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Table 1.1, Electron wave lengths (in pm) for selected acceleration voltages V for
scanning eleciron microscopes (left two columns) and transmission electron
microscopes (ight two columns),

V (VoI A (pm) v (voly
1000 3876 100000
5000 1730 200000

10000 1220 300000

20000 859 400000

1000000

where m, = 1.674929 x 107 kg is the neutron rest mass and v isits velocity.
However, neutrons are not charged particles and, therefore, they are not
accelerated by a voltage. Neutrons are created in nuclear fi
inside nuclear reactors, as described in more detail in Chapter 13. Typically,
4 wide range of neutron velocities emerges from the reactor, and by selecting
only neutrons within a_certain narrow velocity window, one can select a
particular wave length. For instance, to obtain a neutron with a wave length
of 0.1nm, one would have to select a velocity window at v=3.96 x 10°m/s,
or approximately 4 k. It s also possible to have neutrons reach thermal
equilibrium, so that their kinetic energy is:

g

processes

Ky T, (%)

il g
By = 5,0

3

2

where k, = 1.38 x 10~ J/molecule/K is the Boltzmann constant. The de
Broglie relation then becomes:

(1.8)

1.5 What is a material property?

1.5.1 Definition of a material property
We choose materials to perform well in certain applications. For instance, we
use steel beams and cables in bridges. because they provide the strength and
load-bearing capacity needed. We use plastics in toys because they can be
molded into virtually any shape and they are strong and light weight. When
we use a material in a certain application, we know that it will be subjected

10 particular external conditions, e.g. a constant load, or a high temperature,
or perhaps an electrical current running through the material. In all these
cases, we must make sure that the material responds in the desired way. For a
les to retain their strength

bridge deck held up by steel cables, we want the
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all year round, regardless of the weather and temperature, and regardless of
the number of cars and trucks crossing the bridge. For a computer chip, we
want the semiconductor material to behave predictably for the lifetime of the
computer.

In general, we want a material to have a particular response to a given
external influence. This basic statement can be cast in more formal, math-
ematical terms. We will represent the external influence by the symbol &,
which stands for Field. This could be an electrical or magnetic field, a tem-
perature field, the earth’s gravitational field, etc. The material will respond
nd the Response is described by the symbol ®. For instance,
of a steel beam to an external load (i.e., a weight at the end of
the beam) will be a deflection of the beam. The response of a conductor to
an electrical field applied between its two ends will be an elect
running through the conductor. In the most general sense, the relat
field and response is described by:

the respon:

cal current

n between

R=R(F). (19)

ic.. the material response is a function of the externally applied field. Tt is
one of the tasks of a materials scientist to figure out what that function looks
like.

Once we re

ognize that the behavior of a material under certain external
conditions can be expressed in mathematical terms, we can employ mathe-
matical tools to further describe and analyze the response of this material. We
know from calculus that, for “well-behaved” functions, we can always expand
the function into powers of its argument, i.c., construct a Taylor expansion.*
For equation 1.9 above, the Taylor expansion around =0 is given by:

R 1 PR
= Flo Flho (L10)

where R, describes the “state” of the material at zero field. There are two

(i) R, =0: in the absence of an external field (" = 0), there iis no permanent
(or remanent) material response. For example, if the external field is an

applied stress, and the material response is a strain, then at zero
there is no strain (assuming linear elasticity).

stress

Recall that a Taylor expansion of a function f(x) around

=i+ = 9L

015 given by

1235 ... (n—1) .0 is the factorial of . IF the functlon / depends on
other variables in addition to v, then the derivatives d/dx” must be replaced by partil
derivatives /0.
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(if) R, # 0: in the absence of an external field (5" = 0), there is a permanent
material response. For example, i

a ferromagnetic material, the net
magnetization s in general different from zero, even at zero applied field.
If we truncate the series after the second term (i.e., we ignore all deriva-
tives of  except for the first one). then the expression for % is simplified
dramatically:
iR aR|
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This is a linear equation between the applied field and the response. The
quantity P is a material property. Ignoting the higher order derivatives of
R is generally known as linear response theory. This approximation simpli-
fies things considerably and, for many purposes, it is a useful and accurate
approximation.

