CST Book draft

Peter Aczel and Michael Rathjen

Contents

1 Introduction 7
2 Intuitionistic Logic 9
2.1 Constructivism 9
2.2 The Brouwer-Heyting-Kolmogorov interpretation 11
2.3 Counterexamples 13
2.4 Natural Deductions 14
2.5 A Hilbert-style system for intuitionistic logic 17
2.6 Kripke semantics 19
2.7 Exercises 21
3 Some Axiom Systems 23
3.1 Classical Set Theory 23
3.2 Intuitionistic Set Theory 24
3.3 Basic Constructive Set Theory 25
3.4 Elementary Constructive Set Theory 26
3.5 Constructive Zermelo Fraenkel, CZF 26
3.6 On notations for axiom systems 27
3.7 Class Notation 27
3.8 Russell's paradox 28
4 Basic Set constructions in BCST 31
4.1 Ordered Pairs 31
4.2 More class notation 32
4.3 The Union-Replacement Scheme 35
4.4 Exercises 37
5 From Function Spaces to Powerset 41
5.1 Subset Collection and Exponentiation 41
5.2 Appendix: Binary Refinement 44
5.3 Exercises 45
6 The Natural Numbers 47
6.1 Some approaches to the natural numbers 47
6.1.1 Dedekind's characterization of the natural numbers 47
6.1.2 The Zermelo and von Neumann natural numbers 48
6.1.3 Lawvère's characterization of the natural numbers 48
6.1.4 The Strong Infinity Axiom 48
6.1.5 Some possible additional axioms concerning ω 49
6.2 DP-structures and DP-models 50
6.3 The von Neumann natural numbers in ECST 51
6.3.1 The DP-model \mathcal{N}_{ω} 52
6.3.2 The Least Number Principle 53
6.3.3 The Iteration Lemma 54
6.4 The Natural Numbers in $\mathbf{E C S T}^{+}$ 55
6.4.1 The DP-model $(\mathbb{N}, 0, S)$ 55
6.4.2 Primitive Recursion 56
6.4.3 Heyting Arithmetic 57
6.5 Transitive Closures 58
6.6 Some Possible Exercises 59
7 The Continuum 61
7.1 The ordered field of rational numbers 62
7.2 The pseudo-ordered field of real numbers 65
7.3 The class \mathbb{R}^{\prime} of left cuts is a set 67
8 The Size of Sets 69
8.1 Notions of size 69
8.2 Appendix: The Pigeonhole principle 79
8.3 Exercises 83
9 Foundations of Set Theory 85
9.1 Well-founded relations 85
9.2 Some consequences of Set Induction 88
9.3 Transfinite Recursion 89
9.4 Ordinals 91
9.5 Appendix: On Bounded Separation 93
9.5.1 Truth Values 93
9.5.2 The Infimum Axiom 95
9.5.3 The Binary Intersection Axiom 96
9.6 Appendix: Extension by Function Symbols 97
9.7 Exercises 99
10 Choice Principles 103
10.1 Diaconescu's result 103
10.2 Constructive Choice Principles 105
10.3 The Presentation Axiom 109
10.4 More Principles that ought to be avoided in CZF 110
10.5 Appendix: The Axiom of Multiple Choice 112
11 The Regular Extension Axiom and its Variants 115
11.1 Axioms and variants 115
12 Inductive Definitions 119
12.1 Inductive Definitions of Classes 119
12.2 Inductive definitions of Sets 122
12.3 Tree Proofs 123
12.4 The Set Compactness Theorem 126
12.5 Closure Operations on a po-class 127
13 Coinduction 131
13.1 Coinduction of Classes 131
13.2 Coinduction of Sets 133
$14 \bigvee$-Semilattices 135
14.1 Set-generated \bigvee-Semilattices 135
14.2 Set Presentable \bigvee-Semilattices 136
14.3 \bigvee-congruences on a \bigvee-semilattice 138
15 General Topology in Constructive Set Theory 141
15.1 Topological and concrete Spaces 141
15.2 Formal Topologies 142
15.3 Separation Properties 145
15.4 The points of a set-generated formal topology 147
15.5 A generalisation of a result of Giovanni Curi 150
16 Russian Constructivism 157
17 Brouwer's World 159
17.1 Decidable Bar induction 160
17.2 Local continuity 161
17.3 More Continuity Principle 163
18 Large sets in constructive set theory 165
18.1 Inaccessibility 165
18.2 Mahloness in constructive set theory 169
19 Intuitionistic Kripke-Platek Set Theory 173
19.1 Basic principles 173
19.2 Σ Recursion in IKP 176
19.3 Inductive Definitions in IKP 179
20 Anti-Foundation 183
20.1 The anti-foundation axiom 184
20.1.1 The theory CZFA 185
20.2 The Labelled Anti-Foundation Axiom 186
20.3 Systems 188
20.4 A Solution Lemma version of AFA 191
20.5 Greatest fixed points of operators 192
20.6 Generalized systems of equations in an expanded universe 195
20.7 Streams, coinduction, and corecursion 197
21 The Interpretation of CZF in Martin-Löf Type Theory 203
22 The Metamathematics of Constructive Set Theories 205
22.1 ECST 205
22.2 The strength of CZF 205
22.3 Some metamathematical results about REA 206
22.4 ZF models of REA 214
22.5 Brouwerian Principles 215
22.5.1 Choice principles 216
22.6 Elementary analysis augmented by Brouwerian principles 217
22.7 Combinatory Algebras 220
22.7.1 Kleene's Examples of Combinatory Algebras 223
22.8 Type Structures over Combinatory Algebras 225
22.9 The set-theoretic universe over Kleene's second model 228
22.10Predicativism and CZFA 233

Chapter 1

Introduction

The general topic of Constructive Set Theory originated in the seminal 1975 paper of John Myhill, where a specific axiom system CST was introduced. Constructive Set Theory provides a standard set theoretical framework for the development of constructive mathematics in the style of Errett Bishop ${ }^{1}$ and is one of several such frameworks for constructive mathematics that have been considered. It is distinctive in that it uses the standard first order language of classical axiomatic set theory ${ }^{2}$ and makes no explicit use of specifically constructive ideas. Of course its logic is intuitionistic, but there is no special notion of construction or constructive object. There are just the sets, as in classical set theory. This means that mathematics in constructive set theory can look very much like ordinary classical mathematics. The advantage of this is that the ideas, conventions and practice of the set theoretical presentation of ordinary mathematics can be used also in the set theoretical development of constructive mathematics, provided that a suitable discipline is adhered to. In the first place only the methods of logical reasoning available in intuitionistic logic should be used. In addition only the set theoretical axioms allowed in constructive set theory can be used. With some practice it is not difficult for the constructive mathematician to adhere to this discipline.

Of course the constructive mathematician is concerned to know that the axiom system she is being asked to use as a framework for presenting her mathematics makes good constructive sense. What is the constructive notion of set that constructive set theory claims to be about? The first author believes that he has answered this question in a series of three papers on the Type Theoretic Interpretation of Constructive Set Theory. These papers are based on taking MartinLöf's Constructive Type Theory as the most acceptable foundational framework of ideas that make precise the constructive approach to mathematics. They show

[^0]how a particular type of the type theory can be used as the type of sets forming a universe of objects to interpret constructive set theory so that by using the Curry-Howard 'propositions as types' idea the axioms of constructive set theory get interpreted as provable propositions.

Why not present constructive mathematics directly in the type theory? This is an obvious option for the constructive mathematician. It has the drawback that there is no extensive tradition of presenting mathematics in a type theoretic setting. So, many techniques for representing mathematical ideas in a set theoretical language have to be reconsidered for a type theoretical language. This can be avoided by keeping to the set theoretical language.

Surprisingly there is still no extensive presentation of an approach to constructive mathematics that is based on a completely explicitly described axiom system - neither in constructive set theory, constructive type theory or any other axiom system.

One of the aims of these notes is to initiate an account of how constructive mathematics can be developed on the basis of a set theoretical axiom system. At first we will be concerned to prove each basic result relying on as weak an axiom system as possible. But later we will be content to explore the consequences of stronger axiom systems provided that they can still be justified on the basis of the type theoretic interpretation. Because of the open ended nature of constructive type theory we also think of constructive set theory as an open ended discipline in which it may always be possible to consider adding new axioms to any given axiom system.

In particular there is current interest in the formulation of stronger and stronger notions of type universes and hierarchies of type universes in type theory. This activity is analogous to the pursuit of ever larger large cardinal principles by classical set theorists. In the context of constructive set theory we are led to consider set theoretical notions of universe. As an example there is the notion of inaccessible set of Rathjen (see [68]). An aim of these notes is to lay the basis for a thorough study of the notion of inaccessible set and other notions of largeness in constructive set theory.

A further motivation for these notes is the current interest in the development of a 'formal topology' in constructive mathematics. It would seem that constructive set theory may make a good setting to represent formal topology. We wish to explore the extent to which this is indeed the case.

These notes represent work in progress and are necessarily very incomplete and open to change.

Chapter 2

Intuitionistic Logic

2.1 Constructivism

Up till the early years of the 20th century, there was just "one true logic", classical logic as it came to be called later. In that logic, any statement was either true or false. The law of excluded middle, $A \vee \neg A$, had been a pillar of logic for more than 2000 years. It was because of questioning by Brouwer, a Dutch mathematician, that intuitionism or intuitionistic mathematics arose about the year 1907. Brouwer rejected the use of the law of excluded middle and in particular that of indirect existence proofs in mathematics. He is particularly notorious for basing mathematics on principles that are false classically.

Constructivism did not originate with Brouwer though. As the nineteenth century began, virtually all of mathematical research was of a concrete, constructive, algorithmic nature. By the end of that century much abstract, non-constructive, non-algorithmic mathematics was under development. Middle nineteenth century and early twentieth century mathematics look quite different. In addition to the growth of new subjects, there is a growing preference for short conceptual non-computational proofs (often indirect) over long computational proofs (usually direct). Besides Brouwer, such great names as Kronecker, Poincaré, Clebsch, Gordan, E. Borel had reservations about the non-computational methods. But only a few tried their hand at systematic development of mathematics from a constructive point of view.

Intuitionists trace their constructive lineage at least as far back as Leopold Kronecker (1823-91), who initiated a programme for arithmetizing higher algebra; in this, he demanded for arithmetic a primacy irreducible to natural science or logic and refused to countenance non-constructive existence proofs. He developed much of algebra and algebraic number theory as a subject dealing with finite manipulations of finite expressions. Writings of the so-called semi-intuitionists, particularly Poincaré and Borel, exerted a strong influence on Brouwer and his followers.

Brouwer's motivation for intuitionism was always a philosophical one. Still in the 1970s, Michael Dummett in his Elements of intuitionism [23] maintained that intuitionism would be pointless without a philosophical motivation. In [23], Dummett argues that intuitionism survives as the only tenable position among the rival over-all philosophies of mathematics known as logicism, formalism, and intuitionism.

Bishop's constructive mathematics (see [11]) challenges this attitude. He advocates constructive mathematics because it supports the computational view of mathematics.

In general, the demand for constructivism is the demand that E be respected:
(E) The correctness of an existential claim $(\exists x \in A) \varphi(x)$ is to be guaranteed by warrants from which both an object $x \in A$ and a further warrant for $\varphi(x)$ are constructible.

Or as Bishop ([11], p. 5) put it:
When a man proves a positive integer to exist, he should show how to find it. If God has mathematics of his own that needs to be done, let him do it himself.

Here is an example of a non-constructive existence proof that one finds in almost every book and article concerned with constructive issues. ${ }^{1}$

Proposition: 2.1.1 There exist irrational numbers $\alpha, \beta \in \mathbb{R}$ such that α^{β} is rational.
Proof: $\sqrt{2}$ is irrational, and $\sqrt{2}^{\sqrt{2}}$ is either rational or irrational. If it is rational, let $\alpha:=\beta:=\sqrt{2}$. If not, put $\alpha:=\sqrt{2}^{\sqrt{2}}$ and $\beta:=\sqrt{2}$. Thus in either case a solution exists.

The proof provides two pairs of candidates for solving the equation $x^{y}=z$ with x and y irrational and z, without giving us a means of determining which. Due to a non-trivial result of Gelfand and Schneider it is known that $\sqrt{2}^{\sqrt{2}}$ is transcendental, and thus the first pair provides the answer.

Similarly classical proofs of disjunctions can be unsatisfactory. H. Friedman pointed out that classically either $e-\pi$ or $e+\pi$ is a irrational number since assuming that both $e-\pi$ and $e+\pi$ are rational entails the contradiction that e is rational. But to this day we don't which of these numbers is irrational.

Another example is the standard proof of the Bolzano-Weierstraß Theorem.
Examples: 2.1.2 If S is an infinite subset of the closed interval $[a, b]$, then $[a, b]$ contains at least one point of accumulation of S.

[^1]Proof: We construct an infinite nested sequence of intervals $\left[a_{i}, b_{i}\right]$ as follows: Put $a_{0}=a, b_{0}=b$. For each i, consider two cases:
(i) if $\left[a_{i}, \frac{1}{2}\left(a_{i}+b_{i}\right)\right]$ contains infinitely many points of S, put $a_{i+1}=a_{i}, b_{i+1}=$ $\frac{1}{2}\left(a_{i}+b_{i}\right)$.
(ii) if $\left[a_{i}, \frac{1}{2}\left(a_{i}+b_{i}\right)\right]$ contains only finitely many points of S, put $a_{i+1}=\frac{1}{2}\left(a_{i}+b_{i}\right)$, $b_{i+1}=b_{i}$.

By induction on i, it is plain that each interval $\left[a_{i}, b_{i}\right]$ contains infinitely many points of S. This being a sequence of nested intervals, it converges to a point every neighbourhood of which contains infinitely many points of S.
The foregoing proof specifies a 'method' which we cannot, in general, carry out, because we may be unable to decide whether case (i) or case (ii) applies. The 'method' enlists a principle of omniscience (see Definition 2.3.1).

2.2 The Brouwer-Heyting-Kolmogorov interpretation

The notion of a mathematical proposition is a semantic notion. In a first approach, a proposition could be construed as a meaningful statement describing a state of affairs. Traditionally, a proposition is something that is either true or false. In the case of mathematical statements involving quantifiers ranging over infinite domains, however, by adopting such a view one is compelled to postulate an objective transcendent realm of mathematical objects which determines their meaning and truth value. Most schools of constructive mathematics reject such an account as a myth. Kolmogorov observed that the laws of the constructive propositional calculus become evident upon conceiving propositional variables as ranging over problems or tasks. The constructivists restatement of the meaning of the logical connectives is known as the Brouwer-Heyting-Kolmogorov interpretation. It is couched in terms of a semantical notion of proof. It is instructive, though, to recast this interpretation in terms of evidence rather than proofs.

Definition: 2.2.1

1. p proves \perp is impossible, so there is no proof of \perp.
2. p proves $\varphi \wedge \psi$ iff p is pair $\langle a, b\rangle$, where a is proof for φ and b is proof for ψ.
3. p proves $\varphi \vee \psi$ iff p is pair $\langle n, q\rangle$, where $n=0$ and q proves φ, or $n=1$ and q is proves ψ.
4. p proves $\varphi \rightarrow \psi$ iff p is a function (or rule) which transforms any proof s of φ into a proof $p(s)$ of ψ.
5. p proves $\neg \varphi$ iff p proves $\varphi \rightarrow \perp$.
6. p proves $(\exists x \in A) \varphi(x)$ iff p is a pair $\langle a, q\rangle$ where a is a member of of the set A and q is a proof of $\varphi(a)$.
7. p proves $(\forall x \in A) \varphi(x)$ iff p is a function (rule) such that for each member a of the set $A, p(a)$ is a proof of $\varphi(a)$.

Many objections can be raised against the above definition. The explanations offered for implication and universal quantification are notoriously imprecise because the notion of function (or rule) is left unexplained. Another problem is that the notions of set and set membership are in need of clarification. But in practice these rules suffice to codify the arguments which mathematicians want to call constructive. Note also that the above interpretation (except for \perp) does not address the case of atomic formulas.

Definition: 2.2.2 "BHK" will be short for "Brouwer-Heyting-Kolmogorov". We say that a formula φ is valid under the BHK-interpretation, if a construction p can be exhibited that is a proof of φ in the sense of the BHK-interpretation. The construction p is often called a proof object.

Examples: 2.2.3 Here are some examples of the BHK-interpretation. We use λ-notation for functions.

1. The identity map, $\lambda x . x$, is a proof of any proposition of the form $\varphi \rightarrow \varphi$ for if a is a proof of φ then $(\lambda x \cdot x)(a)=a$ is a proof of φ.
2. A proof of $\varphi \wedge \psi \rightarrow \psi \wedge \varphi$ is provided by the function $f(\langle a, b\rangle)=\langle b, a\rangle$.
3. Any function is a proof of $\perp \rightarrow \varphi$ as \perp has no proof.
4. Recall that $\neg \theta$ is $\theta \rightarrow \perp$. The law of contraposition

$$
(\varphi \rightarrow \psi) \rightarrow(\neg \psi \rightarrow \neg \varphi)
$$

is valid under the BHK-interpretation. To see this, assume that f proves $\varphi \rightarrow \psi, g$ proves $\neg \psi$, and a proves φ. Then $f(a)$ proves ψ, and hence $g(f(a))$ proves \perp. Consequently, $\lambda a . g(f(a))$ proves $\neg \varphi$, and therefore $\lambda g . \lambda a . g(f(a))$ proves $\neg \psi \rightarrow \neg \varphi$. As a result, we have shown that the construction $\lambda f . \lambda g . \lambda a . g(f(a))$ is a proof of the law of contraposition.
5. The principle of excluded middle is not valid under a reasonable reading of the BHK-interpretation because given a sentence θ we might not be able to find a proof of θ nor a proof of $\neg \theta$. However, the double negation of that principle is valid under the BHK-interpretation. This may be seen as follows. Suppose g proves $\neg(\psi \vee \neg \psi)$. One easily constructs functions \mathfrak{f}_{0}
and \mathfrak{f}_{1} such that \mathfrak{f}_{0} transforms a proof of ψ into a proof of $\psi \vee \neg \psi$ and \mathfrak{f}_{1} transforms a proof of $\neg \psi$ into a proof of $\psi \vee \neg \psi$, respectively. Thus, $\lambda a . g\left(\mathfrak{f}_{0}(a)\right)$ is a proof of $\neg \psi$ while $\lambda b . g\left(\mathfrak{f}_{1}(b)\right)$ is a proof of $\neg \psi \rightarrow \perp$. Consequently, $g\left(\mathfrak{f}_{1}\left(\lambda a . g\left(\mathfrak{f}_{0}(a)\right)\right)\right)$ is a proof of \perp. As a result, $\lambda g \cdot g\left(\mathfrak{f}_{1}\left(\lambda a . g\left(\mathfrak{f}_{0}(a)\right)\right)\right)$ proves $\neg \neg(\psi \vee \neg \psi)$ for any formula ψ.

2.3 Counterexamples

Certain basic principles of classical mathematics are taboo for the constructive mathematician. Bishop called them principles of omniscience. They can be stated in terms of binary sequences, where a binary sequence is a function $\alpha: \mathbb{N} \rightarrow$ $\{0,1\}$. Below, the quantifier $\forall \alpha$ is supposed to range over all binary sequences and the variables n, m range over natural numbers. Let $\alpha_{n}:=\alpha(n)$.

Definition: 2.3.1 Limited Principle of Omniscience (LPO):

$$
\forall \alpha\left[\exists n \alpha_{n}=1 \quad \vee \quad \forall n \alpha_{n}=0\right] .
$$

Weak Limited Principle of Omniscience (WLPO):

$$
\forall \alpha\left[\forall n \alpha_{n}=0 \quad \vee \quad \neg \forall n \alpha_{n}=0\right] .
$$

Lesser Limited Principle of Omniscience (LLPO):

$$
\forall \alpha\left(\forall n, m\left[\alpha_{n}=\alpha_{m}=1 \rightarrow n=m\right] \rightarrow\left[\forall n \alpha_{2 n}=0 \quad \vee \quad \forall n \alpha_{2 n+1}=0\right]\right) .
$$

Theorem: 2.3.2 The following implications hold:

$$
\begin{equation*}
\mathrm{LPO} \Rightarrow \mathrm{WLPO} \Rightarrow \mathrm{LLPO} . \tag{2.1}
\end{equation*}
$$

Proof: Left as an exercise
Classically we have the principle

$$
\forall x, y \in \mathbb{R}[x=y \vee x \neq y] .
$$

This principle entails WLPO and is thus not acceptable constructively.
One way to make the BHK-interpretation precise is by requiring functions to be computable (recursive). This is the recursive reading of the BHK-interpretation. We will later see Will we?? that such an interpretation is possible, even for full-fledged set theory. The recursive BHK-interpretation refutes all of the above principles of omniscience.

2.4 Natural Deductions

Though in what follows, intuitionistic reasoning will be carried out mainly informally when developing set theory and constructive mathematics within a system of set theory based on intuitionistic reasoning, it is convenient to have a set of logical rules available, so that we do not have to go back to the Brouwer-Heyting-Kolmogorov interpretation each time we want to justify the use of a logical principle in our arguments.

We present two formal systems of axioms and rules for intuitionistic logic, the natural deduction calculus invented by Gentzen and the Hilbert style calculus.

In the following we assume that we are given a language \mathcal{L} of predicate logic (aka first order logic) with equality $=$. Terms are defined as usual. The logical primitives are $\wedge, \vee, \rightarrow, \perp, \forall, \exists$, where \perp stands for absurdity and the negation $\neg \psi$ of a formula ψ is defined by $\psi \rightarrow \perp$. Formulas are then defined as usual. Contrary to the situation in classical logic, none of the connectives and quantifiers of the above list is definable by means of the others.

Natural deductions are pictorially presented as trees labelled with formulas. We want to give a formal definition of deduction as well as the open assumptions and cancelled (= discharged) assumptions of a deduction. We use $\mathcal{D}, \mathcal{D}_{1}, \mathcal{D}_{2}, \ldots$ to range over deductions. We write

D

ψ
to convey that ψ is the conclusion of \mathcal{D}.
Deductions are defined inductively as follows:
Basis: The single-node tree with label ψ is a deduction whose sole open assumption is ψ; there are no cancelled assumptions.
Inductive step: Let $\mathcal{D}, \mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}$ be deductions. Then a deduction may be constructed from these by any of the rules below. Some of these rules are subject to restrictions to be specified afterwards.

For \perp we have the intuitionistic absurdity rule

$$
\begin{aligned}
& \mathcal{D} \\
& \frac{\perp}{\psi} \perp_{i}
\end{aligned}
$$

For the other logical constants the rules can be nicely grouped into introduction and elimination rules:

Introduction Rules (I-rules) Elimination Rules (E-rules)

Next come the rules for equality:

$$
\frac{\begin{array}{l}
\mathcal{D} \\
t=t \rightarrow \psi
\end{array}}{\psi} \mathrm{Eq}_{r e f l}
$$

$$
\frac{\begin{array}{c}
\mathcal{D}_{1} \\
\varphi[x / t]
\end{array} \begin{array}{c}
\mathcal{D}_{2} \\
\varphi=s
\end{array}}{\varphi}{ }^{\varphi[x / s]} \mathrm{Eq}_{\text {repl }}
$$

The open and cancelled assumptions of the above deductions are declared as follows:
(i) In the deduction whose last inference rule is $\rightarrow \mathrm{I}$, the open assumptions are those of \mathcal{D} without $\varphi . \varphi$ is a cancelled assumption of the deduction. This is indicated by putting φ in square brackets on top of the deduction. In the deduction whose last inference rule is $\vee E$, the open assumptions are those of $\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}$ minus the formulas φ and ψ, which are cancelled assumptions of the deduction. The open assumptions of the deduction whose last inference rule is $\exists \mathrm{E}$ are those of \mathcal{D}_{1} and \mathcal{D}_{2} without φ and ψ, which are cancelled assumptions.

If the last inference rule of a deduction is different from $\rightarrow \mathrm{I}, \vee \mathrm{E}$, and $\exists \mathrm{E}$,

$$
\begin{aligned}
& \begin{array}{cc}
\begin{array}{cc}
\mathcal{D}_{1} & \mathcal{D}_{2} \\
\varphi & \psi \\
\varphi & \psi \wedge \psi
\end{array} \mathrm{I} .
\end{array} \\
& \begin{array}{c}
\begin{array}{c}
{[\varphi]} \\
\mathcal{D} \\
\psi
\end{array} \\
\hline \varphi \rightarrow \psi
\end{array} \mathrm{I} \\
& \begin{array}{cc}
\begin{array}{c}
\mathcal{D} \\
\varphi \wedge \psi
\end{array} & \begin{array}{c}
\mathcal{D} \\
\varphi
\end{array} \mathrm{E}_{r}
\end{array} \begin{array}{l}
\varphi \wedge \psi \\
\psi
\end{array} \mathrm{E}_{l} \\
& \frac{\begin{array}{ll}
\mathcal{D}_{1} & \mathcal{D}_{2} \\
\varphi \rightarrow \psi & \varphi \\
\psi
\end{array} \mathrm{E}=\mathrm{e}}{} \\
& \begin{array}{cc}
\mathcal{D} & \begin{array}{c}
\mathcal{D} \\
\frac{\varphi}{\varphi \vee \psi} \\
\\
\hline
\end{array} \quad \frac{\psi}{\varphi \wedge \psi} \vee \mathrm{I}_{l}
\end{array} \\
& \mathcal{D} \\
& \frac{\varphi}{\forall x \varphi} \forall \mathrm{I} \\
& \begin{array}{l}
\begin{array}{c}
\mathcal{D} \\
\varphi[x / t]
\end{array} \\
\exists x \varphi \\
\\
\mathrm{I}
\end{array} \\
& \mathcal{D} \\
& \frac{\forall x \varphi}{\varphi[x / t]} \forall \mathrm{E}
\end{aligned}
$$

then the open and cancelled assumptions are those of the immediate subdeductions combined.
(ii) In the deductions whose last inference rule is $\forall \mathrm{E} \exists \mathrm{I}$, the term t must be free for x in φ. In the deduction whose last inference is $\mathrm{Eq}_{\text {repl }}, t$ and s must be free for x in φ.

The inference rules $\forall I$ and $\exists E$ are subject to the following eigenvariable conditions:
(iii) In the deduction whose last inference is $\forall \mathrm{I}$, the variable x is an eigenvariable; i.e., x is not to occur free in any of the open assumptions of \mathcal{D}. In the deduction whose last inference is $\exists \mathrm{E}, x$ is an eigenvariable; i.e., x is not to occur free in in θ and in any of the open assumptions of \mathcal{D}_{2} other than φ.

If φ is among the open assumptions of a deduction \mathcal{D} with conclusion ψ, the conclusion φ is said to depend on φ in \mathcal{D}. A deduction without open assumptions is said to be closed. A formula θ is deducible if there is a closed deduction with conclusion θ. We shall convey this by writing $\vdash \theta$.

Examples: 2.4.1 Our first example is a natural deduction of the law of contraposition.

$$
\begin{gathered}
\frac{\neg \psi \quad \frac{\varphi \rightarrow \psi}{\psi} \quad \varphi}{\frac{\perp}{\neg \varphi} \rightarrow I} \rightarrow E \\
\frac{\neg \psi \rightarrow \neg \varphi}{(\varphi \rightarrow I} \rightarrow E \\
(\varphi) \rightarrow(\neg \psi \rightarrow \neg \varphi)
\end{gathered} I
$$

The second example is a deduction of the double negation of the law of excluded middle.

$$
\begin{gathered}
\frac{\neg(\psi \vee \neg \psi) \quad \frac{\psi}{\psi \vee \neg \psi}}{\frac{\perp}{\neg \psi} \rightarrow I} \rightarrow I \\
\neg(\psi \vee \neg \psi) \\
\frac{\perp}{\neg \neg(\psi \vee \neg \psi)} \rightarrow I
\end{gathered}
$$

The third example features an application of the intuitionistic absurdity rule \perp_{i}.

$$
\begin{gathered}
\frac{\psi \wedge \neg \psi}{\psi} \wedge E_{r} \quad \frac{\psi \wedge \neg \psi}{\neg \psi} \wedge E_{l} \\
\frac{\perp}{\theta} \perp_{i} \\
\psi \wedge \neg \psi \rightarrow \theta
\end{gathered} I-E
$$

Lemma: 2.4.2 Here is a list of intuitionistic laws that we shall need in the future, and that (of course) have natural deductions.

1. $\neg \neg(\psi \vee \neg \psi)$
2. $\varphi \rightarrow \neg \neg \varphi$
3. $\neg \neg \neg \varphi \leftrightarrow \neg \varphi$
4. $(\neg \neg \psi \rightarrow \neg \neg \varphi) \leftrightarrow \neg \neg(\psi \rightarrow \varphi) \leftrightarrow(\psi \rightarrow \neg \neg \varphi)$
5. $(\psi \rightarrow \varphi) \rightarrow(\neg \varphi \rightarrow \neg \psi)$
6. $\neg \neg(\psi \rightarrow \varphi) \rightarrow(\psi \rightarrow \neg \neg \varphi)$.
7. $\neg \neg(\psi \wedge \varphi) \leftrightarrow(\neg \neg \varphi \wedge \neg \neg \psi)$.
8. $\neg \neg \forall x \varphi(x) \rightarrow \forall x \neg \neg \varphi(x)$
9. $\neg \exists x \varphi(x) \leftrightarrow \forall x \neg \varphi(x)$
10. $\neg \forall x \neg \varphi(x) \leftrightarrow \neg \neg \exists x \varphi(x)$.
11. $(\psi \vee \neg \psi) \rightarrow([\psi \rightarrow \exists x \varphi(x)] \rightarrow \exists x[\psi \rightarrow \varphi(x)])$

Definition: 2.4.3 Thus far, we have only considered deductions in pure intuitionistic predicate logic with equality. Given a theory T, i.e. a collection of formulas in a first order language \mathcal{L} with equality, we say that a formula θ is intuitionistically deducible in T if there is a deduction \mathcal{D} with conclusion θ whose open assumptions are universal closures of T. We shall convey this by writing $T \vdash \theta$.

2.5 A Hilbert-style system for intuitionistic logic

For certain metamathematical purposes, such as showing that a structure satisfies the laws of intuitionistic logic, it is more convenient to work with a system based on axioms and a few rules, where the rules just act locally on the conclusions of derivations and do not involve sequences of formulae nor cancellation of open assumptions elsewhere in the derivation. Such codifications of logic are known by the generic name of Hilbert-type systems.

Definition: 2.5.1 We introduce a Hilbert-style system for intuitionistic predicate logic with equality.

Axioms

(A1) $\varphi \rightarrow(\psi \rightarrow \varphi)$
(A2) $(\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow((\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \chi))$
(A3) $\varphi \rightarrow(\psi \rightarrow(\varphi \wedge \psi))$
(A4) $(\varphi \wedge \psi) \rightarrow \varphi$
(A5) $(\varphi \wedge \psi) \rightarrow \psi$
(A6) $\varphi \rightarrow(\varphi \vee \psi)$
(A7) $\psi \rightarrow(\varphi \vee \psi)$
(A8) $(\varphi \vee \psi) \rightarrow((\varphi \rightarrow \chi) \rightarrow((\psi \rightarrow \chi) \rightarrow \chi))$
(A9) $(\varphi \rightarrow \psi) \rightarrow((\varphi \rightarrow \neg \psi) \rightarrow \neg \varphi)$
(A10) $\varphi \rightarrow(\neg \varphi \rightarrow \psi)$
(A11) $\forall x \varphi \rightarrow \varphi[x / t]$
$(\mathrm{A} 12) \varphi[x / t] \rightarrow \exists x \varphi$
(Eq1) $t=t$
(Eq2) $s=t \rightarrow(\varphi[x / s] \rightarrow \varphi[x / t])$

As per usual, the term t must be free for x in φ in axioms (A11) and (A12). $\varphi[x / t]$ denotes the result of substituting t for x throughout φ. Also, the terms s and t must both be free for x in φ in axiom (Eq2).

Inference Rules $\vdash \varphi$ conveys that φ is deducible. All axioms are deducible.
(MP) If $\vdash \varphi$ and $\vdash \varphi \rightarrow \psi$, then $\vdash \psi$.
$(\forall \mathrm{I})$ If $\vdash \psi \rightarrow \varphi[x / y]$, then $\vdash \psi \rightarrow \forall x \varphi$.
($\exists \mathrm{I})$ If $\vdash \varphi[x / y] \rightarrow \psi$, then $\vdash \exists x \varphi \rightarrow \psi$.
In $(\forall \mathrm{I})$ and $(\exists \mathrm{I}), y$ is free for x in φ and occurs free in neither φ nor ψ. (MP) stands for "modus ponens".

2.6 Kripke semantics

Kripke Semantics for Intuitionistic Propositional Logic

We assume given a language $\mathcal{L}(P)$ for propositional logic having a a set P of proposition symbols. Let $\operatorname{Sent}(P)$ be the set of sentences built up from \perp and the proposition symbols in the usual way using the binary connectives $\wedge, \vee, \rightarrow$. If $\phi \in \operatorname{Sent}(P)$ then we write $\vdash^{i} \phi$ if ϕ is a theorem of intuitionistic propositional logic. Here we give a simple technique to show that $\vdash^{i} \phi$

A Kripke structure $\mathcal{K}=(K \leq, \Sigma)$ for $\mathcal{L}(P)$ consists of an inhabited partially ordered set (K, \leq) and a monotone assignment Σ of a set $\Sigma(k) \subseteq P$ to each $k \in K$. Here monotone means that

$$
k \leq k^{\prime} \Rightarrow \Sigma(k) \subseteq \Sigma\left(k^{\prime}\right) .
$$

Given a Kripke structure $\mathcal{K}=(K \leq, \Sigma)$ we define the forcing relation specifying when $k \Vdash_{\mathcal{K}} \phi$ for $k \in K$ and $\phi \in \operatorname{Sent}(P)$ by structural recursion on ϕ. We usually leave out the subscript \mathcal{K} when there is no confusion and just write $k \Vdash \phi$.

$$
\begin{array}{lll}
k \Vdash p & \Leftrightarrow p \in \Sigma(k) & (p \in P) \\
k \Vdash \perp & \Leftrightarrow 0=1 \\
k \Vdash\left(\phi_{1} \wedge \phi_{2}\right) & \Leftrightarrow\left[k \Vdash \phi_{1} \text { and } k \Vdash \phi_{2}\right] \\
k \Vdash\left(\phi_{1} \vee \phi_{2}\right) & \Leftrightarrow\left[k \Vdash \phi_{1} \text { or } k \Vdash \phi_{2}\right] \\
k \Vdash\left(\phi_{1} \rightarrow \phi_{2}\right) & \Leftrightarrow \text { for all } k^{\prime} \geq k,\left[k^{\prime} \Vdash \phi_{1} \text { implies } k^{\prime} \Vdash \phi_{2}\right]
\end{array}
$$

Note that

$$
k \Vdash \neg \phi \Leftrightarrow \text { for all } k^{\prime} \geq k, \quad k^{\prime} \nVdash \phi .
$$

Also note that, classically, if K is a singleton set $\left\{k_{0}\right\}$ then $k \Vdash \phi$ iff $\bar{v}(\phi)=$ true, where $v: P \rightarrow\{$ true,false $\}$ is given by

$$
v(p)= \begin{cases}\text { true } & \text { if } p \in \Sigma\left(k_{0}\right) \\ \text { false } & \text { if } p \notin \Sigma\left(k_{0}\right)\end{cases}
$$

and $\bar{v}: \operatorname{Sent}(P) \rightarrow\{$ true,false $\}$ is defined using v and the usual truth tables.
The following two propositions will not be proved here. The reader can find proofs in [18].

Proposition: 2.6.1 (Monotonicity) For any Kripke structure if $k \leq k^{\prime}$ then

$$
k \Vdash \phi \Rightarrow k^{\prime} \Vdash \phi .
$$

If $\mathcal{K}=(K, \leq, \Sigma)$ is a Kripke structure then we write $\models \mathcal{K} \phi$ if $k \Vdash \phi$ for all $k \in K$ and we write $\models^{i} \phi$ if $\models_{\mathcal{K}} \phi$ for every Kripke structure ϕ.

Proposition: 2.6.2 (Soundness) If $\phi \in \operatorname{Sent}(P)$ such that $\vdash^{i} \phi$ then $\models^{i} \phi$.

Example: Observe that if $k \leq k^{\prime}$ in a Kripke structure and $p \notin \Sigma(k)$ but $p \in \Sigma\left(k^{\prime}\right)$ then $k \nVdash p$ and $k \nVdash \neg p$ so that $k \nVdash(p \vee \neg p)$. A specific example would be where $K=\{0,1\}$ and $k=0, k^{\prime}=1$ with $0<1, \Sigma(0)=\emptyset$ and $\Sigma(1)=\{p\}$. Also observe that $0 \Vdash \neg \neg p$ so that $0 \Vdash(\neg \neg p \rightarrow p)$. So, by the Soundness lemma neither $(p \vee \neg p)$ nor $(\neg \neg p \rightarrow p)$ are theorems of Intuitionistic Propositional Logic.

Kripke Semantics for Intuitionistic Predicate Logic

We extend the Kripke structure technique of the previous subsection to Intuitionistic Predicate Logic. For simplicity we restrict our languages for predicate logic to languages with relation symbols but no function symbols or constants, although we will use constants when giving semantics. Also we will not consider logic with equality. So we assume given a language $\mathcal{L}(\mathcal{R})$ having a set \mathcal{R} of relation symbols, each n-ary for some $n \geq 0$. By allowing $n=0$ we can have the proposition symbols of propositional logic as relation symbols of arity 0 .

We assume given an infinite supply of individual variables. Given a set D it will be convenient to extend $\mathcal{L}(\mathcal{R})$ to the language $\mathcal{L}(\mathcal{R}, D)$ by allowing the elements of D as individual constants. The atomic formulae of $\mathcal{L}(\mathcal{R}, D)$ have the form

$$
R\left(t_{1}, \ldots, t_{n}\right)
$$

where $R \in \mathcal{R}$ is an n-ary relation symbol and each of t_{1}, \ldots, t_{n} is either a variable or a constant from D. Let $\operatorname{At}(\mathcal{R}, D)$ be the set of such atomic formulae.

The formulae are built up from \perp and the atomic formulae in the usual way using the binary connectives $\wedge, \vee, \rightarrow$ and the quantified variables $\forall x, \exists x$. Free and bound occurences of variables are defined in the usual way. The set $\operatorname{Sent}(\mathcal{R}, D)$ of sentences of $\mathcal{L}(\mathcal{R}, D)$ is the set of those formulae of $\mathcal{L}(\mathcal{R}, D)$ that have no free occurences of variables, and the set $\operatorname{AtSent}(\mathcal{R}, D)$ of atomic sentences is the set $\operatorname{At}(\mathcal{R}, D) \cap \operatorname{Sent}(\mathcal{R}, D)$.

We will write a formula of $\mathcal{L}(\mathcal{R}, D)$ that has at most the variable x occuring free as $\phi(x)$ and then if $a \in D$ we write $\phi(a)$ for the sentence obtained by substituting a for every free occurence of x in $\phi(x)$.

A standard structure for $\mathcal{L}(\mathcal{R})$ can be viewed as a pair (D, Σ), where D is an inhabited set, the universe of the structure and $\Sigma \subseteq \operatorname{AtSent}(\mathcal{R}, D)$ is the set of atomic sentences of $\mathcal{L}(\mathcal{R}, D)$ taken to be true in the structure.

A Kripke structure for $\mathcal{L}(\mathcal{R})$ consists of a partially ordered set (K, \leq) and a monotone assignment of a standard structure $(D(k), \Sigma(k))$ to each $k \in K$. Here, monotone means that if $k \leq k^{\prime}$ then $D(k) \subseteq D\left(k^{\prime}\right)$ and $\Sigma(k) \subseteq \Sigma\left(k^{\prime}\right)$.

Given a Kripke structure $\mathcal{K}=(K \leq, \Sigma)$ for $\mathcal{L}(\mathcal{R})$ we define the forcing relation specifying when $k \Vdash \phi$ for $k \in K$ and $\phi \in \operatorname{Sent}(\mathcal{R}, D(k))$ by structural recursion
on ϕ.

```
\(k \Vdash B \quad \Leftrightarrow B \in \Sigma(k) \quad(B \in \operatorname{AtSent}(\mathcal{R}, D(k)))\)
\(k \Vdash \perp \quad \Leftrightarrow 0=1\)
\(k \Vdash\left(\phi_{1} \wedge \phi_{2}\right) \quad \Leftrightarrow\left[k \Vdash \phi_{1}\right.\) and \(\left.k \Vdash \phi_{2}\right]\)
\(k \Vdash\left(\phi_{1} \vee \phi_{2}\right) \quad \Leftrightarrow\left[k \Vdash \phi_{1}\right.\) or \(\left.k \Vdash \phi_{2}\right]\)
\(k \Vdash\left(\phi_{1} \rightarrow \phi_{2}\right) \quad \Leftrightarrow\) for all \(k^{\prime} \geq k, \quad\left[k^{\prime} \Vdash \phi_{1}\right.\) implies \(\left.k^{\prime} \Vdash \phi_{2}\right]\)
\(k \Vdash \forall x \phi_{0}(x) \quad \Leftrightarrow\) for all \(k^{\prime} \geq k\) and for all \(a \in D\left(k^{\prime}\right), \quad k^{\prime} \Vdash \phi_{0}(a)\)
\(k \Vdash \exists x \phi_{0}(x) \quad \Leftrightarrow\) for some \(a \in D(k), \quad k \Vdash \phi_{0}(a)\)
```

Theorem: 2.6.3 The Monotonicity and Soundness results, Propositions 2.6.1 and 2.6.2, still apply, where now $\vdash^{i} \phi$ means that $\phi \in \mathcal{L}(\mathcal{R})$ is a theorem of Intuitionistic Predicate Logic and $\models^{i} \phi$ is defined as for propositional logic.

Example: Let ϕ be the sentence $\neg \forall x R(x) \rightarrow \exists x \neg R(x)$, where $R \in \mathcal{R}$ is a unary predicate symbol. Then observe that $0 \nVdash \phi$ in the Kripke structure where $K=\{0,1\}, D(0)=\{a\}, D(1)=\{a, b\}, \Sigma(0)=\emptyset$ and $\Sigma(1)=\{R(a)\}$. So, by the Soundness Lemma, ϕ is not a theorem of Intuitionistic Predicate Logic.

2.7 Exercises

Exercise: 2.7.1 Convince yourself that the following classical laws are not valid by using the BHK-interpretations.

$$
\varphi \vee \neg \varphi \quad \neg \neg \varphi \rightarrow \varphi \quad \neg \varphi \vee \neg \neg \varphi .
$$

Show that on the other hand, $\varphi \rightarrow \neg \neg \varphi$ and $\neg \neg \neg \varphi \rightarrow \neg \varphi$ are valid according to the BHK-interpretation.

Exercise: 2.7.2 Find intuitionistic proofs of the implications of Theorem 2.3.2; i.e. the implications

$$
\mathrm{LPO} \Rightarrow \mathrm{WLPO} \Rightarrow \mathrm{LLPO} .
$$

Exercise: 2.7.3 Show, in Intuitionistic logic, the logical equivalences that express that \wedge and \vee are commutative and associative and each distributes over the other. For example to show the associativity of \vee you must show that

$$
\phi \vee(\psi \vee \theta)) \leftrightarrow(\phi \vee \psi) \vee \theta .
$$

Exercise: 2.7.4 Give natural deduction proofs of the following. Use intuitionistic logic if you can. Otherwise use classical logic

- $(\phi \rightarrow \psi) \rightarrow(\neg \phi \vee \psi)$
- $((\phi \wedge \psi) \rightarrow \theta) \leftrightarrow(\phi \rightarrow \psi \rightarrow \theta)$
- $\forall x \neg \neg \phi(x) \rightarrow \neg \neg \forall x \phi(x)$
- $\exists x \neg \phi(x) \rightarrow \neg \forall x \phi(x)$
- $\neg \forall x \phi(x) \rightarrow \exists x \neg \phi(x)$

Exercise: 2.7.5 Give natural deduction proofs of the laws listed in Lemma 2.4.2
Exercise: 2.7.6 Show that the following symmetry and transitivity rules for equality can be derived, where s, t, r are terms.

$$
\left(\text { symm }_{=}\right) \frac{s=t}{t=s} \quad\left(\text { trans }_{=}\right) \quad \frac{s=t \quad t=r}{s=r}
$$

Also, if f is an n-place function symbol derive the following rule.

$$
\left(\text { cong }_{=}\right) \frac{\left(s_{1}=t_{1}\right) \cdots\left(s_{n}=t_{n}\right)}{f\left(s_{1}, \ldots, s_{n}\right)=f\left(t_{1}, \ldots, t_{n}\right)}
$$

where $s_{1}, \ldots, s_{n}, t_{1}, \ldots, t_{n}$ are terms.
Exercise: 2.7.7 Use the soundness result, Proposition 2.6.2, for the Kripke semantics of propositional logic, to show that non of the following formulae are theorems of Intuitionistic Propositional Logic, where $p, q, r \in P$.

1. $(\neg \neg p \vee \neg p)$,
2. $(p \rightarrow q) \rightarrow(\neg p \vee q)$,
3. $(p \rightarrow q) \vee(q \rightarrow p)$,
4. $((p \rightarrow q) \rightarrow p) \rightarrow p$,
5. $(p \rightarrow(q \vee r)) \rightarrow((p \rightarrow q) \vee(p \rightarrow r))$,
6. $(\neg \neg p \rightarrow p) \vee \neg \neg p \vee \neg p$.

Exercise: 2.7.8 Use the soundness result, see Theorem 2.6.3, for the Kripke semantics of predicate logic to show that the following sentences are not theorems of Intuitionistic Predicate Logic, where $R \in \mathcal{R}$ is unary and $p \in \mathcal{R}$ has arity 0 ; i.e. is a proposition symbol.

1. $\forall x(p \vee R(x)) \rightarrow(p \vee \forall x R(x))$
2. $\exists x(\exists y R(y) \rightarrow R(x))$
3. $\exists x(R(x) \rightarrow \forall y R(y))$
4. $\neg \neg \forall x(R(x) \vee \neg R(x))$
5. $\forall x \neg \neg R(x) \rightarrow \neg \neg \forall x R(x)$

Chapter 3

Some Axiom Systems

Constructive Set Theory is a variant of Classical Set Theory which uses intuitionistic logic. It differs from another such variant called Intuitionistic Set Theory because of its avoidance of the full impredicativity that Intuitionistic Set Theory has. Constructive Set Theory does not have the Powerset axiom or the full Separation axiom scheme. We introduce constructive set theory here by contrasting it with the other two theories. Note that we consider each of these theories as a framework and consider representative axiom systems for them, ZF and IZF for the Classical and Intuitionistic Set Theories and BCST, ECST and CZF for Constructive Set Theory.

3.1 Classical Set Theory

The classical Zermelo-Fraenkel axiomatic set theory, ZF, is formulated in first order logic with equality, using a binary predicate symbol \in as its only non-logical symbol. We will use $a \subseteq b$ to abbreviate $\forall u(u \in a \rightarrow u \in b)$. ZF is based on the following axioms and axiom schemes:

Extensionality

$$
\forall a \forall b[\forall x[x \in a \leftrightarrow x \in b] \rightarrow a=b]
$$

Pairing

$$
\forall a \forall b \exists y \forall x[x \in y \leftrightarrow(x=a \vee x=b)]
$$

Union

$$
\forall a \exists y \forall x[x \in y \leftrightarrow \exists u \in a(x \in u)]
$$

Powerset

$$
\forall a \exists y \forall x[x \in y \leftrightarrow x \subseteq a]]
$$

Infinity

$$
\exists a[\exists x x \in a \wedge \forall x \in a \exists y \in a x \in y]
$$

Foundation

$$
\forall a[\exists x[x \in a] \rightarrow \exists x \in a \forall y \in a[y \notin x]]
$$

Separation

$$
\forall a \exists y \forall x[x \in y \leftrightarrow x \in a \wedge \phi(x)]
$$

for all formulae $\phi(x)$, where y is not free in $\phi(x)$.

Replacement

$$
\forall x \in a \exists!y \phi(x, y) \rightarrow \exists b \forall y[y \in b \leftrightarrow \exists x \in a \phi(x, y)]
$$

for all formulae $\phi(x, y)$, where b is not free in $\phi(x, y)$.

3.2 Intuitionistic Set Theory

A natural Intuitionistic version of $\mathbf{Z F}$ is Intuitionistic Zermelo-Fraenkel, IZF. It is like $\mathbf{Z F}$ except that the following changes are made.

1. It uses Intuitionistic logic instead of Classical logic.
2. It uses the Set Induction scheme instead of the Foundation axiom.
3. It uses the Collection scheme instead of the Replacement scheme.

Set Induction

$$
\forall a[\forall x \in a \phi(x) \rightarrow \phi(a)] \rightarrow \forall a \phi(a)
$$

for all formulae $\phi(a)$.

Collection

$$
\forall x \in a \exists y \theta(x, y) \rightarrow \exists b \forall x \in a \exists y \in b \theta(x, y)]
$$

for all formulae $\phi(x, y)$, where b is not free in $\phi(x, y)$.

3.3 Basic Constructive Set Theory

The most important set theory of this book is Constructive Zermelo-Fraenkel Set Theory, CZF, which takes the place of the standard classical set theory ZF. However, before we present a complete list of the axioms of CZF we will look at some fragments of it. The first one, Basic Constructive Set Theory, BCST, will allow one to carry out most basic set-theoretic constructions.

The axiom system BCST consists of the axioms and scheme of Extensionality, Pairing, Union and Replacement, of $\mathbf{Z F}$, together with the Emptyset axiom and the Bounded Separation scheme, given below.

Emptyset

$$
\exists a(\forall x \in a) \perp
$$

Bounded Separation

$$
\forall a \exists y \forall x[x \in y \leftrightarrow x \in a \wedge \phi(x)]
$$

for all bounded formulae $\phi(x)$, where y is not free in $\phi(x)$. A formula is bounded if all its quantifiers are bounded; i.e. occur only in one of the forms $\exists x \in y$ or $\forall x \in y$.

Bounded formulae have also been called restricted or Δ_{0} formulae. Accordingly, Bounded Separation has been variously called Restricted Separation or Δ_{0}-Separation. The y asserted to exist is unique by Extensionality, and we denote this y by

$$
\{x \in a \mid \phi(x)\} \quad \text { or } \quad\{x \mid x \in a \wedge \phi(x)\} .
$$

Note that $\phi(x)$ may have any number of other variables free. These variables are thought of as parameters upon which the set $\{x \in a \mid \phi(x)\}$ depends.

The restriction on y not being free in ϕ is necessary to avoid inconsistencies as, for example,

$$
\exists y \forall x(x \in y \leftrightarrow x \in a \wedge x \notin y)
$$

would lead to an inconsistency when a is inhabited. In the future, however, we won't bother the reader with these syntactic niceties.

Note that the Emptyset axiom can be derived using Bounded Separation, once some set exists, and some set does exist just by the logic of the existential quantifier. Another easy application of Bounded Separation is Binary Intersection, the assertion that the intersection of two sets exists as a set; i.e.

Binary Intersection

$$
\forall a \forall b \exists y \forall x[x \in y \leftrightarrow x \in a \wedge x \in b]
$$

It will turn out that all instances of Bounded Separation can be derived from just Emptyset and Binary Intersection using the other axioms and scheme of BCST; i.e. we have the following result.

Theorem: 3.3.1 The axiom system BCST has the same theorems as the system obtained from BCST by leaving out the Bounded Separation scheme and adding instead the Emptyset and Binary Separation axioms.

The proof is somewhat technical and is relagated to an appendix.

3.4 Elementary Constructive Set Theory

Our next axiom system is Elementary Constructive Set Theory, ECST. It is like IZF except for the following changes.

1. It uses the Replacement Scheme instead of the Collection Scheme.
2. It drops the Powerset Axiom and the Set Induction Scheme.
3. It uses the Bounded Separation Scheme instead of the full Separation Scheme.
4. It uses the Strong Infinity axiom instead of the Infinity axiom.

Strong Infinity

$$
\exists a[\operatorname{Ind}(a) \wedge \forall b[\operatorname{Ind}(b) \rightarrow \forall x \in a(x \in b)]]
$$

where we use the following abbreviations.

- $\operatorname{Succ}(x, y)$ for $\forall z[z \in y \leftrightarrow z \in x \vee z=x]$,
- $\operatorname{Ind}(a)$ for $(\exists y \in a)(\forall z \in y) \perp \wedge(\forall x \in a)(\exists y \in a) \operatorname{Succ}(x, y)$.

3.5 Constructive Zermelo Fraenkel, CZF

For the sake of reference we shall introduce two further axiom schemes which complete the description of the axioms of Constructive Zermelo-Fraenkel Set Theory, CZF. CZF is obtained from ECST as follows.

1. Add the Set Induction scheme,
2. Add the Subset Collection scheme,
3. Use the Strong Collection scheme instead of the Replacement scheme.

Strong Collection

$$
\forall x \in a \exists y \phi(x, y) \rightarrow \exists b[\forall x \in a \exists y \in b \phi(x, y) \wedge \forall y \in b \exists x \in a \phi(x, y)]
$$

for every formula $\phi(x, y)$.

Subset Collection

$$
\begin{aligned}
& \exists c \forall u[\forall x \in a \exists y \in b \psi(x, y, u) \rightarrow \\
& \quad \exists d \in c(\forall x \in a \exists y \in d \psi(x, y, u) \wedge \forall y \in d \exists x \in a \psi(x, y, u))]
\end{aligned}
$$

for every formula $\psi(x, y, u)$.
Note that the respective formulae $\phi(x, y)$ and $\psi(x, y, u)$ in the above schemas may have any number of other variables free.

Without any further axioms it is easy to see that Strong Collection implies Collection and Replacement. Note that, on the basis of ECST minus Replacement, it does not seem to be possible to obtain Replacement from Collection since this system does not have full Separation.

While Strong Collection is a well-known theorem of ZF, Subset Collection may strike the reader as mysterious. We will later discuss in chapter the Subset Collection scheme and show that its instances follow from the Powerset axiom of $\mathbf{Z F}$ and, moreover, that it can be replaced by a single axiom in the presence of Strong Collection. It will also be shown that Subset Collection implies the important Exponentiation Axiom which postulates that for sets a, b the class of all functions from a to b forms a set.

3.6 On notations for axiom systems.

In this monograph, special attention is given to know that some of the results we prove from CZF do not in fact require all the axioms of CZF. We have already singled out the subsystems BCST and ECST. We list here some abbreviations for commonly used subtheories of a given theory \mathbf{T}. If P is an axiom, T-P consists of the theory with P deleted. By \mathbf{T}^{-}, we mean the the theory with the Set Induction scheme removed. If \mathbf{T} contains the Collection or Strong Collection scheme, we denote by \mathbf{T}_{R} the theory resulting from deleting that scheme and then adding Replacement. Likewise, when \mathbf{T} contains the Subset Collection scheme we mean by \mathbf{T}_{E} the theory with Subset Collection deleted and then Exponentiation added.

3.7 Class Notation

In doing mathematics in Constructive Set Theory we shall exploit the use of class notation and terminology, just as in Classical Set Theory. Given a formula $\phi(x)$
there may not exist a set of the form $\{x \mid \phi(x)\}$. But there is nothing wrong with thinking about such collection. So, if $\phi(x)$ is a formula in the language of set theory we may form a class $\{x \mid \phi(x)\}$. We allow $\phi(x)$ to have free variables other than x, which are considered parameters upon which the class depends. Informally, we call any collection of the form $\{x \mid \phi(x)\}$ a class. However formally, classes do not exist, and expressions involving them must be thought of as abbreviations for expressions not involving them.

Classes A, B are defined to be equal if

$$
\forall x[x \in A \leftrightarrow x \in B] .
$$

We may also consider an augmentation of the language of set theory wherein we allow atomic formulas of the form $y \in A$ and $A=B$ with A, B being classes. There is no harm in taking such liberties as any such formula can be translated back into the official language of set theory by re-writing $y \in\{x \mid \phi(x)\}$ and $\{x \mid \phi(x)\}=\{y \mid \psi(y)\}$ as $\phi(y)$ and $\forall z[\phi(z) \leftrightarrow \psi(z)]$, respectively (with z not in $\phi(x)$ and $\psi(y))$.

In particular each set a is identified with the class $\{x \mid x \in a\}$.

3.8 Russell's paradox

That one had to distinguish between proper classes and sets was an important insight of early set theory. In its "naive" phase, set theory was developed on the basis of Cantor's definition of set:

By a set we are to understand any collection into a whole of definite and separate objects of our intuition or our thought.

This definition of set led to the following principle.
General Comprehension Principle: For each definite property P of sets, there is a set

$$
A=\{x \mid P(x)\} .
$$

As is well known, this principle was refuted by Russell in 1901.
Lemma: 3.8.1 Russell's paradox (ECST) The General Comprehension Principle is not valid.

Proof: By the General Comprehension Principle,

$$
R=\{x \mid x \text { is a set and } x \notin x\}
$$

is a set. The assumption $R \in R$ yields $R \notin R$ by the very definition of R, which is a contradiction. As a result, $R \notin R$. However, in view of the definition of R, the
latter implies $R \in R$ and thus we have reached a contradiction. Consequently, R is not a set, and thus the General Comprehension Principle does not hold.

Russell's paradox can also be viewed as a positive result.
Lemma: 3.8.2 (ECST) For every set A there is a set A_{R} such that $A_{R} \notin A$.
Proof: Let $A_{R}=\{x \in A \mid x \notin x\}$. From $A_{R} \in A_{R}$ we get the contradiction $A_{R} \notin A_{R}$, whence $A_{R} \notin A_{R}$. Thus, $A_{R} \in A$ leads to the contradiction $A_{R} \in A_{R}$, and therefore $A_{R} \notin A$.

Chapter 4

Basic Set constructions in BCST

In this chapter, unless otherwise indicated, we work in the axiom system BCST.

4.1 Ordered Pairs

By the Pairing axiom, for sets a, b we get a set y such that

$$
\forall x(x \in y \leftrightarrow x=a \vee x=b) .
$$

This set is unique by Extensionality; we call this set $\{a, b\} .\{a\}=\{a, a\}$ is the set whose unique element is $a .\langle a, b\rangle=\{\{a\},\{a, b\}\}$ is the ordered pair of a and b.

Proposition: 4.1.1 If $\langle a, b\rangle=\langle c, d\rangle$ then $a=c$ and $b=d$.

Proof: The usual classical proof argues by cases depending, for example, whether or not $a=b$. This method is not available here as we cannot assume that instance of the classical law of excluded middle. Instead we can argue as follows. Assume that $\langle a, b\rangle=\langle c, d\rangle$.

As $\{a\}$ is an element of the left hand side it is also an element of the right hand side and so either $\{a\}=\{c\}$ or $\{a\}=\{c, d\}$. In either case $a=c$.

As $\{a, b\}$ is an element of the left hand side it is also an element of the right hand side and so either $\{a, b\}=\{c\}$ or $\{a, b\}=\{c, d\}$. In either case $b=c$ or $b=d$. If $b=c$ then $a=c=b$ so that the two sets in $\langle a, b\rangle$ are equal and hence $\{c\}=\{c, d\}$ giving $c=d$ and hence $b=d$. So in either case $b=d$.
We will also have use for ordered triples $\langle a, b, c\rangle$, ordered quadruples $\langle a, b, c, d\rangle$, etc. They are defined by iterating the ordered pairs formation as follows: $\langle a\rangle=a$ and $\left\langle a_{1}, \ldots, a_{r}, a_{r+1}\right\rangle=\left\langle\left\langle a_{1}, \ldots, a_{r}\right\rangle, a_{r+1}\right\rangle$.

4.2 More class notation

A is a subclass of B, written $A \subseteq B$, if $\forall x \in A x \in B$. Without assuming any non-logical axioms we may form the following classes, where A, B, C are classes and a, a_{1}, \ldots, a_{n} are sets.

Definition: 4.2.1 1. $\left\{a_{1}, \ldots, a_{n}\right\}=\left\{x \mid x=a_{1} \vee \cdots \vee x=a_{n}\right\}$. When $n=0$ this is the empty class \emptyset.
2. $\bigcup A=\{x \mid \exists y \in A x \in y\}$.
3. $A \cup B=\{x \mid x \in A \vee x \in B\}$.
4. $a^{+}=a \cup\{a\}$.
5. $\mathcal{P}(A)=\{x \mid x \subseteq A\}$.
6. $V=\{x \mid x=x\}$.

The Union axiom asserts that the class $\bigcup A$ is a set for each set A. So, using the Pairing axiom we get that the class $A \cup B$ is a set whenever A, B are sets and hence that $\left\{a_{1}, \ldots, a_{n}\right\}$ is a set whenever a_{1}, \ldots, a_{n} are sets for $n>0$.

If A is a class and $\theta(x, y)$ is a formula in the language of set theory, then we may form a family of classes $\left(B_{a}\right)_{a \in A}$ over A, where for each $a \in A$

$$
B_{a}=\{y \mid \theta(a, y)\} .
$$

If $\left(B_{a}\right)_{a \in A}$ is a family of classes then we may form the classes

$$
\begin{aligned}
& \bigcup_{a \in A} B_{a}=\left\{y \mid \exists a \in A y \in B_{a}\right\}, \\
& \bigcap_{a \in A} B_{a}=\left\{y \mid \forall a \in A y \in B_{a}\right\} .
\end{aligned}
$$

Cartesian Products of Classes

For classes A, B let $A \times B$ be the class given by

$$
A \times B=\{z \mid \exists a \in A \exists b \in B z=\langle a, b\rangle\}
$$

For $r=1,2, \ldots$ the r-fold cartesian product, A^{r}, of a class A is defined by $A^{1}=A$ and $A^{k+1}=A^{k} \times A$.

If $F: A \times B \rightarrow C$ is a class function we will write $F(a, b)$ rather than $F(\langle a, b\rangle)$ for $\langle a, b\rangle \in A \times B$. Similarly, if $G: A^{r} \rightarrow B$ is a class function defined on the r fold cartesian product of a class A, we will write $F\left(a_{1}, \ldots, a_{r}\right)$ for $F\left(\left\langle a_{1}, \ldots, a_{r}\right\rangle\right)$ whenever $\left\langle a_{1}, \ldots, a_{r}\right\rangle \in A^{r}$.

Definition: 4.2.2 Let I be a class and $\left(A_{i}\right)_{i \in I}$ be a family of classes over I. The disjoint union or sum of $\left(A_{i}\right)_{i \in I}$ is the class

$$
\sum_{i \in I} A_{i}=\left\{\langle i, a\rangle \mid i \in I \wedge a \in A_{i}\right\}
$$

Here $\left\{\langle i, a\rangle \mid i \in I \wedge a \in A_{i}\right\}$ is just an abbreviation for

$$
\left\{z \mid \exists i \in I \exists a \in A_{i} z=\langle i, a\rangle\right\}
$$

Note that the cartesian product $A \times B$ is a special case of disjoint union as $A \times B=\sum_{i \in A} B_{i}$, where $B_{i}=B$ for all $i \in A$.

Relations and functions

If R is a class of ordered pairs then we use $a R b$ for $\langle a, b\rangle \in R$. The classes $\operatorname{dom}(R)$ and $\operatorname{ran}(R)$ are $\{x \mid \exists y x R y\}$ and $\{y \mid \exists x x R y\}$, respectively.
Proposition: 4.2.3 If R is a set of pairs then $\operatorname{dom}(R)$ and $\operatorname{ran}(R)$ are sets.
Proof: Let R be a set of pairs. Then

$$
\forall z \in R \exists!x \exists y z=\langle x, y\rangle
$$

So, by Replacement,

$$
\operatorname{dom}(R)=\{x \mid \exists z \in R \exists y z=\langle x, y\rangle\}
$$

is a set. Similarily $\operatorname{ran}(R)$ is a set.
If A, B are classes and $R \subseteq A \times B$ such that

$$
\forall x \in A \exists y \in B x R y
$$

then we will write

$$
R: A>B
$$

and if also

$$
\forall y \in B \exists x \in A x R y
$$

then we write

$$
R: A><B .
$$

If

$$
\forall x \in A \exists!y \in B x R y
$$

then we use the standard notation

$$
R: A \rightarrow B
$$

and for each $a \in A$ we write $R(a)$ for the unique $b \in B$ such that $a R b$. If $R: A \rightarrow B$ we will say that R is a class function or map.

Proposition: 4.2.4 If A is a class and $\forall x \in A \exists!y ~ \phi(x, y)$ then there exists a unique class function F with $\operatorname{dom}(F)=A$ such that $\forall x \in A \phi(x, F(x))$. Moreover if A is a set then so is F.
Proof: Suppose $\forall x \in A \exists!y \phi(x, y)$. Then

$$
\forall x \in A \exists!z \theta(x, z),
$$

where $\theta(x, z)$ is $\exists y[z=\langle x, y\rangle \wedge \phi(x, y)]$. The required class function is

$$
F=\{z \mid \exists x \in A \theta(x, z)\} .
$$

The uniqueness of F is obvious. If A is a set then, by Replacement, so is F.

Proposition: 4.2.5 If A is a set and $F: A \rightarrow B$ then F is a set.
Proof: Since $\forall x \in A \exists!y(\langle x, y\rangle \in F)$ it follows from Proposition 4.2.4 that there is a function f with $\operatorname{dom}(f)=A$ and $\forall x \in A(\langle x, f(x)\rangle \in F)$. Hence $F=f$, so that F is a set.

Having introduced the notion of function we can state another important axiom.

Definition: 4.2.6 The Exponentiation Axiom (abbreviated Exp) postulates that for sets a, b the class of all functions from a to b forms a set:

$$
\forall a \forall b \exists c \forall f[f \in c \leftrightarrow(f: a \rightarrow b)] .
$$

As far as consistency strength is concerned, ECST + Exp is not stronger than Peano Arithmetic. However, if one bases this theory on classical logic its strength is quite enormous. Let $\mathbf{E C S T}^{c}$ be ECST with classical logic. Similarly, $\mathbf{C Z F}^{c}$ is CZF based on classical logic.

Theorem: 4.2.7 ECST $^{c}+\operatorname{Exp}$ proves the same theorems as classical ZermeloFraenkel Set Theory without the Foundation Axiom, $\mathbf{Z F}^{-}$. As $\mathbf{Z F}$ and $\mathbf{Z F}^{-}$have the same strength, $\mathbf{E C S T}^{c}+\mathbf{E x p}$ and $\mathbf{Z F}$ have the same strength.

Proof: With classical logic, Replacement implies full Separation and Exponentiation implies the Powerset Axiom. Details are left to the exercise.

Corollary: 4.2.8 CZF c and $\mathbf{Z F}$ prove the same theorems.
Proof: To show that $\mathbf{Z F} \subseteq \mathbf{C Z F}^{c}$, we have to anticipate a result to the effect that CZF proves Exponentiation. With classical logic, Set Induction also implies Foundation, whence $\mathbf{Z F} \subseteq \mathbf{C Z F}^{c}$ follows. To show that $\mathbf{C Z F}^{c} \subseteq \mathbf{Z F}$ we only need to know that Subset Collection is a consequence of Powerset. This follows from Theorem .

4.3 The Union-Replacement Scheme

This is a natural scheme that combines the Union axiom with the Replacement scheme.

$$
\forall x \in a \exists b \forall y[y \in b \leftrightarrow \phi(x, y)] \rightarrow \exists c \forall y[y \in c \leftrightarrow \exists x \in a \phi(x, y)] .
$$

Proposition: 4.3.1 Given the Extensionality and Pairing axioms the UnionReplacement axiom scheme is equivalent to the combination of the Union axiom and the Replacement axiom scheme.

Proof: Assume Union-Replacement and let $\forall x \in a \exists!y \phi(x, y)$. Then, as singleton classes are sets,

$$
\forall x \in a \exists b \forall y[y \in b \leftrightarrow \phi(x, y)]
$$

so that by Union-Replacement

$$
\exists c \forall y[y \in c \leftrightarrow \exists x \in a \phi(x, y)] .
$$

So we have proved Replacement. The Union axiom follows from the instance of Union-replacement where $\phi(x, y)$ is $y \in x$.

Conversely, given the Union axiom and the Replacement scheme, suppose that $\forall x \in a \exists b \forall y[y \in b \leftrightarrow \phi(x, y)]$. Then

$$
\forall x \in a \exists!b \forall y[y \in b \leftrightarrow \phi(x, y)] .
$$

So, by Replacement we may form the set

$$
\{z \mid \exists x \in a \forall y[y \in z \leftrightarrow \phi(x, y)]\}
$$

By the Union axiom we may form the union set of this set, which is

$$
\{y \mid \exists x \in a \phi(x, y)\} .
$$

Thus we have proved the Union-Replacement axiom scheme.

We now consider a few consequences of Union-Replacement.
Lemma: 4.3.2 Let A be a set and $\left(B_{a}\right)_{a \in A}$ be a family of sets over A. Then, $\bigcup_{a \in A} B_{a}$ is a set and if A is inhabited, $\bigcap_{a \in A} B_{a}$ is a set also.
Proof: $\bigcup_{a \in A} B_{a}$ is a set by Union-Replacement. Now suppose that A is inhabited. Let $a_{0} \in A$. By Lemma 4.2.5, there is a function f with domain A such that $\forall a \in A f(a)=B_{a}$. Then

$$
\bigcap_{a \in A} B_{a}=\left\{u \in a_{0} \mid \forall x \in A u \in f(x)\right\},
$$

so it is a set by Bounded Separation.

Proposition: 4.3.3 If A, B are sets then so is the class $A \times B$.
Proof: Let A, B be sets. Then, as

$$
\{a\} \times B=\{\langle a, b\rangle \mid b \in B\}
$$

is a set, by Replacement, so is

$$
A \times B=\bigcup_{a \in A}(\{a\} \times B)
$$

by Union-Replacement.

Proposition: 4.3.4 If I is a set and $\left(A_{i}\right)_{i \in I}$ be a family of sets over I, then $\sum_{i \in I} A_{i}$ is a set.

Proof: We know that $\{i\} \times A_{i}$ is a set for every $i \in I$. As

$$
\sum_{i \in I} A_{i}=\bigcup_{i \in I}\{i\} \times A_{i}
$$

it follows by Union-Replacement that $\sum_{i \in I} A_{i}$ is a set.

Quotients

Let A be a class and R be a subclass of $A \times \mathrm{A} . R$ is said to be an equivalence relation on A if the following hold for all $a, b, c \in A$:

1. $a R a$ (R is reflexive),
2. if $a R b$ then $b R a$ (R is symmetric),
3. if $a R b$ and $b R c$ then $a R c$ (R is transitive).

Then for each $a \in A$ we may form its equivalence class

$$
[a]_{R}=\{x \in A \mid x R a\} .
$$

Lemma: 4.3.5 If A and R are sets, where $R \subseteq A \times A$, then for each $a \in A,[a]_{R}$ is a set and, moreover, the quotient of A with respect to R,

$$
A / R=\left\{[a]_{R} \mid a \in A\right\}
$$

is a set.
Proof: This is an immediate consequence of Bounded Separation and UnionReplacement.

4.4 Exercises

Exercise: 4.4.1 (BCST) The Wiener pair is defined as follows:

$$
(x, y)_{w}=\{\{0,\{x\}\},\{\{y\}\}\}
$$

Show that for all sets $x, y, x^{\prime}, y^{\prime}$,

$$
(x, y)_{w}=\left(x^{\prime}, y^{\prime}\right)_{w} \quad \text { iff } \quad x=x^{\prime} \wedge y=y^{\prime} .
$$

Exercise: 4.4.2 Show that for any set R, $\operatorname{dom}(R)=\{x \mid \exists y\langle x, y\rangle \in R\}$ and $\operatorname{ran}(R)=\{y \mid \exists x\langle x, y\rangle \in R\}$ are sets.

Give a detailed account of the axioms you use.
Exercise: 4.4.3 Show that the following predicates can be expressed via bounded (also called Δ_{0}) formulae:

1. $\langle x, y\rangle \in R$.
2. f is function from a to b.
3. $f: a \rightarrow b$ and f is injective.
4. $f: a \rightarrow b$ and f is surjective.
5. $\operatorname{dom}(f)=x$
6. $\boldsymbol{\operatorname { r a n }}(f)=y$
7. x is an ordered pair whose first coordinate is y.
8. x is an ordered pair whose second coordinate is z.

Exercise: 4.4.4 We say a class function F is Δ_{0} if it satisfies an equation

$$
F(a, \vec{x})=\{u \in a \mid \varphi(a, \vec{x})\}
$$

for some Δ_{0} formula $\varphi(a, \vec{x})$. Show in BCST that there are class functions \mathbf{p}_{0} and \mathbf{p}_{1} that are compositions of Δ_{0} class functions and the function $v \mapsto \bigcup v$ such that

$$
\begin{aligned}
& \mathbf{p}_{0}(\langle a, b\rangle)=a, \\
& \mathbf{p}_{1}(\langle a, b\rangle)=b .
\end{aligned}
$$

Hint:

$$
\begin{aligned}
& \mathbf{p}_{0}(u)=\bigcup\{x \in \bigcup u \mid \forall z \in u x \in z\} \\
& \mathbf{p}_{1}(u)=\bigcup\{y \in \bigcup u \mid \exists x \in \bigcup u \forall p \in u[p=\{x\} \vee p=\{x, y\}]\}
\end{aligned}
$$

Exercise: 4.4.5 Show that the Replacement Scheme is equivalent to the assertion that for each class F, if $F: A \rightarrow V$, where A is a set, the class $\operatorname{ran}(F)=\{F(x) \mid$ $x \in A\}$ is a set.

Exercise: 4.4.6 Recall that in the proof of Proposition 4.3.3 the equation

$$
A \times B=\bigcup_{a \in A} \bigcup_{b \in B}\{(a, b)\}
$$

was used. Show that $(\{(a, b)\})_{b \in B}$ is a family of classes over B for each $a \in A$ so that $\bigcup_{b \in B}\{(a, b)\}$ can be defined and then show that $\left(\bigcup_{b \in B}\{(a, b)\}\right)_{a \in A}$ is a family of classes over A.

Exercise: 4.4.7 Recall that in the proof of Proposition 4.3.4 the equation

$$
\sum_{a \in A} B_{a}=\bigcup_{a \in A}\left(\{a\} \times B_{a}\right)
$$

was used. Show that $\left(\{a\} \times B_{a}\right)_{a \in A}$ is a family of classes over A.
Exercise: 4.4.8 By arguing on the basis of $\mathbf{Z F}$ minus Separation show that Replacement implies full Separation.
Hint: Given a set a and a formula $\varphi(x)$ let $\psi(x, y)$ be the formula

$$
(x \in a \wedge \varphi(x) \wedge y=0) \vee([x \notin a \vee \neg \varphi(x)] \wedge y=1)
$$

where $0=\{\emptyset\}$ and $1=\{0\}$. Show that $\forall x \exists!y \psi(x, y)$. Then use Replacement and other axioms to ensure that $\{x \in a \mid \varphi(x)\}$ is a set.
Where does the above proof break down when you argue on the basis of intuitionistic logic?

Exercise: 4.4.9 Show that IZF plus the Foundation axiom proves $\psi \vee \neg \psi$ for every formula ψ.
Hint: Look at the set

$$
S_{\psi}:=\{x \in\{0,1\} \mid x=1 \vee[x=0 \wedge \psi]\}
$$

and apply Foundation.
Exercise: 4.4.10 By arguing on the basis of $\mathbf{Z F}$ minus the Foundation axiom, show that the following are equivalent:

1. Foundation Axiom
2. \in-Induction

Hint: $(1) \Rightarrow(2)$: Assume $\forall x[\forall y \in x \varphi(y) \rightarrow \varphi(x)]$ but $\neg \varphi($ a) for some a. Let $b:=a \cup \bigcup a \cup \bigcup \bigcup a \cup \ldots$ where the dots mean that one has to iterate the process of taking \bigcup infinitely many times through all the natural numbers. Of course, there remains the question of how we can prove that b is a set. Ignore this question for the time being. Let $c:=\{u \in b \mid \neg \varphi(u)\}$. Now c is inhabited. Why? Finally apply Foundation to c to reach a contradiction.
$(2) \Rightarrow(1):$ Let a be a counterexample to Foundation. Apply \in-Induction to the formula $\varphi(x):=x \notin a$.

Chapter 5

From Function Spaces to Powerset

5.1 Subset Collection and Exponentiation

An important construction in mathematics is to form function spaces, that is if A, B are sets one forms the collection of all functions from A to B. There is no problem in talking about function spaces as classes when working in ECST. However, in general, if we want to ensure that this class is a set we have to appeal to the Exponentiation Axiom. This axiom will be mathematically important in showing that the class of constructive Cauchy reals constitutes a set. For other notions of reals, as for example the constructive Dedekind reals, the Exponentiation axiom appears to be too weak, while with the aid of Subset Collection they can be shown to form a set.

