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Extended Real Intervals and the
Topological Closure of
Extended Real Relations

Introduction
The set of real numbers is:

IR = {x : −∞ < x <∞} . (1)

The set of extended real numbers is the real numbers augmented with signed infini-
ties:

IR∗ = IR ∪−∞∪+∞. (2)

The goal of this paper is to develop theclosed system of interval arithmetic opera-
tions and relations on the set of extended intervals with extended real endpoints. No
undefined operator-operand combinations can exist in a closed system. Because the
results of division by zero and indeterminate forms1 are not single points neither

1 An indeterminate form is an expression such as(+∞) − (+∞) , 0
0 , ±∞
±∞

, 0× (±∞) , (±∞)0 , 00, or (±1)(±∞) , for which

there is no single defined value. An indeterminate form may result from replacing the limit of a composite function, such as

limx→0 f (g (x) , h (x)) , by the composite of its limits,f
(
limx→0 g (x) , limx→0 h (x)

)
. For example:limx→0

x
x = 1, but 0

0 is

indeterminant.
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(+∞)− (+∞) (+∞)× 0 (+∞)÷ (+∞)

(−∞)+ (+∞) (−∞)× 0 (−∞)÷ (+∞)

(+∞)+ (−∞) 0× (+∞) (+∞)÷ (−∞)

(−∞)− (−∞) 0× (−∞) (−∞)÷ (−∞)

TABLE 1 Indeterminate arithmetic forms.

the real, nor the extended real number systems are closed. For example, in addition
to division by zero, the operand-operator combinations in Table 1 are undefined.

Closedinterval systems exist because intervals are not single points, but compact
sets of points. In the title of “Interval Arithmetic as a Closed Arithmetic System
on a Computer,” [ ?], Hanson implies a closed interval system is defined. However,
division by zero and the indeterminate forms in Table 1 are specifically excluded.
In “A More Complete Interval Arithmetic,” [?], Kahan defines a closed interval
system, including division by intervals containing zero. However, a detailed justi-
fication of the proposed definitions has not been developed and the Kahan system
produces intervals that are neither as narrow as possible nor as convenient to rep-
resent as the intervals in other possible closed interval systems. For example, the
decision to include open intervals leads to an internal machine representation re-
quiring extra bits in addition to a pair offloating-point values. Nevertheless, it
is a significant achievement that Kahan recognized exterior intervals2 can be used
to sharply3 bound the set of values resulting from division by intervals containing
zero.

Interval Analysis Overview from a Mathematical Per-
spective

This section contains an informal overview of the main points in the development.
After analysis and relation preliminaries in Sections and , Section defines notation
and terms used in the remainder of the paper.

The central problem of interval analysis is to bound the set of results from the point
evaluation of an expression at every value in the argument intervals. A real expres-

2 An exterior interval is the union of two semi-infinite intervals, as in[−∞, a] ∪ [b,+∞] with a < b.
3 An interval bound issharp if it is as narrow as possible and still a bound.
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sion of n singleton set arguments, {xi} , is denoted:
f ({x}) = f ({x1} , . . . , {xn}). A singleton set has exactly one member. The ar-
guments of expressions that produce set-valued results are sets.

The components of the expressions of interest when evaluated at a particular point,
x0 are:

argument valuesx0i of the real variables,xi ;

the basic arithmetic operations (BAOs)+,−,×, and÷;

constants; and

other functions or relations.

An interval vector [X] = ([ X1] , . . . , [ Xn]) is simply a vector of real intervals,
[ Xi ]. All intervals are enclosed in brackets to distinguish them from sets, which are
represented using unbracketed, uppercase letters. In this paper, [X ] is an interval
andX is a set that may or may not be an interval. Braces always surround singleton
sets to distinguish them from intervals, which are enclosed in brackets, and points,
which are not enclosed in braces or in brackets.

When evaluated over a set,X0, an expression is simply the union of expression
values at every point in the range set:

f (X0) =

{
z

∣∣∣∣ z ∈ f ({x0})

x0∈ X0

}
. (3)

The central problem of interval analysis is solved with an enclosure,f ([X0]) , for
the range set,f (X0) of f over the intervalX0:

f ([X0]) ⊇ hull ( f (X0)) (4)

given the interval hull of the set,R, is

hull (R) =
[
inf (R) , sup(R)

]
, (5)

and

[X0] ⊆ D f , (6)

thenatural domain of f. An expression’s domain isnatural if it is the intersection
of operator and intrinsic function domains in the given expression and is formally

Extended Real Intervals and theTopological Closure ofExtended Real Relations 3



defined in Section , item 3 on page 9. In (3), as is customary, then-tuple [X] is
identified with the Cartesian product [X1] ⊗ · · · ⊗ [ Xn] (a box inn-space), so that
x ∈ [X] is a simple way of writing:xi ∈ [ Xi ] for eachi .

Provided [X0] is a subset ofD f , the required enclosure is produced by theinterval
evaluation of f at [X0]. The resulting interval may be an inaccurate approximation
of hull ( f (X0)) , but is a guaranteed enclosure. In the interval literature,f ([X])
is usually written f (X). This practice is natural in the context of overloading the
meaning of f to operate on interval instead of real data items. Because this pa-
per is primarily mathematical,f (X) represents the range set, as is customary in
mathematics.

From a mathematical perspective, the goal of this paper is to extend the meaning of
f ({x}) to points outsideD f , in such a way that the process of interval evaluation
continues to give valid enclosures when the process is defined as the interval hull
of f at the point,x0. In practice, extension is necessary because interval arguments
are not always confined toD f .

The first step is to precisely define all the needed analysis and relation preliminaries,
notation, and terminology. Care with this step is required because points, sets, and
intervals are all used in the development. Without clear notation, opportunities for
ambiguity will make the exposition cumbersome at best, and unclear at worst.

The key is the introduction of the concept of thecontainment set4 of f at x0: the
minimum set of values thatf ([x0]) must contain, whether or notx0 ⊆ D f . In
other words, the interval valuation off must unconditionally succeed and yield an
enclosure off ’s containment set.

Development begins in Section with a specification of the properties that the con-
tainment set of an expression must satisfy. From these properties, the following
main resultsflow:

1. Thecontainment constraint that containment sets must satisfy is defined in Sec-
tion .

2. Thecontainment set is defined in Section .

3. The containment-set closure identity is proved in Section??, Theorem 1.

4. Containment sets of basic arithmetic operations are derived in Section .

4 For the defining properties of the containment set of a relation, see Section on page 18.
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5. Containment sets of the ln, exp, and exp(y ln x) functions are derived in Section
.

6. The distinction between variable and value equality is elaborated in Section .

7. Containment-set-equivalent expressions are introduced in Section .

The IR∗ system is the mathematical foundation for closed interval systems in gen-
eral, and in particular, the interval system described in “The ‘Simple’ Closed In-
terval System,” [ ?], operationally defined in “Implementing the ‘Simple’ Closed
Interval System,” [ ?], and implemented in “ForteTM Developer 6 Fortran 95,” [?].
Because this system is closed,floating-point runtime exceptions are logically im-
possible. Hereafter, the “Simple” Closed Interval System is referred to as the Sim-
ple System.

The development applies standard mathematical principles outlined in Sections
and . The individual mathematical principles are well known, but they have never
been combined with the specific aim of constructing closed interval systems.

The term “closed” is used in two ways:

The system consisting of a set of members and binary operations is closed if any
binary operations in the system on members of the set produces another member
of the set.

A topologically-closed set or closed interval contains all the accumulation points
in the set or interval.

Analysis Preliminaries

The needed basic notions from analysis are reviewed here. An infinitesequence of
pointsx1, x2, x3, . . . is denoted by parentheses,(xi). A subsequence of (xi) means
a sequence(xi j ) wherei1, i2, i3, . . . is a strictly increasing sequence of indices.