Let us consider an example. An electrical conductor, say, a copper wire,
is placed between the terminals of a battery. If the wire is 3 meters long,
and the battery is capable of producing a 9V voltage drop, then there is an
electric field, E, of 9 volts per 3 meter, or £ =3V/m. In response to this
field, a current will flow through the wire. The amount of current depends on
the cross section of the wire, 5o it is convenient to work in terms of current
density (current per unit area, or A/m?), j. For most conductors, the relation
between current density and electric field is lin

=0k,

where o is known as the electrical conductivity, and has units of A/Vm
or 1/Qm, where 0 stands for ohm (1 ohm = ). Let us compare this
equation with the Taylor expansion in Eq. 1.10. The exteral field  is equal
t0 E, and the response  is equal to j. First of all, when there is no voltage,
there will be no current, so that &, = j, = 0. There is no dependence on
powers of E, so there is only one term in the series, namely:

o

We conclude that ¢ is equal to the first derivative of the current density with
respect to the electric field. This proportionality factor does not depend on j
or E, therefore we call o a material property. In more general terms,  linear
material property is the proportionality factor between an applied field and
the resulting material response.

1.5.2 Directional dependence of properties

In the previous section, we saw that the current density, /. in a conduetor is
proportional to the applied el

ic field, E. The proportionality factor is the
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conductivity o All three quantities in the previous refation were scalar quan-
tities. However, we can imagine taking a rectangular block of a conducting
material, and applying an electric field between the top and bottom surfaces,
or between the front and back surfaces, or between opposite comers. This
means that the electric field has both a magnitude and a direction, hence it
can be represented by a vector, E.5 The same thing can be said of the current
density, since the current has a magnitude and it runs in a particular direction.
Hence, we have a vector J. The relation between electric field and current
density then reads:

Since o is a scalar (i.c., & number), this means that the current density vector
i always parallel to the electric field vector. Well, not quite. When we defined
the conductivity, we started from the relation:

i
9E

But this relation is only valid for scalar j and E. We must incorporate the fact
that both j and E are vectors into this equation. Both vectors have components
with respect to a standard Cartesian reference frame: § = (j,, j,. j.) and E
(E,. E,. E.). So, instead of having only one single value for o, now we
have a total of nine values! Here's how that works. Consider the following
expression:

(78
GE,

In other words, thisis the derivtive of the x-component of the current density
‘with respect to the x-component of the electric field. This derivative will have
a particular value (a scalar value) which we will represent by o, Similarly,
we can define

and 50 on. There are nine such relations, which can be summarized by writing:

o=
= o,

# In this book, we will always use bold characters o represent vectars.
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where the subscripts or indices i and J take on the values , )
relation between the curent density vector and the electric field vector i then
given by

Jo= O E o E t o By
Jy=0,E +0,E,+0.E;
.= 0.E +0,E,+0,E,.

This relation expresses the fact that the current density, in response to an
eletric field, need not be parallel to this electric field. Each component of
the current density is written as a linear combination of all the components
of the electric field

What we lear from the above example is that a material property is not
always represented by a simple scalar. If the property connects a vector field
10 a vector response, then the material property has nine elements, which can
be written as a 3 x 3 matrix. Mathematicians call such a matrix a tensor. The
question then arises: Do we need nine numbers for the electrical conductivity
of every material, or is it possible that some materials need fewer numbers?
The answer (o this question will become clear in the next section, where we
introduce the concept of symmetry. Before we do so, let us first con
possibility that a material property varies with location in the material.

It is intuitively clear that an external field can depend on location. For
instance, the temperature at one end of a material can be different from the
temperature at the other end. In mathematical terms, this means that the gra-
dient of the temperature does not vanish. It is possible for a material property
10 show a simi

er the

the material. Consider, for
clear that the chemical composition of
since there is only one chemical element
present. We say that the composition is homogencous, i.e., the composition
does not depend on position. Similarly, the electrical conductivity of pure
silicon is the same everywhere, so that the electrical conductivity is homoge-

instance, a cube of pure silicon. It i
this cube is the same everywhere,

ine, next, that we implant phosphorus atoms on one.

cube, t0 a depth of a few hundred microns. Since the phosphorus concen-
tration is not a constant throughout the cube, we say that the composition i
heterogencous, concentration depends on the location in the mater
Since phosphorus has five electrons in its outer shell, whereas silicon has
only four, we see intuitively that the electrical conductivity in the
contain P must be

de of the

ifferent from that of the other regions. In other words,
the electrical conductivity of P-doped silicon is heterogeneous if the P is not
distributed in a homogeneous way.