In this chapter we study some of the consequences of the Subset Collection scheme as well as equivalent axioms. We also investigate the deductive relationships between the Subset Collection Scheme, Exponentiation Axiom, and Powerset Axiom. The Subset Collection scheme easily qualifies for the most intricate axiom of CZF. To explain this axiom in different terms, we introduce the notion of Fullness.

Definition: 5.1.1 For sets A, B let ${ }^{A} B$ be the class of all functions with domain A and with range contained in B. Let $\mathbf{m v}\left({ }^{A} B\right)$ be the class of all sets $R \subseteq A \times B$ satisfying $\forall u \in A \exists v \in B\langle u, v\rangle \in R$. A set C is said to be full in $\operatorname{mv}\left({ }^{A} B\right)$ if $C \subseteq \operatorname{mv}\left({ }^{A} B\right)$ and

$$
\forall R \in \mathbf{m v}\left({ }^{A} B\right) \exists S \in C S \subseteq R .
$$

The expression $\boldsymbol{m v}\left({ }^{A} B\right)$ should be read as the class of multi-valued functions (or multi functions) from the set A to the set B.

An additional axiom we consider is:

Fullness: For all sets A, B there exists a set C such that C is full in $\mathbf{m v}\left({ }^{A} B\right)$.
Theorem: 5.1.2 (i) (ECST) Subset Collection implies Fullness.
(ii) (ECST + Strong Collection) Fullness implies Subset Collection.
(iii) (ECST) Fullness implies Exponentiation.

Proof: (i): Suppose A, B are sets. Let $\phi(x, y, u)$ be the formula $y \in u \wedge$ $\exists z \in B(y=\langle x, z\rangle)$. Using the relevant instance of Subset Collection and noticing that for all $R \in \mathbf{m v}\left({ }^{A} B\right)$ we have

$$
\forall x \in A \exists y \in A \times B \phi(x, y, R),
$$

there exists a set C such that $\forall R \in \mathbf{m v}\left({ }^{A} B\right) \exists S \in C S \subseteq R$.
For (ii), let A, B be sets. Pick a set C which is full in $\boldsymbol{\operatorname { m v }}\left({ }^{A} B\right)$. Assume $\forall x \in A \exists y \in B \phi(x, y, u)$. Define $\psi(x, w, u):=\exists y \in B[w=\langle x, y\rangle \wedge \phi(x, y, u)]$. Then $\forall x \in A \exists w \psi(x, w, u)$. Thus, by Strong Collection, there exists $v \subseteq A \times B$ such that
$\forall x \in A \exists y \in B[\langle x, y\rangle \in v \wedge \phi(x, y, u)] \wedge \forall x \in A \forall y \in B[\langle x, y\rangle \in v \rightarrow \phi(x, y, u)]$.
As C is full, we find $w \in C$ with $w \subseteq v$. Consequently, $\forall x \in A \exists y \in \operatorname{ran}(w) \phi(x, y, u)$ and $\forall y \in \operatorname{ran}(w) \exists x \in A \phi(x, y, u)$, where $\operatorname{ran}(w):=\{v \mid \exists z\langle z, v\rangle \in w\}$.

Whence $D:=\{\operatorname{ran}(w): w \in C\}$ witnesses the truth of the instance of Subset Collection pertaining to ϕ.
(iii) Let C be full in $\boldsymbol{\operatorname { m v }}\left({ }^{A} B\right)$. If now $f \in{ }^{A} B$, then $\exists R \in C R \subseteq f$. But then $R=f$. Therefore ${ }^{A} B=\{f \in C: f$ is a function $\}$.

An important infinitary operation in set theory is the dependent product or function spaces construction.

Definition: 5.1.3 Let I be a set and $\left(A_{i}\right)_{i \in I}$ be a family of classes over I. The dependent product of $\left(A_{i}\right)_{i \in I}$ is the class

$$
\prod_{i \in I} A_{i}=\left\{f \mid f: I \rightarrow \bigcup_{i \in I} A_{i} \wedge(\forall i \in I) f(i) \in A_{i}\right\}
$$

Proposition: 5.1.4 (ECST + Exponentiation) If I is a set and $\left(A_{i}\right)_{i \in I}$ is a family of sets over I, then $\prod_{i \in I} A_{i}$ is a set.

Proof: $\bigcup_{i \in I} A_{i}$ is a set by Lemma 4.3.2, and hence, by Exponentiation, $\{f \mid f$: $\left.I \rightarrow \bigcup_{i \in I} A_{i}\right\}$ is a set. Thus, Bounded Separation ensures that $\prod_{i \in I} A_{i}$ is a set.

Corollary: 5.1.5 (ECST) Strong Collection plus Powerset implies Subset Collection.

Proof: Arguing in ECST, one easily shows that Powerset implies Fullness. Thus the assertion follows from Theorem 5.1.1 (ii).

As the next result will show, Fullness does not entail that, for sets A and B, $\boldsymbol{m v}\left({ }^{A} B\right)$ is always a set.

Proposition: 5.1.6 (i) (ECST) $\forall A \forall B\left(\operatorname{mv}\left({ }^{A} B\right)\right.$ is a set) \leftrightarrow Powerset.
(ii) $\mathbf{C Z F}$ does not prove $\forall A \forall B\left(\mathbf{m v}\left({ }^{A} B\right)\right.$ is set $)$.

Proof: (i): We argue in ECST. It is obvious that Powerset implies that $\mathbf{m v}\left({ }^{A} B\right)$ is a set for all sets A, B. Henceforth assume the latter. Let C be an arbitrary set and $D=\boldsymbol{\operatorname { m v }}\left({ }^{C}\{0,1\}\right)$. By our assumption D is a set. To every subset X of C we assign the set $X^{*}:=\{\langle u, 0\rangle \mid u \in X\} \cup\{\langle z, 1\rangle \mid z \in C\}$. As a result, $X^{*} \in D$. For every $S \in D$ let $\operatorname{pr}(S)$ be the set $\{u \in C \mid\langle u, 0\rangle \in S\}$. We then have $X=\operatorname{pr}\left(X^{*}\right)$ for every $X \subseteq C$, and thus

$$
\mathcal{P}(C)=\{p r(S) \mid S \in D\} .
$$

Since $\{\operatorname{pr}(S) \mid S \in D\}$ is a set by Replacement, $\mathcal{P}(S)$ is a set as well.
(ii): As will be explained in the final chapter, the strength of CZF + Powerset exceeds that of second order arithmetic whereas CZF has only the strength of a small fragment of second order arithmetic.

Remark: 5.1.7 On page 623 of[90], a different rendering of Fullness is introduced:

$$
\text { Fullness }^{T v D} \quad \forall A \forall B \exists C \forall r \in \operatorname{mv}\left({ }^{A} B\right) \operatorname{ran}(r) \in C \text {. }
$$

Proposition 8.9, page 623 of [90] claims that Subset Collection implies Fullness ${ }^{T v D}$ on the basis of CZF. That this is not correct can be seen as follows. Let A, B be arbitrary sets. For $R \in \operatorname{mv}\left({ }^{A} B\right)$ let R^{d} be the set $\{\langle u,\langle u, v\rangle\rangle \mid\langle u, v\rangle \in R\}$. Then $R^{d} \in \operatorname{mv}\left({ }^{A}(A \times B)\right)$ and $\operatorname{ran}\left(R^{d}\right)=R$. By Fullness ${ }^{T v D}$ there exists a set C such that $\boldsymbol{\operatorname { r a n }}(S) \in C$ for all $S \in \boldsymbol{m v}\left({ }^{A}(A \times B)\right.$). Consequently $\boldsymbol{\operatorname { m v }}\left({ }^{A} B\right) \subseteq C$ and thus $\mathbf{m v}\left({ }^{A} B\right)$ is a set by Δ_{0} Separation. The latter collides with Proposition 5.1.6 (ii).

5.2 Appendix: Binary Refinement

We formulate a weak consequence of the Fullness axiom that will play a role in showing that the class of Dedekind reals forms a set.

Definition: 5.2.1 For each set A, a set $D \subseteq \operatorname{Pow}(A)$ is a binary refinement set for A if, whenever sets X_{0}, X_{1} are sets such that $X_{0} \cup X_{1}=A$ then there are sets $Y_{0}, Y_{1} \in D$ such that $Y_{0} \subseteq X_{0}, Y_{1} \subseteq X_{1}$ and $Y_{0} \cup Y_{1}=A$.

Definition: 5.2.2 (Binary Refinement Axiom (BRA)) Every set has a binary refinement set.

Theorem: 5.2.3 (BCST) Fullness implies BRA.
Proof: Let C be a set that is full in $\mathbf{m v}\left({ }^{A} 2\right)$. When we use 2 in BCST we take it to be the set $\{0,1\}$ where $0=\emptyset$ and $1=\{0\}$. Let

$$
D=\{\{x \in A \mid(x, i) \in R\} \mid R \in C, i \in 2\} .
$$

Given sets X_{0}, X_{1} such that $X_{0} \cup X_{1}=A$ let

$$
R=\left\{(x, i) \in A \times 2 \mid x \in X_{i}\right\} .
$$

Then $R \in \operatorname{mv}\left({ }^{A} 2\right)$ so that there is $S \in C$ such that $S \subseteq R$. If $Y_{i}=\{x \in A \mid$ $(x, i) \in S\}$ for $i=0,1$ then $Y_{0}, Y_{1} \in D, Y_{0} \subseteq X_{0}, Y \subseteq X_{1}$ and $Y_{0} \cup Y_{1}=A$, as required.

Proposition: 5.2.4 (BCST)

1. If A has a binary refinement set and $A \sim A^{\prime}$ then A^{\prime} has a binary refinement set.
2. If A has a binary refinement set then the class $\operatorname{Dec}(A)$ of decidable subsets of A is a set and hence so is ${ }^{A} 2 \sim \operatorname{Dec}(A)$.
3. If A, B are sets such that $A \times B$ has a binary refinement set and B is discrete then the class ${ }^{A} B$ is a set.

Proof: Left as an exercise.

The following definition and result will be useful in showing that the Dedekind reals form a set, assuming only that \mathbb{N} has a binary refinement set.

Definition: 5.2.5 (The open-located property) Assume given a set Q and a subset A of $Q \times Q$. Let X be a subset of Q.

1. X is A-open if $(\forall r \in X)(\exists s \in X)(r, s) \in A$.
2. X is A-located if $(\forall(r, s) \in A)(r \in X \vee s \notin X)$.

The set Q is defined to have the open-located property if, for every subset A of $Q \times Q$, the class ol (A) of the A-open and A-located subsets of Q is a set.

Proposition: 5.2.6 (ECST $\left.{ }^{+}+\mathbf{B R A}\right)$ Every set has the open-located property.
Proof: Let Q be a set and let A be a subset of $Q \times Q$. Let D be a set given by the Binary Refinement Principle.

Given $X \in o l(A)$ let $Y_{1}=A \cap(X \times Q)$ and $Y_{2}=A \cap(Q \times(Q-X))$. As X is A-located, $A=Y_{1} \cup Y_{2}$. So, as D is given by the Binary Refinement Principle, there are $Y_{1}^{\prime}, Y_{2}^{\prime} \in D$ such that $Y_{1}^{\prime} \subseteq Y_{1}, Y_{2}^{\prime} \subseteq Y_{2}$ and $A=Y_{1}^{\prime} \cup Y_{2}^{\prime}$. Observe that $\left(A-Y_{2}\right) \subseteq\left(A-Y_{2}^{\prime}\right) \subseteq Y_{1}^{\prime} \subseteq Y_{1}$.

Recall that, for any class R of ordered pairs, $\operatorname{dom}(R)=\{x \mid(\exists y)(x, y) \in R\}$. As dom is monotone and X is A-open,

$$
X \subseteq \operatorname{dom}\left(A-Y_{2}\right) \subseteq \operatorname{dom}\left(A-Y_{2}^{\prime}\right) \subseteq \operatorname{dom}\left(Y_{1}^{\prime}\right) \subseteq \operatorname{dom}\left(Y_{1}\right)=X
$$

So all the inclusions become equalities and, in particular, $X=\operatorname{dom}\left(Y_{1}^{\prime}\right) \in \mathcal{D}$, where $\mathcal{D}=\{\operatorname{dom}(Y) \mid Y \in D\}$. By Replacement, as D is a set so is \mathcal{D}.

We have shown that the class ol (A) is a subclass of the set \mathcal{D}. As ol (A) has a restricted definition it follows, by Restricted Separation, that $o l(A)$ is a set.

5.3 Exercises

Exercise: 5.3.1 (BCST) Show that a set D of subsets of a set A is a binary refinement set for A iff, for each set $X \subseteq A$, if Y is a set such that $X \cup Y=A$ then there is a set $X^{\prime} \in D$ such that $X^{\prime} \subseteq X$ and $X^{\prime} \cup Y=A$.

Exercise: 5.3.2 (BCST) Prove Proposition 5.2.4
Exercise: 5.3.3 (ECST ${ }^{+}$) Show that if \mathbb{N} has a binary refinement set then ${ }^{\mathbb{N}} \mathbb{N}$ is a set.

Chapter 6

The Natural Numbers

6.1 Some approaches to the natural numbers

6.1.1 Dedekind's characterization of the natural numbers

A precise axiomatic characterisation of the natural numbers was first given by Dedekind. In his [19], he defined a set A to be an infinite set (nowadays called Dedekind infinite set if there is $a_{0} \in A$ and an injective function $F: A \rightarrow(A-$ $\left.\left\{a_{0}\right\}\right)$. Given A and F, he called a subset C of A a chain if $(\forall x \in C)[F(x) \in C]$ and called A simply infinite if a_{0}, F can be chosen such that A is the smallest chain C such that $a_{0} \in C$; i.e. A is a subset of every such chain. Dedekind went on to show how on any simply infinite set A, a_{0} and F can be used to generate the infinite sequence $a_{0}, F\left(a_{0}\right), F\left(F\left(a_{0}\right)\right), \ldots$ representing the natural numbers $0,1,2, \ldots$. He showed how to define functions by iteration on any simply infinite set so that functions such as addition and multiplication on the natural numbers can be represented. He also used iteration to show that any two structures $\left(A, a_{0}, F\right)$, where A is simply infinite via a_{0} and F, are isomorphic.

Dedekind wanted to show that simply infinite sets exist. Given any (Dedekind) infinite set, Dedekind constructed a simply infinite subset by taking it to be the intersection of all its chains that contain a_{0}. So it remained for him to prove the existence of an infinite set. Dedekind used a controversial, somewhat metaphysical argument to show that infinite sets exist and hence that simply infinite sets exist. Today we do not expect to be able to prove that infinite sets exist but postulate an Infinity Axiom. The definition of the intersection of all chains containing a_{0} involves the definition of the simply infinite set by Separation using an unbounded formula. That method of definition was available to Dedekind and is accepted in classical set theory. But it is not available in constructive set theory.

In 1889 Peano extracted from Dedekind's theory an axiom system for the set \mathbb{N} of natural numbers which, after removing some axioms about equality, are nowadays usually called the Peano axioms, but here we prefer to call them the Dedekind-Peano axioms. These axioms are as follows.

1. $0 \in \mathbb{N}$.
2. Each $n \in \mathbb{N}$ has a successor, $S(n) \in \mathbb{N}$.
3. If $n \in \mathbb{N}$ then $0 \neq S(n)$.
4. If $n, m \in \mathbb{N}$ such that $S(n)=S(m)$ then $n=m$.
5. For each $Y \subseteq \mathbb{N}$, if $0 \in Y$ and $(\forall n \in Y) S(n) \in Y$ then $(\forall n \in \mathbb{N}) n \in Y$.

6.1.2 The Zermelo and von Neumann natural numbers

When Zermelo formulated his axioms for set theory in 1908 his infinity axiom was to assert the existence of a set a such that $\emptyset \in a$ and if $x \in a$ then $\{x\} \in a$, so that the natural numbers are represented by the sets $\emptyset,\{\emptyset\},\{\{\emptyset\}\}, \ldots$. If \mathbb{N} is taken to be the smallest such set Z then the Dedekind-Peano axioms are easily checked, with $0=\emptyset$ and $S(n)=\{n\}$ for each $n \in Z$.

Today it is more usual to use the finite von Neumann ordinals $\emptyset,\{\emptyset\},\{\emptyset,\{\emptyset\}\}, \ldots$ to represent the natural numbers so that the standard Infinity Axiom states that there is an inductive set; i.e. a set a such that $\emptyset \in a$ and if $x \in a$ then $x^{+}=x \cup\{x\} \in a$. Using Full Separation, given an inductive set the smallest inductive set can be defined as the intersection of all inductive sets. But in Constructive Set Theory we do not accept Full Separation. So, in formulating the axiom system ECST we use the axiom of Strong Infinity, which simply asserts the existence of a smallest inductive set ω. As with Zermelo's treatment of the natural numbers, the Dedekind-Peano axioms hold. But now, with \mathbb{N} taken to be $\omega, 0=\emptyset$ and $S(n)=n^{+}$for $n \in \omega$, the 4^{\prime} th axiom requires a little work to check.

6.1.3 Lawvère's characterization of the natural numbers

For category theorists the Zermelo and von Neumann approaches to formulating an axiom of Infinity are unnatural because they rely on properties of the membership relation between sets which is not naturally available in the category of sets. Lawvère formulated an axiom, in [50], expressing the existence of a natural numbers object in a category satisfying certain weak conditions, which characterizes the natural numbers up to isomorphism in the category of sets.

6.1.4 The Strong Infinity Axiom

The Strong Infinity axiom of ECST states that $\exists a \theta(a)$ where

$$
\theta(a) \equiv[\operatorname{Ind}(a) \wedge \forall y(\operatorname{Ind}(y) \rightarrow a \subseteq y)] .
$$

Here

$$
\operatorname{Ind}(a) \equiv\left[\emptyset \in a \wedge \forall x \in a\left(x^{+} \in a\right)\right]
$$

So the axiom expresses that there is a smallest set a such that $\operatorname{Ind}(a)$. That set a is intended to represent the set of natural numbers. We have used \emptyset to play the role of the natural number zero and $x^{+}=x \cup\{x\}$ to play the role of the successor of a natural number x. Note that for any $x, \emptyset \neq x^{+}$.

Lemma: 6.1.1 (BCST) If $\theta(a)$ and $\theta(b)$ then $a=b$.
Proof: $\operatorname{Ind}(a)$ and $\operatorname{Ind}(b)$ yield $a \subseteq b$ and $b \subseteq a$, hence $a=b$ by Extensionality.

Definition: 6.1.2 When working in ECST we use ω for the unique set a such that $\theta(a)$.

In proving properties of ω it is convenient to use the following Proposition
Proposition: 6.1.3 (ECST: Bounded Mathematical Induction for ω) If $\phi(x)$ is a bounded formula then

$$
\phi(\emptyset) \wedge(\forall x \in \omega)\left[\phi(x) \rightarrow \phi\left(x^{+}\right)\right] \rightarrow(\forall x \in \omega) \phi(x)
$$

Proof: If $\phi(x)$ is a bounded formula then, by Bounded Separation, the class $b=\{x \in \omega \mid \phi(x)\}$ is a set. Moreover, if $\phi(\emptyset) \wedge(\forall x \in \omega)\left[\phi(x) \rightarrow \phi\left(x^{+}\right)\right]$then $\operatorname{Ind}(b)$ so that $\omega \subseteq b$ and hence $(\forall x \in \omega) \phi(x)$.
An easy application of Bounded Mathematical Induction is the following.
Proposition: 6.1.4 (ECST) $\left.\left.(\forall x \in \omega)\left[x=\emptyset \vee(\exists y \in x)\left(x=y^{+}\right)\right\}\right)\right]$.

6.1.5 Some possible additional axioms concerning ω

The following axiom may be added to ECST as it cannot be proved in ECST.
Definition: 6.1.5 (Small Iteration Axiom (SIA)) If A is a set, $a_{0} \in A$ and $F: A \rightarrow A$ then there is a function $H: \omega \rightarrow A$ such that $H(\emptyset)=a_{0}$ and $H\left(x^{+}\right)=F(H(x))$ for all $x \in \omega$.

Note that the function H is unique, for if H_{1}, H_{2} are both such functions H then $\operatorname{Ind}(b)$, where $b=\left\{x \in \omega \mid H_{1}(x)=H_{2}(x)\right\}$, so that $H_{1}(x)=H_{2}(x)$ for all $x \in \omega$. The axiom SIA can be strengthened to the following scheme.

Definition: 6.1.6 (Full/Bounded Iteration Scheme) This is the scheme which is expressed as in the formulation of SIA except that A and F are allowed to be arbitrary classes/bounded classes and H is required to be unique.

In the context of ECST Lawvère's axiom, stating the existence of a natural numbers object in the category of sets, turns out to be equivalent to SIA. For many purposes the axiom system ECST $^{+}=$ECST + SIA turns out to be a natural weak axiom system to work in when developing arithmetic.

Although SIA cannot be proved in ECST we will see that it can be proved in ECST + FPA, where FPA is the following axiom.

Definition: 6.1.7 (Finite Powers Axiom (FPA)) For every set A, for each $x \in \omega$ the class ${ }^{x} A$, of all functions $x \rightarrow A$, is a set.

Note that we can prove FPA in (ECST + Full Separation) as follows. By Full Separation we may form the set $B=\left\{x \in \omega \mid{ }^{x} A\right.$ is a set $\}$. It is not hard to show that $\operatorname{Ind}(B)$ so that we get FPA. But B is not defined by a bounded formula so that this method cannot be used in ECST. Much weaker than the Full Separation Scheme is the following scheme.

Definition: 6.1.8 (Full Mathematical Induction Scheme for ω) For each class B, if B is inductive; i.e. $\emptyset \in B$ and $x^{+} \in B$ for all $x \in B$, then $\omega \subseteq B$.

As the class $B=\left\{x \in \omega \mid{ }^{x} A\right.$ is a set $\}$ above, is inductive we get a proof of FPA using the scheme. Of course each instance of the scheme has a trivial proof using Full Separation. We will also be able to use this scheme to prove each instance of the Full Iteration Scheme.

6.2 DP-structures and DP-models

In this section we work in BCST. We call a structure that satisfies the DedekindPeano axioms for the natural numbers a DP-model. In BCST alone the DedekindPeano axioms are not enough to give us a categorical characterization of the natural numbers. The Dedekind-Peano axioms are enough in $\mathbf{B C S T}^{c}$ as, using classical logic, Full Separation holds so that Full Mathematical Induction on a DP-model can be derived and hence functions on the DP-model can be defined by iteration. In particular, in $\mathbf{B C S T}^{c}$, the required unique isomorphism between DP-models can be defined by iteration.

Definition: 6.2.1 $\mathcal{A}=\left(A, a_{0}, F\right)$ is a $\mathbf{D P}$-structure if A is a set and
(DP1) $a_{0} \in A$,
(DP2) $F: A \rightarrow A$.
\mathcal{A} is a Dedekind-Peano model (DP-model) if also
(DP3) $a_{0} \neq F(x)$ for $x \in A$,
(DP4) F is injective; i.e. $F\left(x_{1}\right)=F\left(x_{2}\right) \Rightarrow x_{1}=x_{2}$ for $x_{1}, x_{2} \in A$,
(DP5) If Y is a subset of A such that $a_{0} \in Y$ and $F(x) \in Y$ for all $x \in Y$ then $x \in Y$ for all $x \in A$.

Note: The assertions (DP1) - (DP5) are the Dedekind-Peano axioms for a structure $\mathcal{A}=\left(A, a_{0}, F\right)$.

Lemma: 6.2.2 (BCST) For any DP-model $\mathcal{A}=\left(A, a_{0}, F\right)$, every element of A is either a_{0} or is $F(x)$ for some $x \in A$.
Proof: Apply (DP5) to $Y=\left\{a_{0}\right\} \cup\{F(x) \mid x \in A\}$.

Definition: 6.2.3 Let $\mathcal{A}=\left(A, a_{0}, F\right)$ and $\mathcal{A}^{\prime}=\left(A^{\prime}, a_{0}^{\prime}, F^{\prime}\right)$ be DP-structures and let $\pi: A \rightarrow A^{\prime}$. Then π is a DP-map $\mathcal{A} \rightarrow \mathcal{A}^{\prime}$ if $\pi a_{0}=a_{0}^{\prime}$ and $\pi(F(x))=$ $F^{\prime}(\pi x)$ for all $x \in A$. It is an isomorphism if π is a bijection. We then write $\pi: \mathcal{A} \cong \mathcal{A}^{\prime}$ or just $\mathcal{A} \cong \mathcal{A}^{\prime}$.

Proposition: 6.2.4 (BCST) Let \mathcal{A} be a DP-model and let $f: \mathcal{A} \rightarrow \mathcal{A}^{\prime}$ be a DP-map, where \mathcal{A}^{\prime} is a DP-structure.

1. The DP-map f is unique.
2. The DP-map f is an isomorphism if \mathcal{A}^{\prime} is also a DP-model.

Proof: Let $\mathcal{A}=\left(A, a_{0}, F\right)$ be a DP-model and let f be a DP-map $\mathcal{A} \rightarrow \mathcal{A}^{\prime}$, where \mathcal{A}^{\prime} is a DP-structure.

1. If g is also a DP-map $\mathcal{A} \rightarrow \mathcal{A}^{\prime}$ then we may apply axiom (DP5), for \mathcal{A}, to the set $Y=\{x \in A \mid f(x)=g(x)\}$ to get that $A \subseteq Y$; i.e. $f(x)=g(x)$ for all $x \in A$.
2. If f is a $\mathbf{D P}$-map $\mathcal{A} \rightarrow \mathcal{A}^{\prime}$ and \mathcal{A}^{\prime} is a $\mathbf{D P}$-model then we may apply axiom (DP5) for \mathcal{A}^{\prime} to $Y=\{f(x) \mid x \in A\}$ to get that $f: A \rightarrow A^{\prime}$ is surjective.
To show that f is injective apply axiom (DP5), for \mathcal{A}, to the set

$$
Y=\{x \in A \mid(\forall y \in A)[f(x)=f(y) \rightarrow x=y]\} .
$$

The details in the three applications of (DP5) are left as exercises.

6.3 The von Neumann natural numbers in ECST

In this section we work in ECST. So we may form the following DP-structure.
Definition: 6.3.1 $\mathcal{N}_{\omega}=\left(\omega, 0_{\omega}, s\right)$, where $0_{\omega}=\emptyset$ and $s: \omega \rightarrow \omega$ is given by $s(x)=x^{+}$for all $x \in \omega$.

6.3.1 The DP-model \mathcal{N}_{ω}

We want to show that \mathcal{N}_{ω} is a DP-model \mathcal{N}_{ω}. We immediately have (DP1) and (DP2) and trivially have (DP3) and (DP5). But (DP4) requires some work. We need the following lemma.

Lemma: 6.3.2 (ECST) For all $x \in \omega$,

1. $(\forall y \in x) y \subseteq x$,
2. $x \notin x$, and
3. $x \subseteq \omega$.

Proof: Each part can be proved by Bounded Mathematical Induction on ω. The details are left as an exercise.

Theorem: 6.3.3 (ECST) \mathcal{N}_{ω} is a DP-model.
Proof: We only have to prove (DP4) for \mathcal{N}; i.e. s is injective. Let $x, y \in \omega$ such that $s(x)=s(y)$; i.e. $x^{+}=y^{+}$. As $x \in x^{+}, x \in y^{+}$so that either $x \in y$ or $x=y$. Similarily, either $y \in x$ or $y=x$. If $x \in y$ and $y \in x$ then, by part 1 of the lemma, $x \in x$ contradicting part 2 of the lemma. So the only possibility remaining is that $x=y$.

Definition: 6.3.4 Let $<_{\omega}$ be the relation on ω given by

$$
x<_{\omega} y \equiv[x \in y \text { and } y \in \omega] .
$$

Proposition: 6.3.5 (ECST) $<_{\omega}$ is the unique relation on ω such that, for each $x \in \omega, \neg\left(x<_{\omega} 0_{\omega}\right)$ and, for $x, y \in \omega$,

$$
x<_{\omega} s(y) \leftrightarrow\left[x<_{\omega} y \text { or } x=y\right] .
$$

Proof: Exercise.

Theorem: 6.3.6 (ECST)

1. For all $x \in \omega, 0_{\omega}<_{\omega} s(x)$ and $(\forall y<\omega x) s(y)<_{\omega} s(x)$.
2. $<_{\omega}$ is a strict linear ordering of ω, and so ω is a discrete strictly ordered set; i.e. $<_{\omega}$ and equality on ω are decidable.

Proof:

1. Use (DP5) with $Y=\left\{x \in \omega \mid 0_{\omega}<_{\omega} s(x)\right\}$ to show that, for all $x \in \omega$, $0_{\omega}<_{\omega} s(x)$ and use (DP5) again with $Y=\left\{x \in \omega \mid\left(\forall y<_{\omega} x\right) s(y)<_{\omega}\right.$ $s(x)\}$ to show that, for all $\left.x \in \omega,\left(\forall y<_{\omega} x\right) s(y)<s(x)\right\}$.
2. That $<_{\omega}$ is transitive and irreflexive is just part 1 of Lemma 6.3.2. Apply (DP5), with $Y=\left\{x \in \omega \mid(\forall y \in \omega)\left[x<_{\omega} y \vee x=y \vee y<_{\omega} x\right]\right\}$, to get that $<_{\omega}$ is a strict linear order. To see that $<_{\omega}$ is a decidable relation on ω, observe that, for $x, y \in \omega$, either $x<_{\omega} y$ or $\left(x=y \vee y<_{\omega} x\right)$, so that in the second case $\neg\left(x<_{y} \omega\right)$. Also, observe that, for $x, y \in \omega$, either $x=y$ or $\left(x<_{\omega} y \vee y<_{\omega} x\right)$ and, in the second case $\neg(x=y)$. Thus equality is decidable on ω.
The details in the three applications of (DP5) are left as an exercise.

6.3.2 The Least Number Principle

Classically the Least Number Principle expresses that every non-empty set of natural numbers has a least element; i.e. an element that is less than any other element. In constructive mathematics a least element can only generally be found under the assumption that the set is an inhabited decidable subset of \mathbb{N}.

Theorem: 6.3.7 (ECST: Least Number Principle for ω) Each decidable inhabited subset X of ω has $a<_{\omega}$-least element; i.e. an element $x \in X$ such that $(\forall y<\omega x)[y \notin X]$.

Proof: Let X be an inhabited, decidable subset of ω and let X_{0} be the set of least elements of ω. If $x \in \omega$ then $y<_{\omega} x \leftrightarrow y \in x$, so that $x \in X_{0} \leftrightarrow x \in$ $X \wedge(\forall y \in x)[x \notin X]$.

Claim: For all $x \in X$, either $(\exists y \in x)\left[y \in X_{0}\right]$ or $(\forall y \in x)[y \notin X]$
Proof: We use Bounded Mathematical Induction on ω.
If $x=\emptyset$ then $(\forall y \in x)[y \notin X]$. For the induction step assume the claim for x. So, either

1. $(\exists y \in x)\left[y \in X_{0}\right]$ or
2. $(\forall y \in x)[y \notin X]$.

If 1 then $\left(\exists y \in x^{+}\right)\left[y \in X_{0}\right]$, as $x \subseteq x^{+}$. If 2 then, as X is a decidable subset of ω, either $x \in X$ or $x \notin X$. If $x \in X$ then $x \in X_{0}$ so that $\left(\exists y \in x^{+}\right)\left[y \in X_{0}\right]$. If $x \notin X$ then $\left(\forall y \in x^{+}\right)[y \notin X]$, completing the induction step.

As X is inhabited there is $x \in X$. By the claim, either $(\exists y \in x)\left[y \in X_{0}\right]$ or $(\forall y \in x)[y \notin X]$. In the second case $x \in X_{0}$ so that, in either case, $\left(\exists y \in x^{+}\right)\left[y \in X_{0}\right]$, so that X has a $<_{\omega}$-least element.

6.3.3 The Iteration Lemma

Small Iteration can not be proved in ECST. But we can extract the following fundamental construction from the classical proof.

Definition: 6.3.8 Given classes A, F with $F: A \rightarrow A$ and $a_{0} \in A$ call a function $X: m^{+} \rightarrow A$ good if $m \in \omega, X\left(0_{\omega}\right)=a_{0}$ and $X\left(n^{+}\right)=F(X(n))$ for all $n \in m$. Let G be the class of all good functions, let $H=\cup G$ and let

$$
Q=\{n \in \omega \mid(\exists a \in A)(n, a) \in H\} .
$$

Lemma: 6.3.9 (ECST) Q is an inductive subclass of ω and $H: Q \rightarrow A$ such that

$$
\begin{aligned}
& H\left(0_{\omega}\right)=a_{0}, \\
& H\left(n^{+}\right)=F(H(n)), \text { for all } n \in Q .
\end{aligned}
$$

Proof: We first show that Q is inductive. Clearly $\left(0_{\omega}, a_{0}\right) \in\left\{\left(0_{\omega}, a_{0}\right)\right\} \in G$ so that $\left(0_{\omega}, a_{0}\right) \in H$ and hence $0_{\omega} \in Q$. If $n \in Q$ then $(n, a) \in X \in G$ for some X and some a. Then $X: m^{+} \rightarrow A$ for some $m \in \omega$. so $n \in s(m)$ and hence $n \in m$ or $n=m$. If $n \in m$ then $\left(n^{+}, F(a)\right) \in X$. If $n=m$ then $X^{\prime}=X \cup\left\{\left(n^{+}, F(a)\right\} \in G\right.$ so that $\left(n^{+}, F(a)\right) \in X^{\prime} \in G$. In either case $n^{+} \in Q$.

To show that $H: Q \rightarrow A$ it suffices to show that, for good X_{1}, X_{2}, the set Q^{\prime} is inductive, where Q^{\prime} is the set of $n \in \omega$ such that for all $a_{1}, a_{2} \in$ $\operatorname{ran}\left(X_{1}\right) \cup \operatorname{ran}\left(X_{2}\right)$,

$$
\left(n, a_{1}\right) \in X_{1} \&\left(n, a_{2}\right) \in X_{2} \Rightarrow a_{1}=a_{2}
$$

For then $Q^{\prime}=\omega$ so that for all $a_{1}, a_{2} \in A$

$$
\left(n, a_{1}\right),\left(n, a_{2}\right) \in H \Rightarrow a_{1}=a_{2} .
$$

To see that Q^{\prime} is inductive note that $\left(0_{\omega}, a\right) \in X_{i}$ implies $a=a_{0}$ for $i=1,2$. So

$$
\left(0_{\omega}, a_{1}\right) \in X_{1} \&\left(0_{\omega}, a_{2}\right) \in X_{2} \Rightarrow a_{1}=a_{0}=a_{2}
$$

and so $0_{\omega} \in Q^{\prime}$. To show that if $n \in Q^{\prime}$ then $n^{+} \in Q^{\prime}$ let $n \in Q^{\prime}$ and let $\left(n^{+}, a_{1}\right) \in X_{1},\left(n^{+}, a_{2}\right) \in X_{2}$ to show that $a_{1}=a_{2}$. There must be b_{1}, b_{2} such that $a_{1}=F\left(b_{1}\right), a_{2}=F\left(b_{2}\right),\left(n, b_{1}\right) \in X_{1}$ and $\left(n, b_{2}\right) \in X_{2}$. As $n \in Q^{\prime}, b_{1}=b_{2}$ so that

$$
a_{1}=F\left(b_{1}\right)=F\left(b_{2}\right)=a_{2} .
$$

Theorem: 6.3.10 (ECST) FPA implies SIA.
Proof: Let A be a set, $a_{0} \in A$ and $F: A \rightarrow A$. Let the classes G, H, Q be as in Definition 6.3.8. So, by the Iteration Lemma, $H: Q \rightarrow A$ would have the desired properties needed to prove SIA provided that we can show that $Q=\omega$.

By FPA, the class ${ }^{n} A$ is a set, for each $n \in \mathbb{N}$, so that $\mathcal{F}(A)=\bigcup_{n \in \mathbb{N}}{ }^{n} A$ is a set. As the class G is a subclass of the set $\mathcal{F}(A)$, the class G is a set. It follows that H and Q are also sets. As Q is an inductive subset of ω it is equal to ω, as desired.

Theorem: 6.3.11 (ECST) Each instance of the Full Iteration Scheme can be proved assuming the Full Mathematical Induction Scheme for ω.

Proof: This is an immediate application of the Iteration Lemma as the class Q in that lemma is inductive and hence, by Full Mathematical Induction, is the whole of ω.

6.4 The Natural Numbers in ECST ${ }^{+}$

Here we work in $\mathbf{E C S T}^{+}=\mathbf{E C S T}+$ SIA .

6.4.1 The DP-model ($\mathbb{N}, 0, S$)

Note that the assertion of SIA can be expressed as follows.

$$
\text { For every DP-structure } \mathcal{A} \text { there is a DP-map } \mathcal{N}_{\omega} \rightarrow \mathcal{A} \text {. }
$$

Moreover, by Proposition 6.2.4 the DP-map is always unique and if \mathcal{A} is a DPmodel then the map is an isomorphism. It follows that any two DP-models are isomorphic so that any structural property of one DP-model, such as \mathcal{N}_{ω}, will carry over to any other DP-model. Whenever we work in an axiom system in which all the theorems of $\mathbf{E C S T}^{+}$can be derived we make the following assumption.

Definition: 6.4.1 (The natural numbers assumption)

$(\mathbb{N}, 0, S)$ is a DP-model.
We do not care which DP-model this is, as any two are isomorphic. By carrying over structural properties from \mathcal{N}_{ω} to $(\mathbb{N}, 0, S)$ we get the following theorem.

Theorem: 6.4.2 (ECST ${ }^{+}$)

1. There is a unique relation $<$ on \mathbb{N}, which we call the standard order on \mathbb{N} such that $\neg(n<0)$ for all $n \in \mathbb{N}$ and $n<S(m) \leftrightarrow[n<m \vee n=m]$ for all $n, m \in \mathbb{N}$.
2. Moreover $<$ is a strict linear ordering of \mathbb{N} such that every inhabited decidable subset of \mathbb{N} has a <-least element.
3. For each $\mathbf{D P}$-structure $\mathcal{A}=\left(A, a_{0}, F\right)$ there is a unique function $H: \mathbb{N} \rightarrow A$ such that $H(0)=a_{0}$ and $H(S(n))=F(H(n))$ for all $n \in \mathbb{N}$.

6.4.2 Primitive Recursion

The next result expresses that functions on \mathbb{N} can be defined by primitive recursion.

Theorem: 6.4 .3 (ECST ${ }^{+}$: Primitive Recursion Theorem) Let A, B be sets, $f: B \rightarrow A$ and $g: B \times \mathbb{N} \times A \rightarrow A$. Then there is a unique function $h: B \times \mathbb{N} \rightarrow A$ such that, for $b \in B$ and $n \in \mathbb{N}$,

$$
(*) \quad \begin{cases}h(b, 0) & =f(b) \\ h(b, S(n)) & =g(b, n, h(b, n))\end{cases}
$$

Proof: Let $b \in B$ and let $\mathcal{A}_{b}=\left(\mathbb{N} \times A,(0, f(b)), g_{b}\right)$, where $g_{b}: \mathbb{N} \times A \rightarrow \mathbb{N} \times A$ is given by

$$
g_{b}(n, x)=(S(n), g(b, n, x)) .
$$

Then \mathcal{A}_{b} is a DP-structure so that there is a unique DP-map $h_{b}: \mathcal{N} \rightarrow \mathcal{A}_{b}$. So

$$
\begin{cases}h_{b}(0) & =(0, f(b)), \text { and } \\ h_{b}(S(n)) & =g_{b}\left(h_{b}(n)\right) \text { for all } n \in \mathbb{N}\end{cases}
$$

Let $\pi^{1}: \mathbb{N} \times A \rightarrow \mathbb{N}$ and $\pi^{2}: \mathbb{N} \times A \rightarrow A$ be the projection functions; i.e.

$$
\left\{\begin{array}{l}
\pi^{1}(n, x)=n, \text { and } \\
\pi^{2}(n, x)=x \text { for all }(n, x) \in \mathbb{N} \times A
\end{array}\right.
$$

Let $h_{b}^{1}(n)=\pi^{1}\left(h_{b}(n)\right) \in \mathbb{N}$ and $h_{b}^{2}(n)=\pi^{2}\left(h_{b}(n)\right) \in A$ for all $n \in \mathbb{N}$.

Claim: $h_{b}^{1}(n)=n$ for all $n \in \mathbb{N}$
Proof: We use Bounded Mathematical Induction.

$$
h_{b}^{1}(0)=\pi^{1}(0, f(b))=0 .
$$

Also, if $n \in \mathbb{N}$ such that $h_{b}^{1}(n)=n$ then

$$
\begin{aligned}
h_{b}^{1}(S(n)) & =\pi^{1}\left(g_{b}\left(h_{b}(n)\right)\right) \\
& =\pi^{1}\left(g_{b}\left(h_{b}^{1}(n), h_{b}^{2}(n)\right)\right) \\
& =\pi^{1}\left(g_{b}\left(n, h_{b}^{2}(n)\right)\right) \\
& =\pi^{1}\left(S(n), g\left(b, n, h_{b}^{2}(n)\right)\right)=S(n)
\end{aligned}
$$

Let $h: B \times \mathbb{N} \rightarrow A$ be given by $h(b, n)=h_{b}^{2}(n)$ for all $b \in B$ and $n \in \mathbb{N}$. I claim that h is the desired function. First

$$
\left.h(b, 0)=\pi^{2}\left(h_{b}(0)\right)=\pi^{2}(0, f(b))=f(b)\right) .
$$

Second

$$
\begin{aligned}
h(b, S(n)) & =\pi^{2}\left(g_{b}\left(h_{b}(n)\right)\right) \\
& =\pi^{2}\left(S(n), g\left(b, n, h_{b}^{2}(n)\right)\right) \\
& =g\left(b, n, h_{b}^{2}(n)\right)=g(b, n, h(b, n)) .
\end{aligned}
$$

The uniqueness of h is proved by a straightforward application of Bounded induction.

6.4.3 Heyting Arithmetic

Theorem: 6.4.4 (ECST ${ }^{+}$) There are unique binary operations + and \timeson \mathbb{N} such that, using standard infix notation, for $n, m \in \mathbb{N}$,

$$
\left\{\begin{array} { r l }
{ n + 0 } & { = n } \\
{ n + S (m) } & { = S (n + m) }
\end{array} \quad \left\{\begin{array}{rl}
n \times 0 & =0 \\
n \times S(m) & =(n \times m)+n
\end{array}\right.\right.
$$

Proof: Apply the the Primitive Recursion Theorem, Theorem 6.4.3, with $A=$ $B=\mathbb{N}$ using, for $n, k \in \mathbb{N}, f(n)=n$ and $g(m, n, k)=S(k)$ to define + and then $f(n)=0$ and $g(m, n, k)=k+m$ to define \times.

As usual we also write $n . m$ or just $n m$ for $n \times m$.
Definition: 6.4.5 Heyting Arithmetic (HA) is the axiom system formulated in Intuitionistic first order logic with equality having, as non-logical symbols $0, S,+, \times$. HA consists of the mathematical scheme

$$
(H A 0) \quad \phi(0) \wedge(\forall x)(\phi(x) \rightarrow \phi(S(x))) \rightarrow(\forall x) \phi(x)
$$

for each formula $\phi(x)$ of $\mathbf{H A}$, and the axioms

$$
\begin{array}{llll}
(H A 1) & (0=S(x) \rightarrow \perp & (H A 2) & (S(x)=S(y) \rightarrow(x=y) \\
(H A 3) & x+0=x & (H A 4) & x+S(y)=S(x+y) \\
(H A 5) & x \times 0=0 & (H A 6) & x \times S(y)=(x \times y)+x
\end{array}
$$

Theorem: 6.4.6 (ECST ${ }^{+}$) HA has an interpretation in ECST $^{+}$.

6.5 Transitive Closures

The principles of the existence of the transitive closure of a (set) relation and of the transitive closure of a set are immediate consequences of the existence of \mathbb{N}, assuming a sufficient amount of induction on \mathbb{N}.

Definition: 6.5.1 Let R be a binary relation. A relation R^{*} is said to be the transitive closure of R if $R \subseteq R^{*}$ and R^{*} is a transitive relation and for all transitive relations P, whenever $R \subseteq P$, then $R^{*} \subseteq P$.

Lemma: 6.5.2 (ECST + FPA) For every binary relation, the transitive closure exists.

Proof: Let R be a binary relation. Let

$$
A=\{x \mid \exists y[(x, y) \in R \vee(y, x) \in R]\} .
$$

A is a set by Bounded Separation. Let $F=\bigcup_{n \in \mathbb{N}}{ }^{n+1} A$. By FPA and UnionReplacement, F is a set. Let F^{*} be the subset of F consisting of those $f \in F$ that are R-ascending, i.e., whenever $k, k+1 \in \operatorname{dom}(f)$ then $f(k) R f(k+1)$. Now, put

$$
R^{*}=\left\{(f(0), f(n)) \mid f \in F^{*} \wedge 0, n \in \operatorname{dom}(f) \wedge 0<n\right\} .
$$

R^{*} is a set, and one easily checks that $R \subseteq R^{*}$ and that R^{*} is transitive. To show that R^{*} is the smallest such relation suppose $R \subseteq P$ and P is transitive. Let $a R^{*} b$. Then there exist $n \in \mathbb{N}$ and $f \in F^{*}$ such that $0<n, n \in \operatorname{dom}(f)$, $a=f(0)$ and $b=f(n)$. For $0<j \leq n$ one readily ensures by induction on j that $f(0) P f(j)$; whence $a P b$.

Another important construction in set theory is the transitive closure of a set.
Definition: 6.5.3 A set A is said to be transitive if elements of elements of A are elements of A, in symbols: $\forall x \in A \forall y \in x y \in A$.

Given a set B, a set C is said to be the transitive closure of B if $B \subseteq C$, C is transitive, and whenever X is transitive set with $B \subseteq X$, then $C \subseteq X$.

Clearly, the transitive closure of a set, if it exists, is unique. If it exists, we denote the transitive closure of a set a by $\operatorname{TC}(a)$.

Lemma: 6.5.4 (ECST $+\Delta_{0}$-ITER $\left._{\omega}\right)$ Every set has a transitive closure.
Proof: Let $F: V \rightarrow V$ be the class function defined by $F(x)=x \cup \bigcup x$. V, F are Δ_{0} classes. Let b be any set. By $\Delta_{0}-\mathbf{I T E R}_{\omega}$, there exists a function $h: \mathbb{N} \rightarrow V$ such that $h(0)=b$ and $h(n+1)=F(h(n))$ for all $n \in \mathbb{N}$. Let $c=\bigcup_{n \in \mathbb{N}} h(n)$. As $b=h(0)$ we have $b \subseteq c$. Let $x \in y \in c$. Then $y \in h(n)$ for some n. Thus $x \in \bigcup h(n) \subseteq h(n+1) \subseteq c$, and hence $x \in c$. This shows that c is transitive.

Finally, suppose that $b \subseteq d$, where d is a transitive set. By induction on n one readily establishes that $h(n) \subseteq d$, whence $c \subseteq d$.

Lemma: 6.5.5 (ECST $+\Delta_{0}$ ITER $\left._{\omega}\right)$ For every set a,

$$
\begin{equation*}
\mathbf{T C}(a)=a \cup \bigcup\{\mathbf{T C}(z) \mid z \in a\} \tag{6.1}
\end{equation*}
$$

Proof: One easily checks that the right hand set is a subset of $\operatorname{TC}(a)$. Moreover, the right hand side is a transitive set of which a is a subset. Hence we have equality.

We need to include somewhere that $\Delta_{0}-$ ITER $_{\omega}$ is Bounded Iteration and that it implies FPA.

6.6 Some Possible Exercises

Exercise: 6.6.1 (BCST) The Function Reflection Scheme (FRS) states that, for classes A, F such that $F: A \rightarrow A$, if $a \in A$ then there is a subset Y of A such that $a \in Y$ and $(\forall x \in Y) F(x) \in Y$. Show, in BCST, that FRS is equivalent to Strong Infinity + the Full Mathematical Induction Scheme for ω. [Hint: Apply FRS to obtain an inductive set and FRS again to obtain ω. For the converse direction apply Theorem 6.3.11 in order to prove FRS.] using Full Iteration

Exercise: 6.6.2 (ECST: An exercise on Decidable predicates on ω) For each formula ϕ let $D \phi \equiv(\phi \vee \neg \phi)$.

1. Show the following.
(a) For all formulae $\phi, D \phi \rightarrow D \neg \phi$
(b) For all formulae ϕ_{1}, ϕ_{2}, if \square is any one of $\wedge, \vee, \rightarrow$, then

$$
\left(D \phi_{1} \wedge D \phi_{2}\right) \rightarrow D\left(\phi_{1} \square \phi_{2}\right) .
$$

(c) For all bounded formulae $\phi(y)$, if Q is either of \forall, \exists then

$$
(\forall y \in \omega) D \phi(y) \rightarrow(\forall x \in \omega) D(Q y \in x) \phi(y) .
$$

2. Hence show that if $\phi\left(x_{1}, \ldots, x_{r}\right)$ is a bounded formula, with all free variables displayed, then

$$
\left(\forall x_{1}, \ldots, x_{r} \in \omega\right) D \phi\left(x_{1}, \ldots, x_{r}\right)
$$

Hint: Use structural induction on the bounded formula $\phi\left(x_{1}, \ldots, x_{r}\right)$ using part 1.

Exercise: 6.6.3 (ECST ${ }^{+}$) Show that if X_{1}, X_{2} are sets such that $\mathbb{N}_{n}=X_{1} \cup X_{2}$, where $n \in \mathbb{N}$, then either $\left(\exists x \in \mathbb{N}_{n}\right) x \in X_{1}$ or $\left(\forall x \in \mathbb{N}_{n}\right) x \in X_{2}$.

Exercise: 6.6.4 (ECST ${ }^{+}$) Let $\mathcal{A}=\left(A, a_{0}, F\right)$ be a DP-structure satisfying (DP5). Assume that there is a relation $<$ on A such that, for all $x \in A, x \nless a_{0}$ and also $x<F(y) \leftrightarrow[x<y \vee x=y]$ for all $y \in A$. Show that $<$ is unique satisfying these conditions and that \mathcal{A} is a DP-model.

Exercise: 6.6.5 (BCST) Complete the proof of Proposition 6.2.4.
Exercise: 6.6.6 (ECST ${ }^{+}$) Complete the proof of Lemma 6.3.2.
Exercise: 6.6.7 (ECST ${ }^{+}$) Prove Proposition 6.3 .5 and complete the proof of Theorem 6.3.6.

Exercise: $6.6 .8\left(\mathbf{E C S T}^{+}\right)$Show that the operations + and \timeson \mathbb{N} are associative and commutative and that \times distributes over + ; i.e. $x \times(y+z)=$ $(x \times y)+(x \times z)$.

Also show that the standard order $<$ on \mathbb{N} is compatible with + and \times in the sense that if $n<m$ then $n+k<m+k$ and if also $0<k$ then $n . k<m . k$.

Exercise: 6.6.9 (ECST ${ }^{+}$) For each $n \in \mathbb{N}$ let $\mathbb{N}_{n}=\{m \in \mathbb{N} \mid n<m\}$.

1. Show that, for all $n, m \in \mathbb{N}$, the class of all functions $\mathbb{N}_{n} \rightarrow \mathbb{N}_{m}$ is a set.
[Hint: The natural formula asserting that the class of functions $\mathbb{N}_{n} \rightarrow \mathbb{N}_{m}$ is a set involves an unrestricted quantifier. So it does not seem possible to use Bounded Mathematical Induction. Instead define the exponentiation function on \mathbb{N} by primitive recursion and, when $m>1$ and $k=m^{n}$, use m -adic notation to define a bijection between the set \mathbb{N}_{k} and the class of functions $\mathbb{N}_{n} \rightarrow \mathbb{N}_{m}$. Finally use the Replacement scheme to show that the class is a set. Of course the cases when $m=0,1$ are easy.]
2. Hence show that if R is a subset of $\mathbb{N}_{n} \times \mathbb{N}_{m}$ such that

$$
\forall x \in \mathbb{N}_{n} \exists y \in \mathbb{N}_{m}(x, y) \in R
$$

then there is a function $f: \mathbb{N}_{n} \rightarrow \mathbb{N}_{m}$ such that

$$
\forall x \in \mathbb{N}_{n} \quad(x, f(x)) \in R
$$

[Hint: Use part 1 and Bounded Mathematical Induction on n.]

Chapter 7

The Continuum

In classical mathematics the continuum, viewed as an ordered field, can be characterised, up to a rigid isomorphism, as a complete totally ordered field. Many constructions of a complete totally ordered field have been given, usually as a completion of the rationals. Perhaps the two most well known are the Dedekind cuts construction and the Cauchy sequence construction. In practise, whatever construction is used, the process is a somewhat tedious matter when carried out in full detail. For that reason most textbooks on analysis avoid the details by taking an axiomatic approach in which the existence of the set of real numbers satisfying the axioms for a complete totally ordered field is assumed, or a sketch of a proof of existence is left to an appendix.

In constructive mathematics the real numbers cannot be shown to form a totally ordered field. Instead they form what we choose to call a pseudo-ordered field. In this chapter we will characterise the real numbers axiomatically as a certain kind of complete pseudo-ordered field. We will use the Dedekind cut approach to the construction of the reals. This is in contrast to the more usual Cauchy sequence approach taken in presenting constructive mathematics. The two approaches are equivalent when Countable Choice is assumed. But, as we prefer to avoid using Countable Choice when possible, it is the Dedekind cut approach which seems appropriate. Without the assumption of Countable Choice the Cauchy sequence approach seems to be inadequate.

We will work in the weak set theory ECST $^{+}=\mathbf{E C S T}+$ SIA and make the natural numbers assumption that $(\mathbb{N}, 0, S)$ is a DP-model. In the next section we will outline a construction of the (unique, up to a unique isomorphism) ordered field of rational numbers. In the following section we will construct the pseudoordered field of real numbers. Again it will be unique up to a unique isomorphism.

7.1 The ordered field of rational numbers

Our concern in this section is to give a rigidly categorical axiomatic description of the ordered field of rational numbers. We will not go into all the details of a construction, in our set theory, of such an ordered field, as the classical construction is perfectly constructive. But we do spell out the main steps so as to make evident to the reader the constructive character of the set-theoretic construction.

We assume familiarity with the standard notions of abelian monoid and abelian group.

Definition: 7.1.1 $\mathcal{R}=(R, 0,1,+,$.$) is a semiring if R$ is a class, 0,1 , are distinguished elements of R and + ,. are class binary operations on R such that $(R, 0,+)$ is an additive abelian monoid, and $(R, 1,$.$) is a multiplicative abelian$ monoid such that . distributes over + ; i.e. for all $n, m, k \in R$, the following hold.

1. $n+m=m+n$,
2. $n+(m+k)=(n+m)+k$,
3. $n+0=n$,
4. $n \cdot m=m . n$,
5. n. $(m \cdot k)=(n \cdot m) \cdot k$,
6. $n .1=n$,
7. $n \cdot(m+k)=(n \cdot m)+(n \cdot k)$.

Our first example of a semi-ring is the semi-ring $(\mathbb{N}, 0,1,+, \times)$ of natural numbers, where $1=S(0)$ and the operations + and \times on \mathbb{N} are given by the standard primitive recursive defining equations. See Theorem 6.4.4 and Exercise 6.6.8. As standard we just write $n . m$ or even $n m$ rather than $n \times m$.

Note: In a semi-ring, for each element n, an element m such that $n+m=0$ is unique and is written $-n$, as usual. We also let $m-n=m+(-n)$. Also, in a semi-ring, for each element n, any element m such that $n . m=1$ is unique and is written n^{-1}. We let $m / n=m \cdot n^{-1}$.

Definition: 7.1.2 The semiring \mathcal{R} is a ring if $(R, 0,+)$ is an abelian group; i.e.

$$
(\forall n \in R)(\exists m \in R)(n+m=0)
$$

A ring \mathcal{R} is a discrete-field if $0 \neq 1$ and

$$
(\forall n \in R)[n=0 \vee(\exists m \in R)(n \cdot m=1)] .
$$

Definition: 7.1.3

1. A set R is discrete if equality on the set is decidable; i.e.

$$
(\forall m, n \in R)[m=n \vee m \neq n] .
$$

2. In general a subset X of a set R is a decidable subset of R if

$$
(\forall n \in R)[n \in X \vee n \notin X] .
$$

3. An n-place relation S on a set R is a decidable relation on R if it is a decidable subset of R^{n}.
4. A structure (R, \ldots) consisting of a set R equiped with distinguished elements of R and operations and relations on R, is a discrete structure if equality and all the relations of the structure are decidable relations on R.

Observe that any discrete-field is a discrete structure.
Definition: 7.1.4 $\mathcal{R}=(R, 0,1,+, .,<)$ is an ordered ring/field if $(R, 0,1,+,$. is a ring/discrete-field and $<$ is a binary relation on R satisfying the following conditions for all $x, y, z \in R$.

1. $\neg(x<x)$,
2. $(x<y \wedge y<z) \rightarrow x<z$,
3. $x<y \vee y<x \vee x=y$,
4. $0<1$,
5. $x<y \rightarrow x+z<y+z$,
6. $(0<x \wedge 0<y) \rightarrow 0<x . y$.

Definition: 7.1.5 If $\mathcal{R}=(R, 0,1,+$,. $)$ is a ring then we use iteration on \mathbb{N} to define $n_{\mathcal{R}} \in R$ for each $n \in \mathbb{N}$, where $0_{\mathcal{R}}=0$ and $(n+1)_{\mathcal{R}}=n_{\mathcal{R}}+1$ for all $n \in \mathbb{N}$.

Note: We have followed the standard mathematical convention which allows symbols such as $0,1,+$, to be overloaded; i.e. their meaning can vary depending on the context. So, on the left hand side of the above equations the symbols $0,+$ and 1 are understood to have their familiar interpretation on the semiring of natural numbers, and on the right hand side of these equations they are to be interpreted in the semiring \mathcal{R}.

Definition: 7.1.6

1. An ordered ring of integers is an ordered ring $\mathcal{R}=(R, 0,1,+, .,<)$ such that, for every $r \in R$ there are $m, n \in \mathbb{N}_{\mathcal{R}}$ such that

$$
m=n+r .
$$

2. An ordered field of rationals is an ordered field $\mathcal{R}=(R, 0,1,+, .,<)$ such that, for every $r \in R$ there are $k, m, n \in \mathbb{N}_{\mathcal{R}}$ such that

$$
m=n+r \cdot(k+1) .
$$

Theorem: 7.1.7 (ECST ${ }^{+}$) There is a unique, up to a unique isomorphism, ordered field of rationals.

Proof Sketch:

This result is a standard theorem of classical axiomatic set theory any of whose classical proofs should carry over fairly straightforwardly to our constructive set theory ECST $^{+}$. So we will not present the many details of a proof, but just review the main steps. There are many books, where more details can be found.

Our starting point is the ordered semi-ring $\mathcal{N}_{s r}=(\mathbb{N}, 0,1,+, .,<)$ of natural numbers. One approach to constructing the ordered field of rationals is via the ordered ring of integers, where an integer is defined to be an equivalence class of pairs (m, n) of natural numbers m, n, where pairs $(m, n),\left(m^{\prime}, n^{\prime}\right)$ are defined to be equivalent if $m+n^{\prime}=m^{\prime}+n$. Of course one must show that this is indeed an equivalence relation \sim on the set $\mathbb{N} \times \mathbb{N}$ so that one can define the set \mathbb{Z} of integers to be the quotient set

$$
(\mathbb{N} \times \mathbb{N}) / \sim=\left\{[(m, n)]_{\sim} \mid(m, n) \in \mathbb{N} \times \mathbb{N}\right\}
$$

where $[(m, n)]_{\sim}=\left\{\left(m^{\prime}, n^{\prime}\right) \mid(m, n) \sim\left(m^{\prime}, n^{\prime}\right)\right\}$. It will be more intuitive to use the formal difference notation $\lceil m-n\rceil$ for $[(m, n)]_{\sim}$.

To each $m \in \mathbb{N}$ we can associate the integer $m_{\mathbb{Z}}=\lceil m-0\rceil$. One must show that there are binary operations $+_{\mathbb{Z}}, . \mathbb{Z}$ on \mathbb{Z} such that, for all $(m, n),\left(m^{\prime}, n^{\prime}\right) \in$ $\mathbb{N} \times \mathbb{N}$,

$$
\lceil m-n\rceil+_{\mathbb{Z}}\left\lceil m^{\prime}-n^{\prime}\right\rceil=\left\lceil\left(m+m^{\prime}\right)-\left(n+n^{\prime}\right)\right\rceil
$$

and

$$
\lceil m-n\rceil \cdot \mathbb{Z}\left\lceil m^{\prime}-n^{\prime}\right\rceil=\left\lceil\left(m m^{\prime}+n n^{\prime}\right)-\left(m n^{\prime}+m^{\prime} n\right)\right\rceil
$$

Also one can define a binary relation $<_{\mathbb{Z}}$ on \mathbb{Z} such that, for all $(m, n),\left(m^{\prime}, n^{\prime}\right) \in$ $\mathbb{N} \times \mathbb{N}$,

$$
\lceil m-n\rceil<_{\mathbb{Z}}\left\lceil m^{\prime}-n^{\prime}\right\rceil \leftrightarrow\left(m+n^{\prime}\right)<\left(m^{\prime}+n\right) .
$$

Having done all that one must show that $\mathcal{Z}=\left(\mathbb{Z}, 0_{\mathbb{Z}}, 1_{\mathbb{Z}},+_{\mathbb{Z}}, \cdot \mathbb{Z},<_{\mathbb{Z}}\right)$ is an ordered ring of integers and moreover is the unique ordered ring of integers, up to isomorphism. In fact one can show that any two ordered rings of integers are isomorphic via a unique isomorphism.

Having got an ordered ring of integers, $\mathcal{Z}=(\mathbb{Z}, 0,1,+, .,<)$, where we have dropped the subscripts, we can now go on to construct an ordered ring of rationals. We define a rational to be an equivalence class of ordered pairs $(s, k) \in \mathbb{Z} \times \mathbb{Z}^{>0}$, where $\mathbb{Z}^{>0}$ is the set $\{k \in \mathbb{Z} \mid 0<k\}$ of positive integers. This time pairs $(s, k),\left(s^{\prime}, k^{\prime}\right)$ are defined to be equivalent if $s . k^{\prime}=s^{\prime} . k$. Again we must show that this relation is indeed an equivalence relation on $\mathbb{Z} \times \mathbb{Z}^{>0}$ so that we can define the set \mathbb{Q} of rational numbers to be the quotient set. The construction of an ordered field $\mathcal{Q}=(\mathbb{Q}, \ldots)$ of rationals follows the same pattern we have used in the construction of \mathcal{Z} and so need not be repeated here. Again one can show that any two ordered fields of rationals are isomorphic by a unique isomorphism.

7.2 The pseudo-ordered field of real numbers

Definition: 7.2.1 $\mathcal{R}=(R, 0,1,+, .,<)$ is a pseudo-ordered field if $(R, 0,1,+,$. is a ring and $<$ is a binary relation on R satisfying the following conditions for all $x, y, z \in R$.

1. $\neg(x<x)$,
2. $(x<y \wedge y<z) \rightarrow x<z$,
3. $\neg(x<y \vee y<x) \rightarrow x=y$,
4. $x<y \rightarrow(x<z \vee z<y)$,
5. $0<1$,
6. $x<y \rightarrow x+z<y+z$,
7. $(0<x \wedge 0<y) \rightarrow 0<x . y$.
8. $(\forall x \in R)[0<x \rightarrow(\exists y \in R) x . y=1]$.

If $<$ is a relation on a set R such that $1-4$ hold then we call $<$ a pseudo-ordering of the set R.

Note: For a pseudo-ordered field any y such that $x . y=1$ is unique and is written x^{-1}, as usual. Observe that the linearly ordered fields can be characterised as those pseudo-ordered fields in which $<$ is decidable. So classically, the pseudoordered fields are just the linearly ordered fields.

Theorem: 7.2.2 (ECST ${ }^{+}$) Let \mathcal{R} be a pseudo-ordered field.

1. There is a smallest set $\mathbb{N}_{\mathcal{R}}$ such that $0 \in \mathbb{N}_{\mathcal{R}}$ and $\left(\forall n \in \mathbb{N}_{\mathcal{R}}\right) n+1 \in \mathbb{N}_{\mathcal{R}}$. Moreover $\left(\mathbb{N}_{\mathcal{R}}, 0, S_{\mathcal{R}}\right)$ is a DP-model, where $S_{\mathcal{R}}(n)=n+1$ for all $n \in \mathbb{N}_{\mathcal{R}}$.
2. Let $\mathbb{Q}_{\mathcal{R}}=\left\{n . m^{-1} \mid n, m \in \mathbb{N}_{\mathcal{R}} \wedge 0<m\right\}$. Then, if we restrict the operations + and. and relation $<$ of the pseudo-ordered field \mathcal{R} to $\mathbb{Q}_{\mathcal{R}}$ we obtain an ordered field of rationals $\mathcal{Q}_{\mathcal{R}}=\left(\mathbb{Q}_{\mathcal{R}}, \cdots\right)$ as a substructure of \mathcal{R}.

In view of this result, when we consider a pseudo-ordered field $\mathcal{R}=(R, \cdots)$ we will drop the subscripts \mathcal{R} from $\mathbb{N}_{\mathcal{R}}$, etc. and identify the rationals with elements of R. So we have $\mathbb{N} \subseteq \mathbb{Z} \subseteq \mathbb{Q} \subseteq R$.

Definition: 7.2.3 A pseudo-ordered field \mathcal{R} is Archimedean if, for every $x \in R$ there is $n \in \mathbb{N}$ such that $x<n$.

Definition: 7.2.4 For a pseudo-ordered field \mathcal{R} we need the following, where X is a subset of R.

- $X^{<}=\{y \in R \mid(\exists x \in R) y<x\}$.
- X is bounded above if $R-X^{<}$is inhabited.
- X is located above if, for all $x, y \in R$

$$
x<y \rightarrow\left(x \in X^{<} \vee y \notin X^{<}\right) .
$$

- $a \in R$ is a supremum of X if $\{a\}^{<}=X^{<}$.

Definition: 7.2.5 Let \mathcal{R} be a pseudo-ordered field. It is Dedekind complete if every inhabited, bounded above, located above subset has a supremum.

Definition: 7.2.6 A subset X of \mathbb{Q} is a left cut if $X=X^{<}$and X is inhabited and bounded above and located above. Let \mathbb{R}^{\prime} be the class of left cuts.

Proposition: 7.2.7 (ECST ${ }^{+}$) Let \mathcal{R} be an Archimedean, Dedekind complete pseudo-ordered field.

1. For each $x \in R$ the set $\mathbb{Q}(<x)=\{r \in \mathbb{Q} \mid r<x\}$ is a left cut.
2. The function $F: R \rightarrow \mathbb{R}^{\prime}$, where $F(x)=\mathbb{Q}(<x)$ for $x \in R$, is a bijection whose inverse bijection associates with each left cut its supremum.

Theorem: 7.2.8 (ECST ${ }^{+}$) Any two Archimedean, Dedekind complete pseudoordered fields are isomorphic by a unique isomorphism.

7.3 The class \mathbb{R}^{\prime} of left cuts is a set

In classical set theory it is easy to show that the class of left cuts forms a set using the Powerset Axiom of ZF. But that axiom is not acceptable in constructive set theory and, in fact we cannot expect to prove that the class \mathbb{R}^{\prime} is a set in $\mathbf{E C S T}^{+}$. Nevertheless \mathbb{R}^{\prime} is a set in CZF. The class \mathbb{R}^{\prime} is a subclass of the class $\operatorname{Pow}(\mathbb{Q})$ of sets of rational numbers, and the assertion that \mathbb{R}^{\prime} is a set will be derived in ECST $^{+}+$BRA.

We easily show that \mathbb{R}^{\prime} is a set from the assumption that \mathbb{Q} has the openlocated property, Definition 5.2.5.

Theorem: 7.3.1 (ECST ${ }^{+}$) If \mathbb{Q} has the open-located property then \mathbb{R}^{\prime} is a set.
Proof: Let $A=\{(r, s) \in \mathbb{Q} \times \mathbb{Q} \mid r<s\}$. By our assumption the class ol (A) of A-open and A-located sets of rationals is a set. As every left cut is open above and located above it is in $o l(A)$. It follows that \mathbb{R}^{\prime} is a subclass of the set $o l(A)$ and hence is a set by Restricted Separation, as the notion of left-cut has a definition by a restricted formula.

Corollary: $7.3 .2\left(\mathrm{ECST}^{+}+\mathrm{BRA}\right) \mathbb{R}^{\prime}$ is a set.
Proof: Apply Proposition 5.2.6.

Theorem: 7.3.3 (ECST ${ }^{+}$+ BRA) There is an Archimedean, Dedekind complete pseudo-ordered field.

Whenever we work in an axiom system whose theorems include the theorems of $\mathbf{E C S T}^{+}+$BRA we may make the following assumption.

Definition: 7.3.4 (The Real Numbers Assumption) $\mathcal{R}=(\mathbb{R}, 0,1,+, .,<)$ is an Archimedean, Dedekind complete, pseudo-ordered field.

Chapter 8

The Size of Sets

Here we look at the fundamental definitions of Cantor about the size or cardinality of sets. Frequently, classically equivalent notions of size turn out to be genuinely different when one refrains from using the law of excluded middle.

8.1 Notions of size

To begin with, we review some standard notions and notations pertaining to functions.

We write $f: A \rightarrow B$ to indicate that f is a function from A to B. We say that $f: A \rightarrow B$ is an injection or one-to-one (notated $f: A \mapsto B$) if for all $x, y \in A$, whenever $f(x)=f(y)$ then $x=y ; f$ is a surjection or onto (notated $f: A \rightarrow B$) if for all $z \in B$ there exists $x \in A$ such that $f(x)=z ; f$ is a bijection if f is both an injection and a surjection, and the sets A and B are said to be in one-to-one correspondence with each other.

If the values of a function are given by an explicit expression $t(x)$ for x in the domain and the domain of the function is understood from the context, we sometimes simply notate the function by $(x \mapsto t(x))$.

For every $f: A \rightarrow B$ and $C \subseteq A$, the set

$$
f[C]=\{f(x) \mid x \in C\}
$$

is the image of C under f, and if $D \subseteq B$, then

$$
f^{-1}[D]=\{x \in A \mid f(x) \in D\}
$$

is the pre-image of D by f.
If $f: A \rightarrow B$ is a bijection, then we can define the inverse function f^{-1} : $B \rightarrow A$ by the condition

$$
f^{-1}(y)=x \quad \text { iff } \quad f(x)=y .
$$

Obviously, f^{-1} is a bijection if f is a bijection.
The composition

$$
g \circ f: A \rightarrow C
$$

of two functions

$$
f: A \rightarrow B, \quad g: B \rightarrow C
$$

is defined by

$$
g \circ f(x)=g(f(x)) \quad(x \in A) .
$$

Composition is associative:

$$
h \circ(g \circ f)=(h \circ g) \circ f .
$$

Definition: 8.1.1 Two sets A, B are equinumerous or equal in cardinality if there exists a bijection $f: A \rightarrow B$. If A and B are equinumerous, we write $A={ }_{c} B$, and if $f: A \rightarrow B$ is a bijection, we write $f: A={ }_{c} B$.

A set A is less than or equal to a set B in size if it is equinumerous with some subset of B, in symbols:

$$
A \leq_{c} B \quad \text { iff } \quad \exists C\left[C \subseteq B \wedge A={ }_{c} C\right] .
$$

The definition of equinumerosity stems from our intuitions about finite sets. The radical element in Cantor's definition is the proposal to accept the existence of such a correspondence as a definition of the notion of same size for arbitrary sets, despite the fact that its application to infinite sets leads to conclusions which had been viewed as counterintuitive. Infinite sets as opposed to finite sets (see Corollary 8.2.3) can be equinumerous with one of their proper subsets. In "Ein Beitrag zur Mannigfaltigkeitslehre", published in 1878, Cantor established a one-to-one correspondence between the real numbers in the unit interval and the pairs thereof in the unit square $[0,1] \times[0,1]$, thereby raising for the first time the problem of dimension.

Lemma: 8.1.2 (BCST) The relation $=_{c}$ is reflexive, symmetric and transitive. The relation \leq_{c} is reflexive and transitive.

Proof: Obvious.

Lemma: 8.1.3 (BCST) $A \leq_{c} B$ if and only if $\exists f[f: A \hookrightarrow B]$.
Proof: If $A \leq_{c} B$, then $f: A={ }_{c} C$ for some function f and set $C \subseteq B$, and thus $f: A \mapsto B$.

Conversely, if $f: A \hookrightarrow B$, then $A={ }_{c} C$, where $C=\{f(u) \mid u \in A\} \subseteq B$.

Definition: 8.1.4 Let A be a set. A is finite if there exists $n \in \mathbb{N}$ and a bijection $f: n \rightarrow A . A$ is infinite if $\exists f[f: \mathbb{N} \mapsto A] . A$ is finitely enumerable if $\exists n \in \mathbb{N} \exists f[f: n \rightarrow A] . A$ is countable if $\exists f[f: \omega \rightarrow A] . A$ is countably infinite if $\exists f\left[f: \mathbb{N}={ }_{c} A\right]$.

Definition: 8.1.5 For a class A we denote by $\mathcal{P}_{\text {fin }}(A), \mathcal{P}_{\text {finEnum }}(A)$, and $\mathcal{P}_{\mathbb{N}}(A)$ the classes of finite subsets of A, finitely enumerable subsets of A, and countable subsets of A, respectively.

Proposition: 8.1.6 (ECST + FPA) If A is a set then $\mathcal{P}_{\text {fin }}(A)$ and $\mathcal{P}_{\text {finEnum }}(A)$ are sets.

Proof: Exercise 8.3.4.

Proposition: 8.1.7 (ECST $+\mathbf{E x p})$ If A is a set then $\mathcal{P}_{\mathbb{N}}(A)$ is a set.
Proof: Exercise 8.3.4.

In the next definition we consider weaker versions of the foregoing notions.
Definition: 8.1.8 Let A be a set. A is subfinite if A is the surjective image of a subset of a finite set. A is subcountable if A is the surjective image of a subset of \mathbb{N}.

Clearly, every finitely enumerable set is subfinite, and every subfinite set is subcountable. Also, countable sets are subcountable.

Proposition: 8.1.9 (ECST) A set is subfinite iff it is a subset of a finitely enumerable set. In other words, "subfinite" is precisely the closure of "finitely enumerable" under subsets.

Proof: The implication from right to left is trivial. For the converse, assume that A is subfinite. By definition, there exist $n \in \mathbb{N}, B \subseteq n$ and $f: B \rightarrow A$. Take f^{*} to be the function defined on n such that, for $m<n$,

$$
f^{*}(m)=\bigcup\{f(k) \mid k \in B \wedge k=m\} .
$$

If $m \in B$, then $f^{*}(m)=\bigcup\{f(m)\}=f(m)$, so f^{*} extends f, thus $A \subseteq \boldsymbol{\operatorname { r a n }}\left(f^{*}\right)$ and therefore A is a subset of the finitely enumerable set $\operatorname{ran}\left(f^{*}\right)$.

Proposition: 8.1.10 (ECST) A set is subcountable iff it is a subset of a countable set. In other words, "subcountable" is precisely the closure of "countable" under subsets.

Proof: Just as for the foregoing result.

The next result characterizes the finite sets as special finitely enumerable sets. Recall that a set A is said to be discrete if $\forall x, y \in A[x=y \vee x \neq y]$.

Proposition: 8.1.11 (ECST + FPA) A set is finite iff it is finitely enumerable and discrete.

Proof: Let A be finite. Then there exists $n \in \omega$ and an injection $g: A \hookrightarrow n$. Thus, for $x, y \in A$ we have $g(x)=g(y) \vee g(x) \neq g(y)$ by Theorem 6.3.6; whence $x=y \vee x \neq y$.

