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up to homeomorphism, of the various choices made in the preceding construc-
tion. If g, ¢’ denote the homeomorphism classes of S and S’ respectively, we
define o + ¢’ to be the class of the surface obtained by the preceding gluing
process. It can be shown that this addition defines a monoid structure on M,
whose unit element is the class of the ordinary 2-sphere. Furthermore, if 7
denotes the class of the torus, and = denotes the class of the projective plane,
then every element ¢ of M has a unique expression of the form

o =nt +mn

where nis an integer 2 0andm =0, 1,0or 2. Wehave3n =1+ m

(The reasons for inserting the preceding example are twofold: First to
relieve the essential dullness of the section. Second to show the reader that
monoids exist in nature. Needless to say, the example will not be used in any
way throughout the rest of the book.) .

Still other examples. At the end of Chapter II1, §4, we shall remark that
isomorphism classes of modules over a ring form a monoid under the direct sum.
In Chapter XV, §1, we shall consider a monoid consisting of equivalence classes
of quadratic forms.

§2. GROUPS

A group G is a monoid, such that for every element x € G there exists an
element y € G such that xy = yx = e. Such an element y is called an inverse for
x. Such an inverse is unique, because if y’ is also an inverse for x, then

y=Yye=yxy) = (yx)y=ey=y.
We denote this inverse by x~! (or by —x when the law of composition is
written additively).

For any positive integer n, we let x " = (x~!)". Then the usual rules for
exponentiation hold for all integers, not only for integers = 0 (as we pointed out
for monoids in §1). The trivial proofs are left to the reader.

In the definitions of unit elements and inverses, we could also define left
units and left inverses (in the obvious way). One can easily prove that these
are also units and inverses respectively under suitable conditions. Namely:

Let G be a set with an associative law of composition, let e be a left unit for

that law, and assume that every element has a left inverse. Then e is a unit,

and each left inverse is also an inverse. In particular, G is a group.

To prove this, let a€ G and let b € G be such that ba = e. Then

bab = eb = b.
Multiplying on the left by a left inverse for b yields
ab = e,

or in other words, b is also a right inverse for a. One sees also that a is a left
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inverse for b. Furthermore,
ae = aba = ea = a,
whence e is a right unit.

Example. Let G be agroup and S a nonempty set. The set of maps M(S, G)
is itself a group; namely for two maps f, g of S into G we define fg to be the
map such that

(f9)(x) = f(x)g(x),
and we define f ~! to be the map such that f ~!(x) = f(x)~'. It is then trivial
to verify that M(S, G) is a group. If G is commutative, so is M(S, G), and when

the law of composition in G is written additively, so is the law of composition
in M(S, G), so that we would write f + g instead of fg, and —f instead of f ~ 1.

Example. Let S be a non-empty set. Let G be the set of bijective mappings
of S onto itself. Then G is a group, the law of composition being ordinary com-
position of mappings. The unit element of G is the identity map of S, and the
other group properties are trivially verified. The elements of G are called
permutations of S. We also denote G by Perm(S). For more information on
Perm(S) when S is finite, see §5 below.

Example. Let us assume here the basic notions of linear algebra. Let k be
a field and V a vector space over k. Let GL(V) denote the set of invertible k-
linear maps of V onto itself. Then GL(V) is a group under composition of
mappings. Similarly, let k be a field and let GL(n, k) be the set of invertible
n X n matrices with components in k. Then GL(n, k) is a group under the
multiplication of matrices. For n = 2, this group is not commutative.

Example. The group of automorphisms. We recommend that the reader
now refer immediately to §11, where the notion of a category is defined, and
where several examples are given. For any object A in a category, its auto-
morphisms form a group denoted by Aut(A). Permutations of a set and the linear
automorphisms of a vector space are merely examples of this more general
structure.

Example. The set of rational numbers forms a group under addition. The
set of non-zero rational numbers forms a group under multiplication. Similar
statements hold for the real and complex numbers.

