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On the Dirac-Maxwell correspondence

A. I. Arbab (a)

Department of Physics, College of Science, Qassim University, P.O. Box 6644, Buraidah 51452, Saudi Arabia

Department of Physics, Faculty of Science, University of Khartoum, P.O. Box 321, Khartoum 11115, Sudan

PACS 03.65.Ta – Foundations of quantum mechanics

Abstract – An extension to the Dirac current and continuity equations are proposed. A general form for the current
densities associated with the particle motion is obtained. One current density is shown to be over a plane (surface), and the
other one acts perpendicular to it. A generalized set of continuity equations connecting the currents and charge densities
are found, and a transformation under which these equations are invariant is proposed. This set of equations is shown to
be analogous to the Maxwell’s equations. In an analogy with electromagnetism, two electromotive-like forces are found that
causes the motion of the particle. The charge density, in addition to the two currents, are found to obey a wave equation
traveling at the speed of light. The application of the new transformation in Maxwell’s equations induces electric charge
and current densities. A drag-like force is found to be associated with the motion of a Dirac’s particle. A new gauge-like
transformation of the quaternionic field is proposed with a new definition of the electromagnetic field.

Introduction. – Any closed electric system is known to comply with the continuity equation that manifests

the charge conservation of the system. A current in the physical world is generally an expression for the flow of a

conserved quantity, like charge, baryon number, lepton number, etc. The electron, as described by the Schrodinger

wave equation satisfies the continuity equation. Similarly, in the relativistic case, the electron is described by the

Dirac equation, where a relativistic analog of the continuity equation is shown to govern its motion [1]. At the

same time, the propagation of sound in a medium is also described by a continuity equation. In fluid dynamics, the

continuity equation expresses conservation of mass. Therefore, the continuity equation constitutes a fundamental

integral equation in physical worlds. It also expresses the conservation of energy of a system.

In a relativistic world, the current density is expressed in terms of a 4-vector. This 4-vector is defined in

terms of a temporal part in addition to a spatial vector part. The ordinary vector density is represented by

the spatial vector part, whereas the density is expressed by the fourth temporal part of the 4-vector. In some

representations, the scalar part is defined by an imaginary number, while the spatial part is a real number. To

generalize this representation, we employ biquaternions, where the two numbers are generally complex [2]. Though
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A. I. Arbab1

the electromagnetic field is represented by a complex number, the current density was not. As quantum particle

the is governed by Dirac’s equation, whereas a charge is described by Maxwell’s equations. Thus mass and charge

must be coherently described by a system of equations that reflects the intimate relation between them.

We found the quaternions to be the right mathematical construct that manifests this intimacy. We propose a new

definition of the electric and magnetic potentials that realizes this relation between charge and mass description.

Note that the particle dynamics is described by the force while the field dynamics is described by Maxwell’s

equations. However, Dirac’s equation describes the particle dynamics. Thus, the three representations must be

unified in a single description. The particle and field dynamics are merged. The new definition of the electric

and magnetic fields utilizes the Dirac matrices and the scalar and vector potentials. This is unlike the standard

definition where the electric and magnetic fields are defined via the derivatives of these scalars. We would like

here to show first the correspondence between Maxwell’s and Dirac’s description of the electron’s fields. We then

investigate the consequence of such correspondence.

We aim here to make this representation and explore the physical significance of these complex quantities. We

then derive the continuity equation that connects the temporal and spatial variations of these quantities, in the

framework of the Dirac equation. We also want to see how the de Broglie wave associated with the relativistic Dirac’s

particle is associated with it. Recall that the electromagnetic wave arising from varying electric and magnetic fields

is known to propagate in a direction perpendicular to the plane spanned by the electric and magnetic fields.

To maintain a physical signature of the different components of the current density, we resort to the Dirac-

Maxwell analogy, we recently established. The continuity equation is known to be a single scalar equation. However,

in the present formalism, a generalized set of continuity equations are obtained and their solution is found. These

are shown to correspond to two scalar equations and two vector equations. They have a common structure as that

of the four Maxwell’s equations. We have derived before, the Maxwell’s equations from the quaternionic Dirac

equation [3, 4].

