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Abstract

The purpose is to review and lay out a plan for future inquiry pertaining to the modified
cosmological model (MCM) and its overarching research program. The material is modularized
as a catalog of open questions that seem likely to support productive research work. The main
focus is quantum theory but the material spans a breadth of physics and mathematics. Cosmol-
ogy is heavily weighted and some Millennium Prize problems are included. A comprehensive
introduction contains a survey of falsifiable MCM predictions and associated experimental re-
sults. Listed problems include original ideas deserving further study as well as investigations of
others’ work when it may be germane. A longstanding and important conceptual hurdle in the
approach to MCM quantum gravity is resolved. A new elliptic curve application is presented.
With several exceptions, the presentation is high-level and qualitative. Formal analyses are
mostly relegated to the future work which is the topic of this book. Sufficient technical context
is given that third parties might independently undertake the suggested work units.
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0 Introduction

This book contains a long list of thesis problems in physics and mathematics. A

previous review [1] was written to broaden the horizons of the modified cosmological

model (MCM) and the present purpose is to pinpoint within those horizons ideas that

should be brought forward to completion.

0.1 Review and Main Results

During the MCM’s main development phase, this writer had already exited the aca-

demic environment which is most conducive to initial surveys of topics concluding

in original contributions at the level of a PhD thesis. The fixation of this research

program on the bare fundamentals has come at the expense of such “PhD level” work.

This condition provides fodder for detractors. Thus, remediation is in order.

While the fractional distance program in real analysis [2] must exceed the require-

ments for a PhD in mathematics, this writer has rarely taken research in physics to a

conclusive calculation, and never at the level of a PhD thesis. In the way that math-

ematicians are sometimes said to be concerned with the existence of solutions more

so than with finding them, it follows that this writer’s thesis equivalent [2] is in real

mathematical analysis. The presumed existence of solutions has sufficed throughout

the MCM’s development, contrary to what is most common in physics. First and

foremost, however, this writer is a physicist. Physics ultimately requires real solu-

tions for experimental applications. It was hoped for many years that others would

jump at the chance to write the papers in which such solutions are given but history

has taken a different tack. In light of events, the present work describes many open

and untreated questions that have arisen in the development of the MCM.

An early computation in the MCM found a characteristic length scale for new

physics at 10−4m [3]. As it is the aim of this research program to tie up physics’ loose

ends with a new model of cosmology (and ontology with quantum applications), the

characteristic scale was obtained when the structure of the MCM was applied in an

intuitive way to the foremost unsolved problem in classical mechanics: the precession

of spinning discs. If any theory will be a theory of everything, it will lay to rest

the open questions in classical mechanics. Thus, an MCM mechanism for anomalous

mechanical precession was supposed. The calculation yielding 10−4m was very simple
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but, on the other hand, precession is not a manifestly complicated problem. The result

was remarkable because 10−4m is neither the nano-scale of quantum mechanics nor the

macro-scale of classical mechanics. Instead, an intermediate meso-scale was obtained

in the regime where catch-all losses due to friction are usually called on to scoop up

everything not classically deterministic or quantum mechanical. Furthermore, Arkani-

Hamed and others have already written about the open question of new physics at the

sub-millimeter scale [4,5]. Is it only a coincidence that 10−4m lies in the narrow strip

where new physics is not forbidden? This question deserves further study because

the result cannot be ruled out immediately.

The mechanism surrounding the scale calculation in [3] was well-defined but pos-

sibly not as well motivated as is expected in professional publications. One reason

for this is that this writer is not a professional. As an unpaid contributor, he is not

constrained by the professional community standards which sometimes make it diffi-

cult to put highly speculative ideas to paper. Still, the 10−4m result is remarkable. If

10−30, 10−10, 100, or 1010m was determined as the scale for the mechanism proposed

in [3], then we could know without any further thinking that the mechanism is un-

physical. To the contrary, the computation shows that experiment allows the idea,

in part, at least. If the work of physicists is to rule out theories, which are only ideas

or formalized ideas, this calculation shows that the MCM passes at least one hurdle

of its falsifiable predictions not being ruled out. The hurdle was not high but first

hurdles rarely are.

The best prediction to come from the MCM is that there should not exist any spin-

0 fundamental particles such as the Higgs boson. This prediction is directly falsifiable

in a way that exceeds the possibility for new effects on a certain scale. The prediction

is perfectly well motivated [6]. It is as clean and concise as any prediction in the

history of physics. It arose in the following line of inquiry. After a brief review of

Kaluza–Klein theory (KKT), the MCM unit cell (Section 0.2) was constructed in [7].

The purpose of the construction was to build on previous work in the MCM so as to

address some of the failures of KKT detailed by Overduin and Wesson [8]. Namely,

the so-called cylinder condition requires that 4D Kaluza–Klein physics in spacetime

must not depend on the fifth coordinate. This condition is generated or satisfied in

the MCM when the realm of physics is taken as a 4D Poincaré section (slice) of a

5D space for some constant value of the fifth coordinate. This is the condition set

by the MCM unit cell. Another problem is that KKT only allows solutions in which

the electromagnetic (EM) strength tensor Fµν vanishes. While one 5D Kaluza–Klein

(KK) metric tensor contains an EM potential 4-vector and a dual 4-vector, the MCM
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uses two such metrics containing twice as many degrees of freedom. This doubling of

the degrees of freedom should be sufficient for Fµν ̸=0 solutions.

While much work remains to formalize the MCM at the level of Kaluza’s and

Klein’s original papers [9, 10], the MCM unit cell was assembled in [7] to address

KKT’s main problems. Soon after, it was demonstrated that the unit cell offers a

good answer to the fundamental question of quantum field theory (QFT) [6]. That

question asks why we have the particles we have and not some other particles. The

standard model of particle physics is pretty good for determining what our particles

do but it does nothing to address the fundamental question about why we have

the standard model particles to begin with. In the MCM, the spectrum of lattice

vibrations in the unit cell is identical to the known spectrum of elementary particles.

Thus, the spectrum of fundamental particles results from a fundamental geometric

structure underlying reality. Even such nuance as the eight varieties of gluons arises

in the MCM lattice from simple classical mechanics. Each particle is given as a

different kind of spring or mass in a 5D lattice of masses connected by springs. The

ultimate goal of QFT is to generate the true spectrum of fundamental particles from

theory itself without having to force agreement with experiment by the imposition of

an empirical model, i.e.: the standard model. The MCM’s main disagreement with

the standard model is in the scheme for fundamental bosons. The standard model

supposes that there exists a spin-0 fundamental particle: the famous scalar boson

following from the work of famous people such as Englert, Brout, Higgs, Guralnik,

Hagen, and Kibble [11–17]. The MCM scheme does not, in its current incarnation,

permit the existence of any spin-0 fundamental particles. So, the MCM answer to

the fundamental question of QFT is plainly falsifiable.

Posed in early 2013, the prediction that all fundamental bosons should have spin-1

followed on the heels of the discovery of a new particle at CERN in 2012 [18,19]: the

Higgslike particle. If that particle is found have spin-0, then the MCM is wrong and

it needs to be revised or scrapped. If that particle is the Higgs boson, or if it is any

possible variety of Higgs boson, it will have spin-0. The objective existence of a spin-

0 fundamental particle would send an important MCM result back to the drawing

board. More than causing a rescission of a prediction, the entire structure of the

model would be cast into doubt. As it stands, the MCM is supposed to generate the

fundamental particles as lattice vibrations in an almost (but not quite) trivial model

of lattice cosmology. The truthfulness of this prediction requires that the Higgslike

particle has spin-1.

Though many detractors of the MCM cite an alleged mountainous body of evi-
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dence proving that the Higgslike particle does not and cannot have spin-1, Ralston

has shown that spin-1 was not ruled out by the initial observations at CERN [20].

Arkani-Hamed has also stated in a talk [21] that spin-1 is not ruled out for the Hig-

gslike particle. Ralston, in his analysis of the decay channels reported by CERN,

cites “model-independent Lorentz invariance” as allowing spin-1. In the ten years

since the particle was discovered, this writer has not seen a treatment of the model

independent amplitudes cited by Ralston. Instead, the ATLAS collaboration rules

out “some specific models” of spin-1 [22], “several alternative spin scenarios” [23],

and “alternative hypotheses for spin” [24]. The CMS collaboration reports that, “all

tested spin-one boson hypotheses are excluded,” [25] and, “any mixed-parity spin-one

state is excluded” [26]. Neither collaboration reports that they have ruled out spin-1

in the model-independent case of Lorentz invariance, or even that they have studied

it.

In further contradiction to the claims of certain detractors of the MCM, Particle

Data Group (PDG)—the de facto bottom-line authority on the state of the art in

particle physics—reports that the spin of the Higgslike particle was not yet determined

as of 2020. PDG writes the following [27].

“Whereas the observed signal is labeled as a spin-0 particle and is called

a Higgs Boson, the detailed properties of H0 and its role in the context

of electroweak symmetry breaking need to be further clarified. [sic] The

observation of the signal in the γγ final state rules out the possibility that

the discovered particle has spin 1, as a consequence of the Landau–Yang

theorem. This argument relies on the assumptions that the decaying particle

is an on-shell resonance and that the decay products are indeed two photons

rather than two pairs of boosted photons, which each could in principle be

misidentified as a single photon.”

Regarding the Landau–Yang theorem, experiment trumps theory. Indeed, exper-

iments are carried out mainly with the intention to falsify theories. Landau–Yang

would go out the window if an experimental result was found to disagree with it.

While this theorem is well trusted, theory can never rule out reality. Ralston writes

the following regarding the dominion of experiment over theory [20].

“The Landau–Yang theorems are inadequate to eliminate spin-1. The-

oretical prejudice to close the gaps is unreliable, and a fair consideration

based on experiment is needed. A spin-1 field can produce the resonance

structure observed in invariant mass distributions, and also produce the
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same angular distribution of photons and ZZ decays as spin-0. However

spin-0 cannot produce the variety of distributions made by spin-1. The

Higgs-like pattern of decay also cannot rule out spin-1 without more analy-

sis. Upcoming data will add information, which should be analyzed giving

spin-1 full and unbiased consideration that has not appeared before.”

It is unusual that ten years have gone by since the particle was discovered and the

“unbiased consideration” has not yet appeared in the literature (to the knowledge

of this writer.) Considerations published by ATLAS [22–24] and CMS [25, 26] are

biased under the suppositions of one model or another. While it seems impossible,

the literature appears to suggest that the model-independent case has not yet been

considered. What does seem possible is that the model-independent case has been

considered and the result has been withheld due to politics. Indeed, we suggest that

the particle is “labeled” as a spin-0 particle and “called” a Higgs boson [27] mainly

to further a false impression that the MCM prediction for spin-1 has been ruled out.

Usually physicists are zealously and notoriously reluctant to jump to conclusions, but

not in this case.

Just months after the MCM prediction for spin-1 [6], Ellis and You wrote the

following [28].

“There are many indirect and direct experimental indications that the new

particle H discovered by the ATLAS and CMS Collaborations has spin zero

and (mostly) positive parity, and that its couplings to other particles are

correlated with their masses. Beyond any reasonable doubt, it is a Higgs

boson[.]”

This excerpt may contain the only reference in the entirety of the physics literature

to the formal standard of proof in USA jurisprudence: reasonable doubt. A more

common standard in physics is given by the motto of the Royal Society: Nullius in

verba. It means “take nobody’s word for it.” Ellis and You make their bold and

patently unscientific claim in the abstract of their paper but they back off from the

outrageous overstatement in the paper’s first sentence [28].

“It has now been established with a high degree of confidence that the

new particle H with mass ∼ 126 GeV discovered by the ATLAS and CMS

[collaborations ] has spin zero.”

This paper of Ellis and You is remarkable not only for its reference to some ill-

defined and unquantifiable standard of “reasonable doubt” in place of physics’ usual
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5σ criterion, but also because it was the first citation of the Royal Swedish Academy

of Sciences in their technical write-up regarding the 2013 Nobel Prize in Physics [29].

The prominent citation by the Royal Swedish Academy of Sciences can be construed as

an endorsement of the false claim that the Higgslike particle is the Higgs boson beyond

a reasonable doubt. Aside from the reasonable doubt cast by the MCM prediction for

spin-1, Ralston has reported that an entirely indeterminate amount of doubt remains

[20]. PDG cites an uncertain number of photons and a questionable assumption about

the on-shell condition as reasonable sources of doubt. Most importantly, PDG only

cites known unknowns as sources of doubt when unknown unknowns may give reason

to doubt as well.

Almost two years after Ellis and You published, CMS reported with atypical blunt-

ness that it was still important to study the spin-1 case experimentally because the

observed state may be that one [26].

“Despite the fact that the experimental observation of the H→ γγ decay

channel prevents the observed boson from being a spin-one particle, it is

still important to experimentally study the spin-one models in the decay to

massive vector bosons in case that the observed state is a different one.”

It is not clear whether CMS suggests (i) the existence of a second, different particle

at ∼125GeV, (ii) that the observed one is different than the one ruled out by the

Landau–Yang theorem, or (iii) that the final state is different than γγ. CMS’ obtuse

language about “a different one” is consistent with a theme of sidestepping the spin-1

issue in the literature. Even while CMS emphasizes the importance of experimental

study, they still call the H→ γγ decay a fact while PDG reports that this channel

is not yet established as a fact [27]. Assuming that it is a fact, as it may be, CMS

does not state their reliance on the assumed perfection of the Landau–Yang theorem

to find that such a decay prevents spin-1.

If reasonable doubt were to have some meaning in physics, then it could only be

the usual standard of 5σ. However, there does not exist any literature claiming to

have ruled out spin-1 at that level. Certain models of spin-1 have been ruled out

to certain levels, but the model-independent, objective property of spin-1 has never

been ruled out for the Higgslike particle at any high significance, and never at 5σ.

Most likely, the reference to the reasonable doubt standard of USA jurisprudence

was used to establish in a court of USA law, for some (nefarious) reason, that this

writer’s prediction was wrong. In fact, spin-1 has not been ruled out. Any publication

claiming that spin-1 has been ruled out will be found to have ruled out only certain

models of spin-1 divorced from the case of model-independent Lorentz invariance [20].
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Ten years later, one would think that the particle’s discoverers would have determined

its spin. To this writer’s knowledge, no other particle’s spin was so elusive that it

could not be determined even ten years after the initial discovery. In the opinion

of this writer, the Higgslike particle has been determined to have spin-1 and CERN

withholds the result because it supports the MCM over work which is better loved in

the academic mainstream.

Moving along, another falsifiable MCM prediction was posed in [30]. It was sug-

gested that one might observe variations in the value of the fine structure constant

correlated with the delay between an event and its detection in some apparatus. The

unstated but implicit reasoning was that the state space of things which existed in the

past is not the same as the state space of things which exist in the present. Therefore,

observables might depend on how far in the past an event occurred prior to its detec-

tion. Such was already the case for an earlier MCM result regarding dark energy [31].

Distant cosmological objects appear to accelerate due to their displacement far back

on the light cone (Section 7). Though the unit cell was not constructed until about a

year after the quantum delay prediction appeared in [30], the unit cell elucidates the

motivation for delay correlations and complements it with further motivation. Signals

from events in the past are usually thought to propagate into detectors along paths in

topological Minkowski space. In the MCM, in addition to an altered state space in the

past [30], the past is not totally Minkowski in the unit cell. Due to the MCM’s fifth

dimension, one may speak of earlier chronological times, which are Minkowski, as well

as earlier chirological times in which the past is topologically anti-de Sitter. (Chrono-

logical time is the timelike coordinate x0 in 4D spacetime and chirological time is a

new fifth coordinate χ4
±.) Propagation through some non-Minkowski geometry will

cause deviations from the predictions for pure Minkowski propagation and these de-

viations should be correlated with the amount of time spent in the non-Minkowski

geometry. This prediction is not so precise as the prediction that the Higgslike par-

ticle should have spin-1 but it is a strong prediction. If such delay correlations are

not observed, then the fundamental ideation behind the prediction would be falsified.

The predicted correlations were observed by the BaBar collaboration [32], however!

The main gist communicated here to the reader is that all of the verifiable ideation

in the MCM has survived: the specific things and the less specific things. More than

99% of new theories can be rejected immediately due to some obvious physical prob-

lem so it is a great accomplishment of the MCM not to be one of those theories. Often

laypersons hear that new theories are a dime a dozen, which is true, but this glosses

over a further notion that is more relevant in the present case. A new theory that can
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survive even a cursory check is a diamond in the rough. Almost none of them make it

past a single hurdle. Ones that do are often absurdly convoluted. Quintessence and

the chameleon field are examples of convoluted theories being not so convoluted that

they are immediately discarded. Even the modern theory of cosmological inflation,

which is not easy to rule out, is rather convoluted. To the contrary, the MCM is

elegant, intuitive, and simple, though not yet mathematically formalized with new

equations of motion. Still, there is no trivial way to rule out the MCM, as is the case

for almost all new theories. This testifies to the good quality of the work. Beyond the

lack of an easy rejection, the MCM’s predictions have multiple experimental confir-

mations such as the prediction for delay correlations. These confirmations obliterate

detractors’ persistent claims of wrongness and not-even-wrongness.

The BaBar experiment concluded in 2008. The primary analysis of the data gener-

ated by the experiment had also concluded by the time of the MCM delay prediction.

However, the search for these correlations in the BaBar data was undertaken immedi-

ately following the publication of the MCM prediction. Not astonishingly, the MCM

prediction was borne out when BaBar published their observation of time reversal

symmetry violation in the B0 meson system [32]. While the BaBar analysis did not

exactly search for the delay correlations in the value of the fine structure constant α

which had been suggested, the result follows. Since physics is Hamiltonian, mean-

ing that everything is calculable once any two things are determined, the value of α

which can be extracted from the delay correlations published in [32] will depend on

the delay. The observation of time reversal symmetry violation is easily the 21st cen-

tury’s second biggest discovery in particle physics after the Higgslike particle. This

discovery is a direct experimental verification of the structure of the MCM.

During the primary data analysis stage following BaBar’s data collection stage,

no one had the idea to check for correlations with delay. After it was suggested

that the MCM would be such that delay correlations should exist, someone at BaBar

checked and found a signal that had escaped detection. No one had any reason to

expect such correlations but then time reversal symmetry violation was discovered

and the history of physics was changed forever. If the Higgslike particle is eventually

reported to have spin-1, then the 21st century’s biggest and second biggest particle

physics discoveries will be among the MCM’s small handful of falsifiable predictions.

Not only that, the MCM also predicts (among even more things) the dark energy

effect whose discoverers were awarded the 2011 Nobel Prize in Physics: Perlmutter,

Schmidt, and Riess [33–35]. So, there is a decent volume of ordinary physics output

recorded in the publications constituting the MCM. The lack of an easy falsification
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among these predictions makes the MCM better than 90% of similar attempts to

bushwhack a new path. The confirmation by BaBar makes the MCM the best new

theory on the market today, bar none. Unfortunately, BaBar does not credit the

ideation for delay correlations to this writer and the ordinary scientific proceedings

are retarded.

The predictions above, and others mentioned below, are intermingled with other

content in MCM publications. Some of that content is non-standard. Why the weird

tone? After this writer became convinced that his work was blacklisted against ap-

pearing even on the unreviewed arXiv, a tone was adopted which could never pass

peer review, even in the absence of blacklisting. Despite the presence of outstanding

original work, the tone in many MCM publications is such that they could never ap-

pear in physics’ usual venue for the dissemination of scientific information. Although

the MCM’s many grand successes form an independent rebuke, the non-standard con-

tent and tone was added as a second rebuke so that this writer could be seen doubly

rebuking the establishment which prefers the political mechanisms of the USA to

the actual practice of science. Following these earlier MCM publications, the present

work lays out a series of problems whose write-ups should be sufficiently technical

that the tone of the papers cannot be confused or conflated with the results. As

mentioned above, the technical treatment of the problems should rise in many cases

to the level of a PhD thesis. To date, it has been easier for detractors to conflate the

author’s prose with his main results due to an absence of such clearly demonstrated,

PhD-level technical mastery or a commensurately voluminous set of calculations.

This writer has not been able to publish even on arXiv: the unreviewed (yet cen-

sored) preprint repository in which low quality work is published every day (along

with many fair or outstanding research papers in physics and mathematics.) Before

the non-standard tone was adopted, [31] was submitted to arXiv in September 2009.

The typesetting and graphics were substandard, the tone was ordinary, and the con-

tent was top-tier. For some reason most likely related to a payment routed through

Cyprus to Paul Manafort in October of 2009 [36], the paper was rejected for publi-

cation on arXiv.1 Details relating to the publication status of [31] may be found in

Appendix C.

The overall lack of peer review for the MCM, which is a subset of the censor-

ship problem at arXiv and elsewhere, provides more fodder for detractors. Even the

most outlandish and easily disproven models of alternative physics have extensive

online documentations including Wikipedia articles and various forum discussions,

1For placement of [31] on the spectrum of what is acceptable in the physics preprint literature, compare to [37,38],
particularly Figure 12 in the latter.
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e.g.: timecube. The relative invisibility of the MCM on the internet suggests that

the publication blacklist exceeds blacklisting in the traditional publication venues

and goes so far as the total prohibition of this writer’s intention to communicate

results. As a scientist, a physicist’s trade is to ply the scientific method whose final

step is communicate results. The fake internet bubble in which this writer appears to

communicate results while ultimately failing to do so, for the most part, has had a

stronger negative impact on this writer’s career than any number of stylistic writing

choices ever could. Still, this writer’s research does get communicated, somehow. [31]

is now called SCP-001 in certain corners of the internet where the MCM is known to

exist.

The supposition, or allegation, that the MCM has not passed peer review is false.

Before moving on to a review of the MCM unit cell and its labeling conventions

(Section 0.2), followed by a review of the MCM scheme for fundamental particles

(Section 0.3), we will summarize the extensive peer review of the MCM and its glowing

yet uncredited receptions. The MCM began as a work in phenomenology. Given

certain results, a model of cosmology was constructed to accommodate them [31].

The optical effect described as dark energy was explained without an anomalous

(and borderline unphysical) acceleration of the expansion of the 3D spatial universe.

Instead, accelerating expansion in the time sector of 4D spacetime was identified as the

cause of the observed optical effect. This was the kernel of the idea that things in the

past should not be exactly as they are in the present. In [39], inquiry into the structure

of the past was taken all the way back to the cosmological beginning. Since a famous

theorem of Arnowitt, Deser, and Misner [40, 41] proves that the 0-component of the

universe’s 4-momentum must be non-zero, the usual model of big bang cosmology

cannot conserve 4-momentum. Given a presumed pµ=(0, 0, 0, 0) before the big bang,

pµ(t)=(p0, p1, p2, p3) at t>0 cannot conserve momentum if p0 ̸=0. However, physics

requires that momentum is conserved. In the way that Pauli was able to deduce the

existence of the neutrino from a quantity of missing momentum in nuclear β decay, it

was deduced that a big bang would have to spawn two universes moving oppositely

through time if it was a momentum-conserving process. If the energy of one universe

is positive-definite, then the other universe (whose time has a minus sign on it) would

be negative-definite. This is required to conserve 4-momentum, as is usual in physics.

After the proposition for negative time was published in November 2011 [39] (as

a restatement of the same idea published in 2009 [31]), Rubino and McLenaghan et

al. reported an experiment regarding negative frequency in quantum optics [42]. Since

frequency is inverse time, and since the experiment was reported only months after
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negative time was found to resolve the momentum problem in big bang cosmology, we

suggest that the ideation for the experiment of Rubino and McLenaghan et al. followed

after a review of early work in the MCM. Short of experimental verification, it is the

highest and most valid form of peer review that one man’s research should influence

another man’s research direction. Many papers passing ordinary, administrative peer

review go on to accumulate zero citations but papers well received by the community

of experts in that area go on to acquire citations. If not for the apparent USA-

sponsored blacklisting of this writer, it is suggested that Rubino and McLenaghan et

al. might have cited [31,39] as motivating their search for physical negative frequency

modes. What peer review can be higher than to have one’s work received and built

upon? The answer cannot be a layer of dust atop an unknown but peer reviewed CV

item.

Spawning new scientific inquiry among one’s peer community is nearly the highest

form of peer review. It far surpasses the administrative peer review which is widely

hated by academics [43] and yet revered as holy by those who are only indirectly

aware of the mechanism. Surpassing even positive reception in one’s community, the

highest mark in peer review is experimental confirmation. Rubino and McLenaghan et

al. write the following about their discovery of negative frequency resonant radiation

(NRR) [42].

“[F ]requency conversion processes may be understood in terms of energy

transfer between specific modes [sic]. However, to date only the positive

frequency branch of the dispersion has been considered when this actually

also has a branch at negative frequencies. This branch is usually neglected

or even considered meaningless when, in reality, it may host mode conver-

sion to a new frequency. The fact that a mode on the negative branch of the

dispersion relation may be excited has a number of important implications,

beyond the simple curiosity of the effect in itself. Indeed, light always

oscillates with both positive and negative frequencies, but the negative-

frequency part is directly related to its positive counterpart and seems re-

dundant. On the other hand, light particles, photons, have positive energies

and are associated with positive frequencies only. A process such as that

highlighted here, that mixes positive and negative frequencies will therefore

change the number of photons, leading to amplification or even particle

creation from the quantum vacuum.

“In this work we show how alongside the usual resonant radiation spec-

tral peak observed in many experiments, a second, further blue-shifted peak
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is also predicted. This new peak may be explained as the result of the excita-

tion of radiation that lies on the negative frequency branch of the dispersion

relation. We first explain why this radiation should be observed and then

provide experimental evidence of what we call ‘negative frequency resonant

radiation’ in both bulk media and photonic crystal fibres.”

NRR is a direct confirmation of the theory of negative time at the heart of the

MCM. Although the existence of these negative frequency modes had been known

for a long time, no one thought to look for them until the theory of negative time

was published [31, 39]. Perhaps history will show that this was only a coincidence.

In any case, we suggest that the negative frequency experiment was motivated by a

review of the MCM and that the experiment confirmed the negative time hypothesis

through the observation of negative frequency optical modes.

To the extent that Rubino and McLenaghan et al. cite the possibility for “ampli-

fication,” consider the following from a follow-on publication of Rubino et al. in late

2012 [44].

“[W ]e may derive a photon number balance equation by generalizing

[sic] to the case of a moving scatterer. We find that:

|RR|2 − |NRR|2 = 1,

where |RR|2 and |NRR|2 are the photon numbers of the [resonant radiation]

and [negative resonant radiation] modes normalized to the input photon

number [sic]. The negative sign in front of the |NRR|2 photon number is a

direct consequence of the fact that the NRR-mode has negative frequency in

the comoving reference frame [sic]. So the difference between the normalized

number of photons has to be equal to the photon number in the input mode.

As a consequence, the total output photon number, |RR|2 + |NRR|2 > 1,

i.e. we have amplification [emphasis added ]. The scattering process

mediated by the traveling [relativistic inhomogeneity ] will amplify photons

as a result of the coupling between the positive and negative frequency

modes.”

As we have previously commented on the eccentric citation of Ellis and You to

the legal standard of doubt in USA jurisprudence, the note at the top of [44] (not

excerpted) is also eccentric. It is the only instance of such a note that this writer

has come across.1 The note directs that correspondence and requests for materials
1This writer does not regularly browse the experimental quantum optics literature.
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should be addressed to coauthor Faccio. The eccentric note in anticipation of cor-

respondence is given because [44] reports that the authors discovered free energy.

The negative frequency optical mode which follows from the negative time mode in

the MCM—following logically and chronologically—revealed the holy grail of physics:

a feasible mechanism for the construction of a device whose coefficient of efficiency

exceeds unity. While the MCM did not predict the application in quantum optics,

it follows because negative frequency is inverse negative time. It is suggested that

this writer’s peers saw that it follows, did the experiment, and confirmed the physics.

Thus, the MCM has yet again passed the true bar of review by peers without passing

the false bar of administrative peer review under the docents of a politicized bureau-

cracy. The MCM has been experimentally confirmed at least twice. If the Higgslike

particle has spin-1, it will be at least three times. Next to experimental confirmation,

administrative peer review is meaningless. If it was suggested that objects on Earth

tend to fall in the downward direction, no one would ask if the claim has passed peer

review. For the MCM, however, the fact that it has not passed peer review in the

most artificial and useless sense is cited as problematic to the extent that it overrides

the experimental verification.

Following the work of Rubino et al. on NRR [42,44], Lockheed abruptly announced

in 2014 near-term plans for truck-sized nuclear fusion reactors [45]. Fundamentally,

Lockheed was front-running their expectation for the mass production of NRR power

generators which would be truck-sized because they are only optical tables in a box

(in the opinion of this writer.) After Lockheed’s initial press releases, the West Texas

oil contract cratered in 2014 and it had not recovered as of 2021.1 The blacklist on

the MCM was extended by the powers that be to cover up the only hope by which

humanity might escape its shackles of toil: a new energy source. These results re-

garding free energy are now known in certain corners of the internet as “golf rumors.”

The quoted name follows from men at their country clubs talking about the NRR

result before the full violence of the USA political machine squashed such talk.

The discovery of negative frequency resonant radiation by Rubino et al. [42, 44]

suggests that the MCM has passed peer review with flying colors. The result about

time reversal symmetry violation published by BaBar does the same [32]. Both of

these results connect to the MCM’s requirement for negative time, through negative

frequency and time reversal respectively. Both results are experimental confirmation

of the MCM in excess of an affirmative peer review by positive reception leading to

follow-on work. Additionally, there are no results which rule out the MCM predictions

1During the preparation of this manuscript, the WTI oil contract reached highs not seen since 2014.
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for new effects at 10−4m, the prediction that the Higgslike particle should have spin-1,

or any other features of the model. The many MCM mechanisms described in [31] are

each likely to be parlayed into further experimental confirmations. Additionally, there

are many mathematical confirmations. For example, the MCM search for quantum

gravity shows that Einstein’s equation for general relativity may be derived in a

certain quantum formalism (Section 1.10). A number alike to the fine structure

constant to within 0.4% is characteristic of this formalism as well (Section 1.9). The

Riemann hypothesis was falsified as a corollary of mathematical results developed for

describing physics in the unit cell [2,46–48]. Other examples of affirmative review by

peers include the following.

� Ashtekar’s response papers [49,50] which are detailed at length in Appendix C.

� Wilczek’s 2012 quantum time crystals [51,52] follow from the 2011 M̂3 operator

developed in [30].1 The MCM unit cell is the unit cell of a time crystal in the

most intuitive way (Section 57).

� Almost all of Finkelstein’s arXiv publications are MCM response papers (Section

33).

� Mochizuki’s “Hodge theater” is the MCM unit cell dressed in a thick coat of

jargon (Section 31).

� Hairer’s $3M Breakthrough Prize-winning “regularity structure” [53] is the unit

cell dressed in another coat of jargon (Section 32). When Hairer’s colleague

reported that Hairer’s Fields Medal winning work must have been done by aliens

[54], it was a jibe regarding how obviously Hairer had used the MCM and its

M̂3 operator without citation. Apparently, those on the far side of the MCM

blacklist see something akin to aliens between them and this writer.

� The RBM model in the autodidactic universe of Alexander et al. [55] is plainly

the process given by M̂3.

The list of such glowing yet uncited peer reviews goes on and on. It must exceed

those few papers which have come to this writer’s attention.

0.2 The MCM Unit Cell

This section contains a glossary of symbols pertaining to the MCM unit cell: Figure

1. Remarks on its most prominent features are given in context. Further remarks
1This writer became aware of viXra in the summer of 2012. The viXra submission dates of References [30,31,39]

do not reflect the initial publication dates.
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Figure 1: The MCM unit cell is the fundamental element of a cosmological lattice.
H is a Minkowski space representing the observable universe. Σ± do not
include their shared boundary at H. It is expected that the χA− coordinates
are left-handed if the χA+ coordinates are right-handed. The second figure
with Σ± joined on H is most properly the unit cell in the sense of crystal-
lography but often unit cell will refer to the representation centered on ∅.
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will follow. We will begin with the unit cell’s metric and coordinate conventions.

Notation is such that Greek tensor indices run from 0 to 3. Upper case Latin indices

run from 0 to 4. Lower case Latin indices run from 1 to 3.

� Aµ is the electromagnetic potential 4-vector. This object has its usual meaning.

We will usually assume Aµ = 0 to facilitate consideration of the simplest cases

which can be extended to Aµ ̸=0 later.

� Aµ± are electromagnetic potential 4-vectors in Σ±. Usually, descriptions of the

MCM assume an Aµ±=0 ground state.

� Σ± are 5-spaces bounded in the fifth direction. The fifth coordinate is positive-

definite in Σ+ and negative-definite in Σ−. The metric signature of Σ± is {−+

++±}.

� χA± are the 5D coordinates in Σ±. Coordinates written with χ are called ab-

stract coordinates to distinguish them from physical coordinates written

with x. Different coordinate charts’ distances are measured with different met-

rics. Although χ4
± = 0 will be undefined, the origins of χ4

± are located in H in

the sense that χ4
± measure distance relative to H. χ4

± is respectively positive- or

negative-definite in Σ±.

� χα± are the abstract coordinates of Σ± at some constant value of χ4
±.

� χA∅ or χα∅ are the hypothetical coordinates to the right of Ω and to the left of

A, as in the lower representation of Figure 1. In previous usage, χ4
∅ has referred

to a single point added to splice χ4
+ with χ4

− between Ω1 and A2. Similarly,

a hypothetical χ4
± = 0 would splice χ4

± at H. However, χ4
± = 0 is not defined

due to the positive- and negative-definiteness of χ4
±∈Σ±. The exact details for

connecting Ω1 to A2 form one of the major outstanding problems in the MCM.

Since the level of aleph (Section 1.6) changes at ∅, meaning that ∅ marks the

progression from one neighborhood of fractional distance to the next (Section

1.6), the pointlike property of χ4
∅ on one level of aleph may be resolved in greater

detail as an interval on another level of aleph. For this reason, it is supposed

that ∅ might span a 5-space requiring χA∅ coordinates rather than χµ∅. The exact

details of ∅ are not yet fully determined.

� xµ are the physical, relativistic coordinates of the geometric manifold H, a

Minkowski space. Distance between the points specified with xµ is given by

the metric gµν . These coordinates have their usual meaning.
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� xµ± are the physical coordinates of gravitational manifolds located in Σ± at con-

stant values of χ4
±. x

µ
+ charts Ω at χ4

+ =Φ and xµ− charts A at χ4
− =−φ. Φ is

the golden ratio and φ is its inverse. The Ω and A manifolds are also charted

in the abstract χµ± coordinates so it is required to carefully distinguish between

the physical coordinates xµ± and the abstract coordinates χµ±. Occasionally, we

may speak of xµ± as the physical coordinates at arbitrary constant values of χ4
±.

� gµν is the metric of 4D Minkowski spaceM4. If gµν=ηµν + hµν with ηµν the flat

Lorentzian metric and hµν a small perturbation, we will almost always assume

hµν = 0. In the general case, this metric is to be determined from a matching

condition on the metrics in Σ± where a mismatch will result in hµν ̸=0.

� g±AB is the 5D metric of the abstract χA± coordinates in Σ±. It is based on the

Kaluza–Klein metric

gKK
AB =

(
gαβ + κ2ϕ2AαAβ κϕ2Aα

κϕ2Aβ ϕ2

)
,

where ϕ is a scalar field, κ is a constant, and Aµ is an EM potential 4-vector.

The g±AB metrics are obtained by identifying ϕ2
± in Σ± with a function of the

fifth abstract coordinate χ4
±. Setting κ=1, we have

g±AB =

(
g±αβ + f±(χ

4
±)A

±
αA

±
β f±(χ

4
±)A

±
α

f±(χ
4
±)A

±
β f±(χ

4
±)

)
.

In general, we will assume that f is the identity function setting ϕ2
±=χ

4
±. Taking

the simplest case of Aµ±=0, we have

g±AB =

(
g±αβ 0

0 χ4
±

)
.

In Section 7, we will show that this metric supports an MCM solution to dark

energy. Since χ4
± is positive or negative in Σ± respectively, g±AB has Lorentzian

signature {∓±±±±} in Σ+ and pseudo-Lorentzian signature {∓±±±∓} in
Σ−. This signature is also supported by ϕ2

±=(χ4
±)

2 if χ4
− is imaginary relative to

χ4
+. Since the exact role for the MCM scalar field has not been fully developed,

it will suffice to let g±44 be oppositely signed as χ4
± with an understanding that

we may later choose ϕ2
±=±|χ4

±|2.
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� g±µν(χ
4
±) is the physical metric on a submanifold of Σ± defined by some constant

value of χ4
±. This metric describes distances in the physical xµ± coordinates.

When Aµ± = 0, g+µν(χ
4
+) is the dS4 de Sitter metric in Σ+ and g−µν(χ

4
−) is the

AdS4 anti-de Sitter metric in Σ−. The dS or AdS space at a given value of

χ4
± is the one whose constant Ricci scalar R is equal to that value of χ4

±. In

other words, the KK scalar field is such that ϕ2 becomes the Ricci scalar of the

maximally symmetric physical metrics.1 g±µν will implicitly refer to the g+µν(Φ)

physical metric on Ω and the g−µν(−φ) physical metric on A.

To explain how the metric gµν in H should be obtained from the g±AB metrics, we

will make reference to a scale factor which has not been introduced yet. It will be

covered in Section 1. We want gµν to be a superposition of contributions from g±AB,

as in [7]. It should be the superposition of the limits of the 5D metrics as χ4
±→ 0.

Letting Aµ±=0 and assigning scale factors Φ and φ to g±AB, the scaled sum of g±AB is

Φg+AB + φg−AB =

(
Φg+αβ + φg−αβ 0

0 Φχ4
+ + φχ4

−

)
.

In the χ4
± → 0 limit, the fifth diagonal position vanishes. The fifth position is as-

sociated with the Ricci scalar and R = 0 defines Minkowski space. While the fifth

diagonal position may have additional physics associated with its context as a scalar

field, the metric in H is presently defined as the 4D part of the metric superposition:

gµν = Φg+αβ + φg−αβ =


−Φc2 0 0 0

0 Φ 0 0

0 0 Φ 0

0 0 0 Φ

+


−φc2 0 0 0

0 φ 0 0

0 0 φ 0

0 0 0 φ

 .2

To obtain a natural scale for the metric in H, we might rephrase the expression as

a difference but instead we will appeal to the sign freedom in the {∓ ± ±±} metric

signature. We give the opposite sign convention to g−AB to obtain

gµν = Φg+αβ + φg−αβ =


−Φc2 + φc2 0 0 0

0 Φ− φ 0 0

0 0 Φ− φ 0

0 0 0 Φ− φ

 = ηµν ,

1dS and AdS are called maximally symmetric because the Ricci scalar is constant in the manifold and the geometry
is completely determined by its value.

