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Introduction

Similarities between Galois theory and the theory of covering spaces are so striking
that algebraists use geometric language to talk of field extensions whereas topol-
ogists talk of Galois covers. Here we have tried to develop these theories in parallel,
beginning with that of coverings. The reader will thereby be better able to visualize.
This similarity can sometimes be found in specific formulations:

(4.5.5) Proof of the proposition. Let u :
SðXÞ ! SðYÞ be a morphism in G- .
There is a morphism u� : E� SðXÞ ! E�
SðYÞ defined by u�ðt; sÞ ¼ ðt;uðsÞÞ corre-
sponding to the morphism u. The morphism
u� is compatible with the G-operation ? …

(5.7.4) Proof of the proposition. Let u :
SðBÞ ! SðAÞ be a morphism in G- .
There is a morphism of L-algebras u� :
LSðAÞ ! LSðBÞ defined by u�ðhÞ ¼ h � u cor-
responding to u. The homomorphism u� is
compatible with the G-operation ? …

The presentation chosen highlights this resemblance, the intention being to
transfer to Galois theory any eventual geometric intuition gained in the framework
of coverings. This presentation is unlikely to be the best suited for each individual
context. The reader will recognize the influence of Grothendieck… and of
Bourbaki. The similarity is not a perfect correspondence: in the algebraic context,
profinite groups occur whereas discrete groups do in coverings. In the context of
Galois theory, there is nothing comparable to points of a space, nor to loops; the
choice of an algebraic closure of a field can only very indirectly be considered as
similar to the choice of a base point. In the study of Riemann surfaces in Chapter 6,
this similarity takes the shape of an equivalence of categories. This enables us in
Section 6.4 to obtain through transcendental means a purely algebraic result
without any known purely algebraic proof (Proposition 6.5.6). The end of that
chapter deals with the study of automorphisms of Riemann surfaces, and some
Fuchsian groups are considered. In each of the Chapters 4, 5, 6, the central theorem
is expressed as an equivalence of categories (4.5.3, 4.6.8, 5.7.3, 6.2.4). We have
therefore included a preliminary chapter on categories: Chapter 2. To avoid diffi-
culties stemming from the impossibility of considering the set of all sets, our
approach is that of universes; so we only consider “small categories”, namely,
categories whose underlying set is indeed a set. This in no way impacts on our goal
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as seen in “lemmas about cardinalities” (4.4.7, 5.2.5). Infinite Galois theory forces
us to consider sets and profinite groups. Tychonoff’s theorem (1.7.7), based on the
axiom of choice and Zorn’s theorem, is essential in the theory of profinite groups.
These theorems are proved in an initial chapter (Chapter 1). In 1.5.3, we mention
the places where Zorn’s theorem occurs in mathematics. Excepting Sections 2.5.14,
2.5.15, and 2.7.7 and paragraphs 2.8 and 2.9 (profinite spaces and groups), written
in view of infinite Galois theory, Chapter 2 is independent from Chapter 1. We
have inserted a chapter on rings, modules, and tensor products (Chapter 3). This
chapter is broader than strictly needed for the development of Galois theory.

In this new edition, we have added a chapter on Grothendieck’s theory of
“dessins d’enfants”. Through topology (theory of ramified coverings), it reduces
problems about the classification of number fields to combinatorics questions.

We would like to thank the readers of the manuscript for their comments and for
the improvements they suggested, in particular, Antoine Chambert-Loir and
Christian Houzel.
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Chapter 1
Zorn’s Lemma

Introduction
The purpose we have in mind is infinite Galois theory. The notion of inverse limits
of finite groups will be needed for this. By Tychonoff’s theorem, these are com-
pact groups. The example in 6.4.6 shows that countable products are not sufficient.
Tychonoff’s theorem is required in full, and hence so is Zorn’s lemma, and thus the
axiom of choice.

This chapter introduces the axiom of choice as well as the two results enabling
its application: Zorn’s Lemma and Zermelo’s theorem. Both play more or less the
same role, and either can usually be chosen. In our opinion, Zorn’s lemma is more
powerful, while Zermelo’s theorem sometimes casts a more significant light.

Well-ordered sets form the framework for Zermelo’s theorem. After outlining
their theory, we proceed with the proof of Zorn’s lemma. The quickest way to prove
Tychonoff’s theorem uses ultrafilters, and this is the method we follow.

1.1 Choice Functions

1.1.1

Definition Let E be a set. Set P∗(E) be the set of its non-empty subsets. The choice
function over E is a map τ : P∗(E) → E such that ∀X ∈ P∗(E), τ (X) ∈ X.
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2 1 Zorn’s Lemma

1.1.2

Axiom of choice. For any set E, there exists a choice function defined on E.

1.1.3 Commentary

The axiom of choice is now accepted by most mathematicians. This was not always
the case: in the early XX-th century, it remained highly controversial. It is only
slowly that it was realized that all the axiom does is give a weaker meaning to the
expression “there exists” (and to the quantifier ∃), at least weaker than “it can be
explicitly constructed”.

As Zorn’s lemma is equivalent to it, the axiom of choice is a powerful tool which
we do not wish to forgo. But given the monsters whose existence it ensures (see for
example the Banach-Tarski paradox 1.1.5), the emergence of mathematical contra-
dictions could be feared. Only in 1938 did Gödel prove that there is no such danger:
he showed that if (ZF) set theory together with the axiom of choice is inconsistent,
then it remains inconsistent without the axiom of choice. For example, let x and y be
two real numbers explicitly computable with arbitrary precision. If a large inequality
x � y can be proved with the axiom of choice, it must then be true. Indeed, if their
computation showed that x > y, this would contradict the axiom of choice. Gödel’s
theorem would then ensure that a contradiction can be obtained without the axiom
of choice.

In 1963, Cohen showed, in the event that the axiom of choice is discarded, the
axiom stating that there is no choice function over R can be added to set theory without
making it inconsistent unless it already is so. This addition amounts to giving the
expression “there exists” a strong meaning. Cohen’s result tells us that an explicit
algorithm giving a choice function over R would result in inconsistent mathematics.
Even the stronger statement (see 1.1.4) that every subset of R is Lebesgue measurable
can be accepted.

1.1.4 Example 1: Existence of Non-measurable Sets

A non-measurable set can be constructed by means of a choice function τ over
T = R/Z:

Let α ∈ T be an irrational element. Define � : T → T by �(x) =
τ ({x + nα}n∈Z). Set X to be the image of � and Rα the map t �→ t + α. Then
T =⋃n∈Z

Rα
n(X), and these sets are disjoint. Hence X is not measurable for the

Lebesgue measure μ. Indeed, μ(X) = 0 would imply μ(T) = 0, and μ(X) > 0 would
imply μ(T) = ∞.
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1.1.5 Example 2: The Banach-Tarski Paradox

Theorem (Banach-Tarski) There exist a finite partition (Ai )i∈I of the unit sphere
S2 ⊂ R

3, isometries (Fi )i∈I of S2 and a partition of the index set I into two subsets I′
and I′′, such that Fi (Ai ) for i ∈ I′ form a partition of S2, as well as for I′′. The same
holds for unit balls.

See 1.1, Exercise 5, for a proof.

Commentary. This shows that there can be no “finitely additive measure”, preserved
by rotations, on every subset of S2, with respect to which the latter has measure 1.
Indeed, the union X′ of Ai for i ∈ I′ should have measure 1, similarly for I′′, which
would yield measure 2 for S2. By contrast, there are such “measures” on the circle
(1.1, Exercise 4), and contradictions arise only if countable additivity is insisted
upon. It is now known that for a coherent theory of integration, countable additivity
is of prime importance; this was not so obvious at the time (1926).

1.1.6

Proposition Every surjection f : X → Y between two sets X and Y has a section,
i.e. a map σ : Y → X such that f ◦ σ = IY.

Proof Let τ be a choice function on X. The map defined by σ(y) = τ ( f −1(y)) is a
right inverse. �

Remark The axiom of choice also follows from this proposition. Indeed, let E be a
set, and � = {(x, X) ∈ E × P∗(E)|x ∈ X}. The second projection π : � → P∗(E)

is surjective. By the proposition, it has a section of the form X �→ (τ (X), X), and
the function τ defined thereby is a choice function. This proposition is therefore
equivalent to the axiom of choice.

Exercises 1.1. (Choice Functions)

1.—(a) Construct a choice function on Q, and on Q
2.

(b) Let X and Y be two sets, each equipped with a choice function. Construct a
choice function on X × Y.

2.—Construct a choice function on the set of non-empty open subsets of R
2 (i.e, a

function τ which associates to all non-empty open subsets U of R
2 a point of U). Do

the same for closed subsets. Is it possible to repeat this for the locally closed subsets?
for the Borel subsets? (see 1.1.4).

3.—Let E denote the set of R-valued continuous functions on [0, 1], and F the quotient
of E by the following equivalence relation:

f ∼ g ⇐⇒ f = g or f = −g .
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Define a section σ of the canonical quotient map χ : E → F, i.e. a map σ : F → E
such that χ ◦ σ = 1F.

Can this be repeated for the set of all functions [0, 1] → R?

4. (Finitely additive measure on T.)—Set T = R/Z. For α ∈ T, let Rα denote the
map x �→ x + α, and R∗

α the map f �→ f ◦ Rα from the space E of all bounded
functions T → R into itself.

(a) Show that the constant function 1 cannot be written as follows:

(∗)
( n∑

1

fi − R∗
αi

fi

)
− g with fi ∈ E and g � 0 ;

(for such an h, there is an inequality of the form:

∑

0�ki �N

h
(∑

kiαi

)
� C.Nn−1 ).

(b) Show that there is a linear form μ on E such that μ(h) � 0, where h can be
expressed as (∗), and μ(1) = 1.

(c) For x ∈ T, write μ(X) pour μ(χX), where χX(x) = 1 if x ∈ X and 0 if x /∈ X.
Then μ is a finitely additive measure on T, invariant under all Rα.

5. (Banach-Tarski Paradox.)—Let S2 be the unit sphere of R
3, and G the group SO3

of direct isometries of R
3, and e its identity element. Define the following equivalence

relation on the set of subsets of S2: X ∼ Y if and only if there exist finite partitions
(Ai )i∈I and (Bi )i∈I of X and Y respectively (with the same index set I, and a family
( fi )i∈I of elements of G such that for all i ∈ I, fi (Ai ) = Bi .

The aim is to show, using the axiom of choice, that there exists a partition of S2

into two subsets X, Y such that X ∼ Y ∼ S2.
A. (a) Let f ∈ G be an irrational rotation (counting the angle in turns), and E ⊂ S2

be a set intersecting each orbit at most at one point, and only containing fixed points
of f . Show that S2 − E ∼ E.

(b) Show that for each countable subset E ⊂ S2, S2 − E ∼ S2.
B. (a) Find a subset � in G isomorphic to the “free product” Z/2 ∗ Z/3 (a sum

in the category of groups (2.6.2, Example 3)), i.e. two rotations a and b satisfying
relations a2 = b3 = 1, and not satisfying any relation deducible from these.

(b) Show that G = A � B � C so that

aA = B ∪ C, bA = B, b2A = C .

The elements of� can be written as words using the letters a, b, b2 using the following
rule contingent on the parity of the length n of the word and on its first letter: e ∈ A,
and
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parity de n

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 first letter

⎧
⎨

⎩

a A
b A
b2 B

1 first letter

⎧
⎨

⎩

a C
b B
b2 C

C. Let E be the set of fixed points of �, and set � = S2 − E.
(a) Show that � acts freely on �.
(b) Using the axiom of choice, show that there is a partition of � into three sets

A, B, C satisfying A ∼ B ∼ C ∼ B ∪ C.
(c) Show that the sets S2, �, A, B, C are all equivalent.
D. Prove the Banach-Tarski theorem (1.1.5).

1.2 Well-Ordered Sets

1.2.1 Ordered Sets

An ordered set is a set E equipped with an order relation, i.e. a reflexive, transitive
and antisymmetric binary relation, denoted by x � y, in other words, satisfying:

(O1) (reflexivity) ∀x ∈ E, x � x ;
(O2) (transitivity) ∀x ∈ E,∀y ∈ E,∀z ∈ E, (x � y and y � z)⇒x � z;
(O3) (antisymmetry) ∀x ∈ E,∀y ∈ E, (x � y and y � x) ⇒ x = y.

An ordered set is said to be totally ordered if its order relation satisfies:

(O4) ∀x ∈ E, ∀y ∈ E, x � y or y � x .

A chain in an ordered set E is a totally ordered subset X, endowed with the induced
order.

1.2.2 Upper and Lower Bounds

Let E be an ordered set, X a subset of E and a ∈ E. The element a is said to be an upper
bound of X if, ∀x ∈ X, a � x . The element a is said to be the greatest element (resp.
a strict upper bound) of X if a is an upper bound of X and a ∈ X (resp. a /∈ X). Lower
bounds, least element and strict lower bounds are defined likewise. The element a
is said to be the supremum (resp. infimum) of X and is written a = sup X (resp.
a = inf X) if a is the least upper bound (resp. the greatest lower bound) of X. The
subset X is an upper set of E if
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∀x ∈ X, ∀y ∈ E, y � x ⇒ y ∈ X .

Lower sets are defined likewise.
A subset Y of E is said to be cofinal if every element of E is bounded above by

an element of Y.

1.2.3

Definition A well-ordered set E is an ordered set all of whose non-empty subsets
have a least element.

A well-order is a total order. Indeed, for x, y ∈ E, the set {x, y} must have a least
element.

1.2.4 Examples

(1) A totally ordered set is well-ordered.
(2) N is well-ordered.
(3) N = N ∪ {∞} is well-ordered. More generally, if E is a well-ordered set, then

so is the set E obtained by adjoining an element ω /∈ E to E such that ∀x ∈ E, ω > x .
(4) Let A and B be two well-ordered sets with non-trivial intersection. Equip

E = A ∪ B with the order inducing the given orders on A and B, and such that
∀x ∈ A, ∀y ∈ B, y > x . The set E is well-ordered. Denote it by A + B. Note that
A + B is not necessarily isomorphic to B + A.

(5) Every subset of a well-ordered set is well-ordered by the induced order.
(6) The image in an ordered set of a well-ordered set under an increasing map is

well-ordered.
(7) The lexicographic order on N × N is defined by

(x, y) � (x ′, y′) ⇐⇒ x < x ′ or (x = x ′ and y � y′) .

Equipped with this order, N × N is well-ordered. More generally, the lexicographic
order can be defined on the product of two arbitrary ordered sets. The product of two
ordered sets, equipped with the lexicographic order, is well-ordered.

1.2.5

Proposition Let E be a well-ordered set, A and B two upper sets of E and f an
isomorphism from A onto B. Then A = B and f = 1A.
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Proof Suppose this is false. Let x be the least element of A such that f (x) �= x . Write
Sx for the set of strict lower bounds of x . Then x is the least element of E − Sx , and
so is f (x), and so f (x) = x ; a contradiction. �

1.2.6

Proposition Let E and F be two well-ordered sets. Then at least one of the following
statements holds:

(i) E is isomorphic to an upper set of F;
(ii) F is isomorphic to an upper set of E.

Proof Let � be the set of isomorphisms from an upper set of E onto an upper set of
F. Its order by extension (i.e. inclusion order on graphs) is a total order. Indeed, E
being totally ordered, if A and A′ are two upper sets, then A ⊂ A′ or A′ ⊂ A. Let
f : A → B and f ′ : A′ → B′ be two elements of �, where A ⊂ A′ and f ′|A �= f .
Writing x0 for the least x ∈ A such that f ′(x) �= f (x),

f (x0) = inf(F − f [0, x0[) = inf(F − f ′[0, x0[) = f ′(x0) ,

a contradiction.
The union of graphs of elements g : Ag → Bg of � is again the graph of an element

ḡ ∈ �. Indeed, setting A =⋃Ag and B =⋃Bg , for all x ∈ A there exists g ∈ �

such that x ∈ Ag , and the element ḡ(x) = g(x) does not depend on the choice of g;
The map ḡ thus defined is clearly strictly increasing and its image is B.

Let us prove by contradiction that A = E or B = F. Otherwise, let x = inf(E − A)

and y = inf(F − B). The map ¯̄g : A ∪ {x} → B ∪ {y} which extends ḡ by ¯̄g(x) = y
is an element of � strictly extending ḡ, a contradiction. �

Exercises 1.2. (Well-ordered Sets)

1. (Farey Isomorphism.)—Given two rationals x1 = p1/q1 and x2 = p2/q2, write
M(x1, x2) the Farey mean (p1 + p2)/(q1 + q2). Let D2 denote the set of dyadic
numbers, i.e. of the form m/2k , and I the interval [0, 1]. Define ϕ(x) for x = m/2k ∈
D2 ∩ I by recursion on k by setting:

ϕ(0) = 0, ϕ(1) = 1, ϕ((2m + 1)/2k+1) = M(ϕ(m/2k), ϕ((m + 1)/2k) .

Show that this gives an isomorphism of well-ordered sets from D2 ∩ I onto Q ∩ I.
Show that ϕ can be extended to a homeomorphism � of I. Is the function �

Hölderian (i.e. does it satisfy an equality of the form |�(y) − �(x)| � c.|y − x |β)?

2.—Let I be an ordered set and (Ei )i∈I a family of ordered sets. Let E =⊔i∈I Ei be
the set of pairs (i, x) such that i ∈ I and x ∈ Ei (summation set, or disjoint union).
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Define an order on E by (i, x) � ( j, y) ⇐⇒ i < j or (i = j) and x � y. Show that
if I and all Ei are well ordered, then so is E.

3.—Fix and integer k, and let Ak the set of numbers of type

a0 − 1

a1 − 1

a2 − 1

· · · − 1

ak

where the ai are integers � 2. Show that Ak is a well-ordered set (with respect to
the order induced by R), isomorphic to lexicographic N

k+1 . Is the set
⋃

k Ak well-
ordered?

4.—(a) Show that a well-ordered set extends to R (with the induced order) if and
only if it is countable. In this case, can it always be embedded into Q?

(b) Let A be a well-ordered subset of R, show that its closure A with respect to
the topology of R is well-ordered.

5.—Let E be a well-ordered set. For every x ∈ E, denote by Sx the set of strict lower
bounds of x in E.

(a) The principle of transfinite induction: Let F be a subset of E. Suppose that

(∀x ∈ E) (Sx ⊂ F ⇒ x ∈ F) .

Show that F = E.
(b) Construction by transfinite induction: Let U be a set, � the set of maps from

the upper sets of E to U and ϕ a map from � to U.
Show that there exists a unique map f : E → U such that for all x ∈ E,

f (x) = ϕ( f |Sx ). (The proof given should be formally correct).
(c) Construction by transfinite induction with choice and stopping: let � be a map

from � to P(U). Show that there is an upper set J of E and a map f from J to U such
that the following hold simultaneously

(i) (∀ j ∈ J) f ( j) ∈ �( f |S j );
(ii) J = E or �( f ) = ∅.

6.—Let U be a set. Denote by � the set of the isomorphism classes of well-ordered
sets whose underlying set is contained in U. Equip � with the order defined by:
α � β if α has as representative the upper set of a representative of β. Show that this
gives a well-ordering of �.

7.—Let X be an uncountable set, denote by E the set of finite subsets of X. Show
that:

(a) every totally ordered subset of E is well-ordered;
(b) there are no totally ordered cofinal subsets.
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8.—Let I be a well-ordered set and (Ei )i∈I a family of totally ordered sets. The lexi-
cographic product of the sets Ei is the set E =∏i∈I Ei equipped with the following
order relation: “(xi )i∈I � (yi )i∈I” if (xi )i∈I = (yi )i∈I or (xi ) �= (yi ) and xi0 < yi0 ,
where i0 = inf{i | xi �= yi }. Show that:

(a) E is totally ordered.
(b) If the sets Ei are well-ordered, then E is not necessarily well-ordered.
(c) Suppose that I is countable and that each Ei satisfies the following property:

every well-ordered subset of Ei is countable. Then so does E.
(d) As an ordered set, the lexicographic product N

N is isomorphic to R+.

9.—Show that the lexicographic product R × R is not embedded in R. For this,
show that R satisfies the following property: if � is a totally ordered set, (xλ)λ∈�

and (yλ)λ∈� increasing families of real numbers such that (∀λ ∈ �) xλ < yλ and
(∀λ ∈ �) (∀μ ∈ �) λ < μ ⇒ yλ < xμ, then � is countable.

10.—Let K be a compact space and f : K → R a continuous map. Suppose that
f has a local maximum at some point of K. Show that f (K) is well-ordered (with
respect to the order induced by that of R). Deduce that it is countable.

1.3 τ -Chains

1.3.1

Definition Let E be a well-ordered set, τ a choice function on E and A a subset of E.
The set A is said to be a τ -chain if, for any upper set C( �= A) of A, the least element
of the set A − C is τ (MC), where MC is the set of strict upper bounds of C in E.

Remark If a τ -chain A is not empty, then its least element is τ (E). If moreover A
does not reduce to τ (E), then the least element of A − τ (E) is τ

(
M{τ (E)}

)
.

The remark shows that τ -chains need to satisfy strong conditions. This will be
addressed in greater detail in 1.3.4.

1.3.2 Example

Let τ be a choice function defined on the ordered set R. There is a unique τ -chain
(a0, a1, . . . , an, . . .) of R isomorphic to N: it is defined by

a0 = τ (R), a1 = τ (]a0,+∞[), . . . , an = τ (]an−1,+∞[), . . .
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1.3.3

Proposition Let E be an ordered set and τ a choice function on E. Then every
τ -chain of E is well-ordered.

Proof Let A be a τ -chain of E and X a non-empty subset of A. We show that X has a
least element. The set C of strict lower bounds of X in A is an upper set of A, and C is
distinct from A since A − C contains the non-empty subset X. Since A is a τ -chain,
x0 = τ (MC) is the least element of A − C, and so x0 is a lower bound of X, but not
a strict one. Consequently, x0 is the least element of X and A is well-ordered. �

1.3.4

Proposition Let E be an ordered set, τ a choice function, A and A′ two τ -chains.
Then, either A is an upper set of A′, or A′ is an upper set of A.

Proof Denote by C the union of upper sets common to A and A′: it is the
largest among them. Suppose that C �= A and C �= A′. Then τ (MC) = inf(A − C) =
inf(A′ − C) necessarily holds. But then C ∪ {τ (MC)} is an upper set common to A
and A′ strictly containing C, contradicting the definition of C, and so C = A or
C = A′, �

1.3.5

Proposition Let E be an ordered set and τ a choice function on E.
(a) The union A of all τ -chains of E is a τ -chain.
(b) The τ -chain A has no strict upper bound.

Proof (a) Let C be an upper set of A distinct from A, and x ∈ A − C. There is a
τ -chain A containing x . We show that C is an upper set of A. It suffices to show that
C is contained in A. Let y ∈ C and B a τ -chain containing y. By 1.3.4, either B is an
upper set of A and y ∈ A, or A is an upper set of B. The elements x and y belong to
the totally ordered set B. Since y ∈ C and x /∈ C, it necessarily follows that y < x ,
and if x ∈ A then y ∈ A.

(b) Suppose that the set X of strict upper bounds of A is not empty. Adjoining
τ (X) to A gives a τ -chain of E strictly containing A, which is impossible. Hence X
is empty. �

Exercises 1.3. (τ -chains)
1.—Let E be a set and τ a choice function on E. There is a well-order on E such that,
for any non-empty subset X of E, τ (X) is the least element of X if and only if for all
subsets X and Y of E with Y ⊂ X and τ (X) ∈ Y, τ (Y) = τ (X).
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2.—Show that every totally ordered set has a well-ordered cofinal subset.

3. (Direct proof of Zermelo’s theorem.)—Let E be a set, τ : P(E) − {∅} → E a
choice function on E. In this exercise, by a τ -chain, we will mean a pair (F,ω) where
F is a subset of E and ω an order on F such that for any upper set A �= F of F,
τ (E − A) is the least element of F − A. (This notion is not the same as in the text
since E is not ordered.) Show that:

(a) if (F,ω) is a τ -chain, F is well-ordered by ω;
(b) every upper set of a τ -chain equipped with the induced order is a τ -chain;
(c) if A and A′ are two τ -chains, then one of the them is the upper set of the other

with respect to the induced order;
(d) let (Fi ,ωi ) be the family of all τ -chains. There is a unique order ω on F =⋃Fi

inducing ωi on each Fi . The pair (F,ω) is a τ -chain and F = E.
Deduce that E is well-ordered.

1.4 Inductive Sets and Zorn’s Lemma

1.4.1

Definition An ordered set is inductive if every ordered subset is bounded above.

1.4.2 Examples

(0) The empty set is not inductive: the empty chain is not bounded above.
(1) The set of subsets of a set ordered by inclusion is inductive.
(2) Let E be an inductive set. The set of upper bounds of any x ∈ E is inductive.
(3) Let X be a set, E a non-empty subset of the set of its subsets. The set E is

said to be of finite character if for any subset A of X the following conditions are
equivalent:

(i) A ∈ E;
(ii) For any B ⊆ A, B ∈ E.

Examples of inductive sets are given by the next result:

Every set E of finite character ordered by inclusion is inductive.

Indeed, let (Ai )i∈I be a chain of E, set A =⋃i∈I Ai . Any finite subset B of A is
contained in some Ai , hence in E.

Example of sets of finite character: the set �(X, Y) of graphs of maps from
subsets of a set X to a set Y is a subset of P(X × Y) of finite character. Indeed, for
any A ⊆ X × Y, the following properties are equivalent:
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(i) A ∈ �(X, Y);
(ii) the projection πA : A → X is injective;

(iii) For any finite B ⊆ A, the projection πB : B → X is injective.

1.4.3

Theorem (Zorn’s Lemma) Every inductive ordered set has a maximal element.

Proof Let E be an inductive ordered set, τ a choice function on E. The union A of
all τ -chains of E has an upper bound m. The element m is maximal in E. Indeed, if m
was strictly bounded above by m ′, so would A, which is impossible by 1.3.5 (b). �

1.4.4

Corollary Let E an inductive ordered set. Every element of E is bounded above by
a maximal element of E.

Indeed, the set of upper bounds of a point x of E is inductive, and so has a maximal
element which is maximal in E.

Exercises 1.4. (Inductive sets and Zorn’s lemma)
1. (Path- and arc-connectedness.)—Let I denote the interval [0, 1]. Let X be a Haus-
dorff topological space, a and b points of X. Suppose there is a path from a to b in
X, i.e. a continuous map γ : I → X such that γ(0) = a and γ(1) = b. The aim is to
show that there is an injective path η : I → X from a to b.

(a) Consider the set � of open subsets U of I not containing 0 or 1 and such that,
for any connected component J =]s, s ′[ of U, γ(s) = γ(s ′). Show that � ordered by
inclusion is inductive.

(b) Show that, if the open subset W of I is a maximal element of �, the only
isolated points of the closed subset I − W are 0 or 1.

(c) Let U be an open subset of I for which 0 or 1 are the only isolated points of
I − U. Show that there is an increasing continuous function h : I → I, constant on
each connected component of U, satisfying the following condition: if h(t) = h(t ′)
with t �= t ′, then there is a connected component J of U such that t and t ′ belong to
the closure of J.

(d) Conclude.
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1.5 Applications of Zorn’s Lemma

1.5.1

Theorem Let X and Y be two sets. There is an injection from X into Y or an injection
from Y into X.

Proof Let E be the set of graphs of bijections from subsets of X onto subsets of Y
ordered by inclusion. It is also the set of subsets G of X × Y such that the projections
π1 : G → X and π2 : G → Y are injective. The set E is of finite character and so is
inductive. By Zorn’s lemma, E has as maximal element the graph H of a bijection
from a subset A of X onto a subset B of Y. Then A = X or B = Y. Otherwise
H ∪ {x, y}, where x ∈ X − A and y ∈ Y − B, would be a strict upper bound of H in
E. �

1.5.2

Theorem (Zermelo’s theorem) Every set can be well-ordered.

Proof Let E be a set, and � denote the set of pairs (F,ω), where F ⊆ E is well-
ordered by ω. The set � can be ordered as follows: “(F,ω) � (F′,ω′)” if F is an
upper set of F′ with respect to ω′ and if ω = ω′|F. With this order, � is inductive.
Indeed, let (Fi ,ωi )i∈I be a totally ordered family of elements of �. There is an order
ω on F =⋃Fi such that, for all i ∈ I, ω|Fi = ωi . Equipped with ω, the set F is
well-ordered. Let (F, ω̄) be a maximal element of �. We show by contradiction that
F = E. Let a ∈ E − F. Let ω′ be the order on F′ = F ∪ {a} inducing ω̄ on F and such
that ∀x ∈ F, a > x . Then (F′,ω′) is a strict upper bound of (F, ω̄), contradicting the
maximality of (F, ω̄). �

1.5.3

Zorn’s lemma is also applied to prove the following results:

1. Every commutative ring A �= 0 contains an ideal m such that A/m is a field.
(Krull’s Theorem, 3.1.5.)

2. Let A be a commutative ring. The intersection of prime ideals of A is the set
of nilpotent elements of A (3.1.6).

3. Every vector space has a basis (3.4.2).
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4. Let A be a principal ring. Every submodule of a free A-module is free (3.5.1).
Every divisible A-module is injective (3.10.11, Corollary, b).

5. Every product of compact spaces is compact. (Tychonoff’s Theorem, 1.7.7.)

6. Every open cover of a paracompact space has a shrinking (N. Bourbaki, General
Topology, Chap.5 §10 [1], Chap. 9, § 4, cor. 1).

7. Let E be a normed vector space over R or C and x ∈ E with norm 1. There is
a linear form ξ on E such that ‖ξ‖ = 1 and ξ(x) = 1. (Hahn-Banach Theorem.)

Exercises 1.5 (Applications of Zorn’s lemma)
1. (Transfinite line.)—(a) Show that there is a well-ordered set �, unique up to iso-
morphism, such that � is not countable but every upper set other than � is countable.

(b) The transfinite line (or rather transfinite half-line) is the set L = � × [0, 1[
ordered by the lexicographic product. Endow L with the order topology: a fun-
damental system of neighbourhoods of x is given by the intervals ]x ′, x ′′[ where
x ′ < x < x ′′. Set 0 to be the least element (0, 0) and L∗ = L − {0}. Show that, for
all x ∈ L, the interval [0, x] is homeomorphic to [0, 1], but that L is not home-
omorphic to R+. Show that L is neither a metric space, nor the countable union
of compact spaces. Show that any increasing function f : L → R is stationary
(i.e. (∃a) (∀x > a) f (x) = f (a)).

(c) Show that every increasing sequence in L converges. Show that L is not
compact, but that every sequence in L has a convergent subsequence.

Show that, if A and B are two disjoint closed subsets of L, then one of them is
bounded (suppose this does not hold and construct an increasing sequence (xn) such
that xn ∈ A for odd n and xn ∈ B for even n). Deduce that L is normal (two disjoint
closed subsets have disjoint neighbourhoods). Show that every continuous function
f : L → R is stationary.

(d) Show that there is a continuous function f : L → L such that (∀x) f (x) � x
and such that the set of x satisfying f (x) > x is unbounded, but that there is no such
function f with f (x) > x for all x . Show that every continuous map f : L → L
such that (∀x) f (x) < x is stationary.

(e) Set M = {(x, y) ∈ L2 | 0 < x < y}. Show that M, endowed with the projec-
tion (x, y) → x , is a non-trivial fiber bundle (4.1.7) with fiber R over L∗, but that its
restriction to any compact subspace of L∗ is a trivial bundle.

Show that L is not contractible.
(f) Show that L∗ has a structure of a real-analytic manifold (assume that every

real-analytic manifold homeomorphic to R is isomorphic to R).
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1.6 Noetherian Ordered Sets

1.6.1

Proposition and Definition Let E be an ordered set. The following properties are
equivalent:

(i) every increasing sequence of elements of E is stationary;
(ii) Every non-empty subset X of E has a maximal element in X.

If these properties hold, the ordered set E is said to be Noetherian.

Proof (ii) ⇒ (i): if (xn) is an increasing sequence of elements of E, then the set of
these elements has a maximal element xn0 ; for n � n0, xn � xn0 and so xn = xn0 .

(i) ⇒ (ii): Suppose that the nonempty subset X of E has no maximal element and
let τ be a choice function on X. Define a sequence of elements (xn) ∈ X inductively
by setting x0 = τ (X) and xn+1 = τ (M(xn)), where M(xn) is the set of strict upper
bounds for xn in X. The sequence (xn) is strictly increasing, a contradiction. �

An ordered set will be said to be co-Noetherian if it is Noetherian with respect to
the dual order.

Example The ordered set N is co-Noetherian. More generally, every well-ordered
set is co-Noetherian.

1.6.2

Proposition Let E be an ordered set. If there is a strictly increasing map ϕ : E → N

(i.e. such that x < y ⇒ ϕ(x) < ϕ(y)), then E is co-Noetherian.

Proof If there were a strictly decreasing sequence (xn)n∈N in E, then the sequence
(ϕ(xn)) would be strictly decreasing in N, which is impossible. �

Examples (1) Let X be a set. The set of finite subsets of X is co-Noetherian with
respect to inclusion.

(2) Let E be a vector space. The set of finite dimensional vector subspaces of E is
co-Noetherian with respect to inclusion.

1.6.3

Proposition (Principle of Noetherian Induction.) Let E be a Noetherian ordered set,
and for all x ∈ E, M(x) the set of strict upper bounds for x in E. Let F be a subset
of E such that (∀x ∈ E) M(x) ⊂ F ⇒ x ∈ F. Then F = E.
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Proof Set X = E − F. If X �= ∅, let x be a maximal element of X. Then M(x) ⊂ F
and x /∈ F, a contradiction. �

(This proposition will be needed in 3.6.4 and 3.6.7.)

1.7 Tychonoff’s Theorem

1.7.1 Filters

Let X be a topological space. A filter on X is a subset F of P(X) satisfying the
following conditions:

(F1) F is closed under finite intersection.
(F2) F ∈ F and G ⊃ F ⇒ G ∈ F.
(F3) ∅ /∈ F.

Example For all x ∈ X, the set Vx of neighbourhoods of x is a filter on X.

Given two filters F and G, F is said to be finer than G if F ⊃ G. If H is
finer than both F and G, then F and G are said to be compatible. Equivalently,
∀F ∈ F,∀G ∈ G, F ∩ G �= ∅. The supremum of F and G is then called the inter-
section filter and is written filter F ∧ G = {F ∩ G}F∈F,G∈G. The filter F is conver-
gent to x ∈ X (resp. has x as cluster point) if F is finer than (resp. compatible with)
Vx . The filter F has x as cluster point if and only if for all F of F, x belongs to the
closure F of F.

Commentary. A property that may or may not hold for a point of X is described by
using a subset of X: the set of x satisfying this property. A filter is meant to describe
a more subtle condition that may be variably satisfied, each set of the filter (or of a
a base of this filter) satisfying it to some degree.

1.7.2 Ultrafilters

An ultrafilter is a maximal filter, namely one for which there is no finer one.

Example For all x ∈ X, the set Ux of F ⊂ X such that x ∈ F is an ultrafilter.

If x is a cluster point of an ultrafilter U, then U converges to x . Indeed U ∧ Vx

is finer than U, and so equal to U, and U is finer than Vx .

Proposition For every filter F on X, there is an ultrafilter finer than F.

Proof It readily follows that the set of of filters, ordered by the fineness relation, is
inductive. The proposition is then a consequence of 1.4.4. �
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1.7.3 Characterization of Compact Sets

Proposition Let X be a Hausdorff topological space. The following conditions are
equivalent:

(i) X is compact;
(ii) every filter on X has a cluster point;

(iii) every ultrafilter on X is convergent.

Proof (i) ⇔ (ii). By definition, (i) means that every open cover of X has a finite
subcover. Considering their complements in X, (i) is seen to be equivalent to

(i’) if (Fi )i∈I is a closed family of X such that
⋂

j∈J F j �= ∅ for all finite J ⊂ I,
then
⋂

i∈I Fi �= ∅ .

(ii) ⇒ (i′) follows by taking the filter generated by the subsets Fi , and (i′) ⇒ (ii)
by taking the family (F)F∈F.

(ii) ⇔ (iii). Since an ultrafilter having a cluster point is convergent, (ii) ⇒ (iii).
Suppose (iii) holds and let F be a filter. By Proposition 1.7.2 there is an ultrafilter
U finer than F, and if U converges to x , then x is a cluster point of the filter F. �

1.7.4 Image Filter

Let f : X → Y be a map and F a filter on X. The set f∗F of subsets G ⊂ Y such
that f −1(G) ∈ F is a filter on Y, called the image filter of F by f .

If X and Y are topological spaces, if f is continuous and if F converges to a point
x ∈ X, the image filter f∗F converges to f (x).

1.7.5

Proposition Let (Xi )i∈I be a family of topological spaces. Set X =∏i∈I Xi and pi

the projection X → Xi . A filter F on X is convergent if and only if for all i ∈ I, so
is (pi )∗F.

Proof The condition is obviously necessary. Let us show it is sufficient. For all i , let
xi ∈ Xi be such that (pi )∗F is convergent to xi , and set x = (xi ).

If J is a finite subset of I and (V j ) j∈J a family where V j is a neighbourhood of
x j , the set

⋂
j∈J p−1

j V j belongs to F. Since such sets form a fundamental system of
neighbourhoods of x , the filter F is convergent to x . �

Remark Even when, for all i , the filter (pi )∗F has a cluster point, this does not
necessarily imply that this is also the case for F.
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1.7.6

Proposition The image filter of an ultrafilter is an ultrafilter.

Proof A filter F on X is an ultrafilter if and only if, for every A ⊆ X, A ∈ F or
X − A ∈ F (consider {F ∩ A}F∈F and {F ∩ (X − A)}F∈F). If U is an ultrafilter on
X, then, for all B ⊂ Y,

f −1(B) ∈ U or f −1(Y − B) = X − f −1(B) ∈ U . �

1.7.7

Theorem (Tychonoff’s Theorem) An arbitrary product of compact spaces
is compact.

Proof Let (Xi )i∈I be a family of compact spaces and set X =∏i∈I Xi . Let U be an
ultrafilter on X. For all i , the filter pi∗U is an ultrafilter 1.7.6, and so is convergent
1.7.3.

Hence, U is convergent 1.7.5. Since this holds for all ultrafilters on X, the space
X is compact 1.7.3, �

Exercises 1.7 (Filters and ultrafilters, Tychonoff’s theorem)
1. (Moore-Smith convergence.)—An ordered set is said to be directed if all finite
subsets are bounded above, in other words, if it is nonempty and every pair of elements
has an upper bound. Any totally ordered set is directed, in particular N. The following
generalizes the notion of sequence.

Given a set X, a Moore-Smith sequence in X is a family (xi )i∈I where I is a directed
set. If X is a topological space and a ∈ X, then (xi ) is said to converge to a if for all
neighbourhoods V of a, ∃k ∈ I, ∀i � k, xi ∈ V.

Given two sets X and Y, a map f : X → Y and a filter F on X, the subsets V of
Y such that f −1(V) ∈ F form a filter on Y written f∗F and called image filter. If X
is a topological space, for a ∈ X, denote by VX,a the neighbourhood filter of a in X.

(a) Let X and Y be two topological spaces, f : X → Y a map, let a be a point of
X and b = f (a). Show that the following conditions are equivalents:

(i) f is continuous at a;
(ii) f∗VX,a ⊃ VY,b;

(iii) For every Moore-Smith sequence (xi ) convergent to a in X, the (Moore-Smith)
sequence ( f (xi )) is convergent to b in Y.

(b) Let (iiiN) be the condition analogous to (iii) for ordinary sequences. Give an
example showing that (iiiN) does not imply (iii). Show that Lebesgue’s dominated
convergence theorem provides such an example.
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(The convergence of Moore-Smith sequences provides a language which, like that
of filters, enables us to tackle non-metric topological spaces.)

2.—Let X be an infinitely countable set. Set A to be the ring R
X. For f ∈ A, denote

by V( f ) the set of x ∈ X such that f (x) = 0.
(a) For f, g ∈ A, show that f divides g if and only if V( f ) ⊂ V(g).
(b) Let I( �= A) be an ideal of A. Show that FI = {V( f )} f ∈I is a filter on X, and

that I = { f ; V( f ) ∈ FI}.
(c) Show that, if F is a filter on X, the set IF of f ∈ A such that V( f ) ∈ F is a

strict ideal of A.
Show that I �→ FI and FI �→ IF are mutually inverse bijections, from the set of

filters on X onto the set of strict ideals of A.
(d) Let F be a filter on X and I = IF. Show that the following three conditions

are equivalent:

(i) I is a maximal ideal;
(ii) I est a prime ideal;

(iii) F is an ultrafilter.

3. (Hyper-reals.)—We keep the notation of the previous exercise. Let U be an ultra-
filter on X and RU the field A/IU. The aim is to prove properties stating that RU is
a model of the real field in non-standard analysis.

(a) RU is a totally ordered field and there is a natural embedding of R in RU. For
any subset E of R, set EU to be the image of EX in RU. For a function ϕ : R

n → R,
let ϕU be the map R

n
U → RU induced by ( f1, ..., fn) → ϕ ◦ ( f1, ..., fn) from An to

A. If ϕ is x → |x |, (x, y) → x + y, etc., write x → |x |, (x, y) → x + y, etc. the
map ϕU.

There are elements ω ∈ RU such that ∀r ∈ R, ω > r . They are called infinitely
large, while ε ∈ RU is infinitely small if (∀r ∈ R, r > 0) |ε| < r . If ξ − x is infinitely
small, ξ ∈ RU is said to have shadow x ∈ R.

(b) For E, E′ ⊂ R, (E ∩ E′)U = EU ∩ E′
U, (E ∪ E′)U = EU ∪ E′

U.
For f : R → R, fU(EU) = ( f (E))U.

(c) Let E ⊂ R. The set EU contains all infinitely large elements if and only if
∃r ∈ R, E ⊃ [r,∞[.

(d) Let ϕ : R → R be a function. ϕ is continuous if and only if ∀x ∈ R, ∀ξ ∈ RU,
(ξ has shadow x) ⇒ (ϕU(ξ) has shadow ϕ(x)).

Reference

1. N. Bourbaki, Topologie générale, ch. 5 à 10. (Hermann, Paris, 1974)



Chapter 2
Categories and Functors

Introduction
Some mathematical constructions are “natural” because they do not involve any
arbitrary choice. These constructions can be transferred from one model to another
representing the same situation. Category theory has been elaborated so as give this
vague but powerful idea a precise meaning which can be used in mathematical proofs.

A logical difficulty arises. It is well-known that “the set of all sets” is an ill-defined
concept as it leads to a contradiction: For any propertyP, one should be able to define
the set of sets satisfying P, in particular Y = {X | X /∈ X}. But then Y ∈ Y implies
Y /∈ Y, and Y /∈ Y implies Y ∈ Y (Russell’s paradox). Likewise, it is not possible
to talk of the set of all groups, etc.

This difficulty can be overcome in two ways. One involves the notion of “classes”
that are not sets. This however is not altogether satisfactory. The categories con-
structed from these classes are not veritably objects of the theory, and can only be
manipulated with great caution. The use of quantifiers cannot be justified, statements
do not really amount to theorems that can be formally applied by substituting to an
object a letter governed by the quantifier “∀”. No proof of Theorem 2.3.5 is known
in this framework (the proof we give uses the axiom of choice).

Another way to avoid the problem, and which we have adopted here, amounts to
considering “small” categories, i.e. categories whose set of objects is truly a set. The
category of groups is not a well-defined concept, but that of groups whose underlying
set belongs to a predetermined set U is. Although “statements” are not as general as
one would wish, they are truly statements on which formal reasoning can be built
with total peace of mind. Drawbacks are minor, and they completely disappear in
practice if the “rag-bag” U is a universe (2.1.3). Admitting the universe axiom, whose
role is not critical, greatly simplifies the language.
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R. Douady and A. Douady, Algebra and Galois Theories,
https://doi.org/10.1007/978-3-030-32796-5_2

21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32796-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-32796-5_2


22 2 Categories and Functors

2.1 Categories

2.1.1

Definition A category consists of a set C whose elements are called objects,

(a) for all objects X, Y ∈ C, of a set HomC(X, Y) or simply Hom(X, Y), called
the set of morphisms of C from X to Y;

(b) and, for any three objects X, Y, Z ∈ C ( f, g) �→ g ◦ f from
Hom(X, Y)× Hom(Y, Z) to Hom(X, Z) called composition;
satisfying the following conditions:

(C1) (∀X, Y, Z, T ∈ C) (∀ f ∈ Hom(X, Y))

(∀g ∈ Hom(Y, Z)) (∀h ∈ Hom(Z, T)) (h ◦ g) ◦ f = h ◦ (g ◦ f ).
(C2) (∀X ∈ C) (∃e ∈ Hom(X, X)) (∀Y ∈ C)

((∀ f ∈ Hom(X, Y)) f ◦ e = f and (∀g ∈ Hom(Y, X)) e ◦ g = g).

The element e whose existence is predicated in (C2) is unique. It is called the
identity of X and is written 1X.

A morphism f ∈ Hom(X, Y) is often written f : X→ Y.
An endomorphism of X is a morphism from X to X and End(X) = Hom(X, X).
A morphism f : X→ Y from X to Y is said to be an isomorphism from X onto

Y if there is a morphism g : Y→ X such that g ◦ f = 1X and f ◦ g = 1Y. Then g
is unique and is called the inverse of f . If f is an isomorphism from X onto X, then
f is said to be an automorphism of X.

Two objects X and Y de C are isomorphic if there is an isomorphism from X onto
Y. We then write X ≈ Y.

2.1.2 Examples

Let U be a set.
(1) The set C of all sets belonging to U with Hom(X, Y) the set of maps from

X to Y, for X, Y ∈ C, composition being map composition, is a category called the
category of sets of U and of maps, written EnsU.

(2) The set C of groups (resp. commutative unitary rings, resp. modules over
a given ring A, resp. topological spaces) whose underlying set belongs to U, with
the morphisms being group (resp. unitary ring, resp. A-linear, resp. continuous)
homomorphisms or maps, is a category GrU called the category of groups and
group homomorphisms of U (resp. the categoryAnnU of commutative unitary rings
and unitary ring homomorphisms, resp. the category A-ModU of A-modules and
A-linear maps, resp. the categoryTopU of topological spaces and continuous maps).
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(3) Let G be a group. A G-set is a set X endowed with a left action of G on X, i.e.
a map (g, x) �→ g · x from G × X to X such that ∀x ∈ X e · x = x where e is the
identity element of G and ∀g ∈ G ∀h ∈ G ∀x ∈ X g · (h · x) = (g · h) · x .

This amounts to defining a homomorphism ρX from G to the group S(X) of
permutations of X. If X and Y are two G-sets, a G-morphism from X to Y is a map
f : X→ Y such that ∀g ∈ G ∀x ∈ X f (g · x) = g · f (x). Equivalently, ∀g ∈ G, the
diagram

X
f � Y

X

ρX(g)
� f � Y

ρY(g)
�

is commutative.
A category G-EnsU is defined by taking as its objects the G-sets whose underlying

sets belong to U and as its morphisms the G-morphisms.
(4) Let X and Y be two topological spaces, f0 and f1 two continuous maps from

X to Y. The maps f0 and f1 are said to be homotopic if there is a continuous map h
from [0, 1] × X→ Y such that, for all x ∈ X, h(0, x) = f0(x) and h(1, x) = f1(x).
The homotopy relation is an equivalence relation on the set of continuous maps from
X to Y.

Let C be the set of topological spaces whose underlying sets belong to U and
with the homotopy classes of continuous maps as morphisms, composition being
induced by map composition on passing to the quotient. This gives a category called
the category of topological spaces and homotopy classes of continuous maps.

(5) Let I be a preordered set (i.e. endowed with a reflexive and transitive binary
relation, see 1.2.1). The set I becomes a category by setting HomI(i, j) to be a
singleton if i ≤ j and empty otherwise, composition being the only possible one.

(6) Let M be a monoid (i.e. a set endowed with an associative composition law
with an identity element). A category M can be defined by taking a singleton with
the element x and setting Hom(x, x) = M, composition being that of M.

2.1.3 Universe

In Examples 1–4 of 2.1.2 and other similar ones, if U is taken to be the set to which
all the sets in question belong, then, for the sake of simplicity, any mention of U is
omitted, and the category is said to be that of sets, groups, etc., and is written Ens,
Gr, Top, etc.

The notion of universe provides a framework where the drawbacks of this simpli-
fication are alleviated. The set U is said to be a universe if it satisfies the following
conditions:
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(U1) ∅ ∈ U.

(U2) ∀X ∈ U, {X} ∈ U.

(U3) ∀X ∈ U, ∀Y ∈ X, Y ∈ U.

(U4) For all sets X and Y belonging to U, the product set X× Y belongs to U.

(U5) For any set X belonging to U, P(X) ∈ U.

(U6) If (Xi )i∈I is a family of sets

(I ∈ U and (∀i ∈ I) Xi ∈ U)⇒
⋃

i∈I

Xi ∈ U .

The following axiom can be added to the axioms of the theory of sets:

Axiom of universes: (∀X)(∃U universe) X ∈ U.

It follows that, if U is a universe, the objects constructed from an object X ∈ U
using usual mathematical methods belong to U. For example, if E is a uniform space
belonging to U, its completion Ê belongs to U. Indeed, each element of Ê is a set
of filters on E, and so Ê ∈ P(P(P(P(E)))). Likewise, let A be a commutative ring,
E and F two A-modules. If A, E and F belong to U, so does E⊗A F, which as a
quotient of A(E×F) is an element of P(P(P(E × F × A))). However, beware that U,
EnsU, GrU, etc. are not elements of U.

As far as we know, as a result of adding the axiom of universes, the theory of sets
may become inconsistent (assuming it is not already the case) since the converse has
not been proved.

2.1.4

Definition Let C and C′ be two categories, C′ is said to be a subcategory of C if

1. C′ ⊂ C;

2. (∀ X, Y ∈ C′) HomC′(X, Y) ⊂ HomC(X, Y);

3. Composition in C′ is inherited from composition in C;

4. For any object X of C′, the identity element of X in C′ is the identity element
of X in C.

C′ is said to be a full subcategory of C if, for all X, Y ∈ C′, HomC′(X, Y) =
HomC(X, Y).
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2.1.5 Examples

(1) The category of metric spaces and continuous maps is a full subcategory of
Top.

(2) The category of local rings and local homomorphisms is a (not full) subcate-
gory ofAnn. The categoryAnn is a subcategory of the category of (not necessarily
unitary or commutative) rings and homomorphisms.

(3) The category of complex Banach spaces and C-linear continuous maps is a
full subcategory of the category of topological vector spaces over C and C-linear
continuous maps.

(4) Let C be a category. A subcategory of C can be defined by taking its objects
to be those of C and for its morphisms the isomorphisms of C.

2.1.6 Definition

Let C′ and C′′ be two categories. The product category is the category C defined by
C = C′ ×C′′, HomC((X′ × X′′), (Y′ × Y′′)) = HomC′(X′,Y′)×HomC′′(X′′,Y′′)
and (g′, g′′) ◦ ( f ′, f ′′) = ((g′ ◦ f ′), (g′′ ◦ f ′′)).

2.1.7 Definition

For any categoryC, another categoryCo, called the opposite category, can be defined
by Co = C, HomCo(X, Y) = HomC(Y, X) and g ◦Co f = f ◦C g.

Exercises 2.1. (Categories)
1.—Show that a category C can be defined by taking rings for its objects, iso-
morphism classes of (A, B)-bimodules for morphisms from A to B and (M, N) �→
M⊗B N for composition, where M is a (A, B)-bimodule and N a (B, C)-bimodule.

2.—Let C be a category. An object A ∈ C is initial (resp. terminal) if ∀X ∈ C,
HomC(A, X) (resp. HomC(X, A)) is a singleton.

Give an initial object and a terminal one in each of the following categories: Ens,
Gr, Ann, Top, G-Ens, A-Mod, and the category of Banach algebras over C.
Which of these categories contains an object which is both initial and terminal?

3.—Let α be an initial object and ω a terminal object in a category C. Show that, if
there is a morphism from ω to α, it is unique and is an isomorphism.
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2.2 Functors

2.2.1 Definition

Let C and C′ be two categories. A covariant functor (or simply functor) from C

to C′ is a map F from C to C′ such that, for all objects X, Y ∈ C, there is a map
FX,Y : HomC(X, Y)→ HomC′(F(X), F(Y)) satisfying the following conditions:

(F1) (∀X ∈ C) FX,X(1X) = 1F(X).
(F2) (∀X, Y, Z ∈ C) (∀ f : X→ Y) (∀g : Y→ Z)

FX,Z(g ◦ f ) = FY,Z(g) ◦ FX,Y( f ).

A contravariant functor from C to C′ is a map F from C to C′ such that, for
all X, Y ∈ C, there is a map FX,Y : HomC(X, Y)→ HomC′(F(Y), F(X)) satisfying
condition (F1) and

(F∗2) (∀X, Y, Z ∈ C) (∀ f : X→ Y) (∀g : Y→ Z)
FX,Z(g ◦ f ) = FX,Y( f ) ◦ FY,Z(g).

In other words, a contravariant functor from C to C′ is a covariant functor from Co

to C′, or, a covariant functor from C to C′o. The map FX,Y is often written f �→ f∗
(resp. f �→ f ∗) when F is a covariant (resp. contravariant) functor.

When defining a functor, often only F is given, leaving it to the reader to specify
all the FX,Y.

2.2.2 Examples

(1) Forgetful functor. Consider the categories Ann and Gr. Assigning to every
ring, the underlying additive group, and to every ring homomorphism f , f considered
as a group homomorphism, defines a functor called the forgetful functor from Ann

to Gr.
Let C be the category of topological vector spaces and R-linear continuous maps,

the category VectR of R- vector spaces and linear maps. Define a functor from C

to VectR by assigning to every object of C its underlying vector space.
Functors obtained in this manner are called forgetful functors. Thus there are

forgetful functors Gr→ Ens, Top→ Ens, etc.
(2) Inclusion functor. Let C be a category, C′ a subcategory of C. The canonical

inclusions ι : C′ → C and ιX,Y : HomC′(X, Y)→ HomC(X, Y) define a functor
from C′ to C.

(3) For any topological space X writeC(X, R) for the ring of continuous functions
defined on X with values in R. For any continuous map f : X→ Y write f ∗ for the
map from C(Y, R) to C(X, R) defined by f ∗(h) = h ◦ f .

This defines a contravariant functor X→ C(X, R) from Top to Ann.
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(4) Duality functor. Let A be a commutative ring. Define a contravariant functor
from the category A-Mod to itself by assigning to every A-module X, its dual
X� = Hom(X, A) and to every A-linear map its transpose.

(5) Bidual functor. Define a covariant functor from the category A-Mod to itself
by assigning to every A-module its bidual and to every A-linear map its bitranspose.

(6) LetCbe a category, X an object ofC. Define a covariant functor X̌ : C→ Ens

by setting

(∀ Y ∈ C) X̌(Y) = Hom(X, Y)

(∀ Y, Z ∈ C) (∀ f ∈ Hom(Y, Z)) (∀h ∈ Hom(X, Y)) f∗(h) = f ◦ h .

(7) Let C be a category, X an object of C. Define a contravariant functor
X̂ : C→ Ens by setting

(∀ Y ∈ C) X̂(Y) = Hom(Y, X)

(∀ Y, Z ∈ C) (∀ f ∈ Hom(Y, Z)) (∀h ∈ Hom(Z, X)) f ∗(h) = h ◦ f .

2.2.3 Definition

Let C, C′, C′′ be categories, F : C→ C′ and G : C′ → C′′ functors. Define the
composite functor G ◦ F : C→ C′′ as follows:

(∀ X ∈ C) G ◦ F(X) = G(F(X)) ;
(∀ X, Y ∈ C)(∀ f ∈ HomC(X, Y)) (G ◦ F)X,Y( f ) = GF(X),F(Y)(FX,Y( f )).

The composite of two functors, one covariant and the other contravariant, as well
as of two contravariant functors can be likewise defined. The former is contravariant,
while the latter is covariant.

2.2.4 Examples

(1) The composite of the contravariant duality functor from A-Mod to itself
(2.2.2, Example 4) and of the forgetful functor from A-Mod toEns (2.2.2, Example
1) is a contravariant functor Â : A-Mod→ Ens (2.2.2, Example 7).

(2) The contravariant biduality functor is the composition of the duality functor
with itself.

(3) The composite of the contravariant functor X �→ C(X, R) from the category
of compact spaces and continuous maps to the category B of Banach spaces over
R and of the contravariant functor E �→ E� from B to itself is a covariant functor



28 2 Categories and Functors

X→M(X). The space M(X) is the space of measures on X endowed with the
norm topology, and for f : X→ Y and μ ∈M(X), f∗(μ) ∈M(Y) is the direct
image under f of the measure μ.

2.2.5 Category of Categories

Let U be a universe. Denote by CatU the category whose objects are categories C
with the following property: the set C belongs to U and for all objects X, Y ∈ C,
HomC(X, Y) ∈ U. Morphisms from CatU are covariant functors.

Note that EnsU does not belong to CatU; however if U′ is a universe such that
U ∈ U′, then EnsU ∈ CatU′ .

2.2.6 Another Example of a Functor

Let f : G→ H be a group homomorphism and X a H-set.
Denote by f ∗X the G-set obtained by endowing the set X with the action

(g, x) �→ f (g) · x . This defines a functor f ∗ from H-Ens to G-Ens. More pre-
cisely, if U is a universe, then f ∗ is a functor from H-EnsU to G-EnsU.

Let U and U′ be two universes such that U ∈ U′, G→ G-EnsU from GrU to
CatU′ is a contravariant functor.

2.2.7

Proposition Let G and H be two groups, ωG : G-Ens→ Ens and
ωH : H-Ens→ Ens the forgetful functors. Let � : H-Ens→ G-Ens be a func-
tor such that the diagram

H-Ens
�� G-Ens

Ens

� ω G
ω

H
�

commutes. Then there is a unique homomorphism f : G→ H such that � = f ∗.

Proof For any H-set X, its image �(X) is the set X endowed with an action
(g, x) �→ g⊥ x from G × X to X. If � = f ∗, then g⊥ x = f (g) · x . In particular
for X = H endowed with left translations, f (g) = g⊥ e, hence uniqueness.

Define f : G→ H by f (g) = g⊥ e. Let X be a H-set, then for all g ∈ G
and all x ∈ X, g⊥ x = f (g)x . Indeed, the map δx : h �→ h · x from H to X is a
H-morphism, its image �(δx ) is a G-morphism, but the maps �(δx ) and δx agree, and
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so g⊥ x = g⊥ δx (e) = δx (g⊥ e) = δx ( f (g)) = f (g) · x . In particular, for X = H
and x = f (g′),

f (g) · f (g′) = g⊥ f (g′) = g⊥(g′ ⊥ e) = gg′ ⊥ e = f (gg′) ,

and hence f is a homomorphism, and � = f ∗. �

2.3 Morphisms of Functors

2.3.1 Definition

Let C and C′ be two categories, F and G two functors from C to C′. A functorial
morphism or morphism of functors � from F to G, denoted by � : F→ G, is
defined by assigning to each object X of C a morphism �X : F(X)→ G(X) such
that, for any morphism f : X→ Y of C the following diagram commutes:

F(X)
F( f )� F(Y)

G(X)

�X � G( f )� G(Y)

�Y�

If F and G are contravariant functors from C to C′, define the morphisms from
F to G by considering F and G as covariant functors from Co to C′ (not from C to
C′o).

2.3.2 Examples

(1) Biduality morphism. Let C = C′ = A-Mod. Write 1C for the identity
functor of C and G for the biduality functor. Let X be an A-module, x ∈ X and
δx : X� → A the linear form h �→ h(x). The map δX : x �→ δx from X to X�� is
A-linear, and so is a morphism of A-Mod. Define a functorial morphism from 1C
to G by assigning to each A-module X the morphism δX.

(2) Kronecker morphism. Let C be the category (A-Mod)o × A-Mod. For
every object (X, Y) of C, set F(X, Y) = X� ⊗ Y and G(X, Y) = Hom(X, Y). This
defines two functors F and G from C to A-Mod. For every object (X, Y) of C, the
Kronecker morphism KX,Y from X� ⊗ Y to Hom(X, Y) defined by K(α ⊗ y)(x) =
α(x) · y is a morphism from F(X, Y) to G(X, Y). The family (KX,Y)(X,Y)∈C is a
functorial morphism from F to G. This will be checked in (3.9).
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2.3.3 Functor Category

Let C and C′ be two categories. Construct a category by taking as its objects the
functors fromC toC′ and for its morphisms the morphisms of functors. If � : F→ G
and � : G→ H are morphisms of functors, define the composition � ◦� : F→ H
by (� ◦�)X = �X ◦�X for any object X of C.

A morphism of functors � : F→ G is an isomorphism if there is a morphism
� : G→ F such that � ◦� is the identity morphism 1F of F and � ◦� = 1G.

A morphism of functors � is an isomorphism if and only if for any object X ∈ C,
the morphism �X : F(X)→ G(X) is an isomorphism. Indeed the morphisms �−1

X
then define a morphism from G to F.

Remark F(X) may be isomorphic to G(X) for any X even when the functors F and
G are not (2.3, Exercise 1).

2.3.4 Definitions

Let C and C′ be two categories, F : C→ C′ a functor.

1. The functor F is essentially surjective if for any X′ ∈ C′, there exists X ∈ C

such that X′ is isomorphic to F(X); in other words if the isomorphism induced by F
from the set of isomorphism classes of objects of C to the set of isomorphism classes
of objects of C′ is surjective.

2. The functor F is said to be faithful (resp. fully faithful) if, for all X, Y ∈ C, the
map FX,Y : HomC(X, Y)→ HomC′(F(X), F(Y)) is injective (resp. bijective).

2.3.5 Equivalence of Categories

Theorem and Definition Let C and C′ be two categories, F : C→ C′ a functor.
The following conditions are equivalent:

(i) F is fully faithful and essentially surjective;
(ii) there is a functor G : C′ → C such that G ◦ F is isomorphic to 1C and F ◦ G

is isomorphic to 1C′ .

The functor F is said to be an equivalence of categories if it satisfies one of the
two conditions.

A functor G satisfying (ii) is called a quasi-inverse of F.

Proof (i) ⇒ (ii). Since F is essentially surjective, by the axiom of choice, there
is a map G : C′ → C and a family (αX′)X′∈C′ such that, for all X′, the morphism
αX′ is an isomorphism from F(G(X′)) onto X′. For any morphism f : X′ → Y′ of
C′, set GX′,Y′( f ) = F−1

X,Y(α−1
Y′ ◦ f ◦ αX′), where X = G(X′) and Y = G(Y′), which
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is possible since F is fully faithful. The functor G together with (GX′,Y′) can be
checked to be a functor from C′ to C satisfying the conditions of (ii).

(ii)⇒ (i). Since F ◦ G is isomorphic to 1C′ , every object X′ of C′ is isomorphic
to F(G(X′)). Hence F is essentially surjective.

We show that F is fully faithful. Let α = (αX)X∈C be an isomorphism from G ◦ F
onto 1C and β = (βX′)X′∈C′ an isomorphism from F ◦ G onto 1C′ . Let X, Y ∈ C;
set X′ = F(X), Y′ = F(Y), X′′ = G(X′), Y′′ = G(Y′), ϕX,Y( f ) = α−1

Y ◦ f ◦ αX for
f ∈ HomC(X, Y) and ψX′,Y′(g) = β−1

Y′ ◦ g ◦ βX′ for g ∈ HomC′(X′Y′).
The following diagram commutes:

HomC(X, Y)
FX,Y� HomC′(X

′, Y′)

HomC(X′′, Y′′)

GX′,Y′
� FX′′,Y′′�

ϕX,Y �
HomC′(F(X′′), F(Y′′))

ψX ′,Y ′
�

The maps ϕX,Y and ψX′,Y′ are bijective. Hence GX′,Y′ is surjective and injective
and consequently, FX,Y = G−1

X′,Y′ ◦ ϕX,Y is itself bijective. �

An anti-equivalence of categories is a contravariant factor F : C→ C′ which is
an equivalence from Co to C′.

2.3.6

Proposition Let f : G→ H be a group homomorphism. The functor
f ∗ : H-Ens→ G-Ens is an equivalence of categories if and only if f is an isomor-
phism.

Proof (a) Sufficiency. ( f −1)∗ is an inverse of f ∗.
(b) f ∗ is essentially surjective⇒ f injective. If f (g) = e, then g acts trivially on

any G-set f ∗Y, hence on any G-set, in particular on G itself by left translations, and
so g = e.

(c) f ∗ fully faithful⇒ f surjective. Let X ∈ H-Ens be a singleton with H acting
trivially. For all Y ∈ H-Ens, HomH(X, Y) can be identified with the set of fixed
points of Y under the action of H. Take Y to be the set H/ f (G) together with
the action of H induced by left translations. Then HomH(X, Y) is empty unless f
is surjective, but HomG( f ∗X, f ∗Y) is not empty, since the image of the identity
element in Y is kept fixed by G and so f is necessarily surjective. �
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2.3.7

Let U and U′ be two sets and U ⊂ U′. Suppose U is hereditary, i.e. for any set X ∈ U,
P(X) ⊂ U (a far weaker condition than the existence of universes, which supposes
P(X) ∈ U).

Let C be a category whose set of objects is contained in U′. Suppose that C is a
category with underlying sets and transfer of structure (in U′). This means there is a
functor (the forgetful functor) � : C→ EnsU, and that for any object X of C and
any bijection f : �(X)→ F with F ∈ U′, there is an object Y of C and a morphism
ϕ : X→ Y such that �(Y) = F and �(ϕ) = f (this is the case for EnsU′ , GrU′ ,
TopU′ , A-ModU′ , etc.).

Denote by CU the full subcategory of C consisting of objects whose underlying
sets belong to U. Suppose there is a set E ∈ U such that, for any object X of C,
Card �(X) ≤ Card E.

Then the inclusion morphism CU → C is an equivalence of categories.
Indeed it is fully faithful since it is the inclusion morphism of a full subcategory,

and essentially surjective since any object of C is isomorphic to an object whose
underlying set is a subset of E.

Thanks to the lemmas about cardinalities (4.4.7, 5.2.5), this is why, up to equiva-
lence, the category of coverings of a given space, or that of algebraic extensions of
a given field, do not depend on the choice of the universe.

Exercises 2.3. (Morphisms of functors)
1.—Let C be the category of finite dimensional vector spaces over a field k and of
isomorphisms. Let F be the identity functor of C and G : C→ C the functor defined
by G(X) = X and G( f ) = ( f �)−1. Show that, for any object X of C, the objects
F(X) and G(X) are isomorphic but that the functors F are G not.

2.—Show that the set of endomorphisms of the identity functor of the category of
abelian groups can be identified with Z.

3.—Is there a map f : N→ N such that

∀x ∈ N,∀y ∈ N f (y) f (x) = x y ?

Is the category Setf of finite set its opposite category?
What about the category Ens.

4.—Let C be the category of finite commutative groups. The aim is to show that C
is equivalent to its opposite category. For this, assume that every object of C is a
product of cyclic groups (3.5.8, Corollary 3).

(a) Show that for any group X ∈ C, the group X∨ = HomGr(X, Q/Z) is finite
and isomorphic to X. (First consider the case where X is a cyclic group.)

(b) Show that the natural map X �→ X∨∨ is an isomorphism. Conclude.
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(c) Let C′ be the category of objects of C and of isomorphisms. Show that the
identity functor 1C′ and the functor X �→ X∨ from C′ to itself are not isomorphic
(apply Exercise 1 to k = Z/(p)).

5.—The category of locally compact commutative groups can be shown to be equiva-
lent to its opposite category (Pontryagin duality, the natural framework of the Fourier
transform). The aim is to show that there is a subcategory for which this is the case.

Let C be the category of commutative topological groups G satisfying the fol-
lowing properties:

(i) the connected component G0 of the identity element of G is isomorphic to the
quotient of a real finite dimensional vector space by a discrete subgroup;

(ii) G0 is open and the quotient G/G0 is a finitely generated Z-module.

(a) Show that every object of C is a finite product of groups of the following type:
R, R/Z, Z, Z/(n).

(b) Let G ∈ C. Show that G∨ = HomC(G, R/Z) equipped with the topology of
compact convergence (2.4.9, Example 2) is an object of C.

Determine G∨where G is successively R, R/Z, Z and Z/(n). Show that G∨∨ = G.
Conclude.

6.—Let U and U′ be two universes with U ∈ U′. Show that the categories EnsU and
EnsU′ are not equivalent.

Denote by R-vectfinU the category of finite dimensional vector spaces over R

belonging to U. Show that R-vectfinU and R-vectfinU′ are equivalent.

2.4 Representable Functors

2.4.1 Notation

For each object X of a category C, set X̂ to be the contravariant functor from C to
Ens defined by X̂(Y) = Hom(Y, X).

2.4.2 Definition

Let C be a category and F a contravariant functor from C to Ens. Then F is said to
be representable if there is an object X of C such that F is isomorphic to X̂.

2.4.3

The previous definition implicitly involves an isomorphism from X̂ onto F. We next
give a description of the morphisms from X̂ to F.
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Scholium. Let C be a category, F a contravariant functor from C to Ens and X
an object of C. The morphisms from X̂ to F are in bijective correspondence with
the elements of F(X).

More precisely, for ξ ∈ F(X), Y ∈ C, and f ∈ Hom(Y, X), write ξ̂Y( f ) for the
element f ∗(ξ) of F(Y). This defines a map ξ̂Y from X̂(Y) to F(Y) and ξ̂ = (ξ̂Y)Y∈C
is a morphism of functors from X̂ to F.

Proposition (Yoneda Lemma) The map ξ �→ ξ̂ is a bijection from F(X) onto the set
of morphisms from X̂ to F.

Proof We first show that ξ̂ is a morphism of functors. Consider the following dia-
gram:

X̂(Z)
X̂(g)� X̂(Y)

F(Z)

ξ̂Z � F(g)� F(Y)

ξ̂Y�

where Y, Z ∈ C and g ∈ Hom(Y, Z). Then, (ξ̂Y ◦ X̂(g))(α) = F(α ◦ g)(ξ) and
F(g)(ξ̂Z(α)) = F(g) ◦ F(α)(ξ) = F(α ◦ g)(ξ). So the diagram commutes.

For any morphism � from X̂ to F, set η(�) = �X(1X) ∈ F(X).
We show that the maps ξ �→ ξ̂ and � �→ η(�) are mutual inverses. η(ξ̂ ) =

ξ̂X(1X) = ξ and, for all Y ∈ C and all f ∈ Hom(Y, X)

η̂(�)Y( f ) = F( f )(η(�)) = F( f )(�X(1X)) = �Y ◦ X̂( f )(1X) = �Y( f ) .

�

2.4.4 Definition

Keeping the notation of 2.4.3, the functor F is said to be represented by (X, ξ) if ξ̂

is an isomorphism from X̂ onto F. In other words, F is represented by (X, ξ) if and
only if

(∀Y ∈ C)(∀η ∈ F(Y)) (∃| f : Y→ X) f ∗(ξ) = η .

2.4.5 Comments. Universal Problems

Choosing a pair (X, ξ) representing F amounts to identifying F(Y) with X̂(Y). Hence
for simplicity’s sake, for any object Y of C, one writes Hom(Y, X) = F(Y). Such a
relation is called a universal property of X.
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The search for a pair (X, ξ) representing F is called a universal problem defined
by the functor F.

2.4.6 Definition

A covariant functor F from a categoryC toEns is representable if F is a representable
functor from Co to Ens.

2.4.7 Example of a Universal Problem

Tensor product. Let A be a commutative ring, E and F A-modules. We want to find
an A-module T such that, for any A-module G, the set of bilinear maps from E × F
to G can be identified with the set of linear maps from T to G.

More precisely, we want to find an A-module T and a bilinear map θ : E × F→ T
such that, for any A-module G and any bilinear map f : E × F→ G, there is a unique
linear map g : T→ G such that f = g ◦ θ .

Put differently, let B be the covariant functor from A-Mod toEnswhich assigns
to a module G the set of bilinear maps from E × F to G. We want to find a pair (T, θ)

where T is an A-module and θ ∈ B(T) such that, for any A-module G the map
g �→ g∗(θ) = g ◦ θ from Hom(T, G) to B(G) is bijective. In other words, we are
trying to represent the covariant functor B.

This universal problem always has a solution: the tensor product E⊗ F of the
A-modules E and F (3.8.1).

2.4.8 Other Examples of Representable Covariant Functors

(1) Quotient. Let X be a set, R an equivalence relation on X. We want to find a
set Y and a map χ : X→ Y such that

(i) (∀x, x ′ ∈ X) x R x ′ ⇒ χ(x) = χ(x ′);
(ii) for any set Z and any map f : X→ Z such that x R x ′ ⇒ f (x) = f (x ′), there

is a unique map g : Y→ Z satisfying f = g ◦ χ .

This universal problem has a solution: the quotient set Y = X/R endowed with
the canonical quotient map χ : X→ X/R.

In other words, the quotient represents the covariant functor which assigns to a
set Z the set of maps f : X→ Z for which x R x ′ ⇒ f (x) = f (x ′).

(2) Quotient modules. Let A be a commutative ring, E an A-module, and (xi )i∈I a
family of elements of E. Denote by�(G) the set of linear maps from E to an A-module
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G which vanish at xi for all i ∈ I. The functor G �→ �(G) from A-Mod to Ens is
representable. The pair (F, χ), where F is the quotient module of E by the submodule
generated by all xi and χ : E→ F the canonical quotient map, represents �.

(3) Free module. Let I be a set. We want to find an A-module L such that for any
A-module F,

Hom(L, F) = FI

where FI is the set of maps from I to F.
This universal problem has a solution: the free A-module A(I), constructed over I

(3.4.6).
(4) Exterior products. Let E be an A-module, p a positive integer. We want to

find an A-module T such that, for any A-module F, the Hom(T, F) can be identified
to the set of p-linear alternating maps from Ep to F.

This universal problem has a solution: the pth exterior power1 ∧p
(E).

(5) Completion. Let E be a normed vector space. We want to find a Banach space
Ê and an embedding ι : E→ Ê such that, for any Banach space F, every continuous
linear map from E to F has a unique continuous extension from Ê to F.

In other words, we want to represent the functor � defined on the category
of Banach spaces and continuous linear maps with values in Ens by �(F) =
{ f : E→ F f linear continuous}.

The completion of E, the space Ê, endowed with the canonical embedding from
E into Ê is the desired solution.

(6) Action of a group on itself. Let G be a group. The forgetful functor
G-Ens→ Ens is represented by (

.
G, e), where

.
G is the set G on which the group

G acts by left translations, and e is the identity element of G.

2.4.9 Examples of Representable Contravariant Functors

(1) Induced topology. Let X be a topological space, Y a subset of X. We want
to find a topological space Y′ such that, for any topological spaces T, the set of
continuous maps from T to Y′ can be identified with the set of continuous maps from
T to X whose images are contained in Y. In other words, we want to represent the
functor F from Top to Ens defined by

F(T) = { f ∈ Hom(T, X) | f (T) ⊂ Y} .

This universal problem has a solution: the set Y equipped with the topology
induced by that of X.

1See N. Bourbaki, Algebra, ch. 1 to 3 (1970), ch. 3, § 7, n o 4, (A III.80).
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(2) Topology of compact convergence. Let X and Y be two topological spaces.
We want to find a topological space F such that, for any topological space T,

HomTop(T× X, Y) = HomTop(T, F) .

If X is locally compact, the functor T �→ HomTop(T× X, Y) is represented by F =
HomTop(X, Y) endowed with a topology called the topology of compact conver-
gence, more precisely by (F, ϕ) where, for all f ∈ F and all x ∈ X, ϕ( f, x) = f (x).

2.4.10

LetC be a category, F a contravariant functor fromC toEns, (X, ξ) and (X′, ξ ′) two
pairs representing F. There is a unique morphism h : X→ X′ such that h∗ξ ′ = ξ .

Definition The morphism h is the canonical morphism from X onto X′.

2.4.11 Uniqueness of the Solution of the Universal Problem

Proposition keeping the above notation,
(a) the canonical morphism h is an isomorphism;
(b) let (X, ξ), (X′, ξ ′) (X′′, ξ ′′) be three pairs representing F, and h : X→ X′,

h′ : X′ → X′′, h′′ : X→ X′′ the canonical morphisms.
Then h′′ = h′ ◦ h.

Proof (b) follows from the uniqueness of canonical morphisms. Apply (b) to the
case (X′′, ξ ′′) = (X, ξ). Then h′ ◦ h = 1X and h ◦ h′ = 1X′ , which proves (a).

In practice, the two solutions of a same universal problem are identified, i.e. the
two representatives of a same functor, and for the sake of simplicity, any of them is
referred to as the solution to the universal problem.

2.4.12

Let F and G be representable contravariant functors, (X, ξ) and (Y, η) respective
representatives. The functorial morphisms from F to G are in bijective correspon-
dence with morphisms from X to Y. More precisely, for any morphism � : F→ G,
there is a unique morphism ϕ : X→ Y such that �X(ξ) = ϕ∗(η).

This result is an immediate consequence of 2.4.3. It can also be stated as follows:

Proposition Let C be a category, and Ĉ the category of contravariant functors from
C to Ens. The functor X→ X̂ from C toĈ is fully faithful.
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Exercices 2.4. (Representable functors)
1.—Let X be a compact metric space. Denote by F the set of closed subsets of
X. For closed subsets A and B of X, set σ(A, B) = supx∈A d(x, B) and d(A, B) =
sup(σ (A, B), σ (B, A)). Show that

(a) d is a distance on F;
(b) F is compact with respect to the topology defined by this distance;
(c) F represents the functor � :Top→ Ens which assigns to each topological

space S the set of closed subsets of S× X whose projection onto S is open.
Is the functor ψ :Top→ Ens which assigns to each space S the set of closed

subsets of S× X representable? If yes, is it represented by a Hausdorff space?

2.—Let the locally compact metric space X be the union of countable compact spaces.
Define two functors fromTop toEns by assigning respectively to each topological
space S, the set of closed subsets of S× X whose projection onto S is open, and the
set of closed subsets of S× X whose projection onto S is both proper (4.1.5) and
open. Are these functors representable? Can the assumption that X is metrizable be
removed?

3.—Let E and F be normed vector spaces, BE and BF the unit balls of E and F
respectively, and BE ⊗ BF the set of xy for x ∈ BE and y ∈ BF.

(a) Show that the convex envelope from BE ⊗ BF to E⊗ F is the unit ball open
with respect to the semi-norm π(E, F) on E⊗ F.

(b) Give an expression for π(E, F).
(c) Formulate the universal problem having (E⊗ F, π(E, F)) as solution.
(d) Let E1 be a subspace of E equipped with the induced semi-norm (resp. a

quotient of E by a closed subspace equipped with the quotient semi-norm). Is the
semi-norm π(E1, F) on E1 ⊗ F induced by (resp. quotient of) the semi-norm π(E, F)?

(e) Is the semi-norm π(E, F) a norm?

2.5 Products and Inverse Limits

2.5.1 Definition

Let C be a category, X and Y two objects of C. Suppose that the functor
T �→ Hom(T, X)× Hom(T, Y) from C to Ens is representable and let (P, (p, q))

be a representative. Equipped with (p, q), P is said to be a product of X and Y in C

and, for the sake of simplicity, we write P = X× Y, p = pr1, q = pr2.
C is said to be a product category if there is a product in C for any two arbitrary

objects of C.
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Let C and C′ be two product categories and F a functor from C to C′. F is said
to commute with the products of two objects if

(∀ X, Y ∈ C) F(X× Y) = F(X)× F(Y) ,

more precisely, if F(X× Y) equipped with (F(pr1), F(pr2)) is a product of F(X) and
F(Y) in C′.

2.5.2 Examples

Let C be one of the following categories: Gr, Ann, A-Mod, Top. Then C is a
product category and the forgetful functor from C to Ens commutes with products.

In other words, this gives the product X× Y inC of two objects ofC by equipping
the product set with the underlying sets of a particular structure.

2.5.3

Let C be a category, (Xi )i∈I a family of objects of C. Suppose the functor
T �→∏

i Hom(T, Xi ) from C to Ens is representable and let (P, (pi )i∈I) be a rep-
resentative. Together with the family (pi )i∈I, P is said to be a product of the family
(Xi )i∈I. We write P =∏

i∈I Xi and pri = pi is called the projection of index i .
Let U be a universe andC be one of the U-categoriesGr,Ann, A-Mod,Top.

Then any family of objects indexed by a set belonging to U has a product in C, and
the forgetful functor C→ Ens commutes with products.

In Top, the product P =∏
i∈I Xi is the product set endowed with the topology

generated by the sets pr−1
i (U), for i ∈ I and U open in Xi . This topology is called the

product topology. A base for this topology is given by
∏

i∈I Ui where, for all i , (Ui )

is a family such that Ui is open in Xi and Ui = Xi except for finitely many i . Let
x = (xi ) ∈ P, and for all i , let (Vi,α)α∈A be a fundamental system of neighbourhoods
of xi in Xi . The sets Vi1,α1 × · · · × Vik ,αk ×

∏
j∈I−{i1,...,ik } X j form a fundamental

system of neighbourhoods of x .
Let C and C′ be two categories. A functor F from C to C′ is said to commute with

products when these exist if, for any family (Xi ) of objects of C having a product P
in C, the object F(P) is a product of F(Xi ) in C′.

2.5.4 Definition

Let X, Y, S be sets, f : X→ S and g : Y→ S maps. The fibered product of
X and Y over S with respect to f and g is the set X×S Y = {(x, y) | (x, y) ∈
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X × Y and f (x) = g(y)}. Next letC be a category, X, Y, S objects ofC, f : X→ S
and g : Y→ S morphisms. Consider the contravariant functor T �→ X̂(T)×Ŝ(T)

Ŷ(T) from C to Ens. If this functor is representable and if (P, (p, q)) is a rep-
resentative, then P together with (p, q) is said to be a fibered product of X and Y
over S with respect to à f and g, and is written P = X×S Y.

2.5.5 Definition

Let X and Y be sets, f and g maps from X to Y. The kernel of a double arrow ( f, g)

is the set
Ker( f, g) = {x | x ∈ X and f (x) = g(x)}.

Let C be a category, X, Y ∈ C, f and g morphisms from X to Y. Consider the
functor F : T �→ Ker( f∗, g∗), where f∗ : X̂(T)→ Ŷ(T) is defined by f∗(α) = f ◦ α

and g∗ is defined likewise. If this functor is representable, then a representative of
this functor is called a kernel of a double arrow ( f, g).

2.5.6 Definition

An ordered set I is said to be right directed or simply directed if

(∀i, j ∈ I) (∃k ∈ I) k ≥ i and k ≥ j .

Let I be a directed set and C a category. An inverse system in C indexed by I consists
of a family (Xi )i∈I of objects of C and, for any pair (i, j) ∈ I2 such that i ≤ j , of a
morphism f j

i : X j → Xi satisfying the following conditions:

(i) (∀i ∈ I) f i
i = 1Xi ;

(ii) (∀i, j, k ∈ I | i ≤ j ≤ k) f j
i ◦ f k

j = f k
i .

In other words, an inverse system inC indexed by I is a contravariant functor from
J to C, where J is the category associated to the ordered set I (2.1.2, Example 5).

2.5.7 Definition

Let I be a directed set and ((Xi ), ( f j
i )) an inverse system in Ens indexed by I. The

inverse limit of the inverse system of the given sets is the set

{
x = (xi )i∈I ∈

∏

i∈I

Xi

∣∣∣ (∀i ∈ I) (∀ j ∈ I)i≤ j f j
i (x j ) = xi

}
.

It is written lim←−
i∈I

Xi , or simply lim←−Xi .
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2.5.8 Definition

Let C be a category, I a directed set and ((Xi )i∈I, ( f j
i )) an inverse system in C

indexed by I. If the functor T �→ lim←−Hom(T, Xi ) is representable, a representative
(X, (pi )), i.e. a pair (X, (pi )) where X is an object of C and (pi : X→ Xi )i∈I a
family of morphisms such that, for any pair (i, j) i ≤ j , pi = f j

i ◦ p j is called the
inverse limit of the inverse system ((Xi ), ( f j

i )).
In other words, the inverse limit lim←−Xi equipped with morphisms

pi : lim←−Xi → Xi is characterized by the following universal property:

(∀T ∈ C) (∀(gi )i∈I ∈ lim←−Hom(T, Xi ))

(∃| g ∈ Hom(T, lim←−Xi )) (∀i ∈ I) pi ◦ g = gi .

2.5.9 Example

Let E be a set, I a non-empty directed set and (Xi )i∈I a decreasing sequence of
subsets of E. For i ≤ j , let f j

i be the canonical injection from X j to Xi . This defines
an inverse system whose inverse limit can be identified with the intersection of the
subsets Xi .

2.5.10

Proposition Let C be a category and ש an infinite cardinal. If every family (Xi )i∈I

with Card I ≤ ש has a product in C and if every double arrow X →→Y has a kernel,
then every inverse system indexed by an ordered set I of cardinality Card I ≤ ש has
an inverse limit.

Proof Let ((Xi ), ( f j
i )) be an inverse system indexed by an ordered set é I such that

Card I ≤ .ש For every pair of indices (i, j) with i ≤ j , set Yi j = Xi , αi j = pri where
ù pri :

∏
i∈I Xi → Xi is the projection of index i and βi j = f j

i ◦ p j . This defines

two morphisms α = (αi j ) and β = (βi j ) from
∏

i∈I

Xi to
∏

(i, j)∈I2

i≤ j

Yi j .

The kernel for the double arrow (α, β) is the inverse limit of the inverse system
((Xi ), ( f j

i )). �
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2.5.11 Examples

Let C be one of the following U-categories Gr, Ann, A-Mod, Top. Then every
inverse system (indexed by a set belonging to U) has an inverse limit and the forgetful
functor from C to Ens commutes with inverse limits.

Remark In Top, let ((Xi ), ( f j
i )) be an inverse system, and setting X = lim←−Xi ,

write pi for the canonical map X→ Xi . Then the topology of X is induced by
the product topology on

∏
i∈I Xi . Indeed, let x = (xi ) be a point of X and, for

all i , let (Vi,α)α∈Ai be a fundamental system of neighbourhoods of xi in X. Set
Wi,α = p−1

i (Vi,α). The subsets Wi1,α1 ∩ · · · ∩Wik ,αk clearly form a fundamental sys-
tem of neighbourhoods of x . Let i ∈ I be a common upper bound of i1, . . . , ik . Let
( f i

i1
)−1(Vi1,α1) ∩ · · · ∩ ( f i

ik
)−1(Vik ,αk ) be a neighbourhood of xi in Xi ; it thus contains

some Vi,α , with α ∈ Ai , and Wi,α ⊂Wi1,α1 ∩ · · · ∩Wik ,αk .

2.5.12 Morphisms of Inverse Systems

Let C be a category, I a directed set, X = ((Xi ), ( f j
i )) and Y = ((Yi ), (g

j
i )) inverse

systems in C indexed by I. A morphism from X to Y is a family (ϕi ) of morphisms
such that, for i ≤ j , the following diagram is commutative

X j
f j
i � Xi

Y j

ϕ j� g
j
i � Yi

ϕi�

If X and Y have inverse limits X∞ and Y∞, then for any morphism (ϕi ) from
X to Y, there is a unique morphism ϕ∞ : X∞ → Y∞ such that ϕi ◦ pi = qi ◦ ϕ∞
for all i , where pi : X∞ → Xi and qi : Y∞ → Yi are canonical morphisms. The
morphism ϕ∞ is said to be induced by the morphisms ϕi on passing to the inverse
limit.

2.5.13 Cofinal Sets

Let I be a directed set and J a subset of I. We remind the reader (1.2.2) that J is said
to be cofinal in I if (∀i ∈ I)(∃ j ∈ J) i ≤ j . If J is cofinal in I, then J is a directed set
under the induced order.

Let ((Xi ), ( f j
i )) be an inverse system of sets. If J is a cofinal subset of I, the

canonical map lim←−
i∈I

Xi → lim←−
i∈J

Xi is bijective.
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It follows that, if ((Xi )i∈I, ( f j
i )) is an inverse system in a category C and if J is a

cofinal subset of I, the inverse system ((Xi )i∈J, ( f j
i )) has an inverse limit if and only

if so does ((Xi )i∈I, ( f j
i )), and these limits are identical if they exist.

A cofinal sequence in I is an increasing sequence (in) such that the set of in is
cofinal in I.

Proposition Every countable non-empty directed set has a cofinal sequence.

Proof Let n �→ xn be a surjective map from N over I. Define in inductively by setting
i0 = x0 and choosing for in+1 a common upper bound of in and xn+1. The sequence
(in) is cofinal.

2.5.14 Inverse Limits of Compact Spaces

Theorem In Top, an inverse limit of non-empty compact is non-empty and com-
pact.

Proof Let ((Xi )i∈I, ( f j
i )) be non-empty compact projective spaces. By Tychonoff’s

Theorem (1.7.7), the space P =∏
i∈I Xi is compact. For k ∈ I, set Lk to be the

subspace of P of elements x = (xi ) such that xi = f k
i (xk) for i ≤ k; it is closed in P.

If τ is a choice function (1.1.2) on
⋃

Xi , then the element x defined by xk = τ(Xk),
xi = f k

i (xk) if i ≤ k and xi = τ(Xi ) otherwise, belongs to Lk . Then (Lk)k∈I are non-
empty directed closed sets in P, and so lim←−Xi = ∩k∈ILk is non-empty and compact. �

2.5.15

Corollary In Top, let ((Xi ), ( f j
i )) be an inverse system of compact spaces, and

set X∞ = lim←−Xi . If every f j
i is surjective, then so are f∞i : X∞ → Xi .

Proof Let x∈Xi , and for j ≥ i set Y j = ( f j
i )−1(xi ). By the theorem, lim←−Y j �=∅. �

Exercises 2.5. (Products and inverse limits)
1.—Show that in the category of locally compact spaces and proper maps there are
fibered products but no products.

2.—LetC be a category of finite products, containing a terminal object E. Let X ∈ C.
A group law on X in C is a morphism μ : X× X→ X satisfying the following
properties:
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(i)

X× X× X
μ× 1X� X× X

X× X

1X × μ
�

μ � X

μ
�

commutes.
(ii) There is a map ε : E→ X such that the diagrams

X
e, 1X� E × X

X

1X �
�

μ
X× X

ε × 1X�
and

X
1X, e� X× E

X

1X �
�

μ
X× X

1X × ε
�

commute, e : X→ E being the unique morphism from X to E.
(iii) There is a morphism σ : X→ X such that the diagrams

X
1X, σ� X× X

E

e
�

ε
� X

μ
�

and

X
σ, 1X� X× X

E

e
�

ε
� X

μ
�

commutate.
(a) Show that, if μ is a group law, then the morphisms ε and σ are unique.
(b) Let μ : X× X→ X be a morphism. It is a group law if and only if for any

object T of C, the composition law defined by μ on HomC(T, X) is a group law.
(c) Show that defining a group law on X amounts to defining a functor

� : C→ Gr such that ω ◦� = X̂ where ω : Gr→ Ens is the forgetful functor.
(d) Which groups have a group law in the category Gr?
(e) Let X be an object of C and F : C→ Gr a functor commuting with products.

Show that if there is a group law μ on X in C, then F(X) is commutative and F(μ)

agrees with the group law of F(X).

3.—Let E0 be a vector space R[X], and for all n, let En denote the subspace Xn
R[X].

The map f : E0 → R defined by f (P) = P(1) induces a surjective map fn : En → R

for each n. Show that the induced map on passing to the inverse limit is not surjective.

4.—Let ((Xi )i∈I, ( f j
i ) j≥i ) be an inverse system of sets such that all f j

i are surjective.
Set X∞ = lim←−Xi .
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(a) Show that if I is countable, f∞i : X∞ → Xi is surjective for all i .
(b) The aim is to show that the countability assumption can be omitted: let E be

an uncountable infinite set and F a countable infinite set. For any countable subset
A of E, let XA be the set of injective maps from A to F for which the complement of
the image is infinite; for B ⊂ A, denote by pA

B the restriction XA → XB. Show that
the maps pA

B are surjective, but that the inverse limit of the sets XA is empty.

5.—The aim is to prove the following result:

Theorem (Mittag-Leffler) Let (0→ E′i
ui→ Ei

vi→ E′′i → 0, ( f ′ ji , f j
i , f ′′ ji )) be an

inverse system of exact sequences of Fréchet spaces (i.e. complete and metrizable
vector spaces), indexed by a countable directed set I. Suppose that, for any pair (i, j)
such that j ≥ i , the image of the map f ′ ji : E′j → E′i is dense. Then, passage to the
inverse limit gives an exact sequence 0→ E′∞ → E∞ → E′′∞ → 0.

(a) Show that 0→ E′∞ → E∞ → E′′∞ is an exact sequence.
(b) Show that the question reduces to the case I = N, where En is equipped with

a distance (x, y) �→ pn(x − y), E′n being a closed subspace of En equipped with the
induced distance and all f n+1

n are contraction maps (i.e. pn( f n+1
n (x)) ≤ pn+1(x) for

x ∈ En+1).
(c) Let x ′′ = (x ′′n ) be an element of E′′. Construct inductively a sequence (yn) such

that yn ∈ En , νn(yn) = x ′′n and pn( f n+1
n (yn+1)− yn) ≤ 1

2n .
(d) Set xn,k = f n+k

n (yn+k). Show that, for fixed n, (xn,k)k∈N is a Cauchy sequence
in En . Conclude.

(e) Show that condition “the images of f ′ ji are dense” can be replaced by the
following weaker one:

(∀i)(∃ j ≥ i)(∀k ≥ j) Im f ′ki dense in Im f ′ ji .

6.—Let X be a set with an anti-reflexive symmetric relation R. A k-colouring of X
is a map f from X to a set with k elements such that R(x, y)⇒ f (x) �= f (y). (For
instance, the set X of the regions of a geographical map and R(x, y)⇔ x and y are
adjacent.)

Show that, if every finite subset of X has a k-colouring (for fixed k), so has X.

7.—Let A be a group (resp. a ring) and (In) a decreasing sequence of normal sub-
groups (resp. ideals) With I0 = A. Let (εn) be a sequence approaching 0. A function
h : A→ R+ can be defined by h(x) = εn if x ∈ In − In+1 and h(x) = 0 if x ∈ ∩nIn .
Let d be the mapping A × A to R+ defined by d(x, y) = h(xy−1) (resp. h(x − y)).
Show that

(a) d is a distance on A, the composition law (resp. laws) on A is continuous with
respect to the topology defined by d.

(b) The Hausdorff completion of A with respect to this distance can be identified
with the inverse limit lim←−A/In .

(c) When A = Z and In is the ideal generated by pn where p ∈ Z:
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• for prime p, Ẑp = lim←−Z/pn
Z is an integer ring;

• for p = p1 × p2, with g.c.d.(p1, p2) = 1, Ẑp = Ẑp1 × Ẑp2 ;
• for p = pr

1, Ẑp = Ẑp1 .

(d) The elements of Ẑ10 can be represented by positive non terminating decimal
expansions to the left.

What is the expansion of −1?
Give an algorithm for the decimal expansions of the idempotents of Ẑ10.
(e) Show that the profinite completion 2.9.5 Ẑ of Z can be identified with the

product of Ẑp over primes p.

2.6 Sums and Direct Limits

2.6.1 Definition

Let C be a category, (Xi )i∈I a family of objects of C. The sum of Xi in C, written⊔
i∈I Xi , is the product, if it exists, of all Xi in the opposite category Co, i.e. an

object S of C equipped with a family of morphisms (si : Xi → S)i∈I such that, for
any object T of C and for any family ( fi : Xi → Ti )i∈I of morphisms, there is a
unique morphism f : S→ T for all i ∈ I satisfying f ◦ si = fi .

Let X, Y, S ∈ C, f : S→ X and g : S→ Y morphisms. An amalgamated sum
of X and Y over S with respect to f and g, written X �S Y, is the fibered product (if
it exists) in the opposite category Co (2.5.4 and 2.1.7).

Let X, Y ∈ C, f and g morphisms from X to Y. The cokernel of a double arrow
( f, g) is the kernel of the double arrow ( f, g) (if it exist) in the opposite category Co

(2.5.5).

2.6.2 Examples

The categories considered in the following examples are U-categories, and the index
sets are elements of U.

(1) Let (Xi )i∈I be a family of sets. If the sets Xi are disjoint, then the set
⋃

i∈I Xi

equipped with canonical injections is the sum of all Xi in Ens. In the general case,⊔
i∈I Xi =⋃

i∈I{i} × Xi equipped with maps si defined by si (x) = (i, x) is the sum
of all Xi in Ens.

(2) InTop every family of topological spaces has a sum and the forgetful functor
from Top to Ens commutes with the sum.

Let (Xi )i∈I be a family of topological spaces. The topological space
⊔

i∈I Xi is
given by the summation set

⊔
i∈I Xi equipped with the topology whose open subsets

are
⊔

i∈I Ui , where, for each i , Ui is open in Xi .
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In the following examples, the sums exist but the forgetful functors do not com-
mute with them. To avoid confusion, the sums will be written using a symbol other
than �.

(3) In Gr any family (Gi )i∈I of groups has a sum also called a free product of
the groups Gi . It is written ∗i∈IGi , where G1 ∗ G2 ∗ · · · ∗ Gk if I = {1, ..., k}.

The free product of a family (Gi )i∈I of groups is obtained as follows: let S be the
summation set of the underlying sets of the groups Gi , si : Gi → S the canonical
injections, and M the set

⊔
n∈N Sn . Define a composition law on M by assigning to

the pair ((x1, ..., x p), (y1, ..., yq)) the element (x1, ..., x p, y1, ..., yq) ∈ Sp+q . This
law is associative and has an identity element: the empty set, which is the unique
element of S0. For any group H and any family f = ( fi : Gi → H)i∈I of morphisms,
define a map α f : S→ H by α f ◦ si = fi for all i ∈ I and a map β f : M→ H par
β f (x1, ..., x p) = α f (x1) · · ·α f (x p). The map β is a homomorphism. In M, write
x ∼ y if, for any group H and any family of morphisms f = ( fi : Gi → H)i∈I,
β f (x) = β f (y). This is an equivalence relation compatible with the composition law
of M, and hence there is an associative quotient law with an identity element on L =
M/∼; moreover, setting χ for the canonical map M→ L, the element χ(x1, . . . , x p)

of L has as inverse χ(x−1
p , . . . , x−1

1 ). Hence L is a group. Identify S with S1 and write
λi for the morphism χ ◦ ι1 ◦ si where ι1 is the canonical injection from S1 to

⊔
Sn .

The group L equipped with the morphisms λi is the desired free product.
(4) In the category of Abelian groups, any family (Gi )i∈I of objects has a sum,

called the direct sum of the groups Gi and written
⊕

i∈I Gi . If I is finite, the direct
sum can be identified with the product

∏
i∈I Gi . In the general case,

⊕
i∈I Gi can be

identified with the subgroup of
∏

i∈I Gi consisting of elements having finitely many
non-trivial coordinates.

In general, the free product ∗Gi is not commutative (for example Z ∗ Z); the direct
sum of the groups Gi can be identified with a quotient of the free product.

(5) Let A be a commutative ring. In the category of unital associative commutative
A-algebras, the sum of two algebras E and F is the tensor product algebra E⊗A F
(3.8.15).

2.6.3 Definition

Let C be a category, and I a directed set.
A direct system in C indexed by I is an inverse system in Co indexed by I, i.e. for

every i ∈ I, consists of an object Xi of C and, for every pair (i, j) such that i ≤ j ,
of a morphism f j

i : Xi → X j such that, for all i ,

f i
i = 1Xi ,

and for all i ≤ j ≤ k,

f k
j ◦ f j

i = f k
i .
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2.6.4 Definition

Let C be a category, I a directed set, and ((Xi ), ( f j
i )) a direct system in C. If

((Xi ), ( f j
i )) has a direct limit (X∞, (σi )) in Co, then (X∞, (σi )) is said to be the

direct limit in C of the given direct system. It is written X∞ = lim−→Xi .
In other words, the direct limit X∞ equipped with morphisms σi : Xi → X∞ is

characterized by the following universal property: for all T ∈ C, for all families of
morphisms ( fi : Xi → T)i∈I such that fi = f j ◦ f j

i , for all pairs (i, j) with i ≤ j ,
there is a unique morphism g : X∞ → T such that, for all i , g ◦ σi = fi .

2.6.5 Direct Limits of Sets

Let ((Xi ), ( f j
i )) be a direct system of sets indexed by a directed set I. On the sum-

mation set S =⊔
i∈I Xi define an equivalence relation by setting the class of (i, x)

to consist of all ( j, y) for which there is an upper bound k of i and j such that
f k
i (x) = f k

j (y). The quotient set X∞ = S/∼, together with the maps σi = χ ◦ si ,
where χ is the canonical map S→ X∞ and si the canonical map Xi → S, is the
direct limit of the given system.

The set X∞ together with the maps σi is characterized by the following properties:

(i) σi = σ j ◦ f j
i pour tout (i, j);

(ii) X∞ =⋃
i∈I σi (Xi );

(iii) (∀i ∈ I) (∀x, y ∈ Xi ) σi (x) = σi (y)⇒ (∃ j ≥ i) f j
i (x) = f j

i (y).

Let ((Xi ), ( f j
i )) and ((Yi ), (g

j
i )) be two direct systems of sets indexed by the

same set, and (X∞, (σi )) and (Y∞, (τi )) their direct limits. Then, lim−→(Xi × Yi ) =
X∞ × Y∞. Indeed, X∞ × Y∞, equipped with the maps σi × τi : Xi × Yi → X∞ ×
Y∞, satisfy above conditions (i), (ii) and (iii).

2.6.6

In the categories Gr, Ann, A-Mod, Top, any direct system has a direct limit,
and the forgetful functors commute with the direct limits.

