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1 Introduction

There is more than one way to skin a cat, according to a well-known saying. There is also more than one way

to do trigonometry.

In 2005 I introduced rational trigonometry as a simple yet powerful alternative to classical trigonometry,

eliminating the need for transcendental functions and calculators, simplifying many problems, and allowing a

more careful and logical derivation of Euclidean geometry ([5], see also [7], [9]). Rational trigonometry uses

quadrance and spread instead of distance and angle, giving a purely algebraic approach to the subject. Hence

the theory works over the rational numbers and even over finite fields.

The main laws of rational trigonometry are universal, in that they extend also to other quadratic forms, such

as the Einstein form 2 + 2 + 2 − 2 of relativistic geometry. Furthermore, a projective version incorporates

both spherical and hyperbolic geometries in a novel reformulation, again over a general field (see [6] and [8]).

In this paper I go in a more applied direction, and construct a vector trigonometry which is well suited for

engineering, surveying and physics applications in the plane. The idea is to replace the usual polar coordinates

 and  of a vector v with rotor coordinates  and . The quantity  is the usual length, while the half-turn 

is defined in terms of the rational parametrization of a circle, a notion which can be traced back to Pythagoras.

In modern terms the half-turn  is the tangent of half of the polar angle , but it is probably better not to dwell

on this aspect, as our definition does not require transcendental notions (aside from the square root) or a prior

understanding of the concept of angle. We write v = |  i.
Rotor coordinates replace polar coordinates. While it does not extend to general fields or arbitrary quadratic

forms, distance is a primary concept–although angles are not–and orientation can be dealt with directly.

Aspects of this theory will be familiar to many readers, connecting to the Cayley transform of linear algebra,

and also to well-known trigonometric formulas. However our avoidance of transcendental functions allows a much

wider range of practical computations with vectors, even by hand. The current over-reliance on 90◦45◦45◦

and 90◦60◦30◦ triangles for exercise and exam questions ought to be acknowledged, and overcome.

We can also now address the common misconception that while arithmetical problems demand precision, with

geometrical problems a decimal approximation is "good enough". Trigonometry has a rich number—theoretical

aspect, in which rational numbers and finite extensions fields (usually quadratic ones) play a key role. This is

largely invisible with classical trigonometry.

To show the usefulness of vector trigonometry for geometry, I use it to derive the polynomial relation between

the six quadrances determined by four points in the plane, a relation that goes back to Euler’s determination

of the volume of a tetrahedron in terms of the quadrances of its sides, and which is usually proved using linear

algebra.

The main application is to a new treatment of the Kepler-Newton phenomenon: planets and comets move

in orbits which are conic sections, with the sun at a focus. Understanding the motion of the objects of our solar

system is easily the greatest historical problem of the physical sciences, and the remarkable breakthroughs in the

16-th and 17-th centuries due to Galileo, Copernicus, Tycho Brahe, Kepler and Newton are still a cornerstone
to the claim that mathematics helps us explain the world in which we live.This paper includes a somewhat new

and accessible account that connects naturally with the elementary geometry of conics.

While angles, the transcendental circular functions and their inverse functions play an obvious role in the

study of harmonic motion, Fourier series and complex functions, they are not required for trigonometry and

vector calculations, where they usually complicate issues and introduce inaccuracies. Circular harmonic motion
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and affine metrical geometry are quite different subjects, and do not require a uniform technology. The current

practise of lumping these two topics together creates unnecessary difficulties in school mathematics.

The technology developed in this paper, while somewhat elementary, has major implications for both pure

and applied mathematics. It provides a more general framework for a wide variety of problems which up to now

have mostly been viewed over the real numbers. In particular it opens the way to seeing that a rational number

approach can be taken to some theories in geometry and elsewhere in mathematics that up till now have been

viewed via transcendental methods. So the connection with computational issues is strengthened.

The rest of this Introduction will give a brief overview of the principal notions of rational trigonometry and

then introduce the corresponding ideas for vector trigonometry. Given a vector v ≡ ( ), its quadrance is
the number  (v) ≡ 2+ 2 This is a primary concept. Length, on the other hand, is a secondary concept, the

square root of the quadrance. The common practice of referring to quadrance as ‘squared length’ or ‘distance

squared’ is misguided, as it falsely represents length, or distance, as the primary concept.

Given two vectors v1 ≡ (1 1) and v2 ≡ (2 2), the spread between them is the number

 (v1v2) ≡ (12 − 21)
2

(21 + 21) (
2
2 + 22)

 (1)

Assuming the usual understanding of ‘real numbers’, the spread  (v1v2) is the square of the sine of an
angle between v1 and v2, but clearly (1) requires no prior definitions of angular measure or circular functions.
Furthermore quadrance and spread are valid concepts over a general field  in particular over the rational

numbers. This is one reason why rational trigonometry has its name, another is that the fundamental laws of

the subject, relating the quadrances and spreads of a triangle, are expressed by polynomial relations (see [5,

Chapter 1]).

If lines 1 and 2 have direction vectors v1 and v2 then we define  (1 2) ≡  (v1v2). There are some
closely related secondary concepts. The cross between the two lines is

 (1 2) ≡ (12 + 12)
2

(21 + 21) (
2
2 + 22)

= 1−  (1 2)

while the twist is

 (1 2) ≡  (1 2)

 (1 2)
=
(12 − 21)

2

(12 + 12)
2 

Since the twist is always a square, we define also the turn

 (1 2) ≡ 12 − 21

12 + 12

which is an oriented quantity; in fact  (2 1) = − (1 2).
In this paper we introduce a directed version of these ideas, giving us to define a trigonometry on the vectors

themselves, well-suited for practical applications in which direction plays a role. The starting point is the

rational parametrization of the unit circle  with equation 2 + 2 = 1 :

e () ≡
µ
1− 2

1 + 2

2

1 + 2

¶
≡ ( ()   ())  (2)

where  is called the half-turn of the vector v = e (), or any positive multiple of v. The half-turn is familiar
from calculus, where it appears as the tangent of half of the associated polar angle , but the treatment here

is independent of classical trigonometry and angles, needing only rational functions and the square root. The

length  ≡ |v| ≡
p
2 + 2 and half-turn  =  (v) of a vector v ≡ ( ) constitute rotor coordinates for v and

we write

v = |  i 
The Half-turn formula gives  from the Euclidean coordinates and the length:

 =
 − 
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Figure 1: Rotor coordinates |  i for v = ( )

It follows that the half-turn  of a vector v lies in the same quadratic extension of the field containing  and 

as does the length 

There is a big difference between rotor coordinates  and  and polar coordinates  and . The latter rests

on a prior theory of real numbers–even if one is working only with rational vectors–since at the very least one

needs an understanding of ; a theory of arc lengths; and knowledge of the transcendental circular functions

and their inverse functions. These topics are too difficult, and subtle, to be treated carefully and correctly in

elementary texts.