2Part of the reason for leaving χ4
±=0 undefined is to avoid a picture of gµν as the 4D part of a metric whose fifth

diagonal position vanishes.
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where ηµν is the perturbation free case of gµν in signature {− + ++}. Due to the

opposite sign conventions for the metrics in Σ±, the metric inH is both a superposition

and a solitonic difference like a shadow cast by g±AB. This metric structure is expected

to become rich when one adds non-zero Aµ+ ̸=Aµ− to g±AB. The absence of the scale

factor when this structure was proposed in [7] set the scale of H as larger than the

scale in either of Σ± so the present convention is more natural. A full metrical analysis

remains to be carried out.

The method for obtaining the induced g±µν(χ
4
±) metrics on A and Ω differs from

the above method for obtaining gµν as a superposition. Part of the future work

described in this paper will be to determine the transformations between the abstract

and physical coordinates at constant χ4
±. (Such a transformation cannot exist at

undefined χ4
± = 0.) Cases for Aµ± ̸= 0 should be developed to determine how the

condition of maximal symmetry in dS and AdS is perturbed by non-vanishing EM.

It is known that static dS or AdS geometry must be supported by a cosmological

constant or a constant scalar field so the energy associated with Aµ± ̸= 0 should be

a main driver of new MCM physics. However, the assumption Aµ± = 0 is useful for

describing the model because it equips each slice of constant χ4
± with a maximally

symmetric dS4 or AdS4 metric. Allowing non-zero Aµ± will disturb this simplifying

condition of maximal symmetry.

In [7], the original statement of the convention for embedding physical metrics

on branes located at constant χ4
± confused the hyperboloid parameter ℓ2 with the

inversely proportional Ricci scalar R so that ℓ2 =0 was associated with H. In fact,

ℓ2→∞ and R=0 are associated with flatness. This erratum now stands corrected.

However, the convention in which χ4
± is a hyperboloid parameter rather a Ricci scalar

suggests a picture of χ4
± having their origins in ∅ rather than H so that χ4

±=0 defines

a topological singularity of infinite curvature due to ℓ2=0. In later sections, we will

show that it is useful to think of ∅ as a black hole.

Now we will describe the labeled worldsheets of the unit cell. Anticipating an

application in which these sheets function as string theoretical D-branes (Section 65)

and referring to the picture of worldsheets as membranes arranged in a bulk, we will

call these objects branes.

� H is 4D Minkowski spaceM4 charted in xµ. Up to a topological issue of global

closure or openness, Minkowski space is the low curvature limit of de Sitter space

and/or anti-de Sitter space. H, also called “the H-brane,” stitches together Σ±

at limχ4
±→0±. Up to a scale factor, H can be smoothly joined to either of Σ±.

When Aµ±=0 implies maximally symmetric spacetime in the physical metric at
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each χ4
±, it is easy to envision a smooth continuum of increasing curvature where

H joins the low curvature limits of dS4 and AdS4 at a scale discontinuity. Since

χ4
±=0 is not defined, which follows from χ4

± being positive- and negative-definite

in Σ± respectively, H is a topological obstruction between Σ±. In terms of the

open sets of a mathematically formal topological space, no open set can include

χ4
± = 0 because it is not defined in the current iteration of the theory. Such

topological obstructions are required to separate a pair of Kaluza–Klein theories

that double the EM degrees of freedom inherent to a single KKT.

� Ω is a specific worldsheet (the Ω-brane) in Σ+ located at χ4
+ = Φ where Φ is

the golden ratio. In the physical coordinates (with Aµ+=0), Ω is dS4 with open

topology and uniform positive curvature. In Figure 1, Ω spans some width of

the horizontal coordinate but that is only meant to demonstrate the spherical

geometry of the physical coordinates xµ+. Formally, Ω is a single sheet at one

value of χ4
+, as would be H if χ4

±=0 was defined.

� A is a specific worldsheet (theA-brane) in Σ− located at χ4
−=−φ where φ=Φ−1.

In the physical xµ− coordinates (with Aµ−=0), A is AdS4 with closed topology and

uniform negative curvature. In Figure 1, A spans some width of the horizontal

coordinate but that is only a representation emphasizing the hyperbolic geometry

of the xµ− coordinates. Previous work in the MCM has been such that the distance

from H to Ω should be either Φ or Φ2 times that between A and H. Setting

Ω at χ4
+ = Φ, these conventions place A at χ4

− = −1 or χ4
− = −φ. Therefore,

the abstract distances between A and H, and between Ω and H may be revised

pending the adoption of another convention.

� ∅ is an unknown connective element joining Ω and A. It may be a 4D surface

or a 5D volume. In general, there is no smooth connection from the Lorentzian

{− + + + +} metric in Σ+ to the pseudo-Lorentzian {− + + + −} metric in

Σ−. If we take ∅ to be the worldsheet of a black hole, placement of a singularity

at the interface between Σ± might help wash out the discrepancy between their

topologies. Increasing the curvature of the slices of Σ± to the positive and neg-

ative infinite limits at ∅ may make it easier to join non-vanishing positive and

negative curvature on a singularity than it would be to join them on discontin-

uous but finite positive and negative curvatures. In other words, R=±∞ Ricci

scalars should be less discontinuous than finite RA < 0 < RΩ. Placing a black

hole at ∅ should minimize geometric and topological discontinuities between Ω

and A.
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The standard cosmological model (SCM) describes a 4D spacetime: the universe.

The SCM is cited as some generalized picture of the Friedmann–Lemâıtre–Robertson–

Walker cosmology, or the more modern ΛCDM model. Either model is more specific

than what is required to describe the MCM as an extension of an informally labeled

SCM. Indeed, the MCM is more quantum mechanical in nature now than cosmological

and the exact details of an underlying standard cosmology, an equation of state for

example, are not needed to describe the basic elements.

The main jumping off point for separating the MCM from the SCM was the im-

plementation of a cyclic cosmology [31,39]. Cyclic cosmology is a variant of big bang

cosmology that assumes a big crunch at the end of things, and that the crunch serves

as a big bang for a new cycle of cosmology. Sometimes it is said that cyclic cosmology

is unphysical due to the observed thermodynamic state of the universe but such is-

sues can be sidestepped in a number of ways. The Borde–Guth–Vilenkin theorem [56]

which claims to rule out an infinite timelike parameter in the past, which is required

for infinite cyclic cosmology, is discussed in Section 45. Another argument claims that

it is unphysical to identify the high entropy final state of one cosmology cycle with the

low entropy initial state of an identical cycle but the MCM is such that two universes

converge on each bounce, one in forward time and one in negative time [31]. When

the thermodynamic arrow of time points oppositely in each universe, the increment of

entropy at the conclusion of one universe’s cycle is offset by the decrement of entropy

in the other universe. Furthermore, there is little reason to think that cosmology

is so well understood that theoretical arguments might categorically rule out exotic

behaviors on cosmological time scales. Beyond that, the present incarnation of the

MCM is not necessarily a model of big bang cosmology in any guise because the peri-

odicity assigned at first to x0 has been reimplemented along χ4. This writer considers

it an open question whether or not the MCM in its current incarnation is a model

of big bang cosmology in any form. In other words, it is not yet determined whether

the added periodicity in χ4 has replaced the previously supposed x0 periodicity, or if

it has complemented it. In the absence of cyclic cosmology, eternal cosmology is a

viable alternative.

In the original MCM language [31, 39], big bangs and big crunches were replaced

with big bounces. Bouncing is a periodicity in the x0 direction: vertical on the page of

Figure 1. This writer was introduced to cyclic cosmology via loop quantum cosmology

(LQC) [57] but the first iteration of the MCM [31] contained nothing specific to LQC

which is not found in all other models of cyclic cosmology. For the present version

of the MCM unit cell, the main modification to the SCM is the fifth embedding
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dimension χ4. It was added a few years after the 2009 publication of the paper which

gives the MCM its name [31]: “Modified Spacetime Geometry Addresses Dark Energy,

Penrose’s Entropy Dilemma, Baryon Asymmetry, Inflation and Matter Anisotropy.”

The new fifth dimension was implemented following a review of Kaluza–Klein

theory. Overduin and Wesson write the following [8].

“Kaluza’s achievement was to show that five-dimensional general relativ-

ity contains both Einstein’s four-dimensional theory of gravity and Maxwell’s

theory of electromagnetism. He however imposed a somewhat artificial re-

striction (the cylinder condition) on the coordinates, essentially barring the

fifth one a priori from making a direct appearance in the laws of physics.

Klein’s contribution was to make this restriction less artificial by suggesting

a plausible physical basis for it in compactification of the fifth dimension.

This idea was enthusiastically received by unified-field theorists, and when

the time came to include the strong and weak forces by extending Kaluza’s

mechanism to higher dimensions, it was assumed that these too would be

compact. This line of thinking has led through eleven-dimensional super-

gravity theories in the 1980s to the current favorite contenders for a possible

‘theory of everything,’ ten-dimensional superstrings.”

Klein supposed that the fifth dimension might not contribute because it is com-

pactified at an unobservably small scale. The MCM unit cell is purposed to motivate

the cylinder condition by requiring that observable physics takes place only on sur-

faces of constant χ4. Derivatives with respect to the fifth dimension can’t contribute

in H due to an effective condition χ4
±=0. The same holds for Ω and A at constant

χ4
±. All derivatives with respect to a constant vanish.

Another shortcoming of KKT highlighted by Overduin and Wesson [8]—the main

one which prevented the success of KKT in its effort to unify gravitation with clas-

sical electromagnetism—is that the only allowable solutions require a vanishing elec-

tromagnetic strength tensor Fµν=∂µAν−∂νAµ. It is hoped that doubling the number

of EM degrees of freedom from four as in

gAB =

(
gµν + ϕ2AµAν ϕ2Aµ

ϕ2Aν ϕ2

)
, with Aµ = (A0, A1, A2, A3) ,

to eight as in

g±AB =

(
g±µν + f(χ4

±)A
±
µA

±
ν f(χ4

±)A
±
µ

f(χ4
±)A

±
ν f(χ4

±)

)
, with Aµ± = (A0

±, A
1
±, A

2
±, A

3
±) ,
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will provide a workaround by which Fµν ̸=0 solutions can be extracted in H from two

disconnected Kaluza–Klein theories in Σ± (Figure 1).

The MCM unit cell reflects the ground state condition in which Aµ± = 0 but it

is expected that the non-zero Aµ± solutions can be implemented as perturbations or

more complicated exact solutions. The result for Aµ± ̸=0 will be that the H-, A-, and
Ω-branes lose their shared character of maximal symmetry. In the Aµ± = 0 ground

state, the piecewise fifth dimension χ4
± charts a continuum of increasingly curved,

maximally symmetric physical spacetimes between A and Ω disrupted only by a scale

discontinuity at H. This serves as a toy model upon which one would build more

realistic applications. To make use of the expanded degrees of EM freedom in Σ±,

one must use Aµ± to define Aµ in H. This is implemented by a mechanism well known

from classical EM: Aµ is taken as a function of the advanced and retarded potentials

Aµadv=A
µ
+ and Aµret=A

µ
− [7]:

Aµ = c+A
µ
+ + c−A

µ
− .

The idea to have the physics of the observable universe H defined by two 5D

theories reflects a principle called holographic duality. This idea was made famous

by Maldacena’s demonstration of a “correspondence” between a 4D conformal field

theory and AdS5 [58]. The MCM flavor of “holographic duality” between the physics

of a 4D surface and two adjoining 5D bulks is simpler than Maldacena’s famous

AdS/CFT duality but the duality is holographic nonetheless. The mechanism reflects

exciting new thinking. Usually, holographic duality between a surface and a bulk

is considered to be such that the surface is the exterior boundary of one simply-

connected bulk. The fresh new idea for holographic duality in the MCM is to sandwich

a holographic surface between two bulks. This idea alone far separates the MCM from

competing theories. It cannot be overstated that the MCM has accomplished what

other theories have not accomplished due in large part to this original thinking in the

red-hot area of bulk-boundary physics. Although this writer was not acquainted with

Randall–Sundrum models (Section 42) when constructing the unit cell, it is quite like

a third class of RS model not considered by Randall and Sundrum. The two famous

RS1 and RS2 models put branes at one side of a bulk or another—at infinity, finite

distance, or zero in their given coordinates—but they do not consider the case of a

brane set between two asymmetric bulks.

Before continuing on to the MCM particle scheme (Section 0.3), the reader’s at-

tention to called to the reality that certain labeling conventions in the unit cell are

chosen intuitively from among a few possible permutations. The purpose in this pro-
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gram is to facilitate easy discussion that would be clouded by repeated clarifications

for caveats about all possible permutations. Usually, the number of possible permu-

tations is low and the alternatives reflect little more than a sign change. For instance,

the assignment of dS or AdS geometry to slices of constant χ4
± ∈ Σ± is only a sign

convention. It is assumed that the trip from H1 to H2 goes through Ω, and then A,
but this is subject to reversal if needed. For instance, the cosmological constant in

AdS is negative while it is positive in dS. The energy landscape might override the

assumed convention. The fifth dimension is currently timelike in Σ− and spacelike in

Σ+ but if the opposite convention were desired, one would add a minus sign into the

metric. If we were to move the origins of χ4
± to ∅, then the natural sign conventions

for χ4
± would be reversed, etc. In the end, we will require that binding energy is nega-

tive in H and that the entropy in H tends to increase with increasing x0. Everything

else should be arranged accordingly.

In addition to the geometric objects labeled in Figure 1 and detailed above, there

are some algebraic objects of fundamental importance. We introduce new algebraic

complexity by attaching different state spaces to the various labeled manifolds. For

instance, L2(R3) is the well known Hilbert space of square integrable functions of three

real variables. L2 describes the algebraic state space and R3 describes the domain of

the wavefunctions which are representations of the L2 states. Using H′≡L2(R3) to

denote the space of position states in H, R3 refers to the 3D spatial submanifolds of

H described by the {+++} part ofM4’s {−+++} signature. We will use A′ and

Ω′ to label the state spaces of particles located on the A- and Ω-branes. Although

the wavefunctions of states in A and Ω are also functions of three real variables,

those variables do not chart the 3-space in the Euclidean metric δij that is usually

inferred from the R3 symbol. Formally, R3 is any tuple of three real variables and

E3 is Euclidean 3-space. These two symbols are often intermingled in physics where

E3 may be less familiar. Therefore, increased nuance is warranted for the labeling.

With A as AdS4 and Ω as dS4, the domains of the functions in the A′ and Ω′ state

spaces are hyperbolic H3 and spherical S3 respectively.1 We might write, for example,

Ω′≡L2(S3) to indicate that the R3 coordinates in the domain of wavefunctions in Ω

are not subject to the Euclidean metric as are wavefunctions in H with H′≡L2(E3).

For reasons developed below, mainly to accommodate the eigenstates of observable

operators with continuous spectra such as x̂, we will introduce rigged Hilbert space to

employ other algebraic spaces than L2 for position states located in various sectors of

the unit cell. Readers unfamiliar with rigged Hilbert space are referred to [59–61]. In

1AdS3 and dS3 refer to Lorentzian manifolds, meaning that these are not the spatial parts of AdS4 and dS4.
Rather, AdS3 and dS3 are manifolds spanned by one timelike dimension and two spacelike dimensions.
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the following, we omit some nuance differentiating state spaces and function spaces.1

� {H′,A′,Ω′} is a rigged Hilbert space (RHS), also called a Gelfand triple. H′

is a subspace of A′. Ω′ is a dual (or antidual) space to H′ which contains A′

as a subspace: {S1, S2, S3} such that S1 ⊂ S2 ⊂ S3. In previous work, we have

used the convention that RHS is {A′,H′,Ω′} but the structure of RHS suggests

that S1 is most appropriate for the manifold of physical observables [61]. That

manifold is H so we have chosen the present convention for {H′,A′,Ω′}. The

previous convention in which the order of the spaces in the triple matched the

order of the branes in the unit cell was intuitive but it does not appear to be the

one supported by the definitions.

� A′ is Hilbert space. In this book, the relevant Hilbert space is usually taken

as the infinite dimensional Hilbert space of position states. In that case, A′ is

the L2(R3) space of square integrable functions: wavepackets rather than the δ

function position eigenstates. One might write this as L2(H3) to indicate that

the domain of these L2 wavefunctions possesses hyperbolic geometry.

� H′ is a subdomain of Hilbert space H′ ⊂A′. Under certain conditions related

to unbounded observable operators with continuous spectra such as the position

operator x̂, there exist states in A′ ≡ L2 for which certain ordinary quantum

mechanical identities fail. H′ is the subdomain of A′ in which things like the

expectation value and uncertainty formulae are guaranteed to be well behaved

for every state in the space. De la Madrid presents these details in [59–61]. Due

to the stated properties of well behavior, the S1 part of an RHS {S1, S2, S3} is
attached to the 4D physical universe of observables: H. The present convention
contrasts the previous convention in which S2 was attached to H.

� Ω′ is the dual (or antidual) space of H′ such that {H′,A′,Ω′} is an RHS. Eigen-

states of operators with continuous spectra are non-normalizable Dirac δ func-

tions which do not exist in A′ or H′. Such eigenstates, usually position eigen-

states, belong to the state space Ω′ satisfying H′⊂A′⊂Ω′. As will be discussed

in Section 1, predictions for what will happen in the future reside in Ω. Since

the MCM seeks to restore a classical character of motion which was lost in quan-

tum mechanics, meaning that a prediction for a time-advanced quantum position

state should be a point in spacetime as was the case for classical motion, the S3

part of the RHS {S1, S2, S3} containing Dirac δ wavefunctions is assigned to Ω

and called Ω′.
1Ballentine writes [62], “It is a matter of taste whether one says that the set of functions forms a representation

of the vector space, or that the vector space consists of the functions ψ(x).”
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� ∅′ is a hypothetical state space for states in the ∅-brane.

0.3 The MCM Particle Scheme

Early work in the MCM [31] posed a solution to the mystery of the matter asymmetry.

That mystery regards why the universe is made of matter rather than anti-matter [63].

The issue is similar to a question about non-conservation of 4-momentum at the big

bang. If nature is thought to conserve baryon number and 4-momentum, then why

should the big bang not conserve both?1 It was suggested in [31] that two universes

leaving a big bang, or a big bounce, should be understood as an ordinary particle

pair in the sense of pair creation by vacuum fluctuations. It is not known why any

particular fluctuation occurs but the particle production process is better understood

than an alleged cosmological big bang process for a single universe with an anomalous

increment of momentum and an anomalous baryon number. In the particle pair

picture, the forward and reverse time universes are a particle and an anti-particle.

One has positive baryon number and positive p0. The other has negative baryon

number and negative p0. The MCM model of particles [6] follows from this notion: a

universe, one quantum of MCM spacetime, is like a fundamental matter particle.

In the unit cell, our observable universe given positive baryon number B is the

H-brane. It is spanned by x0 and xi. The MCM particle scheme supposes that

all fundamental matter particles are quanta of spacetime spanned by a spatial unit

vector x̂i and a temporal one: x̂0 or χ̂4
±. Given these two types of time in the MCM,

chronological x0 and chirological χ4, this thinking leads to the 12 well known members

of the three generations of matter particles.

Referring to Figure 1, space xi points into the page. Chronos points up and

chiros points to the right.2 The spanning bases for planar spacetimes are x0xi and

χ4xi. The basis vectors in the respective directions can form left- or right-handed

coordinate systems with the third member of {x0, xi, χ4} so there exist four distinct

varieties of MCM spacetime quanta: space crossed with either of chronos or chiros,

each in left- and right-handed varieties, as in Figure 2. The planes of xi crossed with

the well studied x0 flavor of time are taken as the relatively well-behaved leptons.

Space crossed with the exotic new chirological time is taken as a quark. We suggest

that quantum electrodynamics (QED) is simple relative to quantum chromodynamics

(QCD) because x0 is simple relative to χ4∼={χ4
+, χ

4
∅, χ

4
−}. The three color flavors of

each quark are distinguished by the three varieties of χ4. We say quarks are never
1Positive baryon number is associated with matter and negative baryon number is associated with anti-matter.

For historical reasons [63], the excess of matter over anti-matter is described as an excess of baryons over anti-baryons
despite there being a similar excess of leptons over anti-leptons.

2In Greek, chronos and chiros refer to “man’s time” and “gods’ time” respectively.
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Figure 2: It is supposed that the fundamental matter particles of the standard model
represent geometric quanta in the MCM unit cell. Leptons are planes
formed by xi and x0 while quarks are planes formed from xi and χ4. Two
varieties of each are formed when the unused instance of x0 or χ4 forms
a right- or left-handed orthogonal triad. We will associate the three color
charges of QCD with the {χ4

+, χ
4
−, χ

4
∅} varieties of chiros.

observed in isolation because the piecewise structure of χ4 is such that χ4
± are each

needed to construct an instance of the unit cell. The existence of Σ± implies the

coexistence of Σ∓.

Having established two leptons and two quarks (Figure 2), the three generations

of each are associated with the H′, A′, and Ω′ state spaces, as in Figure 3. In the

final analysis, the primary distinction among the three generations may be attributed

most directly to the three different lattice positions {A,H,Ω}, or to the three dif-

ferent state spaces {H′,A′,Ω′}. The three generations of matter particles reflect the

structure of the unit cell but the details of the MCM state spaces are not finalized.

Thus, it cannot be determined at this time if the three generations of particles follow

more directly from algebraic distinctions among {A′,H′,Ω′} or geometric distinctions

among {A,H,Ω}. Presently, the three generations of leptons and quarks are increas-

ingly massive and we would like to associate this property with the H′ ⊂ A′ ⊂ Ω′

structure of RHS. Since electrons are stable in H while muons and taus are not, this

suggests the convention in Figure 3: H′ should be the state space corresponding to

the first, lightest generation of matter particles. Associating increasing mass with in-

creasing scale factor across the unit cell centered on ∅ would suggest Ω for the second

generation particles. Perhaps the three generations of matter particles observable in

H would be better associated with Ω, ∅, and A in an alternative, similar convention.

Most importantly, it is emphasized that the permutations of the unit cell match the

permutations of the particles.

Another consideration for the MCM state space structure regards lepton univer-
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Figure 3: The MCM particle model (right) compared to the standard model of parti-
cle physics (left). Each instance of x0 or χ4 refers to a spacetime spanned by
xi and either x0 or χ4. The scalar Higgs boson is an outlier in the standard
model but there are are no such outliers in the modified model.

sality. The standard model predicts that each lepton flavor should be identical to the

others up to its mass. However, modern experiments suggest that this is not the case.

The proton radius puzzle observed in the muonic hydrogen system [64] is an example

of experimentally determined non-universality among lepton flavors. By putting each

of the MCM matter particle generations into a different state space, we motivate

lepton non-universality in principle, as required for agreement with experiment.

We have relied to some degree on phenomenological considerations when construct-

ing this model of particles. Still, the model suffices to claim a first principles derivation

of the particle spectrum. The unit cell has permutations of its objects generating two

pairs of particles in three varieties and one of those pairs may be distinguished by

three further varieties of QCD color charge with {+,−,∅}. The fundamental bosons

are well accommodated too. It is known that the 12 fundamental matter particles

are spin-1/2 fermions so we assign that property to each MCM quantum of spacetime

by supposition. Spin-1/2 is well aligned with χ4
± spanning only one of Σ+ or Σ−,

but never both. Similarly, the scale of any MCM spacetime quantum will be half the

width of the unit cell. The force carrying particles of the standard model are known

to have spin-1 so the MCM bosons are assembled from pairs of matter particles. This

is done in part because 1
2
+ 1

2
=1 and in part because forces are usually transmitted

between pairs of fermionic matter particles.

Being the most ordinary and well understood force carrying particle, the photon is

the x0x0 particle at the top of Figure 3’s stack of elementary MCM bosons. The most

complicated, least understood elementary boson is the gluon g associated with the
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χ4χ4 connection. In this arrangement, we find more support for the MCM particle

scheme. It is known from experiment that there exist eight varieties of gluon. A tri-

umph of the MCM is that we obtain eight such varieties in the unit cell. Quark flavor

is associated with the three varieties of χ4. Gluons are associated with connections

between quarks. The nine permutations of a χ4χ4 connection are ++, +∅, +−, ∅+,

∅∅, ∅−, −+, −∅, and −−. Removing ∅∅ on some qualitative grounds (which may

be inferred from the ∅ symbol itself), we are left with eight varieties of gluon.

Why should ∅∅ not be associated with a gluon? There are many possible reasons

but it is hoped that the reason will fall out from future inquiry. Since χ4
∅ has no

length in the convention where Ω is joined to A by a single point, the ∅∅ gluon

has no moment, in some sense. The other eight connections do have non-vanishing

moments, in that sense. Another reason might be that the other eight gluons connect

to H through Σ± while ∅∅ does not. For that reason, it may not be observable, or

may not be directly observable. As we will detail in Section 1, all observations are

necessarily made in H so the property of being observable may depend on connection

to H. Another possibility is that there are, indeed, nine gluons, and that a nine gluon

model would improve the theory of QCD. One might take the ∅∅ connection as a

sterile gluon in the manner that sterile neutrinos are sometimes thought to exist. In

general, the total picture of QCD physics is complicated and has a lot of room for

improvement.

Ignoring a hypothetical Higgs boson, the only remaining standard model particles

requiring placement in the modified model are the W and Z bosons. These are ac-

commodated by either of the two remaining connections: x0χ4 or χ4x0. Choosing

the former, the original assignment in [6] cast W± as x0χ4
± and Z0 as x0χ4

∅ [6]. It

is emphasized that the unit cell’s permutations’ multiple exact likenesses to experi-

mentally determined particle properties are evidence that the MCM is a good theory.

The weak force governs interactions between leptons and particles made of quarks

so, therefore, the admixture of the x0 and χ4 elementary fermions in the x0χ4 weak

boson connection is philosophically robust and physically sound.

We have randomly chosen the x0χ4 connection forW and Z. We might have chosen

χ4x0. In either case, the MCM predicts at least one more spin-1 elementary particle,

possibly three, in the remaining partner to x0χ4 or χ4x0, as in Figure 3. However,

there exists another theoretical variant which was not mentioned in the first iteration

of the MCM particle scheme [6]. We have associated the W± particle/anti-particle

pair with χ4
± while we have not placed anti-gluons in the χ4χ4 connection. If the

± scripting does not specify the anti-particle for gluons, then neither should it for
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W . Therefore, we might (should) associate the Z and W particles with only two of

{x0χ4
+, x

0χ4
−, x

0χ4
∅}. In that case, we would suppose that the Higgslike particle is the

third member of the x0χ4 connection, that x0χ4 and χ4x0 are indistinguishable, and

that the Higgslike spin-1 particle completes the smorgasbord.

Whatever the exact details are, the modified model predicts that there should be

no spin-0 fundamental particles. Therefore, the Higgslike particle must have spin-1.

If the Higgslike particle is eventually determined to have spin-1, that will be strong

evidence that time and effort should be invested in the theses given in the remainder

of this book.

Part I: The Modified Cosmological Model

1 The M̂3 Operator and its Equation

While it is standard in physics communications to put main results at the beginning

and then explain them, this will not be possible for M̂3. Without developing the

context first, the main results could not be conveyed well. Therefore, Sections 1.2

through 1.7 will mostly lay the foundation for more interesting results in Sections 1.8

through 1.11.

1.1 Introduction

The fundamental equation of classical mechanics F = ∂tp = m∂2t x is postulated in

Newton’s laws. The fundamental equation of quantum mechanics, iℏ∂tψ = Ĥψ, is

usually implemented as a postulate. In both cases, the differential operators ∂t and

∂2t (or the ∂2x in Ĥ) are used in postulated equations. In the MCM, we would like to

obtain a new equation for M̂3∝∂3t such that the discrepancies between classical reality

and quantum theory are lessened or remedied. Various postulates or hypotheses for

the functioning of M̂3 have appeared in earlier MCM publications and, indeed, the

number of variations approaches the number of papers written about them. In the

end, the postulate should be the only expression consistent with the requirements,

up to the form of the representation. At that time, putting the correct equation to

paper should be effortless. For this reason, previous work in the MCM has more

closely attended that which M̂3 needs to do than the formal statement and study

of a postulate like F =mẍ or iℏψ̇ = Ĥψ. In this long section, we will examine the

M̂3 operator which has been identified as an appropriate operator for what should be

some new equation for a theory of everything.
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1.1.1 The M̂3 Operator

M̂3 describes the actions of a physicist. Although the extant quantum theory re-

quires a physicist’s actions to implement wavefunction collapse upon measurement,

the usual approach to quantum mechanics (QM) ignores the rest of what the physicist

does. In efforts to better understand quantum theory, epistemological considerations

sometimes fixate on an artificial distinction between a quantum state and an ideal

measuring apparatus. It is asked how an ideal measurement can be made when detec-

tors are necessarily quantum mechanical themselves. Compounding such questions,

many experiments such as the double-slit and delayed-choice quantum eraser experi-

ments [65] show that measurement is supremely weird within the existing framework.

The main new idea in the MCM seeks to separate the physicist from his experiment

rather than to separate a hypothetical ideal detector from its quantum subject mat-

ter. Measurement is made ideal as a psychological process divorced from anything

manifestly quantum mechanical. It is hoped that the description of a time-evolving

quantum state will be more natural in this framework.

Regarding questions of epistemology that don’t impede one’s ability to compare

experiments to predictions, physics may be differentiated between work in the eso-

teric fundamentals and work in the more glamorous applications [66]. The latter is

less concerned with philosophical problems but the MCM is a program in the sub-

basement of the fundamentals. We ask questions such as the following. Is it a step

too far to suppose that there exists a better framework? Perhaps there is one to

which the current theory is only an approximation? Is it wrong not to shut up and

calculate? To these ends, we have identified M̂3 as a good operator for what should

be a new revolution in the arena of the fundamentals.

The psychological process for M̂3 was defined as follows [3].

“To test any theory[,] two measurements must be made. Call these

measurements A and B corresponding to events a and b. The boundary

condition set by A will be used to predict the state at b. To make this

prediction[,] the observer applies physical theory to trace a trajectory from

A to the future event b. Before the observer can verify the theory, sufficient

time must pass that the future event occurs. Once this happens[,] a retarded

signal from b reaches the observer in the present and a second measurement

B becomes possible. [F ]rom the present[,] the observer traces a path into

the future. Once that future becomes part of the observer’s past, a signal

reaches the observer in the present and the theory can be tested. A three-
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fold process.

Present 7→ Future 7→ Past 7→ Present1 .” (1.1.1)

The process of M̂3 starts at A. Some event a has already occurred. The signal from

a has reached the observer who has represented the condition of a as some abstract or

analytical expression. For instance, a detector has registered a particle at some point

in space, or in some region of spacetime,2 and then the detector told the observer

what it saw. The observer says, “Given my observation A, I predict by theoretical

construction that a subsequent event b will occur, which I will observe at B.” This

prediction is the first step of M̂3. It is an abstract prediction Present 7→Future. The

next step requires a time translation of the observer to some time later than the

time associated with the predicted event. Since we expect M̂3 to operate on states

rather than the observer, the observer’s time translation might be implemented as a

translation of a and/or b to an earlier time. This is the second step Future 7→Past.

The third step is a reconnection to the psychological level when the signal from b comes

to the observer’s attention at B: Past 7→Present. It is hoped that a new equation

which reflects this process will improve quantum theory and human understanding.

Feynman states the idea in [67].

“[T ]here is always hope that [a] new point of view will inspire an idea for

the modification of present theories, a modification necessary to encompass

present experiments.”

1.1.2 Principles and Equations

Einstein’s greatest genius was to conceive of the equivalence principle. Briefly, exper-

iments done in gravity must yield the same results when done in a spaceship under

the same acceleration. To formalize his principle mathematically, Einstein had to

collaborate for several years with mathematicians such as Grossmann but Einstein’s

true genius was not finding Einstein’s equation. The work of profound genius was

to conceive of a new principle which must be satisfied by an equation in some form.

Finding that equation, while difficult and admirable, was ultimately a labor. Einstein

describes himself as working “like a horse” in his quest to find the equation once the

principle was set. Similarly, Newton was in correspondence with Leibniz to some de-

gree during the development of calculus but Newton is regarded as the supreme genius

1The 7→ symbol was chosen only so as to use a generalized arrow symbol for this word-level expression.
2Whether an apparatus detects the particle at a point or merely within some region is an interesting and open

question. In the end, all that is known is that the observer cannot glean more information from the apparatus than
the region of spacetime in which the particle is detected.
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due to his conception of the laws of motion. The modern mathematical statement of

classical mechanics is mostly due to Cauchy, not Newton, but Newton is regarded as

the grandfather of physics because the highest achievement is the formulation of new

principles. As the laws of motion must be satisfied, and as the equivalence principle

must be satisfied, the MCM process for M̂3 must be satisfied. The description of the

three-fold psychological process for M̂3 is as irrefutable and self-evident as any other

principle in physics. There must exist a mathematical language for describing it.

1.1.3 Targeted Issues in Quantum Theory

After introducing notation in Section 1.2 for associating quantum states with the

elements of the unit cell, we will present cases that M̂3 should be useful for the

following.

� To implement dynamical rather than ad hoc wavefunction collapse (Section 1.8).

� To explain the origin of the fine structure constant (Section 1.9).

� To promote the metric from a disconnected background in quantum theory to a

dynamical object in it via a new theory of quantum gravity (Section 1.10).

� To find use cases in physics for new mathematical tools related to fractional

distance analysis (Section 1.6) [2], and to do a few other things.

The usual formulation of quantum theory provides no dynamical mechanism for

wavefunction collapse, also called state reduction or projection. With M̂3, the MCM

adds some extra steps to time evolution that are purposed to accommodate such a

mechanism. Presently, collapse is inserted into QM as needed to force agreement

with experiment. If dynamical collapse is achieved, quantum theory will be much

improved. Isham writes the following regarding this most glaring gap begging for

improvement [68].

“[T ]he idea of a reduction of the state vector is often invoked in more

realist approaches in which the state vector is deemed to refer to a sin-

gle system. The reduction is then assumed to occur after a single (ideal)

measurement, and has nothing to do with system selection in a series of re-

peated measurements. From this perspective, the overall time development

of a state of a single system consists of sharp jumps produced by the act of

measurement, separated by periods of deterministic evolution governed by

the Schrödinger equation[.]
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“The major problem is to understand the origin of these sudden changes

in the state. In particular, can they be obtained from the existing quantum

formalism, or does the reduction of the state vector have to be added to the

general rules of quantum theory as a fundamental postulate? This problem

is particularly acute in any approach to quantum theory that aspires to

demote ‘measurement’ from playing a fundamental part in the formulation

of the theory. In this case, there is a strong motivation to try to derive the

state reduction vector from the existing formalism; albeit, perhaps, only as

an empirically useful approximation to the actual development of the state

in time.

“The nature of the problem depends in part on the perceived referent of

the state. If the state is held to quantify our knowledge of the system, then

the reduction process is arguably analogous to the conditioning procedure

in classical probability in which the addition of extra information about

what is actually the case changes our state of knowledge. On the other

hand, if the state vector is held to refer to the system itself, then the idea of

reduction is frequently tied to the ‘uncontrollable disturbance’ thesis. This

raises the obvious question of the possibility of understanding the nature of

this effect in direct physical terms. In particular, what type of interaction

serves as an ‘ideal measurement’?

“One approach to this problem is to ask again about the significance of

the fact that actual measuring devices are made of quantum atoms. Is it

possible to understand a state reduction as the outcome of some dynamical

evolution in which object and apparatus are both regarded as quantum-

mechanical systems? Indeed, even within the minimal, pragmatic approach

to quantum theory there is good reason for asking what type of interaction

between two systems is to be regarded as a bona fide measurement of one

by the other. The concept of measurement plays a fundamental role in the

formulation of quantum theory, and therefore deserves to be understood

further.”

Measurement is of fundamental importance in the MCM. Each measurement of a

quantum system corresponds to an H-brane. Diffusion under the Schrödinger equa-

tion happens in the bulk spaces Σ± and the sharp jump to a collapsed state is asso-

ciated with Hk. The act of measurement is made ideal as an interaction between a

system made of atoms and an observer’s non-quantum consciousness.

It remains hard to motivate the value for the MCM fine structure constant αMCM so
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we will not phrase the present problem of M̂3 in terms of the original motivation [30].

Instead, we will lay out the current best understanding of M̂3 and some problems

which are found to deserve further development. Appendix A describes the original

program by which the fine structure constant was found and then the existence of

M̂3 was deduced from the analytical structure of

α−1
MCM = 2π +

(
Φπ
)
≈ α−1

QED . (1.1.2)

Regarding our intention to supplement the existing framework of quantum theory

with M̂3, Finkelstein writes the following [69].

“Quantum theory began with ad hoc regularization prescriptions of Planck

and Bohr to fit the weird behavior of the electromagnetic field and the

nuclear atom[,] and to handle infinities that blocked earlier theories. In

1924[,] Heisenberg discovered that one small change in algebra did both

naturally.”1

Heisenberg stated the following in his 1933 Nobel address.

“Quantum mechanics [sic] arose, in its formal content, from the endeavor

to expand Bohr’s principle of correspondence to a complete mathematical

scheme by refining his assertions.”

Similarly, it remains to expand the MCM principles to a complete mathematical

scheme by refining the assertions about M̂3. To wit, we have found a value αMCM

that falls out of some (mostly) standard quantum mechanical language but we have

neither connected that language to the full quantum theory nor explained the 0.4%

discrepancy with αQED (Section 1.9.4). There exists an idea for how state reduction

might be implemented more naturally in the MCM than it is in QM (Section 1.8) [70]

but we have not written down any Eureka-level equations of motion. While such

deficiencies remain to be remedied in the course of the work described in this book,

the new object ∞̂ called algebraic infinity (Section 1.6) is most certainly a Eureka-

level idea for handling certain infinities that block current theories.