For the converse, suppose $f: n \rightarrow A$ with A discrete. For $k \leq n$ let f_{k} be the restriction of f to k. By induction on $k \leq n$ we shall show that

$$
\begin{equation*}
\forall x \in A\left[x \in \operatorname{ran}\left(f_{k}\right) \vee x \notin \operatorname{ran}\left(f_{k}\right)\right] . \tag{8.1}
\end{equation*}
$$

Clearly, the claim is true for $k=0$. Now assume that the claim has been established for k_{0} and that $k_{0}+1=k \leq n$. Let $y \in A$. As A is discrete, we have $y=f\left(k_{0}\right) \vee y \neq f\left(k_{0}\right)$. $y=f\left(k_{0}\right)$ implies $y \in \operatorname{ran}\left(f_{k}\right)$. Assume $y \neq f\left(k_{0}\right)$. We then consider the two cases that obtain on account of the inductive assumption. If $y \in \operatorname{ran}\left(f_{k_{0}}\right)$ then $y \in \operatorname{ran}\left(f_{k}\right)$. If $y \notin \operatorname{ran}\left(f_{k_{0}}\right)$ then $y \notin \operatorname{ran}\left(f_{k}\right)$ as $y \neq f\left(k_{0}\right)$. Therefore, we conclude that $y \in \operatorname{ran}\left(f_{k}\right) \vee y \notin \operatorname{ran}\left(f_{k}\right)$, showing (8.1).

Next, we employ an induction on $k \leq n$ to show that $\operatorname{ran}\left(f_{k}\right)$ is finite. Since $A=\operatorname{ran}\left(f_{n}\right)$, this entails the desired assertion. We will actually construct a sequence of functions g_{0}, \ldots, g_{n} with domains m_{0}, \ldots, m_{n}, respectively, such that, for all $k \leq n, \operatorname{ran}\left(g_{k}\right)=\boldsymbol{\operatorname { r a n }}\left(f_{k}\right)$ and $g_{k}: m_{k} \mapsto \boldsymbol{\operatorname { r a n }}\left(f_{k}\right)$. Moreover, the construction will ensure that for all $i<j \leq n, m_{i} \leq m_{j}$ and $g_{i} \subseteq g_{j}$.

As $\operatorname{ran}\left(f_{0}\right)=\emptyset$, we let $g_{0}=\emptyset$ and $m_{0}=0$. Now assume that $k=k_{0}+1$ and that a bijection $g_{k_{0}}: m_{k_{0}} \rightarrow \boldsymbol{r a n}\left(f_{k_{0}}\right)$ has been defined. According to (8.1), we have $f\left(k_{0}\right) \in \operatorname{ran}\left(f_{k_{0}}\right)$ or $f\left(k_{0}\right) \notin \operatorname{ran}\left(f_{k_{0}}\right)$. In the former case we have $\operatorname{ran}\left(f_{k}\right)=\operatorname{ran}\left(f_{k_{0}}\right)$, and we let $m_{k}=m_{k_{0}}$ and $g_{k}=g_{k_{0}}$. In the latter case we define the function g_{k} with domain $n_{k}=n_{k_{0}}+1$ by

$$
g_{k}(i)= \begin{cases}g_{k_{0}}(i) & \text { if } i<n_{k_{0}} \tag{8.2}\\ f\left(k_{0}\right) & \text { if } i=n_{k_{0}} .\end{cases}
$$

Then g_{k} is 1-1 and sends the numbers $<n_{k}$ onto $\operatorname{ran}\left(f_{k}\right)$, as desired.
We seem to need FPA in the above proof to find a bounding set for the functions g_{k}.

Corollary: 8.1.12 (ECST + FPA) Finitely enumerable subsets of \mathbb{N} are finite.

Proof: Subsets of \mathbb{N} are discrete.

With the help of Proposition 8.1.11 one also gets a characterization of the countably infinite sets, i.e., the sets in one-to-one correspondence with \mathbb{N}.

Corollary: 8.1.13 (ECST + FPA) A set A is in one-to-one correspondence with \mathbb{N} iff A is discrete and there exists a surjection $f: \mathbb{N} \rightarrow A$ such that

$$
\begin{equation*}
\forall n \in \mathbb{N} \exists k \in \mathbb{N} f(k) \notin\{f(0), \ldots, f(n)\} \tag{8.3}
\end{equation*}
$$

Proof: The direction from left to right is trivial. For the converse, assume that A is discrete and that $f: \mathbb{N} \rightarrow A$ satisfies (8.3). For $k \in \mathbb{N}$, let f_{k} be the restriction of f to k. Note that every subset of A is discrete, too. Thus, by the same construction as in the proof of Proposition 8.1.11 we obtain a non-decreasing sequence of natural numbers $n_{0} \leq n_{1} \leq \ldots \leq n_{k} \leq \ldots$ and bijections $g_{k}: n_{k} \rightarrow$ $\operatorname{ran}\left(f_{k}\right)$ such that $g_{k} \subseteq g_{k+1}$ holds for all $k \in \mathbb{N}$. Now, let $g=\bigcup_{k \in \mathbb{N}} g_{k}$. Then g is a 1-1 function with range A since $\operatorname{ran}(g)=\bigcup_{k \in \mathbb{N}} \boldsymbol{r a n}\left(g_{k}\right)=\bigcup_{k \in \mathbb{N}} \operatorname{ran}\left(f_{k}\right)=A$. Let $X=\operatorname{dom}(g)$. It remains to show that $X=\mathbb{N}$. Note first that for $m \in \mathbb{N}$,

$$
\begin{equation*}
m \subseteq X \rightarrow(\exists i \in \mathbb{N}) m \subseteq \operatorname{dom}\left(g_{i}\right) \tag{8.4}
\end{equation*}
$$

We prove (8.4) by induction on m. This is trivial for $m=0$. So let $m>0$. If the assertion holds for $m-1$ and $m-1 \subseteq X$ then $m-1 \subseteq g_{i}$ for some $i \in \mathbb{N}$. If $m \subseteq X$, then $m-1 \in \operatorname{dom}\left(g_{j}\right)$ for some $j \in \mathbb{N}$, so that $m \subseteq \operatorname{dom}\left(g_{\max (i, j)}\right)$.

Next, we prove that

$$
\begin{equation*}
(\forall m \in \mathbb{N}) m \subseteq X \tag{8.5}
\end{equation*}
$$

This is obvious for $m=0$. So let $m>0$ and assume that $m-1 \subseteq X$. By (8.4), there exists $l \in N$ such that $m-1 \subseteq \operatorname{dom}\left(g_{l}\right)$. As $\operatorname{ran}\left(g_{l}\right)=\operatorname{ran}\left(f_{l}\right)$, we can employ (8.3) in selecting a k such that $f(k) \notin \operatorname{ran}\left(g_{l}\right)$. As $f(k) \in \operatorname{ran}\left(g_{k+1}\right)$ we must have $k+1>l$ and $n_{l}<n_{k+1}$, so that $m-1 \leq n_{l}<n_{k+1}$, yielding $m \subseteq \operatorname{dom}\left(g_{k+1}\right) \subseteq X$. Thus, by induction on $m, m \subseteq X$, and hence $g: \mathbb{N}={ }_{c} A$.

Lemma: 8.1.14 (ECST) If A is an inhabited finitely enumerable set, then A is countable.

Proof: Let $f: n \rightarrow A$. Since A is inhabited we must have $n>0$. Now define $g: \mathbb{N} \rightarrow A$ by $g(k)=f(k)$ if $k<n$ and $g(k)=f(0)$ if $k \geq n$.

Lemma: 8.1.15 (ECST ${ }^{+}$) Quotients of finitely enumerable sets are finitely enumerable, i.e., if A is a finitely enumerable set and R is an equivalence relation on C, which is a set, then C / R is finitely enumerable. The union and Cartesian product of two finitely enumerable subsets are finitely enumerable, i.e., if A, B are finitely enumerable sets, then $A \cup B$ and $A \times B$ are finitely enumerable.

Proof: If $h: k \rightarrow C$ then $\left(i \mapsto[h(i)]_{R}\right)$ maps k onto C / R.
Let $g: n \rightarrow A$ and $h: m \rightarrow B$. Define $f: n+m \rightarrow A \cup B$ by $f(k)=g(k)$ if $k<n$ and $f(k)=h(i)$ if $k=n+i$ for some $i<m$. Likewise, as $n \times m$ is in one-to-one correspondence with $n \cdot m$ via $(i, j) \mapsto i \cdot m+j$ and $((i, j) \mapsto(g(i), h(j))$ maps $n \times m$ onto $A \times B$, we see that $A \times B$ is finitely enumerable, too.

Lemma: 8.1.16 $\left(\mathbf{E C S T}^{+}\right)$The Cartesian product of two finite sets is finite.
Proof: See the previous proof.

Remark: 8.1.17 In general, it is not possible to demonstrate intuitionistically that the union of two finite sets is finite or that the intersection of two finitely enumerable sets is finite also.

Lemma: 8.1.18 (ECST ${ }^{+}$) Subsets, quotients and Cartesian products of subfinite (subcountable) sets are subfinite (subcountable).

Proof: Exercise 8.3.5.

Theorem: 8.1.19 (Cantor) $\left(\mathbf{E C S T}^{+}\right)$For each sequence of pairs $\left(A_{i}, f_{i}\right)_{i \in \mathbb{N}}$, where f_{i} witnesses the countability of A_{i}, i.e. $f_{i}: \omega \rightarrow A_{i}$, it holds that

$$
A=\bigcup_{i \in \mathbb{N}} A_{i}
$$

is countable, too.
Proof: If we let

$$
a_{n}^{i}=f_{i}(n),
$$

then for each i,

$$
\begin{equation*}
A_{i}=\left\{a_{0}^{i}, a_{1}^{i}, a_{2}^{i}, \ldots\right\}, \tag{8.6}
\end{equation*}
$$

and thus

$$
A=\left\{a_{0}^{0}, a_{0}^{1}, a_{1}^{0}, a_{0}^{2}, a_{1}^{1}, \ldots\right\} .
$$

This is called Cantor's first diagonal method. In more detail, the proof uses the Cantor pairing function $\pi: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
\pi(n, m)=\frac{1}{2}\left((n+m)^{2}+3 n+m\right) .
$$

π establishes a one-to-one correspondence between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} (Exercise). π gives rise to two inverse functions $\sigma, \tau: \mathbb{N} \rightarrow \mathbb{N}$ satisfying the equation $\pi(\sigma(k), \tau(k))=k$ for all numbers k. The enumeration of A in (8.6) amounts to the same as

$$
A=\left\{f_{\sigma(0)}(\tau(0)), f_{\sigma(1)}(\tau(1)), f_{\sigma(2)}(\tau(2)), \ldots\right\}
$$

and thus the function $n \mapsto f_{\sigma(n)}(\tau(n))$ maps \mathbb{N} onto A.

Corollary: 8.1.20 (ECST ${ }^{+}$) If B, C are countable sets so is $B \cup C$.
Proof: Let $g: \mathbb{N} \rightarrow A$ and $h: \mathbb{N} \rightarrow B$. Put $A_{0}=B, f_{0}=g$ and for $i>0$ let $A_{i}=C$ and $f_{i}=h$. Then $B \cup C=\bigcup_{i \in \mathbb{N}} A_{i}$ is countable by Theorem 8.1.19.

Corollary: 8.1.21 (ECST ${ }^{+}$) The set of positive and negative integers

$$
\mathbb{Z}=\{\ldots,-2,-1,0,1,2, \ldots\}
$$

is countable.
Proof: $\mathbb{Z}=\mathbb{N} \cup\{-1,-2, \ldots\}$ and the set of negative integers is countable via the correspondence ($n \mapsto-(n+1)$).

Corollary: 8.1.22 $\left(\mathbf{E C S T}^{+}\right)$The set \mathbb{Q} of rational numbers is countable.
Proof: Let $\mathbb{N}^{+}=\{1,2, \ldots\}$. The set \mathbb{Q}^{+}of ≥ 0 rationals is countable because

$$
\mathbb{Q}^{+}=\bigcup_{n \in \mathbb{N}^{+}}\left\{\left.\frac{m}{n} \right\rvert\, m \in \mathbb{N}\right\}
$$

and each set $\left\{\left.\frac{m}{n} \right\rvert\, m \in \mathbb{N}\right\}$ is countable with the enumeration $\left(m \mapsto \frac{m}{n}\right)$. The set \mathbb{Q}^{-}of rationals <0 is countable by the same method, and therefore the union $\mathbb{Q}^{+} \cup \mathbb{Q}^{-}$is countable.

Corollary: 8.1.23 (ECST + FPA) The sets \mathbb{Z} and \mathbb{Q} are both in one-to-one correspondence with \mathbb{N}.

Proof: Note that \mathbb{Z} and \mathbb{Q} are discrete sets and satisfy (8.3) of Corollary 8.1.13. Therefore the assertion follows by Corollary 8.1.21, Corollary 8.1.22 and Corollary 8.1.13.

Corollary: 8.1.24 (ECST $+\Delta_{0}$ ITER $\left._{\omega}, \mathbf{E C S T}+\mathbf{E x p}\right)$ For every countable set A, if $n \in \mathbb{N}$ then ${ }^{n} A$ is a countable set, and also

$$
\bigcup_{m=0}^{\infty} m^{m} A
$$

is a countable set.
Proof: The existence of the sets ${ }^{n} A$ is ensured by the Finite Powers axiom which is a consequence of both $\Delta_{0}-\mathbf{I T E R}_{\omega}$ and Exp, and therefore $\bigcup_{n=1}^{\infty}{ }^{n} A$ is a set, too, by Union-Replacement. Let $g: \mathbb{N} \rightarrow A$. We construct a sequence of surjections $f_{n}: \mathbb{N} \rightarrow{ }^{n} A$ from g by induction on n. We will see that this can be done via $\Delta_{0}-\mathbf{I T E R}_{\omega}$ but also by assuming Exp since under Exp these functions can be found in in the set ${ }^{\mathbb{N}}\left(\bigcup_{n=1}^{\infty}{ }^{n} A\right)$ and their construction will be justified by SIA which is a consequence of Exp. As ${ }^{0} A=\{0\},(n \mapsto 0)$ maps \mathbb{N} onto ${ }^{0} A$. Next, assume that we have built $f_{n}: \mathbb{N} \rightarrow{ }^{n} A$. There is a one-to-one correspondence $F_{n}:{ }^{n+1} A \rightarrow{ }^{n} A \times A$, namely $F_{n}(h)=\langle h \upharpoonright n, h(n)\rangle$, where $h \upharpoonright n$ denotes the restriction of h to the set n. Moreover,

$$
{ }^{n} A \times A=\bigcup_{i \in \mathbb{N}}\left({ }^{n} A \times\{g(i)\}\right),
$$

and each ${ }^{n} A \times\{g(i)\}$ is the surjective image of \mathbb{N} via the map $\left(k \mapsto\left\langle f_{n}(k), g(i)\right\rangle\right)$. Hence, by Theorem 8.1.19, one can explicitly define a map

$$
H_{n}: \mathbb{N} \rightarrow \bigcup_{i \in \mathbb{N}}\left({ }^{n} A \times\{g(i)\}\right)
$$

Now put $f_{n+1}=F_{n}^{-1} \circ H_{n}$.
Finally, by means of the functions $f_{n}: \mathbb{N} \rightarrow{ }^{n} A$ we find a function

$$
f^{*}: \mathbb{N} \rightarrow \bigcup_{n=1}^{\infty} A
$$

again by Theorem 8.1.19.

Definition: 8.1.25 For numbers $n \geq 1$ and sets A, A_{1}, \ldots, A_{n},

$$
\begin{aligned}
A_{1} \times \cdots \times A_{n} & =\left\{\left\langle x_{1}, \ldots, x_{n}\right\rangle \mid x_{1} \in A_{1}, \ldots, x_{n} \in A_{n}\right\}, \\
A^{n} & =\left\{\left\langle x_{1}, \ldots, x_{n}\right\rangle \mid x_{1}, \ldots, x_{n} \in A\right\} .
\end{aligned}
$$

Corollary: 8.1.26 (ECST $+\Delta_{0}$-ITER $\left._{\omega}\right)$

(i) If $n \in \mathbb{N}$ and A_{1}, \ldots, A_{n} are countable (finite, finitely enumerable, subcountable), then their Cartesian product $A_{1} \times \cdots \times A_{n}$ is countable (finite, finitely enumerable, subcountable) also.
(ii) For every countable set A, every $A^{n}(n \geq 1)$ and the union

$$
\bigcup_{n=1}^{\infty} A^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid n \geq 1, x_{1}, \ldots, x_{n} \in A\right\}
$$

is a countable set.
Proof: (i): First, one needs Δ_{0}-ITER $_{\omega}$ to show the existence of the sets $A_{1} \times \cdots \times A_{n}$.

In the case of two sets A, B with enumerations $f: \mathbb{N} \rightarrow A$ and $g: \mathbb{N} \rightarrow B$ one has

$$
A \times B=\bigcup_{i \in \mathbb{N}}(A \times\{g(i)\})
$$

and each $A \times\{g(i)\}$ is equinumerous with \mathbb{N} via the correspondence $(n \mapsto$ $(f(n), g(i)))$, so that $A \times B$ is countable by Theorem 8.1.19. The latter provides the inductive step in proving the countability of $A_{1} \times \cdots \times A_{n}$ by induction on n.

The corresponding results for finite, finitely enumerable, and subcountable sets are left as an exercise.
(ii): Given $f: \mathbb{N} \rightarrow A$, (i) shows that functions $f_{n}: \mathbb{N} \rightarrow A^{n}$ can be effectively constructed from f by recursion on n. This (of course) requires $\Delta_{0}-\mathbf{I T E R}_{\omega}$. Therefore, by Theorem 8.1.19, it follows that $\bigcup_{n=1}^{\infty} A^{n}$ is countable, too.

If we want to generalize Cantor's Theorem 8.1.19 to the effect that the union of a family $\left(A_{i}\right)_{i \in \mathbb{N}}$ of countable sets is countable we need to employ countable choice to be able to single out sequence of pairs $\left(A_{i}, f_{i}\right)_{i \in \mathbb{N}}$ such that f_{i} witnesses the countability of A_{i}. Though just adding $\mathbf{A C}_{\omega}$ to ECST $^{+}$doesn't seem to be sufficient as on the basis of $\mathbf{E C S T}^{+}$there is no preordained set which contains all the possible functions f_{i}. However, if one also adds Collection or Exponentiation (Exp) this feat can be achieved.

Lemma: 8.1.27 $\left(\mathbf{E C S T}^{+}+\right.$Collection $\left.+\mathbf{A C}_{\omega}, \mathbf{E C S T}^{+}+\mathbf{E x p}+\mathbf{A C}_{\omega}\right)$ If $\left(A_{i}\right)_{i \in \mathbb{N}}$ is a family of countable sets then there is a family $\left(f_{i}\right)_{i \in \mathbb{N}}$ of functions such that $f_{i}: \omega \rightarrow A_{i}$.

Proof: We have $\forall i \in \mathbb{N} \exists g g: \omega \rightarrow A_{i}$. With Collection we find a set C such that $\forall i \in \mathbb{N} \exists g \in C g: \omega \rightarrow A_{i}$. Now employ $\mathbf{A C}_{\omega}$ to the family $\left(C_{i}\right)_{i \in \mathbb{N}}$
where $C_{i}=\left\{g \in C \mid g: \omega \rightarrow A_{i}\right\}$. In the presence of Exp we have the set $D=\left\{h \mid h: \omega \rightarrow \bigcup_{i \in \mathbb{N}} A_{i}\right\}$ and we can employ $\mathbf{A C} \mathbf{C}_{\omega}$ to the family of sets $\left(D_{i}\right)_{i \in \mathbb{N}}$ where $D_{i}=\left\{g \in D \mid g: \omega \rightarrow A_{i}\right\}$.

Theorem: 8.1.28 (Cantor) $\left(\right.$ ECST $^{+}+$Collection + AC $_{\omega}$, ECST $^{+}+\mathbf{E x p}+$ $\left.\mathbf{A C}_{\omega}\right)$ For each family $\left(A_{i}\right)_{i \in \mathbb{N}}$ of countable sets, $A=\bigcup_{i \in \mathbb{N}} A_{i}$ is countable also.

Proof: This follows from Theorem 8.1.19 by means of Lemma 8.1.27.

The classes of subfinite and subcountable sets have further nice closure properties, assuming a little more than ECST.

Lemma: 8.1.29 (ECST ${ }^{+}+$Collection, ECST $\left.^{+}+\mathbf{E x p}\right)$ The class of subfinite (subcountable) sets is closed under finitely enumerable unions: if I is a finitely enumerable set and $\left(A_{i}\right)_{i \in I}$ is a family of subfinite (subcountable) sets, then $\bigcup_{i \in I} A_{i}$ is subfinite (subcountable).

Proof: Let Let $\left(A_{i}\right)_{i \in I}$ be a family of subfinite (subcountable) sets and $f: k \rightarrow I$. With Collection there exists a set C such that for all $i<k$ there exists a finite (countable) set $X \in C$ such that $A_{i} \subseteq X$. Now use induction on $i<k$ to show that $\bigcup_{j \leq i} A_{j}$ is subfinite (subcountable).

Lemma: 8.1.30 $\left(\mathbf{E C S T}^{+}+\right.$Collection $\left.+\mathbf{A C}_{\omega}\right)$ The class of subcountable sets is closed under countable unions: if I is a countable set and $\left(A_{i}\right)_{i \in I}$ is a family of subcountable sets, then $\bigcup_{i \in I} A_{i}$ is subcountable.

Proof: Exercise 8.3.7.

Definition: 8.1.31 The powerclass $\mathcal{P}(A)$ of a set A is the class of all its subsets,

$$
\mathcal{P}(A)=\{X \mid X \text { is a set and } X \subseteq A\} .
$$

Theorem: 8.1.32 (Cantor) (BCST) For every set A there is no surjection

$$
f: A \rightarrow \mathcal{P}(A) .
$$

Proof: Towards a contradiction, assume that $f: A \rightarrow \mathcal{P}(A)$. We then define

$$
B=\{x \in A \mid x \notin f(x)\} .
$$

Note that B is a set by Bounded Separation and that $B \in \mathcal{P}(A)$. Whence, by our assumption, there exists $a_{0} \in A$ such that $f\left(a_{0}\right)=B$.

Now, if $a_{0} \in B$, then, by definition of $B, a_{0} \notin f\left(a_{0}\right)$, so that $a_{0} \notin B$, which is a contradiction. So we have shown that $a_{0} \notin B$, and thus $a_{0} \notin f\left(a_{0}\right)$. But the latter entails that $a_{0} \in B$, contradicting $a_{0} \notin B$. Having reached a contradiction, we conclude that there can't be an f satisfying $f: A \rightarrow \mathcal{P}(A)$.

Theorem: 8.1.33 $\left(\mathbf{E C S T}^{+}\right)$For every function $F: \mathbb{N} \rightarrow{ }^{\mathbb{N}} \mathbb{N}$ there exists $g \in{ }^{\mathbb{N}} \mathbb{N}$ such that g is not in the range of F.

As a result, there is no surjection $G: \mathbb{N} \rightarrow{ }^{\mathbb{N}} \mathbb{N}$.
Proof: Assume that we have a function $F: \mathbb{N} \rightarrow{ }^{\mathbb{N}} \mathbb{N}$. Define f_{n} to be $F(n)$ and let $f_{\Delta}: \mathbb{N} \rightarrow \mathbb{N}$ be defined by

$$
f_{\Delta}(n)=f_{n}(n)+1 .
$$

As f_{Δ} takes a different value than f_{n} at n, we conclude that $f_{\Delta} \notin F[\mathbb{N}]$, and hence F is not surjective.

Theorem: 8.1.34 $\left(\mathbf{E C S T}^{+}\right) \mathcal{P}(\mathbb{N})$ is not subcountable.

Proof: Exercise 8.3.8.

Remark: 8.1.35 It is consistent with CZF (even with IZF if that theory is consistent) that ${ }^{\mathbb{N}} \mathbb{N}$ is subcountable.

8.2 Appendix: The Pigeonhole principle

Finite sets as well as finitely enumerable sets have the pivotal property that they are not equinumerous with any of their proper subsets. We show that this result, known as the Pigeonhole Principle, can be established on the basis of ECST + FPA.

Variables k, m, n, n_{0}, \ldots range over elements of ω.
Lemma: 8.2.1 (ECST) Let $n_{0}<m$. Then $m=m_{0}+1$ for some m_{0} and

$$
\left\{k: k<m \wedge k \neq n_{0}\right\} \quad=_{c} \quad m_{0} .
$$

Proof: Since $m \neq 0$ there exists m_{0} such that $m=m_{0}+1$. Now, define $g: m_{0} \rightarrow\left\{k: k<m \wedge k \neq n_{0}\right\}$ by

$$
g(k)= \begin{cases}k & \text { if } k<n_{0} \tag{8.7}\\ k+1 & \text { if } k \geq n_{0}\end{cases}
$$

That g is a function and, moreover, is 1-1 and onto follows from Exercise 8.2.1.

Theorem: 8.2.2 (ECST + FPA) Pigeonhole Principle: Every injection f : $A \hookrightarrow A$ on a finite set into itself is also a surjection, i.e. $f[A]=A$.

Proof: It is enough to prove that for every natural number m and each $g \in$ $\bigcup_{n \in \mathbb{N}}{ }^{n} \mathbb{N}$, whenever $g: m \rightharpoondown m$, then $g: m \rightarrow m$. The proof is (naturally) by induction on $m . \bigcup_{n \in \mathbb{N}} n \mathbb{N}$ being a set by the Finite Powers Axiom, FPA, it follows that this induction can be carried out in the given background theory.

The assertion is trivial when $m=0$. So assume inductively that the assertion holds for m_{0}. Suppose that $f: m_{0}+1 \mapsto m_{0}+1$. Now, let f^{*} be the restriction of f to m_{0}. Then $f^{*}: m_{0} \mapsto X$, where $X=\left\{k: k<m_{0}+1 \wedge k \neq f\left(m_{0}\right)\right\}$. By Lemma 8.2.1, there is a bijection $h: X \rightarrow m_{0}$. As a result, $h \circ f^{*}: m_{0} \mapsto m_{0}$. And hence, by the inductive assumption, $h \circ f^{*}$ is a surjection. This implies that f^{*} must be a surjection, too, and therefore f has to be surjective as well.

Corollary: 8.2.3 (ECST + FPA) A finite set cannot be equinumerous with one of its proper subsets.

Corollary: 8.2.4 (ECST + FPA) For each finite set A, there exists exactly one natural number n such that $A={ }_{c} n$. (This justifies that we call this number n the number of elements of A and denote it by $\sharp(A)$.)

Proof: If $A={ }_{c} n$ and $A={ }_{c} m$ with $n<m$, then m would be equinumerous with its proper subset n.

Definition: 8.2.5 A set A has at most n elements if whenever $a_{0}, \ldots, a_{n} \in A$, then there exist $0 \leq i<j \leq n$ such that $a_{i}=a_{j}$.

We introduce a further notion of finiteness. A set is bounded in number, or bounded, if it has at most n elements for some n.

Lemma: 8.2.6 (ECST + FPA) Every subfinite set is bounded. Whence every finitely enumerable set is bounded.

Proof: Exercise 8.3.10.

The pigeonhole principle can also be established for finitely enumerable sets, as was observed by Klaus Thiel. Before we prove this result we shall list several useful facts about finite and finitely enumerable sets.

Lemma: 8.2.7 (ECST + FPA) If E is a finitely enumerable set and B is an arbitrary set then ${ }^{E} B$ is a set.

Proof: Let $f: n \rightarrow E$. By FPA, ${ }^{n} B$ is set. Let

$$
X=\left\{g \in{ }^{n} B \mid \forall k, k^{\prime}<n\left[f(k)=f\left(k^{\prime}\right) \rightarrow g(k)=g\left(k^{\prime}\right)\right]\right\}
$$

and define $F: X \rightarrow{ }^{E} B$ by

$$
F(g)=\{\langle f(k), g(k)\rangle \mid k<n\} .
$$

One easily checks that $F(g)$ is a function from E to B for every $g \in X$. Given $h: E \rightarrow B$ define $g: n \rightarrow B$ by $g(k)=h(f(k))$ for $k<n$. Then $g \in X$ and $F(g)=h$. Thus F surjects the set X onto ${ }^{E} B$ and therefore ${ }^{E} B$ is a set using Replacement.

The next lemma states a provable "choice" principle for finite sets.
Lemma: 8.2.8 (ECST + FPA) Let A be a finite set, B be an arbitrary set and $R \subseteq A \times B$ be a relation from A to B such that $\forall x \in A \exists y \in B x R y$. Then there exists a function $f: A \rightarrow B$ such that $\forall x \in A x R f(x)$.

Proof: Without loss of generality we may assume that $A=n$ for some $n \in \mathbb{N}$. We proceed by induction on $m \leq n$ to show that there exists a function $f_{m}: m \rightarrow B$ such that $\forall k<m k R f_{m}(k)$. This is trivial for $m=0$. So suppose the claim holds for $m<n$. By assumption there exists $y_{0} \in B$ such that $m R y_{0}$. Now let $f_{m+1}=f_{m} \cup\left\{\left\langle m, y_{0}\right\rangle\right\}$.

Note that FPA ensures that $C:=\bigcup_{m \leq n}{ }^{n} B$ is a set. Hence as $f_{m} \in C$ holds for all $m \leq n$, the above induction formula is of complexity Δ_{0}.

Lemma: 8.2.9 (ECST) Let A be a finite set and B be a discrete set. If f : $A \rightarrow B$ then f is one-to-one or $\exists x, y \in A[x \neq y \wedge f(x)=f(y)]$.

Proof: Again, we may assume that $A=n$ for some $n \in \mathbb{N}$. For $k \leq n$ let f_{k} be the restriction of f to k. As in the proof of Proposition 8.1.11 (8.1) we then have

$$
\begin{equation*}
\forall y \in B\left[y \in \operatorname{ran}\left(f_{k}\right) \vee y \notin \operatorname{ran}\left(f_{k}\right)\right] . \tag{8.8}
\end{equation*}
$$

By induction on $k \leq n$ we shall prove that

$$
\begin{equation*}
f_{k}: k \multimap B \vee \exists i, j<k[i \neq j \wedge f(i)=f(j)] . \tag{8.9}
\end{equation*}
$$

As $f_{0}: 0 \mapsto B$ the claim holds for $k=0$. Now suppose $k=k_{0}+1$ and by the inductive assumption that

$$
\begin{equation*}
f_{k_{0}}: k_{0} \mapsto B \vee \exists i, j<k_{0}[i \neq j \wedge f(i)=f(j)] . \tag{8.10}
\end{equation*}
$$

Case $1 f\left(k_{0}\right) \in \operatorname{ran}\left(f_{k_{0}}\right)$: Then $f\left(k_{0}\right)=f(i)$ for some $i<k_{0}$ and thus (8.9) holds.

Case $2 f\left(k_{0}\right) \notin \operatorname{ran}\left(f_{k_{0}}\right):$ If $f_{k_{0}}: k_{0} \mapsto B$ holds we also have $f_{k}: k \mapsto B$. On the other hand, if $\exists j, i<k_{0}[i \neq j \wedge f(i)=f(j)]$ then also $\exists j, i<k[i \neq$ $j \wedge f(i)=f(j)]$.

Since one of these possibilities must obtain according to (8.10), we get (8.9).

The next result is due to Klaus Thiel.
Theorem: 8.2.10 (ECST + FPA) Pigeonhole Principle for finitely enumerable sets: Every injection $f: E \hookrightarrow E$ of a finitely enumerable set into itself is also a surjection, i.e. $f[E]=E$.

Proof: Let E be finitely enumerable and $f: E \mapsto E$. We say that E is n enumerable if $g: n \rightarrow E$ holds for some g and $n \in \mathbb{N}$. By induction on n we shall show that if E is n-enumerable then $f: E \rightarrow E$.

Suppose $g: n \rightarrow E$. Since $f: E \rightarrow E$ we have

$$
\forall k<n \exists l<n f(g(k))=g(l),
$$

so that by Lemma 8.2.8 there exists a function $h: n \rightarrow n$ such that

$$
\begin{equation*}
\forall k<n f(g(k))=g(h(k)) . \tag{8.11}
\end{equation*}
$$

By Lemma 8.2.9, $h: n \hookrightarrow n$ or $\exists i, j<n[i \neq j \wedge h(i)=h(j)]$.
If $h: n \hookrightarrow n$ then $h: n \rightarrow n$ by the pigeonhole principle for finite sets, i.e., Theorem 8.2.2. Thus $g \circ h: n \rightarrow E$, and hence f must be surjective owing to (8.11).

Next, suppose that there are $i, j<n$ with $i \neq j$ and $h(i)=h(j)$. Let $i<j$ and $n=n_{0}+1$. Hence

$$
f(g(i))=g(h(i))=g(h(j))=f(g(j))
$$

by (8.11), and thus $g(i)=g(j)$ as f is one-to-one.
Define

$$
g^{\prime}(k)= \begin{cases}g(k) & \text { if } k<j \tag{8.12}\\ g^{\prime}(k+1) & \text { if } j \leq k<n_{0}\end{cases}
$$

Then $\boldsymbol{\operatorname { r a n }}\left(g^{\prime}\right)=\operatorname{ran}(g)$ as $g(j)=g^{\prime}(i)$ and thus $g^{\prime}: n_{0} \rightarrow E$. As a result, E is n_{0}-enumerable and the inductive assumption yields that f is surjective.

It remains to show that the above induction is feasible in our background theory. This follows from the fact that $\bigcup_{n \in N}{ }^{n} E$ is a set due to FPA, making the notion of n-enumerability Δ_{0}.

8.3 Exercises

Exercise: 8.3.1 (BCST) Show that f^{-1} is a bijection if f is a bijection.
Exercise: 8.3.2 (BCST) Prove that for all sets A, B, C,

$$
((A \times B) \rightarrow C)={ }_{c} \quad(A \rightarrow(B \rightarrow C)) .
$$

Exercise: 8.3.3 (ECST ${ }^{+}$) Show that Cantor's pairing function $\pi: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ defined by

$$
\pi(n, m)=\frac{1}{2}\left((n+m)^{2}+3 n+m\right)
$$

is a bijection.
Exercise: 8.3.4 Complete the proofs of Propositions 8.1.6 and 8.1.7.
Exercise: 8.3.5 Prove Lemma 8.1.18.
Exercise: 8.3.6 Show that Lemma 8.1.29 can also be proved in $\mathbf{E C S T}^{+}+\Sigma_{1}-\mathbf{I N D}_{\omega}$, where $\Sigma_{1}-\mathbf{I N D}_{\omega}$ is the schema

$$
\theta(0) \wedge(\forall n \in \omega)(\theta(n) \rightarrow \theta(n+1)) \rightarrow(\forall n \in \omega) \theta(n)
$$

for all formulae $\theta(u)$ of the form $\exists y \varphi(y, u)$ with $\varphi \Delta_{0}$.
Exercise: 8.3.7 Prove Lemma 8.1.30.
Exercise: 8.3.8 Prove Theorem 8.1.34.
Exercise: 8.3.9 Complete the proof of lemma 8.2.1, i.e., show that $g: m_{0} \rightarrow$ $\left\{k: k<m \wedge k \neq n_{0}\right\}$ is 1-1 and onto.

Exercise: 8.3.10 Prove Lemma 8.2.6.
Exercise: 8.3.11 (ECST $+\Sigma_{1}-$ IND $_{\omega}$ and $\mathbf{E C S T}+\mathbf{F P A}+$ Collection) If E is a finitely enumerable set and every member of E is finitely enumerable, then the unionset $\bigcup E$ is also finitely enumerable.

Exercise: 8.3.12 (ECST+FPA) The Cartesian product of two finite sets A, B is finite and such that

$$
\sharp(A \times B)=\sharp(A) \cdot \sharp(B)
$$

with $\sharp(X)$ being the number of elements of X.
Exercise: 8.3.13 (ECST + FPA) Let

$$
\mathbb{Z}[X]:=\left\{f: \omega \rightarrow\{0,1\} \times \omega \mid \exists n_{0} \in \omega \forall n \in \omega\left[n_{0}<n \rightarrow f(n)=(0,0)\right]\right\}
$$

Show that $\mathbb{Z}[X]$ is a set.
Exercise: 8.3.14 (ECST $\left.{ }^{+}\right)$Let $\mathcal{A}=\left(A, a_{0}, f\right)$ be a DP-structure. Let $f^{*} \subseteq$ $A \times A$ be the uniquely defined transitive closure of the relation f. Let $F: \mathcal{N} \rightarrow \mathcal{A}$ be the uniquely defined DP-map from the natural numbers to \mathcal{A}. Show that for its range $\operatorname{ran}(F)$ the following set equality holds:

$$
\operatorname{ran}(F)=\left\{x \in A \mid x=a_{0} \text { or }\left(a_{0}, x\right) \in f^{*}\right\}
$$

Exercise: 8.3.15 (ECST+FPA) Show that for all finitely enumerable relations R, the transitive closure R^{*} is also finitely enumerable.

Exercise: 8.3.16 (ECST + FPA) Show that for all finite sets a and b, the set ${ }^{a} b$ of functions from a to b is finite as well.

Chapter 9

Foundations of Set Theory

Among other topics, this chapter addresses the important set-theoretic tool of definition by transfinite recursion and studies the basic set-theoretic notion of ordinal from a constructive point of view. Moreover, it is shown that the common practice of enriching the language of set theory by function symbols for provably total class functions does not change the stock of provable theorems of the basic language.

9.1 Well-founded relations

In classical set theory, the notion of well-foundedness of a binary relation $<_{A}$ on a set A is expressed either by saying that there are no infinite $<_{A}$-descending sequences or via the least element principle, which asserts that every non-empty subset of A has a $<{ }_{A}$-least element. The least element principle is far too strong a condition to be useful in intuitionistic set theory in that it implies undesirable instances of excluded middle, whereas the non-existence of infinite descending sequences is too weak a condition to guarantee the induction principle for $<_{A}$. Since proofs by induction and definitions by recursion are what one really wants from a notion of "well-founded" relation, the natural choice of definition is that the relation be "inductive".

Definition: 9.1.1 Let A be a set and $<_{A}$ be a binary relation on A, that is $<_{A} \subseteq A \times A$. An infinite descending $<_{A}$-sequence is a function $f: \mathbb{N} \rightarrow A$ such that for all $n \in \mathbb{N}, f(n+1)<_{A} f(n)$. A subset X of A is said to be $<_{A}$-inductive if

$$
\forall u \in A\left[(\forall v \in A)\left(v<_{A} u \rightarrow v \in X\right) \rightarrow u \in X\right] .
$$

$<_{A}$ is well-founded if each $<_{A}$-inductive subset of A equals A.
Note that notion of well-founded relation assumes that a set and a relation on it are given, so being well-founded is actually a property of the pair $\left(A,<_{A}\right)$.

Examples: 9.1.2 $\left(\right.$ ECST $\left.^{+}\right)$The following sets (X, \prec) are well-founded:
(i) $X=\omega$ and $x \prec y$ if $y \in x$.
(ii) $X=\omega$ with $x \prec y$ if x is a proper factor of y.
(iii) $X=\mathbb{Z}$ with $x \prec y$ if $\left\{\begin{array}{l}x, y \geq 0 \text { and } x<y, \text { or } \\ x, y<0 \text { and } x>y, \text { or } \\ x<0 \leq y .\end{array}\right.$

Lemma: 9.1.3 (ECST) If $<_{A}$ is a well-founded relation on a set A, then there are no infinite descending $<_{A}$-sequences.

Proof: For contradiction's sake, suppose that we have a a function $f: \mathbb{N} \rightarrow A$ such that for all $n \in \mathbb{N}, f(n+1)<_{A} f(n)$. Let $B=\{u \in A \mid u \notin f[\mathbb{N}]\}$. Clearly, $f(0) \notin B$. We show that B is $<_{A}$-inductive. To this end, suppose $u \in A$ and that for all $v \in A$, whenever $v<_{A} u$ then $v \in B$. If $u \in f[\mathbb{N}]$ then $u=f(n)$ for some n, and hence with $v_{0}=f(n+1)$ we get $v_{0}<_{A} u$, which leads to the absurdity that $f(n+1) \in B$. As a result, $u \notin f[\mathbb{N}]$, and whence $u \in B$, showing that B is $<_{A}$-inductive, so that $B=A$. But this collides with $f(0) \notin B$. So we have reached a contradiction.

Corollary: 9.1.4 (ECST) If $<_{A}$ is a well-founded relation on a set A, then $\neg a<_{R} a$ holds for all $a \in A$.

Proof: Immediate by Lemma 9.1.3.
Recall that if R is a binary relation on a set A, for $a \in A$ we denote by R_{a} the segment $\{u \in A \mid u R a\}$.

Lemma: 9.1.5 (ECST + FPA) If (A, R) is a well-founded set and R^{*} is the transitive closure of R, then $\left(A, R^{*}\right)$ is a well-founded set.

Proof: Note that owing to Lemma 6.5.2, FPA ensures the existence of the transitive closure of R. Let X be an R^{*}-inductive subset of A. Put $Y=\{u \in A \mid$ $\left.\left(\forall z \in R_{u}^{*}\right) z \in X\right\}$. We shall show that Y is R-inductive. So suppose that $u \in Y$ for all $u R a$. Let $v \in R_{a}^{*}$. By the proof of Lemma 6.5.2 we then have $v R a$ or there exists $w \in A$ such that $w R a$ and $v R^{*} w . v R a$ yields $v \in Y$, i.e. $\left(\forall z \in R_{v}^{*}\right) z \in X$, and hence $v \in X$ as X is R^{*}-inductive. If $w R a$ and $v R^{*} w$ then $w \in Y$, whence $v \in X$. Summing up we have $\left(\forall v \in R_{a}^{*}\right) v \in X$, and hence $a \in Y$.

As a result Y is R-inductive and consequently $Y=A$. This means that for all $a \in A,\left(\forall z \in R_{a}^{*}\right) z \in X$, and therefore, as X is R^{*}-inductive, $a \in X$. Hence $X=A$.

Lemma: 9.1.6 (BCST) Let A, B be sets each with a binary relation $<_{A}$ and $<_{B}$, respectively, such that $<_{B}$ is well-founded. Let $f: A \rightarrow B$ be a map such that $f(u)<_{B} f(v)$ whenever $u<_{A} v$. Then $<_{A}$ is well-founded.

Proof: Let X be an inductive subset of A, and let

$$
Y=\left\{v \in B \mid f^{-1}[\{v\}] \subseteq X\right\}
$$

where $f^{-1}[U]:=\{z \in A \mid f(z) \in U\}$. We shall show that Y is $<_{B}$-inductive, so $Y=B$ and thus $X=A$.

Suppose $v \in Y$ whenever $v<_{B} u$. If $x \in f^{-1}[\{u\}]$ and $y<_{A} x$, then $f(y)<_{B} u$ so $f(y) \in Y$, hence $y \in X$. Since X is inductive, this implies that $x \in X$ for each $x \in f^{-1}[\{u\}]$, so $u \in Y$. Whence Y is $<_{B}$-inductive.

Corollary: 9.1.7 (BCST) If R is well-founded on a set B, then for every subset A of B, the restriction of R to A,

$$
R \upharpoonright_{A}=\{\langle x, y\rangle \in R \mid x, y \in A\}
$$

is well-founded on A.
Proof: This follows as the map $(x \mapsto x)$ from A to B satisfies the requirements of Lemma 9.1.6.

One way of constructing new well-founded sets from given ones is by adding them together as disjoint unions.

Lemma: 9.1.8 (BCST) Let $\left(I,<_{I}\right)$ be a well-founded set, and $\left(A_{i},<_{A_{i}}\right)_{i \in I}$ be a family of well-founded sets. The disjoint union

$$
\sum_{i \in I} A_{i}=\left\{\langle i, a\rangle \mid a \in A_{i} \wedge i \in I\right\}
$$

admits a relation:

$$
\langle i, x\rangle \triangleleft\langle j, y\rangle \quad i f f \quad i<_{I} j \vee\left(i=j \wedge x<_{A_{i}} y\right) .
$$

\triangleleft is a well-founded relation on $\sum_{i \in I} A_{i}$.
Proof: Suppose X is an \triangleleft-inductive subset of $\sum_{i \in I} A_{i}$. For each $i \in I$ let $A_{i}^{*}=\left\{u \in A_{i} \mid\langle i, u\rangle \in X\right\}$, and let $I^{*}=\left\{i \in I \mid A_{i}^{*}=A_{i}\right\}$. We claim that I^{*} is $<_{I}$-inductive, so that $I=I^{*}$, which yields $X=\sum_{i \in I} A_{i}$. Now, suppose $j \in I^{*}$ holds for each $j<_{I} i$. We shall show that $A_{i}^{*}=A_{i}$ by showing that A_{i}^{*} is $<_{A_{i}}$-inductive. Suppose $x \in A_{i}^{*}$ for each $x<_{A_{i}} a$. Then $w \in X$ for each $w \triangleleft\langle i, a\rangle$,
thus $\langle a, i\rangle \in X$, whence $a \in A_{i}^{*}$. Therefore $A_{i}^{*}=A_{i}$ as $<_{A_{i}}$ is well-founded, so that $i \in I^{*}$.
In ZF one can show that every well-founded set $\left(A,<_{A}\right)$ has a rank function ρ with domain A and ordinal range, such that for each $x \in A$

$$
\begin{equation*}
\rho(x)=\bigcup\left\{\rho(y)+1 \mid y<_{A} x\right\} \tag{9.1}
\end{equation*}
$$

where $\rho(y)+1=\rho(y) \cup\{\rho(y)\}$.
As a rule, the existence of a rank function is not provable in CZF, but it is provable with the aid of a principle that asserts the existence of enough functionally regular sets, fREA. This result will be proved in Proposition 11.1.9.

Remark: 9.1.9 Note that the uniqueness of a function satisfying (9.1) is an immediate consequence of the well-foundedness of the relation.

9.2 Some consequences of Set Induction

Sometimes when proving a result via Set Induction a weaker form suffices.
Definition: 9.2.1 Δ_{0} or Bounded Set Induction is the scheme

$$
\forall a[\forall x \in a \phi(x) \rightarrow \phi(a)] \rightarrow \forall a \phi(a)
$$

for all bounded formulae $\phi(a)$.
As far as proof-theoretic strength is concerned ECST $+\Delta_{0}$ Set Induction is much weaker than ECST + Set Induction (see ??).

Assuming Bounded Set Induction, ω has an even simpler categorical definition via a bounded formula than the one given in Lemma 6.1.1.

Lemma: 9.2.2 $\left(\mathbf{E C S T}+\Delta_{0}\right.$ Set Induction) ω is the unique set a such that $\tilde{\theta}(a)$, where $\tilde{\theta}(a)$ is the formula

$$
\forall x[x \in a \leftrightarrow x=0 \vee(\exists u \in a) x=u+1] .
$$

Proof: By Proposition 6.1.4, $\tilde{\theta}(\omega)$. Now suppose $\tilde{\theta}(a)$ and $\tilde{\theta}(b)$ for some sets a and b. Let $\psi(x)$ be the Δ_{0} formula $x \in a \rightarrow x \in b$. Suppose $\forall u \in x \psi(u)$. If $x \in a$, then $x=0$ or $x=v+1$ for some $v \in a$, so $\psi(v)$ as $v \in x$, thus $v \in b$, and hence $x=v+1 \in v$ since $\tilde{\theta}(b)$. The latter shows $(\forall u \in x) \psi(u) \rightarrow \psi(x)$, yielding $\psi(x)$ for all x by Δ_{0} Set Induction. Hence $a \subseteq b$. By the same argument one gets $b \subseteq a$, and hence $a=b$ by Extensionality.
$\mathbf{I N D}_{\omega}$ is a theorem of $\mathbf{C Z F}$, in fact the following obtains:

Lemma: 9.2.3 ECST + Set Induction $\vdash \mathbf{I N D}_{\omega}$.
Proof: Assume $\phi(0) \wedge(\forall n \in \omega)[\phi(n) \rightarrow \phi(n+1)]$. Let $\theta(x)$ be the formula $x \in \omega \rightarrow \phi(x)$. Suppose $\forall x \in a \theta(x)$. We want to show $\theta(a)$. So assume $a \in \omega$. By Proposition 6.1.4, $a=0$ or $a=n+1$ for some $n \in \omega$. In the first case we get $\phi(a)$, thus $\theta(a)$. In the second case we have $n \in a$, thus $\theta(n)$, and hence $\phi(n)$. The latter yields $\phi(n+1)$, and so $\theta(a)$. As a result, we have shown $\forall a[\forall x \in a \theta(x) \rightarrow \theta(a)]$. Hence Set Induction yields $\forall a \theta(a)$, and consequently $\forall n \in \omega \phi(n)$.

9.3 Transfinite Recursion

A mathematically powerful tool of set theory is the possibility of defining (class) functions by ϵ-recursion or recursion on ordinals. Many interesting functions in set theory are definable by recursion.

For this subsection, the background theory will be BCST augmented by Set Induction. We shall use the acronym $\mathbf{I N D}_{\in}$ to notate Set Induction.

Recall from Definition 6.5.3 that $\mathbf{T C}(a)$ denotes the transitive closure of a set a.

Lemma: 9.3.1 (BCST + IND $_{\in}$) (Proof by Induction over TC)
For any formula $\varphi(x)$ the following holds: If, for each $x, \forall y \in \mathbf{T C}(x) \varphi(y)$ implies $\varphi(x)$, then $\forall x \varphi(x)$.

Proof: First note that the transitive closure of a set exists in our background theory. This follows from Lemma 6.5.4 and Lemma 9.2.3.

We show, under the hypothesis, that $\forall x \forall y \in \mathbf{T C}(x) \varphi(y)$. This implies $\forall x \varphi(x)$, since $x \in \mathbf{T C}(\{x\})$. We may assume, by induction on \in, that for all $z \in x$

$$
\begin{equation*}
\forall y \in \mathbf{T C}(z) \varphi(y) \tag{9.2}
\end{equation*}
$$

in showing $\forall y \in \mathbf{T C}(x) \varphi(y)$. But by the hypothesis, (9.2) implies $\varphi(z)$ so we have $\varphi(y)$, for all $y \in x \cup \bigcup\{\mathbf{T C}(z) \mid z \in x\}=\mathbf{T C}(x)$ (the last equality follows from (6.1)).

Proposition: 9.3.2 (BCST $+\mathbf{I N D}_{\in}$) (Definition by TC-Recursion.) If G is a total $(n+2)$-ary class function, i.e.

$$
\forall \vec{x} y z \exists!u G(\vec{x}, y, z)=u
$$

then there is a total $(n+1)$-ary class function F such that ${ }^{1}$

$$
\forall \vec{x} y[F(\vec{x}, y)=G(\vec{x}, y,(F(\vec{x}, z) \mid z \in \mathbf{T C}(y)))] .
$$

[^2]Proof: Let $\Phi(\vec{x}, y, f)$ be the formula
$[f$ is a function $] \wedge[\operatorname{dom}(f)=\mathbf{T C}(y)] \wedge$
$[\forall v \in \operatorname{dom}(f)(f(v)=G(\vec{x}, v, f \upharpoonright \mathbf{T C}(v))]$.
Claim $\quad \forall y \exists!f \Phi(\vec{x}, y, f)$.
Proof of Claim by TC induction on y. Suppose $\forall u \in \mathbf{T C}(y) \exists!g \Phi(\vec{x}, u, g)$. By Replacement we find a set A such that $\forall u \in \mathbf{T C}(y) \exists g \in A \Phi(\vec{x}, u, g)$ and $\forall g \in A \exists u \in \mathbf{T C}(y) \Phi(\vec{x}, u, g)$. Let

$$
f_{0}=\bigcup\{g: g \in A\}
$$

We claim that f_{0} is function. This will follow once we have shown that for all $g, h \in A$,

$$
\begin{equation*}
w \in \operatorname{dom}(g) \cap \operatorname{dom}(h) \quad \rightarrow \quad g(w)=h(w) . \tag{9.3}
\end{equation*}
$$

To prove (9.3) we proceed by TC induction on w. So assume that $w \in \operatorname{dom}(g) \cap$ $\operatorname{dom}(h)$ and

$$
\forall w^{\prime} \in \mathbf{T C}(w)\left[w^{\prime} \in \operatorname{dom}(g) \cap \operatorname{dom}(h) \rightarrow g\left(w^{\prime}\right)=h\left(w^{\prime}\right) .\right.
$$

Being the intersection of two transitive sets, $\operatorname{dom}(g) \cap \operatorname{dom}(h)$ is transitive, too, and hence $\mathbf{T C}(w) \subseteq \operatorname{dom}(g) \cap \operatorname{dom}(h)$. As a result, (refTC-rec1.1) yields $\forall w^{\prime} \in \mathbf{T C}(w) g\left(w^{\prime}\right)=h\left(w^{\prime}\right)$ and hence

$$
g(w)=G(\vec{x}, w, f \upharpoonright \mathbf{T C}(w))=G(\vec{x}, w, h \upharpoonright \mathbf{T C}(w))=h(w),
$$

which shows (9.3). From (9.3) we also obtain that

$$
\begin{equation*}
f_{0}(w)=G\left(\vec{x}, w, f_{0} \upharpoonright \mathbf{T C}(w)\right) \tag{9.4}
\end{equation*}
$$

holds for all $w \in \bigcup\{\mathbf{T C}(u) \mid u \in \mathbf{T C}(y)\}$. Finally let

$$
\begin{equation*}
f:=f_{0} \cup\left\{\left\langle v, G\left(\vec{x}, v, f_{0} \upharpoonright \mathbf{T C}(v)\right\rangle\right| v \in y\right\} . \tag{9.5}
\end{equation*}
$$

The existence of f requires another application of replacement. It follows from (9.4) and (9.5) that $\operatorname{dom}(f)=\mathbf{T C}(y)$ and

$$
\forall u \in \mathbf{T C}(y) f(u)=G(\vec{x}, u, f \upharpoonright u) .
$$

f is also uniquely determined by these properties and hence $\exists!f \Phi(\vec{x}, y, f)$. This completes the proof of the Claim.

Now define F by

$$
F(\vec{x}, y)=w:=\exists f[\Phi(\vec{x},\{y\}, f) \wedge f(y)=w] .
$$

This works since $y \in \mathbf{T C}(\{y\})$.

Proposition: 9.3.3 (BCST $+\mathbf{I N D}_{\in}$) (Definition by $\in-$ Recursion) Under the assumptions of Proposition 9.3.2 there is an $(n+1)$-ary class function H such that

$$
\forall \vec{x} y[H(\vec{x}, y)=G(\vec{x}, y,(H(\vec{x}, z) \mid z \in y))] .
$$

Proof: Apply Proposition 9.3.2 with $G^{\prime}(\vec{x}, y, z) \equiv G(\vec{x}, y, z \upharpoonright y)$. This will provide a class function H such that

$$
\forall \vec{x} y\left[H(\vec{x}, y)=G^{\prime}(\vec{x}, y,(H(\vec{x}, z) \mid z \in \mathbf{T C}(y)))\right],
$$

and hence

$$
\begin{aligned}
H(\vec{x}, y) & =G(\vec{x}, y,(H(\vec{x}, z) \mid z \in \mathbf{T C}(y)) \upharpoonright y) \\
& =G(\vec{x}, y,(H(\vec{x}, z) \mid z \in y))
\end{aligned}
$$

as desired.
As an application of the previous Proposition we obtain the familiar rank function.

Definition: 9.3.4 (BCST $\left.+\mathbf{I N D}_{\epsilon}\right)$ For any set a we define

$$
\operatorname{rank}(a):=\bigcup\{\operatorname{rank}(u)+1: u \in a\}
$$

This definition is justified by Proposition 9.3.3, letting

$$
\begin{aligned}
G(y, z) & :=\bigcup\{u+1 \mid \exists v\langle v, u\rangle \in z\} \\
F(y) & :=G(y, F \upharpoonright y)
\end{aligned}
$$

since then $F(a)=\bigcup\{F(u)+1 \mid u \in a\}$.

9.4 Ordinals

The notion of ordinal is central to classical set theory. In intuitionistic set theory, however, we cannot preserve such familiar features as the linear ordering of ordinals. So one might ask what ordinals are good for in CZF? Perhaps the main justification is that they supply us with a ranking of the universe and that we can still define many of the familiar set-theoretic operations by transfinite recursion on ordinals. This works as long as we make sure that definitions by transfinite recursion do not make case distinctions such as in the classical ordinal cases of successor and limit.

Definition: 9.4.1 An ordinal α is a transitive set of transitive sets, i.e., α and every element of α are transitive.

Note that this notion is Δ_{0}. Observe also that an element of an ordinal is an ordinal as well.

Variables $\alpha, \beta, \gamma, \delta, \ldots$ will be assumed to range over ordinals. ON denotes the class of ordinals.

Lemma: 9.4.2 (BCST) For a set x, let $x+1:=x \cup\{x\}$.

1. $\alpha+1 \in \mathbf{O N}$.
2. If X is a set of ordinals, then $\bigcup X \in \mathbf{O N}$.

Proof: (1) is obvious. For (2), suppose $z \in y \in \bigcup X$. Then $y \in \alpha$ for some $\alpha \in X$. Thus $z \in \alpha$ and so $z \in \bigcup X$. The latter shows that $\bigcup X$ is transitive. Since for every $y \in \bigcup X$ there is an ordinal $\alpha \in X$ such that $y \in \alpha, y$ is an ordinal, too, and hence transitive.

Lemma: 9.4.3 (BCST $+\mathbf{I N D}_{\in}$) (Proof by Induction on Ordinals)
For any formula $\varphi(x)$ the following holds: If, for each $\alpha, \forall \beta \in \alpha \varphi(\beta)$ implies $\varphi(\alpha)$, then $\forall \alpha \varphi(\alpha)$.

Proof: Apply $\mathbf{I N D}_{\in}$ with the formula $\psi(x) \equiv(x \in \mathbf{O N} \rightarrow \phi(x))$.

As in the classical scenario, functions can be defined by transfinite recursion on ordinals.

Proposition: 9.4.4 (BCST + IND $_{\in}$) (Definition by Recursion on ordinals.) If G is a total $(n+2)$-ary class function on $V^{n} \times \mathbf{O N} \times V$, i.e.

$$
\forall \vec{x} \alpha z \exists!u G(\vec{x}, \alpha, z)=u
$$

then there is a $(n+1)$-ary class function $F: V^{n} \times \mathbf{O N} \rightarrow V$ such that

$$
\forall \vec{x} \alpha[F(\vec{x}, \alpha)=G(\vec{x}, \alpha,(F(\vec{x}, \beta) \mid \beta \in \alpha))] .
$$

Proof: The proof is essentially the same as for Proposition 9.3.3 by letting $\Phi(\vec{x}, \alpha, f)$ be the formula

$$
\begin{aligned}
& {[f \text { is a function }] \wedge[\operatorname{dom}(f)=\alpha] \wedge} \\
& {[\forall \beta \in \operatorname{dom}(f)(f(\beta)=G(\vec{x}, \beta, f \upharpoonright \beta))] .}
\end{aligned}
$$

Proposition: 9.4.5 (BCST + Set Induction)

1. $\forall x \operatorname{rank}(x) \in \mathbf{O N}$.
2. $\forall \alpha \operatorname{rank}(\alpha)=\alpha$.

Proof: (1): We use Set Induction on x. Suppose $\forall y \in x \operatorname{rank}(y) \in \mathbf{O N}$. Then $\operatorname{rank}(y)+1 \in \mathbf{O N}$ for all $y \in x$ by Lemma 9.4.2 (1), and hence $\bigcup\{\operatorname{rank}(y)+1$: $y \in x\} \in \mathbf{O N}$ by Lemma 9.4.2 (2). Thus $\operatorname{rank}(x) \in \mathbf{O N}$.
(2): Here we use induction on α. Suppose $\forall \beta \in \alpha \operatorname{rank}(\beta)=\beta$. Then, if $\beta \in \alpha$ we have $\beta \in \operatorname{rank}(\alpha)$ as $\beta \in \beta+1$. Hence $\alpha \subseteq \operatorname{rank}(\alpha)$. Now suppose $\beta \in \operatorname{rank}(\alpha)$. Then $\beta \in \gamma+1$ for some $\gamma \in \alpha$. As a result, $\beta \in \gamma$ or $\beta=\gamma$. But then $\beta \in \alpha$. Thus $\operatorname{rank}(\alpha) \subseteq \alpha$ as well.

Remark: 9.4.6 It has already been mentioned that due to the underlying logic systems like IZF can not prove that ordinals are linearly ordered by \in. One might be tempted to remedy this defect by considering a stricter notion of ordinal. Let's call an ordinal α trichotomous if

$$
\forall \beta \in \alpha \forall \gamma \in \alpha(\beta \in \gamma \vee \beta=\gamma \vee \gamma \in \beta) .
$$

The "problem" with trichotomous ordinals is that even systems like IZF cannot prove the existence of enough trichotomous ordinals. Lemma 9.4.2, (2) fails for trichotomous ordinals and so does Lemma 9.4.5, (1). Indeed, it is consistent with IZF to assume that the trichotomous ordinals merely constitute a set.

9.5 Appendix: On Bounded Separation

The Δ_{0} Separation Scheme has infinitely many instances and is the only axiom scheme of CZF that makes reference to the syntactic form of formulas. We show that in a weak subtheory, $\mathbf{B C S T}_{0}$, each instance is a consequence of the Binary Intersection Axiom which just expresses that the intersection class $a \cap b=\{x \mid$ $x \in a \wedge x \in b\}$ of two sets a, b is a set. Of course this axiom is itself an instance of the scheme.

Definition: 9.5.1 The theory $\mathbf{B C S T}_{0}$ consists of the Extensionality, Pairing and Union Axioms, the Replacement axiom Scheme and the Emptyset Axiom: $\exists a \forall x \in a \perp$ which asserts that the empty class $\emptyset=\{x \mid \perp\}$ is a set.

For the remainder of this subsection we mostly argue in $\mathbf{B C S T}_{0}$.

9.5.1 Truth Values

Definition: 9.5.2 (The class Ω of Truth values.) Let $0=\emptyset, 1=\{0\}$ and $\Omega=\operatorname{Pow}(1)=\{x: x \subseteq 1\}$. We think of the elements of Ω as truth values, with 0 representing falsity and 1 representing truth. In constructive mathematics we cannot assert that those are the only truth values. Moreover in constructive set theory we cannot even assert that the class of truth values forms a set.

For each class $A \subseteq \Omega$ let

- $\bigvee A=\{x \mid x \in 1 \wedge \exists y \in A x \in y\}=\bigcup A$,
- $\bigwedge A=\{x \mid x \in 1 \wedge \forall y \in A x \in y\}$.

For each set $a \in \operatorname{Pow}(\Omega)$ the class $\bigvee a$ is a set in Ω by the Union axiom and assuming Δ_{0} Separation, we would get that Λa is a set in Ω.

If θ is a formula and $c \in \Omega$ such that $[\theta \leftrightarrow 0 \in c]$ then, by Extensionality, c is unique and we call c the truth value of θ. For any formula θ we use $!\theta$ to abbreviate

$$
\exists c \in \Omega[\theta \leftrightarrow 0 \in c]
$$

Proposition: 9.5.3 ($\mathbf{B C S T}_{0}$) Let θ be a formula in which z does not occur free. Then, for each set a,

$$
!\theta \quad \text { iff } \quad\{z \in\{a\} \mid \theta\} \text { is a set. }
$$

Proof: Note that we do have this equivalence when $a=0$. So it suffices to show that A is a set iff B is a set where $A=\{z \in\{0\} \mid \theta\}$ and $B=\{z \in\{a\} \mid \theta\}$. Let $F=\{(0, a)\}$. Then $F:\{0\} \rightarrow\{a\}$ and $B=\{F(x) \mid x \in A\}$. So, by Replacement, if A is a set then so is B. For the converse just use the inverse function $F^{-1}:\{a\} \rightarrow\{0\}$.

Proposition: 9.5.4 ($\left.\mathbf{B C S T}_{0}\right)$ Let $\phi(x)$ be a formula. For each set a, if $\forall x \in$ $a!\phi(x)$ then

1. ! $\exists x \in a \phi(x)$,
2. $\{x \in a \mid \phi(x)\}$ is a set.

Proof:

1. By the assumption, using Union-Replacement we get that

$$
b=\{c \in \Omega \mid \exists x \in a[\phi(x) \leftrightarrow 0 \in c]\}
$$

is a set. This is in $\operatorname{Pow}(\Omega)$ so that $\bigvee b \in \Omega$ and

$$
\exists x \in a \phi(x) \leftrightarrow 0 \in \bigvee b
$$

2. By the assumption and Proposition 9.5.3, for each $x \in a$ the class

$$
b_{x}=\{y \in\{x\} \mid \phi(x)\}
$$

is a set. Hence, by Union-Replacement, $\{x \in a \mid \phi(x)\}=\bigcup_{x \in a} b_{x}$ is a set.

9.5.2 The Infimum Axiom

We let Infimum be the assertion that for every set $a \subseteq \Omega$, the class $\bigwedge a$ is a set.
Proposition: 9.5.5 ($\mathbf{B C S T}_{0}+$ Infimum $)$

1. If $\forall x \in a!\phi(x)$ then $!\exists x \in a \phi(x)$, and $!\forall x \in a \phi(x)$.
2. If ! ϕ_{1} and ! ϕ_{2} then ! $\left(\phi_{1} \vee \phi_{2}\right)$! $\left(\phi_{1} \wedge \phi_{2}\right)$ and ! $\left(\phi_{1} \rightarrow \phi_{2}\right)$.
3. If ! ϕ then $!\neg \phi$.

Proof:

1. As in the proof of part 1 of Proposition 9.5.4, by the assumption we may use Union-Replacement to get that

$$
b=\{c \in \Omega \mid \exists x \in a[\phi(x) \leftrightarrow 0 \in c]\}
$$

is a set. This is in $\operatorname{Pow}(\Omega)$ so that $\bigvee b \in \Omega$ and

$$
\exists x \in a \phi(x) \leftrightarrow 0 \in \bigvee b
$$

Also, using Infimum, $\Lambda b \in \Omega$ and

$$
\forall x \in a \phi(x) \leftrightarrow 0 \in \bigwedge b
$$

2. Let $c_{1}, c_{2} \in \Omega$ such that

$$
\phi_{i} \leftrightarrow 0 \in c_{i}
$$

for $i=1,2$. Then $c_{\wedge}=\bigwedge\left\{c_{1}, c_{2}\right\} \in \Omega$ and

$$
\left[\phi_{1} \wedge \phi_{2}\right] \leftrightarrow 0 \in c_{\wedge} .
$$

Similarily $c_{\vee}=\bigvee\left\{c_{1}, c_{2}\right\} \in \Omega$ and

$$
\left[\phi_{1} \vee \phi_{2}\right] \leftrightarrow 0 \in c_{\vee} .
$$

Finally if $c_{\rightarrow}=\bigwedge\left\{c_{2} \mid 0 \in c_{1}\right\} \in \Omega$ then

$$
\left[\phi_{1} \rightarrow \phi_{2}\right] \leftrightarrow 0 \in c_{\rightarrow .} .
$$

3. As $0 \in \Omega$ and $0=1 \leftrightarrow 0 \in 0$ and $\neg \phi \leftrightarrow[\phi \rightarrow 0=1]$.

9.5.3 The Binary Intersection Axiom

The Binary Intersection Axiom states that the class $a \cap b$ is a set for all sets a, b. In $\mathbf{B C S T}_{0}$, the axiom has several equivalents.

Theorem: 9.5.6 ($\left.\mathrm{BCST}_{0}\right)$ The following are equivalent.

1. $\cap a$ is a set for every inhabited set a.
2. $a \cap b$ is a set for all sets a, b.
3. $\{a\} \cap\{b\}$ is a set for all sets a, b.
4. ! $(a=b)$ for all sets a, b.
5. ! $(a \subseteq b)$ for all sets a, b.
6. Infimum and $!(a \in b)$ for all sets a, b.

Proof: The implications $1 \Rightarrow 2$ and $2 \Rightarrow 3$ are trivial. For $3 \Leftrightarrow 4$ it is enough to observe that, by Proposition 9.5.3,

$$
\{a\} \cap\{b\} \text { is a set } \Longleftrightarrow!(a=b) .
$$

For $4 \Rightarrow 5$ observe that $a \subseteq b$ iff $a \cup b=b$.
To prove $5 \Rightarrow 6$ assume 5 . As $a \in b$ iff $\{a\} \subseteq b$ we immediately get that $!(a \in$ b). To prove Infimum let $a \subseteq \Omega$. Then, as $(\forall y \in a)!(0 \in y)$, by Proposition 9.5.4,

$$
b=\{y \in a \mid 0 \in y\}
$$

is a set. Now $\bigwedge a=\{x \in\{0\} \mid a \subseteq b\}$ is a set using 5 again.
It only remains to show that $6 \Rightarrow 1$. So let a be an inhabited set. Let $b \in a$. Then, assuming $\forall x \forall y!(x \in y)$,

$$
\forall x \in b \forall y \in a!(x \in y)
$$

so that, using part 1 of Proposition 9.5.4 and assuming Infimum,

$$
\forall x \in b!\forall y \in a(x \in y)
$$

so that, by part 2 of proposition 9.5.4,

$$
\cap a=\{x \in b \mid \forall y \in a(x \in y)\}
$$

is a set.

Corollary: 9.5.7 $\left(\mathrm{BCST}_{0}\right)$ The Δ_{0} Separation Scheme is equivalent to its single instance, the Binary Intersection Axiom.
Proof: If a, b are sets then, as $a \cap b=\{x \in a \mid x \in b\}$ the assertion that $a \cap b$ is a set is an instance of Δ_{0} Separation.

Conversely, let us assume the Binary Intersection Axiom. Then, by the Theorem, $!\theta$ for every atomic formula θ. Also Infimum holds so that, by repeated application of Proposition 9.5 .5 we get that ! ϕ for every bounded formula ϕ. We can now apply part 2 of Proposition 9.5.4 to get that $\{x \in a \mid \phi(x)\}$ is a set for every set a and every bounded formula ϕ; i.e. we have proved each instance of the bounded separation scheme.

If we have Set Induction then we can obtain the Bounded Separation scheme from the apparently weaker Infimum axiom.

Proposition: 9.5.8 ($\mathrm{BCST}_{0}+$ Set Induction) The Δ_{0} Separation Scheme is equivalent to its single instance, the Infimum Axiom.

Proof: It suffices to show that $\forall a \forall b!(a=b)$, as then we can apply Theorem 9.5.6 to get Binary Intersection and hence, by the Corollary 9.5.7, Δ_{0} Separation. We can prove! $(a=b)$ by a double set induction on a, b using the equivalence

$$
a=b \Longleftrightarrow \forall x \in a \exists y \in b(x=y) \wedge \forall y \in b \exists x \in a(x=y)
$$

and, using Infimum, Proposition 9.5.4.

9.6 Appendix: Extension by Function Symbols

In classical set theory it is common practice to enrich the language of set theory by function symbols for provably total class functions. In the case of ZF this amounts to conservative extensions. In theories like CZF, however, separation is restricted. Adding function symbols to the language changes the stock of Δ_{0} formulas. Hence in connection with CZF the question arises whether adding function symbols for provably total class functions could change the stock of provable theorems of the basic language.
Definition: 9.6.1 Let T be a theory whose language comprises the language of set theory and let $\phi\left(x_{1}, \ldots, x_{n}, y\right)$ be a formula such that

$$
T \vdash \forall x_{1} \ldots \forall x_{n} \exists!y \phi\left(x_{1}, \ldots, x_{n}, y\right) .
$$

Let f be a new n-ary function symbol and define f by:

$$
\forall x_{1} \ldots \forall x_{n} \forall y\left[f\left(x_{1}, \ldots, x_{n}\right)=y \leftrightarrow \phi\left(x_{1}, \ldots, x_{n}, y\right)\right] .
$$

f will be called a function symbol of T.

It is an important property of classical set theory that function symbols can be treated as though they were atomic symbols of the basic language. The usual proofs of this fact employ full Separation. As this principle is not available in ECST and CZF some care has to be exercised in obtaining the same results for these theories.

Proposition: 9.6.2 (Extension by Function Symbols) Let T be a theory which comprises BCST (e.g. BCST, ECST, ECST ${ }^{+}$, CZF). Suppose $T \vdash \forall \vec{x} \exists!y \Phi(\vec{x}, y)$. Let T_{Φ} be obtained by adjoining a function symbol F_{Φ} to the language, extending the schemata to the enriched language, and adding the axiom $\forall \vec{x} \Phi\left(\vec{x}, F_{\Phi}(\vec{x})\right)$. Then T_{Φ} is conservative over T.

Proof: We define the following translation ${ }^{*}$ for formulas of T_{Φ} :

$$
\begin{aligned}
\phi^{*} & \equiv \phi \text { if } F_{\Phi} \text { does not occur in } \phi ; \\
\left(F_{\Phi}(\vec{x})=y\right)^{*} & \equiv \Phi(\vec{x}, y) .
\end{aligned}
$$

If ϕ is of the form $t=x$ with $t \equiv G\left(t_{1}, \ldots, t_{k}\right)$ such that one of the terms t_{1}, \ldots, t_{k} is not a variable, then let

$$
(t=x)^{*} \equiv \exists x_{1} \ldots \exists x_{k}\left[\left(t_{1}=x_{1}\right)^{*} \wedge \cdots \wedge\left(t_{k}=x_{k}\right)^{*} \wedge\left(G\left(x_{1}, \ldots, x_{k}\right)=x\right)^{*}\right] .
$$

The latter provides a definition of $(t=x)^{*}$ by induction on t. If either t or s contains F_{Φ}, then let

$$
\begin{aligned}
(t \in s)^{*} & \equiv \exists x \exists y\left[(t=x)^{*} \wedge(s=y)^{*} \wedge x \in y\right], \\
(t=s)^{*} & \equiv \exists x \exists y\left[(t=x)^{*} \wedge(s=y)^{*} \wedge x=y\right], \\
(\neg \phi)^{*} & \equiv \neg \phi^{*} \\
\left(\phi_{0} \square \phi_{1}\right)^{*} & \equiv \phi_{0}^{*} \square \phi_{1}^{*}, \quad \text { if } \square \text { is } \wedge, \vee, \text { or } \rightarrow \\
(\exists x \phi)^{*} & \equiv \exists x \phi^{*} \\
(\forall x \phi)^{*} & \equiv \forall \phi^{*} .
\end{aligned}
$$

Let T_{Φ}^{-}be the restriction of T_{Φ}, where F_{Φ} is not allowed to occur in the Δ_{0} Separation Scheme. Then it is obvious that $T_{\Phi}^{-} \vdash \phi$ implies $T \vdash \phi^{*}$. So it remains to show that T_{Φ}^{-}proves the same theorems as T_{Φ}. We first prove $T_{\Phi}^{-} \vdash$ $\exists x \forall y[y \in x \leftrightarrow y \in a \wedge \phi(a)]$ for any Δ_{0} formula ϕ of T_{Φ}.

We proceed by induction on ϕ.

1. $\phi(y) \equiv t(y) \in s(y)$. Now

$$
T_{\Phi} \vdash \forall y \in a \exists!z[(z=t(y)) \wedge \forall y \in a \exists!u(u=s(y))] .
$$

Using Replacement (Lemma 4.2.4) we find functions f and g such that

$$
\operatorname{dom}(f)=\operatorname{dom}(g)=a \text { and } \forall y \in a[f(y)=t(y) \wedge g(y)=s(y)] .
$$

Therefore $\{y \in a: \phi(y)\}=\{y \in a: f(y) \in g(y)\}$ exists by Δ_{0} Separation in T_{Φ}^{-}.
2. $\phi(y) \equiv t(y)=s(y)$. Similar.
3. $\phi(y) \equiv \phi_{0}(y) \square \phi_{1}(y)$, where \square is any of $\wedge, \vee, \rightarrow$. This is immediate by induction hypothesis.
4. $\phi(y) \equiv \forall u \in t(y) \phi_{0}(u, y)$. We find a function f such that $\operatorname{dom}(f)=a$ and $\forall y \in a f(y)=t(y)$. Inductively, for all $b \in a$,

$$
\left\{u \in \bigcup \operatorname{ran}(f): \phi_{0}(u, b)\right\}
$$

is a set. Hence there is a function g with $\operatorname{dom}(g)=a$ and

$$
\forall b \in a g(b)=\left\{u \in \bigcup \operatorname{ran}(f): \phi_{0}(u, b)\right\} .
$$

Then

$$
\{y \in a: \phi(y)\}=\{y \in a: \forall u \in f(y)(u \in g(y))\} .
$$

5. $\phi(y) \equiv \exists u \in t(y) \phi_{0}(u, y)$. With f and g as above, $\{y \in a: \phi(y)\}=\{y \in a$: $\exists u \in f(y)(u \in g(y))\}$.

