Let A be a monoid and B a submonoid. The element $a \in A$ omits B if for all $b \in B$ and $u, v \in A$,

$$
u b v=a \Longrightarrow b=1
$$

and the submonoid C omits B if c omits B for all $c \in C$.
Let A be a monoid and B, C submonoids, and suppose that for all $a \in A, a$ omits B whenever a omits C. We say that B is absolutely continuous with respect to C and write $B \ll C[1]$.
Exercise. Let A be a monoid and $B, C \leq A$. Prove that if $B \leq C$, then $B \ll C$.
Exercise. Find a monoid A and submonoids $B, C \leq A$ such that $B \not \leq C$ and $B \ll C$. (Hint: Let $A=\langle x, y: x y=x\rangle$.)

References
[1] "Real Analysis" Folland (1984) p. 83.