In Top, the direct limit lim−→Xi is obtained by equipping the direct limit X∞ with
the finest topology for which the canonical maps σi : Xi → X∞ remain continuous.
A subset U of X∞ is open with respect to this topology if and only if, for any i ,
σ−1

i (U) is open in Xi .
Note that the space X∞ need not be Hausdorff even if the spaces Xi are.
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2.6.7

Let ((Xi ), ( f j
i )) and ((Yi ), (g

j
i )) be two direct systems of sets indexed by the same

set I, and (ϕi : Xi → Yi )i∈I a morphism of direct systems (i.e. a family of maps
commuting with all f j

i and g
j
i ). Write ϕ∞ for the map from X∞ to Y∞ induced

by the morphisms the ϕi on passing to the direct limit. If the ϕi are injective (resp.
surjective), ϕ∞ is injective (resp. surjective); in general,

ϕ∞(X∞) = lim−→ϕi (Xi ) .

Remark If ((Xi ), ( f j
i )) and ((Yi ), (g

j
i )) are inverse systems of sets, and if (ϕi )i∈I

is a morphism of inverse systems such that, for all i , ϕi is injective, then ϕ∞ is also
injective; but if, for all i , ϕi is surjective, ϕ∞ need not be surjective (2.5, Exercise 4).

2.6.8 Direct Limit of Categories

If C is a category, write Fl(C) for the set of morphisms of C, namely

Fl(C) =
⊔

(X,Y)∈C×C
Hom(X, Y) ,

and define the maps α and β from Fl(C) to C by α( f ) = X and β( f ) = Y if
f ∈ Hom(X, Y). The composition law is a map (Fl(C), β)×C (Fl(C), α)→
Fl(C).

Let ((Ci ), (F
j
i )) be a direct system in Cat: all Ci are categories and F j

i functors.
Define a category C∞ by setting its objects to be the direct limits Ci and by setting
Fl(C∞) = lim−→Fl(Ci ), the maps α and β and the composition law being induced
by the corresponding maps in Ci on passing to the direct limit.

The category C∞ obtained is the direct limit of the given system in Cat.
Let X and Y be objects of C∞, and let (i, A) and ( j, B) be representatives of X

and Y respectively. Then

HomC∞(X, Y) = lim−→
k≥i,k≥ j

HomCk (F
k
i (X), Fk

j (Y)) .

Exercises 2.6. (Sums and direct limits)
1.—Let C be a category with sum. Let X ∈ C, and i1 and i2 the canonical morphisms
from X to X � X. The codiagonal morphism of X is the unique morphism ∇ : X �
X→ X such that ∇ ◦ i1 = ∇ ◦ i2 = 1X. Describe the codiagonal morphism in the
following categories: Ens, the category Top of point spaces (topological spaces
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with what is known as a basepoint, the morphisms from X to Y being the continuous
maps from X to Y sending the basepoint of X to the basepoint of Y), A-Mod, and
the category Gr of unital associative commutative algebras over a ring A.

2.—Let C be a product category with sums, having an object O which is both
initial and terminal. For X, Y ∈ C, let OX,Y be the unique morphism from X
to Y which can be factorized through O, and define ϕX,Y : X � Y→ X× Y by
ϕX,Y ◦ i1 = (1X, OX,Y) and ϕX,Y ◦ i2 = (OY,X, 1Y).

(a) Suppose that, for all X and Y, the morphism ϕX,Y is an isomorphism. For every
object X, define αX : X× X→ X by αX = ∇X ◦ ϕ−1

X,X, where ∇X is the codiagonal
morphism of X. Show that αX is a commutative and associative law in C. For all
X, Y, the morphism αY gives a composition law αX,Y on Hom(X, Y). This law
is associative, commutative and has OX,Y as identity element. Let X, Y, Z ∈ C.
For fixed f ∈ Hom(X, Y) (resp. for g ∈ Hom(Y, Z)), the map g �→ g ◦ f (resp.
f �→ g ◦ f ) is a homomorphism from Hom(Y, Z) (resp. Hom(X, Y)) to Hom(X, Z).

(b) Assume that, for all X, Y ∈ C, there is a composition law μX,Y on Hom(X, Y)

with OX,Y the identity element. Suppose that, as above, the maps g �→ g ◦ f and
f �→ g ◦ f are homomorphisms. Show that ϕX,Y is an isomorphism for all X and Y,
and that μX,Y = αX,Y. In particular μX,Y is associative and commutative.

3.—Let X be a Hausdorff topological space.

(a) Show that the following conditions are equivalent:

(i) X is the direct limit of compact subspaces;
(ii) A subset A of X is closed if and only if, for any compact subspace K of X,

A ∩ K is closed.

(b) Show that every metrizable space is the direct limit of compact subspaces and
that the same holds for every locally compact space.

(c) Show that in the category C of Hausdorff direct limits of compact subspaces,
there are products and that the product X× Y in C of X, Y ∈ C is the set X× Y
equipped with a topology finer than the product topology. Give examples where these
two topologies agree.

(d) In R
(N), write Xn for the union

⋃
k≤n[0, ek] (where the elements en form the

canonical basis of R
(N)) equipped with the topology induced by that of R

N. Set
X = lim−→Xn (i.e.

⋃
Xn) equipped with the direct limit topology. For any sequence

ε = (εn) of strictly positive numbers, set Vε =⋃ [0, εnen[.
Show that the sets Vε form a fundamental system of neighbourhoods in X, and

that any compact subset of X is contained in some Xn .
(e) Let Y be the unit ball of �2. Write ( f p)p∈N∗ for the canonical Hilbert basis of

Y. In X× Y, for any n ∈ N
∗, consider the set An =

{(
1
p en,

1
n f p

)}
. Show that An is

closed in X× Y. Let A =⋃
An . Show that the intersection of A and of a compact

subset of X× Y is closed, but that every neighbourhood of 0 meets A.
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Deduce that the topology of the product X× Y in the category C is strictly finer
than the product topology.

4. (Alternative proof of the existence of the free product of a family of groups.) Let
(Gi )i∈I be a family of groups.

(a) (Lemma about cardinality.) Let H be a group and ( fi : Gi → H)i∈I a family
of homomorphisms. Show that the cardinality of the subgroup of H generated by all
fi (Gi ) is bounded above by the supremum ש of the cardinalities of I, Gi and ℵ0.

(b) Let X be a set with cardinality ,ש and � the set of pairs (H, f ), where H is
a group whose underlying set is contained in X and f = ( fi )i∈I a family of homo-
morphisms fi : Gi → H.

Set P =∏
(H, f )∈� H and write ϕi for the homomorphism ( fi )(H, f )∈� from Gi to

P. Show that the subgroup L of P generated by all ϕi (Gi ), equipped with the family
of homomorphisms (ϕi )i∈I is a free product of the groups Gi .

5.—With the notation of 2.6.2, Example 3, an element of Sn is called a word of
length n. A word (x1, ..., xn) is said to be reduced if no xk is the identity element for
k ∈ {1, ..., n}, and if xk and xk+1 belong to different groups for k ∈ {1, ..., n − 1}.

(a) Show that every element of the free product L can be represented by a reduced
word.

(b) Give an algorithm associating to any two reduced words (x1, ..., x p) and
(y1, ..., yq) a reduced word of length à ≤ p + q representing the same element of
L as (x1, ..., x p, y1, ..., yq). Show that the law thereby defined in the set of reduced
words is associative.

(c) Deduce that every element of L can be uniquely represented by a reduced
word.

2.7 Adjoint Functors

2.7.1 Definition

Let C and C′ be categories, F : C→ C′ and G : C′ → C functors. G is said to be
a right adjoint to F, or F a left adjoint to G, if the functors

(X, Y) �→ HomC′(F(X), Y) and (X, Y) �→ HomC(X, G(Y))

from Co ×C′ to Ens are isomorphic.
When this is the case, for the sake of simplicity, one writes:

HomC′(F(X), Y) = HomC(X, G(Y)) .
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2.7.2

Proposition Let C and C′ be categories. A functor F : C→ C′ has a right adjoint
if and only if, for all Y ∈ C′, the contravariant functor X �→ Hom(F(X), Y) from C

to Ens is representable.

Proof The condition is obviously necessary. We show that it is sufficient. Let Ĉ0

be the category of representable contravariant functors from C to Ens. By def-
inition, the functor � : X �→ X̂ from C to Ĉ0 is fully faithful (2.4.12, proposi-
tion) and essentially surjective. Hence it is an equivalence of categories (2.3.5). Let
M : Ĉ0 → C be a functor such that � ◦M is isomorphic to the identity functor
of Ĉ0. Let H : C′ → Ĉ0 be the functor defined by H(Y)(X) = Hom(F(X), Y). Set
G = M ◦ H. Then � ◦ G(Y)(X) = Hom(X, G(Y)), and � ◦ G = � ◦M ◦ H ≈ H.
So F and G are adjoint functors. �

2.7.3

Proposition Let C and C′ be two categories and G a functor from C′ to C. If G
admits a left adjoint, then G commutes with products, kernels of double arrows,
fibered products and inverse limits when these exist.

Proof We only give the proof for inverse limits, the other cases being similar. Let
F be a left adjoint to G. Let (Yi ) be an inverse system of objects of C′ having an
inverse limit. Then, for all X ∈ C

Hom(X, G(lim←−Yi )) = Hom(F(X), lim←−Yi ) = lim←−Hom(F(X), Yi )

= lim←−Hom(X, G(Yi )) = Hom(X, lim←−G(Yi ))

and so G(lim←−Yi ) is an inverse limit of (G(Yi )). �

Corollary Let F be a functor from C to C′. If F admits a right adjoint, then F
commutes with sums, amalgamated sums, cokernels of double arrows and direct
limits when these exist.

Proof Apply the proposition to opposite categories.

2.7.4 Examples

(1) Let C be the category of normed vector spaces over R and C′ the category of
Banach spaces. The functor from C to C′ which assigns to every normed space its
completion is a left adjoint to the inclusion functor from C′ to C. Indeed, for any
normed space E and any Banach space F, L(̂E, F) = L(E, F).
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(2) Let A be a ring. The functor from Ens to A-Mod which assigns to
every set X the free module A(X) constructed on X is a left adjoint to the for-
getful functor A-Mod→ Ens. Indeed, for any set X and any A-module E,
HomA-Mod(A(X), E) = HomEns(X, E) (3.4.6).

Similarly, the functor from Ens to the category A-Alg of unital associative
commutative algebras which assigns to each set X the polynomial algebra A[X] is a
left adjoint to the forgetful functor from A-Alg to Ens.

(3) Let A and B be two rings and A→ B a ring homomorphism. The extension
of scalars functor E �→ B⊗A E from A-Mod to B-Mod is a left adjoint to the
restriction of scalars functor B-Mod→ A-Mod. Indeed, for any A-module E
and any B-module F, HomB(B⊗A E, F) = HomA(E, F).

(4) Let A be a commutative ring and F an A-module. The functor E �→ E⊗A F
from the category A-Mod to itself is a left adjoint to the functor G �→ HomA(F, G).
Indeed, if E and G are A-modules, then HomA(E⊗A F, G)=HomA(E, HomA(F, G)).

(5) Let Y be a locally compact space. The functor X �→ X× Y from the category
Top to itself has for right adjoint à the functor Z �→ C(Y, Z), where C(Y, Z) is
the set of continuous functions from Y to Z equipped with the topology of compact
convergence.

(6) Let C be the category of point spaces, i.e. of pairs (X, x0) where X is a
topological space and x0 ∈ X, with

HomC((X, x0), (Y, y0)) = { f : X→ Y | f continuous and f (x0) = y0} .

For (X, x0) ∈ C, let �(X, x0) be the loop space of (X, x0), i.e. the set of continuous
maps γ : [0, 1] → X such that γ (0) = γ (1) = x0, equipped with the topology of
compact convergence and basepoint x̄0 : t �→ x0. This defines a functor � from the
category C to itself. This functor admits a left adjoint S defined as follows: S(X, x0)

is the quotient space of X× [0, 1] by the equivalence relation contracting the set

(X× {0}) ∪ (X× {1}) ∪ ({x0} × [0, 1])

to a point, equipped with this point as basepoint.
In other words, for X, Y ∈ C, Hom(S(X), Y) = Hom(X,�(Y)). The space S(X)

is called the reduced suspension of X.

2.7.5

Let C and C′ be categories, F : C→ C′ and G : C′ → C functors such that G is the
right adjoint to F. Write FX for F(X), GF for G ◦ F, etc. Define a functorial morphism
α : 1C→ GF by setting αX to be the element of HomC(X, GFX) corresponding to
1FX ∈ HomC′(FX, FX). If u : X′ → X is a morphism of C, the morphism F(u) ∈
HomC′(FX′, FX) is the one that can be identified with αX ◦ u ∈ HomC(X′, GFX).
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Likewise define βY ∈ HomC′(FGY, Y) corresponding to 1GY, and for v ∈
HomC(Y, Y′) the morphism G(v) ∈ HomC(GY, GY′) can be identified with v ◦
βY ∈ HomC′(FGY, Y′).

Proposition With this notation, F is fully faithful if and only if α is an isomorphism.

Proof (a) Suppose α is an isomorphism. For X and X′ in C , the map u �→ αX ◦ u is
a bijection of HomC(X′, X) onto HomC(X′, GFX) = HomC′(FX′, FX), which must
be FX′,X.

(b) Conversely, suppose F is fully faithful. For X ∈ C, the map u �→ αX ◦ u =
F(u) from HomC(GFX, X) to HomC(GFX, GFX) = HomC′(FGFX, FX) is a bijec-
tion. Hence there is a unique w ∈ HomC(GFX, X) such that αX ◦ w = 1GFX. Then
αX ◦ w ◦ αX = αX, namely F(w ◦ αX) = F(1X), and so w ◦ αX = 1X, and αX is an
isomorphism with α−1

X = w, �

Corollary G is fully faithful if and only if β is an isomorphism.

Apply the proposition to opposite categories.
Comments. Hence if F is fully faithful, the functor GF is isomorphic to 1C. In other
words, for a fully faithful functor, a right adjoint functor is a left inverse up to
isomorphism (the side change is only due to conventions regarding composition).

Saying that F is fully faithful means that F is an equivalence betweenC and the full
subcategory of C′. A right or left adjoint then gives a “retraction up to isomorphism”
from C′ onto C. Note that, if F admits a right and a left adjoint, they need not
necessarily be isomorphic (2.7, Exercise 3).

For examples, see 2.7.4, Example 1 for the corollary, and 2.7, Exercises 1 and 2
for the proposition.

2.7.6 Topology and Algebra

For any compact space X, let C(X) denote the algebra of continuous functions
X→ C. This defines a contravariant functor C from the category K of compact
spaces and continuous maps to the category A of unital associative commutative
Banach algebras over C and unital continuous algebra homomorphisms. To com-
plete the definition of C as a functor, it remains to specify that f ∗h = h ◦ f for
f : X→ X′ continuous and h ∈ C(X′).

We will show that the contravariant functor C is fully faithful 2.7.8, and admits
an adjoint S (2.7.7, where we will indicate in what sense).

Comments. The functor C thus establishes an analogy between the category K and
the opposite category Ao. This is our first encounter with a very general and fruitful
situation, where topological or geometric objects are made to correspond to algebraic
ones (in Banach algebras, the norm does not really play any role, see 2.7.7, Lemma
2). Thus, the algebra of C∞-functions from M to R corresponds to the C∞-manifold
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M, and the algebra of functions induced on X by polynomials, etc. to an algebraic
variety.

Concepts or viewpoints can thereby be transferred from a topological or geo-
metric framework to an algebraic one, where their domain of validity is extended.
In turn, in a given algebraic situation, thanks to versions of the functor S, topolog-
ical objects can be constructed, enabling us to apply geometric reasoning. This is
what Grothendieck’s “theory of schemes” consists in (an important part of the initial
algebraic data is retained in the structure to avoid any loss of information). More
generally, this method underscores every important recent progress in algebra and
arithmetic.

As the correspondence is not perfect, the geometric framework is enhanced by
“forcing” it (algebraic geometry with nilpotent elements, and more recently “non-
commutative geometry”).

Chapter 6 addresses situations where this correspondence is reflected by an equiv-
alence of categories (6.2.4 and 6.3.5).

2.7.7 Spectra and Gelfand Transforms

We keep the notation of 2.7.6. Let A be a unital associative commutative Banach
algebra over C, and S(A) the set of all unital algebra homomorphisms A→ C,
equipped with the weak topology. Then S(A) is a compact space (Lemma 3 below)
called the spectrum of A. For a ∈ A, define â : S(A)→ C by â(ξ) = ξ(a). The
function â is continuous, and a �→ â is a homomorphism �A : A→ C(S(A)), called
the Gelfand transform.

Proposition The compact space S(A), together with �A, satisfies the following
universal property:

For all compact spaces X and unital algebra homomorphisms � : A→ C(X),
there is a unique continuous map ϕ : X→ S(A) such that � = ϕ∗ ◦�A.

This can be restated in terms of categories as follows:

Corollary For X∈Kand A∈A, the map�X,A : ϕ �→ ϕ∗ ◦�A from HomK(X, S(A))

to HomA(A, C(X)) is a bijection. The family of maps �X,A is an isomorphism of
functors fromKo ×Ao toEns. Thus S : Ao →K is a right adjoint to C :K→ Ao.

Comments. Since C and S are contravariant functors, to use the given definition of
adjoint functors, they must be made covariant by replacing one of the two categories
K and A by its opposite. We have chosen to do so for A. Were K chosen, S would
become the left adjoint of C.

The corollary follows from the proposition by a direct application of Proposition
2.7.2. The proof of the proposition uses the following lemmas:

Lemma 2.1 Let A ∈ A. Every algebra homomorphism ϕ : A→ C is continuous
and has norm ≤1.
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Proof Since ϕ(1)2 = ϕ(1), ϕ(1) = 1 or 0. If ϕ(1) = 0, then ϕ = 0; we may assume
that ϕ(1) = 1.

Were ϕ not continuous and its norm �≤ 1, then there would exist u ∈ A such that
|ϕ(u)| > ‖u‖. We may assume that ϕ(u) = 1. As ‖u‖ < 1, 1− u is invertible and
ϕ(1− u) = 0, we get a contradiction. �

Lemma 2.2 Let A ∈ A and X ∈K. Every algebra homomorphism ϕ : A→ C(X)

is continuous and has norm ≤1.

Proof By Lemma 1, for all x ∈ X, the map a �→ ϕ(a)(x) is continuous and has norm
≤1. So |ϕ(a)(x)| ≤ ‖a‖, and

(∀a ∈ A) ‖ϕ(a)‖ = sup
x∈X
|ϕ(a)(x)| ≤ ‖a‖,

�

Lemma 2.3 Let A ∈ A. The set S(A) = HomA(A, C), equipped with the weak
topology, is compact.

Proof Let Dr to be the closed disk of radius r(∈ R+) in C. By Lemma 1, the space
S(A) is a subspace of

∏
a∈A D‖a‖ which, by Tychonoff’s theorem, is compact. The

set S(A) being defined by the equalities

ϕ(a + b) = ϕ(a)+ ϕ(b) ,

ϕ(ab) = ϕ(a) · ϕ(b), ϕ(1) = 1 ,

is closed in
∏

a∈A D‖a‖, and so is compact. �

Proof of the Proposition The set HomK(X, S(A)) of all continuous maps from X
to S(A) equipped with the weak topology, can be identified with the set of functions
f : X× A→ C satisfying:

(i) for a ∈ A, the map x �→ f (x, a) is continuous;
(ii) for x ∈ X, a �→ f (x, a) is a (necessarily continuous) unital algebra homomor-

phism.

This set can be identified to the set of (necessarily continuous) unital algebra
homomorphisms A→ C(X). Hence

HomK(X, S(A)) = HomA(A, C(X)) ,

and, for X = S(A), the homomorphism corresponding to the identity element is
readily seen to be the Gelfand transform. �
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2.7.8

Proposition The contravariant functor C :K→ A is fully faithful.

Proof Thanks to Proposition 2.7.7, all we need to prove is that, for a compact space
X, the natural map X→ S(C(X)) is a homeomorphism. This map is x �→ δx , where
δx ( f ) = f (x). It is clearly continuous. Since X is compact, it is sufficient to show
that it is bijective, i.e. that every homomorphism ξ : C(X)→ C is of type δx for
some unique x ∈ X.

Hence let ξ : C(X)→ C be a homomorphism, m its kernel and V(m) the inter-
section of all h−1(0) for h ∈ m. Were the set V(m) empty, there would be a finite
family h1, . . . , hk in m without any common roots; then h1h1 + · · · + hkhk would
be a function everywhere > 0, hence invertible, and so 1 ∈ m, an absurdity.

Let x ∈ V(m). Then Kerξ ⊂ Kerδx , but both are hyperplanes, and so Kerξ =
Kerδx . Since ξ(1) = δx (1) = 1, ξ = δx . Hence the map x �→ δx is surjective.

Injectivity follows from Urysohn’s theorem: if x and y are two distinct points
of X, then there is a continuous function h : X→ C for which h(x) �= h(y). So
δx (h) �= δy(h), which implies that δx �= δy . �

Exercises 2.7. (Adjoint functors)
1.—Let G be a group. The commutator group of G is the subgroup G′ of G generated
by all elements xyx−1 y−1, where x, y ∈ G.

(a) Show that G′ is normal and that A(G) = G/G′ is commutative.
(b) Show that the functor G→ A(G) from Gr to the category Ab of Abelian

groups is the adjoint to the inclusion functor Ab in Gr; determine whether it is a
left or right one; state this property in elementary terms.

(c) Show that there is no adjoint functor on the other side.

2.—Let X be a topological space, I the segment [0, 1] and E the set of continuous
maps from X to I. Define a map δ : X→ IE by δ(x) = ( f (x)) f ∈E. Equip IE with the
product topology. Then δ is continuous. The Cech compactification of X, written X̌,
is the closure of δ(X) in IE.

(a) The space X is said to be completely regular if, for all all neighbourhoods U
of all elements x ∈ X, there is a continuous function f : X→ I such that f (x) = 1
and f |�U = 0. Show that:

• if X is completely regular, then δ induces a homeomorphism from X onto a subset
of X̌;
• if X is compact, then X̌ = X;
• if X is locally compact, then X is open in X̌.
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(b) Let K be a compact space, and f : X→ K a continuous map. Show that there
is a continuous map f̌ : X̌→ K such that f = f̌ ◦ δ. State this property in terms of
adjoint functors.

(c) Is there an adjoint functor on the other side?

3.—LetToplcbe the category of locally connected topological spaces, and identify
Ens with the full subcategory of discrete spaces. Show that the inclusion functor
ι : Ens→Toplc has both a left and a right adjoint, and that these are not equal.

4. (Fourier series.)—Consider the Banach space �1(Z) consisting of complex
sequences a = (an)n∈Z such that

∑ |an| <∞, equipped with the norm defined by
‖a‖ =∑

n∈Z |an|. Set a(n) = an , and define the basis element en by en(p) = 1 if
p = n and 0 otherwise.

(a) Show that there is a unique continuous bilinear multiplication law ∗ on �1(Z)

such that ep ∗ eq = ep+q for p, q ∈ Z. This law is called convolution. Let A be the
algebra obtained by equipping �1(Z) with it. Write cn in terms of the elements ap

and bq when c = a ∗ b.
(b) Show that if ξ : A→ C is a unital homomorphism, then ‖ξ(e1)‖ = 1. Show

that S(A) can be identified with the unit circle of C, i.e. with T = R/Z.
Show that, for a ∈ A, the Gelfand transform â : T→ C is given by the formula

for Fourier series â(t) =∑
n∈Z ane2iπnt .

(c) Show that the elements an can be retrieved from â by the inverse Fourier for-
mula an =

∫
T

â(t)e−2iπnt dt . Deduce that the Gelfand transform of � : A→ C(T)

is injective.
For g ∈ L1(T, C), i.e. integrable over T with values in C, set ĝ(n) = ∫

T
g(t)e−2iπnt

dt (nth Fourier coefficient of g).
(d) The aim is to show that � is not surjective. We remind the reader of the
Banach Theorem The inverse of a continuous bijective linear map between

Banach spaces is continuous.
Let g : T→ C be the function taking value 1 on [0, 1/2] and −1 on ]1/2, 1].

Show that
∑ |ĝ(n)| = ∞.

For k > 4, let fk be the continuous function, affine on [−1/k, 1/k] and on
[1/2− 1/k, 1/2+ 1/k], and agreeing with g elsewhere. Show that

∑
n f̂k(n) tends

to ĝ(n) as k →∞ for fixed n. Deduce that the upper bounds of
∑

n | f̂k(n)| depend
on k. Conclude.

(e) Give an explicit example of a continuous function on T which is not the Gelfand
(here Fourier) transform of �1(Z).

2.8 Profinite Spaces

In this section and the next one, we study profinite spaces and groups with infinite
Galois theory in mind.



2.8 Profinite Spaces 59

2.8.1 Pro-objects of a Category

Let C be a category. Define a category C←− as follows: an object of C←− is an inverse

system2 ((Xi )i∈I, ( f j
i )i≤ j ) in C. If X = (Xi )i∈I, and Y = (Y j ) j∈J are two objects of

C←−, set Hom(X, Y) = lim←−
j

lim−→
i

Hom(Xi , Y j ). Let X = (Xi )i∈I, Y = (Y j ) j∈J and Z =
(Zk)k∈K be inverse systems, ϕ = (ϕ j ) ∈ Hom(X, Y), where ϕ j ∈ lim−→Hom(Xi , Y j ),
and ψ = (ψk) ∈ Hom(Y, Z). Define ψ ◦ ϕ as follows: for all k ∈ K, let ( j, ν), where
j ∈ J and ν ∈ Hom(Y j , Zk), be a representative of ψk , and define ωk = ν ◦ ϕl ∈
lim−→Hom(Xl, Zk). The element ωk is independent of the choice of ( j, ν).

Indeed, if ( j ′, ν ′) is another representative of ψk , then there exists j ′′ greater
than j and j ′ such that ν ◦ g

j ′
j = ν ′ ◦ g

j ′′
j ′ , and so ν ◦ ϕ j = ν ◦ g

j ′
j ◦ ϕ j ′′ = ν ′ ◦ g

j ′′
j ′ ◦

ϕ j ′′ = ν ′ ◦ ϕ j ′ . Then ωk = hk ′
k ◦ ωk ′ . Thus the family (ωk)k∈K defines an element

ψ ◦ ϕ = ω ∈ Hom(X, Z). Checking that C←− is a category is tedious but not difficult.

The objects of C←− are called pro-objects de C. Considering an object of C as an

inverse system indexed by a singleton identifies C with a full subcategory of C←−. A

functor F←− : C←−→ C←−
′ corresponds to a functor F : C→ C′. If F is an equivalence

of categories, so is F←−.

2.8.2 Totally Disconnected Spaces

A topological space X is said to be totally disconnected if for any two distinct
elements x and y of X, there is a clopen (both open and closed) subset U of X such
that x ∈ U and y /∈ U.

Examples The discrete spaces, the field Q of rationals, the Cantor set {0} ∪ {1/n}n∈N,
are totally disconnected spaces.

Every subspace of a totally disconnected space is totally disconnected. Every
product E =∏

Ei of totally disconnected spaces is totally disconnected. Indeed, let
x and y be distinct elements of E. Their projections on at least some Ei must be
different. Let i be such that xi �= yi and U be a clopen subset in Ei containing x but
not y. Then the inverse image of U in E is clopen in E, contains x but not y.

Every inverse limit of totally disconnected spaces is totally disconnected.

2More precisely, assume there is an universe U (2.1.3) such that C ⊂ U. For the definition of C←−,

we only consider inverse systems (Xi )i∈I such that I ∈ U. Then C←− ⊂ U.
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2.8.3

Proposition and Definition Let X be a topological space. The following conditions
are equivalent:

(i) X is compact and totally disconnected;
(ii) X is homeomorphic to the inverse limit of an inverse system of finite discrete

sets.

If these conditions are satisfied, then X is said to be a profinite space.

Proof (ii) ⇒ (i). Let (Xi ) be an inverse system of finite discrete sets such that
lim←−Xi = X. Then X is closed in the product

∏
Xi , which is compact by Tychonoff’s

theorem (1.7.7) and totally disconnected since so are all Xi . Hence X is compact and
totally disconnected.

(i)⇒ (ii). Let � be the set of equivalence relations λ on X such that the quotient
Xλ is finite and discrete, and for all x ∈ X denote by xλ the class of x for the relation
λ. Write λ ≤ μ if μ is finer than λ. The set � is a directed set. Indeed, ∀λ ∈ �

∀λ′ ∈ � the map x �→ (xλ, xλ′) from X to Xλ × Xλ′ defines an equivalence relation
μ on X finer than λ and λ′.

Let Xλ form an inverse system. For all x ∈ X, (xλ)λ∈� ∈ lim←−Xλ. We show that
the map θ : x �→ (xλ)λ∈� from X to lim←−Xλ is a homeomorphism. It is obviously
continuous. Since X is compact, it is image-closed and if θ is injective, θ is a home-
omeorphism onto its image. Hence it is sufficient to show that θ is injective and
image-dense. Let x �= y ∈ X and let (U, V) be a partition of X into two open subsets
such that x ∈ U and y ∈ V. For the relation λ associated to this partition, xλ �= yλ,
and so the images of x and y in lim←−Xλ are distinct. Consequently θ is injective.

The homomorphism θ is image-dense because of the following lemma:

Lemma Let X be a set, (Yλ) an inverse system of topological spaces,
f : X→ lim←−Yλ a map. If, for all λ, the map fλ : X→ Yλ induced by f is sur-
jective, then f is image-dense.

Let a = (aλ)λ∈� ∈ lim←−Yλ. For every finite family λ1, ..., λk ∈ � the set Vλ1,...,λk

(a) = {b = (bλ)λ∈�, (∀i = 1, ..., k) bλi = aλi } is a neighbourhood of a and the sets
Vλ1,...,λk (a) form a fundamental system of neighbourhoods of a. Let L = {λ1, ..., λk}
be a finite subset of � and μ an upper bound of L in �. Let x ∈ X be such that
fμ(x) = aμ; for all λi ∈ L, fλi (x) = aλi and Im f ∩ Vλ1,...,λk (a) is non-empty. Hence
f is image-dense. �

2.8.4

Let E be the category of profinite spaces and continuous maps and Setf that of
finite sets. The category E is a full subcategory of Top.
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Theorem The functor F : (Xi )→ lim←−Xi from Setf←−−− to E is an equivalence of cat-

egories.

Definition 2.8.3 states that F is essentially surjective. We show (2.8.6) that F is
fully faithful. For this the following lemma is needed:

2.8.5

Lemma Let (Xi , f j
i ) be an inverse system of finite sets. Denote by (X∞, f∞i ) its

inverse limit. Then
(∀i) (∃ j ≥ i) Im f∞i = Im f j

i .

Proof Let x ∈ Xi . For all j ≥ i , set Y j = ( f j
i )−1(x). These form an inverse system

of finite sets and lim←−Y j = ( f∞i )−1(x). Since

x ∈ ∩Im f j
i ⇐⇒ ∀ j ≥ i Y j �= ∅⇐⇒ lim←−Y j �= ∅⇐⇒ x ∈ Im f∞i

by 2.5.14,
⋂

j≥i Im f j
i = Im f∞i . The family (Im f j

i ) j≥i is a decreasing family of
finite sets, whose intersection is equal to one of them. �

2.8.6

Proposition Let (Xi , f j
i ) be an inverse system of finite sets and Y a finite set. Then,

HomTop(lim←−Xi ;Y) = lim−→HomEns(Xi ;Y) .

Proof Let ϕ ∈ lim−→HomEns(Xi ;Y). Represent ϕ by ϕi : Xi → Y. The map x =
(xk) �→ ϕi (xi ) from lim←−Xi to Y does not depend on the choice of the representative
ϕi of ϕ. Denote this map by α(ϕ). We show that α is injective and surjective.

Let ϕ and ψ be such that α(ϕ) = α(ψ). Then ϕi and ψi are equal on Im f∞i ,
hence, for some j , also on Im f j

i by Lemma 2.8.5. So ϕ = ψ .
Let ϕ : X∞ → Y be a continuous map, �ϕ (resp. �i ) the graph of the equivalence

relation defined by ϕ (resp. f∞i ) i.e. the inverse image of the diagonal of Y× Y
under the map (ϕ, ϕ) : X∞ × X∞ → Y× Y (resp. of the diagonal of Xi × Xi under
( f∞i , f∞i )). These graphs are all clopen in X∞ × X∞ and, for all i and j ≥ i , � j ⊂
�i . Let � be the diagonal of X∞ × X∞. Then, � ⊂ �ϕ , and � = ∩i�i is closed.

Therefore
∅ = (⋂

i

�i
) ∩ ��ϕ =

⋂

i

(�i ∩ ��ϕ) .
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The intersection of the decreasing closed sets �i ∩ ��ϕ is empty, hence so is one of
them. Thus, there is an index j such that � j ⊂ �ϕ .
Thus f∞j (x) = f∞j (y)⇒ ϕ(x) = ϕ(y).

Therefore there is a map from Im f∞j to Y making the diagram

X∞
f∞j� Im f∞j

Y
�ϕ �

commutative.
By Lemma 2.8.5 there exists k ≥ j such that Im f∞j = Im f k

j . Composing with
f k

j then gives a map ϕk from Xk to Y such that the diagram

X∞
f∞k� Xk

Y

ϕk
�ϕ �

commutes. �

Corollary The functor F of theorem 2.8.4 is fully faithful.

Indeed, if (Xi ) and (Y j ) are two inverse systems of finite sets, then

HomTop(lim←−Xi ; lim←−Y j ) = lim←−
j

HomTop (lim←−Xi ;Y j )

= lim←−
j

lim−→
i

HomEns(Xi ;Y j ) .

Exercises 2.8. (Profinite spaces)
1.—Let X be a compact space.

(a) Let Y be closed in X and let (Vi )i∈I be a directed family of closed sets of X
such that ∩Vi = Y. Show that every neighbourhood of Y contains some Vi .

(b) Let a ∈ X. Show that the intersection of the clopen sets of X containing a is
the connected component of a in X.

(c) A compact space is totally discontinuous as defined in (2.8.2) if and only if
every connected component is reduced to a point.

(d) For the equivalence given in (c), can the assumption of compactness of X be
omitted?

2. (Cantor set.)—Define a sequence (An)n∈N of subsets of [0, 1] as follows:

A0 = [0, 1],
A1 = [0, 1] − ]1/3, 2/3[,
A2 = A1 − (]1/9, 2/9[ ∪ ]7/9, 8/9[).
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Each An is a finite union of closed disjoint intervals and An+1 is the third of the
open middle of An . The set K = ∩n∈NAn is called the triadic Cantor set.

(a) Show that K is a profinite space.
(b) Show that K is the set of elements x of [0, 1] having a base 3 expansion without

the number 1.
(c) Show that K is homeomorphic to {0, 1}N.
(d) Write [0, 1] − K as the disjoint union of intervals ]αi , βi [i∈I, where I is a

countable set. Show that the three sets {αi }, {βi } and K − ({αi } ∪ {βi }) are dense in
K and that the interior of K in [0, 1] is empty.

(e) Show that the quotient of K by the equivalence relation which equates αi and
βi is homeomorphic to [0, 1].

(f) Let (Xn)n∈N be an inverse system of finite sets. Suppose that for all n, f n+1
n :

Xn+1 → Xn is such that, ∀x ∈ Xn , ( f n+1
n )−1(x) contains at least two point. Show

that K is homeomorphic to lim←−Xi .
(g) Show that every metrizable profinite space without isolated points is homeo-

morphic to K.

3.—Let K be the Cantor set and γ ∈ K − ({αi } ∪ {βi }) (see Exercise 2 for nota-
tion). Set X = ((K ∩ [0, γ ])× {0}) ∪ ((K ∩ [γ, 1])× {1}). Show that the projection
(k, i) �→ k from X to K has no continuous section.

4.—Let C be a category having inverse limits.

(a) Define a functor λ : (Xi )i∈I �→ lim←−Xi from C←− to C. Let ι be the inclusion

functorC→ C←−. Show that λ ◦ ι ≈ IC, but that in general λ and ι are not equivalences

of categories.
(b) Let C′ be another category. Show that for every functor F : C′ → C, the

functor F←− from C←−
′ to C←− commuting with inverse limits of objects of C is its

unique extension. Suppose that C′ has inverse limits: does the diagram

C′←−
F←−� C←−

C′
λ′ �

F � C

λ
�

necessarily commute?
(c) Show that, if C = Setf, the inclusion C←−→ C←−←−

is not an equivalence of

categories.
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2.9 Profinite Groups

2.9.1

Proposition and Definition Let G be a topological group. The following conditions
are equivalent:

(i) G is the inverse limit of finite discrete groups;
(ii) the underlying topological of G is profinite.

If these conditions are satisfied, G is said to be a profinite group.

Proof (i)⇒ (ii) is obvious. We show that (ii)⇒ (i).
For any open normal subgroup H of G, the quotient G/H is discrete (because the

inverse image of each point under the canonical projection is open) and compact
(because it is the continuous image of the compact space G in the Hausdorff space
G/H), and so is finite. The canonical homomorphism γ : G→ lim←−

H

G/H (inverse

limit of the set of open normal subsets, relative to the inclusion order) is image-
dense by Lemma 2.8.3; as G is compact, γ (G) is closed and equal to its closure, so
that γ is surjective. We show it is injective. Suppose that x ∈ G is not the identity
element e. There is an open normal subgroup H not containing x . Indeed, as G is
totally discontinuous, there is an open and closed subset U in G such that e ∈ U and
x /∈ U. Set V = {g ∈ G, gU = U}, K = {g ∈ G, gU �⊂ U} and K′ = {g ∈ G, U �⊂
gU}. Then V = G − (K ∪ K′) and V ⊂ U. As the images of U × (G − U) under the
respective continuous maps (x, y) �→ yx−1 and xy−1, the subspaces K and K′ of
G are compact. Hence V is open in G. The subgroup H = ∩g∈GgVg−1 is normal,
its complement G − H is the image of G × (G − V) under (g, x) �→ gxg−1, i.e. the
image of a compact set under a continuous map. So G − H is compact and H is open.
Since G is compact, γ is a homeomorphism. �

2.9.2

Denote by Grf the category of finite groups and by GrTop that of topological
groups.

Proposition The functor G : (Gi )→ lim←−Gi is an equivalence from Grf←−− onto the

category of profinite groups (full subcategory of GrTop).

Proof By 2.9.1, this functor is essentially surjective. We show that it is fully faithful,
i.e. that for G = lim←−Gi and H = lim←−Hi , HomGrTop(G, H) = lim←− lim−→Hom(Gi , H j ).
Passing to the inverse limit, this reduces to the following lemma:

Lemma Let (Gi ) be an inverse system of finite groups, G = lim←−Gi and H a finite
group. Then, HomGrTop(G, H) = lim−→HomGr(Gi , H).
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Proof of the Lemma The canonical map lim−→Hom(Gi , H)→ HomGrTop(G, H) is
injective since it is induced by the canonical bijection lim−→HomEns(Gi , H)→
HomTop(G, H) (2.8.6). We show that it is surjective, i.e. that for any continuous
homomorphism ϕ : G→ H, there is an index j and a continuous homomorphism
ϕ j : G j → H such that ϕ = ϕ j ◦ f∞j . By 2.8.6 there is an index i and a continu-
ous map ϕi : Gi → H such that ϕ = ϕi ◦ f∞i ; the map ϕi is not necessarily a group
homomorphism, but its restriction to f∞i (G) is. By 2.8.5, f j

i (G j ) = f∞i (G) for some
j ≥ i . So ϕ j = ϕi ◦ f j

i : G j → H is a homomorphism and ϕ = ϕ j ◦ f∞j , �

2.9.3

Let G be a topological group and X a topological space. A continuous operation
from G onto X is a continuous map (g, x) �→ g · x from G × X to X which is an
action from G onto X (2.1.2, Example 3).

Remark If X is finite and discrete, an action from G onto X is continuous if and
only if, for all x ∈ X, the stabilizer of x is an open subgroup of G or equivalently that
the homomorphism g �→ (x �→ g · x) from G to the group S(X) of permutations of
X equipped with the discrete topology is continuous.

2.9.4

Let G be a profinite group. Denote by G-Setf the category of finite sets on which
G acts continuously. If G is finite, the category G-Setf is a full subcategory of the
category G-Ens (2.1.2, Example 3). Let ((Gi ), ( f j

i )) be an inverse system of finite
groups. There is a direct system (Gi -Setf) of categories corresponding to it (2.2.6).
Set G = lim←−Gi .

Proposition The category G-Setf is the direct limit of Gi -Setf.

Proof An object of G-Setf is a pair (X, ρ), where X ∈ Setf and ρ ∈ HomGrTop

(G,S(X)). Applying Lemma 2.9.2 to H = S(X) gives HomGrTop(G,S(X)) =
lim−→

i

HomGr(Gi ,S(X)). Therefore,

⊔

X∈Setf
HomGrTop(G,S(X)) =

⊔

X

lim−→
i

Hom(Gi ,S(X))

= lim−→
i

⊔

X

Hom(Gi ,S(X)) ,

i.e. the objects of G-Setf and of lim−→Gi -Setf are the same.
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We show that, for all i and Gi -sets X and Y, HomG-Setf(X, Y) = lim−→
j≥i

HomGrSetf

(X, Y), X and Y being G-sets by f∞i and G j -sets by f j
i . Note that, for all

j , HomGrSetf(X, Y) is a subset of HomEns(X, Y), and so the direct limit of
HomGrSetf(X, Y) amounts to a union. Let us show that a G-morphism ϕ : X→ Y
is a G j -morphism for some j . Now, if ϕ is a G-morphism, then (∀g ∈ G) (∀x ∈ X)

ϕ(g · x) = g · ϕ(x) or (∀g ∈ Im f∞i ) ϕ(g · x) = g · ϕ(x). Choose an index j for
which Im f∞i = Im f j

i (2.8.5). Then, ϕ is a G j -morphism. �

2.9.5

Let G be a group, which can be endowed with the discrete topology. A profinite
completion of G is the inverse limit of the groups G/N, where N runs over all
normal subgroups of finite index in G ordered by reverse inclusion.

Proposition Let G be a discrete group. Denote its profinite completion by Ĝ. Then
the categories G-Setf and Ĝ-Setf are equivalent.

Proof Let X be a finite set. The kernel of a homomorphism from G to S(X) is a nor-
mal subgroup of finite index, and so HomGr(G,S(X)) = lim−→Hom(G/N,S(X)) =
HomGrTop(Ĝ,S(X)). If X and Y are finite G/N-sets, then

HomG(X, Y) = HomG/N(X, Y) = lim−→
N′⊂N

HomG/N′(X, Y) .

Therefore, G-Setf = lim−→(G/N-Setf) = Ĝ-Setf. �

2.9.6

Let G be a profinite group and (Xi ) an inverse system of finite G-sets. Then
X = lim←−Xi is a profinite space on which G acts continuously. Indeed, G × X =
lim←−(G × Xi ), and the action G × X→ X is induced by the actions G × Xi → Xi .

Let G-Prof denote the category of profinite spaces on which G acts continu-
ously.

Proposition Let G be a profinite group. The category G-Prof is equivalent to
G-Setf←−−−−−.

More precisely, the functor G-Setf←−−−−−→ G-Prof which assigns to an inverse

system its inverse limit is an equivalence.

Proof (a) It is essentially surjective. Let X be a profinite space on which G acts
continuously. We know (2.8.3, pf. (i)⇒ (ii)) that X is the inverse limit of the inverse
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system (Xλ)λ∈�, where � is the set of equivalence relations on X with open classes
and Xλ the quotient X/λ. In general, Xλ is not a G-set. We show that the subset �′ of
� consisting of equivalence relations compatible with the action of G on X is cofinal
in �, i.e.

(∀λ ∈ �) (∃μ ≥ λ) x ∼μ y ⇒ (∀g ∈ G) gx ∼μ gy .

Let λ ∈ �, and define μ by x ∼μ y ⇐⇒ (∀g ∈ G) gx ∼λ gy.
The relation μ is finer than λ and is compatible with the action of G. We show

that its classes are open. It suffices to show that the graph �μ of μ is open in

X× X. Consider the maps X× X× G
p�
q
� X× X defined by p(x, y, g) = (x, y)

and q(x, y, g) = (gx, gy).
Then (X× X)− �μ = p(q−1((X× X)− �λ)), where ú �λ is the graph of λ.

Since the classes of λ are open, �λ is open; since X and G are compact, and p and
q continuous, (X× X)− �μ is closed. So �μ is open.

Hence X = lim←−
λ∈�

Xλ = lim←−
μ∈�′

Xμ, where all Xμ are finite G-sets and the identification

is compatible with the actions of G.
(b) It is fully faithful. Let (Xi ) be an inverse system of finite G-sets, and

Y a finite G-set. We show that the natural map α : lim−→HomG-Setf(Xi , Y)→
HomG-Prof(lim←−Xi , Y) is a bijection.

In the following commutative diagram:

lim−→HomG-Setf(Xi , Y) ⊂� lim−→HomSetf(Xi , Y)

HomG-Prof(lim←−Xi , Y)

α
�

⊂� HomTop(lim←−Xi , Y)
�

the arrow on the right is a bijection by 2.8.6, and so α is injective.
We show that it is surjective. Let ϕ : lim←−Xi → Y be a morphism. There is an

index i and a map ϕi : Xi → Y making the diagram

lim←−Xi

Xi

f∞i �

ϕi

� Y

ϕ
�

commutative. The map ϕi is compatible with the action of G on Im f∞i . Choose j
such that Im f j

i = Im f∞i . Then ϕi ◦ f j
i is a G-morphism.

Let (Y j ) be an inverse system of finite G-sets. Then,

lim←−
j

lim−→
i

HomG(Xi , Y j ) ≈ lim←−HomG-Prof( lim←−Xi , Yi )

≈ HomG-Prof(lim←−Xi , lim−→Yi ).

�
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2.9.7

Let G be a profinite group, e its identity element, and for g ∈ G, ρg the right translation
x �→ x · g. Let

.
G be the profinite G-set obtained by making G act on itself by left

translations. The maps ρg are the automorphisms of
.
G.

The pair (
.
G, e) represents the forgetful functor G-Prof→ Ens: for any profi-

nite G-set X, the map x �→ δx , where δx (g) = g · x is a bijection from the set X onto
Hom(

.
G;X), and its inverse is φ �→ φ(e). Then δg·x = δx ◦ ρg .

If X is finite, Hom(
.
G;X) is finite; in the general case X can be written lim←−Xi

with Xi finite. Then Hom(
.
G;X) = lim←−Hom(

.
G;Xi ) is the inverse limit of finite

sets and can be considered a profinite set.
The map (g, φ) �→ φ ◦ ρg defines a left-action of G on Hom(

.
G;X) which can be

identified with the action of G on X defining the G-set structure of X.

2.9.8

Let G and G′ be two profinite groups and φ : G′ → G a morphism (i.e. a continuous
homomorphism). Define a functor φ∗ : G-Prof→ G′-Prof as follows: if X is
a profinite G-set, φ∗X is the space X on which G-acts by (g′, x) �→ φ(g′) · x ; if
f : X→ Y is a morphism of G-sets, then φ∗( f ) = f . This functor induces a functor
G-Ens→ G′-Ens also written φ∗.

If φ is an isomorphism, the functor φ∗ is an equivalence of categories with (φ−1)∗
as inverse.

Conversely:

Proposition Let G and G′ be two profinite groups. If the categories G-Prof and
G′-Prof are equivalent, the profinite groups G and G′ are isomorphic.

Every equivalence of categories � : G-Prof→ G′-Prof is isomorphic to a
functor φ∗, where φ : G′ → G is an isomorphism.

Proof Let � : G-Prof→ G′-Prof be an equivalence of categories. The object
O = ∅ of G-Prof is characterized by Hom(X;O) = ∅ if X �≈ O. Likewise for G′.
Hence �(∅) = ∅.

The group G acts transitively on an object X of G-Prof if and only if there
is no object Y � Z with Y and Z non-empty isomorphic to X. Therefore, if G acts
transitively on X, the group G′ acts transitively on �(X).

If X is an object of G-Prof on which G acts transitively, then X ≈ ·G if and
only if X �= ∅ and Hom(X, Y) �= ∅ for all Y �= ∅. Likewise for G′. Therefore
�(

.
G) ≈ .

G′.
Let α : .

G′ → �(
.
G) be an isomorphism in G-Prof. Then α! : f �→ α ◦ f ◦

α−1 is a group isomorphism from Aut(
.
G′) onto Aut(�(

.
G)). The map �.

G :
Aut(

.
G)→ Aut(�(

.
G)) is also an isomorphism, and so is �−1.

G
◦ α! : Aut(

.
G′)→
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Aut(
.
G). The latter is of the form ρg′ �→ ρφ(g′), where φ : G′ → G is an isomorphism

of profinite groups.
If X is a profinite G-set, define a bijection β = βX : X→ �(X) by the commu-

tativity of the diagram:

X
β � �(X)

Hom(
.
G;X)

x �→ δx �
�� Hom(�(

.
G);�(X))

α∗� Hom(
.
G′;�(X))

x ′ �→ δx ′�

This bijection is a homeomorphism, as can be seen by writing X as an inverse
limit of finite G-sets. We show that βX is a φ−1-morphism:

Let g ∈ G and g′ ∈ G′ be such that g = φ(g′), and x ∈ X. We need to show
that β(g · x) = g′ · β(x), i.e. that δβ(g·x) = δg′·β(x) = δβ(x) ◦ ρg′ . By definition of βX,
δβ(x) = �(δx ) ◦ α. Hence it amounts to showing that �(δg·x ) ◦ α = �(δx ) ◦ α ◦ ρg′ ,
i.e. that �(δg·x ) = �(δx ) ◦ α!(ρg′). However, α!(ρg′) = �(ρg) by definition of φ

since g = φ(g′), and � being a functor, �(δg·x ) = �(δx ◦ ρg) = �(δx ) ◦�(ρg).
Indeed, β(g · x) = β(φ(g′) · x) = g′ · β(x). Hence β = βX can be considered an

isomorphism in G′-Prof from φ∗(X) onto �(X). The family (βX) where X runs
through the objects of G-Prof is a functorial isomorphism from φ∗ onto �. �

Corollary Let G and G′ be two profinite groups. If the categories G-Setf and
G′-Setf are equivalent, then the profinite groups G and G′ are isomorphic.

Every equivalence of categories� : G-Setf→ G′-Setf is isomorphic to a func-
tor φ∗, where φ : G′ → G is an isomorphism.

Indeed every equivalence G-Setf→ G′-Setf can be extended to an equivalence
from G-Prof onto G′-Prof by passing to the inverse limit.

Exercises 2.9. (Profinite Groups)
1.—Let G be a compact group and H an open subgroup of G. Show that H contains
an open normal subgroup.

2.—Show that the category of profinite Abelian groups is anti-equivalent to the
category of torsion Abelian groups (i.e. where every element has finite order) (use
2.3, Exercise 4).

3.—Let � be the set of prime numbers. N
∗ can be identified with �(N). Set Ñ

∗ = �Ñ

o ú Ñ = N ∪ {∞}. The elements of Ñ
∗ are called supernatural numbers. They are

formal products n =∏
p∈� prp , where rp ∈ N. The product n1n2 is defined in the

obvious manner. The support of n is the set of p such that rp �= 0. n1 and n2 are
said to be relatively prime if they have disjoint supports. Let G be a profinite group.
Define the order #G of G to be the supernatural number sup Card (G/N), where N
is subgroup of G of finite index. If H is a closed subgroup of G, define the index
(G : H) of H to be the supernatural number sup Card (G/H′) where H′ is of finite
index and contains H.
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(a) Show that #G = #H · (G : H).
Deduce that there is no non-zero homomorphism from G to G1 when the orders

of G and G1 are relatively prime.
(b) If H1 and H2 are two subgroups of G, let (H1, H2) denote the closed subgroup

generated by all aba−1b−1 with a ∈ H1 and b ∈ H2. Define the lower central series
(Ci ) by C1 = G, Cn+1 = (G, Cn). For p ∈ �, G is said to be a p-group if #G is a
(finite or infinite) power of p.

Show that if G is a profinite p-group, then ∩Ci = {e}. (Assume this result holds
for finite groups.)

(c) Let G be a profinite group, p ∈ �. A Sylow p-subgroup of G is a closed
subgroup which is also a p-group whose index is relatively prime to p. Extend the
following two Sylow theorems to profinite groups:

Theorem 1 Every finite group has a Sylow p-subgroup.

Theorem 2 All Sylow p-subgroups are conjugate.

(The reader may write G as lim←−Gi , where all G j → Gi are surjective, and that for
each i , and consider the set Xi of Sylow p-subgroups of Gi .)

4.—Let G be a compact group, Sα a descending filtration of closed subgroups of G.
Set S = ∩Sα . Show that G/S = lim←−G/Sα .

5.—Let G be a profinite group, F a closed subgroup of G. The aim is to show
the existence of a continuous section from G/F to G (which may not be a group
homomorphism even when F is normal).

(a) Show that, if S is a closed subgroup of F of finite index in F, then there is a
continuous section G/F→ G/S.

(b) Let E be the set of pairs (S, σ ), where S is a closed subgroup of F and
σ : G/F→ G/S is a continuous section. Define an order with respect to which E is
direct.

(c) Using (a), show that S = {e} for any maximal element of E. Conclude. Com-
pare with 2.8, Exercise 3.

Reference

1. N. Bourbaki, Algèèbre, ch. 1 à 3, Hermann, 1970; èAlgèbre, ch. 10, algèbre homologique,
Masson, 1980



Chapter 3
Linear Algebra

Unless stated otherwise, all rings considered in this chapter are assumed to be com-
mutative, to have an identity element, and all homomorphisms to be unital (i.e. to
send the identity onto the identity).

3.1 Integral and Principal Ideal Domains, Reduced Rings

3.1.1 Integral Domains

Let A be a ring. An element a ∈ A is said to be a zero divisor in A if the map x �→ ax
from A to A is not injective.

The ring A is an integral domain if A �= 0 and 0 is its only zero divisor.

3.1.2 Examples of Integral Domains

(1) All subrings of an integral domain.
(2) The ring Z of all integers.
(3) The ring K[X1, ..., Xn] of polynomials in n variables, and the ring K[[X1, ...,

Xn]] of formal series over an integral domain K.1

(4) The ring C{X1, ..., Xn} of convergent power series in n variables.
(5) The ring O(U) of all holomorphic functions on any open and connected subset

U of C.2

1Queysanne [1], §186, Lelong-Ferrand and Arnaudiès [2], cor. of th. 4.7.2, p. 151.
2Lelong-Ferrand and Arnaudiès [3], th. 4.11.2, p. 387.

© Springer Nature Switzerland AG 2020
R. Douady and A. Douady, Algebra and Galois Theories,
https://doi.org/10.1007/978-3-030-32796-5_3
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Counterexamples
The following rings are not integral domains.

(1) The ring C(X, R) of continuous functions on a non-zero metric space X having
more than one point.

(2) The ring E(I) of C∞-functions on a non-empty interval I of R with more than
one point (3.1, Exercise 2).

(3) The product ring of two non-zero rings A and B. Indeed (1, 0) · (0, 1) = (0, 0).

3.1.3 Field of Fractions

Let A be an integral domain. Set A∗ = A − {0}. For (a, b) and (c, d) ∈ A × A∗,
write (a, b) ∼ (c, d) if ad = bc. This defines an equivalence relation on A × A∗; let
K denote the quotient of A × A∗ by this relation, and a/b be the class of (a, b). For
any two elements x and y of K, there are representatives (a, b) and (c, d) of x and
y such that b = d (reduction to the same denominator). Addition in K is defined by
x + y = (a + c)/b, which is an element only dependent on x and y. Multiplication
in A × A∗ is compatible with the equivalence relation and defines a multiplication on
K. Together with these two operations, K is a field called the field of fractions of A.
The map a �→ a/1 from A to K is an injective homomorphism embedding A in K.

Examples (1) Q is the field of fractions of Z.
(2) If K is a field, the field of fractions of the polynomial ring K[X1, ..., Xn] is the

field of rational fractions K(X1, ..., Xn).
(3) If U is open and connected in C, the field of fractions of the ring O(U) of

holomorphic functions on U is the field M(U) of meromorphic functions on U (3.1,
Exercise 17).

3.1.4 Prime Ideals and Maximal Ideals

Let A be a ring and I an ideal of A. I is said to be prime if the quotient A/I is integral.
For the sake of simplicity, I is called maximal if I is maximal among all strict ideals
of A, i.e. if I �= A and there is no ideal J such that I � J � A.

Proposition Let A be a ring and I an ideal of A. Then A/I is a field if and only if I
is maximal.

Proof The ring B = A/I is a field if and only if B �= 0 and its only ideals are 0 and
B. As there is a bijection between the ideals of A containing I, and the ideals of A/I,
the result follows.

Corollary Every maximal ideal is prime.
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Examples (1) The prime ideals in the ring Z are 0 and Zp, where p is a prime
number. The non-zero prime ideals are all maximal. This will be seen to always be
the case in a principal ideal domain.

(2) Let A and B be two rings and ϕ : A → B a homomorphism. If B is an integral
domain, then the ideal Ker ϕ = ϕ−1(0) in A is prime.

(3) Let K be a field. In the ring of polynomials K[X, Y], the ideal (Y) generated
by Y is prime. Indeed, it is the kernel of the homomorphism ρ : K[X, Y] → K[X]
defined by ρ(X) = X, ρ(Y) = 0 (see 3.7.2); in terms of polynomial functions, ρ( f )

is the function x �→ f (x, 0). This ideal is not maximal: it is strictly contained in the
ideal (X, Y).

(4) Let X be a metric space and A the ring C(X, R) or C(X, C). For x ∈ X, the
ideal mx of functions vanishing at x is maximal: it is the kernel of the homomorphism
δx from A onto R or C, where δx ( f ) = f (x). If X is not discrete, then A contains
non-maximal ideals (3.1, Exercise 18).

3.1.5

Proposition (Krull’s Theorem) A nonzero ring A contains at least one maximal
ideal.

Proof The set E of strict ideals of A is direct. Indeed, if (Iλ) is a totally ordered
family of strict ideals, then I =⋃ Iλ is a strict ideal of A since (∀λ) 1 /∈ Iλ, and so
1 /∈ I. By Zorn’s theorem (1.4.3), E has a maximal element, �

Corollary Let A be a ring. Every strict ideal of A is contained in a maximal ideal.

Indeed, the ideals of A containing I correspond to the ideals of A/I.

3.1.6 Nilpotent Elements, Nilradical

Let A be a ring. An element x of A is said to be nilpotent if there exists n ∈ N such
that xn = 0.

Examples (1) In an integral domain, only 0 is nilpotent.
(2) Let X be a topological space. In C(X, R), only 0 is nilpotent.
(3) In the ring A of C∞-functions f : R → R, the functions f such that f (0) =

f ′(0) = 0 form and ideal I. The ring B = A/I is isomorphic to R[X]/(X2). In this
ring, X is nilpotent.

(4) In the ring Z/(1000), the class of 150 is nilpotent. More generally, in Z/(n),
the class of m is a nilpotent element if and only if every prime divisor of n divides m.

Theorem and Definition Let A be a ring. The set N of nilpotent elements of A is
the intersection of prime ideals of A and is called the nilradical of A.
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Proof If x ∈ A is a nilpotent element then, for every prime ideal p, χ(x) = 0, where
χ : A → A/p is the quotient map, since χ(x) is nilpotent in the integral domain A/p.
So x ∈ N.

Conversely, let x ∈ A be a non-nilpotent element, and S = {xn}n∈N. The set E of
ideals I de A such that I ∩ S = ∅ is directed, and so, by Zorn’s lemma, has a maximal
element p. We show that p is prime. Let A′ = A/p and x ′ be the image of x in A′.
The element x ′ is not nilpotent in A′ since p ∩ S = ∅. For any nonzero y ∈ A′, there
exists n ∈ N such that x ′n ∈ A′y; otherwise, the inverse image of A′y in A would
be an ideal J strictly containing p and such that J ∩ S = ∅. If y, z ∈ A′ are nonzero,
then there exists n and p such that x ′n ∈ A′y and x ′p ∈ A′z; so x ′n+p ∈ A′yz, and
thus yz �= 0. Therefore p is prime. As x /∈ p, x /∈ N. �

3.1.7 Reduced Rings

Proposition and Definition Let A be a ring. The following conditions are equiva-
lent:

(i) A does not have any nonzero nilpotent element;
(ii) A is isomorphic to a subring of a product of fields.

If these conditions hold, then A is said to be reduced.

Proof Let � be the homomorphism x �→ (χp(x)) from A to
∏

p∈S Kp, where S is
the set of prime ideals of A and where, for p ∈ S, Kp is the field of fractions of the
integral domain A/p and χp : A → A/p is the quotient map. The kernel of � is the
nilradical of A. If (i) holds, � is injective, implying (ii). The converse is immediate.

�

3.1.8

Let A be a ring. The spectrum of A is the set S of all prime ideals of A. For all p ∈ S,
let Kp denote the field of fractions of the ring A/p. If x ∈ A, define the function x̂
on S by x̂(p) = χp(x) ∈ Kp (its values are in varying fields). Then x̂ + y = x̂ + ŷ,
x̂ y = x̂ ŷ.

If A is reduced, the map x �→ x̂ is injective. Assume A is integral and let K be a
field of fractions of A. For any x = a

b ∈ K, let x̂ be the function defined by x̂ = â
b̂

on the elements q of S for which b̂(q) �= 0. It is said to have a zero of order � k in p
if x of the form a

b with a ∈ pk and b /∈ p. The functions x̂ and ŷ are said to have the

same polar part in p if x̂ − y is defined in p.
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Considering functions x̂ and using the above language enable us to draw on
methods of analysis to solve algebra problems (3.1, Exercises 6 and 16); compare also
the proofs of the Chinese theorem (5.1.5) and of Lagrange’s interpolation formula.3

Let ϕ : A → B be a ring homomorphism. For every prime ideal q of B, ϕ−1(q)
is a prime ideal of A. This gives a map ϕ∗ from the spectrum of B to that of A, and
thus defines a contravariant functor from Ann to Ens. This functor factorizes nat-
urally through the functor Spec from Ann to the category Top of (not necessarily
Hausdorff) topological spaces (see 3.1, Exercise 7).

Comments As in 2.7.6, thanks to the functor Spec : Ann → Top, the opposite
category of rings and Top bear some resemblance.

3.1.9 Principal Ideal Domains

An ideal I in a ring A is said to be principal if I = Ax for some x ∈ A. An integral
domain in which every ideal is principal is a principal ideal domain (PID).

As will be seen, in a principal ideal domain, every nonzero prime ideal is maximal
(3.2.10, Lemma).

3.1.10 Euclidean Rings

As integral domain A is said to be Euclidian if there is a map w from A∗ = A − {0}
to N such that

(S1) (∀x, y ∈ A∗) w(xy) � w(y);
(S2) (∀a ∈ A) (∀b ∈ A∗) (∃ q, r ∈ A) a = bq + r and (r = 0 or w(r) < w(b)).

Proposition Every Euclidean ring is principal.

Proof Let A be a Euclidean ring, w : A∗ → N satisfying (S1) and (S2) and I a nonzero
ideal of A. Choose an element b �= 0 in I such that w(b) is minimum. For all a ∈ I,
there exists q and r in A satisfying the conditions of (S2); then r = a − bq ∈ I, and
soù r = 0 since w(b) is minimum. Hence I is generated by the b. �

3.1.11 Examples

(1) Z is a Euclidian ring: take w(x) = |x |. So it is principal. In fact, every additive
subgroup of Z is a principal ideal domain.

3Queysanne [1], §192, Exercise 5, p. 413, Lelong-Ferrand and Arnaudiès [2], chap. 4, Exercise 17,
p. 476.
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(2) If K is a ring, the ring K[X] is Euclidean (for w( f ) take the degree of f ).
For other examples see 3.1, Exercises 13 and 14. For an example of a non-

Euclidean principal ideal domain, see 3.7, Exercise 9.

Exercises 3.1. (Integral and principal ideal domains, reduced rings)
1.—(a) Let A be a ring. Show that A has idempotents u �= 0, 1 (i.e. u2 = u) if and
only if A = B × C, for some nonzero rings B and C.

(b) Let X be a non-empty topological space. Show that C(X, R) has idempotents
different from 0 and 1 if and only if X is not connected.

2.—(a) Show that the function f : R → R defined by f (x) = e−1/x for x > 0 and
f (x) = 0 for x � 0 is infinitely differentiable. Show that the ring C∞(R, R) of
infinitely differentiable functions on R is not an integral domain.

(b) Show that the convolution ring of distributions with compact support on R

is an integral domain. (Use the fact that the Fourier transform of a distribution with
compact support is analytic, or the existence of the Laplace transform.)

3.—Let ϕ be an analytic map from R to R
2, V = ϕ(R), and I be the ideal of R[X, Y]

consisting of polynomials f such that f (x, y) = 0 for all (x, y) ∈ V.
(a) Show that I is prime.
(b) Give a generating family for I in the following cases:

ϕ(t) = (cos t, sin t) ; (ch t, sh t) ; (cos 2t, cos 3t) ;
(cos t, sin 2t) ; (cos 2t, sin t) ; (t, et ) ;
( 2t

1 + t2
,

1 − t2

1 + t2

)
; (t2 − 1, t3 − t2).

(c) In each case describe the set W of (x, y) such that f (x, y) = 0 for all f ∈ I.
When does W = V?

(d) Give an example showing that, if ϕ is only assumed to be C∞, the ideal I need
not be prime.

4.—Show that a direct (resp. inverse) limit of integral domains is an integral domain.
Can the field of fractions of the limit be identified with the limit of the field of
fractions? Investigate the case where the homomorphisms of the system are injective.

5.—Let A be the quotient ring R[X, Y]/I, where I = (X2 + X3 − Y2).
(a) Construct the curve � = {(x, y) ∈ R

2 | x2 + x3 − y2 = 0}.
(b) Let f ∈ R[X, Y]. Show that f ∈ I if and only if f |� = 0. Deduce that A can

be identified with the ring of functions on � induced by the polynomials.
(c) Show that A is an integral domain (see Exercise 3).
(d) Let m be the ideal of functions of A such that f (0) = 0. The sequence (mk),

k ∈ N gives a fundamental system of neighbourhoods 0 with respect to the topology
on A called the m-adic topology. Show that the completion Â of A with respect to
this topology is not an integral domain.
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6.—(a) Prove that any rational fraction f ∈ C(X) can be uniquely written as
f (z) =∑

i∈I

ci
(z−ai )

ri + P(z), where I is a finite set and P a polynomial. (Expand in

the neighbourhood of each pole.)
(b) Show that the rational number x ∈ Q can be uniquely written as

∑

i∈I

ai

p
ri
i

+ n,

where I is finite, pi primes, ri ∈ N, 0 < ai < pi , n ∈ Z.

7.—Let A be a ring and S its spectrum. If I is an ideal of A, denote by V(I) the set
of p ∈ S such that x̂(p) = 0 for all x ∈ I.

(a) Show that V(
∑

Iλ) =⋂V(Iλ) if (Iλ) is a family of ideals of A.
(b) Show that V(I ∩ J) = V(I · J) = V(I) ∪ V(J) if I and J are ideals of A.
(c) Deduce that the sets of type V(I) are the closed sets of a topology on S.

This topology is called the Zariski topology. Show that, if f : A → B is a ring
homomorphism, then the map f ∗ from the spectrum of B to that of A is continuous
when both spectra are equipped with the Zariski topology.

(d) Describe the Zariski topology on Spec(Z). Show that it is not Hausdorff.
(e) Show that, for any ring A, the space Spec(A) is quasi-compact.
(f) Let I be an ideal of A. Show that the set of x ∈ A such that x̂(p) = 0 for all

p ∈ V(I) is the set of x such that (∃r) xr ∈ I.

8.—For every open subset U of C, let O(U) be the ring of holomorphic functions on
U, and for every compact subset K of C and open neighbourhood U of K, O(K) =
lim−→
U⊃K

O(U).

Let K be a compact connected set; the aim is to show that O(K) is a principal
ideal domain.

(a) Show that every nonzero f ∈ O(K) can be uniquely written as the product of
a polynomial all of whose roots are in K and of an invertible element.

(b) Suppose all the roots of P ∈ C[Z] are in K. For all h ∈ O(K), show that there
is a unique pair (g, R) ∈ O(K) × C[Z] such that h = gP + R with d◦R < d◦P.

(c) Deduce that O(K) is Euclidian. Conclude.
(d) What are the ideals of O(K) ?
(e) Let f1, . . . , fn be elements ofO(K) represented by functions without common

roots. Show that there exist u1, . . . , un ∈ O(K) such that
∑n

i=1 ui fi = 1.

9.—Let A be a ring, but not a field. Prove that A[X] is not a principal ideal domain.
For this, the ideal of A[X] consisting of the polynomials whose constant terms are
in a non-zero ideal I �= 0, A in A may be shown not to be principal.

10. (Discrete valuation ring)—(a) Let K be a field. Prove that the ring K[[X]] of
formal sequences is a principal ideal domain.

(b) More generally, let A be a ring and w : A → N a map satisfying the following
properties:

(i) w(xy) = w(x) + w(y) for x and y in A;
(ii) w(x + y) � inf(w(x), w(y));

(iii) w(x) < ∞ for x �= 0;
(iv) w(x) > 0 for non-invertible x .
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Prove that A is a principal ideal domain with a unique maximal ideal.
(c) Conversely, let A be a principal ideal domain with a unique maximal ideal m.

For all x , let w(x) be the largest integer k such that x ∈ mk . Show that w satisfies
conditions (i) to (iv) (to check (iii), let x be a generator of m and y a generator of⋂

mk and consider w(y/x)). (Rings satisfying these properties are called discrete
valuation rings)

(d) Prove that the ring E of germs at 0 of C∞-functions on R has a unique maximal
ideal m, and that this ideal is principal. However E is not a discrete valuation ring:⋂

mk �= 0.

11.—Show that every nonzero prime ideal in a principal ideal domain is maximal.

12.—Let A be the ring of analytic functions f : R → R satisfying (∀x) f (x + 2π) =
f (x).

(a) Show that A is an integral domain.
(b) Show that every maximal ideal of A is of the form mx = { f | f (x) = 0} with

x ∈ R.
(c) Show that every nonzero ideal is of the form mk1

x1
· · ·mkr

xr
. In particular every

nonzero prime ideal is maximal.
(d) Let x ∈ R and f ∈ A a function having x as a simple root. Show that, for

sufficiently small ε > 0, f has a root between x + ε and x + 2π − ε. Deduce that
the ideal mx is not principal.

(e) The ideal mk1
x1

· · ·mkr
xr

is principal if and only if k1 + · · · + kr is even.
(f) Let B be the ring of R-analytic functions f : R → C such that (∀x)

f (x + 2π) = f (x). Show that B is principal (note that t �→ eit − eix has a simple
root at x). Is the ring B Euclidian?

13.—Show that the subrings Z[i] and Z
[

1+i
√

3
2

]
of C are principal (they are Euclidian

for z �→ |z|2).

14.—Let A be an integral domain. Show that if A is Euclidean, then there is a
non-invertible element x ∈ A such that every class of A/(x) contains an invertible
invertible or zero (reduce to the case where w(A∗) is an upper set of N and take x
such that w(x) = 1, defining w as in 3.1.10). Show that the ring Z

[
1+i

√
d

2

]
is not

Euclidian if d � 5. (Z
[

1+i
√

19
2

]
may be shown to be a principal ideal domain. For

another example of a non-Euclidean principal ideal domain, see 3.7, Exercise 9.)

15.—Let A be a principal ideal domain. Show that, for any multiplicatively stable
subset S ⊂ A∗, the set S−1A of fractions with numerator in A and denominator in S
is a principal ideal domain.

16.—(a) Give a degree 2 expansion of
√

1 + t in the neighbourhood of t = 0.
(b) Let A be a commutative ring in which 2 is not invertible, and q ∈ A a multiple

of p ∈ A. Show that
(
1 + q

2 − q2

8

) ≡ 1 + q (mod p3).
(c) Find u ∈ Z such that u2 ≡ 11 (mod 125).

17.—The aim is to prove some algebraic properties of the ring O(U) of holomorphic
functions on U, where U is a connected open subset of C. The reader interested in
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the case U = DR (or more generally, given Riemann’s uniformization theorem, U
simply connected) can omit part B.

A. (a) For n, k ∈ N, let ηn,k be the primitive of
(
(n + 1)...(n + k + 1)/k!) zn(1 − z)k

vanishing at 0. Show that 1 − ηn,k has a root of order � k at 1, and that, as n tends to
infinity for fixed k, ηn,k converges uniformly to 0 on every disc of radius < 1 centered
at 0.

(b) Let a ∈ C
∗, r < |a|, h a holomorphic function on Dr ′ with r ′ > r , ε > 0, g

a holomorphic function in the neighbourhood of a and k ∈ N. Show that there is a
polynomial f on Dr such that | f − h| � ε and that f − g has a root of order � k at a.

(c) Let R ∈ ]0,∞], and set U = DR (hence U = C if R = ∞). Let (an) be a set
of distinct points of U such that |an| tends to R; for all n, let gn be a holomorphic
function in the neighbourhood of an and kn ∈ N. Show that there is a holomorphic
function f ∈ O(U) such that, for all n, the function f − gn has a root of order � kn

at an .
B. (a) Let K be a compact subset of the Riemann sphere Ĉ = C ∪ {∞}, a1 and

a2 two points in the same connected component of Ĉ − K, f1 : Ĉ → Ĉ a rational
function such that f −1

1 (∞) = a1 and ε > 0. Show that there is a rational function f2

such that f −1
2 (∞) = a2 and | f2 − f1| < ε on K (first consider the case where there

is a disk in Ĉ − K containing a1 and a2, with a2 mapped to ∞ by a homography).
(b) Let U be an open subset of C. A compact subset K ⊂ U is said to be complete

(in U) if U − K does not have any relatively compact connected component in U.
Prove the existence of a sequence (Kn) of complete compact subsets in U such that
any compact subset of U is contained in some Kn .

(c) Let a = (an) be a sequence of distinct points of U tending to infinity in U (i.e.
such that compact subsets of U only contain finitely many an); for all n, let gn be a
holomorphic function in the neighbourhood of an and kn ∈ N. Show that there is a
holomorphic function f ∈ O(U) such that, for all n, the function f − gn has a root
of order � kn at an .

C. Let U be a connected open subset of C.
(a) Let f be a meromorphic function on U (see 6.1.3). Prove that f = g/h for some

g, h ∈ O(U) with h �= 0. This identifies the field M(U) of meromorphic functions
on U with the field of fractions of O(U).

(b) Let a = (an) be a sequence of distinct points of U tending to infinity in U. Let
U be an ultrafilter on N, and set

I(a,U) = { f ∈ O(U) | (∃A ∈ U) (∀n ∈ A) f (an) = 0}.

Show that I(a,U) is a maximal ideal of O(U) whose codimension as a vector
subspace over C is not 1 (1.7, Exercise 2). Show that any ideal of O(U) that cannot
be written as Ker δx (where δx ( f ) = f (x)) is of the form I(a,U).

(c) Let J(a,U) be the ideal ofO(U) consisting of f such that, limU kn = ∞, where
kn denotes the order of vanishing of f at an . Show that J(a,U) is a prime ideal but
not a maximal one. Construct a strictly decreasing sequence of prime ideals in O(U).
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18.—Let X be a metric space and A the ring C(X, R) or C(X, C). Let (xn)n∈N be
a sequence of distinct points of X converging to a point a ∈ X, with xn �= a for
all n. For a filter F on N tending to ∞, set IF to be the set of f ∈ A such that
{n ∈ N | f (xn) = 0} ∈ F.

Show that IF is an ideal of A strictly contained in the maximal ideal ma , and that
it is a prime ideal if and only if F is an ultrafilter.

3.2 Unique Factorization Domains

3.2.1 Monoids

A monoid is a set with an associative composition law that has an identity element.
The law is written either additively or multiplicatively, the additive notation being
usually used for commutative monoids. The morphisms are the maps preserving the
composition law and the identity element.

If M is a monoid, the set G of invertible elements of M is a group for the induced
law. If M is commutative, the relation

(∃g ∈ G) y = gx ,

between elements x and y of M is an equivalence relation compatible with the law
of composition.

A monoid M is said to be regular if, for all x , y, z ∈ M,

(xz = yz) ⇒ (x = y) and (zx = zy) ⇒ (x = y) .

Let M be a monoid, e its identity element. A subset M′ of M is said to be a
submonoid of M if M′ is stable under the composition law and e ∈ M′. If M′ is stable
under the law of M and has an identity element e′ �= e for the induced law, then M′
is not a submonoid of M.

Let M be a monoid and (xi )i∈I a family of elements of M. A submonoid M
generated by the family (xi ) is the smallest submoid M′ of M such that (∀i ∈ I)
xi ∈ M′. If M is commutative and written additively, the submonoid generated by
the family (xi ) is the set of finite linear combinations of xi with coefficients in N.

3.2.2 Divisibility

Let M be a commutative monoid. For x , y ∈ M, x is said to divide y, in which case
it is written4 x 〈 y if (∃z ∈ M) y = zx , and to strictly divide y if x 〈 y and y 〈x . If M

4It is usually written x |y. The disadvantage of the symbol | is that crossing it is problematic and it
cannot be reversed.
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is regular and e its only invertible element, then the divisibility relation is an order
on M. The identity element is the smallest element for this order. An element of M
is irreducible if it is minimal in M − {e}, i.e. if it cannot be written xy with x �= e,
y �= e.

3.2.3 Support of a Family

Let x = (xi )i∈I be a family of elements in a monoid M with identity element e. The
support of x is the set of indices i ∈ I such that xi �= e.

If M is commutative and written additively, and if (xi )i∈I is a family of elements
of M with finite support, then set

∑

i∈I

xi =
∑

i∈J

xi

where J is the support of the family (xi ), or an arbitrary finite family of I containing
this support.

3.2.4 Free Commutative Monoids on a Set

Let I be a set, and N
(I) the additive monoid of families (ni )i∈I of elements of N with

finite support; N
(I) is said to be the free commutative monoid on I. For i ∈ I, let ei

be the element (δi j ) j∈I of N
(I) defined by δi i = 1 and δi j = 0 if i �= j . The (ei ) are

the irreducible elements of N
(I).

Universal property. Let M be a commutative monoid and (xi )i∈I a family of
elements of M. There is a unique homomorphism f from N

(I) to M such that f (ei ) =
xi for all i ∈ I.

Proof Write M additively. If f satisfies the stated property, then for all n = (ni )i∈I ∈
N

(I),
f (n) = f

(∑
ni ei

)
=
∑

ni xi ,

and uniqueness follows. The map f defined by

f (n) =
∑

ni xi

for n = (ni )i∈I ∈ N
(I) is the desired one. �

The map f is surjective if and only if the family (xi ) generates M. If f is an
isomorphism, the family (xi ) is said to be a basis of M.
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3.2.5 Free Commutative Monoids

A monoid M is said to be free if it has a basis. Unlike other structures, a commutative
monoid has a unique basis, up to permutation: the basis elements are necessarily
irreducible.

A free commutative monoid M is a lattice for the divisibility order: every finite
subset has an upper bound called l.c.m., and, if it is not empty, a lower bound called
g.c.d.. Writing M multiplicatively, for x, y ∈ M, xy = g.c.d.(x, y) · l.c.m.(x, y).

3.2.6

Proposition Let M be a regular commutative monoid and e its only invertible ele-
ment. Then M is free if and only if it satisfies the following two conditions:

(i) any decreasing sequence of elements of M for the divisibility order is stationary;
(ii) for any irreducible m ∈ M and x, y ∈ M, m 〈xy ⇒ m 〈x or m 〈 y (writing M

multiplicatively).

Proof To show that conditions (i) and (ii) are necessary, we may assume that
M = N

(I). We use additive notation, and define ψ : M → N by ψ(x) =∑ xi . The
homomorphism ψ is increasing and

(x � y and ψ(x) = ψ(y)) ⇒ x = y .

So (i) follows. If m = ei divides x + y, then xi + yi > 0, and so xi > 0 or yi > 0.
So (ii) holds.

Shifting back multiplicative notation, we show by contradiction that condition (i)
implies that M is generated by the irreducible elements. Let M′ be the submonoid of
M generated by the irreducible elements, and let x ∈ M − M′. We inductively define
a strictly decreasing sequence (xn) of elements of M − M′ such that x0 = x . Suppose
that xn has been defined. As xn is not irreducible, x = yz for some y �= e and z �= e,
and we may assume that y /∈ M′. Set xn+1 = y; then xn+1 strictly divides xn since
z �= e. This contradicts condition (i).

Suppose condition (ii) holds. We show by induction on r that if m1 . . . mr =
m ′

1 . . . m ′
r , where all mi and m ′

i are irreducible, then r = r ′ and there is a permutation
σ ∈ Sr such that mi = m ′

σ(i) for i ∈ {1, ..., r}. This readily follows for r = 0 or 1.
Suppose the property holds for r − 1. Then mr divides some m ′

i , and hence is equal
to it. We may assume this to be m ′

r ′ . Then m1 . . . mr−1 = m ′
1 . . . m ′

r ′−1 since M is
regular, and hence by induction r − 1 = r ′ − 1 and there is a permutation σ′ ∈ Sr−1

such that mi = m ′
σ′(i) for i � r − 1. Extending σ′ to σ ∈ Sr by σ(r) = r , the result

follows.
Hence, if M satisfies (i) and (ii), it is free. �
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3.2.7 Monoids Associated to Integral Domains

Let A be an integral domain. Write Mon(A) for the multiplicative quotient monoid
of A by the equivalence relation identifying x and ux if u is invertible. Let χ be the
canonical map A → Mon(A) and Mon∗(A) the image of A∗ = A − {0} in Mon(A).
Then Mon∗(A) is called the monoid associated to A.

For x, y ∈ A∗, χ(x) = χ(y) if and only if x and y generate the same ideal. An
element x ∈ A∗ is said to be irreducible if χ(x) is irreducible in Mon∗(A), i. e. if x
is not invertible and if, for all pairs (u, v) such that x = uv, u or v is invertible.

3.2.8 Unique Factorization Domains

An integral domain A is said to be a unique factorization domain (UFD) if Mon∗(A)

is a free commutative monoid. This amounts to saying that every element x ∈ A∗ can
be written as a product u · p1 . . . pr of irreducible elements pi and some invert-
ible u, and this representation is unique up to permutation of the elements pi and
multiplication of u and pi by invertible elements.

Thanks to Proposition 3.2.6, A is a UFD if and only if it satisfies the following
two conditions:

(i) every increasing sequence of principal ideals is stationary;
(ii) for any irreducible element m ∈ A∗, the ideal Am is prime.

If A is a UFD, every finite subset of Mon∗(A) has a lower bound (g.c.d.) and an
upper bound (l.c.m.)5 for divisibility. If (xi ) is a family of finite elements of A, an
element x of A is a g.c.d. (resp. a l.c.m.) of xi if χ(x) is the g.c.d. (resp. the l.c.m.)
of χ(xi ). If x is a l.c.m. of xi , then Ax =⋂Axi .

3.2.9

Examples The polynomial ring K[X1, . . . , Xn] for a field K will be seen to be a UFD.
Likewise for the ring of formal series K[[X1, . . . , Xn]]. The ring C{X1, . . . , Xn} of
convergent series can be shown to be a UFD; the ring of germs at 0 of analytic
functions on a Banach space is a UFD.
Counterexample Let K be a field. The subring of K[X, Y] consisting of polynomials
containing only even powers is not a UFD. Indeed, the element XY of A is irreducible
because it has minimal degree. It divides neither X2, nor Y2, but does divide X2Y2,
and so A does not satisfy condition (ii) of 3.2.8.

5Abbreviations of “greatest common divisor” and “least common multiple”.



84 3 Linear Algebra

3.2.10

Theorem Every PID is a UFD.

Proof Let A be a PID. We show that it satisfies conditions (i) and (ii) of 3.2.8.
(i) Let (In) be an increasing sequence of ideals and set I =⋃ In . There exists x

such that I = Ax . This element x is in In; then Ax ⊂ In ⊂ I = Ax . So In = I, and
In′ = In for n′ � n.

(ii) follows from the following lemma:

Lemma Let A be a PID and I = Ax a nonzero ideal of A. The following conditions
are equivalent:

(i) the element x is irreducible;
(ii) the ideal I is prime;

(iii) the ideal I is maximal.

Proof (iii) ⇒ (ii) by 3.1.4, Corollary.
(ii) ⇒ (i): Suppose that I is prime and x = yz. Then y or z is in I. Without loss of

generality, assume y ∈ I. Then x divides y and z is invertible. Hence x is irreducible.
(i) ⇒ (iii): Let J = Ay be such that I � J � A. Then y is not invertible and x can

be written yz where z is not invertible. This is impossible if x is irreducible. �

Remark For invertible x , none of the conditions (i), (ii), (iii) are satisfied.

3.2.11

Proposition Let A be a PID, (xi ) a finite family of elements of A. Then x ∈ A is a
g.c.d. of xi if and only if Ax =∑Axi .

Proof Let x ∈ A be such that Ax =∑Axi . For y ∈ A, (∀i) y 〈xi ⇔ (∀i) Ay ⊃
Axi ⇔ Ay ⊃∑Axi ⇔ Ay ⊃ Ax ⇔ y 〈x . So x is a g.c.d. of xi . If x ′ is any other
g.c.d. of xi , then x = ux for some invertible u. The proposition follows. �

Corollary (Bezout’s identity) Under the assumptions of the proposition, if x is a
g.c.d. of xi , there is a family (ai ) of elements of A such that x =∑ ai xi .

Exercises 3.2. (UFDs)
1.—Let K be a field. The subring K[t2, t3] of K[t] is not a UFD.

2.—The ring R[X, Y, Z]/(X2 + Y2 + Z2) is a UFD, but not C[X, Y, Z]/(X2 + Y2 + Z2)

(it is isomorphic to the ring given in the counterexample in 3.2.9).

3.—Let A be an integral domain, and K its field of fractions. Then A is said to
be integrally closed if, whenever P1 and P2 are monic polynomials in K[X] then
P1P2 ∈ A[X] implies P1 ∈ A[X] and P2 ∈ A[X]. (this condition can be shown to be
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equivalent to the apparently weaker one: “any root of a monic polynomial of A[X]
in K belongs to A”.)

Show that, if A is integrally closed, then the multiplicative monoid M of monic
polynomials of A[X] is a free commutative monoid.

4.—Let E be a complex Banach space, and OE the ring of germs at the origin of
holomorphic functions in the neighbourhood of 0 in E. The aim is to show that the
ring OE is a UFD by using Exercise 3 and assuming the following results, where F
denotes a hyperplane in E:

Removable singularity theorem. The ring OF is integrally closed.
A polynomial P ∈ OF[Z] is normal if it is monic and all its coefficients except

the leading one are functions vanishing at 0. Let R be the set of f ∈ OF×C such that
f (0, Z) ∈ C[Z] is not zero.

Preparation Theorem. Every element f of R can be uniquely written as f =
u · P, where u is an invertible element ofOF×C and P ∈ OF[Z] is a normal polynomial.

(a) Show that the normal polynomials of OF[Z] together with multiplication form
a free commutative monoid. Deduce that M = R/Gm(OF×C) is a free commutative
monoid. Let Gm(A) be the group of invertible elements of A.

(b) For any line D in E passing through 0, let RD be the monoid of functions f ∈ OE

that do not vanish everywhere in the neighbourhood of 0 in D. Set MD = RD/Gm(OE).
Show that MD is a free monoid. Deduce that OE is a UFD (criterion 3.2.6 may be
used).

5.—Let E be a complex Banach space, U a connected open subset of E and K a com-
pact subset of C. Let O(U) be the ring of holomorphic functions on U. A polynomial
P ∈ O(U)[Z] is said to be K-normal if, for all x ∈ U, every root of the polynomial
P(x, Z) ∈ C[Z] is in the interior

◦
K of K. Show that the K-normal polynomials of

O(U)[Z] together with multiplication form a free commutative monoid.

6.—Let A be a UFD all of whose nonzero prime ideals are maximal. The aim is to
show that A is principal.

(a) Show that, for all x, y ∈ A∗, there exist u, v ∈ A such that ux + vy is a g.c.d.
of x and y. (First consider the case where x is irreducible, then the case where
y/ g.c.d.(x, y) = l.c.m.(x, y)/x is irreducible, and finally the general case.)

(b) Let I ⊂ A be a non-zero ideal. Show that there is a g.c.d. d ∈ A∗ of all the
elements of I ∩ A∗. Conclude.

(c) Show that the ring A of real analytic functions with period 2π (3.1, Exercise
12) is not a UFD. Give an example of an element of Mon∗(A) whose decomposition
into irreducible elements is not unique.

3.3 Modules

Throughout this section, A denotes a (commutative) ring.
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3.3.1

Definition A module over A or A-module is a set E together with an internal
composition law called addition and written (x, y) �→ x + y and an external law
A × E → E written (λ, x) �→ λx , satisfying the following conditions:

(M1) The additive set E is a commutative group;
(M2) (∀λ,μ ∈ A) (∀x ∈ E) λ(μx) = (λμ)x

(∀λ,μ ∈ A) (∀x ∈ E) (λ + μ)x = λx + μx
(∀λ ∈ A) (∀x, y ∈ E) λ(x + y) = λx + λy
(∀x ∈ E) 1x = x .

Examples (1) All A-modules for a field A are vectorial spaces over A.
(2) Every commutative group has a unique Z-module structure.
(3) Let ϕ : A → B be a ring homomorphism. Setting a · b = ϕ(a) b for a ∈ A

and b ∈ B gives B an A-module structure.
(4) The space D′ of distributions on R together with multiplication is a module

over the ring E of C∞-functions. The space E together with convolution is a module
over the convolution ring of distributions with compact support.

(5) Let X be a topological space and E a vector bundle over X. The space of
continuous sections of E is a module over the ring of continuous functions on X.

3.3.2

Definition Let E and F be two A-modules. A map f from E to F is said to be a
homomorphism or A-linear if

(L1) (∀x, y ∈ E) f (x + y) = f (x) + f (y) ;
(L2) (∀x ∈ E) (∀λ ∈ A) f (λx) = λ f (x) .

More generally, let h : A → B be a ring homomorphism, E an A-module, F a
B-module and f a map from E to F. Then f is said to be a h-morphism or h-linear
if (L1) holds and

(L′
2) (∀x ∈ E) (∀λ ∈ A) f (λx) = h(λ) f (x) .

Let h : A → B be a ring homomorphism, E a B-module. Define an A-module struc-
ture on E by setting for x ∈ E and λ ∈ A

λ · x = h(λ)x .

The A-module structure on E is said to be obtained by scalar restriction. The
identity map from the A-module E onto the B-module E is a h-morphism.
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3.3.3 Submodules

Let E be an A-module. A subset E′ of E is said to be an A-submodule (or simply a
submodule) of E if

(SM1) E′ is an additive subgroup of E;
(SM2) (∀x ∈ E′) (∀λ ∈ A) λx ∈ E′.

Every submodule E′ of an A-module E is an A-module for the induced laws, and
the canonical injection ι : E′ → E is a homomorphism.

Examples (1) The A-submodules of A are the ideals of A.
(2) Let E and F be two A-modules, f : E → F a homomorphism. The kernel of

f , written Ker f , is the submodule f −1(0) of E. The image of f , written Im f , is
the submodule f (E) of F.

3.3.4 Torsion

Suppose that A is integral and let E be an A-module. An element x of E is said to be
a torsion element if the homomorphism λ �→ λx from A to E is not injective. The
set of torsion elements of E is a submodule T of E called the torsion submodule of
E; E is torsion-free if T = {0}, and a torsion module if T = E.

Let E and F be two modules over an integral domain. Every homomorphism
f : E → F maps the torsion submodule of E to that of F.
Examples Suppose that A is integral and let I be a nonzero ideal in A. As an A-
module, the quotient ring A/I is a torsion module.

The Z-module Q/Z is a torsion module.

3.3.5 Generating Families

Let E be an A-module and (xi )i∈I a family of elements of E. An A-submodule of E
generated by the family (xi )i∈I is the smallest submodule E′ of E such that

(∀i ∈ I) xi ∈ E′ .

It is also the set of finite linear combinations of xi with coefficients in A. If the
submodule generated by (xi )i∈I is E, the latter is a generating family of E.

The A-module E is finitely generated if it has a finite generating family, and it
is cyclic if it is generated by one element.

Let (Ei ) be a family of submodules of E. The submodule generated by the union
of all Ei is the subgroup

∑
Ei generated by this union.
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3.3.6 Quotient Modules

Let E be an A-module, E′ a submodule of E. A congruence modulo E′ is the relation
x − y ∈ E′ between elements x and y of E. It is written

x ≡ y (mod E′) ,

and is an equivalence relation. Relations x ′ ≡ y′ (mod E′) and x ′′ ≡ y′′ (mod E′)
imply x ′ + x ′′ ≡ y′ + y′′ (mod E′) and λx ′ ≡ λy′ (mod E′) for all λ ∈ A.

The quotient set of E by congruence modulo E′ has a unique A-module structure
for which the quotient map is A-linear, and with this structure, is called the quotient
module of E by E′ and is written E/E′.
Universal property. Let E be an A-module, E′ a submodule of E. For all A-
modules F and homomorphisms f : E → F such that f |E′ = 0, there is a unique
homomorphism f̄ : E/E′ → F satisfying f = f̄ ◦ χ, where χ is the canonical map
E → E/E′.

In other words, the map g �→ g ◦ χ is a bijection from Hom(E/E′, F) onto the set
of f ∈ Hom(E, F) for which f |E′ = 0.

Example Every cyclic A-module is isomorphic to a module A/I, where I is an ideal
of A. Indeed, if E = Ax , then the map λ �→ λx from A to E is surjective, giving an
isomorphism A/I → E, where I is the l’annihilator of x , i.e. the ideal consisting of
elements λ ∈ A such that λx = 0.

3.3.7 Canonical Factorization

Let E and F be two A-modules, f : E → F a homomorphism.There is a unique
isomorphism f̃ : E/ Ker f → Im f such that the diagram

E
f � F

E/ Ker f

χ

� f̃ � Im f

ι

�

commutes.
This diagram gives the canonical factorization of f .
The cokernel of f , written Coker f , is the quotient module F/ Im f .
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3.3.8 Exact Sequences

Let Em → · · · → Ei+1
fi+1→ Ei

fi→ Ei−1 → · · · → En be a sequence of A-module homo-
morphisms (the decreasing order of indices has been chosen with homology in
mind, see 3.10.2). It is said to be an exact sequence if Im fi+1 = Ker fi for
m − 1 � i � n + 1.

Example Let E and F be two A-modules, f : E → F a homomorphism. 0 → Ker

f → E
f→ F → Coker f → 0 is an exact sequence.

In particular f is injective (resp. surjective) if and only if 0 → E
f→ F (resp.

E
f→ F → 0) is an exact sequence.
If 0 → E′ → E → E′′ → 0 is an exact sequence of A-modules, then E′ can be

identified with a submodule of E and E′′ to the quotient module E/E′. The exact
sequence is then written 0 → E′ → E → E/E′ → 0.

An exact sequence of the form 0 → E′ → E → E′′ → 0 is called a short exact
sequence. If Em → · · · → Ei → · · · → En is an exact sequence, there are short exact
sequences 0 → E′

i → Ei → E′
i−1 → 0 for m � i � n, with E′

i = Ker fi = Im fi+1 ≈
Coker fi+2 for m − 2 � i � n + 1, E′

m−1 = Ker fm−1 = Im fm , E′
m = Ker fm , E′

n =
Im fn−1 ≈ Coker fn+2, E′

n−1 = Coker fn+1.

3.3.9

Proposition Let 0 → E′ u→ E
v→ E′′ → 0 be an exact sequence of A-modules, (x ′

i )i∈I′

and (x ′′
i )i∈I′′ generating families of E′ and E′′ respectively. Suppose that I′ ∩ I′′ = ∅

and set I = I′ ∪ I′′. For i ∈ I′, let xi = u(x ′
i ) and, for each i ∈ I′′, choose xi ∈ E such

that v(xi ) = x ′′
i . Then the family (xi )i∈I generates E.

Proof Let x ∈ E. There is a family (ai )i∈I′′ with finite scalar support such that
v(x) =∑i∈I′′ ai x ′′

i . Then x −∑i∈I′′ ai xi is in Ker v, and so is of the form u(x ′).
There is a family (ai )i∈I′ of finite scalar support such that x ′ =∑i∈I′ ai x ′

i . Then
x =∑i∈I ai xi . �

Corollary Let 0 → E′ → E → E′′ → 0 be an exact sequence of A-modules. If E′ and
E′′ are of finitely generated, then so is E.

3.3.10 Complement Submodules

Let E be an A-module, the submodules E1 and E2 are complements, or E is a direct
sum of the submodules E1 and E2, and is written E = E1 ⊕ E2, if any element of E
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is of the form x1 + x2, with x1 ∈ E1 and x2 ∈ E2. E1 and E2 are complements if and
only if E1 + E2 = E and E1 ∩ E2 = 0.

A submodule of an A-module E is a direct factor of E if it has a complement. There
are modules with submodules that are not direct factors. For example, the submodule
2Z is not a direct factor of Z because the quotient being a torsion module, there are
no injections from 2Z

6 to Z.
More generally, let (Ei ) be a family of submodules of E. Then E is said to be a

direct sum of the submodules Ei if all x ∈ E can be uniquely written in the form∑
xi , with xi ∈ Ei for all i , the family (xi )i∈I having finite support.

3.3.11 Projections

Let E be an A-module. An endomorphism p of E is a projection if p ◦ p = p.

Proposition The map p �→ (Im p, Ker p) is a bijection from the set of projections
on E onto the set of pairs consisting of complement submodules of E.

Proof If p is a projection of E, then E = Im p ⊕ Ker p. Indeed, any x ∈ E can be
written p(x) + (x − p(x)), with p(x) ∈ Im p and x − p(x) ∈ Ker p. So
Im p + Ker p = E; on the other hand, p(x) = x for x ∈ Im p. Thus Im p ∩ Ker p =
0. Next let E1 and E2 be two complement submodules of E. A projection having image
E1 and kernel E2 is necessarily the map x1 + x2 �→ x1; it is the desired one, proving
bijectivity. �

3.3.12 Split Exact Sequences

Proposition and Definition Let 0 → E′ u→ E
v→ E′′ → 0 be an exact sequence. The

following conditions are equivalent:

(i) u(E′) is a direct factor of E;
(ii) there is a linear retraction of u, i.e. a homomorphism ρ : E → E′ such that

ρ ◦ u = 1E′ ;
(iii) there is a linear section of v, i.e. a homomorphism σ : E′′ → E such that v ◦ σ =

1E′′ .

If these conditions hold, the exact sequence is said to be split.

Proof (i) implies (ii). Identify E′ with its image in E under u. Let S be a complement
of E′ in E. The projection of E onto E′ with kernel S is a retraction.

6The main difference between modules and vector spaces is that there are torsion modules and
submodules that are not direct factors.
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(i) implies (iii). Let S be a complement of Ker v = u(E′), the homomorphism v

induces an isomorphism from S onto E′′ and the composite of the inverse isomorphism
and the canonical injection from S to E is a section.

(ii) implies (i) (resp. (iii) implies (i)). If ρ is a retraction of u (resp. σ is a section
of v), then u ◦ ρ (resp. σ ◦ v) is a projection of E whose kernel (resp. image) is u(E′).

3.3.13 Direct Products and Sums

Let (Ei )i∈I be a family of A-modules. Define an A-module structure on the product
set
∏

i∈I Ei by setting

(xi )i∈I + (yi )i∈I = (xi + yi )i∈I, a(xi )i∈I = (axi )i∈I .

The module obtained is called the direct product of Ei . The submodule of
∏

i∈I Ei

consisting of families with finite support is called the direct sum of Ei and is written⊕

i∈I

Ei . If I is finite, then
⊕

i∈I

Ei =
∏

i∈I

Ei . For k ∈ I, pk :∏i∈I Ei → Ek defined by

pk((xi )i∈I) = xk is a module homomorphism called the coordinate map of index k,
and the map ιk : Ek →⊕i∈I Ei defined by ιk(x) = (xi )i∈I, where xk = x and xi = 0
if i �= k is a module homomorphism called the canonical injection of index k.

The module
⊕

i∈I Ei is a direct sum of submodules ιi (Ei ). When no confusion
arises, Ei is identified with ιi (Ei ). We avoid doing so when several Ei are equal.

The module
∏

i∈I Ei (resp.
⊕

i∈I Ei ), together with the maps pi (resp. ιi ), is a
product (resp. sum) of the modules Ei in the category of A-modules and linear maps.

In particular, let E be an A-module and (Ei )i∈I a family of submodules of E, the
family of canonical inclusions of Ei in E defines a homomorphism f from

⊕
Ei to

E given by (xi )i∈I �→∑ xi .
It is an isomorphism (resp. surjective) if and only if E is the direct sum of the

submodules Ei (resp. generated by (Ei )i∈I). When I = {1, 2}, f is injective if and
only if E1 ∩ E2 = {0}.

3.3.14 Direct and Inverse Limits

Let ((Ei )i∈I, ( f j
i )) be a direct (resp. inverse) system of A-modules. The set E∞ =

lim−→ Ei (resp. lim←− Ei ) has a unique A-module structure with respect to which the
canonical maps Ei → E∞ (resp. E∞ → Ei ) are linear. With this structure, E∞ is the
direct (resp. inverse) limit of the Ei in the category A-Mod.