The quaternionic Dirac and continuity equations. – The Dirac equation is a relativistic and covariant

equation that best describes the motion of an electron that is expressed as [1]

i~γµ∂µψ −mcψ = 0 , pµγµψ = mcψ , i~
∂ψ

∂t
= (cα⃗ · p⃗+ βmc2)ψ , (1)

where ψ is known as the Dirac spinor (4× 1 column matrix), and γµ are the 4× 4 - Dirac matrices equipped with

some algebra [1]. The zero-component is denoted by γ0 = β, and the spatial components by γ⃗ = βα⃗.
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On the Dirac-Maxwell correspondence

Equation (1) can be seen as a momentum eigenvalue equation, where the momentum operator 4-vector is

pµ = i~∂µ . The continuity equation that guarantees the conservation of electric charge is expressed, in terms of

the Dirac spinor, as [1]

∂µJ
µ = 0 , Jµ = ψ̄γµψ . (2)

In special relativity, the current density is defined as

Jµ = (cρ , J⃗ ) . (3)

It is shown recently that a quaternionic Dirac equation is rich of information [3–5]. To this aim, we express it in

the quaternionic form as

P̃ γ̃Ψ̃ = mcΨ̃ , (4)

where

P̃ =

(
i

c
E , p⃗

)
, γ̃ = (iβ , γ⃗ ) , Ψ̃ =

(
i

c
ψ0, ψ⃗

)
, (5)

which generalize the ordinary definitions of the above quantities. Here Ψ̃ is the quaternionic wavefunction em-

bodying the basic fields describing the quantum particle. It is found that Eq.(4) yields a Maxwellian form for the

quaternionic field. That equation reveals that the concept of the monopole is inherent in the resulting equations,

not as the case with the ordinary Maxwell’s equations [6]. However, if we consider the mass in Eq.(Eq.(4) to be

pure imaginary (± im), then one finds

∇⃗ · E⃗d =
ρd
ε0

− ∂Λd
∂t

, ∇⃗ · B⃗d = 0 , (6)

and

∇⃗ × E⃗d = −∂B⃗d
∂t

, ∇⃗ × B⃗d =
1

c2
∂E⃗d
∂t

+ µ0J⃗d + ∇⃗Λd , (7)

where

E⃗d = −(cβψ⃗ + γ⃗ ψ0) , B⃗d = γ⃗ × ψ⃗ , ρd = ∓ε0mc
~

ψ0 , J⃗d = ∓mc

µ0~
ψ⃗ , Λd = γ⃗ · ψ⃗ +

β

c
ψ0 . (8)

We better call E⃗d and B⃗d the Dirac inertial and magnetic fields, that are due to the mass of the particle, in

comparison with Maxwell’s fields that are due to the charge of the particle. We see here that ψ0 and ψ⃗ are

analogous of the electromagnetic potentials, φ and A⃗, respectively. It is worth to mention here that some authors

treat A⃗ as the photon field [7, 8]. Using Eq.(8), one can deduce the relation, J⃗d = c2ρdψ⃗
ψ0

that is analogous to the
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Einstein relativistic relation v⃗ = c2p⃗
E , suggesting that ψ⃗ can be connected with the particle linear momentum, and

ψ0 with its energy.

It is interesting to connect the ∓ sign to the particle and antiparticle cases [3]. Remarkably, the particle

behavior due to its mass is compatible with that due to its charge. This is anticipated since the charge and the

mass are intimately connected with the particle. It is also recently found that the quantum behavior of electrons

in the transmission line is the same as their electric behavior [5]. It is apparent from Eq.(8) that the matter fields

are the potentials themselves, Maxwell’s fields are defined by the derivatives of the potentials.

