in general interchange u and v in the right-hand
side of (17.52), since u may fail to have the corresponding derivative. The fact that
the convolution u ∗ v, as one can see by (17.52), may still turn out to be a differ-
entiable function, might suggest that the hypotheses of Proposition 4 are sufficient,
but not necessary for differentiability of the convolution.

Example 1 Let f be a locally integrable function and δα the “step” function shown
in Fig. 17.1. Then

(f ∗ δα)(x)=
∫ +∞

−∞
f (y)δα(x − y)dy = 1

α

∫ x

x−α
f (y)dy, (17.53)

and consequently if f is continuous at the points x and x − α, then the convolution
f ∗ δα is differentiable, due to the averaging (smoothing) property of the integral.

The conditions for differentiability of the convolution stated in Proposition 4 are,
however, completely sufficient for practically all the cases one encounters in which
formula (17.52) is applied. For that reason we shall not attempt to refine them any
further, preferring to illustrate some beautiful new possibilities that open up as a
result of the smoothing action of convolution just discovered.

17.4.3 Approximate Identities and the Weierstrass Approximation
Theorem

We remark that the integral in (17.53) gives the average value of the function
f on the interval [x − α,x], and therefore, if f is continuous at x, the relation
(f ∗ δα)(x)→ f (x) obviously holds as α→ 0. In accordance with the introductory
considerations of Sect. 17.4.1 that gave a picture of the δ-function, we would like to
write this last relation as the limiting equality

(f ∗ δ)(x)= f (x), if f is continuous at x. (17.54)

This equality shows that the δ-function can be interpreted as the identity (neu-
tral) element with respect to convolution. Equality (17.54) can be regarded as mak-
ing perfect sense if it is shown that every family of functions converging to the
δ-function has the same property as the special family δα of (17.53).
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Let us now pass to precise statements and introduce the following useful defini-
tion.

Definition 4 The family {Δα;α ∈ A} of functions Δα : R→ R depending on the
parameter α ∈A forms an approximate identity over a base B in A if the following
three conditions hold:

a) all the functions in the family are nonnegative (Δα ≥ 0);
b) for every function Δα in the family,

∫
R
Δα(x)dx = 1;

c) for every neighborhood U of 0 ∈R, limB
∫
U
Δα(x)dx = 1.

Taking account of the first two conditions, we see that this last condition is equiv-
alent to the relation limB

∫
R\U Δα(x)dx = 0.

The original family of “step” functions δα considered in Example 1 of Sect. 17.4.1
is an approximate identity as α→ 0. We shall now give other examples of approxi-
mate identities.

Example 2 Let ϕ :R→R be an arbitrary nonnegative function of compact support
that is integrable over R and satisfies

∫
R
ϕ(x)dx = 1. For α > 0 we construct the

functions Δα(x) := 1
α
ϕ( x
α
). The family of these functions is obviously an approxi-

mate identity as α→+0 (see Fig. 17.2).

Example 3 Consider the sequence of functions

Δn(x)=
⎧
⎨

⎩

(1−x2)n∫
|x|<1(1−x2)n dx

for |x| ≤ 1,

0 for |x|> 1.

To establish that this family is an approximate identity we need only verify that
condition c) of Definition 4 holds in addition to a) and b). But for every ε ∈ ]0,1]
we have

0 ≤
∫ 1

ε

(
1− x2)n dx ≤

∫ 1

ε

(
1− ε2)n dx =

= (1− ε2)n(1− ε)→ 0, as n→∞.
At the same time,

∫ 1

0

(
1− x2)n dx >

∫ 1

0
(1− x)n dx = 1

n+ 1
.

Therefore condition c) holds.

Example 4 Let

Δn(x)=
{

cos2n(x)/
∫ π/2
−π/2 cos2n(x)dx for |x| ≤ π/2,

0 for |x|> π/2.
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As in Example 3, it remains only to verify condition c) here. We remark first of
all that

∫ π/2

0
cos2n x dx = 1

2
B

(
n+ 1

2
,

1

2

)
= 1

2

Γ (n+ 1
2n )

Γ (n)
· Γ (

1
2 )

n
>
Γ ( 1

2 )

2n
.

On the other hand, for ε ∈ ]0,π/2[
∫ π/2

ε

cos2n x dx ≤
∫ π/2

ε

cos2n ε dx <
π

2
(cos ε)2n.

Combining the two inequalities just obtained, we conclude that for every ε ∈
]0,π/2],

∫ π/2

ε

Δn(x)dx→ 0 as n→∞,

from which it follows that condition c) of Definition 4 holds.

Definition 5 The function f :G→ C is uniformly continuous on the set E ⊂G if
for every ε > 0 there exists ρ > 0 such that |f (x)− f (y)|< ε for every x ∈E and
every y ∈G belonging to the ρ-neighborhood UρG(x) of x in G.

In particular, if E = G we simply get back the definition of a function that is
uniformly continuous on its entire domain of definition.

We now prove a fundamental proposition.

Proposition 5 Let f : R→ C be a bounded function and {Δα;α ∈ A} an approx-
imate identity as α→ ω. If the convolution f ∗Δα exists for every α ∈ A and the
function f is uniformly continuous on the set E ⊂R, then

(f ∗Δα)(x)⇒ f (x) on E as α→ ω.

Thus it is asserted that the family of functions f ∗ Δα converges uniformly to
f on a set E on which it is uniformly continuous. In particular, if E consists of
only one point, the condition of uniform continuity of f on E reduces to the con-
dition that f be continuous at x, and we find that (f ∗Δα)(x)→ f (x) as α→ ω.
Previously this fact served as our motivation for writing relation (17.54).

Let us now prove Proposition 5.

Proof Suppose |f (x)| ≤M on R. Given a number ε > 0, we choose ρ > 0 in ac-
cordance with Definition 5 and denote the ρ-neighborhood of 0 in R by U(0).

Taking account of the symmetry of convolution, we obtain the following two
estimates, which hold simultaneously for all x ∈E:



17.4 Convolution and Generalized Functions 453

∣∣(f ∗Δα)(x)− f (x)
∣∣

=
∣∣∣∣

∫

R

f (x − y)Δα(y)dy − f (x)
∣∣∣∣=

=
∣∣∣∣

∫

R

(
f (x − y)− f (x))Δα(y)dy

∣∣∣∣≤

≤
∫

U(0)

∣
∣f (x − y)− f (x)∣∣Δα(y)dy +

∫

R\U(0)
∣
∣f (x − y)− f (x)∣∣Δα(y)dy <

< ε

∫

U(0)
Δα(y)dy + 2M

∫

R\U(0)
Δα(y)dy ≤ ε+ 2M

∫

R\U(0)
Δα(y)dy.

As α→ ω, this last integral tends to zero, so that the inequality

∣
∣(f ∗Δα)(x)− f (x)

∣
∣< 2ε

holds for all x ∈ E from some point αε on. This completes the proof of Proposi-
tion 5. �

Corollary 1 Every continuous function of compact support on R can be uniformly
approximated by infinitely differentiable functions.

Proof Let verify that C(∞)0 is everywhere dense in C0 in this sense.
We let, for example,

ϕ(x)=
{
k · exp(− 1

1−x2 ) for |x|< 1,
0 for |x| ≥ 1,

where k is chosen so that
∫
R
ϕ(x)dx = 1.

The function ϕ is of compact support and infinitely differentiable. In that case,
the family of infinitely differentiable functions Δα = 1

α
ϕ( x
α
), as observed in Exam-

ple 2, is an approximate identity as α→+0. If f ∈ C0, it is clear that f ∗Δα ∈C0.
Moreover, by Proposition 4 we have f ∗Δα ∈ C∞0 . Finally, it follows from Propo-
sition 5 that f ∗Δα ⇒ f on R as α→+0. �

Remark 2 If the function f ∈ C0 belongs to C(m)0 , then for every value n ∈
{0,1, . . . ,m} we can guarantee that (f ∗Δα)(n)⇒ f (n) on R as α→+0.

Proof Indeed, in this case (f ∗ Δα)(n) = f (n) ∗ Δα (see Proposition 4 and Re-
mark 1). All that now remains is to cite Corollary 1. �

Corollary 2 (The Weierstrass approximation theorem) Every continuous function
on a closed interval can be uniformly approximated on that interval by an algebraic
polynomial.
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Proof Since polynomials map to polynomials under a linear change of variable
while the continuity and uniformity of the approximation of functions are preserved,
it suffices to verify Corollary 2 on any convenient interval [a, b] ⊂ R. For that rea-
son we shall assume 0< a < b < 1. We continue the given function f ∈ C[a, b] to
a function F that is continuous on R by setting F(x)= 0 for x ∈ R\]0,1[ and, for
example, letting F be a linear function going from 0 to f (a) and from f (b) to 0 on
the intervals [0, a] and [b,1] respectively.

If we now take the approximate identity consisting of the functions Δn of Exam-
ple 3, we can conclude from Proposition 5 that F ∗Δn ⇒ f = F |[a,b] on [a, b] as
n→∞. But for x ∈ [a, b] ⊂ [0,1] and y ∈ [0,1] we have |x − y| ≤ 1, therefore

F ∗Δn(x) :=
∫ ∞

−∞
F(y)Δn(x − y)dy =

∫ 1

0
F(y)Δn(x − y)dy =

=
∫ 1

0
F(y)pn ·

(
1− (x − y)2)n dy =

∫ 1

0
F(y)

(
2n∑

k=0

ak(y)x
k

)

dy =

=
2n∑

k=0

(∫ 1

0
F(y)ak(y)dy

)
xk.

This last expression is a polynomial P2n(x) of degree 2n and we have shown that
P2n⇒ f on [a, b] as n→∞. �

Remark 3 By a slight extension of this reasoning one can show that Weierstrass the-
orem remains valid if the interval [a, b] is replaced by an arbitrary compact subset
of R.

Remark 4 It is also not difficult to verify that for every open set G in R and every
function f ∈ C(m)(G) there exists a sequence {Pk} of polynomials such that P (n)k ⇒
f (n) on every compact set K ⊂G for each n ∈ {0,1, . . . ,m} as k→∞.

If in addition the set G is bounded and f ∈ C(m)(G), then one can even get
P
(n)
k ⇒ f (n) on G as k→∞.

Remark 5 Just as the approximate identity of Example 3 was used in the proof of
Corollary 2, one can use the sequence from Example 4 to prove that every 2π -
periodic function on R can be uniformly approximated by trigonometric polynomi-
als of the form

Tn(x)=
n∑

k=0

ak coskx + bk sinkx.

We have used only approximate identities made up of functions of compact sup-
port above. However, it should be kept in mind that approximate identities of func-
tions that are not of compact support play an important role in many cases. We shall
give only two examples.
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Example 5 The family of functionsΔy(x)= 1
π
.

y

x2+y2 is an approximate identity on
R as y→+0, since Δy > 0 for y > 0,

∫ ∞

−∞
Δy(x)dx = 1

π
arctan

(
x

y

)∣∣∣∣

+∞

x=−∞
= 1,

and for every ρ > 0 we have
∫ ρ

−ρ
Δy(x)dx = 2

π
arctan

ρ

y
→ 1,

when y→+0.
If f :R→R is a bounded continuous function, then the function

u(x, y)= 1

π

∫ ∞

−∞
f (ξ)y

(x − ξ)2 + y2
dξ, (17.55)

which is the convolution f ∗Δy , is defined for all x ∈R and y > 0.
As one can easily verify using the WeierstrassM-test, the integral (17.55), which

is called the Poisson integral for the half-plane, is a bounded infinitely differentiable
function in the half-plane R

2+ = {(x, y) ∈ R2 | y > 0}. Differentiating it under the
integral sign, we verify that for y > 0

Δu := ∂
2u

∂x2
+ ∂

2u

∂y2
= f ∗

(
∂2

∂x2
+ ∂2

∂y2

)
Δy = 0,

that is, u is a harmonic function.

By Proposition 5 one can also guarantee that u(x, y) converges to f (x) as y→ 0.
Thus, the integral (17.55) solves the problem of constructing a bounded function
that is harmonic in the half-plane R2+ and assumes prescribed boundary values f on
∂R2+.

Example 6 The family of functions Δt = 1
2
√
πt

e− x
2

4t is an approximate identity

on R as t → +0. Indeed, we certainly have Δt > 0 and
∫ +∞
−∞ Δt(x) = 1, since

∫ +∞
−∞ e

−v2
dv =√π (the Euler–Poisson integral). Finally, for every ρ > 0 we have

∫ ρ

−ρ
1

2
√
πt

e−
x2
4t dt = 1√

π

∫ ρ/2√t

−ρ/2√t
e−v2

dv→ 1, as t→+0.

If f is a continuous and, for example, bounded function on R, then the function

u(x, t)= 1

2
√
πt

∫ +∞

−∞
f (ξ)e−

(x−ξ)2
4t dξ, (17.56)

which is the convolution f ∗Δt , is obviously infinitely differentiable for t > 0.
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By differentiating under the integral sign for t > 0, we find that

∂u

∂t
− ∂

2u

∂x2
= f ∗

(
∂

∂t
− ∂2

∂x2

)
Δt = 0,

that is, the function u satisfies the one-dimensional heat equation with the initial
condition u(x,0) = f (x). This last equality should be interpreted as the limiting
relation u(x, t)→ f (x) as t→+0, which follows from Proposition 5.

17.4.4 *Elementary Concepts Involving Distributions

a. Definition of Generalized Functions

In Sect. 17.4.1 of this section we derived the formula (17.48) on the heuristic level.
This equation enabled us to determine the response of a linear transformation A
to an input signal f given that we know the system function E of the device A.
In determining the system function of a device we made essential use of a certain
intuitive idea of a unit pulse action and the δ-function that describes it. It is clear,
however, that the δ-function is really not a function in the classical sense of the term,
since it must have the following properties, which contradict the classical point of
view: δ(x)≥ 0 on R; δ(x)= 0 for x �= 0,

∫
R
δ(x)dx = 1.

The concepts connected with linear operators, convolution, the δ-function, and
the system function of a device acquire a precise mathematical description in the
so-called theory of generalized functions or the theory of distributions. We are now
going to explain the basic principles and the elementary, but ever more widely used
techniques of this theory.

Example 7 Consider a point mass m that can move along the axis and is attached to
one end of an elastic spring whose other end is fixed at the origin; let k be the elastic
constant of the spring. Suppose that a time-dependent force f (t) begins to act on
the point resting at the origin, moving it along the axis. By Newton’s law,

mẍ + kx = f, (17.57)

where x(t) is the coordinate of the point (its displacement from its equilibrium po-
sition) at time t .

Under these conditions the function x(t) is uniquely determined by the func-
tion f , and the solution x(t) of the differential equation (17.57) is obviously a
linear function of the right-hand side f . Thus we are dealing with the linear op-

erator f
A�−→x inverse to the differential operator x

B�−→f (where B = m d2

dt2
+ k)

that connects x(t) and f (t) by the relation Bx = f . Since the operator A obviously
commutes with translations over time, it follows from (17.48) that in order to find
the response x(t) of this mechanical system to the function f (t), it suffices to find
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its response to a unit pulse δ, that is, it suffices to know the so-called fundamental
solution E of the equation

mË + kE = δ. (17.58)

Relation (17.58) would not raise any problems if δ actually denoted a function.
However Eq. (17.58) is not yet clear. But being formally unclear is quite a differ-
ent thing from being actually false. In the present case one need only explain the
meaning of (17.58).

One route to such an explanation is already familiar to us: we can interpret δ
as an approximate identity imitating the delta-function and consisting of classical
functions Δα(t); we interpret E as the limit to which the solution Eα(t) of the
equation

mËα + kEα =Δα (17.57′)

tends as the parameter α changes suitably.
A second approach to this problem, one that has significant advantages, is to

make a fundamental enlargement of the idea of a function. It proceeds from the
remark that in general objects of observation are characterized by their interaction
with other (“test”) objects. Thus we propose regarding a function not as a set of
values at different points, but rather as an object that can act on other (test) objects
in a certain manner. Let us try to make this statement, which as of now is too general,
more specific.

Example 8 Let f ∈ C(R,R). As our test functions, we choose functions in C0 (con-
tinuous functions of compact support on R). A function f generates the following
functional, which acts on C0:

〈f,ϕ〉 :=
∫

R

f (x)ϕ(x)dx. (17.59)

Using approximate identities consisting of functions of compact support, one can
easily see that 〈f,ϕ〉 ≡ 0 on C0 if and only if f (x)≡ 0 on R.

Thus, each function f ∈ C(R,R) generates via (17.59) a linear functional
Af : C0 → R and, we emphasize, different functionals Af1 and Af2 correspond
to different functions f1 and f2.

Hence formula (17.59) establishes an embedding (injective mapping) of the set
of functions C(R,R) into the set L(C0;R) of linear functionals on C0, and con-
sequently every function f ∈ C(R,R) can be interpreted as a certain functional
Af ∈ L(C0;R).

If we consider the class of locally integrable functions on R instead of the set
C(R,R) of continuous functions, we obtain by the same formula (17.59) a mapping
of this set into the space L(C0;R). Moreover (〈f,ϕ〉 ≡ 0 on C0)⇔ (f (x)= 0 at all
points of continuity of f on R, that is, f (x)= 0 almost everywhere on R). Hence in
this case we obtain an embedding of equivalence classes of functions into L(C0;R)
if each equivalence class contains locally integrable functions that differ only on a
set of measure zero.
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Thus, the locally integrable functions f on R (more precisely, equivalence
classes of such functions) can be interpreted via (17.59) as linear functionals
Af ∈ L(C0;R). The mapping f �→ Af = 〈f, ·〉 provided by (17.59) of locally in-
tegrable functions into L(C0;R) is not a mapping onto all of L(C0;R). Therefore,
interpreting functions as elements of L(C0;R) (that is, as functionals) we obtain,
besides the classical functions interpreted as functionals of the form (17.59), also
new functions (functionals) that have no pre-image in the classical functions.

Example 9 The functional δ ∈ L(C0;R) is defined by the relation

〈δ,ϕ〉 := δ(ϕ) := ϕ(0), (17.60)

which must hold for every function ϕ ∈ C0.
We can verify (see Problem 7) that no locally integrable function f on R can

represent the functional δ in the form (17.59).
Thus we have embedded the set of classical locally integrable functions into a

larger set of linear functionals. These linear functionals are called generalized func-
tions or distributions (a precise definition is given below). The widely used term
“distribution” has its origin in physics.

Example 10 Suppose a unit mass (or unit charge) is distributed on R. If this dis-
tribution is sufficiently regular, in the sense that it has, for example, a continuous
or integrable density ρ(x) on R, the interaction of the mass M with other objects
described by functions ϕ0 ∈ C(∞)0 can be defined as a functional

M(ϕ)=
∫

R

ρ(x)ϕ(x)dx.

If the distribution is singular, for example, the whole mass M is concentrated at a
single point, then by “smearing” the mass and interpreting the limiting point situ-
ation using an approximate identity made up of regular distributions, we find that
the interaction of the mass M with the other objects mentioned above should be
expressed by a formula

M(ϕ)= ϕ(0),
which shows that such a mass distribution on R should be identified with the δ-
function (17.60) on R.

These preliminary considerations give some sense to the following general defi-
nition.

Definition 6 Let P be a vector space of functions, which will be called the space of
test functions from now on, on which there is defined a notion of convergence.

The space of generalized functions or distributions on P is the vector space P ′
of continuous (real- or complex-valued) linear functionals on P . Here it is assumed
that each element f ∈ P generates a certain functional Af = 〈f, ·〉 ∈ P ′ and that the
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mapping f �→Af is a continuous embedding of P into P ′ if the convergence in P ′
is introduced as weak (“pointwise”) convergence of functionals, that is,

P ′ �An→A ∈ P ′ := ∀ϕ ∈ P (An(ϕ)→A(ϕ)
)
.

Let us make this definition more precise in the particular case when P is the
vector space C(∞)0 (G,C) of infinitely differentiable functions of compact support
in G, where G is an arbitrary open subset of R (possibly R itself).

Definition 7 (The spaces D and D′) We introduce convergence in C(∞)0 (G,C) as

follows: A sequence {ϕn} of functions ϕn ∈ C(∞)0 (G) converges to ϕ ∈ C(∞)0 (G,C)

if there exists a compact set K ⊂G that contains the supports of all the functions of
the sequence {ϕn} and ϕ(m)n ⇒ ϕ(m) on K (and hence also on G) as n→∞ for all
m= 0,1,2, . . . .

The vector space obtained in this way with this convergence is usually denoted
D(G), and when G=R, simply D.

We denote the space of generalized functions (distributions) corresponding to
this space of basic (test) functions by D′(G) or D′ respectively.

In this section and the one following we shall not consider any generalized func-
tions other than the elements of D′(G) just introduced. For that reason we shall use
the term distribution or generalized function to refer to elements of D′(G) without
saying so explicitly.

Definition 8 A distribution F ∈D′(G) is regular if it can be represented as

F(ϕ)=
∫

G

f (x)ϕ(x)dx, ϕ ∈D(G),

where f is a locally integrable function in G.
Nonregular distributions will be called singular distributions or singular gener-

alized functions.

In accordance with this definition the δ-function of Example 9 is a singular gen-
eralized function.

The action of a generalized function (distribution) F on a test function ϕ, that
is, the pairing of F and ϕ will be denoted, as before, by either of the equivalent
expressions F(ϕ) or 〈F,ϕ〉.

Before passing to the technical machinery connected with generalized functions,
which was our motive for defining them, we note that the concept of a general-
ized function, like the majority of mathematical concepts, had a certain period of
gestation, during which it developed implicitly in the work of a number of mathe-
maticians.

Physicists, following Dirac, made active use of the δ-function as early as the late
1920s and early 1930s and operated with singular generalized functions without
worrying about the absence of the necessary mathematical theory.
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The idea of a generalized function was stated explicitly by S.L. Sobolev,5 who
laid the mathematical foundations of the theory of generalized functions in the mid-
1930s. The current state of the machinery of the theory of distributions was largely
the work of L. Schwartz.6 What has just been said explains why, for example, the
space D′ of generalized functions is often referred to as the Sobolev–Schwartz space
of generalized functions.

We shall now explain certain elements of the machinery of the theory of dis-
tributions. The development and extension of the use of this machinery continues
even today, mainly in connection with the requirements of the theory of differen-
tial equations, the equations of mathematical physics, functional analysis, and their
applications.

To simplify the notation we shall consider below only generalized functions in
D′, although all of their properties, as will be seen from their definitions and proofs,
remain valid for distributions of any class D′(G), where G is an arbitrary open
subset of R.

Operations with distributions are defined by starting with the integral relations
that are valid for classical functions, that is, for regular generalized functions.

b. Multiplication of a Distribution by a Function

If f is a locally integrable function on R and g ∈ C(∞), then for any function ϕ ∈
C
(∞)
0 , on the one hand gϕ ∈ C(∞)0 and, on the other hand, we have the obvious

equality
∫

R

(f · g)(x)ϕ(x)dx =
∫

R

f (x)(g · ϕ)(x)dx

or, in other notation

〈f · g,ϕ〉 = 〈f,g · ϕ〉.
This relation, which is valid for regular generalized functions, provides the basis

for the following definition of the distribution F · g obtained by multiplying the
distribution F ∈D′ by the function g ∈C(∞):

〈F · g,ϕ〉 := 〈F,g · ϕ〉. (17.61)

The right-hand side of Eq. (17.61) is defined, and thus defines the value of the
functional F · g on any function ϕ ∈D, that is, the functional F · g itself is defined.

5S.L. Sobolev (1908–1989) – one of the most prominent Soviet mathematicians.
6L. Schwartz (1915–2002) – well-known French mathematician. He was awarded the Fields medal,
a prize for young mathematicians, at the International Congress of Mathematicians in 1950 for the
above mentioned work.
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Example 11 Let us see how the distribution δ · g acts, where g ∈ C(∞). In accor-
dance with the definition (17.61) and the definition of δ, we obtain

〈δ · g,ϕ〉 := 〈δ, g · ϕ〉 := (g · ϕ)(0)= g(0) · ϕ(0).

c. Differentiation of Generalized Functions

If f ∈ C(1) and ϕ ∈C(∞)0 , integration by parts yields the equality

∫

R

f ′(x)ϕ(x)dx =−
∫

R

f (x)ϕ′(x)dx. (17.62)

This equality is the point of departure for the following fundamental definition
of differentiation of a generalized function F ∈D′:

〈
F ′, ϕ

〉 := −〈F,ϕ′〉. (17.63)

Example 12 If f ∈ C(1), the derivative of f in the classical sense equals its deriva-
tive in the distribution sense (provided, naturally, the classical function is identified
with the regular generalized function corresponding to it). This follows from a com-
parison of relations (17.62) and (17.63), in which the right-hand sides are equal if
the distribution F is generated by the function f .

Example 13 Take the Heaviside7 function

H(x)=
{

0 for x < 0,
1 for x ≥ 0,

sometimes called the unit step. Regarding it as a generalized function, let us find the
derivative H ′ of this function, which is discontinuous in the classical sense.

From the definition of the regular generalized function H corresponding to the
Heaviside function and relation (17.63) we find

〈
H ′, ϕ

〉 := −〈H,ϕ′〉 := −
∫ +∞

−∞
H(x)ϕ′(x)dx =

∫ +∞

0
ϕ′(x)dx = ϕ(0),

since ϕ ∈ C(∞)0 . Thus 〈H ′, ϕ〉 = 〈δ,ϕ〉, for every function ϕ ∈ C(∞)0 . Hence H ′ = δ.

Example 14 Let us compute 〈δ′, ϕ〉:
〈
δ′, ϕ
〉 := −〈δ,ϕ′〉=−ϕ′(0).

7O. Heaviside (1850–1925) – British physicist and engineer, who developed on the symbolic level
the important mathematical machinery known as the operational calculus.
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It is natural that in the theory of generalized functions, as in the theory of classical
functions, the higher-order derivatives are defined by setting F (n+1) := (F (n))′.

Comparing the results of the last two examples, one can consequently write
〈
H ′′, ϕ

〉=−ϕ′(0).

Example 15 Let us show that 〈δ(n), ϕ〉 = (−1)nϕ(n)(0).

Proof For n= 0 this is the definition of the δ-function.
We have seen in Example 14 that this equality holds for n= 1.
We now prove it by induction, assuming that it has been established for a fixed

value n ∈N. Using definition (17.63), we find
〈
δ(n+1), ϕ

〉 := 〈(δ(n))′, ϕ〉 := −〈δ(n), ϕ′〉=
= −(−1)n

(
ϕ′
)(n)
(0)= (−1)n+1ϕ(n+1)(0). �

Example 16 Suppose the function f : R→ C is continuously differentiable for
x < 0 and for x > 0, and suppose the one-sided limits f (−0) and f (+0) of the
function exist at 0. We denote the quantity f (+0)− f (−0), the saltus or jump of
the function at 0, by &)f (0), and by f ′ and {f ′} respectively the derivative of f in
the distribution sense and the distribution defined by the function equal to the usual
derivative of f for x < 0 and x > 0. At x = 0 this last function is not defined, but
that is not important for the integral through which it defines the regular distribu-
tion {f ′}.

In Example 12 we noted that if f ∈ C(1), then f ′ = {f ′}. We shall show that in
general this is not the case, but rather the following important formula holds:

f ′ = {f ′}+ &)f (0) · δ. (17.64)

Proof Indeed,

〈
f ′, ϕ
〉 = −〈f,ϕ′〉=−

∫ +∞

−∞
f (x)ϕ′(x)dx =

= −
(∫ 0

−∞
+
∫ +∞

0

)(
f (x)ϕ′(x)

)
dx =

= −
((
f · ϕ(x))∣∣0

x=−∞ −
∫ 0

−∞
f ′(x)ϕ(x)dx + (f · ϕ)(x)∣∣+∞0 −

−
∫ +∞

0
f ′(x)ϕ(x)dx

)
=

= (f (+0)− f (−0)
)
ϕ(0)+

∫ +∞

−∞
f ′(x)ϕ(x)dx =

= 〈&)f (0) · δ,ϕ〉+ 〈{f ′}, ϕ〉. �
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If all derivatives up to order m of the function f : R→ C exist on the intervals
x < 0 and x > 0, and they are continuous and have one-sided limits at x = 0, then,
repeating the reasoning used to derive (17.64), we obtain

f (m) = {f (m)}+ &)f (0) · δ(m−1) + &)f ′(0) · δ(m−2) + · · ·
· · · + &)f (m−1)(0) · δ. (17.65)

We now exhibit some properties of the operation of differentiation of generalized
functions.

Proposition 6 a) Every generalized function F ∈D′ is infinitely differentiable.
b) The differentiation operation D :D′ →D′ is linear.
c) If F ∈D′ and g ∈ C(∞), then (F · g) ∈D′, and the Leibniz formula holds:

(F · g)(m) =
m∑

k=0

(
m

k

)
F (k) · g(m−k).

d) The differentiation operation D :D′ →D′ is continuous.
e) If the series

∑∞
k=1 fk(x) = S(x) formed from locally integrable functions

fk : R→ C converges uniformly on each compact subset of R, then it can be dif-
ferentiated termwise any number of times in the sense of generalized functions, and
the series so obtained will converge in D′.

Proof a) 〈F (m),ϕ〉 := −〈F (m−1), ϕ′〉 := (−1)m〈F,ϕ(m)〉.
b) Obvious.
c) Let us verify the formula for m= 1:

〈
(F · g)′, ϕ〉 := −〈Fg,ϕ′〉 := −〈F,g · ϕ′〉=−〈F, (g · ϕ)′ − g′ · ϕ〉=

= 〈F ′, gϕ〉+ 〈F,g′ · ϕ〉= 〈F ′ · g,ϕ〉+ 〈F · g′, ϕ〉= 〈F ′ · g + F · g′, ϕ〉.
In the general case we can obtain the formula by induction.

d) Let Fm→ F in D′ as m→∞, that is, for every function ϕ ∈ D〈Fm,ϕ〉 →
〈F,ϕ〉 as m→∞. Then

〈
F ′m,ϕ

〉 := −〈Fm,ϕ′
〉→−〈F,ϕ′〉=: 〈F ′, ϕ〉.

e) Under these conditions the sum S(x) of the series, being the uniform limit
of locally integrable functions Sm(x)=∑m

k=1 fk(x) on compact sets, is locally in-
tegrable. It remains to observe that for every function ϕ ∈ D (that is, of compact
support and infinitely differentiable) we have the relation

〈Sm,ϕ〉 =
∫

R

Sm(x)ϕ(x)dx→
∫

R

S(x)ϕ(x)dx = 〈S,ϕ〉.

We now conclude on the basis of what was proved in d) that S′m→ S′ asm→∞. �
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We see that the operation of differentiation of generalized functions retains the
most important properties of classical differentiation while acquiring a number of
remarkable new properties that open up a great deal of freedom of operation, which
did not exist in the classical case because of the presence of nondifferentiable func-
tions there and the instability (lack of continuity) of classical differentiation under
limiting processes.

d. Fundamental Solutions and Convolution

We began this subsection with intuitive ideas of the unit pulse and the system func-
tion of the device. In Example 7 we exhibited an elementary mechanical system that
naturally generates a linear operator preserving time shifts. Studying it, we arrived
at Eq. (17.58), which the system function E of that operator must satisfy.

We shall conclude this subsection by returning once again to these questions,
but now with the goal of illustrating an adequate mathematical description in the
language of generalized functions.

We begin by making sense of Eq. (17.58). On its right-hand side is the gen-
eralized function δ, so that relation (17.58) should be interpreted as equality of
generalized functions. Since we know the operations of differentiating generalized
functions and linear operations on distributions, it follows that the left-hand side of
Eq. (17.58) is now also comprehensible, even if interpreted in the sense of general-
ized functions.

Let us now attempt to solve Eq. (17.58).
At times t < 0 the system was in a state of rest. At t = 0 the point received a unit

pulse, thereby acquiring a velocity v = v(0) such that mv = 1. For t > 0 there are
no external forces acting on the system, and its law of motion x = x(t) is subject to
the usual differential equation

mẍ + kx = 0, (17.66)

which are to be solved with the initial conditions x(0)= 0, ẋ(0)= v = 1/m.
Such a solution is unique and can be written out immediately:

x(t)= 1√
km

sin

√
k

m
t, t ≥ 0.

Since in the present case the system is at rest for t < 0, we can conclude that

E(t)= H(t)√
km

sin

√
k

m
t, t ∈R, (17.67)

where H is the Heaviside function (see Example 13).
Let us now verify, using the rules for differentiating generalized functions and the

results of the examples studied above, that the function E(t) defined by Eq. (17.67)
satisfies Eq. (17.58).
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To simplify the writing we shall verify that the function

e(x)=H(x) sinωx

ω
(17.68)

satisfies (in the sense of distribution theory) the equation

(
d2

dx2
+ω2
)
e= δ. (17.69)

Indeed,

(
d2

dx2
+ω
)
e = d2

dx2

(
H

sinωx

ω

)
+ω2
(
H

sinωx

ω

)
=

= H ′′ sinωx

ω
+ 2H ′ cosωx −ωH(x) sinωx +

+ωH(x) sinωx = δ′ sinωx

ω
+ 2δ cosωx.

Further, for every function ϕ ∈D,

〈
δ′ sinωx

ω
+ 2δ cosωx,ϕ

〉
=
〈
δ′, sinωx

ω
ϕ

〉
+ 〈δ,2(cosωx)ϕ

〉=

= −
〈
δ,

d

dx

(
sinωx

ω
ϕ

)〉
+ 2ϕ(0)=

= −
(
(cosωx)ϕ(x)+ sinωx

ω
ϕ′(x)

)∣∣∣∣
x=0
+ 2ϕ(0)=

= ϕ(0)= 〈δ,ϕ〉,

and it is thereby verified that the function (17.68) satisfies (17.69).
Finally, we introduce the following definition.

Definition 9 A fundamental solution or Green’s function (system function or influ-
ence function) of the operator A :D′ →D′ is a generalized function E ∈D′ that is
mapped by A to the function δ ∈D′, that is, A(E)= δ.

Example 17 In accordance with this definition the function (17.68) is a fundamental
solution for the operator A= ( d2

dx2 +ω2), since it satisfies (17.69).
The function (17.67) satisfies Eq. (17.58), that is, it is a Green’s function for

the operator A = (m d2

dt2
+ k). The fundamental role of the system function of a

translation-invariant operator has already been discussed in Sect. 17.4.1, where for-
mula (17.48) was obtained, on the basis of which one can now write the solution of
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Eq. (17.57) corresponding to the initial conditions given in Example 7:

x(t) = (f ∗E)(t)=
∫ +∞

−∞
f (t − τ)H(τ)

sin
√
k
m
τ

√
km

dτ, (17.70)

x(t) = 1√
km

∫ +∞

0
f (t − τ) sin

√
k

m
τ dτ. (17.71)

When we take account of the important role of the convolution and the funda-
mental solution just illustrated, it becomes clear that it is desirable to define the
convolution of generalized functions also. This is done in the theory of distribu-
tions, but we shall not take the time to do so. We note only that in the case of regular
distributions the definition of the convolution of generalized functions is equivalent
to the classical definition of the convolution of functions studied above.

17.4.5 Problems and Exercises

1. a) Verify that convolution is associative: u ∗ (v ∗w)= (u ∗ v) ∗w.
b) Suppose, as always, that Γ (α) is the Euler gamma function and H(x) is the

Heaviside function. We set

Hαλ (x) :=H(x)
xα−1

Γ (α)
eλx, where α > 0, and λ ∈C.

Show that Hαλ ∗Hβλ =Hα+βλ .

c) Verify that the function F =H(x) xn−1

(n−1)!e
λx is the nth convolution power of

f =H(x)eλx , that is, F = f ∗ f ∗ · · · ∗ f
︸ ︷︷ ︸

n

.

2. The function Gσ (x)= 1
σ
√

2π
e−

x2

2σ2 , σ > 0, defines the probability density func-
tion for the Gaussian normal distribution.

a) Draw the graph of Gσ (x) for different values of the parameter σ .
b) Verify that the mathematical expectation (mean value) of a random variable

with the probability distribution Gσ is zero, that is,
∫
R
xGσ (x)dx = 0.

c) Verify that the standard deviation of x (the square root of the variance of x)
is σ , that is (

∫
R
x2Gσ (x)dx)1/2 = σ .

d) It is proved in probability theory that the probability density of the sum of two
independent random variables is the convolution of the densities of the individual
variables. Verify that Gα ∗Gβ = c√α2+β2 .

e) Show that the sum of n independent identically distributed random variables
(for example, n independent measurements of the same object), all distributed ac-
cording to the normal lawGσ , is distributed according to the lawGσ√n. From this it
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follows in particular that the expected order of errors for the average of n such mea-
surements when taken as the value of the measured quantity, equals σ/

√
n, where

σ is the probable error of an individual measurement.

3. We recall that the function A(x)=∑∞n=0 αnx
n is called the generating function

of the sequence a0, a1, . . . .
Suppose given two sequences {ak} and {bk}. If we assume that ak = bk = 0 for

k < 0, then the convolution of the sequences {ak} and {bk} can be naturally defined
as the sequence {ck =∑m ambk−m}. Show that the generating function of the con-
volution of two sequences equals the product of the generating functions of these
sequences.
4. a) Verify that if the convolution u ∗ v is defined and one of the functions u and
v is periodic with period T , then u ∗ v is also a function of period T .

b) Prove the Weierstrass theorem on approximation of a continuous periodic
function by a trigonometric polynomial (see Remark 5).

c) Prove the strengthened versions of the Weierstrass approximation theorem
given in Example 4.

5. a) Suppose the interior of the compact set K ⊂ R contains the closure E of the
set E in Proposition 5. Show that in that case

∫
K
f (y)Δk(x − y)dy⇒ f (x) on E.

b) From the expansion (1 − z)−1 = 1 + z + z2 + · · · deduce that g(ρ, θ) =
1+ρeiθ

2(1−ρeiθ )
= 1

2 + ρeiθ + ρ2ei2θ + · · · for 0≤ ρ < 1.
c) Verify that if 0≤ ρ < 1 and

Pρ(θ) := Reg(ρ, θ)= 1

2
+ ρ cos θ + ρ2 cos 2θ + · · · ,

then the function Pρ(θ) has the form

Pρ(θ)= 1

2

1− ρ2

1− 2ρ cos θ + ρ2

and is called the Poisson kernel for the disk.
d) Show that the family of functions Pρ(θ) depending on the parameter ρ has the

following set of properties: Pρ(θ) ≥ 0, 1
π

∫ 2π
0 Pρ(θ)dθ = 1,

∫ 2π−ε
ε>0 Pρ(θ)dθ → 0

as ρ→ 1− 0.
e) Prove that if f ∈C[0,2π ], then the function

u(ρ, θ)= 1

π

∫ 2π

0
Pρ(θ − t)f (t)dt

is a harmonic function in the disk ρ < 1 and u(ρ, θ)⇒ f (θ) as ρ→ 1− 0. Thus,
the Poisson kernel makes it possible to construct a function harmonic in the disk
having prescribed values on the boundary circle.

f) For locally integrable functions u and v that are periodic with the same pe-
riod T , one can give an unambiguous definition of the convolution (convolution
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over a period) as follows:

(
u∗
T
v
)
(x) :=

∫ a+T

a

u(y)v(x − y)dy.

The periodic functions on R can be interpreted as functions defined on the circle,
so that this operation can naturally be regarded as the convolution of two functions
defined on a circle.

Show that if f (θ) is a locally integrable 2π -periodic function on R (or, what is
the same, f is a function on a circle), and the family Pρ(θ) of functions depending
on the parameter ρ has the properties of the Poisson kernel enumerated in d), then
(f ∗

2π
Pρ)(θ)→ f (θ) as ρ→ 1− 0 at each point of continuity of f .

6. a) Suppose ϕ(x) := a exp( 1
|x|2−1

) for |x|< 1 and ϕ(x) := 0 for |x| ≥ 1. Let the

constant a be chosen so that
∫
R
ϕ(x)dx = 1. Verify that the family of functions

ϕα(x) = 1
α
ϕ(x
a
) is an approximate identity as α→+0 consisting of functions in

C
(∞)
0 on R.

b) For every interval I ⊂ R and every ε > 0 construct a function e(x) of class
C
(∞)
0 such that 0 ≤ e(x) ≤ 1 on R, e(x) = 1⇔ x ∈ I , and finally, supp e ⊂ Iε ,

where Iε is the ε-neighborhood (or the ε-inflation) of the set I in R. (Verify that for
a suitable value of α > 0 one can take e(x) to be χI ∗ ϕα .)

c) Prove that for every ε > 0 there exists a countable set {ek} of functions ek ∈
C
(∞)
0 (an ε-partition of unity on R) that possesses the following properties: ∀k ∈N,
∀x ∈R (0≤ ek(x)≤ 1); the diameter of the support supp ek of every function in the
family is at most ε > 0; every point x ∈ R belongs to only a finite number of the
sets supp ek;∑k ek(x)≡ 1 on R.

d) Show that for every open covering {Uγ ,γ ∈ Γ } of the open set G ⊂ R and
every function ϕ ∈ C(∞)(G) there exists a sequence {ϕk; k ∈ N} of functions ϕk ∈
C
(∞)
0 that has the following properties: ∀k ∈N∃γ ∈ Γ (suppϕk ⊂Uγ ); every point
x ∈G belongs to only a finite number of sets suppϕk ;

∑
k ϕk(x)= ϕ(x) on G.

e) Prove that the set of functions C(∞)0 interpreted as generalized functions is
everywhere dense in the corresponding set C(∞)(G) of regular generalized func-
tions.

f) Two generalized functions F1 and F2 in D′(G) are regarded as equal on an
open set U ⊂G if 〈F1, ϕ〉 = 〈F2, ϕ〉 for every function ϕ ∈D(G) whose support is
contained in U. Generalized functions F1 and F2 are regarded as locally equal at the
point x ∈G if they are equal in some neighborhood U(x)⊂G of that point. Prove
that (F1 = F2)⇔ (F1 = F2 locally at each point x ∈G).

7. a) Let ϕ(x) := exp( 1
|x|2−1

) for |x| < 1 and ϕ(x) := 0 for |x| ≥ 1. Show that
∫
R
f (x)ϕε(x)dx→ 0 as ε→+0 for every function f that is locally integrable on

R, where ϕε(x)= ϕ(xε ).
b) Taking account of the preceding result and the fact that 〈δ,ϕε〉 = ϕ(0) �= 0,

prove that the generalized function δ is not regular.
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c) Show that there exists a sequence of regular generalized functions (even cor-
responding to functions of class C(∞)0 ) that converges in D′ to the generalized func-
tion δ. (In fact every generalized function is the limit of regular generalized func-
tions corresponding to functions in D = C(∞)0 . In this sense the regular generalized
functions form an everywhere dense set in D′, just as the rational numbers Q are
everywhere dense in the real numbers R.)

8. a) Compute the value 〈F,ϕ〉 of the generalized function F ∈D′ on the function
ϕ ∈D if F = sinxδ; F = 2 cosxδ; F = (1+ x2)δ.

b) Verify that the operation F → ψF of multiplication by the function ψ ∈
C(∞) is a continuous operation in D′.

c) Verify that linear operations on generalized functions are continuous in D′.

9. a) Show that if F is the regular distribution generated by the function f (x) ={ 0 for x≤0,
x for x>0, then F ′ =H , whereH is the distribution corresponding to the Heaviside

function.

b) Compute the derivative of the distribution corresponding to the function |x|.
10. a) Verify that the following limiting passages in D′ are correct:

lim
α→+0

α

x2 + α2
= πδ; lim

α→+0

αx

α2 + x2
= πxδ; lim

α→+0

x

x2 + α2
= ln |x|.

b) Show that if f = f (x) is a locally integrable function on R and fε =
f (x + ε), then fε→ f in D′ as ε→ 0.

c) Prove that if {Δα} is an approximate identity consisting of smooth functions
as α→ 0, then Fα =

∫ x
−∞Δα(t)dt → H as α→ 0, where H is the generalized

function corresponding to the Heaviside function.

11. a) The symbol δ(x − a) usually denotes the δ-function shifted to the point a,
that is, the generalized function acting on a function ϕ ∈ D according to the rule
〈δ(x − a),ϕ〉 = ϕ(a). Show that the series

∑
k∈Z δ(x − k) converges in D′.

b) Find the derivative of the function [x] (the integer part of x).
c) A 2π -periodic function on R is defined in the interval ]0,2π ] by the formula

f |]0,2π](x)= 1
2 − x

2π . Show that f ′ = − 1
2π +

∑
k∈Z δ(x − 2πk).

d) Verify that δ(x − ε)→ δ(x) as ε→ 0.
e) As before, denoting the δ-function shifted to the point ε by δ(x − ε), show

by direct computation that 1
ε
(δ(x − ε)− δ(x))→−δ′(x)=−δ′.

f) Starting from the preceding limiting passage, interpret −δ′ as the distribu-
tion of charges corresponding to a dipole with electric moment +1 located at the
point x = 0. Verify that 〈−δ′,1〉 = 0 (the total charge of a dipole is zero) and that
〈−δ′, x〉 = 1 (its moment is indeed 1).

g) An important property of the δ-function is its homogeneity: δ(λx) =
λ−1δ(x). Prove this equality.
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12. a) For the generalized function F defined as 〈F,ϕ〉 = ∫∞0
√
xϕ(x)dx, verify

the following equalities:

〈
F ′, ϕ

〉 = 1

2

∫ +∞

0

ϕ(x)√
x

dx;

〈
F ′′, ϕ

〉 = −1

4

∫ +∞

0

ϕ(x)− ϕ(0)
x3/2

dx;
〈
F ′′′, ϕ

〉 = 3

8

∫ +∞

0

ϕ(x)− ϕ(0)− xϕ′(0)
x5/2

dx;
...

〈
F (n), ϕ

〉 = (−1)n−1(2n− 3)!!
2n

×

×
∫ +∞

0

ϕ(x)− ϕ(0)− xϕ′(0)− · · · − xn−2

(n−2)!ϕ
(n−2)(0)

x
2n+1

2

dx.

b) Show that if n− 1< p < n and the generalized function x−p+ is defined by
the relation

〈
x
−p
+ , ϕ

〉 :=
∫ +∞

0

ϕ(x)− ϕ(0)− xϕ′(0)− · · · − xn−2

(n−2)!ϕ
(n−2)(0)

xp
dx.

Then its derivative is the function −px−(p+1)
+ defined by the relation

〈−px−(p+1)
+ , ϕ

〉=−p
∫ +∞

0

ϕ(x)− ϕ(0)− xϕ′(0)− · · · − xn−1

(n−1)!ϕ
(n−1)(0)

xp+1
dx.

13. The generalized function defined by the equality

〈F,ϕ〉 := PV
∫ +∞

−∞
ϕ(x)

x
dx

(
:= lim

ε→+0

(∫ −ε

−∞
+
∫ +∞

ε

)
ϕ(x)

x
dx

)

is denoted P 1
x

. Show that

a) 〈P 1
x
, ϕ〉 = ∫ +∞0

ϕ(x)−ϕ(−x)
x

dx.
b) (ln |x|)′ =P 1

x
.

c) 〈(P 1
x
)′, x〉 = ∫ +∞0

ϕ(x)+ϕ(−x)−2ϕ(0)
x2 dx.

d) 1
x+i0 := limv→+0

1
x+iy =−iπδ +P 1

x
.

14. Some difficulties may arise with the definition of the multiplication of gener-
alized functions: for example, the function |x|−2/3 is absolutely (improperly) inte-
grable on R; it generates a corresponding generalized function

∫ +∞
−∞ |x|−2/3ϕ(x)dx,
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but its square |x|−4/3 is no longer an integrable function, even in the improper sense.
The answers to the following questions show that it is theoretically impossible to
define a natural associative and commutative operation of multiplication for any
generalized functions.

a) Show that f (x)δ = f (0)δ for every function f ∈C(∞).
b) Verify that xP 1

x
= 1 in D′.

c) If the operation of multiplication were extended to all pairs of generalized
functions, it would at least not be associative and commutative. Otherwise,

0= 0P 1

x
= (xδ(x))P 1

x
= (δ(x)x)P 1

x
= δ(x)

(
xP 1

x

)
= δ(x)1= 1δ(x)= δ.

15. a) Show that a fundamental solution E for the linear operator A :D′ →D′ is
in general ambiguously defined, up to any solution of the homogeneous equation
Af = 0.

b) Consider the differential operator

P

(
x,

d

dx

)
:= dn

dxn
+ a1(x)

dn−1

dxn−1
+ · · · + an(x).

Show that if u0 = u0(x) is a solution of the equation P(x, d
dx )u0 = 0 that sat-

isfies the initial conditions u0(0)= · · · = u(n−2)
0 (0)= 0 and u(n−1)

0 (0)= 1, then the
function E(x) = H(x)u0(x) (where H(X) is the Heaviside function) is a funda-
mental solution for the operator P(x, d

dx ).
c) Use this method to find the fundamental solutions for the following opera-

tors:
(

d

dx
+ a
)
,

(
d2

dx2
+ a2
)
,

dm

dxm
,

(
d

dx
+ a
)m
, m ∈N.

d) Using these results and the convolution, find solutions of the equations
dmu
dxm = f , ( d

dx + a)m = f , where f ∈ C(R,R).

17.5 Multiple Integrals Depending on a Parameter

In the first two subsections of the present section we shall exhibit properties of
proper and improper multiple integrals depending on a parameter. The total re-
sult of these subsections is that the basic properties of multiple integrals depending
on a parameter do not differ essentially from the corresponding properties of one-
dimensional integrals depending on a parameter studied above. In the third subsec-
tion we shall study the case of an improper integral whose singularity itself depends
on a parameter, which is important in applications. Finally, in the fourth subsection
we shall study the convolution of functions of several variables and some specifi-
cally multi-dimensional questions on generalized functions closely connected with
integrals depending on a parameter and the classical integral formulas of analysis.



472 17 Integrals Depending on a Parameter

17.5.1 Proper Multiple Integrals Depending on a Parameter

Let X be a measurable subset of Rn, for example, a bounded domain with smooth
or piecewise-smooth boundary, and let Y be a subset of Rn.

Consider the following integral depending on a parameter:

F(y)=
∫

X

f (x, y)dx, (17.72)

where the function f is assumed to be defined on the set X × Y and integrable on
X for each fixed value of y ∈ Y .

The following propositions hold.

Proposition 1 If X × Y is a compact subset of Rn+m and f ∈ C(X × Y), then
F ∈ C(Y ).

Proposition 2 If Y is a domain in R
m, f ∈ C(X×Y), and ∂f

∂yi
∈C(X×Y), then the

function F is differentiable with respect to yi in Y , where y = (y1, . . . , yi, . . . , ym)

and

∂F

∂yi
(y)=

∫

X

∂f

∂yi
(x, y)dx. (17.73)

Proposition 3 If X and Y are measurable compact subsets of Rn and R
m respec-

tively, while f ∈ C(X× Y), then F ∈C(Y )⊂R(Y ), and
∫

Y

F (y)dy :=
∫

Y

dy
∫

X

f (x, y)dx =
∫

X

dx
∫

Y

f (x, y)dy. (17.74)

We note that the values of the function f here may lie in any normed vector
space Z. The most important special cases occur when Z is R, C, Rn, or Cn. In
these cases the verification of Propositions 1–3 obviously reduce to the case of their
proof for Z = R. But for Z = R the proofs of Propositions 1 and 2 are verbatim
repetitions of the proof of the corresponding propositions for a one-dimensional
integral (see Sect. 17.1), and Proposition 3 is a simple corollary of Proposition 1
and Fubini’s theorem (Sect. 11.4).

17.5.2 Improper Multiple Integrals Depending on a Parameter

If the set X ⊂ R
n or the function f (x, y) in the integral (17.72) is unbounded, it

is understood as the limit of improper integrals over sets of a suitable exhaustion
of X. In studying multiple improper integrals depending on a parameter, as a rule,
one is interested in particular exhaustions like those that we studied in the one-
dimensional case. In complete accord with the one-dimensional case, we remove
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the ε-neighborhood of the singularities,8 find the integrals over the remaining parts
Xε of X and then find the limit of the values of the integrals over Xε as ε→+0.

If this limiting passage is uniform with respect to the parameter y ∈ Y , we say
that the improper integral (17.72) converges uniformly on Y .

Example 1 The integral

F(λ)=
∫∫

R2
e−λ(x2+y2) dx dy

results from the limiting passage
∫∫

R2
e−λ(x2+y2) dx dy := lim

ε→+0

∫∫

x2+y2≤1/ε2
e−λ(x2+y2) dx dy

and, as one can easily verify using polar coordinates, it converges for λ > 0. Fur-
thermore, it converges uniformly on the set Eλ0 = {λ ∈ R | λ ≥ λ0 > 0}, since for
λ ∈Eλ0 ,

0<
∫∫

x2+y2≥1/ε2
e−λ(x2+y2) dx dy ≤

∫∫

x2+y2≥1/ε2
e−λ0(x

2+y2) dx dy,

and this last integral tends to 0 as ε→ 0 (the original integral F(λ) converges at
λ= λ0 > 0).

Example 2 Suppose, as always, that B(a, r)= {x ∈ Rn | |x − a|< r} is the ball of
radius r with center at a ∈Rn, and let y ∈Rn. Consider the integral

F(y)=
∫

B(0,1)

|x − y|
(1− |x|)α dx := lim

ε→+0

∫

B(0,1−ε)
|x − y|
(1− |x|)α dx.

Passing to polar coordinates in R
n, we verify that this integral converges only for

α < 1. If the value α < 1 is fixed, the integral converges uniformly with respect to
the parameter y on every compact set Y ⊂ R

n, since |x − y| ≤M(Y) ∈ R in that
case.

We note that in these examples the set of singularities of the integral was inde-
pendent of the parameter. Thus, if we adopt the concept given above of uniform
convergence of an improper integral with a fixed set of singularities, it is clear that
all the basic properties of such improper multiple integrals depending on a parameter
can be obtained from the corresponding properties of proper multiple integrals and
theorems on passage to the limit for families of functions depending on a parameter.

We shall not take the time to explain these facts again, which are theoretically
already familiar to us, preferring instead to use the machinery we have developed

8That is, the points in every neighborhood of which the function f is unbounded. If the set X is
also unbounded, we remove a neighborhood of infinity from it.
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to study the following very important and frequently encountered situation in which
the singularity of an improper integral (one-dimensional or multi-dimensional) itself
depends on a parameter.

17.5.3 Improper Integrals with a Variable Singularity

Example 3 As is known, the potential of a unit charge located at the point x ∈ R3

is expressed by the formula U(x, y) = 1
|x−y| , where y is a variable point of R3. If

the charge is now distributed in a bounded region X ⊂ R
3 with a bounded density

μ(x) (equal to zero outside X), the potential of a charge distributed in this way can
be written (by virtue of the additivity of potential) as

U(y)=
∫

R3
U(x, y)μ(x)dx =

∫

X

μ(x)dx

|x − y| . (17.75)

The role of the parameter in this last integral is played by the variable point
y ∈R3. If the point y lies in the exterior of the set X, the integral (17.75) is a proper
integral; but if y ∈X, then |x − y|→ 0 as X � x→ y, and y becomes a singularity
of the integral. As y varies, this singularity thus moves.

Since U(y)= limε→+0Uε(y), where

Uε(y)=
∫

X\B(y,ε)
μ(x)

|x − y| dx,

it is natural to consider, as before, that the integral (17.75) with a variable singularity
converges uniformly on the set Y if Uε(y)⇒U(y) on Y as ε→+0.

We have assumed that |μ(x)| ≤M ∈R on X, and therefore
∣∣
∣∣

∫

X∩B(y,ε)
μ(x)dx

|x − y|
∣∣
∣∣≤M

∫

B(y,ε)

dx

|x − y| = 2πMε2.

This estimate shows that |U(y)−Uε(y)| ≤ 2πMε2 for every y ∈R3, that is, the
integral (17.75) converges uniformly on the set Y =R

3.
In particular, if we verify that the function Uε(y) is continuous with respect to y,

we will then be able to deduce from general considerations that the potentialU(y) is
continuous. But the continuity ofUε(y) does not follow formally from Proposition 1
on the continuity of an improper integral depending on a parameter, since in the
present case the domain of integration X\B(y, ε) changes when y changes. For that
reason, we need to examine the question of the continuity of Uε(y) more closely.

We remark that for |y − y0| ≤ ε,

Uε(y)=
∫

X\B(y0,2ε)

μ(x)dx

|x − y| +
∫

(X\B(y,ε))∩B(y0,2ε)

μ(x)dx

|x − y| .
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The first of these two integrals is continuous with respect to y assuming |y −
y0| < ε, being a proper integral with a fixed domain of integration. The absolute
value of the second does not exceed

∫

B(y0,2ε)

Mdx

|x − y| = 8πMε2.

Hence the inequality |Uε(y)−Uε(y0)|< ε+ 16πMε2 holds for all values of y suf-
ficiently close to y0, which establishes that Uε(y) is continuous at the point y0 ∈R3.

Thus we have shown that the potentialU(y) is a continuous function in the whole
space R

3.

These examples provide the basis for adopting the following definition.

Definition 1 Suppose the integral (17.72) is an improper integral that converges
for each y ∈ Y . Let Xε be the portion of the set X obtained by removing from
X the ε-neighborhood of the set of singularities of the integral,9 and let Fε(y) =∫
Xε
f (x, y)dx. We shall say that the integral (17.72) converges uniformly on the set

Y if Fε(y)⇒ F(y) on Y as ε→+0.

The following useful proposition is an immediate consequence of this definition
and considerations similar to those illustrated in Example 3.

Proposition 4 If the function f in the integral (17.72) admits the estimate
|f (x, y)| ≤ M

|x−y|α , where M ∈ R, x ∈ X ⊂ R
n, y ∈ Y ⊂ R

n, and α < n, then the
integral converges uniformly on Y .

Example 4 In particular, we conclude on the basis of Proposition 4 that the integral

Vi(y)=
∫

X

μ(x)(xi − yi)
|x − y|3 dx,

obtained by formal differentiation of the potential (17.75) with respect to the vari-

able yi (i = 1,2,3) converges uniformly on Y =R
3, since |μ(x)(xi−yi )|x−y|3 | ≤ M

|x−y|2 .

As in Example 3, it follows from this that the function Vi(y) is continuous on R
3.

Let us now verify that the function U(y) – the potential (17.75) – really does
have a partial derivative ∂U

∂yi
and that ∂U

∂yi
(y)= Vi(y).

To do this it obviously suffices to verify that

∫ b

a

Vi
(
y1, y2, y3)dyi =U(y1, y2, y3)∣∣b

yi=a.

9See the footnote on p. 473.
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But in fact,

∫ b

a

Vi(y)dy
i =
∫ b

a

dyi
∫

X

μ(x)(xi − yi)
|x − y|3 dx =

=
∫

X

μ(x)dx
∫ b

a

(xi − yi)
|x − y|3 dyi =

=
∫

X

μ(x)dx
∫ b

a

∂

∂yi

(
1

|x − y|
)

dyi =

=
(∫

X

μ(x)dx

|x − y|
)∣∣
∣
∣

b

yi=a
=U(y)∣∣b

yi=a.

The only nontrivial point in this computation is the reversal of the order of inte-
gration. In general, in order to reverse the order of improper integrals, it suffices to
have a multiple integral that converges absolutely with respect to the whole set of
variables. This condition holds in the present case, so that the interchange is justi-
fied. Of course, it could also be justified directly due to the simplicity of the function
involved.

Thus, we have shown that the potential U(y) generated by a charge distributed
in R

3 with a bounded density is continuously differentiable in the entire space.
The techniques and reasoning used in Examples 3 and 4 enable us to study the

following more general situation in a very similar way.
Let

F(y)=
∫

X

K
(
y − ϕ(x))ψ(x, y)dx, (17.76)

where X is a bounded measurable domain in R
n, the parameter y ranges over

the domain Y ⊂ R
m, with n ≤ m, ϕ : X → R

m is a smooth mapping satisfy-
ing rankϕ′(x) = n, and ‖ϕ′(x)‖ ≥ c > 0, that is, ϕ defines an n-dimensional
parametrized surface, or, more precisely, an n-path in R

m. Here K ∈ C(Rm\0,R),
that is, the function K(z) is continuous everywhere in R

m except at z = 0, near
which it may be unbounded; and ψ :X×Y →R is a bounded continuous function.
We shall assume that for each y ∈ Y the integral (17.76) (which in general is an
improper integral) exists.

In the integral (17.75) that we considered above, in particular, we had

n=m, ϕ(x)= x, ψ(x, y)= μ(x), K(z)= |z|−1.

It is not difficult to verify that under these restrictions on the function ϕ, Defi-
nition 1 of uniform convergence of the integral (17.76) means that for every α > 0
one can choose ε > 0 such that

∣
∣∣∣

∫

|y−ϕ(x)|<ε
K
(
y − ϕ(x))ψ(x, y)dx

∣
∣∣
∣< α, (17.77)
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where the integral is taken over the set10 {x ∈X | |y − ϕ(x)|< ε}.
The following propositions hold for the integral (17.76).

Proposition 5 If the integral (17.76) converges uniformly on Y under the hypothe-
ses described above on the functions ϕ,ψ , and K , then F ∈C(Y,R).

Proposition 6 If it is known in addition that the function ψ in the integral (17.76) is
independent of the parameter y (that is, ψ(x, y)= ψ(x)) and K ∈ C(1)(Rm\0,R),
then if the integral

∫

X

∂K

∂yi

(
y − ϕ(x))ψ(x)dx

converges uniformly on the set y ∈ Y , one can say that the function F has a contin-
uous partial derivative ∂F

∂yi
, and

∂F

∂yi
(y)=

∫

X

∂K

∂yi

(
y − ϕ(x))ψ(x)dx. (17.78)

The proofs of these propositions, as stated, are completely analogous to those in
Examples 3 and 4, and so we shall not take the time to give them.

We note only that the convergence of an improper integral (under an arbitrary
exhaustion) implies its absolute convergence. In Examples 3 and 4 the hypothesis
of absolute convergence was used in the estimates and in reversing the order of
integration. As an illustration of the possible uses of Propositions 5 and 6, let us
consider another example from potential theory.

Example 5 Suppose a charge is distributed on a smooth compact surface S ⊂ R
3

with surface density ν(x). The potential of such a charge distribution is called a
single-layer potential and is obviously represented by the surface integral

U(y)=
∫

S

ν(x)dσ(x)

|x − y| . (17.79)

Suppose ν is a bounded function. Then for y /∈ S this integral is proper, and the
function U(y) is infinitely differentiable outside S.

But if y ∈ S, the integral has an integrable singularity at the point y. The singu-
larity is integrable because the surface S is smooth and differs by little from a piece
of the plane R

2 near the point y ∈ S; and we know that a singularity of type 1/rα

is integrable in the plane if α < 2. Using Proposition 5, we can turn this general
consideration into a formal proof. If we represent S locally in a neighborhood Vy of

10Here we are assuming that the set X itself is bounded in R
n. Otherwise one must supplement

inequality (17.77) with the analogous inequality in which the integral is taken over the set {x ∈X |
|x|> 1/ε}.
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the point y ∈ S in the form x = ϕ(t), where t ∈ Vt ⊂R
2 and rankϕ′ = 2, then

∫

Vy

ν(x)dσ(x)

|x − y| =
∫

Vt

ν(ϕ(t))

|y − ϕ(t)|

√

det

〈
∂ϕ

∂ti
,
∂ϕ

∂tj

〉
dt,

and, applying Proposition 2, we also verify that the integral (17.79) represents a
function U(y) that is continuous on the entire space R

3.
Outside the support of the charge, as already noted, the three-dimensional poten-

tial (17.75) and the single-layer potential (17.79) are infinitely differentiable. Carry-
ing out this differentiation under the integral sign, we verify in a unified manner that
outside the support of the charge the potential, like the function 1/|x − y|, satisfies
Laplace’s equation ΔU = 0 in R

3, that is, it is a harmonic function in this domain.

17.5.4 *Convolution, the Fundamental Solution, and Generalized
Functions in the Multidimensional Case

a. Convolution in R
n

Definition 2 The convolution u ∗ v of real- or complex-valued functions u and v
defined in R

n is defined by the relation

(u ∗ v)(x) :=
∫

Rn

u(y)v(x − y)dy. (17.80)

Example 6 Comparing formulas (17.75) and (17.80), we can conclude, for example,
that the potential U of a charge distributed in R

3 with density μ(x) is the convo-
lution (μ ∗E) of the function μ and the potential E of a unit charge located at the
origin of R3.

Relation (17.80) is a direct generalization of the definition of convolution given
in Sect. 17.4. For that reason, all the properties of the convolution considered in
Sect. 17.4 for the case n= 1 and their proofs remain valid if R is replaced by R

n.
An approximate identity in R

n is defined just as in R with R replaced by R
n and

U(0) understood to be a neighborhood of the point 0 ∈Rn in R
n.

The concept of uniform continuity of a function f : G→ C on a set E ⊂ G,
and with it the basic Proposition 5 of Sect. 17.4 on convergence of the convolution
f ∗Δα to f , also carry over in all its details to the multi-dimensional case.

We note only that in Example 3 and in the proof of Corollary 1 of Sect. 17.4
x must be replaced by |x| in the definition of the functionsΔn(x) and ϕ(x). Only mi-
nor changes are needed in the approximate identity given in Example 4 of Sect. 17.4
for the proof of the Weierstrass theorem on approximation of periodic functions by
trigonometric polynomials. In this case it is a question of approximating a function
f (x1, . . . , xn) that is continuous and periodic with periods T1, T2, . . . , Tn respec-
tively in the variables x1, x2, . . . , xn.
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The assertion amounts to the statement that for every ε > 0 one can exhibit a
trigonometric polynomial in n variables with the respective periods T1, T2, . . . , Tn
that approximates f on R

n within ε.
We confine ourselves to these remarks. An independent verification of the prop-

erties of the convolution (17.80) for n ∈N, which were proved for the case n= 1 in
Sect. 17.4, will be an easy but useful exercise for the reader, helping to promote an
adequate understanding of what was said in Sect. 17.4.

b. Generalized Functions of Several Variables

We now take up certain multi-dimensional aspects of the concepts connected with
generalized functions, which were introduced in Sect. 17.4.

As before, let C(∞)(G) and C(∞)0 (G) denote respectively the sets of infinitely
differentiable functions in the domain G ⊂ R

n and the set of infinitely differen-
tiable functions of compact support in G. If G = R

n, we shall use the respective
abbreviations C(∞) and C(∞)0 . Let m := (m1, . . . ,mn) be a multi-index and

ϕ(m) :=
(
∂

∂x1

)m1

· . . . ·
(
∂

∂xn

)mn
ϕ.

In C(∞)0 (G) we introduce convergence of functions. As in Definition 7 of

Sect. 17.4, we consider that ϕk→ ϕ in C(∞)0 (G) as k→∞ if the supports of all
the functions of the sequence {ϕk} are contained in one compact subset of G and
ϕ
(m)
k ⇒ ϕ(m) on G for every multi-index m as k→∞, that is, the functions con-

verge uniformly, and so do all of their partial derivatives.
Given this, we adopt the following definition.

Definition 3 The vector space C(∞)0 (G) with this convergence is denoted D(G)
(and simply D if G=R

n) and is called the space of fundamental or test functions.
Continuous linear functionals on D(G) are called generalized functions or dis-

tributions. They form the vector space of generalized functions, denoted D′(G) (or
D′ when G=R

n).

Convergence in D′(G), as in the one-dimensional case, is defined as weak (point-
wise) convergence of functionals (see Definition 6 of Sect. 17.4).

The definition of a regular generalized function carries over verbatim to the
multi-dimensional case.

The definition of the δ-function and the δ-function shifted to the point x0 ∈ G
(denoted δ(x0), or more often, but not always happily, δ(x − x0)) also remain the
same.

Now let us consider some examples.
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Example 7 Set

Δt(x) := 1

(2a
√
πt)n

e
− |x|2

4a2t ,

where a > 0, t > 0, x ∈Rn. We shall show that these functions, regarded as regular
distributions in R

n, converge to the δ-function on R
n as t→+0.

For the proof it suffices to verify that the family of functionsΔt is an approximate
identity in R

n as t→+0.
Using a change of variable, reduction of the multiple integral to an iterated inte-

gral, and the value of the Euler–Poisson integral, we find
∫

Rn

Δt (x)dx = 1

(
√
π)n

∫

Rn

e
−| x

2a
√
t
|2

d

(
x

2a
√
t

)
= 1

(
√
π)n

(∫ +∞

−∞
e−u2

du

)n
= 1.

Next, for any fixed value of r > 0 we have
∫

B(0,r)
Δt (x)dx = 1

(
√
π)n

∫

B(0, r

2a
√
t
)

e−|ξ |2 dξ→ 1,

as t→+0.
Finally, taking account of the fact that Δt(x) is nonnegative, we conclude that

these functions indeed constitute an approximate identity in R
n.

Example 8 A generalization of the δ-function (corresponding, for example, to a unit
charge located at the origin in R

n) is the following generalized function δS (corre-
sponding to a distribution of charge over a piecewise-smooth surface S with a dis-
tribution of unit surface density). The effect of δS on the function ϕ ∈D is defined
by the relation

〈δS,ϕ〉 :=
∫

S

ϕ(x)dσ.

Like the distribution δ, the distribution δS is not a regular generalized function.
Multiplication of a distribution by a function in D is defined in R

n just as in the
one-dimensional case.