Proposition Let I be a directed set, E = ((Ei ), ( f j
i )) and F = ((Fi ), (g

j
i )) direct

systems of modules and (ϕi ) a morphism from E to F. Let E = lim−→ Ei , F = lim−→ Fi ,
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and ϕ : E → F be the morphism induced by ϕi by passing to the direct limit. Then
Ker ϕ = lim−→ Ker ϕi , Im ϕ = lim−→ Im ϕi and Coker ϕ = lim−→ Coker ϕi .

Proof It suffices to check that Ker ϕ (resp. Im ϕ, resp. Coker ϕ) with the canonical
maps Ker ϕi → Ker ϕ (resp. etc.), satisfies conditions (i), (ii) and (iii) of 2.6.5. Condi-
tion (i) is immediate in all three cases. We show that Ker ϕ satisfies (ii). Let x ∈ Ker ϕ.
There exist i ∈ I and xi ∈ Ei such that σi (xi ) = x , where σi : Ei → E is the canon-
ical map. Then τi (ϕi (xi )) = ϕ(σi (xi )) = 0, where τi : Fi → F is a canonical map,
and so there exists j � i such that g

j
i (ϕi (xi )) = 0. Hence x j = f j

i (xi ) ∈ Ker ϕ j ,
and x = σ j (x j ) ∈ σ j (Ker ϕ j ).

Condition (ii) for Im ϕ and Coker ϕ is immediate. So is condition (iii) for Ker ϕ
and Im ϕ; for Coker ϕ, it follows from condition (ii) for Im ϕ, �

Remark Let E and F be inverse systems, (ϕi ) a morphism from E to F and ϕ the
morphism induced by ϕi by passing to the inverse limit. Then Ker ϕ = lim←− Ker ϕi ,
but in general Im ϕ �= lim←− Im ϕi and Coker ϕ �= lim←− Coker ϕi (2.5, Exercise 3).

Corollary Let I be a directed set. For m � k � n, let Ek = ((Ek,i )i∈I, ( f j
k,i )) be a

direct system of modules; for m � k > n, let (uk,i )i∈I be a morphism from Ek to
Ek−1. If, for all i ,

Em,i → · · · → Ek,i
uk,i→ Ek−1,i → · · · → En,i

is an exact sequence, passing to the direct limit gives an exact sequence

Em → · · · → Ek
uk→ Ek−1 → · · · → En .

3.3.15 Modules of Homomorphisms

Let E and F be two A-modules. The set Hom(E, F) of homomorphisms from E to F
is a submodule of FE. With the induced structure it is an A-module.7

The composition law ( f, g) �→ g ◦ f from Hom(E, F) × Hom(F, G) to
Hom(E, G) is bilinear.

Let u : E′ → E be a homomorphism of A-modules. Define8 a homomorphism u∗ :
Hom(E, F) → Hom(E′, F) by u∗( f ) = f ◦ u. Let v : F → F′ be a homomorphism
of A-modules. Define a homomorphism v∗ : Hom(E, F) → Hom(E, F′) by v∗( f ) =
v ◦ f . Then there is a commutative diagram

7Here the assumption of the commutativity of A is essential.
8We use the usual notation u∗, v∗ which omits any mention of E and F (see 2.2.1).
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Hom(E, F)
u∗
� Hom(E′, F)

Hom(E, F′)

v∗ �
u∗
� Hom(E′, F′)

v∗�

The map (u, v) �→ v∗u∗ from Hom(E′, E) × Hom(F, F′) to Hom(Hom(E, F),

Hom(E′, F′)) is bilinear.
Then (E, F) �→ Hom(E, F) is a functor from A-Mod × A-Mod to A-Mod.
Let (Ei )i∈I and (F j ) j∈J be two families of A-modules. Then

Hom
(⊕

i∈I

Ei ,
∏

j∈J

F j

)
=
∏

(i, j)∈I×J

Hom(Ei , F j ) .

Therefore, when I and J are finite, a homomorphism from
⊕

i∈I Ei to
⊕

j∈J F j is

represented by a matrix (a j
i )(i, j)∈I×J where, for all (i, j) the elements a j

i are homo-
morphisms from Ei to F j .

Remark It may happen that Hom(E, F) = 0 even when E �= 0 and F �= 0. For exam-
ple, this is the case if A is integral and E is a torsion module, and F is torsion-free.
Other examples:

HomZ(Z/(p), Z/(q)) = 0

if p and q are relatively prime and HomZ(Q, Z) = 0.

3.3.16 Left Exactness of the Functor Hom

Proposition (a) Let E be an A-module and 0 → F′ u→ F
v→ F′′ an exact sequence of

A-modules. Then there is an exact sequence

0 → Hom(E, F′) u∗→ Hom(E, F)
v∗→ Hom(E, F′′) .

(b) Let F be an A-module and E′ u→ E
v→ E′′ → 0 an exact sequence of A-modules.

Then there is an exact sequence

0 → Hom(E′′, F)
v∗→ Hom(E, F)

u∗→ Hom(E′, F) .

Proof (a) Identifying F′ with Ker v, Ker v∗ is the set of f : E → F, where v ◦ f = 0,
i.e. f (E) ⊂ Ker v, and so Ker v∗ = Hom(E, F′).

(b) Identifying E′′ with Coker u, Ker u∗ is the set of f : E → F such that f ◦ u =
0, i.e. f |Im u = 0, and so Ker u∗ is Hom(Coker u, F) = Hom(E′′, F). �
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3.3.17 Multilinear Maps

Let E1, . . . , En and F be A-modules. A map f from E1 × · · · × En to F is said to
be n-linear if, for all i ∈ {1, ..., n} and x1, . . . , xi−1, xi+1, . . . xn , the partial map
xi �→ f (x1, . . . , xn) from Ei to F is linear. The module of n-linear maps from
E1 × · · · × En to F can be identified with Hom(E1, Hom(E2, ...(Hom(En, F))...).

A n-linear map f from En to F is said to be symmetric if f (xσ(1), . . . , xσ(n)) =
f (x1, . . . , xn) for all permutations σ ∈ Sn . It is alternating if xi = x j with i �= j
implies f (x1, . . . , xn) = 0.
If the n-linear map is alternating, then f (x2, x1, x3, ..., xn) = − f (x1, x2, ..., xn);
more generally the sign of f (x1, . . . , xn) is reversed if any two xi are interchanged.

3.3.18 Signature of a Permutation

Let X be a finite set, and Y the set of 2-element subsets of X. The binary choice
function on X is a map τ : Y → X such that τ (y) ∈ y for y ∈ Y. As X is finite, the
axiom of choice is not needed to ensure the existence of such a choice function.

Let σ be a permutation of X, i.e. a bijection from X to itself. Write σ∗ for the map
{x, x ′} �→ {σ(x),σ(x ′)} from Y to itself; and for every binary choice function τ ,
define σ∗τ by σ∗τ = σ ◦ τ ◦ σ−1. If τ and τ ′ are two binary choice functions, write
τ ′ − τ for the function Y → Z/(2) with value 0 at y if τ ′(y) = τ (y) and 1 otherwise.
If f is a function Y → Z/(2), write �( f ) for

∑
y∈Y f (y) and set σ∗ f = f ◦ σ−1∗ .

For functions with values in Z/(2), the signs + and − are synonymous.
Let σ be a permutation of X and τ : Y → X a binary choice function. Set i(σ, τ ) =

�(σ∗τ − τ ). In fact, i(σ, τ )does not depend on the choice of τ . Indeed, if τ ′ is another
binary choice function, then (σ∗τ ′ − τ ′) − (σ∗τ − τ ) = σ∗h − h, where h = τ ′ − τ
and �(σ∗h) = �(h). Therefore, (−1)i(σ,τ ) does not depend on τ , and is called the
signature of the permutation σ. It is written ε(σ).

If σ and σ′ are two permutations of X, then ε(σσ′) = ε(σ) · ε(σ′). In other words,
ε is a homomorphism from the group S(X) of permutations of X to the multiplicative
group {+1,−1}.

Let X and X′ be two finite sets and f : X → X′ a bijection. Let f∗ be the iso-
morphism σ �→ f ◦ σ ◦ f −1 from S(X) onto S(X′). Then ε( f∗(σ)) = ε(σ). More
generally, let f : X → X′ be an injection, with finite X′. Define an injective homo-
morphism f∗ from S(X) to S(X′) by setting f∗(σ) to be the map equal to f∗(σ) on
f (X) as defined previously, and to the identity on X′ − f (X). Also ε( f∗(σ)) = ε(σ).

A transposition of X is a permutation interchanging two elements of X and keeping
the others unchanged. If θ is a transposition, then ε(θ) = −1. The transpositions of
X generate S(X), but if σ is a product of k transpositions, the number k is necessarily
even if ε(σ) = 1 and odd if ε(σ) = −1.

Let E and F be A-modules and f : En → F a n-linear alternating map. For any
permutation σ of {1, ..., n}, f (xσ(1), ..., xσ(n)) = ε(σ) f (x1, ..., xn).



3.3 Modules 95

3.3.19 Algebras

An A-algebra is an A-module E with a bilinear map μ : E × E → E, called mul-
tiplication. It is said to be an associative (resp. commutative, resp. unital) if the
composition law μ on E is associative (resp. commutative, resp. has an identity
element).

Examples (1) If B is a ring and ϕ : A → B a ring homomorphism, B, together with
its A-module structure (3.3.1, Example 3) and multiplication, is a unital associative
commutative A-algebra.

More generally, if B is a not necessarily commutative ring and ϕ : A → B a ring
homomorphism such that ϕ(A) is contained in the centre of B, then B is a unital
associative A-algebra. All unital associative A-algebras are uniquely defined in this
way.

(2) Let M be an A-module. The module End(M) = Hom(M, M) with composition
( f, g) �→ f ◦ g, is a unital associative algebra, and is not generally commutative.

Exercises 3.3. (Modules)
1.—(a) Show that there are no minimal generating families in the Z-module Q.

(b) Give an example of a module having two minimal generating families of
distinct finite cardinalities.

(c) Show that, if there is a minimal generating infinite family, then all generating
families are infinite (see proof of 3.4.5).

(d) For all A-modules E, set g(E) to be the minimal cardinality of a generating
family of E. Show that if 0 → E → F → G → 0 is a short exact sequence, then
g(F) � g(E) + g(G). Give an example where the inequality is strict.

2.—Let K be a field; set A = K[X, Y], E = A2 and let F be a submodule de E
generated by (X, Y). Show that:

(a) E/F is torsion-free;
(b) There are no retractions from E onto F. Deduce that F is not a direct factor

of E.

3.—Let E be an A-module and J an ideal in A. Let J · E be the submodule of E
consisting of all elements

∑
i∈I ai xi , where I is a finite set, ai ∈ J and xi ∈ E.

(a) Let F and G be two submodules of E. Does the following necessarily hold:

J · (F ∩ G) = J · F ∩ J · G ?

J · (F + G) = J · F + J · G ?

(b) Let (Eλ) be a family of A-modules. Show that

J ·
⊕

Eλ =
⊕

J · Eλ .
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(c) Show that J ·∏Eλ ⊂∏J · Eλ, and that the equality holds if J is finitely
generated. Show that, if J is not finitely generated, then there is a family (Eλ) such
that the inclusion is strict.

4.—Let E be an A-module, F and G two submodules of E. Construct an exact
sequence 0 → F ∩ G → F ⊕ G → F + G → 0.

5.—Let E be an A-module, F and G-submodules of E such that G ⊂ F. Show that,
if G is a direct factor of E, the G is a direct factor of F. Show that, if F is a direct
factor of E, then F/G is a direct factor of E/G.

6.—Let E and F be two A-modules, and u : E → F a homomorphism.
(a) Show that, Ker u and Im u are direct factors of E and F respectively if and

only if there is a homomorphism v : F → E such that u ◦ v ◦ u = u.
(b) Show that u ◦ v ◦ u = u does not imply v ◦ u ◦ v = v, but that there exists v

such that u ◦ v ◦ u = u and w such that u ◦ w ◦ u = u and w ◦ u ◦ w = w.
7. (Chart changes in Grassmannians)—(a) Let F and G be two A-modules. Show
that the graphs of linear maps from F to G are the complements of 0 × G in F × G.

(b) Let E be an A-module, G0 a submodule of E, F0 and F1 two complements of
G0. Every complement F of G0 can be considered the graph of a map f0 : F0 → G0

or the graph of a map f1 : F1 → G0. Give the relation between f0 and f1.
(c) Let E be an A-module, F0 a submodule of E, G0 and G1 two complements

of F0. A complement F of G0 can be considered the graph of a map f0 : F0 → G0.
What condition should f0 satisfy for F to be the complement of G1. Then F can be
considered the graph of a map f1 : F0 → G1. Express f1 in terms of f0.

8.—Let E, F, G be three modules, i1 : E → F and i2 : E → G injective homomor-
phisms. Embed E in F ⊕ G by (i1, i2).

(a) Show that the following are exact sequences:

0 → F → (F ⊕ G)/E → G/E → 0, 0 → G → (F ⊕ G)/E → F/E → 0 .

(b) Show that the first sequence is split if and only if there is a homomorphism
from G to F inducing the identity of E. Give an example where one of the sequences
is split and the other one is not.

9.—For every prime p, let Mp be the subgroup in Q/Z of elements whose orders
are p-powers.

(a) Show that Q/Z is the direct sum of the subgroups Mp (see 3.1, Exercise 6, b).
(b) Show that none of the Mp is the direct sum of two nonzero submodules.
(c) Show that End(Q/Z) can be identified with the product of rings End(Mp).
(d) Show that End(Mp) can be identified with the ring Ẑp of p-adic integers.
(e) Show that End(Q/Z) can be identified with the profinite completion Ẑ of Z.

We thus recover the result of (2.5, Exercise 7, e).

10.—(This exercise uses the results of the two preceding ones.) Consider the exact
sequence:

0 → Z
ι→ Q

χ→ Q/Z → 0 (E)
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where ι and χ are the canonical maps. Applying the functor M �→ Hom(Q, M) to
(E) gives an exact sequence:

0 → Hom(Q, Z)
ι∗→ Hom(Q, Q)

χ∗→ Hom(Q, Q/Z) .

The aim is to describe Hom(Q, Q/Z) and Coker χ∗.
(a) Determine Hom(Q, Z) and Hom(Q, Q).
(b) Show that applying the functor M �→ Hom(M, Q/Z) to (E) gives a non-split

exact sequence:
0 → Ẑ → Hom(Q, Q/Z) → Q/Z → 0 .

(c) Define a homomorphism w : Q⊕ Ẑ → Hom(Q, Q/Z) by setting w(a, 0) =
χ ◦ a · 1Q and w(0, u) = u ◦ χ, where u is considered an endomorphism of Q/Z.
Determine Ker w and Coker w.

(d) Show that there is an exact sequence:

0 → Q → Hom(Q, Q/Z) → Ẑ/Z → 0 .

(Use Exercise 8.) Determine Coker χ∗. (The above exact sequence can be shown to
be split.)

(e) Show that Mp can be identified with Z[1/p]/Z, or to Q̂p/Ẑp, where Z[1/p]
denotes the ring of fractions whose denominator is a power of p, and Q̂p the p-adic
field, the field of fractions of Ẑp. Define wp : Z[1/p]⊕ Ẑp → Hom(Q, Mp) as in
(c). Determine Ker wp and Coker wp. Deduce that Hom(Q, Mp) can be identified
with Q̂p.

(f) Show that Hom(Q, Q/Z) can be identified with the set of x = (x p) ∈∏ Q̂p,
where all but finitely many x p are in Ẑp.

11.—Let A be a ring. Show that, for all ideals J of A, the category (A/J)-Mod

is equivalent to a complete subcategory of A-Mod. Show that the same holds for
(S−1A)-Mod for any multiplicatively stable subset S of A, setting S−1A to be the
ring of fractions with numerator in A and denominator in S.

12.—(a) Show that the set of endomorphisms of the identity functor ofA-Mod can
be identified with A. Give an interpretation for addition (see 2.6, Exercise 2) and
multiplication in A.

(b) Deduce that if A and B are two rings such that the categories A-Mod and
B-Mod are equivalent, then A and B are isomorphic.

(c) the previous result ((b)) does not hold for non-commutative rings: let A be the
ring of 2 × 2 matrices with entries in R. For any vector space E, A can be made to
act on E2 by (

a b
c d

)

·
(

x
y

)

=
(

ax + by
cx + dy

)

.
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Show that the functors E �→E2 from R-Mod to A-Mod and F �→ HomA(R2, F)

from A-Mod to R-Mod are equivalences of categories (note that, if A is not
commutative, HomA(F, G) is not a natural A-module for A-modules F and G).

13.—Let A be an integral domain where 2 �= 0, E and F torsion-free A-modules and
f : En → F a n-linear map. Show that, if f (xσ(1), ..., xσ(n)) = ε(σ) f (x1, ..., xn) for
all sequences (x1, ..., xn) in E and all permutations σ, then the map f is alternating.

Taking for A a field of characteristic 2, construct a counterexample.

3.4 Free Modules, Matrices

Throughout this section, A denotes a (commutative) ring.

3.4.1 Free Modules

Let E be an A-module and (xi )i∈I a family of elements of E. The family (xi )i∈I is a free
family if for any family (λi )i∈I of elements of A with finite support,

∑
i∈I λi xi = 0

implies λi = 0 for all i ∈ I.
A basis of E is a free generating family of E, and E is a free A-module, if it has

a basis.
It is free of rank n (or dimension n) the basis contains n elements.
Every free module over an integral domain is torsion-free. The converse does not

hold. However, as will be seen, every finitely generated torsion-free module over a
PID is free (3.5.8. Corollary 3.2).

3.4.2 Examples

The module Ar is a free A-module. The ring A[X] is a free A-module,9 the rings
A[X1, ..., Xn] are free A-modules.10 If K is a field, every finite dimensional vector
space is a free K-module11; more generally:

Proposition Every vector space is free.

Proof Let E be a vector space. The set L of free subsets of E, ordered by inclusion,
is direct since it is of finite character (1.4.2, Example 3).

By Zorn’s theorem, there is a maximal free subset, B say, and let M be the vector
subspace of E generated by B. We prove by contradiction that M = E. Suppose that

9Queysanne [1], §183, Lelong-Ferrand and Arnaudiès [2], 4.1, p. 123.
10Queysanne [1], §186, [2], 4.7, p. 151.
11Queysanne [1], §135, [2], th. 8.3.1, p. 253.
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M �= E and let y ∈ E − M. It follows that B ∪ {y} is free, which contradicts the
maximality of B. Indeed, suppose that

∑
λi xi + μy = 0 for xi ∈ B.

If μ = 0,
∑

λi xi = 0 implies λi = 0 for all i .
If μ �= 0, then y = −∑ λi

μ
xi and y is in M, which is impossible since

y ∈ E − M. �

3.4.3 Counterexamples

As a Z-module, Q is torsion-free but not free.
If A is an integral domain, a non-principal ideal of A is not a free module, despite

being torsion-free as well as the submodule of a free module. As will be seen, every
submodule of a free module over a PID is free (3.5.1), and that every finitely generated
torsion-free module over an integral domain is isomorphic to a submodule of a free
module (3.8.14).

3.4.4 Alternating n-Linear Forms

An alternating n-linear form on an A-module E is an alternating n-linear map from
En to A.

If E has a generating family (e1, ..., ep)with p < n, every alternating n-linear form
f on E is null. Indeed, if xi =∑1� j�p x j

i e j , then f (x1, ..., xn) =∑ j1,..., jn
x j1

1 . . . x jn
n

f (e j1 , ..., e jn ) = 0 because for each term there exists k and k ′ with k �= k ′ and jk =
jk ′ .

Proposition Let E be a free A-module of rank n. Then the module � of alternating
n-linear forms on E is free of rank 1. More precisely, if (e1, ..., en) is a basis for E,
there is a unique form � ∈ � such that �(e1, ..., en) = 1, and � is a basis of �.

Proof Let (e1, ..., en) be a basis for E. If xi =∑ x j
i e j , then

f (x1, ..., xn) =
∑

σ∈Sn

ε(σ)xσ(1)
1 . . . xσ(n)

n f (e1, ..., en) , (3.1)

for any alternating n-linear form f .
The map ϕ : f �→ f (e1, ..., en) from � to A is linear. By (1), f (e1, ..., en) =

0 ⇒ f = 0, and so ϕ is injective.
Define � : En → A by

�(x1, ..., xn) =
∑

σ∈Sn

ε(σ)xσ(1)
1 . . . xσ(n)

n .
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The map � is an alternating n-linear form on E, and �(e1, ..., en) = 1, i.e. ϕ(�) = 1.
Then ϕ is surjective, and � is isomorphic to A. �

3.4.5 Uniqueness of the Dimension

Proposition and Definition Let A be a nonzero ring and E a free A-module. All
bases for E have the same cardinality, called the dimension (or rank) of E.

Proof Let (ei )i∈I and ( f j ) j∈J be two bases for E. For every j ∈ J, there is a family
(λi j )i∈I of elements of A such that f j =∑i∈I λi j ei . Let S j be the support of (λi j )i∈I.
For all j ∈ J, the support S j is a finite subset of I. Set I′ = ∪ j∈JS j . All f j are in the
submodule E′ of E generated by (ei )i∈I′ , and so E′ = E, whence I′ = I, and

Card I = Card I′ �
∑

j∈J

Card S j � Card J × ℵ0 .

If the set J is finite, then so is I. Let p and q be the number of elements of I and J
respectively. There is an alternating p-linear form of E vanishing everywhere. Since
E has a basis with q elements, p � q because every alternating r -linear form on E
where r > q vanishes everywhere.

If the set J is infinite, then Card J = Card J × ℵ0 � Card I. Hence Card I � Card J
in all cases. Interchanging the roles of I and J gives Card I = Card J, �

Remark This result does not hold for non-commutative rings (3.4, Exercise 2), but
does for skew fields.12

3.4.6 Free Module on a Set

Let A be a ring, I a set. Let AI be the set of families (λi )i∈I of elements in A indexed
by I. Define an A-module structure on AI by setting

(λi )i∈I + (μi )i∈I = (λi + μi )i∈I

a(λi )i∈I = (aλi )i∈I .

Write A(I) for the A-submodule of AI consisting of families with finite support. For
all i ∈ I, let ei be the element (δi j ) j∈I of A(I). The family (ei )i∈I is a basis for A(I).
Indeed, for all λ = (λi )i∈I in A(I), λ =∑λi ei , and so λ is in the submodule of
A(I) generated by the elements (ei ), and the relation

∑
λi ei = 0 implies (λi )i∈I = 0.

12Bourbaki [4], chap. 2, § 7, th. 3 (A II.96).
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Hence λi = 0 for all i ∈ I. A(I) is said to be the free A-module on I and (ei )i∈I the
canonical basis for A(I).
Universal property. Let E be an arbitrary A-module and (xi )i∈I an arbitrary
family of elements of E. There is a unique homomorphism f from A(I) to E such that
f (ei ) = xi for all i ∈ I.

Indeed, if f is such a homomorphism, then for all λ = (λi )i∈I of A(I),

f (λ) = f
(∑

λi ei
) =
∑

λi f (ei ) =
∑

λi xi

and uniqueness follows. The map f defined by f (λ) =∑λi xi for λ = (λi )i∈I of
A(I) satisfies the desired condition.

Remarks (1) The universal property can also be stated as follows: the map
f �→ ( f (ei ))i∈I is a bijection from Hom(A(I), E) onto EI.

(2) These definitions imply that the image of f is the submodule of E generated
by the family (xi )i∈I. Then f is surjective (resp. injective, resp. bijective) if and only
if (xi )i∈I is a generating family (resp. free, resp. a basis).

An A-module E is free if and only if it is isomorphic to a module of the form A(I).
Every module is isomorphic to a quotient of a free module.

3.4.7 Projectivity of Free Modules

Proposition Let E be a free A-module and 0 → F′ u→ F
v→ F′′ → 0 an exact sequence

of A-modules. Then

0 → Hom(E, F′) u∗→ Hom(E, F)
v∗→ Hom(E, F′′)→ 0 (3.2)

is an exact sequence.

Proof We may assume that E = A(I). Then (1) becomes: 0 → F′I → FI → F′′I → 0
and F′I = Ker(v∗ : FI → F′′I) is immediate; the surjectivity of v∗ : FI → F′′I follows
from the axiom of choice. �
Corollary If, in a short exact sequence 0 → E′ u→ E

v→ E′′ → 0 of A-modules, E′′ is
a free A-module, the exact sequence splits.

Proof The homomorphism v∗ : Hom(E′′, E) → Hom(E′′, E′′) is surjective, and so
there exists σ ∈ Hom(E′′, E) such that v ◦ σ = 1E′′ . �

3.4.8 Projective Modules

Definition An A-module P is said to be projective if, for all surjective A-module
homomorphisms f : M → M′ and homomorphisms g : P → M′, there exists a
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homomorphism h : P → M making the diagram

M

P
g �

h
�

M′

f
�

commutative.

In other words, P is projective if and only if the functor M �→ Hom(P, M) from
the category A-Mod to itself transforms surjective homomorphisms into surjective
homomorphisms.

All free modules are projective (3.4.7).

Proposition A module is projective if and only if it is the direct factor of a free
module.

Proof (a) Let P and Q be two modules such that L = P ⊕ Q is free, and
f : M → M′ a surjective module homomorphism. Then Hom(L, M) =
Hom(P, M) × Hom(Q, M). In the commutative diagram

Hom(P, M) × Hom(Q, M)
f∗� Hom(P, M′) × Hom(Q, M′)

Hom(P, M)

pr1
� f∗ � Hom(P, M′)

pr1�

the map f∗ is surjective and pr1 is surjective. So f∗ ◦ pr1 = pr1 ◦ f∗ is surjective, and
f∗ : Hom(P, M) → Hom(P, M′) is surjective.

(b) Conversely, suppose that P is a projective module. Let L be a free module and
f : L → P a surjective homomorphism. There is a homomorphism h : P → L such
that the diagram

L

P
1P �

h
�

P

f

�

commutes. Therefore (3.3.12) P can be identified with a direct factor of L. �

For examples of non-free projective modules see 3.4, Exercise 8.
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3.4.9 Matrices

Let A be a ring, I and J finite sets, (ei )i∈I and ( f j ) j∈J canonical bases for AI and AJ

respectively. For any A-linear map ϕ : AI → AJ there is a unique family M(ϕ) =
(a j

i )(i, j)∈I×J of elements of A such that for all i ∈ I, ϕ(ei ) =∑ j∈J a j
i f j . Then M(ϕ)

is said to be the matrix representing ϕ.
For i0 ∈ I, (a j

i0
) j∈J is called the i − 0-th column of M(ϕ); for j0 ∈ J the family

(a j0
i )i∈I is called the j0-th row.
Assigning to each A-linear map ϕ its matrix M(ϕ) defines a bijection from

Hom(AI, AJ) onto AI×J. Let α = (a j
i )(i, j)∈I×J, α′ = (a′ j

i )(i, j)∈I×J ∈ AI×J, and let
ϕ and ϕ′ be the maps represented by these matrices. By definition, set α + α′ =
M(ϕ + ϕ′). Then,

α + α′ = (a j
i + a′ j

i )(i, j)∈I×J (3.3)

Let K be a finite set, (gk)k∈K the canonical basis for AK, β = (bk
j )( j,k)∈J×K ∈ AJ×K,

and ψ the map represented by β. By definition, set

βα = M(ψ ◦ ϕ) .

Then,

βα = (ck
i )(i,k)∈I×K with ck

i =
∑

j∈J

bk
j a

j
i . (3.4)

In particular, the set MI(A) = AI×I = Hom(AI, AI) together with the two com-
position laws defined above is a ring, which is not commutative if Card I > 1 and
A �= 0.

This ring has an identity element: the matrix (δ
j
i )(i, j)∈I×J of the identity of AI.

3.4.10 Matrices Representing a Homomorphism with Respect
to Given Bases

Let E and F be finitely generated free A-modules, x = (xi )i∈I and y = (y j ) j∈J bases
of E and F respectively, ξ : AI → E and η : AJ → F isomorphisms such that for
all i ∈ I and j ∈ J, ξ(ei ) = xi and η( f j ) = y j . For every A-linear map ϕ : E → F,
MX

Y(ϕ) = M(η−1 ◦ ϕ ◦ ξ) is said to be the matrix representing ϕ with respect to
bases X and Y. Its i-th column is the sequence of coordinates of ϕ(xi ) with respect
to the basis Y. If Z is a basis for an A-module G and ψ : F → G a homomorphism,
then MX

Z(ψ ◦ ϕ) = MY

Z(ψ) · MX
Y(ϕ).

If X and X′ are two bases of E, the transition matrix from X to X′ is MX′
X (1E).

Its i-th column is the sequence of coordinates x ′
i with respect to basis X.
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Let E and F be a finitely generated free A-modules, X and X′ bases of E, Y and
Y′ bases of F, ϕ a homomorphism from E to F, M = MX

Y(ϕ), M′ = MX′
Y′(ϕ), P the

transition matrix from X to X′ and Q the transition matrix from Y to Y′. Then

M′ = Q−1MP .

3.4.11 Determinants

Let E be a free A-module of rank n and ϕ an endomorphism of E. Let � be the
module of alternating n-linear forms on E and define the endomorphism ϕ∗ de �

by ϕ∗ f (x1, . . . , xn) = f (ϕ(x1), . . . ,ϕ(xn)). It follows from Proposition 3.4.4 that
there is a unique scalar δ ∈ A such that ϕ∗ f = δ f for all f ∈ �. It is called the
determinant of ϕ and is written δ = det ϕ.

If ψ is another endomorphism of E, then (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗ and det(ψ ◦ ϕ) =
det ψ · det ϕ.

Let I be a finite set and α = (a j
i )(i, j)∈I×J a square matrix. The determinant of α,

written det α, is the determinant of the endomorphism of AI represented by α. If α
is the matrix representing an endomorphism ϕ of a free module E with respect to a
basis for E (the same at both ends), then det ϕ = det α.

Proposition Let I be a finite set and α = (a j
i )(i, j)∈I×J a square matrix. Then det α =

∑
σ∈S(I) ε(σ)

∏
i∈I aσ(i)

i .

Proof Suppose that I = {1, ..., n}. Let (e1, ..., en) be a canonical basis for An , �

the alternating n-linear form on An such that �(e1, ..., en) = 1 and ϕ the endo-
morphism of An represented by α. Then det α = det ϕ = �(ϕ(e1), ...,ϕ(en)) =∑

a j1
1 · · · a jn

n �(e j1 , ..., e jn ).
Now, �(e j1 , ..., e jn ) = ε(σ) if σ : k �→ jk is a permutation of {1, ..., n} and 0

otherwise; so
det α =

∑

σ∈Sn

ε(σ)aσ(1)
1 · · · aσ(n)

n .

�

3.4.12 Minors

Let α = (a j
i )(i, j)∈I×J be a matrix, and (i1, ..., ir ), ( j1, ..., jr ) sequences of elements

of I and J respectively. Denote by Min j1,..., jr
i1,...,ir

(α) the determinant of the matrix

(a jl
ik
)k,l∈{1,...,r}; it is a minor of order r of the matrix α. Such a minor is null if any

two of ik , or any two of jl , are equal. If I = J = {1, ..., n}, for i, j ∈ {1, ..., n}, write
Minĵ

ı̂ (α) for the minor Min1,..., j−1, j+1,...,n
1,...,i−1,i+1,...,n (α) of order n − 1.

Proposition (Expansion of a determinant along a row)
Let α = (a j

i )i, j∈{1,...,n} be a square matrix of order n and j ∈ {1, ..., n}. Then
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det α =
∑

i∈{1,...,n}
(−1)i− j Minĵ

ı̂ (α) a j
i .

Proof

det α =
∑

σ∈Sn

ε(σ)aσ(1)
1 · · · aσ(n)

n =
∑

i∈{1,...,n}

∑

σ∈Sn
σ(i)= j

ε(σ)aσ(1)
1 · · · a j

i · · · aσ(n)
n .

Let i and j ∈ {1, ..., n}; write (a′ j ′
i ′ )i ′, j ′∈{1,...,n−1} for the matrix obtained by deleting

thei-th column and j-th row in α and by renumbering the indices from 1 to n − 1. For
every permutation σ ∈ Sn such that σ(i) = j , define σ′ ∈ Sn−1 as the composite

{1, ..., n − 1} →{1, ..., ı̂ , ..., n} →{1, ..., ĵ , ..., n} →{1, ..., n − 1}

(in this formula, the term witĥ is omitted). Since ε(σ) = (−1)i− jε(σ′),
∑

σ∈Sn
σ(i)= j

ε(σ)aσ(1)
1 · · · a j

i · · · aσ(n)
n = (−1)i− j a j

i

∑

σ′∈Sn−1

ε(σ′)a′σ′(1)

1 · · · a′σ′(n−1)

n−1

= (−1)i− j a j
i Minĵ

ı̂ (α) .

The proposition follows.

3.4.13

Theorem (Cramer) Let E be a free A-module of rank n. An endomorphism ϕ of E
is an automorphism if and only if det ϕ is invertible.

If ϕ is invertible, then det ϕ · det ϕ−1 = 1, and so det ϕ is invertible. We give two
proofs for the converse.
1st proof Let (e1, ..., en) be a basis for E and � the n-linear form on E such that
�(e1, ..., en) = 1. Denote by �′ the module of alternating (n − 1)-linear forms
on E and let �̃ : E → �′ be the homomorphism defined by �̃(x)(y1, ..., yn−1) =
�(x, y1, ..., yn−1).

Lemma �̃ is an isomorphism.

Proof of the Lemma If x =∑ xi ei , then

�̃(x)(e1, ..., êi , ..., en) = (−1)i−1xi (3.5)

(in this formula, the term witĥis omitted). It follows from (1) that �̃ is injective. We
show it is surjective. Let f ∈ �′, xi = (−1)i−1 f (e1, ..., êi , ..., en) and x =∑ xi ei .
The forms f and �̃(x) agree on all (n − 1)-uples (e1, ..., êi , ..., en), and so are equal.

�
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End of the 1st Proof of the Theorem Define the endomorphism ϕ∗ of �′ by
ϕ∗ f (x1, ..., xn−1) = f (ϕ(x1), ...,ϕ(xn−1)). In the diagram

E
�̃� �′

E

ϕ
�

�̃� �′
ϕ∗�

ϕ∗ ◦ �̃ ◦ ϕ = det ϕ · �̃. Indeed, (ϕ∗ ◦ �̃ ◦ ϕ(x))(y1, ..., yn−1) = �(ϕ(x),

ϕ(y1), ...,ϕ(yn−1)) = det ϕ · �(x, y1, ..., yn−1).
If det ϕ is invertible, setting ψ = (det ϕ)−1�̃−1 ◦ ϕ∗ ◦ �̃, ψ ◦ ϕ = 1E, and ϕ is

left invertible. As det ψ · det ϕ = 1, det ψ is invertible. Likewise, ϕ1 is a left inverse
of ψ. Now, ϕ1 = ϕ1 ◦ ψ ◦ ϕ = ϕ, and so ψ is an inverse of ϕ. �

2nd Proof of the Theorem We may assume that E = An . The endomorphism ϕ
is then represented by a matrix α. Set b j

i = (−1) j−i Minĵ

ı̂ (α) and β = (b j
i ). By

Proposition 3.4.12,
∑

i a j
i b j

i = det α, and
∑

i ak
i b j

i = 0 for k �= j (expansion of
the determinant of a matrix with two equal rows). Hence

∑
i ak

i b j
i = δ j,k det α,

i.e. α · β = det α · 1An . Similarly, the expansion of a determinant along a column
(analogous to that of Proposition 3.4.12 by interchanging rows and columns), gives
β · α = det α · 1An . If det α is invertible, 1

det αβ is then an inverse of α. �

3.4.14

Proposition Let E be a free A-module of rank n and ϕ an endomorphism of E. The
following conditions are equivalent:

(i) ϕ is an automorphism;
(ii) ϕ is surjective;

(iii) det ϕ is invertible.

Proof (iii) ⇒ (i) by the preceding theorem. (i) ⇒ (ii) is obvious. We show that (ii)
⇒ (iii). Suppose that ϕ is surjective; by (3.4.7, Corollary), there is a homomorphism
ψ : E → E such that ϕ ◦ ψ = 1E, and so det ϕ · det ψ = 1. �

3.4.15

Proposition Let E be a free A-module of rank n and ϕ an endomorphism of E. The
following conditions are equivalent:
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(i) ϕ is injective;
(ii) det ϕ is not a zero divisor.

Proof (ii) ⇒ (i). Let (e1, ..., en) be a basis for E and � an alternating n-linear form on
E such that �(e1, ..., en) = 1. For x =∑ xi ei ∈ Ker ϕ, as xi = (−1)i−1�(x, e1, ...,

êi , ..., en) for all i , det ϕ · xi = (−1)i−1�(ϕ(x), ...) = 0. Hence xi = 0 if det ϕ is
not a zero divisor.

Not (ii) ⇒ not (i). We show that if det ϕ is a zero divisor, then ϕ is not injective.
Let h �= 0 be such that h det ϕ = 0. Let α = (a j

i ) be a matrix representing ϕ, and μ =
Min j1,..., jr

i1,...,ir
(α) a minor such that hμ �= 0 and whose order is as maximal as possible

for this property.13 Since h det ϕ = 0, r < n . Let i0 /∈ {i1, ..., ir }, and x =∑ xi ei ,
where xik = (−1)kh Min j1,..., jr

i0,...,ı̂k ,...,ir
(α) and xi = 0 if i �= ik for any k. For all j ,

∑
a j

i x i = h Min j, j1,..., jr
i0,...,ir

(α) = 0 ,

and so x ∈ Ker ϕ. As xi0 = hμ �= 0, x �= 0 and ϕ is not injective. �

3.4.16 Presentations

Let M be an A-module. A presentation of M is an exact sequence A(J) → A(I) →
M → 0.

Proposition Every module has a presentation.

Proof Let M be an A-module and (xi )i∈I a generating family of M. The homo-
morphism u : A(I) → M defined by u(ei ) = xi is surjective; let N be its kernel and
(y j ) j∈J its generators. The homomorphism v : A(J) → A(I) defined by v(e j ) = y j

has image N, and A(J) v→ A(I) u→ M → 0 is an exact sequence. �

Definition An A-module M is finitely presented if it has a presentation
A(J) → A(I)→M → 0, where I et J are finite sets.

3.4.17

Proposition Every module is the direct limit of finitely presented modules.

Proof Let M be an A-module, A(J) v→ A(I) u→ M → 0 a presentation of M and H
the set of pairs (I′, J′), where I′ and J′ are finite subsets of I and J respectively and
v(A(J′)) ⊂ A(I′). The set H is directed with the order defined by (I′, J′) � (I′′, J′′) ⇔

13n > 0 for otherwise det ϕ = 1. If ha j
i = 0, for all (i, j), ϕ(hei ) = 0 and ϕ is not injective.
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I′ ⊂ I′′ and J′ ⊂ J′′. Then
⋃

(I′,J′)∈H I′ = I because it is always possible to take J′ = ∅,
and
⋃

(I′,J′)∈H J′ = J because, for j ∈ J, v(e j ) has finite support in I, and so is in
some AI′ . For h = (I′, J′) ∈ H, let vh : AJ′ → AI′ be the map induced by v and set
Mh = Coker vh . Then A(I) =⋃AI′ = lim−→ AI′ and A(J) =⋃AJ′ = lim−→ AJ′

. Hence
M = Coker v = lim−→ Mh , and each Mh is finitely presented. �

3.4.18

Proposition Let M be a finitely presented A-module and ((Eλ), (rλ,μ)) be a direct
system of A-modules. Then

Hom(M, lim−→ Eλ) = lim−→ Hom(M, Eλ) .

Proof If L = AI with I finite, then for any module E, Hom(L, E) = EI = E(I). Hence
the functor E �→ Hom(L, E) commutes with direct limits. If
M = Coker(v : L1 → L0), where L0 and L1 are free and finitely generated, then
Hom(M, E) = Ker(v∗ : Hom(L0, E) → Hom(L1, E)). So, by Proposition 3.3.14,
the functor E �→ Hom(M, E) commutes with direct limits. �

Exercises 3.4. (Free modules and matrices)
1.—Show that, in the vector space C

N of complex sequences, the sequences (nkrn)n∈N

with k ∈ N and r ∈ C form a free family. (For each sequence (an), consider the series∑
anzn .)

2.—(a) Let A be a not necessarily commutative ring and E a left A-module. Show
that, if E has a finite basis, every basis for E is finite. Show that if E has an infinite
basis, all bases have the same cardinality.

(b) Let E be a vector space over a field or skew field K. Let (a1, ..., ap) be a free
family in E, and G a generating family with n elements. Show by induction that, for
all i � p, there is a generating subset Gi of the form {a1, ..., ap} ∪ G′

i , where G′
i has

n − i elements. In particular n � p.
Show that any two bases for E necessarily have the same number of elements.
(c) Let H be an infinite dimensional Hilbert space and A the ring L(H, H) of contin-

uous endomorphisms of H. Show that, as a left A-module, A is isomorphic to A2 (if H1

and H2 are two complement subspaces of H, then L(H, H) = L(H1, H)⊕ L(H2, H)).
Show that A contains elements u1, v1, u2, v2, such that v1.u1 = 1, v2.u2 = 1 and

v2.u1 = 0. Show that there is no unital homomorphism from A to a field or skew
field, nor to any not necessarily commutative nonzero ring where left multiplication
by a nonzero element is injective.

3.—Let A be a (commutative) ring.
(a) Let I and J be not necessarily finite sets. Show that the homomorphisms from

A(I) to A(J) correspond to matrices (a j
i )(i, j)∈I×J whose columns have finite support.
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Extend the results of 3.4.9 and 3.4.10 to this context. What are the homomorphisms
for which the matrix only has finitely many nonzero rows?

(b) Let E be a free infinite dimensional A-module. Using the formula of Proposi-
tion 3.4.11, define det(1E + u) for an endomorphism u of E whose image is contained
in a finitely generated submodule of E. Prove the formula det((1E + u)(1E + v)) =
det(1E + u) det(1E + v).

4.—(a) Does Proposition 3.4.11 hold when I = ∅?
(b) Does the proof of 3.4.15 still hold without the footnote?

5.—(a) Let E =⊕i∈I Ei and F =⊕ j∈J F j be A-modules expressible as a finite
direct sum of submodules. Show that, for all homomorphisms f : E → F, there is
a unique family (a j

i )(i, j)∈I×J with a j
i ∈ Hom(Ei , F j ) such that f (x) =∑ j a j

i (x) for
x ∈ Ei .

The family (a j
i ) is said to be the matrix representing f with respect to the given

decompositions.
How is the matrix representing the composite of two homomorphisms computed?
(b) Let f : E1 ⊕ E2 → F1 ⊕ F2 be a homomorphism represented by a matrix(

a b
c d

)

with b invertible. Determine the homomorphisms u : E1 → E2 and

v : E1 → F2 such that Ker f is the graph of the restriction from u to Ker v.

6.—(a) Let E = (⊕En, d
)

be a bounded complex (cf. 3.10) of A-modules, and for
all n, let En be the direct sum of three submodules Tn , Fn , Sn . The homomorphism
dn : En → En−1 is represented by a matrix:

⎛

⎝
an en hn

bn fn in

cn gn jn

⎞

⎠ .

Assume that, for all n, hn : Sn → Tn−1 is an isomorphism. Show that, for all n,
there is another decomposition (T′

n, F′
n, S′

n) of En , where T′
n , F′

n , S′
n are respectively

isomorphic to Tn , Fn , Sn , with respect to which the matrix representing dn is

⎛

⎝
0 0 h′

n
0 f ′

n 0
0 0 0

⎞

⎠ ,

h′
n being an isomorphism. (First set T′

n = dn+1(Sn+1), so that a, b, c, i and j become
zero, then successively modify each Fn in such a way that en becomes null; show
that the homomorphisms gn are not necessarily null.)

(b) Does the result of (a) extend to unbounded complexes?

7.—Let f : Ap → Aq be a A-linear map. Show that f is surjective if and only if the
ideal generated by the minors of order q of the matrix representing f is the whole
of the ring A.

8. (Projective modules)—Let E be an A-module.
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(a) Show that, if E is projective and finitely generated, then it is a direct factor of
a finitely generated free module.

(b) Show that, if E is projective, for all exact sequences M′ → M → M′′ of A-
modules, Hom(E, M′) → Hom(E, M) → Hom(E, M′′) is an exact sequence.

(c) Show that the space E of analytic functions g : R → R such that g(x + 2π) =
−g(x) is a non-free projective module over the ring A of 3.1, Exercise 12.

Show that all maximal ideals mx in this ring are modules isomorphic to E.

9. (Projective modules and vector bundles)—Let X be a topological space. A real
(resp. complex) vector bundle over X is a topological space E equipped with

(i) a continuous map π : E → X,
(ii) the structure of a real (resp. complex) vector space on the fibre E(x) = π−1(x)

for all x ∈ X,

satisfying the following condition:

(FV) For all x ∈ X, there is a neighbourhood U of x , an integer n and a home-
omorphism ϕ from E|U = π−1(U) onto U × R

n (resp. U × C
n) inducing an

isomorphism of vector spaces from E(x) onto R
n (resp. C

n) for all x ∈ U (ϕ
is called a trivialization from E onto U; E is said to be trivial if there is a
trivialization from E over X).

A continuous section of E is a continuous map s : X → E such that π ◦ s = 1X.
If E and F are two vector bundles over X, a morphism from E to F is a continuous

map from E to F inducing a linear map from E(x) to F(x) for all x ∈ X.
(a) Show that the continuous sections of E form a natural module S(E) over the

ring C(X) = C(X, R) (resp. C(X, C)), and that for every morphism f : E → F, the
map f∗ : s �→ f ◦ s from S(E) to S(F) is C(X)-linear.

(b) Henceforth, X is assumed to be compact and metrizable. Show that, if E is a
vector bundle over X passing through every point de E, then there is a continuous
section (i.e. (∀t ∈ E) (∃s ∈ S(E)) s(π(t)) = t).

(c) Let U = (Ui )i∈I be a finite open cover of X. Show that there is a family ( fi )i∈I

of continuous functions on X such that for all i , the function fi has support14 in
Ui , and that

∑
fi are strictly positive at all points. Deduce that there is a family of

continuous functions (ηi )i∈I on X such that ηi have support in Ui for all i , and that∑
ηi = 1 (such a family is called a partition of unity subject to U).
(d) Let E and F be two vector bundles over X, and f : E → F a surjective mor-

phism. Show that, for all x ∈ X, there is a neighbourhood U of x and a morphism
gU : F|U → E|U such that gU ◦ f |U = 1E|U . Using a partition of unity show that there
is a morphism g : F → E such that g ◦ f = 1E. Show that f∗ : S(E) → S(F) is sur-
jective and has a C(X)-linear section.

(e) Let E be a vector bundle over X. Show that a finite family (si ) of continuous
sections of E such that, for all x ∈ X, (si (x)) generate E(x). Deduce that E is a direct
factor of a trivial bundle, and that S(E) is a projective C(X)-module.

14Guichardet [5], 1.2.
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(f) Show that the functor S : E �→ S(E) from the category of vector bundles over X
to the category of C(X)-modules is fully faithful. (To show that
Hom(E, F) → Hom(S(E), S(F)) is bijective, E may first be considered trivial.)

(g) Let E be a vector bundle over X and p a projection of E (i.e. a morphism from
E to itself such that p ◦ p = p). Show that the image of p vector is a subbundle of
E.

(h) Show that the functor S defines an equivalence between the category of vector
bundles over X and the category of projective C(X)-modules.

This reduces the study and the classification of projective C(X)-modules to ques-
tions of algebraic topology. For rings that are not of the form C(X), the study of
projective modules draws methods from algebraic topology.

(i) In the various parts of this problem, can the assumption of the compactness
and metrizability of X be weakened? (For (c), only suppose that the open cover U is
locally finite.)

10.—(a) Let A be a ring, and let J(A) be the set of isomorphism classes of finitely
generated projective A-modules. Find an upper bound for the cardinality of J(A) in
terms of that of A.

(b) The action (E, F) �→ E ⊕ F defines a structure of commutative monoid
on J(A). Show that there is a commutative group K(A) and a homomorphism
ε : J(A) → K(A) satisfying the following universal property: for any group G and
any homomorphism f : J(A) → G, there is a unique homomorphism f̄ : K(A) → G
such that f = f̄ ◦ ε.

(c) Let ξ, η ∈ J(A) with representatives E and F. Show that ε(ξ) = ε(η) if and
only if E ⊕ An is isomorphic to F ⊕ An for sufficiently large n. (For an example
where ε is not injective, see 4.7, Exercise 7.)

11.—(a) Show that in the Banach space �1 of real sequences xn such that
∑ |xn| < ∞,

the sequences (e−λn)n∈N form a free family as λ runs through ]0,∞[.
(b) Using Baire’s theorem show that an infinite dimensional Banach space does

not have a countable algebraic basis.
(c) Show that, for an infinite dimensional Banach space E, there is a continuous

injective linear map from �1 to E.
(d) Show that, for any Hausdorff Banach space E (i.e. with a countable subset

generating a dense subspace), the cardinality of E is 2ℵ0 . Deduce that all Hausdorff
Banach spaces are algebraically isomorphic. Give examples where they are not iso-
morphic as topological vector spaces.

3.5 Modules over Principal Ideal Domains

Throughout this section, A denotes a PID; for a ∈ A, (a) the ideal generated by a,
and χ the canonical map from A to Mon(A) (3.2.7).
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3.5.1

Theorem Every subring of a free A-module is free.

Addendum. Let E be an A-module with basis (ei )i∈I and F a submodule of E.
Then F has a basis ( f j ) j∈I′ , where the cardinality of I′ is less than or equal to that of I.

For every subset J of I, let EJ be the submodule de E generated by (ei )i∈J and
set FJ = F ∩ EJ. Let � be the set of triplets (J, K, ( fi )i∈K), where J is a subset of
I, K a subset of J, and ( fi )i∈K a basis for FJ. For α = (J, K, ( fi )i∈K) and α′ =
(J′, K′, ( f ′

i )i∈K′) in �, write α � α′ if J ⊂ J′, K = K′ ∩ J and (∀i ∈ K) f ′
i = fi .

This is an order relation on �.

Lemma Let α = (J, K, ( fi )) ∈ �. If α is maximal, then J = I.

Proof of the Lemma Suppose that J �= I. We define α′ ∈ � such that α′ > α. Let
i0 ∈ I − J, and set J′ = J ∪ {i0}. Then EJ′ = EJ ⊕ Aei0 . Denote by p the projection
EJ′ → Aei0 and set Q = p(FJ′). There is an exact sequence

0 → FJ → FJ′ → Q → 0 . (*)

The submodule Q of Aei0 is of the form aei0 , where a is an ideal in A, hence of
the form Aaei0 with a ∈ A since A is principal. If a = 0, then FJ′ = FJ and α′ =
(J′, K, ( fi )i∈K) is a strict upper bound of α. If a �= 0, then aei0 is a basis for Q, and the
sequence (∗) splits. Set K′ = K ∪ {i0} and choose fi0 ∈ F′ such that p( fi0) = aei0 .
Then α is strictly bounded above by α′ = (J′, K′, ( fi )i∈K′). �

Proof of the Theorem The ordered set � is inductive. Indeed, let
(
Jλ,

Kλ, ( fi,λ)i∈Kλ

)
λ∈�

be a totally ordered family of elements of �; set J =⋃ Jλ,
K =⋃Kλ, and for i ∈ K let fi be the common value of fi,λ for λ such that i ∈ Jλ;
the family ( fi )i∈K is a basis for FJ since all elements of FJ are in some FJλ

, so are
linear combinations of the elements fi , and a relation between these fi only involves
finitely many i ; therefore the family is bounded above by (J, K, ( fi )i∈K).

By Zorn’s theorem,�has a maximal element (J, K, ( fi )i∈K), and J = I necessarily
holds. So ( fi )i∈K is a basis for F. �

3.5.2 Adapted Bases for Submodules

Let E be a free A-module, F a submodule of E and (ei )i∈I a basis for E. This basis
is said to be adapted F if there is a subset J of I and a family (ai )i∈J in A∗ such that
(ai ei )i∈J is a basis for F.

If there is a basis for E adapted to F, then the quotient module E/F is the direct sum
of a free module and a torsion module, the latter being the direct sum of cyclic mod-
ules. Indeed, with the above notation, E/F is isomorphic to A(I−J) ⊕⊕i∈J A/(ai ).
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3.5.3 Content

We use the notation of 3.2.7. Let E be a free A-module and x ∈ E. Let (xi ) be the
coordinates of x with respect to the basis (ei ). The g.c.d. d of χ(xi ) in Mon(A) is
independent of the choice of the basis (ei ) since, for a ∈ A, χ(a)〈d if and only if
(∃y ∈ E) x = ay. It is said to be the content of x and is written c(x). An element
a ∈ A is a content of x if χ(a) = c(x).

3.5.4

Proposition Let E be a free A-module, x ∈ E and a a content of x. Then, for all
linear forms ϕ : E → A, a 〈ϕ(x), and there is a linear form ϕ such that ϕ(x) = a.

Proof There exists y ∈ E such that x = ay; so ϕ(x) = aϕ(y), and a 〈ϕ(x). We may
assume that E = A(I) and x = (xi ). Then a is a g.c.d. of the xi and, by Bezout’s
formula (3.2.11, Corollary), there are ui ∈ A such that a =∑ ui xi , and the linear
form ϕ : (yi ) �→∑ ui yi on E satisfies ϕ(x) = a. �

Remark The proposition can also be stated as follows: Let E� = Hom(E, A) and
define δx : E� → A by δx (ϕ) = ϕ(x). Then Im δx = A · c(x).

3.5.5 Elements of Content 1

Proposition Let E be a free A-module and x ∈ E. The following conditions are
equivalent:

(i) c(x) = 1;
(ii) (∃ϕ : E → A) ϕ(x) = 1;

(iii) x �= 0 and Ax is a direct factor of E;
(iv) there is a basis (ei )i∈I such that ei0 = x for some i0 ∈ I.

Proof By 3.5.4, (i) ⇒ (ii). If (ii) holds, then x �= 0, and y �→ ϕ(y) · x is a linear
retraction from E onto Ax , implying (iii). Assume (iii) holds and that F such that
E = Ax ⊕ F. By 3.5.1, F is free. Let (ei )i∈J be a basis for F, and i0 /∈ J. Set I = J ∪ {i0}
and ei0 = x . As x is torsion-free, (ei )i∈I is a basis for E, and so (iv) follows. Finally,
(iv) ⇒ (i) is immediate. �
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3.5.6 Elements of Minimal Content in a Submodule

Let E be a free A-module and F a submodule of E. The ring A, being a PID, is a
a UFD, and so every decreasing sequence of elements of Mon(A) is stationary. By
1.6.1, there exists f ∈ F such that c( f ) is a minimal element of {c(y)}y∈F.

Proposition Let E be a free A-module, F a nonzero submodule of E, f ∈ F an
element of minimal content, a ∈ A∗ a content of f and e ∈ E such that f = ae. Then

(a) Ae is a direct factor of E;
(b) Let E1 be a complement of Ae in E and set F1 = F ∩ E1; then F = A f ⊕ F1;
(c) c( f ) is the smallest element of {c(y)}y∈F.

Proof (a) c( f ) = ac(e) and soù c(e) = 1, and the assertion follows from Proposition
3.5.5.

(b) Let p : E → Ae be the projection with kernel E1. The submodule p(F) of
Ae is of the form be where b is an ideal, and so of the form Abe, where b ∈ A
since A is principal. Since f = ae ∈ p(F) = Abe, b 〈a. There exists y ∈ F such that
p(y) = be. Hence b = ϕ(y) for some linear form ϕ on E, and so c(y)〈χ(b) by 3.5.4.

c(y)〈χ(b)〈χ(a) = c( f ); as c( f ) is minimal, c(y) = c( f ) and χ(b) = χ(a).
Hence p(F) = Abe = Aae = A f ⊂ F, and p induces a projection of F with image
A f and kernel F ∩ E1 = F1. So F = A f ⊕ F1 by 3.3.11.

(c) c( f ) is minimal by assumption. We show that, for all y ∈ F, c( f )〈c(y).
Let y ∈ F, write y = λ f + y1 with y1 ∈ F1. Then c(y) = g.c.d.(λc( f ), c(y1)) fol-
lows by considering a basis for E consisting of e and of a basis for E1. To
show that c( f )〈c(y) it suffices to show that c( f )〈c(y1). Set y′ = f + y1. Then
c(y′) = g.c.d.(c( f ), c(y1))〈c( f ), and so c(y′) = c( f ) since c( f ) is minimal. Hence
c( f ) = c(y′)〈c(y1). �

3.5.7

Proposition (Adapted basis Theorem) Let E be a finitely generated free A-module.
For all submodules F of E there is basis for E adapted to F.

Addendum. There is a basis (e1, ...en) for E, an integer p � n and elements
a1, ..., ap of A∗ such that (a1e1, ..., apep) is a basis for F and a1 〈a2 〈 · · · 〈ap.

Proof By induction on the rank p of F. If p = 0, then there is nothing to show.
Suppose that F is of rank p �= 0 and that f1 ∈ F has minimal content. Let a1 ∈ A∗
be a content of f1 and e1 ∈ E such that a1e1 = f1. By 3.5.6, E = Ae1 ⊕ E1 and
F = A f1 ⊕ F1, where E1 is a submodule of E and F1 = F ∩ E1. By 3.5.1, the modules
E1 and F1 are free. As rk(F) = rk(F1) + 1, F1 is free of rank p − 1. By the induction
hypothesis, there is a basis (e2, ..., en) for E1 and elements a2, ..., ap of A∗ such that
(a2e2, ..., apep) is a basis for F1 and a2 〈 · · · 〈ap. Then (e1, ..., en) is a basis for E,
(a1e1, ..., apep) a basis for F, and, if p > 1, a1 〈a2 by 3.5.6, since a2 is a content of
f2 = a2e2 ∈ F. �
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3.5.8

Theorem Every finitely generated A-module is the direct sum of cyclic submod-
ules.

Addendum. Every finitely generated A-module is isomorphic to a module
As ⊕⊕i∈I A/(ai ), where s ∈ N, I is a finite set and ai ∈ A∗ for i ∈ I. In such a
module, the second direct factor is a torsion submodule.

Proof Every finitely generated A-module is isomorphic to the quotient of a finitely
generated free A-module E by a submodule of E. The theorem and its addendum
then follow from Proposition 3.5.7 and from 3.5.2. �

Corollary 3.1 In a finitely generated A-module, the torsion submodule is a direct
factor.

Corollary 3.2 All finitely generated torsion-free A-modules are free.

Corollary 3.3 All commutative finite groups are products of cyclic groups.

3.5.9

Two elements x , y ∈ A are said to be relatively prime if the ideal they generate is A,
i.e. if 1 is a g.c.d. of x and y.

Proposition (Chinese Theorem for two elements) Let x and y be two relatively
prime elements of A. Then the module A/(xy) is isomorphic to A/(x)⊕ A/(y).

Addendum. Let χx : A → A/(x) and χy : A → A/(y) be the canonical maps.
The homomorphism � : z �→ (χx(z),χy(z)) from A to A/(x) × A/(y) factorizes
naturally (3.3.7) to give an isomorphism from A/(xy) onto A/(x)⊕ A/(y). A more
general version will be considered in (5.1.5).

Proof The kernel of � is the ideal of common multiples of x and y and is generated
by xy since xy is a l.c.m. of x and y (3.2.5).

We show that � is surjective. By Bezout’s formula (3.2.11, Corollary), there exist
u, v ∈ A such that ux + vy = 1. Let: (α,β) = (χx (a),χy(b)) ∈ A/(x) × A/(y);
set c = vya + uxb. As c = a + u(b − a)x = b + v(a − b)y,

χx (c) = α, χy(c) = β, �(c) = (α,β) .

Hence � is surjective, and so the proposition and its addendum follow. �

Corollary Let x ∈ A∗. Write x as x = u · pr1
1 · · · prk

k , where u is invertible, all pi

irreducible and χ(pi ) distinct in Mon∗(A). Then the module A/(x) is isomorphic to
A/(pr1

1 )⊕· · ·⊕ A/(prk
k ).
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3.5.10 Elementary Divisors

Proposition and Definition Let E be a finitely generated A-module.
(a) The module E is isomorphic to a module

As ⊕⊕
i∈I

A/(pri
i ) ,

where s ∈ N, I is a finite set, and, for all i ∈ I, pi ∈ A∗ is irreducible and ri > 0.

(b) If E ≈ As ⊕⊕i∈I A/(pri
i ) ≈ As ′ ⊕⊕i∈I′ A/(p′r ′

i
i ), then as the conditions of

(a) hold for s, I, pi , ri and for s ′, I′, p′
i , r ′

i , s = s ′ and there is a bijection τ from I
onto I′ such that χ(pi ) = χ(p′

τ (i)) and ri = r ′
τ (i) for all i ∈ I.

(pri
i )i∈I is the family of elementary divisors of E.

(a) follows from 3.5.8 and 3.5.9. The proof of (b) uses a lemma:

Lemma Let E = As ⊕⊕i∈I A/(pri
i ), where all pi are irreducibles, p ∈ A∗ an

irreducible element and r > 0. Then pr−1E/pr E is isomorphic to (A/(p))s+d(p,r),
d(p, r) being the number of indices i such that χ(pi ) = χ(p) and ri � r .

Proof of the Lemma The general case follows by passing to the direct sum in the
following particular cases:

(i) If E = A, pr−1E/pr E = A pr−1/A pr ≈ A/A p.
(ii) If E = A/(p′r ′

), where χ(p′) �= χ(p), there exist u, v ∈ A such that up +
v p′r ′ = 1. So the image of p in the quotient ring A/(p′r ′

) is invertible, and pr−1E =
pr E = E, and soù pr−1E/pr E = 0.

(iii) If E = A/(pr ′
)with r ′ � r , then pr E = A pr/A pr ′

and pr−1E = A pr−1/A pr ′
,

and so pr−1E/pr E ≈ A pr−1/A pr ≈ A/A p.
(iv) If E = A/(pr ′

) with r ′ < r , then pr−1E = pr E = 0, and so pr−1E/pr E = 0.

Proof of the Proposition (b) The quotient module of E by its torsion submodule is
isomorphic to As and to As ′

. Thus s = s ′ by the uniqueness of dimension (3.4.5).
Defining d ′(p, r) as d(p, r), s ′ + d ′(p, r) = s + d(p, r): it is the dimension of
pr−1E/pr E as a vector space over A/(p). Hence d ′(p, r) = d(p, r).

The number f (p, r) of indices i ∈ I such that χ(pi ) = χ(p) and ri = r is
d(p, r) − d(p, r + 1); The same holds for the number f ′(p, r) defined likewise.
Henceù f (p, r) = f ′(p, r). �
Remark In part (b) of the proposition, the submodules of E corresponding to A/(pri

i )

and to A/(p
rτ (i)

τ (i)) are isomorphic, but may be distinct.

3.5.11 Primary Decomposition

Let E be a torsion A-module and p ∈ A∗ an irreducible element. The p-primary
component of E, written Ep, is the set of x ∈ E such that (∃r ∈ N) pr x = 0. It is
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a submodule of E. Then Ep = Ep′ if χ(p) = χ(p′). Hence we can talk of Ep for
irreducible p ∈ Mon∗(A). When Ep = E, E is said to be p-primary.

If F is a submodule of E, then Fp = F ∩ Ep. If E and E′ are torsion A-modules
and ϕ : E → E′ is a homomorphism, then ϕ(Ep) ⊂ E′

p.

Theorem Let E be a torsion A-module. Then E =⊕p∈M Ep, where M is the set of
irreducible elements of Mon∗(A).

Proof Let x ∈ E. The cyclic submodule Ax of E is isomorphic to a A/(a), where a ∈
A∗ (3.3.6, Example). Write a = u · pr1

1 · · · prk
k as in (3.5.9, Corollary); then A/(a) ≈

A/(pr1
1 )⊕· · ·⊕ A/(prk

k ). Set ei = (0, . . . ,χ
p

ri
i
(1), . . . , 0) in A/(pr1

1 )⊕· · ·⊕
A/(prk

k ). Let ϕ be an isomorphism from this direct sum onto Ax and set xi = ϕ(ei ).
Then pri

i xi = 0. So xi ∈ Epi , and x is of the form
∑

λi xi . Hence E is generated by
the submodules Epi .

Let p1, . . . , pk ∈ A∗ be irreducible elements for which χ(p1),…, χ(pk) are dis-
tinct, and let x1 ∈ Ep1 , . . . , xk ∈ Epk be elements such that

∑
xi = 0. We show that

x1 = · · · = xk = 0. For i ∈ {1, ..., k}, let ri be such that pri
i xi = 0. By Bezout’s for-

mula (3.2.11, Corollary), there exist u, v ∈ A such that u · pr1
1 + v · pr2

2 · · · prk
k = 1.

Then

x1 = (1 − upr1
1 )x1 = v · pr2

2 · · · prk
k x1 = −v · pr2

2 · · · prk
k (x2 + · · · + xk) = 0 ;

Similarly, x2 = · · · = xk = 0. Hence E is a direct sum of the submodules Ep. �

Addendum. For all submodules F of E, F=⊕p∈M(F ∩ Ep).

Exercises 3.5. (Modules over principal ideal domains)
1. (Invariant factors) Let A be a PID and E a finitely generated A-module.

(a) Show that E is isomorphic to a module A/(a1)⊕· · ·⊕ A/(an) with a1 〉
a2 〉 · · · 〉 an , and non-invertible an .

(b) Show that the sequence (a1, ..., an) is uniquely determined up to multiplication
of the elements ai by invertible elements (these ai are called invariant factors). Show
that a1 = 0 if and only if A is torsion-free.

(c) Find the elementary divisors and invariant factors of the Z-module Z/(4)⊕
Z/(8)⊕Z/(6)⊕Z/(18)⊕Z/(7).

(d) Show that n is the minimal cardinality of a generating family of M.
(e) How can the invariant factors be computed in terms of the elementary divisors

and conversely?

2. (Multiplicative groups of modulo n integers)—Let n be an integer. Set G(n) to be
the finite multiplicative group of invertible elements of the ring Z/(n). The aim is to
express G(n) as a product of cyclic groups.

(a) Let G be a finite commutative group, written multiplicatively. Assume that,
for every prime p, the number of elements of G of order p is less than p. Show that
G is cyclic.

(b) Let p be a prime. Show that the group G(p) is cyclic (use the fact that a
polynomial of degree q has at most q roots in the field Z/(p)).
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(c) Let N(pr ) denote the set of elements of Z/(pr ) with image 1 in Z/(p). Show
that N(pr ) is a multiplicative group (every element in N(pr ) is of the form 1 + u
withù u nilpotent). What is its order?

(d) Assume that p �= 2. Show that (1 + apk)p ≡ 1 + apk+1 (mod pk+2). Which
are the elements of order p in N(pr ) ? Show that N(pr ) is cyclic. Is the group G(pr )

cyclic?
(e) For r � 2, let N′(2r ) be the subgroup of N(2r ) = G(2r ) consisting of the

elements with image 1 in Z/(4). Show that N′(2r ) is cyclic, and that it is a direct
factor of N(2r ). Is the group G(2r ) cyclic?

(f) Show that, if n = pr1
1 · · · prk

k , the group G(n) is isomorphic to the product
group G(pr1

1 ) × · · · × G(prk
k ).

(g) Express G(4761) as a product of cyclic groups.

3. (Fitting ideal)—Let A be a PID and E a finitely generated torsion A-module.

(a) Show that E has a presentation Aq f→ Ap → E → 0, with f injective. Show
that, for such a presentation, q = p necessarily holds, and that, up to multiplication
by an invertible element, the determinant of f only depends on E and not on the
presentation. The ideal generated by det( f ) is called the Fitting ideal of E.

(b) Compute det( f ) for E = A/(a1)⊕· · ·⊕ A/(an). Give an interpretation for
it when A = Z.

(c) Let 0 → E → F → G → 0 be a short exact sequence of finitely generated
torsion A-modules. What is the relation between the generators of the Fitting ideals
of E, F and G?

4.—Let n be an integer and A a ring. Set B = A[X]. A vector of Bn (resp. a matrix
with entries in B) can be written u0 + Xu1 + · · · + Xdud , with ui ∈ An (resp. ui is
a matrix with entries in A).

(A) Let M be a matrix with entries in A and consider the B-linear map 	M =
M − XI : Bn → Bn . Show that the A-submodule An of Bn is a complement of the
image of 	M.

(B) Consider the B-module EM obtained by equipping An with the A-bilinear map
B × An → An defined by X.v = M(v) for v ∈ An .

(a) Show that EM is not isomorphic to any submodule of Bn .
(b) When A is an algebraically closed field, give an interpretation of the primary

decomposition of EM, and more particularly of Proposition 3.5.10.
(c) Show that there is an exact B-linear sequence (resolution of EM)

0 → Bn → Bn → EM ,

with 	M, and a map ε : Bn → EM which should be defined.
(C) Let M and M′ be two n × n matrices with entries in A. Show that the following

conditions are equivalent:

(i) The B-modules EM and EM′ are isomorphic;
(ii) there are invertible matrices V and W with entries in B such that M′ − XI =

W(M − XI)V−1;
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(iii) there is a matrix U with entries in A such that M′ = UMU−1.

(D) Show by an example (with A = R, n = 2) that condition (iii) of (C) is not
generally equivalent to the analogous condition (iii’) where det U = 1. What happens
when A is an algebraically closed field?

5.—Let E be a finite n-dimensional vector space over a field K and u an endomor-
phism of E. Endow E with the structure of a K[T]-module defined by T · x = u(x)

for x ∈ E.
(a) Show that E is a finitely generated torsion K[T]-module.
(b) Show that the first invariant factor of the K[T]-module E is the minimal

polynomial15 of u. What is the Fitting ideal of E?
(c) Suppose that K is algebraically closed. Using 3.5.10 recover the fact that E =

E1 ⊕· · ·⊕ Ek , where all Ei are stable under u, and where, for all i , the endomorphism
ui of Ei induced by u is the sum of a homothety and a nilpotent endomorphism.16

(d) Show that from the i th factor, the product of invariants factors is equal to the
g.c.d. of minors of order n − i of a matrix representing u.

6.—Let E be the Z-module Z
N of all integers. The aim of this exercise is to determine

the module E� = Hom(E, Z).
Let F be the submodule Z

(N) of E consisting of sequences with finite support, and
(en)n∈N the canonical basis for F defined by en = (δn,p)p∈N. For all u ∈ E�, define
ϕ(u) ∈ E by ϕ(u) = (u(en))n∈N. This gives a homomorphism from E� to E.

Parts A an B aim to find the kernel and image of ϕ. They are independent.

A. Determination of Ker ϕ

(a) Show that Ker ϕ = G�, where G = E/F (module of the “germs of sequences at
infinity”).

(b) Let H2 be the set of elements of G divisible by 2k for all k. Show that H2 is a
submodule of G. Provide a method for finding the nonzero elements of H2.

(c) Show that all linear forms u : G → Z vanish on H2.
(d) Define H3 similarly. Determine H2 + H3. Conclude.

B. Determination of Im ϕ
For all x = 2aq ∈ Z with q odd, set |x |2 = 2−a ; let |0|2 = 0.

(a) Show that (x, y) �→ |y − x |2 is a distance on Z. Is the space Z complete with
respect to this distance?

Show that, if x1, ..., xn are integers such that |xi |2 are mutually distinct, then∣
∣
∑

xi

∣
∣
2 is the largest of the |xi |2.

(b) For x = (xn)n∈N ∈ E, set ‖x‖2 = sup |xn|2. Show that:

(∀u ∈ E�) (∀x ∈ E) |u(x)|2 � ‖x‖2 .

(c) Let x = (xn)n∈N. What condition must the sequence
(‖x −∑n

0 xkek‖2
)

n∈N

satisfy so as to tend to 0?

15Cf. Queysanne [1], Example 488, p. 509 or [2], def. 11.3.2, p. 343
16Queysanne [1], Exerc. 486 and 495, [2], § 11.4, p. 348.
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(d) Let u ∈ E� and set S to be the support of ϕ(u), i.e. S = {n | u(en) �= 0}. Let
x ∈ E be an element whose support is S and such that the maps

s �→ |xs |2 and s �→ |u(es)|2|xs |2
from S to R+ are strictly decreasing.

Let A be the set of sequences having support in S and which only take values
0 and 1 , i.e. A = {0, 1}S. For ε ∈ A, set ψ(ε) = u(εx), where εx = (εn xn)n∈N.
Determine |ψ(ε) − ψ(ε′)|2 in terms of s0 = inf{s | εs �= ε′

s}. Deduce that ψ : A → Z

is injective.
(e) Conclude by considering the cardinality of A.

C. Conclusion
(a) Describe E�.
(b) Is the module E free?
(c) Do these results generalize to infinite sets other than N, to rings other than Z?

7.—Let A be a (not necessarily principal) ring all of whose ideals are projective
A-modules (for example a Dedekind ring). Let E be a free A-module, (ei )i∈I a basis
for E, and F a submodule of E. Show that F is isomorphic to a module of the form⊕

i∈I Ji , where Ji is an ideal of A for each i (use the Proof of Theorem 3.5.1).

8.—Let G be a countable Z-module whose points are separated by linear forms (i.e.
(∀x �= 0) (∃ϕ : G → Z linear) ϕ(x) �= 0). The aim is to show that G is free. This
exercise uses some of the results of 3.8.

(a) Show that G is torsion-free. Set V = Q ⊗ G. Show that G is embedded in
V, and that V is a finite dimensional or countable vector space. Show that G� =
Hom(G; Z) is embedded in V∗ = Hom(V; Q).

(b) Suppose V is finite dimensional. Show that there is a family of elements of G�
forming a basis for V∗, and that such a family separates the points of G. Deduce that
G is embedded in a finitely generated Z-module, and that it itself is finitely generated.

(c) Still supposing V to be finite dimensional, let V′ be a hyperplane in V. Set
G′ = G ∩ V′. Show that any basis for G′ can be extended to a basis for G.

(d) Suppose V is of countably infinite dimension. Let (e1, ..., en, ...) be a basis
for V, and Vn the vector subspace generated by (e1, ..., en), and set Gn = Vn ∩ G.
Construct by induction a sequence (xn) of elements of G such that (x1, ..., xn) is a
Z-base for Gn for all n. Show that (x1, ..., xn, ...) is then a basis for G.

(e) Deduce that every countable subgroup of Z
N is free.

9.—Let G ⊂ Z
N be a countable subgroup that is not finitely generated. Show that

G is not a direct factor (it may be shown that there is element ξ �= 0 in Z
N/G with

infinitely many divisors).

10.—The aim is to find an example of a torsion-free countable Z-module G all whose
nonzero elements are only divisible by finitely many scalars, but which is not free.

Let p be a prime and A the ring Z
[

1
p

] = { m
pr

}
m∈Z,r∈N

; Denote by Ẑp the ring of

p-adic integers (see 2.5, Exercise 7) and by Q̂p its field of fractions.
Let α ∈ Ẑp − Q, and G the subgroup of A2 consisting of pairs (x, y) such that

|y − αx |p � 1 (absolute p-adic value).
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(a) Show that the projection (x, y) �→ x from G to A is surjective and that its kernel
can be identified with Z. Deduce that G is countable, but not finitely generated.

(b) Show that G is embedded in Q
2. Deduce that G is not free.

(c) Show that the nonzero elements of G are only divisible by finitely many powers
of p, and only have finitely many divisors.

3.6 Noetherian Rings

3.6.1

Theorem and Definition Let A be a ring. The following properties are equivalent:

(i) every ideal of A is finitely generated;
(ii) the set of ideals of A, ordered by inclusion, is Noetherian (i.e. every increasing

sequence of ideals of A is stationary);
(iii) every submodule of a finitely generated A-module is finitely generated;
(iv) For any finitely generated A-module E, the ordered set of submodules of E is

Noetherian.

If these conditions hold, the ring A is said to be Noetherian.

Implications (iii) ⇒ (i) and (iv) ⇒ (ii) are immediate (take E = A). The equiva-
lences (i) ⇔ (ii) and (iii) ⇔ (iv) follow from the next lemma:

Lemma Let E be an A-module. The following conditions are equivalent:
(iE) every submodule of E is finitely generated;
(iiE) the ordered set of submodules of E is Noetherian.

Proof of the Lemma (iE) ⇒ (iiE). Let (Fn) be an increasing sequence of submodules
of E. Set F =⋃Fn . Let (xi )i∈I be a finite generating family of F. For each i , there
exists ni such that xi ∈ Fni . Thus, Fn = F for n = sup(ni ), and so the sequence (Fn)

is stationary.
(iiE) ⇒ (iE). Let F be a submodule of E. The set X of finitely generated submodules

of F is not empty since {0} ∈ X. So it contains a maximal element G (1.6.1), and
G = F. Indeed were x in G − F, then G would be strictly contained in the submodule
G + Ax . Hence F is finitely generated. �

Proof of the Theorem (i) ⇒ (iii) remains to be shown. We show by induction on n
that every submodule of an A-module E generated by n elements is finitely generated.
This is obvious for n = 0. It holds for n = 1. Indeed, a cyclic A-module is isomorphic
to a quotient module A/I, and submodules of A/I are of the form J/I, where J is
an ideal of A, and is finitely generated if J is a finitely generated ideal. Let E be an
A-module generated by x1, ..., xn with n � 1, and F a submodule of E. Let E′ be the
submodule of E generated by (x1, ..., xn−1), E′′ = E/E′, F′ = F ∩ E′ and F′′ = F/F′.
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The module F′′ can be identified with a submodule of E′′, and so is finitely generated,
and by the induction hypothesis, F′ is finitely generated. This gives an exact sequence
0 → F′ → F → F′′ → 0, and so F is finitely generated by (3.3.9, Corollary). �

3.6.2 Examples

(1) Every PID is Noetherian.
(2) Every quotient ring of a Noetherian ring is Noetherian, Indeed, if B = A/I,

the ideals of B correspond to ideals of A containing I.
(3) Let ϕ : A → B be a ring homomorphism. If A is Noetherian, and if ϕ turns

B into a finitely generated A-module (see 3.3.1, Example 3), then the ring B is
Noetherian. Indeed, every ideal in B is finitely generated over A, perforce over B.
This will be generalized (3.7.7, Corollary 3.5).

(4) If K is a field, the ring of polynomials K[X1, ..., Xn] in n variables will be
seen (3.7.7) to be Noetherian. The same holds for the ring K[[X1, ..., Xn]] of formal
series, and for the ring of convergent series C{X1, ..., Xn}.

(5) Every ring of fractions of a Noetherian ring is Noetherian. In particular every
localization of a Noetherian ring is Noetherian.

(6) The ring of analytic functions on a compact R-analytic manifold is Noetherian.

3.6.3 Counterexamples

(1) Let K be a field and I an infinite set. The ring K[(Xi )i∈I] is not Noetherian:
the ideal of polynomials with constant terms is not finitely generated.

(2) If E is an infinite dimensional Banach space, the ring of germs of analytic
functions on E is not Noetherian: if (Fn) is a strictly decreasing sequence of closed
vector subspaces of finite codimension in E, then we get a strictly increasing sequence
(In) of ideals, where In is the ideal of germs of analytic functions vanishing on Fn in
the neighbourhood of 0.

(3) A subring of a Noetherian ring is not necessarily Noetherian. Indeed, a non-
Noetherian integral domain is a subring of its field of fractions.

(4) The ring C([0, 1]) of continuous functions on [0, 1] is not Noetherian: the ideal
m of functions f ∈ C([0, 1]) such that f (0) = 0 is not finitely generated. Indeed, let
f1, ..., fn ∈ m, and X be the set of x ∈ [0, 1] such that f1(x) = · · · = fn(x) = 0. If
X �= {0}, the function x �→ x is not in the ideal generated by ( f1, ..., fn); if X = {0},
every function in the ideal generated by ( f1, ..., fn) is O(h), where h = sup | fi |, and
the function

√
h is not in this ideal.

The ring of germs at 0 of continuous functions on R can likewise be shown not
be Noetherian.

(5) The ring E0 of germs at 0 of C∞-functions on R is not Noetherian: the sequence
of ideals ( fn), where fn(x) = 1

xn e−1/x2
, is strictly increasing.
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(6)The ring O(R) of analytic functions on R is not Noetherian: the sequence of
ideals (In), where In is the ideal of functions f ∈ O(R) such that f (p) = 0 for all
integers p � n, is strictly increasing. Indeed the function x �→ sin πx

x−n is in In+1 but
not in In .

(7) An infinite dimensional Banach algebra over R or C is never a Noetherian
ring (3.6, Exercise 3). However, there are Noetherian and even principal infinite
dimensional Banach algebras over ultrametric fields (3.6, Exercise 4).

3.6.4 Minimal Prime Ideals

Proposition Let A be a ring.
(a) Every prime ideal contains a minimal prime ideal..
(b) The intersection of minimal prime ideals is the nilradical of A.
(c) If A is Noetherian, it only has finitely many minimal prime ideals.

Proof (a) The set of prime ideals of A is codirect (i.e. direct for the reverse inclusion
order). Indeed, if (pi ) is a totally ordered family of prime ideals, then p =⋂ pi is
prime since A/p can be identified with a subring of lim←− A/pi , and so is integral.

(More fundamentally, if x /∈ p and y /∈ p, there exists i such that x /∈ pi and y /∈ pi ,
and so xy /∈ pi . Hence xy /∈ p.) By Zorn’s theorem, every prime ideal contains a
minimal prime ideal.

(b) By (a), the intersection of minimal prime ideals is equal to the intersection of
all prime ideals.

(c) The ordered set E of ideals in A is Noetherian. For any ideal I of A, let M(I) be
the set of minimal prime ideals containing I and let us show by Noetherian induction
(1.6.3) that, for all I, the set M(I) is finite. Let I ∈ E be such that, for any ideal
J strictly containing I, the set M(J) is finite. If I is prime, then M(I) has at most
one element. If I is not prime, let x, y /∈ I such that xy ∈ I, and set J′ = I + Ax and
J′′ = I + Ay. Every prime ideal containing I contains xy, and hence contains J′ or
J′′; thus M(I) = M(J′) ∪ M(J′′) is finite. �

3.6.5 Associated Prime Ideals

Definition Let A be a ring and M an A-module. The annihilator of an element of M
is called an associated prime ideal of M.

The set of all associated prime ideals associated of M is denoted by Ass(M). For
x ∈ M, write Ann(x) for the annihilator of x .

Proposition Let A be a Noetherian ring and M a nonzero A-module. Then Ass(M)

is not empty.
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The set of ideals Ann(x) with x ∈ M, x �= 0, ordered by inclusion, is Noetherian.
Hence it has a maximal element Ann(x0). We show by contradiction that Ann(x0) is
prime. Consider a and b not in Ann(x0) such that ab ∈ Ann(x0). Then Ann(x0) ⊂
Ann(bx0), a ∈ Ann(bx0) and a /∈ Ann(x0); so Ann(bx0) strictly contains Ann(x0),
contradicting maximality. �

3.6.6

Proposition Let A be a ring and 0 → E
u→ F

v→ G → 0 an exact sequence of A-
modules. Then Ass(F) ⊂ Ass(E) ∪ Ass(G).

Proof Let p = Ann(x) ∈ Ass(F). We show that p ∈ Ass(E) or p ∈ Ass(G). If x ∈
u(E), then p ∈ Ass(E); Suppose that x /∈ u(E); so v(x) �= 0. Then p ⊂ Ann(v(x)). If
p = Ann(v(x)), then p ∈ Ass(G). Suppose that p �= Ann(v(x)). Hence there exists
a ∈ A such that a ∈ Ann(v(x)) and a /∈ p, i.e. av(x) = 0 and ax �= 0. We show
that p = Ann(ax). It is obvious that p = Ann(x) ⊂ Ann(ax); we prove the converse
inclusion. Let b ∈ A such that bax = 0, then ba ∈ p and a /∈ p, and so b ∈ p; hence
Ann(ax) ⊂ p. �

3.6.7

Theorem Let A be a Noetherian ring and M a finitely generated A-module. Then
Ass(M) is finite.

Proof We first prove the theorem when M is cyclic, i.e. M = A/I for some ideal I, by
Noetherian induction on I (1.6.3). If I is prime then, for all x �= 0 in M, the annihilator
of x in A/I is the zero set and so the annihilator of x in A is I and Ass(M) = {I}
contains a unique element, and so is finite. Suppose that I is not prime and that, for all
ideals I′ strictly containing I, the set Ass(A/I′) is finite. Let a, b ∈ A − I be such that
ab ∈ I; set I′ = I + Aa and let I′′ be the ideal of c ∈ A such that ac ∈ I. As I � I′,
I � I′′ since b ∈ I′′. There is an exact sequence 0 → A/I′′ u→ A/I

v→ A/I′ → 0, where
u is multiplication by a. Therefore, Ass(A/I) is finite by Proposition 3.6.6.

Next suppose that x1, ..., xr generate M. The proof is by induction on r . Let M′
be the submodule of M generated by x1, ..., xr−1. By the induction hypothesis, the
set Ass(M′) is finite and Ass(M/M′) is finite since M/M′ is cyclic. Hence Ass(M)

is finite by Proposition 3.6.6. �
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3.6.8 Remark

Let A be a Noetherian ring, M a finitely generated A-module, I the annihilator of M,
i.e. I =⋂x∈M Ann(x). The inverse image of every minimal prime ideal of A/I is an
element of Ass(M).

Exercises 3.6. (Noetherian rings)
1.—Let U be a non-empty open subset of C. The aim is to show that the ring O(U)

of holomorphic functions on U is not Noetherian.
(a) Show that there is a holomorphic function on U with infinitely many simple

roots. (Study the case where U contains R+ and is a neighbourhood of zero not
containing R+.)

(b) Let f ∈ O(U) admit infinitely many simple roots an . Denote by In the set
h ∈ O(U) such that h(ak) = 0 for all k � n. Show that (In) is a strictly increasing
sequence of ideals.

2.—For every open subset U of C
2, let O(U) be the ring of holomorphic functions on

U and for every compact subset K of C
2,O(K) = lim−→O(U) for open neighbourhoods

U in K. Denote by D the closed unit disc of C.
O(D × D) may be shown to be Noetherian.17 The aim is to show that there are

convex compact subsets K1 and K2 in C such that O(K1 × K2) is not Noetherian.
Let K1 ⊂ D be a convex compact subset whose intersection with the boundary

of D consists of 1 and of the points an = e
1

2n i and K2 be the image of K1 under
conjugation z �→ z̄. Set K = K1 × K2.

(a) Describe the intersection of K with H = {(x, y) ∈ C
2 | xy = 1}.

(b) Set

bn = ei/2n+1, un(z) = −i
z − bn

z + bn
, vn(z) = i

z − bn

z + bn
.

Show that un(z) (resp. vn(z)) has an imaginary part � 0 (resp. � 0) for z ∈ K1 (resp.
z ∈ K2).

Show that un(ai ) = vn(ai ) ∈ R; what is the sign of this number?
(c) Define hn ∈ O(K1 × K2) by hn(x, y) = 1

2iπ (log vn(y) − log un(x)), log being
chosen so that that the imaginary parts are in [0, 2π]. Calculate hn(ak, ak). Conclude
as in the previous exercise.

3.—Let A a commutative Banach algebra over R. The aim is to show that, if A is a
Noetherian ring, then it is finite dimensional as a vector space over R.

Assume the following results:
Banach Theorem. Let E and F be two Banach spaces, f : E → F a continuous

bijective linear map. Then f −1 is continuous.
Gelfand-Mazur Theorem. Let A be a Banach algebra over the field R. Then

A is isomorphic to R or C (4.4, Exercise 5).
(a) Let E and F be Banach spaces, f : E → F an injective closed morphism. Show

that there exists c > 0 such that every f ′ : E → F with ‖ f ′ − f ‖ � c is injective and

17Frisch [6].
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closed. Show that if f is not surjective, then this is also the case for all f ′ sufficiently
near f (extend f to a closed injective morphism g : E ⊕R → F).

(b) Let E and F be Banach spaces and f : E → F a surjective morphism. Show
that any morphism sufficiently near f is surjective.

(c) Let A be a Banach algebra, E a Banach A-module and F a submodule of E.
Show that if the closure F of F is a finitely generated A-module, then F is closed (find
elements of F approaching the generators of F; these elements generate F). Deduce
that if A is a Noetherian ring, then every ideal is closed.

(d) Show that every integral Noetherian Banach algebra is a field (consider the
map a �→ aI from A − {0} to L(A, A) and show that its image is contained in the
set of automorphisms of A regarded as a vector space by noting that A − {0} is
connected if A �= R).

(e) Prove the result when A is reduced (use Proposition 3.6.4).
(f) Let A be a Noetherian ring and N its nilradical. Show that there exists r such

that Nr = 0. Show that the quotients Nk/Nk+1 are finitely generated A/N-modules.
Deduce that, if A is a R-algebra such that A/N is a finite dimensional vector space,
then A is finite dimensional. Conclude.

4.—Let K be a complete ultrametric valued field (i.e. equipped with a map x �→ |x |
from K to R+ satisfying |xy| = |x ||y|, |1| = 1, |x + y| � sup(|x |, |y|), and complete
with respect to the distance d(x, y) = |x − y|). Denote by K{X} the subring of
K[[X]] consisting of the formal series

∑
anXn such that the sequence (|an|) tends

to 0.
(a) For f =∑ anXn ∈ K{X}, set ‖ f ‖ = sup(|an|). Show that this defines a norm

on K{X} with respect to which this vector space is complete, and that multiplication
is continuous.

The aim is to prove that K{X} is a PID.
(b) Let d ∈ N, and Ed the vector space of polynomials of degree < d with coef-

ficients in K. Equip this space with the norm ‖ f ‖ = sup(|ai |) for f =∑ ai Xi , and
the space Ed ⊕ K{X} with the norm defined by ‖(R, f )‖ = sup(‖R‖, ‖ f ‖). Let P ∈
K[X] be a monic polynomial of degree d. Show that the map ϕ : (R, f ) �→ P f + R
is an isometry from Ed ⊕ K{X} onto K{X} first show that ϕ is isometric, then that
its image is dense, noting that the initial space is complete).

(c) Let h =∑ anXn be a nonzero element of K{X}, and d the largest integer
i such that |ai | = ‖h‖. Show that ψ : (R, f ) �→ h f + R is an isomorphism from
Ed ⊕ K{X} onto K{X} (reduce to the case |ad | = 1, where ψ = ϕ + u for some
isometry ϕ and u with ‖u‖ < 1).

(d) Show that K{X} is Euclidian.

5.—Let E be a finite dimensional vector space over C, and A the ring OE of germs
at the origin of holomorphic functions on E. Denote by m the maximal ideal of
A consisting of f such that f (0) = 0. For any linear form u on E, let u∗ be the
homomorphism f �→ f ◦ u from C{X} = OC to A, and for all A-modules M, u∗M
the C{X}-module obtained by restricting scalars from A to C{X} along u∗. Assume
that the ring A is Noetherian.
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Let M be a finitely generated A-module, N the submodule of M consisting of
elements x such that (∃r) mr x = 0. Show that there is a linear form u on E such that
the torsion submodule of u∗M is N (reduce to the case N = 0, and note that then for
all p ∈ Ass(M), the set of u ∈ E� in p is a strict vector subspace, and that a finite
union of such subspaces cannot be the whole of E�).

6. (Fractional ideals)—Let A be an integral domain and K its field of fractions. The
fractional ideal of A (or by abuse of language K) is an A-submodule of K contained
in a cyclic A-submodule of K.

(a) Let I be a fractional ideal of A and f : I → K an A-linear map. Show that f
is of the form: x �→ ax , with a ∈ K. In particular f is injective or null, and its image
is a fractional ideal.

(b) Show that all fractional ideals are finitely generated projective A-modules.
(c) Let I be a fractional ideal. It is said to be invertible if there is a fractional ideal

I′ such that I · I′ = A. Show that the following conditions are equivalent:

(i) I is invertible;
(ii) there are x1, ..., xr ∈ I and y1, ..., yr ∈ K such that I · y1 ⊂ A, ..., I · yr ⊂ A,

and x1 y1 + · · · + xr yr = 1;
(iii) I is a projective A-module.

(d) Let I1 and I2 be two ideals of A. I1 is said to divide I2 if there is an ideal J of
A such that I2 = J · I1. Show that, if I1 divides I2, then I1 ⊃ I2. Give an example for
which the converse does not hold. Show that, if I1 is invertible, I1 divides I2 if and
only if I1 ⊃ I2.

7. (Dedekind rings)—This exercise follows on the previous one.
A Dedekind ring is an integral domain A in which every ideal is a projective

A-module.
(a) Show that all Dedekind rings are Noetherian.
(b) Let A be a Dedekind ring. Show that the multiplicative monoid of nonzero

ideals in A is a free commutative monoid.
(c) Show that in a Dedekind ring, every nonzero prime ideal is maximal.
(d) Show that all PIDs are Dedekind. The ring of analytic functions of period 2π

on R (see 3.1, Exercise 12) is Dedekind, but not principal. All Dedekind UFDs are
PIDs (3.2, Exercise 6).

(e) Let A be a Dedekind ring. For any multiplicatively closed subset S in A, the
ring of fractions S−1A is Dedekind.

An integrally closed Noetherian ring in which every nonzero prime ideal is max-
imal can be shown to be a Dedekind ring.

3.7 Polynomial Algebras

Throughout this section, A denotes a (commutative unital) ring.
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3.7.1 Monoid Algebra

Let M be a multiplicative monoid. Consider the free A-module A(M) on a set M, and
let (em)m∈M be its canonical basis.

Proposition and Definition There is a unique bilinear multiplication on A(M) such
that (∀(m, m ′) ∈ M2) em · em ′ = emm ′ . With this multiplication, A(M) is a unital asso-
ciative commutative algebra if M is commutative. It is the monoid algebra M.

Proof Such a multiplication is necessarily given by:

(∑
amem

)
·
(∑

bm ′em ′
)

=
∑

ambm ′emm ′ ,

i.e. (am)m∈M · (bm ′)m ′∈M = (cm ′′)m ′′∈M, where cm ′′ =∑mm ′=m ′′ ambm ′ . The multipli-
cation is defined by this formula is easily seen to satisfy the required conditions.

�

Universal property. For all unital associative A-algebras B and all homomor-
phisms f from M to the multiplicative monoid underlying B, there is a unique unital
algebra homomorphism: f̄ : A(M) → B such that (∀m ∈ M) f̄ (em) = f (m).

Proof It suffices to check that the linear map f̄ : A(M) → B defined by f̄ (em) =
f (m) (universal property 3.4.6) is a multiplicative homomorphism. This follows
from an immediate computation.

Remark The universal property can also be stated as follows: the functor from the
category of monoids (resp. commutative monoids) to the category of unital associa-
tive A-algebras (resp. unital associative commutative) assigning to a monoid M its
algebra A(M) is the left adjoint of the forgetful functor assigning to an algebra its
underlying multiplicative monoid.

3.7.2 Polynomial Algebras

Definition Let S be a set and L = N
(S) the free commutative monoid on S (3.2.4).

The polynomial algebra on S with coefficients in A, written A[S], is the algebra
A(L) of the monoid L.

For s ∈ S, set es to be the basis element of L corresponding to s and εs the element
of the canonical basis for A[S] = A(L) corresponding to es .
Universal property. For any unital associative commutative A-algebra B and
any family (xs)s∈S of elements in B, there is a unique unital algebra homomorphism
f from A[S] to B satisfying (∀s ∈ S) f (εs) = xs .

In other words, the functor S �→ A[S] from Ens to the category A of unital
associative commutative A-algebras is the left adjoint of the forgetful functor from
A to Ens.
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Proof Let M be the category of commutative monoids. The forgetful functor ω
from A to Ens is the composite of the forgetful functor ω1 : A → M assigning
to an algebra its underlying multiplicative monoid, and of the forgetful functor ω2 :
M → Ens. The left adjoint of the functor ω2 is the functor λ2 : S �→ N

(S), and that
of ω1 is λ1 : M �→ A(M); so the left adjoint of ω = ω2 ◦ ω1 is λ1 ◦ λ2. �

3.7.3 Notation

The elements of A[S] will be denoted in one of the following manner:
1st method. For s ∈ S, identify s with εs . The canonical basis element of A[S]

corresponding to (ns)s∈S is then the monomial
∏

s∈S sns and all elements of A[S] are
A-linear combinations of finitely many monomials.

If, for example, S = {X, Y, Z}, then write A[X, Y, Z] for A[S], and so for instance
aX3 + bY2Z4 ∈ A[X, Y, Z] if a, b ∈ A.

2nd method. For s ∈ S, let Xs be the element εs and denote A[S] by A[(Xs)s∈S].
Then, for example, aX3

1 + bX2
2X4

3 ∈ A[(Xs)s∈S]. For n = (ns)s∈S ∈ N
(S), the

canonical basis element of A[S] corresponding to n is often written Xn . Then,
Xn =∏s∈S Xns

s , and all elements of A[(Xs)s∈S] = A[S] can be uniquely written
as
∑

n∈N(S) anXn .
The second method becomes necessary to avoid confusion when S is a subset of

N, or of a set equipped with a composition law.
Let B be a unital associative commutative A-algebra and (xi )i∈I a family of ele-

ments of B. Let A[(xi )]B denote the unital subalgebra of B generated by (xi ): it
is the image of A[(Xi )i∈I] under the homomorphism f : A[(Xi )] → B defined by
f (Xi ) = xi . Similarly, if x, y, z ∈ B, let A[x, y, z]B denote the unital subalgebra of
B generated by x , y and z; it is the image of A[X, Y, Z] under the homomorphism
f : A[X, Y, Z] → B defined by f (X) = x , f (Y) = y, f (Z) = z. When there is no
possible confusion, write A[(xi )] or A[x, y, z] instead of A[(xi )]B or A[x, y, z]B,
even when f is not injective, so that the polynomial algebra over I or over the set
{x, y, z} cannot be identified with its image in B.

For example Z[√3] can denote the unital subalgebra of R generated by
√

3, which
is identified with Z[X]/(X2 − 3). To avoid confusion, the following convention is
followed: When the intention is to consider the polynomial algebra over S, the ele-
ments of S are called “indeterminates” and denoted by capital letters; when S is a
subset of an algebra B and A[S] denotes the subalgebra of B generated by S, the
elements of S are denoted by small Latin or Greek letters, or else by the expressions
they are determined by in B.

A final point: if M is a monoid, algebraists often write A[M] for the monoid
algebra A(M). For example, if G is a group, Z[G] generally denotes the group algebra
Z

(G).
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3.7.4

Proposition (a) If S′ is a subset of S, the algebra A[S′] is a subalgebra of A[S].
(b) If S = S′ ∪ S′′, with S′ ∩ S′′ = ∅, then the algebra A[S] is the same as

(A[S′])[S′′].
(c) If S = lim−→ Si , then A[S] = lim−→ A[Si ].
(d) Let I be an ideal of A and J the ideal of A[S] generated by I. Then the algebra

(A/I)[S] can be identified with (A[S])/J.

Proof (a) N
(S′) ⊂ N

(S), and (a) follows.
(b) N

(S) = N
(S′) × N

(S′′). Every element of A[S] can be uniquely written as

∑

n∈N(S)

anXn =
∑

(n′,n′′)∈N(S′)×N(S′′)
an′,n′′Xn′

Xn′′

=
∑

n′′∈N(S′′)

( ∑

n′∈N(S′)
an′,n′′Xn′)

Xn′′
,

where (an)n∈N(S) is a family with finite support in A, and so uniquely as
∑

n′′∈N(S′′)
bn′′Xn′′

, where (bn′′)n′′∈N(S′′) is a family with finite support in A[S′].
(c) follows from the universal property and from (2.7.5, Corollary).
(d) For any A-algebra B, set F(B) = BS if IB = 0 and F(B) = ∅ if IB �= 0. The

algebras (A/I)[S] and (A[S])/J represent the functor F. �

3.7.5

Proposition Suppose that A is integral. For all sets S, the ring A[S] is integral.

Proof (a) First suppose that S has a unique element. Let P and P′ be two nonzero
polynomials of respective degrees d and d ′, and leading terms aXd and a′Xd ′

. The
leading term of PP′ is aa′Xd+d ′

; as it is not zero, PP′ �= 0.
(b) Next suppose that S is finite: the proof follows by induction from the previous

case since A[X1, ..., Xn] = A[X1, ..., Xn−1][Xn].
(c) General case: it follows from the previous one, together with (3.7.4, c) and

(3.1, Exercise 4). �

3.7.6 Degree of Polynomials

For n = (ns)s∈S ∈ N
(S), set |n| =∑s∈S ns .

Let P =∑ anXn ∈ A[S]. The degree of P, written d(P) is the upper bound (in Z)
of |n| for n such that an �= 0. The polynomial P is said to be homogeneous of degree
d if an = 0 for all n such that |n| �= d.
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Remark The degree of the polynomial 0 is −∞, although 0 is homogeneous of
degree d for all d. For any nonzero polynomial P, d(P) ∈ N.

Polynomials of degree � d (resp. homogeneous of degree d) form a free A-
module. If S is a finite set with m elements, the dimension of this module is the
binomial coefficient

(
m+d

d

)
(resp.

(
m+d−1

d

)
).

Indeed (n1, . . . , nm) �→ (n1 + 1, n1 + n2 + 2, . . . , n1 + · · · + nm + m) is a bijec-
tion from the set of n ∈ N

m such that |n| � d (resp. |n| = d) onto the set of strictly
increasing sequences with m elements in {1, . . . , d + m} (resp. whose last element
is d + m).

If P and Q are homogeneous of respective degrees p and q, then PQ is homoge-
neous of degree p + q.

Proposition Let P, Q ∈ A[S]. Then d(PQ) � d(P) + d(Q). If A is an integral
domain, then d(PQ) = d(P) + d(Q).

