Let A be a monoid and $B,C\leq A$ submonoids such that $B\cap C=\{1\}$ and $\langle B\cup C\rangle=A.$ If the binary relation

$$\{(\prod_{i=1}^n b_i c_i, \prod_{i=1}^n b_i) \colon \overline{b} \in B, \overline{c} \in C\} = \pi_B^C \subseteq A \times A$$

is a function $\pi_B^C\colon A\to B$, then it is the B-filter along C. It is left as an exercise for the reader to prove that it is an idempotent homomorphism when it exists. If $\pi_B^C=\pi_B^{C'}$ for all $C'\le A$ such that $B\cap C'=\{1\}$ and $\langle B\cup C'\rangle=A$, then it is π_B , the B-filter.

References

 $[1]\,$ Folland "Real Analysis" (1984) p. 82.