Even in more advanced calculus or analysis books, the basic definitions tend to go missing, or rely on a prior

theory of Euclidean geometry, which has long been problematic. Logical circularity is, unfortunately, a common

feature with current treatments of circular functions. Some of the difficulties were already laid out by Hardy

[2] one hundred years ago, but they seem to be mostly ignored these days. Furthermore, polar coordinates have

also not been around that long; radian measure for example was introduced only in the late nineteenth century.

With rotor coordinates, algebra replaces analysis. The circle sum

1 ⊕ 2 ≡ 1 + 2

1− 12

of half-turns replaces the addition of angles, and gives us an algebraic approach to rotations. The extension of

the circle sum to more than two inputs is also interesting, for example

1 ⊕ 2 ⊕ 3 =
1 + 2 + 3 − 123

1− (12 + 23 + 13)


and the Circle sum theorem generalizes this to  values.

Vector trigonometry is then the study of vectors and triangles using rotor coordinates. In applications, the

rational numbers may be extended with a value∞; we also give a projective version of the theory which justifies
and explains this. We enlarge the notion of the half-turn of a single vector to define the relative half-turn

 (v1v2) between two vectors v1 ≡ (1 1) = | 1 1i and v2 ≡ (2 2) = | 2 2i by

 (v1v2) ≡ 2 − 1

1 + 12
= 2 ⊕ (−1)

and use the pictorial conventions as shown in Figure 2 for an oriented triangle
−−−−−→
123

The Relative half-turn formula gives  (v1v2) in terms of the Cartesian coordinates 1 1 2 2 and lengths
1 ≡ |v1| and 2 ≡ |v2| :

 (v1v2) =
1 (2 − 2)− 2 (1 − 1)

12 + (1 − 1) (2 − 2)


The functions

 () ≡ 1− 2

1 + 2
and  () ≡ 2

1 + 2

together with the two closely related functions

 () ≡ 2

1− 2
and  () ≡ 2

1 + 2
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Figure 2: Lengths and relative half-turns of an oriented triangle
−−−−−→
123

satisfy relations analogous to those of the usual circular functions, and may be used for integrating rational

functions in a familiar way.

If 1 ⊕ 2 ≡ 3 and 1 ≡  (1), 2 ≡  (2) and 3 ≡  (3), then the Triple  formula states that

21 + 22 + 23 = 1 + 2123

There are rotor analogs for most of the usual trigonometric laws. For example, in an oriented triangle−−−−−→
123 with side lengths 1 2 and 3 and corresponding half-turns

1 ≡ 
³−−−→
12

−−−→
13

´
2 ≡ 

³−−−→
23

−−−→
21

´
and 3 ≡ 

³−−−→
31

−−−→
32

´
the Cosine law is replaced by the Cross law in rotor form:

23 = 21 + 22 − 212 (3) 
From this

23 =
23 − (1 − 2)

2

(1 + 2)
2 − 23

=
(1 − 2 − 3) (2 − 1 − 3)

(1 + 2 + 3) (1 + 2 − 3)


The Sine law is replaced by the Spread law in rotor form:

 (1)

1
=

 (2)

2
=

 (3)

3
=

√A
2123

where

A ≡ (1 + 2 + 3) (−1 + 2 + 3) (1 − 2 + 3) (1 + 2 − 3)

is the quadrea of the triangle. The fact that the angles sum to  or 180◦ is replaced by the Triangle turn
formula:

12 + 13 + 23 = 1

which gives a linear equation for any one of the half-turns in terms of the other two.

For an oriented quadrilateral
−−−−−−−→
1234 the relation between the half-turns

1 ≡ 
³−−−→
12

−−−→
14

´
2 ≡ 

³−−−→
23

−−−→
21

´
3 ≡ 

³−−−→
34

−−−→
32

´
4 ≡ 

³−−−→
44

−−−→
43

´
is given by the Quadrilateral turn formula:

1 + 2 + 3 + 4 = 123 + 124 + 134 + 234

Our main application is to the kinematics of Kepler-Newton orbits. We first discuss general particle motion

in rotor coordinates, deriving some basic formulas, including the Law of Conservation of Momentum in this

framework. Then we show that the motion of a particle in a central inverse square force field defines a conic.

This historically important result is now within reach of a freshman calculus course.

Our treatment of the special parabolic case reveals that the half-turn  has natural physical significance as

(in suitable coordinates) the directrix coordinate of the particle  moving parabolically around the focus 

The circle of velocities also relates naturally to the beautiful geometry of a parabola, which could happily play

a bigger role in mathematics education.
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2 The unit circle and the Cayley transform

Polar coordinates arise from the transcendental parametrization of the unit circle  with equation 
2+ 2 = 1

given by  () ≡ (cos  sin ). In practice this generates vectors which are only approximately of unit length.
There is a much older, and more exact, rational parametrization:

e () ≡ ( ()   ()) (3)

where

 () ≡ 1− 2

1 + 2
and  () ≡ 2

1 + 2


h
l

e(h)=(C(h),S(h))

10

1

-1

-1

x

y

cU

Figure 3: Rational parametrization of the unit circle

Geometrically e () is the point where the line  through (−1 0) and (0 ) meets  . If  is rational, then 

will have rational coordinates, and since one of its meets with  is rational, the other will be also. The converse

also holds; any rational point on  is of the form e (), provided we also allow  to take on the extended value

∞ so that (∞) = (−1 0). Other common examples are (0) = (1 0)  (1) = (0 1) and (−1) = (0−1).
The rational parametrization has a modern formulation in terms of linear algebra. If  is a skew-symmetric

matrix for which  + is invertible, then the Cayley transform of  is defined to be the orthogonal matrix

 () ≡  −

 +


In the 2× 2 case, if
 =

µ
0 −
 0

¶
then  () =

µ
 ()  ()
− ()  ()

¶
≡  (4)

If we also define

∞ ≡
µ−1 0
0 −1

¶
 (5)

which is consistent (in a limiting sense) with  =∞ then the orthogonal matrices  for  an extended rational

number (that is, including the value ∞) bijectively represent rational rotations. This gives us an algebraic
alternative to the usual exponential map between the line and the group of rotations.

3 Rotor coordinates

If  is a rational number, then e () ≡ ( ()   ()) is a rational vector of unit length. For any rational number
  0 the vector v = e () is then also a rational vector, and the usual Cartesian coordinates for v are

 = 

µ
1− 2

1 + 2

¶
and  = 

µ
2

1 + 2

¶
 (6)

The number

 =  (v) ≡
p
2 + 2 (7)
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is the length of v and
 =  (v)

is the half-turn of v In the special case of w ≡ (0−1), we define  (w) =∞ for any   0
The quantities  and  determine v and will be called rotor coordinates for v written

v = |  i 
The above formulas extend to more general vectors v = ( ), but in this case  will typically exist in a quadratic
extension of the field containing  and  which also contains  because of the following important result. We

give two proofs.