Example 9 If μ ∈D, then μδS is a generalized function acting according to the rule

〈μδS,ϕ〉 =
∫

S

ϕ(x)μ(x)dσ. (17.81)

If the function μ(x) were defined only on the surface S, Eq. (17.81) could be
regarded as the definition of the generalized function μδS . By natural analogy, the
generalized function introduced in this way is called a single layer on the surface S
with density μ.

Differentiation of generalized functions in the multi-dimensional case is defined
by the same principle as in the one-dimensional case, but has a few peculiarities.
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If F ∈D′(G) andG⊂R
n, the generalized function ∂F

∂xi
is defined by the relation

〈
∂F

∂xi
, ϕ

〉
:= −
〈
F,
∂ϕ

∂xi

〉
.

It follows that
〈
F (m),ϕ

〉= (−1)|m|
〈
F,ϕ(m)

〉
, (17.82)

where m= (m1, . . . ,mk) is a multi-index and |m| =∑n
i=1mi .

It is natural to verify the relation ∂2F
∂xi∂xj

= ∂2F
∂xj ∂xi

. But that follows from the
equality of the right-hand sides in the relations

〈
∂2F

∂xi∂xj
, ϕ

〉
=
〈
F,

∂2ϕ

∂xj ∂xi

〉
,

〈
∂2F

∂xj ∂xi
, ϕ

〉
=
〈
F,

∂2ϕ

∂xi∂xj

〉
,

which follows from the classical equality ∂2ϕ

∂xi∂xj
= ∂2ϕ

∂xj ∂xi
, which holds for every

function ϕ ∈D.

Example 10 Now consider an operator D =∑m amD
m, where m= (m1, . . . ,mn)

is a multi-index, Dm = ( ∂
∂x1 )

m1 · . . . · ( ∂
∂xn
)mn , am are numerical coefficients, and

the sum extends over a finite set of multi-indices. This is a differential operator.
The transpose or adjoint of D is the operator usually denoted tD or D∗ and

defined by the relation

〈DF,ϕ〉 =: 〈F, tDϕ〉,
which must hold for all ϕ ∈D and F ∈D′. Starting from Eq. (17.82), we can now
write the explicit formula

tD =
∑

m

(−1)|m|amDm

for the adjoint of the differential operator D.
In particular, if all the values of |m| are even, the operator D is self-adjoint, that

is, tD =D.
It is clear that the operation of differentiation in D′(Rn) preserves all the prop-

erties of differentiation in D′(R). However, let us consider the following important
example, which is specific to the multi-dimensional case.

Example 11 Let S be a smooth (n− 1)-dimensional submanifold of Rn, that is, S
is a smooth hypersurface. Assume that the function f defined on R

n\S is infinitely
differentiable and that all its partial derivatives have a limit at every point x ∈ S
under one-sided approach to x from either (local) side of the surface S.
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The difference between these two limits will be the jump
∫ ∂f

∂xi
of the partial

derivative under consideration at the point x corresponding to a particular direction
of passage across the surface S at x. The sign of the jump changes if that direction is
reversed. The jump can thus be regarded as a function defined on an oriented surface
if, for example, we make the convention that the direction of passage is given by an
orienting normal to the surface.

The function ∂f

∂xi
is defined, continuous, and locally bounded outside S, and by

the assumptions just made f is locally ultimately bounded upon approach to the
surface S itself. Since S is a submanifold of Rn, no matter how we complete the
definition of ∂f

∂xi
on S, we obtain a function with possible discontinuities on only S,

and hence locally integrable in R
n. But integrable functions that differ on a set of

measure zero have equal integrals, and therefore, without worrying about the values
on S, we may assume that ∂f

∂xi
generates some regular generalized function { ∂f

∂xi
}

according to the rule
〈{
∂f

∂xi

}
, ϕ

〉
=
∫

Rn

(
∂f

∂xi
· ϕ
)
(x)dx.

We shall now show that if f is regarded as a generalized function, then the fol-
lowing important formula holds in the sense of differentiation of generalized func-
tions:

∂f

∂xi
=
{
∂f

∂xi

}
+ (&)f )S cosαiδS, (17.83)

where the last term is understood in the sense of Eq. (17.81), (&)f )S is the jump of
the function f at x ∈ S corresponding to either of the two possible directions of the
unit normal n to S at x, and cosαi is the projection of n onto the xi -axis (that is,
n= (cosα1, . . . , cosαk)).

Proof Formula (17.83) generalizes Eq. (17.64), which we use to derive it.
For definiteness we consider the case i = 1. Then

〈
∂f

∂x1
, ϕ

〉
:= −
〈
f,
∂ϕ

∂x1

〉
=−
∫

Rn

(
f · ∂ϕ
∂x1

)
(x)dx =

= −
∫
· · ·
∫

x2···xn
dx2 · · ·dxn

∫ +∞

−∞
f
∂ϕ

∂x1
dx1 =

=
∫
· · ·
∫

x2···xn
dx2 · · ·dxn

[
(&)f )ϕ +

∫ +∞

−∞
∂f

∂x1
ϕ dx1

]
=

=
∫

Rn

∂f

∂x1
ϕ dx +

∫
· · ·
∫

x2···xn
(&)f )ϕ dx2 · · ·dxn.

Here the jump &)f of f is taken at the point x = (x1, x2, . . . , xn) ∈ S as one
passes through the surface at that point in the direction of the positive x1-axis. The
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value of the function ϕ in computing the product (&)f )ϕ is taken at the same point.
Hence, this last integral can be written as a surface integral of first kind

∫

S

(&)f )ϕ cosα1 dσ,

where α1 is the angle between the direction of the positive x1-axis and the normal to
S at x, direct so that in passing through x in the direction of that normal the function
f has precisely the jump &)f . This means only that cosα1 ≥ 0. It remains only to
remark that if we choose the other direction for the normal, the sign of the jump
and the sign of the cosine would both reverse simultaneously; hence the product
(&)f ) cosα1 does not change. �

Remark 1 As can be seen from this proof, formula (17.83) holds once the jump
(&)f )S of f is defined at each point x ∈ S, and a locally integrable partial derivative
∂f

∂xj
exists outside of S in R

n, perhaps as an improper integral generating a regular

generalized function { ∂f
∂∂xj
}.

Remark 2 At points x ∈ S at which the direction of the x1-axis is not transversal
to S, that is, it is tangent to S, difficulties may arise in the definition of the jump &)f
in the given direction. But it can be seen from (17.83) that its last term is obtained
from the integral

∫
· · ·
∫

x2···xn
(&)f )ϕ dx2 · · ·dxn.

The projections of the set E on x2, . . . , xn-hyperplane has (n− 1)-dimensional
measure zero and therefore has no effect on the value of the integral. Hence we can
regard the form (17.83) as having meaning and being valid always if (&)f )S cosαi is
given the value 0 when cosαi = 0.

Remark 3 Similar considerations make it possible to neglect sets of area zero; there-
fore one can regard formula (17.83) as proved for piecewise-smooth surfaces.

As our next example we shall show how the classical Gauss–Ostrogradskii for-
mula can be obtained directly from the differential relation (17.83), and in a form
that is maximally free of the extra analytic requirements that we informed the reader
of previously.

Example 12 Let G be a finite domain in R
n bounded by a piecewise-smooth sur-

face S. Let A= (A1, . . . ,An) be a vector field that is continuous in G and such that
the function div A=∑n

i=1
∂Ai

∂xi
is defined in G and integrable on G, possibly in the

improper sense.
If we regard the field A as zero outsideG, then the jump of this field at each point

x of the boundary S of the domainG when leavingG is −A(x). Assuming that n is
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a unit outward normal vector to S, applying formula (17.83) to each component Ai

of the field A and summing these equalities, we arrive at the relation

div A= {div A} − (A · n)δS, (17.84)

in which A · n is the inner product of the vectors A and n at the corresponding point
x ∈ S.

Relation (17.84) is equality of generalized functions. Let us apply it to the func-
tion ψ ∈ C(∞)0 equal to 1 on G (the existence and construction of such a function
has been discussed more than once previously). Since for every function ϕ ∈D

〈div A, ϕ〉 = −
∫

Rn

(A · ∇ϕ)dx (17.85)

(which follows immediately from the definition of the derivative of a generalized
function), for the field A and the function ψ we obviously have 〈div A,ψ〉 = 0. But,
when we take account of Eq. (17.84) this gives the relation

0= 〈{div A},ψ 〉− 〈(A · n)δS,ψ
〉
,

which in classical notation

0=
∫

G

div A dx −
∫

S

(A · n)dσ (17.86)

is the same as the Gauss–Ostrogradskii formula.

Let us now consider several important examples connected with differentiation
of generalized functions.

Example 13 We consider the vector field A= x

|x|3 defined in R
3\0 and show that in

the space D′(R3) of generalized functions we have the equality

div
x

|x|3 = 4πδ. (17.87)

We remark first that for x �= 0 we have div x

|x|3 = 0 in the classical sense.
Now, using successively the definition of div A in the form (17.85), the definition

of an improper integral, the equality div x

|x|3 = 0 for x �= 0, the Gauss–Ostrogradskii
formula (17.86), and the fact that ϕ has compact support, we obtain

〈
div

x

|x|3 , ϕ
〉
= −
∫

R3

(
x

|x|3 · ∇ϕ(x)
)

dx =

= lim
ε→+0

−
∫

ε<|x|<1/ε

(
x

|x|3 · ∇ϕ(x)
)

dx =
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= lim
ε→+0

−
∫

ε<|x|<1/ε
div

(
xϕ(x)

|x|3
)

dx =

= lim
ε→+0

−
∫

|x|=ε
ϕ(x)

(x · n)
|x|3 dσ = 4πϕ(0)= 〈4πδ,ϕ〉.

For the operatorA :D′(G)→D′(g), as before, we define a fundamental solution
to be a generalized function E ⊂D′(G) for which A(E)= δ.

Example 14 We verify that the regular generalized function E(x) = − 1
4π |x| in

D′(R3) is a fundamental solution of the Laplacian Δ= ( ∂
∂x1 )

2 + ( ∂
∂x2 )

2 + ( ∂
∂x3 )

2.
Indeed, Δ= div grad, and gradE(x)= x

4π |x|3 for x �= 0, and therefore the equal-
ity div gradE = δ follows from relation (17.87).

As in Example 13, one can verify that for any n ∈N, n≥ 2, we have the following
relation in R

n:

div
x

|x|n = σnδ, (17.87′)

where σn = 2πn/2
Γ (n/2) is the area of the unit sphere in R

n.
Hence we can conclude upon taking account of the relation Δ= div grad that

Δ ln |X| = 2πδ in R
2

and

Δ
1

|x|n−2
=−(n− 2)σnδ in R

n, n > 2.

Example 15 Let us verify that the function

E(x, t)= H(t)

(2a
√
πt)n

e
− |x|2

4a2 t ,

where x ∈ Rn, t ∈ R, and H is the Heaviside function (that is, we set E(x, t) = 0
when t < 0) satisfies the equation

(
∂

∂t
− a2Δ

)
E = δ.

Here Δ is the Laplacian with respect to x in R
n, and δ = δ(x, t) is the δ-function

in R
n
x ×Rt =R

n+1.
When t > 0, we have E ∈ C(∞)(Rn+1) and by direct differentiation we verify

that
(
∂

∂t
− a2Δ

)
E = 0 when t > 0.
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Taking this fact into account along with the result of Example 7, we obtain for
any function ϕ ∈D(Rn+1)

〈(
∂

∂t
− a2Δ

)
E,ϕ

〉
=

=−
〈
E,

(
∂

∂t
+ a2Δ

)
ϕ

〉
=

=−
∫ +∞

0
dt
∫

Rn

E(x, t)

(
∂ϕ

∂t
+ a2Δϕ

)
dx =

=− lim
ε→+0

∫ +∞

ε

dt
∫

Rn

E(x, t)

(
∂ϕ

∂t
+ a2Δϕ

)
dx =

= lim
ε→+0

[∫

Rn

E(x, ε)ϕ(x,0)dx +
∫ +∞

ε

dt
∫

Rn

(
∂E

∂t
− a2ΔE

)
ϕ dx

]
=

= lim
ε→+0

[∫

Rn

E(x, ε)ϕ(x,0)dx +
∫

Rn

E(x, ε)
(
ϕ(x, ε)− ϕ(x,0))dx

]
=

= lim
ε→+0

∫

Rn

E(x, ε)ϕ(x,0)dx = ϕ(0,0)= 〈δ,ϕ〉.

Example 16 Let us show that the function

E(x, t)= 1

2a
H
(
at − |x|),

where a > 0, x ∈R1
x , t ∈R1

t , and H is the Heaviside function, satisfies the equation

(
∂2

∂t2
− a2 ∂

2

∂x2

)
E = δ,

in which δ = δ(x, t) is the δ-function in the space D′(R1
x ×R

1
t )=D′(R2).

Let ϕ ∈D(R2). Using the abbreviation �a := ∂2

∂t2
− a2 ∂2

∂x2 , we find

〈�aE,ϕ〉 = 〈E,�aϕ〉 =
∫

Rx

dx
∫

Rt

E(s, t)�aϕ(x, t)dt =

= 1

2a

∫ +∞

−∞
dx
∫ +∞
|x|
a

∂2ϕ

∂t2
dt − a

2

∫ +∞

0
dt
∫ at

−at
∂2ϕ

∂x2
dx =

= − 1

2a

∫ +∞

−∞
∂ϕ

∂t

(
x,
|x|
a

)
dx − a

2

∫ +∞

0

[
∂ϕ

∂x
(at, t)− ∂ϕ

∂x
(−at, t)

]
dt =

= −1

2

∫ +∞

0

dϕ

dt
(at, t)dt − 1

2

∫ +∞

0

dϕ

dt
(−at, t)dt =
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= 1

2
ϕ(0,0)+ 1

2
ϕ(0,0)= ϕ(0,0)= 〈δ,ϕ〉.

In Sect. 17.4 we have discussed in detail the role of the system function of the
operator and the role of the convolution in the problem of determining the input u
from the output ũ of a translation-invariant linear operator Au= ũ. Everything that
has been discussed on that score carries over to the multi-dimensional case without
any changes. Hence, if we know the fundamental solution E of the operator A, that
is, if AE = δ, then one can present the solution u of the equation Au = f as the
convolution u= f ∗E.

Example 17 Using the function E(x, t) of Example 16, one can thus present the
solution

u(x, t)= 1

2a

∫ t

0
dτ
∫ x+a(t−τ)

x−a(t−τ)
f (ξ, τ )dξ

of the equation

∂2u

∂t2
− a2 ∂

2u

∂x2
= f,

which is the convolution f ∗ E of the functions f and E and necessarily exists
under the assumption, for example, that the function f is continuous. By direct
differentiation of the resulting integral with respect to the parameters, one can easily
verify that u(x, t) is indeed a solution of the equation �au= f .

Example 18 Similarly, on the basis of the result of Example 15 we find the solution

u(x, t)=
∫ t

0
dτ
∫

Rn

f (ξ, τ )

[2a√π(t − τ)]n e
− |x−ξ |2

4a2(t−τ ) dξ

of the equation ∂u
∂t
−Δu= f , for example, under the assumption that the function

f is continuous and bounded, which guarantees the existence of the convolution
f ∗E. We note that these assumptions are made only for example, and are far from
obligatory. Thus, from the point of view of generalized functions one could pose
the question of the solution of the equation ∂u

∂t
− Δu = f taking as f (x, t) the

generalized function ϕ(x) · δ(t), where ϕ ∈D(Rn) and δ ∈D′(R).
The formal substitution of such a function f under the integral sign leads to the

relation

u(x, t)=
∫

Rn

ϕ(ξ)

[2a√πt]n e
− |x−ξ |2

4a2 t dξ.

Applying the rule for differentiating an integral depending on a parameter one
can verify that this function is a solution of the equation ∂u

∂t
− aΔu = 0 for t > 0.

We note that u(x, t)→ ϕ(x) as t →+0. This follows from the result of Exam-
ple 7, where it was established that the family of functions encountered here is an
approximate identity.
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Example 19 Finally, recalling the fundamental solution of the Laplace operator ob-
tained in Example 14, we find the solution

u(x)=
∫

Rn

f (ξ)dξ

|x − ξ |
of the Poisson equation Δu = −4πf , which up to notation and relabeling is the
same as the potential (17.75) for a charge distributed with density f , which we
considered earlier.

If the function f is taken as ν(x)δS , where S is a piecewise smooth surface in
R

3, formal substitution into the integral leads to the function

u(x)=
∫

S

ν(ξ)dσ(ξ)

|x − ξ | ,

which, as we know, is a single-layer potential; more precisely, the potential of a
charge distributed over the surface S ⊂R

3 with surface density ν(x).

17.5.5 Problems and Exercises

1. a) Reasoning as in Example 3, where the continuity of the three-dimensional
potential (17.75) was established, show that the single-layer potential (17.79) is
continuous.

b) Verify the full proof of Propositions 4 and 5.

2. a) Show that for every setM ⊂R
n and every ε > 0 one can construct a function

f of class C(∞)(Rn,R) satisfying the following three conditions simultaneously:
∀x ∈ R

n (0 ≤ f (x) ≤ 1); ∀x ∈M (f (x) = 1); suppf ⊂Mε , where Mε is the ε-
blowup (that is, the ε-neighborhood) of the setM .

b) Prove that for every closed set M in R
n there exists a nonnegative function

f ∈ C(∞)(Rn,R) such that (f (x)= 0)⇔ (x ∈M).
3. a) Solve Problems 6 and 7 of Sect. 17.4 in the context of a space R

n of arbitrary
dimension.

b) Show that the generalized function δS (single layer) is not regular.

4. Using convolution, prove the following versions of the Weierstrass approxima-
tion theorem.

a) Any continuous function f : I → R on a compact n-dimensional interval
I ⊂R

n can be uniformly approximated by an algebraic polynomial in n variables.
b) The preceding assertion remains valid even if I is replaced by an arbitrary

compact set K ⊂R and we assume that f ∈C(K,C).
c) For every open set G ⊂ R

n and every function f ∈ C(m)(G,R) there exists
a sequence {Pk} of algebraic polynomials in n variables such that P (α)k ⇒ f (α) on
each compact set K ⊂ G as k→∞ for every multi-index α = (α1, . . . , αn) such
that |α| ≤m.
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d) If G is a bounded open subset of R
n and f ∈ C(∞)(G,R), there exists a

sequence {h} of algebraic polynomials in n variables such that P (α)k ⊃ f (α) for
every α = (α1, . . . , αn) as k→∞.

e) Every periodic function f ∈C(Rn,R) with periods T1, T2, . . . , Tn in the vari-
ables x1, . . . , xn, can be uniformly approximated in R

n by trigonometric polyno-
mials in n variables having the same periods T1, T2, . . . , Tn in the corresponding
variables.

5. This problem contains further information on the averaging action of convolu-
tion.

a) Previously we obtained the integral Minkowski inequality

(∫

X

∣
∣a(x)+ b(x)∣∣p dx

)1/p

≤
(∫

X

|a|p(x)dx
)1/p

+
(∫

X

|b|p(x)dx
)1/p

for p ≥ 1 on the basis of this numerical Minkowski inequality.
The integral inequality in turn enables us to predict the following generalized

integral Minkowski inequality:

(∫

X

∣∣∣∣

∫

Y

f (x, y)dy

∣∣∣∣

p

dx

)1/p

≤
∫

Y

(∫

X

|f |p(x, y)dx
)1/p

dy.

Prove this inequality, assuming that p ≥ 1, that X and Y are measurable subsets
(for example, intervals in R

m and R
n respectively), and that the right-hand side of

the inequality is finite.
b) By applying the generalized Minkowski inequality to the convolution f ∗ g,

show that the relation ‖f ∗ g‖p ≤ ‖f ‖1 · ‖g‖p holds for p ≥ 1, where, as always,
‖u‖p = (

∫
Rn
|u|p(x)dx)1/p .

c) Let ϕ ∈ C(∞)0 (Rn,R) with 0≤ ϕ(x)≤ 1 on R
n and

∫
Rn
ϕ(x)dx = 1. Assume

that ϕε(x) := 1
ε
ϕ(x
ε
) and fε := f ∗ ϕε for ε > 0. Show that if f ∈Rp(Rn) (that is,

if the integral
∫
Rn
|f |p(x)dx exists), then fε ∈C(∞)(Rn,R) and ‖fε‖p ≤ ‖f ‖p .

We note that the function fε is often called the average of the function f with
kernel ϕε .

d) Preserving the preceding notation, verify that the relation

‖fε − f ‖p,I ≤ sup
|h|<ε
‖τhf − f ‖p,I ,

holds on every interval I ⊂ R
n, where ‖u‖p,I = (

∫
I
|u|p(x)dx)1/p and τhf (x) =

f (x − h).
e) Show that if f ∈Rp(Rn), then ‖τhf − f ‖p,I → 0 as h→ 0.
f) Prove that ‖fε‖p ≤ ‖f ‖p and ‖fε − f ‖p→ 0 as ε→+0 for every function

f ∈Rp(Rn), p ≥ 1.
g) Let Rp(G) be the normed vector space of functions that are absolutely inte-

grable on the open set G ⊂ R
n with the norm ‖ ‖p,G. Show that the functions of
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class C(∞)(G)∩Rp(G) form an everywhere-dense subset of Rp(G) and the same

is true for the set C(∞)0 (G)∩Rp(G).
h) The following proposition can be compared with the case p =∞ in the pre-

ceding problem: Every continuous function on G can be uniformly approximated
on G by functions of class C(∞)(G).

i) If f is a T -periodic locally absolutely integrable function on R, then, setting
‖f ‖p,T = (

∫ a+T
a
|f |p(x)dx)1/p , we shall denote the vector space with this norm

by RTp . Prove that ‖fε − f ‖p,T → 0 as ε→+0.
j) Using the fact that the convolution of two functions, one of which is peri-

odic, is itself periodic, show that the smooth periodic functions of class C(∞) are
everywhere dense in RTp .

6. a) Preserving the notation of Example 11 and using formula (17.83), verify that
if f ∈ C(1)(Rn\S), then

∂2f

∂xi∂xj
=
{
∂2f

∂xi∂xj

}
+ ∂

∂xj

(
(&)f )S cosαiδS

)+
(
&) ∂f
∂xi

)

S

cosαj δS.

b) Show that the sum
∑n
i=1(&) ∂f∂xi )S cosαi equals the jump (&) ∂f

∂n2
)S of the nor-

mal derivative of the function f at the corresponding point x ∈ S, this jump being
independent of the direction of the normal and equal to the sum (

∂f
∂n1
+ ∂f
∂n2
)(x) of

the normal derivatives of f at the point x from the two sides of the surface S.
c) Verify the relation

Δf = {Δf } +
(
&)f ∂f
∂n

)

S

δS + ∂

∂n

(
(&)f )SδS

)
,

where ∂
∂n is the normal derivative, that is, 〈 ∂

∂nF,ϕ〉 := −〈F, ∂ϕ∂n 〉, and (&)f )S is the
jump of the function f at the point x ∈ S in the direction of the normal n.

d) Using the expression just obtained for Δf , prove the classical Green’s for-
mula

∫

G

(fΔϕ − ϕΔf )dx =
∫

S

(
f
∂ϕ

∂n
− ϕ ∂f

∂n

)
dσ

under the assumption that G is a finite domain in R
n bounded by a piecewise-

smooth surface S;f and ϕ belong to C(1)(G) ∩ C(2)(G), and the integral on the
left-hand side exists, possibly as an improper integral.

e) Show that if the δ-function corresponds to a unit charge located at the origin
0 in R

n, and the function − ∂δ

∂x1 corresponds to a dipole with electric moment +1

located at 0 and oriented along the x1-axis (see Problem 11e) of Sect. 17.4) and
the function ν(x)δS is the single layer corresponding to a charge distribution over
the surface S with surface density ν(x), then the function − ∂

∂n (ν(x)δS), called the
double layer, corresponds to a distribution of dipoles over the surface S oriented by
the normal n and having surface density moment ν(x).
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f) Setting ϕ = 1
|x−y| in Green’s formula and using the result of Example 14,

show that every harmonic function f in the domain G in the class C(1)(G) can be
represented as the sum of a single-layer and a double-layer potential located on the
boundary S of G.

7. a) The function 1
|x| is the potential of the electric field intensity A=− x

|x|3 cre-

ated in R
3 by a unit charge located at the origin. We also know that

div

(
− x

|x|3
)
= 4πδ, div

(
− qx|x|3

)
= 4πqδ, div grad

(
q

|x|
)
= 4πδ.

Starting from this, explain why it was necessary to assume that the function
U(x) = ∫

R3
μ(ξ)dξ
|x−ξ | must satisfy the equation ΔU = −4πμ. Verify that it does in-

deed satisfy the Poisson equation written here.
b) A physical corollary of the Gauss–Ostrogradskii formula, known in electro-

magnetic field theory as Gauss’ theorem is that the flux across a closed surface S of
the intensity of the electric field created by charges distributed in R

3 equals Q/ε0
(see pp. 279 and 280), where Q is the total charge in the region bounded by the
surface S. Prove this theorem of Gauss.

8. Verify the following equalities, understood in the sense of the theory of general-
ized functions.

a) ΔE = δ, if

E(x)=
⎧
⎨

⎩

1
2π ln |x| for x ∈R2,

− Γ ( n2 )

2πn/2(n−2)
|x|−n−2 for x ∈Rn, n > 2.

b) (Δ+ k2)E = δ, if E(x)=− eik|x|
4π |x| or if E(x)=− e−ik|x|

4π |x| and x ∈R3.

c) �aE= δ, where �a= ∂2

∂t2
−a2[( ∂

∂x1 )
2+· · ·+( ∂

∂xn
)2], andE= H(at−|x|)

2πa
√
a2t2−|x|2

for x ∈ R2 or E = H(t)

4πa2t
δSat ≡ H(t)

2πa δ(a
2t2 − |x|2) for x ∈ R3, t ∈ R. Here H(t) is

the Heaviside function, Sat = {x ∈R3 | |x| = at} is a sphere, and a > 0.
d) Using the preceding results, present the solution of the equation Au= f for

the corresponding differential operator A in the form of the convolution f ∗E and
verify, for example, assuming the function f continuous, that the integrals depend-
ing on a parameter that you have obtained indeed satisfy the equation Au= f .

9. Differentiation of an integral over a liquid volume.
Space is filled with a moving substance (a liquid). Let v = v(t, x) and ρ = ρ(t, x)

be respectively the velocity of displacement and the density of the substance at
time t at the point x. We observe the motion of a portion of the substance filling the
domain Ω0 at the initial moment of time.

a) Express the mass of the substance filling the domain Ωt obtained from Ω0 at
time t and write the law of conservation of mass.
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b) By differentiating the integral F(t) = ∫
Ωt
f (t, x)dω with variable do-

main of integration Ωt (the volume of liquid), show that F ′(t) = ∫
Ωt

∂f
∂t

dω +∫
∂Ωt
f 〈v,n〉dσ , where Ωt, ∂Ωt , dω, dσ,n, v, 〈, 〉 are respectively the domain, its

boundary, the element of volume, the element of area, the unit outward normal, the
flow velocity at time t at corresponding points, and the inner product.

c) Show that F ′(t) in problem b) can be represented in the form F ′(t) =∫
Ωt
(
∂f
∂t
+ div(f v))dω.

d) Comparing the results of problems a), b), and c), obtain the equation of con-
tinuity ∂ρ

∂t
+ div(ρv)= 0. (In this connection, see also Sect. 14.4.2.)

e) Let |Ωt | be the volume of the domain Ωt . Show that d|Ωr |
dt =

∫
Ωt

divv dω.
f) Show that the velocity field v of the flow of an incompressible liquid is

divergence-free (divv = 0) and that this condition is the mathematical expression
of the incompressibility (conservation of volume) of any portion of the evolving
medium.

g) The phase velocity field (ṗ, q̇) of a Hamiltonian system of classical mechan-
ics satisfies the Hamilton equations ṗ = − ∂H

∂q
, q̇ = ∂H

∂p
, where H = H(p,q) is

the Hamiltonian of the system. Following Liouville, show that a Hamiltonian flow
preserves the phase volume. Verify also that the HamiltonianH (energy) is constant
along the streamlines (trajectories).



Chapter 18
Fourier Series and the Fourier Transform

18.1 Basic General Concepts Connected with Fourier Series

18.1.1 Orthogonal Systems of Functions

a. Expansion of a Vector in a Vector Space

During this course of analysis we have mentioned several times that certain classes
of functions form vector spaces in relation to the standard arithmetic operations.
Such, for example, are the basic classes of analysis, which consist of smooth, contin-
uous, or integrable real-, complex-, or vector-valued functions on a domainX ⊂R

n.
From the point of view of algebra the equality

f = α1f1 + · · · + αnfn,
where f,f1, . . . , fn are functions of the given class and αi are coefficients from
R or C, simply means that the vector f is a linear combination of the vectors
f1, . . . , fn of the vector space under consideration.

In analysis, as a rule, it is necessary to consider “infinite linear combinations” –
series of functions of the form

f =
∞∑

k=1

αkfk. (18.1)

The definition of the sum of the series requires that some topology (in particular,
a metric) be defined in the vector space in question, making it possible to judge
whether the difference f − Sn tends to zero or not, where Sn =∑n

k=1 αkfk .
The main device used in classical analysis to introduce a metric on a vector space

is to define some norm of a vector or inner product of vectors in that space. Sec-
tion 10.1 was devoted to a discussion of these concepts.

We are now going to consider only spaces endowed with an inner product (which,
as before, we shall denote 〈, 〉). In such spaces one can speak of orthogonal vectors,
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orthogonal systems of vectors, and orthogonal bases, just as in the case of three-
dimensional Euclidean space familiar from analytic geometry.

Definition 1 The vectors x and y in a vector space endowed with an inner product
〈, 〉 are orthogonal (with respect to that inner product) if 〈x, y〉 = 0.

Definition 2 The system of vectors {xk; k ∈ K} is orthogonal if the vectors in it
corresponding to different values of the index k are pairwise orthogonal.

Definition 3 The system of vectors {ek; k ∈ K} is orthonormalized (or orthonor-
mal) if 〈ei, ej 〉 = δi,j for every pair of indices i, j ∈K , where δi,j is the Kronecker

symbol, that is, δi,j =
{ 1, if i=j,

0, if i �=j.

Definition 4 A finite system of vectors x1, . . . , xn is linearly independent if the
equality α1x1+α2x2+· · ·+αnxn = 0 is possible only when α1 = α2 = · · · = αn = 0
(in the first equality 0 is the zero vector and in the second it is the zero of the
coefficient field).

An arbitrary system of vectors of a vector space is a system of linearly indepen-
dent vectors if every finite subsystem of it is linearly independent.

The main question that will interest us now is the question of expanding a vector
in a given system of linearly independent vectors.

Having in mind later applications to spaces of functions (which may be infinite-
dimensional as well) we must reckon with the fact that such an expansion may, in
particular, lead to a series of the type (18.1). That is precisely where analysis enters
into the study of the fundamental and essentially algebraic question we have posed.

As is known from analytic geometry, expansions in orthogonal and orthonormal
systems have many technical advantages over expansions in arbitrary linearly inde-
pendent systems. (The coefficients of the expansion are easy to compute; it is easy to
compute the inner product of two vectors from their coefficients in an orthonormal
basis, and so on.)

It is for that reason that we shall be mainly interested in expansions in orthonor-
mal systems. In function spaces these will be expansions in orthogonal systems of
functions or Fourier1 series, to the study of which this chapter is devoted.

1J.-B.J. Fourier (1768–1830) – French mathematician. His most important work Théorie analy-
tique de la chaleur (1822) contained the heat equation derived by Fourier and the method of sepa-
ration of variables (the Fourier method) of solving it (see p. 510). The key element in the Fourier
method is the expansion of a function in a trigonometric (Fourier) series. Many outstanding math-
ematicians later undertook the study of the possibility of such a representation. This, in particular,
led to the creation of the theory of functions of a real variable and set theory, and it helped to
promote the development of the very concept of a function.
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b. Examples of Orthogonal Systems of Functions

Extending Example 12 of Sect. 10.1, we introduce an inner product

〈f,g〉 :=
∫

X

(f · g )(x)dx (18.2)

on the vector space R2(X,C) consisting of functions on the set X ⊂ R
n that are

locally square-integrable (as proper or improper integrals).
Since |f · g| ≤ 1

2 (|f |2+ |g|2), the integral in (18.2) converges and hence defines
〈f,g〉 unambiguously.

If we are discussing real-valued functions, relation (18.2) in the real space
R2(x,R) reduces to the equality

〈f,g〉 :=
∫

X

(f · g)(x)dx. (18.3)

Relying on properties of the integral, one can easily verify that all the axioms for
an inner product listed in Sect. 10.1 are satisfied in this case, provided we identify
two functions that differ only on a set of n-dimensional measure zero. Throughout
the following, in the text portion of the section, inner products of functions will be
understood in the sense of Eqs. (18.2) and (18.3).

Example 1 We recall that for integers m and n
∫ π

−π
eimx · e−inx dx =

{
0, if m �= n,
2π, if m= n; (18.4)

∫ π

−π
cosmx cosnx dx =

⎧
⎨

⎩

0, if m �= n,
π, if m= n �= 0,
2π, if m= n= 0;

(18.5)

∫ π

−π
cosmx sinnx dx = 0; (18.6)

∫ π

−π
sinmx sinnx dx =

{
0, if m �= n,
π, if m= n �= 0.

(18.7)

These relations show that {einx;n ∈ Z} is an orthogonal system of vectors in
the space R2([−π,π],C) relative to the inner product (18.2) and the trigonometric
system {1, cosnx, sinnx;n ∈ N} is orthogonal in R2([−π,π],R). If we regard the
trigonometric system as a set of vectors in R2([−π,π],C), that is, if we allow
linear combinations of them to have complex coefficients, then by Euler’s formulas
einx = cosnx+ i sinnx, cosnx = 1

2 (e
inx+e−inx), sinnx = 1

2i (e
inx−e−inx), we see

that these two systems can be expressed linearly in terms of each other, that is, they
are algebraically equivalent. For that reason the exponential system {einx;n ∈ Z} is
also called the trigonometric system or more precisely the trigonometric system in
complex notation.
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Relations (18.4)–(18.7) show that these systems are orthogonal, but not normal-
ized, while the systems { 1√

2π
einx;n ∈ Z} and

{
1√
2π
,

1√
π

cosnx,
1√
π

sinnx;n ∈N
}

are orthonormal.
If the closed interval [−π,π] is replaced by an arbitrary closed interval [−l, l] ⊂

R, then by a change of variable one can obtain the analogous systems {ei πl nx;n ∈ Z}
and {1, cos π

l
nx, sin π

l
nx;n ∈N}, which are orthogonal in the spaces R2([−l, l],C)

and R2([−l, l],R) and also the corresponding orthonormal systems

{
1√
2l

ei
π
l
nx;n ∈ Z

}
and

{
1√
2l
,

1√
l

cos
π

l
nx,

1√
l

sin
π

l
nx;n ∈N

}
.

Example 2 Let Ix be an interval in R
m and Iy an interval in R

n, and let {fi(x)} be
an orthogonal system of functions in R2(Ix,R) and {gj (y)} an orthogonal system
of functions in R2(Iy,R). Then, as follows from Fubini’s theorem, the system of
functions {uij (x, y) := fj (x)gj (y)} is orthogonal in R2(Ix × Iy,R).

Example 3 We remark that for α �= β
∫ l

0
sinαx sinβx dx = 1

2

(
sin(α − β)l
α − β − sin(α + β)l

α + β
)
=

= cosαl cosβl · β tanαl − α tanβl

α2 − β2
.

Hence, if α and β are such that tanαl
α
= tanβl

β
, the original integral equals zero.

Consequently, if ξ1 < ξ2 < · · · < ξn < · · · is a sequence of roots of the equa-
tion tan ξ l = cξ , where c is an arbitrary constant, then the system of functions
{sin(ξnx);n ∈ N} is orthogonal on the interval [0, l]. In particular, for c = 0, we
obtain the familiar system {sin(π

l
nx);n ∈N}.

Example 4 Consider the equation

(
d2

dx2
+ q(x)

)
u(x)= λu(x),

where q ∈ C(∞)([a, b],R) and λ is a numerical coefficient. Let us assume that the
functions u1, u2, . . . are of class C(2)([a, b],R) and vanish at the endpoints of the
closed interval [a, b] and that each of them satisfies the given equation with partic-
ular values λ1, λ2, . . . of the coefficient λ. We shall show that if λi �= λj , then the
functions ui and uj are orthogonal on [a, b].
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Indeed, integrating by parts, we find that

∫ b

a

[(
d2

dx2
+ q(x)

)
ui(x)

]
uj (x)dx =

∫ b

a

ui(x)

[(
d2

dx2
+ q(x)

)
uj (x)

]
dx.

According to the equation, we obtain from this the relation

λi〈ui, uj 〉 = λj 〈ui, uj 〉;
and, since λi �= λj , we now conclude that 〈ui, uj 〉 = 0.

In particular, if q(x) ≡ 0 on [a, b] and [a, b] = [0,π] we again find that the
system {sinnx;n ∈N} is orthogonal on [0,π].

Further examples, including examples of orthogonal systems of importance in
mathematical physics, will be found in the problems at the end of this section.

c. Orthogonalization

It is well-known that in a finite-dimensional Euclidean space, starting with a lin-
early independent system of vectors, there is a canonical way of constructing an
orthogonal and even orthonormal system of vectors equivalent to the given system,
using the Gram2–Schmidt3 orthogonalization process. By the same method one can
obviously orthonormalize any linearly independent system of vectors ψ1,ψ2, . . . in
any vector space having an inner product.

We recall that the orthogonalization process leading to the orthonormal system
ϕ1, ϕ2, . . . is described by the following relations:

ϕ1 = ψ1

‖ψ1‖ , ϕ2 = ψ2 − 〈ψ2, ϕ1〉ϕ1

‖ψ2 − 〈ψ2, ϕ1〉ϕ1‖ ,

ϕn = ψn −∑n−1
k=1〈ψn,ϕk〉ϕk

‖ψn −∑n−1
k=1〈ψn,ϕk〉ϕk‖

.

Example 5 The process of orthogonalizing the linearly independent system {1, x,
x2, . . .} in R2([−1,1],R) leads to the system of orthogonal polynomials known as
the Legendre polynomials. We note that the name Legendre polynomials is often
given not to the orthonormal system, but to a system of polynomials proportional

2J.P. Gram (1850–1916) – Danish mathematician who continued the research of P.L. Chebyshev
and exhibited the connection between orthogonal series expansions and the problem of best least-
squares approximation (see Fourier series below). It was in these investigations that the orthogo-
nalization process and the famous Gram matrix arose (see p. 187 and the system (18.18) on p. 504).
3E. Schmidt (1876–1959) – German mathematician who studied the geometry of Hilbert space in
connection with integral equations and described it in the language of Euclidean geometry.
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to these polynomials. The proportionality factor can be chosen from various con-
siderations, for example, requiring the leading coefficient to be 1 or requiring the
polynomial to have the value 1 at x = 1. The orthogonality of the system is unaf-
fected by these requirements, but in general orthonormality is lost.

We have already encountered the standard Legendre polynomials, which are de-
fined by Rodrigues’ formula

Pn(x)= 1

n!2n
dn(x2 − 1)n

dxn
.

For these polynomials Pn(1)= 1. Let us write out the first few Legendre polynomi-
als, normalized by requiring the leading coefficient to be 1:

P̃0(x)≡ 1, P̃1(x)= x, P̃2(x)= x2 − 1

3
, P̃3(x)= x3 − 3

5
x.

The orthonormalized Legendre polynomials have the form

P̂n(x)=
√

2n+ 1

2
Pn(x),

where n= 0,1,2, . . . .
One can verify by direct computation that these polynomials are orthogonal on

the closed interval [−1,1]. Taking Rodrigues’ formula as the definition of the poly-
nomial Pn(x), let us verify that the system of Legendre polynomials {Pn(x)} is
orthogonal on the closed interval [−1,1]. To do this, it suffices to verify that Pn(x)
is orthogonal to 1, x, . . . , xn−1, since all polynomials Pk of degree k < n are linear
combinations of these.

Integrating by parts for k < n, we indeed find that

∫ 1

−1
xkPn(x)dx = 1

k!2k
∫ 1

−1

dk+1xk

dxk+1
· dn−k−1(x2 − 1)n

dxn−k−1
dx = 0.

A certain picture of the origin of orthogonal systems of functions in analysis will
be given in the last subsection of this section and in the problems at the end of the
section. At present we shall return to the fundamental general problems connected
with the expansion of a vector in terms of vectors of a given system of vectors in a
vector space with inner product.

d. Continuity of the Inner Product and the Pythagorean Theorem

We shall have to work not only with finite sums of vectors but also with infinite sums
(series). In this connection we note that the inner product is a continuous function,
enabling us to extend the ordinary algebraic properties of the inner product to the
case of series.
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Let X be a vector space with an inner product 〈, 〉 and the norm it induces ‖x‖ :=√〈x, x, 〉 (see Sect. 10.1). Convergence of a series
∑∞
i=1 xi = x of vectors xi ∈ X

to the vector x ∈X will be understood in the sense of convergence in this norm.

Lemma 1 (Continuity of the inner product) Let 〈, 〉 :X→C be an inner product in
the complex vector space X. Then

a) the function (x, y) �→ 〈x, y〉 is continuous jointly in the two variables;
b) if x =∑∞i=1 xi , then 〈x, y〉 =∑∞i=1〈xi, y〉;
c) if e1, e2, . . . , is an orthonormal system of vectors in X and x =∑∞i=1 x

iei
and y =∑∞i=1 y

iei , then 〈x, y〉 =∑∞i=1 x
i ȳi .

Proof Assertion a) follows from the Cauchy–Bunyakovskii inequality (see
Sect. 10.1):

∣
∣〈x − x0, y − y0〉

∣
∣2 ≤ ‖x − x0‖2 · ‖y − y0‖2.

Assertion b) follows from a), since

〈x, y〉 =
n∑

i=1

〈xi, y〉 +
〈 ∞∑

i=n+1

xi, y

〉

,

and
∑∞
i=n+1 xi→ 0 as n→∞.

Assertion c) follows by repeated application of b), taking account of the relation
〈x, y〉 = 〈y, x〉. �

The following result is an immediate consequence of the lemma.

Theorem 1 (Pythagoras4)

a) If {xi} is a system of mutually orthogonal vectors and x =∑i xi , then ‖x‖2 =∑
i ‖xi‖2.
b) If {ei} is an orthonormalized system of vectors and x =∑i x

iei , then ‖x‖2 =∑
i |xi |2.

18.1.2 Fourier Coefficients and Fourier Series

a. Definition of the Fourier Coefficients and the Fourier Series

Let {ei} be an orthonormal system and {li} an orthogonal system of vectors in a
space X with inner product 〈, 〉.

4Pythagoras of Samos (conjectured to be 580–500 BCE) – famous ancient Greek mathematician
and idealist philosopher, founder of the Pythagorean school, which, in particular, made the dis-
covery that the side and diagonal of a square are incommensurable, a discovery that disturbed the
ancients. The classical Pythagorean theorem itself was known in a number of countries long before
Pythagoras (possibly without proof, to be sure).
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Suppose that x =∑i x
i li . The coefficients xi in this expansion of the vector x

can be found directly:

xi = 〈x, li〉〈li , li〉 .
If li = ei , the expression becomes even simpler:

xi = 〈x, ei〉.
We remark that the formulas for xi make sense and are completely determined

if the vector x itself and the orthogonal system {li} (or {ei}) are given. The equal-
ity x =∑i x

i li (or x =∑i x
iei ) is no longer needed to compute xi from these

formulas.

Definition 5 The numbers { 〈x,li 〉〈li ,li 〉 } are the Fourier coefficients of the vector x ∈ X
in the orthogonal system {li}.

If the system {ei} is orthonormal, the Fourier coefficients have the form {〈x, ei〉}.
From the geometric point of view the ith Fourier coefficient 〈x, ei〉 of the vector

x ∈ X is the projection of that vector in the direction of the unit vector ei . In the
familiar case of three-dimensional Euclidean space E3 with a given orthonormal
frame e1, e2, e3 the Fourier coefficients xi = 〈x, ei〉, i = 1,2,3, are the coordinates
of the vector x in the basis e1, e2, e3 appearing in the expansion x = x1e1 + x2e2 +
x3e3.

If we were given only the two vectors e1 and e2 instead of all three e1, e2, e3, the
expansion x = x1e1 + x2e2 in this system would certainly not be valid for all vec-
tors x ∈ E3. Nevertheless, the Fourier coefficients xi = 〈x, ei〉, i = 1,2, would be
defined in this case and the vector xe = x1e1+x2e2 would be the orthogonal projec-
tion of the vector x onto the plane L of the vectors e1 and e2. Among all the vectors
in that plane, the vector xe is distinguished by being closest to x in the sense that
‖x − y‖ ≥ ‖x − xe‖ for any vector y ∈ L. This is the remarkable extremal property
of the Fourier coefficients, to which we shall return below in the general situation.

Definition 6 If X is a vector space with inner product 〈, 〉 and l1, l2, . . . , ln, . . . is
an orthogonal system of nonzero vectors in X, then for each vector x ∈X one can
form the series

x ∼
∞∑

k=1

〈x, lk〉
〈lk, lk〉 lk. (18.8)

This series is the Fourier series of x in the orthogonal system {lk}.
If the system {lk} is finite, the Fourier series reduces to its finite sum.
In the case of an orthonormal system {ek} the Fourier series of a vector x ∈ X

has a particularly simple expression:

x ∼
∞∑

k=1

〈x, ek〉ek. (18.8′)
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Example 6 Let X =R2([−π,π],R). Consider the orthogonal system

{1, coskx, sin kx; k ∈N}

of Example 1. To the function f ∈ R2([−π,π],R) there corresponds a Fourier
series

f ∼ a0(f )

2
+
∞∑

k=1

ak(f ) coskx + bk(f ) sin kx

in this system. The coefficient 1
2 is included in the zeroth term so as to give a uni-

fied appearance to the following formulas, which follow from the definition of the
Fourier coefficients:

ak(f ) = 1

π

∫ π

−π
f (x) coskx dx, k = 0,1,2, . . . (18.9)

bk(f ) = 1

π

∫ π

−π
f (x) sin kx dx, k = 1,2, . . . . (18.10)

Let us set f (x) = x. Then ak = 0, k = 0,1,2, . . . , and bk = (−1)k+1 2
k

, k =
1,2, . . . . Hence in this case we obtain

f (x)= x ∼
∞∑

k=1

(−1)k+1 2

k
sin kx.

Example 7 Let us consider the orthogonal system {eikx; k ∈ Z} of Example 1 in
the space R2([−π,π],C). Let f ∈R2([−π,π],C). According to Definition 5 and
relations (18.4), the Fourier coefficients {ck(f )} of f in the system {eikx} are ex-
pressed by the following formula:

ck(f )= 1

2π

∫ π

−π
f (x)e−ikx dx

(
= 〈f (x), e

ikx〉
〈eikx, eikx〉

)
. (18.11)

Comparing Eqs. (18.9), (18.10), and (18.11) and taking account of Euler’s for-
mula eiϕ = cosϕ + i sinϕ, we obtain the following relations between the Fourier
coefficients of a given function in the trigonometric systems written in real and
complex forms:

ck =
{

1
2 (ak − ibk), if k ≥ 0,
1
2 (a−k + ib−k), if k < 0.

(18.12)

In order that the case k = 0 not be an exception in formulas (18.9) and (18.12),
it is customary to use a0 to denote not the Fourier coefficient itself, but rather its
double, as was done above.
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b. Basic General Properties of Fourier Coefficients and Series

The following geometric observation is key in this section.

Lemma (Orthogonal complement) Let {lk} be a finite or countable system of
nonzero pairwise orthogonal vectors in X, and suppose the Fourier series of x ∈X
in the system {lk} converges to xl ∈X.

Then in the representation x = xl + h the vector h is orthogonal to xl ; moreover,
h is orthogonal to the entire linear subspace generated by the system of vectors {lk},
and also to its closure in X.

Proof Taking account of the properties of the inner product, we see that it suffices
to verify that 〈h, lm〉 = 0 for every lm ∈ {lk}.

We are given that

h= x − xl = x −
∑

k

〈x, lk〉
〈lk, lk〉 lk.

Hence

〈h, lm〉 = 〈x, lm〉 =
∑

k

〈x, lk〉
〈lk, lk〉 〈lk, lm〉 = 〈x, lm〉 −

〈x, lm〉
〈lm, lm〉 〈lm, lm〉 = 0.

�

Geometrically this lemma is transparent, and we have already essentially pointed
it out when we considered a system of two orthogonal vectors in three-dimensional
Euclidean space in Sect. 18.1.2a.

On the basis of this lemma we can draw a number of important general conclu-
sions on the properties of Fourier coefficients and Fourier series.

Bessel’s Inequality

Taking account of the orthogonality of the vectors xl and h in the decomposition
x = xl + h, we find by the Pythagorean theorem that ‖x‖2 = ‖xl‖2 + ‖h‖2 ≥ ‖xl‖2

(the hypotenuse is never smaller than the leg). This relation, written in terms of
Fourier coefficients, is called Bessel’s inequality.

Let us write it out. By the Pythagorean theorem

‖xl‖2 =
∑

k

∣∣∣
∣
〈x, lk〉
〈lk, lk〉

∣∣
∣∣

2

〈lk, lk〉. (18.13)

Hence

∑

k

|〈x, lk〉|2
〈lklk〉 ≤ ‖x‖

2. (18.14)
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This is Bessel’s inequality. It has a particularly simply appearance for an or-
thonormal system of vectors {ek}:

∑

k

∣∣〈x, ek〉
∣∣2 ≤ ‖x‖2. (18.15)

In terms of the Fourier coefficients αk themselves Bessel’s inequality (18.14) can
be written as

∑
k |αk|2‖lk‖2 ≤ ‖x‖2, which in the case of an orthonormal system

reduces to
∑
k |αk|2 ≤ ‖x‖2.

We have included the absolute value sign in the Fourier coefficient, since we are
allowing complex vectors spaces X. In this case the Fourier coefficient may assume
complex values.

We note that in deriving Bessel’s inequality we made use of the assumption that
the vector xl exists and that Eq. (18.13) holds. But if the system {lk} is finite, there
is no doubt that the vector xl does exist (that is, that the Fourier series converges
in X). Hence inequality (18.14) holds for every finite subsystem of {lk}, and then it
must hold for the whole system as well.

Example 8 For the trigonometric system (see formulas (18.9) and (18.10)) Bessel’s
inequality has the form

|a0(f )|2
2

+
∞∑

k=1

∣∣ak(f )
∣∣2 + ∣∣bk(f )

∣∣2 ≤ 1

π

∫ π

−π
|f |2(x)dx. (18.16)

For the system {eikx; k ∈ Z} (see formula (18.11)) Bessel’s inequality can be
written in a particularly elegant form:

+∞∑

−∞

∣∣ck(f )
∣∣2 ≤ 1

2π

∫ π

−π
|f |2(x)dx. (18.17)

Convergence of Fourier Series in a Complete Space

Suppose
∑
k x
kek =∑k〈x, ek〉ek is the Fourier series of the vector x ∈ X in the

orthonormal system {ek}. By Bessel’s inequality (18.15) the series
∑
k |xk|2 con-

verges. By the Pythagorean theorem

∥∥xmem + · · · + xnen
∥∥2 = ∣∣xm∣∣2 + · · · + ∣∣xn∣∣2.

By the Cauchy convergence criterion for a series, the right-hand side of this
equality becomes less than any ε > 0 for all sufficiently large values ofm and n >m.
Hence we then have

∥∥xmem + · · · + xnen
∥
∥<
√
ε.
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Consequently, the Fourier series
∑
k x
kek satisfies the hypotheses of the Cauchy

convergence criterion for series and therefore converges provided the original space
X is complete in the metric induced by the norm ‖x‖ =√〈x, x〉.

To simplify the writing we have carried out the reasoning for a Fourier series in
an orthonormal system. But everything can be repeated for a Fourier series in any
orthogonal system.

The Extremal Property of the Fourier Coefficients

We shall show that if the Fourier series
∑
k x
kek =∑k

〈x,ek〉〈ek,ek〉ek of the vector x ∈X
in the orthonormal system {ek} converges to a vector xl ∈ X, then the vector xl
is precisely the one that gives the best approximation of x among all vectors y =∑∞
k=1 αkek of the space L spanned by {ek}, that is, for every y ∈L,

‖x − xl‖ ≤ ‖x − y‖,
and equality holds only for y = xl .

Indeed, by the orthogonal complement lemma and the Pythagorean theorem,

‖x − y‖2 = ∥∥(x − xl)+ (xl − y)
∥∥2 = ∥∥h+ (xl − y)

∥∥2 =
= ‖h‖2 + ‖xl − y‖2 ≥ ‖h‖2 = ‖x − xl‖2.

Example 9 Digressing slightly from our main purpose, which is the study of ex-
pansions in orthogonal systems, let us assume that we have an arbitrary system of
linearly independent vectors x1, . . . , xn in X and are seeking the best approxima-
tion of a given vector x ∈ X by linear combinations

∑n
k=1 αkxk of vectors of the

system. Since we can use the orthogonalization process to construct an orthonormal
system e1, . . . , en that generates the same space L that is generated by the vectors
x1, . . . , xn, we can conclude from the extremal property of the Fourier coefficients
that there exists a unique vector xl ∈ L such that ‖x − xl‖ = infy∈L ‖x − y‖. Since
the vector h= x − xl is orthogonal to the space L, from the equality xl + h= x we
obtain the system of equations

⎧
⎪⎨

⎪⎩

〈x1, x1〉α1 + · · · + 〈xn, x1〉αn = 〈x, x1〉,
...

〈x1, xn〉α1 + · · · + 〈xn, xn〉αn = 〈x, xn〉
(18.18)

for the coefficients α1, . . . , αn of the expansion xl =∑n
k=1 αkxk of the unknown

vector xl in terms of the vectors of the system x1, . . . , xn. The existence and unique-
ness of the solution of this system follow from the existence and uniqueness of the
vector xl . In particular, it follows from this by Cramer’s theorem that the determi-
nant of this system is nonzero. In other words, we have shown as a by-product that
the Gram determinant of a system of linearly independent vectors is nonzero.
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This approximation problem and the system of Eqs. (18.18) corresponding to it
arise, as we have already noted, for example, in processing experimental data by
Gauss’ least-squares method. (See also Problem 1.)

c. Complete Orthogonal Systems and Parseval’s Equality

Definition 7 The system {xα;α ∈ A} of vectors of a normed space X is complete
with respect to the set E ⊂ X (or complete in E) if every vector x ∈ E can be
approximated with arbitrary accuracy in the sense of the norm of X by finite linear
combinations of vectors of the system.

If we denote by L{xα} the linear span in X of the vectors of the system (that is,
the set of all finite linear combinations of vectors of the system), Definition 7 can be
restated as follows:

The system {xα} is complete with respect to the set E ⊂ X if E is contained in
the closure L{xα} of the linear span of the vectors of the system.

Example 10 If X =E3 and e1, e2, e3 is a basis in E3, then the system {e1, e2, e2} is
complete in X. The system {e1, e2} is not complete in X, but it is complete relative
to the set L{e1, e2} or any subset E of it.

Example 11 Let us regard the sequence of functions 1, x, x2, . . . as a system of
vectors {xk; k = 0,1,2, . . .} in the space R2([a, b],R) or R2([a, b],C). If C[a, b]
is a subspace of the continuous functions, then this system is complete with respect
to the set C[a, b].

Proof Indeed, for any function f ∈ C[a, b] and for every number ε > 0, the Weier-
strass approximation theorem implies that there exists an algebraic polynomial P(x)
such that maxx∈[a,b] |f (x)− P(x)|< ε. But then

‖f − P‖ :=
√∫ b

a

|f − P |2(x)dx < ε√b− a

and hence one can approximate the function f · in the sense of the norm of the space
R2([a, b]) with arbitrary accuracy. �

We note that, in contrast to the situation in Example 9, in the present case not
every continuous function on the closed interval [a, b] is a finite linear combination
of the functions of this system; rather, such a function can only be approximated
by such linear combinations. Thus C[a, b] ⊂ L{xn} in the sense of the norm of the
space R2[a, b].

Example 12 If we remove one function, for example the function 1, from the system
{1, coskx, sin kx; k ∈ N}, the remaining system {coskx, sin kx; k ∈ N} is no longer
complete in R2([−π,π],C) or R2([−π,π],R).
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Proof Indeed, by the extremal property of the Fourier coefficients the best approxi-
mation of the function f (x)≡ 1 among all the finite linear combinations

Tn(x)=
n∑

k=1

(ak coskx + bk sin kx)

of any length n is given by the trigonometric polynomial Tn(x) in which ak and bk
are the Fourier coefficients of the function 1 with respect to the orthogonal system
{coskx, sin kx; k ∈ N}. But by relations (18.5), such a polynomial of best approxi-
mation must be zero. Hence we always have

‖1− Tn‖ ≥ ‖1‖ =
√∫ π

−π
1 dx =√2π > 0,

and it is impossible to approximate 1 more closely than
√

2π by linear combinations
of functions of this system. �

Theorem (Completeness conditions for an orthogonal system) Let X be a vector
space with inner product 〈, 〉, and l1, l2, . . . , ln, . . . a finite or countable system of
nonzero pairwise orthogonal vectors in X. Then the following conditions are equiv-
alent:

a) the system {lk} is complete with respect to the set5 E ⊂X;
b) for every vector x ∈E ⊂X the following (Fourier series) expansion holds:

x =
∑

k

〈x, lk〉
〈lk, lk〉 lk; (18.19)

c) for every vector x ∈E ⊂X Parseval’s6 equality holds:

‖x‖2 =
∑

k

|〈x, lk〉|2
〈lk, lk〉 . (18.20)

Equations (18.19) and (18.20) have a particularly simple form in the case of an
orthonormal system {ek}. In that case

x =
∑

k

〈x, ek〉ek (18.19′)

and

‖x‖ =
∑

k

∣∣〈x, ek〉
∣∣2. (18.20′)

5The set E may, in particular, consist of a single vector that is of interest for one reason or another.
6M.A. Parseval (1755–1836) – French mathematician who discovered this relation for the trigono-
metric system in 1799.
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Thus the important Parseval equality (18.20) or (18.20′) is the Pythagorean the-
orem written in terms of the Fourier coefficients.

Let us now prove this theorem.

Proof a)⇒ b) by virtue of the extremal property of Fourier coefficients;
b)⇒ c) by the Pythagorean theorem;
c)⇒ a) since by the lemma on the orthogonal complement (see Sect. b) above)

the Pythagorean theorem implies

∥
∥
∥
∥
∥
x −

n∑

k=1

〈x, lk〉
〈lk, lk〉 lk

∣
∣
∣
∣
∣

2

= ‖x‖2 −
∥
∥
∥
∥
∥

n∑

k=1

〈x, lk〉
〈lk, lk〉 lk

∣
∣
∣
∣
∣

2

= ‖x‖2 −
n∑

k=1

|〈x, lk〉|2
〈lk, lk〉 . �

Remark We note that Parseval’s equality implies the following simple necessary
condition for completeness of an orthogonal system with respect to a set E ⊂X: E
does not contain a nonzero vector orthogonal to all the vectors in the system.

As a useful supplement to this theorem and the remark just made, we prove the
following general proposition.

Proposition Let X be a vector space with an inner product and x1, x2, . . . a system
of linearly independent vectors in X. In order for the system {xk} to be complete
in X,

a) a necessary condition is that there be no nonzero vector in X orthogonal to
all the vectors in the system;

b) ifX is a complete (Hilbert) space, it suffices thatX contain no nonzero vector
orthogonal to all the vectors in the system.

Proof a) If the vector h is orthogonal to all the vectors in the system {xk}, we con-
clude by the Pythagorean theorem that no linear combination of vectors in the sys-
tem can differ from h by less than ‖h‖. Hence, if the system is complete, then
‖h‖ = 0.

b) By the orthogonalization process we can obtain an orthonormal system {ek}
whose linear span L{ek} is the same as the linear span L{xk} of the original system.

We now take an arbitrary vector x ∈X. Since the spaceX is complete, the Fourier
series of x in the system {ek} converges to a vector xe ∈ X. By the lemma on the
orthogonal complement, the vector h = x − xe is orthogonal to the space L{ek} =
L{xk}. By hypothesis h= 0, so that x = xe, and the Fourier series converges to the
vector x itself. Thus the vector x can be approximated arbitrarily closely by finite
linear combinations of vectors of the system {ek} and hence also by finite linear
combinations of the vectors of the system {xk}. �

The hypothesis of completeness in part b) of this proposition is essential, as the
following example shows.
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Fig. 18.1

Example 13 Consider the space l2 (see Sect. 10.1) of real sequences a = (a1, a2, . . .)

for which
∑∞
j=1(a

j )2 < ∞. We define the inner product of the vectors a =
(a1, a2, . . .) and b= (b1, b2, . . .) in l2 in the standard way: 〈a, b〉 :=∑∞j=1 a

jbj .
Now consider the orthonormal system ek = (0, . . . ,0︸ ︷︷ ︸

k

,1,0,0, . . .), k = 1,2, . . . .

The vector e0 = (1,0,0, . . .) does not belong to this system. We now add to the
system {ek; k ∈ N} the vector e = (1,1/2,1/22,1/23, . . .) and consider the linear
span L{e, e1, e2, . . .} of these vectors. We can regard this linear span as a vector
space X (a subspace of l2) with the inner product from l2.

We note that the vector e0 = (1,0,0, . . .) obviously cannot be obtained as a finite
linear combination of vectors in the system e, e1, e2, . . . , and therefore it does not
belong to X. At the same time, it can be approximated as closely as desired in l2 by
such linear combinations, since e−∑n

k=1
1

2k ek = (1,0, . . . ,0, 1
2n+1 ,

1
2n+2 , . . .).

Hence we have established simultaneously that X is not closed in l2 (and there-
fore X, in contrast to l2, is not a complete metric space) and that the closure of X in
l2 coincides with l2, since the system e0, e1, e2, . . . generates the entire space l2.

We now observe that in X = L{e, e1, e2, . . .} there is no nonzero vector orthogo-
nal to all the vectors e1, e2, . . . .

Indeed, let x ∈X, that is, x = αe+∑n
k=1 αkek , and let 〈x, ek〉 = 0, k = 1,2, . . . .

Then 〈x, en+1〉 = α

2n+1 = 0, that is, α = 0. But then αk = 〈x, ek〉 = 0, k = 1, . . . , n.
Hence we have constructed the required example: the orthogonal system

e1, e2, . . . is not complete in X, sine it is not complete in the closure of X, which
coincides with l2.

This example is of course typically infinite-dimensional. Figure 18.1 represents
an attempt to illustrate what is going on.

We note that in the infinite-dimensional case (which is so characteristic of analy-
sis) the possibility of approximating a vector arbitrarily closely by linear combina-
tions of vectors of a system and the possibility of expanding the vector in a series of
vectors of the system are in general different properties of the system.

A discussion of this problem and the concluding Example 14 will clarify the
particular role of orthogonal systems and Fourier series for which these properties
hold or do not hold simultaneously (as the theorem proved above shows).

Definition 8 The system x1, x2, . . . , xn, . . . of vectors of a normed vector space X
is a basis of X if every finite subsystem of it consists of linearly independent vectors
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and every vector x ∈ X can be represented as x =∑k αkxk , where αk are coeffi-
cients from the scalar field of X and the convergence (when the sum is infinite) is
understood in the sense of the norm on X.

How is the completeness of a system of vectors related to the property of being
a basis?

In a finite-dimensional space X completeness of a system of vectors in X, as
follows from considerations of compactness and continuity, is obviously equivalent
to being a basis in X. In the infinite-dimensional case that is in general not so.

Example 14 Consider the set C([−1,1],R) of real-valued functions that are con-
tinuous on [−1,1] as a vector space over the field R with the standard inner product
defined by (18.3). We denote this space by C2([−1,1],R) and consider the system
of linearly independent vectors 1, x, x2, . . . in it.

This system is complete in C2([−1,1],R) (see Example 11), but is not a basis.

Proof We first show that if the series
∑∞
k=0 αkx

k converges in C2([−1,1],R), that
is, in the mean-square sense on [−1,1], then, regarded as a power series, it con-
verges pointwise on the open interval ]−1,1[.

Indeed, by the necessary condition for convergence of a series, we have
‖αkxk‖→ 0 as k→∞. But

∥∥αkxk
∥∥2 =

∫ 1

−1

(
αkx

k
)2 dx = α2

k

2

2k + 1
.

Hence |αk|<
√

2k+ 1 for all sufficiently large values of k. In that case the power
series

∑∞
k=0 αkx

k definitely converges on the interval ]−1,1[.
We now denote the sum of this power series on ]−1,1[ by ϕ. We remark that

on every closed interval [a, b] ⊂ ]−1,1[ the power series converges uniformly to
ϕ|[a,b]. Consequently it also converges in the sense of mean-square deviation.

It now follows that if a continuous function f is the sum of this series in the sense
of convergence in C2([−1,1],R), then f and ϕ are equal on ]−1,1[. But the func-
tion ϕ is infinitely differentiable. Hence if we take any function in C2([−1,1],R)
that is not infinitely differentiable on ]−1,1[ it cannot be expanded in a series in the
system {xk; k = 0,1, . . .}. �

Thus, if we take, for example, the function x = |x| and the sequence of numbers
{εn = 1

n
;n ∈N}, we can construct a sequence {Pn(x);n ∈N} of finite linear combi-

nations Pn(x)= α0 + α1x + · · · + αnxn of elements of the system {xk; k ∈N} such
that ‖f −Pn‖< 1

n
, that is, Pn→ f as n→∞. If necessary, one could assume that

in each such linear combination Pn(x) the coefficients can be assumed to have been
chosen in the unique best-possible way (see Example 9). Nevertheless, the expan-
sion f =∑∞k=0 αkx

k will not arise since in passing from Pn(x) to Pn+1(x), not only
the coefficient αn+1 changes, but also possibly the coefficients α0, . . . , αn.
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If the system is orthogonal, this does not happen (α0, . . . , αn do not change)
because of the extremal property of Fourier coefficients.

For example, one could pass from the system of monomials {xk} to the orthog-
onal system of Legendre polynomials and expand f (x)= |x| in a Fourier series in
that system.

18.1.3 *An Important Source of Orthogonal Systems of Functions
in Analysis

We now give an idea as to how various orthogonal systems of functions and Fourier
series in those systems arise in specific problems.

Example 15 (The Fourier method) Let us regard the closed interval [0, l] as the
equilibrium position of a homogeneous elastic string fastened at the endpoints of
this interval, but otherwise free and capable of making small transverse oscillations
about this equilibrium position. Let u(x, t) be a function that describes these oscil-
lations, that is, at each fixed instant of time t = t0 the graph of the function u(x, t0)
over the closed interval 0 ≤ x ≤ l gives the shape of the string at time t0. This in
particular, means that u(0, t) = u(l, t) = 0 at every instant t , since the ends of the
string are clamped.

It is known (see for example Sect. 14.4) that the function u(x, t) satisfies the
equation

∂2u

∂t2
= a2 ∂

2u

∂x2
, (18.21)

where the positive coefficient a depends on the density and elastic constant of the
string.

Equation (18.21) alone is of course insufficient to determine the function u(x, t).
From experiment we know that the motion u(x, t) is uniquely determined if, for
example, we prescribe the position u(x,0)= ϕ(x) of the string at some time t = 0
(which we shall call the initial instant) and the velocity ∂u

∂t
(x,0) = ψ(x) of the

points of the string at that time. Thus, if we stretch the string into the shape ϕ(x)
and let it go, then ψ(x)≡ 0.

Hence the problem of free oscillations of the string7 that is fixed at the ends of
the closed interval [0, l] has been reduced to finding a solution u(x, t) of Eq. (18.21)
together with the boundary conditions

u(0, t)= u(l, t)= 0 (18.22)

7We note that the foundations of the mathematical investigation of the oscillations of a string were
laid by Brook Taylor.
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and the initial conditions

u(x,0)= ϕ(x), ∂u

∂t
(x,0)=ψ(x). (18.23)

To solve such problems there exists a very natural procedure called the method
of separation of variables or the Fourier method in mathematics. It consists of the
following. The solution u(x, t) is sought in the form of a series

∑∞
n=1Xn(x)Tn(t)

whose terms X(x)T (t) are solutions of an equation of special form (with variables
separated) and satisfy the boundary conditions. In the present case, as we see, this
is equivalent to expanding the oscillations u(x, t) into a sum of simple harmonic
oscillations (more precisely a sum of standing waves).

Indeed, if the function X(x)T (t) satisfies Eq. (18.21), then X(x)T ′′(t) =
a2X′′(x)T (t), that is,

T ′′(t)
a2T (t)

= X
′′(x)
X(x)

. (18.24)

In Eq. (18.24) the independent variables x and t are on opposite sides of the
equation (they have been separated), and therefore both sides actually represent the
same constant λ. If we also take into account the boundary conditions X(0)T (t)=
X(l)T (t) = 0 that the solution of stationary type must satisfy, we see that finding
such a solution reduces to solving simultaneously the two equations

T ′′(t) = λa2T (t), (18.25)

X′′(x) = λX(x) (18.26)

under the condition that X(0)=X(l)= 0.
It is easy to write the general solution of each of these equations individually:

T (t) = A cos
√
λat +B sin

√
λat, (18.27)

X(x) = C cos
√
λx +D sin

√
λx. (18.28)

If we attempt to satisfy the conditionsX(0)=X(l)= 0, we find that for λ �= 0 we
must have C = 0, and, rejecting the trivial solutionD = 0, we find that sin

√
λl = 0,

from which we find
√
λ=±nπ/l, n ∈N .