Remark: 9.6.3 The proof of Proposition 9.6.2 shows that the process of adding function symbols, starting with a theory $T \supseteq$ BCST, can be iterated. So if e.g. $T_{\Phi} \vdash \forall \vec{x} \exists y \psi(\vec{x}, y)$, then

$$
T_{\Phi}+\left\{\forall \vec{x} \exists y \psi\left(\vec{x}, F_{\psi}(\vec{x})\right)\right\}
$$

will be conservative over T as well.

9.7 Exercises

Exercise: 9.7.1 (ECST ${ }^{+}$) Determine whether (X, \prec) is a well-founded set?

1. $X=\omega$ and $x \prec y$ if $y \in x$.
2. $X=\omega$ with $x \prec y$ if x is a proper factor of y.
3. $X=\mathbb{Z}$ with $x \prec y$ if $\left\{\begin{array}{l}x, y \geq 0 \text { and } x<y, \text { or } \\ x, y<0 \text { and } x>y, \text { or } \\ x<0 \leq y\end{array}\right.$
4. $X=\mathbb{Z}$ with $x \prec y$ if $\left\{\begin{array}{l}x, y \geq 0 \text { and } x<y, \text { or } \\ x, y<0 \text { and } x>y, \text { or } \\ x<0 \leq y \text { and }|x|<|y| \\ y<0 \leq x \text { and }|x| \leq|y|\end{array}\right.$

Exercise: 9.7.2 (ECST $\left.{ }^{+}\right)$Let (A, R) be well-founded and $A \subseteq B$. Is (B, R) well-founded too?

Exercise: 9.7.3 (BCST) Let $(A,<)$ be a well-founded and let $f: A \rightarrow B$ be a surjection. Define a relation \prec on B as follows for $x, y \in B$:

$$
x \prec y: \Rightarrow u v \in A[u<v \wedge f(u)=x \wedge f(v)=y] .
$$

Show that (B, \prec) is well-founded.
Remark. Classically, we don't have to require that f be surjective.

Exercise: 9.7.4 (BCST + Set Induction) Show the rank-induction principle:

$$
\forall x[\forall y(\operatorname{rank}(y) \in \operatorname{rank}(x) \rightarrow \varphi(y)) \rightarrow \varphi(x)] \rightarrow \forall x \varphi(x) .
$$

Exercise: 9.7.5 (ECST + Set Induction) We define a relation \triangleleft on ordered pairs by

$$
\begin{aligned}
\langle c, d\rangle \triangleleft\langle a, b\rangle \quad \text { iff } & (c=a \wedge d \in \mathbf{T C}(b)) \vee(d=b \wedge c \in \mathbf{T C}(a)) \\
& \vee(c \in \mathbf{T C}(a) \wedge d \in \mathbf{T C}(b)) .
\end{aligned}
$$

Prove \triangleleft-induction, i.e., whenever

$$
\forall a, b[\forall x, y[\langle x, y\rangle \triangleleft\langle a, b\rangle \rightarrow \varphi(x, y)] \rightarrow \varphi(a, b)]
$$

then $\forall a \forall b \varphi(a, b)$.
Hint: Use main induction on $\operatorname{rank}(a)$ and a subsidiary induction on $\operatorname{rank}(b)$.
Exercise: 9.7.6 (BCST + Set Induction) (Definition by \triangleleft-Recursion.): If G is a total $(n+3)$-ary class function, i.e.

$$
\forall \vec{x} u v z \exists!u G(\vec{x}, u, v, z)=u
$$

then there is a total $(n+2)$-ary class function F such that for all \vec{x}, a, b,

$$
F(\vec{x}, a, b)=G(\vec{x}, a, b,\{\langle u, v, F(\vec{x}, u, v)\rangle \mid\langle u, v\rangle \triangleleft\langle a, b\rangle\}) .
$$

Exercise: 9.7.7 Show that we cannot prove in CZF that for all ordinals α, $0 \in \alpha+1$. Where does the induction break down? (Hint: Show that CZF \vdash $\forall \alpha(0 \in \alpha+1) \rightarrow \Delta_{0}-E M$, where Δ_{0}-EM stands for the law of excluded middle for Δ_{0} formulae.)

Exercise: 9.7.8 (BCST + Set Induction) Similarly as in classical set theory, but using case-less definitions, we define the operations of addition, multiplication and exponentiation on ordinals:

$$
\begin{aligned}
\alpha+\beta & =\alpha \cup\{\alpha+\delta \mid \delta \in \beta\} \\
\alpha \cdot \beta & =\{\alpha \cdot \delta+\gamma \mid \gamma \in \alpha, \delta \in \beta\} \\
\alpha^{\beta} & =1 \cup\left\{\alpha^{\delta} \cdot \gamma+\eta \mid \gamma \in \alpha, \delta \in \beta, \eta \in \alpha^{\delta}\right\}
\end{aligned}
$$

Investigate whether any of the following laws can be proved in $(\mathbf{B C S T}+$ Set Induction) (writing $<$ for \in):

1. $\beta<\gamma \rightarrow \alpha+\beta<\alpha+\gamma$.
2. $(\alpha+\beta)+\gamma=\alpha+(\beta+\gamma)$.
3. $(\alpha \cdot \beta) \cdot \gamma=\alpha \cdot(\beta \cdot \gamma)$.
4. $\alpha \cdot(\beta+\gamma)=(\alpha \cdot \beta)+(\alpha \cdot \gamma)$.
5. $\alpha^{\beta+\gamma}=\alpha^{\beta} \cdot \alpha^{\gamma}$.
6. $\left(\alpha^{\beta}\right)^{\gamma}=\alpha^{\beta \cdot \gamma}$.

Chapter 10

Choice Principles

The axiom of choice does not have an unambiguous status in constructive mathematics. On the one hand it is said to be an immediate consequence of the constructive interpretation of the quantifiers. Any proof of $\forall x \in a \exists y \in b \phi(x, y)$ must yield a function $f: a \rightarrow b$ such that $\forall x \in a \phi(x, f(x))$. This is certainly the case in Martin-Löf's intuitionistic theory of types. On the other hand, from the very earliest days, the axiom of choice has been criticised as an excessively non-constructive principle even for classical set theory. Moreover, it has been observed that the full axiom of choice cannot be added to systems of constructive set theory without yielding constructively unacceptable cases of excluded middle (see [21] and Proposition 10.1.3). Therefore one is naturally led to the question: Which choice principles are acceptable in constructive set theory? As constructive set theory has a canonical interpretation in Martin-Löf's intuitionistic theory of types this interpretation lends itself to being a criterion for constructiveness. We will consider set-theoretic choice principles as constructively justified if they can be shown to hold in the interpretation in type theory. Moreover, looking at constructive set theory from a type-theoretic point of view has turned out to be valuable heuristic tool for finding new constructive choice principles.

In this section we will study differing choice principles and their deductive relationships. To set the stage we present Diaconescu's result that the full axiom of choice implies certain forms of excluded middle.

10.1 Diaconescu's result

Restricted Excluded Middle, REM, is the schema $\phi \vee \neg \phi$ where ϕ is a restricted formula.

Recall that $\mathcal{P}(x):=\{u: u \subseteq x\}$, and Powerset is the axiom $\forall x \exists y y=\mathcal{P}(x)$.

Proposition: 10.1.1 (i) ECST + Exponentiation + REM \vdash Powerset.
(ii) The strength of ECST + Exponentiation + REM exceeds that of classical type theory with extensionality.

Proof: (i): Set $\mathbf{0}:=\emptyset, \mathbf{1}:=\{\mathbf{0}\}$, and $\mathbf{2}:=\{\mathbf{0},\{\mathbf{0}\}\}$.
Suppose $u \subseteq \mathbf{1}$. On account of REM we have $\mathbf{0} \in u \vee \mathbf{0} \notin u$. Thus $u=\mathbf{1} \vee u=$ $\mathbf{0}$; and hence $u \in \mathbf{2}$. This shows that $\mathcal{P}(\mathbf{1}) \subseteq \mathbf{2}$. As a result, $\mathcal{P}(\mathbf{1})=\{u \in \mathbf{2}: u \subseteq$ $\mathbf{1}\}$, and thus $\mathcal{P}(\mathbf{1})$ is a set by Restricted Separation.

Now let x be an arbitrary set, and put $b:={ }^{x}(\mathcal{P}(\mathbf{1}))$. Exponentiation ensures that b is a set. For $v \subseteq x$ define $f_{v} \in b$ by

$$
f_{v}(z):=\{y \in 1: z \in v\}
$$

and put

$$
c:=\{\{z \in x: g(z)=\mathbf{1}\}: g \in b\} .
$$

c is a set by Replacement. Observe that $\forall w \in c(w \subseteq x)$. For $v \subseteq x$ it holds $v=\left\{z \in x: f_{v}(z)=\mathbf{1}\right\}$, and therefore $v \in c$. Consequently, $\mathcal{P}(x)=\{v \in c: v \subseteq$ $x\}=c$, thus $\mathcal{P}(x)$ is a set.
(ii): By means of ω many iterations of Powerset (starting with ω) we can build a model of intuitionistic type theory within ECST + Exponentiation + REM. The Gödel-Gentzen negative translation can be extended so as to provide an interpretation of classical type theory with extensionality in intuitionistic type theory (cf. [58]).

In particular, ECST + Exponentiation + REM is stronger than classical second order arithmetic (with full Comprehension).

Remark: 10.1.2 In actuality, it can be shown that ECST $+\operatorname{Exp}+$ REM is stronger than classical Zermelo Set Theory (see [75]).

The Axiom of Choice, AC, asserts that for all sets A and functions F with domain A such that $\forall i \in A \exists y \in F(i)$ there exists a function f with domain A such that $\forall i \in A f(i) \in F(i)$.

Proposition: 10.1.3 (i) ECST + Exp + Full Separation + AC $=$ ZFC.
(ii) $\mathbf{E C S T}+\mathrm{AC} \vdash \mathrm{REM}$.
(iii) $\mathbf{E C S T}+\mathbf{E x p}+\mathbf{A C} \vdash$ Powerset.
(iv) The strength of $\mathbf{E C S T}+\mathbf{E x p}+\mathbf{A C}$ exceeds that of classical type theory with extensionality.

Proof: (i): Let ϕ be an arbitrary formula. Put

$$
\begin{aligned}
X & =\{n \in \omega: n=\mathbf{0} \vee[n=\mathbf{1} \wedge \phi]\}, \\
Y & =\{n \in \omega: n=\mathbf{1} \vee[n=\mathbf{0} \wedge \phi]\} .
\end{aligned}
$$

X and Y are sets by full Separation. We have

$$
\forall z \in\{X, Y\} \exists k \in \omega(k \in z) .
$$

Using AC, there is a choice function f defined on $\{X, Y\}$ such that

$$
\forall z \in\{X, Y\}[f(z) \in \omega \wedge f(z) \in z]
$$

in particular, $f(X) \in X$ and $f(Y) \in Y$. Next, we are going to exploit the important fact

$$
\begin{equation*}
\forall n, m \in \omega(n=m \vee n \neq m) \tag{10.1}
\end{equation*}
$$

As $\forall z \in\{X, Y\}[f(z) \in \omega]$, we obtain

$$
f(X)=f(Y) \vee f(X) \neq f(Y)
$$

by (10.1). If $f(X)=f(Y)$, then ϕ by definition of X and Y. So assume $f(X) \neq$ $f(Y)$. As ϕ implies $X=Y$ (this requires Extensionality) and thus $f(X)=f(Y)$, we must have $\neg \phi$. Consequently, $\phi \vee \neg \phi$. Thus (i) follows from the fact that $\mathbf{E C S T}+\mathbf{E x p}+\mathbf{E M}=\mathbf{Z F}$.
(ii): If ϕ is restricted, then X and Y are sets by Restricted Separation. The rest of the proof of (i) then goes through unchanged.
(iii) follows from (ii) and Proposition 10.1.1,(i).
(iv) follows from (ii) and Proposition 10.1.1,(ii).

10.2 Constructive Choice Principles

The weakest constructive choice principle we consider is the Axiom of Countable Choice, $\mathbf{A C}_{\omega}$, i.e. whenever F is a function with with domain ω such that $\forall i \in \omega \exists y \in F(i)$, then there exists a function f with domain ω such that $\forall i \in \omega f(i) \in F(i)$.

A mathematically very useful axiom to have in set theory is the Dependent Choices Axiom, DC, i.e., for all sets a and (set) relations $R \subseteq a \times a$, whenever

$$
(\forall x \in a)(\exists y \in a) x R y
$$

and $b_{0} \in a$, then there exists a function $f: \omega \rightarrow a$ such that $f(0)=b_{0}$ and

$$
(\forall n \in \omega) f(n) R f(n+1) .
$$

Even more useful in constructive set theory is the Relativized Dependent Choices Axiom, RDC. ${ }^{1}$ It asserts that for arbitrary formulae ϕ and ψ, whenever

$$
\forall x[\phi(x) \rightarrow \exists y(\phi(y) \wedge \psi(x, y))]
$$

and $\phi\left(b_{0}\right)$, then there exists a function f with domain ω such that $f(0)=b_{0}$ and

$$
(\forall n \in \omega)[\phi(f(n)) \wedge \psi(f(n), f(n+1))] .
$$

A restricted form of RDC where ϕ and ψ are required to be Δ_{0} will be called Δ_{0}-RDC.

The Bounded Relativized Dependent Choices Axiom, bRDC, is the following schema: For all Δ_{0}-formulae θ and ψ, whenever

$$
(\forall x \in a)[\theta(x) \rightarrow(\exists y \in a)(\theta(y) \wedge \psi(x, y)]
$$

and $b_{0} \in a \wedge \phi\left(b_{0}\right)$, then there exists a function $f: \omega \rightarrow a$ such that $f(0)=b_{0}$ and

$$
(\forall n \in \omega)[\theta(f(n)) \wedge \psi(f(n), f(n+1))] .
$$

Letting $\phi(x)$ stand for $x \in a \wedge \theta(x)$, one sees that $\mathbf{b R D C}$ is a consequence of Δ_{0}-RDC.

Here are some immediate consequences f DC.
Lemma: 10.2.1 (i) $(\mathbf{E C S T}+\mathbf{D C})$ If ψ is Δ_{0} and $(\forall x \in a)(\exists y \in a) \psi(x, y)$ and $b_{0} \in a$, then there exists a function $f: \omega \rightarrow a$ such that $f(0)=b_{0}$ and $(\forall n \in \omega) \psi(f(n), f(n+1))$.
(ii) $(\mathbf{E C S T}+\mathbf{D C})$ If ϕ is an arbitrary formula and $(\forall x \in a)(\exists!y \in a) \phi(x, y)$ and $b_{0} \in a$, then there exists a function $f: \omega \rightarrow a$ such that $f(0)=b_{0}$ and $(\forall n \in \omega) \phi(f(n), f(n+1))$.
(iii) (ECST + Strong Collection $+\mathbf{D C})$ If θ is an arbitrary formula and $(\forall x \in a)(\exists y \in a) \theta(x, y)$ and $b_{0} \in a$, then there exists a function $f: \omega \rightarrow a$ such that $f(0)=b_{0}$ and $(\forall n \in \omega) \theta(f(n), f(n+1))$.

Proof: (i): Put $R=\{\langle x, y\rangle \in a \times a \mid \psi(x, y)\}$.
(ii): $(\forall x \in a)(\exists!y \in a) \phi(x, y)$ implies that there exists a function $f: a \rightarrow a$ such that $\forall x \in a \psi(x, f(x))$. Now let $R=f$.
(iii): Assume $(\forall x \in a)(\exists y \in a) \theta(x, y)$ and $b_{0} \in a$. Then

$$
(\forall x \in a)(\exists z)[(\exists y \in a)(z=\langle x, y\rangle \wedge \theta(x, y))] .
$$

[^3]Using Strong Collection there exists a set S such that

$$
\begin{array}{r}
\quad(\forall x \in a)(\exists z \in S)(\exists y \in a)[z=\langle x, y\rangle \wedge \theta(x, y)] \\
(\forall z \in S)\left(\exists x^{\prime} \in a\right)\left(\exists y^{\prime} \in a\right)\left[z=\left\langle x^{\prime}, y^{\prime}\right\rangle \wedge \theta\left(x^{\prime}, y^{\prime}\right)\right] . \tag{10.2}
\end{array}
$$

In particular we have $(\forall x \in a)(\exists y \in a)\langle x, y\rangle \in S$. Employing DC there exists a function $f: \omega \rightarrow a$ such that $f(0)=b_{0}$ and $(\forall n \in \omega) f(n) S f(n+1)$. By (10.2) we get $(\forall n \in \omega) \theta(f(n), f(n+1))$.

Instead of using Strong Collection in Lemma 10.2.1 (iii) one can also use Collection in combination with RDC. This will be proved in Lemma 10.2.5 once we have shown that RDC implies induction on \mathbb{N}.

Proposition: 10.2.2 (ECST)

(i) $\mathbf{D C}$ implies $\mathbf{A C}_{\omega}$.
(ii) bRDC and DC are equivalent.
(iii) RDC implies DC.

Proof: (i): If z is an ordered pair $\langle x, y\rangle$ let $1^{\text {st }}(z)$ denote x and $2^{\text {nd }}(z)$ denote y.
Suppose F is a function with domain ω such that $\forall i \in \omega \exists x \in F(i)$. Let $A=$ $\{\langle i, u\rangle \mid i \in \omega \wedge u \in F(i)\} . A$ is a set by Union, Cartesian Product and restricted Separation. We then have

$$
\forall x \in A \exists y \in A x R y
$$

where $R=\left\{\langle x, y\rangle \in A \times A \mid 1^{\text {st }}(y)=1^{s t}(x)+1\right\}$. Pick $x_{0} \in F(0)$ and let $a_{0}=\left\langle 0, x_{0}\right\rangle$. Using DC there exists a function $g: \omega \rightarrow A$ satisfying $g(0)=a_{0}$ and

$$
\forall i \in \omega\left[g(i) \in A \wedge 1^{s t}(g(i+1))=1^{s t}(g(i))+1\right] .
$$

Letting f be defined on ω by $f(i)=2^{\text {nd }}(g(i))$ one gets $\forall i \in \omega f(i) \in F(i)$.
(ii) We argue in ECST $+\mathbf{D C}$ to show bRDC. Assume

$$
\forall x \in a[\phi(x) \rightarrow \exists y \in a(\phi(y) \wedge \psi(x, y))]
$$

and $\phi\left(b_{0}\right)$, where ϕ and ψ are Δ_{0}. Let $\theta(x, y)$ be the formula $\phi(x) \wedge \phi(y) \wedge \psi(x, y)$ and $A=\{x \in a \mid \phi(x)\}$. Then θ is Δ_{0} and A is a set by Δ_{0} Separation. From the assumptions we get $\forall x \in A \exists y \in A \theta(x, y)$ and $b_{0} \in A$. Thus, by Lemma 10.2.1(i), there is a function f with domain ω such that $f(0)=b_{0}$ and $\forall n \in \omega \theta(f(n), f(n+$ $1))$. Hence we get $\forall n \in \omega[\phi(n) \wedge \psi(f(n), f(n+1))]$.

The other direction is obvious.
(iii) is obvious.

RDC and induction on \mathbb{N}

It is worth noting that RDC and Δ_{0} - RDC entail induction principles on ω.
Lemma: 10.2.3 ECST $+\Delta_{0}-\operatorname{RDC} \vdash \Sigma_{1}-$ IND $_{\omega}$.
Proof: Suppose $\theta(0) \wedge(\forall n \in \omega)(\theta(n) \rightarrow \theta(n+1))$, where $\theta(n)$ is of the form $\exists x \phi(n, x)$ with $\phi \Delta_{0}$. We wish to prove $(\forall n \in \omega) \theta(n)$.

If z is an ordered pair $\langle x, y\rangle$ let $1^{\text {st }}(z)$ denote x and $2^{\text {nd }}(z)$ denote y. Since $\theta(0)$ there exists a set x_{0} such that $\phi\left(0, x_{0}\right)$. Put $a_{0}=\left\langle 0, x_{0}\right\rangle$.

From $(\forall n \in \omega)(\theta(n) \rightarrow \theta(n+1))$ we can conclude

$$
(\forall n \in \omega) \forall y[\phi(n, y) \rightarrow \exists w \phi(n+1, w)]
$$

and thus

$$
\forall z[\psi(z) \rightarrow \exists v(\psi(v) \wedge \chi(z, v))]
$$

where $\psi(z)$ stands for z is an ordered pair $\wedge 1^{\text {st }}(z) \in \omega \wedge \phi\left(1^{\text {st }}(z), 2^{\text {nd }}(z)\right)$ and $\chi(z, v)$ stands for $1^{s t}(v)=1^{s t}(z)+1$. Note that ψ and χ are Δ_{0}. We also have $\psi\left(a_{0}\right)$. Thus by Δ_{0}-RDC there exists a function $f: \omega \rightarrow V$ such that $f(0)=a_{0}$ and

$$
(\forall n \in \omega)[\psi(f(n)) \wedge \chi(f(n), f(n+1))] .
$$

From $\chi(f(n), f(n+1))$, using induction on ω, one easily deduces that $1^{s t}(f(n))=$ n for all $n \in \omega$. Hence from $(\forall n \in \omega) \psi(f(n))$ we get $(\forall n \in \omega) \exists x \phi(n, x)$ and so $(\forall n \in \omega) \theta(n)$.

Lemma: 10.2.4 ECST + RDC $\vdash \mathrm{IND}_{\omega}$.

Proof: Suppose $\theta(0) \wedge(\forall n \in \omega)(\theta(n) \rightarrow \theta(n+1))$. We wish to prove $(\forall n \in \omega) \theta(n)$. Let $\phi(x)$ and $\psi(x, y)$ be the formulas $x \in \omega \wedge \theta(x)$ and $y=x+1$, respectively. Then $\forall x[\phi(x) \rightarrow \exists y(\phi(y) \wedge \psi(x, y))]$ and $\phi(0)$. Hence, by RDC, there exists a function f with domain ω such that $f(0)=0$ and $\forall n \in \omega[\phi(f(n)) \wedge \psi(f(n), f(n+1))]$. Let $a=\{n \in \omega: f(n)=n\}$. Using induction on ω one easily verifies that $\omega \subseteq a$, and hence $f(n)=n$ for all $n \in \omega$. Hence, $\phi(n)$ for all $n \in \omega$, and thus $(\forall n \in \omega) \theta(n)$.

With the help of the previous result, we can now show that RDC plus Collection implies a strong closure principle.

Proposition: 10.2.5 (ECST + RDC + Collection)
Suppose that $\forall x \exists y \phi(x, y)$. Then for every set d there exists a transitive set A such that $d \in A$ and

$$
\forall x \in A \exists y \in A \phi(x, y) .
$$

Moreover, for every set d there exists a transitive set A and a function $f: \omega \rightarrow A$ such that $f(0)=d$ and $\forall n \in \omega \phi(f(n), f(n+1))$.

Proof: The assumption yields that $\forall x \in b \exists y \phi(x, y)$ holds for every set b. Since RDC implies the existence of the transitive closure of any set by Lemma 10.2.4 and Lemma 6.5.4, using Collection we get

$$
\forall b \exists c[\theta(b, c) \wedge \operatorname{Tran}(c)],
$$

where $\theta(b, c)$ is the formula $\forall x \in b \exists y \in c \phi(x, y)$. Let B be a transitive set containing d. Employing RDC there exists a function g with domain ω such that $g(0)=B$ and $\forall n \in \omega \theta(g(n), g(n+1))$. Obviously $A=\bigcup_{n \in \omega} g(n)$ satisfies our requirements.

The existence of the function f follows from the latter since RDC entails DC.

10.3 The Presentation Axiom

The Presentation Axiom, PAx, is an example of a choice principle which is validated upon interpretation in type theory. In category theory it is also known as the existence of enough projective sets, EPsets (cf. [12]). In a category \mathbb{C}, an object P in \mathbb{C} is projective (in \mathbb{C}) if for all objects A, B in \mathbb{C}, and morphisms $A \xrightarrow{f} B, P \xrightarrow{g} B$ with f an epimorphism, there exists a morphism $P \xrightarrow{h} A$ such that the following diagram commutes

It easily follows that in the category of sets, a set P is projective if for any P-indexed family $\left(X_{a}\right)_{a \in P}$ of inhabited sets X_{a}, there exists a function f with domain P such that, for all $a \in P, f(a) \in X_{a}$.

PAx (or EPsets), is the statement that every set is the surjective image of a projective set.

A set B is a base if every relation R with domain B extends a function with domain B. A presentation of a set A is a function with range A whose domain is a base.

Using the above terminology, PAx expresses that every set has a presentation and $\mathbf{A C}_{\omega}$ expresses that ω is a base whereas $\mathbf{A C}$ amounts to saying that every set is a base.

Proposition: 10.3.1 (ECST) PAx implies DC.

Proof: Assume $(\forall x \in A)(\exists y \in A) x R y$ and $b_{0} \in A$ for some set A and (set) relation R. By PAx there exists a base B and a function $h: B \rightarrow A$ such that A is the range of h. As a result,

$$
\forall u \in B \exists v \in B h(u) R h(v) .
$$

Since B is a base there exists a function $g: B \rightarrow B$ such that

$$
\forall u \in B h(u) R h(g(u)) .
$$

Pick $u_{0} \in B$ such that $h\left(u_{0}\right)=b_{0}$. Now define $f^{\prime}: \omega \rightarrow B$ by $f^{\prime}(0)=u_{0}$ and $f^{\prime}(n+1)=g\left(f^{\prime}(n)\right)$. By induction on ω one easily verifies

$$
\forall n \in \omega h\left(f^{\prime}(n)\right) R h\left(f^{\prime}(n+1)\right) .
$$

Thus, letting $f(n)=h\left(f^{\prime}(n)\right)$ one obtains a function $f: \omega \rightarrow A$ satisfying $f(0)=b_{0}$ and $\forall n \in \omega f(n) R f(n+1)$.

Proposition: 10.3.2 (ECST + Exp) PAx implies Fullness.

Proof: Let C, D be sets. On account of PAx, we can pick a base B and a surjection $h: B \rightarrow C$. Let $E=\left\{S: \exists f \in{ }^{B} D S=\{\langle h(u), f(u)\rangle: u \in B\}\right\}$. E is a set owing to Exponentiation, Replacement, and Δ_{0} Separation. Also $E \subseteq m v(C, D)$. Let $R \in m v(C, D)$. Then $\forall u \in B \exists y \in D\langle h(u), y\rangle \in R$. Since B is a base there exists a function $f: B \rightarrow D$ such that $\forall u \in B\langle h(u), f(u)\rangle \in R$. Putting $S=\{\langle h(u), f(u)\rangle: u \in B\}$ one easily verifies $S \subseteq R$ and $S \in E$, ascertaining that E is full in $m v(C, D)$.

Corollary: 10.3.3 ECST + Exponentiation $+\mathbf{P A x}+$ Strong Collection proves Subset Collection.

Proof: This follows from the previous Proposition and Proposition 5.1.2.

10.4 More Principles that ought to be avoided in CZF

In the previous section we saw that the unrestricted Axiom of Choice implies undesirable form of excluded middle. There are several other well known principles provable in classical set theory which also imply versions of excluded middle. Among them are the Foundation Axiom and Linearity of Ordinals.

Foundation Schema: $\exists x \phi(x) \rightarrow \exists x[\phi(x) \wedge \forall y \in x \neg \phi(y)]$ for all formulae ϕ.
Foundation Axiom: $\forall x[\exists y(y \in x) \rightarrow \exists y(y \in x \wedge \forall z \in y z \notin x)]$.
Linearity of Ordinals We shall conceive of ordinals as transitive sets whose elements are transitive too.

Let Linearity of Ordinals be the statement formalizing that for any two ordinals α and β the following trichotomy holds: $\alpha \in \beta \vee \alpha=\beta \vee \beta \in \alpha$.

Proposition: 10.4.1 (i) CZF + Foundation Schema $=\mathbf{Z F}$.
(ii) $\mathbf{C Z F}+$ Separation + Foundation Axiom $=\mathbf{Z F}$.
(iii) $\mathbf{C Z F}+$ Foundation Axiom \vdash REM.
(iv) $\mathbf{C Z F}+$ Foundation Axiom \vdash Powerset.
(v) The strength of CZF + Foundation Axiom exceeds that of classical type theory with extensionality.

Proof: (i): For an arbitrary formula ϕ, consider

$$
S_{\phi}:=\{x \in \omega: x=\mathbf{1} \vee[x=\mathbf{0} \wedge \phi]\} .
$$

We have $\mathbf{1} \in S_{\phi}$. By the Foundation Schema, there exists $x_{0} \in S_{\phi}$ such that $\forall y \in x_{0} y \notin S_{\phi}$. By definition of S_{ϕ}, we then have

$$
x_{0}=\mathbf{1} \vee\left[x_{0}=\mathbf{0} \wedge \phi\right] .
$$

If $x_{0}=\mathbf{1}$, then $\mathbf{0} \notin S_{\phi}$, and hence $\neg \phi$. Otherwise we have $x_{0}=\mathbf{0} \wedge \phi$; thus ϕ.
So we have shown EM, from which (i) ensues.
(ii): With full Separation S_{ϕ} is a set, and therefore the Foundation Axiom suffices for the previous proof.
(iii): For restricted ϕ, S_{ϕ} is a set be Restricted Separation, and thus $\phi \vee \neg \phi$ follows as in the proof of (i).
(iv) follows from (iii) and Proposition 10.1.1,(i).
(v) follows from (iii) and Proposition 10.1.1,(ii).

Proposition: 10.4.2 (i) CZF + "Linearity of Ordinals" \vdash Powerset.
(ii) CZF + "Linearity of Ordinals" \vdash REM.
(iii) CZF + "Linearity of Ordinals" + Separation $=\mathbf{Z F}$.

Proof: (i): Note that $\mathbf{1}$ is an ordinal. If $u \subseteq \mathbf{1}$, then u is also an ordinal because of $\forall z \in u z=\mathbf{0}$. Furthermore, one readily shows that $\mathbf{2}$ is an ordinal. Thus, by Linearity of Ordinals,

$$
\forall u \subseteq \mathbf{1}[u \in \mathbf{2} \vee u=\mathbf{2} \vee \mathbf{2} \in u]
$$

The latter, however, condenses to $\forall u \subseteq \mathbf{1}[u \in \mathbf{2}]$. As a consequence we have,

$$
\mathcal{P}(\mathbf{1})=\{u \in \mathbf{2}: u \subseteq \mathbf{1}\},
$$

and thus $\mathcal{P}(\mathbf{1})$ is a set. Whence, proceeding onwards as in the proof of Proposition 10.1.1,(i), we get Powerset.
(ii): Let ϕ be restricted. Put

$$
\alpha:=\{n \in \omega: n=\mathbf{0} \wedge \phi\} .
$$

α is a set by Restricted Separation, and α is an ordinal as $\alpha \subseteq 1$. Now, by Linearity of Ordinals, we get

$$
\alpha \in 1 \vee \alpha=1 .
$$

In the first case, we obtain $\alpha=\mathbf{0}$, which implies $\neg \phi$ by definition of α. If $\alpha=\mathbf{1}$, then ϕ. Therefore, $\phi \vee \neg \phi$.
(iii): Here $\alpha:=\{n \in \omega: n=0 \wedge \phi\}$ is a set by Separation. Thus the remainder of the proof of (ii) provides $\phi \vee \neg \phi$.

10.5 Appendix: The Axiom of Multiple Choice

Here we work in ECST. Mention predicative topoi
Definition: 10.5.1 If X is a set let $\operatorname{mv}(X)$ be the class of sets R of ordered pairs such that $X=\{x \mid \exists y(x, y) \in R\}$. A set C covers $R \in \operatorname{mv}(X)$ if

$$
\forall x \in X \exists y \in C[(x, y) \in R] \& \forall y \in C \exists x \in X[(x, y) \in R]
$$

A class \mathcal{Y} is a cover base for a set X if every $R \in \operatorname{mv}(X)$ is covered by an image of a set in \mathcal{Y}. If \mathcal{Y} is a set then it is a small cover base for X.

Proposition: 10.5.2 (ECST) \mathcal{Y} is a cover base for X iff for every epi $Z \rightarrow X$ there is an epi $Y \rightarrow X$, with $Y \in \mathcal{Y}$, that factors through $Z \rightarrow X$.

Proof: Let \mathcal{Y} be a cover base for X and let $f: Z \rightarrow X$ be epi. Then $R=$ $\{(x, z) \mid x=f(z)\} \in \operatorname{mv}(X)$ so that there is $g: Y \rightarrow Z$, with $Y \in \mathcal{Y}$, such that $\operatorname{ran}(g)$ covers R. It follows that $f \circ g: Y \rightarrow X$ is epi.

Conversely, suppose that for every epi $f: Z \rightarrow X$ there is $g: Y \rightarrow Z$, with $Y \in \mathcal{Y}$, such that $f \circ g: Y \rightarrow X$, is epi. If $R \in \operatorname{mv}(X)$ let $f: R \rightarrow X$ and $h: R \rightarrow \boldsymbol{r a n}(R)$ be the two projections on R; i.e. for $(x, z) \in R, f(x, z)=x$ and $h(x, z)=z$. Then f is epi so that there is $g: Y \rightarrow R$, with $Y \in \mathcal{Y}$, such that $f \circ g: Y \rightarrow X$ is epi. It follows that $\operatorname{ran}(h \circ g)$ covers R. As this is an image of $Y \in \mathcal{Y}$ we have shown that \mathcal{Y} is a cover base for X.

Definition: 10.5.3 A weak base is a set that has a small cover base.
Definition: 10.5.4 \mathcal{Y} is a (small) collection family if it is a (small) cover base for each of its elements.

Definition: 10.5.5

Weak Presentation Axiom (wPAx) Every set is a weak base.
Axiom of Multiple Choice (AMC) Every set is in some small collection family.

H-axiom For every set A there is a smallest set $H(A)$ such that if $a \in A$ and $f: a \rightarrow H(A)$ then $\operatorname{ran}(f) \in H(A)$.

Proposition: 10.5.6 (ECST)Any cover base for X is also a cover base for any image of X.

Proof: Let \mathcal{Y} be a cover base for the set X and let $q: X \rightarrow X^{\prime}$ be epi. Given an epi $e^{\prime}: Z^{\prime} \rightarrow X^{\prime}$ let $Z=\left\{\left(x, z^{\prime}\right) \in X \times Z^{\prime} \mid q(x)=e^{\prime}\left(z^{\prime}\right)\right\}$. It's projections $e: Z \rightarrow X$ and $q^{\prime}: Z \rightarrow Z^{\prime}$ are both epis. So there is $f: Y \rightarrow Z$, with $Y \in \mathcal{Y}$, such that $e \circ f: Y \rightarrow Z \rightarrow X$ is also epi. It follows that $q^{\prime} \circ f: Y \rightarrow Z^{\prime}$ and $e^{\prime} \circ\left(q^{\prime} \circ f\right): Y \rightarrow Z^{\prime} \rightarrow X^{\prime}$ is epi, as $e^{\prime} \circ\left(q^{\prime} \circ f\right)=q \circ(e \circ f)$ and $q \circ(e \circ f)$ is epi. So \mathcal{Y} is a cover base for X^{\prime}.

Mention CZF + AMC \nvdash AC $_{\omega}$
Theorem: 10.5.7 (ECST)

1. $\mathrm{PAx} \Rightarrow \mathrm{AMC}$
2. $\mathrm{AMC} \Rightarrow \mathrm{wPAx}$
3. wPAx + Exponentiation \Rightarrow Subset Collection
4. AMC $+H$-axiom \Rightarrow REA
5. Collection $+\mathbf{R D C}+\mathbf{w P A x} \Rightarrow \mathbf{A M C}$

Proof:

1. Observe that for any base set B the set $\{B\}$ is a collection family, for if $Z \rightarrow B$ is epi then the identity function $B \rightarrow B$ is an epi that factorises through $Z \rightarrow B$. Assume PAx and let A be a set. By PAx there is a base set B so that A is an image of B. By Proposition 10.5.6 $\{B, A\}$ is a collection family.
2. If $A \in \mathcal{Y}$, where \mathcal{Y} is a small collection family, then \mathcal{Y} is a cover base for A so that A is a weak base.
3. To prove Subset Collection, given sets A, B we want a set C of subsets of B such that every $R \in \operatorname{mv}\left({ }^{A} B\right)$ is covered by some set in C. By wPAx choose a small cover base \mathcal{Y} for A and let

$$
C=\bigcup_{Y \in \mathcal{Y}}\left\{\operatorname{ran}(g) \mid g \in{ }^{Y} B\right\} .
$$

This is a set by Exponentiation and Union-Replacement.
4. It suffices to show that if \mathcal{Y} is a collection family then $H(\mathcal{Y})$ is a regular class. So let $b \in H(\mathcal{Y})$ and $R \in \operatorname{mv}\left({ }^{b} H(\mathcal{Y})\right)$. Choose $a \in \mathcal{Y}$ and $f: a \rightarrow b$. Then $S \in \operatorname{mv}(a)$ where

$$
S=\{(x, y) \in a \times H(\mathcal{Y}) \mid(f(x), y) \in R\}
$$

so that there is $a^{\prime} \in \mathcal{Y}$ and $g: a^{\prime} \rightarrow H(\mathcal{Y})$ such that $\operatorname{ran}(g)$ covers S. It follows that $\operatorname{ran}(g)$ also covers R. As $\operatorname{ran}(g) \in H(\mathcal{Y})$ we are done.
5. Given any set \mathcal{Y}, by wPAx,

$$
(\forall X \in \mathcal{Y})\left(\exists \mathcal{Y}^{\prime}\right)\left[\mathcal{Y}^{\prime} \text { is a cover base for } X\right] .
$$

By Collection there is a set \mathcal{U} such that

$$
(\forall X \in \mathcal{Y})\left(\exists \mathcal{Y}^{\prime} \in \mathcal{U}\right)\left[\mathcal{Y}^{\prime} \text { is a cover base for } X\right] .
$$

If $\mathcal{Y}^{\prime}=\bigcup \mathcal{U}$ then $\left(\mathcal{Y}, \mathcal{Y}^{\prime}\right) \in S$ where S is the class of all $\left(\mathcal{Y}, \mathcal{Y}^{\prime}\right)$ such that $\forall X \in \mathcal{Y}\left[\mathcal{Y}^{\prime}\right.$ is a cover base for $\left.X\right]$. Thus

$$
\forall \mathcal{Y} \exists \mathcal{Y}^{\prime}\left(\mathcal{Y}, \mathcal{Y}^{\prime}\right) \in S
$$

By RDC, for any set A there is a sequence $\left\{\mathcal{Y}_{n}\right\}_{n \in \mathbb{N}}$ such that $\mathcal{Y}_{0}=\{A\}$ and $\left(\mathcal{Y}_{n}, \mathcal{Y}_{n+1}\right) \in S$ for all $n \in \mathbb{N}$. Now let $\mathcal{Y}=\bigcup_{n \in \mathbb{N}} \mathcal{Y}_{n}$. Then $A \in \mathcal{Y}$ and it is easy to check that \mathcal{Y} is a collection family.

Does ECST + AMC \vdash The Dedekind reals form a set?

Chapter 11

The Regular Extension Axiom and its Variants

11.1 Axioms and variants

The first large set axiom proposed in the context of constructive set theory was the Regular Extension Axiom, REA, which was introduced to accommodate inductive definitions in CZF (cf. [1], [3]).

Definition: 11.1.1 A set C is said to be regular if it is transitive, inhabited (i.e. $\exists u u \in C$) and for any $u \in C$ and $R \in \boldsymbol{m v}\left({ }^{u} C\right)$ there exists a set $v \in C$ such that

$$
\forall x \in u \exists y \in v\langle x, y\rangle \in R \wedge \forall y \in v \exists x \in u\langle x, y\rangle \in R .
$$

We write $\boldsymbol{\operatorname { R e g }}(C)$ to express that C is regular.
REA is the principle

$$
\forall x \exists y(x \subseteq y \wedge \operatorname{Reg}(y)) .
$$

Definition: 11.1.2 There are interesting weaker notions of regularity.
A transitive inhabited set C is weakly regular if for any $u \in C$ and $R \in$ $\boldsymbol{m v}\left({ }^{u} C\right)$ there exists a set $v \in C$ such that

$$
\forall x \in u \exists y \in v\langle x, y\rangle \in R .
$$

We write $\mathbf{w} \boldsymbol{\operatorname { R e g }}(C)$ to express that C is weakly regular. The weakly Regular Extension Axiom (wREA) is as follows: Every set is a subset of a weakly regular set.

A transitive inhabited set C is functionally regular if for any $u \in C$ and function $f: u \rightarrow C, \operatorname{ran}(f) \in C$. We write $\mathbf{f R e g}(C)$ to express that C is functionally regular. The functional Regular Extension Axiom (fREA) is as follows: Every set is a subset of a functionally regular set.

There are also interesting notions of stronger regularity.
Definition: 11.1.3 A class A is said to be \bigcup-closed if for all $x \in A, \bigcup x \in A$.
A class A is said to be closed under Exponentiation (Exp-closed) if for all $x, y \in A,{ }^{x} y \in A$.

One is naturally led to consider strengthenings of the notion of a regular set, for instance that the set should also be \bigcup-closed and Exp-closed.

A transitive inhabited set C is said to be \bigcup-regular if C is regular and \bigcup-closed. The \bigcup-Regular Extension Axiom (\cup REA) is as follows:

Every set is a subset of a \bigcup-regular set.
A transitive inhabited set C is said to be strongly regular if C is regular, U-closed and Exp-closed. The Strong Regular Extension Axiom (sREA) is as follows:

Every set is a subset of a strongly regular set.
Lemma: 11.1.4 (ECST) If A is regular then A is weakly regular and functionally regular.

Proof: Obvious.

Lemma: 11.1.5 (ECST) Let A be functionally regular and $\mathbf{2} \in A$. Then, A is closed under Pairing, that is $\forall x, y \in A\{x, y\} \in A$. Moreover, if $b \in A$ and $f: b \rightarrow A$, then $f \in A$.

Proof: Given $x, y \in A$ define a function $g: \mathbf{2} \rightarrow A$ by $g(\mathbf{0})=x$ and $g(\mathbf{1})=y$. Then $\{x, y\}=\operatorname{ran}(g) \in A$.

Let $b \in A$ and $f: b \rightarrow A$. As A is closed under Pairing, we get $\langle x, f(x)\rangle \in A$ whenever $x \in b$. Therefore, the function $(x \mapsto\langle x, f(x)\rangle)$ maps b to A, and thus its range, which is the function f, is an element of A.

Corollary: 11.1.6 (ECST) fREA implies Exponentiation.
Proof: Given sets B, C, choose a functionally regular set A such that $B, C \in A$. Then ${ }^{B} C \subseteq A$ by Lemma 11.1.5, whence ${ }^{B} C$ is a set by Bounded Separation.

In ZF one can show that every well-founded set can be collapsed onto a transitive set, this principle is known as the axiom Beta.

Definition: 11.1.7 The axiom Beta asserts: for every well-founded set (A, R) there is a function f with domain A, satisfying:

$$
\begin{equation*}
f(x)=\{f(y) \mid y R x\}, \tag{11.1}
\end{equation*}
$$

for all $x \in A$. The function f is said to be collapsing for (A, R).

Remark: 11.1.8 Note that the uniqueness of a function satisfying (11.1) is an immediate consequence of the well-foundedness of the relation. Moreover, the image of the collapsing function is a transitive set. To see this, let $u \in a \in \operatorname{ran}(f)$. Then $a=f(x)$ for some $x \in A$, and, as f satisfies equation (11.1), we get $u=f(y)$ for some $y R x$. Thus $u \in \operatorname{ran}(f)$.

Beta is not provable in CZF alone, though, but it is provable with the help of fREA.

Proposition: 11.1.9 (ECST + fREA) Axiom Beta holds true.
Proof: Let (A, R) be a well-founded set and let R^{*} be the transitive closure of R whose existence can be proved in ECST + fREA by Lemma 6.5.2 and Corollary 11.1.6.

For $a \in A$, let $R_{a}^{*}=\left\{y \in A \mid y R^{*} a\right\}$. Choose a functionally regular set B such that $A, 2 \in B$ and for all $a \in A, R_{a}, R_{a}^{*} \cup\{a\} \in B$. Let \mathcal{F} be the set of all functions $f \in B$ with domain $R_{a}^{*} \cup\{a\}$ for some $a \in A$ such that whenever $x R^{*} a \vee x=a$, then $f(x)$ satisfies the equation (11.1). Note that \mathcal{F} is a set by Bounded Separation. The first fact to be noted about \mathcal{F} is that all the functions in \mathcal{F} are compatible, which is to say that if $x \in A$ and $x \in \operatorname{dom}(f) \cap \operatorname{dom}(g)$ for some $f, g \in \mathcal{F}$, then $f(x)=g(x)$. Formally one proves this by verifying that the set

$$
\{x \in A \mid \forall f, g \in \mathcal{F}[x \in \operatorname{dom}(f) \cap \operatorname{dom}(g) \rightarrow f(x)=g(x)]\}
$$

is R-inductive. As a result, $G=\bigcup \mathcal{F}$ is a function, too.
Next, we shall show that $\operatorname{dom}(G)$ is R-inductive. Let $a \in A$ and assume that $x \in \operatorname{dom}(G)$ for all $x R a$. By definition of \mathcal{F} this entails $x \in \operatorname{dom}(G)$ for all $x R^{*} a$. We define f by

$$
\begin{aligned}
t(a) & =\{G(y) \mid y R a\} \\
f & =\left\{(x, G(x)) \mid x R^{*} a\right\} \cup\{(a, t(a))\} .
\end{aligned}
$$

As $\neg a R^{*} a$ holds by Corollary 9.1.4, f is a function. The domain of f is $R_{a}^{*} \cup\{a\}$ and the equation (11.1) holds for all x in f 's domain. In order to be able to conclude that $a \in \operatorname{dom}(G)$ we need to show that $f \in B$. Since $x, G(x) \in B$ for all $x R^{*} a$ and B is closed under taking pairs (since $2 \in B$) we get $(x, G(x)) \in B$ for all $x R^{*} a$. As $R_{a} \in B$, the functional regularity of B yields $\{G(y) \mid y R a\} \in B$, whence $t(a) \in B$. Therefore we have $f: R_{a}^{*} \cup\{a\} \rightarrow B$. Since $R_{a}^{*} \cup\{a\} \in B$, it follows that $f \in B$ by Lemma 11.1.5. Consequently, $f \in \mathcal{F}$. Thus $a \in \operatorname{dom}(G)$ as $a \in \operatorname{dom}(f)$.

Having shown that $\operatorname{dom}(G)$ is R-inductive, we get $\operatorname{dom}(G)=A$. Therefore G is the function that collapses (A, R).

Proposition: 11.1.10 (ECST) REA implies Fullness.
Proof: Let A, B be sets. Using REA, there exists a regular set Z such that $\mathbf{2}, A, B, A \times(A \times B) \in Z$. Let $C=\left\{S \in Z \mid S \in \operatorname{mv}\left({ }^{A} B\right)\right\}$. S is a set by Δ_{0} Separation. We claim that C is full in $\boldsymbol{\operatorname { m v }}\left({ }^{A} B\right)$. To see this let $R \in \boldsymbol{m v}\left({ }^{A} B\right)$. Let

$$
R^{*}=\{\langle x,\langle x, y\rangle\rangle \mid x \in A \wedge\langle x, y\rangle \in R\} .
$$

$\mathbf{2} \in Z$ guarantees that Z is a model of Pairing and thus $R^{*} \in \mathbf{m v}\left({ }^{A} Z\right)$. Employing the regularity of Z there exists $S^{*} \in Z$ such that

$$
\forall x \in A \exists z \in S^{*}\left(\langle x, z\rangle \in R^{*}\right) \wedge \forall z \in S^{*} \exists x \in A\left(\langle x, z\rangle \in S^{*}\right)
$$

As a result, $S^{*} \subseteq R$ and $S^{*} \in \operatorname{mv}\left({ }^{A} B\right)$. Moreover, $S^{*} \in C$.

Corollary: 11.1.11 (ECST + Strong Collection) REA implies Subset Collection.

Proof: By Proposition 11.1.10 and Proposition 5.1.2.

Lemma: 11.1.12 (ECST + Strong Collection) Assume that A is a regular set, $b \in A$ and $\forall x \in b \exists y \in A \phi(x, y)$. Then there exists a set $c \in A$ such that

$$
\forall x \in b \exists y \in c \phi(x, y) \wedge \forall y \in c \exists x \in b \phi(x, y)
$$

Proof: $\forall x \in b \exists y \in A \phi(x, y)$ implies $\forall x \in b \exists z \psi(x, z)$, with $\psi(x, z)$ being the formula $\exists y \in A(\phi(x, y) \wedge z=\langle x, y\rangle)$. Using Strong Collection there exists a set R such that

$$
\forall x \in b \exists z \in R \psi(x, z) \wedge \forall z \in R \exists x \in b \psi(x, z) .
$$

Thus $R \in \operatorname{mv}\left({ }^{b} A\right)$. Owing to the regularity of A there exists a set $c \in A$ such that

$$
\forall x \in b \exists y \in c\langle x, y\rangle \in R \wedge \forall y \in c \exists x \in b\langle x, y\rangle \in R
$$

As a consequence we get $\forall x \in b \exists y \in c \phi(x, y) \wedge \forall y \in c \exists x \in b \phi(x, y)$.

Chapter 12

Inductive Definitions

In this chapter Strong Infinity will not play a role. We will let $\mathbf{C Z F}^{\prime}$ be $\mathbf{B C S T}+$ Set Induction + Strong Collection, or alternatively it is CZF without Strong Infinity and Subset Collection.

We will think of an inductive definition as a generalized notion of axiom system. We may characterize a (finitary) axiom system as follows. There are objects, which we will call the statements of the axiom system, and there are axioms and rules of inference. Each axiom is a statement and each rule of inference has instances that consist of finitely many premisses and a conclusion, both the premisses and conclusion being statements. So we may think of an instance of a rule of inference as an inference step X / a where X is the finite set of premisses and a is the conclusion. It is also convenient to think of each axiom a as such a step where the set X of premisses is empty. The theorems of an axiom system may be characterized as the smallest set of statements that include all the axioms and are closed under the rules of inference. Here, a set of statements is closed under a rule if, for each instance of the rule, if the premisses are in the set then so is the conclusion. If we let Φ be the set of steps determined by the axioms and the instances of the rules then we may characterize the set of theorems as the smallest set of statements such that for every step in Φ, if the premisses are in the set then so is the conclusion. Our generalization is to allow any objects to be statements and to start from an arbitrary class of steps, with each step having a set of premisses that need not be finite. So we are led to the following definitions.

12.1 Inductive Definitions of Classes

We define an inductive definition to be a class of ordered pairs. If Φ is an inductive definition and $(X, a) \in \Phi$ then we prefer to write $X / a \in \Phi$ and call X / a an (inference) step of Φ, with set X of premisses and conclusion a.

We associate with an inductive definition Φ the operator Γ on classes that assigns to each class Y the class $\Gamma(Y)$ of all conclusions a of inference steps X / a
of Φ, with set X of premisses that is a subset of Y. We define a class Y to be Φ-closed if $\Gamma(Y) \subseteq Y$.

The class inductively defined by Φ is the smallest Φ-closed class if this exists. The main result of this section states that indeed this class $I(\Phi)$ does always exists.

Theorem: 12.1.1 (Class Inductive Definition Theorem) ($\mathbf{C Z F}^{\prime}$) For any inductive definition Φ there is a smallest Φ-closed class $I(\Phi)$.

The Proof

The proof involves the iteration of the class operator Γ until it closes up at its least fixed point which turns out to be the required class $I(\Phi)$. Note that Γ is monotone; i.e. for classes Y_{1}, Y_{2}

$$
Y_{1} \subseteq Y_{2} \Rightarrow \Gamma\left(Y_{1}\right) \subseteq \Gamma\left(Y_{2}\right) .
$$

As an inductive definition need not be finitary; i.e. it can have steps with infinitely many premisses, we will need transfinite iterations of Γ in general. In classical set theory it is customary to use ordinal numbers to index iterations. Here it is unnecessary to develop a theory of ordinal numbers and we simply use sets to index iterations. This is not a problem as we can carry out proofs by set induction. The following result gives us the iterations we want. Call a class J of ordered pairs an iteration class for Φ if for each set a,

$$
J^{a}=\Gamma\left(J^{\in a}\right)
$$

where $J^{a}=\{x \mid(a, x) \in J\}$ and $J^{\in a}=\bigcup_{x \in a} J^{x}$.
Lemma: 12.1.2 ($\left.\mathbf{C Z F}^{\prime}\right)$ Every inductive definition has an iteration class.
Proof: Call a set G of ordered pairs good if

$$
\begin{equation*}
(a, y) \in G \Rightarrow y \in \Gamma\left(G^{\in a}\right) \tag{*}
\end{equation*}
$$

where

$$
G^{\in a}=\left\{y^{\prime} \mid \exists x \in a\left(x, y^{\prime}\right) \in G\right\},
$$

Let $J=\bigcup\{G \mid G$ is good $\}$. We must show that for each a

$$
J^{a}=\Gamma\left(J^{\in a}\right) .
$$

First, let $y \in J^{a}$. Then $(a, y) \in G$ for some good set G and hence by (*), above, $y \in \Gamma\left(G^{\in a}\right)$. As $G^{\in a} \subseteq J^{\in a}$ it follows that $y \in \Gamma\left(J^{\in a}\right)$. Thus $J^{a} \subseteq \Gamma\left(J^{\in a}\right)$.

For the converse inclusion let $y \in \Gamma\left(J^{\in a}\right)$. Then $Y / y \in \Phi$ for some set $Y \subseteq J^{\in a}$. It follows that $\forall y^{\prime} \in Y \exists x \in a y^{\prime} \in J^{x}$ so that

$$
\forall y^{\prime} \in Y \exists G\left[G \text { is good and } y^{\prime} \in G^{\in a}\right] .
$$

By Strong Collection there is a set Z of good sets such that

$$
\forall y^{\prime} \in Y \exists G \in Z \quad y^{\prime} \in G^{\in a} .
$$

Let $G=\{(a, y)\} \cup \bigcup Z$. Then $\bigcup Z$ is good and, as $Y / y \in \Phi$ and $Y \subseteq G^{\in a}, G$ is good. As $(a, y) \in G$ we get that $y \in J^{a}$. Thus $\Gamma\left(J^{\in a}\right) \subseteq J^{a}$.

Proof of the theorem: It only remains to show that

$$
J^{\infty}=\bigcup_{a \in V} J^{a}
$$

is the smallest Φ-closed class. To show that J^{∞} is Φ-closed let $Y / y \in \Phi$ for some set $Y \subseteq J^{\infty}$. Then $\forall y^{\prime} \in Y \exists x y^{\prime} \in J^{x}$. So, by Collection, there is a set a such that

$$
\forall y^{\prime} \in Y \exists x \in a y^{\prime} \in J^{x} ;
$$

i.e. $Y \subseteq J^{\in a}$. Hence $y \in \Gamma\left(J^{\not a a}\right)=J^{a} \subseteq J^{\infty}$. Thus J^{∞} is Φ-closed.

Now let I be a Φ-closed class. We show that $J^{\infty} \subseteq I$. It suffices to show that $J^{a} \subseteq I$ for all a. We do this by Set Induction on a. So we may assume, as induction hypothesis, that $J^{x} \subseteq I$ for all $x \in a$. It follows that $J^{\in a} \subseteq I$ and hence

$$
J^{a}=\Gamma\left(J^{\in a}\right) \subseteq \Gamma(I) \subseteq I,
$$

the inclusions holding because Γ is monotone and I is Φ-closed.

Examples

Let A be a class.

1. $H(A)$ is the smallest class X such that for each set a that is an image of a set in A

$$
a \in \operatorname{Pow}(X) \Rightarrow a \in X
$$

Note that $H(A)=I(\Phi)$ where Φ is the class of all pairs (a, a) such that a is an image of a set in A.
2. If R is a subclass of $A \times A$ such that $R_{a}=\{x \mid x R a\}$ is a set for each $a \in A$ then $W f(A, R)$ is the smallest subclass X of A such that

$$
\forall a \in A\left[R_{a} \subseteq X \Rightarrow a \in X\right]
$$

Note that $W f(A, R)=I(\Phi)$ where Φ is the class of all pairs $\left(R_{a}, a\right)$ such that $a \in A$.
3. If B_{a} is a set for each $a \in A$ then $W_{a \in A} B_{a}$ is the smallest class X such that

$$
a \in A \& f: B_{a} \rightarrow X \Rightarrow(a, f) \in X
$$

Note that $W_{x \in A} B_{a}=I(\Phi)$ where Φ is the class of all pairs $(\operatorname{ran}(f),(a, f))$ such that $a \in A$ and $f: B_{a} \rightarrow V$.

Call an inductive definition Φ local if $\Gamma(X)$ is a set for all sets X. For a local inductive definition Lemma 12.1.2 can be improved without any need to use Strong Collection. Note that if Φ is a set then Φ is local, so that the above examples $H(A), W f(A, R)$ and $W_{x \in A} B_{a}$ of inductive definitions are all local when A is a set.

Lemma: 12.1.3 (ECST + Set Induction) A local inductive definition has an iteration class J such that J^{a} and $J^{\in a}$ are sets for each set a.

Proof: Given a local inductive definition Φ we can apply Proposition 9.3.3 to define by transfinite set recursion $F: V \rightarrow V$ such that, for each set a,

$$
F(a)=\Gamma\left(\bigcup_{x \in a} F(x)\right) .
$$

Then $J=\{(a, x) \mid a \in V \& x \in F(a)\}$ is the desired iteration class.
Note that as before we can define $J^{\infty}=\bigcup_{a \in V} J^{a}$ and show, using Collection that it is the smallest Φ-closed class $I(\Phi)$, and Strong Collection has been avoided. So only Collection is needed to prove the theorem for local inductive definitions.

12.2 Inductive definitions of Sets

We define a class B to be a bound for Φ if whenever $X / a \in \Phi$ then X is an image of a set $b \in B$; i.e. there is a function from b onto X. We define Φ to be bounded if

1. $\{y \mid X / y \in \Phi\}$ is a set for all sets X,
2. Φ has a bound that is a set.

Note that if Φ is a set then it is bounded.
Proposition: 12.2.1 (ECST $\left.{ }^{\prime}+\mathbf{E X P}\right)$ Every bounded inductive definition Φ is local; i.e. $\Gamma(X)$ is a set for each set X.

Proof: Let B be a bound for Φ. If $Y / y \in \Phi$ then for some $b \in B$ there is a surjective $f: b \rightarrow Y$. So if X is a set then

$$
\Gamma(X)=\bigcup_{f \in C}\{y \mid \operatorname{ran}(f) / y \in \Phi\}
$$

where $C=\bigcup_{b \in B}{ }^{b} X$. By Exponentiation and Union-Replacement C is a set. As Φ is bounded $\{y \mid \operatorname{ran}(f) / y \in \Phi\}$ is always a set, so that, by Union-Replacement $\Gamma(X)$ is a set.

The following result does not seem to need any form of Collection.
Theorem: 12.2.2 (ECST ${ }^{\prime}+$ Set Induction) If Φ is a bounded local inductive definition, with a weakly regular set bound, then there is a smallest Φ-closed class $I(\Phi)$ which is a set.
Proof: Let A be a weakly regular bound for Φ. Then, as Φ is local, we may apply Lemma 12.1 .3 to get that $J^{\in A}$ is a set, where J is the iteration class for Φ. As $J^{\in A} \subseteq Y$ for any Φ-closed class Y it suffices to show that $J^{\in A}$ is Φ-closed.

So let $X / x \in \Phi$ with X a subset of $J^{\in A}$. Then, as A is a bound for Φ, there is $Z \in A$ and surjective $f: Z \rightarrow X$. So $\forall z \in Z f(z) \in J^{\in A}$ and hence $\forall z \in Z \exists a \in A f(z) \in J^{a}$. As A is a weakly regular set and $Z \in A$ there is $b \in A$ such that $\forall z \in Z \exists a \in b f(z) \in J^{a}$. Hence $X \subseteq \bigcup_{a \in b} J^{a}$ so that $x \in \Gamma\left(\bigcup_{a \in b} J^{a}\right)=J^{b} \subseteq J^{\in A}$.

Corollary: 12.2.3 (ECST ${ }^{\prime}+$ Set Induction) If Φ is an inductive definition that is a subset of a weakly regular set then $I(\Phi)$ is a set.

Combining Proposition 12.2.1 and Theorem 12.2.2 we get the following result.
Theorem: 12.2.4 (Set Induction Theorem) (ECST ${ }^{\prime}+\mathbf{E X P}+$ Set Induction+ wREA) If Φ is a bounded inductive definition then it is local and there is a smallest Φ-closed class $I(\Phi)$ which is a set.

Corollary: 12.2.5 $\left(\mathbf{E C S T}^{\prime}+\mathbf{E X P}+\right.$ Set Induction $\left.+\mathbf{w R E A}\right)$ If A is a set then

1. $H(A)$ is a set,
2. if $R \subseteq A \times A$ such that $R_{a}=\{x \mid x R a\}$ is a set for each $a \in A$ then $W f(A, R)$ is a set.
3. if B_{a} is a set for each $a \in A$ then $W_{a \in A} B_{a}$ is a set.

12.3 Tree Proofs

We will give a characterisation of $I(\Phi)$ in terms of a suitable notion of tree proof. These will be well-founded trees, each given as a pair (a, Z), where a is the conclusion of the proof and Z is the set of proofs of the premisses of the final inference step X / a of the proof. We will call these trees proto-proofs. We will associate with each proto-proof p the set $\operatorname{Steps}(p)$ of the inference steps that it uses. Then a proto-proof $p=(a, Z)$ will be a proof that $a \in I(\Phi)$ provided that Steps $(p) \subseteq \Phi$.

Definition: 12.3.1 The class \mathbb{P} of proto-proofs is inductively defined to be the smallest class such that, for all pairs $p=(a, Z)$, if $Z \subseteq \mathbb{P}$ then $p \in \mathbb{P}$; i.e. $\mathbb{P}=I(\Psi)$, where Ψ is the class of steps Z / p for pairs $p=(a, Z)$.

In order to introduce the Steps operation we need some definitions.
Definition: 12.3.2 Let concl : $V^{2} \rightarrow V$, Concl : $\operatorname{Pow}\left(V^{2}\right) \rightarrow V$ and endstep : $V \times \operatorname{Pow}\left(V^{2}\right) \rightarrow V$ be given by

$$
\begin{array}{ll}
\operatorname{concl}(p) & =a \\
\operatorname{Concl}(Z) & =\{\operatorname{concl}(q) \mid q \in Z\} \\
\operatorname{endstep}(p) & =(\operatorname{Concl}(Z), a)
\end{array}
$$

for all pairs $p=(a, Z)$.
Lemma: 12.3.3 There is a unique class function Steps : $\mathbb{P} \rightarrow \operatorname{Pow}(\operatorname{Pow}(V) \times$ $V)$ such that, for $p=(a, Z) \in \mathbb{P}$,

$$
(*) \quad \operatorname{Steps}(p)=\{\operatorname{endstep}(p)\} \cup \bigcup\{\operatorname{Steps}(q) \mid q \in Z\} .
$$

Proof: Let SS be the class inductively defined to be the smallest class such that, for $p=(a, Z) \in \mathbb{P}$,

1. $(\operatorname{endstep}(p), p) \in \mathrm{SS}$, and
2. if $(r, q) \in \mathrm{SS}$ for some $q \in Z$ then $(r, p) \in \mathrm{SS}$.

Let $\operatorname{Steps}(p)$ be the class $\{r \mid(r, p) \in \operatorname{SS}\}$ for each $p \in \mathbb{P}$. Then $(*)$ is easily checked and then, by induction following the inductive definition of \mathbb{P}, we get that $\operatorname{Steps}(p)$ is a set in $\operatorname{Pow}(\operatorname{Pow}(V) \times V)$ for all $p \in \mathbb{P}$. Also if Steps ${ }^{\prime}: V \rightarrow \operatorname{Pow}(\operatorname{Pow}(V) \times V)$ also satisfies $(*)$ for all $p \in \mathbb{P}$ then, again by induction following the inductive definition of \mathbb{P} it is easy to check that $\operatorname{Steps}^{\prime}(p)=\operatorname{Steps}(p)$ for all $p \in \mathbb{P}$.

Definition: 12.3.4 For each inductive definition Φ we define the class $\mathbb{P}(\Phi)$ of Φ-proofs as follows.

$$
\mathbb{P}(\Phi)=\{p \in \mathbb{P} \mid \operatorname{Steps}(p) \subseteq \Phi\} .
$$

Theorem: 12.3.5 ($\left.\mathbf{C Z F}^{\prime}\right)$ For each inductive definition Φ

$$
I(\Phi)=I^{\prime}
$$

where $I^{\prime}=\{\operatorname{concl}(p) \mid p \in \mathbb{P}(\Phi)\}$.
Proof: The theorem will follow from the following two claims.

Claim $1 \operatorname{concl}(p) \in I(\operatorname{steps}(p))$ for all $p \in \mathbb{P}$.
Claim $2 I^{\prime}$ is Φ-closed.
For, by Claim 2, $I(\Phi) \subseteq I^{\prime}$. For the converse inclusion, let $a \in I^{\prime}$. Then $a=\operatorname{concl}(p)$ for some $p \in \mathbb{P}(\Phi)$ and, by Claim $1, \operatorname{concl}(p) \in I(\operatorname{steps}(p)) \subseteq I(\Phi)$, so that $a \in I(\Phi)$. It remains to prove the two claims.

Proof of Claim 1: It suffices to show that

$$
\mathbb{P}^{\prime}=\{p \in \mathbb{P} \mid \operatorname{concl}(p) \in I(\operatorname{Steps}(p))\}
$$

is Ψ-closed. So let $Z / p \in \Psi$, with $Z \subseteq \mathbb{P}^{\prime}$, to show that $p \in \mathbb{P}^{\prime}$. We have

$$
p=(a, Z)=(\operatorname{concl}(p), Z)
$$

for some $a \in V$. As $Z \subseteq \mathbb{P}^{\prime}$, if $q \in Z$ then

$$
\operatorname{concl}(q) \in I(\operatorname{Steps}(q)) \text { and } \operatorname{Steps}(q) \subseteq \operatorname{Steps}(p)
$$

so that $\operatorname{concl}(q) \in I(\operatorname{Steps}(p))$. It follows that

$$
\begin{aligned}
b \in \operatorname{Concl}(Z) & \Rightarrow b=\operatorname{concl}(q) \quad \text { for some } q \in Z \\
& \Rightarrow b \in I(\operatorname{Steps}(p),
\end{aligned}
$$

and hence $\operatorname{Concl}(Z) \subseteq I(\operatorname{Steps}(p))$ so that, as

$$
\operatorname{Concl}(Z) / \operatorname{concl}(p) \in \operatorname{Steps}(p),
$$

$p \in \mathbb{P}^{\prime}$.

Proof of Claim 2: Let $X / a \in \Phi$ with $X \subseteq I^{\prime}$. We must show that $a \in I^{\prime}$. As $X \subseteq I^{\prime}$,

$$
(\forall b \in X)(\exists q \in \mathbb{P}(\Phi)) b=\operatorname{concl}(q) .
$$

By Strong Collection there is a set $Z \subseteq \mathbb{P}(\Phi) \subseteq \mathbb{P}$ such that

$$
(\forall b \in X)(\exists q \in Z) b=\operatorname{concl}(q) \text { and }(\forall q \in Z) \operatorname{concl}(q) \in X
$$

It follows that $\operatorname{Concl}(Z)=X$. Let $p=(a, Z)$. We have $p \in \mathbb{P}$, as $Z \in$ $\operatorname{Pow}(\mathbb{P})$, and

$$
\operatorname{Steps}(p)=\{(\operatorname{Concl}(Z), a)\} \cup \bigcup\{\operatorname{Steps}(q) \mid q \in Z\}
$$

So $(\operatorname{Concl}(Z), a)=(X, a) \in \Phi$ and if $q \in Z$ then $q \in \mathbb{P}(\Phi)$ so that $\operatorname{Steps}(q) \subseteq \Phi$. Hence $\operatorname{Steps}(p) \subseteq \Phi$ so that $p \in \mathbb{P}(\Phi)$. We conclude that $a=\operatorname{concl}(p) \in I^{\prime}$.

Corollary: 12.3.6 ($\left.\mathbf{C Z F}^{\prime}\right)$ If $a \in I(\Phi)$ then $a \in I\left(\Phi_{0}\right)$ for some set $\Phi_{0} \subseteq \Phi$.
We can relativise Theorem 12.3.5 to a regular set.
Theorem: 12.3.7 ($\left.\mathbf{C Z F}^{\prime}\right)$ Let A be a regular set such that $2 \in A$. Then, for each class $\Phi \subseteq A \times A$,

$$
I(\Phi)=I_{A}(\Phi),
$$

where $I_{A}(\Phi)=\{\operatorname{concl}(p) \mid p \in \mathbb{P}(\Phi) \cap A\}$.
Proof: Trivially $I_{A}(\Phi) \subseteq I(\Phi)$ by Theorem 12.3.5. To show that $I(\Phi) \subseteq I_{A}(\Phi)$ it suffices to show that $I_{A}(\Phi)$ is Φ-closed. We argue as in the proof of Theorem 12.3.5 using our assumption that A is regular instead of Strong Collection. So let $X / a \in \Phi$ with $X \subseteq I_{A}(\Phi)$. We must show that $a \in I_{A}(\Phi)$. As $(X, a) \in \Phi \subseteq A \times A$ we have $X, a \in A$. As $X \subseteq I_{A}(\Phi)$,

$$
(\forall b \in X)(\exists q \in A)[q \in \mathbb{P}(\Phi) \& b=\operatorname{concl}(q)] .
$$

As $X \in A$ and A is regular there is $Z \in A$ such that $Z \subseteq \mathbb{P}(\Phi)$ and

$$
(\forall b \in X)(\exists q \in Z)[b=\operatorname{concl}(q)] \text { and }(\forall q \in Z)[\operatorname{concl}(q) \in X] .
$$

So $\operatorname{Concl}(Z)=X$ and if $p=(a, Z)$ then $p \in \mathbb{P} \cap A$ and

$$
\operatorname{Steps}(p)=\{(X, a)\} \cup \bigcup\{\text { Steps }(q) \mid q \in Z\} \subseteq \Phi
$$

so that $a=\operatorname{concl}(p) \in I_{A}(\Phi)$.

12.4 The Set Compactness Theorem

Our aim is to prove the following result.
Theorem: 12.4.1 ($\mathbf{C Z F}^{\prime}+$ REA) (Set Compactness) For each set S and each set $P \subseteq \operatorname{Pow}(S)$ there is a set B of subsets of $P \times S$ such that, for each class $\Phi \subseteq P \times S$,

$$
a \in I(\Phi) \Longleftrightarrow a \in I\left(\Phi_{0}\right) \text { for some } \Phi_{0} \in B \text { such that } \Phi_{0} \subseteq \Phi .
$$

Proof: Use REA to choose a regular set A such that $\{2\} \cup S \cup P \subseteq A$. Let $\Phi \subseteq P \times S$. By Theorem 12.3.7, $I(\Phi)=I_{A}(\Phi)$. Let B be the class $\{\operatorname{Steps}(p) \cap$ $(P \times S) \mid p \in \mathbb{P} \cap A\}$. Observe that

$$
\begin{aligned}
a \in I(\Phi) & \Leftrightarrow a=\operatorname{concl}(p) \text { for some } p \in \mathbb{P}(\Phi) \cap A \\
& \Leftrightarrow a \in I(\operatorname{steps}(p)) \text { for some } p \in \mathbb{P}(\Phi) \cap A \\
& \Leftrightarrow a \in I\left(\Phi_{0}\right) \text { for some } \Phi_{0} \in B \text { such that } \Phi_{0} \subseteq \Phi
\end{aligned}
$$

So it suffices to show that $\mathbb{P} \cap A$ is a set, as then B is a set, by Replacement. Let $\mathbb{P}_{A}=I\left(\Psi_{A}\right)$, where $\Psi_{A}=\Psi \cap(A \times A)$. As Ψ_{A} is a set so is \mathbb{P}_{A}, by Corollary 12.2.3. So it suffices to show that $\mathbb{P} \cap A=\mathbb{P}_{A}$. Trivially $\mathbb{P}_{A} \subseteq \mathbb{P} \cap A$. To show that $\mathbb{P} \cap A \subseteq \mathbb{P}_{A}$ it suffices to show that $\mathbb{P} \subseteq Y$, where $Y=\left\{p \mid p \in A \Rightarrow p \in \mathbb{P}_{A}\right\}$ and, for that, it suffices to show that Y is Ψ-closed; i.e. that, for $p=(a, Z)$, if $Z \subseteq Y$ then $p \in Y$.

So let $p=(a, Z)$ with $Z \subseteq Y$; i.e. $Z \cap A \subseteq \mathbb{P}_{A}$. To show that $p \in Y$ let $p \in A$. Then $a, Z \in A$ so that $Z \subseteq A$ and hence $Z=Z \cap A \subseteq \mathbb{P}_{A}$ so that $p \in \mathbb{P}_{A}$. Thus $p \in Y$ as required.

We may relativise the notion of theorem for an axiom system to a set X of assumptions treated as additional axioms. The set of theorems relative to X is then the smallest set of statements of the axiom system that include the axioms, are closed under the rules of inference and also include the assumptions from X. We generalise this idea to inductive definitions. Given a class X, let $I(\Phi, X)$ be the smallest Φ-closed class that has X as a subclass. This exists as it can be defined as $I\left(\Phi_{X}\right)$ where

$$
\Phi_{X}=\Phi \cup(\{\emptyset\} \times X) .
$$

We can apply Corollary 12.3 .6 to get the following result.
Proposition: 12.4.2 ($\mathbf{C Z F}^{\prime}$) For each inductive definition Φ and each class X

$$
a \in I(\Phi, X) \Longleftrightarrow a \in I\left(\Phi, X_{0}\right) \text { for some set } X_{0} \subseteq X
$$

We get the following corollary of the theorem.
Corollary: 12.4.3 ($\mathbf{C Z F}^{\prime}+$ REA) If Φ is a subset of $\operatorname{Pow}(S) \times S$, where S is a set then there is a set B of subsets of S such that for each class $X \subseteq S$

$$
a \in I(\Phi, X) \Longleftrightarrow a \in I\left(\Phi, X_{0}\right) \text { for some } X_{0} \in B \text { such that } X_{0} \subseteq X
$$

12.5 Closure Operations on a po-class

Given a class A a partial ordering of A is a subclass \leq of $A \times A$ satisfying the standard axioms for a partial ordering; i.e.

1. $a \leq a$ for all $a \in A$,
2. $[a \leq b \wedge b \leq c] \rightarrow a \leq c$,
3. $[a \leq b \wedge b \leq a] \rightarrow a=b$,

A po-class is a class A with a partial ordering \leq.
Let A be a po-class. Then $f: A \rightarrow A$ is monotone if

$$
x \leq y \rightarrow f(x) \leq f(y)
$$

We define $c: A \rightarrow A$ to be a closure operation on A if it is monotone and for all $a \in A$

$$
a \leq c(c(a)) \leq c(a) .
$$

Note that, for a closure operation c on A, if $a \in A$ then

$$
c(a) \leq a \leftrightarrow c(a)=a \leftrightarrow \exists y \in A[a=c(y)] .
$$

We call a subclass C of A a closure class on A if for each $a \in A$ there is $\bar{a} \in C$ such that

1. $a \leq \bar{a}$,
2. $a \leq y \rightarrow \bar{a} \leq y$ for all $y \in C$.

Proposition: 12.5.1 There is a one-one correspondence between closure operations and closure classes on a po-class A. To each closure operation $c: A \rightarrow A$ there corresponds the closure class $C=\{a \mid c(a)=a\}$ of fixed points of c. Conversely to each closure class C there corresponds the closure operation c which associates with each $a \in A$ the unique $\bar{a} \in C$ satisfying 1,2 above. These correspondences are inverses of each other.

Example: Let A be a set. Then $\operatorname{Pow}(A)$ is a class that is a po-class, when partially ordered by the subset relation on $\operatorname{Pow}(A)$.

Let Φ be an inductive definition that is a subset of $\operatorname{Pow}(A) \times A$. We call Φ an inductive definition on A. Let

$$
C_{\Phi}=\{X \in \operatorname{Pow}(A) \mid X \text { is } \Phi \text {-closed }\} .
$$

Then C_{Φ} is a closure class on $\operatorname{Pow}(A)$ whose associated closure operation C_{Φ} : $\operatorname{Pow}(A) \rightarrow \operatorname{Pow}(A)$ can be given by

$$
c_{\Phi}(X)=I(\Phi, X)
$$

for all sets $X \subseteq A$.
Which closure operations arise in this way? Call a monotone operation f : $\operatorname{Pow}(A) \rightarrow \operatorname{Pow}(A)$ set-based if there is a subset B of $\operatorname{Pow}(A)$ such that whenever $a \in f(X)$, with $X \in \operatorname{Pow}(A)$, then there is $Y \in B$ such that $Y \subseteq X$ and $a \in f(Y)$. We call B a baseset for f.