Theorem 1 (Half-turn formula) If v ≡ ( ) has length  ≡
p
2 + 2 and  6= 0 then

 (v) =
 − 


 (8)

Proof. To find  ≡  (v), normalize to obtain the unit vector

v


=
³






´
which is collinear with the vectors (−1 0) and (0 ) as in Figure 1. It follows from similar triangles that



1
=



1 + 
=



 + 
=

 − 




the last equality since 2 = 2 − 2.

Alternatively, use (6) to see that

 − 


=
1 + 2

2
− 1− 2

2
= 

In the special case when  = 0 the half-turn  is either 0 or ∞ depending on whether  is positive or

negative. In a diagram we represent the half-turn  of a vector v as shown in Figure 1.

4 Examples of half-turns for unit vectors

Rotor coordinates describe rational vectors in the plane without prior set-up of the full real number system.

They provide a useful, simpler and often more powerful alternative to polar coordinates.

The table below gives some examples of unit vectors v = ( ), so that  = 1, together with their half-turns
 ≡  (v), and their corresponding angles  where we write  ≈ . We restrict to the cases for which  is

positive, so that  ≥ 0 with corresponding angles  in the range 0 ≤  ≤ 180◦ If we negate a half-turn, then
the corresponding angle is also negated.

Unit vector  Half - turn  Angle 

¡
1
√
2 1
√
2
¢ 1−1√2

1
√
2
=
√
2− 1 45◦¡−1√2 1√2¢ 1+1

√
2

1
√
2
=
√
2 + 1 135◦¡√

32 12
¢ 1−√32

12 = 2−√3 30◦¡−√32 12¢ 1+
√
32

12 = 2 +
√
3 150◦¡

12
√
32
¢ 1−12√

32
= 1

√
3 60◦¡−12√32¢ 1+12√

32
=
√
3 120◦µ√

5−1
4 

√
10+2

√
5

4

¶ p
5− 2√5 72◦µ

−√5−1
4 

√
10−2√5
4

¶ p
5 + 2

√
5 144◦
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5 Projective formulation and the circle sum

While the half-turn  is very convenient for applications, having to treat the special case  = ∞ separately

becomes an inconvenience for theoretical work. This may be overcome by moving to the more natural projective

parametrization of the unit circle, which we now explain.

The projective line over the rationals consists of proportions

 ≡ [ : ]

where  and  are rational numbers, not both zero. By scaling these may be taken to be integers.

The rational half-turn  =  (v) =  of a vector v corresponds to the projective half-turn

 (v) = [ : 1] = [ : ]

while the extended rational half-turn  =  (w) = ∞ of the vector w ≡ (−1 0) corresponds to the projective
half-turn

 (w) = [1 : 0] 

In this way both cases can be dealt with uniformly. The bijection between projective half-turns and the unit

circle is

e ([ : ]) ≡
∙
2 − 2

2 + 2

2

2 + 2

¸


In parallel with (4), for a proportion  ≡ [ : ] define the rotation matrix

 ≡ 1

(2 + 2)

µ
2 − 2 2
−2 2 − 2

¶
acting on a (row) vector v = ( ) on the right by →  Here is a key theorem.

Theorem 2 (Circle sum) If 1 ≡ [1 : 1] and 2 ≡ [2 : 2] then

12 = 

where

 ≡ [12 + 21 : 12 − 12] ≡ 1 ⊕ 2

defines the circle sum of the two proportions 1 and 2

Proof. Note first that the circle sum  ≡ 1 ⊕ 2 is well-defined, in that if we scale the entries in either 1 or

2 the proportion  is unchanged, and because Fibonacci’s identity

(12 + 21)
2
+ (12 − 12)

2
=
¡
21 + 21

¢ ¡
22 + 22

¢
(9)

ensures that the entries of  are not both zero. The latter also ensures that we need only check thatµ
21 − 21 211
−211 21 − 21

¶µ
22 − 22 222
−222 22 − 22

¶
=

µ
(12 − 12)

2 − (12 + 21)
2

2 (12 − 12) (12 + 21)

−2 (12 − 12) (12 + 21) (12 − 12)
2 − (12 + 21)

2

¶


This in turns rests on the identities¡
21 − 21

¢ ¡
22 − 22

¢− (211) (222) = (12 − 12)
2 − (12 + 21)

2
(10)¡

21 − 21
¢
(222) + (211)

¡
22 − 22

¢
= 2 (12 − 12) (12 + 21)  (11)

The circle sum is associative (since it corresponds, by the theorem, to matrix multiplication), commutative,

and has identity [0 : 1]. The inverse of [ : ] is [− : ]. The map →  defines a homomorphism between the

group of projective half-turns under circle sum, and the multiplicative group of rational rotation matrices.
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6 Rational circle sums and turn polynomials

When we restate the Circle sum theorem in terms of rational half-turns  we find that

12 = 

where

 =
1 + 2

1− 12
≡ 1 ⊕ 2 (12)

This rational circle sum extends to values of ∞ by limiting arguments, or by going back to the projective

formulation. The identity is  = 0 and the inverse of  is − so that
(−1)⊕ (−2) = − (1 ⊕ 2)  (13)

Example 1 The half-turn that corresponds to an angle of 45◦ + 30◦ = 75◦ is

 =
³√
2− 1

´
⊕
³
2−
√
3
´
=

¡√
2− 1¢+ ¡2−√3¢

1− ¡√2− 1¢ ¡2−√3¢
=
√
3 +
√
6−
√
2− 2 ¦

The circle sum operation is commutative and also associative, so that

(1 ⊕ 2)⊕ 3 = 1 ⊕ (2 ⊕ 3) =
1 + 2 + 3 − 123

1− (12 + 23 + 13)
(14)

and similarly

1 ⊕ 2 ⊕ 3 ⊕ 4 =
1 + 2 + 3 + 4 − (123 + 124 + 134 + 234)

1− (13 + 14 + 23 + 24 + 34 + 12) + 1234
 (15)

Theorem 3 (Multiple circle sums) For any natural number , any rational numbers 1 2 · · ·   and
any natural number  in the range 1 ≤  ≤  let

 ≡  (1 2 · · ·  ) ≡
X

{12··· }⊆{12··· }
12 · · · 

If  = 2 is even then

1 ⊕ 2 ⊕ · · ·⊕  =
1 − 3 + · · ·+ (−1)−1 2−1
1− 2 + 4 − · · ·+ (−1) 2

while if  = 2+ 1 is odd then

1 ⊕ 2 ⊕ · · ·⊕  =
1 − 3 + · · ·+ (−1) 2+1

1− 2 + 4 − · · ·+ (−1) 2


Proof. We proceed by induction. We may check that for  = 1 and  = 2 the formulas are correct. Assume
they are true for  and now to prove the corresponding formula for + 1 for  in the range 1 ≤  ≤ + 1 set