A metric space is a setS on which a real-valued distance functiond(x, y) ≥ 0 is
defined, such that givenx, y, z ∈ S, the following three laws are satisfied:

1. d (x , y) = 0 iff, x = y;

2. d (x , y) = d (y, x) ; and,

Extended Real Intervals and theTopological Closure ofExtended Real Relations 5



3. d (x , y)+ d (y, z) ≥ d (x, z) .

The functiond (x, y) is said to be a metric forS.

By definition, a sequence(xi) in S converges tox ∈ S (equivalently,x is the limit
(in the usual sense) of(xi)), iff

d(xi , x)→ 0 in IR. (7)

That is, limi→∞ xi = x, or xi → x, are equivalent ways to write (7).

A subsetX of S is aneighborhood of a pointa ∈ S iff for someε > 0, X contains
the ‘ε-ball’ {x ∈ S | d (x, a) < ε} arounda. A point x is anaccumulation point of
a subsetX of S iff it is the limit of some sequence of points inX ; equivalently, if
every neighborhood ofx meets (has nonempty intersection with)X . A set isclosed
iff it contains all its accumulation points. A set isopen iff it is a neighborhood of
each of its points.

The closure of X , denoted by the customary notationX , consists of all accumu-
lation points ofX . The closure ofX containsX , since everyx is the limit of the
sequence in which all elements equalx . The interior of X is the set of points of
which X is a neighborhood. Theboundary of X is the set of points that are inX ’s
closure and not in its interior. Basic, and not quite trivial, facts are that a set’s:

closure is closed,

interior is open,

boundary is the points common to its closure and the closure of its complement,
and

complement inS is open iffS is closed.

Example 1 In IR, let X be the union of{1, 1/2, 1/3, 1/4, . . .} and the open interval
(−1, 0). Then the set of accumulation points ofX , i.e. its closure, isX ∪ {−1, 0}.
The interior is the open interval(−1, 0). The boundary is{1,1/2, 1/3,1/4, . . .} ∪
{−1, 0}.

A space in which a definition has been made of exactly which sequences are conver-
gent is calledmetrizable iff there is a metric on it that generates this same meaning
of convergence.

TheCartesian product X ⊗ Y of metric spacesX , Y consists of all ordered pairs
(x, y) with x ∈ X and y ∈ Y . The definition of convergence is that(xi , yi) →
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(x, y) iff xi → x andyi → y. Convergence and a metric in the productX1⊗ . . .⊗

Xn of n metric spaces are defined by the obvious extension of these constructions.

An essential role is played by the notion ofcompactness. A subsetX of a met-
ric spaceS is compact iff every sequence of points inX has a subsequence that
converges to a limit that itself is inX . When this is applied to the whole spaceS,
one can say more simply:S is compact iff every sequence inS has a convergent
subsequence.

The Cartesian product of compact spaces is compact.

The spaces of primary interest here areIR, IR∗, and Cartesian products of them.
The usual metric onIR is d(x, y) = |x − y|. A metric onIR∗ is defined below. A
key property is thatevery closed bounded subset of IR is compact. This property
distinguishesIR from ‘thinner’ sets of numbers like the rationals, and is equivalent
to the property that every bounded subset has a least upper bound. Either of these
properties may be taken as the foundation of real analysis.

Convergence in the extended reals,IR∗ = IR ∪ {−∞,+∞}, is defined as follows.
The sequence(xi) converges to a finitex iff the xi are all finite from somei = i0

onward, and converge tox in the usual way. The sequence(xi) converges to+∞ iff
for any realc no matter how large, there exists ani0 such thatxi ≥ c for all i ≥ i0.
Convergence to−∞ is defined similarly. This makesIR∗ topologically equivalent
to the closed intervalI = [−1,1], in the sense that there is a mapφ : IR∗ → I
such thatxi → x in IR∗ iff φ(xi)→ φ(x) in I . For instance,φ can be the function

φ(x) =




−1 if x = −∞,

tanhx if x is finite,
1 if x = +∞.

(8)

This equivalence provesIR∗ is metrizable, a possible metric beingd(x, y) = |φ(x)−
φ(y)| for x , y ∈ IR∗. SinceI is compact, it follows thatIR∗ is compact. Hence
also, (IR∗)n is metrizable and compact, a possible metric on it beingd(x, y) =∑n

i=1 |φ(xi)− φ(yi)| for anyx = (x1, . . . , xn) andy = (y1, . . . , yn) in (IR∗)n.

Relation Preliminaries
Following standard, set-theory notation:

1. A relation between the setsS (the source) andT (the target) is by definition a
subsetF of the Cartesian productS ⊗ T . If F is such a relation and ifX is a

Extended Real Intervals and theTopological Closure ofExtended Real Relations 7



subset ofS, the notationf (X) means the set

f (X) = {y ∈ T | there existsx ∈ X such that(x, y) ∈ F}. (9)

Note that f (X) is always defined but may be the empty set.

2. The domain D f of F is the set ofx ∈ S such that there is at least oney with
(x, y) ∈ F , equivalently such thatf ({x}) is nonempty.

3. Therange R f of F is the set ofy ∈ T such that there is at least onex with
(x, y) ∈ F . That is,R f = f

(
D f

)
.

4. Whenx ∈ S is such thatf ({x}) is a singleton set{y}, f is said to bea function
at x. Then, and only then, is the function notationy = f (x) used. That is,f (x)

is the member off ({x}) when this is unique, and undefined otherwise.f is said
to bea function if it is a function at each point of its domain. Thus, iff is a
function,

f ({x}) =

{
the singleton set{ f (x)}, if x ∈ D f , and
the empty set, otherwise.

(10)

5. Given another relationG ⊆ T ⊗ U, then thecomposition or composite relation
G ◦ F is the relation betweenS andU defined by

G ◦ F =

{
(x, z) ∈ S ⊗ U

∣∣∣∣ there existsy ∈ T such that
(x, y) ∈ F and (y, z) ∈ G

}
. (11)

This corresponds to the usual meaning of a composition of functions. Namely, if
f andg are functions, thenG ◦ F is the composite functiong( f (x)) wherever it
is defined.

Notation and Terminology

The analysis of containment sets and topological closures includes numerous op-
portunities for notation ambiguity. The notation described in this section is strictly
enforced to distinguish between: variables and particular values they can take on;

between points, sets, and intervals; and between functions and relations.

1. The subscript, 0, is used to denote a specific value of a variable. For example,
x0 = y0 denotes the specific values,x0 andy0 (of the variablesx andy) are the
same. The fact thatx0 = y0 does not necessarily imply the variablesx andy, or
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the expressions they represent, are identical. Two expressions are identical if they
have the same domain and the same values for all arguments in their common
domain. Therefore, equality ofx0 andy0 does not necessarily imply the variables
x and y can be interchanged. However, if the variables,x andy are identically
equal, they are also interchangeable. The consequence of the distinction between
value andvariable or expression equality is seen in subsequences used to define
accumulation points and in interval expressions. For example, ifx j = y j for
all j , the sequences

(
x j
)

and
(
y j
)

are identical and have the same limits. If only
their limits are equal, the sequences can nevertheless be different. Two identically
equal intervals are dependent and have the same value. Two intervals that only
have the same value need not be dependent.

2. Customary notation in both the mathematical and interval literature uses upper-
case letters to denote sets and intervals, respectively. For clarity when working
with both sets and intervals, it is necessary to distinguish between them. Because
this paper is primarily concerned with sets rather than intervals, unbracketed up-
percase letters represent sets and all intervals are enclosed in brackets. That is,
[ X ] is the closed interval,

[
x, x

]
=

{
z | x ≤ z ≤ x

}
. The setX is not necessar-

ily an interval, although it can be. Singleton sets are lower-case and enclosed in
braces to distinguish them from points, which are neither enclosed in brackets
nor braces. The singleton set,{x} , has only one element, the point,x .