Proof The inequality is immediate. We prove the equality when A is integral. We
may assume that P and Q are nonzero. Write P = P0 + P1, where P0 is homogeneous
of degree d(P) and P1 of degree < d(P),18 and likewise write Q as Q0 + Q1. Then
PQ = P0Q0 + R, where R = P0Q1 + P1Q0 + P1Q1 and P0Q0 are homogeneous of
nonzero degree d(P) + d(Q) by Proposition 3.7.5 and R is of degree < d(P) + d(Q).
Hence the degree of PQ is d(P) + d(Q). �

3.7.7

Theorem (Hilbert19) If A is a Noetherian ring, then so is A[X].

Proof Let I be an ideal of A[X]; we show that I is finitely generated. For any P ∈ A[X]
with P �= 0, let d(P) be the degree of P and α(P) the leading coefficient of P (i.e. the
coefficient of Xd(P)).

Let J be the subset of A consisting of 0 and of α(P) for P ∈ I − {0}. The set J
is an ideal in A. Indeed, let a = α(P) and b = α(Q) be elements of J, and suppose
that d(P) � d(Q); if a + b �= 0, then a + b = α(Xd(Q)−d(P)P + Q) ∈ J; for λ ∈ A,
if λa �= 0, then λa = α(λP).

As A is Noetherian, J is finitely generated. Let a1, . . . , ak be its generators and
P1, . . . , Pk polynomials such that ai = α(Pi ). All Pi may be assumed to be of degree
d to within multiplication by powers of X. Let L be the submodule of A[X] consisting
of polynomials of degree < d and set M = L ∩ I. The module L is isomorphic to
Ad , and so M is finitely generated; let (R1, . . . , Rq) generate M as an A-module.

18P1 not necessarily homogeneous.
19This theorem is known as the finite basis theorem (the term basis being at that time used for
generating family).
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We show that the polynomials P1, . . . , Pk, R1, . . . , Rq generate the ideal I. We do
this by showing by induction on d(P) that all polynomials P ∈ I are linear combina-
tions of these polynomials, with coefficients in A[X]. If d(P) < d, the polynomial P
is the A-linear combination of R1, . . . , Rq .

If d(P) � d, the scalar α(P) is of the form
∑

λi ai , and P − Xd(P)−d
∑

λi ai is of
degree < d(P), and so ... �

Corollary 3.4 If A is a Noetherian ring then, for all n, so is A[X1, . . . , Xn].
This follows from the theorem by induction on n since

A[X1, . . . , Xn] = A[X1, . . . , Xn−1][Xn] .

Corollary 3.5 If A is a Noetherian ring, then so are all unital associative commu-
tative A-algebras.

Indeed, such an algebra is isomorphic to a quotient of A[X1, . . . , Xn] for some n.

Corollary 3.6 Every ring is the union of an increasing directed family of Noetherian
subrings.

Indeed, the subring generated by a finite subset of A is a finitely generated
Z-algebra, and so is Noetherian.

3.7.8 Polynomials with Coefficients in a UFD

Throughout this subsection, A is assumed to be a UFD, K denotes the field of fractions
of A and for irreducible element m ∈ A, χm the canonical homomorphism from A[X]
to (A/m)[X].
Definition A polynomial P =∑ ai Xi ∈ A[X] is said to be primitive if 1 is a g.c.d.
of the ai .

P is primitive if and only if for all irreducible elements m ∈ A, χm(P) �= 0.

Lemma 3.1 Every nonzero polynomial P ∈ K[X] can be written P = λP1 for some
primitive polynomial P1 ∈ A[X] and some nonzero λ ∈ K.

Proof P = 1
d P0, for someù d ∈ A with d �= 0 and some P0 ∈ A[X]. Let a be the

g.c.d. of the coefficients of P0. Then P0 = aP1, where P1 ∈ A[X] is primitive, and
P = λP1 with λ = a

d .

Lemma 3.2 Let P and Q be polynomials in A[X]. Assume P is primitive and that P
divides Q in K[X]. Then P divides Q in A[X].



3.7 Polynomial Algebras 133

Proof Suppose that Q �= 0, and Q = PR with R ∈ K[X]. There exist a, b ∈ A
with g.c.d.(a, b) = 1 such that R = a

b R1 for some primitive R1 ∈ A[X]. Then
bQ = aPR1. If m ∈ A is irreducible element dividing b, then χm(a) �= 0, χm(P) �= 0
and χm(R1) �= 0; the ring A/m is an integral domain (3.2.8, (ii)), and hence so
is (A/m)[X] (3.7.5), and χm(bQ) = χm(aPR1) �= 0, which contradicts χm(b) = 0.
Hence b is invertible in A. �

Lemma 3.3 Let P ∈ A[X] be a nonzero polynomial.
(a) If P is of degree 0, then P is irreducible in A[X] if and only if it is irreducible

in A.
(b) If P is of degree > 0, P is irreducible in A[X] if and only if it is primitive and

irreducible in K[X].
Proof (a) If P = QR, with Q and R non-invertible elements of A[X], the polynomials
Q and R are of degree 0, and so are non-invertible elements of A. If P = ab, where
a, b ∈ A are non-invertible, then a, b remain non-invertible in A[X].

(b) Suppose that P is irreducible in A[X]. Then P is primitive for otherwise
P = aP1, with a ∈ A non-invertible in A and so non-invertible in A[X], and P1 of
degree > 0, hence non-invertible in A[X]. We show that P is irreducible in K[X].
If P = QR for non-invertible Q, R ∈ K[X], and so of degree > 0 then, by Lemma
3.1, Q may be assumed to be a primitive polynomial of A[X], and thus R ∈ A[X] by
Lemma 3.2.

Suppose that P is primitive and irreducible in K[X]. Then there are no Q, R ∈ A[X]
of degree > 0 such that P = QR since Q and R would then be non-invertible in K[X].
There are also no non-invertible Q of degree 0 in A[X] such that P = QR since Q
would then be non-invertible element in A and P would not be primitive. Therefore
P is irreducible in A[X]. �

3.7.9

Theorem If A is a UFD then so is A[S] for all sets S.

Proof We keep the notation of 3.2.7. By 3.2.8, it amounts to showing that A[S]
satisfies the following two conditions:

(i) every decreasing sequence of elements of Mon∗(A[S]) is stationary;
(ii) for every irreducible element P ∈ A[S], the ideal generated by P is prime.

(a) Condition (i). Let (Pk)k∈N be a sequence of elements of A[S], with Pk =∑
ak,nXn such that (χ(Pk))k∈N is a decreasing sequence of elements of Mon∗(A[S]).

The degrees d(Pk) form a decreasing sequence of elements of N, hence constant from
some rank k0. For k � k0, Pk = ckPk+1, where ck ∈ A∗. Let n ∈ N

(S) be such that
ak0,n �= 0. For k > k0, ak,n = ckak+1,n and (χ(ak,n))k�k0 is a decreasing sequence of
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elements of Mon∗ A. This sequence is therefore stationary, and all ck are invertible
beyond a certain rank, proving (i).

(b) Condition / (ii). Suppose first that S has only one element X. Let P be an
irreducible element of A[X] and K the field of fractions of A. By Lemma 3.3, P is
primitive, and by Lemma 3.2, P · A[X] = A[X] ∩ P · K[X]. So A[X]/P · A[X] can
be identified with a subring of K[X]/P · K[X]. By Lemma 3.3, P is irreducible in
K[X]; as K[X] is a PID, and thus a UFD, K[X]/P · K[X] is an integral domain, and
hence so is A[X]/P · A[X].

(c) Suppose next that S is finite. The theorem follows by induction from the
previous case.

(d) General case. Let P be an irreducible element of A[S]. There is a finite subset
S′ of S such that P ∈ A[S′]. Then P is irreducible in A[S′], and so A[S′]/P · A[S′] is
an integral domain. Set . Then so is A[S]/P · A[S] = (A[S′]/P · A[S′])[S′′], where
S′′ = S − S′, since A[S] = (A[S′])[S′′] (3.7.5). �

3.7.10 Substitution, Polynomial Functions

Let B be a unital associative commutative A-algebra, (xi )i∈I, a family of elements in
B and f : A[(Xi )i∈I] → B the homomorphism defined by f (Xi ) = xi .

The image of f is the unital subalgebra of B generated by (xi )i∈I. If f is injective,
then the family (xi )i∈I is said to be algebraically free, or that the elements xi are
algebraically independent. We say that x ∈ B is transcendental over A if the family
consisting of x is algebraically free over A. In general, the kernel of f is an ideal of
A[(Xi )i∈I] called the ideal of algebraic relations between the xi .

For P ∈ A[(Xi )i∈I], f (P) is the element of B obtained by substituting the xi for
the indeterminates Xi in P, and it is written PB((xi )i∈I) or simply P((xi )i∈I).20

The map PB from BI to B thus defined is the polynomial function defined by P
on BI. The map P �→ PB is a unital A-algebra homomorphism from A[(Xi )] to the
algebra of maps from BI to B; it associates to Xi the projection of index i from BI to
B.

Proposition If B an infinite integral domain and the homomorphism i : A → B
defining the algebra structure of B is injective, then the homomorphism P �→ PB is
injective.

Proof (a) Suppose that I has only one element. Let K be the field of fractions of B
and let P ∈ A[X] ⊂ K[X]. If P is of degree d, there are at most d roots21 in K; hence
P(x) = 0 for all x ∈ B only if P = 0.

(b) Suppose next that I is finite. Assume I = {1, ..., n} and use induction on n. Let
P=∑ akXk

n ∈ A[X1, . . . , Xn−1][Xn]=A[X1, . . . , Xn], where ak ∈ A[X1, . . . , Xn−1],

20If B = A[(Xi )i∈I] and ∀ i , xi = Xi , then f = 1A[(Xi )]; so P((Xi )) = P.
21Queysanne [1], § 192, Corollary 1, p. 413, Lelong-Ferrand and Arnaudiès [2], theorem 4.5.2, p.
139.
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and assume the map PB : Bn → B is zero. Let (x1, ..., xn−1) ∈ Bn−1, and set Q =
P(x1, ..., xn−1, Xn) =∑ ak(x1, ..., xn−1)Xk

n ∈ B[Xn]. By assumption, (∀xn ∈ B)
Q(xn) = P(x1, ..., xn−1, xn) = 0, and so Q = 0 by (a), and (∀k) ak(x1, ..., xn−1) = 0.
As this holds for all x1, ..., xn−1 ∈ B, (∀k) ak = 0 by the induction hypothesis. Thus
P = 0.

(c) General case. Let (0 �=)P ∈ A[(Xi )i∈I]. There is a finite subset J of I such
that P ∈ A[(Xi )i∈J]. Then the map PB : BI → B is the composite of the surjective
projection BI → BJ and of the nonzero map PB : BJ → B, and so in not zero. �

Remarks (1) If A is an integral domain, then we may take B = A in the proposition.
For all integral domains A, there is an infinite integral domain B, for example A[X],
with a subring with which A can be identified.

(2) The assumption of the infinity of B cannot be removed, nor that of the inte-
grality of B (see Exercise 15).

(3) A map ϕ from Ap to Aq is said to be polynomial if the maps ϕ1, ...,ϕq from Ap

to A such that ϕ = (ϕ1, ...,ϕq) are polynomials. Let M and N be finitely generated
free A-modules. A map ϕ from M to N is said to be polynomial with respect to the
bases e = (e1, ..., ep) of M and f = ( f1, ..., fq) of N if the expression of ϕ with
respect to the bases e and f (i.e. the map from Ap to Aq induced by ϕ by identifying
Ap and Aq with M and N via e and f respectively) is polynomial. If a map ϕ from
M to N is polynomial with respect to one pair of bases, it remains so with respect to
any pair of bases. Hence it may be called a polynomial map from M to N.

The composite of two polynomial maps is polynomial.
If A = R or C, equip M with the topology obtained by transferring that of Ap via

a basis (this topology, called the canonical topology is independent of the choice of
basis; It is the only Hausdorff topology compatible with the vector space structure);
do the same for N. Every polynomial map from M to N is continuous (and even C∞,
or better still: analytic). Two polynomial maps from M to N coinciding on a nonempty
open subset of M are equal: this follows from the Taylor formula for polynomials.
In particular, if ϕ is a nonzero polynomial map from M to N, then ϕ−1(0) is closed
and with empty interior in M.

3.7.11 Resultants

For p ∈ N, denote by A[X]p the submodule of A[X] consisting of polynomials of
degree � p. It is a free module of rank p + 1 as (1, X, . . . , Xp) is a basis.

Definition Let P ∈ A[X]p and Q ∈ A[X]q . The resultant of P and Q for the degrees
p and q, written Resp,q(P, Q), is the determinant of the matrix representing the
map (U, V) �→ U.P + V.Q from A[X]q−1 ⊕ A[X]p−1 to A[X]p+q−1, with respect
to bases ((1, 0), . . . , (Xq−1, 0), (0, 1), . . . , (0, Xp−1)) and (1, . . . , Xp+q−1).

If p and q are the degrees of P and Q respectively, we simply write Res(P, Q),
and call this the resultant of P and Q.
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For P = apXp + · · · + a0 and Q = bqXq + · · · + b0, the resultant Resp,q(P, Q)

is therefore the determinant of the Sylvester matrix:

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0 0 · · · 0 b0 0 · · · 0

a1 a0
. . . 0 b1 b0

. . .
...

...
. . . 0

...
. . . 0

a0

bq b0

ap 0 bq

0
. . .

...
. . .

. . .
...

...
. . .

. . .
...

. . .

0 · · · 0 ap 0 · · · · · · 0 bq

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

It is in A, and Resq,p(Q, P) = −1pq · Resp,q(P, Q).
Ifϕ : A → A′ is a ring homomorphism, definingϕ∗ : A[X] → A′[X]by (ϕ∗)|A =

ϕ and ϕ∗(X) = X gives

Resp,q(ϕ∗(P),ϕ∗(Q)) = ϕ(Resp,q(P, Q)) .

Here, two elements a and b of A will be said to be relatively prime if the ideal
they generate is the whole of A (even if A is not principal).

Proposition Let P, Q ∈ A[X] be polynomials of respective degrees p and q with
relatively prime leading coefficients ap, bq ∈ A. Then, P and Q are relatively prime
in A[X] if and only if the resultant Res(P, Q) is invertible in A.

Proof (a) Suppose that Res(P, Q) is invertible. The map (U, V) �→ U.P + V.Q from
A[X]q−1 ⊕ A[X]p−1 to A[X]p+q−1 is bijective. In particular there exist U and V such
that U.P + V.Q = 1.

(b) Conversely, suppose that P and Q are relatively prime. Let R ∈ A[X]p+q−1,
and h be minimal of the form R = U.P + V.Q with U ∈ A[X]h−p and V ∈ A[X]h−q ;
we show that h < p + q.

Assume h � p + q; let α and β be the coefficients of degree h − p and h − q
of U and V respectively. Since R = U.P + V.Q is of degree < h, α.ap + β.bq = 0.
As ap and bq are relatively prime, μ.ap + ν.bq = 1. It follows that α = λ.bq and
β = −λ.ap with λ = α.ν − β.μ. Set Ũ = U − λ.Q.Xd and Ṽ = V + λ.P.Xd , where
d = h − (p + q). Then Ũ.P + Ṽ.Q = U.P + V.Q = R, with do(Ũ) < h − p and
do(Ṽ) < h − q, contradicting the minimality of h. �
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3.7.12 Discriminants

Let P = a0 + a1X + · · · + apXp ∈ A[X], and consider its derivative
P′ = a1 + · · · + papXp−1. The resultant Resp,p−1 can be written ap.�, where �

is the determinant of

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a0 · · · 0 a1 0 · · · 0
. . .

... 2a2
. . .

. . .
...

... a0
...

. . . 0
pap a1

ap
... 0

. . .
...

...
. . .

...
. . . pap

0 · · · 1 0 · · · 0 p

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

This determinant is called the discriminant of P and is written discr(P).

Examples For a second degree polynomial P = aX2 + bX + c,

discr(P) = det

⎛

⎝
c b 0
b 2a b
1 0 2

⎞

⎠ = 4ac − b2 .

For P = X3 + pX + q,

discr(P) = det

⎛

⎜
⎜
⎜
⎜
⎝

q 0 p 0 0
p q 0 p 0
0 p 3 0 p
1 0 0 3 0
0 1 0 0 3

⎞

⎟
⎟
⎟
⎟
⎠

= det

⎛

⎝
p −3q 0
0 −2p −3q
3 0 −2p

⎞

⎠= 4p3 + 27q2.

3.7.13 Algebraic Sets

Let K be a field and (Pλ)λ∈� a family of polynomials in K[X1, ..., Xn]. Denote by
V((Pλ)) the set of x = (x1, ..., xn) ∈ Kn such that (∀λ ∈ �) Pλ(x) = 0. The subsets
of Kn thus obtained are called algebraic sets. The set V((Pλ)) is defined by equations
Pλ, and does not depend on the ideal I generated by Pλ. It will also be written V(I).
Since the ring K[X1, ..., Xn] is Noetherian, every algebraic set can be defined by
finitely many equations. Let

√
I be the ideal consisting of elements P ∈ K[X1, ..., Xn]

with some power in I. It is also the inverse image in K[X1, ..., Xn] of the nilradical
of K[X1, ..., Xn]/I. Hence it is the intersection of prime ideals containing I. The
following hold:
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(1) V(
√

I) = V(I).
Let I and J be ideals in K[X1, ..., Xn], then

(2) I ⊃ J ⇒ V(I) ⊂ V(J);
(3) V(I + J) = V(I) ∩ V(J);
(4) V(I ∩ J) = V(I · J) = V(I) ∪ V(J).

If (Iλ) is a family of ideals, then
(5) V(

∑
Iλ) =⋂λ V(Iλ).

Thanks to formulas (4) and (5), there is a unique topology on Kn with respect to
which the closed subsets are the algebraic sets. It is called the Zariski topology. It
is Hausdorff (except when K is finite or n = 0), but all points are closed.

If K is algebraically closed, then it may be shown that V(I) = V(J) if and only if√
I = √

J. This result is known as the Hilbert’s Nullstellensatz (Exercises 13, 14).
Let k be a subfield of K. A subset of Kn is a k-algebraic set in Kn if it is defined

by equations in k[X1, ..., Xn].

3.7.14 Principle of Extension of Identities

Scholium. Let R be a relation involving a ring (resp. a unital associative com-
mutative Q-algebra), stable under taking subrings (resp. subalgebras), quotients and
directed unions. IfR holds for R or C, then it holds for all rings (resp. all Q-algebras).

More precisely:

Proposition Let A be the category of commutative rings (resp. commutative, asso-
ciative, unital Q-algebras), and A′ a complete subcategory of A. Suppose that

(i) if A and B are objects of A for which there exists an injective homomorphism
A → B, then B ∈ A′ ⇒ A ∈ A′;

(ii) if A and B are objects of A for which there exists a surjective homomorphism
A → B, then A ∈ A′ ⇒ B ∈ A′;

(iii) if an object A de A is a directed union of objets of A′, then A is an object of
A′.

Then, A′ = A if R ∈ A′, or if C ∈ A′.

Lemma There is an algebraically free sequence (xn)n∈N in R over Q.

Proof Let us construct such a sequence by induction. Let (x0, ..., xn−1) be a finite
sequence in R algebraically free over Q, and set An−1 = Q[x0, ..., xn−1]. The set
An−1 is countable. Let xn ∈ R. Then, (x0, ..., xn) is algebraically free over Q if and
only if xn is transcendental over An−1. Elements of R that are not transcendental over
An−1 are algebraic over An−1 i.e. roots of a nonzero polynomial P ∈ An−1[X]. The
set An−1[X] − {0} is countable and every polynomial in it has only finitely many
roots. So the set of algebraic elements over An−1 is a countable subset of R. As R

is not countable, there is a transcendental real xn over An−1, enabling us to continue
the construction by induction. �
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Proof of the Proposition For all n, there are injective homomorphisms Z[X1, ...,

Xn] → Q[X1, ..., Xn] → R → C, and so, if R or C is an object of A′, Z[X1, ..., Xn]
(resp. Q[X1, ..., Xn]) is an object of A′. By (ii), any finitely generated Z-algebra
(resp. Q-algebra) of A is an object of A′. Since any objet of A is an increasing
directed union of finitely generated subobjects, by (iii) every object of A is an object
of A′.

�

3.7.15 Examples

(1) Exponential and logarithm.

Proposition Let A be a Q-algebra. For a nilpotent u ∈ A, set exp(u) =∑∞
0

1
n!u

n

and log(1 + u) =∑∞
1 (−1)n−1 1

n un. Then log(exp(u)) = u and exp(log(1 + u)) =
1 + u.

Scholium 3.7.14 cannot be directed applied to this proposition, but it can to the
next lemma from which the latter readily follows.

Lemma Let A be a Q-algebra. Define the polynomials λp, εp ∈ A[X] by λp(X) =∑p
1 (−1)n−1 1

n Xn and εp(X) =∑p
0

1
n!X

n. Then λp(εp(X)) ≡ X (mod Xp+1) and
εp(λp(X)) ≡ X (mod Xp+1).

For A = R, this lemma follows by considering the Taylor expansion of degree p
of exp and log. It readily follows that the category of unital associative commutative
Q-algebras for which this lemma holds satisfies conditions (i), (ii) and (iii) of Propo-
sition 3.7.14.
(2) Hamilton- - Cayley Theorem.

Let Mn(A) be the algebra of n × n square matrices with coefficients in A. For M ∈
Mn(A), consider XIn − M ∈ Mn(A[X]), where In is the unital element of Mn(A),
and define the characteristic polynomial PM ∈ A[X] by PM(X) = det(XIn − M). In
the unital subalgebra of Mn(A) generated by M, which is commutative, consider
PM(M).

Theorem For all M ∈ Mn(A), PM(M) = 0.

Proof (a) Suppose first that A = C and that PM has n distinct roots. In this case,
M is diagonalizable, and M may be assumed to be diagonal; let λ1, . . . ,λn be its
diagonal entries. Then PM(X) = (X − λ1) · · · (X − λn), and PM(M) is diagonal with
diagonal entries PM(λ1), . . . , PM(λn) all zero, and so PM(M) = 0.

(b) Suppose next that A = C, and that M is arbitrary. For M ∈ Mn(C), let �(M)

be the discriminant of PM. The map � : Mn(C) → C is polynomial because it is the
composite of the map M �→ PM from Mn(C) to the vector space Sn+1 of polynomi-
als of degree � n and of the map P �→ discr P from Sn+1 to C, both of which are
polynomial. It is nonzero because, if M is diagonal with distinct diagonal entries,
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then �(M) �= 0. Therefore the set W of M ∈ Mn(C) such that �(M) �= 0 is open
and dense in Mn(C). The map M �→ PM(M) from Mn(C) to itself is polynomial,
and vanishes on W, and so is null.

(c) General case. The rings A for which the theorem holds form a subcategory
A′ of Ann satisfying conditions (i), (ii) and (iii) of Proposition 3.7.14, and C ∈ A′;
hence A′ = Ann. �

Exercises 3.7. (Polynomials)
1.—What are the prime ideals of C[X]? of R[X]?
2.—Show that in R[X, Y], the ideal of polymials vanishing on the circle S1 =
{(x, y) ∈ R

2 | x2 + y2 = 1} is principal and prime.

3.—(a) Show that the ideal generated by Y2 − X2 − 1 in R[X, Y] is prime, but that
the ideal generated by the same function in the ring of analytic functions on R

2 is
not prime.

(b) Give an example of a polynomial P ∈ R[X, Y] generating a prime ideal in
R[X, Y], but an ideal that is not prime in C[X, Y]. Show that the converse is not
possible.

4.—Let K be a field. For every ideal I in K[X1, ..., Xn], define V(I) as in 3.7.13, and
for every subset V of Kn , set J(V) to be the ideal in K[X1, ..., Xn] consisting of
polynomials vanishing on V.

(a) Show thatJ(V ∪ W) = J(V) ∩ J(W) and thatJ(V ∩ W) ⊃ J(V) + J(W).
Give an example where inclusion is strict.

(b) Show that V(J(V(I))) = V(I) and J(V(J(V))) = J(V).

5.—Let I = { f ∈ R[X, Y] | (∀x ∈ R) f (x, 0) = 0 and f ′
Y(0, 0) = 0}. Show that I

is an ideal and give a family of generators. Is the ideal I principal? Describe V(I)
and J(V(I)).

6.—Describe V(I) and J(V(I)) for the following ideals of R[X, Y]: (X2 − Y2);
(X2 + Y2); (X2 + Y2 − 1); (X2 + Y2 + 1); (X(X2 + Y2 + 1)); (X2Y, X3); (X2 −
Y2, X3 + Y3).

Which among these ideals can be defined by vanishing conditions on polynomials
and their derivatives?

7.—(a) Show that in the space of one variable polynomials of degree d with real
coefficients, the set of polynomials with d real distinct roots is open.

(b) Let P ∈ R[X, Y] be a polynomial of degree d in which the coefficient of Yd

is nonzero. Assume there exists x ∈ R such that the polynomial P(x, Y) ∈ R[Y] has
d distinct real roots. Show that every polynomial vanishing on V(P) is a multiple of
P (divide by P in (A[X])[Y]).

(c) In (b) replace the assumption that the coefficient of Yd is nonzero with: P is
primitive in (A[X])[Y], i.e. P(X, Y) =∑ ai (X)Yi , where the polynomials ai do not
have any common divisors (use 3.7.8, Lemma 3.2).

(d) Generalize to more than two variables.

8. (Continuity of roots)—(a) Let A be the Banach algebra of series
∑

anXn ∈ C[[X]]
such that

∑ |an| < ∞. Let P ∈ C[X] be a polynomial of degree d. Show that if P has
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k roots with absolute value < 1 and d − k roots with absolute value > 1 (counting
multiplicities), every element f ∈ A can be uniquely written as f = Pg + R, with
g ∈ A and R ∈ C[X] of degree < k. Converse.

(b) Let P0 ∈ C[X] be a polynomial of degree d having 0 as a root of order k, and
c be the smallest absolute value of the nonzero roots. Show that, for all ε > 0, there
exists α > 0 such that any polynomial P of degree d satisfying ‖P − P0‖ < α has k
roots of absolute value < ε and d − k roots of absolute value > c − ε. (Use the fact
that, if E and F are Banach spaces, then Isom(E, F) is open in L(E, F).)

(c) Let P0 ∈ C[X] be a polynomial of degree d, x1, ..., xd its roots. Show that,
for all ε > 0, there exists α > 0 such that for any polynomial P of degree d satis-
fying ‖P − P0‖ < α, its roots y1, ..., yd can be classified so that |y1 − x1| < ε, ...,
|yd − xd | < ε.

(d) Let d ′ � d. Show that, for all ε > 0 and all M ∈ R+, there exists α > 0 such
that, for any polynomial P of degree d ′′ � d ′ satisfying ‖P − P0‖ < α, its roots
y1, ..., yd can be classified so that |y1 − x1| < ε, ..., |yd − xd | < ε, |yd+1| > M, ... ,
|yd ′′ | > M.

(e) Extend these results to an arbitrary algebraically closed valued field K (consider
the completion K̂ of K and define A as in (a). K̂ can be shown to be algebraically
closed, but it is not necessary in this exercise).

9.—Consider the rings

A = R[X, Y]/(X2 + Y2 − (1) , B = C[X, Y]/(X2 + Y2 − 1) .

(a) Show that B is isomorphic to C
[
Z, 1

Z

]
(subring of C(Z)), by setting Z =

X + iY. What is the image of A under this isomorphism?
(b) Show that every maximal ideal of B is of the form nx,y = { f ∈ B | f (x, y) =

0}, where (x, y) is a point of C
2 such that x2 + y2 = 1 (the reader may use the injec-

tion from C[X] to B). Show that all nonzero ideals in B are of the form nk1
x1,y1

· · · nkr
xr ,yr

.
(c) For (x, y) ∈ C

2, x2 + y2 = 1, set mx,y = nx,y ∩ A. What is the codimension
of mx,y as a real vector space in A? Show that every nonzero ideal in A is of the form
mk1

x1,y1
· · · mkr

xr ,yr
, and that such an ideal is principal if and only if the sum of the ki

corresponding to real pairs is even.
(d) Show that A is not a PID, but that B is, and is even Euclidean.
(e) Consider the rings

A′ = R[X, Y]/(X2 + Y2 + 1) , B′ = C[X, Y]/(X2 + Y2 + 1) .

Show that B′ is isomorphic to B, but that A′ is not isomorphic to A. Describe the
ideals of A′ and B′. Show that A′ is a PID.

(f) What are the invertible elements of B′? of A′? Show that A′ is not Euclidean
(use 3.1, Exercise 14).

10.—For any subset V of C
n , set

JR(V) = R[X1, ..., Xn] ∩ J(V) ,
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and for any ideal I of R[X1, ..., Xn], set VC(I) = V(C · I). Show that for any algebraic
subset V of C

n , VC(JR(V)) = V ∪ τ (V), where τ : C
n → C

n is the conjugation
(z1, . . . , zn) �→ (z1, . . . , zn).

11.—The aim is to give another proof of the fact that the ring K[X1, ..., Xn] is
Noetherian when K is an infinite field.

(a) Let P ∈ K[X1, ..., Xn] be a polynomial of degree d. Show that there is an
automorphism ϕ of K[X1, ..., Xn] such that the coefficient of Xd

n in ϕ(P) is nonzero
(take a point x = (x1, ..., xn) ∈ Kn such that Pd(x1, ..., xn) �= 0, where Pd denotes
the homogeneous part of degree d of P, and effect a change of coordinates in Kn

such that x becomes the last basis vector).
(b) Let P ∈ K[X1, ..., Xn] be a polynomial of degree d, where the coefficient

of Xd
n is nonzero. Show that K[X1, ..., Xn]/(P) is a free module of rank d over

K[X1, ..., Xn−1].
(c) Let A be a ring. Show that, if A/( f ) is Noetherian for all nonzero f ∈ A, then

A is Noetherian.
(d) Conclude by induction on n (use 3.6.2, Example 3).

12.—(a) Let K be a field and f ∈ K[[X1, ..., Xn]] a formal series of degree d (i.e. such
that the nonzero term of lowest degree is of degree d). Suppose that the coefficient
of Xd

n is nonzero. Show that every formal series g ∈ K[[X1, ..., Xn]] can be uniquely
written as g = f q + R, with q ∈ K[[X1, ..., Xn]] and R ∈ K[[X1, ..., Xn−1]][Xn] a
polynomial of degree < d.

(b) Suppose that K is infinite. Show that as in the previous exercise K[[X1, ..., Xn]]
is Noetherian.

(c) Show that the ring R{X1, ..., Xn} is Noetherian.

13. (Nullstellensatz for an uncountable field)—Let K be an uncountable field (for
example C).

(a) Show that the field K(X) (field of fractions of K[X]) is a K-vector space of
uncountable dimension (as a runs through K, the 1

X−a are linearly independent).
Deduce that if a finite dimensional K-algebras is a field then it is an algebraic exten-
sion of K.

(b) Suppose that K is algebraically closed. Show that all maximal ideals in
K[X1, ..., Xn] are of the form

m(x1,...,xn) = {P ∈ K[X1, ..., Xn] | P(x1, ..., xn) = 0}

with (x1, ..., xn) ∈ Kn . Deduce that for an ideal I in K[X1, ..., Xn], V(I) = ∅ ⇒ I =
K[X1, ..., Xn].

(c) Continue to assume that K is algebraically closed; let I be an ideal in
K[X1, ..., Xn] and set A = K[X1, ..., Xn]/I. Let P ∈ K[X1, ..., Xn] be a polynomial
vanishing at every point of V(I). Let J denote the ideal in K[X1, ..., Xn, Z] generated
by I and (1 − PZ). Show that V(J) is empty in Kn+1.

Deduce that the image of 1 − PZ in A[Z] is invertible, and that the image of P in
A is nilpotent.

(d) Conclude.
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14. (Nullstellensatz, general case)— Let k be a field. The aim is to prove that a
finitely generated field extension of k (as a k-algebra) is an algebraic extension of k.

(A) Let L be a field, A a subring of L and K ⊂ L the field of fractions of A.
(a) Show that if K is a finitely generated A-module, then K = A.
(b) Show that if L is a finitely generated A-module, then K = A (since K is a

direct factor in L as A-module).
(c) Show that if L is a finitely generated A-algebra and an algebraic extension of

K, then there exists nonzero b ∈ A such that K = A[b−1].
(B) (a) Set A = k[X1, ..., Xn] and K = k(X1, ..., Xn). Show that, if n > 0, there

are no b ∈ A such that K = A[b−1].
(b) Let L be a finitely generated extension de k (as a k-algebra). There are alge-

braically independent elements x1, ..., xn in L such that L is an algebraic extension
of K = k(x1, ..., xn). Show that n = 0 necessarily holds. Conclude and continue as
in the previous exercise.

15.—(a) Let K = {a1, ...aq} be a finite field. Show that the polynomial
(X − a1) . . . (X − aq) ∈ K[X] is nonzero, but that the map from K to K defined
by it is null.

(b) Let I be an infinite set, K the field Z/(2) and B the K-algebra KI. Show that
the map P �→ PB from K[X] to BB is not injective, although B is infinite (consider
X2 + X).

3.8 Tensor Products

3.8.1

If E, F, G are three A-modules, let B(E, F ; G) be the module of bilinear maps from
E × F to G.

Theorem and Definition Let E and F be A-modules. Then the covariant functor
G �→ B(E, F ; G) from A-Mod to Ens is representable. The tensor product
of E and F is a representative of this functor.

Comments In other words, a tensor product of E and of F is an A-module T with a
bilinear map θ from E × F to T, satisfying the following property: for all A-modules
G and all bilinear maps f from E × F to G, there is a unique linear map f̄ : T → G
such that f = f̄ ◦ θ.
Notation The module T is written E ⊗A F, or simply E ⊗ F, and the map
θ (x, y) �→ x ⊗ y.
Cynical remark The different representatives of the functor G �→ B(E, F ; G) can be
mutually identified 2.4.11, hence they can be written E ⊗ F, and this can be called
“the” tensor product of E and F.

We give two proofs of the theorem.
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1st proof Let L be the free A-module over the set E × F, and (ex,y)(x,y)∈E×F the
canonical basis for L. For all maps f from E × F to an A-module G, write f̄ for
the homomorphism from L to G defined by f̄ (ex,y) = f (x, y). The map f �→ f̄ is
a bijection from the set of maps from E × F to G onto Hom(L, G). The map f is
bilinear if and only if

(∀a ∈ A) (∀b ∈ A) (∀x ∈ E) (∀y ∈ E) (∀z ∈ F) (∀t ∈ F)

f̄ (eax+by,z) − a f̄ (ex,z) − b f̄ (ey,z) = f̄ (ex,az+bt ) − a f̄ (ex,z) − b f̄ (ex,t ) = 0,

or if and only if f̄ vanishes on every submodule N of L generated by elements of the
form

eax+by,z − aex,z − bey,z ou ex,az+bt − aex,z − bex,t .

Hence B(E, F ; G) can be identified with Hom(T, G), where T = L/N. More pre-
cisely, the functor B is represented by (T, θ), where θ(x, y) is the class of ex,y .

�
2ndproof (a) Suppose first that E is free. If E = A(I), then B(E, F ; G) = Hom(A(I),

Hom(F, G)) = (Hom(F, G))I = Hom(F(I), G), and the functor G �→ B(E, F ; G) is
represented by F(I).

(b) General case. Let A(J) δ→ A(I) ε→ E → 0 be a presentation of E. As B
(M, F ; G) = Hom(M, Hom(F, G)) for all modules M, there is an exact sequence

0 → B(E, F ; G)
ε∗→B(A(I), F ; G)

δ∗→ B(A(J), F ; G)

Hom(F(I), G) Hom(F(J), G) .

By the Yoneda lemma 2.4.3, the morphism δ∗ : Hom(F(I), G) → Hom(F(J), G),
functorial at G, arises from a morphism δ∗ : F(J) → F(I). Let T be the cokernel of δ∗.
For all G, there is an exact sequence

0 → Hom(T, G)→ Hom(F(I), G)
δ∗→ Hom(F(J), G)

So Hom(T, G) = B(E, F ; G), and T represents the functor G �→ B(E, F ; G). �

Remark The construction given in the first proof is intrinsic. That given in the
second one shows that, for example, if E and F are finitely generated (resp. have
finite presentation), the same holds for E ⊗ F.

3.8.2

The elements of E ⊗ F are called tensors. A tensor x ⊗ y, with x ∈ E and y ∈ F is
called a simple tensor.
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Proposition The module E ⊗ F is generated by the simple tensors.

Proof Let θ : E × F → E ⊗ F be the map (x, y) �→ x ⊗ y, T the submodule of
E ⊗ F generated by the simple tensors, and χ : E ⊗ F → E ⊗ F/T the canonical
homomorphism. Then χ ◦ θ = 0 = 0 ◦ θ, and so χ = 0 by uniqueness of the univer-
sal property, which in turn gives E ⊗ F/T = 0. �

(This also follows by considering the construction given in the First Proof of
Theorem 3.8.1.)

The product of a simple tensor and of a scalar is a simple tensor: indeed a(x ⊗ y) =
(ax) ⊗ y. Hence all tensors are the sum of finitely many simple ones. The rank of a
tensor t ∈ E ⊗ F is the smallest integer r for which t is the sum of r simple tensors.

If f is a bilinear map from E × F to a module G, let x ⊗ y �→ f (x, y) denote the
linear map of E ⊗ F → G corresponding to it, i.e. the unique linear map f̄ : E ⊗ F →
G such that (∀x ∈ E) (∀y ∈ F) f̄ (x ⊗ y) = f (x, y). For example, if M, N, P are three
A-modules, then it is the map ( f ⊗ g) �→ g ◦ f from Hom(M, N) ⊗ Hom(N, P) to
Hom(M, P).

Remark To show that a property holds for every element of E ⊗ F, checking it for
all simple tensors is not always sufficient. For example, f (x ⊗ y) �= 0 for x �= 0 and
y �= 0 does not necessarily imply that the map f : E ⊗ F → G is injective. (Example:
multiplication C ⊗R C → C or see 3.8, Exercise 3.)

3.8.3 Functoriality

Let E, E′, F, F′ be A-modules, f : E → E′ and g : F → F′ homomorphisms. There
is a linear map x ⊗ y �→ f (x) ⊗ g(y) from E ⊗ F to E′ ⊗ F′, written f ⊗ g f ⊗ g of
Hom(E, E′) ⊗ Hom(F, F′). However these two elements can be identified when the
Kronecker homomorphism (see 3.9) is injective. corresponding to (x, y) �→ f (x) ⊗
g(y) from E × F to E′ ⊗ F′. In particular, 1E ⊗ 1F = 1E⊗F and, for homomorphisms
f ′ : E′ → E′′ and g′ : F′ → F′′, ( f ′ ◦ f ) ⊗ (g′ ◦ g) = ( f ′ ⊗ g′) ◦ ( f ⊗ g).

3.8.4 Symmetry

Let E and F be A-modules. The linear map x ⊗ y �→ y ⊗ x from E ⊗ F to F ⊗ E is an
isomorphism, called symmetry. For F = E, the symmetry σ : E ⊗ E → E ⊗ E is not
the identity, but σ ◦ σ = 1E⊗E. In general E ⊗ F and F ⊗ E not identified under σ.
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3.8.5 Identity Object

Let E be an A-module. The maps a ⊗ x �→ ax from A ⊗ E to E and x �→ 1 ⊗ x from
E to A ⊗ E are converse isomorphisms which enable us to identify A ⊗ E with E.
Similarly, E = E ⊗ A.

3.8.6 Associativity

For finitely many A-modules (Ei )i∈I and an A-module G, let B((Ei )i∈I ; G) denote
the module of multilinear maps from

∏
i∈I Ei to G.

Proposition and Definition (a) For every finite family (Ei )i∈I of A-modules, the
covariant functor G �→ B((Ei )i∈I ; G) is representable. If (T, θ) is a representative
of this functor, then set

⊗
i∈I Ei = T and, for (xi )i∈I ∈∏i∈I Ei , ⊗i∈Ixi = θ((xi )i∈I).

(b) If I = J ∪ K with J ∩ K = ∅, the linear map ⊗i∈Ixi �→ (⊗xi ) ⊗ (⊗xi ) from⊗
i∈I Ei to (

⊗
i∈J Ei ) ⊗ (

⊗
i∈K Ei ) is an isomorphism.

Proof Let I = J ∪ K with J ∩ K = ∅, and suppose that the functors
G �→ B((Ei )i∈J ; G) and G �→ B((Ei )i∈K ; G) are representable. Show that the func-
tor G �→ B((Ei )i∈I ; G) is represented by (

⊗
i∈J Ei ) ⊗ (

⊗
i∈K Ei ) equipped with the

multilinear map (xi )i∈I �→ (⊗i∈Jxi ) ⊗ (⊗i∈Kxi ).
For all A-modules G,

B((Ei )i∈I ; G) = B((Ei )i∈J ; B((Ei )i∈K ; G))

= B
(
(Ei )i∈J ; Hom

(⊗

i∈K

Ei , G
))

= Hom
(⊗

i∈J

Ei , Hom
(⊗

i∈K

Ei , G
))

= B
(⊗

i∈J

Ei ,
⊗

i∈K

Ei ; G
)
=Hom

((⊗

i∈J

Ei

)
⊗
(⊗

i∈K

Ei

)
, G
)
,

proving the existence of
⊗

i∈I Ei as well as (b) if
⊗

i∈J Ei and
⊗

i∈K Ei are assumed
to exist.

For I=∅, B((Ei )i∈∅; G)=G=Hom(A, G), and so
⊗

i∈∅
Ei = A.

For I={a}, B((Ei )i∈{a}; G)=Hom(Ea, G), and so
⊗

i∈{a} Ei =Ea .
(a) now follows by induction on the number of elements of I.

Corollary For any A-modules E, F, G,

E ⊗ (F ⊗ G) = E ⊗ F ⊗ G = (E ⊗ F) ⊗ G .
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3.8.7 Right Exactness, Distributivity, Passing to Direct Limits

Proposition Let F be an A-module.
(a) Let f : E′ → E be a homomorphism of A-modules. Then

Coker( f ⊗ 1F) = (Coker f ) ⊗ F .

(b) Let (Ei )i∈I be a family of A-modules. Then

(⊕

i∈I

Ei

)
⊗ F =

⊕

i∈I

(Ei ⊗ F) .

(c) Let (Ei )i∈I a direct system of A-modules. Then

(lim−→ Ei ) ⊗ F = lim−→(Ei ⊗ F) .

Proof For all A-modules G,

Hom(E ⊗ F, G) = Hom(E, Hom(F, G)) .

In other words, the functor F �→ E ⊗ F from A-Mod to A-Mod has a right adjoint
functor G �→ Hom(F, G). The proposition then follows from (2.7.3, Corollary). �

Corollary (a) If E′ → E → E′′ → 0 is an exact sequence of A-modules, then E′ ⊗
F → E ⊗ F → E′′ ⊗ F → 0 is an exact sequence.

(b) Let f : E → E′ and g : F → F′ be surjective homomorphisms, then f ⊗ g :
E ⊗ F → E′ ⊗ F′ is surjective.

(c) Let (Ei )i∈I and (F j ) j∈J be two families of A-modules. Then

(⊕

i∈I

Ei

)
⊗
(⊕

j∈J

F j

)
=
⊕

(i, j)∈I×J

Ei ⊗ F j .

(d) Let (Ei )i∈I and (F j ) j∈J be direct systems of A-modules. Then

(lim−→ Ei ) ⊗ (lim−→ F j ) = lim−→
(i, j)∈I×J

Ei ⊗ F j .

Remarks (1) Let F be an A-module and f : E′ → E an injective homomorphism.
The homomorphism f ⊗ 1F : E′ ⊗ F → E ⊗ F is not in general injective. For exam-
ple, suppose that A is integral and take E = E′ = A. For all nonzero a ∈ A, a · 1E is
injective, but if F has torsion, then there exists a �= 0 such that a · 1E ⊗ 1F = a · 1F

is not injective.
In particular, if E′ is a submodule of E, then in general E′ ⊗ F cannot be identified

with a submodule of E ⊗ F. For example, for A = Z, E = Q, E′ = Z, F = Z/(n),
E ⊗ F = 0 but E′ ⊗ F �= 0.
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However, if E′ is a direct factor of E, the module E′ ⊗ F is a direct factor of
E ⊗ F. For example, if f : E′ → E and g : F′ → F are injective vector space homo-
morphisms over a field K, the map f ⊗ g : E′ ⊗ F′ → E ⊗ F is injective, since f
and g identify E′ and F′ with direct factors of E and F respectively.

(2) Let f : E → E′ and g : F → F′ be homomorphisms. Then the modules
Coker( f ⊗ g : E ⊗ F → E′ ⊗ F′) and (Coker f ) ⊗ (Coker g) are not in general iso-
morphic. For example, for A = R, E = R

n , E′ = R
n+1, F = R

p, F′ = R
p+1, f and

g injective, the above modules are vector spaces of dimension n + p + 1 and 1
respectively.

3.8.8 Tensor Product of Free Modules

Proposition Let E and F be free A-modules with respective bases (ei )i∈I and ( f j ) j∈J.
Then E ⊗ F is a free module and (ei ⊗ f j )(i, j)∈I×J is a basis for E ⊗ F.

Proof Taking Ei = F j = A in Corollary (3.8.7, c), A(I) ⊗ A(J) = A(I×J), and the
proposition follows. �

Corollary 3.7 Let E and F be A-modules, (xi )i∈I and (y j ) j∈J generators of E and
F respectively. Then (xi ⊗ y j )(i, j)∈I×J generate E ⊗ F.

Corollary 3.8 The tensor product of two projective modules is projective.

Proof Let E and F be two projective A-modules. There are A-modules E′ and F′
such that E ⊕ E′ and F ⊕ F′ are free. Then, (E ⊕ E′) ⊗ (F ⊕ F′) = (E ⊗ F)⊕(E ⊗
F′)⊕(E′ ⊗ F)⊕(E′ ⊗ F′) is free. So E ⊗ F is projective. �

3.8.9 Tensor Product of Matrices

Proposition and Definition Let E, E′, F, F′ be finitely generated free A-modules,
(ei )i∈I, (e′

i ′)i ′∈I′ , ( f j ) j∈J, ( f ′
j ′) j ′∈J′ bases for E, E′, F, F′ respectively. Let

u : E → E′ and v : F → F′ be homomorphisms, M = (mi ′
i ) and N = (n j ′

j ) their
respective matrices with respect to the given bases. Then the matrix of the homomor-
phism u ⊗ v : E ⊗ F → E′ ⊗ F′ with respect to the bases (ei ⊗ f j ) and (e′

i ′ ⊗ f ′
j ′) is

(t i ′, j ′
i, j ), where t i ′, j ′

i, j = mi ′
i n j ′

j . This matrix is called the tensor product of M and N,
and is written M ⊗ N.

Proof Since u(ei ) =∑mi ′
i e′

i ′ and v( f j ) =∑ n j ′
j f ′

j ′ , u ⊗ v (ei ⊗ f j ) = u(ei ) ⊗
v( f j ) =∑i ′, j ′ mi ′

i n j ′
j e′

i ′ ⊗ f ′
j ′ . �

Corollary Let K be a field, M and N matrices with entries in K. Then the rank of
M ⊗ N is the product of the ranks of M and N.
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Proof We may assume M and N are as follows to within base changes

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
...

...
...

...

0 . . . . . . 1 0 . . . 0
0 . . . . . . 0 0 . . . 0
0 . . . . . . 0 0 . . . 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

�

3.8.10 Tensor Product of Cyclic Modules

Proposition Let I and J be two ideals of A. Then

(A/I) ⊗ (A/J) = A/(I + J).

Proof Let e and f be the images of 1 in A/I and A/J. The module (A/I) ⊗ (A/J)
is generated by e ⊗ f (3.8.8, Corollary 3.7), and the annihilator of e ⊗ f contains
I and J, and so I + J. On the other hand, the map (a, b) �→ ab defined by passing
to the quotient is a bilinear map from (A/I) × (A/J) to A/(I + J), and hence a
homomorphism of (A/I) ⊗ (A/J) mapping e ⊗ f onto the image g of 1. Therefore
the annihilator of e ⊗ f is contained in that of g, i.e. in I + J; and so is equal to it. �

3.8.11 Examples of Tensor Products over Z

Consider the following Z-modules: Z
r , Z/(n), Q, Q/Z, Z(N), ZN. Their mutual tensor

products are given by the following table,

⊗ Z
r

Z/(n) Q Q/Z Z
(N)

Z
N

Z
r ′

Z
rr ′

Z/(n′)
(
Z/(n′)

)r
Z/(d)

d = g.c.d.(n, n′)
Q Q

r 0 Q

Q/Z
(
Q/Z
)r

0 0 0

Z
(N)

Z
(N×{1,...,r}) (

Z/(n)
)(N)

Q
(N)
(
Q/Z
)(N)

Z
(N×N)

Z
N

Z
N×{1,...,r} (

Z/(n)
)N

E F G H
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where E ⊂ Q
N is the set of sequences of the form

( pi

qi

)
i∈N

, the sequence (qi ) being

bounded; F is the image of E in (Q/Z)N; G ⊂ EN×N is the set of double sequences
whose support is contained in a “strip”, i.e. in a set {1, . . . , k} × N; H ⊂ Z

N×N is
the set of double sequences (n, p) �→ un,p such that there exists a finitely generated
submodule M of Z

N for which, for all n ∈ N, the partial sequence un : p �→ un,p is
in M.

Proof (a) Column of Z
r : for all Z-modules M, Z

r ⊗ M=Mr by distributivity
(3.8.7, b).

(b) Row of Z
(N): for all Z-modules M, Z

(N) ⊗ M = M(N) by distributivity. The
tensor products Z

(N) ⊗ Z
r and Z

(N) ⊗ Z
(N) are given by Proposition 3.8.8.

(c) Column of Z/(n): For all Z-modules M, Z/(n) ⊗ M = M/nM.
Indeed, the exact sequence Z

n→ Z → Z/(n)→ 0 gives

M
n→ M → Z/(n) ⊗ M → 0 .

For M = Z/(n′), let χ : Z → Z/(n′) be the canonical homomorphism. Then nM =
χ(nZ) = χ(nZ + n′

Z) = (nZ + n′
Z)/n′

Z = dZ/n′
Z where d = g.c.d.(n, n′), and

so M/nM = (Z/(n′))/(dZ/(n′)) = Z/(d).
For M = Q, Q ⊗ Z/(n) = Q/nQ = 0 since nQ = Q. Similarly, Q/Z ⊗ Z/(n) =

0 since n(Q/Z) = Q/Z.
For M = Z

N, Z
N ⊗ Z/(n) = Z

N/nZ
N = (Z/(n))N.

(d) Q ⊗ Q = Q. For q ∈ N
∗, consider the submodule Z

1
q de Q. Then Q =

⋃
q∈N∗ Z

1
q = lim−→ Z

1
q , the direct limit being indexed by N

∗ ordered by divisibility.

For all q ∈ N
∗, the homomorphism x ⊗ y

αq→ xy from Q ⊗ (Z 1
q ) to Q is an isomor-

phism thanks to the diagram

Q ⊗ Z � Q

Q ⊗ Z
1

q

1 ⊗ 1
q �

� Q

1
q

�

These isomorphisms form a coherent system, i.e. for all q and q ′ such that q
divides q ′, the following diagrams

Q ⊗ Z
1

q

Q ⊗ Z
1

q ′

1 ⊗ ι
�

αq ′
� Q

α
q

�

are commutative.
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Hence, passing to the direct limit, we get an isomorphism α : Q ⊗ Q → Q char-
acterized by α(x ⊗ y) = xy.

(e) The tensor product of the exact sequence 0 → Z
ι→ Q → Q/Z → 0 with Q is

the following exact sequence Q → Q → Q ⊗ Q/Z → 0, where the homomorphism
1 ⊗ ι : Q → Q is the identity since the isomorphisms identifying Q ⊗ Z → Q with
Q ⊗ Q → Q are defined by 1 ⊗ 1 �→ 1.

(f) The homomorphism x ⊗ (ui )i∈N �→ (xui )i∈N from Q ⊗ Z
N to Q

N induced for
all q ∈ N

∗ is an isomorphism from Z · 1
q ⊗ Z

N onto the submodule Z
N · 1

q of Q
N

consisting of the sequences in Z · 1
q . Then

Q ⊗ Z
N = lim−→ Z

N
1

q
=
⋃

q∈N∗
Z

N
1

q
= E .

(g) Column of Q/Z. The module Q/Z ⊗ Q/Z is a quotient of Q ⊗ Q/Z = 0 and
so is zero.

The tensor product of the exact sequence 0 → Z → Q → Q/Z → 0 with Z
N is

Z
N → E → Z

N ⊗ Q/Z → 0. As Z
N → E is injective, Z

N ⊗ Q/Z = E/Z
N.

(h) Z
N ⊗ Z

(N) = (ZN)(N) = G.
(i) For every Z-module M, let αM denote the homomorphisms (ui ) ⊗ m �→ (ui m)

from Z
N ⊗ M to MN. These define a morphism of functors, and αM is an isomorphism

if M is free and finitely generated. Every finitely generated submodule M of Z
N is

free (3.5.8, Corollary 3.2) and for such a submodule, MN can be identified with
a submodule of (ZN)N = Z

N×N. As Z
N is the direct limit of its finitely generated

submodules M, Z
N ⊗ Z

N = lim−→ Z
N ⊗ M =⋃M MN = H. �

3.8.12 Extension of Scalars

Let ϕ : A → B be a ring homomorphism. Consider B as an A-module (3.3.1, Exam-
ple 3). For all A-modules E, B ⊗A E can be endowed with a structure of B-module
by b · (b′ ⊗ m) = bb′ ⊗ m. With this structure, B ⊗A E, is said to be the B-module
obtained by the extension of scalars of A to B along ϕ. This B-module is written
ϕ∗(E).

If f : E → E′ is an A-module homomorphism, then the map f∗ = 1B ⊗A f :
B ⊗A E → B ⊗A E′ is B-linear. This defines a functor ϕ∗ : A-Mod → B-Mod

which commutes with cokernels, direct sums, and direct limits.
For a B-module F, let ϕ∗(F) be the A-module obtained by restricting scalars

from B to A along ϕ (3.3.2). This gives a functor ϕ∗ : B-Mod → A-Mod. The
modules ϕ∗(F) and F have the same underlying additive group.

Proposition The extension of scalars functor ϕ∗ : A-Mod → B-Mod is the left
adjoint of the restriction of scalars functor ϕ∗.
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In other words, for all A-modules E and all B-modules F, HomB(B ⊗A E, F) =
HomA(E, F). This is the set of ϕ-linear maps from E to F.

Proof For an A-linear map f : E → F, set f̄ (b ⊗ x) = b f (x) for all b ∈ B and
x ∈ E. For g : B ⊗A E → F, set ḡ(x) = g(1 ⊗ x) for all x ∈ E. The maps f �→ f̄
and g �→ ḡ are mutual inverses. �

Corollary If ϕ : A → B and ψ : B → C are ring homomorphisms then, for all A-
modules E, (ψ ◦ ϕ)∗(E) = ψ∗(ϕ∗(E)).

In other words, C ⊗B (B ⊗A E) = C ⊗A E.

Proof The functor ψ∗ ◦ ϕ∗ is a left adjoint of ϕ∗ ◦ ψ∗ = (ψ ◦ ϕ)∗, and so may be
identified with (ψ ◦ ϕ)∗. �

Examples (1) If E is a real vector space, then C ⊗R E is a complex vector space called
the complexification of E whose C-dimension is equal to the R-dimension of E.

(2) Let E be an A-module and I an ideal in A; the (A/I)-module A/I ⊗ E can be
identified with E/IE, where IE is the submodule generated by the elements ax , a ∈ I
and x ∈ E. Indeed, IE is the image of I ⊗ E in E.

3.8.13 Extension of Scalars to the Field of Fractions

Suppose that A is an integral domain, K its field of fractions and ι : A → K the
canonical injection.

Proposition For all A-modules E, the kernel of ι ⊗ 1E : E → K ⊗A E is the torsion
submodule of E.

Proof For q ∈ A∗, consider the submodule A 1
q of K and let ιq : A → A 1

q be the
inclusion homomorphism. Tensoring the commutative diagram

A
q � A

A
1

q

≈ 1
q�

ιq �

with E gives

E
q1E � E

A
1

q
⊗ E

≈�
ιq ⊗

1
E

�

and so Ker(ιq ⊗ 1E) = {x ∈ E | qx = 0}.
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Passing to the direct limit over the ordered set Mon∗(A), we get Ker(ι ⊗ 1E) =⋃
q{x ∈ E | qx = 0}, and this set is the torsion submodule of E. �

3.8.14 Rank of a Module

Let A be an integral domain and K its field of fractions.
The rank of a finitely generated A-module M, written rk M, is the dimension of

the K-vector space K ⊗A M. If A is principal, M is isomorphic to some module
Ar ⊕ T, where T is a torsion module (3.5.8), and the rank of M is r .

If 0 → M → N → P → 0 is a short exact sequence of finitely generated
A-modules, then rk N = rk M + rk P. Indeed, K being the direct limit of free mod-
ules of rank 1, there is an exact sequence

0 → K ⊗A M → K ⊗A N → K ⊗A P → 0 .

If f : M → N is a finitely generated A-module homomorphism, let rk f denote the
rank of Im f . Then rk N = rk f + rk(Coker f ) and, assuming Ker f is finitely gen-
erated (which is always the case if A is Noetherian), rk M = rk(Ker f ) + rk f .

Corollary Let A be an integral domain. Every finitely generated torsion free
A-module is isomorphic to a submodule of a finitely generated free module of the
same rank.

Proof Let K be the field of fractions of A, E a finitely generated torsion free A-
module generated by the finite family (xi ) in E, and (e j ) a basis for the finite dimen-
sional K-vector space K ⊗A E. Define the scalars a j

i ∈ K by ι(xi ) =∑ a j
i e j , and

let d be their common denominator. The injection ι : E → K ⊗A E maps E into the
free A-submodule K ⊗A E generated by 1

d e j . �

3.8.15 Tensor Products of Algebras

Let E and F be A-algebras. There is a unique A-algebra structure on the A-module
E ⊗ F such that (x ⊗ y)(x ′ ⊗ y′) = xx ′ ⊗ yy′. If E and F are associative (resp. unital,
resp. commutative), the same holds for E ⊗ F. If E and F are unital, the maps ι1 :
E → E ⊗ F and ι2 : F → E ⊗ F defined by ι1(x) = x ⊗ 1 and ι2(y) = 1 ⊗ y are
algebra homomorphisms.

Let A-Alg denote the category of associative unital commutative, A-algebras.

Proposition Let E and F be objects of A-Alg. The algebra E ⊗ F, equipped with
ι1 and ι2, is the sum of E and F in the category A-Alg.

Proof We show that, for any A-algebra C and all morphisms f : E → C,
g : F → C there is a unique morphism h : E ⊗ F → C such that, for all x ∈ E and
y ∈ F, h(x ⊗ 1) = f (x) and h(1 ⊗ y) = g(y), or such that
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h(x ⊗ y) = f (x)g(y) (*)

since x ⊗ y = (x ⊗ 1)(1 ⊗ y). We know that there is a unique A-linear map h : E ⊗
F → C satisfying (∗); moreover, for x, x ′ ∈ E and y, y′ ∈ F h((x ⊗ y)(x ′ ⊗ y′)) =
h(xx ′ ⊗ yy′) = f (xx ′)g(yy′) = f (x)g(y) f (x ′)g(y′) = h(x ⊗ y)h(x ′ ⊗ y′) since C
is commutative. �

Corollary Under the same assumptions, E ⊗A F is an amalgamated sum of E and
F over A in the category of commutative rings.

3.8.16

Let E, B, C be algebras, f : B → E and g : C → E algebra homomorphisms, then the
image of the homomorphism x ⊗ y �→ f (x)g(y) of B ⊗ C → E is the subalgebra
of E generated by f (B) and g(C). In particular, if B and C are unital subalgebras
of an algebra E, the subalgebra B · C of E generated by B and C is identified with a
quotient algebra of B ⊗ C.

3.8.17

Let A and B be two rings, f : A → B a ring homomorphism and E an A-algebra.
The B-module B ⊗A E, equipped with the multiplication defined in 3.8.15, is a
B-algebra, said to be the B-algebra obtained from E by extension of scalars from A
to B along f . For any B-algebra F, F can be regarded as an A-algebra by restriction
of scalars, and

HomB-Alg(B ⊗A E, F) = HomA-Alg(E, F) .

3.8.18 Examples

(1) A[X, Y] = A[X] ⊗A A[Y].
Similarly A[X1, ..., Xp, Y1, ..., Yq ] = A[X1, ..., Xp] ⊗A A[Y1, ..., Yq ]. More

generally, if I is an arbitrary set and (I′, I′′) a partition of I, then A[(Xi )i∈I] =
A[(Xi )i∈I′ ] ⊗A A[(Xi )i∈I′′ ].

(2) Let P1, ..., Pk ∈ A[X1, ..., Xp], Q1, ..., Ql ∈ A[Y1, ..., Yq ]. Then

(A[X1, ..., Xp]/(P1, ..., Pk)) ⊗A (A[Y1, ..., Yq ]/(Q1, ..., Ql))

= A[X1, ..., Xp, Y1, ..., Yq ]/(P1, ..., Pk, Q1, ..., Ql).
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(3) By extension of scalars from A to B along f , the algebra A[(Xi )i∈I] gives
B[(Xi )i∈I] and A[(Xi )i∈I]/((P j ) j∈J) gives B[(Xi )i∈I]/(( f∗P j ) j∈J).

(4) The algebra C ⊗R C is isomorphic to the product algebra C × C. Indeed
C = R[X]/(X2 + 1), and so C ⊗R C = C[X]/(X2 + 1) = C[X]/((X − i)(X + i)).
The substitutions X �→ i and X �→ −i give two homomorphisms from C[X] to C,
and hence there is a homomorphism from C[X] to C × C whose kernel is the ideal
(X − i) ∩ (X + i) = ((X − i)(X + i)). This in turn gives an injective homomor-
phism from C[X]/((X − i)(X + i)) to C × C. This homomorphism is bijective since
both these algebras have dimension 4 over R. (We will resume this argument in the
more general framework of Galois theory.)

(5) If X is a topological space, C ⊗R C(X, R) = C(X, C).

Exercises 3.8. (Tensor product)
1.—Let E and F be two A-modules, L1

δ→ L0
ε→ E → 0 and M1

δ′→ M0
ε′→ F → 0

presentations of E and F respectively. Show that

(L1 ⊗ M0)⊕(L0 ⊗ M1)
(δ⊗1,1⊗δ′)� L0 ⊗ M0

ε⊗ε′� E ⊗ F → 0

is a presentation of E ⊗ F.

2.—Let K be a field and E1
u→ E

f→ F
v→ F1 and E′

1
u′→ E′ f ′→ F′ v′→ F′

1 two exact

sequences of vector spaces. Show that (E1 ⊗ E′)⊕(E ⊗ E′
1)

(u⊗1,1⊗u′)�

E ⊗ E′ f ⊗ f ′� F ⊗ F′

⎛

⎝
v ⊗ 1
1 ⊗ v′

⎞

⎠

� (F1 ⊗ F′)⊕(F ⊗ F′
1) is an exact sequence. In partic-

ular Ker( f ⊗ f ′) = (Ker f ⊗ E′) + (E ⊗ Ker f ′).

3.—Let E and F be K-vector spaces and t ∈ E ⊗ F. Set G = E ⊗ F/K · t and let
f : E ⊗ F → G be the canonical map. Show that ( f (x ⊗ y) = 0) ⇒ (x ⊗ y = 0) if
and only if t is of rank � 2 and that the restriction of f to the set of simple tensors
is injective if and only if t is of rank � 3.

4.—Let E and F be modules over an integral domain A, x ∈ E and y ∈ F non-torsion
elements. Show that x ⊗ y �= 0 (extend the scalars to the field of fractions of A).

5.—Let M and N be square matrices with entries in a field K.
(a) Show that if M and N are diagonal (resp. triangular, resp. symmetric), then

the same holds for M ⊗ N.
(b) Show that if M1 and N1 are respectively similar to M and N, M1 ⊗ N1 is

similar to M ⊗ N.
(c) Write det(M ⊗ N) in terms of det(M) and det(N).
(d) Determine the eigenvalues of M ⊗ N with their multiplicities assuming known

those of M and N.

6.—Let K be a field.
(a) Let X be a set and E a K-vector space. Show that the map f ⊗ t �→

(x �→ f (x) · t) from KX ⊗ E to EX is bijective if either X is finite or E is finite
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dimensional, and is always injective (consider E as the increasing union of finite
dimensional vector spaces). What is its image?

(b) Let X and Y be two sets. Show that the map f ⊗ g �→ h from KX ⊗ KY to
KX×Y defined by h(x, y) = f (x) · g(y) is injective.

(c) Let X and Y be topological spaces. Show that the map C(X, R) ⊗R C(Y, R)

assigning to every vector f ⊗ g h defined by h(x, y) = f (x) · g(y) is injective. Can
R be replaced by C?

(d) Supposing X and Y to be compact and metrizable, show that this map is
image-dense.

7.—Let h : A → B be a ring homomorphism, M and N two B-modules. Show that
there is an exact sequence:

M ⊗A B ⊗A N
d→ M ⊗A N → M ⊗B N → 0 ,

where d(x ⊗ b ⊗ y) = bx ⊗ y − x ⊗ by.

8.—Let K be a field. For every algebraic subset X of Kn , let A(X) be the algebra of
functions on X induced by polynomials.

(a) Let X ⊂ Km and Y ⊂ Kn be algebraic sets. Show that A(X × Y) = A(X) ⊗K

A(Y).
(b) Let p : Kn+r = Kn × Kr → Kn and q : Kn+s → Kn be the first projections,

S ⊂ Kn , X ⊂ Kn+r and Y ⊂ Kn+s algebraic sets such that p(X) ⊂ S, q(Y) ⊂ S.
Define p∗ : A(S) → A(X) by p∗( f ) = f ◦ p, and q∗ : A(S) → A(Y) likewise.
Show that A(X ×S Y) = A(X) ⊗A(S) A(Y).

9.—(a) Let X and Y be two compact metrizable spaces, f : Y → X a continuous
map, and E a vector bundle over X (3.4, Exercise 9). Define a bundle F = f ∗(E) over
Y by equipping the fibre product en Y ×X E with its first projection onto Y and, for
all y ∈ Y, with the structure obtained on F(y) by identifying it with E( f (y)). Show
that the module S(F) of continuous sections of F can be identified with a module
obtained from S(E) by extension of scalars along f ∗ : C(X) → C(Y).

(b) Let E and F be two vector bundles over X. Define a vector bundle E ⊗ F over
X such that (E ⊗ F)(x) = E(x) ⊗ F(x) for all x ∈ X, and show that S(E ⊗ F) =
S(E) ⊗C(X) S(F).

10.—Let K be a field, A the ring K[X, Y] and m the maximal ideal in A consisting of
polynomials without constant terms. The aim is to determine the module m ⊗A m.

(a) Show that there is an exact sequence 0 � A

⎛

⎝
−Y
X

⎞

⎠

� A2 (X,Y)� m � 0.
(b) Show that this sequence induces an exact sequence

0 → A → m⊕m → m2 → 0 ,

where m2 denotes the ideal of A generated by the monomials of degree 2.
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(c) Deduce an exact sequence 0 → K → m ⊗ m → m2 → 0, where K is endowed
with the A-module structure given by its identification with A/m.

(d) Show that the element x ⊗ y − y ⊗ x of m ⊗ m is nonzero and generates the
torsion submodule.

(e) Show that the submodule of m ⊗ m generated by x ⊗ x , x ⊗ y and y ⊗ y is
isomorphic to m2, and finally that m ⊗ m is isomorphic to m2 ⊕ K.

11.—In what follows, A and B denote two unitary commutative rings, and α : A → B
a unitary ring homomorphism. The A-module B ⊗A B being equipped with its canon-
ical ring structure (multiplication being given by: (x ⊗ y)(x ′ ⊗ y′) = xx ′ ⊗ yy′), let
p : B ⊗A B → B be the homomorphism given by: p(x ⊗ y) = xy, and j1, j2 : B →
B ⊗A B the homomorphisms defined by: j1(x) = x ⊗ 1, j2(x) = 1 ⊗ x .

(a) Show that the kernel I of p is generated by the elements 1 ⊗ x − x ⊗ 1 (x ∈ B).
(b) For any B-module M, let DA(B, M) be the set of “A-derivation from B to M”,

defined by:

DA(B, M) = {D ∈ HomA-Mod(B, M) | ∀x, y ∈ B, D(xy) = xD(y) + yD(x)} .

(α) Show that DA(B, M) is a B-submodule of HomA-Mod(B, M).

(β) Show that D ◦ α = 0, for any A-derivation D from B to M.
(c) The ring B ⊗A B being equipped with its B-algebra structure defined by j1

(i.e. B acts on B ⊗A B by: b · (x ⊗ y) = j1(b)(x ⊗ y)), consider the isomorphism of
B-modules:

v : HomA-Mod(B, M) → HomB-Mod(B ⊗A B, M)

given by: v( f )(x ⊗ y) = x f (y). Show that v(DA(B, M)) is the B-submodule of
HomB-Mod(B ⊗A B, M) whose elements vanish on j1(B) and on I2.

(d) Deduce that there exists a B-module �B/A (called the module of A-differentials
of B) and an A-derivation dB/A : B → �B/A such that, for all A-modules M and
A-derivations D : B → M, there is a unique homomorphism of B-modules u :
�B/A → M such that: D = u ◦ dB/A.

(e) Describe �B/A in the following cases:
(α) A = R, B = C, α is the canonical injection;
(β) A = Z, B = Q, α is the canonical injection;
(γ) A = Fp, B = Fq , α is the canonical injection (Fp and Fq are respectively the

fields of order p and q = p f , p being prime and f ∈ N
∗);

(δ) A = k[Xp], B = k[X], where p is prime and k a field, α being the canonical
injection;

(ε) B = An , n � 1, α being defined by: α(a) = (a, a, ..., a);
(ζ) α : A → B is surjective;
(η) B is an A-algebra of polynomials with indeterminates in an arbitrary set L,

the set α : A → A[Xe]e∈L being defined by α(a) = a.

12.—Let E and F be real Euclidean spaces.
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(a) Show that there is a unique symmetric bilinear form on E ⊗ F satisfying
〈x ⊗ y, x ′ ⊗ y′〉 = 〈x, x ′〉 · 〈y, y′〉.

(b) Let (e1, ..., en), ( f1, ..., f p) be orthonormal bases for E and F respectively.
Show that the elements ei ⊗ f j form an orthonormal basis for E ⊗ F. Deduce that
E ⊗ F is Euclidian.

(c) Generalize these results to Hermitian spaces over C.

13.—Let K be a field. For every vector space E, denote by P(E) the projective space
of E, i.e. the set of vector subspaces of rank 1 of E and ψE the map from E − {0} to
P(E) assigning to every vector the line it generates.

(a) Let E and F be two vector spaces. Show that the map (L, M) �→ L ⊗ M from
P(E) × P(F) to P(E ⊗ F) is injective.

(b) Let x0 ∈ E and y0 ∈ F. Determine the tangent linear map Tx0,y0θ to θ :
(x, y) �→ x ⊗ y from E × F to E ⊗ F at (x0, y0) (i.e. the degree 1 part of the expan-
sion of (u, v) �→ (x0 + u) ⊗ (y0 + v)).

(c) Suppose x0 �= 0 and y0 �= 0. Show that, by passing to quotients, Tx0,y0θ gives
an injective map from E/Kx0 × F/Ky0 to E ⊗ F/K(x0 ⊗ y0).

(d) Suppose that K = R or C and that E and F are finite dimensional. Show that
P(E) × P(F) can be identified with a closed submanifold of P(E ⊗ F).

3.9 The Kronecker Homomorphism

3.9.1

Let E, F, E′, F′ be A-modules. The map ( f, f ′) �→ f ⊗ f ′ from
Hom(E, F) × Hom(E′, F′) to Hom(E ⊗ E′, F ⊗ F′) is bilinear. Hence there is a
homomorphism

ϕE,E′
F,F′ : f ⊗ f ′ �→ f ⊗ f ′

from Hom(E, F) ⊗ Hom(E′, F′) to Hom(E ⊗ E′, F ⊗ F′), called the Kronecker
homomorphism.

In particular, this gives morphisms αE
F = ϕE,A

A,F : E�⊗ F → Hom(E, F) and

βE,F = ϕE,F
A,A : E�⊗ F� → (E ⊗ F)�, where E� = Hom(E, A).

3.9.2 Functoriality

Let u : E1 → E, u′ : E′
1 → E′, v : F → F1, and v′ : F′ → F′

1 be homomorphisms
of A-modules. These give a homomorphism v∗u∗ = u∗v∗ : f �→ v ◦ f ◦ u from
Hom(E, F) to Hom(E1, F1). The commutativity of the following diagram follows
readily:
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Hom(E, F) ⊗ Hom(E′, F′)
v∗u∗ ⊗ v′∗u′∗

� Hom(E1, F1) ⊗ Hom(E′
1, F′

1)

Hom(E ⊗ E′, F ⊗ F′)

ϕ
�

(v ⊗ v′)∗(u ⊗ u′)∗� Hom(E1 ⊗ E′
1, F1 ⊗ F′

1)

ϕ
�

This says that ϕ is a morphism from the functor (E, E′, F, F′) �→ Hom(E, F) ⊗
Hom(E′, F′) to the functor (E, E′, F, F′) �→ Hom(E ⊗ E′, F ⊗ F′), both these func-
tors being defined on A-Mod0 × A-Mod0 × A-Mod × A-Mod, with values
in A-Mod.

3.9.3

For homomorphisms f : M → M′ and g : N → N′, let f ⊕ g be the homomorphism
(x, y) �→ ( f (x), g(y)) from M ⊕ N to M′ ⊕ N′.

Proposition If E = E1 ⊕ E2, thenϕE,E′
F,F′ = ϕE1,E′

F,F′ ⊕ϕE2,E′
F,F′ . Similarly, if F = F1 ⊕ F2,

then ϕE,E′
F,F′ = ϕE,E′

F1,F′ ⊕ ϕE,E′
F2,F′ .

Proof Apply functoriality to ι1 : E1 → E and ι2 : E2 → E (resp. to π1 : E → E1

and π2 : E → E2).

Corollary If E = E1 ⊕ E2, then ϕE,E′
F,F′ is an isomorphism if and only if so are ϕE1,E′

F,F′

and ϕE2,E′
F,F′ . Similarly, if F = F1 ⊕ F2, then ϕE,E′

F,F′ is an isomorphism if and only if so

are ϕE,E′
F1,F′ and ϕE,E′

F2,F′ .

This follows from the fact that f ⊕ g is an isomorphism if and only if so are f
and g.

3.9.4 Specific Cases When ϕ is an Isomorphism

Proposition If E and E′ (resp. E and F) are finitely generated and projective (i.e.
isomorphic to direct factors of a finitely generated free module), ϕE,E′

F,F′ is an isomor-
phism.

Proof It is immediate if E = E′ = A, or if E = F = A. The case where E and E′
(resp. F and F′) are finitely generated and free follows by iteration from (3.9.3,
Corollary). The case where ù E and E′ (resp. E and F) are finitely generated and
projective then follows by applying the converse part of the same corollary.

Corollary If either E or F is finitely generated and projective, then
αE

F : E� ⊗ F → Hom(E, F) is an isomorphism.
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3.9.5 Specific Cases When α is Bijective

Proposition If E is free and F has finite presentation, then αE
F : E� ⊗ F → Hom(E, F)

is an isomorphism.

Proof Let L1 → L0 → F → 0 be a presentation of F, where L0 and L1 are are finitely
generated and free. By Corollary 3.9.4, the morphisms αE

L0
and αE

L1
are bijective. As

the diagram

E�⊗ L1
� E�⊗ L0

� E�⊗ F � 0

Hom(E, L1)

αE
L1

�
� Hom(E, L0)

αE
L0

�
� Hom(E, F)

αE
F

�
� 0

where the rows are exact, is commutative, E�⊗ F and Hom(E, F) can be identified
with the cokernel of the same homomorphism. �

3.9.6 The Noetherian Case

Proposition If A is Noetherian and E is free, then αE
F : E� ⊗ F → Hom(E, F) is

injective. Its image is the set of f : E → F for which f (E) is contained in a finitely
generated submodule of F.

Proof Let (Fi ) be an increasing directed family of finitely generated submodules of
F such that F =⋃Fi . For all i , the module Fi has a finite presentation since A is
Noetherian, and so αE

Fi
is bijective. As F = lim−→ Fi , passing to the direct limit, gives

an isomorphism from E�⊗ F = lim−→ E�⊗ Fi onto lim−→ Hom(E, Fi ). This direct limit
is just the union of submodules Hom(E, Fi ) of Hom(E, F). �
Corollary 3.9 If A is Noetherian and E est free, then βE,F : E� ⊗ F� → (E ⊗ F)�
is injective.

Indeed, βE,F = αE
F� : E�⊗ F� → Hom(E, F�) = B(E, F ; A) = (E ⊗ F)�.

Corollary 3.10 If A is Noetherian, E F free, then

ϕE,E′
F,F′ : Hom(E, F) ⊗ Hom(E′, F′) → Hom(E ⊗ E′, F ⊗ F′)

is injective.

Proof If F = A, the homomorphism ϕE,E′
A,F′ = αE

Hom(E′,F′) : Hom(E, A) ⊗ Hom
(E′, F′) → Hom(E, Hom(E′, F′)) = B(E, E′ ; F′) = Hom(E ⊗ E′, F′) is injective by
Corollary 1. The result follows by passing to the direct sum when F is free and finitely
generated, then by passing to the direct limit when F is free. Hence it is the increasing
directed union of finitely generated free modules.
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3.9.7 The Principal Ideal Domain Case

Proposition If A is principal,αE
F : E� ⊗ F → Hom(E, F) is injective for all E and F.

Proof First suppose that F is finitely generated. By 3.5.8, it reduces to the case when F
is cyclic. If F = A, then the morphism αE

F is the identity of E�. If F = A/(a) with a �=
0, the exact sequence 0 → E� a·1→ E� → Hom(E, F) and E� a·1→ E� → E�⊗ F → 0

associated to the exact sequence 0 → A
a·1→ A → F → 0 show that α identifies E�⊗ F

with a submodule de Hom(E, F).
The general case follows as in Proposition 3.9.6. �

3.9.8 Image of α

Proposition The image of αE
F : E� ⊗ F → Hom(E, F) is the set of homomorphisms

f : E → F factorizing through a finitely generated free A-module.

Proof If t =∑r
1 ξi ⊗ yi ∈ E� ⊗ F, then α(t) = g ◦ f , where f : E → Ar and g :

Ar → F are defined by f (x) = (ξ1(x), ..., ξr (x)) and g(a1, ..., ar ) = a1 y1 + · · · + ar yr .
Conversely, if h = g ◦ f with f : E → Ar and g : Ar → F, then h =∑ ξi ⊗ yi ,
where the ξi are the coordinates of f and the yi are the images under g of the
elements of a canonical basis. �
Corollary Let E be an A-module. The following conditions are equivalent:

(i) 1E belongs to the image of αE
E : E�⊗ E → End(E);

(ii) αE
E is bijective;

(iii) E is finitely generated and projective.

Proof (i) ⇒ (iii) By the above proposition and Proposition 3.4.8, (iii) ⇒ (ii) by
(3.9.4, Corollary), and (ii) ⇒ (i) is then immediate.

3.9.9 Contraction and Composition

Proposition Let E, F, G be three A-modules. The diagram

E� ⊗ F ⊗ F�⊗ G
αE

F ⊗ αF
G� Hom(E, F) ⊗ Hom(F, G)

E� ⊗ G

k
�

αE
G � Hom(E, G)

c
�

where k is the contraction ξ ⊗ y ⊗ η ⊗ z �→ η(y) · ξ ⊗ z and c the composition
( f ⊗ g) �→ g ◦ f , is commutative.
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Proof The image of ξ ⊗ y ⊗ η ⊗ z under the two composite maps in Hom(E, G) is
the map x �→ ξ(x) · η(y) · z. �

3.9.10 Trace

Let E be an A-module. Consider the Kronecker homomorphism αE = αE
E : E�⊗

E → End(E) and the contraction κE : E� ⊗ E → A defined by κE(ξ ⊗ x) = ξ(x).
Suppose that Ker αE ⊂ Ker κE. Then, for all f : E → E in the image of αE, define
Tr( f ) ∈ A by Tr( f ) = κ(t), where t ∈ α−1

E ( f ), a scalar independent of the choice
of t . The scalar Tr( f ) is called the trace of f . The map Tr : Im αE → A is A-linear.

Proposition Suppose that E is finitely generated and free and let (ei ) be a basis for
E. For all endomorphisms f of E, the trace of f is the sum

∑
ai

i of the diagonal
entries of the matrix representing f .

Proof As αE is bijective, Tr( f ) is defined for all f ∈ End(E). Let (e′
i ) be the dual

basis E� of (ei ). For all x ∈ E, x =∑ e′
i (x)ei ; so f (x) =∑ e′

i (x) f (ei ). Thus f =
α(
∑

e′
i ⊗ f (ei )) and Tr( f ) =∑ e′

i ( f (ei )) =∑ ai
i . �

3.9.11

Proposition Let E and F be two A-modules, f : E → F a homomorphism in the
image of αE

F and g : F → E an arbitrary homomorphism. Assume that Ker αE ⊂
Ker κE and Ker αF ⊂ Ker κF. Then Tr(g ◦ f ) and Tr( f ◦ g) are well defined, and
Tr(g ◦ f ) = Tr( f ◦ g).

Proof Let t =∑ x ′
i ⊗ yi ∈ E�⊗ F be such that f =αE

F(t). Then g ◦ f = αE
(∑

x ′
i ⊗

g(yi )
)

and f ◦ g = αF
(∑

(x ′
i ◦ g) ⊗ yi

)
, so that Tr(g ◦ f ) and Tr( f ◦ g) are defined

and equal to
∑

x ′
i (g(yi )). �

3.9.12 Trace and Extension of Scalars

Let h : A → A′ be a ring homomorphism, E and F A-modules, E′ and F′ the
A′-modules resulting from E and F by extension of scalars. Denote by h∗ the
x �→ 1 ⊗ x from E to E′ (resp. from F to F′), and by h∗ the map ξ �→ h ◦ ξ from E�
to HomA(E, A′) = HomA′(E′, A′) = E′�. For all A-linear maps f : E → F, let f∗
be the A′-linear map 1A′ ⊗ f : E′ → F′.

Proposition The following diagrams are commutative:
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(a)

E� ⊗A F
αE

F� HomA(E, F)

E′� ⊗A′ F′

h∗ ⊗ h∗
�

αE′
F′� HomA′(E′, F′)

f �→ f∗
�

(b)

E� ⊗A E
κE � A

E′� ⊗A′ E′

h∗ ⊗ h∗
�

κE′ � A′

h
�

Proof (a) Let ξ ∈ E� and y ∈ F. Then αE
F(ξ ⊗ y) = (x �→ ξ(x) · y), which gives a

map a′ ⊗ x �→ a′ ⊗ ξ(x) · y in Hom(E′, F′). In other words, given the definition of
the A-module structure on A′, ξ ⊗ y gives the element h∗(ξ) ⊗ (1 ⊗ y) in E′� ⊗ F′,
whose image under the Kronecker homomorphism is the map a′ ⊗ x �→ a′ · h(ξ(x)) ·
1 ⊗ y = a′ ⊗ ξ(x) · y.

(b) For ξ ∈ E� and x ∈ E,κ ◦ (h∗ ⊗ h∗)(ξ ⊗ x) = κ(h∗(ξ) ⊗ (1 ⊗ x)) = h(ξ(x)).
�

Corollary Suppose that Ker αE ⊂ Ker κE and Ker αE′ ⊂ Ker κE′ hold. Then, for
f ∈ Im(αE), Tr( f∗) = h(Tr( f )).

3.9.13

Proposition Suppose that the ring A is reduced. Then, Ker αE ⊂ Ker κE for all
A-modules E.

Proof Let t ∈ E� ⊗ E be such that αE(t) = 0. We show that κE(t) = 0. By 3.1.7, all
we need to show is that, for all homomorphisms h from A to a field A′, h(κE(t)) = 0.
With the notation of 3.9.12 and assuming A′ is a field, the homomorphism κE′ :
E′� ⊗A′ E′ → End(E′) is injective by Proposition 3.9.6, and so the image of t under
h∗ ⊗ h∗ : E� ⊗ E → E′� ⊗ E′ is zero, and h(κE(t)) = κE′ ◦ (h∗ ⊗ h∗)(t) = 0. �

3.9.14 Computation of the Rank of a Tensor

Proposition Let K be a field, E and F vector spaces over K and t ∈ E�⊗ F. The
rank (see 3.8.2) of t equals the rank (i.e. the dimension of the image) of the linear
map αE

F(t) : E → F.
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Proof Let t ∈ E� ⊗ F and set f = αE
F(t). If t =∑i xi ⊗ yi , then the image of f is

contained in the vector subspace of F generated by the yi , and so rk( f ) � r . Hence
rk f � rk(t).

Let d be the dimension of the image V of f , (y1, ..., yd) a basis for V and define
the linear forms u1, ..., ud on E by f (x) =∑ ui (x) · yi . Then f = α

(∑
ui ⊗ yi

)
,

and as αE
F is injective (Proposition 3.9.6), t =∑ ui ⊗ yi . Thus rk(t) � d = rk( f ).

�

Corollary Let E and F be vector spaces over K, E′ a vector space of linear
forms on E separating the points of E (i.e. such that (∀x ∈ E, x �= 0) (∃ f ∈ E′)
f (x) �= 0). Let t =∑ xi ⊗ yi ∈ E ⊗ F. Then the rank of t equals the rank of the map
f �→∑ f (xi ) · yi from E′ to F.

Proof The map δ : E → E′� defined by δ(x) = ( f �→ f (x)) is injective, and iden-
tifies E with a direct factor of E′�. As a result, the rank of t equals the rank of
(δ ⊗ 1F)(t) ∈ E′� ⊗ F. The rank of the latter tensor equals the rank of its image in
Hom(E′, F) under αE′

F , and this image is the map f �→∑ f (xi ) · yi . �

Exercises 3.9. (Kronecker Homomorphism)
1. (Norm ε)— Let E and F be normed vector spaces over R or C. Denote by E� the
space of continuous linear forms on E.

(a) Define injections from E ⊗ F to the space L(E�, F) of continuous linear forms
from E� to F, to L(F�, E) and to the space B(E�, F�) of continuous bilinear forms
on E� × F�. Show that the norms induced on E ⊗ F by these three injections agree
(use the Hahn-Banach theorem). Let x �→ ‖x‖ε be the norm thus defined on E ⊗ F.

(b) Let (ξi ) be a family of elements of E� such that (∀x ∈ E) ‖x‖ = sup |ξi (x)|.
Show that, for t ∈ E ⊗ F, ‖t‖ε = sup ‖(ξi ⊗ 1F)(t)‖. If (η j ) is a family of elements
of F� satisfying the same property, then ‖t‖ε = supi, j |(ξi ⊗ η j )(t)|.

(c) Let X be a compact metric space and suppose that F is complete. Show that the
space C(X, F) of continuous maps from X to F can be identified with the completion
relative to the norm ε of C(X) ⊗ F.

(d) Let X and Y be compact metric spaces. Show that C(X × Y) is identified with
the completion with respect to the norm ε of C(X) ⊗ C(Y).

(e) Let E′ and F′ be subspaces of E and F respectively, equipped with the induced
norms. Show that the norm ε on E′ ⊗ F′ is induced by that of E ⊗ F. Assuming that
E′ and F′ closed, is the norm ε on (E/E′) ⊗ (F/F′) the quotient of the norm ε on
E ⊗ F?

(f) Show that the seminorm π defined in [2.4, Exercise 3] is a norm.

2. (Nuclear norm)—Let E and F be finite dimensional normed spaces over R or C. For
all t ∈ E� ⊗ F, let ‖t‖π denote the lower bound of

∑ ‖ξi‖‖yi‖ for the finite families
((ξi , yi )) such that t =∑ ξi ⊗ yi . The nuclear norm, written f �→ ‖ f ‖ν , is the norm
obtained by transferring the norm π on L(E, F) via the Kronecker isomorphism.

(a) Show that for all f ∈ L(E, E), ‖ Tr( f )‖ � ‖ f ‖ν .
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(b) Show that ‖1E‖ν = dim(E) (use (a) gives one of the inequalities; to prove
the other one, first study the dimension 2 case by considering a parallelogram with
maximal area among all those with sides of length 1).

(c) Let F be the space R
3 equipped with the norm x �→ sup |xi |, and E the plane

{x ∈ R
3 | x1 + x2 + x3 = 0} equipped with the induced norm. Draw a unit ball of

E. Compute the nuclear norm of the canonical injection from E to F.
(d) Let f ∈ L(E, F) and F1 a subspace de F containing the image of f (resp. N

a subspace de E contained in the kernel of f ). Is the nuclear norm of f in L(E, F1)

(resp. in L(E/N, F)) necessarily equal to the nuclear norm of f in L(E, F)?
(e) Take f : R

3 → R
3 to be the map represented by the matrix

⎛

⎝
0 1 1
1 0 1
1 1 0

⎞

⎠

the space R
3 being equipped with the norm x �→ sup |xi |. Compare the sum of the

absolute values of the eigenvalues with the nuclear norm.
(f) Show that, for f ∈ L(E, F), the nuclear norm of f is the upper bound of

Tr(g ◦ f ) for g : F → E such ‖g‖ � 1, i.e. (∀y ∈ D) ‖g(y)‖ � ‖y‖.

3.—Let A be a ring, E and F finitely generated projective A-modules. Show that the
bilinear form ( f, g) �→ Tr(g ◦ f ) enables the identification of each of the modules
Hom(E, F) and Hom(F, E) with the dual of the other.

4.—Let V be the real vector space of n × n matrices. Denote by u� the transpose of
the matrix u, and by Tr(u) its trace. Set p(u) = Tr(u · u) and q(u) = Tr(u� · u).

(a) Check that p and q are quadratic forms on V.
(b) If these quadratic forms are decomposed as sums of squares with signs of

linearly independent forms, then in the case of q, how many have a + sign and how
many a − one? In the case of p? (Start with the case n = 2.)

(c) Is there a nonzero matrix u such that p(u) = 0? such that q(u) = 0?

5.—Let M be a square matrix with real entries. Show that

d

dt
det(1 + tM)t=0 = Tr(M)

(the computation may be done in C by reducing to the case when M is triangular).
Compute the derivative for arbitrary t .

6.—Let K be a field and E a finite dimensional K-vector space. Show that every linear
form θ : End(E) → K such that (∀ f, g) θ( f ◦ g) = θ(g ◦ f ) can be written λ Tr. Can
K be replaced by a ring by taking E to be a finitely generated free A-module? a finitely
generated projective module?

7.—(a) Let E and F be finite dimensional vector spaces over a field K, f :
E → F and g : F → E two homomorphisms such that u = g ◦ f and v = f ◦ g are
of finite rank. Show that the nonzero eigenvalues of u are eigenvalues of v with the
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same multiplicity. Deduce that Tr(v) = Tr(u). (If necessary, extend the scalars to the
algebraic closure of K.)

(b) Let E and F be two A-modules, f : E → F and g : F → E homomorphisms
such that the traces of u = g ◦ f and v = f ◦ g are well defined. Assume A is
reduced. Show that Tr(u) = Tr(v).

(c) In question (b), can the assumption that A is reduced be omitted?

8.—(a) Let P ∈ C[Z]be nonzero and A the algebra C[Z]/(P). For f ∈ A, let TrA:C( f )

be the trace of the endomorphism μ f : g �→ f · g of the vector space A. What are
the eigenvalues of μ f ? Show that if F is a representative of f , then TrA:C( f ) is the
sum of the values of F at the roots of P.

(b) Let P ∈ C[X1, ..., Xn, Z] be a monic polynomial in Z (i.e. in C[X1, ..., Xn][Z]).
Let F ∈ C[X1, ..., Xn, Z], and for (x1, ..., xn) ∈ C

n set S(x1, ..., xn) =∑i F(x1, ...,

xn, zi ), where the zi are the roots of P(x1, ..., xn, Z) ∈ C[Z], counted with their
multiplicities. Show that the function S : C

n → C thus defined is polynomial.

9.—Let A be a ring and B an A-algebra, finitely generated and projective as A-
module. For all f ∈ B, let TrB:A( f ) be the trace of the endomorphism g �→ f · g of
the A-module B.

(a) Compute TrC:R(z) for z ∈ C.
(b) Show that, if B = A[X]/(Xd − a), with a ∈ A, then Tr(xk) = 0 for 0 < k <

d. Give an example where TrB:A : B → A is zero, while B �= 0.
(c) Let C be a B-algebra, finitely generated and projective as B-module. Show that

C is a finitely generated A-module and that, if h ∈ C, then TrC:A(h) = TrB:A(TrC:B(h)).
Give a slightly more general statement.

10.—Let K be a field, A = K[X], B = K[Y], and h a polynomial of degree d > 0.
consider the algebra homomorphism h∗ : A → B defined by h∗(X)=h(Y), whereù
h∗(u) = u ◦ h for u ∈ A.

Equip B with the A-module structure defined by this homomorphism.
(a) Show that B is a free A-module of rank d with (1, ..., Yd−1) as basis.
(b) For f ∈ B, let h!( f ) be the trace of the endomorphism g �→ f g of the

A-module B. Show that h!( f ) is a polynomial of degree � n
d , where n is the degree

of f . Show that, for u ∈ A, h!(h∗(u)) = du.
(c) Suppose that K is algebraically closed. Show that, for x ∈ K and f ∈ B, the

scalar h!( f )(x) is the sum of f (y) for y ∈ K such that h(y) = x (counted with their
multiplicities as roots of h(Y) − x).

(d) Let f ∈ B. Show that there is a polynomial g ∈ A such that, for all x ∈ K,
the scalar g(x) is the product of all f (y) for y ∈ K such that h(y) = x (resp. g(x) =∑

i< j f (yi ) f (y j ), whereù y1, ..., yd are the roots of h(Y) − x).
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3.10 Chain Complexes

3.10.1 Graded Module

Definition A graded A-module is an A-module E. equipped with a sequence
(En)n∈Z of submodules such that E. =⊕En .

Let E. be a graded A-module. Equipping the module E. with the sequence E′
n

defined by E′
n = En−k gives a graded A-module E.(k) obtained by diminishing the

degrees by k.
The A-module E. is called positively (resp. negatively) graded if En = 0 for all

n < 0 (resp. > 0). It is said to be bounded below (resp. above) if there exists n0 ∈ Z

such that En = 0 for n < n0 (resp. n > n0); If it is bounded both below and above,
it is said to be bounded.

Let E. and F. be graded A-modules. A degree k morphism from E. to F. is a
homomorphism f from the module E. to the module F. such that f (En) is contained
in Fn+k for all n. A degree k morphism induces a homomorphism fn from En to
Fn+k for all n, and f �→ ( fn)n∈Z is a bijection of the set Homk(E., F.) of degree k
morphisms from E. to F. onto

∏
n∈Z

Hom(En, Fn+k). Clearly,

Homk(E., F.) = Hom0(E.(k), F.) = Hom0(E., F.(−k)) .

3.10.2 Chain Complexes

Definition A descending (resp. ascending) chain complex of A-modules is a
graded A-module equipped with a degree −1 (resp. +1) endomorphism d such that
d ◦ d = 0.

Descending chain complexes are usually written with lower indices and ascending
ones with upper ones. A descending (resp. ascending) complex is said to be right
bounded if it is bounded below (resp. above), left bounded if its bounded above (resp.
below). If E

.
is a chain complex, a descending complex can be obtained by setting

En = E−n . This remark enables us to reduce the study of ascending complexes to
that of complexes and conversely. In what follows, we study ascending complexes.

Let (E., d) be a descending chain complex. The endomorphism d is called the
differential of the complex. Set Zn(E.) = Ker dn and Bn(E.) = Im dn+1; the elements
de Zn(E.) are the degree n cycles, those of Bn(E.) the degree n boundaries, and
Bn(E.) ⊂ Zn(E.). Set Hn(E.) = Zn(E.)/Bn(E.).

Definition Hn(E.) is said to be the n-th homology module of E. .

We have the following exact sequences

0 → Zn → En → Bn−1 → 0
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0 → Bn → Zn → Hn → 0 .

The module E. is said to be acyclic in degree n if Hn(E.) = 0, in other words if

En+1
d→ En

d→ En−1 is an exact sequence.

3.10.3 Morphisms of Chain Complexes

Let E. and F. be complexes. A morphism of complexes from E. to F. is a degree 0
morphism f from the graded module E. to the graded module F. such that d ◦ f =
f ◦ d, where d denotes the differential of E. as well as that of F. If f : E. → F. is a
morphism of chain complexes, f induces a homomorphism from Zn(E.) to Zn(F.)
and from Bn(E.) to Bn(F.). Passing to the quotient, this gives a homomorphism
f∗ : Hn(E.) → Hn(F.).

More generally, a degree k morphism of complexes from E. to F. is a graded degree
k morphism f : E. → F. such that d ◦ f = (−1)k f ◦ d. This gives a homomorphism
f∗ : Hn(E.) → Hn+k(F.) for all n. The morphisms of chain complexes are the degree
0 morphisms.

The chain complex E.(k) is defined by equipping the graded module E.(k) with
the differential (−1)kd. The degree k morphisms of chain complexes from E. to F.
are the (degree 0) morphisms of chain complexes from E.(k) to F. .

3.10.4 Homotopic Morphisms

Let E. and F. be two chain complexes.

Definition The degree k morphisms f and g of complexes from E. to F. are said
to be homotopic if there is a graded degree k + 1 morphism s : E. → F. such that
g − f = d ◦ s + (−1)ks ◦ d.

Proposition If f and g are homotopic degree k morphisms from E. to F., then the
homomorphisms f∗ and g∗ from Hn(E.) to Hn+k(F.) are equal.

Proof For x ∈ Zn(E.), g(x) − f (x) = d(s(x)) + (−1)ks(d(x)) = d(s(x)) ∈
Bn+k(F.), and so, denoting the canonical homomorphism by χ, Zn → Hn ,
g∗(χ(x)) − f∗(χ(x)) = χ(d(s(x))) = 0.

Remark Set Homk(E., F.) to be the module of graded degree k morphisms from E.
to F., and Hom(E., F.) the graded module

⊕
k Homk(E., F.). The module underlying

Hom(E., F.) is a submodule of the module of module homomorphisms from E. to F.:
a module homomorphism h : E. → F. can be represented by a matrix (hn,p), where
hn,p is a homomorphism from En to Fp. h ∈ Hom(E., F.) if and only if the support
of the family (hn,p) is contained in a ‘ strip ‘parallel to the diagonal”, i.e. in some
set {(n, p) | a � p − n � b}.
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For f ∈ Homk(E., F.), set D( f ) = d ◦ f + (−1)k−1 f ◦ d. We check that
D(D( f )) = 0, and Hom(E., F.) equipped with the differential D is a chain com-
plex. Degree k cycles of this complex are degree k morphisms of complexes from
E. to F., and the k-th homology module of Hom(E., F.) is the module of homotopy
classes of degree k morphisms of complexes from E. to F. .

3.10.5

Proposition Let E., F., G. be chain complexes.
(a) The homotopy relation is an equivalence relation between degree k morphisms

of complexes from E. to F.;
(b) let f0 and f1 be degree p morphisms of complexes from E. to F., g0 and g1

degree q morphisms of complexes from F. to G.. If f1 is homotopic to f0 and g1

homotopic to g0, then g1 ◦ f1 is homotopic to g0 ◦ f0.

Proof (a) follows from the previous remark. We prove (b).
1. Suppose that g0 = g1 = g: if f1 − f0 = d ◦ s + (−1)ps ◦ d, then g ◦ f1 − g ◦

f0 = g ◦ d ◦ s + (−1)pg ◦ s ◦ d = (−1)qd ◦ g ◦ s + (−1)pg ◦ s ◦ d =
d ◦ s ′ + (−1)p+qs ′ ◦ d, with s ′ = (−1)qg ◦ s.

2. Next suppose that f0 = f1 = f : if g1 − g0 = d ◦ s + (−1)qs ◦ d, then g1 ◦
f − g0 ◦ f = d ◦ s ◦ f + (−1)qs ◦ d ◦ f = d ◦ s ◦ f + (−1)p+qs ◦ f ◦ d.

3. The general case follows from the previous ones. �

Definition A morphism of chain complexes f : E. → F. is a homotopy equivalence
if there is a morphism of chain complexes g : F. → E. such that g ◦ f and f ◦ g are
respectively homotopic to the identity of E. and F..

Two complexes E. and F. are said to be homotopy equivalent if there is a homo-
topy equivalence from E. to F. . The relation thus defined is an equivalence relation
between complexes.

3.10.6 Connecting Homomorphism

Let 0 → E.
f→ F.

g→ G. → 0 be a short exact sequence, where f and g are degree 0
morphisms of complexes. We next define for all n a homomorphism δ : Hn(G.) →
Hn−1(E.).

Let γ ∈ Hn(G.). Choose z ∈ Zn(G.) such that χ(z) = γ, where χ : Zn → Hn is a
canonical homomorphism. Choose y ∈ Fn such that g(y) = z; as d(y) ∈ Fn−1 and
g(d(y)) = 0, there is a unique x ∈ En−1 such that f (x) = d(y).

Since f (d(x)) = d(d(y)) = 0, d(x)=0 as f is injective. Set η=χ(x) ∈ Hn−1(E.).
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Proposition and Definition The element η is independent of the choices made. The
map δ : γ �→ η from Hn(G.) to Hn−1(E.) thus defined is a homomorphism called the
connecting homomorphism.