Theorem: 12.5.2 Let $c: \operatorname{Pow}(A) \rightarrow \operatorname{Pow}(A)$, where A is a set. Then $c=c_{\Phi}$ for some inductive definition Φ on A if and only if c is a set-based closure operation on $\operatorname{Pow}(A)$.

Proof: Let $c=c_{\Phi}$, where Φ is an inductive definition on the set A. That c is a closure operator is an easy consequence of its definition. That it is set-based is the content of Corollary 12.4.3. For the converse, let c be a set based closure operator on $\operatorname{Pow}(A)$, with baseset B and associated closure class C. Let Φ be the set of all pairs (Y, a) such that $Y \in B$ and $a \in c(Y)$. This is a set by UnionReplacement, as $B=\bigcup_{Y \in B}(\{Y\} \times c(Y))$. It is clearly an inductive definition on A. It is easy to check that for any set $X \subseteq A X$ is Φ-closed if and only if $X \in C$, which will give us the desired result that $c=c_{\Phi}$.

Chapter 13

Coinduction

13.1 Coinduction of Classes

Definition: 13.1.1 (Relation Reflection Scheme, RRS) For classes S, R with $R \subseteq S \times S$, if $a \in S$ and $\forall x \in S \exists y \in S x R y$ then there is a set $S_{0} \subseteq S$ such that $a \in S_{0}$ and $\forall x \in S_{0} \exists y \in S_{0} x R y$.

Proposition: 13.1.2 (ECST)

1. RDC implies RRS.
2. RRS implies FRS.

Let Φ be an inductive definition on a class S; i.e. Φ is a subclass of $\operatorname{Pow}(S) \times S$. For each $a \in S$ let $\Phi_{a}=\{X \mid(X, a) \in \Phi\}$. For each subclass B of S let

$$
\Gamma B=\left\{a \in S \mid \exists X \in \Phi_{a} X \subseteq B\right\} .
$$

We call B-inclusive if $B \subseteq Г B$.
Theorem: 13.1.3 ($\left.\mathbf{C Z F}^{-}+\mathbf{R R S}\right) \bigcup\{X \in \operatorname{Pow}(S) \mid X \subseteq \Gamma X\}$ is the largest Φ-inclusive class.

Proof: Let $J=\bigcup\{X \in \operatorname{Pow}(S) \mid X \subseteq \Gamma X\}$. First observe that $J \subseteq \Gamma J$. For if $a \in J$ then $a \in X \subseteq \Gamma X$ for some set $X \subseteq J$ so that $a \in \Gamma J$, as Γ is monotone. It remains to show that if $B \subseteq \Gamma B$ then $B \subseteq J$. So let $a \in B$ to show that $a \in J$.

Let $A=\operatorname{Pow}(B)$. If $X \in A$ then $X \subseteq \Gamma B$; i.e.

$$
\forall x \in X \exists y[y \in A \&(y, x) \in \Phi] .
$$

So, by Strong Collection, there is a set Y such that

$$
\forall x \in X \exists y \in Y[y \in A \&(y, x) \in \Phi]
$$

and

$$
\forall y \in Y \exists x \in X[y \in A \&(y, x) \in \Phi] .
$$

Now let $Z=\cup Y$. Then $Z \in A$ and $X \subseteq \Gamma Z$. Thus

$$
\forall X \in A \exists Z \in A[X \subseteq \Gamma Z]
$$

By RRS there is a set $A_{0} \subseteq A$ such that $\{a\} \in A_{0}$ and

$$
\forall X \in A_{0} \exists Z \in A_{0}[X \subseteq \Gamma Z] .
$$

Let $W=\cup A_{0} \in \operatorname{Pow}(S)$. Then $a \in W \subseteq \Gamma W$ so that $a \in J$.

For each subclass B of S let

$$
\Delta B=\left\{a \in S \mid \forall X \in \Phi_{a} X \backslash B\right\}
$$

where $X \backslash B$ if $X \cap B$ is inhabited. We call B-progressive if $B \subseteq \Delta B$.
Lemma: 13.1.4 ($\mathbf{C Z F}^{-}$) If Φ_{a} is a set for all $a \in S$ then, for each subclass B of S,

$$
\Delta B=\left\{a \in S \mid \exists Y \in \Phi_{a}^{\prime} Y \subseteq B\right\}
$$

where $\Phi^{\prime}=\{(Y, a) \in \operatorname{Pow}(S) \times S \mid a \in \Delta Y\}$.
Proof: We must show that

$$
a \in \Delta B \Longleftrightarrow(\exists Y \in \operatorname{Pow}(B)) a \in \Delta Y
$$

The implication from right to left just uses the monotonicity of Δ. For the other direction let $a \in \Delta B$. Then

$$
\forall X \in \Phi_{a} \exists x[x \in X \& x \in B]
$$

so that, as Φ_{a} is a set, by Strong Collection there is a set Y such that

$$
\forall X \in \Phi_{a} \exists x \in Y[x \in X \& x \in B]
$$

and

$$
\forall x \in Y \exists X \in \Phi_{a}[x \in X \& x \in B] .
$$

Then $Y \in \operatorname{Pow}(B)$ and $a \in \Delta Y$ giving the right hand side.

Theorem: 13.1.5 ($\left.\mathbf{C Z F}^{-}+\mathbf{R R S}\right)$ If Φ_{a} is a set for all $a \in S$ then $\bigcup\{X \in \operatorname{Pow}(S) \mid X \subseteq \Delta X\}$ is the largest Φ-progressive class.

Proof: By the lemma B is Φ-progressive iff B is Φ^{\prime}-inclusive and we can apply the previous theorem to complete the proof.

13.2 Coinduction of Sets

Here we assume that S, Φ are sets with $\Phi \subseteq \operatorname{Pow}(S) \times S$ and prove in a certain extension of CZF that the class

$$
J=\bigcup\{x \in \operatorname{Pow}(S) \mid x \subseteq \Gamma x\}
$$

is a set and is the largest Φ-inclusive set. As J is the union of all Φ-inclusive sets it is a Φ-inclusive class that includes all Φ-inclusive sets. So it is only necessary to show that J is a set.

Recall that a regular set A is strongly regular if it is closed under the union operation; i.e. $\forall x \in A \cup x \in A$. Also REA/ \cup REA is the axiom that states that every set is a subset of a regular/strongly regular set. We now strengthen these axioms by requiring that the regular/strongly regular set also satisfy the second order version of the Relation Reflection Scheme RRS.

Definition: 13.2.1 Let A be a regular/strongly regular set. We define it to be $\mathbf{R R S}$ regular/RRS strongly regular if also, for all sets $A^{\prime} \subseteq A$ and $R \subseteq A^{\prime} \times A^{\prime}$, if $a_{0} \in A^{\prime}$ and $\forall x \in A^{\prime} \exists y \in A^{\prime} x R y$ then there is $A_{0} \in A$ such that $a_{0} \in A_{0} \subseteq A^{\prime}$ and $\forall x \in A_{0} \exists y \in A_{0} x R y$.

Definition: 13.2.2 (RRS-REA/RRS- \bigcup REA) Every set is a subset of a RRS regular/RRS strongly regular set.

Theorem: 13.2.3 (CZF+RRS- \cup REA) If S, Φ and J are as above then J is a set and is the largest Φ-inclusive set.

Proof: By RRS- \bigcup REA there is a RRS strongly regular set A such that $S \cup$ $\left\{\Phi_{a} \mid a \in S\right\} \subseteq A$. Recall that Γ was the monotone set continuous operator defined as follows. For each class B

$$
\Gamma(B)=\left\{a \in S \mid \exists X \in \Phi_{a} X \subseteq B\right\}
$$

Let

$$
J_{A}=\bigcup\{x \in A \cap \operatorname{Pow}(S) \mid x \subseteq \Gamma x\} .
$$

Then J_{A} is a set that is a union of Φ-inclusive sets and so is itself a Φ-inclusive set. As $J_{A} \subseteq J$ it suffices to show that $J \subseteq J_{A}$.

So let $a_{0} \in J$; i.e. $a_{0} \in Y$ for some set Y such that $Y \subseteq \Gamma Y$. So

$$
\forall a \in Y \exists X \in \Phi_{a} X \subseteq Y .
$$

Now let $Z \in A^{\prime}$ where $A^{\prime}=\operatorname{Pow}(Y) \cap A$. Then

$$
\forall a \in Z \exists X \in A\left[X \in \Phi_{a} \& X \subseteq Y\right]
$$

As A is regular there is $Z_{0} \in A$ such that

$$
\forall a \in Z \exists X \in Z_{0}\left[X \in \Phi_{a} \& X \subseteq Y\right]
$$

and

$$
\forall X \in Z_{0} \exists a \in Z\left[X \in \Phi_{a} \& X \subseteq Y\right]
$$

So $Z_{0} \subseteq \operatorname{Pow}(Y)$. Let $Z^{\prime}=\cup Z_{0}$. Then $Z^{\prime} \in \operatorname{Pow}(Y)$ and

$$
\forall a \in Z \exists X \in \Phi_{a} X \subseteq Z^{\prime}
$$

Also, as A is closed under unions, $Z^{\prime} \in A$ and so $Z^{\prime} \in A^{\prime}$.
We have shown that

$$
\forall Z \in A^{\prime} \exists Z^{\prime} \in A^{\prime} Z \subseteq \Gamma Z^{\prime}
$$

As A is RRS regular and $\left\{a_{0}\right\} \in A^{\prime} \subseteq A$ there is a set $A_{0} \in A$ such that $\left\{a_{0}\right\} \in A_{0} \subseteq A^{\prime}$ and

$$
\forall Z \in A_{0} \exists Z^{\prime} \in A_{0} Z \subseteq \Gamma Z^{\prime}
$$

Let $Y^{\prime}=\cup A_{0} \in A$, using again the assumption that A is closed under unions, and observe that $a_{0} \in Y^{\prime} \subseteq \Gamma Y^{\prime}$. So $a_{0} \in J_{A}$ and we are done.

Corollary: 13.2.4 (CZF+RRS- \bigcup REA) If S, Φ and J are as above then there is a largest Φ-progressive set.

Proof: Apply Lemma 13.1.4.

Chapter 14

V-Semilattices

14.1 Set-generated \bigvee-Semilattices

Let S be a po-class. If $X \subseteq S$ and $a \in S$ then a is a supremum of X if for all $x \in S$

$$
\forall y \in X[y \leq x] \leftrightarrow a \leq x .
$$

Note that a supremum is unique if it exists. The supremum of a subclass X of S will be written $\bigvee X$. A po-class is a \bigvee-semilattice if every subset has a supremum.

Let S be a \bigvee-semilattice . A subset G is a generating set for S if for every $a \in S$

$$
G_{a}=\{x \in G \mid x \leq a\}
$$

is a set and $a=\bigvee G_{a}$. An \bigvee-semilattice is set-generated if it has a generating set.

Example: For each set A the po-class $\operatorname{Pow}(A)$ is a set-generated \bigvee-semilattice with set $G=\{\{a\} \mid a \in A\}$ of generators.

Theorem: 14.1.1 Let C be a closure class on an \bigvee-semilattice S. Then C is $a \bigvee$-semilattice, when given the partial ordering induced from S. If S is setgenerated then so is C. Moreover every set-generated \bigvee-semilattice arises in this way from a closure class C on $a \bigvee$-semilattice $\operatorname{Pow}(A)$ for some set A.

Proof: Let c be the closure operator associated with the closure class C on the \bigvee-semilattice S. It is easy to check that C has the supremum operation \bigvee^{C} given by $\bigvee^{C} X=c(\bigvee X)$ for each subset X of C. Now assume that S has a set G of generators. Let

$$
G^{C}=\{c(x) \mid x \in G\} .
$$

We show that G^{C} is a set of generators for C. For each $a \in C$ let

$$
G_{a}^{C}=\left\{y \in G^{C} \mid y \leq a\right\} .
$$

We must show that G_{a}^{C} is a set and $a=\bigvee^{C} G_{a}^{C}$. Observe that

$$
\begin{aligned}
G_{a}^{C} & =\{c(x) \mid x \in G \wedge c(x) \leq a\} \\
& =\{c(x) \mid x \in G \wedge x \leq a\} \\
& =\left\{c(x) \mid x \in G_{a}\right\}
\end{aligned}
$$

so that G_{a}^{C} is a set. Also observe that $\bigvee^{C} G_{a}^{C}=c\left(\bigvee\left\{c(x) \mid x \in G_{a}\right\}\right)$. It follows first that $a=\bigvee\left\{x \mid x \in G_{a}\right\} \leq \bigvee\left\{c(x) \mid x \in G_{a}\right\} \leq \bigvee^{C} G_{a}^{C}$ and second that $\bigvee^{C} G_{a}^{C}=\bigvee\left\{c(x) \mid x \in G_{a}\right\} \leq a$, as if $x \in G_{a}$ then $x \leq a$ so that $c(x) \leq a$. So we get that $a=\bigvee^{C} G_{a}^{C}$.

Finally suppose that S is a set-generated \bigvee-semilattice, with set G of generators. Let $c: \operatorname{Pow}(G) \rightarrow \operatorname{Pow}(G)$ be given by

$$
c(X)=G_{\bigvee X}
$$

for all $X \in \operatorname{Pow}(G)$. Then it is easy to observe that c is a closure operation on $\operatorname{Pow}(G)$. If C is the associated closure class then the function $C \rightarrow S$ that maps each $X \in C$ to $\bigvee X \in S$ is an isomorphism between C and S with inverse the function that maps each $a \in S$ to $G_{a} \in C$.

14.2 Set Presentable \bigvee-Semilattices

Given a generating set G for S a subset R of $G \times \operatorname{Pow}(G)$ is a relation set over G for S if for all $(a, X) \in \mathrm{G} \times \operatorname{Pow}(G)$

$$
a \leq \bigvee X \leftrightarrow \exists Y \subseteq X[(a, Y) \in R] .
$$

A set presentation of S is a pair (G, R) consisting of a generating set G for S and a relation set R over G for S.

Definition: 14.2.1 A set presentable \bigvee-semilattice is a \bigvee-semilattice that has a set presentation.

Example: For each set A the po-class $\operatorname{Pow}(A)$ is a set presentable \bigvee-semilattice with set $G=\{\{a\} \mid a \in A\}$ of generators and relation set

$$
R=\{(\{a\},\{\{a\}\}) \mid a \in A\} .
$$

Theorem: 14.2.2 If $S=\operatorname{Pow}(A)$, for some set A and C is a closure class then C is set-presentable if and only if the closure operation associated with C is set-based.

Proof: Assume that $S=\operatorname{Pow}(A)$, for some set A, and that c is the closure operation on S associated with C. Also assume that $B \subseteq S$ is a baseset for c. Then for all $X \subseteq A$ and all $a \in A$
$(*) \quad a \in c(X) \leftrightarrow \exists Y \in B[Y \subseteq X \wedge a \in c(Y)]$.
Now let A^{\prime} be a regular set such that $B \cup G \subseteq A^{\prime}$ and let

$$
R=\left\{(Q, Z) \mid Q \in G \wedge Z \in A^{\prime} \wedge Q \subseteq c(\cup Z) \wedge Z \subseteq G\right\}
$$

Claim 1: R is a set.
Proof: First observe that $T=\left\{Z \in A^{\prime} \mid Z \subseteq G\right\}$ is a set. Also, for each $Z \in T$ we may form the set $\cup Z$ so that $c(\cup Z)$ is also a set and hence $S_{Z}=\{Q \in G \mid Q \subseteq c(\cup Z)\}$ is a set. Hence, by Union-Replacement $R=\bigcup_{Z \in T}\left(S_{z} \times\{Z\}\right)$ is a set.

Now let $X \in \operatorname{Pow}(G)$ and $Q \in C$.

Claim 2: $Z \subseteq X \wedge Q R Z \rightarrow Q \subseteq \bigvee X$.

Proof: Let $Z \subseteq X \wedge Q R Z$. Then $Q \subseteq c(\cup Z) \subseteq c(\cup X)$ and hence $Q \subseteq \bigvee X$.

Claim 3: $\quad Q \subseteq \bigvee X \rightarrow \exists Z[Z \subseteq X \wedge Q R Z]$.
Proof: Let $Q \subseteq \bigvee X$. Then by $(*)$ there is $Y \in B$ such that

$$
Y \subseteq \cup X \wedge Q \subseteq c(Y)
$$

As $Y \subseteq \cup X$

$$
\forall y \in Y \exists Q^{\prime} \in X y \in Q^{\prime}
$$

As A^{\prime} is regular, $Y \in A^{\prime}$ and $X \subseteq A^{\prime}$ there is $Z \in A^{\prime}$ such that

$$
\mathbb{B}\left(y \in Y, Q^{\prime} \in Z\right)\left[y \in Q^{\prime} \wedge Q^{\prime} \in X\right] .
$$

So $Y \subseteq \cup Z$ and $Z \subseteq X$ so that $Q \subseteq c(\cup Z)$ and $Z \subseteq X \subseteq G$ and hence also $Q R Z$.

It follows from these claims that (G, R) is a set presentation of C.
Now let (G, R) be a set presentation of a \bigvee-semilattice S. We show that S is isomorphic to a set presentable \bigvee-semilattice obtained from an inductive definition as above. Let Φ be the converse relation to R; i.e. it is the set of all pairs (X, a) such that $a R X$. Then Φ is an inductive definition that is a subset of $\operatorname{Pow}(G) \times G$. Observe that there is a one-one correspondence between the class C of subsets X of G that are Φ-closed and the elements of S given by the function $C \rightarrow S$ mapping $X \mapsto \bigvee X$ and its inverse function $S \rightarrow C$ mapping $a \mapsto G_{a}=\{x \in G \mid x \leq a\}$. This is easily seen to be an isomorphism of the po-classes.

14.3 \bigvee-congruences on a \bigvee-semilattice

Let S be a \bigvee-semilattice. We define an equivalence relation \approx on S to be a \bigvee-congruence on S if, for each set I, if $x_{i}, y_{i} \in S$ such that $x_{i} \approx y_{i}$ for all $i \in I$ then

$$
\bigvee_{i \in I} x_{i} \approx \bigvee_{i \in I} y_{i} .
$$

A preorder \preceq on S is a \bigvee-congruence pre-order on S if for each subset X of S and each $a \in S$

$$
\bigvee X \preceq a \leftrightarrow \forall x \in X[x \preceq a] .
$$

Proposition: 14.3.1 There is a one-one correspondence between \bigvee-congruences and \bigvee-congruence pre-orders on S. To each \bigvee-congruence \approx there corresponds the \bigvee-congruence pre-order \preceq where

$$
x \preceq y \leftrightarrow \bigvee\{x, y\} \approx y .
$$

Conversely to each \bigvee-congruence pre-order \preceq corresponds the \bigvee-congruence \approx where

$$
x \approx y \leftrightarrow[x \preceq y \wedge y \preceq x] .
$$

These correspondences are inverses of each other.

Proposition: 14.3.2 If $c: S \rightarrow S$ is a closure operation on S and we define \approx by

$$
x \approx y \leftrightarrow c(x)=c(y)
$$

for all $x, y \in S$ then \approx is a \bigvee-congruence on S.
Proof: The relation \approx is obviously an equivalence relation on S. Now suppose that $x_{i} \approx y_{i}$ for all $i \in I$, where I is a set. So $c\left(x_{i}\right)=c\left(y_{i}\right)$ for all $i \in I$. Let $x=\bigvee_{i \in I} x_{i}$ and $y=\bigvee_{i \in I} y_{i}$. Note that, as $y_{i} \leq c\left(y_{i}\right)=c\left(x_{i}\right)$ for all $i \in I$,

$$
y=\bigvee_{i \in I} y_{i} \leq \bigvee_{i \in I} c\left(y_{i}\right)=\bigvee_{i \in I} c\left(x_{i}\right)
$$

As $x_{i} \leq x$ for each $i \in I$ and c is monotone, $y \leq \bigvee_{i \in I} c\left(x_{i}\right) \leq c(x)$ and hence $c(y) \leq c(x)$. Similarily $c(x) \leq c(y)$ so that $c(x)=c(y)$. Thus we have shown that \approx is a \bigvee-congruence on S.

Proposition: 14.3.3 Let \preceq be $a \bigvee$-congruence preorder on $S=\operatorname{Pow}(A)$, where A is a set. Then the associated \bigvee-congruence \approx comes from a closure operation c, as in the previous theorem, provided that for every $X \in S$ the class $\{a \in A \mid$ $\{a\} \preceq X\}$ is a set. Then we can define $c(X)$ to be that set.

Chapter 15

General Topology in Constructive Set Theory

We wish to develop some general topology in constructive set theory. There are some initial problems to be overcome. The first problem is that in general the class of open sets cannot generally be assumed to be a set. This is because of the lack of the powerset axiom in constructive set theory. Without having powersets only the empty topological space will have its open sets forming a set. Another issue that needs to be kept in mind is that because we do not have full separation there will generally be open classes, i.e. unions of classes of open sets, that are not known to be sets. Even though the open sets will generally be only a class rather than a set there will usually be a set base generating the topology. So the notion of a set-based topological space will be the main notion of interest.

But there is another problem to be overcome. We sometimes want to construct a 'topological space' whose points form a class that is not known to be a set. This is particularly the case when we construct the concrete space of formal points of a formal topology. To allow for this we will formulate a precise notion of concrete space that generalises the notion of a set-based topological space by allowing the points to form a class. The set-based spaces will then be those concrete spaces that are small; i.e. have only a set of points. One of our concerns will be to find conditions on a concrete space that ensure that it is small.

15.1 Topological and concrete Spaces

Definition: 15.1.1 We define a topology on a set X to be a class \mathcal{T} of subsets of X, the open sets, that include the sets \emptyset and X and are closed under unions and binary intesections; i.e.

1. $\mathcal{X} \in \operatorname{Pow}(\mathcal{T}) \Rightarrow \bigcup \mathcal{X} \in \mathcal{T}$,
2. $X_{1}, X_{2} \in \operatorname{Pow}(\mathcal{T}) \Rightarrow X_{1} \cap X_{2} \in \mathcal{T}$.

A set-base for the topology is a subset \mathcal{B} of \mathcal{T} such that $\cup \mathcal{B}=X$ and, for $X_{1}, X_{2} \in \mathcal{B}$, if $x \in X_{1} \cap X_{2}$ then $x \in X$ for some $X \in \mathcal{B}$ such that $X \subseteq X_{1} \cap X_{2}$.

Note that a topological space (X, \mathcal{T}) is determined by any set-base \mathcal{B}, as $X=\bigcup \mathcal{B}$ and, for $Y \in \operatorname{Pow}(X)$,

$$
Y \in \mathcal{T} \Leftrightarrow Y=\bigcup\{Z \in \mathcal{B} \mid Z \subseteq Y\} .
$$

Definition: 15.1.2 A concrete space $\underline{X}=\left(X, S,\left\{\alpha_{x}\right\}_{x \in X}\right)$ consists of a class X of points, a set S of neighborhood indices and an assignment of a neighborhood system $\alpha_{x} \in \operatorname{Pow}(S)$ to each point x such that the following conditions hold, where for each $a \in S$

$$
B_{a}=\left\{x \in X \mid a \in \alpha_{x}\right\} .
$$

1. $X=\bigcup_{a \in S} B_{a}$,
2. If $x \in B_{a_{1}} \cap B_{a_{2}}$ then there is $a \in S$ such that $x \in B_{a} \subseteq B_{a_{1}} \cap B_{a_{2}}$.

The concrete space is defined to be small if X is a set.
These conditions state that the classes B_{a} form a base of open classes for a 'topology' of open classes, the base being indexed by the set S and being locally small in the sense that the neighborhood system α_{x} of each point x is always a set.

Note that when the concrete space is small then the classes B_{a} are open sets and form the set-base for a topology on the set X. So the small concrete spaces are just the topological spaces with an explicitly given set-base.

15.2 Formal Topologies

Some background

Formal Topology has been introduced as a version of the point-free approach to point-set topology that can be developed in the setting of Martin-Löf's Constructive Type Theory. The aim here is to present a development of the ideas of Formal Topology in the alternative setting of Constructive Set Theory.

There are at least two advantages to using the setting of Constructive Set Theory rather than the setting of Constructive Type Theory. The first one is that Constructive Set Theory is a much more familiar setting for the development of mathematics than Constructive Type Theory. Much of the standard development of elementary mathematics in classical axiomatic set theory carries over smoothly, with a little care, to the development of elementary constructive mathematics in Constructive Set Theory. At present there is still no generally accepted standard approach to the presentation of elementary constructive mathematics in Constructive Type Theory.

The second advantage is that the setting of Constructive Type Theory is too restrictive. This is because it builds in the treatment of logic using the Propositions-as-Types idea, so that the type-theoretic Axiom of Choice and so Countable Choice and Dependent Choices are justified. Constructive Set Theory is more flexible and general. While systems of Constructive Set Theory have natural interpretations in systems of Constructive Type Theory where logic is treated using the Propositions-as-types idea, such systems of Constructive Set Theory also have other interpretations obtained by reinterpreting the logic in ways analogous to what happens in topos theory. In topos theory there are many examples of topoi, e.g. suitable sheaf topoi, where Countable Choice does not hold. But nevertheless much of the results of point-free topology can be carried out in such topoi and the constructions can usually be refined to give results in Constructive Set Theory. Some refinement is needed because the Powerset Axiom holds in a topos, and this axiom is not available (or wanted) in Constructive Set Theory.

We take the key starting point for point-free topology in classical mathematics to be the adjunction between the category of topological spaces and the category of locales. With each topological space can be associated the locale of its open subsets and, in the reverse direction, with any locale can be associated the topological space of its points and these operations give rise to the two functors of the adjunction. The idea of point-free topology is that many definitions and results about topological spaces have more natural versions for locales and that it is these point-free versions for locales that are of interest in topos theory, rather than the original versions. Surprisingly for a given standard example of a topological space, such as the space of real numbers, it is not the locale of open sets under inclusion that is the locale of primary interest, but rather another more constructive and usually inductively generated locale that is used to represent the topology. In fact the topology is the topology of points of this primary locale and this is the natural way to construct the topological space. In the case of the real numbers the two locales can be proved isomorphic using the axiom of choice, but in general they need not be isomorphic.

The adjunction between topological spaces and locales still works in a topos, by exploiting the Powerset Axiom. In Constructive Set Theory we do not have this axiom and some care is needed even to give the key definitions of topological space and locale. For example perhaps the simplest example of a locale is the class of all subsets of a singleton set with set inclusion. Without assuming the Powerset Axiom we cannot take this locale to be a set. So our definition of a locale has to allow a locale to have a class of elements that need not be a set. Clearly a locale should be at least a partially ordered class that is a meet semi-lattice in which every subset has a supremum and meets distribute over suprema. We might in addition require there to be a set of generators; i.e. a subset G of the locale such that for every element a of the locale $a=\bigvee G_{a}$ where $G_{a}=\{x \mid x \leq a\}$ is a set. We may call such a locale a set-generated locale. Given such a set G of
generators we may further require there to be a function $C: G \rightarrow \operatorname{Pow}(G)$ such that for $a \in G$ and $U \in \operatorname{Pow}(G)$

$$
a \leq \bigvee U \Leftrightarrow(\exists V \in C(a))[V \subseteq U]
$$

Call such a function C a set-presentation of the locale. When the locale has a set of generators with a set-presentation we may call the locale a set-presented locale. Note that the locale $\operatorname{Pow}(A)$ of all subsets of a set A, partially ordered by set inclusion, is set-presented, with set $G=\{\{a\} \mid a \in A\}$ of generators and set-presentation C that assigns $C(\{a\})=\{\{a\}\}$ to each $\{a\} \in G$.

The Definition

Definition: 15.2.1 A formal topology $\underline{S}=(S, \triangleleft)$ consists of a set S and a subclass \triangleleft of $\subseteq S \times \operatorname{Pow}(S)$ satisfying the following conditions for $U, V \in \operatorname{Pow}(S)$, where $U \downarrow=\{d \in S \mid \exists u \in U d \triangleleft\{u\}\}$ and $U \downarrow V=(U \downarrow) \cap(V \downarrow)$.

1. $a \in U \Rightarrow a \triangleleft U$.
2. $a \triangleleft U \& \forall x \in U x \triangleleft V \Rightarrow a \triangleleft V$.
3. $a \triangleleft U \& a \triangleleft V \Rightarrow a \triangleleft U \downarrow V$.
$C: S \rightarrow \operatorname{Pow}(\operatorname{Pow}(S))$ is a set-presentation of \underline{S} if

$$
a \triangleleft U \Leftrightarrow(\exists V \in C(a))[V \subseteq U]
$$

Definition: 15.2.2 A formal point of a formal topology \underline{S} is a subset α of S such that

FP1: $\exists a(a \in \alpha)$,
FP2: $a, b \in \alpha \Rightarrow \exists c \in \alpha(c \in\{a\} \downarrow\{b\})$,
FP3. : $a \in \alpha \Rightarrow(\forall U \in \operatorname{Pow}(S))[a \triangleleft U \Rightarrow(\exists c \in \alpha)(c \in U)]$.
A formal point α is a maximal formal point if $\alpha \subseteq \beta \Rightarrow \alpha=\beta$ for every formal point β.

Note that the third condition for a formal point involves a quantification over the class of all subsets U of S which cover a. This is an unbounded quantifier. But when the formal topology has a set presentation C the range of U can be restricted to the set $C(a)$ so that the third condition can be replaced by the following one.

$$
3^{\prime} . a \in \alpha \Rightarrow(\forall U \in C(a))(\exists c \in \alpha)(c \in U) .
$$

So we get a restricted definition of the class of points.
Proposition: 15.2.3 The class X of formal points of a formal topology $\underline{S}=(S, \triangleleft)$ can be made into the concrete space $\underline{P}(\underline{S})=\left(X, S,\{\alpha\}_{\alpha \in X}\right)$.

Conversely, given a concrete space $\underline{X}=\left(X, S,\left\{\alpha_{x}\right\}_{x \in X}\right)$, we can obtain a formal topology $\underline{F t}(\underline{X})=(S, \triangleleft \underline{X})$ where

$$
a \triangleleft \underline{X} U \quad \Leftrightarrow \quad B_{a} \subseteq \bigcup_{b \in U} B_{b} .
$$

!!!! Note: These two correspondences should form a category theoretic adjunction between the categories of concrete spaces and formal topologies, once the two categories have been suitably defined

15.3 Separation Properties

We now formulate some separation properties for concrete spaces and the regularity separation property for formal topologies.

Definition: 15.3.1 Let $\underline{X}=\left(X, S,\left\{\alpha_{x}\right\}_{x \in X}\right)$ be a concrete space. It is defined to be T_{0} if for all points x, y

$$
\alpha_{x}=\alpha_{y} \Rightarrow x=y,
$$

and is T_{1} if for all points x, y

$$
\alpha_{x} \subseteq \alpha_{y} \Rightarrow x=y .
$$

It is defined to be regular if, for all $a \in S$, if $Y=B_{a}$ then

$$
(*) \quad(\forall x \in Y)(\exists b \in S)\left[x \in B_{b} \& X \subseteq Y \cup \neg B_{b}\right],
$$

where, for each open class Z,

$$
\neg Z=\bigcup\left\{B_{a} \mid a \in S \& B_{a} \cap Z=\emptyset\right\} .
$$

Note that $\neg Z$ is the largest open class disjoint from Z. Finally a T_{3}-space is defined to be a regular, T_{1}-space.

Observe that in a regular space $\left({ }^{*}\right)$ holds for any open class Y and, when the space is small, we have classically the usual notion of regularity, as then

$$
X \subseteq Y \cup \neg B_{b} \quad \Leftrightarrow \quad C l\left(B_{b}\right) \subseteq Y
$$

where $C l\left(B_{b}\right)$ is the closure of B_{b}.

Definition: 15.3.2 Let $\underline{S}=(S, \triangleleft)$ be a formal topology. Let

$$
b X c \Leftrightarrow(\exists a \in S)(a \in\{b\} \downarrow\{c\})
$$

for $b, c \in S$ and let $\left.b^{*}=\{c \in S \mid \neg b\} c\right\}$ for $b \in S$. We can now define

$$
W_{a}=\left\{b \in S \mid(\forall d \in S)\left(d \triangleleft\{a\} \cup b^{*}\right)\right\}
$$

for $a \in S$ and call the formal topology regular if $a \triangleleft W_{a}$ for all $a \in S$.
Proposition: 15.3.3 A concrete space \underline{X} is a regular concrete space iff the associated formal topology $\underline{F t}(\underline{X})$ is a regular formal topology.

Theorem: 15.3.4 If \underline{S} is a regular formal topology then $\underline{P t}(\underline{S})$ is a T_{3} concrete space.

Proof: Let \underline{S} be a regular formal topology with class X of formal points; i.e. the class of points of the concrete space $\underline{\mathrm{Ft}}(\underline{\mathrm{S}})$. Recall that $B_{b}=\{\alpha \in X \mid b \in \alpha\}$ for $b \in S$. We will use the following lemma. Only part 3 requires regularity.

Lemma: 15.3.5 Let $\alpha \in X$. Then

1. $b, c \in \alpha \Rightarrow b) c$,
2. $(\exists c \in \alpha)\left(c \in b^{*}\right) \Rightarrow \alpha \in \neg B_{b}$,
3. For each $a \in \alpha$ there is $b \in \alpha$ such that for any formal point β

$$
a \in \beta \text { or }(\exists c \in \beta)\left(c \in b^{*}\right) .
$$

Proof:

1. Let $b, c \in \alpha$. Then, by condition 2 of Definition 15.2.2, there is $a \in \alpha$ such that $a \in\{b\} \downarrow\{c\}$ and hence $b\rangle c$.
2. Assume that $(\exists c \in \alpha)\left(c \in b^{*}\right)$. Then $\alpha \in B_{c}$ and

$$
\begin{aligned}
\gamma \in B_{c} \cap B_{b} & \Rightarrow b, c \in \gamma \\
& \Rightarrow b \backslash c \\
& \Rightarrow c \notin b^{*}
\end{aligned}
$$

contradicting $c \in b^{*}$. So $B_{c} \cap B_{b}=\emptyset$. Thus $\alpha \in \neg B_{b}$.
3. If $a \in \alpha$ then, as $a \triangleleft W_{a}$, there is $b \in \alpha$ such that $b \in W_{a}$, by condition 3 of Definition 15.2.2. Now, for any formal point β choose $d \in \beta$ by condition 1 of Definition 15.2.2. Then, as $b \in$ W_{a}, we have $d \triangleleft\{a\} \cup b^{*}$ so that, by condition 3 of Definition 15.2.2 there is $c \in \beta$ such that $c \in\{a\} \cup b^{*}$; i.e. either $c=a$ or $c \in b^{*}$ so that $a \in \beta$ or $(\exists c \in \beta)\left(c \in b^{*}\right)$.

We first show that $\underline{\operatorname{Pt}}(\underline{\mathrm{S}})$ is T_{1}; i.e. we must show that when α, β are formal points of $\underline{\mathrm{S}}$ with $\beta \subseteq \alpha$ then $\alpha \subseteq \beta$. So let $a \in \alpha$. We show that $a \in \beta$. By part 3 of the lemma there is $b \in \alpha$ such that either $a \in \beta$ or $c \in b^{*}$ for some $c \in \beta$. In the latter case, as $\beta \subseteq \alpha$, we have $b, c \in \alpha$, so that, by part 1 of the lemma, $b \backslash c$, contradicting $c \in b^{*}$. So we get $a \in \beta$, as desired.

It remains to show that $\underline{\operatorname{Pt}}(\underline{\mathrm{S}})$ is regular; i.e. given $a \in S$ and $\alpha \in B_{a}$ we must show that $\alpha \in B_{b}$ for some $b \in S$ such that $X \subseteq B_{a} \cup \neg B_{b}$. By part 3 of the lemma there is $b \in \alpha$ such that $X \subseteq\left\{\beta \mid \beta \in B_{a}\right.$ or $\left.(\exists c \in \beta)\left(c \in b^{*}\right)\right\}$, so that, by part 2 of the lemma we are done.

15.4 The points of a set-generated formal topology

This section is inspired by a recent draft paper of Erik Palmgren, where it is shown in constructive type theory that if the formal points of a set generated formal topology are always maximal formal points then the formal points form a set. Here we prove this result in constructive set theory. But first some definitions.

It will be convenient to use some terminology from domain theory. Call a partially ordered class a directed complete partial order (dcpo) if every directed subset has a sup. A dcpo \mathcal{X} is set-generated if there is a subset X such that, for every $a \in \mathcal{X},\{x \in X \mid x \leq a\}$ is a directed set whose sup is a. It is easy to observe that the class of formal points of any formal topology, when ordered by the subset relation, form a dcpo. Our main result is the following.

Theorem: 15.4.1 (CZF + UREA + DC) The dcpo of formal points of a setpresented formal topology is a set-generated dcpo.

Call a partially ordered class flat if $x \leq y \Rightarrow x=y$. Note that the assumption that the formal points are always maximal formal points can be rephrased as the assumption that the poclass of formal points is flat. So the statement of Palmgren's result, expressed in constructive set theory, becomes the following.

Corollary: 15.4.2 If the poclass of formal points of a set-presented formal topology is flat then the formal points form a set.

To prove this from the theorem it suffices to observe the following result.
Lemma: 15.4.3 The elements of any flat set-generated dcpo form a set.
Proof: If X is a set of generators for the dcpo then for any element a there must be $x \in X$ such that $x \leq a$, as X_{a} is directed. As the dcpo is flat $a=x \in X$. Thus the set X is the class of all the elements of the dcpo.

We will obtain the theorem from a more abstract result. To state the abstract result we need some definitions. Let S, S^{\prime} be sets, let $\Gamma: \operatorname{Pow}(S) \rightarrow \operatorname{Pow}\left(S^{\prime \prime}\right)$ and let $R: S^{\prime} \rightarrow \operatorname{Pow}(S)$. We define $\alpha \in \operatorname{Pow}(S)$ to be Γ, R-closed if

$$
(\forall x \in \Gamma(\alpha))(\exists y \in \alpha) y \in R_{x} .
$$

It is easy to see that the poclass of Γ, R-closed subsets of S, when ordered by the subset relation, form a dcpo, when Γ is monotone and finitary. We have the following abstract result.

Theorem: 15.4.4 (CZF $+\bigcup$ REA $+\mathbf{D C})$ If Γ is monotone and finitary then the dcpo of Γ, R-closed sets is a set-generated dcpo.

To apply this to get Theorem 15.4.1 it suffices, given a formal topology (S, \triangleleft) with set presentation $C: S \rightarrow \operatorname{Pow}(\operatorname{Pow}(S))$, to define a set S^{\prime}, a monotone, finitary $\Gamma: \operatorname{Pow}(S) \rightarrow \operatorname{Pow}\left(S^{\prime}\right)$ and $R: S^{\prime} \rightarrow \operatorname{Pow}(S)$ so that a subset of S is a formal point iff it is Γ, R-closed. We now do this. For each $\alpha \in \operatorname{Pow}(S)$ let

$$
\Gamma(\alpha)=\{0\}+(\alpha \times \alpha)+\sum_{a \in \alpha} C(a)
$$

and let $S^{\prime}=\Gamma(S)$. Then $\Gamma: \operatorname{Pow}(S) \rightarrow \operatorname{Pow}\left(S^{\prime}\right)$ is monotone and finitary. Let $R_{b} \in \operatorname{Pow}(S)$ for $b \in S^{\prime}$ be given by

$$
\left\{\begin{array}{lll}
R_{(1,0)} & =S, & \\
R_{\left(2,\left(b_{1}, b_{2}\right)\right)} & =\left\{b_{1}\right\} \downarrow\left\{b_{2}\right\} & \text { for }\left(b_{1}, b_{2}\right) \in S \times S, \\
R_{(3,(b, V))} & =V & \text { for }(b, V) \in \sum_{a \in S} C(a) .
\end{array}\right.
$$

It is now easy to see that the three conditions $1,2,3^{\prime}$ for a formal point, can be combined into one using Γ and R to give us the following result.

Lemma: 15.4.5 A subset α of S is a formal point of (S, \triangleleft) iff α is Γ, R-closed.

Proof of Theorem 15.4.4

Let S, S^{\prime}, Γ, R be as in the statement of the theorem. Let $\operatorname{Fin}(S)$ be the set of all finite subsets of S. By \bigcup REA we may choose a regular set A closed under unions so that $\{\mathbb{N}\} \cup\{\Gamma(\alpha) \mid \alpha \in \operatorname{Fin}(S)\}$ is a subset of A.

Lemma: 15.4.6 For all sets $\alpha \subseteq S$

1. $\alpha \in A \Rightarrow \operatorname{Fin}(\alpha) \in A$,
2. $\alpha \in A \Rightarrow \Gamma(\alpha) \in A$.

Proof: Let α be a subset of S in A.

1. $\operatorname{Fin}(\alpha)=\bigcup_{n \in \mathbb{N}}\left\{\operatorname{ran}(f) \mid f \in\left({ }^{\{1, \ldots, n\}} \alpha\right)\right\}$. As ${ }^{\{1, \ldots, n\}} \alpha \in A$ can be proved by induction on $n \in \mathbb{N}$ we get that $\operatorname{Fin}(\alpha) \in A$.
2. Observe that $\Gamma(\alpha)=\bigcup\left\{\Gamma\left(\alpha_{0}\right) \mid \alpha_{0} \in \operatorname{Fin}(\alpha)\right\}$ and apply part 1 .

Now let γ be a Γ, R-closed subset of S. We must show that the set A_{γ} of Γ, R-closed subsets of γ is directed and has union γ. Let $P=A \cap \operatorname{Pow}(S)$ and let

$$
T=\left\{(\alpha, \beta) \in P \times P \mid \alpha \subseteq \beta \&(\forall x \in \Gamma(\alpha))(\exists y \in \beta) y \in R_{x}\right\}
$$

Lemma: 15.4.7 $(\forall \alpha \in P)(\exists \beta \in P)(\alpha, \beta) \in T$.
Proof: Let $\alpha \in P$. So $\alpha \in A$ and $\alpha \subseteq \gamma$. If $x \in \Gamma(\alpha)$ then $x \in \Gamma(\gamma)$ so that $y \in R_{x}$ for some $y \in \gamma$, by part 1 , as γ is a formal point. Thus, as $\gamma \subseteq S \subseteq A$,

$$
(\forall x \in \Gamma(\alpha))(\exists y \in A)\left[y \in R_{x} \cap \gamma\right] .
$$

As A is regular and, by part $2 \Gamma(\alpha) \in A$, there is $\beta_{0} \in A$ such that

$$
(\forall x \in \Gamma(\alpha))\left(\exists y \in \beta_{0}\right)\left[y \in R_{x} \cap \gamma\right]
$$

and

$$
\left(\forall y \in \beta_{0}\right)(\exists x \in \Gamma(\alpha))\left[y \in R_{x} \cap \gamma\right] .
$$

Let $\beta=\alpha \cup \beta_{0}$. Then $\beta \subset \gamma$ and $\beta \in A$, as A is closed under unions. So $\beta \in P$ and also

$$
\alpha \subseteq \beta \&(\forall x \in \Gamma(\alpha))(\exists y \in \beta)\left[y \in R_{x}\right] .
$$

Thus $(\alpha, \beta) \in T$.

Corollary: 15.4.8 If $\alpha_{0} \in P$ then there is $\alpha \in A_{\gamma}$ such that $\alpha_{0} \subseteq \alpha$.
Proof: Let $\alpha_{0} \in P$. Then, by DC, there is an infinite sequence $\alpha_{0}, \alpha_{1}, \ldots$ of elements of P such that $\left(\alpha_{n}, \alpha_{n+1}\right) \in T$ for all $n \in \mathbb{N}$. It follows that

$$
\alpha_{0} \subseteq \alpha_{1} \subseteq \cdots \subseteq \gamma
$$

and each $\alpha_{n} \in A$. As $\mathbb{N} \in A$ and A is strongly regular $\alpha=\bigcup_{n \in \mathbb{N}} \alpha_{n}$ is in A and $\alpha_{0} \subseteq \alpha \subseteq \gamma$. It remains to show that α is Γ, R-closed. We must show that

$$
(\forall x \in \Gamma(\alpha))(\exists y \in \alpha) y \in R_{x} .
$$

So let $x \in \Gamma(\alpha)$. As Γ is finitary $x \in \Gamma\left(\alpha_{n}\right)$ for large enough n and then $y \in R_{x}$ for some $y \in \alpha_{n+1} \subseteq \alpha$, giving what we want.

The proof of the theorem is completed with the following result.

Corollary: 15.4.9

1. A_{γ} has an element.
2. If $\alpha_{1}, \alpha_{2} \in A_{\gamma}$ then there is $\alpha \in A_{\gamma}$ such that $\alpha_{1} \cup \alpha_{2} \subseteq \alpha$.
3. If $x \in \gamma$ then there is $\alpha \in A_{\gamma}$ such that $x \in \alpha$.

Proof:

1. Apply the lemma with $\alpha_{0}=\emptyset$.
2. Apply the lemma with $\alpha_{0}=\alpha_{1} \cup \alpha_{2}$.
3. Apply the lemma with $\alpha_{0}=\{x\}$.

15.5 A generalisation of a result of Giovanni Curi

Subset Collection

We work informally in CZF. Let A, B be sets. A class relation $R \subseteq A \times B$ is total from A to B if

$$
(\forall x \in A)(\exists y \in B)[(x, y) \in R] .
$$

We write $\operatorname{mv}\left(B^{A}\right)$ for the class of all such total relations from A to B that are sets. The Subset Collection Scheme is equivalent to the following axiom.

For all sets A, B there is a subset C of the class $\boldsymbol{\operatorname { m v }}\left(B^{A}\right)$ such that every set in $\operatorname{mv}\left(B^{A}\right)$ has a subset in C. We write $\operatorname{subcoll}(A, B)$ for the class of all such sets C.

Call a class predicative if it can be defined by a restricted formula, possibly having set parameters. Note that, by Restricted Separation, the intersection of any predicative class with a set is a set. It follows that any predicative subclass of a set is a set.

Lemma: 15.5.1 Let A, B be sets and let \mathcal{D}, \mathcal{R} be classes, with \mathcal{D} a predicative subclass of $\operatorname{mv}\left(B^{A}\right)$ such that there are class functions mapping $R: \mathcal{D} \mapsto \alpha_{R}: \mathcal{R}$ and $\alpha: \mathcal{R} \mapsto R_{\alpha}: \mathcal{D}$ such that if $\alpha \in \mathcal{R}$ and $R \in \operatorname{mv}\left(B^{A}\right)$ is a subset of R_{α} then $R \in \mathcal{D}$ and $\alpha_{R}=\alpha$. Then \mathcal{R} is a set.

Proof: By the above formulation of Subset Collection choose $C \in \operatorname{subcoll}(A, B)$ and let $D=C \cap \mathcal{D}$. As \mathcal{D} is a predicative class D is a set. It is now easy to see that under our assumptions

$$
\mathcal{R}=\left\{\alpha_{R} \mid R \in D\right\}
$$

so that using the Replacement Scheme we get that \mathcal{R} is a set.

The Main Lemma

We assume given $\mathcal{S}=(S, \prec, \asymp)$, where \prec and \asymp are set relations on the set S.
Definition: 15.5.2 Call a subset α of S an adequate set (for \mathcal{S}) if

$$
\mathrm{A} 1: b, c \in \alpha \Rightarrow b \asymp c
$$

$\mathrm{A} 2: a \in \alpha \Rightarrow(\exists b \in \alpha)(b \prec a)$.
It is strongly adequate (for \mathcal{S}) if also

$$
\text { A3: } b \prec a \Rightarrow(\exists c \in \alpha)(b \asymp c \Rightarrow c=a) .
$$

Note the following observation.
Proposition: 15.5.3 If α satisfies $A 3$ and β is adequate then

$$
\alpha \subseteq \beta \Rightarrow \beta \subseteq \alpha
$$

Proof: Assume that $\alpha \subseteq \beta$ and $a \in \beta$. Then, by $A 2$ for β,

$$
b \prec a \text { for some } b \in \beta \text {. }
$$

By $A 3$ for α,

$$
b \asymp c \Rightarrow c=a \text { for some } c \in \alpha .
$$

As $\alpha \subseteq \beta, b, c \in \beta$ so that, by $A 1$ for $\beta, b \asymp c$ and hence $c=a$, so that $a \in \alpha$.
An application of this observation is that every strongly adequate set is a maximally adequate set; i.e. it is maximal among the adequate sets.

The Main Lemma: If \prec and \asymp are set relations on a set S then the strongly adequate sets for (S, \prec, \asymp) form a set.
Proof: Let $W=\{(a, b) \in S \times S \mid b \prec a\}$ and let \mathcal{R} be the class of strongly adequate sets for \mathcal{S}. For $\alpha \in \mathcal{R}$ let

$$
R_{\alpha}=\{((a, b), c) \in W \times S \mid c \in \alpha \&(b \asymp c \Rightarrow c=a)\} .
$$

Then, by $A 3, R_{\alpha} \in \operatorname{mv}\left(S^{W}\right)$. For $R \in \mathbf{m v}\left(S^{W}\right)$ let

$$
\alpha_{R}=\{c \in S \mid(\exists w \in W)(w, c) \in R\} .
$$

Lemma: 15.5.4 Let $\alpha \in \mathcal{R}, R \in \operatorname{mv}\left(S^{W}\right)$ and $R \subseteq R_{\alpha}$. Then $\alpha_{R}=\alpha$.
Proof: To show that $\alpha_{R} \subseteq \alpha$ let $a \in \alpha_{R}$. Then $(w, a) \in R$ for some $w \in W$ so that $(w, a) \in R_{\alpha}$, as $R \subseteq R_{\alpha}$. It follows that $a \in \alpha$.
To show that $\alpha \subseteq \alpha_{R}$ let $a \in \alpha$. Then, by $A 2$, there is $b \in \alpha$ such that $b \prec a$. As $(a, b) \in W$ and $R \in \operatorname{mv}\left(S^{W}\right)$ there is c such that $((a, b), c)$ is in R and so in R_{α}, so that $c \in \alpha$ and

$$
b \asymp c \Rightarrow c=a .
$$

As $b, c \in \alpha$, by $A 1, b \asymp c$ and so $c=a$ so that $((a, b), a) \in R$ and hence $a \in \alpha_{R}$.

Now let $\mathcal{D}=\left\{R \in \operatorname{mv}\left(S^{W}\right) \mid \alpha_{R} \in \mathcal{R}\right\}$. Then \mathcal{D} is a predicative class and trivially $R \in \mathcal{D} \Rightarrow \alpha_{R} \in \mathcal{R}$. By Lemma 15.5.4 $\alpha \in \mathcal{R} \Rightarrow R_{\alpha} \in \mathcal{D}$. So, by Lemma 15.5.1 and Lemma 15.5.4 again we get that \mathcal{R} is set.

The application to locally compact regular formal topologies

Definition: 15.5.5 A formal topology (S, \triangleleft, Pos) with Pos consists of a formal topology (S, \triangleleft) with a subset Pos such that whenever $a \triangleleft U$, (i) if $a \in$ Pos the U^{+} is inhabited and (ii) $a \triangleleft U^{+}$, where $U^{+}=U \cap$ Pos.

We use the following definitions of the notions of a locally compact formal topology and of a P-regular formal topology.

Definition: 15.5.6 A formal topology (S, \triangleleft) is locally compact if there is a function $i: S \rightarrow \operatorname{Pow}(S)$ such that for all $a \in S a \triangleleft i(a)$ and if $a \triangleleft U$ then for any $b \in i(a)$ there is a finite subset V of U such that $b \triangleleft V$.

Definition: 15.5.7 The formal topology (S, \triangleleft) is P-regular if $a \triangleleft w c_{P}(a)$ where $w c_{P}: S \rightarrow \operatorname{Pow}(S)$ is defined as follows. For $a \in S$ let

$$
w c_{P}(a)=\left\{b \in S \mid(\forall d \in S)\left(d \triangleleft\{a\} \cup b_{P}^{*}\right)\right\} .
$$

Here $b_{P}^{*}=\{c \in S \mid(\forall x \in P) \neg(x \triangleleft b, c)\}$.
Definition: 15.5.8 A formal topology (S, \triangleleft) without Pos is regular if it is P regular where $P=\{a \in S \mid \neg(a \triangleleft \emptyset)\}$. A formal topology $(S, \triangleleft$, Pos) with Pos is regular if it is Pos-regular.

Definition: 15.5.9 A subset α of a formal topology (S, \triangleleft, Pos) with Pos is regular if

1. $\exists a(a \in \alpha)$,
2. $(a \in \alpha \& b \in \alpha \rightarrow(\exists c \in \alpha)(c \triangleleft a, b)$,
3. $a \triangleleft b \& a \in \alpha \Rightarrow b \in \alpha$,
4. $\alpha \subseteq P o s$,
5. $a \in \alpha \rightarrow(\exists b \in \alpha)\left(b \in w c_{P o s}(a)\right)$,
and is maximal regular if also
6. $b \in w c_{P o s}(a) \rightarrow(\exists c \in \alpha)\left(c \in\{a\} \cup b_{P o s}^{*}\right)$.

The above definitions may be found in the preprint: The Points of (Locally) Compact Regular Formal Topologies by Giovanni Curi.

Theorem: 15.5.10 The maximal continuous subsets of a locally compact regular formal topology form a set.

Proof: We assume given a locally compact regular topology $(S, \triangleleft$, Pos $)$. Let

$$
\begin{aligned}
a \prec b & \Leftrightarrow a \in i(b), \\
b \asymp c & \Leftrightarrow \quad(\exists a \in \operatorname{Pos})(a \triangleleft b, c) .
\end{aligned}
$$

Then the maximal continuous subsets of S are easily seen to form a predicative subclass of the set of strongly adequate subsets of S so that they form a set by Restricted Separation.
Recall the definition of the notion of a formal point of a formal topology (S, \triangleleft).
Definition: 15.5.11 A set $\alpha \subseteq S$ is a formal point of the formal topology (S, \triangleleft) if

FP1: $\exists a(a \in \alpha)$,
FP2: $\quad(\forall a, b \in \alpha)(\exists c \in \alpha)(c \triangleleft a, b)$,
FP3: $\quad(\forall a \in \alpha)(\forall U \in \operatorname{Pow}(S))(a \triangleleft U \Rightarrow(\exists b \in \alpha)(b \in U))$.
Curi has characterized the formal points of any locally compact regular formal topology as the maximal continuous subsets and his proof of this fact seems to hold in CZF so that maximal continuous subsets can be replaced by formal points in the Theorem.

More Results

Let (S, \triangleleft) be a formal topology (without Pos) and let P be a subset of S. We call a point of (S, \triangleleft) that is a subset of P a P-point. So if $(S, \triangleleft, P o s)$ is a formal topology (with Pos) then a point of $(S, \triangleleft, P o s)$ is a Pos-point.

Theorem: 15.5.12 If (S, \triangleleft) is a P-regular formal topology, where P is a subset of S, then the P-points of (S, \triangleleft) form a subclass of a set.

Proof: Let (S, \triangleleft) be a P-regular formal topology, where P is a subset of S. Define

$$
\begin{array}{ll}
a \prec b & \Leftrightarrow a \in w c_{P}(B), \\
b \asymp c & \Leftrightarrow(\exists a \in P)(a \triangleleft b, c)
\end{array}
$$

Note that $b_{P}^{*}=\{c \in S \mid b \nsucc c\}$. By the Main Lemma it is enough to prove the following result.

Lemma: 15.5.13 If α is a P-point of (S, \triangleleft) then α is strongly adequate for (S, \prec, \asymp).

Proof: Let α be a P-point of (S, \triangleleft). We must show that $A 1, A 2, A 3$ hold.

A1 Let $b, c \in \alpha$. Then, by $F P 2$, there is $a \in \alpha$ such that $a \triangleleft b, c$. As α is a P-point $a \in P$. Thus $b \asymp c$.

A2 Let $a \in \alpha$. As $a \triangleleft w c_{P}(a)$ we may apply $F P 3$ to get that $b \in \alpha$ for some $b \in w c_{P}(a)$; i.e.

$$
(\exists b \in \alpha)(b \prec a) .
$$

A3 Let $b \prec a$; i.e. $b \in w c_{P}(a)$, so that for all $d \in S$

$$
d \triangleleft\{a\} \cup b_{P}^{*} .
$$

By FP1 we can choose $d \in \alpha$ so that, by FP3,

$$
(\exists c \in \alpha)\left(c \in b_{P}^{*} \vee c=a\right)
$$

It follows that, because $b \asymp c \Rightarrow c \notin b_{P}^{*}$,

$$
(\exists c \in \alpha)((b \asymp c) \Rightarrow(c=a)) .
$$

Set-presentable formal topologies

Recall the following definition.
Definition: 15.5.14 A formal topology (S, \triangleleft) is set-presentable if there is a function
$C: S \rightarrow \operatorname{Pow}(S)$ such that for all $a \in S$ and all $U \in \operatorname{Pow}(S)$

$$
a \triangleleft U \Leftrightarrow(\exists V \in C(a))[V \subseteq U] .
$$

The function C is called a set-presentation of the formal topology.
Theorem: 15.5.15 The points of a set-presentable formal topology (S, \triangleleft) form a predicative class.

Proof: Definition 15.5 .11 would show that the class of formal points is predicative except for the quantifier $(\forall U \in \operatorname{Pow}(S))$ in $F P 3$ which is not a restricted quantifier. But given a set-presentation C we can replace this quantifier in $F P 3$ by ($\forall U \in C(a)$) and the resulting condition would be equivalent to $F P 3$ and using this we can show that the class of formal points is predicative.

Corollary: 15.5.16 The P-points of a set-presentable P-regular formal topology form a set.

Theorem: 15.5.17 Every locally compact formal topology is set-presentable.
Proof: Let (S, \triangleleft) be a locally compact formal topology via $i: S \rightarrow \operatorname{Pow}(S)$. So for all $a \in S$ we have $a \triangleleft i(a)$ and if $a \triangleleft U$ then

$$
(\forall b \in i(a))(\exists V \in \mathcal{F})[V \subseteq U \& b \triangleleft V],
$$

where \mathcal{F} is the set of finite subsets of S. By Subset Collection there is a set G of subsets of \mathcal{F} such that for all $a \in S$ and all $U \in \operatorname{Pow}(S)$, if $a \triangleleft U$ then, for some $F \in G$,

$$
\begin{array}{ll}
\text { (i) } & (\forall b \in i(a))(\exists V \in F)[V \subseteq U \& b \triangleleft V] \\
\text { (ii) } & (\forall V \in F)(\exists b \in i(a))[V \subseteq U \& b \triangleleft V]
\end{array}
$$

So, given $a \triangleleft U$ let $F \in G$ such that (i) and (ii) and let $Z=\cup F . Z \subseteq U$ and also $a \triangleleft Z$, as $(\forall b \in i(a)(b \triangleleft Z)$ and $a \triangleleft i(a)$. For $a \in S$ let

$$
C(a)=\{\cup F \mid F \in G \& a \triangleleft \cup F\} .
$$

Then C gives a set-presentation of the formal topology.

Concrete Spaces

Definition: 15.5.18 A concrete space (X, S) consists of a set X of points and a set S of subsets of X that form a base for a topology; i.e. $X=\cup S$ and, for all $b, c \in S$ and all $x \in b \cap c$ there is $a \in S$ such that $x \in a$ and $a \subseteq b \cap c$.

Note that a set Y of points of a concrete space is open if every element of Y is an element a subset of Y that is in S, or equivalently if $Y=\cup U$ for some subset U of S.

Theorem: 15.5.19 Let (X, S) be a concrete space, let Pos be the set of inhabited sets in S and for $a \in S$ and $U \in \operatorname{Pow}(S)$ let

$$
a \triangleleft U \Leftrightarrow a \subseteq \cup U .
$$

Then $(S, \triangleleft, P o s)$ is a set-presentable formal topology. Moreover, for every point $x \in X$ of the concrete space the set $\alpha_{x}=\{a \in S \mid x \in a\}$ is a formal point of the formal topology.

Proof: To show that ($S, \triangleleft, p o s$) is a formal topology is routine. We obtain a set presentation using Subset Collection to first obtain a set G of subsets of S such that whenever $a \in S$ and $R \in \operatorname{mv}\left(S^{a}\right)$ then there is $Z \in G$ such that $R \in \operatorname{mv}\left(Z^{a}\right)$ and $\breve{R} \in \operatorname{mv}\left(a^{Z}\right)$, where $\breve{R}=\{(b, x) \mid(x, b) \in R\}$.

For $a \in S$ let $C(a)=\{\cup Z \mid Z \in G \& a \subseteq \cup Z\}$. Trivially $V \in C(a) \Rightarrow a \triangleleft V$. Now let $a \triangleleft U$. Then $R \in \operatorname{mv}\left(S^{a}\right)$, where $R=\{(x, b) \mid x \in b \& b \in U\}$. It follows that there is $Z \in G$ such that $R \in \operatorname{mv}\left(Z^{a}\right)$ and $R \in \mathbf{m v}\left(a^{Z}\right)$. So if $V=\cup Z$ then $Z \in C(a)$ and $Z \subseteq U$. Thus $a \triangleleft U \Rightarrow(\exists Z \in C(a))(Z \subseteq U)$ and we have shown that C is a set-presentation of the formal topology.

When the formal points of a formal space $(S, \triangleleft, \operatorname{Pos})$ form a set $\operatorname{Pt}(S)$ then we obtain a concrete space $(\operatorname{Pt}(S), \bar{S})$, where, if $Z_{a}=\{\alpha \in \operatorname{Pt}(S) \mid a \in \alpha\}$, $\bar{S}=\left\{Z_{a} \mid a \in S\right\}$.

Chapter 16

Russian Constructivism

We give a brief review of Russian constructivism which is intended to serve the purpose of enhancing our account of Brouwerian intuitionism by contrast. The concept of algorithm or recursive function is fundamental to the Russian schools of Markov and Shanin. Contrary to Brouwer, this school takes the viewpoint that mathematical objects must be concrete, or at least have a constructive description, as a word in an alphabet, or equivalently, as an integer, for only on such objects do recursive functions operate. Furthermore, Markov adopts what he calls Church's thesis, CT, which asserts that whenever we see a quantifier combination $\forall n \in \mathbb{N} \exists m \in \mathbb{N} A(n, m)$, we can find a recursive function f which produces m from n, i.e. $\forall n \in \mathbb{N} A(n, f(n))$. On the other hand, as far as pure logic is concerned he augments Brouwer's intuitionistic logic by what is known as Markov's principle, MP, which may be expressed as

$$
\forall n \in \mathbb{N}[A(n) \vee \neg A(n)] \wedge \neg \forall n \in \mathbb{N} \neg A(n) \rightarrow \exists n \in \mathbb{N} A(n)
$$

with A containing natural number parameters only. The rationale for accepting MP may be phrased as follows. Suppose A is a predicate of natural numbers which can be decided for each number; and we also know by indirect arguments that there should be an n such that $A(n)$. Then a computer with unbounded memory could be programmed to search through \mathbb{N} for a number n such that $A(n)$ and we should be convinced that it will eventually find one. As an example for an application of MP to the reals one obtains $\forall x \in \mathbb{R}(\neg x \leq 0 \rightarrow x>0)$.

In the next section we shall recall that Church's thesis is incompatible with Brouwer's principles CC and FT.

CT is also incompatible with the axiom of choice $\mathbf{A C}_{1,0}$ to be defined in Definition 17.0.24(2).

Lemma: 16.0.20 $\mathbf{A C}_{1,0}$ refutes $\mathbf{C T}$.
Proof: See [89] or [10], Theorem 19.1.
One of the pathologies of CT is that it refutes the Uniform Continuity Principle (see Definition 17.2.8).

Theorem: 16.0.21 CT implies that there exists a continuous function $f:[0,1] \rightarrow$ \mathbb{R} which is unbounded and hence not uniformly continuous.

Proof: [90], 6.4.4.
However, in Russian constructivism one can also prove that all functions from \mathbb{R} to \mathbb{R} are continuous. This requires a slight strengthening of CT.

Definition: 16.0.22 Extended Church's Thesis, ECT, asserts that

$$
\forall n \in \mathbb{N}[\psi(n) \rightarrow \exists m \in \mathbb{N} \varphi(n, m)] \quad \text { implies }
$$

$\exists e \in \mathbb{N} \forall n \in \mathbb{N}[\psi(n) \rightarrow \exists m, p \in \mathbb{N}[T(e, n, p) \wedge U(p, m) \wedge \varphi(n, m)]]$
whenever $\psi(n)$ is an almost negative arithmetic formula and $\varphi(u, v)$ is any formula. A formula θ of the language of $\mathbf{C Z F}$ with quantifiers ranging over \mathbb{N} is said to be almost negative arithmetic if \vee does not appear in it and instances of $\exists m \in \mathbb{N}$ appear only as prefixed to primitive recursive subformulae of θ.

Note that ECT implies CT, taking $\psi(n)$ to be $n=n$.
Theorem: 16.0.23 Under the assumptions ECT and MP, all functions f : $\mathbb{R} \rightarrow \mathbb{R}$ are continuous.

Proof: [90], 6.4.12.

Chapter 17

Brouwer's World

This section expounds on principles specific to Brouwer's intuitionism and describes their mathematical consequences.

Intuitionistic mathematics diverges from other types of constructive mathematics in its interpretation of the term 'sequence'. This led to the following principle of continuous choice, abbreviated CC, which we divide into a continuity part and a choice part:

Definition: 17.0.24 CC is the conjunction of (1) and (2):

1. Any function from $\mathbb{N}^{\mathbb{N}}$ to \mathbb{N} is continuous.
2. If $P \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}$, and for each $\alpha \in \mathbb{N}^{\mathbb{N}}$ there exists $n \in \mathbb{N}$ such that $(\alpha, n) \in P$, then there is a function $f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}$ such that $(\alpha, f(\alpha)) \in P$ for all $\alpha \in \mathbb{N}^{\mathbb{N}}$.

The first part of $\mathbf{C C}$ will also be denoted by $\operatorname{Cont}\left(\mathbb{N}^{\mathbb{N}}, \mathbb{N}\right)$. The second part of $\mathbf{C C}$ is often denoted by $\mathbf{A C}_{1,0}$.

The justification for CC springs from Brouwer's ideas about choice sequences. Let $P \subseteq \mathbb{N}^{\mathbb{N}} \times \mathbb{N}$, and suppose that for each $\alpha \in \mathbb{N}^{\mathbb{N}}$ there exists $n \in \mathbb{N}$ such that $(\alpha, n) \in P$. According to Brouwer, the construction of an element of $\mathbb{N}^{\mathbb{N}}$ is forever incomplete. A generic sequence α is purely extensional, in the sense that at any given moment we can know nothing about α other than a finite number of its terms. It follows that for a given sequence α, our procedure for finding an $n \in \mathbb{N}$ such that $(\alpha, n) \in P$ must be able to calculate n from some finite initial sequence $\bar{\alpha}(m) .{ }^{1}$ If β is another such sequence, and $\bar{\alpha}(m)=\bar{\beta}(m)$, then our procedure must return the same n for β as it does for α. So this procedure defines a continuous function $f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}$ such that $(\alpha, f(\alpha)) \in P$ for all $\alpha \in \mathbb{N}^{\mathbb{N}}$.

It is plain that $\operatorname{Cont}\left(\mathbb{N}^{\mathbb{N}}, \mathbb{N}\right)$ is incompatible with classical logic.
The other principle central to Brouwerian mathematics is the so-called Fan Theorem which is also classically valid and equivalent to König's lemma, KL.

[^4]Definition: 17.0.25 Let $2^{\mathbb{N}}$ be the set of all binary sequences $\alpha: \mathbb{N} \rightarrow\{0,1\}$ and let 2^{*} be the set of finite sequences of 0 s and 1 s . For $s, t \in 2^{*}$ we write $s \subseteq t$ to mean that s is an initial segment of t. A bar of 2^{*} is subset R of 2^{*} such that the following property holds:

$$
\forall \alpha \in 2^{\mathbb{N}} \exists n \bar{\alpha}(n) \in R .
$$

The bar R is decidable if it also satisfies

$$
\forall s \in 2^{*}(s \in R \vee s \notin R) .
$$

FT is the statement that every decidable bar R of 2* is uniform, i.e., there exists a natural number m such that

$$
\forall \alpha \in 2^{\mathbb{N}} \exists k \leq m \bar{\alpha}(k) \in R .
$$

The Fan Theorem or General Fan Theorem, FT, is the statement that every bar R of 2^{*} is uniform.

Lemma: 17.0.26 FT refutes CT.
Proof: Apply FT to Kleene's singular tree. For details see [90] 4.7.6.

17.1 Decidable Bar induction

Brouwer justified FT by appealing to a principle known as decidable Bar Induction, BI_{D}.

Definition: 17.1.1 Let \mathbb{N}^{*} be the set of all finite sequences of natural numbers. If $s \in \mathbb{N}^{*}, m \in \mathbb{N}$ and $s=\left\langle s_{0}, \ldots s_{k}\right\rangle$ then $s *\langle m\rangle$ denotes the sequence $\left\langle s_{0}, \ldots, s_{k}, m\right\rangle$. A bar of \mathbb{N}^{*} is defined in the same vein as a bar of 2^{*}.
$\mathbf{B I}_{\mathbf{D}}$ is asserts that for every decidable bar R of \mathbb{N}^{*} and arbitrary class Q,

$$
\begin{aligned}
& \forall s \in \mathbb{N}^{*}(s \in R \rightarrow s \in Q) \wedge \\
& \forall s \in \mathbb{N}^{*}[(\forall k \in \mathbb{N} s *\langle k\rangle \in Q) \rightarrow s \in Q] \rightarrow \\
& \rangle \in Q .
\end{aligned}
$$

Monotone Bar Induction, $\mathbf{B I}_{\mathbf{M}}$, asserts that for every bar R of \mathbb{N}^{*} and arbitrary class Q,

$$
\begin{aligned}
& \forall s, t \in \mathbb{N}^{*}(s \in R \rightarrow s * t \in R) \wedge \\
& \forall s \in \mathbb{N}^{*}(s \in R \rightarrow s \in Q) \wedge \\
& \forall s \in \mathbb{N}^{*}[(\forall k \in \mathbb{N} s *\langle k\rangle \in Q) \rightarrow s \in Q) \rightarrow \\
& \rangle \in Q
\end{aligned}
$$

It is easy to see that $\mathbf{B I}_{\mathbf{M}}$ entails $\mathbf{B I}_{\mathbf{D}}$ (cf. [23], Theorem 3.7).

Corollary: 17.1.2 $\mathbf{B I}_{\mathbf{D}}$ implies $\mathbf{F T}$ and $\mathbf{B I}_{\mathbf{M}}$ implies $\mathbf{F T}$.
Proof: See [47], Ch.I, $\S 6.10$ (or exercise).

17.2 Local continuity

In connection with Brouwer's intuitionism, one often works with the local continuity, LCP, rather than CC. LCP entails $\operatorname{Cont}\left(\mathbb{N}^{\mathbb{N}}, \mathbb{N}\right)$ but not $\mathbf{A C}_{1,0}$.

Definition: 17.2.1 For $\alpha, \beta \in \mathbb{N}^{\mathbb{N}}$ we write $\beta \in \bar{\alpha}(n)$ to mean $\bar{\beta}(n)=\bar{\alpha}(n)$.
The Local Continuity Principle, LCP, states that

$$
\begin{aligned}
& \forall \alpha \in \mathbb{N}^{\mathbb{N}} \exists n \in \mathbb{N} A(\alpha, n) \rightarrow \\
& \quad \forall \alpha \in \mathbb{N}^{\mathbb{N}} \exists n, m \in \mathbb{N} \forall \beta \in \mathbb{N}^{\mathbb{N}}[\beta \in \bar{\alpha}(m) \rightarrow A(\beta, n)]
\end{aligned}
$$

LCP is also known as the Weak Continuity Principle (WC-N) (see [90], p. 371) or Brouwer's Principle for Numbers ($\mathbf{B P}_{0}$).

Some obvious deductive relationships between some of the principles are recorded in the next lemma.

Lemma: 17.2.2 (i) LCP $\Rightarrow \operatorname{Cont}\left(\mathbb{N}^{\mathbb{N}}, \mathbb{N}\right)$.
(ii) $\mathbf{C C} \Leftrightarrow \mathbf{L C P} \wedge \mathbf{A C}_{1,0}$

Proof: Obvious.
While $\mathbf{C C}$ entails the choice principle $\mathbf{A C}_{1,0}$, it is not compatible with choice for higher type objects. In point of fact, the incompatibility already occurs in connection with a consequence of CC.

Lemma: 17.2.3 Let $\mathbf{A C}_{2,0}$ be the following principle:
If P is a subset of $\left(\mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}\right) \times \mathbb{N}$ such that for every $f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}$ there exists $n \in \mathbb{N}$ such that $(f, n) \in P$, then there exists a function $F:\left(\mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N}\right) \rightarrow \mathbb{N}$ such that for all $f: \mathbb{N}^{\mathbb{N}} \rightarrow \mathbb{N},(f, F(f)) \in P$.
$\mathbf{A C}_{2,0}$ refutes $\operatorname{Cont}\left(\mathbb{N}^{\mathbb{N}}, \mathbb{N}\right)$.
Proof: See [89] or [10], Theorem 19.1.
LCP and a fortiori CC refute principles of omniscience. For $\alpha \in 2^{\mathbb{N}}$ let $\alpha_{n}:=\alpha(n)$.

Definition: 17.2.4 Limited Principle of Omniscience (LPO):

$$
\forall \alpha \in 2^{\mathbb{N}}\left[\exists n \alpha_{n}=1 \quad \vee \quad \forall n \alpha_{n}=0\right] .
$$

Lesser Limited Principle of Omniscience (LLPO):
$\forall \alpha \in 2^{\mathbb{N}}\left(\forall n, m\left[\alpha_{n}=\alpha_{m}=1 \rightarrow n=m\right] \rightarrow\left[\forall n \alpha_{2 n}=0 \quad \vee \quad \forall n \alpha_{2 n+1}=0\right]\right)$.
Lemma: 17.2.5 (i) $\mathrm{LCP} \Rightarrow \neg \mathrm{LPO}$.
(ii) $\mathrm{CC} \Rightarrow \neg \mathrm{LLPO}$.

Proof: (i) follows from [90] 4.6.4. (ii) is proved in [14], 5.2.1.

LCP is also incompatible with Church's thesis.
Lemma: 17.2.6 LCP implies \neg CT.
Proof: [90], 4.6.7. Apply LCP to CT.

With the help of LCP one deduces Brouwer's famous theorem.
Theorem: 17.2.7 If LCP holds, then every map $f: \mathbb{R} \rightarrow \mathbb{R}$ is pointwise continuous.

Proof: [90] Theorem 6.3.4.

Definition: 17.2.8 Brouwer needed the fan theorem to derive the classically valid Uniform Continuity Principle:

UC Every pointwise continuous function from $2^{\mathbb{N}}$ to \mathbb{N} is uniformly continuous.

Lemma: 17.2.9 FT implies UC.
Proof: [90] Theorem 6.3.6.
Under LCP we can drop the condition of continuity.
Corollary: 17.2.10 If LCP and FT hold, then every $f:[a, b] \rightarrow \mathbb{R}$ is uniformly continuous and has a supremum.

Proof: [90] Theorem 6.3.8.

Theorem: 17.2.11 Under the hypothesis CC, the statements UC and FT are equivalent.

Proof: See [14] Theorem 5.3.2 and Corollary 5.3.4.

Corollary: 17.2.12 If CC and FT hold, then every mapping of a nonvoid compact metric space into a metric space is uniformly continuous.

Proof: [14], Theorem 5.3.6.

17.3 More Continuity Principle

Another continuity principle one finds in the literature is Strong Continuity for Numbers:

C-N $\left.\quad \forall \alpha \in \mathbb{N}^{\mathbb{N}} \exists n \in \mathbb{N} A(\alpha, n) \rightarrow \exists \gamma \in \mathbf{K}^{*} \forall \alpha \in \mathbb{N}^{\mathbb{N}} A(\alpha, \gamma(\alpha) \not)^{\gamma} 17.1\right)$
where \mathbf{K}^{*} is the class of neighbourhood functions, i.e. $\gamma \in \mathbf{K}^{*}$ iff $\gamma: \mathbb{N}^{*} \rightarrow \mathbb{N}$, $\gamma(\rangle)=0$, and

$$
\forall s, t \in \mathbb{N}^{*}[\gamma(s) \neq 0 \rightarrow \gamma(s)=\gamma(s * t)] \wedge \forall \alpha \in \mathbb{N}^{\mathbb{N}} \exists n \in \mathbb{N} \gamma(\bar{\alpha}(n)) \neq 0
$$

and

$$
\gamma(\alpha)=n \text { iff } \exists m \in \mathbb{N}[\gamma(\bar{\alpha}(m))=n+1] .
$$

Dummett in [23], p. 60 refers to $\mathbf{C - N}$ as 'the Continuity Principle' and assigns it the acronym $\mathrm{CP}_{\exists n}$.