3. The evaluation of anexpression is any computation defined by the execution of a
code list (or Wengert list). The following are important to distinguish:

a a segment of computer code,

b the expression defined when the code is executed, and

c the relation or function defined by this expression.

Irrespective of whether the code includes branches, loops and subprogram calls,
array references, or overwriting of a variable’s value by a new value, any partic-
ular execution is a finite code list of operations where each new computed value
is given a different name:

Input x1, . . . , xn .

Computexi = ei(earlierx j), for i = n + 1, . . . , q +m.

Outputxq+1, . . . , xq+m .

(12)

Extended Real Intervals and theTopological Closure ofExtended Real Relations 9



There aren inputs,(q − n) intermediate variables, andm outputs. Eachei repre-
sents one of the four basic arithmetic operations (BAOs) or some other ‘intrinsic’
function. Constants may be treated as zero-argument intrinsic functions.

Only the casem = 1, a scalar function of several variables, is treated in this
paper. By successive substitution, the intermediate variables can be eliminated
to give an expressionf for the output, which is uniquely determined by the code
list:

xq+1 = f (x1, . . . , xn).

For instance, if the input is(x1, x2), and if the code list is

x3 = x1 + x2 (13a)

x4 = x2/x3 (13b)

x5 = x4 + x3, (13c)

where the output isx5. Then

f (x1, x2) =
x2

x1 + x2
+ (x1 + x2). (14)

The expression must be sufficiently parenthesized to make the order of evaluation
clear. Note that information is lost about ‘common subexpressions’ like(x1+x2)

above, but this is irrelevant for the mathematics that follows. The function value
f (x0) exists atx0 = (x01, . . . , x0n) in IRn iff, for each ‘compute’ step in the code
list in (12), the arguments to each basic operationei lie in the domain ofei . The
setD f of suchx0 is called f ’s natural domain provided operator’s and intrinsic
function’s domains are used to define the domain off in IRn . If only the four
BAOs are used, then every f defines arational function of the inputs. In this
case,D f is the set of pointsx ∈IRn, for which divide-by-zero does not occur
while evaluatingf atx.

4. The point,x, is the single member of the degenerate interval, [x, x] (or equiva-
lently [x]), and is also the single member of the singleton set{x} . Brackets and
braces establish context for the interpretation of symbols used to represent ex-
pressions. For example, when evaluated either at the pointx0, at the singleton set
{x0}, or at the degenerate interval [x0] , the expressionf is represented:

a f (x0) is the function, f, evaluated at the point,x0 ∈ D f , whereD f is the
natural domain off,

10



b f ({x0}) is the relation,f, evaluated at the singleton set
{
x0 ∈ IR∗

}
, and

c f ([x0]) (or equivalentlyf ([x0, x0])), is the interval evaluation of the expres-
sion, f, at the degenerate interval

[
x0 ∈ IR∗

]
.

Because a code list evaluation can yield a single value or multiple values, the
neutral termexpression is used to refer to the object of a code list evaluation. The
present development extends the mathematical foundation under interval arith-
metic by using the set-theoretic properties of intervals to define bounds on ex-
pressions (whether functions or relations) for any arguments inIR∗.

5. Bold letters are used to represent vectors of points, sets, and intervals. In partic-
ular,

x = (x1, · · · , xn) , (15a)

{x} = {(x1, · · · , xn)} , (15b)

X = (X1, · · · , Xn) , and (15c)

[X] = ([ X1] , · · · , [ Xn]) (15d)

are respectively:

a a point inn-dimensional Euclidean space,IRn,

b a singleton set, the only element of which is a pointx ∈ (IR∗)n,

c the Cartesian product5, X1 ⊗ · · · ⊗ Xn ∈ (IR∗)n , of sets,Xi , and

d ann-dimensional box, [X1] ⊗ · · · ⊗ [Xn] ∈ (IR∗)
n .

From (15b) and the identification of then-tuple,X, with a Cartesian product in
(15c),

{x} = ({x1} , · · · , {xn}) . (16)

6. Including an argument in the symbolic representation of an expression (for exam-
ple, f ({(x1, x2)})) implies that bothx1 andx2 appear in the defining expression
for f . For example, all the elements of the vector,x, appear in the defining
expression forf ({x}) .

5 The n-tuple X =
(
X1, · · · , Xn

)
is treated the same as the Cartesian productX1 ⊗ · · · ⊗ Xn, because they carry the same

information except when any of theXi are empty.

Extended Real Intervals and theTopological Closure ofExtended Real Relations 11



7. As with points, expressions of point, interval, and set vectors mean different
things. That is,f (x) , f ({x}) , and f ([x]) , are respectively:

a the function,f, evaluated at the pointx ∈ D f ∈ (IR)n ,

b the relation,f, evaluated at the singleton set{x} , given the point,x ∈ (IR∗)n ,
and

c the interval evaluation of the expression,f, at the degenerate interval [x] .

In the interval literature, the definition off ([x]) is traditionally limited to single-
valued functions with domainD f ∈ (IR)n . Although complex intervals are also
considered in the interval literature, complex variables and intervals are not con-
sidered in this paper.

8. BecauseX denotes a set of points inn-dimensional space, the notationf (X)

denotes the relation,f, evaluated over all singleton sets,{x} ∈ X, that is:

f (X) =

{
z

∣∣∣∣ z ∈ f ({x})
x ∈ X

}
. (17)

9. Because [X] is a box inn-dimensional space, if [X] ⊆ D f , the notationf ([X])
denotes an interval that must be an enclosure of{

z

∣∣∣∣ z ∈ f ({x})
x ∈ [X]

}
. (18)

The question to be answered is: What is the containment set of values thatf ([X])
must enclose, if [X] �⊆ D f ?

Interval Arithmetic Preliminaries
1. The BAOs in theIR∗ system are relations. Evaluating an expression is always on

set-valued arguments producing a set-valued result. Normal function evaluation
occurs when evaluation at a singleton set{x0} produces a singleton{y0}. Then
and only then is the notationy0 = f (x0) used.

2. Each extended basic arithmetic operation is the topological closure in(IR∗)3, of
(the graph of) the corresponding operation regarded as a subset ofIR3.

12



3. The containment set of a relation evaluated at a point can be disconnected com-
pact sets, not necessarily a single interval. To make an implementable system,
the easily described family of extended closed intervals,IIR∗ is used. As it must
be, the whole ofIR∗ is in IIR∗. Whenever an expression is evaluated, the resulting
containment set is replaced by the latter’s interval-hull, resulting in an unsharp,
but more easily manipulated enclosure.

A machine-implementable interval arithmetic is obtained ifIIR∗ comprises all
closed intervals with IEEEfloating-point-representable endpoints (including±∞).

Tables 2 through 5 on page 15 display containment sets for the four BAOs. The
notation used to represent a BAO’s containment set is:

cset(x opy, {(x0, y0)}) , (19)

where

cset is the containment-set relation,

op is one of the BAOs, and

{(x0, y0)} is the singleton set, the single member of which is the point(x0, y0) at
which the containment set is evaluated.

The general form of the containment set of the expression,f, evaluated at the point,
x0, is:

cset( f, {x0}) . (20)

Using the results developed in Section , these and other containment sets are derived
starting in Section . Some explanations are needed regarding the tables of contain-
ment sets: All inputs are shown as singleton sets and results are shown either as sets
or intervals. To avoid ambiguity, the following customary point arithmetic notation
is not used:

(−∞)+ (−∞) = −∞, (21a)

(−∞)+ y = −∞, if y < +∞, and (21b)

(−∞)+ (+∞) = IR∗. (21c)

Extended Real Intervals and theTopological Closure ofExtended Real Relations 13



Instead, the tables show results for singleton set inputs to each operation. As seen
in equation (17), expression values for a general set input in theIR∗ system are sim-
ply the union of single-point-argument expression values as single-point arguments
range over input sets.