 ≡  (1 2 · · ·   +1) ≡
X

{12··· }⊆{12··· +1}
12 · · · 

If  = 2 then

(1 ⊕ 2 ⊕ · · ·⊕ )⊕ +1 =

³
1−3+···+(−1)−12−1

1−2+···+(−1)2

´
+ +1

1−
³
1−3+···+(−1)−12−1

1−2+···+(−1)2

´
× +1

while if  = 2+ 1 then

(1 ⊕ 2 ⊕ · · ·⊕ )⊕ +1 =

³
1−3+···+(−1)2+1

1−2+4−···+(−1)2

´
+ +1

1−
³
1−3+···+(−1)2+1

1−2+4−···+(−1)2

´
× +1
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The induction then rests on two identities, the first when  = 2 being³
1 − 3 + · · ·+ (−1)−1 2−1

´
+ (1− 2 + · · ·+ (−1) 2)+1

= 1 − 3 + · · ·+ (−1) 2+1

and the second when  = 2+ 1 being

(1 − 3 + · · ·+ (−1) 2+1) + (1− 2 + 4 − · · ·+ (−1) 2)+1
= 1 − 3 + · · ·+ (−1) 2+1

Taking the circle sum of  with itself yields a rational function of  which we call 2 (), namely

⊕  =
2

1− 2
≡ 2 () 

Continuing, we get a sequence  () of rational functions, which we call the turn functions:

⊕ ⊕  =
3− 3

1− 32 ≡ 3 ()

⊕ ⊕ ⊕  =
4− 43

1− 62 + 4
≡ 4 ()

⊕ ⊕ ⊕ ⊕  =
5− 103 + 5

1− 102 + 54 ≡ 5 () 

The pattern of binomial coefficients follows directly from the Multiple circle sums theorem. These functions

have been known for centuries (see [3, pg 155]), although our name for them is new. They warrant more study.

-5 -4 -3 -2 -1 1 2 3 4 5

-10
-7.5

-5
-2.5

2.5
5

7.5
10

h

y

Figure 4: Turn functions 2(red), 3 (blue), and 4 (green)

Example 2 If we wish to bisect the sector created by two vectors v1 and v2 with  ≡  (v1v2), then we need
find a half-turn  satisfying

2 () ≡  ⊕  =
2

1− 2
= 

This quadratic equation 2+2− = 0 has discriminant 4 ¡1 + 2
¢
, so that we require 1+2 to be a square. ¦

Example 3 If we wish to trisect the sector created by two vectors v1 and v2 with  ≡  (v1v2), then we need
find a half-turn  satisfying

3 () ≡  ⊕  ⊕  =
3 − 3

1− 32 = 

This yields the cubic equation 3 − 32 − 3 +  = 0 which we may transform in the usual way by setting

 =  +  to get

3 =  + 

where  = 3
¡
1 + 2

¢
and  = 2

¡
1 + 2

¢
. The discriminant 42 − 272 is 108 ¡1 + 2

¢2
. ¦
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Example 4 Suppose we want to verify the half-turns  associated to the fifth roots of unity. It means solving

5 () = 0 namely
5− 103 + 5 = 

¡
4 − 102 + 5¢ = 0

Besides the obvious solution  = 0 we also get  = ±
p
5− 2√5±

p
5 + 2

√
5 as in our earlier table. ¦

7 Half-turn transformations

Since this paper is oriented to applications, we will stick with the view of half-turns as extended rational numbers

 and refer to (12) as simply the circle sum. The reader should have little difficulty in formulating projective

versions if required.

Theorem 4 (Half-turn transformations) Suppose that the vector v has half-turn  Then the reflection of

v in the -axis has half-turn − the reflection of v in the -axis has half turn −1 the vector −v has half-turn
−−1 while the reflection of v in the line  =  and the rotation of v by a one-quarter of the full circle in the
positive direction have respective half-turns

1− 

1 + 
and

1 + 

1− 


Proof. These are easy calculations, such as

1⊕ (−) = 1− 

1 + 
and 1⊕  =

1 + 

1− 


The theorem can also be used to relate angle transformations to half-turn transformations. Denote  ≈ 

the relation between an angle and a half-turn as before. Then − ≈ − and

180◦ −  ≈ 1


and 180◦ +  ≈ −1



90◦ −  ≈ 1− 

1 + 
and 90◦ +  ≈ 1 + 

1 + 


Figure 5 shows the effect of reflections in the coordinate axes and the lines  = ± on the half-turn 

e(h)

e(-h)

e(1/h)

e(-1/h)

e((1-h)/(1+h))

e(-(1-h)/(1+h))

e((1+h)/(1-h))

e(-(1+h)/(1-h))

10

1

-1

-1

x

y

Figure 5: Reflections and half-turns

One can also easily check that
1

1
⊕ 1

2
= − (1 ⊕ 2) 

Example 5 Many unit vectors, of interest already to the Pythagoreans, have corresponding angles which do

not have tidy values in the radian or degree systems, and so are seldom used in high school examples or tests,

despite their simplicity and attractiveness. For example the vector (35 45) has half-turn  = 12 the vector
(45 35) has  = 13 the vector (513 1213) has  = 23 and the vector (1213 513) has  = 15 ¦

10



Example 6 To find the product of the rotations  corresponding to the unit vectors (35 45) and (513 1213) 
compute

1

2
⊕ 2
3
=

1
2 +

2
3

1− 1
2 × 2

3

=
7

4


so that

1223 = 74 = 

µµ
0 −74
74 0

¶¶
=
1

65

µ−33 56
−56 −33

¶
 ¦

Example 7 Here are a few rotor forms for non-unit vectors. If v ≡ (1 2) then  =
√
5 and

 =

√
5− 1
2

≈ 0618 03

the Golden ratio. If v ≡ (2 1) then
 =
√
5− 2 ≈ 0236 07

If v ≡ (1 3) then  =
√
10 and

 =

√
10− 1
3

≈ 0720 76
Clearly once we have found the length  (8) makes it easy to compute the half-turn . ¦

8 The rational functions , ,  and 

The functions

 () ≡ 1− 2

1 + 2
and  () ≡ 2

1 + 2

are important enough to have names; we call them the capital  and capital  functions respectively. The

closely related capital  function is defined as

 () ≡  ()

 ()
=

2

1− 2


These three functions have graphs, over the rational numbers, as shown in Figure 6. They satisfy analogs of

T(h)

S(h)

C(h)

543210-1-2-3-4-5

2

1

0

-1

-2

h

Figure 6: Graphs of  ()   () and  ()

well-known properties of the transcendental circular functions cos , sin  and tan . The most obvious such
relations are

 ()2 +  ()2 = 1 (16)

together with the symmetry conditions

 (−) =  ()  (−) = − () and  (−) = − () 

11



The addition formulas for  and  are

 (1 ⊕ 2) =  (1) (2)−  (1) (2) (17)

 (1 ⊕ 2) =  (1) (2) +  (2) (1) (18)

which are essentially contained in the identities (10) and (11).