In point of fact, $\mathbf{C - N}$ is just a different rendering of $\mathbf{C C}$.
A yet stronger continuity principle is functional continuous choice $\mathbf{F - C C}$ or CONT_{1} (cf. [90],7.6.15) (also denoted by C-C in [90],7.6.15 and by $\mathrm{CP}_{\exists \beta}$ in [23], p. 60):

$$
\text { F-CC } \quad \forall \alpha \in \mathbb{N}^{\mathbb{N}} \exists \beta \in \mathbb{N}^{\mathbb{N}} A(\alpha, \beta) \rightarrow \exists \gamma \in \mathbf{K}^{*} \forall \alpha \in \mathbb{N}^{\mathbb{N}} A(\alpha, \gamma \mid \alpha) .
$$

F-CC is not considered to be part of Brouwer's realm as it is actually inconsistent with some of Brouwer's later, though controversial, proposals about the "creative subject" (see [23] 6.3).

In point of fact, $\mathbf{F}-\mathbf{C C}$ is equivalent to the schema

$$
\text { F-CC } \quad \forall \alpha \in \mathbb{N}^{\mathbb{N}} \exists \beta \in \mathbb{N}^{\mathbb{N}} A(\alpha, \beta) \rightarrow \exists \gamma \in \mathbb{N}^{\mathbb{N}} \forall \alpha \in \mathbb{N}^{\mathbb{N}} A(\alpha, \gamma \mid \alpha) .
$$

Lemma: 17.3.1 (i) $\mathbf{C - N} \Leftrightarrow \mathbf{C C}$.
(ii) F-CC implies CC.

Proof: For (i) see [14], p. 119. (ii) is to be found in [90], 7.6.15.

In the presence of $\mathbf{C C}$, one can actually dispense with the decidability of the bar in $\mathbf{F T}$ and $\mathbf{B I}_{\mathbf{D}}$.

Lemma: 17.3.2 Assuming CC, FT implies $\mathbf{F T}$ and $\mathbf{B I}_{\mathbf{D}}$ implies $\mathbf{B I}_{\mathbf{M}}$.
Proof: This follows from $\mathbf{C - N} \Leftrightarrow \mathbf{C C}$ by [23], Theorem 3.8 and the proof of the general fan theorem of [23], page 64.

Chapter 18

Large sets in constructive set theory

Large cardinals play a central role in modern set theory. This section deals with large cardinal properties in the context of intuitionistic set theories. Since in intuitionistic set theory \in is not a linear ordering on ordinals the notion of a cardinal does not play a central role. Consequently, one talks about "large set properties" instead of "large cardinal properties". When stating these properties one has to proceed rather carefully. Classical equivalences of cardinal notion might no longer prevail in the intuitionistic setting, and one therefore wants to choose a rendering which intuitionistically retains the most strength. On the other hand certain notions have to be avoided so as not to imply excluded third. To give an example, cardinal notions like measurability, supercompactness and hugeness have to be expressed in terms of elementary embeddings rather than ultrafilters.

We shall, however, not concern ourselves with very large cardinals here and rather restrict attention to the very first notions of largeness introduced by Hausdorff and Mahlo, that is, inaccessible and Mahlo sets and the pertaining hierarchies of inaccessible and Mahlo sets.

18.1 Inaccessibility

The background theory for most of this section will be $\mathbf{C Z F}^{-}$, i.e., CZF without Set Induction.

Definition: 18.1.1 If A is a transitive set and ϕ is a formula with parameters in A we denote by ϕ^{A} the formula which arises from ϕ by replacing all unbounded quantifiers $\forall u$ and $\exists v$ in ϕ by $\forall u \in A$ and $\exists v \in A$, respectively.

We can view any transitive set A as a structure equipped with the binary relation $\in_{A}=\{\langle x, y\rangle \mid x \in y \in A\}$. A set-theoretic sentence whose parameters lie in A, then has a canonical interpretation in $\left(A, \in_{A}\right)$ by interpreting \in as ϵ_{A},
and $\left(A, \in_{A}\right) \models \phi$ is logically equivalent to ϕ^{A}. We shall usually write $A \models \phi$ in place of ϕ^{A}.

Definition: 18.1.2 A set I is said to be inaccessible if I is a regular set such that the following are satisfied:

1. $\omega \in I$,
2. $\forall a \in I \bigcup a \in I$,
3. $\forall a \in I[a$ inhabited $\rightarrow \bigcap a \in I]$,
4. $\forall A, B \in I \exists C \in I \quad I \models$ " C is full in $\mathbf{m v}\left({ }^{A} B\right)$ ".

We will write inacc (I) to convey that I is an inaccessible set.
Let INACC be the principle

$$
\forall x \exists I[x \in I \wedge \operatorname{inacc}(I)] .
$$

At first blush, the preceding definition of 'inaccessibility' may seem arbitrary. It will, however, soon become clear that it captures the essence of the traditional definition.

Lemma: 18.1.3 (ECST) Every inaccessible set is a model of Δ_{0} Separation.
Proof: Let I be inaccessible. First we verify that I is a model of the theory $\mathbf{E C S T}_{0}$ of Definition 9.5.1. Clearly I is a model of Extensionality. I is a model of Replacement since I is regular and I is a model of the Union Axiom since I is closed under Union. By Lemma 11.1.5, I is a model of Pairing. I is also a model of the Emptyset Axiom as $0 \in I$ on account of $\omega \in I$ and I being transitive.

As a result of $I \models \mathbf{E C S T}_{0}$, 18.1.2 (3) and Theorem 9.5.6 we have that I is model of Binary Intersection Axiom. Thus by Corollary 9.5.7, I is a model of Δ_{0} Separation.

Corollary: 18.1.4 (ECST) Every inaccessible set is a model of ECST.
Proof: Let I be regular. By the previous Lemma and its proof, I is a model of ECST. Definition 18.1.2 (1) implies that I is a model of the Strong Infinity Axiom while 18.1.2 (4) guarantees that I is a model of Fullness. One easily verifies that I is also a model of Strong Collection (Exercise). Hence I is a model of CZF ${ }^{-}$.

Corollary: 18.1.5 (CZF) Every inaccessible set is a model of CZF.

Proof: This is obvious as Set Induction implies $I \vDash$ Set Induction for any transitive set I.

Definition 18.1.2 (4) only guarantees that an inaccessible set is a model of Fullness. The next result shows that inaccessible sets satisfy "Fullness" in a much stronger sense.

Lemma: 18.1.6 (ECST) If I is set-inaccessible, then for all $A, B \in I$ there exists $C \in I$ such that C is full in $\mathbf{m v}\left({ }^{A} B\right)$.

Proof: Let I be an inaccessible set. We first show:

$$
\begin{array}{r}
\forall A \in I " I \cap \mathbf{m v}\left({ }^{A} I\right) \text { is full in } \mathbf{m v}\left({ }^{A} I\right) " ; \\
\forall A, B \in I \exists C \in I I=" C \text { is full in } \mathbf{m v}\left({ }^{A} B\right) " . \tag{18.2}
\end{array}
$$

To prove (18.1), let $A \in I$ and $R \in \operatorname{mv}\left({ }^{A} I\right)$. Then R is a subset of $A \times I$ such that for all $x \in A$ there is $y \in I$ such that $x R y$. Let R^{\prime} be the set of all $(x,(x, y))$ such that $x R y$. Then $R^{\prime} \in \operatorname{mv}\left({ }^{A} I\right)$ also, as I is closed under Pairing. Hence, as I is regular, there is $S \in I$ such that $\forall x \in A \exists z \in S x R^{\prime} z \wedge \forall z \in S \exists x \in A x R^{\prime} z$. Hence $S \in\left(I \cap \operatorname{mv}\left({ }^{A} I\right)\right)$ and S is a subset of R. So (18.1) is proved. (18.2) is just stating that $I \models$ "Fullness", which follows from 5.1.2 since I is a model of CZF ${ }^{-}$.

Now let $A, B \in I$ and choose $C \in I$ as in (18.2). It follows that $C \subseteq \mathbf{m v}\left({ }^{A} B\right)$ and:

$$
\forall R^{\prime} \in I\left[R^{\prime} \in \operatorname{mv}\left({ }^{A} B\right) \rightarrow \exists R_{0} \in C\left(R_{0} \subseteq R^{\prime}\right)\right]
$$

We want to show that C is actually full in $\mathbf{m v}\left({ }^{A} B\right)$. For this it suffices, given $R \in \operatorname{mv}\left({ }^{A} B\right)$ to find a subset R^{\prime} of R such that $R^{\prime} \in\left(I \cap \operatorname{mv}\left({ }^{A} B\right)\right)$, as then we can get $R_{0} \in C$, as above, a subset of R^{\prime} and hence of R.

But, as B is a subset of $I, R \in \operatorname{mv}\left({ }^{A} I\right)$ so that, by (18.1), there is a subset R^{\prime} of R such that $R^{\prime} \in\left(I \cap \operatorname{mv}\left({ }^{A} I\right)\right)$. It follows that $R^{\prime} \in\left(I \cap \mathbf{m v}\left({ }^{A} B\right)\right)$ and we are done.

Corollary: 18.1.7 (ECST) If I is an inaccessible set then I is Exp-closed, i.e., whenever $A, B \in I$ then ${ }^{A} B \in I$.

Proof: By Lemma 18.1.6 there exists a set $C \in I$ such that C is full in $\mathbf{m v}\left({ }^{A} B\right)$. Now define $X=\{f \in C \mid f: A \rightarrow B\}$. Then $X={ }^{A} B$ and by Δ_{0} Separation in I we have $X \in I$.

Corollary: 18.1.8 (ECST + REM) If I is an inaccessible set then I is closed under taking powersets, i.e., whenever $A \in I$ then $\mathcal{P}(A) \in I$.

Proof: If $X \in I$, then ${ }^{x} 2 \in I$ by 18.1.7, thus the power set of X is in I, too, as $\{y \mid y \subseteq X\}=\left\{\{v \in X \mid f(v)=0\}: f \in{ }^{X} 2\right\}$, using classical logic.

As the next result shows, from a classical point of view inaccessible sets are closely related to inaccessible cardinals.

Corollary: 18.1.9 (i) (ZF) If I is set-inaccessible, then there exists a weakly inaccessible cardinal κ such that $I=V_{\kappa}$.
(ii) (ZFC) I is set-inaccessible if and only if there exists a strongly inaccessible cardinal κ such that $I=V_{\kappa}$.

Proof: (i): First note that with the help of classical logic, Replacement implies Full Separation.

Let V_{α} denote the α th level of the von Neumann hierarchy. By Corollary 18.1.8 it holds that for all ordinals $\alpha \in I,\left(V_{\alpha}\right)^{I}=V_{\alpha}$, where $\left(V_{\alpha}\right)^{I}$ stands for the α th level of the von Neumann hierarchy as defined within I. Therefore $I=V_{\kappa}$, where κ is the least ordinal not in I (another use of classical logic). It is readily shown that κ is weakly inaccessible.
(ii): It remains to show that κ is a strong limit. Let $\rho<\kappa$. Using AC one finds an ordinal λ together with a bijection $G:{ }^{\rho} 2 \rightarrow \lambda$. Set $D:=\left\{f \in^{\rho} 2 \mid G(f)<\kappa\right\}$. As $D \subseteq{ }^{\rho} 2$ and I is closed under taking power sets, it follows $D \in I$. If $\kappa \leq \lambda$, then $F:=G \upharpoonright D$ would provide a counterexample to the regularity of Z. Thus $\lambda<\kappa$.

Corollary: 18.1.10 The following theories prove the same formulae:
(i) $\mathbf{C Z F}+\exists I \operatorname{inacc}(I)+\mathbf{E M}$
(ii) $\mathbf{Z F}+\exists I$ inacc (I)

They are equiconsistent with $\mathbf{Z F C}+\exists \kappa$ " κ inaccessible cardinal".
Proposition: 18.1.11 The theories $\mathbf{C Z F}^{-}+$INAC $+\mathbf{E M}$ and

$$
\mathbf{Z F C}+\forall \alpha \exists \kappa(\alpha<\kappa \wedge \kappa \text { is a strongly inaccessible cardinal) }
$$

are equiconsistent.

Proof: Exercise.

18.2 Mahloness in constructive set theory

This section introduces the notion of a Mahlo set and explores some of its CZF provable properties.

Recall that in classical set theory a cardinal κ is said to be weakly Mahlo if the set $\{\rho<\kappa: \rho$ is regular $\}$ is stationary in κ. A cardinal μ is strongly Mahlo if the set $\{\rho<\kappa: \rho$ is a strongly inaccessible cardinal $\}$ is stationary in μ.

Definition: 18.2.1 A set M is said to be Mahlo if M is set-inaccessible and for every $R \in \mathbf{m v}\left({ }^{M} M\right)$ there exists a set-inaccessible $I \in M$ such that

$$
\forall x \in I \exists y \in I\langle x, y\rangle \in R .
$$

Proposition: 18.2.2 (ZFC) A set M is Mahlo if and only if $M=V_{\mu}$ for some strongly Mahlo cardinal μ.

Proof: This is an immediate consequence of Corollary 18.1.9.

Lemma: 18.2.3 ($\left.\mathbf{C Z F}^{-}\right)$If M is Mahlo and $R \in \operatorname{mv}\left({ }^{M} M\right)$, then for every $a \in M$ there exists a set-inaccessible $I \in M$ such that $a \in I$ and

$$
\forall x \in I \exists y \in I\langle x, y\rangle \in R .
$$

Proof: Set $S:=\{\langle x,\langle a, y\rangle\rangle:\langle x, y\rangle \in R\}$. Then $S \in \operatorname{mv}\left({ }^{M} M\right)$ too. Hence there exists $I \in M$ such that $\forall x \in I \exists y \in I\langle x, y\rangle \in S$. Now pick $c \in I$. Then $\langle c, d\rangle \in S$ for some $d \in I$. Moreover, $d=\langle a, y\rangle$ for some y. In particular, $a \in I$.

Further, for each $x \in I$ there exists $u \in I$ such that $\langle x, u\rangle \in S$. As a result, $u=\langle a, y\rangle$ and $\langle x, y\rangle \in R$ for some y. Since $u \in I$ implies $y \in I$, the latter shows that $\forall x \in I \exists y \in I\langle x, y\rangle \in R$.

Lemma: 18.2.4 ($\left.\mathbf{C Z F}^{-}\right)$Let M be Mahlo. If $\forall x \in M \exists y \in M \phi(x, y)$, then there exists $S \in \operatorname{mv}\left({ }^{M} M\right)$ such that

$$
\forall x y[\langle x, y\rangle \in S \rightarrow \phi(x, y)] .
$$

Proof: The assumption yields $\forall x \in M \exists z \in M \psi(x, z)$, where

$$
\psi(x, z):=\exists y \in M(z=\langle x, y\rangle \wedge \phi(x, y)) .
$$

By Strong Collection there exists a set S such that $\forall x \in M \exists z \in S \psi(x, z)$ and $\forall z \in S \exists x \in M \psi(x, z)$. As a result, $\forall x \in M \exists y \in M\langle x, y\rangle \in S$, and thus $S \in$ $\boldsymbol{\operatorname { m v }}\left({ }^{M} M\right)$. Moreover, if $\langle x, y\rangle \in S$, then $y \in M$ and $\phi(x, y)$ holds.

Corollary: 18.2.5 ($\left.\mathbf{C Z F}^{-}\right)$Let M be Mahlo. If $\forall x \in M \exists y \in M \phi(x, y)$, then for every $a \in M$ there exists a set-inaccessible $I \in M$ such that $a \in I$ and

$$
\forall x \in I \exists y \in I \phi(x, y) .
$$

Proof: This follows from Lemma 18.2.4 and Lemma 18.2.3.

In a paper from 1911 Mahlo [52] investigated two hierarchies of regular cardinals. In view of its early appearance this work is astounding for its refinement and its audacity in venturing into the higher infinite. Mahlo called the cardinals considered in the first hierarchy π_{α}-numbers. In modern terminology they are spelled out as follows:
κ is 0 -weakly inaccessible iff κ is regular;
κ is $(\alpha+1)$-weakly inaccessible iff κ is a regular limit of α-weakly inaccessibles
κ is λ-weakly inaccessible iff κ is α-weakly inaccessible for every $\alpha<\lambda$
for limit ordinals λ. Mahlo also discerned a second hierarchy which is generated by a principle superior to taking regular fixed-points. Its starting point is the class of ρ_{0}-numbers which later came to be called weakly Mahlo cardinals.

A hierarchy of strongly α-inaccessible cardinals is analogously defined, except that the strongly 0 -inaccessibles are the strongly inaccessible cardinals.

In classical set theory the notion of a strongly Mahlo cardinal is much stronger than that of a strongly inaccessible cardinal. This is e.g. reflected by the fact that for every strongly Mahlo cardinal μ and $\alpha<\mu$ the set of strongly α-inaccessible cardinals below μ is closed and unbounded in μ (cf.[46], Ch.I,Proposition 1.1). In the following we show that similar relations hold true in the context of constructive set theory as well.

Definition: 18.2.6 An ordinal is a transitive set whose elements are transitive too. We use letters $\alpha, \beta, \gamma, \delta$ to range over ordinals.

Let A, B be classes. A is said to be unbounded in B if

$$
\forall x \in B \exists y \in A(x \in y \wedge y \in B)
$$

Let Z be set. Z is said to be α-set-inaccessible if Z is set-inaccessible and there exists a family $\left(X_{\beta}\right)_{\beta \in \alpha}$ of sets such that for all $\beta \in \alpha$ the following hold:

- X_{β} is unbounded in Z.
- X_{β} consists of set-inaccessible sets.
- $\forall y \in X_{\beta} \forall \gamma \in \beta X_{\gamma}$ is unbounded in y.

The function F with domain α satisfying $F(\beta)=X_{\beta}$ will be called a witnessing function for the α-set-inaccessibility of Z.

Corollary: 18.2.7 (CZF) If Z is α-set-inaccessible and $\beta \in \alpha$, then Z is β-setinaccessible.

Lemma: 18.2.8 (CZF) If Z is set-inaccessible, then Z is α-set-inaccessible iff for all $\beta \in \alpha$ the β-set-inaccessibles are unbounded in Z.

Proof: One direction is obvious. So suppose that for all $\beta \in \alpha$ the β-set-inaccessibles are unbounded in Z; thus

$$
\forall \beta \in \alpha \forall x \in Z \exists u \in Z(x \in u \wedge u \text { is } \beta \text {-set-inaccessible). }
$$

Using Strong Collection, there is a set S such that S consists of triples $\langle\beta, u, x\rangle$, where $\beta \in \alpha, x \in u \in Z$ and u is β-set-inaccessible, and for each $\beta \in \alpha$ and $x \in Z$ there is a triple $\langle\beta, u, x\rangle \in S$. Put

$$
S_{\beta}=\{u: \exists x \in Z\langle\beta, u, x\rangle \in S\}
$$

Again by Strong Collection there exists a set \mathcal{F} of functions such that for all $\beta \in \alpha$ and and $u \in S_{\beta}$ there is a function $f \in \mathcal{F}$ witnessing the β-set-inaccessibility of u, and, conversely, any $f \in \mathcal{F}$ is a witnessing function for some $u \in S_{\beta}$ for some $\beta \in \alpha$. Now define a function F with domain α via

$$
F(\beta)=S_{\beta} \cup \bigcup\{f(\beta): f \in \mathcal{F} ; \beta \in \operatorname{dom}(f)\}
$$

As S_{β} is unbounded in Z, so is $F(\beta)$. Let $y \in F(\beta)$ and suppose $\gamma \in \beta$. If $y \in S_{\beta}$, then there is an $f \in \mathcal{F}$ witnessing the β-set-inaccessibility of y, thus $f(\gamma)$ is unbounded in y and a fortiori $F(\gamma)$ is unbounded in y.

Now assume that $y \in f(\beta)$ for some $f \in \mathcal{F}$ with $\beta \in \operatorname{dom}(f)$. As $f \upharpoonright \beta$ witnesses the β-set-inaccessibility of $y, f(\gamma)$ is unbounded in y, thus $F(\gamma)$ is unbounded in y.

The preceding lemma shows that the notion of being α-set-inaccessible is closely related to Mahlo's π_{α}-numbers. To state this precisely, we recall the notion of κ being α-strongly inaccessible (for ordinals α and cardinals κ) which is defined as α-weak inaccessibility except that κ is also required to be a strong limit, i.e. $\forall \rho<\kappa\left(2^{\rho}<\kappa\right)$.

Corollary: 18.2.9 (ZFC) κ is α-strongly inaccessible iff V_{κ} is α-set-inaccessible.

Theorem: 18.2.10 (CZF) Let M be Mahlo. Then for every $\alpha \in M$, the set of α-set-inaccessibles is unbounded in M.

Proof: We will prove this by induction on α. Suppose this is true for all $\beta \in \alpha$. By the regularity of M we get

$$
\begin{equation*}
\forall x \in M \exists y \in M[x \in y \wedge \forall \beta \in \alpha \exists z \in y z \text { is } \beta \text {-set-inaccessible }] \text {. } \tag{18.3}
\end{equation*}
$$

Using Lemma 18.2.4, we conclude that for every $a \in M$ there exists a set-inaccessible $I \in M$ such that $a \in I$ and

$$
\forall x \in I \exists y \in I(x \in y \wedge \forall \beta \in \alpha \exists z \in y z \text { is } \beta \text {-set-inaccessible }) \text {. }
$$

Hence the β-set-inaccessibles are unbounded in I and, by Lemma 18.2.8, I is α-set-inaccessible. As a result, the α-set-inaccessibles are unbounded in M.

Corollary: 18.2.11 (CZF) Let M be Mahlo. If $\alpha \in M$, then M is α-set-inaccessible. Proof: Follows from Theorem 18.2.10 and Lemma 18.2.8.

Chapter 19

Intuitionistic Kripke-Platek Set Theory

One of the fragments of ZF which has been studied intensively is Kripke-Platek set theory, KP. Its standard models are called admissible sets. One of the reasons that this is a truly remarkable theory is that a great deal of set theory requires only the axioms of KP. An even more important reason is that admissible sets have been a major source of interaction between model theory, recursion theory and set theory. KP arises from ZF by completely omitting the Powerset axiom and restricting Separation and Collection to absolute predicates (cf. [7]), i.e. Δ_{0} formulas. These alterations are suggested by the informal notion of 'predicative'. The intuitionistic version of KP, IKP, arises from CZF by omitting Subset Collection and replacing Strong Collection by Δ_{0} Collection, i.e.,

$$
\forall x \in a \exists y \phi(x, y) \rightarrow \exists z \forall x \in a \exists y \in z \phi(x, y)
$$

for all Δ_{0} formulae ϕ.
By IKP ${ }_{0}$ we denote the system IKP bereft of Set Induction.

19.1 Basic principles

The intent of this section is to explore which of the well known provable consequences of KP carry over to IKP.

Proposition: 19.1.1 $\left(\mathbf{I K P}_{0}\right)$ If A, B are sets then so is the class $A \times B$.
Proof: First note that the proof of the uniqueness of ordered pairs in Proposition 4.1.1 is a $\mathbf{I K P}_{0}$ proof. Further, the existence proof of the Cartesian product given in Proposition 4.3.3 requires only Δ_{0} Collection.

Definition: 19.1.2 The collection of Σ formulae is the smallest collection containing the Δ_{0} formulae closed under conjunction, disjunction, bounded quantification and unbounded existential quantification. The collection of Π formulae is the smallest collection containing the Δ_{0} formulae closed under conjunction, disjunction, bounded quantification and unbounded universal quantification.

Given a formula ϕ and a variable w not appearing in ϕ, we write ϕ^{w} for the result of replacing each unbounded quantifier $\exists x$ and $\forall x$ in ϕ by $\exists x \in w$ and $\forall x \in w$, respectively.

Lemma: 19.1.3 For each Σ formula the following are intuitionistically valid:
(i) $\phi^{u} \wedge u \subseteq v \rightarrow \phi^{v}$,
(ii) $\phi^{u} \rightarrow \phi$.

Proof: Both facts are proved by induction following the inductive definition of Σ formula.

Theorem: 19.1.4 (Σ Reflection Principle). For all Σ formulae ϕ we have the following:

$$
\mathbf{I K P}_{0} \vdash \phi \leftrightarrow \exists a \phi^{a} .
$$

(Here a is any set variable not occurring in ϕ; we will not continue to make these annoying conditions on variables explicit.) In particular, every Σ formula is equivalent to a Σ_{1} formula in $\mathbf{I K P}_{0}$.

Proof: We know from the previous lemma that $\exists a \phi^{a} \rightarrow \phi$, so the axioms of $\mathbf{I K P}_{0}$ come in only in showing $\phi \rightarrow \exists a \phi^{a}$. proof is by induction on ϕ, the case for Δ_{0} formulae being trivial. We take the three most interesting cases, leaving the other two to the reader.

Case 0. If ϕ is Δ_{0} then $\phi \leftrightarrow \phi^{a}$ holds for every set a.
Case 1. ϕ is $\psi \wedge \theta$. By induction hypothesis, $\mathbf{I K P}_{0} \vdash \psi \leftrightarrow \exists a \psi^{a}$ and $\mathbf{I K P}_{0} \vdash \theta \leftrightarrow \exists a \theta^{a}$. Let us work in $\mathbf{I K P}_{0}$, assuming $\psi \wedge \theta$. Now there are a_{1}, a_{2} such that $\psi^{a_{1}}, \theta^{a_{2}}$, so let $a=a_{1} \cup a_{2}$. Then ψ^{a} and θ^{a} hold by the previous lemma, and hence ϕ^{a}.

Case 2. ϕ is $\psi \vee \theta$. By induction hypothesis, $\mathbf{I K P}_{0} \vdash \psi \leftrightarrow \exists a \psi^{a}$ and $\mathbf{I K P}_{0} \vdash \theta \leftrightarrow \exists a \theta^{a}$. Let us work in $\mathbf{I K P}_{0}$, assuming $\psi \vee \theta$. Then $\psi^{a_{1}}$ for some set a_{1} or there is a set a_{2} such that $\theta^{a_{2}}$. In the first case we have $\psi^{a} \vee \theta^{a}$ with $a:=a_{1}$ while in the second case we have $\psi^{a} \vee \theta^{a}$ with $a:=a_{2}$.

Case 2. ϕ is $\forall u \in v \psi(u)$. The inductive assumption yields $\mathbf{I K P}_{0} \vdash \psi(u) \leftrightarrow$ $\exists a \psi(u)^{a}$. Again, working in $\mathbf{I K P}_{0}$, assume $\forall u \in v \psi(u)$ and show $\exists a \forall u \in v \psi(u)^{a}$. For each $u \in v$ there is a b such that $\psi(u)^{b}$, so by Δ_{0} Collection there is an a_{0} such that $\forall u \in v \exists b \in a_{0} \psi(u)^{b}$. Let $a=\bigcup a_{0}$. Now, for every $u \in v$, we have $\exists b \subseteq a \psi(u)^{b}$; so $\forall u \in v \psi(u)^{a}$, by the previous lemma.

Case 3. ϕ is $\exists u \psi(u)$. Inductively we have $\mathbf{I K P}_{0} \vdash \psi(u) \leftrightarrow \exists b \psi(u)^{b}$. Working in $\mathbf{I K P}_{0}$, assume $\exists u \psi(u)$. Pick u_{0} such $\psi\left(u_{0}\right)$ and b such that $\psi\left(u_{0}\right)^{b}$. Letting $a=$ $b \cup\left\{u_{0}\right\}$ we get $u_{0} \in a$ and $\psi\left(u_{0}\right)^{a}$ by the previous lemma. Thence $\exists a \exists u \in a \psi(u)^{a}$.

In Platek's original definition of admssible set he took the Σ Reflection Principle as basic. It is very powerful, as we'll see below. Δ_{0} Collection is easier to verify, however.

Theorem: 19.1.5 (The Strong Σ Collection Principle). For every Σ formula ϕ the following is a theorem of $\mathbf{I K P}_{0}$: If $\forall x \in a \exists y \phi(x, y)$ then there is a set b such that $\forall x \in a \exists y \in b \phi(x, y)$ and $\forall y \in b \exists x \in a \phi(x, y)$.

Proof: Assume that

$$
\forall x \in a \exists y \in b \phi(x, y) .
$$

By Σ Reflection there is a set c such that

$$
\begin{equation*}
\forall x \in a \exists y \in c \phi(x, y)^{c} . \tag{19.1}
\end{equation*}
$$

Let

$$
\begin{equation*}
b=\left\{y \in c \mid \exists x \in a \phi(x, y)^{c}\right\}, \tag{19.2}
\end{equation*}
$$

by Δ_{0} Separation. Now, since $\phi(x, y)^{c} \rightarrow \phi(x, y)$ by 19.1.3, (19.1) gives us $\forall x \in a \exists y \in b \phi(x, y)$, whereas (19.2) gives us $\forall y \in b \exists x \in a \phi(x, y)$.

Theorem: 19.1.6 (Σ Replacement). For each Σ formula $\phi(x, y)$ the following is a theorem of $\mathbf{I K P}_{0}$: If $\forall x \in a \exists!y \phi(x, y)$ then there is a function f, with $\operatorname{dom}(f)=a$, such that $\forall x \in a \phi(x, f(x))$.

Proof: By Σ Reflection there is a set d such that

$$
\forall x \in a \exists y \in d \phi(x, y)^{d}
$$

Since $\phi(x, y)^{d}$ implies $\phi(x, y)$ we get $\forall x \in a \exists!y \in d \phi(x, y)^{d}$. Thus, defining $f=$ $\left\{\langle x, y\rangle \in a \times d \mid \phi(x, y)^{d}\right\}$ by Δ_{0} Separation, f is a function satisfying $\operatorname{dom}(f)=a$ and $\forall x \in a \phi(x, f(x))$.

The above is sometimes infeasible because of the uniqueness requirement \exists ! in the hypothesis. In these situations it is usually the next result which comes to the rescue.

Theorem: 19.1.7 (Strong Σ Replacement). For each Σ formula $\phi(x, y)$ the following is a theorem of $\mathbf{I K P}_{0}$: If $\forall x \in a \exists y \phi(x, y)$ then there is a function f with $\operatorname{dom}(f)=a$ such that for all $x \in a, f(x)$ is inhabited and $\forall x \in a \forall y \in f(x) \phi(x, y)$.

Proof: By Strong Σ Collection there is a b such that $\forall x \in a \exists y \in b \phi(x, y)$ and $\forall y \in b \exists x \in a \phi(x, y)$. Hence, by Σ Reflection, there is a d such that

$$
\forall x \in a \exists y \in b \phi(x, y)^{d} \quad \text { and } \quad \forall y \in b \exists x \in a \phi(x, y)^{d} .
$$

For any fixed $x \in a$ there is a unique set c_{x} such that

$$
c_{x}=\left\{y \in b \mid \phi(x, y)^{d}\right\}
$$

by Δ_{0} Separation and Extensionality; so, by Σ Replacement, there is a function f with domain a such that $f(x)=c_{x}$ for each $x \in a$.
One principle of KP that is not provable in IKP is Δ_{1} Separation. This is the principle that whenever $\forall x \in a[\phi(x) \leftrightarrow \psi(x)]$ holds for a Σ formula ϕ and a Π formula ψ then the class $\{x \in a \mid \phi(x)\}$ is a set. The reason is that classically $\forall x \in a[\phi(x) \leftrightarrow \psi(x)]$ entails $\forall x \in a[\phi(x) \vee \neg \psi(x)]$ which is classically equivalent to a Σ formula.

19.2 Σ Recursion in IKP

The mathematical power of KP resides in the possibility of defining Σ functions by \in-recursion and the fact that many interesting functions in set theory are definable by Σ Recursion. Moreover the scheme of Δ_{0} Separation allows for an extension with provable Σ functions occurring in otherwise bounded formulae.

Proposition: 19.2.1 (Definition by Σ Recursion in IKP.) If G is a total ($n+2$)ary Σ definable class function of IKP, i.e.

$$
\mathbf{I K P} \vdash \forall \vec{x} y z \exists!u G(\vec{x}, y, z)=u
$$

then there is a total $(n+1)$-ary Σ class function F of IKP such that ${ }^{1}$

$$
\mathbf{I K P} \vdash \forall \vec{x} y[F(\vec{x}, y)=G(\vec{x}, y,(F(\vec{x}, z) \mid z \in y))] .
$$

Proof: Let $\Phi(f, \vec{x})$ be the formula
$[f$ is a function $] \wedge[\operatorname{dom}(f)$ is transitive $] \wedge[\forall y \in \operatorname{dom}(f)(f(y)=G(\vec{x}, y, f \upharpoonright y))]$.
Set

$$
\psi(\vec{x}, y, f)=[\Phi(f, \vec{x}) \wedge y \in \operatorname{dom}(f)] .
$$

Claim IKP $\vdash \forall \vec{x}, y \exists!f \psi(\vec{x}, y, f)$.
Proof of Claim: By \in induction on y. Suppose $\forall u \in y \exists g \psi(\vec{x}, u, g)$. By Strong Σ Collection we find a set A such that $\forall u \in y \exists g \in A \psi(\vec{x}, u, g)$ and $\forall g \in A \exists u \in y \psi(\vec{x}, u, g)$.

[^5]Let $f_{0}=\bigcup\{g: g \in A\}$. By our general assumption there exists a u_{0} such that $G\left(\vec{x}, y,\left(f_{0}(u) \mid u \in y\right)\right)=u_{0}$. Set $f=f_{0} \cup\left\{\left\langle y, u_{0}\right\rangle\right\}$. Since for all $g \in A, \operatorname{dom}(g)$ is transitive we have that $\operatorname{dom}\left(f_{0}\right)$ is transitive. If $u \in y$, then $u \in \operatorname{dom}\left(f_{0}\right)$. Thus $\operatorname{dom}(f)$ is transitive and $y \in \operatorname{dom}(f)$. We have to show that f is a function. But it is readily shown that if $g_{0}, g_{1} \in A$, then $\forall x \in \operatorname{dom}\left(g_{0}\right) \cap \operatorname{dom}\left(g_{1}\right)\left[g_{0}(x)=g_{1}(x)\right]$. Therefore f is a function. This also shows that $\forall w \in \operatorname{dom}(f)[f(w)=G(\vec{x}, w, f \upharpoonright$ $w)$], confirming the claim (using Set Induction).

Now define F by

$$
F(\vec{x}, y)=w:=\exists f[\psi(\vec{x}, y, f) \wedge f(y)=w]
$$

Corollary: 19.2.2 There is a Σ function TC of IKP such that

$$
\mathbf{I K P} \vdash \forall a[\mathbf{T C}(a)=a \cup \bigcup\{\mathbf{T C}(x): x \in a\}] .
$$

Proposition: 19.2.3 (Definition by TC-Recursion) Under the assumptions of Proposition 19.2.1 there is an $(n+1)$-ary Σ class function F of IKP such that

$$
\mathbf{I K P} \vdash \forall \vec{x} y[F(\vec{x}, y)=G(\vec{x}, y,(F(\vec{x}, z) \mid z \in \mathbf{T C}(y)))] .
$$

Proof: Let $\theta(f, \vec{x}, y)$ be the Σ formula
$[f$ is a function $] \wedge[\operatorname{dom}(f)=\mathbf{T C}(y)] \wedge[\forall u \in \operatorname{dom}(f)[f(u)=G(\vec{x}, u, f \upharpoonright \mathbf{T C}(u))]]$.
Prove by \in-induction that $\forall y \exists!f \theta(f, \vec{x}, y)$. Suppose $\forall v \in y \exists!g \theta(g, \vec{x}, v)$. We then have

$$
\forall v \in y \exists!a \exists g[\theta(g, \vec{x}, v) \wedge G(\vec{x}, v, g)=a]
$$

By Σ Replacement there is a function h such that $\operatorname{dom}(h)=y$ and

$$
\forall v \in y \exists g[\theta(g, \vec{x}, v) \wedge G(\vec{x}, v, g)=h(v)] .
$$

Employing Strong Collection to $\forall v \in y \exists!g \theta(g, \vec{x}, v)$ also provides us with a set A such that $\forall v \in y \exists g \in A \theta(g, \vec{x}, v)$ and $\forall g \in A \exists v \in y \theta(g, \vec{x}, v)$. Now let $f=(\bigcup\{g$: $g \in A\}) \cup h$. Then $\theta(f, \vec{x}, y)$.

Definition: 19.2.4 Let T be a theory whose language comprises the language of set theory and let $\phi\left(x_{1}, \ldots, x_{n}, y\right)$ be a Σ formula such that

$$
T \vdash \forall x_{1} \ldots \forall x_{n} \exists!y \phi\left(x_{1}, \ldots, x_{n}, y\right) .
$$

Let f be a new n-ary function symbol and define f by:

$$
\forall x_{1} \ldots \forall x_{n} \forall y\left[f\left(x_{1}, \ldots, x_{n}\right)=y \leftrightarrow \phi\left(x_{1}, \ldots, x_{n}, y\right)\right] .
$$

f is then called a Σ function symbol of T.

It is an important property of classical Kripke-Platek set theory that Σ function symbols can be treated as though they were atomic symbols of the basic language, thereby expanding the notion of Δ_{0} formula. The usual proofs of this fact employ Δ_{1} Separation (cf. [7], I.5.4). As this principle is not available in IKP some care has to be exercised in obtaining the same results for IKP $_{0}$ and IKP.

Proposition: 19.2.5 (Extension by Σ Function Symbols) Let T be a theory obtained from one of the theories $\mathbf{I K P}_{0}$ or $\mathbf{I K P}$ by iteratively adding Σ function symbols. Suppose $T \vdash \forall \vec{x} \exists!y \Phi(\vec{x}, y)$, where Φ is a Σ formula. Let T_{Φ} be obtained by adjoining a Σ function symbol F_{Φ} to the language, extending the schemata to the enriched language, and adding the axiom $\forall \vec{x} \Phi\left(\vec{x}, F_{\Phi}(\vec{x})\right)$. Then T_{Φ} is conservative over T.

Proof: We define the following translation ${ }^{*}$ for formulas of T_{Φ} :

$$
\begin{aligned}
\phi^{*} & \equiv \phi \text { if } F_{\Phi} \text { does not occur in } \phi \\
\left(F_{\Phi}(\vec{x})=y\right)^{*} & \equiv \Phi(\vec{x}, y)
\end{aligned}
$$

If ϕ is of the form $t=x$ with $t \equiv G\left(t_{1}, \ldots, t_{k}\right)$ such that one of the terms t_{1}, \ldots, t_{k} is not a variable, then let

$$
(t=x)^{*} \equiv \exists x_{1} \ldots \exists x_{k}\left[\left(t_{1}=x_{1}\right)^{*} \wedge \cdots \wedge\left(t_{k}=x_{k}\right)^{*} \wedge\left(G\left(x_{1}, \ldots, x_{k}\right)=x\right)^{*}\right] .
$$

The latter provides a definition of $(t=x)^{*}$ by induction on t. If either t or s contains F_{Φ}, then let

$$
\begin{aligned}
(t \in s)^{*} & \equiv \exists x \exists y\left[(t=x)^{*} \wedge(s=y)^{*} \wedge x \in y\right], \\
(t=s)^{*} & \equiv \exists x \exists y\left[(t=x)^{*} \wedge(s=y)^{*} \wedge x=y\right], \\
(\neg \phi)^{*} & \equiv \neg \phi^{*} \\
\left(\phi_{0} \square \phi_{1}\right)^{*} & \equiv \phi_{0}^{*} \square \phi_{1}^{*}, \quad \text { if } \square \text { is } \wedge, \vee, \text { or } \rightarrow \\
(\exists x \phi)^{*} & \equiv \exists x \phi^{*} \\
(\forall x \phi)^{*} & \equiv \forall \phi^{*} .
\end{aligned}
$$

Let T_{Φ}^{-}be the restriction of T_{Φ}, where F_{Φ} is not allowed to occur in the Δ_{0} Separation Scheme and the Δ_{0} Collection Scheme. Then it is obvious that $T_{\Phi}^{-} \vdash \phi$ implies $T \vdash \phi^{*}$. So it remains to show that T_{Φ}^{-}proves the same theorems as T_{Φ}. We first prove $T_{\Phi}^{-} \vdash \exists x \forall y[y \in x \leftrightarrow y \in a \wedge \phi(a)]$ for any Δ_{0} formula ϕ of T_{Φ}. For IKP we also have to consider Δ_{0} Collection.

We proceed by induction on ϕ.

1. $\phi(y) \equiv t(y) \in s(y)$. Now

$$
T_{\Phi} \vdash \forall y \in a \exists!z[(z=t(y)) \wedge \forall y \in a \exists!u(u=s(y))] .
$$

Using Σ Replacement (Some more arguments might be in order here to show that $z=t(y)$ is equivalent to $a \Sigma$ formula) we find functions f and g such that

$$
\operatorname{dom}(f)=\operatorname{dom}(g)=a \text { and } \forall y \in a[f(y)=t(y) \wedge g(y)=s(y)] .
$$

Therefore $\{y \in a: \phi(y)\}=\{y \in a: f(y) \in g(y)\}$ exists by Δ_{0} Separation in T_{Φ}^{-}.
2. $\phi(y) \equiv t(y)=s(y)$. Similar.
3. $\phi(y) \equiv \phi_{0}(y) \square \phi_{1}(y)$, where \square is any of $\wedge, \vee, \rightarrow$. This is immediate by induction hypothesis.
4. $\phi(y) \equiv \forall u \in t(y) \phi_{0}(u, y)$. We find a function f such that $\operatorname{dom}(f)=a$ and $\forall y \in a f(y)=t(y)$. Inductively, for all $b \in a,\left\{u \in \bigcup \operatorname{ran}(f): \phi_{0}(u, b)\right\}$ is a set. Hence there is a function g with $\operatorname{dom}(g)=a$ and $\forall b \in a g(b)=\{u \in$ $\left.\bigcup \operatorname{ran}(f): \phi_{0}(u, b)\right\}$. Then $\{y \in a: \phi(y)\}=\{y \in a: \forall u \in f(y)(u \in g(y))\}$.
5. $\phi(y) \equiv \exists u \in t(y) \phi_{0}(u, y)$. With f and g as above, $\{y \in a: \phi(y)\}=\{y \in a$: $\exists u \in f(y)(u \in g(y))\}$.

Remark: 19.2.6 The proof of Proposition 19.2.5 shows that the process of adding defined function symbols to $\mathbf{I K P}$ or $\mathbf{I K P}_{0}$ can be iterated. So if e.g. $T_{\Phi} \vdash \forall \vec{x} \exists y \psi(\vec{x}, y)$ for a Δ_{0} formula of T_{Φ}, then also $T_{\Phi}+\left\{\forall \vec{x} \exists y \psi\left(\vec{x}, F_{\psi}(\vec{x})\right)\right\}$ will be conservative over T.

19.3 Inductive Definitions in IKP

Here we investigate some parts of the theory of inductive definitions which can be developed in IKP.

An inductive definition Φ is a class of pairs. Intuitively an inductive definition is an abstract proof system, where $\langle x, A\rangle \in \Phi$ means that A is a set of premises and x is a Φ-consequence of these premises.
Φ is a Σ inductive definition if Φ is a Σ definable class.
A class X is said to be Φ-closed if $A \subseteq X$ implies $a \in X$ for every pair $\langle a, A\rangle \in \Phi$.

Theorem: 19.3.1 (IKP) For any Σ inductive definition Φ there is a smallest Φ-closed class $\mathbf{I}(\Phi)$; moreover, $\mathbf{I}(\Phi)$ is a Σ class as well.

Proof: Call a set relation G good if whenever $\langle x, y\rangle \in G$ there is a set A such that $\langle y, A\rangle \in \Phi$ and

$$
\forall u \in A \exists v \in x\langle v, u\rangle \in G
$$

Call a set Φ-generated if it is in the range of some good relation. Note that the notion of being a good set relation and of being a Φ-generated set are both Σ definable.

To see that the class of Φ-generated sets is Φ-closed, let A be a set of Φ generated sets, where $\langle a, A\rangle \in \Phi$. Then

$$
\forall y \in A \exists G[G \text { is good } \wedge \exists x(\langle x, y\rangle \in G)]
$$

Thus, by Strong Σ Collection, there is a set C of good sets such that

$$
\forall y \in A \exists G \in C \exists x(\langle x, y\rangle \in G)
$$

Letting $G_{0}=\bigcup C \cup\{\langle b, a\rangle\}$, where $b=\{u: \exists y\langle u, y\rangle \in \bigcup C\}, G_{0}$ is good and $\langle b, a\rangle \in G_{0}$. Thus a is Φ-generated. Whence $\mathbf{I}(\Phi)$ is Φ-closed. Now if X is another Φ-closed class and G is good, then by set induction on x it follows that $\langle x, y\rangle \in G$ implies $y \in X$, so that $\mathbf{I}(\Phi) \subseteq X$.

Theorem: 19.3.2 (IKP) Let Φ be a Σ inductive definition. For any class X define

$$
\Gamma_{\Phi}(X)=\{y \mid \exists A(\langle y, A\rangle \in \Phi \wedge A \subseteq X)\}
$$

Then there exists a unique Σ class K such that

$$
\begin{equation*}
K^{a}=\Gamma_{\Phi}\left(\bigcup_{x \in a} K^{x}\right) \tag{19.3}
\end{equation*}
$$

holds for all sets b, where $K^{a}=\{u \mid\langle a, u\rangle \in K\}$. Moreover, it holds $\mathbf{I}(\Phi)=$ $\bigcup_{a} K^{a}$.

Proof: Uniqueness is obvious by Set Induction on a. Let $\Gamma=\Gamma_{\Phi}$. Note that Γ is monotone, i.e., if $X \subseteq Y$ then $\Gamma(X) \subseteq \Gamma(Y)$. Define

$$
K=\bigcup\{G \mid G \text { is a good set }\} .
$$

We first show (19.3).
$" \subseteq$ ": Let $z \in K^{a}$. Then there exists a good set G such that $\langle a, z\rangle \in G$. Hence $z \in \Gamma\left(\bigcup_{b \in a} G^{b}\right)$. Since $\bigcup_{b \in} G^{b} \subseteq \bigcup_{b \in a} K^{b}$ and Γ is monotone we get $z \in \Gamma\left(\bigcup_{b \in a} K^{b}\right)$.
$" \supseteq ":$ Let $z \in \Gamma\left(\bigcup_{b \in a} K^{b}\right)$. Then there exists a set $A \subseteq \bigcup_{b \in a} K^{b}$ such that $\langle z, A\rangle \in \Phi$. Furthermore

$$
\forall u \in A \exists G[G \text { is good } \wedge \exists x \in a\langle x, u\rangle \in G] .
$$

Hence, using Strong Σ Collection, there exists a set Z such that

$$
\forall u \in A \exists G \in Z[G \text { is good } \wedge \exists x \in a\langle x, u\rangle \in G]
$$

and, moreover, all sets in Z are good. Put

$$
G_{0}=\bigcup Z \cup\{\langle a, z\rangle\}
$$

Then $A \subseteq \bigcup_{b \in a} G_{0}^{b}$. We claim that G_{0} is good. To see this let $\langle c, w\rangle \in G_{0}$. Then $(\exists G \in Z\langle c, w\rangle \in G) \vee\langle c, w\rangle=\langle a, z\rangle$. Thus $\left(\exists G \in Z w \in \Gamma\left(\bigcup_{x \in c} G^{x}\right) \vee w \in\right.$ $\Gamma(A)$, and hence $w \in \Gamma\left(\bigcup_{x \in c} G_{0}^{x}\right)$, showing that G_{0} is good. Now, since $z \in G_{0}^{a}$ and G_{0} is good it follows $z \in K^{a}$.

Using (19.3) one shows by set induction on a that $K^{a} \subseteq \mathbf{I}(\Phi)$, yielding $\bigcup_{a} K^{a} \subseteq \mathbf{I}(\Phi)$. For the reverse inclusion it suffices to show that $\bigcup_{u \in b} K^{u}$ is Φ-closed. So let $z \in \Gamma\left(\bigcup_{a} K^{a}\right)$. Then there exists a set $A \subseteq \bigcup_{a} K^{a}$ such that $\langle z, A\rangle \in \Phi$. Since $\forall u \in A \exists x u \in K^{x}$, by Σ Collection we can find a set b such that $\forall u \in A \exists x \in b u \in K^{x}$. Whence $A \subseteq \bigcup_{u \in b} K^{b}$. Consequently we have $z \in \Gamma\left(\bigcup_{u \in b} K^{b}\right)=K^{b}$ by (19.3), showing that $\bigcup_{u \in b} K^{u}$ is Φ-closed.

The section K^{b} of the above class will be denoted by Γ_{Φ}^{b}.
Corollary: 19.3.3 (IKP) If for every set $x, \Gamma_{\Phi}(x)$ is a set then the assignment $b \mapsto \Gamma_{\Phi}^{b}$ defines a Σ function.

Proof: Obvious.

Chapter 20

Anti-Foundation

A very systematic toolbox for building models of various circular phenomena is set theory with the Anti-Foundation axiom. Theories as $\mathbf{Z F}$ outlaw sets like $\Omega=\{\Omega\}$ and infinite chains of the form $\Omega_{i+1} \in \Omega_{i}$ for all $i \in \omega$ on account of the Foundation axiom, and sometimes one hears the mistaken opinion that the only coherent conception of sets precludes such sets. The fundamental distinction between wellfounded and non-well-founded sets was formulated by Mirimanoff in 1917. The relative independence of the Foundation axiom from the other axioms of ZermeloFraenkel set theory was announced by Bernays in 1941 but did not appear until the 1950s. Versions of axioms asserting the existence of non-well-founded sets were proposed by Finsler (1926). The ideas of Bernays' independence proof were exploited by Rieger, Hájek, Boffa, and Felgner. After Finsler, Scott in 1960 appears to have been the first person to consider an anti-foundation axiom which encapsulates a strengthening of the axiom of extensionality. The anti-foundation axiom in its strongest version was first formulated by Forti and Honsell [33] in 1983. Though several logicians explored set theories whose universes contained non-wellfounded sets (or hypersets as they are called nowadays) the area was considered rather exotic until these theories were put to use in developing rigorous accounts of circular notions in computer science (cf. [4]). It turned out that the Anti-Foundation Axiom, AFA, gives rise to a rich universe of sets and provides an elegant tool for modelling all sorts of circular phenomena. The application areas range from modal logic, knowledge representation and theoretical economics to the semantics of natural language and programming languages. The subject of hypersets and their applications is thoroughly developed in the books [4] by P. Aczel and [8] by J. Barwise and L. Moss.
[4] and [8] give rise to the question whether the material could be developed on the basis of a constructive universe of hypersets rather than a classical and impredicative one. This paper explores whether AFA and the most important tools emanating from it, such as the solution lemma and the co-recursion principle, can be developed on predicative grounds, that is to say, within a predicative theory of sets. The upshot is that most of the circular phenomena that have
arisen in computer science don't require impredicative set existence axioms for their modelling, thereby showing that their circularity is clearly of a different kind than the one which underlies impredicative definitions.

20.1 The anti-foundation axiom

Definition: 20.1.1 A graph will consist of a set of nodes and a set of edges, each edge being an ordered pair $\langle x, y\rangle$ of nodes. If $\langle x, y\rangle$ is an edge then we will write $x \rightarrow y$ and say that y is a child of x.

A path is a finite or infinite sequence $x_{0} \rightarrow x_{1} \rightarrow x_{2} \rightarrow \ldots$ of nodes $x_{0}, x_{1}, x_{2}, \ldots$ linked by edges $\left\langle x_{0}, x_{1}\right\rangle,\left\langle x_{1}, x_{2}\right\rangle, \ldots$.

A pointed graph is a graph together with a distinguished node x_{0} called its point. A pointed graph is accessible if for every node x there is a path $x_{0} \rightarrow x_{1} \rightarrow$ $x_{2} \rightarrow \ldots \rightarrow x$ from the point x_{0} to x.

A decoration of a graph is an assignment d of a set to each node of the graph in such a way that the elements of the set assigned to a node are the sets assigned to the children of that node, i.e.

$$
d(a)=\{d(x): a \rightarrow x\} .
$$

A picture of a set is an accessible pointed graph (apg for short) which has a decoration in which the set is assigned to the point.

Definition: 20.1.2 The Anti-Foundation Axiom, AFA, is the statement that every graph has a unique decoration.

Note that AFA has the consequence that every apg is a picture of a unique set.
AFA is in effect the conjunction of two statements:

- $\mathbf{A F A}_{1}$: Every graph has at least one decoration.
- $\mathbf{A F A}_{2}$: Every graph has a most one decoration.

AFA $_{1}$ is an existence statement whereas AFA $_{2}$ is a strengthening of the Extensionalty axiom of set theory. For example, taking the graph \mathbb{G}_{0} to consist of a single node x_{0} and one edge $x_{0} \rightarrow x_{0}, \mathbf{A F A}_{1}$ ensures that this graph has a decoration $d_{0}(x)=\left\{d_{0}(y): x \rightarrow y\right\}=\left\{d_{0}(x)\right\}$, giving rise to a set b such that $b=\{b\}$. However, if there is another set c satisfying $c=\{c\}$, the Extensionalty axiom does not force b to be equal to c, while $\mathbf{A F A}_{2}$ yields $b=c$. Thus, by AFA there is exactly one set Ω such that $\Omega=\{\Omega\}$.

Another example which demonstrates the extensionalizing effect of $\mathbf{A F A}_{2}$ is provided by the graph \mathbb{G}_{∞} which consists of the infinitely many nodes x_{i} and the edges $x_{i} \rightarrow x_{i+1}$ for each $i \in \omega$. According to AFA $_{1}, \mathbb{G}_{\infty}$ has a decoration. As $d_{\infty}\left(x_{i}\right)=\Omega$ defines such a decoration, $\mathbf{A F A}_{2}$ entails that this is the only one,
whereby the different graphs \mathbb{G}_{0} and \mathbb{G}_{∞} give rise to the same non-well-founded set.

The most important applications of AFA arise in connection with solving systems of equations of sets. In a nutshell, this is demonstrated by the following example. Let p and q be arbitrary fixed sets. Suppose we need sets x, y, z such that

$$
\begin{align*}
x & =\{x, y\} \tag{20.1}\\
y & =\{p, q, y, z\} \\
z & =\{p, x, y\}
\end{align*}
$$

Here p and q are best viewed as atoms while x, y, z are the indeterminates of the system. AFA ensures that the system (20.1) has a unique solution. There is a powerful technique that can be used to show that systems of equations of a certain type have always unique solutions. In the terminology of [8] this is called the solution lemma. We shall prove it in the sections on applications of AFA.

20.1.1 The theory CZFA

We shall introduce a constructive set theory with AFA instead of \in-Induction.
Definition: 20.1.3 Recall that CZF $^{-}$is the system CZF without the \in - Induction scheme. According to Theorem ??, CZF $^{-}$is strong enough to show the existence of any primitive recursive functions on \mathbb{N} but unfortunately it has certain defects from a mathematical point of view in that this theory appears to be too limited for proving proving the existence of the transitive closure of an arbitrary set (see Definition 6.5.3). To remedy this we shall consider an axiom, TRANS, which ensures that every set is contained in a transitive set:

$$
\text { TRANS } \quad \forall x \exists y[x \subseteq y \wedge(\forall u \in y)(\forall v \in u) v \in y]
$$

Let CZFA be the theory CZF $^{-}+$TRANS + AFA.
Lemma: 20.1.4 Let $\mathbf{T C}(x)$ stand for the smallest transitive set that contains all elements of x. ECST + FPA + TRANS proves the existence of $\mathbf{T C}(x)$ for any set x.

Proof: Let x be an arbitrary set. By TRANS there exists a transitive set A such that $x \subseteq A$. For $n \in \omega$ let

$$
\begin{aligned}
B_{n} & =\left\{f \in{ }^{n+1} A: f(0) \in x \wedge(\forall i \in n) f(i+1) \in f(i)\right\}, \\
\mathbf{T C}_{n}(x) & =\bigcup\left\{\operatorname{ran}(f): f \in B_{n}\right\},
\end{aligned}
$$

where $\operatorname{ran}(f)$ denotes the range of a function $f . B_{n}$ is a set owing to FPA and Δ_{0} Separation, thus $\mathbf{T C}_{n}(x)$ is a set by Union. Furthermore, $C=\bigcup_{n \in \omega} \mathbf{T C}_{n}(x)$
is a set by Replacement and Union. Then $x=\mathbf{T C}_{0}(x) \subseteq C$. Let y be a transitive set such that $x \subseteq y$. By induction on n one easily verifies that $\mathbf{T C}_{n}(x) \subseteq y$, and hence $C \subseteq y$. Moreover, C is transitive. Thus C is the smallest transitive set which contains all elements of x.

In what follows, we will rummage through several applications of AFA made in [4] and [8]. In order to corroborate the claim that most applications of AFA require only constructive means, various sections of [4] and [8] are recast on the basis of the theory CZFA rather than ZFA.

20.2 The Labelled Anti-Foundation Axiom

In applications it is often useful to have a more general form of AFA at ones disposal.

Definition: 20.2.1 A labelled graph is a graph together with a labelling function ℓ which assigns a set $\ell(a)$ of labels to each node a.

A labelled decoration of a labelled graph is a function d such that

$$
d(a)=\{d(b): a \rightarrow b\} \cup \ell(a) .
$$

An unlabelled graph (G, \rightsquigarrow) may be identified with the special labelled graph where the labelling function $\ell: G \rightarrow V$ always assigns the empty set, i.e. $\ell(x)=\emptyset$ for all $x \in G$.

Theorem: 20.2.2 (CZFA) (Cf. [4], Theorem 1.9) Each labelled graph has a unique labelled decoration.

Proof: Let $\mathbb{G}=(G, \rightsquigarrow, \ell)$ be a labelled graph. Let $\mathbb{G}^{\prime}=\left(G^{\prime}, \rightarrow\right)$ be the graph having as nodes all the ordered pairs $\langle i, a\rangle$ such that either $i=1$ and $a \in G$ or $i=2$ and $a \in \mathbf{T C}(G)$ and having as edges:

- $\langle 1, a\rangle \rightarrow\langle 1, b\rangle$ whenever $a \rightsquigarrow b$,
- $\langle 1, a\rangle \rightarrow\langle 2, b\rangle$ whenever $a \in G$ and $b \in \ell(a)$,
- $\langle 2, a\rangle \rightarrow\langle 2, b\rangle$ whenever $b \in a \in \mathbf{T C}(G)$.

By AFA, \mathbb{G}^{\prime} has a unique decoration π. So for each $a \in G$

$$
\pi(\langle 1, a\rangle)=\{\pi(\langle 1, b\rangle): a \rightsquigarrow b\} \cup\{\pi(\langle 2, b\rangle): b \in \ell(a)\}
$$

and for each $a \in \mathbf{T C}(G)$,

$$
\pi(\langle 2, a\rangle)=\{\pi(\langle 2, b\rangle): b \in a\} .
$$

Note that the set $\mathbf{T C}(G)$ is naturally equipped with a graph structure by letting its edges $x \multimap y$ be defined by $y \in x$. The unique decoration for $(\mathbf{T C}(G), \multimap)$ is obviously the identity function on $\mathbf{T C}(G)$. As $x \mapsto \pi(\langle 2, x\rangle)$ is also a decoration of $(\mathbf{T C}(G), \multimap)$ we can conclude that $\pi(\langle 2, x\rangle)=x$ holds for all $x \in \mathbf{T C}(G)$. Hence if we let $\tau(a)=\pi(\langle 1, a\rangle)$ for $a \in G$ then, for $a \in G$,

$$
\tau(a)=\{\tau(b): a \rightsquigarrow b\} \cup \ell(a),
$$

so that τ is a labelled decoration of the labelled graph \mathbb{G}.
For the uniqueness of τ suppose that τ^{\prime} is a labelled decoration of \mathbb{G}. Then π^{\prime} is a decoration of the graph \mathbb{G}^{\prime}, where

$$
\begin{aligned}
& \pi^{\prime}(\langle 1, a\rangle)=\tau^{\prime}(a) \text { for } a \in G \\
& \pi^{\prime}(\langle 2, a\rangle)=a \text { for } a \in \operatorname{TC}(G) .
\end{aligned}
$$

It follows from AFA that $\pi^{\prime}=\pi$ so that for $a \in G$

$$
\tau^{\prime}(a)=\pi^{\prime}(\langle 1, a\rangle)=\pi(\langle 1, a\rangle)=\tau(a),
$$

and hence $\tau^{\prime}=\tau$.

Definition: 20.2.3 A relation R is a bisimulation between two labelled graphs $\mathbb{G}=\left(G, \rightsquigarrow, \ell_{0}\right)$ and $\mathbb{H}=\left(H, \multimap, \ell_{1}\right)$ if $R \subseteq G \times H$ and the following conditions are satisfied (where $a R b$ stands for $\langle a, b\rangle \in R$):

1. For every $a \in G$ there is a $b \in H$ such that $a R b$.
2. For every $b \in H$ there is a $a \in G$ such that $a R b$.
3. Suppose that $a R b$. Then for every $x \in G$ such that $a \rightsquigarrow x$ there is a $y \in H$ such that $b \multimap y$ and $x R y$.
4. Suppose that $a R b$. Then for every $y \in H$ such that $b \multimap y$ there is an $x \in G$ such that $a \rightsquigarrow x$ and $x R y$.
5. If $a R b$ then $\ell_{0}(a)=\ell_{1}(b)$.

Two labelled graphs are bisimular if there exists a bisimulation between them.

Theorem: 20.2.4 (CZFA) Let $\mathbb{G}=\left(G, \rightsquigarrow, \ell_{0}\right)$ and $\mathbb{H}=\left(H, \multimap, \ell_{1}\right)$ be labelled graphs with labelled decorations d_{0} and d_{1}, respectively.

If \mathbb{G} and \mathbb{H} are bisimular then $d_{0}[G]=d_{1}[H]$.

Proof: Define a labelled graph $\mathbb{K}=(K, \rightarrow, \ell)$ by letting K be the set $\{\langle a, b\rangle$: $a R b\}$. For $\langle a, b\rangle,\left\langle a^{\prime}, b^{\prime}\right\rangle \in K$ let $\langle a, b\rangle \rightarrow\left\langle a^{\prime}, b^{\prime}\right\rangle$ iff $a \rightsquigarrow a^{\prime}$ or $b \multimap b^{\prime}$, and put $\ell(\langle a, b\rangle)=\ell_{0}(a)=\ell_{1}(b) . \mathbb{K}$ has a unique labelled decoration d. Using a bisimulation R, one easily verfies that $d_{0}^{*}(\langle a, b\rangle):=d_{0}(a)$ and $d_{1}^{*}(\langle a, b\rangle):=d_{1}(b)$ are labelled decorations of \mathbb{K} as well. Hence $d=d_{0}^{*}=d_{1}^{*}$, and thus $d_{0}[G]=d[K]=$ $d_{1}[H]$.

Corollary: 20.2.5 (CZFA) Two graphs are bisimular if and only if their decorations have the same image.

Proof: One direction follows from the previous theorem. Now suppose we have graphs $\mathbb{G}=(G, \rightsquigarrow)$ and $\mathbb{H}=(H, \multimap)$ with decorations d_{0} and d_{1}, respectively, such that $d_{0}[G]=d_{1}[H]$. The define $R \subseteq G \times H$ by $a R b$ iff $d_{0}(a)=d_{1}(b)$. One readily verifies that R is a bisimulation.
Here is another useful fact:
Lemma: 20.2.6 (CZFA) If A is transitive set and $d: A \rightarrow V$ is a function such that $d(a)=\{d(x): x \in a\}$ for all $a \in A$, then $d(a)=a$ for all $a \in A$.

Proof: A can be considered the set of nodes of the graph $\mathbb{G}_{A}=(A, \multimap)$ where $a \multimap b$ iff $b \in a$ and $a, b \in A$. Since A is transitive, d is a decoration of \mathbb{G}. But so is the function $a \mapsto a$. Thus we get $d(a)=a$.

20.3 Systems

In applications it is often useful to avail oneself of graphs that are classes rather than sets. By a map \wp with domain M we mean a definable class function with domain M, and we will write $\wp: M \rightarrow V$.

Definition: 20.3.1 A labelled system is a class M of nodes together with a labelling map $\wp: M \rightarrow V$ and a class E of edges consisting of ordered pairs of nodes. Furthermore, a system is required to satisfy that for each node $a \in M$, $\{b \in M: a \multimap b\}$ is a set, where $a \multimap b$ stands for $\langle a, b\rangle \in E$.

The labelled system is said to be Δ_{0} if the relation between sets x and y defined by " $y=\{b \in M: a \multimap b$ for some $a \in x\}$ " is Δ_{0} definable.

We will abbreviate the labelled system by $\mathbb{M}=(M, \multimap, \wp)$.
Theorem: 20.3.2 (CZFA $+\mathbf{I N D}_{\omega}$) (Cf. [4], Theorem 1.10) For every labelled system $\mathbb{M}=(M, \multimap, \wp)$ there exists a unique map $d: M \rightarrow V$ such that, for all $a \in M$:

$$
\begin{equation*}
d(a)=\{d(b): a \rightarrow b\} \cup \ell(a) . \tag{20.2}
\end{equation*}
$$

Proof: To each $a \in M$ we may associate a labelled graph $\mathbb{M}_{a}=\left(M_{a},{ }_{a}-\infty, \wp_{a}\right)$ with $M_{a}=\bigcup_{n \in \omega} X_{n}$, where $X_{0}=\{a\}$ and $X_{n+1}=\left\{b: a \multimap b\right.$ for some $\left.a \in X_{n}\right\}$. The existence of the function $n \mapsto X_{n}$ is shown via recursion on ω, utilizing $\mathbf{I N D}_{\omega}$ in combination with Strong Collection. The latter is needed to show that for every set $Y,\{b: a \multimap b$ for some $a \in Y\}$ is a set as well. And consequently to that M_{a} is a set. ${ }_{a} \multimap$ is the restriction of \multimap to nodes from M_{a}. That $E_{a}=\left\{\langle x, y\rangle \in M_{a} \times M_{a}: x \multimap y\right\}$ is a set requires Strong Collection, too. Further, let \wp_{a} be the restriction of \wp to M_{a}. Hence \mathbb{M}_{a} is a set and we may apply Theorem 20.2.2 to conclude that \mathbb{M}_{a} has a unique labelled decoration d_{a}. $d: M \rightarrow V$ is now obtained by patching together the function d_{a} with $a \in M$, that is $d=\bigcup_{a \in V} d_{a}$. One easily shows that two function d_{a} and d_{b} agree on $M_{a} \cap M_{b}$. For the uniqueness of d, notice that every other definable map d^{\prime} satisfying (20.2) yields a function when restricted to M_{a} (Strong Collection) and thereby yields also a labelled decoration of \mathbb{M}_{a}; thus $d^{\prime}(x)=\wp_{a}(x)=d(x)$ for all $x \in M_{a}$. And consequently to that, $d^{\prime}(x)=d(x)$ for all $x \in M$.

Corollary: 20.3.3 (CZFA $\left.+\Sigma-\mathbf{I N D}_{\omega}\right)$ For every labelled system $\mathbb{M}=(M, \multimap, \wp)$ that is Δ_{0} there exists a unique map $d: M \rightarrow V$ such that, for all $a \in M$:

$$
\begin{equation*}
d(a)=\{d(b): a \multimap b\} \cup \ell(a) \tag{20.3}
\end{equation*}
$$

Proof: This follows by scrutinizing the proof of Theorem 20.3.2 and realizing that for a Δ_{0} system one only needs $\Sigma-\mathbf{I N D}_{\omega}$.

Corollary: 20.3.4 (CZFA) Let $\mathbb{M}=(M, \multimap, \wp)$ be a labelled Δ_{0} system such that for each $a \in M$ there is a function $n \mapsto X_{n}$ with domain ω such that $X_{0}=\{a\}$ and $X_{n+1}=\left\{b: a \multimap b\right.$ for some $\left.a \in X_{n}\right\}$. Then there exists a unique map $d: M \rightarrow V$ such that, for all $a \in M$:

$$
\begin{equation*}
d(a)=\{d(b): a \rightarrow b\} \cup \ell(a) \tag{20.4}
\end{equation*}
$$

Proof: In the proof of Theorem 20.3.2 we employed $\mathbf{I N D}_{\omega}$ only once to ensure that $M_{a}=\bigcup_{n \in \omega} X_{n}$ is a set. This we get now from the assumptions.

Theorem: 20.3.5 (CZFA $\left.+\mathbf{I N D}_{\omega}\right)(\mathrm{Cf} .[4]$, Theorem 1.11) Let $\mathbb{M}=(M, \rightsquigarrow, \wp)$ be a labelled system whose sets of labels are subsets of the class Y.

1. If π is a map with domain Y then there is a unique function $\hat{\pi}$ with domain M such that for each $a \in M$

$$
\hat{\pi}(a)=\{\hat{\pi}(b): a \rightsquigarrow b\} \cup\{\pi(x): x \in \wp(a)\} .
$$

2. Given a map $\hbar: Y \rightarrow M$ there is a unique map π with domain Y such that for all $y \in Y$,

$$
\pi(y)=\hat{\pi}(\hbar(y)) .
$$

Proof: For (1) let $\mathbb{M}_{\pi}=\left(M, \rightsquigarrow, \wp_{\pi}\right)$ be obtained from \mathbb{M} and $\pi: Y \rightarrow V$ by redefining the sets of labels so that for each node a

$$
\wp_{\pi}(a)=\{\pi(x): x \in \wp(a)\} .
$$

Then the required unique map $\hat{\pi}$ is the unique labelled decoration of \mathbb{M}_{π} provided by Theorem 20.3.2

For (2) let $\mathbb{M}^{*}=(M, \multimap)$ be the graph having the same nodes as \mathbb{M}, and all edges of \mathbb{M} together with the edges $a \multimap \hbar(y)$ whenever $a \in M$ and $y \in \wp(a)$. By Theorem 20.3.2, \mathbb{M}^{*} has a unique decoration map ρ. So for each $a \in M$

$$
\rho(a)=\{\rho(b): a \rightsquigarrow b\} \cup\{\rho(\hbar(y)): y \in \wp(a)\} .
$$

Letting $\pi(y):=\rho(\hbar(y))$ for $y \in Y, \rho$ is also a labelled decoration for the labelled system \mathbb{M}_{π} so that $\rho=\hat{\pi}$ by (1), and hence $\pi(x)=\hat{\pi}(\hbar(x))$ for $x \in Y$. For the uniqueness of π let $\mu: M \rightarrow V$ satisfy $\mu(x)=\hat{\mu}(\hbar(x))$ for $x \in Y$. Then $\hat{\mu}$ is a decoration of \mathbb{M}^{*} as well, so that $\hat{\mu}=\rho$. As a result $\mu(x)=\hat{\mu}(\hbar(x))=\rho(\hbar(x))=\pi(x)$ for $x \in Y$. Thus $\mu(x)=\pi(x)$ for all $x \in Y$.

Corollary: 20.3.6 (CZFA $\left.+\Sigma-\mathbf{I N D}_{\omega}\right)$ Let $\mathbb{M}=(M, \rightsquigarrow, \wp)$ be a labelled system that is Δ_{0} and whose sets of labels are subsets of the class Y.

1. If π is a map with domain Y then there is a unique function $\hat{\pi}$ with domain M such that for each $a \in M$

$$
\hat{\pi}(a)=\{\hat{\pi}(b): a \rightsquigarrow b\} \cup\{\pi(x): x \in \wp(a)\} .
$$

2. Given a map $\hbar: Y \rightarrow M$ there is a unique map π with domain Y such that for all $x \in Y$,

$$
\pi(x)=\hat{\pi}(\hbar(x)) .
$$

Proof: The proof is the same as for Theorem 20.3.5, except that one utilizes Corollary 20.3.3 in place of Theorem 20.3.2.

Corollary: 20.3.7 (CZFA) Let $\mathbb{M}=(M, \rightsquigarrow, \wp)$ be a labelled system that is Δ_{0} and whose sets of labels are subsets of the class Y. Moreover suppose that for each $a \in M$ there is a function $n \mapsto X_{n}$ with domain ω such that $X_{0}=\{a\}$ and $X_{n+1}=\left\{b: a \multimap b\right.$ for some $\left.a \in X_{n}\right\}$.

1. If π is a map with domain Y then there is a unique function $\hat{\pi}$ with domain M such that for each $a \in M$

$$
\hat{\pi}(a)=\{\hat{\pi}(b): a \rightsquigarrow b\} \cup\{\pi(x): x \in \wp(a)\} .
$$

2. Given a map $\hbar: Y \rightarrow M$ there is a unique map π with domain Y such that for all $x \in Y$,

$$
\pi(x)=\hat{\pi}(\hbar(x)) .
$$

Proof: The proof is the same as for Theorem 20.3.5, except that one utilizes Corollary 20.3.4 in place of Theorem 20.3.2.

20.4 A Solution Lemma version of AFA

AFA can be couched in more traditional mathematical terms. The labelled AntiFoundation Axiom provides a nice tool for showing that systems of equations of a certain type have always unique solutions. In the terminology of [8] this is called the solution lemma. In [8], the Anti-Foundation Axiom is even expressed in terms of unique solutions to so-called flat systems of equations.

Definition: 20.4.1 For a set Y let $\mathcal{P}(Y)$ be the class of subsets of Y. A triple $\mathcal{E}=(X, A, e)$ is said to be a general flat system of equations if X and A are any two sets, and $e: X \rightarrow \mathcal{P}(X \cup A)$, where the latter conveys that e is a function with domain X which maps into the class of all subsets of $X \cup A$. X will be called the set of indeterminates of \mathcal{E}, and A is called the set of atoms of \mathcal{E}. Let $e_{v}=e(v)$. For each $v \in X$, the set $b_{v}:=e_{v} \cap X$ is called the set of indeterminates on which v immediately depends. Similarly, the set $c_{v}:=e_{v} \cap A$ is called the set of atoms on which v immediately depends.

A solution to \mathcal{E} is a function s with domain X satisfying

$$
s_{x}=\left\{s_{y}: y \in b_{x}\right\} \cup c_{x},
$$

for each $x \in X$, where $s_{x}:=s(x)$.
Theorem: 20.4.2 (CZFA) Every generalized flat system $\mathcal{E}=(X, A, e)$ has a unique solution.

Proof: Define a labelled graph \mathbb{H} by letting X be its set of nodes and its edges be of the form $x \rightsquigarrow y$, where $y \in b_{x}$ for $x, y \in X$. Moreover, let $\ell(x)=c_{x}$ be the pertinent labelling function. By Theorem 20.2.2, \mathbb{H} has a unique labelled decoration d. Then

$$
d(x)=\left\{d(y): y \in b_{x}\right\} \cup \ell(x)=\left\{d(y): y \in b_{x}\right\} \cup c_{x},
$$

and thus d is a solution to \mathcal{E}. One easily verifies that every solution s to \mathcal{E} gives rise to a decoration of \mathbb{H}. Thus there exists exactly one solution to \mathcal{E}.
Because of the flatness condition, i.e. $e: X \rightarrow \mathcal{P}(X \cup A)$, the above form of the Solution Lemma is often awkward to use. A much more general form of it is proved in [8]. The framework in [8], however, includes other objects than sets, namely a proper class of urelements, whose raison d'etre is to serve as an endless supply of indeterminates on which one can perform the operation of substitution. Given a set X of urelements one defines the class of X-sets which are those sets that use only urelements from X in their build up. For a function $f: X \rightarrow V$ on these indeterminates one can then define a substitution operation $s u b_{f}$ on the X-sets. For an X-set $a, \operatorname{sub}_{f}(a)$ is obtained from a by substituting $f(x)$ for x everywhere in the build up of a.

For want of urelements, the approach of [8] is not directly applicable in our set theories, though it is possible to model an extended universe of sets with a proper class of urelements within CZFA. This will require a class defined as the greatest fixed point of an operator, a topic we shall intersperse now.