On the problem of quantum gravity, we say it is a hard problem because there does

not exist a robust mathematical language in which the objects of the gravitational

1Heisenberg’s famous p̂q̂−q̂p̂ ̸=0 quantum algebra was a small change in notation but it reflects a giant leap in the
ability of humans to understand the natural world. After all, the idea that 3×2 under certain circumstances might not
equal 2×3 was a radical departure from thousands of years of previous mathematical thinking. Heisenberg’s change
of algebraic structure is the origin of the phrase “a quantum leap” meaning “a huge or sudden increase or advance of
something.”
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theory can be put into an equation with the objects of the quantum theory.1 General

relativity (GR) is a theory of points in spacetime but the state of being located at a

point cannot be measured and does not exist in Hilbert space. Quantum states are

fuzzy but GR does not admit fuzziness. Far removed from a theory of gravitons or

questions about the curvature of spacetime as a disconnected background to quan-

tum theory, the general problem of quantum gravity is that there does not exist a

good framework in which it is possible to put the equivalence relation = between two

separate statements of gravitation and quantization. For instance, the equivalence of

the inertial mass in classical mechanics and electrodynamics allows us to combine the

Lorentz force law with arbitrary mechanical forces. On the other hand, there is no

Schrödinger equation for the metric and there is no way to put a probability ampli-

tude into a stress-energy tensor such that it is mutually dynamical with Schrödinger

evolution. The MCM mechanism for quantum gravity offers an original and exciting

mathematical language in which quantum objects might interact with gravitational

objects. However, it very much remains to establish this new language as a complete

mathematical framework.

1.2 The Ontological Basis

The process

Present 7→ Future 7→ Past 7→ Present , (1.2.1)

is associated with the operator

M̂3 : H′
1 → Ω′

1 → A′
2 → H′

2 , (1.2.2)

and/or its variant

M̂3 : H1 → Ω1 → A2 → H2 . (1.2.3)

The former describes abstract algebraic translation through rigged Hilbert space. The

latter describes geometric translation through coordinate space. M̂3 itself operates

on states so notation is required to specify where a given state lives: which of the

1There is some machinery in QFT by which a certain tensor field φµν (called a graviton field) can couple in its
two indices to a stress-energy tensor Tµν . The QFT graviton can be used to reproduce a few experimental results
but most of those come only under a host of simplifications, hand-waving, and cumbersome constraints. The QFT
graviton is ugly, not beautiful, and it is useful only for small perturbations on Minkowski space. In the opinion of
this writer, furthermore, there is little reason to think that the hypothetical quantum force carrier of the gravitational
force is real because there is no gravitational force. Gravitation is geometry in curved spacetime. It is a fact that
a rank-2 tensor field can couple to Tµν in QFT but it is not well established that this confluence of tensor indices
is well suited to the general problem of quantum gravity. After all, this coupling has been known for decades and
there is no consensus on what a working theory of quantum gravity might look like or how one might demonstrate
gravitons’ existence through observation. Indeed, there is no consensus on the existence of gravitons due in part to
the weakness of the theoretical framework for φµν in applications to gravitation.
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branes and/or which of the state spaces along the process of M̂3. For instance, we

will introduce notation such that a state in H′ has the domain of its wavefunction

representation specified as the xi spatial part of the xµ physical coordinates charting

H. However, if

ψ ∈ H′ =⇒ ψ = ψ(xi)

ψ ∈ A′ =⇒ ψ = ψ(xi−) (1.2.4)

ψ ∈ Ω′ =⇒ ψ = ψ(xi+) , 1

then the H′ ⊂A′ ⊂Ω′ nested structure of the RHS {H′,A′,Ω′} is superficially con-

founded. The space of functions of a given variable is not intuitively a subspace of

the space of functions of another variable. Still, it is possible that states represented

by the former might span a subspace of the states represented by the latter. To avoid

any potential problems, an appeal is made to a subtle difference little considered in

physics: the difference between state spaces and function spaces. In this section, we

will clarify these details somewhat and introduce the ontological basis. It assigns

wavefunctions to the various branes in the MCM unit cell, and to their corresponding

state spaces.

Let ψk : R→C be a function and let × be an inner product. Then

H′ = {ψ1, ψ2;×}

A′ = {ψ1, ψ2, ψ3;×}

Ω′ = {ψ1, ψ2, ψ3, ψ4;×}

 =⇒ H′ ⊂ A′ ⊂ Ω′ , (1.2.5)

at least approximates an RHS if it does not satisfy the definition directly. To break

the nested structure and support an arrangement of functions of different variables,

we will append labels as

H′
H = {ψ1, ψ2;×, H}

A′
A = {ψ1, ψ2, ψ3;×, Alpha}

Ω′
O = {ψ1, ψ2, ψ3, ψ4;×, Omega}

 =⇒ H′
H ̸⊂ A′

A ̸⊂ Ω′
O . (1.2.6)

Now, suppose DH, DA, and DO are three non-intersecting subsets of R such that

ψ ∈ H′
H =⇒ ψ : DH → C

1Recall that xµ± are the physical coordinates on slices of Σ± at constant χ4
±, as in Section 0.2.
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ψ ∈ A′
A =⇒ ψ : DA → C (1.2.7)

ψ ∈ Ω′
O =⇒ ψ : DO → C .

A function is usually defined as a binary relation between two sets so it follows, for

instance, that ψ(x)=sin(x) is the same function regardless of which D is its domain.

However, if

H′
H ∋ ψH : [0, 2π]→ [−1, 1]

A′
A ∋ ψA : [4π, 6π]→ [−1, 1] (1.2.8)

Ω′
O ∋ ψO : [8π, 10π]→ [−1, 1] ,

then the different ψk are not exactly the same. This invokes a nuanced technical issue

which we will revisit in Section 31 pertaining to a criticism of Scholze and Styx against

Mochizuki’s inter-universal Teichmüller theory (IUT.)1 The definition of a function

as a binary relation between two sets makes it easy to ignore the subtle distinction

between a state space containing abstract |ψ⟩ vectors and function spaces containing

the ψ(x) wavefunction representations. It is normal in physics to write |ψ⟩ = ψ(x)

meaning that the state is identically the wavefunction. Formally, it is not. To be

very specific, or rigorous, one must ask if the definition of the function includes the

identity of the two sets related by it. Regarding the matter of M̂3, it is not relevant

whether the identity of a function depends on the identity of its domain. The nested

structure of {H′,A′,Ω′} is such that ψ ∈H′ implies ψ ∈A′ and ψ ∈Ω′, and we will

do physics in the way that ignores unnecessary mathematical nuance. We will drop

the subscripts and call {H′,A′,Ω′} an RHS even though we have added an implicit

labeling scheme such that the nested structure is broken by (1.2.4), in some sense.

MCM state spaces must have an associated manifold specified so we may know

which coordinates chart the domains of the states’ wavefunction representations. For

this purpose, we have introduced the ontological basis {êH, êA, êΩ} such that

ψ ∈ H′ ⇐⇒
∣∣ψ〉 = ∣∣ψ〉êH =

∣∣ψ; êH〉 = ψ(xi)

ψ ∈ A′ ⇐⇒
∣∣ψ〉 = ∣∣ψ〉êA =

∣∣ψ; êA〉 = ψ(xi−) (1.2.9)

ψ ∈ Ω′ ⇐⇒
∣∣ψ〉 = ∣∣ψ〉êΩ =

∣∣ψ; êΩ〉 = ψ(xi+) .

We also suppose the existence of a fourth basis element ê∅ such that |ψ⟩ê∅=ψ(xi∅)

1We will suggest that Mochizuki’s Hodge theater is a rebranded MCM unit cell and that his later work on IUT
is an attempted completion of the M̂3 theory.
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or |ψ⟩ê∅=ψ(χa∅). (Refer to Figure 1 for placement of ∅ in the unit cell.) Now that

we have developed the requisite objects, we may supplement the abstract notation

of (1.2.2) and (1.2.3) with an ordinary operator algebra. Letting M̂3≡M̂3M̂2M̂1, we

have

M̂1

∣∣ψ; êH1

〉
= c1

∣∣ψ; êΩ1

〉
M̂2

∣∣ψ; êΩ1

〉
= c2

∣∣ψ; êA2

〉
M̂3

∣∣ψ; êA2

〉
= c3

∣∣ψ; êH2

〉
 =⇒ M̂3

∣∣ψ; êH1

〉
= c3c2c1

∣∣ψ; êH2

〉
. (1.2.10)

M̂3 executes H1→H2 via the given intermediate steps. It operates on states in one

unit cell and returns states in a time-advanced unit cell. Schrödinger evolution also

occurs between H1 and H2 and the intermediate steps of M̂3 are specified to add

complexity to the usual theory in which the Schrödinger equation is integrated from

t1 to t2. Assigning t1∈H1 and t2∈H2,
1 the intermediate steps provide a framework in

which more can happen than what QM describes as monotonic diffusion followed by

instantaneous collapse. The structure provided by the intermediate steps is pointed

out so as to avoid an appearance of redundancy in what might otherwise be written

as M̂3 : H1 → H2 without a reference to the intermediate steps that should be useful

for applications towards modified Schrödinger evolution. Further inquiry is required

to determine an analytical statement of this new theoretical structure.

In practice, the MCM cosmological lattice is infinite in extent. Each unit cell

resides at a later chronological time than all leftward unit cells, and at a later chiro-

logical time. Each successive unit cell is said to be on a higher level of aleph (Section

1.6) [2, 48] than the unit cells at earlier chirological times. Levels of aleph are an

abstract characteristic introduced to differentiate one unit cell from its neighbors.

The subscripts on the {êµ} in (1.2.10), e.g.: êΩ1 and êA2 , refer to branes on the first

and second levels of aleph. (See Figure 1 for similar labeling on Σ±.) Levels of aleph

are labeled with integers so any Hk will have an infinite number of earlier and later

{Hj}.
In practice, it may be useful to consider cyclic M̂3 :H→Ω→A→H in place of the

non-cyclic M̂3 :H1→Ω1→A2→H2. In other words, we might drop the subscripts to

treat the problem as a small algebraic group.

1This notation means that the measurement associated with H1 happened at x0= t1, t1 was the observer’s proper
time in H1, and the same for t2 and H2.

39



Next Steps and the Way Forward in the Modified Cosmological Model

1.2.1 A Program in Number Theory

M̂3 is formulated to describe the process by which a theory is tested with experiment.

The operation is psychological because the chronological time interval between two

unit cells depends on how long the observer waits to test his prediction. A requirement

for regular periodicity in the overall lattice of all unit cells, or for the self-similarity

of all unit cells, is fulfilled through a regularized chirological time interval between H1

and H2. The interval in the abstract coordinates will be proportional to the golden

ratio Φ without regard for the duration of chronological time between successive

measurements. We will say more about the golden ratio and our reasons for using it

in Section 1.2.4 (see also [70,71].)

The defining property of a set of basis vectors is the linear independence of

the basis’ elements. Usually, the elements are unit vectors. The particular basis

{êH, êA, êΩ, ê∅} is called “ontological” due to the specification of certain non-unit

magnitudes for its elements. By choosing the number-theoretically significant mag-

nitudes {2, π, i,Φ} in some order for {∥êH∥, ∥êΩ∥, ∥êA∥, ∥ê∅∥} we hope to generate

certain properties of the natural world by these numbers’ association with the struc-

ture of the unit cell. The present convention is

êH = π̂ êΩ = Φ̂ êA = 2̂ ê∅ = î

|π̂| = π |Φ̂| = Φ |2̂| = 2 |̂i| = 1 (1.2.11)

∥π̂∥ = π ∥Φ̂∥ = Φ ∥2̂∥ = 2 ∥̂i∥ = i .1

Using a further convention such that the observer’s reference frame at measurement

A is normalized to the zeroth level of aleph, M̂3 will operate as

M̂1

∣∣ψ; π̂0
〉
= π

∣∣ψ; Φ̂0
〉

M̂2

∣∣ψ; Φ̂0
〉
= Φ

∣∣ψ; 2̂1〉
M̂3

∣∣ψ; 2̂1〉 = 2
∣∣ψ; π̂1

〉
 =⇒ M̂3

∣∣ψ; π̂0
〉
= 2πΦ

∣∣ψ; π̂1
〉
. (1.2.12)

M̂3 takes a state in one unit cell, or on one level of aleph, and puts it into the next one.

This operator algebra is presented as an ansatz pending development of analytical

representations for M̂3 and |ψ; êkµ⟩. The former iterator subscript of (1.2.10) has been

refashioned as an algebraically meaningful integer exponent k. π̂0=1̂ allows us to use

1In the previous conventions for the ontological basis vectors [1,3,30], A and ∅ were oppositely labeled with î and
2̂. The present convention is better suited to the MCM formula for the fine structure constant (Section 1.9).
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ordinary QM states as MCM states in H0.
1 For now, we will assume the 2πΦ scalar

coefficient2 and proceed to examine the ontological basis.

To detail the basis’ functioning, we will use the example

x = xêx . (1.2.13)

It is understood that we may ignore the unit vector in the x direction to use notation

such that x is a vector with magnitude x in the implicit direction. Similarly, we will

recover ordinary QM state vectors in H by ignoring π̂:∣∣ψ; π̂〉 = ∣∣ψ〉π̂ = ψ(xi) . (1.2.14)

If the normalization convention includes the magnitude of π̂, i.e.:〈
ψ; π̂

∣∣ψ; π̂〉 = |π̂|〈ψ∣∣ψ〉|π̂| = 1 , (1.2.15)

then the convention of (1.2.14) induces a notion of relative scale between branes. For

instance, (1.2.14) would be written∣∣ψ; π̂0
〉
=
∣∣ψ〉π̂0 = ψ(xi)|π̂0| , (1.2.16)

while ignoring a non-unit basis vector will alter a state’s magnitude:∣∣ψ; π̂1
〉
=
∣∣ψ〉π̂1 =

1

π
ψ(xi)|π̂1| , and

∣∣ψ; π̂k〉 = ∣∣ψ〉π̂k = 1

πk
ψ(xi)|π̂k| . (1.2.17)

This concept of relative scale will be used extensively in later sections.

A further property of the hat notation is demonstrated with the redundant ex-

pression

a = a êx |êy||êz| , where |êi| = 1 . (1.2.18)

If one wants to know what a looks like when it points in in the y direction, call it a′,

one must rearrange the absolute value bars. For some operator Ôx→y, we have

Ôx→ya = Ôx→y

(
a êx|êy||êz|

)
= a |êx| êy |êz| = a′ . (1.2.19)

1π̂0=1̂ may suggest that Φ̂0=1̂ as well. To avoid any possible association of Φ̂0 with the identity operator, future
inquiry might study the case where the Ω-brane following H0 is already on the higher level of aleph. The current
labeling scheme is such that H and its adjacent A- and Ω-branes are on the same level of aleph. The level is said to
increase at ∅, as in Figure 1. However, an alternative convention in which the level of aleph increases at H must be
considered as well. In that convention, all chirologically future-directed branes beyond H0 would be labeled by k>1
on ontological basis vectors with non-unit magnitudes.

2This scalar differs from the iπΦ and iπΦ2 constants which have appeared in previous work due mainly to the
reassignments of î and 2̂.
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Usually, Ôx→y would be a π/2 rotation operation about the z-axis but here we wish to

emphasize an algebraic picture over a geometric one. In the desired algebraic picture,

we have an implicit similitude to the three steps in (1.2.12):

M̂1 ∼ ÔH→Ω , M̂2 ∼ ÔΩ→A , and M̂3 ∼ ÔA→H . (1.2.20)

The laws of linear algebra suggest that we may execute any Ôµ→ν simply by moving

the hat around. The matter is slightly complicated in the unit cell by the non-unit

magnitudes of the ontological basis vectors but the procedure will follow (1.2.19). To

preserve the unit magnitude of the identity in the following, we will replace the |êi|
of (1.2.19) with ∥êµ∥/∥êµ∥. Considering |̂i|=1 and ∥̂i∥= i, the norm rather than the

absolute value is used to write, for example,

ÔH→A
∣∣ψ; π̂〉 = ÔH→A

∣∣ψ〉π̂ ∥2̂∥
∥2̂∥
∥Φ̂∥
∥Φ̂∥
∥̂i∥
∥̂i∥

=
∣∣ψ〉∥π̂∥ 2̂

∥2̂∥
∥Φ̂∥
∥Φ̂∥
∥̂i∥
∥̂i∥

(1.2.21)

=
π

2

∣∣ψ; 2̂〉 .

More concisely, one inserts the relevant identity and moves the hat:

ÔH→A
∣∣ψ; π̂〉 = ÔH→A

(
1

∣∣ψ〉π̂)
= ÔH→A

(
2

2

∣∣ψ〉π̂) (1.2.22)

=
π

2

∣∣ψ; 2̂〉 .

This protocol for moving hats will be integral to the MCM prescription for quantum

gravity in Section 1.10.1.

1.2.2 An Example in Atomic Physics

The commonality of 2, π, and i in quantum theory’s analytical expressions moti-

vates their placement in the ontological basis. For example, the wavefunction of a

hydrogenic electron ψnlm is such that

ψ100 =
1√
4π

2

a
3/2
0

e−r/a0 , and ψ211 =
1√
64π

1

a
3/2
0

e−r/2a0 sin(θ)eiϕ . (1.2.23)

The numbers 2, π, and i are analytically integral in such expressions. On the other
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hand, the absent number Φ is associated with the χ4 direction that is absent from the

usual framework for QM. An appeal to the arena of QM as the zeroth level of aleph

shows that Φ0=1 is already present in ψnlm, and every other conceivable wavefunction.

The MCM seeks to modify the usual arena for quantum theory by embedding it in a

fifth dimension. States enter the new MCM arena along Φ̂ pointing out of H in the

χ4
+ direction toward Ω. As Ω will be located at χ4

+=Φ, we may expect that factors

of Φ will accrue upon successive applications of M̂3. This is already codified into the

2πΦ constant given by M̂3|ψ; π̂0⟩=2πΦ|ψ; π̂1⟩. Such factors of Φk will be as integral

to the analytical representations of wavefunctions in non-H0 branes as are 2, π, and

i in H0.
1

In the convention such that |ψ; π̂⟩= |ψ⟩π̂=ψ(xi), we have hydrogenic states∣∣n, l,m; π̂
〉
=
∣∣n, l,m〉π̂ = ψnlm(r, θ, ϕ) , (1.2.24)

where {r, θ, ϕ} are the spherical polar representation of xi ∈ H. Using ψ100 as an

example, M̂3 operates as

M̂3
∣∣1, 0, 0; π̂0

〉
= 2πΦ

∣∣1, 0, 0; π̂1
〉
=
√
4π

Φ

a
3/2
0

e−r/a0 . (1.2.25)

ψnlm is not time-dependent so the wavefunction must be the same across any number

of successive measurements. As a result, (1.2.25) is mathematically trivial. On the

other hand, the theory of quantum states in Hilbert space is such that any two

states which differ by a constant are the same state. Therefore, (1.2.25) satisfies an

important physical constraint: the stationary state remains stationary.

Regarding time-dependent states, it is expected that the ∂0 and/or ∂4 time deriva-

tives are the generators of M̂3. The case of M̂3 acting on time-dependent states must

be more complicated than the example of ψnlm in which all such derivatives vanish.

In general, the structure of the unit cell is such that measurement B in H1 occurs at

a later chronological time than measurement A in H0. Consequently, it is required

that we start with |ψ, t0, π̂0⟩ and end with |ψ, t1; π̂1⟩ for some t1>t0. At minimum,

M̂3 must be complemented with Schrödinger evolution. More likely, M̂3 has its own

unique time evolution equation which contains the Schrödinger equation as the limit

of vanishing chirological derivatives.

1Later, we will suggest that the exponent on Φ̂ should describe differences in the level of aleph so Φ̂∆k should
vanish for physics confined to H0.
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1.2.3 The Proton Radius in Muonic Hydrogen

An unsolved anomaly in modern physics is that the proton radius measured in muonic

hydrogen is different than the proton radius measured in electronic hydrogen [64].

Such a result might be explained in principle as a corollary of (1.2.25) because MCM

muons live in a different state space than MCM electrons (Section 0.3). In the way

that one obtains an arbitrary momentum state by applying a boost to a k=0 state,

one would obtain a muon state from an electron by applying some Ôêµ→êν in the sense

of (1.2.19). This operation would have its own non-unit magnitude scalar constant

associated with it because 2πΦ is uniquely associated with M̂3∼ ÔHk→Hk+1
. By some

more complicated mechanism, that constant might manifest as an observably different

proton radius in the muon-nucleon bound state. Given the normalization convention

in (1.2.15) and a proton radius operator r̂p, one would obtain various matrix elements(
r̂p
)
µν

=
〈
ψ; êµ

∣∣r̂p∣∣ψ; êν〉 , (1.2.26)

for ψ in various branes. For µ= ν, these matrix elements reduce to the expectation

value ⟨r̂p⟩.

1.2.4 The φ̂ Object and C∗

The piecewise assembly of the unit cell in Figure 4a makes χ4
± appear to be linearly

dependent. However, these are two linearly independent degrees of freedom. We will

take φ̂ to point in the χ4
− direction while Φ̂ points in the direction of χ4

+. The right

angle in Figure 4b depicts a unit cell assembled from subdomains of two orthogonal,

unbounded intervals of χ4
±.

We have proposed a convention in which A and Ω are located at χ4
− = −φ and

χ4
+=Φ relative to H at limχ4

±→ 0. Assuming that H is spanned by one unit of x0,

the Φ×1 and 1×φ dimensions of the χ4
−x

0 and χ4
+x

0 boxes makes each an identical

golden rectangle. By the well known properties of the golden ratio, Φk×Φk−1 is the

only aspect ratio that will allow an infinite tiling succession of different-sized unit

cells, each in the same proportion.1 The infinite succession of unit cells is called the

cosmological lattice. A unit scale such that each unit cell is the same size as the

others generates a constant proportion of self-similarity but the golden ratio uniquely

allows a non-unit tiling proportion:

Φ =
b

a
=
a+ b

b
. (1.2.27)

1Physical conventions for increasing wavenumber along a golden spiral progression of unit cells were developed
in [70].
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Figure 4: Figure (b) shows an arrangement in which negative-definite χ4
− ∈Σ− and

positive-definite χ4
+ ∈ Σ+ might be assembled from two orthogonal, un-

bounded intervals of χ4
±. Compared to (a), (b) better emphasizes the linear

independence of χ4
+ and χ4

−.

Non-constant scale across successive unit cells is considered desirable for the gen-

eration of an arrow of time, and for other results such as the MCM mechanism for

dark energy (Section 7). In a unit scaling, we might appeal to the cosmological con-

stant Λ to say that A has lower energy than Ω and that, therefore, the chirological

arrow of time should point to the left from H. However, the energy would have to

increase again from Σ− passing into Σ+ on the round trip back to H (barring some

more nuanced convention for dynamics at ∅.) In the present convention, states go

into Ω before A. To support that condition, we will implement a non-unit scale such

that M̂3 preferentially moves states toward the right in the cosmological lattice. Al-

though there does not exist an accepted energy landscape setting the chronological

arrow of time, increasing volume in future-directed unit cells may set a chirological

arrow of time pointing toward the right based on the thermodynamic tendency of

energy densities to decrease. If the forward scale should be smaller, we might invoke

gravitational collapse into a singularity at ∅ to favor a rightward arrow. The main

principle is that any scale other than the unit scale can be used to support an arrow of

time. Furthermore, non-unit scale will be required to restore normalized probability

amplitudes after non-unitary evolution under M̂31 (Section 1.2.5). By synergy, one

would hope to connect these two cases for non-unit scale. As it relates to the present

section, Φ̂ points in the direction of increasing scale and φ̂ points in the direction of

1Early steady state models in cosmology supposed a constant generation of new matter-energy to maintain constant
density under Hubble expansion [72, 73]. Non-unitary MCM time evolution discussed in Section 1.2.5 may serve a
similar purpose.
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decreasing scale.

The {x0, xi, χ4
±} orthogonal coordinate triads are distinguished as right- or left-

handed when χ4
± are associated with oppositely directed chirological time by Φ̂ and

φ̂. {x0, xi, χ4
+} is right-handed and {x0, xi, χ4

−} is left-handed. These orthogonal

triads are said to span C∗
± in Σ± respectively. The unit cell is extended from C in

the transverse direction by Φ̂ pointing to the right, and by φ̂ pointing to the left

or down. C and its transverse continuations are called C∗
±. To briefly clarify C∗

±

without fully formalizing it, and to indicate an avenue for productive future inquiry

into distinctness between φ̂ and Φ̂, the complex plane C spanned by 1̂ and î is extended

in the Φ̂ transverse direction and/or the φ̂ transverse direction. Using identities x̂= x̂i

and ict̂ = x̂0,1 we may associate H with C. Suppressing two spatial dimensions, x̂

and t̂ point in the 1̂ and î directions respectively. This convention for imaginary t is

required to obtain the requisite minus sign in the differential element of flat spacetime

interval:2

ds2 =
(
dx0
)2

+
(
dx1
)2

+
(
dx2
)2

+
(
dx3
)2

(1.2.28)

= −c2 dt2 + dx2 + dy2 + dz2 .

The quadratic relationship (dx0)2 = −c2dt2 implies a factor of i in the linear re-

lationship. Compared to the convention where the metric is assumed as gµν =

diag(−c2, 1, 1, 1) a priori, the convention for x0 = ict is superior for a number of

reasons including its facilitation of the present association between H and C.
The extended complex conjugation algebra for C∗

± is

φ̂∗ = Φ̂

Φ̂∗ = −iφ̂

 =⇒
(
φ̂∗)∗ = −iφ̂ ̸= φ̂ .3 (1.2.29)

This is intended to introduce a quality of irreversibility into progression across the

unit cell [30]. Referring to Figure 4a, the basis vectors pointing to the left and

right of H are not merely sign conjugates as are {1̂,−1̂} and {̂i,−î} pointing in the

directions that span H. Due to this assumed conjugation algebra, M̂3 and (M̂3)† are

not expected to raise and lower the level of aleph as the Dirac ladder operators â

and â† raise and lower the principal quantum number for simple harmonic oscillator

states. Figure 4b makes it easy to envision (M̂3)† as sending a state in H into an
1This notation for imaginary t relative to real x0 may be found in Appendix A3–2 of [74], for example.
2The relationship between negative metric signature and imaginary dimension, or imaginary dimensional trans-

posing parameter, is treated again in Section 10.
3Φ is a real number so the meaning of the ∗ operator in C∗ must not be confused with its context in C where Φ∗

is equal to Φ.
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upward instance of Σ− other than the downward one from which it came.

At first glance, χ4
− must be imaginary relative to real χ4

+ because χ4
± are oppositely

timelike and spacelike in the KK metric. For Aµ±=0, we have

g±AB =

(
g±αβ 0

0 χ4
±

)
=



−c2 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 ±|χ4
±|


, (1.2.30)

where χ4
−=−|χ4

−| because χ4
− is negative-definite in Σ−. This metric implies

ds+ ∝
√
χ4
+ dχ

4
+ , and ds− ∝ i

√
|χ4

−| dχ4
− .1 (1.2.31)

The minus sign on g±00 requires that distance in the x0 direction is imaginary (timelike)

relative to real spatial distance in the xi directions. Likewise, the minus sign on g−44
requires that χ4

− is imaginary relative to χ4
+. To preserve the timelike character of

χ4
+, we might alternate the phase convention in successive unit cells or associate

spacelike χ4
+ with the imaginary time linking QFT to statistical mechanics. Overall,

the changing metric signature between Σ± represents a hard problem in the issue

of the forward connection of Σ+ to Σ− but the issue is well contextualized in the

assignment of the î ontological basis vector to ∅. An extra factor of i may be what

is needed to resolve the topological mismatch between the number of spacelike and

timelike dimensions in Σ±. Furthermore, Figure 4 suggests that we might define

iχ4
± as two mutually orthogonal directions pointing out of the page such that M̂3

weaves a path along χ4
±∈C where no metric signature discrepancies are present. To

accomplish this, we would rely on the free sign in the Lorentzian metric signature

{∓±±±} to alternately assign the factor of i to the real and imaginary parts of χ4
±

in successive unit cells. In some sense, we might use the i=eiπ/2 identity to associate

the î ontological specifier for ∅ with a π/2 rotation away from the direction of metric

discrepancy.

In Section 1.7.3, we will associate the region of metric discrepancy with an energet-

ically forbidden region in which the potential energy is higher than the total energy. If

the metric discrepancy is associated with real χ4
+∈Σ+ followed by imaginary χ4

−∈Σ−,

1Rather than the ϕ2±=χ4
± convention shown in (1.2.30), if we require that an alternative convention for ϕ±=χ4

±
preserves the {− + + + −} signature in Σ−, which is required if g−44 is the negative Ricci scalar of AdS4, then we
obtain the complex phase in (1.2.31) more naturally without the square roots.
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the energy landscape will be such that MCM plane wave solutions are preferentially

steered onto the branch of χ4
−∈C which is real, thus avoiding the metric discrepancy.

Finally, we have presented Φ̂ as an ontological basis vector and as a geometric

basis vector pointing in the direction of χ4
+. We will go on to develop a picture of the

ontological basis vectors {2̂, π̂, î, Φ̂} as lattice vectors anchored in each labeled brane.

These vectors will span an ontological lattice in the usual sense of crystallography.

1.2.5 The Non-Unitary Property of M̂3

In quantum mechanics, an operator Û is unitary if Û
†
Û=1. It is unitary if the inverse

is the conjugate transpose, also called the Hermitian conjugate or the adjoint. For

a time-independent Hamiltonian, the unitary time evolution operator which satisfies

Schrödinger’s equation is

Û(t1, t0) = exp

{
− iĤ

(
t1 − t0

)
ℏ

}
, such that Û(t1, t0)

∣∣ψ, t0〉 = ∣∣ψ, t1〉 .

(1.2.32)

The main application of the unitary property in quantum physics is that the proba-

bility interpretation of the wavefunction is preserved by unitary operations. Given〈
ψ, t0

∣∣ψ, t0〉 = ∫ ∞

−∞
dxψ∗(x, t0)ψ(x, t0) = 1 , (1.2.33)

meaning that the probability of observing ψ somewhere in the universe is 100% at

time t0, the unitary evolution operator is such that〈
ψ, t0

∣∣Û †(t1, t0) Û(t1, t0)
∣∣ψ, t0〉 = 〈ψ, t1∣∣ψ, t1〉 = 1 . (1.2.34)

After undergoing unitary evolution to an arbitrary time t1, the probability of finding

ψ somewhere in the universe is still 100%. The probability obtained in (1.2.33) was

multiplied by a factor of unity in (1.2.34).

It was emphasized in the development of the MCM that M̂3 is not a unitary

operator. The inverse of M̂3 is not its conjugate transpose and it should not preserve

the probability interpretation without supplemental considerations. If the inverse of

M̂3 exists,(
M̂3
)−1

M̂3 = M̂3
(
M̂3
)−1

= 1 =⇒
(
M̂3
)−1∣∣ψ; π̂k〉 = 1

2πΦ

∣∣ψ; π̂k−1
〉
. (1.2.35)
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The rules of matrix algebra are such that(
M̂3
∣∣ψ; π̂〉)† = 〈ψ; π̂0

∣∣(M̂3
)†

=
(
2πΦ

)∗〈
ψ; π̂1

∣∣ . (1.2.36)

The latter result may be combined with M̂3 operating to the right to show that the

inverse is not the conjugate transpose:〈
ψ; π̂0

∣∣(M̂3
)†
M̂3
∣∣ψ; π̂0

〉
=
(
2πΦ

)∗
2πΦ =⇒

(
M̂3
)† ̸= (M̂3

)−1
. (1.2.37)

M̂3 is not a unitary operator.

Now we will suggest a context in which the non-unitary property of M̂3 will define

unique MCM physics. Recalling

M̂1

∣∣ψ; π̂0
〉
= π

∣∣ψ; Φ̂0
〉

M̂2

∣∣ψ; Φ̂0
〉
= Φ

∣∣ψ; 2̂1〉
M̂3

∣∣ψ; 2̂1〉 = 2
∣∣ψ; π̂1

〉
,

(1.2.38)

consider M̂3M̂2M̂1= π̂2̂Φ̂ where Φ̂ obeys

φ̂† = Φ̂

Φ̂
†
= −iφ̂

 =⇒ φ̂†† = −iφ̂ ̸= φ̂ . (1.2.39)

The general meaning of φ̂ is as in the previous section. It indicates the χ4
− direction

rather than the −χ4
+ direction. The bold operators are cast as

Φ̂ ∼ ÔH→Ω , 2̂ ∼ ÔΩ→A , and π̂ ∼ ÔA→H . (1.2.40)

Hermitian conjugation yields(
π̂ 2̂ Φ̂

∣∣ψ; π̂k〉)† = −i 〈ψ; π̂k∣∣φ̂ 2̂
†
π̂† . (1.2.41)

This expression is intended to say that 2̂
†
and π̂† will send states back the way they

came through the cosmological lattice but φ̂ does not reverse Φ̂. We may imagine

that φ̂ sends the ⟨ψ; π̂k| bra up the χ4
− number line (Figure 4) rather than back down

in the direction from which it came. Therefore, one would write〈
ψ; π̂k

∣∣(M̂3
)†
M̂3
∣∣ψ; π̂k〉 = 〈ψ; π̂k∣∣(φ̂ 2̂

†
π̂†)π̂ 2̂ Φ̂

∣∣ψ; π̂k〉 = c
〈
ψ; π̂k

′′∣∣ψ; π̂k′〉 (1.2.42)
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The k′ and k′′ notation at the right exposes what may be a shortcoming of the

convention to assign levels of aleph to entire unit cells rather than individual branes.

A single integer k is inadequate for labeling the branes which are off the beaten path

of M̂3 (such as those indicated by φ̂). A more formal statement might include levels

of aleph (quantum numbers) for all of the ontological basis vectors so that branes are

labeled by sequences of integers. This more complicated MCM lattice structure is

intuitive in Figure 4b but it is not needed in the usual representation of the unit cell.

(M̂3)† has no ordinary use because the process of observation and measurement

is constrained by a psychological arrow of time. A theory of making observations in

reverse time order could never be tested, seemingly. However, the full analysis of a

theory includes all possible operations and manipulations, such as time reversal oper-

ations which would come in chronological and chirological varieties. φ̂ is introduced

to make the chirological time reversal operator more than a trivial variation on the

chronological one. It is considered desirable for physics that M̂3 and (M̂3)† should

have the sort of behavior inherent to the conjugation algebra for C∗ because it repre-

sents a physical condition of time irreversibility. All possibilities for such functioning

are predicated on the non-unitary property of M̂3. If M̂3 was unitary, call it M̂3, then〈
ψ; π̂k

∣∣(M̂3
)†
M̂3
∣∣ψ; π̂k〉 = 〈ψ; π̂k∣∣1∣∣ψ; π̂k〉 = 1 , (1.2.43)

and there would be no possibility for more complicated behaviors. Thus, the non-

unitary property is introduced in anticipation of further applications.

1.2.6 The Hierarchy Problem

The hierarchy problem asks about the origin of very large and very small numbers

in physics. As an example, it asks why the weak force is more than 20 orders of

magnitude stronger than gravitation. It is hoped that non-unitary chirological evo-

lutions wherein effects such as tunneling and/or interference across various levels of

aleph will motivate such disparate numerical scales. Very small numbers would per-

tain to lower levels of aleph ∼(2πΦ)−k and large numbers would pertain to higher

levels ∼(2πΦ)k. Such effects were previously invoked to compute the 10−4m scale for

new MCM physics (Section 15). In other sections, we will develop a case for infinite

relative scale beyond the present irrational scale factor 2πΦ. If successive levels of

aleph are associated with infinite relative scale, one might obtain appropriate hierar-

chical structures as the limits of uncertainty relationships where finite scale becomes

indistinguishable from infinite scale.
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1.2.7 Numerical Results

Responding to an observation that the ontological basis is chosen as a wild guess, it

is pointed out that no less than three important dimensionless constants fall out of

the choice without much complexity added in the path of computation.

� The fine structure constant αMCM can be generated with the ontological numbers.

αMCM is treated in Section 1.9 where a ∼0.4% discrepancy with the accepted

experimental value αQED is discussed.

� The dimensionless constant 8π from Einstein’s equation appears in a natural

way as well (Section 1.10).

� The classical EM coupling constant (4π)−1 appears in what is called the onto-

logical resolution of the identity:

1 ≡ 1̂ =
1

4π
π̂ +

φ

4
Φ̂ +

1

8
2̂− i

4
î . (1.2.44)

It is hoped that the ontological resolution of the identity will function as a scaffold

on which to unify the four fundamental forces, or possibly the strong, weak, and

EM forces with a hypothetical fifth force since gravitation is geometry, not force.

1.3 Tensor States

It was stated in [3] that MCM states specified with the ontological basis are tensor

states. Proof that such states satisfy the tensor transformation law has not appeared

previously. In this section, we will deviate from this book’s theme of open problems to

present a complete result: demonstration of tensor transformations for MCM states.

Wavefunctions satisfy the axioms of a vector space as follows.

� The vacuum state |0⟩ is the zero vector 0⃗.

� The sum (superposition) of two state vectors is another state vector.

� The (inner) product of two states is a non-state scalar.

� For a scalar c and a state |ψ⟩, the product c|ψ⟩ is still a state vector.

If there exist axioms of a tensor space, they are not so well known as the axioms

of a vector space. To show that something is a tensor, one demonstrates the tensor

transformation law which contains vector transformations as its simplest non-trivial

case. However, it is not immediately intuitive that QM states satisfy the vector trans-

formation law in the usual sense of coordinate transformations because the geometric
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picture of coordinates in state space plays little to no role in the ordinary practice of

QM. Therefore, the structural framework for such a demonstration may enhance one’s

understanding of the theory. In this section, we will illuminate a little remarked upon

feature of state spaces: they are coordinate spaces exactly like Rn. Then we will make

proofs of vector and tensor transformations for QM and MCM states respectively.

1.3.1 The Coordinates of State Space

To the extent that R3 is spanned by {x̂, ŷ, ẑ}, an N -dimensional quantum state space

is RN spanned by {ê1, ê2, ..., êN}={|ψ1⟩, |ψ2⟩, ..., |ψN⟩} where {|ψk⟩} is some orthonor-

mal basis. The RN structure of state space requires us to treat the spanning basis

vectors |ψk⟩ as static objects though they are the main dynamical objects in QM.

The vectors that span a Hilbert space are static because there is a unique Hilbert

space associated with each time t. However, the RN picture of a static basis is useful

for envisioning the time evolution of quantum states. Given

Â
∣∣ak〉 = ak

∣∣ak〉 , and
∣∣ψ, t〉 = N∑

k=1

ck(t)
∣∣ak〉 , (1.3.1)

one understands that |ψ, t⟩ is a vector sweeping through the RN spanned by {|ak⟩}.
The |ak⟩ eigenbasis is the geometric spanning basis of the space of states written in

that basis. Although a Hilbert space is technically the space of states at some constant

time t, time evolution may be understood as a continuous evolution in state space.