We envisage here the analogy between matter (Dirac) field and charge (Maxwell) fields. While the Maxwell’s

fields are defined by space and time derivatives of the vector and scalar potentials, the Dirac fields are linear

combinations of the basic fields (ψ0 , ψ⃗ ). Apart from the subscript “d”, the system of above equations is but the

modified Maxwell’s equations when Lorenz gauge is relaxed [9]. Moreover, in Dirac paradigm, the source of the

matter fields is the particle mass, while in Maxwell’s, the sources are the charges and currents. Note that as the

case for Maxwell’s fields, the Dirac fields are perpendicular to each other, i.e., E⃗d · B⃗d = 0 . A massless particle

has no matter source, i.e., ρd = 0 and J⃗d = 0 . Equation (8) reveals the interesting relations

J⃗d × E⃗d = ρd c
2B⃗d , E⃗d = −cβγ⃗ × B⃗d + cβγ⃗Λd , B⃗d =

βγ⃗

c
× E⃗d , cβγ⃗ · E⃗d = c2Λd . (9)

The fields in Eq.(9) are the fields produced by the moving quantum particle. Moreover, one also finds

E⃗d × B⃗d = (ψ2 − ψ2
0

c2
) cβγ⃗ − cΛdβ ψ⃗ . (10)

Because of the Λd term, the electric and magnetic fields, E⃗, B⃗, are not perpendicular to the particle velocity,

v⃗ = cβγ⃗, as anticipated in the ordinary case (for Maxwell’s fields); and therefore, these vectors do not form a set

of mutually orthogonal vectors. It is thus very urging to seek the physical account of the scalar field, Λd.

For a particular case, J⃗d = ρd v⃗, one obtains the magnetic field of a moving charge, viz., B⃗d = v⃗
c2 × E⃗d and

E⃗d = −v⃗ × B⃗ + v⃗Λd . In Dirac’s theory one has v⃗ = cα⃗ = cβγ⃗. It is interesting to recall that Eq.(9) is obtained

by considering massive photons to be described by the vector potential [8]. It is thus quite remarkable that the

mass field and charge field are governed by the same equations. This implies that Dirac and Maxwell’s equations

describe but the same physical entity of the particle. The matter electromagnetic field of the particle obeys the

same equations as that due to particle charge. It is thus important to describe the Dirac’s equation by matter fields

rather than by wavefunctions. The question that arises is whether one can reexpress the electromagnetic fields in

Maxwell’s theory in terms of a linear combination of the scalar and vector potentials rather than the derivatives of
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On the Dirac-Maxwell correspondence

these potentials following the above formulation. To realize this, we use the ansatz, ψ⃗ = κA⃗ and ψ0 = κφ, where

κ is some constant that can be chosen as the Compton wavelength of the particle. Therefore, one will define the

electromagnetic field and the scalar Λd, as,

E⃗m = −κ (cβA⃗+ γ⃗ φ) , B⃗m = κ γ⃗ × A⃗ , Λm = κ (γ⃗ · A⃗+
β

c
φ) . (11)

Henceforth, one unifies Maxwell and Dirac equations instead of the standard formulation adopted by quantum

electrodynamics. The above expression entitles the electromagnetic field to be an operator since γ⃗ and β are

matrices. The new gauge transformation associated with the fields in Eq.(11) is

A⃗ ′ = A⃗± φ

c
γ⃗ , φ ′ = (1± β)φ ,

under which Eqs.(6) - (8) are invariant. It is analogous to Lorentz boost of the coordinates.

Let us now define the ordinary electromagnetic field as

E⃗ = −∇⃗φ− ∂A⃗

∂t
, B⃗ = ∇⃗ × A⃗ . (12)

We are here to relate the two fields, E⃗m & B⃗m with E⃗ & B⃗.

Now Faraday’s equation will be expressed by

∇⃗ × E⃗m = −∂B⃗m
∂t

, (13)

which upon using Eqs.(11) yields the relation

B⃗ = −βγ⃗
c

× E⃗ . (14)

Now the modified Ampere’s equation can be written as

∇⃗ × B⃗m =
1

c2
∂E⃗m
∂t

+ µ0J⃗m − ∇⃗Λm , (15)

which upon using Eqs.(11) yields the relations

E⃗ = cβγ⃗ × B⃗ − µ0cβ κJ⃗ + cβγ⃗ Λ , J⃗ =
1

µ0κ
γ⃗ × B⃗ − β

µ0c κ
E⃗ +

γ⃗

µ0κ
Λ (16)

where

Λ =
1

c2
∂φ

∂t
+ ∇⃗ · A⃗ , (17)

where Λ is a measure of the violation of the Lorenz gauge condition of electromagnetism; and we set J⃗m = κ J⃗ and

ρm = κ ρ . The electric field in Eq.(16) is that due to a particle and its antiparticle with spin sates (up and down).
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A. I. Arbab3

We call this electric field the spinorial electric field. Equation (16) can be seen as defining a modified Ohm’s law

that appears frequently in plasma hydrodynamics, where the second term in Eq.(16) is a conduction current in

conductors, with J⃗ = σ E⃗, where σ = (µ0cκ)
−1. Equation (16) can be expressed as

J⃗ = ±σ
(
v⃗ × B⃗ − E⃗ + v⃗Λ

)
.