Thus it turns out that the number λ in Eqs. (18.25) and (18.26) can be chosen only
among a certain special series of numbers (the so-called eigenvalues of the problem),
λn = (nπ/l)2, where n ∈ N . Substituting these values of λ into the expressions
(18.27) and (18.28), we obtain a series of special solutions

un(x, t)= sinn
π

l
x

(
An cosn

πa

l
t +Bn sinn

πa

l
t

)
, (18.29)

satisfying the boundary conditions un(0, t) = un(l, t)= 0 (and describing a stand-
ing wave of the form Φ(x) · sin(ωt + θ), in which each point x ∈ [0, l] undergoes
simple harmonic oscillations with its own amplitude Φ(x) but the same frequency
ω for all points).
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The quantities ωn = nπal , n ∈ N, are called, for natural reasons, the natural fre-
quencies of the string, and its simplest harmonic oscillations (18.29) are called the
natural oscillations of the string. The oscillation u1(x, t) with smallest natural fre-
quency is often called the fundamental tone of the string and the other natural fre-
quencies u2(x, t), u3(x, t), . . . are called overtones (it is the overtones that form
the sound quality, called the timbre, characteristic of each particular musical instru-
ment).

We now wish to represent the oscillation u(x, t) we are seeking as a sum∑∞
n=1 un(x, t) of the natural oscillations of the string. The boundary conditions

(18.22) are automatically satisfied in this case, and we need worry only about the
initial conditions (18.23), which mean that

ϕ(x)=
∞∑

n=1

An sinn
π

l
x (18.30)

and

ψ(x)=
∞∑

n=1

n
πa

l
Bn sinn

π

l
x. (18.31)

Thus the problem has been reduced to finding the coefficients An and Bn, which
up to now have been free, or, what is the same, to expanding the functions ϕ and ψ
in Fourier series in the system {sinnπ

l
x;n ∈N}, which is orthogonal on the interval

[0, l].

It is useful to remark that the functions {sinnπ
l
x;n ∈ N}, which arose from

Eq. (18.26) can be regarded as eigenvectors of the linear operator A = d2

dx2 corre-
sponding to the eigenvalues λn = nπl , which in turn arose from the condition that the
operator A acts on the space of functions in C(2)[0, l] that vanish at the endpoints
of the closed interval [0, l]. Hence Eqs. (18.30) and (18.31) can be interpreted as
expansions in eigenvectors of this linear operator.

The linear operators connected with particular problems are one of the main
sources of orthogonal systems of functions in analysis.

We now recall another fact known from algebra, which reveals the reason why
such systems are orthogonal.

Let Z be a vector space with inner product 〈, 〉, and let E be a subspace (possibly
equal to Z itself) that is dense in Z. A linear operator A : E→ Z is symmetric
if 〈Ax,y〉 = 〈x,Ay〉 for every pair of vectors x, y ∈ E. Then: eigenvectors of a
symmetric operator corresponding to different eigenvalues are orthogonal.

Proof Indeed, if Au= αu and Av = βv, and α �= β , then

α〈u,v〉 = 〈Au,v〉 = 〈u,Av〉 = β〈u,v〉,
from which it follows that 〈u,v〉 = 0. �
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It is now useful to look at Example 3 from this point of view. There we were

essentially considering the eigenfunctions of the operator A= ( d2

dx2 + q(x)) operat-

ing on the space of functions in C(2)[a, b] that vanish at the endpoints of the closed
interval [a, b]. Through integration by parts one can verify that this operator is sym-
metric on this space (with respect to the standard inner product (18.4)), so that the
result of Example 4 is a particular manifestation of this algebraic fact.

In particular, when q(x) ≡ 0 the operator A becomes d2

dx2 , which for [a, b] =
[0, l] occurred in the last example (Example 15).

We note also that in this example the question reduced to expanding the functions
ϕ and ψ (see relations (18.30) and (18.31)) in a series of eigenfunctions of the oper-

ator A= d2

dx2 . Here of course the question arises whether it is theoretically possible
to form such an expansion, and this question is equivalent, as we now understand,
to the question of the completeness of the system of eigenfunctions for the operator
in question in the given space of functions.

The completeness of the trigonometric system (and certain other particular sys-
tems of orthogonal functions) in R2[−π,π] seems to have been stated explicitly
for the first time by Lyapunov.8 The completeness of the trigonometric system
in particular was implicitly present in the work of Dirichlet devoted to studying
the convergence of trigonometric series. Parseval’s equality, which is equivalent to
completeness for the trigonometric system, as already noted, was discovered by
Parseval at the turn of the nineteenth century. In its general form, the question of
completeness of orthogonal systems and their application in the problems of math-
ematical physics were one of the main subjects of the research of Steklov,9 who
introduced the very concept of completeness (closedness) of an orthogonal sys-
tem into mathematics. In studying completeness problems, by the way, he made
active use of the method of integral averaging (smoothing) of a function (see
Sects. 17.4 and 17.5), which for that reason is often called the Steklov averaging
method.

18.1.4 Problems and Exercises

1. The method of least squares. The dependence y = f (x1, . . . , xn) of the quantity
y on the quantities x1, . . . , xn is studied experimentally. As a result of m (≥ n)

8A.M. Lyapunov (1857–1918) – Russian mathematician and specialist in mechanics, a brilliant
representative of the Chebyshev school, creator of the theory of stability of motion. He successfully
studied various areas of mathematics and mechanics.
9V.A. Steklov (1864–1926) – Russian/Soviet mathematician, a representative of the Petersburg
mathematical school founded by Chebyshev and founder of the school of mathematical physics in
the USSR. The Mathematical Institute of the Russian Academy of Sciences bears his name.



514 18 Fourier Series and the Fourier Transform

experiments, a table was obtained

x1 x2 · · · xn y

a1
1 a1

2 · · · a1
n b1

...
...

. . .
...

...

am1 am2 · · · amn bm

each of whose rows contains a set (ai1, a
i
2, . . . , a

i
n) of values of the parameters

x1, x2, . . . , xn and the value bi of the quantity y corresponding to them, measured by
some device with a certain precision. From these experimental data we would like to
obtain an empirical formula of the form y =∑n

i=1 αixi convenient for computation.
The coefficients α1, α2, . . . , αn of the required linear function are to be chosen so

as to minimize the quantity
√∑m

k=1(b
k −∑n

k=1 αia
k
i )

2, which is the mean-square
deviation of the data obtained using the empirical formula from the results obtained
in the experiments.

Interpret this problem as the problem of best approximation of the vector
(b1, . . . , bm) be linear combinations of the vectors (a1

i , . . . , a
m
i ), i = 1, . . . , n and

show that the question reduces to solving a system of linear equations of the same
type as Eq. (18.18).
2. a) Let C[a, b] be the vector space of functions that are continuous on the closed
interval [a, b] with the metric of uniform convergence and C2[a, b] the same vector
space but with the metric of mean-square deviation on that closed interval (that is,

d(f,g) =
√∫ b

a
|f − g|2(x)dx). Show that if functions converge in C[a, b], they

also converge in C2[a, b], but not conversely, and that the space C2[a, b] is not
complete, in contrast to C[a, b].

b) Explain why the system of functions {1, x, x2, . . .} is linearly independent
and complete in C2[a, b], but is not a basis in that space.

c) Explain why the Legendre polynomials are a complete orthogonal system and
also a basis in C2[−1,1].

d) Find the first four terms of the Fourier expansion of the function sinπx on
the interval [−1,1] in the system of Legendre polynomials.

e) Show that the square of the norm ‖Pn‖ in C2[−1,1] of the nth Legendre
polynomial is

2

2n+ 1

(
= (−1)n

(n+ 1)(n+ 2) · · ·2n
n!22n

∫ 1

−1

(
x2 − 1

)n dx

)
.

f) Prove that among all polynomials of given degree nwith leading coefficient 1,
the Legendre polynomial P̃n(x) is the one closest to zero on the interval [−1,1].

g) Explain why the equality

∫ 1

−1
|f |2(x)dx =

∞∑

n=0

(
n+ 1

2

)∣∣∣∣

∫ 1

−1
f (x)Pn(x)dx

∣
∣∣∣

2

,
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where {P0,P1, . . .} is the system of Legendre polynomials, necessarily holds for
every function f ∈C2([−1,1],C).
3. a) Show that if the system {x1, x2, . . .} of vectors is complete in the space X and
X is an everywhere-dense subset of Y , then {x1, x2, . . .} is also complete in Y .

b) Prove that the vector space C[a, b] of functions that are continuous on the
closed interval [a, b] is everywhere dense in the space R2[a, b]. (It was asserted in
Problem 5g of Sect. 17.5 that this is true even for infinitely differentiable functions
of compact support on [a, b].)

c) Using the Weierstrass approximation theorem, prove that the trigonometric
system {1, coskx, sin kx; k ∈N} is complete in R2[−π,π].

d) Show that the systems {1, x, x2, . . .} and {1, coskx, sin kx; k ∈ N} are both
complete in R2[−π,π], but the first is not a basis in this space and the second is.

e) Explain why Parseval’s equality

1

π

∫ π

−π
|f |2(x)dx = |a0|2

2
+
∞∑

k=1

|ak|2 + |bk|2

holds, where the numbers ak and bk are defined by (18.9) and (18.10).

f) Using the result of Example 8, now show that
∑∞
n=1

1
n2 = π2

6 .

4. Orthogonality with a weight function.

a) Let p0,p1, . . . , pn be continuous functions that are positive in the domainD.
Verify that the formula

〈f,g〉 =
n∑

k=0

∫

D

pk(x)f
(k)(x)g(k)(x)dx

defines an inner product in C(n)(D,C).
b) Show that when functions that differ only on sets of measure zero are identi-

fied, the inner product

〈f,g〉 =
∫

D

p(x)f (x)g(x)dx,

involving a positive continuous function p can be introduced in the space R(D,C).
The function p here is called a weight function, and if 〈f,g〉 = 0, we say that the

functions f and g are orthogonal with weight p.
c) Let ϕ :D→G be a diffeomorphism of the domain D ⊂R

n onto the domain
G ⊂ R

n, and let {uk(y); k ∈ N} be a system of functions in G that is orthogonal
with respect to the standard inner product (18.2) or (18.3). Construct a system of
functions that are orthogonal inD with weight p(x)= |detϕ′(x)| and also a system
of functions that are orthogonal in D in the sense of the standard inner product.

d) Show that the system of functions {em,n(x, y) = ei(mx+ny);m,n ∈ N} is or-
thogonal on the square I = {(x, y) ∈R2 | |x| ≤ π ∧ |y| ≤ π}.
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e) Construct a system of functions orthogonal on the two-dimensional torus
T 2 ⊂ R

2 defined by the parametric equations given in Example 4 of Sect. 12.1.
The inner product of functions f and g on the torus is understood as the surface
integral

∫
T 2 f g dσ .

5. a) It is known from algebra (and we have also proved it in the course of dis-
cussing constrained extremal problems) that every symmetric operator A : En→
En on n-dimensional Euclidean space En has nonzero eigenvectors. In the infinite-
dimensional case this is generally not so.

Show that the linear operator f (x)→ xf (x) of multiplication by the indepen-
dent variable is symmetric in C2([a, b],R), but has no nonzero eigenvectors.

b) A Sturm10–Liouville problem that often arises in the equations of math-
ematical physics is to find a nonzero solution of an equation u′′(x) + [q(x) +
λp(x)]u(x) = 0 on the interval [a, b] satisfying certain boundary conditions, for
example u(a)= u(b)= 0.

Here it is assumed that the functions p(x) and q(x) are known and continuous
on the interval [a, b] in question and that p(x) > 0 on [a, b].

We have encountered such a problem in Example 15, where it was necessary
to solve Eq. (18.26) under the condition X(0) = X(l) = 0. In this case we had
q(x) ≡ 0,p(x) ≡ 1, and [a, b] = [0, l]. We have verified that a Sturm–Liouville
problem may in general turn out to be solvable only for certain special values of
the parameter λ, which are therefore called the eigenvalues of the corresponding
Sturm–Liouville problem.

Show that if the functions f and g are solutions of a Sturm–Liouville problem
corresponding to eigenvalues λf �= λg , then the equality d

dx (g
′f − f ′g) = (λf −

λg)pfg holds on [a, b] and the functions f and g are orthogonal on [a, b] with
weight p.

c) It is known (see Sect. 14.4) that the small oscillations of an inhomogeneous
string fastened at the ends of the closed interval [a, b] are described by the equation
(pu′x)′x = ρu′′t t , where u= u(x, t) is the function that gives the shape of the string
at each time t, ρ = ρ(x) is the linear density, and p = p(x) is the elastic constant at
the point x ∈ [a, b]. The clamping conditions mean that u(a, t)= u(b, t)= 0.

Show that if we seek the solution of this equation in the form X(x)T (t), the
question reduces to a system T ′′ = λT , (pX′)′ = λρX, in which λ is the same
number in both equations.

Thus a Sturm–Liouville problem arises for the function X(x) on the closed in-
terval [a, b], which is solvable only for particular values of the parameter λ (the
eigenvalues). (Assuming that p(x) > 0 on [a, b] and that p ∈ C(1)[a, b] we can ob-
viously bring the equation (pX′)′ = λρX into a form in which the first derivative is
missing by the change of variable x = ∫ x

a
dξ
p(ξ)

.)

10J.Ch.F. Sturm (1803–1855) – French mathematician (and, as it happens, an honorary foreign
member of the Petersburg Academy of Sciences); his main work was in the solution of boundary-
value problems for the equations of mathematical physics.
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d) Verify that the operator S(u)= (p(x)u′(x))′ −q(x)u(x) on the space of func-
tions in C(2)[a, b] that satisfy the condition u(a) = u(b) = 0 is symmetric on this
space. (That is, 〈Su, v〉 = 〈u,Sv〉, where 〈, 〉 is the standard inner product of real-
valued functions.) Verify also that the eigenfunctions of the operator S correspond-
ing to different eigenvalues are orthogonal.

e) Show that the solutionsX1 andX2 of the equation (pX′)′ = λρX correspond-
ing to different values λ1 and λ2 of the parameter λ and vanishing at the endpoints
of the closed interval [a, b] are orthogonal on [a, b] with weight ρ(x).

6. The Legendre polynomials as eigenfunctions.

a) Using the expression of the Legendre polynomials Pn(x) given in Example 5
and the equality (x2 − 1)n = (x − 1)n(x + 1)n, show that Pn(1)= 1.

b) By differentiating the identity (x2 − 1) d
dx (x

2 − 1)n = 2nx(x2 − 1)n, show
that Pn(x) satisfies the equation

(
x2 − 1

) · P ′′n (x)+ 2x · P ′n(x)− n(n+ 1)Pn(x)= 0.

c) Verify that the operator

A := (x2 − 1
) d2

dx2
+ 2x

d

dx
= d

dx

[(
x2 − 1

) d

dx

]

is symmetric in the space C(2)[−1,1] ⊂R2[−1,1]. Then, starting from the relation
A(Pn)= n(n+ 1)Pn, explain why the Legendre polynomials are orthogonal.

d) Using the completeness of the system {1, x, x2, . . .} in C(2)[−1,1], show that
the dimension of the eigenspace of the operator A corresponding to the eigenvalue
n(n+ 1) cannot be larger than 1.

e) Prove that the operator A= d
dx [(x2−1) d

dx ] cannot have eigenfunctions in the
space C(2)[−1,1] except those in the system {P0(x),P1(x), . . .} of Legendre poly-
nomials, nor any eigenvalues different from the number {n(n+ 1);n= 0,1,2, . . .}.
7. Spherical functions.

a) In solving various problems in R
3 (for example, problems of potential theory

connected with Laplace’s equation Δu= 0) the solutions are sought in the form of
a series of solutions of a special form. Such solutions are taken to be homogeneous
polynomials Sn(x, y, z) of degree n satisfying the equation Δu= 0. Such polyno-
mials are called harmonic polynomials. In spherical coordinates (r, ϕ, θ) a harmonic
polynomial Sn(x, y, z) obviously has the form rnYn(θ,ϕ). The functions Yn(θ,ϕ)
that arise in this way, depending only on the coordinates 0≤ θ ≤ π and 0≤ ϕ ≤ 2π
on the sphere, are called spherical functions. (They are trigonometric polynomials
in two variables with 2n+ 1 free coefficients in Yn, this number coming from the
condition ΔSn = 0.)

Using Green’s formula, show that for m �= n the functions Ym and Yn are or-
thogonal on the unit sphere in R

3 (in the sense of the inner product 〈Ym,Yn〉 =∫ ∫
Ym · Yn dσ , where the surface integral extends over the sphere r = 1).
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b) Starting from the Legendre polynomials, one can also introduce the polyno-
mials Pn,m = (1− x2)m/2 dmPn

dxm (x), m= 1,2, . . . , n, and consider the functions

Pn(cos θ), Pn,m(cos θ) cosmϕ, Pn,m(sin θ) sinmϕ. (*)

It turns out that every spherical function Yn(θ,ϕ) with index n is a linear com-
bination of these functions. Accepting this result and taking account of the orthog-
onality of the trigonometric system, show that the functions of the system (*) form
an orthogonal basis in the (2n+ 1)-dimensional space of spherical functions of a
given index n.

8. The Hermite polynomials. In the study of the equation of a linear oscillator in
quantum mechanics it becomes necessary to consider functions of class C(2)(R)
with the inner product 〈f,g〉 = ∫ +∞−∞ f g dx in C(2)(R)⊂ (R,C), and also the spe-

cial functions Hn(x)= (−1)nex
2 dn

dxn (e
−x2
), n= 0,1,2, . . . .

a) Show that H0(x)= 1, H1(x)= 2x, H2(x)= 4x2 − 2.
b) Prove that Hn(x) is a polynomial of degree n. The system of functions

{H0(x),H1(x), . . .} is called the system of Hermite polynomials.
c) Verify that the function Hn(x) satisfies the equation H ′′n (x) − 2xH ′n(x) +

2nHn(x)= 0.
d) The functions ψn(x) = e−x2

Hn(x) are called the Hermite functions. Show
that ψ ′′n (x)+ (2n+ 1− x2)ψn(x)= 0, and that ψn(x)→ 0 as x→∞.

e) Verify that
∫ +∞
−∞ ψnψm dx = 0 if m �= n.

f) Show that the Hermite polynomials are orthogonal on R with weight e−x2
.

9. The Chebyshev–Laguerre11 polynomials {Ln(x);n= 0,1,2, . . .} can be defined
by the formula Ln(x) := ex d(xne−x)

dxn .
Verify that

a) Ln(x) is a polynomial of degree n;
b) the function Ln(x) satisfies the equation

xL′′n(x)+ (1− x)L′n(x)+ nLn(x)= 0;
c) the system {Ln;n = 0,1,2, . . .} of Chebyshev–Laguerre polynomials is or-

thogonal with weight e−x on the half-line [0,+∞[.
10. The Chebyshev polynomials {T0(x) ≡ 1, Tn(x) = 21−n cosn(arccosx);n ∈ N}
for |x|< 1 can be defined by the formula

Tn(x)= (−2)nn!
(2n)!

√
1− x2 dn

dxn
(
1− x2)n− 1

2 .

Show that:

11E.N. Laguerre (1834–1886) – French mathematician.
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a) Tn(x) is a polynomial of degree n;
b) Tn(x) satisfies the equation

(
1− x2)T ′′n (x)− xT ′n(x)+ n2Tn(x)= 0;

c) the system {Tn;n= 0,1,2, . . .} of Chebyshev polynomials is orthogonal with
weight p(x)= 1√

1−x2
on the interval ]−1,1[.

11. a) In probability theory and theory of functions one encounters the follow-
ing system of Rademacher12 functions: {ψn(x) = ϕ(2nx);n = 0,1,2, . . .}, where
ϕ(t)= sgn(sin 2πt). Verify that this is an orthonormal system on the closed interval
[0,1].

b) The system of Haar13 functions {χn,k(x)}, where n = 0,1,2, . . . and k =
1,2,22, . . . is defined by the relations

χn,k(x)=

⎧
⎪⎪⎨

⎪⎪⎩

1, if 2k−2
2n+1 < x <

2k−1
2n+1 ,

−1, if 2k−1
2n+1 < x <

2k
2n+1 ,

0 at all other points of [0,1].

Verify that Haar system is orthogonal on the closed interval [0,1].
12. a) Show that every n-dimensional vector space with an inner product is isomet-
rically isomorphic to the arithmetic Euclidean space R

n of the same dimensions.

b) We recall that a metric space is called separable if it contains a countable
everywhere-dense subset. Prove that if a vector space with inner product is sepa-
rable as a metric space with the metric induced by the inner product, then it has a
countable orthonormal basis.

c) Let X be a separable Hilbert space (that is, X is a separable and complete
metric space with the metric induced by the inner product in X). Taking an or-
thonormal basis {ei; i ∈ N} in X, we construct the mapping X � x �→ (c1, c2, . . .),
where ci = 〈x, ei〉 are the Fourier coefficients of the expansion of the vector in the
basis {ei}. Show that this mapping is a bijective, linear, and isometric mapping of X
onto the space l2 considered in Example 14.

d) Using Fig. 18.1, exhibit the basic idea of the construction of Example 14,
and explain why it comes about precisely because the space in question is infinite-
dimensional.

e) Explain how to construct an analogous example in the space of functions
C[a, b] ⊂R2[a, b].

12H.A. Rademacher (1892–1969) – German mathematician (American after 1936).
13A. Haar (1885–1933) – Hungarian mathematician.
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18.2 Trigonometric Fourier Series

18.2.1 Basic Types of Convergence of Classical Fourier Series

a. Trigonometric Series and Trigonometric Fourier Series

A classical trigonometric series is a series of the form14

a0

2
+
∞∑

k=1

ak coskx + bk sin kx, (18.32)

obtained on the basis of the trigonometric system {1, coskx, sin kx; k ∈ N}. The
coefficients {a0, ak, bk; k ∈ N} here are real or complex numbers. The partial sums
of the trigonometric series (18.32) are the trigonometric polynomials

Tn(x)= a0

2
+

n∑

k=1

ak coskx + bk sin kx (18.33)

corresponding to degree n.
If the series (18.32) converges pointwise on R, its sum f (x) is obviously a func-

tion of period 2π on R. It is completely determined by its restriction to any closed
interval of length 2π .

Conversely, given a function of period 2π on R (oscillations, a signal, and the
like) that we wish to expand into a sum of certain canonical periodic functions, the
first claimants for such canonical status are the simplest functions of period 2π ,
namely {1, coskx, sinkx; k ∈ N}, which are simple harmonic oscillations of entire
frequencies.

Suppose we have succeeded in representing a continuous function as the sum

f (x)= a0

2
+
∞∑

k=1

ak coskx + bk sin kx (18.34)

of a trigonometric series that converges uniformly to it. Then the coefficients of the
expansion (18.34) can be easily and uniquely found.

Multiplying Eq. (18.34) successively by each function of the system

{1, cosks, sin kx; k ∈N},
using the fact that termwise integration is possible in the resulting uniformly con-
vergent series, and taking account of the relations

∫ π

−π
12 dx = 2π,

14Writing the constant term in the form a0/2, which is convenient for Fourier series, is not obliga-
tory here.
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∫ π

−π
cosmx cosnx dx =

∫ π

−π
sinmx sinnx dx = 0 for m �= n,m,n ∈N,

∫ π

−π
cos2 nx dx =

∫ π

−π
sin2 nx dx = π, n ∈N,

we find the coefficients

ak = ak(f )= 1

π

∫ π

−π
f (x) coskx dx, k = 0,1, . . . , (18.35)

bk = bk(f )= 1

π

∫ π

−π
f (x) sin kx dx, k = 1,2, . . . (18.36)

of the expansion (18.34) of the function f in a trigonometric series.
We have arrived at the same coefficients that we would have had if we had re-

garded (18.34) as the expansion of the vector f ∈ R2[−π,π] in the orthogonal
system {1, coskx, sin kx; k ∈ N}. This is not surprising, since the uniform conver-
gence of the series (18.34) of course implies convergence in the mean on the closed
interval [−π,π], and then the coefficients of (18.34) must be the Fourier coefficients
of the function f in the given orthogonal system (see Sect. 18.1).

Definition 1 If the integrals (18.35) and (18.36) have meaning for a function f ,
then the trigonometric series

f ∼ a0(f )

2
+
∞∑

k=1

ak(f ) coskx + bk(f ) sin kx (18.37)

assigned to f is called the trigonometric Fourier series of f .

Since there will be no Fourier series in this section except trigonometric Fourier
series, we shall occasionally allow ourselves to drop the word “trigonometric” and
speak of just “the Fourier series of f ”.

In the main we shall be dealing with functions of class R([−π,π],C), or,
slightly more generally, with functions whose squared absolute values are integrable
(possibly in the improper sense) on the open interval ]−π,π[. We retain our pre-
vious notation R2[−π,π] to denote the vector space of such functions with the
standard inner product

〈f,g〉 =
∫ π

−π
f g dx. (18.38)

Bessel’s inequality

|a0(f )|2
2

+
∞∑

k=1

∣
∣ak(f )

∣∣2 + ∣∣bk(f )
∣∣2 ≤ 1

π

∫ π

−π
|f |2(x)dx, (18.39)
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which holds for every function f ∈R2([−π,π],C), shows that by no means ev-
ery trigonometric series (18.32) can be the Fourier series of some function f ∈
R2[−π,π].

Example 1 The trigonometric series

∞∑

k=1

sin kx√
k
,

as we already know (see Example 7 of Sect. 16.2) converges on R, but is not the
Fourier series of any function f ∈ R2[−π,π], since the series

∑∞
k=1(

1√
k
)2 di-

verges.
Thus, arbitrary trigonometric series (18.32) will not be studied here, only Fourier

series (18.37) of functions in R2[−π,π], and functions that are absolutely inte-
grable on ]−π,π[.

b. Mean Convergence of a Trigonometric Fourier Series

Let

Sn(x)= a0(f )

2
+

n∑

k=1

ak(f ) coskx + bk(f ) sin kx, (18.40)

be the nth partial sum of the Fourier series of the function f ∈ R2[−π,π]. The
deviation of Sn from f can be measured both in the natural metric of the space
R2[−π,π] induced by the inner product (18.38), that is, in the sense of the mean-
square deviation

‖f − Sn‖ =
√∫ π

−π
|f − Sn|2(x)dx (18.41)

of Sn from f on the interval [−π,π], and in the sense of pointwise convergence on
that interval.

The first of these two kinds of convergence was studied for an arbitrary se-
ries in Sect. 18.1. Making the results obtained there specific in the context of a
trigonometric Fourier series involves first of all noting that the trigonometric system
{1, coskx, sin kx; k ∈N} is complete in R2[−π,π]. (This has already been noted in
Sect. 18.1 and will be proved independently in Sect. 18.2.4 of the present section.)

Hence, the fundamental theorem of Sect. 18.1 enables us to say in the present
case that the following theorem is true.

Theorem 1 (Mean convergence of a trigonometric Fourier series) The Fourier se-
ries (18.37) of any function f ∈ R2([−π,π],C) converges to the function in the
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mean (18.41), that is,

f (x) =
R2

a0(f )

2
+
∞∑

k=1

ak(f ) coskx + bk(f ) sin kx,

and Parseval’s equality holds:

1

π

∫ π

−π
|f |2(x)dx = |a0(f )|2

2
+
∞∑

k=1

∣∣ak(f )
∣∣2 + ∣∣bk(f )

∣∣2. (18.42)

We shall often use the more compact complex notation for trigonometric poly-
nomials and trigonometric series, based on the Euler formulas eix = cosx + i sinx,
cosx = 1

2 (e
ix + e−ix), sinx = 1

2i (e
ix − e−ix). Using them, we can write the partial

sum (18.40) of the Fourier series as

Sn(x)=
n∑

k=−n
cke

ikx, (18.40′)

and the series (18.37) itself as

f ∼
+∞∑

−∞
cke

ikx, (18.37′)

where

ck =

⎧
⎪⎪⎨

⎪⎪⎩

1
2 (ak − ibk), if k > 0,
1
2a0, if k = 0,
1
2 (a−k + ib−k), if k < 0,

(18.43)

that is,

ck = ck(f )= 1

2π

∫ π

−π
f (x)e−ikx dx, k ∈ Z, (18.44)

and hence the numbers ck are simply the Fourier coefficients of f in the system
{eikx; k ∈ Z}.

We call attention to the fact that summation of the Fourier series (18.37′) is un-
derstood in the sense of the convergence of the sums (18.40′).

In complex notation Theorem 1 means that for every function f ∈R2([−π,π],C)

f (x) =
R2

∞∑

−∞
ck(f )e

ikx

and

1

2π
‖f ‖2 =

∞∑

−∞

∣∣ck(f )
∣∣2. (18.45)
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c. Pointwise Convergence of a Trigonometric Fourier Series

Theorem 1 gives a complete solution to the problem of mean convergence of a
Fourier series (18.37), that is, convergence in the norm of the space R2[−π,π].
The remainder of this section will be mainly devoted to studying the conditions for
and the nature of pointwise convergence of a trigonometric series. We shall consider
only the simplest aspects of this problem. The study of pointwise convergence of a
trigonometric series, as a rule, is such a delicate matter that, despite the traditional
central position occupied by Fourier series after the work of Euler, Fourier, and Rie-
mann, there is still no intrinsic description of the class of functions that can be repre-
sented by trigonometric series converging to them at every point (the Riemann prob-
lem). Until recently it was not even known whether the Fourier series of a continuous
function must converge to it almost everywhere (it was known that convergence need
not occur at every point). Previously A.N. Kolmogorov15 had even given an exam-
ple of a function f ∈ L[−π,π] whose Fourier series diverged everywhere (where
L[−π,π] is the space of Lebesgue-integrable functions on the interval [−π,π],
obtainable as the metric completion of the space R[−π,π]), and D.E. Men’shov16

constructed a trigonometric series (18.32) with coefficients not all zero that never-
theless converged to zero almost everywhere (Men’shov’s null-series). The problem
posed by N.N. Luzin17 (Luzin’s problem) of determining whether the Fourier series
of every function f ∈ L2[−π,π] converges almost everywhere (where L2[−π,π]
is the metric completion of R2[−π,π]) was answered in the affirmative only in
1966 by L. Carleson.18 It follows in particular from Carleson’s result that the Fourier
series of every function f ∈R2[−π,π] (for example a continuous function) must
converge at almost all points of the closed interval [−π,π].

18.2.2 Investigation of Pointwise Convergence of a Trigonometric
Fourier Series

a. Integral Representation of the Partial Sum of a Fourier Series

Let us now turn our attention to the partial sum (18.40) of the Fourier series (18.37)
and, using the complex notation (18.40′) for the expression (18.44) for the Fourier

15A.N. Kolmogorov (1903–1987) – outstanding Soviet scholar, who worked in probability the-
ory, mathematical statistics, theory of functions, functional analysis, topology, logic, differential
equations, and applied mathematics.
16D.E. Men’shov (1892–1988) – Soviet mathematician, one of the greatest specialists in the theory
of functions of a real variable.
17N.N. Luzin (1883–1950) – Russian/Soviet mathematician, one of the greatest specialists in the
theory of functions of a real variable, founder of the large Moscow mathematical school (“Lusita-
nia”).
18L. Carleson (b. 1928) – outstanding Swedish mathematician whose main works are in various
areas of modern analysis.
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coefficients, we make the following transformations:

Sn(x) =
n∑

k=−n

(
1

2π

∫ π

−π
f (t)e−ikt dt

)
eikx =

= 1

2π

∫ π

−π
f (t)

(
n∑

k=−n
eik(x−t)

)

dt. (18.46)

But

Dn(u) :=
n∑

k=−n
eiku = ei(n+1)u − e−inu

eiu − 1
= ei(n+ 1

2 )u − e−i(n+ 1
2 )u

ei
1
2u − e−i 1

2u
, (18.47)

and, as can be seen from the very definition, Dn(u)= (2n+ 1) if eiu = 1.
Hence

Dn(u)= sin(n+ 1
2 )u

sin 1
2u

, (18.48)

where the ratio is regarded as 2n+ 1 when the denominator of the fraction becomes
zero.

Continuing the computation (18.46), we now have

Sn(x)= 1

2π

∫ π

−π
f (t)Dn(x − t)dt. (18.49)

We have thus represented Sn(x) as the convolution of the function f with the
function (18.48), which is called the Dirichlet kernel.

As can be seen from the original definition (18.47) of the function Dn(u), the
Dirichlet kernel is of period 2π and even, and, in addition

1

2π

∫ π

−π
Dn(u)du= 1

π

∫ π

0
Dn(u)du= 1. (18.50)

Assuming the function f is of period 2π on R or is extended from [−π,π] to R

so as to have period 2π , and making a change of variable in (18.49), we obtain

Sn(x)= 1

2π

∫ π

−π
f (x − t)Dn(t)dt = 1

2π

∫ π

−π
f (x − t) sin(n+ 1

2 )t

sin 1
2 t

dt. (18.51)

In carrying out the change of variable here, we used the fact that the integral of a
periodic function is the same over every interval whose length equals a period.
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Taking account of the fact that Dn(t) is an even function, we can rewrite
Eq. (18.51) as

Sn(x)= 1

2π

∫ π

0

(
f (x − t)+ f (x + t))Dn(t)dt =

= 1

2π

∫ π

0

(
f (x − t)+ f (x + t)) sin(n+ 1

2 )t

sin 1
2 t

dt. (18.52)

The Riemann–Lebesgue Lemma and the Localization Principle

The representation (18.52) for the partial sum of a trigonometric Fourier series,
together with an observation of Riemann stated below, forms the basis for studying
the pointwise convergence of a trigonometric Fourier series.

Lemma 1 (Riemann–Lebesgue) If a locally integrable function f : ]ω1,ω2[→R is
absolutely integrable (perhaps in the improper sense) on an open interval ]ω1,ω2[,
then

∫ ω2

ω1

f (x)eiλx dx→ 0 as λ→∞, λ ∈R. (18.53)

Proof If ]ω1,ω2[ is a finite interval and f (x)≡ 1, then Eq. (18.53) can be verified
by direct integration and passage to the limit.

We shall reduce the general case to this simplest one.
Fixing an arbitrary ε > 0, we first choose an interval [a, b] ⊂ ]ω1,ω2[ such that

for every λ ∈R
∣∣∣∣

∫ ω2

ω1

f (x)eiλx dx −
∫ b

a

f (x)eiλx dx

∣∣∣∣< ε. (18.54)

In view of the estimates
∣∣∣∣

∫ ω2

ω1

f (x)eiλx dx −
∫ b

a

f (x)eiλx dx

∣∣∣∣≤

≤
∫ a

ω1

∣∣f (x)eiλx
∣∣dx +

∫ ω2

b

∣∣f (x)eiλx
∣∣dx =

∫ a

ω1

|f |(x)dx +
∫ ω2

b

|f |(x)dx

and the absolute integrability of f on ]ω1,ω2[, there does of course exist such a
closed interval [a, b].

Since f ∈R([a, b],R) (more precisely f |[a,b] ∈R([a, b])), there exists a lower
Darboux sum

∑n
j=1mjΔxj , where mj = infx∈[xj−1,xj ] f (x), such that

0<
∫ b

a

f (x)dx −
n∑

j=1

mjΔxj < ε.
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Now introducing the piecewise constant function g(x)=mj for x ∈ [xj−1, xj ],
j = 1, . . . , n, we find that g(x)≤ f (x) on [a, b] and

0 ≤
∣∣∣∣

∫ b

a

f (x)eiλx dx −
∫ b

a

g(x)eiλx dx

∣∣∣∣≤

≤
∫ b

a

∣∣f (x)− g(x)∣∣∣∣eiλx∣∣dx =
∫ b

a

(
f (x)− g(x))dx < ε, (18.55)

but

∫ b

a

g(x)eiλx dx =
n∑

j=1

∫ xj

xj−1

mj e
iλx dx =

= 1

iλ

n∑

j=1

(
mj e

iλx
)∣∣xj
xj−1
→ 0 as λ→∞, λ ∈R. (18.56)

Comparing relations (18.53)–(18.56), we find what was asserted. �

Remark 1 Separating the real and imaginary parts in (18.53), we find that
∫ ω2

ω1

f (x) cosλx dx→ 0 and
∫ ω2

ω1

f (x) sinλx dx→ 0 (18.57)

as λ→∞, λ ∈ R. If the function f in the preceding integrals had been complex,
then, separating the real and imaginary parts in them, we would have found that
relations (18.57), and consequently (18.53), would actually be valid for complex-
valued functions f : ]ω1,ω2[→C.

Remark 2 If it is known that f ∈R2[−π,π], then by Bessel’s inequality (18.39)
we can conclude immediately that

∫ π

−π
f (x) cosnx dx→ 0 and

∫ π

−π
f (x) sinnx dx→ 0

as n→∞, n ∈ N. Theoretically, we could have gotten by with just this discrete
version of the Riemann–Lebesgue lemma for the elementary investigations of the
classical Fourier series that will be carried out here.

Returning now to the integral representation (18.52) of the partial sum of a
Fourier series, we remark that if the function f satisfies the hypotheses of the
Riemann–Lebesgue lemma, then, since sin 1

2 t ≥ sin 1
2δ > 0 for 0 < δ ≤ t ≤ π , we

can use (18.57) to write

Sn(x)= 1

2π

∫ δ

0

(
f (x− t)+f (x+ t)) sin(n+ 1

2 )t

sin 1
2 t

dt +o(1) as n→∞. (18.58)
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The important conclusion one can deduce from (18.58) is that the convergence
or divergence of a Fourier series at a point is completely determined by the behavior
of the function in an arbitrarily small neighborhood of the point.

We state this principle as the following proposition.

Theorem 2 (Localization principle) Let f and g be real- or complex-valued locally
integrable functions on ]−π,π[ and absolutely integrable on the whole interval
(possibly in the improper sense).

If the functions f and g are equal in any (arbitrarily small) neighborhood of the
point x0 ∈ ]−π,π[, then their Fourier series

f (x)∼
+∞∑

−∞
ck(f )e

ikx, g(x)∼
+∞∑

−∞
ck(g)e

ikx

either both converge or both diverge at x0. When they converge, their limits are
equal.19

Remark 3 As can be seen from the reasoning used in deriving Eqs. (18.52) and
(18.58), the point x0 in the localization principle may also be an endpoint of the
closed interval [−π,π], but then (and this is essential!) in order for the periodic
extensions of the functions f and g from the closed interval [−π,π] to R to be equal
on a neighborhood of x0 it is necessary (and sufficient) that the original functions
be equal on a neighborhood of both endpoints of the closed interval [−π,π].

c. Sufficient Conditions for a Fourier Series to Converge at a Point

Definition 2 A function f : U̇ → C defined on a deleted neighborhood of a point
x ∈R satisfies the Dini conditions at x if

a) both one-sided limits

f (x−)= lim
t→+0

f (x − t), f (x+)= lim
t→+0

f (x + t)

exist at x;
b) the integral

∫

+0

(f (x − t)− f (x−))+ (f (x + t)− f (x+))
t

dt

converges absolutely.20

19Although the limit need not be f (x0)= g(x0).
20What is meant is that the integral

∫ ε
0 converges absolutely for some value ε > 0.
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Example 2 If f is a continuous function in U(x) satisfying the Hölder condition
∣∣f (x + t)− f (x)∣∣≤M|t |α, 0< α ≤ 1,

then, since the estimate
∣∣∣∣
f (x + t)− f (x)

t

∣∣∣∣≤
M

|t |1−α
now holds, the function f satisfies the Dini conditions at x.

It is also clear that if a continuous function f defined in a deleted neighborhood
U̇ (x) of x has one-sided limits f (x−) and f (x+) and satisfies one-sided Hölder
conditions

∣
∣f (x + t)− f (x+)

∣
∣ ≤Mtα,

∣
∣f (x − t)− f (x−)

∣
∣ ≤Mtα,

where t > 0, 0 < α ≤ 1, and M is a positive constant, then f will satisfy the Dini
conditions for the same reason as above.

Definition 3 We shall call a real- or complex-valued function f piecewise-
continuous on the closed interval [a, b] if there is a finite set of points a = x0 <

x1 < · · ·< xn = b in this interval such that f is defined on each interval ]xj−1, xj [,
j = 1, . . . , n, and has one-sided limits on approach to its endpoints.

Definition 4 A function having a piecewise-continuous derivative on a closed in-
terval is piecewise continuously differentiable on that interval.

Example 3 If a function is piecewise continuously differentiable on a closed inter-
val, then it satisfies the Hölder conditions with exponent α = 1 at every point of the
interval, as follows from Lagrange’s finite-increment (mean-value) theorem. Hence,
by Example 1, such a function satisfies Dini’s conditions at every point of the in-
terval. At the endpoints of the interval, of course only the corresponding one-sided
pair of Dini’s conditions needs to be verified.

Example 4 The function f (x) = sgnx satisfies Dini’s conditions at every point
x ∈R, even at zero.

Theorem 3 (Sufficient conditions for convergence of a Fourier series at a point)
Let f :R→C be a function of period 2π that is absolutely integrable on the closed
interval [−π,π]. If f satisfies the Dini conditions at a point x ∈R, then its Fourier
series converges at that point, and

+∞∑

−∞
ck(f )e

ikx = f (x−)+ f (x+)
2

. (18.59)
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Proof By relations (18.52) and (18.50)

Sn(x)− f (x−)+ f (x+)
2

=

= 1

π

∫ π

0

(f (x − t)− f (x−))+ (f (x + t)− f (x+))
2 sin 1

2 t
sin

(
n+ 1

2

)
t dt.

Since 2 sin 1
2 t ∼ t as t→+0, by the Dini conditions and the Riemann–Lebesgue

lemma we see that this last integral tends to zero as n→∞. �

Remark 4 In connection with the theorem just proved and the localization principle,
we note that changing the value of the function at a point has no influence on the
Fourier coefficients or the Fourier series or the partial sums of the Fourier series.
Therefore the convergence and the sum of such a series at a point is determined not
by the particular value of the function at the point, but by the integral mean of its
values in an arbitrarily small neighborhood of the point. It is this fact that is reflected
in Theorem 3.

Example 5 In Example 6 of Sect. 18.1 we found the Fourier series

x ∼
∞∑

k=1

2
(−1)k+1

k
sinkx (18.60)

for the function f (x) = x on the closed interval [−π,π]. Extending the function
f (x) periodically from the interval ]−π,π[ to the whole real line, we may assume
that the series (18.60) is the Fourier series of this extended function. Then, on the
basis of Theorem 3 we find that

∞∑

k=1

2
(−1)k+1

k
sinkx =

{
x, if |x|< π,
0, if |x| = π.

In particular, for x = π
2 it follows from this relation that

∞∑

n=0

(−1)n

2n+ 1
= π

4
.

Example 6 Let α ∈R and |α|< 1. Consider the 2π -periodic function f (x) defined
on the closed interval [−π,π] by the formula f (x)= cosαx.

By formulas (18.35) and (18.36) we find its Fourier coefficients

an(f ) = 1

π

∫ π

−π
cosαx cosnx dx = (−1)n sinπα

π
· 2α

α2 − n2
,

bn(f ) = 1

π

∫ π

−π
cosαx sinnx dx = 0.
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By Theorem 3 the following equality holds at each point x ∈ [−π,π]:

cosαx = 2α sinπα

π

(
1

2α2
+
∞∑

n=1

(−1)n

α2 − n2
cosnx

)

.

When x = π , this relation implies

cotπα − 1

πα
= 2α

π

∞∑

n=1

1

α2 − n2
. (18.61)

If |α| ≤ α0 < 1, then | 1
α2−n2 | ≤ 1

n2−α2
0

, and hence the series on the right-hand

side of Eq. (18.61) converges uniformly with respect to α on every closed interval
|α| ≤ α0 < 1. Hence it is legitimate to integrate it termwise, that is,

∫ π

0

(
cotπα − 1

πα

)
dx =

∞∑

n=1

∫ π

0

2α dα

α2 − n2
,

and

ln
sinπα

πα

∣∣∣∣

π

0
=
∞∑

n=1

ln
∣∣α2 − n2

∣∣
∣∣∣∣

π

0
,

yielding

ln
sinπx

πx
=
∞∑

n=1

ln

(
1− x

2

n2

)
,

and finally,

sinπx

πx
=
∞∏

n=1

(
1− x

2

n2

)
when |x|< 1. (18.62)

We have thus proved relation (18.62), which we mentioned earlier when deriving
the complement formula for Euler’s function Γ (x) (Sect. 17.3).

d. Fejér’s Theorem

Let us now consider the sequence of functions

σn(x) := S0(x)+ · · · + Sn(x)
n+ 1

,

that are the arithmetic means of the corresponding partial sums S0(x), . . . , Sn(x) of
the trigonometric Fourier series (18.37) of a function f :R→C of period 2π .
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From the integral representation (18.51) of the partial sum of the Fourier series
we have

σn(x)= 1

2π

∫ π

−π
f (x − t)Fn(t)dt,

where

Fn(t)= 1

n+ 1

(
D0(t)+ · · · +Dn(t)

)
.

Recalling the explicit form (18.48) of the Dirichlet kernel and taking account of
the relation

n∑

k=0

sin

(
k+ 1

2

)
t = 1

2

(
sin

1

2
t

)−1 n∑

k=0

(
coskt − cos(k + 1)t

)= sin2( n+1
2 )t

sin 1
2 t

,

we find

Fn(t)= sin2 n+1
2 t

(n+ 1) sin2 1
2 t
.

The function Fn is called the Fejér kernel, more precisely the nth Fejér kernel.21

Taking account of the original definition (18.47) of the Dirichlet kernel Dn, one
can conclude that the Fejér kernel is a smooth function of period 2π whose value
equals (n+ 1) where the denominator of this last fraction equals zero.

The properties of the Fejér and Dirichlet kernels are similar in many ways, but in
contrast to the Dirichlet kernel, the Fejér kernel is also nonnegative, so that we have
the following lemma.

Lemma 2 The sequence of functions

Δn(x)=
{

1
2πFn(x), if |x| ≤ π,
0, if |x|> π

is an approximate identity on R.

Proof The nonnnegativity of Δn(x) is clear.
Equality (18.50) enables us to conclude that

∫ ∞

−∞
Δn(x)dx =

∫ π

−π
Δn(x)dx = 1

2π

∫ π

−π
Fn(x)dx =

= 1

2π(n+ 1)

n∑

k=0

∫ π

−π
Dk(x)dx = 1.

21L. Fejér (1880–1956) – well-known Hungarian mathematician.
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Finally, for every δ > 0

0≤
∫ −δ

−∞
Δn(x)dx =

∫ +∞

δ

Δn(x)dx =
∫ π

δ

Δn(x)dx ≤

≤ 1

2π(n+ 1)

∫ π

δ

dx

sin2 1
2x
→ 0

as n→+∞. �

Theorem 4 (Fejér) Let f : R→ C be a function of period 2π that is absolutely
integrable on the closed interval [−π,π]. If

a) f is uniformly continuous on the set E ⊂R, then

σn(x)⇒ f (x) on E as n→∞;
b) f ∈ C(R,C), then

σn(x)⇒ f (x) on R as n→∞;
c) f is continuous at the point x ∈R, then

σn(x)→ f (x) as n→∞.

Proof Statements b) and c) are special cases of a).
Statement a) itself is a special case of the general Proposition 5 of Sect. 17.4 on

the convergence of a convolution, since

σn(x)= 1

2π

∫ π

−π
f (x − t)Fn(t)dt = (f ∗Δn)(x). �

Corollary 1 (Weierstrass’ theorem on approximation by trigonometric polynomi-
als) If a function f : [−π,π] → C is continuous on the closed interval [−π,π]
and f (−π)= f (π), then this function can be approximated uniformly on the closed
interval [−π,π] with arbitrary precision by trigonometric polynomials.

Proof Extending f as a function of period 2π , we obtain a continuous 2π -periodic
function on R, to which the trigonometric polynomials σn(x) converge uniformly
by Fejér’s theorem. �

Corollary 2 If f is continuous at x, its Fourier series either diverges at x or con-
verges to f (x).

Proof Only the case of convergence requires formal verification. If the sequence
Sn(x) has a limit as n→∞, then the sequence σn(x)= S0(x)+···+Sn(x)

n+1 has that same
limit. But by Fejér’s theorem σn(x)→ f (x) as n→∞, and hence Sn(x)→ f (x)

also whenever the limit Sn(x) exists as n→∞. �
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Remark 5 We note that the Fourier series of a continuous function really can diverge
at some points.

18.2.3 Smoothness of a Function and the Rate of Decrease
of the Fourier Coefficients

a. An Estimate of the Fourier Coefficients of a Smooth Function

We begin with a simple, yet important and useful lemma.

Lemma 3 (Differentiation of a Fourier series) If a continuous function f ∈
C([−π,π],C) assuming equal values at the endpoints of the closed interval
[−π,π] is piecewise continuously differentiable on [−π,π], then the Fourier se-
ries of its derivative

f ′ ∼
∞∑

−∞
ck
(
f ′
)
eikx

can be obtained by differentiating formally the Fourier series

f ∼
∞∑

−∞
ck(f )e

ikx

of the function itself, that is,

ck
(
f ′
)= ikck(f ), k ∈ Z. (18.63)

Proof Starting from the definition of the Fourier coefficients (18.44), we find
through integration by parts that

ck
(
f ′
)= 1

2π

∫ π

−π
f ′(x)e−ikx dx = 1

2π
f (x)e−ikx

∣∣π−π +
ik

2π

∫ π

−π
f (x)e−ikx dx =

= ikck(f ),

since f (π)e−ikπ − f (−π)eikπ = 0. �

Proposition 1 (Connection between smoothness of a function and the rate of de-
crease of its Fourier coefficients) Let f ∈ C(m−1)([−π,π],C) and f (j)(−π) =
f (j)(π), j = 0,1, . . . ,m− 1. If the function f has a piecewise-continuous deriva-
tive f (m) of order m on the closed interval [−π,π], then

ck
(
f (m)
)= (ik)mck(f ), k ∈ Z, (18.64)
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and

∣∣ck(f )
∣∣= γk

|k|m = o
(

1

km

)
as k→∞, k ∈ Z; (18.65)

moreover,
∑∞
−∞ γ 2

k <∞.

Proof Relation (18.64) follows from an m-fold application of Eq. (18.63):

ck
(
f (m)
)= (ik)ck

(
f (m−1))= · · · = (ik)mck(f ).

Setting γk = |ck(f (m))| and using Bessel’s inequality

∞∑

−∞

∣
∣ck
(
f (m)
)∣∣2 ≤ 1

2π

∫ π

−π
∣
∣f (m)

∣
∣2(x)dx,

we obtain (18.65) from (18.64). �

Remark 6 In the proposition just proved, as in Lemma 3, instead of assuming the
conditions f (j)(−π) = f (j)(π), we could have assumed that f is a function of
period 2π on the entire line.

Remark 7 If a trigonometric Fourier series were written in the form (18.37), rather
than in the complex form (18.37′), it would be necessary to replace the simple rela-
tions (18.64) by noticeably more cumbersome equalities, whose meaning, however,
would be the same: under these hypotheses a Fourier series can be differentiated
termwise whichever from it is written in, (18.37) or (18.37′). As for the estimates of
the Fourier coefficients, ak(f ) and bk(f ) of (18.37), since ak(f )= ck(f )+ c−k(f )
and bk(f )= i(ck(f )− c−k(f )), (see formulas (18.43)) it follows from (18.65) that
if a function f satisfies the hypotheses of the proposition, then

∣∣ak(f )
∣∣= αk

km
,

∣∣bk(f )
∣∣= βk

km
, k ∈N, (18.64′)

where
∑∞
k=1 α

2
k <∞ and

∑∞
k=1 β

2
k <∞, and we can assume that αk = βk = γk +

γ−k .

b. Smoothness of a Function and the Rate of Convergence of Its Fourier Series

Theorem 5 If the function f : [−π,π]→C is such that

a) f ∈ C(m−1)[−π,π], m ∈N,
b) f (j)(−π)= f (j)(π), j = 0,1, . . . ,m− 1,
c) f has a piecewise continuous mth derivative f (m) on [−π,π], m ≥ 1, then

the Fourier series of f converges absolutely and uniformly on [−π,π] to f , and
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the deviation of the nth partial sum Sn(x) of the Fourier series from f (x) has the
following estimate on the entire interval:

∣∣f (x)− Sn(x)
∣∣≤ εn

nm−1/2
,

where {εn} is a sequence of positive numbers tending to zero.

Proof We write the partial sum (18.40) of the Fourier series in the compact notation
(18.40′):

Sn(x)=
n∑

−n
ck(f )e

ikx .

According to the assumptions on the function f and Proposition 1 we have
|ck(f )| = γk/|k|m, and

∑
γk/|k|m <∞: since 0 ≤ γk/|k|m ≤ 1

2 (γ
2
k + 1/k2m) and

m ≥ 1, we have
∑
γk/|k|m <∞. Hence the sequence Sn(x) converges uniformly

on [−π,π] (by the Weierstrass M-test for series and the Cauchy criterion for se-
quences).

By Theorem 3 the limit S(x) of Sn(x) equals f (x), since the function f satisfies
the Dini conditions at each point of the closed interval [−π,π] (see Example 3).
And, since f (−π)= f (π), the function f can be extended to R as a periodic func-
tion with the Dini conditions holding at each point x ∈R.

Now, using relation (18.63), we can proceed to obtain an estimate:

∣∣f (x)− Sn(x)
∣∣ = ∣∣S(x)− Sn(x)

∣∣=
∣∣∣∣∣

∞∑

±k=n+1

ck(f )e
ikx

∣∣∣∣∣
≤

≤
∞∑

±k=n+1

∣∣ck(f )
∣∣=

∞∑

±k=n+1

γk/|k|m ≤

≤
( ∞∑

±k=n+1

γ 2
k

)1/2( ∞∑

±k=n+1

1/k2m

)1/2

.

The first factor on the right-hand side of the Cauchy–Bunyakovskii inequality
here tends to zero as n→∞, since

∑∞
−∞ γ 2

k <∞.
Next (see Fig. 18.2)

∞∑

k=n+1

1/k2m ≤
∫ ∞

n

dx

x2m
= 1

2m− 1
· 1

n2m−1
.

We thus obtain the assertion of Theorem 5. �

In connection with these results we now make a number of useful remarks.
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Fig. 18.2

Fig. 18.3

Remark 8 One can now easily obtain again the Weierstrass approximation theorem
stated in Corollary 1 from Theorem 5 (and Theorem 3, of which essential use was
made in the proof of Theorem 5), independently of Fejér’s theorem.

Proof It suffices to prove this result for real-valued functions. Using the uniform
continuity of f on [−π,π], we approximate f on this closed interval uniformly
within ε/2 by a piecewise-linear continuous function ϕ(x) assuming the same val-
ues as f at the endpoints, that is, ϕ(−π)= ϕ(π)= f (π) (Fig. 18.3). By Theorem 5
the Fourier series of ϕ converges to ϕ uniformly on the closed interval [−π,π].
Taking a partial sum of this series that differs from ϕ(x) by less than ε/2, we obtain
a trigonometric polynomial that approximates the original function f within ε on
the whole interval [−π,π]. �

Remark 9 Let us assume that we have succeeded in representing a function f hav-
ing a jump singularity as the sum f = ϕ + ψ of a certain smooth function ψ and
a simple function ϕ having the same singularity as f (Fig. 18.4a, c, b). Then the
Fourier series of f is the sum of the Fourier series of ψ , which converges rapidly
and uniformly by Theorem 5, and the Fourier series of the function ϕ. The latter
can be regarded as known, if we take the standard function ϕ (shown in the figure
as ϕ(x)=−π − x for −π < x < 0 and ϕ(x)= π − x for 0< x < π ).

This observation can be used both in theoretical and computational problems
connected with series (it is Krylov’s22 method of separating singularities and im-

22A.N. Krylov (1863–1945) – Russian/Soviet specialist in mechanics and mathematics, who made
a large contribution to computational mathematics, especially in methods of computing the ele-
ments of ships.
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Fig. 18.4

proving the convergence of series) and in the theory of trigonometric Fourier series
itself (see for example the Gibbs23 phenomenon, described below in Problem 11).

Remark 10 (Integration of a Fourier series) By Theorem 5 we can state and prove
the following complement to Lemma 3 on differentiation of a Fourier series.

Proposition 2 If the function f : [−π,π] → C is piecewise continuous, then after
integration the correspondence f (x)∼∑∞−∞ ck(f )eikx becomes the equality

∫ x

0
f (t)dt = c0(f )x +

∞∑

−∞
′ ck(f )
ik

(
eikx − 1

)
,

where the prime indicates that the term with index k = 0 is omitted from the sum; the
summation is the limit of the symmetric partial sums

∑n
−n, and the series converges

uniformly on the closed interval [−π,π].

Proof Consider the auxiliary function

F(x)=
∫ x

0
f (t)dt − c0(f )x

on the interval [−π,π]. Obviously F ∈C[−π,π]. Also F(−π)= F(π), since

F(π)− F(−π)=
∫ π

−π
f (t)dt − 2πc0(f )= 0,

as follows from the definition of c0(f ). Since the derivative F ′(x)= f (x)− c0(f )

of the function F is piecewise continuous, its Fourier series
∑∞
−∞ ck(F )eikx con-

verges uniformly to F on the interval [−π,π] by Theorem 5. By Lemma 3 we have
ck(F ) = ck(F

′)
ik

for k �= 0. But ck(F ′) = ck(F ) if k �= 0. Now writing the equality
F(x) =∑∞−∞ ck(F )eikx in terms of the function f and noting that F(0) = 0, we
obtain the assertion of the proposition. �

23J.W. Gibbs (1839–1903) – American physicist and mathematician, one of the founders of ther-
modynamics and statistical mechanics.
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18.2.4 Completeness of the Trigonometric System

a. The Completeness Theorem

In conclusion we return once again from pointwise convergence of the Fourier series
to its mean convergence (18.41). More precisely, using the facts we have accumu-
lated on the nature of pointwise convergence of the Fourier series, we now give a
proof of the completeness of the trigonometric system {1, coskx, sin kx; k ∈ N} in
R2([−π,π],R) independent of the proof already given in the problems. In doing
so, as in Sect. 18.2.1, we take R2([−π,π],R) or R2([−π,π],C) to mean the vec-
tor space of real- or complex-valued functions that are locally integrable on ]−π,π[
and whose squared absolute values are integrable on ]−π,π[ (possibly in the im-
proper sense). This vector space is assumed to be endowed with the standard inner
product (18.38) generating the norm in terms of which convergence is mean conver-
gence (18.41).

The theorem we are about to prove asserts simply that the system of trigonomet-
ric functions is complete in R2([−π,π],C). But we shall state the theorem in such
a way that the statement itself will contain the key to the proof. It is based on the
obvious fact that the property of completeness is transitive: if A approximates B
and B approximates C, then A approximates C.

Theorem 6 (Completeness of the trigonometric system) Every function f ∈
R2[−π,π] can be approximated arbitrarily closely in mean

a) by functions of compact support in ]−π,π[ that are Riemann integrable over
the closed interval [−π,π];

b) by piecewise-constant functions of compact support on the closed interval
[−π,π];

c) by piecewise-linear continuous functions of compact support on the closed
interval [−π,π];

d) by trigonometric polynomials.

Proof Since it obviously suffices to prove the theorem for real-valued functions, we
confine ourselves to this case.

a) It follows from the definition of the improper integral that

∫ π

−π
f 2(x)dx = lim

δ→+0

∫ π−δ

−π+δ
f 2(x)dx.

Hence, for every ε > 0 there exists δ > 0 such that the function

fδ(x)=
{
f (x), if |x|< π − δ,
0 if π − δ ≤ |x| ≤ π,
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will differ in mean from f on [−π,π] by less than ε, since

∫ π

−π
(f − fδ)2(x)dx =

∫ −π+δ

−π
f 2(x)dx +

∫ π

π−δ
f 2(x)dx.

b) It suffices to verify that every function of the form fδ can be approximated
in R2([−π,π],R) by piecewise-constant functions of compact support in [−π,π].
But the function fδ is Riemann-integrable on [−π + δ,π − δ]. Hence it is bounded
there by a constant M and moreover there exists a partition −π + δ = x0 < x1 <

· · ·< xn = π − δ of this closed interval such that the corresponding lower Darboux
sum
∑n
i=1miΔxi of the function fδ differs from the integral of fδ over [−π +

δ,π − δ] by less than ε > 0.
Now setting

g(x)=
{
mi, if x ∈ ]xi−1, xi[, i = 1, . . . , n,

0, at all other points of [−π,π],
we obtain

∫ π

−π
(fδ − g)2(x)dx ≤

∫ π

−π
|fδ − g||fδ + g|(x)dx ≤

≤ 2M
∫ π−δ

−π+δ
(fδ − g)(x)dx ≤ 2Mε,

and hence fδ really can be approximated arbitrarily closely in the mean on [−π,π]
by piecewise-constant functions on the interval that vanish in a neighborhood of the
endpoints of the interval.

c) It now suffices to learn how to approximate the functions in b) in mean. Let
g be such a function. All of its points of discontinuity x1, . . . , xn lie in the open
interval ]−π,π[. There are only finitely many of them, so that for every ε > 0 one
can choose δ > 0 so small that the δ-neighborhoods of the points x1, . . . , xn are
disjoint and contained strictly inside the interval ]−π,π[, and 2δnM < ε, where
M = sup|x|≤π |g(x)|. Now replacing the function g on [xi − δ, xi + δ], i = 1, . . . , n,
by the linear interpolation between the values g(xi−δ) and g(xi+δ) that g assumes
at the endpoints of this interval, we obtain a piecewise linear continuous function
gδ that is of compact support in [−π,π]. By construction |gδ(x)| ≤M on [−π,π],
so that
∫ π

−π
(g − gδ)2(x)dx ≤ 2M

∫ π

−π
|g− gδ|(x)dx =

= 2M
n∑

i=1

∫ xi+δ

xi−δ
|g− gδ|(x)dx ≤ 2M · (2M · 2δ) · n <

< 4Mε,

and the possibility of the approximation is now proved.
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d) It remains only to show that one can approximate any function of class c)
in mean on [−π,π] by a trigonometric polynomial. But for every ε > 0 and ev-
ery function of type gδ , Theorem 5 enables us to find a trigonometric polynomial
Tn that approximates gδ uniformly within ε on the closed interval [−π,π]. Hence∫ π
−π (gδ − Tn)2 dx < 2πε2, and the possibility of an arbitrarily precise approxima-

tion in mean by trigonometric polynomials on [−π,π] for any function of class c)
is now established.

By the triangle inequality in R2[−π,π] we now conclude that all of Theorem 6
on the completeness of these classes in R2[−π,π] is also proved. �

b. The Inner Product and Parseval’s Equality

Now that the completeness of the trigonometric system in R2([−π,π],C) has been
proved, we can use Theorem 1 to assert that

f = a0(f )

2
+
∞∑

k=1

ak(f ) coskx + bk(f ) sin kx (18.66)

for every function f ∈R2([−π,π],C), or, in complex notation,

f =
∞∑

−∞
ck(f )e

ikx (18.67)

where the convergence is understood as convergence in the norm of R2[−π,π], that
is, as mean convergence, and the limiting passage in (18.67) is the limit of sums of
the form Sn(x)=∑n

−n ck(f )eikx as n→∞.
If we rewrite Eqs. (18.66) and (18.67) as

1√
π
f = a0(f )√

2

1√
2π
+
∞∑

k=1

ak(f )
cos kx√
π
+ bk(f ) sin kx√

π
, (18.66′)

1√
2π
f =

∞∑

−∞
ck(f )

eikx√
2π
, (18.67′)

then the right-hand sides contain series in the orthonormal systems
{

1√
2π
,

1√
π

coskx,
1√
π

sinkx; k ∈N
}

and { 1√
2π

eikx; k ∈ Z}. Hence by the general rule for computing the inner product
of vectors from their coordinates in an orthonormal basis, we can assert that the
equality

1

π
〈f,g〉 = a0(f )a0(g)

2
+
∞∑

k=1

ak(f )ak(g)+ bk(f )bk(g) (18.68)
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holds for functions f and g in R2([−π,π],C), or, in other notation,

1

2π
〈f,g〉 =

∞∑

−∞
ck(f )ck(g), (18.69)

where, as always,

〈f,g〉 =
∫ π

−π
f (x)g(x)dx.

In particular, if f = g, we obtain the classical Parseval equality from (18.68) and
(18.69) in two equivalent forms:

1

π
‖f ‖2 = |a0(f )|2

2
+
∞∑

k=1

∣
∣ak(f )

∣
∣2 + ∣∣bk(f )

∣
∣2, (18.70)

1

2π
‖f ‖2 =

∞∑

−∞

∣
∣ck(f )

∣
∣2. (18.71)

We have already noted that from the geometric point of view Parseval’s equality
can be regarded as an infinite-dimensional version of the Pythagorean theorem.

Parseval’s relation provides the basis for the following useful proposition.

Proposition 3 (Uniqueness of Fourier series) Let f and g be two functions in
R2[−π,π]. Then

a) if the trigonometric series

a0

2
+
∞∑

k=1

ak coskx + bk sin kx

(

=
∞∑

−∞
cke

ikx

)

converges in mean to f on the interval [−π,π] it is the Fourier series of f ;
b) if the functions f and g have the same Fourier series, they are equal almost

everywhere on [π,π], that is, f = g in R2[−π,π].

Proof Assertion a) is actually a special case of the general fact that the expansion
of a vector in an orthogonal system is unique. The inner product, as we know (see
Lemma 1b) shows immediately that the coefficients of such an expansion are the
Fourier coefficients and no others.

Assertion b) can be obtained from Parseval’s equality taking account of the com-
pleteness of the trigonometric system in R2([−π,π],C), which was just proved.

Since the difference (f − g) has a zero Fourier series, it follows from Parseval’s
equality that ‖f − g‖R2 = 0. Hence the functions f and g are equal at all points of
continuity, that is, almost everywhere. �
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Remark 11 When studying Taylor series
∑∞
n=0

f (n)(a)
n! (x−a)n we noted previously

that different functions of class C(∞)(R,R) can have the same Taylor series (at
some points a ∈ R). This contrast with the uniqueness theorem just proved for the
Fourier series should not be taken too seriously, since every uniqueness theorem is
a relative one in the sense that it involves a particular space and a particular type of
convergence.

For example, in the space of analytic functions (that is, functions that can be
represented as power series

∑∞
n=0 an(z− z0)

n converging to them pointwise), two
different functions have distinct Taylor series about every point.

If, in turn, in studying trigonometric series we abandon the space R2[−π,π]
and study pointwise convergence of a trigonometric series, then, as already noted
(p. 524) one can construct a trigonometric series not all of whose coefficients are
zero, which nevertheless converges to zero almost everywhere. According to Propo-
sition 3 such a null-series of course does not converge to zero in the mean-square
sense.

In conclusion, we illustrate the use of the properties of trigonometric Fourier se-
ries obtained here by studying the following derivation, due to Hurwitz,24 of the
classical isoperimetric inequality in the two-dimensional case. In order to avoid
cumbersome expressions and accidental technical difficulties, we shall use complex
notation.

Example 7 Between the volume V of a domain in the Euclidean space En, n ≥ 2,
and the (n− 1)-dimensional surface area F of the hypersurface that bounds it, the
following relation holds:

nnvnV
n−1 ≤ Fn, (18.72)

called the isoperimetric inequality. Here vn is the volume of the n-dimensional unit
ball in En. Equality in the isoperimetric inequality (18.72) holds only for the ball.

The name “isoperimetric” comes from the classical problem of finding the closed
plane curve of a given length L that encloses the largest area S. In this case inequal-
ity (18.72) means that

4πS ≤ L2. (18.73)

It is this inequality that we shall now prove, assuming that the curve in question
is smooth and is defined parametrically as x = ϕ(s), y =ψ(s), where s is arc length
along the curve and ϕ and ψ belong to C(1)[0,L]. The condition that the curve be
closed means that ϕ(0)= ϕ(L) and ψ(0)=ψ(L).

We now pass from the parameter s to the parameter t = 2π s
L
− π , which ranges

from −π to π , and we shall assume that our curve is defined parametrically as

x = x(t), y = y(t), −π ≤ t ≤ π, (18.74)

24A. Hurwitz (1859–1919) – German mathematician, a student of F. Klein.
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with

x(−π)= x(π), y(−π)= y(π). (18.75)

We write (18.74) as a single complex-valued function

z= z(t), −π ≤ t ≤ π, (18.74′)

where z(t)= x(t)+ iy(t) and by (18.75) z(−π)= z(π).
We remark that

∣
∣z′(t)

∣
∣2 = (x′(t))2 + (y′(t))2 =

(
ds

dt

)2

,

and hence under our choice of parameter

∣
∣z′(t)

∣
∣2 = L2

4π2
. (18.76)

Next, taking into account the relations zz′ = (x − iy)(x′ + iy′)= (xx′ + yy′)+
i(xy′ − x′y), and using Eqs. (18.75), we write the formula for the area of the region
bounded by the closed curve (18.74):

S = 1

2

∫ π

−π
(
xy′ − yx′)(t)dt = 1

2i

∫ π

−π
z′(t)z(t)dt. (18.77)

We now write the Fourier series expansion of the function (18.74′):

z(t)=
∞∑

−∞
cke

ikt .

