Exercise 2.3.4 Determine $\sup(A)$ and $\inf(A)$ for the ordered set (M, \prec) and subset A, if these exist.

(d)
$$A = \{]x, y[|-1 < x \le -\frac{1}{2}, \frac{1}{2} < y \le 2\}$$
, wobei $M = \mathfrak{P}(\mathbb{R}), a \prec b : \iff a \subset b$.

Proof. We assume $\sup(A) = B_0 :=]-1,2[; B_0 \text{ is upper bound of A, because}]$

$$\forall |x,y| \in A : |x,y| \prec B_0 \implies |x,y| \subset B_0.$$

If $B \in M$ is upper bound, then

$$\forall]x,y[\in A :]x,y[\prec B \implies]x,y[\subset B \\ \implies]-1,2[\subset B \\ \implies B_0 \subset B.$$

Therefore $\sup(A) = B_0$. We assume $\inf(A) = C_0 =]-\frac{1}{2}, \frac{1}{2}[; C_0 \text{ is lower bound of C, because}]$

$$\forall \,]x,y[\in A: C_0 \prec]x,y[\implies C_0 \subset]x,y[.$$

If $C \in M$ is lower bound, then

$$\forall]x,y[\in A: C \prec]x,y[\implies C \subset]x,y[$$

$$\implies C \subset]-\frac{1}{2},\frac{1}{2}[$$

$$\implies C \subset C_0.$$

Therefore $\inf(A) = C_0$.