Recall that the eigenvalues of β are ±1 representing a particle and its antiparticle with spin-up and spin-down

states. Finally, applying Eq.(8) in the modified Gauss’s and the divergence laws

∇⃗ · E⃗m =
∂Λm
∂t

+
ρm
ε0

, ∇⃗ · B⃗m = 0 , (18)

yield

cβγ⃗ · B⃗ = 0 , cβγ⃗ · E⃗ =
cβκ

ε0
ρ+ c2Λ . (19)

These equations were obtained in [8] when considering the photon wavefunction to be A⃗ and φ. It is interesting

that the proposal in Eqs.(11) yields the particle electrodynamics. Recall that the magnetic field in Eqs.(14) and

the electric field in Eqs.(16) are those due to a moving charge with velocity, v⃗ = cβγ⃗. The power delivered to the

particle can be obtained from Eqs.(19) using the definition, P = qv⃗ · E⃗ . It is interesting to see that the field and

particle dynamics are intimately connected. In vacuum, ρ and J⃗ = 0. It is remarkable that the particle dynamics,

Eqs.(14), (16) and (19), is derived from the modified Maxwell’s field equations, Eq.(13), (15) and (18).

Equations (6) and (7) can be manipulated to yield the wave equations

1

c2
∂2E⃗d
∂t2

−∇2E⃗d = − 1

ε0

(
∇⃗ρd +

1

c2
∂J⃗d
∂t

)
,

1

c2
∂2B⃗d
∂t2

−∇2B⃗d = µ0∇⃗ × J⃗d ,
1

c2
∂2Λd
∂t2

−∇2Λd = 0 .

Let us now consider the force acting on the mass using Lorentz force as

F⃗d = m(E⃗d + v⃗ × B⃗d) . (20)

Equations (9) and (10) express the particle electrodynamics characteristics. Using Eq.(8), the particle’s force and

acceleration can be expressed as

F⃗d = −mΛd v⃗ , a⃗d = −Λd cβ γ⃗ . (21)

The above force is a drag (viscous) force type. It seems as if the particle is moving in a pre-existing fluid. Such

a fluid was named the Ether that was put forward to justify the motion of the electromagnetic wave and later on

ruled out. It is interesting to see the Ether is reflected in the motion of massive object, e.g., an electron. Massless
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On the Dirac-Maxwell correspondence

particle feels no force according to Eq.(21), however. The viscous force above will disappear if Λd = 0, and will

move with constant velocity. Equation (21) is a force equation consisting of four equations describing the force

experienced by a moving particle/antiparticle. The power delivered to the particle is given by, Pd = F⃗d · v⃗, where

v⃗ = cβ γ⃗, which upon using Eq.(8) yields

Pd = mc2Λd . (22)

A gauge-like transformation connected with Eqs.(6)- (8) can be found by expressing

ψ⃗ ′ = ψ⃗ ± ψ0

c
γ⃗ , ψ′

0 = (1± β)ψ0 , (23)

under which all expressions in Eq.(8) are invariant, i.e., E⃗d
′ = E⃗d , B⃗d

′ = B⃗d and Λd
′ = Λd, when m = 0. It

is apparent that a massive particle spoils the new gauge transformation. It is analogous to the case of massive

photon in electrodynamics.