In “ Interval Arithmetic: From Principles to Implementation,” [?], Hickey, Ju, and
van Emden give an alternative mathematical model and guidelines for implementa-
tion. Their model is similar in many ways, but their Principle 1 requires variables to
range only overIR, so that an interval is defined to be a closed, connected, possibly-
empty subset ofIR. Thus, their intervals have the form [I ] ∩ IR where [I ] is a
compactIR∗-interval in theIR∗ model. Infinities are a notational device for denot-
ing intervals, not points in the number system. In the resulting interval arithmetic,
{1/0} is the empty set instead of the set{−∞,+∞}. As a consequence, evaluating
the expression{1/ (1+ 1/x)} whenx = 0, results in containment failures.

In “New Computer Methods for Global Optimization,” [?], Ratschek and Rokne de-
fine a two-point compactification of the extended real numbers to permit the starting
box in the interval global optimization algorithm to be unbounded. However, they
leave undefined both expressions at singular points and indeterminate forms.

Expressions and Functions

The words ‘variable’ and ‘argument’ as used herein mean a quantity that can take on
a scalar value or a set of values inIR or its extension,IR∗. A quantity whose value
is a (set of) vectors, i.e. a subset ofIRn or (IR∗)n , is a vector variable or argument.
If X1, . . . , Xn are sets of scalars andf is a relation ofn arguments, the notations
f (X1, . . . , Xn) and f (X) are used interchangeably, whereX = X1 ⊗ · · · ⊗ Xn is
the Cartesian product of theXi . X0 is the set,X01⊗ · · · ⊗ X0n , of particular values
of the arguments,Xi .

Expressions that arealgebraically equivalent, that is equivalent according to the
rules of high school algebra, are not necessarily the same function if, for example,
they have different domains. The following are different real functions of real vari-
ables. However, for arguments in the intersection of their domains of definition,
they produce the same values.

f1 (x1, x2) = x2/(x1 + x2) (22a)

f2 (x1, x2) = 1− 1/(1+ x2/x1) (22b)

f3 (x1, x2) = 1/(1+ x1/x2) (22c)

14



cset(x + y, {(x0, y0)}) {−∞} {real: y0} {+∞}

{−∞} {−∞} {−∞} IR∗

{real: x0} {−∞} {x0+ y0} {+∞}

{+∞} IR∗ {+∞} {+∞}

TABLE 2 Containment set for addition: cset(x + y,{(x0, y0)}) .

cset(x − y, {(x0, y0)}) {−∞} {real: y0} {+∞}

{−∞} IR∗ {−∞} {−∞}

{real: x0} {+∞} {x0− y0} {−∞}

{+∞} {+∞} {+∞} IR∗

TABLE 3 Containment set for subtraction: cset(x − y, {(x0, y0)}) .

In general, an expressionf is different from the function onIRn that it defines,
although they are generally given the same name.

Expression Closures

The definition of an expression’s closure is:

Definition 1 The closure of the expressionf, evaluated at the pointx0 is denoted

cset(x × y,{(x0, y0)}) {−∞} {real: y0 < 0} {0} {real: y0 > 0} {+∞}

{−∞} {+∞} {+∞} IR∗ {−∞} {−∞}

{real: x0 < 0} {+∞} {x × y} {0} {x × y} {−∞}

{0} IR∗ {0} {0} {0} IR∗

{real: x0 > 0} {−∞} {x × y} {0} {x × y} {+∞}

{+∞} {−∞} {−∞} IR∗ {+∞} {+∞}

TABLE 4 Containment set for multiplication: cset(x × y, {(x0, y0)}) .
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cset(x ÷ y,{(x0, y0)}) {−∞} {real: y0 < 0} {0} {real:y0 > 0} {+∞}

{−∞} [0,+∞] {+∞} {−∞,+∞} {−∞} [−∞,0]

{real: x0 �= 0} {0} {x ÷ y} {−∞,+∞} {x ÷ y} {0}

{0} {0} {0} IR∗ {0} {0}

{+∞} [−∞,0] {−∞} {−∞,+∞} {+∞} [0,+∞]

TABLE 5 Containment set for division: cset(x ÷ y,{(x0, y0)}) .

f ({x0}) , and is defined: ifx0 ∈ D f , then

f ({x0}) =




z

∣∣∣∣∣∣∣∣

z ∈ lim j→∞ y j

y j ∈ f
({

x j
})

x j ∈ D f

lim j→∞x j = x0




. (23a)

Otherwise, ifx0 �∈ D f , then

f ({x0}) = ∅. (23b)

The closure off is always defined, but may be the empty set. The domain off
is the set of argument values for whichf ({x0}) �= ∅, which is the closure of the
domain of f, D f . That is,

D f = D f . (24)

Given the conditions on the right-hand side of (23a) are satisfied, the closure of
an expression is the set of all possible accumulation points in the subsequences
whose members are elements of the sets,f

({
x j
})

. If x0 ∈ D f , all subsequences

of the sequence
(
x j
)
, have the common accumulation point,x0. If x0 /∈ D f , then

f ({x0}) = ∅. Definition 1 imposes no restrictions on the pointx0.

Interval Expressions

When interval arithmetic is used to evaluate an expression at the degenerate interval
[x] = [(x1, · · · , xn)], the code list in (12) becomes:
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Input [x1] , . . . , [xn].

Compute [Xi ] = ei(
[
x j
]

and/or earlier [Xk]), for




i = n + 1, . . . , q +m
1≤ j ≤ n
n + 1≤ k ≤ q.

Output
[
Xq+1

]
, . . . ,

[
Xq+m

]
.

(25)
Each ei in (25) represents one of the four basicinterval arithmetic operations
(BIAOs) or some other ‘intrinsic’ interval function. The interval expression value
f ([x]) exists at[x] = ([x1] , . . . , [xn]) in IRn iff, for each ‘compute’ step in the
code list (25), the arguments to the basic interval operationei lie in the domain of
ei . If only the four BIAOs are used to definef, then everyf defines the enclosure
of a rational function of the inputs.D f is the set of pointsx0 for which division by
an interval containing zero does not occur while evaluatingf at [x0].

An interval expression is anextension of a real function if the interval expression
produces the value of the real function when evaluated using degenerate interval
arguments within the domain of the function. The following are interval extensions
of the corresponding functions in (22a), (22b), and (22c) on page 14.

f1([x1] , [x2]) = [x2] /([x1] + [x2]) (26a)

f2([x1] , [x2]) = 1− 1/(1+ [x2] / [x1]) (26b)

f3([x1] , [x2]) = 1/(1+ [x1] / [x2]) (26c)

When different interval expressions are evaluated using non-degenerate interval ar-
guments, they can produce different width intervals, although the resulting intervals
must contain the set of all possible values of their respective underlying point ex-
pression. For (26a), (26b), and (26c), if interval inputs are not degenerate, onlyf2

and f3 always produce sharp bounds on their respective function’s range over the
domain subset defined by argument intervals. Multiple occurrences of arguments
in f1 can cause returned intervals to be unnecessarily wide. In the interval litera-
ture, this is known as ‘the dependence problem’, because interval arithmetic fails to
recognize the two occurrences of the interval variable, [X2] in (26a), are the same
variable and therefore dependent.
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The Containment Set
The analysis of containment sets is connected to the presence or absence of a vari-
able in an expression or sub-expression. Therefore, care is taken to ensure that the
presence of a variable in the set of expression arguments means that the variable ap-
pears in the expression’s definition. Recall item 6 on page 11 in the list of notation
and term definitions.