Example. Cyclicgroups. The integers Z form an additive group. A group
is defined to be cyclic if there exists an element a € G such that every element
of G (written multiplicatively) is of the form a” for some integer n. If G is written
additively, then every element of a cyclic group is of the form na. One calls a
a cyclic generator. Thus Z is an additive cyclic group with generator 1, and
also with generator —1. There are no other generators. Given a positive integer
n, the n-th roots of unity in the complex numbers form a cyclic group of order
n. In terms of the usual notation, €2™/" is a generator for this group. So is e2™/n
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with r € Z and r prime to n. A generator for this group is called a primitive
n-th root of unity.

Example. The direct product. Let G,, G, be groups. Let G; X G, be
the direct product as sets, so G, X G, is the set of all pairs (x;, x,) with
x; € G;. We define the product componentwise by

(x1, X)(¥1, ¥2) = (X1, X¥2).

Then G; X G, is a group, whose unit element is (e, e;) (Where e; is the unit
element of G;). Similarly, for n groups we define G, X -+ X G, to be the set
of n-tuples with x; € G; (i = 1, ... , n), and componentwise multiplication.
Even more generally, let / be a set, and for each i € I, let G; be a group. Let
G =11 G; be the set-theoretic product of the sets G;. Then G is the set of all
families (x;);c; with x; € G;. We can define a group structure on G by compo-
nentwise multiplication, namely, if (x;);c; and (y;);c; are two elements of G, we
define their product to be (x;y;);c;. We define the inverse of (x;);c; to be (x; 1);.;-
It is then obvious that G is a group called the direct product of the family.

Let G be a group. A subgroup H of G is a subset of G containing the unit
element, and such that H is closed under the law of composition and inverse
(i.e. it is a submonoid, such that if x € H then x~ ' e H). A subgroup is called
trivial if it consists of the unit element alone. The intersection of an arbitrary
non-empty family of subgroups is a subgroup (trivial verification).

Let G be a group and S a subset of G. We shall say that S generates G,
or that S is a set of generators for G, if every element of G can be expressed as a
product of elements of S or inverses of elements of S, i.e. as a product x, - - - x,
where each x; or x; ! is in §. It is clear that the set of all such products is a
subgroup of G (the empty product is the unit element), and is the smallest sub-
group of G containing S. Thus S generates G if and only if the smallest subgroup
of G containing S is G itself. If G is generated by S, then we write G = (S). By
definition, a cyclic group is a group which has one generator. Given elements

X1, ..., X, € G, these elements generate a subgroup {(x,, ... , x,), namely the
set of all elements of G of the form
xﬁl e xir’ with kl,..., k,E Z.

A single element x € G generates a cyclic subgroup.

Example. There are two non-abelian groups of order 8. One is the group

of symmetries of the square, generated by two elements o, 7 such that
o*=12=¢ and 707! = 0°.

The other is the quaternion group, generated by two elements, i, j such that
if we put k = ij and m = i?, then

f=jt=k=e 2=p2=K=m ij=mj.

After you know enough facts about groups, you can easily do Exercise 35.



10 GROUPS I, §2

Let G, G’ be monoids. A monoid-homomorphism (or simply homemorphism)
of G into G’ is a mapping f: G — G’ such that f(xy) = f(x)f(y) for all x, y € G,
and mapping the unit element of G into that of G'. If G, G’ are groups, a group-
homomorphism of G into G’ is simply a monoid-homomorphism.

We sometimes say: “Let f:G — G’ be a group-homomorphism” to mean:
“Let G, G’ be groups, and let f be a homomorphism from G into G'.”

Let f: G — G’ be a group-homomorphism. Then

ST =f)7"
because if e, €’ are the unit elements of G, G’ respectively, then
¢ =f(e)=f(xx"1=f)f(x7).
Furthermore, if G, G’ are groups and f: G — G’ is a map such that
Sxy) =f()f(»)

for all x, y in G, then f(e) = ¢ because f(ee) = f(e) and also = f(e)f(e).
Multiplying by the inverse of f(e) shows that f(e) = €.