Time evolution described by a sweeping vector |ψ, t⟩ is simplified by the unitarity

constraint: the tip of |ψ, t⟩ always lies on the N -dimensional unit sphere such that〈
ψ, t
∣∣ψ, t〉 =∑

k

c†k(t)ck(t) = 1 , (1.3.2)

where ck(t) is as in (1.3.1). The components of a vector in the {|ak⟩} basis are

written as (c1, c2, ..., cN) so (1.3.2) defines a point on the unit sphere whose equation is∑
x2k=1. The coordinates of state space are such that the xk(t) Cartesian coordinates

are replaced with the ck(t) coefficients in the expansion of |ψ, t⟩. State space has this
structure for geometric interpretation but quantum theory is not such that one refers

to such things in practice. We will use it here to demonstrate compliance with vector

and tensor transformation laws in a mathematically rigorous way. This will exceed

the compliance usually demonstrated through the above bulleted axioms of a vector

space.
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1.3.2 The Vector Transformation Law

Vector notation is such that

x =
∑
k

akêk =⇒ xµ = aµ . (1.3.3)

At first glance, we can tell that ordinary states and MCM states are vectors and

tensors respectively from

|ψ⟩ =
∑
k

ak|ak⟩ =⇒ ψµ = aµ , (1.3.4)

and its generalization as an MCM state∣∣ψ; êµ〉 =∑
k

ak
∣∣ak〉êµ =⇒ ψµν = aµêν . (1.3.5)

A one index tensor is a vector and a vector with an extra index is a tensor. However,

this is not a formal demonstration of the transformation law. A more formal statement

of the law would be the following.

For a unit vector n̂ and an angle ϕ, let R̂(n̂, ϕ) be a rotation operator. Sup-

pose |ψ⟩= |a⟩+ |b⟩. If R̂ preserves the “angle” between |a⟩ and |b⟩, meaning

that R̂|ψ⟩=R̂|a⟩+R̂|b⟩ is such that R̂|a⟩ and R̂|b⟩ are still orthogonal if |a⟩
and |b⟩ were orthogonal, then |ψ⟩ transforms as a vector.

If two orthogonal objects belong to a vector space, then they will remain orthogonal

under coordinate transformations. If ψ is not written in the position space repre-

sentation, then the details become modestly more complicated because the rotation

operator, which is only one example of a coordinate transformation, must pertain to

the coordinates of state space. As it is usually understood, n̂ indicates some spatial

rotation axis in an R3 lab frame. It does not make sense to rotate a state around

such an axis when the state is not written in the position basis. Instead, we must

generalize to the case where n̂ points in an abstract direction defined according to the

{|ak⟩} spanning states instead of the {x̂, ŷ, ẑ} basis that spans R3. Indeed, we must

generalize to the case of arbitrary coordinate changes in state space. Consideration

of rotations alone will not suffice for a rigorous demonstration.

As a thinking device, one might consider the 2D space of electron spin states

x̂ ≡ ê1 =
∣∣ ↑ 〉 , and ŷ ≡ ê2 =

∣∣ ↓ 〉 . (1.3.6)
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These states transform as spinors under rotations of the lab frame (physical space),

but they transform as vectors under rotations of state space. The state space spanned

by these eigenstates is R2. The well known time evolution of these states is visualized

as the tip of a vector moving on the unit circle.

To formally demonstrate the vector transformation law for a vector in RN , let x

be a coordinate system in RN and let there be a coordinate transformation

x′ = f(x) , such that x′µ = T µν x
ν . (1.3.7)

Let v=vµ be a vector in RN written in the x coordinates. It follows that

v =
n∑
k

xkêk =⇒

v = xµêµ

vµ = xµ
. (1.3.8)

v is anchored at the origin of the x coordinate system and its tip is at the point x. In

conventional notation, the most general statement of the vector transformation law

for vectors in RN is

v′µ = vν
∂x′µ

∂xν
, (1.3.9)

where v′= v′µ is v written in the transformed x′ coordinates. Following the form of

(1.3.8), we may write

v′ =
n∑
k

x′kê′k =⇒

v′ = x′µê′µ

v′µ = x′µ
. (1.3.10)

Taking the derivative of (1.3.7) with respect to xν gives

∂x′µ

∂xν
= T µν . (1.3.11)

Substitution into (1.3.9) gives

v′µ = vνT µν . (1.3.12)

Substituting vν=xν , we obtain

v′µ = xνT µν = x′µ , (1.3.13)

where the second equality follows from (1.3.7). The result agrees with (1.3.10). There-

fore, the vector transformation law is satisfied by vectors in Rn under arbitrary coor-

dinate transformations, as is obvious since our objects were taken as vectors a priori.
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1.3.3 Vector Transformations for Ordinary States

To demonstrate the transformation above with state vectors in Hilbert space, we write

the vector transformation law as

ψ′µ = ψν
∂x′µ

∂xν
. (1.3.14)

In this case, it may not be obvious what are x and x′, or what is meant by ψ and ψ′.

Noting that a general state vector is written as

∣∣ψ〉 = N∑
k

αk
∣∣ak〉 =⇒ ψµ = αµ , 1 (1.3.15)

we see that v=
∑

k vkêk implies vk→αk and êk→|ak⟩. What we have demonstrated as

a coordinate transformation in the previous section will now be phrased as the familiar

change of basis operation. The coordinate systems x and x′ will be two different

operator eigenbases. In (1.3.15), we have implicitly used Â|ak⟩ = ak|ak⟩ to expand

ψ in the eigenbasis of Â. ψ′ will be the expansion in another eigenbasis. To rewrite

|ψ⟩ in terms of the eigenstates of some other operator B̂ such that B̂|bk⟩= bk|bk⟩, we
insert the completeness relation

1 =
N∑
j

∣∣bj〉〈bj∣∣ , (1.3.16)

into (1.3.15). This yields

∣∣ψ〉 = N∑
k

αk1
∣∣ak〉 = N∑

k

N∑
j

αk
∣∣bj〉〈bj∣∣ak〉 . (1.3.17)

Now we obtain the coordinate transformation analogue

βj =
N∑
k

αk
〈
bj
∣∣ak〉 , (1.3.18)

with which to write ∣∣ψ〉 = N∑
j

βj
∣∣bj〉 .2 (1.3.19)

1Here we have intermingled tensor and matrix index notation, as is usual in physics. If desired, one might write αµ

so that the indices balance as ψµ=αµ. (1.3.15) follows a standard physical convention in which expansion coefficients
are labeled with lower indices.
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This is the expression for what we have called v′ in the previous section. It is the same

state vector written in another eigenbasis which is like another coordinate system in

the geometric picture of state space. This is the ψ′ appearing in (1.3.14). Switching

from summation notation to matrix multiplication notation, (1.3.18) becomes

βj = αkTjk , (1.3.20)

for the transformation matrix whose elements are Tjk= ⟨bj|ak⟩. Notice that (1.3.20)

is in the form of (1.3.7) with x′µ→ βj and x
ν→αk. Now that we have very clearly

spelled out all of the details, we may write the vector transformation law for quantum

state vectors, (1.3.14), as

ψ′j = ψk
∂βj
∂αk

. (1.3.21)

The derivative follows from (1.3.20) as

ψ′j = ψk
∂

∂αk

(
αkTjk

)
= ψkTjk . (1.3.22)

Substituting the jth coefficient from (1.3.19) on the left, and the kth coefficient from

(1.3.15), we obtain

βj = αkTjk , (1.3.23)

which is true by (1.3.20). Now we have proven that vectors in state space transform

exactly like vectors in coordinate space. Such functioning is not highly useful for QM

as practiced but the result is valid.

1.3.4 Tensor Transformation of MCM States

For a two-index tensor, the tensor transformation law is

ψ′µν = ψκλ
∂x′µ

∂xκ
∂x′ν

∂xλ
. (1.3.24)

Using the definition ψµν= |ψ; êν⟩=ψµêν , we have already shown the that the µ index

transforms correctly. The coordinates relevant to transformations of the other index

are those specified by

ψ ∈ A ⇐⇒
∣∣ψ〉 = ∣∣ψ; 2̂〉 = ψ(xi−)

ψ ∈ H ⇐⇒
∣∣ψ〉 = ∣∣ψ; π̂〉 = ψ(xi) (1.3.25)

2The sum over k and j both go to N because change of basis operations should preserve the dimensionality of the
Hilbert space.
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ψ ∈ Ω ⇐⇒
∣∣ψ〉 = ∣∣ψ; 2̂〉 = ψ(xi+)

ψ ∈ ∅ ⇐⇒
∣∣ψ〉 = ∣∣ψ; î〉 = ψ(xi∅) .

Rather than general coordinate transformations, we will demonstrate coordinate

transformations among the physical coordinates of A, H, and Ω (and possibly ∅.)

Since the scope of transformations is limited, it will suffice to demonstrate a single

case. We will use the transformation from the π̂ coordinates to the Φ̂ coordinates so

that x is the unprimed coordinate and x+ is the primed coordinate.

Using the transformation operator Ô (Section 1.2.1) rather than the transformation

matrix T , we have

ÔH→Ω xπ̂ = x+Φ̂ . (1.3.26)

Following the example for Ô given by (1.2.22), we obtain

ÔH→Ω xπ̂ = ÔH→Ω

(
Φ

Φ
xπ̂

)
=
π

Φ
xΦ̂ =⇒ x+ =

π

Φ
x . (1.3.27)

It follows that
∂xν+
∂xλ

=
π

Φ
δνλ , and

π

Φ
δνλ = T νλ , (1.3.28)

where T νλ is the transformation matrix between the physical coordinates in H and

those in Ω. One might write ÔH→Ω=T
ν
λ . To verify tensor transformations for MCM

states, it only remains to obtain the ψ′µν= |ψ; Φ̂⟩ state for comparison with (1.3.24):

ÔH→Ω

∣∣ψ; π̂〉 = ÔH→Ω

(
Φ

Φ

∣∣ψ〉π̂) =
Φ̂

Φ

∣∣ψ〉π =
π

Φ

∣∣ψ; Φ̂〉 . (1.3.29)

This demonstration for the ν index suffices to verify the tensor transformation law

for MCM states.

1.4 MCM Spin Spaces

The proposed structure for MCM spin state space configurations [6] is such that

states in H0 reference local elements of the unit cell or those in higher and lower

levels of aleph. It was suggested in Section 1.2.4 that χ4
± might be made complex in

the direction out of the page but mutually orthogonal and still orthogonal to xi, as in

Figure 5. In this section, we will suggest the same for x0 and x0±: the chronological

times in H, A, and Ω.

Spin-1/2 state space is canonically constructed as L2(R3)⊗C2 where L2(R3) is the

spinless state space and C2 is a 2D complex vector space. In the MCM protocol, the
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Figure 5: This figure demonstrates that we may take χ4
± as complex variables whose

real and imaginary parts span Σ± respectively.

spin-1/2 state space is constructed as

L2(R3)⊗ χ4
+{0} ⊗ χ4

−{0} . (1.4.1)

χ4
±{0} are a pair of complex numbers whose respective real and imaginary parts are the

χ4
±∈Σ± on the zeroth level of aleph. Across the unit cell, χ4

+ and χ4
− are uniquely real

and imaginary but they are both complex when we take their mutually orthogonal

transverse continuations onto C. The spin-1 state space is canonically constructed as

L2(R3)⊗ C3 where C3 is a 3D complex vector space. In the MCM, we use

L2(R3)⊗ x0+{0} ⊗ x0{0} ⊗ x0−{0} , (1.4.2)

where Im(x0{k}) is the x
0 coordinate in Hk generating the minus sign in the {−+++}

signature of Minkowski space. x0±{k} are also understood to be complex.

For fermionic spin-2N−1
2

with N > 1, usually L2(R3) ⊗ C2N , we take the tensor

product of (1.4.1) with χ4
±{k} on other levels of aleph, however many are needed to

assemble the requisite spin degrees of freedom:

L2(R3)
N−1⊗
k=0

χ4
±{k} . (1.4.3)

If allowing χ4
±{k} to become complex is found to be too complicated or needlessly

complicated, we might construct the spin-2N−1
2

state space as

L2(R3)

N−1
2⊗

k=0

(
χ4
−{k} ⊕ χ4

+{k−1}
)
⊗
(
χ4
+{k} ⊕ χ4

−{k+1}
)

, (1.4.4)
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where the χ4 variants are strictly real or imaginary and CN is formed from N such

pairs. For N=1, this expression gives

L2(R3)⊗
(
χ4
−{0} ⊕ χ4

+{−1}
)
⊗
(
χ4
+{0} ⊕ χ4

−{1}
)

. (1.4.5)

Each parenthetical pair of strictly real or imaginary χ4
± constitutes one instance of

C. (1.4.5) generates the correct L2(R3) ⊗ C2 spin-1/2 state space without requiring

χ4
± to have simultaneous real and imaginary parts.

For bosonic spin-N , increasing N requires that we alternately add instances of x0{k}
and x0±{k} for odd or even N but a regular recursion formula is not simply obtained.

For spin-2, we have

L2(R3)⊗ x0−{1} ⊗ x0+{0} ⊗ x0{0} ⊗ x0−{0} ⊗ x0+{−1} . (1.4.6)

For spin-3, we have

L2(R3)⊗ x0{1} ⊗ x0−{1} ⊗ x0+{0} ⊗ x0{0} ⊗ x0−{0} ⊗ x0+{−1} ⊗ x0{−1} , (1.4.7)

and so forth. It is not immediately obvious what construction might avoid allowing

x0 to become complex in the manner of (1.4.4).

In Section 13, we will show a nice application of this spin space construction toward

supersymmetry between bosons and fermions.

1.5 Maximum Action

Quantum and classical probabilities differ in that unmeasured, intermediate steps

of quantum motion between two measurements cannot be inferred from those mea-

surements.1 If a twice-measured classical ball rolls down a ramp, it has a definite

position at each instant during the motion. The motion can be inferred from either

measurement, even if one looks away while the ball is rolling. The path is the one

that minimized the action. The ball’s wavefunction does not diffuse. It is always

collapsed. For a quantum particle moving on some analogous energy landscape, the

position of the particle is not knowable while one is looking away. If a quantum ball

is observed at a location with higher energy and then at one with lower energy, and

in the absence of any intermediate measurements, it may not have followed the path

which minimized the action. Indeed, the most common interpretation of QM is that

a quantum particle does not follow any path between consecutive measurements. Be-

tween measurements, a position state is said to undergo decoherence [76] such that it

1See Sections 2-4 in [67] or Section I.2 in [75] for a concise comparison of classical and quantum probabilities.
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evolves into an increasingly diffuse superposition of eigenstates conglomerated about

the classical trajectory. Decoherence is the heatlike diffusion of probability amplitude

given by the Schrödinger equation, a complex heat equation. When one looks, the

wavefunction collapses. Contrary to the classical case, the wavefunction diffuses while

one looks away. The longer one looks away from a quantum state, the more likely it

is to be found away from the path of classical motion.

The main insight in Feynman’s formulation of non-relativistic quantum mechanics

[67] was to show that the probability amplitude for the particle having followed one

path or another is a fuzzy distribution proportional to the action along each path.

The classical trajectory minimizes the action so the probability amplitude is greatest

along that path. The more a path fails to extremize the action, the less probable it

is that the particle might be observed along that path.

The usual formulation of QM is such that nothing other than diffusion happens

between two consecutive measurements A and B. The main purpose in writing M̂3 as

three separate operations is to hard-code into the motion stops on Ω and A between

successive H so as to increase the richness of possible dynamics. Though measure-

ments can only be made in H (the universe), the MCM postulates by construction

that there exists definite knowledge that the state was located on Ω and A between

t0 and t1 corresponding to measurements A and B. Using intuitive notation such

that t0<tΩ<tA<t1, we know that MCM states “collapse” to |ψ, tΩ; Φ̂⟩ and |ψ, tA; 2̂⟩
between measurements A and B (corresponding to states |ψ, t0; π̂0⟩ and |ψ, t1; π̂1⟩.)
Additional knowledge of the state at the intermediate times tΩ and tA is part of what

is meant when it is said that M̂3 is purposed to make things more complicated than

what is understood for ordinary operations in QM. At minimum, additional complex-

ity is manifested by three separate time evolutions H→A→Ω→H where the sign

convention for the arrow of time differs between Σ+ and Σ−. In Section 1.8.5, we will

discuss an application in which Schrödinger evolution by negative time might imple-

ment a phase of wavefunction collapse following a phase of wavefunction diffusion in

positive time.

It is a conjecture of the MCM that quantum and classical motions differ in the

way that they satisfy the action principle. Classical motion minimizes action and

quantum motion maximizes it. It is taken for granted that motion along any path

totally within H must be associated with some finite action. Therefore, the path

which leaves the universe (H) to cross the unit cell is associated with infinite action.

For the purposes of physics, what is usually called finite action may be defined as

action less than some natural number of finite action increments: nℏ with n∈N, for
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example. In the language of fractional distance analysis (Section 1.6) [2], a natural

number of units of action is called an action in the neighborhood of the origin. By

default, action in the neighborhood of infinity remains to characterize motion

across the unit cell. The neighborhood of infinity may be characterized as the set

of numbers in the form ∞̂ ± b with 0 < b < n for some n ∈ N. Numbers in the

form ∞̂ − b are finite numbers because they are less than infinity. (Notations for

∞̂ are developed in Section 1.6 and [2].) Thus, one is able to use such numbers

to characterize motion across the unit cell without violating a physical convention

prohibiting infinite or transfinite quantities of action. Action greater than infinity

would allow superluminal motions, etc. The properties of action in the neighborhood

of infinity remain to be determined.

Any action in the neighborhood of infinity will be one which takes the state out

of H. Such an action makes an immediate appeal to the correspondence principle:

when action is large compared to ℏ, motion should approach the classical motion. In

other words, large action impedes the diffusion of the wavefunction. Thus, knowledge

regarding states’ definite location on the Ω- and A-branes between sequential H-
branes is supported by the correspondence principle. Classical motion is characterized

by definite knowledge of the path between A and B. In the example of the ball on

a ramp, the action of the classical ball’s motion is always large relative to ℏ due to

the ball’s macro-scale mass. In QM, one often considers large action as the limit in

which ℏ→ 0 but here we will consider S → ∞̂. The arithmetic of numbers in the

neighborhood of infinity [2] is well-suited to the calculus of variations with variations

in the form S=∞̂± δS. To the contrary, S→∞ is a prime example of the “infinities

that blocked earlier theories” [69]. S=∞ is a mathematical non-starter for calculus.

The study of maximum action has been historically impossible for this reason. For

instance, Hamilton’s stationary action principle requires any action extremum, big or

small, but Feynman’s thesis was titled “The Principle of Least Action in Quantum

Mechanics” because greatest action was a non-starter at that time. A principle of

greatest action in QM is presented here as a thesis awaiting completion, i.e.: the

equations of motion given by M̂3 should satisfy the greatest action principle.

In the ℏ→0 limit, or in the S→∞̂ limit, one obtains a classical motion identically.

Identical classical motion during transit of the unit cell is not consistent with the

structure of the MCM because KKT requires that the 5D Ricci tensor RAB must

vanish in the bulk of Σ±. If a particle with mass and energy follows a classical path

across Σ±, then R±
AB ̸= 0 and the structure of the MCM will seem to collapse in

self-contradiction.1 It is required and that a quantum of matter-energy should not be
1The full restrictions of KKT require in-depth analysis, as in Section 17. It is the preliminary understanding that
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found with a definite position inside the bulk. Therefore, an appeal is made to finite

action in the neighborhood of infinity. Unlike S=∞̂, finite action in the form ∞̂−δS
with δS>0 may not require total wavefunction collapse within the bulk so the utility

of such an action toward preserving the structure of KKT must be examined.

A pseudo-classical path of totally classical motion would be the one along which

S=∞̂. This is an extremum of the action and motion along this singular path cannot

be quantum. However, since measurements are not made in the bulk, we may send a

particle across the unit cell by all paths whose actions are S=∞̂−δS. Quantum states

may transit the unit cell without taking any one explicit path to force a non-vanishing

Ricci tensor. In that case, it will remain to demonstrate that a non-zero probability

amplitude in the bulk of Σ± is still consistent with an RAB=0 solution. The existence

of non-trivial RAB=0 solutions such as gravitational radiation support the idea that

a probability density for motion near the infinite action path can be consistent with

RAB=0. One might even connect the principle of maximum action to states passing

from one H-brane to another as gravitational waves written as perturbations in the

5D KKT metric. Furthermore, definite location on the Ω- and A-branes must also be

reconciled with the vanishing Ricci tensor. If |ψ, tΩ; Φ̂⟩ and |ψ, tA; 2̂⟩ are not position
eigenstates, then we might appeal to the same indeterminacy of the path in the bulk

to avoid a Ricci tensor violation. If they are position eigenstates, or if any other

issue arises, one might preserve KKT in the bulk of Σ± by separating Ω and A as

unincluded boundaries, as H is an unincluded boundary. We will say more about

that possibility in Section 4. Specifically, we will discuss the case for colocating Ω

and A at ∅.

1.6 Fractional Distance and Levels of Aleph

The labeled branes of the unit cell are separated by finite distance in the abstract co-

ordinates. To avoid mutual interactions, and specifically to avoid gravitation between

branes, early work in the MCM sought to place A, H, and Ω at infinite distances

with respect to one another. Due to the infinite range of the gravitational force, finite

physical distance between branes would suggest gravitational collapse of the overall

lattice of all unit cells. On the other hand, infinite distance is said to be unphysical.

One exciting utility for fractional distance analysis [2] is that the gravitational inter-

action goes to zero across any finite distance in the neighborhood of infinity. Indeed,

the MCM requirement for branes separated by analytically tractable distances across

which gravitation goes to zero was the progenitor of the ideation which led to the

position eigenstates for massive particles in the bulk of Σ± are not allowed.
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discovery of fractional distance and an interesting corollary regarding the Riemann

hypothesis [2, 46–48].

1.6.1 Infinity Hat

The main output of the inquiry into fractional distance was a new algebraic object ∞̂.

It is called algebraic infinity to distinguish it from ∞, called geometric infinity.

Informally, ∞̂ was already in wide use in physics before it was formalized in [2]. In

QFT for example, one often writes the integral over all of spacetime as∫
d4x =

∫
d3x

∫
dx0 = V T , (1.6.1)

where V is the volume of space and T is an infinite amount of time which can cancel

with another T somewhere else via T/T = 1. This common physical method for

dealing with infinity is replicated with T =∞̂ and the arithmetic axioms for numbers

in the neighborhood of infinity [2]. The main difference between ∞̂ and ∞ is that

the latter has properties of additive and multiplicative absorption

x ∈ R =⇒

 x+∞ =∞

x×∞ =∞
, (1.6.2)

but ∞̂ does not have those properties. Its main algebraic properties are

∞̂ − ∞̂ = 0

∞̂
∞̂

=
∞̂
∞

= 1 (1.6.3)

0× ∞̂ = 0

|∞̂| =∞ .

More details regarding the properties and arithmetic of ∞̂ may be found in [2].

There is a theorem in [2] (Main Theorem 3.2.6) proving that some x ∈ R are

greater than any n ∈ N. Consequently, there exist some x ∈ R having greater than

zero fractional distance with respect to infinity. The number ℵX defined by

∀X ∈ (0, 1) ∃ℵX ∈ R , such that
ℵX
∞

= X , (1.6.4)

is said to have fractional distance X (with respect to infinity) because ℵX/∞=X .
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The subset of R containing numbers having fractional distance X is labeled RX , i.e.:

x ∈ RX =⇒ x

∞
= X . (1.6.5)

Building on these definitions, we may write

R0 = {x
∣∣ − n < x < n for some n ∈ N }

RX =
{
ℵX + b

∣∣ b ∈ R0 } (1.6.6)

R1 =
{
∞̂ − b

∣∣ b ∈ R+
0 } .

R0 is called the neighborhood of the origin. As the set of all real numbers less

than some natural number (and greater than some negative natural number), every

x ∈ R0 has zero fractional distance. When X ∈ (0, 1), RX is called an intermediate

neighborhood of infinity. R1 is called the maximal neighborhood of infinity. There is

more than one real number in each neighborhood because

ℵX
∞

= X

b

∞
= 0

 =⇒ ℵX + b

∞
=
ℵX
∞

+
b

∞
= X + 0 = X . (1.6.7)

The positive-definite, arithmatic neighborhood of infinity is

R̂ = R1

⋃
X∈(0,1)

RX . (1.6.8)

We will discuss additional numbers in the neighborhood of infinity called non-arithmatic

numbers in Section 1.6.6. The big and little parts of a real number are

Big(ℵX + b) = ℵX , and Lit(ℵX + b) = b . (1.6.9)

1.6.2 Levels of Aleph

Prior to the invention of ∞̂, levels of aleph were introduced in [70]. The theoretical

framework for levels of aleph is the area of the MCM in which the most technical

progress has been made. Levels of aleph are now associated with successive neigh-

borhoods of fractional distance.

Each unit cell is said to be on its own level of aleph. Recalling that we have

placed A at χ4
−=−φ, H at limχ4

±→0, and Ω at χ4
+=Φ, a first approximation to a

formal definition for each unit cell being on its own level of aleph is that there exists
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Figure 6: Relative to some absolute origin of R (not pictured), the origin of coordi-
nates O(π̂n) on the nth level of aleph is placed at ℵX . ℵX is the midpoint of

the interval representation of RX . After operation with M̂3, the observer
resides on a higher level of aleph whose origin of coordinates is placed at
ℵY . FX is an immeasurable number described in Section 1.6.6.

a bijection between some RX \ℵX (physical coordinates) and the chirological interval

(−φ, 0)∪(0,Φ) (abstract coordinates) around a corresponding instance of H. Since

χ4
± = 0 is not defined, bijection requires that we remove one number from the RX

codomain. By removing ℵX and choosing b> 0, one obtains two separate bijections

between ℵX − b and χ4
−, and between ℵX + b and χ4

+, as in Figure 6. When successive

H-branes are on successive levels of aleph, any two instances of H are automatically

separated by a physical distance greater than any natural number of meters.1 This

follows because any n ∈N and (ℵX + b) ∈RX are such that (ℵX + b + n) is still in

RX . Therefore, the forward H-brane must be advanced in the χ4 direction by greater

than a natural number of physical distance units.

In the pure mathematical analysis of fractional distance appearing in [2], the metric

along R was taken as the Euclidean metric. However, the application in the MCM

for successive levels of aleph to exist on different scales requires a metric such that

len(RX ) ̸=len(RY) when X ̸= Y . Aside from the irrational, non-unit magnitude scale

factor 2πΦ inherent to M̂3|ψ; π̂0⟩ = 2πΦ|ψ; π̂1⟩, we might use the ∞̂ notation to

implement a change of scale such that the length of one neighborhood is infinitely

great or small with respect to another. This additional scale would be implicit in the

1There does not exist a clear requirement for an x4± physical coordinate but we presently discuss the case.
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exponent on π̂k that enumerates levels of aleph.

1.6.3 Gravitational Potential Energy

One way to avoid gravitation between branes is to suppose that there does not exist

any physical counterpart to the abstract χ4 coordinate on the fifth dimension. If

the gravitational potential energy U ̸=U(χ4), then there is no Newtonian gravitation

across Σ±. However, it may be desirable to define a physical distance between branes

in addition to the abstract distance. In that case, consider branes H1 and H2 as

masses m1 and m2 separated by a real-valued distance r such that |r| ̸∈ R0. Let

r=ℵX r̂ with X >0 so the gravitational potential energy is

U(r) = −Gm1m2

ℵX
= −Gm1m2

X
1

∞̂
=

0

X
= 0 . (1.6.10)

It follows that H-branes will not mutually gravitate if G, m1, and m2 remain in the

neighborhood of the origin.

We have not yet considered that change of scale might refer to quantities other

than distances in the metric. If the scale of the level of aleph associated with H2

is such that m2 ̸∈ R0, then a non-zero gravitational energy will result, even across

separations in the neighborhood of infinity. Given m2=ℵY , we have

U(r) = −Gm1ℵY
ℵX

= −Gm1Y
X

. (1.6.11)

Mass in the neighborhood of infinity must be associated with curvature of spacetime

in the neighborhood of infinity, indicating a likely singularity. If levels of aleph change

the mass scale, one might conceive of an adjacent higher level of aleph as existing

within, rather than beyond, the ∅ singularity that separates unit cells.

If non-zero gravitational energy is present between branes, we might consider the

spin-1/2 matter particle interpretation of MCM universes to make an appeal to Pauli

exclusion degeneracy pressure. This pressure will offset gravitational collapse and

it may be important in the lattice whose branes are the standard model fermions.

A simpler explanation for avoiding gravitational collapse notes that the Newtonian

force still vanishes for m2 in the neighborhood of infinity if one assumes an intuitive

arithmetic:

F =
Gm1m2

r2
r̂ =

Gm1ℵY
ℵ2X

r̂ ∝ 1

∞̂
. (1.6.12)

To avoid a vanishing Newtonian force, one would have to scale Newton’s constant G

to the higher level of aleph as well. In that case, m1 is the only remaining quantity
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(aside from r̂) on the lower level of aleph and F mimics the force on an infinitesimal

mass. In effect, we have rescaled the big and little parts of a real number as a little

part and an infinitesimal part. While infinitesimal masses are not used in Newtonian

gravitation, only infinitesimal test masses follow the geodesics usually derived in GR.

All other masses will have backreaction that pushes them off of stationary geodesics.

1.6.4 Arithmetic in the Neighborhood of Infinity

The well known rules of arithmetic for numbers in the neighborhood of the origin are

such that multiplication and division are mutually associative, e.g.:

x, y, z ∈ R0 =⇒ x×
(y
z

)
=
(x
z

)
× y . (1.6.13)

Arithmetic for ∞̂ and other numbers with non-vanishing fractional distance requires

that division and multiplication are not mutually associative in all cases [2], e.g.:

x, y, z ∈ R ≠⇒ x×
(y
z

)
=
(x
z

)
× y . (1.6.14)

Consequently, division is not identically multiplication by an inverse. Rather, divi-

sion is a separate operation. Under the usual rules for associative arithmetic in the

neighborhood of the origin, we might write for some b ̸=0

ℵX + b = X ∞̂+ b
∞̂
∞̂

=

(
X +

b

∞̂

)
∞̂ = (X + 0) ∞̂ = ℵX . (1.6.15)

This implies b=0, a contradiction. When associativity is not taken for granted, the

manipulation in (1.6.15) stalls at the second step. It is not possible to pull out a

factor of ∞̂ to form the parenthetical expression

X ∞̂+ b
∞̂
∞̂

−→
(
X +

b

∞̂

)
∞̂ , (1.6.16)

because that makes an appeal to associativity, i.e.:(
∞̂
∞̂

)
× 1 =

(
1

∞̂

)
× ∞̂ . (1.6.17)

The contradiction in (1.6.15) is avoided because (1.6.14) says that (1.6.17) is not

implied. If associativity were allowed, we might manipulate (1.6.17) as

1 =
∞̂
∞̂

= ∞̂ × 1

∞̂
= ∞̂ × 0 = 0 . (1.6.18)
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Assuming associativity has produced another contradiction.

In the neighborhood of the origin, arithmetic operations are as they are usually

understood. In (1.6.10), we were able to pull Gm1m2/X out of the fraction with ∞̂
because G,m1,m2,X ∈ R0. Since M̂3 moves states across levels of aleph, a formal

equation for M̂3 may exceed that which can be stated using arithmetic only in the

neighborhood of the origin. Acknowledging that Dirac kets are only a concise notation

for states’ more complicated analytical representations, the requirement that M̂3

changes the level of aleph may require that the analytical expression for M̂3|ψ; π̂0⟩=
c|ψ; π̂1⟩ diverges in the neighborhood of the origin. This would follow from infinite

relative scale between successive unit cells.

1.6.5 Reference Frames on Levels of Aleph

The M̂3 operator sends ψ to the next higher level of aleph. Although that opera-

tor is non-unitary, the probability interpretation is restored by a translation of the

observer’s frame of reference onto the corresponding level of aleph, or into the cor-

responding unit cell with a given scale. Having better defined what a level of aleph

is, now we may better clarify the what is meant by translation onto a higher level of

aleph.

The constants 2, π, and Φ that we have used in M̂3|ψ; π̂0⟩=2πΦ|ψ; π̂1⟩ all belong
to R0. Assuming |ψ; π̂0⟩ is valued in the neighborhood of the origin—this follows

from ⟨ψ|ψ⟩ = 1 when we make accommodations for C—multiplication by another

number in the neighborhood of the origin such as 2πΦ cannot yield a number in the

neighborhood of infinity. The product of any two natural numbers is still less than

another natural number so the non-unit scalar constant 2πΦ is not sufficient to alter

the fractional distance of |ψ; π̂0⟩. Instead, the exponent on π̂ should denote the scale

of a given level of aleph relative to that in H0 labeled with π̂0.

If the unit cell of measurement A is in the RX neighborhood, then the unit cell of

measurement B belongs to the sequentially greater RY neighborhood. Since X and Y
belong to a continuum (0, 1)⊂R0, there is some nuance which must be resolved before

we may label sequential neighborhoods as integer-valued levels of aleph. The count-

able enumeration of an uncountable set is not possible, in general.1 The resolution to

this problem comes through a physical treatment of the observer’s reference frame.

In general, the observer only knows about H and has no way to measure χ4 relative

to some absolute origin not in H. In the absence of any information that might be

used to calculate an absolute distance fraction X , we introduce a convention such

1Treatment of paradoxical issues pertaining to the countable enumeration of an uncountable set may be found in
Section 7 of [2].
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that the observer’s current level of aleph is always π̂0. The normalization of all other

quantities against this convention is what is meant by translation of the observer’s

frame of reference onto a new level of aleph. When the observer is on a given level of

aleph corresponding to some RX neighborhood, the observer’s origin of coordinates

is placed at ℵX . The level of aleph corresponding to the local RX neighborhood is

the neighborhood of the origin in the observer’s coordinates (Figure 6). After oper-

ation with M̂3, the observer at measurement B must redefine his coordinate system

so that measurement A was taken on the π̂−1 level of aleph in a lower neighborhood

of fractional distance. When M̂3 sends a state to the next higher level, there is no

requirement to determine a Y that is the least real number greater than X .1 Thus, we

avoid any problem pertaining to the paradoxical enumeration of uncountable objects

by countable integers because distance fractions such as X and Y are not observable.

While an observer has no way to calculate X or Y relative to an absolute origin

(which physics suggests should not exist), he does have information about the number

of measurements he has taken. Such measurements are easily and properly labeled

with integers. When we introduce a convention such that the level of aleph is regular-

ized by defining the observer’s origin of coordinates at the ℵX specified by π̂n (Figure

6), the scale of the coordinates must also be regularized so that the probability in-

terpretation of the wavefunction is restored after non-unitary evolution. Redefinition

of the observer’s coordinate system on the higher level of aleph is not only a transla-

tion, it is also a change of scale. These mechanisms and their details require further

clarifications.2

1.6.6 Immeasurable Numbers

Another discovery in fractional distance analysis was the set F containing all immea-

surable real numbers, also called non-arithmatic real numbers. Given

X ̸= Y =⇒ RX ∩ RY = ∅ , (1.6.19)

meaning different neighborhoods of fractional distance do not intersect, the interval

R = (−∞,∞) can be simply connected only if there exist real numbers not in any

neighborhood of fractional distance. These are the non-arithmatic numbers FX ∈ F
such that FX is the least upper bound of the open set RX . Previously in the history

1Although real analysis has suggested previously that there cannot exist a least real number greater than another
real number (or a least positive real number), fractional distance analysis seems to suggest that such numbers should
exist. These issues are treated in Section 7 of [2].

2Normalization of the observer’s new frame in RX back to R0 is such that numbers are altered as (ℵX ± b)→±b.
The positive-definite property of x∈RX is lost. Therefore, we might associate a reversed time arrow along χ4

− with the
property of negative numbers to increase in magnitude in the opposite direction to the increase of positive numbers.
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of analysis, irrational numbers were introduced to complete intervals of rationals.

The immeasurables are introduced for the same purpose. Immeasurables complete

the disconnected neighborhoods of infinity in the way that irrationals complete the

disconnected rationals [2].

If the various piecewise χ4
± and χ4

∅ are concatenated to make a smooth curve from

Hk to Hk+1 in one affine parameter, call it χ4, then the location of ∅ along that

curve is given by some χ4 ∈F, as in Figure 6 (Section 1.6.2). In other words, if the

neighborhood of χ4 around Hk is parameterized as RX , then the higher level of aleph

on the far side of ∅ is a neighborhood of greater fractional distance RY such that

Y > X . RX spans the interval of χ4 on one level of aleph and RY spans it on the

next level (Figure 6). In the χ4 parameterization of the path between two H-branes,
∅ becomes a topological obstruction because χ4 ∈ F is a non-arithmatic number.1

Arithmetic is not defined in the usual way for such numbers but the value χ4=FX is

a hard-coded topological boundary condition. Waves which time evolve in χ4 cannot

be simply transmitted through χ4=FX . In this way, ∅ is similar to the topological

obstruction at H. H and ∅ must function as topological obstructions to separate the

KK theories in Σ±. Recall that the MCM introduces two disconnected 5D metrics,

each containing an EM potential 4-vector and a dual 4-vector. The extra pair of

potential vectors is meant to avoid a requirement of KKT that all solutions must be

ones in which the EM field strength tensor vanishes. The MCM workaround requires

the mutual topological isolation of Σ±. This is achieved with H placed at undefined

χ4
±=0 and ∅ placed at FX ∈F for which normal arithmetic is not defined.

It has been supposed that the topological discrepancy between the Σ± metric

signatures might be assigned to a phase acquired in a process akin to specular optical

reflection from a singularity at ∅ [71]. Phase shifted optical reflection would be

associated with gravitational transmission through a black hole/white hole pair in the

∅-brane.2 Overall, the manner of forward connection from Σ+ to Σ− is prominent

among the unresolved issues in the MCM, and in fractional distance analysis. To wit,

it was not uniquely determined in [2] whether F is a set of disconnected points or

disconnected intervals. It was assumed for simplicity that the FX are single numbers

but they may be intervals of numbers. In an exactly congruent problem, the MCM

has not yet determined whether A and Ω are separated by an interval, a point, or if

their union is the object that we have labeled ∅.3 Referring again to Figure 6, the

1Non-arithmatic numbers are motivated, defined, and discussed in Section 7.5 of [2].
2In the physical metric, ∅ will be associated with the high curvature limits of de Sitter and anti-de Sitter space

and must, therefore, be a topological singularity in the physical coordinates with infinite curvature or curvature in
the neighborhood of infinity.

3In the convention where the union of A and Ω is identified with ∅, these branes would become unincluded
boundaries of Σ±.
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thinking that branes should not mutually gravitate suggests that A and Ω should lie

at (or in) FX relative toH but it is not determined if an interval should separate them.

Such open questions regarding Ω, ∅, and A are treated independently in Section 4.

