


T H E  N E U R O S C I E N C E  O F I N T E L L I G E N C E

This book introduces new and provocative neuroscience research that advances our
understanding of intelligence and the brain. Compelling evidence shows that genetics play
a more important role than environment as intelligence develops from childhood, and that
intelligence test scores correspond strongly to specific features of the brain assessed with
neuroimaging. In understandable language, Richard J. Haier explains cutting-edge
techniques based on genetics, DNA, and imaging of brain connectivity and function. He
dispels common misconceptions – such as the belief that IQ tests are biased or meaningless
– and debunks simple interventions alleged to increase intelligence. Readers will learn
about the real possibility of dramatically enhancing intelligence based on neuroscience
findings and the positive implications this could have for education and social policy. The
text also explores potential controversies surrounding neuro-poverty, neuro-
social–economic status, and the morality of enhancing intelligence for everyone. Online
resources, including additional visuals, animations, questions and links, reinforce the
material.

Richard J. Haier earned his PhD from the Johns Hopkins University and is Professor
Emeritus at the University of California, Irvine. He pioneered the use of neuroimaging to
study intelligence in 1988 and has given invited lectures at meetings sponsored by the
National Science Foundation, the National Academy of Sciences, the Defense Advanced
Research Projects Agency, the European Molecular Biology Organization, and Cold Spring
Harbor Laboratory. In 2013, he created video lectures, The Intelligent Brain, for The Great
Courses. In 2016, he served as President of the International Society for Intelligence
Research and became Editor-in-Chief of Intelligence.
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C A M B R I D G E  F U N D A M E N TA L S  O F N E U R O S C I E N C E  I N
P S Y C H O L O G Y

Developed in response to a growing need to make neuroscience accessible to students and
other non-specialist readers, the Cambridge Fundamentals of Neuroscience in
Psychology series provides brief introductions to key areas of neuroscience research
across major domains of psychology. Written by experts in cognitive, social, affective,
developmental, clinical, and applied neuroscience, these books will serve as ideal primers
for students and other readers seeking an entry point to the challenging world of
neuroscience.

Forthcoming Titles in the Series:

The Neuroscience of Expertise, by Merim Bilalić

The Neuroscience of Adolescence, by Adriana Galván

Cognitive Neuroscience of Memory, by Scott D. Slotnick

The Neuroscience of Aging, by Angela Gutchess

The Neuroscience of Addiction, by Francesca Filbey
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To my family, who changed the orbit of my life, and
To the memory of my father, who died too young, and
To the memory of my mother, who carried on, and
To the memory of my grandparents, who sacrificed for a future they could scarcely 

imagine.

7



Advanced Praise

“Forty years of Haier’s research and thinking about the neuroscience of intelligence have been
condensed into this captivating book. He consistently gets it right, even with tricky issues like
genetics. It is an intelligent and honest book.”

Robert Plomin, Institute of Psychiatry, Professor of Psychology and Neuroscience, King’s
College London

“An original, thought-provoking review of modern research on human intelligence from one of
its pioneers.”

Aron K. Barbey, Director, Decision Neuroscience Laboratory, Associate Professor in
Psychology, Neuroscience, and Bioengineering, Beckman Institute for Advanced Science

and Technology, University of Illinois at Urbana-Champaign

“Deftly presenting the latest insights from genetics and neuroimaging, Haier provides a brilliant
exposition of the recent scientific insights into the biology of intelligence. Highly timely, clearly
written, certainly a must-read for anyone interested in the neuroscience of intelligence!”

Danielle Posthuma, Professor of Complex Trait Genetics, VU University Amsterdam, The
Netherlands

“The trek through the maze of recent work using the modern tools of neuroscience and
molecular genetics will whet the appetite of aspiring young researchers. The author’s enthusiasm
for the discoveries that lie ahead is infectious. Kudos!”

Thomas J. Bouchard, Jr., Emeritus Professor of Psychology, University of Minnesota

“Richard Haier invites us to a compelling journey across a century of highs and lows of
intelligence research, settling old debates and fueling interesting questions for new generations to
solve. From cognitive enhancement to models predicting IQ based on brain scans, the quest to
define the neurobiological basis of human intelligence has never been more exciting.”

Emiliano Santarnecchi, Berenson-Allen Center for Noninvasive Brain Stimulation,
Harvard Medical School
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“Loud voices have dismissed and derided the measurement of human intelligence differences,
their partial origins in genetics, and their associations with brain structure and function. If they
respect data, Haier’s book will quieten them. It’s interesting to think how slim a book with the
title ‘The Neuroscience of Intelligence’ would have been not long ago, and how big it will be
soon; Haier’s lively book is a fingerpost showing the directions in which this important area is
heading.”

Ian J. Deary, Professor of Differential Psychology, University of Edinburgh

“The biology of few psychological differences is as well understood as that of intelligence.
Richard Haier pioneered the field of intelligence neuroscience and he is still at its forefront. This
book summarizes the impressive state the field has reached, and foreshadows what it might
become.”

Lars Penke, Professor of Biological Personality Psychology, Georg August University
Göttingen

“It increasingly appears that we are within years, not decades, of understanding intelligence at a
molecular level – a scientific advance that will change the world. Richard Haier’s The
Neuroscience of Intelligence gives us an overview of the state of knowledge that covers not only
his own field, the brain, but also recent developments in genetics, and he does so engagingly and
accessibly for the non-specialist. I highly recommend it.”

Charles Murray, WH Brady Scholar, American Enterprise Institute

“This book was overdue: a highly readable and inspiring account of cutting-edge research in
neuroscience of human intelligence. Penned by Richard Haier, the eminent founder of this
research field, the book is an excellent introduction for beginners and a valuable source of
information for experts.”

Dr. Aljoscha Neubauer, University of Graz, Austria, & past president of the International
Society for the Study of Individual Differences

“This book is ‘A Personal Voyage through the Neuroscience of Intelligence’. Reading this
wonderful volume ‘forces thinking,’ which can be said only about a very small fraction of
books. Here the reader will find reasoned confidence on the exciting advances, waiting next
door, regarding the neuroscience of intelligence and based on the author’s three basic laws: 1) no
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story about the brain is simple, 2) no one study is definitive, and 3) it takes many studies and
many years to sort things out.”

Roberto Colom, Professor of Differential Psychology, Universidad Autonoma de Madrid

“Richard Haier’s The Neuroscience of Intelligence is an excellent summary of the major
progress made in the fields of psychology, genetics and cognitive neuroscience, expanding upon
the groundbreaking work of The Bell Curve. He addresses the many misconceptions and myths
that surround this important human capacity with a clear summary of the vast body of research
now extending into the human brain and genome.”

Rex E. Jung, Department of Neurosurgery, University of New Mexico
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Preface

Why are some people smarter than others? This book is about what neuroscience tells us
about intelligence and the brain. Everyone has a notion about defining intelligence and an
opinion about how differences among individuals may contribute to academic success and
life achievement. Conflicting and controversial ideas are common about how intelligence
develops. You may be surprised to learn that the scientific findings about all these topics
are more definitive than you think. The weight of evidence from neuroscience research is
rapidly correcting outdated and erroneous beliefs.

I wrote this book for students of psychology and neuroscience, educators, public
policy makers, and for anyone else interested in why intelligence matters. On one hand, this
account is an introduction to the field that presupposes no special background; on the other
hand, it is more in-depth than popularized accounts in the mass/social media. My emphasis
is on explaining the science of intelligence in understandable language. The viewpoint that
suffuses every chapter is that intelligence is 100% a biological phenomenon, genetic or not,
influenced by environment or not, and that the relevant biology takes place in the brain.
That is why there is a neuroscience of intelligence to write about.

This book is not neutral, but I believe it is fair. My writing is based on over 40 years
of experience doing research on intelligence using mental ability testing and neuroimaging
technology. My judgments about the research to include are based on the existing weight of
evidence. If the weight of evidence changes for any of the topics covered, I will change my
mind, and so should you. No doubt, the way I judge the weight of evidence will not please
everyone, but that is exactly why a book like this elicits conversation, potentially opens
minds, and with luck, fosters a new insight or two.

Be advised, if you already believe that intelligence is due all or mostly to the
environment, new neuroscience facts might be difficult to accept. Denial is a common
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response when new information conflicts with prior beliefs. The older you are, the more
impervious your beliefs may be. Santiago Ramon Cajal (1852–1934), the father of
neuroscience, once wrote, “Nothing inspires more reverence and awe in me than an old
man who knows how to change his mind” (Cajal, 1924). Students have no excuse.

The challenge of neuroscience is to identify the brain processes necessary for
intelligence and discover how they develop. Why is this important? The ultimate purpose
of all intelligence research is to enhance intelligence. Finding ways to maximize a person’s
use of their intelligence is one goal of education. It is not yet clear from the weight of
evidence how neuroscience can help teachers or parents do this. Finding ways to increase
intelligence by manipulating brain mechanisms is quite another matter and one where
neuroscience has considerable potential. Surely, most people would agree that increasing
intelligence is a positive goal for helping people in the lower-than-normal range who often
cannot learn basic self-care routines or employment skills. What then is the argument
against enhancing intelligence so students can learn more, or adults can enjoy increased
probability of greater achievement? If you have a negative reaction to this bold statement of
purpose, my hope is that by the end of this book you reconsider.

Three laws govern this book: (1) no story about the brain is simple; (2) no one study
is definitive; (3) it takes many years to sort out conflicting and inconsistent findings and
establish a compelling weight of evidence. With these in mind, Chapter 1 aims to correct
popular misinformation and summarizes how intelligence is defined and measured for
scientific research. Some of the validity data will surprise you. For example, childhood IQ
scores predict adult mortality. Chapter 2 reviews the overwhelming evidence that there are
major genetic effects on intelligence and its development. Conclusive studies from
quantitative and molecular genetics leave no doubt about this. Because genes always work
through biological mechanisms, there must be a neurobiological basis for intelligence, even
when there are environmental influences on those mechanisms. Genes do not work in a
vacuum; they are expressed and function in an environment. This interaction is a theme of
“epigenetics” and we will discuss its role in intelligence research.

Chapters 3 and 4 delve into neuroimaging and how these revolutionary technologies
visualize intelligence in the brain, and indicate the neurobiological mechanisms involved.
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New twin studies of intelligence, for example, combine neuroimaging and DNA analyses.
Key results show common genes for brain structure and intelligence. Chapter 5 focuses on
enhancement. It begins with critiques of three widely publicized but incorrect claims about
increasing IQ and ends with electrical brain stimulation. So far, there is no proven way to
enhance intelligence, but I explain why there is a strong possibility that manipulation of
some genes and their biological processes may achieve dramatic increases. Imagine a
moonshot-like national research effort to reach this goal; guess which nation apparently is
making this commitment (it is not the USA).

Chapter 6 introduces several astonishing neuroscience methods for studying synapses,
neurons, circuits, and networks that move intelligence research even deeper into the brain.
Soon we might measure intelligence based on brain speed, and build intelligent machines
based on how the brain actually works. Large collaborative efforts around the world are
hunting intelligence genes, creating virtual brains, and mapping brain fingerprints unique to
individuals – fingerprints that predict intelligence. Overlapping neuro-circuits for
intelligence, consciousness, and creativity are explored. Finally, I introduce the terms
“neuro-poverty” and “neuro-SES” (social–economic status) and explain why neuroscience
advances in intelligence research may inform education policies.

Personally, I believe we are entering a Golden Age of intelligence research that goes
far beyond nearly extinct controversies about whether intelligence can be defined or
measured and whether genes are involved. My enthusiasm about this field is intended to
permeate every chapter. If you are an educator, policy maker, parent, or student you need to
know what twenty-first century neuroscience says about intelligence. If any of you are
drawn to a career in psychology or neuroscience and pursue the challenges of intelligence
research, then that is quite a bonus.
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Chapter One

What We Know About Intelligence From the
Weight of Studies

◈

… the attack on tests is, to a very considerable and very frightening degree, an attack on
truth itself by those who deal with unpleasant and unflattering truths by denying them and
by attacking and trying to destroy the evidence for them.

(Lerner, 1980, page 11)

Intelligence is surely not the only important ability, but without a fair share of intelligence,
other abilities and talents usually cannot be fully developed and effectively used … It
[intelligence] has been referred to as the “integrative capacity” of the mind.

(Jensen, 1981, page 11)

The good thing about science is that it’s true whether or not you believe in it.

(Neil deGrasse Tyson, HBO’s Real Time with Bill Maher, April 2, 2011)

Learning Objectives
How is intelligence defined for most scientific research?

How does the structure of mental abilities relate to the concept of a general
intelligence factor?

Why do intelligence test scores estimate but not measure intelligence?

19



Introduction
When a computer beats a human champion at chess or a verbal knowledge game like
Jeopardy, is the computer smarter than the person? Why can some people memorize
exceptionally long strings of random numbers or tell the day of the week on any date in the
past, present, or future? What is artistic genius and is it related to intelligence? These are
some of the challenges to defining intelligence for research. It is obvious that no matter
how you define intelligence, it must have something to do with the brain. Among the many
myths about intelligence, perhaps the most pernicious is that intelligence is a concept too
amorphous and ill-defined for scientific study. In fact, the definitions and measures used for
research are sufficiently developed for empirical investigations and have been so for over
100 years. This long research tradition used various kinds of mental ability tests and
sophisticated statistical methods known collectively as psychometrics. The new science of
intelligence builds on that database and melds it with new technologies of the last two
decades or so, especially genetic and neuroimaging methods. These advances, the main
focus of this book, are helping evolve a more neuroscience-oriented approach to
intelligence research. The trajectory of this research is similar to that in other scientific
fields, which has led from better measurement tools to more sophisticated definitions and
understandings of, for example, an “atom” and a “gene”. Before we address the brain in
subsequent chapters, this chapter reviews the current state of basic intelligence research
issues regarding the definition of intelligence as a general mental ability, the measurement
of intelligence relative to other people, and the validity of intelligence test scores for
predicting real-world variables.

1.1 What is Intelligence? Do You Know It When You

What are four kinds of evidence that intelligence test scores have predictive value?

Why do myths about intelligence persist?
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See It?
It may seem odd, but let’s start our discussion of intelligence with the value of pi, the
circumference of a circle divided by its diameter. As you know, the value of pi is always
the same: 3.14 … carried out to an infinite, non-repeating sequence of decimals. For our
purpose here, it’s just a very long string of numbers in seemingly random order that is
always the same. This string of numbers has been used as a simple test of memory. Some
people can memorize a longer string of the pi sequence than others. And, a few people can
memorize a very long string.

Daniel Tammet, a young British man, studied a computer printout of the pi sequence
for a month. Then, for a demonstration organized by the BBC, Daniel repeated the sequence
from memory publically while checkers with the computer printout followed along. Daniel
stopped over 5 hours later after correctly repeating 22,514 digits in the sequence. He
stopped because he was tired and feared making a mistake (Tammet, 2007).

In addition to his ability to memorize long strings of numbers, Daniel also has a
facility to learn difficult languages. The BBC also arranged a demonstration of his language
ability when they moved him to Iceland to learn the local language with a tutor. Two weeks
later he conversed on Icelandic TV in the native tongue. Do these abilities indicate that
Daniel is a genius or, at least, more intelligent than people who do not have these mental
abilities?

Daniel has a diagnosis of autism and he may have a brain condition called
synesthesia. Synesthesia is a mysterious disorder of sensory perception where numbers, for
example, may be perceived as colors, shapes, or even odors. Something about brain wiring
seems to be amiss, but it is so rare a condition that research is quite limited. In Daniel’s
case, he reports that he sees each digit as a different color and shape and when he recalls
the pi sequence, he sees a changing “landscape” of colors and shapes rather than numerical
digits. Daniel is also atypical among people with autism because he has a higher than
average IQ.

Recalling 22,514 digits of pi from memory is a fascinating achievement no matter how
it is accomplished (the record is an astonishing 67,890 digits – see Section 6.2). So is
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learning to converse in the Icelandic language in two weeks. There are people with
extraordinary, specific mental abilities. The term “savant” typically is used to describe
these rare individuals. Sometimes the savant ability is an astonishing memory or the ability
to calculate rapidly large numbers mentally, or the ability to play any piece of music after
only hearing it once, or the ability to create artistic drawings or sculptures.

Kim Peek, for example, was able to remember an extraordinary range of facts and
figures. He read thousands of books, especially almanacs, and he read each one by quickly
scanning page after page. He could then recall this information at will as he demonstrated
many times in public forums in response to audience questions: Who was the 10th king of
England? When and where was he born? Who were his wives? And so on. Kim’s IQ was
quite low and he could not care for himself. His father managed all aspects of his life
except when he answered questions from memory.

Steven Wilshire has different savant ability. Steven draws accurate, detailed pictures
of city skylines and he does so from memory after a short helicopter tour of the city. He
even gets the number of windows in buildings correct. You can buy one of his many city
skyline drawings at a gallery in London or online. Alonso Clemons is a sculptor. He also
has a low IQ. His mother claims he was dropped on his head as a baby. Alonso creates
animal sculptures in precise detail, typically after only a brief look at his subject. The
artistry is amazing. Derek Pavacinni has a low IQ and cannot care for himself. He is blind
from birth. Derek is a virtuoso piano player. He amazes audiences by playing any piece of
music after hearing it only once, and he can play it in any musical style. It is worth noting
that Albert Einstein and Isaac Newton did not have any of these memory, drawing,
sculpting, or musical abilities.

Savants raise two obvious questions: How do they do it, and why can’t I? We don’t
really know the answer to either question. These individuals also raise a core question
about the definition of intelligence. They are important examples of the existence of
specific mental abilities. But is extraordinary specific mental ability evidence of
intelligence? Most savants are not intelligent. In fact, savants typically have low IQ and
often cannot care for themselves. Clearly extraordinary but narrow mental ability is not
what we usually mean by intelligence.

22



One more example is Watson, the IBM computer that beat two all-time Jeopardy
champions. Jeopardy is a game where answers are provided and players must deduce the
question. The rules were that Watson could not search the web. All information had to be
stored inside Watson’s 15 petabytes of memory, which was about the size of 10
refrigerators. Here’s an example: In the Category, “Chicks Dig Me,” the answer is: This
mystery writer and her archeologist husband dug to find the lost Syrian city of Arkash.
This sentence is actually quite complex for a computer to understand, let alone formulate
the answer in the form of a question. In case you’re still thinking, the answer, in the form of
a question is: Who was Agatha Christie? Watson answered this faster than the humans, and
in the actual match, Watson trounced the two human champions. Does Watson have the
same kind of intelligence as humans, or better? Let’s look at some definitions to consider if
Watson is more like a savant or Albert Einstein.

1.2 Defining Intelligence for Empirical Research
No matter how you define intelligence, you know someone who is not as smart as you are.
It would be unusual if you have never called someone an “idiot” or a “moron” or just plain
dumb, and meant it literally. And, in honesty, you know someone who is smarter than you
are. Perhaps you refer to such a person in equally pejorative terms like “nerd” or
“egghead,” even if in your innermost self, you wish you had more “brains.” Given their
rarity, it is less likely you know a true genius, even if many mothers and fathers say they
know at least one.

There are everyday definitions of intelligence that do not lend themselves to scientific
inquiry: Intelligence is being smart. Intelligence is what you use when you don’t know what
to do. Intelligence is the opposite of stupidity. Intelligence is what we call individual
differences in learning, memory, and attention. Researchers, however, have proposed a
number of definitions and mostly they all share a single attribute. Intelligence is a general
mental ability. Here are two examples:

1. From the American Psychological Association (APA) Task Force on Intelligence:
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“Individuals differ from one another in their ability to understand complex ideas, to
adapt effectively to the environment, to learn from experience, to engage in various
forms of reasoning, to overcome obstacles by taking thought” (Neisser et al., 1996).

2. Here’s a widely accepted definition among researchers:

[Intelligence is] “a very general mental capability that, among other things, involves the
ability to reason, plan, solve problems, think abstractly, comprehend complex ideas,
learn quickly and learn from experience … It is not merely book learning, a narrow
academic skill, or test-taking smarts. Rather it reflects a broader and deeper capability
for comprehending our surroundings – ‘catching on’, ‘making sense’ of things, or
‘figuring out’ what to do” (Gottfredson, 1997a).

The concept of intelligence as a general mental ability is widely accepted among many
researchers, but it is not the only concept. What evidence supports the concept of
intelligence as a general mental ability, and what other mental abilities are relevant for
defining intelligence? How do we reconcile intelligence as a general ability with the
specific abilities of savants?

1.3 The Structure of Mental Abilities and the g-Factor
We all know from our experience that there are many mental abilities. Some are very
specific, like spelling or the ability to mentally rotate 3D objects or to rapidly calculate
winning probabilities of various poker hands. There are many tests of specific mental
abilities. We have over 100 years of research about how such tests relate to each other.
Here’s what we know: Different mental abilities are not independent. They are all related
to each other and the correlations among mental tests are always positive. That means if
you do well on one kind of mental ability test, you tend to do well on other tests.

This is the core finding about intelligence assessment and, as we’ll see throughout this
book, it’s the basis for most modern research. Please note this important point: tend means
there is a higher probability, not a perfect prediction. Whenever we say that one score
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predicts something, we always mean that the score predicts a higher probability for the
something.

The relationship among mental tests is called the structure of mental abilities. To
picture the structure, imagine a three-level pyramid, as shown in Figure 1.1.

Figure 1.1 The structure of mental abilities. The g-factor is common to all mental tests.
Numbers are correlations that show the strength of relationship between tests, factors, and g.
Note all correlations are positive.

Adapted from Deary et al. (2010).

At the bottom of Figure 1.1, we have a row of 15 different tests of specific abilities.
At the next level up, tests of similar abilities are grouped into more specific factors:
reasoning, spatial ability, memory, speed of information processing, and vocabulary. In the
illustration, tests 1, 2, and 3, for example, are all reasoning tests and tests 7, 8, and 9 are
all memory tests. However, all these more specific factors also are related to each other.
Basically, people who score high on one test or factor tend to score high on the others (the
numbers in the figure are illustrative correlations that show the strength of relationship
between tests and factors; see more about correlations in Textbox 1.1). This is a key
finding demonstrated over and over again. It strongly implies that all the factors derived
from individual tests have something in common, and this common factor is called the
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general factor of intelligence, or g for short. g sits at the highest point on the pyramid in
Figure 1.1. The g-factor provides a bridge between the definitions of intelligence that
emphasize a general mental ability and individual tests that measure (or more accurately,
estimate) specific abilities.

Most theories about factors of intelligence start with the empirical observation that all
tests of mental abilities are positively correlated with each other. This is called the
“positive manifold” and Charles Spearman first described it over 100 years ago
(Spearman, 1904). Spearman worked out statistical procedures for identifying the
relationships among tests based on their correlations with one another. The basic method is
called factor analysis. It works essentially by analyzing correlations among tests. You
probably already know about correlations, but see the brief review in Textbox 1.1.

Textbox 1.1:  Correlations

Many of you know about correlations. Because they are ubiquitous throughout
this book, here is a brief explanation so everyone starts with an understanding of
the concept. Let’s say we measure height and weight in many people. We can
graph each person by locating the height and weight as a single point with
height ranges on the y-axis and weight ranges on the x-axis. When we add points
on the graph for each person, we begin to see an association. Taller people tend
to weigh more. You can see this in Figure 1.2. This association is obvious without
needing to plot the points, but associations between other variables are not so
obvious. Moreover, correlations quantify the strength of association.

If height and weight were perfectly related, the points would all fall on a
straight line and we could predict one from the other without error. A correlation
has a value of plus 1 if a high value on one variable goes perfectly with a high
value on the other variable. A strong but not perfect positive correlation is
shown in Figure 1.2. A perfect negative correlation is where a high value on one
variable predicts a low value on the other without error. A strong but not perfect
negative correlation (also called an inverse correlation) is also shown in Figure
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1.2. A perfect negative correlation has a value of minus 1. In the Figure 1.2
example, the higher the family income, the lower the rate of infant mortality.
Finally, in Figure 1.2, the bottom panel shows no relationship at all (zero
correlation) between height and hours of video game playing.

Figure 1.2  Example of a positive correlation is on the top left, showing that as height
increases weight also increases. A negative correlation is shown on the top right,
showing that as family income goes up infant mortality goes down (simulated data). No
correlation between height and hours spent playing video games is shown on the
bottom. For all of these scatterplots, each circle is a data point. The solid line shows a
perfect correlation; the amount that points scatter above and below this line is used to
calculate the correlation (courtesy Richard Haier).
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Correlations between two variables are calculated based on how much each
point deviates from the perfect line. The higher the correlation, positive or
negative, the stronger the relationship and the better one variable predicts the
other. Correlations always fall between plus and minus 1. Here is a critical
point. A correlation between two variables does not mean one causes the other.
The correlation only means there is a relationship such that as one goes up or
down so does the other. To repeat, correlation does not mean causality. Two
variables may be correlated to each other but neither causes the other. For
example, salt consumption and cholesterol level in the blood may be somewhat
correlated, but that does not mean one causes the other. The correlation could be
caused by a third factor common to both, like poor diet.

Factor analysis is based on the pattern of correlations among multiple variables. In
our case we are interested in the correlations among different tests of mental abilities. So
the point of factor analysis is to identify what tests go with other tests, based not on content,
but rather on correlations of scores irrespective of content. The set of tests that go with
each other define a factor because they have something in common that causes the
correlation. Studies in this field typically apply factor analysis to data sets where hundreds
or thousands of people have completed dozens of tests.

There are many forms of factor analysis, but this is the basic concept and it is the
basis for models of the structure of mental abilities like the pyramid described in Figure
1.1. Going back to that figure, note the correlation values show how strong the associations
are among tests, factors, and g. Note that all the correlations are positive, consistent with
Spearman’s positive manifold.

Let’s look at some details of this example in Figure 1.1. The reasoning factor is
related to g with the strongest correlation of .96. This indicates that the reasoning factor is
the strongest factor related to g, so tests of reasoning are regarded as among the best
estimates of g. Another way of saying this is that reasoning tests have high g-loadings. Note
that test #1 has the single highest loading of .93 on the reasoning factor, so it might provide
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the single best estimate of g if only one test is used rather than a battery of tests. The
second strongest correlation is between the spatial ability factor and g. It turns out that
spatial ability tests also are good estimates of g. The vocabulary factor is fairly strong at
.74, followed by the other factors, including memory. In this example, memory tests are
good but not the best estimators of g with a correlation of .80, although other research
shows much stronger correlations between working memory and g (see Section 6.2).

1.4 Alternative Models
Other statisticians and researchers worked out alternative factor analysis methods. The
details don’t concern us, but different factor analysis models of intelligence were derived
using these various methods. Each identified a different factor structure for intelligence.
These various factors emphasize that the g-factor alone is not the whole story about
intelligence; no intelligence researcher ever asserted otherwise or claimed that a single
score captures all aspects of intelligence. The other broad factors and specific mental
abilities are important. Depending on how researchers derive factors from a battery of
tests, a different number of factors secondary to g emerge. In the pyramid structure diagram
example there are five broad factors. Another widely used model is based on only two
core factors: crystallized intelligence and fluid intelligence (Cattell, 1971, 1987).
Crystallized intelligence refers to the ability to learn facts and absorb information based on
knowledge and experience. This is the kind of intelligence shown by some savants. Fluid
intelligence refers to inductive and deductive reasoning for novel problem-solving. This is
the kind of intelligence we associate with Einstein or Newton. Measures of fluid
intelligence typically are highly correlated to measures of g, and the two are often used
synonymously. Crystallized intelligence is relatively stable over the life span with little
deterioration with age, whereas fluid intelligence decreases slowly with age. The
distinction between fluid and crystallized intelligence is widely recognized as an important
evolution in the definition of intelligence. Both are related, so they are not in conflict with
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the g-factor. They represent factors just below g in the pyramid structure of mental
abilities.

Another factor analysis model focuses on three core factors, verbal, perceptual, and
spatial rotation, in addition to g (Johnson & Bouchard, 2005). There are also models with
less empirical evidence like those of Robert Sternberg (Gottfredson, 2003a; Sternberg,
2000, 2003) and Howard Gardner (Gardner, 1987; Gardner & Moran, 2006; Waterhouse,
2006) that de-emphasize or ignore the g-factor. Virtually all of the neuroscience studies of
intelligence, however, use various measures with high g-loadings. We will focus on these,
but also include several neuroscience studies that investigate factors and specific abilities
other than g.

1.5 Focus on the g-Factor
g is the basis of most intelligence assessment used in research today. It is not the same as
IQ, but IQ scores are good estimates of g because most IQ tests are based on a battery of
tests that sample many mental factors, an important aspect of g. Many of the controversies
about intelligence have their origins in confusion about how we use words like mental
abilities, intelligence, the g-factor, and IQ. Figure 1.3 shows a diagram that will help
clarify how I use these words throughout this book.
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Figure 1.3 Conceptual relationships among mental abilities, intelligence, IQ, and the g-factor
(The Intelligent Brain, © 2013 The Teaching Company, LLC.

Reproduced with permission of The Teaching Company, LLC,
www.thegreatcourses.com).

We have many mental abilities. All the things you can think of from multiplying in your
head to picking stocks to naming state capitals. The large circle in Figure 1.3 represents all
mental abilities. Intelligence is a catch-all word that means the mental abilities most
related to responding to everyday problems and navigating the environment as per the APA
and the Gottfredson definitions. The circle labeled intelligence is smaller than all mental
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abilities. IQ is a test score based on a subset of the mental abilities that relate to everyday
intelligence. The IQ circle is a fairly large part of the intelligence circle because IQ is a
good predictor of everyday intelligence. This circle also includes broad factors such as in
the diagram of the pyramid structure in Figure 1.1. We will detail more about IQ in the next
section. Finally, the g-factor is what is common to all mental abilities. The g-factor is a
fairly large part of IQ. Whereas everyday intelligence and IQ test scores can be influenced
by many factors, including social and cultural ones, the g-factor is thought to be more
biological and genetic, as we will see in the next chapters.

The savant examples described earlier speak to the level of very specific abilities
with little if any g in many cases, like Kim and Derek. They show that powerful
independent abilities can exist, but they also show the problems when g is lacking. The
IBM computer Watson demonstrates a specific ability to analyze verbal information and
solve problems based on the meaning of words. This is an amazing accomplishment, but, in
my view, Watson does not show the g-factor. Watson is more like Kim Peek than Albert
Einstein, … at least for now.

The savant examples are exceedingly rare cases. Most people have g and independent
factors to varying degrees, and two people with the same level of g can have different
patterns of mental strengths and weaknesses across different mental abilities. Can we ever
hope to learn how savants do amazing mental feats, and why we can’t? Is it possible that
we all have the potential to memorize 22,514 digits or the potential for musical or artistic
genius? And, why are some people just smarter than others? Does everyone have equal
potential for learning all subjects? There are many questions and, as in every scientific
field, answers depend entirely on measurement.

1.6 Measuring Intelligence and IQ
IQ is what most people associate with measuring intelligence. Criticism of IQ and all
mental tests is widespread and has been so for decades (Lerner, 1980). It is worth
remembering that the concept of testing mental ability arose to help children get special
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education. It is also worth stating that intelligence tests are regarded as one of the great
achievements of psychology despite many concerns. Let’s briefly discuss both these points.
Informative, detailed discussions about IQ testing are also found in two recent textbooks
(Hunt, 2011; Mackintosh, 2011).

In the early part of the twentieth century, the Minister of Education in France was
concerned about identifying children with low school achievement who needed special
attention. The problem was how to distinguish children who were “mentally defective”
from other children who were low achievers due to behavioral or other reasons. They
wanted the distinction to be made objectively by means of testing so a teacher could not
assign a child with discipline issues to a special school as a punishment, as apparently was
somewhat common at the time.

In this context, Alfred Binet and his collaborator Theodore Simon devised the first IQ
test to identify children who mentally could not benefit from ordinary school instruction. So
the IQ test was born as an objective means for identifying low mental ability in children so
they could get special attention and to identify children erroneously sent to special schools
not because of low mental ability but as a punishment for bad behavior. Both goals were
admirable.

The test constructed by Binet and Simon consisted of several subtests that sampled
different mental abilities, with an emphasis on tests of judgment because Binet felt that
judgment was a key aspect of intelligence. He gave each test to many children and
developed average scores for each age and sex. He then was able to say at what age level
any individual child scored. This was called the child’s mental age. A German
psychologist named William Stern took the concept of mental age a step further. He divided
mental age by chronological age. This resulted in an IQ score that was the ratio of a child’s
mental age (averaged across all the subtests) divided by the child’s chronological age.
Multiplying this ratio by 100 avoided fractions.

For example, if a child was reading at the level of an average 9-year-old, the child’s
mental age was nine. If this child actually had a chronological age of 9, the IQ would be 9
divided by 9 = 1 × 100, or an IQ of 100. If a child had a mental age of 10, but was only 9
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years old, the IQ would be 10 divided by 9 = 1.11 × 100, or 111. A 9-year-old with a
mental age of 8 would have an IQ of 8 divided by 9 = .89 × 100, IQ = 89.

The point of these early tests was to find children who were not doing so well in
school relative to their peers, and get them special attention. The Binet–Simon test
actually worked reasonably well for this purpose. However, one problem with the concept
of mental age is that it is hard to assess after about age 16. Can we really see a mental age
difference between a 19-year-old and a 21-year-old? We’re not talking about maturity here.
The mental age of a 30-year-old really isn’t much different than that of a 40-year-old, so
the Binet–Simon test was not really useful or intended for adults.

However, there is a much more important measurement problem to keep in mind. Note
that the IQ score is a measure of a child relative to their peers. Even today, newer IQ tests
based on a different calculation, discussed below, show how an individual scores relative
to his or her peers. IQ scores are not absolute measures of a quantity, like pints of water or
kilometers of distance. IQ scores are meaningful only relative to other people. Note that
intelligence differences among people are quite real, but our methods of measuring these
differences depend on test scores that are interpretable only in a relative way. We will
elaborate this key point shortly and return to it throughout this book.

Nonetheless, the Binet–Simon test was an important advance for assessing the
abilities of children in an objective way. The Binet–Simon test was translated to English
and redone at Stanford University in the 1920s by Professor Lewis Terman and is now
known as the Stanford–Binet test. Professor Terman used very high IQ scores from this test
to identify a sample for a longitudinal study of “genius” and we will discuss it in Section
1.10.4.

The Wechsler Adult Intelligence Scale, or the WAIS, was designed with subtests like
the Stanford–Binet, but as its name states, it was designed for adults. It is the most widely
used intelligence test today. The current version consists of a battery of 10 core subtests
and another five supplemental subtests. Together, they sample a broad range of mental
abilities. One key change is in the way IQ is calculated in both the WAIS and the
Stanford–Binet tests. Mental age is no longer used. IQ is now based on the statistical
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properties of the normal distribution and deviation scores. The concept is simple: How far
from the norm does an individual’s score deviate?

Here’s how deviation scores work. Let’s start with the properties of a normal
distribution (also called a bell curve because of its shape), as shown in Figure 1.4.

Figure 1.4 The normal distribution of IQ scores and the percent of people within each level
(courtesy Richard Haier).

Many variables and characteristics such as height or income or IQ scores are
normally distributed in large populations of randomly selected individuals. Most people
have middle values and the number of individuals decreases toward the low and high
extremes of the distribution. Any normal distribution has specific statistical properties in
that any individual score can be expressed as a percentile relative to other people. This is
shown in the illustration of IQ scores where the mean score is 100 and the standard
deviation is 15 points. Standard deviations show the degree of spread around the mean and
are calculated as a function of how much each person deviates from the group mean. In a
normal distribution, 50% of people score below 100. Sixty-eight percent of individuals
fall between plus one and minus one standard deviations so scores between 85 and 115 are
regarded as the range of average IQ. A score of 130, two standard deviations above the
mean, would be at about the 98th percentile, which is the top 2%. A score of 70 would be
two standard deviations below the mean and represent about the 2nd percentile. A score of
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145 represents the top one-tenth of 1%. Scores over 145 are often considered to be in the
genius range, although few tests are accurate at this extreme high end of the distribution.

IQ tests were developed so scores would be normally distributed. Each subtest has
been taken by a large number of males and females of different ages. These are the norm
groups. Each norm has an average score called the mean, and the spread of scores around
the mean is measured by a statistic called the standard deviation (sd).

Let’s say a subtest has a perfect possible score of 20 points. Each norm group may
have a different average score on this test depending, say, on age. Younger test takers may
average 8 points if they are 10 years old, and older people taking the same test, say at age
12, may average a score of 14 points. This is why it’s important to have norm groups for
each age. If a new 12-year-old takes the subtest and scores 14, he is scoring at the average
for his age. If he scores above or below 14, the deviation from the norm average can be
calculated and his score can be expressed by how much it deviates from the mean. The
average deviation across all the subtests is used to calculate the deviation IQ for the full
battery. As illustrated, deviation scores are easily convertible into percentiles.

Each deviation point is equal, but these scores only have meaning relative to other
people. In technical terms, these scores are not a ratio scale because there is no actual zero
point. This is unlike quantitative units of weight or distance or liquid, which are ratio
scales. IQ scores and their interpretation depend on having good normative groups. This is
one reason that new norms are generated periodically for these tests. It is also why there is
a separate version of the test for children called the Wechsler Intelligence Scale for
Children (WISC).

The WAIS can be divided into specific factors other than the Full-scale IQ score that
closely resemble the pyramid structure of mental abilities shown in Figure 1.1. The
individual subtests are grouped at the next highest level into factors of verbal
comprehension, working memory, perceptual organization, and processing speed. These
four specific factors are grouped into more general factors of verbal IQ and performance
IQ, and these two broad factors have a common general factor defined by the total IQ
score, called Full-scale IQ. Full-scale IQ is based on several tests that sample a range of
different mental abilities and, therefore, is a good estimate of the g-factor. Each of the
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factor scores can be used for other predictions, but Full-scale IQ is the most widely used
score in research.

1.7 Some Other Intelligence Tests
So far, the IQ tests we have described are administered by a trained test-giver interacting
with one individual at a time until the test is completed, often taking 90 minutes or more.
Other kinds of psychometric intelligence tests can be given in a group setting or without
direct interaction with the test-giver. Some tests are designed to assess specific mental
abilities and others are designed to assess general intelligence. Typically, the more a test
requires complex reasoning, the better it estimates the g-factor. Such tests have a “high g-
loading.” Here briefly are three important high-g tests used in neuroscience studies in
addition to IQ.

1. The Raven’s Advanced Progressive Matrices (RAPM) test (named for its
developer, Dr. Raven) can be given in a group format and usually has a time limit of 40
minutes. It’s regarded as a good estimate of the g-factor, especially because of the time
constraint. Tests with a time limit tend to separate individuals better. It’s a non-verbal test
of abstract reasoning. Figure 1.5 is an example of one item. In the large rectangle, you see a
matrix of eight symbols and a blank spot in the lower-right corner. The eight symbols are
not arranged randomly. There is a pattern or a rule linking them. Once you deduce the
pattern or rule, you can decide which of the eight choices below the matrix completes the
pattern or rule and goes in the lower-right corner.
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Figure 1.5 Simulated problem from the RAPM test. The lower-right symbol is missing from
the matrix. Only one of the eight choices fits that spot once you infer the pattern or rule. In
this case the answer is number 7 (add one row or column to the next) (courtesy Rex Jung).

In this example, the answer is number 7. If you add the left column to the middle
column in the matrix, you get the symbols in the right column. If you add the top row to the
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middle row, you get the bottom row. The actual test items get progressively more and more
difficult. The underlying pattern or rule can be quite hard to infer and there are different
versions of the test that vary in difficulty. However, because of its simple administration,
this test has been used in many research studies. Performance on a test like this is fairly
independent of education or culture. Scores are reasonable estimates of the g-factor but
they should not be mistaken as the g-factor (Gignac, 2015).

2. Analogy tests also are very good estimators of g. For example, wing is to bird as
window is to _____ (house). Or, helium is to balloon as yeast is to _____ (dough). Or,
how about, Monet is to art as Mozart is to _______ (music). Analogy tests look like they
could be easily influenced by education and culture so they have been dropped from many
assessment test batteries despite the fact that, empirically, they are good estimates of g.

3. The SAT, widely used for college admission, is an interesting example. Is it an
achievement test, an aptitude test, or an intelligence test? Interestingly, the SAT originally
was called the Scholastic Aptitude Test, then it was renamed the Scholastic Achievement
Test, and now it’s called the Scholastic Assessment Test. Achievement tests measure what
you have learned. Aptitude tests measure what you might learn, especially in a specific
area like, for example, music or foreign language. It turns out that the SAT, especially the
overall total score, is a good estimator of g because the problems require reasoning (Frey
& Detterman, 2004). Like IQ scores, SAT scores are normally distributed and interpreted
best as percentiles. For example, people in the top 2% of the SAT distribution tend to be in
at least the top 2% of the IQ distribution. Sometimes, this surprises people, but why should
intelligence not be related to how much someone learns?

Achievement, aptitude, and intelligence test scores are all related to each other. They
are not independent. Remember, the g-factor is common to all tests of mental ability. It
would be unusual if learning and intelligence were unrelated. So your performance on
achievement tests is related to the general factor, just like IQ scores and aptitude test
scores are related to g. It can be confusing because we all know examples of bright
students who are underachievers, and students not so bright who are overachievers.
However, such examples are the exception. In reality, there are some valid distinctions
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between achievement, aptitude, and intelligence testing. Each kind of test is useful in
different settings, but they also are all related and the common factor is g.

1.8 Myth: Intelligence Tests are Biased or Meaningless
Are intelligence test questions fair or do correct answers depend on an individual’s
education, social class, or factors other than intelligence? A professor I had in graduate
school used to say that most people define a fair question as one they can answer correctly.
Is a question unfair or biased because you don’t know the answer?

Just what do intelligence test scores actually mean? Low test scores result because a
person doesn’t know the answers to many questions. There are many possible reasons for
not knowing the answer to a question: never were taught it, never learned it on your own,
learned it but forgot it a long time ago, learned it but forgot it during the test, were taught it
but couldn’t learn it, didn’t know how to reason it out, or couldn’t reason it out. Most but
not all of these reasons seem related to general intelligence in some way. High test scores,
on the other hand, mean the person knows the answers. Does it matter how you came to
know the answer? Is it better education, just good memory, or good test-taking skills, or
good learning? The definitions of general intelligence combine all these things.

Test bias has a specific meaning. If scores on a test consistently over- or underpredict
actual performance, the test is biased. For example, if people in a particular group with
high SAT scores consistently fail college courses, the test is overpredicting success and it
is a biased test. Similarly, if people with low SAT scores consistently excel in college
courses, the test is underpredicting success and it is biased. A test is not inherently biased
just because it may show an average difference between two groups. A spatial ability test,
for example, may have a different mean for men and women, but that does not make the test
biased. If scores for men and for women predict spatial ability equally well, the test is not
biased even if there is a mean difference. Note that a few cases of incorrect prediction do
not constitute bias. For a test to be biased, there needs to be a consistent failure of
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prediction in the wrong direction. The lack of any prediction is not bias; it means the test is
not valid.

Considerable research on test bias for decades shows this is not the case for IQ and
other intelligence test scores (Jensen, 1980). Test scores do predict academic success
irrespective of social–economic status (SES), age, sex, race, and other variables. Scores
also predict many other important variables, including brain characteristics like regional
cortical thickness or cerebral glucose metabolic rate, as we will detail in Chapters 3 and
4. If intelligence test scores were meaningless, they would not predict any other measures,
especially quantifiable brain characteristics. In this context, “predict” also has a specific
meaning. To say a test score predicts something only refers to a higher probability of the
something occurring. No test is 100% accurate in its predictions, but the reason
intelligence tests are considered by many psychologists to be a great achievement is that
the scores are good predictors for success in many areas, and in some areas test scores are
very good predictors. Before we review key research that is the basis for this conclusion,
there is a fundamental problem to discuss.

1.9 The Key Problem for “Measuring” Intelligence
As briefly noted earlier in this chapter, the main problem with all intelligence test scores is
that they are not on a ratio scale. This means there is no true zero, unlike measures for
height and weight. For example, a person who weighs 200 pounds is literally twice the
weight of a person who weighs 100 pounds because a pound is a standard unit on a scale
with an actual zero point. Ten miles is twice the distance of five miles. This is not the case
for IQ scores. A person with an IQ score of 140 is not literally twice as smart as a person
with a score of 70. Even if you believe you have encountered at least one person with zero
intelligence, zero is certainly not the case. For IQ, it’s the percentile that counts. Someone
with an IQ of 140 is in the top 1% and someone with a score of 70 is in the bottom 2%. A
person with an IQ of 130 is not 30% smarter than a person whose score is 100. The person
with an IQ of 100 is at the 50th percentile and the person with an IQ of 130 is at the 98th
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percentile. No psychometric test score is based on a ratio scale. All IQ test scores have
meaning only relative to other people.

Here’s the key point about this limitation of all intelligence test scores: They only
estimate intelligence because we don’t yet know how to measure intelligence as a quantity
like we measure liquid in liters or kilograms of weight or distance in feet (Haier, 2014). If
you take an intelligence test when you are sick and unable to concentrate, your score may
be a bad estimate of your intelligence. If you retake the test when you are well, your score
is a better estimate. However, just because your score goes up, it does not mean your
intelligence increased in the interval between the two tests. This becomes an issue in
Chapter 5 when we talk about why claims of increasing intelligence are not yet meaningful.

Despite this fundamental problem, researchers have made considerable progress. The
main point is that measurement is required to do scientific research on intelligence. No one
test may be a perfect measure of a single definition, but as research findings accumulate,
both definition and measurement evolve and our understanding of the complexities
increases. The empirical robustness of research on the g-factor essentially negates the myth
that intelligence cannot be defined or measured for scientific study. It is this research base
that allows neuroscience approaches to take intelligence research to the next level, as
detailed in subsequent chapters. But first, we will summarize some compelling studies of
intelligence test validity.

1.10 Four Kinds of Predictive Validity for Intelligence
Tests

1.10.1. Learning Ability

IQ scores predict general learning ability, which is central to academic and vocational
success and to navigating the complexities of everyday life (Gottfredson, 2003b). For
people with lower IQs around 70, simple learning typically is slow and requires concrete,
step-by-step teaching with individual instruction. Learning complex material is quite
difficult or not possible. People with IQs around 80–90 still require very explicit,
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structured individual instruction. When it comes to learning from written materials, IQs of
at least 100 are usually required, and college-level learning usually works best at 115 and
over. Higher IQs over 130 usually mean that more abstract material can be learned
relatively quickly, and often independently.

The US military has a cutoff of around 90 for recruits, although this has moved down a
bit when recruitment is strained. Most graduate programs in the USA require tests like the
Graduate Record Exam (GRE) or the Medical College Admission Test (MCAT) for
medical school or the Law School Admission Test (LSAT) for law school. Cutoffs for
these tests usually ensure that individuals with IQs over 120 are most likely to be accepted,
and the top programs have higher cutoffs to maximize accepting applicants in the top 1% or
2% of the normal distribution. This doesn’t mean that people with lower scores cannot
complete these programs, but the higher-scoring students usually are more efficient, faster
learners and more likely to successfully finish the program.

Keep in mind, these are not perfect relationships and there are exceptions. The
relationship between IQ scores and learning ability, however, is strong. Many people find
this disturbing because it indicates a limitation on personal achievement that runs counter
to a prevalent notion expressed in the phrase, “You can be anything you want to be if you
work hard.” This is a restatement of another notion, “If you work hard you can be
successful.” The latter may often be true because success comes in many forms, but the
former is seldom true unless a caveat is added: “You can be anything you want to be if you
work hard and have the ability.” Not everyone has the ability to do everything successfully,
although, surprisingly, many students arrive at college determined to succeed but naïve
about the role ability plays. Few students with low SAT math scores, for example, are
successful majors in the physical sciences even if they are highly motivated and work hard.

Given the powerful influence of g on educational success, it is surprising that
intelligence is rarely considered explicitly in vigorous debates about why pre-college
education appears to be failing many students. The best teachers cannot be expected to
attain educational objectives beyond the capabilities of students. The best teachers can
maximize a student’s learning, but the intelligence level of the student creates some
limitations, although it is fashionable to assert that no student has inherent limitations.
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Many factors that limit educational achievement can be addressed, including poverty, poor
motivation, lack of role models, family dysfunction and so on, but, so far, there is no
evidence that alleviation of these factors increases g. As we will see in the next chapter,
early childhood education has a number of beneficial effects, but increasing intelligence is
not one of them. Imagine a pie chart with all the factors that influence a student’s school
achievement. Surely the g-factor would deserve representation as a slice greater than zero.
The strong correlations between intelligence test scores and academic achievement
indicate the slice could represent a sizeable portion of the whole. In my view, this alone
should justify more research on intelligence and how it develops.

1.10.2. Job Performance

In addition to academic success, IQ scores also predict job performance (Schmidt &
Hunter, 1998, 2004), especially when jobs require complex skills. In fact, for complex
jobs the g-factor predicts success more than any other cognitive ability (Gottfredson,
2003b). A large study conducted by the US Air Force, for example, found that g predicted
virtually all the variance in pilot performance (Ree & Carretta, 1996; Ree & Earles,
1991). Most of us are not pilots, but in general, lower IQ is sufficient for jobs that require
a minimum of complex, independent reasoning. The jobs tend to follow specific routines
like assembling a simple product, food service, or nurse’s aid. IQs around 100 are
necessary for more complex jobs like bank teller and police officer. Successful managers,
teachers, accountants, and others in similar professions usually have IQs of at least 115.
Professions like attorney, chemist, doctor, engineer, and business executive usually require
higher IQs to finish the advanced schooling that is required and to perform at a high level
of complexity.

Complex job performance is largely g-dependent, but of course there are other
factors, including how well one deals with other people. This is the concept of emotional
intelligence. Emotional intelligence, that is, the personality and social skills one has, may
contribute to greater success compared to a person of equal g but lacking people skills.
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This does not diminish the importance of the g-factor. Typically, emotional intelligence can
compensate for a lack of job-appropriate g for only so long, if at all.

As with academic success, intelligence/job performance relationships are general
trends and there are always exceptions. However, from a practical point-of-view, a person
with an IQ under 100 is not very likely to complete medical school or engineering school.
Of course, it’s possible, especially if the IQ score is not a good estimate of intelligence for
that person, or if that person has a very specific ability like memorization to compensate
for low or average general intelligence. Similarly, a high score does not guarantee success.
This is why an IQ score by itself is not usually used to make education or employment
decisions. IQ is usually considered in the context of other information, but a low score
typically is a red flag in many areas that require complex, independent reasoning.