Let then f arguments of the expression,f
({

x f
})

, be partitioned:x f =
(
xh, xg

)
.

Further, leth ({xh}) be an expression of thenh variables,xh =
(
xhu , xc

)
and let

g
({(

y, xg
)})

be an expression of theng + 1 variables,
(
y, xg

)
=
(
y, xgu, xc

)
. The

only common arguments to bothxh andxg are those inxc.

For a givenxh andh ({xh}) , consider all the possible compositions having the form,

f
({

x f
})
= g

({(
y, xg

)
| y ∈ h ({xh})

})
. (27)

Depending on the form of the composition in (27), different members ofxh are in
xc and therefore inxg. Denote the containment set ofh, evaluated at the point,x0h:
cset(h, {x0h}) . The interval evaluation, h ([x0h ]) , of the expressionh must contain
cset(h, {x0h}). The value of cset(h, {x0h}) can cause a containment failure to occur
if there exists a composition having the form in (27) and

cset
(

f,
{
x0 f

})
�⊆ cset

(
g,
{(

y, x0g
)
| y ∈ cset(h, {x0h})

})
. (28)

Relation (28) is a containment failure because the composition of containment sets
on the right-hand side fails to contain all the elements in cset

(
f,
{
x0 f

})
. This con-

ception of a containment failure is motivated by the following considerations:

Relation (28) is the basis for defining thecontainment constraint that containment
sets must satisfy.

Relation (28) is the essential event that containment sets must prevent. That is,
when used as an argument of anysubsequent expression, containment sets must
not cause a containment failure.

Unlike expression (18) on page 12 for the containment set over a set within the
expression’s domain, equation (28) begs the question of what containment sets
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are. Consequently, equation (28) admits containment sets with arguments at sin-
gular points and indeterminate forms.

Definition 2 Thecontainment constraint on the set of values,Y0, of the expression
h of nh variables, evaluated at the pointx0h and denotedh ({x0h}) , is that:

cset
(

f,
{
x0 f

})
⊆

{
z

∣∣∣∣ z ∈ g
({(

y0, x0g
)})

y0 ∈ Y0

}
, (29)

using any possible composition of the form,

cset
(

f,
{
x f
})
= g

({(
y, xg

)
| y ∈ h ({xh})

})
, (30)

and anyx0 f ∈ (IR∗)n f , for which

f
({

x0 f
})
�= ∅. (31)

A trivial way to satisfy the containment constraint and therefore avoid containment
failures is to letY0 in Definition 2, and therefore cset(h, {x0h}) , be the entire set
of extended real numbers,IR∗. Because unnecessary members of cset(h, {x0h}) are
not wanted, the containment set ofh at (x0h) must be the smallest set that satisfies
the containment constraint in Definition 2.

The Central Problem of Extended Interval Analysis

For any extended interval [X0] ⊆ (IR∗)n, the central problem of interval analysis in
(4) on page 3 is solved with an enclosure, over the interval [X0] , for the contain-
ment set off evaluated over all points in the interval [X0]:

f ([X0]) ⊇ cset( f, [X0]) (32)

given

cset( f, [X0]) =
{

z

∣∣∣∣ z ∈ cset( f, {x0})

x0∈ [X0]

}
. (33)

The next question to be answered is: Are there any additional restrictions that must
be imposed to complete the containment set definition? The answer is yes. Con-
tainment sets must satisfy two conditions in addition to the containment constraint
in Definition 2:
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1. To satisfy the containment constraint, the containment set must contain any de-
fined value off at the pointx0. Therefore, for any value ofx0 within the domain
of f, cset( f, {x0}) must contain all values off ({x0}). If x0 is outsideD f , either
f ({x0}) may be empty, or iff is a relation,f ({x0}) may be a set of values.

2. Containment sets must have a kind of continuity. Suppose(x0 j) is a sequence in

(IR)n converging tox0. Choose an arbitraryy0 j ∈ cset( f,
{
x0 j

}
) for eachj such

that they0 j converge to somey0. Theny0 must belong to cset( f, {x0}).

Condition 2 is not as obvious as condition 1, but is no less reasonable. In effect,
condition 2 requires containment sets to use the topology of the system within
which distance between points and convergence of sequences are defined. It would
make no sense if containment sets used a different topology.

Interestingly, the identity of containment sets and closures follows directly from
Condition 1 and 2, alone.

Lemma 1 Given the expression (function or relation),f, of n variablesx = (x1, · · · , xn)
with domain,D f , the point,x0 that may be outsideD f , and the following two con-
straints on the relation,Y ({x0}):

i. For all x0 ∈ D f , then the setY ({x0}) must satisfy:Y ({x0}) ⊇ f ({x0}) .

ii. For any sequence
(
x0 j

)
with x0 j ∈ D f that converges tox0, and any sequence(

y0 j
)
, whose members satisfy:y0 j ∈ Y

({
x0 j

})
⊇ f

({
x0j

})
and converge to

some value,y0, theny0 ∈ Y ({x0}) .

ThenY ({x0}) = f ({x0}) , the closure off , evaluated at the pointx0.

Proof. The first step is to prove thatY ({x0}) must containf (x0). Begin with any
y0 ∈ f (x0). By definitiony0 is the limit of a sequence(y0 j) wherey0 j ∈ f ({x0i})

for somex0 j whose limit isx0. From applying conditioni to the members of the

sequence(x0i), it follows that f ({x0 j}) ⊆ Y
({

x0 j
})

so anyy0 j ∈ Y
({

x0 j
})

. From

conditionii, it follows thaty0 ∈ Y
({

x0 j
})

, completing the first step.

The second step is to prove that expression closures satisfy conditionsi and ii.
From Definition 1 of an expression closure on page 15,f ({x0}) contains all defined
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values of f at x0, thereby satisfying conditioni. Condition ii is also satisfied,
because an expression’s closure is the set of all possible accumulation points in the
subsequences whose members are elements of the sequence of sets,

(
f
({

x j
}))

, for

all subsequences of any sequence
(
x j

)
with common accumulation point,x0. This

completes the second step and the proof.

Because the hypotheses of Lemma 1 are containment-set conditions, it follows at
once that containment sets must be simply expression closures. While satisfying
the containment constraint is the motivation for defining the containment set of
an expression, Lemma 1 and the hypotheses therein are sufficient to require the
containment set of an expression to be the expression’s closure.

It remains to prove that expression closures satisfy the containment constraint. Be-
cause Lemma 1 requires an expression’s containment set to be the expression’s
closure, if closures satisfy the containment constraint, they are the smallest sets
that do so.

To prove expression closures satisfy the containment constraint, start with simple
compositions having the form:

f ({x}) = g (h ({x})) . (34)

Lemma 2 establishes that closures of the compositions in (34) are subset-equal to
the corresponding composition of their closures. In Lemma 3, Lemma 2 is gener-
alized to compositions having more general form in (35):

f ({x}) = g ({(y, x) | y ∈ h ({x})}) (35)

from which any arbitrary expression can be built up. Note that because closures of
expressions are defined at all pointsx0 ∈ (IR∗)n (see Definition 1, page 15), Lemma
2 holds, even iff ({x0}) = ∅.

Lemma 2 Given the composite expression,f, of n variables, with
f ({x}) = g (h ({x})), then for anyx0 ∈ (IR∗)n , the closure off at x0 satisfies
the following subset inequality:

f ({x0}) ⊆ g
({

y0 | y0 ∈ h ({x0})
})

. (36)

Proof. Take anyz0 ∈ f ({x0}). Soz0 = lim j→∞ z j wherez j ∈ g({y j}) for some

y j ∈ h({x j}), and for some sequence
(
x j
)

which converges tox0.
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By compactness ofIR∗, and by taking a subsequence, assume6 that they j converge
to somey0. Then by the definition of the closure of a relation,z0 ∈ g({y0}).
Similarly y0 ∈ h({x0}). Soz0 ∈ g(

{
y0 | y0 ∈ h({x0})

}
), proving the result.