Strong congruence between fractional distance analysis and the MCM is further

evidence that the latter is physically robust. In pure mathematical analysis [2], a

paradox was suggested such that there should exist a least positive real number, or a

least real number greater than another real number [2]. In the arena of physics, there

is no such paradox because the absence of an absolute origin makes it impossible for an

observer to compute physically meaningful absolute distance fractions. The absence of

any absolute reference frame has been known at least since the time of Galileo. Indeed,

coordinate transformations between arbitrary coordinate origins are called Galilean

transformations. The lack of any absolute reference frame is integral to Einstein’s

theory of relativistic Lorentz transformations as well. Even questions about Mach’s

principle that escape description in GR refer to the same lack of an absolute reference

frame [77]. Furthermore, the mathematical analysis of fractional distance left an

open question regarding whether successive neighborhoods of fractional distance are

separated by single numbers or intervals of numbers. This question is exactly mirrored

in the issue of the forward connection of Σ+ into Σ− on a higher level of aleph. The

main qualitative issues raised in the physical analysis were the main quantitative

issues discovered in the mathematical analysis. This identical overlap between physics

and an only-tangentially related exercise in real analysis is good evidence that the

MCM is a robust physical theory. The prior precedent of uncanny historical overlap

between analysis and physics is good evidence that M̂3 can be formalized at the level

suggested in this paper.

1.6.7 The Big Exponential Function

Quantum states are most often represented as sums of exponential functions. The

following modification to the exponential function was posed as an analytical structure

on which one might differentiate representations of |ψ; π̂k⟩ and |ψ; π̂j⟩ when j ̸= k.

There is no such ready structure in the usual expression for the exponential function.

In [70] we posed

eikx =
∞∑
n=0

(
ikx
)n

n!
=

ℵ0∑
0

(
ikx
)n

n!
+

ℵ∞∑
ℵ0

(
ikx
)n

n!
+

ℵ∞∞∑
ℵ∞

(
ikx
)n

n!
+ ... , (1.6.20)

where each sum over aleph pertains to a level of aleph. This early modification to ex

has been formalized subsequently as the big exponential function Ex [2]. In the
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current notation, ex retains it usual meaning as a sum over n∈N. Fractional distance
is such that every natural number belongs to the neighborhood of the origin so it

was supposed that the infinite sum in the exponential function might be expanded to

include more than a natural number of terms. Given N0≡N⊂R0, we define a new

set N∞ consisting of the natural numbers and their analogues in every neighborhood

of fractional distance. Using N∞, the big exponential function is

Eikx =
∑
n∈N∞

(
ikx
)n

n!
=
∑
n∈N0

(
ikx
)n

n!
+
∑
n∈NX1

(
ikx
)n

n!
+
∑
n∈NX2

(
ikx
)n

n!
+ ... . (1.6.21)

By the property

x ∈ R0

y ∈ RY

Y > 0

 =⇒ x

y
= 0 , (1.6.22)

given in [2], it follows that kx in the neighborhood of the origin implies that all but

the first sum in (1.6.20) will vanish. The sums over n ̸∈N0 in (1.6.21) vanish for the

same reason when kx ∈ R0. It is proven in [2] (Theorem 6.2.5) that Ex = ex when

x∈R0 but the big exponential function is not identically equal to ex when kx ̸∈R0.

Along with the new rules for arithmetic in the neighborhood of infinity, this function

provides a tool for new methods in physics.

Spacelike and timelike coordinate separations often appear in the argument of

the exponential function. The expression exp{i[k·(x2−x1) − ω(t2−t1)]} is common

enough. Therefore, one utility for Ex should be for the specification of wavefunctions

on different levels of aleph such that ∆x and ∆t or their chirological analogues should

be quantities with non-vanishing fractional distance. Given a wavefunction |ψ, π̂n⟩,
the π̂n object might act as a window function—a Kronecker δ analogue—selecting

only the sum over the NX corresponding to the kth level of aleph. In a normalized

convention such that the observer always sees himself on π̂0=1̂, the big exponential

function will always reduce to the regular exponential function if ∆x,∆t∈R0. This

will always be the case for physics confined to H. However, the MCM seeks to expand

the realm of physics beyond H and beyond the local level of aleph. It is hoped that

certain quantum effects may be attributed to tunneling or interference effects across

levels of aleph. The big exponential function is purposed as a scaffold on which to

develop analytical statements of such effects. Other use cases for levels of aleph via

the big exponential function include the following.

� All methods for anharmonic potentials in QFT rely on series decompositions of
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integrals of exponential functions. Decomposition by big rather than little expo-

nential functions may be a useful tool for tackling problems which are currently

perceived as intractable.

� The Feynman rules for constructing amplitudes from diagrams might be altered

so that a diagram’s elements pertain to levels of aleph. In some intuitive way, one

would associate QED’s enumerated loop corrections with levels of aleph leading

to an enhanced understanding of theory.

� Quantum theory’s well known perturbative powers series in the fine structure

constant may be better interpreted as contributions from different levels of aleph.

Each αn term in a power series would come from the π̂±n levels measured relative

to the observer’s location on π̂0.

� Levels of aleph were integral to solving the Riemann hypothesis. The architecture

[48] of the later direct contradictions [2, 46, 47, 78] was totally reliant on odd

and even levels of aleph. In the picture described by Figure 6, the even levels

of aleph are the coordinate systems attached to Hk. The odd levels refer to

another coordinate systems whose origin is in ∅. The latter would be used to

stitch together the even levels, as in Section 1.6.8.

� Though levels of aleph were not cited in computing the characteristic length scale

10−4m (Section 15) [3], the general idea was that contributions from other levels

of aleph alter the expected Fnetẑ=0⃗ Newtonian force diagram of a spinning disc

in H0.

1.6.8 A Practical Implementation of Transfinite Numbers

The lack of arithmetic for non-arithmatic numbers makes any parameterization of

the unit cell including such numbers inherently cumbersome. Since the observer

has no way to measure absolute fractional distance, and since coordinates should

always be chosen so as to simplify physics as much as possible, one would seek a

parameterization of the path between successive H-branes which does not rely on

x ∈ F. Rather than parameterizing the total extent of χ4 in one simply connected

interval of R (up to a complex phase), we may use the transfinite continuation T
and a piecewise connected parameter. The transfinitely continued real number line

T follows from the definitions of {R0,RX ,R1} extended to the case of X > 1. In the

suggested transfinite parameterization, ∅ lies at ∞̂ relative to an origin in Hk and

sequential H-branes are separated by two levels of aleph. If we assume for simplicity

that Ω and A are colocated at ∅, Hk+2 lies at 2∞̂, etc. The scheme by which
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one would execute the parameterization as χ4 ∈ T is outlined in Figures 7-9. The

bulk of successive Σ± will be doubly charted in coordinates whose origins are in the

successive bounding branes. Following an example from real analysis in which the

2-sphere is covered by a double charting of coordinates whose origins are at its two

opposite poles, coordinates based in H0 in the form χ4
+{0} = 0̂ + b stretch nearly to

Ω.1 (The subscript {k} on χ4
±{k} labels the level of aleph.) F0 is the least upper

bound of R0 = {x | 0̂ + b for |b|< n ∈N} so we say the 0̂ + b chart stretches nearly

to Ω located at χ4 = F0 in the simply connected parameter. Similarly, coordinates

measured relative to Ω in the form χ4
+{1}=∞̂− b stretch nearly back to H0. If Ω and

A are colocated, then the coordinates anchored at A∪Ω≡∅ will also stretch almost

to H2 as χ4
−{1}=∞̂+ b. In terms of χ4

∅ coordinates, we would write

χ4
+{1} ∪ χ4

−{1} = χ4
∅{1} . (1.6.23)

The χ4
−{1} will overlap with χ4

−{2}=2∞̂ − b and so on. The χ4
∅{k+1} on odd levels of

aleph will double chart the Σ± spanned by χ4
+{k} and χ4

−{k+2}. This scheme for dou-

ble charting between the neighborhood of the origin and the maximal neighborhood

infinity makes it possible for us to avoid any reference to the FX numbers for which

normal arithmetic is not defined.

Contrary to the lack of arithmetic defined for x ∈ F, we have already defined a

complete system of transfinite arithmetic for x= n∞̂ when n ∈ N [2]. The transfi-

nite continuation should permit a representation of the translation of an observer’s

reference frame onto a higher level of aleph as nothing but a Galilean transformation

(up to a change of scale.) After operating with M̂3 to leave the χ4
±{0} = 0̂ ± b co-

ordinates and arrive in the χ4
±{1} = 2∞̂ ± b coordinates, a coordinate system in the

form χ4
{1} = 0̂ ± b is easily recovered by subtracting 2∞̂.2 Furthermore, this scheme

for χ4 ∈ T restores the original notion of odd and even levels of aleph [1, 48]. To

distinguish odd and even levels of aleph, conventions would be amended such that

∅ is one level higher than H0 and the forward H-brane is two levels higher. This is

intuitive when the coordinates on the π̂n level of aleph are such that χ4
{n} = n∞̂ ± b.

χ4
+{1}=∞̂ − b.

1The hat on 0̂ is a convenient notation demonstrating that one may measure distance relative to any origin of
coordinates. It is a convention to place zero at the origin but one may measure relative to any other number, such as
∞̂.

2Using numbers in the neighborhood of infinity, this section necessarily describes physical parameterizations
along χ4. The abstract coordinates are introduced so that we may describe distances along χ4 with numbers in
the neighborhood of the origin. So, to the extent that we have suggested that infinite relative scale between unit
cells should be encoded on the k quantum number in |ψ; π̂k⟩, the Galilean transformation subtracting 2∞̂ might be

associated with subtracting 2π in the abstract coordinates. This might be further associated with the 2π in M̂3’s
returned value 2πΦ.
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Figure 7: This figure shows the structure of R as developed in [2]. (The negative
branch of R is omitted.) Due to the lack of standard arithmetic operations
for FX ∈F, it is desirable that the path between successive H-branes should
be parameterized without reference to FX .

Figure 8: This figure shows the real number line separated between the neighborhood
of the origin R0 and the maximal neighborhood of infinity R1. Relating to
the objects of Figure 7, the neighborhood of the origin R0 terminates at
F0. Since it is not possible to do arithmetic with non-arithmatic numbers
such as F0 [2], we should introduce some coordinate chart that does not
reference them. We propose to introduce a coordinate transformation such
that, for instance, every x=b∈R0 is associated with some x′=(∞̂−b)∈R1,
as in Figure 9.

Figure 9: Even levels of aleph are sewn together with odd levels, and vice versa, as
in [48]. The midpoint of the least intermediate neighborhood of fractional
distance is labeled ℵY . In the scheme where Ω and A are colocated with ∅,
an intractable χ4=F0 at the Σ+→Σ− step of M̂3 is made tractable by a
coordinate transformation in which F0→∞̂. Arithmetic, and by extension
calculus, is well defined for ∞̂. It is proposed that the 5D bulk of Σ+

0 should
be doubly charted in R0 and R1 so that no reference is made to any x∈F
during H→H evolution under M̂3. In this figure’s parameterization such
that χ4 ∈T, the non-arithmatic FX are replaced by odd integer multiples
of ∞̂. All ℵX are replaced by even integer multiples.
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Going beyond infinity is not allowed in real analysis but neither is going onto the

complex plane and that is standard in physics. Going beyond infinity into T is only

the longitudinal continuation of R in the way that going onto C is the transverse

continuation. All the tools of complex analysis have the highest utility in physics and

we suggest that any tools developed in the transfinite analysis of fractional distance

are likely to be equally useful.

1.6.9 Further Considerations for Even and Odd Levels of Aleph

Consider the limit of ℵx as x goes to 0. For any x>0, this number has non-vanishing

fractional distance and must be greater than any n∈N. From this we conclude

lim
x→0
ℵx ̸= 0 . (1.6.24)

Since F0 is defined to be the least real number greater than every natural number, a

reasonable supposition is

lim
x→0
ℵx = F0 . (1.6.25)

If ℵ0 = F0, then every other FX should also be some ℵX . Thus, we might suppose

that the piecewise double charting suggested in Figure 9 is naturally as in Figure

10. However, the double charting of intervals in two simultaneous neighborhoods of

infinity RX ̸=RY is such that

x ∈ RX ,RY =⇒ x

∞
= X , and

x

∞
= Y . (1.6.26)

To resolve this contradiction, we might assign RY as an odd level of aleph and say that

all odd {ℵY} are the immeasurable FX ∈ F. In this convention, the neighborhoods

of fractional distance associated with successive H-branes are even levels. The non-

arithmatic property would be associated with the separation of X and Y by the least

positive real number such that

X − Y = undefined . (1.6.27)

However, the Cauchy sequences definition of R might suggest that X − Y = 0 so

further analysis is required. The non-arithmatic odd neighborhoods of fractional

distance would be distinguished from the open, even neighborhoods by topological

closure. We will not use this convention in the present book. It is mentioned mainly

because ℵ0=0 was given in the main paper on fractional distance analysis [2] while

that equality may not be supported by the ε–δ formalism, and because ℵ0 = F0

supports a desirable construction for even and odd levels of aleph.
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Figure 10: Compare this figure to Figures 7 and 9. In this scheme, odd levels of
aleph are associated with immeasurable numbers. The connectedness of
R would require that odd neighborhoods are topologically closed because
the even neighborhoods are open.

As a consequence of this scheme for odd and even levels of aleph, one might suppose

that the non-definition of χ4
±=0 is better characterized by the location of theH-brane

at a non-arithmatic value of χ4 in the reversed convention for choosing even and odd.

1.7 Operators, States, and the Schrödinger Equation

1.7.1 M̂3 as a Translation Operator

The usual quantum theory implements time evolution between measurements as dif-

fusion (or oscillation) followed by collapse. The MCM supplements the usual theory

of successive measurements in H with intermediate steps at Ω and A. Therefore,

given M̂3=
∏

λ M̂λ, one might take M̂λ as an ordinary translation operator Ĵλ such

that for λ∈{+,−,∅} we would have

M̂λ ≡ Ĵλ(∆χ4
λ) = cλ exp

{
−
ip̂λ∆χ

4
λ

ℏ

}
, with p̂λ = −iℏ∂λ . (1.7.1)

(See Appendix B for a review of the translation operator Ĵ .) In this way, M̂3 would

send states across the unit cell as

M̂3
∣∣ψ, π̂0

〉
= Ĵ− Ĵ∅ Ĵ+

∣∣ψ; π̂0
〉

= π Ĵ− Ĵ∅
∣∣ψ; Φ̂0

〉
(1.7.2)

= Φπ Ĵ−
∣∣ψ; 2̂1〉

= 2πΦ
∣∣ψ; π̂1

〉
.

There are a number of problems with this definition for M̂3. These deficiencies provide

guidance toward a better analytical representation.
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� The unit cell is such that for H located at limχ4
±→0, we have A at χ4

−=−φ and

Ω at χ4
+=Φ. This allows us to define appropriate Ĵ with ∆χ4

+=Φ and ∆χ4
−=φ.

(The latter is supplemented by an understanding that ∆χ4
− is defined according

to the scale of the forward level of aleph and that it must increase in the opposite

direction to χ4
+.) However, the step Ω→A may be more like a time reversal or

reflection than a translation operation. If Ω is a black hole and A is a white hole

connected by a zero distance wormhole (the case in which Ω and A are colocated

at ∅ rather than bounding a region containing it), a reversal of the time arrow

may be all that is needed to execute Ω→A. However, it is not yet determined

whether A and Ω bound the region containing ∅ or if they are colocated there.

(These cases are discussed in Section 4.) So, it is not clear that the Ω→ A
step involves any translation at all. If it does, simple translation cannot tell

the whole story because the metric signature changes between Σ±. Waves (or

heatlike solutions) cannot be simply transmitted through the obstruction in the

topology induced by the changing metric signature.

� With subscripts running over {+,−,∅}, one would assume [p̂j, p̂k]=0 and con-

sequently [M̂j, M̂k] = 0. If these operators commute, then we should be able to

reorder them but that is not consistent with the overall idea. For instance, the

M̂2 operator executing Ω→A should only act on states in Ω. It may not make

sense for it to act on other states.

� Ĵ executes equal-time parallel transport. Since observation B necessarily takes

place at some chronological time later than that associated with observation

A, the translation operator alone is not sufficient to accomplish the task. The

state M̂3|ψ; π̂n⟩ = c|ψ; π̂n+1⟩ must show up in Hn+1 with a time that agrees

with Û(tn+1, tn)|ψ, tn⟩ = |ψ, tn+1⟩. In other words, MCM time evolution must

incorporate Schrödinger evolution as a simultaneous process during transit of

the unit cell. Static transport by M̂ ∝ Ĵ cannot agree with time-dependent

experimental results.

1.7.2 M̂3 as a Ladder Operator

M̂3 is like a ladder operator for the level of aleph. It increases the k quantum number

when it operates on |ψ, π̂k⟩. To better understand M̂3 and its associated constant

2πΦ, we will look at the Dirac ladder operators

â† =

√
mω

2ℏ

(
x̂−

ip̂

mω

)
, and â =

√
mω

2ℏ

(
x̂+

ip̂

mω

)
. (1.7.3)
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They raise and lower the n quantum number for states in the simple harmonic oscil-

lator (SHO) potential. Such states are denoted |n⟩. Dirac notation is such that

â†
∣∣n〉 = √n+ 1

∣∣n+ 1
〉
, and â

∣∣n〉 = √n∣∣n− 1
〉
. (1.7.4)

So far, we have treated M̂3 only in the Dirac notation

M̂3
∣∣ψ; π̂n〉 = 2πΦ

∣∣ψ, π̂n+1
〉
, (1.7.5)

without first writing down its analytical expression, as in (1.7.3). Namely, (1.7.4)

is only a shorthand developed after Schrödinger’s equation was solved for the SHO

Hamiltonian

Ĥ =
p̂ 2

2m
+
mω2x̂ 2

2
, with ω =

√
k

m
. (1.7.6)

The solution is ∣∣n〉 = ϕn(x) =
1

π1/4
(
2nn!

)1/2Hn(x) e
−x2/2 , (1.7.7)

where Hn is the nth Hermite polynomial. This result shows that the real physics of

(1.7.4) comes from (1.7.7) and (1.7.3). Operation with â and â† on ϕn(x) provably

yields â†|n⟩ =
√
n+ 1|n + 1⟩ and â|n⟩ =

√
n|n − 1⟩. For M̂3, we have jumped into

the end result of the operator algebra M̂3|ψ, π̂n⟩=2πΦ|ψ; π̂n+1⟩ without first finding
the analytical representation of M̂3. On top of that, we have suggested that a more

complicated equation than Schrödinger’s equation is needed for M̂3 without writing

that equation down and solving for its states, i.e.: SHO states are such that

∣∣n〉 = 1
√
n!

(
â†
)n∣∣0〉 , (1.7.8)

but we have not yet found an analytical form for M̂3 with which to provably write∣∣ψ; π̂n〉 = cn
(
M̂3
)n∣∣ψ; π̂0

〉
. (1.7.9)

Even if we did have the analytical form of M̂3, all we know about |ψ; π̂0⟩ is that it

must reduce to the corresponding quantum mechanical |ψ⟩ in the limit of χ4
±→ 0.

That may or may not be a trivial constraint. As SHO states are uniquely determined

from the SHO Hamiltonian and Schrödinger’s equation jointly, MCM analogues of

these important fundamentals are required.

Regarding the discovery of the Schrödinger equation, Schrödinger deduced it (or

guessed it) following a process of trial and error [79, 80]. He was well directed in his
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search by an understanding that the equation for the wavefunction should be first

order in its time derivative but the MCM has two kinds of time and the expected

equation for M̂3 should be third order in at least one of them. Thus, a potential

iterative development process searching for the MCM equation may be far more cum-

bersome than Schrödinger’s search for his eponymous heat equation. Luckily, we will

observe in Section 1.11 that certain results suggest a narrowing of the field of all

possible equations.

1.7.3 MCM Plane Wave States

Kaluza–Klein theory requires that there should not exist any 5D matter-energy in

the bulk of Σ±. This suggests that we should treat the bulk as free space devoid

of any potential energy landscape. The Hamiltonian operator for free space in one

dimension is

Ĥ0 = −
ℏ2

2m
∂2x . (1.7.10)

The solutions to the according Schrödinger’s equation are plane waves:

ϕ(x, t) = exp
{
i
[
kx− ω(k)t

]}
, with ω(k) =

ℏk2

2m
. (1.7.11)

In the position representation, infinite plane waves are momentum eigenstates. Free

momentum eigenstates cannot be observed so, referring to the rigged Hilbert space

{H′,A′,Ω′}, infinite plane waves cannot live in Hilbert space A′. On the other hand,

plane waves in a finite region V are constrained by ϕ′(∂V ) = 0 where ∂V is the

boundary of V . Subject to this boundary condition, ϕ′ is normalizable and can

belong to A′.

The main utility of infinite plane waves is for the construction of wavepackets

which are normalizable and observable, even in unbounded regions:

u(x, t) =
1√
2π

∫ ∞

−∞
dk A(k) exp

{
i
[
kx− ω(k)t

]}︸ ︷︷ ︸
ϕ(x,t)

=⇒ u ∈ A′ . (1.7.12)

The infinite plane waves in the integrand are Fourier transforms of Dirac δ functions.

Such functions and their Fourier transforms, two representations of the same state,

only live in Ω′. So, since plane waves (i) satisfy the Schrödinger equation, (ii) are

the analytical basis for all-important wavepackets, and (iii) they appeal to the small

sliver of extra freedom afforded by the Ω′ part of the MCM’s rigged Hilbert space, ϕ

is an appropriate state for the presumed energy landscape between two instances of

H. The search for an M̂3 equation should start with M̂3 acting on plane waves.
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The MCM equation should contain derivatives with respect to χ4 so the ansatz for

an MCM plane wave will be

ψ(x, t, χ4
±) = exp

{
i
(
kx− ωt± χ4

±
)}

, 1 (1.7.13)

where χ4
± implicitly includes a χ4

∅ case, if needed. Appealing to χ4 as a non-physical,

abstract coordinate, we will assume it is dimensionless and does not require an ana-

logue of k or ω.2 ψ(x, t, χ4
±) reduces to the QM wavefunction ϕ(x, t) in the limit

χ4
±→ 0 corresponding to H. This limiting behavior is a hard constraint on the the-

ory since QM is known to agree with experiment. As per usual in physics, one starts

with a boundary condition and develops solutions accordingly. The present boundary

condition is that a plane wave in the bulk must reduce to an ordinary plane wave in

H.
Landau’s treatment of plane waves is demonstrative [81].

“A plane wave is a mathematical abstraction, a solution to the wave

equation which has constant phase along a 2D infinite plane. Although

these may not be physically realizable, they are a convenient substitute

for a wave packet of definite momentum and are the conventional basis for

expanding the wave function of an interacting particle. The wave functions

of quantum mechanics form a Hilbert space, that is, a linear vector space

of infinite dimension. Whereas the dynamical coordinates r and p of wave

functions are continuous, the eigenvalues or parameters of these functions,

such as the bound-state energies E=−κ2i /2µ are discrete. Any Hermitian

Hamiltonian can be used to generate a complete, orthogonal set of wave

functions. The free-particle Hamiltonian,

H0 =
p2

2µ
= −∇

2µ
, (1.7.14)

is particularly convenient because it generates the plane waves:

p̃ϕk(r) = kϕk(r) , k = |k|

H0ϕk = Ekϕk(r) , Ek = k2/2µ
(1.7.15)

ϕk(r) = Neik·r , N =


(
2π
)−3/2

infinite domain ,

V −1/2 finite domain .

1We intermingle physical and abstract coordinates in (1.7.13) only for simplicity.
2As plane waves are developed, we will choose to include a coefficient as a scale factor whether or not χ4 is

dimensionless.
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For simplicity in developing the formalism (and a patina of mathematical

rigor), it is useful to consider the plane waves as occupying a finite volume

(a box.) The box and the periodic boundary conditions we impose on the

wave functions are just for convenience (scattered waves are certainly not

periodic); eventually we will go to the limit of an infinite domain.

“Little Boxes

“To determine the allowed eigenenergies, we place the plane waves [ϕk(r)]

in a box of volume V with sides (Lx, Ly, Lz), and demand that they satisfy

the periodic boundary conditions

ϕk(x+ Lx, y + Ly, z + Lz) = ϕk(x, y, z) , (1.7.16)

=⇒ (kxLx, kyLy, kzLz) = 2π(ix, iy, iz) .

Here (ix, iy, iz)≡ i is a set of three positive or negative integers which de-

termine the allowed, discrete wave vectors and thus energies:

ki = 2π

(
ix
Lx
,
iy
Ly
,
iz
Lz

)
, Ei =

k2i
2µ

. (1.7.17)

With these boundary conditions, the plane waves for different values of i

and j are orthogonal. By choosing the normalization constant N we make

the plane waves orthonormal :

ϕki
(r) ≡ ϕi(r) =

eiki·r
√
V

, (1.7.18)

=⇒
∫
d3rϕ∗

i (r)ϕj(r) = δij , (orthonormality) .

Note that in the confined volume of the box, the variable k is discrete but

the variable r is continuous (but limited). The discreteness of ki leads to

the Kronecker delta function in [(1.7.18)]. Since the free Hamiltonian is

Hermitian, plane waves form a complete set in which any solution ψ(r) of

Schrödinger’s equation can be expanded:

ψ(r) =
∞∑
i

ciϕi(r) . (1.7.19)

Orthonormality determines the ci’s (multiply [(1.7.19)] by ϕ∗ and integrate
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over r):

ci =

∫
d3r′ ϕ∗

i (r
′)ψ(r′) . (1.7.20)

If we substitute this back into [(1.7.19)] and interchange the order of inte-

gration and summation, we obtain

ψ(r) =

∫
d3r′

[
∞∑
i

ϕ∗
i (r

′)ϕi(r)

]
ψ(r′) . (1.7.21)

Yet because [(1.7.21)] must be an identity, we identify the term in the brack-

ets as some kind of unit operator. This yields the closure or completeness

relation for discrete states:

∞∑
i

ϕ∗
i (r

′)ϕi(r) = δ(r′ − r) , (closure) . (1.7.22)

“The Big Box

“To obtain plane waves in an infinite domain, we let the box size ap-

proach infinity. In this limit of very large L and very large i, the index i is

still an integer so ∆i≡1.1 The momenta ki in [(1.7.17)] remain finite but

become continuous:

2π

Li
∆i → dki , ∆ix →

Lx
2π
dki (1.7.23)

∑
∆i → V

∫
d3k(
2π
)3 .

“[sic] To generalize the closure relation [(1.7.22)] to a big box, we insert

a ∆i=1 into the sum in [(1.7.22)], and take the L→∞ limit:

∞∑
i

∆iϕ∗
i (r

′)ϕi(r) = δ(r′ − r) , (1.7.24)

=⇒ V

∫
d3k(
2π
)3 e−ik·r′√

V

eik·r√
V

= δ(r′ − r) , (closure) .2

1This notation means that the discrete version of the differential element of i, ∆i, is equal to one because that is
the smallest increment of change for an integer-valued quantity.
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This gives the form for plane waves in an infinite domain:

ϕi(r) =
eiki·r
√
V

=⇒ ϕk(r) =
eik·r(
2π
)3/2 . (1.7.25)

The orthogonality relation [(1.7.18)] for an infinite domain is now just the

closure relation with a change of variable,

δij →
∫

d3r(
2π
)3 e−ik′·reik·r = δ(k′ − k) (orthogonality) .” (1.7.26)

For disambiguation with the imaginary number i, we will replace Landau’s integer

i with j in the following. The factor of (2π)−3/2 in (1.7.25) reflects the fact that

time-independent plane waves in an infinite domain are non-physical and cannot be

normalized in R. Instead, these states are normalized to the 3D Dirac δ function, as

in (1.7.26). Since it is desired that the physical distance between branes exceeds any

number in the neighborhood of the origin, the continuous k, unbounded big box case

proportional to (2π)−3/2 should be associated with the physical coordinates. The big

box case also describes unbounded plane waves in H when we take the ei(kx−ωt±χ
4
±)

ansatz with χ4 = 0. The discrete k, small box case proportional to V −1/2 should

pertain to the abstract coordinates. The convention in which A and Ω are surfaces of

constant χ4
−=−φ and χ4

+=Φ is such that Σ± are small boxes in the fifth direction.

Consider the orthonormalism of discrete momentum states, as in (1.7.18). The

orthogonality of ϕj1 and ϕj2 when j1 ̸= j2 is well suited to the orthogonality of wave-

functions on different levels of aleph. It was suggested in Section 1.2.5 that the

ontological basis might act as lattice vectors for a cosmological lattice in which each

lattice site has its own level of aleph specified by some tuple of integers. In that

picture, small box plane waves are such that states at different lattice sites are or-

thogonal. Lattice sites specified by integer combinations of lattice vectors {2̂, π̂, Φ̂, î}
are specified with j≡ (j2, jπ, jΦ, ji) analogous to Landau’s i≡ (ix, iy, iz). One caveat,

however, is that the unit cell only requires the small box condition for the χ4
± direc-

tions. It is not yet determined whether Σ± should be bounded in the abstract χµ±
coordinates. One is advised that the big or small box convention will depend on the

choice of coordinates, and we still have not determined if Σ± are bounded in the χµ±
directions (or if x4± coordinates should exist at all.)

{ϕj} are a complete orthonormal set but the non-unitarity of the M̂3 and/or Ôêµ→êν

operators suggest that the MCM plane wave basis {ψj} ought to be orthogonal and

2The Dirac δ function has inverse units to its argument: δ(r) has units of [m−3].
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not orthonormal. The lack of normalism follows from the relative scale between

levels of aleph. If the relative scale between the RX and RY levels of aleph is C, then
len(RX )/len(RY)=C. In the rescaling r→Cr, the 3D wave vector and energy rescale

as

k′
j = 2π

(
jx
CLx

,
jy
CLy

,
jz
CLz

)
, and E ′

j =
ℏ2k′2

j

2m
=

ℏ2k2
j

2mC2
=
Ej
C2

.1 (1.7.27)

Thus, the energy changes from one lattice site to another. Noting that ℏ has units

of [kg][m2][s−1], the normalization of the observer’s reference frame onto the level of

aleph where the relative scale is C may require that meters are redefined to absorb

the two factors of C appearing in the energy’s denominator. Presuming C ≥ 1, as is

the case for C=2πΦ, the energy decreases with increasing j. This is a positive result

because the physical arrow of time never points towards increasing energy in the

absence of work. This energy variation may have further applications to the MCM

mechanism for dark energy discussed in Section 7. Namely, cosmological redshift is

such that photons lose energy with time.

In the preceding, we have considered only some generalized χ4 without appealing

to opposite sign and/or imaginary phase between χ4
±. The behavior of quantum states

with real and imaginary wavenumbers is known from

k =

√
2m
(
E − V

)
ℏ

.2 (1.7.28)

The wavenumber k is real when E > V . It is imaginary when E < V . Coupled

with the i in eikx, we have wave propagation in the classically allowed region where

E > V and exponential damping in the classically forbidden region where E < V .

It was suggested earlier that allowing χ4
± to be complex will allow us to avoid the

metric signature discrepancy at the Ω → A step of M̂3. Now we will suggest an

implementation by adding a wavenumber or frequency multiplier to the ansatz as

ψ(x, t, χ4) = exp
{
i
(
kx− ωt+ κχ4

)}
, where κ =

√
2m
(
E − V

)
ℏ

. (1.7.29)

By choosing an appropriate energy scale on the forward level of aleph, namely V ∈Σ−
{1}

higher than E ∈Σ+
{0}, we might make the region of metric discrepancy a classically

forbidden region so that κ becomes imaginary. Then we will obtain exponential

1Compare to (1.7.17).
2This formula for the wavenumber k is standard in elementary QM problems. See Section 2.6 in [82] or Section

2.4 in [83], for example.
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damping of the wavefunction in the region of metric discrepancy:

ψ(x, t, χ4) = exp
{
i
(
kx− ωt+ i|κ|χ4

)}
= exp

{
i
(
kx− ωt

)}
e−|κ|χ4

. (1.7.30)

We have come naturally to a likely resolution for a metric discrepancy between

Σ± through our consideration of plane wave states. Since we would want damping to

increase with penetration into Σ−, this χ4 has its origin in A (or in ∅ if A is colocated

with Ω). Thus, the energy landscape would steer propagating waves in Σ+ onto iχ4
−

spanning another instance of Σ− where the convention for real and imaginary χ4
± is

reversed (using the freedom to write the signature as either of {∓ ± ±±}). This

will reduce the topological discontinuities from appearing at H and ∅ to H alone.1

Everything is reset at H so there is not so pressing a question of how solutions might

be transmitted through it. The act of observation associated with H gives us more

options for dealing with discontinuity there.

Another issue is that the we have associated the region of metric discrepancy with

the classically forbidden region of an elementary QM barrier problem but the for-

bidden region always has the same metric as the allowed region in such problems.

Investigation is required to determine whether the usual mechanics of real and imag-

inary wavenumbers are permitted simultaneously with a changing metric signature.

If the unit cell is constructible so as to avoid a discrepancy at ∅, then what appears

as damping in a 1D QM scattering problem will be manifested in the unit cell as

oscillating propagation in the direction perpendicular to the page. In this way, the

energy landscape guides undamped propagation in the lattice. If the branch of χ4

containing the metric discrepancy is classically forbidden, then states will want to

avoid it without any need to introduce supplemental mechanisms. The energy land-

scape will automatically favor continuation on the classically allowed branch.2 Such

conditions are the heart of physics. In the previous sections, we have mostly proposed

abstract mathematical mechanisms for what M̂3 is or does. Now we have taken a

step toward the physical nitty gritty.

To finish this section, we will mention that a topological mismatch between Σ±

forbids perfect transmission from one box into another though this is the boundary

condition supposed in (1.7.16) if the box is the full unit cell. Barring the obvious case

where Σ± are two different boxes, one resolution is that we might consider the unit

1In Section 0.2, we introduced a convention in which the 4D metrics in Σ± were oppositely signed as {∓±±±}.
Here, we use the same sign convention {−+++} for both sides of the unit cell and add the sign conjugated convention
in the spaces crossed by iχ4

±.
2If a right-moving wave avoids a forbidden region by diverting onto the directions into and out of the page,

one might expect attenuation in the lattice. The non-unitary property of M̂3 should counteract this potential for
attenuation.
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cell as a small but non-trivial box with symplectic geometry between its piecewise

Σ± parts. Symplectic geometry equips a manifold with a 2-form whose property

dx∧dy=−dy∧dx at least approximates what is intended for the conjugation algebra

of C∗ with (φ̂∗)∗ ̸= φ̂.

1.7.4 The Schrödinger Equation and its Potential Modifications

The Schrödinger equation

iℏ∂0
∣∣ψ, t〉 = Ĥ

∣∣ψ, t〉 = (− ℏ2

2m
∇2 + V̂

)∣∣ψ, t〉 , (1.7.31)

provides an excellent template for what a physical equation looks like. The appear-

ance of both time and space derivatives remedies the problem of equal-time parallel

transport cited for M̂3 as a translation operator in Section 1.7.1. With an equation

for M̂3, we would obtain its analytical form as we have obtained the ladder operators

in Section 1.7.2.

While Schrödinger’s equation incorporates the requisite elements of physics lacking

in the current description of M̂3, it may or may not be sufficient for MCM evolution

on its own. If it is, M̂3 will show up as a new energy in Ĥ:

M̂3
∣∣ψ; π̂0

〉
= 2πΦ

∣∣ψ; π̂1
〉

←→ ĤMCM

∣∣ψE〉 = EMCM

∣∣ψE〉 . (1.7.32)

To evaluate this form for M̂3, we must first examine whether or not |ψ, π̂0⟩ is an

eigenstate of M̂3. Since [Û , Ĥ]=0, an energy eigenstate |ψE; t0⟩ is an eigenstate of Û
despite the values in the ket changing:

Û
∣∣ψ, t0〉 = ∣∣ψ; t〉 . (1.7.33)

The time dependence boils down to a phase and the state remains the same. Since we

have not found the analytical form of M̂3 needed to test whether it commutes with

Ĥ, we cannot say if ψE is an eigenstate of M̂3. Non-unitarity and changing scale

across levels of aleph suggest it may not be. However, the mathematical expression

for being sent to a higher level of aleph may be as simple as an accrued π̂ so that

π̂k→ π̂k+1 in the way that energy eigenstates acquire a phase under operation with

Û : e0→eiEt/ℏ. If ψE is not an eigenstate of M̂3 and [M̂3, Ĥ] ̸=0, a likely resolution is

that M̂3 should satisfy a modified Schrödinger equation. In that case, M̂3 will show

up in the time derivative part of an equation which reduces to Schrödinger’s equation

in the limit of vanishing χ4 and vanishing derivatives with respect to χ4. For example,
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one would consider equations roughly in the form(
M̂3 + iℏ∂0

)∣∣ψ, t; π̂0
〉
= ĤMCM

∣∣ψ′, t′; π̂1
〉
. (1.7.34)

where M̂3 contains a new time derivative on the left and ĤMCM contains a new energy

on the right.

The unitary time evolution operator Û satisfies Schrödinger’s equation on its own.

We may factor out the |ψ, t0⟩ time-independent part of |ψ, t⟩= Û(t, t0)|ψ, t0⟩ to write

an equation for Û rather than ψ. In that way, M̂3 may satisfy a time evolution

equation without ψ in it at all. This was more or less the original idea in supposing

Υ̂= Û+M̂3 [3, 30]. Given

iℏ∂t Û = ĤÛ , (1.7.35)

we would write

iℏ∂tΥ̂ = ĤMCMΥ̂ (1.7.36)

or we would seek new equations. We will treat Υ̂ in Section 1.11 where its cases

for use in an MCM total evolution equation are discussed beyond the modifications

presented here.

The remainder of this section catalogs avenues along which Schrödinger’s existing

equation might be modified without starting over from scratch. This should be useful

and/or demonstrative because any new MCM equation should contain Schrödinger’s

equation as a limit. Possible modifications are listed and then described.