The energy conservation equation associated with the system of equations, Eqs.(6) - (8), is given by

∇⃗ · S⃗d +
∂ud
∂t

= −J⃗d · E⃗d + c2Λd ρd , (24)

where

S⃗d = µ−1
0 (E⃗d × B⃗d − Λd E⃗d) , ud =

ε0E
2
d

2
+
B2
d

2µ0
+

Λ2
d

2µ0
. (25)

We notice here S⃗d is the energy flux flow of the matter field, and ud is its energy density. Using Eq.(8), one finds

S⃗d = µ−1
0

(
2ψ0 Λd − cβ(ψ2 +

ψ2
0

c2
)

)
γ⃗ , S⃗d = µ−1

0

(
2
ψ0

c
Λdβ − (ψ2 +

ψ2
0

c2
)

)
v⃗ . (26)

Using Eq.(8), one finds

E2
d

c2
= ψ2 − ψ2

0

c2
, B2

d = −ψ2 − (γ⃗ · ψ⃗)2 , Λ2
d = (γ⃗ · ψ⃗)2 + ψ2

0

c2
, ud = 0 .

It is interesting to notice that the energy flows along the velocity direction, recalling that in Dirac’s theory v⃗ = cβ γ⃗.

Despite this the particle field carries no energy since ud = 0. Therefore, the energy is utterly carried by the particle.

The standard electrodynamics is obtained if we set Λ = 0, Eq.(17), where the Lorenz gauge condition is satisfied.

However, if we now set Λd = 0 for particle dynamics, then S⃗d ∝ v⃗, implying that the energy flows along the particle

velocity direction.

The energy lost by the matter wave (power density), which is the right hand-side of Eq.(24), can be expressed

as, using Eq.(8),

pd = ∓ mc

µ0~
(cβψ2 + Λd ψ0) .
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It is interesting to remark that Eq.(24) and (25) are invariant under the gauge-like transformation expressed

in Eq.(23). Hence, the above formulation represents an expression of rewriting the equations of the quantum

mechanics, instead of the wavefunction, in terms of matter fields that become indistinguishable from the Maxwellian

formulation. Therefore, quantum mechanics in this formulation is no longer a probabilistic theory.

We would like here to explore the Dirac continuity equation aiming at deriving a more general (complex) form

of the charge and current densities, compared to the conventional ones defined in Eqs.(2) and (3).

Quaternionic current density. – The biquaternionic Dirac current density will generalize the ordinary

Dirac current density to be complex. Inspired by Eq.(2), this can be expressed as a biquaternionic current density

J̃ = Ψ̃∗γ̃Ψ̃ , (27)

which can be written in the standard form as

J̃ = (icρD , J⃗D ) , (28)

where J⃗D can be complex. Expanding Eq.(27) using Eq.(5) yields

ρD =
β

c

(
ψ2 − ψ2

0

c2

)
, J⃗D =

2i

c
ψ0(γ⃗ × ψ⃗)−

(
ψ2
0

c2
+ ψ2

)
γ⃗ + 2(γ⃗ · ψ⃗) ψ⃗ . (29)

The generalized Dirac current density J⃗D can be expressed as, J⃗D = J⃗r + i J⃗t, where

J⃗r = 2(γ⃗ · ψ⃗) ψ⃗ −
(
ψ2
0

c2
+ ψ2

)
γ⃗ , J⃗t =

2

c
ψ0(γ⃗ × ψ⃗) . (30)

It is remarkable that to see that the real current flows along the ψ⃗ − γ⃗ plane, while the imaginary current flows

along the direction perpendicular to ψ⃗ and γ⃗, since J⃗r · J⃗t = 0. We call the latter current, a transverse current,

while the former a horizontal current. The horizontal current reveals that the Dirac particle doesn’t travel as a

single particle but rather like a fluid. The transverse current J⃗t mimics the magnetic field in the electromagnetic

wave that is perpendicular to the plane containing the electric field and the direction of energy flow. The direction

of the velocity of the Dirac particle is along the γ⃗ direction. One can now make a comparison between the matter

wave flux density and the particle current density (Eqs.(26) and (30)). This comparison will shed light on how the

wave-particle duality works.