The Analysis of Dependence

Extending Lemma 2 for the simple compositions in (36) to the general form in
(35) requires an analysis ofdependence between multiple occurrences of expres-
sion arguments. The term dependence in the interval literature is used to describe
an expression in which at least one argument is used more than once. Because in-
terval arithmetic does not recognize dependence, every expression is evaluated as if
each occurrence of a variable is independent of every other occurrence of the same
variable. For example, instead of computing a sharp enclosure of the expression:

x

x + y
(37)

at the point(x0, y0) , interval arithmetic computes a sharp enclosure of the expres-
sion:

z

x + y
(38)

at the point(x0, y0, z0) = (x0, y0, x0) .

In the following three sub-sections, the range of possible dependencies in a single
composition is examined.

The General Case.

Let then f arguments of the expression,f
({

x f
})

, be partitioned:x f=
(
xhu , xgu , xc

)
.

Further, leth ({xh}) be an expression of thenh variables,xh =
(
xhu , xc

)
and let

g
({(

y, xg
)})

be an expression of theng + 1 variables,
(
y, xg

)
=
(
y, xgu, xc

)
. The

arguments inxc are the only common arguments to bothxh andxg. The arguments
in xhu andxgu appear only inh andg, respectively. Whether there are common
arguments withinxh andxg is unspecified for the time being.

6 This is the customary compressed way to express the following argument. Recall that a subsequence means a sequencey jk
where j1, j2, j3, . . . is some strictly increasing sequence of indices. Take thecorresponding subsequences of thez j s andx j s,

namelyz jk
andx jk

. These still converge toz0 andx0 respectively. So, renaming these subsequences with the original names (i.e.

namingx jk asx j , etc.) results in sequences with all the original properties and the extra property that they j s converge toy0.
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The Single-Use Case.

One extreme is the case when there are no arguments inxc. Then then f argu-
ments of the expression,f

({
x f

})
, can be partitioned such thatx f=

(
xh, xg

)
, with

h ({xh}) an expression of thenh variablesxh, andg
({(

y, xg
)})

an expression of

theng + 1 variables,
(
y, xg

)
. There are no commonxc arguments inxh andxg.

The Total Dependence Case.

The other extreme is when all arguments are inxc and there are no unique argu-
ments,xhu or xgu , associated withh or g. In this case:

x f = xh = xc = xg, (39)

and f
({

x f 0
})
= g

({(
h
({

x f 0
})

, x f 0
)})

, so no partitioning of the arguments off
is needed.

Regardless of the degree of dependence, Lemma 2 extends to the general composi-
tion in (35):

Lemma 3 Let then f arguments of the expression,f
({

x f
})

, be partitioned:x f=
(
xhu , xgu, xc

)
.

Further, leth ({xh}) be an expression of thenh variables,xh =
(
xhu , xc

)
and let

g
({(

y, xg
)})

be an expression of theng + 1 variables,
(
y, xg

)
=

(
y, xgu, xc

)
. The

members ofxc are the only common arguments to bothxh andxg. The arguments
in xhu andxgu appear only inh andg, respectively.

Consider the composition having the form,

f
(
x f

)
= g

({(
y, xg

)
| y ∈ h ({xh})

})
. (40)

Then regardless of the number of common arguments inxc,

f
({

x f 0
})
⊆ g

({(
y0, xg0

)
| y0 ∈ h ({xh0})

})
. (41)

The proof parallels that of Lemma 2, using the single-use and total-dependence
cases defined above.

Proof. Take anyz0 ∈ f ({x f 0}) = f ({
(
xhu0, xgu0, xc0

)
}). From Definition 1,z0 =

lim j→∞ z j where z j ∈ g(
{(

y j , xg j
)}

) = g(
{(

y j , xgu j , xcj
)}

) for some

y j ∈ h({xhj}) = h({
(
xhu j , xcj

)
}), and for some sequence,

(
x f j

)
=

(
xhu j , xgu j , xcj

)
,

which converge tox f 0.
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In the single-use case,xc contains no members. Except for the fact thatg has
arguments,xg, in addition toy, this is precisely the same situation as that in Lemma
2. The expressiong depends on the members ofxh only throughh. By compactness
of IR∗, and by taking a subsequence, assume that they j converge to somey0.
Then by the definition of the closure of a relation,z0 ∈ g(

{(
y0, xg0

)}
). Similarly

y0 ∈ h({xh0}). So z0 ∈ g(
{(

y0, xg0
)
| y0 ∈ h({xh0})

}
), proving the result in the

single-use case.

In the total-dependence case, equation (39) is true. When computing the closure
of f, members ofxc that are common to bothg andh are taken into account. In
contrast, when computing the composition of closures, the fact that the members
of xc are common tog andh is ignored. The composition of closures can take on
more values than the closure off because the members ofxc in g andh are free to
vary independently. This case is the same as the single-use case, with equalvalues
of the variables inxg andxh. That is,xg0 = xh0, but with the variables themselves
unequal – recall item 1 on page 8. The remainder of the proof in this case is exactly
the same as in the single-use case.

Since the two extreme cases bound all possible degrees of dependence, the required
result is proved.

Example 2 From Lemma 3, the following expression closures of the functions in
(22a), (22b), and (22c) are subset equal to the corresponding compositions of BAO
closures:

f 1({x1} , {x2}) ⊆ {x2} /({x1}+{x2}) (42a)

f 2({x1} , {x2}) ⊆ 1−1/(1+{x2} / {x1}) (42b)

f 3({x1} , {x2}) ⊆ 1/(1+{x1} / {x2}) (42c)

The values in Table 6 illustrate how function values, expression closures and com-
positions of BAO closures are related. The first row contains column headings.
The first column contains argument values. The second column contains defined
function values forf1, f2, and f3 if arguments are contained in the function’s nat-
ural domain. Question marks denote undefined values. “na” means not applicable.
Column 3 contains the value of the expression’s closure. Note that expression clo-
sures are always defined and that all three expressions have the same closure values.
From the identity of containment sets and expression closures, these values are the
containment sets of the expressions that must be enclosed by their interval evalu-
ation. Column 4 contains the values of the right-hand sides of (42a), (42b), and
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(x1, x2) ( f1, f2, f3)
(

f 1, f 2, f 3
)

expression clsosure compositions

(1,1)
(

1
2, 1

2, 1
2

) {
1
2

} {
1
2

}

(1,0) (0,0,?) {0} {0}

(0,1) (1,?,1) {1} {1}

(−1,1) (?,?,?) {−∞,+∞} {−∞,+∞}

(0,0) (?,?,?) IR∗ IR∗

(+∞,+∞) (?,?,?) [0,1] ([0,+∞] , [0,1] , [0,1])

({1,2} ,{1,2}) na
{

1
3, 1

2, 2
3

} ({
1
4, 1

3, 1
2, 2

3,1
}
,
{

1
3, 2

3

}
,
{

1
3, 2

3

})

([1,2] , [1,2]) na
[

1
3, 2

3

] ([
1
4,1

]
,
[

1
3, 2

3

]
,
[

1
3, 2

3

])

TABLE 6 Sample values of expressions (42a), (42b), and (42c).

(42c). As Lemma 3 predicts, subset equality holds between expression closures
and compositions of BAO closures. As expected, compositions of BAO closures
for f1 may include unneeded values because the composition of BAO closures does
not recognize dependence between multiple occurrences ofx2.

Containment-Set Closure Identity

The containment-set closure identity follows at once from Lemmas 1 and 3:

Theorem 1 Given any expressionh ({x}) of n variables and the point,x0, then the
containment set,

cset(h, {x0}) = h ({x0}) (43)

is the smallest set that satisfies the containment constraint and conditions i and ii in
Lemma 3.