Then

z′(t)∼
∞∑

−∞
ikcke

ikt .

Equalities (18.76) and (18.77) mean in particular that

1

2π

∥∥z′
∥∥2 = 1

2π

∫ π

−π
∣∣z′(t)

∣∣2 dt = L2

4π2
,

and

1

2π

〈
z′, z
〉= 1

2π

∫ π

−π
z′(t)z(t)dt = i

π
S.

In terms of Fourier coefficients, as follows from Eqs. (18.69) and (18.71), these
relations assume the form

L2 = 4π2
∞∑

−∞
|kck|2,
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S = π
∞∑

−∞
kckc̄k.

Thus,

L2 − 4πS = 4π2
∞∑

−∞

(
k2 − k)|ck|2.

The right-hand side of this equality is obviously nonnegative and vanishes only
if ck = 0 for all k ∈ Z except k = 0 and k = 1.

Thus, inequality (18.73) is proved, and at the same time we have found the equa-
tion

z(t)= c0 + c1eit , −π ≤ t ≤ π,
of the curve for which it becomes equality. This is the complex form of the para-
metric equation of a circle with center at c0 in the complex plane and radius |c1|.

18.2.5 Problems and Exercises

1. a) Show that
∞∑

n=1

sinnx

n
= π − x

2
for 0< x < 2π,

and find the sum of the series at all other points of R.
Using the preceding expansion and the rules for operating with trigonometric

Fourier series, now show that the following equalities are true.
b)
∑∞
k=1

sin 2kx
2k = π

4 − x
2 for 0< x < π .

c)
∑∞
k=1

sin(2k−1)x
2k−1 = π

4 for 0< x < π .

d)
∑∞
n=1

(−1)n−1

n
sinnx = x

2 for |x|< π .

e) x2 = π
3 + 4

∑∞
n=1

(−1)n

n2 cosnx for |x|< π .

f) x = π
2 − 4

π

∑∞
k=1

cos(2k−1)x
(2k−1)2

for 0≤ x ≤ π .

g) 3x2−6πx+2π2

12 =∑∞n=1
cosnx
n2 for 0≤ x ≤ π .

h) Sketch the graph of the sums of the trigonometric series here over the entire
real line R. Using the results obtained, find the sums of the following numerical
series:

∞∑

n=0

(−1)n

2n+ 1
,

∞∑

n=1

1

n2
,

∞∑

n=1

(−1)n

n2
.

2. Show that:

a) if f : [−π,π] → C is an odd (resp. even) function, then its Fourier coeffi-
cients have the following property: ak(f )= 0 (resp. bk(f )= 0) for k = 0,1,2, . . . ;
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b) if f : R→ C has period 2π/m then its Fourier coefficients ck(f ) can be
nonzero only when k is a multiple of m;

c) if f : [−π,π]→R is real-valued, then ck(f )= c−k(f ) for all k ∈N;
d) |ak(f )| ≤ 2 sup|x|<π |f (x)|, |bk(f )| ≤ 2 sup|x|<π |f (x)|, |ck(f )| ≤

sup|x|<π |f (x)|.
3. a) Show that each of the systems {coskx; k = 0,1, . . .} and {sinkx; k ∈ N} is
complete in the space R2[a, a + π] for any value of a ∈R.

b) Expand the function f (x) = x in the interval [0,π] with respect to each of
these two systems.

c) Draw the graphs of the sums of the series just found over the entire real line.
d) Exhibit the trigonometric Fourier series of the function f (x) = |x| on the

closed interval [−π,π] and determine whether it converges uniformly to this func-
tion on the entire closed interval [−π,π].
4. The Fourier series

∑∞
−∞ ck(f )eikt of a function f can be regarded as a spe-

cial case of a power series
∑∞
−∞ ckzk (=∑−1

−∞ ckzk +
∑∞

0 ckz
k), in which z is

restricted to the unit circle in the complex plane, that is, z= eit .
Show that if the Fourier coefficients ck(f ) of the function f : [−π,π] → C

vanish so rapidly that limk→−∞ |ck(f )|1/k = c− > 1 and limk→+∞ |ck(f )|1/k =
c+ < 1, then

a) the function f can be regarded as the image of the unit circle under a function
represented in the annulus c−1− < |z|< c−1+ by the series

∑∞
−∞ ckzk ;

b) for z = x + iy and ln 1
c− < y < ln 1

c+ the series
∑∞
−∞ ck(f )eikx converges

absolutely (and, in particular, its sum is independent of the order of summation of
the terms);

c) in any strip of the complex plane defined by the conditions a ≤ Im z ≤ b,
where ln 1

c− < a < b < ln 1
c+ , the series

∑∞
−∞ ck(f )eikx converges absolutely and

uniformly;

d) using the expansion ez = 1+ z
1! + z2

2! + · · · and Euler’s formula eix = cosx+
i sinx, show that

1+ cosx

1! + · · · +
cosnx

n! + · · · = ecosx cos(sinx),

sinx

l! + · · · +
sinnx

n! + · · · = ecosx sin(sinx);

e) using the expansions cos z= 1− z2

2! + z4

4! − · · · and sin z= z− z3

3! + z5

5! − · · · ,
verify that

∞∑

n=0

(−1)n
cos(2n+ 1)x

(2n+ 1)! = sin(cosx) cosh(sinx),

∞∑

n=0

(−1)n
sin(2n+ 1)x

(2n+ 1)! = sin(cosx) sinh(sinx),
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∞∑

n=0

(−1)n
cos 2nx

(2n)! = cos(cosx) cosh(sinx),

∞∑

n=0

(−1)n
sin 2nx

(2n!) = cos(cosx) sinh(sinx).

5. Verify that

a) the systems {1, cosk 2π
T
x, sink 2π

T
x; k ∈N} and {eik 2π

T
x; k ∈ Z} are orthogonal

in the space R2([a, a + T ],C) for every a ∈R;
b) the Fourier coefficients ak(f ), bk(f ), and ck(f ) of a T -periodic function f

in these systems are the same whether the Fourier expansion is done on the interval
[−T2 , T2 ] or any other closed interval of the form [a, a + T ];

c) if ck(f ) and ck(g) are the Fourier coefficients of T-periodic functions f and
g, then

1

T

∫ a+T

a

f (x)g(x)dx =
∞∑

−∞
ck(f )ck(g);

d) the Fourier coefficients ck(h) normalized by the factor 1
T

of the “convolution”

h(x)= 1

T

∫ T

0
f (x − t)g(t)dt

of T -periodic smooth functions f and g and the coefficients ck(f ) and ck(g) of the
functions themselves are related by ck(h)= ck(f )ck(g), k ∈ Z.

6. Prove that if α is incommensurable with π , then

a) limN→∞ 1
N

∑N
n=1 eik(x+nα) = 1

2π

∫ π
−π eikt dt ;

b) for every continuous 2π -periodic function f :R→C

lim
N→∞

1

N

N∑

n=1

f (x + nα)= 1

2π

∫ π

−π
f (t)dt.

7. Prove the following propositions.

a) If the function f :R→C is absolutely integrable on R, then
∣∣∣
∣

∫ ∞

−∞
f (x)eiλx dx

∣∣∣
∣≤
∫ ∞

−∞

∣∣∣
∣f
(
x + π

λ

)
− f (x)

∣∣∣
∣dx.

b) If the functions f :R→C and g :R→C are absolutely integrable on R and
g is bounded in absolute value on R, then

∫ ∞

−∞
f (x + t)g(t)eiλt dt =: ϕλ(x)⇒ 0 on R as λ→∞.
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c) If f : R→ C is a 2π -periodic function that is absolutely integrable over a
period, then the remainder Sn(x)− f (x) of its trigonometric Fourier series can be
represented as

Sn(x)− f (x)= 1

π

∫ π

0

(
Δ2f
)
(x, t)Dn(t)dt,

where Dn is the nth Dirichlet kernel, and (Δ2f )(x, t) = f (x + t) − 2f (x) +
f (x − t).

d) For every δ ∈ ]0,π[ the formula for the remainder just obtained can be
brought into the form

Sn(x)− f (x)= 1

π

∫ δ

0

sinnt

t

(
Δ2f
)
(x, t)dt + o(1),

where o(1) trends to zero as n→∞, and uniformly on each closed interval [a, b]
on which f is bounded.

e) If the function f : [−π,π] → C satisfies the Hölder condition |f (x1) −
f (x2)| ≤M|x1 − x2|α on [−π,π] (where M and α are positive numbers) and in
addition f (−π)= f (π), then the Fourier series of f converges to it uniformly on
the entire interval.

8. a) Prove that if f : R→ R is a 2π -periodic function having a piecewise contin-
uous derivative f (m) of order m (m ∈N), then f can be represented as

f (x)= α0

2
+ 1

π

∫ π

−π
Bm(t − x)f (m)(t)dt,

where Bm(u)=∑∞n=1
cos(ku+mπ2 )

km
, m ∈N.

b) Using the Fourier series expansion obtained in Problem 1 for the function
π−x

2 on the interval [0,2π ], prove that B1(u) is a polynomial of degree 1 and Bm(u)
is a polynomial of degree m on the interval [0,2π ]. These polynomials are called
the Bernoulli polynomials.

c) Verify that
∫ 2π

0 Bm(u)du= 0 for every m ∈N.

9. a) Let xm = 2πm
2n+1 , m= 0,1, . . . ,2n. Verify that

2

2n+ 1

2n∑

m=0

coskxm cos lxm = δkl,

2

2n+ 1

2n∑

m=0

sin kxm sin lxm = δkl,

2n∑

m=0

sin kxm cos lxm = 0,

where k and l are nonnegative integers, δkl = 0 for k �= l, and δkl = 1 for k = l.
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b) Let f : R→ R be a 2π -periodic function that is absolutely integrable over
a period. Let us partition the closed interval [0,2π ] into 2n+ 1 equal parts by the
points xm = 2πm

2n+1 , m= 0,1, . . . ,2n. Let us compute the integrals

ak(f )= 1

π

∫ 2π

0
f (x) coskx dx, bk(f )= 1

π

∫ 2π

0
f (x) sin kx dx

approximately using the rectangular method corresponding to this partition of the
interval [0,2π ]. We obtain the quantities

ãk(f ) = 2

2n+ 1

2n∑

m=0

f (xm) coskxm,

b̃k(f ) = 2

2n+ 1

2n∑

m=0

f (xm) sin kxm,

which we place in the nth partial sum Sn(f, x) of the Fourier series of f instead of
the respective coefficients ak(f ) and bk(f ).

Prove that when this is done the result is a trigonometric polynomial S̃n(f, x) of
order n that interpolates the function f at the nodes xm, m= 0,1, . . . ,2n, that is, at
these points f (xm)= S̃n(x,m).
10. a) Suppose the function f : [a, b] → R is continuous and piecewise differen-
tiable, and suppose that the square of its derivative f ′ is integrable over the interval
]a, b[. Using Parseval’s equality, prove the following:

a) if [a, b] = [0,π], then either of the conditions f (0) = f (π) = 0 or∫ π
0 f (x)dx = 0 implies Steklov’s inequality

∫ π

0
f 2(x)dx ≤

∫ π

0

(
f ′
)2
(x)dx,

in which equality is possible only for f (x)= a cosx;
b) if [a, b] = [−π,π] and the conditions f (−π)= f (π) and

∫ π
−π f (x)dx = 0

both hold, then Wirtinger’s inequality holds:

∫ π

−π
f 2(x)dx ≤

∫ π

−π
(
f ′
)2
(x)dx,

where equality is possible only if f (x)= a cosx + b sinx.

11. The Gibbs phenomenon is the behavioral property of the partial sums of a
trigonometric Fourier series described below, first observed by Wilbraham (1848)
and later (1898) rediscovered by Gibbs (Mathematical Encyclopedia, Vol. 1,
Moscow, 1977).
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a) Show that

sgnx = 4

π

∞∑

k=1

sin(2k − 1)x

2k − 1
for |x|< π.

b) Verify that the function Sn(x)= 4
π

∑n
k=1

sin(2k−1)x
2k−1 has a maximum at x = π

2n
and that as n→∞

Sn

(
π

2n

)
= 2

π

n∑

k=1

sin(2k − 1) π2n
(2k− 1) π2n

.
π

n
→ 2

π

∫ π

0

sinx

x
dx ≈ 1.179.

Thus the oscillation of Sn(x) near x = 0 as n→∞ exceeds the jump of the
function sgnx itself at that point by approximately 18 % (the jump of Sn(x) “due to
inertia”).

c) Describe the limit of the graphs of the functions Sn(x) in problem b).
Now suppose that Sn(f, x) is the nth partial sum of the trigonometric Fourier

series of a function f and suppose that Sn(f, x)→ f (x) in a deleted neighborhood
0< |x− ξ |< δ of the point ξ as n→∞ and that f has one-sided limits f (ξ−) and
f (ξ+) at ξ . For definiteness we shall assume that f (ξ−)≤ f (ξ+).

We say that Gibbs’ phenomenon occurs for the sums Sn(f, x) at the point ξ if
limn→∞ Sn(f, x) < f (ξ−)≤ f (ξ+) < limn→∞ Sn(f, x).

d) Using Remark 9 show that Gibbs’ phenomenon occurs at the point ξ for
every function of the form ϕ(x) + c sgn(x − ξ), where c �= 0, |ξ | < π , and ϕ ∈
C(1)[−π,π].
12. Multiple trigonometric Fourier series.

a) Verify that the system of functions 1
(2π)n/2

eikx , where k = (k1, . . . , kn), x =
(x1, . . . , xn), kx = k1x1 + · · · + knxn, and k1, . . . , kn ∈ Z, is orthonormal on any
n-dimensional cube I = {x ∈Rn | aj ≤ xj ≤ aj + 2π, j = 1,2, . . . , n}.

b) To a function f that is integrable over I we assign the sum f ∼∑∞
−∞ ck(f )eikx , which is called the Fourier series of f in the system { 1

(2π)n/2
eikx},

if ck(f )= 1
(2π)n/2

∫
I
f (x)e−ikx dx. The numbers ck(f ) are called the Fourier coef-

ficients of f in the system { 1
(2π)n/2

eikx}.
In the multidimensional case the Fourier series is often summed via the partial

sums

SN(x)=
∑

|k|≤N
ck(f )e

ikx,

where |k| ≤N means that N = (N1, . . . ,Nk) and |kj | ≤Nj , j = 1, . . . , n.
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Show that for every function f (x) = f (x1, . . . , xn) that is 2π -periodic in each
variable

Sn(x)= 1

πn

∫

I

n∏

j=1

DNj (tj − xj )f (t)dt =

= 1

πn

∫ π

−π
· · ·
∫ π

−π
f (t − x)

n∏

j=1

DNj (tj )dt1 · · ·dtn,

where DNj (u) is the Nj th one-dimensional Dirichlet kernel.
c) Show that the Fejér sum

σN(x) := 1

N + 1

N∑

k=0

Sk(x)= 1

(N1 + 1) · . . . · (Nn + 1)

N1∑

k1=0

· · ·
Nn∑

kn=0

Sk1...kn(x)

of a function f (x)= f (x1, . . . , xn) that is 2π -periodic in each variable can be rep-
resented as

σN(x)= 1

πn

∫

I

f (t − x)ΦN(t)dt,

where ΦN(u)=∏nj=1 FNj (uj ) and FNj is the Nj th one-dimensional Fejér kernel.
d) Now extend Fejér’s theorem to the n-dimensional case.
e) Show that if a function f that is 2π -periodic in each variable is absolutely

integrable over a period I , possibly in the improper sense, then
∫
I
|f (x + u) −

f (x)|dx→ 0 as u→ 0 and
∫
I
|f − σN |(x)dx→ 0 as N→∞.

f) Prove that two functions f and g that are absolutely integrable over the cube
I can have equal Fourier series (that is, ck(f )= ckg) for every multi-index k) only
if f (x)= g(x) almost everywhere on I . This is a strengthening of Proposition 3 on
uniqueness of Fourier series.

g) Verify that the original orthonormal system { 1
(2π)n/2

eikx} is complete in
R2(I ), so that the Fourier series of every function f ∈ R2(I ) converges to f in
the mean on I .

h) Let f be a function in C(∞)(Rn) of period 2π in each variable. Verify that
ck(f

(α)) = i|α|kαck(f ), where α = (α1, . . . , αn), k = (k1, . . . , kn), |α| = |α1| +
· · · + |αn|, kα = kα1

1 · . . . · kαnn , and αj are nonnegative integers.
i) Let f be a function of class C(mn)(Rn) of period 2π in each variable. Show

that if the estimate

1

(2π)n

∫

I

∣
∣f (α)

∣
∣2(x)dx ≤M2

holds for each multi-index α = (α1, . . . , αn) such that αj is 0 or m (for every j =
1, . . . , n), then

∣∣f (x)− Sn(x)
∣∣≤ CM

Nm− 1
2

,
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where N =min{N1, . . . ,Nn} and C is a constant depending on m but not on N or
x ∈ I .

j) Notice that if a sequence of continuous functions converges in mean on the
interval I to a function f and simultaneously converges uniformly to ϕ, then f (x)=
ϕ(x) on I .

Using this observation, prove that if a function f : Rn → C of period 2π in
each variable belongs to C(1)(Rn,C), then the trigonometric Fourier series of f
converges to f uniformly on the entire space R

n.

13. Fourier series of generalized functions. Every 2π -periodic function f :R→C

can be regarded as a function f (s) of a point on the unit circle Γ (the point is fixed
by the value of the arc-length parameter s, 0≤ s ≤ 2π ).

Preserving the notation of Sect. 17.4, we consider the space D(Γ ) on Γ consist-
ing of functions in C(∞)(Γ ) and the space D′(Γ ) of generalized functions, that is,
continuous linear functionals on D(Γ ). The value of the functional F ∈D′(Γ ) on
the function ϕ ∈D(Γ ) will be denoted F(ϕ), so as to avoid the symbol 〈F,ϕ〉 used
in the present chapter to denote the Hermitian inner product (18.38).

Each function f that is integrable on Γ can be regarded as an element of D′(Γ )
(a regular generalized function) acting on the function ϕ ∈ D(Γ ) according to the
formula

f (ϕ)=
∫ 2π

0
f (s)ϕ(s)ds.

Convergence of a sequence {Fn} of generalized functions in D′(Γ ) to a general-
ized function F ∈D′(Γ ), as usual, means that for every function ϕ ∈D(Γ )

lim
n→∞Fn(ϕ)= F(ϕ).

a) Using the fact that by Theorem 5 the relation ϕ(s) =∑∞−∞ ck(ϕ)eikx holds
for every function ϕ ∈ C(∞)(Γ ), and, in particular, ϕ(0)=∑∞−∞ ck(ϕ), show that
in the sense of convergence in the space of generalized functions D′(Γ ) we have

n∑

k=−n

1

2π
eiks→ δ as n→∞.

Here δ is the element of D′(Γ ) whose effect on the function ϕ ∈D(Γ ) is defined
by δ(ϕ)= ϕ(0).

b) If f ∈R(Γ ), the Fourier coefficients of the function f in the system {eiks}
defined in the standard manner, can be written as

ck(f )= 1

2π

∫ 2π

0
f (s)e−ikx dx = 1

2π
f
(
e−iks

)
.

By analogy we now define the Fourier coefficients ck(F ) of any generalized
function F ∈ D′(Γ ) by the formula ck(F ) = 1

2π F (e
−iks), which makes sense be-

cause e−iks ∈D(Γ ).
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Thus to every generalized function F ∈D′(Γ ) we assign the Fourier series

F ∼
∞∑

−∞
ck(F )e

iks .

Show that δ ∼∑∞−∞ 1
2π eiks .

c) Prove the following fact, which is remarkable for its simplicity and the free-
dom of action that it provides: the Fourier series of every generalized function
F ∈D′(Γ ) converges to F (in the sense of convergence in the space D′(Γ )).

d) Show that the Fourier series of a function F ∈D′(Γ ) (like the function F it-
self, and like every convergent series of generalized functions) can be differentiated
termwise any number of times.

e) Starting from the equality δ =∑∞−∞ 1
2π eiks , find the Fourier series of δ′.

f) Let us now return from the circle Γ to the line R and study the functions eiks

as regular generalized functions in D′(R) (that is, as continuous linear functionals
on the space D(R) of functions in the class C(∞)0 (R) of infinitely differentiable
functions of compact support in R).

Every locally integrable function f can be regarded as an element of D′(R)
(a regular generalized function in D′(R)) whose effect on the function ϕ ∈
C
(∞)
0 (R,C) is given by the rule f (ϕ) = ∫

R
f (x)ϕ(x)dx. Convergence in D′(R)

is defined in the standard way:
(

lim
n→∞Fn = F

)
:= ∀ϕ ∈D(R)

(
lim
n→∞Fn(ϕ)= F(ϕ)

)
.

Show that the equality

1

2π

∞∑

−∞
eikx =

∞∑

−∞
δ(x − 2πk)

holds in the sense of convergence in D′(R). In both sides of this equality a limiting
passage is assumed as n→∞ over symmetric partial sums

∑n
−n, and δ(x − x0),

as always, denotes the δ-function of D′(R) shifted to the point x0, that is, δ(x −
x0)(ϕ)= ϕ(x0).

18.3 The Fourier Transform

18.3.1 Representation of a Function by Means of a Fourier
Integral

a. The Spectrum and Harmonic Analysis of a Function

Let f (t) be a T -periodic function, for example a periodic signal with frequency 1
T

as a function of time. We shall assume that the function f is absolutely integrable
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over a period. Expanding f in a Fourier series (when f is sufficiently regular, as we
know, the Fourier series converges to f ) and transforming that series,

f (t) = a0(f )

2
+
∞∑

k=1

ak(f ) coskω0t + bk(f ) sin kω0t =

=
∞∑

−∞
ck(f )e

ikω0t = c0 + 2
∞∑

k=1

|ck| cos(kω0t + arg ck), (18.78)

we obtain a representation of f as a sum of a constant term a0
2 = c0 – the mean

value of f over a period – and sinusoidal components with frequencies ν0 = 1
T

(the
fundamental frequency), 2ν0 (the second harmonic frequency), and so on. In general
the kth harmonic component 2|ck| cos(k 2π

T
t + arg ck) of the signal has frequency

kν0 = k
T

, cyclic frequency kω0 = 2πkν0 = 2π
T
k, amplitude 2|ck| =

√
a2
k + b2

k , and

phase arg ck =− arctan bk
ak

.
The expansion of a periodic function (signal) into a sum of simple harmonic

oscillations is called the harmonic analysis of f . The numbers {ck(f ); k ∈ Z} or
{a0(f ), ak(f ), bk(f ); k ∈ N} are called the spectrum of the function (signal) f .
A periodic function thus has a discrete spectrum.

Let us now set out (on a heuristic level) what happens to the expansion (18.78)
when the period T of the signal increases without bound.

Simplifying the notation by writing l = T
2 and αk = k πl , we rewrite the expansion

f (t)=
∞∑

−∞
cke

ik π
l
t

as follows:

f (t)=
∞∑

−∞

(
ck
l

π

)
eik

π
l
t π

l
, (18.79)

where

ck = 1

2l

∫ l

−l
f (t)e−iαkt dt

and hence

ck
l

π
= 1

2π

∫ l

−l
f (t)e−iαkt dt.

Assuming that in the limit as l→+∞ we arrive at an arbitrary function f that
is absolutely integrable over R, we introduce the auxiliary function

c(α)= 1

2π

∫ ∞

−∞
f (t)e−iαt dt, (18.80)
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whose values at points α = αk differ only slightly from the quantities ck lπ in formula
(18.79). In that case

f (t)≈
∞∑

−∞
c(αk)e

iαkt
π

l
, (18.81)

where αk = k πl and αk+1 − αk = π
l

. This last integral resembles a Riemann sum,
and as the partition is refined, which occurs as l→∞, we obtain

f (t)=
∫ ∞

−∞
c(α)eiαt dα. (18.82)

Thus, following Fourier, we have arrived at the expansion of the function f into
a continuous linear combination of harmonics of variable frequency and phase.

The integral (18.82) will be called the Fourier integral below. It is the continuous
equivalent of a Fourier series. The function c(α) in it is the analog of the Fourier
coefficient, and will be called the Fourier transform of the function f (defined on the
entire line R). Formula (18.80) for the Fourier transform is completely equivalent to
the formula for the Fourier coefficients. It is natural to regard the function c(α) as
the spectrum of the function (signal) f . In contrast to the case of a periodic signal f
considered above and the discrete spectrum (of Fourier coefficients) corresponding
to it, the spectrum c(α) of an arbitrary signal may be nonzero on whole intervals
and even on the entire line (continuous spectrum).

Example 1 Let us find the function having the following spectrum of compact sup-
port:

c(α)=
{
h, if |α| ≤ a,
0, if |α|> a. (18.83)

Proof By formula (18.82) we find, for t �= 0

f (t)=
∫ a

−a
heiαt dα = heiαt − e−iαt

it
= 2h

sinat

t
, (18.84)

and when t = 0, we obtain f (0) = 2ha, which equals the limit of 2h sinat
t

as
t→ 0. �

The representation of a function in the form (18.82) is called its Fourier integral
representation. We shall discuss below the conditions under which such a represen-
tation is possible. Right now, we consider another example.

Example 2 Let P be a device having the following properties: it is a linear signal
transform, that is, P(

∑
j ajfj ) =

∑
j ajP (fj ), and it preserves the periodicity of

a signal, that is, P(eiωt ) = p(ω)eiωt , where the coefficient p(ω) depends on the
frequency ω of the periodic signal eiωt .
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We use the compact complex notation, although of course everything could be
rewritten in terms of cosωt and sinωt .

The function p(ω)=: R(ω)eiϕ(ω) is called the spectral characteristic of the de-
vice P . Its absolute value R(ω) is usually called the frequency characteristic and its
argument ϕ(ω) the phase characteristic of the device P . A signal eiωt , after passing
through the device, emerges transformed into the signal R(ω)ei(ωt+ϕ(ω)), its ampli-
tude changed as a result of the factor R(ω) and its phase shifted due to the presence
of the term ϕ(ω).

Let us assume that we know the spectral characteristic p(ω) of the device P and
the signal f (t) that enters the device; we ask how to find the signal x(t)= P(f )(t)
that emerges from the device.

Representing the signal f (t) as the Fourier integral (18.82) and using the linear-
ity of the device and the integral, we find

x(t)= P(f )(t)=
∫ ∞

−∞
c(ω)p(ω)eiωt dω.

In particular, if

p(ω)=
{

1 for |ω| ≤Ω,
0 for |ω|>Ω, (18.85)

then

x(t)=
∫ Ω

−Ω
c(ω)eiωt dω

and, as one can see from the spectral characteristics of the device,

P
(
eiωt
)=
{

eiωt for |ω| ≤Ω,
0 for |ω|>Ω.

A device P with the spectral characteristic (18.85) transmits (filters) frequencies
not greater than Ω without distortion and truncates all of the signal involved with
higher frequencies (larger than Ω). For that reason, such a device is called an ideal
low-frequency filter (with upper frequency limit Ω) in radio technology.

Let us now turn to the mathematical side of the matter and to a more careful study
of the concepts that arise.

b. Definition of the Fourier Transform and the Fourier Integral

In accordance with formulas (18.80) and (18.82) we make the following definition.

Definition 1 The function

F[f ](ξ) := 1

2π

∫ ∞

−∞
f (x)e−iξx dx (18.86)

is the Fourier transform of the function f :R→C.
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The integral here is understood in the sense of the principal value

∫ ∞

−∞
f (x)e−iξx dx := lim

A→+∞

∫ A

−A
f (x)e−iξx dx,

and we assume that it exists.
If f :R→C is absolutely integrable on R, then, since |f (x)e−ixξ | = |f (x)| for

x, ξ ∈R, the Fourier transform (18.86) is defined, and the integral (18.86) converges
absolutely and uniformly with respect to ξ on the entire line R.

Definition 2 If c(ξ) = F[f ](ξ) is the Fourier transform of f : R→ C, then the
integral assigned to f ,

f (x)∼
∫ ∞

−∞
c(ξ)eixξ dξ, (18.87)

understood as a principal value, is called the Fourier integral of f .

The Fourier coefficients and the Fourier series of a periodic function are thus the
discrete analog of the Fourier transform and the Fourier integral respectively.

Definition 3 The following integrals, understood as principal values,

Fc[f ](ξ) := 1

π

∫ ∞

−∞
f (x) cos ξx dx, (18.88)

Fs[f ](ξ) := 1

π

∫ ∞

−∞
f (x) sin ξx dx, (18.89)

are called respectively the Fourier cosine transform and the Fourier sine transform
of the function f .

Setting c(ξ)= F[f ](ξ), a(ξ)= Fc[f ](ξ), and b(ξ)= Fs[f ](ξ), we obtain the
relation that is already partly familiar to us from Fourier series

c(ξ)= 1

2

(
a(ξ)− ib(ξ)). (18.90)

As can be seen from relations (18.88) and (18.89),

a(−ξ)= a(ξ), b(−ξ)=−b(ξ). (18.91)

Formulas (18.90) and (18.91) show that Fourier transforms are completely de-
termined on the entire real line R if they are known for nonnegative values of the
argument.
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From the physical point of view this is a completely natural fact – the spectrum
of a signal needs to be known for frequencies ω ≥ 0; the negative frequencies α in
(18.80) and (18.82) – result from the form in which they are written. Indeed,

∫ A

−A
c(ξ)eixξ dξ =

(∫ 0

−A
+
∫ A

0

)
c(ξ)eixξ dξ =

∫ A

0

(
c(ξ)eixξ + c(−ξ)eixξ )dξ =

=
∫ A

0

(
a(ξ) cosxξ + b(ξ) sinxξ

)
dξ,

and hence the Fourier integral (18.87) can be represented as

∫ ∞

0

(
a(ξ) cosxξ + b(ξ) sinxξ

)
dξ, (18.87′)

which is in complete agreement with the classical form of a Fourier series. If the
function f is real-valued, it follows from formulas (18.90) and (18.91) that

c(−ξ)= c(ξ), (18.92)

since in this case a(ξ) and b(ξ) are real-valued functions on R, as one can see
from their definitions (18.88) and (18.89). On the other hand, under the assumption
f (x)= f (x), Eq. (18.92) can be obtained immediately from the definition (18.86)
of the Fourier transform, if we take into account that the conjugation sign can be
moved under the integral sign. This last observation allows us to conclude that

F[f ](−ξ)=F[f ](ξ) (18.93)

for every function f :R→C.
It is also useful to note that if f is a real-valued even function, that is, f (x) =

f (x)= f (−x), then

Fc[f ](ξ)=Fc[f ](ξ), Fs[f ](ξ)≡ 0,

F[f ](ξ)=F[f ](ξ)=F[f ](−ξ);
(18.94)

and if f is a real-valued odd function, that is, f (x)= f (x)=−f (−x), then

Fc[f ](ξ)≡ 0, Fs[f ](ξ)=Fs[f ](ξ),
F[f ](ξ)=−F[f ](ξ)=F[f ](−ξ);

(18.95)

and if f is a purely imaginary function, that is, f (x)=−f (x), then

F[f ](−ξ)=−F[f ](ξ). (18.96)
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We remark that if f is a real-valued function, its Fourier integral (18.87′) can
also be written as
∫ ∞

0

√
a2(ξ)+ b2(ξ) cos

(
xξ + ϕ(ξ))dξ = 2

∫ ∞

0

∣∣c(ξ)
∣∣ cos
(
xξ + ϕ(ξ))dξ,

where ϕ(ξ)=− arctan b(ξ)
a(ξ)
= arg c(ξ).

Example 3 Let us find the Fourier transform of f (t) = sinat
t

(assuming f (0) =
a ∈R).

F[f ](α) = lim
A→+∞

1

2π

∫ A

−A
sinat

t
e−iαt dt =

= lim
A→+∞

1

2π

∫ A

−A
sinat cosαt

t
dt = 2

2π

∫ +∞

0

sinat cosαt

t
dt =

= 1

2π

∫ +∞

0

(
sin(a + α)t

t
+ sin(a − α)t

t

)
dt =

= 1

2π

(
sgn(a + α)+ sgn(a − α))

∫ ∞

0

sinu

u
du=

{
1
2 sgna, if |α| ≤ |a|,
0, if |α|> |a|,

since we know the value of the Dirichlet integral
∫ ∞

0

sinu

u
du= π

2
. (18.97)

Hence if we assume a ≥ 0 and take the function f (t)= 2h sinat
t

of Eq. (18.84),
we find, as we should have expected, that the Fourier transform is the spectrum of
this function exhibited in relations (18.83).

The function f in Example 3 is not absolutely integrable on R, and its Fourier
transform has discontinuities. That the Fourier transform of an absolutely integrable
function has no discontinuities is attested by the following lemma.

Lemma 1 If the function f :R→C is locally integrable and absolutely integrable
on R, then

a) its Fourier transform F[f ](ξ) is defined for every value ξ ∈R;
b) F[f ] ∈ C(R,C);
c) supξ |F[g](ξ)| ≤ 1

2π

∫∞
−∞ |f (x)|dx;

d) F[f ](ξ)→ 0 as ξ→∞.

Proof We have already noted that |f (x)eixξ | ≤ |f (x)|, from which it follows that
the integral (18.86) converges absolutely and uniformly with respect to ξ ∈R. This
fact simultaneously proves parts a) and c).

Part d) follows from the Riemann–Lebesgue lemma (see Sect. 18.2).
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For a fixed finite A≥ 0, the estimate
∣∣∣∣

∫ A

−A
f (x)
(
e−ix(ξ+h) − e−ixξ

)
dx

∣∣∣∣≤ sup
|x|≤A
∣∣e−ixh − 1

∣∣
∫ A

−A
∣∣f (x)

∣∣dx

establishes that the integral

1

2π

∫ A

−A
f (x)e−ixξ dx,

is continuous with respect to ξ ; and the uniform convergence of this integral as
A→+∞ enables us to conclude that F[f ] ∈ C(R,C). �

Example 4 Let us find the Fourier transform of the function f (t)= e−t2/2:

F[f ](α)=
∫ +∞

−∞
e−t2/2e−iαt dt =

∫ +∞

−∞
e−t2/2 cosαt dt.

Differentiating this last integral with respect to the parameter α and then inte-
grating by parts, we find that

dF [f ]
dα

(α)+ αF[f ](α)= 0,

or

d

dα
lnF[f ](α)=−α.

It follows that F[f ](α)= ce−α2/2, where c is a constant which, using the Euler–
Poisson integral (see Example 17 of Sect. 17.2) we find from the relation

c=F[f ](0)=
∫ +∞

−∞
e−t2/2 dt =√2π.

Thus we have found that F[f ](α)=√2πe−α2/2, and simultaneously shown that
Fc[f ](α)=

√
2πe−α2/2 and Fs[f ](α)≡ 0.

c. Normalization of the Fourier Transform

We obtained the Fourier transform (18.80) and the Fourier integral (18.82) as the
natural continuous analogs of the Fourier coefficients ck = 1

2π

∫ π
−π f (x)e

−ikx dx
and the Fourier series

∑∞
−∞ ckeikx of a periodic function f in the trigonometric

system {eikx; k ∈ Z}. This system is not orthonormal, and only the ease of writing
a trigonometric Fourier series in it has caused it to be used traditionally instead of
the more natural orthonormal system { 1√

2π
eikx; k ∈ Z}. In this normalized system
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the Fourier series has the form
∑∞
−∞ ĉk 1√

2π
eikx , and the Fourier coefficients are

defined by the formulas ĉk = 1√
2π

∫ π
−π f (x)e

−ikx dx.
The continuous analogs of such natural Fourier coefficients and such a Fourier

series would be the Fourier transform

f̂ (ξ) := 1√
2π

∫ ∞

−∞
f (x)e−ixξ dx (18.98)

and the Fourier integral

f (x)= 1√
2π

∫ ∞

−∞
f̂ (ξ)eixξ dξ, (18.99)

which differ from those considered above only in the normalizing coefficient.
In the symmetric formulas (18.98) and (18.99) the Fourier “coefficient” and the

Fourier “series” practically coalesce, and so in the future we shall essentially be
interested only in the properties of the integral transform (18.98), calling it the nor-
malized Fourier transform or, where no confusion can arise, simply the Fourier
transform of the function f .

In general the name integral operator or integral transform is customarily given
to an operator A that acts on a function f according to a rule

A(f )(y)=
∫

X

K(x, y)f (x)dx,

where K(x,y) is a given function called the kernel of the integral operator, and
X ⊂ R

n is the set over which the integration extends and on which the integrands
are assumed to be defined. Since y is a free parameter in some set Y , it follows that
A(f ) is a function on Y .

In mathematics there are many important integral transforms, and among them
the Fourier transform occupies one of the most key positions. The reasons for this
situation go very deep and involve the remarkable properties of the transformation
(18.98), which we shall to some extent describe and illustrate in action in the re-
maining part of this section.

Thus, we shall study the normalized Fourier transform (18.98).
Along with the notation f̂ for the normalized Fourier transform, we introduce

the notation

f̃ (ξ) := 1√
2π

∫ ∞

−∞
f (x)eiξx dx, (18.100)

that is, f̃ (ξ)= f̂ (−ξ).
Formulas (18.98) and (18.99) say that

˜̂
f = ˆ̃f = f, (18.101)

that is, the integral transforms (18.98) and (18.99) are mutually inverse to each other.
Hence if (18.98) is the Fourier transform, then it is natural to call the integral oper-
ator (18.100) the inverse Fourier transform.



562 18 Fourier Series and the Fourier Transform

We shall discuss in detail below certain remarkable properties of the Fourier
transform and justify them. For example

f̂ (n)(ξ) = (iξ)nf̂ (ξ),
f̂ ∗ g =√2πf̂ · ĝ,
‖f̂ ‖ = ‖f ‖.

That is, the Fourier transform maps the operator of differentiation into the op-
erator of multiplication by the independent variable; the Fourier transform of the
convolution of functions amounts to multiplying the transforms; the Fourier trans-
form preserves the norm (Parseval’s equality), and is therefore an isometry of the
corresponding function space.

But we shall begin with the inversion formula (18.101).
For another convenient normalization of the Fourier transform see Problem 10

below.

d. Sufficient Conditions for a Function to be Representable as a Fourier
Integral

We shall now prove a theorem that is completely analogous in both form and con-
tent to the theorem on convergence of a trigonometric Fourier series at a point.
To preserve the familiar appearance of our earlier formulas and transformations to
the maximum extent, we shall use the nonnormalized Fourier transform c(ξ) in the
present part of this subsection, together with its rather cumbersome but sometimes
convenient notation F[f ](ξ). Afterwards, when studying the integral Fourier trans-
form as such, we shall as a rule work with the normalized Fourier transform f̂ of
the function f .

Theorem 1 (Convergence of the Fourier integral at a point) Let f : R→ C be an
absolutely integrable function that is piecewise continuous on each finite closed
interval of the real axis R.

If the function f satisfies the Dini conditions at a point x ∈ R, then its Fourier
integral (18.82), (18.87), (18.87′), (18.99) converges at that point to the value
1
2 (f (x−) + f (x+)), equal to half the sum of the left and right-hand limits of the
function at that point.

Proof By Lemma 1 the Fourier transform c(ξ)=F[f ](ξ) of the function f is con-
tinuous on R and hence integrable on every interval [−A,A]. Just as we transformed
the partial sum of the Fourier series, we now carry out the following transformations
of the partial Fourier integral:

SA(x) =
∫ A

−A
c(ξ)eixξ dξ =

∫ A

−A

(
1

2π

∫ ∞

−∞
f (t)e−itξ dt

)
eixξ dξ =
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= 1

2π

∫ ∞

−∞
f (t)

(∫ A

−A
ei(x−t)ξ dξ

)
dt =

= 1

2π

∫ ∞

−∞
f (t)

ei(x−t)A − e−i(x−t)A

i(x − t) dt =

= 1

π

∫ ∞

−∞
f (t)

sin(x − t)A
x − t dt = 1

π

∫ ∞

−∞
f (x + u) sinAu

u
du=

= 1

π

∫ ∞

0

(
f (x − u)+ f (x + u)) sinAu

u
du.

The change in the order of integration at the second equality from the beginning
of the computation is legal. In fact, in view of the piecewise continuity of f , for
every finite B > 0 we have the equality

∫ A

−A

(
1

2π

∫ B

−B
f (t)e−itξ dt

)
eixξ dξ = 1

2π

∫ B

−B
f (t)

(∫ A

−A
ei(x−t)ξ dξ

)
dt,

from which as B→+∞, taking account of the uniform convergence of the integral∫ B
−B f (x)e

−itξ dt with respect to ξ , we obtain the equality we need.
We now use the value of the Dirichlet integral (18.97) and complete our transfor-

mation:

SA(x)− f (x−)+ f (x+)
2

=

= 1

π

∫ +∞

0

(f (x − u)− f (x−))+ (f (x + u)− f (x+))
u

sinAudu.

The resulting integral tends to zero as A→∞. We shall explain this and thereby
finish the proof of the theorem.

We represent this integral as the sum of the integrals over the interval ]0,1] and
over the interval [1,+∞[. The first of these two integrals tends to zero as A→+∞
in view of the Dini conditions and the Riemann–Lebesgue lemma. The second inte-
gral is the sum of four integrals corresponding to the four terms f (x−u), f (x+u),
f (x−) and f (x+). The Riemann–Lebesgue lemma applies to the first two of these
four integrals, and the last two can be brought into the following form, up to a con-
stant factor:

∫ +∞

1

sinAu

u
du=

∫ +∞

A

sinv

v
dv.

But as A→ +∞ this last integral tends to zero, since the Dirichlet integral
(18.97) converges. �

Remark 1 In the proof of Theorem 1 we have actually studied the convergence
of the integral as a principal value. But if we compare the notations (18.87) and
(18.87′), it becomes obvious that it is precisely this interpretation of the integral that
corresponds to convergence of the integral (18.87′).
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From this theorem we obtain in particular

Corollary 1 Let f :R→C be a continuous absolutely integrable function.
If the function f is differentiable at each point x ∈ R or has finite one-sided

derivatives or satisfies a Hölder condition, then it is represented by its Fourier inte-
gral.

Hence for functions of these classes both equalities (18.80) and (18.82) or (18.98)
and (18.99) hold, and we have thus proved the inversion formula for the Fourier
transform for such functions.

Let us consider several examples.

Example 5 Assume that the signal v(t) = P(f )(t) emerging from the device P
considered in Example 2 is known, and we wish to find the input signal f (t) entering
the device P .

In Example 2 we have shown that f and v are connected by the relation

v(t)=
∫ ∞

−∞
c(ω)p(ω)eiωt dω,

where c(ω)=F[f ](ω) is the spectrum of the signal F (the nonnormalized Fourier
transform of the function f ) and p is the spectral characteristic of the device P .
Assuming all these functions are sufficiently regular, from the theorem just proved
we conclude that then

c(ω)p(ω)=F[v](ω).
From this we find c(ω) = F[f ](ω). Knowing c(ω), we find the signal f using

the Fourier integral (18.87).

Example 6 Let a > 0 and

f (x)=
{

e−ax for x > 0,
0 for x ≤ 0.

Then

F[f ](ξ)= 1

2π

∫ +∞

0
e−axe−iξx dx = 1

2π

1

a + iξ .
In discussing the definition of the Fourier transform, we have already noted a

number of its obvious properties in Part b of the present subsection. We note further
that if f−(x) := f (−x), then F[f−](ξ)=F[f ](−ξ). This is an elementary change
of variable in the integral.

We now take the function e−a|x| = f (x)+ f (−x)=: ϕ(x).
Then

F[ϕ](ξ)=F[f ](ξ)+F[f ](−ξ)= 1

π

a

a2 + ξ2
.
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If we now take the function ψ(x) = f (x)− f (−x), which is an odd extension
of the function e−ax , x > 0, to the entire real line, then

F[ψ](ξ)=F[f ](ξ)−F[f ](−ξ)=− i
π

ξ

a2 + ξ2
.

Using Theorem 1, or more precisely the corollary to it, we find that

1

2π

∫ ∞

−∞
eixξ

a + iξ dξ =

⎧
⎪⎨

⎪⎩

e−ax, if x > 0,
1
2 , if x = 0,

0, if x < 0;
1

π

∫ +∞

−∞
aeixξ

a2 + ξ2
dξ = e−a|x|;

i

π

∫ +∞

−∞
ξeixξ

a2 + ξ2
dξ =

⎧
⎪⎨

⎪⎩

e−ax, if x > 0,

0, if x = 0,

−eax, if x < 0.

All the integrals here are understood in the sense of the principal value, although
the second one, in view of its absolute convergence, can also be understood in the
sense of an ordinary improper integral.

Separating the real and imaginary parts in these last two integrals, we find the
Laplace integrals we have encountered earlier

∫ +∞

0

cosxξ

a2 + ξ2
dξ = π

2a
e−a|x|,

∫ +∞

0

sinxξ

a2 + ξ2
dξ = π

2
e−a|x| sgnx.

Example 7 On the basis of Example 4 it is easy to find (by an elementary change of
variable) that if

f (x)= e−a2x2
, then f̂ (ξ)= 1√

2a
e
− ξ2

4a2 .

It is very instructive to trace the simultaneous evolution of the graphs of the func-
tions f and f̂ as the parameter a varies from 1/

√
2 to 0. The more “concentrated”

one of the functions is, the more “smeared” the other is. This circumstance is closely
connected with the Heisenberg uncertainty principle in quantum mechanics. (In this
connection see Problems 6 and 7.)

Remark 2 In completing the discussion of the question of the possibility of repre-
senting a function by a Fourier integral, we note that, as Examples 1 and 3 show, the
conditions on f stated in Theorem 1 and its corollary are sufficient but not necessary
for such a representation to be possible.
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18.3.2 The Connection of the Differential and Asymptotic
Properties of a Function and Its Fourier Transform

a. Smoothness of a Function and the Rate of Decrease of Its Fourier
Transform

It follows from the Riemann–Lebesgue lemma that the Fourier transform of any
absolutely integrable function on R tends to zero at infinity. This has already been
noted in Lemma 1 proved above. We now show that, like the Fourier coefficients,
the smoother the function, the faster its Fourier transform tends to zero. The dual
fact is that the faster a function tends to zero, the smoother its Fourier transform.

We begin with the following auxiliary proposition.

Lemma 2 Let f :R→C be a continuous function having a locally piecewise con-
tinuous derivative f ′ on R. Given this,

a) if the function f ′ is integrable on R, then f (x) has a limit both as x→−∞
and as→+∞;

b) if the functions f and f ′ are integrable on R, then f (x)→ 0 as→∞.

Proof Under these restrictions on the functions f and f ′ the Newton–Leibniz for-
mula holds

f (x)= f (0)+
∫ x

0
f ′(t)dt.

In conditions a) the right-hand side of this equality has a limit both as x→+∞
and as x→−∞.

If a function f having a limit at infinity is integrable on R, then both of these
limits must obviously be zero. �

We now prove

Proposition 1 (Connection between the smoothness of a function and the rate of
decrease of its Fourier transform) If f ∈ C(k)(R,C) (k = 0,1, . . .) and all the func-
tions f,f ′, . . . , f (k) are absolutely integrable on R, then

a) for every n ∈ {0,1, . . . , k}

f̂ (n)(ξ)= (iξ)nf̂ (ξ), (18.102)

b) f̂ (ξ)= o
(

1
ξk

)
as ξ→ 0.

Proof If k = 0, then a) holds trivially and b) follows from the Riemann–Lebesgue
lemma.
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Let k > 0. By Lemma 2 the functions f,f ′, . . . , f (k−1) tend to zero as x→∞.
Taking this into account, we integrate by parts,

f̂ (k)(ξ) := 1√
2π

∫ ∞

−∞
f (k)(x)e−iξx dx =

= 1√
2π

(
f (k−1)(x)e−iξx

∣
∣+∞
x=−∞ + (iξ)

∫ ∞

−∞
f (k−1)(x)e−iξx dx

)
=

= · · · = (iξ)
k

√
2π

∫ ∞

−∞
f (x)e−iξx dx = (iξ)kf̂ (ξ).

Thus Eq. (18.102) is established. This is a very important relation, and we shall
return to it.

We have shown that f̂ (ξ) = (iξ)−kf̂ (k)(ξ), but by the Riemann–Lebesgue
lemma f̂ (k)(ξ)→ 0 as ξ→ 0 and hence b) is also proved. �

b. The Rate of Decrease of a Function and the Smoothness of Its Fourier
Transform

In view of the nearly complete identity of the direct and inverse Fourier transforms
the following proposition, dual to Proposition 1, holds.

Proposition 2 (The connection between the rate of decrease of a function and the
smoothness of its Fourier transform) If a locally integrable function f : R→ C is
such that the function xkf (x) is absolutely integrable on R, then

a) the Fourier transform of f belongs to C(k)(R,C).
b) the following equality holds:

f̂ (k)(ξ)= (−i)kx̂kf (x)(ξ). (18.103)

Proof For k = 0 relation (18.103) holds trivially, and the continuity of f̂ (ξ) has
already been proved in Lemma 1. If k > 0, then for n < k we have the estimate
|xnf (x)| ≤ |xkf (x)| at infinity, from which it follows that xnf (x) is absolutely
integrable. But |xnf (x)e−iξx | = |xnf (x)|, which enables us to invoke the uniform
convergence of these integrals with respect to the parameter ξ and successively dif-
ferentiate them under the integral sign:

f̂ (ξ) = 1√
2π

∫ ∞

−∞
f (x)e−iξx dx,

f̂ ′(ξ) = −i√
2π

∫ ∞

−∞
xf (x)e−iξx dx,

...
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f̂ (k)(ξ) = (−i)
k

√
2π

∫ ∞

−∞
xkf (x)e−iξx dx.

By Lemma 1 this last integral is continuous on the entire real line. Hence indeed
f̂ ∈C(k)(R,C). �

c. The Space of Rapidly Decreasing Functions

Definition 4 We denote the set of functions f ∈ C(∞)(R,C) satisfying the condi-
tion

sup
x∈R

∣
∣xβf (α)(x)

∣
∣<∞

for all nonnegative integers α and β by S(R,C) or more briefly by S. Such functions
are called rapidly decreasing functions (as x→∞).

The set of rapidly decreasing functions obviously forms a vector space under the
standard operations of addition of functions and multiplication of a function by a
complex number.

Example 8 The function e−x2
or, for example, all functions of compact support in

C
(∞)
0 (R,C) belong to S.

Lemma 3 The restriction of the Fourier transform to S is a vector-space automor-
phism of S.

Proof We first show that (f ∈ S)⇒ (f̂ ∈ S).
To do this we first remark that by Proposition 2a we have f̂ ∈C(∞)(R,C).
We then remark that the operation of multiplication by xα (α ≥ 0) and the oper-

ation D of differentiation do not lead outside the class of rapidly decreasing func-
tions. Hence, for any nonnegative integers α and β the relation f ∈ S implies that
the functionDβ(xαf (x)) belongs to the space S. Its Fourier transform tends to zero
at infinity by the Riemann–Lebesgue lemma. But by formulas (18.102) and (18.103)

Dβ
(
x̂αf (x)

)
(ξ)= iα+βξβf̂ (α)(ξ),

and we have shown that ξβf̂ (α)(ξ)→ 0 as ξ→∞, that is, f̂ ∈ S.
We now show that Ŝ = S, that is, that the Fourier transform maps S onto the

whole space S.
We recall that the direct and inverse Fourier transforms are connected by the

simple relation f̂ (ξ)= f̃ (−ξ). Reversing the sign of the argument of the function
obviously is an operation that maps the set S into itself. Hence the inverse Fourier
transform also maps S into itself.

Finally, if f is an arbitrary function in S, then by what has been proved ϕ = f̃ ∈ S
and by the inversion formula (18.101) we find that f = ϕ̂.
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The linearity of the Fourier transform is obvious, so that Lemma 3 is now com-
pletely proved. �

18.3.3 The Main Structural Properties of the Fourier Transform

a. Definitions, Notation, Examples

We have made a rather detailed study above of the Fourier transform of a function
f : R→ C defined on the real line. In particular, we have clarified the connection
that exists between the regularity properties of a function and the corresponding
properties of its Fourier transform. Now that this question has been theoretically an-
swered, we shall study the Fourier transform only of sufficiently regular functions
so as to exhibit the fundamental technical properties of the Fourier transform in con-
centrated form and without technical complications. In compensation we shall con-
sider not only one-dimensional but also the multi-dimensional Fourier transform and
derive its basic properties practically independently of what was discussed above.

Those wishing to confine themselves to the one-dimensional case may assume
that n= 1 below.

Definition 5 Suppose f :Rn→C is a locally integrable function on R
n. The func-

tion

f̂ (ξ) := 1

(2π)n/2

∫

Rn

f (x)e−i(ξ,x) dx (18.104)

is called the Fourier transform of the function f .

Here we mean that x = (x1, . . . , xn), ξ = (ξ1, . . . , ξn), (ξ, x)= ξ1x1+· · ·+ξnxn,
and the integral is regarded as convergent in the following sense of principal value:

∫

Rn

ϕ(x1, . . . , xn)dx1 · · ·dxn := lim
A→+∞

∫ A

−A
· · ·
∫ A

−A
ϕ(x1, . . . , xn)dx1 · · ·dxn.

In this case the multidimensional Fourier transform (18.104) can be regarded as n
one-dimensional Fourier transforms carried out with respect to each of the variables
x1, . . . , xn.

Then, when the function f is absolutely integrable, the question of the sense in
which the integral (18.104) is to be understood does not arise at all.

Let α = (α1, . . . , αn) and β = (β1, . . . , βn) be multi-indices consisting of non-
negative integers αj ,βj , j = 1, . . . , n, and suppose, as always, that Dα denotes

the differentiation operator ∂ |α|
∂x
α1
1 ···∂xαnn

of order |α| := α1 + · · · + αn and xβ :=
x
β1
1 · . . . · xβnn .
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Definition 6 We denote the set of functions f ∈C(∞)(Rn,C) satisfying the condi-
tion

sup
x∈Rn
∣∣xβDαf (x)

∣∣<∞

for all nonnegative multi-indices α and β by the symbol S(Rn,C), or by S where no
confusion can arise. Such functions are said to be rapidly decreasing (as x→∞).

The set S with the algebraic operations of addition of functions and multiplica-
tion of a function by a complex number is obviously a vector space.

Example 9 The function e−|x|2 , where |x|2 = x2
1 + · · · + x2

n , and all the functions in

C
(∞)
0 (Rn,C) of compact support belong to S.

If f ∈ S, then integral in relation (18.104) obviously converges absolutely and
uniformly with respect to ξ on the entire space Rn. Moreover, if f ∈ S, then by stan-
dard rules this integral can be differentiated as many times as desired with respect
to any of the variables ξ1, . . . , ξn. Thus if f ∈ S, then f̂ ∈C(∞)(R,C).

Example 10 Let us find the Fourier transform of the function exp(−|x|2/2). When
integrating rapidly decreasing functions one can obviously use Fubini’s theorem and
if necessary change the order of improper integrations without difficulty.

In the present case, using Fubini’s theorem and Example 4, we find

1

(2π)n/2

∫

Rn

e−|x|2/2 · e−i(ξ,x) dx =

=
n∏

j=1

1√
2π

∫ ∞

−∞
e−x

2
j /2e−iξj xj dxj =

n∏

j=1

e−ξ
2
j /2 = e−|ξ |2/2.

We now state and prove the basic structural properties of the Fourier transform,
assuming, so as to avoid technical complications, that the Fourier transform is being
applied to functions of class S. This is approximately the same as learning to operate
(compute) with rational numbers rather than the entire space R all at once. The
process of completion is of the same type. On this account, see Problem 5.

b. Linearity

The linearity of the Fourier transform is obvious; it follows from the linearity of the
integral.

c. The Relation Between Differentiation and the Fourier Transform

The following formulas hold

D̂αf (ξ) = i|α|ξαf̂ (ξ), (18.105)
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(
x̂αf (x)

)
(ξ) = i|α|Dαf̂ (ξ). (18.106)

Proof The first of these can be obtained, like formula (18.102), via integration by
parts (of course, with a preliminary use of Fubini’s theorem in the case of a space Rn

of dimension n > 1).
Formula (18.106) generalizes relation (18.103) and is obtained by direct differ-

entiation of (18.104) with respect to the parameters ξ1, . . . , ξn. �

Remark 3 In view of the obvious estimate

∣
∣f̂ (ξ)

∣
∣≤ 1

(2π)n/2

∫

Rn

∣
∣f (x)

∣
∣dx <+∞,

it follows from (18.105) that f̂ (ξ)→ 0 as ξ →∞ for every function f ∈ S, since
Dαf ∈ S.

Next, the simultaneous use of formulas (18.105) and (18.106) enables us to write
that

̂Dβ
(
xαf (x)

)
(ξ)= (i)|α|+|β|ξβDαf̂ (ξ),

from which it follows that if f ∈ S, then for any nonnegative multi-indices α and β
we have ξβDαf̂ (ξ)→ 0 when ξ→∞ in R

n. Thus we have shown that

(f ∈ S)⇒ (f̂ ∈ S).

d. The Inversion Formula

Definition 7 The operator defined (together with its notation) by the equality

f̃ (ξ) := 1

(2π)n/2

∫

Rn

f (x)ei(ξ,x) dx, (18.107)

is called the inverse Fourier transform.

The following Fourier inversion formula holds:

˜̂
f = ˆ̃f = f, (18.108)

or in the form of the Fourier integral:

f (x)= 1

(2π)n/2

∫

Rn

f̂ (ξ)ei(x,ξ) dξ. (18.109)

Using Fubini’s theorem one can immediately obtain formula (18.108) from the
corresponding formula (18.101) for the one-dimensional Fourier transform, but, as
promised, we shall give a brief independent proof of the formula.
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Proof We first show that

∫

Rn

g(ξ)f̂ (ξ)ei(x,ξ) dξ =
∫

Rn

ĝ(ξ)f (x + y)dy (18.110)

for any functions f,g ∈ S(R,C). Both integrals are defined, since f,g ∈ S and so
by Remark 3 we also have f̂ , ĝ ∈ S.

Let us transform the integral on the left-hand side of the equality to be proved:

∫

Rn

g(ξ)f̂ (ξ)ei(x,ξ) dξ =

=
∫

Rn

g(ξ)

(
1

(2π)n/2

∫

Rn

f (y)e−i(ξ,y) dy

)
ei(x,ξ) dξ =

= 1

(2π)n/2

∫

Rn

(∫

Rn

g(ξ)e−i(ξ,y−x) dξ

)
f (y)dy =

=
∫

Rn

ĝ(y − x)f (y)dy =
∫

Rn

ĝ(y)f (x + y)dy.

There is no doubt as to the legitimacy of the reversal in the order of integration,
since f and g are rapidly decreasing functions. Thus (18.110) is now verified.

We now remark that for every ε > 0

1

(2π)n/2

∫

Rn

g(εξ)ei(y,ξ) dξ = 1

(2π)n/2εn

∫

Rn

g(u)e−i(y,u/ε) du= ε−nĝ(y/ε),

so that, by Eq. (18.110)

∫

Rn

g(εξ)f̂ (ξ)ei(x,ξ) dξ =
∫

Rn

ε−nĝ(y/ε)f (x + y)dy =
∫

Rn

ĝ(u)f (x + εu)du.

Taking account of the absolute and uniform convergence with respect to ε of the
extreme integrals in the last chain of equalities, we find, as ε→ 0,

g(0)
∫

Rn

f̂ (ξ)ei(x,ξ) dξ = f (x)
∫

Rn

ĝ(u)du.

Here we set g(x)= e−|x|2/2. In Example 10 we saw that ĝ(u)= e−|u|2/2. Recall-
ing the Euler–Poisson integral

∫∞
−∞ e−x2

dx =√π and using Fubini’s theorem, we

conclude that
∫
Rn

e−|u|2/2 du= (2π)n/2, and as a result, we obtain Eq. (18.109). �

Remark 4 In contrast to the single equality (18.109), which means that ˜̂f = f , re-

lations (18.108) also contain the equality ˜̂f . But this relation follows immediately

from the one proved, since f̃ (ξ)= f̂ (−ξ) and f̃ (−x)= f̂ (x).
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Remark 5 We have already seen (see Remark 3) that if f ∈ S, then f̂ ∈ S, and
hence f̃ ∈ S also, that is, Ŝ ⊂ S and S̃ ⊂ S. We now conclude from the relations
ˆ̃
f = ˜̂f = f that S̃ = Ŝ = S.

e. Parseval’s Equality

This is the name given to the relation

〈f,g〉 = 〈f̂ , ĝ〉, (18.111)

which in expanded form means that
∫

Rn

f (x)g(x)dx =
∫

Rn

f̂ (ξ)ĝ(ξ)dξ. (18.111′)

It follows in particular from (18.111) that

‖f ‖2 = 〈f,f 〉 = 〈f̂ , f̂ 〉 = ‖f̂ ‖2. (18.112)

From the geometric point of view, Eq. (18.111) means that the Fourier transform
preserves the inner product between functions (vectors of the space S), and hence is
an isometry of S.

The name “Parseval’s equality” is also sometimes given to the relation
∫

Rn

f̂ (ξ)g(ξ)dξ =
∫

Rn

f (x)ĝ(x)dx, (18.113)

which is obtained from (18.110) by setting x = 0. The main Parseval equality
(18.111) is obtained from (18.113) by replacing g with ĝ and using the fact that

(
ˆ̂
g)= g, since ĝ = g̃ and ˜̂g = ˆ̃g = g.

f. The Fourier Transform and Convolution

The following important relations hold

(f̂ ∗ g) = (2π)n/2f̂ · ĝ, (18.114)

(f̂ · g) = (2π)−n/2f̂ ∗ ĝ (18.115)

(sometimes called Borel’s formulas), which connect the operations of convolution
and multiplication of functions through the Fourier transform.

Let us prove these formulas:

Proof

(f̂ ∗ g)(ξ) = 1

(2π)n/2

∫

Rn

(f ∗ g)(x)e−i(ξ,x) dx =
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= 1

(2πn/2

∫

Rn

(∫

Rn

f (x − y)g(y)dy
)

e−i(ξ,x) dx =

= 1

(2π)n/2

∫

Rn

g(y)e−i(ξ,y)
(∫

Rn

f (x − y)e−i(ξ,x−y) dx

)
dy =

= 1

(2π)n/2

∫

Rn

g(y)e−i(ξ,y)
(∫

Rn

f (u)e−i(ξ,u) du

)
dy =

=
∫

Rn

g(y)e−i(ξ,y)f̂ (ξ)dy = (2π)n/2f̂ (ξ)ĝ(ξ).

The legitimacy of the change in order of integration is not in doubt, given that
f,g ∈ S.

Formula (18.115) can be obtained by a similar computation if we use the inver-
sion formula (18.109). However, Eq. (18.115) can be derived from relation (18.114)

already proved if we recall that ˆ̃f = ˜̂f = f , f̃ = f̂ , f̃ = f̂ , and that u · v = u · v,
u ∗ v = u ∗ v. �

Remark 6 If we set f̃ and g̃ in place of f and g in formulas (18.114) and (18.115)
and apply the inverse Fourier transform to both sides of the resulting equalities, we
arrive at the relations

f̃ · g = (2π)−n/2(f̃ ∗ g̃), (18.114′)

f̃ ∗ g = (2π)n/2(f̃ · g̃). (18.115′)

18.3.4 Examples of Applications

Let us now illustrate the Fourier transform (and some of the machinery of Fourier
series) in action.

a. The Wave Equation

The successful use of the Fourier transform in the equations of mathematical physics
is bound up (in its mathematical aspect) primarily with the fact that the Fourier
transform replaces the operation of differentiation with the algebraic operation of
multiplication.

For example, suppose we are seeking a function u : R→ R satisfying the equa-
tion

a0u
(n)(x)+ a1u

(n−1)(x)+ · · · + anu(x)= f (x),
where a0, . . . , an are constant coefficients and f is a known function. Applying the
Fourier transform to both sides of this equation (assuming that the functions u and
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f are sufficiently regular), by relation (18.105) we obtain the algebraic equation

(
a0(iξ)

n + a1(iξ)
n−1 + · · · + an

)
û(ξ)= f̂ (ξ)

for û. After finding û(ξ)= f̂ (ξ)
P (iξ)

from the equation, we obtain u(x) by applying the
inverse Fourier transform.

We now apply this idea to the search for a function u = u(x, t) satisfying the
one-dimensional wave equation

∂2u

∂t2
= a2 ∂

2u

∂x2
(a > 0)

and the initial conditions

u(x,0)= f (x), ∂u

∂t
(x,0)= g(x)

in R×R.
Here and in the next example we shall not take the time to justify the intermediate

computations because, as a rule, it is easier simply to find the required function and
verify directly that it solves the problem posed than to justify and overcome all the
technical difficulties that arise along the way. As it happens, generalized functions,
which have already been mentioned, play an essential role in the theoretical struggle
with these difficulties.

Thus, regarding t as a parameter, we carry out a Fourier transform on x on both
sides of the equation. Then, assuming on the one hand that differentiation with
respect to the parameter under the integral sign is permitted and using formula
(18.105) on the other hand, we obtain

û′′t t (ξ, t)=−a2ξ2û(ξ, t),

from which we find

û(ξ, t)=A(ξ) cosaξt +B(ξ) sinaξt.

By the initial conditions, we have

û(ξ,0) = f̂ (ξ)=A(ξ),
û′t (ξ,0) =

(̂
u′t
)
(ξ,0)= ĝ(ξ)= aξB(ξ).

Thus,

û(ξ, t) = f̂ (ξ) cosaξt + ĝ(ξ)
aξ

sinaξt =

= 1

2
f̂ (ξ)
(
eiaξ t + e−iaξ t

)+ 1

2

ĝ(ξ)

iaξ

(
eiaξ t − e−iaξ t

)
.
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Multiplying this equality by 1√
2π

eixξ and integrating with respect to ξ – in short,
taking the inverse Fourier transform – and using formula (18.105) we obtain imme-
diately

u(x, t)= 1

2

(
f (x − at)+ f (x + at))+ 1

2

∫ t

0

(
g(x − aτ)+ g(x + aτ))dτ.

b. The Heat Equation

Another element of the machinery of Fourier transforms (specifically, formulas
(18.114′) and (18.115′)) which remained in the background in the preceding ex-
ample, manifests itself quite clearly when we seek a function u = u(x, t), x ∈ Rn,
t ≥ 0, that satisfies the heat equation

∂u

∂t
= a2Δu (a > 0)

and the initial condition u(x,0)= f (x) on all of Rn.
Here, as always Δ= ∂2

∂x2
1
+ · · · + ∂2

∂x2
n

.

Carrying out a Fourier transform with respect to the variable x ∈ Rn, (assuming
that this is possible to do) we find by (18.105) the ordinary equation

∂û

∂t
(ξ, t)= a2(i)2

(
ξ2

1 + · · · + ξ2
n

)
û(ξ, t),

from which it follows that

û(ξ, t)= c(ξ)e−a2|ξ |2t ,

where |ξ |2 = ξ2
1 +· · ·+ ξ2

n . Taking into account the relation û(ξ,0)= f̂ (ξ), we find

û(ξ, t)= f̂ (ξ) · e−a2|ξ |2t .

Now applying the inverse Fourier transform, taking account of (18.114′), we
obtain

u(x, t)= (2π)−n/2
∫

Rn

f (y)E0(y − x, t)dy,

where E0(x, t) is the function whose Fourier transform with respect to x is e−a2|ξ |2t .
The inverse Fourier transform with respect to ξ of the function e−a2|ξ |2t is essentially
already known to us from Example 10. Making an obvious change of variable, we
find

E0(x, t)= 1

(2π)n/2

(√
π

a
√
t

)n
e
− |x|2

4a2t .
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Setting E(x, t)= (2π)−n/2E0(x, t), we find the fundamental solution

E(x, t)= (2a√πt)−ne
− |x|2

4a2t (t > 0),

of the heat equation, which was already familiar to us (see Example 15 of
Sect. 17.4), and the formula

u(x, t)= (f ∗E)(x, t)
for the solution satisfying the initial condition u(x,0)= f (x).

c. The Poisson Summation Formula

This is the name given to the following relation

√
2π

∞∑

n=−∞
ϕ(2πn)=

∞∑

n=−∞
ϕ̂(n) (18.116)

between a function ϕ :R→C (assume ϕ ∈ S) and its Fourier transform ϕ̂. Formula
(18.116) is obtained by setting x = 0 in the equality

√
2π

∞∑

n=−∞
ϕ(x + 2πn)=

∞∑

n=−∞
ϕ̂(n)einx, (18.117)

which we shall prove assuming that ϕ is a rapidly decreasing function.

Proof Since ϕ and ϕ̂ both belong to S, the series on both sides of (18.117) con-
verge absolutely (and so they can be summed in any order), and uniformly with
respect to x on the entire line R. Moreover, since the derivatives of a rapidly de-
creasing function are themselves in class S, we can conclude that the function
f (x)=∑∞n=−∞ ϕ(x + 2πn) belongs to C(∞)(R,C). The function f is obviously
of period 2π . Let {ĉk(f )} be its Fourier coefficients in the orthonormal system
{ 1√

2π
eikx; k ∈ Z}, then

ĉk(f ) := 1√
2π

∫ 2π

0
f (x)e−ikx dx =

∞∑

n=−∞

1√
2π

∫ 2π

0
ϕ(x + 2πn)e−ikx dx =

=
∞∑

n=−∞

1√
2π

∫ 2π(n+1)

2πn
ϕ(x)e−ikx dx = 1√

2π

∫ ∞

−∞
ϕ(x)e−ikx dx =: ϕ̂(k).