Here’s another point about predicting job success. Some researchers suggest that
expertise in any area requires at least 10,000 hours of practice. That’s 1,250 8-hour days,
or about 3.4 years. This implies that expertise can be achieved in any field with this level
of practice irrespective of intelligence or talent. Studies of chess grandmasters, for
example, report the group average IQ is about 100. This suggests that becoming a
grandmaster may depend more on practice of a specific ability like spatial memory than on
general intelligence. Grandmasters may actually have a savant-like spatial memory, but the
idea of a chess grandmaster being a super all-purpose giant intellect is not necessarily
correct. Many studies refute the idea that 10,000 hours of practice can lead to expertise if
there is no pre-existing talent to build on (Detterman, 2014; Ericsson, 2014; Grabner, 2014;
Grabner et al., 2007; Plomin et al., 2014a, 2014b).

1.10.3. Everyday Life

The importance of general intelligence in everyday life often is not obvious but it is
profound. As Professor Earl Hunt has pointed out, if you are a college-educated person, it
is highly likely that most of your friends and acquaintances are as well. When is the last
time you invited someone to your home for dinner that was not college-educated? Professor
Hunt calls this cognitive segregation and it is powerful in fostering the erroneous belief that
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everyone has a similar capacity or potential for reasoning about daily problems and issues.
Most people with high g cannot easily imagine what daily life is like for a person with low
g.

The complexity of everyday life is often quite challenging, especially when a non-
routine or novel problem presents itself. Professor Linda Gottfredson summarizes this with
a simple statement: “Life is a long mental test battery.” This was true as early humans
navigated unforgiving natural environments and solved continuous problems of finding
food, water, shelter, and safety. It was true as early civilizations developed and great
thinkers (likely with high g) solved even more complex problems (e.g. just how does one
build a seaworthy ship or a pyramid?). And it is still true today as we grapple with
connecting our new television sets and audio systems with HDMI cables or using all the
functions in our word processor or on our “smart” phones or digital cameras beyond the
auto mode. Do you know how to use the scanners in the self-checkout lines at the
supermarket or do you wait in a long slow line for a human cashier? How much do you
understand about money management and investing in stocks, bonds, and mutual funds? Do
you do your own taxes? Many people grapple daily with the challenges of navigating
nearly impenetrable systems for healthcare, social support, or justice. Poverty presents a
myriad of daily problems to solve. It could be said that in the modern world, nothing is
simple for anyone all the time.

Consider some statistics comparing low and high IQ groups (low = 75–90; high =
110–125) on relative risk of several life events. For example, the odds of being a high
school dropout are 133 times more likely if you’re in the low group. People in the low
group are 10 times more at risk for being a chronic welfare recipient. The risk is 7.5 times
greater in the low group for incarceration, and 6.2 times more for living in poverty.
Unemployment and even divorce are a bit more likely in the low group. IQ even predicts
traffic accidents. In the high IQ group, the death rate from traffic accidents is about 51 per
10,000 drivers, but in the low IQ group, this almost triples to about 147. This may be
telling us that people with lower IQ, on average, have a poorer ability to assess risk and
may take more chances when driving or performing other activities (Gottfredson, 2002;
2003b).
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Textbox 1.2:  Functional literacy

Another way to look at the role of thinking skills in everyday life is based on
functional literacy data. Functional literacy is assessed by the complexity of
everyday tasks that a person can complete. Like IQ scores, functional literacy
scores are meaningful relative to other people, but they provide more concrete
examples of ability. The last comprehensive US national survey of functional
literacy was done in 1992.

Table 1.1 is from that survey. On the left side, we have five levels of
functional literacy: 1 is the lowest, 5 is the highest. In the middle we have the
percentage of people who are in each category, and on the right we have some
sample tasks that people in each category can complete successfully. Let’s look
at the top row. If you’re like me, you will be quite surprised to see that only 4%
of the white population is in the top category and can complete tasks like using a
calculator to figure out the cost of carpeting a room. This requires determining
the area, converting to square yards, and multiplying by the price. In the next
row down, 21% of people are at level 4 of functional literacy. They can calculate
social security benefits from a table and understand basic issues of how
employee benefits work. Thirty-six percent are in the middle category. They can
calculate miles per gallon from a chart, and they can write a letter explaining a
credit card error. Twenty-five percent are in category 2. They can determine
price differences between two tickets, and they can locate an intersection on a
map. Fourteen percent are in the lowest category. They can accomplish tasks like
filling out a bank deposit slip, but more complex tasks, like locating an
intersection on a map, would present difficulty.

Table 1.1  Everyday literacy levels from the National Adult Literacy Survey along with
sample problems from each level (The Intelligent Brain, copyright 2013 The Teaching
Company, LLC. Reproduced with permission of The Teaching Company, LLC,
www.thegreatcourses.com).
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NALS
level

% Population
(white)

Everyday simulated tasks

5 4 Use calculator to determine cost of carpet for a room

Use table of information to compare 2 credit cards

4 21 Use eligibility pamphlet to calculate Supplementary
Security Income (SSI) benefits

Explain difference between 2 types of employee benefit

3 36 Calculate miles per gallon from mileage record chart

Write brief letter explaining error on credit card bill

2 25 Determine difference in price between 2 show tickets

Locate intersection on a street map

1 14 Total bank deposit entry

Locate expiration date on driver’s license

The examples in Textbox 1.2 and Table 1.1 demonstrate that intelligence helps us
navigate the problems of everyday life. It’s really not a shocking idea, but this is easy to
take for granted, especially if you are navigating reasonably well and most of the people
you spend time with are like you. The key point here is that functional literacy is another
indicator of intelligence, and you can see from the functional literacy data that intelligence
matters for daily tasks. But, of course, the g-factor does not predict many other important
things like being a nice or likeable person. No intelligence researcher has ever asserted
otherwise.

Let’s talk for a moment about a controversial book from 1994 that explored the role of
intelligence in social policy, The Bell Curve by Richard Herrnstein and Charles Murray
(Herrnstein & Murray, 1994). The main theme was that modern society increasingly
requires and rewards people with the best reasoning skills. This is to say people with high
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intelligence. Therefore, people in the bottom part of the normal distribution of IQ (a normal
distribution is also called a bell curve because of its shape) will be at a serious
disadvantage for succeeding, especially in school and some vocations. Herrnstein had
introduced this theme in an earlier book, IQ in The Meritocracy (Herrnstein, 1973) that
also generated considerable acrimony. Read the detailed description of hostility on the
Harvard campus recounted in the Preface to get a sense of the times; a few years later
another Harvard professor, Edward O. Wilson, encountered similar outrage when he
proposed the concept of sociobiology (Wilson, 1975). The Bell Curve continued the
argument with over 900 pages of data and statistical analyses mostly comparing high- and
low-intelligence groups, but the one chapter that discussed black/white IQ differences
aroused the fiercest controversy (please note that the terms “black” and “white” are used
here because most of the research, from America and other countries, uses these terms).
This issue of group differences haunts all intelligence research and I refer the reader to in-
depth accounts of the complexities involved (see Further Reading).

My point about The Bell Curve is whether public policy discussions benefit by
recognizing that people with low g may need help navigating life, irrespective of race,
background, or why they might have low g. This is a fundamental issue today in politics
although the role of intelligence is hardly mentioned as explicitly as it was in The Bell
Curve. Most researchers would agree that research data on intelligence can only inform
policy decisions, but the goals of the policy need to be determined through democratic
means; we return to this issue in Section 6.6. Unfortunately, psychometric research on
intelligence has often been portrayed as damaging to a progressive social agenda because
there are substantial average test score differences among some racial and ethnic groups.
These relative average group differences often motivate a general disregard for empirical
research on intelligence although neuroscience approaches are advancing the field, as the
next chapters discuss. Before we get to those, let’s continue with more data about IQ
scores and what they mean.

1.10.4. Longitudinal Studies of IQ and Talent
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The predictive power of a single test score in childhood also is demonstrated dramatically
in three classic longitudinal studies. Each one starts with children and tests their mental
abilities and life successes at various intervals over decades. One study started in
California the 1920s, one started in Scotland in the 1930s, and one started in Baltimore in
the 1970s.

Study 1.
Professor Lewis Terman at Stanford University initiated a long-term study of high-IQ

individuals in the 1920s. This is the same Lewis Terman who brought Binet’s IQ test to the
USA and revised it into the Stanford–Binet intelligence test. Terman designed a
straightforward study. It started by testing many school children with the Stanford–Binet
test. Children with very high IQ scores were selected and then studied extensively for
decades. Terman’s study had two goals: to find the traits that characterized high-IQ
children, and to see what kind of adults they would become. The common stereotype of
intelligent adults was not so different then as it is now. Francis Galton, for example, wrote
in his 1884 book, Hereditary Genius (Galton & Prinzmetal, 1884): “There is a prevalent
belief that men of genius are unhealthy, puny beings – all brain and no muscle – weak-
sighted, and generally of poor constitutions …” (reprinted in Galton, 2006).

Here’s how Terman’s project started (Terman, 1925): In 1920–1921, 1,470 children
with IQs of 135–196 were selected from over 250,000 children in California public
schools and they were retested and interviewed every 7 years. Their average IQ was about
150, and 80 children had IQs over 170 (these were in the top 0.1%). This entire group
became known unofficially as the Termites. They completed extensive medical tests,
physical measurements, achievement tests, character and interest tests, trait ratings, and
both parents and teachers supplied additional information. A control group with average IQ
scores was also tested. The results of Terman’s study were published over time in five
volumes. The data were quite extensive.

Here’s a summary of key findings about the lives of the Termites. Overall, they
completely refute the stereotypes both for children and adults. The negative, nerdy
attributes were basically unfounded. They were not odd or puny. On average, they actually
were physically quite robust and more physically and emotionally mature than their age-
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mates. On average, the Termites were happier and better-adjusted than the controls over the
course of the study. Although they had their share of life problems, follow-up studies
showed considerable achievement with respect to publishing books, scientific papers,
short stories and poems, musical compositions, television and movie scripts, and patents
(Terman, 1954). However, further follow-up indicated that high IQ alone did not
necessarily predict life success. Motivation was also important, and Terman believed that
while genes played an important role in high IQ, he also believed that exceptional ability
required exceptional education to maximize a student’s potential. This may not sound so
radical, but even today there is a debate about whether any education resources at all
should be allocated to the most gifted students to develop their high ability.

Terman’s project also demonstrated the predictive validity of the IQ score. That is,
one IQ score in childhood can identify individuals who will excel in later life. Like all
studies, however, there were some major flaws – here, two: (1) Terman intervened in the
lives of these “subjects” and helped them with letters of reference for college and for
employment; (2) Strong sex bias in education and employment resulted in female Termites
mostly becoming housewives, so valid male/female comparisons were not possible.
Similarly, there are no data about minorities. Do these problems invalidate the main
findings? Not likely. Overall, the level of success and the achievement of these very high-
IQ individuals stand on their own. However, fortunately, we have more data from a newer
study that modified Terman’s approach.

Study 2. The second longitudinal study is The Study of Mathematically &
Scientifically Precocious Youth at Johns Hopkins University. This was an ambitious
project initiated by Professor Julian Stanley in 1971 (Stanley et al., 1974). Dr. Stanley
repeated Terman’s approach, but instead of IQ scores he used extremely high-SAT math
(SAT-M) scores obtained by junior high school students aged 11–13 in special testing
sessions called talent searches. So instead of general intelligence, Stanley focused on a
very specific mental ability. This project also had two major goals. First, identify
precocious students early, and second, foster their special talent.

I started graduate school at Hopkins in 1971 and I worked on this study in its early
years. I must say that this experience was an early influence on my interest in intelligence,
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and Dr. Stanley was one of the most important and interesting mentors I had at Hopkins.
This project had its origins in the late 1960s. Dr. Stanley started working with a

precocious student, and after he gave the student a battery of psychometric tests, Dr.
Stanley helped the student get into Hopkins at the early age of 13. Dr. Stanley subsequently
referred to this young man as the first “Radical Accelerant,” identified as Joseph B. In his
first year at Hopkins, at age 13, Joseph took honors calculus, sophomore physics, and
computer science, and his grade point average was 3.69 out of 4.0. He lived at home
during this time but he also made friends with other college students and adjusted well to
his accelerated studies. In four years, he received a BA and an MS degree in computer
science. He began a PhD program in computer science at Cornell before he was 18 years
old, and Joseph went on to have a productive career.

From the beginning, a main goal for Dr. Stanley was to not only identify and follow
such precocious students, but also to select the best individuals for education acceleration,
including early college admission. So was born the idea of using the SAT-Math test for
screening junior high school students to find precocious individuals with talent for math
and science. The Spencer Foundation provided multiple year funding to Dr. Stanley
beginning in 1971 and the first talent search was in 1972. For that search, junior high
school students in the Baltimore area had to be nominated by their math teachers to
participate. Actual SAT-Math tests were given in the standard way. In that first search, 396
7th and 8th grade students took the SAT-Math. Here are two fascinating results of that first
talent search. Twenty-two of the 396 scored at least 660, which was higher than the
average Hopkins freshman at the time. And, all of these 22 were boys and none of the 173
girls scored over 600.

The male/female ratio has improved considerably over the years, but at the time, this
huge disparity was surprising. And, what about the 22 boys who scored higher than
Hopkins freshmen? What were they like? The early data analyses confirmed Terman’s
results with respect to stereotype. These mathematically precocious students were more
physically and emotionally mature than age-peers. One of my first research projects was to
give this precocious group some standardized tests of personality. On average, they scored
more like college students than their age-peers (Weiss et al., 1974).
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Professor Stanley believed that enriched classes were not as productive as actual
college classes, so he helped many of these very talented students go to college early. Over
the years, many of the most precocious students did get early admission, usually living at
home. And, there was no evidence that they suffered any emotional harm from an
accelerated program. Like the Termites, many went on to have successful and very
productive careers.

The original talent searches have evolved dramatically and now include many
programs for enrichment in addition to early college admission, including summer camps
that emphasize math and science experiences. You can find out more details about these
programs using Google. Actually one of the students associated with the talent searches co-
founded Google; that was Sergey Brin. Mark Zuckerberg of Facebook also was identified
in a talent search and so was Lady Gaga. Seriously. Look it up.

There are now detailed follow-up studies of thousands of the students who
participated in several of the original searches. Follow-up results show that many of these
mathematically precocious children, as determined by a single test score when they were in
their early teens, became exceptionally successful in terms of occupational and life success
(Lubinski et al., 1996, 2006, 2014; Robertson et al., 2010; Wai et al., 2005). Figure 1.6
shows professional achievement based on a 25-year follow-up study of the top 1% of the
original searches that included 2,385 students (Robertson et al., 2010). All these students
are divided into quartiles, Q1, Q2, Q3, and Q4, based on their SAT-Math score at age 13.
On the x-axis, we have SAT-Math score at age 13. On the y-axis, we have the proportion of
the quartile with an outcome like getting a PhD or a JD or an MD. Another outcome is
having any peer-reviewed publications. Another would be getting a PhD and tenure in a
STEM field, which includes science, technology, engineering, or math. Patents are another
outcome and so is high income (defined as being in the 95th percentile).
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Figure 1.6 SAT-Math scores at age 13 predict adult outcomes of academic success.

Reprinted with permission, Robertson et al. (2010).

What we see in this chart is that for students with age 13 SAT-Math scores in the
400–500 range, which is in the top 1% for 13-year-olds but the lowest quartile 1 for this
sample, about 15% got a doctorate in any field and this percentage increases with higher
scores. In the top SAT-Math quartile 4, the percentage of advanced degrees is about 35%.
This is all shown in the line with black dots at the top of the chart. You see this same trend
for all the other outcomes.
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The OR after each outcome stands for odds ratio and compares the top quartile
proportion to the bottom quartile for each outcome. For example, the greatest disparity is
18.2 for getting a doctorate in a STEM field. This means the upper quartile within the top
1% were 18 times more likely to get a STEM doctorate than the bottom quartile within the
top 1%. So even in this rarified group of the top 1%, the individuals with the highest scores
did the best based on these outcomes.

Remember, a single test taken at age 13 identified these individuals. Again, you can
see the predictive validity of this standardized test score is reasonably strong. Clearly,
individuals in the top 1% of scores obtained in childhood have notable future
achievements, but even within this rarified group, the higher the scores, the more likely
there will be these kinds of achievements. The longitudinal study of the original talent
search participants is continuing with additional follow-ups conducted by researchers
Professor Camilla Benbow and Professor David Lubinski at Vanderbilt University.

Study 3. The third longitudinal study is the Scottish Mental Survey. This was a truly
massive project conducted by the Scottish government. All children born in Scotland in
1921 and in 1936 completed intelligence testing at age 11 years and were re-tested again in
old age. This study differed from the other two in that it included virtually all children in
the country on a test of general intelligence rather than identifying samples of very high
scorers (von Stumm & Deary, 2013). The total number of children in the study was about
160,000.

At the time this study began in the 1930s, there was considerable debate around the
world about national intelligence and eugenics. This had profoundly evil consequences in
Germany. It’s one of the reasons intelligence testing became a negative topic in academia
following the Second World War. However, another reason for using intelligence tests in
some countries was the desire to open opportunities for better schooling to all social
classes by using test scores as objective evaluation to give all students an opportunity to
attend the best schools irrespective of background or wealth. This actually happened in the
UK after the Second World War, and this motivation was important in the development and
use of the SAT in the USA.

But the Scottish survey was over after the second round of testing in 1932. It only
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became a longitudinal follow-up study largely by accident when the original records were
rediscovered in an old storage room. Today, a team of researchers, directed by Professor
Ian Deary at the University of Edinburgh, is using this database and follow-up evaluations
to study the impact of intelligence on aging. Several years ago, Dr. Deary got a new grant
from the Scottish government, restored the physical handwritten records as much as
possible, and then computerized all of them. He also identified 550 original participants
still living and willing to be re-tested. So there is now follow-up data. Let’s look at two
interesting results from the longitudinal analyses.

1. IQ scores were fairly stable over time as demonstrated by showing scores at age 11
correlated to scores at age 80 (r = .72) (Deary et al., 2004). The intelligence test used
at the beginning of the survey and for follow-up is called the Moray House Test. It
gives an IQ score essentially equivalent to the Stanford–Binet or the WAIS. Recall
that fluid intelligence decreases with age. Crystallized intelligence is more stable, and
the IQ score from the test used in this study combined both fluid and crystallized
intelligence. Although not part of this study, it should be noted that different
components of IQ might rise and fall at different times across the life span
(Hartshorne & Germine, 2015).

2. Individuals with higher intelligence scores at age 11 lived longer than their
classmates with lower scores, as shown in Figure 1.7 (Batty et al., 2007; Murray et
al., 2012; Whalley & Deary, 2001).

56



57



Figure 1.7 Childhood IQ scores predict adult mortality. Note many more people in the
highest IQ group are alive recently compared to the lowest IQ group.

Reprinted with permission, Whalley & Deary (2001).

The top graph in Figure 1.7 shows the data for women, and the bottom graph shows
men. Both show the same trends. On the x-axis, we see ages of participants by decade from
age 10 to age 80, and on the y-axis, we see the percentage of the group originally tested
who are still alive at each age. The data are shown separately for the lowest and the
highest quartile based on IQ.

So, for example, in Figure 1.7, let’s look at the top graph of women, and let’s focus on
the data points at the far right side of the graph (about age 80 years old). You can see that
more women are alive in the highest IQ quartile, about 70%, compared to the bottom
quartile, where about 45% are still alive. This is quite a large difference. And this is true
starting around age 20. It’s the same for men, but starting later around age 40 and the trend
is not quite as strong. Because the UK has universal healthcare, differential rates of
insurance coverage do not influence these data. But why should IQ be related to longevity?
Here is one possible explanation. Before age 11, several factors, both genetic and
environmental, may influence IQ and then higher IQ leads to healthier environments and
behaviors, and to a possibly better understanding of physician instructions, and these in
turn influence age at death. However, there is compelling evidence that a better explanation
is that mortality and IQ have genetic influences in common. An estimated 84%–95% of the
variance in the mortality/IQ correlation may be due to genes (Arden et al., 2015).

To recap the evidence from these three classic studies, Terman’s project helped
popularize the importance of IQ scores and demolished the popular but negative stereotype
of childhood genius. Gifted student education essentially started with this study. Stanley’s
project went further and incorporated ways to foster academic achievement in the most
gifted and talented students. Deary’s analyses of the National Survey data in Scotland
provided new insights about the stability of IQ scores and the importance of general
intelligence for a number of social and health outcomes.
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These studies provide compelling data that one psychometric test score at an early age
predicts many aspects of later life including professional success, income, healthy aging
and even mortality. Bottom line: It’s better to be smart, even if defined by test scores that
have meaning only relative to other people.

1.11 Why Do Myths About Intelligence Definitions and
Measurement Persist?

Given all this strong empirical evidence that intelligence test scores are meaningful, why
does the myth persist that scores have little if any validity? Here is an informative example.
From time to time, a college admissions representative will assert that in their institution
they find no relationship between grade point average (GPA) and SAT scores. Such
observations are virtually always based on a lack of understanding of a basic statistical
principle regarding the correlation between two variables. To calculate a correlation
between any two variables, there must be a wide range of scores for each variable. At a
place like MIT, for example, most students fall in a narrow range of high SAT scores. This
is a classic problem of restriction of range. There is little variance among the students, so
in this case, the relationship between GPA and SAT scores will not be very strong.
Sampling from just the high end or just the low end or just the middle of a distribution
restricts range and results in spuriously low or zero correlations. Restriction of range
actually accounts for many findings about what intelligence test scores “fail” to predict.

Here’s another classic example of an erroneous finding due to restriction of range. In
the 1930s Louis Thurstone challenged Spearman’s finding of a g-factor (Thurstone, 1938)
and proposed an alternative model of seven Primary Abilities that he claimed were
independent of each other. That is, they were not correlated to each other and there was no
common g-factor. There’s Spatial Ability as measured by tests that require mental rotation
of pictures and objects. There’s Perceptual Speed as measured by tests of finding small
differences in pictures as fast as possible. There’s Number Facility as measured by tests of
computation. There’s Verbal Comprehension as measured by tests of vocabulary. There’s
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Word Fluency as measured by tests that require generating as many words as possible for a
given category within a time limit. There’s Memory as tested by recall for digits and
objects. And finally, there is Inductive Reasoning as measured by tests of analogies and
logic.

However, Thurstone’s model was not supported by subsequent research. It turns out
that the original research was flawed because the samples he used did not include
individuals across the full range of possible scores. That is, the range was restricted so
there was no variance to predict any test from any other. When additional research
corrected this problem, the Thurstone “primary” abilities, in fact, were correlated to each
other and there was a g-factor. Thurstone retracted his original conclusion (Thurstone &
Thurstone, 1941). So why include this example from the 1930s in a modern book? As we
will see in later chapters, a surprising number of studies still report erroneous findings
because of restricted range.

Differences in factor structure among many models based on factor analysis have
given some critics the idea that g is merely a statistical artifact of factor analysis
methodology. We now have hundreds of factor analysis studies of intelligence on hundreds
of mental tests completed by tens of thousands of people and using many varieties of factor
analysis method. The bottom line is that there always is a g-factor. Here’s a key point: g-
factors derived from different test batteries correlate nearly perfectly with each other as
long as each battery has a sufficient number of tests that sample a broad range of mental
abilities, and the tests are given to people sampled from the wide range of ability (Johnson
et al., 2004, 2008b). A recent study of 180 college students reported that a g-factor derived
from their performance on a battery of video games correlated highly (0.93) with a g-factor
extracted from their performance on a battery of cognitive tests (Ángeles Quiroga et al.,
2015). Such studies provide strong evidence that g is not a statistical artifact, even though
its meaning is limited as an interval scale. And, logically, if it were merely an artifact, g
scores would not correlate with other measures of the complexity of everyday life, as we
noted, nor with genetic and brain parameters, as we detail in subsequent chapters.

Finally, perhaps the major motivation for diminishing the validity of intelligence tests,
and other tests of mental abilities including the SAT, is the desire, shared by many, to
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explain away group differences in average scores as a mere artifact of the tests. In my
view, this motivation is misplaced. The causes of average test score differences among
groups are not yet clear, but the differences are a major concern in education and other
areas. They deserve full attention with the most sophisticated research possible so causes
and potential remediation can be developed based on empirical studies. Imaging studies of
brain development and intelligence are beginning to address some issues, as detailed in
Chapters 3 and 4, and the goal of enhancing intelligence, discussed in Chapters 5 and 6, is
something to consider.

Before we get into the brain itself, in the next chapter we will summarize the
overwhelming evidence that intelligence has a major genetic component and how
“intelligence genes” may affect the brain. We will also introduce the concept of epigenetic
influences of environmental factors on gene expression, all of which work through
biological processes to affect the brain. All together, this evidence supports our primary
assumption that intelligence is 100% biological.

Chapter 1 Summary
Intelligence can be defined and assessed for scientific research.

The g-factor is a key concept for estimating a person’s intelligence compared to
other people.

It is surprising that intelligence is rarely considered explicitly in vigorous debates
about why pre-college education appears to be failing many students. The best
teachers cannot be expected to attain educational objectives beyond the capabilities
of students.

At least four kinds of studies demonstrate the predictive validity of intelligence test
scores and the importance of intelligence for academic and life success.

Intelligence tests are the basis for many important empirical research findings, but
going forward, the key problem for assessment is that there is no ratio scale for
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Review Questions
1. Is a precise definition of intelligence required for scientific research?

2. What is the difference between specific mental abilities that define savants and the
g-factor?

3. Why is an intelligence test score not like a measure of length, liquid, or weight?

4. What is restricted range and why is it an important concept for intelligence
research?

5. What are two myths about intelligence and why do they persist?

6. Why do you suppose this chapter begins with a quote from 1980?

Further Reading
Human Intelligence (Hunt, 2011). This is a thorough textbook that covers all aspects
of intelligence written by a pioneer of intelligence research. It is clearly written,
lively, and balanced.

Straight Talk about Mental Tests (Jensen, 1981). This is a clear examination of all
issues surrounding mental testing. Written without jargon by a real expert for students
and the general public. Still a classic, but you may find it only in libraries or from
online sellers.

intelligence, so test scores are meaningful only relative to other people.

Despite widespread but erroneous beliefs about definition and assessment,
neuroscience studies seek to understand the brain processes that underlie
intelligence and how they develop.
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The g-Factor (Jensen, 1998). This is a more technical and thorough text on all aspects
of the g-factor. It is considered the classic in the field.

“The neuroscience of human intelligence differences” (Deary et al., 2010). This is a
concise review article written by long time intelligence researchers.

IQ in The Meritocracy (Herrnstein, 1973). This controversial book put forth an early
argument about how the genetic basis of IQ was stratifying society. The Preface is a
hair-raising account of the acrimonious climate of the times for unorthodox ideas. This
book is hard to find, but try online sellers.

The Bell Curve (Herrnstein & Murray, 1994). This is possibly the most controversial
book about intelligence ever written. It expands arguments first articulated in IQ in
the Meritocracy. There are considerable data and well-reasoned positions about
what intelligence means for public policy.
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Chapter Two

Nature More than Nurture: The Impact of
Genetics on Intelligence

◈

Give me a dozen healthy infants, well-formed, and my own specified world to bring them
up in and I’ll guarantee to take any one at random and train him to become any type of
specialist I might select – doctor, lawyer, artist, merchant-chief, and, yes, even beggar man
and thief, regardless of his talents, penchants, tendencies, abilities, vocations, and race of
his ancestors. I am going beyond my facts and I admit it, but so have the advocates of the
contrary and they have been doing it for many thousands of years.

(Watson, 1930, p. 104)

… the Blank Slate is an empirical hypothesis about the functioning of the brain and must be
evaluated in terms of whether or not it is true. The modern sciences of mind, brain, genes,
and evolution are increasingly showing that it is not true.

(Pinker, 2002, p. 421)

The most far-reaching implications for science, and perhaps for society, will come from
identifying genes responsible for the heritability of g … Despite the formidable challenges
of trying to find genes of small effect, I predict that most of the heritability of g will be
accounted for eventually by specific genes, even if hundreds of genes are needed to do it.

(Plomin, 1999, pp. 27, 28)

Finding genes brings us closer to an understanding of the neurophysiological basis of
human cognition. Furthermore, when genes are no longer latent factors in our models but
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can actually be measured, it becomes feasible to identify those environmental factors that
interact and correlate with genetic makeup. This will supplant the long nature/nurture debate
with actual understanding.

(Posthuma and de Geus, 2006, p. 151)

It might be argued that it is no longer surprising to demonstrate genetic influence on a
behavioral trait, and that it would be more interesting to find a trait that shows no genetic
influence.

(Plomin and Deary, 2015, p. 98)

Learning Objectives

Introduction
Our brain evolved along with the rest of our body. It would be unlikely if genetics
influenced all manner of human physiological differences but had no impact on the brain or
the brain mechanisms that underlie intelligence. Nonetheless, genetic explanations of
human attributes (even partial explanations) often arouse suspicion and unease. In part this
comes from an assumption that anything genetic is essentially immutable, deterministic, and
limiting. As we will see, this is not always a correct assumption, and the exact opposite
may be true as we now have several powerful techniques for manipulating genes (see
Sections 5.6 and 6.3). Some genes are deterministic – you have the gene, you get a specific

Is the nature–nurture debate about intelligence essentially settled?

What is the most compelling evidence that genes influence intelligence?

What is the effect of age on environmental influences on intelligence?

What are key research strategies used in quantitative and molecular genetics?

Why has it been so difficult to identify specific genes related to intelligence?
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characteristic – but for complex traits and behaviors like intelligence, the genetic
influences are best described as probabilistic rather than deterministic. That is, this gene
may increase the chances of having a characteristic, but whether you get it depends on
multiple factors. For example, you may be at genetic risk for heart disease, but you can
lower your risk with diet and exercise.

In the most extreme scenario favoring genetics, if intelligence differences among
people were due 100% to genetic factors inherited as a random mix of genes from a
mother and a father, it would still be the case that some genes and their expression can be
modified by environmental factors. The interaction of genetic expression and non-genetic
variables is called epigenetics, discussed later in this section. In the 100% genetic
scenario, it also would be the case that a person may well be liberated from a bad,
suboptimal, or constraining environment by winning the genetic lottery for high intelligence
(i.e., the random mix of genes from both parents including the salient ones for intelligence).
The all (or mostly) gene scenario would also lead to a practical suggestion for maximizing
your child’s intelligence: find the smartest mate you can (simple but perhaps not so easy).
In the 100% genetic scenario, a person who loses the genetic lottery and has low
intelligence would be constrained in some important aspects of life success even if they
had the best supportive or enriched environment money could buy.

In the other extreme scenario, if differences in intelligence involved no genetic
mechanisms, each person’s intelligence would be determined by the influences of their
environment, especially during childhood when brain development is maximal and the
child’s ability to choose favorable environments is minimal. The all (or mostly)
environment theory easily leads to a Behaviorist or “Blank Slate” view that anyone could
develop high intelligence, or any other psychological attribute, if only the right
environmental ingredients were available (Watson, 1930). This view is quite popular
despite the general demise of classical Behaviorism. Moreover, the “Blank Slate” view of
human potential has limited empirical support for most aspects of behavior (Pinker, 2002),
and virtually no support at all for intelligence, as we will see later in this chapter.

The popular middle position holds that both genes (nature) and environment (nurture)
explain differences in intelligence. The older simple version of this position was that
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genetic and environmental factors both contributed about equally. We now recognize that
genes and environments interact in that gene expression may be sensitive to environmental
variables. This is the essence of epigenetics, which is the study of how environments
influence the ways genes function. It’s hard to apportion intelligence variance to just genes
when complex interactions with environments are part of the mix. Epigenetics is a
relatively new field, but there are already some promising indications of progress. A
longitudinal study of Romanian orphans, for example, has identified risk for cognitive and
psychiatric problems partially attributable to the extreme social deprivation in early life
experience. DNA analyses indicate specific genetic alterations are related to the degree of
deprivation (Drury et al., 2012). Animal research suggests that some changes in gene
expression related to environmental factors may actually be heritable (Champagne &
Curley, 2009). This is exciting research, but so far there is no direct connection to human
intelligence, although there is considerable emerging research on the epigenetics of
memory (Heyward & Sweatt, 2015). Environmental variables like exposure to language in
early childhood (Kuhl, 2000, 2004) influence brain neurobiology and development, but
how these factors may relate to intelligence has not yet been demonstrated. How many
epigenetic factors may contribute to intelligence differences is not yet known, but the
concept reinforces the assumption that any salient environmental variables work through
biological mechanisms, genetic or not. For now, the weight of the evidence emphasizes the
influence of genes on intelligence, with or without known epigenetic influences.

2.1 The Evolving View of Genetics
It may surprise you to know that the definition of a gene is not what it was just a few years
ago (Silverman, 2004). Prior to the technology-driven Human Genome Project, genetic
researchers expected to find about 100,000 genes because genes code proteins, which are
the basic building blocks of life. Humans have at least 100,000 proteins. Each gene was
thought to code one protein. However, the Human Genome Project initially reported only
about 25,000 protein-coding genes and that number has been revised downward to perhaps
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less than 20,000 (Ezkurdia et al., 2014). This means that each gene can express itself in
many different ways, and the mechanisms for controlling gene expression are largely
unknown. Gene expression is just a way of saying that genes turn on and off over the life
span. This results in a constantly changing mix of proteins influencing all aspects of
biology in complex and dynamic interactions. What exactly are the switches or triggers that
turn genes on and off and how might the switches interact with environmental factors? How
do the myriads of gene protein products interact with each other in multistep, cascading
sequences? Such issues are the focus of the nascent field of epigenetic research.

Historically, most researchers have assumed that intelligence, no matter how it was
defined, develops in childhood and is strongly influenced by environmental factors,
especially home life and social culture. In this view, whatever role genes might play is
minimized, and some even argue for a zero contribution of genes. Although this view about
the importance of early environment seems reasonable, and even flattering to proud
parents, the evidence for strong environmental effects on intelligence, especially in early
childhood, is surprisingly weak, as we will see. Epigenetics provides a concept for the
continued consideration of theories about the importance of environmental factors for
intelligence, but epigenetic research on intelligence is just beginning (Haggarty et al.,
2010). Nonetheless, like climate change, the data that support a major genetic component to
intelligence are compelling and the number of genetic deniers and minimizers is
diminishing rapidly.

Generally, we don’t like to think about any constraints on potential life achievement
so the idea that intelligence has a major genetic component is not readily embraced as a
good thing. This is so especially in some academic social science circles where there is
vested interest in the study of cultures. In fact, there is a decades-old concerted effort to
undercut, deny, and impugn any and all genetic studies of intelligence (Gottfredson, 2005).
A similar effort in the 1960s and 1970s regarding the “myth” of schizophrenia and other
psychiatric disorders has all but disappeared. Much of the anti-genetic feeling originally
arose as a moral response to eugenic movements in the nineteenth and early twentieth
centuries, the aftermath of Nazi atrocities during the 1930s and 1940s, and most recently
for our context here, to one specific paper published in 1969 by an educational
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psychologist at the University of California, Berkeley named Arthur Jensen. We will
discuss this infamous paper shortly.

Here is a crucial point to keep in mind as we introduce genetic studies: throughout this
book, whenever we talk about the effects of any variable or factor on intelligence, we are
actually referring to the effects on intelligence differences (variance) among people.

As the term implies, behavioral genetics generally refers to the study of behavioral
traits and are of two basic kinds: quantitative, and molecular. The former, with roots in
Mendel’s experiments with peas, deals with establishing whether a genetic component (a
genotype) may exist or not for a behavior or characteristic (the phenotype) and if so, how
much variance can be accounted for by genes. Quantitative genetics includes modeling a
mode of gene transmission (e.g., dominant or recessive). Twin and adoption studies are
primary methods of quantitative genetics and we will review key studies and some
surprising findings that support a strong role for genes and a minimal role for
environmental variables in explaining intelligence differences among individuals.
Molecular genetics is a newer field and uses various DNA technologies and methods to
identify genes that are related to variation in specific traits and, in the case of intelligence,
how those genes work to influence brain development and brain function. This ambition is
as complex as any goal in any scientific field. Molecular genetic findings related to
intelligence so far are quite tentative with little replication of specific genes identified as
possibly related to intelligence. Nonetheless, there is progress and the findings reviewed
later in this chapter are somewhere between intriguing and amazing.

The early enthusiasm for molecular genetic techniques began about 20 years ago with
the optimistic promise of imminent discovery of a few genes that accounted for
considerable variance in intelligence. This has not happened and more than a few critics of
the genetic view emote a bit of glee over the failure to identify specific intelligence genes
so far. Early indications, however, suggested that the hunt for intelligence genes actually
was a hunt for “generalist” genes, each of which influenced multiple cognitive abilities that
underlie intelligence. Kovas and Plomin (2006) summarized this view simply: “genetic
input into brain structure and function is general not specific” (p. 198). Two key concepts
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are: one gene can affect many dissimilar traits (pleiotropy), and many genes can affect one
trait (polygenicity).

Although the concept of generalist genes is controversial, a broad consensus has
emerged that intelligence is heritable and polygenetic. For example, one study based on
3,511 unrelated adults concluded that there are many intelligence genes that all together
may account for 40%–50% of variance in general intelligence (Davies et al., 2011)
although no one gene yet accounts for more than a tiny portion of variance. Additional
research supports pleiotropy for diverse cognitive abilities (Trzaskowski et al., 2013a).
Researchers investigating schizophrenia, autism, obesity, and many other gene-rich targets,
even height, find similar polygenetic and pleiotropic results. At this stage, the heritability
of human intelligence is well-established, and there are even emerging data in chimpanzees
(Hopkins et al., 2014). There are interpretation issues regarding some aspects of the
genetic data that are still unresolved (Nisbett et al., 2012; Shonkoff et al., 2000) and may
remain so until specific genes for intelligence are identified and confirmed. Recent efforts
to minimize the importance of genetic influences on intelligence in favor of environmental
influences (Nisbett, 2009) do not stand scrutiny (Lee, 2010). Fortunately, there are even
newer findings about intelligence that may signal real progress toward discovering specific
genes and their effects. Before reviewing recent noteworthy studies in both quantitative and
molecular genetics, let’s start with some history to put the genetic story of intelligence into
context by reviewing a surprising failure and an alleged fraud.

2.2 Early Failures to Boost IQ
The failure hit the fan in 1969 without warning. In the early 1960s, President Lyndon
Johnson committed the USA to a war on poverty. One aspect of this admirable federal
effort was aimed at a major concern that had been observed for decades. Poor children,
especially from minority groups, tended to score lower on cognitive tests, including IQ
tests. At the time the consensus among most educators, psychologists, and policy makers
was that any cognitive gaps revealed by tests, especially for intelligence, were due mostly
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or entirely to educational disadvantages and therefore could be eliminated if poor children
got the same early education opportunities that middle- and upper-class families routinely
provided. Such opportunities were virtually unavailable to the poor, especially prior to the
1954 Supreme Court decision striking down race-based separate but equal approaches to
education. The solution for eliminating any cognitive gaps seemed obvious and the idea of
compensatory education resulted in the federally funded Head Start Program. Prior to Head
Start, several different compensatory education demonstration projects had been
implemented on a limited basis. Some of these projects were reporting encouraging and
even dramatic positive results at reducing cognitive gaps and increasing IQ scores. These
efforts were the basis for the optimistic view that Head Start would be a great success at
eliminating the gaps.

The Harvard Educational Review asked Arthur Jensen, a noted educational
psychologist, to review the claims of these early compensatory efforts (Head Start had not
yet been implemented long enough to be included in this review). Jensen’s article (1969)
was entitled, “How much can we boost IQ and scholastic achievement?” Here is the
opening sentence: “Compensatory education has been tried and it apparently has failed.”
Jensen continued with over 100 pages of detailed analysis of intelligence research that
revealed little if any lasting effect of the early compensatory efforts on either IQ scores or
school achievement. That alone was bad enough in the political context of widespread
enthusiasm for the nascent Head Start Program, but the article got worse when Jensen
discussed genetics. He first reviewed studies of environmental effects on intelligence. He
concluded that the empirical evidence for any major environmental effects on intelligence
in general, and especially for the g-factor, was actually quite weak. He then argued that one
reason for this would be that variance in intelligence, especially the g-factor, was mostly
genetic. He summarized genetic studies that appeared to validate this view. In 1969, this
conclusion was a bit of a stretch given the paucity of both environmental and genetic
studies with large samples and solid research designs. However, the article, already
offensive to the majority view that intelligence derived mostly from environment, went
even further with a controversial suggestion, and controversial is an understatement.
Because IQ scores appeared to be impervious to compensatory efforts and because genes
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played an important role, Jensen asserted the hypothesis that the average intelligence
differences found for some racial groups compared to whites (he focused on black/white
differences) might have a genetic component. And with the publication of that hypothesis,
research on intelligence all but ended for more than a generation.

The negative response to Jensen’s review article was ferocious. The most vicious
responses were directed to the inflammatory inference that blacks were intellectually
inferior because of their genetic makeup and to the general idea that genes played a major
role in intelligence and the environment did not. Jensen’s concluding paragraphs about the
importance of adjusting teaching methods to match the learning capabilities of individual
students to maximize school achievement for all children received virtually no attention
(see Section 6.6). In any case, critics have spent decades attacking Jensen personally and
his arguments. As mentioned briefly in the last chapter, another book published in 1973, IQ
in the Meritocracy (Herrnstein, 1973) created a similar firestorm regarding the role of
genetics in intelligence. Given the racial inferences and the hot emotional atmosphere, few
researchers or their students opted to focus their careers on any questions at all about
intelligence. Getting federal research support for researching intelligence became virtually
impossible. Almost overnight, intelligence research became radioactive.

Head Start pushed ahead and similar compensatory research efforts included
increasingly intensive interventions. In the 1970s and 1980s, Jensen’s critics attacked the
validity of IQ tests and scores, the existence of the g-factor, quantitative genetics in
principle, and even the integrity and motivation of individual researchers. One simple
argument was that any average group differences in intelligence test scores were most
likely due to test bias and had no meaning. The bias hypothesis, as noted in the previous
chapter, has been studied extensively and has little empirical support. As far as test scores
being without real meaning, there is extensive evidence, as noted in Chapter 1, that scores
predict many aspects of life (Deary et al., 2010; Gottfredson, 1997b). Moreover, in the
next two chapters, neuroimaging shows that intelligence test scores are correlated to a
variety of structural and functional measures of the brain; findings that would be
impossible if the test scores were meaningless. Some critics challenged whether the g-
factor was merely a statistical artifact, a view not supported by many sophisticated
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psychometric studies (Jensen, 1998; Johnson et al., 2008b). Other critics went beyond
debate about data and attacked Jensen and some behavior genetic researchers with ad
hominem charges of explicit racism. Jensen was once asked directly if he was a racist. His
answer was, “I’ve thought about this a lot and I have come to the conclusion that it’s
irrelevant” (Arden, 2003, p. 549). I knew Jensen for many years and I understand his point
was that his interpretation of data, even if it was motivated by unconscious racism, was
testable and falsifiable by objective scientific methods. He was confident that future
research could potentially refute any of his hypotheses. He was, as far as most observers
could perceive, unflappable in the face of personal attacks because he was completely
driven by data. In my view, he would not have been disappointed at all if new data showed
him to be wrong.

The point in summarizing this incendiary period in the history of intelligence research
is to help explain the origin of the negative valence that intelligence research still carries to
some extent today. The modern neuroscience studies that are the focus of this book have
helped the field move beyond these old destructive controversies. While the basis of
average group differences on psychometric tests of intelligence and other cognitive
abilities is still unsettled, the major role of genetics for explaining intelligence differences
among individuals is firmly established, as detailed in the next section. It is also the case
that the weight of evidence from modern studies of intensive compensatory education, now
rebranded as early childhood education, still fails to find lasting effects on IQ scores and
even short-lived increases are not clearly related to the g-factor (te Nijenhuis et al., 2014).
Contrary to Jensen’s review, newer, more intensive studies indicate that some important
aspects of academic achievement, like graduation rates, apparently do improve (Barnett &
Hustedt, 2005; Campbell et al., 2001; Ramey & Ramey, 2004). There also are some
quantitatively sophisticated estimated projections that IQ scores for disadvantaged children
potentially could increase dramatically given the right program components at early ages
(Duncan & Sojourner, 2013), although no such gains have been realized let alone tested for
durability. It is my view that there are many good reasons to support early childhood
education that do not depend on whether IQ scores change or not due to genetics or other
reasons. Including IQ in the discussion about early education probably doesn’t help make
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the case. More about the neuroscience potential for increasing intelligence will be detailed
in Chapter 5.

With respect to both a genetic basis for intelligence and the failure of early education
to boost IQ, it is fair to say that Jensen’s hypotheses have not yet been refuted by another
45 years of new data. The interested reader is referred to the references at the end of this
chapter for sources that delve into the Jensen controversies in greater detail (Snyderman &
Rothman, 1988). Steven Pinker’s The Blank Slate is a terrific book and I highly
recommend it for understanding the broader historical and philosophical context of
intelligence research criticism. I also strongly recommend that any student interested in
pursuing a career in intelligence research using neuroscience or other approaches read
Jensen’s 1969 article. It is often cited, often misrepresented, and in my view, a classic
work of psychology that still suggests important ideas and hypotheses to test with modern
methods.

2.3 “Fraud” Fails to Stop Genetic Progress
Before moving on to modern advances in both quantitative and molecular genetics, we
need to take one more historical side trip. Explaining this story also introduces basic
strategies of quantitative genetics research. Following the 1969 article, another line of
attack claimed that some of the genetic data Jensen cited to support his argument were
fraudulent. These data came from identical twins reared apart as reported by Sir Cyril
Burt, an eminent British psychologist in the mid-twentieth century.

The story of “fraud” begins with the undistinguished number .771. Here’s the
background. Because monozygotic (MZ) twins, that is, identical twins, have 100% of their
genes in common, any trait that was found in both twins was thought to have a genetic
component. The more similar the twin pairs on the trait, the stronger the effect of genes. Of
course, identical twins also share both the pre-natal and the post-natal environment, so the
fact that identical twins may have quite similar intelligence test scores does not rule out
that the similarity is due to having similar environments. Conceptually, this problem is
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easily addressed by comparing the similarity of a trait between pairs of identical twins
who have 100% of their DNA in common to pairs of fraternal twins – that is, dizygotic
(DZ) twins. Fraternal twins share most of their early environment but only 50% of their
DNA, so any similarities should not be as strong in the fraternal twins as they are in the
identical twins.

Indeed, this is the undisputed case in many studies of intelligence that collectively
report average correlations for identical twins as about .80 and .60 for fraternal twins
(Loehlin & Nichols, 1976). Adoption studies are even more powerful and compelling
because they separate genetic and environmental influences more clearly than comparisons
of identical and fraternal twins reared together. The Denmark Adoption Studies, for
example, shifted the debate about the etiology of schizophrenia decidedly toward a genetic
component because adopted children who had a biological parent with schizophrenia grew
up with a higher risk of having schizophrenia than other adopted children with biological
parents who were not schizophrenic. David Rosenthal was one of the principle
investigators for the Denmark studies and I worked in his laboratory at The National
Institute of Mental Health (NIMH) in my first job after graduate school. He once told me
that although these studies did not elucidate much about schizophrenia other than a genetic
component of some kind was involved, the beauty of the adoption study design was its
simplicity. Basically, only two simple numbers counted. Anybody can see a higher rate of
schizophrenia in the one group compared to the other, so in this case, it was hard to deny
some role for genetics (although some anti-genetic critics certainly tried).

There are a relatively small number of well-done adoption studies of intelligence.
These studies are quite difficult and complex to do because so many variables are difficult
to control (e.g., age at adoption, age at intelligence testing, indexing similarities of
environments in a quantitative way, the rate of participant dropouts from the study, no
random assignment to environments). Nonetheless, results consistently report higher
intelligence test score correlations between adopted children and their biological parents
compared to correlations with adoptive parents. In fact, the correlations with adoptive
parents are very low and even near zero (Petrill & Deater-Deckard, 2004), especially as
children grow older (see Hunt, 2011, pp. 230–231 for an excellent summary), another
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observation hard to explain for critics who argue against genetic effects on intelligence.
Interestingly, one recent adoption twin study reports higher IQs in adopted children
compared to their non-adopted siblings, suggesting that enriched educational opportunity in
the adoptive home leads to an increase of about 3–4 IQ points in early adulthood (Kendler
et al., 2015). The study is noteworthy for the large sample of sibling pairs and a
replication in a large sample of half-siblings. These samples were identified in Sweden, a
country that registers such information systematically. This study suggests a small effect for
the environment of the adoptive home and this finding does not contradict or impugn the
heritability data in any way. The heritability studies always demonstrate that some
environmental effects must be at work. Nonetheless, some caution is warranted because the
IQ measure consisted of only four subtests used by the Swedish military. As noted in
Chapter 1, all IQ scores are estimates of an underlying construct and small differences
between groups are difficult to attribute to any causation.

An even more powerful design combines adoption and twins. Think about studying
identical twins adopted away from their biological parents in early life and each one
raised separately in a different family and exposed to different everyday environments, one
twin often not even knowing of the existence of the other. Are identical twins reared apart
still very similar to each other on things like intelligence test scores?

This brings us back to .771. In mid-twentieth-century Britain, Sir Cyril Burt did the
first major studies of intelligence in identical twins adopted away from biological parents
and reared in separate adoptive families. Over a number of years, Burt gave intelligence
tests to pairs of identical twins who had been reared apart, an extremely rare group quite
difficult to find and enter into a research study. He first mentioned a correlation of .77 in 15
pairs of identical twins reared apart (Burt, 1943), suggesting a strong genetic component to
intelligence. Subsequently, he added six twin pairs and reported a correlation of .771
(Burt, 1955). His third report included 53 pairs with a correlation in the identical twins
reared apart of .771 (Burt, 1966).

The three reports had different sample sizes ranging from 15 to 53 but each new,
larger sample showed the same correlation of .771 (.77 in the first report). Burt’s results
were a key element of Jensen’s 1969 argument. Critics of Jensen’s genetic view revisited
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Burt’s publications looking for possible flaws and .771 caught their attention. They argued
that the same correlation value to three decimal places based on different sample sizes was
statistically improbable. They concluded that Burt surely committed scientific fraud, and
this example is still cited today to undermine the idea that genes are important for
intelligence. In the wake of the fraud charges, Jensen, who knew Burt (who died in 1971),
examined Burt’s original data files and found a number of serious concerns that he reported
in detail (Jensen, 1974). Jensen was willing to exclude Burt’s data from his argument, but
still maintained that other data supported a role for genetic influences on intelligence. Most
independent investigations of Burt’s data doubt the claim of intentional fraud (Mackintosh,
1995). We may never know for sure, but the main point is this.