The addition formula for  relates directly to the circle sum:

 (1 ⊕ 2) =
 (1) +  (2)

1−  (1) (2)
=  (1)⊕  (2)

and is a consequence of the identity

2
³

1+2
1−12

´
1−

³
1+2
1−12

´2 =
³
21
1−21

´
+
³
22
1−́22

´
1−

³
21
1−21

´³
22
1−́22

´ 
Another important function is the capital  function

 () ≡ 2

1 + 2
= 1 +  () =

 ()



whose main significance will become clear in (23), but is already involved in the following.

Theorem 5 ( and  derivative) The derivatives of  and  are




() = − ()  () and




() =  ()  () 

Proof. This is a first-year calculus computation.

Theorem 6 ( and  second order derivative) Both  () and  () satisfy the second order differential
equation

1

 ()





µ
1

 ()





¶
+  = 0

Proof. This follows by combining both formulas of the previous theorem.

9 Relative half-turns between vectors

Up to now we have defined the half-turn of a single vector, which depends on the choice of positive -axis. We

now define the half-turn between two vectors v1 = | 1 1i and v2 = | 2 2i  or their relative half-turn,
to be

 =  (v1v2) ≡ 2 − 1

1 + 12
= 2 ⊕ (−1) 

It follows that

1 ⊕  = 2

If v1 and v2 are in opposite directions, then 12 = −1 so that  ≡  (v1v2) is interpreted as having the value
∞

The relative half-turn is an oriented quantity, in that

 (v2v1) = − (v1v2) 
Example 8 If v1 ≡ (3 2) and v2 = (2 5) then

 (v1v2) = 2 ⊕ (−1) =
³√

29−2
5

´
−
³√

13−3
2

´
1 +

³√
29−2
5

´³√
13−3
2

´ = 1

11

√
377− 16

11
 ¦
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If we want an undirected quantity between v1 and v2, we may take the square  ≡ 2 of the half-turn

 ≡  (v1v2). Note that the spread  between v1 and v2 is

 =
42

(1 + 2)2
=

4

(1 +)2


While the half-turn between vectors is unchanged if either is multiplied by a positive number, this is no longer

true if we multiply by −1.
Example 9 For any vectors v1 and v2

 (−v1v2) = − 1

 (v1v2)


This follows from the half-turn transformation theorem; for if 1 ≡  (v1) and 2 ≡  (−v1) then

 (−v1) = 1

1


so that

 (−v1v2) = 2 − (−11)
1 + (−11)2 =

1 + 12

1 − 2
= − 1

 (v1v2)
 ¦

Example 10 Applying the previous example twice we see that for any vectors v1 and v2

 (−v1−v2) =  (v1v2)  ¦
Theorem 7 (Relative half-turn formula) If v1 ≡ (1 1) and v2 ≡ (2 2) with 1 ≡  (v1) and 2 ≡
 (v2), then

 =  (v1v2) =
1 (2 − 2)− 2 (1 − 1)

12 + (1 − 1) (2 − 2)


Proof. From the Half-turn formula

1 ≡  (v1) =
1 − 1

1
and 2 ≡  (v2) =

2 − 2

2


so that

 =  (v1v2) ≡ 2 − 1

1 + 12
=

³
2−2
2

´
−
³
1−1
1

´
1 +

³
1−1
1

´³
2−2
2

´
=

1 (2 − 2)− 2 (1 − 1)

12 + (1 − 1) (2 − 2)


The next result shows that the relative half-turn is invariant under the rotations  introduced in (4) and

(5).

Theorem 8 (Half-turn invariance) For vectors v1 and v2 and any half turn 

 (v1v2) =  (v1v2) 

Proof. If 1 ≡  (v1) and 2 ≡  (v2) then

 (v1) = 1 ⊕  and  (v2) = 2 ⊕ 

Now use (13), and the group properties of the circle sum to get

 (v1v2) = (2 ⊕ )⊕ (− (1 ⊕ ))

= 2 ⊕ ⊕ (−1)⊕ (−)
= 2 ⊕ (−1)⊕ ⊕ (−)
= 2 ⊕ (−1)⊕ 0 = 2 ⊕ (−1)
=  (v1v2) 

13



Theorem 9 (Triple  formula) If 1 ⊕ 2 ≡ 3 and 1 ≡  (1), 2 ≡  (2) and 3 ≡  (3), then

21 + 22 + 23 = 1 + 2123

Proof. Combine (17) with (16) to obtain

(3 − 12)
2 =

¡
1− 21

¢ ¡
1− 22

¢


Now expand to get the result.

There is no such simple relation between the three values 1 ≡  (1), 2 ≡  (2) and 3 ≡  (3)  However
their squares, the spreads 1 ≡ 21  2 ≡ 22 and 3 ≡ 23  satisfy the Triple spread formula

(1 + 2 + 3)
2 = 2

¡
21 + 22 + 23

¢
+ 4123 (19)

one of the main laws of rational trigonometry. This can be derived directly from the Triple  formula by

rewriting and squaring it to obtain

(2− (1 + 2 + 3))
2 = 4 (1− 1) (1− 2) (1− 3) 

and then rearranging.

Theorem 10 (Three half-turns) If v1v2 and v3 are three vectors with 12 ≡  (v1v2)  23 ≡  (v2v3)
and 13 ≡  (v1v3) then

13 = 12 ⊕ 23

Proof. If 1 ≡  (v1), 2 ≡  (v2) and 3 ≡  (v3), then

12 ⊕ 23 = (2 ⊕ (−1))⊕ (3 ⊕ (−2))
= 3 ⊕ 2 ⊕ (−2)⊕ (−1)
= 3 ⊕ (−1) = 13

10 The Cross law and vector trigonometry

In this section we establish formulas of vector trigonometry relating to an oriented triangle
−−−−−→
123 with

respective side lengths 1 2 and 3, and relative half-turns 1 ≡ 
³−−−→
12

−−−→
13

´
, 2 ≡ 

³−−−→
23

−−−→
21

´
and

3 ≡ 
³−−−→
31

−−−→
32

´
.

Throughout we work in the realm of extended rational numbers and quadratic extensions. We will state the

main result in terms of two vectors and the half-turn between them.

Theorem 11 (Cross law—rotor form) If vectors v1 and v2 have respective lengths 1 and 2 and half-turn

 ≡  (v1v2), then v3 = v2 − v1 has length 3 where

23 = 21 + 22 − 212 () 

Proof. Suppose that v1 ≡ | 1 1i and v2 ≡ | 1 1i so that

v1 = (1 (1)  1 (1)) and v2 = (2 (2)  2 (2))

and

 ≡  (v1v2) =
2 − 1

1 + 12


Then

v3 = v2 − v1 = (2 (2)− 1 (1)  2 (2)− 1 (1)) 
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Now compute that

23 = (2 (2)− 1 (1))
2
+ (2 (2)− 1 (1))

2

= 21

³
 (1)

2
+  (1)

2
´
+ 22

³
 (2)

2
+  (2)

2
´
− 212 ( (1) (2) +  (1) (2))

= 21 + 22 − 212 (2 ⊕ (−1)) = 21 + 22 − 212 ()
where we have used (16) and the addition formula (17) for  () 
Recall that the triangle inequalities for a triangle with side lengths 1 2 and 3 are

(1 − 2)
2 ≤ 23 ≤ (1 + 2)

2


So 23 is a convex combination of (1 − 2)
2
and (1 + 2)

2
, and the Cross law above makes this explicit, as it

may be rewritten in the form

23 =
1

1 + 2
(1 − 2)

2
+

2

1 + 2
(1 + 2)

2
=

1

1 +
(1 − 2)

2
+



1 +
(1 + 2)

2

where  ≡ 2. The next result provides an alternative to the Relative half-turn formula.