� Schrödinger evolution in χ4:

∂0 → ∂4 (1.7.37)

� A time gradient:

∂0 → ∇̃ = ∂01+ ∂4Φ̂ , where (1, Φ̂) = (π̂0, Φ̂1) (1.7.38)

� Momentum in the χ4 direction:

∇2
i → ∇̂2 = ∇2

i +∇2
4 (1.7.39)

� A separable potential energy:

Ĥ → Ĥ = Ĥ0 + V̂ (x, t) + V̂MCM(χ
4, t) (1.7.40)
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� A non-separable potential energy:

Ĥ → Ĥ = Ĥ0 + V̂MCM(x, χ
4, t) (1.7.41)

� Classical transport of a quantum system:

ψ̇ → x =⇒ Fnet = mẍ→ m
...
ψ (1.7.42)

Schrödinger Evolution in χ4 An elementary modification ∂0→ ∂4 on the left side of

Schrödinger’s equation is such that

iℏ∂4
∣∣ψ, χ4

〉
= Ĥ

∣∣ψ, χ4
〉
. (1.7.43)

This equation is well suited to a further resolution of χ4 into its piecewise parts: χ4
+,

χ4
∅, and χ4

−. It was suggested in [84] that the steps of H → Ω → A → H might

be motions derived from three integrated Schrödinger equations using ∂+, ∂∅, and

∂− in place of ∂t on the LHS. Such a description by concatenated integration paths

necessarily relies on the sum of three operations rather than the product
∏
M̂i which

has been supposed. This might be resolved by moving the M̂i into an exponential

function such that

M̂3 =
3∏

k=1

eM̂k . (1.7.44)

This form is familiar from the Û=e−iĤt/ℏ chronological time evolution operator which

M̂3 complements as the chirological evolution operator. Exponential structure in Û
underpins the path integral as〈

xI
∣∣e−iĤt/ℏ∣∣xF〉 = 〈x0∣∣e−iĤδt/ℏe−iĤδt/ℏ...e−iĤδt/ℏ∣∣xN〉 (1.7.45)

=

(
N−1∏
k=1

∫
dxn

)〈
x0
∣∣e−iĤδt/ℏ∣∣x1〉〈x1∣∣e−iĤδt/ℏ∣∣x2〉〈x2∣∣...∣∣xN〉 ,

so (1.7.44) is well suited to piecewise evolutions along MCM cosmological lattice

vectors. Taking χ4
∅ to have no linear extent, meaning the case in which Ω and A are

colocated at ∅, one might substitute the requisite chronological evolution |ψ, t0⟩→
|ψ, t1⟩ for the ∂∅ step of M̂3. There is some likeness between H and ∅ as obstructions

between Σ± but the mechanism by which we might associate t and χ4
∅ remains to

be investigated. Furthermore, the dimensions of (1.7.43) are contrary to the previous

convention in which χ4 is dimensionless.
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A Time Gradient The time gradient ∇̃ follows from ∂0→∂4. Rather than replacing

∂0 with ∂4, we supplement the Schrödinger equation’s chronological time derivative

with an added chirological part:

iℏ∇̃
∣∣ψ〉 = iℏ

(
∂0π̂ + ∂4Φ̂

)∣∣ψ〉 = Ĥ
∣∣ψ′〉 . (1.7.46)

A deficiency is that the gradient ought to include components for the other ontological

basis vectors as

∇̃ = ∂0π̂ + ∂+Φ̂ + ∂∅î+ ∂−2̂ , (1.7.47)

but this does not appear to respect the ordering of the H→Ω→A→H steps. That

might be remedied if the disordered derivatives vanish as needed during piecewise

motions across the unit cell. Perhaps 2̂ and î should be removed from the time

gradient on the grounds that they indicate physical and abstract space as we have

used π̂ and Φ̂ to indicate physical and abstract time.

As written in (1.7.46), integrated motion along χ4 would raise the level of aleph

with Φ̂ acting on the χ4 part of |ψ, t, χ4⟩ but the x0 part does not raise it with

π̂0 = 1. Operation with the time gradient yields wavefunctions on two levels of

aleph. Following the plane wave prescription in the previous section, wavefunctions

on different levels of aleph are orthogonal. Hence, Ĥ operating on ψ would have to

result in the sum of two orthogonal states. This is not the behavior usually associated

with the Ĥ operator.

Momentum in the χ4 Direction Canonical quantization in the position representation

is such that

pi → −iℏ∂i . (1.7.48)

One would assume that momentum in the χ4 direction quantizes as

p4 → −iℏ∂4 . (1.7.49)

The kinetic part of the Hamiltonian would be altered as

Ĥ0 = −
ℏ2

2m
∇̂2 = − ℏ2

2m

4∑
k=1

∂2k . (1.7.50)

Within ∂4, the {χ4
+, χ

4
∅, χ

4
−} structure is such that each variant should be given its

own derivative. In the picture of ontological basis vectors as cosmological lattice

vectors, one would assume the possibility for arbitrary momenta in the form p4 =
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(aχ̂4
+, bχ̂

4
∅, cχ̂

4
−). In that case, one might omit the spatial momentum of physical

3-space to write

Ĥ ′
0

∣∣ψ〉 = − ℏ2

2m

(
∂2+ + ∂2∅ + ∂2−

)∣∣ψ〉 . (1.7.51)

However, (1.7.51) assigns physical dimension to the abstract coordinates which prob-

ably ought to be dimensionless. In that case, one would drop the ℏ2/m from (1.7.51)

with an intention to write a Schrödinger equation completely in the abstract coor-

dinates. Furthermore, (1.7.49) may not be the correct quantization prescription at

all. The three-fold structure on χ4 is such that its quantization prescription might be

exotic.

A New Separable or Non-Separable Potential Energy Function While the KKT re-

quirement for a vanishing 5D Ricci tensor is an obstacle to the direct introduction of

a new polynomial energy function of χ4, the physical concept of a unit cell invokes

a regular, periodic potential energy function. Such a function is the foundation of

lattice physics. An upside down Dirac comb forbidding the bulk of Σ± while allowing

the labeled branes seems like an energy that would motivate H→Ω→A→H as a

generalized Euler–Lagrange process. What a new periodic term in Ĥ might be when

KKT requires no 5D matter-energy deserves further study.

Another issue is that we have no units for χ4 (yet) but any new energy function

must be quantified in Joules if it is of the separable variety. Non-constant energy

functions always depend on the units of the coordinates to achieve the dimension-

ality of Joules. An example of a non-separable new energy function not requiring

dimensionful χ4 is one where a dimensionless piece associated with the unit cell mul-

tiplies part (or all) of an existing Hamiltonian. This would represent, for example,

the scale factor for changing energies across changing levels of aleph (Section 1.7.3).

For dimensionful χ4, the MCM plane wave ansatz must be revised as

ψ(x, t, χ4
±) = exp

{
i
(
k · x− ωt+ β±χ

4
±
)}

, (1.7.52)

where β± is a frequency or wavenumber analogue. If we are to keep the Schrödinger

equation’s time derivative part as it is, the only possibility for new physics is a new

energy term. While this strongly suggests that a fundamental modification to the

time derivative part of Schrödinger’s equation is required, we will briefly examine the

case in which a third derivative associated with M̂3 appears as a new energy term.

Operating on ψ with ∂34 will bring down three powers of the scalar β. As written,

(1.7.52) allows plane waves to propagate only along cosmological lattice vectors. To
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add propagation in the direction of arbitrary superpositions of lattice vectors, which

is to allow waves with arbitrary p4=(p+, p∅, p−), the ansatz must be revised as

ψ(x, t,χ4) = exp
{
i
(
k · x− ωt+ β ·χ4

)}
, with χ4 = (χ4

+, χ
4
∅, χ

4
−) . (1.7.53)

In this case, the third derivative will bring down a vector |β|2β resulting in an eccen-

tric analytical expression:

iℏ∂0ψ =
(
Ĥ0 + i∂34

)
ψ =

(
|p|2

2m
+ |β|2β

)
ψ . (1.7.54)

What would be the meaning of the sum of a scalar and a vector? The main venue for

such a sum in physics is the quaternions. The sum of a vector and a scalar cannot

be written off immediately as nonsensical because the MCM Hamiltonian for time

arrow spinors (Section 12) is quaternion-valued [84]. Furthermore, the behavior of

even derivatives to return scalars and odd derivatives to return vectors may be useful

in a scheme for separating odd and even levels of aleph.

Classical Transport of a Quantum System Since the introduction of a third derivative

into the formalism is desired, we might combine the first order Schrödinger equation

with Newton’s second order force law such that

iℏψ̇ = Ĥψ , and m
...
ψ = FMCM . (1.7.55)

The time derivative of ψ replaces the classical position x. This supplementation of

Schrödinger’s equation as a classical trajectory for ψ̇ across the unit cell may be useful

for avoiding KKT Ricci tensor violations in the bulk because the quantity ψ̇ is not

directly associated with matter-energy distributions. It is only the rate of change of

a complex-valued probability amplitude.

As an off-the-cuff example of what is meant by classical transport of a quantum

system, consider that lattice physics is an extended application of Hooke’s law. Re-

stricted to positive displacements, Hooke’s law is

mẍ = kx =⇒ ...
x =

k

m
ẋ . (1.7.56)

One might attempt to associate the oscillation of masses connected by springs (lat-

tice sites) with the the oscillation of the wavefunctions attached to each lattice site.

Since the Hamiltonian is constructed from the the Lagrangian as H =
∑
pq̇−L(q, q̇),

(1.7.56) offers an easy way to introduce a third derivative term into the energy func-
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tion. Substituting the oscillation of position with the oscillation of the wavefunction

allows us to put the third derivative directly into the L(q, q̇) function with
...
x ∝ ẋ.

1.8 Wavefunction Collapse

1.8.1 A Possibility for Retrocausality

A good and modern overview of issues related to retrocausality in wavefunction col-

lapse is found in [85]. To paraphrase briefly, Ellerman’s thesis is that Schrödinger’s

cat is in an entangled superposition of life and death eigenstates while the box is

closed, and that opening the box does not retrocausally affect the life or death of the

cat during that time. Rather, opening the box forces the collapse of the life/death

superposition into one eigenstate or the other by placing a detector outside of the

box. Detectors are modeled in QM as operators which project quantum systems onto

their eigenstates. If the box is opened at time t, then the wavefunction is collapsed

only for times later than t. Ellerman contends, rightly, that the language of QM is

not such that we may determine the life or death of the cat prior to the measurement.

This writer’s minor criticism, however, is the lack of a caveat: Ellerman assumes that

QM is the correct description of nature. He discounts the possibility that QM is

merely a hack allowing us to predict experiments’ results. He does not contextualize

the possibility that such effects as retrocausality may be objectively real even while

QM does not predict them. What is real or not is a matter of semantics, or not, but

it remains true that there may exist a better description of reality than QM. The

interpretation of that other description might suggest retrocausality.

Even while this writer agrees with Ellerman regarding the interpretation of QM,

it is not known what is inside the closed box. Not knowing what is inside is different

that knowing that there is a superposition. If QM’s usual interpretation is correct,

which we have fair reason to suspect, then we would know that the cat exists as a su-

perposition until a detector projects it into one of its life eigenstates. Still, the reader

is encouraged to understand that opening the box may, in fact, retrocausally affect

the life or death of the cat because ignorance of the cat’s state is not exactly knowl-

edge that the state is a superposition. That implication depends on an assumption

that QM is more than just a hack for telling the results of experiments. Obviously,

this writer’s opinion is that QM is exactly that. There probably does exists a better

description than QM. Whether or not a better theory would preclude retrocausality

is unknown. The context of retrocausality in the MCM is that the EM potential Aµ

in H is a superposition of contributions from Aµ± in Σ± (Section 16) so it follows

that physics in the present is at least retrocausal from the abstract future χ4
+ > 0.
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How that may or may not relate to objective chronological retrocausality from the

Minkowskian future light cone remains to be determined.

1.8.2 A Thought Experiment for Retrocausality

Consider a Schrödinger’s cat experiment in the presence of a time machine. A cat is

placed inside a box with a radioactive isotope. A detector will release a poison if the

isotope decays. There exists a clock stationary in the box’ lab frame which measures

lab time. The isotope is removed after a duration of time such that there is a 50%

chance of the cat being poisoned. The isotope is removed automatically from the

box at lab time t0. Then the box is opened at t1> t0 and the cat is observed to be

alive or dead. After that, the observer uses the time machine to travel back in time.

In the past, he opens the box at lab time t′ such that t0 < t′ < t1. The isotope was

already removed from the box at t0 so the poison was either released or not before

t′. If wavefunction collapse does not have retrocausal effects, there should be a 50%

chance of finding the cat either alive or dead at t′ despite the cat being found in one

state or the other at t1. The theory of quantum mechanics predicts that the collapse

of the cat’s wavefunction to the alive or dead eigenstate at t1 should not effect the

probability for observing one state or the other in the past at t′ but theory alone

is not sufficient to determine the outcome of an experiment. It is possible that real

time machine experiments would show that if the cat is observed to be alive or dead

at t1, then opening the box at t′ will always yield a like result. The interpretation

would be that life or death was decided before t0 when the isotope was removed. In

that case, quantum theory would have to concede the retrocausal effects disputed

in [85]. Without doing the experiment, there is no way to know what would be the

result. Even if the result of the experiment showed that the cat’s state at t′ does not

universally agree with the state at t1, the many worlds interpretation of QM would

still make it impossible to conclude that the cat was in a superposition prior to the

respective measurements.

1.8.3 The Collapse Problem

The issue of collapse is mysterious independently from any questions about causality.

How exactly does a detector put a superposition quantum state into an eigenstate?

Neither quantum theory nor its interpretations offer a good answer to this question.

It is intrinsic to QM that observables are represented by Hermitian operators. Once

that is established, mathematical collapse by projection follows directly. However, the

axiom that a physical detector should be represented by a non-physical instantaneous
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collapse operator is unsatisfying. If an operator acts on a non-eigenstate at time t0 and

an eigenstate is instantaneously output, one could ask about the state at t0 and get

two good answers, or two bad ones. Although we might make an appeal to uncertainly

in the experimental resolution of time, QM is a theory of states in Hilbert space at a

definite time. Is the state at t0 collapsed or diffuse? Is it semi-diffuse? State reduction

is a discontinuous mathematical operation but an appeal to the Θ(t− t0)= 1
2
property

of the Heaviside function cannot tell us anything about the physics at t0 because

the theory of linear operators does not permit halfway collapse in progress. So, it is

disappointing that QM provides no equations of motion such that diffuse, unmeasured

superposition states might evolve smoothly into sharp, measured eigenstates. Due to

Schrödinger’s equation being a heat equation, Schrödinger evolution can only broaden

probability distributions. It can never narrow them. This flies in the face of what is

observed: wavefunctions diffuse and then they collapse. Something more than H→
H Schrödinger evolution must take place between consecutive measurements. The

intermediate steps of H→Ω→A→H are introduced to accommodate a theoretical

structure for that additional process. Two extra steps will allow us to add one step

of new physics and a second step to ensure that the new physics arrives at the known

result, albeit with a better explanation than QM provides.

In general, the action of an observation on a quantum state is a projection into

one of the corresponding operator’s eigenstates. However, the action of that operator

on a state is

Â
∣∣ψ〉 = Â

∑
cn
∣∣an〉 =∑ cnan

∣∣an〉 . (1.8.1)

This has not executed the projection operation. Namely, a measurement of observable

A should be

P̂k
∣∣ψ〉 = ∣∣ak〉 , (1.8.2)

so that if eigenvalue ak is obtained from the first measurement, any number of rapidly

repeated measurements will also yield ak. In (1.8.2), P̂k has projected ψ into the 1D

eigenspace spanned by |ak⟩. Unfortunately, there is no dynamical equation for this

and we must say “this is where the magic happens.” Only after finding eigenvalue

ak, collapse is implemented by operating with

P̂k =
1

ck

∣∣ak〉⟨ak∣∣ . (1.8.3)

This extra step at the end of a time evolution is unnatural and clunky but it is the

best QM has to offer for a mathematical description of wavefunction collapse.

Regarding two events a and b and their corresponding measurements A and B,
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it is known that the states observed at A and B cannot be δ functions. δ functions

are not valid wavefunctions in the sense of the Born interpretation which says that a

wavefunction’s modulus squared is a real number. δ functions are also non-compliant

with Heisenberg uncertainty. However, it is an open question of ontology and/or

epistemology whether or not δ functions are part of the process. QM says nothing

about whether a physical detector forces a quantum state into a mathematically

singular δ function at a or b, or only into the width of an experimental resolution. To

wit, there exist two position operators: x̂ and X̂x2
x1
. The first asks where the particle is

and the second asks if the particle is between x1 and x2. Projection onto an eigenstate

of x̂ kicks the state out of Hilbert space as

P̂x̂ :

{∫
dk A(k) ei(kx−ωt)

}
︸ ︷︷ ︸

wavepackets

→
{
δ(x− x0)

}︸ ︷︷ ︸
eigenstates of x̂

. (1.8.4)

This means that projection onto an eigenstate of x̂ at a or b cannot possibly return the

narrowly peaked wavepacket observed at A or B. In terms of the RHS {H′,A′,Ω′},
(1.8.4) reads as x̂ : H′ → Ω′. On the other hand, X̂x2

x1
is such that

P̂X̂ :

{∫
dk A(k) ei(kx−ωt)

}
︸ ︷︷ ︸

wavepackets

→
{∫

dk A(k) ei(kx−ωt)
}

︸ ︷︷ ︸
eigenstates X̂x2

x1

. (1.8.5)

Since a physical measurement can never give us more information than whether or

not a particle is found in some region, X̂x2
x1

represents a physical measurement while

x̂ does not. So, there exists an important, open question about what is really going

on at a and b.

In the psychological picture of the MCM, the observer learning that the particle

is or is not in a given region is the measurement A or B, not the event a or b. δ-

valued states are not observable and the question of the unobserved state at a or b

remains open: does the wavefunction collapse to a δ function between A and B, or

not? Although the eigenstates of x̂ are not observable, do they correspond to the

results of the state interacting with a detector at the events a and b? The inability of

QM to answer this question is referenced when it is asked if QM might be a hack. We

would like the theory to tell us about a and b but it only tells us about A and B. QM

works around the deeper issue regarding fundamental interactions while answering

the practical question about what is visible. A quantum mechanic from Copenhagen

might argue that asking about the ontological realism of a state away from A or B
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is a blunder because that knowledge does not exist but the truth is only that such

knowledge does not exist within QM. It might exist and another theory might describe

it. The three-fold process of M̂3 is formulated to add resolution to this gray area.

Under M̂3, an event happens at a, the results of which are observed at A. Then one

predicts what will happen at b, waits for b to happen, and then observes the results

of b at B.

We want to know how probability distributions can become narrower when the

Schrödinger equation only broadens them, and we want to know if they become sin-

gularly narrow as δ functions at some point during the transit of the unit cell. If

there is a layer of quantum theory where δ functions are obtained, that layer would

be uniquely well suited to connections with the theory of test masses moving along

geodesics in relativistic spacetime because GR is a theory of points, or position eigen-

states. Thus, the MCM’s three-fold structure is purposed toward to answering such

questions about the separateness of the a, b event layer and the A,B observation

layer. Suggesting the relevance of the time lag between the two, the MCM prediction

that observables should be correlated with the delay between an event and its mea-

surement was confirmed in BaBar’s observation of time reversal symmetry violation

(Section 0.1) [32]. Such delay effects are consistent with a state collapsing to a δ

function at an event and then returning to the Hilbert space as a wavepacket when

the observer is eventually notified of the event.

Due to Weyl’s criterion, the eigenstates of an operator with a continuous spectrum

can be approximated to arbitrary precision by the states in the operator’s domain

of self-adjointness.1 Referring to (1.8.4), Weyl’s criterion says that a δ function may

be well approximated by wavepackets from the Hilbert space. If one substitutes the

approximate eigenvectors for the real eigenvectors, the P̂x̂ projection operator can

output the state which is observed at A or B. In this approximation, P̂x̂ :H′→H′

does not kick states out Hilbert space and there is no inherent appeal to rigged

Hilbert space. However, the method of approximate eigenvectors identifies a, b with

A,B when the real time lag between them leaves room for additional physics. QM

has little or nothing to say about this lag and the Weyl convention for approximate

eigenvectors presumes its non-existence.

It is acutely important for the MCM whether or not the state actually collapses to

a δ function so we must not preclude the possibility for δ functions to appear in the

chirological time evolution of a state from Hk to Hk+1. For instance, if there are no

1Unbounded operators such as x̂ and p̂ are typically not self-adjoint on all of Hilbert space. The subspace of Hilbert
space on which an operator is self-adjoint (Hermitian) is the main limitation selecting the H′ subspace of Hilbert space
A′ as the space of physical states in RHS. Since physical observables are represented in QM by self-adjoint operators,
physical states must reside within an operator’s domain of self-adjointness.
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δ-valued states during a transit of the unit cell, then there is no place in the theory for

states unique to the Ω′ part of rigged Hilbert space. In turn, this will affect the MCM

scheme of fundamental particles because the three generations of matter particles are

(presently) associated with the three RHS state spaces. A distinct and potentially

useful property of the Ω′ states is that a wavepacket u(x, t)∈H′ will thermalize, or

diffuse, such that∣∣ψ, t0〉 = c0(t0)u0(x) −→
∣∣ψ, t1〉 =∑

j

cj(t1)uj(x) , (1.8.6)

but if that same state is moved into Ω′

ψ ∈ H′ ⊂ Ω′ =⇒ ψ ∈ Ω′ , (1.8.7)

we should expect distinct thermalization behavior:∣∣ψ, t0〉 = c0(t)u0(x) −→
∣∣ψ, t1〉 =∑

j

cj(t1)uj(x)+
∑
k

ck(t1)δ(x−xk) .1 (1.8.8)

Such behaviors might be observably correlated with correlation amplitudes.

δ functions are also desirable for applications toward quantum gravity. The layer

of collapse to a δ function at a, b is well suited to communication with GR because

GR is a theory of points in spacetime. Points are exact time and space eigenstates,

not approximate ones. Although it is required to describe measurements with X̂x2
x1
, an

association of events with x̂ introduces a layer where the objects of quantum theory

are mathematically compatible with the objects in the theory of gravitation. For

this reason and others, the MCM mechanism for wavefunction collapse should aim to

produce mathematically singular δ functions.

1.8.4 The Double Slit Experiment

The double slit experiment is depicted in Figure 11. In Section 1.8.5, we will examine

the problem of the wavefunction collapsing to a point of scintillation at ts. In this

section, we will examine only the destruction of the interference pattern on the screen

when the path through the slits is measured.

With slits labeled R and L, the MCM proposal to explain the observed wave-

1For convenience, we use discrete notation for continuous states.
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Figure 11: Above, measurements at the source and screen are taken inH0 andH1. No
measurement is made to determine which slit the particle passed through.
After many repetitions, wave interference is observed on the screen because
the monochromatic wavefronts emanating from each slit are on the same
level of aleph. Below, three measurements are made. In addition to looking
at the source and screen, the observer determines which slit the particle
passes through. After many repetitions, wave interference is not observed
because the intermediate measurement increased the level of aleph for the
wavefront coming through one slit or the other. Waves on different levels
of aleph cannot form interference patterns because they are orthogonal.

particle duality [70] is

Waves −→


∣∣ψR, t0; π̂0

〉
→
∣∣ψR, tp; π̂0

〉
→
∣∣ψR, ts; π̂1

〉
∣∣ψL, t0; π̂0

〉
→
∣∣ψL, tp; π̂0

〉
→
∣∣ψL, ts; π̂1

〉 (1.8.9)

Particles −→


∣∣ψR, t0; π̂0

〉
→
∣∣ψR, tp; π̂1

〉
→
∣∣ψR, ts; π̂2

〉
∣∣ψL, t0; π̂0

〉
→
∣∣ψL, tp; π̂0

〉
→
∣∣ψL, ts; π̂1

〉 . (1.8.10)

A first measurement regards the preparation of a monochromatic particle beam at t0.

This measurement takes place in H0 so the state of a particle at the source is∣∣ψ, t0; π̂0
〉
=

1√
2

∣∣ψR, t0; π̂0
〉
+

1√
2

∣∣ψL, t0; π̂0
〉
. (1.8.11)

The total probability amplitude is the sum of the amplitudes for going through the

upper and lower slits. At tp, the beam hits the diffraction plate. Then it continues as

ψR and ψL waves having slits R and L as their respective sources. If no measurement

is made at the slits, each will emit a wavefront of probability amplitude on the π̂0 level
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of aleph. (Recall that π̂ levels of aleph enumerate successive measurements.) Since ψR
and ψL are monochromatic and on the same level of aleph, they are not orthogonal.

The waves will interfere and a subsequent measurement at ts will never show a particle

arriving on the screen at the minima between interference fringes. Many repetitions

will show that the probability distribution on the screen is consistent with interference

between wavefronts sourced from R and L, as in (1.8.9).

Early attempts to explain wave-particle duality in the double slit experiment re-

sulted in the uncontrollable disturbance hypothesis. It was supposed that the act of

measurement cannot be ideal and that, therefore, the measurement interaction be-

tween two quantum systems adds an unobservable phase to the observed state: ψR
or ψL. In turn, that phase destroys the interference pattern. The uncontrollable dis-

turbance explanation has not panned out and increasingly complicated workarounds

were formulated so as to avoid the conclusion that the particle knows about what will

happen at tp. However, the double slit experiment is very strange and no one under-

stands it. It is hard to avoid the conclusion that the particle somehow knows whether

or not an observer will determine the path through the diffraction plate. If a position

measurement is made at tp, it is usually said that the particle knows to go through

one slit or the other. As a result, the interference pattern is destroyed due to the lack

of any wave emittance from the other slit. This explanation is unsatisfying because

the particle should not know anything other than to obey the action principle.

A superior MCM explanation for the observed phenomenon is that the particle

always goes through both slits [70]. Rather than knowing what the observer will

do at tp, a measurement at the diffraction plate separates ψR and ψL onto different

levels of aleph. The interference pattern is destroyed because orthogonal plane waves

cannot interfere, as in (1.8.10). (Orthogonal plane waves were developed in Section

1.7.3.) The problem which remains is to formulate a mechanism by which the collapse

associated with an intermediate measurement at tp will separate ψR and ψL onto two

different levels of aleph. An alternative mechanism might invoke the action associated

with a transit of the unit cell so that the particle choosing one slit or another in the

presence of an intermediate measurement does reflect the action principle. Crossing

an extra unit cell would have higher action favored by the maximum action principle.

In the remainder of this section, however, we will consider the former process from [70]

in which the particle always goes through both slits.

The MCM plane wave ansatz is

ψ(x, t, χ4) = ei(k·x−ωt+βχ
4) . (1.8.12)
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The double slit application requires β whether or not χ4 is dimensionless. To use the

rules for orthogonal plane waves (Section 1.7.3), we must encode the level of aleph

onto the χ4 part of the argument with β. Following the usual notation for

ϕ(x, t) = A0e
ikµxµ = A0e

i(k·x−ωt) ≡
∣∣kµ〉 , (1.8.13)

we will write the ansatz as

ψ(x, t) = A0e
ikAx

A ≡
∣∣kA〉 . (1.8.14)

The minus sign on ωt in (1.8.13) follows from the {−+++} metric signature in H.
The sign on χ4 in (1.8.14) will depend on the {− + + + ±} metric signature in Σ±.

Intermingling for simplicity the abstract and physical coordinates, and ignoring the

constant A0, the orthogonality of MCM plane waves follows as〈
k′A
∣∣kA〉 = ∫ ∞

−∞
dt e−i(ω−ω

′)t︸ ︷︷ ︸
δ(ω′−ω)

∫∫∫
d3x ei(k−k′)·k︸ ︷︷ ︸
δ(3)(k−k′)

∫ ∞

−∞
dχ4 ei(β−β

′)χ4

. (1.8.15)

If the χ4 part is like a small box plane wave (Section 1.7.3), β should be discrete

and the integral over χ4 becomes the Kronecker δ. If β is continuous, it becomes the

Dirac δ. The case of discrete βn lends itself directly to the identification of lattice

sites or levels of aleph. Since each piecewise χ4
± or χ4

∅ has its origin in a given brane

with a corresponding scale, βn would be a scale factor used to preserve the notion of

disparate relative scale between levels of aleph. This scale must be considered when

taking the inner product of states on different levels of aleph. For instance, the inner

product of states in the µ- and ν-branes on the m and n levels of aleph would be〈
k′A
∣∣kA〉 = 〈ψ′; ênν

∣∣ψ; êmµ 〉 = ∫ d4x ei(kλ−k
′
λ)x

λ

︸ ︷︷ ︸
⟨ψ′|ψ⟩

∫ ∞

−∞
dχ4 ei(|êµ|

m−|êν |n)χ4

︸ ︷︷ ︸
δµνδmn

. (1.8.16)

We have previously obtained the relative scale 2πΦ between two H-branes as the
increase of scale at each labeled brane by an amount proportional to the magnitude

of its ontological specifier, as in Figure 12. The β in (1.8.16) imposes that relative

scale on χ4 in the plane wave state: the scale is the absolute value of êmµ . Considering

the big box case of unbounded plane waves, however, β is continuous rather than

discrete. This continuum of scale factor is also seen in Figure 12. Using notation

in which the continuous χ4 parameter associated with the primed level of aleph is
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Figure 12: The monotonic increase of |êµ| across the unit cell’s labeled branes suggests
a continuum of scale factor β.

χ′=β′χ4 + c′, we would write〈
ψ′; êν

∣∣ψ; êµ〉 = 〈ψ′∣∣ψ〉 ∫ ∞

−∞
dχ4 ei(χ

′−χ′′)︸ ︷︷ ︸
δ(β′−β′′)

. (1.8.17)

Either of (1.8.16) or (1.8.17) is sufficient to motivate the wave-particle duality

observed in the double slit experiment. All that is required for (1.8.9) and (1.8.10)

is that β identifies the level of aleph and that waves on different levels of aleph are

orthogonal. With this condition written plainly, future work must devise a mechanism

by which a measurement at tp will separate ψR and ψL onto different levels of aleph.

1.8.5 An Application for the Theory of Negative Time

As state reduction (wavefunction collapse) is understood in the present theory, a

measurement at time t0 is essentially such that

ψ̇(t0) =∞ . (1.8.18)

This is inherently problematic because ∞ is analytically intractable and ψ̇ obeys

iℏψ̇ = Ĥψ . (1.8.19)

If ψ̇ =∞, Schrödinger’s equation is only satisfied with unphysical, infinite energy.

Furthermore, the time arrow is such that infinite ψ̇ will cause total decoherence of the

wavefunction rather than total collapse. In this section, we will sketch a theoretical

mechanism for the apparent infinite rate of wavefunction collapse, and for a period

of Schrödinger coalescence following the usual period of Schrödinger diffusion.

Even without a diffraction grating between a source and a scintillation screen, it
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is not known how the wavefunction might undergo smooth diffusion in transit and

then suddenly collapse to a point on the screen. Wavepackets evolving under the

Schrödinger equation can only become broader, never narrower. It is also not known

whether the wavefunction collapses to a δ function on the screen or only down into

the region spanned by a finite spot of scintillation. The state’s confinement to the

spot may be better associated with the time that the scintillation photons reach the

observer than it is with the interaction between the beam and the screen. The state

at the time of that interaction, b as opposed to B, may be a δ function. So, despite

the observer’s knowledge being limited by the experimental resolution, we might ask

what the wavefunction is really doing on the screen. Is it proper to consider a theory

in which the observed interaction between the screen and the particle outputs a δ

function? While the answers to such questions are not known, it is known that

nothing more than one’s preference supports the argument against asking what is

really happening in QM.1

QM is such that the wavefunction obeys Schrödinger’s equation at all times except

when measurements are made. There, singular, instantaneous collapse flies in the face

of all other known physical processes. Fractional distance analysis offers new tools for

recasting ψ̇=∞ as another expression not at odds with physics as usual. Any rate

of collapse in the neighborhood of infinity must be observationally indistinguishable

from an infinite rate of collapse so we may replace ψ̇=∞ with

ψ̇ ∈ R̂ =⇒ ψ̇(t0) = ℵX + b . (1.8.20)

(R̂ is the positive branch of R less the neighborhood of the origin and the non-

arithmatics, as in Section 1.6.1.) With this rate of collapse, iℏψ̇(t0)=Ĥψ(t0) implies

a finite Hamiltonian:

|ψ|2 ≤ ∞

ψ̇(t0) ∈ R̂

 =⇒
∣∣Ĥψ∣∣ ∈ R̂ . (1.8.21)

Energy in the neighborhood of infinity is consistent with the principle of maximum

action discussed in Section 1.5. Presuming free space between a beam source and a

scintillation screen, energy in the neighborhood of infinity requires that we write

Ĥ = Ĥ0 + Ĥint , (1.8.22)

1’t Hooft’s non-MCM cellular automata model of QM addresses similar questions about what really happens in
QM with novel objects such as ontological states, beables, and changeables. The cellular automata model is parsed for
future inquiry in Section 58.
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in which the interaction energy associated with ψ̇∈ R̂ vanishes everywhere except for

the time and place of a measurement. Ĥint should not be a function of the chrono-

logical time because the observer may choose to make a measurement at arbitrary

times. Such a function could not be defined until after t0 was chosen. Referring back

to the double slit experiment, Ĥint cannot be a function of the spatial variables alone

because collapse only happens at the spatial position of the slits when a measurement

is made. Therefore, Ĥint should be a function of the chirological time such that the ar-

bitrary t= t0 is associated with a regularized periodicity in χ4. For example, we have

associated the preparation of a beam with measurement A in H0 so the observation

of a subsequent scintillation spot in the path of the beam should be associated with

measurement B in H1. Between A and B, event b must occur: the interaction of the

beam and the scintillator. We will take that as the place where ψ̇ suddenly becomes

very large. This sudden change of scale in ψ̇ is well associated with the change of the

level of aleph at ∅ which is located at a constant abstract distance between successive

H-branes. Perhaps we might associate event b with the ∅-brane and set a δ-like Ĥint

term at the location of that topological obstruction between Ω and A. A δ function

is a good candidate for an energy that vanishes everywhere except for the event of

wavefunction collapse when it becomes infinite or enters the neighborhood of infinity.

Now we have suggested a method by which one might obtain the large |ψ̇| observed
in experiments but it remains to explain the sign on ψ̇. For that, we will refer to the

theory of negative time. A good application will be to implement dynamical collapse

as a step of reversed time evolution in M̂3 through a region with a reversed time arrow

such as Σ−. (We may also introduce a reversed time arrow in the χ4
∅ coordinates

between ∅ and A if needed.) Diffusion by Schrödinger evolution in positive time will

become coalescence in negative time, as is required for wavefunction collapse. Since

this step occurs on the higher level of aleph associated with Σ−
{k+1}, we may appeal

to the scale of that level of aleph generating the appearance of discontinuous, non-

dynamical collapse as observed from the lower level. The problem of ψ̇ ̸∈R0 might

be further simplified through an appeal to infinite relative scale between two levels

of aleph. Using ψ̇{k} to refer to the rate of change given in the scale of Hk, we may

obtain

ψ̇{0} = ℵX + b −→ ψ̇{1} =
ψ̇{0}

ℵY
=
X
Y

.1 (1.8.23)

Here, we assume that normalization of the observer’s reference frame onto the k=1

1Arithmetic axioms for numbers in the neighborhood of infinity [2] are such that (ℵX + b)/(ℵY + c)=X/Y ∈R0.
The loss of information about b in (1.8.23) may have applications toward information loss in quantum processes which
exceed the scope of the present section.
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level of aleph requires division by ℵY = Y∞̂. This choice of scale, or a similar one,

makes it possible to resolve the apparent instantaneous rate of change observed on

one level of aleph as a rate in the neighborhood of the origin on the other level of

aleph.

For the present theoretical application, we must refer to the original picture of M̂3

executing t0→ tmax→ tmin→ t1 where t1=(t0 +∆t) [30]. We will identify this process

with the current one so that Ω is associated with tmax and A is associated with tmin.

Essentially, we will require that ∅ is the same big bounce separating two cycles of

cosmology and that it can be reached in the x0 direction or the χ4 direction. This

fits an interpretation of ∅ as a black brane or a black hole/white hole pair.1 Having

established this identification of paths in principle, we will examine the evolution of a

wavepacket across the unit cell parameterized with the chronological time. The steps

of M̂3 will be taken as t0→∞̂, ∞̂→−∞̂, and −∞̂→(t0 +∆t).

Given a δ function initial condition at a t=0 in H0, a particle subjected only to

the free particle Hamiltonian Ĥ0 evolves as

ψ(x, t) =


δ(x) for t = 0√

m

2πℏt
exp

(
−iπ
4

)
exp

(
imx2

2ℏt

)
for t > 0

. (1.8.24)

When the wavepacket gets to Ω or ∅ associated with chronological timelike infinity,

we have

ψ(x, ∞̂) =

√
m

2πℏ∞̂
exp

(
−iπ
4

)
exp

(
imx2

2ℏ∞̂

)
= 0 .2 (1.8.25)

This final state demonstrates an important difference between the wave equation and

the heat equation: the wave equation can recover initial conditions by reversing time

but it is impossible to recover the initial conditions by reversing the heat equation.

Starting with ψ(x,−∞̂) = 0 as the initial condition for a final leg of M̂3 will not

result in a recondensed δ function if ψ̇(x,−∞̂) = 0, which is the present case. To

reconstitute a δ function by reverse time Schrödinger evolution from the ψ=0 initial

condition, a non-vanishing ψ̇ initial condition is required. As a matter of simulating

this condition with numerical analysis, we should consider the backward difference

1If the periodicity of x0 associated with cosmological bouncing sets the x0 axis as a great circle of a sphere, the
periodicity on χ4 is necessarily more complicated than a second great circle. Great circles of a sphere intersect twice
but we desire that chronos and chiros should intersect at the past and future bounces, and in the present. Scribing
this triple intersection onto a sphere gives chiros a character of chirality or helicity relative to chronos.

2ψ=0 does not satisfy the ⟨ψ|ψ⟩=1 probability condition. We might avoid this problem by citing the zero volume
of ∅ in the physical coordinates. Even if ψ did not equal zero, the integral over a pointlike ∅ singularity would not
be equal to unity. However, we might appeal to the changing level of aleph to resolve the point as a volume.
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formula approximation for the first derivative:

ψ̇(x, t) =
ψ(x, t)− ψ(x, t− δt)

δt
. (1.8.26)

By imposing the condition that ψ(x, t−δt) was non-zero, meaning that the wavefunc-

tion did not become identically zero until the last step of a Gaussian integration to

infinity, we will obtain a non-zero ψ̇ initial condition for the M̂3 step of −∞̂→ t0+∆t.

We will use the M̂2 step of ∞̂→−∞̂ to reverse the sign on ψ̇. A cursory examination

of (1.8.24) shows that ψ=0 for any t ̸∈R0 so the M̂1 step should evolve ψ only to the

end of the neighborhood of the origin. Evidently, we are working in the coordinates

where ∞̂ is identified with F0, as in Section 1.6.8 (Figure 9). If we identify ∞̂ with

the first time beyond time in the neighborhood of the origin, then ψ(x, t− δt) ̸=0 and

the backward difference formula for the derivative will facilitate reconstitution of the

δ function beyond infinity. That step will begin with a non-vanishing first derivative.