Subsequent twin studies done by different investigators around the world with large
samples arrive at an average value for the correlation of intelligence scores among
identical twins raised apart of .75 (Plomin & Petrill, 1997). Burt’s value was .77. For
comparison, based on 19 studies ranging in sample sizes between 26 and 1,300 identical
twin pairs, the average value for identical twins raised together is about .86 (see Loehlin &
Nichols, 1976, table 4.10, p. 39). These values compare to the fraternal twin data (Loehlin
& Nichols, 1976) that show average correlations for intelligence of about .60 based on
pair sample sizes of 26–864. The overall story from twin and adoption studies has been
apparent for some time (Bouchard & McGue, 1981; Loehlin, 1989; Pedersen et al., 1992)
and is nicely summarized in Figure 2.1 (Plomin & Petrill, 1997). In subsequent research,
however, a rather dramatic new insight has emerged that further informs the pattern in
Figure 2.1. We now know that age at time of intelligence testing makes quite a difference
for heritability estimates. This is discussed in section 2.4.
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Figure 2.1 Intelligence variance accounted for by genetics based on family, twin, and
adoption data. T, reared together; A, reared apart; MZ, identical twins; DZ, fraternal twins;
sib, sibling; PO, parent–offspring.

Reprinted with permission, Plomin and Petrill (1997).

Thus, the .771 “fraud” ends with recognition of overwhelming data from independent
researchers that are fully consistent with Burt’s analyses, flawed as they may have been.
Any single study, or any one researcher, can be flawed, but the basic conclusion that genes
play an important role in intelligence is consistently supported by data from numerous
studies of twins, adoptees, and adopted twins. This is an excellent example of looking at
the weight of evidence (recall my three laws from the Preface: no story is simple; no one
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study is definitive; it takes many years to sort out conflicting and inconsistent findings and
establish a weight of evidence). Many issues about the role of genetics in intelligence
remain unresolved. For example, cross-sectional and historical data show that average IQ
scores have consistently increased by about three points every decade around the globe.
This is known as the Flynn Effect (Flynn, 2013; Trahan et al., 2014). Some critiques of the
genetic role in intelligence argue that such an increase cannot be attributed to the slow pace
of genetic evolution; they are correct. The increase, however, may not be a g effect (te
Nijenhuis & van der Flier, 2013) and the causes are unknown, but its existence alone does
not disprove a major role for genetic influences on intelligence.The weight of evidence
summarized in this chapter leaves no reasonable doubt. Only extreme ideologues are still
in denial. Data from more recent twin studies, described later in this chapter, expand the
basic genetic findings to a new level of focus for neuroscience with the addition of DNA
assessments. But let us not ignore that genetic studies also highlight a role for non-genetic
factors with some surprising empirical observations.

2.4 Quantitative Genetic Findings also Support a Role
for Environmental Factors

While the atmosphere surrounding intelligence research was still toxic and Burt’s data
were under attack, a group of researchers at the University of Minnesota led by Professor
Thomas Bouchard embarked on a new project to identify a large sample of identical twins
reared apart. Ultimately, 21 years of searching (1979–2000) yielded 139 twin pairs from
around the world who participated in the project. Some twins had no contact with each
other until they were reunited in Minnesota, where all the twins completed an elaborate
battery of tests for about 50 hours over a week. This included tests of intelligence,
personality, attitudes, values, and many physical characteristics.

Genetic components were found for several personality traits like extroversion, and,
surprisingly, even for some attitudes and values. However, these identical twins reared
apart were most similar on intelligence scores with a correlation of .70 (Bouchard, 1998,
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2009). When correlations are computed in identical twins reared apart, the correlation is
also one way to estimate hereditability, so a correlation of .70 indicates that 70% of the
variance in intelligence is due to genetic factors and 30% is not. Although this result from a
large, careful study did not end all skepticism about a role for genetics, it started to temper
many critics who were suspicious of Burt’s results and more inclined toward yet-to-be
identified environmental factors. Like the impact of the Denmark Adoption Studies of
schizophrenia on psychiatry, the Minnesota study began to shift the tide toward a renewed
objective interest in genetic contributions to intelligence.

All of the twin and adoption studies of intelligence that demonstrate an important role
for genes also are consistent in showing that genes do not account for 100% of the
variance. So, an important consequence of the genetic studies is demonstrating that non-
genetic factors must be involved in some way. Prior to the current interest in epigenetics
and gene/environment interactions, there were attempts to apportion the contributions of
genetic and non-genetic environmental factors. The most common view was about 50–50.
However, there is considerable variability among studies regarding this proportion and
there’s an interesting factor that accounts for much of this variability. The factor is the age
when twins are tested (Haworth et al., 2010; McGue et al., 1993).

Based on cross-sectional data, in young twins 4–6 years old, the heritability of
intelligence estimate is about 40%, and the heritability rises to a high of about 85% when
the twins are older adults. In other words, the genetic influences on intelligence variance
actually increase with age and environmental influences decrease. Note that cross-
sectional means that different twin pairs participated in different studies at different times.
Suppose we followed the same twins and retested them periodically as they got older.
Would we see the same trend in such longitudinal data? The answer is yes. In a large Dutch
twin study (Posthuma et al., 2003b), the same identical twins were given mental test
batteries repeatedly over time to assess general intelligence. The heritability estimate of
general intelligence was 26% at age 5, 39% at age 7, 54% at age 10, 64% at age 12, and
starting at age 18 the estimate grew to over 80%. The increases could be due to several
factors including more genes “turning on” with increasing age or gene–environment
interactions. A detailed discussion of heritability estimation and genetic modeling is
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beyond the intention of this book, but see Hunt (2011, chapter 8) for a detailed
presentation.

Here we are focused on an overview of genetic studies that provide a rationale for
neuroscience approaches. Nonetheless, I want to present data that illustrate important
findings about non-genetic factors that come from quantitative genetic studies. Until now, I
have discussed environmental factors as a single category. One common quantitative
genetic model divides environment into two categories: shared and non-shared factors.
Shared environment is what it sounds like. Twins and siblings grow up in the same family,
live in the same neighborhood, and attend the same schools. They have many shared
general experiences that may influence intelligence. There are also many experiences
unique to each person such as different friends, different classes and teachers. These
unique influences are the non-shared environment.

In these models, genetic influences, shared and non-shared environmental factors
together account for 100% of the variance in any characteristic like intelligence differences
among people. The amount of variance attributed to each component can be distinguished
and estimated statistically by comparing similarities of intelligence scores for identical
twins, fraternal twins, and siblings, with samples from each group reared together and
reared apart. Differences in intelligence test score correlations in these groups are used to
estimate how much variance each of the three components contribute (Plomin & Petrill,
1997). Although this basic three-component model does not incorporate gene/environment
interactions, it has provided important observations.

Let’s consider additional data from the Dutch twin study described at the end of the
last section. Figure 2.2 shows the influence of genetics and both shared and non-shared
environment on intelligence scores for people of different ages. The black part of the bar
shows the genetic influence we have noted at the end of the last section. The white part of
the bar shows shared environment, and the gray part shows non-shared environment
influence. Shared-environment influences, the white bars, peak at age 5 and then decrease
to virtually zero by age 16. Non-shared environment, the gray bars, has generally greater
influence in the early years, but some non-shared influence continues through at least age
50. Note the sources of non-shared influences likely change over time.
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Figure 2.2 Genetic, shared, and non-shared environment influences on intelligence variance
for different age groups.

Reprinted with permission from Hunt (2011), based on Posthuma et al. (2003b).

To recap this key piece of the genetic story, the heritability of general intelligence
increases with age to about 80% by the end of teenage years and the effects of shared
environment on intelligence decrease to near zero a bit earlier. These findings are
extraordinary and among the most powerful and important in all of psychology. They are
difficult to explain if you are convinced that genes are unimportant for intelligence. They
also give pause to the idea that enriching childhood family experiences, as pleasant as they
may be for many good reasons, has a lasting effect on the development of intelligence.
However, these data also show that both shared and non-shared environment have effects at
different developmental stages and in different amounts, especially before age 18. They are
just not as strong as was once believed, but they demonstrate clearly that genes alone are
not the whole story. All genetic researchers know that genes always express their function
within an environmental context that may influence expression in many ways. Specific
sources of these non-genetic effects on intelligence are not yet determined, just like
specific genes are not yet identified, although general factors like schooling have some
influence (Ceci, 1991; Ceci & Williams, 1997; Tommasi et al., 2015). As noted, part of the
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complexity is that environmental factors like social–economic status (SES) often are
confounded with genetic factors for intelligence because intelligence plays a role in
income and other factors that determine SES. This is discussed further in Textbox 2.1.

Nonetheless, by the beginning of the twenty-first century, the ascendance of the genetic
view for intelligence was mirrored in three “laws” of quantitative genetics (Turkheimer,
2000): “First Law: All human behavioral traits are heritable. Second Law: The effect of
being raised in the same family is smaller than the effect of the genes. Third Law: A
substantial portion of the variation in complex human behavioral traits is not accounted for
by the effects of genes or families.” Dr. Turkheimer discusses the implications of these
laws in the context of new challenges for explaining how genetic and environmental
influences may work. Recently, Plomin and Deary (2015) offered their own version of
three laws: all traits show significant genetic influence; no traits are 100% heritable;
heritability is caused by many genes of small effect. This chapter is not the place to discuss
these “laws” in detail. I cite them here to emphasize the sea change in thinking about the
role genes play in complex traits, virtually all of which have high heritability estimates
according to a comprehensive meta-analysis that included almost every twin and adoption
study ever conducted (Polderman et al., 2015). High heritability is a primary reason that
neuroscience research on intelligence is expanding so quickly.

Are the factors that influence intelligence consistent across the entire range? Here is
an interesting example of progress in testing hypotheses about not just whether genes are
involved in intelligence, but how genes are involved. An important question is whether the
genetic basis of high intelligence and any influence of environmental factors on the salient
genes are the same for the average and lower parts of the normal distribution of
intelligence test scores. High intelligence might result from different genetic and
environmental factors than those that influence average and lower intelligence. The latter
view is called the discontinuity hypothesis. One discontinuity hypothesis is central to the
view that expertise associated with high intelligence is more a reflection of practice and
motivation effects stemming from experiences rather than from inherited ability. Another
discontinuity hypothesis is that different genes are involved in high intelligence than the
genes involved in average intelligence. By contrast, the continuity hypothesis tests the view
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that the same genetic and environmental factors are at work throughout the intelligence
distribution. The effects of each factor are additive so high intelligence reflects having
more of the relevant genes and experiences.

In lieu of having specific intelligence genes to compare between a high IQ group and
an average group, twin studies can test these competing hypotheses by comparing the
groups for the proportions of genetic, shared, and non-shared variance. Simply put, the
Discontinuity Hypothesis predicts the three components of variance would differ between
high and average intelligence groups. A strong test of this was based on 9,000 twin pairs
and 360,000 siblings sampled from 3 million 18-year-old males conscripted into military
service in Sweden (Shakeshaft et al., 2015). All had completed a battery of cognitive tests
from which a g-factor was extracted and the top 5% comprised the high-intelligence group
(IQ estimated at greater than 125).

Several analyses were reported that were consistent in showing strong support for the
Continuity Hypothesis and virtually no support for either the environmental or genetic
Discontinuity Hypothesis. The authors concluded, “Stated more provocatively, high
intelligence as we defined it appears to be nothing more than the quantitative extreme of the
same genetic factors responsible for normal variation” (p. 130). They also cautioned that
they did not have sufficient statistical power to determine whether the groups might differ if
the high-intelligence group was defined more extremely, say at the upper .025% suggested
for defining genius by Galton (1869), rather than the upper 5%.

Another twin study tested the important issue of whether genes account mostly for the
g-factor or for specific cognitive domains that comprise g (Panizzon et al., 2014). These
investigators used a large sample of middle-aged veterans (average age 55) from the
Vietnam era in a longitudinal study of aging and found 346 pairs of identical twins and 265
fraternal twin pairs. Everyone had completed a battery of 10 cognitive tests representing
four basic and well-established cognitive domains (verbal ability, working memory,
visual–spatial reasoning, processing speed). Several alternative factor-analysis models of
the relationship among tests and domains that did not place g at the peak of a hierarchy (see
Chapter 1) were compared on estimates of variance accounted for by genes, shared
environment, and unique environment. The model that best fit the data indicated that g in the
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hierarchical model was more heritable (86%) and accounted for more of the genetic effects
in the specific domains than any other model. Although the researchers acknowledge some
limitations in the study design, by directly testing alternative models, the results extend and
strongly support the earlier research on g as the key common heritable factor underlying
different mental abilities.

Additional progress is illustrated in elaborate new twin studies that not only have
very large sample sizes but also combine DNA assessments and neuroimaging. These
studies blend quantitative and molecular genetics and we will review them in Chapter 4
after the next chapter introduces neuroimaging. Before that, however, we continue here
with some early studies of molecular genetics and the hunt for specific genes.

Textbox 2.1:  Social class and intelligence

A widely cited study suggested the heritability of intelligence is stronger in
families with high social–economic status (SES) and weaker in families with low
SES (Turkheimer et al., 2003), but not all studies agree (Asbury et al., 2005; van
der Sluis et al., 2008). Generally, SES is confounded with intelligence. On
average people with high intelligence get higher-paying jobs and have more
money to provide resources for children. They attain a higher SES directly or
indirectly due in part to intelligence along with other factors (including luck). To
the extent that intelligence is passed along by genes, SES effects independent of
genetic influence on intelligence are difficult to assess. This underscores one
difficulty in assessing gene–environment interactions. A recent meta-analysis of
SES and heritability studies of intelligence suggests a more complex interaction
between SES and intelligence (Bates et al., 2013) and there is some evidence that
SES, education, and general intelligence have genes in common (Marioni et al.,
2014).

In this context, a fascinating study of social class in Poland during its
socialist years addressed this issue in an unusual way. This is an older study but
quite illustrative (Firkowska et al., 1978). Here is the summary quoted directly
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from the published report: “The city of Warsaw was razed at the end of World
War II and rebuilt under a socialist government whose policy was to allocate
dwellings, schools, and health facilities without regard to social class. Of the
14,238 children born in 1963 and living in Warsaw, 96 percent were given the
Raven’s Progressive Matrices Test and an arithmetic and a vocabulary test in
March to June of 1974. Information was collected on the families of the children,
and on characteristics of schools and city districts. Parental occupation and
education were used to form a family factor, and the district data were collapsed
into two factors, one relating to social marginality, and the other to distance
from city center. Analysis showed that the initial assumption of even distribution
of family, school, and district attributes was reasonable. Mental performance
was unrelated either to school or district factors. It was related to parental
occupation and education in a strong and regular gradient. It is concluded that
an egalitarian social policy executed over a generation failed to override the
association of social and family factors with cognitive development that is
characteristic of more traditional industrial societies.” In the context of this
chapter, the confounding of genetic and SES factors leads to a possible
alternative conclusion: Any influence of social policy on mental performance
failed to override the influence of genetic factors. The same confounding is
apparent in new studies which suggest that SES accounts for brain differences
underlying cognitive/achievement gaps, and we will detail them in Chapter 6.

2.5 Molecular Genetics and the Hunt for Intelligence
Genes

Technological advances in measurement drive scientific progress. Until DNA technology
developed to a point where the double helix could be chopped into precise fragments using
cost-effective methods and the millions of pieces (base pairs among the smallest units)
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could be characterized statistically, the hunt for human intelligence genes could not
advance in earnest. For decades, breeding experiments in mice had produced tantalizing
evidence that learning how to navigate a maze to find cheese had a genetic basis. Some
mice learned faster than others, and when the “smart” mice were bred with other smart
mice, the offspring learned the maze faster. In 1999, genetic engineering was used for the
first time to create smart mice that could learn a maze more quickly (Tang et al., 1999).
The researchers named the strain of these mice “Doogie,” after a TV character that was a
precocious teenager in medical school. This achievement (the mice, not the TV show) was
based on considerable previous animal work that showed a certain synaptic receptor,
NMDA (N-methyl D -aspartate), was involved in learning and memory. A single gene
(NR2B) was found to regulate a part of this receptor’s function. The researchers spliced
this gene into the DNA of ordinary mice embryos. The resulting Doogie strain of mice
learned a series of tasks faster than controls.

All neurotransmitters and receptors work in complex balances. In the world of
synapses, too much or too little of any component can have deleterious or fatal
consequences, so applying animal research findings to humans requires considerable
patience and caution. Whether genetic manipulation of the NMDA receptor in humans might
produce similar learning and memory enhancements, without serious side effects, is not yet
known. This example illustrates that finding a gene related to something like learning or
memory or intelligence is just a first step, albeit a challenging one even in animals.
Determining how and why the gene functions, within a cascade of neurobiological steps
and interactions, is even more difficult. Manipulating genetic effects to produce a desired
outcome is not for the faint of heart or for impulsive personalities or short-term investors.
Nonetheless, Doogie mice are a tantalizing example of the powerful potential for changing
the determinism assumed when something has a strong genetic basis.

Separately from animal learning and memory research, the search for human
intelligence genes began with a simple research strategy. DNA samples were collected
from groups defined by IQ scores. Each participant’s DNA was fragmented into small
pieces where genes could be identified. Textbox 2.2 describes key terms and methods used
in DNA studies. These fragments from high- and low- (or average) IQ groups were
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compared and differences were noted as candidates for genes related to intelligence. This
is a needle-in-the-haystack strategy because the number of fragments and individual genes
or base pairs was in the many millions, the cost per individual was quite high, and the IQ
groups also differed on many difficult-to-control characteristics in addition to IQ.
Nonetheless, researchers were optimistic that specific intelligence genes would be
discovered, especially as new DNA assessment technologies were developed. In fact,
many candidate genes were identified using various quantification techniques of increasing
sophistication.

Despite the daunting challenges of this search, a number of research groups around the
world are using variations of this strategy to identify specific genes for intelligence. One
interesting approach in a Japanese study used multiple DNA assessment techniques in a
sample of 33 identical twin pairs who are discordant for IQ scores (Yu et al., 2012). That
is, the twins within a pair had at least a 15-point difference in scores (one standard
deviation). Using discordant identical twins (reared together), even a small sample,
minimized irrelevant genetic and environmental factors and maximized the chances of
finding salient differences in gene expression related to intelligence even if differences
might be the result of epigenetic influences. The use of multiple methods of DNA analysis
allowed for independent replications within the same sample. The outcome identified
several possible differences in gene expression that suggest brain mechanisms that might be
related to intelligence. The findings illustrate the complexity of gene expression and
regulation that are far beyond our discussion here, but they demonstrate that finding genes
is only the first step toward understanding exactly what the genes do and how they
influence or regulate neurobiology and brain function on the molecular level.

Even at the early stage of the search for intelligence genes, the emerging data were
consistent in two important ways. First, none of the candidate genes accounted for much
variance in intelligence test scores. This was a disappointment to those who had
hypothesized that a few genes would account for considerable if not most variance given
the high heritability estimates for intelligence from twin studies. Other researchers
recognized this reflected the complexity of the cognitive processes involved in intelligence
and was consistent with Plomin’s prediction about numerous generalist genes, each
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accounting for a tiny portion of the variance in intelligence. This view has growing
empirical support (Trzaskowski et al., 2013b). The second consistency, and far more
distressing, was that none of the candidate genes identified in this early phase could be
replicated in independent samples. Independent replication is a cornerstone and absolute
requirement of scientific progress. Independent ideally means both a different investigator
and a different sample. In this early phase there was considerable competition to find “the”
genes and journals did not require independent replication for publication, even by the
same investigators but in a separate sample.

There is no reason to list all the early candidate genes here along with the subsequent
failures to replicate them. This disappointing state of affairs did not change for about two
decades despite advances in the precision and cost-effectiveness of DNA technology and
genomic information statistical analysis. One key problem was that most sample sizes were
small and lacked statistical power to replicate them any tiny effects a gene might have on
intelligence. As late as 2012, Chabris and colleagues summarized the search for
intelligence genes in a comprehensive research paper titled: “Most Reported Genetic
Associations with General Intelligence are Probably False Positives” (i.e., they are
wrong). This group attempted to replicate 12 candidate genes for intelligence from
published studies. They had access to three independent samples totaling over 6,000
people who had completed DNA analyses and intelligence testing. Their analysis was
decidedly negative. None of the 12 candidate genes was associated with intelligence in a
robust statistical manner. This failure to replicate intelligence genes, in a large sample with
sufficient statistical power to find small effects if effects existed, was offset by successful
replication in the same sample for control candidate genes related to Alzheimer’s disease
and to body mass. The authors did not express discouragement at their failure to replicate
genes for intelligence and concluded that even larger samples might be needed to find and
replicate multiple genes if each one accounted for even tinier amounts of intelligence
variance. They encouraged intelligence gene hunters to take part in multicenter consortia
that could generate sample sizes of thousands of people (Chabris et al., 2012).

Textbox 2.2:  Basic genetic concepts (also see Glossary)
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The technologies and methods of DNA analyses used in molecular genetics are
diverse, complex, and evolving at a rapid pace (Mardis, 2008). The basic thrust of
progress is that the costs decrease and the precision and scope of analysis
increases. There are now many studies of intelligence using DNA analyses. Here
are some key terms used in the representative studies summarized in this chapter. A
gene is the unit of inheritance. There are an estimated 19,000–22,000 genes, most
still to be identified, distributed on the two sets of 23 chromosomes (one from each
parent) in the human genome. Genomics is the term used to describe mapping
genomes using many different methods. Every person has a unique genome,
although most of the gene sequence is the same for everyone. Chromosomes are
made of two strands of DNA molecules, the so-called double helix. During
reproduction, the offspring randomly inherits these strands from each parent. The
strands all are constructed from a combination of only four base molecules,
(A)denine, (G)uanine, (C)ytosine, (T)hymine. These four arrange themselves in
pairs across the two strands of DNA in the double helix like rungs on a ladder.
Each member of a pair is inherited from one parent. On each rung, A and T, and G
and C form pairs.

There are an estimated 3 billion of these “base pairs” (also called
nucleotides) in the human genome. The order of these base pairs on a strand of
DNA is the genetic code. All humans have nearly identical genetic codes and all
the differences among individuals result from a relatively small portion of
genetic variations. Genes create amino acids that form thousands of different
proteins, and proteins are the building blocks of life that determine how an
organism develops and functions at the cellular level. The sequence from amino
acid creation to protein formation is called gene expression. RNA is similar to
DNA, but RNA essentially translates the DNA code into amino acids and
proteins. Genes can be active or inactive. They turn on and off during
development and over the life span. The expression of a gene is regulated in part
by methylation, one of several neurobiological mechanisms that can be
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influenced by non-genetic factors, including diet, illness, and stress (Jaenisch &
Bird, 2003). Methylation is a process involved in many aspects of normal and
abnormal cell development. Of particular interest is that it can change the
molecular structure of A and C in base pairs. These changes alter the expression
of some human genes (Wagner et al., 2014), and importantly, the modified genes
potentially can be inherited. Epigenetics studies how gene expression is
modified by non-genetic factors.

DNA sequencing identifies the exact physical order of all the base pairs.
Genes are contiguous segments of base pairs, although it is not always clear
where one gene ends and another begins. Genes can have different forms as a
result of getting half of the base pair from each parent. The form of a gene is
called an allele. For example, a hypothetical gene for wrinkles on the chin may
be expressed as WW and no wrinkles as ww. Each parent contributes either a W
or a w, so the allele can be WW, Ww, wW, or ww. The inherited pair will
determine whether the offspring has wrinkles or not.

The position of a gene on a chromosome is a locus. Quantitative trait locus
(QTL) refers to a region of DNA related to a trait like intelligence. There are
often repeat copies of a gene at a locus and the number of copies sometimes can
be related to normal or abnormal protein functions. DNA analysis generally
breaks strands into fragments using any of several techniques. One technical
breakthrough allowed the identification of small variations in the DNA sequence
at any point on a strand where a base pair is changed or mutated. These errors
are called single-nucleotide polymorphisms (SNPs). For example, if a sequence
at a locus typically is GTCGAATTGGAATTGG, sometimes the first T can be a C
in some individuals. This variation in the general sequence is a SNP. Most SNPs
are non-functional, but some are related to diseases and possibly to traits like
intelligence. One estimate is that there are about 30 million SNPs in a person’s
DNA. SNPs can be compared between two groups, say defined by high or low IQ
scores, in an effort to find segments of DNA, perhaps individual genes, that
differentiate the groups. Early studies sampled thousands of SNPs. Now an entire
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person’s genome can be sequenced and SNPs assessed in genome-wide
association studies (GWAS). Such studies generate enormous data sets and the field
of genomic informatics has develo ped statistical methods for sorting through all
the possible combinations with the ultimate goal of identifying specific genes for
diseases, medical conditions, and the myriad of inherited traits. There are now
bioinformatic efforts to use cloud computing to accumulate, organize, and analyze
Big Data sets of genetic information acquired from DNA analyses.

Proteomics is the study of proteins and how they work. It is now possible to
test gene expression for thousands of proteins and their varieties simultaneously,
often using a small DNA sample on microarrays with different reactive agents.
All together, the ever-evolving techniques and methods of molecular genetics
provide detailed assessments deep into the neurobiology and neurochemistry of
neurons, synapses, and brain development of function and structure. Despite the
complexities and overwhelming amounts of DNA data, in my view, the challenges
for understanding intelligence at this level are made finite by the DNA
technologies. In fact, given the psychometric problems noted in Chapter 1,
progress understanding intelligence on the behavioral level might prove more
difficult than on the molecular level.

2.6 Seven Recent Noteworthy Studies of Molecular
Genetic Progress

The benefits of a consortium approach are nicely illustrated in a study co-authored by 59
investigators pooling data sets from around the world (Rietveld et al., 2014). This study
actually was a combined effort from two consortia: SSGAC (Social Science Genetic
Association Consortium) and CHIC (Childhood Intelligence Consortium). These
researchers used a conceptually simple and clever two-stage process that began with a
sample of 106,736 individuals and ended with an indirect replication in an independent

92



sample of 24,189 individuals. In the first sample, millions of SNPs were assessed (see
Textbox 2.2) for each person’s DNA and 69 were related to education attainment level
(years of education). Education level is highly correlated to intelligence. In the second
sample, these 69 SNPs were tested for any associations with a g-score derived from
cognitive test scores. Although not every person completed the same tests, g-scores from
different batteries are highly correlated (even over .95) if the test batteries and the sample
are sufficiently diverse (Johnson et al., 2008b). Several advanced statistical analyses
revealed four promising genes of interest related to very small amounts of variance in
cognitive performance. Interestingly, these genes (KNCMA1, NRXN1, POU2F3, SCRT; I
am not responsible for how genes are named) are known to influence a glutamate
neurotransmitter pathway related to brain plasticity and learning and memory. The pathway
involves the NMDA receptor, glutamate binding, and synaptic changes. Despite the small
amount of intelligence variance associated with these genes, this study demonstrates the
statistical reality that large samples are necessary to find small effects. Such findings also
provide hints about molecular mechanisms that may be associated with intelligence that
could be the basis for hypotheses about the salient neurobiology.

About the same time, the second study (Hill et al., 2014) used genome-wide analyses
in 3,511 individuals to investigate small effects of 1,461 individual genes on intelligence
by finding associations with cognitive ability in aggregated networks of functionally
related genes. They started with a specific hypothesis that focused on genes related to post-
synaptic functioning. After replication in independent samples, proteins related to the
NMDA receptor were associated specifically with fluid intelligence. Other aspects of
post-synaptic functioning were not related to variation in any other cognitive abilities.
NMDA was also implicated indirectly in the study of Rietveld et al., but these post-
synaptic findings tied genetic variation of specific proteins to individual differences in
fluid intelligence. The key protein was guanylate kinase (MAGUK), fundamentally
important for converting neuronal action potentials into biological signals that underlie
information processing throughout the brain. This study provides additional hints about the
neurobiology of intelligence.

Whereas the Rietveld et al. study used a very large atheoretical shot-gun approach to
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find needles in a haystack and the Hill et al. study focused on a network of functionally
related genes, another group of researchers used a different strategy that focused on a
specific gene and its effects on intelligence after traumatic brain injury (TBI) (Barbey et
al., 2014). There is a neurochemical called brain-derived neurotrophic factor (BDNF) that
promotes and regulates well-functioning synapses. BDNF is related to cognitive
functioning in healthy people, especially to aspects of memory and to impaired cognition in
Alzheimer’s disease and other brain disorders. Val66Met, a gene associated with BDNF,
also is implicated in neural repair mechanisms that stimulate neuro-regeneration in the
prefrontal cortex after recovery from TBI. Is BDNF related to intelligence? After TBI to
the frontal lobes, some patients show persistent deficits in g-loaded tasks, whereas in other
patients there is a preservation of g-loaded task performance. The genetic basis for BDNF
is the Val66Met polymorphism (see Textbox 2.2) that has two main variations, Val/Met and
Val/Val. The question for this study was whether either of these variants was related to the
preservation of intelligence after TBI.

Unfortunately, there are a large number of TBI cases. Many are treated in Veterans
Administration (VA) hospitals. Participants in this study came from a group of 171 male
veterans who suffered penetrating head injuries during the Vietnam War. For 151 of these
individuals, the sites of brain lesions were located by CT scans and confirmed in the
frontal lobes. Each participant completed 14 subscales of the WAIS III and each person
also had completed the battery of tests in the Armed Forces Qualification Test (AFQT)
when they entered the military, prior to the TBI. Both these tests allowed the computation
of a g-factor score along with other subfactors. Two groups were defined based on
genotyping: Val/Met (n = 59) and Val/Val (n = 97) and the intelligence factor scores were
compared between these two groups with sophisticated psychometric analyses.

The results were rather striking. Scores derived from the AFQT did not differ
between the groups. In other words, prior to the TBI the veterans’ genotype (Val/Met or
Val/Val) had no impact on general cognitive ability. However, there was a substantial
difference following TBI. The Val/Val group showed average diminished factor scores for
g and other primary factors including verbal comprehension, perceptual organization,
working memory, and processing speed. The average score differences were relatively
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large at about half a standard deviation. The authors concluded that having the Val/Val
genotype was associated with cognitive susceptibility to TBI, whereas the Val/Met
genotype may help preserve cognitive functioning following TBI. These results may have
implications for cognitive rehabilitation strategies that might be more effective than others,
although there is a paucity of such research at present. The results also tie variations in the
BDNF gene to intelligence and demonstrate some progress toward identifying specific
gene variants related to intelligence. Such data can help generate hypotheses about the step-
by-step cascade of neurochemical events at the molecular level that lead from the genetics
of BDNF expression to explaining a small amount of variance among individuals in
intelligence. It is likely that there are many steps in the cascade and multiple complex
interactions with other genetic or biological factors, some of which might occur in an
epigenetic context. And BDNF is only one of many factors probably involved.

The fourth study demonstrating progress takes another approach (Davis et al., 2015).
These researchers also focused on one molecular factor, a protein called DUF1220 that is
associated with brain size and brain evolution. DUF1220 has two main subtypes, CON1
and CON2. Many gene sequences have multiple copies in a person’s DNA and the number
of copies can be related to diseases and other traits. In this study, not only was the number
of copies of CON2 associated with IQ scores, the association was linear. That is, the more
copies of CON2, the higher the IQ score. Brain size, assessed by MRI, also was correlated
to IQ score, especially for the surface area of the temporal cortex bilaterally, and right
frontal surface area was related to increased dosage of CON1 and CON2. These findings
came from a sample of 600 North American young people and were replicated in a smaller
sample of 75 individuals living in New Zealand. Although both samples are quite small
compared to the previous studies just summarized, the linear nature of the CON2 copy/IQ
finding is intriguing, especially because it was strongest in males 6–11 years old. There are
a number of reasons to be cautious about this finding, as acknowledged by the authors, and
it is too early to accept it at face value. Nonetheless, it represents another example of how
the search for intelligence genes is pushed forward with a priori hypotheses about specific
genetic factors.

The fifth study is from the CHIC. They reported a GWAS of intelligence in children
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aged 6–18 years old with a combined discovery cohort total of 12,441 and a replication
cohort total of 5,548 (Benyamin et al., 2014). No single SNP was associated with
intelligence, but the aggregate of common SNPs accounted for 22%–46% of variation in
intelligence in the three largest cohorts. The FNBP1L gene was associated with
intelligence, accounting for small amounts of variance in three separate replication cohorts
(1.2%, 3.5%, .5%, respectively). Despite the large sample, the authors concluded that even
larger samples might be necessary to detect individual SNPs with genome-wide
significance.

The sixth study comes from another multisite consortium (CHARGE: Cohorts for
Heart and Aging Research in Genomic Epidemiology) of 31 cohorts (N = 53,949). They
reported a meta-analysis based on a GWAS of middle-aged and older adults who had
completed a battery of four cognitive tests (Davies et al., 2015). This is the largest such
study of general cognitive ability to date. Across all the samples, 13 SNPs were associated
with general cognitive ability, together accounting for 29% and 28% of the variance in two
of the largest samples, respectively. Three genomic regions were associated with these
SNPs with special focus on the HMGN1 region. Four genes previously associated with
Alzheimer’s disease also were associated with general cognitive ability (TOMM40,
APOE, ABCG1, MEF2C). Consistent with the polygenetic model of inheritance, these
genes individually accounted for small proportions of variance. These researchers also
conclude that even larger samples will be required to identify more genome-wide
associations. No one yet knows how many genes may contribute to variations in
intelligence, but the very existence of these multicenter collaborations is a giant step
toward finding out. In fact, just after this book went into production, an elaborate
collaborative study identified two networks of genes (1,148 genes in one network and 150
genes in the other) that were related to general cognition (Johnson et al., 2016). Many of
these genes were related to specific synaptic functions that potentially could be
manipulated to influence intelligence. I do not have space to elaborate more details of this
landmark study, but the hunt for intelligence genes has taken another major step forward.

The seventh encouraging example of progress is from China. In my view, it also is a
landmark exercise. It reports a broad systems biology approach (Zhao et al., 2014) that is
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designed to elucidate complex regulation and interactions and generate hypotheses about
the mechanisms that drive them. Whereas Chabris and colleagues had started with 12
candidate genes from previous studies and failed to replicate any of them, these
researchers selected 158 genes that had been associated with IQ scores. They mapped the
locations of these genes on chromosomes and found some clustering in seven regions of
chromosome 7 and the X-chromosome. Many of these genes were known to be involved in
various neural mechanisms and pathways. Using a type of network analysis, “IQ-related
pathways” were constructed. These pathways primarily involved dopamine and
norepinephrine, neurotransmitters involved in many brain functions. The details of this
analysis are far beyond our intentions in this chapter, but this report illustrates how
molecular genetics can generate testable hypotheses about specific neural mechanisms
related to intelligence, and how those mechanisms might be tweaked by drugs or other
means. Work like this fuels my optimism that the genetic basis for intelligence is not a
retreat to determinism and immutability. Rather the opposite: the genetic basis, once
understood, can lead to the remarkable ability to treat or prevent brain disorders that result
in low IQ and to the Holy Grail of increasing intelligence across the whole range, as we
will discuss in Chapter 5.

Studies like these seven (plus the Johnson et al. study) are the reason this chapter has
not dwelt on older (and a few current) criticisms about whether genes are important for
intelligence. Although the full role of genes is not yet known, the evidence for major
genetic involvement in intelligence is overwhelming. No one ever believed that
understanding intelligence on the molecular level would be simple, but the studies and their
complex analyses summarized here show that the challenge is not impossible.

On a final note, genetic studies are logistically complex and expensive, especially
when large samples are involved. DNA sequencing machines alone, for example, cost
about $1–2 million each. Reportedly, in 2012 a single research institute in China, the
Behavioral Genetics Institute, had 128 of them, along with super computers. Finding
intelligence genes is a high priority. This one institute has over 4,000 scientists and
technicians working there and a poster on the wall reportedly says: “Genes build the
future.” Consider the race to find intelligence genes and how they work. At the end of the
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twentieth century, Plomin (1999) stated, “The most far-reaching implications for science,
and perhaps for society, will come from identifying genes responsible for the heritability of
g …” On one hand, China has substantial investment in this hunt, and on the other hand, a
majority of members currently in the US Congress apparently do not believe in evolution.
Seriously.

All the studies outlined in this chapter illustrate how quantitative genetic research
strategies and sophisticated DNA analyses are being used to establish the genetic basis of
intelligence and search for specific genes and how they work. There are now several
worldwide consortia working on this effort that add a third methodological element,
quantitative neuroimaging to measure brain structure and function. This combination of
three research elements targets the identification of genes that influence brain
characteristics related to intelligence. In my view, these studies represent a new phase in
the search for intelligence genes and what they do. These are exciting findings and we will
review them in Chapter 4. First, however, to understand the full impact of the newest DNA
studies using twin research designs that target the brain, we now introduce the third
element, neuroimaging, in the next chapter.

Chapter 2 Summary
Sir Cyril Burt and Professor Arthur Jensen were early advocates of the importance
of a genetic role in intelligence, but their views were attacked and widely rejected.

Modern quantitative genetic studies overwhelmingly support a major role for genes
in explaining the variance of intelligence test scores among individuals.

The same studies indicate that environmental factors play a role in early childhood,
especially non-shared factors, but this role diminishes almost entirely by early teen
years.

The weight of evidence from modern studies of intensive compensatory education,
now rebranded as early childhood education, still fail to find lasting effects on IQ
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Review Questions
1. Why are genetic explanations of behavior so controversial?

2. What were the immediate and long-term impacts of Jensen’s 1969 article?

3. What is the most compelling evidence from quantitative genetic studies that genes
are involved in intelligence differences among people?

4. How does the influence (or relative contribution) of genetic and environmental
factors on variation in intelligence change across development?

5. Why may there be an advantage to intelligence involving many genes of small
influence?

6. What is an example of a recent finding regarding intelligence from a specific
molecular genetics study?

Further Reading
Human Intelligence (Hunt, 2011). This is a thorough textbook that covers all aspects
of intelligence written by a pioneer of intelligence research. Chapter 8 has an
excellent discussion of heritability estimation and other genetic issues.

scores.

Progress in the search for specific genes involved in intelligence has been slow and
disappointing, leading to the conclusion that many genes, each having a small effect,
must be involved.

Advanced DNA technologies applied to molecular genetic studies are beginning to
identify intelligence-related genes and how they might work on a neurobiological
level.

99



The Blank Slate: The Modern Denial of Human Nature (Pinker, 2002). This is a
comprehensive look at nature versus nurture issues from many perspectives. The
argument is decidedly made in favor of nature.

How Much Can We Boost IQ and Scholastic Achievement (Jensen, 1969). This is
possibly the most infamous paper in psychology and is the basis for most modern
intelligence research.

Cyril Burt: Fraud or Framed? (Mackintosh, 1995). This is a collection of essays on
all sides of the Burt controversy.

The IQ Controversy, the Media and Public Policy (Snyderman and Rothman, 1988).
Based on survey data, this is a controversial book that argues that liberal bias
systematically distorted the reporting of Jensen’s work and other genetic research on
intelligence.

Intelligence, Race, And Genetics: Conversations With Arthur R. Jensen (Jensen &
Miele, 2002). This book offers an update of Jensen’s views by Jensen himself in his
own words.

Nature via Nurture: Genes, Experience and What Makes Us Human (Ridley, 2003).
Written for the public, this book clearly explains the concepts and techniques of
behavioral genetics. Although published an eon ago in terms of scientific
advancement, you can see the case for genetic influences on intelligence is not new.
This chapter updates his case with even stronger evidence.
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Chapter Three

Peeking Inside the Living Brain:
Neuroimaging Is a Game-changer for

Intelligence Research
◈

The brain is a black box – we cannot see in it and must ignore it.(attributed to B.F. Skinner
in the 1950s)

… if Freud were alive today, he’d trade his couch for an MRI …(Richard Haier, video
lecture #9, The Intelligent Brain, 2013)

Learning Objectives

Introduction

How has neuroimaging technology advanced the study of human intelligence beyond
psychometric methods?

How do the basic technologies of PET and MRI differ?

What was a surprising finding from the early PET studies of intelligence?

Does imaging research indicate that there is an “intelligence center” in the brain?

What brain areas are included in the PFIT model of intelligence?
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The next two chapters review brain-imaging studies of intelligence. This chapter is written
to give a somewhat personal historical perspective on the early studies from 1988 to 2006,
a period I describe as phase one in the application of modern brain-imaging technology to
intelligence research. This phase began with the first positron emission tomography (PET)
study of intelligence, published in 1988, and ends with a review of the relevant literature
published in 2007. The 37 studies during this period reported several unexpected results
and set the direction for current imaging/intelligence research. This chapter is written in
roughly chronological order of publication to demonstrate how the early research unfolded,
including my research. This perspective helps students understand how researchers
advance from one set of findings to new questions. There are also basic descriptions of
how the main imaging technologies work. In the next Chapter (4), we’ll see the subsequent
and more sophisticated phase two of worldwide brain-imaging research on intelligence.
Brain-imaging technology has significantly helped advance intelligence research from
mainly psychometric methods (described in Chapter 1) to neuroscience approaches that can
quantify brain characteristics. Brain imaging is a key development in this field and that is
why we devote two chapters to it.

The early quantitative genetic research described in Chapter 2 provided the rationale
for a biological component to intelligence and laid the foundation for neuroscience
research just as powerful new neuroimaging methods were becoming available. Prior to
the introduction of neuroimaging in the early 1980s, brain researchers were limited to
indirect measurements of brain chemistry by-products found in blood, urine, and spinal
fluid. EEG and evoked potential (EP) research allowed millisecond-by-millisecond
measurements of brain activity, but technical issues like distortion of electrical signals by
the scalp and poor spatial resolution limited the scope and interpretation of data. Today,
EEG-based techniques are more sophisticated and include ways to map cortical activity
(see Chapter 4). Inferences from studies of patients with brain damage and from autopsy
studies similarly had only limited success in identifying brain/intelligence relationships.
For example, some studies of patients with brain damage concluded that the frontal lobes
were the seat of intelligence (Duncan et al., 1995), a conclusion we now know is
oversimplistic based on newer lesion studies (see Chapter 4). These early indirect
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research methods and their preliminary findings are summarized elsewhere in intelligence
textbooks (Hunt, 2011; Mackintosh, 2011).

3.1 The First PET Studies
In the early 1980s, PET was a game-changer. Twenty years before the wide availability of
magnetic resonance imaging (MRI, to be discussed later in this chapter), PET technology
allowed researchers to see inside the brains of living people and make relatively high-
resolution measurements about which brain areas are more or less active during mental
activity. This differs dramatically from X-ray technology that had been available much
earlier, including CAT scans. Whereas X-rays pass through the head and show brain tissue
structure, they are silent as to brain activity. A CAT scan of a person looks the same
whether the person is awake, asleep, doing mental arithmetic, or dead. Because the brain is
soft tissue, X-rays pass through easily and brain pictures are not very detailed. By contrast,
PET can quantify brain activity as glucose metabolism, blood flow, or in some cases,
neurotransmitter activity. This is accomplished in a conceptually simple way. Radioactive
tracers are injected into a person while they perform a cognitive task and the brain areas
that are most active during the task take up the most tracer. The radiation exposure is within
limits set for medical uses. The subsequent PET scan detects the radioactivity and
mathematical models allow an image to be constructed showing the spatial locations where
the varying amounts of radioactivity have accumulated.

For example, a positron-emitting isotope like fluorine18 can be attached to a special
glucose called fluorodeoxyglucose (FDG). Because glucose, a sugar, is the energy supply
of the brain, the harder any area of the brain is working, the more radioactive glucose is
taken up and metabolically fixed in that part of the brain and the more positrons are
accumulated. The positrons collide with electrons, which are naturally plentiful
everywhere, and each collision releases energy in the form of two gamma rays, always at
180 degrees from each other. The 180-degree angle is a fact of physics and millions of
gamma rays are released from the FDG tracer. When the head is placed inside the PET
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scanner, which contains one or more rings of gamma ray detectors, the spots in the brain
where the gamma rays originated can be reconstructed mathematically based on detection
of a gamma ray and at the same moment in time a coincident detection of another gamma
ray 180 degrees away. Somewhere on the straight line connecting these two simultaneous
events, a positron decayed. With millions of these coincident detections, the spatial
location of the accumulated positrons can be determined and the areas releasing the most
gamma rays can be quantified. These are the areas most active during the FDG uptake and
the activation patterns in areas will be different depending on the mental activity during the
uptake. It takes about 32 minutes for the brain to take up the FDG tracer. This means that
brain activity is summed over the 32 minutes so the time resolution of FDG PET scans is
very long. You cannot see how brain activity changes from second to second. However,
radioactive oxygen instead of glucose can be used in PET to image blood flow with a time
resolution of minutes. Other imaging techniques based on MRI have time resolutions of
about 1–2 seconds and newer methods like the magneto-encephalogram (MEG) show
changes millisecond by millisecond. Compared to PET, MRI and MEG techniques also are
far less intrusive (no injections or exposure to radioactivity), as we will detail in due
course as they have been applied to intelligence research.

An advantage of PET is that the rate of glucose metabolism can be calculated from
measurement of radioactivity decay in the blood periodically after the injection of tracer.
The PET image shows a quantitative map of glucose metabolic rate (GMR) while the
cognitive task was performed. The physics of fluorine18 give the radioactive glucose a
half-life of about 110 minutes, so the logistics of a PET study are formidable. The steps
include manufacturing the fluorine18 in a cyclotron, attaching it to glucose in a nearby hot
lab, injecting it into a person while they perform a cognitive task for about 32 minutes, and
then scanning for about 45–60 minutes to acquire millions of coincident gamma ray
detections (the glucose is metabolically fixed so scanning happens after the task is
complete and the image shows glucose uptake during the task). The expense is similarly
formidable, usually about $2,500 per scan. There are other isotopes that can be used to
create tracers that show blood flow and some neurotransmitter activity. The PET images
are constructed as slices that cover the entire brain. Color-coding shows rates of glucose

104



activity. In the same person, PET images will differ depending on whether the person is
awake or asleep or doing any cognitive task like solving problems on the Raven’s test of
abstract reasoning described in Chapter 1.

I first learned about PET when I worked in the Intramural Research Program at the
NIMH in the early 1980s and recognized the potential for intelligence research. Before
NIMH took delivery of one of the very first PET scanners available, however, I left for
Brown University, where I did rudimentary EEG/EP mapping of brain activity (proudly
with an Apple II Plus) and related it to Raven’s scores (Haier et al., 1983). When the
opportunity came to join my former NIMH colleague, Monte Buchsbaum, when he
relocated to the University of California, Irvine (UCI) and acquired a new PET scanner, I
moved to California. In the early 1980s, most of the first PET research was on
schizophrenia and psychiatric disorders. PET scans for psychological studies were rare.
The first research project I was able to undertake in 1987 was based on only eight scans
that were provided without charge as a reward for a successful fundraising effort (the
politics of scan access also was a formidable challenge and still is). I used those eight
scans to ask a simple question: Where in the brain is intelligence?

In 1988 we published the first PET study of intelligence (Haier et al., 1988). We had
the eight male volunteers take the Raven’s Advanced Progressive Matrices (RAPM) test
with 36 items. These included some very hard items to create sufficient variance in a
college sample in order to avoid the problem of restricted range. Remember, the Raven’s
is a non-verbal test of abstract reasoning that is one of the best single estimates of the g-
factor. After each participant completed a practice set of 12 items and began working on
the 36 test items, we injected the radioactive glucose used to label the parts of the brain
working the hardest while the person was solving the problems. After 32 minutes of
working on the items, we moved the person into the PET scanner to see where in the brain
there was increased activity compared to other control individuals doing a simple test of
attention that required no problem-solving.

When we did the typical analysis and compared GMR between the group doing the
RAPM and the group doing the attention task, several areas across the brain cortex were
statistically different. We went a step further that was not typical, but it was logical from
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the perspective of individual differences. There were a range of RAPM scores, so we
correlated the scores to glucose rate in each brain area that was different from the attention
control group. There were significant correlations, but to our surprise, all of the
correlations were negative. In other words, the individuals with the highest test scores
showed the lowest activity in the brain areas that differed between the groups. This inverse
relationship is shown in Figure 3.1.
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Figure 3.1 Brain activity assessed with PET during Raven’s Test. Red and yellow show
greatest activity in units of glucose metabolic rate. The person with the highest test score
(images on right) shows lower brain activity during the test, consistent with brain efficiency
related to intelligence (courtesy Richard Haier).

The two images on the right are from one person doing the RAPM and the two images
on the left are from another person doing the RAPM. These are horizontal (axial) slices
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through the top and center of the brain. All images are shown with the same color scale of
glucose metabolism so you can compare them easily. Red and yellow show the highest
activity, blue and black show the lowest. The person on the left shows much more activity
in both slices than the person on the right (top of image is front of the brain). However, the
person on the left with the very active brain actually had the lowest RAPM test score of
only 11; the person on the right had the highest score of 33. No one saw this coming. It
seemed backwards. More brain activity went with worse performance. What could this
mean?

3.2 Brain Efficiency
At the time, this counter-intuitive result suggested to us that it’s not how hard your brain
works that makes you smart, it’s how efficiently it works. Based on this result, we
proposed the brain efficiency hypothesis of intelligence: higher intelligence requires less
brainwork. About the same time, another group reported inverse correlations in multiple
areas of the cortex between GMR and scores on a test of verbal fluency, another test with a
high g-loading (Parks et al., 1988). They scanned 16 subjects while performing a verbal
fluency test. During the test, GMR increased compared to another 35 controls scanned in a
resting state. The correlations between GMR and scores on verbal fluency were negative
in frontal, temporal, and parietal areas. Similarly, a third group of researchers (Boivin et
al., 1992) scanned 33 adults also performing a verbal fluency test. They found both
positive and negative correlations between scores and GMR across the cortex. Negative
correlations were found in frontal areas (left and right) and positive correlations were in
temporal areas, especially in the left hemisphere. Their participants included a wide age
range (21–71 years old) and combined males and females, but removing age and IQ
statistically had little apparent effect on the results (although no sex-specific analyses were
reported). It should be noted that by today’s standards of image analysis, all these studies
used rudimentary methods for defining cortical regions. Nonetheless, the negative
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correlations found during cognitive activation were unexpected and, for many cognitive
psychologists, hard to believe.

Since this surprising finding, many researchers have been trying to understand how
exactly brain efficiency might relate to intelligence. We will return to the efficiency
concept in Chapter 4 as we detail recent studies that show the concept is still viable. Back
in 1988 we started thinking about how learning, a key component of intelligence, might
make the brain more efficient. When you learn something like driving a car, for example,
doesn’t your brain get more efficient so you now can drive in traffic and have a
conversation at the same time, something not possible that very first day you were
concentrating on driving back and forth in a big empty parking lot?