But f is a smooth 2π -periodic function and so its Fourier series converges to it
at every point x ∈R. Hence, at every point x ∈R we have the relation

∞∑

n=−∞
ϕ(x + 2πn)= f (x)=

∞∑

n=−∞
ĉn(f )

einx√
2π
= 1√

2π

∞∑

n=−∞
ϕ̂(n)einx .

�
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Remark 7 As can be seen from the proof, relations (18.116) and (18.117) by no
means hold only for functions of class S. But if ϕ does happen to belong to S, then
Eq. (18.117) can be differentiated termwise with respect to x any number of times,
yielding as a corollary new relations between ϕ,ϕ′, . . . , and ϕ̂.

d. Kotel’nikov’s Theorem (Whittaker–Shannon Sampling Theorem)25

This example, based like the preceding one on a beautiful combination of the Fourier
series and the Fourier integral, has a direct relation to the theory of information
transmission in a communication channel. To keep it from appearing artificial, we
recall that because of the limited capabilities of our sense organs, we are able to
perceive signals only in a certain range of frequencies. For example, the ear “hears”
in the range from 20 Hz to 20 kHz. Thus, no matter what the signals are, we, like
a filter (see Sect. 18.3.1) cut out only a bounded part of their spectra and perceive
them as band-limited signals (having a bounded spectrum).

For that reason, we shall assume from the outset that the transmitted or received
signal f (t) (where t is time, −∞ < t <∞) is band-limited, the spectrum being
nonzero only for frequencies whose magnitudes do not exceed a certain critical
value a > 0. Thus f̂ (ω) ≡ 0 for |ω| > a, and so for a band-limited function the
representation

f (t)= 1√
2π

∫ ∞

−∞
f̂ (ω)eiωt dω

reduces to the integral over just the interval [−a, a]:

f (t)= 1√
2π

∫ a

−a
f̂ (ω)eiωt dω. (18.118)

On the closed interval [−a, a] we expand the function f̂ (ω) in a Fourier series

f̂ (ω)=
∞∑

−∞
ck(f̂ )e

i πω
a
k (18.119)

in the system {ei πωa k; k ∈ Z} which is orthogonal and complete in that interval. Tak-
ing account of formula (18.118), we find the following simple expression for the
coefficients ck(f̂ ) of this series:

ck(f̂ ) := 1

2a

∫ a

−a
f̂ (ω)e−i

πω
a
k dω− a =

√
2π

2a
f

(
−π
a
k

)
. (18.120)

25V.A. Kotel’nikov (b. 1908) – Soviet scholar, a well-known specialist in the theory of radio
communication.
J.M. Whittaker (1905–1984) – British mathematician who worked mainly in complex analysis.
C.E. Shannon (1916–2001) – American mathematician and engineer, one of the founders of
information theory and inventor of the term “bit” as an abbreviation of “binary digit”.
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Substituting the series (18.119) into the integral (18.118), taking account of rela-
tions (18.120), we find

f (t) = 1√
2π

∫ a

−a

(√
2π

2a

∞∑

k=−∞
f

(
π

a
k

)
eiωt−i

πk
a
ω

)

dω=

= 1

2a

∞∑

k=−∞
f

(
π

a
k

)∫ a

−a
eiω(t−

π
a
k) dω.

Calculating these elementary integrals, we arrive at Kotel’nikov’s formula

f (t)=
∞∑

k=−∞
f

(
π

a
k

)
sina(t − π

a
k)

a(t − π
a
k)

. (18.121)

Formula (18.121) shows that, in order to reconstruct a message described by a
band-limited function f (t) whose spectrum is concentrated in the frequency range
|ω| ≤ a, it suffices to transmit over the channel only the values f (kΔ) (called
marker values) of the function at equal time intervals Δ= π/a.

This proposition, together with formula (18.121) is due to V.A. Kotel’nikov and
is called Kotel’nikov’s theorem or the sampling theorem.

Remark 8 The interpolation formula (18.121) itself was known in mathematics be-
fore Kotel’nikov’s 1933 paper, but this paper was the first to point out the fundamen-
tal significance of the expansion (18.121) for the theory of transmission of continu-
ous messages over a communication channel. The idea of the derivation of formula
(18.121) given above is also due to Kotel’nikov. In the general case this question
was later studied by the outstanding American engineer and mathematician Claude
Shannon, whose work in 1948 provided the fundamentals the information theory.

Remark 9 In reality the transmission and receiving time of a communication is also
limited, so that instead of the entire series (18.121) we take one of its partial sums∑N
−N . Special research has been devoted to estimating the errors that thereby arise.

Remark 10 If we assume that the amount of information transmitted over the com-
munication channel is proportional to the amount of reference values, then accord-
ingly to formula (18.121) the communication channel capacity is proportional to its
bandwidth frequency.

18.3.5 Problems and Exercises

1. a) Write out the proof of relations (18.93)–(18.96) in detail.
b) Regarding the Fourier transform as a mapping f �→ f̂ , show that it has the

following frequently used properties:
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f (at) �→ 1

a
f̂

(
ω

a

)

(the change of scale rule);

f (t − t0) �→ f̂ (ω)e−iωt0

(time shift of the input signal – the Fourier pre-image – or the translation theorem)

[
f (t + t0)± f (t − t0)

] �→
{
f̂ (ω)2 cosωt0,

f̂ (ω)2 sinωt0;
f (t)e±iω0t �→ f̂ (ω±ω0)

(frequency shift of the Fourier transform);

f (t) cosω0t �→ 1

2

[
f̂ (ω−ω0)+ f̂ (ω + ω0)

]
,

f (t) sinω0t �→ 1

2

[
f̂ (ω−ω0)− f̂ (ω + ω0)

]

(amplitude modulation of a harmonic signal);

f (t) sin2 ω0t

2
�→ 1

4

[
2f̂ (ω)− f̂ (ω−ω0)− f̂ (ω+ω0)

]
.

c) Find the Fourier transforms (or, as we say, the Fourier images) of the follow-
ing functions:

ΠA(t)=
{

1
2A for |t | ≤A,
0 for |t |>A

(the rectangular pulse);

ΠA(t) cosω0t

(a harmonic signal modulated by a rectangular pulse);

ΠA(t + 2A)+ΠA(t − 2A)

(two rectangular pulses of the same polarity);

ΠA(t −A)−ΠA(t +A)
(two rectangular pulses of opposite polarity);

ΛA(t)=
{

1
A
(1− |t |

A
) for |t | ≤A,

0 for |t |>A
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(a triangular pulse);

cosat2 and sinat2 (a > 0);
|t |− 1

2 and |t |− 1
2 e−a|t | (a > 0).

d) Find the Fourier pre-images of the following functions:

sinc
ωA

π
, 2i

sin2ωA

ωA
, 2 sinc2 ωA

π
,

where sinc x
π
:= sinx

x
is the sample function (cardinal sine).

e) Using the preceding results, find the values of the following integrals, which
we have already encountered:

∫ ∞

−∞
sinx

x
dx,

∫ ∞

−∞
sin2 x

x2
dx,

∫ ∞

−∞
cosx2 dx,

∫ ∞

−∞
sinx2 dx.

f) Verify that the Fourier integral of a function f (t) can be written in any of the
following forms:

f (t)∼
∫ ∞

−∞
f̂ (ω)eitω dω = 1

2π

∫ ∞

−∞
dω
∫ ∞

−∞
f (x)e−iω(x−t) dx =

= 1

π

∫ ∞

0
dω
∫ ∞

−∞
f (x) cos 2ω(x − t)dx.

2. Let f = f (x, y) be a solution of the two-dimensional Laplace equation ∂2f

∂x2 +
∂2f

∂y2 = 0 in the half-plane y ≥ 0 satisfying the conditions f (x,0) = g(x) and
f (x, y)→ 0 as y→+∞ for every x ∈R.

a) Verify that the Fourier transform f̂ (ξ, y) of f on the variable x has the form
ĝ(ξ)e−y|ξ |.

b) Find the Fourier pre-image of the function e−y|ξ | on the variable ξ .
c) Now obtain the representation of the function f as a Poisson integral

f (x, y)= 1

π

∫ ∞

−∞
y

(x − ξ)2 + y2
g(ξ)dξ,

which we have met in Example 5 of Sect. 17.4.

3. We recall that the nth moment of the function f :R→C is the quantityMn(f )=∫∞
−∞ x

nf (x)dx. In particular, if f is the density of a probability distribution, that is,
f (x) ≥ 0 and

∫∞
−∞ f (x)dx = 1, then x0 =M1(f ) is the mathematical expectation

of a random variable x with the distribution f and the variance σ 2 := ∫∞−∞(x −
x0)

2f (x)dx of this random variable can be represented as σ 2 =M2(f )−M2
1 (f ).
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Consider the Fourier transform

f̂ (ξ)=
∫ ∞

−∞
f (x)e−iξx dx

of the function f . By expanding e−iξx in a series, show that

a) f̂ (ξ)=∑∞n=0
(−i)nMn(f )

n! ξn if, for example, f ∈ S.

b) Mn(f )= (i)nf̂ (n)(0), n= 0,1, . . . .
c) Now let f be real-valued, and let f̂ (ξ) = A(ξ)eiϕ(ξ), where A(ξ) is the ab-

solute value of f̂ (ξ) and ϕ(ξ) is its argument; then A(ξ) = A(−ξ) and ϕ(−ξ) =
−ϕ(ξ). To normalize the problem, assume that

∫∞
−∞ f (x)dx = 1. Verify that in that

case

f̂ (ξ)= 1+ iϕ′(0)ξ + A
′′(0)− (ϕ′(0))2

2
ξ2 + o(ξ2) (ξ→ 0)

and

x0 :=M1(f )=−ϕ′(0), and σ 2 =M2(f )−M2
1 (f )=−A′′(0).

4. a) Verify that the function e−a|x| (a > 0), like all its derivatives, which are de-
fined for x �= 0, decreases at infinity faster than any negative power of |x| and yet
this function does not belong to the class S.

b) Verify that the Fourier transform of this function is infinitely differentiable on
R, but does not belong to S (and all because e−a|x| is not differentiable at x = 0).

5. a) Show that the functions of class S are dense in the space R2(R
n,C) of

functions f : Rn → C whose squares are absolutely integrable, endowed with
the inner product 〈f,g〉 = ∫

Rn
(f · g )(x)dx and the norm it generates ‖f ‖ =

(
∫
Rn
|f |2(x)dx)1/2 and the metric d(f,g)= ‖f − g‖.

b) Now let us regard S as a metric space (S, d) with this metric d (convergence
in the mean-square sense on R

n). Let L2(R
n,C) or, more briefly, L2, denote the

completion of the metric space (S, d) (see Sect. 9.5). Each element f ∈ L2 is de-
termined by a sequence {ϕk} of functions ϕk ∈ S that is a Cauchy sequence in the
sense of the metric d .

Show that in that case the sequence {ϕ̂} of Fourier images of the functions ϕk is
also a Cauchy sequence in S and hence defines a certain element f̂ ∈ L2, which it
is natural to call the Fourier transform of f ∈ L2.

c) Show that a vector-space structure and an inner product can be introduced in
a natural way on L2, and in these structures the Fourier transform L2→̂L2 turns out
to be a linear isometry of L2 onto itself.

d) Using the example of the function f (x) = 1√
1+x2

, one can see that if f ∈
R2(R,C) we do not necessarily have f ∈R(R,C). Nevertheless, if f ∈R2(R,C),
then, since f is locally integrable, one can consider the function

f̂A(ξ)= 1√
2π

∫ A

−A
f (x)e−iξx dx.



18.3 The Fourier Transform 583

Verify that f̂A ∈C(R,C) and f̂A ∈R2(R,C).
e) Prove that f̂A converges in L2 to some element f̂ ∈ L2 and ‖f̂A‖→ ‖f̂ ‖ =

‖f ‖ as A→+∞ (this is Plancherel’s theorem26).

6. The uncertainty principle. Let ϕ(x) and ψ(p) be functions of class S (or
elements of the space L2 of Problem 5), with ψ = ϕ̂ and

∫∞
−∞ |ϕ|2(x)dx =∫∞

−∞ |ψ |2(p)dp = 1. In this case the functions |ϕ|2 and |ψ |2 can be regarded as
probability densities for random variables x and p respectively.

a) Show that by a shift in the argument of ϕ (a special choice of the point
from which the argument is measured) one can obtain a new function ϕ such that
M1(|ϕ|)=

∫∞
−∞ x|ϕ|2(x)dx = 0 without changing the value of ‖ϕ̂‖, and then, with-

out changing the relationM1(|ϕ|)= 0 one can, by a similar shift in the argument of
ψ arrange thatM1(|ψ |)=

∫∞
−∞ p|ψ |2(p)dp = 0.

b) For real values of the parameter α consider the quantity
∫ ∞

−∞
∣
∣αxϕ(x)+ ϕ′(x)∣∣2 dx ≥ 0

and, using Parseval’s equality and the formula ϕ̂′(p) = ipϕ̂(p), show that
α2M2(|ϕ|)− α+M2(|ψ |)≥ 0. (For the definitions ofM1 andM2 see Problem 3.)

c) Obtain from this the relation

M2
(|ϕ|) ·M2

(|ψ |)≥ 1/4.

This relation shows that the more “concentrated” the function ϕ itself is, the
more “smeared” its Fourier transform, and vice versa (see Examples 1 and 7 and
Problem 7b).

In quantum mechanics this relation, called the uncertainty principle, assumes
a specific physical meaning. For example, it is impossible to measure precisely
both the coordinate of a quantum particle and its momentum. This fundamental
fact (called Heisenberg’s27 uncertainty principle), is mathematically the same as
the relation betweenM2(|ϕ|) andM2(|ψ |) found above.

The next three problems give an elementary picture of the Fourier transform of
generalized functions.

7. a) Using Example 1, find the spectrum of the signal expressed by the functions

Δα(t)=
{

1
2α for |t | ≤ α,
0 for |t |> α.

b) Examine the variation of the function Δα(t) and its spectrum as α→+0
and tell what, in your opinion, should be regarded as the spectrum of a unit pulse,
expressed by the δ-function.

26M. Plancherel (1885–1967) – Swiss mathematician.
27W. Heisenberg (1901–1976) – German physicist, one of the founders of quantum mechanics.



584 18 Fourier Series and the Fourier Transform

c) Using Example 2, now find the signal ϕ(t) emerging from an ideal low-
frequency filter (with upper frequency limit a) in response to a unit pulse δ(t).

d) Using the result just obtained, now explain the physical meaning of the terms
in the Kotel’nikov series (18.121) and propose a theoretical scheme for transmitting
a band-limited signal f (t), based on Kotel’nikov’s formula (18.121).

8. The space of L. Schwartz. Verify that

a) If ϕ ∈ S and P is a polynomial, then (P · ϕ) ∈ S.
b) If ϕ ∈ S, then Dαϕ ∈ S and Dβ(PDαϕ) ∈ S, where α and β are nonnegative

multi-indices and P is a polynomial.
c) We introduce the following notion of convergence in S. A sequence {ϕk} of

functions ϕk ∈ S converges to zero if for all nonnegative multi-indices α and β the
sequence of functions {xβDαϕ(x)} converges uniformly to zero on R

n. The relation
ϕk→ ϕ ∈ S will mean that (ϕ − ϕk)→ 0 in S.

The vector space S of rapidly decreasing functions with this convergence is
called the Schwartz space.

Show that if ϕk→ ϕ in S, then ϕ̂k→ ϕ̂ in S as k→∞. Thus the Fourier trans-
form is a continuous linear operator on the Schwartz space.

9. The space S′ of tempered distributions. The continuous linear functionals defined
on the space S of rapidly decreasing functions are called tempered distributions. The
vector space of such functionals (the conjugate of S) is denoted S′. The value of the
functional F ∈ S′ on a function ϕ ∈ S will be denoted F(ϕ).

a) Let P : Rn→ C be a polynomial in n variables and f : Rn→ C a locally
integrable function admitting the estimate |f (x)| ≤ |P(x)| at infinity (that is, it may
increase as x→∞, but only moderately: not faster than power growth). Show that
f can then be regarded as a (regular) element of S ′ if we set

f (ϕ)=
∫

Rn

f (x)ϕ(x)dx (ϕ ∈ S).

b) Multiplication of a tempered distribution F ∈ S′ by an ordinary function f :
R
n→ C is defined, as always, by the relation (f F )(ϕ) := F(f ϕ). Verify that for

tempered distributions multiplication is well defined, not only by functions f ∈ S,
but also by polynomials P :Rn→C.

c) Differentiation of tempered distributions F ∈ S′ is defined in the traditional
way: (DαF)(ϕ) := (−1)|α|F(Dαϕ).

Show that this is correctly defined, that is, if F ∈ S′, then DαF ∈ S′ for every
nonnegative integer multi-index α = (α1, . . . , αn).

d) If f and ϕ are sufficiently regular functions (for example, functions in S),
then, as relation (18.113) shows, the following equality holds:

f̂ (ϕ)=
∫

Rn

f̂ (x)ϕ(x)dx =
∫

Rn

f (x)ϕ̂(x)dx = f (ϕ̂).
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This equality (Parseval’s equality) is made the basis of the definition of the
Fourier transform F̂ of a tempered distribution F ∈ S′. By definition we set
F̂ (ϕ) := F(ϕ̂).

Due to the invariance of S under the Fourier transform, this definition is correct
for every element F ∈ S′.

Show that it is not correct for generalized functions in D′(Rn)mapping the space
D(Rn) of smooth functions of compact support. This fact explains the role of the
Schwartz space S in the theory of the Fourier transform and its application to gen-
eralized functions.

e) In Problem 7 we acquired a preliminary idea of the Fourier transform of the
δ-function. The Fourier transform of the δ-function could have been sought directly
from the definition of the Fourier transform of a regular function. In that case we
would have found that

δ̂(ξ )= 1

(2π)n/2

∫

Rn

δ(x)e−i(ξ,x) dx = 1

(2π)n/2
.

Now show that when we seek the Fourier transform of the tempered distribution
δ ∈ S′(Rn) correctly, that is, starting from the equality δ̂(ϕ)= δ(ϕ̂), the result (still
the same) is that δ(ϕ̂)= ϕ̂(0)= 1

(2π)n/2
. (One can renormalize the Fourier transform

so that this constant equals 1; see Problem 10.)
f) Convergence in S′, as always in generalized functions, is understood in

the following sense: (Fn→ F) in S′ as n→∞ := (∀ϕ ∈ S (Fn(ϕ)→ F(ϕ) as
n→∞)).

Verify the Fourier inversion formula (the Fourier integral formula) for the δ-
function:

δ(x)= lim
A→+∞

1

(2π)n/2

∫ A

−A
· · ·
∫ A

−A
δ̂(ξ)ei(x,ξ) dξ.

g) Let δ(x − x0), as usual, denote the shift of the δ-function to the point x0, that
is, δ(x − x0)(ϕ)= ϕ(x0). Verify that the series

∞∑

n=−∞
δ(x − n)

(

= lim
N→∞

N∑

−N
δ(x − n)

)

converges in S′(Rn). (Here δ ∈ S′(Rn) and n ∈ Z.)
h) Using the possibility of differentiating a convergent series of generalized

functions termwise and taking account of the equality from Problem 13f of
Sect. 18.2, show that if F =∑∞n=−∞ δ(x − n), then

F̂ =√2π
∞∑

n=−∞
δ(x − 2πn).

i) Using the relation F̂ (ϕ)= F(ϕ̂), obtain the Poisson summation formula from
the preceding result.
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j) Prove the following relation (the θ -formula)

∞∑

n=−∞
e−tn2 =

√
π

t

∞∑

n=−∞
e−

π2
t
n2

(t > 0),

which plays an important role in the theory of elliptic functions and the theory of
heat conduction.

10. If the Fourier transform F̌[f ] of a function f :R→C is defined by the formu-
las

f̌ (ν) := F̌[f ](ν) :=
∫ ∞

−∞
f (t)e−2πiνt dt,

many of the formulas relating to the Fourier transform become particularly simple
and elegant.

a) Verify that f̂ (u)= 1√
2π
f̌ ( u2π ).

b) Show that F̌[F̌[f ]](t)= f (−t), that is,

f (t)=
∫ ∞

−∞
f̌ (ν)e2πiνt dν.

This is the most natural form of the expansion of f in harmonics of different
frequencies ν, and f̌ (ν) in this expansion is the frequency spectrum of f .

c) Verify that δ̌ = 1 and 1̌= δ.
d) Verify that the Poisson summation formula (18.116) now assumes the partic-

ularly elegant form
∞∑

n=−∞
ϕ(n)=

∞∑

n=−∞
ϕ̌(n).



Chapter 19
Asymptotic Expansions

The majority of phenomena that we have to deal with can be characterized mathe-
matically by a certain set of numerical parameters having rather complicated inter-
relations. However the description of a phenomenon as a rule becomes significantly
simpler if it is known that some of these parameters or some combination of them
is very large or, contrariwise, very small.

Example 1 In describing relative motions occurring with speeds v that are much
smaller than the speed of light (|v| - c) we may use, instead of the Lorentz trans-
formations (Example 3 of Sect. 1.3)

x′ = x − vt
√

1− ( v
c
)2
, t ′ = t − ( v

c2 )x
√

1− ( v
c
)2
,

the Galilean transformation

x′ = x − vt, t ′ = t,
since v/c≈ 0.

Example 2 The period

T = 4

√
l

g

∫ π/2

0

dθ
√

1− k2 sin2 θ

of oscillations of a pendulum is connected with the maximal angle of deviation ϕ0
from its equilibrium position via the parameter k2 = sin2 ϕ0

2 (see Sect. 6.4). If the
oscillations are small, that is, ϕ0 ≈ 0, we obtain the simple formula

T ≈ 2π

√
l

g

for the period of such oscillations.
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Example 3 Suppose a restoring force acting on a particlem is returning it to its equi-
librium position and that the force is proportional to the displacement (a spring with
spring constant k, for example). Suppose also that the resisting force of the medium
is proportional to the square of the velocity (with coefficient of proportionality α).
The equation of motion in that case has the following form (see Sect. 5.6):

mẍ + αẋ2 + kx = 0.

If the medium “rarefies”, then α→ 0 and one may assume that the motion is
approximated by the motion described by the equation

mẍ + kx = 0

(harmonic oscillations with frequency
√
k
m

), and if the medium “condenses”, then

α→∞, and, dividing by α, we find in the limit the equation ẋ2 = 0, that is, x(t)≡
const.

Example 4 If π(x) is the number of primes not larger than x ∈R, then, as is known
(see Sect. 3.2), for large x the quantity π(x) can be found with small relative error
by the formula

π(x)≈ x

lnx
.

Example 5 It would be difficult to find more trivial, yet nevertheless important re-
lations than

sinx ≈ x or ln(1+ x)≈ x,
in which the relative error becomes smaller as x approaches 0 (see Sect. 5.3). These
relations can be made more precise if desired, namely

sinx ≈ x − 1

3!x
3, ln(1+ x)≈ x − 1

2
x2,

by adjoining one or more of the following terms obtained from the Taylor series.

Thus the problem is to find a clear, convenient, and essentially correct description
of a phenomenon being studied using the specifics of the situation that arises when
some parameter (or combination of parameters) that characterizes the phenomenon
is small (tends to zero) or, contrariwise, large (tends to infinity).

Hence, we are once again essentially discussing the theory of limits.
Problems of this type are called asymptotic problems. They arise, as one can see,

in practically all areas of mathematics and natural science.
The solution of an asymptotic problem usually consists of the following stages:

passing to the limit and finding the (main term of the) asymptotics, that is, a conve-
nient simplified description of the phenomenon; estimating the error that arises in
using the asymptotic formula so found, and determining its range of applicability;
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then sharpening the main term of the asymptotics, analogous to the process of ad-
joining the next term in Taylor’s formula (but far from being equally algorithmic in
every case).

The methods of solving asymptotic problems (called asymptotic methods) are
usually closely connected with the specifics of a problem. Among the few rather
general and at the same time elementary asymptotic methods one finds Taylor’s
formula, one of the most important relations in differential calculus.

The present chapter should give the reader a beginning picture of the elementary
asymptotic methods of analysis.

In the first section we shall introduce the general concepts and definitions relating
to elementary asymptotic methods; in the second we shall use them in discussing
Laplace’s method of constructing the asymptotic expansion of Laplace transforms.
This method, which was discovered by Laplace in his research on the limit theo-
rems of probability theory, is an important component of the saddle-point method
later developed by Riemann, usually discussed in a course of complex analysis.
Further information on various asymptotic methods of analysis can be found in the
specialized books cited in the bibliography. These books also contain an extensive
bibliography on this circle of questions.

19.1 Asymptotic Formulas and Asymptotic Series

19.1.1 Basic Definitions

a. Asymptotic Estimates and Asymptotic Equalities

For the sake of completeness we begin with some recollections and clarifications.

Definition 1 Let f : X→ Y and g : X→ Y be real- or complex- or in general
vector-valued functions defined on a set X and let B be a base in X. Then the
relations

f =O(g) or f (x)=O(g(x)) x ∈X
f =O(g) or f (x)=O(g(x)) over the base B
f = o(g) or f (x)= o(g(x)) over the base B

mean by definition that in the equality |f (x)| = α(x)|g(x)|, the real-valued func-
tion α(x) is respectively bounded on X, ultimately bounded over the base B, and
infinitesimal over the base B.

These relations are usually called asymptotic estimates (of f ).
The relation

f ∼ g or f (x)∼ g(x) over the base B,
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which by definition means that f (x) = g(x) + o(g(x)) over the base B, is usu-
ally called asymptotic equivalence or asymptotic equality1 of the functions over the
base B.

Asymptotic estimates and asymptotic equalities unite in the term asymptotic for-
mulas.

Wherever it is not important to indicate the argument of a function the abbrevi-
ated notations f = o(g), f =O(g), or f ∼ g are used, and we shall make system-
atic use of this abbreviation.

If f =O(g) and simultaneously g =O(f ), we write f . g and say that f and
g are quantities of the same order over the given base.

In what we are going to be doing below, Y = C or Y = R, X ⊂ C or X ⊂ R;B
as a rule is one of the bases X � x→ 0 or X � x→∞. Using this notation one can
write in particular that

cosx = O(1), x ∈R,
cos z �= O(1), z ∈C,
ln ez = 1+ z+ o(z) as z→ 0, z ∈C,

(1+ x)α = 1+ αx + o(x) as x→ 0, x ∈R,

π(x) = x

lnx
+ o
(
x

lnx

)
as x→+∞, x ∈R.

Remark 1 In regard to asymptotic equalities it is useful to note that they are only
limiting relations whose use is permitted for computational purposes, but only after
some additional work is done to find an estimate of the remainder. We have already
mentioned this when discussing Taylor’s formula. In addition, one must keep in
mind that asymptotic equivalence in general makes it possible to compute with small
relative error, but not small absolute error. Thus, for example, as x → +∞, the
difference π(x)− x

lnx does not tend to zero, since π(x) jumps by 1 at each prime
integer value of x. At the same time, the relative error in replacing π(x) by x

lnx tends
to zero:

o( xlnx )

( xlnx )
→ 0 as x→+∞.

This circumstance, as we shall see below, leads to asymptotic series that have
computational importance when one considers the relative error but not the abso-
lute error; for that reason these series are often divergent, in contrast to classical
series, for which the absolute value of the difference between the function being
approximated and the nth partial sum of the series tends to zero as n→+∞.

Let us consider some examples of ways of obtaining asymptotic formulas.

1It is also useful to keep in mind the symbol / often used to denote asymptotic equivalence.
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Example 6 The labor involved in computing the values of n! or lnn! increase as
n ∈N increases. We shall use the fact that n is large, however, and obtain under that
assumption a convenient asymptotic formula for computing lnn! approximately.

It follows from the obvious relations

∫ n

1
lnx dx =

n∑

k=2

∫ k

k−1
lnx dx <

n∑

k=1

ln k <
n∑

k=2

∫ k+1

k

lnx dx =
∫ n+1

2
lnx dx

that

0< lnn! −
∫ n

1
lnx dx <

∫ 2

1
lnx dx +

∫ n+1

n

lnx dx < ln 2(n+ 1).

But
∫ n

1
lnx dx = n(lnn− 1)+ 1= n lnn− (n− 1),

and therefore as n→∞

lnn! =
∫ n

1
lnx dx +O(ln 2(n+ 1)

)=
= n lnn− (n− 1)+O(lnn)= n lnn+O(n).

Since O(n)= o(n lnn) when n→+∞, the relative error of the formula lnn! ≈
n lnn tends to zero as n→+∞.

Example 7 We shall show that as x→+∞ the function

fn(x)=
∫ x

1

et

tn
dt (n ∈R)

is asymptotically equivalent to the function gn(x)= x−nex . Since gn(x)→+∞ as
x→+∞, applying L’Hôpital’s rule we find

lim
x→+∞

fn(x)

gn(x)
= lim
x→+∞

f ′n(x)
g′n(x)

= lim
x→∞

x−nex

x−nex − nx−n−1ex
= 1.

Example 8 Let us find the asymptotic behavior of the function

f (x)=
∫ x

1

et

t
dt

more precisely. It differs from the exponential integral

Ei(x)=
∫ x

−∞
et

t
dt

only by a constant term.



592 19 Asymptotic Expansions

Integrating by parts, we obtain

f (x) = e
t

t

∣∣
∣∣

x

1
+
∫ x

1

et

t2
dt =
(
et

t
+ e

t

t2

)∣∣
∣∣

x

1
+
∫ x

1

2et

t3
dt =

=
(
et

t
+ 1!et
t2
+ 2!et
t3

)∣∣∣∣

x

1
+
∫ x

1

3!et
t4

dt =

= et
(

0!
t
+ 1!
t2
+ 2!
t3
+ · · · + (n− 1)

tn

)∣∣
∣
∣

x

1
+
∫ x

1

n!et
tn+1

dt.

This last integral, as shown in Example 7, is O(x−(n+1)ex) as x→+∞. Includ-
ing in the term O(x−(n+1)ex) the constant −e

∑n
k=1(k− 1)! obtained when t = 1 is

substituted, we find that

f (x)= ex
n∑

k=1

(k − 1)!
xk

+O
(

ex

xn+1

)
as x→+∞.

The error O( ex

xn+1 ) in the approximate equality

f (x)≈
n∑

k=1

(k − 1)!
xk

ex

is asymptotically infinitesimal compared with each term of the sum, including the
last. As the same time, as x→+∞ each successive term of the sum is infinitesimal
compared with its predecessor; therefore it is natural to write the continually sharper
sequence of such formulas as a series generated by f :

f (x)/ ex
∞∑

k=1

(k − 1)!
xk

.

We note that this series obviously diverges for every value of x ∈ R, so that we
cannot write

f (x)= ex
∞∑

k=1

(k − 1)!
xk

.

Thus we are dealing here with a new and clearly useful asymptotic interpre-
tation of a series connected, in contrast with the classical case, with the relative
rather than the absolute error of approximation of the function. The partial sums of
such a series, in contrast to the classical case, are used not so much to approximate
the values of the function at specific points as to describe their collective behav-
ior under the limiting passage in question (which in the present example occurs as
x→+∞).
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b. Asymptotic Sequences and Asymptotic Series

Definition 2 A sequence of asymptotic formulas

f (x) = ψ0(x)+ o
(
ψ0(x)

)
,

f (x) = ψ0(x)+ψ1(x)+ o
(
ψ1(x)

)
,

...

f (x) = ψ0(x)+ψ1(x)+ · · · +ψn(x)+ o
(
ψn(x)

)
,

...

that are valid over a base B in the set X where the functions are defined, is written
as the relation

f (x)/ψ0(x)+ψ1(x)+ · · · +ψn(x)+ · · ·
or, more briefly, as f (x)/∑∞k=0ψk(x). It is called an asymptotic expansion of f in
the given base B.

It is clear from this definition that in asymptotic expansions we always have

o
(
ψn(x)

)=ψn+1(x)+ o
(
ψn+1(x)

)
over the base B,

and hence for any n= 0,1,2, . . . we have

ψn+1(x)= o
(
ψn(x)

)
over the base B,

that is, each successive term of the expansion contributes its correction, which is
asymptotically more precise in comparison with its predecessor.

Asymptotic expansions usually arise in the form of a linear combination

c0ϕ0(x)+ c1ϕ1(x)+ · · · + cηϕn(x)+ · · ·
of functions of some sequence {ϕn(x)} that is convenient for the specific problem.

Definition 3 Let X be a set with a base B defined on it. The sequence {ϕn(x)}
of functions defined on X is called an asymptotic sequence over the base B if
ϕn+1(x) = o(ϕn(x)) over the base B (for any two adjacent terms ϕn and ϕn+1 of
the sequence) and if none of the functions ϕn ∈ {ϕn(x)} is identically zero on any
element of B.

Remark 2 The condition that (ϕn|B)(x) �≡ 0 on the elements B of the base B is
natural, since otherwise all the functions ϕn+1, ϕn+2, . . . would also be zero on B
and the system {ϕn} would be trivial in respect to its asymptotics.

Example 9 The following sequences are obviously asymptotic:
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a) 1, x, x2, . . . , xn, . . . as x→ 0;
b) 1, 1

x
, 1
x2 , . . . ,

1
xn
, . . . as x→∞;

c) xp1, xp2 , . . . , xpn, . . .

in the base x→ 0 if p1 <p2 < · · ·<pn < · · · ,
in the base x→∞ if p1 >p2 > · · ·>pn > · · · ;

d) the sequence {g(x)ϕn(x)} obtained from an asymptotic sequence through
multiplication of all its terms by the same function.

Definition 4 If {ϕn} is an asymptotic sequence over the base B, then an asymptotic
expansion of the form

f (x)/ c0ϕ0(x)+ c1ϕ1(x)+ · · · + cnϕn(x)+ · · ·
is called an asymptotic expansion or asymptotic series of the function f with respect
to the asymptotic sequence {ϕn} over the base B.

Remark 3 The concept of an asymptotic series (in the context of power series) was
stated by Poincaré (1886), who made vigorous use of asymptotic expansions in his
work on celestial mechanics. But asymptotic series themselves, like some of the
methods of obtaining them, had been encountered earlier. In regard to the possible
generalization of the concept of an asymptotic expansion in the sense of Poincaré
(which we have discussed in Definitions 2–4) see Problem 5 at the end of this sec-
tion.

19.1.2 General Facts About Asymptotic Series

a. Uniqueness of an Asymptotic Expansion

When we speak of the asymptotic behavior of a function over a base B, we are
interested only in the nature of the limiting behavior of the function, so that if two
generally different functions f and g are equal on some element of the base B, they
have the same asymptotic behavior over B and should be considered equal in the
asymptotic sense.

Moreover, if we fix in advance some asymptotic sequence {ϕn} in terms of which
it is desirable to carry out an asymptotic expansion, we must reckon with the lim-
ited possibilities of any such system of functions {ϕn}. To be specific, there will be
functions that are infinitesimal with respect to every term ϕn of the given asymptotic
system.

Example 10 Let ϕn(x)= 1
xn

, n= 0,1, . . . ; then e−x = o(ϕn(x)) as x→+∞.

For that reason it is natural to adopt the following definitions.
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Definition 5 If {ϕn(x)} is an asymptotic sequence over the base B, a function f
such that f (x)= o(ϕn(x)) over B for each n= 0,1, . . . is called an asymptotic zero
with respect to {ϕn(x)}.

Definition 6 Functions f and g are asymptotically equal over the base B with re-
spect to a sequence of functions {ϕn} that is asymptotic over B if the difference
f − g is an asymptotic zero with respect to {ϕn}.

Proposition 1 (Uniqueness of an asymptotic expansion) Let {ϕn} be an asymptotic
sequence of functions over a base B.

a) If a function f admits an asymptotic expansion with respect to the sequence
{ϕn} over B, then that expansion is unique.

b) If the functions f and g admit an asymptotic expansion in the system {ϕn}, then
these expansions are the same if and only if the functions f and g are asymptotically
equal over B with respect to {ϕn}.

Proof a) Suppose the function ϕ is not identically zero on any element of B.
We shall show that if f (x) = o(ϕ(x)) over B, and at the same time f (x) =

cϕ(x)+ o(ϕ(x)) over B, then c= 0.
Indeed, |f (x)| ≥ |cϕ(x)| − |o(ϕ(x))| = |c||ϕ(x)| − o(|ϕ(x)|) over B, and so if

|c|> 0, there exists B1 ∈ B at each point of which |f (x)| ≥ |c|2 |ϕ(x)|. But if f (x)=
o(ϕ(x)) over B, then there exists B2 ∈ B at each point of which |f (x)| ≤ |c|3 |ϕ(x)|.
Hence at each point x ∈ B1 ∩ B2 we would have to have |c|2 |ϕ(x)| ≤ |c|3 |ϕ(x)| or,
assuming |c| �= 0,3|ϕ(x)| ≤ 2|ϕ(x)|. But this is impossible if ϕ(x) �= 0 at even one
point of B1 ∩B2.

Now let us consider the asymptotic expansion of a function f with respect to the
sequence {ϕn}.

Let f (x)= c0ϕ0(x)+o(ϕ0(x)) and f (x)= c̃0ϕ(x)+o(ϕ0(x)) over B. Subtract-
ing the second equality from the first, we find that 0 = (c0 − c̃0)ϕ0(x)+ o(ϕ0(x))

over B. But 0= o(ϕ0(x)) over B and so, by what has been proved, c0 − c̃0 = 0.
If we have proved that c0 = c̃0, . . . , cn−1 = c̃n−1 for two expansions of the func-

tion f in the system {ϕn}, then by the equalities

f (x)= c0ϕ0(x)+ · · · + cn−1ϕn−1(x)+ cnϕn(x)+ o
(
ϕn(x)

)
,

f (x)= c0ϕ0(x)+ · · · + cn−1ϕn−1(x)+ c̃nϕn(x)+ o
(
ϕn(x)

)

we find in the same way that cn = c̃n.
By induction we now conclude that a) is true.
b) If f (x) = c0ϕ0(x) + · · · + cnϕn(x)+ o(ϕn(x)) and g(x) = c0ϕ0(x)+ · · · +

cnϕn(x) + o(ϕn(x)) over B, then f (x) − g(x) = o(ϕn(x)) over B for each n =
0,1, . . . , and hence the functions f and g are asymptotically equal with respect to
the sequence {ϕn(x)}.

The converse follows from a), since an asymptotic zero, which we take to be the
difference f − g, can have only the zero asymptotic expansion. �
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Remark 4 We have discussed the question of uniqueness of an asymptotic expan-
sion. We emphasize, however, that an asymptotic expansion of a function with re-
spect to a preassigned asymptotic sequence is by no means always possible. Two
functions f and g in general need not always be connected by one of the asymp-
totic relations f =O(g), f = o(g) or f ∼ g over a base B.

The very general asymptotic Taylor formula, for example, exhibits a specific
class of functions (having derivatives of order up to n at x = 0), each of which
admits the asymptotic representation

f (x)= f (0)+ 1

1!f
′(0)x + · · · + 1

n!f
(n)(0)xn + o(xn)

as x→ 0. But even the function x1/2 cannot be expanded asymptotically in the sys-
tem 1, x, x2, . . . . Thus one must not identify an asymptotic sequence and an asymp-
totic expansion with any canonical base and the expansion of any asymptotic in it.
There are many more possible types of asymptotic behavior than can be described
by any fixed asymptotic sequence, so that the description of the asymptotic behav-
ior of a function is not so much an expansion in terms of a preassigned asymptotic
system as it is the search for such a system. One cannot, for example, when com-
puting the indefinite integral of an elementary function, require in advance that the
result be a composition of certain elementary functions, because it may not be an
elementary function at all. The search for asymptotic formulas, like the computation
of indefinite integrals, is of interest only to the extent that the result is simpler and
more accessible to investigation than the original expression.

b. Admissible Operations with Asymptotic Formulas

The elementary arithmetic properties of the symbols o and O (such properties as
o(g)+ o(g)= o(g), o(g)+O(g)=O(g)+O(g)=O(g), and the like) have been
studied along with the theory of limits (Proposition 4 of Sect. 3.2). The following
obvious proposition follows from these properties and the definition of an asymp-
totic expansion.

Proposition 2 (Linearity of asymptotic expansions) If the functions f and g admit
asymptotic expansions f /∑∞n=0 anϕn and g /∑∞n=0 bnϕn with respect to the
asymptotic sequence {ϕn} over the base B, then a linear combination of them αf +
βg admits such an expansion, and (αf + βg)/∑∞n=0(αan + βbn)ϕn.

Further properties of asymptotic expansions and asymptotic formulas in general
will involve more and more specialized cases.

Proposition 3 (Integration of asymptotic equalities) Let f be a continuous function
on the interval I = [a,ω[ (or I = ]ω,a]).
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a) If the function g(x) is continuous and nonnegative on I and the integral∫ ω
a
g(x)dx diverges, then the relations

f (x)=O(g(x)), f (x)= o(g(x)), f (x)∼ g(x) as I � x→ ω

imply respectively that

F(x)=O(G(x)), F (x)= o(G(x)), and F(x)∼G(x),
where

F(x)=
∫ x

a

f (t)dt and G(x)=
∫ x

a

g(t)dt.

b) If the functions ϕn(x), n = 0,1, . . . , which are continuous and positive on
I = [a,ω[ form an asymptotic sequence as I � x→ ω and the integrals Φn(x) =∫ ω
x
ϕn(t)dt converge for x ∈ I then the functions Φn(x), n= 0,1, . . . also form an

asymptotic sequence over the base I � x→ ω.
c) If the integral F(x)= ∫ ω

x
f (x)dx converges and f has the asymptotic expan-

sion f (x)/∑∞n=0 cnϕn(x) as I � x→ ω with respect to the asymptotic sequence
{ϕn(x)} of b), then F(x) has the asymptotic expansion F(x)/∑∞n=0 cnΦn(x).

Proof a) If f (x) = O(g(x)) as I � x→ ω, there exists x0 ∈ I and a constant M
such that |f (x)| ≤Mg(x) for x ∈ [x0,ω[. It follows that for x ∈ [x0,ω[, we have
| ∫ x
a
f (t)dt | ≤ | ∫ x0

a
f (t)dt | +M ∫ x

x0
g(t)dt =O(∫ x

a
g(t)dt).

To prove the other two relations one can use L’Hôpital’s rule (as in Example 7),
taking account of the relation G(x) = ∫ x

a
g(t)dt →∞ as I � x→ ω. As a result,

we find

lim
I�x→ω

F(x)

G(x)
= lim
I�x→ω

F ′(x)
G′(x)

= lim
I�x→ω

f (x)

g(x)
.

b) SinceΦn(x)→ 0 as I � x→ ω (n= 0,1, . . .) applying L’Hôpital’s rule again,
we find that

lim
I�x→ω

Φn+1(x)

Φn(x)
= lim
I�x→ω

Φ ′n+1(x)

Φ ′n(x)
= lim
I�x→ω

ϕn+1(x)

ϕn(x)
= 0.

c) The function rn(x) in the relation

f (x)= c0ϕ0(x)+ c1ϕ1(x)+ · · · + cnϕn(x)+ rn(x),
being the difference of continuous functions on I , is itself continuous on I , and we
obviously have Rn(x) =

∫ ω
x
rn(t)dt → 0 as I � x→ ω. But rn(x) = o(ϕn(x)) as

I � x→ ω and Φn(x)→ 0 as I � x→ ω. Therefore, again by L’Hôpital’s rule, it
follows that in the equality

F(x)= c0Φ0(x)+ c1Φ1(x)+ · · · + cnΦn(x)+Rn(x)
the quantity Rn(x) is o(Φn(x)) as I � x→ ω. �
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Remark 5 Differentiation of asymptotic equalities and asymptotic series is gener-
ally not legitimate.

Example 11 The function f (x) = e−x sin(ex) is continuously differentiable on R

and is an asymptotic zero with respect to the asymptotic sequence { 1
xn
} as x→+∞.

The derivatives of the functions 1
xn

, up to a constant factor, again have the form
1
xk

. However the function f ′(x) = −ex sin(ex) + cos(ex) not only fails to be an
asymptotic zero; it doesn’t even have an asymptotic expansion with respect to the
sequence { 1

xn
} as x→+∞.

19.1.3 Asymptotic Power Series

In conclusion, let us examine asymptotic power series in some detail, since they are
encountered relatively often, although in a rather generalized form, as was the case
in Example 8.

We shall study expansions with respect to the sequence {xn;n= 0,1, . . .}, which
is asymptotic as x→ 0 and with respect to { 1

xn
;n= 0,1, . . .}, which is asymptotic as

x→∞. Since these are both the same object up to the change of variable x = 1
u

, we
state the next proposition only for expansions with respect to the first sequence and
then note the specifics of certain of the formulations given in the case of expansions
with respect to the second sequence.

Proposition 4 Let 0 be a limit point of E and let

f (x)/ a0 + a1x + a2x
2 + · · · ,

g(x)/ b0 + b1x + b2x
2 + · · ·

as E � x→ 0.

Then as E � x→ 0,

a) (αf + βg)/∑∞n=0(αan + βbn)xn;
b) (f · g)(x) /∑∞n=0 cnx

n, where cn = a0bn + a1bn−1 + · · · + anb0, n = 0,
1, . . . ;

c) if b0 �= 0, then ( f
g
)(x)/∑∞n=0 dnx

n, where the coefficients dn can be found
from the recurrence relations

ao = b0d0, a1 = b0d1 + b1d0, . . . , an =
n∑

k=0

bkdn−k, . . . ;

d) if E is a deleted neighborhood or one-sided neighborhood of 0 and f is con-
tinuous on E, then

∫ x

0
f (t)dt / a0x + a1

2
x2 + · · · + an−1

n
xn + · · · ;
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e) if in addition to the assumptions of d) we also have f ∈ C(1)(E) and

f ′(x)/ a′0 + a′1x + · · · ,
then a′n = (n+ 1)an+1, n= 0,1, . . . .

Proof a) This is a special case of Proposition 2.
b) Using the properties of o( ) (see Proposition 4 of Sect. 3.2), we find that

(f · g)(x)=
= f (x) · g(x)=
= (a0 + a1x + · · · + anxn + o

(
xn
))(
b0 + b1x + · · · + bnxn + o

(
xn
))=

= (a0b0)+ (a0b1 + a1b0)x + · · · + (a0bn + a1bn−1 + · · · + anb0)x
n + o(xn)

as E � x→ 0.
c) If b0 �= 0, then g(x) �= 0 for x close to zero, and therefore we can consider the

ratio f (x)
g(x)
= h(x). Let us verify that if the coefficients d0, . . . , dn in the representa-

tion h(x)= d0+ d1x+ · · · + dnxn+ rn(x) have been chosen in accordance with c),
then rn(x)= o(xn) as E � x→ 0. From the identity f (x)= g(x)h(x), we find that

a0 + a1x + · · · + anxn + o
(
xn
)=

= (b0 + b1x + · · · + bnxn + o
(
xn
))(
d0 + d1x + · · · + dnxn + rn(x)

)=
= (b0d0)+ (b0d1 + b1d0)x + · · · + (b0dn + b1dn−1 + · · · + bnd0)x

n +
+ b0rn(x)+ o

(
rn(x)

)+ o(xn),
from which it follows that o(xn)= b0rn(x)+ o(rn(x))+ o(xn), or rn(x)= o(xn) as
E � x→ 0, since b0 �= 0.

d) This follows from part c) of Proposition 3 if we set ω= 0 there and recall that
− ∫ 0

x
f (t)dt = ∫ x0 f (t)dt .

e) Since the function f ′(x) is continuous on ]0, x] (or [x,0[) and bounded (it
tends to a′0 as x → 0), the integral

∫ x
0 f
′(t)dt exists. Obviously f (x) = a0 +∫ x

0 f
′(t)dt , since f (x)→ a0 as x→ 0. Substituting the asymptotic expansion of

f ′(x) into this equality and using what was proved in d), we find that

f (x)/ a0 + a′0x +
a′1
2
x2 + · · · + a

′
n−1

n
xn + · · · .

It now follows from the uniqueness of asymptotic expansions (Proposition 1) that
a′n = (n+ 1)an, n= 0,1, . . . . �

Corollary 1 If U is a neighborhood (or one-sided neighborhood) of infinity in R

and the function f is continuous in U and has the asymptotic expansion

f (x)/ a0 + a1

x
+ a2

x2
+ · · · + an

xn
+ · · · as U � x→∞,
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then the integral

F(x)=
∫ ∞

x

(
f (t)− a0 − a1

t

)
dt

over an interval contained in U converges and has the following asymptotic expan-
sion:

F(x)/ a2

x
+ a3

2x2
+ · · · + an

nxn
+ · · · as U � x→∞.

Proof The convergence of the integral is obvious, since

f (t)− a0 − a1

t
∼ a2

t2
as U � t→∞.

It remains only to integrate the asymptotic expansion

f (t)− a0 − a1

t
/ a2

t2
+ a3

t3
+ · · · + an

tn
· · · as U � t→∞,

citing, for example, Proposition 3d). �

Corollary 2 If in addition to the hypotheses of Corollary 1 it is known that f ∈
C(1)(U) and f ′ admits the asymptotic expansion

f ′(x)/ a′0 +
a′1
x
+ a

′
2

x2
+ · · · + a

′

n
+ · · · as U � x→∞,

then this expansion can be obtained by formally differentiating the expansion of the
function f, and

a′n =−(n− 1)an−1, n= 2,3, . . . and a′0 = a′1 = 0.

Proof Since f ′(x)= a′0 + a′1
x
+O(1/x2) as U � x→∞, we have

f (x)= f (x0)+
∫ x

x0

f ′(t)dt = a′0x + a′1 lnx +O(1)

as U � x→∞; and since f (x)/ a0+ a1
x
+ a2
x2 +· · · and the sequence x, lnx,1, 1

x
,

1
x2 , . . . is an asymptotic sequence as U � x→∞, Proposition 1 enables us to con-

clude that a′0 = a′1 = 0. Now, integrating the expansion f ′(x)/ a′2
x2 + a′3

x3 + · · · , by
Corollary 1 we obtain the expansion of f (x), and by the uniqueness of the expan-
sion we arrive at the relations a′n =−(n− 1)an−1 for n= 2,3, . . . . �

19.1.4 Problems and Exercises

1. a) Let h(z)=∑∞n=0 anz
−n for |z|>R, z∈C. Show that then h(z)/∑∞n=0 anz

−n
as C � z→∞.
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b) Assuming that the required solution y(x) of the equation y′(x) + y2(x) =
sin 1

x2 has an asymptotic expansion y(x) /∑∞n=0 cnx
−n as x→∞, find the first

three terms of this expansion.
c) Prove that if f (z)=∑∞n=0 anz

n for |z|< r , z ∈ C, and g(z)/ b1z+ b2z
2 +

· · · as C � z→ 0, then the function f ◦ g is defined in some deleted neighborhood
of 0 ∈ C and (f ◦ g)(z) / c0 + c1z + c2z

2 + · · · as C � z→ 0, where the coeffi-
cients c0, c1, . . . can be obtained by substituting the series in the series, just as for
convergent power series.

2. Show the following.

a) If f is a continuous, positive, monotonic function for x ≥ 0, then

n∑

k=0

f (k)=
∫ n

0
f (x)dx +O(f (n))+O(1) as n→∞;

b)
∑n
k=1

1
k
= lnn+ c+ o(1) as n→∞;

c)
∑n
k=1 k

α(ln k)β ∼ nα+1(lnn)β

α+1 as n→∞ for α >−1.

3. Through integration by parts find the asymptotic expansions of the following
functions as x→+∞:

a) Γs(x)=
∫ +∞
x

ts−1e−t dt – the incomplete gamma function;

b) erf(x) = 1√
π

∫ x
−x e−t2 dt – the probability error function (we recall that

∫∞
−∞ e−x2

dx =√π is the Euler–Poisson integral);

c) F(x)= ∫ +∞
x

eit
tα

dt if α > 0.

4. Using the result of the preceding problem, find the asymptotic expansions of the
following functions as x→+∞:

a) Si(x) = ∫ x0 sin t
t

dt – the sine integral (we recall that
∫∞

0
sinx
x

dx = π
2 is the

Dirichlet integral).
b) C(x)= ∫ x0 cos π2 t

2 dt , S(x)= ∫ x0 sin π2 t
2 dt – the Fresnel integrals (we recall

that
∫ +∞

0 cosx2 dx = ∫∞0 sinx2 dx = 1
2

√
π
2 ).

5. The following generalization of the concept of an expansion in an asymptotic
sequence {ϕn(x)} introduced by Poincaré and studied above is due to Erdélyi.2

Let X be a set, B a base in X, {ϕn(x)} an asymptotic sequence of functions on X.
If the functions f (x),ψ0(x),ψ1(x),ψ2(x), . . . are such that the equality

f (x)=
n∑

k=0

ψk(x)+ o
(
ϕn(x)

)
over the base B

2A. Erdélyi (1908–1977) – Hungarian/British mathematician.
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holds for every n= 0,1, . . . , we write

f (x)/
∞∑

n=0

ψn(x),
{
ϕn(x)

}
over the base B,

and we say that we have the asymptotic expansion of the function f over the base B
in the sense of Erdélyi.

a) Please note that in Problem 4 you obtained the asymptotic expansion in the
sense of Erdélyi if you assume ϕn(x)= x−n, n= 0,1, . . . .

b) Show that asymptotic expansions in the sense of Erdélyi do not have the
property of uniqueness (the functions ψn can be changed).

c) Show that if a setX, a base B inX, a function f onX, and sequences {μn(x)}
and {ϕn(x)}, the second of which is asymptotic over the base B, are given, then the
expansion

f (x)/
∞∑

n=0

αnμn(x),
{
ϕn(x)

}
over the base B,

where an are numerical coefficients, is either impossible or unique.

6. Uniform asymptotic estimates. LetX be a set and BX a base inX, and let f (x, y)
and g(x, y) be (vector-valued) functions defined on X and depending on the param-
eter y ∈ Y . Set |f (x, y)| = α(x, y)|g(x, y)|. We say that the asymptotic relations

f (x, y)= o(g(x, y)), f (x, y)=O(g(x, y)), f (x, y)∼ g(x, y)
are uniform with respect to the parameter y on the set Y if (respectively) α(x, y)⇒ 0
on Y over the base BX;α(x, y) is ultimately bounded over the base Bx uniformly
with respect to y ∈ Y ; and finally f = α · g + o(g), where α(x, y)⇒ 1 on Y over
the base Bx.

Show that if we introduce the base B = {Bx × Y } in X × Y whose elements are
the direct products of the elements Bx of the base BX and the set Y , then these
definitions are equivalent respectively to the following:

f (x, y)= o(g(x, y)), f (x, y)=O(g(x, y)), f (x, y)∼ g(x, y)
over the base B.
7. Uniform asymptotic expansions. The asymptotic expansion

f (x, y)/
∞∑

n=0

an(y)ϕn(x) over the base BX

is uniform with respect to the parameter y on Y if the estimate rn(x, y)= o(ϕn(x))
over the base BX in X holds uniformly on Y in the equalities

f (x, y)=
n∑

k=0

ak(y)ϕk(x)+ rn(x, y), n= 0,1, . . . .
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a) Let Y be a (bounded) measurable set in R
n, and suppose that for each fixed

x ∈ X the functions f (x, y), a0(y), a1(y), . . . are integrable over Y . Show that if
the asymptotic expansion f (x, y)/∑∞n=0 an(y)ϕn(x) over the base BX is uniform
with respect to the parameter y ∈ Y , then the following asymptotic expansion also
holds

∫

Y

f (x, y)dy /
∞∑

n=0

(∫

Y

an(y)dy

)
ϕn(x) over the base BX.

b) Let Y = [c, d] ⊂R. Assume that the function f (x, y) is continuously differ-
entiable with respect to y on the closed interval Y for each fixed x ∈X and for some
y0 ∈ Y admits the asymptotic expansion

f (x, y0)/
∞∑

n=0

an(y0)ϕn(x) over the base BX.

Prove that if the asymptotic expansion

∂f

∂y
(x, y)/

∞∑

n=0

αn(y)ϕn(x) over the base BX

holds uniformly with respect to y ∈ Y with coefficients αn(y) that are continuous
in y, n= 0,1, . . . , then the original function f (x, y) has an asymptotic expansion
f (x, y)/∑∞n=0 an(y)ϕn(x) over the base BX that is uniform with respect to y ∈ Y ,
its coefficients an(y), n= 0,1, . . . are smooth functions of y on the interval Y and
dan
dy (y)= αn(y).

8. Let p(x) be a smooth function that is positive on the closed interval c ≤ x ≤ d .

a) Solve the equation ∂2u

∂x2 (x,λ)= λ2p(x)u(x,λ) in the case when p(x)≡ 1 on
[c, d].

b) Let 0 < m ≤ p(x) ≤M < +∞ on [c, d] and let u(c,λ) = 1, ∂u
∂x
(c, λ) = 0.

Estimate the quantity u(x,λ) from above and below for x ∈ [c, d].
c) Assuming that lnu(x,λ) / ∑∞n=0 cn(x)λ

1−n as λ → +∞, where c0(x),

c1(x), . . . are smooth functions and, using the fact that (u
′
u
)′ = u′′

u
− (u′

u
)2, show

that c′0
2
(x)= p(x) and (c′′n−1 +

∑n
k=0 c

′
k · c′n−k)(x)= 0.

19.2 The Asymptotics of Integrals (Laplace’s Method)

19.2.1 The Idea of Laplace’s Method

In this subsection we shall discuss Laplace’s method – one of the few reasonably
general methods of constructing the asymptotics of an integral depending on a pa-
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rameter. We confine our attention to integrals of the form

F(λ)=
∫ b

a

f (x)eλS(x) dx, (19.1)

where S(x) is a real-valued function and λ is a parameter. Such integrals are usually
called Laplace integrals.

Example 1 The Laplace transform

L(f )(ξ)=
∫ +∞

0
f (x)e−ξx dx

is a special case of a Laplace integral.

Example 2 Laplace himself applied his method to integrals of the form∫ b
a
f (x)ϕn(x)dx, where n ∈ N and ϕ(x) > 0 on ]a, b[. Such an integral is also

a special case of a general Laplace integral (19.1), since ϕn(x)= exp(n lnϕ(x)).

We shall be interested in the asymptotics of the integral (19.1) for large values of
the parameter λ, more precisely as λ→+∞, λ ∈R.

So as not to become distracted with secondary issues when describing the basic
idea of Laplace’s method, we shall assume that [a, b] = I is a finite closed interval
in the integral (19.1), that the functions f (x) and S(x) are smooth on I , and that
S(x) has a unique, strict maximum S(x0) at the point x0 ∈ I . Then the function
exp(λS(x)) also has a strict maximum at x0, which rises higher above the other
values of this function on the interval I as the value of the parameter λ increases.
As a result, if f (x) �≡ 0 in a neighborhood of x0, the entire integral (19.1) can
be replaced by the integral over an arbitrarily small neighborhood of x0, thereby
admitting a relative error that tends to zero as λ→+∞. This observation is called
the localization principle. Reversing the historical sequence of events, one might
say that this localization principle for Laplace integrals resembles the principal of
local action of approximate identities and the δ-function.

Now that the integral is being taken over only a small neighborhood of x0, the
functions f (x) and S(x) can be replaced by the main terms of their Taylor expan-
sions as I � x→ x0.

It remains to find the asymptotics of the resulting canonical integral, which can
be done without any particular difficulty.

It is in the sequential execution of these steps that the essence of Laplace’s
method of finding the asymptotics of an integral is to be found.

Example 3 Let x0 = a, S′(a) �= 0, and f (a) �= 0, which happens, for example, when
the function S(x) is monotonically decreasing on [a, b]. Under these conditions
f (x)= f (a)+o(1) and S(x)= S(a)+(x−a)S′(a)+o(1), as I � x→ a. Carrying
out the idea of Laplace’s method, for a small ε > 0 and λ→+∞, we find that
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F(λ) ∼
∫ a+ε

a

f (x)eλS(x) dx ∼

∼ f (a)eλS(a)
∫ ε

0
eλtS

′(a) dt =−f (a)e
λS(a)

λS′(a)
(
1− eλS

′(a)ε).

Since S′(a) < 0, it follows that in the case in question

F(λ)∼−f (a)e
λS(a)

λS′(a)
as λ→+∞. (19.2)

Example 4 Let a < x0 < b. Then S′(x0)= 0, and we assume that S′′(x0) �= 0, that
is, S′′(x0) < 0, since x0 is a maximum.

Using the expansions f (x)= f (x0)+o(x−x0) and S(x)= S(x0)+ 1
2S
′′(x0)(x−

x0)
2 + o((x − x0)

2), which hold as x → x0, we find that for small ε > 0 and
λ→+∞

F(λ)∼
∫ x0+ε

x0−ε
f (x)eλS(x) dx ∼ f (x0)e

λS(x0)

∫ ε

−ε
e

1
2λS

′′(x0)t
2

dt.

Making the change of variable 1
2λS

′′(x0)t
2 =−u2 (since S′′(x0) < 0), we obtain

∫ ε

−ε
e

1
2λS

′′(x0)t
2

dt =
√

− 2

λS′′(x0)

∫ ϕ(λ,ε)

−ϕ(λ,ε)
e−u2

du,

where ϕ(λ, ε)=
√
−λS′′(x0)

2 ε→+∞ as λ→+∞.
Taking account of the equality

∫ +∞

−∞
e−u2

du=√π,

we now find the principal term of the asymptotics of the Laplace integral in this
case:

F(λ)∼
√

− 2π

λS′′(x0)
f (x0)e

λS(x0) as λ→+∞. (19.3)

Example 5 If x0 = a, but S′(x0) = 0 and S′′(x0) < 0, then, reasoning as in Exam-
ple 4, we find this time that

F(λ)∼
∫ a+ε

a

f (x)eλS(x) dx ∼ f (x0)e
λS(x0)

∫ ε

0
e

1
2λS

′′(x0)t
2

dt,

and so

F(λ)∼ 1

2

√

− 2π

λS′′(x0)
f (x0)e

λS(x0) as λ→+∞. (19.4)
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We have now obtained on a heuristic level the three very useful formulas (19.2)–
(19.4) involving the asymptotics of the Laplace integral (19.1).

It is clear from these considerations that Laplace’s method can be used success-
fully in the study of the asymptotics of any integral

∫

X

f (x,λ)dx as λ→+∞ (19.5)

provided (a) the localization principle holds for the integral, that is, the integral can
be replaced by one equivalent to it as λ→+∞ extending over arbitrarily small
neighborhoods of the distinguished points, and (b) the integrand in the localized
integral can be replaced by a simpler one for which the asymptotics is on the one
hand the same as that of the integral being investigated and on the other hand easy
to find.

If, for example, the function S(x) in the integral (19.1) has several local maxima
x0, x1, . . . , xn on the closed interval [a, b], then, using the additivity of the integral,
we replace it with small relative error by the sum of similar integrals taken over
neighborhoods U(xj ) of the maxima x0, x1, . . . , xn so small that each contains only
one such point. The asymptotic behavior of the integral

∫

U(xj )

f (x)eλS(x) dx as λ→+∞,

as already mentioned, is independent of the size of the neighborhood U(xj ) itself,
and hence the asymptotic expansion of this integral as λ→+∞ is denoted F(λ,xj )
and called the contribution of the point xj to the asymptotics of the integral (19.1).

In its general formulation the localization principle thus means that the asymp-
totic behavior of the integral (19.5) is obtained as the sum

∑
j F (λ, xj ) of the con-

tributions of all the points of the integrand that are critical in some respect.
For the integral (19.1) these points are the maxima of the function S(x), and,

as one can see from formulas (19.2)–(19.4), the main contribution comes entirely
from the local maximum points at which the absolute maximum of S(x) on [a, b] is
attained.

In the following subsections of this section we shall develop the general consid-
erations stated here and then consider some useful applications of Laplace’s method.
For many applications what we have already discussed is sufficient. It will also be
shown below how to obtain not only the main term of the asymptotics, but also the
entire asymptotic series.

19.2.2 The Localization Principle for a Laplace Integral

Lemma 1 (Exponential estimate) Let M = supa<x<b S(x) <∞, and suppose that
for some value λ0 > 0 the integral (19.1) converges absolutely. Then it converges
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absolutely for every λ≥ λ0 and the following estimate holds for such values of λ:

∣∣F(λ)
∣∣≤
∫ b

a

∣∣f (x)eλS(x)
∣∣dx ≤AeλM, (19.6)

where A ∈R.

Proof Indeed, for λ≥ λ0,

∣
∣F(λ)

∣
∣ =
∣
∣
∣
∣

∫ b

a

f (x)eλS(x) dx

∣
∣
∣
∣=
∣
∣
∣
∣

∫ b

a

f (x)eλ0S(x)e(λ−λ0)S(x)dx

∣
∣
∣
∣≤

≤ e(λ−λ0)M

∫ b

a

∣
∣f (x)eλ0S(x)

∣
∣dx =

(
e−λ0M

∫ b

a

∣
∣f (x)eλ0S(x)

∣
∣dx
)

eλM. �

Lemma 2 (Estimate of the contribution of a maximum point) Suppose the in-
tegral (19.1) converges absolutely for some value λ = λ0, and suppose that in
the interior or on the boundary of the interval I there is a point x0 at which
S(x0)= supa<x<b S(x)=M . If f (x) and S(x) are continuous at x0 and f (x0) �= 0,
then for every ε > 0 and every sufficiently small neighborhood UI (x0) of x0 in I we
have the estimate

∣∣∣∣

∫

UI (x0)

f (x)eλS(x) dx

∣∣∣∣≥ Beλ(S(x0)−ε) (19.7)

with a constant B > 0, valid for λ≥max{λ0,0}.

Proof For a fixed ε > 0 let us take any neighborhood UI (x0) inside which |f (x)| ≥
1
2 |f (x0)| and S(x0) − ε ≤ S(x) ≤ S(x0). Assuming that f is real-valued, we can
now conclude that f is of constant sign inside UI (x). This enables us to write for
λ≥max{λ0,0}

∣∣∣∣

∫

UI (x0)

f (x)eλS(x) dx

∣∣∣∣ =
∫

UI (x0)

∣∣f (x)
∣∣eλS(x) dx ≥

≥
∫

UI (x0)

1

2

∣∣f (x0)
∣∣eλ(S(x0)−ε)dx = Beλ(S(x0)−ε). �

Proposition 1 (Localization principle) Suppose the integral (19.1) converges abso-
lutely for a value λ= λ0, and suppose that inside or on the boundary of the interval
I of integration the function S(x) has a unique point x0 of absolute maximum, that
is, outside every neighborhood U(x0) of the point x0 we have

sup
I\U(x0)

S(x) < S(x0).

If the functions f (x) and S(x) are continuous at x0 and f (x0) �= 0, then

F(λ)= FUI (x0)(λ)
(
1+O(λ−∞)) as λ→+∞, (19.8)
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where UI (x0) is an arbitrary neighborhood of x0 in I ,

FUI (x0)(λ) :=
∫

UI (x0)

f (x)eλS(x) dx,

and O(λ−∞) denotes a function that is o(λ−n) as λ→+∞ for every n ∈N.

Proof It follows from Lemma 2 that if the neighborhood UI (x0) is sufficiently
small, then the following inequality holds ultimately as λ→+∞ for every ε > 0

∣
∣FUI (x0)(λ)

∣
∣> eλ(S(x0)−ε). (19.9)

At the same time, by Lemma 1 for every neighborhood U(x0) of the point x0 we
have the estimate

∫

I\U(x0)

∣
∣f (x)

∣
∣eλS(x) dx ≤Aeλμ as λ→+∞, (19.10)

where A> 0 and μ= supx∈I\U(x0)
S(x) < S(x0).

Comparing this estimate with inequality (19.9), it is easy to conclude that in-
equality (19.9) holds ultimately as λ→+∞ for every neighborhood UI (x0) of x0.

It now remains only to write

F(λ)= FI (λ)= FUI (x0)(λ)+ FI\U(x0)(λ),

and, citing estimates (19.9) and (19.10), conclude that (19.8) holds. �

Thus it is now established that with a relative error of the order O(λ−∞) as
λ→+∞ when estimating the asymptotic behavior of the Laplace integral, one can
replace it by the integral over an arbitrarily small neighborhood UI (x0) of the point
x0 where the absolute maximum of S(x) occurs on the interval I of integration.

19.2.3 Canonical Integrals and Their Asymptotics

Lemma 3 (Canonical form of the function in the neighborhood of a critical point)
If the real-valued function S(x) has smoothness C(n+k) in a neighborhood (or one-
sided neighborhood) of a point x0 ∈R, and

S′(x0)= · · · = S(n−1)(x0)= 0, S(n)(x0) �= 0,

and k ∈N or k =∞, then there exist neighborhoods (or one-sided neighborhoods)
Ix of x0 and Iy of 0 in R and a diffeomorphism ϕ ∈ C(k)(Iy, Ix) such that

S
(
ϕ(y)
)= S(x0)+ syn, when y ∈ Iy and s = sgnS(n)(x0).
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Here

ϕ(0)= x0 and ϕ′(0)=
(

n!
|S(n)(x0)|

)1/n

.