The method described above will move δ(x) in H0 to δ(x) in H1. However, the

chronological time inH1 is 0t+∆t. Decoherence occurs in the time interval (t0, t+∆t)

so if a detector collapsed the state to δ(x) at event a, the detector should collapse it

to δ(x±∆x) at event b. Uncertainty is such that repeated measurements of position

should differ somewhat. As a proposal for obtaining the ∆x spatial variation needed

for agreement with experiments, we will refer to the irrational part of the relative

scale between levels of aleph. This is the 2πΦ appearing in M̂3|ψ; π̂0⟩= 2πΦ|ψ; π̂1⟩
(wherein infinite relative scale may be implicit in π̂k → π̂k+1.) When rescaling the

observer’s frame onto a new level of aleph as in (1.8.23), and when the scale is an

irrational number, we may achieve wavefunction decoherence leading to δ(x±∆x) as

a novel numerical effect.

Due to an inability to exactly represent irrational numbers as floats, it will not be

possible to exactly reverse diffusion in Σ+ with coalescence in Σ− when x is altered

by an irrational scale factor. For instance, we have shown that the coordinate trans-

formations between the {xµ+, xµ, x
µ
−} physical coordinates are all such that the entries

in the transformation matrix are real numbers but the relationship that sets t=∞̂ as

a conformal infinity at χ4
+=Φ is likely to have a function in it, e.g.:

t(χ4
+) = tan

(
πχ4

+

2Φ

)
=⇒ t(Φ) =∞ . (1.8.27)

In turn, the transformation matrix between physical and abstract coordinates will

have non-constant function entries whose chain rule properties under differentiation

are much different than the static scale factors among the different branes’ physi-
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cal coordinates. Upon irrational rescaling, the appearance of Φ in the argument of

functions periodic in 2π will inevitably require float-precision approximations. The

associated rounding error might be useful for producing what QM assigns as stochas-

tics to dynamics in the MCM. δ(x) in H0 will be reconstituted as δ(x ±∆x) on H1

simply due to rounding error even if the Gaussian time steps are exactly reversed.

Furthermore, when Φ appears in the periodic argument of functions such as ex, the

accumulation of rounding error across many levels of aleph will never lead to runaway,

unphysical solutions because the error will be taken modulo the period. The rounding

error pushed through the function’s periodicity may lead to behaviors similar to sin-

gle slit diffraction particles appearing randomly on a scintillation screen. One would

attempt to the write the correlation function describing the rate of decoherence of a

wavefunction between t and t+∆t in terms of the rounding error. The language of

Lyapunov exponents may be appropriate for such a characterization because chaos is

a byproduct of determinism.

1.9 The Fine Structure Constant

Dirac is quoted as saying the origin of the fine structure constant is, “the most

important unsolved problem in physics,” and rightly so. The link between electro-

magnetism, special relativity, and quantum theory given by the inclusion of e, c, and

ℏ in

αQED =
e2

4πε0ℏc
, (1.9.1)

is a tantalizing hint of some fundamental unification which has escaped detection in

prevailing theories. In that vein, Feynman wrote the following [86].

“It is a simple number that has been experimentally determined to be

close to 0.08542455. (My physicist friends won’t recognize this number, be-

cause they like to remember it as the inverse of its square: about 137.03597

with about an uncertainty of about 2 in the last decimal place. It has been a

mystery ever since it was discovered more than fifty years ago, and all good

theoretical physicists put this number up on their wall and worry about

it.) Immediately you would like to know where this number for a coupling

comes from: is it related to pi [emphasis added ] or perhaps to the base of

natural logarithms? Nobody knows. It’s one of the greatest damn myster-

ies of physics: a magic number that comes to us with no understanding by

man. You might say the ‘hand of God’ wrote that number, and ‘we don’t

know how He pushed his pencil.’ We know what kind of a dance to do
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experimentally to measure this number very accurately, but we don’t know

what kind of dance to do on the computer to make this number come out,

without putting it in secretly!”

The MCM value for the fine structure constant (FSC) is very much “related to” π:

α−1
MCM = 2π +

(
Φπ
)3 ≈ 137 . (1.9.2)

The original motivation for M̂3 in [30] was nothing more than a requirement to

generate the (Φπ)3 term in α−1
MCM. The other context for M̂3 and Υ̂ = Û + M̂3

was reverse engineered from that. (Appendix A reviews the original ideation for

M̂3.) Since the subsequent introduction of the chirological variables has called into

question the ∂x + ∂3t structure of

Υ̂
∣∣Ψα

〉
=
(
∂x + ∂3t

)∣∣Ψα

〉
= α−1

MCM

∣∣Ψα

〉
, (1.9.3)

in this section we will use α̂ such that

α̂
∣∣Ψα

〉
= α−1

MCM

∣∣Ψα

〉
. (1.9.4)

Then we will return to Υ̂ in Section 1.11 and discuss its simultaneous roles regard-

ing αMCM and total evolution combining the chronological and chirological evolution

operators Û and M̂3. A 0.4% discrepancy between αMCM and αQED is discussed in

Section 1.9.4.

1.9.1 Fine Structure in the Unit Cell

The best way to find a place for α̂ and/or its eigenstate might begin with a survey

of physics’ existing roles for αQED: the electron g − 2, the Josephson junction, Som-

merfeld’s work regarding the fine structure splitting of atomic energy levels, etc. For

each given context, one would seek to amend existing relationships and interpretations

with principles unique to the MCM.

The most elementary physical statement of the FSC is the ratio of two energies:

the energy Eee needed to close the distance d between two electrons and the energy

Eγ of a photon with wavelength λ=2πd:

Eee
Eγ

=

(
e2

4πε0d

)
(
hc

2πd

) =
e2

4πε0ℏc
= α . (1.9.5)
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Figure 13: On the right, MCM fundamental matter particles are quanta of spacetime
spanned by xi (space) and either of x0 or χ4 (time). MCM fundamental
bosons are constructed as connections of matter particles. On the left, the
objects of the unit cell are easily parsed as two electrons and a photon.
Each H-brane is an x0xi quantum associated with the electron and the
photon is formed as the union of two x0xi quanta. This arrangement of
the unit cell emphasizes chronological continuity of x0 between H0 and
H1.

The MCM particle scheme in Figure 13 (also Section 0.3) is such that electrons are

quanta of spacetime spanned by xi and x0. Photons are constructed from pairs of such

quanta. Therefore, the Eee/Eγ definition of α suggests the ratio of the energy between

two H-branes to the energy of a complete unit cell. As in Section 1.4 regarding MCM

spin spaces, the {A,H,Ω} structure is evocative of the three spin states afforded to

photons. Even the {Σ+,∅,Σ−} structure suggests the massless photon’s restriction

to two polarization directions. Work is required to develop the MCM particle scheme

to the point where more concrete statements can be made regarding the Eee/Eγ ratio.

Furthermore, the hydrogen atom’s electron and three nuclear quarks may be

matched with an x0xi quantum and three {+,∅,−} variants of the χ4xi spacetime

quantum. Since the hydrogen atom is foremost among α’s physical settings, one

would study the cases for the association of hydrogen’s constructive elements with

the structure of the unit cell. Particularly, we have associated the subscripting on χ4

with QCD color charge so the up-up-down quark construction of the proton does not

precisely match the three variants of χ4. Instead, the particle scheme is such that the

proton is constructed as two right-handed χ4xi spacetimes, and one left-handed. The

intuitive association in Figure 13 is that the Σ± between two H-branes combine with

another instance of Σ+ or Σ− such that one has opposite helicity to the other two.
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Such issues remain to be studied and developed. Particularly, the introduction of ∞̂
following the initial formulation of the MCM particle scheme in [6] is such that we

might differentiate pair of leptons or quarks as triads being anchored at the origin 0̂

or at ∞̂ which functions as the origin of a neighborhood of infinity. In this way, the

uud nucleon structure might be associated with ∅ attached to 0̂ and A,Ω attached

to ±∞̂. A polar model of the unit cell as a 5D sphere whose radial direction is χ4 is

also in order.

1.9.2 The Fine Structure Constant as an Eigenvalue

The FSC is observable so it should be the real eigenvalue of a Hermitian operator α̂.

An ansatz for α̂ is

α̂ =
(
i∂0
)
+
(
i∂4
)3

, (1.9.6)

where

i∂0
∣∣Ψα

〉
= 2π

∣∣Ψα

〉
, and

(
i∂4
)3∣∣Ψα

〉
=
(
Φπ
)3∣∣Ψα

〉
. (1.9.7)

The i∂ operator is a sign conjugated momentum operator in the position represen-

tation or a position operator in the momentum representation. Such operators are

Hermitian and the sum of two Hermitian operators is Hermitian.1 It follows that α̂ is

Hermitian. Its eigenvalue 2π+(Φπ)3 is real so α̂ meets QM’s minimum requirements

for the operator representation of an observable.

Given the proposed form of α̂, the eigenstate with eigenvalue α−1
MCM is

Ψα(x
0, χ4) = exp

{
−i
(
2πx0 + Φπχ4

)}
. (1.9.8)

The particle-in-a-box wavefunction used for Ψα in [3, 30] was not an eigenstate of

α̂ but a former trivial deficiency is remedied in (1.9.8). Still, it remains to find the

meaning of this Ψα state. Since it is our desire to associate the FSC with the structure

of the unit cell, we should consider the case in which Ψα is a plane wave whose wave

vector k or kµ is an MCM reciprocal lattice vector in the MCM direct lattice. The

case in which Ψα is the state of the lattice rather than a state subjected to the lattice’s

regularity structure must be considered. Association of Ψα with the lattice itself will

motivate a context for the Υ̂ total evolution operator to return a universal eigenvalue

when it acts on Ψα. We will return to Υ̂ in Section 1.11.2

1Since the momentum operator is defined on an infinite-dimensional Hilbert space, the Hermiticity condition
Ô=Ô† is technically replaced with a broader condition of self-adjointness. This condition requires that operation to
the right and operation to the left with the conjugate transpose produce the same result.

2A Schrödinger equation for the identity operator was an idea for the origin of α which was omitted from this
book because it could not be quickly developed. However, one might attempt to write a Schrödinger equation for the
identity operator to characterize changing scale from one brane to the next. This exercise would be guided by the
intention to associate αMCM with the changing level of aleph.
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1.9.3 Plane Waves

The fine structure constant should be a characteristic value associated with the unit

cell. Per Section 1.7.3, plane wave states bounded in a finite region are written as

ϕj(r) =
eikj ·r
√
V

, (1.9.9)

where kj is the j
th quantized wavenumber allowed by the finite boundary conditions.

Although we expect (Φπ)3 to come from a third derivative, the V dependence in ϕj
gives a hint of what is needed for αMCM. (Φπ)

3 is the volume of a 3D box whose sides

have length Φπ. The volume interpretation is interesting and deserving of further

study because π̂ and Φ̂ are associated with the H and Ω bounding branes of Σ+ while

the A and H bounding branes of Σ− are associated with 2̂ and π̂. This association of

2 and π in Σ−, and Φ and π in Σ+ is oddly similar to the arrangement of numbers in

2π+(Φπ)3. However, the association of V with αMCM does not directly relate to an

operator eigenvalue α̂|Ψα⟩= α−1|Ψα⟩, apparently. Instead, the volume would show

up in the allowed quantized kj associated with ∂x acting on ϕj. The discrete kj and

ωj are

kj = 2π

(
jx
Lx
,
jy
Ly
,
jz
Lz

)
, and ωj =

k2j
2ℏµ

, (1.9.10)

and we might expect some quantized spectrum for β in the MCM ansatz

ψj(x, t, χ
4) = exp

{
i
(
kj · x− ωjt+ βjχ

4
)}

, (1.9.11)

where j becomes a tuple of five integers. Quantization in β would follow from the

unit cell’s boundary conditions along the χ4 direction.

Considering (1.9.11), spatial derivatives hitting x will produce a sum of three

analytical terms not compatible with αMCM. The original use case for ∂x in [30] relied

on a reduction to one spatial dimension (Appendix A) but the gradient acting on a

3D spatial wavefunction will return three summed factors of 2π, two of which do not

appear in α−1
MCM. This suggests that α̂ should be a combination of ∂0 and ∂4, or a

combination of {∂+, ∂∅, ∂−} derivatives. Allowable forms for α̂|Ψα⟩ include

α̂
∣∣Ψα

〉
= i
(
∂0 + ∂4

)
ei(kj ·x−2πt−Φπχ4) = 2π +

(
Φπ
)3

, (1.9.12)

and

α̂
∣∣Ψα

〉
= i
(
∂− − ∂3+

)
ei(kj ·x−ωjt−2πχ4

−+Φπχ4
+) = 2π +

(
Φπ
)3

. (1.9.13)

Following the program of the particle in a box developed in [3, 30], one would deter-
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mine which geometries are consistent with a given quantization for ω and β. However,

a problem which remains will be an unbounded quantization spectrum leading to an

infinite tier of eigenvalues for α. Experiment does not suggest that the FSC is only one

dimensionless number from a large catalog of such numbers. At best, αMCM≈αMCM is

one of three or four dimensionless coupling constants, the others being αWeak, αStrong,

and possibly the numerically disparate αGrav.

1.9.4 Disagreement Between αMCM and αQED

The L3 Collaboration writes the following [87].

“At zero momentum transfer, the QED fine structure constant α(0) is

very accurately known from the measurement of the anomalous magnetic

moment of the electron and from solid-state physics measurements:

α−1(0) = 137.03599976(50) . (1.9.14)

In QED, vacuum polarization corrections to processes involving the ex-

change of virtual photons result in a Q2 dependence, or running, of the

effective fine-structure constant, α(Q2).”

Figure 14 shows that α−1
QED tends to decrease with increasing energy so it is notable

that

α−1
MCM = 2π +

(
Φπ
)3 ≈ 137.62788 , (1.9.15)

is higher even than what the L3 Collaboration have called α−1(0):

α−1(0)− α−1
MCM ≈ −0.59 . (1.9.16)

Therefore, it must be noted that the energy of scale of a process is not absolute. It

depends on the renormalization scheme as well as the manner of association between

Q2 and the Mandelstam variables, as in Figure 15. It is a common convention to set

the energy scale of αQED to the rest energy of the electron Ee=511keV so that

αQED ≡ α(0) −→ αQED ≡ α(E2
e ) =

e2

4πε0ℏc
. (1.9.17)

This allows us to suppose that α−1
MCM>α

−1
QED might be the true α−1(0). Though the

small scale of keV relative to the GeV scale in Figure 14 suggest that αMCM probably

does not lie on the linear trend of the standard model, the kinks at low energy the

end of the supersymmetric standard model suggest that the uncharted low energy
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Figure 14: This figure shows an updated plot of Amaldi, de Boer, and Fürstenau
[88]. In units natural to high energy physics, the αi plotted here are the
electromagnetic, weak, and strong coupling constants respectively. The
standard model (left) nearly unifies the coupling constants of the forces
but the (minimal) supersymmetric standard model (right) exactly unifies
them at a given energy scale. These famous plots refute any detractors’
claims about indisputable precision in the currently accepted value of αQED

ruling out a physical basis for αMCM.

Figure 15: Plots of ∆α vs E are taken from a seminar of Venanzoni [89] regarding
results from the KLOE collaboration [90]. The s and t variables are the
usual Mandelstam variables for particle scattering. With time increasing
to the right in the inset particle diagrams, one observes that the exchanged
photon moves through the timelike and spacelike regions in the respective
interactions.

113



Next Steps and the Way Forward in the Modified Cosmological Model

region might accommodate αMCM as a value not on the trend line. Since the units of

Figure 14 are not ones in which α−1
QED ≈ 137, a calculation is required to determine

whether even that constant lies on the trend line.

Several measurements of the running of α suggest that αMCM is a reasonable num-

ber. The main results of the L3 collaboration reported in [87] were

α−1(−2.1)− α−1(−6.25) = 0.78± 0.26
(
∆Q2 = 4.15

)
(1.9.18)

α−1(−12.25)− α−1(−3435) = 3.80± 1.29
(
∆Q2 = 3422

)
,

where Q2 is in units of GeV2. Referring to (1.9.16), one notes that

0.59 < 0.78 < 3.80 . (1.9.19)

This suggests the Q2 difference between αMCM and αQED is less than 4GeV2. This

agrees with the supposition for αMCM≡α(0) and αQED≡α(E2
e ), if it isn’t a bit larger

than would be expected. The result reported by the OPAL collaboration in [91] was

∆α(−6.07)−∆α(−1.81) ≈ 0.0044
(
∆Q2 = 4.26

)
. (1.9.20)

Using

α(Q2) =
α(0)

1−∆α(Q2)
, (1.9.21)

(given in [87]) to compute

∆αQED = 1− αMCM

αQED

≈ 0.0043 , and ∆αMCM = 0 , (1.9.22)

we find

∆α−1
QED −∆α−1

MCM ≈ 0.0043 . (1.9.23)

OPAL’s result also fits the present picture of αMCM. In [90], the KLOE collaboration

reports a measurement in the low energy region omitted from Figure 14. They find∣∣∣∣α(Q2
avg)

α(0)

∣∣∣∣2 ≈ 1.029 , for 0.605GeV ≤ Q ≤ 0.975GeV .1 (1.9.24)

Comparing to the present model, we find∣∣∣∣ αQED

αMCM

∣∣∣∣2 ≡ ∣∣∣∣α(E2
e )

α(0)

∣∣∣∣2 ≈ ∣∣∣∣137.03600−1

137.62788−1

∣∣∣∣2 = 1.009 . (1.9.25)

1This value is averaged from Table 2 in [90].
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So, while the discrepancy between αMCM and αQED might have seemed high, KLOE

reports much greater running in the low energy region than might be intuited from

the results of the L3 and OPAL collaborations [87, 91], or from Figure 14 [88]. In

addition to the mild kinks at the low energy range of the supersymmetric model and

the wide running observed by KLOE, the sharp resonance structure observed for α

running in the timelike region (Figure 15) might easily accommodate the present

supposition for αMCM.

The MCM value for the the fine structure constant is well within the experimental

bounds. The fact that α−1
MCM>α

−1
QED is well fitting to the theme of the MCM. Since

the running of the fine structure constant is associated with an effective charge on the

electron due to screening by vacuum polarization, a hypothetical α−1
MCM<α

−1
QED would

force us to associate αMCM with some effective α(Q2) not well suited to the desired

absoluteness of a fundamentally ontological picture. As it is, however, α−1
MCM>α

−1
QED

allows to choose αMCM = α(0) as the perfect, non-effective value that one might

associate with an underlying geometric structure of reality.

Overall, the main purpose of this section has been to refute detractors’ claims

that high precision in the currently accepted value of αQED categorically rules out

a physical basis for αMCM. To that end, the following relevant excerpts appear in a

publication of NIST [92] and a publication of Fritzsch [93].

“Indeed, due to e+e− and other vacuum polarization processes, at an

energy corresponding to the mass of the W boson (approximately 81 GeV,

equivalent to a distance of approximately 2 × 10−17m), α(mW ) is approxi-

mately 1/128 compared with its zero-energy value of approximately 1/137.

Thus the famous number 1/137 is not unique or especially fundamental.”

“[A]t energies which were reached by the LEP–Accelerator,1 of the order

of 200 GeV, the associated value of the finestructure constant is more than

10% higher than at low energy. In any case this signifies that one should

not attach a specific fundamental meaning to the numerical value of the

finestructure constant.”

These sources state what all subject matter experts already knew: detractors’

citations to the 0.4% FSC discrepancy as conclusive evidence of terminal wrongness

are nothing but the libelous vomit of those who would prey on the non-expertise of

certain third parties.2

1These results are found in [87].
2An example of such third parties would be the ones for whom Ellis and You concocted their lie about “reasonable

doubt” in [28].
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1.9.5 Grand Unification

The variation of the fundamental coupling constants is the matter at the heart of the

grand unification of fundamental forces which the MCM hopes to achieve, as in Figure

14. In addition to seeking unification of the coupling constants at a given energy scale,

now we might explore cases for all three αi(0) to fall out of the ontological numbers

combined with the geometry of the unit cell. Even the fourth coupling constant for

gravity which is omitted from grand unification due to its vastly disagreeable scale

(the hierarchy problem) might now be studied as a characterization of the changing

scale from one level of aleph to another.

1.10 Quantum Gravity

1.10.1 Einstein’s Equation

There are a few equations which can be used to initiate the MCM route to Einstein’s

equation. The original route in [3] was as follows. Suppose that the third chronological

time derivative of the ansatz

ψ(x, t, χ4) = exp
{
i
(
kx− ωt+ βχ4

)}
, (1.10.1)

is equal to the translation operator definition of M̂3 (Section 1.7.1):

M̂3
∣∣ψ; π̂〉 = M̂3

∣∣ψ; π̂〉
∂30
∣∣ψ; π̂〉 = Ĵ−Ĵ∅Ĵ+

∣∣ψ; π̂〉 (1.10.2)(
− iω

)3∣∣ψ; π̂〉 = 2πΦ
∣∣ψ; π̂〉

8iπ3ν3
∣∣ψ; π̂〉 = 2π

∣∣ψ; π̂〉+ 2πφ
∣∣ψ; π̂〉 .1

The final line follows from Φ= 1 + φ. In Section 1.10.3, we will give a new, better

motivation for operating differently with M̂3 on the left and right sides of (1.10.2).

The purpose here, however, is to present the mechanism as it appeared previously.

In earlier sections, we discussed two different cases of orthogonality for MCM

states. First, wavefunctions in each unit cell might be orthogonal from those in other

unit cells. Separating the scale factor to maintain ⟨ψ|ψ⟩=1, this condition is written〈
ψ; êmµ

∣∣ψ; ênν〉 = δmn∥êmµ ∥|ênν∥ , (1.10.3)

1In [3], the convention was such that M̂3|ψ; π̂1⟩= iπΦ2|ψ; π̂2⟩ rather than the current convention for M̂3|ψ; π̂0⟩=
2πΦ|ψ; π̂1⟩.
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where m,n refer to the level of aleph. The other picture of orthogonality sets wave-

functions in each brane orthogonal from those in every other brane:〈
ψ; êmµ

∣∣ψ; ênν〉 = δµνδmn∥êmµ ∥|ênν∥ . (1.10.4)

If we are to proceed as in [3], it is required that we adopt the former convention

of (1.10.3). The variants of ψ located in the A-, H-, or Ω-branes of any one unit

cell cannot be linearly independent from each other. Linear dependence allows us to

proceed from (1.10.2) by inserting the identity and rearranging the hats:1

8iπ3ν3
∣∣ψ; π̂〉 = 2π

∥Φ̂∥
∥Φ̂∥

∣∣ψ; π̂〉+ 2πφ
∥2̂∥
∥2̂∥

∣∣ψ; π̂〉
8iπ3ν3

∣∣ψ; π̂〉 = 2π∥π̂∥
Φ

∣∣ψ; Φ̂〉+ 2πφ∥π̂∥
2

∣∣ψ; 2̂〉 (1.10.5)

8πiΦν3
∣∣ψ; π̂〉 = 2

∣∣ψ; Φ̂〉+ ∣∣ψ; 2̂〉 .

Due to the constant 8π appearing at the end of (1.10.5), and due to that alone, the

resultant expression was recognized to be in the form of Einstein’s equation

8πTµν = Gµν + gµνΛ . (1.10.6)

(The overall research program leading to the final line of (1.10.5) is summarized in

Section 1.10.7.) Recasting (1.10.5) as Einstein’s equation requires the introduction of

new variables:

iΦν3
∣∣ψ; π̂〉→ Tµν

2
∣∣ψ; Φ̂〉→ Gµν (1.10.7)∣∣ψ; 2̂〉→ gµνΛ .

Substitution of these variables back into the final line of (1.10.5) yields (1.10.6).

The interpretation of this result is that general relativity describes a condition in

which the present is the sum of the past and the future. Intuitively, we have the

stress-energy tensor Tµν associated with the H-brane. Less intuitively, the Einstein

tensor Gµν is associated with Ω and the cosmological constant is attached to A. The
meaning of Tµν ∈H is clear enough but the meanings of the other assignments are

1This procedure for rearranging hats follows (1.2.22) in Section 1.2.1.

117



Next Steps and the Way Forward in the Modified Cosmological Model

not obvious. Furthermore, we have arbitrarily chosen the entire Einstein tensor

Gµν ≡ Rµν −
R

2
gµν , (1.10.8)

for association with Ω when we might have let Λ→ 0 and assigned the Ricci tensor

and the Ricci scalar to Ω and A through maps other than those in (1.10.7). We have

also assumed that the new variables are in one-to-one correspondence with the states

rather than with their linear combinations.

The desire to phrase general relativity as a statement of the present being equal to

a sum a contributions from the past and future is confounded (or complicated) when

we include an iterator for the level of aleph:

M̂3|ψ; π̂⟩=2πΦ|ψ; π̂⟩ −→ M̂3|ψ; π̂k⟩=2πΦ|ψ; π̂k+1⟩ . (1.10.9)

With the k iterators, Einstein’s equation tells us that the present on one level of aleph

is equal to a sum of contributions from the past and future relative to some time in

the future. Unfortunately, this interpretation is much less clean than what can be

said in the absence of the iterators. To make better sense of the place for Einstein’s

equation, we must first refer to the picture of MCM cosmology states which have gone

untreated thus far.

1.10.2 MCM Cosmology States

Even before the MCM particle scheme was introduced to solve the fundamental prob-

lem of QFT (Section 0.3) [6], the universe was treated as a quantum particle to resolve

another question about why matter dominates over anti-matter in the cosmos [31].

Upon introducing a reverse time universe in fulfillment of a requirement for conserved

momentum at a big bang (or big bounce), an eigenbasis of quantum cosmology

states was defined for a time arrow operator [39]:

T̂
∣∣t+〉 = ∣∣t+〉

T̂
∣∣bounce〉 = 0 (1.10.10)

T̂
∣∣t−〉 = −∣∣t−〉 .

|t+⟩ is the state of a universe U+ whose time arrow is such that the energy of that

universe is positive-definite. |t−⟩ is the state of U− whose energy is negative-definite.

|bounce⟩ is the state of U± simultaneously collapsed to a singularity.1 An observer’s

1In the MCM’s original big bounce treatment [31, 39], |bounce⟩ referred to the apex of a “quantum geometric
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inability to distinguish |t±⟩ led to the |t⋆⟩ superposition as the observer’s present

moment. In quantum theory, ignorance about eigenstates is represented with super-

positions of eigenstates, e.g.: Schrödinger’s cat. The observer writes∣∣t⋆〉 = ∣∣t+〉+ ∣∣t−〉 , (1.10.11)

when he is unable to determine if his present moment belongs to a positively or nega-

tively increasing continuum of time. The |t⋆⟩= |t+⟩+|t−⟩ relationship is important for

MCM electrogravity (Section 18) and the connection of the unit cell to KKT (Section

17) [7]. A simple statement of what it means for the present to be defined as the sum

of components from the past and future is found in the definition

Aµ =
1

2
A+
µ +

1

2
A−
µ , (1.10.12)

which says that the EM potential 4-vector Aµ in H is defined by A±
µ in Σ± (Section

16) [7]. The metric in H defined as a superposition of g±AB as χ4
± → 0 is another

example. The exact details of these dependencies remain to be worked out but we

have clarified what it means for the present to be defined as a sum of contributions

from the past and future.

The MCM supposes that a cosmogenesis bounce event is equivalent to spontaneous

pair creation in the quantum vacuum.1 In [39], the M̂CM operator was introduced

to affect this pair creation as

M̂CM
∣∣bounce〉 = ∣∣t+〉+ ∣∣t−〉 .2 (1.10.13)

The fourth time state |t⋆⟩ is like a state in a Hilbert space of states at time t0
corresponding to the present. Due to certain likenesses between the singular present

moment and the singular apex of a big bounce, the present was identified with the

bounce as ∣∣t⋆〉 ≡ ∣∣bounce〉 =⇒ T̂
∣∣t⋆⟩ = 0 . (1.10.14)

Thus, the convergence of U± on the bounce was associated with the convergence of

the past and future on the present. Subsequent work now suggests that the |t⋆⟩ and
bounce” rather than a true singularity. However, the language of quantum geometry has since been deprecated in the
MCM. The original formulation made an appeal to Ashtekar’s “repulsive force of quantum geometry” [57] to avoid
total topological collapse at the bounce but it is likely that Ashtekar’s avoidance of total collapse was only an artifact
of his numerical algorithms, in the opinion of this writer. Presently, we do associate ∅ with a topological singularity
of infinite curvature.

1A pair of universes coming into existence spontaneously is like pair creation in the vacuum while the total bounce
process for a crunch followed by a bang is like annihilation to a photon followed by γ→e+ p.

2The M̂CM operator was called L̂QC in [39].
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|bounce⟩ cosmology states should be associated with the H- and ∅-branes respec-

tively. The |t⋆⟩ ≠ |bounce⟩ structure is preferable for a number of reasons. For one,

it avoids an implied identification between a spatially extended present moment with

a non-extended big crunch singularity. Whether or not we identify the bounce with

the present, we must reconcile∣∣t⋆〉 = ∣∣t+〉+ ∣∣t−〉 , and M̂CM
∣∣t⋆〉 = ∣∣t+〉+ ∣∣t−〉 (1.10.15)

where the latter mimics (1.10.13) to say that we must be able to obtain past and future

states from a state in the present. The equations in (1.10.15) can only be consistent

if M̂CM is the identity operator, which is not exactly the intended meaning. In this

section, we will show that M̂CM is a new completeness relation. Such relations are

inserted into expressions as the identity.

The |t±⟩ states were originally associated with the positive and negative x0 modes

needed to conserve momentum at the big bang but subsequent work allows us to as-

sociate them with χ4
±. Moving in that direction, we will define a separate chirological

time arrow operator

T̂
∣∣χ4

+

〉
=
∣∣χ4

+

〉
T̂
∣∣χ4

∅
〉
= 0 (1.10.16)

T̂
∣∣χ4

−
〉
= −

∣∣χ4
−
〉
.

with a complete set of eigenstates:

1 =
∑
k

∣∣χ4
k

〉〈
χ4
k

∣∣ , where k ∈ {+,∅,−} . (1.10.17)

When T̂ replaces T̂ as it appears in (1.10.10), and when we identify |bounce⟩≡|χ4
∅⟩ ̸=

|x0⟩, we avoid a degeneracy of the 0 eigenvalue between |t⋆⟩ and |bounce⟩. Instead,

they are eigenstates of different operators reflecting different physical conditions. The

chronological time cannot exist at all in a singularity such as |bounce⟩ because time

and space are condensed to a point. On the other hand, we are well motivated to have

χ4
∅ already defined at the singularity because it is an abstract coordinate. (Recall that

the singularity is associated with the embedded physical metric, not the 5D metric.)
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The T̂ time arrow states may be connected to the ontological states as∣∣t+〉 ≡ ∣∣x0+〉 = ∣∣ψ; Φ̂〉 = ∣∣ψ; Ω〉∣∣t⋆〉 ≡ ∣∣x0〉 =
∣∣ψ; π̂〉 = ∣∣ψ;H〉∣∣t−〉 ≡ ∣∣x0−〉 = ∣∣ψ; 2̂〉 = ∣∣ψ;A〉

 =⇒
T̂
∣∣ψ; Φ̂〉 = ∣∣ψ; Φ̂〉

T̂
∣∣ψ; π̂〉 = 0

T̂
∣∣ψ; 2̂〉 = −∣∣ψ; 2̂〉 ,

(1.10.18)

but it remains to be determined if t± are the past and future of x0 ∈H, if they are

x0+ ∈Ω and x0− ∈A, or if these possibilities are the same. If we use the ontological

basis conventions in (1.10.18), the chirological states must have some other identities:∣∣t+〉 ≡ ∣∣χ4
+

〉
=
∣∣ψ; Σ+

〉
∣∣bounce〉 ≡ ∣∣χ4

∅
〉
=
∣∣ψ;∅〉∣∣t−〉 ≡ ∣∣χ4

−
〉
=
∣∣ψ; Σ−〉

 =⇒
T̂
∣∣ψ; Σ+

〉
=
∣∣ψ; Σ+

〉
T̂
∣∣ψ;∅〉 = 0

T̂
∣∣ψ; Σ−〉 = −∣∣ψ; Σ−〉 .

(1.10.19)

As a guess for how we might describe the new chirological states with the ontological

basis, we will introduce notation such that∣∣ψ; Ω〉 = ∣∣ψ(x); Φ̂〉 ∣∣ψ; Σ+
〉
=
∣∣ψ(χ); Φ̂〉∣∣ψ;H〉 = ∣∣ψ(x); π̂〉 ∣∣ψ;∅〉 = ∣∣ψ(χ); î〉 (1.10.20)∣∣ψ;A〉 = ∣∣ψ(x); 2̂〉 ∣∣ψ; Σ−〉 = ∣∣ψ(χ); 2̂〉 .

This notation is made clearer when the ψ(χ) wavefunction is renamed with the letter

ξ, i.e.: ∣∣ξ; Σ−〉 = ∣∣ξ(χ); 2̂〉 , or
∣∣ξ; Σ−〉 = ∣∣ξ; 2̂〉 . (1.10.21)

We will use the ξ notation in following sections but presently we will continue with

the |x0⟩ and |χ4⟩ notations.
The structure of quantum theory is such that there should exist a transformation

matrix for expressing an arbitrary cosmology state in the chronological or chirological

time arrow eigenbasis. If M̂CM is the completeness relation, the |t⋆⟩= |x0⟩ state is

written in the chirological basis as∣∣x0〉 = M̂CM
∣∣x0〉 =∑

k

∣∣χ4
k

〉〈
χ4
k

∣∣x0〉 =∑
k

ck
∣∣χ4

k

〉
, (1.10.22)

where k ∈ {+,∅,−}. Letting M̂CM be the completeness relation for chronological
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states and taking k∈{+, ⋆,−}, we obtain∣∣χ4
∅
〉
= M̂CM

∣∣χ4
∅
〉
=
∑
k

∣∣tk〉〈tk∣∣χ4
∅
〉
=
∑
k

ck
∣∣tk〉 , (1.10.23)

By setting c⋆=c∅=0, we will obtain equations roughly in the form of (1.10.13):∣∣x0〉 = ∣∣χ4
+

〉
+
∣∣χ4

−
〉
, and

∣∣χ4
∅
〉
=
∣∣t+〉+ ∣∣t−〉 . (1.10.24)

However, this does not necessarily reflect the argument that an observer’s inability

to distinguish t± should lead to the superposition∣∣t⋆〉 = ∣∣t+〉+ ∣∣t−〉 . (1.10.25)

As a guiding principle, one notes that the orthogonal eigenvectors of an operator

can never be expressed as linear combinations of the other eigenvectors. This is

contrary to what is presumed for the |x0⟩ = |x0+⟩ + |x0−⟩ relationship if |x0⟩ is an

eigenvector of T̂ with eigenvalue 0. The similar |x0⟩ = |χ4
+⟩ + |χ4

−⟩ has no such

problem so |x0⟩ ̸= |bounce⟩ is implied. We will revisit these issues in Section 12 when

presenting time arrow spinor states that only have ±1 eigenvalues. Presently, more

thinking is required to understand what reason we might have to set c⋆ = c∅ = 0 in

the expansions of |t⋆⟩ and |bounce⟩, or if we should work in a basis that does not

have a zero eigenvalue. For example, it was decided in [39] that we should write

M̂CM|bounce⟩= |t+⟩+ |t−⟩ but not

M̂CM
∣∣bounce〉 = ∣∣t+〉+ ∣∣t−〉+ ∣∣t⋆〉 , (1.10.26)

because |t⋆⟩ and |bounce⟩ were identified. Subsequently, we have disassociated them

as H and ∅ so we must consider (1.10.26) as a valid case of (1.10.23) deserving further

inquiry with c⋆ ̸=0.

Now that we have introduced time arrow eigenstates, we have set the stage for

a new approach to quantum gravity. Then we will return to MCM cosmology states

in Section 12.

1.10.3 A New Approach to Quantum Gravity

The completeness relations for time arrow states allow us to more tidily phrase general

relativity as a relationship between the stress-energy tensor in the present and a

sum of contributions from the past and future. In the method of Section 1.10.1, we

supposed that there should be two different ways for M̂3 to act on ψ but this was not
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well motivated. To proceed with a better derivation of Einstein’s equation, we will

operate with M̂3 on a state written in the chronological and chirological eigenbases.

Using the ξ notation as in (1.10.21), completeness yields∣∣ψ; π̂〉 =∑
k

∣∣ξ; êk〉〈ξ; êk∣∣ψ; π̂〉 = c+
∣∣ξ; Φ̂〉+ c∅

∣∣ξ; î〉+ c−
∣∣ξ; 2̂〉 . (1.10.27)

Acting with M̂3 on both sides yields

M̂3
∣∣ψ; π̂〉 = M̂3

(
c+
∣∣ξ; Φ̂〉+ c∅

∣∣ξ; î〉+ c−
∣∣ξ; 2̂〉) . (1.10.28)

Now we may say that M̂3 has different representations when it acts on states written

in the different time arrow eigenbases. For example, the Ŝz spin operator is only ℏ/2
times the σz Pauli matrix when it operates on states written in the Sz eigenbasis. It

takes a different form when it operates on states written in the Sx or Sy eigenbases.

One of the major deficiencies in the MCM has been the lack of a good reason for

why M̂3 might act on a state in two different ways and now we have one: M̂3 acts

differently on chronological states than chirological ones. The extent to which such a

mechanism was a missing puzzle piece in the MCM cannot be overstated. (1.10.28)

is probably the most significant new result reported in this book.

To proceed from (1.10.28) differently than the previous derivation starting at

(1.10.2), we will work in the picture where states in different branes are linearly

independent: 〈
ψ; êmµ

∣∣ψ; ênν〉 = δmnδµν∥êmµ ∥∥ênν∥ .1 (1.10.29)

Once again assuming that M̂3 operates on the chronological state as the third chrono-

logical time derivative, we have

8iπ3ν3
∣∣ψ; π̂〉 = M̂3

(
c+
∣∣ξ; Φ̂〉+ c∅

∣∣ξ; î〉+ c−
∣∣ξ; 2̂〉) . (1.10.30)

Assuming c∅=0, this reduces to Einstein’s equation via

iπ2ν3
∣∣ψ; π̂〉→ Tµν

c+M̂
3
∣∣ξ; Φ̂〉→ Gµν (1.10.31)

c−M̂
3
∣∣ξ; 2̂〉→ gµνΛ ,

or similar. The cases for c∅ ̸=0 would be accommodated by the parts of Gµν=Rµν −
R
2
gµν . Since we have taken the states in different branes to be linearly independent,

1Compare to (1.10.3).
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we might write the c∅=0 case as

iπ2ν3
∣∣ψ; π̂〉→ Tµν

c+M̂
3
∣∣ξ; Φ̂〉→ Rµν (1.10.32)

c−M̂
3
∣∣ξ; 2̂〉→ (

Λ− R

2

)
gµν .