We decided to do a PET study of learning so we turned to Tetris, a computer game just
out at the time, and now one of the most popular games of all time. We scanned another
eight volunteers before and after 50 days of practice on the original Tetris version (Haier
et al., 1992b). The volunteers, all college males, used my office computer to practice
because almost no one had computers at home in the early 1990s. Because access to PET
was so limited, there were not many data about brain changes after learning a complex
task. The natural expectation was that after learning to perform a complex task, brain
activity would increase to reflect the harder mental work necessary to perform at a higher
level. Based on our RAPM finding and the interpretation of efficiency, we hypothesized the
opposite: after learning to perform better, brain activity would decrease.

In case you don’t know Tetris, here’s how the original version works. Different
shapes made from the arrangement of four equal squares (there are five different shapes)
appear one at a time at the top of the screen and slowly fall to the bottom. You can move
them right or left or rotate them or drop them immediately by pressing buttons on the
keyboard. The object is to place each shape so they form perfect rows with no gaps at the
bottom of the screen. When you complete a row, it disappears and all the shapes above
drop down, changing the configuration as the shapes continue to drop. The main object is to
complete as many rows as possible before the shapes not in complete rows stack up to the
top of the play space, which ends the game. The better you do (the more rows you
complete), the faster the shapes drop, so with practice, the game is faster and harder.
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Although the rules are quite simple to learn, playing and improvement are based on
complex cognition including visual–spatial ability, planning ahead, attention, motor
coordination, and fast reaction time.

On day 1, the first time any of the students ever played Tetris except for 10 minutes of
practice to be sure they understood the game, they completed 10 rows per game on average
while the radioactive glucose was labeling their brains during the first PET scan. This
increased to nearly 100 rows per game during their second scan after the 50-day practice
period. At the end of the practice period, some of the games were moving so fast you could
scarcely believe a human being could make and execute decisions so quickly.

Figure 3.2 shows what we found.

Figure 3.2 Playing Tetris naïve vs. practiced PET images. Red and yellow show greatest
activity in units of glucose metabolic rate. Brain activity decreases with practice, consistent
with the brain becoming more efficient (courtesy Richard Haier).

The image on the left shows the scan of a person’s first Tetris session. Notice all the
high activity in red. The scan on the right is the same person after the 50 days of practice.
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There is less brain activity after practice even though the game was faster and harder. Our
interpretation was that the brain learned what areas NOT to use and became more efficient
with practice. We also noticed a trend in this study for the people with the highest
intelligence test scores to show the greatest decreases in brain activity after practice
(Haier et al., 1992a). In other words, the smartest people became the most brain-efficient
after practice. Other subsequent studies have shown inconsistent results on this
observation, so the jury is still out on what the weight of evidence will show. Many other
subsequent studies, however, have replicated decreased brain activity after learning,
consistent with the brain efficiency hypothesis. Other studies have not shown this effect, so
the conditions and variables relevant to learning/brain activity are still open questions.
From the perspective of individual differences, the important variables may be within the
person rather than within the task.

All this time, I was applying for federal grant money to fund a brain-imaging program
to study possible influences on intelligence. As explained in the last chapter, intelligence
research from a biological viewpoint was viewed with some suspicion, and my
applications were going nowhere. So, I decided to shift emphasis a bit and I was able to
get a grant to study Down’s syndrome, a genetic disorder typically associated with low IQ.
These individuals would be of inherent interest and so would the requisite normal control
group. Federal agencies are more inclined to fund research on disease and syndrome
categories (and stupidity is not yet a category recognized by the National Institutes of
Health, so there is no national institute to study it), especially if the grant application barely
mentions IQ. By the way, this is still largely the case, although there is an emerging
exception for projects that propose to increase IQ in disadvantaged children by means of
cognitive training. We will discuss this more in Chapter 5.

We had been wondering if low-IQ individuals might have inefficient brains, possibly
due to a failure of neural pruning, the normal developmental reduction in excess or
extraneous synapses starting about age 5 years. We were interested in scanning people with
Down’s syndrome who had IQs between 50 and 75, and of course, control groups of
people without Down’s syndrome who also had IQs in the same low range for no apparent
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genetic or brain-damage reason. We also had other controls with IQs in the average range
(Haier et al., 1995).

At the time, most researchers predicted that PET scans of low-IQ individuals,
especially those with known brain abnormalities like those found in Down’s syndrome,
would show lower activity because some kind of brain damage was assumed to be
responsible for low IQ. A failure of neural pruning, however, was consistent with earlier
research in Down’s syndrome showing a higher density of synapses (Chugani et al., 1987;
Huttenlocher, 1975). Based on the efficiency hypothesis and a possible lack of neural
pruning, we were open to the possibility that we might see higher activity in the low-IQ
groups. Figure 3.3 shows this is what we found.

Figure 3.3 PET images in two low-IQ individuals showing higher brain activity than a control
with average IQ. Red and yellow show greatest activity in units of glucose metabolic rate
(courtesy Richard Haier).

The two PET images on the left show more activity (red and yellow) throughout the
brain in both low-IQ groups compared to normal controls on the right. We saw this as more
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evidence for the efficiency hypothesis, although we recognized alternative interpretations,
including compensation for possible brain damage (Haier et al., 1995).

3.3 Not All Brains Work in the Same Way
By this time, I had negotiated for one free PET scan for every scan I paid for with grant
money, so we turned to a different way to investigate the efficiency hypothesis. Recall in
Chapter 1 I talked about the Hopkins study of mathematically precocious students that
Professor Julian Stanley started in the 1970s. The early talent searchers found many more
young boys than girls with high SAT-Math scores. In 1995 I decided to use PET to see if
men and women showed equal brain efficiency in the same brain areas while they solved
mathematical reasoning problems. Mathematical reasoning is a more specific mental
ability than the g-factor, so this would expand the bounds of the efficiency hypothesis. I
worked on this project with Professor Camilla Benbow, another former Hopkins graduate
student who had worked with Professor Stanley.

We recruited 44 male and female college students from my university (UCI) based on
their SAT-Math scores at admission (Haier & Benbow, 1995). We selected four groups:
men with high SAT-Math scores over 700; women with equally high scores over 700; men
with average SAT-Math scores in the 410–540 range; and women with average scores in
the same 500 range. There were 11 students in each group (44 participants was all we
could afford, but this still was one of the largest PET studies at the time). Each person
completed a PET scan while they solved actual SAT-Math reasoning problems. We
expected to see lower brain activity in both the high SAT-Math men and the high SAT-Math
women compared to the average groups, consistent with brain efficiency. We also thought
that the men and women matched for high math reasoning might show efficiency in different
brain areas because there are sex differences in brain size and structure, although at the
time the evidence for these differences was not as compelling as it is today (Halpern et al.,
2007; Luders et al., 2004).
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Here’s what we found. In the 22 men, statistical analysis showed that high math ability
went with greater activity in the temporal lobes (the lower side parts of the brain that
include important memory areas like the hippocampus) during the problem-solving. This
was just the opposite of efficiency. In the 22 women, we found no systematic statistical
relationship between mathematical reasoning ability and brain activity. How the brains in
the high SAT-Math women were working to solve the problems could not be determined,
even though they were solving the same problems as the men equally well. And the men
showed the opposite of what we expected. And that is how research often goes.

Actually, this finding was one of the first clear indications from imaging data that men
and women may process information and problem-solve with different brain networks.
Remember, in this study the men and women were equally matched on SAT-Math score,
and they solved the same problems during the scan equally well. Their brains, however,
showed apparently different patterns of activity. To us, this meant that not all brains work
the same. This may seem obvious and even trite to you, but most cognitive researchers are
interested in discovering how brains work in general, assuming that all brains basically
work the same way. A focus on individual differences and the idea that not all brains work
the same way was not so popular then or now. Also, remember, mathematical reasoning
ability is a more specific factor; it’s not g. Brain efficiency may be related to g, but for
specific abilities like mathematical reasoning, better performance may require more brain
activity. Along these lines, another PET study about the same time in eight middle-aged
individuals reported increased activation during the performance of a perceptual maze
task, a measure of visuospatial reasoning, which also is a more specific factor of
intelligence than g (Ghatan et al., 1995).

Confused? My purpose in describing these studies in the chronological order they
occurred is to give you a feel for how researchers go about their work and sort through
apparently discrepant findings. Remember my three laws. Repeat after me: No story about
the brain is simple; no one study is definitive; and it takes many years to sort out
conflicting and inconsistent findings and establish a weight of evidence. The next
chapter will bring some clarity to imaging results and, unsurprisingly, raise new questions.

But before we continue to other early imaging studies of intelligence, I want to
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mention one more PET study we did. By the year 2000, it was still the case that very few
other intelligence researchers were using PET or other imaging. We were still interested in
brain efficiency, but we also started to wonder about whether efficiency would be related
to intelligence even when the brain was not solving problems. In other words, could a
smart brain be distinguished even when it was not working to be smart?

Our next PET study looked at eight new college students while they passively
watched videos with no problem-solving required (Haier et al., 2003). This was a project
on emotional memory so some videos were more emotionally loaded than others, but as a
separate analysis, we looked at whether intelligence, assessed by the g-loaded RAPM test
of abstract reasoning, was related to watching the videos irrespective of their emotional
content. We correlated brain activity during this non-problem-solving condition to RAPM
scores. Significant correlations were apparent in several areas. None were in the frontal
lobes. Most were in the posterior areas of the brain where basic information is perceived
before it is processed by association areas more toward the front of the brain. This
suggested that people with higher RAPM scores seemed to be viewing videos with
different brain activity than lower RAPM people. We think this means that smarter people
are more engaged and actively processing the video information differently. In other words,
the smarter brains were not so passive. This is more evidence that not all brains work the
same way, perhaps even while watching television.

Several other PET studies related to intelligence were done in this early period.
Collectively they reported activations in areas throughout the brain while performing
different tests of deductive/inductive reasoning (Esposito et al., 1999; Goel et al., 1997,
1998; Gur et al., 1994; Wharton et al., 2000). The individual differences approach, that is,
looking for correlations between test scores and degree of activation, was not
systematically reported, but all these studies found that multiple areas across the entire
brain were activated during reasoning. The evidence was mounting that intelligence was
not just a function of frontal lobes.

3.4 What the Early PET Studies Revealed and What
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They Did Not
The PET studies we’ve covered in this chapter so far represent the first attempts to use
high-tech functional brain imaging to investigate intelligence. The overall point is that even
these earliest studies helped shift intelligence research away from predominately
psychometric approaches, and the controversies about them, to a more neuroscientific
perspective because imaging provided a way to determine how psychometric test scores
were related to measurable brain characteristics like glucose metabolism.

Here’s a summary of four key observations that emerged from these early functional
imaging studies:

1. Intelligence test scores are related to brain glucose metabolism. This helps validate
that the test scores were not meaningless numbers representing a statistical artifact. In
fact, as neuroimaging studies of intelligence continue to increase, old criticisms about
intelligence test scores having no meaning are less and less meaningful, if they were
ever meaningful at all.

2. Early on, we had the unexpected and counter-intuitive finding that higher
intelligence test scores were associated with less brain activity. The resulting
efficiency hypothesis encouraged many subsequent studies and it is still viable,
although as we will see in the next chapter, the story gets more complex as more
studies are done, the same progression of progress found in all science.

3. Learning some tasks is associated with the brain becoming more efficient as
indicated by lower brain activity after practice. This raises the question of whether
intelligence can be enhanced by mental training. We will discuss this possibility and
our deep skepticism of recent efforts in detail in Chapter 5.

4. PET scan differences between men and women solving problems, and PET
differences between high- and average-intelligence watchers of videos, indicate that
not all brains work the same way. We’ll be discussing this concept in Chapter 4.
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There’s another important inference based on something we did not see. These early data
did not show any one area in the brain that could be called the center of intelligence. In
fact, the early PET imaging data reported that many areas distributed throughout the brain
were associated with intelligence test scores. In 2000, however, one group of researchers
claimed their PET study showed that the neural basis of the g-factor was derived from a
specific lateral frontal lobe system and downplayed the importance of other regions
(Duncan et al., 2000). They imaged blood flow over a 2-minute period as 13 subjects
(with the wide age range of 21–34) performed a small number of problems that varied in
g-loadings. Blood flow increased during the tasks, but only the frontal activations were
noted as common to the high and middle g-loaded tasks. This publication, in Science,
received considerable attention, but many researchers in the field were quick to point out
several major flaws in design and interpretation (Colom et al., 2006a; Newman & Just,
2005). Design questions included the omission of any description of the subjects in terms
of sex and IQ. Also, they were apparently recruited at a distinguished university, so a
severe restriction of range of g-scores is likely, limiting correlations. Imaging occurred
during a few problems while subjects worked at their own pace so the task reliability was
low and averaging over subjects could minimize any differences due to differences in
speed of responding to the problems. As for interpretation, none of the previous PET
studies showing distributed areas related to high g-scores were cited, so there was no
acknowledgment or discussion of inverse correlations or a distributed network of areas
other than in the frontal lobe. And their own data for the high-g task showed activation in
multiple areas outside the frontal lobes. Subsequently, Dr. John Duncan, the research
leader, apparently abandoned the frontal lobe-centered model of intelligence and came to
the view that other areas also were involved (Bishop et al., 2008; Duncan, 2010),
consistent with virtually all other studies available at that time (Jung & Haier, 2007). So
we will not dwell on this short-lived detour other than to note that its publication in
Science brought important attention to imaging/intelligence research and validated again
that g-scores could be studied scientifically, a proposition that had been surprisingly
controversial. So even this flawed paper had some positive effect. At the time, journals
like Science were reluctant to publish intelligence research, owing in large part to the
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controversies of the 1970s and 1980s concerning average group differences (see Chapter
2). The late Constance Holden, a science writer working at Science, lamented the
prejudice against intelligence research she saw from the inside and did her utmost to cover
intelligence research with a journalist’s combination of integrity and skepticism. Following
her untimely accidental death, The International Society of Intelligence Research (ISIR)
sponsors a presentation by a journalist as the Constance Holden Memorial Lecture at its
annual meeting in recognition of her efforts.

3.5 The First MRI Studies
By 2000, a new imaging technology was becoming available much more rapidly than had
PET. PET is based on positrons colliding with electrons and requires injection of
radioactive tracers. Magnetic resonance imaging (MRI) does not require radioactive
injections so no cyclotron or hot lab is required, making MRI scans considerably less
expensive than PET (about $500–$800 versus $2,500). MRI is based on the effect of
magnetic fields on spinning protons and hydrogen molecules. Because it produces high-
resolution images of the entire body that have many important clinical uses without
radiation exposure, MRI quickly became a must-have technology for most hospitals,
especially ones associated with universities. This allowed many cognitive psychologists
access and, in fact, within a dozen years or so, most psychology departments at major
universities had their own MRI scanner, a multimillion dollar expense once unthinkable for
a psychology department (although acquisition of imaging equipment by psychology
departments was predicted by at least one prescient researcher; Haier, 1990). MRI studies
of cognition have grown exponentially since the year 2000 and MRI analyses are now a
mainstay of cognitive neuroscience research.

Here’s how MRI works. Protons naturally spin around an axis and the spinning
creates a weak magnetic field. Each proton axis has a different, random north–south
orientation. If protons enter a strong magnetic field, they snap into the same north–south
alignment. When a radio wave is pulsed on and off rapidly into the magnetic field, the

118



protons snap out of alignment and then back in. This pulsing can be done many times per
second. As the protons snap in and out of magnetic alignment, the shifts give off weak
energy, and this energy can be detected and mapped showing where the protons are if the
magnetic field is applied along a gradient of different intensities. This sequence of events
is called magnetic resonance imaging, or MRI (the original name of this technology was
nuclear magnetic resonance, but was changed to avoid a “nuclear” connotation). Hydrogen
protons are abundant in water and most of the body, especially soft tissue, is made of
water, so MRI gives beautifully detailed images of the body and the brain.

MRI scanners are large, donut-like devices that contain a very powerful magnet.
When a person lies on the scanner bed and the head or whole body goes into the center
tube-like area surrounded by the magnet, radio waves are rapidly pulsed into the magnetic
field, and the protons in the body snap in and out of alignment. The person has no sensation
of this snapping. The shifting energy patterns formed by all this snapping are detected and
mathematically turned in to picture.

The illustration in Figure 3.4 shows an example of a basic MRI of brain structure in
great detail. The figure shows side view slices (sagittal slices). Even whole-brain 3D
images can be viewed. These, of course, are mathematical slices not actual slices. Like a
picture printed in a newspaper, each brain image is made up of many individual dots called
pixels. With MRI, the pixels actually have three dimensions so they are called voxels and
they have volume rather than just area. There are millions of voxels in a brain image. Each
voxel has a value determined by the imaging technique. In this case the value is the amount
of energy detected by protons snapping and this can be interpreted as amount of gray
matter, for example.
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Figure 3.4 Structural MRI scan (sagittal view).
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The structural image in Figure 3.4 shows gray matter, where neurons work, and the
white matter fibers that link brain areas and carry information around the brain. Gray
matter and white matter tissue have different water content, so they can be distinguished in
these images. Note that structural images do not contain any functional information, so you
cannot look at a structural MRI and tell if the person is awake or asleep, solving math
problems, or even alive or dead. You can see tumors, strokes, and many kinds of brain
damage. MRI can also be used to show brain function. Very rapid sequential images can
show regional blood flow as a function of hemoglobin determinations and blood flow is an
indirect measure of neuron activity. The more a brain area is active, the more blood flows
to it. It is functional MRI (fMRI) that has been used widely in cognitive neuroscience to
show brain activity during specific cognitive tasks.

The basic MRI technique is quite versatile. By changing various parameters of the
scanning sequence, for example, like the frequency of the radio wave pulses, different
kinds of pictures can be made that emphasize different brain characteristics. As noted, the
two main kinds of MRI are structural and functional. Structural MRI methods include the
basic scan which shows gray and white matter in anatomical detail and other methods that
maximize imaging of white matter fibers and tracts like spectroscopy (MRS) and diffusion
tensor imaging (DTI). Such structural images are not affected by what the brain is doing
during the scan. We’ll now review the early intelligence studies that used structural and
functional MRI. We start with the basic structural MRI, because this was the first way MRI
was applied to intelligence research.

3.6 Basic Structural MRI Findings
The first question about intelligence addressed by MRI had to do with whole brain size.
Numerous previous studies had reported a positive correlation between brain size and
intelligence test scores. The correlation typically was modest, but the main problem was
that the measures of brain size were estimates based on indirect measures like head
circumference (or in the 1800s the number of metal pellets required to fill a skull). MRI
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provided a much more exact measurement of brain size/volume in vivo, so it was not
surprising to find confirmation of a positive correlation with intelligence test scores when
accurate MRI-based measurements of brain size were used (Willerman et al., 1991). This
is a straightforward finding that has been replicated many times. A comprehensive meta-
analysis of this literature (37 studies, 1,530 subjects) reported an average correlation
between whole brain size/volume and intelligence test scores to be about .33 overall
(McDaniel, 2005), including adults and children. The correlation was higher in females
(about .40 compared to .34 in males). In female adults and children, the correlations were
.41 and .37, respectively. In male adults and children, the correlations were even more
different at .38 and .22, respectively. These data essentially resolve the earlier debate and
show definitively that bigger brains are modestly associated with higher intelligence.

Of course, questions remain. Are the volumes of some specific brain areas more
related to intelligence than other areas? What influences the development of brain size, and
can the developmental mechanisms be accentuated? We’ll discuss the latter question in
Chapter 5 about enhancing intelligence. The former question was addressed soon after
structural MRIs were augmented with image-analysis methods that segmented or
“parcellated” cortical and subcortical areas into regions of interest (ROIs). ROIs typically
were derived either by applying a simple algorithm based on an arbitrary proportion of
voxels thought to define a region or by human observers tracing ROIs on each image to the
best of their ability using various brain landmarks. These early segmentation methods
varied among research groups and all were rudimentary by today’s standards, but the
results did indicate that size/volume of some areas was more related to intelligence than it
was in other areas. One group (Andreasen et al., 1993), for example, reported small
positive correlations between Full-Scale IQ (FSIQ) and volume of the temporal lobes,
hippocampus, and cerebellum, and Flashman et al. (1997) further reported small
correlations with Performance (non-verbal) IQ in frontal, temporal, and parietal lobes.
None of these correlations exceeded whole brain/IQ correlations, but they hinted at the
importance of regional analyses.
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3.7 Improved MRI Analyses Yield Consistent and
Inconsistent Results

By the time the next structural MRI studies of intelligence were reported, image analyses
had improved spatial localization by replacing ROI segmentation with methods that
quantified gray and white matter voxel by voxel (Ashburner & Friston, 1997, 2000) with
spatial resolution of millimeters rather than lobes or parts of lobes. Software for the
application of voxel-based morphometry (VBM) became available in about 1999
(statistical parametric mapping, SPM) and the field moved dramatically away from
customized image analysis based on ROIs that differed in their boundaries among research
groups to a more standardized approach. Typically, the results of voxel-based analyses
were reported as spatial locations in the brain using a standard set of coordinates
developed at the Montreal Neurological Institute (MNI coordinates) and the locations were
described additionally using a standard nomenclature based on Brodmann areas (BAs)
derived from early autopsy descriptions of different cellular organization among cortical
regions (Brodmann, 1909). Textbox 3.1 describes the VBM method and includes an
illustration of BAs. SPM is updated periodically with improvements and additional
options for analyses.

Textbox 3.1:  Voxel-based morphometry

One main method for analyzing MRI used on structural or functional images is
called voxel-based morphometry, or VBM. There are three basic steps, as shown
in Figure 3.5. First we start with an image like the MRI on the left. Next,
mathematical algorithms determine the boundaries of gray and white matter
tissue. Finally, values are calculated that reflect the amount of gray or white
matter tissue in each voxel in the whole brain. Because there are millions of
voxels in the whole-brain image, you get a very large data set. You can then
correlate a test score, for example, to every one of these voxels and identify
where the correlations are statistically significant. The location of any finding
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from any image analysis can be described with a system of standard spatial
coordinates (height, width, depth) or by a standard nomenclature of brain areas
differentiated by cellular structure, originally determined by Brodmann.
Brodmann areas (BAs) are shown in Figure 3.6. Often, both BAs and spatial
coordinates (usually based on the Talairach brain atlas or on the Montreal
Neurological Institute’s system) are included in research reports.

Figure 3.5  The VBM technique starts with an image (left) and automated algorithms
then separate gray and white matter (middle) and then a value reflecting density is
assigned to each voxel in the image. This value can be correlated to IQ, age, or other
variables. (Courtesy Rex Jung.)
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Figure 3.6  Brodmann areas (BAs) are a standard way to label different brain regions
based on early autopsy studies of neuron organization.

Some of the first voxel-based MRI analyses of intelligence were reported in children.
One research group obtained MRIs in 146 children (mean age 11.7, standard deviation 3.5)
and reported a correlation of .30 between FSIQ and gray matter volume of the anterior
cingulate gyrus (BA 32) (Wilke et al., 2003). Another group studied 40 children (mean age
14.9, standard deviation 2.6) and reported that gray matter volume was correlated to
different parts of the cingulate (BAs 24, 31, 32) and to areas in the frontal lobes (BAs 9,
10, 11, 47) and in the parietal lobes (BAs 5, 7) (Frangou et al., 2004). More recent and
advanced imaging studies of children will be reported in the next chapter, but these early
studies in children were important for demonstrating the potential of imaging to elucidate
relationships between brain development and IQ scores. One additional early study
exemplifies this. In the largest and most representative sample of children studied up to that
time with MRI, a research group (Shaw et al., 2006) introduced another method of image
analysis that determined the thickness of the cortex. This was not VBM. Rather, it used
numerous cortical landmarks and Euclidian geometry to calculate thickness at many points
around the cortex. They had a sample of 307 normal children (mean age 13, standard
deviation 4.5) who completed IQ tests and MRI scans on multiple occasions over time.
Cortical thickness (CT) was correlated with IQ, but there was a clear developmental
sequence showing a dynamic relationship between regional CT and intelligence as the
brain matures through childhood and adolescence. The strongest correlations between IQ
and CT were found in late childhood (approximately 8–12 years). These correlations were
positive and they were found in areas throughout the brain. However, there was a
difference between high- and average-IQ individuals. The high-IQ subjects showed “an
initial accelerated and prolonged phase of cortical increase, which yields to equally
vigorous cortical thinning by early adolescence.” This interesting finding, however,
requires replication and there are new studies we will discuss in the next chapter. The
Shaw et al. study, published in Nature, a prestigious science journal, and funded by the
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National Institute of Child Health and Development (NICHD), further added credence to
investigations of intelligence/brain relationships.

About the same time, VBM was applied in studies of intelligence in adults for the first
time. We obtained MRIs for 47 adults across a wide age range (18–84) and correlated gray
and white matter to IQ scores, correcting for age and sex (Haier et al., 2004). The results
showed gray matter correlations in several areas distributed across the brain in all four
lobes and in both hemispheres. One correlation between IQ and white matter was
prominent in the parietal lobe (near BA 39). When we reanalyzed the data separately for
males and females (Haier et al., 2005), we were surprised to see different results. In men
the largest brain areas where more gray matter went with higher IQ were in posterior
regions, especially in a part of the parietal lobe related to visual spatial processing.
However, in women, almost all the areas where gray matter correlated to IQ were in the
frontal lobes, especially around a part of the brain related to language called Broca’s Area.

As with our previous PET study of mathematical reasoning, males and females
showed different patterns of correlations. An unsettled issue is whether different
male/female patterns are statistically significant. Nonetheless, these findings reaffirmed our
view that all imaging studies of intelligence should analyze data separately for males and
females just as routinely as groups of different ages are analyzed separately. Finding age
and sex differences underscores one of our basic assumptions: not all brains work the same
way.

Even with the application of more standard VBM methods, however, many
inconsistent results were reported. For example, one group (Lee et al., 2006) studied 30
older adults (mean age 61.1, standard deviation 5.18) and found only a correlation between
Performance IQ and volume in the posterior lobe of the right cerebellum. Another group
(Gong et al., 2005) studied 55 adults (mean age 40, standard deviation 12) and reported
that correlations between gray matter and FSIQ were limited to areas in the anterior
cingulate and the medial frontal lobes. As we have pointed out, often results were based on
analyses that did not separate males and females, and restricted ranges may have limited
correlations, as discussed in Chapter 1. Another key issue is the assessment of intelligence
using IQ tests. Although the standard IQ tests provide a good estimate of the g-factor, IQ
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scores combine g and other specific intelligence factors. Would imaging results be more
consistent if a better estimate of g was used?

We addressed this in two studies (Colom et al., 2006a, 2006b) based on a reanalysis
of our 2004 VBM data using the method of correlated vectors (Jensen, 1998). In this case,
this method correlates the rank of g-loadings for each subtest of the WAIS to the rank of the
same test correlation to gray matter. We found that g accounted for many of the FSIQ
correlations with gray matter in the anterior cingulate (BA 24), frontal (BAs 8, 10, 11, 46,
47), parietal (BAs 7, 40), temporal (BAs 13, 20, 21, 37, 41), and occipital (BAs 17, 18,
19) cortices (Colom et al., 2006b). Moreover, in a separate analysis, we found a nearly
perfect linear relationship between the g-loading of each subtest of the WAIS and the
amount of gray matter correlated to each subtest score (Colom et al., 2006a). Thus, we
come to another important observation. IQ tests have the advantages of a standardized test
battery but the scores combine the general factor along with other specific factors. So the
question of how intelligence correlates to brain structure and function depends on whether
the question is about g or about more specific mental abilities. Inconsistent results among
these early studies likely result from confusion on this issue as well as from issues about
sampling and image analysis.

3.8 Imaging White Matter Tracts with Two Methods
A different kind of structural MRI is called diffusion tensor imaging, or DTI. Here, the MRI
sequences are optimized to image the water content (i.e., hydrogen molecules) of white
matter fibers and, when combined with special mathematical algorithms, the resulting
images show white matter tracts in great detail. DTI measures can assess the density and
organization of the tracts, which relate to how well they transmit signals. DTI is an
excellent technique for identifying brain networks. Most DTI studies of intelligence are
more recent and will be detailed in the next chapter. Here we note the first DTI study of
intelligence by Schmithorst and colleagues (2005). They studied 47 children aged 5–18
years. After correcting for age and sex, the strongest correlations between IQ and the
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density/organization of white matter fibers were found in frontal and parietal/posterior
areas. They noted these findings were consistent with the Wilke et al. study that had used
VBM methods. As with the other early MRI studies, this one added to the excitement of
using new imaging techniques to quantify brain/intelligence relationships.

Whereas DTI can quantify white matter density and organization, MR spectroscopy
(MRS) can make neurochemical determinations of white matter integrity, another measure
of how well signals are transmitted through the fibers. For example, MRS can determine N-
acetylaspartate (NAA), a marker of neuronal density and viability. The early MRS
methods, however, were limited to single-voxel analysis, so the entire brain could not be
studied at once. There were three early studies of intelligence using MRS. Jung’s research
group studied 26 college students and placed the NAA measurement voxel in white matter
underlying BA 39, 40 in the left parietal lobe (Jung et al., 1999b). They found a correlation
between NAA and FSIQ of .52. They replicated and extended these findings in a new
sample of 27 college students where the same region showed the NAA/IQ correlation and
control regions in bilateral frontal lobes did not (Jung et al., 2005). They also showed that
the NAA/IQ correlation was higher in the subsample of women. In the third MRS
intelligence study, another group reported a sample of 62 adults in a wide age range
(20–75 years). Scores on the high-g vocabulary subtest of the WAIS-R were correlated to
NAA in voxels underlying left frontal BAs 10 and 46 (r = .53) and left BAs 24 and 32 (r =
.56) in the anterior cingulate gyrus (Pfleiderer et al., 2004). All these early MRI studies of
gray and white matter structure were exciting because they found correlations between
various psychometric test scores of intelligence and quantifiable brain characteristics both
in specific locations and in the connections among them. This increased optimism for the
potential of discovering not only “where” in the brain was intelligence, but also “how”
intelligence is related to brain function.

3.9 Functional MRI (fMRI)
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Functional MRI uses scanning parameters that image aspects of hemoglobin in red blood
cells because hemoglobin contains iron and iron molecules are quite sensitive to the
magnetic fields used in MRI. A sequence of very rapid images is made, thousands per
second. These are interpreted as showing blood flow in the brain. Those brain areas that
are most active during a task (often compared to a no-task resting condition) have greater
blood flow; less-active areas have reduced blood flow. Whereas glucose PET scans show
the accumulation of brain activity over 32 minutes, fMRI scans show activity changes
almost second by second. fMRI is now the most widely used imaging technology in
cognitive psychology research.

The first intelligence study using fMRI was from a group at Stanford University
(Prabhakaran et al., 1997). They used individual items from the Raven’s test chosen for
three different types of reasoning required to solve the problem. They found blood flow
increased in frontal and parietal brain areas while seven young adults (age 23–30 years)
solved each item. They did not look for correlations between amount of activation and task
performance because only a few problems were used and each person answered all items
correctly. By design, this eliminates individual differences in task performance. This
approach is typical in many cognitive studies where any individual differences among
subjects related to intelligence are essentially ignored. More recently, there have been
excellent discussions of the individual differences approach and its potential for advancing
cognitive imaging studies (Kanai & Rees, 2011; Parasuraman & Jiang, 2012).

Even though fMRI had been used in hundreds of cognitive studies by 2006, only 17
studies included any measure of intelligence or reasoning. Of these 17 fMRI studies, all but
three had sample sizes of 16 or fewer and there were a variety of control tasks (or a lack of
any control task in some studies) and a variety of intelligence/reasoning measures. None of
the measures in these early studies were based on a battery of tests to estimate the g-factor.
Some of the tests used in these studies during the imaging included working memory (Gray
et al., 2003), chess (Atherton et al., 2003), analogies (Geake & Hansen, 2005; Luo et al.,
2003), visual reasoning (Lee et al., 2006), deductive or inductive reasoning (Fangmeier et
al., 2006; Goel & Dolan, 2004), and verb generation (Schmithorst & Holland, 2006). This
last study was unique for its impressive sample size of 323 children (mean age 11.8 years,

130



standard deviation 3.7). Given all these various findings and methods in the early studies,
could any consistent threads be identified?

3.10 The Parieto-frontal Integration Theory (PFIT)
In December 2003, I hosted an invited symposium at the annual meeting of the International
Society for Intelligence Research (ISIR). It was the first time imaging researchers came
together to discuss intelligence studies. In addition to myself, participants included Jeremy
Gray, Vivek Prabhakaran, Rex Jung, Aljoscha Neubauer, and Paul Thompson. With the
exception of Aljoscha Neubauer, it was the first time I met these researchers in person. Rex
Jung’s presentation was a compelling review of several studies that emphasized the
distributed nature of brain areas associated with intelligence. Based on his clinical
background as a neuropsychologist and his MRS research on white matter and IQ, he also
emphasized the importance of white matter connections among the salient brain areas. It
was apparent that he and I had similar interests so we undertook a comprehensive review
of the entire brain imaging/intelligence literature. It took us over two years to write the
review, which was published in 2007 along with commentaries from other researchers
(Haier & Jung, 2007; Jung & Haier, 2007).

From our first PET study of only eight subjects in 1988 to the larger fMRI studies
through 2006, there were 37 imaging studies of intelligence from different research groups
around the world. Given the wide disparity of methods and measures, and the number of
potential brain areas involved, a typical meta-analysis was not appropriate. Instead, we
followed a method used to review the emerging literature from cognitive neuroimaging
studies (Cabeza & Nyberg, 2000). We reviewed structural MRI results, PET results, and
fMRI results. We focused on findings common among studies irrespective of different
imaging and assessment methods. Several brain areas were common in 50% or more of the
37 studies. This may seem a rather weak proportion, but it is similar to the proportions
found in the Cabeza and Nyberg review of well-controlled cognitive experiments.
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The salient brain areas we identified were distributed throughout the brain, but mostly
were in parietal and frontal areas. We called our model the Parieto-frontal Integration
Theory (PFIT) of Intelligence. Note that “Integration” emphasizes that communication
among the salient areas was key to the model because we have always recognized that
identifying specific brain areas was only the beginning of a useful brain model of
intelligence. Understanding the temporal and sequential interactions among networks that
link the areas would be key. The illustration in Figure 3.7 shows all the areas we included
in the model. Animation 3.1 on this book’s website
(www.cambridge.org/us/academic/subjects/psychology/ cognition/neuroscience-
intelligence) shows the PFIT areas in 3D.

Figure 3.7 The Parieto-frontal Integration Theory (PFIT) showing brain areas associated with
intelligence (courtesy Rex Jung). (See also Animation 3.1 on the website,
www.cambridge.org/us/academic/subjects/psychology/cognition/neuroscience-intelligence.)
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The circles in Figure 3.7 show brain areas and the numbers refer to the standard
Brodmann area (BA) nomenclature (Brodmann, 1909). We proposed that these areas define
a general brain network and subnetworks that underlie intelligence. Most of the areas are in
frontal and parietal lobes, some in the left hemisphere (blue circles) and some in both
hemispheres (red circles). A major white matter tract of fibers (yellow arrow) connects the
frontal and parietal lobes like a super highway. It’s called the arcuate fasciculus and we
have proposed that it is an important tract for intelligence.

The brain areas in our model represent four stages of information flow and processing
while engaged in problem-solving and reasoning. In stage 1, information enters the back
portions of the brain through sensory perception channels. In stage 2, the information then
flows forward to association areas of the brain that integrate relevant memory, and in stage
3 all this continues forward to the frontal lobes that consider the integrated information,
weigh options, and decide on any action, so in stage 4 motor or speech areas for action are
engaged if required. This is unlikely to be a strictly sequential, one-way flow. Complex
problems are likely to require multiple, parallel sequences back and forth among networks
as the problem is worked in real time.

The basic idea is that the intelligent brain integrates sensory information in posterior
areas, and then the information is further integrated to higher-level processing as it flows to
anterior areas. The PFIT also suggests that any one person need not have all these areas
engaged to be intelligent. Several combinations may produce the same level of general
intelligence, but with different strengths and weaknesses for other cognitive factors. For
example, two people might have the same IQ, or g level, but one excels in verbal
reasoning, and the other in mathematical reasoning. They may both have some PFIT areas
in common, but it is likely they will differ in other areas.

Cognitive studies show that some PFIT areas of the brain are related to memory,
attention, and language, suggesting that intelligence is built on integrating these fundamental
cognitive processes. Our hypothesis is that individual differences in intelligence, whether
the g-factor or other specific factors, are rooted both in the structural characteristics of the
specific PFIT areas and in the way information flows around these areas. Some people
will have more gray matter in important areas or more white matter fibers connecting areas
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and some people will have more efficient information flow around the PFIT areas. These
brain features lead some individuals to score higher on intelligence and mental ability
tests, and other individuals to be less efficient, and less good at problem-solving. How the
salient brain features may develop is a separate issue for future longitudinal studies of
children and adolescents. In the next chapter we will see newer imaging methods that show
millisecond changes in information flow throughout the brain so hypotheses about efficient
information flow and intelligence can be tested.

While we were formulating the PFIT, we were unaware of a similar review published
in a book chapter by two cognitive psychologists (Newman & Just, 2005). These authors
also favored a distributed network for intelligence rather than a model concentrated only in
the frontal lobe. Additionally, they noted the importance of white matter connections among
brain areas. Efficient information flow and the importance of computational load were
prominent features of their model. Independently, we arrived at similar views although we
came from different perspectives. Their work is listed at the end of this chapter under
Further Reading. I highly recommend it.

There is one more thing to mention. Many of the gray and white matter areas related to
IQ first reported in these phase one studies that contributed to the PFIT appear to be under
genetic control to some degree (Pol et al., 2002; Posthuma et al., 2002, 2003a; Thompson
et al., 2001; Toga & Thompson, 2005) and we will discuss these and newer, even more
compelling findings in the next chapter in studies that combine advanced genetic analysis,
including DNA, and neuroimaging in very large samples.

Since our review of 37 studies was published in 2007, there have now been more than
100 additional imaging studies of intelligence from research groups all over the world, as
more researchers appreciate the connections between general intelligence and fundamental
cognitive processes. We refer to these post-2006 studies as phase two in the application of
neuroimaging to intelligence research (Haier, 2009a). This new wave of studies includes
many that are far more sophisticated with respect to large, representative samples, multiple
measures of intelligence to estimate the g-factor, and advanced image-analysis techniques
that include better anatomical measurement and localization methods. We will detail
important phase two studies in the next chapter.
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3.11 Einstein’s Brain
Before closing this chapter, let me draw your attention briefly to Einstein’s brain. It was
removed after his death and preserved in a jar by a physician who kept it at home and then
in his car as he moved across the country. He was reluctant to share it, but eventually
samples were made available to researchers. The main findings (Witelson et al., 1999;
Witelson & Harvey, 1999), not without technical issues that could influence interpretation
of results (Galaburda, 1999; Hines, 1998), were that Einstein’s brain showed more tissue
and more neuron-support cells in a posterior part of the brain. This area was pretty much
the same parietal area where the men showed correlations with IQ and the women didn’t
(Haier et al., 2005). A detailed analysis of photographs of Einstein’s brain also suggested
differences in frontal and parietal areas (Falk et al., 2013). Anything about how Einstein’s
brain may differ from other brains is inherently interesting, but perhaps the most
remarkable thing about his brain is that it is not all that remarkable from a purely
anatomical analysis. In fact, at autopsy it is often the case that a person who had an IQ
under 70 may have no remarkable anatomical brain features to distinguish it from brains of
people with high IQs. This is why functional neuroimaging and quantitative image analysis
have provided many new insights.

During the first phase of applying new medical neuroimaging technologies,
intelligence researchers had limited access to expensive equipment and the first studies
were characterized by small samples, single measures of intelligence, and rudimentary
image-analysis methods that often ignored individual differences. Nonetheless, slow but
steady progress from 1988 to 2006 allowed a literature review based on 37 studies that
concluded there were a finite number of identifiable areas distributed across the brain
where structure and/or function were related to scores on intelligence and reasoning tests.
Phase two of imaging/intelligence studies builds on these findings with advanced methods
and the latest progress is the focus of Chapter 4.
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Chapter 3 Summary

Review Questions
1. Explain the difference between structural and functional neuroimaging.

2. What are the main differences between the PET and MRI technologies?

3. What is the basis for the brain efficiency hypothesis of intelligence?

4. What is the evidence about whether there is an “intelligence center” in the brain?

5. List key limitations of the early brain-imaging studies of intelligence.

This chapter laid out the early history of neuroimaging studies of intelligence, a
period from 1988 to 2006 we refer to as phase one that indicated surprising
findings.

From the first studies, it was apparent to most researchers that intelligence was not
centered solely in frontal lobes, but instead involved networks distributed across
the brain.

A surprising early finding was an inverse correlation between intelligence test
scores and brain activity determined by glucose metabolic rate, suggesting a
hypothesis that efficient information flow was an element of higher intelligence.

Imaging studies showed that not all brains worked the same way. Individual
differences required examination rather than being ignored when group data were
averaged.

Despite the limitations of phase one studies, some consistent results across studies
suggested the Parieto-frontal Integration Theory of intelligence that emphasized
both the structural and functional characteristics of specific brain areas and the
connections among them.
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Further Reading
Looking Down On Human Intelligence (Deary, 2000). This is a sophisticated and
comprehensive account of intelligence research. Clearly written with wit and without
jargon, it ranges from early thinkers and philosophers to the end of the twentieth
century, including the early neuroimaging studies.

“The Parieto-Frontal Integration Theory (P-FIT) of intelligence: Converging
neuroimaging evidence” (Jung & Haier, 2007). This is the original, somewhat
technical review of 37 imaging/intelligence studies. It includes a broad range of
commentaries from other researchers in the field (Haier & Jung, 2007).

“Human intelligence and brain networks” (Colom et al., 2010). This is a more general
description of the PFIT model.

IQ and Human Intelligence (Mackintosh, 2011). This is a thorough textbook that
covers all aspects of intelligence written by an experimental psychologist. It has a
chapter that is a good summary of early imaging studies of intelligence (chapter 6).

“The neural bases of intelligence: A perspective based on functional neuroimaging”
(Newman & Just, 2005). This chapter is clearly written and presents a brain model of
intelligence similar to, but developed independently of, the PFIT.
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Chapter Four

50 Shades of Gray Matter: A Brain Image of
Intelligence is Worth a Thousand Words

◈

There are more than enough brain-injured people in the modern world to permit resolution
of every fundamental question concerning the human mind, could this material but be
brought under adequate study.

(Ward C. Halstead, 1947, p. v)

The data are intriguing. The field is maturing. The pace is quickening. As intelligence
research engages 21st century neuroscience, new hypotheses and new controversies are
inevitable. What a terrific time to work in this field.

(Richard Haier, 2009a, p. 121)

Learning Objectives
How has neuroimaging revealed brain networks related to intelligence?

What is the empirical support for the PFIT framework?

Does the weight of evidence support a relationship between brain efficiency and
intelligence?

Why is it difficult to predict intelligence test scores from brain images?

Does imaging research on intelligence differ from imaging research on reasoning?
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Introduction
Any lingering doubts that intelligence is a rich topic for neuroscience should be melted
away given the genetic and neuroimaging studies described in the previous two chapters. If
not, please suspend any remaining disbelief until the end of this chapter wherein even more
compelling findings are described. They come from the most recent neuroimaging studies,
including those obtained in conjunction with genetic methods. We include studies of adults
and children, patients with brain damage, and introduce more advanced methods of brain
image acquisition and analysis. These studies continue to intrigue and motivate researchers
worldwide to push assessment technologies to even greater precision, increase the sample
sizes to levels previously unimaginable, and offer new, testable hypotheses about
intelligence and the brain. One word of caution: most of the studies in the last chapter and
many in this chapter have sample sizes that are too small for conclusive interpretations.
Remember our second law – no one study is definitive. As this field continues to mature,
sample sizes are increasing rather dramatically. Over time, the weight of evidence always
favors studies with sufficient sample sizes that maximize the stability of findings and
minimize unreliable ones. This is especially so for the early studies seeking to identify
candidate genes related to intelligence. I am including such studies for historical context
and for illustrating how the weight of evidence evolves.

The PFIT framework described in Chapter 3 proposed that intelligence was related to
14 specific areas distributed throughout the brain (Jung & Haier, 2007; Haier & Jung,
2007). These areas formed a broad network of frontal–parietal communication along with
subnetworks involving several other temporal and occipital areas. How information
flowed through these networks was proposed as a basis for individual differences in
mental abilities, and especially for the g-factor. The model also proposed that individuals

Which brain structures share genes with intelligence test scores?

How have neuroimaging studies advanced the search for specific genes and brain
mechanisms related to intelligence?
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with the same IQ might achieve their level of g from different combinations of PFIT areas.
In other words, there may be multiple, even redundant, neuro-pathways to the g-factor just
like there are multiple routes driving from New York City to Los Angeles. Efficient
information flow, through whichever subnetworks are relevant for an individual, was
hypothesized to relate to high g, and subnetworks of the PFIT were hypothesized to relate
to a person’s pattern of mental ability strengths and weaknesses.

At the time the PFIT was proposed in 2007, testing these hypotheses was difficult.
Methods of neuroimaging and analysis were limited with respect to their ability to assess
structural or functional brain network connections and how well information was
processed in networks during problem-solving. This state of affairs improved quickly and
dramatically for intelligence research with the application of new mathematical/statistical
ways to assess connectivity among brain areas, new image-analysis techniques to assess
the integrity of white matter transmission of information, and the use of the magneto-
encephalogram (MEG) technology to assess regions of neuron activity dynamically every
millisecond during the performance of a cognitive task. Adding to the increased pace of
intelligence research, neuroimaging is now combined with genetic methods in several
large-scale consortia. These advances are the focus of this chapter. There are at least 50
recent neuroimaging studies to choose from that illustrate the momentum of these advances
in intelligence research. We cannot summarize them all, but let’s start with some key
studies of brain network connectivity and what they found. These studies are presented in
mostly chronological order so that the story is told as it has unfolded. All the studies
reported in this chapter implicate many brain areas. I decided to include the major ones for
completeness. You will get a sufficient feel for the general findings without memorizing
these areas. It may be helpful to refer to the brain area maps in Figures 3.6 and 3.7 from the
last chapter as you read this chapter.

4.1 Brain Networks and Intelligence
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Every brain image is constructed from many thousands of small voxels. As explained in the
last chapter, each voxel is assigned a value based on the type of imaging used. In the FDG
PET studies described in the last chapter, the value was glucose metabolic rate. In
structural MRI, the value can be density of gray or white matter. In fMRI, the value is based
on blood flow. To determine how one brain area may be related to all other brain areas,
correlations can be computed between any individual voxel, or group of voxels, defining a
region of interest (ROI) and all other voxels (or ROIs) throughout the entire brain. The
starting voxel is called the “seed.” Multiple seeds can be placed wherever the researchers
wish depending on the hypothesis to be tested. The pattern of correlations indicates how
the seed areas are connected to other brain areas. The connections are statistical and may
or may not reflect actual anatomical connections.

This kind of connectivity analysis was applied to fMRI data in 59 individuals who
also had completed the WAIS IQ test (Song et al., 2008). Usually, fMRI is conducted while
the participants perform a cognitive task. As different studies use different cognitive tasks,
comparing results is often problematic because each task has its own cognitive
requirements that involve different brain areas. In this case, the functional connectivity was
determined using fMRI data acquired during a rest condition. In other words, no cognitive
task was performed while fMRI data were obtained. The idea was to test whether brain
activity at rest might reveal functional connections related to IQ. A consistent pattern of
resting-state brain activity has been characterized as a “default network.” That is, the
pattern of brain activity when a person is not engaged in a cognitive task tends to be a
stable pattern of maintenance involving specific brain areas, rather than a completely
random pattern of uncorrelated, chaotic activity.

In this study, the seed was placed in a part of the frontal lobes corresponding to where
Brodmann areas (BAs) 46 and 9 come together (see PFIT Figure 3.7); one seed was in
each hemisphere. In the first step of the analyses, the resting-state functional connectivity
between the seeds and the rest of the brain was determined statistically by correlating the
blood flow value in the seeds to blood flow values in all other voxels. Several statistically
significant connections were identified. As expected, some connections between the frontal
seeds and other brain areas were stronger than others (i.e., stronger correlations). In the
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second step, the strength of the connections was correlated to IQ scores. The strongest IQ
correlations were for connections between areas noted in the PFIT model. Moreover, this
study indicated that individual differences in resting-state default network activity were
related to IQ.

Soon thereafter, several studies reported the use of a better statistical method for
inferring brain networks and how they relate to intelligence. The method is called graph
analysis (Reijneveld et al., 2007; Stam & Reijneveld, 2007), a more mathematically
sophisticated approach that determines how every voxel (also called a node in graph
analysis) is correlated to all other voxels and how strong the connections are (connections
are called edges). Graph analyses can be computed on structural or functional imaging
data. Some nodes are hubs with many connections to other nodes. Networks in the brain
tend to be “small-world” connections in that most clustering of connectivity is around
adjacent brain areas or “neighborhoods.” There are also connections among more distant
regions in the brain through hubs that are connected to each other; these are the so-called
rich clubs (van den Heuvel et al., 2012). Small-world networks tend to allow more
efficient transmission of information across shorter distances with less wiring (white
matter fibers) and rich clubs foster faster communication across more distant brain areas.
These networks develop at different times and rates from infancy through early adulthood.
The factors that influence how networks develop are not yet understood, but they likely are
related to individual differences in cognitive abilities. Graph analysis is illustrated in
Textbox 4.1.

Textbox 4.1:  Graph analysis

Graph analysis is a mathematical tool that is used to model brain connectivity and
infer networks. The idea is to establish how each voxel in a brain image is
correlated to all other voxels throughout the brain. These connections, called
edges, can be computed for structural or functional images. A voxel, or a cluster of
voxels, that show correlations to many other voxels is called a hub. Hubs that show
correlations to many other hubs are called rich clubs. The strength of any
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connection is determined by the magnitude of the correlation between voxels or
hubs. The efficiency of any connection can be estimated by determining its length.
Most of the brain has local connectivity in that many nearby voxels are connected
to each other via a neighborhood hub. This makes for efficient information transfer.
Rich clubs connect more distant brain areas and this makes for faster
communication. This is illustrated in Figure 4.1 from van den Heuvel and Sporns
(2011). Psychometric test scores can be correlated to the strength of hubs and
connections to indicate which brain networks are related to intelligence, as
described in Section 4.1.
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Figure 4.1  Brain connections determined by graph analysis. The red nodes show brain
areas with many connections (larger nodes indicate more connections). Blue lines called
edges indicate the strength of connections among areas (thicker lines indicate stronger
connections; dark blue lines show rich club connections to other brain areas).