20.5 Greatest fixed points of operators

The theory of greatest operators was initiated by Aczel in [4].
Definition: 20.5.1 Let Φ be a class operator, i.e. $\Phi(X)$ is a class for each class $X . \Phi$ is set continuous if for each class X

$$
\begin{equation*}
\Phi(X)=\bigcup\{\Phi(x): x \text { is a set with } x \subseteq X\} \tag{20.5}
\end{equation*}
$$

Note that a set continuous operator is monotone, i.e., if $X \subseteq Y$ then $\Phi(X) \subseteq$ $\Phi(Y)$.

In what follows, I shall convey that x is a set by $x \in V$. If Φ is a set continuous operator let

$$
J_{\Phi}=\bigcup\{x \in V: x \subseteq \Phi(x)\} .
$$

A set continuous operator Φ is Δ_{0} if the relation " $y \in \Phi(x)$ " between sets x and y is Δ_{0} definable. Notice that J_{Φ} is a Σ_{1} class if Φ is a Δ_{0} operator.

Theorem: 20.5.2 ($\left.\mathbf{C Z F}^{-}+\mathbf{R D C}\right)$ (Cf. [4], Theorem 6.5) If Φ is a set continuous operator and $J=J_{\Phi}$ then

1. $J \subseteq \Phi(J)$,
2. If $X \subseteq \Phi(X)$ then $X \subseteq J$,
3. J is the largest fixed point of Φ.

Proof: (1): Let $a \in J$. Then $a \in x$ for for some set x such that $x \subseteq \Phi(x)$. It follows that $a \in \Phi(J)$ as $x \subseteq J$ and Φ is monotone.
(2): Let $X \subseteq \Phi(X)$ and let $a \in X$. We like to show that $a \in J$. We first show that for each set $x \subseteq X$ there is a set $c_{x} \subseteq X$ such that $x \subseteq \Phi\left(c_{x}\right)$. So let $x \subseteq X$. Then $x \subseteq \Phi(X)$ yielding

$$
\forall y \in x \exists u[y \in \Phi(u) \wedge u \subseteq X] .
$$

By Strong Collection there is a set A such that

$$
\forall y \in x \exists u \in A[y \in \Phi(u) \wedge u \subseteq X] \wedge \forall u \in A \exists y \in x[y \in \Phi(u) \wedge u \subseteq X]
$$

Letting $c_{x}=\bigcup A$, we get $c_{x} \subseteq X \wedge x \subseteq \Phi\left(c_{x}\right)$ as required.
Next we use RDC to find an infinite sequence x_{0}, x_{1}, \ldots of subsets of X such that $x_{0}=\{a\}$ and $x_{n} \subseteq \Phi\left(x_{n+1}\right)$. Let $x^{*}=\bigcup_{n} x_{n}$. Then x^{*} is a set and if $y \in x^{*}$ then $y \in x_{n}$ for some n so that $y \in x_{n} \subseteq \Phi\left(x_{n+1}\right) \subseteq \Phi\left(x^{*}\right)$. Hence $x^{*} \subseteq \Phi\left(x^{*}\right)$. As $a \in x_{0} \subseteq x^{*}$ it follows that $a \in J$.
(3): By (1) and the monotonicity of Φ

$$
\Phi(J) \subseteq \Phi(\Phi(J))
$$

Hence by $(2) \Phi(J) \subseteq J$. This and (1) imply that J is a fixed point of Φ. By (2) it must be the greatest fixed point of Φ.

If it exists and is a set, the largest fixed point of an operator Φ will be called the set coinductively defined by Φ.

Theorem: 20.5.3 $\left(\mathbf{C Z F}^{-}+\Delta_{0}\right.$-RDC) If Φ is a set continuous Δ_{0} operator and $J=J_{\Phi}$ then

1. $J \subseteq \Phi(J)$,
2. If X is a Σ_{1} class and $X \subseteq \Phi(X)$ then $X \subseteq J$,
3. J is the largest Σ_{1} fixed point of Φ.

Proof: This is the same proof as for Theorem 20.5.2, noticing that Δ_{0}-RDC suffices here.

In applications, set continuous operators Φ often satisfy an additional property. Φ will be called fathomable if there is a partial class function q such that whenever $a \in \Phi(x)$ for some set x then $q(a) \subseteq x$ and $a \in \Phi(q(a))$. For example, deterministic inductive definitions are given by fathomable operators.

If the graph of q is also Δ_{0} definable we will say that Φ is a fathomable set continuous Δ_{0} operator.

For fathomable operators one can dispense with RDC and Δ_{0}-RDC in Theorems 20.5.2 and 20.5.3 in favour of $\mathbf{I N D}_{\omega}$ and Σ - $\mathbf{I N D}_{\omega}$, respectively.

Corollary: 20.5.4 (ECST $+\mathbf{I N D}_{\omega}$) If Φ is a set continuous fathomable operator and $J=J_{\Phi}$ then

1. $J \subseteq \Phi(J)$,
2. If $X \subseteq \Phi(X)$ then $X \subseteq J$,
3. J is the largest fixed point of Φ.

Proof: In the proof of Theorem 20.5.2, RDC was used for (2) to show that for every class X with $X \subseteq \Phi(X)$ it holds $X \subseteq J$. Now, if $a \in X$, then $a \in \Phi(u)$ for some set $u \subseteq X$, as Φ is set continuous, and thus $a \in \Phi(q(a))$ and $q(a) \subseteq X$. Using $\mathbf{I N D}_{\omega}$ and Replacement one defines a sequence x_{0}, x_{1}, \ldots by $x_{0}=\{a\}$ and $x_{n+1}=\bigcup\left\{q(v): v \in x_{n}\right\}$. We use induction on ω to show $x_{n} \subseteq X$. Obviously $x_{0} \subseteq X$. Suppose $x_{n} \subseteq X$. Then $x_{n} \subseteq \Phi(X)$. Thus for every $v \in x_{n}, q(v) \subseteq X$, and hence $x_{n+1} \subseteq X$. Let $x^{*}=\bigcup_{n} x_{n}$. Then $x^{*} \subseteq X$. Suppose $u \in x^{*}$. Then $u \in x_{n}$ for some n, and hence as $u \in \Phi(X), u \in \Phi(q(u))$. Thus $q(u) \subseteq x_{n+1} \subseteq x^{*}$, and so $u \in \Phi\left(x^{*}\right)$. As a result, $a \in x^{*} \subseteq \Phi\left(x^{*}\right)$, and hence $a \in J$.

Corollary: 20.5.5 (ECST $\left.+\Sigma_{1}-\mathbf{I N D}_{\omega}\right)$ If Φ is a set continuous fathomable Δ_{0} operator and $J=J_{\Phi}$ then

1. $J \subseteq \Phi(J)$,
2. If X is Σ_{1} and $X \subseteq \Phi(X)$ then $X \subseteq J$,
3. J is the largest Σ_{1} fixed point of Φ.

Proof: If the graph of q is Δ_{0} definable, $\Sigma_{1}-\mathbf{I N D}_{\omega}$ is sufficient to define the sequence x_{0}, x_{1}, \ldots.

For special operators it is also possible to forgo $\Sigma_{1}-\mathbf{I N D}_{\omega}$ in favour of TRANS.

Corollary: 20.5.6 ($\left.\mathbf{C Z F}^{-}+\mathbf{E x p}+\mathrm{TRANS}\right)$ Let Φ be a set continuous fathomable Δ_{0} operator such that q is a total map and $q(a) \subseteq \mathbf{T C}(\{a\})$ for all sets a. Let $J=J_{\Phi}$. Then

1. $J \subseteq \Phi(J)$,
2. If X is Δ_{0} and $X \subseteq \Phi(X)$ then $X \subseteq J$,
3. J is the largest Δ_{0} fixed point of Φ.

Proof: (1) is proved as in Theorem 20.5.2. For (2), suppose that X is a class with $X \subseteq \Phi(X)$. Let $a \in X$. Define a sequence of sets x_{0}, x_{1}, \ldots by $x_{0}=\{a\}$ and $x_{n+1}=\bigcup\left\{q(v): v \in x_{n}\right\}$ as in Corollary 20.5.4. But without $\Sigma-\mathbf{I N D}_{\omega}$, how can we ensure that the function $n \mapsto x_{n}$ exists? This can be seen as follows. Define

$$
\begin{aligned}
& D_{n}=\left\{f \in{ }^{n+1} \mathbf{T C}(\{a\}): f(0)=a \wedge \forall i \in n[f(i+1) \in q(f(i))]\right\}, \\
& E_{n}=\left\{f(n): f \in D_{n}\right\} .
\end{aligned}
$$

The function $n \mapsto E_{n}$ exists by FPA and Replacement. Moreover, $E_{0}=\{a\}$ and $E_{n+1}=\bigcup\left\{q(v): v \in E_{n}\right\}$ as can be easily shown by induction on n; thus $x_{n}=E_{n}$. The remainder of the proof is as in Corollary 20.5.4.

For (3), note that $J=\{a: a \in \Phi(q(a))\}$ and thus J is Δ_{0}.

20.6 Generalized systems of equations in an expanded universe

Before we can state the notion of a general systems of equations we will have to emulate urelements and the sets built out of them in the set theory CZFA with pure sets. To this end we employ the machinery of greatest fixed points of the previous subsection. We will take the sets of the form $\langle 1, x\rangle$ to be the urelements and call them $*$-urelements. The class of $*$-urelements will be denoted by \mathcal{U}. Certain sets built from them will be called the $*$-sets. If $a=\langle 2, u\rangle$ let $a^{*}=u$. The elements of a^{*} will be called the $*$-elements of a. Let the $*$-sets be the largest class of sets of the form $a=\langle 2, u\rangle$ such that each $*$-element of a is either a $*$-urelement or else a $*$-set. To bring this under the heading of the previous subsection, define

$$
\Phi^{*}(X)=\{\langle 2, u\rangle: \forall x \in u[(x \in X \wedge x \in \mathrm{TWO}) \vee x \text { is a } * \text {-urelement }]\}
$$

where TWO is the class of all ordered pairs of the form $\langle 2, v\rangle$. Obviously, Φ^{*} is a set-continuous operator. That Φ^{*} is fathomable can be seen by letting

$$
q(a)=\left\{v \in a^{*}: v \in \mathrm{TWO}\right\} .
$$

Notice also that Φ^{*} has a Δ_{0} definition.
The $*$-sets are precisely the elements of $J_{\Phi^{*}}$. Given a class Z of $*$-urelements we will also define the class of Z-sets to be the largest class of $*$-sets such that every $*$-urelement in a Z-set is in Z. We will use the notation $V[Z]$ for the class of Z-sets.

Definition: 20.6.1 A general system of equations is a pair $\mathcal{E}=(X, e)$ consisting of a set $X \subseteq \mathcal{U}$ (of indeterminates) and a function

$$
e: X \rightarrow V[X] .
$$

The point of requiring e to take values in $V[X]$ is that thereby e is barred from taking $*$-urelements as values and that all the values of e are sets which use only $*$-urelements from X in their build up. In consequence, one can define a substitution operation on the values of e.

Theorem: 20.6.2 (CZFA) (Substitution Lemma) Let Y be a Δ_{0} class such that $Y \subseteq \mathcal{U}$. For each map $\rho: Y \rightarrow V$ there exists a unique operation sub ${ }_{\rho}$ that assigns to each $a \in V[Y]$ a set $\operatorname{sub}_{\rho}(a)$ such that

$$
\begin{equation*}
\operatorname{sub}_{\rho}(a)=\left\{\operatorname{sub}_{\rho}(x): x \in a^{*} \cap V[Y]\right\} \cup\left\{\rho(x): x \in a^{*} \cap Y\right\} . \tag{20.6}
\end{equation*}
$$

Proof: The class $V[Y]$ forms the nodes of a labelled Δ_{0} system \mathbb{M} with edges $a \multimap b$ for $a, b \in V[Y]$ whenever $b \in a^{*}$, and labelling map $\wp(a)=a^{*} \cap Y$. By Corollary 20.3.7 there exists a unique map $\hat{\rho}: V[Y] \rightarrow V$ such that for each $a \in V[Y]$,

$$
\begin{equation*}
\hat{\rho}(a)=\left\{\hat{\rho}(x): x \in a^{*} \cap V[Y]\right\} \cup\left\{\rho(x): x \in a^{*} \cap Y\right\} . \tag{20.7}
\end{equation*}
$$

Put $\operatorname{sub}_{\rho}(a):=\hat{\rho}(a)$. Then $\operatorname{sub}_{\rho}$ satisfies (20.6). Since the equation (20.7) uniquely determines $\hat{\rho}$ it follows that $s u b_{\rho}$ is uniquely determined as well.

Definition: 20.6.3 Let \mathcal{E} be a general system of equations as in Definition 20.6.1. A solution to \mathcal{E} is a function $s: X \rightarrow V$ satisfying, for all $x \in X$,

$$
\begin{equation*}
s(x)=\operatorname{sub}_{s}\left(e_{x}\right), \tag{20.8}
\end{equation*}
$$

where $e_{x}:=e(x)$.
Theorem: 20.6.4 (CZFA) (Solution Lemma) Let \mathcal{E} be a general system of equations as in Definition 20.6.1. Then \mathcal{E} has a unique solution.

Proof: The class $V[X]$ provides the nodes for a labelled Δ_{0} system \mathbb{M} with edges $b \multimap c$ for $b, c \in V[X]$ whenever $c \in b^{*}$, and with a labelling map $\wp(b)=b^{*} \cap X$. Since $e: X \rightarrow V[X]$, we may employ Corollary 20.3.7 (with $Y=X$). Thus there is a unique function π and a unique function $\hat{\pi}$ such that

$$
\begin{equation*}
\pi(x)=\hat{\pi}\left(e_{x}\right) \tag{20.9}
\end{equation*}
$$

for all $x \in X$, and

$$
\begin{equation*}
\hat{\pi}(a)=\left\{\hat{\pi}(b):: b \in a^{*}\right\} \cup\left\{\pi(x): x \in a^{*} \cap X\right\} . \tag{20.10}
\end{equation*}
$$

In view of Theorem 20.6.2, we get $\hat{\pi}=s u b_{\pi}$ from (20.10). Thus letting $s:=\pi$, (20.9) then yields the desired equation $s(x)=\operatorname{sub}_{s}\left(e_{x}\right)$ for all $x \in X$. Further, s is unique owing to the uniqueness of π in (20.9).

Remark: 20.6.5 The framework in which AFA is studied in [8] is a set theory with a proper class of urelements \mathcal{U} that also features an axiom of plenitude which is the conjunction of the following sentences:

$$
\begin{aligned}
& \forall a \forall b \operatorname{new}(a, b) \in \mathcal{U}, \\
& \forall a \forall a^{\prime} \forall b \forall b^{\prime}\left[\operatorname{new}(a, b)=\operatorname{new}\left(a^{\prime}, b^{\prime}\right) \rightarrow a=a^{\prime} \wedge b=b^{\prime}\right], \\
& \forall a \forall b[b \subseteq \mathcal{U} \rightarrow \operatorname{new}(a, b) \notin b],
\end{aligned}
$$

where new is a binary function symbol. It is natural to ask whether a version of CZFA with urelements and an axiom of plenitude would yield any extra strength. That such a theory is not stronger than CZFA can be easily seen by modelling the urelements and sets of [8] inside CZFA by the $*$-urelements and the $*$-sets, respectively. To interpret the function symbol new define

$$
\operatorname{new}^{*}(a, b):=\left\langle 1,\left\langle a,\left\langle b, b^{r}\right\rangle\right\rangle\right\rangle,
$$

where $b^{r}=\{r \in \mathbf{T C}(b): r \notin r\}$. Obviously, new ${ }^{*}(a, b)$ is a $*$-urelement and new* is injective. Moreover, new $^{*}(a, b) \in b$ would imply new ${ }^{*}(a, b) \in \mathbf{T C}(b)$ and thus $b^{r} \in \mathbf{T C}(b)$. The latter yields the contradiction $b^{r} \notin b^{r} \wedge b^{r} \in b^{r}$. As a result, new* $(a, b) \notin b$. Interpreting new by new* thus validates the axiom of plenitude, too.

20.7 Streams, coinduction, and corecursion

In the following we shall demonstrate the important methods of coinduction and corecursion in a setting which is not too complicated but still demonstrates the general case in a nutshell. The presentation closely follows [8].

Let A be some set. By a stream over A we mean an ordered pair $s=\left\langle a, s^{\prime}\right\rangle$ where $a \in A$ and s^{\prime} is another stream. We think of a stream as being an element of A followed by another stream. Two important operations performed on streams s are taking the first element $1^{s t}(s)$ which gives an element of A, and taking its second element $2^{\text {nd }}(s)$, which yields another stream. If we let A^{∞} be the streams over A, then we would like to have

$$
\begin{equation*}
A^{\infty}=A \times A^{\infty} . \tag{20.11}
\end{equation*}
$$

In set theory with the foundation axiom, equation (20.11) has only the solution $A=\emptyset$. With AFA, however, not only can one show that (20.11) has a solution different from \emptyset but also that it has a largest solution, the latter being the largest fixed point of the operator $\Gamma_{A}(Z)=A \times Z$. This largest solution to Γ_{A} will be taken to be the set of streams over A and be denoted by A^{∞}, thus rendering A^{∞} a coinductive set. Moreover, it will be shown that A^{∞} possesses a "recursive"
character despite the fact that there is no "base case". For instance, it will turn out that one can define a function

$$
\text { zip }: A^{\infty} \times A^{\infty} \rightarrow A^{\infty}
$$

such that for all $s, t \in A^{\infty}$

$$
\begin{equation*}
z i p(s, t)=\left\langle 1 \operatorname{st}(s),\left\langle 1^{s t}(t), z i p\left(2^{n d}(s), 2^{n d}(t)\right)\right\rangle\right\rangle \tag{20.12}
\end{equation*}
$$

As its name suggests, zip acts like a zipper on two streams. The definition of zip in (20.12) is an example for definition by corecursion over a coinductive set.

Theorem: 20.7.1 (CZFA) For every set A there is a largest set Z such that $Z \subseteq A \times Z$. Moreover, Z satisfies $Z=A \times Z$, and if A is inhabited then so is Z.

Proof: Let F be the set of functions from $\mathbb{N}:=\omega$ to A. For each such f, we define another function $f^{+}: \mathbb{N} \rightarrow \mathbb{N}$ by

$$
f^{+}(n)=f(n+1) .
$$

For each $f \in F$ let x_{f} be an indeterminate. We would like to solve the system of equations given by

$$
x_{f}=\left\langle f(0), x_{f+}\right\rangle .
$$

Solving these equations is equivalent to solving the equations

$$
\begin{align*}
x_{f} & =\left\{y_{f}, z_{f}\right\} \tag{20.13}\\
y_{f} & =\{f(0)\} \\
z_{f} & =\left\{f(0), x_{f^{+}}\right\},
\end{align*}
$$

where y_{f} and z_{f} are further indeterminates. Note that $f(0)$ is an element of A. To be precise, let $x_{f}=\langle 0, f\rangle, y_{f}=\langle 1, f\rangle$, and $z_{f}=\langle 2, f\rangle$. Solving (20.13) amounts to the same as finding a labelled decoration for the labelled graph

$$
\mathbb{S}_{A}=(S, \rightsquigarrow, \ell)
$$

whose set of nodes is

$$
S=\left\{x_{f}: f \in F\right\} \cup\left\{y_{f}: f \in F\right\} \cup\left\{z_{f}: f \in F\right\}
$$

and whose edges are given by $x_{f} \rightsquigarrow y_{f}, x_{f} \rightsquigarrow z_{f}, z_{f} \rightsquigarrow x_{f^{+}}$. Moreover, the labelling function ℓ is defined by $\ell\left(x_{f}\right)=\emptyset, \ell\left(y_{f}\right)=\{f(0)\}, \ell\left(z_{f}\right)=\{f(0)\}$ for all $f \in F$. By the labelled Anti-Foundation Axiom, Theorem 20.2.2, \mathbb{S}_{A} has a labelled decoration d and we thus get

$$
\begin{equation*}
d\left(x_{f}\right)=\left\langle f(0), d\left(x_{f^{+}}\right)\right\rangle . \tag{20.14}
\end{equation*}
$$

Let $A^{\infty}=\left\{d\left(x_{f}\right): f \in F\right\}$. By (20.14), we have $A^{\infty} \subseteq A \times A^{\infty}$. Thus A^{∞} solves the equation $Z \subseteq A \times Z$.

To check that $A \times A^{\infty} \subseteq A^{\infty}$ holds also, let $a \in A$ and $t \in A^{\infty}$. By the definition of $A^{\infty}, t=d\left(x_{f}\right)$ for some $f \in F$. Let $g: \mathbb{N} \rightarrow A$ be defined by $g(0)=a$ and $g(n+1)=f(n)$. Then $g^{+}=f$, and thus $d\left(x_{g}\right)=\left\langle a, d\left(x_{f}\right)\right\rangle=\langle a, t\rangle$, so $\langle a, t\rangle \in A^{\infty}$.

If A contains an element a, then $f_{a} \in F$, where $f_{a}: \mathbb{N} \rightarrow A$ is defined by $f_{a}(n)=a$. Hence $d\left(x_{f_{a}}\right) \in A^{\infty}$, so A^{∞} is inhabited, too.

Finally it remains to show that A^{∞} is the largest set Z satisfying $Z \subseteq A \times Z$. So suppose that W is a set so that $W \subseteq A \times W$. Let $v \in W$. Define $f_{v}: \mathbb{N} \rightarrow A$ by

$$
f_{v}(n)=1^{s t}\left(\sec ^{n}(v)\right)
$$

where $\sec ^{0}(v)=v$ and $\sec ^{n+1}(v)=2^{n d}\left(\sec ^{n}(v)\right)$. Then $f_{v} \in F$, and so $d\left(x_{f_{v}}\right) \in$ A^{∞}. We claim that for all $v \in W, d\left(x_{f_{v}}\right)=v$. Notice first that for $w=2^{n d}(v)$, we have $\sec ^{n}(w)=\sec ^{n+1}(v)$ for all $n \in \mathbb{N}$, and thus $f_{w}=\left(f_{v}\right)^{+}$. It follows that

$$
\begin{align*}
d\left(x_{f_{v}}\right) & =\left\langle 1^{s t}(v), d\left(x_{\left(f_{v}+\right.}\right)\right\rangle \tag{20.15}\\
& =\left\langle 1^{s t}(v), d\left(x_{f_{w}}\right)\right\rangle \\
& =\left\langle 1^{s t}(v), d\left(x_{f_{2 n d}(v)}\right)\right\rangle .
\end{align*}
$$

W gives rise to a labelled subgraph \mathbb{T} of \mathbb{S} whose set of nodes is

$$
T:=\left\{x_{f_{v}}: v \in W\right\} \cup\left\{y_{f_{v}}: v \in W\right\} \cup\left\{z_{f_{v}}: v \in W\right\}
$$

and wherein the edges and the labelling function are obtained from \mathbb{S} by restriction to nodes from T. The function d^{\prime} with $d^{\prime}\left(x_{f_{v}}\right)=v, d^{\prime}\left(y_{f_{v}}\right)=\left\{1^{s t}(v)\right\}$, and $d^{\prime}\left(z_{f_{v}}\right)=\left\{1^{s t}(v), 2^{\text {nd }}(v)\right\}$ is obviously a labelled decoration of \mathbb{T}. By (20.15), d restricted to T is a labelled decoration of \mathbb{T} as well. So by Theorem 20.2.2, $v=d^{\prime}\left(x_{f_{v}}\right)=d\left(x_{f_{v}}\right)$ for all $v \in W$, and thus $W \subseteq A^{\infty}$.
As a corollary one gets the following coinduction principle for A^{∞}.
Remark: 20.7.2 Rather than applying the labelled Anti-Foundation Axiom one can utilize the solution lemma for general systems of equations (Theorem 20.6.4) in the above proof of Theorem 20.7.1. To this end let $B=\mathbf{T C}(A), x_{f}=\langle 1,\langle 0, f\rangle\rangle$ for $f \in F$ and $x_{b}=\langle 1,\langle 1, b\rangle\rangle$ for $b \in B$. Set $X:=\left\{x_{f}: f \in F\right\} \cup\left\{x_{b}: b \in B\right\}$. Then $X \subseteq \mathcal{U}$ and $\left\{x_{f}: f \in F\right\} \cap\left\{x_{b}: b \in B\right\}=\emptyset$.

Next define the unordered $*$-pair by $\{c, d\}^{*}=\langle 2,\{c, d\}\rangle$ and the ordered *-pair by $\langle c, d\rangle^{*}=\left\{\{c\}^{*},\{c, d\}^{*}\right\}^{*}$. Note that with $c, d \in V[X]$ one also has $\{c, d\}^{*},\langle c, d\rangle^{*} \in V[X]$.

Let $\mathcal{E}=(X, e)$ be the general system of equations with $e\left(x_{f}\right)=\left\langle x_{f(0)}, x_{f^{+}}\right\rangle^{*}$ for $f \in F$ and $e\left(x_{b}\right)=\left\langle 2,\left\{x_{u} u \in b\right\}\right\rangle$ for $b \in B$. Then $e: X \rightarrow V[X]$. By

Theorem 20.6.4 there is a unique function $s: X \rightarrow V$ such that

$$
\begin{align*}
s\left(x_{b}\right)=\operatorname{sub}_{s}\left(e\left(x_{b}\right)\right) & =\left\{s\left(x_{u}\right): u \in b\right\} \quad \text { for } b \in B, \tag{20.16}\\
s\left(x_{f}\right)=\operatorname{sub}_{s}\left(e\left(x_{f}\right)\right) & =\left\langle s\left(x_{f(0)}\right), s\left(x_{f^{+}}\right)\right\rangle \text {for } f \in F . \tag{20.17}
\end{align*}
$$

From (20.16) and Lemma 20.2.6 it follows $s\left(x_{b}\right)=b$ for all $b \in B$, and thus from (20.17) it ensues that $s\left(x_{f}\right)=\left\langle f(0), s\left(x_{f^{+}}\right)\right\rangle$for $f \in F$. From here on one can proceed further just as in the proof of Theorem 20.6.4.

Corollary: 20.7.3 (CZFA) If a set Z satisfies $Z \subseteq A \times Z$, then $Z \subseteq A^{\infty}$.
Proof: This follows from the fact that A^{∞} is the largest such set.
The pivotal property of inductively defined sets is that one can define functions on them by structural recursion. For coinductively defined sets one has a dual principle, corecursion, which allows one to define functions mapping into the coinductive set.

Theorem: 20.7.4 (CZFA) (Corecursion Pinciple for Streams). Let C be an arbitrary set. Given functions $g: C \rightarrow A$ and $h: C \rightarrow C$ there is a unique function $f: C \rightarrow A^{\infty}$ satisfying

$$
\begin{equation*}
f(c)=\langle g(c), f(h(c))\rangle \tag{20.18}
\end{equation*}
$$

for all $c \in C$.
Proof: For each $c \in C$ let x_{c}, y_{c}, z_{c} be different indeterminates. To be precise, let $x_{c}=\langle 0, c\rangle, y_{c}=\langle 1, c\rangle$, and $z_{c}=\langle 2, c\rangle$ for $c \in C$. This time we would like to solve the system of equations given by

$$
x_{c}=\left\langle g(c), x_{h(c)}\right\rangle .
$$

Solving these equations is equivalent to solving the equations

$$
\begin{align*}
x_{c} & =\left\{y_{c}, z_{c}\right\} \tag{20.19}\\
y_{c} & =\{g(c)\} \\
z_{c} & =\left\{g(c), x_{h(c)}\right\} .
\end{align*}
$$

Solving (20.19) amounts to the same as finding a labelled decoration for the labelled graph

$$
\mathbb{S}_{C}=\left(S_{C}, \rightsquigarrow, \ell_{C}\right)
$$

whose set of nodes is

$$
S_{C}=\left\{x_{c}: c \in C\right\} \cup\left\{y_{c}: c \in C\right\} \cup\left\{z_{c}: c \in C\right\}
$$

and whose edges are given by $x_{c} \rightsquigarrow y_{c}, x_{c} \rightsquigarrow z_{c}, z_{c} \rightsquigarrow x_{h(c)}$. Moreover, the labelling function ℓ_{C} is defined by $\ell_{C}\left(x_{b}\right)=\emptyset, \ell_{C}\left(y_{b}\right)=\{g(b)\}, \ell_{C}\left(z_{b}\right)=\{g(b)\}$ for all $b \in C$. By the labelled Anti-Foundation Axiom, Theorem 20.2.2, \mathbb{S}_{C} has a labelled decoration \jmath and we thus get

$$
\begin{equation*}
\jmath\left(x_{c}\right)=\left\langle g(c), \jmath\left(x_{h(c)}\right)\right\rangle . \tag{20.20}
\end{equation*}
$$

Letting the function f with domain C be defined by $f(c):=\jmath\left(x_{c}\right)$, we get from (20.20) that

$$
\begin{equation*}
f(c)=\langle g(c), f(h(c))\rangle \tag{20.21}
\end{equation*}
$$

holds for all $c \in C$. As $\boldsymbol{r a n}(f) \subseteq A \times \boldsymbol{\operatorname { r a n }}(f)$, Corollary 20.7.3 yields $\boldsymbol{\operatorname { r a n }}(f) \subseteq$ A^{∞}, thus $f: C \rightarrow A^{\infty}$.

It remains to show that f is uniquely determined by (20.21). So suppose f^{\prime} : $C \rightarrow A^{\infty}$ is another function satisfying $f^{\prime}(c)=\left\langle g(c), f^{\prime}(h(c))\right\rangle$ for all $c \in C$. Then the function \jmath^{\prime} with $\jmath^{\prime}\left(x_{c}\right)=f^{\prime}(c), \jmath^{\prime}\left(y_{c}\right)=\{g(c)\}$, and $\jmath^{\prime}\left(z_{c}\right)=\left\{g(c), f^{\prime}(h(c))\right\}$ would give another labelled decoration of \mathbb{S}_{C}, hence $f(c)=\jmath\left(x_{c}\right)=\jmath^{\prime}\left(x_{c}\right)=$ $f^{\prime}\left(x_{c}\right)$, yielding $f=f^{\prime}$.

Example 1. Let $k: A \rightarrow A$ be arbitrary. Then k gives rise to a unique function $\operatorname{map}_{k}: A^{\infty} \rightarrow A^{\infty}$ satisfying

$$
\begin{equation*}
\operatorname{map}_{k}(s)=\left\langle k\left(1^{s t}(s)\right), \operatorname{map}_{k}\left(2^{n d}(s)\right)\right\rangle \tag{20.22}
\end{equation*}
$$

For example, if $A=\mathbb{N}, k(n)=2 n$, and $s=\langle 3,\langle 6,\langle 9, \ldots\rangle\rangle\rangle$, then $\operatorname{map}_{k}(s)=$ $\langle 6,\langle 12,\langle 18, \ldots\rangle\rangle\rangle$. To see that map_{k} exists, let $C=A^{\infty}$ in Theorem 20.7.4, $g: A^{\infty} \rightarrow A$ be defined by $g(s)=k\left(1^{s t}(s)\right)$, and $h: A^{\infty} \rightarrow A^{\infty}$ be the function $h(s)=2^{\text {nd }}(s)$. Then map_{k} is the unique function f provided by Theorem 20.7.4.

Example 2. Let $\nu: A \rightarrow A$. We want to define a function

$$
\text { iter }_{\nu}: A \rightarrow A^{\infty}
$$

which "iterates" ν such that $\operatorname{iter}_{\nu}(a)=\left\langle a, \operatorname{iter}_{\nu}(\nu(a))\right\rangle$ for all $a \in A$. If, for example $A=\mathbb{N}$ and $\nu(n)=2 n$, then iter $_{\nu}(7)=\langle 7,\langle 14,\langle 28, \ldots\rangle\rangle\rangle$. To arrive at iter $_{\nu}$ we employ Theorem 20.7.4 with $C=A^{\infty}, g: C \rightarrow A$, and $h: C \rightarrow C$, where $g(s)=\nu\left(1^{\text {st }}(s)\right)$ and $h=\operatorname{map}_{\nu}$, respectively.

Outlook. It would be desirable to develop the theory of corecursion of [8] (in particular Theorem 17.5) and the final coalgebra theorem of [4] in full generality within CZFA and extensions. It appears that the first challenge here is to formalize parts of category theory in constructive set theory.

Chapter 21

The Interpretation of CZF in
 Martin-Löf Type Theory

Chapter 22

The Metamathematics of Constructive Set Theories

22.1 ECST

Lemma: 22.1.1 (i) ECST does not prove the existence of the addition function on ω.
(ii) ECST does not prove Small Iteration.

Proof: [82, Theorem 3.1].

22.2 The strength of CZF

In what follows we shall use the notions of proof-theoretic equivalence of theories and proof-theoretic strength of a theory whose precise definitions one can find in [65]. For our purposes here we take proof-theoretic equivalence of set theories T_{1} and T_{2} to mean that these theories prove the same Π_{2}^{0} statements of arithmetic and that this insight can be obtained on the basis of a weak theory such as primitive recursive arithmetic, PRA.

Theorem: 22.2.1 Let KP be Kripke-Platek Set Theory (with the Infinity Axiom) (see [7]). The theory CZF bereft of Subset Collection is denoted by CZF ${ }^{-}$.
(i) $\mathbf{C Z F}$ and $\mathbf{C Z F}^{-}$are of the same proof-theoretic strength as $\mathbf{K P}$ and the classical theory $\mathbf{I D}_{1}$ of non-iterated positive arithmetical inductive definitions. These systems prove the same Π_{2}^{0} statements of arithmetic.
(ii) The system CZF augmented by the Power Set axiom is proof-theoretically stronger than classical Zermelo Set theory, Z (in that it proves the consistency of \mathbf{Z}).
(iii) CZF does not prove the Power Set axiom.

Proof: Let Pow denote the Power Set axiom. (i) follows from [64] Theorem 4.14. Also (iii) follows from [64] Theorem 4.14 as one easily sees that 2-order Heyting arithmetic has a model in CZF + Pow. Since second-order Heyting arithmetic is of the same strength as classical second-order arithmetic it follows that CZF + Pow is stronger than classical second-order arithmetic (which is much stronger than KP). But more than that can be shown. Working in CZF + Pow one can iterate the power set operation $\omega+\omega$ times to arrive at the set $V_{\omega+\omega}$ which is readily seen to be a model of intuitionistic Zermelo Set Theory, \mathbf{Z}^{i}. As \mathbf{Z} can be interpreted in \mathbf{Z}^{i} by means of a double negation translation as was shown in [36] Theorem 2.3.2, we obtain (ii).

The first large set axiom proposed in the context of constructive set theory was the Regular Extension Axiom, REA, which was introduced to accommodate inductive definitions in CZF (cf. [3], [5]).

Definition: 22.2.2 A set c is said to be regular if it is transitive, inhabited (i.e. $\exists u u \in c)$ and for any $u \in c$ and set $R \subseteq u \times c$ if $\forall x \in u \exists y\langle x, y\rangle \in R$ then there is a set $v \in c$ such that

$$
\forall x \in u \exists y \in v\langle x, y\rangle \in R \wedge \forall y \in v \exists x \in u\langle x, y\rangle \in R .
$$

We write $\boldsymbol{\operatorname { R e g }}(a)$ for ' a is regular'.
REA is the principle

$$
\forall x \exists y(x \in y \wedge \operatorname{Reg}(y)) .
$$

Theorem: 22.2.3 Let KPi be Kripke-Platek Set Theory plus an axiom asserting that every set is contained in an admissible set (see [7]).
(i) $\mathbf{C Z F}+$ REA is of the same proof-theoretic strength as $\mathbf{K P i}$ and the subsystem of second-order arithmetic with $\boldsymbol{\Delta}_{2}^{1}$-comprehension and Bar Induction.
(ii) CZF + REA does not prove the Power Set axiom.

Proof: (i) follows from [64] Theorem 5.13. (ii) is a consequence of (i) and Theorem 22.2.1.

22.3 Some metamathematical results about REA

Lemma: 22.3.1 On the basis of ZFC, a set B is regular if and only if B is functionally regular.

Proof: Obvious.

Proposition: 22.3.2 ZFC \vdash REA.

Proof: The axiom of choice implies that arbitrarily large regular cardinals exists and that for each regular cardinal $\kappa, H(\kappa)$ is a regular set. Given any set b let μ be the cardinality of $\mathbf{T C}(b) \cup\{b\}$. Then the next cardinal after μ, denoted μ^{+}, is regular and $b \in H\left(\mu^{+}\right)$.

Proposition: 22.3.3 (i) $\mathbf{C Z F}+\mathbf{A C}_{\omega}$ does not prove that $H(\omega \cup\{\omega\})$ is a set.
(ii) CZF does not prove REA.

Proof: It has been shown by Rathjen (cf. [?]) that $\mathbf{C Z F}+\mathbf{A C}_{\omega}$ has the same proof-theoretic strength as Kripke-Platek set theory, KP. The proof-theoretic ordinal of $\mathbf{C Z F}+\mathbf{A C} \mathbf{C}_{\omega}$ is the so-called Bachmann-Howard ordinal $\psi_{\Omega_{1}} \varepsilon_{\Omega_{1}+1}$. Let

$$
T:=\mathbf{C Z F}+\mathbf{A C}_{\omega}+H(\omega \cup\{\omega\}) \text { is a set. }
$$

Another theory which has proof-theoretic ordinal $\psi_{\Omega_{1}} \varepsilon_{\Omega_{1}+1}$ is the intuitionistic theory of arithmetic inductive definitions $\mathbf{I D}_{1}^{i}$. We aim at showing that T proves the consistency of $\mathbf{I D}_{1}^{i}$. The latter implies that T proves the consistency of $\mathbf{C Z F}+\mathbf{A C}_{\omega}$ as well, yielding (i), owing to Gödel's Incompleteness Theorem.

Let $L_{H A}(P)$ be the language of Heyting arithmetic augmented by a new unary predicate symbol P. The language of $\mathbf{I D}_{1}^{i}$ comprises $L_{H A}$ and in addition contains a unary predicate symbol I_{ϕ} for each formula $\phi(u, P)$ of $L_{H A}(P)$ in which P occurs only positively. The axioms of $\mathbf{I D}_{1}^{i}$ comprise those of Heyting arithmetic with the induction scheme for natural numbers extended to the language of $\mathbf{I D}_{1}^{i}$ plus the following axiom schemes relating to the predicates I_{ϕ} :

$$
\begin{array}{ll}
\left(I D_{\phi}^{1}\right) & \forall x\left[\phi\left(x, I_{\phi}\right) \rightarrow I_{\phi}(x)\right] \\
\left(I D_{\phi}^{2}\right) & \forall x[\phi(x, \psi) \rightarrow \psi(x)] \rightarrow \forall x\left[I_{\phi}(x) \rightarrow \psi(x)\right]
\end{array}
$$

for every formula ψ, where $\phi(x, \psi)$ arises from $\phi(x, P)$ by replacing every occurrence of a formula $P(t)$ in $\phi(x, P)$ by $\psi(t)$.

Arguing in T we want to show that $\mathbf{I D}_{1}^{i}$ has a model. The domain of the model will be ω. The interpretation of $\mathbf{I D}_{1}^{i}$ in T is given as follows. The quantifiers of $\mathbf{I D}_{1}^{i}$ are interpreted as ranging over ω. The arithmetic constant 0 and the functions $+1,+, \cdot$ are interpreted by their counterparts on ω. It remains to provide an interpretation for the predicates I_{ϕ}, where $\phi(u, P)$ is a P positive formula of $L_{H A}(P)$. Let $\phi(u, v)^{*}$ be the set-theoretic formula which arises from $\phi(u, P)$ by,
firstly, restricting all quantifiers to ω, secondly, replacing all subformulas of the form $P(t)$ by $t \in v$, and thirdly, replacing the arithmetic constant and function symbols by their set-theoretic counterparts. Let

$$
\Gamma_{\phi}(A)=\left\{x \in \omega \mid \phi(x, A)^{*}\right\}
$$

for every subset A of ω, and define a mapping $x \mapsto \Gamma_{\phi}^{x}$ by recursion on $H(\omega \cup\{\omega\})$ via

$$
\Gamma_{\phi}^{x}=\Gamma_{\phi}\left(\bigcup_{u \in x} \Gamma_{\Phi}^{u}\right) .
$$

Finally put

$$
I_{\phi}^{*}=\bigcup_{x \in H(\omega \cup\{\omega\})} \Gamma_{\phi}^{x} .
$$

It is obvious that the above interpretation validates the arithmetic axioms of $\mathbf{I D}_{1}^{i}$. The validity of the interpretation of ($I D_{\phi}^{1}$) follows from

$$
\begin{equation*}
\Gamma_{\phi}\left(I_{\phi}^{*}\right) \subseteq I_{\phi}^{*} . \tag{22.1}
\end{equation*}
$$

Let $H C=H(\omega \cup\{\omega\})$. Before we prove (22.1) we show

$$
\begin{equation*}
\Gamma_{\phi}^{\in a} \subseteq \Gamma_{\phi}^{a} \tag{22.2}
\end{equation*}
$$

for $a \in H C$, where $\Gamma_{\phi}^{\in a}=\bigcup_{x \in a} \Gamma_{\phi}^{x}$. (22.2) is shown by Set Induction on a. The induction hypothesis then yields, for $x \in a$,

$$
\Gamma_{\phi}^{\in x} \subseteq \Gamma_{\phi}^{x} \subseteq \Gamma_{\phi}^{\in a} .
$$

Thus, by monotonicity of the operator Γ_{ϕ},

$$
\Gamma_{\phi}\left(\Gamma_{\phi}^{\in x}\right)=\Gamma_{\phi}^{x} \subseteq \Gamma_{\phi}\left(\Gamma_{\phi}^{\in a}\right)=\Gamma_{\phi}^{a},
$$

and hence $\Gamma_{\phi}^{\in a} \subseteq \Gamma_{\phi}^{a}$, confirming (22.2).
To prove (22.1) assume $n \in \Gamma_{\phi}\left(I_{\phi}^{*}\right)$. Then $\phi\left(n, \bigcup_{x \in H C} \Gamma_{\phi}^{x}\right)^{*}$ by definition of Γ_{Φ}. Now, since $\bigcup_{x \in H C} \Gamma_{\phi}^{x}$ occurs positively in the latter formula one can show, by induction on the built up of ϕ, that

$$
\begin{equation*}
\phi\left(n, \Gamma_{\phi}^{a}\right)^{*} \tag{22.3}
\end{equation*}
$$

for some $a \in H C$. The atomic cases are obvious. The crucial case is when $\phi(n, v)^{*}$ is of the form $\forall k \in \omega \psi(k, n, v)$. Inductively one then has

$$
\forall k \in \omega \exists y \in H C \psi\left(k, n, \Gamma_{\phi}^{y}\right) .
$$

Employing Strong Collection, there exists $R \in \mathbf{m v}\left({ }^{\omega} H C\right)$ such that

$$
\forall k \in \omega \exists y\left[\langle k, y\rangle \in R \wedge \psi\left(k, n, \Gamma_{\phi}^{y}\right) .\right.
$$

Using $\mathbf{A C}_{\omega}$ there exists a function $f: \omega \rightarrow H C$ such that $\forall k \in \omega\langle k, f(k)\rangle \in R$ and hence

$$
\forall k \in \omega \psi\left(k, n, \Gamma_{\phi}^{f(k)}\right) .
$$

Let $b=\operatorname{ran}(f)$. It follows from (22.2) that $\left.\Gamma_{\phi}^{f(k)}\right) \subseteq \Gamma_{\phi}^{b}$, and thus, by positivity of the occurrence of P in ϕ we get,

$$
\left.\forall k \in \omega \psi\left(k, n, \Gamma_{\phi}^{b}\right)\right)^{*}
$$

The validity of the interpretation of $\left(I D_{\phi}^{2}\right)$ can be seen as follows. Assume

$$
\begin{equation*}
\forall i \in \omega[\phi(i, X) \rightarrow i \in X] \tag{22.4}
\end{equation*}
$$

where X is a definable class. We want to show $I_{\phi}^{*} \subseteq X$. It suffices to show $\Gamma_{\phi}^{a} \subseteq X$ for all $a \in H C$. We proceed by induction on $a \in H C$. The induction hypothesis provides $\Gamma_{\phi}^{\in a} \subseteq X$. Monotonicity of Γ_{ϕ} yields $\Gamma_{\phi}\left(\Gamma_{\phi}^{\in a}\right)=\Gamma_{\phi}^{a} \subseteq \Gamma_{\phi}(X)$. By (22.2) it holds $\Gamma_{\phi}(X) \subseteq X$. Hence $\Gamma_{\phi}^{a} \subseteq X$.

We have now shown within T that $\mathbf{I D}_{1}^{i}$ has a model. Note also that, arguing in T, this model is a set as the mapping $\phi(u, P) \mapsto I_{\phi}^{*}$ is a function when we assume a coding of the syntax of $\mathbf{I D}_{1}^{i}$. As a result, by formalizing the notion of truth for this model, T proves the consistency of $\mathbf{I D}_{1}^{i}$, establishing (i).
(ii) It has been shown by Rathjen (cf. [?]) that CZF + REA is of much greater proof-theoretic strength than CZF. However, (ii) also follows from (i) as REA implies that $H(\omega \cup\{\omega\})$ is a set.

ZF proves fREA, though this is not a triviality. Here we shall draw on [43], where it was shown that $\mathbf{Z F}$ proves that $H(\omega \cup\{\omega\})$ is a set.

Proposition: 22.3.4 ZF \vdash fREA
Proof: Every set x is contained in a transitive set A with $\omega \subseteq A$. Thus if we can show that $H(A)$ is a set we have found a set comprising x which is functionally regular. The main task of the proof is therefore to show that $H(A)$ is a set. Let ρ be the supremum of all ordinals which are order types of well-orderings of subsets of A. (A well-ordering of a set B is a relation $R \subseteq B \times B$ such R linearly orders the elements of B and for every non-empty $X \subseteq B$ there exists an R-least element in X, i.e. $\exists u \in X \forall v \in X \neg v R u$.) Note that ρ exists owing to Power Set, Separation, Replacement, and Union. Also note that ρ is a cardinal $\geq \omega$ and for every well-ordering R of a subset of A, the order-type of R is less than ρ.

Let $\kappa=\rho^{+}$(where ρ^{+}denotes the least cardinal bigger than ρ). We shall show that $\operatorname{rank}(s)<\kappa$ for every $s \in H(A)$, and thus

$$
\begin{equation*}
H(A) \subseteq V_{\kappa} \tag{22.5}
\end{equation*}
$$

For a set X let $\bigcup^{n} X$ be the n-fold union of X, i.e., $\bigcup^{0} X=X$, and $\bigcup^{n+1} X=$ $\bigcup\left(\bigcup^{n} X\right)$. Note that

$$
\operatorname{rank}(X)=\{\operatorname{rank}(u) \mid u \in \mathbf{T C}(X)\}=\bigcup_{n \in \omega}\left\{\operatorname{rank}(u) \mid u \in \bigcup^{n} X\right\} .
$$

Let Θ be the set of all non-empty finite sequences of ordinals $<\rho$. We shall define a function F on $H(A) \times \omega \times \Theta$ such that for each $s \in H(A)$, if F_{s} denotes the function $F_{s}(n, t)=F(s, n, t)$, then F_{s} maps $\omega \times \Theta$ onto $\operatorname{rank}(s)$. Since there is a bijection between Θ and ρ (cf. [49], 10.13), we then have $\operatorname{rank}(s)<\kappa$, and thus $s \in V_{\kappa}$. We define the function F by recursion on n. For each n, we denote by F_{s}^{n} the function $F_{s}^{n}(t)=F(s, n, t)$. For $n=0$ we let for each $s \in H(A)$ and each $\beta<\rho$,

$$
F_{s}^{0}(\langle\beta\rangle)=\text { the } \beta \text { th element of }\{\operatorname{rank}(u) \mid u \in s\}
$$

if the set $\{\operatorname{rank}(u) \mid u \in s\}$ has order-type $>\beta$, and $F_{s}^{0}(\langle\beta\rangle)=0$ otherwise. If $t \in \Theta$ is not of the form $\langle\beta\rangle$, we put $F_{s}^{0}(t)=0$.

Since there exists $b \in A$ and $g: b \rightarrow H(A)$ such that $s=\operatorname{ran}(g)$, the order type of $\{\operatorname{rank}(x) \mid x \in s\}$ is an ordinal $<\rho$, owing to $b \subseteq A$. And hence F_{s}^{0} maps Θ onto the set $\{\operatorname{rank}(x) \mid x \in s\}$.

For $n=1, s \in H(A)$, and $\beta_{0}, \beta_{1}<\rho$ we let

$$
F_{s}^{1}\left(\left\langle\beta_{0}, \beta_{1}\right\rangle\right)=\text { the } \beta_{1} \text { th element of }\left\{F_{u}^{0}\left(\left\langle\beta_{0}\right\rangle\right) \mid u \in s\right\},
$$

if it exists, and $F_{s}^{1}\left(\left\langle\beta_{0}, \beta_{1}\right\rangle\right)=0$ otherwise. If $t \in \Theta$ is not of the form $\left\langle\beta_{0}, \beta_{1}\right\rangle$, let $F_{s}^{1}(t)=0$. In general, let

$$
F_{s}^{n+1}\left(\left\langle\beta_{0}, \ldots, \beta_{n+1}\right\rangle\right)=\text { the } \beta_{n+1} \text { th element of }\left\{F_{u}^{n}\left(\left\langle\beta_{0}, \ldots, \beta_{n}\right\rangle\right) \mid u \in s\right\},
$$

if it exists, and $F_{s}^{n+1}\left(\left\langle\beta_{0}, \ldots, \beta_{n+1}\right\rangle\right)=0$ otherwise. If $t \in \Theta$ is not of the form $\left\langle\beta_{0}, \ldots, \beta_{n+1}\right\rangle$, let $F_{s}^{n+1}(t)=0$.

For each $s \in H(A)$ and each $\left\langle\beta_{0}, \ldots, \beta_{n}\right\rangle \in \Theta$, the order-type of the set $\left\{F_{u}^{n}\left(\left\langle\beta_{0}, \ldots, \beta_{n}\right\rangle\right) \mid u \in s\right\}$ is an ordinal $<\rho$. Hence F_{s}^{n+1} maps Θ onto the set

$$
\left\{F_{u}^{n}\left(\left\langle\beta_{0}, \ldots, \beta_{n}\right\rangle\right) \mid u \in s \wedge\left\langle\beta_{0}, \ldots, \beta_{n}\right\rangle \in \rho \times \cdots \times \rho\right\} .
$$

It follows by induction that for each n and for each $s \in H(A)$, the function F_{s}^{n} maps Θ onto the set $\left\{\operatorname{rank}(u) \mid u \in \bigcup^{n} s\right\}$. For each $s \in H(A), F_{s}$ therefore maps $\omega \times \Theta$ onto the set $\{\operatorname{rank}(u) \mid u \in \mathbf{T C}(s)\}=\operatorname{rank}(s)$.

This concludes the proof of (22.5). Finally, by Separation, it follows that $H(A)$ is a set.

Remark: 22.3.5 By [43] ZF proves that either $\operatorname{rank}(H(\omega \cup\{\omega\}))=\aleph_{1}$ or $\operatorname{rank}(H(\omega \cup\{\omega\}))=\aleph_{2}$. The latter is the case when \aleph_{1} is singular.

Proposition: 22.3.6 Let $H C=H(\omega \cup\{\omega\})$. If $\mathbf{Z F}$ is consistent, then $\mathbf{Z F}$ does not prove that $H C$ is weakly regular.

Proof: Assume that ZF is consistent. Let T be the theory ZF plus the assertion that the real numbers are a union of countably many countable sets. By results of Feferman and Levy it follows that T is consistent as well (see [32] or [42], Theorem 10.6). In the following we argue in T and identify the set of reals, \mathbb{R}, with the set of functions from ω to ω. Working towards a contradiction, assume that $H C$ is weakly regular. Let $\mathbb{R}=\bigcup_{n \in \omega} X_{n}$, where each X_{n} is countable and infinite. By induction on $n \in \omega$ one verifies that $n \in H C$ for every $n \in \omega$, and thus $\omega \in H C$. If $f: \omega \rightarrow \omega$ define f^{*} by $f^{*}(n)=\langle n, f(n)\rangle$. Then $f^{*}: \omega \rightarrow H C$ as $H C$ is closed under Pairing, and hence $f=\operatorname{ran}\left(f^{*}\right) \in H C$. As a result, $\mathbb{R} \subseteq H C$ and, moreover, $X_{n} \in H C$ since each X_{n} is countable. Furthermore, $\left\{X_{n} \mid n \in \omega\right\} \in H C$.

For each X_{n} let

$$
\mathcal{G}_{n}=\left\{f: \omega \rightarrow X_{n} \mid f \text { is 1-1 and onto }\right\} .
$$

Note that $\mathcal{G}_{n} \subseteq H C$. Define $R \in \operatorname{mv}\left({ }^{\left\{X_{n} \mid n \in \omega\right\}} H C\right)$ by

$$
\left\langle X_{n}, f\right\rangle \in R \text { iff } f \in \mathcal{G}_{n}
$$

By weak regularity there exists $B \in H C$ such that

$$
\forall n \in \omega \exists f \in B\left\langle X_{n}, f\right\rangle \in R .
$$

Now pick $g: \omega \rightarrow B$ such that $B=\operatorname{ran}(g)$. For every $x \in \mathbb{R}$ define $J(x)$ as follows. Select the least n such that $x \in X_{n}$ and then pick the least m such that $\left\langle X_{n}, g(m)\right\rangle \in R$, and let

$$
J(x)=\left\langle n,(g(m))^{-1}(x)\right\rangle,
$$

where $(g(m))^{-1}$ denotes the inverse function of $g(m)$. It follows that

$$
J: \mathbb{R} \rightarrow \omega \times \omega
$$

is a 1-1 function, implying the contradiction that \mathbb{R} is countable.

Definition: 22.3.7 A class A is said to be \bigcup-closed if for all $x \in A, \bigcup x \in A$.
A class A is said to be closed under Exponentiation (Exp-closed) if for all $x, y \in A,{ }^{x} y \in A$.

Proposition: 22.3.8 (ZF) If A is a functionally regular \bigcup-closed set with $\mathbf{2} \in$ A, then the least ordinal not in $A, o(A)$, is a regular ordinal.

Proof: If $f: \alpha \rightarrow o(A)$, where $\alpha<o(A)$, then $\alpha \in A$ and thus $\operatorname{ran}(f) \in A$, and hence $\bigcup \operatorname{ran}(f) \in A$. Since $\operatorname{ran}(f)$ is a set of ordinals, $\bigcup \operatorname{ran}(f)$ is an ordinal, too. Let $\beta=\bigcup \operatorname{ran}(f)$. Then $\beta \in A$. Note that $\beta+1 \in A$ as well since $\mathbf{2} \in A$ entails that A is closed under Pairing and $\beta+1=\bigcup\{\beta,\{\beta\}\}$. Since $f: \alpha \rightarrow \beta+1$ this shows that $o(A)$ is a regular ordinal.

Corollary: 22.3.9 If ZF is consistent, then so is the theory

$$
\mathbf{Z F}+H C \text { is not } \bigcup \text {-closed. }
$$

Proof: This follows from Proposition 22.3.8 and Proposition 22.3.6.

Corollary: 22.3.10 If $\mathbf{Z F C}+\forall \alpha \exists \kappa>\alpha$ (κ is a strongly compact cardinal) is consistent, then so is the theory $\mathbf{Z F}$ plus the assertion that there are no \bigcup closed functionally regular sets containing ω.

Proof: By Proposition 22.3.8, the existence of a functionally regular \bigcup-closed set A with $\omega \in A$ would yield the existence of an uncountable regular ordinal. By [38], however, all uncountable cardinals can be singular under the assumption that ZFC $+\forall \alpha \exists \kappa>\alpha$ (κ is a strongly compact cardinal) is a consistent theory.

The consistency assumption of the previous Proposition might seem exaggerated. It is, however, known that the consistency of

$$
\text { ZF }+ \text { All uncountable cardinals are singular }
$$

cannot be proved without assuming the consistency of the existence of some large cardinals. It was shown in [22] that if \aleph_{1} and \aleph_{2} are both singular one can obtain an inner model with a measurable cardinal.

Proposition: 22.3.11 (ZF) If A is a weakly regular set with $\omega \in A$, then $\operatorname{rank}(A)$ is an uncountable ordinal of cofinality $>\omega$.

Proof: Set $\kappa=\operatorname{rank}(A)$. Obviously $\omega<\kappa$. Suppose $f: \omega \rightarrow \kappa$. Define $R \subseteq \omega \times A$ by $n R a$ iff $f(n)<\operatorname{rank}(a)$. Since for every ordinal $f(n)$ there exists a set $a \in A$ with rank $>f(n), R$ is a total relation. Employing the weak regularity of A, there exists a set $b \in A$ such that $\forall n \in \omega \exists x \in b f(n)<\operatorname{rank}(x)$. As a result, $f: \omega \rightarrow \operatorname{rank}(b)$ and $\operatorname{rank}(b)<\kappa$. This shows that the cofinality of κ is bigger than ω.

Corollary: 22.3.12 (ZF) wREA implies that, for any set X, there is a cardinal κ such that X cannot be mapped onto a cofinal subset of κ.

Proof: Let A be a weakly regular set such that $X \in A$. Set $\kappa=\operatorname{rank}(A)$. Aiming at a contradiction, suppose there exists $f: X \rightarrow \kappa$ such that $\operatorname{ran}(f)$ is a cofinal subset of κ. Define $R \subseteq X \times A$ by $u R a$ iff $f(u)<\operatorname{rank}(a)$. Since for every ordinal $f(u)$ there exists a set $a \in A$ with $\operatorname{rank}(a)>f(u), R$ is a total relation. Employing the weak regularity of A, there exists a set $b \in A$ such that $\forall u \in X \exists y \in b f(u)<\operatorname{rank}(y)$. As a result, $f: X \rightarrow \operatorname{rank}(b)$ and $\operatorname{rank}(b)<\kappa$. But the latter contradicts the assumption that $\operatorname{ran}(f)$ is a cofinal subset of κ.

Proposition: 22.3.13 The theories CZF + REA and

$$
\mathbf{C Z F}+\forall x \exists A[x \in A \wedge \operatorname{Reg}(A) \wedge A \text { is } \bigcup \text {-closed and Exp-closed }]
$$

have the same proof-theoretic strength.
Proof: See [66], Theorem 4.7.
The next result shows, however, that the strengthenings of REA we considered earlier are not provable in CZF + REA.

Proposition: 22.3.14 If ZF is consistent, then $\mathbf{C Z F}+$ REA does not prove that there exists a regular set containing ω which is Exp-closed and \bigcup-closed.

Proof: For a contradiction assume

$$
\mathbf{C Z F}+\mathbf{R E A} \vdash \exists A[\operatorname{Reg}(A) \wedge \omega \in A \wedge A \text { is Exp-closed and } \bigcup \text {-closed. }
$$

Then ZFC would prove this assertion. In the following we work in ZFC. By Proposition 22.3.8 $\kappa=o(A)$ is a regular uncountable cardinal. We claim that κ is a limit cardinal, too. Let $\rho<\kappa$ and $F:{ }^{\rho} 2 \rightarrow \mu$ be a surjective function. Suppose $\kappa \leq \mu$. Then let $X=\left\{g \in^{\rho} 2 \mid F(g)<\kappa\right\}$. Note that

$$
\{F(g) \mid g \in X\}=\kappa
$$

since F is surjective. Since A is Exp-closed we have ${ }^{(\rho 2)} 2 \in A$. Define a function $G:{ }^{\rho} 2 \rightarrow 2$ by $G(h)=1$ if $h \in X$, and $G(h)=0$ otherwise. Then $G \in A$. Further, define $j: G \rightarrow A$ by $j(\langle h, i\rangle)=F(h)$ if $i=1$, and $j(\langle h, i\rangle)=0$ otherwise. Then $\operatorname{ran}(j) \in A$. However, $\operatorname{ran}(j)=\{F(g) \mid g \in X\} \cup\{0\}=\kappa$, yielding the contradiction $\kappa \in \kappa$.

As a result, $\mu<\kappa$ and therefore κ cannot be a successor cardinal. Consequently we have shown the existence of a weakly inaccessible cardinal. But that cannot be done in ZFC providing ZF is consistent.

22.4 ZF models of REA

Definition: 22.4.1 There is weak form of the axiom of choice, which holds in a plethora of ZF universes. The axiom of small violations of choice, SVC, has been studied by A. Blass [12]. It says in some sense, that all failure of choice occurs within a single set. SVC is the assertion that there is a set S such that, for every set a, there exists an ordinal α and a function from $S \times \alpha$ onto a.

Lemma: 22.4.2 (i) If X is transitive and $X \subseteq B$, then $X \subseteq H(B)$.
(ii) If $2 \in B$ and $x, y \in H(B)$, then $\langle x, y\rangle \in H(B)$.

Proof: (i): By Set Induction on a one easily proves that $a \in X$ implies $a \in H(B)$.
(ii): Suppose $2 \in B$ and $x, y \in H(B)$. Let f be the function $f: 2 \rightarrow H(B)$ with $f(0)=x$ and $f(1)=y$. Then $\operatorname{ran}(f)=\{x, y\} \in H(B)$. By repeating the previous procedure with $\{x\}$ and $\{x, y\}$ one gets $\langle x, y\rangle \in H(B)$.

Theorem: 22.4.3 (ZF) SVC implies AMC and REA.
Proof: Let M be a ground model that satisfies $\mathbf{Z F}+\mathbf{S V C}$. Arguing in M let S be a set such that, for every set a, there exists an ordinal α and a function from $S \times \alpha$ onto a.

Let \mathbb{P} be the set of finite partial functions from ω to S, and, stepping outside of M, let G be an M-generic filter in \mathbb{P}. By the proof of [12], Theorem 4.6, $M[G]$ is a model of ZFC.

Let A be an arbitrary set in M. Let $B=\bigcup_{n \in \omega} F(n)$, where

$$
\begin{aligned}
F(0) & =\mathbf{T C}(A \cup \mathbb{P}) \cup \omega \cup\{A, \mathbb{P}\} \\
F(n+1) & =\left\{b \times \mathbb{P}: b \in \bigcup_{k \leq n} F(k)\right\} .
\end{aligned}
$$

Then $B \in M$. Let $Z=(H(B))^{M}$. Then $A \in Z$. First, we show by induction on n that $F(n) \subseteq Z$. As $F(0)$ is transitive, $F(0) \subseteq Z$ follows from Lemma 22.4.2, (i). Now suppose $\bigcup_{k \leq n} F(k) \subseteq Z$. An element of $F(n+1)$ is of the form $b \times \mathbb{P}$ with $b \in \bigcup_{k \leq n} F(k)$. If $x \in b$ and $p \in \mathbb{P}$ then $x, p \in Z$, and thus $\langle x, p\rangle \in Z$ by Lemma 22.4 .2 since $2 \in B$. So, letting $i d$ be the identity function on $b \times \mathbb{P}$, we get $i d: b \times \mathbb{P} \rightarrow Z$, and hence $\operatorname{ran}(i d)=b \times \mathbb{P} \in Z$. Consequently we have $F(n+1) \subseteq Z$. It follows that $B \subseteq Z$.

We claim that

$$
\begin{equation*}
M \models Z \text { is a small collection family. } \tag{22.6}
\end{equation*}
$$

To verify this, suppose that $x \in Z$ and $R \in M$ is a multi-valued function on x. x being an element of $\in(H(B))^{M}$, there exists a function $f \in M$ and $a \in B$
such that $f: a \rightarrow x$ and $\operatorname{ran}(f)=x$. As $M[G]$ is a model of AC, we may pick a function $\ell \in M[G]$ such that $\operatorname{dom}(\ell)=x$ and $\forall v \in x u R \ell(v)$. We may assume $x \neq \emptyset$. So let $v_{0} \in x$ and pick d_{0} such that $v_{0} R d_{0}$. Let $\ddot{\ell}$ be a name for ℓ in the forcing language. For any $z \in M$ let \check{z} be the canonical name for z in the forcing language. Define $\chi: a \times \mathbb{P} \rightarrow M$ by

$$
\chi(u, p):=\left\{\begin{array}{cc}
w & \text { iff } f(u) R w \text { and } \\
p \Vdash[\ddot{\ell} \text { is a function } \wedge & \ddot{\ell}(\check{f}(\check{u}))=\check{w}] \\
d_{0} \quad \text { otherwise. }
\end{array}\right.
$$

For each $u \in a$, there is a $w \in Z$ such that $f(u) R w$ and $\ell(f(u))=w$, and then there is a $p \in G$ that forces that $\ddot{\ell}$ is a function and $\ddot{\ell}(\breve{f}(\breve{u}))=\check{w}$, so w is in the range of $\chi \cdot \chi$ is a function with domain $a \times \mathbb{P}, \chi \in M$, and $\operatorname{ran}(\chi) \subseteq \operatorname{ran}(R)$. Note that $a \times \mathbb{P} \in B$, and thus we have $a \times \mathbb{P} \in Z$. As a result, with $C=\operatorname{ran}(\chi)$ we have $\forall v \in x \exists y \in C v R y \wedge \forall y \in C \exists v \in x v R y$, confirming the claim.
From the previous theorem and results in [12] it follows that AMC and REA are satisfied in all permutation models and symmetric models. A permutation model (cf. [42], chapter 4) is specified by giving a model V of $\mathbf{Z F C}$ with atoms in which the atoms form a set A, a group \mathcal{G} of permutations of A, and a normal filter \mathcal{F} of subgroups of \mathcal{G}. The permutation model then consists of the hereditarily symmetric elements of V.

A symmetric model (cf. [42], chapter 5), is specified by giving a ground model M of ZFC, a complete Boolean algebra B in M, an M-generic filter G in B, a group \mathcal{G} of automorphisms of B, and a normal filter of subgroups of \mathcal{G}. The symmetric model consists of the elements of $M[G]$ that hereditarily have symmetric names.

If B is a set then $\operatorname{HOD}(B)$ denotes the class of sets hereditarily ordinal definable over B.

Corollary: 22.4.4 The usual models of set theory without choice satisfy AMC and REA.

22.5 Brouwerian Principles

This section studies augmentations of CZF by Brouwerian principles such as the axiom of continuous choice (CC), the fan theorem (FT), and bar induction (BI). The objective is to determine whether these principles increase the prooftheoretic strength of CZF. More precisely, the research is concerned with the question of whether any new Π_{2}^{0} statements of arithmetic (i.e. statements of the form $\forall n \in \mathbb{N} \exists k \in \mathbb{N} P(n, k)$ with P being primitive recursive) become provable upon adding CC, FT, and BI (or any combination thereof) to the axioms of CZF.

The first main result obtained here is that $\mathbf{C Z F}+\mathbf{C C}+\mathbf{F T}$ is indeed conservative over CZF with respect to Π_{2}^{0} sentences of arithmetic. The first step in the proof consists of defining a transfinite type structure over a special combinatory algebra whose domain is the set of all arithmetical functions from \mathbb{N} to \mathbb{N} with application being continuous function application in the sense of Kleene's second algebra K_{2}. The transfinite type structure serves the same purpose as a universe in Martin-Löf type theory. It gives rise to a realizability interpretation of CZF which also happens to validate the principles CC and FT. However, to be able to show that FT is realized we have to employ classical reasoning in the background theory. It turns out that the whole construction can be carried out in a classical set theory known as Kripke-Platek set theory, KP. Since CZF and KP prove the same Π_{2}^{0} statements of arithmetic this establishes the result.

A similar result can be obtained for CZF plus the so-called Regular Extension Axiom, REA. Here it turns out that $\mathbf{C Z F}+\mathbf{R E A}+\mathbf{C C}+\mathbf{B I}$ is Π_{2}^{0} conservative over CZF + REA. This time the choice for the domain of the partial combinatory algebra is $\mathbb{N}^{\mathbb{N}} \cap L_{\rho}$, where $\rho=\sup _{n<\omega} \omega_{n}^{c k}$ with $\omega_{n}^{c k}$ denoting the nth admissible ordinal. Application is again continuous function application. The transfinite type structure also needs to be strengthened in that it has to be closed off under W-types as well. A background theory sufficient for these constructions is $\mathbf{K P i}$, i.e. Kripke-Platek set theory plus an axiom asserting that every set is contained in an admissible set

The question that remains to be addressed is whether $\mathbf{C Z F}+\mathbf{B I}$ is conservative over CZF. This is answered in the negative in [79], where it is shown that a restricted form of $\mathbf{B I}$ - called decidable bar induction, $\mathbf{B I}_{\mathbf{D}}$ - implies the consistency of CZF on the basis of CZF. The proof makes use of results from ordinal-theoretic proof theory.

22.5.1 Choice principles

In many a text on constructive mathematics, axioms of countable choice and dependent choices are accepted as constructive principles. This is, for instance, the case in Bishop's constructive mathematics (cf. [11] as well as Brouwer's intuitionistic analysis (cf. [90], Chap. 4, Sect. 2). Myhill also incorporated these axioms in his constructive set theory [59].

The weakest constructive choice principle we shall consider is the Axiom of Countable Choice, $\mathbf{A C}_{\omega}$, i.e. whenever F is a function with domain ω such that $\forall i \in \omega \exists y \in F(i)$, then there exists a function f with domain ω such that $\forall i \in \omega f(i) \in F(i)$.

Let $x R y$ stand for $\langle x, y\rangle \in R$. A mathematically very useful axiom to have in set theory is the Dependent Choices Axiom, DC, i.e., for all sets a and (set) relations $R \subseteq a \times a$, whenever

$$
(\forall x \in a)(\exists y \in a) x R y
$$

and $b_{0} \in a$, then there exists a function $f: \omega \rightarrow a$ such that $f(0)=b_{0}$ and

$$
(\forall n \in \omega) f(n) R f(n+1) .
$$

Even more useful in constructive set theory is the Relativized Dependent Choices Axiom, RDC. It asserts that for arbitrary formulae ϕ and ψ, whenever

$$
\forall x[\phi(x) \rightarrow \exists y(\phi(y) \wedge \psi(x, y))]
$$

and $\phi\left(b_{0}\right)$, then there exists a function f with domain ω such that $f(0)=b_{0}$ and

$$
(\forall n \in \omega)[\phi(f(n)) \wedge \psi(f(n), f(n+1))] .
$$

One easily sees that RDC implies DC and DC implies $\mathbf{A C}_{\omega}$.

22.6 Elementary analysis augmented by Brouwerian principles

Realizability interpretations of Brouwerian principles have been given for elementary analysis. It should be instructive to review these results before venturing to the more complex realizability models required for set theory.

Elementary analysis, EL, is a two-sorted intuitionistic formal system with variables x, y, z, \ldots and $\alpha, \beta, \gamma, \ldots$ intended to range over natural numbers and variables intended to range over one-place total functions from \mathbb{N} to \mathbb{N}, respectively. The language of $\mathbf{E L}$ is an extension of the language of of Heyting Arithmetic. In particular, π is a symbol for a primitive-recursive pairing function on $\mathbb{N} \times \mathbb{N}$ and S is the symbol for the successor function.

EL is a conservative extension of Heyting Arithmetic. The details of this theory are described in [47] Ch.I and [90], Ch.3,Sect.6. There is λ-abstraction for explicit definitions of functions, and a recursion-operator Rec such that (t a numerical term, ϕ a function term; $\left.\phi\left(t, t^{\prime}\right):=\phi\left(\pi\left(t, t^{\prime}\right)\right)\right)$

$$
\operatorname{Rec}(t, \phi)(0)=t, \quad \operatorname{Rec}(t, \phi)(S x)=\phi(x, \operatorname{Rec}(t, \phi)(x)) .
$$

Induction is extended to all formulas in the new language. The functions of EL are assumed to be closed under "recursive in", which is expressed by including a weak choice axiom for quantifier-free A :

$$
\text { QF-AC } \quad \forall x \exists y A(x, y) \rightarrow \exists \alpha \forall x A(x, \alpha(x)) .
$$

Definition: 22.6.1 In EL we introduce abbreviations for partial continuous application:

$$
\begin{aligned}
\alpha(\beta)=x & :=\exists y\left[\alpha(\bar{\beta}(y))=x+1 \wedge \forall y^{\prime}<y\left(\alpha\left(\bar{\beta}\left(y^{\prime}\right)\right)=0\right],\right. \\
\alpha \mid \beta=\gamma & :=\forall x[\lambda n \cdot \alpha(\langle x\rangle * n)(\beta)=\gamma(x)] \wedge \alpha(0)=0 .
\end{aligned}
$$

We may introduce $\mid, \cdot(\cdot)$ as primitive operators in a conservative extension EL* * based on the logic of partial terms.

It was shown by Kleene in [47], Ch.II that $\mathbf{E L}$ augmented by the principles $\mathbf{B I}_{\mathbf{M}}$ and $\mathbf{C}-\mathbf{N}$ is consistent. For this purpose he used a realizability interpretation based on continuous function application, i.e. the second Kleene algebra K_{2}. As this paper will follow a similar strategy for gauging the strength of CZF extended by Brouwerian principles it is instructive to review Kleene's results.

Definition: 22.6.2 (Function realizability) In EL equality of functions $\alpha=$ β is not a prime formula and defined by $\forall x \alpha(x)=\beta(x)$.
$\alpha \mid \beta \downarrow$ stands for $\exists \gamma \alpha \mid \beta=\gamma$.
The function realizability interpretation is an inductively defined translation of a formula A of $\mathbf{E L}$ into a formula $\alpha \underline{\mathrm{rf}} A$ of $\mathbf{E L}$, where α is a fresh variable not occurring in A :

```
\(\alpha \underline{\mathrm{rf}} \perp \quad\) iff \(\quad \perp\)
\(\alpha \underline{\mathrm{rf}} t=s \quad\) iff \(\quad t=s\)
\(\alpha \underline{\underline{\mathrm{f}}} A \wedge B \quad\) iff \(\quad \pi_{0} \alpha \underline{\mathrm{rf}} A \wedge \pi_{1} \alpha \underline{\mathrm{rf}} B\)
\(\alpha \underline{\mathrm{rf}} A \vee B \quad\) iff \(\quad\left[\alpha(0)=0 \rightarrow \alpha^{+} \underline{\underline{\mathrm{f}}} A\right] \wedge\left[\alpha(0) \neq 0 \rightarrow \alpha^{+} \underline{\mathrm{rf}} B\right]\)
\(\alpha \underline{\underline{\mathrm{f}}} A \rightarrow B \quad\) iff \(\quad \forall \beta[\beta \underline{\mathrm{rf}} A \rightarrow \alpha|\beta \downarrow \wedge \alpha| \beta \underline{\mathrm{rf}} B]\)
\(\alpha \underline{\mathrm{rf}} \forall x A(x) \quad\) iff \(\quad \forall x[\alpha|\lambda n . x \downarrow \wedge \alpha| \lambda n . x \underline{\mathrm{rf}} A(x)]\)
\(\alpha \underline{\mathrm{rf}} \exists x A(x) \quad\) iff \(\quad \alpha^{+} \underline{\mathrm{rf}} A(\alpha(0))\)
\(\alpha \underline{\mathrm{rf}} \forall \beta A(\beta) \quad\) iff \(\quad \forall \beta[\alpha|\beta \downarrow \wedge \alpha| \beta \underline{\mathrm{rf}} A(\beta)]\)
\(\alpha \underline{\mathrm{rf}} \exists \beta A(\beta) \quad\) iff \(\quad \pi_{1} \alpha \underline{\mathrm{rf}} A\left(\pi_{0} \alpha\right)\)
```

with π_{0}, π_{1} being the projection functions with respect to some fixed primitive recursive pairing function $\pi: \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ and α^{+}being the tail of α (i.e. $\alpha=$ $\langle\alpha 0\rangle * \alpha^{+}$).

Lemma: 22.6.3 Let A be a closed formula of $\mathbf{E L}$. If $\mathbf{E L}+\mathbf{C}-\mathbf{N} \vdash A$, then $\mathrm{EL} \vdash \exists \alpha \underline{\mathrm{rf}} A$.

Proof: See [88], theorem 3.3.11.

Kleene shows in [47], Ch.11, Lemma 9.10 that the arithmetical functions constitute the least class of functions $\mathcal{C} \subseteq \mathbb{N}^{\mathbb{N}}$ closed under general recursiveness and the jump operation ' (look there for precise definitions).

An inhabited set $\mathcal{C} \subseteq \mathbb{N}^{\mathbb{N}}$ gives rise to a structure $\mathfrak{N}^{\mathcal{C}}$ for the language of EL as follows: The domain of $\mathfrak{N}^{\mathcal{C}}$ is $\mathbb{N} \cup \mathcal{C}$, the number variables range over \mathbb{N}; the function variables range over \mathcal{C}, and the other primitives of $\mathbf{E L}$ are interpreted in the standard way.