Proof (a) Independence from the choice of y: let y′ ∈ Fn such that g(y′) = z; then
y′ = y + f (u) for some u ∈ En . Then d(y′) = d(y) + d( f (u)), and d(y′) = f (x ′)
with x ′ = x + d(u); so χ(x ′) = χ(x).

(b) Independence from the choice of z: let z′ ∈ Zn(G.) be such that χ(z′) = χ(z) =
γ, then z′ is of the form z + d(w), with w ∈ Gn+1, and w is of the form g(v),
with v ∈ Fn+1. For y′ such that g(y′) = z′, we may choose y′ = y + d(v). Then
d(y′) = d(y) = f (x).

(c) Linearity of δ: follows immediately.

3.10.7 Diagramme du serpent

Proof (a) Exactness in Hn(F.): g∗ ◦ f∗ = (g ◦ f )∗ = 0. Let β ∈ Hn(F.) be such that
g∗(β) = 0. We show that β = f∗(α) for some α ∈ Hn(E.). Let y ∈ Zn(F) be such
that χ(y) = β. As g∗(β) = 0, g(y) = d(w) for some w ∈ Gn+1 and w = g(v) for
some v ∈ Fn+1 since g is surjective. Set y′ = y − d(v). As χ(y′) = χ(y) = β, and
g(y′) = 0, y′ = f (x) for some x ∈ En . As f (d(x)) = d(y′) = 0, d(x) = 0 since f
is injective, and x ∈ Zn(E.). Setting χ(x) = α, f (α) = β.

(b) δ ◦ g∗ = 0: if γ = g∗(β) with β ∈ Hn(F.), choose y1 ∈ Zn(F.) such that
χ(y1) = β. With the notation of 3.10.6, we may take z = g(y1) and y = y1. Then
d(y) = 0, and so δ(γ) = 0.

(c) Exactness in Hn(G.): let y ∈ Hn(G.) be such that δ(γ) = 0. We show that
γ = g∗(β) for some β ∈ Hn(F.). With the notation of 3.10.6, x = d(u) for some
u ∈ En . Set y′ = y − f (u); as d(y′) = 0, y′ ∈ Zn(F.), and g(y′) = g(y) = z; so
γ = g∗(χ(y′)).
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(d) f∗ ◦ δ = 0: with the notation of 3.10.6,

f∗(δ(γ)) = f∗(χ(x)) = χ( f (x)) = χ(d(y)) = 0 .

(e) Exactness in Hn−1(E.): let α ∈ Hn−1(E.) be such that f∗(α) = 0. Choose x ∈
Zn−1(E.) such that χ(x) = α. As f (x) ∈ Bn−1(F.), f (x) = d(y) for some y ∈ Fn .
Set g(y) = z. As d(z) = g(d(y)) = g( f (x)) = 0, z ∈ Zn(G.), and α = δ(γ) with
γ = χ(z). �

3.10.8 Mapping Cylinder

Let E. and F. be two chain complexes and f : E. → F. a morphism of chain com-
plexes. Set Mn = Fn ⊕ En−1 and let d : Mn → Mn−1 be the homomorphism defined
by the matrix (

d f
0 −d

)

.

We check that d ◦ d = 0 : Mn → Mn−2. The complex M. =⊕Mn thus constructed
is called the mapping cylinder of f .

Proposition With the above notation,
(a) there is a short exact sequence of complexes

0 → F.
u→ M.

v→ E.(1)→ 0 ,

where un : Fn → Mn and vn : Mn → En−1 are the canonical injection and projec-
tion;

(b) the connecting homomorphism δ : Hn−1(E.) → Hn−1(F.)of this exact sequence
is f∗.

Proof (a) is immediate; we show (b). Let γ ∈ Hn−1(E.) and choose z ∈ Zn−1(E.)

such that χ(z) = γ. For y ∈ Mn such that v(y) = z we may choose y =
(

0
z

)

.

Then d(y) =
(

f (z)
0

)

= u(x) with x = f (z), and by construction δ(γ) = χ(x) =
χ( f (z)) = f∗(γ). �
Corollary 3.11 There is an exact sequence

· · · → Hn(E.)
f∗→ Hn(F.)

u∗→ Hn(M.)
v∗→ Hn−1(E.)→· · ·

Corollary 3.12 Let a, b ∈ Z be such that a � b. Hn(M.) = 0 for a � n � b if and
only if f∗ : Hn(E.) → Hn(F.) is an isomorphism for a � n < b, surjective for n = b
and injective for n = a − 1.
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3.10.9 Resolutions

Definition Let M be an A-module. A left (right) resolution of M is a descending
positively graded chain complex L. (resp. ascending L

.
), acyclic in degrees �= 0 and

equipped with an isomorphism ι : H0(L.) → M (resp. ι : M → H0(L
.
)).

A left (resp. right) resolution of M gives an exact sequence

· · ·→ Ln → Ln−1 → · · · → L1 → L0 → M → 0

(resp. 0 → M � L0 → L1 → · · · → Ln → Ln+1 →· · · ).

We say that L. is a free resolution (resp. finite free) of M if L. is a left resolution
of M such that Ln is free (resp. finite free) for all n. Projective and flat resolutions
are defined likewise; however an injective resolution is a right resolution such that
Ln is injective for all n.

Proposition (a) All A-modules admit a free resolution.
(b) If A is a Noetherian ring, then all finitely generated A-modules admit a finite

free resolution.

Proof (a) (resp. (b)): by (3.4.6, Remark 2), there is a pair (L0, ε) where L0 is a
free (resp. finite free) module libre and ε : L0 → M a surjective morphism, and a
sequence of pairs ((Ln, dn))n�1 where all Ln are free (resp. finite free) modules
can be inductively constructed and so can homomorphisms dn : Ln → Ln−1 such
that Im d1 = Ker ε and Im dn = Ker dn−1 for n > 1 (Ker dn−1 is a finitely generated
submodule of Ln−1 in case (b)). �

Let L. and L′
. be two resolutions of M. A resolution morphism from L. to L′

. is
a morphism of chain complexes h : L. → L′

. such that ι′ ◦ h∗ = ι. More generally,
let f : M → M′ be an A-module homomorphism, L. a resolution of M and L′

. a
resolution of M′. A f -morphism from L. to L′

. is a morphism of chain complexes
h : L. → L′

. for which the diagram

H0(L.)
h∗� H0(L

′
.)

M

ι
� f � M′

ι′
�

commutes.

3.10.10 Projective Resolutions

Let M be an A-module. A projective resolution of M is a left resolution L. of M such
that Ln is a projective module for all n, or, equivalently, such that the module

⊕
Ln

is projective.
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A free resolution is projective, and so all modules admit a projective resolution.

Theorem Let M and M′ be two A-modules, L. and L′
. projective resolutions

of M and M′ respectively, and f : M → M′ a homomorphism. There exists a
f -morphism h : L. → L′

., unique up to homotopy.

This theorem is a particular case of the following proposition:

Proposition Let L. and E. be positively graded complexes. Suppose that L. is pro-
jective and E. acyclic in degrees �= 0. Then, for all homomorphisms f : H0(L.) →
H0(E.), there is a morphism of chain complexes h, unique up to homotopy, such that
f = h∗.

Proof (a) Existence. Construct by induction a sequence (hn)n∈N of homomorphisms
hn : Ln → En for which the diagrams

L0
h0 � E0

H0(L.)

ε
� f� H0(E.)

ε
�

Ln
hn � En

Ln−1

d
� hn−1� En−1

d
�

(n � 1)

commute. This is possible since L0 being projective and ε : E0 → H0(E.) being
surjective, we can complete the diagram

L0 E0

H0(L.)

ε � f� H0(E.)

ε�

to obtain a commutative one with h0 : L0 → E0; suppose that hn has been defined
such that dn ◦ hn = hn−1 ◦ dn . Then hn maps Zn(L.) to Zn(E.) and, as Ln+1 is pro-
jective and dn+1 : En+1 → Zn(E.) surjective, we can complete the diagram

Ln+1 En+1

Zn(L.)

dn+1 � hn� Zn(E.)

dn+1�

to obtain a commutative one with hn+1 : Ln+1 → En+1.
(b) Uniqueness up to homotopy. By difference, it suffices to show that, if h :

L. → E. is a morphism of chain complexes such that h∗ = 0 : H(L.) → H0(E.),
and by induction there is a sequence (sn)n∈N of homomorphisms sn : Ln → En+1

such that h0 = d1 ◦ s0 and hn = dn+1 ◦ sn + sn−1 ◦ dn for n � 1. Since h∗ = 0, the
homomorphism h0 maps L0 to B0(E.), and the diagram
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E1

L0
h0� B0(E.)

d1�

where L0 is projective and d1 surjective, can be completed to obtain a commutative
diagram with s0 : L0 → E1. Suppose that sn has been defined such that hn = dn+1 ◦
sn + sn−1 ◦ dn , and set sn+1 such that hn+1 = dn+2 ◦ sn+1 + sn ◦ dn+1, i.e. dn+2 ◦
sn+1 = hn+1 − sn ◦ dn+1. As dn+1 ◦ sn ◦ dn+1 = 0, hn+1 − sn ◦ dn+1 maps Ln+1 to
Zn+1(E.) = Im dn+2 and this homomorphism can be written dn+2 ◦ sn+1. �

Corollary Any two projective resolutions of an A-module M are homotopy equiva-
lent.

3.10.11 Injective Modules

Definition An A-module E is said to be injective if, for all injective A-module
homomorphisms f : M′ → M and all homomorphisms g : M′ → E, there is a homo-
morphism h : M → E making the diagram

M

M′
f �

g
� E

h
�

commutative.

In other words, E is injective if and only if the contravariant functor M �→
Hom(M, E) from the category A-Mod to itself transforms injective homomor-
phisms into surjective ones.

Proposition Let E be an A-module. The following conditions are equivalent:

(i) the module E is injective;
(ii) for all ideals I of A, and all homomorphisms f : I → E, there exists x ∈ E such

that, for all a ∈ I, f (a) = ax.

Proof (i) ⇒ (ii): follows readily by applying the definition of the canonical injection
I → A and by noting that Hom(A, E) = E.

(ii) ⇒ (i): let f : M′ → M be an injective homomorphism and g : M′ → E a
homomorphism. Let � be the set of submodules N of M equipped with a homomor-
phism h : N → E. Define an order on � by (N, h) � (N′, h′) if and only if N ⊂ N′
and h′|N = h. Equipped with this order, � is inductive. Indeed, if ((Nλ, hλ))λ∈� is a
totally ordered family of elements of �, then the pair (N, h), where N =⋃λ∈� Nλ

and h is obtained by gluing together all hλ, is an upper bound for the family. The set
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of upper bounds for (M′, g) in � is also inductive. Hence, by Zorn’s theorem, there is
a maximal upper bound (N, h) for (M′, g) in �. Assuming that (ii) holds, we show by
contradiction that, for such an element, N = M. Let x ∈ M − N, and I be the ideal
consisting of a ∈ A such that ax ∈ N. There exists y ∈ E such that, for all a ∈ I,
h(ax) = ay. The homomorphism h̄ : N ⊕ A → E defined by h̄(n, a) = h(n) + ay
can be factorized as

N ⊕ A

N′
χ �

h′
� E

h̄
�

where N′ = N + Ax and χ(n, a) = n + ax . The element (N′, h′) is a strict upper
bound for (N, h), which is impossible. �

Definition Suppose that A is an integral domain and E an A-module. An element
x ∈ E is said to be divisible if for all a ∈ A − {0}, there exists y ∈ E such that
ay = x . The module E is said to be divisible if all elements of E are divisible.

The above proposition has the following corollary:

Corollary Suppose that A is an integral domain.
(a) All injective A-modules are divisible.
(b) If A is a PID, all divisible modules are injective.

Proof Condition (ii) of the proposition always holds for the 0 ideal. As E is divisible
it also holds for every nonzero principal ideal.

(a) If the module E is injective, (ii) holds for all ideals, and hence in particular for
all principal ideals.

(b) If A is a PID, and (ii) holds for all principal ideals, it holds for all ideals. �

3.10.12

The results of this subsection will be needed in the following one.
Let ϕ : A → B be a ring homomorphism, and E an A-module. Set Ẽ = HomA

(B, E). Define a B-module structure on Ẽ by setting b f (x) = f (xb) for b, x ∈ B and
f ∈ Ẽ.

Proposition For all B-modules M,

HomB(M, Ẽ) = HomA(M, E) .

In other words, the functor E �→ Ẽ is the right adjoint of the scalar restriction functor.

More precisely, define α : Ẽ → E by α( f ) = f (1). The map α is A-linear, and so
α∗ : HomB(M, Ẽ) → HomA(M, E). For A-linear maps h : M → E, define h̃ : M →
Ẽ by h̃(x)(b) = h(bx), and define β : HomA(M, E) → HomB(M, Ẽ) by β(h) = h̃.
The maps α∗ and β are mutually inverses.
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Proof For h ∈ HomA(M, E), α∗(β(h))(x)=α∗(h̃)(x) = h̃(x)(1) = h(1.x) = h(x).
For u ∈ HomB(M, Ẽ), set v = α∗(u), i.e. v(x) = u(x)(1). As ṽ(x)(b) = v(bx) =
u(bx)(1) = bu(x)(1) = u(x)(1 · b) = u(x)(b), ṽ = u, i.e. β ◦ α∗ = 1. �

Corollary If E is an injective A-module, then Ẽ is an injective B-module.

Proof The functor M �→ HomB(M, Ẽ) = HomA(M, E) is the composition of the
scalar restriction functor M �→ M from B-Mod to A-Mod, which transforms
injections into injections, and of the functor M �→ HomA(M, E) which transforms
injections into surjections. �

3.10.13

Theorem Any module is isomorphic to a submodule of an injective module.

Proof (a) Suppose first that the ring A is principal. Let K be the field of fractions of
A, M an A-module, A(J) u→ A(I) → M a presentation of M, and ι : A(I) → K(I) the
canonical injection. Set E = Coker(ι ◦ u). The module E is divisible since it is the
quotient of K(I) which is divisible, and so E is injective, and M is isomorphic to a
submodule of E.

(b) Now let A be arbitrary. Let M be an A-module. As Z is a PID, there is a
Z-linear injection f from M to an injective Z-module E. Set M̃ = HomZ(A, M) and
Ẽ = HomZ(A, E), and let h : M → M̃ be the map defined by h(x)(a) = ax . The
maps h and f∗ : M̃ → Ẽ are A-linear injections, and so f∗h : M → Ẽ is an A-linear
injection and by (3.10.12, corollary), E is injective. �

3.10.14 Injective Resolutions

Let M be an A-module. An injective resolution of M is a right resolution E
.

of M
such that En is an injective module for all n.

Remark This does not imply the injectivity of the module E
.
: a direct sum of injective

modules is generally not injective. As can be checked, this is however the case when
the ring A is Noetherian.

Theorem (a) All A-modules admit an injective resolution.
(b) Let M be an A-module. Any two injective resolutions of M are homotopy

equivalent.
(c) Let M and M′ be two A-modules, E

.
and E′. injective resolutions of M and

M′ respectively, and f : M → M′ a homomorphism. Then there is a f -morphism
h : E

. → E′.. It is unique up to homotopy.
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Proof It is similar to those of (3.10.9, Proposition, a), (3.10.10, Corollary and The-
orem), by reversing the direction of the arrows.
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Chapter 4
Coverings

4.1 Spaces over B

4.1.1

Definition Let B be a topological space. A space over B is a topological space X
together with a continuous map π : X → B called projection.

If X is a space over B, a continuous section or simply a section of X is a continuous
map σ : B → X such that π ◦ σ = 1B. We say that σ passes through a point x ∈ X
if σ(π(x)) = x .

For all b ∈ B, a fiber of X at b, written X(b), is the subspace π−1(b) of X.
Let X and Y be spaces over B, π and π′ their projections. A B-morphism, or

simply a morphism from X to Y is a continuous map f : X → Y for which the
diagram

X
f � Y

B

� π
′π �

commutes. If f : X → Y is a B-morphism, the map f induces a map fb : X(b) →
Y(b) for all b ∈ B. Define a category B-Top by taking its objects to be the spaces
over B and its morphisms the B-morphisms.

Let X and Y be spaces over B, π and π′ their projections. The fiber product of X
and Y, written X×B Y, is the subspace of the topological space X× Y consisting
of pairs (x, y) such that π(x) = π′(y). The space X×B Y equipped with the map
(x, y) �→ π(x) is the product of X and Y in B-Top. For all b ∈ B, (X×B Y)(b) =
X(b)× Y(b).

The sum of X and Y in B-Top is the disjoint union X � Y equipped with the
projection inducing π on X and π′ on Y. So

(X � Y)(b) = X(b) � Y(b).
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4.1.2 Change of Basis

Let B and B′ be topological spaces, X a space over B and h : B′ → B a continuous
map. The topological space X′ = B′ ×B X, equipped with the first projection X′ →
B′, is a space over B′ written h∗(X) and called the space over B′ obtained from X by
a change of basis from B to B′ along h. The fibre of h∗(X) at a point b′ ∈ B′ can be
identified with the fibre of X at h(b′).

Let A be a subspace of B, and ι : A → B the canonical injection. The space ι∗(X)

can be identified with π−1(A), equipped with the projection onto A induced by π.
This space is written X|A.

4.1.3 Hausdorff Spaces over B

A space X over B is said to be Hausdorff over B if the diagonal �X = {(x, x) ∈
X× X} is closed in X×B X, i.e. if for all pairs (x, y) of distinct elements lying in
the same fibre of X, there are two neighbourhoods of x and y respectively, open in
X and disjoint.

Remark If X is a Hausdorff space over B, then the fibres of X are Hausdorff.
If B is Hausdorff, the conditions “X is Hausdorff over B” and “X is Hausdorff”

are equivalent.

4.1.4 Etale Spaces over B

Let X and Y be topological spaces. A continuous map f : X → Y is a local home-
omorphism if, for all x ∈ X, there is an open neighbourhood U of x such that f
induces a homeomorphism from U onto an open subset of Y.

A space X over B is said to be etale over B if the projection is a local homeomor-
phism.

Example (Implicit function theorem) Let X and Y be C1-manifolds, f : X → Y a
C1-map. If, for all x ∈ X, the tangent linear map

Tx f : Tx X → T f (x)Y

is an isomorphism, then f is a local homeomorphism.
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4.1.5 Proper Spaces

The related concept of a proper space over B corresponds to that of a quasi-compact
space.

Proposition and Definition Let X be a space over B. The following conditions are
equivalent:

(i) Every filter F on X whose image π∗F in B converges to a point b ∈ B, has a
cluster point x such that π(x) = b;

(ii) for all b ∈ B, and open subsets
(
Ui
)

i∈I of X satisfying

⋃

i∈I

Ui ⊃ X(b) ,

there is a finite subset J of I and a neighbourhood V of b such that

⋃

i∈J

Ui ⊃ π−1(V) ;

(iii) The fibres of X are quasi-compact and the map π is closed.

If these conditions hold, then X is proper over B.

Proof (i) ⇒ (iii). Let b ∈ B, ι the injection X(b) → X, and G a filter on X(b). Set
F = ι∗G , the filter π∗F is defined by b, and so F admits a cluster point x ∈ X(b).
Then x is a cluster point of G . Since this holds for all filters G , the space X(b) is
quasi-compact.

Let Y be a closed subset of X and b ∈ B a cluster point of π(Y). Set V b to be the
filter of neighbourhoods of b in B. For all U in V b, π−1(U) ∩ Y generated a filter F
on X. The filter π∗F converges to b, and so F admits a cluster point x ∈ X(b). Then
x is a cluster point of Y, and so x ∈ Y and b ∈ π(Y). Therefore, π(Y) is closed.

(iii) ⇒ (ii). Let b ∈ B, and (Ui )i∈I open subsets in X whose union cover X(b).
As X(b) is quasi-compact, there is a finite subset J of I such that

⋃
i∈J Ui ⊃ X(b).

Then Y = X−⋃
i∈J Ui is closed in X and does meet X(b), the set π(Y) is closed in

B and does not contain b, and V = B− π(Y) is an open neighbourhood of b with
the desired property.

(ii) ⇒ (i). Let F be a filter on X such that π∗F converges to b ∈ B.
Suppose that, for all x ∈ π−1(b) the filter F is incompatible with the filter of

neighbourhoods of x , i.e., there exists an open neighbourhood Ux of x and a subset
Ax ∈ F such that Ax ∩ Ux = ∅. The subsets Ux form an open cover of π−1(b). Let J
be a finite subset of X and V a neighbourhood of b such that

⋃
x∈J Ux ⊃ π−1(V). Set

A =⋂
x∈J Ax . Then π(A) ∈ π∗F and π(A) ∩ V = ∅; so π∗F does not converge

to b, contradicting assumption. �
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Corollary If X is proper over B then for all b ∈ B, all neighbourhoods X(b) in X
contain a subset π−1(V), where V is a neighbourhood of b in B.

Condition (ii) for I reduces to one element.

4.1.6

Proposition Let X be a Hausdorff space over B, where B is assumed to be locally
compact. Then X is proper over B if and only if the inverse image of every compact
subset of B is compact. If this is the case, then X is locally compact.

Proof Suppose first that X is proper over B. We first show that if B is compact, then
so is X. Let F be a filter on X. The filter π∗F admits a cluster point in B since B
is compact. Let G be a filter on B finer than π∗F and convergent. Then the filter
F ∧ π∗G admits a cluster point in X since π is proper, and so F admits a cluster
point.

In the general case, for any compact subset K of B, the space π−1(K) is proper
over K, and hence compact.

We now prove the converse. Let b ∈ B and K a compact neighbourhood of b.
Every filter F on X such that π∗F converges to b induces a compact filter on
π−1(K), and thus admits a cluster point. The projection of this value must be b since
B is Hausdorff. So π is proper.

X is locally compact. Let x ∈ X and set b = π(x). Let K be a compact neigh-
bourhood of b. Then π−1(K) is a compact neighbourhood of x . �

4.1.7 Fibres

Let X be a space over B. A trivialization of X is an isomorphism τ : X → B× F
of spaces over B, where F is a topological space, the product B× F being equipped
with its projection onto the first factor. We say that X is a trivial fibre bundle if it
admits a trivialization. It is a a locally trivial fibre bundle or simply a fibre bundle
if for all b ∈ B, there is a neighbourhood U of b in B such that X|U is a trivial fibre
bundle, or equivalently, if there exists an open cover

(
Ui
)

i∈I of B such that, for all
i , X|Ui is a trivial fibre bundle. It is a fibre bundle with fibre F if all the fibres are
homeomorphic to F.
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Remark Let X be a fibre bundle over B. If B is connected, then the fibres of X are
mutually homeomorphic. Indeed, the equivalences classes of the equivalence relation
“X(b) is homeomorphic to X(b′)” between elements b, b′ ∈ B are open; hence there
is a unique class.

4.1.8 Example. The Möbius Strip

Consider the set X of pairs (L, x) where L ⊂ R
2 is a 1-dimensional vector subspace

and x ∈ L. Let π be the projection (L, x) �→ L of X onto the set B of 1-dimensional
vector subspaces. Identify B with R/π.Z, and X with the quotient of R

2 by the
equivalence relation identifying (θ, ρ) with (θ + kπ, (−1)kρ) for k ∈ Z. Equip X
and B with the topologies defined by these identifications, and X with the projection
π. Then X is a fibre space with fibre R over B.

This fibre space is not trivial. Indeed a continuous section σ of X is given by
a continuous function h : θ �→ ρ from R to R satisfying h(θ + kπ) = (−1)kh(θ).
Given two continuous sections σ1 and σ2 represented by two functions h1 and h2, g =
h2 − h1 vanishes at some point: indeed, if g(θ) > 0 the g(θ + π) < 0 and conversely.
Hence there exists b ∈ B such that σ2(b) = σ1(b).

The set X can be identified with the set of affine lines in R
2 by assigning to (L, x)

the line D perpendicular to L at x .
This set can in turn be identified with the set of 1-dimensional vector spaces that

are not vertical in R
3, by assigning to every affine line D in the horizontal plane H

with side 1 the 1-dimensional vector space � perpendicular to the plane containing
O and D. In other words, X may be considered a projective plane P2

R without a
point. All these identifications are compatibles with the natural topologies.

On the other hand, the space X can be topologically embedded in R
3 by

(θ, ρ) �→
⎛

⎝
cos 2θ(1+ u(ρ) cos θ)
sin 2θ(1+ u(ρ) cos θ)

u(ρ) sin θ

⎞

⎠

where u(ρ) = 1
π

Arctg ρ varies from − 1
2 to 1

2 as ρ varies from −∞ to +∞.
The closure M of the image of X in R

3 is the image of R× [− 1
2 , 1

2

]
under

(θ, s) �→
⎛

⎝
cos 2θ(1+ s cos θ)
sin 2θ(1+ s cos θ)

s sin θ .

⎞

⎠

It is the Möbius strip, which may be regarded as the (non trivial) fibre bundle over
the circle S1 with fibre

[− 1
2 , 1

2

]
.
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4.1.9 Fibre Bundle over a Segment

Theorem Every fibre bundle over a compact interval [a, b] of R is trivial.

The proof of this theorem will be given in 4.1.11.

Remark This result holds for any interval in R (4.1, Exercise 12), not just a compact
one.

4.1.10 Partition Subordinate to a Cover

Lemma and Definition Let X be a compact metric space and U = (Ui )i∈I an open
cover of X. There exists μ > 0 such that every ball of radius < μ is contained in
some Ui . Every such μ is called a mesh of U .

Proof The distance ρi (x) from x to X − Ui (and∞ if Ui = X ) for i ∈ I and x ∈ X
is a Lipschitz function with constant 1 or identically+∞. So is ρ(x) = supi (ρi (x));
it is >0 at all points since (Ui ) is a cover of X. A lower bound μ > 0 of the function
ρ is a mesh of U . �
Proposition and Definition Let [a, b] be a compact interval in R and U = (Ui )i∈I

an open cover of [a, b]. Then there is an increasing finite sequence (t0, ..., tn) with
t0 = a, tn = b such that

(∀k ∈ {1, ..., n}) (∃i ∈ I) [tk−1, tk] ⊂ Ui .

The intervals [tk−1, tk] are said to form a partition subordinate to U .
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Proof Choose n such that b−a
n are less than a mesh of U and set tk = a + k b−a

n .

4.1.11 Gluing Trivializations

Lemma 4.1 Let E and F be two topological spaces, f a map from E to F and (Ak)

a finite closed cover of E. If f |Ak continuous for all k, then f is continuous.

Proof of Lemma 4.1. Let G be a closed subset of F. For all k, f −1(G) ∩ Ak =
( f |Ak )

−1(G) is closed in Ak , hence in E, and f −1(G) =⋃
k( f −1(G) ∩ Ak) is

closed. �

Lemma 4.2 Let a, b, c ∈ R with a < b < c, and X a space over [a, c]. If X|[a,b]
and X|[b,c] are trivial fibre bundles, then so is X over [a, c].
Proof Let τ1 : X|[a,b] → [a, b] × F1 and τ2 : X|[b,c] → [b, c] × F2 be trivializa-
tions. Define a homeomorphism γ : F1 → F2 by (b, γ(y)) = τ2(τ

−1
1 (b, y)). Set-

ting τ (x) = (Id× γ)(τ1(x)) if x ∈ X|[a,b] and τ2(x) if x ∈ X|[b,c] gives a bijection
X → [a, c] × F2. Applying Lemma 4.1 to τ and τ−1 shows that τ is a homeomor-
phism, hence a trivialization. �

Proof of Theorem 4.1.9. Let X be a fibre bundle over [a, b], and U = (Ui ) an open
cover of [a, b] such that X|Ui is trivial for all i . Let (t0, ..., tn) be such that [tk−1, tk]
form a partition subordinate to U . Applying Lemma 4.2, induction on k shows that
X|[a,tk ] is trivial for k = 1, ..., n. For k = n, X is a trivial fibre bundle. �

Exercises 4.1. (Spaces over B)
1.—Let B be a topological space.

(a) Show that if X is a Hausdorff (resp. quasi-compact) space, then B× X is
Hausdorff (resp. proper) over B.

(b) Let X be a space over B, Hausdorff (resp. etale, resp. proper) over B, B′ a
topological space and f : B′ → B a continuous map. Show that f ∗(X) is Hausdorff
(resp. etale, resp. proper) over B′.

(c) Let X and Y be spaces Hausdorff (resp. etale, resp. proper) over B. Show that
X×B Y is Hausdorff (resp. etale, resp. proper) over B.

(d) Let X be a space over B and (Ui ) an open cover of B. Show that, if X|Ui is
Hausdorff (resp. etale, resp. proper) over Ui for all i , then the space X is Hausdorff
(resp. etale, resp. proper) over B. Does the same hold for a locally finite closed cover?

2.—Let X be a space over B.

(a) If X is proper over B, The fibre X(b) is quasi-compact for all b ∈ B.

(b) If X is quasi-compact, then X is proper over B.



186 4 Coverings

(c) If B is quasi-compact, then X is proper over B if and only if X is quasi-compact.

(d) If X is proper over B then for any quasi-compact K ⊂ B, the space π−1(K) is
quasi-compact.

3.—Let X be a space proper over B.

(a) Every closed subset of X is proper over B.

(b) Let Y be a space over B and f : X → Y a B-morphism. Then f (X) is proper
over B and, if Y is Hausdorff over B, f (X) is closed in Y. If f is bijective and Y
Hausdorff over B, then the map f is a homeomorphism.

(c) Let f : X → R be a continuous map. If the projection π : X → B is surjective,
then the function g : B → R defined by g(b) = supx∈π−1(b) f (x) is upper semicon-
tinuous. If moreover the projection π : X → B is an open map, then g is continuous.

4.—A map f : X → Y is said to be proper (resp. Hausdorff) if X, equipped with f ,
is proper (resp. Hausdorff) over Y. Let f : X → Y and g : Y → Z be continuous
maps.

(a) If f and g are proper, then so is g ◦ f .

(b) If g ◦ f is proper and g is Hausdorff, then f is proper.

5.—Let B be a topological space. If K is a compact set, then all closed subsets
of B× K are proper over B. Conversely, let X be a proper space over B. Show
that if X is completely regular (2.6, Exercise 2), then there is a compact set K and
a homeomorphism over B from X onto a closed subset of B× K (take the Čech
compactification of X [2.6, Exercise 2]).

6.—Let B be a topological space, X a locally compact space and Y a subspace of
B× X. Show that the following conditions are equivalent:

(i) Y is proper over B;

(ii) Y is closed in B× X and, for all b ∈ B, there is a compact subset K ⊂ X and
a neighbourhood V of b in B such that Y|V ⊂ V× K.

7.—Let X be a space over B, and π its projection. Assume that X and B are metrizable
(or simply that X is metrizable and that all points of B admit a countable fundamental
system of neighbourhoods). The aim is to show that the following conditions are
equivalent:

(i) X is proper over B;

(ii) every sequence (xn) in X such that the sequence (π(xn)) converges to a point
b ∈ B admits an a cluster point in X(b).

(a) Show that (i) ⇒ (ii).

(b) Choose a distance on X. Show that the following conditions are equivalent:

(α) every Cauchy filter of F over X such that π∗F converges to a point b ∈ B
converges to a point of X(b);
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(β) every Cauchy sequence (xn) in X such that the sequence (π(xn)) converges
to a point b ∈ B converges to a point of X(b).

If these conditions hold, then X will be said to be B-complete.

(c) X will be said to be pre-proper over B if, for all b ∈ B and all ε > 0, there is a
neighbourhood V of b such that π−1(V) has a finite cover consisting of sets having
diameter �ε. Show that if X is pre-proper over B, then every ultrafilter U over X
such that π∗U converges in B is a Cauchy filter. Deduce that, if X is pre-proper over
B and B-complete, then X is proper over B.

(d) Show that if X is not pre-proper over B, then there is a sequence (xn) in X
and a > 0 such that d(x p, xq) � a for p �= q, and the sequence (π(xn)) converges
B. Conclude.

8.—Let X and Y be topological spaces and f : X → Y a continuous map. The map
f is said to be closed if, for any closed subset A of X, the image f (A) is closed in
Y.

(a) Show that f is closed if and only if for all y ∈ Y, every neighbourhood of
f −1(y) contains a set f −1(V), where V is a neighbourhood of y in Y.

(b) Show that every proper map is closed. Give an example of a non-proper closed
map and an example of a non-proper map with compact fibres.

(c) Let X be a space over B. Show that X is proper over B if and only if for every
space B′ and continuous map h : B′ → B, the projection of h∗(X) onto B′ is closed.
(To show X is proper over B, the previous exercise may be used and B′ taken to
be N ∪ {∞} if X and B are metrizable; in the general case, B′ may be taken to be
X � {∞}, equipped with a topology inducing the discrete topology on X and with a
carefully chosen filter of neighbourhoods of ∞.)

9.—Let X be a topological space, (Ai ) subspaces of X, and f :⊔Ai → X the map
inducing the canonical injection on each Ai . Show that, f is proper if and only if
(Ai ) is a locally finite family of closed sets. When is f etale? open?

10. (Descent)—Let B and B′ be topological spaces and f : B′ → B a continuous
map. Let X be a space over B and set X′ = f ∗(X). Assume that f is open and
surjective, or else proper and surjective. Show that, if X′ is proper (resp. etale, resp.
Hausdorff) over B′, then the space X is proper (resp. etale, resp. Hausdorff) over B.
Show that, if π′ : X′ → B′ is an open map, then the same holds for π : X → B.

11. (Classical fibrations)—Consider R
n (resp. C

n) equipped with the Euclidean
(resp. Hermitian) norm. Define the following spaces:

• Sn−1 (resp. S2n−1) is the unit sphere of R
n (resp. C

n);
• On (resp. Un) is the space of linear isometries of R

n (resp. C
n);

• SOn (resp. SUn) is the subspace of On (resp. Un) of maps having determinant+1;
• for p � n, the Stiefel manifold Vp(R

n) (resp. Vp(C
n)) is the space of orthonormal

families (x1, . . . , x p) of vectors of R
n (resp. C

n), the Grassmannian Gp(R
n) (resp.

Gp(C
n)) is the set of p-dimensional subspaces of R

n (resp. C
n);
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• for integers p1, p2, p3 such that p1 � p2 � p3 � n, Dp1,p2,p3 is the set of families
(F1, F2, F3) of subspaces of R

n (resp. C
n), where Fi has dimension pi , such that

F1 ⊂ F2 ⊂ F3 .

Consider the surjective map ψ : Vp(R
n) → Gp(R

n) which assigns to every family
the subspace it generates. Equip Gp(R

n) with the quotient topology of Vp(R
n) and

Dp1,p2,p3(R
n) with the topology induced by that of Gp1 × Gp2 × Gp3 .

Show that the map ψ is a fibration. What is its fibre? Same questions for the
following maps:

• (x1, . . . , x p3) �→ (F1, F2, F3) from Vp3 to Dp1 p2 p3 , where Fi is the subspace gen-
erated by x1, . . . , x pi ;

• (F1, F2, F3) �→ Fi from Dp1,p2,p3 to Gpi for i = 1, 2, 3;
• for q � p, (x1, . . . , x p) �→ (x1, . . . , xq) from Vp(R

n) (resp. Vp(C
n)) onto Vq(R

n)

(resp. Vq(C
n)).

This in particular gives a fibration of Vp(R
n) over Sn−1 with fibre Vp−1(R

n−1),
of Vp(R

n) over Vp−1(R
n) with fibre Sn−p, of On over Sn−1 with fibre On−1, of Un

over S2n−1 with fibre Un−1, of S2n−1 over Pn−1(C) = G1(C
n) with fibre U1 ≈ S1.

More particularly, since P1(C) ≈ S2 (Riemann sphere), this gives a fibration of S3

over S2 with fibre S1, called the Hopf fibration. Show that S3 is not homeomorphic
to S2 × S1.

12.—(a) Let U = (Ui ) be an open cover of R. Show that there is an increasing
family (tk)k∈Z of points of R such that for all k, the interval [tk−1, tk] is contained in
some Ui and such that the union of these intervals is R.

(b) Show that a fibre bundle over a not necessarily compact interval in R is trivial.

4.2 Locally Connected Spaces

4.2.1

Definition A topological space X is said to be locally connected if all points of X
admit a fundamental system of connected neighbourhoods.

This definition is equivalent to the following condition:

(CCOO) Every connected component of open subsets of X is open in X.

Indeed, suppose that X is locally connected. Let U be an open subset of X and
U′ a connected component of U. For all x ∈ U′, the set U contains a connected
neighbourhood V of x . Then U′ ⊃ V, and so U′ is a neighbourhood of x , proving
(CCOO). Conversely, suppose that condition (CCOO) holds. Then, for all x ∈ X
and all open neighbourhoods U of X, the connected component of U containing x is
open, and so is a neighbourhood of x contained in U. �
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4.2.2 Examples

The space R
n is locally connected. Every topological manifold, i.e. every space

locally homeomorphic to R
n , is locally connected.

A finite union of locally connected closed sets is locally connected. More gener-
ally:

Proposition Let X be a topological space and Y a proper space over X. If Y is
locally connected and the projection π : Y → X is surjective, then the space X is
locally connected.

Proof Let x ∈ X and U be a neighbourhood of x in X; set F = π−1(x). The intersec-
tion of the union W of connected components of π−1(U) and of F is a neighbourhood
of F. By 4.1.5, corollary, it contains a set π−1(V), where V is a neighbourhood of x .
Then π(W) contains V; so it is a connected neighbourhood of x in U. �

4.2.3 Counterexamples

A totally discontinuous space is locally connected only if it is discrete. Thus Q is
not locally connected. Non-finite profinite sets are not locally connected. A compact
space is locally connected only if it has finitely many connected components.

In T
2 = R

2/Z
2, the image of a line with irrational slope in R

2 is an arc-connected
set, but is not locally connected.

Let m = (mn) be a sequence of numbers tending to infinity, such that mn divides
mn+1 for all n. The solenoid Sm = lim←−R/Z.mn is a connected compact space, but is
neither locally connected, nor arc-connected.

We next give three examples of connected compact subsets of R
2, but not locally

connected.

Examples (1) Comb Space. It is the set

K1 = ([0, 1] × {0}) ∪ (A × [0, 1]) ,

where A = {0} ∪ {
1
n

}
n∈N∗.

(2) Topologists’ sine curve. It is the set

K2 =
{
(x, y) ∈ R

2 | x ∈ ]0, 1], y = sin
1

x

} ∪ {0} × [−1, 1] .

(3) Spiral around circle. It is the set

K3 =
{(

1+ 1

t

)
.eit

}
t∈[1,∞[ ∪ S1 ⊂ C ,
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where S1 is the unit circle.

Note that K1 is arc-connected, whereas K2 and K3 are not.

4.2.4

Theorem Every connected and locally connected compact metrizable space is arc-
connected.

To prove this theorem, we introduce the notion of uniformly locally connected
metric space. Then the theorem follows from Propositions 4.2.6 and 4.2.8 given
below.

4.2.5

Definition Let X be a metric space and B(x, r) the closed ball in X centered at x with
radius r . Then X is uniformly locally connected if for all ε > 0, there exists α > 0
such that, for all x ∈ X, X contains a connected set L with B(x,α) ⊂ L ⊂ B(x, ε).

Or equivalently, there is a function h : [0, a[→ R, continuous at 0 with h(0) = 0
and a > 0, such that, for all x, x ′ ∈ X with d(x, x ′) < a, there is a connected set
L having diameter �h(d(x, x ′)) containing x and x ′. Such a function is called a
modulus of local connectivity (an allusion to uniform continuity and to the notion of
the modulus of continuity).

4.2.6

Proposition Every locally connected metric space is uniformly locally connected.

Proof Let ε > 0. All x ∈ X have a connected neighbourhood L contained in B
(
x, ε

2

)
,

and hence having diameter �ε; For such L, there is open subset U � L containing
x . Hence there is an open cover U = (Ui ) of X such that each Ui is contained in a
connected set having diameter �ε. Let μ be a mesh of U (4.1.10) and α < μ. Then

(∀x ∈ X) (∃i) B(x,α) ⊂ Ui ⊂ Li ⊂ B(x, ε) .

�
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4.2.7 Embeddings in a Banach Space

The above Proposition 4.2.8 is easier to prove for a closed subset of a Banach space.
The next lemma shows that this does not lessen its generality.

Lemma For every metric space X, there is an isometric embedding ι of X in a
Banach space E.

Proof Suppose first that E is the vector space of bounded continuous functions on
X, equipped with the norm ‖ f ‖ = supx∈X | f (x)|. If X has finite diameter, then we
may take ι(x) = hx , where hx (x ′) = d(x, x ′). In the general case, assuming X �= ∅,
ι(x) = hx − hx0 for some x0 ∈ X. In all cases, this gives an isometric embedding of
X in E.

4.2.8

Proposition Every complete uniformly locally connected metric space is arc-
connected.

Proof Thanks to Lemma 4.2.7, X may be assumed to be in some Banach space E, in
which it is closed since it is complete. Let x, y ∈ X. Set t0,0 = 0, t0,1 = 1, x0,0 = x ,
x0,1 = y.

Let (εn) be a sequence of reals >0 such that
∑

εn < ∞, and for all n let
αn > 0 such that any two points at a distance �αn are in the same connected
set having diameter �εn . For all n, we inductively construct a finite sequence
(tn,0, ..., tn,k(n)) in I = [0, 1] with 0 = tn,0 < tn,1 < · · · < tn,k(n) = 1, and a finite
sequence (xn,0, ..., xn,k(n)) in X in such a way that, setting σn = {tn,i }0�i�k(n):

• ‖xn,i−xn,i−1‖ � αn for i = 1, ..., k(n), n � 1.
• σn+1 ⊃ σn

• xn+1, j = xn,i if tn+1, j = tn,i

• ‖xn+1, j−xn,i−1‖� εn and ‖xn+1, j−xn,i‖� εn if tn,i−1 � tn+1, j � tn,i .

tn,i and xn,i being defined for 0 � i � k(n), the points xn,i−1 and xn,i are in a con-
nected set Ln,i having diameter �εn . There is a finite sequence (xn+1,i,s)0�s�k(n+1,i)

with xn+1,i,0 = xn,i−1, xn+1,i,k(n+1,i) = xn,i , ‖xn+1,i,s − xn+1,i,s−1‖ � αn . Choose an
arbitrary sequence (tn+1,i,s) with

tn,i−1 = tn+1,i,0 < tn+1,i,1 < · · · < tn+1,i,k(n+1,i) = tn,i .

Set
σn+1,i = {tn+1,i,s}0�s�k(n+1,i) ,

σn+1 =
⋃

σn+1,i = {tn+1,0, ..., tn+1,k(n+1)}
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with 0 = tn+1,0 < · · · < tn+1,k(n+1) = 1, k(n + 1) =∑
i k(n + 1, i). This ends the

inductive construction.
Then define an affine function γn : I → E over [tn,i−1, tn,i ] by γn(tn,i ) = xn,i . So

γn(0) = x , γn(1) = y, ‖γn+1(t)− γn(t)‖ � εn and (∀t ∈ I) d(γn(t), X) � αn .
Therefore the functions γn form a Cauchy sequence in the space C(I, E), converg-

ing to a path in X from x to y. �

Exercises 4.2. (Locally connected spaces)
1.—Let X be a topological space. Show that there is a surjective continuous map h :
[0, 1] → X if and only if X is compact, metrizable, connected and locally connected.

2.—A space X is locally connected (resp. openly locally connected) at a point x0 if x0

admits a fundamental system of connected (resp. open connected) neighbourhoods.
The aim here is to construct an example of a locally connected space at a point but
not openly locally connected at that point.

Let Ip,q be the segment in R
2 having as endpoints

(
1
p , 0

)
and

(
1

p+1 , 1
(p+1)pq

)
. Set

X = [0, 1] × {0} ∪
⋃

p�1,q�1

Ip,q

and x0 = (0, 0).

(a) Show that X is locally connected at x0.
(b) Show that [0, 1] × {0} is in every open connected subset of X containing x0.
(c) Show that a locally connected space (i.e. locally connected at all points) is

openly locally connected at all points.

3.—(a) Given two metric spaces X and Y, a map f : X → Y and an increasing
continuous function h : [0, a[→ R+, with h(0) = 0 and a > 0, f is said to admit h
as a modulus of continuity if d( f (x), f (x ′)) � h(d(x, x ′)) for all pairs (x, x ′) such
that d(x, x ′) < a.

Show that a map admits a modulus of continuity if and only if it is uniformly
continuous.

(b) Given a metric space X and a function h as above, X is said to admit h as
a modulus of local connectivity if, for all (x, x ′) such that d(x, x ′) < a, there is a
connected subset L of X having diameter �h(d(x, x ′)) and containing x and x ′.

Show that a metric space admits a modulus of local connectivity if and only if it
is uniformly locally connected.

4.—(a) Let X be a connected compact metric space. Assuming that the diameter D
of X and a modulus of local connectivity of X are known, is it possible to determine
a modulus of continuity of a path from x to x ′ in X for r � D, for all (x, x ′) such
that d(x, x ′) = r?

(b) Let X be a metric space. Assume there is a surjective continuous map g :
[0, 1] → X. Then g is uniformly continuous and X compact and locally connected,
and so uniformly locally connected.
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If a modulus of continuity of g is known, is it possible to find a modulus of local
connectivity of X?

5.—Show that none of the three spaces given in 4.2.3 as examples of compact non
locally connected subsets of R

2 are homeomorphic to subspaces of the other two.
Is there a surjective continuous map from one of these compact subsets to any of

the others?

6.—Show that the solenoid Sm defined in 4.2.3 can be embedded in R
3, but not in

R
2.

4.3 Coverings

4.3.1

Definition Let B be a topological space. A covering of B is a fibre bundle with
discrete fibres over B.

In other words, a covering of B is a space X together with a map π : X → B,
satisfying the following condition:

For all b ∈ B, there is a neighbourhood U of b in B, a discrete space F and a
homeomorphism ϕ from π−1(U) onto U × F such that the diagram

π−1(U) � U× F

U

�

�

commutates.

If B is locally connected, then the condition can be restated as follows:

There is an open connected cover (Ui )i∈I of B such that, for all i and all con-
nected components V of π−1(Ui ), the projection π induces a homeomorphism from
V onto U.

A covering X of B is trivial if it is isomorphic to a covering B× F, where F is
a discrete space; an isomorphism ϕ : X → B× F is called a trivialization of X. Let
f : B′ → B be a continuous map and X a covering of B. Then (B′, f ) trivializes X
if the covering X′ = f ∗(X) of B′ is trivial. In particular, if A is a subspace of B, A
is said to trivialize X if X|A is a trivial covering of A.

The coverings of B form a full subcategory CovB of the category of spaces
over B.
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4.3.2

A covering X of B is etale and Hausdorff over B. Indeed these conditions are local
in B and if F is discrete, then U× F is etale and Hausdorff over U.

Therefore, if s and s ′ are two continuous sections of X, the set of b ∈ B such that
s(b) = s ′(b) is clopen1 in B.

The disjoint union and the fibre product of two coverings of B are coverings of B.
If X is a covering and f : B′ → B a continuous map, then the space f ∗(X)

obtained from X by a change of basis from B to B′ along f is a covering of B′.
Let X be a covering of B and b ∈ B. The degree of X in b, written degb(X), is the

cardinal of the fibre X(b).2 The function b �→ degb(X) is locally constant: indeed, if
XU ≈ U × F, then degb(X) = Card F for all b ∈ U. The image of X in B is clopen.

If B �= ∅ and if degb(X) does not depend on b (for example if B is connected),
then deg(X) or degB(X) denote its value.

The covering X is finite of B if, for all b ∈ B, degb(X) is finite.

4.3.3

Proposition Suppose that B is connected and the space X etale and Hausdorff over
B. X is a trivial covering of B if and only if, for all x ∈ X, there is a continuous
section s : B → X such that s(π(x)) = x.

Proof Suppose that such continuous sections exist. Let � be the set of sections
B → X, equipped with the discrete topology, and define the map ε : B× � → X by
ε(b, s) = s(b). The map ε is obviously continuous, it is etale since B× � and X are
etale over B, it is surjective by assumption. It is injective. Indeed, if s(b) = s ′(b′),
then b = b′ = π(s(b)), and the set of points where s and s ′ agree is closed since X
is Hausdorff over B, closed since π is locally injective, nonempty since it contains
b, and so is equal to B since B is connected. Hence ε, being etale and bijective, is a
homeomorphism. The converse is obvious. �

4.3.4 Examples

(1) Let X be clopen in a space B. Then X, equipped with inclusion, is a covering
of B.

(2) Let S1 = {z ∈ C, |z| = 1}. Then R together with the map ϕ : t �→ eit is a
covering of S1. Indeed ϕ induces a homeomorphism from R/2πZ to S1, and R

equipped with the quotient map is a covering of R/2πZ as will be seen in (4.3.14).

1Both open and closed, Translator.
2We speak of an n-fold covering when degb(X) = n, Translator.
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Similarly, C equipped with z �→ ez is a covering of C
∗.

(3) The space S1 together with z �→ zd is a d-fold covering of S1. Similarly, C
∗

together with z �→ zd is a covering of C
∗.

(4) The action of R
∗ identifies the set Pn

R of 1-dimensional vector subspaces of
R

n+1 with the quotient of R
n+1 − {0}, while that of {+1,−1} identifies it with the unit

sphere Sn of R
n+1. Equip Pn

R with the quotient topology (both quotient topologies
agree). The space Sn , equipped with the quotient map, is a 2-fold covering of Pn

R.
This covering is non trivial for n > 1, since Sn is connected.

(5) More generally, let Gp(R
n) be the set of p-dimensional vector subspaces of R

n

(Grassmannian), and G̃p(R
n) the set of oriented p-dimensional vector subspaces.

Equip Gp(R
n) (resp. G̃p(R

n)) with the topology obtained by considering it as the
quotient of the Stiefel manifold Vp(R

n) ⊂ R
np consisting of the orthonormal families

(x1, ..., x p) in R
n with respect to the action of the group Op (resp. SOp) (4.1, Exercise

11). Then G̃p(R
n) is a 2-fold covering of Gp(R

n), non trivial if 1 � p � n − 1 .

(6) Let B be a topological space and b �→ Pb a continuous map from B to the
vector space of polynomials of C[Z] of degree �d. Assume that, for all b ∈ B, the
polynomial Pb admits d distinct roots in C. Then the subspace X of B× C consisting
of pairs (b, z) such that Pb(z) = 0, equipped with the projection (b, z) �→ b, is a d-
fold covering of B.

Indeed, let E be the vector space of polynomials of degree �d, H the subspace of
E × C consisting of pairs (P, z) such that P(z) = 0, and W the set of P ∈ E having
d distinct roots. Changing bases, it becomes a matter of showing that H|W is a d-
fold covering of W. Let P0 ∈ W; the roots of P0 are simple and, by the implicit
function theorem, for each root zi of P0, there is neighbourhood Ui of P0 in E and
a neighbourhood Vi of zi in C such that Gi = H ∩ (Ui × Vi ) is the graph of a
continuous map from Ui to Vi . The sets Vi may be assumed to be disjoint, and the
sets Ui to be equal to a neighbourhood U of P0. Then H|U contains the union of the
disjoint sets Gi . Since every P ∈ U has at least d roots, H|U =⋃

Gi , and so H|U is a
trivial d-fold covering of U. It follows that W is open in E and that H|W is a d-fold
covering of W.

4.3.5

Proposition Let B be a topological space. Let X and Y be coverings of B, f and g
B-morphisms from Y to X. The set of y ∈ Y such that f (y) = g(y) is clopen in Y.
In particular, if Y is connected and if there exists y ∈ Y such that f (y) = g(y), then
f = g.

Proof The set of points where f and g agree is closed since X is Hausdorff over B,
and it is opens since the projection X �→ B is locally injective. �
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Corollary With the same notation, if B is connected and there exists b ∈ B such that
fb = gb, then f = g.

Proof Each connected component of Y contains a point of Y(b).

4.3.6

Proposition Let B be a locally connected space, X and Y be coverings of B, and
f : Y → X a morphism. Then Y together with f is a covering of X.

Lemma Assume B is connected, and that X and Y are trivial coverings of B and
f : Y → X a covering map. Then Y together with f is a covering of X, trivial on
each connected component of X.

The proposition follows from the lemma by covering B with open and connected
sets trivializing both X and Y.

Proof of Lemma We may assume that X = B× F and Y = B× G, with F and G
are discrete. Then f is of the form (b, u) �→ (b,α(b, u)), where α : B× G → F is
a continuous map. Since B is connected and F discrete, α(b, u) does not depend
on b, and so α(b, u) = ϕ(u), where ϕ is a map from G to F. Then, for t ∈ F,
f −1(B× {t}) = B× ϕ−1(t), and this space is a trivial covering of B× {t}. �
Corollary 4.1 Let f : Y → X be a covering map. Then f (Y) is clopen in X. In
particular, if X is connected and Y �= ∅, then f is surjective.

Corollary 4.2 Let f : Y → X be a covering map. If B is connected and there exists
b ∈ B such that fb : Y(b) → X(b) is bijective, then f is an isomorphism.

4.3.7

Let B be a locally connected space.

Proposition Assume that B is connected; let X be a covering of B. If there exists
b ∈ B such that there is a continuous section passing through all x ∈ X(b), then X
is trivial.

Proof Let � be the set of continuous sections of X equipped with the discrete
topology. The map ε : B× � → X defined by ε(b, s) = s(b) is a covering map
and (B× �, ε) is a covering of X (4.3.6). We show that ε is a isomorphism: for
this it suffices that, for every connected component Y of X, degY(B× �, ε) = 1.
Let Y be a connected component of X. It is a covering of B, and its projection
�(Y) in B is clopen and so equal to B; in particular Y ∩ Xb �= ∅: for y ∈ Y ∩ Xb,
degy(B× �, ε) = degY(B× �, ε) > 0. If s and s ′ are two continuous sections X
passing through y, then s = s ′ by 4.3.5, and so degY(B× �, ε) = 1. �
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4.3.8 Subcoverings, Quotient Coverings

Proposition Let B be a locally connected space and X a covering of B.

(a) A subset Y of X is a covering of B if and only if Y is clopen in X.
(b) If R be an equivalence relation on X, then X/R is a covering of B if and only if

the graph of R is clopen in X×B X.

Proof

(a) Suppose that Y ⊆ X is a covering of B. Let U be a connected open subset
of B trivializing X and Y. Let W be a connected component of Y|U. Then
W is contained in a connected component V of X|U. As π|W : W → U and
π|V : V → U are bijective, W = V. In other words, Y|U is the union of the
connected components of X|U, and the same holds for (X− Y)|U. Hence Y|U
and (X − Y)|U are open in X|U. Since B can be covered with connected open
subsets trivializing X and Y, Y and (X− Y) must be open.
Conversely, let Y be clopen in X, U an open connected subset in B trivializing
X, and ϕ : X|U → U × F a trivialization. The sets ϕ−1(U × {t}) for t ∈ F are
the connected components of X|U. The space Y|U is clopen in X|U, and so
Y|U = ϕ−1(U× G), for some subset G of F. Hence Y|U is a trivial covering of
U, and since all points of B admit a connected open neighbourhood trivializing
X, the space Y is a covering of B.

(b) Suppose R is as stated and that X/R is a covering of B. Let χ : X → X/R be the
canonical morphism. The graph of R is the set of points of X ×B X, where χ ◦ pr1
and χ ◦ pr2 : X×B X → X/R agree. It is therefore clopen by Proposition 4.3.5.
Conversely, let U be a connected open subset in B trivializing X. Then X/R|U =
(X|U)/R, and the topologies agree since X|U is a saturated set for R open in X.
Let ϕ : X|U → U × F be a trivialization and let R′ be the equivalence relation
on U × F obtained by transferring via ϕ the relation induced by R onto X|U. The
graph of R′ is clopen in

(U× F)×U (U× F) = U× F × F ,

and so can be written as U × G, where G is a subset of F × F. The set G is the
graph of an equivalence relation on F since, if x ∈ U, then

(x, t) ∼R′ (x, t ′) ⇐⇒ (t, t ′) ∈ G .

The canonical bijection (U× F)/R′ → U × (F/G) is a homeomorphism since
the canonical map U × F → U× (F/G) is open. Hence (X/R)|U is isomorphic
to U × (F/G), and so is a trivial covering of U. Since B can be covered by
a family of nonempty connected open sets trivializing X, the space X/R is a
covering of B. �
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4.3.9 Examples

For f ∈ C[z] considered a map C → C, let f k be f ◦ · · · ◦ f , where f appears k
times. Then z is said to be a periodic point with period k if f k(z) = z and zi =
f i (z) �= z for 0 < i < k. In this case, the set {z0, ..., zk−1} is a k-cycle of f .

Fix d � 2 and k � 1. Let E denote the vector space of polynomials of degree �d,
B the set of f ∈ E for which the equation f k(z)− z = 0 has dk distinct roots and
set X = {( f, z) ∈ B× C | f k(z) = z}. In other words, X is the set of ( f, z) ∈ B× C

such that z is periodic point of f with period dividing k.
The set B is open and dense in E since it is the set of f of degree d for which the

discriminant of f k(z)− z is nonzero. Equipped with the projection π : ( f, z) �→ f ,
the space X is a covering of B (4.3.4, Example 5).

The set Y of ( f, z), for z with period k, is clopen in X. Indeed, it is clearly open;
its complement is the set of ( f, z), where z is periodic with period dividing some k ′
strictly dividing k. Hence it is the union of subcoverings, and so also open.

The set Z of ( f, ζ), where f ∈ B and ζ is a k-cycle of f may be considered a
covering of B. Indeed Z is the quotient of Y by the equivalence relation identifying
( f, z) and ( f, f i (z)) for 0 � i � k − 1. The graph of this relation is the union of
the images of the morphisms ( f, z) �→ ( f, z, f i (z)) from Y to Y×B Y. Hence it is
clopen and Proposition 4.3.8. can be applied.

4.3.10

Definition A space X is simply connected if X �= ∅ and every covering of X is
trivial.3

All simply connected spaces are connected. Indeed, if Y is clopen in X and
different from ∅ and X, then Y is a non trivial covering of X.

The space X is called locally simply connected if all points of X admit a funda-
mental system of simply connected neighbourhoods.

Examples (1) All intervals of R are simply connected. For compact intervals this
follows from (4.1.9); otherwise see 4.1, Exercise 12, or 4.3.17, Corollary 4.2.

(2) More generally, in a topological vector space, every nonempty convex subset
is simply connected (4.3.17, Corollary 4.2).

3The reader should be aware of possible conflicts with the usual meaning of the term “simply”, for
example: I do not assume X simply connected, but simply to be connected.
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4.3.11

If X is a covering of B and Y a covering of X, then the space Y, equipped with the
composite function onto B, is not necessarily a covering of B (4.3, Exercise 7). This
holds in most cases met with in practice. The next proposition provides a criterion
for this to be so.

If Y is a space over B and b ∈ B, Y is said to be a b-neighbourhood covering if
there is neighbourhood V of b in B such that Y|V is a covering of V.

Proposition Let B be a locally connected space, X a covering of B and Y a covering
of X. Let b ∈ B and U a connected neighbourhood of b trivializing X. Let (Ut )t∈F

denote the family of connected components of X|U, and for open subsets V of U,
set Vt = Ut ∩ X|V. Then, Y is a b-neighbourhood covering of B if and only if there
is an open neighbourhood V of b in U such that, for all t ∈ F, the open subset Vt

trivializes Y.

Proof Suppose that Vt trivializes Y for all t ∈ F. Then Y|V is the disjoint union of
the trivial coverings f −1(Vt ) of V, and so is a trivial covering of V. The converse
follows by (4.3.1).

Corollary 4.3 All coverings of a finite cover of B are coverings of B.

Corollary 4.4 If B is locally simply connected, all coverings of a covering of B are
coverings of B.

4.3.12

Proposition A space X over B is a finite covering of B if and only if the projection
π : X → B is etale, proper and Hausdorff.

Proof Suppose the projection is etale, proper and Hausdorff, and let b ∈ B. The fibre
X(b) is discrete since the projection is etale; it is compact since it is is proper and
Hausdorff, and hence finite. Let X(b) = {x1, . . . , xd}. There are open neighbour-
hoods U1, …, Ud of x1, …, xd such that π induces respectively a homeomorphism
from Ui onto the open subsets Vi of B. Since π is Hausdorff, the sets Ui may be
assumed to be disjoint. Set

V =
⋂

Vi − π
(

X −
⋃

Ui

)
.

Then π−1(V) = U′
1 ∪ · · · ∪ U′

d , where U′
i = Ui ∩ π−1(V), and X|V is isomorphic to

V× {1, . . . , d}. Conversely, “etale”, “proper” and “Hausdorff” are local properties
of B, and hence obviously hold for a finite covering. �
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4.3.13

Theorem Let X be a topological space and G a group acting on X such that, for all
g ∈ G, the map x �→ gx is continuous. We assume the following:

(L) For all x ∈ X, there is a neighbourhood U of x such that, for all g �= e in G,
gU ∩ U = ∅.

Then X is a covering of X/G.

Proof Let U be open in X and ∀g �= e, gU ∩ U = ∅. For g �= g′,

gU ∩ g′U = ∅, as g′ = gh

with h �= e and gU ∩ g′U = g(U ∩ hU) = ∅. So GU is a disjoint union of all gU
for g ∈ G. The canonical map χ : X → X/G is open since the saturation of all open
subsets of X, i.e. the union of the orbits, is open. In particular V = χ(U) is open in
X/G. The assumption gU ∩ U = ∅ implies that χ induces a bijection from U onto V.
This bijection is continuous and open, and hence a homeomorphism. For all g ∈ G,
the restriction of χ to gU is the composition of g−1 : gU → U and χ : U → V. So it
is a homeomorphism from gU onto V. This gives a partition of χ−1(V) = GU into
open subsets homeomorphic to V under a projection. �

Remark The assumptions of the theorem hold if X is a Hausdorff space and G a
finite group acting continuously and freely on X, i.e.

(∀g ∈ G), x �→ gx is continuous and (∀x ∈ X) (∀g �= e) g · x �= x .

4.3.14

Corollary Let G be a topological group and H a discrete subgroup of G. Then G is
a covering of G/H.

Proof There is a neighbourhood W of e in G such that W ∩ H = {e}, and a neigh-
bourhood U of e in G such that U−1 · U ⊂ W. Then Uh ∩ U = ∅ for h �= e in H,
and for all x ∈ G, xUh ∩ xU = ∅. Hence the theorem can be applied to the right
action of H on G. �

4.3.15

Theorem Let B be a topological space, ρ the map (t, b) �→ (0, b) from
[0, 1] × B to [0, 1] × B, and X a covering of [0, 1] × B. Then there is a unique
covering isomorphism ϕ : X → ρ∗(X) inducing the identity over {0} × B.
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Proof Suppose first that X is trivial. We may then assume that X = [0, 1] × B× F,
where F is discrete. So ρ∗(X) = X, and 1X is the desired isomorphism. If ϕ is another
isomorphism with the required property, then ϕ is of the form

(t, b, x) �→ (t, b, u(t, b, x))

where u : [0, 1] × B× F → F is continuous. For fixed b and x , t �→ u(t, b, x) is a
constant continuous map from [0, 1] to F since [0, 1] is connected and F is discrete,
so that u(t, b, x) = u(0, b, x) = x . Hence ϕ = 1X. �

Lemma 4.3 Letα,β, γ ∈ R be such thatα � β � γ, and X a covering of [α, γ] × B
such that X1 = X|[α,β]×B and X2 = X|[β,γ]×B are trivial. Then X is trivial.

Proof of Lemma 4.3 Let τ1 : X1 → [α,β] × B× F and τ2 : X2 → [β, γ] × B× G
be trivializations. Let θ the homeomorphism from B× F onto B× G induced by
τ2 ◦ τ−1

1 over {β} × B, and

θ∗ = 1[β,γ] × θ : [β, γ] × B× F → [β, γ] × B× G .

Then τ ′2 = θ−1∗ ◦ τ2 : X2 → [β, γ] × B× F is a trivialization agreeing with τ1 over
{β} × B. The trivializations τ1 and τ ′2 can be glued together to give a continuous
bijection τ : X → [α, γ] × B× F, which is continuous. So is its inverse by (4.1.11,
Lemma 4.4). Hence τ is a trivialization of X. �

Lemma 4.4 Keeping the notation of the theorem, for all b ∈ B, there is a neigh-
bourhood U of b in B such that X|[0,1]×U is trivial.

Proof of Lemma 4.4 For b ∈ B, [0, 1] × {b} can be covered by a finite family of open
subsets Ji × Ui of [0, 1] × B, where Ji is open in [0, 1] and Ui a neighbourhood of
b. Set U =⋂

Ui . By Proposition 4.1.10, there is an increasing sequence (t0, . . . , tn)
with

t0 = 0, tn = 1 and (∀k ∈ {1, . . . , n}) (∃i) [tk−1, tk] ⊂ Ji .

Then X|[tk−1,tk ]×U is trivial for all k ∈ {1, . . . , n}. Using Lemma 4.3, it follows by
induction that X|[0,tk ]×U is trivial; for k = n, this means that X|[0,1]×U is trivial. �

Proof of Theorem (general case) By Lemma 4.4, there is an open cover (Ui ) of B
such that X|[0,1]×Ui is trivial for all i . Then, for all i , there is an isomorphism ϕi :
X|[0,1]×Ui → ρ∗(X|[0,1]×Ui ) inducing the identity over {0} × Ui , and by uniqueness
in the trivial case, ϕi and ϕ j agree over [0, 1] × Ui ∩ U j . The maps ϕi can be glued
together to give an isomorphism ϕ with the desired property. Its uniqueness follows
from that of the maps ϕi . �
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4.3.16

Let X and Y be topological spaces. Two continuous maps f0 and f1 from X to Y
are said to be homotopic if there is a continuous map F : [0, 1] × X → Y such that
F(0, x) = f0(x) and F(1, x) = f1(x) for all x ∈ X. Then the relation � defined by
f0 � f1 is an equivalence relation on the set C(X, Y) of continuous maps from X
to Y (for transitivity, use 4.1.11, Lemma 4.3). The topological spaces and homotopy
classes of continuous maps form the quotient category Homotop of Top.

A continuous map f : X → Y is a called a homotopy equivalence if the homo-
topy class of f is an isomorphism in Homotop, i.e. if there is a continuous map
g : Y → X such that g ◦ f � 1X and f ◦ g � 1Y. If there is a homotopy equivalence
X → Y X and Y are said to be homotopy equivalent, or to have the same homotopy
type.

A space X is said to be contractible if it is homotopy equivalent to a point, i.e. if
X �= ∅ and 1X is homotopic to a constant map.

Let X be a topological space and A a subset of X. A retraction from X onto A is
a map r : X → A such that r(x) = x for x ∈ A. If there is a continuous retraction
from X onto A, A is said to be a retract of X (this requires A to be closed if X is
Hausdorff).

A continuous retraction r : X → A is called a deformation retraction if ι ◦ r :
X → X, where ι : A → X is the canonical injection, is homotopic to 1X. If there is
a deformation retraction X → A, A is a deformation retract of X. This implies that
X and A are homotopy equivalent.

4.3.17

Theorem 4.3.15 admits the following corollaries:

Corollary 4.5 Let B and B′ be topological spaces, X a covering of B, f and
g continuous maps from B′ to B. If f and g are homotopic, then the coverings
f ∗(X) and g∗(X) of B′ are isomorphic.

Proof Let h : [0, 1] × B′ → B be a homotopy from f to g, r the injection
b′ �→ (1, b′) from B′ to [0, 1] × B′ and ρ the map (t, b′) �→ (0, b′) from [0, 1] × B′
to itself. Then

f = h ◦ ρ ◦ r and g = h ◦ r, and ρ∗(h∗(X)) ≈ h∗(X)

by the theorem; thus f ∗(X) ≈ g∗(X). �

Corollary 4.6 Every contractible space is simply connected.
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Remark In Theorem 4.3.15, assuming the paracompactness of B, the existence (but
not uniqueness) of ϕ generalizes to fibre spaces with arbitrary fibre. The proof is
different. Assuming the paracompactness of B′, Corollary 4.5 generalizes likewise.
All fibre spaces over a contractible paracompact space are trivial.

4.3.18 Coverings of Products

Proposition Let X and Y be topological spaces. Assume Y is connected and locally
connected. Let E be a covering of X× Y. If E|{x}×Y is trivial for all x ∈ X and if
there exists y0 ∈ Y such that E|X×{y0} is trivial, then E is trivial.

Lemma Let X and Y be topological spaces. Assume Y is connected and locally
connected. Let E be a covering of X× Y, and σ a section of E, which is not assumed
to be continuous. If σ|{x}×Y is continuous for all x ∈ X and if there exists y0 ∈ Y
such that σ|X×{y0} is continuous, then σ is continuous.

Proof of Lemma Let τ : E|U×V → U × V× F be the trivialization with open U ⊂
X and connected, open V ⊂ Y. For (x, y) ∈ U × V, we may write τ (σ(x, y)) =
(x, y, s(x, y)). This defines a function s : U× V → F continuous at y, and hence
independent from y since V is connected and F discrete. Hence, if σ is continuous
(resp. non continuous) at (x, y) ∈ U× V, then it is continuous (resp. non continuous)
at (x, y′) for all y′ ∈ V. If x �→ σ(x, y) is continuous on U for some y ∈ V, then σ
is continuous on U× V.

It follows that, for each x ∈ X, the set of y such that σ is continuous at (x, y) is
clopen in Y, and contains y0. As Y is connected, this set is the whole of Y. �

Proof of Proposition Let τ0 : E|X×{y0} → X× {y0} × F be a trivialization. For t ∈ F
and x ∈ X, there is a unique continuous section σt,x of E|{x}×Y passing through
τ−1

0 (x, y0, t). For each t , the section σt : (x, y) �→ σt,x (y) satisfies the assumptions
of the lemma, and so is continuous. The map α : (x, y, t) �→ σt (x, y) is a covering
map.

The morphism α is bijective. Indeed, for z ∈ E(x, y), there is a unique section σz

of E|{x}×Y passing through z. Then τ (σz(x, y0)) is of the form (x, y0, tz) and α−1(z)
is reduced to (x, y, tz).

Hence, α is a covering isomorphism X× Y× F → E. �

4.3.19 Product of Simply Connected Spaces

Corollary Let X and Y be two simply connected spaces, at least one of which is
locally connected. Then X× Y is simply connected.
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Exercises 4.3. (Coverings)
1.—Show that through a change of basis the covering G̃p(R

n) → Gp(R
n) (4.3.4,

Example 5) is induced by the covering of SN → PN(R) for sufficiently large N.

2.—Let X and Y be topological spaces, and f : Y → X a proper map. Consider the
transition functor f ∗ from the category CovX of coverings of X to CovY.

(a) Show that, if f is surjective with connected fibres, then the functor f ∗ is fully
faithful.

(b) Deduce that, if f is surjective with connected fibres and Y simply connected,
X is simply connected.

(c) Show that, if the fibres of f are simply connected, then the functor f ∗ is an
equivalence of categories. Deduce that, with this assumption, if X is simply con-
nected, then so is Y.

3.—Let X be a topological space, A and B two open (or two closed) subsets of X
such that A ∪ B = X and A ∩ B �= 0 is connected.

(a) Show that any covering E of X such that E|A and E|B are trivial is trivial.

(b) Deduce that if A and B are simply connected, so is X.

(c) Show that the sphere Sn is simply connected for n � 2.

4.—Show that the Stiefel manifolds Vp(R
n) (4.1, Exercise 11) are simply con-

nected for p � n − 2. Deduce that so are the oriented Grassmannians G̃p(R
n)

(4.3, Exercise 1).

5.—Let � be a functor from the category of sets and bijections into itself, B a locally
connected space and X a covering of B. Define the structure of a B-covering on the
set �B(X) =

⊔

b∈B

�(X(b)). Study the properties of this action.

6.—Set Cn to be the circle of diameter
[
(0, 0),

(
1
n , 0

)]
in R

2, and

B =
⋃

n∈N∗
Cn .

(a) Show that B is compact.

(b) Set B+ = B ∩ (R× R+) and B− = B ∩ (R× R−). Show that B+ and B− are
simply connected (they are contractible).

(c) Find a covering En of B such that En|Cn is not trivial.

(d) Show that the disjoint union E of all En is a covering of B× N
∗, which is itself

a trivial covering of B, but is not a covering of B.
Show that nonetheless E|B+ and E|B− are trivial coverings.
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7.—Let B and B′ be topological spaces. Describe the maps f : B′ → B for which a
space X over B is a covering of B when f ∗X is a covering of B′.
8.—Consider the non locally connected space N = N ∪ {∞}.

(a) Show that the subspace N× N− {(∞, 0)} of N× N is also a trivial covering
of N.

(b) Find a clopen subset in N× N which is not a covering of N.

9.—Let B be a not necessarily locally connected topological space. Define Rig to
be the category of what are called rigid coverings of B as follows. An object of
Rig is a covering X of B together with sets Ui forming an open cover of B and
with trivializations τi X|Ui → Ui × Fi , i ∈ I, satisfying the condition below. Over
Ui, j = Ui ∩ U j , the map τ j ◦ τ−1

i is of the form (b, y) �→ (b, γi, j (b)(y)), where γi, j

is a map from Ui, j to the set Si, j = IsomEns(Fi , F j ). The required condition is:

(lc) For all (i, j), the map γi, j : Ui, j → Si, j is locally constant.

(a) Note that this condition is automatically satisfied if B is locally connected.
Give an example with B compact but not locally connected where it is is not satisfied.

Given two objects X = (X, (Ui , τi )i∈I) and X′ = (X′, (U j , τ j ) j∈I′) ofRig, define
HomRig(X, X′) as the set of covering morphisms h : X → X′ such that, for all

(i, j) ∈ I× I′ the map ηi, j : Ui ∩ U′
j → IsomEns(Fi , F′j ) expressing h is locally

constant.

(b) Show that, if B is locally connected, then the forgetful functor Rig→ CovB

is an equivalence of categories. Give examples where it is not fully faithfully, or
essentially surjective.

10.—Let � be the set of (z1, ..., zd) ∈ C
d , with distinct zi .

(a) Show that � is connected.

(b) Denote by Pd the set of monic polynomials zd + ad−1zd−1 + · · · + a0 of
degree d, and B the set of P ∈ Pd with d distinct roots. Define π : � → B by
π(z1, ..., zd) =∏

(z − zi ).
Show that � together with π is a d!-fold covering of B and is not trivial.

(c) Denote by X the set of (P, z) such that P ∈ B and P(z) = 0. Define � : X →
B by �(P, z) = P and ω : � → X by ω(z1, ..., zd) = (π(z1, ..., zd), z1). Show that
(�,ω) is a non trivial covering of X and that (X,�) is a non trivial covering of B.

11. (A proof of d’Alembert’s theorem.)—Let f ∈ C[z] be a polynomial of degree d
and F a primitive of f (i.e. a polynomial such that F′ = f ).

(a) Show that F : C → C is a proper map.

(b) Assume that f does not vanish at any point. Show that F is a d + 1-fold
covering. Given that C is simply connected, show that d = 0.
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4.4 Universal Coverings

4.4.1

Let (B, b0) be a pointed space, i.e. a topological B with a distinguished point b0 ∈ B
called a basepoint. A pointed covering of (B, b0) is a covering E of B with a point
t0 ∈ E(b0).

Definition Let (B, b0) be a pointed space. If the functor X �→ X(b0) from the cat-
egory of coverings of B to the category of sets is representable, then a pair (E, t0)
representing this functor is called a pointed universal covering of (B, b0).

In other words, (E, t0) is a pointed universal covering of (B, b0) if and only if for
all coverings X of B and all x ∈ X(b0), there is a unique B-morphism f : E → X
such that f (t0) = x .

A universal pointed covering of (B, b0) is an initial object (2, Exercise 2) in the
category of pointed coverings of (X, x0).

Two universal pointed coverings of (B, b0) are uniquely isomorphic.

4.4.2

Let (B, b0) be a pointed locally connected space.

Proposition A pointed covering (E, t0) of (B, b0) is universal if and only if E is
connected and trivializes all coverings of B.

Proof

(a) If (E, t0) is universal, then E is connected.
Let F be clopen in E and t0 ∈ F. Define f and g from E to B× {0, 1} by f (t) =
(π(t), 0) for all t ∈ E and g(t) = (π(t), 1) for t /∈ F and g(t) = (π(t), 0) for
t ∈ F. Then f (t0) = g(t0); so f = g by uniqueness of the universal property;
hence F = E. Therefore E is connected.

(b) If (E, t0) is universal, then E trivializes every covering of B.
Let X be a covering of B. We show that E ×B X is trivial. For this it suffices
(4.3.7) to show that for x ∈ X(b0), there is a continuous section E → E ×B X
passing through (t0, x). By the universal property of E, there is a B-morphism
f : E → X such that f (t0) = x . Then t �→ (t, f (t)) is the desired section.

(c) Converse.
Let X be a covering of B and x ∈ X(b0). There is a continuous section
E → E ×B X passing through (t0, x) since E trivializes X; it is unique since
E is connected. A unique B-morphism f : E → X such that f (t0) = x corre-
sponds to it. �
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Remark The assumption that B is locally connected was only needed to prove
“necessity”. “Sufficiency” holds without this assumption.

4.4.3

Let (B, b0) be a pointed locally connected space.

Corollary Let (E, t0) be a universal pointed covering of (B, b0), b ∈ B and t ∈ E(b).
Then (E, t) is a universal pointed covering of (B, b).

Indeed, the characterization given in Proposition 4.4.2 does not involve basepoints.
(Not that the assumption t ∈ E(b) only implies that b and b0 belong to the same
connected component.)

A covering E of B is said to be a universal covering of B if there are b ∈ B and
t ∈ E(b) such that (E, t) is a universal pointed covering of (B, b). This holds for all
(b, t) with t ∈ E(b).

If E is a universal covering of B, the image B′ of E in B is a connected component
of B, and E a universal covering of B′.

If B is connected, then two universal coverings of B are isomorphic, but not
uniquely. Worse, there is no natural way of choosing an isomorphism, and so the
universal coverings of B cannot be mutually identified, nor is it possible to speak of
“the universal covering of B”.

4.4.4

Proposition Every simply connected covering is universal.

Proof Let E be a simply connected covering of B. Then E is connected and every
covering of E is trivial, and so E trivializes every covering of B, and E is universal
by 4.4.2.

Remark Let B be a connected space; if B admits a simply connected covering, then
every universal covering of B is simply connected. There are spaces B with universal
coverings but without any simply connected one (4.4, Exercise 2).

4.4.5

Theorem Every connected, simply connected space has a simply connected
covering.
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The proof requires the notion of product covering of an infinite family of coverings.
For an example of locally connected space without any universal covering, see

4.4, Exercise 3.

4.4.6 Product Covering

Let B be a totally connected space and (Xλ)λ∈� a family of coverings of B. If � is
finite, then the fibre product X of Xλ is a covering of B. But this is not always the
case when � is infinite; then X may not in general be locally connected nor discrete
since its fibres are infinite products of discrete spaces.

Proposition If there is an open cover of B trivializing all Xλ, then the set X can be
equipped with a unique topology T , finer than the product topology, turning X into
a cover of B. The cover thus obtained is a product of Xλ in the category of coverings
of B.

Proof

(a) Suppose first that B is connected and all Xλ are trivial. For all λ ∈ �, assume
Xλ = B× Fλ. Set F =∏

λ Fλ. Let T0 be the product topology on B×∏
λ Fλ

(which is not generally locally connected), and T the product topology of the
topology on B and of the discrete topology on F. The topology T is finer than
T0 and turns X into a covering of B.
We show that (X,T ) is a product of Xλ in CovB. For this, it suffices to show
that, if Y is a covering of B and for all λ, fλ is a morphism from Y to Xλ, then the
map f from Y to X defined by fλ is continuous from Y to (X,T ). If necessary
by restricting to an open connected subset of B trivializing Y, we may assume
that Y = B× G, where G is discrete. Then, B being connected and Fλ discrete,
fλ : (b, g) �→ (b, hλ(g)) for some map hλ from G to Fλ. The map h : G → F
defined by hλ is continuous since G is discrete. Hence f : (b, g) �→ (b, h(g)) is
continuous, which shows that X is the product of the Xλ in CovB.
Let T ′ be another topology finer than T0 and turning X into a covering of
B. The projection (X,T ′) → Xλ is continuous for all λ, and so the identity
(X,T ′) → (X,T ) is continuous. It is a bijective covering morphism, hence an
isomorphism, and T ′ = T . This proves the proposition in case (a).

(b) In the general case, let (Ui ) be open connected sets covering B and trivializing all
Xλ. For all i , let Ti be the topology on the product covering Xi = X|Ui of Xλ|Ui .
By uniqueness in (a), for all (i, j) the topologies Ti and T j agree over each
connected component of Ui, j . The following lemma shows that Ti and T j agree
over Ui, j , then that the Ti can be glued together to give the desired topology T .

Gluing Lemma Let B be a topological space and X a set with a map π : X → B. Let
(Ui ) be an open cover of B. Set Xi = π−1(Ui ) and for each i let Ti be a topology on
X making πi = π|Xi continuous. Assume that Ti and T j induce the same topology on
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Xi ∩ X j for all i and j . Then there is a unique topology T on X making π continuous
and inducing Ti on Xi for all i .

Proof Let T be the topology on X whose open sets are the subsets V of X such
that for all i , V ∩ Xi is open with respect to Ti . Then π is continuous with respect to
T . We show that T |Ui = Ti for all i . It readily follows that Ti is finer than T |Ui .
Let W be an open subset in Xi for Ti . For all j , W ∩ X j is open in Xi j = Xi ∩ X j

with respect to Ti , hence with respect to T j . Since π j is continuous with respect to
T j , Xi j is open in X j with respect to T j , and so W ∩ X j is open with respect to T j .
Therefore W is open with respect to T , and Ti = T |Ui . If T ′ is any other topology
making π continuous and inducing the Ti , it readily follows that T ′ is coarser than
T . Let V be an open subset of W with respect to T . Then V ∩ Xi is open in Xi with
respect to T ′, and so V ∩ Xi is open in X with respect to T ′ and V =⋃

(V ∩ Xi )

is open with respect to T ′. Hence T = T ′. �

4.4.7

Cardinality Lemma Let B be a topological space, � an open basis for B having
infinite cardinality ,ש and X a connected etale Hausdorff space over B. Then (∀b ∈ B)

Card X(b) � .ש

Proof The open sets in � may be assumed to be connected without changing .ש A
finite sequence (U0, . . . , Un) of open connected sets in � such that Ui−1 ∩ Ui �= ∅

for i = 1, . . . , n will be called a chain in B. If (U0, . . . , Un) is a chain in B, a
finite sequence (V0, . . . , Vn) of open sets in X will be called a chain in X over
(U0, . . . , Un) if π induces a homeomorphism from Vi onto Ui for i ∈ {0, . . . , n} and
π(Vi−1 ∩ Vi ) = Ui−1 ∩ Ui for i ∈ {1, . . . , n}. If (V0, . . . , Vn) and (V′

0, . . . , V′
n) are

two chains over the same chain (U0, . . . , Un) of B, and if V0 ∩ V′
0 �= ∅, then these

two chains are equal. Indeed, writing si for the section Ui → Vi and s ′i for the section
Ui → V′

i , induction shows that si and s ′i agree at least at one point of Ui , and so are
equal.

If there is a chain U in B such that V is a chain over U , V will be said to be a
chain in X. For x, x ′ ∈ X, let Cx (resp. Cx,x ′ ) be the set of chains (V0, . . . , Vn) of X
such that x ∈ V0 (resp. x ∈ V0 and x ′ ∈ Vn). The cardinality of the set of chains of B
is ,ש� and over each chain of B there is at most one chain in Cx , and so Card Cx � .ש

The relation Cx,x ′ �= ∅, where x, x ′ ∈ X is an equivalence relation. Indeed, if

(V0, . . . , Vn) ∈ Cx,x ′ and (V′
0, . . . , V′

n) ∈ Cx ′,x ′′ ,

writing W for the connected component of x ′ in Vn ∩ V′
0,

(V0, . . . , Vn, W, V′
0, . . . , V′

n) ∈ Cx ′,x ′′ ;
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reflexivity and symmetry are immediate. The equivalence classes are open. Hence,
since X is connected, all points are equivalent. Let b ∈ B and x0 ∈ X. As the restric-
tion of π to the last open set of a chain in X is injective, for x ∈ X(b), Cx0,x form a
disjoint family of nonempty subsets of Cx0 , and so Card X(b) � .ש �

Proof of Theorem 4.4.5 Let (B, b) be a pointed space. If (X, x) and (Y, y) are
pointed connected coverings of (B, b), (Y, y) will be said to dominate (X, x) if there
is a pointed covering morphism from (Y, y) to (X, x). Such a morphism is unique
by (4.3.5). Hence, if (X, x) and (Y, y) mutually dominate one other, then they are
isomorphic.

If (E, t) is a pointed connected covering of (B, b) dominating all others, then it is
a universal covering by Definition (4.4.1). If B is moreover locally simply connected,
then E is simply connected. Indeed, if (Y, y) is a pointed connected covering of (E, t),
then Y is a covering of B by (4.3.11, Corollary 4.6), and so (E, t) dominates (Y, y)

and the projection Y → E is an isomorphism. Hence every connected covering of E
is trivial, and every sum of connected coverings is trivial.

Let B be a connected, locally simply connected space. Choose a point b ∈ B, an
open basis � for B and a set � with cardinality � Card B× Card �. By the cardinality
lemma, every covering of B has cardinality � Card �, and so is isomorphic to a
covering whose underlying set is a subset of �. Let (Xλ, xλ)λ∈� be a family of
pointed coverings of (B, b) containing every connected pointed coverings of (B, b)

whose underlying set is in �. A simply connected open cover of B trivializes all
Xλ. Let X be the product covering of Xλ, set x = (xλ) and let E be the connected
component of x in X. The pointed covering (E, x) is connected and dominates all
Xλ, hence all connected pointed coverings of (B, b). Thus it is simply connected. �

Exercises 4.4. (Universal coverings)
1. (Non-functoriality of the universal covering.)—(a) Let E be the universal covering
of S1 = {z ∈ C | |z| = 1}, and f the z �→ −z from S1 to itself. Show that there is a
f -morphism g : E → E, but none satisfying g ◦ g = 1E.

(b) Let C be the category of locally simply connected topological spaces. Show
that there is no functor R : C→ C and nor any functorial morphism π : R → 1C
such that, for all X ∈ C, the space R(X) with πX : R(X) → X is a universal covering
of X.

(c) What do you think of the following argument: “Consider the Hopf fibre bundle
H = (S3,π : S3 → S2) with fibre S1 (4.1, Exercise 11). Replacing each fibre by its
universal covering gives a fibre bundle with fibre R. However, every fibre bundle
with fibre R has a continuous section; the image of such a section is a continuous
section of H, and so H has a continuous section”?
2.—Let Cn be the circle of diameter

[
(0, 0),

(
1

2n+1 , 0
)]

for n ∈ Z in R
2, and set M =

⋃
Cn . Let f be a homeomorphism from M onto itself inducing a homeomorphism

from Cn onto Cn+1 for all n. Let X be the quotient space of R×M by the equivalence
relation identifying (t, m) to (t + 1, f (m)) for t ∈ R and m ∈ M.
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(a) Show that X is a fibre bundle on S1 = R/Z with fibre M. Show that every
covering of X is trivial on each fibre of this fibration.

(b) Show that X has a non simply connected universal covering.

3.—Show that the space B of 4.3, Exercise 6, does not have a universal covering.

4.—(A) Let B be a topological space. Consider the following properties:

(i) there is an open cover (Ui ) of B such that every cover of B induces a trivial
covering of each Ui ;

(ii) Every covering of a covering of B is a covering of B.

Do any one of these properties imply the other?

(B) Let (B, b0) be a pointed connected space.

(a) Let U = (Ui ) be a connected open cover of B, and CovB,U the category of
coverings of B that are trivial over each Ui . Show that B has a universal covering in
CovB,U, i.e. that the functor X �→ X(b0) from CovB,U to Ens is representable.

(b) Show that B has a universal covering if and only if B satisfies condition (i) of
part A, and that this covering is simply connected if B satisfies (ii).

5. (Another proof of d’Alembert’s theorem.)—Let A be a commutative Banach alge-
bra over R or C, and let G be the group of invertible elements of A. Define the map
exp : A → A by

exp(x) =
∑ 1

n! x
n .

(a) Show that A with exp is a universal covering of G.

(b) Show that if G is simply connected, then the map exp is injective.

(c) Deduce that a commutative complex Banach algebra is a field only if it has
dimension 1 (Gelfand–Mazur theorem).

(d) Deduce that C is algebraically closed (d’Alembert’s theorem).

(e) Extend the result of (c) to a not necessarily commutative algebra over C

(consider a maximal commutative subalgebra).
For other proofs of d’Alembert’s theorem, see (5.2.4), (4.6, Exercise 4) and (6.1,

Exercise 3).

4.5 Galois Coverings

4.5.1

Theorem and Definition Let B be a connected space and E a connected covering
of B. The following conditions are equivalent:
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(i) E trivializes itself (i.e. E ×B E with pr1 : E ×B E → E is a trivial covering of
E);

(ii) the group AutB(E) of automorphisms of E acts transitively on each fibre of E.

If these conditions hold, then E is said to be a Galois covering of B, and the group
AutB(E) is called the Galois group of E.

Proof By (4.3.3), condition (i) is equivalent to the following:

(i′) There is a continuous section E → E ×B E passing through all points of E ×B E.
Condition (i′) is equivalent to:

(i′′) For all (x, x ′) ∈ E ×B E, there is a B-morphism f : E → E such that f (x) = x ′.

(ii) ⇒ (i′′) is obvious; we show the converse. If (i′′) holds, for x and x ′ in the
same fibre, there are B-morphisms f and f ′ from E to itself, such that f (x) = x ′
and f ′(x ′) = x . Then f ′ ◦ f and f ◦ f ′ have a fixed point, and so agree with 1E by
(4.3.5). �

Remark If E is a Galois covering of B, then by (4.3.5) the Galois group acts simply
transitively on the fibres.

4.5.2 Examples

(1) Under the assumptions of Theorem 4.3.13, if X is connected, then X is a
Galois covering of X/G. Indeed, every element of G defines an automorphism of
X as a covering map of X/G, and by definition G acts transitively on the fibres of
X → X/G. This applies to Example (4) of (4.3.4): Sn → Pn

R.

(2) Similarly, under the assumptions of Corollary 4.3.14, if G is connected, then
G is a Galois covering of G/H. This applies to Examples (2) and (3) of (4.3.4).

(3) Let B be a locally connected space, E a Galois covering of B, X a connected
cover of B and f : E → X a B-morphism. Then E together with f is a Galois covering
of X. Indeed if t, t ′ ∈ E such that f (t) = f (t ′), then there exist g ∈ AutB(E) such
that g(t) = t ′. As f and f ◦ g are two morphisms de E in X agreeing at t , f = f ◦ g
by (4.3.5), and g ∈ AutX(E). The Galois group AutX(E) is the subgroup of AutB(E)

consisting of all g such that f ◦ g = f (4.5.7).

(4) Let B be a connected space and E a universal covering of B. Then E is a Galois
covering of B. Indeed, E trivializes all coverings of B, in particular itself.

(5) If X and X′ are Galois coverings of B and B′ with Galois groups G and G′
respectively, then X× X′ is a Galois covering of B× B′, with group G × G′. Indeed
G × G′ may be checked to act simply transitively on the fibres of X× X′.

For an example of a non Galois covering, see 4.5, Exercise 3.
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4.5.3 The Functor S

Let B be a connected and locally connected space, E a Galois covering of B and
G = AutB(E) its Galois group. Let G-Ens denote the category of sets on which G
acts and D the category of coverings of B trivialized by E. For every object X of D,
let S(X) be the set HomB(E, X) on which G acts by (g, f ) �→ f ◦ g−1. This defines
a functor S from D to G-Ens.

For X ∈D, degB(X) = Card S(X). Indeed, Card S(X) is equal to the number of
sections E → E ×B X equal to degE(E ×B X) since E ×B X is a trivial covering of
E which is connected and

degE(E ×B X) = degB(X)

since the fibres are the same. In particular, S(X) = ∅ ⇔ X = ∅.

Theorem The functor S :D→ G-Ens is an equivalence of categories.

This theorem amounts to the above Propositions 4.5.5 and 4.5.6.

4.5.4

Proposition Let X be an object ofD; equip S(X) with the discrete topology. The map
εX : E × S(X) → E ×B X defined by εX(t, s) = (t, s(t)) a covering isomorphism of
E compatible with the actions ⊥ and · of G on E × S(X) and E ×B X respectively
defined by

g⊥(t, s) = (g(t), s ◦ g−1) g · (t, x) = (g(t), x) .

Proof Clearly, εX is a covering morphism of E; in particular it is open. We show it is
bijective. If (t, s(t)) = (t ′, s ′(t ′)), then t = t ′, and s = s ′ by (4.3.5); so εX is injective.
For all (t, x) ∈ E ×B X, there is a section σ : E → E ×B X passing through (t, x)

since E ×B X is a trivial covering of E; it corresponds to a B-morphism s : E → X
such that s(t) = x . Hence εX is surjective, and it is a homeomorphism, and

εX(g⊥(t, s)) = εX(g(t), s ◦ g−1) = (g(t), s(g−1(g(t))))

= (g(t), s(t)) = g · εX(t, s).

�
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4.5.5

Proposition The functor S is fully faithful.

In other words, if X and Y are coverings of B trivialized by E, then the map
f �→ f∗ from HomB(X, Y) to HomG(S(X), S(Y)) is bijective. Here, HomB(X, Y)

denotes the set of covering morphisms from X to Y, and HomG(S(X), S(Y)) the set
of maps ϕ from S(X) to S(Y) compatible with the action of G, i.e. such that

ϕ(g · s) = g · ϕ(s) for g ∈ G and s ∈ S(X) ,

and f∗ is defined by f∗(s) = f ◦ s.

Lemma Let X be a covering of B. For the action of G on E ×B X given by the action
of G on E, (E ×B X)/G = X.

Proof of Lemma The fibres of E ×B X → X are the same as the fibres of E → B,
and so are not empty and G acts transitively on them. Hence the set (E ×B X)/G
can be identified with X. The topology of X agrees with the quotient topology of
E ×B X, since the map E ×B X → X defines a covering, and so is open. �

Proof of Proposition Let ϕ : S(X) → S(Y) be a morphism in G-Ens. There is mor-
phism ϕ∗ : E × S(X) → E × S(Y) defined by ϕ∗(t, s) = (t,ϕ(s)) corresponding to
it. The morphism ϕ∗ is compatible with the action ⊥ of G.

As εX and εY are isomorphisms, there is a unique E-morphism ϕ! from E ×B X
to E ×B Y making the diagram

E × S(X)
εX � E ×B X

E × S(Y)

ϕ∗
� εY � E ×B Y

ϕ!
�

commutative. This morphism is compatible with the actions of G. It follows that
there is a continuous map f from X = (E ×B X)/G to Y = (E ×B Y)/G, and
f is a B-morphism. We show that f∗ : S(X) → S(Y) is equal to ϕ, i.e. that
f (s(t)) = (ϕ(s))(t) for s ∈ S(X) and t ∈ E. This follows from the commutativity
of the diagram

E × S(X)
ϕ∗� E × S(Y)

E ×B X

ε
� ϕ! � E ×B Y

ε
�

X
� f � Y

�
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Indeed f∗ = ϕ, which shows that the map f �→ f∗ is surjective. We show that, if
ϕ = u∗, for some B-morphism u : X → Y, then f = u. The injectivity of u �→ u∗
will follow. For all s ∈ S(X), f ◦ s = u ◦ s, and so f and u agree on s(E). For all
s ∈ S(X), there is a section s̃ : E → E ×B X, and E ×B X =⋃

s∈S(X) s̃(E). Hence
X =⋃

s∈S(X) s(E), and so f = u. �

4.5.6

Proposition The functor S is essentially surjective.

In other words, for all sets A on which G acts, there is a covering X ∈D such
that S(X) is isomorphic to A in G-Ens.

Proof (a) Assume A = G/H for some subgroup H of G. Set X = E/H and let
ξ denote the canonical map E → E/H. We show that X is an object of D. The
map εE (4.5.4) is a homeomorphism from E × G onto E ×B E. The graph of the
equivalence relation induced on E by H is the image under εE of E × H which is
clopen in E × G; so this graph is clopen in E ×B E. Hence by (4.3.8, (b)) X is a
covering of B. On the other hand, by passing to the quotient, εE gives a morphism
ε′ : E × (H\G) → E ×B X, where H\G is the set of classes Hg. This morphism is
bijective, and so is an isomorphism, and X ∈D.

We show that the map g �→ g · ξ = ξ ◦ g−1 from G to S(X) is surjective. Choose
t0 ∈ E. For f ∈ S(X), let t ∈ E such that ξ(t) = f (t0). There exists g ∈ G such that
g(t) = t0, and the morphisms f and ξ ◦ g−1 agree at t0, and so are equal (4.3.5,
Corollary).

Therefore the group G acts transitively on S(X). We show that the stabilizer of ξ
is H. A ≈ S(X) since

ξ ◦ h−1 = ξ ⇐⇒ ξ = ξ ◦ h ⇐⇒ ξ(h(t0)) = ξ(t0)

⇐⇒ ∃h′ ∈ H h(t0) = h′(t0) ⇐⇒ h ∈ H .

(b) If (Xi ) is a family of objects of D, then S
(⊔

Xi
) =⊔

S(Xi ). Indeed, for all

morphisms from E to
⊔

Xi , the image of E is in some Xi since E is connected.
(c) Every A ∈ G-Ens is of the form

⊔
Ai , with Ai ≈ G/Hi , where Hi is a sub-

group of G. By (a), for each i , Ai is isomorphic to some S(Xi ) and (b) A ≈ S(X),
where X =⊔

Xi . �
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4.5.7

Proposition Let B be a locally connected space, X and E connected coverings of
B and f : E → X a morphism. Assume E is Galois and let G be the Galois group
AutB(E). Then,

(a) E trivializes X over B;
(b) (E, f ) is a Galois covering of X;
(c) X is a Galois covering of B if and only if the group H = AutX(E, f ) consisting

of g ∈ G such that f ◦ g = f is a normal subgroup of G.

Proof (a) By (4.3.1) it suffices to show that for b ∈ B, t ∈ E(b) and x ∈ X(b), there
is a morphism h : E → X such that h(t) = x . By (4.3.6, Corollary 4.5), f (E) = X,
and so there exists t ′ ∈ E(b) such that f (t ′) = x . As E is Galois, there exists g ∈ G
such that g(t) = t ′. Then h = f ◦ g satisfies h(t) = x .

(b) Let t, t ′ ∈ f −1(x). As E is Galois, there exists g ∈ AutB(E) such that g(t) = t ′.
Then f (g(t)) = f (t), and by (4.3.5) f ◦ g = f . In other words, g ∈ AutX(E, f ).
Hence (E, f ) is a Galois covering of X.

To prove (c), a lemma is needed.

Lemma X is a Galois covering of B if and only if AutB(X) acts transitively on
S(X) = HomB(E, X).

Proof of Lemma Suppose that X is Galois, and let f and f ′ be two morphisms
E → X. Choose t ∈ E and set x = f (t) and x ′ = f ′(t). There exists h ∈ AutB(X)

such that h(x) = x ′. Then h ◦ f and f ′ agree at t , and so h ◦ f = f ′ by (4.3.5).
Conversely, let x and x ′ be in the same fibre X(b). Choose t ∈ E(b); there are

morphisms f and f ′ from E to X such that f (t) = x , f ′(t) = x ′. If AutB(X)

acts transitively on S(X), there exists h ∈ AutB(X) such that h ◦ f = f ′. Then
h(x) = x ′. �

End of the Proof of the Proposition (c) The G-set S(X) is isomorphic to G/H under
g �→ f ◦ g−1. The stabilizer of f ◦ g−1 is gHg−1; if the automorphisms of S(X) act
transitively, these stabilizers are all equal, and H is normal.

Conversely, if H is normal, then the right translations in G act transitively on G/H
under G-automorphisms, and so X is Galois. �

Exercises 4.5. (Galois coverings)
1.—Let E be a 2-fold covering of B. Show that the map τ : E → E assigning to each
point the other point of the same fibre is an automorphism of E. Deduce that, if B
and E are connected, then E is a Galois covering.

2.—Let B be a connected space and E a covering of B such that AutBE acts transitively
on the fibres of E. Show that each connected component of E is a Galois covering
of B.

3.—Let X and Y be curves having double points represented in the figure below and
π : Y → X a continuous map sending bijectively each (open) arc Ai onto A and each
Bi onto B by preserving the direction of the arrows.
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(a) Show that Y together with π is a covering of X. Give its degree.

(b) Determine AutXY. Is the covering Y Galois?

(c) Construct a 2-fold covering Ỹ of Y such that Ỹ is a Galois covering of X.

(d) Construct a 2-fold covering X̃ of X such that Ỹ is a 3-fold Galois covering
of X̃.

(e) Show (using the results of 4.7) that if B is a connected and locally connected
space and Z a connected 3-fold non Galois covering of B, then there is a continuous
map f : X → B such that f ∗(Z) is isomorphic to Y.

4.—Let B be a locally connected space and X a covering of B. Assume X has degree
3 and is not Galois. Show that there is a 2-fold covering E of X which is a Galois
covering of B, and that there is 2-fold covering Y of B such that E is a 3-fold Galois
covering of Y. How many quotient coverings of E are there?

4.6 Fundamental Groups

4.6.1

Definition Let (B, b0) be a pointed space, � the functor X �→ X(b0) from the cat-
egory CovB of coverings of B to Ens. The fundamental group of B with respect
to b0, written π1(B, b0), is the automorphism group of the functor �.
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Hence an element γ ∈ π1(B, b0) consists in being given for every covering X of B
a permutation γX of X(b0), subject to the condition that, for all covering morphisms
f : X → Y, the following diagram is commutative.