Adapted with permission from van den Heuvel and Sporns (2011).
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Van den Heuvel and his colleagues applied graph analysis to fMRI data collected
during a resting state in a small sample of 19 adults (van den Heuvel et al., 2009). They
calculated a measure of global efficient communication among multiple brain areas based
on the overall length of pathway connections. This measure was inversely correlated with
IQ scores. In other words, higher IQ scores were related to shorter pathways indicative of
greater efficiency of information transmission within the entire brain. Path length of
frontal–parietal connections had the strongest inverse correlations to IQ. Similarly, another
group (Song et al., 2009) reported a graph analysis targeted specifically at the default
network and how it differed between high- and average-IQ subgroups (N = 59). They too
found that differences in the overall global efficiency of connections in the default network
were related to IQ. The high-IQ group showed greater efficiency. A different research
group reported a graph analysis of global efficiency using fMRI obtained from 120
participants (Cole et al., 2012). After a whole-brain analysis, they reported that efficient
connections involving only the left dorsal lateral prefrontal cortex with other
frontal–parietal connections were correlated to intelligence test scores. Other researchers
used graph analysis on resting-state EEG data in 74 participants and reported that efficient
connections centered in the parietal lobe were most correlated to intelligence test scores
(Langer et al., 2012).

Santarnecchi and colleagues also used graph analysis based on resting-state fMRI
data obtained from 207 individuals across a wide age range and found IQ scores were
related to connections distributed around the brain, including PFIT areas (Santarnecchi et
al., 2014). Both strong local connectivity and weak distant connectivity were found, but
their study added a new and surprising observation: IQ was most related to the strength of
the weaker long-distance connections than to the stronger shorter connections. These
researchers also reported quite a clever experiment using graph analysis and “damage”
created mathematically. First, they constructed a measure of brain resilience based on
functional connectivity related to IQ scores. Then they tested the impact of “damage” to
specific areas or to random ones (Santarnecchi et al., 2015a). They concluded that higher
intelligence was related to brain resilience to targeted damage and that the key areas were
consistent with the PFIT. Supporting this general conclusion, recall from Chapter 2 that the
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Val/Met gene related to BDNF might play a role in preservation of IQ after traumatic brain
injury.

Using the same sample of 207 and fMRI data, this same group has reported a different
type of connectivity analysis based on the functional correlations between the same brain
areas in the right and left hemispheres (Santarnecchi et al., 2015b). This is called
homotopic connectivity and the results were counter-intuitive. Higher IQ was correlated to
brain areas that show weaker inter-hemispheric homotopic connectivity, suggesting that
decreased inter-hemisphere communication is related to higher intelligence. Several of the
homotopic areas are included in the PFIT, but this study adds a new dimension of inter-
hemisphere communication. Age and sex differences were also reported. For example,
higher-IQ females showed less homotopic connectivity in the prefrontal cortex and
posterior midline regions. Younger participants (below age 25) with higher IQs also
showed increased homotopic connectivity patterns. These age and sex analyses were done
on smaller subsamples so must be viewed with caution, but they illustrate the potential
importance of using these variables as a matter of routine. Because the results are based on
resting-state data, one wonders whether functional homotopic relationships with IQ might
be even stronger if based on fMRI during a cognitive task. Wonder no longer. In a 2014
study of 79 participants, networks were identified from both resting-state fMRI and fMRI
during problem-solving of items from the Raven’s test (Vakhtin et al., 2014). This is the
only imaging study of intelligence to date that investigated both resting-state and task
activation conditions in the same subjects. Connectivity was determined with a statistical
technique called independent component analysis prior to the homotopic analysis reported
subsequently (Santarnecchi et al., 2015b). Functional connectivity during the problem-
solving overlapped with functional connectivity during the resting state. The overlapping
networks were consistent with the PFIT.

The PFIT framework also has received strong support from other methods of voxel-
wise analyses of brain connectivity (Shehzad et al., 2014) and from both an evolutionary
perspective (Vendetti & Bunge, 2014) and a developmental perspective (Ferrer et al.,
2009; Wendelken et al., 2016); both perspectives emphasize the importance of
parietal/frontal connectivity for reasoning ability. The PFIT hypothesis about subnetworks
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underlying different cognitive functions has received strong support from experiments using
non-verbal reasoning tasks during standard fMRI (Hampshire et al., 2011). Overall, it is
clear that results from numerous network analyses that use different methods converge
substantially and support the existence of intelligence-related networks that are distributed
across the brain. The findings are consistent generally with the PFIT framework, although
that framework is subject to modification and elaboration, or even disproof, as new data
emerge.

Many analyses identify networks mathematically irrespective of actual brain anatomy.
White matter fibers are the tangible structural units of the brain that transmit information
from one area to another. Figure 4.2 shows white matter fiber throughout the brain as
determined by DTI. See Animation 4.1 showing DTI of the white matter connections
between left and right hemispheres (the corpus callosum) on this book’s website
(www.cambridge.org/us/academic/subjects/psychology/cognition/ neuroscience-
intelligence). The thickness of the corpus callosum has been related to intelligence (Luders
et al., 2007).

Figure 4.2 White matter fibers throughout the brain assessed by DTI. Seed refers to a spot
selected for determining connections from that spot to other areas (see Animation 4.1 on this
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book’s website,
www.cambridge.org/us/academic/subjects/psychology/cognition/neuroscience-intelligence)
(courtesy Rex Jung).

One group of researchers (Li et al., 2009) reported a graph analysis specifically of
white matter connections to assess brain efficiency. In the previous chapter, we introduced
DTI as a special variety of MRI that assessed the integrity of white matter. The Li group
used DTI in 79 young adults. Among other findings, global white matter efficiency was
greater in the high-IQ subgroup. They concluded that “… higher intelligence scores
corresponded to a shorter characteristic path length and a higher global efficiency of the
networks, indicating a more efficient parallel information transfer in the brain … Our
findings suggest that the efficiency of brain structural organization may be an important
biological basis for intelligence.”

Another research group assessed white matter with DTI in 420 older adults (Penke et
al., 2012). They did not find that any one white matter tract was highly correlated to
intelligence scores. However, they reported that 10% of the variance in intelligence test
scores could be explained by a general factor of global white matter integrity computed
from all tracts combined. This effect was due entirely to a factor of information processing
speed. Another group (Haasz et al., 2013) reported similar findings in middle-aged and
older adults. Other researchers calculated white matter/intelligence correlations separately
for males and females in a small sample of 40 young adults (Tang et al., 2010). The pattern
of correlations with IQ differed between the sexes. Although their sample sizes were too
small for generalization, from the perspective of individual differences and known sex
differences in the brain (Luders et al., 2004, 2006), there is a strong argument for always
computing separate analyses for males and females, especially when both groups are
matched for intelligence.

Another kind of study that examines brain networks is based on patients with brain
lesions and the pattern of cognitive deficits that result. Prior to the advent of neuroimaging,
the study of brain lesion patients was a primary, if inexact, source of data for inferring
brain/intelligence relationships. Neuroimaging advanced this approach by providing exact

148

http://www.cambridge.org/us/academic/subjects/psychology/cognition/neuroscience-intelligence


localization of lesions and mapping correlations between cognitive test score deficits and
brain parameters. For example, Glascher and colleagues assessed primary factors of
intelligence including g in a sample of 241 neurological patients with brain damage
(Glascher et al., 2009, 2010). The main finding was that damage in frontal and parietal
areas was related to deficits in the g-factor and that other intelligence factors (verbal
comprehension, perceptual organization, and working memory) showed deficits when
damage occurred in different parts of the frontal–parietal network (see Figures 4.3 and
4.4). Brain/intelligence relationships were also tested by other researchers with structural
MRI, fMRI, and DTI in a small sample of people with Shwachman–Diamond syndrome, a
rare genetic disorder characterized in part by various cognitive impairments (Perobelli et
al., 2015). They found brain abnormalities consistent with the PFIT.

Figure 4.3 3D renderings show cortical and subcortical regions with a statistically significant
relationship (red/yellow) between lesion location and the g-factor (top row). Bottom rows:
Axial (horizontal) slices are shown for a more detailed inspection.

Reprinted with permission, Glascher et al. (2010, figure 2, p. 4707).
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Figure 4.4 Effect of lesion location on four indices of mental ability. Row (A) is perceptual
organization, (B) verbal comprehension, (C) working memory, and (D) processing speed. The
red/yellow colors show where the location of lesions significantly interferes with scores on the
indices. The graphs on the right show the mean difference on each index score between
patients with and without lesions at the area of maximum effect (white arrow on the 3D
projection).

Reprinted with permission, Glascher et al. (2009, figure 2, p. 684).

As we see, the PFIT framework has generated support from a number of studies and
new data are providing some potential refinements to it. For example, one research group
expanded neuroimaging beyond the cortex to subcortical areas (Burgaleta et al., 2014).
They analyzed the shape of several subcortical structures based on MRI in 104 young
adults who had completed a battery of cognitive tests. Fluid intelligence scores, highly
correlated to the g-factor, were related to the morphology of the nucleus accumbens,
caudate, and putamen, all in the right hemisphere only. These areas and the morphometry of
the thalamus were also related to the factor of visual–spatial intelligence. Another study
reported that the volumes in the basal ganglia were correlated to different intelligence
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factors and there were some sex differences (Rhein et al., 2014). Both these studies
require replication, but they expand the PFIT framework to subcortical areas. There is also
some evidence regarding the PFIT in children. One new study reports that efficient
structural brain networks related to the PFIT are related to perceptual reasoning and to one
high g-loaded measure in a sample of 99 children aged 6–11 years old (Kim et al., 2016).

In a comprehensive report, a German group of researchers completed a detailed meta-
analysis of neuroimaging studies of intelligence through 2014 with the explicit purpose of
testing the PFIT (Basten et al., 2015). In their final analysis, they only considered studies
where individual differences in intelligence could be assessed directly; studies of average
group comparisons were excluded. Jung and Haier had included both kinds of studies and
their PFIT analysis was based on a qualitative assessment of areas common across studies.
The German group compared structural and functional imaging results in an empirical
voxel-by-voxel analysis (VBM as described in Chapter 3) to identify common brain areas
related to intelligence across 28 studies totaling over 1,000 participants. They concluded
that the results generally supported the primary involvement of the parietal–frontal network
They also found evidence that suggested revising the PFIT to include areas of the posterior
cingulate/precuneus, caudate and midbrain. Their revised framework is shown in Figure
4.5. These suggested changes need replication.

Figure 4.5 Brain areas related to intelligence from a 2015 review are shown on lateral (left)
and medial (right) surfaces of the brain. ACC, anterior cingulate cortex; PCC, posterior
cingulate cortex; PFC, prefrontal cortex; (pre) SMA, (pre-) supplementary motor area; VBM,
voxel-based morphometry. Reprinted with permission, Basten et al. (2015).
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Whereas the PFIT was a good start, a more advanced model is necessary so that more
specific predictions can be tested. Frameworks like the original and revised PFIT have
conceptual problems related to a reliance on correlations that are fundamentally not
interpretable regarding cause and effect between brain measures and cognitive measures
(Kievit et al., 2011). One promising possibility for addressing this limitation that might
advance the study of “neuro-g” may be the use of analyses based on multiple indicators and
multiple causes (Kievit et al., 2012). These advanced statistical approaches, too complex
to detail here, can generate more specific hypotheses about brain variables and they are
particularly important for the large data sets. They offer the potential for clarifying the
weight of evidence regarding how brain physiology specifically relates to cognitive
measures, especially for identifying different brain variables relevant for individual
differences in cognitive test performance (see Section 4.3).

At this point, you may be finding it difficult and confusing keeping in mind all the
different brain areas related to intelligence. I know the feeling. Here is something to help. It
would be nice to have a table showing each Brodmann area and what that area does. There
used to be such tables, but as more data became available, it became clear that any one
area typically is involved in more than one function. This had been observed for the g-
factor in early neuropsychology studies of lesion patients (Basso et al., 1973) and more
recently formalized as multiple demand theory (Duncan, 2010). So how could it be helpful
if there is no simple correspondence between one brain area and one cognitive function?
Doesn’t that make a complex situation worse? And, it is also the case that the way brain
areas are defined is not exact and boundaries can be quite different from one brain to the
next. Remember our first law: nothing about the brain is simple. In my view, there is no
need for you to memorize all the things any brain area does. Think just about the fact that
we are at the point where we can identify a set of brain areas related to intelligence. We
are identifying the individual instruments in the orchestra. Learning how they work together
to create the symphony of intelligence is a new challenge that requires even better
technology and we will discuss one, the magneto-encephalogram (MEG), in Section 4.2.

Let’s recap brain network findings. Two main hypotheses proposed from the first
phase of neuroimaging studies from 1988 to 2007, discussed in Chapter 3, were that
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intelligence was related to brain efficiency and involved multiple areas distributed
throughout the brain, especially in a parietal–frontal network. The second phase of
neuroimaging studies summarized so far in this chapter has applied more sophisticated
image acquisition and analysis in much larger samples to test these ideas. Overall, the
weight of results across multiple studies provides considerable, if not overwhelming,
support for the parietal–frontal distribution hypothesis (albeit with some modifications)
and some tentative support for the efficiency hypothesis based on measures of brain
connectivity. Next, we turn to a more detailed examination of brain efficiency including
testing actual information flow among brain areas while individuals solve problems on
intelligence tests.

4.2 Functional Brain Efficiency – is Seeing Believing?
Following the observation of inverse correlations between intelligence test scores and
glucose metabolic rate in the cortex (Haier et al., 1988), we formulated the hypothesis that
high intelligence was related to efficient brain activity. In that report, the concept of
efficiency was general and included possible characteristics of brain networks, neurons
(especially mitochondria), and/or synaptic events. We also speculated that the decreased
cortical activation we observed following task practice might result from the brain learning
which areas not to use while task-relevant areas worked harder (Haier et al., 1992b).
From this rather inexact beginning, it is not surprising that demonstrating a relationship
between brain efficiency and intelligence has produced inconsistent results over the years.
A subsequent review of the research literature concluded that brain efficiency was
moderated primarily by type of task and by sex (Neubauer & Fink, 2009). Up to that time,
most brain efficiency studies were based on EEG methods. The graph analyses summarized
in the last section provided indirect evidence that structural and functional brain network
efficiency was related to intelligence, but the story became more complex as more
variables were identified that apparently influenced efficiency.
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Two small-sample fMRI studies investigated brain efficiency by comparing cortical
activations between high- and average-IQ participants (Graham et al., 2010; Perfetti et al.,
2009). These studies are noteworthy for selecting participants for differences in
intelligence; high- and low-IQ groups are compared. Most cognitive imaging studies avoid
using intelligence as an independent variable because there is a general assumption that all
human brains basically work the same way so comparing groups with different IQs would
not be meaningful. The validity of this assumption, however, is quite doubtful. When
intelligence is considered in the research design of imaging studies, differences are
apparent. Both these studies reported generally consistent results. One study concluded
that, “When complexity increased, high-IQ subjects showed a signal enhancement in some
frontal and parietal regions, whereas low-IQ subjects revealed a decreased activity in the
same areas. Moreover, a direct comparison between the groups’ activation patterns
revealed a greater neural activity in the low-IQ sample when conducting moderate task,
with a strong involvement of medial and lateral frontal regions thus suggesting that the
recruitment of executive functioning might be different between the groups” (Perfetti et al.,
2009). Similarly, the other study concluded that, “Whether greater intelligence is
associated with more or less brain activity (the ‘neural efficiency’ debate) depends
therefore on the specific component of the task being examined as well as the brain region
recruited. One implication is that caution must be exercised when drawing conclusions
from differences in activation between groups of individuals in whom IQ may differ”
(Graham et al., 2010). Unfortunately, cognitive studies like these that use intelligence as an
independent variable are still exceptions (one additional example will be discussed later
in Section 4.4).

Two more recent studies tested the efficiency hypothesis directly with fMRI data. The
first one studied 40 teenagers (20 males and 20 females) and incorporated sex, task
difficulty, and intelligence in its research design (Lipp et al., 2012). These 40 were
selected from a pool of 900 so that the male and female samples were matched on
intelligence scores (general intelligence and visual–spatial scores) and, to avoid
restriction-of-range problems, each sample included a broad range of scores. During fMRI,
each participant solved a set of spatial rotation problems along with control problems. The
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visual–spatial task activated mainly frontal and parietal areas but, contrary to the efficiency
hypothesis, there was no basic finding of inverse correlations between intelligence and
brain activation during the task. Activation in the posterior cingulate and precuneus was
related to intelligence. These are two of the default network areas proposed as additions to
the PFIT (Basten et al., 2015). The authors interpreted this as a possible indication that
deactivation in areas of the default network might indicate greater task demands for less
intelligent participants. They also found that in the females, higher intelligence was related
to greater activity in task-related areas for more difficult problems. In short, as predicted
by our first law, the results reinforced the complexity of the efficiency concept.

In the second study of efficiency, Basten and colleagues obtained fMRI in 52
participants while they performed a working memory task of increasing difficulty (Basten
et al., 2013). They made an important distinction between two kinds of brain areas: task-
positive, where activation increased during task performance, and task-negative where
activation decreased during performance. They correlated intelligence test scores to
activation in both kinds of areas separately. In the networks formed by task-positive
activations, higher intelligence was related to less efficiency. In the task-negative
networks, higher intelligence was related to greater efficiency. These opposing findings,
similar in male and female subsamples, suggest that whole-brain analyses of the efficiency
hypothesis may be more confusing than regional analyses.

Despite the initial appeal of the simple efficiency hypothesis regarding individual
differences in intelligence, subsequent research continues to underscore a complex set of
issues. On one hand, efficiency remains a popular concept for thinking about neural circuit
activity and how it relates to complex cognition (Bassett et al., 2015). On the other hand,
the concept has been characterized as so vague as to be useless, although it still has
potential explanatory power if better defined and measured (Poldrack, 2015).

We are exploring an approach to measuring efficiency that uses the non-invasive
neuroimaging technique based on the MEG. MEG detects minute magnetic fluctuations
created as groups of neurons fire on and off. The spatial resolution of this technique is
about a millimeter, but the time resolution of a millisecond makes this especially appealing
for studying information flow in the brain. Magnetic signals also have less distortion than
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EEG signals as they pass through the skull, an advantage for spatial localization of activity.
When MEG is acquired while a person solves a cognitive problem, millisecond-by-
millisecond fluctuations related to neurons firing can be detected and tracked through the
entire brain. There are a number of issues surrounding the interpretation of such
fluctuations, but they can potentially provide insight into how individual brains process
information during problem-solving.

One group of researchers, for example, used MEG during a choice reaction-time task
to assess the timing and sequence of brain activations that might be related to intelligence
(Thoma et al., 2006). The task was chosen because choice reaction time is correlated to
intelligence (choice reaction time tasks require making a decision about which response is
correct; simple reaction time tasks just require a response to a stimulus). Fast reaction
times in choice reaction-time tasks, reflecting faster information processing speed, are
associated with higher intelligence test scores in many studies; reaction time in simple
tasks is not (Jensen, 1998, 2006; Vernon, 1983). The MEG results from 21 young adult
males suggested that activation sequences involving a posterior visual processing area and
a sensory motor area were related to scores on the RAPM test of abstract reasoning
(described in Chapter 1). This was a pioneering use of MEG to study intelligence, but it
did not have the advantage of a large sample or a model to test so the complex MEG results
are necessarily tentative. Another MEG study of 20 university students investigated
efficient information flow during a verbal memory task (Del Río et al., 2012). The results
suggested that “an efficient brain organization in the domain of verbal working memory
might be related to a lower resting-state functional connectivity across large-scale brain
networks possibly involving right prefrontal and left perisylvian areas.” The PFIT was not
tested directly, but the results are an encouraging example of the potential for MEG
analyses for detecting the sequence and timing of information processing.

MEG is a tricky, expensive technology and not many MEG machines have been
available to researchers. This contrasts with MRI methods now widely available. Many
psychology departments have one or more MRI machines under their control along with
legions of graduate students familiar with sophisticated image analysis software,
developed by mathematical experts specifically for cognitive studies. MEG is still very
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much in development as a research tool. For example, one research group used MEG and
fMRI in the same sample to study optimal methods for revealing network connectivity (Plis
et al., 2011), and other groups have used data for graph analysis of connectivity (Maldjian
et al., 2014; Pineda-Pardo et al., 2014), but intelligence was not a variable in any of these
studies. Another research group studied reading difficulties and found MEG activations in
three areas correlated to IQ scores, but the sequential timing among areas was not reported
(Simos et al., 2014). At this time, the potential of MEG for investigating brain efficiency
and intelligence has not been realized but we are working to do so (see Textbox 4.2).

Textbox 4.2:  Seeing intelligence at work in the brain

The PFIT hypothesizes that intelligence is related to a specific sequence of
activation across specific areas during problem-solving. Generally, the sequence
starts in posterior sensory processing areas, travels forward to parietal and
temporal association areas where information is integrated, and then moves on
to frontal lobe areas for hypothesis testing and decision-making. How often this
sequence might be repeated while solving a particular problem could be a key
variable related to individual differences in intelligence. The exact areas
involved in the sequence could also differ among individuals and so could the
timing of the sequence. MEG provides a means to assess the actual sequence and
compare it to what the PFIT predicts. For example, individuals with high
intelligence test scores might engage a different set of PFIT areas than
individuals with average intelligence test scores. Perhaps fewer areas would
define a sequence in the high-score group, consistent with efficiency. Or,
individuals may engage the same set of PFIT areas in the same sequence
irrespective of intelligence, with high intelligence related to a faster speed of
engaging or repeating the sequence of areas. We are investigating these
hypotheses using MEG in a sample of 32 young adults. Each participant
performs four different cognitive tasks adapted for computer administration in
the MEG machine (paper folding simple, paper folding complex, inductive
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reasoning, vocabulary). Each task includes dozens of problems, each with four
possible answers. Each item takes a few seconds to solve so the millisecond time
resolution of MEG can chart brain activity changes during this short period.

As a first step, we have looked at MEG signals from 300 detectors during
the time period of 500 milliseconds just before the participant answers an item
correctly by pressing a button indicating which of the four choices is correct.
Figure 4.6 shows one problem from the simple paper-folding task (see also
Animation 4.2 on this book’s website
(www.cambridge.org/us/academic/subjects/psychology/cognition/neuroscience-
intelligence) for a demonstration of a paper-folding problem). Figure 4.7 shows
a screenshot of MEG activation patterns 500 milliseconds just before the button
is pressed for high- and low-IQ groups. The idea is to see whether PFIT areas
are engaged in the final stages of thinking as the person decides on the answer.
Animation 4.3 shows the MEG changes in the brain activation patterns for these
groups while the problem is solved (see website,
www.cambridge.org/us/academic/subjects/psychology/cognition/neuroscience-
intelligence). MEG movies are visually compelling and show large amounts of
data qualitatively. They speak to the maxim that a picture is worth a thousand
words. But is seeing believing? The challenge is how to use these images to test
the PFIT hypotheses quantitatively, especially person by person.
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Figure 4.6  Paper-folding problem example. In the first step, a folded piece of paper
appears on a computer screen as on the left side of the middle rectangle. In the second
step, a hole is punched in the folded paper as on the right side of the middle rectangle.
At that point the third step is the appearance of four multiple-choice answers in the
circles that show a hole pattern if the paper were unfolded. Only one of the four is
correct. The person presses a button to indicate which of the four they think is correct.
Courtesy Richard Haier. (See also Animation 4.2 on the website,
www.cambridge.org/us/academic/subjects/psychology/cognition/neuroscience-
intelligence) courtesy of The Intelligent Brain, © 2013 The Teaching Company, LLC.

Reproduced with permission of The Teaching Company, LLC:
www.thegreatcourses.com.)
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Figure 4.7  Screenshot of MEG activation in high (top) and low (bottom) IQ groups at
exactly 500 milliseconds before signaling the correct answer to the problem shown in
Figure 4.6. Colors show locations of PFIT areas. See also Animation 4.3 on this book’s
website (www.cambridge.org/us/academic/subjects/psychology/cognition/neuroscience-
intelligence) that shows millisecond changes in brain activity during paper-folding
problem-solving (see Figure 4.6) (courtesy Richard Haier).

Here is one way. Figure 4.8 shows the activation average for four
individuals with high IQ and the average for four individuals with low IQ in bar
graphs every 10 milliseconds for the 500 milliseconds before the button press.
Even without a statistical analysis, you can see major differences between the
groups – the average group shows more activated PFIT areas. Even within
groups the activation patterns are quite different for each individual as shown in
Figure 4.9. Such differences are always ignored when group data are averaged
and compared. In our view, insights about brain processing and intelligence are
more likely if imaging data like these are presented person by person as
illustrated in the bar graphs shown in Figure 4.9.
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Figure 4.8  Average number of MEG activations (y-axis) in high- and low-IQ groups
out of nine left-hemisphere PFIT areas every 10 milliseconds over 500 milliseconds
before pressing button for correct answer for a paper-folding problem (see Figure 4.6).
The low IQ group generally shows more areas were activated during problem-solving
(courtesy Richard Haier).
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Figure 4.9  MEG activation in nine left-hemisphere PFIT areas summed over the 500-
millisecond period before button press for correct answer to the paper-folding problem
(see Figure 4.6). Top row shows two individuals with high IQ (both 132); bottom row
shows two lower-IQ individuals (87 and 95, respectively) (courtesy Richard Haier).

As this book goes to press, we are still analyzing the data from this study.
We need to analyze the 500 milliseconds after the problem appears to test
whether the earliest sensory processing activation sequences are related to
intelligence. We may discover that other time epochs are more informative than
500 milliseconds. We also need to examine different items from all four tests and
look for any commonalities related to IQ. There is much to do before we can even
consider replication in an independent sample. It is too early to characterize the
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results and many interpretive issues remain. Nonetheless, the use of MEG,
especially person by person, illustrates a new approach to investigate whether
intelligence relates to individual differences in brain efficiency at the network
level. The visual representation of such complex data is powerful, but without a
quantitative analysis, caution is required because seeing does not always mean
believing.

4.3 Predicting IQ From Brain Images
Imagine if colleges and universities gave applicants for admission a choice between
submitting either SAT scores or a brain image. As discussed in Chapter 1, SAT scores are
a good estimate of general intelligence and that is an important reason they are good
predictors of academic success. Can a better estimate of intelligence or predictor of
academic success be extracted from a brain image? This is an empirical question, and a
positive answer is probably far less scary than you might think. In fact, brain images are
likely to be more objective, especially structural images, and not sensitive to a host of
factors that potentially can influence psychometric test scores, like motivation or anxiety.
Whether you are a good test-taker or not is irrelevant for getting a scan. Brain images
generally are less expensive than SAT preparation courses or formal IQ testing and getting
a brain image is far less time-consuming. There is no preparation, you spend about 20
minutes in the scanner, and you can have a nap during structural image acquisition. Still not
interested in this possibility?

Whether or not there are any practical applications for predicting IQ from brain
images, the ability to do so would signal a more advanced understanding of
brain/intelligence relationships than we have currently. In fact, predicting IQ from
neuroscience measures like those obtained from neuroimaging is one of two major goals of
intelligence research. The other one is the ability to manipulate brain variables to enhance
IQ, and that one will be tackled in the next chapter.
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There is a long history of trying to predict IQ from brain measurements that dates back
to the early EEG research of the 1950s and 1960s. At least one patent to do so was issued
in 1974 (US 3,809,069). In 2004, a group from the University of New Mexico, including
my colleague Rex Jung, obtained a patent (US 6,708,053 B1) to measure IQ based on
neurochemical signatures in the brain assessed by MRI spectroscopy. This claim was
derived from their research correlating IQ to N-aspartate in a single brain area (see
Chapter 3) (Jung et al., 1999a, 1999b). In 2006, a group from South Korea filed a patent
application to measure IQ from a combination of structural and functional MRI assessments
and that patent eventually was issued in 2012 (US 8,301,223 B2). Their patent is supported
by previous research, including our MRI work (Haier et al., 2004), and on research from
the South Korean group that reports correlations between predicted IQ scores and actual
IQ scores for different samples (Choi et al., 2008; Yang et al., 2013). Let me note that no
commercial potential for these patents is apparent to me at this time. In my view, none of
these patents represent an immediate threat to the publishers of the SAT or the WAIS IQ test
because their validity has yet to be established in any large-scale, independent replication
trials. I am doubtful that such studies will be positive for these specific methods. This is
because predicting an individual’s IQ based on group average data is quite difficult.
Nonetheless, I am optimistic that neuroimaging-based IQ prediction may be possible. My
skepticism and my optimism both are derived from my view about the importance of
individual differences. Let me explain.

Conceptually, predicting IQ or any intelligence factor from neuroimaging is
straightforward. Success depends on how strongly brain variables, individually or in
combination, correlate to intelligence test scores. Recall from Chapter 1 that IQ scores are
good estimates of the g-factor because they are a combination of scores, age- and sex-
corrected, on several subtests that tap different cognitive domains. Presumably, different
cognitive domains require different brain networks so various brain measures for different
domains might be combined to predict IQ. As we noted in Chapter 3, whole brain size has
a modest correlation with IQ. It is not strong enough for brain size alone to substitute for
IQ, but certainly the correlation is a base to build on.

There are a number of statistical approaches for combining measures to make a
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prediction. The most basic one applied for predicting IQ scores is the multiple regression
equation. This method and related versions of it use the correlation between IQ and each
measure after removing common relationships between measures. For example, if variable
A correlates to IQ and so do variables B and C, they cannot be simply combined without
first statistically removing the common variance between A and B, A and C, and B and C.
The remaining correlations to IQ for each variable are called partial correlations.
Regression equations combine partial correlations between each variable and IQ along
with computing weights for each variable that maximize the IQ prediction. In the ABC
example, A might be weighted more than B and B might be weighted more than C in order
to make the strongest IQ prediction. The resulting equation can then be applied to a new
person’s data and an IQ score predicted. The correlation between a predicted IQ score and
the actual IQ score for a large group of individuals must be nearly perfect for the equation
to be acceptable as a substitute for an actual IQ score. It is not sufficient if an equation
produces a statistically significant correlation between the predicted IQ and the actual IQ.
Whenever a regression equation is calculated in a research sample, the exact same
equation must be applied to an independent sample so the predicted and actual IQ score
correlation can be replicated. This is cross-validation of the equation and this step is
required because the original equation may produce a spuriously high correlation by
incorporating chance effects, especially in small samples. In our research, we have tried
the regression approach on several occasions, but each regression equation failed on
cross-validation so neither publication nor patent was attempted.

So far, to the best of my knowledge, none of the patented methods of predicting IQ
from brain measurements has achieved this crucial step. One recent paper attempted to
predict IQ scores from structural MRIs collected from different sites (Wang et al., 2015).
They reported good correlations with two different regression models that incorporated
gray and white matter, but there was no cross-validation in independent samples,
participants (N = 164) ranged in age from 6 to 15 years old, sex effects were not
investigated, and no clear description of IQ testing was detailed. They identified 15 brain
areas that were included in the prediction, but there was no attempt to integrate these areas
to the PFIT or any other intelligence framework, and the areas are not generally found in
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other imaging studies of intelligence. At best, without independent replication the findings
are tenuous. The regression models are of interest, but it is too early to judge whether the
analyses will have predictive validity, as the authors hope. Here is their final sentence: “It
should be emphasized again that our work paves a new way for research on predicting an
infant’s future IQ score by using neuroimaging data, which can be a potential indicator for
parents to prepare their child’s education if needed.” It’s an optimistic view of a potential
commercial market, but significantly more caution here would have been wise.

An important contribution to this literature comes from the continuing longitudinal
study of children from Scotland described in Chapter 1. These researchers collected
structural MRIs on 672 individuals with an average age of 73 years and representing the
full range of intelligence (Ritchie et al., 2015). They used structural equation modeling, a
form of regression equation, to compare four models for combining several different MRI
assessments to determine which structural brain features were most related to individual
differences in intelligence based on a g-factor extracted from a battery of cognitive tests.
They found that the best model accounted for about 20% of the variance in the g-factor.
Total brain volume was the single measure that contributed most of the predicted variance
in this model. White matter along with cortical and subcortical thickness contributed some
additional variance, but iron deposits and micro-bleeds did not. The main issue for future
study was whether additional measurements of other brain variables like corpus callosum
thickness or functional variables might add predictive variance beyond 20%. This project
had a large sample and multiple cognitive measures so it is a solid study of older men and
women. How the results might differ for children or younger adults is an open question for
replication and cross-validation studies.

Why would straightforward prediction approaches like the ones described fail to
cross-validate? Correlations between any two variables are based on individual
differences for each variable. That is, there must be variance among individuals for
correlations to exist. Regression equations generally work on group data where there is
variance on all the variables. In the case of intelligence, there may be many combinations
of the same set of variables that predict any specific IQ equally well. For example, one set
of brain variables might characterize a person with an IQ score of 130, but another person
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with the identical IQ score of 130 might be characterized by a different set of brain
variables. In a group of 100 people all with IQs of 130, how many different sets of brain
variables related to intelligence might there be? Compounding the problem, two
individuals both with WAIS IQs of 130 may have very different subtest scores indicating
different cognitive strengths and weaknesses despite the same overall IQ (Johnson et al.,
2008a). The same problem may exist independently at several IQ levels so the brain
variables that predict high IQ might be different from those that predict average or low IQ,
even though the relevant genes may be the same across the entire IQ range as discussed in
Chapter 2. Age and sex also could be important factors for identifying optimal sets of
variables for predicting IQ.

There is another major source of difficulty. No two brains are the same structurally or
functionally, even in identical twins. Virtually all brain image analysis starts with morphing
each brain into a standard size and shape, called a template. This step artificially reduces
individual differences in brain anatomy by creating an “average” brain. To account for the
imprecision of “average” brain anatomy, analyses typically add a step of smoothing in an
effort to minimize the imprecision. Nonetheless, forcing all brains into a standard space
introduces error into efforts to predict IQ from images. Some template methods create more
error than others. Consider a neuroimaging study of male/female differences. Should the
males be standardized to a male template and the females to a female template, or should
everyone be standardized to the same template? Many neuroimaging studies use a standard
template supplied by the analysis software and other studies create a template from only
the participants in the study. No one way is always correct, but the issue presents a
problem for efforts to predict IQ. A study of 100 postmortem brains highlights the issue
(Witelson et al., 2006). Their strongest finding was that 36% of differences in verbal
ability scores was predicted by cerebral volume. However, age, sex, and handedness
influenced regression analyses between other anatomical features and different cognitive
abilities in complex ways. The authors cautioned neuroimaging researchers to take these
factors into account.

When all these issues are considered, the prediction of IQ using regression methods
becomes less straightforward. How many different regression equations may be necessary?
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This is why I am skeptical of this approach. One alternative approach may involve the use
of profile analysis. This is common in personality testing where a profile of scores on
different personality scales is used to characterize an individual. Profiles are used
extensively to interpret personality tests like the Minnesota Multiphasic Personality
Inventory (MMPI), for example. MMPI scores from the different subscales can be used in
regression analyses, but the analysis of individual profiles allows comparisons of groups
of people defined by similar profiles across the subscales to determine variables related to
the profile type. We illustrated this approach for predicting intelligence by creating profiles
of individuals based on the amount of gray matter in several PFIT areas and tried to relate
the profile to IQ score (Haier, 2009b). As shown in Figure 4.10, this demonstration did not
work so well. The two individuals shown with equally high IQ scores had different gray
matter profiles. Nonetheless, we are now trying this profile approach with the MEG data
as shown in Textbox 4.2. It is a promising approach for future study in large samples. In
fact, an encouraging report used patterns of fMRI activation (including in some PFIT areas)
to predict profiles of cognitive performance, while a small sample of 26 participants
solved deductive reasoning problems (Reverberi et al., 2012). The analyses show the
complexity of the problem, but the results illustrate my optimism that individual differences
can be a solution to the complexity and not just a nuisance.

Figure 4.10 Brain profiles of two individuals both with an IQ of 132. The graphs show the
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amount of gray matter in eight PFIT areas identified by numbered Brodmann area (L, left; R,
right). The y-axis is based on standardized gray matter scores so positive numbers show
values greater than the group mean; negative numbers show values less than the group mean.
Although the profile shapes are similar for these two individuals, one has substantially more
gray matter in the eight areas than the other (courtesy Richard Haier).

There is another potential application for predicting IQ. As we discussed in Chapter
1, the g-factor definition of intelligence is sufficient for many empirical research questions,
but what if we could define intelligence based on quantifiable brain measures instead of
psychometric scores? If brain parameters can predict IQ, then why not define IQ in terms of
brain parameters? We do not know if twice the amount of gray matter in a particular part of
the cortex, for example, makes one twice as smart. We are now able to explore redefining
intelligence in ways that incorporate neurometric assessments. In the next chapter, we will
explore this idea further when we discuss future research possibilities.

So can intelligence be predicted from neuroimaging? The short answer is, no. The
longer answer is, not yet. So far, the weight of evidence is promising but not compelling.
Look at the MEG movies of brain activation patterns for different individuals correctly
solving the same single problem (Textbox 4.2 links). How can these patterns be
understood? Is there one particular pattern of brain variables, a unitary neuro-g, which
correlates with the psychometric g-factor, or are there multiple brain patterns that imply
many neuro-g factors (Haier et al., 2009)? So far, we do not know. It is my speculation,
however, that should a cross-validated method become available to predict IQ or SAT
scores accurately from brain images, many parents of high school students will be eager to
use it and lobby institutions of higher education to do so as well. Imagine that.

Stop imagining! Just as I was finishing the final draft of this book, a remarkable new
study reports that the pattern of connectivity among brain areas based on fMRI is stable
within a person and unique enough to identify that person like a fingerprint (Finn et al.,
2015). And, these brain fingerprints predict intelligence. This study comes from a large
collaborative project that aims to map all the connections in the human brain. I have added
a more detailed description of this study at the end of Section 6.4, but at this point I am
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ready to change the answer about predicting intelligence from neuroimaging from “not yet”
to “looking good.” Very good – see more at the end of Section 6.4.

4.4 Are “Intelligence” and “Reasoning” Synonyms?
This may seem an odd question, but there is an anomaly in the research literature that
deserves some consideration at this point. There is a specialization within the field of
cognitive psychology that studies reasoning. Relational reasoning, inductive reasoning,
deductive reasoning, analogical reasoning, and other kinds of reasoning are subjects in a
variety of studies, including ones that use neuroimaging to identify brain characteristics and
networks related to reasoning. The anomaly is that more than a few of these cognitive
neuroscience studies of reasoning do not use the word intelligence and they often fail to
cite relevant neuroimaging studies of intelligence. This is problematic because tests of
reasoning are highly correlated to the g-factor (Jensen, 1998). In fact, analogy tests have
some of the highest g-loadings of any mental ability tests. Obviously, this means that
findings from intelligence studies are quite relevant to reasoning research and vice versa.

In my view, the artificial preference of “reasoning” over “intelligence” made by some
researchers has its origins in a long-held view within cognitive psychology that the word
“intelligence” is too loaded with controversy and therefore must be avoided completely. It
is not unusual to find that books in the field of cognitive psychology and cognitive
neuroscience do not include “intelligence” in the index. Language counts. No one is fooled
by substituting “reasoning” for “intelligence,” although some granting agencies may think
so.

Generally, neuroimaging studies of reasoning show network results consistent with
intelligence studies, although reasoning studies tend to differentiate more components of
information processing and accompanying subnetworks. This is an important difference and
a positive one for identifying the salient brain components for different cognitive processes
involved in intelligence factors. An excellent example is a sophisticated fMRI study that
compared groups of high school students (N = 40) defined by high and average fluid
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intelligence scores while they performed problems of different difficulty that required
geometric analogical reasoning (Preusse et al., 2011). Hypotheses were based in part on
the PFIT and on brain efficiency. The authors concluded that the high-IQ students “…
display stronger task-related recruitment of parietal brain regions on the one hand and a
negative brain activation–intelligence relationship in frontal brain regions on the other
hand … We showed that the relationship between brain activation and fluid intelligence is
not mono-directional, but rather, frontal and parietal brain regions are differentially
modulated by fluid intelligence when participants carry out the geometric analogical
reasoning task.” The integration of reasoning and intelligence findings in this work
demonstrates the richness of interpretation possibilities and helps advance the field.

Two other interesting and well-done fMRI papers investigated analogical reasoning
although neither one mentioned intelligence. They appeared in a special section on “The
neural substrate of analogical reasoning and metaphor comprehension” in the Journal of
Experimental Psychology: Learning, Memory, and Cognition (only one of the other six
papers in this section mentioned intelligence). The first example used an analogy
generation task in a sample of 23 male college students and found corresponding brain
activity in a region of the left frontal-polar cortex, as hypothesized (Green et al., 2012).
Exploratory analyses revealed more distributed activations (their figure 3), seemingly
consistent with the PFIT framework, but the discussion linked the findings to creativity, not
intelligence. The left frontal-polar cortex had also been linked to g in the lesion study we
described earlier (Glascher et al., 2010). Similarly, the second example reported a
systematic investigation of analogical mapping during metaphor comprehension in 24
Carnegie Mellon University undergraduates (males plus females combined) (Prat et al.,
2012). The findings showed activations consistent with the PFIT and brain efficiency,
although neither PFIT nor intelligence/efficiency findings from other studies were
referenced. These two studies are solid contributions to the reasoning research literature,
but they were mostly overlooked in the intelligence literature.

At minimum, in my view, reasoning research reports should include “intelligence” as
a key word for indexing, and the relationship of reasoning tests to intelligence should be
acknowledged in the discussion of results that show brain/reasoning relationships.
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Intelligence reports should do the same for reasoning. Moreover, there is a growing
recognition that the results of cognitive/imaging experiments might change dramatically
depending on whether the participants are selected for high or average IQ scores (Graham
et al., 2010; Preusse et al., 2011; Perfetti et al., 2009). New imaging technologies like
MEG may allow even more detailed analysis of information flow during
reasoning/problem-solving, especially if levels of intelligence are included in the research
design of studies. More collaboration between reasoning researchers, with cognitive
expertise, and intelligence researchers, with psychometric expertise, is the best way to
integrate these two rich empirical traditions.

4.5 Common Genes for Brain Structure and Intelligence
In Chapter 2 we discussed quantitative and molecular genetic findings related to
intelligence, but we deferred presentation of genetic studies of intelligence that included
neuroimaging. Now that neuroimaging has been introduced as it is used in studies of
intelligence, let us consider the powerful combination of genetic and neuroimaging methods
to study intelligence.

As the hunt for specific genes continues, the newest and most compelling quantitative
genetic twin studies of intelligence go beyond the simple question of whether there is a
genetic component or not. They focus on what the genetic component may do in the brain,
even without knowing any specific genes. Paul Thompson and colleagues reported the first
twin study that used MRI to assess and map the heritability of cortical gray matter volume
and relate it to intelligence (Thompson et al., 2001). They studied a small sample of 10
MZ pairs and 10 DZ pairs. The estimated genetic contribution for gray matter volume
based on similarity between twin pairs varied across brain regions, a somewhat surprising
finding at the time. The highest genetic contributions were in cortical areas of the frontal
and parietal lobes. Moreover, the correlation between IQ scores and gray matter in the
frontal lobes was statistically significant. Based on the unique combination of IQ testing
and neuroimaging in twins, this study provided unique evidence of what had been

173



suspected by many researchers: individual differences in intelligence were due, at least in
part, to the genetics of brain structure, specifically cortical gray matter volume. Despite the
small sample, the importance of this finding was underscored by its publication in the
prominent journal Nature Neuroscience. An accompanying commentary noted that the high
heritability implied that gray matter development apparently was less sensitive to
experience than might be expected (Plomin & Kosslyn, 2001).

Researchers in the Netherlands have published a compelling series of findings that
draw on larger samples of twins. We introduced some of their findings in Chapter 2
concerning shared and non-shared environment influences on intelligence. Here we will
summarize more of their important MRI findings that indicate there are common genes for
intelligence and brain structure. In 2002, they published findings about gray and white
matter heritability and intelligence, also in Nature Neuroscience (Posthuma et al., 2002).
Heritability estimates were high for both and whole-brain white matter was slightly more
heritable than whole-brain gray matter. Moreover, by comparing MZ and DZ twins, the
authors found that the correlation between gray matter volume and general intelligence was
due entirely to genetic factors. No variance was attributable to shared or non-shared
environmental factors. Later, they expanded their sample of twins to increase statistical
power and examine correlations between gray, white, and cerebellar volumes and different
intelligence factors (Posthuma et al., 2003a). All three volumes were correlated with
working memory capacity and related to a common genetic basis. Processing speed was
genetically related to white matter volume. Perceptual organization was related both
genetically and environmentally to cerebellar volume. Verbal comprehension was not
related to any of the three volumes. This group also showed that gray and white matter in
specific brain areas had a common genetic basis with IQ (Hulshoff-Pol et al., 2006).

Similar results from the Netherlands were found in 112 nine-year-old twin pairs (van
Leeuwen et al., 2008), indicating early genetic influences on intelligence in the maturing
brain. A longitudinal MRI study of adult twins examined changes in cortical thickness over
a 5-year period and found the degree of cortical change (also called plasticity) had a strong
genetic basis (Brans et al., 2010). Change was related to IQ. Higher IQ scores were
related to cortical thinning over time in the frontal lobes and to thickening in the
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parahippocampus, an important brain structure in the temporal lobes involved with
memory. The actual cortical changes were a fraction of a millimeter, but even small
amounts of brain tissue can be important. In the last chapter, we noted an earlier study
reported cortical thinning during early childhood was related to higher IQ scores (Shaw et
al., 2006). This adult twin study of IQ and brain plasticity in frontal lobes and the
parahippocampus concluded that both variables might have some common genetic basis.
One novel finding concerned the subcortical parahippocampus, unusual because most
studies have focused on the cortex. Another MRI study drawing on the Netherlands twin
data examined whether the volume of several subcortical areas was related to IQ. Only the
volume of the thalamus, an important hub of brain circuit connectivity, was related to IQ
and a common genetic component was implicated for both (Bohlken et al., 2014). Although
cortical thickness has been associated with IQ in several studies, there also is an indication
that cortical surface area may show even stronger associations with cognitive abilities and
related genes based on a study of 515 middle-aged twins that compared both thickness and
surface area measures (Vuoksimaa et al., 2015). This field is quite dynamic as new
approaches to data analysis evolve and extend previous findings with increased accuracy.
They contribute to the weight of evidence regarding genes and brain structure with mostly
consistent findings for intelligence.

White matter integrity is a particular focus of intelligence research given its
heritability and the DTI results we have noted here and in the last chapter (see also DTI
Animation 4.3 and Figure 4.2). The Thompson team used DTI in a sample of 92 Australian
twins (23 MZ and 23 DZ pairs) to quantify a measure of white matter fiber integrity called
fractional anisotropy (FA) (see Chapter 3). They mapped the heritability of FA throughout
the cortex and found the highest values in frontal and parietal lobes (bilaterally), and the
left hemisphere occipital lobe (Chiang et al., 2009). IQ scores (FSIQ, PIQ, VIQ) were
correlated to specific fiber tracts (higher integrity was associated with higher IQ) and these
correlations were also mapped. Based on cross-trait mapping, they concluded that common
genetic factors mediated the correlations between IQ and FA, suggesting a common
physiological mechanism for both. When the data are displayed as maps, the results are
compelling. Figure 4.11 shows the distribution of FA variance for genetic, shared, and non-
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shared environment. Figure 4.12 shows the cross-trait mapping for FSIQ. In 2011, the
Chiang group expanded these findings. Based on a larger sample of 705 twins and their
non-twin siblings, they examined effects of age, sex, social–economic status (SES) and IQ
on the hereditability of the FA measure (Chiang et al., 2011b). There were complex
interactions for various brain regions, but in general, genetic influence was greater in
adolescents compared to adults, greater in males than females, greater in those with high
SES, and in those with higher IQ.
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Figure 4.11 Maps of genetic and environmental influences on white matter integrity
(measured by fractional anisotropy, FA). Each row shows a different axial brain view
(horizontal slice). Red/yellow shows strongest results. The left column shows the significance
of genetic influences. Other columns show the strength of the FA measure for genetic, shared,
and non-shared environment, respectively.

Adapted with permission, Chiang et al. (2009, their figure 4).
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Figure 4.12 Overlap of common genetic factors on FA (fractional anisotropy) and FSIQ (left
column) based on cross-trait analysis of areas shown in Figure 4.11. The right column shows
statistical significance. Each row shows a different axial (horizontal slice) brain slice.

Adapted with permission, Chiang et al. (2009, their figure 7).

Schmithorst and colleagues, as noted in the previous chapter, had reported age and
sex differences in the earliest DTI studies of intelligence. A comprehensive DTI study of
1,070 children aged 6–10 years from the Netherlands supported the Schmithorst findings
and further reported FA correlations with non-verbal intelligence and with visuospatial
ability (Muetzel et al., 2015). A three-year longitudinal study of adolescent twins and their
siblings used DTI and graph analysis to map the heritability of white matter fiber integrity
(Koenis et al., 2015). The efficiency of white matter networks, assessed with FA, was
highly heritable, with genetic influences accounting for as much as 74% of variance.
Moreover, there was a provocative finding related to intelligence. For the subgroup of
individuals who showed a change in IQ scores over the three-year period, individual
increases in scores were correlated to increases in local network efficiency in the frontal
and temporal lobe areas. These findings are shown in Figure 4.13. The authors speculate
that finding ways to promote the efficiency of white matter networks may optimize teenage
cognitive performance. Most parents of teenagers will try anything. So will most teenagers.

Figure 4.13 Correlations between three-year change in IQ score and change in local brain
efficiency measured with FA. The largest purple spheres show the strongest IQ/efficiency
change correlations.
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Adapted with permission, Koenis et al. (2015).

There are now so many studies in this area that it is easy to be confused. Here’s the
short story. Genes influence brain networks and intelligence. Until specific genes and their
expression are identified, we cannot distinguish directly whether genes influence brain
morphometry, which then influences intelligence, or whether genes influence intelligence,
which then influences brain morphometry. It is also possible that many genes influence both
brain morphometry and intelligence (pleiotropy) and only some of them are common to
both.