Proof Using Taylor’s formula with the integral form of the remainder,

S(x)= S(x0)+ (x − x0)
n

(n− 1)!
∫ 1

0
S(n)
(
x0 + t (x − x0)

)
(1− t)n−1 dt,

we represent the difference S(x)− S(x0) in the form

S(x)− S(x0)= (x − x0)
nr(x),

where the function

r(x)= 1

(n− 1)!
∫ 1

0
S(n)
(
x0 + t (x − x0)

)
(1− t)n−1 dt,

by virtue of the theorem on differentiation of an integral with respect to the pa-
rameter x, belongs to class C(k), and r(x0) = 1

n!S
(n)(x0) �= 0. Hence the function

y = ψ(x) = (x − x0)
n
√|r(x)| also belongs to C(k) in some neighborhood (or one-

sided neighborhood) Ix of x0 and is even monotonic, since

ψ ′(x0)= n

√∣∣r(x0)
∣∣=
( |S(n)(x0)|

n!
)1/n

�= 0.

In this case the function ψ on Ix has an inverse ψ−1 = ϕ defined on the interval
Iy =ψ(Ix) containing the point 0=ψ(x0). Here ϕ ∈C(k)(Iy, Ix).

Further, ϕ′(0)= (ψ ′(x0))
−1 = ( n!

|S(n)(x0)| )
1/n. Finally, by construction S(ϕ(y))=

S(x0)+ syn, where s = sgn r(x0)= sgnS(n)(x0). �

Remark 1 The cases n = 1 or n = 2 and k = 1 or k =∞ are usually the ones of
most interest.

Proposition 2 (Reduction) Suppose the interval of integration I = [a, b] in the in-
tegral (19.1) is finite and the following conditions hold:

a) f,S ∈ C(I,R);
b) maxx∈I S(x) is attained only at the one point x0 ∈ I ;
c) S ∈ C(n)(UI (x0),R) in some neighborhood UI (x0) of x0 (inside the inter-

val I );
d) S(n)(x0) �= 0 and if 1< n, then S(1)(x0)= · · · = S(n−1)(x0)= 0.

Then as λ→+∞ the integral (19.1) can be replaced by an integral of the form

R(λ)= eλS(x0)

∫

Iy

r(y)e−λyn dy
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with a relative error defined by the localization principle (19.8), where Iy = [−ε, ε]
or Iy = [0, ε], ε is an arbitrarily small positive number, and the function r has the
same degree of smoothness Iy that f has in a neighborhood of x0.

Proof Using the localization principle, we replace the integral (19.1) with the inte-
gral over a neighborhood Ix = UI (x0) of x0 in which the hypotheses of Lemma 3
hold. Making the change of variable x = ϕ(y), we obtain

∫

Ix

f (x)eλS(x) dx =
(∫

Iy

f
(
ϕ(y)
)
ϕ′(y)e−λyn dy

)
eλS(x0). (19.11)

The negative sign in the exponent (−λyn) comes from the fact that by hypothesis
x0 = ϕ(0) is a maximum. �

The asymptotic behavior of the canonical integrals to which the Laplace integral
(19.1) reduces in the main cases is given by the following lemma.

Lemma 4 (Watson3) Let α > 0, β > 0, 0 < a ≤ ∞, and f ∈ C([0, a],R). Then
with respect to the asymptotics of the integral

W(λ)=
∫ a

0
xβ−1f (x)e−λxα dx (19.12)

as λ→+∞, the following assertions hold:

a) The main term of the asymptotics of (19.12) has the form

W(λ)= 1

α
f (0)Γ (β/α)λ−

β
α +O(λ− β+1

α
)
, (19.13)

if it is known that f (x)= f (0)+O(x) as→ 0.
b) If f (x)= a0 + a1x + · · · + anxn +O(xn+1) as x→ 0, then

W(λ)= 1

α

n∑

k=0

akΓ

(
k+ β
α

)
λ−

k+β
α +O(λ− n+β+1

α
)
. (19.14)

c) If f is infinitely differentiable at x = 0, then the following asymptotic expan-
sion holds:

W(λ)/ 1

α

∞∑

k=0

f (k)(0)

k! Γ

(
k+ β
α

)
λ−

k+β
α , (19.15)

which can be differentiated any number of times with respect to λ.

3G.H. Watson (1886–1965) – British mathematician.
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Proof We represent the integral (19.12) as a sum of integrals over the interval ]0, ε]
and [ε, a[, where ε is an arbitrarily small positive number.

By Lemma 1
∣∣∣∣

∫ a

ε

xβ−1f (x)e−λxα dx

∣∣∣∣≤Ae−λεα =O(λ−∞) as λ→+∞,

and therefore

W(λ)=
∫ ε

0
xβ−1f (x)e−λxα dx +O(λ−∞) as λ→+∞.

In case b) we have f (x)=∑n
k=0 akx

k + rn(x), where rn ∈ C[0, ε] and |rn(x)| ≤
Cxn+1 on the interval [0, ε]. Hence

W(λ)=
n∑

k=0

ak

∫ ε

0
xk+β−1e−λxα dx + c(λ)

∫ ε

0
xn+βe−λxα dx + o(λ−∞),

where c(λ) is bounded as λ→+∞.
By Lemma 1, as λ→+∞,

∫ ε

0
xk+β−1e−λxα dx =

∫ +∞

0
xk+β−1e−λxα dx +O(λ−∞).

But
∫ +∞

0
xk+β−1e−λxα dx = 1

α
Γ

(
k + β
α

)
λ−

k+β
α ,

from which formula (19.14) and the special case of it, formula (19.13), now follow.
The expansion (19.15) now follows from (19.14) and Taylor’s formula.
The possibility of differentiating (19.15) with respect to λ follows from the fact

that the derivative of the integral (19.12) with respect to the parameter λ is an in-
tegral of the same type as (19.12) and for W ′(λ) one can use formula (19.15) to
present explicitly an asymptotic expansion as λ→+∞ that is the same as the one
obtained by formal differentiation of the original expansion (19.15). �

Example 6 Consider the Laplace transform

F(λ)=
∫ +∞

0
f (x)e−λx dx,

which we have already encountered in Example 1. If this integral converges abso-
lutely for some value λ= λ0 and the function f is infinitely differentiable at x = 0,
then by formula (19.15) we find that

F(λ)/
∞∑

k=0

f (k)(0)λ−(k+1) as λ→+∞.
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19.2.4 The Principal Term of the Asymptotics of a Laplace Integral

Theorem 1 (A typical principal term of the asymptotics) Suppose the interval of in-
tegration I = [a, b] in the integral (19.1) is finite, f,S ∈ C(I,R), and maxx∈I S(x)
is attained only at one point x0 ∈ I .

Suppose it is also known that f (x0) �= 0, f (x)= f (x0)+O(x−x0) for I � x→
x0, and the function S belongs to C(k) in a neighborhood of x0.

The following statements hold.

a) If x0 = a, k = 2, and S′(x0) �= 0 (that is, S′(x0) < 0), then

F(λ)= f (x0)

−S′(x0)
eλS(x0)λ−1[1+O(λ−1)] as λ→+∞; (19.2′)

b) if a < x0 < b, k = 3, and S′′(x0) �= 0 (that is, S′′(x0) < 0), then

F(λ)=
√

2π

−S′′(x0)
f (x0)e

λS(x0)λ−1/2[1+O(λ−1/2)] as λ→+∞; (19.3′)

c) if x0 = a, k = 3, S′(a)= 0, and S′′(a) �= 0 (that is, S′′(a) < 0), then

F(λ)=
√

π

−2S′′(x0)
f (x0)e

λS(x0)λ−1/2[1+O(λ−1/2)] as λ→+∞. (19.4′)

Proof Using the localization principle and making the change of variable x = ϕ(y)
shown in Lemma 3, according to the reduction in Proposition 2, we arrive at the
following relations:

a) F(λ)= eλS(x0)

(∫ ε

0
(f ◦ ϕ)(y)ϕ′(y)e−λy dy +O(λ−∞)

)
;

b) F(λ)= eλS(x0)

(∫ ε

−ε
(f ◦ ϕ)(y)ϕ′(y)e−λy2

dy +O(λ−∞)
)
=

= eλS(x0)

(∫ ε

0

(
(f ◦ ϕ)(y)ϕ′(y)+ (f ◦ ϕ)(−y)ϕ′(−y))e−λy2

dy +

+O(λ−∞)
)
;

c) F(λ)= eλS(x0)

(∫ ε

0
(f ◦ ϕ)(y)ϕ′(y)e−λy2

dy +O(λ−∞)
)

.

Under the requirements stated above, the function (f ◦ ϕ)ϕ′ satisfies all the hy-
potheses of Watson’s lemma. It now remains only to apply Watson’s lemma (for-
mula (19.14) for n= 0) and to recall the expressions for ϕ(0) and ϕ′(0) indicated in
Lemma 3. �

Thus we have justified formula (19.2)–(19.4) together with the remarkably sim-
ple, clear and effective recipe that led us to these formulas in Sect. 19.1.
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Now let us consider some examples of the application of this theorem.

Example 7 The asymptotics of the gamma function. The function

Γ (λ+ 1)=
∫ +∞

0
tλe−t dt (λ >−1)

can be represented as a Laplace integral

Γ (λ+ 1)=
∫ +∞

0
e−teλ ln t dt,

and if for λ > 0 we make the change of variable t = λx, we arrive at the integral

Γ (λ+ 1)= λλ+1
∫ +∞

0
e−λ(x−lnx) dx,

which can be studied using the methods of the theorem.
The function S(x) = lnx − x has a unique maximum x = 1 on the interval

]0,+∞[, and S′′(1) = −1. By the localization principle (Proposition 1) and as-
sertion b) of Theorem 1, we conclude that

Γ (λ+ 1)=√2πλ

(
λ

e

)λ[
1+O(λ−1/2)] as λ→+∞.

In particular, recalling that Γ (n + 1) = n! for n ∈ N, we obtain the classical
Stirling’s formula4

n! = √2πn(n/e)n
[
1+O(n−1/2)] as n→∞, n ∈N.

Example 8 The asymptotics of the Bessel function

In(x)= 1

π

∫ π

0
ex cos θ cosnθ dθ,

where n ∈ N. Here f (θ) = cosnθ,S(θ) = cos θ , max0≤x≤π S(θ) = S(0) = 1,
S′(0)= 0, and S′′(0)=−1, so that by assertion c) of Theorem 1

In(x)= ex√
2πx

[
1+O(x−1/2)] as x→+∞.

Example 9 Let f ∈ C(1)([a, b],R), S ∈ C(2)([a, b],R), with S(x) > 0 on [a, b],
and maxa≤x≤b S(x) is attained only at the one point x0 ∈ [a, b]. If f (x0) �= 0,
S′(x0)= 0, and S′′(x0) �= 0, then, rewriting the integral

F(λ)=
∫ b

a

f (x)
[
S(x)
]λ dx

4See also Problem 10 of Sect. 7.3.
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in the form of a Laplace integral

F(λ)=
∫ b

a

f (x)eλ lnS(x) dx,

on the basis of assertions b) and c) of Theorem 1, we find that as λ→+∞

F(λ)= εf (x0)

√
2π

−S′′(x0)

[
S(x0)

]λ+1/2
λ−1/2[1+O(λ−1/2)],

where ε = 1 if a < x0 < b and ε = 1/2 if x0 = a or x0 = b.

Example 10 The asymptotics of the Legendre polynomials

Pn(x)= 1

π

∫ π

0

(
x +
√
x2 − 1 cos θ

)n dθ

in the domain x > 1 as n→∞, n ∈ N, can be obtained as a special case of the
preceding example when f ≡ 1,

S(θ) = x +
√
x2 − 1 cos θ, max

0≤θ≤π
S(θ)= S(0)= x +

√
x2 − 1,

S′(0) = 0, S′′(0)=−
√
x2 − 1.

Thus,

Pn(x)= (x +
√
x2 − 1)n+1/2

√
2πn 4
√
x2 − 1

[
1+O(n−1/2)] as n→+∞, n ∈N.

19.2.5 *Asymptotic Expansions of Laplace Integrals

Theorem 1 gives only the principal terms of the characteristic asymptotics of a
Laplace integral (19.1) and even that under the condition that f (x0) �= 0. On the
whole this is of course a typical situation, and for that reason Theorem 1 is un-
doubtedly a valuable result. However, Watson’s lemma shows that the asymptotics
of a Laplace integral can sometimes be brought to an asymptotic expansion. Such a
possibility is especially important when f (x0)= 0 and Theorem 1 gives no result.

It is naturally impossible to get rid of the hypothesis f (x0) �= 0 completely,
without replacing it with anything, while remaining within the limits of Laplace’s
method: after all, if f (x)≡ 0 in a neighborhood of a maximum x0 of the function
S(x) or if f (x) tends to zero very rapidly as x→ x0, then x0 may not be respon-
sible for the asymptotics of the integral. Now that we have arrived at a certain type
of asymptotic sequence {eλcλ−pk } (p0 < p1 < · · · ) as λ→+∞ as a result of the
considerations we have studied, we can speak of an asymptotic zero in relation to
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such a sequence and, without assuming that f (x0) �= 0, we can state the localiza-
tion principle as follows: Up to an asymptotic zero with respect to the asymptotic
sequence {eλS(x0)λ−pk } (p0 < p1 < · · · ) the asymptotic behavior of the Laplace in-
tegral (19.1) as λ→+∞ equals the asymptotics of the portion of this integral taken
over an arbitrarily small neighborhood of the point x0, provided that this point is
the unique maximum of the function S(x) on the interval of integration.

However, we shall not go back and re-examine these questions in order to sharpen
them. Rather, assuming f and S belong to C(∞), we shall give a derivation of the
corresponding asymptotic expansions using Lemma 1 on the exponential estimate,
Lemma 3 on the change of variable, and Watson’s lemma (Lemma 4).

Theorem 2 (Asymptotic expansion) Let I = [a, b] be a finite interval, f,S ∈
C(I,R), and assume maxx∈I S(x) is attained only at the point x0 ∈ I and f,S ∈
C(∞)(UI (x0),R) in some neighborhood UI (x0) of x0. Then in relation to the
asymptotics of the integral (19.1) the following assertions hold.

a) If x0 = a, S(m)(a) �= 0, S(j)(a)= 0 for 1≤ j < m, then

F(λ)/ λ−1/meλS(a)
∞∑

k=0

akλ
−k/m as λ→+∞, (19.16)

where

ak = (−1)k+1mk

k! Γ

(
k+ 1

m

)(
h(x, a)

d

dx

)k(
f (x)h(x, a)

)∣∣
x=a,

h(x, a) = (S(a)− S(x))1−1/m
/S′(x).

b) If a < x0 < b, S(2m)(x0) �= 0, and S(j)(x0)= 0 for 1≤ j < 2m, then

F(λ)/ λ−1/2meλS(x0)
∞∑

k=0

ckλ
−k/m as λ→+∞, (19.17)

where

ck = 2
(−1)2k+1(2m)2k

(2k)! Γ

(
2k + 1

2m

)(
h(x, x0)

d

dx

)2k(
f (x)h(x, x0)

)∣∣
x=x0

,

h(x, x0) =
(
S(x0)− S(x)

)1− 1
2m /S′(x).

c) If f (n)(x0) �= 0 and f (x) ∼ 1
n!f

(n)(x0)(x − x0)
n as x→ x0, then the main

term of the asymptotics in the cases a) and b) respectively has the form

F(λ)= 1

m
λ−

n+1
m eλS(a)Γ

(
n+ 1

m

)(
m!
|Sm(a)|

) n+1
m ×

×
[

1

n!f
(n)(a)+O(λ− n+1

m
)
]
, (19.18)
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F(λ)= 1

m
λ−

n+1
2m eλS(x0)Γ

(
n+ 1

2m

)(
(2m)!
|S2m(x0)|

) n+1
2m ×

×
[

1

n!f
(n)(x0)+O

(
λ−

n+1
2m
)]
. (19.19)

d) The expansions (19.16) and (19.17) can be differentiated with respect to λ
any number of times.

Proof It follows from Lemma 1 that under these hypotheses the integral (19.1) can
be replaced by an integral over an arbitrarily small neighborhood of x0 up to a
quantity of the form eλS(x0)O(λ−∞) as λ→∞.

Making the change of variable x = ϕ(y) from Lemma 3 in such a neighborhood,
we bring the last integral into the form

e−λS(x0)

∫

Iy

(f ◦ ϕ)(y)ϕ′(y)e−λyα dy, (19.20)

where Iy = [0, ε], α =m if x0 = a, and Iy = [−ε, ε], α = 2m if a < x0 < b.
The neighborhood in which the change of variable x = ϕ(y) took place can be

assumed so small that both functions f and S are infinitely differentiable in it. Then
the resulting integrand (f ◦ ϕ)(y)ϕ′(y) in the integral (19.20) can also be assumed
infinitely differentiable.

If Iy = [0, ε], that is, when x0 = a, Watson’s lemma is immediately applicable to
the integral (19.20) and the existence of the expansion (19.16) is thereby proved.

If Iy = [−ε, ε], that is, in the case a < x0 < b, we bring the integral (19.20) into
the form

eλS(x0)

∫ ε

0

[
(f ◦ ϕ)(y)ϕ′(y)+ (f ◦ ϕ)(−y)ϕ′(−y)]e−λ2m

dy, (19.21)

and, once again applying Watson’s lemma, we obtain the expansion (19.17).
The possibility of differentiating the expansions (19.16) and (19.17) follows from

the fact that under our assumptions the integral (19.1) can be differentiated with
respect to λ to yield a new integral satisfying the hypotheses of the theorem. We
write out the expansions (19.16) and (19.17) for it, and we can verify immediately
that these expansions really are the same as those obtained by formal differentiation
of the expansions (19.16) and (19.17) for the original integrals.

We now take up the formulas for the coefficients ak and ck . By Watson’s lemma

ak = 1
k!m

dkΦ
dyk
(0)Γ ( k+1

m
), where Φ(y)= (f ◦ ϕ)(y)ϕ′(y).

However, taking account of the relations

S
(
ϕ(y)
)− S(a) = −ym,

S′(x)ϕ′(y) = −mym−1,

ϕ′(y) = −m(S(a)− S(x))1− 1
m /S′(x),
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d

dy
= ϕ′(y) d

dx
,

Φ(y) = f (x)ϕ′(y),
we obtain

dkΦ

dyk
(0)= (−m)k+1

(
h(x, a)

d

dx

)k(
f (x)h(x, a)

)∣∣
x=a,

where h(x, a)= (S(a)− S(x))1− 1
m /S′(x).

Formulas for the coefficients ck can be obtained similarly by applying Watson’s
lemma to the integral (19.21).

Setting ψ(y)= f (ϕ(y))ϕ′(y)+ f (ϕ(−y))ϕ′(−y), we can write, as λ→+∞,

∫ ε

0
ψ(y)e−λy2m

dy / 1

2m

∞∑

n=0

ψ(n)(0)

n! Γ

(
n+ 1

2m

)
λ−

n+1
2m .

But,ψ(2k+1)(0)= 0 sinceψ(y) is an even function; therefore this last asymptotic
expansion can be rewritten as

∫ ε

0
ψ(y)e−λy2m

dy / 1

2m

∞∑

k=0

ψ(2k)(0)

(2k)! Γ
(

2k+ 1

2m

)
λ−

2k+1
2m .

It remains only to note that ψ(2k)(0)= 2Φ(2k)(0), where Φ(y)= f (ϕ(y))ϕ′(y).
The formula for ck can now be obtained from the already established formula for ak
by replacing k with 2k and doubling the result of the substitution.

To obtain the principal terms (19.18) and (19.19) in the asymptotic expansions
(19.16) and (19.17) under the condition f (x) = 1

n!f
(n)(x0)(x − x0)

n + O((x −
x0)

n+1) indicated in c), where f (n)(x0) �= 0, it suffices to recall that x = ϕ(y),
x0 = ϕ(0), x − x0 = ϕ′(0)y +O(y2), that is,

(f ◦ ϕ)(y)= yn
(
f (n)(x0)

n!
(
ϕ′(0)

)n +O(y)
)

and

(f ◦ ϕ)(y)ϕ′(y)= yn
(
f (n)(x0)

n!
(
ϕ′(0)

)n+1 +O(y)
)

as y→ 0, since ϕ′(0)= ( m!
|S(m)(a)| )

1/m �= 0 if x0 = a and ϕ′(0)= ( (2m!)
|S(2m)(x0)| )

1/2m �=
0 if a < x0 < b.

It now remains only to substitute these expressions into the integrals (19.20) and
(19.21) respectively and use formula (19.13) from Watson’s lemma. �

Remark 2 We again get formula (19.2′) from formula (19.18) when n = 0 and
m= 1.
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Similarly, when n= 0 and m= 1 formula (19.19) yields (19.3′) again.
Finally, Eq. (19.4′) comes from Eq. (19.18) with n= 0 and m= 2.
All of this, of course, assumes the hypotheses of Theorem 2.

Remark 3 Theorem 2 applies to the case where the function S(x) has a unique max-
imum on the interval I = [a, b]. If there are several such points x1, . . . , xn, the inte-
gral (19.1) is partitioned into a sum of such integrals, each of whose asymptotics is
described by Theorem 2. That is, in this case the asymptotic behavior is obtained as
the sum

∑n
j=1 F(λ,xj ) of the contributions of these maximum points.

It is easy to see that when this happens, some or even all of the terms may cancel
one another.

Example 11 If S ∈C(∞)(R,R) and S(x)→−∞ as x→∞, then

F(λ)=
∫ ∞

−∞
S′(x)eλS(x) dx ≡ 0 for λ > 0.

Hence, in this case such an interference of the contributions must necessarily occur.
From the formal point of view this example may seem unconvincing, since previ-
ously we had been considering the case of a finite interval of integration. However,
those doubts are removed by the following important remark.

Remark 4 To simplify what were already very cumbersome statements in The-
orems 1 and 2 we assumed that the interval of integration I was finite and
that the integral (19.1) was a proper integral. In fact, however, if the inequality
supI\U(x0)

S(x) < S(x0) holds outside an interval U(x0) of the maximum point
x0 ∈ I , then Lemma 1 enables us to conclude that the integrals over intervals strictly
outside of U(x0) are exponentially small in comparison with eλS(x0) as λ→+∞
(naturally, under the assumption that the integral (19.1) converges absolutely for at
least one value λ= λ0).

Thus both Theorem 1 and Theorem 2 are also applicable to improper integrals if
the conditions just mentioned are met.

Remark 5 Due to their cumbersome nature, the formulas for the coefficients ob-
tained in Theorem 2 can normally be used only for obtaining the first few terms of
the asymptotics needed in specific computations. It is extremely rare that one can
obtain the general form of the asymptotic expansion of even a simpler function than
appears in Theorem 2 from these formulas for the coefficients ak and ck . Neverthe-
less, such situations do arise. To clarify the formulas themselves, let us consider the
following examples.

Example 12 The asymptotic behavior of the function

Erf(x)=
∫ +∞

x

e−u2
du
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as x→+∞ is easy to obtain through integration by parts:

Erf(x)= e−x2

2x
− 1

2

∫ +∞

x

u−2e−u2
du= e

−x2

2x
− 3e−x2

22x3
+
∫ +∞

x

u−4e−u2
du= · · · ,

from which, after obvious estimates, it follows that

Erf(x)/ e−x2

2x

∞∑

k=0

(−1)k(2k − 1)!!
2k

x−2k as x→+∞. (19.22)

Let us now obtain this expansion from Theorem 2.
By the change of variable u= xt we arrive at the representation

Erf(x)= x
∫ +∞

1
e−x2t2 dt.

Setting λ= x2 here and denoting the variable of integration, as in Theorem 2, by x,
we reduce the problem to finding the asymptotic behavior of the integral

F(λ)=
∫ ∞

1
e−λx2

dx, (19.23)

since Erf(x)= xF(x2).
When Remark 4 is taken into account, the integral (19.23) satisfies the hypothe-

ses of Theorem 2: S(x) = −x2, S′(x) = −2x < 0 for 1 ≤ x < +∞, S′(1) = −2,
S(1)=−1.

Thus, x0 = a = 1, m= 1, f (x)≡ 1, h(x, a)= 1
−2x , h(x, a) d

dx = 1
−2x

d
dx .

Hence,

(
1

−2x

d

dx

)0(
− 1

2x

)
= − 1

2x
=
(
−1

2

)
x−1,

(
1

−2x

d

dx

)1(
− 1

2x

)
= − 1

2x

d

dx

(
− 1

2x

)
=
(
−1

2

)2

(−1)x−3,

(
1

−2x

d

dx

)2(
− 1

2x

)
=
(
− 1

2x

d

dx

)1((
−1

2

)2

(−1)x−3
)
=

=
(
−1

2

)3

(−1)(−3)x−5,

...
(

1

−2x

d

dx

)k(
− 1

2x

)
= − (2k − 1)!!

2k+1
x−(2k+1).
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Setting x = 1, we find that

ak = (−1)k+1

k! Γ (k + 1)

(
− (2k − 1)!!

2k+1

)
= (−1)k

(2k− 1)!!
2k+1

.

Now writing out the asymptotic expansion (19.16) for the integral (19.23) taking
account of the relations Erf(x) = xF(x2), we obtain the expansion (19.22) for the
function Erf(x) as x→+∞.

Example 13 In Example 7, starting from the representation

Γ (λ+ 1)= λλ+1
∫ +∞

0
e−λ(x−lnx) dx, (19.24)

we obtained the principal term of the asymptotics of the function Γ (λ+ 1) as λ→
+∞. Let us now sharpen the formula obtained earlier, using Theorem 2b).

To simplify the notation a bit, let us replace x by x + 1 in the integral (19.24).
We then find that

Γ (λ+ 1)= λλ+1e−λ
∫ +∞

−1
eλ(ln(1+x)−x) dx

and the question reduces to studying the asymptotics of the integral

F(λ)=
∫ +∞

−1
eλ(ln(1+x)−x) dx (19.25)

as λ→+∞. Here S(x)= ln(1+x)−x, S′(x)= 1
1+x −1, S′(0)= 0, that is, x0 = 0,

S′′(x)=− 1
(1+x)2 , S′′(0)=−1 �= 0. That is, taking account of Remark 4, we see that

the hypotheses b) of Theorem 2 are satisfied, where we must also set f (x)≡ 1 and
m= 1, since S′′(0) �= 0.

In this case the function h(x, x0)= h(x) has the following form:

h(x)=−1+ x
x

(
x − ln(1+ x))1/2.

If we wish to find the first two terms of the asymptotics, we need to compute the
following at x = 0:

(
h(x)

d

dx

)0(
h(x)
)= h(x),

(
h(x)

d

dx

)1(
h(x)
)= h(x)dh

dx
(x),
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(
h(x)

d

dx

)2(
h(x)
)=
(
h(x)

d

dx

)(
h(x)

dh

dx
(x)

)
=

= h(x)
[(

dh

dx

)2

(x)+ h(x)d
2h

dx2
(x)

]
.

This computation, as one can see, is easily done if we find the values h(0), h′(0),
h′′(0), which in turn can be obtained from the Taylor expansion of h(x), x ≥ 0 in a
neighborhood of 0:

h(x) = −1+ x
x

[
x −
(
x − 1

2
x2 + 1

3
x3 − 1

4
x2 +O(x5)

)]1/2

=

= −1+ x
x

[
1

2
x2 − 1

3
x3 + 1

4
x4 +O(x5)

]1/2

=

= −1+ x√
2

[
1− 2

3
x + 2

4
x2 +O(x3)

]1/2

=

= −1+ x√
2

(
1− 1

3
x + 7

36
x2 +O(x3)

)
=

= − 1√
2
−
√

2

3
x + 5

36
√

2
x2 +O(x3).

Thus, h(0)=− 1√
2

, h′(0)=−
√

2
3 , h′′(0)= 5

18
√

2
,

(
h(x)

d

dx

)0(
h(x)
)∣∣
x=0 = −

1√
2
,

(
h(x)

d

dx

)1(
h(x)
)∣∣
x=0 = −

1

3
,

(
h(x)

d

dx

)2(
h(x)
)∣∣
x=0 = −

1

12
√

2
,

c0 =−2Γ

(
1

2

)(
− 1√

2

)
=√2π,

c1 =−2
22

2! Γ
(

3

2

)(
− 1

12
√

2

)
= 4 · 1

2
Γ

(
1

2

)
1

12
√

2
=
√

2π

12
.

Hence, as λ→∞,

F(λ)=√2πλ−1/2
(

1+ 1

12
λ−1 +O(λ−2)

)
,
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that is, as λ→+∞,

Γ (λ+ 1)=√2πλ

(
λ

e

)λ(
1+ 1

12
λ−1 +O(λ−2)

)
. (19.26)

It is useful to keep in mind that the asymptotic expansions (19.16) and (19.17) can
also be found by following the proof of Theorem 2 without invoking the expressions
for the coefficients shown in the statement of Theorem 2.

As an example, we once again obtain the asymptotics of the integral (19.25), but
in a slightly different way.

Using the localization principle and making a change of variable x = ϕ(y) in a
neighborhood of zero such that 0 = ϕ(0), S(ϕ(y)) = ln(1+ ϕ(y))− ϕ(y) = −y2,
we reduce the problem to studying the asymptotics of the integral

∫ ε

−ε
ϕ′(y)e−λy2

dy =
∫ ε

0
ψ(y)e−λy2

dy,

where ψ(y) = ϕ′(y)+ ϕ′(−y). The asymptotic expansion of this last integral can
be obtained from Watson’s lemma

∫ ε

0
ψ(y)e−λy2

dy / 1

2

∞∑

k=0

ψ(k)(0)

k! Γ

(
k + 1

2

)
λ−(k+1)/2 as λ→+∞,

which by the relations ψ(2k+1)(0) = 0, ψ(2k)(0) = 2ϕ(2k+1)(0) yields the asymp-
totic series

∞∑

k=0

ϕ(2k+1)(0)

(2k!) Γ

(
k + 1

2

)
λ−(k+1/2) = λ−1/2Γ

(
1

2

) ∞∑

k=0

ϕ(2k+1)(0)

k!22k
λ−k.

Thus for the integral (19.25) we obtain the following asymptotic expansion

F(λ)/ λ−1/2√π
∞∑

k=0

ϕ(2k+1)(0)

k!22k
λ−k, (19.27)

where x = ϕ(y) is a smooth function such that x− ln(1+x)= y2 in a neighborhood
of zero (for both x and y).

If we wish to know the first two terms of the asymptotics, we must put the specific
values ϕ′(0) and ϕ(3)(0) into formula (19.27).

It may be of some use to illustrate the following device for computing these
values, which can be used generally to obtain the Taylor expansion of an inverse
function from the expansion of the direct function.

Assuming x > 0 and y > 0, from the relation

x − ln(1+ x)= y2
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we obtain successively

1

2
x2
(

1− 2

3
x + 1

2
x2 +O(x3)

)
= y2,

x =√2y

(
1− 2

3
x + 1

2
x2 +O(x3)

)−1/2

=

=√2y

(
1+ 1

3
x − 1

12
x2 +O(x3)

)
=

=√2y +
√

2

3
yx −

√
2

12
yx2 +O(yx3).

But x ∼ √2y as y→ 0 (x→ 0), and therefore, using the representation of x
already found, one can continue this computation and find that as y→ 0

x =√2y +
√

2

3
y

(√
2y +

√
2

3
yx +O(y3)

)
−
√

2

12
y(
√

2y)2 +O(y4)=

=√2y + 2

3
y2 + 2

9
y2x −

√
2

6
y3 +O(y4)=

=√2y + 2

3
y2 + 2

9
y2(
√

2y)−
√

2

6
y3 +O(y4)=

=√2y + 2

3
y2 +

√
2

18
y3 +O(y4).

Thus for the quantities ϕ′(0) and ϕ(3)(0) of interest to us we find the following

values: ϕ′(0)=√2, ϕ(3)(0)=
√

2
3 .

Substituting them into formula (19.27), we find that

F(λ)= λ−1/2
√

2π

(
1+ 1

12
λ−1 +O(λ−2)

)
as λ→+∞,

from which we again obtain formula (19.26).
In conclusion we shall make two more remarks on the problems discussed in this

section.

Remark 6 (Laplace’s method in the multidimensional case) We note that Laplace’s
method can also be successfully applied in studying the asymptotics of multiple
Laplace integrals

F(λ)=
∫

X

f (x)eλS(x) dx,

in which x ∈Rn, X is a domain in R
n, and f and S are real-valued functions in X.
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Lemma 1 on the exponential estimate holds for such integrals, and by this lemma
the study of the asymptotics of such an integral reduces to studying the asymptotics
of a part of it

∫

U(x0)

f (x)eλS(x) dx,

taken over a neighborhood of a maximum point x0 of the function S(x).
If this is a nondegenerate maximum, that is, S′′(x0) �= 0, then by Morse’s lemma

(see Sect. 8.6 of Part 1) there exists a change of variable x = ϕ(y) such that S(x0)−
S(ϕ(y))= |y|2, where |y|2 = (y1)2 + · · · + (yn)2. Thus the question reduces to the
canonical integral

∫

I

(f ◦ ϕ)(y)detϕ′(y)e−λ|y|2 dy,

which in the case of smooth functions f and S can be studied by applying Fubini’s
theorem and using Watson’s lemma proved above (see Problems 8–11 in this con-
nection).

Remark 7 (The stationary phase method) In a wider interpretation, Laplace’s
method, as we have already noted, consists of the following:

10 a certain localization principle (Lemma 1 on the exponential estimate),
20 a method of locally reducing an integral to canonical form (Morse’s lemma),

and
30 a description of the asymptotics of canonical integrals (Watson’s lemma).

We have met the idea of localization previously in our study of approximate iden-
tities, and also in studying Fourier series and the Fourier transform (the Riemann–
Lebesgue lemma, smoothness of a function and the rate at which its Fourier trans-
form decreases, convergence of Fourier series and integrals).

Integrals of the form

F̃ (λ)=
∫

X

f (x)eiλS(x) dx,

where x ∈ Rn, called Fourier integrals, occupy an important place in mathematics
and its applications. A Fourier integral differs from a Laplace integral only in the
modest factor i in the exponent. This leads, however, to the relation |eiλS(x)| = 1
when λ and S(x) are real, and hence the idea of a dominant maximum is not appli-
cable to the study of the asymptotics of a Fourier integral.

Let X = [a, b] ⊂ R
1, f ∈ C(∞)0 ([a, b],R), (that is, f is of compact support on

[a, b]), S ∈ C(∞)([a, b],R) and S′(x) �= 0 on [a, b].
Integrating by parts and using the Riemann–Lebesgue lemma (see Problem 12),

we find that
∫ b

a

f (x)eiλS(x) dx = 1

iλ

∫ b

a

f (x)

S′(x)
deiλS(x) =
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= − 1

iλ

∫ b

a

d

dx

(
f

S′

)
(x)eiλS(x) dx =

= 1

λ

∫ b

a

f1(x)e
iλS(x) dx = · · · = 1

λn

∫ b

a

fn(x)e
iλS(x) dx =

= o(λ−n) as λ→∞.
Thus if S′(0) �= 0 on the closed interval [a, b], then because of the constantly

increasing frequencies of oscillation of the function eiλS(x) as λ→∞, the Fourier
integral over the closed interval [a, b] turns out to be a quantity of type O(λ−∞).

The function S(x) in the Fourier integral is called the phase function. Thus the
Fourier integral has its own localization principle called the stationary phase prin-
ciple. According to this principle, the asymptotic behavior of the Fourier integral
as λ→∞ (when f ∈ C(∞)0 ) is the same as the asymptotics of the Fourier integral
taken over a neighborhood U(x0) of a stationary point x0 of the phase function (that
is, a point x0 at which S′(x0)= 0) up to a quantity O(λ−∞).

After this, by a change of variable the question reduces to the canonical integral

E(λ)=
∫ ε

0
f (x)eiλx

α

dx

whose asymptotic behavior is described by a special lemma of Erdélyi, which plays
the same role for the Fourier integral that Watson’s lemma plays for the Laplace
integral.

This scheme for investigating the asymptotics of a Fourier integral is called the
stationary phase method.

The nature of the localization principle in the stationary phase method is com-
pletely different from its nature in the case of the Laplace integral, but the general
scheme of Laplace’s method, as one can see, remains applicable even here.

Certain details relating to the stationary phase method will be found in Prob-
lems 12–17.

19.2.6 Problems and Exercises

Laplace’s Method in the One-Dimensional Case
1. a) For α > 0 the function h(x)= e−λxα attains its maximum when x = 0. Here
h(x) is a quantity of order 1 in a δ-neighborhood of x = 0 of size δ =O(λ−1/α).

Using Lemma 1, show that if 0< δ < 1, then the integral

W(λ)=
∫ a

c(λ,δ)

xβ−1f (x)e−λxα dx,

where c(λ, δ)= λδ−1
α has orderO(e−Aλδ ) as λ→+∞, A being a positive constant.
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b) Prove that if the function f is continuous at x = 0, then

W(λ)= α−1Γ (β/α)
[
f (0)+ o(1)]λ−β/α as λ→+∞.

c) In Theorem 1a), the hypothesis f (x)= f (x0)+O(x − x0) can be weakened
and replaced by the condition that f be continuous at x0. Show that when this
is done the same principal term of the asymptotics is obtained, but in general not
Eq. (19.2′) itself, in which O(x − x0) is now replaced by o(1).

2. a) The Bernoulli numbers B2k are defined by the relations

1

t
− 1

1− e−t
=−1

2
−
∞∑

k=1

B2k

(2k)! t
2k−1, |t |< 2π.

It is known that
(
Γ ′

Γ

)
(x)= lnx +

∫ ∞

0

(
1

t
− 1

1− e−t

)
e−tx dt.

Show that

(
Γ ′

Γ

)
(x)/ lnx − 1

2x
−
∞∑

k=0

B2k

2k
x−2k as x→+∞.

b) Prove that as x→+∞

lnΓ (x)/
(
x − 1

2

)
lnx − x + 1

2
ln 2π +

∞∑

k=1

B2k

2k(2k− 1)
x−2k+1.

This asymptotic expansion is called Stirling’s series.
c) Using Stirling’s series, obtain the first two terms of the asymptotics of

Γ (x + 1) as x →+∞ and compare your result with what was obtained in Ex-
ample 13.

d) Following the method of Example 13 and independently of it using Stirling’s
series, show that

Γ (x + 1)=√2πx

(
x

e

)x(
1+ 1

12x
+ 1

288x2
+O
(

1

x3

))
as x→+∞.

3. a) Let f ∈ C([0, a],R), S ∈ C(1)([0, a],R), S(x) > 0 on [0, a], and suppose
S(x) attains its maximum at x = 0, with S′(0) �= 0. Show that if f (0) �= 0, then

I (λ) :=
∫ a

0
f (x)Sλ(x)dx ∼− f (0)

λS′(0)
Sλ+1(0) as λ→+∞.
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b) Obtain the asymptotic expansion

I (λ)/ Sλ+1(0)
∞∑

k=0

akλ
−(k+1) as λ→+∞,

if it is known in addition that f,S ∈ C(∞)([0, a],R).
4. a) Show that

∫ π/2

0
sinn t dt =

√
π

2n

(
1+O(n−1)) as n→+∞.

b) Express this integral in terms of Eulerian integrals and show that for n ∈N it
equals (2n−1)!!

(2n)!! · π2 .

c) Obtain Wallis’ formula π = limn→∞ 1
n
(
(2n)!!
(2n−1)!! )

2.
d) Find the second term in the asymptotic expansion of the original integral as

n→+∞.

5. a) Show that
∫ 1
−1(1− x2)n dx ∼

√
π
n

as n→+∞.

b) Find the next term in the asymptotics of this integral.

6. Show that if α > 0, then as x→+∞
∫ +∞

0
t−αt tx dt ∼

√
2π

eα
x

1
2α exp

(
α

e
x

1
α

)
.

7. a) Find the principal term of the asymptotics of the integral
∫ +∞

0
(1+ t)ne−nt dt as n→+∞.

b) Using this result and the identity k!n−k = ∫ +∞0 e−nt tk dt , show that

n∑

k=0

cknk!n−k =
√
πn

2

(
1+O(n−1)) as n→+∞.

Laplace’s Method in the Multidimensional Case

8. The exponential estimate lemma. Let M = supx∈D S(x), and suppose that for
some λ= λ0 the integral

F(λ)=
∫

D⊂Rn
f (x)eλS(x) dx (*)

converges absolutely. Show that it then converges absolutely for λ≥ λ0 and

∣∣f (λ)
∣
∣≤
∫

D

∣∣f (x)eλS(x)
∣∣dx ≤AeλM (λ≥ λ0),

where A is a positive constant.
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9. Morse’s lemma. Let x0 be a nondegenerate critical point of the function S(x),
x ∈ Rn, defined and belonging to class C(∞) in a neighborhood of x0. Then there
exist neighborhoodsU and V of x = x0 and y = 0 and a diffeomorphism ϕ : V →U

of class C(∞)(V ,U) such that

S
(
ϕ(y)
)= S(x0)+ 1

2

n∑

j=1

νj
(
yj
)2
,

where detϕ′(0) = 1, ν1, . . . , νn are the eigenvalues of the matrix S′′xx(x0), and
y1, . . . , yn are the coordinates of y ∈Rn.

Prove this slightly more specific form of Morse’s lemma starting from Morse’s
lemma itself, which is discussed in Sect. 8.6 of Part 1.
10. Asymptotics of a canonical integral.

a) Let t = (t1, . . . , tn), V = {t ∈ R
n | |tj | ≤ δ, j = 1,2, . . . , n}, and a ∈

C(∞)(V ,R). Consider the function

F1
(
λ, t ′
)=
∫ δ

−δ
a(t1, . . . , tn)e

− λν12 t
2
1 dt1,

where t ′ = (t2, . . . , tn) and ν1 > 0. Show that F1(λ, t
′) / ∑∞k=0 ak(t

′)λ−(k+ 1
2 )

as λ→ +∞. This expansion is uniform in t ′ ∈ V ′ = {t ′ ∈ R
n−1 | |t j | ≤ δ, j =

2, . . . , n} and ak ∈C(∞)(V ′,R) for every k = 0,1, . . . .

b) Multiplying F1(λ, t
′) by e−

λν2
2 t22 and justifying the termwise integration of

the corresponding asymptotic expansion, obtain the asymptotic expansion of the
function

F2
(
λ, t ′′
)=
∫ δ

−δ
F1
(
λ, t ′
)
e−

λν2
2 t

2
2 dt2 as λ→+∞,

where t ′′ = (t3, . . . , tn), ν2 > 0.
c) Prove that for the function

A(λ)=
∫ δ

−δ
· · ·
∫ δ

−δ
a(t1, . . . , tn)e

− λ2
∑n
j=1 νj t

2
j dt1 · · ·dtn,

where νj > 0, j = 1, . . . , n, the following asymptotic expansion holds:

A(λ)/ λ−n/2
∞∑

k=0

akλ
−k as λ→+∞,

where α0 =
√

(2π)n
ν1·...·νn a(0).
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11. The asymptotics of the Laplace integral in the multidimensional case.

a) Let D be a closed bounded domain in R
n, f,S ∈ C(D,R), and suppose

maxx∈D S(x) is attained only at one interior point x0 of D. Let f and S be C(∞) in
some neighborhood of x0 and detS′′(x0) �= 0.

Prove that if the integral (*) converges absolutely for some value λ= λ0, then

F(λ)/ eλS(x0)λ−n/2
∞∑

k=0

akλ
−k as λ→+∞,

and this expansion can be differentiated with respect to λ any number of times, and
its principal term has the form

F(λ)= eλS(x0)λ−n/2
√

(2π)n

|detS′′(x0)|
(
f (x0)+O

(
λ−1)).

b) Verify that if instead of the relation f,S ∈ C(∞) all we know is that f ∈ C
and S ∈ C(3) in a neighborhood of x0, then the principal term of the asymptotics as
λ→+∞ remains the same with O(λ−1) replaced by o(1) as λ→+∞.

The Stationary Phase Method in the One-Dimensional Case

12. Generalization of the Riemann–Lebesgue lemma.

a) Prove the following generalization of the Riemann–Lebesgue lemma.
Let S ∈ C(1)([a, b],R) and S′(x) �= 0 on [a, b] =: I . Then for every function f

that is absolutely integrable on the interval I the following relation holds:

F̃ (λ)=
∫ b

a

f (x)eiλS(x) dx→ 0 as λ→∞, λ ∈R.

b) Verify that if it is known in addition that f ∈ C(n+1)(I,R) and S ∈
C(n+2)(I,R), then as λ→∞

F̃ (λ)=
n∑

k=0

(iλ)−(k+1)
(

1

S′(x)
d

dx

)k
f (x)

S′(x)

∣∣∣∣

b

a

+ o(λ−(n+1)).

c) Write out the principal term of the asymptotics of the function F̃ (λ) as λ→
∞, λ ∈R.

d) Show that if S ∈ C(∞)(I,R) and f |[a,c] ∈ C(2)[a, c], f |[c,b] ∈ C(2)[c, b], but
f /∈ C(2)[a, b], then the function F̃ (λ) is not necessarily o(λ−1) as λ→∞.

e) Prove that when f,S ∈ C(∞)(I,R), the function F̃ (λ) admits an asymptotic
series expansion as λ→∞.

f) Find asymptotic expansions as λ→∞, λ ∈ R, for the following integrals:∫ ε
0 (1 + x)−αψj (x,λ)dx, j = 1,2,3, if α > 0 and ψ1 = eiλx , ψ2 = cosλx, and
ψ3 = sinλx.
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13. The localization principle.

a) Let I = [a, b] ⊂ R, f ∈ C(∞)0 (I,R), S ∈ C(∞)(I,R), and S′(x) �= 0 on I .
Prove that in this case

F̃ (λ) :=
∫ b

a

f (x)eiλS(x) dx =O(|λ|−∞) as λ→∞.

b) Suppose f ∈ C(∞)0 (I,R), S ∈ C(∞)(I,R), and x1, . . . , xm is a finite set of
stationary points of S(x) outside which S′(x) �= 0 on I . We denote by F̃ (λ, xj )
the integral of the function f (x)eiλS(x) over a neighborhood U(xj ) of the point xj ,
j = 1, . . . ,m, not containing any other critical points in its closure. Prove that

F̃ (λ)=
m∑

j=1

F̃ (λ, xj )+O
(|λ|−∞) as λ→∞.

14. Asymptotics of the Fourier integral in the one-dimensional case.

a) In a reasonably general situation finding the asymptotics of a one-dimensional
Fourier integral can be reduced through the localization principle to describing the
asymptotics of the canonical integral

E(λ)=
∫ a

0
xβ−1f (x)eiλx

α

dx,

for which the following lemma holds.

Erdélyi’s lemma Let α ≥ 1, β > 0, f ∈ C(∞)([0, a],R) and f (k)(a) = 0, k =
0,1,2, . . . . Then

E(λ)/
∞∑

k=0

akλ
− k+β

α as λ→+∞,

where

ak = 1

α
Γ

(
k + β
α

)
ei
π
2
k+β
α
f (k)(0)

k! ,

and this expansion can be differentiated any number of times with respect to λ.

Using Erdélyi’s lemma, prove the following assertion.
Let I = [x0 − δ, x0 + δ] be a finite closed interval, let f,S ∈ C(∞)(I,R) with

f ∈ C0(I,R), and let S have a unique stationary point x0 on I , where S′(x0) = 0
but S′′(x0) �= 0. Then as λ→+∞

F̃ (λ, x0) :=
∫ x0+δ

x0−δ
f (x)eiλS(x) dx / ei

π
2 S
′′(x0)eiλS(x0)λ−

1
2

∞∑

k=0

akλ
−k
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and the principal term of the asymptotics has the form

F̃ (λ, x0)=
√

2π

λ|S′′(x0)|e
i( π4 sgnS′′(x0)+λS(x0))

(
f (x0)+O

(
λ−1)).

b) Consider the Bessel function of integer order n≥ 0:

Jn(x)= 1

π

∫ π

0
cos(x sinϕ − nϕ)dϕ.

Show that

Jn(x)=
√

2

πx

[
cos

(
x − nπ

2
− π

4

)
+O(x−1)

]
as x→+∞.

The Stationary Phase Method in the Multidimensional Case

15. The localization principle.

a) Prove the following assertion. Let D be a domain in R
n, f ∈ C(∞)0 (D,R),

S ∈C(∞)(D,R), gradS(x) �= 0 for x ∈ suppf , and

F̃ (λ) :=
∫

D

f (x)eiλS(x) dx. (**)

Then for every k ∈N there exists a positive constant A(k) such that the estimate
|F̃ (λ)| ≤A(k)λ−k holds for λ≥ 1, and hence F̃ (λ)=O(λ−∞) as λ→+∞.

b) Suppose as before that f ∈ C(∞)0 (D,R), S ∈ C(∞)(D,R), but S has a finite
number of critical points x1, . . . , xm outside which gradS(x) �= 0. We denote by
F̃ (λ, xj ) the integral of the function f (x)eiλS(x) over a neighborhood U(xj ) of xj
whose closure contains no critical points except xj . Prove that

F̃ (λ)=
m∑

j=1

F̃ (λ, xj )+O
(
λ−∞
)

as λ→+∞.

16. Reduction to a canonical integral. If x0 is a nondegenerate critical point of
the function S ∈ C(∞)(D,R) defined in a domain D ⊂R

n, then by Morse’s lemma
(see Problem 9) there exists a local change of variable x = ϕ(y) such that x0 =
ϕ(0), S(ϕ(y)) = S(x0) + 1

2

∑n
j=1 εj (y

j )2, where εj = ±1, y = (y1, . . . , yn), and
detϕ′(y) > 0.

Using the localization principle (Problem 15), now show that if f ∈C(∞)0 (D,R),
S ∈ C(∞)(D,R), and S has at most a finite number of critical points in D, all non-
degenerate, then the study of the asymptotics of the integral (**) reduces to studying
the asymptotics of the special integral

Φ(λ) :=
∫ δ

−δ
· · ·
∫ δ

−δ
ψ
(
y1, . . . , yn

)
e
iλ
2

∑n
j=1 εj (y

j )2 dy1 · · ·dyn.
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17. Asymptotics of a Fourier integral in the multidimensional case. Using Erdélyi’s
lemma (Problem 14a)) and the scenario described in Problem 10, prove that if D
is a domain in R

n, f,S ∈ C(∞)(D,R), suppf is a compact subset of D, and x0 is
the only critical point of S in D and is nondegenerate, then for the integral (**) the
following asymptotic expansion holds as λ→+∞:

F̃ (λ)/ λ−n/2eiλS(x0)

∞∑

k=0

akλ
−k,

which can be differentiated any number of times with respect to λ.
The main term of the asymptotics has the form

F̃ (λ) =
(

2π

λ

)n/2
exp

[
iλS(x0)+ iπ

4
sgnS′′(x0)

]
×

× ∣∣detS′′(x0)
∣
∣−1/2[

f (x0)+O
(
λ−1)] as λ→+∞.

Here S′′(x) is the symmetric and by hypothesis nonsingular matrix of second
derivatives of the function S at x0 (the Hessian), and sgnS′′(x0) is the signature of
this matrix (or the quadratic form corresponding to it), that is, the difference ν+−ν−
between the number of positive and negative eigenvalues of the matrix S′′(x0).



Topics and Questions for Midterm Examinations

1 Series and Integrals Depending on a Parameter

1. The Cauchy criterion for convergence of a series. The comparison theorem and
the basic sufficient conditions for convergence (majorant, integral, Abel–Dirichlet).
The series ζ(s)=∑∞n=1 n

−s .
2. Uniform convergence of families and series of functions. The Cauchy criterion
and the basic sufficient conditions for uniform convergence of a series of functions
(M-test, Abel–Dirichlet).
3. Sufficient conditions for two limiting passages to commute. Continuity, integra-
tion, and differentiation and passage to the limit.
4. The region of convergence and the nature of convergence of a power series. The
Cauchy–Hadamard formula. Abel’s (second) theorem. Taylor expansions of the ba-
sic elementary functions. Euler’s formula. Differentiation and integration of a power
series.
5. Improper integrals. The Cauchy criterion and the basic sufficient conditions for
convergence (M-test, Abel–Dirichlet).
6. Uniform convergence of an improper integral depending on a parameter. The
Cauchy criterion and the basic sufficient conditions for uniform convergence (ma-
jorant, Abel–Dirichlet).
7. Continuity, differentiation, and integration of a proper integral depending on a
parameter.
8. Continuity, differentiation, and integration of an improper integral depending on
a parameter. The Dirichlet integral.
9. The Eulerian integrals. Domains of definition, differential properties, reduction
formulas, various representations, interconnections. The Poisson integral.
10. Approximate identities. The theorem on convergence of the convolution. The
classical Weierstrass theorem on uniform approximation of a continuous function
by an algebraic polynomial.
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2 Problems Recommended as Midterm Questions

Problem 1 P is a polynomial. Compute (et
d

dx )P (x).

Problem 2 Verify that the vector-valued function etAx0 is a solution of the Cauchy
problem ẋ = Ax, x(0)= x0. (Here ẋ = Ax is a system of equations defined by the
matrix A.)

Problem 3 Find up to order o(1/n3) the asymptotics of the positive roots λ1 <

λ2 < · · ·< λn < · · · of the equation sinx + 1/x = 0 as n→∞.

Problem 4 a) Show that ln 2= 1− 1/2+ 1/3− · · · . How many terms of this series
must be taken to determine ln 2 within 10−3?

b) Verify that 1
2 ln 1+t

1−t = t + 1
3 t

3 + 1
5 t

5 + · · · . Using this expansion it becomes

convenient to compute lnx by setting x = 1+t
1−t .

c) Setting t = 1/3 in b), obtain the equality

1

2
ln 2= 1

3
+ 1

3

(
1

3

)3

+ 1

5

(
1

3

)5

+ · · · .

How many terms of this series must one take to find ln 2 within 10−3? Compare
this with the result of a).

This is one of the methods of improving convergence.

Problem 5 Verify that in the sense of Abel summation

a) 1− 1+ 1 · · · = 1
2 .

b)
∑∞
k=1 sin kϕ = 1

2 · 1
2ϕ, ϕ �= 2πn, n ∈ Z.

c) 1
2 +
∑∞
k=1 coskϕ = 0, ϕ �= 2πn, n ∈ Z.

Problem 6 Prove Hadamard’s lemma:

a) If f ∈ C(1)(U(x0)), then f (x)= f (x0)+ϕ(x)(x−x0), where ϕ ∈C(U(x0))

and ϕ(x0)= f ′(x0).
b) If f ∈ C(n)(U(x0)), then

f (x) = f (x0)+ 1

1!f
′(x0)(x − x0)+ · · · +

+ 1

(n− 1)!f
(n−1)(x0)(x − x0)

n−1 + ϕ(x)(x − x0)
n,

where ϕ ∈ C(U(x0)) and ϕ(x0)= 1
n!f

(n)(x0).
c) What do these relations look like in coordinate form, when x = (x1, . . . , xn),

that is, when f is a function of n variables?
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Problem 7 a) Verify that the function

J0(x)= 1

π

∫ 1

0

cosxt√
1− t2 dt

satisfies Bessel’s equation y′′ + 1
x
y′ + y = 0.

b) Try to solve this equation using power series.
c) Find the power-series expansion of the function J0(x).

Problem 8 Verify that the following asymptotic expansions hold

a) Γ (α,x) := ∫ +∞
x

tα−1e−t dt / e−α
∑∞
k=1

Γ (α)
Γ (α−k+1) x

α−k ,
b) Erf(x) := ∫ +∞

x
e−t2 dt / 1

2

√
πe−x2∑∞

k=1
1

Γ (3/2−k)x2k−1

as x→+∞.

Problem 9 a) Following Euler, obtain the result that the series 1 − 1!x + 2!x2 −
3!x3 + · · · is connected with the function

S(x) :=
∫ +∞

0

e−t

1+ xt dt .

b) Does this series converge?
c) Does it give the asymptotic expansion of S(x) as x→ 0?

Problem 10 a) A linear device A whose characteristics are constant over time
responds to a signal δ(t) in the form of a δ-function by giving out the signal
(function) E(t). What will the response of this device be to an input signal f (t),
−∞< t <+∞?

b) Can the input signal f always be recovered uniquely from the transformed
signal f̂ :=Af ?

3 Integral Calculus (Several Variables)

1. Riemann integral on an n-dimensional interval. Lebesgue criterion for existence
of the integral.
2. Darboux criterion for existence of the integral of a real-valued function on an
n-dimensional interval.
3. Integral over a set. Jordan measure (content) of a set and its geometric mean-
ing. Lebesgue criterion for existence of the integral over a Jordan-measurable set.
Linearity and additivity of the integral.
4. Estimates of the integral.
5. Reduction of a multiple integral to an iterated integral. Fubini’s theorem and its
most important corollaries.
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6. Formula for change of variables in a multiple integral. Invariance of measure and
the integral.
7. Improper multiple integrals: basic definitions, majorant criterion for conver-
gence, canonical integrals. Computation of the Euler–Poisson integral.
8. Surfaces of dimension k in R

n and basic methods of defining them. Abstract
k-dimensional manifolds. Boundary of a k-dimensional manifold as a (k − 1)-
dimensional manifold without boundary.
9. Orientable and nonorientable manifolds. Methods of defining the orientation of
an abstract manifold and a (hyper)surface in R

n.
Orientability of the boundary of an orientable manifold. Orientation induced on

the boundary from the manifold.
10. Tangent vectors and the tangent space to a manifold at a point. Interpretation of
a tangent vector as a differential operator.
11. Differential forms in a region D ⊂ R

n. Examples: differential of a function,
work form, flux form. Coordinate expression of a differential form. Exterior deriva-
tive operator.
12. Mapping of objects and the adjoint mapping of functions on these objects.
Transformation of points and vectors of tangent spaces at these points under a
smooth mapping. Transfer of functions and differential forms under a smooth map-
ping. A recipe for carrying out the transfer of forms in coordinate form.
13. Commutation of transfer of differential forms with exterior multiplication and
differentiation. Differential forms on a manifold. Invariance (unambiguous nature)
of operations on differential forms.
14. A scheme for computing work and flux. Integral of a k-form over a k-
dimensional smooth oriented surface, taking account of orientation. Independence
of the integral of the choice of parametrization. General definition of the integral of
a differential k-form over a k-dimensional compact oriented manifold.
15. Green’s formula on a square, its derivation, interpretation, and expression in the
language of integrals of the corresponding differential forms. The general Stokes
formula. Reduction to a k-dimensional interval and proof for a k-dimensional inter-
val. The classical integral formulas of analysis as particular versions of the general
Stokes formula.
16. The volume element on R

n and on a surface. Dependence of the volume element
on orientation. The integral of first kind and its independence of orientation. Area
and mass of a material surface as an integral of first kind. Expression of the volume
element of a k-dimensional surface Sk ⊂R

n in local parameters and the expression
of the volume element of a hypersurface Sn−1 ⊂R

n in Cartesian coordinates of the
ambient space.
17. Basic differential operators of field theory (grad, curl, div) and their connection
with the exterior derivative operator d in oriented Euclidean space R

3.
18. Expression of work and flux of a field as integrals of first kind. The basic inte-
gral formulas of field theory in R

3 as the vector expression of the classical integral
formulas of analysis.
19. A potential field and its potential. Exact and closed forms. A necessary differ-
ential condition for a form to be exact and for a vector field to be a potential field. Its
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sufficiency in a simply connected domain. Integral criterion for exactness of 1-forms
and vector fields.
20. Local exactness of a closed form (the Poincaré lemma). Global analysis. Ho-
mology and cohomology. De Rham’s theorem (statement).
21. Examples of the application of the Stokes (Gauss–Ostrogradskii) formula:
derivation of the basic equations of the mechanics of continuous media. Physical
meaning of the gradient, curl, and divergence.
22. Hamilton’s nabla operator and work with it. The gradient, curl, and divergence
in triorthogonal curvilinear coordinates.

4 Problems Recommended for Studying the Midterm Topics

The numbers followed by closing parentheses below refer to the topics 1–22 just
listed. The closing parentheses dashes are followed by section numbers (for example
13.4 means Sect. 4 of Chap. 13), which in turn are separated by a dash from the
numbers of the problems from the section related to the topic from the list above.

1) 11.1—2,3; 2) 11.1—4; 3) 11.2—1,3,4; 4) 11.3—1,2,3,4; 5) 11.4—6,7 and
13.2—6; 6) 11.5—9 and 12.5—5,6; 7) 11.6—1,5,7; 8) 12.1—2,3 and 12.4—1,4; 9)
12.2—1,2,3,4 and 12.5—11; 10) 15.3—1,2; 11) 12.5—9 and 15.3—3; 12) 15.3—4;
13) 12.5—8,10; 14) 13.1—3,4,5,9; 15) 13.1—1,10,13,14; 16) 12.4—10 and 13.2—
5; 17) 14.1—1,2; 18) 14.2—1,2,3,4,8; 19) 14.3—7,13,14; 20) 14.3—11,12; 21)
13.3—1 and 14.1—8; 22) 14.1—4,5,6.



Examination Topics

1 Series and Integrals Depending on a Parameter

1. Cauchy criterion for convergence of a series. Comparison theorem and the ba-
sic sufficient conditions for convergence (majorant, integral, Abel–Dirichlet). The
series ζ(s)=∑∞n=1 n

−s .
2. Uniform convergence of families and series of functions. Cauchy criterion and
the basic sufficient conditions for uniform convergence of a series of functions (M-
test, Abel–Dirichlet).
3. Sufficient conditions for commutativity of two limiting passages. Continuity, in-
tegration, and differentiation and passage to the limit.
4. Region of convergence and the nature of convergence of a power series. Cauchy–
Hadamard formula. Abel’s (second) theorem. Taylor expansions of the basic ele-
mentary functions. Euler’s formula. Differentiation and integration of a power se-
ries.
5. Improper integrals. Cauchy criterion and the basic sufficient conditions for con-
vergence (majorant, Abel–Dirichlet).
6. Uniform convergence of an improper integral depending on a parameter. Cauchy
criterion and the basic sufficient conditions for uniform convergence (M-test, Abel–
Dirichlet).
7. Continuity, differentiation, and integration of a proper integral depending on a
parameter.
8. Continuity, differentiation, and integration of an improper integral depending on
a parameter. Dirichlet integral.
9. Eulerian integrals. Domains of definition, differential properties, reduction for-
mulas, various representations, interconnections. Poisson integral.
10. Approximate identities. Theorem on convergence of the convolution. Classi-
cal Weierstrass theorem on uniform approximation of a continuous function by an
algebraic polynomial.
11. Vector spaces with an inner product. Continuity of the inner product and alge-
braic properties connected with it. Orthogonal and orthonormal systems of vectors.

© Springer-Verlag Berlin Heidelberg 2016
V.A. Zorich, Mathematical Analysis II, Universitext,
DOI 10.1007/978-3-662-48993-2

639

http://dx.doi.org/10.1007/978-3-662-48993-2


640 Examination Topics

Pythagorean theorem. Fourier coefficients and Fourier series. Examples of inner
products and orthogonal systems in spaces of functions.
12. Orthogonal complement. Extremal property of Fourier coefficients. Bessel’s in-
equality and convergence of the Fourier series. Conditions for completeness of an
orthonormal system. Method of least squares.
13. Classical (trigonometric) Fourier series in real and complex form. Riemann–
Lebesgue lemma. Localization principle and convergence of a Fourier series at
a point. Example: expansion of cos(αx) in a Fourier series and the expansion of
sin(πx)/πx in an infinite product.
14. Smoothness of a function, rate of decrease of its Fourier coefficients, and rate
of convergence of its Fourier series.
15. Completeness of the trigonometric system and mean convergence of a trigono-
metric Fourier series.
16. Fourier transform and the Fourier integral (the inversion formula). Example:
computation of f̂ for f (x) := exp(−a2x2).
17. Fourier transform and the derivative operator. Smoothness of a function and the
rate of decrease of its Fourier transform. Parseval’s equality. The Fourier transform
as an isometry of the space of rapidly decreasing functions.
18. Fourier transform and convolution. Solution of the one-dimensional heat equa-
tion.
19. Recovery of a transmitted signal from the spectral function of a device and the
signal received. Sampling theorem (Kotel’nikov–Shannon formula).
20. Asymptotic sequences and asymptotic series. Example: asymptotic expansion
of Ei(x). Difference between convergent and asymptotic series. Asymptotic Laplace
integral (principal term). Stirling’s formula.

2 Integral Calculus (Several Variables)

1. Riemann integral on an n-dimensional interval. Lebesgue criterion for existence
of the integral.
2. Darboux criterion for the existence of the integral of a real-valued function on an
n-dimensional interval.
3. Integral over a set. Jordan measure (content) of a set and its geometric mean-
ing. Lebesgue criterion for existence of the integral over a Jordan-measurable set.
Linearity and additivity of the integral.
4. Estimates of the integral.
5. Reduction of a multiple integral to an iterated integral. Fubini’s theorem and its
most important corollaries.
6. Formula for change of variables in a multiple integral. Invariance of measure and
the integral.
7. Improper multiple integrals: basic definitions, the majorant criterion for conver-
gence, canonical integrals. Computation of the Euler–Poisson integral.
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8. Surfaces of dimension k in R
n and the basic methods of defining them. Ab-

stract k-dimensional manifolds. Boundary of a k-dimensional manifold as a (k−1)-
dimensional manifold without boundary.
9. Orientable and nonorientable manifolds. Methods of defining the orientation of
an abstract manifold and a (hyper)surface in R

n.
Orientability of the boundary of an orientable manifold. Orientation on the bound-

ary induced from the manifold.
10. Tangent vectors and the tangent space to a manifold at a point. Interpretation of
a tangent vector as a differential operator.
11. Differential forms in a region D ⊂ R

n. Examples: differential of a function,
work form, flux form. Coordinate expression of a differential form. Exterior deriva-
tive operator.
12. Mapping of objects and the adjoint mapping of functions on these objects.
Transformation of points and vectors of tangent spaces at these points under a
smooth mapping. Transfer of functions and differential forms under a smooth map-
ping. A recipe for carrying out the transfer of forms in coordinate form.
13. Commutation of the transfer of differential forms with exterior multiplication
and differentiation. Differential forms on a manifold. Invariance (unambiguous na-
ture) of operations on differential forms.
14. A scheme for computing work and flux. Integral of a k-form over a k-
dimensional smooth oriented surface. Taking account of orientation. Independence
of the integral of the choice of parametrization. General definition of the integral of
a differential k-form over a k-dimensional compact oriented manifold.
15. Green’s formula on a square, its derivation, interpretation, and expression in the
language of integrals of the corresponding differential forms. General Stokes for-
mula. Reduction to a k-dimensional interval and proof for a k-dimensional interval.
Classical integral formulas of analysis as particular versions of the general Stokes
formula.
16. Volume element on R

n and on a surface. Dependence of volume element on
orientation. The integral of first kind and its independence of orientation. Area and
mass of a material surface as an integral of first kind. Expression of volume element
of a k-dimensional surface Sk ⊂ R

n in local parameters and expression of volume
element of a hypersurface Sn−1 ⊂R

n in Cartesian coordinates of the ambient space.
17. Basic differential operators of field theory (grad, curl, div) and their connection
with the exterior derivative operator d in oriented Euclidean space R

3.
18. Expression of work and flux of a field as integrals of first kind. Basic integral
formulas of field theory in R

3 as the vector expression of the classical integral for-
mulas of analysis.
19. A potential field and its potential. Exact and closed forms. A necessary differ-
ential condition for a form to be exact and for a vector field to be a potential field. Its
sufficiency in a simply connected domain. Integral criterion for exactness of 1-forms
and vector fields.
20. Local exactness of a closed form (Poincaré’s lemma). Global analysis. Homol-
ogy and cohomology. De Rham theorem (formulation).
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21. Examples of the application of the Stokes (Gauss–Ostrogradskii) formula:
derivation of the basic equations of the mechanics of continuous media. Physical
meaning of the gradient, curl, and divergence.
22. Hamilton’s Nabla operator, and computation of work with it. Gradient, curl and
divergence in a 3-dimensional orthogonal system of curvilinear coordinates.



Examination Problems
(Series and Integrals Depending on a Parameter)

1. We shall consider a sequence of real-valued functions {fn} defined on the interval
[0,1], for example.

a) What types of convergence for a sequence of functions do you know?
b) Provide the definition of each of them.
c) What are the relations between them? (Prove the relation or give an explana-

tory example when there is no such relation.)

2. Let f be a periodic function with period 2π . Suppose it is identically zero on the
interval ]−π,0[ and f (x) = 2x on the interval [0,π]. Calculate the sum S of the
standard trigonometric Fourier series of this function.
3. a) We know the expansion in power series of the function (1+ x)−1 (geometric
progression). Obtain from it the expansion in a power series of the function ln(1+x)
and justify your steps.

b) What is the radius of convergence of the obtained series?
c) Does this series converge at x = 1, and if so, is its sum equal to ln 2? Why?

4. a) It is known that the spectral function (characteristic function) p of a linear
device (operator) A is everywhere nonzero. How can we find the transmitted signal
f if we know the function p and the received signal g =Af .

b) Let the function p be defined by p(ω) ≡ 1 for |ω| ≤ 10 and p(ω) ≡ 0 for
|ω|> 10. Suppose that we know the spectrum ĝ (Fourier transform) of the received
signal g and that it is exactly ĝ(ω)≡ 1 for |ω| ≤ 1 and ĝ(ω)≡ 0 for |ω|> 1. Finally,
suppose that it is also known that the input signal f does not contain some other
frequencies apart from the frequencies transmitted by the device A (i.e., beyond the
frequencies |ω| ≤ 10). Find the input signal f .