Proof. Expression closures are uniquely determined by Lemma 1. Lemma 3 guar-
antees that expression closures satisfy the containment constraint in Definition 2.

Theorem 1 establishes that the containment set and closure of any expression are
identical. Therefore, containment sets inherit all the properties of expression clo-
sures.
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Basic Arithmetic Operation Containment Sets
Having established that containment sets are closures, the containment sets of the
BAOs and other intrinsic functions are established using Theorem 1, the containment-
set closure identity, and Definition 1 of the closure of an expression.

Addition

Let f+ (x, y) = x + y. Then from the containment-set closure identity and the
definition of an expression closure,

cset( f+, {(x0, y0)}) = f + ({(x0, y0)}) (44a)

=


z

∣∣∣∣∣∣
lim j→∞x j = x0

lim j→∞y j = y0

lim j→∞
(
x j + y j

)
= z


 (44b)

Points that are inf +, but not in f+, include those values for which at least one
of x0 or y0, must be−∞ or +∞. Without loss of generality (because addition
commutes), letx0 ∈ {−∞,+∞} .

If x0 =∞ andy0 ∈ IR, thenx j + y j →∞.

If x0 =∞ andy0 =∞, thenx j + y j →∞.

If x0 =∞ andy0 = −∞, thenx j + y j can approach any finite or infinite value.
For example:

To get any finitez, let y j = z − x j .

To getz = −∞, let y j = −x2
j − x j .

To getz = +∞, let x j = y2
j − y j .
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FIGURE 1
u0 = tanh({x0}) , v0 = tanh({y0}) ,
w0 = cset(tanh(x + y) , {x0, y0}) .

The case ofx0 = −∞ is similar. Therefore, the following closure of addition and
subtraction as shown in Tables 2 and 3 is justified forx0 ∈ {−∞,+∞}:

cset(x + y, {(−∞, y0)}) = {−∞} , for y0 < +∞,

cset(x + y, {(+∞, y0)}) = {+∞} , for y0 > −∞,

cset(x + y, {(−∞, y0)}) = IR∗, for y0 = +∞.

The graph in Figure 1 depicts the closure of addition. Theu-, v-, andw-axes are the
mappings ofx0, y0, and cset(x + y, {(x0, y0)}) onto the interval [−1, 1] using the
hyperbolic tangent map. To properly illustrate that cset(x + y, {(−∞,+∞)}) =

IR∗, the graph should actually contain vertical lines from(u, v, w) = (1,−1,−1)
to (1,−1, 1) and from(−1,1,−1) to (−1, 1, 1) .
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Multiplication
Let f× (x , y) = x × y. Then following the same justification as in the case of
addition,

cset( f×, {(x0, y0)}) = f
×
({(x0, y0)}) (45a)

=


z

∣∣∣∣∣∣
lim j→∞x j = x0

lim j→∞y j = y0

lim j→∞
(
x j × y j

)
= z


 (45b)

Points that are inf ×, but not in f×, include those values for which at least one of
x0 or y0 must be−∞ or +∞. Without loss of generality (because multiplication
commutes), letx0 ∈ {−∞,+∞} .

If x0 =∞, y0 ∈ IR andy �= 0, then:

x j × y j →

{
−∞, if y < 0
+∞, if y > 0

.

If x0 =∞ andy0 ∈ {−∞,+∞} , then the results in the previous case hold.

If x0 = ∞ andy0 = 0, thenx j × y j can approach any finite or infinite value. For
example:

To get any finitez, let y j =
z
x j
.

To getz = −∞, let y j =
1
−
√

x j
.

To getz = +∞, let y j =
1
+
√

x j
.

The case ofx0 = −∞ is similar. Therefore, the following closure of multiplication
as shown in Table 4 is justified forx0 ∈ {−∞,+∞}:

cset(x × y, {(x0, y0)}) = {signum(x0)× signum(y0)×∞} , for y �= 0 and

cset(x × y, {(x0, y0)}) = IR∗, for y0 = 0.

Similar to Figure 1, Figure 2 depicts the closure of multiplication using the hy-
perbolic tangent mapping ofx0, y0, and cset(x × y, {x0, y0}) onto theu-, v-, and
w-axes, respectively. To properly illustrate that cset(x × y, {(0,±∞)}) = IR∗,
the graph should actually contain vertical lines fromw = −1 to w = +1 at
(x0, y0) = (0,−1) , (1, 0) , (0, 1) , and(−1, 0) .
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FIGURE 2
u0 = tanh({x0}) , v0 = tanh({y0}) ,
w0 = cset(tanh(x × y) , {x0, y0}) .

Division

Let f÷ = (x ÷ y) then

cset( f÷, {(x0, y0)}) = f
÷

({(x0, y0)}) (46a)

=


z

∣∣∣∣∣∣
lim j→∞ x j = x0

lim j→∞ y j = y0

lim j→∞
(
x j ÷ y j

)
= z


 . (46b)

Points that are inf
÷

, but not in f÷, include those values for which at least one of
x0 or y0 must be−∞, +∞, or y0 = 0.

If x0 =∞, y0 ∈ IR, andy �= 0, then

lim
j→∞

(
x j ÷ y j

)
=

{
−∞, if y < 0
+∞, if y > 0

.

Similarly, if x0 ∈ {−∞,+∞} , x j ÷ y j = signum(x0)× signum(y0)× (+∞) .
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If x0 = +∞ andy0 = +∞, thenx j ÷ y j can approach any non-negative finite
or infinite value. For example:

To getz0 = 0, let y j = x2
j .

To get any finite 0< z0 <∞, let y j =
x j

z .

To getz0 = +∞, let x j = y2
j .

To provez0 cannot be negative, it is sufficient to prove that limj→∞

(
x j

y j

)
�= z0

if z0 < 0.

Proof. For sufficiently largej, say j > j0, bothx j andy j are positive. Thus,

for j > j0,
x j

yj
≥ 0 and

∣∣∣ x j

y j
− z0

∣∣∣ ≥ |z0| > 0. Thereforex j

y j
cannot approach

z0 < 0.

Similarly, if x0 ∈ {−∞,+∞} andy0 ∈ {−∞,+∞} , then limj→∞
(
x j ÷ y j

)
=

signum(x0)× signum(y0)× [0,∞] .

If x0 ∈ IR andy0 ∈ {−∞,+∞} , then limj→∞
(
x j ÷ y j

)
= 0. For example:

To getz0 = 0, let y j ∈
{
± j x j

}
.

If x0 ∈ IR, x0 > 0, andy0 = 0, then limj→∞
(
x j ÷ y j

)
→ {±∞} .

To getz0 = −∞, let y j =
−x j

j .

To getz0 = +∞, let y j =
x j

j .

To provez0 cannot be finite, it is sufficient to prove that1
z0
=
|y j |
x j
� z0 if

z0 �= 0.

Proof. For sufficiently largej, say j > j0, x j > 0,
∣∣y j

∣∣ < x j and
∣∣∣ |y j |

x j
− |z0|

∣∣∣ ≥
|z0| > 0. Therefore |y j |

x j
cannot approach z0 if

|z0| > 0.

Similarly, if x0 ∈ IR, x0 < 0, andy0 = 0, then limj→∞
(
x j ÷ y j

)
= {±∞} .
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If x0 = +∞ andy0 = 0, then limj→∞
(
x j ÷ y j

)
= {±∞} .

To getz0 = −∞, let y j =
−1
x j
.

To getz0 = +∞, let y j =
1
x j
.

Similarly, if x0 = −∞, andy0 = 0, then limj→∞
(
x j ÷ y j

)
= {±∞}

If x0 = 0 andy0 = 0, thenx j ÷ y j can approach any finite or infinite value. For
example:

To getz0 = −∞, let y j = − signum
(
x j
)
× x2

j .