As you see so far in this chapter, the quantitative analysis of neuroimaging has become
quite sophisticated, with complex multivariate statistical methods. The quantitative
analysis of genetic data is also quite complex. Teams of researchers that include
mathematicians in addition to imaging experts and genetic experts now carry out this
research. Intelligence is increasingly a focus of interest and experts in intelligence research
are becoming part of such teams. Summarizing results in this chapter from the combination
of the neuroimaging and the quantitative genetic domains without oversimplifying is a
challenge, but at minimum, the progress and excitement in the field should be clear to all
readers. We are light years past earlier controversies about whether there is a role for
genetics for understanding individual differences in intelligence. The challenge in the next
section is explaining the complexity of neuroimaging analysis combined with the even
greater complexity of molecular genetic analysis. The details may be difficult and the gene
nomenclature of letter/number combinations seems irrational. But here’s the main point.
The results are exciting and speak to the optimism that the hunt for intelligence genes is
gaining ground.

4.6 Brain Imaging and Molecular Genetics
There are now many studies that combine neuroimaging and genetic analyses, so we must
choose which ones best illustrate progress. Let’s continue with more in the sequence of
papers by Chiang and colleagues. In a DTI analysis of 455 twins and their non-twin
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siblings, they found an association between white matter integrity and the ValMet
polymorphism related to BDNF, the brain growth factor involved in normal neuron
function. They suggested that BDNF might be related to some intellectual performance
indirectly by modulating white matter development in some fiber tracts (Chiang et al.,
2011a). In another paper, this group pursued the idea that the genetics of white matter brain
wiring is fundamental to intelligence (Chiang et al., 2012). They focused their imaging
efforts in a novel way to help identify specific genes related to brain connectivity and
intelligence. As we noted earlier in this chapter, in 2009 they had reported that there were
genes in common for the integrity of white matter tracts and intelligence based on cross-
trait maps of the respective heritability of each. They expanded this approach using DTI
and DNA data from a sample of 472 twins and their non-twin siblings. The basic idea was
to use statistical methods of clustering many variables based on their similarity. First,
thousands of points within white matter fibers were clustered to find brain systems with
common genetic determination. The white matter measure was FA, as described
previously. Then they used DNA in a genome-wide scan and network analyses to identify a
network of genes that was related to white matter integrity in major tracts. FA in some hubs
in the white matter network was related to IQ scores (their figure 9). The results of this
analysis are complex and include 14 specific genes listed in their table 5, along with what
was known about each one’s function in 2012. We include their table here (Table 4.1) to
illustrate how intelligence potentially can be tied to brain function on the molecular level,
although none of the entries in the table have been replicated. This kind of study illustrates
both the complexity of understanding how genes function and a major neuroscience
direction for future intelligence research. There is a long road between observations like
these and making any practical use of them. However, if replicated, identifying genes
related to intelligence and how they function can point to potential mechanisms for
enhancing intellectual performance if the cascade of genetic influences on functional
molecular events can be manipulated at the right stage of brain development. This includes
manipulating more general genetic effects on brain structures like white matter integrity that
may influence intelligence indirectly (Kohannim et al., 2012a, 2012b). We will discuss
more about enhancement in Chapter 5.
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Table 4.1 Genes possibly related to intelligence, their chromosome number, and their suspected
function. Reprinted with permission from Chiang et al. (2012, their table 5).

ACNA1C Calcium channel, voltage-
dependent, L  type, alpha 1C
subunit

12 Voltage-sensitive calcium channels

CTBP2 C-terminal binding protein 2 10 Encoding a major component of synaptic
ribbons

DDHD1 DDHD domain containing 1 14 A probable phospholipase that
hydrolyzes phosphatidic acid

DMD Dystrophin X Anchoring the extracellular matrix to the
cytoskeleton

FAIM2 Fas apoptotic inhibitory molecule
2

12 Protecting cells uniquely from Fas-
induced apoptosis

FHAD1a Forkhead-associated (FHA)
phosphopeptide binding domain
1

1

GRM8 Glutamate receptor, metabotropic
8

1 Encoding receptors for glutamate

HADH Hydroxyacyl-CoA
dehydrogenase

4 Mitochondrial beta-oxidation of short-
chain fatty acids

KAZN Kazrin 1 Cell adhesion and cytoskeletal
organization

LPIN2 Lipin 2 18 Controlling the metabolism of fatty acids

OPCML Opioid-binding protein/cell
adhesion molecule-like

11 Binding opioids in the presence of acidic
lipids; probably involved in cell contact

SCN3A Sodium channel, voltage-gated,
type III, alpha subunit

2 Mediating the voltage-dependent sodium
ion permeability of excitable membranes

SYN3 Synapsin III 22 May be involved in the regulation of
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neurotransmitter release and
synaptogenesis

SYT17a Synaptotagmin XVII 16

Information in this table is derived from the NCBI gene database
(www.ncbi.nlm.nih.gov/gene) and the GeneCards database from the Weizmann Institute of

Science (www.genecards.org).

a Information about the function of this gene is not available in either of the two databases.

In the rapid evolution of molecular genetic studies, the next major advance is the
aggregation of huge samples in worldwide multicenter collaborations formed to investigate
brain diseases and normal cognition. We noted some of these in Section 2.6. These groups,
and the resulting publications, are a triumph of logistical, political, and scientific
achievement. One of the largest is named ENIGMA (Enhancing Neuro Imaging Genetics
through Meta-Analysis). One of their papers included a finding that related individual
differences in intelligence to a specific variant in a gene called HMGA2 that is related to
brain size (Stein et al., 2012). Their discovery and replication samples included thousands
of participants who had completed neuroimaging in addition to cognitive and DNA testing.
As in other studies, the finding explained only a tiny fraction of variance in intelligence, but
it illustrates a definitive victory for finding a gene needle in a haystack of DNA.

Another group used part of the ENIGMA data set and data from the European Union
IMAGEN consortium to investigate gene associations with cortical thickness assessed with
MRI and intelligence in 1,583 adolescents aged 14 years old (Desrivieres et al., 2015).
Measures of cortical thickness (CT) have some technical advantages over VBM measures
of gray matter volume and CT has been associated with intelligence in large representative
samples of children and adolescents (Karama et al., 2009, 2011). This IMAGEN report
started by examining the relationship between CT and nearly 55,000 SNPs. One variant
(rs7171755) was associated with thinner cortex in the left frontal and temporal lobes, and
in a small subsample, with WAIS scores. They further found that this variant affected
expression of the NPTN gene, implicated in the production of a glycoprotein required for
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synaptic health. This finding illustrates how synaptic events may influence brain maturation
of CT, which in turn may influence intelligence. The cascade of intervening steps surely is
complex, but it also is a finite problem to solve. The methodology and complexity of
analyses that led to these findings require an advanced technical background. But even this
summary, along with the studies summarized in Section 2.6, illustrates how sophisticated
the hunt for specific genes has become.

All these studies demonstrate that identifying the many genes with small effects
thought to be involved in intelligence is not an insurmountable challenge. Once there is
more progress, epigenetic effects can be investigated for individual genes, but as of yet,
there are not enough data to test specific epigenetic hypotheses. At minimum, these very
large samples showing DNA associations with measures of intelligence should put to rest
any doubts about a genetic role for intelligence. Recall our three laws once again: no story
about the brain is simple; no one study is definitive; and it takes many years to sort out
conflicting and inconsistent findings and establish a weight of evidence. The studies
summarized in this section illustrate the rapid pace of progress for understanding the
complexities surrounding the genetic aspects of intelligence.

We opened Chapter 3 referring to our 1988 PET report with a question, “Where in the
brain is intelligence?” Nearly 30 years later, neuroimaging is providing informative data
on this question, and the question itself is becoming more refined. Genetic studies in
combination with neuroimaging are beginning to suggest specific brain mechanisms
involved in individual differences in intelligence. Neuroscience research aimed at
understanding intelligence has a firm basis and is progressing at a fast pace based on
evolving neuroimaging and genetic technologies and methods. There is now a context for
thinking about how brain parameters might be used to predict or even define intelligence.
There is also a developing empirical context for thinking about how brain mechanisms
might be manipulated to enhance intelligence and these are the subjects of the next chapter.

Chapter 4 Summary
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Review Questions
1. What is the strongest evidence that intelligence depends on multiple areas
distributed throughout the brain?

2. What are different ways that brain efficiency can be measured?

3. Which brain measure shows the strongest correlation to IQ scores and why is this
not sufficient for predicting IQ from brain images?

4. Why are studies of analogical reasoning related to studies of intelligence?

New neuroimaging methods, especially graph analysis, have revealed structural
and functional brain networks related to intelligence test scores.

Overall, the brain networks identified in many intelligence studies are consistent
with the PFIT framework with possible modifications for consideration.

Although many studies find correlations between brain measures and IQ scores,
predicting intelligence from brain images is not yet practical for several reasons,
but there is exciting progress.

In general, neuroimaging studies of reasoning report results that are consistent with
studies of intelligence, although many studies of reasoning avoid discussing any
overlap. More collaboration between reasoning researchers, with cognitive
expertise, and intelligence researchers, with psychometric expertise, is the best
way to integrate these two rich empirical traditions.

The combination of quantitative genetics and neuroimaging reveals that individual
differences in brain measures and intelligence have genes in common.

The combination of molecular genetics and neuroimaging has identified specific
genes and related brain mechanisms that may influence individual differences in
intelligence.
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5. Describe how the combination of quantitative genetics and neuroimaging has
advanced intelligence research.

6. How has the combination of molecular genetics and neuroimaging advanced the
search for intelligence genes?

Further Reading
“Where smart brains are different: A quantitative meta-analysis of functional and
structural brain imaging studies on intelligence” (Basten et al., 2015). This is the most
recent comprehensive, technical review of neuroimaging studies of intelligence.

“What Does a Smart Brain Look Like?” (Haier, 2009b). Written for a lay audience,
this is an overview of the PFIT of intelligence and what imaging studies may mean for
education.

“Genetics and intelligence differences: five special findings” (Plomin & Deary,
2015). Latest review of key genetic findings related to intelligence and what they
mean.

“Rich-club organization of the human connectome” (van den Heuvel & Sporns, 2011).
This is a technical article for readers wanting more detail on rich clubs and brain
connections revealed by graph analysis.
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Chapter Five

The Holy Grail: Can Neuroscience Boost
Intelligence?

◈

We who have worked on this project at Beekman University have the satisfaction of
knowing we have taken one of nature’s mistakes and by our new techniques created a
superior human being.

(Professor Nemur’s fictional character delivers this remark during his presentation at a
psychology conference describing how he increased the IQ of a mentally retarded man

to super genius level. Flowers for Algernon, Keyes, 1966)

I know Kung Fu.

(Keanu Reeves as Neo in The Matrix sci-fi movie several seconds after a learning
program on fighting is uploaded directly into his brain, 1999)

A tablet a day and I was limitless … I wasn’t high. I wasn’t wired. Just clear. I knew what I
needed to do and how to do it … I read the Elegant Universe by Brian Greene in 45
minutes, and I understood all of it!

(Two characters in the movie Limitless after taking an IQ pill, 2011)

Learning Objectives
Why is the “weight of evidence” concept especially important for claims about
increasing intelligence?
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Introduction
Why would the Governor of Georgia ask the state legislature to buy a classical music CD
for every newborn infant in the state? Why learn to memorize longer and longer strings of
random numbers? Why do school systems with limited funding purchase expensive
computer games for children to play during class? What exactly are the best 5 or 7 or 10
tips for increasing your IQ by 17–40 points?

This chapter is about sense and nonsense regarding the possibility of increasing
intelligence. The good news is that neuroscience may someday offer the possibility of
increasing intelligence based on an understanding of the brain mechanisms involved,
including mechanisms that can be influenced by a variety of means. The bad news is that
the claims that we already know how to do this are naïve, wrong, or misrepresentations.
These claims are not just on the Internet or in books written by authors with no particular
scientific expertise. Some are found in research reports published after peer review in
highly respected scientific journals. How could this happen?

Higher intelligence is better than lower intelligence; no one seriously disagrees. All
intelligence research speaks to the goal of enhancement, either directly or indirectly. This
is a worthy goal; just ask the parents of a child with low IQ or a cognitive disability. It is
also a primary goal of all parents for their children whether articulated so bluntly or not.
There may be some people who do not care to be smarter, but I do not know any of them.

What are three examples of research findings that claimed sizeable increases in IQ
which proved incorrect?

Explain the concept of “transfer” in the context of studies purporting to show IQ
increases.

What are five methods of brain stimulation that may influence cognition whether or
not they increase IQ?

What are six ethical issues concerning the use of drugs for cognitive enhancement?
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Achieving the goal of increasing intelligence will require an understanding of what
intelligence factors are, how best to measure them, how they develop, how they relate to
specific brain mechanisms, and how those mechanisms may be malleable. There is a long
history of trying to increase intelligence. I cannot document it, but I suspect this was a
subject of interest to the alchemists, ancient builders, and even earlier mystics. So far as
modern scientific efforts, there is no appreciable success when success is defined by
independent replication of empirical research results that last over time based on
sophisticated assessments of intelligence in well-designed studies.

In Chapter 1, we noted the critical measurement problem that IQ scores are not a ratio
scale, making change scores before and after an intervention nearly impossible to interpret.
To repeat, IQ points are not measures like inches or pounds. This key problem, at the heart
of claims about increasing intelligence, is all but ignored in the studies we will review in
this chapter. In Chapter 2 we reviewed the failures of earnest compensatory and early
childhood education programs to boost IQ. These programs have other positive results, but
the weight of evidence does not support any claims concerning increased intelligence as
assessed with IQ or other psychometric tests. One hypothesis is that this failure may be due
in large part to the genetic influences on intelligence demonstrated in the many studies we
have discussed in Chapters 2 and 4. Nonetheless, apparently undaunted by past failures and
inherent measurement problems, or ignorant of them, there are newer reports in the
scientific literature that claim to raise IQ scores dramatically in children and adults. We
will examine three of these specific claims under the implied heading, “Don’t let this
happen to you.” These claims are based on the use of classical music, memory training, and
computer games to raise IQ. By showing how such claims should be evaluated skeptically I
hope to inoculate you against future declarations of alleged breakthrough or landmark
results. Following these cautionary case studies, we then examine equally dubious claims
about drugs that increase IQ. After that, we move on to the exciting possibility of
increasing intelligence by neuroscience means that test the boundary between science and
science fiction.
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5.1 Case 1: Mozart and the Brain
Mozart died in 1791, but 202 years later, Mozart became the focus of a craze. It started
with a brief letter published in the respected scientific journal Nature. The letter claimed
that listening to a particular Mozart sonata for 10 minutes temporarily increased IQ by 8
points (Rauscher et al., 1993). Eight points is about half a standard deviation, quite a large
effect for a mere 10-minute intervention. Intelligence researchers recognized immediately
that this sounded too good to be true. It was not true but, amazingly, it took six years to
dampen popular enthusiasm after a critical review (Chabris, 1999). Another 11 years were
needed to finally put this claim to rest with the publication of a comprehensive review
article titled, “Mozart effect – Shmozart effect: A meta-analysis” (Pietschnig et al., 2010).
The title speaks for itself. Over the 17 years this popular myth endured, an uncountable
number of Mozart and other classical music CDs were purchased with the expectation of
increasing IQ by just listening. School music programs gained new support and music
lessons gained a new rationale. Enumerable high school science fair projects investigated
various aspects of the “Mozart Effect,” tested mostly on friends and family. In fairness,
these were hardly terrible consequences of a wrong idea. Possibly with the exception of a
few accordion lessons, no one was harmed, but no one’s IQ increased either.

The original 1993 report was based on 36 college students who were tested on
measures of abstract reasoning after a 10-minute exposure to three different conditions. The
reasoning measures were three different spatial reasoning tests from the Stanford–Binet
intelligence test battery. The three experimental conditions were listening to Mozart’s
Sonata for Two Pianos in D major, listening to a relaxation tape, and listening to silence (I
know you cannot listen to silence, but the sentence requires parallel construction). After
each condition, one of the three tests was given. For the Mozart condition, the standard test
score was 57.56. This was statistically higher than 54.61 for the relaxation condition and
54.00 for the silence condition. These standard test scores were “translated” to spatial IQ
scores of 119, 111, and 110, respectively. These findings are shown in Figure 5.1. The
authors stated that, “Thus, the IQs of subjects participating in the music condition were 8–9
points above their IQ scores in the other conditions.” They also noted the enhancing effect
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only lasted for the 10–15 minutes of testing. They encouraged additional research on the
duration of the time between listening and testing, on variations in the time of listening, on
effects on other measures of intelligence and memory, on other compositions and styles of
music, and on possible differences between musicians and non-musicians. And so the
Mozart Effect for increasing IQ was born, along with countless science fair projects.

Figure 5.1 The bar graphs that launched the Mozart Effect. Spatial intelligence test scores
and IQ equivalents (y-axis) are shown after listening for 10 minutes to Mozart, a relaxation
tape, or silence. A different test and different participants were used for each condition.

Reprinted with permission, Rauscher et al. (1993).

Whoever the peer reviewers were for Nature, they apparently were unaware that
treating the three different reasoning tests as equal measures of abstract reasoning, based
on the fact they were correlated to each other, was a terrible psychometric procedure. They
also failed to require information about the participants with respect to IQ or musical
experience and ability. And most distressing, the translation of individual test scores to
spatial IQ scores and the claim of an eight-point increase was psychometrically naïve, as
we have discussed in Chapter 1. A case could be made that this report of a single
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experiment in a small sample with an extraordinary finding was not based on extraordinary
evidence and therefore was not ready for publication, especially in Nature.

Although the authors focused on spatial IQ, the resulting media coverage was not so
specific and the Mozart Effect was widely understood to enhance IQ in general. In addition
to the media coverage, some intelligence researchers at the time seized on any findings that
suggested IQ was highly malleable as evidence against a strong role for genetic influences
on intelligence. The Nature report also spoke to a desire for an easy way to acquire greater
intelligence at a relatively small cost and no risk. According to an article in the New York
Times (January 15, 1998), Governor Zell Miller of Georgia proposed spending $105,000 a
year from the state budget to purchase classical music tapes or CDs for the approximately
100,000 children born in Georgia each year (iPods were not yet a reality). During his
budget address to lawmakers, the Governor played part of Beethoven’s Ode to Joy and
asked, “Now don’t you feel smarter already?” He also remarked that from his experience
growing up, “Musicians were folks that not only could play a fiddle but they also were
good mechanics.” The article also quoted a skeptic: ‘‘I’m familiar with those findings and,
at the moment,’’ said Sandra Trehaub, a professor of psychology at the University of
Toronto who studies infants’ perception of music, ‘‘I don’t think we have the evidence to
make that statement unambiguously. If we really think you can swallow a pill, buy a record
or a particular book or have any one experience and that that’s going to be the thing that
gets you into Harvard or Princeton, then that’s an illusion.’’ Notably, she did not mention
Yale.

Independent replication of findings is a cornerstone of the scientific method.
Additional research was catching up on Mozart. Five years after the original publication,
two critical letters and a response from the original paper’s primary author appeared in
Nature (Chabris, 1999). The first critical letter from Dr. Christopher Chabris was a meta-
analysis of 16 studies of the Mozart Effect that included 714 participants and several
different reasoning tests. This kind of analysis combines all the results across studies. The
overall Mozart Effect was tiny for general intelligence and a bit larger for spatial–temporal
tests. He too converted individual test scores to IQ equivalents and found about 1.4 points
for general intelligence and about 2.1 points for spatial–temporal reasoning. These
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conversions are always suspect, as we have discussed, but they serve a narrow purpose of
showing how small the effect looks because such small fluctuations are likely due to
standard measurement errors found in all mental tests. Chabris concluded that these small
effects were likely due to the effect of positive mood invoked by an enjoyable experience
like listening to Mozart. In his formulation, enjoyable experience increases arousal,
especially in the right hemisphere, which processes spatial–temporal information. A
second letter in this citation from Dr. Kenneth Steele and colleagues reported a complete
failure to replicate the findings from the original 1993 experiment. Some of their results
indicated poorer test performance after listening to Mozart. In response, Dr. Rauscher
noted that the original report did not claim an increase in intelligence. She contended that
the claim was limited to spatial–temporal tasks involving mental imagery and temporal
ordering. She pointed out that the smaller number of studies in Chabris’ meta-analysis that
used only tests of spatial–temporal reasoning did show an increase after Mozart listening,
and she critiqued his enjoyment arousal hypothesis. She also critiqued the studies from the
Steele group because they were not exact replications. She acknowledged that there were
inconsistent results from independent studies and concluded, “Because some people cannot
get bread to rise does not negate the existence of a ‘yeast effect’.”

Dr. Rauscher’s key clarification regarding the claim that increased general
intelligence was an erroneous inference from the original report is correct, but confusion
arose in part from the labeling of their figure axis (reproduced here as Figure 5.1) of “IQ
equivalents.” Moreover, the University press release that accompanied the original Nature
publication contributed to the confusion. My copy of that release (embargoed until 6 PM
EDT, October 13, 1993) begins with the finding about “spatial intelligence,” but then
quotes the researchers as saying, “Thus, the IQs of subjects participating in the music
condition were 8–9 points above their scores in the other two conditions.” The distinction
between spatial and general intelligence could have been clearer. After the 1999 exchange
in Nature, controversy about a Mozart Effect on any mental ability tests persisted. More
studies were published with conflicting and inconsistent results.

Another, larger meta-analysis was published in 2010 and this one is widely regarded
as the final blow (Pietschnig et al., 2010). This comprehensive analysis included nearly 40
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studies and over 3,000 participants. An important feature of this analysis was the inclusion
of unpublished studies because studies with negative results often fail to be published. This
can bias the literature toward positive studies. Another feature was separate analyses for
studies done by the original authors of the 1993 report for comparison with studies done by
other researchers. Overall, this meta-analysis showed a small effect for Mozart on spatial
task performance and a nearly identical small effect for other music conditions. Including
the unpublished studies corrected this result to an even smaller effect. The results from
only those studies done by the original researchers generally showed greater effects than
those from studies by other investigators, indicating a confounding influence of lab
affiliation. The meta-analysis authors concluded that, “On the whole, there is little left that
would support the notion of a specific enhancement of spatial task performance through
exposure to the Mozart sonata KV 448.” The title of this meta-analysis paper said it all,
“Mozart effect – Shmozart effect.”

Whether the newborns of Georgia got their CDs or not, it is clear that the public
understanding of the 1993 Nature report went far beyond what the study’s authors intended.
The original study had been conducted at my university under the auspices of the
prestigious Center for Learning and Memory, and I knew the senior author, Dr. Gordon
Shaw. Although I was unaware of the study before it was published, I subsequently had a
number of affable conversations with him. A physicist by training, he was interested in the
brain and problem-solving and, before he passed away, he was developing a theory
relating the complexity of music composition to cognition. He regretted the widespread
misunderstandings about the original finding and general intelligence, but he remained
convinced that music and cognition were linked in a positive way. Considerable research
supports this view and his work with Dr. Rauscher helped stimulate interest in this
important area. Whatever the many rich benefits of music exposure and training are,
increased intelligence, general or spatial, is not one of them. The Mozart Effect should be a
cautionary tale for any researcher who claims dramatic increases in IQ after an
intervention. Unfortunately, the lessons have not been taken to heart, and such claims
continue.

194



5.2 Case 2: You Must Remember This, and This, and
This …

Another extraordinary claim about increasing intelligence was published as the cover
article in the Proceedings of the National Academy of Sciences (PNAS) (Jaeggi et al.,
2008). Mozart was not mentioned, but the report claimed that training on a difficult task of
working memory resulted in a “dramatic” improvement on a test of fluid intelligence. As
noted in Chapter 1, fluid intelligence (often expressed with the notation Gf) is highly
correlated to the g-factor and many intelligence researchers regard them as synonymous
terms. Moreover, this surprising finding was augmented by two important observations: the
effect increased with more training, suggesting a kind of dose response, and the effect
transferred from the memory training task to an “entirely different” test of abstract
reasoning. The authors concluded, “Thus, in contrast to many previous studies, we
conclude that it is possible to improve Gf without practicing the testing tasks themselves,
opening a wide range of applications.”

This pronouncement was a bombshell. It received wide media coverage and public
attention. Like the original Mozart report, this report also was seized upon by researchers
intent on showing that general intelligence could not be something fixed or genetic because
it could be increased dramatically with a memory training exercise. For most experienced
intelligence researchers, however, this claim immediately was reminiscent of the 1989
cold fusion claim of an astonishing breakthrough thought to be impossible by most
physicists. The cold fusion result turned out to be a heat measurement error made by
eminent researchers in one field who were inexperienced in the measurement technicalities
required in another field. Could measurement error of fluid intelligence possibly be a
factor in the PNAS report? You know where this is going.

The rationale for the PNAS memory training study was simple. Memory is a well-
established component of intelligence, so improving memory by training could improve
intelligence. Ignoring that both could be related to a third underlying factor, a critical
component for testing this simple train of thought would be that the training task must be
independent of the intelligence test. In other words, the memory training effect should
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transfer to a completely different test that did not require memory. For example, training a
person to memorize the order of cards in a deck might transfer to their ability to remember
a sequence of 52 random numbers because both are similar tests of memory. It would be
more impressive if training to memorize cards resulted in better scores on a test of
analogies (analogy tests usually have high g-loadings). It would be even more impressive
if four weeks of training to memorize cards resulted in twice the improvement on analogy
tests than did two weeks of card training.

For the PNAS memory training experiment, 35 university students were randomly
assigned to one of four training programs (one student dropped out for a total of 34
participants) and 35 other students were assigned to four control groups that received no
training. Of the 70 students, the male/female ratio was about 50–50. Thus, each group had a
very small number of about eight male or female participants. Each participant was tested
before and after training (or the same control intervals) on either the Raven’s Advanced
Progressive Matrices (RAPM, discussed in previous chapters and used only for one
training group) or the similar Bochumer Matrizen-Test (BOMAT) of abstract reasoning
used for three training groups. There was no explanation for using two tests instead of one.
Each test had two forms, one for the pre-test and one for the post-test. The four training
programs differed on the number of training sessions between the pre- and post-testing: 8,
12, 17, and 19 days. These same intervals defined pre- and post-testing for the four control
groups who received no training.

Memory training for all four groups used a well-known task in cognitive psychology.
It’s called the n-back test, where n stands for any integer. The idea is that a long series of
random numbers or letters or other elements are presented one at a time on a computer
screen to the participant. In the 1-back version with letters, for example, whenever any
letter is repeated twice in a row, that is the same letter is 1 back in the series, the
participant presses a button. This is quite easy because it requires keeping only one letter
in working memory until the next letter appears. If the next letter is not the same, no button
is pressed and the new letter must now be remembered until the next letter appears. In the
2-back version, the button is pressed if the same letter was presented 2 letters before. This
requires keeping two letters in working memory. The 3-back version is more difficult and
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4-, 5-, 6-back become considerably more difficult. Note that the letters (or numbers or
whatever elements are used) can be presented visually or through earphones. For this
study, participants were trained to do both a visual and an auditory version simultaneously.
I’m not kidding. To understate the obvious, this is quite difficult and it is surprising that
only one person dropped out. A more detailed description of the task and a link to an
animation showing how it works is in Textbox 5.1.

Textbox 5.1:  The n-back test

The dual n-back test is illustrated in Figure 5.2 (Jaeggi et al., 2008). The 2-back
version is shown where spatial positions and letters are the elements used. The
person presses a button whenever the same element is repeated with one
intervening element. The spatial position elements are presented one at a time
visually and the letters are presented one at a time through headphones. In the
dual version, both the spatial and the letter elements are presented
simultaneously for 500 milliseconds each with 2,500 milliseconds between
elements. This is illustrated in the top row of Figure 5.2. It shows a sequence of
spatial positions (white squares) in elements presented one at a time starting on the
left. The middle element should trigger a button press because it is a repeat of the
identical element 2-back (the element on the left end of the row). The bottom row
shows the letter version. The middle element “C” should trigger a button press
because it is an identical repeat of the “C” 2-back (at the very left end of the row).
The “C” at the right end of the row is also a trigger because it is an identical repeat
of the middle “C” 2-back. Once a person learns to do this difficult memory task
better than chance, they move on to the harder 3-back version, which in turn
progresses to 4-back and 5-back versions, and so on until performance cannot be
learned better than chance. This all is a bit tricky to understand the first time you
read it, but once you get how the n-back works, you’ll appreciate how difficult the
training becomes. Remember that the claim is that training on this task increases
your fluid intelligence (without giving you headaches). Animated demonstrations of
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the 2-back test can be found on this book’s website
(www.cambridge.org/us/academic/subjects/psychology/cognition/neuroscience-
intelligence).

Figure 5.2  Illustration of the dual n-back memory task. This is a 2-back example. Two
versions are run simultaneously. The top row shows the visual–spatial version. The
location of the white box in each presentation must be remembered. If the same location
is repeated after one intervening presentation, a button is pressed because the same
location is repeated 2 presentations back. The bottom row shows the auditory letter
version. Each letter presentation is made through earphones. When the same letter is
repeated 2-back, a button is pressed. After training on each version separately, both
versions are presented simultaneously and people practice until they can perform 3-
back, 4-back or more better than chance. In this illustration the order of presentation is
from left to right, one presentation at a time.

Reprinted with permission, Jaeggi et al. (2008). See also Animations 5.1 and 5.2 on
this book’s website

(www.cambridge.org/us/academic/subjects/psychology/cognition/neuroscience-
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intelligence).

The BOMAT test of abstract reasoning is based on visual analogies and is
similar to the Raven’s test described in Chapter 1. In the BOMAT, a 5 × 3 matrix
has a figure in each cell except one cell is blank. The missing figure must be
determined from the logical rules derived from other components (shape, color,
pattern, number, spatial arrangement of the elements of the figure). The person
taking the test must recognize the structure of the matrix and select from six
possible answers the one that allows the logical completion of the matrix. The
Raven’s test used a 3 × 3 matrix, so fewer elements are required to be retained in
working memory while solving each item compared to the 5 × 3 matrix of
elements used in the BOMAT. This is why the BOMAT is more of a working
memory test and why it is similar to the n-back. This similarity undercuts the
claim that training on the n-back transfers to a completely different test of fluid
intelligence (Moody, 2009).

The results of training are shown in Figure 5.3. They appeared clear-cut to the
authors, but to most intelligence researchers their meaning was far less clear. All the
participants in the training sessions were combined into one group (N = 34) and all the
controls into another group (N = 35). Average n-back difficulty increased for the training
group from about 3-back at the start to about 5-back at the end. The groups did not differ on
the pre-test of abstract reasoning. Both groups showed average increased abstract
reasoning scores at post-test. This was about a 1-point increase for the control group and
about 2 points for the training group. Note these are not IQ points; they are the number of
correctly answered items on the test. This small change was statistically significant and
described as “substantially superior.” When the intelligence test score increase was
graphed against days of practice, the group with 8 days showed less than a 1-point increase
whereas the group with 19 days of practice showed nearly a 5-point gain.
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Figure 5.3 The line graphs that claimed a “landmark” result for memory training. Panel (a)
shows pre and post n-back training fluid intelligence test scores (y-axis) for training and
control groups. Panel (b) shows the gain on intelligence test scores (y-axis) plotted against the
number of training days.

Reprinted with permission, Jaeggi et al. (2008).

The authors boldly concluded, “The finding that cognitive training can improve Gf
[fluid intelligence] is a landmark result because this form of intelligence has been claimed
to be largely immutable. Instead of regarding Gf as an immutable trait, our data provide
evidence that, with appropriate training, there is potential to improve Gf. Moreover, we
provide evidence that the amount of Gf gain critically depends on the amount of training
time. Considering the fundamental importance of Gf in everyday life and its predictive
power for a large variety of intellectual tasks and professional success, we believe that our
findings may be highly relevant to applications in education.” I do not know whether they
contacted the Governor of Georgia, or any other state, with this newsflash, but they ignited
a memory training frenzy.

The first devastating critique came quickly (Moody, 2009). Dr. Moody pointed out
several serious flaws in the PNAS cover article that rendered the results uninterpretable.
The most important was that the BOMAT used to assess fluid reasoning was administered
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in a flawed manner. The items are arranged from easy ones to very difficult ones.
Normally, the test-taker is given 45 minutes to complete as many of the 29 problems as
possible. This important fact was omitted from the PNAS report. The PNAS study allowed
only 10 minutes to complete the test, so any improvement was limited to relatively easy
items because the time limit precluded getting to the harder items that are most predictive
of Gf, especially in a sample of college students with restricted range. This non-standard
administration of the test transformed the BOMAT from a test of fluid intelligence to a test
of easy visual analogies with, at best, an unknown relationship to fluid intelligence.
Interestingly, the one training group that was tested on the RAPM showed no improvement.
A crucial difference between the two tests is that the BOMAT requires the test-taker to
keep 14 visual figures in working memory to solve each problem, whereas the RAPM
requires holding only eight in working memory (one element in each matrix is blank until
the problem is solved). Thus, performance on the BOMAT is more heavily dependent on
working memory. This is the exact nature of the n-back task, especially as the version used
for training included the spatial position of matrix elements quite similar to the format used
in the BOMAT problems (see Textbox 5.1). As noted by Moody, “Rather than being
‘entirely different’ from the test items on the BOMAT, this [n-back] task seems well-
designed to facilitate performance on that test.” When this flaw is considered along with
the small samples and issues surrounding small change scores of single tests, it is hard to
understand the peer review and editorial processes that led to a featured publication in
PNAS which claimed an extraordinary finding that was contrary to the weight of evidence
from hundreds of previous reports.

Subsequent n-back/intelligence research has progressed in stages similar to those in
the Mozart Effect story. Dr. Jaeggi and colleagues published a series of papers addressing
some of the key design flaws of the original study and reported results consistent with their
original report (Jaeggi et al., 2010, 2011, 2014), as did some other researchers. Far more
studies by other investigators failed to replicate the original claim of increased Gf,
especially when they used more sophisticated research designs that included larger
samples and multiple cognitive tests to estimate Gf as a latent variable along with other
intelligence factors, to determine whether improved n-back performance transferred to
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increased intelligence scores (Chooi & Thompson, 2012; Colom et al., 2013; Harrison et
al., 2013; Melby-Lervag & Hulme, 2013; Redick et al., 2013; Shipstead et al., 2012;
Thompson et al., 2013; Tidwell et al., 2014; von Bastian & Oberauer, 2013, 2014).

Undaunted by these independent failures to replicate, Jaeggi’s group published their
own meta-analysis, including the negative studies. Their analysis supported a 4-point IQ
increase due to n-back training (Au et al., 2015). They ignored warnings about IQ
conversions and change scores, and they failed to note that 4 points is the estimated
standard error of IQ tests. Other researchers quickly reanalyzed this meta-analysis (Bogg &
Lasecki, 2015). They concluded the small effect reported by Au and colleagues likely
resulted from the small sample sizes of most studies included in the meta-analysis because
they were statistically underpowered and biased toward a spurious result. Therefore, they
cautioned that the small training effects on Gf could be artifacts. Another comprehensive
independent meta-analysis of 47 studies concluded that there were no sustainable transfer
effects for memory training (Schwaighofer et al., 2015), although the authors encouraged
more research with better study designs. Finally, there also is some evidence that small
apparent increases in test scores after memory training can be due to improved task
strategies rather than to increased intelligence (Hayes et al., 2015).

Eight years after the initial PNAS report, the weight of evidence from independent
studies finds essentially no transfer effects from memory training to intelligence scores that
are truly independent of the training method (Redick, 2015). At this stage, most positive
results about n-back training and intelligence come from Jaeggi and her colleagues. Most
researchers remain highly skeptical and have moved on to other projects despite some
earlier enthusiasm for the possibility of increasing Gf with memory training (Sternberg,
2008). The Shmozart paper effectively ended most research on the Mozart Effect. It is not
yet clear if the compelling reports by Bogg and Lasecki and by Redick will have the same
impact on the n-back, shman-back intelligence story.

An interesting coincidence is that Jaeggi relocated to my university a few years ago to
the School of Education and we have become friends despite a complete disagreement
about whether memory training increases intelligence. Based on the history of similar
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claims in the past, I suspect memory training research will become less directed at
improving intelligence and more directed at other cognitive and education variables.

In fact, there is growing interest in broader cognitive training using computer games to
increase school achievement, as we see in the next case.

5.3 Case 3: Can Computer Games for Children Raise
IQ?

There is a large research literature and considerable controversy about whether computer
games may have any beneficial cognitive effects (two dueling pro and con “consensus”
open letter statements were released in 2014:
http://longevity3.stanford.edu/blog/2014/10/15/the-consensus-on-the-brain-training-
industry-from-the-scientific-community-2/ and http://www.cognitivetrainingdata.org).

Whatever effects computer games may have on learning, attention, or memory
(Bejjanki et al., 2014; Cardoso-Leite & Bavelier, 2014; Gozli et al., 2014), our focus here
is on the narrow question of whether computer game training demonstrably increases
intelligence. One research group from the University of California, Berkeley claimed a 10-
point increase in Performance IQ following computer game training of basic cognitive
skills involved in reasoning and processing speed in a study of children from low
socio–economic backgrounds (Mackey et al., 2011). Reminiscent of the 2008 PNAS n-back
study, the Berkeley researchers bluntly concluded that, “Counter to widespread belief,
these results indicate that both fluid reasoning and processing speed are modifiable by
training.” Let’s see.

The study involved 28 children aged 7–10 years old. The students were randomly
assigned to one of two training groups. One group (n = 17) trained on commercial
computer games thought to foster fluid reasoning (i.e., fluid intelligence or the g-factor) and
the other group (n = 11) trained on commercial computer games thought to foster brain
processing speed. Each training intervention occurred during school for an hour on two
days a week for eight weeks, although the average number of training days was about 12
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for each group. On training days (two per week) each group worked on four different
computer games for about 15 minutes each. Pre- and post-training assessments for fluid
reasoning (FR) were based on the Test of Nonverbal Intelligence (TONI – version 3) and
for processing speed (PS) two tests were used: Cross Out from the Woodcock–Johnson
Revised test battery and Coding B from the Wechsler Intelligence Scale for Children IV.
The test details are not necessary to understand the results.

The group trained on FR showed about a 4.5-point increase in TONI non-verbal
intelligence score on the post-test and no significant increase on the PS tests. For the group
trained on PS, the opposite was found: there was a significant increase in coding score but
no change in FR score. The authors translated the raw score 4.5-point increase to an
increase of 9.9 IQ points, more than half a standard deviation. Four of the children
apparently increased by over 20 IQ points. They concluded that the main message was
hope that cognitive gaps in disadvantaged kids, especially any related to FR, could be
closed with a “mere 8 weeks of playing commercially available games.” News coverage
followed. So did grant funding.

The key finding is shown in Figure 5.4. There are several problems that by now
should be familiar to you. The sample sizes are very small and IQ scores at this age often
fluctuate by several points. The apparent IQ increases easily could be due to chance effects
with undue influence in small samples, as noted in Section 5.2 (Bogg & Lasecki, 2015).
This is more likely given that the children who improved the most on some training tasks
were not the children who showed the greatest FR gains. Actually, the children who had the
lowest FR before the training showed the greatest increase after training, suggesting the
effect was due, at least in part, to regression to the mean (statistically, repeat scores on
average tend to move back to the group mean). Overall, the results are interesting, but
trusting they indicate a new finding “counter to widespread belief” is a dubious conclusion,
especially when the widespread belief is based on the weight of evidence from hundreds
of other studies.
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Figure 5.4 The findings that countered “widespread belief” and were the basis for optimism
for closing cognitive gaps for disadvantaged children. Panel (a) shows that computer game
training on matrix reasoning (n = 17) increased reasoning scores but not speed of processing
scores. Panel (b) shows that cognitive speed training (n = 11) increased coding scores but not
reasoning scores.

Reprinted with permission, Mackey et al. (2011).

This study may be the basis of some generic commercial claims that computer games
can increase IQ (without specific attribution to this research study). I am unaware of any
replication studies of the UC Berkeley findings, positive or negative, either by the original
authors or by other researchers. This is odd given the claimed potential for these findings
to overturn widely held beliefs. Most intelligence researchers remain highly skeptical of a
10-point IQ increase attributed to general cognitive training. A recent comprehensive study,
for example, found virtually no relationship between video game experience and fluid
intelligence in a large sample of young adults (Unsworth et al., 2015).

A number of commercial companies market computer-based training programs to
parents and to school systems with the explicit or implied goal of closing cognitive gaps,
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especially for students from disadvantaged backgrounds (see Chapter 6 for more about
SES and intelligence). Most reputable companies are careful to avoid making explicit
claims about increasing intelligence. One company, however, claims in their 2014 report
(downloaded from the Internet) that their brain-training program raises IQ an average of 15
points for their clients. Their clients who start the program with “severe cognitive
weakness” show average gains of 22 IQ points. The report has many pages of impressive-
looking statistical analyses, tables, and graphs that show apparently amazing results for
users of their program, but does not list a single publication where the statistics and claims
have undergone independent peer review. Other companies sometimes cite individual
published research reports, especially with small samples, as evidence for the validity of
computer training programs to increase mental performance. This kind of cherry-picking is
quite common where only studies that support a claim are noted while ignoring other
studies that do not. Neuro-education and brain-based learning are attractive concepts for
educators but, in my view, there is not yet a compelling weight of evidence of successful
applications so considerable caution is required (Geake, 2008, 2011; Howard-Jones,
2014). Potential buyers of such programs, especially of those claiming increases in
intelligence, are advised to keep three words in mind before signing a contract or making a
purchase: independent replication required.

Speaking of independent replication, none of the three studies discussed so far (the
Mozart Effect, n-back training, and computer training) included any replication attempt in
the original reports. There are other interesting commonalities among these studies. Each
claimed a finding that overturned long-standing findings from many previous studies. Each
study was based on small samples. Each study measured putative cognitive gains with
single test scores rather that extracting a latent factor like g from multiple measures. Each
study’s primary author was a young investigator and the more senior authors had few
previous publications that depended on psychometric assessment of intelligence. In
retrospect, is it surprising that numerous subsequent studies by independent, experienced
investigators failed to replicate the original claims? There is a certain eagerness about
showing that intelligence is malleable and can be increased with relatively simple
interventions. This eagerness requires researchers to be extra cautious. Peer-reviewed
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publication of extraordinary claims requires extraordinary evidence, which is not apparent
in Figures 5.1, 5.3, and 5.4. In my view, basic requirements for publication of “landmark”
findings would start with replication data included along with original findings. This
would save many years of effort and expense trying to replicate provocative claims based
on fundamentally flawed studies and weak results. It is a modest proposal, but probably
unrealistic given academic pressures to publish and obtain grants. Before leaving this
section on increasing intelligence in children, there is another interesting and more
optimistic report to consider. Whereas the three cases discussed so far are presented as
cautionary examples, this one is a positive illustration of how progress in the field can be
advanced more prudently. This report is based on meta-analyses of “nearly every available
intervention involving children from birth to kindergarten” to increase intelligence (Protzko
et al., 2013). These researchers from New York University (NYU) maintain the Database
of Raising Intelligence. This database includes studies designed to increase intelligence
that have the following components: a sample drawn from a general, non-clinical
population; a pure randomized controlled experimental design; a sustained intervention;
and a widely accepted, standardized measure of intelligence as an outcome variable. Four
meta-analyses are reported on the effects of dietary supplementation to pregnant mothers
and neonates, early educational interventions, interactive reading, and sending a child to
preschool. Here is a summary of the main results for each of these four analyses.

The nutrition research was limited mostly to studies of the long-chain fatty acid called
PUFA (don’t ask why this name), an ingredient in breast milk necessary for normal brain
development and function. This analysis was inspired by earlier evidence of higher IQ in
breast-fed children compared to bottle-fed children (Anderson et al., 1999). The 2013
meta-analysis included 10 other studies of 844 total participants. The analysis suggested
that a 3.5 IQ point increase was associated with long-chain PUFA when it was used as a
dietary supplement. However, a review of 84 related studies suggested several possible
confounding factors, including that parents with higher IQs tended to breastfeed more. The
conclusion was that the small IQ increase in children attributed to breastfeeding may
actually be due to confounding factors including the genetics of IQ (Walfisch et al., 2013).
This was also the conclusion of an earlier prospective study of sibling pairs where one
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was breast-fed and the other was not (Der et al., 2006). Thus, the weight of evidence does
not support breastfeeding as a way to increase a child’s IQ. Similar analyses for iron, zinc,
vitamin B6, and multivitamin supplements were less encouraging for increasing IQ based
on the available evidence.

The second meta-analysis focused on early education. In Chapter 2 we described a
few key intervention studies that failed to show lasting IQ increases. The NYU analyses
incorporated 19 studies going as far back as 1968. Some had interventions that went on for
more than 3 years. Although some individual studies did show IQ increases for some
infants, all together the meta-analysis indicated that there was no appreciable effect on IQ.
The third meta-analysis focused on interactive reading and incorporated 10 studies totaling
499 participants. For children under 4 years old, the meta-analysis indicated about a 6-
point increase in IQ when the child was an active participant in the reading. The authors
speculate that this intervention may influence language development which then indirectly
influences IQ. Active reading is now widely recommended to parents. The fourth meta-
analysis focused on preschool and included 16 studies of 7,370 participants, mostly with
low family income backgrounds. All together the analysis indicated a 4-point increase in
IQ but up to a 7-point increase for the subset of programs that included a specific emphasis
on language development. Interestingly, longer preschool attendance was not related to
greater increase in IQ points. How long any of the putative increases may last and the brain
mechanisms that might be relevant are not yet known.

Even if statistically significant, the reported IQ increases still are mostly about the
size of the standard error of IQ tests, especially given that intelligence test scores in this
young age range are less reliable and often fluctuate for many reasons over short periods of
time. Many of the studies included in the four meta-analyses have the same small sample
issues that characterized the three case studies and the n-back meta-analysis done by Au
and colleagues on studies of memory training (Bogg & Lasecki, 2015; Redick, 2015). It is
too early to know if the NYU meta-analyses will hold up as more data become available,
so continued skepticism is warranted for any effect these interventions may have on
intelligence. Nonetheless, the NYU researchers have provided a systematic, empirical
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basis for their conclusions and for their suggestions for additional intervention research in
children.

5.4 Where are the IQ Pills?
The genetic and neuroimaging studies described in Chapters 2, 3, and 4 provide
compelling evidence that intelligence has a strong basis in neurobiology, neurochemistry,
and neurodevelopment. Actual brain mechanisms that influence or control brain structures
and functions related to intelligence are not understood to any significant degree. If certain
neurotransmitters, for example, are found to play a central role in relevant cognitive
mechanisms (say working memory), then drugs that increase or decrease activity of those
neurotransmitters may show effects on intelligence test scores. Synaptic events regulated
by neurotransmitters may be the place for interventions. These include changing the level of
neurotransmitter, or how fast the neurotransmitter is replenished, or the sensitivity of the
receptors that respond to the neurotransmitters. On the other hand, if drugs are accidently
found to increase scores on IQ tests, inferences about how those drugs work on
neurotransmitters in the synapse can generate new hypotheses about what brain mechanisms
might be most relevant to intelligence. This logic for drug effects is the same as applied in
the intervention studies we have discussed earlier in this chapter. Drugs influence brain
mechanisms more directly than memory training, for instance, so drugs may have greater
intelligence boosting potential. The study criteria for showing an effect on intelligence for
any drug is also the same: a sample that includes a range of normal IQ scores, multiple
measures of intelligence to extract a latent g-factor, double-blind placebo-controlled trials
with random assignment, dose-dependent response for any short-term effect (greater dose
shows greater enhancement), a follow-up period to determine any lasting effects, and
independent replication. And, of course, a ratio scale of intelligence would make an
increase most convincing although none yet exists (Haier, 2014). (See Textbox 6.1 for a
possible way to define a ratio scale for intelligence.)
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The Internet has countless entries for IQ-boosting drugs, and there are many peer-
reviewed studies of cognitive enhancing effects on learning, memory, and attention for
drugs like nicotine (Heishman et al., 2010). Psychostimulant drugs used to treat attention
deficit hyperactivity disorder (ADHD) and other clinical disorders of the brain are
particularly favorite candidates for use by students in high school, college, and university
and by adults without clinical conditions who desire cognitive enhancement for academic
or vocational achievement. Many surveys show that drugs already are widely used to
enhance aspects of cognition and a number of surrounding ethical issues have been
discussed. Some of these issues are presented in Textbox 5.2. Overall, well-designed
research studies do not strongly support such use (Bagot & Kaminer, 2014; Farah et al.,
2014; Husain & Mehta, 2011; Ilieva & Farah, 2013; Smith & Farah, 2011). Even fewer
studies are designed specifically to investigate drug effects directly on intelligence test
scores in samples of people who do not have clinical problems. I could find no relevant
meta-analysis that might support such use. In short, there is no compelling scientific
evidence yet for an IQ pill. As we learn more about brain mechanisms and intelligence,
however, there is every reason to believe that it will be possible to enhance the relevant
brain mechanisms with drugs, perhaps existing ones or new ones. Research on treating
Alzheimer’s disease, for example, may reveal specific brain mechanisms related to
learning and memory that can be enhanced with new drugs significantly better than existing
drugs. This prospect fuels intense research at many multinational pharmaceutical
companies. If such drugs become available to enhance learning and memory in patients
with Alzheimer’s disease, surely the effect of those drugs will be studied in non-patients to
boost cognition.

Because there is a paucity of empirical evidence for raising intelligence, and because
psychoactive drugs often have serious side effects, especially when a physician does not
monitor their use, no list of drugs claimed to increase intelligence appears in this book. In
my view, there are none to list. The potential for drugs to boost intelligence, however, is
directly correlated to the extent to which the biological bases of intelligence are revealed,
and as described in previous chapters, the pace of discovery is increasing. Drugs,
however, may not be the only way to tweak neurobiological processes. There are
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fascinating hints at other methods. We now turn to what may sound like science fiction
efforts to enhance intelligence and related cognition. They are not fiction and they are
mind-blowing, almost literally.

