Victor Isai Mazariegos
Harvard University
12-18-2022

Hilbert's 1st Problem The Continuum Hypothesis

Theorem

There is no set whose cardinality is strictly between that of the integers and that of the real numbers.
(1) $\sum \mathrm{a}_{\mathrm{ij}} \mathrm{b}_{\mathrm{ij}}=\mathrm{Z}[\mathrm{i}] \mathrm{x} \mathrm{C} \infty$
(2) $f(x)=\cos x / \ln x$
(3) $\# k=6$

Proof

1. Area is the map (A, B) which is the Cartesian Coordinate Plane system which is the relationship between the tangent fields with game theoretical returns to $\mathrm{X} \times \mathrm{Y}$ with resolution C $=100$.
2. Tangent fields with game theoretical returns to $\mathrm{X} x \mathrm{Y}$ with resolution $\mathrm{C}=100$ are bijectively the matter outside of the instant velocity axii which is the logical connective directional center.
3. Center of oppositional magnitude vectors have a positive bound and a negative bound called X and Y specifically the set theory axioms of ordering and grouping and unrelation.
4. Set theory axioms of ordering and grouping and unrelation create individual selection in the supremum probability fields as interrelatable integrals.
5. View windows thereby exist as rigid pre-existing functions in the strict cardinal number composites computational values that make up the integers and quadratic numbers.
6. Conjunction of real tests of convergence and divergence of infinite series for ordinal numbers results in the rational numbers corresponding to the transcendental center of real numbers.
7. The rational numbers corresponding to the transcendental center of real numbers is the inequality of cardinalities that make-up the rest of the meaningful statements in open or closed or random in observable and p-space or s-space or n-space phenomena.
8. If the meaningful statements in open or closed or random in observable and p-space phenomena have relation in operability integer map, complex unbounded aims, and the total linear matrices.
9. Relation in operability integer map, complex unbounded aims, and the total linear matrices thereby have function of x as trigonometric modellable randomness as $\cos \mathrm{x}$ since the divisor is the constant of polynomial equilibrium accumulation $g(\min , \max)=1$.
10. If the function of x as trigonometric modellable randomness as $\cos x$ per $g(\min , \max)=1$ polynomial equilibrium has the real tests of $\mathrm{T}(\mathrm{Q})$ center enumeration.