Theorem 12 (Vectors half-turn) If v1 ≡ (1 1) and v2 ≡ (2 2) are vectors with respective lengths 1
and 2 and relative half-turn  ≡  (v1v2), then

2 =
12 − (12 + 12)

12 + (12 + 12)
=

¡
21 + 21

¢ ¡
22 + 22

¢− 212 (12 + 12) + (12 + 12)
2

(12 − 21)
2 

Proof. Apply the Cross law to the triangle formed from the vectors v1 and v2 with side lengths 1 2 and
3 ≡ (2 − 1)

2 + (2 − 1)
2
, to get

 () =
1− 2

1 + 2
=

21 + 22 − 23
212

=
12 + 12

12

and solve for 2 to get

2 =
12 − (12 + 12)

12 + (12 + 12)


Now multiply numerator and denominator by the numerator, and use Fibonacci’s identity (9).

Example 11 For v1 ≡ (3 2) and v2 = (2 5) we get

2 =
12 − (12 + 12)

12 + (12 + 12)
=

√
13
√
29− 16√

13
√
29 + 16

=
633

121
− 32

121

√
377

Comparing with example 8, you may check that this is indeed
¡
1
11

√
377− 16

11

¢2
. ¦

Theorem 13 (Triangle half-turn) If an oriented triangle
−−−−−→
123 has respective side lengths 1 2 and 3

and half-turn 3 ≡ 
³−−−→
31

−−−→
32

´
, then

23 =
23 − (1 − 2)

2

(1 + 2)
2 − 23

=
(1 − 2 − 3) (2 − 1 − 3)

(1 + 2 + 3) (1 + 2 − 3)
 (20)

Proof. We know from the Cross law that 23 = 21 + 22 − 212 (3) so that

 (3) =
21 + 22 − 23
212



It follows that

23 =
1− 21+

2
2−23

212

1 +
21+

2
2−23

212

=
23 − (1 − 2)

2

(1 + 2)
2 − 23
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Now rewrite this as

23 =
(1 − 2 − 3) (2 − 1 − 3)

(1 + 2 + 3) (1 + 2 − 3)
 (21)

If the quadrances of the triangle 123 are denoted 1 ≡ 21 2 ≡ 22 and 3 ≡ 23 then by a rational

version of Heron’s formula, which we call Archimedes’ formula (see [5, Theorem 29, page 70]), the quadrea of

the triangle

A ≡ (1 +2 +3)
2 − 2 ¡21 +22 +23

¢
= (1 + 2 + 3) (−1 + 2 + 3) (1 − 2 + 3) (1 + 2 − 3)

is 16 times the square of the triangle’s area.

Theorem 14 (Sine law—rotor form) If an oriented triangle
−−−−−→
123 has respective side lengths 1 2 and

3, half-turns 1 ≡ 
³−−−→
12

−−−→
13

´
, 2 ≡ 

³−−−→
23

−−−→
21

´
and 3 ≡ 

³−−−→
31

−−−→
32

´
, and quadrea A then

 (1)

1
=

 (2)

2
=

 (3)

3
=

√A
2123



Proof. Given 23 as in (20),

1 + 23 = 1 +
23 − (1 − 2)

2

(1 + 2)
2 − 23

=
412

(1 + 2 + 3) (1 + 2 − 3)


Now combine this with (20) to get

3 =
423

(1 + 23)
2 =

(1 + 2 + 3) (−1 + 2 + 3) (1 − 2 + 3) (1 + 2 − 3)

421
2
2



So
( (3))

2

23
=

423

(1 + 23)
2
23
=
(1 + 2 + 3) (−1 + 2 + 3) (1 − 2 + 3) (1 + 2 − 3)

421
2
2
2
3



But this is symmetric in the three indices, so that

( (1))
2

21
=
( (2))

2

22
=
( (3))

2

23
=

A
421

2
2
2
3



Now take square roots to get the result, since if one relative half-turn is positive, the others are also.

Theorem 15 (Triple turn formula) For any three vectors v1, v2 and v3, suppose that

12 ≡  (v1v2) 23 ≡  (v2v3) and 31 ≡  (v3v1) 

Then

12 + 23 + 31 = 122331

Proof. If 1 ≡  (v1)  2 ≡  (v2) and 3 ≡  (v3) then the result follows from the identity

3 − 2

1 + 23
+

1 − 3

1 + 31
+

2 − 1

1 + 12
=

µ
3 − 2

1 + 23

¶µ
1 − 3

1 + 31

¶µ
2 − 1

1 + 12

¶


As a consequence, if two of the half-turns 12 23 31 are known, we get a linear equation for the third. The

next result is the rotor analog of the fact that the angles of a triangle add to , using the notation of Figure 2.
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Theorem 16 (Triangle turn formula) Suppose that
−−−−−→
123 is an oriented triangle with half turns

1 ≡ 
³−−−→
12

−−−→
13

´
2 ≡ 

³−−−→
23

−−−→
21

´
and 3 ≡ 

³−−−→
31

−−−→
32

´


Then

12 + 13 + 23 = 1

Proof. Apply the previous result to the vectors v1 ≡ −−−→12, v2 ≡ −−−→23 and v3 ≡ −−−→31 so that 12 = −12
23 = −13 and 31 = −11. Then

− 1
2
− 1

3
− 1

1
= − 1

123


After clearing denominators, this becomes

12 + 13 + 23 = 1

We may now analyse triangles completely accurately, without relying either on the usual 30◦ 45◦ 60◦ or 90◦

formulas, or approximate values obtained for the circular functions by our calculators.

11 Quadrilateral formulas

While the previous two theorems have different formulas, the situation for four points is more symmetric.