X(b0)
γX� X(b0)

Y(b0)

fb0
� γY� Y(b0)

fb0
�

Remark (1) If B is locally connected, then π1(B, b0) = π1(B0, b0) where B0 is the
connected component of B containing b0.

(2) If U is an open cover of B, let CovB,U denote the category of coverings
of B trivialized by the open subsets of U . We may define π1(B,U , b0) as the
automorphism group of the restriction �U of � to CovB,U . Then

π1(B, b0) = lim←− π1(B,U , b0) .

If B is locally simply connected, then the inverse limit is reached by all sim-
ply connected open covers, in other words CovB = CovB,U and π1(B, b0) =
π1(B,U , b0) if U is such a cover. In other cases, the pro-object of the category
of groups defined by dπ1(B,U , b0) is not all that interesting.

4.6.2

Proposition Let (B, b0) be a pointed space and E a universal covering of B such
that E(b0) �= ∅. Then π1(B, b0) acts simply transitively on E(b0).

Proof Let t, u ∈ E(b0). We first show that there is at most one element γ ∈ π1(B, b0)

such that γE(t) = u. If γ has this property, then for all coverings X of B and all x ∈
X(b0), there is a morphism f : E → X such that f (t) = x and γX(x) = γX( f (t)) =
f (γE(t)) = f (u), which defines γX(x) for all X and x ∈ X(b0).

We next show existence. Define γut ∈ π1(B, b0) by setting for all coverings X
of B and all x ∈ X(b0), (γut )X(x) = f (u) where f : E → X is the unique mor-
phism such that f (t) = x . We check that γut is a functorial morphism from � to
�. Then γt t = 1 and γvu ◦ γut = γvt ; so γut is an isomorphism, and we also have
γut (t) = u. �

4.6.3 Comparison of π1(B, b0) and AutB(E)

Let E be a universal covering of B such that E(b0) �= ∅. The group AutB(E) also
acts simply transitively on E(b0) since E is Galois (4.5.1, Remark). By definition
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of π1(B, b0), for γ ∈ π1(B, b0) and g ∈ AutB(E), the permutations σγ = γE and
ρg = g|E(b0) of E(b0), respectively defined by γ and g, commute.

Let t0 ∈ E(b0). The inverse of the bijection θ �→ θ · t0 identifies E(b0) with
π1(B, b0) and the action σγ becomes the left translation by γ. The action ρg

becomes the right translation by some αt0(g) ∈ π1(B, b0). Indeed, every permutation
of π1(B, b0) commuting with left translations is a right translation.

Proposition The map αt0 : AutB(E) → π1(E, b0) is an anti-isomorphism.

This means that αt0 is bijective and that αt0(gg′) = αt0(g
′) · αt0(g).

Proof The map αt0 is bijective since AutB(E) acts simply transitively on E(b0), and

x · αt0(gg′) = gg′(x) = g(g′(x)) = g(x · αt0(g
′)) = x · αt0(g

′) · αt0(g) .

�

Corollary The groups π1(B, b0) and AutB(E) are isomorphic.

Remark The anti-isomorphism αt0 depends on the choice of t0. Indeed, if t1 is
another point of E(b0), then let β ∈ π1(B, b0) be the unique element such that t1 =
β · t0; so αt1 is the composition of αt0 and of an inner automorphism of π1(B, b0)

defined by β. Indeed,

g(θ · t1) = θ · αt1(g) · t1 for θ ∈ π1(B, b0) and g ∈ AutB(E) ,

where g(θ · β · t0) = θ · αt1(g) · β · t0, but g(θ · β · t0) = θ · β · αt0(g) · t0, where

αt1(g) = β · αt0(g) · β−1 .

Hence, except when π1(B, b0) is commutative, AutB(E) should not be identified with
π1(B, b0).

4.6.4 Functoriality

Let (B, b0) and (B′, b′0) be two pointed spaces and f : (B, b0) → (B′, b′0) a con-
tinuous pointed map, i.e. a continuous map f : B → B′ such that f (b0) = b′0. Let
γ ∈ π1(B, b0). For every covering X′ of B′, f ∗(X′) is a covering of B, and γ f ∗(X′) is
a permutation of f ∗(X′)(b0) = X′(b′0). When X′ varies, these γ f ∗(X′) form an auto-
morphism of the functor X′ �→ X′(b′0), i.e. an element of π1(B′, b′0), which we will
denote f∗(γ).

The map f∗ : π1(B, b0) → π1(B′, b′0) thus defined is a group homomorphism. If
g : B′ → B′′ is a continuous map such that g(b′0) = b′′0 , then (g ◦ f )∗ = g∗ ◦ f∗. In
other words, π1 is a functor from the category of pointed spaces to the category of
groups.
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Let B0 be the connected component of b0 in B and ι : B0 → B the canonical
injection. Then ι∗ : π1(B0, b0) → π1(B, b0) is an isomorphism. Indeed, apart from
the functor ι∗ : CovB → CovB0 , there is a functor ι∗ : CovB0 → CovB assigning
to all coverings X of B0 the space X over B. These functors can be checked to define
mutual inverses between π1(B0, b0) and π1(B, b0).

4.6.5

Proposition Let f : (B, b0) → (B′, b′0) be a pointed space morphism, X and X′
respective coverings of B and B′, and h : X → X′ an f -morphism. Then the map
h : X(b0) → X′(b0) is an f∗-morphism in the following sense: for g ∈ π1(B0, b0)

and x ∈ X(b0), h(g · x) = f∗(g) · h(x).

Proof Let h̃ : X → B×B′ X′ be the B-morphism x �→ (p(x), h(x)), where p is the
projection X → B.

The map h̃ : X(b0) → (B×B′ X′)(b0) = {b0} × X′(b′0) = X′(b′0) is a π1(B, b0)-
morphism, and by definition of f∗, the identity of X′(b′0). The proposition
follows. �

4.6.6 Basepoint-Change

Proposition Let B be a connected space admitting a universal covering, and b0, b1 ∈
B. Then the groups π1(B, b0) and π1(B, b1) are isomorphic.

Proof If E is a universal covering, then π1(B, b0) and π1(B, b1) are isomorphic to
AutB(E) by (4.6.3, Corollary).

Remark (1) The assumption that B admits a universal covering can be weakened,
but not removed. All that is needed is the existence of a simply connected space J
and of a continuous map g : J → B whose image contains b0 and b1. For example,
it is sufficient for b0 and b1 to be in the same arc-connected component of B.

For an example of a compact, connected non locally connected space B with two
points b0 and b1 such that π1(B, b0) �≈ π1(B, b1), see (4.6, Exercise 15, B). We do
not know if there is such an example when B is locally connected.

(2) There is no natural isomorphism from π1(B, b0) onto π1(B, b1), and hence
these cannot be identified, and “the fundamental group of B” is not well defined even
when B is connected and admits a universal covering. More precisely, let C be the
category of connected spaces admitting a universal covering and C

.
the category

of pointed spaces (B, b0) such that B ∈ C. We defined a functor π1 : C. → Gr.
There is no functor F : C→ Gr such that π1 is isomorphic to the composition of
the forgetful functor C

. → C and of F (cf. 4.6, Exercise 8).
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4.6.7

Let (B, b0) and (B′, b′0) be pointed topological spaces, f and g pointed continuous
maps from (B, b0) to (B′, b′0). A pointed homotopy from f to g is a continuous map
h : [0, 1] × B → B′ such that

(∀t ∈ [0, 1]) h(t, b0) = b′0, (∀b ∈ B) h(0, b) = f (b) and h(1, b) = g(b) .

Theorem If there is a pointed homotopy from f to g, then the homomorphisms f∗
and g∗ from π1(B, b0) to π1(B′, b′0) agree.

Proof Set I = [0, 1], let ι0 and ι1 be the injections b �→ (0, b), b �→ (1, b) from B to
I× B, and ρ the map (t, b) �→ (0, b) from I × B to itself. Let h be a pointed homotopy
from f to g and X′ a covering of B′. Set X = h∗(X′), X0 = ι∗0(X) = f ∗(X′) and
X1 = ι∗1(X) = g∗(X′). Then X0(b0) = X1(b0) = X′(b′0) = X(t, b0) for all t ∈ I, and

(h ◦ ρ)|I×{b0} = h|I×{b0}, and so ρ∗X|I×{b0} = X|I×{b0} .

By Theorem 4.3.15, there is an isomorphism ϕ : X → ρ∗(X) agreeing with 1X over
{0} × B. By (4.3.5, Corollary), ϕ agrees with 1X on I× {b0}, in particular ϕ(1,b0) =
1X′(b′0). Then α = ι∗1(ϕ) is an isomorphism from X1 onto X0 such that αb0 = 1X′(b′0).

Let γ ∈ π1(B, b0). Since γ is a functorial morphism, there is a commutative
diagram

X1(b0)
γX1� X1(b0)

X0(b0)

αb0
� γX0� X0(b0)

αb0
�

which can also be written as

X′(b′0)
γX1� X′(b′0)

X′(b′0)

1
�

γX0� X′(b′0)

1
�

and γX0 = γX1 . As this holds for all X′, f∗(γ) = g∗(γ). As this holds for all γ,
f∗ = g∗. �
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4.6.8

Theorem Let B be a connected, locally connected space admitting a uni-
versal covering and b0 ∈ B. Then the functor � : X �→ X(b0) from CovB to
π1(B, b0)-Ens is an equivalence of categories.

Proof Let (E, t0) be a pointed universal covering of (B, b0). Set G = AutB(E). The
isomorphism g �→ αt0(g

−1) (4.6.3) identifies G with π1(B, b0). Since E is a Galois
covering of B and trivializes every covering X of B, by Theorem 4.5.3 the functor
S : X �→ Hom(E, X) from CovB to G-Ens is an equivalence of categories. We
show that the functors S and � are isomorphic. By the universal property of (E, t0),
for all coverings X of B, the map δt0 : f �→ f (t0) from Hom(E, X) onto X(b0) is
bijective. Hence it is a G-set isomorphism. Functoriality is obvious and so δt0 is an
isomorphism of functors. �

4.6.9 Dictionary

Let B be a connected, locally connected space admitting a universal covering, b0 ∈ B
and X a covering of B.

(a) If X is a disjoint union (resp. product covering) of all Xλ, then the π1(B, b0)-set
X(b0) is the sum (resp. product) of Xλ(b0).

(b) Assuming X �= ∅, X is connected if and only if π1(B, b0) acts transitively on
X(b0). Indeed, X est connected if and only if X = X1 � X2 for some X1 �= ∅ and
X2 �= ∅, and a π1(B, b0)-set F is non-homogenous if F = F1 � F2 for some F1 �= ∅

and F2 �= ∅.
More generally, let (Xλ) be the connected components of X. Then Xλ(b0) are the

orbits in X(b0) of the action of π1(B, b0).

(c) Assigning to every pointed covering (X, x0) of (B, b0) the stabilizer of x0

gives a bijection between the isomorphic classes of connected pointed coverings
of (B, b0) and the subgroups of π1(B, b0). Indeed, for every group G this gives a
bijection between the isomorphic classes of homogenous pointed G-sets and the
subgroups of G mapping (F, x0) onto the stabilizer of x0; the inverse is given by
H �→ G/H.

(d) Let (X, x0) and (X′, x ′0) be two connected pointed coverings of (B, b0). The
coverings X and X′ are isomorphic if and only the stabilizers S and S′ of x0 and x ′0
are conjugate. Indeed, for g ∈ π1(B, b0), the stabilizer of gx0 is gSg−1; the coverings
X and X′ are isomorphic if an only if there exists g ∈ π1(B, b0) such that all pointed
coverings (X, gx0) and (X′, x ′0) are isomorphic, i.e. gSg−1 = S′.
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(e) Let (X, x0) be a connected pointed covering of (B, b0). The covering X is
Galois if and only if the stabilizer of x0 is normal. Indeed, X is Galois if and only if,
for all g ∈ G, the pointed coverings of (X, x0) and (X, gx0) are isomorphic.

4.6.10

Proposition Let B be a connected space admitting a simply connected covering,
b0 ∈ B, (X, x0) a pointed covering of (B, b0) and p : X → B the projection. Then
p∗ : π1(X, x0) → π1(B, b0) is injective and its image is the stabilizer of x0.

Proof Let E be a simply connected pointed covering of B and t0 ∈ E(b0). The pointed
covering (E, t0) is universal by (4.4.4), and so there is a morphism f : (E, t0) →
(X, x0). The space E together with f is a covering of X by (4.3.6), which is universal
by (4.4.4).

Consider the diagram

π1(X, x0)
u � E(x0)

π1(B, b0)

p∗
�

v � E(b0)

ι
�

X(b0)

f
�

w

�

where ι is the canonical injection, u(g) = g · t0, v(g′) = g′ · t0 and w(g′) = g′ · x0.
This diagram is commutative: by applying (4.6.5) to the p-morphism 1E, this holds
for the upper square, and is obvious for the lower triangle.

The maps u and v are bijective by (4.6.2), ι is injective and its image is f −1(x0).
Hence p∗ is injective and its image is w−1(x0). �

4.6.11

Corollary Let (B, b0) be a pointed space admitting a simply connected pointed
covering.

(a) For all subgroups H of π1(B, b0), there is a connected pointed covering (X, x0)

of (B, b0) such that the image of π1(X, x0) in π1(B, b0) is H, and it is unique up to
isomorphism.

(b) Assume that B is connected and let (X, x0) be a connected pointed covering of
(B, b0). Then X is Galois if and only if the image of π1(X, x0) is a normal subgroup
of π1(B, b0).
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If X is Galois, then AutB(X) is isomorphic to the quotient group

π1(B, b0)/π1(X, x0) .

4.6.12 Fundamental Group of a Product

Proposition Let B (resp. B′) be a space admitting a connected pointed covering E
(resp. E′), b0 ∈ B and b′0 ∈ B′ such that E(b0) and E′(b′0) are nonempty. Assume that
B or B′ is locally connected. Then the homomorphism

π1(B× B′, (b0, b′0)) → π1(B, b0)× π1(B
′, b′0)

given by the projections is an isomorphism.

Proof The groups G = π1(B, b0) and G′ = π1(B′, b′0) act simply transitively on
E(b0) and E′(b′0) respectively, and so G × G′ acts simply transitively on
E × E′(b0, b′0) = E(b0)× E′(b′0). If B (resp. B′) is locally connected, then so is E
(resp. E′). Thanks to (4.3.19, Corollary), the space E × E′ is simply connected, and so
is a universal covering of B× B′. It follows that π1(B× B′, (b0, b′0)) can be identified
with G × G′. �

Exercises 4.6. (Fundamental group)
1.—Let (B, b0) be a pointed space admitting a pointed universal covering. Show that
every endomorphism of the functor � of (4.6.1) is an automorphism. Does this result
still hold without the assumption that (B, b0) admits a pointed universal covering?

2.—Let X be a topological space and G a group acting on X in such a way that
assumption (L) of Theorem 4.3.13 is satisfied. Set B = X/G. Let x0 ∈ X and b0 be
its image in B.

(a) Show that if X is simply connected, then π1(B, b0) is isomorphic to G.

(b) Show that if X is connected and admits a simply connected covering, then X
is a Galois covering of B and G is isomorphic to the quotient group of π1(B, b0) by
the image of π1(X, x0).

(c) Show that if X is locally simply connected, then each connected component of
X is a Galois covering of a connected component of B, and the quotient of π1(B, b0)

by the image of π1(X, x0) is isomorphic to the stabilizer of the connected component
of b0 in B.

3. (Degree of a map from S1 to S1 .)—Set S1 = {z ∈ C | |z| = 1} and let ε be the
map t �→ e2iπt from R to S1.

(a) Show that π1(S1, 1) is isomorphic to Z. Since this group is commutative,
π1(S1) is well defined.
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(b) Let f : S1 → S1 be a continuous map, define d◦( f ) ∈ Z by f∗(γ) = d◦( f ) · γ
for γ ∈ π1(S1); this number is called the degree of f . Show that there is a continuous
map f̃ : R → R such that ε ◦ f̃ = f ◦ ε and that for any f̃ with this property and
all t ∈ R,

f̃ (t + 1) = f̃ (t)+ d◦( f ) .

(c) Show that any two continuous maps f and g from S1 to S1 are homotopic if
and only if d◦( f ) = d◦(g).

(d) Let f : S1 → S1 be a differentiable map (i.e. continuous and such that f̃ is
differentiable). For z ∈ S1, let f ′(z) be the common value of all f̃ ′(t) for t ∈ ε−1(z).
Let a ∈ S1; assume that f ′(z) �= 0 for all z ∈ f −1(a). Show that the set f −1(a) is
finite and that

d◦( f ) = Card{z ∈ f −1(a) | f ′(z) > 0} − Card{z ∈ f −1(a) | f ′(z) < 0} .

(e) Let f be a continuous map from S1 to C
∗ = C− {0}; set d◦( f ) = d◦

( f
| f |
)
.

Assuming that f is infinitely differentiable, express d◦( f ) as an integral.

4. (A proof of d’Alembert’s theorem.)—(a) Calculate the degree of the map z �→ zd

from S1 to S1.

(b) Show that two sufficiently near (relative to uniform convergence) maps from
S1 to S1 are homotopic.

(c) Let P be a complex polynomial of degree d, and for r ∈ R+ let fr be the map
z �→ P(r z) from S1 to C. Show that, for sufficiently large r , fr is a map from S1 to
C
∗ of degree d.

(d) Show that, if P has no roots z such that r � |z| � r ′, then the maps fr and fr ′

from S1 to C
∗ have the same degree. What is the degree of f0 (assuming P(0) �= 0)?

Show that P has at least one root if d > 0.

5.—Let G be a finite group. The aim is to show that there is a compact manifold
whose fundamental group is isomorphic to G.

(a) Show that, for sufficiently large n, G is isomorphic to a subgroup of the group
On of isometries of Euclidean R

n .

(b) Show that, for p � n + 2, the space Vp
n of isometric embeddings of R

n in R
p

is a simply connected compact manifold (4.1, Exercise 11 and 4.3, Exercise 4).

(c) Make G act freely on Vp
n . Conclude.

6.—Let G be an arbitrary group. The aim is to show that there is a connected space
B admitting a contractible universal covering and a point b0 ∈ B such that π1(B, b0)

is isomorphic to G.

(a) Let E be the space of maps f : [0, 1] → G such that there is an increasing
finite sequence (t0, . . . , tn) with t0 = 0, tn = 1, f (0) = 0 and f constant on ]ti−1, ti ]
for i ∈ {1, . . . , n}. For f, g ∈ E, let d( f, g) be the sum of the lengths of intervals on
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which they differ. Show that E becomes a metric group and that G can be identified
to a discrete subgroup of E.

(b) For t ∈ [0, 1] and f ∈ E, define ft by ft (s) = f (s) if s � t and ft (s) = e if
s > t . Show that the map (t, f ) �→ ft from [0, 1] × E to E is continuous. Deduce
that E is contractible.

(c) Conclude.

7.—Let K be a connected space admitting a universal contractible covering E, k0 ∈ K
and e0 ∈ E(k0). The aim is to show that, for any metrizable compact pointed space
(B, b0) admitting a universal covering, and for any homomorphism ϕ : π1(B, b0) →
π1(K, k0), there is a pointed continuous map f : (B, b0) → (K, k0) such that f∗ = ϕ,
and that it is unique up to pointed homotopy.

(a) Let G be a group. A principal G-covering of B is a covering of B equipped
with a continuous G-action inducing a simply transitive action of G on each fibre.
Show that every principal G-cover admitting a section is trivial.

(b) Set G = π1(K, k0), and consider E as a principal G-covering. Prove that the
problem amounts to showing that, for any principal pointed G-covering (X, x0) of
(B, b0), there is, up to pointed homotopy, a unique pointed continuous map f :
(B, b0) → (K, k0) such that all principal pointed G-coverings (X, x0) and f ∗(E, e0)

of (B, b0) are isomorphic.

(c) Let F be a contractible space, B a compact metrizable space, A a closed subset
of B, U a neighbourhood of A and f : U → F a continuous map. Show that there is
a continuous map g : B → F agreeing with f in the neighbourhood of A (if F is a
convex containing 0 in a normed space, multiply f by a function with support in U).

(d) Let B be a compact metrizable space, A a closed subset of B, U a neigh-
bourhood of A and X a trivial principal G-covering of B. Show that, for all contin-
uous f : U → K such that f ∗(E) is isomorphic to X|U, there is a continuous map
g : B → K such that g∗(E) is isomorphic to X. More precisely, if α : X|U → f ∗(E) is
an isomorphism, theng may be chosen so that there is an isomorphismβ : X → g∗(E)

agreeing with α over a neighbourhood of A.

(e) Prove the result without assuming that X is trivial (take a finite open cover
(Ui )1�i�n of B trivializing X, a shrinking (Vi ), i.e. an open cover such that Vi ⊂ Ui ,
a shrinking (Wi ) of (Vi ), set Ai = A ∪W1 ∪ · · · ∪Wi , and proceed by induction by
applying (d) to (Vi , Vi ∩ Ai−1)).

(f) Conclude: for existence, take A = {b0}; for uniqueness, consider

( [0, 1]×B , {0, 1}×B ∪ [0, 1]×{b0}
)
.

(g) Can the assumption that B is compact and metrizable be replaced by a weaker
assumption? Can the result be formulated in terms of the representability of some
functor?
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8. (Non-functoriality of π1 without basepoint.)—With the notation of (4.6.6, Remark
2), assume there is a functor F : C→ Gr such that the diagram

C
. � C

Gr

� F
π

1
�

commutes.

(a) Show that, for any space B, the maps ι0∗ and ι1∗ from F(B) to F([0, 1] × B)

agree. Deduce that, if f and g are two pointed continuous maps from (B, b0) to
(B′, b′0) such there is a non-pointed homotopy from f to g, then the maps f∗ and g∗
from π1(B, b0) to π1(B′, b′0) agree.

(b) Let f and g are two pointed continuous maps from (B, b0) to (B′, b′0), and
assume there is non-pointed homotopy h from f to g. Show that g∗ : π1(B, b0) →
π1(B′, b′0) is the composition of f∗ with the inner automorphism defined by the
element γ ∈ π1(B′, b′0) corresponding to the loop t �→ h(t, b0) (see 4.9.9). Deduce
a contradiction.

(c) Can there be a functor G : C→ Gr such that the group G(B) is isomorphic
to π1(B, b0) for all (B, b0) ∈ C

.
?

9.—In Proposition 4.6.10, instead of a simply connected covering, can B be assumed
to admit a universal covering? (study the example of 4.3, Exercise 2).

10. Let U be the set of all (p, q) ∈ C
2 such that 4p3 + 27q2 �= 0. We remind

the reader that, for (p, q) ∈ U, the equation X3 + pX + q = 0 has three distinct
roots. Set V = {(p, q, x) ∈ U× C | x3 + px + q = 0} and E = {(x, y, z) ∈ C

3 |
x + y + z = 0, x �= y �= z �= x}. Equip V with the projection (p, q, x) �→ (p, q)

from V to U and E with the map (x, y, z) �→ (p, q, x) from E to V, where p and q
are defined by

X3 + pX + q = (X− x)(X − y)(X − z) .

(a) Show that E is a covering of V, that V is a covering of U and that E is a
covering of U.

What are the degrees of these coverings?

(b) Show that E is connected. Deduce that V and U are connected.

(c) Let a = (−1, 0) ∈ U. Show that the action of π1(U, a) on the fibre Va defines
a surjective homomorphism from π1(U, a) onto S3.

(d) Which of the coverings E → V, V → U, E → U, are Galois?

(e) Let S3 be the unit sphere of C
2, i.e. S3 = {(p, q) | p p̄ + qq̄ = 1}, and set

� = {(p, q) ∈ S3 | 4p3 + 27q2 = 0}. Show that S3 − � has the same homotopy type
as U. Deduce that π1(S3 − �, a) is not commutative.

(f) Let �0 = {(λ, 0) | |λ| = 1}. Show that � is homeomorphic to �0, but that there
is no homeomorphism f : S3 → S3 such that f (�) = �0.

(g) The space S3 − {a} is homeomorphic to R
3. Represent with an iron wire the

image of � under a homeomorphism from S3 − {a} onto R
3.
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11.—Let G be a topological group and e its identity element. Assume that G admits
a universal covering.

(a) Show that π1(G, e) is commutative (2.5, Exercise 2, (d)).

(b) Let (H, e)be a connected pointed covering of (G, e). Show that there is a unique
topological group law on H having e as its identity, such that the projection H → G
is a homomorphism. (The case of a universal covering may be first considered.)

(c) Can the space C− {+1,−1} be endowed with a composition law making it a
topological group?

12.—Let (X, x0) and (Y, y0) be two pointed spaces and let f : (X, x0) → (Y, y0)

be a pointed continuous map. Let (E, e0) be a pointed universal covering of (Y, y0).
Show that the image of π1( f ∗E, (x0, e0)) in π1(X, x0) is the kernel of the homomor-
phism f∗ : π1(X, x0) → π1(Y, y0).

13.—Let V be a manifold and ω a real-valued closed differential form of degree
1 on V. A subset in V× R will be called a ω-slice if it is the graph of a function
f : U → R such that d f = ω|U, where U is open in V. The slices form a basis with
respect to the topology T on V× R.

(a) Show that V× R, equipped with the topology T and the projection pr1 onto
V, is a covering of V.

(b) Let b ∈ V. Show that there is a homomorphism ϕ : π1(V, b) → R such that
the action of π1(V, b) on the fibre of this covering, namely on R equipped with the
discrete topology, is given by γ · x = x + ϕ(γ).

(c) Let γ ∈ π1(V, b) be represented by a differentiable loop C. Show that

ϕ(γ) =
∫

C
ω .

(d) Show that the following conditions are equivalent:

(i) ω is exact, i.e. (∃ f ) ω = d f ;
(ii) ϕ = 0;

(iii) the covering (V× R,T ) is trivial.

(e) Assume V is connected and let E be a connected component of (V× R,T )

and π : E → V the projection. Show that E is a Galois covering of V and that the
differential form π∗ω on E is exact.

(f) Show that ω �→ ϕ is a linear map from the space of closed differential forms
on V to the vector space Hom(π1(V, b), R). What is its kernel?

(g) Generalize the results to complex valued differential forms.
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14.—(a) Let G be a group and H a subgroup of G. Show that AutG G/H is isomorphic
to N/H, where N is the normalizer of H in G.

(b) Let (B, b0) be a connected, locally simply connected pointed space, and let
(X, x0) be a connected pointed covering of (B, b0). Describe AutB X.

15.—(A) Let B be a topological space, b0, b1 ∈ B. Assume that b0 and b1 are in the
same arc-connected component, or more generally, that there is a simply connected
space J and a continuous map g : J → B such that g(J) ⊃ {b0, b1}. Let �0 (resp.
�1) denote the functor CovB → Ens assigning the fibre X(b0) (resp. X(b1)) to the
covering X of B. Show that the functors �0 and �1 are isomorphic (they are both
isomorphic to the functor Sec ◦ g∗ assigning to X the set of sections de g∗(X)).

Deduce that the groups π1(B, b0) and π1(B, b1) are isomorphic.

(B) Let p be a (not necessarily prime) integer �2, and take B to be the solenoid R̂ =
lim←−R/pn

Z with its group structure, the projections πn : R̂ → R/pn
Z, in particular

π0 : R̂ → R/Z, and the injection ι : R → R̂. Let b0, b1 ∈ B.
The aim is to prove that if b0 and b1 are not in the same arc-connected component

of B, then the functors �0 and �1 are not isomorphic.

(a) Show that b0 and b1 are in the same arc-connected component of B = R̂ if and
only if b1 − b0 ∈ ι(R).

(b) Let Ẑ be the subgroup lim←−Z/pn.Z of R̂, and by ψ : (s, t) �→ s + ι(t), consider

E = Ẑ× R as a space over R̂.
Show that E is a covering of R̂ isomorphic to π∗0(R), where R is considered the
universal covering of R/Z.
For all n, consider En = pn

Z× R ⊂ E. Show that En , equipped with the induced
projection is a covering of R̂, isomorphic to π∗n(R).

(c) Let b ∈ R̂. Show that
⋂

En(b) = {0} if b = 0, and is empty if b /∈ ι(R).
Conclude.

(C) Keep B = R̂.

(a) Show that, for all b ∈ B, the fundamental group π1(B, b) acts trivially on E(b),
although the fiber bundle E is not trivial.

(b) Show that there is some n such that every covering of B is induced by a
covering of R/pn .Z by change of basis by πn . Show that for all b, π1(B, b) = {0}
although B is connected and not simply connected.

(D) Let B′ be a connected space consisting of the union of two closed subsets of
B and �, with B = R̂, � homeomorphic to S1 and B ∩ � = {0}.
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Let X be a covering of B′ inducing a universal covering over � and a trivial
covering over B. Denote by πX the projection X → B′. Consider X as the real line
R with a copy Bk of B at each point k ∈ Z; for each k, there exists bk ∈ Bk over b.

(a) Show that π1(B′, 0) acts non trivially on X(0). Deduce that π1(B′, 0) �= {0}.
(b) The aim is to show that, for all b ∈ B, the group π1(B′, b) acts trivially on

X(b) if b /∈ ι(R).
Let CovB′,X be the category of coverings Y of B′ together with a morphism

ϕ : Y → X. If Y is an object of CovB′,X, then the fibre Y(b) is the disjoint union
of Y(bk) = ϕ−1(bk). Let α ∈ π1(B′, b). Then α acts on X(b) and on Y(b), and
α.Y(bk) = Y(α.bk).

Assuming that α acts non trivially on X(b), let k be such that α(bk) = bk ′ with
k ′ �= k. Restricting to the objects of CovB′,X inducing a trivial covering over Bk (but
an arbitrary one over Bk ′), and starting with α, define an isomorphism between the
functors �0 and �b : CovB → Ens. Conclude.

4.7 Van Kampen’s Theorem

The aim of this section is to find the fundamental group of a space B when B =
U1 ∪ U2 and the fundamental groups of U1, U2 and U1 ∩ U2 are known.

4.7.1 Categorical Preliminaries

Let G and H be two groups and f : H → G a homomorphism. For all G-sets X, let
f ∗(X) be the H-set obtained by making H act on X by h · x = f (h)x . This gives a
functor f ∗ : G-Ens→ H-Ens.

Proposition If f ∗ is an equivalence of categories, then f is an isomorphism.

Proof
(a) f ∗ essentially surjective ⇒ f injective. For any set X, all actions of H on X

stems from an action of G, and so the elements of Ker f act trivially. Taking X = H
and making H act by left translation, Ker f = {e} follows.

(b) f ∗ fully faithful ⇒ f surjective. For all G-sets X and Y, every H-morphism
from X to Y is a G-morphism. Take X = {x} and Y = G/ f (H). The map ϕ : X → Y
such that ϕ(X) is the class of the identity e is a H-morphism, hence a G-morphism,
and e is fixed by G. As G acts transitively on G/ f (H),

G/ f (H) = {e}, and f (H) = G. �
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4.7.2

If C1, C2, D are categories, R1 : C1 →D and R2 : C2 →D functors, define a
category C = C1 ×D C2 as follows: an object of C is a triplet (X1, X2, f ) where
X1 ∈ C1, X2 ∈ C2, and f : R1(X1) → R2(X2) is an isomorphism of D. A mor-
phism from C to (X1, X2, f ) in (Y1, Y2, g) is a pair (h1, h2), with h1 : X1 → Y1 a
morphism in C1, h2 : X2 → Y2 a morphism in C2, and with commuting diagram

R1(X1)
f � R2(X2)

R1(Y1)

h1∗
� g � R2(Y2)

h2∗
�

If

C1
�1 � C′

1

D
	 �

R
1�

D′

R ′
1�

C2
�2

�

R2�

C′
2

R
′
2

�

is a commutative diagram of functors, assign to it a functor � : C1 ×D C2 →
C′

1 ×D′ C′
2. If �1, �2 are ψ equivalences of categories, then so is �.

4.7.3

Let B be a locally connected space, U1, U2 subspaces of B, both open or both closed.
Assume that B = U1 ∪ U2 and set V = U1 ∩ U2 (if both Ui are open, then they are
locally connected and so is V, if they are closed, then U1, U2, and V have to be
assumed to be locally connected).

Proposition The functor α : CovB → CovU1 ×CovV CovU2 defined by α(X) =
(X|U1 , X|U2 , 1X|V) is an equivalence of categories.

Proof The functor α is fully faithful. Indeed, if X and Y are coverings of B and if
f1 : X|U1 → Y|U1 , f2 : X|U2 → Y|U2 are morphisms agreeing over V, then gluing
together f1 and f2 gives a morphism f from X to Y. (When U1 and U2 are closed,
the continuity of f follows from (4.1.11, Lemma 4.3).)

The functor α is essentially surjective. Let (X1, X2, f ) ∈ CovU1 ×CovV CovU2 .
Denote by X the space over B consisting of the quotient of the disjoint union X1 � X2
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by the equivalence relation identifying x with f (x) for x ∈ X1|V. The canonical
injection ι1 : X1 → X is a homeomorphism from X1 onto X|U1 . Indeed the canonical
injection X1 → X1 � X2 is clopen, and the canonical map X1 � X2 → X is open if
both Ui are open, and closed if they are both closed. Similarly for ι2.

We show that X is a covering of B. This is obvious if both Ui are open. Assume
they are closed and let b ∈ B. If b ∈ B− V, b is an interior point of one of the Ui ,
and X is a covering over a neighbourhood of b. Assume b ∈ V. Since V is locally
connected, there is a neighbourhood S of b in B such that T = S ∩ V is connected,
and such that X1|S1 and X2|S2 are trivial, with Si = S ∩ Ui . Let τi : Xi |Si → Si × Fi

be trivializations. We may assume that F1 = F2 = F and that the diagram

X1(b)
fb� X2(b)

F
� τ 2,

b
τ
1,b

�

commutes within to identification of F1 with F2 by τ2,b ◦ fb ◦ τ−1
1,b . Then the diagram

X1|T f � X2|T

T× F
� τ 2τ

1
�

commutes. Indeed τ2 ◦ f and τ1 are morphisms from X1|T to T× F agreeing over
b, hence at least at one point in each of the connected components (4.3.5). So gluing
together τ1 and τ2 gives a trivialization τ : XS → S× F; the continuity of τ and of
its inverse follows from (4.1.11, Lemma 4.3).

Then X ∈ CovB and α(X) ≈ (X1, X2, f ). �

4.7.4 Free Groups on Sets

Let X be a set. The free product L(X) = 
x∈XLx (2.5.2, Example 3), where, for all
x ∈ X, Lx = Z, is called the free group on X. For all x ∈ X, set ex = ιx (1) ∈ Lx .
The group L(X), equipped with the family (ex )x∈X, represents the functor G → GX,
in other words:

Universal property. For every group G and family (gx )x∈X of elements in G, there
is a unique homomorphism ϕ : L(X) → G such that, for all x ∈ X, ϕ(ex ) = gx .

Indeed
HomGr(L(X) ;G) =

∏

x∈X

HomGr(Lx ;G) = GX .
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The homomorphism ϕ is surjective if and only if (gx )x∈X generates G. If ϕ is bijective
(resp. injective), (gx )x∈X is said to be a basis (resp. a free family), and G a free group
if it has a basis.

4.7.5

We keep the notation of 4.7.3. Let b0 ∈ V, (Vλ)λ∈� the family of connected com-
ponents of V, with V0 the connected component of b0, and �∗ = �− {0}. Assume
that there is a universal covering of B.

Theorem If U1 and U2 are simply connected, then π1(B, b0) is isomorphic to the
free group over �∗.

More precisely, let X be a covering of B. Set F = X(b0) and let τ1 : X|U1 →
U1 × F and τ2 : X|U2 → U2 × F be the trivializations inducing the identity over b0.
Over V, τ2 ◦ τ−1

1 is an automorphism of V× F defining a permutation gX
b of F for all

b ∈ V. This permutation only depends on the connected component of b in V, and
we get a family (gX

λ )λ∈� of permutations of F. For all λ ∈ �, as X varies, gX
λ gives

an automorphism gλ of the functor X �→ X(b0) and hence an element of π1(B, b0).
Obviously g0 = e. We prove that:

Proposition Under the assumptions of the theorem, (gλ)λ∈�∗ is a basis for π1(B, b0)

as a (not necessarily commutative) group.

Proof Consider the diagram of functors

CovB

π1(B, b0)-Ens

� �

CovU1×CovV CovU2

α�
L-Ens

γ ∗
�

C
� δ

D

β�
� ε

where L is the free group over �∗, γ : L → π1(B, b0) the homomorphism defined
by γ(eλ) = gλ, C the category of pairs (F, ( fλ)λ∈�∗), where F is a set and fλ a
permutation of F for all λ, D the category of triplets (F1, F2, ( fλ)λ∈V), where F1 and
F2 are sets and fλ : F1 → F2 a bijection for λ; the functor δ assigns to a L-set F the
set F equipped with the permutations defined by eλ, the functor ε assigns to (F, ( fλ))
the object (F, F, ( fλ)), with f0 = 1F. The functor α is the one defined in 4.7.3, and
the functor β is defined as follows:

β(X1, X2, f ) = (F1, F2, ( fλ)), where F1 = X1(b0), F2 = X2(b0) ,
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fλ is the map x �→ τ2 ◦ τ−1
1 (b, x) for b ∈ Vλ, where τ1 : X1 → U1 × F1 and τ2 :

X2 → U2 × F2 are the trivializations inducing the identity over b0.
This diagram is easily seen to be commutative. By Proposition (4.7.3), the functor

α is an equivalence of categories. That δ and ε are equivalences follows readily, and
it is easily seen that so is β. As a result, γ∗ ◦� is an equivalence of categories.

The functor � is an equivalence by (4.6.8), and hence so is γ∗, and by Proposition
(4.7.1) γ is an isomorphism. �

4.7.6 Amalgamated Sums

Let G1, G2, H be groups, u1 : H → G1 and u2 : H → G2 homomorphisms. The sum

of G1 and G2 amalgamated by H, written G1
H

 G2, is the quotient Q = (G1 
 G2)/N,

where G1 
 G2 is the summation group of G1 and G2 and N the normal subgroup
generated by u1(h)u2(h−1), h ∈ H. Equip Q with the homomorphisms j1 : G1 → Q
and j2 : G2 → Q composed of the canonical injections G1 → G1 
 G2 and G2 →
G1 
 G2 and the canonical quotient map.

Universal property.
(a) The diagram

G1

H

u 1�

Q

j1�

G2

j 2
�u

2
�

is commutative.
(b) Let � be a group, f1 and f2 homomorphisms such that the diagram

G1

H

u 1�

�

f1�

G2

f 2
�u

2
�

commutes. Then there is a unique homomorphism g : Q → � such that g ◦ j1 = f1

and g ◦ j2 = f2.

Proof
(a) For all h ∈ H, u1(h)u2(h−1) ∈ N, and so j1 ◦ u1 = j2 ◦ u2.
(b) Define g : G1 
 G2 → � by g(x) = f1(x) if x ∈ G1 and g(x) = f2(x) if

x ∈ G2. For h ∈ H, g(u1(h)u2(h−1)) = f1 ◦ u1(h) f2 ◦ u2(h−1) = e, where e is the
identity element of �. Hence there is a homomorphism f from Q to �. As G1 and G2
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generate G1 
 G2, their images j1(G1) and j2(G2) generate Q and the homomorphism
f : Q → � thus constructed is the only one with the desired property. �

The universal property is equivalent to the statement that G1
H

 G2, equipped with

( j1, j2) represents the functor

� �→ Hom(G1, �)×Hom(H,�) Hom(G2, �) .

4.7.7

We keep the notation of 4.7.3. Let b0 ∈ B. Assume that there are universal pointed
coverings of (B, b0), (U1, b0), (U2, b0) and of (V, b0).

Theorem (Van Kampen) If V is connected, then π1(B, b0) is the sum of π1(U1, b0)

and π1(U2, b0) amalgamated by π1(V, b0).

More precisely, set G = π1(B, b0), Gi = π1(Ui , b0) and H = π1(V, b0). The
canonical inclusions define a commutative diagram.

G1

H

u 1�

G

v
1�

G2

v 2
�u

2
�

The theorem states that the homomorphism v : G1
H

 G2 → G defined by v1 and v2

is an isomorphism.

Proof Let U′
i be the connected component of b0 in Ui and B′ the connected compo-

nent of b0 in B. Then U′
1 ∪ U′

2 = B′ and U′
1 ∩ U′

2 = V and the fundamental groups
remain the same when Ui is replaced by U′

i and B by B′. Hence B and both Ui may
be assumed to be connected.

There is a commutative diagram of functors

CovB
θ � G-Ens

(G1
H

 G2)-Ens

v ∗
�

CovU1×CovV CovU2

α

�
�� G1-Ens×H-Ens G2-Ens

β

� � γ
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where θ(X) = X(b0), �(X1, X2, f ) = (X1(b0), X2(b0), fb0), α(X) = (X|U1 ,

X|U2 , I), β(F) = (F, F, I), γ(F) = (F, F, I). By Theorem (4.6.8), in this diagram,
θ is an equivalence of categories, and so is �. Clearly, this is also the case of γ.
By Proposition 4.7.3, α is an equivalence of categories. Hence so is v∗, and by
Proposition 4.7.1 v is an isomorphism. �

Exercises 4.7. (Van Kampen’s theorem)
1.—Let G1, G2, H be groups, u1 : H → G1 and u2 : H → G2 homomorphisms. Show

that the amalgamated sum G = G1
H

 G2 is generated by the union of the images of

G1 and G2.

2.—Let Sn be the unit sphere in R
n+1, Sn+ the upper hemisphere, i.e.

Sn
+ = {x = (x1, . . . , xn+1) ∈ Sn | xn+1 � 0} ,

and Sn− the lower one. Let X be a fibre bundle over Sn . Assume that the fibres X+ and
X− induced on Sn+ and Sn− are trivial (this condition can be shown to be necessarily
satisfied). Set s0 = (1, 0, . . . , 0), F = X(s0) and let x0 ∈ F.

The aim is to find π1(X, x0) assuming known π1(F, x0).

(a) Find π1(X+, x0) and π1(X−, x0) as well as π1(X0, x0), where

X0 = X+ ∩ X−

(consider the cases n = 2 and n � 3 separately).

(b) Find π1(X, x0) when n � 3.

c) Show that, if n = 2, then the group π1(X, x0) can be identified with the quotient
of π1(F, x0) by a cyclic subgroup contained in the centre.

3.—Let SOn be the group of direct linear isometries of R
n . The aim is to find π1(SOn).

(a) Show that SO2 is homeomorphic to S1.

(b) Let H denote the field of quaternions: it is a 4-dimensional vector space over
R with basis (1, i, j, k), and bilinear multiplication defined by

i2 = j2 = k2 = −1, i j = − j i = k, jk = −k j = i, ki = −ik = j .

This multiplication is associative, but not commutative. For

x = r + ai + bj + ck, set ‖x‖ =
√

r2 + a2 + b2 + c2 ;

Then ‖xy‖ = ‖x‖ · ‖y‖, and as a result, H is a skew field. Let G be the group of the
quaternions having norm 1. Show that for all x ∈ G, the inner automorphism of H
defined by x induces an isometry of the vector subspace of H generated by (i, j, k).
Deduce a homomorphism from G to SO3. Show that it is surjective. Give its kernel.
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(c) Show that π1(SO3) = Z/(2).

(d) Show that, for all n � 3, π1(SOn) = Z/(2) (use Exercise 2). Deduce that for
all n � 2, there is a topological group Spinn , unique up to isomorphism, which is a
connected 2-fold covering of SOn .

4.—Show that in Theorem 4.7.7, the assumption that there is a universal covering of
(B, b0) is a consequence of the other assumptions.

5.—With the notation of 4.7.6, assume that u1 and u2 are injective. Show that j1 and
j2 are injective.

6.—Let G and H be two groups.

(a) Show that, if the categories G-Ens and H-Ens are equivalent, then the groups
G and H are isomorphic.

(b) Are all equivalences from H-Ens to G-Ens of the form f ∗, where f : G → H
is a homomorphism?

7.—Let E be the set of pairs (x, y) of orthonormal vectors of R
3, i.e. with ‖x‖ =

‖y‖ = 1, (x · y) = 0. Equip E with the projection π : (x, y) �→ x from E onto S2.

(a) Show that π is a fibration with fibre S1.

(b) Show that E is homeomorphic to SO3.

(c) Assuming there is a continuous section σ : S2 → E of π, show that E is homeo-
morphic to S2 × S1. With this assumption, determine π1(E). Compare with Exercise
3, (c). Conclude.

(d) A continuous tangent vector field on S2 is a continuous map ξ : S2 → R
3 such

that, for all x ∈ S2, ξ(x) is tangent to S2 at x , i.e. orthogonal to x . Show that there is
a point of S2 at which the continuous tangent vector field vanishes.

(e) A continuous normal tangent vector field on S2 is a continuous map
ν : S2 → R

3 such that, for all x ∈ S2, ν(x) is normal to S2 at x , i.e. proportional
to x . Consider the space T of continuous tangent vector fields and the space N of
continuous normal tangent vector fields as modules over the ring A of continuous
functions S2 → R. Show that N is free of rank 1 and that N ⊕T is free of rank
3. Deduce that T is projective. Show that T is not free.

4.8 Graphs. Subgroups of Free Groups

4.8.1 Graphs

A simple graph is a pair (S, A), where S is a set and A a subset of S× S defining a
reflexive and symmetric relation. In this chapter, we will simply use the term graph.
In chapter 7 we will give a broader definition. The points of S are called vertices
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of the graph. Two vertices s and s ′ are said to be connected if (s, s ′) ∈ A. If (S, A)

is a graph, then its geometric realization is defined as follows: consider the vector
space R

(S) equipped with the norm x �→∑ |xs |, and embed S in R
(S) by identifying

s with the element of the canonical basis having index s. For s, t ∈ S, let [s, t] be
the segment with endpoints s and t , i.e. the set of (1− θ)s + θt for θ ∈ [0, 1]. The
geometric realization of (S, A) is the space

|S, A| =
⋃

(s,t)∈A

[s, t] ,

equipped with the distance induced by the norm.
The segments [s, t] with (s, t) ∈ A are called the edges. If s, t , s ′, t ′ are distinct

points,

[s, t] = {s} if t = s, [s, t] = [t, s], [s, t] ∩ [s, t ′] = {s} if t �= t ′ ,

and
[s, t] ∩ [s ′, t ′] = ∅ .

More precisely, if
[s, t] ∩ [s ′, t ′] = ∅ ,

then
(∀x ∈ [s, t]) (∀x ′ ∈ [s ′, t ′]) ‖x − x ′‖ = 2 .

For s ∈ S, the union of the edges of the graph having s as an endpoint is called the
star of s. It is a contractible neighbourhood of s in |S, A|, hence simply connected
(4.3.17, Corollary 4.6).

Let (S, A) and (S′, A′) be two graphs. A morphism from (S, A) to (S′, A′) is a
map f from S to S′ such that f × f : S× S → S′ × S′ maps A to A′. Then there is
continuous map f∗ from |S, A| to |S′, A′| corresponding to f . For S ⊂ S′ and A ⊂ A′,
(S, A) is said to be a subgraph of (S′, A′); then |S, A| is a subspace of |S′, A′|with the
induced metric. Let (S, A) and (T, B) be two graphs, (S′, A′) a subgraph of (S, A)

and f : (T, B) → (S, A) a morphism. Set (T′, B′) = f −1(S′, A′); then

|T′, B′| = f −1
∗ (|S′, A′|) .

If G is a graph, then its geometric realization |G| is a locally connected space, and
every connected component of |G| is the geometric realization of a subgraph of G.
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4.8.2

Proposition and Definition Let (S, A) and (T, B) be two graphs and ρ : (T, B) →
(S, A) a morphism. |T, B| together with ρ∗ is a covering of |S, A| if and only if

(∀(x, x ′) ∈ A) (∀y ∈ T, ρ(y) = x) (∃�� y′ ∈ T) ρ(y′) = x ′ et (y, y′) ∈ B .

If these conditions hold, then (T, B) together with ρ is said to be a covering of (S, A).

Proof Suppose it is a covering. The connected component of y in ρ−1∗ ([x, x ′]) is of
the form |T′, B′|, where (T′, B′) is a subgraph of (T, B), and ρ∗ induces a homeo-
morphism from |T′, B′| onto [x, x ′]. In particular, ρ injects T′ into {x, x ′}, and so T′
has at most two points. If x �= x ′, T′ has two points since |T′, B′| is homeomorphic
to [0, 1]; these are y and a point y′ with the desired property. If x = x ′, then y′ = y.

Conversely, let Tx be the inverse image of x in T. Two distinct vertices y1 and y2

of Tx are never connected, for otherwise (y1, y1) and (y2, y2) would be two coverings
distinct from (x, x).

The union of all [x, x ′[with x ′ is connected x is called the open star of x and written
Ux . Then ρ−1(Ux ) =⋃

y∈Tx
Uy . Indeed, let z ∈ |T, B| be such that ρ(z) ∈ [x, x ′[. If

z is a vertex, then ρ(z) = x ; if z ∈ ]y, y′[, one of the points y, y′, say y, projects onto
x , and z ∈ Uy and y ∈ Tx .

For all y ∈ Tx , the assumption implies that ρ induces an isomorphism from the
star of y onto the star of x . The same holds for open stars.

Let y1 and y2 be two distinct points of Tx . Then the stars of y1 and y2 are disjoint.
Indeed, y1 and y2 are not connected, and if there was a vertex z connected to y1 and
to y2, then (z, y1) and (z, y2) would be two coverings of (ρ(z), x). Moreover, the
distance of these stars is 2.

Hence ρ−1(Ux ) is a trivial covering of Ux . �

4.8.3

Proposition Let (S, A) be a graph. The functor ((T, B), ρ) �→ (|T, B|, ρ∗) defines
an equivalence from the category of coverings of (S, A) onto the category of coverings
of |S, A|.
Proof

(a) The functor is essentially surjective. Set X = |S, A| and let Y be a covering of
X. Denote by p the projection of Y onto X, and set S′ = p−1(S). Define A′ ⊂ S′ × S′
by (s ′, t ′) ∈ A′ ⇔ (s, t) ∈ A and s ′ and t ′ are in the same connected component of
p−1[s, t[, where s = p(s ′) and t = p(t ′). Set X′ = |S′, A′|. The map p induces a
map from S′ to S. It is a morphism from (S′, A′) to (S, A), hence there is a map
p∗ : X′ → X.
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Define ϕ : X′ → Y as follows: for (s ′, t ′) ∈ A′, set s = p(s ′) and t = p(t ′), then
Y|[s,t] is a trivial covering since [s, t] is simply connected, and so there is a unique
continuous section σ of Y over [s, t] such that σ(s) = s ′. Then σ(t) = t ′ by definition
of A′. Set ϕs ′,t ′ = σ ◦ p∗|[s ′,t ′]. Gluing together all ϕs ′,t ′ gives a map ϕ commuting
with the projections onto X.

Show that ϕ is a homeomorphism. As the interiors of the stars covering X, it
suffices to show that for every star V in X, ϕV : X′|V → Y|V is a homeomorphism.
As V is contractible, hence simply connected, Y|V is a trivial covering. Thus the
question reduces to the case of a trivial covering.

It may then be assumed that Y = X× F for some discrete set F. Equip Y with
the distance defined by

d((x, u), (y, u)) = d(x, y) and d((x, u), (y, v)) = 2 if u �= v .

As can be checked, ϕ is an isometry, and Y is isomorphic to |S′, A′|.
(b) The functor is fully faithful. Let (T, B) and (T′, B′) be coverings of (S, A)

and f : |T, B| → |T′, B′| a covering morphism of |S, A|. We show that there a
unique morphism g : (T, B) → (T′, B′) inducing f . For s ∈ S, two distinct points of
p−1(s) are never connected since p−1∗ (s) is discrete. Hence p−1∗ (S) = T. Similarly
p′−1
∗ (S) = T′, and f (T) ⊂ T′. Let g : T → T′ be the map induced by f .
Let t1 and t2 be two vertices of T; set s1 = p(t1) and s2 = p(t2). Then, t1 and t2

are connected if and only if s1 and s2 are connected and t1 and t2 are in the same
connected component in p−1∗ ([s1, s2]). Hence, if t1 and t2 are connected, so are f (t1)
and f (t2); hence g is a morphism from (T, B) to (T′, B′). The covering (topological)
morphisms g∗ and f agree on the vertices, and hence at least at one point in each
connected component of |T, B|; hence they are equal. Uniqueness is obvious. �

4.8.4

Definition A tree is a graph whose geometric realization is simply connected.

Proposition Let (S, A) be a graph and (Si , Ai )i∈I a nonempty increasing directed
family of subgraphs. Assume that (S, A) is the union of (Si , Ai ), i.e. S =⋃

Si and
A =⋃

Ai , and that (Si , Ai ) is a tree for all i . Then (S, A) is a tree.

Proof Let s ∈ S. If necessary replacing I by a cofinal set, we may assume that s ∈ Si

for all i . Then |S, A| is the union of the connected |Si , Ai | containing s, and so is
connected.

Let Y be a covering of |S, A| and t ∈ Y(s). We may assume Y = |T, B| for
some covering (T, B) of (S, A). Then t ∈ T. For all i , there is a unique continuous
section of |T, B| over |Si , Ai | passing through t . By (4.8.3), this section stems from
a unique morphism ϕi : (Si , Ai ) → (T, B). By uniqueness, gluing together these
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morphisms gives a morphism ϕ : (S, A) → (T, B) and ϕ∗ : |S, A| → |T, B| is a
continuous section passing through t . By (4.3.11), Y is a trivial covering. �

4.8.5

A graph is connected if so is its geometric realization.

Proposition Every connected graph (S, A) has a spanning tree, i.e. a subgraph
(T, B) with T = S.

Proof By the previous proposition, the set of trees in (S, A) is inductive. Hence, by
Zorn’s theorem, there is a maximal tree (T, B). We show that T = S. If S− T �= ∅,
there exists (t0, t ′0) ∈ A with t0 ∈ T and t ′0 ∈ S− T; otherwise (S, A) would not be
connected. Set

T′ = T ∪ {t ′0} and B′ = B ∪ {(t0, t ′0), (t
′
0, t0), (t

′
0, t ′0)} .

We show that (T′, B′) is a tree, which will contradict maximality.
For θ ∈ [0, 1] and t ∈ T′, set

h(θ, t) = t if t �= t ′0 and h(θ, t ′0) = (1− θ)t0 + θt ′0 .

For each value of θ, extend h to a continuous map from [0, 1] × R
(T′) to R

(T′) by
linearity. This map can be checked to be continuous and to induce a homotopy (4.3.16)
between a retraction from |T′, B′| onto |T, B| and the identity of |T′, B′|. Therefore
|T, B| is a deformation retract of |T′, B′|, of the same homotopy type (4.3.16) as
|T, B|, and so is simply connected. �

4.8.6

Theorem Let (S, A) be a graph and s0 ∈ S. Then π1(|S, A|, s0) is a free group.

Replacing (S, A) by the connected component of s0 if necessary, which leaves π1

unchanged, (S, A) can be assumed to be connected. Then, by the previous proposi-
tion, there is a tree (S, B). As B contains all (s, s), A − B = C � C′, where C and
C′ are mutually symmetric sets, i.e. C′ = {(x ′, x) | (x, x ′) ∈ C}. The theorem then
follows from the more precise following proposition:

Proposition The group π1(|S, A|, s0) has a basis indexed by C.

Proof Set
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U1 = |S, A| −
⋃

(x,x ′)∈C

] x + x ′

2
, x ′

[
= |S, B| ∪

⋃

(x,x ′)∈C

[
x,

x + x ′

2

]

and define U2 likewise by replacing C by C′. The sets U1 and U2 are closed in |S, A|
since

]
x+x ′

2 , x ′
[

is open for all (x, x ′), and their union is |S, A|.
The space U1 is of the same homotopy as |S, B|. Indeed, define a retraction

ρ : U1 → |S, B| by ρ(x) = x for x ∈ |S, B| and ρ(x) = s for

x ∈
[
s,

s + s ′

2

]
, (s, s ′) ∈ C .

This retraction is continuous at each vertex since ‖ρ(x)− s‖ � ‖x − s‖ for all ver-
tices s and all x ∈ U1 such that ‖x − s‖ < 1; it is continuous at each point that is
not a vertex since in the neighbourhood of such a point it agrees with a constant
map, the identity say. The map (θ, x) �→ (1− θ)ρ(x)+ θx from [0, 1] × U1 to U1

is a homotopy between ρ and 1U1 , and so U1 deformation retracts onto |S, B|. In
particular, U1 is simply connected. So is U2.

The space U1 ∩ U2 consists of the connected subset |S, B| and of the isolated
points x+x ′

2 for (x, x ′) ∈ C. By (4.7.5, Theorem) the group π1(|S, A|, s0) has a basis
indexed by C. �

4.8.7

Proposition Every free group is isomorphic to a group of the form π1(|S, A|, s0),
where (S, A) is a connected graph and s0 ∈ S.

Proof Let � be a set and L the free group on � (4.7.4). Define a graph (S, A) by
setting S = {0} ∪ {1, 2} ×�, and connecting 0 to all points and (1,λ) to (2,λ) for
all λ ∈ �. Connecting only 0 to all points gives a tree (S, B). In the construction of
4.8.6, we may take C = {((1,λ), (2,λ))}λ∈�, which can be identified with �, and
so π1(|S, A|, 0) is isomorphic to L. �

4.8.8

Lemma Let (S, A) be a connected graph. Then the space |S, A| has a simply con-
nected covering.

Proof The space |S, A| is locally contractible. Indeed, if s is a vertex, then every
ball centered at s with radius <2 is contractible, and a point which is not a vertex
has a fundamental system of neighbourhoods consisting of segments. Hence |S, A|
must necessarily be locally connected, and the lemma follows by (4.4.5). �
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4.8.9

Theorem All subgroups of a free group are free.

Proof Let L be a free group and H a subgroup of L. By (4.8.7), there is a connected
graph (S, A) and s0 ∈ S such that π1(|S, A|, s0) is isomorphic to L. Identify this
fundamental group with L by an isomorphism. By (4.6.11, (a)), there is connected
pointed covering (X, x0) of (|S, A|, s0) such that π1(X, x0) is isomorphic to H. By
(4.8.3), the space X is homeomorphic to the geometric realization of a graph, and so
H = π1(X, x0) is free by (4.8.6). �

Remark We have also proved (3.5.1) that a subgroup of a commutative group is
free, i.e. of a free Z-module is a free Z-module. These two results only appear to
be similar. For example, a submodule of a free Z-module of rank n is free of rank
�n, whereas a free group on a set of two elements contains subgroups that are not
finitely generated (4.8, Exercises 3 and 4).

Exercises 4.8. (Graphs)
1.—Let (S, A) be a graph. Consider the topology T0 on |S, A| defined as follows: a
subset U in |S, A| is open with respect to T0 if and only if U ∩ [s, t] is open in [s, t]
for all (s, t) ∈ A.

(a) Show that the topology T0 is finer than the topology T defined in (4.8.1), and
that these topologies agree if and only if (S, A) is locally finite, i.e. if each vertex is
only connected to finitely many vertices.

(b) Let s0 ∈ S. Show that the identity map

i : (|S, A|,T0) → (|S, A|,T )

induces an isomorphism on the fundamental group with basepoint s0. Is this map a
homotopy equivalence?

2.—Let G be a free group. Show that any two bases of G are equipotent (consider
the Abelianization of G, i.e. the quotient de G by the normal subgroup generated by
the commutators).

3.—Consider the lemniscate B = {z | |1− z2| = 1} in C.

(a) Draw B. Show that it is homeomorphic to the geometric realization of a graph
and give the latter’s Cartesian diagram.

(b) Consider the covering X over B defined by the function log(1− z), i.e. X =
{(z, x) ∈ C

2 | z ∈ B, ex = 1− z} equipped with the projection (z, x) �→ z. Describe
X.
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(c) Describe the pointed covering Q of B whose fundamental group can be iden-
tified with the commutator group of π1(B, 0).

(d) Consider the polynomials P1 = 3X−X3

2 and P2 = 1− 4X2 + 2X4. Show that
P−1

1 (B) and P−1
2 (B) are coverings of B. Describe these coverings.

(e) Which of the above coverings are Galois?

4.—Let L(a, b) be a free group on a set {a, b} with two elements.

(a) Let f : L(a, b) → Z be the homomorphism defined by f (a) = 1, f (b) = 0.
Show that (an · b · a−n)n∈Z is a basis for the kernel of f .

(b) Let g : L(a, b) → Z
2 be defined by g(a) = (1, 0), g(b) = (0, 1). Show that

the kernel of g is the commutator group of L(a, b) with basis (a p · bq · a · b · a−1 ·
b−1 · b−q · a−p)p,q∈Z, or (a p · bq · a · b−q · a−p−1)p,q∈Z.

5.—Show that any countable graph is of homotopy equivalent to a graph all of whose
vertices are connected to at most three others.

6.—Show that all trees are contractible.

7.—Let U ⊂ R
2 be an open set R

2 − K for some compact not necessarily locally
connected set K, and let x0 ∈ U. The aims is to show that π1(U, x0) is a free group
with countable basis.

(a) Let P = [a, b] × [c, d] be a rectangle in R
2 and K a compact subset in the

interior of P. Show that there is a sequence (Qn) of rectangles such that

(i) P − K =⋃
Qn;

(ii)
◦
Qi ∩

◦
Q j = ∅ for j �= i ;

(iii) each a ∈ P − K has a neighbourhood meeting only finitely many Qi .

Show that, if K �= ∅, then the rectangles Qi can be ordered so that

(∀n) ∂Qn �⊂
n−1⋃

0

Qi ,

where ∂Qn denotes the boundary of Qn .

(b) Let (Qn) be a sequence of rectangles satisfying the conditions of (a), and for
all n, let k(n) be the smallest k such that Qk ∩ Qn �= ∅. Show that k(n) tends to
infinity as n tends to infinity.

(c) Let A ⊂ R
2 be a finite union of rectangles Qi satisfying condition (ii) of (a),

and Q a rectangle such that Q ∩ A⊂
�=

∂Q. Set A′ = A ∪ Q. Let � = (I, T) be a graph,

where I is the set of indices i , and

T ⊂ {(i, j) | Qi ∩ Q j �= ∅} .
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Assume that there is a homeomorphism embedding the geometric realization of �

in A under a such that the image of each vertex i is contained in the interior of the
rectangle Qi , and the image of each edge meets Qi along a line segment. Assume
that A deformation retracts onto |�|; let ρ be a retraction and h a homotopy from 1A

to ι ◦ ρ. Show that there is a graph �′ containing � and such that the same situation
holds for A′. Show that ρ′ and h′ can then be chosen in such a way that h′ agrees
with h except on Qi such that Qi ∩ Q �= ∅.

(d) Keeping the notation of (a), show that P − K deformation retracts onto the
geometric realization of a countable graph. Deduce that the same holds for R

2 − K.
Conclude.

(e) Show that, if U is connected and if K only has finitely many connected com-
ponents, then π1(U, x0) has a basis with the same number of elements as the number
of connected components of K. Does this still hold if U is not connected? What if K
has infinitely many connected components? (Take K to be the Cantor set in R ⊂ R

2.)

(f) If U is an arbitrary open subset of R
2 and x0 ∈ U, is the group π1(U, x0) free?

8.—Let K be a compact subset of R
2.

(a) Show that the category CovK can be identified with lim−→CovU, the inductive
limit being that of neighbourhoods U of K.

(b) Show that K is simply connected if and only if its complement is connected.

4.9 Loops

4.9.1 Paths

Let B be a topological space, and b, b′ ∈ B. A path from b to b′ in B is a continuous
map c from an interval [0, a] ⊂ R+ to B such that c(0) = b and c(a) = b′. The
length of the path is defined to be a. Let c0 and c1 be two paths from b to b′. A
homotopy from c0 to c1 is a family (hs)s∈[0,1] of paths from b to b′, such that h0 = c0,
h1 = c1, such that the length as of hs depends continuously on s and that the map
(s, t) �→ hs(t) from {(s, t) | s ∈ [0, 1] and t ∈ [0, as]} to B is continuous. If there is
a homotopy from c0 to c1, they are said to be homotopic and we write c0 � c1 . The
homotopy relation between paths from b to b′ is an equivalence relation. The set of
homotopy classes of paths from b to b′ is written S(b, b′).

4.9.2 Standard Paths

A path of length 1 is said to be standard.
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If c0 and c1 are two homotopic standard paths, then there is a standard homotopy
from c0 to c1, i.e. a homotopy (hs) such that hs is standard for all s, or equiva-
lently a continuous map h : [0, 1] × [0, 1] → B such that h(s, 0) = b, h(s, 1) = b′,
h(0, t) = c0(t) and h(1, t) = c1(t) for s, t ∈ [0, 1]. Indeed, if (hs) is a homotopy,
h̄s(t) = hs(ast) defines a standard homotopy (h̄s).

Moreover, every path is homotopic to a standard path. Indeed, if c is a path of

length a, define a homotopy (hs) from c to a standard path by hs(t) = c
(

at
s+(1−s)a

)
;

to check continuity, note that, for a �= 0, the denominator does not vanish, and for
a = 0, the function h is constant.

Hence, S(b, b′) can be defined as the set of standard homotopy classes of standard
paths from b to b′.

4.9.3 Juxtaposition

Let b, b′, b′′ ∈ B, c a path from b to b′ of length a and c′ a path from b′ to b′′ of
length a′. Define a path c′′ from b to b′′ of length a + a′ by

c′′(t) = c(t) for t ∈ [0, a] and c′′(t) = c′(t − a) for t ∈ [a, a + a′] .

We say that c′′ is the juxtaposition of c and c′, and is written c′ · c.
Juxtaposition is associative in the following sense: Let b, b′, b′′, b′′′ ∈ B, c a path

from b to b′, c′ from b′ to b′′ and c′′ from b′′ to b′′′; then

(c′′ · c′) · c = c′′ · (c′ · c) .

For all b ∈ B, the path eb of zero length defined by eb(0) = b is the identity in the
following sense: c · eb = c for all paths c with initial point b and eb · c = c for all
paths c with endpoint b.

Juxtaposition is compatible with the homotopy relation: if c0 and c1 are two
homotopic paths from b to b′, c′0 and c′1 two homotopic paths from b′ to b′′, then the
paths c′0 · c0 and c′1 · c1 are homotopic. Thus there is a well-defined map (γ, γ′) �→
γ′ · γ, also called juxtaposition from S(b, b′)× S(b′, b′′) to S(b, b′′). This law is
associative is the above sense, and for all b the class εb of eb is the identity. Moreover,
for all γ ∈ S(b, b′), there is an inverse γ−1 ∈ S(b′, b): let c be a representative of γ
of length a, define c∗ by c∗(t) = c(a − t), c∗ is a path from b′ to b; setting hs =
(c|[0,sa])∗ · c|[0,sa], this gives a homotopy (hs)s∈[0,1] from eb to c∗ · c and a similar
homotopy from eb′ to c · c∗; so γ−1 · γ = εb and γ · γ−1 = εb′ .
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4.9.4 Lifting of Paths

Proposition Let X be a covering of B, b, b′ ∈ B, x ∈ X(b) and c a path from b to
b′. Then there is a unique path c̃ in X with initial point x and such that π ◦ c̃ = c.

Proof Let a be the length of c. The path c is a map from [0, a] to B and c∗X is a
covering of [0, a], which is trivial since [0, a] is simply connected. Hence there is a
unique section of c∗X passing through (0, x), and a unique lifting c̃ corresponding
to it with the desired property. �

4.9.5

Proposition and Definition Let X be a covering of B, γ ∈ S(b, b′) and x ∈ X(b).
Choose a representative c of γ and let c̃ be the unique lifting of c with initial point x.
Then the endpoint x ′ of c̃ in X(b′) does not depend on the choice of c. It is denoted
by γ ·X x, or simply γ · x.

Proof Let c0 and c1 be two homotopic paths from b to b′ with respective lengths a0

and a1, and let (hs) be a homotopy from c0 to c1. This homotopy defines a contin-
uous map h : � → B, where � = {(s, t) | s ∈ [0, 1] and t ∈ [0, as]}. The space �

deformation retracts onto [0, 1], so is simply connected, and h∗X is a trivial lifting
of �. Hence there is a continuous section of h∗X passing through (0, 0, x), and thus
a continuous map

h̃ : � → X such that h̃(0, 0) = x and π ◦ h̃ = h .

Since t �→ h̃(0, t) is a lifting of c0 with initial point x , h̃(0, t) = c̃0(t); and h̃(s, 0) =
x for s ∈ [0, 1] since s �→ h̃(s, 0) is a continuous map from the connected interval
[0, 1] to the discrete set X(b). In particular h̃(1, 0) = x . Since t �→ h̃(1, t) is a lifting
of c1 with initial point x , h̃(1, t) = c̃1(t). The map s �→ h̃(s, as) is continuous from
the connected interval [0, 1] to the discrete set X(b′), and so is constant and

c̃0(a0) = h̃(0, a0) = h̃(1, a1) = c̃1(a1) .

�

Remark Let x ∈ X(b), γ ∈ S(b, b′) and γ′ ∈ S(b′, b′′). Then

(γ′ · γ) · x = γ′ · (γ · x) .

This follows readily from the definitions.
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4.9.6 Poincaré Group

Let (B, b0) be a pointed space. A loop in (B, b0) is a path in B from b0 to b0. The set
S(b0, b0) of homotopy classes of loops is a group with respect to the juxtaposition
law called the singular fundamental group or the Poincaré group of (B, b0). Il will
be denoted it by π̃1(B, b0).

If b0, b1 ∈ B are in the same arc-connected component, then the groups π̃1(B, b0)

and π̃1(B, b1) are isomorphic. Indeed, for all β ∈ S(b0, b1), the map γ �→ β · γ · β−1

is an isomorphism from π̃1(B, b0) onto π̃1(B, b1).
B is said to be simply arc-connected if it is arc-connected and there exists b0 ∈ B

such that π̃1(B, b0) = {e}; if this is the case then, for all b ∈ B, π̃1(B, b) = {e}. B is
said to be locally simply arc-connected if all points of B have a fundamental system
of simply arc-connected neighbourhoods.

4.9.7 Functoriality

Let f : (B, b0) → (B′, b′0) be a pointed space morphism. For all loops c in (B, b0),
f ◦ c is a loop in (B′, b′0) and the map c �→ f ◦ c is compatible with the homo-
topy relation and with juxtaposition. Hence f∗ : π̃1(B, b0) → π̃1(B′, b′0) is a group
homomorphism.

Together with f �→ f∗, the map π̃1 is a functor from the category of pointed est
spaces to the category of groups. This functor commutes with products.

4.9.8 Poincaré Group of a Product

Proposition Let (B, b0) and (B′, b′0) be pointed topological spaces. The homomor-
phism

π̃1(B× B′, (b0, b′0)) → π̃1(B, b0)× π̃1(B
′, b′0)

defined by the projections is an isomorphism.

Proof A standard loop in (B× B′, (b0, b′0)) is given by a pair (γ, γ′), where γ (resp.
γ′) is a standard loop in (B, b0) (resp. (B′, b′0)); similarly a standard homotopy
in (B× B′, (b0, b′0)) is given by a pair of standard homotopies. The proposition
follows. �
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4.9.9 The Poincaré Group and the Fundamental Group

For any covering X of B, the map (γ, x) �→ γ · x is an action of the group
π̃1(B, b0) on X(b0). In particular, for all γ ∈ π̃1(B, b0), the map γX : x �→ γ · x
is a permutation of X(b0). If f : X → X′ is a covering morphism of B, then
the map fb0 : X(b0) → X′(b0) is compatible with the actions of π̃1(B, b0), i.e.
f (γ · x) = γ · f (x) for x ∈ X(b0) and γ ∈ π̃1(B, b0). Hence the maps γX form an
automorphism of the functor X �→ X(b0), and so is an element γ. ∈ π1(B, b0). The
map ε : γ �→ γ. from π̃1(B, b0) to π1(B, b0) is a group homomorphism.

We aim to prove the following result:

Theorem Let B be a locally simply arc-connected space and b0 ∈ B. Then ε :
π̃1(B, b0) → π1(B, b0) is an isomorphism.

This theorem will be proved in 4.9.14. Surjectivity is easy (4.9.10). To prove
injectivity, the existence of a covering X of (B, b0) such that γ acts non trivially
on X(b0), for nonzero elements γ ∈ π̃1(B, b0) needs to be shown. The universal
covering satisfies this property, but this will be more clearly seen by considering a
different construction of the universal covering from that given in section 4.1.

4.9.10 Surjectivity

Proposition Let (B, b0) be a locally simply arc-connected pointed space having a
universal covering. Then ε is surjective.

Proof Let γ ∈ π1(B, b0) and (E, t) be a universal pointed covering of (B, b0); set
u = γE(t). Since B is locally simply arc-connected, so is E, and as E is connected,
it is arc-connected. Hence there is a path c from t to u in E, and p ◦ c is a loop
in (B, b0), where p is the projection E → B. Writing α for the class of p ◦ c in
π̃1(B, b0), α · t = u, and so ε(α)(t) = u = γ(t); thus ε(α) = γ since π1(B, b0) acts
simply transitively on E(b0) by (4.6.2). �

4.9.11

Proposition All locally arc-connected, simply arc-connected spaces are simply con-
nected.

Proof Since all coverings of B are sums of connected coverings, it suffices to shows
that every connected covering is trivial. Let X be a connected covering of B, b ∈ B,
x, x ′ ∈ X(b). Since X is locally arc-connected and connected, it is arc-connected,
and so there is a path c from x to x ′, and p ◦ c is a loop in (B, b). Writing α for the
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class of p ◦ c in π̃1(B, b), α · x = x ′; however α = e, so x = x ′. Hence X has degree
1, and so is trivial. �

Corollary All connected, locally simply arc-connected spaces have a simply con-
nected covering.

Indeed by the previous proposition, such a space is locally simply connected, and
so the result follows from Theorem 4.4.5.

4.9.12 Construction of Universal Coverings as Spaces of
Paths

Let (B, b0) be a locally simply arc-connected pointed space. By the previous corollary
it has a universal covering. To prove injectivity in Theorem 4.9.9, we give a new
construction of this universal covering.

For all b ∈ B, let S(b) = S(b0, b) be the set of homotopy classes of paths from
b0 to b. Set S =⋃

b∈B S(b), and let p be the map from S to B sending S(b) to b.
For all simply arc-connected open subset U of B, define an equivalence relation

∼U on S |U as follows: let γ, γ′ ∈ S|U, b = p(γ) and b′ = p(γ′). All paths in U
from b to b′ are homotopic since U is simply arc-connected; let β ∈ S(b, b′) be the
unique class containing the paths from b to b′ in U. We write γ ∼U γ′ if and only if
β · γ = γ′. Set FU = S|U /∼U and let χ denote the canonical map S|U → FU.

Lemma (a) The map τU : S|U → U × FU defined by τU(γ) = (p(γ),χ(γ)) is bijec-
tive.

(b) If V ⊂ U is simply arc-connected and open, then the map ι : FV → FU induced
by the canonical injection SV → SU is bijective.

Proof
(a) Injectivity: let γ, γ′ ∈ S|U such that τU(γ) = τU(γ′). Then p(γ) = p(γ′) and

γ′ = β · γ with β ∈ π̃1(U, p(γ)). Since U is simply connected, β = e and γ = γ′.
Surjectivity: let (b, f ) ∈ U × FU, and γ be a representative of f . Set b′ = p(γ).

Let β′ ∈ S(b, b′) be the class containing the paths from b to b′ in U. Then τU(β′ · γ) =
(b, f ).

(b) Let b ∈ V. There is a commutative diagram

S(b)

FV
ι �

�
τV,b

FU

τ
U
,b
�

By (a), τU and τV are bijective, and hence so is ι. �



4.9 Loops 251

Topology on S For every simply arc-connected U, equip FU with the discrete topol-
ogy and U × FU with the product topology. Let TU be the topology on S|U obtained
by transferring that of U × FU by τU. If V is an open simply arc-connected subset
of U, the lemma implies that TV is induced by TU. If U and U′ are two simply arc-
connected sets, then U ∩ U′ can be covered by simply arc-connected Vλ, and for all
λ, TU and TU′ induce the same topology TVλ

on S|Vλ
. Hence, by the topology gluing

lemma (4.4.6, Gluing lemma) TU and TU′ induce the same topology on S|U∩U′ . This
lemma also tells us that there is a unique topology T on S inducing TU on S|U for
any simply arc-connected cover U.

Equipped with the topology T and the projection p, S is a covering of B. We will
see in subsection 4.9.15 that this covering is universal.

4.9.13

Proposition With the notation of 4.9.12, the action of π̃1(B, b0) on S(b0) is simply
transitive.

Proof As S(b0) = π̃1(B, b0), we show that π̃1(B, b0) acts on itself by left transla-
tions. More precisely, for γ ∈ π̃1(B, b0) and α ∈ S(b0), we show that γ ·S α defined
in (4.9.5) is equal to γ · α, defined by juxtaposition. More generally, we show that
for b ∈ B, b′ ∈ B, α ∈ S(b) and γ ∈ S(b, b′), γ ·S α = γ · α.

Suppose first that γ is represented by a path c of length a contained in a simply
arc-connected open subset U of B. Define c̃ : [0, a] → S by c̃(t) = γt · α, where γt

is the homotopy class of c |[0,t]. Then p ◦ c̃ = c. We check that c̃ is continuous. For
this, it suffices to check that τU ◦ c̃ is continuous. Now, τU = (p,χ), p ◦ c̃ = c is
continuous, and χ ◦ c̃ is constant. Indeed c̃(t) ∼

U
α since γt is the class in S(b, c(t))

of paths contained in U. Hence, c̃ is the lifting of c in S with initial point α, and
γ ·S α = c(α) = γ · α.

By the subdivision lemma (Proposition 4.1.10), all paths can be obtained by
juxtaposition of paths contained in a simply arc-connected open set. So the result
holds for all γ. �

4.9.14 Proof of Theorem 4.9.9

Let (B, b0) be a locally simply arc-connected pointed space. By (4.9.11, Corollary),
the connected component of b0 has a universal covering; so (B, b0) has a universal
pointed cover. Moreover B is locally arc-connected, and so ε is surjective by (4.9.10,
Proposition).

Let γ be an identity element in π̃1(B, b0). By (4.9.13, Proposition), γ acts non
trivially on S(b0); so ε(γ) �= e, and ε is injective. �
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4.9.15

Corollary With the notation of (4.9.12), S is a universal covering of B.

Proof If necessary replacing B by the connected component of b0, B can be assumed
to be connected. By (4.9.11, Corollary), B has a universal covering E. The funda-
mental group π1(B, b0) acts simply transitively on E(b0). By Theorem 4.9.9 and
Proposition 4.9.13, π1(B, b0) also acts simply transitively on S(b0). The π1(B, b0)-
sets S(b0) and E(b0) are therefore isomorphic. By Theorem 4.6.8, it follows that the
coverings S are E isomorphic. �

Exercises 4.9. (Loops)
1.—Let Cn be the circle in R

2 centered at
(

1
2n , 0

)
and passing through O. Set

X =
⋃

Cn, Xn = C0 ∪ · · · ∪ Cn .

(a) For all n, let fn : Xn+1 → Xn be the map inducing the identity on Xn and
sending Cn+1 onto O. Show that X can be identified with the projective limit of the
system defined by all Xn and fn . Show that the category CovX can be identified
with lim−→CovXn . Deduce that π1(X, 0) = lim←−π1(Xn, 0).

(b) Show that the map ε : π̃1(X, 0) → π1(X, 0) is injective, but not surjective.

(c) Let Y be the cone in R
3, with basis X and vertex (0, 0, 1). Set Z to be the union

of Y and of its symmetric Y′ with respect to 0 (cf. Zisman [1], 3.3.5.3, p. 129). Show
that Z is simply connected but not simply connected by loops, i.e. π̃1(Z, 0) �= 0. In
particular εZ is surjective, but not injective.

(d) In a topological space, two compact subsets A and B whose intersection is
arc-connected form a Van Kampen pair for π1 (resp. for π̃1) if π1(A ∪ B, x0) is the
sum of π1(A, x0) and π1(B, x0) amalgamated by π1(A ∩ B, x0) for x0 ∈ A ∩ B (resp.
same for π̃1). Among the following pairs, which are Van Kampen for π1? for π̃1?

• (X, X′), where X′ is the symmetric of X with respect to 0;
• (Y, Y′);
• (X1, X′

1), where X1 is the union of the segment [0, (1, 0)] and of the translation
of X by the vector (1, 0), and where X′

1 is the symmetric of X1 with respect to 0.

2.—Let X be a topological space, U = (Ui )i∈I a simply arc-connected open cover
of X, and U ′ = (U′

i )i∈I a shrinking of U (i.e. an open cover such that U
′
i ⊂ Ui for all

i). For every 2-element subset {i, j} of I, let Ci j be the set of connected components
of Ui ∩ U j containing at least one point of U′

i ∩ U′
j .

Let � be a graph with I ∪⋃
Ci j as its set of vertices in which a vertex c ∈ Ci j is

connected to the vertices i and j .

(a) Show that � is connected if and only if X is connected.
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(b) For all i ∈ I let xi ∈ Ui for all c ∈ Ci j ; let xc ∈ c ∩ U′
i ∩ U j , γc,i and γc, j paths

respectively from xi and x j to xc. Define a continuous map ϕ : |�| → X. Show that

ϕ∗ : π1(�, e) → π1(X,ϕ(e))

is surjective for e ∈ |�|.
(c) Show that for all locally simply arc-connected compact spaces X and all x ∈ X,

the group π1(X, x) is finitely generated.

(d) Show that the result continues to hold when X is compact, locally simply
connected (not arc-connected) [there is no map ϕ, but π1(X, x) is isomorphic to a
quotient of π1(�, e)].

3. (Partial blowup of R
2 at all points of the axis Oy .)—Set U = R

∗ × R =
R

2 − ({0} × R) and E = R× ]−1, 1[. Denote by X the disjoint union U � E.
For (y0, p) ∈ E and ε > 0, set

Vε(y0, p) =
{
(x, y)

∣∣
∣ 0 < |x | < ε,

∣∣
∣

y − y0

x
− p

∣∣
∣ < ε

}
� ( {y0} × ]p − ε, p + ε[ ) .

(a) Show that there is a unique topology on X inducing the topology of R
2 on U,

that of Rdiscr × ]−1, 1[ on E, where Rdiscr is the space obtained by equipping R with
the discrete topology, such that U is open and Vε(y0, p) form a fundamental system
of neigbourhoods of (y0, p) ∈ E. Equip X with this topology.

(b) Show that X is a topological surface. Define an R-analytic manifold structure
on X.

(c) Show that the space X is Hausdorff, arc-connected, locally compact, admitting
a countable dense set but that it is not the countable union of compact sets. Show
that X is neither metrizable, nor normal.

(d) Show that for b0 ∈ X, the Poincaré group π̃1(X, b0) can be identified with the
fundamental group π1(X, b0) and is not countable.

(e) Can X be embedded in the transfinite line (chap. 1, §6, Exercise 1)?

Reference

1. M. Zisman, Topologie algébrique éléémentaire (Collection U, Armand Colin, 1972)



Chapter 5
Galois Theory

Unless stated otherwise, all algebras considered in this chapter are assumed to be
unital associative commutative, and the homomorphisms to be unital.

The letter K will denote a field.

5.1 Extensions

5.1.1 Finite Algebras

Let A be a K-algebra. Denote by ιA the unique homomorphism from K to A, defined
by ι(x) = x · 1. If A �= 0, then ιA is an injection, called canonical.

A is said to be a finite algebra on K if A is a finite dimensional K-vector space.
The degree of A, written (A : K) or degK A, is the dimension of A as a K-vector
space.

5.1.2

Let A be a K-algebra and x ∈ A.

Proposition and Definition The following conditions are equivalent:

(i) the subalgebra K[x]A of A generated by x is finite over K;
(ii) there is a nonzero polynomial P ∈ K[X] such that P(x) = 0;

(iii) the powers of x are linearly dependent.

If these conditions hold, then x is said to be algebraic over K.

Proof (ii) is clearly equivalent to (iii). If the powers of x are linearly independent,
then the subalgebra K[x]A of A is not finite, and so (i) implies (iii). (ii) ⇒ (i) since
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the algebra homomorphism χ : K[X] → A defined by χ(X) = x vanishes at P and
so factorizes through the finite dimensional K-vector space K[X]/(P). �

The polynomials P ∈ K[X] such that P(x) = 0 are sometimes called the equations
of x . They form an ideal with a single monic generator (i.e. whose leading coefficient
is 1), called the minimal polynomial of x in A over K. Its degree is the degree of x
over K, as well as that of the subalgebra of A generated by x .

5.1.3

Proposition Let A be a K-algebra. The algebraic elements of A over K form a
subalgebra of A.

Proof Let x, y ∈ A be algebraic over K. The subalgebra generated by (x + y) (resp.
xy) is contained in the algebra K[x, y]A isomorphic to a quotient of K[x]A ⊗ K[y]A

(3.8.16). Thus x + y and xy are algebraic over K. �

Remark This proposition can be proved directly by taking condition (ii) de 5.1.2.
as the definition of algebraic elements, but this is harder. Note that the above proof
does enable us to find an equation of x + y (resp. xy) from those of x and y.

5.1.4

Let A be a K-algebra.

Definition We say that A is an extension of K if A is a field with respect to its ring
structure.

A is said to be a trivial extension of K if ιA is an isomorphism. All K-algebras
of degree 1 are trivial extensions of K.

If A is a extension field of K, i.e. a field containing K as a subfield, then A
equipped with a natural structure of K-algebra is an extension of K; all extensions
are isomorphic to an extension of this type.

If A is of the form K[X]/(P) then A is a finite extension of K if and only if P is
irreducible (3.2.10, Lemma).

Proposition If A is finite and integral, then A is an extension of K.

Proof Let a( �= 0) ∈ A. The map x �→ ax from A to A is injective and hence sur-
jective since A is a finite dimensional vector space. Hence there exists x ∈ A such
that ax = 1, and so A is a field. �
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5.1.5

Chinese Remainder Theorem Let A be a ring, (Bi )i∈I a finite family of rings and
for all i ∈ I, ϕi : A → Bi a ring homomorphism. Assume that, for each i ∈ I, ϕi is
surjective, and that for all (i, j) ∈ I × I with i �= j , Kerϕi + Kerϕ j = A. Then the
map � : A → ∏

i Bi defined by �(x) = (ϕi (x))i∈I is surjective.

Proof For all (i, j) ∈ I × I with i �= j , there exists ui j ∈ A such that ϕi (ui j ) = 1 and
ϕ j (ui j ) = 0. Indeed, for u ∈ Kerϕ j and v ∈ Kerϕi such that u + v = 1, ϕ j (u) = 0
and ϕi (u) = ϕi (1 − v) = 1. Take ui j = u.

For all i ∈ I, set ui = ∏
j �=i ui j ; then ϕi (ui ) = 1 and ϕ j (ui ) = 0 for all j �= i .

Let b = (bi )i∈I ∈ ∏
i Bi and for all i ∈ I, let xi ∈ A be such that ϕi (xi ) = bi .

Setting x = ∑
i∈I ui xi , �(x) = b, �

Remark The condition Kerϕi + Kerϕ j = A holds in particular if Kerϕi and Kerϕ j

are distinct maximal ideals. See also (3.5.9).

5.1.6

Corollary 5.1 Let A be a finite K-algebra.

(1) The set X of maximal ideals of A is finite.

(2) The map � : A → ∏
m∈X A/m is surjective and its kernel consists of the

nilpotent ideals of A.

Proof (1) Let Y be a finite subset of X. By the Chinese remainder theorem,
A → ∏

m∈Y A/m is surjective, and so card Y � (A : K). Hence card X � (A : K).
(2) By the Chinese remainder theorem and by (1), � is surjective; by 5.1.4, all

prime ideals are maximal and by 3.1.6, the intersection of all prime ideals of A is
the set of nilpotent elements of A. �

An algebra with no nonzero nilpotent elements is said to be reduced (see 3.1.7).

Corollary 5.2 Every reduced finite K-algebra is isomorphic to a finite product of
finite extensions of K.

5.1.7

Dedekind Theorem Let A be a K-algebra and L an extension of K. Consider the
L-vector space LK(A, L) of K-linear maps from A to L. In this vector space, the
K-algebra homomorphisms from A to L are linearly independent.
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Proof By (3.8.17), HomK-AAAlllggg(A, L) can be identified with the set
HomL-AAAlllggg(L ⊗K A, L). Let (ϕi )i∈I be a finite family of elements of HomK-AAAlllggg(A, L)

and (ϕ̃i )i∈I the family of corresponding elements in HomL-AAAlllggg(L ⊗K A, L). For
each i ∈ I, ϕ̃i is surjective; as L is a field, the kernel mi of ϕ̃i is a maximal ideal
and L ⊗K A = mi ⊕ L · 1. If ϕi �= ϕ j for i �= j , then moreover mi �= m j since
ϕ̃i (1) = ϕ̃ j (1) = 1.

By the Chinese remainder theorem, the map � : x �→ (ϕ̃i (x))i∈I from L ⊗K A to
LI is surjective.

Assuming there is a relation
∑

aiϕi = 0,
∑

ai ϕ̃i = 0 and the image of � is con-
tained in the hyperplane {(ti ) ∈ LI | ∑

ai ti = 0}, which contradicts the surjectivity
of �. �

5.1.8 Transcendental Elements

Let A be an extension of K. An element x ∈ A is said to be transcendental over K
if it is not algebraic, in other words if the homomorphism ϕ : K[X] → A defined by
ϕ(X) = x is injective.

A family (xi )i∈I of elements of A is said to be algebraically free if the homo-
morphism φ : K[Xi ]i∈I → A defined by φ(Xi ) = xi is injective, in other words if
there is a homomorphism � : K(Xi )i∈I → A such that �(Xi ) = xi (where K(Xi )

denotes the field of fractions of K[Xi ]). A maximal algebraically free family is a
transcendental basis of A over K. If (xi )i=1,...,k is a transcendental basis of A, then
the field A equipped with � is an algebraic extension of K(X1, ..., Xk).

Proposition and Definition All transcendental bases of A over K have the same
cardinality. This cardinal is called the transcendental degree of A over K.

Lemma (Exchange Lemma) Let (x1, ..., xk) be a transcendental basis of A over K
and y ∈ A a transcendental element over K. Then there exists i0 ∈ {1, ..., k} such
that the family (x ′

i ) defined by x ′
i0

= y, x ′
i = xi for i �= i0 is a transcendental basis

of A over K.

Proof By maximality of (x1, ..., xk), there is a nonzero polynomial P0 ∈ K[X1, ..,

Xk, Y] such that P(x1, ..., xk, y) = 0, and P /∈ K[Y] since y is transcendental. Choose
i0 such that the degree of P with respect to Xi0 is nonzero, and define x ′

i as in the
lemma. Then xi0 is algebraic over K(x ′

1, ..., x ′
k), and so are all elements of A. The

family (xi )i �=i0 is algebraically free, and y is transcendental over K(xi )i �=i0 ; otherwise
xi0 would be algebraic over this field. Hence (x ′

i ) is algebraically free, and thus a
transcendental basis. �

Proof of the Proposition The proof is by induction on k.

(Ek) For any extension A of a field K, if A has a transcendental basis with k
elements, all other transcendental bases of A also have k elements.
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Statement (E0) is immediate: if the empty family is a transcendental basis, then A
is algebraic over K, and every transcendental basis is empty. Let k > 0, and assumed
that (Ek−1) holds. We prove (Ek). Let A be an extension of K with two transcendental
bases (xi )i∈I and (y j ) j∈J with card I = k. Then J �= ∅; choose j0 ∈ J. The element y j0
is transcendental over K, and it follows from the lemma that there exists i0 such that
(xi )i �=i0 is a transcendental basis of A over K(y j0). But (y j ) j �= j0 is also a transcendental
basis of A over K(y j0). By the induction hypothesis, card (J − { j0}) = k − 1, and so
card J = k.

This proves the proposition when A has a finite transcendental basis. Assume that
A has two transcendental bases (xi )i∈I and (y j ) j∈J with I and J infinite. For each j ∈ J,
it is possible to find a finite subset I j of I such that y j is algebraic over K(xi )i∈I j .
The extension A is algebraic over K(xi )i∈I′ , where I′ = ⋃

I j , and so I′ = I. Let
S ⊂ I × J be the set of (i, j) such that i ∈ I j . As J is an infinite set, card S = card J.
The projection of S onto I is I. So card S � card I, and card J � card I. Similarly
card I � card J, and thusù card J = card I, �
Exercises 5.1 (Extensions)
1.—Find equations over Q for the following numbers:

√
2 + √

3,
√

2 + 3
√

2,
(

1 +
√

5

2

)(
1 + i

√
3

2

)
.

x + √
2 where x3 + x + 1 = 0 .

2.—Show that, if x has equation P, then

∑ (−1)r

r !s! d
r+s

2 P(r)P(s)

is an equation for x + √
d , the sum being over all pairs (r, s) of integers 0 � r �

d◦(P), 0 � s � d◦(P) with r + s even, and P(r) denoting the r -th derivative of P.
Interpret this formula when the field K has nonzero characteristic.

3.—(a) Let B be an integral ring, P and Q polynomials in B[X] of respective degrees
p and q, and � the closure of the field of fractions of B. Show that the following
conditions are equivalent:

(i) P and Q have a common root in �;
(ii) there are nonzero polynomials u with degree � q − 1 and v with degree �

p − 1 such that uP + vQ = 0.

Let B[X]m be the B-module of polynomials of degrees � m (isomorphic to Bm+1),
and Res(P, Q) the resultant of P and Q (3.7.11).

(b) For P, Q ∈ K[X, Y, Z], define the resultant ResZ(P, Q) ∈ K[X, Y] of P and
Q as elements of (K[X, Y])[Z].

Let A be a K-algebra, x, y ∈ A algebraic elements over K having respectively P
(of degree p) and Q (of degree q) as equations. Show that
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R1 = ResX(P(X), Q(Z − X)) ;
R2 = ResX

(
P(X), XqQ

( Z

X

))

are respectively equations for x + y and xy over K.

4.—(a) Draw the curve in R
2 with parametric representation:

{
x = cos 2t
y = cos 3t .

Show that this curve is a subset of an algebraic curve and give its equation.

(b) Let R(cos 2T, cos 3T) be the field of fractions of the ring of functions generated
by the real constants and the functions t �→ cos 2t and t �→ cos 3t . Show that this
field is a finite extension of R(cos 2T). Give an equation for cos 3T.

5.—Let K be a field and M a commutative monoid. Consider the vector space KM

of maps from M to K. Show that in this vector space the homomorphisms from M
to the multiplicative monoid K are linearly independent (consider the algebra K(M)

of M). Does this result generalize to non-commutative monoids?

6.—Let A be a K-algebra, B and C subalgebras of A. If the canonical map
B ⊗K C → A is injective, then B and C are said to be linearly disjoint (over K).
Let L be an extension of K in B. Show that B and C are linearly disjoint over K if
and only if this is also the case of L and C over B as well as that of B and the algebra
L · C generated by L and C over L.

7.—A non-trivial ring is said to be local if it has a unique maximal ideal. The aim
is to show that every finite K-algebra is a unique product of local K-algebras. Let A
be a finite K-algebra and (mi )i∈I the family of maximal ideals. Set N = ⋂

mi .

(a) Show that Nr = 0 for some r . Deduce that the product ideal of mr
i is 0.

(b) Show that the annihilator of x ∈ mr
i is not contained in mi . Deduce that ∩mr

i =
0.

(c) Show that mr
i + mr

j = A for j �= i . Deduce that the canonical map
A → ∏

A/mr
i is an isomorphism. Show that A/mr

i is local.

(d) Let f : A → ∏
j∈J B j be an isomorphism, where B j is a local algebra for all

j . Show that there is a bijection s : I → J and an isomorphism from A/mr
i onto Bs(i)

for all i .

(e) Let (ki ) be integers. Show that the product ideal of mki
i is equal to their

intersection.

8.—Let A and B be finite algebras over K, f : A → B an injective homomorphism,
and (mi )i∈I and (n j ) j∈J the respective families of maximal ideals of A and B. Show
that there is a surjective map f ∗ : J → I and, for all j , a homomorphism
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f j : A/m f ∗( j) → B/n j

making the diagram

A �
∏

A/mi

B

f
�

�
∏

B/n j

f∗�

where f∗ is defined by all f j , commutative. Show that f ∗ and all f j are uniquely
determined.

9.—Let P = ±1 + ∏k
i=0(X − ai ) be a polynomial in Z[X], where ai ∈ Z take at

least three distinct values for i �= 0, a0 = 0, and |ai | � 2.

(a) Show that P has a root in C with absolute value < 1, while the other roots
have absolute value > 1.

(b) Show that P is irreducible in Q[X].
(c) Can Z be replaced by Z[i]? By what other subring of C can it replaced?

10. (Liouville numbers)—(a) Let P be a polynomial of degree d with integral co-
efficients and x ∈ R a root of P. Let

( an
bn

)
(an ∈ Z, bn ∈ N

∗) a sequence of rational
numbers tending to x while remaining distinct from x . Show the existence of a
constant c such that ∣

∣
∣
an

bn
− x

∣
∣
∣ ≥ c

( 1

bn

)d

(note that bd
n P

( an
bn

) ∈ Z).

(b) Show that if (un) is a sequence of integers equal to 1 or 2, then the real number∑ un

10n! is transcendental, i.e. is not algebraic over Q. Show that such numbers form
a set having the cardinality of the continuum, and homeomorphic to the Cantor set
(2.8, Exercise 2).

(c) Is the criterion obtained in (a), applied to partial sums of the series
∑ 1

n! ,
sufficient to show that e is transcendental?

11. (Transcendence of e)—(a) For P ∈ R[X], set

L(P) =
∫ ∞

0
e−x P(x) dx .

Show that if P is of degree � n, then L(P) = P(0) + P′(0) + · · · + P(n)(0), where
P(k) denotes the k-th derivative of P.
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(b) Let n be a fixed integer and for p ∈ N, set

Pp(x) = 1

(p − 1)! x p−1(x − 1)p · · · (x − n)p .

Show that Mp = L(Pp) is an integer congruent to ±(n!)p (mod p).

(c) Let τ−k P denote the polynomial x �→ P(x + k). Set

Mp,k = L(τ−k Pp) = ek
∫ ∞

k
e−x Pp(x) dx .

Show that for p � k � n, Mp,k is an integral multiple of p.

(d) Suppose that anen + an−1en−1 + · · · + a0 = 0. Then

∑
ak(Mp,k + εp,k) = 0 ,

where εp,k = ek

(p − 1)!
∫ k

0
Pp(x) dx . Show that εp,k tends to 0 as p tends to infinity.

(e) Suppose that anen + · · · + a0 = 0 with ai ∈ Z. Show that
∑

akMp,k = 0 for
sufficiently large p.

Assuming a0 �= 0, find a contradiction by taking p to be a sufficiently large prime.

5.2 Algebraic Extensions

5.2.1

Definition An extension A of K is algebraic if every element of A is algebraic over
K or, equivalently, if as an algebra, A is generated by algebraic elements over K.

Every finite extension is algebraic.

Proposition Every subalgebra of an algebraic extension is an extension.

Proof Let A be an algebraic extension of K and B a subalgebra of A. The extension
A is the union of finite sub-extensions (Ai ), i ∈ I. For all i ∈ I, B ∩ Ai is a finite
integral algebra and hence an extension (5.1.4, Proposition) and B = ⋃

(B ∩ Ai ) is
an extension. �
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5.2.2

Proposition Let A be an algebraic extension of K. Every endomorphism of A is an
automorphism.

Proof Let f : A → A be an extension endomorphism. Then f is injective since A
is a field. For all P ∈ K[X], let RP be the set of roots of P in A. The endomorphism
f induces an injective map from RP in RP, which is therefore surjective since RP is
finite. As A = ⋃

P∈K[X] RP, f is surjective. �

5.2.3

Proposition and Definition The following conditions are equivalent:

(i) all polynomials P ∈ K[X] of degree > 0 have at least one root in K;
(ii) all polynomials can be uniquely written as α(X − a1) . . . (X − ad) with α, a1,

…, ad ∈ K;
(iii) every algebraic extension over K is trivial.

If these conditions hold, then K is said to be algebraically closed.

Proof (ii) ⇒ (i) is immediate. We show (i) ⇒ (iii).
Let A be an extension of K, x ∈ A. Embed K in A by ιA and let P be the minimal

polynomial of x , a a root of P. Then P = (X − a)Q with d◦Q < d◦P, P(x) = 0 and
Q(x) �= 0. Hence x − a = 0 since A is integral and x = a ∈ K. Thus A = K.

(iii) ⇒ (ii). As K[X] is factorial, it suffices to show that all irreducible polynomials
have degree 1. Let P be an irreducible polynomial. The K-algebra K[X]/(P) is finite,
and integral since K[X] is factorial. So it is an algebraic extension of K (5.1.4,
Proposition). It is trivial by assumption, so that P has degree 1, �

5.2.4 Example. d’Alembert’s Theorem

The field C of complex numbers is algebraically closed.

Proof Let P ∈ C[Z] be a polynomial of degree � 1 and suppose that P has no roots
in C. Then the function f = 1

P is holomorphic on C, and Cauchy’s formula applies:

f (x) = 1

2π

∫ 2π

0
f
(
x + reiθ

)
dθ .

As r tends to infinity, the second term tends to 0; so f (x) = 0, and f vanishes
everywhere, which is absurd. �
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For other proofs, see 4.3, Exercise 10, 4.4, Exercise 5, 4.6, Exercise 4 and 6.1,
Exercise 3 (b).

5.2.5

Definition An algebraic closure of K is an algebraic extension of K that is an
algebraically closed field.

Theorem Every field has an algebraic closure.