© The definition and propeties of ensrs need not concern us here. It s suffcient that the
Feader understands that material properics oficn consist of multple scalars, arranged in
particular form (in this case, a 3 x 3 matix),
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Fig. 1.4 lusration of two
simple 2:D arystal tructures:
(@) based on a squre grid
with one type of atoms, while
(0 s 3 rectangular grid with
two ifferent kinds of atoms
The eectrical conductviies in
the x and  direcions for (3)
are expected 0 be the same,
whereas they are most likely
dierent for the second
siucture

3 Afirst encounter with symmetry

One might ask what the previous section has (o do with crystallography.
That's a very good question, and we will attempt to answer it superficially
in this section. Consider a 2-D material in which the atoms are arranged
as shown schematically in Fig. 1.4(a). All atoms are identical, and they are
Tocated on the nodes of a square grid. If we apply an electric field along
the x-axis, we will generate a certain current density (assuming that our 2-D
material s a conductor). If we apply the same field strength in the y direction,
then there is no reason why the current density along y should be any different
from that along x. After all, the structure looks exactly the same along the
xand y di

e relation between electric field and current density in
this 2-D material can be written as:

0 0 (E,
) = (O o) (B L12
Q-GE2E) o
Since the x and y directions in the crystal are equivalent, we can interchange
them. In other words. we interchange the subscripts in the material property

matrix
T T\, (O O
o, 0, oy 0.
1f we apply the electric field along the same direction as before, we obtain:
o, 0, (E
) = (T %) (7o 113
0-G2E o

‘The response in this case must be equal to the response in (1.12), s
must have:”

that we

E2D)=E2) a5

‘which means that

e (1.15)

7 This procedure is mathematically nat enirely rigorous. An exact derivation requires the use
of the ransformation formul for a sccond rank tensor, which is beyond the scope of his
texthaok. The exact derivation for the case llustraed above would resul n the following.
equalitis:
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So, we have established that, for a crystal with the structure shown in
Fig. 1.4(a), the components of the conductivity matrix are related to one
another by the above relations. The fact that the current densities in the x and
¥ directions must be equal to each other is a reflection of the symmietry of the
underlying crystal structure.® The square character of the grid directly leads
to relations 1.15.

“This is an example of how the symmetry of a structure imposes constraints
on the physical (or material) properties of the structure. This simple observa-
tion provides an immediate motivation for a textbook on crystal structures:
‘many material properties are directly determined by the underlying structure
of the material, ie., the precise distribution of the atoms. To understand
material propertics, and to design materials with new properties, we must,
therefore, understand how the atoms are arranged. This consists of two parts
first, we must learn the proper language to describe crystal structures; then,
we must learn how to determine where the atoms are located. We will learn
both of these aspects in the first half of the book. Then, we will apply what
we have learned to a large variety of crystal structures in the second half.

Before we provide a further illustration of what this book is all about, we
must conclude the example that we started at the beginning of this section.
‘There is more to material properties than just the underlying crystal structure.
Material properties must also satisfy additional laws of physics, in particular,
the laws of thermodynamics. Tn the case of electrical conductivity, one can
show that the matrix representing the conductivity must always be a symmetric
;. 1 we apply this to Equations 1.15, taking into account
the footnote on page 14, we find that @, = —o,. and this can only be true
if 0, = 0. Hence, thermodynamics and symmetry combine to predict that for
the crystal structure shown in Fig. 1.4(a), the relation between current density
and electric field must be

E;
+(%)-

(-G )

al structure is based on a rectangular grid rather than

However, if the cr
4 square grid, it can be shown (reader exercise) that ,, # o, so that the

relation becomes:
Je\ Z (o O (Ee
)=\ 0 ) E,

For the crystal structure shown in Fig. 1.4(b), it is intuitively clear that the
conductivity along the x and y directions must be different, since the sequence
of atoms in cach direction is different.