The previous definition for the new variables (Section 1.10.1)

iΦν3
∣∣ψ; π̂〉→ Tµν

2
∣∣ψ; Φ̂〉→ Gµν (1.10.33)∣∣ψ; 2̂〉→ gµνΛ .

left an open question about how the same ψ could be mapped to three different ten-

sors when the êµ do not analytically represent much more than a change of scale.

In (1.10.31) and (1.10.32), this problem may be avoided if chirological states are not

eigenstates of M̂3. Work is needed to develop the ψ(x) and ξ(χ) analytical represen-

tations of the time arrow states and to determine the transformation equations for

obtaining the gravitational theory. Finding the exact correspondence between MCM

states and GR tensors is the principal outstanding work unit for MCM quantum

gravity.

Overall, the language of the respective time basis states answers a question which

was left open in previous descriptions of MCM quantum gravity [1,3,71,94–96]. Now

M̂3 can operate on the same state in two different ways if the state is represented in

two different eigenbases. Finally, the identification of M̂3 as a third time derivative

in one representation remains in good agreement with our other intention to generate

the (Φπ)3 term needed for αMCM.

1.10.4 Comparison to Higgs’ Seminal Result

To demonstrate that the MCM mechanism for quantum gravity represents a standard

method in physics, we will compare it to the method used by Higgs in his 1964 pa-

per regarding what is now called the Higgs(–Englert–Brout–Guralnik–Hagen–Kibble)

mechanism. Higgs wrote the following [12].

“[Consider the case in which two] scalar fields φ1, φ2 and a real vector
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field Aµ interact through the Lagrangian density

L = −1

2

(
∇φ1

)2 − 1

2

(
∇φ2

)2 − V (φ2
1 + φ2

2)−
1

4
FµνF

µν , (1.10.34)

where

∇µφ1 = ∂µφ1 − eAµφ2

∇µφ2 = ∂µφ2 + eAµφ1 (1.10.35)

Fµν = ∂µAν − ∂νAµ ,

e is a dimensionless coupling constant, and the metric is taken as −+++.

L is invariant under simultaneous gauge transformations of the first kind

on φ1 ± iφ2 and the second kind on Aµ. Let us suppose that V ′(φ2
0) =

0, V ′(φ2
0)>0; then spontaneous breakdown of U(1) symmetry occurs. Con-

sider the equations (derived from [(1.10.34)] by treating ∆φ1,∆φ2, and Aµ
as small quantities) governing the propagation of small oscillations about

the ‘vacuum’ solutions φ1(x)=0, φ2(x)=φ0:

∂µ
{
∂µ
(
∆φ1

)
− eφ0Aµ

}
= 0 ,{

∂2 − 4φ2
0V

′′(φ2
0)
}(

∆φ2

)
= 0 , (1.10.36)

∂νF
µν = eφ0{∂µ

(
∆φ1

)
− eφ0Aµ} .

Equation [(1.10.36b)] describes wave whose quanta have (bare) mass 2φ0{V ′′

(φ2
0)}1/2; Eqs. [(1.10.36a)] and [(1.10.36c)] may be transformed, by the in-

troduction of new variables

Bµ = Aµ −
(
eφ0

)−1
∂µ
(
∆φ1

)
, (1.10.37)

Gµν = ∂µBν − ∂νBµ = Fµν ,

into the form

∂µB
µ = 0 , ∂νG

µν + e2φ2
0B

µ = 0 . (1.10.38)

Equation [(1.10.38)] describes vector waves whose quanta have (bare) mass

eφ0. In the absence of the gauge field coupling (e=0) the situation is quite

different: Equations [(1.10.36a)] and [(1.10.36c)] describe zero-mass scalar

and vector bosons, respectively. In passing, we note that the right-hand side

of [(1.10.36c)] is just the linear approximation to the conserved current[.]”
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In (1.10.35), Higgs assumes his scalar fields φ1, φ2 obey certain equations. Simi-

larly, we have assumed that there exist two different, complete time arrow eigenbases

satisfying

M̂3
∣∣ψ; π̂〉 = ∂30

∣∣ψ; π̂〉 , and
∣∣ψ; π̂〉 = c+

∣∣ξ; Φ̂〉+ c∅
∣∣ξ; î〉+ c−

∣∣ξ; 2̂〉 . (1.10.39)

Higgs imposes a broken U(1) symmetry by setting V ′(φ2
0) = 0 and V ′(φ2

0) > 0. We

have set c∅=0 to write

8iπ3ν3
∣∣ψ; π̂1

〉
= c+M̂

3
∣∣ξ; Φ̂〉+ c−M̂

3
∣∣ξ; 2̂〉 . (1.10.40)

Next, Higgs introduces variables Bµ and Gµν . Our next step was to introduce new

variables as

iπ2ν3
∣∣ψ; π̂〉→ Tµν

c+M̂
3
∣∣ξ; Φ̂〉→ Gµν (1.10.41)

c−M̂
3
∣∣ξ; 2̂〉→ gµνΛ .

Written in his new variables, Higgs claims that (1.10.38) “describes vector waves

whose quanta have (bare) mass eφ0.” We have claimed that (1.10.40) written in

terms of our new variables is Einstein’s equation, which is true.

The main deficiency of the MCM program relative to Higgs’ is that the new

MCM variables are introduced by an unstated correspondence between rank-2 ten-

sors whereas Higgs has given his new variables with definite tensorial equations. This

deficiency requires remediation in future work.

1.10.5 An Alternative for M̂3

MCM quantum gravity is a relationship between M̂3 acting on a state’s representation

in the chronological and chirological bases. Therefore, one might ask if M̂3 : H→
Ω→A→H can be achieved by acting on chirological states rather than the |ψ; π̂⟩
chronological state that we have discussed. The representation of a chronological

eigenstate in the chirological basis as∣∣ψ, t0; π̂0
〉
≡
∣∣x0〉 = ∣∣χ4

+

〉
+
∣∣χ4

−
〉
, (1.10.42)

suggests that M̂3 acting on |x0⟩ would act on |χ4
+⟩ and |χ4

−⟩ simultaneously in the

other representation. Recalling that the arrows of time point oppositely in Σ±, M̂3

might evolve |χ4
+⟩ and |χ4

−⟩ to Ω and A such that the evolved state |ψ, t1; π̂1⟩ is deter-

126



Jonathan W. Tooker

Figure 16: This figure illustrates a method in which one might avoid parameterizing a
smooth curve through ∅. On the left, the solid and dashed lines show the
trajectories of χ4

+ and χ4
− eigenstates away from H along their respective

arrows of time. By concatenating the path through Σ− to the end of the
path through Σ+, we obtain an evolvedψ +∆ψ state in H1.

mined from the difference or ratio across ∅ without computing a smooth trajectory

through it. By fixing the path in Σ+ and adjusting the path in Σ− to fit a matching

condition at ∅, the |ψ, t0; π̂0⟩ initial state would be adjusted to the |ψ, t1; π̂1⟩ final
state in H1, as in Figure 16.

This method would be a trick for computing the steps of M̂3 out of order so as to

avoid computing a step of smooth evolution through ∅. One would attempt to corre-

late the ∆ψ obtained from this method with the ∆ψ obtained from the Schrödinger

equation. The conjecture that this parallel method for M̂3 might exist is included

here in large part because the possibility for reverse engineering a solution from the

Schrödinger equation represents a definite work unit with an absolute calculation as

its starting point.

1.10.6 The Planck Law

One of the most exciting features of the MCM mechanism for quantum gravity is the

exotic ν3 frequency dependence in the stress-energy tensor:

iπ2ν3
∣∣ψ; π̂〉→ Tµν . (1.10.43)

Physics’ foremost setting for ν3 is the Planck law

B(ν, T ) =
2hν3

c2
1

e
hν
kT − 1

. (1.10.44)

B is called the spectral radiance of blackbody radiation. The function B(ν, T ) returns

the energy carried by blackbody photons in each slice of constant wavelength at a
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given temperature. Similarly, we have obtained Einstein’s equation by associating

the ν3ψ term with the stress-energy tensor in H which is the χ4 = 0 slice of the χ4

spectrum (up to some nuance about χ4
±=0 not being defined.) This likeness of the

stress-energy tensor and the spectral radiance is exciting because the ν3 dependence

is already known to describe energy per slice. The Planck law is approximately the

only place in physics where ν3 appears. This congruence in the ν3 dependency is

interpreted as another strong hint that the MCM is producing results which deserve

further study.

Written in terms of the wavelength, the Planck law is

B(λ, T ) = −B(ν, T )
dν

dλ
=

2hc2

λ5
1

e
hc

λkT − 1
. (1.10.45)

This formula is true only for blackbody photons having dispersion relation ω(λ) =

2πcλ−1. The antiderivatives of (1.10.44) and (1.10.45) are proportional to ν4 and

λ−4, and it is the antiderivatives which obey the λν = c on-shell dispersion relation

for photons. Namely, it is only in the integrated radiance that we may make direct

substitutions with ω(λ). For example, if we plug the photonic dispersion relation into

(1.10.43), we get

iπ2ν3
∣∣ψ; π̂〉 = iπ2c3

λ3
∣∣ψ; π̂〉 (1.10.46)

which is not in the λ−5 form of (1.10.45). To preserve the relationship between the

state corresponding to the stress-energy tensor and the Planck law, we must associate

the integrated Planck law with the integrated wavefunction, as in the Dirac bra-ket.

This is well reasoned because the wavefunction describing probability amplitude in

some non-singular region of space would be associated with the Planck radiance in

some non-singular band of the EM spectrum. Infinitesimal probability amplitude per

position is matched with infinitesimal energy per wavelength. The expressions must

be integrated for comparison to observables.

The Stefan–Boltzmann law says that the total emitted blackbody energy (per unit

time) is equal to a constant times the fourth power of the temperature. Therefore, we

would seek to associate the normalization of the MCM state with the temperature.

χ4 describes the relative scale of the normalization of states among different branes

so we may seek to associate χ4 with the thermodynamic temperature T in B(ν, T )

suggesting (ν, T )→ (x0, χ4). With this identification of variables, it follows that the

stress-energy tensor in question is the one at a definite chronological time in the

brane whose scale is set by χ4. In good agreement, the state |ψ; π̂⟩ which maps to

Tµν is implicitly |ψ, t; π̂⟩ at some definite time t. Furthermore, Wien’s displacement
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law predicts the peak of the spectral intensity function and this should be associated

with the expectation of some operator operating on the state associated with Tµν .

1.10.7 A Large Enough Number of Coincidences

If the proof is in the pudding, we have only presented an exceptional basket of ingredi-

ents for M̂3 and its use cases. If M̂3 should never pan out, other results regarding the

Riemann hypothesis, classical electrogravity, and the fundamental problem of QFT

will stand on their own. Experimental data will eventually confirm that the spectrum

of MCM lattice vibrations is the true particle spectrum, or it will not. In the hope

and belief that M̂3 will pan out, the purpose of this section is to review and summa-

rize a large number of positive results following from M̂3 and leading to Einstein’s

equation. These results support the supposed existence of the new variables needed

to obtain general relativity from a picture of quantum mechanics.

Firstly, it must be emphasized that the original discovery of Einstein’s equation

in the MCM was not goal-sought. When it was found, there was no intention to

find it. It was not recognized until it had already been written. After discovering

2π + (Φπ)3≈ 137, the operator M̂3 was goal-sought toward (Φπ)3 but that was not

the case for the dimensionless 8π in

8πTµν = Gµν + gµνΛ . (1.10.47)

Neither was it the intention to show that GR is a restatement of the M̂CM|t⋆⟩ =
|t+⟩ + |t−⟩ equation which had already been supposed as the MCM’s philosophical

kernel [31, 39]. When 8π first appeared in 2012 [3], the context had nothing to do

with GR. Given a translation operator definition of M̂3 as in

M̂3
∣∣ψ; π̂0

〉
= 2πΦ

∣∣ψ; π̂1
〉
, 1 (1.10.48)

it was asked what would happen if M̂ was a time derivative. The result which followed

was described in Section 1.10.1. New variables were introduced and the result was

Einstein’s equation [3, 95].

With the serendipity of the development now emphasized, it is acknowledged that

the number of hypothesized and/or supposed inputs required to construct the orig-

inal mechanism [3, 95] was large enough to generate the superficial appearance that

a sufficiently long string of suppositions can be used to output any desired result.

However, the quantum gravity result, which is a new tool for synthesizing the objects

of two disparate mathematical languages, was not desired. It fell out on its own from
1A different constant than 2πΦ was used in [3].
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unrelated thinking. Ten years later, the result is now greatly improved, as in Section

1.10.3. We have reduced the number of unanswered questions left by the original

derivation. Those questions included the following.

� Why should M̂3 act on ψ in two different ways?

� If M̂3 does act on ψ in two different ways, why should one of them be a third

time derivative?

� Why should we invoke the given numerical values for the ontological basis at all

when linearly independent bases are usually defined by orthogonality irrespective

of magnitude?

� Even if the above are granted, what is the definite relationship between the

|ψ; êµ⟩ states and the objects in Einstein’s equation?

M̂3 should have a different representation when acting on the eigenstates of the

chronological and chirological time arrow operators. This answers the first question

about why the other questions are worth asking. The second question asks why

M̂3 should take the form of the third time derivative needed to generate 8π and

the ν3 connection to Planck’s law. This question remains open but M̂3 = ∂3 was

already found to be useful for work predating the quantum gravity application. It

was expected that a third derivative is needed for α̂|Ψα⟩ = α−1
MCM|Ψα⟩. The third

derivative was also contextualized by the MCM reference to the theory of advanced

and retarded EM potentials in [30]. This context predated the GR application, i.e.:

the Abraham-Lorentz force

FAL = m(ẍ− τ ...x ) , (1.10.49)

for radiation damping (Section 16) brought in a third time derivative a year before

Einstein’s equation was obtained. Finally, when it was observed that Laithwaite

had suggested the time derivative of acceleration—another third derivative—as a

possible cause for the anti-gravity effects observed in spinning discs [97, 98], this

writer was inspired to explore the ansatz for M̂3∝∂3t . Einstein’s equation was derived

forthwith [3].

Another unanswered question regards the number-theoretical assignments for the

ontological basis. The best that can be said is that the {êA, êH, êΩ} set of basis vectors,
like the proposal to use the ∂3t operator, was already entertained independently for

reasons unrelated to quantum gravity [30]. Only later were the ontological numbers

found to output Einstein’s equation [3].
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When the dimensionless coefficient 8π familiar from 8πTµν=Gµν+gµνΛ appeared,

it appeared on the heels of another famous dimensionless constant: αMCM [3, 30].

Furthermore, the emergence of Einstein’s equation as a formal restatement of the

|t⋆⟩ = |t+⟩ + |t−⟩ idea at the heart of the MCM was too much to be assigned as

mere coincidence in the eyes of this writer. Writing M̂CM|bounce⟩= |t+⟩ + |t−⟩ as
Einstein’s equation makes the tantalizing suggestion that the MCM requirement for

global conservation of cosmological momentum is a restatement of the law already

recorded in GR. 8π following so closely after αMCM may be written off as mere coinci-

dence by third parties but, as the personal pet project of this writer, the coincidence

hypothesis is rejected on the basis of too much coincidence. To argue that the reader

should also see more coincidence than should be ignored, we will briefly resummarize

the evolution of ideas.

The Theory of Negative Time A thermodynamic paradox arises in closed universe

models when singularities at past and future timelike infinity are identical. The second

law of thermodynamics requires that the state at future timelike infinity should have

much higher entropy than the state at past timelike infinity. This is resolved by

the introduction of two universes coevolving simultaneously with opposite arrows of

time [31]. The total entropy of both universes is a constant when the entropic increase

of one is offset by the decrease in the other. As the log of the number of microstates,

the entropy should not be affected by any scale factor. Later, it was determined that a

universe with a reversed time arrow is also required to fix a problem of non-conserved

momentum in big bang models [39]. The big bang should decay to a superposition of

positive and negative time modes:

M̂CM
∣∣bounce〉 = ∣∣t+〉+ ∣∣t−〉 . (1.10.50)

A Context for Retrocausality Transport of an observer’s inertial frame though the

bounce requires that the present moment should also be resolved in positive and neg-

ative time modes. In other words, if an observer in the big bang sees a superposition

of two opposite time arrow states converging on his position, then he should see that

at any other time as well. Hence, we arrive at

M̂CM
∣∣t⋆〉 = ∣∣t+〉+ ∣∣t−〉 , (1.10.51)

Fixation on the bounce as a novel moment in [31] was supplanted by the present

being taken as the novel moment of greatest interest [39]. This paved the way for the

connection to quantum mechanical Hilbert spaces of states at the present time.
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(1.10.51) suggests equal places for causality and retrocausality. The main venue

for such mechanisms in physics is the theory of the advanced and retarded electro-

magnetic potentials. The third time derivative in this theory is almost unique in

physics. The idea that the MCM might use such a derivative was first considered

in the context of the Abraham–Lorentz law with no regard for αMCM or gravitation.

This use case for the third derivative predated the similar requirement derived from

the analytical form of αMCM [30].

The Ontological Basis A labeling basis

π̂ ≡ êH , 2̂ ≡ êA , Φ̂ ≡ êΩ , and î ≡ ê∅ , (1.10.52)

was introduced to associate the usual |ψ⟩ analytical formalism with the {t⋆, t+, t−, bounce}
language: ∣∣ψ; π̂〉 = ψ(xi, x0)∣∣ψ; 2̂〉 = ψ(xi−, x

0
−) (1.10.53)∣∣ψ; Φ̂〉 = ψ(xi+, x
0
+)∣∣ψ; î〉 = ψ(xi∅, x
0
∅) .

This form of the êµ basis was called the ontological basis in reference to an intention

to explain certain natural quantities with unique number-theoretical assignments.

Future work may explore an alternative convention for τ̂ with τ=2π.

The Fine Structure Constant It was determined that the numbers in the chosen

basis can be used to construct the dimensionless quantum electrodynamic coupling

constant to within about 0.4% [30]:

α−1
MCM = 2π +

(
Φπ
)3

. (1.10.54)

While some will cite the notion that αQED is known to an accuracy far exceeding the

0.4% discrepancy with αMCM, we have demonstrated in Section 1.9.4 that such preci-

sion does not rule out αMCM. The cubed term in αMCM was noted for its consistency

with a hypothetical ∂3t operator invoked through the context for retrocausality.

Mechanical Precession of Spinning Discs An independent but contemporaneous in-

quiry into the physics of spinning discs quickly led to Laithwaite’s suggestion that the

time derivative of acceleration might be used to explain the anomalous anti-gravity
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effects observed in spinning discs [97, 98]. After already seeing this rare derivative

twice, calculations were made to determine what might result if M̂3∝∂3t .

Einstein’s Equation Following the novel result regarding αMCM, the triply supported

∂3 form for M̂3 yielded a second novel numerical result: the dimensionless constant

8π well known from Einstein’s equation

8πTµν = Gµν + gµνΛ . (1.10.55)

The third derivative had already been under consideration, as had the number-

theoretical basis {π̂, î, Φ̂} by which this equation was derived in [3]. There was no

intention beforehand to show anything related to GR. As this was the second famous

dimensionless constant derived with ∂3 and the ontological numbers, and because

it appeared while examining unrelated theoretical processes, more significance was

assigned to the result than would have been assigned to a similar result appearing

in isolation. The appearance of one such number is easily written off as meaningless

coincidence. Two physically significant, dimensionless numbers are written off less

easily.

The Ontological Resolution of the Identity Following the initial derivation of Ein-

stein’s equation, a third famous dimensionless coupling constant appeared with the

addition of ê∅=2̂:1

1̂ =
1

4π
π̂ − φ

4
Φ̂ +

1

8
2̂− i

4
î . (1.10.56)

In certain natural units, 4π is the dimensionless constant attached to the Poisson

equations for Newtonian gravity and classical electromagnetism:

ρ =
1

4π
∇2ϕ , and Jµ =

1

4π
ηµν∂ν∂λA

λ . (1.10.57)

It is hoped that the ontological resolution of the identity will have vast applications

toward unifying disparate forces of physics. Here, ontology refers to the theory that

the number-theoretical properties of {π̂, î, Φ̂, 2̂} should pertain to fundamental quan-

tities observed in nature.
1Following the introduction of 2̂, the respective assignments of î and 2̂ to the A- and ∅-branes were swapped.
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1.11 Elliptic Curves and the Total Evolution Operator

In this section, we will examine a few properties and iterations of the expected total

evolution operator [3, 30]

Υ̂ = Û + M̂3 . (1.11.1)

We will emphasize an equation for joint chronological and chirological evolutions such

that ∣∣ψ, t0; π̂0
〉
−→

∣∣ψ, t1; π̂1
〉
. (1.11.2)

Then we will show that the cumulative body of MCM material suggests elliptic curves

as the solutions to the evolution equation for M̂3 and Υ̂. In the absence of a definite

equation for Υ̂ or M̂3, however, that which can be said about them is limited. Much

of this section will discuss what does not work before we suggest in Section 1.11.5

that the missing equation is an elliptic curve, or like an elliptic curve.

1.11.1 The Original Proposal for Υ̂

The context for M̂3 in the previous sections has been motivated by the three steps

of H → Ω → A → H inherent to the unit cell. The original motivation for M̂3

(Appendix A) was that some operator should return the cubed term in α−1
MCM. Υ̂

was formulated in [3, 30] to return α−1
MCM as the sum of M̂3 with another operator

appearing in its first power. The Φπ term was expected to be associated with some

new mechanism since Φ does not usually appear in QM. The only reasonable choice

for the linear derivative returning 2π was ∂x. This is the momentum operator divided

by a constant but that operator lacked the complexity required for a new role in

physics. Namely, Υ̂ was envisioned as an evolution operator returning α−1 as a

characteristic of some ontological evolution in the way that the unitary evolution

operator Û returns e−iEt/ℏ when Ĥ does not depend on t. The value for α should be

universal because the evolution generated by Υ̂ would reflect some universal structure

underlying time evolution. The 2D spacetime box first proposed for that structure has

been deprecated1 but the modern thinking remains the same: α should characterize

the unit cell.

Rather than choosing the ∂x derivative directly, we selected Û . The idea was that

Û is proportional to ∂x as

Û(t, t0) = exp

{
−iĤ

(
t− t0

)
ℏ

}
, with Ĥ =

−ℏ2

2m
∂2x + V̂ , (1.11.3)

1Schrödinger’s original derivation of his equation from the stationary action principle [80] has been deprecated
even while the underlying equation remains the same. Presently, the invariant equation is α−1

MCM=2π + (Φπ)3.
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and M̂3 should be a complementary operator proportional to the time derivative.

This was written as

Û ∝ ∂x , and M̂ ∝ ∂t . (1.11.4)

Whatever formalism might have selected ∂x from Ĥ with a square root, as well as

the likelihood that Υ̂ would have returned exp(α−1
MCM), was left to omitted details

via the := relationship. The relations in (1.11.4) were originally stated with the :=

symbol meaning “is defined according to” rather than the present ∝ symbol meaning

“proportional to.”

The case for using Û was mainly to force an association of the Υ̂ operator with time

evolution, and to frame M̂3 as a new kind of time evolution operator. However, the

reference to Û in early work rather than simply writing Υ̂=∂x+M̂
3 may have clouded

the intended meaning. Heavy reliance on the := formalism to omit less important,

ancillary mathematical details also may have hindered what was intended to be a

rapid communication [3, 30].

1.11.2 Υ̂ Redefined with ∂0 and ∂4

Work subsequent to [3, 30] introduced the χ4 variables which alter the possibilities

for Υ̂. Namely, if Û is the chronological time evolution operator then M̂3 should

complement it as the chirological time evolution operator:

Û ∝ ∂x Û : ∂0New χ4 variables

−−−−−−→ (1.11.5)
M̂3 ∝ ∂3t M̂3 : ∂34 .

It was pointed out in Section 1.9.3 that ∂x can return 2π in a problem of one spatial

dimension but the more realistic ∇ operator in 3D will return a sum of three terms

incompatible with αMCM. The introduction of ∂4 allows us to avoid this problem.

The spatial derivative does not appear in the new relationships Û : ∂0 and M̂3 : ∂34 .

Removing ∂i from consideration motivates the universality of the returned value α

because we have eliminated non-universal contributions from arbitrary V (x) potential

energy landscapes. The constant width of the unit cell in the abstract coordinates for

any chronological time step between measurements sketches a good reason for why

the total evolution operator should return a constant value in arbitrary systems.

The meaning on the right in (1.11.5) is that ∂0 acts on Û in Schrödinger’s equation

as

iℏ∂0 Û = ĤÛ , (1.11.6)
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and M̂3 is meant to complement that as, for example,

Υ̂ = iℏ∂0 Û + ∂34M̂
3 . (1.11.7)

A first guess for an equation for Υ̂ would be

∂34M̂
3 + iℏ∂0 Û = ĤMCM

(
Û + M̂3

)
. (1.11.8)

In presenting this guess, we demonstrate what was meant when it was written in [3]

that M̂3 should “complement” Û . The reader is also reminded that Schrödinger’s

equation comes “out of the mind of Schrödinger,” as Feynman puts it [99], and

nowhere else. It has not been derived from first principles and it is not expected

that first principles analysis will conclude with a new total evolution equation for

Υ̂. Rather, (1.11.8) is an example of a new equation for M̂3 which should reduce

to Schrödinger’s equation in the limit vanishing χ4 and vanishing derivatives with

respect to χ4. The vanishing derivative removes M̂3 on the left and vanishing χ4

should remove it on the right. Without those terms, (1.11.8) is the Schrödinger

equation in H.

1.11.3 The Schrödinger Equation for Υ̂

Considering Υ̂ as it was before χ4, Schrödinger’s equation for Û + M̂3 is

iℏ∂0
(
Û + M̂3

)
= Ĥ

(
Û + M̂3

)
. (1.11.9)

If Ĥ is a pre-MCM Hamiltonian, then (1.11.9) is separable as

iℏ∂0 Û = ĤÛ , and iℏ∂0 M̂3 = ĤM̂3 . (1.11.10)

The condition that Ĥ is “pre-MCM” means that iℏ∂0 Û=ĤÛ is valid. If M̂3 depends

on x0, then it is equal to Û . If it does not depend on x0, then ∂0M̂
3=0 and it follows

that M̂3=0 or Ĥ=0. These results are not useful. Under the naive operation of M̂3

as a translation operator, we have

Υ̂
∣∣ψ, t0; π̂0

〉
= Û

∣∣ψ, t0; π̂0
〉
+ M̂3

∣∣ψ, t0; π̂0
〉

(1.11.11)

=
∣∣ψ, t1, π̂0

〉
+ 2πΦ

∣∣ψ, t0; π̂1
〉
.

The orthogonality of MCM plane waves is such that wavefunctions in π̂k cannot

interfere with those in π̂j if k ̸= j. They are linearly independent. If such states did

interfere, then (1.11.11) could in principle yield one coherent probability amplitude
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for a state at time t1 on level π̂1. However, the orthogonality of wavefunctions on

different levels of aleph is required for other applications and we should not suppose

that they might not be orthogonal. Using M̂3 as a translation operator, a coherent

amplitude with the correct t and π̂k specifiers is generated by

Û(t, 0)M̂3
∣∣ψ, 0; π̂0

〉
= 2πΦ

∣∣ψ, t; π̂1
〉
. (1.11.12)

Schrödinger’s equation for ÛM̂3 is

iℏ∂0
∣∣ψ, t; π̂1

〉
= Ĥ

∣∣ψ, t; π̂1
〉

iℏ
2πΦ

∂0 ÛM̂3
∣∣ψ, 0; π̂0

〉
= Ĥ ÛM̂3

∣∣ψ, 0; π̂0
〉

(1.11.13)

iℏ
2πΦ

∂0
(
e−iĤt/ℏM̂3

)
= Ĥ e−iĤt/ℏM̂3 .

If M̂3 does not depend on t, then

M̂3 = exp

{
−iĤ

(
2πΦ− 1

)
t

ℏ

}
. (1.11.14)

This M̂3 combines with Û as

ÛM̂3 = exp

{
−2πiΦĤt

ℏ

}
. (1.11.15)

We have added no physics with this equation. If not for the 2πΦ scale factor, we

would have found M̂3 = 1. M̂3 is still executing some form of equal-time parallel

transport, albeit complemented with the Û operator.

Since the x̂ and p̂ operators don’t commute, (1.11.15) begs that we ask about the

commutation relations of Û and M̂3. If [ Û , M̂3] = 0 as was assumed in (1.11.13),

the chronological time step can be implemented anywhere during the transit of the

unit cell. There would be no difference between landing on Ω or A at t0 or t1. This

is not the desired behavior because it mitigates the dynamical uniqueness which the

intermediate steps at Ω and A were introduced to generate. Clearly, more physics

is required. To the extent that the product ÛM̂3 seems better suited than Û + M̂3

towards total evolutions in the form |ψ, t0, π̂0⟩→|ψ, t1, π̂1⟩, we might consider Υ̂ such

that

e−iΥ̂ = e−iĤt/ℏe−iM̂
3

. (1.11.16)

In this way of writing Υ̂, M̂3 complements Û ’s generator Ĥ rather than Û itself. M̂3
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becomes a new energy term of the sort discussed in Section 1.7.4.

1.11.4 Total Evolution by Υ̂

Toward an evolution equation, the i∂0 part of

α̂ = i
(
∂0 − ∂34

)
, 1 (1.11.17)

is already in Schrödinger’s equation so

α̂
∣∣ψ〉 = i

(
∂0 − ∂34

)∣∣ψα〉 = ĤMCM

∣∣ψα〉 , (1.11.18)

is a good lead toward an equation for M̂3. It contains a third derivative and, given

an appropriate ĤMCM, it almost reduces to Schrödinger’s equation in the limit of

vanishing χ4 and ∂4 derivatives. The only disagreement in that limit is the missing

factor of ℏ. On that count, the units of (1.11.17) were not right to begin with. ∂0 has

units of inverse seconds but ∂34 probably does have those units. Indeed, the equation

i
(
∂0 − ∂34

)∣∣ψα〉 = [2π +
(
Φπ
)3] ∣∣Ψα

〉
, (1.11.19)

does not return a manifestly dimensionless α−1
MCM. Likewise , the operator on the left

side of (1.11.18) is supposed to be dimensionless but the returned value on the right

is an energy. Given these problems with physical units, and given that the values

2π and Φπ must be fixed in Ψα when the wavenumber and frequency are usually

allowed to vary in physical states, we might write an equation totally in the abstract

coordinates as

i

[
∂

∂χ0

− ∂3

∂χ3
4

]∣∣Ψ′
α

〉
= −1

2

[
∂2

∂χ2
1

+
∂2

∂χ2
2

+
∂2

∂χ2
3

]∣∣Ψ′
α

〉
. (1.11.20)

This equation in which we have lowered the tensor indices for convenience sets ĤMCM

as the chirological free particle Hamiltonian with ℏ=m=1, and we have replaced Ψα

with

Ψ′
α(χ

0, χi, χ4) = exp
{
−i
(
2πχ0 + Φπχ4 − kiχi

)}
. (1.11.21)

We have not previously referred to the χ0 and χi abstract coordinates. However,

the question about the universality of the returned value for α is well wrapped up

when we suppose a new equation which only involves derivatives with respect to the

abstract coordinates.
1This operator first appeared as (1.9.6).
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1.11.5 Elliptic Curves

Elliptic curves are third order functions of two variables. Those in Figure 17 are of

the form

y2 = x3 + ax+ b . (1.11.22)

The two lower figures show the behavior of the Riemann ζ function near the z=∞
north pole of the Riemann sphere [46,48]. Given a statement of Υ̂ in which we obtain

αMCM by modifying the time part of Schrödinger’s equation as

−i
(
∂34 − ∂0

)
ψ = Ĥψ , (1.11.23)

the remarkable likeness in Figure 17 is quite remarkable. The affine parameter along

a smooth curve through Σ± connecting two H-branes must increase monotonically

between H0 and H1, as must the chronological time. Therefore, we are invited to

parameterize χ4 in terms of x0. Choosing χ4=τx0 allows us to rewrite (1.11.23) as

−i
(
τ 3∂30 − ∂0

)
ψ =

(
−ℏ2

2m
∂2x + V̂

)
ψ . (1.11.24)

By introducing new variables

x = iτ∂0 , a = τ−1 , y =
iℏ√
2m

∂x , and b = −V̂ , (1.11.25)

we obtain (
x3 + ax+ b

)
ψ =

(
y2
)
ψ . (1.11.26)

This equation must be compared to (1.11.22). The ansatz equation (1.11.23) whose

left side contains the α̂ ∼ Υ̂ operator used to return α−1
MCM is almost an identical

elliptic curve. It is a differential equation whose characteristic curves or auxiliary

equations are likely to be elliptic curves in the form of (1.11.22). The likeness of the

two equations mirrors that between the classical dispersion relation and Schrödinger’s

equation,

ω − k2

2m
= 0 , and

(
iℏ∂t +

ℏ2

2m
∇2

)
ψ = 0 , (1.11.27)

under the change of variables

ω → iℏ∂t , and k → iℏ∇ . (1.11.28)

Fundamental physical equations are usually simple representations of classes of
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Figure 17: Above are two elliptic curves. Below are two figures showing the behavior
of the Riemann ζ function around the north pole of the Riemann sphere.
(a) The curve y2 = x3 − x. (b) The curve y2 = x3 − x + 1. (c) This
figure is taken from [48] wherein the negation of the Riemann hypothesis
was laid out in principle. (d) This figure is taken from [46], one of a few
papers in which independent, formal negations of the Riemann hypothesis
are given. The left-right asymmetry of (a) and (b) is qualitatively very
similar to that in (c) and (d).

equations so it is likely that the equation for M̂3 will be a well known equation

in elliptic curve analysis. Complicating factors on the path to finding the exact

equation include the singularity ∞̂ appearing in ∅. The elliptic curves in Figure

17 are depicted near the origin but the MCM curves are depicted near the opposite

pole of the Riemann sphere at z =∞ ̸∈ C (or z = ∞̂ ̸∈ C.) This is likely to induce

new complexity into the problem which may exceed the usual study of elliptic curves.

Namely, the parameterization which allows us to replace ∂4 with ∂0 must go through

a singularity at ∅. However, if we cast the equation with ∂4 and ∂34 , meaning that we

parameterize x0 in terms of χ4 rather than vice versa, we might avoid the physical
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singularity by remaining in the abstract coordinates.1 In that case, the reversal of

time arrows and the multiple dislocated origins for the piecewise χ4
± and χ4

∅ elements

of what is only called χ4 may complicate an assumption that χ4 and x0 monotonically

increase in tandem between two H-branes. This assumption is required for the affine

parameterization of one as a linear expression of the other.

To emphasize that which is most intriguing in Figure 17, and to work toward

dispelling any suggestion that the similar quality in the figure is meaningless in the

way that certain qualia pertaining to M̂3 are said to be meaningless, consider Wiles’

statement regarding the Birch and Swinnerton-Dyer conjecture [100].

“Mathematicians have always been fascinated by the problem of describ-

ing all solutions in whole numbers x, y, z to algebraic equations like

x2 + y2 = z2 . (1.11.29)

Euclid gave the complete solution for that equation, but for more compli-

cated equations this becomes extremely difficult. Indeed, in 1970 Yu. V.

Matiyasevich showed that Hilbert’s tenth problem is unsolvable, i.e., there

is no general method for determining when such equations have a solution in

whole numbers. But in special cases one can hope to say something. When

the solutions are the points of an abelian variety, the Birch and Swinnerton-

Dyer conjecture asserts that the size of the group of rational points is related

to the behavior of an associated zeta function ζ(s) near the point s = 1.

In particular this amazing conjecture asserts that if ζ(1) is equal to 0, then

there are an infinite number of rational points (solutions), and conversely,

if ζ(1) is not equal to 0, then there is only a finite number of such points.”

Considering that that Birch and Swinnerton-Dyer conjecture regards an object

L(C, z) where C is an elliptic curve, it is known that there exists at least one famous

problem of interest relating elliptic curves to ζ functions. Therefore, a condition of

total and/or profound irrelevance that detractors might cite for the correspondence in

Figure 17 is not the true condition. We have sufficient reason to suppose a connection

between the Riemann ζ function and elliptic curves, and a further connection to M̂3.

As to what the true condition of Figure 17 might be, the formal statement of the

Birch and Swinnerton-Dyer conjecture [100] exceeds this writer’s training.

1Recall that χ4
± is taken as the Ricci scalar defining the dS and AdS physical g±µν metrics when Aµ

± =0. Thus,

χ4
±→±∞̂ at ∅ does not necessarily require an abstract singularity at ∅. (In the abstract coordinates, the location of

∅ at a non-arithmatic number is a sufficient topological obstruction between Σ±.)
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Regarding the difficulty of Birch and Swinnerton-Dyer and its relevance to elliptic

curves, Johnson writes the following [101].

“There is no doubt that elliptic curves are amongst the most closely and

widely studied objects in mathematics today. The arithmetic complex-

ity of these particular curves is absolutely astonishing [emphasis

added ], so it isn’t surprising the Birch and Swinnerton-Dyer conjecture has

been honored with a place amongst the Clay Mathematics Institute’s fa-

mous Millennium Prize Problems. Although some great unsolved problems

carry the benefit of simplicity in statement, this conjecture is not one of

them. There even seems to be an aura of ‘hardness’ over the problem that

keeps many from discovering the true beauty of the conjecture. [sic] The

Birch and Swinnerton-Dyer conjecture today remains, of course, unsolved

and most mathematicians agree that new ideas will need to be developed

to tackle the great problem. A proof will take a great deal of work and

mathematical power.”

The present problem regarding the elliptic curve application for M̂3’s equation

requires a survey of some large volume of number theory. The work might far exceed

the ordinary scope of a PhD problem.

Part II: Problems in Physics

The thesis problems in Part II are presented with less detail than the problem in Part

I. These problems are mostly applications for the MCM and/or fractional distance

analysis toward open problems in physics.

2 Period Doubling

This problem in mathematical physics is as described in the following excerpt from

[96]. It concerns period doubling behavior in equations such as (2.1).

“The original idea for a second number line such as that which appears in

[the MCM ]—chiros as opposed to the original number line: chronos—came

about in a study of the period doubling cascades that arise in chaotic dy-

namics. For example, consider convective rolls in a finite, bounded volume

of fluid heated from below. [This physical system is described by

...
x + kẋ− x+ 4x3 = A cos(ωt) . (2.1)
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