Lemma: 22.6.4 (KP) For any set of functions $\mathcal{C} \subseteq \mathbb{N}^{\mathbb{N}}$ closed under general recursiveness and the jump operation ': the fan theorem FT holds in the classical model $\mathfrak{N}^{\mathcal{C}}$ of $\mathbf{E L}$, when the representing function of the bar R belongs to \mathcal{C}.

Proof: [47], Lemma 9.12.

Theorem: 22.6.5 (KP) For any set of functions $\mathcal{C} \subseteq \mathbb{N}^{\mathbb{N}}$ closed under general recursiveness and the jump operation ' (e.g. the arithmetical functions): If $\mathbf{E L}+$ $\mathbf{C}-\mathbf{N}+\mathbf{F T} \vdash A$, then $\mathfrak{N}^{\mathcal{C}} \models \exists \alpha \alpha \underline{\mathrm{rf}} A$.

Proof: [47], Ch. 11 Theorem 9.13.

Kleene's proof of Theorem 22.6.5 can actually be extended to include $\mathbf{B I}_{\mathbf{M}}$.
Definition: 22.6.6 A set of functions $\mathcal{C} \subseteq \mathbb{N}^{\mathbb{N}}$ is said to be a β-model if \mathcal{C} is closed under general recursiveness and the jump operation ' and whenever \prec is a binary relation on \mathbb{N} whose representing function is in \mathcal{C} and $\mathfrak{N}^{\mathcal{C}} \models \forall \alpha \exists n \neg \alpha(n+$ $1) \prec \alpha(n)$, then \prec is well-founded.

Lemma: 22.6.7 ($\mathbf{K P i}$) If $\mathcal{C} \subseteq \mathbb{N}^{\mathbb{N}}$ is a β-model then monotone bar induction holds in the classical model $\mathfrak{N}^{\mathcal{C}}$ of $\mathbf{E L}$, when the representing function of the bar R belongs to \mathcal{C}.

Proof: Similar to [47], Ch. 11 Lemma 9.12.

Theorem: 22.6.8 ($\mathbf{K P i}$) For any β-model $\mathcal{C} \subseteq \mathbb{N}^{\mathbb{N}}$ (e.g. the functions in $\mathbb{N}^{\mathbb{N}} \cap$ L_{ρ}, where $\rho=\sup _{n<\omega} \omega_{n}^{c k}$ with $\omega_{n}^{c k}$ being the nth admissible ordinal; cf. [7]):

If $\mathbf{E L}+\mathbf{C}-\mathbf{N}+\mathbf{B I}_{\mathbf{M}} \vdash A$, then $\mathfrak{N}^{\mathcal{C}} \models \exists \alpha \alpha \underline{\mathrm{rf}} A$.
Proof: Since $\mathbf{B I}_{\mathbf{M}}$ follows from $\mathbf{B I}_{\mathbf{D}}$ on the basis of $\mathbf{E L}+\mathbf{C}-\mathbf{N}$ it suffices to find realizers for instances of $\mathbf{B I}_{\mathbf{D}}$.

So assume that

$$
\begin{array}{lll}
\beta & \underline{\text { rf }} & \forall n[R(n) \vee \neg R(n)], \\
\gamma & \underline{\mathrm{rf}} & \forall \alpha \exists n R(\bar{\alpha}(n)), \\
\delta & \underline{\mathrm{rf}} & \forall s[R(s) \rightarrow Q(s)], \\
\eta & \underline{\mathrm{rf}} & \forall s[\forall x Q(s *\langle x\rangle) \rightarrow Q(s)] . \tag{22.10}
\end{array}
$$

Set $\beta_{n}:=\beta \mid \lambda$ x.n. (22.7) implies that

$$
\begin{equation*}
\beta_{n}(0) \rightarrow \beta_{n}^{+} \underline{\mathrm{rf}} R(n) \text { and } \beta_{n}(0) \neq 0 \rightarrow \beta_{n}^{+} \underline{\mathrm{rf}} \neg R(n) \tag{22.11}
\end{equation*}
$$

while (22.8) yields that

$$
\forall \alpha \pi_{1}(\gamma \mid \alpha) \underline{\underline{\mathrm{f}}} R\left(\bar{\alpha}\left(\left(\pi_{0}(\gamma \mid \alpha)\right)(0)\right)\right),
$$

so that

$$
\begin{equation*}
\forall \alpha \exists m \beta_{\bar{\alpha}(m)}(0)=0 . \tag{22.12}
\end{equation*}
$$

Now define a \triangleleft on \mathbb{N} by $t \triangleleft s:=\beta_{s}(0) \neq 0 \wedge \exists u t=s *\langle u\rangle$. On account of (22.12) and \mathcal{C} being a β-model, it follows that \triangleleft is well-founded relation.

Define a function $\psi: \mathbb{N} \rightarrow \mathcal{C}$ by transfinite recursion on \triangleleft as follows:

$$
\psi(s)= \begin{cases}\delta \mid \beta_{s}^{+} & \text {if } \beta_{s}(0)=0 \\ (\eta \mid \lambda u . s) \mid \ell(\psi, s) & \text { if } \beta_{s}(0) \neq 0\end{cases}
$$

where ℓ is a \mathcal{C}-valued operation to the effect that $\ell(\alpha, s) \mid \lambda u . k=\alpha(s *\langle k\rangle)$. Note that formal terms denoting ψ and ℓ in the the model $\mathfrak{N}^{\mathcal{C}}$ (uniformly in the parameters $\beta, \gamma, \delta, \eta$) can be defined in the system $\mathbf{E L *}$ (based on the logic of partial terms) using the recursion theorem and other gadgets.

By transfinite induction on \triangleleft we shall prove that for all $s \in \mathbb{N}$,

$$
\begin{equation*}
\psi(s) \underline{\mathrm{rf}} Q(s) \tag{22.13}
\end{equation*}
$$

Case 1: Suppose that $\beta_{s}=0$. Using (22.11) we get $\beta_{s}^{+} \underline{\mathrm{rf}} R(s)$, and hence $\delta\left|\beta_{s}^{+} \downarrow \wedge \delta\right| \beta_{s}^{+} \underline{\mathrm{rf}} Q(s)$ by (22.9); thus $\psi(s) \underline{\mathrm{rf}} Q(s)$.
Case 2: Now suppose that $\beta_{s} \neq 0$. Then $s *\langle k\rangle \triangleleft s$ for all $k \in \mathbb{N}$, and the inductive hypothesis yields $\psi(s *\langle k\rangle) \underline{\mathrm{rf}} Q(s *\langle k\rangle)$ for all k; thence $\ell(\psi, s) \underline{\mathrm{rf}} \forall x Q(s *\langle x\rangle)$. By (22.10) we have $\eta \mid \lambda u . s \underline{\mathrm{rf}} \forall x Q(s *\langle x\rangle) \rightarrow Q(s)$, so that

$$
(\eta \mid \lambda u . s) \ell(\psi, s) \underline{\operatorname{rf}} Q(s) .
$$

In sum, we have $\psi(s) \underline{\text { rf }} Q(s)$, confirming (22.13).
In view of the above we conclude the realizability of $\mathbf{B I}_{\mathbf{D}}$ in the model $\mathfrak{N}^{\boldsymbol{c}}$.

22.7 Combinatory Algebras

The meaning of the logical operations in intuitionistic logic is usually explained via the so-called Brouwer-Heyting-Kolmogorov-interpretation (commonly abbreviated to BHK-interpretation; for details see [90], 1.3.1). The notion of function is crucial to any concrete BHK-interpretation in that it will determine the set theoretic and mathematical principles validated by it. The most important semantics for intuitionistic theories, known as realizability interpretations, also require that we have a set of (partial) functions on hand that serve as realizers for the formulae of the theory. An abstract and therefore "cleaner" approach to this semantics considers realizability over general domains of computations allowing for recursion and self-application. These structures have been variably called
partial combinatory algebras, applicative structures, or Schönfinkel algebras. They are closely related to models of the λ-calculus.

Let (M, \cdot) be a structure equipped with a partial operation, that is, \cdot is a binary function with domain a subset of $M \times M$ and co-domain M. We often omit the sign "." and adopt the convention of "association to the left". Thus exy means $(e \cdot x) \cdot y$. We also sometimes write $e \cdot x$ in functional notation as $e(x)$. Extending this notion to several variables, we write $e(x, y)$ for exy etc.

Definition: 22.7.1 A $P C A$ is a structure (M, \cdot), where • is a partial binary operation on M, such that M has at least two elements and there are elements \mathbf{k} and \mathbf{s} in M such that $\mathbf{k} x y$ and $\mathbf{s} x y$ are always defined, and
(i) $\mathbf{k} x y=x$
(ii) $\mathbf{s} x y z \simeq x z(y z)$,
where \simeq means that the left hand side is defined iff the right hand side is defined, and if one side is defined then both sides yield the same result.
(M, \cdot) is a total PCA if $a \cdot b$ is defined for all $a, b \in M$.
Definition: 22.7.2 Partial combinatory algebras are best described as the models of a formal theory PCA. The language of PCA has two distinguished constants \mathbf{k} and \mathbf{s}. To accommodate the partial operation in a standard first order language, the language of PCA has a ternary relation symbol Ap. The terms of PCA are just the variables and constants. Ap will almost never appear in what follows as we prefer to write $t_{1} t_{2} \simeq t_{3}$ for $\mathbf{A p}\left(t_{1}, t_{2}, t_{3}\right)$. In order to facilitate the formulation of the axioms, the language of PCA is expanded definitionally with the symbol \simeq and the auxiliary notion of an application term or partial term is introduced. The set of application terms is given by two clauses:

1. All terms of PCA are application terms; and
2. If s and t are application terms, then $(s t)$ is an application term.

For s and t application terms, we have auxiliary, defined formulae of the form:

$$
s \simeq t \quad:=\quad \forall y(s \simeq y \leftrightarrow t \simeq y)
$$

if t is not a variable. Here $s \simeq a$ (for a a free variable) is inductively defined by:

$$
s \simeq a \text { is } \begin{cases}s=a, & \text { if } s \text { is a term of PCA, } \\ \exists x, y\left[s_{1} \simeq x \wedge s_{2} \simeq y \wedge \mathbf{A p}(x, y, a)\right] & \text { if } s \text { is of the form }\left(s_{1} s_{2}\right) .\end{cases}
$$

Some abbreviations are $t_{1} t_{2} \ldots t_{n}$ for $\left(\left(\ldots\left(t_{1} t_{2}\right) \ldots\right) t_{n}\right) ; t \downarrow$ for $\exists y(t \simeq y)$ and $\phi(t)$ for $\exists y(t \simeq y \wedge \phi(y))$.

In this paper, the logic of PCA is assumed to be that of intuitionistic predicate logic with identity. PCA's non-logical axioms are the following:

Axioms of PCA

1. $a b \simeq c_{1} \wedge a b \simeq c_{2} \rightarrow c_{1}=c_{2}$.
2. $(\mathbf{k} a b) \downarrow \wedge \mathbf{k} a b \simeq a$.
3. $(\mathbf{s} a b) \downarrow \wedge \mathbf{s} a b c \simeq a c(b c)$.

The following shows how λ-terms can be constructed in PCA.
Lemma: 22.7.3 For each application term t and variable x, one can construct a term λ x.t, whose free variables are those of t, excluding x, such that PCA \vdash $\lambda x . t \downarrow$ and $\mathbf{P C A} \vdash(\lambda x . t) u \simeq t[x / u]$ for all application terms u, where $t[x / u]$ results from t by replacing x in t throughout by u.

Proof: We proceed by induction on the buildup of t. (i) $\lambda x . x$ is $\mathbf{s k k}$; (ii) $\lambda x . t$ is $\mathbf{k} t$ for t a constant of PCA or variable other than x; (iii) $\lambda x . t_{1} t_{2}$ is $\mathbf{s}\left(\lambda x . t_{1}\right)\left(\lambda x . t_{2}\right)$.

Having λ-terms on hand, one can easily prove the recursion or fixed point theorem in PCA, and consequently that all recursive functions are definable in PCA. The elegance of the combinators arises from the fact that, at least in theory, anything that can be done in a programming language can be done using solely \mathbf{k} and \mathbf{s}.

Lemma: 22.7.4 (Recursion Theorem) There is an application term \mathbf{r} such that PCA proves:

$$
\mathbf{r} x \downarrow \wedge \mathbf{r} x y \simeq x(\mathbf{r} x) y .
$$

Proof: Let \mathbf{r} be $\lambda x . g g$ with $g:=\lambda z y . x(z z) y$. Then $\mathbf{r} x \simeq g g \simeq(\lambda z y . x(z z) y) g$ $\simeq \lambda y . x(g g) y$, so that $\mathbf{r} x \downarrow$ by Lemma 22.7.3. Moreover, $\mathbf{r} x y \simeq x(g g) y \simeq x(\mathbf{r} x) y$.

Corollary: 22.7.5 PCA $\vdash \forall f \exists g \forall x_{1} \ldots \forall x_{n} g\left(x_{1}, \ldots, x_{n}\right) \simeq f\left(g, x_{1}, \ldots, x_{n}\right)$.
It often convenient to equip a PCA with additional structure such as pairing, natural numbers, and some form of definition by cases. In fact, these gadgets can be constructed in any PCA, as Curry showed. Nonetheless, it is desirable to consider richer structures as the natural models for PCAs we are going to study come already furnished with a "natural" copy of the natural numbers, natural pairing functions, etc., which are different from the constructions of combinatory logic.

Definition: 22.7.6 The language of $\mathbf{P C A}^{+}$is that of $\mathbf{P C A}$, with a unary relation symbol N (for a copy of the natural numbers) and additional constants $\mathbf{0}, \mathbf{s}_{N}, \mathbf{p}_{N}, \mathbf{d}, \mathbf{p}, \mathbf{p}_{\mathbf{0}}, \mathbf{p}_{\mathbf{1}}$ for, respectively, zero, successor on N, predecessor on N, definition by cases on N, pairing, and the corresponding two projections.

The axioms of PCA^{+}are those of PCA, augmented by the following:

1. $\left(\mathbf{p} a_{0} a_{1}\right) \downarrow \wedge\left(\mathbf{p}_{\mathbf{0}} a\right) \downarrow \wedge\left(\mathbf{p}_{\mathbf{1}} a\right) \downarrow \wedge \mathbf{p}_{\mathbf{i}}\left(\mathbf{p} a_{0} a_{1}\right) \simeq a_{i}$ for $i=0,1$.
2. $N\left(c_{1}\right) \wedge N\left(c_{2}\right) \wedge c_{1}=c_{2} \rightarrow \mathbf{d} a b c_{1} c_{2} \downarrow \wedge \mathbf{d} a b c_{1} c_{2} \simeq a$.
3. $N\left(c_{1}\right) \wedge N\left(c_{2}\right) \wedge c_{1} \neq c_{2} \rightarrow \mathbf{d} a b c_{1} c_{2} \downarrow \wedge \mathbf{d} a b c_{1} c_{2} \simeq b$.
4. $\forall x\left(N(x) \rightarrow\left[\mathbf{s}_{N} x \downarrow \wedge \mathbf{s}_{N} x \neq \mathbf{0} \wedge N\left(\mathbf{s}_{N} x\right)\right]\right)$.
5. $N(\mathbf{0}) \wedge \forall x\left(N(x) \wedge x \neq \mathbf{0} \rightarrow\left[\mathbf{p}_{N} x \downarrow \wedge \mathbf{s}_{N}\left(\mathbf{p}_{N} x\right)=x\right]\right)$.
6. $\forall x\left[N(x) \rightarrow \mathbf{p}_{N}\left(\mathbf{s}_{N} x\right)=x\right]$.

The extension of $\mathbf{P C A}^{+}$by the schema of induction for all formulae,

$$
\varphi(\mathbf{0}) \wedge \forall x\left[N(x) \wedge \varphi(x) \rightarrow \varphi\left(\mathbf{s}_{N} x\right)\right] \rightarrow \forall x[N(x) \rightarrow \varphi(x)]
$$

is is known by the acronym EON (elementary theory of operations and \mathbf{n} umbers) or APP (applicative theory). For full details about PCA, PCA ${ }^{+}$, and EON see [29, 31, 10, 90].

Let $\mathbf{1}:=\mathbf{s}_{N} \mathbf{0}$. The applicative axioms entail that $\mathbf{1}$ is an application term that evaluates to an object falling under N but distinct from $\mathbf{0}$, i.e., $\mathbf{1} \downarrow, N(\mathbf{1})$ and $\mathbf{0} \neq \mathbf{1}$. More generally, we define the standard integers of a $P C A$ to be the interpretations of the numerals, i.e. the terms \bar{n} defined by $\overline{0}=\mathbf{0}$ and $\overline{n+1}=\mathbf{s}_{N} \bar{n}$ for $n \in \mathbb{N}$. Note that $\mathbf{P C A}^{+} \vdash \bar{n} \downarrow$.

A $P C A^{+}(M, \cdot, \ldots)$ whose integers are standard, meaning that $\{x \in M \mid M \models$ $N(x)\}$ is the set consisting of the interpretations of the numerals in M, will be called an $\omega-P C A^{+}$. Note that an $\omega-P C A^{+}$is also a model of APP.

Some further conventions are useful. Systematic notation for n-tuples is introduced as follows: (t) is $t,(s, t)$ is $\mathbf{p} s t$, and $\left(t_{1}, \ldots, t_{n}\right)$ is defined by $\left(\left(t_{1}, \ldots, t_{n-1}\right), t_{n}\right)$.

Lemma: 22.7.7 PCA^{+}is conservative over PCA.
Proof: See [10],VI,2.9.

22.7.1 Kleene's Examples of Combinatory Algebras

The primordial PCA is furnished by Turing machine application on the integers. There are many other interesting PCAs that provide us with a laboratory for the study of computability theory. As the various definitions are lifted to more general domains and notions of application other than Turing machine applications some of the familiar results break down. By studying the notions in the general setting one sees with a clearer eye the truths behind the results on the integers.

Kleene's first model

The "standard" applicative structure is Kleene's first model, called \mathbf{K}_{1}, in which the universe $\left|\mathbf{K}_{1}\right|$ is \mathbb{N} and $\mathbf{A p}^{K_{1}}(x, y, z)$ is Turing machine application:

$$
\mathbf{A p}^{K_{1}}(x, y, z) \quad \text { iff } \quad\{x\}(y) \simeq z
$$

The primitive constants of $\mathbf{P C A}^{+}$are interpreted over \mathbb{N} in the obvious way, and N is interpreted as \mathbb{N}.

Kleene's second model

The universe of "Kleene's second model" of APP, \mathbf{K}_{2}, is ${ }^{\mathbb{N}} \mathbb{N}$. The most interesting feature of \mathbf{K}_{2} is that in the type structure over \mathbf{K}_{2}, every type-2 functional is continuous.

We shall use $\alpha, \beta, \gamma, \ldots$ as variables ranging over functions from \mathbb{N} to \mathbb{N}. In order to describe this PCA, it will be necessary to review some terminology.

Definition: 22.7.8 We assume that every integer codes a finite sequence of integers. For finite sequences σ and $\tau, \sigma \subset \tau$ means that σ is an initial segment of $\tau ; \sigma * \tau$ is concatenation of sequences; $\left\rangle\right.$ is the empty sequence; $\left\langle n_{0}, \ldots, n_{k}\right\rangle$ displays the elements of a sequence; if this sequence is τ then $l h(\tau)=k+1$ (read "length of τ "); $\bar{\alpha}(m)=\langle\alpha(0), \ldots, \alpha(m-1)\rangle$ if $m>0 ; \bar{\alpha}(0)=\langle \rangle$. A function α and an integer n produce a new function $\langle n\rangle * \alpha$ which is the function β with $\beta(0)=n$ and $\beta(k+1)=\alpha(k)$.

Application requires the following operations on ${ }^{\mathbb{N}} \mathbb{N}$:

$$
\begin{array}{rll}
\alpha \diamond \beta=m & \text { iff } & \exists n[\alpha(\bar{\beta} n)=m+1 \wedge \forall i<n \alpha(\bar{\beta} i)=0] \\
(\alpha \mid \beta)(n) & = & \alpha \diamond(\langle n\rangle * \beta)
\end{array}
$$

We would like to define application on ${ }^{\mathbb{N}} \mathbb{N}$ by $\alpha \mid \beta$, but this is in general only a partial function, therefore we set:

$$
\begin{equation*}
\alpha \cdot \beta=\gamma \quad \text { iff } \quad \forall n(\alpha \mid \beta)(n)=\gamma(n) . \tag{22.14}
\end{equation*}
$$

Theorem: 22.7.9 K_{2} is a model of APP.
Proof: For the natural numbers of \mathbf{K}_{2} take $N:=\{\hat{n} \mid n \in \mathbb{N}\}$, where \hat{n} denotes the constant function on \mathbb{N} with value n. For pairing define the function $P:{ }^{\mathbb{N}} \mathbb{N} \rightarrow{ }^{\mathbb{N}} \mathbb{N}$ by $P(\alpha, \beta)(n)=\alpha(n / 2)$ if n is even and $P(\alpha, \beta)(n)=\beta\left(\frac{n-1}{2}\right)$ if n is odd. We then have to find a specific $\pi \in{ }^{\mathbb{N}} \mathbb{N}$ such that $(\pi \mid \alpha) \mid \beta=P(\alpha, \beta)$ for all α and β. Details on how to define all the constants of APP in \mathbf{K}_{2} can be found in [90],Ch.9,Sect.4.

Substructures of Kleene's second model

Inspection of the definition of application in \mathbf{K}_{2} shows that subcollections of ${ }^{\mathbb{N}} \mathbb{N}$ closed under "recursive in" give rise to substructures of \mathbf{K}_{2} that are models of APP as well. Specifically, the set of unary recursive functions forms a substructure of \mathbf{K}_{2} as does the set of arithmetical functions from \mathbb{N} to \mathbb{N}, i.e., the functions definable in the standard model of Peano Arithmetic, furnish a model of APP when equipped with the application of (22.14).

22.8 Type Structures over Combinatory Algebras

We shall define an "internal" version of a transfinite type structure with dependent products and dependent sums over any applicative structure.

Definition: 22.8.1 Let $\mathbb{P}=(P, \cdot, \ldots)$ be an $\omega-P C A^{+}$. The types of \mathbb{P} and their elements are defined inductively. The set of elements of a type A is called its extension and denoted by \hat{A}. The type structure will be denoted by $\mathcal{T}^{\mathbb{P}}$.

1. $\mathbb{N}^{\mathbb{P}}$ is a type with extension the set of integers of \mathbb{P}, i.e., $\{x \in P \mid \mathbb{P} \models N(x)\}$.
2. For each integer $n, \mathbb{N}_{n}^{\mathbb{P}}$ is a type with extension $\left\{\bar{k}^{\mathbb{P}} \mid k=0, \ldots n-1\right\}$ if $n>0$ and $\mathbb{N}_{0}^{\mathbb{P}}=\emptyset$.
3. $U^{\mathbb{P}}$ is a type with extension P.
4. If A and B are types, then $A+_{\mathbb{P}} B$ is a type with extension

$$
\{(\mathbf{0}, x) \mid x \in \hat{A}\} \cup\{(\mathbf{1}, x) \mid x \in \hat{B}\} .
$$

5. If A is a type and for each $x \in \hat{A}, F(x)$ is a type, where $F \in P$ and $F(x)$ means $F \cdot x$, then

$$
\prod_{x: A}^{\mathbb{P}} F(x)
$$

is a type with extension $\{f \in P \mid \forall x \in \hat{A} f \cdot x \in \widehat{F(x)}\}$.
6. If A is a type and for each $x \in \hat{A}, F(x)$ is a type, where $F \in P$, then

$$
\sum_{x: A}^{\mathbb{P}} F(x)
$$

is a type with extension $\{(x, u) \mid x \in \hat{A} \wedge u \in \widehat{F(x)}\}$.

The obvious question to ask is: Why should we distinguish between a type A and its extension \hat{A}. Well, the reason is that we want to apply the application operation of \mathbb{P} to types. For this to be possible, types have to be elements of P. Thus types aren't sets. Alternatively, however, we could identify types with sets and require that they be representable in \mathbb{P} in some way. This can be arranged by associating Gödel numbers in \mathbb{P} with types and operations on types. This is easily achieved by employing the coding facilities of the $P C A^{+} \mathbb{P}$. For instance, if the types A and B have Gödel numbers $\ulcorner A\urcorner$ and $\ulcorner B\urcorner$, respectively, then $A+B$ has Gödel number $(1,\ulcorner A\urcorner,\ulcorner B\urcorner)$, and if C is a type with Gödel number $\ulcorner C\urcorner, F \in P$, and for all $x \in \hat{C}, F(x)$ is the Gödel number of a type B_{x}, then $(2,\ulcorner C\urcorner, F)$ is the Gödel number of the dependent type $\prod_{x: C}^{\mathbb{P}} B_{x}$, etc. In what follows we will just identify types with their extensions (or their codes) as such ontological distinctions are always retrievable from the context.

Remark: 22.8.2 The ordinary product and arrow types can be defined with the aid of dependent products and sums, respectively. Let A, B be types and $F \in P$ be a function such that $F(x)=B$ for all $x \in P$.

$$
A \times B:=\sum_{x: A}^{\mathrm{p}} F(x) \quad A \rightarrow B:=\prod_{x: A}^{\mathrm{P}} F(x) .
$$

Definition: 22.8.3 (The set-theoretic universe $V^{\mathbb{P}}$) Starting from the internal type structure over an $\omega-P C A^{+} \mathbb{P}$, we are going to construct a universe of sets for intuitionistic set theory. The rough idea is that a set X is given by a type A together with a set-valued function f defined on A (or rather the extension of A) such that $X=\{f(x) \mid x \in \hat{A}\}$. Again, the objects of this universe will be coded as elements of P. The above set will be coded as $\sup (A, f)$, where $\sup (A, f)=(8,(A, f))$ or whatever. We sometimes write $\{f(x) \mid x \in A\}$ for $\sup (A, f)$.

Frequently we shall write $x \in A$ rather than $x \in \hat{A}$.
The universe of sets over the type structure of $\mathbb{P}, \mathbf{V}^{\mathbb{P}}$, is defined inductively by a single rule:
if A is a type over $\mathbb{P}, f \in P$, and $\forall x \in \hat{A} f \cdot x \in \mathbf{V}^{\mathbb{P}}$, then $\sup (A, f) \in \mathbf{V}^{\mathbb{P}}$.
We shall use variables $\mathfrak{x}, \mathfrak{y}, \mathfrak{z}, \ldots$ to range over elements of $\mathbf{V}^{\mathbb{P}}$. Each $\mathfrak{x} \in \mathbf{V}^{\mathbb{P}}$ is of the form $\sup (A, f)$. Define $\overline{\mathfrak{x}}:=A$ and $\mathfrak{\mathfrak { x }}:=f$.

An essential characteristic of set theory is that sets having the same elements are to be identified. So if $\{f(x) \mid x \in A\}$ and $\{g(y) \mid y \in B\}$ are in $\mathbf{V}^{\mathbb{P}}$ and for every $x \in A$ there exists $y \in B$ such that $f(x)$ and $g(y)$ represent the same set and conversely for every $y \in B$ there exists $x \in A$ such that $f(x)$ and $g(y)$ represent the same set, then $\{f(x) \mid x \in A\}$ and $\{g(y) \mid y \in B\}$ should be identified as sets. This idea gives rise to an equivalence relation on $\mathbf{V}^{\mathbb{P}}$.

Definition: 22.8.4 (Kleene realizability over $\mathbf{V}^{\mathbb{P}}$) We will introduce a semantics for sentences of set theory with parameters from $\mathbf{V}^{\mathbb{P}}$. Bounded set quantifiers will be treated as quantifiers in their own right, i.e., bounded and unbounded quantifiers are treated as syntactically different kinds of quantifiers. Let $\mathfrak{x}, \mathfrak{y} \in \mathbf{V}^{\mathbb{P}}$ and $e, f \in P$. We write $e_{i, j}$ for $\left((e)_{i}\right)_{j}$.

$$
\begin{array}{lll}
e \Vdash_{\mathbb{P}} \mathfrak{x} \in \mathfrak{y} & \text { iff } & (e)_{0} \in \overline{\mathfrak{y}} \wedge(e)_{1} \Vdash_{\mathbb{P}} \mathfrak{x}=\tilde{\mathfrak{y}}(e)_{0} \\
e \Vdash_{\mathbb{P}} \mathfrak{x}=\mathfrak{y} & \text { iff } & \forall i \in \overline{\mathfrak{x}}\left[e_{0,0} i \in \overline{\mathfrak{y}} \wedge e_{0,1} i \Vdash_{\mathbb{P}} \tilde{\mathfrak{x}} i=\tilde{\mathfrak{y}}\left(e_{0,0} i\right)\right] \wedge \\
& \forall i \in \overline{\mathfrak{y}}\left[e_{1,0} i \in \overline{\mathfrak{x}} \wedge e_{1,1} i \Vdash_{\mathbb{P}} \mathfrak{\mathfrak { y }} i=\tilde{\mathfrak{y}}\left(e_{1,0} i\right)\right] \\
e \Vdash_{\mathbb{P}} \phi \wedge \psi & \text { iff } & (e)_{0} \Vdash_{\mathbb{P}} \phi \wedge(e)_{1} \Vdash_{\mathbb{P}} \psi \\
e \Vdash_{\mathbb{P}} \phi \vee \psi & \text { iff } & {\left[(e)_{0}=\mathbf{0} \wedge(e)_{1} \Vdash_{\mathbb{P}} \phi\right] \vee\left[(e)_{0}=\mathbf{1} \wedge(e)_{1} \Vdash_{\mathbb{P}} \psi\right]} \\
e \Vdash_{\mathbb{P}} \neg \phi & \text { iff } & \forall f \in P \neg f \Vdash_{\mathbb{P}} \phi \\
e \Vdash_{\mathbb{P}} \phi \rightarrow \psi & \text { iff } & \forall f \in P\left[f \Vdash_{\mathbb{P}} \phi \rightarrow e f \Vdash_{\mathbb{P}} \psi\right] \\
e \Vdash_{\mathbb{P}} \forall x \in \mathfrak{x} \phi(x) & \text { iff } & \forall i \in \overline{\mathfrak{x}} e i \Vdash_{\mathbb{P}} \phi(\tilde{\mathfrak{x}} i) \\
e \Vdash_{\mathbb{P}} \exists x \in \mathfrak{x} \phi(x) & \text { iff } & (e)_{0} \in \overline{\mathfrak{x}} \wedge(e)_{1} \Vdash_{\mathbb{P}} \phi\left(\tilde{\mathfrak{x}}\left((e)_{0}\right)\right) \\
e \Vdash_{\mathbb{P}} \forall x \phi(x) & \text { iff } \forall \mathfrak{x} \in \mathbf{V}^{\mathbb{P}} e \mathfrak{x} \Vdash_{\mathbb{P}} \phi(\mathfrak{x}) \\
e \Vdash_{\mathbb{P}} \exists x \phi(x) & \text { iff } & (e)_{0} \in \mathbf{V}^{\mathbb{P}} \wedge(e)_{1} \Vdash_{\mathbb{P}} \phi\left((e)_{0}\right) .
\end{array}
$$

The definitions of $e \Vdash_{\mathbb{P}} \mathfrak{x} \in \mathfrak{y}$ and $e \Vdash_{\mathbb{P}} \mathfrak{x}=\mathfrak{y}$ fall under the scope of definitions by transfinite recursion, i.e. by recursion on the inductive definition of $\mathbf{V}^{\mathbb{P}}$.

Theorem: 22.8.5 Let \mathbb{P} be an $\omega-P C A^{+}$. Let $\varphi\left(v_{1}, \ldots, v_{r}\right)$ be a formula of set theory with at most the free variables exhibited. If

$$
\mathbf{C Z F}+\mathbf{R D C} \vdash \varphi\left(v_{1}, \ldots, v_{r}\right)
$$

then there exists a closed application term t_{φ} of $\mathbf{P C A}^{+}$such that for all $\mathfrak{x}_{1}, \ldots, \mathfrak{x}_{r}$ in $\mathbf{V}^{\mathbb{P}}$,

$$
\mathbb{P} \models t_{\varphi} \mathfrak{x}_{1} \ldots \mathfrak{x}_{r} \downarrow
$$

and

$$
t_{\varphi} \mathfrak{x}_{1} \ldots \mathfrak{x}_{r} \Vdash_{\mathbb{P}} \varphi\left(\mathfrak{x}_{1}, \ldots, \mathfrak{x}_{r}\right) .
$$

The term t_{φ} can be effectively constructed from the deduction of $\varphi\left(v_{1}, \ldots, v_{r}\right)$.
Remark: 22.8.6 A background theory sufficient for carrying out the definition of $\mathbf{V}^{\mathbb{P}}$ and establishing Theorem 22.8.5 is KP. More precisely, if KP proves that \mathbb{P} is an $\omega-P C A^{+}$and $\mathbf{C Z F}+\mathbf{R D C} \vdash \varphi\left(v_{1}, \ldots, v_{r}\right)$, then there exists a closed application term t_{φ} of $\mathbf{P C A}^{+}$such that $\mathbf{K P}$ proves for all $\mathfrak{x}_{1}, \ldots, \mathfrak{x}_{r} \in \mathbf{V}^{\mathbb{P}}$, $\mathbb{P} \models t_{\varphi} \mathfrak{x}_{1} \ldots \mathfrak{x}_{r} \downarrow$ and $t_{\varphi} \mathfrak{x}_{1} \ldots \mathfrak{x}_{r} \Vdash_{\mathbb{P}} \varphi\left(\mathfrak{x}_{1}, \ldots, \mathfrak{x}_{r}\right)$.

To obtain a similar result for CZF plus the regular extension axiom we need a stronger type structure.

Definition: 22.8.7 Let $\mathbb{P}=(P, \cdot, \ldots)$ be an $\omega-P C A^{+}$.
The type structure $\mathcal{T}_{W}^{\mathbb{P}}$ is defined by adding one more inductive clause to Definition 22.8.1.
(7) If A is a type and for each $x \in \hat{A}, F(x)$ is a type, where $F \in P$ and $F(x)$ means $F \cdot x$, then

$$
\mathbf{W}_{x: A}^{\mathbb{P}} F(x)
$$

is a type with extension S, where S is the set inductively defined by the following clause:
If $a \in \hat{A}, f \in P$, and $\forall x \in \widehat{F(a)} f \cdot x \in S$, then $\mathbf{p}(a, f) \in S$.
The set-theoretic universe $\mathbf{V}_{W}^{\mathbb{P}}$ is defined in the same vein as $\mathbf{V}^{\mathbb{P}}$ except that it is built over the type structure $\mathcal{T}_{W}^{\mathbb{P}}$.

Realizability over $\mathbf{V}_{W}^{\mathbb{P}}$ is defined similarly as in Definition 22.8.4 with $\mathbf{V}_{W}^{\mathbb{P}}$ replacing $\mathbf{V}^{\mathbb{P}}$.

Theorem: 22.8.8 Let \mathbb{P} be an $\omega-P C A^{+}$. Let $\varphi\left(v_{1}, \ldots, v_{r}\right)$ be a formula of set theory with at most the free variables exhibited. If

$$
\mathbf{C Z F}+\mathbf{R E A}+\mathbf{R D C} \vdash \varphi\left(v_{1}, \ldots, v_{r}\right)
$$

then there exists a closed application term t_{φ} of $\mathbf{P C A}^{+}$such that for all $\mathfrak{x}_{1}, \ldots, \mathfrak{x}_{r}$ in $\mathbf{V}_{W}^{\mathbb{P}}$,

$$
\mathbb{P} \models t_{\varphi} \mathfrak{x}_{1} \ldots \mathfrak{x}_{r} \downarrow
$$

and

$$
t_{\varphi} \mathfrak{x}_{1} \ldots \mathfrak{x}_{r} \Vdash_{\mathbb{P}} \varphi\left(\mathfrak{x}_{1}, \ldots, \mathfrak{x}_{r}\right) .
$$

The term t_{φ} can be effectively constructed from the deduction of $\varphi\left(v_{1}, \ldots, v_{r}\right)$.
Remark: 22.8.9 A background theory sufficient for carrying out the definition of $\mathbf{V}_{W}^{\mathbb{P}}$ and establishing Theorem 22.8.8 is $\mathbf{K P i}$.

22.9 The set-theoretic universe over Kleene's second model

Henceforth let \mathcal{U} be a subset of $\mathbb{N}^{\mathbb{N}}$ closed under 'recursive in' and the jump operator. Let \mathbb{A} be Kleene's second model based on \mathcal{U}, i.e. the applicative structure with domain \mathcal{U} and application being continuous function application, |. The interpretation of the natural numbers in \mathbb{A} that is the interpretation $N^{\mathbb{A}}$ of the predicate symbol N in \mathbb{A} is the set of all constant functions. We use \hat{n} to denote the constant function with value n. In particular there are the
interpretations $\mathbf{k}^{\mathbb{A}}, \mathbf{s}^{\mathbb{A}}, \mathbf{0}^{\mathbb{A}}, \mathbf{s}_{N}^{\mathbb{A}}, \mathbf{p}_{N}^{\mathbb{A}}, \mathbf{d}^{\mathbb{A}}, \mathbf{p}^{\mathbb{A}}, \mathbf{p}_{0}^{\mathbb{A}}, \mathbf{p}_{1}^{\mathbb{A}}$ of the constants of $\mathbf{A P P}$ in \mathcal{U}. We shall, however, mostly drop the superscript \mathbb{A}.

Our goal is to show that in addition to the axioms of $\mathbf{C Z F}, \mathbf{V}^{\mathbb{A}}$ also realizes $\mathbf{C C}$ and FT. The first step is to single out the elements of \mathbf{V}^{A} that play the role of ω and Baire space ω^{ω}. We use variables $\alpha, \beta, \gamma, \ldots$ to range over \mathcal{U}. Let $\mathbb{V}:=\mathbf{V}^{\mathbb{A}}$. Define

$$
\begin{aligned}
\emptyset & :=\sup \left(N_{0}^{\AA}, \lambda \alpha \cdot \alpha\right) \\
\mathfrak{x}^{\prime} & :=\sup \left(\overline{\mathfrak{x}}+{ }_{\mathbb{A}} N_{1}^{\mathrm{A}}, \lambda \beta \cdot \mathbf{d}\left(\tilde{\mathfrak{x}}\left(\mathbf{p}_{\mathbf{1}} \beta\right), \mathfrak{x}, \mathbf{p}_{\mathbf{0}} \beta, \mathbf{0}\right)\right)
\end{aligned}
$$

and $\Delta \in \mathcal{U}$ by

$$
\Delta \cdot \eta= \begin{cases}\emptyset & \text { if } \eta(0)=0 \\ (\Delta \cdot(\eta-1))^{\prime} & \text { if } \eta(0) \neq 0\end{cases}
$$

where $\eta-1$ is the function γ with $\gamma(n)=\eta(n)-1$ if $\eta(n)>0$ and $\gamma(n)=0$ otherwise. The definition of Δ appeals to the recursion theorem for $\mathbb{A} .{ }^{1}$ Finally, ω is defined by

$$
\omega:=\sup \left(N^{\mathrm{A}}, \Delta\right) .
$$

By induction on n one shows that $\Delta \cdot \hat{n} \downarrow$ and $\Delta \cdot \hat{n} \in \mathbb{V}$, thus $\omega \in \mathbb{V}$.
The representation ω of the set of von Neumann integers has an important property.

Definition: 22.9.1 We use $\Vdash_{\mathbb{A}} A$ to convey that $\eta \Vdash_{\mathbb{A}} A$ for some $\eta \in \mathcal{U}$.
$\mathfrak{x} \in \mathbb{V}$ is injectively presented if for all $\alpha, \beta \in \overline{\mathfrak{x}}$, whenever

$$
\Vdash_{A} \tilde{\mathfrak{x}}(\alpha)=\tilde{\mathfrak{x}}(\beta)
$$

then $\alpha=\beta$.
Lemma: 22.9.2 ω is injectively presented.
Proof: We must show that $\Vdash_{A} \Delta \cdot \hat{n}=\Delta \cdot \hat{m}$ implies $n=m$. This can be verified by a routine double induction, first on n and within that on m. For details see [2] Lemma 5.5 or [80] Theorem 4.24.

Corollary: 22.9.3 The Axiom of Countable Choice, $A C_{\omega}$, and the Axiom of Dependent Choices, RDC, are validated in \mathbb{V}.

Proof: This is an immediate consequence of the injective presentation of ω. The details are similar to the proof of [2] Theorem 5.7 or [80] Theorem 4.26.
Next we aim at finding an injective presentation of Baire space in \mathbb{V}. We will need internal versions of unordered and ordered pairs in \mathbb{V}.

[^6]Definition: 22.9.4 There is a closed application term OP of APP such that $\mathbb{A} \models \mathrm{OP} \downarrow$ and

$$
\mathbb{A} \models \mathrm{OP}(\alpha, \beta, \hat{0})=\alpha \wedge \mathrm{OP}(\alpha, \beta, \hat{1})=\beta
$$

for all $\alpha, \beta \in \mathcal{U}$. Now let

$$
\{\mathfrak{x}, \mathfrak{y}\}_{\mathrm{v}}=\sup \left(N_{2}^{\mathbb{A}}, \lambda \alpha \cdot \operatorname{OP}(\mathfrak{x}, \mathfrak{y}, \alpha)\right) ; \quad\langle\mathfrak{x}, \mathfrak{y}\rangle_{\mathrm{V}}=\left\{\{\mathfrak{x}, \mathfrak{x}\}_{\mathrm{V}},\{\mathfrak{x}, \mathfrak{y}\}_{\mathrm{v}}\right\}_{\mathrm{V}}
$$

for $\mathfrak{x}, \mathfrak{y} \in \mathbb{V}$. The internal versions of $\alpha \in \mathcal{U}$, denoted $\alpha_{\mathfrak{v}}$, and of Baire space, denoted \mathcal{B}_{v}, are the following:

$$
\begin{aligned}
& \alpha_{\mathrm{v}}:=\sup \left(N^{\mathbb{A}}, \lambda \gamma \cdot\langle\Delta \cdot \widehat{\gamma(0)}, \Delta \cdot \widehat{\alpha(\gamma(0))}\rangle_{\mathrm{v}}\right) \\
& \mathcal{B}_{\mathrm{v}}:=\sup \left(U^{\mathbb{A}}, \lambda \alpha \cdot \alpha_{\mathrm{v}}\right) .
\end{aligned}
$$

Corollary: 22.9.5 For all $\mathfrak{x}, \mathfrak{y} \in \mathbb{V},\{\mathfrak{x}, \mathfrak{y}\}_{\mathbb{V}},\langle\mathfrak{x}, \mathfrak{y}\rangle_{\mathrm{v}} \in \mathbb{V}$. For all $\alpha \in \mathcal{U}, \alpha_{\mathfrak{v}} \in \mathbb{V}$. Moreover, $\mathcal{B}_{\mathrm{v}} \in \mathbb{V}$.

Proof: These claims are obviously true.

Corollary: 22.9.6 \mathcal{B}_{v} is injectively presented.
Proof: Let $\Delta^{*}(n):=\Delta \cdot \hat{n}$. As a first step, one must show that

$$
\Vdash_{\mathbb{A}}\left\langle\Delta^{*}\left(n_{1}\right), \Delta^{*}\left(m_{1}\right)\right\rangle_{\mathrm{V}}=\left\langle\Delta^{*}\left(n_{2}\right), \Delta^{*}\left(m_{2}\right)\right\rangle_{\mathbb{V}}
$$

implies $n_{1}=m_{1}$ and $n_{2}=m_{2}$. This follows from the fact that

$$
\Vdash_{\mathbb{A}} "\langle\mathfrak{x}, \mathfrak{y}\rangle_{\mathrm{V}} \text { is the ordered pair of } \mathfrak{x} \text { and } \mathfrak{y} "
$$

holds and that ω is injectively presented according to Corollary 22.9.2.
Notice the important role of the type $U^{\mathbb{A}}$ in obtaining an injective presentation of Baire space. This will enable us to verify that CC holds in \mathbb{V}.

Lemma: 22.9.7 There is a closed application term t such that $\mathbb{A} \models t \downarrow$ and

$$
\alpha_{t} \Vdash_{\mathbb{A}} \text { " } \mathcal{B}_{\mathrm{v}} \text { is the set of all functions from } \omega \text { to } \omega \text { " }
$$

where t evaluates to α_{t} in \mathbb{A}.
Proof: Suppose

$$
\beta \vdash_{\mathrm{A}} \text { " } f \text { is function from } \omega \text { to } \omega " \text {. }
$$

Then from β one can distill β^{*} such that $\beta^{*} \Vdash_{\mathrm{A}} \forall n \in \omega \exists k \in \omega\langle n, k\rangle \in f$. Thus $\beta^{*} \cdot \hat{n} \Vdash_{\mathbb{A}} \exists k \in \omega\langle\Delta \cdot \hat{n}, k\rangle \in f$, so that $\left(\beta^{*} \cdot \hat{n}\right)_{0} \in N^{A}$ and $\left(\beta^{*} \cdot \hat{n}\right)_{1} \Vdash_{A}$
$\left\langle\Delta \cdot \hat{n}, \Delta \cdot\left(\beta^{*} \cdot \hat{n}\right)\right\rangle \in f$. Now define $\beta^{\#}$ by $\beta^{\#}(n)=\left(\beta^{*} \cdot \hat{n}\right)_{0}(0)$. Then one can effectively construct $\beta^{\curvearrowright}, \beta^{b}$ from β such that $\beta^{\diamond} \Vdash_{\mathrm{A}} f=\beta^{\#}{ }_{\mathrm{V}}$ and $\beta^{b} \Vdash_{\mathrm{A}} f \in \mathcal{B}_{\mathrm{v}}$.

Conversely, if $\gamma \Vdash_{\mathbb{A}} f \in \mathcal{B}_{\mathbf{v}}$, one can construct γ^{\dagger} from γ such that $\gamma^{\dagger} \Vdash_{\mathbb{A}}$ " f is a function from ω to ω.".

As the all the above transformation can be effected by application terms, the desired assertion follows.

Theorem: 22.9.8 The principles $\mathbf{C C}$ and $\mathbf{A C}_{2}$ are valid in \mathbb{V}.
Proof: Suppose

$$
\begin{equation*}
\eta \Vdash_{\mathrm{A}} \forall f \in \mathcal{B}_{\mathrm{v}} \exists n \in \omega A(f, n) . \tag{22.15}
\end{equation*}
$$

Then, for all $\alpha \in \mathcal{U}, \eta \cdot \alpha \Vdash_{\mathrm{A}} \exists n \in \omega A\left(\alpha_{\mathrm{v}}, n\right)$, so that

$$
\begin{equation*}
(\eta \cdot \alpha)_{0} \in N^{\mathbb{A}} \wedge(\eta \cdot \alpha)_{1} \Vdash_{\mathbb{A}} A\left(\alpha_{\mathrm{v}}, \Delta \cdot(\eta \cdot \alpha)_{0}\right) . \tag{22.16}
\end{equation*}
$$

Define

$$
\eta^{*}:=\sup \left(U^{\mathbb{A}}, \lambda \alpha \cdot\left\langle\alpha_{v}, \Delta \cdot(\eta \cdot \alpha)_{0}\right\rangle_{\mathrm{v}}\right) .
$$

Obviously we can construct a closed term $t^{\#}$ such that $\mathbb{A} \models t^{\#} \downarrow$ and with $\vartheta \in \mathcal{U}$ such that $\mathbb{A} \models t^{\#} \simeq \vartheta$ we obtain

$$
\begin{equation*}
\vartheta \cdot \eta \Vdash_{\mathbb{A}} \eta^{*}: \mathcal{B}_{\mathrm{v}} \rightarrow \omega \wedge \forall f \in \mathcal{B}_{\mathrm{v}} A\left(f, \eta^{*}(f)\right) . \tag{22.17}
\end{equation*}
$$

We can thus cook up another closed application term t^{+}which evaluates to a function Ξ in \mathbb{A} such that

$$
\Xi \cdot \eta=\mathbf{p}\left(\eta^{*}, \vartheta \cdot \eta\right) .
$$

In view of (22.17) we arrive at

$$
\Xi \Vdash_{\mathrm{A}} \forall f \in \mathcal{B}_{\mathrm{v}} \exists n \in \omega A(f, n) \rightarrow \exists F\left[F: \mathcal{B}_{\mathrm{v}} \rightarrow \omega \wedge \forall f \in \mathcal{B}_{\mathrm{v}} A(f, F(f))\right] .
$$

One can also show that the function η^{*} in (22.17) constructed from η is a continuous function in the realizability model \mathbb{V}. By the previous Lemma 22.9.7, \mathcal{B}_{v} is also realizably the Baire space. So the upshot is that CC is realized.

Moreover, for the above proof the restriction of the existential quantifier to ω in (22.15) is immaterial. As a result, the above proof establishes realizability of $\mathbf{A C}_{2}$ in \mathbb{V} as well, whereby $\mathbf{A C}_{2}$ stands for the following statement: If F is a function with domain $\mathbb{N}^{\mathbb{N}}$ such that $\forall \alpha \in \mathbb{N}^{\mathbb{N}} \exists x \in F(\alpha)$ then there exists a function f with domain $\mathbb{N}^{\mathbb{N}}$ such that $\forall \alpha \in \mathbb{N}^{\mathbb{N}} f(\alpha) \in F(\alpha)$.

Furthermore, a similar proof establishes the realizability of \mathbf{F}-CC in \mathbb{V}.

Theorem: 22.9.9 Let $\varphi\left(v_{1}, \ldots, v_{r}\right)$ be a formula of set theory with at most the free variables exhibited.
(i) If

$$
\mathbf{C Z F}+\mathbf{C C}+\mathbf{F T}+\mathbf{A C}_{2}+\mathbf{R D C} \vdash \varphi\left(v_{1}, \ldots, v_{r}\right)
$$

then there exists a closed application term t_{φ} of $\mathbf{P C A}^{+}$such that for all $\mathfrak{x}_{1}, \ldots, \mathfrak{x}_{r} \in \mathbf{V}^{\mathbb{A}}$,

$$
\mathbb{A} \models t_{\varphi} \mathfrak{x}_{1} \ldots \mathfrak{x}_{r} \downarrow
$$

and

$$
t_{\varphi} \mathfrak{x}_{1} \ldots \mathfrak{x}_{r} \Vdash_{\mathbb{A}} \varphi\left(\mathfrak{x}_{1}, \ldots, \mathfrak{x}_{r}\right) .
$$

The term t_{φ} can be effectively constructed from the deduction of $\varphi(\vec{v})$.
(ii) Suppose that the domain of \mathbb{A} is a β-model and that

$$
\mathbf{C Z F}+\mathbf{R E A}+\mathbf{C C}+\mathbf{B I}_{\mathbf{M}}+\mathbf{A C}_{2}+\mathbf{R D C} \vdash \varphi\left(v_{1}, \ldots, v_{r}\right) .
$$

Then there exists a closed application term s_{φ} of $\mathbf{P C A}^{+}$such that for all $\mathfrak{x}_{1}, \ldots, \mathfrak{x}_{r} \in \mathbf{V}_{W}^{\mathrm{A}}$,

$$
\mathbb{A} \models s_{\varphi} \mathfrak{x}_{1} \ldots \mathfrak{x}_{r} \downarrow
$$

and

$$
s_{\varphi} \mathfrak{x}_{1} \ldots \mathfrak{x}_{r} \Vdash_{\mathbb{A}} \varphi\left(\mathfrak{x}_{1}, \ldots, \mathfrak{x}_{r}\right) .
$$

The term s_{φ} can be effectively constructed from the deduction of $\varphi(\vec{v})$.
Proof: (i): In view of Theorem 22.8.5 and Theorem 22.9.8, it suffices to show realizability of FT. This is basically the same proof as for Theorem 22.6.5 only in a more involved context. So we omit the details.
(ii): By Theorem 22.8.8 and Theorem 22.9.8, it remains to verify realizability of $\mathbf{B I}_{\mathbf{M}}$. This is similar to the proof of Theorem 22.6.8.

Theorem: 22.9.10 (i) $\mathbf{C Z F}$ and $\mathbf{C Z F}+\mathbf{C C}+\mathbf{F T}+\mathbf{A C}_{2}+\mathbf{R D C}$ have the same proof-theoretic strength and prove the same Π_{2}^{0} sentences of arithmetic.
(ii) $\mathbf{C Z F}+\mathbf{R E A}$ and $\mathbf{C Z F}+\mathbf{R E A}+\mathbf{C C}+\mathbf{B I}_{\mathbf{M}}+\mathbf{A C}_{2}+\mathbf{R D C}$ have the same proof-theoretic strength and prove the same Π_{2}^{0} sentences of arithmetic.
(i) follows from Theorem 22.9.9(i), the fact that the proof of 22.9.9(i) can be carried out in the background theory KP, and that CZF and KP prove the same Π_{2}^{0} sentences.
(ii) follows from Theorem 22.9.9(ii) together with the insight that the existence of $\mathbb{N}^{\mathbb{N}} \cap L_{\rho}\left(\right.$ where $\left.\rho=\sup _{n<\omega} \omega_{n}^{c k}\right)$ can be shown in $\mathbf{K P i}$ and that $\mathbf{K P i}$ is a
background theory sufficient for the construction of $\mathbf{V}_{W}^{\mathbb{P}}$. Moreover, $\mathbf{K P i}$ is of the same strength as CZF + REA and the theories prove the same Π_{2}^{0} sentences of arithmetic.

The question that remains to be answered is whether $\mathbf{B I}$ adds any strength to $\mathbf{C Z F}$. It is shown in [79] that $\mathbf{C Z F}_{R, E}+\mathbf{B I}_{\mathbf{D}}$ proves the 1-consistency of $\mathbf{C Z F}$.

Definition: 22.9.11 Let CZF $_{R, E}$ be obtained from CZF by replacing Strong Collection with Replacement and Subset Collection with Exponentiation, respectively.

Note that Strong Collection implies Replacement and that Subset Collection implies Exponentiation. Thus $\mathbf{C Z F}_{R, E}$ is a subtheory of $\mathbf{C Z F}$.

Theorem: 22.9.12 $\mathbf{C Z F}_{R, E}+\mathbf{B I}_{\mathbf{D}}$ proves the 1-consistency of $\mathbf{C Z F}$ and $\mathbf{K P}$.
Proof: [79].

22.10 Predicativism and CZFA

Hermann Weyl rejected the platonist philosophy of mathematics as manifested in impredicative existence principles of Zermelo-Fraenkel set theory. In his book Das Kontinuum, he initiated a predicative approach to the the real numbers and gave a viable account of a substantial chunk of analysis. What are the ideas and principles upon which his "predicative view" is supposed to be based? A central tenet is that there is a fundamental difference between our understanding of the concept of natural numbers and our understanding of the set concept. As the French predicativists, Weyl accepts the completed infinite system of natural numbers as a point of departure. He also accepts classical logic but just works with sets that are of level one in Russell's ramified hierarchy, in other words only with the principle of arithmetical definitions.

Logicians such as Wang, Lorenzen, Schütte, and Feferman then proposed a foundation of mathematics using layered formalisms based on the idea of predicativity which ventured into higher levels of the ramified hierarchy. The idea of an autonomous progression of theories $R A_{0}, R A_{1}, \ldots, R A_{\alpha}, \ldots$ was first presented in Kreisel [48] and than taken up by Schütte and Feferman to determine the limits of predicativity. The notion of autonomy therein is based on introspection and should perhaps be viewed as a 'boot-strap' condition. One takes the structure of natural numbers as one's point of departure and then explores through a process of active reflection what is implicit in accepting this structure, thereby developing a growing body of ever higher layers of the ramified hierarchy. Schütte and Feferman (cf. [84, 85, 27, 28]) showed that the ordinal Γ_{0} is the first ordinal whose
well-foundedness cannot be proved in autonomous progressions of theories. It was also argued by Feferman that the whole sequence of autonomous progressions of theories is coextensive with predicativity and on these grounds Γ_{0} is often referred to as the proper limit of all predicatively provable ordinals. In this paper I shall only employ the "lower bound" part of this analysis, i.e., that every ordinal less than Γ_{0} is a predicatively provable ordinal. In consequence, every theory with proof-theoretic ordinal less than Γ_{0} has a predicative consistency proof and is moreover conservative over a theory $R A_{\alpha}$ for arithmetical statements for some $\alpha<\Gamma_{0}$. As a shorthand for the above I shall say that a theory is predicatively justifiable.

As a scale for measuring the proof-theoretic strength of theories one uses traditionally certain subsystems of second order arithmetic (see [30, 87]). Relevant to the present context are systems based on the Σ_{1}^{1} axiom of choice and the Σ_{1}^{1} axiom of dependent choices. The theory $\boldsymbol{\Sigma}_{1}^{1}$ - $\mathbf{A C}$ is a subsystem of second order arithmetic with the Σ_{1}^{1} axiom of choice and induction over the natural numbers for all formulas while $\boldsymbol{\Sigma}_{1}^{1}$ - $\mathbf{D C} \mathbf{C}_{0}$ is a subsystem of second order arithmetic with the Σ_{1}^{1} axiom of dependent choices and induction over the natural numbers restricted to formulas without second order quantifiers (for precise definitions see [30, 87]). The proof theoretic ordinal of Σ_{1}^{1} - $\mathbf{A C}$ is $\varphi \varepsilon_{0} 0$ while Σ_{1}^{1} - $\mathbf{D C} \mathbf{C}_{0}$ has the smaller proof-theoretic ordinal $\varphi \omega 0$ as was shown by Cantini [16]. Here φ denotes the Veblen function (see [86]).

Theorem: 22.10.1 (i) The theories $\mathbf{C Z F}^{-}+\Sigma_{1}-\mathbf{I N D}_{\omega}, \mathbf{C Z F A}+\Sigma_{1} \mathbf{I N D}_{\omega}+$ $\Delta_{0}-\mathbf{R D C}, \mathrm{CZFA}+\Sigma_{1}-\mathbf{I N D}{ }_{\omega}+\mathbf{D C}$, and $\Sigma_{1}^{1}-\mathbf{D C}_{0}$ are proof-theoretically equivalent. Their proof-theoretic ordinal is $\varphi \omega 0$.
(ii) The theories $\mathbf{C Z F}^{-}+\mathbf{I N D}_{\omega}, \mathbf{C Z F A}+\mathbf{I N D}_{\omega}+\mathbf{R D C}, \widehat{\mathbf{I D}}_{\mathbf{1}}$, and $\boldsymbol{\Sigma}_{1}^{1}-\mathbf{A C}$ are proof-theoretically equivalent. Their proof-theoretic ordinal is $\varphi \varepsilon_{0} 0$.
(iii) CZFA has at least proof-theoretic strength of Peano arithmetic and so its proof-theoretic ordinal is at least ε_{0}. An upper bound for the proof-theoretic ordinal of CZFA is $\varphi 20$. In consequence, CZFA is proof-theoretically weaker than $\mathbf{C Z F A}+\Delta_{0}$-RDC.

Proof: (ii) follows from [66], Theorem 3.15.
As to (i) it is important to notice that the scheme dubbed Δ_{0} - RDC in [66] is not the same as Δ_{0}-RDC in the present paper. In [66], Δ_{0}-RDC asserts for Δ_{0} formulas ϕ and ψ that whenever $(\forall x \in a)[\phi(x) \rightarrow(\exists y \in a)(\phi(y) \wedge \psi(x, y))]$ and $b_{0} \in a \wedge \phi\left(b_{0}\right)$, then there exists a function $f: \omega \rightarrow a$ such that $f(0)=b_{0}$ and $(\forall n \in \omega)[\phi(f(n)) \wedge \psi(f(n), f(n+1))]$. The latter principle is weaker than our Δ_{0}-RDC as all quantifiers have to be restricted to a given set a. However, the realizability interpretation of constructive set theory in $\mathbf{P A}_{\Omega}^{r}+\Sigma^{\Omega}$-IND employed
in the proof of [66], Theorem 3.15 (i) also validates the stronger Δ_{0}-RDC of the present paper (the system $\mathbf{P A}_{\Omega}^{r}$ stems from [41]).

Theorem 3.15 (i) of [66] and Lemma 10.2.3 also imply that $\mathbf{C Z F}^{-}+\Delta_{0}$-RDC is not weaker than $\mathbf{C Z F}^{-}+\Sigma_{1}-\mathbf{I N D}_{\omega}$. Thus proof-theoretic equivalence of all systems in (i) ensues.
(iii) is a consequence of the fact that Heyting Arithmetic can be easily interpreted in CZF $^{-}$and hence in CZFA. At present the exact proof-theoretic strength of CZFA is not known, however, it can be shown that the proof-theoretic ordinal of CZFA is not bigger than $\varphi 20$. The latter bound can be obtained by inspecting the interpretation of CZFA in $\mathbf{P A}_{\Omega}^{r}+\Sigma^{\Omega}$-IND employed in the proof of [66], Theorem 3.15. A careful inspection reveals that a subtheory T of $\mathbf{P A}_{\Omega}^{r}+\Sigma^{\Omega}$-IND suffices. To be more precise, T can be taken to be the theory

$$
\mathbf{P A}_{\Omega}^{r}+\forall \alpha \exists \lambda[\alpha<\lambda \wedge \lambda \text { is a limit ordinal }] .
$$

Using cut elimination techniques and asymmetric interpretation, T can be partially interpreted in $\mathbf{R A}_{<\omega^{2}}$. The latter theory is known to have proof-theoretic ordinal $\varphi 20$.

Bibliography

[1] P. Aczel: The type theoretic interpretation of constructive set theory. In: MacIntyre, A. and Pacholski, L. and Paris, J, editor, Logic Colloquium '77 (North Holland, Amsterdam 1978) 55-66.
[2] P. Aczel: The type theoretic interpretation of constructive set theory: Choice principles. In: A.S. Troelstra and D. van Dalen, editors, The L.E.J. Brouwer Centenary Symposium (North Holland, Amsterdam 1982) 1-40.
[3] P. Aczel: The type theoretic interpretation of constructive set theory: Inductive definitions. In: R.B. et al. Marcus, editor, Logic, Methodology and Philosophy of Science VII (North Holland, Amsterdam 1986) 17-49.
[4] P. Aczel: Non-well-founded sets. CSLI Lecture Notes 14 (CSLI Publications, Stanford, 1988).
[5] P. Aczel, M. Rathjen: Notes on constructive set theory, Technical Report 40, Institut Mittag-Leffler (The Royal Swedish Academy of Sciences, 2001). http://www.ml.kva.se/preprints/archive2000-2001.php
[6] H.P. Barendregt: The Lambda Calculus: It's Syntax and Semantics (North Holland, Amsterdam, 1981).
[7] J. Barwise: Admissible Sets and Structures (Springer-Verlag, Berlin, Heidelberg, New York, 1975).
[8] J. Barwise, L. Moss: Vicious circles. CSLI Lecture Notes 60 (CSLI Publications, Stanford, 1996).
[9] M. Beeson: Continuity in intuitionistic set theories, in: M Boffa, D. van Dalen, K. McAloon (eds.): Logic Colloquium '78 (North-Holland, Amsterdam, 1979).
[10] M. Beeson: Foundations of Constructive Mathematics. (SpringerVerlag, Berlin, Heidelberg, New York, Tokyo, 1985).
[11] E. Bishop and D. Bridges: Constructive Analysis. (Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, 1985).
[12] A. Blass: Injectivity, projectivity, and the axiom of choice. Transactions of the AMS 255 (1979) 31-59.
[13] É. Borel: Euvres de Émil Borel (Centre National de la recherche Scientifique, Paris, 1972).
[14] D. Bridges, F. Richman: Varieties of constructive mathematics. LMS Lecture Notes Series 97 (Cambridge University Press,Cambridge,1987).
[15] L.E.J. Brouwer: Weten, willen, spreken (Dutch). Euclides 9 (1933) 177193.
[16] A. Cantini: On the relation between choice and comprehension principles in second order arithmetic. Journal of Symbolic Logic, vol. 51 (1986) 360-373.
[17] L. Crosilla and M. Rathjen: Inaccessible set axioms may have little consistency strength Annals of Pure and Applied Logic 115 (2002) 3370.
[18] D. van Dalen: Logic and Structure (4th extended ed. Revised). (Springer Verlag, Berlin, 2008).
[19] R. Dedekind: Was sind und was sollen die Zahlen? (Vieweg, Braunschweig, 1888).
[20] J. Lindström: A construction of non-well-founded sets within MartinLöf type theory. Journal of Symbolic Logic 54 (1989) 57-64.
[21] R. Diaconescu: Axiom of choice and complementation. Proc. Amer. Math. Soc. 51 (1975) 176-178.
[22] T. Dodd and R. Jensen: The core model. Annals of Mathematical Logic 20 (1981) 43-75.
[23] M. Dummett: Elements of intuitionism. Second edition (Clarendon Press,Oxford,2000)
[24] S. Feferman: Formal theories for transfinite iterations of generalized inductive definitions and some subsystems of analysis. In: J. Myhill, A. Kino, R.E. Vesley (eds.): Intuitionism and Proof Theory. (NorthHolland, Amsterdam, 1970) 303-325.
[25] S. Feferman: Iterated inductive fixed-point theories: application to Hancock's conjecture, in: Patras Logic Symposium (Patras, 1980)Studies in Logic and the Foundations of Mathematics, 109 (North-Holland, Amsterdam 1982) 171-196.
[26] S. Feferman, W. Sieg: Theories of inductive definitions. In: W. Buchholz, S. Feferman, W. Pohlers, W. Sieg: Iterated inductive definitions and subsystems of analysis (Springer, Berlin, 1981) 16-142.
[27] S. Feferman: Systems of predicative analysis, Journal of Symbolic Logic 29 (1964) 1-30.
[28] S. Feferman: Systems of predicative analysis II. Representations of ordinals, Journal of Symbolic Logic 33 (1968) 193-220.
[29] S. Feferman: A language and axioms for explicit mathematics. In: J.N. Crossley (ed.): Algebra and Logic, Lecture Notes in Math. 450 (Springer, Berlin 1975) 87-139.
[30] S. Feferman: Theories of finite type related to mathematical practice. In: J. Barwise (ed.): Handbook of Mathematical Logic (North Holland, Amsterdam, 1977) 913-971.
[31] S. Feferman: Constructive theories of functions and classes in: Boffa, M., van Dalen, D., McAloon, K. (eds.), Logic Colloquium '78 (NorthHolland, Amsterdam 1979) 159-224.
[32] S. Feferman and A. Levy: Independence results in set theory by Cohen's method. II. (abstract) Notices of the american Mathematical Society 10 (1963) 593.
[33] M. Forti, F. Honsell: Set theory with free construction principles. Annali Scuola Normale Supeiore di Pisa, Classe di Scienze 10 (1983) 493-522.
[34] H. Friedman: Set-theoretic foundations for constructive analysis. Annals of Mathematics 105 (1977) 868-870.
[35] H. Friedman, S. Ščedrov: The lack of definable witnesses and provably recursive functions in intuitionistic set theory, Advances in Mathematics 57 (1985) 1-13.
[36] N. Gambino: Types and sets: a study on the jump to full impredicativity, Laurea Dissertation, Department of Pure and Applied Mathematics, University of Padua (1999).
[37] N. Gambino: Heyting-valued interpretations for constructive set theory, Department of Computer Science, Manchester University (2002) 42 pages.
[38] M. Gitik: All uncountable cardinals can be singular. Israel Journal of Mathematics 35 (1980) 61-88.
[39] P.G. Hinman: Recursion-theoretic hierarchies (Springer, Berlin, 1978).
[40] P. Howard, J.E. Rubin: Consequences of the axiom of choice. Mathematical Surveys and Mongraphs 59 (American Mathematical Society, providence, 1998).
[41] G. Jäger: Fixed points in Peano arithmetic with ordinals. Annals of Pure and Applied Logic 60 (1993) 119-132.
[42] T. Jech: The axiom of choice. (North-Holland, Amsterdam, 1973).
[43] T. Jech: On hereditarily countable sets. Journal of symbolic Logic (1982) 43-47.
[44] R.B. Jensen: Independence of the axiom of dependent choices from the countable axiom of choice (abstract). Journal of symbolic logic 31 (1966) 294.
[45] H. Jervell: From the axiom of choice to choice sequences, Nordic Journal of Philosophical Logic 1 (1996) 95-98.
[46] A. Kanamori: The higher infinite. (Springer, Berlin, 1995).
[47] S.C. Kleene, R.E. Vesley: The foundations of intuitionistic mathematics. (North-Holland,Amsterdam,1965).
[48] G. Kreisel: Ordinal logics and the characterization of informal concepts of proof. In: Proceedings of the 1958 International Congress of Mathematicians, (Edinburgh,1960) 289-299.
[49] K. Kunen: Set Theory: An introduction to independence proofs. (NorthHolland, Amsterdam, 1980).
[50] F.W. Lawvère: An elementary theory of the category of sets. Proc. Nat. Acad. Sci. 52 (1964) 1506-1511.
[51] R. S. Lubarsky, M. Rathjen: On the Constructive Dedekind Reals. Logic and Analysis 1 (2008) 131-152.
[52] P. Mahlo: Über lineare transfinite Mengen, Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig, Mathematisch-Physische Klasse, 63 (1911) 187-225.
[53] P. Martin-Löf: An intuitionistic theory of types: predicative part, in: H.E. Rose and J. Sheperdson (eds.): Logic Colloquium '73 (NorthHolland, Amsterdam, 1975) 73-118.
[54] P. Martin-Löf: Intuitionistic Type Theory, (Bibliopolis, Naples, 1984).
[55] D.C. McCarty: Realizability and recursive mathematics, PhD thesis, Oxford University (1984), 281 pages.
[56] I. Moerdijk, E. Palmgren: Type theories, toposes and constructive set theory: predicative aspects of AST, Annals of Pure and Applied Logic 114 (2002) 155-201.
[57] L. Moss: Power set recursion, Annals of Pure and Applied Logic 71 (1995) 247-306.
[58] J. Myhill: "Embedding classical type theory in intuitionistic type theory" a correction. Axiomatic set theory. Proceedings of Symposia in 185-188, 1974.
[59] J. Myhill: Constructive set theory. Journal of Symbolic Logic, 40:347382, 1975.
[60] G. Peano: Arithmetices principia nova methodo exposita. (Turin, 1889)
[61] W. Pohlers: Proof theory. Lecture Notes in Mathematics 1407 (Springer, Berlin, 1989).
[62] W. Pohlers: A short course in ordinal analysis, in: P. Aczel, H. Simmons, S. Wainer (eds.): Proof Theory (Cambridge University Press, Cambridge, 1992) 27-78.
[63] M. Rathjen: Fragments of Kripke-Platek set theory with infinity, in: P. Aczel, H. Simmons, S. Wainer (eds.): Proof Theory (Cambridge University Press, Cambridge, 1992) 251-273.
[64] M. Rathjen: The strength of some Martin-Löf type theories. Archive for Mathematical Logic 33 (1994) 347-385.
[65] M. Rathjen: The realm of ordinal analysis. In: S.B. Cooper and J.K. Truss (eds.): Sets and Proofs. (Cambridge University Press, 1999) 219279.
[66] M. Rathjen: The anti-foundation axiom in constructive set theories. In: G. Mints, R. Muskens (eds.): Games, Logic, and Constructive Sets. (CSLI Publications, Stanford, 2003).
[67] M. Rathjen: Kripke-Platek set theory and the anti-foundation axiom. Mathematical Logic Quarterly 47 (2001) 435-440.
[68] M. Rathjen, E. Palmgren: Inaccessibility in constructive set theory and type theory. Annals of Pure and Applied Logic 94 (1998) 181-200.
[69] M. Rathjen, R. Lubarsky: On the regular extension axioms and its variants. Mathematical Logic Quarterly 49, No. 5 (2003) 1-8.
[70] M. Rathjen: The disjunction and related properties for constructive Zermelo-Fraenkel set theory. Journal of Symbolic Logic 70 (2005) 12331254.
[71] M. Rathjen: Constructive set theory and Brouwerian principles. Journal of Universal Computer Science, Vol. 11, No. 12 (2005) 2008-2033.
[72] M. Rathjen Realizability for constructive Zermelo-Fraenkel set theory. In: J. Väänänen, V. Stoltenberg-Hansen (eds.): Logic Colloquium 2003. Lecture Notes in Logic 24 (A.K. Peters, 2006) 282-314.
[73] M. Rathjen The role of ordinals in proof theory. Synthese 148, Number 3, February 2006 (2006) 719-743.
[74] M. Rathjen A Note on Bar Induction in Constructive Set Theory. Mathematical Logic Quarterly 52 (2006) 253-258.
[75] M. Rathjen: Choice principles in constructive and classical set theories. In: Z. Chatzidakis, P. Koepke, W. Pohlers (eds.): Logic Colloquium 02, Lecture Notes in Logic 27 (A.K. Peters, 2006) 299-326.
[76] M. Rathjen, Sergei Tupailo: Characterizing the interpretation of set theory in Martin-Löf type theory. Annals of Pure and Applied Logic 141 (2006) 442-471.
[77] M. Rathjen: Replacement versus collection in constructive ZermeloFraenkel set theory. Annals of Pure and Applied Logic 136 (2005) Pages 156-174.
[78] M. Rathjen: Generalized Inductive Definitions in Constructive Set Theory. In: L. Crosilla, P. Schuster (eds.): From Sets and Types to Topology and Analysis Towards Practicable Foundations for Constructive Mathematics (Clarendon Press, Oxford, 2005) 23-40.
[79] M. Rathjen: A note on bar induction in constructive set theory. Mathematical Logic Quarterly 52 (2006) 253-258.
[80] M. Rathjen: The formulae-as-classes interpretation of constructive set theory. In: H. Schwichtenberg, K. Spies (eds.): Proof Technology and Computation (IOS Press, Amsterdam, 2006) 279-322.
[81] M. Rathjen: Metamathematical Properties of Intuitionistic Set Theories with Choice Principles. In: S. B. Cooper, B. Löwe, A. Sorbi (eds.): New Computational Paradigms: Changing Conceptions of What is Computable (Springer, New York, 2008) 287-312.
[82] M. Rathjen: The Natural Numbers in Constructive Set Theory. Mathematical Logic Quarterly 54 (2008) 84-98.
[83] B. Russell: Mathematical logic as based on the theory of types. American Journal of Mathematics 30 (1908) 222-262.
[84] K. Schütte: Eine Grenze für die Beweisbarkeit der transfiniten Induktion in der verzweigten Typenlogik, Archiv für Mathematische Logik und Grundlagenforschung 67 (1964) 45-60.
[85] K. Schütte: Predicative well-orderings, in: Crossley, Dummett (eds.), Formal systems and recursive functions (North Holland, Amsterdam, 1965) 176-184.
[86] K. Schütte: Proof theory (Springer, Berlin, 1977).
[87] S. Simpson: Subsystems of second order arithmetic (Springer, Berlin, 1999).
[88] A.S. Troelstra: Metatamathematical investigaton of intuitionistic arithmetic and analysis. Lecture Notes in Mathematics vol. 344 (Springer,Berlin,1973).
[89] A.S. Troelstra: A note on non-extensional operations in connection with continuity and recursiveness. Indagationes. Math. 39 (1977) 455-462.
[90] A.S. Troelstra and D. van Dalen: Constructivism in Mathematics, Volumes I, II. (North Holland, Amsterdam, 1988).
[91] H. Weyl: Die Stufen des Unendlichen. (Verlag von Gustav Fischer, Jena, 1931).
[92] H. Weyl: Philosophy of Mathematics and Natural Sciences. (Princeton University Press, Princeton, 1949)

[^0]: ${ }^{1}$ See Constructive Analysis, by Bishop and Bridges
 ${ }^{2}$ Myhill's original paper used some other primitives in CST besides the notion of set. But this was inessential and we prefer to keep to the standard language in the axiom systems that we use.

[^1]: ${ }^{1}$ Dummett [23] writes that this example is due to Peter Rososinski and Roger Hindley.

[^2]: ${ }^{1}(F(\vec{x}, z) \mid z \in y):=\{\langle z, F(\vec{x}, z)\rangle: z \in y\}$

[^3]: ${ }^{1}$ In Aczel [2], RDC is called the dependent choices axiom and DC is dubbed the axiom of limited dependent choices. We deviate from the notation in [2] as it deviates from the usage in classical set theory texts.

[^4]: ${ }^{1} \bar{\alpha}(0):=\langle \rangle, \bar{\alpha}(k+1)=\langle\alpha(0), \ldots, \alpha(k)\rangle$.

[^5]: ${ }^{1}(F(\vec{x}, z) \mid z \in y):=\{\langle z, F(\vec{x}, z)\rangle: z \in y\}$

[^6]: ${ }^{1}$ The recursion theorem for partial continuous function application and other details of recursion theory in \mathbb{A} can be found in [90] 3.7.