Cardinality Lemma For any algebraic extension A of K,

CardA � CardA(K[X] × N) .

Indeed, set � = {(P, x) | P ∈ K[X] − {0}, x ∈ A and P(x) = 0}. The map
(P, x) �→ P from � to K[X] has finite fibres since every polynomial has only finitely
many roots. So

card � � card (K[X] × N) .

The map (P, x) �→ x from � to A is surjective since A is an algebraic extension of
K. Hence card A � card �, proving the lemma.

Proof of the Theorem Let U be a set containing K and such that

card U > card (K[X] × N) .

Let E be the set of algebraic extensions of K whose underlying set is in U. Define
the following order relation on E: “A � B” if A is a sub-extension of B, i.e. the
underlying set of A is in the underlying set of B and the laws of A are induced by
those of B.

The ordered set E is inductive. Let � be a maximal element. We show by contra-
diction that � is algebraically closed.

Let W be a non trivial algebraic extension of �. By the cardinality lemma,
card W � card(K[X] × N). Writing ι for the canonical injection from � to W,

card (W − ι(�)) � card W � card(K[X] × N) < card U = card (U − �) .

Letϕbe a bijection from W − ι(�)onto a subset F of U − �, and�′ = � ∪ F. Define
� : W → �′ by �(x) = ι−1(x) if x ∈ ι(�) and �(x) = ϕ(x) if x ∈ W − ι(�). The
map � is a bijection. Use � to transfer the extension structure of W to �′. Then �′
becomes a non trivial algebraic extension of � containing �, which contradicts the
maximality of �. Hence � is algebraically closed. �
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5.2.6

Theorem Let A be an algebraic extension of K, B a sub-extension of A and � an al-
gebraic closure of K. Every homomorphism from B to � extends to a homomorphism
from A to �.

Proof Let E be the set of pairs (C, h) where C is a subalgebra of A and h : C → �

a homomorphism. Equip E with the order defined by: “(C, h) � (C′, h′)” if and
only if C ⊂ C′ and h′|C = h. The ordered set E is inductive. Let f : B → � be a
homomorphism and (C, h) a maximal element in E and an upper bound of (B, f ).

We show by contradiction that C = A. Let x ∈ A − C and P = ∑
ai Xi be the

minimal polynomial of x over C. The polynomial
∑

h(ai )Xi ∈ �[X] has at least one
root ξ since � is algebraically closed. The homomorphism g : C[x]A → � defined
by g(x) = ξ extends h and (C[x]A, g) is a strict upper bound of the maximal element
(C, h), giving a contradiction. �

5.2.7

Corollary 5.3 Let A be an algebraic extension of K and � an algebraic closure of
K. Then there is an embedding of A into �.

This follows from the above Theorem 5.2.6 applied to (K, ι), where ι : K → �

is the canonical injection.

Corollary 5.4 Let � be an algebraic closure of K, A and B sub-extensions of �.
Every homomorphism from A to B extends to an automorphism of �. In particular,
every automorphism of A extends to an automorphism of �.

Indeed, by Theorem 5.2.6, every homomorphism from A to B extends to an
endomorphism of � that is bijective by 5.2.2.

Corollary 5.3 and Definition Let � be an algebraic closure of K, and x, x ′ ∈ �.
The following conditions are equivalent:

(i) x and x ′ have the same minimal polynomial;
(ii) there is an automorphism g : � → � such that g(x) = x ′.

If these conditions hold, then x and x ′ are said to be conjugate.

Proof (i) ⇒ (ii). Sub-extensions K[x]� and K[x ′]� of � are isomorphic to K[X]/(P),
where P is the minimal polynomial of both x and x ′.

The isomorphism f : x �→ x ′ from K[x]� to K[x ′]� extends to an automorphism
of � (5.2.7. Corollary 5.2).

(ii) ⇒ (i). Every equation of x is an equation of x ′, proving (i).

Corollary 5.4 All algebraic closures of K are isomorphic.
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Indeed, let � and �′ be two algebraic closures of K, f : � → �′ and g : �′ → �

homomorphisms (these exist by Corollary 1). The endomorphisms g ◦ f and f ◦ g of
� and �′ respectively are automorphisms by 5.2.2, and so f and g are isomorphisms.

Remark Given two algebraic closures of a field, there is no method to choose an
isomorphism from the one onto the other. Hence algebraic closures of K should not
be identified; the notion of “the algebraic closure” of K is not well-defined. This is
similar to universal coverings in the context of topology (5.2, Exercise 2).

5.2.8 Characteristic of a Field and the Frobenius
Endomorphism

We remind the reader that the characteristic of a field K is the positive generator p
of the kernel of the homomorphism ε : n �→ n · 1 from Z to K. If ε injective, then
p = 0 and the subfield of K generated by 1 is isomorphic to Q. If ε is not injective,
the ring Z/(p), isomorphic to a subring of K, is integral and so p is prime and Z/(p)

is isomorphic to a subfield of K; if p �= 0, p is also the order of 1 in the additive
group K.

For p prime, the field Z/(p) is written Fp.

Theorem and Definition Let K be a field of characteristic p �= 0. Then the map
F : x �→ x p is an endomorphism of K, called the Frobenius endomorphism of K.

The theorem follows from the binomial formula and from the fact that the binomial

coefficients

(
p

k

)

= p!
k!(p−k)! are multiples of p for 0 < k < p.

5.2.9 Finite Fields

If K is a finite field, its characteristic is a prime p �= 0 and K is a finite extension of
Fp. If r is the degree of K over Fp, then

card K = pr .

Proposition Let p be a prime, and q = pr (r � 1) a power of p. There is a field
with q elements, and all such fields are isomorphic.

Proof Let � be an algebraic closure of Fp. The endomorphism Fr : x �→ xq de � is
an automorphism. Hence the elements x ∈ � left invariant by Fr form a subfield Fq

of � whose elements are the roots of the polynomial P = Xq − X. The derivative of
P is

qXq−1 − 1 = ppr−1Xq−1 − 1 = −1 �= 0 .
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The polynomial P has q simple roots which are therefore distinct and Fq has q
elements.

Let K be a field with q elements, the multiplicative group K∗ has q − 1 elements
and for all x ∈ K∗, xq−1 = 1; so xq = x for all x ∈ K. As K is a finite extension
of Fp, it may be embedded in �, and thus is isomorphic to a subfield of Fq , and is
isomorphic to Fq since card K = card Fq . �

Remark The field Fq constructed here depends on the choice of the algebraic closure
� of Fp. We do not give any intrinsic definition of Fq for q = pν , ν > 1. There is
no natural isomorphism between two fields with q elements.

5.2.10

Theorem If K is a finite field, then the multiplicative group K∗ is cyclic.

We prove the following more general result:

Proposition Let K be a field. Every finite subgroup G of the multiplicative group
K∗ is cyclic.

Proof The multiplicative group G is isomorphic to an additive group
⊕

Z/pri
i , where

all pi are primes (3.5.10, Proposition). We show that all pi are distinct. Suppose
that for i �= j pi = p j = p, then the group G would contain a subgroup of the form
(Z/(p))2, and hence at least p2 elements x such that x p = 1. This is impossible since
the polynomial Xp − 1 has at most p roots. By (3.5.9, Corollary), G is isomorphic
to Z/

∏
pri

i , and so is cyclic. �

Remark When K = C, the finite subgroups can be explicitly described. The map
t �→ e2iπt defines an isomorphism from Q/Z onto the group of elements of finite
order of C

∗. Every subgroup of Q/Z is generated by the image of a number 1
q , and

so every finite subgroup of C
∗ is of the form

{
e2iπ p

q
}

0�p�q−1.

Exercises 5.2. (Algebraic extensions)
1.—Find a generator of the group (Z/pZ)∗ for each prime p < 100. For which
primes is 2 a generator?

2. (Non-functoriality of the algebraic closure)—(a) Consider the complex fields
K = Q(i) , L = K(

√
2), M = K(

4
√

2) and the field � of algebraic numbers over Q.
Let f ∈ AutK(L) be defined by f (

√
2) = −√

2. Determine AutK(M). Show that
there is an automorphism g of M extending f , but none satisfying g ◦ g = 1M.

(b) Show that every automorphism � preserves M. Show that there is no auto-
morphism h of � inducing f and satisfying h ◦ h = 1�.
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(c) Let C be the category of fields. Show that there is no functor S : C → C

and no functorial morphism ι : 1C → S such that, for all K ∈ C, the field S(K),
considered an extension of K by ιK : K → S(K), is an algebraic closure of K. (Note
the similarity with 4.4, Exercise 1.)

3.—Let p be a prime and � an algebraic closure of the field Fp = Z/(p).

(a) Show that if p does not divide n, then the equation xn − 1 = 0 has n distinct
roots in �.

(b) Let r be an integer > 0. Show that the set of fixed points of Fr , where F is the
Frobenius automorphism of �, is a subfield Fpr of � with pr elements.

(c) Show that Fpr is the unique subfield of � with pr elements. Deduce that every
finite subfield of � is of the form Fpr , and that every finite field of characteristic p
is isomorphic to some Fpr .

(d) Show that the group of automorphisms from Fpr onto Fp is generated by the
Frobenius automorphism, and is isomorphic to Z/(r).

(e) Show that Fpr is contained in Fps if and only if r divides s. Are there infinite
subfields in � other than �? Show that the group of automorphisms from � onto Fp

is isomorphic to the profinite completion Ẑ of Z (see 2.9.5).

(f) Show that the multiplicative group of � is isomorphic to the direct sum of the
l-primary components Ml of Q/Z for some prime l �= p (Ml is the subgroup of Q/Z

consisting of the elements whose order is a power of l).
(g) Show that the ring of endomorphism of �∗ is isomorphic to

∏
l �=p Ẑl (3.3,

Exercise 9) and that this gives an injective homomorphism from the additive group
Ẑ to the multiplicative group of invertible elements of this ring.

4. (Another proof of the existence of an algebraic closure)—If (Ai )i∈I is an infinite
family of algebras, set

⊗
i∈I Ai = lim−→

⊗
j∈J A j , the direct limit being taken over

the finite subsets J of I. Let (Ai )i∈I be the family of extensions K[X1, . . . , Xn]/p of
K, where p is a maximal ideal of K[X1, . . . , Xn], and let M be a maximal ideal of⊗

i∈I Ai . Show that
⊗

i∈I Ai/M is an algebraic closure of K.

5.—Let A be a finite K-algebra, B a subalgebra of A and � an algebraic closure of
K. Show that every homomorphism from B to � extends to a homomorphism from
A to � (use 5.1, Exercise 8). Does this result generalize to infinite algebras A, but
all of whose elements are algebraic over K?

6.—(a) Let A and B be two integral rings and f : A → B an injective homomor-
phism, M the field of fractions of A. Assume that B, considered an A-algebra by
using f , is a finitely generated A-module. Show that M ⊗A B can be identified with
the field of fractions of B.

(b) Let P ∈ K[X, Y] be an irreducible polynomial not in K[X]. Show that the field
of fractions of K[X, Y]/(P) is a natural finite extension of K(X).
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5.3 Diagonal Algebras

5.3.1 Algebra of Functions on a Finite Set

Let X be a a finite set with d elements. The algebra KX of K-valued functions defined
on X is a finite K-algebra over K of degree d isomorphic to Kd equipped with the
multiplication

((x1, . . . , xd), (y1, . . . , yd)) �→ (x1 y1, . . . , xd yd) .

For all x ∈ X, the map δx : f �→ f (x) from KX to K is an algebra homomorphism,
and its kernel mx is a maximal ideal.

For all subsets Y of X, the elements f ∈ KX such that f |Y = 0 form an ideal IY

and the algebra KX/IY can be identified with KY. If Y and Z are subsets of X, then

IY∩Z = IY + IZ

IY∪Z = IY ∩ IZ = IY · IZ

Y ⊂ Z ⇐⇒ IY ⊃ IZ .

Proposition With the above notations, the map Y �→ IY from P(X) to the set of
ideals of KX is a bijection.

Proof The map is clearly injective; we show that it is surjective. Let I be an ideal
of KX and Y the set of x ∈ X such that f (x) = 0 for all f ∈ I. For all x /∈ Y, there
exists ux ∈ I such that ux (x) �= 0. Let ex be the element of KX defined by ex (x) = 1
and ex (x ′) = 0 for all x ′ �= x . Then

ex = ex

ux (x)
ux ∈ I .

Any f ∈ IY can be written

f =
∑

x∈X

f (x)ex =
∑

x∈X−Y

f (x)ex ∈ I .

Hence IY ⊂ I; as I ⊂ IY, IY = I. �

Corollary The map x �→ mx is a bijection from X onto the set of maximal ideals of
KX and x �→ δx is a bijection from X onto HomK-AAAlllggg(KX, K).

Indeed, the first map is bijective because singletons are the minimal nonempty
subsets. Clearly, x �→ δx is injective; let f : KX → K be a homomorphism, Ker f a
maximal ideal and so of the form mx , the maps f and δx agree on mx and on K · 1,
hence on KX.
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5.3.2 The Gelfand Transform

Let A be a K-algebra, and X = HomK-AAAlllggg(A, K). For all a ∈ A, let â be the map
ξ �→ ξ(a) from X to K. For a ∈ A, b ∈ A, λ ∈ K,

â + b = â + b̂, âb = â b̂, λ̂a = λ̂a, and 1̂ = 1 .

In other words the map a �→ â from A to KX is an algebra homomorphism. This
homomorphism is called the Gelfand transform of A (see 2.6.7).

If A is a finite algebra, then by the Chinese remainder theorem, the Gelfand
transform of A is surjective (5.1.5, Theorem and Remark).

Remark Associating to every element a of a set A a function â on a set X of functions
on A by â(ξ) = ξ(a) often gives interesting mathematical results, for instance the
Gelfand transform, biduality, Čech compactification, Dirac measures.

5.3.3

Proposition and Definition Let A be a finite K-algebra of degree d. Set
X = HomK-AAAlllggg(A, K). The following conditions are equivalent:

(i) A is isomorphic to an algebra of functions on a finite set;
(ii) the Gelfand transform γ : A → KX is an algebra isomorphism;

(iii) for all a ∈ A, a �= 0, there exists ξ ∈ X such that ξ(a) �= 0;
(iv) card X = d;
(v) card X � d.

If these conditions hold, then A is diagonal.

Proof (ii) ⇒ (iv) and (i) is obvious.
(i) ⇒ (iii) since if A = KY, then for all a �= 0 there exists x ∈ Y such that

a(x) �= 0; take ξ = δx .
(iii) ⇒ (v): γ is injective, proving (v).
(v) ⇒ (ii) and (iv) since γ is surjective by the Chinese remainder theorem.
(iv) ⇒ (v) is obvious. �

5.3.4 Example. (The Fourier Transform for Z/(n).)

Let G be the group Z/(n). Equip the C-vector space C
G with the convolution law

defined on the canonical basis by

ex ∗ ey = ex+y, which gives f ∗ g = h with h(x) =
∑

y∈G

f (y)g(x − y)
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for f, g ∈ C
G. Let A denote the algebra (CG, ∗). We show that A is diagonal.

For all maps ϕ from G to C, there is a unique C-linear map ξ : A → C such
that ξ(ex ) = ϕ(x). It is an algebra homomorphism if and only if ξ(e0) = 1 and
ξ(ex ∗ ey) = ξ(ex )ξ(ey), i.e. ϕ(0) = 1 and ϕ(x + y) = ϕ(x)ϕ(y) for x , y ∈ G. The
set X = HomC-AAAlllggg(A, C) can thus be identified with HomGc(G, C − {0}). For any
n-th root of unity θ, the map x �→ θx is a group homomorphism from G to C − {0}.
This give n distinct homomorphisms from G to C − {0}. Hence condition (v) of 5.3.3
holds and A is diagonal.

We express the Gelfand transform of A explicitly. For all k ∈ G, set θk = e
2iπk

n

and let ϕk be the homomorphism p �→ θk
p from G to C

∗ − {0}. The homomorphism
ξk from A to C corresponding to ϕk is defined by

ξk( f ) =
∑

p∈G

f (p)ϕk(p) =
∑

p∈G

f (p)e
2iπkp

n .

The set X contains ξ0, . . . , ξn−1, and so X = {ξ0, . . . , ξn−1} since card X = n. Hence
X can be identified with G. Thus for all f ∈ A,

f̂ (k) =
∑

p∈G

f (p)e
2iπkp

n ,

and f �→ f̂ is an isomorphism from the algebra (CG, ∗) onto the algebra (CG, ·),
where · denotes function multiplication.

5.3.5

Proposition (a) All subalgebras of a diagonal algebra are diagonal.

(b) All quotient algebras of a diagonal algebra are diagonal.

(c) The product algebra of two diagonal algebras is diagonal.

(d) The tensor product algebra of two diagonal algebras is diagonal.

(e) Let A be an algebra, B and C diagonal subalgebras of A. Then the subalgebra
B · C of A generated by B and C is diagonal.

Proof (a) Condition (iii) of (5.3.3) holds for subalgebras. (b) follows from (5.3.1),
(c) and (d) from KX × KY = KX∪Y and KX ⊗ KY = KX×Y. Finally (e) follows as
B · C is isomorphic to a quotient of B ⊗ C. �
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5.3.6

Proposition Let Setf be the category of finite sets, and D the category of diagonal
algebras over K. Then D is anti-equivalent to Setf.

Proof Let F be the contravariant functor X �→ KX from Setf to D and G the
contravariant functor A �→ HomK-AAAlllggg(A, K) from D to Setf. For all A ∈ D, the
Gelfand transform γA : A → KG(A) = F(G(A)) is an isomorphism, and these γA

form an isomorphism from the identity functor 1D to F ◦ G. For all finite sets X, the
map βX : x �→ δx from X to HomK-AAAlllggg(KX, K) = G(F(X)) is bijective, and these
βX form an isomorphism from the identity functor of Setf to G ◦ F. The functors
F and G are therefore anti-equivalent. �

Addenda. Let X and Y be objects of Setf and f a map from X to Y. The
homomorphism f ∗ : KY → KX is surjective (resp. injective) if and only if f is
injective (resp. surjective). The subsets (resp. quotient sets) of X are in bijective
correspondence with the quotient algebras (resp. with subalgebras) of KX.

In particular a diagonal algebra only has finitely many subalgebras.

Exercises 5.3. (Diagonal algebras)
1.—A Boolean ring is a ring A all of whose elements are idempotents (i.e. x2 = x
for all x).

(a) Show that all finite Boolean rings are Z/(2)-diagonal algebras.

(b) Let X be a set. Show that P(X), equipped with the laws � and ∩, where

Y � Z = (Y ∪ Z) − (Y ∩ Z) ,

is a Boolean ring. Show that every Boolean ring is embedded in a ring of this type,
and that every finite Boolean ring is of this type with X finite.

2.—(a) Show that all reduced algebras over an algebraically closed field are diagonal.

(b) Show that an algebra over Fpr , where x pr = x for all x , is diagonal.

3.—Let G be a finite commutative group, and A the convolution C
G.

(a) Show that the algebra A is diagonal.

(b) Set Ĝ = HomAAAlllggg(A, C). Show that Ĝ can be identified with HomGr(G, C
∗)

or with HomGr(G, Q/Z).

(c) The diagonal map G → G × G defines a homomorphism � : A → A ⊗ A,
giving a composition law on Ĝ. Show that this law agrees with the law given by the
identification with HomGr(G, C

∗).

(d) Show that ̂̂G can be identified with G.
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(e) Show that, in the previous questions, C can be replaced by an algebraically
closed field of characteristic p as long as p does not divide the order of G. For what
values of r can Fpr be taken?

(f) For f, g ∈ C
G, (̂ f · g) = 1

n ( f̂ ∗ ĝ), where n is the order of G. Is there a
C-linear bijection f �→ f ′ from C

G onto some C
G′

, where G′ is a group such that
( f ∗ g)′ = f ′ · g′ and ( f · g)′ = f ′ ∗ g′ for f, g ∈ C

G?

5.4 Etale Algebras

5.4.1

Definition Let A be a finite K-algebra. An extension L of K is said to diagonalize
A if L ⊗K A is a diagonal L-algebra.

L diagonalizes A if and only if

card HomK-AAAlllggg(A, L) = degK A .

5.4.2

Proposition Let P ∈ K[X] be a polynomial of degree d, and L an extension of K.
L diagonalizes K[X]/(P), if and only if P has d distinct roots in L.

Proof The algebra L ⊗K K[X]/(P) is isomorphic to L[X]/(P) and the degree of
L[X]/(P)over L is d. The mapϕ �→ ϕ(x) is a bijection from HomL-AAAlllggg(L[X]/(P), L)

onto the set of roots of P in L.
There are d distinct homomorphisms from L[X]/(P) to L if and only if P has d

distinct roots. �

5.4.3

Proposition and Definition Let � be an algebraic closure of K and A a finite
K-algebra. The following conditions are equivalent:

(i) there is an extension L of K diagonalizing A;
(ii) there is a finite extension L of K diagonalizing A;

(iii) � diagonalizes A.

If these conditions hold, then A is said to be an etale algebra.
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Proof (ii) ⇒ (iii). Indeed, L embeds in � and � ⊗K A = � ⊗L (L ⊗K A).
(iii) ⇒ (i) is obvious.
(i) ⇒ (ii). Let d be the degree of A on K. There are d distinct homomorphisms

ξ1, …, ξd from A to L. The subalgebra L′ of L generated by ξ1(A), …, ξd(A) is a
finite extension of K contained in L, and ξ1, …, ξd are d homomorphisms from A to
L′. So L′ diagonalizes A. �

5.4.4

Proposition and Definition Let P ∈ K[X]. The following conditions are equivalent:

(i) the algebra K[X]/(P) is etale;
(ii) the roots of P in � are distinct;

(iii) g.c.d.(P, P′) = 1;
(iv) The discriminant of P is nonzero.

If these conditions hold, then the polynomial P called separable.

(i) ⇔ (ii) is an immediate consequence of (5.4.2).
(ii) ⇔ (iii) follows from the characterization of simple roots.
(iii) ⇔ (iv) follows from (3.7.12) and (3.7.11, Proposition).

Let A be a K-algebra. An algebraic element x ∈ A over K is said to be separable if
its minimal polynomial is separable, in other words if the subalgebra K[x]A generated
by x is etale. If A is algebraic over K, then A is said to be separable if all elements
of A are separable.

5.4.5

Proposition (a) All subalgebras of an etale algebra are etale.

(b) All quotient algebras of an etale algebra are etale.

(c) The product algebra of two etale algebras is etale.

(d) The tensor product algebra of two etale algebras is etale.

(e) Let A be an algebra, B and C etale subalgebras of A, then the subalgebra
B · C of A generated by B and C is etale.

Proof Let L be an extension of K. By (5.3.5), if L diagonalizes an algebra A, then L
diagonalizes every subalgebra of A, and every quotient algebra of A. If L diagonalizes
algebras B and C, then it diagonalizes the product algebra B × C and the tensor
product algebra B ⊗ C.

If L diagonalizes the subalgebras B and C of an algebra A, then it also diagonalizes
B · C. �
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Corollary 5.5 An algebra is etale if and only if it is finite and separable.

Corollary 5.2 and Definition Let A be a K-algebra. The algebraically separable
elements over K of A form a subalgebra of A, written Asep and called the separable
closure of K in A.

5.4.6

Proposition Let L be an etale extension of K. An etale algebra A over L is etale
over K.

Proof Let � be an algebraic closure of L. Then � ⊗K L ≈ �d and � ⊗L A ≈ �e

with d ∈ N
∗ and e ∈ N, and so

� ⊗K A ≈ (� ⊗K L) ⊗L A ≈ �d ⊗L A ≈ (� ⊗L A)d ≈ �ed . �

5.4.7

Let A be a finite cyclic extension of K, then there is an irreducible polynomial P such
that A = K[X]/(P).

Proposition The following conditions are equivalent:

(i) A is not etale;
(ii) P′ = 0;

(iii) K has characteristic p �= 0 and P ∈ K[Xp].
Proof (ii) ⇔ (i): The g.c.d. of (P, P′) is a divisor of P and so is 1 or P. If P′ �= 0,
then deg P′ < deg P. Hence P does not divide P′ and g.c.d.(P, P′) = 1.

If P′ = 0, g.c.d.(P, P′) = P �= 1 since A �= 0, and (i) ⇔ (ii) thanks to (5.4.4).
(ii) ⇔ (iii). If the characteristic of K is 0 then the derivative of a polynomial of

degree d > 0 is a nonzero polynomial of degree d − 1.
If the characteristic of K is p �= 0 then, for P = ∑

akXk P′ = ∑
kakXk−1. Hence

P′ = 0 if and only if ak = 0 for all k that is not a multiple of p, in other words if
P ∈ K[Xp], �

5.4.8

Theorem and Definition Let p be the characteristic of K. The following conditions
are equivalent:
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(i) Every finite extension of K is etale.
(ii) Either p = 0, or p �= 0 and the Frobenius endomorphism of K is surjective.

If these conditions hold, then K is said to be a perfect field.

Proof Condition (i) is equivalent to

(i′) Every finite cyclic extension of K is etale.

Indeed (i) ⇒ (i′) is obvious, and (i′) ⇒ (i) thanks to (5.4.5, (e) since every finite
extension is generated by cyclic extensions.

(ii) ⇒ (i′). Let E = K[X]/(P) be a finite cyclic extension. Since P is irreducible,
if K is of characteristic 0 then E is etale (5.4.7, (iii) ⇒ (i)).

Suppose that K is of characteristic p �= 0. Then P /∈ K[Xp]. Indeed, if P ∈ K[Xp],
then P = ∑

akXpk , where for all k, ak = bp
k and bk ∈ K, and so P = Qp for some

Q = ∑
bkXk . Hence P is reducible.

(i′) ⇒ (ii). Suppose that p �= 0 and that F is not surjective. Let a ∈ K, a /∈ F(K),
and � be an algebraic closure of K and α ∈ � such that αp = a. Then Xp − a =
(X − α)p. The minimal polynomial P of α is monic and divides Xp − a, and so
P = (X − α)d , where 1 < d � p, since α /∈ K. Therefore α is a multiple root of
P and the algebra K[X]/(P) is a non-etale finite cyclic extension (in fact, d = p
necessarily holds). �

Example Every finite field is perfect. Indeed, as F : K → K is injective, it is nec-
essarily surjective if K is finite.

Counterexample If the characteristic of K is p �= 0, then the field K(X) is not
perfect. Indeed, there is no f ∈ K(X) such that f p = X.

5.4.9

Proposition Let A be a finite K-algebra.

(a) If K is perfect, then A is etale if and only if A is reduced.

(b) Let A be generated by x1, . . . , xr with respectively P1, …, Pr as minimal
polynomials. Then A is etale if and only if (∀i) g.c.d.(Pi , P′

i ) = 1.

(c) With the notation of (b), if K is of characteristic p �= 0 and moreover A is an
extension, then A is etale if and only if (∀i) Pi /∈ K[Xp].
Proof (a) Let L be an extension of K diagonalizing A; then A = K ⊗K A embeds
in L ⊗K A = Ld for some d. The algebra Ld being a product of fields is reduced and
hence so is A.

Conversely, A being finite and reduced is a finite product of finite extensions over
a perfect field, and so is etale (5.4.5, c).

(b) and (c): A is etale if and only if (∀i) K[X]/(Pi ) is etale (5.4.5, a, e), in other
words, if and only if (∀i) g.c.d.(Pi , P′

i ) = 1 (5.4.4).
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If A is an extension, all Pi are irreducible, K[X]/(Pi ) are finite cyclic extensions,
and by (5.4.7) A is etale if and only if (∀i) Pi /∈ K[X]p. �

Corollary The tensor product of two reduced finite algebras over a perfect field is
a reduced finite algebra. In particular, the tensor product of two finite extensions is
a reduced algebra.

Proof This corollary follows from (5.4.9, a) and (5.4.5, d).

Remark (1) In general, the tensor product of two extensions is not an extension.
For example C ⊗R C ≈ C × C.

(2) The previous corollary has a converse. Over any non-perfect field K, there are
finite extensions A and B such that A ⊗K B is not reduced (5.4, Exercise 3).

5.4.10 Example

Let K be a field of characteristic p, G a finite commutative group of order n indivisible
by p. Then KG equipped with convolution is an etale algebra (Maschke’s theorem).

Indeed, for x ∈ G, let ex ∈ KG be defined by ex (y) = 0 if x �= y and ex (x) = 1.
If x has order k, then ex is a root of P(X) = Xk − 1. As p does not divide n, neither
does it divide k; k is invertible in K and the ideal of K[X] generated by (Xk − 1)

and kXk−1 is the whole ring, and so K[X]/(Xk − 1) is etale. Since the elements ex

generate KG, the algebra (KG, ∗) must be etale by (5.4.9, b).

5.4.11 Primitive Element Theorem

Theorem If K is infinite, every etale algebra over K is cyclic.

Lemma 5.1 An etale algebra has only finitely many subalgebras.

Let A be an etale algebra and L an extension of K such that L ⊗K A is diagonal. For
any subalgebra B of A, L ⊗K B is a subalgebra of L ⊗K A and B = A ∩ (L ⊗K B). So
B �→ L ⊗K B is an injection from the set of subalgebras of A to the set of subalgebras
of L ⊗K A, which is finite. �

Lemma 5.2 Let K be an infinite field, E a finite dimensional vector space over K
and let Fi be finitely many strict subspaces. Then

⋃
Fi �= E.

Indeed, each Fi can be embedded in a hyperplane Hi defined by an equation
hi = 0. We may assume that E = Kn . Every hi ∈ K[x1, . . . , xn] is a homogeneous
polynomial of degree 1. So h = ∏

hi is �= 0. As K is infinite, the polynomial function
Kn → K represented by h is nonzero. There exists x ∈ Kn such that h(x) �= 0 and
hence x /∈ ∏

Hi . �
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Proof of the Theorem Let A be an etale K-algebra. It is finite and has finitely many
strict subalgebras Ai (Lemma 1). So

⋃
Ai �= A. Let x ∈ A − ⋃

Ai . The subalgebra
generated by x is not strict, hence must be A. �
Definition A generator of A is called a primitive element of A.

Corollary (Primitive element Theorem) All etale extensions L of K are cyclic.

If K is infinite, this amounts to the theorem.
If K is finite, then L∗ is cyclic and any of its generators generates L.

Exercises 5.4. (Etale algebras)
1.—Let E be an algebraic extension of K and � an algebraic closure of K. Show that
the following conditions are equivalent:

(i) E is separable;
(ii) All finite sub-extensions of E are etale;

(iii) All �-algebra homomorphisms from � ⊗K E to � separate the elements of
� ⊗K E;

(iv) For all finite dimensional vector subspaces V of E, HomK(V,�) is generated
as a vector space over � by f |V, f ∈ HomK-AAAlllggg(E,�).

2.—(a) Let A and B be K-algebras and f : A → B a surjective homomorphism
such that I = Ker f is a nilpotent ideal. Let P ∈ K[X] be a separable polynomial and
y ∈ B such that P(y) = 0. Show that there is a unique x ∈ A such that f (x) = y and
P(x) = 0 (x may be constructed through successive approximations by noting that
for all x ′ ∈ f −1(y), P′(x ′) is invertible in A).

Deduce that f induces a bijection from Asep onto Bsep.

(b) Let A and B be finite K-algebras and f : A → B a surjective homomorphism.
Show that f induces a surjective homomorphism

f∗ : Asep → Bsep

(see [1], Exercise 7).

(c) Show that if K is perfect then, for all K-algebras A, A = Asep ⊕ N, where N
is the nilradical of A.

3.—Let K be a non-perfect field of characteristic p, and a ∈ K an element without
any p-th root in K. Set L = K[X]/(Xp − a). Show that L is an extension of K, but
that the algebra L ⊗K L is not reduced.

4.—Let k be an infinite field of characteristic p; set K = k(X, Y) and L = k(X1/p,

Y1/p) (or, if preferred, L = k(X′, Y′) and K = k(X′p, Y′p)).

(a) Show that L is a non cyclic extension of K of degree p2.

(b) For all a ∈ k, let Ma be the subfield of L generated by K and (Y − aX)1/p.
Show that these subfields are mutually distinct.

5.—Let K be a field of characteristic p �= 0 and G = Z/(pr ). Show that the algebra
of the group G is isomorphic to K[T]/(Tpr

).
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6.—Let k be a field, and A = k[X], B = k[X, Y]/(P), where P ∈ k[X, Y] is a poly-
nomial of degree d in Y; set K = k(X) and E = K ⊗A B.

Show that E is etale over K if and only if there exists x in an algebraic closure �

of k such that P(x, Y) ∈ �[Y] has degree � d − 1 and distinct roots in �.

5.5 Purely Inseparable Extensions

In this section, K is assumed to be of characteristic p �= 0.

5.5.1

Proposition Let � be an algebraic closure of K and P ∈ K[X] an irreducible monic
polynomial. The following conditions are equivalent:

(i) the polynomial P has only one (possibly multiple) root in �;
(ii) there exists r ∈ N and a ∈ K such that P = Xpr − a.

Proof (ii) ⇒ (i). The Frobenius endomorphism F : x �→ x p of � is injective since
� is a field. Hence the same holds for Fr .

(i) ⇒ (ii). Let r be the largest integer for which P(X) can be written as Q(Xpr
).

Then Q(Y) /∈ K[Yp], for otherwise P(X) could be written as Q1(Xpr+1
). Moreover

Q is irreducible since so is P. By (5.4.7) and (5.4.4), the roots of Q in � are distinct;
as P has only one root, so does Q and thus Q is of degree 1. �

5.5.2

Definition Let L be an extension of K. An element x ∈ L is said to be radical over
K if there is an integer r such that x pr ∈ K. If all elements of L are radical over K,
L is a purely inseparable extension (or radical) of K.

5.5.3

Proposition Let L be an algebraic extension of K and � an algebraic closure of K.
The following conditions are equivalent:

(i) L is purely inseparable;
(ii) there is no K-algebra homomorphism from L to �.
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Proof (i) ⇒ (ii). Let x ∈ L. There exist r ∈ N and a ∈ K such that x pr = a. If
f : L → � is a homomorphism, then f (x) is necessarily the unique root of Xpr − a
in �.

not (i) ⇒ not (ii). Suppose x ∈ L is not radical. The minimal polynomial of x
has at least two distinct roots in �, and thus there are two distinct homomorphisms
from K[x]L to �. Embedding in �, which is possible by (5.2.6), gives two distinct
homomorphisms from L to �. �

5.5.4

Proposition Every algebraic extension L of K is a purely inseparable extension of
Lsep.

Proof Let x ∈ L, P its minimal polynomial, r the largest integer for which P(X) can
be written as Q(Xpr

). Then Q /∈ K[Xp] and Q is irreducible, so that Q is separable,
and x pr ∈ Lsep since its minimal polynomial is separable. �

Remark Let L be an extension of K. Then the set Lrad of the radicals over K in L
is a sub-extension of L. Indeed Lrad is the increasing union of (Fr )−1(K), and so is a
subfield, and Lrad ⊃ K. In general, even when the extension L is algebraic, it is not
separable over Lrad. In other words, an algebraic extension of K is always a purely
inseparable extension of a separable extension of K, but not necessarily a separable
extension of a purely inseparable extension of K (5.5, Exercise 3).

However, if � is an algebraic closure of K, then � is a separable extension of
�rad since �rad is a perfect field.

5.5.5

Theorem (MacLane’s criterion) Let A be an algebraic K-algebra over K, and �

an algebraic closure of K.

(a) The following conditions are equivalent:

(i) A is separable;
(ii) �rad⊗KA is reduced;

(iii) � ⊗K A is reduced.

(b) A is a separable extension of K if and only if �rad⊗KA is an extension of K.

Proof All the properties considered continue to hold for the direct limit. Hence A
may be assumed to be finite over K.

(a) (i) ⇒ A is etale ⇒ � ⊗K A is diagonal ⇒ (iii) ⇒ (ii). We show that (ii) ⇒
(i): if (ii) holds, then A is reduced and hence is a product of extensions. So it suffices
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to prove that these extensions are separable. We do so by showing that if L is a
not a separable extension, then �rad ⊗K L is not reduced: let x ∈ L − Lsep and P its
minimal polynomial. Then P(X) = Q(Xp) for some polynomial Q; let Q1 ∈ �rad[X]
be the polynomial all of whose coefficients are the roots of the p-th coefficients of
Q. Then Qp

1 = P, and so (Q1(x))p = 0. But Q1(x) �= 0. Indeed, K[x]L = K[X]/(P);
hence the subalgebra �rad[x] of �rad ⊗K L can be identified with �rad[X]/(P), and
the minimal polynomial of x in �rad ⊗K L is P. However, Q1 is not a multiple of P
since its degree is strictly smaller. Therefore �rad ⊗K L is not reduced.

(b) If �rad⊗KA is an extension of K, then the algebra A is an extension of K; it is
separable by (a). Assume that A is a separable extension. Then �rad⊗KA is a finite
reduced algebra over �rad and can be written

∏
i∈I Ei , where all Ei are extensions of

�rad (5.1.6, Corollary 1). These Ei can also be considered extensions of A. Embed A
in �. By (5.5.3), the set HomA-AAAlllggg(�rad ⊗K A,�) = HomK-AAAlllggg(�rad,�) consists
of a single element. If there were distinct elements i and j in I, projecting respectively
the product onto Ei and E j and embedding Ei and E j in � would give two distinct
A-homomorphisms from �rad⊗KA to �. Hence, I has a unique element, and
�rad⊗KA is an extension of K. �

5.5.6 Characteristic 0 Conventions

If K is a field of characteristic 0, the identity map of K is called the Frobenius
endomorphism. Un element of an extension of K belonging to K is said to be radical.
Only the trivial extension is purely inseparable. With these conventions, the results
of 5.5.3, 5.5.4 and 5.5.5 hold in characteristic 0.

Exercises 5.5. (Purely inseparable extensions)
1.—(a) Let � and �′ be two algebraic closures of K. Show that there is a unique
isomorphism from �rad to �′

rad. (Thus �rad and �′
rad can be identified, and the purely

inseparable closure of K is well-defined.)

(b) Show that every purely inseparable and perfect extension of K can be uniquely
identified with �rad.

(c) Consider the direct system

K
F→ K

F→ K
F→ · · · F→ K

F→ · · ·

indexed by N, where F is the Frobenius endomorphism. Let E be the direct limit of this
system. Show that, equipped with f ∞

0 : K → E, E is an extension of K isomorphic
to �rad.

(d) State a functorial property of the purely inseparable closure.
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2.—(a) Show that if K is perfect, then every finite extension of K is a perfect field
(degK(F(L)) = degF(K)(F(L)) = degK(L)). Deduce that all algebraic extensions of
K are perfect fields.

(b) Let K be a field and � an algebraic closure of K. Show that � = �rad ⊗K �sep

(the term on the right can be identified with a perfect sub-extension of � containing
�sep).

3.—Let k be a field of characteristic p �= 0, 2. Consider the subfields M = k(X, Yp),
L = k(Xp, Yp) and

K = { f ∈ L | f (Y, X) = f (X, Y)}

in E = k(X, Y). (a) Show that L is a separable extension of K and that M is a purely
inseparable extension of L. Determine Msep relative to K.

(b) Let f ∈ M be such that f (Y, X) = f (X, Y). Show that f ∈ K (reduce to the
case f ∈ k[X, Y]).

(c) Show that the purely inseparable closure of K in M is K. Deduce that M is not
a separable extension of a purely inseparable extension of K.

4.—Let L an algebraic extension of the field K. Consider the canonical homomor-
phism ϕ : Lrad⊗KLsep → L inducing the canonical injection on Lrad and Lsep.

(a) Show that ϕ is injective (see 5.5.5).

(b) Show that the image of ϕ is the separable closure M of Lrad in L (reduce to
the case of finite L and prove the equalities

(M : Lrad) = card HomLrad-AAAlllggg(M,�) = card HomK-AAAlllggg(M,�)

= card HomK-AAAlllggg(Lsep,�) = (Lsep : K)=(Lrad⊗K Lsep : Lrad)) .

In particular L = Lrad⊗KLsep if and only if L is a separable extension of Lrad.

(c) Let � be an algebraic closure of K, x ∈ �, P its minimal polynomial, and
L the sub-extension of � generated by the roots of P. Show that L = Lrad⊗KLsep

(consider the symmetric functions of the roots of P, each counted only once).

5.—Let A be a K-algebra and B a subalgebra of A. We will say that A is radical
over B if � ⊗K A is generated by � ⊗K B and by nilpotent elements.1

(a) Show that for an extension A of K, the definition is equivalent to that of (5.5.2).

(b) Show that every algebraic algebra A over K is radical over Asep (use 5.4,
Exercise 2).

(c) Generalize to the algebras of Proposition 5.5.3.

1This convention is not usual.
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6.—Let A be a finite K-algebra.

(a) Let � be an algebraic closure of K. Show that all K-algebra homomorphisms
from Asep to � extend uniquely to A. Deduce that the cardinality of HomK-AAAlllggg(A,�)

is equal to degK(Asep).

(b) Let L be an extension of K. Show that the separable closure of L in L ⊗K A
is L ⊗K Asep.

(c) If A and B are two finite K-algebras, show that

(A ⊗K B)sep = Asep⊗KBsep .

Extend this result to algebraic K-algebras.

7.—Let � be an algebraic closure of K and �′ ⊂ � a sub-extension. Assume that
all P ∈ K[X] have at least one root in �′.

(a) Show that every finite separable extension K embeds in �′ (use the primitive
element theorem). Show that �′

sep = �sep.

(b) Prove that, for all n, every separable polynomial in K[X] has at least one root
in �′

n = Fn(�′) ∩ �sep. Show that �′ = �.

(c) Show that in 5.2, Exercise 4, the family (Ai ) of extensions K can be taken to
be of the form K[X]/(P), where P is an irreducible polynomial.

5.6 Finite Galois Extensions

5.6.1

Definition A finite extension L of K is said to be Galois if L diagonalizes itself
(5.4.1).

If L is a Galois extension of K, the group G = AutKL is called the Galois group
of L over K.

5.6.2

Proposition Let L be a Galois extension of K and A a sub-extension of L. Then L
diagonalizes A over K, and as an A-algebra, L is a Galois extension of A.

Proof L ⊗K A is a subalgebra of L ⊗K L, and L ⊗A L is a quotient L-algebra of
L ⊗K L since (λ,μ) �→ λ ⊗A μ is A-bilinear and so necessarily K-bilinear, and thus
defines a map ε : λ ⊗K μ �→ λ ⊗A μ whose image contains the simple tensors; hence
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ε is surjective. Besides, ε is a L-algebra homomorphism, and so L ⊗K A and L ⊗K L
are diagonal L-algebras. �

Remark A Galois extension of a Galois extension is not necessarily Galois (5.6,
Exercise 3).

5.6.3

Let L be a finite extension of K and � an algebraic closure of K containing L. Set

d = degK L, G = AutKL, FixGL = {x ∈ L | (∀g ∈ G) g(x) = x} .

Theorem The following conditions are equivalent:

(i) L is Galois;
(ii) card G = d;
(ii′) card G � d;
(iii) L is etale and every automorphism of � preserves L;
(iv) FixGL = K;
(v) for all x ∈ L, the roots of the minimal polynomial of x in � are simple and

belong to L.

Proof By 5.3.3, (i) ⇔ (ii) ⇔ (ii′) since

G = AutKL = EndKL = HomL(L ⊗K L, L) .

(i) ⇒ (iii). As L is etale, card HomK-AAAlllggg(L,�) = d . As G ⊂ HomK-AAAlllggg(L,�)

and (i) ⇒ (ii), G = HomK-AAAlllggg(L,�), proving (iii).
(iii) ⇒ (ii). As L is etale, there are d distinct homomorphisms from L to �. By

(5.2.6) and (5.2.2), these homomorphisms are induced by automorphisms of � and
so are automorphisms of L, proving (ii).

(iii) ⇒ (iv). All points of K are fixed under the action of G. Assume K �= FixGL;
let x ∈ FixGL − K and P its minimal polynomial. As x /∈ K, d◦P � 2; and as L is
etale, x is a simple root of P. Let y be another root of P in �. The homomorphism
ϕ : K[x] → � defined by ϕ(x) = y extends to an automorphism of � which induces
an automorphism of L not fixing x , giving a contradiction.

(iv) ⇒ (v). Let α ∈ L and (ai )i∈I such that i �→ ai is a bijection from I onto the
set of conjugates of α in L. Set P(X) = ∏

(X − ai ). For g ∈ G, define

g∗ : L[X] → L[X] by g∗(λ) = g(λ) for λ ∈ L and g∗(X) = X .

Then
g∗(P) =

∏
(X − g(ai )) =

∏
(X − ai )
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since g induces a permutation of these ai . Hence the coefficients of P are invariant
under G, and P ∈ K[X]. The roots of P are simple and in L. Hence the minimal
polynomial of α, which divides P, has the same property (in fact this polynomial
may be shown to be P).

(v) ⇒ (iii). Clearly, L is etale. For all automorphisms ϕ of � and all x ∈ L, ϕ(x)

is a root of the minimal polynomial of x and so ϕ(x) ∈ L by assumption. Hence ϕ
preserves L. �

5.6.4

Corollary 5.6 Let L and L′ be Galois extensions of K contained in �. Then the
product extension L · L′ is Galois.

This follows from (i) ⇔ (iii) in Theorem 5.6.3.

Corollary 5.7 Let L and L′ be Galois extensions of K with K ⊂ L′ ⊂ L ⊂ �. Set
G = AutKL, G′ = AutKL′, and H = AutL′L. Then H is a normal subgroup of G and
G′ identified with G/H.

Proof Every element of G leaves L′ invariant, and so there is a restriction homomor-
phism ρ : G → G′. Every element of G′ extends to an automorphism of �, leaving
L invariant. Hence ρ is surjective. The kernel of ρ is obviously H. �

5.6.5 Decomposition Field

Let P ∈ K[X] be a separable polynomial (5.4.4). The K-sub-extension E of � gen-
erated by the roots of P is Galois (Theorem 5.6.3, (iii) ⇒ (i)). It is called the decom-
position field of P.

Proposition With this notation, the group G = AutKE acts transitively on the set X
of roots of P in � if and only if P is irreducible.

Proof Suppose that P is not irreducible. Then P = P1 · P2 for some P1 and P2 of
degree > 0. Then X = X1 ∪ X2, where Xi = P−1

i (0). These two sets are disjoint
since the roots of P are simple, and they are invariant under G. Hence G does not act
transitively on X.

Conversely, let α and β be two roots of P. If P is irreducible, it is the minimal
polynomial of α as well as of β. Hence there is an automorphism σ from K[α]� onto
K[β]� such that σ(α) = β. Then σ extends to an automorphism of � inducing an
automorphism of E. �
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5.6.6

Proposition Let A be an etale K-algebra. There is a finite Galois extension diago-
nalizing A.

Proof Let � be an algebraic closure of K and x1, …, xr generators of A. For each
i , let Pi be the minimal polynomial of xi and Li the sub-extension of � generated
by the roots of Pi . For each i , Li diagonalizes the subalgebra Ai of A generated by
xi , and the sub-extension L of � generated by all Li diagonalizes all Ai , and hence
diagonalizes A. The roots of Pi are simple since A is etale, and so L is etale; every
automorphism of � permutes the roots of Pi for each i , and so preserves L, and L is
Galois. �

Corollary Let � be an algebraic closure of K and L an etale extension of K con-
tained in �. Then there is a finite Galois extension of K in � and containing L.

Proof Let E ⊂ � be a finite Galois extension diagonalizing L. Then L ⊂ E since
the image of any homomorphism, in particular the canonical injection, from L to �

is in E.

5.6.7

Proposition Let L be a field, H a finite group of automorphisms of L, and set F =
FixHL. Then L is a finite Galois extension of F and AutF(L) = H.

Proof (a) Assume that L is finite over F. Set H′ = AutFL. Then H′ ⊃ H, and F ⊂
FixH′L ⊂ FixHL = F; so F = FixH′L, and by (5.6.3, (iv) ⇒ (i)), L is Galois over F.
In particular, L is etale, and hence cyclic by the primitive element Theorem (5.4.11,
Corollary). Let a ∈ L such that L = F[a]. The polynomial

P =
∏

g∈H

(X − g(a))

is in F[X] since its coefficients are fixed by H, and the minimal polynomial Q of a
over F divides P (in fact Q = P). For all f ∈ H′, f (a) is another root of Q, hence of
P, and there exists g ∈ H such that f (a) = g(a). The automorphisms f of g agree
on F and at a, and so f = g and H′ = H.

(b) We now prove that L is finite over F. First, L is algebraic over F. Indeed, for all
a ∈ L, the polynomial P = ∏

g∈H(X − g(a)) is in F[X] and P(a) = 0. The extension
L is the directed union of finite sub-extensions Li over F, each preserved by H.
For each i , let Hi be the image of H in AutFLi . Then FixHi Li = FixHLi = F, and
so AutFLi = Hi by (a). As Li is Galois, degF Li = card Hi � card H; hence finally
degF L � card H < ∞. �
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5.7 Finite Galois Theory

5.7.1

Let L be a finite Galois extension of K, A a finite K-algebra diagonalized by L,
G = AutKL, and X = HomK-AAAlllggg(A, L). The set X can be identified with HomL-AAAlllggg
(L ⊗K A, L). Set g · ξ = g ◦ ξ for all g ∈ G and ξ ∈ X. Thus G acts on X.

The Gelfand transform of the L-algebra L ⊗K A is the mapγ : t �→ t̂ from L ⊗K A
to LX with X = HomL-AAAlllggg(L ⊗K A, L) defined by t̂(ξ) = ξ(t) for all ξ ∈ X.

For all t of the form λ ⊗ a, ̂(λ ⊗ a)(ξ) = ξ(λ ⊗ a) = λξ(a). As G acts on L, G
can be made to act on L ⊗K A by g∗(λ ⊗ a) = g(λ) ⊗ a. The Gelfand transform is
an isomorphism since L ⊗K A is diagonal, and the action of G on L ⊗K A can be
transferred on LX giving an action of G on LX which will be written (g, f ) �→ g⊥ f .
This action is defined by the commutativity of the diagram:

L ⊗K A
γ � LX

L ⊗K A

g∗ = g ⊗ 1A
� γ � LX

f �→ g⊥ f
�

(5.1)

5.7.2

Proposition The law ⊥ : G × LX → LX is given by the formula

(g⊥ f )(ξ) = g( f (g−1 ◦ ξ)) .

Proof Let ξ ∈ X and g ∈ G. The map ϕ : f �→ (g⊥ f )(ξ) from LX to L is a
K-algebra homomorphism. Its kernel is a maximal ideal of LX, and is of the form
mη, with η ∈ X. The map g∗ in diagram (1) is g-linear; as γ is L-linear, f �→ g⊥ f is
g-linear, in other words, for λ ∈ L and f ∈ LX, ϕ(λ f ) = g(λ)ϕ( f ). For all f ∈ LX,
there exists f1 ∈ mη such that f = f (η) · 1 + f1. Hence ϕ( f ) = g( f (η)). η remains
to be determined. For λ ∈ L and a ∈ A, by definition of ⊥:

(g⊥ ̂(λ ⊗ a))(ξ) =
̂

(g(λ) ⊗ a)(ξ) = g(λ) · ξ(a) .

Besides,

(g⊥(λ̂ ⊗ a))(ξ) = ϕ(λ̂ ⊗ a) = g(λ̂ ⊗ a)(η) = g(λ · η(a)) = g(λ) · g(η(a)) ,

and so taking λ = 1, ξ(a) = g(η(a)). Therefore η = g−1 ◦ ξ. �
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5.7.3

Let L be a Galois extension of K and G = AutKL its Galois group. Let G-Setfdenote
the category of finite sets on which G acts, and for X and Y objects of G-Setf, let
HomG(X, Y) be the set of morphisms from X to Y, i.e. of maps ϕ from X to Y such
that, for all x ∈ X and g ∈ G, ϕ(g · x) = g · ϕ(x). Let D be the category of finite
K-algebras diagonalized by L. For A ∈ D, let S(A) be the set HomK-AAAlllggg(A, L),
where G acts by (g, f ) �→ g ◦ f . This defines a contravariant functor S from D to
G-Setf. For f : A → B, the map f ∗ : S(B) → S(A) is defined by

f ∗(η) = η ◦ f .

The aim of this section is to prove the following result:

Theorem The functor S : D → G-Setf is an anti-equivalence of categories.

This theorem combines Propositions 5.7.4 and 5.7.5.

5.7.4

Proposition The functor S is fully faithful.

In other words, for all algebras A and B of D, the map f �→ f ∗ from HomK-AAAlllggg
(A, B) to HomG(S(B), S(A)) is bijective.

Lemma For all objects A of D, FixG(L ⊗K A) = A.

Proof of the Lemma The statement does not involve the algebra structure of A, only
its vector space structure. Hence A can be identified with Kd ; the lemma is then a
consequence of Theorem 5.6.3, (i) ⇒ (iv).

Proof of the Proposition For any morphism ϕ : S(B) → S(A) of G-Setf, there is
an L-algebra morphism ϕ∗ : LS(A) → LS(B) defined by ϕ∗(h) = h ◦ ϕ compatible
with the action ⊥ of G. In other words, ϕ∗(g⊥h) = g⊥ϕ∗(h). Indeed, for ξ ∈ S(A),

ϕ∗(g⊥h)(ξ) = (g⊥h)(ϕ(ξ)) = g(h(g−1 ◦ ϕ(ξ))) = g(h(ϕ(g−1 ◦ ξ)))

= (g⊥(h ◦ ϕ))(ξ) = (g⊥ϕ∗(h))(ξ) .

As the Gelfand transforms

γA : L ⊗K A → LS(A) and γB : L ⊗K B → LS(B)
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are isomorphisms, there is a unique homomorphism

ϕ⊗ : L ⊗K A → L ⊗K B

making the diagram

L ⊗K A
γA� LS(A)

L ⊗K B

ϕ⊗
� γB� LS(B)

ϕ∗
�

commutative. This homomorphism is compatible with the actions of G, and so ϕ⊗
induces a K-algebra homomorphism f from

A = FixG(L ⊗K A) to B = FixG(L ⊗K B) .

We show that f ∗ : S(B) → S(A) = ϕ, i.e. that

(∀η ∈ HomK-AAAlllggg(B, L)) η ◦ f = ϕ(η) .

Let δη : LS(B) → L be the homomorphism defined by δη(h) = h(η). By definition
of the Gelfand transform, η = δη ◦ γB ◦ ιB, where ιB : B → L ⊗K B is the canonical
injection. Hence

η ◦ f =δη ◦ γB ◦ ιB ◦ f = δη ◦ γB ◦ ϕ⊗ ◦ ιA = δη ◦ ϕ∗ ◦ γA ◦ ιA

=δϕ(η) ◦ γA ◦ ιA = ϕ(η) .

So indeed f ∗ = ϕ, which shows that the map f �→ f ∗ is surjective.
We show that if ϕ = u∗ for some homomorphism u from A to B, then f = u. It

will follow that u �→ u∗ is injective. For all η ∈ S(B),

δη ◦ γB ◦ ιB ◦ u =η ◦ u = u∗(η) = ϕ(η) = δϕ(η) ◦ γA ◦ ιA

=δη ◦ ϕ∗ ◦ γA ◦ ιA = δη ◦ γB ◦ ιB ◦ f .

As
⋂

η∈S(B) Kerδη = 0 and γB ◦ ιB is injective, it follows that u = f . �

5.7.5

Proposition The functor S is essentially surjective.

In other words, any finite G-set is isomorphic to a G-set of the form S(A), where
A ∈ D.
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Proof (a) Let H be a subgroup of G, and set F = FixH(L). The restriction
ρ : G → HomK-AAAlllggg(F, L) is surjective. Indeed, embed L in an algebraic closure
� of K; then any K-homomorphism of F to L extends to a homomorphism from L to
� (Theorem 5.2.6), inducing an automorphism of L (Theorem 5.6.3, (i) ⇒ (iii)). Let
f, g ∈ G = AutK(L); then, ρ( f ) = ρ(g) if and only if h ∈ G defined by g = f ◦ h
is in AutF(L). Now, AutF(L) = H by (5.6.7), and so S(F) = HomK-AAAlllggg(F, L) can be
identified with the set G/H = { f H} f ∈G, and this identification is compatible with
the left actions of G.

(b) Let A and B be objects of D. Then, S(A × B) = S(A) � S(B). Indeed, L ⊗K

A = LX with X = S(A), and L ⊗K B = LY with Y = S(B), and

L ⊗K (A × B) = (L ⊗ A) × (L ⊗ B) = LX�Y .

So
S(A × B) = HomL-AAAlllggg(LX�Y, L) = X � Y .

(c) The proposition then follows from the fact that every finite G-set is of the form⊔
i∈I Xi , where I is finite, and where, for all i ∈ I, Xi is isomorphic to a G-set of the

form G/Hi , where Hi is a subgroup of G. �

Exercises 5.6 (Finite Galois extensions) and 5.7 (Finite Galois theory)
1.—Let K be a field of characteristic �= 2. Show that every extension of degree 2 of
K is Galois and give its Galois group. What happens in characteristic 2?

2.—Let K = C(Z) and L = K[X]/(P), where P(X) = X3 − 3X + 2Z.

(a) Show that L is an algebraic extension of K. Give its degree.

(b) Find the group of K-automorphisms of L. Is L a Galois extension of K?

(c) Let L̃ be a decomposition field of P (i.e. the field generated in an algebraic
closure of K by the roots of P). Show that L̃ is a Galois extension of K. Give the
degree of L̃ over K and over L. Find the number of intermediate fields between K
and L̃.

3.—Let � be the algebraic closure of Q in C. Set

ϕ = 1 + √
5

2
and ϕ′ = 1 − √

5

2
,

and consider the field
L = Q(ϕ) = Q(ϕ′) = Q(

√
5) .

(a) Show that fields L1 = L(
√

ϕ) and L2 = L(
√

ϕ′) of � are conjugate over Q,
but not over L. Show that L1 is a Galois extension of L, which is a Galois extension
of Q, but that L1 is not a Galois extension of Q. Is this also true of L2?
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(b) Let M be the smallest Galois sub-extension of � containing L1 and L2. Give
the degree of M over K? Describe the Galois group G = AutK(M). Is a normal
subgroup of a normal subgroup of G necessarily a normal subgroup of G?

4.—Let K be of characteristic p � 0 and � an algebraic closure of K. Let the integer
n not be a multiple of p.

(a) Show that, for all a �= 0, the polynomial Xn − a is separable.

(b) Show that the group μn of n-th roots ofèunity in � is isomorphic to Z/(n).
In the following, assume that μn ⊂ K.

(c) Let a ∈ K be nonzero, and α a n-th root of a in �. Set L = K(α). Show that
any conjugate of α can be written ζα, where ζ ∈ μn . Deduce that L is Galois and
that the group G = AutK(L) can be identified with a subgroup of μn .

(d) Show that Xn − a ∈ K[X] is irreducible if and only if there is no m-th root of
a of K, where m �= 1 is a divisor of n. Show that then G = μn (

∏
g∈G g(α) may be

considered).

5.—Let E be the subfield of C generated by the roots of X4 − 5. Give the Galois
groups of E over

Q, Q(
√

5), Q(
√−5), Q(i) .

6.—Let P ∈ K[X] a monic polynomial of degree d, � an algebraic closure of the
field K and x1, . . . , xd the roots of P in �. Set

� =
∏

i< j

(xi − x j )
2 .

(a) Show that, up to sign, � is the discriminant of P (resulting from P and its
derivative), and that in particular � ∈ K. Give the sign.

(b) Let E be the sub-extension of � generated by x1, . . . , xd . Every g ∈ AutK(E)

induces a permutation of {x1, . . . , xd}, hence, assuming these elements are all distinct,
i.e. � �= 0, an embedding of G = AutKE in Sd . Show that � is a square in K if and
only if G is contained in the alternating group Ad (see 5.8.7). More generally, show
that G ∩ Ad = AutLE, where L = K(

√
�).

(c) Suppose that G = Sd and d � 5. Show that L is the only strictly intermediate
Galois extension between K and E. Study the cases d = 4, d = 3.

7.—Let k be a non-perfect field of characteristic p, a ∈ k, a /∈ k p and K = k(T),
where T is an indeterminate. Consider the algebraic extension L = K(x) of K gen-
erated by a root of

f (X) = Xp − Tp−1X − a .

(a) Show that L is a Galois extension of K.

(b) Show that K is not perfect.
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(c) Let b ∈ k (b �= a and b /∈ k p), and Q = L(y) the extension of L generated by
a root y of

g(X) = Xp−1 − Tp−1X − b .

Study the Galois extension Q of K: Galois group, intermediate extensions.

8.—(A) Let K be an infinite field, E a Galois extension of K of degree d, G the Galois
group AutKE and g1, . . . , gd ∈ G.

(a) Let (e1, . . . , ed) be a basis for the vector space E over K. Show that

x �→ det(e1,...,ed )(g1(x), . . . , gd(x))

is a K-polynomial map that does not vanish everywhere (use 5.1.7). Deduce that
there exists x ∈ E whose conjugates form a basis for the K-vector space E (such a
basis is called a normal basis).

(b) Show that the elements gi (x) form a normal basis if and only if the determinant
of the matrix

(gi ◦ g j (x))1�i�d
1� j�d

with entries in E is nonzero.

(B) Let K be a finite field with q = pr elements, where p is prime.

(a) Show that AutFp K is cyclic of order r , generated by the Frobenius automor-
phism.

(b) Show that, for any r ′ dividing r , there is a unique subfield K′ of K with pr ′

elements. Show that AutK′K is cyclic and give a generator.

(C) (a) Let E be a vector space of finite dimension d over a field k and ϕ an
endomorphism of E. The minimal polynomial of ϕ is assumed to be of degree d.
Show that there exists x ∈ E such that the smallest vector subspace of E preserved
by ϕ containing x is E (the results on principal ring modules may be used).

Show that then (x,ϕ(x), . . . ,ϕd−1(x)) is a basis for E.

(b) Let K be a field and E a finite Galois extension of E such that the Galois group
G = AutKE is cyclic of order d. If ϕ is a generator of G, show that the minimal
polynomial of ϕ is Xd − 1 (5.1.7 may be used).

(c) Prove that all finite fields have a normal basis.

9.—Let K be a field, K′ a not necessarily algebraic extension of K, and P ∈ K[X] an
irreducible separable polynomial. Its coefficients may be taken to be in K′, but it is
not necessarily irreducible in K′[X]. Let � and �′ be respective algebraic closures of
K and K′, E the sub-extension of � generated by the roots of P and E′ a sub-extension
of �′ generated by a root x ′ of P and its conjugates.
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(a) Set L = K(x), where x is a root of P, and L′ = K′(x ′). Show that L′ is iso-
morphic to a quotient of K′ ⊗K L.

(b) Show that G = AutKE can be identified with the group of permutations of
S(L) = HomK-AAAlllggg(L,�) induced by the automorphisms of �.

(c) Show that G′ = AutK′(E′) is isomorphic to a subgroup of G.

5.8 Solvability

In this section, K is a field of characteristic p with p = 0 or prime, and � an algebraic
closure of K.

5.8.1

Proposition Let the integer n not be a multiple of p.
(a) The multiplicative group μn = {u ∈ � | un = 1} is isomorphic to the additive

group Z/(n).
(b) The K-sub-extension Mn of � generated by μn is Galois.
(c) The Galois group of AutKMn can be identified with the subgroup of the

multiplicative group Z/(n)∗ of invertible elements in the ring Z/(n). In particular,
AutK(Mn) is commutative.

Proof (a) By Proposition 5.2.10, the group μn is cyclic. The roots of Zn − 1 are
simple, the derivative nZn−1 only vanishes at 0 (because of the assumption that p
does not divide n), and hence there are n of them in � and Card(μn) = n.

(b) The extension Mn is etale (Proposition 5.4.9) and invariant under all automor-
phisms of �. Hence it is Galois (Theorem 5.6.3).

(c) The map sending m ∈ Z to the endomorphism x �→ m · x of Z/(n) is a ring
homomorphism from Z to End(Z/(n)), with respect to multiplication in the initial
set and composition in the end one. Taking quotients, this gives an isomorphism
Z/(n) → End(Z/(n)) assigning to the elements of Z/(n)∗ the automorphisms of
Z/(n).

Transfer using the isomorphism φ : Z/(n) → μn shows that the map from Z to
End(μn) sending m to the map u �→ um gives a group isomorphism from Z/(n) onto
End(μn), which in turn induces a group isomorphism from Z/(n)∗ (equipped with
multiplication) onto Aut(μn) (equipped with composition). Note that this isomor-
phism does not depend on the choice of φ.

Any automorphism of the extension Mn of K induces a group automorphism μn ,
and this action is injective since Mn is generated by μn . Hence AutK(Mn) can be
identified with a subgroup of Aut(μn), which can itself be identified with Z/(n)∗.
No choice is involved in these identifications.
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Remark For K = Q, the group Aut(Mn) can be shown to be identified with the
whole of Z/(n)∗ (irreductibility of cyclotomic polynomials, 5.8, Exercise 2).

5.8.2

For a ∈ K∗ and n ∈ N
∗, let RK(a, n), or simply R(a, n), be the extension of K

generated by the n-th roots of a in �, i.e. by the elements x ∈ � such that xn = a.
If n is not a multiple of p, then the extension R(a, n) is Galois: Indeed it is the
decomposition of the separable polynomial Xn − a.

If x is an n-th root of a, the other n-th roots of a are u.x for u ∈ μn . Hence
Mn = RK(1, n) ⊂ RK(a, n).

More generally, let a1, ..., ak ∈ K and n1, ..., nk integers > 0. Write RK(a1,

n1 ; ... ; ak, nk) for the extension of K generated by RK(a1, n1), ..., RK(ak, nk) in
�. This extension contains Mn for n = l.c.m.(n1, ..., nk). If no ni is a multiple of p,
this extension is Galois, being generated by Galois extensions.

Proposition Let E=Rk(a1, n1 ; ... ; ak, nk) and n = l.c.m.(n1, ..., nk). Suppose that
μn is contained in K and that n is not a multiple of p. Then the Galois group of
G = AutK(E) can be identified with a subgroup of μn1 × · · · × μnk . In particular, G
is commutative.

Proof Let g ∈ G. For each i ∈ {1, ..., k}, let xi be a ni -th root of ai . Then g(xi ) =
ui · xi for some ui ∈ μni which does not depend on the choice of xi . For if x ′

i is
another ni -th root of ai , then x ′

i = wi · xi with wi ∈ μni , and g(x ′
i ) = wi · g(xi ) since

wi ∈ K. Assigning to each g ∈ G the family (u1, ..., uk) defines a map ϕ : G →
μn1 × · · · × μnk which is injective since E is generated by the elements xi .

It is also a group homomorphism. For if ϕ(g) = (u1, ..., uk) and ϕ(h) = (v1, ...,

vk), then g ◦ h(xi ) = ui · vi · xi . �

5.8.3

Proposition Let the integer n not be a multiple of p. Suppose μn ⊂ K.
An extension E of K contained in � is of the form RK(a, n) if and only if E is

Galois and G = AutK(E) cyclic of order dividing n.

Proof (a) Necessity: It is Proposition (5.8.2), with k = 1.
(b) Sufficiency: Suppose G is cyclic of order m dividing n; let g be a generator of

G. Consider E as a vector space over K and g as a K-linear endomorphism of E.
The endomorphism g satisfies gm − I = 0, and the roots of Zm − 1 are simple

and in K. Hence g is diagonalizable; in other words, E has a basis consisting of
eigenvectors of g. The eigenvalues are in μm . If x and y are eigenvectors of g with
respective eigenvalues u and v, then
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g(xy) = g(x).g(y) = ux .vy = uv.xy

and xy are eigenvectors for the eigenvalue uv. Consequently, the eigenvalues of g
form a subgroup of μm .

Moreover, y �→ xy is a linear injection of the eigenspace corresponding to v into
the eigenspace corresponding to uv. As a result, the eigenspaces corresponding to
the various eigenvalues all have the same dimension.

But the eigenspace corresponding to the eigenvalue 1 is FixG(E) = K, and so has
dimension 1. As E is an m-dimensional vector space, there are m distinct eigenvalues,
and all elements of μm are eigenvalues.

Let w be a generator of μm and z an eigenvector of g for w. Then zi , i = 0, ...,

m − 1, are the eigenvectors for all the eigenvalues of g. Hence they form a basis for
E. In particular E is generated by z as extension of K.

Set b = zm and a = zn . The m-th roots of b (resp. the n-th roots of a) are u · z
with u ∈ μm (resp. u ∈ μn). Hence they are in E and

E = R(b, m) = R(a, n) .

�
Remark If K = Q, G has order n, and E is then called a Kummer extension.

5.8.4 Solvable Extensions

Definition Let L ⊂ � be a finite extension of K. Then L is said to be a solvable
extension of K if there is a finite sequence (L0, ..., LN) of extensions with K = L0 ⊂
L1 ⊂ · · · ⊂ LN ⊂ �, L ⊂ LN and Li+1 is of the form RLi (ai,1, ni,1 ; ... ; ai,ki , ni,ki )

for 0 � i � N − 1.

This definition implies that a sub-extension of a solvable extension of K is solv-
able, an extension generated by finitely many solvable extensions is solvable, and a
solvable extension of a solvable extension of K is a solvable extension of K.

In this definition, imposing ki = 1 for all i does not restrict the notion of solvability,
A finite radical extension, i.e. a purely inseparable one, is solvable. An extension

L of K is solvable if and only if so is Lsep: indeed Lsep is a sub-extension of L and L
is a radical extension of Lsep.

5.8.5 Separable Solvable Extensions

A separable extension L of K is solvable if and only if the Galois extension E
generated by L is solvable. Indeed L is a sub-extension of E, and E is generated by
L and its conjugates under the action of AutK(�).
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If L is a separable solvable extension of K, then there is a sequence (L0, ..., LN)

satisfying the conditions of definition 5.8.4., where no ni, j is a multiple of p. This
follows from the next lemma.

Lemma If n = pr m where m is not a multiple of p, then for a ∈ K∗ R(a, n)sep =
R(a, m).

Proof The extension R(a, m) is separable, and R(a, n) is a purely inseparable
extension of R(a, m) since it is generated by the pr -th roots of the m-th roots
of a. �

If L is a separable solvable extension of K, there is a sequence (L0, ..., LN) sat-
isfying conditions of definition 5.8.4, with all Li Galois. Indeed, by the previous
reduction, all the extensions Li may be assumed to be separable. Then, each time
n-th roots of an element are added, we also add those of all its conjugates over K.

5.8.6 Solvable Groups

Definition A group G is said to be solvable if there is a decreasing finite sequence
(G0, ..., GN) of subgroups of G with G0 = G, GN = {e}, Gi+1 normal in Gi and
Gi/Gi+1 commutative for 0 � i � N − 1.

A subgroup of a solvable is solvable. A quotient group of a solvable group is
solvable. Given a group G and a normal subgroup H, if H and G/H are solvable,
then so is G.

If G is a finite solvable group, then there is a sequence (G0, ..., GN) satisfying the
conditions of the above definition with Gi/Gi+1 cyclic for all i . This follows from the
fact that every finite commutative group is the direct sum of cyclic groups (Theorem
3.5.8, with A = Z).

5.8.7 The Groups Sn and An

If the set X is finite, then let S(X) be the permutation group on X (symmetric
group), and A(X) the kernel of the homomorphism ε : S(X) → {+1,−1} which
assigns to each permutation its signature (3.3.18) (alternating group). For Y ⊂ X,
embed S(Y) in S(X) by extending the permutations by the identity on X − Y. Then
A(Y) = S(Y) ∩ A(X). If X has n elements, then S(X) and A(X) are respectively
isomorphic to Sn = S({1, ..., n}) and An = A({1, ..., n}).

Let the set X be finite, k � 2 and a1, ..., ak distinct points of X. Write [a1, ..., an]
for the permutation ζ defined by ζ(ai ) = ai+1 for 1 � i � k − 1, ζ(ak) = a1 and
ζ(x) = x for x ∈ X − {a1, ..., ak}. Such a permutation is called a k-cycle and
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{a1, ..., ak} is the support of ζ. Cycles with disjoint supports commute. Every permu-
tation on X can, up to order, be uniquely written as a product of cycles with disjoint
supports.

If σ = ζ1 . . . ζν with disjoint supports, where ζi is a ki -cycle and k1 � · · · � kν ,
then σ will be said of type (k1, ..., kν). Two permutations on X are conjugate in S(X)

if and only they are of the same type.
If σ and σ′ are of the same type (k1, ..., kn) and if some ki is even, or any two ki are

equal, or k1 + · · · + kν � n − 2, then the permutations σ and σ′ are conjugate by an
element of A(X). In all three cases, there exists τ ∈ S(X) − A(X) commuting with
ζ. However, if σ′ = ασα−1, then σ′ = α′σα′−1 when α′ = ατ with τ commuting
with σ; if moreover ε(τ ) = −1, one of α, α′ is in A(X).

5.8.8 Simplicity of An for n � 5

A group G is said to be simple if its only normal subgroups are G and {e}.
Proposition Let X be an n element set with n � 5. Then the group A(X) is simple.

This proposition follows from the next two lemmas.

Lemma 5.1 Let H be a nontrivial normal subgroup of A(X). Then H contains a
3-cycle or an element of type (2, 2).

Proof Let σ ∈ H be a nontrivial element, (k1, ..., kν) the type of σ and write σ =
ζ1 · · · ζν , where ζi is a ki -cycle and the supports are all disjoint.

If there is some ki �= 3, then there is a 3 element set � such that Y = � ∪ σ(�) has
4 elements. Indeed if k1 > 3 and ζ1 = [a1, ..., ak1 ] then we may take � = {a1, a2, a3};
if kν = 2, then ν > 1 for otherwise ε(σ) = −1 and we could take � = supp(ζν) ∪
{x}, where x is not a fixed element.

In this case, let α be a cycle of support �. Then α′ = σασ−1 is a cycle of support
σ(�), and γ = α′α−1 is in A(Y) and is nontrivial. Hence γ is a 3-cycle or an element
of type (2, 2). But γ can be written as σσ′−1, where σ′ = ασα−1 ∈ H, and so γ ∈ H.
This proves the lemma in this case.

It remains to prove the case where all ki = 3. If ν = 1, σ itself is a 3-cycle. If
ν � 2, write ζ1 = [a1, a2, a3], ζ2 = [b1, b2, b3], and set α = [a1, b1][a2, b2]. Then
σ′ = ασα−1 = [b1, b2, a3][a1, a2, b3] ζ3 · · · ζν , and γ = σσ′−1 = [a1, b1][a3, b3] ∈
H. �

Lemma 5.2 Let H be a normal subgroup of A(X) with Card(X) � 5. If H contains
a 3-cycle or an element of type (2, 2), then H = A(X).

Proof First note that if there is an element of type (2, 2), then there is also a 3-cycle.
Indeed, if σ = [a1, a2][b1, b2] ∈ H, choose x ∈ X different from a1, a2, b1, b2, which
is possible since Card(X) � 5. Set α = [a1, a2, x]. Then
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γ = σασ−1α−1 = [x, a2, a1] ∈ H .

Hence this is the case where H contains a 3-cycle. Then all 3-cycles are in H since
all of them are conjugate in A(X). The proof then follows by a “jeu de taquin”.

Take X = {1, ..., n}, and let σ ∈ An . We show that σ ∈ H. Construct by induc-
tion a sequence (σi )0�i�n−2 such that σi fixes 1, ..., i with σ0 = σ and σi = hiσi−1,
where hi ∈ H for 1 � i � n − 2. If σi−1(i) = i , then take hi = I; otherwise take
hi = [σi−1(i), i, x], where x ∈ {i + 1, ..., n} is different from σi−1(i), which is
possible. Then σn−2 fixes 1, ..., n − 2, and as ε(σn−2) = 1, σn−2 = I, and so σ =
(hn−2hn−3...h1)

−1 ∈ H. �

5.8.9

Corollary For an n element set X with n � 5, the only normal subgroups of S(X)

are {I}, A(X) and S(X).

Proof Let H be a normal subgroup of S(X). Then H′ = H ∩ A(X) is a normal
subgroup of A(X), and so is A(X) or {I}.

If H′ = A(X), i.e. if H ⊃ A(X), then H = A(X) or H = S(X), since the only
subgroups of S(X)/A(X) = {+1,−1} are {1} and the whole group.

If H′ = {I}, then H has at most 2 elements. If H is nontrivial, then the nontrivial
element must be left invariant by all inner automorphisms of S(X), hence is central,
which is impossible. �

5.8.10

Theorem A finite Galois extension E of K is a solvable extension if and only if the
Galois group G = AutK(E) is solvable and its order is not a multiple of p.

Proof (a) necessity: Suppose that E is solvable and that (L0, ..., LN) satisfies the
conditions of definition 5.8.4., where for all i , Li is a Galois extension of K and
no ni, j is a multiple of p for i ∈ {0, ..., N} and j ∈ {1, ..., ki } (5.8.5). Set K′ = Mn ,
where n is the l.c.m. of ni, j .

For i ∈ {0, ..., N}, let L′
i be the extension generated by K′ and Li in �. All L′

i are
Galois extensions of K′ (5.6.4, Corollary 1), and

L′
i+1 = RL′

i
(ai,1, ni,1 ; ... ; ai,ki , ni,ki ) .

The Galois groups G′
i of AutL′

i
(L′

N) are normal subgroups of G′
0 (5.6.4, Corol-

lary 2), G′
N = {e} and by Proposition 5.8.2., for i ∈ {0, ..., N − 1}, the quotient group

G′
i/G′

i+1 = AutL′
i
(L′

i+1) is commutative. So the group G′
0 = AutK′(L′

N) is solvable.
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By Proposition 5.8.1, (c), the group � = AutK(K′) is commutative, and hence
solvable. As � = G′′/G′

0, where G′′ = AutK(L′
N) is solvable ( 5.8.6). The group G =

AutK(E) can be identified with a quotient of G′′ (5.6.4, Corollary 2), hence is also
solvable.

(b) Sufficiency: Suppose that G is solvable and that its order n is not a multiple
of p, and let (G0, ..., GN) be a sequence of subgroups satisfying the conditions of
definition 5.8.6, with Gi/Gi+1 cyclic of order ni . The order n of G is the product of ni ,
and so no ni is a multiple of p. Let m be the l.c.m. of the integers ni , K′ = Mm , E′ the
extension generated by K′ and E in �, and G′ the Galois group of AutK′(E′). Setting
G′

i = G′ ∩ Gi , the group G′
i/G′

i+1 can be identified with a subgroup of Gi/Gi+1.
Hence it is cyclic of order n′

i dividing ni as well as m.
Set L′

i = FixG′
i
(E′). Then

K′ = L′
0 ⊂ · · · ⊂ L′

N = E′ ,

E′ is a Galois extension of L′
i for all i , with AutL′

i
(E′) = G′

i , and for i � N − 1, L′
i+1

is a Galois extension of L′
i with AutL′

i
(L′

i+1) = G′
i/G′

i+1 ≈ Z/(n′
i ).

By Proposition 5.8.3, the extension L′
i+1 of L′

i is of the form RL′
i
(ai , n′

i ). Hence
E′ is a solvable extension of K′. As K′ is a solvable extension of K, so is the case of
E′ and hence also of its sub-extension E.

5.8.11 Example of a Non Solvable Extension of Q

Let E be the decomposition field of the polynomial f = X5 − 3X − 1 over Q in C.
We show that E is a non solvable extension of Q.

(1) f is irreducible in Q[X]. The polynomial f has a root z1 such that |z1| < 1 ,
the others have absolute value > 1. Indeed, as z travels once round the unit circle in
C, f (z) = −3z

(
1 − z5−1

3z

)
travels round 0 once. Were f reducible, there would be

f1 and f2 of degree � 1 in Z[X] such that f = f1. f2 (3.7.8, Lemma 1). The leading
coefficients and the constant terms of f1 and f2 should be 1 or −1, contradicting the
fact that one of them should have absolute value > 1.

(2) f has 3 real roots. Considering the sign of f (x) for x = −2, −1, 1 and 2,
shows that f has at least 3 real roots. The derivative f ′ = 5X4 − 3 has only 2 real
roots, and so f has at most 3 real roots.

(3) G = AutQ(E) is isomorphic to S5. The group G acts on the set � of roots
of f , which has 5 elements. Hence there is a homomorphism G → S(�), which is
injective since � generates E as an extension of Q. Complex conjugation induces a
transposition τ permuting the two non real roots of f . The group G acts transitively
on � since f is irreducible (Proposition 5.6.5); if S is the stabilizer of a point of �,
then Card(G)/Card (S) = 5, and so Card(G) is a multiple of 5. By Sylow’s theorem,
G contains a subgroup of order 5, necessarily generated by an element of order 5
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which can only be a 5-cycle. But as in S5, a subgroup in S(�) containing a 2-cycle
and a 5-cycle is the whole group. Hence G can be identified with S(�).

(4) The group S5 is not solvable. This follows from Corollary 5.8.9. As a result,
E is a non solvable extension of Q by Theorem 5.8.10.

Exercises 5.8. (Solvability)
1.—Let p be a prime. A finite group G is a p-group if the order of G is a power of p.

(a) Let G be a p-group and X a finite G-set; set Y = FixGX. Show that card Y ≡
card X (mod p).

(b) Making G act on itself by inner automorphisms, show that the centre of G is
not trivial.

(c) Deduce that G is solvable.

2. (Cyclotomic polynomials)— Let n be an integer, Gn the group of invertible
elements of the ring Z/(n), and ϕn its cardinality. Suppose Gn is cyclic, and let
� be an algebraic closure of Q. Set �n(X) = ∏

(X − ζi ), where ζi are the primitive
n-th roots of unity. The aim is to show that �n ∈ Q[X] is irreducible (this property
holds even when Gn is not cyclic, but the proof is different).

(a) Show that Xn − 1 = ∏
�d , where d is a divisor of n. Deduce that �n ∈ Z[X]

(use the results of 3.7.8). For any field K, let �K
n be the image of �n in K[X].

(b) Show that for any field K whose characteristic p does not divide n, the roots
of �K

n in an algebraic closure of K are the primitive n-th roots of unity.

(c) Prove that if there is a prime p such that �
Fp
n is irreducible, then the irre-

ducibility of �n in Q[X] follows (use 3.7.8 to reduce from the case Q to Z).

(d) Let p be a prime whose class modulo n generates Gn . Show that the field Fpr

has no primitive n-th root of unity for r < ϕn . Deduce that �
Fp
n is irreducible.

(e) Conclude by assuming the following result: an arithmetic progression whose
first term and difference are coprime contains infinitely many primes.

(f) Show that L = Q[X]/(�n) is a Galois extension of Q and that its Galois group
can be identified with Gn . Each embedding σ of L in � defines an isomorphism of
L onto the sub-extension E of � generated by the n-th roots of unity. Hence there is
an isomorphism σ∗ from Gn onto AutQ(E). Does this isomorphism depend on σ?

3.—Let K be of characteristic different from 2 and 3 and P ∈ K[X] an irreducible
polynomial of degree 3. Let E be the extension generated in an algebraic closure of
K by roots of P and the cubic roots 1, j , j2 of 1.

(a) Show that E is a solvable extension of K. More precisely, show that K̃ = K( j)
has degree 2 or 1 over K and that there is an extension F of degree 2 or 1 of K̃ such
that E = F( 3

√
a) for some a ∈ F is an extension of degree 3 of F.
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In the following, the aim is to reduce the search for the roots of P to extractions
of square or cubic roots.

(b) Let x ∈ E be a root of P and σ ∈ AutK(E) an element of order 3. The other
two roots of P are y = σ(x) and z = σ2(x). Let F, V and W be the eigenspaces of σ
considered a K̃-linear map from E to E for the eigenvalues 1, j and j2 respectively.
Let v and w be the respective projections of x onto V and W. Express v and w in
terms of x , y, z and j . Show that F = K(v3) = K(w3), and that vw ∈ K.

(c) Suppose P = X3 + pX + q. Show that x = v + w and vw = − p
3 .

(d) Replacing x by v + w in x3 + px + q = 0, calculate v3 + w3. Deduce that v3

and w3 are the two roots of a second degree equation over K and give this equation.

(e) Express x by radicals (Cardano’s formula).

4.—Let K be of characteristic different from 2 and 3, P an irreducible polynomial of
degree 4 over K, and x , y, z, t the roots of P in an algebraic closure.

(a) Show that u = xy + zt , v = xz + yt and w = xt + yz are the roots of a degree
3 polynomial over K.

(b) Show that xy and zt are the roots of a second degree equation over K(u).
Show that so are x + y and z + t .

(c) Show that x + y and xy generated the same quadratic extension L of K(u).
Show that x and y are the roots of a second degree equation over L.

(d) Let E = K(x, y, z, t). Assume that the Galois group AutK(E) is isomorphic
to S4. Give the list of subgroups of S4 and for each of them, give the generators of
the corresponding sub-extension of E.

(e) What can be said about the Galois group AutK(E) if P(X) = X4 + pX2 + q
(square of a quadratic)? if P(X) = aX4 + bX3 + cX2 + bX + a (reciprocal polyno-
mial)?

5.—(a) Let K and L be subfields of C such that K ⊂ L and [L : K] = 2. Show that
every point of L can be obtained from points of K by a ruler and compass construction.

(b) Let E be a subfield of C generated by e2iπ/17. Show that E is a Galois extension
of Q and that the Galois group G = AutQE can be identified with a group of auto-
morphisms of Z/(17). Using 5.2.10, deduce that G is isomorphic to a cyclic group
of order 2k , k � 4 (in fact G ≈ Z/(16)). Show that there is a sequence E0,…, Ek

of subfields of E with Q = E0 ⊂ E1 ⊂ · · · ⊂ Ek = E and [Ei : Ei−1] = 2. Are the
subfields Ei Galois extensions of Q?

(c) Show that a regular polygon with 17 sides can be constructed using ruler and
compass (an explicit construction is not asked for). What properties of the number
17 have been used?

Give a ruler and compass construction of a regular pentagon.
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5.9 Infinite Galois Theory

In this section, � will denote an algebraic closure of the field K, �sep the separable
closure of K in �, and G the group AutK�.

5.9.1

Proposition G = AutK�sep.

In other words, every automorphism of � induces an automorphism of �sep, and
every automorphism of �sep extends uniquely to an automorphism of �.

Proof The existence of an extension follows from 5.2.7, Corollary 2. As � is a
purely inseparable extension of �sep by 5.5.4, uniqueness is a consequence of 5.5.3
applied to �sep and �.

5.9.2 Profinite Structure of G

Let E be the set of finite Galois extensions of K in �. Ordered by inclusion, it is
a directed set: the sub-extension of � generated by two finite Galois extensions is
etale and invariant under G, hence Galois (5.6.3). For objects E and F of E such that
E ⊂ F, every K-automorphism of F induces a K-automorphism of E. Hence there is
a restriction homomorphism ρF

E : AutKF → AutKE. By 5.6.4, �sep is the union of
E ∈ E . As a result,

G = AutK�sep = lim←−
E∈E

AutKE .

Equip G with the topology obtained by transferring the topology of the projective
limite via this identification. The group G then becomes a profinite group.

5.9.3 The Functor S

Let A be an algebraic and separable algebra over K (see 5.4.4). Set S(A) = HomK-AAAlllggg
(A,�sep) = HomK-AAAlllggg(A,�). Indeed, let x ∈ A, f ∈ S(A), and P be the minimal
polynomial of x ; since P( f (x)) = 0, the minimal polynomial of f (x) divides P, and
f (x) is separable.

For any finite subalgebra B of A, the set HomK-AAAlllggg(B,�) is finite. Then
S(A) = lim←− HomK-AAAlllggg(B,�), the inverse limit being taken over all finite subalgebras
of A. This identification turns S(A) into a profinite space.
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The group G acts on S(A) by (g, f ) �→ g ◦ f . This action is continuous. Indeed,
for any etale algebra B, there is a finite Galois extension E diagonalizing B; then the
action of G on S(B) factorizes through AutK(E), hence is continuous. Therefore the
inverse limit S(A) of finite G-sets S(B), for finite subalgebras B of A, is an object of
G-Prof (2.8.6).

This defines a contravariant functor from the category A of separable K-algebraic
algebras to the category G-Prof of profinite spaces on which the action of G is
continuous.

5.9.4

Theorem The functor S : A → G-Prof is an anti-equivalence of categories.

Proof Let D be the category of etale K-algebras, and for any finite Galois extension
E of K in �, let DE be the sub-category of D consisting of algebras diagonalized by
E. Set GE = AutKE. By Theorem 5.7.3., the functor SE : A → HomK−AAAlllggg(A, E) =
HomK−AAAlllggg(A,�) is an anti-equivalence from DE onto GE-Setf.

As D = lim−→DE, and G = lim←− GE,ù G-Setf = lim−→ GE-Setf by 2.9.4. The func-
tors SE mutually induce each other, and so by passing to the direct limit, defines an
anti-equivalence from D onto G-Setf. This anti-equivalence is readily seen to be
given by the functor S. It is also immediate that A can be identified with the category
D� defined by (D�)o = (D�

o). Moreover, G-Prof = G-Setf←−−−−− by 2.8.6. As a result,

S is an anti-equivalence of categories. �

5.9.5 Dictionary

Let A be a separable algebra over K.

(a) If A = A1 × A2, then S(A) = S(A1) � S(A2). If A = A1 ⊗ A2, then S(A) =
S(A1) × S(A2). Indeed, the functor S transforms sums into products and con-
versely.

(b) Let A and B be separable algebras. A homomorphism f : A → B is injective
if and only if f ∗ : S(B) → S(A) is surjective. Indeed consider the fibre product
A′ = A ×B A. The G-set S(A′) is sum of two copies of S(A) amalgamated
by S(B), i.e. the quotient of S(A) � S(A) = {1, 2} × S(A) by the equivalence
relation identifying (1, x) and (2, x) for x ∈ f ∗(S(B)), (it is the fibre product
in the opposite category). Then f is injective if and only if the two projections
of A′ onto A agree, or equivalently the two injections of S(A) into S(A′) agree,
which is the case if and only if f ∗ is surjective.

(c) Similarly, f is surjective if and only if f ∗ is injective. A direct consequence of the
definition of S is that if f is surjective, then f ∗ is injective. If f is not surjective,
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then f factorizes in A
f̃→ B′ ι→ B, where ι is injective but not an isomorphism.

Then f ∗ = f̃ ∗ ◦ ι∗, and ι∗ is surjective but not an isomorphism; hence ι∗ is not
injective since S(B) is compact, and f ∗ is not injective.

(d) A is an extension of K if and only if G acts transitively on S(A). Indeed, S(�) = G
and A is an extension of K if and only if there is an injective homomorphism
from A to �.
More generally, the orbits of the action of G on S(A) are in bijective correspon-
dence with the maximal ideals of A.

(e) Assigning to each sub-extension L of �sep the stabilizer of the canonical injection
ιL ∈ S(L), i.e. AutL(�sep), defines a bijection between the sub-extensions of �sep

and the closed subgroups of G. The inverse is given by H �→ FixH(�sep).
(f) The sub-extensions L and L′ of �sep are isomorphic if and only if the sub-groups

AutL(�sep) and AutL′(�sep) of G are conjugate.

5.9.6

Proposition and Definition Let L be a sub-extension of �. The following conditions
are equivalent:

(i) L is separable and invariant under G;
(ii) L is the union of finite Galois sub-extensions of �sep;

(iii) L is contained in �sep and the sub-group AutL(�) of G is normal.

If these conditions hold, then L is said to be Galois.

Proof (ii) ⇒ (i). Immediate from Theorem 5.6.3.
(i) ⇒ (ii). Let x ∈ L. The extension generated by the conjugates of x is etale and

invariant under G, hence is Galois (5.6.3, Theorem).
(i) ⇒ (iii). For g ∈ G, Autg(L)� = g · AutL� · g−1. If L is preserved by G, then

g · AutL� · g−1 = AutL� for all g ∈ G.
(iii) ⇒ (i). The same formula shows that AutL� = Autg(L)�. Hence, by (5.6.4,

Corollary 2), L = g(L). �
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Chapter 6
Riemann Surfaces

Introduction
We begin this chapter with the definition of a Riemann surface. Let B be a compact
connected Riemann surface, and M(B) the field of meromorphic functions on B. If
X is a compact connected Riemann surface over B (i.e. equipped with a non constant
morphism π : X → B), then the fieldM(X) is a finite extension ofM(B). Moreover,
there is a finite subset � of B such that X′ = X− π−1(�) is a connected finite cover
of B−�. The functors X �→M(X) and X �→ X′ give an equivalence between the
category V1

B of compact connected Riemann surfaces over B, and respectively, the
opposite category of the category of finite extensions of M(B), and the direct limit
category of categories of connected covers of B−�, where � ⊂ B is finite.

The study of Riemann surfaces can thus be undertaken either in a purely algebraic
framework or a purely topological one. In each, the category V1

B can be identified
(Chap. 4 for the topological framework, Chap. 5 for the algebraic one) with the cat-
egory of finite sets acted upon by a profinite group G which may be called G-Alg

or G-Top. These two groups may be identified, and thus G-Alg can be described
topologically. In Section 6.4, we give a description of the Galois group of the alge-
braic closure of C(Z) =M(�) (where � is the Riemann sphere), which cannot be
done purely algebraically.

In Section 6.7, we study the automorphism group of a Riemann surface, and
assuming it to be finite we give an upper bound for its order when its genus is � 2.
For this homology theory is required. We have chosen the theory obtained from
triangulation. These tools are developed in Sections 6.5 and 6.6. In Section 6.8, we
show that the bound obtained for the order of the automorphism group is not reached
in genus 2, but is in genus 3. In Section 6.10 we show the existence of a Riemann
surface of genus 3 whose automorphism group has order 168. We construct this latter
example in the framework of Poincaré geometry, which is introduced in Section 6.9.
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6.1 Riemann Surfaces, Ramified Coverings

6.1.1 Riemann Surfaces

A Hausdorff topological space X is said to be a topological surface if every point
of X has an open neighbourhood homeomorphic to some open subset of R

2.
Let X be a topological surface. A complex chart for X is a homeomorphism ϕ

from an open subset U of X onto an open subset of C; U is said to be the domain of
the chart ϕ, and ϕ a chart centered at x0 if ϕ(x0) = 0 and if the image of ϕ is a disk
centered at 0. Let ϕ and ψ be two charts for X with respective domains U and V.
The map γ : x �→ ψ(ϕ−1(x)) is a homeomorphism from the open subset ϕ(U ∩ V)

of C onto the open subset ψ(U ∩ V) of C, and is called the transition map from ϕ
to ψ. A C-analytic atlas on X is a family of charts whose domains cover X such that
all transition maps are holomorphic, i.e. C-analytic.

Two C-analytic atlases (ϕi )i∈I and (ψ j ) j∈J are equivalent if for all (i, j), the
transition maps from ϕi to ψ j and from ψ j to ϕi are holomorphic, i.e. if the family
obtained by their union is also an atlas. This is an equivalence relation. A C-analytic
structure on X is an equivalence class of analytic atlases. A topological surface with
an analytic structure is called a Riemann surface, or a 1-dimensional C-analytic
manifold, or a complex curve.

Let X be a Riemann surface whose structure is defined by an atlas (ϕi ), and Ui

the domain of ϕi . Let Y be an open subset of X. The restrictions of ϕi to Ui ∩ Y
form an atlas for Y. The structure of Y defined by this atlas only depends on that of
X. The structure on Y is said to be induced by that of X.

6.1.2 Example. The Riemann Sphere

Consider the set � = C ∪ {∞} and equip � with the topology inducing the ordinary
topology on C, and for which the open neighbourhoods of ∞ are complements of
the compact subsets of C.

The space � is homeomorphic to the sphere

S2 = {(x, y, z) ∈ R
3 | x2 + y2 + z2 = 1} .

Indeed, as can be checked, the stereographic projection

(x, y, z) �→ x + iy

1− z
, (0, 0, 1) �→ ∞

is a homeomorphism from S2 onto �.
The charts ϕ0 = 1C : � − {∞} → C and ϕ1 : � − {0} → C, defined by ϕ1(z) =

1
z and ϕ1(∞) = 0, form an analytic atlas on �, the transition map being z �→ 1

z from
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C− {0} to itself. This atlas defines a C-analytic structure on �. With this structure,
� is a compact Riemann surface called the Riemann sphere.

6.1.3 Analytic Maps

Let X be a Riemann surface and ϕ a chart for X with domain U. If f : X → C is
a function, the function f ◦ (ϕ−1) defined on ϕ(U) is called an expression of f in
the chart ϕ, and holomorphic if its expression in every chart in an atlas defining the
structure de X is holomorphic, this property being independent of the choice of atlas.
If Y is a Riemann surface, ψ a chart with domain V and f : X → Y is a continuous
map, the map ψ ◦ f ◦ ϕ−1 defined on ϕ(U ∩ f −1(V)) is called an expression of f
in the above charts, and analytic if there exist atlases (ϕi )i∈I and (ψ j ) j∈J of X and Y
such that its expression in the charts ϕi and ψ j is holomorphic for all (i, j) ∈ I× J.
This property is independent of the equivalence class of the given atlases.

If D ⊂ X is a discrete closed set, then a holomorphic function f : X− D → C is
called meromorphic on X with poles in D if for all a ∈ D, there is a neighbourhood
of a in V and two holomorphic functions g, h : V → C such that h−1(0) ⊂ {a} and
f = g

h on V− {a} (then f := g
h on V). The ring of meromorphic functions on X

with poles in D is written M(X, D). let

M(X) = lim−→M(X, D)

be the direct limit over the set of discrete closed subsets of X; the elements of M(X)

are called meromorphic functions on X.

6.1.4

Proposition and Definition Let X and Y be Riemann surfaces, f : X → Y an ana-
lytic map, x0 ∈ X, and y0 = f (x0). Assume that f is not constant in the neighbour-
hood of x0. Let ψ be a chart for Y centered at y0. Then there is a chart ϕ for X
centered at x0 such that the expression of f in the charts ϕ and ψ is z �→ zd , for
some number d independent of the choice of charts. It is called the ramification
index of f at x0.

Proof Let ϕ0 be an analytic chart for X in the neighbourhood of x0 such that ϕ0(x0) =
0, and ḟ the expression of f in the charts ϕ0 and ψ. Then f (0) = 0. We give a
series expansion of ḟ in the neighbourhood of 0. Let ḟ (z) =∑

ak zk , d the smallest
integer for which ad �= 0, and c ∈ C such that cd = ad . Then ḟ (z) = (cz)d(1+ u(z))
for some holomorphic u such that u(0) = 0. Since there is a holomorphic function
w �→ d

√
w in the neighbourhood of 1, the function 1+ u may be written as hd for some
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holomorphic h in the neighbourhood of 0 with h(0) = 1. Hence ḟ (z) = (cz · h(z))d .
Set ϕ(x) = c ϕ0(x) · h(ϕ0(x)). The implicit function theorem implies that ϕ is an
analytic chart in the neighbourhood of x0, and ψ( f (x)) = (ϕ(x))d for x near x0.

If z �→ zd is the expression of f , then there is a neighbourhood U0 of x0 such that
for any neighbourhood U of x0 in U0, there is a neighbourhood V of y0 such that for
all y �= y0 ∈ V, d is the cardinality of f −1(y) ∩ U. This gives a characterization of
d independent of the charts. �

6.1.5

Proposition Let

X
ψ � X′

B

α � ϕ � B′
β�

be a commutative diagram, where X, X′, B and B′ are Riemann surfaces, α, β,
ϕ analytic maps, and ψ a continuous map. Assume that β is not constant on any
connected component of X′. Then ψ is analytic.

Proof Since this is a local result, X′ and B′ may be assumed to be open in C,
β : z �→ zd , and X connected. The function ψd = β ◦ ψ = ϕ ◦ α is analytic; so the
set � = ψ−1(0) = {x | (ψ(x))d = 0} is the whole of X, in which case ψ is either
constant, or a closed discrete set. Then ψ is continuous on X, and analytic on X−�,
so also on X by a well-known result on holomorphic functions.1 �

6.1.6

Proposition Let B be a connected Riemann surface, X a Riemann surface equipped
with a proper analytic map π : X → B. The following conditions are equivalent:

(i) there is no connected component of X on which π is constant;
(ii) the fibres de π are finite;

(iii) for all connected components Xi of X, π(Xi ) = B;
(iv) π is open;
(v) for all x ∈ X, there is a chart ϕ for X in the neighbourhood of x with ϕ(x) = 0

and a chart ψ for B with ψ(π(x)) = 0 such that the expression of π in these
charts takes the form z �→ zd .

1Cartan [1], 2.7, Corollary of th. 2.7.4, p. 74; see also [2], 8.9, making sure that an = 0 for n < 0.
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Proof (i) ⇒ (v) follows from Proposition 6.1.4 by noting that, according to the
analytic continuation principle, if π is constant in the neighbourhood of x , then it
also is on the connected component of x .

(v) ⇒ (iv) since the map z �→ zd is open.
(iv) ⇒ (iii): let Xi be a connected component of X. Then Xi is clopen and

nonempty. Hence π(Xi ) is clopen since π is proper and nonempty; so π(Xi ) = B.
(iii) ⇒ (i) is obvious.
(v)⇒ (ii): each point of X is isolated in its fibre, hence the fibres are discrete. As

they are compact, they are finite.
(ii) ⇒ (i) is obvious. �

6.1.7 Ramified Coverings

Definition Let B be a topological surface. A finite ramified covering B is a topo-
logical surface X equipped with a proper continuous map π : X → B satisfying the
following condition:

(RR) For all x ∈ X, there is a complex chart for X centered at x and a complex chart
for B centered at π(x) such that the expression of π in these charts takes the
form z �→ zd .

Examples (1) Every finite covering of B is a finite ramified covering of B. However
a finite ramified covering B is not in general a covering of B.