To getz0 = +∞, let y j = signum
(
x j
)
× x2

j .

To get any finitez0 �= 0, let y j =
x j

z .

To getz0 = 0, let
∣∣x j

∣∣ = y2
j .

Therefore, the following closure of division as shown in Table 5 is justified:

cset(x ÷ y, {(x0, y0)}) = {0} , for x0 ∈ IR andy0 ∈ {−∞,+∞} ,

cset(x ÷ y, {(x0, y0)}) = signum(y0)× signum(y0)× [0,∞] ,
for x0 andy0 ∈ {−∞,+∞} ,

cset(x ÷ y, {(x0, 0)}) = {±∞} , for x0 ∈ IR÷ andx0 �= 0, and

cset(x ÷ y, {(0, 0)}) = IR∗.

The graph in Figure 2 depicts the closure of division using the same hyperbolic tan-
gent mapping employed for addition and multiplication. To properly illustrate that
cset(x ÷ y, {(+∞,+∞)}) = cset(x ÷ y, {(−∞,−∞)}) = [0,∞] , and cset(x ÷ y, {(−∞,+

cset(x ÷ y, {(+∞,−∞)}) = [−∞, 0] the graph should actually contain vertical
lines fromw0 = −1 to w0 = 0 at (u0, v0) = (−1,−1) , and (1, 1) , and from
w0 = 0 tow0 = 1 at (u0, v0) = (−1, 1) , and(1,−1) . Finally, to properly illus-
trate that cset(x ÷ y, {(0, 0)}) = [−∞,+∞] , there should be a vertical line from
(u0, v0,w0) = (0,0,−1) to (0,0, 1) .
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FIGURE 3
u0 = tanh({x0}) , v0 = tanh({y0}) ,
w0 = cset(tanh(x ÷ y) , {x0, y0}) .

Irrational Expressions
Similar treatments is used to define the closure of irrational expressions.

ln

In this case,

cset(ln, {x0}) = ln ({x0}) (47a)

=

{
y

∣∣∣∣ lim j→∞ x j = x0

lim j→∞ ln x j = z

}
. (47b)

Points that are inln, but not in ln, include those values for whichx0 is 0 or+∞.

If x0 = 0, then limj→∞ln x j = −∞.

32



If x0 =∞, then limj→∞ln x j =∞.

Therefore, the following closure of the natural logarithm is justified forx0 ∈ {0,+∞}:

cset(ln x , {0}) = {−∞} , and

cset(ln x , {+∞}) = {+∞} .

exp

In a fashion similar to the natural logarithm, the following closure of the exponen-
tial function is justified forx0 ∈ {−∞,+∞}:

cset(expx , {−∞}) = 0, and

cset(expx , {+∞}) = +∞.

exp(y ln x)

Let fexp(y ln x) = exp(y ln x) . Points that are inf exp(y ln x), but not in fexp(y ln x), in-
clude those values for whichy0 ∈ {−∞, 0,+∞} andx0 ∈ {0, 1,+∞} , excluding
(y0, x0) = (0, 1) .

If y0 =∞, x0 ∈ IR andx �= 1, then

exp
(
y j ln x j

)
→

{
0, if x < 1
+∞, if x > 1

.

If y0 =∞ andx0 ∈ {0,+∞} , then the results in the previous case hold.

If y0 = ∞ andx0 = 1, then exp
(
y j ln x j

)
can approach any non-negative finite

or infinite value. For example:

To get any finitez0, let x j = exp
(

ln z0
y j

)
.

To getz0 = 0, let x j = exp
(

1
−

√
y j

)
.

To getz0 = +∞, let x j = exp
(

1
+
√

y j

)
.
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The cases ofy0 ∈ {−∞, 0} are similar. Therefore, the following closure of exp(y ln x)

is justified for y0 ∈ {−∞, 0,+∞} and x0 ∈ {0, 1,+∞} , excluding(y0, x0) =

(0,1) . Including y0 = 0 is needed becauseln ({x0}) can be infinite whenx0 ∈

{0,+∞} .

For y0 ∈ {−∞,+∞} andx0 ∈ {0,+∞} ,

cset(exp(y ln x) , {(x0, y0)}) = {exp(signum(y)× signum(x − 1)×∞)} .

(48)

For y0 ∈ {−∞,+∞} andx0 = 1, or y0 = 0 andx0 ∈ {0,+∞} ,

cset(exp(y ln x) , {(x0, y0)}) = [0,+∞] . (49)

Variable and Value Equality
Theorem 1 establishes the identity of containment sets and closures. Therefore,
the distinction between the equality of variables as contrasted with equality only of
their values applies both to containment sets and closures. For example, cset(x − x, {x0})

(or equivalently, cset(x − y, {(x0, y0) |x = y})), and cset(x − y, {(x0, y0) |x0 = y0})

are different. The following examples are illustrative.

cset(x − x, {x0}) = cset(x − y, {(x0, x0)} | x = y) = {0} (50a)

cset
(

x ×

(
1
x

)
, {x0}

)
= cset

(
x ×

(
1
y

)
, {(x0, x0)} | x = y

)
= {1} (50b)

cset
(x

x
, {x0}

)
= cset

(
x

y
, {(x0, x0)} | x = y

)
= {1} . (50c)

Alternatively,

cset(x − y, {(x0, y0) |x0 = y0}) =

{
{0} for all x0 ∈ IR
IR∗ if x0 ∈ {−∞,+∞}

, (51a)

cset
(

x ×

(
1
y

)
, {(x0, x0) |x0 = y0}

)
=

{
{1} for all x0 ∈ IR − 0
IR∗ if x0 ∈ {−∞, 0,+∞}

, (51b)
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and

cset
(

x

y
, (x0, x0) |x0 = y0

)
=



{1} for all x0 ∈ IR − 0
IR∗ if x0 = 0
[0,+∞] if x0 ∈ {−∞,+∞}

. (51c)

Containment-Set-Equivalent Expressions
Two expressions arecontainment-set equivalent if they have identical contain-
ment sets for all possible values of their arguments. The interval evaluation of
containment-set-equivalent expressions produces an enclosure of their common
containment set. Therefore, containment-set-equivalent expression exchange can-
not cause a containment failure. This result can be used to choose the “best”
containment-set-equivalent expression for a particular purpose.

Without loss of containment, expressionh can replace expressionf in any expres-
sion, if for all {x0} ∈ (IR∗)n , cset( f, {x0}) ⊆ cset(h, {x0}).

Example 3 The functions,f1, f2, and f3 on page 17 are containment-set-equivalent
expressions. Therefore, the interval expression

f2 ([ X1] , [ X2]) ∩ f3 ([ X1] , [ X2]) (52)

is a sharp enclosure of the common containment set of the functionsf1, f2, and
f3. In (52) f1 is not needed, as the width off1 exceeds that of the intersection of
f2 and f3.

Conclusion
Traditional interval analysis is defined for single-valued operations and functions
with operands and arguments in their natural domains. Because intervals are sets,
interval systems can be extended to:

1. permit interval argument endpoints to be any values inIR∗, whether partly or
totally outside an expression’s natural domain; and,
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2. permit interval expressions to be enclosures either of functions or of relations.

The key new concept needed to make the required extensions is thecontainment
set of possible results that an enclosure must contain, including argument values
for which point expressions are not defined. The containment-set closure identity
provides an operational definition of the containment set of any expression, whether
a function or relation.

The practical consequences of these results are:

1. Interval arithmetic can be used to bound the range of relations as well as func-
tions.

2. Closed interval systems can be implemented on a computer so that no undefined
events, or IEEE exceptions, are logically possible.

3. Containment-set equivalence defines the set of expressions within which substi-
tutions can be made without loss of containment.
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