Let G, G’ be monoids. A homomorphism f:G — G’ is called an isomorphism
if there exists a homomorphism g:G’ — G such that fog and g o f are the
identity mappings (in G’ and G respectively). It is trivially verified that f is
an isomorphism if and only if f is bijective. The existence of an isomorphism
between two groups G and G’ is sometimes denoted by G = G'. If G = G,
we say that isomorphism is an automorphism. A homomorphism of G into
itself is also called an endomorphism.

Example. Let G be a monoid and x an element of G. Let N denote the
(additive) monoid of integers = 0. Then the map f: N — G such that f(n) = x"
is a homomorphism. If G is a group, we can extend fto a homomorphism of Z
into G (x" is defined for all n € Z, as pointed out previously). The trivial proofs
are left to the reader.

Let n be a fixed integer and let G be a commutative group. Then one verifies
easily that the map

X+ x"

from G into itself is a homomorphism. So is the map x+ x~ 1.

X+ x" is called the n-th power map.

The map

Example. Let ] = {i}be an indexing set, and let {G;} be a family of groups.
Let G = [] G, be their direct product. Let

pi: G— G;
be the projection on the i-th factor. Then p; is a homomorphism.

Let G be a group, S a set of generators for G, and G’ another group. Let
f:S > G' be a map. If there exists a homomorphism f of G into G’ whose
restriction to S is f, then there is only one.
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In other words, f has at most one extension to a homomorphism of G
into G'. This is obvious, but will be used many times in the sequel.

Let f:G — G' and g: G’ — G” be two group-homomorphisms. Then the
composite map g of'is a group-homomorphism. Iff, g are isomorphisms then
so is g of. Furthermore f~!:G’ — G is also an isomorphism. In particular,
the set of all automorphisms of G is itself a group, denoted by Aut(G).

Let f:G — G’ be a group-homomorphism. Let e, ¢’ be the respective unit
elements of G, G’. We define the kernel of f to be the subset of G consisting
of all x such that f(x) = ¢’. From the definitions, it follows at once that the
kernel H of fis a subgroup of G. (Let us prove for instance that H is closed
under the inverse mapping. Let x € H. Then

f&THfx) =f(e)=¢.
Since f(x) = ¢/, we have f(x~!) = ¢, whence x~' e H. We leave the other
verifications to the reader.)

Let f:G — G’ be a group-homomorphism again. Let H' be the image of f.
Then H' is a subgroup of G', because it contains ¢’, and if f(x), f(y) € H', then
f(xy) = f(x)f(y) lies also in H'. Furthermore, f(x~!) = f(x)~! is in H’, and
hence H' is a subgroup of G'.

The kernel and image of f are sometimes denoted by Ker fand Im f.

A homomorphism f:G — G’ which establishes an isomorphism between
G and its image in G’ will also be called an embedding.

A homomorphism whose kernel is trivial is injective.

To prove this, suppose that the kernel of f'is trivial, and let f(x) = f(y) for
some x, y € G. Multiplying by f(y~!) we obtain

Sey™ ) =f)fy™H =¢.

Hence xy~ ! lies in the kernel, hence xy~! = e, and x = y. If in particular f'is
also surjective, then f is an isomorphism. Thus a surjective homomorphism
whose kernel is trivial must be an isomorphism. We note that an injective
homomorphism is an embedding.

An injective homomorphism is often denoted by a special arrow, such as

f:G = G'.
There is a useful criterion for a group to be a direct product of subgroups:
Proposition 2.1. Let G be a group and let H, K be two subgroups such that

H N K = e, HK = G, and such that xy = yx for all xe H and ye K. Then
the map

HxK->G
such that (x, y)— xy is an isomorphism.

Proof. It is obviously a homomorphism, which is surjective since HK = G.



12 GROuPS 1, §2

If (x, y) is in its kernel, then x = y~! whence x lies in both H and K, and x = e,
so that y = e also, and our map is an isomorphism.

