Victor Isai Mazariegos
Harvard University
1-9-2023

Hilbert's 1st Problem The Continuum Hypothesis
Theorem

There is no set whose cardinality is strictly between that of the integers and that of the real numbers
$\operatorname{Card} \mathrm{N}<\operatorname{Card} \mathrm{Z}<\operatorname{Card} \mathrm{Q}<\operatorname{Card} \mathrm{T}<\ldots \mathrm{S}(\mathrm{P}) \ldots \mathrm{F}$
(1) $\sum \mathrm{a}_{\mathrm{ij}} \mathrm{b}_{\mathrm{ij}}=\mathrm{Z}_{[\mathrm{i}]} \mathrm{xC}_{\infty}$
(2) $f(x)=\cos / \ln x$
(3) $\# k=6$

Proof
If Card N to Card T is made of $V: N \otimes N, V: Z \otimes Z$, and $V: Q \otimes Q$, and $V: R \otimes R$; transcendental numbers have center $(0,0)$ on XY-n, and $(1,1)$ on $x^{2}+y^{2}=r^{2}$ which has $r=x$ and $r=y / x$. If $T(Q)$ enumeration has $r=x / y$ as its center then $Z_{[i]}$ is the accurate n-path of base 10 since $T(Q)$ enumeration requires $\mathrm{V}: \mathrm{N} \otimes \mathrm{N}, \mathrm{V}: \otimes \mathrm{Z}$, and $\mathrm{V}: \mathrm{Q} \otimes \mathrm{Q}$. The inequality is modellable as $|\mathrm{xy}|=1$ because the image has $\cos x$ as the rise and $\cos x$ has 3 phase shift points that give the circle at a complete section of the rigid pre-existing circle. The function $\ln x$ is a linear curve that has rank 1 as $\mathrm{c}=100$ where a transformation on $\cos \mathrm{x}$ has $\cos \mathrm{x} / \ln \mathrm{x}$ gives the return of $\# \mathrm{k}=6$ as integrated $\int \cos \mathrm{x} / \ln \mathrm{x}+6=6$ since $(\mathrm{f}(\mathrm{x}))^{\prime}$ is 10 where $\mathrm{Z}_{[\mathrm{i}]} \times \mathrm{C}_{\infty}$ selects image transpose inverse of $\mathrm{T}(\mathrm{Q})_{0}=0, \mathrm{~T}(\mathrm{Q})_{1}=1, \ldots, \mathrm{~T}(\mathrm{Q})_{\mathrm{n}}=\mathrm{n}$ with $\lim \mathrm{T}(\mathrm{Q})$ as $\mathrm{Q} \rightarrow \infty=1$ such that $\mathrm{g}(\min$, $\max)=1$ where $\# k+1$ is $100 \int f(6)$ as $\mathbb{R} \rightarrow \infty$ and $1000 \int f(7)$ as $\mathbb{T} \rightarrow \infty$ and so on such that $\# k=6$ is the accurate mode of the group in hand and the pay off is $\mathrm{c}>0$ when $\# \mathrm{k}=7$ is the mode of bargain selection complex choice of tangent field F which has returns to $m(A, B)=m(x, y)$ Cartesian Coordinate plane when integers are included, if $\Delta|x-1|$ is of at least Quadrants I to IV.