5. Using Euler’s Γ function and Laplace’s method, obtain the very useful asymp-
totic Stirling’s formula n! ∼ √2πn(ne )

n.
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Intermediate Problems
(Integral Calculus of Several Variables)

1. Compute the values of the following forms ω in R
n on the given set of vectors.

a) ω= x2 dx1 applied to the vector ξ = (1,2,3) ∈ TR3
(1,2,3);

b) ω= dx1∧dx3+x1 dx2∧dx4 applied to the ordered pair of vectors (ξ1, ξ2) ∈
TR4

(1,0,0,0). (Set ξ1 = (ξ1
1 , . . . , ξ

4
1 ), ξ2 = (ξ1

2 , . . . , ξ
4
2 ).)

2. Let f 1, . . . , f n be smooth functions with argument x = (x1, . . . , xn) ∈ Rn. Ex-
press the form df 1 ∧ · · · ∧ df n in terms of the forms dx1, . . . ,dxn.
3. Let F be a vector field of a force acting on a domain D ⊂ R

3. By the action
of this vector field an object was transferred along a smooth path γ ⊂D from the
point a ∈D to the point b ∈D. Calculate the work done by the vector field in this
process.

a) Write the formula for the calculation of this work as an integral of the first
type and as an integral of the second type (i.e., in terms of ds and dx, dy, dz,
respectively).

b) Prove that in the case of the gravitational vector field, this work does not
depend on the path and that it is equal to . . . ?

4. Consider the following problem about the flux of a vector field.

a) One has the vector field V (for instance, the vector field velocity of some
current) on the domain D ∈ R3. Write a formula for the calculation of the flux of
the vector field V through the oriented surface S = S2+ ⊂D as an integral of the first
type and as an integral of the second type (i.e., in terms of dσ and dy ∧ dz, dz∧ dx,
dx ∧ dy respectively).

b) Consider a convex polyhedral domain D ⊂ R
3. On each of its faces is con-

structed a vector pointing toward the exterior normal direction with magnitude equal
to the area of the corresponding side. Physics states that the sum of these vectors is
equal to zero (otherwise, we could build a perpetual motion device). Mathematics
agrees. Prove this fact.

c) Deduce Archimedes’s law by a direct computation (calculate the buoyancy
force acting on a submerged body in a bathtub completely filled with water, for
example, as the resulting pressure on the surface of the body).
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Appendix A
Series as a Tool
(Introductory Lecture)

When a geological deposit is discovered, it is explored and then exploited. In math-
ematics, it is also like that. Axiomatics and useful formalisms arise as the result of
solving concrete questions and problems. They do not fall down from the sky, as it
seems to inexperienced students when everything starts with axioms.

This course is largely dedicated to series, i.e., basically limits of sequences. We
shall give at least an initial idea of how and where this tool works, in order to con-
vince ourselves that the study of this remarkably effective machinery, namely the
theory of series, does not reduce to the abstract study of the convergence of series
(the existence of a limit).

A.1 Getting Ready

A.1.1 The Small Bug on the Rubber Rope

(Problem proposed by the academician L.B. Okun to the academician A.D. Sakha-
rov.)1

Problem 1 You hold one end of a 1 km long rubber rope. A small bug crawls toward
you from the other end, which is fixed, with a speed of 1 cm/s. As soon as it crawls
one centimeter, you stretch the rubber rope another kilometer every time. Does the
insect ever reach your hand? And if it does, how long will it take?

1Martin Gardner in his book Time Travel and Other Mathematical Bewilderments (New York:
W. H. Freeman & Company, 1987, English, p. 295) writes, “This delightful problem, which has
the flavor of a Zeno paradox, was devised by Denys Wilquin of New Caledonia. It appeared first in
December 1972 in Pierre Berloquin’s lively puzzle column in the French monthly Science et Vie.”
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648 A Series as a Tool (Introductory Lecture)

A.1.2 Integral and Estimation of Sums

After some thinking, it may occur to you that the following sum might be useful in
finding the answer Sn = 1+ 1

2 + 1
3 + · · · + 1

n
.

Problem 2 Recall the integral, and show that Sn − 1<
∫ n

1
1
x

dx < Sn−1.

A.1.3 From Monkeys to Doctors of Science Altogether in 106 Years

Littlewood in his famous book Littlewood’s Miscellany, speaking about large num-
bers, wrote that 106 years is the time needed to convert monkeys into doctors of
science.2

Problem 3 Would the little bug arrive in time for the thesis defense or at least before
the end of the universe?

A.2 The Exponential Function

A.2.1 Power Series Expansion of the Functions exp, sin, cos

According to Taylor’s formula with remainder in Lagrange’s form, one has

ex = 1+ 1

1!x +
1

2!x
2 + · · · + 1

n!x
n + rn(x),

where rn(x)= 1
(n+1)!e

ξ · xn+1 and |ξ |< |x|;

cosx = 1− 1

2!x
2 + 1

4!x
4 − · · · + (−1)n

2n! x
2n + r2n(x),

where r2n(x)= 1
(2n+1)! cos(ξ + π

2 (2n+ 1))x2n+1 and |ξ |< |x|;

sinx = x − 1

3!x
3 + 1

5!x
5 − · · · + (−1)n

(2n+ 1)!x
2n+1 + r2n+1(x),

where r2n+1(x) = 1
(2n+2)! sin(ξ + π

2 (2n + 2))x2n+2 and |ξ | < |x|. Since for every
fixed value x ∈R, the remainder in each of the above formulas clearly tends to zero

2John E. Littlewood, Littlewood’s Miscellany. Cambridge: Cambridge University Press, 1986, En-
glish, p. 212.
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as n→∞, we can write

ex = 1+ 1

1!x +
1

2!x
2 + 1

3!x
3 + 1

4!x
4 + 1

5!x
5 + · · · + 1

n!x
n + · · · ,

cosx = 1− 1

2!x
2 + 1

4!x
4 − · · · + (−1)n

2n! x
2n + · · · ,

sinx = x − 1

3!x
3 + 1

5!x
5 − · · · + (−1)n

(2n+ 1)!x
2n+1 + · · · .

A.2.2 Exit to the Complex Domain and Euler’s Formula

We substitute x for the complex number ix in the right-hand side of the first of these
equalities. Then, after some simple arithmetic manipulations, we obtain Euler’s out-
standing relationship

eix = cosx + i sinx.

Setting x = π , we find that eiπ + 1 = 0. This is the famous equation connecting
the fundamental constants of mathematics: e from analysis, i from algebra, π from
geometry, 1 from arithmetic, and 0 from logic.

We defined the function exp for purely imaginary values of the argument and
obtained Euler’s formula eix = cosx + i sinx, from which, clearly, it also follows
that

cosx = 1

2

(
eix + e−ix

)
and sinx = 1

2i

(
eix − e−ix

)
.

A.2.3 The Exponential Function as a Limit

We know that (1 + x
n
)n→ ex as n→∞ for x ∈ R. It is natural to assume that

ez = limn→∞(1 + z
n
)n, where now z = x + iy is an arbitrary complex number.

A computation of this limit gives ez = ex(cosy + i siny).

Problem 4 Verify this and obtain a formula for cos z and sin z.

A.2.4 Multiplication of Series and the Basic Property
of the Exponential Function

The expression ez = ex(cosy + i siny) for ex+iy can be naturally obtained from
the relation ex+iy = exeiy if it is valid for complex values of the argument of the
function exp.
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We shall prove this by direct multiplication. Let u and v be complex numbers.
Setting eu :=∑∞k=0

1
k!u

k and ev :=∑∞m=0
1
m!v

m we find that

eu · ev =
( ∞∑

k=0

1

k!u
k

)

·
( ∞∑

m=0

1

m!v
m

)

=
∞∑

k=0

∞∑

m=0

1

k!
1

m!u
kvm =

=
∞∑

n=0

∑

n=k+m

1

k!
1

m!u
kvm =

∞∑

n=0

1

n! (u+ v)
n = eu+v.

We used here the fact that
∑
n=k+m n!

k!m!u
kvm = (u+ v)n, provided that uv = vu.

A.2.5 Exponential of a Matrix and the Role of Commutativity

What happens if in the expression

eA = 1+ 1

1!A+
1

2!A
2 + · · · + 1

n!A
n + · · · ,

we consider A a square matrix, and 1 is the identity matrix of the same size? For
example, if A is the identity matrix, then it is easy to check that eA turns out to be a
diagonal matrix, with elements e on the main diagonal.

Problem 5 a) Calculate expA for the following matrices A:

(
0 0
0 0

)
,

(
1 0
0 −1

)
,

(
0 1
−1 0

)
,

(
0 0
1 0

)
,

(
0 1
0 0

)
,

⎛

⎝
0 1 0
0 0 1
0 0 0

⎞

⎠ .

b) Let A1 and A2 be the last two matrices of order two. Find eA1 , eA2 and check
that eA1 · eA2 �= eA1+A2 . What is going on here?

c) Show that etA = I + tA+ o(t), for t→ 0.
d) Check that det(I + tA) = 1+ t · (trA)+ o(t), where trA is the trace of the

square matrix A.
e) Prove the important relationship det eA = etrA.

A.2.6 Exponential of Operators and Taylor’s Formula

Let P(x) be a polynomial and A= d
dx the differentiation operator. Then (AP )(x)=

dP
dx (x)= P ′(x).
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Problem 6 a) Check that the relation exp(t d
dx )P (x)= P(x + t) is what you know

as Taylor’s formula.
b) By the way, how many terms of the series ex do you have to consider in order

to obtain a polynomial that allows you to calculate ex on the interval [−3,5] with
an accuracy up to 10−2?

A.3 Newton’s Binomial

A.3.1 Expansion in Power Series of the Function (1 + x)α

Newton knew the validity, for every natural number α, of the formula for the bino-
mial expansion

(1+ x)α = 1+ α
1!x +

α(α − 1)

2! x2 + · · · + α(α − 1) · · · (α − n+ 1)

2! x2 + · · · ,

and then he remarked that this formula remains valid for arbitrary α, but the number
of terms in the sum might be infinite.

For instance, (1+ x)−1 = 1− x + x2 − x3 + · · · if |x|< 1.

A.3.2 Integration of a Series and Expansion of ln(1 + x)

By integrating the last series over the interval [0, x], we find that

ln(1+ x)= x − 1

2
x2 + 1

3
x3 − · · · for |x|< 1.

A.3.3 Expansion of the Functions (1 + x2)−1 and arctanx

Analogously, we write the expansion (1 + x2)−1 = 1 − x2 + x4 − x6 + · · · , we
integrate its terms over the interval [0, x], and we obtain

arctanx = x − 1

3
x3 + 1

5
x5 − · · · .

If we set x = 1, this expansion seems to imply that π4 = 1− 1
3 + 1

5 − 1
7 + · · · .

Perhaps this is true (and certainly it is), but we have the feeling that we are al-
ready going beyond the limits of what is permitted. The following example will only
reinforce our concerns.
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A.3.4 Expansion of (1 + x)−1 and Computing Curiosities

For x = 1, the expansion (1+ x)−1 = 1− x + x2 − x3 + · · · leads to the equality
1
2 = 1− 1+ 1− 1+ · · · .

By grouping terms, we can obtain 1
2 = (1− 1)+ (1− 1)+ · · · = 0 and we can

obtain 1
2 = 1+ (−1+ 1)+ (−1+ 1)+ · · · = 1.

After this, it is necessary to question almost everything that we have done so
successfully and nonchalantly by multiplying the infinite sums (series), rearranging
and grouping their terms, and integrating them. All this must obviously be clarified.
We shall do it soon, but before that, we mention yet another area where series are
commonly used.

A.4 Solution of Differential Equations

A.4.1 Method of Undetermined Coefficients

Consider the simplest equation ẍ+x = 0 of harmonic oscillations. We shall look for
the solution as a series x(t)= a0+ a1t + a2t

2+ · · · . Substituting the series into the
equation, grouping the terms with equal powers of t , and equating the coefficients
with the same powers in t on both sides of the equation, we obtain an infinite system
of equations:

2a2 + a0 = 0, 2 · 3a3 + a1 = 0, 3 · 4a4 + a2 = 0, . . . .

If the initial conditions x(0) = x0 and x′(0) = v0 are given, then from the series
x(t)= a0+ a1t + a2t

2+ · · · , and x′(t)= a1+ 2a2t + · · · , we find that a0 = x0 and
a1 = v0. If we know a0 and a1, we can find successively and uniquely the remaining
coefficients of the expansion.

For example, if x(0)= 0 and x′(0)= 1, then

x(t)= t − 1

3! t
3 + 1

5! t
5 − · · · = sin t,

and if x(0)= 1 and x′(0)= 0, then

x(t)= 1− 1

2! t
2 + 1

4! t
4 − · · · = cos t.

A.4.2 Use of the Exponential Function

What happens if the solution that we are looking for has the form x(t)= eλt? Then
ẍ + x = eλt (λ2 − 1)= 0, and therefore λ2 + 1= 0, i.e., λ= i or λ=−i. But what
are these strange complex oscillations x(t) = eit , x(t) = e−it , and x(t) = c1eit +
c2e−it?
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Problem 7 Analyze the situation and solve the problem, for example, if x(0) = 0
and x′(0) = 1 or if x(0) = 1 and x′(0) = 0. Recall Euler’s formula and compare
your results with those obtained above.

A.5 The General Idea About Approximation and Expansion

A.5.1 The Meaning of a Positional Number System. Irrational
Numbers

Recall the usual representation of the number π = 3.1415926 . . . or in general a dec-
imal expansion a0.a1a2a3 . . .: this is the sum a0100+a110−1+a210−2+a310−3+
· · · .

We know that a finite expansion corresponds to a rational number, and the repre-
sentation of an irrational number requires an infinite number of decimal digits, and
therefore requires the study of an infinite number of terms and infinite sums, i.e.,
series.

If we truncate a series at some point, we get a rational number. We usually work
such numbers. What happened here? We have simplified the object, allowing some
error. This means that we are approximating a complex object (an irrational number
in this case) through some other objects (the rational numbers here), while allowing
some error, which we call the degree of precision of the approximation. An im-
provement in the precision leads to the complication of the object that we use as an
approximation. A compromise has to be found depending on the concrete circum-
stances.

A.5.2 Expansion of a Vector in a Basis and Some Analogies
with Series

In linear algebra and in geometry, we decompose vectors in terms of a basis. For
mathematical analysis, the traditional representation

f (x)= f (0)+ 1

1!f
′(0)x + 1

2!f
′′(0)x2 + · · ·

actually means the same thing if we consider that the basis is the set of functions
en = xn. This is the Taylor series of the function f at the point x0 = 0.

Analogously, if some periodic signal or process f (t) is subjected to spectral anal-
ysis, then one is interested in its decomposition f (t) =∑∞n=0 an cosnt + bn sinnt
into the simplest harmonic oscillations. Such series are called classical (or trigono-
metric) Fourier series.

What is new in this situation, in comparison with that in linear algebra, is that we
consider here an infinite sum, which is understood as the limit of finite sums.
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Thus in the space of our objects one must define the concept of proximity be-
tween the objects, in addition to the structure of a linear space, allowing one to be
able to consider the limit of the sequence of the objects themselves or their sum.

A.5.3 Distance

The proximity between objects is determined by the presence of a particular con-
cept, the concept of neighborhood of an object (neighborhood of a point in the
space). This is the same as specifying a topology in the space. In topological spaces
it is possible to speak about limits and continuity.

If in a space, a distance between objects, i.e., the points of the space, is somehow
introduced, then the neighborhoods of a point are automatically defined, and even
more specifically, the δ-neighborhoods of a point.

The distance between points of the same space can be measured in different
ways. For example, the distance between two continuous functions over an interval
can be measured by the maximum of the absolute value of the difference between
the values of the functions on this interval (uniform metric), and it is also possible to
measure it by the integral of the absolute value of the difference of the functions over
this interval (integral metric). The choice of the metric is dictated by the problem
under consideration.



Appendix B
Change of Variables in Multiple Integrals
(Deduction and First Discussion of the Change
of Variables Formula)1

B.1 Formulation of the Problem and a Heuristic Derivation
of the Change of Variables Formula

By studying the integral in the one-dimensional case, at some moment we obtained
an important change of variables formula for such an integral. Our task now is to
find a change of variables formula in the general case. We formulate the problem
more precisely.

Let Dx be a set in R
n, f an integrable function on Dx , and ϕ : Dt → Dx a

mapping t �→ ϕ(t) from the set Dt ⊂ R
n to Dx . The question is, what is the law,

assuming that we know f and ϕ, that allows us to find a function ψ on Dt such that
we have the equality

∫

Dx

f (x)dx =
∫

Dt

ψ(t)dt,

which reduces the computation of an integral over Dx to an integral over Dt?
We suppose first that Dt is an n-dimensional interval I ⊂ R

n and ϕ : I → Dx
is a diffeomorphic mapping from I onto Dx . To every partition of the interval I
into subintervals I1, I2, . . . , Ik corresponds a partition of Dx into subsets ϕ(Ii),
i = 1, . . . , k. If all these sets are measurable and intersect pairwise only on sets
of measure zero, then by the additivity of the integral,

∫

Dx

f (x)dx =
k∑

i=1

∫

ϕ(Ii )

f (x)dx. (B.1)

If the function f is continuous on Dx , then the mean value theorem implies
∫

ϕ(Ii )

f (x)dx = f (ξi)μ
(
ϕ(Ii)

)
,

1Fragment of a lecture with an alternative and independent proof of the change of variables for-
mula.

© Springer-Verlag Berlin Heidelberg 2016
V.A. Zorich, Mathematical Analysis II, Universitext,
DOI 10.1007/978-3-662-48993-2

655

http://dx.doi.org/10.1007/978-3-662-48993-2


656 B Change of Variables in Multiple Integrals

where ξi ∈ ϕ(Ii). Since f (ξi)= f (ϕ(τi)), with τi = ϕ−1(ξi), then it remains for us
to link μ(ϕ(Ii)) with μ(Ii)= |Ii |.

If ϕ is a linear transform, then ϕ(Ii) is a parallelepiped, whose volume we know
from analytical geometry and algebra and is equal to |detϕ′|μ(Ii). But a diffeo-
morphism is locally almost a linear map. Therefore, if the size of the intervals
Ii is sufficiently small, then it can be assumed, with a small relative error, that
μ(ϕ(Ii)) ≈ |detϕ′(τi)|μ(Ii) (it is possible to prove that with a proper choice of
the point τi ∈ Ii , one has the exact equality). In this way,

k∑

i=1

∫

ϕ(Ii )

f (x)dx ≈
k∑

i=1

f
(
ϕ(τi)

)∣∣detϕ′(τi)
∣
∣ · |Ii |. (B.2)

However, on the right-hand side of this approximate equality there is the integral
sum of the function f (ϕ(t))|detϕ′(t)| over the interval I , corresponding to the par-
tition P of this interval with marked points τ . In the limit λ(P )→ 0, from equa-
tions (B.1) and (B.2) we get

∫

Dx

f (x)dx =
∫

Dt

f
(
ϕ(t)
)∣∣detϕ′(t)

∣∣dt. (B.3)

This is the required formula together with its explanation. Note that it is possible
to justify rigorously each step of this deduction, which led us to the formula. Strictly
speaking, we need to prove only the validity of the last passage to the limit, that the
integral on the right-hand side of (B.3) exists, and also to explain the approximation
μ(ϕ(Ii))≈ |detϕ′(τi)| · |Ii |.

Let us do it.

B.2 Some Properties of Smooth Mappings and Diffeomorphisms

a) Recall that a smooth mapping ϕ from a closed and bounded interval I ⊂ R
n

(or from any other convex compact subset) is a Lipschitz function. This follows
from the mean value theorem and the boundedness of ϕ′ (because of the continuity)
over a compact set

∣∣ϕ(t2)− ϕ(t1)
∣∣≤

∑

τ∈[t1,t2]

∥∥ϕ′(τ )
∥∥ · |t2 − t1| ≤ L|t2 − t1|. (B.4)

b) Thus, the distance between the images of the points under the mapping ϕ
cannot exceed L times the distance between the points.

For instance, if some subset E ⊂ I has diameter d , then the diameter of its image
ϕ(E) is not more than Ld , and the set ϕ(E) can be covered with (n-dimensional)
cubes with edges of size Ld and volume (Ld)n.

Thus if E is a cube with edges of size δ and volume δn, then its image is covered
by a standard coordinate cube of volume (L

√
nδ)n.
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c) It follows from this that the image under smooth mappings of 0-measure sets
have also measure 0 (in the sense of n-dimensional objects). [After all, in the defini-
tion of a set of measure zero, it is possible to consider coverings by cubes, instead of
a covering with general n-dimensional intervals, i.e., “rectangular parallelepipeds”,
as we can easily see.]

If a smooth mapping ϕ : Dt → Dx has also an inverse smooth mapping ϕ−1 :
Dx→Dt , i.e., if ϕ is a diffeomorphism, then it is clear that the pre-image of a set
with measure zero also has measure zero.

d) Since under a diffeomorphism, the Jacobian of the mapping detϕ′ is every-
where different from zero, and the mapping itself is bijective, then (due to the in-
verse function theorem) the interior points of any set under such a mapping are
transformed into the interior points of the image of this set, and the boundary points
are transformed into the boundary points of the image.

Recall the definition of an admissible (Jordan-measurable) set, as a bounded set
whose boundary set has measure zero; thus we can conclude that under diffeomor-
phisms, the image of a measurable set is again a measurable set.

(This is also true for any smooth mapping. However, for diffeomorphisms it is
even true that the pre-image of a measurable set is also a measurable set.)

e) This latter in particular means that if ϕ :Dt →Dx is a diffeomorphism, then
from the existence of the integral on the left-hand side of formula (B.3) there follows
(based on Lebesgue’s criterion) the existence of the integral on the right-hand side.

B.3 Relation Between the Measures of the Image and the
Pre-image Under Diffeomorphisms

We shall show that if ϕ : I→ ϕ(I) is a diffeomorphism, then

μ
(
ϕ(I)
)=
∫

I

detϕ′(t)dt, (B.5)

under the assumption that the integrand detϕ′ is positive.
Hence, by the mean value theorem, in particular, we find that there is a point

τ ∈ I such that

μ
(
ϕ(I)
)= detϕ′(τ )|I |. (B.6)

Formula (B.5) is actually a particular case of (B.3), when f ≡ 1.
For linear mappings, this formula is already known, although perhaps without

discussing those details related to the fact that it is valid (for linear maps) not only
for simple parallelepipeds but for all measurable sets. Let us clarify this. We know
that a linear map is the composite of elementary linear mappings, which, up to a
possible permutation of a pair of coordinates, are reduced to a change in only one
of these coordinates: multiplying or adding a number of any one of the coordinates
to another one. Fubini’s theorem allows us to determine that in the first case, the
volume of any measurable set is multiplied by the same factor that multiplies the
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coordinate (more precisely, its absolute value if we consider nonoriented volume).
In the second case, although the face changes, its volume remains the same, since
the corresponding one-dimensional section only moves, keeping its linear measure.
Finally, a permutation of a pair of coordinates changes the orientation of the spatial
frame (the determinant of such a linear transformation is−1), but it does not change
the nonoriented volume of the face. (In the language of Fubini’s theorem, this is just
a change in the order of two integrations.)

It now remains to recall that the determinant of the composition of linear map-
pings is the product of the determinants of the factors.

Thus, considering that for linear and affine mappings the formula (B.5) is already
established, we prove it for an arbitrary diffeomorphism with positive Jacobian.

a) We use again the finite-increment theorem, but now to estimate the possible
deviation of the mapping ϕ : I→ ϕ(I) from the affine mapping t �→A(t)= ϕ(a)+
ϕ′(a)(t − a), where t is a variable, and a is a fixed point in the interval I . The
mapping A : I → A(I) is simply the linear part of the Taylor expansion of the
function ϕ at the point a ∈ I .

If we apply the finite-increment (mean value) theorem to the function t→ ϕ(t)−
ϕ′(a)(t − a), we obtain

∣∣ϕ(t)− ϕ(a)− ϕ′(a)(t − a)∣∣≤ sup
τ∈[a,t]

∥∥ϕ′(τ )− ϕ′(a)∥∥ · |t − a|. (B.7)

Given the uniform continuity of the continuous function ϕ′ on the compact set I ,
from equation (B.7) we conclude that there is a nonnegative function δ→ ε(δ),
tending to zero as δ→+0, such that for any two points t, a ∈ I ⊂R

n,

|t−a| ≤ √nδ =⇒ ∣∣ϕ(t)−A(t)∣∣= ∣∣ϕ(t)−ϕ(a)−ϕ′(a)(t−a)∣∣≤ ε(δ)δ. (B.8)

b) Now we go back to the proof of formula (B.5). First we shall carry out a small
technical simplification: we shall assume that the lengths of the edges of the paral-
lelepiped I are commensurable and that therefore, they can be divided into equal
cubes {I } with arbitrarily small (as necessary) edges δi = δ and volume δni = δn,
i.e., I =⋃i Ii and |I | =∑i |Ii | =

∑
i δ
n
i .

In every cube Ii , we fix a point ai , we build the corresponding affine mapping
Ai(t) = ϕ(ai) − ϕ′(ai)(t − ai), we consider the image Ai(∂Ii) of the cube’s Ii
boundary ∂Ii under the mapping Ai , and we consider the ε(δ)δ-neighborhood of
this image, which we denote by Δi . By (B.8), the image ϕ(∂Ii) of the boundary ∂Ii
of the cube Ii lies in Δi under the diffeomorphism ϕ. Thus, one has the following
inclusions and inequalities:

Ai(Ii) \Δi ⊂ ϕ(Ii)⊂Ai(Ii)∪Δi,
∣∣Ai(Ii)

∣∣− |Δi | ≤
∣∣ϕ(Ii)

∣∣≤ ∣∣Ai(Ii)
∣∣+ |Δi |.

When we take the sum over all indices, we have
∑

i

∣∣Ai(Ii)
∣∣−
∑

i

|Δi | ≤
∣∣ϕ(I)

∣∣=
∑

i

∣∣ϕ(Ii)
∣∣≤
∑

i

∣∣Ai(Ii)
∣∣+
∑

i

|Δi |. (B.9)
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As δ→+0,
∑

i

∣∣Ai(Ii)
∣∣=
∑

i

detϕ′(ai)|Ii | →
∫

I

detϕ′(t)dt.

Therefore, to prove formula (B.5) in our case, it remains to verify that
∑
i |Δi | → 0

if δ→+0.
c) We estimate from above the volume |Δi |, based on the estimates (B.4) and

(B.8). According to (B.4), the edges of the parallelepiped Ai(Ii) have length not
greater than Lδ, where δ = δi is the length of the edge of a cube Ii . Thus the
(n − 1)-dimensional “area” of any of the 2n faces of the parallelepiped Ai(Ii) is
not greater than (Lδ)n−1. We take an ε(δ)δ-neighborhood of such a face. Its vol-
ume is estimated with the value (2+2)ε(δ)δ(Lδ)n−1, where the second 2 appearing
in the formula is the absorption contribution of the rounded parts of this neighbor-
hood, occurring near the boundary of the face. In this way, |Δi |< 2n ·4Ln−1ε(δ)δn;
therefore,

∑

i

|Δi |< 8nLn−1
∑

i

ε(δ)δni = 8nLn−1ε(δ)|I |,

and we see that
∑
i |Δi | → 0 for δ→+0.

d) The estimated values for |Δi | show at the same time that no matter how ar-
bitrarily small the reduction of the edges of the original interval I becomes, which
one might need in order to obtain their commensurability, in the limit this does not
affect the result.

B.4 Some Examples, Remarks, and Generalizations

Thus formula (B.3) for the case Dt = I and a continuous function f is already
proved. We shall consider and discuss some examples. These will show at the same
time that in fact, we have already proved formula (B.3) not only for the case Dt = I
and not only for a continuous function f .

a) Negligible sets. As it is used in practice, replacing variables or the use of a
coordinate transformation formula sometimes has several special features (for ex-
ample, somewhere there might be a violation of mutual uniqueness, vanishing of
the Jacobian, or lack of differentiability). Typically, these special features occur on
sets of measure zero, and are therefore relatively easy to overcome.

For example, if you need to go from an integral over a circle to an integral over
a rectangle, we often make the change of variables

x = r cosϕ, y = r sinϕ. (B.10)

These are the well-known formulas for the transition from polar coordinates to
Cartesian coordinates in the plane. The rectangle I = {(r, ϕ) ∈ R2 | 0≤ r ≤ R,0≤
ϕ ≤ 2π} under this mapping is transformed into the circle K = {(x, y) ∈ R

2 |
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x2 + y2 ≤ R2}. This mapping is smooth, but it is not a diffeomorphism: the whole
side of the rectangle I on which r = 0 is transformed under this mapping into the
point (0,0); the images of the points (r,0) and (r,2π) coincide. However, if we con-
sider, for example, the sets I \ ∂I and K \E, where E is the union of the boundary
∂K of the circle K and the radius going to the point (0,R), then the restriction of
the mapping (B.10) to the domain I \ ∂I is a diffeomorphism with the set K \ E.
Therefore, if instead of the rectangle I , we take a slightly smaller rectangle Iδ lying
strictly in the interior of I , then we can apply formula (B.10) to this rectangle Iδ
and its image Kδ . And then, exhausting the rectangle I with such rectangles Iδ and
noticing that their images exhaust the circle K , that |Iδ| → |I | and |Kδ| → |K|, in
the limit we obtain formula (B.3) applied to the original pair K , I .

This applies, of course, to the general polar (spherical) coordinates system in R
n.

We shall now develop these observations.
b) Exhaustions and limit transitions. We define an exhaustion of a set E ⊂ R

n

to be a sequence of measurable sets {En} such that En ⊂En+1 ⊂E for every n ∈N
and
⋃∞
n=1En =E.

Lemma 1 If {En} is an exhaustion of a measurable set E, then

a) limn→∞μ(En)= μ(E);
b) for every function f ∈R(E), one has f |En ∈R(En) and

lim
n→∞

∫

En

f (x)dx =
∫

E

f (x)dx.

Proof a) Since En ⊂ En+1 ⊂ E, then μ(En) ≤ μ(En+1) ≤ μ(E) and
limn→∞μ(En) ≤ μ(E). For proving the equality in a), we shall show that the in-
equality limn→∞μ(En)≥ μ(E) also holds.

The boundary ∂E of the set E is compact and has measure zero. Therefore, it can
be covered with a finite number of open intervals such that the sum of their volumes
is less than ε for a given ε > 0. Let Δ be the union of these open intervals. Then the
set O =E ∪Δ is open in R

m; by construction, O contains the closure E of the set
E; and μ(O)≤ μ(E)+μ(Δ) < μ(E)+ ε.

For every set En of the exhaustion {En} we repeat the construction above with
εn = ε/2n. We obtain then a sequence of open sets On = En ∪Δn such that En ⊂
On, μ(On)≤ (En)+μ(Δn) < μ(En)+ εn and

⋃∞
n=1On ⊃

⋃∞
n=1En ⊃E.

The system of open sets Δ, O1,O2, . . . is an open cover of the compact set E.
Let Δ, O1,O2, . . . ,Ok be a finite open subcover of the compact set E. Since

E1 ⊂E2 ⊂ · · · ⊂Ek , the sets Δ,Δ1, . . . ,Δk,Ek are also a cover of E, and then

μ(E)≤ μ(E)+μ(Δ)+μ(Δ1)+ · · · +μ(Δk) < μ(Ek)+ 2ε.

It follows from this that μ(E)≤ limn→∞μ(En).
b) The fact that f |En ∈R(En) is known to us, and it follows from Lebesgue’s

criterion for the existence of the integral over a measurable set. By the hypothe-
sis f ∈R(E), there exists a constant M such that |f (x)| ≤M over E. From the
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additivity of the integral and the general estimates for the integral, we get
∣∣∣∣

∫

E

f (x)dx −
∫

En

f (x)dx

∣∣∣∣=
∣∣∣∣

∫

E\En
f (x)dx

∣∣∣∣≤Mμ(E \En).

Hence, taking into account what we proved in a), we conclude that assertion b)
holds. �

The additivity of the integral and the possibility of exhausting the domain of
integration with the domains where the change of variables formula works (i.e.,
it is directly applicable) allow us to apply the formula to the original domain. In
general, the idea of exhaustion lies at the heart of many constructions in analysis. In
particular, it is fundamental in the definition of improper integrals.



Appendix C
Multidimensional Geometry and Functions
of a Very Large Number of Variables
(Concentration of Measures and Laws of Large
Numbers)

C.1 An Observation

Almost the entire volume of a multidimensional body is concentrated in a small
neighborhood of the boundary of the body.

Problem 1 a) Check this in the examples of the cube and the ball. Show that if we
remove the shell with thickness 1 cm from a 1000-dimensional watermelon with 1
meter radius, then there remains less than a thousandth of the original watermelon.

b) If we project the sphere Sn−1(r)⊂R
n orthogonally onto a hyperplane passing

through the center of the sphere, then we obtain a ball (double covered) with the
same dimension n− 1 and the same radius r . Considering what we obtain above,
notice (still on a qualitative level), that almost all the area of the sphere Sn−1(r) for
n0 1 is concentrated in a small neighborhood of the equator, the intersection of the
sphere with the former hyperplane.

C.2 Sphere and Random Vectors

Problem 2 a) The sphere Sn−1(r) with radius r and center at the origin of the n-
dimensional Euclidean space R

n is projected orthogonally onto a coordinate axis.
We get the interval [−r, r]. We fix another interval [a, b] ⊂ [−r, r]. Let S[a, b] be
the area of the part Sn−1

[a,b](r) of the sphere Sn−1(r) that is projected onto the interval

[a, b]. Find the quotient S[a,b]
S[−r,r] , i.e., the probability Prn[a, b] that a randomly chosen

point on the sphere will be on the layer Sn−1
[a,b](r) over the interval [a, b], considering

that the points are uniformly distributed over the sphere.
Answer:

Prn[a, b] =
∫ b
a
(1− (x/r)2) n−3

2 dx
∫ r
−r (1− (x/r)2)

n−3
2 dx

.

© Springer-Verlag Berlin Heidelberg 2016
V.A. Zorich, Mathematical Analysis II, Universitext,
DOI 10.1007/978-3-662-48993-2

663

http://dx.doi.org/10.1007/978-3-662-48993-2


664 C Multidimensional Geometry and Functions

b) Let δ ∈ (0,1) and [a, b] = [δr, r]. Show that as n→∞,

Prn[δr, r] ∼ 1

δ
√

2πn
e−

1
2 δ

2n.

Hint: You can use Laplace’s method for obtaining asymptotics of the integral over a
large parameter.

c) The result obtained in b) implies that the vast majority of the area of a multi-
dimensional sphere is concentrated in a small neighborhood of the equatorial plane,
in the layer Sn−1

[−δr,δr](r) over the interval [−δr, δr].
Deduce from this that if we take independently and randomly a pair of vectors

in R
n, then for n0 1, it is very likely that they will be almost orthogonal, i.e., their

scalar product will be close to zero. Estimate the probability that the scalar product
is greater than ε > 0 and calculate its variance for n0 1.

d) Prove, based on the result proved in a), that for r = σ√n and n→∞, one has

Prn[a, b]→ 1√
2πσ

∫ b

a

e
− x2

2σ2 dx.

e) Considering the result obtained in b), prove now Gauss’s law on the distribu-
tion of measurement errors and Maxwell’s laws on the distribution of gas molecules
according to speed and energy (considering in the first case that the observations
are independent and their mean square stabilizes as the number of observations in-
creases, and in the second case considering that the gas is homogeneous and that the
total energy of the molecules in a portion of the gas is proportional to the number of
molecules in this portion).

C.3 Multidimensional Sphere, Law of Large Numbers,
and Central Limit Theorem

By solving this problem, you will discover the following fact, important in many
aspects and manifested in many areas (for example, in statistical physics).

Let Sm be the unit sphere in the Euclidean space R
m+1 with a very large dimen-

sionm+1. Suppose also that we are given a sufficiently regular real-valued function
on the sphere (for example, from a fixed Lipschitz class). We take randomly and in-
dependently two points and calculate the value of the function at these points. With
a high probability, the values will almost coincide and they will be close to a certain
numberMf .

(This, still hypothetical, number Mf is called the median value of the function
or function median. It is also called the average value of the function in the sense
of Lévy.1 The motivation for these terms will soon be clear, together with a precise
definition of the numberMf .)

1P. Lévy (1886–1971) – famous French mathematician, student of J. Hadamard.
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We introduce some notation and conventions. We define the distance between
two points on the sphere Sm ⊂R

m+1, understood in terms of its geodesic metric ρ.
We denote by Aδ a δ-neighborhood in Sm of the set A⊂ Sm. We replace the stan-
dard mass of the sphere with a uniformly distributed probability measure μ, i.e.,
μ(Sm)= 1.

We have the following assertion proved by Paul Lévy, commonly called Lévy’s
isoperimetric inequality.

For every 0 < a < 1 and δ > 0, there exists min{μ(Aδ) | A ⊂ Sm,μ(A) = a},
and it is attained on the spherical cap A0 with measure a.

Here A0 = B(r), where B(r) = B(x0, r) = {x ∈ Sm | ρ(x0, x) < r} and
μ(B(r))= a.

Problem 3 a) For a = 1/2, i.e., when A0 is a hemisphere, obtain the following
result:

If the subset A⊂ Sn+1 is such that μ(A)≥ 1/2, then μ(Aδ)≥ 1−√π/8e−δ2n/2.
(If n→∞, we can change here

√
π/8 for 1/2.)

b) We denote byMf the number such that

μ
{
x ∈ Sn | f (x)≤Mf

}≥ 1/2 and μ
{
x ∈ Sn | f (x)≥Mf

}≥ 1/2.

It is called the median or average value in the sense of Lévy of the function f :
Sn→ R. (If the Mf -level of the function f on the sphere has measure zero, then
the measure of each of these two sets mentioned above will be equal to exactly half
of the μ-area of the sphere Sm.)

Obtain the following lemma due to Lévy:
If f ∈ C(Sn+1) and A = {x ∈ Sn+1 | f (x) =Mf }, then μ(Aδ) ≥ 1−√π/2×

e−δ2n/2.
c) Let ωf (δ)= sup{|f (x)− f (y)| | ρ(x, y)≤ δ} be the modulus of continuity of

the function f .
The values of the function f on the set Aδ are close to Mf . More precisely, if

ωf (δ) ≤ ε, then |f (x) −Mf | ≤ ε on Aδ . Thus Lévy’s lemma shows that “good”
functions are actually almost constant in almost their entire domain of definition Sm

when the dimension m is very large.
Considering that f ∈ Lip(Sn−1,R) and L is the Lipschitz constant of the func-

tion f , estimate the probability Pr{|f (x) − Mf | > ε} and the dispersion value
|f (x)−Mf | for n0 1.

d) Obtain, as above, estimates in the case that the function f is not defined on
the unit sphere but in the sphere Sn−1(r) with radius r .

e) If f is a smooth function, then we can clearly take the maximum modulus
of its gradient as the Lipschitz constant L. For example, the linear function Sn =
1
n
(x1 + · · · + xn) has L= Ln = 1√

n
. Suppose that we have a sequence of Lipschitz

functions fn ∈ Lip(Sn−1(rn),R), for which Ln =O( 1√
n
) and rn =√n.

Estimate Pr{|fn(x) − Mfn | > ε} and the dispersion value |fn(x) − Mfn | for
n0 1.

In particular, for fn = Sn deduce the standard law of large numbers.
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f) Let fn = x1 + · · · + xn. The levels of this function are hyperplanes in R
n

orthogonal to the vector (1, . . . ,1). The same can be said about the linear function
Σn = 1√

n
(x1 + · · · + xn), with the only difference that under the movement from

the origin in the direction of (1, . . . ,1), its values coincide with the distances to the
origin. For this reason, its values are distributed on the sphere Sn−1(rn) exactly as
they are on each of the coordinates.

Using this discussion and the result of Problem 2.d), setting rn = σ√n, obtain
your own version of the central limit theorem.

C.4 Multidimensional Intervals (Multidimensional Cubes)

Problem 4 a) Let I be the standard unit interval [0,1] of the real line R, and In the
standard n-dimensional interval in R

n, usually called the n-dimensional unit cube.
This is a unit of volume in R

n, but its diameter
√
n for n0 1 is extremely huge.

Thus, even Lipschitz functions on In with Lipschitz constant L can have values
spread within L

√
n.

Yet here, as in the above case of a sphere, there is a phenomenon of asymptotic
stabilization (concentration) of values of such functions in the limit n→∞.

Now, try to find the proper formulations of the problem and study the phe-
nomenon, up to the level of your ability (then check Sect. C.5 of this appendix).

b) Suppose we have n independent random variables xi , taking values in the
unit interval [0,1] and having distribution probabilities pi(x), which are uniformly
separated from zero (in particular, all pi(x) may coincide). Then as n grows, the
large majority of the random points (x1, . . . , xn) ∈ In will lie in close proximity to
the border of the cube.

Explain this, and considering the result in a), obtain your own general law of
large numbers.

c) Show with an example that if the probability density of the random variables
in b) is concentrated in the vertices of the cube as point masses, then the asymptotic
stabilization of values for Lipschitz functions in the limit n→∞ may not occur.

d) We noted above that although the volume of the cube In in R
n is equal to 1,

its diameter
√
n increases for n0 1, which creates difficulties. However, we have

the following useful compensating observation: if each of two subsets A and B of
the cube In has measure greater than an arbitrarily small fixed positive number ε,
then the distance between A and B is bounded from above by a constant depending
only on ε (and not depending on n). Prove this, and use this result if you need it.

e) Calculate the volume of the unit ball in R
n and show that the radius of the ball

with volume one increases as
√
n/(2πe) as n→∞. Go back to Sects. C.1 and C.2

and convince yourself again that the normal distribution and the laws related to it
are closely linked in the geometric aspect with a simple multidimensional object,
namely with the ball of unit volume.
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C.5 Gaussian Measures and Their Concentration

Problem 5 a) We mentioned in Sect. C.2 of this appendix the isoperimetric inequal-
ity on the sphere, in connection with the discussion of the observed stabilization of
values (constancy) of regular functions on the multidimensional sphere. The same
problem about minimizing the measure of a δ-blowup of a set is important, and for
the same reason it is also interesting in relation to other spaces that serve as natural
domains for the relevant functions.

For example, in the case of the Gaussian probability measures defined by the
normal probability distribution in the standard Euclidean space R

n, the answer is
also known (obtained by Borel). In this case, the extreme domain (with the fixed
initial value of the Gaussian measure and a δ-blowup, understood in the sense of the
Euclidean metric) turns out to be a half-space.

In particular, if we take the half-space with Gaussian measure 1
2 and we directly

calculate the value of the Gaussian measure of the complement in its Euclidean
δ-blowup, then considering Borel’s isoperimetric inequality, we can deduce that for
any set A having a Gaussian measure 1

2 in the space Rn, the measure of its δ-blowup
can be estimated from below with μ(Aδ) ≥ 1− Iδ , where Iδ is the integral of the

density (2π)
n
2 exp(−|x|22 ) of the Gaussian measure of the half-space, given with

Euclidean distance δ from the origin.
An estimate from above of the integral Iδ , for example, allows us to claim that

μ(Aδ)≥ 1− 2 exp(− δ2

2 ). Prove this.
b) This is a rough estimate, but it shows the rapid growth of μ(Aδ), with an

increase of δ, whatever the initial set A of measure 1
2 is.

It is very interesting to notice (and considering the possible transition to infinite-
dimensional spaces, even quite useful) that the last estimate does not depend on the
dimension of the space. It may seem that this absence of the dimension is a great
loss and weakness in the estimates within the context of concentration measures
discussed and in the stabilization of values of functions of several variables. In fact,
this estimate even contains the principle of the concentration of a measure on the
unit sphere of large dimension, discussed above.

It is enough to prove (prove it) that the main part of the Gaussian probability
measure of the Euclidean space R

n for n0 1 is concentrated in the vicinity of
the unit Euclidean sphere of radius

√
n. This means that at the intersection of this

neighborhood with the half-space, which is distant from the origin, the proportion
of this measure is exponentially small. Therefore, the main part of the measure is
in this neighborhood of the sphere of radius

√
n, which falls in the layer between

two close parallel hyperplanes, symmetric with respect to the origin. If now we
move through a homothety from the sphere of radius

√
n to the unit sphere, then we

obtain the principle of concentration of measure on the unit sphere, which we have
already discussed (do the necessary calculations). In the statement of this principle,
the dimension of the space occurs explicitly. This dimension was also present in the
Gaussian case, but it was hidden in the size

√
n of the sphere, and the main part of

the measure of the whole space is concentrated in a neighborhood of this sphere.
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C.6 A Little Bit More About the Multidimensional Cube

In the Euclidean space R
n we consider the n-dimensional unit interval (“cube”)

In :=
{
x = (x1, . . . , xn

) ∈Rn ∣∣ ∣∣xi∣∣≤ 1

2
, i = 1,2, . . . , n

}
.

Its volume is equal to one, although the diameter is
√
n. (Recall that the Euclidean

ball of volume one in R
n has radius of order

√
n, as mentioned above.) We shall

consider the standard probability measure uniformly distributed on the cube In.
Let a = (a1, . . . , an) be a unit vector, and x = (x1, . . . , xn) an arbitrary point in

the cube In.
The following inequality holds (probability estimate of Bernstein type):

Prn

{∣∣
∣
∣
∣

n∑

i=1

aixi

∣
∣
∣
∣
∣
≥ t
}

≤ 2 exp
(−6t2

)
.

If we interpret the sum
∑n
i=1 a

ixi as a scalar product 〈a, x〉, we notice that this
can be large (of order

√
n) if the vector a is not directed along any edge of the

cube, but along the main diagonal, mixing all coordinate directions equally. If we
take a = ( 1√

n
, . . . , 1√

n
) in the previous estimate, we deduce that the volume of the

n-dimensional cube In concentrates, as n increases, in a small neighborhood of the
hyperplane passing through the origin and orthogonal to the vector ( 1√

n
, . . . , 1√

n
).

In particular, if we consider a billiard in such a cube as a dynamical system
(gas) composed with noninteracting particles, then for n0 1, the large majority of
particle trajectories will go in a direction nearly perpendicular to the fixed vector
( 1√
n
, . . . , 1√

n
), and they are a large part of the time in a neighborhood of the above

hyperplane.

C.7 The Coding of a Signal in a Channel with Noise

We point out in conclusion another area where the functions with a very large num-
ber of variables also appear naturally and where the principle of concentration of a
measure is shown and also used substantially.

We are already used to the digital (discrete) coding and transmission of signals
(music, images, messages, information) on a communication channel. In this form,
a message can be thought of as a vector x = (x1, . . . , xn) in the space Rn with a very
large dimension. The transmission of such messages requires an energy E, which is
proportional to ‖x‖2 = |x1|2 + · · · + |xn|2 (like the total kinetic energy of the gas
molecules, discussed above). If T is the duration of the transmitted message x, then
P = E/T is the average power required to transfer one character (a coordinate of
the vector x). If Δ is the average time required to transfer a single coordinate of the
vector x, then T = nΔ and E = nPΔ.
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The transmitting and receiving devices are aligned in a such a way that the trans-
mitter transforms (encodes) the original message to be transmitted in the form of
the vector x. It sends it over the communication channel, and the receiver, knowing
the code, decrypts x, transforming it into the form of the original message.

If we need to transmit M messages A1, . . . ,AM of length n, then it is enough to
fix n points in the ball of radius

√
E, agreeing on this selection with the receiving

end of the communication channel. If in the communication channel there is no in-
terference, then having received the vector from the agreed set, the receiver decodes
it correctly into the corresponding message A.

If in the channel we do have interference (which is often the case), then because
of the interference, a random vector ξ = (ξ1, . . . , ξn) shifts the transmitted vector a,
and the vector a+ξ arrives at the receiver, and this vector must be properly decoded.

If the points a1, . . . , an were chosen in such a way that the balls of radius ‖ξ‖
with these points as center do not intersect, then an unambiguous deciphering is
still possible. But if we want to meet this requirement, then we cannot take just
any points a1, . . . , aM , and there is a problem of dense packing of spheres. This is
a difficult problem, whose solution in the present situation can be avoided, as was
shown by Shannon, given that here the dimension n of the space R

n is huge.
We shall allow ourselves sometimes to make mistakes while interpreting the re-

ceived message. However, we require the probability of error to be arbitrarily small
(less than any fixed positive number).

Shannon showed that even in the presence of random noise (white noise) in the
communication channel with limited capacities, by choosing a long enough code
(i.e., for a large value of n), it is possible to achieve velocities of transmission close
to the velocities of transmission of information in channels without noise, with an
arbitrarily small probability of error.

The geometric idea of Shannon’s theorem is directly related to the characteristics
discussed above of the distribution measures (volumes) of domains in a space with
large dimension. Let us explain this.

Suppose that two identical balls in the space R
n intersect. If the received signal

lies in this intersection, then it is possible to have errors in the interpretation of the
message sent by the source. But if the probability of falling into such an area is
considered proportional to the relative volume of the region, then it is natural to
compare the volume of the intersection of the balls with the volume of a ball. We
carry out the proper estimations. If the centers of two balls of radius 1 are separated
by the distance ε (0 < ε < 2), then the intersection of these balls is contained in a
ball of radius

√
1− (ε/2)2 with center in the middle of the segment connecting the

centers of the original balls. Hence, the ratio between the volume of the intersection
of the two balls and their own original volume does not exceed (1− (ε/2)2)n/2. It is
clear now that for every fixed ε, this value can be made arbitrarily small by choosing
a sufficiently large value of n.



Appendix D
Operators of Field Theory in Curvilinear
Coordinates

Introduction

Almost any book with mathematical problems and even any textbook of mathemat-
ical analysis states something like the following. “Children, remember”:

We call the gradient of a function U(u,x, z) the vector

gradU :=
(
∂U

∂x
,
∂U

∂y
,
∂U

∂z

)
.

The curl of a vector field A= (P,Q,R)(x, y, z) is the vector

curlA :=
(
∂R

∂y
− ∂Q
∂z
,
∂P

∂z
− ∂R
∂x
,
∂Q

∂x
− ∂P
∂y

)
.

The divergence of a vector field B = (P,Q,R)(x, y, z) is the function

divB := ∂P
∂x
+ ∂Q
∂y
+ ∂R
∂z
.

The fact that this is true only in Cartesian coordinates is not usually discussed,
as well as what should be done if the coordinate system is different. This is under-
standable, since the very formulation of this problem already requires some suitable
definition of these objects.

D.1 Reminders of Algebra and Geometry

D.1.1 Bilinear Forms and Their Coordinate Representation

a. Scalar Product and General Linear Forms

We shall consider a vector space with a scalar product 〈, 〉. We can still consider that
〈, 〉 denotes an arbitrary bilinear form on an n-dimensional vector space X. If we
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choose a basis of the space ξ1, . . . , ξn, then the objects of the space (in particular,
vectors and forms) will have a coordinate representation. We recall the coordinate
representation of the bilinear form 〈, 〉.

If we take two vectors x = xiξi , y = yj ξj and their decomposition in terms of
the basis, then we have 〈x, y〉 = 〈xiξi, yj ξj 〉 = 〈ξi, ξj 〉xiyj = gij xiyj . As usual,
summation over repeated indices is understood. Thus if a basis of the space is given,
the choice of values 〈ξi, ξj 〉 = gij completely defines the bilinear form.

If the form is a scalar product, then a basis is orthogonal if gij = 0 for i �= j . It is
assumed here that the form is nondegenerate, of course.

b. Nondegeneracy of Bilinear Forms

A bilinear form is called nondegenerate if once we fix a value in one of its argu-
ments, then the bilinear form is identically zero with respect to the other argument
if and only if the fixed value is zero (the zero vector).

The nondegeneracy of the form is equivalent to the fact that the determinant of
the matrix (gij ) is different from zero. Indeed, if the fixed vector x = xiξi is such
that 〈x, y〉 ≡ 0 with respect to y, then 〈ξi, ξj 〉xi = 0 and gij xi = 0 for every value
j ∈ {i, . . . , n}. This homogeneous system of equations has a unique solution (zero)
if and only if the determinant of the matrix (gij ) of the system is nonzero.

D.1.2 Correspondence Between Forms and Vectors

a. 1-Forms in the Presence of 2-Forms and Their Correspondence with Vectors

If one has a 2-form 〈, 〉, then each vector A can be associated with a 1-form, namely
the linear form 〈A,x〉. If the 2-form is nondegenerate, then the correspondence is
one-to-one. Indeed, if we are given such a linear function a(x)= ajxj (where aj =
a(ξj )) and we want to represent it in the form 〈A,x〉, where A = ξiAi , then in
the coordinates of the vector A we have the system of equations a(ξ)= 〈ξi, ξj 〉Ai ,
j = 1, . . . , n, which is uniquely solvable if the determinant of the matrix (gij ) is
different from zero.

Thus, the coordinates of the vector A=Aiξi and the coefficients of the 1-form a
in the same basis {ξi} are linked by the mutually inverse relations

aj = gijAi, Ai = gij aj .

b. Correspondence Between a Vector and an (n − 1)-Form

Similarly, if one has a nondegenerate n-form Ω , each vector B can be associated
with an (n− 1)-form, namely the form Ω(B, . . .).
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We shall deal below with vector fields A,B and carry out this described method
on the tangent space, for example in relation to the form of work ω1

A = 〈A, ·〉 and
the form flux ωn−1

B =Ωn(B, . . . ), in the presence of the inner product 〈, 〉 and the
volume form Ωn, respectively.

D.1.3 Curvilinear Coordinates and Metric

a. Curvilinear Coordinates, Metric, and Volume Form

Suppose that in an n-dimensional surface (manifold) we have a metric, which in
local coordinates (t1, . . . , tn) (in the local charts) is given by the form gij (t)dt i dt j ,
determined by the scalar product 〈, 〉(t), with the corresponding parameter t of the
tangent plane (tangent space) to the surface.

For example, if the surface (or curve) is given in a parametric form, it is em-
bedded into the Euclidean space, and then the scalar product in the tangent planes
(spaces) to the surface is naturally induced from that in the ambient space.

We even know how to find the area of such a surface (n-measure), i.e., it is
necessary to integrate the volume form

Ω =
√

detgij (t)dt1 ∧ · · · ∧ dtn.

b. Orthogonal Systems of Curvilinear Coordinates and Unit Vectors

Recall that a system of curvilinear coordinates (t1, . . . , tn) is called orthogonal if
gij ≡ 0 for i �= j .

The length element in an orthogonal system of curvilinear coordinates is written
in a particularly simple form:

ds2 = g11(t)
(
dt1
)2 + · · · + gnn(t)

(
dtn
)2
.

It is often rewritten in the more compact notation

ds2 =E1(t)
(
dt1
)2 + · · · +En(t)

(
dtn
)2
.

The vectors ξ1 = (1,0, . . . ,0), . . . , ξn = (0, . . . ,0,1) of the coordinate directions
form a basis of the tangent space, corresponding to the value of the parameter t . But
the norm (length) of these vectors is, in general, not equal to one. We have always,
independent of whether the system of coordinates is orthogonal, 〈ξi, ξi〉(t)= gii(t),
i.e., ‖ξi‖ =√gii(t), i ∈ {1, . . . , n}.

Thus, the unit vectors (e1, . . . , en) (vectors of length one) of the coordinate di-
rections have the following coordinate representation:

e1 =
(

1√
g11
,0, . . . ,0

)
, . . . , en =

(
0, . . . ,0,

1√
gnn

)
.
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In particular, if the system of curvilinear coordinates is orthogonal, then the follow-
ing system of vectors of coordinate directions will be an orthonormal basis in the
corresponding tangent space:

e1 =
(

1√
E1
,0, . . . ,0

)
, . . . , en =

(
0, . . . ,0,

1√
En

)
.

c. Cartesian, Cylindrical, and Spherical Coordinates

As examples of orthogonal coordinate systems we have the standard Cartesian,
cylindrical, and spherical coordinates in R

3.

Problem 1 Write down the metric gij (t)dt i dt j in each of these coordinate systems
and find an orthonormal basis (e1, e2, e3).

Answer In Cartesian coordinates (x, y, z), cylindrical coordinates (r, ϕ, z), and
spherical coordinates (R,ϕ, θ) of the Euclidean space R

3, the quadratic form
gij (t)dt i dt j has the following form:

ds2 = dx2 + dy2 + dz2 =
= dr2 + r2 dϕ2 + dz2 =
= dR2 +R2 cos2 θ dϕ2 +R2 dθ2.

In Cartesian, cylindrical, and spherical coordinates, the triples of unit vectors of
coordinate directions are the following, respectively:

ex = (1,0,0), ey = (0,1,0), ez = (0,0,1);

er = (1,0,0), eϕ =
(

0,
1

r
,0

)
, ez = (0,0,1);

eR = (1,0,0), eϕ =
(

0,
1

R cos θ
,0

)
, eθ =

(
0,0,

1

R

)
.

D.2 Operators grad, curl, div in Curvilinear Coordinates

D.2.1 Differential Forms and Operators grad, curl, div

The differential dU of a function U is a 1-form. When one has a scalar product 〈, 〉,
as we know, to the 1-form dU corresponds a vector A such that dU = 〈A, ·〉. This
vector is called the gradient of the function U and is denoted by gradU .

Thus, dU = 〈gradU, ·〉.
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Suppose that in the Euclidean space R3 (or in any three-dimensional Riemannian
manifold) we have the 1-form ω1

A = 〈A, ·〉 corresponding to the field A. The differ-
ential dω1

A of this form is a 2-form ω2
B , corresponding, in the presence of a volume

form Ω3, to some vector field B (i.e., ω2
B =Ω3(B, ·, ·)). Then the field B is called

the curl of the vector field A, and is denoted by curlA.
Thus, dω1

A = ω2
curlA.

If one has a volume form Ωn on an n-dimensional surface (for example on R
n),

then there is defined an (n−1)-form for the flux of a vector field B , namely the form
ωn−1
B =Ωn(B, ·, ·). The differential dωn−1

B of this (n−1)-form is an n-form, which
therefore has the type ρΩn. The proportionality factor, the function ρ, is called the
divergence of the vector field B and is denoted by divB .

Thus, dωn−1
B = (divB)Ωn.

D.2.2 Gradient of a Function and Its Coordinate Representation

a. Coordinate Representation for the Correspondence Between a Vector
and a 1-Form

In Sect. D.1.2, we derived a relation between the coefficients of a 1-form ω1
A = 〈A, ·〉

and the coordinates of the vector A=Aiξi . If we take the unit vectors ei instead of
the vectors ξi , and since ξi =√giiei , then the coordinates of the vector A = Aieei
in the basis {ei} and its former coordinates are related through the equation Aie =
Ai
√
gii for i ∈ {1, . . . , n}.

Hence all new related formulas have the form

aj = gij A
i
e√
gii
,

Aie√
gii
= gij aj .

These formulas allow us to write, in terms of the vector A = Aieei , the corre-
sponding form ω1

A = 〈A, ·〉 = aj dt j and conversely, to write the vector A=Aieei in
terms of the 1-form ω1 = aj dt j .

Problem 2 Write down in Cartesian, cylindrical, and spherical coordinates of the
Euclidean space R

3 the explicit form of the 1-form ω1
A = 〈A, ·〉, corresponding to

the vector A=Aiei .

Answer The 1-form ω1
A has the following form, in Cartesian coordinates (x, y, z),

cylindrical coordinates (r, ϕ, z), and spherical coordinates (R,ϕ, θ) of the Eu-
clidean space R

3, respectively:

ω1
A =Ax dx +Ay dy +Az dz=
=Ar dr +Aϕr dϕ +Az dz=
=AR dR +AϕR cosϕ dϕ +AθR dθ.
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b. Differential of a Function and the Gradient

We shall apply the general formula relating the vector A and the form ω1
A in the case

of the form dU = 〈gradU, ·〉, in order to find the decomposition gradU = Aieei .
Since dU = ∂U

∂tj
dt j , i.e., aj = ∂U

∂tj
, then we have Aie = gij√gii ∂U∂tj .

In the case of an orthogonal system of curvilinear coordinates, the matrix (gij )
is diagonal, as well as its inverse matrix (gij ). Moreover, gii = 1/gii . Hence in this
case,

gradU = 1√
g11

∂U

∂t1
e1 + · · · + 1√

gnn

∂U

∂tn
en.

c. Gradient in Cartesian, Cylindrical, and Spherical Coordinates

Problem 3 Write down the vector gradU = Aieei in Cartesian, cylindrical, and
spherical coordinates of the Euclidean space R

3.

Answer The vector gradU has the following form in Cartesian (x, y, z), cylindrical
(r, θ, z), and spherical (R,ϕ, θ) coordinates of the Euclidean space R3, respectively:

gradU = ∂U
∂x
ex + ∂U

∂y
ey + ∂U

∂z
ez =

= ∂U
∂r
er + 1

r

∂U

∂ϕ
eϕ + ∂U

∂z
ez =

= ∂U
∂R
eR + 1

R cos θ

∂U

∂ϕ
eϕ + 1

R2

∂U

∂θ
eθ .

D.2.3 Divergence and Its Coordinate Representation

a. Coordinate Representation for the Correspondence Between a Vector
and an (n − 1)-Form

We know that if there exists a nondegenerate n-formΩn in an n-dimensional vector
space, then one can establish a one-to-one correspondence between a vector B and
the (n − 1)-form ωn−1

B = Ωn(B, . . .). We wish to write down an explicit formula
relating the coordinates of the vector B = Biξi and the coefficients of the form

ωn−1
B = bix1∧· · ·

�

xi ∧· · ·∧xn, considering that both objects are expressed in terms
of the one basis {ξi} of the space. Here, xi is a linear function as usual, whose action

is given by assigning the i-coordinate of a vector, i.e., xi(v) := vi ; the symbol
�

xi

means that the corresponding factor is omitted. The n-formΩn in the n-dimensional
vector space is x1 ∧ · · · ∧ xn or proportional to this standard volume form, equal to
one on the set of the basis vectors (ξ1, . . . , ξn).
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In general, the value of the formΩ1 = x1∧· · ·∧xn on any vector set (v1, . . . , vn)

is equal to the determinant of the matrix (vji ) consisting of the coordinates of these
vectors. Hence if we consider the rule for the expansion of the determinant on a row,
we can write

Ωn(B, . . .)=
n∑

i=1

(−1)i−1Bix1 ∧ · · · ∧
�

xi ∧ · · · ∧ xn.

However, ωn−1
B =Ωn(B, . . .); thus

n∑

i=1

bix
1 ∧ · · · ∧

�

xi ∧ · · · ∧ xn =
n∑

i=1

(−1)i−1Bix1 ∧ · · · ∧
�

xi ∧ · · · ∧ xn.

Therefore, bi = (−1)i−1Bi for every i ∈ {1, . . . , n}. If instead we had the form
cωn = cx1 ∧ · · · ∧ xn, then we would have the equation bi = (−1)i−1cBi for every
i ∈ {1, . . . , n}.

Recall also that if there is an inner product 〈, 〉 and a fixed basis {ξi} in a vector
space, then there is also a natural volume form

√
detgij x1 ∧ · · · ∧ xn defined, as

well as the scalar product itself, in terms of the values gij = 〈ξi, ξj 〉.
Finally, recall that in this case, the unit vectors (with respect to the norm) are

not in general the vectors {ξi}, but the vectors ei = ξi/√gii . Since ξi =√giiei , the
original decomposition of the vector B = Biξi in the basis {ei} becomes B = Bieei ,
where Bie =√giiBi .

Therefore, if one has a scalar product on the space, then there is a natural volume
form Ωng =

√
detgij x1 ∧ · · · ∧ xn, and if ωn−1

B =Ωng (B, . . .), then the coefficients

of the form ωn−1
B = bix1 ∧ · · · ∧

�

xi ∧ · · · ∧ xn and the coordinates of the vector B in
the decomposition B = Bieei in terms of the basis of unit vectors ei = ξi/√gii are
related by the equations

bi = (−1)i−1
√

detgij
Bie√
gii
.

In an orthogonal basis, detgij = g11 · · ·gnn. In this case,

bi = (−1)i−1
√
g11 · · · �gii · · ·gnnBie.

All of the above remains valid when it is applied to the case of the vector field
B(t) and the differential form ωn−1

B =Ωng (B, . . .) of the field generated by the vol-
ume form.

Thus if Ωng =
√

detgij (t)dt1 ∧ · · · ∧ dtn,

ωn−1
B = bi(t)dt1 ∧ · · · ∧

�

dt i ∧ · · ·dtn,
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and B(t)= Bie(t)ei(t) is the decomposition in terms of the unit vectors of the curvi-
linear coordinates (t1, . . . , tn), then

bi = (−1)i−1

√
detgij√
gii

Bie, Bie = (−1)i−1
√
gii√

detgij
bi .

If the system of curvilinear coordinates is orthogonal, we come back to the rela-
tion bi = (−1)i−1

√
g11 · · · �gii · · ·gnnBie .

In particular, for a 3-dimensional orthogonal system of curvilinear coordinates
(t1, t2, t3), using the same notation Ei = gii mentioned at the beginning, it is pos-
sible to write the following coordinate representation of the form ω2

B corresponding
to the vector B = B1

e e1 +B2
e e2 +B3

e e3:

ω2
B = B1

e

√
E2E3 dt2 ∧ dt3 +B2

e

√
E3E1 dt3 ∧ dt1 +B3

e

√
E1E2 dt1 ∧ dt2 =

=√E1E2E3

(
B1
e√
E1

dt2 ∧ dt3 + B2
e√
E2

dt3 ∧ dt1 + B3
e√
E3

dt1 ∧ dt2
)
.

(Bear in mind that in the 3-dimensional case, the 2-form ω2 is not usually written
as b1 dt2 ∧ dt3 + a2 dt1 ∧ dt3 + b3 dt1 ∧ dt2, but as a1 dt2 ∧ dt3 + a2 dt3 ∧ dt1 +
a3 dt1 ∧ dt2; for example, P dy ∧ dz+Qdz∧ dx +R dx ∧ dy.)

Problem 4 Specify the explicit form of the 2-form ω2
B =Ω3

g(B, . . .) corresponding
to the vector field B = Bieei in Cartesian, cylindrical, and spherical coordinates of
the Euclidean space R

3.

Answer The form ω2
B has the following form in Cartesian (x, y, z), cylindrical

(r, θ, z), and spherical (R,ϕ, θ) coordinates of the Euclidean space R
3:

ω2
B = Bx dy ∧ dz+By dz∧ dx +Bz dx ∧ dy =
= Brr dϕ ∧ dz+Bϕ dz∧ dr +Bzr dr ∧ dϕ =
= BRR2 cos θ dϕ ∧ dθ +BϕR dθ ∧ dR +BθR cos θ dR ∧ dϕ.

b. The Differential Form of a Flux and the Divergence of the Velocity Field

The form ωn−1
B =Ωng (B, . . .) is often called a form of a flux, since when B is the

flux velocity field (at least for n= 3), one has to integrate exactly this form to find
the outflow (flux) through a surface.

The differential of the form of a flux ωn−1
B is an n-form, proportional to the

volume form. The coefficients of proportionality are called the divergence field B ,
as we know. Thus dωn−1

B = divB ·Ωng .
We want to study the field B = Bieei itself and find its divergence divB . We

already know how to find the form of a flux ωn−1
B from the field B = Bieei . We shall
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find it, compute its differential, and obtain an n-form, proportional to the volume
form, whose coefficients of proportionality are the divergence of the field B .

Let us show this. We write the (n− 1)-form ωn−1
B in the following form:

ωn−1
B = b1(t)dt

1 ∧ · · · ∧
�

dt i ∧ · · · ∧ dtn.

We compute its differential

dωn−1
B =

(
n∑

n=1

∂bi

∂t i
(−1)i−1

)

dt1 ∧ · · · ∧ dtn.

We express the coefficients bi of the form ωn−1
B through the coordinates Bie of the

vector B = Bieei :

dωn−1
B =

(
n∑

n=1

∂

∂t i

(√
detgij√
gii

Bie

))

dt1 ∧ · · · ∧ dtn.

We compare this form with the volume form

Ωng =
√

detgij (t)dt
1 ∧ · · · ∧ dtn,

and we obtain

divB = 1
√

detgij

(
n∑

n=1

∂

∂t i

(√
detgij√
gii

Bie

))

.

In an orthogonal system of curvilinear coordinates, this formula takes the form

divB = 1√
g11 · · ·gnn

(
n∑

n=1

∂

∂t i

(√
g11 · · ·gnn√
gii

Bie

))

.

c. Divergence in Cartesian, Cylindrical, and Spherical Coordinates

Problem 5 Write down formulas to calculate the divergence of a vector field
B = Bieei in Cartesian, cylindrical, and spherical coordinates of the Euclidean
space R

3.

Answer In Cartesian coordinates (x, y, z), cylindrical coordinates (r, ϕ, z), and
spherical coordinates (R,ϕ, θ) of the Euclidean space R

3, the divergence divB of
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the vector field B = Bieei can be calculated according to the formula

divB = ∂Bx
∂x
+ ∂By
∂y
+ ∂Bz
∂z
=

= 1

r

(
∂rBr

∂r
+ ∂Bϕ
∂ϕ

)
+ ∂Bz
∂z
=

= 1

R2 cosϕ

(
∂R2 cos θBR

∂R
+ ∂RBϕ

∂ϕ
+ ∂R cos θBθ

∂θ

)
.