We observe that Proposition 2.1 generalizes by induction to a finite number
of subgroups H,, ..., H, whose elements commute with each other, such that

H,---H,=G,
and such that
H, nH;---H)=e.
In that case, G is isomorphic to the direct product
H, x---x H,.

Let G be a group and H a subgroup. A left coset of H in G is a subset of
G of type aH, for some element a of G. An element of aH is called a coset
representative of aH. The map x — ax induces a bijection of H onto aH.
Hence any two left cosets have the same cardinality.

Observe that if a, b are elements of G and aH, bH are cosets having one
element in common, then they are equal. Indeed, let ax = by with x, ye H.
Then a = byx~'. But yx 'eH. Hence aH = b(yx~')H = bH, because for
any ze H we have zH = H.

We conclude that G is the disjoint union of the left cosets of H. A similar
remark applies to right cosets (i.e. subsets of G of type Ha). The number of left
cosets of H in G is denoted by (G : H), and is called the (left) index of H in G.
The index of the trivial subgroup is called the order of G and is written (G : 1).
From the above conclusion, we get:

Proposition 2.2. Let G be a group and H a subgroup. Then
(G:H)H:1)=(G:1),
in the sense that if two of these indices are finite, so is the third and equality
holds as stated. If (G : 1) is finite, the order of H divides the order of G.
More generally, let H, K be subgroups of G and let H > K. Let {x;} be a
set of (left) coset representatives of K in H and let {y;} be a set of coset repre-
sentatives of H in G. Then we contend that {y;x;} is a set of coset representa-
tives of K in G.
Proof. Note that
H=|J)xK (disjoint),

G=\J)yH (disjoint).
j

Hence
G = U YVjiXi K.
i
We must show that this union is disjoint, i.e. that the y;x; represent distinct
cosets. Suppose
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ijiK =ypx K

for a pair of indices (j, i) and (j, i’). Multiplying by H on the right, and noting
that x;, x; are in H, we get

ylH = yj'H,

whence y; = y;. From this it follows that x;K = x; K and therefore that
X; = Xx;, as was to be shown.

The formula of Proposition 2.2 may therefore be generalized by writing
(G:K)=(G:H)H:K),

with the understanding that if two of the three indices appearing in this formula
are finite, then so is the third and the formula holds.

The above results are concerned systematically with left cosets. For the right
cosets, see Exercise 10.

Example. A group of prime order is cyclic. Indeed, let G have order p and
let a € G, a # e. Let H be the subgroup generated by a. Then #(H) divides p
and is # 1, so #(H) = p and so H = G, which is therefore cyclic.

Example. LetJ, = {1, ..., n}. Let S, be the group of permutations of
J,. We define a transposition to be a permutation 7 such that there exist
two elements r ¥ s in J, for which 7(r) = s, 7(s) = r, and 7(k) = k for all
k # r, s. Note that the transpositions generate S,,. Indeed, say o is a permutation,
o(n) = k # n. Let 7 be the transposition interchanging k, n. Then 7o leaves n
fixed, and by induction, we can write 7o as a product of transpositions in
Perm(J,_;), thus proving that transpositions generate S,,.

Next we note that #(S,,) = n!. Indeed, let H be the subgroup of S, consisting
of those elements which leave n fixed. Then H may be identified with S,,_,. If
o;(i=1,...,n)isan element of S, such that g;(n) = i, then it is immediately
verified that oy, ... , 0, are coset representatives of H. Hence by induction

S,:1)=n(H:1) = nl.

Observe that for o; we could have taken the transposition 7;, which interchanges
i and n (except for i = n, where we could take o, to be the identity).

§3. NORMAL SUBGROUPS

We have already observed that the kernel of a group-homomorphism is a
subgroup. We now wish to characterize such subgroups.

Let f:G — G’ be a group-homomorphism, and let H be its kernel. If x is an
element of G, then xH = Hx, because both are equal to f ~(f(x)). We can
also rewrite this relation as xHx ™! = H.