Textbox 5.2:  Cognitive-enhancing drugs

The journal Nature published a commentary about ethical issues concerning
putative cognitive-enhancing (CE) drugs in 2007 (Sahakian & Morein-Zamir,
2007) and a 2008 commentary (Greely et al., 2008) based on an informal survey
of 1,400 scientists from 60 countries about their use of such drugs (Maher,
2008). Ethical questions raised in the 2007 commentary included whether the
use of CE drugs in healthy individuals without neurological or psychiatric
disorders was cheating or fair, whether CE drugs should be available without
medical supervision, and whether someone might feel undue pressure to use CE
drugs for themselves or for their children if they knew others were doing so at
school or work. The 2008 survey of scientists revealed that 20% already used
drugs to improve concentration; 70% would risk mild side effects to boost
brainpower; 80% defended their right to take such boosters; and greater than
33% would feel pressure to give their kids brain boosters if other kids used them.
The survey report included four specific comments from responders that
illustrated basic ethical issues: Safety: “The mild side effects will add up to be
profound in due course and may even require stronger therapy to control the
addiction,” wrote a young man from Nigeria. Erosion of character: “I wouldn’t
use cognitive-enhancing drugs because I think it would be dishonest to myself
and all the people who look to me as a role model,” wrote a young person from
Guyana. Distributive justice: “Morally puts a disadvantage to people without
access,” wrote a middle-aged person from the USA. Peer pressure: “As a
professional, it is my duty to use my resources to the greatest benefit of
humanity. If using ‘enhancers’ can contribute to this humane service, it is my
duty to do so,” wrote a senior citizen from the USA.
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The authors of the 2008 Nature commentary argued that, “Society must
respond to the growing demand for cognitive enhancement. That response must
start by rejecting the idea that ‘enhancement’ is a dirty word.” Since these three
articles were published, there have been many new surveys about CE drug use
around the world. Different survey methodologies and different samples make it
hard to fix rates of regular versus occasional use or the motivations for use.
Nonetheless, there is general agreement that CE drug use is increasing,
especially for high school and college students in America despite limited
evidence of efficacy (Smith & Farah, 2011).

One recent presentation of ethical considerations surrounding
pharmacological cognitive enhancement (PCE) formulated six principal issues:
“(1) The medical safety profile of PCEs justifies restricting or permitting their
elective or required use. (2) The enhanced mind can be an ‘authentic’ mind. (3)
Individuals might be coerced into using PCEs. (4) There is a meaningful
distinction to be made between the treatment vs. enhancement effect of the same
PCE. (5) Unequal access to PCEs would have implications for distributive
justice. (6) PCE use constitutes cheating in competitive contexts” (Maslen et al.,
2014).

The discussions about enhancement and these issues mostly are limited to
cognitive elements of attention, learning, and memory. Specifically enhancing
intelligence is not yet a focus of the ethical agenda. If, as I believe, more
intelligence is better than less, is there not a moral obligation in favor of
enhancement? What do you think about these issues? The 2011 movie
“Limitless” may provoke some ideas.

5.5 Magnetic Fields, Electric Shocks, and Cold Lasers
Target Brain Processes
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This section briefly introduces five odd-sounding technologies that alter brain processes
and may have implications for enhancing cognition and intelligence. Most importantly,
these techniques allow for the experimental manipulation of cortical activity to study the
impact on cognition. This ability provides exciting and important opportunities for
determining cause and effect relationships which go beyond studies that report correlations
between brain variables and performance on mental tests. They herald the beginning of a
new phase of intelligence/brain research.

The first technique is transcranial magnetic stimulation (TMS). TMS uses a wand-like
device containing a metal coil to produce strong magnetic field pulses when electricity is
applied in short bursts. When the coil is placed over a part of the scalp, the magnetic field
fluctuations pass through the scalp and skull undistorted into the brain. The fluctuations
induce electrical currents that depolarize neurons in the underlying brain cortex. The rate of
pulses and their intensity can be varied to increase or decrease cortical excitation. As a
research tool, TMS can be used to test whether a particular region of cortex is involved in
a cognitive task. For example, inducing cortical deactivation might result in poorer
performance and inducing activation might result in better performance, or in the case of
efficiency, vice versa. A review of over 60 TMS studies done over the last 15 years (Luber
& Lisanby, 2014) concluded that this technique has promise for enhancing a range of
cognitive tasks, although intelligence is not specifically discussed and this review is not a
quantitative meta-analysis. According to the authors, TMS may affect brain mechanisms to
increase task performance in at least two general ways: either by direct impact on neurons
that increases the efficiency of task-relevant processing, or by disrupting processing that is
task-irrelevant and distracting to performance. Some enhancement effects attributed to the
first category are for tasks involving non-verbal working memory, visual analogic
reasoning, mental rotation, and spatial working memory, among others (from their table 1).
Enhancement effects attributed to the second category include tasks of verbal working
memory, spatial attention, and sequential item memory (from their table 2). In addition to
laboratory experiments, the authors also discuss some real-world applications for TMS,
including cognitive rehabilitation after brain injury. So far the weight of evidence is not
clear, but this is an area to watch for additional research and meta-analyses.
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The second technique is transcranial direct current stimulation (tDCS). In other
words, this delivers electric shocks to the head. The currents are quite mild and the shocks
barely noticeable. They are not used as punishment shocks for wrong responses to a
cognitive task or like electroconvulsive therapy (ECT), which induces seizures that
ameliorate deep clinical depression. tDCS currents are generated by a 9-volt battery and
pass between electrodes on the scalp. Depending on the parameters used, this current can
increase or decrease neuronal excitability under the electrode locations similar to the
effect of TMS. Early tDCS studies were encouraging (Clark et al., 2012; Utz et al., 2010).
Writing about enhancement effects for both TMS and tDCS, one research group (McKinley
et al., 2012) noted, “These techniques are perhaps best suited for career fields where
certain cognitive skills such as vigilance and threat detection are essential to preserving
human life. Because such jobs are plentiful in the military, it is no surprise that the US Air
Force has recently begun investing in non-invasive brain stimulation for its efficacy in
benefiting human cognitive performance.” Another group reviewed tDCS enhancement
effects from many studies of attention, learning, and memory in healthy adults (Coffman et
al., 2014). This qualitative review concluded that “battery-powered thought” had
considerable potential for certain cognitive tasks, although the review did not address
intelligence directly. This review included some research on how tDCS might influence
brain mechanisms underlying cognitive enhancements. They noted possible roles for
aspects of glutamate, GABA, NAA, NMDA, and BDNF regulation and function (see
similar findings from molecular genetic studies noted in Chapter 4). Predictably, however,
a newer comprehensive quantitative analysis of tDCS and cognition in healthy adults was
more discouraging (Horvath et al., 2015b). They found essentially no effects for outcome
measures of executive function, language, or memory. They also found no reliable
neurophysiological effects (Horvath et al., 2015). Further doubts about any enhancing
effects on intelligence were expressed in a study that showed decreased performance on
the WAIS-IV intelligence test battery following tDSC stimulation (Sellers et al., 2015).
These authors reported two studies (total of 41 adults), both double-blind, between-
subjects design (i.e., the same individuals tested before and after tDCS), using a sham
stimulation control condition (fake connections to look like the real device but there is no
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current). tDSC was applied bilaterally to frontal lobe areas in one study and unilaterally in
the other study. In both studies, the tDCS condition was compared to the sham condition. In
both studies tDCS was associated with degraded performance on certain WAIS subscales.
No improved performance was observed. This is the lesson learned for virtually all claims
of cognitive enhancement so far: early promising findings must be reliably reproducible by
independent investigators and survive comprehensive quantitative analyses.

There are other potentially informative studies at early stages to report in the context
of this chapter, albeit with the caution that replication studies remain to be done. Instead of
direct stimulation, a variant of this technique uses mild alternating current, called
transcranial alternating current stimulation (tACS). This is our third technique. Whereas
tDCS produces a general stimulation to the brain, tACS can be targeted to specific areas.
Of interest here, two studies have reported tACS-induced enhancement specifically on
fluid intelligence tests. In the first study, tACS was used experimentally to alter natural
oscillation frequencies that are generated by neuronal activity (Santarnecchi et al., 2013).
Oscillation frequencies in the brain are related to mental task performance, but whether
they are cause or consequence is an open question. The participants were 20 young adults
and the “imperceptible” tACS was applied by scalp electrode over the left middle frontal
lobe. Compared to sham stimulation (a control condition), rhythmic stimulation within the
gamma band (a particular frequency) induced by tACS resulted in faster solution times for
only more difficult items like those on the Raven’s matrices test. This suggested a causal
relationship between the oscillations and the influence on the test. Note the enhancement
effect was assessed by shorter times to solution, where time is a ratio scale. The authors
concluded that their finding “supports a direct involvement of gamma oscillatory activity in
the mechanisms underlying higher order human cognition.”

Another study of intelligence in 28 young adults compared tACS in the theta band (a
different frequency) applied to either the left frontal lobe or to the left parietal lobe; sham
stimulation was also used as a control (Pahor & Jausovec, 2014). tACS was given for 15
minutes prior to completing two tests of fluid intelligence. The tests were a modified
version of the RAPM and the paper folding and cutting test (PF&C) of spatial ability from
the Stanford–Binet IQ test battery. EEG were also obtained during both tests. The authors
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concluded that, “Left parietal tACS increased performance on the difficult test items of
both tests (RAPM and PF&C) whereas left frontal tACS increased performance only on the
easy test items of one test (RAPM). The observed behavioral tACS influences were also
accompanied by changes in neuroelectric activity. The behavioral and neuroelectric data
tentatively support the P-FIT neurobiological model of intelligence.”

There are some inconsistencies and contradictions in the findings of these two
independent tACS studies of fluid intelligence, and in the studies using tDCS, but they may
provide hints about the salient brain mechanisms. They further demonstrate the potential of
brain stimulation techniques for systematic manipulation of neuron activity in humans to
determine effects on cognitive performance. Surely more research will be forthcoming with
refined experimental designs that include larger samples, and an emphasis on individual
difference variables like age, sex, and pre-existing brain excitability (Krause & Cohen
Kadosh, 2014). Brain stimulation with these techniques is experimental, but the mechanics
of building tDCS and tACS devices are fairly simple. There are reports of homemade
“brain shock” devices used by gamers and others looking for enhanced cognition. Some
commercial companies sell such devices for a range of self-uses. Independent replication
research supporting their claims, if any, would be important to evaluate. Applying
homemade or commercial electrical devices to your brain might have unintended
consequences. Please do not compete for a Darwin Award by trying this at home.

Deep brain stimulation (DBS), the fourth technique, is the conceptual equivalent of a
heart pacemaker. DBS applies mild electrical stimulation to microelectrodes surgically
implanted into specific brain areas by a team of medical specialists. It is a major invasive
procedure not easily accomplished at most homes. The stimulation can be constant or
applied when needed. DBS has demonstrable clinical applications for alleviating the
symptoms of Parkinson’s disease, and clinical depression, and it is under study for other
brain disorders. There are also a number of studies of DBS on learning and memory that
suggest possible enhancement under some conditions (Suthana & Fried, 2014). There are
not yet DBS studies of intelligence. There is an interesting question as to whether brain
areas related to cognitive enhancement effects identified with TMS, tDCS or tACS can be
more accurately localized with neuroimaging specific to an individual person and then be
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targeted with precise localization of DBS electrodes. Could constant DBS in multiple
areas enhance the g-factor, especially in individuals with low IQ, or could on-demand
DBS in a specific area enhance specific mental abilities in any of us? This is a long way
from listening to Mozart or n-back training. Do these possibilities sound more enticing than
compensatory education? Such rank speculation is offered only in this section to stimulate
your imagination about the importance and potential of neuroscience approaches to
intelligence research.

While you are thinking about this, here is one more non-invasive brain stimulation
technique that invites speculation. Our fifth technique is based on lasers. Light from low-
power “cold” lasers in the near-infrared range penetrates the scalp and skull and can affect
brain function. One group of researchers reported preliminary evidence that this technique
can enhance some kinds of cognition when aimed at different brain areas (Gonzalez-Lima
& Barrett, 2014). They describe how laser light affects the brain this way:
“Photoneuromodulation involves the absorption of photons by specific molecules in
neurons that activate bioenergetic signaling pathways after exposure to red-to-near-infrared
light.” Imagine this special laser light aimed from a distance at an unsuspecting person’s
brain to either enhance or disrupt cognition. Sounds like a screenplay idea. Enough
speculation. The data are preliminary and lasers can be quite dangerous. Do not try this at
home either.

5.6 The Missing Weight of Evidence for Enhancement
In Chapters 1, 2, 3 and 4, the weight of empirical evidence supported, respectively: the g-
factor concept; an important role for genetics in explaining individual differences in
intelligence; intelligence-related networks distributed throughout the brain; and to a lesser
extent, the idea that efficient information flow around the brain was related to intelligence.
In this chapter, despite many provocative claims and intriguing findings, no weight of
evidence yet supports any means or methods for enhancing intelligence.
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From time to time I am asked by magazine health writers to offer tips on increasing
IQ. My answer is always the same and usually induces a long silence from the writer.
There are no such tips – not even one that is supported by the weight of evidence. Eat
better? Exercise? Engage in mentally challenging activity? All are good suggestions for
general health and well-being, but no specific effects for boosting intelligence can be
substantiated. Not surprisingly, these writers never quote me, although science writers
sometimes do in more substantial articles. I am happy to be the voice of reasonable
skepticism to help stop the spread of bad information. One online magazine listed 10 tips
for boosting IQ, including listening to classical music, memory training, playing computer
games, and learning a new language. For each tip, they listed the putative IQ point increase
claimed by someone, and then they added up all the points to support the nonsensical
headline promising ways of boosting your IQ by 17–40 points. Really.

Although enhancement of intelligence is an important goal for neuroscience research,
the weight of evidence to date indicates there is a long and winding road ahead for meeting
this goal with drugs, genetics, electric or magnetic stimulation, or lasers. The road appears
no shorter for education and cognitive training approaches. These roads have no posted
speed limits or guardrails so crashes are inevitable. Moreover, my assertion that
enhancement is an important goal is not universally recognized. If it were, considerably
more federal and foundation funding would be directed toward achieving it and not just for
disadvantaged children. After all, many national challenges, from technological and
economic innovation to cyber crime and cyber warfare, pit the smartest against the
smartest. This is serious business. Silly magazine tips are not helpful.

If I had to bet, the most likely path toward enhancing intelligence would be a genetic
one. In Chapter 2 we discussed Doogie mice, a strain bred to learn maze problem-solving
faster than other mice. In Chapter 4 we enumerated a few specific genes that might qualify
as relevant for intelligence and we reviewed some possible ways those genes might
influence the brain. Even if hundreds of intelligence-relevant genes are discovered, each
with a small influence, the best case for enhancement would be if many of the genes
worked on the same neurobiological system. In other words, many genes may exert their
influence through a final common neurobiological pathway. That pathway would be the
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target for enhancement efforts (see, for example, the Zhao et al. paper summarized in
Section 2.6). Similar approaches are taken in genetic research on disorders like autism and
schizophrenia and many other complex behavioral traits that are polygenetic. Finding
specific genes, as difficult as it is, is only a first step. Learning how those genes function in
complex neurobiological systems is even more challenging. But once there is some
understanding at the functional system level, then ways to intervene can be tested. This is
the step where epigenetic influences can best be explicated. If you think the hunt for
intelligence genes is slow and complex, the hunt for the functional expression of those
genes is a nightmare. Nonetheless, we are getting better at investigations at the molecular
functional level and I am optimistic that, sooner or later, this kind of research applied to
intelligence will pay off with actionable enhancement possibilities. The nightmares of
neuroscientists are the driving forces of progress.

None of the findings reported so far are advanced enough to consider actual genetic
engineering to produce highly intelligent children. There is a recent noteworthy
development in genetic engineering technology, however, with implications for
enhancement possibilities. A new method for editing the human genome is called
CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/Cas genes). I
don’t understand the name either, but this method uses bacteria to edit the genome of living
cells by making changes to targeted genes (Sander & Joung, 2014). It is noteworthy
because many researchers can apply this method routinely so that editing the entire human
genome is possible as a mainstream activity. Once genes for intelligence and how they
function are identified, this kind of technology could provide the means for enhancement on
a large scale. Perhaps that is why the name of the method was chosen to be
incomprehensible to most of us. Keep this one on your radar too.

Most of this chapter is about what does not work to enhance intelligence. It is fair to
say that education and cognitive approaches have made little demonstrable progress after
many years of concerted efforts and neuroscience approaches are relatively nascent. We
should not be discouraged, just as we are not discouraged that the hunt for intelligence
genes has progressed slowly. The brain is complex and its secrets are not easily revealed.
All science is technology-driven and intelligence research is no exception. As discussed in
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this chapter and previous ones, there are exciting possibilities for enhancing intelligence
based on new brain technologies and new information about brain structure, function, and
development. From my perspective of nearly 45 years in the field, the pace of discovery is
quickening. There is no clear roadmap for the future, but the next and final chapter will
present some neuroscience perspectives on emerging approaches for learning even more
about intelligence and the brain.

Chapter 5 Summary

Review Questions

Despite many claims, there is yet no way to increase any intelligence factor that
survives independent replication and creates a compelling weight of evidence.

Studies that have made claims of enhancement have serious flaws including
“teaching to the test,” generalizing from small samples, and treating small score
changes on single tests as indications of large changes in underlying intelligence
factors.

Psychoactive drugs and various non-drug methods of stimulating the brain may have
potential for cognitive enhancement of attention, learning, and memory, but there is
no weight of evidence yet that these methods enhance intelligence.

Ultimately, enhancement may depend on not only finding specific genes related to
intelligence but also on the harder problem of understanding how those genes
function on a molecular level, including epigenetic influences.

Why is the “weight of evidence” concept especially important for claims about
enhancing intelligence?

What are three examples of research findings which claimed sizeable increases in
IQ that proved incorrect?
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Further Reading
“Cognitive enhancement” (Farah et al., 2014). This is a comprehensive discussion of
enhancement issues.

“Increased intelligence is a myth (so far)” (Haier, 2014). Explains why intelligence
test score increases do not mean intelligence has increased.

Explain the concepts of “transfer” and “independent replication.”

What are five methods of brain stimulation that may influence cognition?

What are six ethical issues concerning the use of drugs for cognitive enhancement?
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Chapter Six

As Neuroscience Advances, What’s Next for
Intelligence Research?

◈

We choose to go to the moon and do the other things … not because they are easy, but
because they are hard.

(President John F. Kennedy, speech at Rice University, September 12, 1962)

The remarkable thing is that although basic research does not begin with a particular
practical goal, when you look at the results over the years, it ends up being one of the most
practical things government does.

(President Ronald Reagan, radio address, April 1, 1988)

Without a doubt, this is the most important, most wondrous map ever produced by human
kind.

(President Bill Clinton, remarks on completion of the first survey of the entire Human
Genome Project, June 26, 2000)

As humans we can identify galaxies light years away, we can study particles smaller than an
atom, but we still haven’t unlocked the mystery of the three pounds of matter between our
ears.

(President Barack Obama, statement introducing the Federal Human Brain Initiative,
April 2, 2013)
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Learning Objectives

Introduction
Paradoxically, in any area of scientific inquiry, the more we learn, the more we do not
understand. An answer to one question often leads to a new question never before
formulated. Advances depend on our intellect and imagination to make sense of new
empirical observations obtained from creative methods and technologies that are constantly
improving to provide new kinds of data. Think about the experimental validation of the
Standard Model in particle physics as a result of observations made with multibillion-
dollar accelerators. These huge, worldwide efforts also revealed new mysteries like dark
energy that cannot be solved by existing methods so new ones must be invented. Each
generation of researchers builds on the recent past and extends into the near future. The
early researchers who studied rudimentary language and perceptual deficits in patients
with brain damage could not imagine the neuroscience tools now available to address
questions about intelligence and the brain. All the advances in genetics and imaging
methods and the potential for understanding and perhaps enhancing intelligence discussed
so far in previous chapters are just the beginning. There is more to come, but the pace

What is chronometrics and why is it an advance over psychometrics?

How does the study of memory and super-memory inform research on intelligence?

How does research on animals provide insights about neurons and intelligence?

How does neuroscientific understanding of brain circuits advance building
intelligent machines?

Given problems of definition, how can there be a neuroscience of consciousness
and creativity?

Why might social–economic status (SES) and intelligence be confounded on the
neural level?
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depends on whether there is a commitment for generous funding that is dispensed wisely. A
focus on research that will likely yield practical results is not necessarily wise, as history
shows many examples of unforeseen major benefits from seemingly arcane basic research.
It is nearly impossible to imagine, but what if a country ignored space exploration and
announced its major scientific goal was to achieve the capability to increase every
citizen’s g-factor by a standard deviation? By the end of this chapter, you might not think
this is so impossible.

In every area of science, each stage of progress becomes more expensive and
complex to conduct logistically and it becomes more complex to interpret results. For
neuroimaging, CAT scans are more complex than X-rays; structural MRI is more complex
than CAT. PET is more complex than EEG; functional MRI is more complex than structural
MRI; MRI spectroscopy and diffusion tensor imaging (DTI) are more complex than
structural or functional MRI; MEG is more complex than MRI. Each new technology
provides better spatial and temporal resolutions and amasses bigger and bigger data files
that require more advanced computer power for processing and analyses. MRI shows brain
tissue in millimeters, but even this is far too big for showing individual neurons or
synapses. MEG shows brain activity changes every millisecond, but this is far too slow to
show nanosecond neurochemical events in the synapse. Neuroscience techniques are
available to study the brain at the level of single neurons and synapses, so it is not beyond
imagination that these techniques can be applied to questions about intelligence. Advances
in the intelligence field likely will come from the integration of findings from basic
research on clinical brain disorders, aging, and normal cognitive processes like learning,
memory, and attention from both animal and human studies that expose events smaller and
smaller, faster and faster, and deeper and deeper in the brain.

This chapter will highlight six developing lines of inquiry relevant to intelligence.
Before discussing them, here is a brief recap of three main points developed in the
previous chapters. (1) Based on the weight of evidence, intelligence is something that can
be defined, measured and studied scientifically, especially the g-factor, which correlates to
many real-world outcomes, brain structure and function, and has a strong genetic basis. (2)
Neuroimaging research is beginning to identify specific brain characteristics related to
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intelligence differences among people, and genetic research is beginning to identify
specific genes related to intelligence. These advances, driven by technology, are moving
intelligence research in a more neuroscience direction. (3) How brain characteristics
related to intelligence develop from genetic, biological and environmental factors, and
their interactions, is not yet understood. But once we have a better understanding of how
these factors work in the brain, we should be able to manipulate them to increase
intelligence either to close any gaps among groups or raise everyone, perhaps dramatically.
Building on these three points and moving forward, here are six exciting areas to watch for
progress, each in its own section.

6.1 From Psychometric Testing to Chronometric Testing
On one side of the equation that links genetic and neuroimaging data to intelligence, we
have the most up-to-date multimillion-dollar equipment and teams of specialists to collect
and analyze complex data sets. On the other side of the equation, we have a psychometric
test score, often from a single test that costs a few dollars. This is quite a mismatch, or
more accurately a chasm. Decades ago, the earliest imaging studies of intelligence and the
earliest quantitative and molecular genetic studies of intelligence used the same
intelligence tests still used today. To advance the field, the study of intelligence can no
longer be limited to psychometric test scores. As noted in Chapter 1, a sophisticated
measurement of intelligence is badly needed to match the sophisticated genetic and
neuroimaging assessments widely available. At minimum, a latent variable approach that
extracts a factor from a battery of tests is required. The optimal assessment of intelligence
will require a ratio scale, as noted in Chapter 1.

Let’s review why this is so using a new example. Suppose you have an intervention
that is designed to increase happiness (pick whatever intervention you like). You measure
happiness by asking participants to rate their happiness on a scale from 1 to 10, where a 10
represents the most happiness. You find an average happiness score of 4 for a group before
the intervention. After the intervention, the group average has increased to 8. If you are
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naïve about measuring constructs like happiness, you might conclude that your intervention
resulted in people becoming twice as happy based on the change from 4 to 8. You would be
wrong to conclude this. Your happiness scale is an interval scale where points are not
equivalent and each person has a subjective idea of what 4 or 8 means. Eight on an interval
scale is not literally 2 × 4. Eight pounds, however, is literally 2 × 4 pounds because
pounds are a ratio scale that is bounded by an actual zero point of no weight. A pound of
bricks weighs the same as a pound of feathers. A pound is a pound irrespective of what is
being measured.

Intelligence test scores, like all measures of happiness, are all on interval scales.
Your score has meaning only relative to other people, typically expressed as a percentile.
If you are at the 95th percentile, how much more intelligent are you than someone at the
90th percentile? You are not 5% more intelligent. We do not have a measure of intelligence
as a quantity. In Chapter 4, we discussed whether intelligence could be defined by
quantifying brain characteristics like the amount of gray matter, thickness of the cortex,
connectivity of networks, or the integrity of white matter. These are all potential ratio
scales, but imaging is not a practical basis for wide use as an intelligence test in most
settings. Another way to create a ratio measurement of intelligence depends on the
measurement of time (8 seconds is literally twice 4 seconds). The concept is to create a
standard battery of mental tests where the time it takes to arrive at an answer is the basis
for the measurement rather than the number of correct answers. Intelligence could then be
defined as speed of information processing during a standard set of test items. A person
who had an average time of 4 seconds on a battery of information-processing test items
would be literally twice as fast as a person with an average of 8 seconds. The validity of
information-processing speed as an alternative definition of intelligence would require
research establishing what this metric might predict in terms of academic or other
achievement. In fact, a considerable body of research like this already exists.

In his last book before he died, Arthur Jensen summarized this research and
considered the technical obstacles to overcome for developing a new kind of intelligence
test based on information-processing time (Jensen, 2006). He called this approach
“chronometrics.” A chronometric testing apparatus is currently under development and is
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described in Textbox 6.1. Note the test items are much different than those of psychometric
tests. For example, one test has a semicircle of eight buttons that can light up. For each trial
three buttons light up at the same time. As fast as you can, you press the lighted button
farthest away from the other two lit buttons. After a series of trials on this test, few people
make many mistakes and test results are measured in units of time, so chronometric scores
are on ratio scales. If research supports the validity and reliability of the chronometric
approach by establishing correlations with intelligence test scores, its use in future genetic
and neuroimaging studies could narrow the sophistication-of-measurement gap. Jensen
expressed the optimistic view that chronometric approaches could elevate intelligence
research to a natural science. Combined with other neuroscience approaches, the pace of
discovery would surely increase with this kind of measurement.

It may even be possible to define intelligence by brain characteristics such as speed
of information processing or the amount of gray matter tissue in certain areas. The
advantage of such definitions would be that they are quantitative on a ratio scale. Imagine
that your information-processing speed on a standard test battery is twice as fast as
someone else’s. Whether this might predict something about your future academic success
or other variables better than an IQ score is an open question for empirical study.

Textbox 6.1:  Chronometric assessment of intelligence

As proposed by Jensen (2006), mental chronometry is based on two fundamental
concepts. The first is that the time it takes to make a decision is a measure of brain
processing speed. This is often referred to as reaction time (RT) or response time.
RT studies have a long history in psychology, going back more than 100 years.
Many cognitive tasks have been used in RT studies. Often they are called
elementary cognitive tasks (ECTs). One of the most replicated findings is that RT
increases with task complexity. Another core finding is that people with faster RTs
generally have higher IQ scores. Therefore, the measurement of RT could be used
to measure intelligence and RT is an especially attractive metric because time is a
ratio scale. RT for most ECTs is measured in milliseconds or seconds, depending
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on the task. The second fundamental concept is standardization. Different
researchers often do RT studies using different devices. This lack of uniformity
introduces method variance that confounds the RT assessment of individuals and
makes it difficult to compare studies or to combine data from different studies into
a large data set. Jensen proposed building a standard device to test RT to a
standard set of diverse ECTs. Jensen believed that the combination of RT measures
with a standardized method for testing ECTs would advance the study of
intelligence beyond the limitations of psychometric tests like the WAIS. The
Institute of Mental Chronometry (IMC) was founded and funded by Jensen to
develop and disseminate such a device. At this time a prototype is under
development. The device has a combined display screen and a button response
panel with eight buttons arranged in a semi-circle and a home button below the
semi-circle. A keyboard and mouse can be attached so the investigator can set
parameters for any experiment.

For example, one ECT involves the eight buttons. To start a trial, the person
being tested presses a finger on the home button, holding it down. Three of the
eight buttons then light up simultaneously. One of them will be further away
from the other two. As quickly as possible, the person releases the home button
and presses the lighted button furthest away from the other two (see Animation
6.1 on this book’s website for a demonstration,
www.cambridge.org/us/academic/subjects/psychology/cognition/neuroscience-
intelligence). This is called an “Odd Man Out task”. After a series of such trials,
a person’s average RT is computed. A different ECT requires the person to
memorize a string of numbers (or letters or shapes) after seeing them for a brief
period on the display screen. Then a target number (or letter or shape) appears
and if the target was in the string memorized, the designated yes button is
pressed. If the target is not in the string, the no button is pressed. As the trials
continue, the string gets longer so more memory is scanned in order to decide
yes or no. This increases RT and higher-IQ people generally scan memory faster
than lower-IQ people. Another ECT shows two words on the screen
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simultaneously. If they are synonyms, one button is pressed; if not, another
button is pressed. There are many variations of these tasks and many other ECTs.
Research will establish which ECTs will generate RTs that, in combination, make
a good battery to assess intelligence. There are many technical issues to resolve.
There is a long road ahead for this research before mental chronometry might
replace psychometric tests of intelligence. At the end of his book, Jensen
concluded, “… chronometry provides the behavioral and brain sciences with a
universal absolute [ratio] scale for obtaining highly sensitive and frequently
repeatable measurements of an individual’s performance on specially devised
cognitive tasks. Its time has come. Let us get to work!” (p. 246). This method of
assessing intelligence could establish actual changes due to any kind of
proposed enhancement in a before and after research design. The sophistication
of this method for measuring intelligence would diminish the gap with
sophisticated genetic and neuroimaging methods.

6.2 Cognitive Neuroscience of Memory and Super-
Memory

In Chapter 1, we noted that one definition of intelligence is individual differences in the
cognitive processes of learning, memory, and attention. Most cognitive neuroscience
research does not include any assessment of intelligence as either an independent or
dependent variable. As we reviewed in Chapter 4, results from any study of learning,
memory, language, or attention may differ if participants are selected on the independent
variable of high or low IQ or g-factor scores. As noted in Chapter 5, when intelligence is
included as a dependent variable, as in the n-back training studies, the assessment typically
is based on a single test score rather than on a latent variable extracted from a test battery.
All this is the old bad news. The more recent good news is that cognitive psychologists are
becoming more interested in the relationships among language, memory, attention, and
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intelligence. One area with considerable research is the relationship between working
memory and the g-factor. In some psychometric studies they are empirically virtually
identical (Colom et al., 2004; Kane & Engle, 2002; Kyllonen & Christal, 1990). In other
studies they are overlapping but separate constructs (Ackerman et al., 2005; Conway et al.,
2003; Kane et al., 2005). Imaging research suggests some overlap in brain areas for both
(Colom et al., 2007) and both may have genes in common (Luciano et al., 2001; Posthuma
et al., 2003a), but these issues are not yet settled (Burgaleta & Colom, 2008; Colom et al.,
2008; Thomas et al., 2015). The ultimate goal is to understand how intelligence may
integrate fundamental cognitive processes like memory and attention and the way they
influence language and learning. This will require cooperation among different research
groups with access to many samples of individuals across the full range of intelligence that
have completed a large, diverse battery of cognitive tests, DNA analysis, and neuroimaging
with structural and functional methods. We are just beginning to see such comprehensive
projects, as noted in Chapters 2 and 4.

Super-memory cases are also of increasing interest. In Chapter 1, we mentioned
Daniel Tammet’s recitation from memory of 22,514 digits of pi. According to the Guinness
World Records, however, the record for reciting pi from memory is an amazing 67,890
digits. This record is held by a person (CL) who is not a savant. He uses mnemonic
methods (i.e., memory tricks – see Textbox 6.2) that allow the storage and retrieval of large
amounts of information. One fMRI study recruited several participants in the World
Memory Championships and found several brain areas were activated when mnemonic
procedures were used (Maguire et al., 2003). Unfortunately, each participant used a
different mnemonic strategy, so the imaging results were not easily interpretable. At the age
of 28 years, CL, the holder of the Guinness record for memorizing 67,890 digits of pi, was
studied with fMRI while he used his strategy and a strategy designed by the researchers as
a control condition (Yin et al., 2015). CL has many years of training on his mnemonic
method, which the authors described this way: “CL used a digit–image mnemonic in
studying and recalling lists of digits, namely associating 2-digit groups of ‘00’ to ‘99’ with
images and generating vivid stories out of them.” An example of this method is created in
Textbox 6.2. Eleven male graduate student controls were also scanned and tested in the
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same strategy conditions. According to the authors, the results suggested that CL relied on
brain areas related to episodic memory rather than verbal rehearsal. The imaging results
are actually quite complex and open to interpretation (Sigala, 2015).

Textbox 6.2:  A memory trick

Here’s how you can train yourself to memorize a long string of numbers like pi just
in case you decide to do so. Before memorizing the digits, create a list of words to
represent 100 pairs of sequential digits. For example, if the sequence contained 0,0
that would be remembered as a dog. If the sequence contained 0,1 that would be
remembered as a fish. Assign a word to the combination of 0,2 and another word
for 0,3 and so on for 0,4 … 5,0, 5,1 … 9,9. The words can be, for example,
animals, tools, famous historical figures or anything you choose. As you begin to
memorize the long string of numbers convert sequential pairs to your pre-
memorized list of 100 words and create a story linking each consecutive word. The
more outrageous the story, the easier it is to remember. Let’s say this is your
standard list of words for each two-digit combination (showing only 8 of 100
pairs):

00 dog

01 fish

02 Lincoln

03 hammer

… 29 robin

… 51 airplane

… 86 shoe

… 99 bank
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Now here is a string of 18 numbers to memorize: 860229000299000151. Convert
this string to pairs and then convert the pairs to your pre-assigned word for each
pair: 86 is shoe; 02 is Lincoln; 29 is robin; 00 is dog; 02 is Lincoln; 99 is bank;
00 is dog; 01 is fish; 51 is airplane. So then you memorize a story you create
that is rich in visual imagery, like: My shoe fits Lincoln and he kicks a robin that
is eaten by a dog but Lincoln takes it to the bank where a dog is eating a fish on
an airplane. With practice, this sentence is easier to remember and after you
memorize it, you can convert the words back to two-digit pairs. It may seem
quite awkward, but this kind of mnemonic strategy can be used effectively to
remember many things, from numbers to names. It requires considerable practice
and imagination, but some people get remarkably good at it and a few people are
extraordinary. This is how CL memorized 67,890 digits of pi. Unlike some of the
electrical or drug-enhancement techniques discussed in Chapter 5, this is one
thing you can try at home. There is no evidence, however, that increasing your
ability to memorize like this increases your intelligence (see Chapter 5). It is an
open question as to whether people who learn to excel at memorizing using this
method are people who already start with high intelligence scores.

Positron emission tomography (PET) was used in a similar study of a mental
calculation prodigy (Pesenti et al., 2001). Mental calculators are exceptionally accurate
and fast at solving complex calculations in their heads. Whereas some savants apparently
have this ability without training, the person studied in this report, 26-year-old R. Gamm,
is a healthy individual and not a savant. He had, however, “trained his memory for
arithmetic facts and calculation algorithms several hours each day for about six years”
starting at age 20. For example, he could calculate two-digit numbers to various powers
(e.g. 995 equals 9,509,900,499 or 539 equals 3,299,763,591,802,133). He could also do
roots, sines, divisions of prime numbers, and apply an algorithm to perform calendar
calculations to name the day of the week for any date (another ability found in savants).
Gamm was compared to six non-expert male students scanned as controls performing the
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same tasks during PET determination of regional blood flow. PET scans were obtained
during a calculation task and a memory retrieval task. The results showed brain activations
in several areas common to both Gamm and the controls, but Gamm also showed unique
activations when the two task conditions were contrasted. Gamm showed more activation
in medial frontal and the parahippocampal gyri, the upper part of the anterior cingulate
gyrus, the occipito-temporal junction in the right hemisphere and the left paracentral lobule
(see where these areas are in Figure 6.1). The authors concluded that, “… calculation
expertise was not due to increased activity of processes that exist in non-experts; rather, the
expert and the non-experts used different brain areas for calculation. We found that the
expert could switch between short-term effort requiring storage strategies and highly
efficient episodic memory encoding and retrieval, a process that was sustained by right
prefrontal and medial temporal areas.” In other words, Gamm’s brain worked differently.
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Figure 6.1 PET scans of an expert memory champion performing complex mental
calculations compared to six non-expert controls. Brain areas uniquely activated in the expert
are shown in green; areas activated both in the expert and non-experts are shown in red. Bar
graphs show activations in each area for each person (red bar is the expert).

Reprinted with permission, Pesenti et al. (2001).
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Imaging such rare individuals with exceptional mental ability achieved by training
may provide insights about the effects of intensive strategy training over years on brain
networks, or insights about unusual brain connections that apparently result by chance, or
unknown factors in the case of savants. There is no indication that either CL or R. Gamm
showed an increase in g related to their respective intensive memory training.

6.3 Bridging Human and Animal Research with New
Tools Neuron by Neuron

On the much smaller spatial scales of neurons and synapses, intelligence is not a major
focus of interest for most neuroscience researchers. There are some attempts to relate
neurotransmitters and other aspects of synaptic function to intelligence in molecular genetic
studies, as we noted in Chapters 2 and 4. Many questions remain ripe for examination. For
example, does the number or type of mitochondria inside neurons (from any particular
brain area) have any relationship to individual differences in the g-factor or other mental
abilities? An older postmortem human study suggested a relationship between the
complexity of dendrites and education level (indirect measure of intelligence) (Jacobs et
al., 1993), but the direction of the relationship could go either way and replication is
required. There are many possibilities to study intelligence on this level, especially if
technology ever advances to the point where non-invasive measurements of single neurons
and synapses can be made in humans.

Until such a time, animal studies provide some intriguing observations that suggest a
tentative bridge to human studies. A systematic lesion study in rats, for example, found
several discrete brain areas were related to general problem-solving ability because
lesions to those areas degraded performance on several different problem-solving tasks
(Thompson et al., 1990). Lesions to other areas degraded performance only on specific
tasks. The areas implicated in this study were compared to early PET studies of reasoning
in humans, but showed only limited overlap (Haier et al., 1993). Nonetheless, this
combination of problem-solving tasks and lesions provided an animal model for
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brain/intelligence relationships that expanded the pioneering work of Karl Lashley (1964)
and indicated that the g-factor is not unique to humans. Studies of genetically diverse
(outbred) mice learning a variety of tasks also indicate a g-factor. The results from one
study of mice sound strikingly like those from human studies: “Indicative of a common
source of variance, positive correlations were found between individuals’ performance on
all tasks. When tested on multiple test batteries, the overall performance ranks of
individuals were found to be highly reliable and were ‘normally’ distributed. Factor
analysis of learning performance variables determined that a single factor accounted for
38% of the total variance across animals. Animals’ levels of native activity and body
weights accounted for little of the variability in learning, although animals’ propensity for
exploration loaded strongly (and was positively correlated) with learning abilities. These
results indicate that diverse learning abilities of laboratory mice are influenced by a
common source of variance and, moreover, that the general learning abilities of individual
mice can be specified relative to a sample of peers” (Matzel et al., 2003). They also
demonstrate the importance of an individual differences approach, even in mice (Sauce &
Matzel, 2013).

Continuing this line of research, Matzel and Kolata summarized human imaging
studies of memory/intelligence and mice experiments that tested causal relationships
between aspects of selective attention, working memory and general cognitive ability
(Matzel & Kolata, 2010). They concluded that the data suggested “that common brain
structures (e.g., prefrontal cortex) mediate the efficacy of selective attention and the
performance of individuals on intelligence test batteries. In total, this evidence suggests an
evolutionary conservation of the processes that co-vary with and/or regulate ‘intelligence’
and provides a framework for promoting these abilities in both young and old animals.”
Having such potent animal models of intelligence can help drive future neuroscience
experiments, especially moving down the spatial and temporal scales from accumulated
brain activity in specific areas to more precise measurements in neurons and synapses
using methods not applicable to humans. There is some suggestion, for example, that
physical and mental training in mice may increase the number of neurons and their
survivability in specific brain areas (Curlik et al., 2013; Curlik & Shors, 2013). There is
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also some suggestion in mice that the signaling efficiency of the dopamine D1 receptor in
the prefrontal cortex may relate to both memory tasks and intelligence tests (Kolata et al.,
2010; Matzel et al., 2013). It is too early to evaluate whether these findings represent a
weight of evidence, but these studies demonstrate how an animal model of intelligence will
help direct neuroscience progress down to the level of neurons and synapses.

Another illuminating example is the use of fluorescent proteins that literally light up
neurons and synapses. The first fluorescent protein was discovered in jellyfish decades
ago and that discovery has evolved into amazing techniques that create new fluorescent
proteins and remarkable ways to introduce them into cells. Once inside a neuron,
fluorescent proteins can track electrical activity and map neural circuits in the brain.
Different fluorescent proteins attach to different neurochemicals and produce different
colors. This means that the distribution of individual neurotransmitters can be mapped. In
fact, individual neurons can be made to have a unique color so individual neuron pathways
and their neurochemical signals can be mapped. Fluorescent studies of intelligence in mice
would be fascinating. Doogie meets Mickey in a new Fantasia movie.

In the previous chapter, we briefly introduced one photo-neuro-modulation method
that used red laser light to activate or deactivate neurons. Newer optogenetic and
chemogenetic methods are more specific and based on modifying synaptic receptors so
neurons react to special light-sensitive chemicals. Both methods have been used to modify
mouse behavior by turning on light. In the process, experimental studies reveal neuro-
circuits involved in complex behaviors and suggest ways to modify them.

The optogenetic method basically works like this. Normally, neurons fire when they
receive a brief electrical pulse across synapses from neighboring neurons. This pulse
changes the neurochemistry of the receiving neuron to create another pulse that travels to
neighboring neurons in the circuit. The key neurochemical change involves proteins within
the neuron. The electrical pulse stimulates the protein to create a new pulse to fire the next
neurons in the circuit, and this cascade of firing continues until inhibitory signals diminish
or stop the firing. Optogenetic techniques create light-sensitive proteins in specific
populations of neurons. These neuron clusters can be induced to fire by applying light in
controlled experiments. Light is delivered directly into neurons using hair-thin fiber-optic
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thread after light-sensitive proteins have been introduced genetically into the neurons of
interest. In a mouse model of depression, for example, light stimulation of neurons in the
medial frontal cortex relieves symptoms (Covington et al., 2010). Symptoms of cocaine
addiction in mice can be reversed by light stimulation to neurons that project to the nucleus
accumbens (Pascoli et al., 2012). Aggressive or sexual behavior in mice can be activated
when a burst of light stimulates different neurons in the hypothalamus (Anderson, 2012).
Optogenetic methods can be combined with the CRISPR-Cas9 method of gene editing
(described in Chapter 5) so specific gene expression (turning genes on and off) can be
targeted with light (Nihongaki et al., 2015). This incredible field is growing rapidly and
there are many examples of experiments that could eventually lead to therapies for brain
disorders, and perhaps to enhancement of mental abilities (Aston-Jones & Deisseroth,
2013; Wolff et al., 2014). It sounds like science fiction, but it is happening now in a
laboratory near you. Screenwriters, pay attention.

The chemogenetic method is a complementary approach for turning neurons on and
off. This technique is based on creating “designer receptors exclusively activated by
designer drugs,” known by the acronym DREADD (Urban & Roth, 2015); how do they find
these names? Recently, researchers developed a variation of DREADD that allowed
neurons to be turned on and off, rather than the previous limitation of on or off techniques
(Vardy et al., 2015). This allowed these researchers to turn hunger and activity levels in
mice on or off for periods of time longer than can be done with optogenetic methods.

Neuroimaging methods described in Chapters 3 and 4 give researchers a view of the
brain like the view of a city from a high-flying airplane; a unique and informative view not
possible before the invention of the airplane. These new neuroscience techniques give
researchers experimental control over individual neurons. This is like an aerial view that
allows seeing individual cars on a city street and possibly who is in the car and how fast
their heart is beating. We can only imagine further refinements, new DREADDs, and new
experiments. There is breathtaking potential for elucidating intelligence brain circuits if
these techniques are applied to animal models of intelligence like those described in this
section by Matzel and colleagues. If such methods are available in humans, the potential for
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neuroscience/intelligence research staggers the imagination. Ready to change your major or
thesis topic?

6.4 Bridging Human and Machine Intelligence Circuit
by Circuit

The goal of artificial intelligence (AI) research is to create computer software and
hardware that mimics human intelligence. There are many wildly successful applications of
“smart” technology that continue to change everyday life throughout the world. There are
computer programs that beat chess grandmasters, Jeopardy champions, and poker players.
Engineers have developed most advances in AI with limited input from neuroscientists,
mostly related to methods based on computational models of neural networks. However, an
even more ambitious goal is to create intelligent machines with algorithms based on how
neurons communicate in actual brain circuits explicated by basic neuroscience researchers.
This is “real” intelligence.

A popular book by computer engineer and entrepreneur Jeff Hawkins makes a
compelling case for building an intelligent machine using this neuroscience-based
approach (Hawkins & Blakeslee, 2004). A key point is that computers and brains work on
entirely different principles. For example, computers must be programmed and brains are
self-learning. His core idea is that the cerebral cortex works fundamentally as a
hierarchical system for storing and applying memory, especially memory of sequences, to
make predictions about the world, and that this system is the essence of intelligence. One
key insight is that the elements of this system are integrated by a single, all-purpose cortical
learning algorithm (CLA). Therefore, Hawkins believes that the AI approach of designing
separate elements of the system for machines is inherently limited. He believes that it is
possible to design machines based on an all-purpose CLA, and that such machines might
exceed human mental abilities. Here is how he states the challenge: “For half a century
we’ve been bringing the full force of our species’ considerable cleverness to trying to
program intelligence into computers. In the process we’ve come up with word processors,
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databases, video games, the Internet, mobile phones, and convincing computer-animated
dinosaurs. But intelligent machines still aren’t anywhere in the picture. To succeed, we
will need to crib heavily from nature’s engine of intelligence, the neocortex. We have to
extract intelligence from within the brain. No other road will get us there” (p. 39).
Hawkins has created the Redwood Neurosciences Institute and a company called Numenta
to make brain-informed intelligent machines a reality. Numenta markets software based on
algorithms that identify patterns, trends, and anomalies in large data sets. The approach is
controversial, especially because it challenges the AI computational approaches widely
used by companies like Facebook, Microsoft, and Google. It is too early to evaluate how
the hierarchical CLA concept might relate to the hierarchical g-factor, but it clearly fits the
theme of this chapter on neuroscience approaches to intelligence and where they might lead
(see an informative online interview with Hawkins from March 20, 2014 with Jack Clark
of The Register, www.theregister.co.uk/2014/03/29/hawkins_ai_feature).

The concept of building machines based on the way the brain works also is informing
the design of microchips. A number of research groups are working on building microchips
to perform brain functions, especially related to perception, based on actual neural
circuitry data. The general effort is known as neuromorphic chip technology. Some of these
chips are designed to have direct interface with the brain. Already chips are available to
enhance hearing and vision. These efforts may one day expand to cognitive processes, but
so far I am unaware of any neuromorphic successes related to specific mental abilities let
alone general intelligence. This too is an area ripe for fertile imagination.

In Chapters 2 and 4 we introduced some multicenter consortia that are pooling genetic
data to create very large samples for statistical analyses that maximize the discovery of
small effects related to intelligence that are hard to detect in smaller samples typical of
individual studies. There are also other large collaborative research programs that share
data from many sources with the goal of mapping the structure and function of the human
brain and how it develops. Current technology can produce maps at the neural circuit level.
These maps can inform studies of aging, brain disorders, and brain diseases. They may
also inform questions about learning, memory, and other cognitive processes. Such studies
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would be a prelude to addressing how individual differences in mental abilities, including
intelligence factors, arise from differences among brains.

A bold goal was announced in 2005 by a group of scientists working in Switzerland.
They undertook to create an artificial brain by building biologically realistic models of
neurons and networks. Working with an IBM Big Blue supercomputer, they simulated brain
activity starting with about 10,000 virtual neurons. This ambitious “Blue Brain” project
expanded dramatically in 2009 when the European Union provided additional funding of
$1.3 billion and many additional collaborators joined the endeavor, renamed the Human
Brain Project. The stated goal is to simulate a human brain, all 80–100 billion neurons
with 100 trillion connections. No neuroscience project has ever received this level of
support. There is no shortage of controversy about every aspect of this project, but the most
important issue for us is that cognitive neuroscience was excluded from the project. This
likely will be reversed given the outcry from the cognitive neuroscience community
(Fregnac & Laurent, 2014). Even with their return, however, intelligence research is not on
the agenda. Hopefully, at some point someone with access to a simulated brain will
wonder about just how smart the virtual brain may be.

In the USA, there are more modest initiatives with similar goals of building simulated
brains. DARPA (The Defense Advanced Research Projects Agency) funded the SyNAPSE
Program (Systems of Neuromorphic Adaptive Plastic Scalable Electronics) in 2008
through 2016 (sounds like someone badly wanted to call this SYNAPSE and worked
backwards with a committee). The ultimate aim is to build a microprocessor system that
emulates a mammalian brain. In 2013, the White House announced the BRAIN Initiative
(Brain Research through Advancing Innovative Neurotechnologies), which provided
funding for projects that will lead to detailed functional and structural maps of the brain.
This initiative builds on other collaborations already funded like the Human Connectome
Project, which is one of the few to include cognitive tests from which a g-factor can be
derived. An intriguing first report from the Human Connectome Project related to
intelligence is based on resting state fMRIs from 461 participants. Functional connectivity
computations among 200 brain areas incorporated 158 demographic and psychometric
variables in a single analysis. A g-factor was not derived, but the main result showed that
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intelligence variables were among the strongest related to overall connectivity among brain
areas, such that greater connectivity was associated with higher test scores (Smith et al.,
2015). This is a short report, but their sophisticated analyses suggest intelligence is related
to resting-state connectivity in the default network and in PFIT areas.

Just as I was finishing the final draft of this book, another study was published from
the Human Connectome Project that expanded the fMRI study just described (Finn et al.,
2015). This is a breathtaking study not only for the findings, but also because it fulfills a
dream I have had for 40 years about using brain profiles to describe individuals and their
mental abilities. Here’s what they reported based on analyses of connectivity patterns
among brain areas (like those shown in Figure 4.1). They started with fMRI data from 126
people collected during six sessions, including four task and two resting conditions. The
typical analysis would have compared the average connectivity for the entire group among
the task and rest conditions. These researchers, however, focused on individual
differences. The simple question was whether connectivity patterns were stable within a
person. To address this question, functional connectivity patterns among 268 brain nodes
(making up 10 networks) were calculated for each person separately for each session. Not
only was the connectivity pattern stable within a person when the two resting conditions
were compared, it was also stable across the four different tasks. In addition, each
person’s pattern was unique enough that it could be used to identify the person. Because
these remarkable results combined stability and uniqueness, the connectivity pattern was
characterized as a brain fingerprint. Of particular interest to us, individual brain
fingerprints predicted individual differences in fluid intelligence. It gets even better. The
strongest correlations with fluid intelligence were in frontoparietal networks. And, best of
all, cross-validation was included in the report. The authors note, “These results
underscore the potential to discover fMRI-based connectivity ‘neuromarkers’ of present or
future behavior that may eventually be used to personalize educational and clinical
practices and improve outcomes.” They conclude, “Together, these findings suggest that
analysis of individual fMRI data is possible and indeed desirable. Given this foundation,
human neuroimaging studies have an opportunity to move beyond population-level
inferences, in which general networks are derived from the whole sample, to inferences
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about single subjects, examining how individuals’ networks are functionally organized in
unique ways and relating this functional organization to behavioral phenotypes in both
health and disease.” I believe this is a landmark study. I wish I had done it. It is the perfect
end to this section and the perfect beginning for a new phase of neuroimaging research on
intelligence, if, of course, there is independent replication. Whew.