Therefore, in analogy with the electromagnetic theory, our present theory states that the wave vector, ψ⃗, is

analogous to the electric field, the transverse current, J⃗t, is analogous to the magnetic field, and γ⃗ is analogous to

the wave velocity. It is pertinent to see that the simple relation J⃗ = ρv⃗ no longer exits in this formalism.
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On the Dirac-Maxwell correspondence

Biquaternionic continuity equation. – The biquaternionic current in Eqs.(27) and (28) is governed by

the biquaternionic continuity equation [2]

∇̃J̃ = 0 . (31)

Expanding Eq.(31), and equating the real and imaginary parts for the scalar and vector parts of the resulting

equations to zero, we obtain

∇⃗ · J⃗r +
∂ρ

∂t
= 0 , ∇⃗ · J⃗t = 0 ,

∂J⃗r
∂t

+ c2∇⃗ρ+ c∇⃗ × J⃗t = 0 , ∇⃗ × J⃗r −
1

c

∂J⃗t
∂t

= 0 , (32)

where ρ = ρD. We thus see from the above equation that the two currents are coupled to each other in a similar

way the electric and magnetic fields couple in Maxwell’s equations. We already had an experience of the effect

of the temporal variation of the counterpart of a give quantity described by some system of equations. Of such

currents, is the displacement Maxwell’s current. Such a system of equations will find applications in the field

of hydrodynamics and plasma physics. The transverse current tends to lift the object (fluid) upward. London

modelled the phenomenon of superconductivity as due to the flow of two currents; the ordinary electric current and

a superelectric current that floats over it [10]. Thus, a question could arise if one can associate this supercurrent

to the transverse current above. Equation (32) is solved to give

1

c2
∂2ρ

∂t2
−∇2ρ = 0 ,

1

c2
∂2J⃗r
∂t2

−∇2J⃗r = 0 ,
1

c2
∂2J⃗t
∂t2

−∇2J⃗t = 0 . (33)

Hence, ρ , J⃗r , J⃗t , satisfy the wave equation travelling at the speed of light. It is thus interesting that any change in

the charge of current densities in a place, will be immediately transmitted as a wave. However, using the ordinary

continuity equation, one can’t deduce that the current is a wave traveling at the speed of light.

The system of equations in Eq.(32) reduces to our generalized continuity equation [2], when J⃗t = 0; that

occurs, either when ψ0 = 0, or ψ⃗ = 0, referring to Eq.(30). In this special case, one has J⃗r = 2(γ⃗ · ψ⃗) ψ⃗ − ρ v⃗, and

J⃗r = −
(
ψ2

0

c2

)
γ⃗ = ρ v⃗ , respectively. A third possibility exists, when γ⃗ is parallel to ψ⃗, for which J⃗r = −ρ v⃗, by

virtue of Eqs.(29) and (30), and the definition α⃗ = βγ⃗, where v⃗ = cβγ⃗ .

Now the last equation in Eq.(32) can be manipulated to give

ϵt = −L∂It
∂t

, ⇒ ϵt = −
∫
E⃗r · dℓ⃗ , E⃗r = cL J⃗r , (34)

where L denotes some inertial inductance, and E⃗r some electric-like field. The kinetic inductance for a conductor

of a cross-sectional area, A and length ℓ, is defined as

Lk =
m

ne2
ℓ

A
,
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where e, and n are the electric charge, and carrier concentration in the conductor. Similarly, the third equation in

Eq.(32) can be manipulated to yield

ϵr = −L∂Ir
∂t

, ⇒ ϵr =

∫
E⃗t · dℓ⃗ , E⃗t = cL J⃗t , (35)

which allows us to express the electromotive-like force as a complex number in the form, ϵD = ϵr + i ϵt.

Equations (34) and (35) show that the electric-like fields, E⃗r and E⃗t, are measures of the horizontal (surface)

and transverse current densities. They can be expressed as

J⃗r = σrE⃗r , J⃗t = σcE⃗t , σr = σc =
1

Lc
, (36)

where σr and σc are the horizontal and transverse electric-like conductivities.

The time change of the horizontal current induces a circulation in the transverse current, and vice versa. But

the two effects produce opposite effects. We may treat as that one which lines spread over the plane ψ⃗ − γ⃗. These

two new quantities have to be investigated. It is interesting to see from Eqs.(34) and (35) that an electromotive-like

forces (ϵr, ϵc) arise due to temporal variation of the transverse and horizontal currents that push the particle to

move.