Theorem 17 (Quadruple turn formula) For any four vectors v1v2v3 and v4 suppose that

12 ≡  (v1v2) 23 ≡  (v2v3) 34 ≡  (v3v4) and 41 ≡  (v4v1) 

Then

12 + 23 + 34 + 41 = 122334 + 122341 + 123141 + 233441

Proof. We suppose that v1v2v3 and v4 have half-turns 1 2 3 and 4 respectively. After factoring out

12233441 from the right hand side, the required result is a consequence of the identity

2 − 1

1 + 12
+

3 − 2

1 + 23
+

4 − 3

1 + 34
+

1 − 4

1 + 41

=

µ
2 − 1

1 + 12

¶µ
3 − 2

1 + 23

¶µ
4 − 3

1 + 34

¶µ
1 − 4

1 + 41

¶µ
1 + 12

2 − 1
+
1 + 23

3 − 2
+
1 + 34

4 − 3
+
1 + 41

1 − 4

¶


Theorem 18 (Quadrilateral turn formula) Suppose that
−−−−−−−→
1234 is an oriented quadrilateral with half

turns

1 ≡ 
³−−−→
12

−−−→
14

´
2 ≡ 

³−−−→
23

−−−→
21

´
3 ≡ 

³−−−→
34

−−−→
32

´
and 4 ≡ 

³−−−→
41

−−−→
43

´


Then

1 + 2 + 3 + 4 = 123 + 124 + 134 + 234

Proof. Apply the previous result to the vectors 1 ≡ −−−→12, 2 ≡ −−−→23, 3 ≡ −−−→34 and 4 ≡ −−−→41 so that

12 = −12 23 = −13, 34 = −14 and 41 = −11. Then

− 1
2
− 1

3
− 1

4
− 1

1
=

1

1234
(−2 − 3 − 4 − 1)

and after clearing denominators we get the result.

Four points in the plane actually determine six lengths, or better yet six quadrances (squares of lengths),

since we can also consider the diagonals of a quadrilateral. These six quadrances are not independent. The

following result is a special case of a formula of Euler for the volume of a tetrahedron in terms of the quadrances

of its sides (see [1]). It is usual to prove it using linear algebra, but here we use vector trigonometry.
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Theorem 19 (Four point relation) Suppose that the triangle 123 has quadrances 12 and 3 and

that 4 is any point with quadrances 1 ≡  (1 4), 2 ≡  (2 4) and 3 ≡  (3 4). Then

 (1 2 3 1 2 3) ≡ det
⎛⎝ 21 1 + 2 −3 1 + 3 −2
1 + 2 −3 22 2 + 3 −1
1 + 3 −2 2 + 3 −1 23

⎞⎠ = 0

Proof. We frame the argument in terms of lengths and convert to quadrances at the end. Suppose that the

triangle 123 has lengths 1 2 and 3 as in Figure 7, and that the distances from 4 to the points 1 2
and 3 are respectively 1 2 and 3. Define the half-turns

1 ≡ 
³−−−→
12

−−−→
13

´
2 ≡ 

³−−−→
13

−−−→
14

´
and 3 ≡ 

³−−−→
12

−−−→
14

´


A

h

h d

d

r
r

r

d

h

A

A A

A4

1 1

1

1

2

2

2

3

3

2

3

3

Figure 7: Four planar points

From the Cross law

1 ≡  (1) =
22 + 23 − 21
223

2 =  (2) =
22 + 21 − 23
221

3 =  (3) =
23 + 21 − 22
231



Now apply the Triple  formula:

21 + 22 + 23 = 1 + 2123

to get µ
22 + 23 − 21
223

¶2
+

µ
22 + 21 − 23
221

¶2
+

µ
23 + 21 − 22
231

¶2
= 1 + 2

µ
22 + 23 − 21
223

¶µ
22 + 21 − 23
221

¶µ
23 + 21 − 22
231

¶


Clearing the denominators and simplifying gives

0 = 21
4
1 + 41

2
1 + 22

4
2 + 42

2
2 + 23

4
3 + 43

2
3 + 21

2
2
2
3 − 21

2
2
2
1 − 21

2
2
2
2 − 21

2
3
2
1 − 21

2
3
2
3 − 22

2
3
2
2

−222323 − 21
2
1
2
2 − 21

2
1
2
3 − 22

2
1
2
2 + 21

2
2
2
3 + 22

2
1
2
3 + 23

2
1
2
2 − 22

2
2
2
3 − 23

2
1
2
3 − 23

2
2
2
3

All the terms are square, and so using 1 ≡ 21, 2 ≡ 22, 3 ≡ 23 and 1 ≡ 21, 2 ≡ 22, 3 ≡ 23 we get, up to

a factor of −12 the relation

det

⎛⎝ 21 1 + 2 −3 1 + 3 −2
1 + 2 −3 22 2 + 3 −1
1 + 3 −2 2 + 3 −1 23

⎞⎠ = 0
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12 Area and integration with rotor coordinates

The Jacobian matrix for the transformation (6) is

 =

⎛⎝ 1−2
1+2

2
1+2

−4
(1+2)2

2(1−2)
(1+2)2

⎞⎠
with

det =
2

1 + 2
=  ()  (22)

The area of a circle of radius  is then Z 

0

Z ∞
0

2

1 + 2
 = 2

where

 ≡
Z ∞
−∞

1

1 + 2
 =

1

2

Z ∞
−∞

 () 

may be introduced as the definite integral of a rational function. This approach to  has the advantage of

requiring no prior theory of Euclidean geometry or knowledge of transcendental circular functions.

The rotational invariant measure on the circle can be computed from (22) or from the formula (12) for the

circle sum; it is

 =
2

1 + 2
 = ()  (23)

The measure  is normalized so that for small ,  ≈ 2 in accordance with the length of an approximating
(vertical) linear segment. The total measure of the circle is 2
For a rational function  ( ) the integral  =

R


 ( )  over the unit circle can then be evaluated by

expressing it as

 =

Z
(−∞∞)

 ( ()   ()) ()  (24)

Since this is a definite integral of a rational function of  it may be evaluated using well-known techniques. In

contract, with polar coordinates the integral

 =

Z
[02]

 (cos  sin ) 

is not easy to solve directly with elementary means, and is usually transformed via the tan 2 substitution into
exactly (24). This is further support that the rotor form has an intrinsic fundamental aspect.

13 Kinematics in rotor coordinates

We now recast some basic aspects of kinematics in terms of vector trigonometry. If

e1 = ( ()   ()) and e2 = (− ()   ()) (25)

are perpendicular unit vectors, with  a function of time  then from the  and  derivative theorem

e1


= () ̇ e2 and
e2


= − () ̇ e1 (26)

where we use the physicists’ notation

̇ ≡ 




Suppose that a particle  moves in a plane so that at each point its position vector p ≡ p () is a multiple
 =  () of a unit vector e1, with e2 the perpendicular unit vector as in (25). Thus  is also a function of 
This is shown in Figure 8.
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Figure 8: Position of a moving particle

Differentiate

p =  e1

and use (26), to find the velocity

v =
p


= ̇ e1 + 

e1


= ̇ e1 +  () ̇ e2 (27)

The acceleration is, after some rewriting using again (26),

a =
v


= ̈ e1 + ̇

e1


+




³
 () ̇

´
e2 +  () ̇

e2


=
³
̈ − 2 () ̇2

´
e1 +

1







³
2 () ̇

´
e2 (28)

The two equations (27) and (28) give the resolution of the velocity and acceleration along and perpendicular to

the position vector.