* Note that we wil define what a erystal sirueture is in Chapter 3
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When a material property does not depend on the dircction of the
applied field, then that property is known as an isotropic property. Prop-
erties that do depend on the direction of the field are anisotropic prop-
erties. The electrical conductivity in the crystal structure of Fig. 1.4(a) is
isotropic, but in Fig. 14(b) the conductivity is anisotropic. Note that it
is possible to have anisotropic properties that are homogeneous or het-
erogencous across a crystal; if a property is heterogencous, it means
that the value of the material constants (e.g., the value of the electrical
conductivity ) varies with location in the erystal, perhaps due to chemical
inhomogeneities.

Note that the above arguments do not say anything at all about the magy
tude of the conductivity parameters. Instead, symmetry and thermodynamics
only state which parameters must vanish, and how cach parameter is related
1o the others. The magnitude of the parameters must follow from a different
branch of physics, known as solid state physics, which would use quantum
mechanics and other tools to express the conductivity in terms of more funda-
mental parameters (i.¢., the charge distribution in the material). Once again,
knowledge of the underlying crystal structure s essential for these kinds of
computations,

There are many mater

I properties. The most important ones are linear
properties, meaning that there is a direct proportionality between the field
and the response. Others are quadratic in the field, or even higher order.
Each material property is represented mathematically by a tensor. Tensors
of rank zero are scalars, rank one results in a vector, rank two in a 3x3
matrix, and so on. Table 1.2 shows some of the more important mate-
rial properties that are represented by tensors. The tensors are grouped by
rank, and are also labeled (in the last column) by E (equilibrium prop-
erty) or T (wransport property). The number following this letter indicates
the maximum number of independent, non-zero elements in the tensor, tak-
ing into account symmetries imposed by thermodynamics. The Field and
Response columns contain the following symbols: AT = temperature diff
ence, AS = entropy change, , = electric field component: magnetic
field components, ¢, = mechanical stain, D, = electric displacement, B, =
magnetic induction, o, = mechanical stress, A, = change of the imper-
meability tensor, j; = electrical current density, ¥, = temperature gradient,
h, = heat flux, V,c = concentration gradient, m, = mass flux, p! = anti-
symmeric part of resistivity tensor, p; = symmetrie part of resistivity tensor,
Ap,; = change in the component i of the resistivity tensor, I, = direction
cosines of electromagnetic wave direction in crystal, and G = optical gyration
constant.

Tt is clear from this table that there are quite a few important material
properties. While the details of this table go far beyond this textbook, it is
instructive to see that the symmetry of the underlying crystal structure of a
material has an influence on all these properties.

A
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Table 1.2. Materials property and transport tensors (adapted from Nowick

(Nowick, 1995)).

Property Symbol Field Response  Typett
Tensors of Rank 0 (Sealars)
Specific heat c AT s En
“Tensors of Rank 1 (Vectors)
Electrocaloric ,7‘ E s 3
Magnetocaloric a H, As B3
Pyroclectric 7 AT D, 3
Pyromagnetic q AT B 3
TR
Thermal expansion ‘, @ 6
P e o, a,, As o
ctric permittivity y E, D, o
M’lgneuc permeability y H 8 Ef6
Opical activi 8 4l G Ef6
Mgt i 1 D, R
polari:
Convense magnelo:]ecn i A B B
Bl ey o) EG) E) 6
(resistivity)
ermal conductivity I wr n ™
Diffusivity D, Vie m ™6
Thenmosec pover 5 v E ™
Hall effe R, 5 o ™
Tensors of Rank 3
Piczoclectricity dy i D, Ens
Converse piezoelectricity i Ee € ENS
Piezomagnetism 0 a 5, s
Converse. Oy H, € EN8
piczomagnetism
Electro-optc effect s A B, ENs
Nernst tensor oo V78, E ™
Tensors of Rank 4
Elasticit S (€) oy (&) € (o)
Elwlmslncuon s EE &
Photaelasticity it Ty ABy,
Kerr P EE, A8,
et e B, &
iezoresistance iy o p,
etothermoelectric Ty VTBB, K
power
Second order Halleffect Pt BB g ™0
Tensors of Rank 6
“Third order clasticity Cimn i i EIS6