London’s equations of superconductivity. London’s described the superconductor by the two equations [10]

∂J⃗

∂t
+ c2∇⃗ρ =

ne2

m
E⃗ , ∇⃗ × J⃗ = −ne

2

m
B⃗ . (37)

Comparing Eq.(37) with Eq.(32) yields

1

c

∂J⃗t
∂t

= −ne
2

m
B⃗ , c∇⃗ × J⃗t = −ne

2

m
E⃗ , (38)

which define the transverse current in a superconductor. It is interesting to notice that the temporal variation of

the transverse current gives rise to a magnetic field, whereas the spatial variation produces and electric field. This

is complimentary to the effect of the ordinary current. While the electric and magnetic fields in Eq.(37) salsify the

Klein-Gordon equation, they satisfy the wave equation with zero mass in Eq.(38), where the ordinary charge and

current densities vanish. Therefore, inside a superconductor the transverse current exists when the ordinary current

is absent. Moreover, Eqs.(37) and (38) can be seen as dual to each other when ∇⃗ρ = 0. A dual superconductor

is proposed to s to model the confinement of Quantum ChromoDynamics (QCD). It is speculated that the QCD

vacuum can be described in terms of a Landau-Ginzburg model of a dual superconductor [11]. To remedy Eq.(38)
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On the Dirac-Maxwell correspondence

an additional magnetic charge gradient can be added to its left hand-side. Hence, the existence of the transverse

current is so fundamental to bring the duality.

In terms of the scalar and vector potentials, Eqs.(38) and (32) reveal that these potentials, in addition to the

transverse current, obey a wave equation traveling at the speed of light. Thus, the transverse current is the current

that is established when the normal current and charge densities are absent.

Energy and momentum conservation equations. The set of equations in Eq.(32) can be connected with an

energy conservation equation that can be obtained from Eq.(32) as

∂u

∂t
+ ∇⃗ · S⃗ = 0 , (39)

where

u =
J2
t

2c
+
J2
r

2c
+
cρ2

2
, S⃗ = J⃗t × J⃗r + cρ J⃗r . (40)

Note that Eq.(37) can also be seen as representing a continuity equation too. The momentum conservation equation

can be obtained from Eq.(32) where

∂gi
∂t

+ ∂jTij − ∇⃗ × (c2ρJ⃗r) = 0 , (41)

where

g⃗ = J⃗t × J⃗r − cρJ⃗r , Tij =
c

2

(
J2
t + J2

r − c2ρ2
)
δij − c (Jr iJr j + Jt iJt j)− ϵijkc

2ρJr k = 0 . (42)

Note that Tij can be see as a stress tensor, u as an energy density, S⃗ as a Poynting vector, and g⃗ as a momentum

density vector. In such conditions, the last term on the left hand-side of Eq.(41), will represent a force density

acting on the fluid. It is a matter of interest if a fluid (with two components) satisfying the above equations really

exists. The last term in Eq.(41) τ⃗ = c2ρJ⃗r can be seen as a torque density acting on the fluid.

Current-charge densities transformation. It is very interesting to observe that Eq.(32) is invariant under the

charge-current densities transformation

J⃗t
′ = J⃗t + ∇⃗ × g⃗ , J⃗r

′ = J⃗r +
1

c

∂g⃗

∂t
, ρ ′ = ρ− 1

c
∇⃗ · g⃗ , (43)

where g⃗ is some vector function obeying a wave equation traveling at the speed of light, i.e.,

1

c2
∂2g⃗

∂t2
−∇2g⃗ = 0 . (44)

Notice that the transformations of ρ and J⃗r are somehow analogous to the gauge transformations of the electro-

magnetic fields. Looking at Eq.(32) with some scrutiny reveals that they are analogous to Maxwell’s equations.
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The transformation in Eq.(43) suggests induced charge and current densities given respectively by

J⃗i =
1

c

∂g⃗

∂t
, ρi = −1

c
∇⃗ · g⃗ . (45)

Plugging these quantities in Maxwell’s equations, in vacuum, gives rise to a displacement vector given by

D⃗ = ε0E⃗ +
g⃗

c
, (46)

which when compared with the standard case, yields a polarization vector, P⃗ = g⃗/c. Therefore, the transformation

in Eq.(43) is such that it induces a polarization terms in the Maxwell’s equations.