D.2.4 Curl of a Vector Field and Its Coordinate Representation

a. Correspondence Between a Vector Field A and the Vector Field B = curlA

We shall now consider the special 3-dimensional case. We shall assume, as before,
that we are given a metric gij (t)dt i dt j in the curvilinear coordinates (t1, t2, t3),
generating at the same time the volume form Ω3

g =
√

detgij (t)dt1 ∧ dt2 ∧ dt3.

In this case the vector field A = Aieei corresponds to the 1-form ω1
A, and the

differential dω1
A of this form, as a 2-form ((n− 1)-form), corresponds to a vector

field B = Bieei such that dω1
A = ω2

B . This vector field B is called, as we know, the
curl of the original field A and is denoted by curlA.

b. The Coordinate Representation of the Correspondence Between Vector
Fields A and B = curlA

We wish to learn how to calculate the coordinates of the field B = curlA in terms of
the coordinates of the vector field A. According to the procedure described above,
from the vector field A=Aieei we build its corresponding 1-form ω1

A = 〈A, ·〉:

ω1
A = ai dt i = gij√

gjj
A
j
e dt i .

We take its differential

dω1
A =

∂

∂tk

(
gij√
gjj
A
j
e

)
dtk ∧ dt i =

=
(
∂

∂t2

(
g3j√
gjj
A
j
e

)
− ∂

∂t3

(
g2j√
gjj
A
j
e

))
dt2 ∧ dt3 +

+
(
∂

∂t3

(
g1j√
gjj
A
j
e

)
− ∂

∂t1

(
g3j√
gjj
A
j
e

))
dt3 ∧ dt1 +

+
(
∂

∂t1

(
g2j√
gjj
A
j
e

)
− ∂

∂t2

(
g1j√
gjj
A
j
e

))
dt1 ∧ dt2,
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considering this form a form of type ω2
B . By comparing the coefficients, we have

ω2
B = dω1

A = b1 dt2 ∧ b2 dt3 ∧ dt1 + b3 dt1 ∧ dt2. We obtain the coordinates Bie =√
gii√

det(gij )
bi of the vector B = curlA.

In the case of a 3-dimensional orthogonal system of curvilinear coordinates
(t1, t2, t3), the formula simplifies. In this case,

dω1
A =

∂

∂tk

(√
giiA

i
e

)
dtk ∧ dt i =

=
(
∂

∂t2

(√
g33A

3
e

)− ∂

∂t3

(√
g22A

2
e

)
)

dt2 ∧ dt3 +

+
(
∂

∂t3

(√
g11A

1
e

)− ∂

∂t1

(√
g33A

3
e

)
)

dt3 ∧ dt1 +

+
(
∂

∂t1

(√
g22A

2
e

)− ∂

∂t2

(√
g11A

1
e

)
)

dt1 ∧ dt2,

and using the notation Ei = gii , it is possible to write the coordinates of the vector
curlA= B = B1

e e1 +B2
e e2 +B3

3e3:

B1
e =

1√
E2E3

(
∂A3

e

√
E3

∂t2
− ∂A

2
e

√
E2

∂t3

)
,

B2
e =

1√
E3E1

(
∂A1

e

√
E1

∂t3
− ∂A

3
e

√
E3

∂t1

)
,

B3
e =

1√
E1E2

(
∂A2

e

√
E2

∂t1
− ∂A

1
e

√
E1

∂t2

)
,

which means that

curlA= 1√
E1E2E3

∣∣∣∣∣∣∣

√
E1e1

√
E2e2

√
E3e3

∂1 ∂2 ∂3√
E1A

1
e

√
E2A

2
e

√
E3A

3
e

∣∣∣∣∣∣∣
.

c. Curl in Cartesian, Cylindrical, and Spherical Coordinates

Problem 6 Write down the formula to calculate the curl of a vector field A =
A1
ee1 +A2

ee2 +A3
3e3 in Cartesian, cylindrical, and spherical coordinates of the Eu-

clidean space R
3.

Answer In Cartesian (x, y, z), cylindrical (r, ϕ, z), and spherical (R,ϕ, θ) coordi-
nates of the Euclidean space, the curl (curlA) of the vector field A=A1

ee1+A2
ee2+
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A3
3e3 is calculated according to the formula

curlA=
(
∂Az

∂y
− ∂Ay
∂z

)
ex +
(
∂Ax

∂z
− ∂Az
∂x

)
ey +
(
∂Ay

∂x
− ∂Ax
∂y

)
ez =

= 1

r

(
∂Az

∂ϕ
− ∂rAϕ

∂z

)
er +
(
∂Ar

∂z
− ∂Az
∂r

)
eϕ + 1

r

(
∂rAϕ

∂r
− ∂Ar
∂ϕ

)
ez =

= 1

R cos θ

(
∂Aθ

∂ϕ
− ∂Aϕ cos θ

∂θ

)
eR + 1

R

(
∂AR

∂θ
− ∂RAθ

∂R

)
eϕ +

+ 1

R

(
∂RAϕ

∂R
− 1

cos θ

∂AR

∂ϕ

)
eθ .



Appendix E
Modern Formula of Newton–Leibniz
and the Unity of Mathematics
(Final Survey)

E.1 Reminders

E.1.1 Differential, Differential Form, and the General Stokes’s
Formula

a. What Happened and Was the Reason That Brought Us to This Kind of Life

We already began the ascent to the modern Newton–Leibniz formula at the very
beginning of this course of mathematical analysis, when we defined the differential
df (x) of a function f :X→ Y at the point x. By analyzing this concept gradually
in detail, we found that it is a linear function operating on a linear vector space
TxX of displacements from the point under consideration with values in the space
TyY of displacements from the point y = f (x). The spaces TxX and TyY are called
tangent spaces to X and Y at the corresponding points. The differential itself is also
called the tangent mapping or total derivative with respect to the original mapping
(function) f :X→ Y at the point x.

Once one has become acquainted with the concept of tangent line or tangent
plane to a surface, one understands the origin and the geometric meaning of this
terminology.

Passing to functions of several variables and mappings of multidimensional ob-
jects, we left the definition of the differential unchanged, but every time, we ex-
plicitly deciphered the coordinate representation of the differential. In this way, the
notion of the Jacobian matrix of a mapping appeared.

We know that the differential of a function f :Rn→R has the form

df (x)= ∂f

∂x1
dx1 + · · · + ∂f

∂xn
dxn,

i.e., it is a linear combination of differentials of simple functions, the coordinate
functions, and the value of the differential df (x)(ξ) at the vector ξ ∈ TxRn coin-
cides with the value of the derivative Dξf (x) of the function on this vector, and
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since dxi(ξ)= ξ i , one has

df (x)(ξ)= ∂f

∂x1
ξ1 + · · · + ∂f

∂xn
ξn.

If you are acquainted with the linear algebra of linear, multilinear, and skew-
symmetric forms and the operation of their external product, you could, by applying
this to differentials, write a differential form of the type

ωk(x)= ai1...ik (x)dxi1 ∧ · · · ∧ dxik ,

realizing that this is a skew-symmetric k-form on the tangent space whose value
on the set of vectors (ξ1, . . . , ξk) can be calculated if the value of dxi1 ∧ · · · ∧
dxik (ξ1, . . . , ξk) is known. Lastly, this is equal to the determinant of the matrix

⎛

⎜
⎜
⎝

ξ
i1
1 · · · ξ

ik
1

...
. . .

...

ξ
i1
k · · · ξ

ik
k

⎞

⎟
⎟
⎠ ,

as we know from algebra (given that dxi(ξ)= ξ i ).
Recall that we were led to differential forms by the change of variables for-

mula for a multiple integral. For a one-dimensional integral, the form f (x)dx,
standing under the integral sign, dictated the correct change of variable formula
f (ϕ(t))dϕ(t). We were concerned, as Euler was, about the fact that this was not the
case for higher-dimensional integrals. We wanted to correct this deficiency and at
the same time understand what we are actually integrating, since the result should
not depend on the choice of the system of coordinates.

Analyzing this problem, we also had to figure out a number of concepts, not only
in algebra but also in geometry. We understood what a k-dimensional surface is,
curvilinear coordinates, local charts, local maps and atlas, what the orientation of
a surface is, and how it is specified, what the border of a surface and the induced
orientation on the border are, and finally what all of this looks like in the general
case of manifolds of dimension k.

We had to analyze what occurs with our objects and operations under a change
of coordinate system. We also had to figure out the direction in which points, vec-
tors, and functions on those objects are transferred, in particular forms under smooth
mappings, and how exactly to implement the corresponding transfer in the coordi-
nates. At the same time, we convinced ourselves that the operation of differentiation
on forms is indeed invariant with respect to the choice of coordinate system. The dif-
ferentiation of forms, in the coordinate representation, is realized in the most simple
and natural way,

dωk(x)= dai1...ik (x)dx
i1 ∧ · · · ∧ dxik ,

which it is often taken, for this reason, as the original definition of this operation.
Appealing to some suggestions from physics (computation of work, flux), we

realized that we integrate differential forms not only because they solve the original
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problem about the change of variables formula in multiple integrals, but also they
lead to the following far-reaching generalization of the classical Newton–Leibniz
formula:

∫

Mk+
dωk−1 =

∫

∂Mk+
ωk−1.

This formula, frequently called the general Stokes’s formula, rightfully should be
called the Newton–Leibniz–Gauss–Ostrogradskii–Green–Maxwell–Cartan–Poin-
caré formula.

b. The Problem of Primitives Yesterday and Today

One of the very first questions in classical mathematical analysis is the question
about the inversion of the operation of differentiation, more precisely, the question
of whether every function f (for example, continuous) is the derivative of some
other function, and if so, how to find the antiderivative or primitive F of the given
function. In the language of forms, this question is whether a 1-form f (x)dx is the
differential dF of some 0-form, i.e., a function F .

We gave a positive answer to this question, considering everything over a numer-
ical interval. We did not even consider any other situation. If you ask yourself the
same question, for example, for a function identically equal to one on the circle or
for an appropriate form dϕ, you will immediately realize that the answer is nega-
tive. There is no differentiable function on the circle whose derivative everywhere
is equal to one.

This is one of the manifestations of a relation between a question of global anal-
ysis and the topology of the domain, where the question is posed and solved.

A significant part of the following text is devoted to a deeper, although not com-
plete, discussion of this relation.

Generalizing the classical situation, we shall ask the following question: Given a
differential k-form ωk , we look for a (k − 1)-form ωk−1 such that ωk = dωk−1.

c. Closed and Exact Differential Forms

Differential forms ωk having a primitive (i.e., being the differential of some form
ωk−1: ωk = dωk−1) are called exact forms.

We shall easily prove that an obvious necessary differential condition for the
exactness of a form ωk is the equality dωk = 0, due to the fact that the external
redifferentiation of any differential form is identically zero.

If the differential of a form is equal to zero, the form is called closed.
Thus, closedness is a necessary condition for the exactness of a form.
Previously, we considered in all details and interpretations the case of 1-forms.

We also convinced ourselves that although closedness is a necessary condition for
exactness, this condition is not sufficient, and it is significantly associated with the
topology of the domain in which the problem is posed.
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In physics, potential vector fields play an important role. If we have a scalar
product 〈, 〉 (or a nondegenerate bilinear form) in some space, then there arises a
correspondence between linear functions (forms) and vector fields, defined by the
equality ω1

A(x)(ξ) = 〈A(x), ξ 〉. Incidentally, when we want to calculate the work
that should be done by a vector field along a path γ , then we just integrate the
form ω1

A, called a work form. The remarkable characteristic of potential vector fields
is that the work on those fields depends only on the beginning and the end of the
path of transition and is equal to the difference between the values of the potential
generating this field. In particular, the work on a closed contour (a cycle) with such
a vector field is zero.

In the language of vector fields, the differential characteristic of a potential vector
field is, as we know, that they have no rotation (their curl vanishes). We also know
that irrotational vector fields are not always potential vector fields, and it depends on
the topology of the domain on which they act. In a simply connected domain, this
necessary characteristic is also sufficient. For example, in a three-dimensional ball
or a ball with deleted center, or in a cut-out ball, every irrotational field is a potential
field; in the two-dimensional disk this is also the case, but in the disk with the center
deleted, it is no longer the case. (Recall the typical example: in writing the form dϕ
in Cartesian coordinates (x, y), we considered the vector field (−y, x)/(x2 + y2)

corresponding to it.)
Along with the necessary differential condition of exactness of a form, which

“feels” the form locally, we had an integral criterion for exactness of 1-forms, con-
sisting in the fact that the integral of a form over any cycle (closed path) lying in the
considered domain is always equal to zero.

This integral criterion for the exactness of forms remains true with respect to
forms of any degree, with the proper understanding of what the cycle of the corre-
sponding dimension should be.

This is one of de Rham’s theorems, which has as a consequence a much older
theorem, also called Poincaré’s lemma, asserting that in the space R

n, in a ball, or
on any other domain homeomorphic to it, every closed form is exact.

E.1.2 Manifolds, Chains, and the Boundary Operator

a. Cycles and Boundaries

In the previous Stokes’s formula we have geometric objects (curves, surfaces, mani-
folds, and their boundary, i.e., the border), on which we integrate the corresponding
differential forms.

Similar to the operator d of differentiation, we have the operator ∂ , which maps
surfaces to their boundary. The boundary ∂Mk of a manifoldMk is also a manifold,
but with one dimension fewer. Moreover, the variety ∂Mk no longer has a boundary,
i.e., the reapplication of the operator ∂ always gives the empty set. In this sense, the
operators d and ∂ are similar. But if the operator d increases the dimension of the
object by 1, the operator ∂ reduces the dimension by 1.
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The concepts of closedness and exactness in forms correspond here to the con-
cepts of cycles and boundaries.

A compact surface, a manifoldMk (later we shall say also chain) of dimension k,
is called a cycle of dimension k if ∂M = ∅, i.e., M does not have any boundary
points.

Thus, the sphere of dimension k is a cycle of dimension k.
A surface, manifold Mk (a chain), is called a boundary if it has a “primitive” in

the sense that there is a surface or manifoldMk+1 (chain) such that ∂Mk+1 =Mk .
It is clear that if the surface or manifold is the boundary of some other compact

manifold, then it must be a cycle. However, the situation here is similar to that of
forms, where the conditions are necessary but in general not sufficient to ensure that
in the domain where this cycle lies, there is also a manifold such that the cycle is
the boundary of that manifold.

Take, for example, a circular ring, or annulus, in the plane. Then every circle
containing the hole is a cycle, but it is not the boundary of a manifold lying on
the annulus. But if instead of an annulus we consider a disk, then the situation is
radically different.

Let us consider the boundary of the annulus, and we shall recall the following
fact. The operator ∂ acting on boundaries is not a simple set-theoretic transforma-
tion. On an atlas of the surface or manifold, this operator gives an atlas of the bound-
ary, which is called the induced atlas of the boundary. If the original atlas consists
of compatible charts, then under this operator, the induced atlas will also have this
property. Thus if the manifold is orientable, then its boundary possesses an orienta-
tion, which is called the induced orientation or agreed or compatible orientation of
the boundary.

If the annulusG that we just discussed is oriented with the standard left frame of
the Cartesian coordinates in the plane, then its boundary, consisting of two circles
γ1, γ2, will be oriented such that the outer circle γ2 goes in the positive direction
(counterclockwise) and the inner circle is negatively oriented (clockwise). The in-
tegral in such a boundary is reduced to the difference between the integrals over γ1
and γ2. It is useful to write that as ∂G= γ2+ − γ1+.

For example, if you need to calculate the work that is accomplished by five turns
along the path γ2+, then three along the path γ1+, and finally two along γ2−, then
you have to integrate over the chain 5γ2+ + 3γ1+ + 2γ2− = 5γ2+ + 3γ1+ − 2γ2+ =
3γ2+ + 3γ1+. The integration over such chain corresponds, of course, to a linear
combination of the integrals over γ1+ and γ2+.

This discussion illustrates why it is useful to consider linear combinations of
geometric objects. These are called chains. We have explained here only where
the concept of chains comes from, what are they in general, and where and why
they are useful. We are not going into general and formal definitions, since we do
not need them here in the more general form, and they can be found in the book.
Analogously, just as in analysis, when we are forced to go from the usual ordinary
functions to generalized functions, in geometry one goes from the simplest objects
like cubes and chains of cubes to their generalizations like singular cubes and chains
of singular cubes. Moreover, we then do the next extension and invent the concept
of flux, which combines differential forms, generalized functions, and manifolds.
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b. Homological Cycles

We shall see below that it is sometimes possible to calculate the integral of a form
over a cycle by going to some other cycle, sometimes significantly simpler, which
is in some way associated with the original cycle. This is a remarkable, important,
and useful fact, which is used in different areas of mathematics and its applications.

In order to understand the relation between cycles, we have to consider the fol-
lowing fact: their difference must be the boundary of an object lying on the domain
we are considering. We say that such cycles are homologous in this domain.

For example, two closed oriented paths γ1+, γ2+ on a domain D or on a mani-
foldM are homologous if we can find an orientable surface S2+ ⊂D (S2+ ⊂M) such
that ∂S2+ = γ2+ − γ1+.

Thus, the circles γ1+, γ2+ considered above are homologous in the annulus G+.
Since the operator ∂ acts on boundaries and is extended by linearity over chains,

it is possible to determine the homology of chains.
For instance, the chains γ1+ and 2γ2+ are not homologous on the annulus G+.
We shall discuss the role and applications of the concept of homology of cycles

in the context of the integration of differential forms.

E.2 Pairing

E.2.1 The Integral as a Bilinear Function and General Stokes’s
Formula

a. The Integral of an Exact Form over a Cycle and of a Closed Form over a
Boundary

We introduce first some useful notation.
Let Ω(M) denote the whole set of differential forms on a manifold (or surface)

M , and let Ωk(M) denote the subset of forms of order k (i.e., k-forms), Zk(M) its
subset of closed k-forms, and Bk(M) its subset of exact k-forms.

Analogously, let C(M) be the set of chains on a manifold (or surface) M , and
let Ck(M) be the subset of chains of dimension k (k-chains), Zk(M) the subset of
cycles (k-cycles), and Bk(M) its subset of boundary cycles (k-boundaries).

Thus, Ω(M) ⊃ Ωk(M) ⊃ Zk(M) ⊃ Bk(M) and C(M) ⊃ Ck(M) ⊃ Zk(M) ⊃
Bk(M).

As long as we do not change the manifold M on which we wish to calculate
something, in order to simplify the notation we shall remove the symbol M when-
ever it does not lead to confusion, that is present in the just-discussed notation.

Now we shall make a concluding remark.
Consider the integral of an exact form bk ∈ Bk over the cycle zk ∈ Zk and of a

closed form zk ∈ Zk over a boundary bk ∈ Bk . Employing Stokes’s formula, we find
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that
∫

zk

bk =
∫

zk

dωk−1 =
∫

∂zk

ωk−1 =
∫

∅
ωk−1 = 0

and
∫

bk

zk =
∫

∂ck+1

zk =
∫

ck+1

dzk =
∫

ck+1

0= 0.

b. Integral of a Closed Form over a Cycle and Its Invariance Under Certain
Changes of the Form and the Cycle

The remark that we just made leads to the following important and very useful
conclusion.

We shall consider now the integral of a closed form zk over a cycle zk . Given that
the addition of an exact form bk to a closed form zk gives again a closed form (since
d(zk + bk)= dzk + dbk = 0), and the addition of a boundary cycle bk to a cycle zk
gives again a cycle (since ∂(bk + zk)= ∂bk + ∂zk = 0), recalling the remark we just
made, we can now write the following chain of equalities:

∫

zk

zk =
∫

zk

(
zk + bk)=

∫

zk+bk

(
zk + bk)=

∫

[zk]
[
zk
]
.

Here [zk] means the class of forms that differ from the original form zk modulo
an exact form, and [zk] is the class of cycles differing from the original one up to a
boundary cycle.

Thus by calculating the integral of a closed form zk over a cycle zk , we can afford
to choose, without changing the value of the integral, any cycle from the class [zk]
and any form from the class [zk].

E.2.2 Equivalence Relations (Homology and Cohomology)

a. Toward Uniformity in Terminology: Cycles and Cocycles, Boundaries
and Coboundaries

Along with the unification of notation, it is convenient to agree on the following
standardization of terminology. Since the elements of the sets Zk and Bk are called
cycles and boundaries, respectively, we shall call the elements of Zk and Bk cocy-
cles and coboundaries, respectively.

Thus a cocycle is a closed differential form, and a coboundary is an exact differ-
ential form.
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b. Homology and Cohomology

A class [zk], or more precisely a class [zk](M), is called a homology class of the
cycle zk on the manifold (or surface) M .

A class [zk], or more precisely a class [zk](M), is called a cohomology class of
the cocycle zk on the manifold (or surface)M .

The operator ∂ taking boundary chains is called a boundary operator, and the
operator d acting on differential forms is called a coboundary operator.

Two cycles are homologous on the manifold (or surface) M if their difference is
the boundary of a chain lying onM .

Two cocycles are cohomologous on the manifold (or surface) M if their differ-
ence is a coboundary on M (i.e., two closed forms are cohomologous on the mani-
fold if their difference is an exact form on the manifold).

E.2.3 Pairing of Homology and Cohomology Classes

a. The Integral as a Bilinear Function

The integral
∫
ck
ωk of a k-form over a chain on some manifoldM can be considered

a pairing 〈ωk, ck〉 of objects from two vector spaces, namely the linear space of
k-forms Ωk and the linear space of k-chains Ck .

We can conclude, knowing the properties of the integral, that the operation
〈ωk, ck〉 is bilinear.

b. Nondegeneracy of the Bilinear Form of Pairing (de Rham Theorem)

When we considered the above pairing between cycles and cocycles, we obtained
an important result, which can be stated now in the following form:

〈
zk, zk

〉= 〈[zk], [zk]
〉
.

Recalling the definition of the cohomology and homology classes [zk], [zk],
we can say that they are elements of the quotient space Hk := Zk/Bk and Hk :=
Zk/Bk , respectively.

The vector spaces Hk and Hk , whose complete notation is Hk(M) and Hk(M),
are called the space of k-dimensional cohomology of the manifoldM and the space
of k-dimensional homology of the manifoldM , respectively.

Thus, the integral actually also pairs cohomology and homology classes. The
pairing 〈[zk], [zk]〉 is clearly linear and is nondegenerate, as was shown by de Rham.

(Recall that a bilinear form 〈, 〉 is called nondegenerate if once we fix one of the
arguments with a nonzero value, the form is not identically zero with respect to the
other argument.)
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c. Integral Criterion for the Exactness of a Closed Form

De Rham’s theorem that we just mentioned implies the following criterion of exact-
ness of a closed form: A closed form zk = ωk on a manifold (surface, domain) M
is exact onM if and only if the integral of this form over every k-dimensional cycle
lying onM is equal to zero.

Indeed, if 〈zk, zk〉 = 0 for every cycle zk lying onM , then according to de Rham’s
theorem, [zk] = 0 in Hk =Zk/Bk . This means that zk ∈ Bk .

We have examined in detail all aspects for the case of 1-forms, and we also
proved this criterion in this case. We have now established this criterion in general.

In particular, you can now say by looking at a manifold or domain where there is
an irrotational vector field or a divergence-free vector field whether the vector field
is a potential, or it has a vector potential (i.e., it is the curl of some vector field),
respectively.

We can also use de Rham’s theorem on the second argument, of course. For
example, if we know that on some manifold all the closed k-forms are exact, we can
say that on this manifold every k-cycle is a boundary cycle (homologous to zero).
Thus, we have a conclusion about the topology of the manifold.

E.2.4 Another Interpretation of Homology and Cohomology

a. Duality of Operators d and ∂

In the notation of the pairing 〈ωk, ck〉, Stokes’s formula has the form
〈
dωk−1, ck

〉= 〈ωk−1, ∂ck
〉
,

showing the duality between the operators d and ∂ .

b. The Operators d and ∂ as Mappings

In some cases, it is useful to write the full notation of the operators d and ∂ , for
example, in the notation of the following sequences of linear mappings:

· · · dk−2−−→Ωk−1 dk−1−−→Ωk
dk−→Ωk+1 dk+1−−→ · · · ,

· · · ∂k−1←−− Ck−1
∂k←− Ck ∂k+1←−− Ck+1

∂k+2←−− · · · .
Using the standard notations Ker and Im for the kernel and the image of a linear

mapping, we can write, for example, that

Zk =Kerdk, Zk =Ker ∂k, Bk = Imdk−1, Bk = Im ∂k+1,

and thus

Hk =Kerdk/ Imdk−1 and Hk =Ker∂k/ Im ∂k+1.
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E.2.5 Remarks

A few words as a conclusion. I repeat that this is just an overview, an overview of
the principles that does not go into details. The details are covered in the textbook,
and numerous developments are given in the specialized literature, which is easier
to read with an initial idea of the subject, of course.

In physics and mechanics, we often speak in the language of vector fields. How-
ever, you now know how to translate problems in the language of vector fields into
the language of differential forms, and conversely you know how to relate standard
operators like grad, curl, div with the operator d of the exterior differentiation of
forms.

In continuum mechanics, the Hamiltonian operator ∇ is used. Some techniques
that are used with it are presented in the text. There you will also find the answer
to the question of how to represent and calculate the operators grad, curl, div in
curvilinear coordinates.

All of this, including Stokes’s formula, has numerous applications. For example,
look at the deduction of Euler’s equation in continuum mechanics, or write down
Maxwell’s equations for an electromagnetic field. I shall not mention the internal
mathematical applications in analysis, especially complex analysis, geometry, alge-
braic topology. . .
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Index of Basic Notation

Logical symbols

=⇒ logical consequence (implication)
⇐⇒ logical equivalence
:=
=:
}

equality by definition; colon
on the side of the object defined

Sets

E closure of the set E
∂E boundary of the set E
E̊ :=E\∂E interior of the set E
B(x, r) ball of radius r with center at x
S(x, r) sphere of radius r with center at x

Spaces

(X,d) metric space with metric d
(X, τ) topological space with system τ of open sets
R
n(Cn) n-dimensional real (complex) space

R
1 =R (C1 =C) set of real (complex) numbers
x = (x1, . . . , xn) coordinate expression of a point of n-dimensional space
C(X,Y ) set (space) of continuous functions on X with values in Y
C[a, b] abbreviation for C([a, b],R) or C([a, b],C)
C(k)(X,Y ) set of mappings from X into Y that are k times continuously differen-

tiable
C(k)[a, b] abbreviation for C(k)([a, b],R) or C(k)([a, b],C)
Cp[a, b] space C[a, b] endowed with norm ‖f ‖p
C2[a, b] space C[a, b] with Hermitian inner product 〈f,g〉 of functions or

mean-square deviation norm
R(E) set (space) of functions that are Riemann integrable over the set E
R[a, b] space R(E) when E = [a, b]
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R̃(E) space of classes of Riemann integrable functions on E that are equal
almost everywhere on E

R̃p(E)(Rp(E)) space R̃(E) endowed with norm ‖f ‖p
R̃2(E)(R2(E)) space R̃(E) endowed with Hermitian inner product 〈f,g〉 or

mean-square deviation norm
Rp[a, b],R2[a, b] spaces Rp(E) and R2(E) when E = [a, b]
L(X;Y), (L(X1, . . . ,Xn;Y)) space of linear (n-linear) mappings from X (from

(X1 × · · · ×Xn)) into Y
TMp or TM(p), TpM,Tp(M) tangent space to the surface (manifold) M at the

point p ∈M
S Schwartz space of rapidly decreasing functions
D(G) space of fundamental functions of compact support in the domain G
D′(G) space of generalized functions on the domain G
D an abbreviation for D(G) when G=R

n

D′ an abbreviation for D′(G) when G=R
n

Metrics, norms, inner products
d(x1, x2) distance between points x1 and x2 in the metric space (X,d)
|x|,‖x‖ absolute value (norm) of a vector x ∈X in a normed vector space
‖A‖ norm of the linear (multilinear) operator A
‖f ‖p := (

∫
E
|f |p(x)dx)1/p , p ≥ 1 integral norm of the function f

‖f ‖2 mean-square deviation norm (‖f ‖p when p = 2)
〈a,b〉 Hermitian inner product of the vectors a and b
〈f,g〉 := ∫

E
(f · g)(x)dx Hermitian inner product of the functions f and g

a · b inner product of a and b in R
3

a× b vector (cross) product of vectors a and b in R
3

(a,b, c) scalar triple product of vectors a,b, c in R
3

Functions
g ◦ f composition of functions f and g
f−1 inverse of the function f
f (x) value of the function f at the points x; a function of x
f (x1, . . . , xn) value of the function f at the point x = (x1, . . . , xn) ∈ X in

the n-dimensional space X; a function depending on n variables
x1, . . . , xn

suppf support of the function f
&)f (x) jump of the function f at the point x
{ft : t ∈ T } a family of functions depending on the parameter t ∈ T
{fn;n ∈N} or {fn} a sequence of functions
ft −→

B
f on E convergence of the family of functions {ft ; t ∈ T } to the function f

on the set E over the base B in T
ft⇒

B
f on E uniform convergence of the family of functions {ft ; t ∈ T } to the

function f on the set E over the base B in T
f = o(g) over B
f =O(g) over B
f ∼ g or f / g over B

⎫
⎬

⎭

asymptotic formulas (the symbols
of comparative asymptotic behavior
of the functions f and g over the base B)
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f (x)/∑∞n=1 ϕn(x) over B expansion in an asymptotic series
D(x) Dirichlet function
exp(A) exponential of a linear operator A
B(α,β) Euler beta function
Γ (α) Euler gamma function
χE characteristic function of the set E

Differential calculus
f ′(x), fx(x), df (x), Df (x) tangent mapping to f (differential of f ) at the point x
∂f

∂xi
, ∂if (x), Dif (x) partial derivative (partial differential) of a function f depend-

ing on variables x1, . . . , xn at the point x = (x1, . . . , xn) with respect to
the variable xi

Dvf (x) derivative of the function f with respect to the vector v at the point x
∇ Hamilton’s nabla operator
gradf gradient of the function f
div A divergence of the vector field A
curl B curl of the vector field B

Integral calculus

μ(E) measure of the set E∫
E
f (x)dx∫

E
f (x1, . . . , xn)dx1 · · ·dxn∫ · · ·
E

∫
f (x1, . . . , xn)dx1 · · ·dxn

⎫
⎪⎬

⎪⎭

integral of the function f
over the set E ⊂R

n

∫
Y

dy
∫
X
f (x, y)dx iterated integral

∫
γ
P dx +Qdy +R dz∫

γ
F · ds, ∫

γ
〈F,ds〉

} curvilinear integral (of second kind) or the
work of the field F= (P,Q,R) along
the pathγ∫

γ
f ds curvilinear integral (of first kind) of the function f along the curve γ

∫∫
S
P dy ∧ dz+Qdz∧ dx +R dx ∧ dy∫∫

S
F · dσ ,

∫∫
X
〈F,dσ 〉

} integral (of second kind) over
the surface S in R

3;flux of
the field F= (P,Q,R) across
the surface S∫∫∫

S
f dσ surface integral (of first kind) of f over the surface S

Differential forms
ω (ωp) a differential form (of degree p)
ωp ∧ωq exterior product of forms ωp and ωq

dω (exterior) derivative of the form ω∫
M
ω integral of the form ω over the surface (manifold)M

ω1
F := 〈F, ·〉 work form

ω2
V := (V, ·, ·) flux form



Subject Index

Symbols
δ-function, 281
δ-neighborhood, 5, 11
ε-grid, 17
k-cell, 255
k-dimensional volume, 186
k-path, 255
n-dimensional disk, 180, 323
nth moment, 402
p-cycle, 358
p-form, 198
τ1 space, 14
τ2 space, 14
θ -formula, 586

A
Abel summation, 392
Abel–Dirichlet test, 375, 376, 378
Abel’s transformation, 376
Absolute convergence

of a series, 374, 375
of an improper integral, 417
of functions, 374

Adiabatic, 224
Adiabatic constant, 226
Adjoint mapping, 317
Admissible set, 119
Alexander horned sphere, 164
Algebra

exterior, 319, 320
graded, 314
Grassmann, 319, 320
Lie, 72, 348
of forms, 313

skew-symmetric, 314
of functions, 399

complex, 399

real, 399
self-adjoint, 402
separating points, 400

Almost everywhere, 114
Alternation, 314
Amplitude, 554
Amplitude modulation, 580
Analysis, harmonic, 554
Angular velocity, 69, 70
Approximate identity, 451
Area

as the integral of a form, 229–231
Minkowski outer, 195
of a k-dimensional surface, 188, 231
of a piecewise-smooth surface, 231
of a sphere in R

n, 193, 440
Asymptotic equality, 590
Asymptotic equivalence, 590
Asymptotic estimate, 589

uniform, 602
Asymptotic expansion

in the sense of Erdélyi, 601
uniform, 602

Asymptotic formula, 590
Asymptotic methods, 589
Asymptotic problem, 588
Asymptotic sequence, 593
Asymptotic series, 593, 594

general, 593
in the sense of Erdélyi, 602
in the sense of Poincaré, 594
power, 598–600

Asymptotic zero, 595
Asymptotics, 588, 589

of a Bessel function, 631
of a Laplace integral, 629
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of canonical integral, 624
of Legendre polynomials, 614
of the Fourier integral, 625, 630
of the gamma function, 613, 620
of the Laplace integral, 625
of the probability error function, 618

Atlas
analytic, 326
of a surface (manifold), 164, 321
of class C(k), 326
orienting, 175, 328
smooth, 326

Average value of the function in the sense of
Lévy, 664

Averaging of a function using a kernel, 489

B
Ball

closed, 5
in R

n, volume, 440
in a metric space, 5

Band-limited signal, 578
Base

in the set of partitions, 110
of a topology, 10

Basis of a vector space, 494
Bernoulli integral, 310
Bernoulli numbers, 626

generating function, 626
Bernoulli polynomials, 548
Bessel function, 390, 408

asymptotics, 631
Bessel’s equation, 390, 408, 411, 430
Bessel’s inequality, 502, 503

for trigonometric system, 527
Beta function, 433–435
Bicompact set, 15
Borel’s formulas, 573
Boundary, 687

of a half-space, 179
of a manifold, 322
of a p-dimensional cube, 357
of a surface, 179

Boundary cycle, 358
Boundary operator, 690
Boundary point, 6, 13, 322
Boundedness

total, 395
uniform, 395
uniform, of a family of functions, 371

Brachistochrone, 93–95
Bracket, Poisson, 348
Bundle of tangent paths, 347

C
Canonical embedding, 350
Canonical integral

asymptotics, 624
Cardinal sine, 581
Carnot cycle, 227
Cartesian, cylindrical, and spherical

coordinates, 674
Category of a set, 28
Cauchy integral, 310
Cauchy–Bunyakovskii inequality, 448, 499
Cauchy–Riemann equations, 310
Central limit theorem, 664, 666
Chain, 687

of charts, 330
contradictory, 330
disorienting, 330

of singular cubes, 357
Chains, 687
Change of variable in an integral, 137–145,

157–159
Change of variables formula, 655
Channel with noise, 668
Characteristic

frequency, 556
phase, 556
spectral, 556

Chart
local, 163, 321
parameter domain, 163
range, 163
range of, 321

Charts, consistent, 175, 328
Chebyshev metric, 3
Chebyshev polynomials, 518
Chebyshev–Laguerre polynomials, 518
Circulation of a field along a curve, 235, 278
Class

orientation, 329
Closed and exact differential forms, 685
Closed ball, 5
Closed form, 353
Closed set, 13

in a metric space, 5, 6
in a topological space, 13

Closure, 6, 13
Coboundary operator, 690
Coding of a signal, 668
Coefficient

of thermal conductivity, 303
of thermal diffusivity, 304

Coefficients
Fourier, 500–502, 504, 507, 512, 519, 525,

530, 534, 535, 544, 546, 550
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extremal property, 500
Lamé, 268, 275

Cohomologous on the manifold, 690
Cohomology, 689, 690
Cohomology class, 690
Cohomology group, 356
Compact set, 15

elementary, 160
in a metric space, 16

Companion trihedral, 73
Complete system of vectors, 505–510
Completeness of the trigonometric system, 539
Completion of a space, 24–27
Concentration of measures, 663
Condition

necessary, for convergence, 373
Conditions

Dini, 528, 563
Connected set, 19
Consistent charts, 175, 328
Constant, cyclic, 298, 360
Content of a set (Jordan), 121
Continuity

and passage to the limit, 382
of an improper integral depending on a

parameter, 420–422
of an integral depending on a parameter,

406, 407
Continuous group, 72, 336
Contribution

of a maximum point, 607
Contribution of a point to asymptotics, 606
Convergence

absolute, 374
of an improper integral, 417

in mean, 521, 539
of a family of functions

pointwise, 363, 367
uniform, 367

of a series of vectors, 499
of an improper integral, 154

Cauchy principal value, 157
of distributions, 459
of generalized functions, 459
of linear functionals

strong (norm), 58
of test functions, 458
uniform, 395

Cauchy criterion, 369, 370
weak, 459

Convergence set, 363, 367
Convolution, 444–466

differentiation, 449
in R

n, 478

multidimensional, 478–488
symmetry, 448
translation-invariance, 449

Coordinate parallelepiped, 109
Coordinates

Cartesian, 259, 261
curvilinear, 163, 265
cylindrical, 268–274
of a tangent vector, 340
polar, 168
spherical, 168, 268–274
triorthogonal, 268–274

Cotangent space to a manifold, 340
Covering

locally finite, 337
refinement of another covering, 337

Criterion
Cauchy, 419

for uniform convergence, 369, 370, 374
for uniform convergence of a series, 377
for uniform convergence of an integral,

415–417
Darboux, 116–118, 131
for a field to have a potential, 291
for compactness in a metric space, 17
for continuity of a mapping, 31
Lebesgue, 114–116, 119, 122, 140, 147

Critical point, 151
Cube

boundary of, 357
singular, 357

boundary of, 358
Curl, 204, 260, 275, 680

physical interpretation, 282, 283
Curl in Cartesian, cylindrical, and spherical

coordinates, 681
Current function, 310
Curvature of a curve, 73
Curvilinear coordinates and metric, 673
Cycle

boundary, 358
Carnot, 227
of dimension p, 358

Cycle of dimension, 687
Cycles, homologous, 358
Cycles and boundaries, 686
Cyclic constant, 298, 360
Cyclic frequency, 554
Cylinder, 169

D
Darboux integral

lower, 117
upper, 117
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Darboux sum
lower, 116, 394
upper, 116

De Rham theorem, 686, 690
Deformation (of a closed path), 294
Degree (order) of a differential form, 196
Delta function (δ-function), 281, 445, 450,

456, 457, 459, 464, 469, 479, 490,
552, 583, 586

shifted, 479
Derivation

of a ring, 352
Derivative

Lie, 352
of a mapping, 61, 62
of order n, 81
partial, 70, 71
second, 81, 84
with respect to a vector, 82

Derivative mapping, 62
Deviation

mean-square, 522
Diffeomorphism, elementary, 142
Differential

exterior, 343, 349
exterior, of a form, 202, 343, 349
of a mapping, 61
of order n, 81
partial, 70, 71
second, 81, 84
total, 71

Differential equation with variables separable,
228

Differential form, 198
closed, 297, 353
exact, 296, 353
flux, 199
of class C(k), 342
of compact support, 344
of order zero, 202
on a manifold, 341
on a smooth surface, 209
restriction to a submanifold, 350
work, 199

Differential operator, 481
adjoint, 481
self-adjoint, 481
transpose, 481

Differentiation, 61
at a point of a manifold, 348
of a family of functions depending on a

parameter, 387–391
of a Fourier series, 538
of a generalized function, 461–464

of a power series, 389
of a series, 389
of an integral

over a liquid volume, 491
of an integral depending on a parameter,

407–410, 478
on a manifold, 348, 351
with respect to a parameter, 423–425

Dimension of a manifold, 321
Dini conditions, 528
Dipole, 299, 490
Dipole moment, 300, 490
Dipole potential, 300
Direct product of metric spaces, 8
Direction

of circuit around a domain, 178
Direction of motion along a curve, 178
Dirichlet discontinuous factor, 432
Dirichlet integral, 431, 443, 563, 601
Dirichlet kernel, 525, 551
Discontinuous factor, Dirichlet, 432
Discrete group of transformations, 336
Discrete metric, 2, 8
Disk, n-dimensional, 180, 323
Distance, 654
Distribution, 456

regular, 459
singular, 459
tempered, 584

Divergence, 204, 260, 275, 676
physical interpretation, 279–282

Divergence in Cartesian, cylindrical, and
spherical coordinates, 679

Domain
elementary, 241
fundamental, of a group of automorphisms,

325, 336
of parameters of a chart, 321
parameter, 366
simply connected, 293

Double layer, 490

E
Efficiency of a heat engine, 227
Eigenvalue, 511

of a Sturm–Liouville problem, 511
Eigenvector of an operator, 512
Element of volume, 229
Elementary diffeomorphism, 142
Elliptic integral, 392

complete
of first kind, 392, 408
of second kind, 392, 408

modulus, 408
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Embedding
canonical, 350

Entropy, 302
Envelope of a family of curves, 253
Equality

asymptotic, 590
Parseval’s, 513, 523, 541, 562, 585

Equation
Bessel’s, 390, 408, 411, 430
differential, 35, 228
Euler–Lagrange, 92
Euler’s

hydrodynamic, 307
heat, 303, 576
hypergeometric, 392
Laplace’s, 304, 517
Mayer’s, 226
of an adiabatic, 226
of continuity, 305, 306
of state, 223
Poisson’s, 299, 304, 488
wave, 308, 309, 311, 574

homogeneous, 309
inhomogeneous, 309

Equations
Cauchy–Riemann, 310
electrostatic, 286
magnetostatic, 286
Maxwell, 262, 263, 275, 282, 299, 311

Equicontinuity, 396
Equivalence, asymptotic, 590
Equivalent atlases

with respect to orientation, 176, 329
with respect to smoothness, 326

Erdélyi’s lemma, 625
Error function

asymptotics, 618
Estimate, asymptotic, 589

uniform, 602
Euler, 433
Euler–Gauss formula, 436
Euler–Lagrange equation, 92
Euler–Poisson integral, 429, 438, 560, 572,

601
Eulerian integral, 433–444
Euler’s formula, 441, 649
Euler’s hydrodynamic equation, 307
Exact form, 353, 685
Exhaustion, 660
Exhaustion of a set, 152
Expansion, asymptotic

in the sense of Erdélyi, 601
uniform, 602
uniqueness, 594

Exponential
of an operator, 71–73

Exponential function, 648
Exponential function as a limit, 649
Exponential integral, 591
Exponential of a matrix, 650
Exponential of operators, 650
Exponential system, 495
Exterior algebra, 319, 320
Exterior differential, 202, 343, 349

of a form, 343, 349
Exterior point, 6, 13
Exterior product, 196, 315, 342
Extremum of a function

necessary condition, 88
sufficient condition, 88
with constraint, 107

F
Family of functions, 366

equicontinuous, 396
at a point, 401, 402

separating points, 400
totally bounded, 395
uniformly bounded, 395

Fejér kernel, 551
Field

of forms, 257
of linear forms, 198
potential, 288
scalar, 257
solenoidal, 296
tensor, 257
vector, 257, 348

smooth, 348
Filter, low-frequency, 556
Flow

planar, 310
plane-parallel, 310

Flux across a surface, 215–219, 234, 278, 303,
491

Force
mass, 306

Form
anti-symmetric, 196
differential

closed, 297, 353
exact, 296, 353
flux, 199
of class C(k), 342
of compact support, 344
on a manifold, 341
restriction to a submanifold, 350
work, 199
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Hermitian, 45
nondegenerate, 45
nonnegative, 45

on a surface in R
n, 229

semidefinite, 88
skew-symmetric, 196, 314–317
volume in R

k , 229
Form is called closed, 685
Formula

asymptotic, 590
Cauchy–Hadamard, 375
co-area, 237
complement, for the gamma function, 437
Euler–Gauss, 436
Euler’s, 441
for change of variable in an integral, 138
Fourier inversion, 564, 585
Frenet, 73
Gauss’, 443
Gauss–Ostrogradskii, 243–246, 279, 304,

483, 491
in vector analysis, 278

Green’s, 491
homotopy, 361
Kotel’nikov’s, 579
Kronrod–Federer, 237
Legendre’s, 442
Leibniz’, 407
Newton–Leibniz, 238, 279, 406, 566
Poisson summation, 586
reduction

for the beta function, 434
for the gamma function, 436

Stirling’s, 444, 613
Stokes’, 238, 277, 279, 345–347, 359

general, 248–251, 345
in R

3, 246–248
in vector analysis, 278

Taylor’s, 95, 412
Wallis’, 430, 444, 627

Formulas
Borel’s, 573
differential, of field theory, 263–265
Green’s, 285, 286
integral, of vector analysis, 279

Fourier coefficients
extremal property, 500

Fourier cosine transform, 557
Fourier integral, 624

asymptotics, 625, 630
multiple, 632

Fourier inversion formula, 564, 585
Fourier series, 493–520

in a general orthogonal system, 493, 494

multiple, 550
of generalized functions, 552
partial sum

integral representation, 524
pointwise convergence, 520
rate of convergence and smoothness, 534

Fourier sine transform, 557
Fourier transform, 555, 556, 559, 564, 567,

571, 576
asymptotic properties, 566–569
frequency shift, 580
in L2, 582
inverse, 576
multidimensional, 569
normalized, 561
of a convolution, 562
of generalized functions, 585
rate of decrease and smoothness, 566
time shift, 580

Frame
Frenet, 73
orienting, 174

Frequencies, natural, 512
Frequency, 553

cyclic, 554
fundamental, 554
harmonic, 554

Frequency characteristic, 556
Frequency spectrum, 586
Fresnel integral, 431, 443, 601
Function

band-limited, 578
Bessel, 390, 408

asymptotics, 631
beta, 433–435
cardinal sine, 581
change of coordinates, 322
current, 310
delta, 445, 450, 456, 457, 459, 464, 469
Dirichlet, 364
exponential integral, 591
fundamental, 479
gamma, 435–438

asymptotics, 613, 620
incomplete, 601

generalized, 456
differentiation, 461–464
of several variables, 479
regular, 459
singular, 459

generating, 467
Green’s, 465
harmonic, 287, 304

conjugate, 310
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Heaviside, 461, 464, 485, 491
limit, 363, 367
linear, 49
locally integrable, 448
multilinear, 49
of compact support, 138, 447
phase, 625
piecewise continuous, 529
piecewise continuously differentiable, 529
probability error, 601

asymptotics, 618
rapidly decreasing, 568
Riemann integrable

over a set, 120
over an interval, 111

sample, 581
sine integral, 601
spectrum of, 554
spherical, 517
support, 447
system, 445, 456
test, 458, 479
transient pulse, 445
uniformly continuous, 452
unit step, 461
zeta, 443

Functional
linear, 49
multilinear, 49

Functions, asymptotically equal, 590
Functions, asymptotically equivalent, 590
Functions of a very large number of variables,

663
Fundamental domain of a group of

automorphisms, 325, 336
Fundamental frequency, 554
Fundamental sequence, 21
Fundamental solution, 464–466, 485
Fundamental tone, 512

G
Galilean transformation, 587
Gamma function, 433, 435–438

asymptotics, 613, 620
incomplete, 601

Gauge condition, 312
Gauss’ formula, 443
Gauss’ theorem, 491
Gauss–Ostrogradskii formula, 238, 243–246,

483, 491
in vector analysis, 278

Gaussian measures, 667
General Stokes’s formula, 683, 685, 688
Generalized function, 456

differentiation, 461–464
of several variables, 479
regular, 459
singular, 459

Generating function of a sequence, 467
Gibbs’ phenomenon, 538, 549
Graded algebra, 314
Gradient, 204, 260, 275, 283, 675

physical interpretation, 283
Gradient in Cartesian, cylindrical, and

spherical coordinates, 676
Gram matrix, 187
Grassmann algebra, 319, 320
Green’s formula, 491
Green’s function, 465
Green’s theorem, 238–243
Group

cohomology, 356
continuous, 72, 336
discrete, of transformations, 336
homology, 298, 357, 358
p-dimensional, 358

homotopy, 298
Lie, 72, 336
of automorphisms, 325
one-parameter, 351
topological, 72, 336

H
Haar system, 519
Hamilton operator (nabla), 262, 265
Harmonic analysis, 554
Harmonic frequency, 554
Harmonic function, 287, 304

conjugate, 310
Harmonic polynomials, 517
Hausdorff space, 12, 14
Heat capacity, 224

molecular, 225
Heat engine, 226
Heat equation, 303, 576
Heaviside function, 464, 485, 491
Hermite polynomials, 518
Hermitian form, 45

nondegenerate, 45
nonnegative, 45

Hilbert’s fifth problem, 337
Homeomorphism, 31
Homological cycles, 688
Homologous cycles, 358
Homologous on the manifold, 690
Homology, 358, 689, 690
Homology class, 690
Homology group, 298, 357
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Homotopic paths, 294
Homotopy, 294
Homotopy formula, 361
Homotopy group, 298
Homotopy identity, 352
Hypergeometric equation, 392
Hypergeometric series, 391

I
Identity

approximate, 451
homotopy, 352
Jacobi, 72

Improper integral, 153
depending on a parameter, 405
with variable singularity, 474–478

Improper integral depending on a parameter
Abel–Dirichlet test, 418
Cauchy criterion, 419
continuity, 420–422
limiting passage, 420–422
uniform convergence, 427
Weierstrass’M-test, 427

Induced atlas of the boundary, 687
Induced orientation, 687
Induced orientation on the boundary of a

surface, 182
Inequality

Bessel’s, 502, 503
for trigonometric system, 527

Brunn–Minkowski, 123
Cauchy–Bunyakovskii, 46, 448, 499
Clausius, 227
Hölder’s, 128
isoperimetric, 195, 543–545
Minkowski’s, 44, 128, 489

generalized, 489
Steklov’s, 549
triangle, 1
Wirtinger’s, 549

Inertia, 307
Inner product, 45–48, 352

of a field and a form, 352
Instantaneous axis of rotation, 70
Integral, 110

Bernoulli, 310
canonical

asymptotics, 624
Cauchy, 310
Darboux

lower, 117
upper, 117

depending on a parameter, 405–412
continuity, 406, 407

differentiation, 407–410
integration, 410, 411

Dirichlet, 287, 431, 443, 563, 601
double, 111
elliptic, 392

complete, of first kind, 392, 408, 430
complete, of second kind, 392, 408

Euler–Poisson, 429, 438, 560, 572, 601
Eulerian, 433–444

first kind, 433
second kind, 433

Fourier, 555, 557, 560, 564, 571, 578, 581,
624

asymptotics, 625, 630
multiple, 632

Fresnel, 431, 443, 601
Gauss’, 253
improper

differentiation with respect to a
parameter, 423–425

integration with respect to a parameter,
425–429

iterated, 129–131
Laplace, 565, 604, 624

asymptotics, 625, 629
Lebesgue, 393
line, 214
multiple, 111

depending on a parameter, 471–492
with variable singularity, 476

of a differential form
over a surface, 217, 220

of a form on a manifold, 344, 345
of a function over a surface, 228, 233
over a chain, 359
over a set, 119
over a singular cube, 359
Poisson, 455, 581
Raabe’s, 442
Riemann, 393

over a set, 119
over an interval, 110

surface
of first kind, 233
of second kind, 234

triple, 111
Integral criterion for the exactness of a closed

form, 691
Integral criterion for the exactness of forms,

686
Integral metric, 4
Integral operator, 561
Integral representation of the partial sum of a

Fourier series, 524
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Integral transform, 561
Integration by parts in a multiple integral, 255
Integration of an integral depending on a

parameter, 410, 411
Integration with respect to a parameter,

425–429
Interchange

of differentiation and passage to the limit,
387–391

of integrals, 129
improper, 425–429
proper, 129

of integration and passage to the limit,
385–387

of limiting passages, 381
of summation and differentiation of a

series, 389
Interior point, 6, 13
Interval in R

n, 109
Isobar, 224
Isochore, 224
Isometry of metric spaces, 24
Isomorphism

of normed vector spaces, 60
of smooth structures, 335

Isoperimetric inequality, 195, 543–545
Isotherm, 224
Iterated integral, 129–131

J
Jacobi identity, 72
Jacobian of a coordinate change

cylindrical coordinates, 270
general polar, 168
spherical coordinates, 270
triorthogonal coordinates, 270

Jordan measure, 121

K
Kernel

Dirichlet, 525, 551
Fejér, 551
Poisson, 467

Klein bottle, 170, 325
Kotel’nikov’s formula, 579

L
Lagrange’s theorem, 309
Laplace integral, 565, 604, 624

asymptotics, 625, 629
Laplace transform, 604
Laplace’s equation, 304, 517

Laplace’s method, 603–606
multidimensional, 623

Laplacian, 264, 265, 274, 488
Law

Ampère’s, 235
Archimedes’, 245
Biot–Savart, 237
Coulomb’s, 280
Faraday’s, 235
Gauss’, 287
Newton’s, 289, 306, 307
normal distribution, 466
of conservation of mass, 280

Law of large numbers, 664, 665
Layer

double, 490
single, 488

Legendre polynomials, 497, 498, 510, 614
Legendre’s formula, 442
Lemma

Erdélyi’s, 625, 630, 632
exponential estimate, 606, 615, 627
Hadamard’s, 412
Morse’s, 151, 406, 624, 628, 631
nested ball, 27
on continuity of the inner product, 499
on finite ε-grids, 17
on orthogonal complement, 502
Poincaré’s, 297
Riemann–Lebesgue, 526, 563, 629
Sard’s, 151
Watson’s, 622, 625

Lemma due to Lévy, 665
Lie algebra, 72, 348
Lie derivative, 352
Lie group, 72, 336
Limit, 21, 28

of a family of continuous functions,
382–385

of a family of functions, 369
of a mapping, 28
of a sequence, 21
of a sequence of functions, 363

Limit function, 363, 367
Limit point, 5, 7, 13
Limiting passage

interchange, 381
under a differentiation sign, 387–391
under an integral sign, 385–387

Linear transformation, 49
Local chart, 321
Local maximum, 88
Local minimum, 88
Localization principle
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for a Fourier series, 526
for a Laplace integral, 606

Locally integrable function, 448
Lorentz transformation, 587
Low-frequency filter, 556

M
M-test for convergence, 374
Manifold, 321–325

analytic, 326
compact, 324
connected, 324
contractible, 353
embedded in R

n, 163
nonorientable, 329
of class C(k), 326
orientable, 329
oriented, 329
smooth, 326
topological, 326
with boundary, 323
without boundary, 323

Mapping
adjoint, 317
bounded, 29
continuous, 30–34

at a point, 30
continuously differentiable, 76
contraction, 35
derivative, 62

higher-order, 81
of order n, 81

differentiable at a point, 61, 62
differentiable on a set, 62
homeomorphic, 31
linear, 49
multilinear, 49
of class C(k), 326
partial derivative, 70
smooth, 326
tangent, 61, 339, 349
ultimately bounded, 29
uniformly continuous, 33

Mass force, 306
Maximum, local, 88
Mean convergence and completeness, 539, 541
Mean value over a period, 554
Mean-square deviation, 3, 522
Measure

of a set (Jordan), 121
of an interval, 112

Measure zero, 112, 113, 119
Median value of the function, 664
Method

asymptotic, 589
Fourier, 511–513
Laplace’s, 603–606

multidimensional, 623
of Lagrange multipliers, 107
of least squares (Gauss’), 513
of separating singularities (Krylov’s), 537
of tangents, modified

(Newton–Kantorovich), 39
of tangents (Newton’s), 38
separation of variables, 511–513
stationary phase, 624, 625

multidimensional, 631
one-dimensional, 629

Steklov’s averaging, 513
Method of undetermined coefficients, 652
Metric, 1

Chebyshev, 3
discrete, 2, 8
integral, 4
of mean-square deviation, 3, 4
of uniform convergence, 4, 395, 398
Riemannian, 267

Metric space, 1
separable, 15

Metric spaces, direct product, 8
Minimum, local, 88
Möbius band, 170, 177, 181, 185, 328, 331
Modulus

of an elliptic integral, 408
Moment

dipole, 300, 490
multipole, 300
of a function, 402

Morse’s lemma, 624, 628, 631
Multidimensional geometry, 663
Multidimensional intervals, 666
Multidimensional sphere, 664
Multilinear transformation, 49
Multiple integral

depending on a parameter, 471–492
improper, 153
integration by parts, 255
iterated, 129–131
with variable singularity, 471, 474

Multiplication of generalized functions, 470
Multipole, 300
Multipole moment, 300
Multipole potential, 300

N
Nabla (Hamilton operator), 262, 265
Natural frequencies, 512
Natural oscillations, 512
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Natural parametrization, 73
Necessary condition for uniform convergence,

373
Neighborhood, 13

in a metric space, 5, 6, 9
in a topological space, 11
of a germ of functions, 11

Newton–Leibniz formula, 566, 683, 685
Newton’s binomial, 651
Norm

in a vector space, 42, 582
of a transformation, 52
of a vector, 42, 582

Null-series, Men’shov’s, 524
Numbers, Bernoulli, 626

generating function, 626

O
One-parameter group, 351
Open set

in a metric space, 5
in a topological space, 9

Operational calculus, 461
Operator

differential, 481
adjoint, 481
self-adjoint, 481
transpose, 481

Hamilton (nabla), 262, 265
integral, 561
Laplace, 264, 265, 274, 488
nilpotent, 71
of field theory, 260

in curvilinear coordinates, 265–275
symmetric, 512
translation, 445
translation-invariant, 445

Operators grad, curl, div in curvilinear
coordinates, 674

Orbit of a point, 325, 336
Order (degree) of a differential form, 196
Orientation

induced on the boundary of a manifold, 331
of a domain of space, 174
of a manifold, 328
of a surface, 172–178, 182
of the boundary of a surface, 182
opposite to a given orientation, 174

Orientation class, 329
of atlases

of a surface, 176
of coordinate systems, 173, 174
of frames, 172

Oriented space, 172

Orienting frame, 174
Orthogonal vectors, 494, 512
Orthogonality with a weight, 515
Orthogonalization, 497, 498
Oscillation of a mapping, 30

at a point, 32
Oscillations, natural, 512
Overtones, 512

P
Pairing of homology and cohomology classes,

690
Parallelepiped, coordinate, 109
Parameter domain, 163, 321, 366
Parameter set, 366
Parameters

Lamé, 268, 275
Parseval’s equality, 513, 523, 562, 585
Partition

locally finite, 190
of an interval, 110

with distinguished points, 110
of unity, 150, 332–334
k-smooth, 332
subordinate to a covering, 333

Paths
homotopic, 294
tangent, 347

Period, over a cycle, 360
Period of an integral, 298
Phase, 554, 625

stationary, 625
Phase characteristic, 556
Phase function, 625
Piecewise continuous function, 529
Piecewise continuously differentiable function,

529
Planar flow, 310
Plancherel’s theorem, 583
Plane

projective, 327
Plane-parallel flow, 310
Point

boundary, 6
in a topological space, 13

boundary (of a manifold), 322
boundary (of a surface), 179
critical, 151
exterior, 6

in a topological space, 13
interior, 6, 13

in a topological space, 13
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limit, 5, 7, 13
of a metric space, 1

Poisson bracket, 348
Poisson integral, 455, 581
Poisson kernel, 467
Poisson’s equation, 299, 304, 488
Polar coordinates, 167–169
Polynomial

trigonometric, 520
Polynomials

Bernoulli, 548
Chebyshev, 518
Chebyshev–Laguerre, 518
harmonic, 517
Hermite, 518
Legendre, 497, 498, 510, 614

Positive direction of circuit, 178
Potential

dipole, 300
multipole, 300
of a field, 288
quadrupole, 300
scalar, 296
single-layer, 488
vector, 296

of a magnetic field, 296
velocity, 309

Potential field, 288
Power series, 374

differentiation of, 389
Primitives, 685
Principal value (Cauchy) of an integral, 157
Principle

Cavalieri’s, 134
contraction mapping, 37
d’Alembert’s, 307
Dirichlet’s, 287
fixed-point, 35, 38
localization

for a Fourier series, 526
for a Laplace integral, 606

Picard–Banach, 35, 38
stationary phase, 624, 625, 631
uncertainty, 583

Probability error function, 601
asymptotics, 618

Problem
asymptotic, 588
brachistochrone, 93, 95
curve of most rapid descent, 93
Luzin’s, 524
Riemann, 524
shortest-time, 93
Sturm–Liouville, 516

Process
adiabatic, 224
quasi-static, 224

Product
exterior, 315, 342
inner, 45–48, 352

of a field and a form, 352
of functions, 515

of generalized functions, 470
of manifolds, 321
of topological spaces, 13
tensor, 314

Projective line, 326
Projective plane, 327

real, 327
Properties of smooth mappings, 656
Pulse

rectangular, 580
triangular, 581

Q
Quadrupole, 300
Quadrupole potential, 300
Quantities of the same order, 590

R
Raabe’s integral, 442
Rademacher system, 519
Random vectors, 663
Range of a chart, 163, 321
Rapidly decreasing function, 568
Rectangular pulse, 580
Restriction of a form to a submanifold, 209,

350
Riemann sum, 110
Riemann–Lebesgue lemma, 526, 563, 629
Riemannian metric, 267
Rule, Leibniz, 136, 407, 449

S
Sample function, 581
Sard’s lemma, 151
Sard’s theorem, 237
Scalar potential, 296
Schwartz space, 585
Schwarz boot, 195
Separable metric space, 15
Separation of points by functions, 400
Separation of variables, 511–513
Sequence

asymptotic, 593
Cauchy, 21
convergent, 21

uniformly, 369
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convergent at a point, 363
convergent on a set, 363
fundamental, 21
monotonic, of functions, 376
nondecreasing, of functions, 376
nonincreasing, of functions, 376

Series
asymptotic, 593, 594

general, 593
in the sense of Erdélyi, 602
in the sense of Poincaré, 594
power, 598–600

continuity of sum, 383
Dirichlet, 379
Fourier, 493–520

in a general orthogonal system, 493,
494

multiple, 550
of generalized functions, 552
partial sum, 524
pointwise convergence, 520
rate of convergence and smoothness,

534
hypergeometric, 391
of functions, 366
power, 374
Stirling’s, 626
trigonometric, 520–553
uniformly convergent

Cauchy criterion, 377
Set

admissible, 119
bicompact, 15
Cantor, 23
closed

in a metric space, 5, 6
in a topological space, 13

compact, 15
conditionally compact, 18
everywhere dense, 12
Jordan measurable, 121
nowhere dense, 28
of area zero, 191
of content zero, 122
of convergence, 363, 367
of first category, 28
of measure zero (Jordan), 122
of measure zero (Lebesgue), 119, 122, 123
of second category, 28
of volume zero, 122
open

in a metric space, 5
in a topological space, 9

parameter, 366

relatively compact, 18
totally bounded, 18

Signal
band-limited, 578
spectrum of, 554

Simply connected domain, 293
Sine, cardinal, 581
Sine integral, 601
Single layer, 477
Single-layer potential, 488
Singular cube, 357

boundary of, 358
Smooth structure, 326
Smooth structures, isomorphic, 335
Solenoidal field, 296
Solution

fundamental, 464–466, 485
of the Laplacian, 485

Space
Banach, 43
complete, 21
connected, 19
cotangent to a manifold, 340
Euclidean, 48
Hausdorff, 12, 14
Hermitian (unitary), 48
Hilbert, 48
locally compact, 18
locally connected, 20
metric, 1

separable, 15
normed affine, 62
normed vector, 42

complete, 43
of distributions, 458
of fundamental functions, 479
of generalized functions, 458, 479
of tempered distributions, 584
of test functions, 458, 479
path connected, 20, 34
pre-Hilbert, 48
Schwartz, 584, 585
Sobolev–Schwartz, 460
tangent, 61
tangent to R

n, 337
tangent to a manifold, 337, 339
topological, 9, 10

in the strong sense, 14
τ1, 14
τ2, 14

Spectral characteristic, 556
Spectrum

bounded, 578
continuous, 555
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discrete, 554
frequency, 586

Sphere, Alexander horned, 164
Spherical functions, 517
Stabilizer of a point, 336
Stationary phase method, 624, 625

multidimensional, 631
one-dimensional, 629

Stationary phase principle, 625
Steklov’s inequality, 549
Stirling’s formula, 444, 613
Stirling’s series, 626
Stokes’ formula, 238, 345–347, 359

general, 248–251, 345
in R

3, 246–248
Structure

smooth, 326
Sturm–Liouville problem, 516
Submanifold, 335
Subset, everywhere dense in C([a, b]), 398
Subspace

of a metric space, 7
of a topological space, 13

Sum
Darboux

lower, 116
upper, 116

Riemann, 110
Summation method

Abel, 383, 384, 392
Cesàro, 393

Support
of a differential form, 344
of a function, 138, 447

Surface
elementary, 164
k-dimensional, 163

smooth, 174
nonorientable, 176
of dimension k, 179
of measure (area) zero, 191
one-sided, 177
orientable, 176, 177
oriented, 176
piecewise smooth, 184

orientable, 185
two-sided, 177
with boundary, 179
without boundary, 180
zero-dimensional, 184

Surface integral
of first kind, 233
of second kind, 234

Symmetric operator, 512

System
exponential, 495
Haar, 519
Rademacher, 519
trigonometric, 495

completeness, 539
in complex notation, 495

System function, 445, 456
System of sets

locally finite, 337
refinement of another system, 337

System of vectors
complete, 505–510
condition for completeness, 506
linearly independent, 494
orthogonal, 493–499
orthonormal, 494
orthonormalized, 494

T
Tangent mapping, 339, 349
Tangent paths, 347
Tangent space

to R
n at a point, 337

to a manifold, 337, 339
Tangent vector to a manifold, 338, 340, 349
Taylor’s formula, 650
Tempered distribution, 584
Tensor product, 314
Test

Abel–Dirichlet, 375
Weierstrass’, 374, 375

for integrals, 422
Test function, 458
Theorem

Abel’s, 379
Arzelà–Ascoli, 395–397
Brouwer

fixed-point, 243
invariance of domain, 322

Carnot’s, 227
Cauchy’s multidimensional mean-value,

288
curl, 284
Darboux’, 117
de Rham’s, 360
Dini’s, 384, 426
divergence, 284
Earnshaw’s, 286
Fejér’s, 531, 551
finite-increment, 74–80
Fubini’s, 129–131, 572
Gauss’, 285, 491
gradient, 284
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Green’s, 238–243
Hardy’s, 393
Helmholtz’, 302
implicit function, 97–108
inverse function, 106
Kotel’nikov’s, 578
Lagrange’s, 309
Lebesgue’s

dominated convergence, 393
monotone convergence, 394

mean-value
for harmonic functions, 287, 288
for the integral, 127

on asymptotics of a Laplace integral, 612
on existence of solutions of differential

equations, 37
on interchange of limiting passages, 381
on the principal term of asymptotics of an

integral, 612
on uniform continuity, 33
Plancherel’s, 583
Poincaré’s, 353, 357
Pythagorean, 498

for measures of arbitrary dimension,
194

sampling, 578
Sard’s, 237
Stone’s, 399–401

for complex algebras, 403
Tauberian, 393
translation, 580
Weierstrass’

on approximation by polynomials, 398,
467, 488

on approximation by trigonometric
polynomials, 478, 533

Whitney’s, 171, 335
Whittaker–Shannon, 578

Timbre, 512
Tone, fundamental, 512
Topological group, 72, 336
Topological space, 9, 10

base of, 10
in the strong sense, 14
weight of, 11

Topological spaces, product of, 13
Topology

base of, 10
induced on a subspace, 13
on a set, 9
stronger, 14

Torsion of a curve, 74
Torus, 169
Total boundedness, 395

Transform
Fourier

asymptotic properties, 566–569
frequency shift, 580
in L2, 582
multidimensional, 569
of a convolution, 562
of generalized functions, 585
rate of decrease and smoothness, 566
time shift, 580

Fourier cosine, 557
Fourier sine, 557
integral, 561
Laplace, 604

Transformation
Abel’s, 376
bilinear, 49
bounded, 53
continuous

multilinear, 55
Galilean, 587
linear, 49
Lorentz, 587
multilinear, 49, 52, 55
trilinear, 49

Transient pulse function, 445
Translation operator, 445
Translation theorem, 580
Translation-invariant operator, 445
Triangle inequality, 1
Triangular pulse, 581
Trigonometric polynomial, 520
Trigonometric series, 520–553
Trigonometric system, 495

completeness, 539
in complex notation, 495

Trihedral, companion, 73
Triorthogonal coordinates, 268

U
Uncertainty principle, 583
Uniform boundedness, 371, 395

of a family of functions, 375
Uniform convergence, 395

Cauchy criterion, 369, 370
Uniformly convergent series

Cauchy criterion, 377
Unit step, 461

V
Value (Cauchy principal) of an improper

integral, 157
Vector

angular velocity, 70
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tangent to a manifold, 338, 340, 349
Vector field

central, 215
on a manifold, 348

smooth, 348
Vector potential, 296

of a magnetic field, 296
Vector space, tangent to a manifold, 337, 339
Vectors

orthogonal, 494, 512
Volume

of a ball in R
n, 193, 440

of a set (Jordan), 121, 246
of an interval, 109

Volume element, 229

W
Wallis’ formula, 430, 444, 627
Watson’s lemma, 622, 625
Wave equation, 308, 309, 311, 574

homogeneous, 309
inhomogeneous, 309

Weak convergence, 459
WeierstrassM-test, 374
Weight of a topological space, 11
Wirtinger’s inequality, 549
Work of a field, 213

Z
Zeta function, 443
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