All these major funding initiatives speak well for the future of neuroscience research.
They have accelerated the enthusiasm generated more than 25 years ago when President
George H. Bush declared the 1990s would be the Decade of the Brain. Unfortunately, at
that time, intelligence was not mentioned among the targets for research (Haier, 1990).
There is an understandable general justification for basic research that may have practical
implications for understanding brain diseases and disorders. At some point, these newest,
twenty-first-century efforts to map and simulate brains may also recognize that attention to
intelligence is equally worthy. We now apparently have brain fingerprints that predict
intelligence. Once a realistic virtual human brain exists, can creating real intelligence be
far behind?

6.5 Consciousness and Creativity
This is a good place to comment briefly on consciousness and creativity. Like intelligence,
both are among the highest-order functions of the human brain. If intelligence can be
simulated, why not simulate creativity or consciousness? The idea that consciousness has a
neuroscientific basis has become mainstream, in large part based on the popularity of
Francis Crick’s book, The Astonishing Hypothesis (Crick, 1994); Crick shared the Nobel
Prize for discovering the molecular structure of DNA. Some of the research efforts to
understand the neural basis of consciousness include neuroimaging studies of humans in
varying degrees of consciousness induced by different anesthetic drugs. My friend and
colleague Michael Alkire, an anesthesiologist, and I published some of the earliest PET
imaging studies that investigated this (Alkire & Haier, 2001; Alkire et al., 1995, 1999,
2000). We were trying to establish which brain circuits were the last to deactivate as the
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participant became unconscious. From these studies, we hoped to infer the mechanisms of
action for different anesthetic drugs and pinpoint the brain mechanisms responsible for
consciousness. No luck so far, but this ambitious goal remains the greatest unsolved
mystery of neuroscience.

I raise the topic here briefly because during our early PET experiments, we wondered
if there might be a link between consciousness and intelligence. We tend to regard
everyone who is awake as conscious, but are there degrees of “awakeness”? Are some
people more conscious (aware) than others and could such differences be related to
intelligence? We have no clear way to assess individual differences in consciousness in
individuals who are awake. One hypothesis that could be tested is whether high-IQ people
need more (or less) anesthetic drug to render them unconscious for surgery, assuming there
is a valid measure of depth of anesthesia. We have not pursued this question, but it seems
reasonable to suspect that the two highest-order activities of the human brain may have
circuits in common. The mechanisms of action of anesthetic drugs remain unclear, but if
there are common circuits between consciousness and intelligence, we might speculate that
new drugs that work in opposite ways than anesthetic drugs may produce hyper-
consciousness or hyper-awareness, possible aspects of higher intelligence.

Similarly, I want to discuss briefly neuroscience studies of creativity as they relate to
intelligence. My friend and colleague Rex Jung is a neuropsychologist who specializes in
neuroimaging studies of creativity. We have pursued whether intelligence and creativity
may have common neurocircuits. There is some overlap between creativity and
intelligence (Haier & Jung, 2008; Jung, 2014). Creativity and the creative process are even
more difficult to define and assess for empirical research than intelligence and reasoning.
The same general approach, however, is applicable. A battery of tests that assesses
different aspects of creativity is given and a creativity index is derived either by summing
the scores of individual tests (like IQ scores) or by extracting a latent creativity variable
like the g-factor. Aspects of creativity include, for example, measures of originality,
fluency of ideas, and divergent thinking. However, whether there is a g-like factor of
general creativity that transcends different specialty fields is still an open question.
Creative artistic ability in dance, or painting, or music might have quite different neural

244



elements and they might not overlap at all with neural aspects of creativity in fields of
science or literature or architecture. There is also the question of genius, a concept equally
challenging to define for research. Can a creative genius have lower than average IQ, as it
seems in some cases of savants? Can an intellectual genius have no creativity? Does the
rare “true” genius require both high intelligence and high creativity? There are not yet clear
empirical answers, but neuroscience approaches may help resolve these basic issues.
Creativity research is a large field, so we will limit our focus here to illustrative
neuroimaging studies.

I am not aware of any verified cases where brain damage or illness resulted in
increased intellectual ability. However, there are apparently rare cases where people have
demonstrated a dramatic new creative ability, often artistic, after they develop
frontotemporal dementia (FTD), a degenerating illness similar to Alzheimer’s disease.
This observation is not typical for FTD patients (Miller et al., 1998, 2000; Rankin et al.,
2007). This is intriguing because it raises the possibility that creativity might be unleashed
in more people if only certain brain conditions changed, although dementia is hardly a
positive change. The general idea, however, is that dis-inhibition (i.e., deactivation) of
neural circuits and networks caused by the disease process is a key factor, because dis-
inhibition allows more associations among brain areas that do not routinely communicate.
There are many ways to dis-inhibit the brain in general, like drinking alcohol or
developing FTD, but dis-inhibition targeted to particular neural networks related to
creativity may be possible without affecting other networks necessary for balance,
coordination, memory, and judgment. Are there creativity networks in the brain?

Functional neuroimaging studies have tried to capture brain activity during the
creative process. There are now many studies, for example, that have imaged people with
fMRI while they performed musical improvisation as an expression of creativity
(Bengtsson et al., 2007; Berkowitz & Ansari, 2010; Donnay et al., 2014; Limb & Braun,
2008; Liu et al., 2012; Pinho et al., 2014; Villarreal et al., 2013). Music improvisation is a
manageable paradigm in experimental studies, whereas imaging studies of the creative
process in dance, architecture, and other domains is not as practical. One early study, for
example, scanned six male professional jazz pianists with fMRI while they performed two
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tasks that required either improvisation or over-learned musical sequences (Limb & Braun,
2008). The results of this small study suggested that compared to the over-learned
sequence, improvisation was associated with a combination of bilateral deactivation in
some areas, especially parts of the prefrontal cortex (including BAs 8, 9, and 46), along
with bilateral activation in other areas distributed across the brain including in the frontal
lobe (BA 10). These findings are shown in Figure 6.2. A similar fMRI study of 12 male
freestyle rap musicians compared spontaneous creation of rap lyrics to previously
memorized sequences, both conditions using the same musical background (Liu et al.,
2012). The results also suggested a pattern of deactivations and activations, as shown in
Figure 6.3, which is mostly consistent with the results of the Limb and Braun study of jazz
pianists. Another study of 39 pianists with varying degrees of improvisation experience
reported an association between length of experience and connectivity among brain areas
that suggested more efficient information flow during creative expression for the more
experienced musicians (Pinho et al., 2014). Less activity in frontal and parietal areas was
associated with more improvisation experience as shown in Figure 6.4. A meta-analysis of
musical improvisation studies like these tried to integrate findings and explain
inconsistencies among studies (Beaty, 2015), but this research is still at an early stage and
little consistency is apparent. Whether it will provide a model for creativity in general
remains to be seen.
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Figure 6.2 Brain activations (red/yellow) and deactivations (blue/green) in jazz pianists during
improvisation.

Adapted from Limb & Braun (2008) (Open Access).
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Figure 6.3 fMRI comparison of rappers during improvised and conventional conditions.
Yellow represents significant increases in fMRI blood flow during improvisation; blue
represents significant decreases. Top row shows cortical surface; bottom row shows medial
(inside) surface.

Adapted from Liu et al. (2012) (Open Access).
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Figure 6.4 fMRI in pianists with varying degrees of improvisation experience. More training
is related to less brain activity (blue) during creative expression and to increased functional
connectivity among other areas (red).

Reprinted with permission from Pinho et al. (2014, their figure 3). Free Access.

A comprehensive review of 45 functional and structural neuroimaging studies of
creative cognition (not limited to musical improvisation)reached a similar conclusion
(Arden et al., 2010). There was a range of different creativity measures across the studies,
often only one test score per study, and different imaging methods were used. Perhaps not
surprisingly, the results showed disappointingly little overlap among the studies. Figure
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6.5, for example, shows the inconsistencies among seven fMRI studies. The authors
concluded that a more standardized approach to creativity assessment was necessary for
any progress. They proposed eight suggested goals and actions to accomplish them: “(1)
Goal: discover whether creative cognition is domain-specific. Action: test people
phenotypically across many domains of creative production to quantify the common
variance. (2) Goal: increase reliability of the measure. Action: use exploratory factor
analysis – administer diverse creative cognition test batteries to large samples (N >
2,000). (3) Goal: improve discriminant validity. Action: include intelligence (indexed by a
reliable IQ-type test) and openness to experience (assessed by a reliable personality test)
as covariates. (4) Goal: improve ecological validity of the criterion. Action: use
evolutionary theory to inform or guide test development. (5) Goal: explore the etiology of
creative cognition. Action: administer creative cognition tests to genetically informative
samples such as twins. (6) Goal: improve confidence in our results. Action: increase
sample sizes. (7) Goal: increase comparability across studies. Action: converge on a
common brain nomenclature. (8) Goal: increase power of detecting effects. Action: move
to study designs that use continuous measures rather than dichotomies such as case-
control.” Another contemporaneous comprehensive review (Dietrich & Kanso, 2010)
noted some general consistencies among creativity studies, including a pattern of
activations and deactivations involving frontal areas as well as other areas distributed
across the brain in both hemispheres (contrary to the popular idea that creativity is
principally a right hemisphere function). A subsequent critical review came to similar
conclusions and listed suggestions for future research that emphasized the important role
for collaboration between creativity researchers and cognitive neuroscientists (Sawyer,
2011).
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Figure 6.5 Different creativity findings from seven MRI studies. Each colored symbol shows
activated brain areas related to creativity from a different study. There is little overlap of areas
across studies.

Reprinted with permission from Arden et al. (2010, their figure 1).

Rex Jung and I attempted to integrate neuroimaging findings from intelligence studies
and creativity studies and relate them to genius (Jung & Haier, 2013). We focused on
consistencies from structural imaging and lesion studies of creativity because they avoid
problems of task-specific results that confound functional imaging studies and are a major
source of inconsistent results. One study of 40 lesion patients who completed creativity
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tests was particularly informative because lesions in some areas were associated with
deficits in different aspects of creativity (Shamay-Tsoory et al., 2011). Studies of FTD,
noted previously in this chapter, were also informative. Based on a combination of these
studies, we proposed the Frontal Dis-inhibition Model (F-DIM) of creativity (Jung &
Haier, 2013). Figure 6.6 shows this model, designed for easy comparison to the
intelligence PFIT model (see Figure 3.7). Only four F-DIM areas overlap with PFIT (BAs
18/19, 39, and 32), suggesting mostly independent networks for intelligence and creativity.
In comparison to the 37 studies that were reviewed for the PFIT, the F-DIM is more
tentative because it is based on a smaller number of structural-only imaging studies. The
essence of the F-DIM is that networks related to creativity are mostly dis-inhibitory,
especially in frontal and temporal areas that affect other parts of the frontal lobes, the basal
ganglia (part of the dopamine system), and the thalamus (an important relay station for
information flow) through white matter connections.
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Figure 6.6 Frontal Dis-inhibition Model (F-DIM) of creativity. Numbers indicate Brodmann
areas associated with increased (up arrows) or decreased (down arrows) brain activity based
on a review of studies. Blue is left lateralized; green is medial; purple is bilateral; yellow arrow
is anterior thalamic radiation white matter tract.

Reprinted with permission, Jung & Haier (2013).

With respect to how the F-DIM and the PFIT might relate to genius, we speculated
that, “…we must look not only to increased neural tissue or activity in key brain regions
(e.g., frontal lobes), but perhaps also to some mismatch between mutually excitatory and
inhibitory brain regions (e.g., temporal lobes) that form a network sub-serving such
complex human behaviors as creativity (e.g., planning, insight, inspiration). This notion of
a delicate interplay of both increases and decreases in neural mass, white matter
organization, biochemical composition, and even functional activations within and between
brain lobes and hemispheres, is an important concept. Indeed, it is the rare brain that has
highly developed networks of brain regions sub-serving intelligence and (concurrently) the
somewhat underdeveloped network of brain regions associated with dis-inhibitory brain
processes associated with creative cognition. Such a finely tuned seesaw of complex
higher and lower brain fidelity, balanced in dynamic opposition, would almost guarantee
the rare occurrence of genius” (Jung & Haier, 2013). Or as we say privately, we really
don’t know how intelligence and creativity are related to genius on the brain level.

Another comprehensive review of creativity research was based on a meta-analysis
of 34 functional neuroimaging studies that included 622 healthy adults (Gonen-Yaacovi et
al., 2013). A main analysis examined whether there were brain areas consistently activated
despite the diversity of creativity tasks performed during the imaging. The analysis,
however, was limited because it did not include areas of deactivation. The activation
results for all studies together indicate some consistency, as shown in Figure 6.7. The
resulting creativity map is consistent with the F-DIM and other studies, showing a
distribution of salient areas including frontal and parieto-temporal regions, especially the
lateral prefrontal cortex. Some of the creativity tasks required generation of ideas and other
tasks required combination of elements. Separate analyses for both kinds of task suggested
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anterior regions were involved in combining ideas creatively and more posterior regions
were involved in freely generating novel ideas. There were also some differences between
verbal and non-verbal tasks. In the case of both the shared creativity map (Figure 6.7) and
the findings of the two kinds of tasks (not shown), areas in both the right and left
hemispheres are associated with creativity, providing additional evidence that creativity is
not an exclusive function of the right-sided brain. A re-analysis that includes areas of
deactivation would be informative for a more complete picture given other findings related
to dis-inhibition. In fact, a newer meta-analysis of ten small-sample fMRI studies of
divergent thinking published as this book is finalized shows widespread areas of
deactivation although, inexplicably, the Gonen-Yaacovi analysis is not cited (Wu et al.,
2015). Also just published, a structural MRI study in 135 adults reported correlations
between gray matter and a test of creative fluency and a test of creative originality. Each
test was correlated with gray matter in different areas and there was an interaction with
intelligence only for fluency (Jauk et al., 2015). This field is attracting new attention and
the number of imaging studies of creativity is increasing rapidly. This area is moving
closer to claiming a weight of evidence for some findings, so stay tuned.

Figure 6.7 Summary findings from 34 functional imaging studies of creativity. Common brain
areas of activation are shown revealing distributed networks related to creativity. From Gonen-
Yaacovi et al. (2013, their figure 1). (Open Access).

Here is a final speculation for this section. If a deep level of dis-inhibition in certain
brain circuits results in unconsciousness, perhaps a bit less dis-inhibition may increase
creativity. The perception of increased creativity is often a subjective response to “mind-
expanding” drugs like LSD. Dis-inhibition of the frontal cortex is also associated with
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dreaming during sleep (Muzur et al., 2002). Obviously, sleep is an unconscious state and
dreams frequently are quite creative in content and narrative. Tying creativity and
consciousness research together based on neuro-circuits would further demonstrate there is
a neural basis for creativity. There also is some genetic evidence regarding creativity
(Ukkola-Vuoti et al., 2013), suggesting there might be a potential for enhancing creativity
by affecting brain mechanisms. Many drugs have been described subjectivity as creativity
enhancers, but I am unaware of compelling empirical research that substantiates such
observations. Increased creativity has been reported in a few studies that manipulate the
brain without drugs (Fink et al., 2010) and there is a small tDCS study (Mayseless &
Shamay-Tsoory, 2015), but so far there is no weight of evidence to support these
preliminary reports. How intelligence may be related to creativity and consciousness on a
neural level is an intriguing question that raises opportunities for imaginative research
designs and innovative neuroscientists. Students, that means you.

6.6 Neuro-poverty and Neuro-Social–Economic Status
(SES): Implications for Public Policy Based on the

Neuroscience of Intelligence
The confounding of SES with intelligence was introduced in Section 2.1. Now we consider
it further because it remains an important problem that often results in misleading
conclusions from research studies. Here is a common train of thought about the importance
of SES: Higher income allows upward mobility, especially the ability to move from poor
environments to better ones. Better neighborhoods typically include better schools and
more resources to foster children’s development so that children now have many
advantages. If the children have high intelligence and greater academic and economic
success, it could be concluded that higher SES was the key factor driving this chain of
events. Here is an alternative train of thought: Generally, people with higher intelligence
get jobs that require more of the g-factor and these jobs tend to pay more money. There
are many factors involved, but empirical research shows g is the single strongest
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predictive factor for obtaining high-paying jobs that require complex thinking. Higher
income allows upward mobility, especially the ability to move from poor environments to
better ones. This often includes better schools and more resources to foster children’s
development so that children now have many advantages. If the children have high
intelligence and greater academic and economic success, it could be concluded that
higher parental intelligence was the key factor driving this chain of events, due in large
part to the strong genetic influences on intelligence.

The latter train of thought is hardly new. It was made clear more than 40 years ago in
a controversial book mentioned earlier in Chapters 1 and 2, IQ in the Meritocracy
(Herrnstein, 1973). The argument was reduced to its simplest form in a syllogism: “(1) If
differences in mental abilities are inherited, and (2) if success requires those abilities, and
(3) if earnings and prestige depend on success, (4) then social standing (which reflects
earnings and prestige) will be based to some extent on inherited differences among
people” (pp. 197–198, italics added). When this was published in 1973, the evidence for a
genetic role in intelligence was strong but not overwhelming and there was room for
skepticism; today the evidence is overwhelming and compelling (see Sections 2.5, 2.6, 4.5,
and 4.6).

Dr. David Lubinski has written a comprehensive review of the SES/intelligence
confounding issue (Lubinski, 2009). Although the context for his paper is cognitive
epidemiology, the argument applies to all research using SES as a variable. Essentially, if
a study incorporates measures of both SES and intelligence, statistical methods can help
disentangle their respective effects. The interpretation of results from any study of SES
cannot disentangle which factor is driving the result unless a measure of intelligence is
included in the study. Studies of intelligence without considering SES are also problematic.
When both variables are included in multivariate studies in large samples, the results
typically show that general cognitive ability measures correlate with a particular variable
of interest even after the effects of SES are statistically removed. For example, in a study
of 641 Brazilian school children, SES did not predict scholastic achievement, but
intelligence test scores did (Colom & Flores-Mendoza, 2007). An even larger classic
study had data on 155,191 students from 41 American colleges and universities. Their
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analyses showed that SAT scores predicted academic performance about the same even
after SES was controlled; that is, SES added no additional predictive power (Sackett et
al., 2009). Another study of 3,233 adolescents in Portugal found that parents’ level of
education predicted intelligence in the children regardless of family income (Lemos et al.,
2011). These researchers stated their conclusion straightforwardly: “Adolescents from
more affluent families tend to be brighter because their parents are brighter, not because
they enjoy better family environments.”

Studies with equally large samples showing SES effects remain after removing effects
of intelligence are less frequent, although one meta-analysis suggested that SES
independently predicts economic success about as well as intelligence (Strenze, 2007). An
illustrative example of using both SES and IQ is a study of 110 disadvantaged middle-
school children. It included maternal IQ along with composite measures of parental
nurturance and environmental stimulation (Farah et al., 2008). In the main analysis,
parental nurturance was related to memory and environmental stimulation was related to
language, after any effects of maternal IQ were statistically removed. The range of maternal
IQ, however, was restricted to the lower end of the normal distribution (mean = 83,
standard deviation = 9), possibly explaining the lack of an IQ finding, but this study does
illustrate why it is important to include IQ measures when investigating specific SES
factors. Replication in another sample of disadvantaged children would be important along
with obtaining fathers’ IQ. Replication in a sample of children in higher SES levels would
also be informative, as would studies of children at different ages since the effects of SES
on the heritability of intelligence may vary with age (Hanscombe et al., 2012). It is
particularly interesting that there is emerging evidence that the SES itself has a strong
genetic component (Trzaskowski et al., 2014). Obviously, there are many questions to
pursue for establishing a weight of evidence regarding how SES and IQ relate to each
other.

One common view in cognitive psychology is that SES/cognitive relationships are
mediated by how SES variables influence brain development during early childhood. Other
researchers see such relationships as more related to neuroscience, especially when trying
to relate such findings to education (Sigman et al., 2014). As you might imagine, the line
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between cognitive psychology and neurobiology is permeable (Hackman et al., 2010;
Neville et al., 2013). The term “cognitive neuroscience” refers to both. Nothing about a
major genetic component to intelligence and related neurobiological mechanisms negates
or minimizes the importance of SES influences on cognitive psychology variables. Surely,
SES is a consequence of many factors, but let’s consider just the portion of SES that is
confounded with the genetic portion of intelligence. I designate this portion by the term
“neuro-SES” and in my view it should be recognized as a matter for research and
discussion.

To repeat the main point, studies that make claims about SES variables without
including measures of intelligence are difficult to interpret and need to at least
acknowledge the confounding problem before concluding or implying that SES has a causal
role. This was a primary point made two decades ago in The Bell Curve. Nonetheless, bias
toward SES-only explanations remains prevalent. Two recent high-profile examples
illustrate the issue. Both studies use neuroimaging with structural MRI. The first paper is
from MIT, reported by Dr. Mackey and colleagues (2015) (Mackey also reported a 10-
point IQ increase in disadvantaged children following brief computer game playing in
school; see Section 5.3). These researchers set out to study neuroanatomical correlates of
the academic achievement gap between higher- and lower-income students (n = 35 and 23,
respectively). The higher group average yearly family income was $145,465 (95%
confidence interval between $122,461 and $168,470). The lower group family average
was $46,353 (95% CI between $22,665 and $70,041). It is arguable whether family
incomes of over $50,000 constitute a disadvantaged household, but the key finding is still
of interest. Structural MRIs showed greater cortical thickness in several areas for the high-
income group, although other brain measures did not (e.g., cortical surface area, cortical
white matter volume). Cortical thickness differences between the groups in some areas
were related to standard test score differences. The authors concluded, “Future studies will
show how effective educational practices support academic gains and whether these
practices alter cortical anatomy.” This is fair enough and certainly supports a commonly
held view. However, without assessing the cognitive ability of the parents, we cannot be
sure whether the cortical thickness difference is related to family income or to the genetics
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of intelligence. The results from this study would be far more compelling had some
estimate or measure of parental intelligence been included to help disentangle SES effects
from intelligence effects.

The second paper is a multicenter collaboration reported in Nature Neuroscience by
Dr. Noble and colleagues (2015). This MRI study had a large sample of 1,099 children and
adolescents. Data included family income, parental education, and genetic ancestry. Income
was related to brain surface area even after controlling for parental education. Parental
education related to other structural brain characteristics even after controlling for income.
These associations were found irrespective of genetic ancestry. The authors state that “…
in our correlational, non-experimental results, it is unclear what is driving the links
between SES and brain structure. Such associations could stem from ongoing disparities in
postnatal experience or exposures, such as family stress, cognitive stimulation,
environmental toxins or nutrition, or from corresponding differences in the prenatal
environment. If this correlational evidence reflects a possible underlying causal
relationship, then policies targeting families at the low end of the income distribution may
be most likely to lead to observable differences in children’s brain and cognitive
development.” This is not an unreasonable statement, but one implication of this train of
thought might be an experiment that provided modest or large monthly payments to low-
income families to improve everyday life with the expectation that the resulting life
changes might have subsequent effects on their children’s brain and cognitive development.
Some recognition and discussion of the neuroscience aspects of intelligence and its
intertwining with SES would be important considerations if such an experiment was
undertaken. Intelligence was not mentioned in the discussion of these MRI results.

The Blank Slate belief, discussed in Chapter 2, promotes SES and other
social/cultural influences as critical to intelligence and its development. As noted
throughout this book, the weight of evidence does not support the primacy of this view over
a genetic one. There is also growing recognition that this view has failed to invigorate
successful public policies aimed at closing widely acknowledged gaps in education
achievement and cognitive skills shown by many disadvantaged children. A main
implication of this book is that the empirical evidence overwhelmingly supports paying
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more attention to neurobiology as a foundation for changing the status quo. As argued in
previous chapters, neurobiology can be modified, even if there are strong genetic
components involved. This simple fact combined with advances in neuroscience research
like the ones discussed in this chapter provide new optimism for addressing serious
problems that have persisted for decades.

What are the possible policy implications of introducing neurobiology perspectives to
research on these problems? Not all individuals have a pattern of cognitive strengths that
allow barely minimum success in modern, complex society. This is evident with respect to
g and other factors of intelligence. To the extent that different patterns of cognitive strengths
and weaknesses are rooted more in neurobiology and genetics than in childhood
experience, it is incorrect to blame lack of economic or educational success entirely on
poor motivation, poor education, or other social factors. All these things matter, but with
respect to intelligence, they do not appear to matter that much, as the weight of evidence
indicates.

Here is my political bias. I believe government has a proper role, and a moral
imperative, to provide resources for people who lack the cognitive capabilities required
for education, jobs, and other opportunities that lead to economic success and increased
SES. This goes beyond providing economic opportunities that might be unrealistic for
individuals lacking the requisite mental abilities. It goes beyond demanding more complex
thinking and higher expectations for every student irrespective of their capabilities (a
demand that is likely to accentuate cognitive gaps). It even goes beyond supporting
programs for early childhood education, jobs training, affordable childcare, food
assistance, and access to higher education. There is no compelling evidence that any of
these things increase intelligence, but I support all these efforts because they will help
many people advance in other ways and because they are the right thing to do. However,
even if this support becomes widely available, there will be many people at the lower end
of the g-distribution who do not benefit very much, despite best efforts. Recall from
Chapter 1 that the normal distribution of IQ scores with a mean of 100 and a standard
deviation of 15 estimates that 16% of people will score below an IQ of 85 (the minimum
for military service in the USA). In the USA, about 51 million people have IQs lower than
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85 through no fault of their own. There are many useful, affirming jobs available for these
individuals, usually at low wages, but generally they are not strong candidates for college
or for technical training in many vocational areas. Sometimes they are referred to as a
permanent underclass, although this term is hardly ever explicitly defined by low
intelligence. Poverty and near-poverty for them is a condition that may have some roots
in the neurobiology of intelligence beyond anyone’s control.

The sentence you just read is the most provocative sentence in this book. It may be a
profoundly inconvenient truth or profoundly wrong. But if scientific data support the
concept, is that not a jarring reason to fund supportive programs that do not stigmatize
people as lazy or unworthy? Is that not a reason to prioritize neuroscience research on
intelligence and how to enhance it? The term “neuro-poverty” is meant to focus on those
aspects of poverty that result mostly from the genetic aspects of intelligence. The term may
overstate the case. It is a hard and uncomfortable concept, but I hope it gets your attention.
This book argues that intelligence is strongly rooted in neurobiology. To the extent that
intelligence is a major contributing factor for managing daily life and increasing the
probability of life success, neuro-poverty is a concept to consider when thinking about how
to ameliorate the serious problems associated with tangible cognitive limitations that
characterize many individuals through no fault of their own.

Public policy and social justice debates might be more informed if what we know
about intelligence, especially with respect to genetics, is part of the conversation. In the
past, attempts to do this were met mostly with acrimony, as evidenced by the fierce
criticisms of Arthur Jensen (Jensen, 1969; Snyderman & Rothman, 1988), Richard
Herrnstein (1973), and Charles Murray (Herrnstein & Murray, 1994; Murray, 1995). After
Jensen’s 1969 article, both IQ in the Meritocracy and The Bell Curve raised this prospect
in considerable detail. Advances in neuroscience research on intelligence now offer a
different starting point for discussion. Given that approaches devoid of neuroscience input
have failed for 50 years to minimize the root causes of poverty and the problems that go
with it, is it not time to consider another perspective?

Here is the second most provocative sentence in this book: The uncomfortable
concept of “treating” neuro-poverty by enhancing intelligence based on neurobiology,
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in my view, affords an alternative, optimistic concept for positive change as
neuroscience research advances. This is in contrast to the view that programs which target
only social/cultural influences on intelligence can diminish cognitive gaps and overcome
biological/genetic influences. The weight of evidence suggests a neuroscience approach
might be even more effective as we learn more about the roots of intelligence. I am not
arguing that neurobiology alone is the only approach, but it should not be ignored any
longer in favor of SES-only approaches. What works best is an empirical question,
although political context cannot be ignored. On the political level, the idea of treating
neuro-poverty like it is a neurological disorder is supremely naïve. This might change in
the long run if neuroscience research ever leads to ways to enhance intelligence, as I
believe it will. For now, epigenetics is one concept that might bridge both neuroscience
and social science approaches. Nothing will advance epigenetic research faster than
identifying specific genes related to intelligence so that the ways environmental factors
influence those genes can be determined. There is common ground to discuss and that
includes what we know about the neuroscience of intelligence from the weight of empirical
evidence. It is time to bring “intelligence” back from a 45-year exile and into reasonable
discussions about education and social policies without acrimony.

A recent book explores this possibility. Authored by two behavioral genetics
researchers, the starting point is acknowledgment that all students enter the education
system with different genetic propensities for learning reading, writing, and arithmetic
(Asbury & Plomin, 2014). The authors propose policy ideas for tailoring the education
environment to help each student learn core material in a way that is likely best suited to
that student’s genetic endowment. This is a long way from the incorrect assumption that
genes are deterministic; actually, genes are starting points. As the authors note, genetic
research findings are uniquely excluded from discussions about education while at the
same time genetic research has transformed aspects of medicine, public health, agriculture,
energy, and the law. Individualized education is a long-time goal for educators, and genetic
research supports that goal. Asbury and Plomin conclude, “We aim to treat all children
with equal respect and provide them with equal opportunities, but we do not believe that
all our pupils are the same. Children come in all shapes and sizes, with all sorts of talents
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and personalities. It’s time to use the lessons of behavioral genetics to create a school
system that celebrates and encourages this wonderful diversity” (p. 187).

This view is strikingly similar to Jensen’s conclusion more than 45 years ago (Jensen,
1969), “Diversity rather than uniformity of approaches and aims would seem to be the key
to making education rewarding for children of different patterns of ability. The reality of
individual differences thus need not mean educational rewards for some children and
frustration and defeat for others” (p. 117). Both views are common among neuroscientists
who study intelligence and understand the probabilistic nature of genes. Nonetheless,
failure to acknowledge the conclusive findings about the role of genetics for individual
differences in intelligence and other cognitive abilities perpetuates the ineffective “one
size fits all” approach to education reform. It is easy to see how ignoring what we know
about intelligence has led, and will continue to lead, to frustration and failure for
addressing any issue where intelligence matters (Gottfredson, 2005). Nonetheless,
intelligence remains missing from public conversations.

In the USA, for example, considerable rancor pervades discussions about education
reform even without any reference whatsoever to intelligence differences among students.
The idea that every high school student be held to a graduation standard of four-year
college-readiness, irrespective of mental ability, is naïve and grossly unfair to those
students for whom this expectation is unrealistic. Remember, statistically half of the high
school student population has an IQ score of 100 or lower, making college work
considerably difficult even in highly motivated individuals. It is similarly naïve and unfair
to evaluate teachers by student test score changes when many tests are largely de facto
measures of general intelligence rather than of the amount of course material learned over a
short time period. Perhaps the greatest disservice to students will come from purposefully
increasing the difficulty of evaluation tests by requiring more complex thinking to get the
right answers. The odds are that this change alone will increase performance gaps because
the tests are now more g-loaded. [The last sentence was drafted months before the Los
Angeles Times reported a front-page story with the headline: “New scores show wider
ethnic gap” (September 12, 2015)].

In principle, there is nothing wrong with evaluation testing or having high expectations
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and standards. These examples, however, illustrate the consequences of ignoring what we
know about intelligence from empirical studies when crafting well-intentioned policies for
education, especially those policies that assume thinking skills can be taught to the same
degree to all students, or that buying iPads for everyone in the education system will
increase school achievement. As most teachers recognize, maximizing a student’s cognitive
strengths, whatever they may be, is a worthy goal. Everything we know from the research
literature on intelligence supports this view, including why the g-factor is important, how
the brain develops, and the major role genetics plays in explaining intelligence differences
among individuals. In the future, the potential for enhancing intelligence based on
neuroscience research just might make this goal more achievable for all students and result
in greater school and life achievement. As the twenty-first century progresses, we all need
to be aware of neuroscience research findings on intelligence and what they could mean for
our lives.

6.7 Final Thoughts
I have focused this book on progress in neuroscience research on intelligence, especially
based on genetic and neuroimaging methods. Many questions have yet to be answered by a
solid weight of evidence. Some of the major outstanding issues include: more
understanding of the mechanisms of how the brain develops in early childhood; how brain
development relates to adult intelligence; whether the g-factor and other intelligence
factors have specific sets of brain structural and/or functional networks that explain
individual differences and whether there are network sex differences; and what epigenetic
factors influence intelligence. There are also bigger questions that will require new
methods and technologies to work down the temporal and spatial resolution scales to
circuits, neurons, and synapses to create an advanced molecular neurobiology of
intelligence based on how genes function. Perhaps the most important questions to answer
involve whether intelligence research findings can be used to inform education issues and
public policy, especially regarding individuals who may lack the mental abilities to
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succeed in modern life. Also, it is not too early to discuss issues around any eventual
enhancement of intelligence implied by neuroscience research.

Writing forces thinking. I have thought about the research I have reviewed as this book
materialized and what I have learned from writing it. I believe my explicit bias toward
biological explanations of intelligence, developed over my 40-plus years of conducting
research, is supported by many of the newest findings from psychometrics, quantitative
genetics, molecular genetics, and neuroimaging. Not all studies are consistent with this
view but, as I see it, the weight of evidence continues to favor neuroscience approaches for
understanding what intelligence is, where it comes from, and how it can be changed. That
is the focus of this book and I will leave it to others to present alternative evaluations about
the weight of evidence from other perspectives on these issues. I am open to compelling
arguments about where I may be incorrect in my evaluation and I am prepared to change my
mind if new data shift the weight of evidence. I also believe that neuroscience perspectives
on intelligence offer the best hope to resolve pressing issues about education and public
policy that have not yet been resolved or ameliorated after 50 years of attempts based on
blank-slate assumptions about individual differences in intelligence and where they come
from. Neuroscience has the potential to change the status quo in ways that other approaches
have yet to accomplish. You may not agree, but if you are now thinking about intelligence
differently than when you started reading this book, my primary goal is met.

Speaking of you, reading also forces thinking. Even if you are convinced by my
arguments, I challenge you to think critically about the studies I have presented throughout
this book as representative of neuroscience progress and about what I think they mean. My
challenge to you is to find weak links and loopholes in my presentation, and when you do,
design a new research study to fix or falsify them.

I have a not-so-secret wish that I suspect many of you share. I would like to be
transported 40 or 50 years into the future to see what has transpired. Perhaps you will be
there working on brain research and nearing retirement. What have you learned? Are there
specific intelligence genes? How many? How do they work? Can genetic engineering,
drugs, or some experiences enhance intelligence dramatically? How does brain
development during childhood or teenage years affect intelligence? Is there a realistic
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virtual human brain that can simulate all manner of cognition, especially intelligence? Are
simulations the same for men and women? How smart is the most intelligent machine? Can
we see intelligence in the structure and function of networks, circuits, neurons, and
synapses? How has intelligence research been used to address problems in education and
other social areas? Is there a new neuroscience-based definition of intelligence? Is
chronometric testing now the new standard for assessing intelligence? What do brain
fingerprints predict and how will they be used? What new neuroscience research tools and
methods are available to study intelligence?

It would please me to know these things, even if I learn that my bets written in 2015
were badly misplaced. I was born at the midpoint of the twentieth century. As a college
student from a modest background, I had no concept of the future I am now living, let alone
developments in brain research. Now I can only imagine the answers and the new
questions that will come by the midpoint of the twenty-first century. If you are thinking
about whether to have a career studying intelligence and the brain, here is a statement that
will always be true: Get started – science is a never-ending story; whenever you begin will
be the most exciting time to work on the puzzles that define the neuroscience of
intelligence.

Chapter 6 Summary
Chronometrics refers to a method of measuring information processing in the brain
while performing standard cognitive tasks. The measurements are made in units of
time (milliseconds) and therefore provide a quantitative assessment of intelligence
on a ratio scale.

Memory is a key component of intelligence and neuroscience studies of memory
can identify brain circuits that help explain individual differences.

New neuroscience techniques like optogenetics and chemogenetics allow animal
studies of neurons and circuits that may be important for intelligence research in
humans.
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Further Reading
Clocking the Mind: Mental chronometry and individual differences (Jensen, 2006).
This is a technical manifesto that lays out the promise of chronometrics and the
challenges of implementing it.

On intelligence (Hawkins & Blakeslee, 2004). This is a non-technical exploration of
insights about how neuroscience can provide a blueprint for building intelligent
machines.

“Creativity and intelligence: Brain networks that link and differentiate the expression
of genius” (Jung & Haier, 2013). A summary of neuroimaging studies of intelligence
and creativity that proposes how genius may emerge from specific brain networks.

A neuroscience understanding of actual brain circuits may lead to profound
advances for building truly intelligent machines based on how the brain works.

Brain fingerprints made from neuroimaging are stable and unique to individuals and
they predict intelligence.

Neuroimaging studies of consciousness and creativity are providing some insights
about intelligence.

Social–economic status (SES), thought to be key by many intelligence researchers,
may be confounded with intelligence on a neural level. Implications of this are
provocative for public policy.

To the extent that different patterns of cognitive strengths and weaknesses are
rooted more in neurobiology and genetics than in childhood experience, it is
incorrect to blame lack of economic or educational success entirely on poor
motivation, poor education, or other social factors.

Neuroscience progress offers exciting opportunities for intelligence researchers. It
is a great time to enter the field.
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“DREADDs (designer receptors exclusively activated by designer drugs):
Chemogenetic tools with therapeutic utility” (Urban & Roth, 2015). This is a highly
technical neuroscience explanation of the topic.

“Functional connectome fingerprinting: Identifying individuals using patterns of brain
connectivity” (Finn et al., 2015). This is an exciting study on using neuroimaging to
create unique and stable patterns of brain connectivity that predict intelligence test
scores. It’s highly technical, but take a look. This work may be the beginning of a new
phase of intelligence research.

G is for genes: The impact of genetics on education and achievement (Asbury &
Plomin, 2014). This is a highly readable, non-technical summary of genetic research
on mental abilities. Specific policy recommendations for education reform are
discussed.
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Glossary

Allele.
One of the alternative forms of a gene that is located at a specific location on a specific
chromosome.

Autism.
A complex neurodevelopment disorder with a range of various cognitive and behavioral
symptoms often referred to as a spectrum of disorders.

Base pairs.
Building blocks formed by pairing adenine (A), guanine (G), cytosine (C), and thymine (T)
that link the two strands of DNA like rungs on a ladder. There are an estimated 3 billion base
pairs in human DNA.

Behavioral genetics.
The field of study that examines the role of genetic influences on behaviors and traits.

Behaviorism.
A psychology theory popular in the 1950s and 1960s that assumes a person is essentially
passive, responding to environmental stimuli, and that overt behavior is the only thing that can
be studied.

Bell curve.
Another name in statistics for any normal distribution of scores or traits. Also, the title of a
provocative 1994 book about intelligence and society.

Blank slate.
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A philosophical/psychological view that all traits in a person are formed mostly by nurture.
Also, the title of a 2002 book that argues against this view based on modern science.

Bochumer Matrizen-Test (BOMAT).
A standardized intelligence test based on solving abstract reasoning problems often used as an
estimate of the g-factor.

Brain-derived neurotrophic factor (BDNF).
A protein implicated in learning and several aspects of neuron health and development.

Brodmann areas.
A system for using numbers to define brain areas by anatomical location, originally based on
autopsy studies of neuron structures (see Figure 3.6).

CAT scan.
Computerized axial tomography is a procedure that uses X-rays to image body tissues and
structures. These images provide no information about the functioning of tissues.

Chemogenetics.
This is a technique used to experimentally turn neurons on and off using specially designed
chemicals (see DREADD).

Chromosome.
Thread-like structure that carries DNA in genes. Humans have 23 pairs of chromosomes.

Chronometrics.
A method of measuring information processing speed in the brain while performing standard
cognitive tasks. The measurements are made in units of time and therefore may provide a
quantitative assessment of intelligence on a ratio scale.

Continuity hypothesis.
The idea that the genes related to high intelligence are the same as those related to low
intelligence.

Correlation.
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A way to describe how strongly two things are related to each other (see Figure 1.2).

CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/Cas genes).
This is a method for editing the genome using bacteria.

Cross-sectional study.
A research study design that uses different subjects at different time points to establish a trend
(see longitudinal study).

Cross-validation.
A key step of replicating a finding to be sure the finding also applies to an independent
sample.

Crystallized intelligence (Gc).
The ability to learn facts and absorb information based on knowledge and experience.

Deep brain stimulation (DBS).
A neurosurgical procedure involving the implantation of a medical device called a neuro-
stimulator that delivers controlled mild electrical shocks to targeted brain areas.

Default network.
The network of brain areas that is active while a person is not focused on any particular
mental activity.

Designer receptors exclusively activated by designer drugs (DREADD).
A system for activating brain receptors using synthetic molecules.

Diffusion tensor imaging (DTI).
An MRI technique that uses water diffusion patterns to image white matter fibers.

Discontinuity hypothesis.
The idea that the genes related to high intelligence are different than those related to low
intelligence.

Dizygotic (DZ) twins.
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Fraternal twins; they have 50% of their genes in common.

DNA.
Deoxyribonucleic acid is the hereditary material in genes.

Doogie mice.
A strain of “smart” mice genetically engineered to solve mazes faster than controls.

Dopamine.
A neurotransmitter that helps control the reward and pleasure centers and also helps regulate
cognition, movement, and emotional responses.

Double helix.
The structure formed by double-stranded molecules of DNA.

Edge.
Refers to the association of two brain areas in graph analyses of brain connectivity.

EEG.
An electroencephalogram measures the electrical activity of the brain by using electrodes
attached to your scalp.

Elementary cognitive tasks (ECTs).
These are tasks that require basic mental processes like attention.

Epigenetics.
The field of study that investigates how genetic expression may be influenced by external
factors.

Evoked potential.
A special application of EEG which records brain electrical activity that is induced by a
specific stimulus like a light flash. The evoked potential is derived by averaging the EEG from
the same stimulus repeated many times.

Factor analysis.
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A statistical method that describes patterns of relationships among many variables based on
correlations.

False positive.
A test result that erroneously indicates something that turns out to be untrue.

Fluid intelligence (Gf).
Refers to inductive and deductive reasoning for novel problem-solving. Fluid intelligence is
closely associated with the g-factor.

Fluorescent proteins.
Light-emitting chemicals that can be used to visualize the internal workings of neurons.

Fluorodeoxyglucose (FDG).
A radioactive substance used in positron emission tomography (PET) to label metabolic
activity.

Flynn effect.
Refers to the gradual generational increase in raw IQ scores. The causes are not established
and whether the effect is on the g-factor is unsettled.

Fractional anisotropy (FA).
A measure of water diffusion derived from MRI and used to image white matter fibers and
assess their integrity.

Frontal dis-inhibition model (F-DIM).
Based on neuroimaging studies of creativity, this framework suggests a system of brain areas
that may be associated with creativity (see Figure 6.6).

Frontotemporal dementia (FTD).
A rare degenerating illness similar to Alzheimer’s disease characterized by progressive neuron
loss especially in frontal lobes.

Full-scale IQ.
The total score based on summing all the subtest scores from a standardized intelligence test.
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Functional MRI (fMRI).
A neuroimaging procedure using MRI that measures regional brain activity by detecting
aspects of blood flow.

g-factor (g).
Denotes the general feature of intelligence common to all tests of mental abilities and estimated
best from a battery of tests.

Gene.
A hereditary unit consisting of a DNA sequence at a specific location on a chromosome.

Gene expression.
The process by which genetic instructions start or stop creating proteins.

Generalist genes hypothesis.
The idea that the same genes affect most cognitive abilities rather than each cognitive ability is
influenced by a different set of genes.

Genome.
The entire set of DNA base pairs. All the genetic material of an organism.

Genome-wide association study (GWAS).
A method that searches the genome for small variations (see single-nucleotide polymorphisms
or SNPs) that occur more frequently in people with a particular disease or trait. Each study
can look at hundreds or thousands of SNPs at the same time (see microarrays).

Genomic informatics.
The field of managing and understanding vast data sets of genetic information from individual
base pairs to genomes.

Genomics.
The study of gene structure and function.

Graph analysis.
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A mathematical tool that is used to model brain connectivity and infer networks of brain areas
that are structurally or functionally associated.

Heritability.
A statistical estimate of how much variation in a trait or behavior in a population is due to
genetic influences.

Hub.
The term used in graph analysis to denote a brain area with many connections to other areas.

Intelligence.
The ability to think and learn. The opposite of stupidity.

IQ.
Intelligence quotient. A measure of intelligence derived from a psychometric test, but it is
defined differently depending on the test. IQ points are not measures of a quantity like
distance or weight. IQ scores have meaning only relative to other people and are best
understood in terms of percentiles.

Locus.
The position of a gene or genes on a specific region of a chromosome.

Longitudinal study.
A study where each subject is followed over time to investigate any changes (see contrast with
cross-sectional study).

Magnetic resonance imaging (MRI).
A technique based on pulsing radio-wave energy through powerful magnetic fields to create
detailed images of body tissue as water molecules react to the energy changes.

Magnetic resonance spectroscopy (MRS).
A specialized MRI technique used to measure biochemicals in the brain.

Magneto-encephalogram (MEG).
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A technique for measuring localized brain activity based on detecting fluctuating magnetic
fields that result from aggregate neuronal firings.

Meritocracy.
A system based on ability.

Methylation.
A chemical process that can change DNA. Of special interest in epigenetic investigations.

Microarray.
A tool used to determine whether the DNA from a particular individual contains a mutation in
genes (SNPs). Thousands of SNPs can be studied simultaneously.

Mnemonic methods.
Techniques and strategies used to improve and augment memorization.

Molecular genetics.
A field of study that investigates how genes function in terms of chemistry and physics.

Monozygotic (MZ) twins.
Identical twins; they have 100% of their genes in common.

Mozart effect.
The claim that listening to classical music increases intelligence.

Neuro-g.
The concept that at least part of the general factor of intelligence has a specific basis in the
brain (genetic or not).

Neuro-poverty.
The concept that one of the many causes of poverty may be related to the genetic basis of
intelligence.

Neuro-SES (social–economic status).
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The concept that part of the overlap between intelligence and SES may be due to genetic
influences.

Non-shared environment.
Unique experiences that contribute to the environmental influences on heritability.

Optogenetics.
Methods for controlling brain function with light.

Parieto-frontal integration theory (PFIT).
A framework proposed in 2007 that identifies specific areas distributed across the brain
relevant for general intelligence.

Performance IQ.
Non-verbal intelligence score derived from an IQ test.

Pleiotropy.
Occurs when one gene influences variability in two or more seemingly unrelated traits.

Polygenicity.
Occurs when many genes contribute to variance in a single trait.

Positive manifold.
Term used to describe the robust finding that tests of all mental abilities are related to each
other in the same direction: as scores on one test increase, scores on the others tend to also
increase.

Positron emission tomography (PET).
A technique to image body tissue functioning based on detecting the accumulation of low-
level radioactive labels.

Proteomics.
The study of proteins and how they work.

Psychometrics.
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A set of methods that uses various kinds of paper and pencil tests and statistical methods to
study intelligence and personality.

Quantitative genetics.
The study of genetic influences on variance of continuous traits (like intelligence or height)
among individuals in a population.

Quantitative trait locus (QTL).
Refers to a region of DNA related to a trait like intelligence, as determined by statistical
techniques.

Raven’s advanced progressive matrices (RAPM).
A difficult test of non-verbal abstract reasoning widely used to estimate the general factor of
intelligence.

Region of interest (ROI).
A brain area defined for neuroimaging analysis.

Regression equation.
A general statistical method with many varieties for estimating the relationship among
variables. Often used to predict one variable from a set of other variables weighted to
maximize the accuracy of prediction.

Restriction of range.
A statistical problem referring to a lack of sufficient variance on a variable (like intelligence) for
determining whether that variance is related to another variable.

SAT (scholastic assessment test).
A standardized test often used for college admission in the USA.

Savant.
A person of unusual ability or having profoundly detailed knowledge in a specialized or
narrow topic.

Shared environment.
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Common experiences that contribute to the environmental influences on heritability.

Single-nucleotide polymorphisms (SNPs).
A change or variation in a base pair substituting one base for another. SNPs may be
associated with traits or diseases and can be hints for identifying relevant genes.

Social–economic status (SES).
A measure that combines education and income in various ways to estimate social class for
use in studies about how these variables may influence behavior or traits.

Standard deviation.
A statistical measure that describes variation around the mean of a distribution of scores.

STEM.
Abbreviation for the fields of Science, Technology, Engineering, and Math.

Structural MRI (sMRI).
An MRI technique that visualizes the makeup of tissue but contains no functional information.

Synesthesia.
A rare neurological condition where sensory perception is mixed up. For example, hearing
sounds may produce visual colors.

Termites.
The slang term for the participants in Lewis Terman’s longitudinal study of high-IQ
individuals.

Test of non-verbal intelligence (TONI).
A non-verbal test of intelligence designed for children.

Transcranial alternating current stimulation (tACS).
A non-invasive technique for applying weak alternating electrical current through the skull to
stimulate brain areas.

Transcranial direct current stimulation (tDCS).
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A non-invasive technique for applying weak constant electrical current through the skull to
stimulate brain areas.

Transcranial magnetic stimulation (TMS).
A procedure that uses magnetic fields placed over the scalp to stimulate or suppress brain
activity.

Val66Met.
A gene associated with BDNF.

Voxel.
The smallest unit in a neuroimage. A three-dimensional pixel.

Voxel-based morphometry (VBM).
A technique for measuring brain characteristics at the level of individual voxels.

Wechsler Adult Intelligence Scale (WAIS).
A widely used standardized battery of mental tests that estimates intelligence relative to other
people with an IQ score.

Wechsler Intelligence Scale for Children (WISC).
A version of the WAIS especially designed and normed for children.
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