Let us now use Eqs.(34) and (35) to rewrite Eq.(32) as

∇⃗ · E⃗r = −∂(Lcρ)
∂t

, ∇⃗ · B⃗r = 0 , ∇⃗ × B⃗r = − 1

c2
∂E⃗r
∂t

− ∇⃗(Lcρ) , ∇⃗ × E⃗r −
∂B⃗r
∂t

= 0 , (47)

where we defined

B⃗r = LJ⃗t . (48)

The above definition of the magnetic field is welcomed since B⃗r is perpendicular to E⃗r which is the case for

Maxwell’s electromagnetic field. It pertinent to mention that when the subscript “r” in Eq.(47) is dropped, it

yields the modified Maxwell’s equations [9]. Equation (47) can be compared with the electrodynamics vacuum

equations, Eqs.(13), (15) and (18).

Interestingly, the set of equations in Eq.(47) is but the Maxwell’s equations of the electromagnetic field with an

effective charge and current densities give respectively by

ρf =
1

c2
∂Λ

∂t
, J⃗f = −∇⃗Λ , Λ =

Lc

µ0
ρ (49)

that satisfy the continuity equation

∇⃗ · J⃗f +
∂ρf
∂t

= 0 , (50)

by virtue of Eq.(33). It is interesting to see the connection between Eqs.(49) and (45), that allows the case that,

ρf = ρi and J⃗f = J⃗i. It is remarkable to see that the Maxwell’s equations are derived from the quaternionic Dirac

continuity equation. We have derived before, the Maxwell’s equations from the quaternionic Dirac equation [3,5].

An electrodynamics of the above form is recently addressed and their consequences are studied [9]. The electric

charge and current densities appearing in Eq.(47) are found to be associated with thermoelectricity [12].
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Electromagnetic wave equations. From Maxwell’s equations, one finds the following wave equations that

describe the evolution of the electromagnetic field

1

c2
∂2E⃗

∂t2
−∇2E⃗ = −µ0

(
∂J⃗

∂t
+ c2∇⃗ρ

)
, (51)

and

1

c2
∂2B⃗

∂t2
−∇2B⃗ = µ0∇⃗ × J⃗ . (52)

Comparing the right hand-sides of Eqs.(51) and (52) with Eq.(32) suggest that one can extend the above wave

equations to include the transverse current. Therefore, one obtains

1

c2
∂2E⃗

∂t2
−∇2E⃗ = −µ0

(
∂J⃗

∂t
+ c2∇⃗ρ+ c∇⃗ × J⃗t

)
, (53)

and

1

c2
∂2B⃗

∂t2
−∇2B⃗ = µ0

(
∇⃗ × J⃗ − 1

c

∂J⃗t
∂t

)
. (54)

Equations (53) and (54) reveal that the temporal and spatial variations are sources of the electromagnetic (wave)

field. It is of interest to compare the electromagnetic wave with the gravitational wave that arises not from the

temporal and spatial variations of the source, but from the source itself. In Maxwell’s theory, the source produces

the fields only. The right hand-side of Eqs.(53) and (54) is zero in vacuum.

Concluding remarks. – We extended in this work, the real current density associated with Dirac theory

to become complex. In doing so, we have found that the real current acts over a plane containing defined by

ψ⃗− γ⃗, while the imaginary part represents the current that is perpendicular to the real current. The charge density

besides the two currents is shown to obey a wave equation traveling at the speed of light. Two electromotive-like

forces are found to exist that are associated with the two currents temporal variations. These two electromotive-like

forces are connected. The two currents and the electromotive-like forces are completely determined by ψ⃗ and γ⃗.

Inside the superconductor, the transverse current exists when the normal current is zero. The complex current and

the charge densities satisfy a set of four equations. A transformation under which these equations are invariant is

found. These equations are analogous to Maxwell’s equations of the electromagnetic fields. We thus have derived

Maxwell’s equations from the quaternionic Dirac continuity equation. A new definition of the electric and magnetic

fields that yields Maxwell’s equations is proposed. It describes the electromagnetic field due to a particle and its

antiparticle with spin-up and spin-down states. This definition gives rise to a modified Ohm’s law. The Lorentz
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force acting on the particle (mass) is of a drag-like force. Further investigations of the physical significance of the

proposed quantities are to be explored.
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