14 Central forces

Suppose now that the moving particle  with position vector p = p () is subject to a central force

F (p) ≡ − ( (p))
centered at the origin . Newton’s equation of motion is F = a. If p0 and v0 are initial values at time  = 0
of the position and velocity, then the entire path of the particle will lie in the plane spanned by these vectors.

Now let  and  be rotor coordinates of  in this plane, both functions of  so that

p =  e1

where e1 ≡ ( ()   ()) is a (moving) unit vector, and e2 ≡ (− ()   ()) is a second unit vector perpen-
dicular to e1. Equation (28) shows that

− = 
³
̈ − 2 () ̇2

´
(29)

0 =




³
2 () ̇

´
 (30)

It follows that for a central force,

2 () ̇ =  (31)

for some constant . This is the Law of Conservation of Angular Momentum in rotor coordinates.

We wish to solve the equations (29) and (30) to relate  and . It is a standard trick (see for example

Richmond [4]) to define a new variable

 ≡ 1
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so that

̇ =
2

 ()
 (32)

Then

̇ = − ̇

2
= − 1

2



̇ = − 

 ()




(33)

and

̈ =
̇

2 ()








− 

 ()
̇
2

2
= −̇ 



µ
1

 ()





¶


Substitute into (29) and replace ̇ using (32) to obtain

−


= − 22

 ()





µ
1

 ()





¶
− 1


2 ()

µ
2

 ()

¶2
or

1

 ()





µ
1

 ()





¶
+  =
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 (34)

Since  is a function of , and so of  this is a differential equation describing  = −1 in terms of the half-turn


15 Inverse square force and Kepler-Newton orbits

Now suppose that F is an inverse square force. Then the right hand side of (34) is a constant   0, and

1

 ()





µ
1

 ()





¶
+  = 

By the  and  second order derivative theorem, solutions to the homogeneous case ( = 0) are given by
 () =  () and  () =  (), while a particular solution is obviously the constant  =  So the general

solution, now in terms of the original rotor variables  and  is the linear combination

1


=  () +  () +  (35)

where  and  are constants that depend on initial conditions. We will now show that this is a conic by

transforming the equation to  and  coordinates.

Use  () =  and  () =  to get

1− − 


= 

so that

(1− − )2 = 2
¡
2 + 2

¢
(36)

which we recognize as a second order equation in  and , hence a conic section. If we divide by 2+ 2 the left

hand side is the quadrance (square of distance) from the point ( ) to the line  with equation  +  = 1
So (36) states that the ratio of the quadrance from  ≡ ( ) to the focus  ≡ (0 0) to the quadrance from 

to the directrix  is

2 =
2 + 2

2


If 2  1 or equivalently 2+2  2 then the conic is a hyperbola, if 2 = 1 or equivalently 2+2 = 2 then

the conic is a parabola, and if 2  1 or equivalently 2 + 2  2 then the conic is an ellipse. This approach

does not require transcendental functions or knowledge of pedal equations of conics.
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16 The parabolic case

In this section we look at the particular attractive and amenable special case of parabolic motion, which connects

naturally with the geometry of this remarkable conic. Most comets have orbits which are nearly parabolic.

Choose  =  = 1 and  = 0 so that (35) becomes

1


=
1− 2

1 + 2
+ 1 = () or  =

1 + 2

2

while (36) gives the Cartesian equation

(1− )
2
= 2 + 2 or 2 = 1− 2

This is a parabola with focus  and directrix the line  = 1
The equation for Conservation of angular momentum gives, after normalizing so that  = 1




= () =

2

1 + 2


This is an easy integration, and we find thatZ
1 + 2  = +

3

3
=

Z
2  = 2

where we initialize our time  so that  = 0 corresponds to  = 0. Then also we may deduce that for a point
 ≡ ( ) on the orbit,

 = 

µ
1− 2

1 + 2

¶
=

1

 ()

µ
1− 2

1 + 2

¶
=
1− 2

2
= 1− 

 = 

µ
2

1 + 2

¶
=

1

 ()

µ
2

1 + 2

¶
= 

So the  coordinate of  equals its half-turn , giving the half-turn direct physical significance. This relates

to a standard construction of the parabola: from a point  on the unit circle join (−1 0) to the -axis at the
point (0 ), then  is the meet of the lines  =  and 
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Figure 9: A parabolic trajectory

The velocity is also of interest, and



( ) = (− 1)

so that

v =



( ) =

µ −2
1 + 2


2

1 + 2

¶
= (vv) 
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Note that v = −v and that v lies on the velocity circle  with equation 2+( − 1)2 = 1. It is a general
fact that for any orbit the velocities lie on a suitable circle, but in this case there is a direct connection between

the velocity at  and  itself, since v is perpendicular to the line  through the foot of the perpendicular

from  to the directrix , as in Figure 10. The reader is also reminded that the tangent to the orbit at  meets

this segment  perpendicularly at its midpoint  , giving another construction of the parabola.
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Figure 10: Parabolic motion and the velocity circle  (red)

A computation then shows that, using rotor coordinates,

v = (vv) =

¯̄̄̄
2√
1 + 2

 +
p
1 + 2

À


For elliptic or hyperbolic orbits, finding  and  as functions of  is more work, but the idea is the same.

In summary, rotor coordinates and vector trigonometry give a powerful new–yet familiar–technology for

both practical and theoretical problems involving planar geometry; and planetary motion is a topic that can be

understood and appreciated by first year undergraduates. It is time for another look at mathematics education,

this time with a focus on trigonometry and geometry, and their wider and richer applications.

References

[1] H. Dorrie, 100 Great Problems of Elementary Mathematics: Their history and solution, translated by 

Antin, Dove, New York, 1965.

[2] G. H. Hardy, A Course in Pure Mathematics (10th edition), Cambridge University Press, Cambridge, 1952

[1908].

[3] E. Maor, Trigonometric Delights, Princeton University Press, Princeton New Jersey, 1998.

[4] D. E. Richmond, Inverse square orbits: a simple treatment, Amer. Math. Monthly, 59, (1952), 694—696.

[5] N. J. Wildberger, Divine Proportions: Rational Trigonometry to Universal Geometry, Wild Egg Books,

http://wildegg.com, Sydney, 2005.

[6] N. J. Wildberger, Affine and projective metrical geometry, to appear, J. of Geometry,

http://arxiv.org/abs/math/0701338.

[7] N. J. Wildberger, A Rational Approach to Trigonometry, Math Horizons, Nov. 2007, 16—20.

[8] N. J. Wildberger, Universal Hyperbolic Geometry I: Trigonometry, http://arxiv.org/abs/0909.1377v1.

[9] N. J. Wildberger, The WildTrig playlist, YouTube user: njwildberger, 2007-2010

http://www.youtube.com/user/njwildberger#p/c/3C58498718451C47.

23

View publication stats

https://www.researchgate.net/publication/311454214