(2) Let B be a Riemann surface and X a Riemann surface equipped with a proper
analytic map π : X → B. Assume that there is no connected component of X on
which π is constant. Then X is a finite ramified covering of B and is called a finite
ramified analytic covering of B.

Remarks (1) If X is a finite ramified covering of B, for any point x the integer d in
condition (RR) is independent of the choice of charts, and is called the local degree
or the ramification index of X at x . The set of points for which d > 1 is discrete
and closed in X, its projection � in B is discrete and closed in B and is called the
ramification set and X|B−� is a finite covering of B−�.

(2) If X is a finite ramified analytic covering of B, then the projection π : X → B
is open with finite fibres.

(3) If B is connected then for all closed discrete � ⊂ B, B−� is connected.
Indeed, if h is a locally constant function on B−�, it extends to a locally constant
function h̄ on B; then h̄ is constant and so is h. Hence the degree of a finite ramified
covering over a connected component of B is well defined.
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6.1.8

Proposition Let B be a topological surface, (X,π) a ramified covering of B, � ⊂ B
the ramification set of π, b ∈ B, ϕ a chart for B centered at b with domain U, and V
a connected component of π−1(U). Set U∗ = U − {b}. Suppose that U∗ ∩� = ∅.
Then the fibre V(b) = V ∩ π−1(b) of V at b only contains x, and there is a chart ψ
of X centered at x with domain V such that the expression of π in the charts ψ, ϕ is
z �→ zd , where d is the local degree of π at x.

Lemma Any two connected d-fold coverings of U∗ are isomorphic.

Proof of the Lemma The chart ϕ induces a homeomorphism from U∗ to a pointed
disk D∗ = D− {0}. For β ∈ U∗, the fundamental group π1(U∗,β) is isomorphic to
Z. By (4.6.9) the isomorphism classes of connected d-fold coverings of U∗ are in
bijective correspondence with (conjugation classes of) subgroups of index d in Z,
and it is unique. �

Proof of the Proposition The set V(b) is finite, and so V∗ = V− V(b) is connected;
equipped with the restriction of π it is a connected component of U∗ of some degree d.
The image of ϕ is a disk D = Dr . Set r ′ = r1/d , D′ = Dr ′ . The map p : z �→ zd turns
D′∗ into a connected component of D∗ of degree d. By the lemma, the coverings V∗
and ϕ∗(D′∗, p) of U∗ are isomorphic. Thus there is a homeomorphism ψ : V∗ → D′∗
such that p ◦ ψ = ϕ ◦ p : V∗ → D∗.

We show that V(b) is a singleton. Let xi be the points of V(b) with i ∈ I, where I is
finite. The map π : V → U is proper, and so there is a neighbourhood U′ of b in U and
a partition (V′

i )i∈I of V′ = V ∩ π−1(U′) into nonempty open sets such that xi ∈ V′
i

for all i . And we may assume that there is some ρ > 0 such that U′ = ϕ−1(Dρ).
Then ψ(V′

i ∩ V∗) form a partition of D∗
ρ′ into nonempty open sets, where ρ′ = ρ1/d .

Hence, Card V(b) = 1.
Let V(b) = {x} and extend ψ to a bijection from V onto D′, also denoted ψ, by

setting ψ(x) = 0. We show that it is a homeomorphism. If x ′ ∈ V∗ tends to x , then
π(x ′) tends to b, and ϕ(π(x ′)) = (ψ(x ′))d tends to 0; so ψ(x ′) tends to 0. Hence ψ
is continuous. If ψ(x ′) tends to 0, then π(x ′) = ϕ−1((ψ(x ′))d) tends to b, and so x ′
tends to x since π;V → U is proper and V(b) = {x}. Hence ψ−1 is continuous.

Then ψ : V → D′ is a chart for X centered at x , the expression of π in this chart
is z �→ zd , and d is necessarily the local degree of π at x . �

6.1.9

Let B be a topological surface, a, b ∈ B with a �= b, and γ ∈ π1(B− {a}, b), iden-
tified with the Poincaré group (4.9.9). The element γ will be said to go round a in
B if there is a chart ϕ : U → D for B centered at a, a point b′ ∈ U and a class β
of paths from b to b′ such that γ = β−1 · α · β, where α is the class of the loop in
(U, b′) whose image under ϕ is t �→ ϕ(b′) · e2πi t .
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Proposition Let B be a topological surface and X a finite ramified covering of B; �

the ramification set. Let b ∈ B−�, a ∈ � and γ ∈ π1(B−�, b) an element going
round a in B− (�− {a}). Set σγ be the permutation of X(b) defined by γ. Then the
order of σγ in the permutation group of X(b) is l.c.m.(r1, . . . , rk), where ri are the
ramification indices of X at points of X(a).

Proof The class of paths β enables the identification of X(b) with X(b′) and of
π1(X−�, b) with π1(X−�, b′); moreover these identifications are compatible
with all actions. We may assume that b = b′, β = eb and γ = α.

Let X(a) = {x1, . . . , xk}. By Proposition 6.1.8, there are charts ψ1, . . . ,ψk de X
with domains V1, . . . , Vk , centered respectively at x1, . . . , xk , such that the expres-
sion of the projection π : X → B in the charts ψi and ϕ is z �→ zri . The loop with

expression t �→ ϕ(b) · e2πi t can be lifted in Vi to paths with expressions t �→ λi e
2πi t

ri ,
where λri

i = ϕ(b). Hence the permutation σα preserves each set Vi (b), and its expres-
sion in Vi (b), identified by ψi with the set of ri -th roots of ϕ(b), is multiplication by

e2πi 1
ri . Hence (σα)ν = 1 if and only if ν is a common multiple to ri . �

6.1.10

Proposition Let X be a finite ramified covering of B. For any C-analytic structure
on B, there is a unique C-analytic structure on X such that π : X → B is analytic.

Proof Let δ be the ramification set of π. Let (ϕi )i∈I be an atlas for B consisting
of centered charts such that, for all i , ϕi is a chart with domain Ui centered at bi

with (Ui − {bi }) ∩� = ∅. For each i , let Vi, j , j ∈ Ji be the connected components
of π−1(Ui ), and J = {(i, j) | j ∈ Ji }. For each (i, j) ∈ J, let ψi, j be a chart of X
such that the expression of π in the charts ψi, j and ϕi is of the form z �→ zdi, j

(6.1.8, Proposition). The maps ψi, j form an atlas for X, and as a result of (6.1.5) the
transition maps are analytic. This atlas defines an analytic structure on X with the
desired property. Uniqueness follows from (6.1.5). �

Corollary Let B be a Riemann surface. The forgetful functor identifies the category
VB of finite analytically ramified covering over B with the category RR of finite
topological ramified coverings of B and continuous maps over B.

This is a restatement of the previous proposition for objets and of Proposition
6.1.5 for morphisms.

6.1.11

Proposition Let B be a topological surface and � a closed discrete set in B. Then
the functor ρ : X �→ X|B−� from the category RR� of finite ramified coverings
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of B whose ramification set is contained in � to the category CovfB−� of finite
coverings of B−� is an equivalence of categories.

A quasi-inverse functor is given by the “end compactification” (see 6.1,
Exercise 2).

Proof (a) We show that ρ is essentially surjective. Suppose first that B is a disk D and
� = {0}. As ρ commutes with finite sums, it suffices to show that every connected
finite covering of B−� = D− {0} is the restriction of a ramified covering of D.
Now, any two finite sets with the same cardinality on which Z acts transitively are
isomorphic as Z-sets. Hence by 4.6.8, every connected d-fold covering of D− {0}
is isomorphic to (D̃− {0}, z �→ zd), where D̃ is the disk with radius d

√
r , r being the

radius of D, and this covering is the restriction of the ramified covering D̃ of D.

Finally, in this case, a covering X of D− {0} is the restriction of a ramified covering
Y of D obtained by adding a point over 0 for each connected component of X.

(b) In the general case, let X be a finite covering of B−�. Each b ∈ � has a
neighbourhood U such that X|U−b is the restriction of a finite ramified covering Yb

of U. Then Yb = X|U−b ∪ Fb for Fb = Yb(b). By the gluing lemma for topologies
(4.4.6), the set Y = X �⊔b∈� Fb can be equipped with a topology inducing that of
X and that of all Yb. Then Y become a ramified covering of B whose restriction to
B−� is X.
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(c) ρ is fully faithful. Let X and Y be objects of RR� and f a covering
morphism from X|B−� to Y|B−�. Let x0 ∈ X be such that b0 = π(x0) ∈ �, and
Y(b0) = {y1, . . . , yk}. Let W1, . . . , Wk be mutually disjoint respective neighbour-
hoods of y1, . . . , yk in Y. As Y is proper over B, there is an open neighbourhood
U of b0 in B such that Y|U ⊆ W1 ∪ . . . ∪Wk . Let V be a neighbourhood of x0

in X homeomorphic to a disc, such that V ∩ π−1(�) = {x0} and π(V) ⊂ U. Then
V− {x0} is connected and in X|B−�. The set f (V− {x0}) is connected and in
W1 ∪ . . . ∪Wk , hence in some Wi , Wi0 say. For any neighbourhood U′ of b0 in
B the set f −1(Wi0 |U′) = V|U′ − {x0} is the trace over X − {x0} of a neighbourhood
of x0. However, as U′ varies, Wi0 |U′ form a fundamental system of neighbourhoods of
yi0 . Hence the map f , extended by x0 �→ yi0 , is continuous at x0. Extending likewise
at each point of π−1(�) gives a continuous continuation of f to a morphism from X
to Y. As X|B−� is dense in X, this continuation is unique. �

6.1.12

Theorem Let B be a Riemann surface, I the ordered set of discrete closed subsets of
B andVB the category of finite analytically ramified coverings of B. Define a functor
ω :VB → lim−→�∈I

CovfB−� by associating to each object X ∈VB the underlying
space of XB−�, where � is the ramification set of X. This functor is an equivalence
of categories.

Proof By Corollary 6.1.10, the category VB can be identified with

RR =
⋃

�

RR� = lim−→RR� .

The theorem then reduces to Proposition 6.1.11 by passing to the direct limit. �

Exercises 6.1. (Riemann surfaces)
1.—Show that the following spaces are topological surfaces:

(a) The torus T
2 = S1 × S1 = R

2/Z
2 (it can be embedded in R

4:

(α, θ) �→ (cos α, sin α, cos θ, sin θ)

or in R
3:

(α, θ) �→ ((R + r cos θ) cos α, (R + r cos θ) sin α, r sin θ)

with r < R).
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(b) The open Möbius strip

{((
1+ u cos

t

2

)
cos t,

(
1+ u cos

t

2

)
sin t, u sin

t

2

) ∣
∣
∣ u ∈ ] − 1, 1[, t ∈ R

}

.

(c) The projective plane P2
R, i.e. the quotient of S2 by the equivalence relation

identifying two opposite points. If a ∈ P2
R, then the space P2

R− {a} is homeomor-
phic to the open Möbius strip.

(d) The half cone {(t cos θ, t sin θ, t) | t ∈ R+, θ ∈ R} ⊂ R
3.

(e) Plücker’s conoid:

{(1+ u) cos θ, (1− u) sin θ, u) | u ∈ [−1,+1], θ ∈ R .} ⊂ R
3.

(f) The cone in R
4 over a knot in R

3:

{(s(R + r cos 3θ) cos 2θ, s(R + r cos 3θ) sin 2θ, sr sin 3θ, s) | s∈R+, θ∈R} ⊂ R
4,

for fixed r and R with r < R.

2. (End compactification)—For a space X, let π0(X) denote the set of its connected
components. Let C be the category of locally connected, locally compact spaces
with finitely many connected components, and proper maps.

(a) Let X ∈ C. Show that the relatively compact open subsets U such that
π0(X − U) is finite form a cofinal set in the set of relatively compact subsets of
X.

(b) Let B(X) = lim←−π0(X− K) be the inverse limit over the relatively compact

subsets of X (the elements of B(X) are the ends of X). Define a topology on X̂ =
X � B(X) which makes it compact. Show that X �→ X̂ is a functor ofC in the category
of compact spaces.

(c) Give an example of a connected topological surface X such that X̂ is not a
topological surface.

(d) With the notation of Proposition 6.1.11, show that if B is compact, X can be
identified with the end compactification of X|B−�.

3.—(a) (Maximum principle) Let X be a Riemann surface, x ∈ X and f : X → C

a holomorphic function. Deduce from 6.1.4 that | f | has a nonzero upper or lower
bound only if f is constant in the neighbourhood of x .

(b) (Yet another proof of d’Alembert’s theorem.) Show that if a holomorphic
function f : C → C is proper (i.e. | f (z)| tends to ∞ as |z| tends to ∞), then it
vanishes at least at one point. In particular every non constant polynomial has at
least one root in C.

(c) Show that if a holomorphic function f : C → C is proper, then it is necessarily
a polynomial.
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6.2 Ramified Coverings and Etale Algebras

6.2.1 Separation Theorem

The next result will be assumed:

Theorem Let X be a compact Riemann surface, and a, b ∈ X with a �= b. Then
there is a meromorphic function f on X defined at a and b such that f (a) �= f (b).

For a proof, see 6.2, Exercise 1, or R. Gunning, Lectures on Riemann Surfaces [3].

Remark The theorem still holds when X is not compact, but the proof is different.
If X is not compact but is connected, then there is a better result: the holomorphic
functions separate the points.

6.2.2 Analytic Criterion for Meromorphism

Proposition Let X be a Riemann surface, D a discrete closed subset of X, f :
X− D → C a holomorphic function, a ∈ X, ϕ a chart centered at a with domain
U. Then f is meromorphic at a if and only if there is an open neighbourhood U′ of
a in U and constants c and k such that,

∀x ∈ U′ − {a}, | f (x)| � c

|ϕ(x)|k .

Proof Assume that the condition holds. Then the function x �→ (ϕ(x))k f (x) is
holomorphic on U − {a}, and bounded in the neighbourhood of a and so extends to
a holomorphic function on U.

If f is meromorphic at a, then in the neighbourhood of a, f (x) = g(x)

h(x)
, where

h(x) = ϕ(x)ku(x), with u is holomorphic and u(a) �= 0. Then u is invertible in the
neighbourhood of a and g

u is bounded by a constant c in a neighbourhood U′ of a.
Then

| f (x)| � c

|ϕ(x)|k for u ∈ U′ − {a} .

�

6.2.3 The Functor M

If X is a Riemann surface, let M(X) be the C-algebra of meromorphic functions on
X. If X is connected, then M(X) is a field. Let X and Y be two Riemann surfaces
and f : X → Y an analytic map which is not constant on any connected component
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of X. Define f ∗ :M(Y) →M(X) by f ∗(h) = h ◦ f . If D is the set of poles of h,
the function f ∗(h) is defined on X− f −1(D). Then (g ◦ f )∗ = f ∗ ◦ g∗.

Theorem Let B be a compact connected Riemann surface and X an analytically
ramified d-fold covering d of B. Then M(X) is an etale algebra of degree d over
M(B).

Proof (a) Let f ∈M(X). We show that f is algebraic of degree � d over M(B).
This will follow if there is a polynomial P ∈M(B)[Z] such that P( f ) = 0. Let �r

(resp. �p) be the ramification set of X (resp. the projection of the set of poles of f ),
and � = �r ∪�p. Let b ∈ B−�, X(b) = {x1, . . . , xd} and ai (b) the values of the
elementary symmetric functions f (x1), . . . , f (xd), i.e.,

a1(b) =
∑

i

f (xi ), a2(b) =
∑

i< j

f (xi ) f (x j ), . . . , ad(b) =
∏

i

f (xi ) .

We show that for all i , ai ∈M(B). All ai are meromorphic on B−�r . Indeed, let
b ∈ B−�r and U a neighbourhood of b such that X|U is a trivial covering of U, i.e.
X|U = X1 ∪ . . . ∪ Xd , π inducing an isomorphism from each Xi onto U. Define the
meromorphic functions fi on U by fi ◦ π|Xi = f |Xi . Then

a1|U = f1 + · · · + fd , a2|U =
∑

i< j

fi f j , . . . , ad |U = f1 . . . fd .

Hence all ai are meromorphic on U. Let ϕ be a chart centered at b ∈ �r with domain
U. For xi ∈ X(b), let ψi a chart of X centered at xi with domain Vi and such that
the expression of π in the charts ψi and ϕi is of the form z �→ zdi ; then by 6.2.2
there is an open neighbourhood Vi of xi , V′

i ⊂ Vi , and constants ci and ki such that,
∀x ′i ∈ V′

i ,

| f (x ′i )| �
ci

|ψi (x ′i )|ki
= ci

|ϕ(b′)|ki /di
where b′ = π(x ′i ) .

Set c = supi ci and k = supi
ki
di

. Then |a j (b′)| �
(

d

j

)
c j

|ϕ(b′)| jk and ai ∈M(B).

Set P(Z) = Zd +∑i (−1)i ai Zd−i ∈M(B)[Z]. We show that P( f ) ∈M(X) is
null. Let b ∈ B−� and x ∈ X(b). The polynomial Pd(Z) = Zd +∑d

i=1(−1)i ai

(b) Zd−i has roots f (x1), . . . , f (xd), where X(b) = {x1, . . . , xd}. In particular,

f (x)d +
d∑

i=1

(−1)i ai (b) f (x)d−i = 0 .

In other words, P( f )(x) = 0. As this holds for all x ∈ X|B−�, P( f ) = 0.
(b) We show that M(X) is etale of degree � d over M(B). For this, X may be

assumed to be connected. Then M(X) is an extension of M(B). It is the directed
union of finitely generated sub-extensions Eλ ofM(B). Each Eλ is finitely generated.
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It is generated by algebraic elements and so is finite and hence etale since M(B) is
of characteristic 0, and so cyclic by the primitive element theorem, thus of degree
� d. Therefore the degree of M(X) is at most d.

(c) We show that M(X) is of degree � d.
The separation theorem has the following corollary:

Lemma Let X be a Riemann surface and a1, . . . , ad distinct points of X. Then there
is a meromorphic function f on X, defined at each point a1, . . . , ad with distinct
values f (a1), . . . , f (ad).

Proof of the Lemma We show that for all i, j with i �= j , there is a function fi j

defined at a1, . . . , ad and such that f (ai ) �= f (a j ). Let i �= j . By the separation
theorem, there is a function g defined at ai and a j with g(ai ) �= g(a j ). If necessary
adding a constant, we may assume that g(ak) �= 0 for all k ∈ {1, . . . , d}. Then fi j = 1

g
has the required property. Let A be the vector subspace of M(X) consisting of
the functions defined at a1, . . . , ad . For each (i, j) the set Vi j of f ∈ A such that
f (ai ) = f (a j ) is a strict vector subspace of A. Hence

⋃
Vi j �= A and any function

f ∈ A − (⋃Vi j
)

has the required property. �

End of the Proof of the Theorem Let b0 ∈ B−�r , X(b0) = {x1, . . . , xd}, and f ∈
M(X) a function defined at x1, . . . , xd with distinct values. We show that f has
degree � d over M(B), i.e. that the minimal polynomial of f over M(B) has degree
� d. Let P =∑k

0 ci Zi be a polynomial with coefficients ci ∈M(B) and such that
P( f ) = 0, i.e., for all x ∈ X and b = π(x) for which f (x) and ci (b) are defined,∑k

0 ci (b)( f (x))i = 0. We show that k � d. Note that for b sufficiently near b0,
f is defined on X(b) with distinct values at its points. If b is sufficiently near b0

and is not a pole for any ci , then Pb =∑
ci (b)Zi ∈ C[Z] has at least d distinct

roots: the values of f at the points of X(b). Hence k � d. This result in particular
applies to the minimal polynomial of f . Consequently, degM(B) f � d and degM(B)

M(X) � d. �

Remark Let X be a finite analytically ramified covering of B, b ∈ B−�, and
f ∈M(X) a function defined on X(b) with distinct values at its points. The above
proof shows that f generates M(X) as an algebra over M(B).

6.2.4

The main aim of this section is to prove the next result:

Theorem Let VB be the category of finite analytically ramified coverings of
B and EB the category of etale algebras over K =M(B). Then, the functor
M : X �→M(X) from VB to EB is an anti-equivalence of categories.

The proof will be given in 6.2.9.



318 6 Riemann Surfaces

Corollary 6.1 Let X and Y be finite analytically ramified coverings of B, and � ⊂ B
a finite set such that X and Y are unramified over B−�. Then HomEB(M(X),M(Y))

can be identified with HomCovf(B−�)(Y|B−�, X|B−�).

Corollary 6.2 Let X be a connected finite analytically ramified covering of B, and
� ⊂ B a finite set containing the ramification set of X. ThenM(X) is Galois extension
of M(B) if and only if X|B−� is a Galois covering of B−�. In this case, the
algebraic Galois group AutM(B)M(X) can be identified with the opposite group to
the topological Galois group AutB−�(X|B−�). In particular these Galois groups are
isomorphic.

6.2.5 Construction of a Covering S(E, ζ)

Let E be an etale algebra over M(B) and ζ ∈ E a primitive element, i.e. generating
E as algebra (5.4.11). Let

P(Z) = Zd + a1Zd−1 + · · · + ad

be the minimal polynomial of ζ in E. Denote by �E,ζ the set of elements b ∈ B where
either the coefficients of P are not defined or Pb = Zd + a1(b)Zd−1 + · · · + ad(b) ∈
C[Z] has multiple roots.

Lemma The set �E,ζ is finite.

Proof Let P = Zd + a1Zd−1 + · · · + ad be a monic polynomial over M(B). Con-
sider the discriminant σ of P (3.7.12). It is in M(B). Denote by �′ the set of points
of B where some ai is not defined, and let b ∈ B−�′. All the roots of Pb ∈ C[Z]
are distinct if and only if its discriminant σ(b) is nonzero.

If M(B)[Z]/(P) is etale, then by 5.4.4, σ is a nonzero element of M(B). Then the
set �′′ of the zeros of σ is finite, and �E,ζ = �′ ∪�′′ is finite �

Denote by S(E, ζ) the subspace of (B−�)× C consisting of pairs (b, z) such
that P(b, z) = 0. By 4.3.4, Example 6, S(E, ζ) is a finite covering of B−�E,ζ .

6.2.6 Functoriality

Let E and F be two etale algebras over M(B), ζ and θ primitive elements of E and
F respectively, P and Q their minimal polynomials over M(B) and α : E → F an
algebra homomorphism. We do not assume that α(ζ) = θ. We are going to define a
morphism α∗ : S(F, θ) → S(E, ζ) in the category lim−→Covf(B−�).

The element α(ζ) ∈ F takes the form R(θ), where R ∈M(B)[Z]. Let �′
R be the

set of points of B where the coefficients of R are not all defined. Define a map R̃
from (B−�′

R)× C to itself by R̃(b, z) = (b, R(b, z)).
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Lemma and Definition The map R̃ induces a map from S(F, θ)|B−�′
R

to S(E, ζ),
which does not depend on the choice of R. It is written α∗.

Proof Since P(R(θ)) = P(α(ζ)) = α(P(ζ)) = 0 ∈ F, P ◦ R = Q · V for some V ∈
M(B)[Z]. In other words, P(b, R(b, z)) = Q(b, z)V(b, z) for b ∈ B such that the
coefficients of P, Q, R, V are defined and z ∈ C. If (b, z) ∈ S(F, θ), then Q(b, z) = 0;
so P(b, R(b, z)) = 0, and R̃(b, z) = (b, R(b, z)) ∈ S(E, ζ).

Let R1 ∈M(B)[Z] be another polynomial such that α(ζ) = R1(θ). Then R − R1

vanishes at θ, and so is of the form Q ·W with W ∈M(B)[Z]. If Q(b, z) = 0,
R(b, z) = R1(b, z); so R̃ and R̃1 agree on S(F, θ). �

Let E, F and G be etale algebras over M(B), ζ, θ and λ primitive elements of E,
F and G respectively, α : E → F and β : F → G homomorphisms. Then (β ◦ α)∗ =
α∗ ◦ β∗. Indeed, let R1 and R2 ∈M(B)[Z] be such that α(ζ) = R1(θ) and β(θ) =
R2(λ). So β(α(ζ)) = β(R1(θ)) = R1(β(θ)) = R1(R2(λ)). Hence for R3 such that
β ◦ α(ζ) = R3(λ), we may choose R3 = R1 ◦ R2. Then (β ◦ α)∗ is induced by R̃3 =
R̃1 ◦ R̃2, and so (β ◦ α)∗ = α∗ ◦ β∗ since α∗ and β∗ are respectively induced by R̃1

and R̃2.

6.2.7

Let X be a finite analytically ramified covering of B and �X its ramification set. Let
f ∈M(X) and �′

f be the projection of the set of points where f is not defined.
Assume that there exists b ∈ B−�X such that f is defined on X(b) with distinct
values at its points. Then we know (6.2.3, Remark) that f is a primitive element
of M(X) and the covering S(M(X), f ) → B−� f may be considered. Set � =
�X ∪�′

f ∪� f .

Proposition The map (π, f ) : X|B−� → (B−�)× C induces a covering isomor-
phism from X|B−� onto S(M(X), f )|B−�.

Proof Let P be the minimal polynomial of f in M(X). For x ∈ X such that f is
defined at x and the coefficients of P are defined at b = π(x), P(b, f (x)) = 0. Hence
(π, f ) is indeed a continuous map from X|B−� to S(M(X), f ); since it commutes
with the projections, it is a covering morphism. When b ∈ � (which can be shown
never to occur), take b′ ∈ B−� sufficiently near b so that the assumptions made
still hold for b. Then the covering morphism (π, f ) is bijective on the fibres at b′.
As a result of (4.3.6. Corollary 4.2) and (6.1.7 remarque 3), it is an isomorphism. �

A Riemann surface of X is said to be algebraic if there is a polynomial Q ∈ C[T, Z]
(where T and Z are indeterminates), and finite sets � ⊂ X and � ⊂ V = Q−1(0) such
that X−� and V−� are isomorphic Riemann surfaces.

Corollary Every compact Riemann surface is algebraic.
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Proof Let X be a compact Riemann surface and π ∈M∗∗(X) (i.e. π is a meromorphic
function on X which is not constant on any connected component). Then (X,π) is
an analytically ramified covering of �, and M(X) equipped with π∗ is an etale
algebra over M(�) = C(T). Choose a primitive element f ∈M(X), and let P ∈
C(T)[Z] be its minimal polynomial. Then, there are Q ∈ C[T, Z] and D ∈ C[T]
such that P(T, Z) = Q(T, Z)/D(T). Define � as above. Then X|B−� is isomorphic
to S(M(X), f )|B−� = {(x, z) ∈ (C−�)× C | Q(x, z) = 0}. �

6.2.8

Let E be an etale algebra over M(B) and ζ ∈ E a primitive element. Consider the
covering S(E, ζ) of B−�. By (6.1.12), there is an analytically ramified covering
Ŝ(E, ζ) of B such that Ŝ(E, ζ)|B−� = S(E, ζ). Denote by Z the map from S(E, ζ)

to C induced by the second projection B× C → C.

Proposition (a) The function Z is meromorphic on Ŝ(E, ζ).
(b) There is a unique isomorphism ϕ : E →M(Ŝ(E, ζ)) such that ϕ(ζ) = Z.

To prove (a), we use the criterion for meromorphism (6.2.2). To do so, we will
need an upper bound.

Lemma (Upper bound of the roots of a polynomial) Let

P = Zd + a1Zd−1 + · · · + ad

be a polynomial over C and z a root of P. Then

|z| � sup(1, |a1| + · · · + |ad |) .

Proof If |z| � 1, then z = −a1 − a2
z − · · · − ad

zd−1 , and so |z| � |a1| + · · ·
+ |ad |. �
Proof of the Proposition (a) The function Z is clearly holomorphic over B−�.
Let b ∈ � and x ∈ X(b), where X = Ŝ(E, ζ). Let ϕ be a chart for B centered at
b and ψ a chart of X centered at x such that the expression of π in the charts ψ
and ϕ is z �→ zr . The coefficients a1, . . . , ad of the minimal polynomial P of ζ
are meromorphic functions on B. Let ȧ1, . . . , ȧd be their expression in the chart ϕ.
For x ′ near x , the number Z(x ′) is a root of Zd + a1(b′)Zd−1 + · · · + ad(b′), where
b′ = π(x ′), and so

|Z(x ′)| � sup(1, |a1(b
′)| + · · · + |ad(b

′)|) .

However, ai (b′) = ȧi (ϕ(b′)) = ȧi (ψ(x ′)r ). Being meromorphic, the functions ai can
be bounded above as described in (6.2.2). Hence the same holds for Z, and Z is
meromorphic.



6.2 Ramified Coverings and Etale Algebras 321

(b) For (b, z) ∈ S(E, ζ), P(b, z) = 0. In other words, P(Z) = 0 in M(X). We
show that P is the minimal polynomial of Z in M(X). Let Q be a polynomial over
M(B) such that Q(Z) = 0. We show that Q is a multiple of P. If necessary dividing
Q by P, the degree of Q can be assumed to be strictly less than the degree d of P.
For all b ∈ B−� where the coefficients of Q are defined, the points of X(b) are the
pairs (b, z), z being a root of Pb, and so the roots of Pb are roots of Qb. As there are
d distinct ones, Qb = 0. Hence Q = 0.

So there is a unique homomorphism of M(B)-algebras ϕ : E →M(X) such that
ϕ(ζ) = Z, and ϕ is injective. By assumption, the algebra E has degree d, and X is a
ramified d-fold covering, and so by (6.2.3, Theorem) M(X) is an algebra of degree
d. Hence ϕ is an isomorphism. �

6.2.9 Proof of Theorem 6.2.4

(a) The functor M is essentially surjective. Let E be an etale algebra over M(B),
and ζ a primitive element of E. By Proposition 6.2.8, E is isomorphic toM(Ŝ(E, ζ)).

(b) The functor M is fully faithful. Let X and Y be finite analytically ram-
ified covering of B and u :M(X) →M(Y) a M(B)-algebra homomorphism.
We show that there is a morphism h : Y → X such that h∗ = u. Let f and g
be primitive elements of M(X) and M(Y) respectively, satisfying assumptions
6.2.7. The isomorphism (π, f ) : X|B−� → S(M(X), f ) extends to an isomorphism
f̃ : X → Ŝ(M(X), f ). Define g̃ : Y → Ŝ(M(Y), g) likewise. By 6.1.12 the mor-
phism u∗ : S(M(Y), g) → S(M(X), f ) extends to a morphism which is also writ-
ten u∗ : Ŝ(M(Y), g) → Ŝ(M(X), f ). Define h : Y → X by the commutativity of
the diagram

Y
h � X

Ŝ(M(Y), g)

g̃ �
u∗� Ŝ(M(X), f )

f̃ �

We show that h∗ = u. As f is primitive, it suffices to show that u( f ) = h∗( f ) =
f ◦ h : Y → C. Now, f ◦ h = Z ◦ f̃ ◦ h = Z ◦ u∗ ◦ g̃. For y ∈ Y(b), u∗(g̃(y)) =
u∗(b, g(y)) = R̃(b, g(y)) = (b, R(b, g(y)), where R is a polynomial over M(B)

such that u( f ) = R(g). Hence Z ◦ u∗ ◦ g̃ = R(g) = u( f ), and so h∗ = u.
We next show uniqueness. Let h1 be such that h∗1 = u. Then h∗1( f ) = h∗( f ), in

other words f ◦ h1 = f ◦ h, where f̃ ◦ h1 = f̃ ◦ h, and so h1 = h since f̃ is an
isomorphism. �
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Remark Consider the category VB of finite analytically ramified coverings of B,
the category EB of etale algebras over M(B) and the category R = lim−→CovfB−�.
For each E ∈ EB choose a primitive element. This defines a functor S : EB →R.
Then up to functorial isomorphism, there is a commutative diagram:

VB
M � EB

R

ω
�� S

where ω is the forgetful functor. In this diagram, the three arrows are either equiva-
lences or anti-equivalences of categories.

6.2.10 Dictionary

Let X and Y be finite analytically ramified coverings of S.
(a) The degree of the algebra M(X) over M(B) is equal to the degree of X over

B, i.e. to the degree of the covering X|B−� of B−� (see 6.2.3).
(b) M(X � Y) =M(X)×M(Y). The algebra M(X) is an extension of M(B) if

and only if X is connected. More generally, the connected components of X are in
bijective correspondence with the maximal ideals of M(X).

(c) In general, the fibre product X×B Y is not a ramified covering of B, but
a finite analytically ramified covering Z of B satisfying Z|B−� = (X×B Y)|B−�,
where � = �X ∪�Y, may be constructed. Then M(Z) =M(X)⊗M(B) M(Y).

(d) Suppose that X is connected. Set � = �X ∪�Y. Then X|B−� trivializes the
covering Y|B−� is and only if M(X) diagonalizes M(Y). In particular X|B−�X is a
Galois covering if and only if M(X) is a Galois extension of M(B). In this case,
AutM(B)(M(X)) = AutB(X) = AutB−�(X|B−�) since the functor M is fully faith-
ful.

(e) Let f : Y → X be morphism. Then f ∗ :M(X) →M(Y) is injective (resp.
surjective) if and only f is surjective (resp. injective).

(f) Let f ∈M(X). Then f is a primitive element of M(X) if and only if there
exists b ∈ B−�X such that f defines an injective map from X(b) to C. This condi-
tion has been seen to be sufficient (6.2.3, Remark). We show that it is necessary: sup-
pose that f is primitive and consider the morphism (π, f ) : X|B−� → S(M(X), f ).
Its image is a clopen subset S1 of S(M(X), f ), which can be embedded in an ana-
lytic covering Ŝ1. The morphism f̃ : X → Ŝ1 extending (π, f ) defines a homomor-
phism f̃ ∗ :M(Ŝ1) →M(X) which is surjective since f is in the image. Hence
degB(Ŝ1) � degB(X) = degB−�(S(M(X), f )), and so S1 = S(M(X), f ) and f is
an isomorphism. Thus, for b ∈ B−�, the map f induces an injection from X(b)

to C.
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6.2.11

Let E be an etale algebra over M(B). Then, up to isomorphism, there is a unique
analytically ramified covering X of B such that E is isomorphic to M(X). Let �E be
the ramification set of X. It is said to be the ramification set of E.

If F is a subalgebra of E, then �F ⊂ �E. Indeed, if F ≈M(Y) is a surjective
morphism f : X → Y, and if b /∈ �E, then there is a local section of X passing
through all points of X(b). Hence composing with f gives a local section of Y
passing through all points of Y(b) and b /∈ �F.

Similarly, if F is a quotient of E, then �F ⊂ �E.
If E and F are etale algebras over M(B), then �E×F = �E ∪�F and �E⊗F ⊂

�E ∪�F by 6.2.10, (b) and (c). If E and F are nonzero, then �E⊗F = �E ∪�F since
E and F can then be identified with subalgebras of E ⊗ F.

If F and G are subalgebras of an etale algebra E over M(B), then �F·G = �F ∪
�G. Indeed �F·G ⊂ �F ∪�G since F · G is a quotient de F ⊗ G, and the opposite
inclusion holds since F and G are subalgebras of F · G.

6.2.12

Proposition With the notation of (6.2.5) and (6.2.11), the set �E is the intersection
of all �E,ζ , where ζ is a primitive element of the M(B)-algebra E.

Proof For a primitive element ζ, S(E, ζ) is an (unramified) covering of B−�E,ζ ,
and so �E ⊂ �E,ζ . Hence �E ⊂⋂

�E,ζ .
Let b ∈ B−�E,ζ , and X(b) = {x1, ..., xd}. By the separation theorem (6.2.1),

there is a function f ∈M(X) defined at x1,...,xd , with distinct values at these points.
Let P ∈M(B)[Z] be the minimal polynomial of f on M(B). For all b′ ∈ B−�P,
Pb′ ∈ C[Z] vanishes at f (x ′) for x ′ ∈ X(b′), and so the coefficients of Pb′ are the
elementary symmetric functions of these numbers (with sign (−1)d−i ). Hence these
coefficients are defined at b and the roots of Pb are f (x1),..., f (xd). As these are
distinct, the discriminant of Pb is nonzero and b /∈ �E, f . Since the degree of P is d,
the function f is a primitive element of E and b /∈⋂�E,ζ . Thus

⋂
�E,ζ ⊂ �E. �

Exercises 6.2. (Ramified coverings and etale algebras)
1. (Proof of the separation theorem)—Let X be a Riemann surface. A differential
form2 α of degree 1 on X assigns to each point x ∈ X a R-linear map αx from the
tangent space Tx X, a 1-dimensional C-vector space, to C. For a C1 function f on
X, the differential of f is the 1-form d f , where d fx (u) = u. f denotes the derivative
of f along the vector u ∈ Tx X. If X is an open subset of C, every 1-form can be

2See Cartan [4] for the notion of basis for differential forms on manifolds, and Weil [5] for notions
specific to complex analytic manifolds.
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written α = f1(z) dx1 + f2(z) dx2 in a chart for X with coordinate z = x1 + i x2. In
particular

d f = ∂ f

∂x1
dx1 + ∂ f

∂x2
dx2 .

If for all x , the map αx is C-linear (resp. C-antilinear), α is said to be of type
(1, 0) (resp. (0, 1)). The forms of type (1, 0) (resp. (0, 1)) with respect to a chart are
g(z) dz (resp. h(z) dz̄).

A differential 2-form η assigns to each point x ∈ X an alternating R-bilinear map
ηx : Tx X× Tx X → C. It is said to be real (resp. positive, resp. strictly positive) if

(∀x ∈ X) (∀u ∈ Tx X− {0}) ηx (u, iu) ∈ R (resp. � 0, resp. > 0) .

If η is a 2-form, then define
∫

X η as in Bourbaki [6], §10.
If α and β are 1-forms, define the 2-form α ∧ β by

(α ∧ β)x (u, v) = αx (u)βx (v)− αx (v)βx (u) .

Finally the exterior derivative of a C1 1-form α is a 2-form written dα. whose
definition can be found in [4]. For practical calculations, in particular for question
b,γ), it is sufficient to know the formulas d( f dg) = d f ∧ dg (for C1 functions f ,
g) and

∫
X dα = 0 for a C1 1-form α with compact support.

A. Hilbert norm

[For the exercise, the results in this part may be assumed.]
Let D ⊂ C be the open unit disc. If f : D → C is a continuous function then for

A ⊂ D set

‖ f ‖A =
(∫

A
| f (x + iy)|2 dxdy

) 1
2

.

If α = u dx + v dy is a differential form then set

‖α‖A =
(‖u‖2

A + ‖v‖2
A

) 1
2 .

(a) Show that if A and B are compact subsets in D such that A ⊂ ◦
B, then there is a

constant q such that for any C1 function f on D (i.e. continuously R-differentiable),
there is a constant M satisfying

‖ f −M‖A � q ‖d f ‖B .

Does this inequality continue to hold with B = A when A is a disc?
(b) For a C1 function f on D, define

∂ f

∂z
and

∂ f

∂ z̄
by d f = ∂ f

∂z
dz + ∂ f

∂ z̄
d z̄ .
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Let h be a square-integrable function on D. Show that the following conditions are
equivalent:

(i) h agrees nearly everywhere with a holomorphic function;
(ii) for any C1 function f with compact support in D,

∫

D

h
∂ f

∂ z̄
dxdy = 0 .

B. Forms of type (1, 0) or (0, 1)

Let X be a connected compact Riemann surface.
(a) Show that every 1-form on X is the sum of a unique form of type (1, 0) and a

unique form of type (0, 1).
(b) For every 1-form α, define a form ∗α by

(∗α)x = −τ ◦ αx ◦ J ,

where τ : C → C is conjugation z �→ z̄, and J multiplication by i . Show that, if α
is of type (1, 0) (resp. (0, 1)), then ∗α is of type (0, 1) (resp. (1, 0)). Show that, for
every form α, α ∧ ∗α is real positive, and strictly positive at all points where α does
not vanish.

Show that if α are β two 1-forms, then

α ∧ ∗β = β ∧ ∗α .

Set (α|β) = ∫
X α ∧ ∗β. With this scalar product, the space of continuous 1-forms

is a pre-Hilbert space. Let E1 be its completion. Show that E1 = E1,0⊕E0,1, where
E1,0 is the closure of the space of continuous forms of type (1, 0) and E0,1 is defined
likewise, and that these subspaces are orthogonal.

(c) For a C1 function f , let d ′ f and d ′′ f be the parts of type (1, 0) and (0, 1) of
d f . Show that ∗d ′ f = −id ′′ f̄ and ∗d ′′ f = id ′ f̄ . Assuming that f is C2, calculate
d( f d f̄ ), and show that ‖d ′ f ‖ = ‖d ′′ f ‖. Does this inequality hold when f is C1?

C. Hilbert Complex

Let ω be a continuous 2-form strictly positive on X. Let E0 be the completion of the
space of C1 functions with respect to the norm

f �→
(∫

| f |2 ω +
∫

d f ∧ ∗d f

) 1
2

.

The maps f �→ d f , f �→ d ′ f and f �→ d ′′ f extend to maps d : E0 → E1, d ′ : E0 →
E1,0, and d ′′ : E0 → E0,1. Using A, (a) show that d : E0 → E1 is a strict morphism
(i.e. that the algebraic isomorphism E0/ Ker d → Im d is a homeomorphism). Gen-
eralize the equality proved in B, (c) to f ∈ E0. Deduce that d ′′ : E0 → E0,1 is a strict
morphism. What is its kernel?
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D. Finiteness theorem

(a) For 1-forms α and β, set

〈α,β〉 =
∫

α ∧ β .

Show that (α,β) �→ 〈α,β〉 extends to a bilinear form on E1 × E1 → C, which
defines an isomorphism between E1,0 and the dual of E0,1.

(b) Define E2 to be the dual of E0. Show that α �→ dα extends to a continuous
linear map d : E1 → E2 characterized by

〈 f, dα〉 = −〈d f,α〉 .

(c) Let d ′′ : E1,0 → E2 be the map induced by d. Show that its kernel is the space
� of holomorphic differential forms on X, i.e. whose local expressions are f (z)dz
for f holomorphic (use A, (b)).

d) Let H denote the cokernel of d ′′ : E0 → E0,1. Show that the scalar product
(α,β) �→ 〈α,β〉 defines an isomorphism between H and the dual of � (a particular
case of the Serre duality theorem).

(e) Using (4.6, Exercise 13) and (4.9, Exercise 2), show that� is finite dimensional.
Deduce that so is H (finiteness theorem).

(e’) Using Montel’s theorem for normal families, show that � is locally compact.
Deduce another proof of the finiteness of the dimension of �, hence of H.

E. Construction of meromorphic functions

Let x ∈ X and (U, Z) an analytic chart for X centered at x .
Let η be a C1 function with compact support in U, equal to 1 in the neighbourhood

of x . Set

αn = d ′′
(
η · 1

Zn

)
.

(a) Show that the form αn is continuous of type (0, 1) with support in U. Extend
it by 0 to a form on X.

(b) Show that there exist nonzero numbers ck such that the form
∑g+1

1 ckαk , where
g = dim H = dim � (analytic genus), can be written as d ′′h with h ∈ E0.

(c) Show that h is holomorphic on X − U and in the neighbourhood of x . Set
f = h − η. Show that f is holomorphic on U − {x}, meromorphic on X and has a
pole of order � 1 and � g + 1 at x .

(d) Let y �= x ∈ X. Show that there is a meromorphic function f on X, such that
f (y) = 1 with a pole at x . Conclude by considering 1

f .
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6.3 Extensions of C with Transcendence Degree 1

6.3.1

Consider the Riemann sphere � (6.1.2).

Proposition Let X be a Riemann surface. Extend every meromorphic function f on
X to a map f̃ : X → � by assigning the value ∞ to the poles of f . This gives a
bijection f �→ f̃ fromM(X) onto the set of analytic maps from X to �, non constant
and distinct from ∞ on every connected component of X.

Proof Let f ∈M(X) and x0 ∈ X. In the neighbourhood of x0, f = g
h for some

holomorphicg and h. If necessary simplifying the fraction,g and h can be assumed not
to both vanish at x0. If h(x0) �= 0, then the function ϕ0 ◦ f̃ = f is holomorphic in the
neighbourhood of x0. If g(x0) �= 0, ϕ1 ◦ f̃ = h

g
is holomorphic in the neighbourhood

of x0. Hence f is analytic.
Let h : X → � be an analytic map and set D = h−1(∞). Assume that there is no

connected component of X in D. Then f = ϕ0 ◦ h : X − D → C is meromorphic
on X; indeed, f is holomorphic on X− D. Let x0 ∈ D; the function g = ϕ1 ◦ h is
holomorphic and is not identically zero in the neighbourhood of x0, and f agrees
with the meromorphic function 1

g
. �

Remark Let f = g
h be a meromorphic function and x ∈ X. If g has a zero of order

k > 0 at x and h(x) �= 0, then f (x) = 0; so f̃ (x) = 0. The ramification index of X
over � at x for f̃ is k. Indeed f = ϕku for some chart ϕ centered at x and u(x) �= 0.
Then u

g
= vk in the neighbourhood of x for some holomorphic v such that v(x) �= 0.

Then f = ψk , where ψ = ϕv, and ψ is another chart centered at x . Similarly, if
g(x) �= 0 and h has a zero of order k > 0, then f̃ (x) = ∞ and the ramification index
of X at x is k.

6.3.2 Meromorphic Functions on the Riemann Sphere

Let P ∈ C[Z]. The polynomial P defines a function C → C, meromorphic on
�. Indeed, it is holomorphic on C, and in the neighbourhood of ∞, P ◦ ϕ1 =(
z �→ P( 1

z )
)

is a rational fraction. More generally, any rational fraction defines a
meromorphic function on �.

Theorem Every meromorphic function on the Riemann sphere � is a rational frac-
tion.

Proof Let U be an open subset of � and f a meromorphic function on U. Let a ∈ U
be a pole of f . Define the polar part Pa f of f at a as follows: if a �= ∞, then f
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can be uniquely written as f (z) =∑N
k=1

ck
(z−a)k + h(z) with h holomorphic in the

neighbourhood of a; then the polar part is
∑N

k=1
ck

(z−a)k .
If a = ∞, f can be uniquely written as

f (z) =
N∑

k=1

ck zk + h(z) ,

where h extends to a holomorphic function in the neighbourhood of ∞ in �; then
the polar part is

∑N
k=1 ck zk . In both cases, a is the unique pole of the rational fraction

Pa f , but is not a pole of f − Pa f .
Let f be a meromorphic function on � and a1, . . . , an the poles of f . Then

h = f −∑N
1 Pai f is holomorphic on �, and necessarily constant. Indeed, |h|

reaches its maximum at some point x . By the maximum principle, h is constant
in its neighbourhood, and hence, by analytic continuation, constant on �. (Liou-
ville’s theorem could also be used: every bounded holomorphic function on C is
constant). Thus, f is a rational fraction. �

6.3.3 Example: Homographies

A rational fraction f = x �→ ax+b
cx+d , where ad − bc �= 0, defines an analytic map

from � to � called a homography. All homographies are automorphisms of �. The
inverse of f is given by y �→ −dy+b

cy−a .

Proposition All automorphisms of � are homographies.

Proof Let f be an automorphism of �. Write f as P
Q , where P and Q are coprime

polynomials in C[X]. The zeros of P being the zeros of f , P has at most one zero,
which must be simple by Remark 6.3.1. Hence the degree of P is at most 1. Similarly
f can only have one pole, and it is simple. Hence the degree of Q is at most 1. Thus
f = x �→ ax+b

cx+d for some a, b, c, d such that ad − bc �= 0, for otherwise f would be
constant. �

Corollary The automorphism group of � is generated by the translations
x �→ x + b, the homotheties x �→ ax and the map x �→ 1

x .

6.3.4 Transcendence degree of M(X)

Proposition Let X be a nonempty connected compact Riemann surface. ThenM(X)

is a finitely generated extension of C with transcendence degree 1.
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Proof Let f be a non-constant meromorphic function on X (such functions exist by
6.2.1). Consider X as a finite analytically ramified covering of � by f (6.3.1). Then
M(X) is a finitely generated extension of M(�) = C(Z) by (6.2.3). �

6.3.5

LetU denote the category of connected compact Riemann surfaces and non-constant
analytic (hence surjective) maps, andK the category of finitely generated extensions
of C with transcendence degree 1.

Theorem The functor M :U→K is an anti-equivalence of categories.

Proof (a) The functor M is essentially surjective. Let E ∈K, then E is isomorphic
to a finite extension of C(Z) =M(�) (6.3.4). It is necessarily etale since C(Z) is
of characteristic 0. So E is isomorphic to an algebra M(X), where X is a finite
analytically ramified covering of � (6.2.4), which is necessarily connected since E
is a field.

(b) The map f �→ f ∗ from HomU(X, �) to HomK(M(�),M(X)) is bijec-
tive. The set HomU(X, �) can be identified with the set of non constant mero-
morphic functions on X, as well as with the set of transcendent functions f ∈
M(X) over C since C is algebraically closed. The set HomK(M(�),M(X)) =
HomC-Alg(C(Z),M(X)) can also be identified with the set of transcendental ele-
ments of M(X) over C. The identification of HomU(X, �) with HomK(M(�),

M(X)) thus obtained can be checked to be given by the map f �→ f ∗.
(c) The functor M is fully faithful. Let X and Y be objects of U and h :

M(X) →M(Y) a C-algebra homomorphism. Let u : X → � be a non constant
analytic map. The homomorphism h ◦ u∗ :M(�) →M(Y) is of the form v∗, where
v ∈ HomU(Y, �) by (b). If f : Y → X is a morphism such that h = f ∗, then nec-
essarily u ◦ f = v. Indeed, (u ◦ f )∗ = f ∗ ◦ u∗ = h ◦ u∗ = v∗, and so u ◦ f = v

by (b).
Consider M(X) and M(Y) as algebras over M(�) using u∗ and v∗. Then h

is an algebra homomorphism. By Theorem 6.2.4, there is a unique �-morphism
f : Y → X such that f ∗ = h. �

Corollary The category of compact Riemann surfaces and analytic maps non con-
stant on the connected components is anti-equivalent by M to the category of C-
algebras that are finite products of finitely generated extensions of C with transcen-
dence degree 1.

Exercises 6.3. (Extensions of C with transcendence degree 1)
1.—Embed the space X of 4.5, Exercise 3 in C in such a way that A and B go round
the points 1 and −1 respectively.

Give the inverse image of X under the map x �→ −x3+3x
2 .
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Interpret the analogy between 4.5, Exercise 3 and 5.6 and 5.7, Exercise 2.

2.—Changing 5.6 and 5.7, Exercise 3, accordingly, construct an example of a Galois
covering Z of a Galois covering Y of a space X with Galois covering Z.

3. (Algebraic definition of ramification)— Let E be an extension of C with transcen-
dence degree 1. Any map ϕ : E → � = C ∪ {∞} such that

ϕ(x + y) = ϕ(x)+ ϕ(y) if (ϕ(x),ϕ(y)) �= (∞,∞)

and
ϕ(xy) = ϕ(x).ϕ(y) if (ϕ(x),ϕ(y)) �= (0,∞) and �= (∞, 0)

is called a place of E.

(a) Show that if E =M(X) then, for all x ∈ X the map δx : f �→ f (x) is a place
of E, and that this gives a bijection from X onto the set of places of E. (Consider first
the case E = C(Z) =M(�).)

(b) Show that if E is finitely generated, then the set X of places of E can be
equipped with the structure of a compact Riemann surface identifying E with M(X).

(c) Let ϕ be a place of E, and Dϕ the subring of E consisting of f ∈ E such that
ϕ( f ) �= ∞. Set mϕ = ϕ−1(0). Show that mϕ is the unique maximal ideal of Dϕ.
Show that, if E is finitely generated, then Dϕ is a principal ring. Describe the ideals
of Dϕ.

(d) Let X and Y be connected compact Riemann surfaces, h : Y → X a surjective
analytic map, y ∈ Y and x = h(y). Set E =M(X), F =M(Y), so that E can be
identified with a subextension of F, Dx = Dδx ⊂ E; define Dy , mx and my similarly.
Show that mxDy = my

k , where k is the ramification index of Y over X at y.

6.4 Determination of Some Galois Groups

6.4.1 Free Profinite Groups

For a finite set J, let L(J) be the free group on J (4.7.4) and (Xi )i∈J the canonical basis
for L(J). Let L̂(J) be the profinite completion of L(J) (2.9.5). For J ⊂ J′, define ρJ′

J :
L(J′) → L(J) by ρJ′

J (Xi ) = Xi if i ∈ J and ρJ′
J (Xi ) = e if i /∈ J. Passing to profinite

completions gives a continuous homomorphism ρ̂J′
J : L̂(J′) → L̂(J).

For an arbitrary set I, the inverse limit L̂(I) of L̂(J) for finite J in I is called the
free profinite group on I.

For finite J ⊂ I, define the elements (XJ
i ) ∈ L̂(J), i ∈ I, by taking XJ

i to be the
image of Xi ∈ L(J) if i ∈ J and e if i /∈ J. Passing to the inverse limit gives elements
(X̂i ) ∈ L̂(I), i ∈ I.

Let G be a profinite group. A family (xi )i∈I of elements of G tends to e if for all
neighbourhoods U of e in G, the set {i | xi /∈ U} is finite. Equivalently, if G = lim←−Gλ,
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where all Gλ are finite groups, then the family (πλ(xi ))i∈I has finite support for all
λ, πλ : G → Gλ being the canonical map.

Proposition Let I be a set.
(a) The covariant factor � : Grf←−−→ Ens which assigns to every profinite group

G the set of families (xi )i∈I of elements of G tending to e is represented by L̂(I)
equipped with (X̂i ).

(b) Let L′ be a profinite group and (X′
i ) a family of elements of L′ tending to e.

Assume that for all finite groups G and families (xi )i∈I of elements of G with finite
support, there is a unique continuous homomorphism f : L′ → G such that f (X′

i ) =
xi for all i . Then there is a unique isomorphism from L̂(I) onto L′ transforming X̂i

into X′
i .

Proof (a) Under the assumptions of (b), the profinite group L′ equipped of (X′
i )

represents �. Indeed, if G = lim←−Gλ, where all Gλ are finite groups and the family
(xi )i∈I tends to e in G, then for all λ the family (πλ(xi ))i∈I has finite support in
Gλ; hence there is a unique fλ : L′ → Gλ such that fλ(X′

i ) = πλ(xi ). Passing to the
inverse limit gives a unique f : L′ → G such that f (X′

i ) = xi .
The profinite group L̂(I) equipped with (X̂i )i∈I satisfies the assumptions of (b).

First, the family (X̂i ) is readily seen to tend to e in L̂(I). Let G be a finite group
and (xi )i∈I a family of elements of G with finite support J. The homomorphism
u : L(J) → G defined by u(Xi ) = xi for i ∈ J extends to profinite completions in
û : L̂(J) → Ĝ = G, and f = û ◦ ρ̂J : L̂(I) → G satisfies f (X̂i ) = xi .

(b) If f ′ : L̂(I) → G satisfies f ′(X̂i ) = xi for i ∈ I, then f ′ factorizes through
some L̂(J′). Indeed Ker f ′ is a neighbourhood of e in L̂(I), and so contains a set
ρ̂J
−1(U), where U is a neighbourhood of e in L̂(J′), and hence necessarily Ker ρ̂J′ .

For i /∈ J′, XJ′
i = e. So xi = e and i /∈ J; thus J ⊂ J′. It follows that f ′ = f . �

The essential point of this section is to prove that if � is an algebraic closure of
C(Z), then the Galois group AutC(Z)(�) is isomorphic to the free profinite group on
the set C.

6.4.2 The Homomorphism θx

Let B be a connected compact Riemann surface, � a finite subset of B and b ∈ B−�.
Let E be a finite Galois extension ofM(B) such that �E ⊂ � and X is an analytically
ramified covering of B equipped with an isomorphism ι :M(X) → E identifying
these two algebras. Let x ∈ X(b).

Define a homomorphism θx : π1(B−�, b) → AutM(B)E as follows: the fun-
damental group π1(B−�, b) acts on X(b) since X|B−� is a covering. Let γ ∈
π1(B−�, b); as AutB(X) acts simply transitively on X(b), there is a unique automor-
phism g of X such that g(x) = γ · x . Let θx (γ) be the automorphism g∗ of E =M(X).
For γ′ ∈ π1(B−�, b), let g′ be the automorphism of X corresponding to γ′ and g′′
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the one corresponding to γ · γ′. Then g′′(x) = γ · γ′ · x = γ · g′(x) = g′(γ · x) =
g′(g(x)). So g′′ = g′ ◦ g and θx (γ · γ′) = g′′∗ = g∗ ◦ g′∗ = θx (γ) ◦ θx (γ

′).

Remarks (1) The homomorphism θx is surjective and its kernel is the stabilizer of
x in π1(B−�, b); it is normal and of finite index.

(2) The homomorphism θx depends on the choice of x .

Functoriality
Let E and F be finite Galois extensions of M(B) such that �E ⊂ � and �F ⊂ �.
Let X and Y be analytically ramified coverings of B equipped with isomorphisms
identifying M(X) with E and M(Y) with F. Let f : E → F be a homomorphism.
There is a unique B-morphism u : Y → X such that u∗ = f .

Proposition Choose y ∈ Y(b) and set x = u(y). Then f is compatible with the
actions defined by θx and θy; in other words, for t ∈ E and γ ∈ π1(B−�, b),
f (θx (γ, t)) = θy(γ, f (t)).

Proof Let γ ∈ π1(B−�, b), and take g ∈ AutB(X), g1 ∈ AutB(Y) such that g(x) =
γ · x and g1(y) = γ · y. Then

g(u(y)) = g(x) = γ · x = γ · u(y) = u(γ · y) = u(g1(y)) .

As F in an extension, Y|B−� is a connected covering, and by (4.3.5) the diagram

Y
g1 � Y

X

u � g � X

u �

is commutative. Applying the functor M gives a commutative diagram

F �θy(γ)
F

E

f �

�θx (γ)
E

f �

�

6.4.3 Galois Group of ��

Let B be a connected Riemann surface, � a finite subset of B, b ∈ B−� and � an
algebraic closure of M(B). Denote by �� the union of finite sub-extensions E of �

such that �E ⊂ �. By 6.2.11, it is a directed union, and so �� is a sub-extension
of �. It is obviously preserved by automorphisms of �, and separable since the
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characteristic is 0. Hence �� is a Galois extension, usually infinite, of M(B). By
6.2.11, for any finite extension F of M(B) in ��, �F ⊂ �.

Let (Ei ) be a directed family of finite Galois extensions ofM(B) such that
⋃

Ei =
��. For each i , identify Ei with an algebra M(Xi ), where Xi is a finite analytically
ramified covering of B. For i � j , Ei ⊂ E j ; so there is a B-morphism p j

i : X j → Xi

such that (p j
i )∗ is a canonical injection of Ei in E j . These Xi and p j

i form a projective
system of ramified coverings of B.

By Tychonoff’s theorem, lim←−Xi (b) �=. Let x ∈ lim←−Xi (b), and for all i let pi (x) be
the image of x in Xi (b). Passing to the inverse limit starting from θpi (x) gives a homo-
morphism θx : π1(B−�, b) → AutM(B)�� = lim←−AutM(B)Ei . As the Galois group
AutM(B)�� is profinite, the homomorphism θx induces a continuous homomorphism
θ̂x of the profinite completion of π1(B−�, b) in AutM(B)��.

Proposition The homomorphism θ̂x : π̂1(B−�, b) → AutM(B)�� is an isomor-
phism.

Proof The family (Ei ) may be assumed to consist of all the finite Galois extensions
in ��. For all i , θpi (x) gives an isomorphism hi : G/Ni → AutM(B)Ei , where G =
π1(B−�, b) and Ni is the stabilizer of pi (x) in G. Passing to the projective limit,
we get an isomorphism h : lim←−G/Ni → Aut ��.

Let N be a normal subgroup of finite index in G. Then there is a finite Galois
covering Y of B−� and y ∈ Y(b) with stabilizer N (4.6.11 and 4.6.10). Y can
be completed to an analytically ramified covering Ŷ of B. Then M(Ŷ) is a Galois
extension of M(B), which can be embedded in �. It then is in ��, and thus can be
identified with some Ei , and N = Ni .

Therefore lim←−G/Ni is a profinite completion of G, and h = θ̂x ; so h is an isomor-
phism. �

6.4.4 Fundamental Groups with Respect to Germs of Paths

We now give a description of

AutM(B)� = lim←−AutM(B)��

the inverse limit being taken over all finite � in B. The problem lies in the choice of the
basepoint. Indeed, fixing b ∈ B prevents us from considering the sets � containing
b. To overcome this problem we replace the basepoint by a germ of path B.

Let β : [0, 1] → B be an injective continuous map. For all finite � ⊂ B, let c� be
the largest c such that β(]0, c[) ⊂ B−�. Denote by π1(B−�,β) the quotient of
the set of pairs (t, γ) where t ∈ ]0, c�[ and γ ∈ π1(B−�,β(t)) by the equivalence
relation identifying (t1, γ1) to (t2, γ2) if γ2 is the image of γ1 by the isomorphism
from π1(B−�,β(t1)) onto π1(B−�,β(t2)) defined by β|[t1,t2] (4.6.6). It has a
natural group structure, and for all t ∈ ]0, c�[ there is a canonical isomorphism χt
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from π1(B−�,β(t)) onto π1(B−�,β). Besides the group π1(B−�,β) is the
(trivial) direct limit of π1(B−�,β(t)).

Let X be a finite analytically ramified covering of B and for � take its ramification
set. Denote by �(β, X) the set of continuous coverings of β|]0,c�[ in X. If X is of
degree d, then it is a set with d elements since β∗X|]0,c�[ is a trivial d-fold covering.

Proposition Assume X is Galois. Let ξ ∈ �(β, X). There is a unique homomorphism
θξ : π1(B−�,β) → AutM(B)M(X) such that for all t ∈ ]0, c�[, θξ ◦ χt = θξ(t).

Proof It suffices to show that, for t and t ′ in ]0, c�[ such that t < t ′, there is a
commutative diagram

π1(B−�,β(t))

AutM(B)M(X)

θξ(t)�

π1(B−�,β(t ′))

β∗
�

θξ(t
′ )

�

where β∗(γ) = β|[t,t ′] · γ · β|[t ′,t], denoting by β|[t ′,t] the inverse path of β|[t,t ′]. Let
γ ∈ π1(B−�,β(t)) and γ′ = β∗(γ). Let η be a path with initial point ξ(t) lifting
a loop from the class γ. The endpoint of η is γ · ξ(t). Let g ∈ AutB(X) be such
that g(ξ(t)) = γ · ξ(t). Then the path η′ = g(ξ|[t,t ′]) · η · ξ|[t ′,t] is a path lifting a
path from the class γ′, with initial point ξ(t ′) and endpoint g(ξ(t ′)); so γ′ · ξ(t ′) =
g(ξ(t ′)). Hence the same g ∈ AutB(X) maps ξ(t) onto γ · ξ(t) and ξ(t ′) onto γ′ · ξ(t ′).
Therefore θξ(t)(γ) = θξ(t ′)(γ

′). �
Functoriality
Let X and X′ be finite analytically ramified Galois coverings, � and �′ their ramifica-
tion sets, and f : X′ → X a B-morphism. The morphism f is necessarily surjective,
� ⊂ �′ and c�′ � c�. For all ξ′ ∈ �(β, X′) there is a unique ξ ∈ �(β, X) such that
ξ|]0,c�′ [ = f ◦ ξ′. This element ξ is written f∗(ξ′).

If ξ = f∗(ξ′), then the homomorphism f ∗ :M(X) →M(X′) is compatible with
the actions of π1(B−�,β) defined by θξ and θξ′ . This is the functoriality Proposition
6.4.2 applied to ξ(t) and ξ′(t) for t ∈ ]0, c�[.

6.4.5 Galois Group of the Algebraic Closure of M(B)

If � and �′ are finite subsets of B such that � ⊂ �′, then there is a unique homo-
morphism r�′

� : π1(B−�′,β) → π1(B−�,β), making the diagram

π1(B−�′,β(t))
ι∗� π1(B−�,β(t))

π1(B−�′,β)

χt � r�′
�� π1(B−�,β)

χt �
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commutative for all t ∈ ]0, c�[. As � runs through the directed set of finite subsets
of B, π1(B−�,β) form an inverse system. This is also the case of their profinite
completions π̂1(B−�,β).

Let � be an algebraic closure of M(B) and (Ei ) an increasing family including all
finite Galois sub-extensions of �. Set �i = �Ei . Identify each Ei with an extension
M(Xi ), where Xi is a finite analytically ramified covering of B. By Tychonoff’s
theorem (1.7.6 and 2.5.14), � = lim←−�(β, Xi ) �= ∅. Let ξ = (ξi ) ∈ �. For each i ,
the homomorphism

θξi : π1(B−�i ,β) → AutM(B)Ei

induces
θ̂ξi : π̂1(B−�i ,β) → AutM(B)Ei .

For i � j , the diagram

π̂1(B−� j ,β)
θ̂ξ j� AutM(B)E j

π̂1(B−�i ,β)

r
� j

�i � θ̂ξi� AutM(B)Ei

ρ
�

where ρ is the restriction, is commutative by the functoriality seen in 6.4.4,.

Theorem The homomorphism θ̂ξ : lim←− π̂1(B−�,β) → AutM(B)� induced by θξi

by passing to the inverse limit is an isomorphism.

Proof For each �, let ξ� be the image of ξ in the inverse limit of �(β, Xi ) for all i
such that �i ⊂ �. There is an isomorphism θ̂ξ�

: π̂1(B−�,β) → AutM(B)��. This
can be seen by identifying π1(B−�,β) with π1(B−�,β(t)) for some t ∈ ]0, c�[,
and by applying Proposition 6.4.3. The theorem follows by passing to the inverse
limit. �

6.4.6 Galois Group of the Algebraic Closure of C(Z)

We now apply the previous theorem to the case when B is the Riemann sphere �.
For all � ⊂ C, set � = � ∪ {∞} ⊂ �. These � form a cofinal system of the finite
subsets of �. Hence

AutC(Z)� = AutM(�)� ≈ lim←− π̂1(� −�,β) = lim←− π̂1(C−�,β)

where β is a continuous injective map from [0, 1] to C.
We may assume that the image of β only meets each real line of C at finitely many

points. This is for example the case when β describes an arc of a circle.



336 6 Riemann Surfaces

Proposition The profinite group lim←− π̂1(C−�,β) is isomorphic to the free profinite

group L̂(C) on the set C.

Proof For finite � ⊂ C and b ∈ C−�, the group π1(C−�, b) is isomorphic to
the free group L(�) on �. Likewise for π1(C−�,β). We describe such an isomor-
phism, i.e. we choose a basis for π1(C−�,β). Let b ∈ C be such that b, a1, a2 are
never colinear for a1 ∈ �, a2 ∈ �, a1 �= a2. Then define γb,a ∈ π1(C−�, b) for
all a ∈ � as follows: γb,a is the class of a loop consisting of going along a straight
line from b to a, stopping at a distance ε from a, then describing an anticlockwise
circle of radius ε around a and returning to b along a straight line, ε being chosen to
be strictly smaller than |a′ − a| for all a′ ∈ �− {a} (Fig. 1). Then (γb,a)a∈� form a
basis for π1(C−�, b).

Next, or all �, define a basis (γβ,a)a∈� for π1(C−�,β). Given the assumption on
β, there exists nonzero c′ � c� such that β(]0, c′[) never meets any line connecting
two points of �. Let c′� to be the greatest among all c′. As long as t is in ]0, c′�[,
χt (γβ(t),a) ∈ π1(C−�,β) is independent of the choice of t ; we write it γβ,a (Fig. 2).

For �′ ⊃ �, the homomorphism r�′
� : π1(C−�′,β) → π1(C−�,β) maps

γβ,a ∈ π1(C−�′,β) to γβ,a ∈ π1(C−�,β) if a ∈ � and to e if a /∈ �. In other
words, there is a commutative diagram

L(�′) α�′� π1(C−�′,β)

L(�)

ρ�′
� � α�� π1(C−�,β)

r�′
��

where ρ�′
� is the homomorphism defined in 6.4.1 and α� the isomorphism defined

by the basis (γβ,a)a∈�. Passing to profinite limits and then to the projective limit over
� gives an isomorphism α̂ : L̂(C) → lim←− π̂1(C−�,β). �

Corollary 6.3 The Galois group AutC(Z)� is isomorphic to L̂(C).

Corollary 6.4 Every finite groups is isomorphic to the automorphism group of a
finite extension of C(Z).
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Exercises 6.4. (Some Galois groups)
1.—(a) Embed k0 = C(Z) in k = C(X) (which is isomorphic to it) by Z = X3 − 3X.

Show that k is not a Galois extension. Consider the set � of (z, y) ∈ C
2 such that

the equation X3 − 3X = z has roots x ′ and x ′′ with y = 2x ′ − x ′′, equipped with the
projection π : (z, y) �→ z. Show that � can be completed to a ramified covering �̂

of � and that M(�̂) is the Galois closure of k over k0.

(b) Show that there is an involutive automorphism τ of �̂ whose fixed points are
a1 = (2, 5) and a2 = (−2,−5).

(c) Let e ∈ � be a point over 0, α1 and α2 paths from e to a1 and a2 respectively,
and avoiding the other ramification points. Let γ1 be a loop in C− {2,−2} consisting
of a path from 0 to a point near 2 given by π ◦ α1, then a circular path around 2 and
finally the former path back to 0. Similarly, define γ2 as a loop around the point −2.
How do γ1 and γ2 act on �(0)?

(d) Show that, although the loops γ1 and γ2 go around the points 2 and −2
respectively, they do not generate the group π1(C− {2,−2}, 0). Represent these
loops in C− {2,−2}.
2.—Let K be an algebraically closed field of characteristic 0 (not necessarily equal
to C), and � an algebraically closure of K(Z). The aim is to show that the Galois
group AutK(Z)� is (not naturally) isomorphic to the free profinite group on the set
K.

(a) Show that if a profinite group G has a basis with n elements, then every family
of n elements generating G is a basis.

(b) Let X be a set, ((GE), (ρE
F)F⊂E) an inverse system of profinite groups, indexed

by the finite subsets E of X. Set GX = lim←−GE, and define the maps ρX
E : GX → GE by

passing to the limit. Let Y be either a finite subset of X or Y = X. A family (gx )x∈Y

of elements in GY will be said to be adapted if ρY
E (gx ) = e for every finite subset E

of Y such that x /∈ E.
Show that if the maps ρE

F are surjective and each GE has an adapted basis, then so
does the profinite group GX (use Tychonoff’s theorem and a).

Show that every adapted basis for GE stems from an adapted basis for GX.

(c) If k is a finite extension of K(Z), let R(k) be its ramification set (6.3, Exercise 3).
It is a finite set in K ∪ {∞}.

Let E ⊂ K be a finite set, �E the union of the finite extensions of K(Z) in � such
that R(k) ⊂ E ∪ {∞}. Set

GE = AutK(Z)�E .

Show that, if K = C, the profinite group GE has an adapted basis.

(d) Let K and K′ be algebraically closed of characteristic 0 and ι : K′ → K an
embedding enabling the identification of K′ with a subfield of K. Set

k0 = K(Z) and k ′0 = K′(Z) ;
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the field k ′0 is a subfield of k0, and any algebraic closure � of k0 contains an algebraic
closure �′ of k ′0. Let E be a subset of K′. Define �E and �′

E as in (c). Show that
�′

E = �′ ∩�E, and that the restriction morphism ι∗ : GE → G′
E is an isomorphism.

Deduce that (c) continues to hold for subfields K of C, and for arbitrary alge-
braically closed fields K of characteristic 0.

(e) Conclude.

3.—Which profinite groups are isomorphic to the Galois group of an extension of
C(Z)?

6.5 Triangulation of Riemann Surfaces

6.5.1 Definition of a Triangulation

The reference segment is [0, 1]. The reference triangle T is the triangle in C

with vertices α0 = 0, α1 = 1 and α2 = j + 1 = eiπ/3 i.e. the convex envelope
of {α0,α1,α2}. We parametrize T by the maps ι0, ι1, ι2 defined by ι0(t) = t ,

ι1(t) = 1+ j t , ι2(t) = j + 1+ j2t . Let
◦
T denote the interior of T.

Let X be a compact topological surface. A triangulation τ of X is given by

• three finite sets I0, I1, I2;
• a family (si )i∈I0 of points of X, called the vertices of τ ;
• a family (a j ) j∈I1 of injective continuous maps from [0, 1] to X, called the edges

of τ ;
• a family ( fk)k∈I2 of injective continuous maps from T to X, called the faces of τ .
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For an edge a, the point a(0) (resp. a(1)) is called the origin (resp. endpoint) of
a. The sides of a face f are f ◦ ιλ. The subsets K0(τ ) = {si }, K1(τ ) =⋃

a j ([0, 1])
and K2(τ ) =⋃

fk(T) are called the skeletons of τ .
The above are subject to the following conditions:

(T1) The origin and endpoint of an edge a j are vertices.
(T2) a j (]0, 1[) are disjoint and do not meet K0.
(T3) A side of a face fk is either an edge a j or a flipped edge t �→ a j (1− t).

(T4) fk(
◦
T) are disjoint and do not meet K1.

(T5) K2 = X.

For j ∈ I1 and k ∈ I2, define the incidence number ε( j, k) by

ε( j, k) =

⎧
⎪⎨

⎪⎩

1 if a j is a side of fk

−1 if the flipped edge a j is a side of fk

0 otherwise.

For i ∈ I0 and j ∈ I1, define the incidence number ε(i, j) by

ε(i, j) =

⎧
⎪⎨

⎪⎩

1 if si is the endpoint of a j

−1 if si is the origin of a j

0 otherwise.
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Example Tetrahedral triangulation of the sphere S2

a1(0) = s0 a1(1) = s1

a2(0) = s0 a2(1) = s2

a3(0) = s0 a3(1) = s3

a4(0) = s2 a4(1) = s3

a5(0) = s3 a5(1) = s1

a6(0) = s1 a6(1) = s2

f0 ◦ ι0 = a4 f0 ◦ ι1 = a5 f0 ◦ ι2 = a6

f1 ◦ ι0 = a2 f1 ◦ ι1 = a4 f1 ◦ ι2 = a3 ◦ τ
f2 ◦ ι0 = a3 f2 ◦ ι1 = a5 f2 ◦ ι2 = a1 ◦ τ
f3 ◦ ι0 = a1 f3 ◦ ι1 = a6 f3 ◦ ι2 = a2 ◦ τ

where τ (t) = 1− t .

Incidence numbers:
On I0 × I1, on I1 × I2,

i
j 0 1 2 3

1 −1 1 0 0
2 −1 0 1 0
3 −1 0 0 1
4 0 0 −1 1
5 1 0 0−1
6 −1 1 0 0

j
k 1 2 3 4 5 6

0 0 0 0 1 1 1
1 0 1−1 1 0 0
2 −1 0 1 0 1 0
3 1−1 0 0 0 1

6.5.2 Direct C1 Triangulations

Let X be a Riemann surface. A triangulation τ a of X is called3 a direct C1 triangu-
lation if the following conditions hold:

(TD1) For j ∈ I1, the map a j is C1 with nonzero derivative on ]0, 1[, i.e. for t ∈
]0, 1[ there is an analytic chart ϕ for X centered at a j (t) such that ϕ ◦ a j :
]0, 1[→ C defined in the neighbourhood of t is continuously differentiable
in the neighbourhood of t with nonzero derivative at t (this condition then
holds for all charts).

(TD2) For k ∈ I2, the map fk is C1 on T − {α0,α1,α2} in the real sense. Moreover,
let t ∈ T− {α0,α1,α2} and ϕ an analytic chart for X centered at fk(t), then
the real functions u and v defined in the neighbourhood of t by f (x + iy) =
u(x, y)+ iv(x, y) satisfy

det

( ∂u
∂x

∂v
∂x

∂u
∂y

∂v
∂y

)

> 0

(this condition then holds for all charts, for if h : C → C is a C-linear map,
then h can be written z · 1C, and, as an R-linear map from R

2 to itself, the
determinant of h is zz̄ > 0).

3The definitions given in this section are specific to the situation. Their generalization requires
changes.
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We next show that every compact Riemann surface has a direct C1 triangulation.

Remark Identifying the Riemann sphere � = C ∪ {∞} with the sphere S2, the
triangulation in Example 6.5.1 is not direct (incidence table and Exercise 1).

6.5.3 Existence of Triangulations of the Riemann Sphere

Proposition Let � be a finite subset of the Riemann sphere �. Then there is a direct
C1 triangulation τ of � such that K0(τ ) contains �.

This proposition is an immediate consequence of the next two lemmas.

Lemma 6.1 There is a triangulation of �.

Proof The map f0 which assigns to the point (ρ, θ) the point with polar coordinates(
ρ cos(θ−π/6)

cos π/6 , 3
2θ
)

is a homeomorphism from T onto the quarter circle {z = x + iy |
|z| � 1, x � 0, y � 0}. Define f1, . . . , f7 by

f1(t) = i f0(t), f2(t) = − f0(t), f3(t) = −i f0(t), fk+4(t) = 1

fk(t)
.

Check that ( fk)k=0,...,7 are the faces of a direct C1 triangulation of � with 8 faces,
12 edges and the 6 vertices 0, 1, i,−1,−i,∞. �

Lemma 6.2 Let X be a compact Riemann surface, τ a direct C1 triangulation of
X and s a point of X. Then there is a direct C1 triangulation τ ′ of X such that
K0(τ

′) = K0(τ ) ∪ {s}.
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Proof If s ∈ K0, take τ ′ = τ .
If s ∈ K1 − K0, then there exists u ∈ ]0, 1[ such that s = a j (u). For all k ∈ I2

such that ε( j, k) �= 0, v = f −1
k (s) belongs to a side of the reference triangle T.

Let α and β be the endpoints of this side, γ the opposite vertex, σ′k and σ′′k direct
affine homeomorphisms from T onto the triangles with vertices α, γ, v and β, γ,
v respectively, and λk : [0, 1] → T an affine map such that λk(0) = γ, λk(1) = v.
Replace the edge a j by a′j : t �→ a j (ut) and a′′j : t �→ a j (1− t + ut); for each k
such that ε( j, k) �= 0, replace the face fk by f ′k = fk ◦ σ′k and f ′′k = fk ◦ σ′′k and add
an edge fk ◦ λk .

If s ∈ K2 − K1, then there is a unique pair (k, t) ∈ I2 ×
◦
T such that s = fk(t). Let

σ (resp. σ′, resp. σ′′) be an affine map from T to T sending α0, α1, α2 to t , α0, α1

(resp. t , α1, α2, resp. t , α2, α0) respectively, and λ, λ′, λ′′ affine maps from [0, 1] to
T sending 0 to t and 1 to α0, α1, α2 respectively. Replace the face fk by faces fk ◦ σ,
fk ◦ σ′, fk ◦ σ′′ and add three edges fk ◦ λ, fk ◦ λ′, fk ◦ λ′′.

In all cases, we obtain a triangulation τ ′ answering the question. �

6.5.4 Lifting of a Triangulation

Let X and Y be compact topological surfaces equipped with the respective triangu-
lations τ and τ ′. A continuous map h : X → Y is compatible with triangulations τ
and τ ′ if for all vertices si (resp. all edges a j , resp. all faces fk) of τ , the image h(si )

(resp. h ◦ a j , resp. h ◦ fk) is a vertex (resp. an edge, resp. a face) of τ ′.

Proposition Let B be a compact topological surface, X a finite ramified covering of
B, � the ramification set of X, and let τ be a triangulation of B such that � ⊂ K0(τ ).
Then there is a triangulation τ ′ of X, unique up to permutation of indices, such that
the projection π : X → B is compatible with τ ′ and τ .

Proof Let f be a face (resp. an edge) of τ . The space f ∗(X) restricted to
T− {α0,α1,α2} (resp. ]0, 1[) is a contractible covering of T− {α0,α1,α2} (resp.
]0, 1[). Hence this covering has d sections where d is the degree of X over B. Corre-
sponding to them there are d liftings gν : T− {α0,α1,α2} → X (resp. ]0, 1[→ X)
of f with ν ∈ {1, . . . , d}.

The next lemma shows that this liftings extend by continuity to T (resp. [0, 1]).
Lemma Let Z be a topological space, z0 ∈ Z. Suppose that z0 has a fundamen-
tal system of neighbourhoods Wi such that for all i , Wi − {z0} is connected and
nonempty. Let ϕ : Z → B and ψ : Z − {z0} → X be continuous maps such that
π ◦ ψ = ϕ|Z−{z0}. Then ψ can be uniquely extended to a continuous map ψ̄ : Z → X
such that π ◦ ψ̄ = ϕ

Proof of the Lemma Let b0 = ϕ(z0), X(b0) = {x1, . . . , xr }, and U1, . . . , Ur dis-
joint open neighbourhoods of respectively x1, . . . , xr in X. As π is proper, there
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is a neighbourhood V of b0 in B such that π−1(V) ⊂ U1 ∪ . . . ∪ Ur . As ϕ is con-
tinuous, there exists Wi such that ϕ(Wi ) ⊂ V. Then for p = 1, . . . , r , the open sets
ψ−1(Up) ∩Wi form a partition of Wi − {z0}. Hence only one of them is nonempty.
Without loss of generality, assume it is ψ−1(U1) ∩Wi . We then show that ψ(z) tends
to x1 as z tends to z0 while remaining distinct from z0. As V′ runs through a fundamen-
tal system of neighbourhoods of b0 in B, the set π−1(V′) ∩ U1 runs through a funda-
mental system of neighbourhoods of x1 in X. Indeed, if U′

1 is a neighbourhood of x1

in X, then U′
1 ∪ U2 ∪ . . . ∪ Ur contains some set π−1(V′) and π−1(V′) ∩ U1 = U′

1.
Then ψ−1(π−1(V′) ∩ U1) = ϕ−1(V′) ∩ ψ−1(U1) ⊃ ϕ−1(V′) ∩ (Wi − {z0}). Hence
the desired extension of ψ is ψ̄ defined by ψ̄(z0) = x1. �

End of the Proof of the Proposition Applying the lemma to T − {α0,α1,α2} (resp.
]0, 1[) three times (resp. twice) lifts each face fk (resp. each edge a j ) of τ to d faces
(resp. d edges) in X. Take as vertices the points of X over the vertices of τ . These
vertices, edges and faces form a triangulation τ ′ of X unique up to permutation of
indices with the desired property. �

Remarks (1) Suppose that B is a Riemann surface and X an analytic covering of B.
Then if τ is C1 and direct, so is τ ′.

Indeed, this property concerns the behaviour of τ away from vertices, and there
π : X → B is a local isomorphism.

(2) Let k0(τ ), k1(τ ), k2(τ ) be the respective number of elements of I0, I1, I2. Then

k2(τ
′) = d · k2(τ ), k1(τ

′) = d · k1(τ ), k0(τ
′) = d · k0(τ )−

∑

x∈R

(e(x)− 1)

where R is the set of ramification points of X, e(x) denoting the ramification index
of x .

6.5.5

Theorem Let X be a compact Riemann surface and � ⊂ X a finite set. There is a
direct C1 triangulation τ of X such that K0(τ ) ⊃ �.

Proof Let f ∈M(X) be a meromorphic function which is not constant on any of
the connected components (such functions exist by the separation Theorem 6.2.1).
There is an analytic map π : X → � corresponding to f . By Proposition 6.5.3, there
is a direct C1 triangulation τ0 of � such that K0(τ0) contains the projection of � and
the ramification set of X. By Proposition 6.5.4, there is a triangulation τ of X such
that τ is compatible with τ and τ0, which implies that K0(τ ) ⊃ π−1(π(�)) ⊃ �. By
6.5.4, remark 1, the triangulation τ is direct and C1. �
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6.5.6

Proposition Let X be a Riemann surface, τ a direct C1 triangulation. For each edge
a j there are exactly two faces fk such that ε( j, k) �= 0. For one of them (which will
be said to be on the left of a j ), ε( j, k) = +1, for the other (which will be said to be
on the right), ε( j, k) = −1.

Lemma 6.3 Let J be a neighbourhood of 0 in R and a : J → R
2 a C1 map such

that a(0) = 0 and a′(0) �= 0. Then there is a neighbourhood U of 0 in R
2, a neigh-

bourhood J′ of 0 in J, and a diffeomorphism ψ from U onto an open subset of
R

2 with Jacobian > 0 such that ψ(a(J′)) = ψ(U) ∩ (R× {0}) and for all t ∈ J′,
ψ(a(t)) = (t, 0).

Proof Let λ : R
2 → R

2 be a linear map with determinant > 0 such that λ(a′(0)) =
(ξ, η) for some ξ > 0. Then λ(a(t)) = (u(t), v(t)) for some u′(0) = ξ > 0. So u
induces a diffeomorphism from an open interval J′ of 0 in J onto a neighbourhood
J′′ of 0 in R. Set θ(x, y) = (u−1(x), y − v(u−1(x))) for x ∈ J′′, y ∈ R. Then U =
λ−1(J′′ × R) and ψ = θ ◦ λ are as desired, the Jacobian of θ being det

(
u′−1 ∗

0 1

)

=
u′−1 > 0. �

Lemma 6.4 Let V be a neighbourhood of 0 in R× R+, such that V = V ∩ (R×
R
∗+) is connected. Let f : V → R

2 be a C1 injective map with Jacobian > 0 on V,
such that f (0) = 0. Set a(t) = f (t, 0). Let U, ψ and J′ be as in Lemma 6.3. Assume
that J′ × {0} ⊂ V and f (V) ⊂ U. Then ψ( f (V)) is a neighbourhood of 0 in R× R+.

Proof Let D ⊆ V be a half-disk centered at 0 closed in R× R+ and let
◦
D denote

the interior of D in R
2. The boundary ∂D = D− ◦

D is of the form J ∪ L, where J is
the segment and L the closed half-circle. Set g = ψ ◦ f . The set g(L) is compact in
R

2 and 0 /∈ g(L). Let D′ be a closed half-circle centered at 0 in R× R+ such that
◦

D′ ∩ g(L) = ∅. As g(J) ⊂ R× {0}, g(D) ∩
◦

D′ = g(
◦
D) ∩

◦
D′. Now, g(D) is compact,

and so closed, and g(
◦
D) is open in R

2 by the local inversion theorem (implicit function

theorem). As a result, g(
◦
D) ∩

◦
D′ is clopen in

◦
D′; as the latter is connected, either

g(D) ⊃
◦

D′ or g(D) ∩
◦

D′ = ∅. Define u, v ∈ [0, ε[⊂ R by g(0, t) = (u(t), v(t)). As

g(t, 0) = (t, 0), the Jacobian of g at 0 is det

(
1 u′(0)

0 v′(0)

)

= v′(0). Thus v′(0) > 0.

For sufficiently small t > 0, u(t) is small and so is v(t) > 0; thus g(0, t) ∈
◦

D′ and

g(D) ∩
◦

D′ �= ∅. Hence g(D) ⊃
◦

D′ and g(D) ⊃ D′ since D is compact.

Indeed g(
◦
V) is connected and does not meet R× {0} since g is injective and

(R× {0}) ∩ U = g(J′ × {0}). As a result, g(
◦
V) ⊆ R× R

∗+, and g(V) ⊂
R× R+. �
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Proof of the Proposition Let j ∈ I1, and set x = a j
(

1
2

)
. Let ϕ be an analytic chart

for X centered at x . Define ã : ]− 1
2 , 1

2

[→ R
2 in the neighbourhood of 0 by

ã(t) = ϕ
(
a j
(
t + 1

2

))
.

Let J′, U and ψ satisfy the conditions of Lemma 6.3 for ã. Let fk be a face of
τ such that ε( j, k) �= 0. Then xk = f −1

k (x) is the midpoint of a side of T, i.e. xk =
ιν
(

1
2

)
for some ν ∈ {0, 1, 2}. Let hk : C → C be a C-affine map such that hk(t) =

ιν
(
t + 1

2

)
. Then hk defines a homeomorphism from a neighbourhood Vk of 0 in

R× R+ onto a neighbourhood W of xk in T. We may assume that W ⊂ f −1
k (ϕ−1(U)),

W ∩ ιλ([0, 1]) = ∅ for λ �= ν, W ∩ ◦
T connected and Vk ⊃ J′ if ε( j, k) = 1, while

Vk ⊃ −J′ if ε( j, k) = −1. Set f̃k = ϕ ◦ fk ◦ hk : Vk → U ⊂ R. If ε( j, k) = 1, then
ψ ◦ f̃k(t) = (t, 0). Then, by Lemma 6.4, ψ ◦ f̃k(Vk) is a neighbourhood of 0 in
R× R+. If ε( j, k) = −1, then ψ ◦ f̃k(t) = (−t, 0), and by Lemma 6.4 applied to
−ψ, ψ ◦ f̃k(Vk) is a neighbourhood of 0 in R× R−.

Let I′2 denote the set of k such that ε( j, k) �= 0. Then

� =
⋃

k∈I′2

fk ◦ hk(Vk)

is a neighbourhood of x in X. Indeed, taking Vk = ∅ for k /∈ I′2,
�� ⊂⋃

k∈I2
fk(T − hk(Vk)), and this union is a compact set not containing x . Hence

⋃
ψ ◦ f̃k(Vk) = ψ(ϕ(�)) is a neighbourhood of 0 in R

2.
As all (u, v) with v > 0 (resp v < 0) belong to a neighbourhood of 0 in R

2, there
exists k such that ε( j, k) = +1 (resp. −1).

If ε( j, k) = ε( j, k ′) = 1 with k �= k ′, then the set ψ( f̃k(Vk)) ∩ ψ( f̃k ′(Vk ′)) is a
neighbourhood of 0 in R× R+, and so contains points (u, v) with v > 0, but such a

point is of the form ϕ(x ′) with x ′ ∈ fk(
◦
T) ∩ fk ′(

◦
T), which is impossible by condition

(T4) of 6.5.1. Hence there is a unique k such that ε( j, k) = 1 and similarly a unique
k such that ε( j, k) = −1. �

Remark This proposition can be generalized to oriented topological surfaces, but
the proof is clearly harder.

Exercises 6.5. (Triangulation of a Riemann surface)
1.—Let X be a topological surface and τ = (I0, I1, I2, (si ), (a j ), ( fk)) a triangulation
of X.

(a) Show that each edge is the side of two faces, i.e. that, for all j ∈ I2, there are
exactly two values of k such that ε( j, k) �= 0.

(b) Suppose that X is a C1 surface and that τ is C1. Show that the following
conditions are equivalent:

(i) (∀ j ∈ I1) (∃k, k ′ ∈ I2) ε( j, k) = 1 and ε( j, k ′) = −1;
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(ii) there is a unique orientation of X such that every face of τ is a map preserving

the orientation of
◦
T;

(c) Generalize the definition of triangulations to surfaces with boundaries and
give a triangulation of a closed Möbius strip. Using this triangulation, show that the
Möbius strip is not orientable.

2.—Let X be a compact topological surface and τ a triangulation of X. The combi-
natorial data of τ are

• the finite sets I0, I1, I2;
• the incidence functions ε0,1 : I0 × I1 → {0, 1,−1} andε1,2 : I1 × I2 → {0, 1,−1};
• For ( j, k) ∈ I1 × I2 with ε( j, k) �= 0, ν ∈ {0, 1, 2} such that the side fk ◦ ιν of fk

is either the edge a j or the flip of the edge a j .

(a) Let T be the reference triangle (6.5.1) and F : I2 × T → X the map defined
by F(k, t) = fk(t). Show that F is surjective, and determine from the combinatorial
data the equivalence relation on I2 × T induced by F.

(b) Show that any two compact topological surfaces admitting triangulations and
with the same combinatorial data are homeomorphic.

6.6 Simplicial Homology

In this section X denotes a compact Riemann surface and τ = (
(si )i∈I0 , (a j ) j∈I1 ,

( fk)k∈I2

)
a direct C1 triangulation of X. The results may be generalized to an arbitrary

oriented topological surface. The proofs use Proposition 6.5.6.

6.6.1 Chain Complex Associated to a Triangulation

For ν = 0, 1, 2, let Cν be the free Z-module Z
Iν on Iν . For ν �= 0, 1, 2, set Cν = 0.

Denote by [si ] (resp. [a j ], resp. [ fk]) the basis element corresponding to i (resp. j ,
resp. k) . Define ∂ν : Cν → Cν−1 by

∂2[ fk] =
∑

j

ε( j, k)[a j ] and ∂1[a j ] =
∑

i

ε(i, j)[si ] = [a j (1)] − [a j (0)] .

The ∂ν are called boundary operators. The boundary of a face may be described as
consisting of three edges with their incidence number, and the boundary of an edge
as the “endpoint minus the origin”.

Proposition and Definition ∂1 ◦ ∂2 = 0.
The chain complex associated to τ is 0 → C2

σ2→C1
σ1→C0 → 0, and Hν(X, τ ) =

Ker ∂ν/ Im ∂ν+1 is said to be the homology of X defined by τ .
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Proof Let k ∈ I2. Then

∂1 ◦ ∂2[ fk] =
∑

j

ε( j, k)([a j (1)] − [a j (0)]) .

Let ν ∈ {0, 1, 2} = Z/(3), αν = [ fk ◦ ιν(0)], and define jν by fk ◦ ιν = a jν or
the flip of a jν . In both cases ε( jν, k)∂1(a jν ) = αν+1 − αν . If j is not of the form jν ,
then ε( j, k) = 0. Hence ∂1 ◦ ∂2[ fk] =∑

(αν+1 − αν) = 0. �
Remark As may be shown, Hν(X, τ ) can be identified with the singular homology
of X, and so does not depend on τ (cf. Zisman [7], 6.3.2.7). A particular case of this
result will be proved in 6.6.4; see also 6.6.2 and 6.6, Exercise 1.

6.6.2 Connected Case

Proposition If X( �= ∅) is connected, then
(a) H0(X, τ ) = Z;
(b) H2(X, τ ) = Z.
The class of [si ] is the same for all i ∈ I0, and this element is a generator of

H0(X, τ ). Then
∑[ fk] ∈ Ker ∂2, and the class of this element is a generator of

H2(X, τ ).

Proof (a) H0(X, τ ) = Coker ∂1. Define ε : C0 → Z by ε([si ]) = 1 for all i . As
I0 �= ∅, the map ε is surjective, and clearly ε ◦ ∂1 = 0; hence Im ∂1 ⊂ Ker ε. We
show the converse inclusion. The submodule Ker ε is generated by the [si ] − [si ′ ].
Indeed, let i0 ∈ I and c =∑

λi [si ] ∈ Ker ε. Then
∑

λi = 0; so

λi0 = −
∑

i �=i0

λi , and c =
∑

i �=i0

λi ([si ] − [si0 ]) .

A vertex si will be said to be connected to a point x ∈ X if there is a sequence
i0 = i, i1, . . . , iN such that, for n = 1, . . . , N, sin−1 and sin are not endpoints of the
same edge and siN is the vertex of a face or of an edge containing x . If two vertices
si and si ′ are connected, then [si ] − [si ′ ] ∈ Im ∂1.

For i ∈ I0, le Xi be the set of points of X connected to si . These Xi form a finite
partition X into nonempty closed sets, and so there is only one and any two vertices are
connected. Consequently, Im ∂1 = Ker ε, and so H0(X, τ ) = Coker ∂1 = Im ε = Z.

(b) H2 = Ker ∂2. Let c =∑
λk[ fk] ∈ C2. If all λk are equal, it follows from

Proposition 6.5.6 that ∂2c = 0. Conversely, suppose that ∂2c = 0. If the faces fk and
fk ′ have a common edge, then λk = λk ′ . For all n, the union Xn of fk(T) for all k such
that λk = n is a closed set. For n �= n′, Xn ∩ Xn′ ⊂ K0, and so X′

n = Xn − K0 form
a finite partition of X − K0 into closed sets. By 6.1.7, Remark 3, the space X− K0

is connected; hence there is only one X′
n �= ∅, all λk are equal, and H2(X, τ )) can

be identified with Z. �
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Corollary For X not necessarily connected,

H0(X, τ ) = H2(X, τ ) = Z
π0(X) ,

where π0(X) denotes the set of connected components of X.

6.6.3 Barycentric Subdivision

From the triangulation τ , we define a triangulation τ ′ of X. Let I0,1 (resp. I1,2) be
the set of (i, j) ∈ I0 × I1 (resp. I1 × I2) such that ε(i, j) �= 0. Let I0,2 be the set of
(i, k) ∈ I0 × I2 such that si is a vertex of fk , i.e. si = fk(αν) for some ν ∈ {0, 1, 2}.

Set I′0 = I0 � I1 � I2, and

⎧
⎪⎨

⎪⎩

s ′i = si if i ∈ I0 ,

s ′j = a j
(

1
2

)
if j ∈ I1 ,

s ′k = fk(G) if k ∈ I2 ,

where G is the centre of mass of T.
Set I′1 = I0,1 � I1,2 � I0,2. For (i, j) ∈ I0,1, set

a′i, j (t) =
{

a j
(

t
2

)
if si = a j (0) ,

a j
(
1− t

2

)
if si = a j (1) .

For ( j, k) ∈ I1,2 or I0,2, set
a′j,k = fk ◦ h,

where h : [0, 1] → T is the affine map defined by h(0) = f −1
k (s ′j ) and h(1) = G.

Let I′2 be the set of (i, j, k) ∈ I0 × I1 × I2 such that (i, j) ∈ I0,1 and ( j, k) ∈ I1,2.
For (i, j, k) ∈ I′2, set

f ′i, j,k = fk ◦ h,

where h : T → T is a direct affine homeomorphism from T onto the triangle with
vertices f −1

k (si ), f −1
k (s ′j ), G.

This gives a direct C1 triangulation τ ′ = ((s ′i )i∈I′0 , (a
′
j ) j∈I′1 , ( f ′k)k∈I′2) of X, called

the barycentric subdivision of τ . In this triangulation, each face of τ has been replaced
by 6 faces configured as:
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Let C′. be the chain complex associated to the triangulation τ ′. Define a homo-
morphism σ : C. → C′. by setting σ([ fk]) =∑[ f ′i, j,k], the sum being over all (i, j)
such that (i, j, k) ∈ I′2, and σ([a j ] = [a′i, j ] − [a′i ′, j ], where i and i ′ are defined by
si = a j (0) and si ′ = a j (1), σ([si ]) = [s ′i ]. It can be checked that σ is a morphism of
chain complexes.

6.6.4

Proposition For all ν, the homomorphism σ induces an isomorphism

σ∗ : Hν(X, τ )
≈→ Hν(X, τ ′) .

Remark This proposition is obvious except for ν = 1.

Proof For C. and C′., define respective chain subcomplexes FλC. and FλC′., where
λ = 0, 1, 2, as follows.

FλCν = Cν for ν � λ, FλCν = 0 for ν > λ ;

FλC′. is the submodule of C′. generated by the vertices, edges and faces of τ ′ contained
in the λ-skeleton of τ . More explicitly

F0C′0 is generated by [s ′i ] for i ∈ I0,

F0C′1 = F0C′2 = 0,

F1C′0 is generated by [s ′i ] for i ∈ I0 � I1,

F1C′1 is generated by [a′i, j ] for (i, j) ∈ I0,1,

F1C′2 = 0,

F2C′ν = C′ν .

It can be checked that FλC. and FλC′. are subcomplexes, i.e. that

∂(FλCν) ⊂ FλCν−1 ;
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likewise for C′.. It can also be checked thatσ(FλC.) ⊂ FλC′.. Set GλC. = FλC./Fλ−1C.
and define GλC′. similarly. The morphism σ gives a morphism of chain complexes
from GλC. to GλC′., which in turn gives a homomorphism σ∗ : HνGλC. → HνGλC′.
by passing to the homology.

Lemma The homomorphism σ∗ : HνGλC. → HνGλC′. is an isomorphism.

Proof of the Lemma As GλC. = · · · → 0 → Cλ → 0 → · · · , HλGλC. = Cλ and
HνGλC. = 0 for ν �= λ. The chain complex GλC′. is of the form

⊕
i∈Iλ Ki , where the

chain complex Ki is as follows

0→Z
6→Z

6→Z→ 0 if λ = 2 ,

0→ 0 →Z
2→Z→ 0 if λ = 1 ,

0 → 0 →Z→ 0 if λ = 0 .

It may be checked that HνKi = Z for ν = λ and HνKi = 0 for ν �= λ. Hence,

HλGλC′. = Z
Iλ = Cλ = HλGλC. and HνGλC′. = 0 pour ν �= λ .

The above identification can be checked to be indeed given by σ∗, which therefore
is an isomorphism. �

End of the Proof of the Proposition We show by induction on λ that σ∗ : HνFλC.
→ HνFλC′. is an isomorphism. For λ = −1, everything vanishes. Consider the com-
mutative diagram of complexes

0 � Fλ−1C. � FλC. � GλC. � 0

0 � Fλ−1C′.
�

� FλC′.
�

� GλC′.
�

� 0

Passing to the associated long exact sequences gives the following commutative
diagram:

Hν+1GλC. � HνFλ−1C. � HνFλC. � HνGλC. � Hν−1Fλ−1C.

Hν+1GλC′.

u1 �
� HνFλ−1C′.

u2 �
� HνFλC′.

u3 �
� HνGλC′.

u4 �
� Hν−1Fλ−1C′.

u5 �

By the lemma, u1 and u4 are isomorphisms, by the induction hypothesis so are
u2 and u5. Applying the five lemma4 then shows that u3 is an isomorphism, proving
our claim. The proposition follows from taking λ = 2. �

4See Zisman [7], 4.1.3 or Bourbaki [8], Chap. 10, § 1, cor. 3. (A X-7).
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6.6.5 Dual of a Chain Complex

We construct a complex C′′. and a homomorphism σ′ : C′′. → C′. which is shown
to give an isomorphism onto the homology. The complex C′′. is not associated to
a triangulation, but to a “cell decomposition”, a notion that has not been formally
introduced. It is a triangulation where triangles are replaced by polygons. The cell
decomposition considered, called the dual of the triangulation τ , is obtained by
assembling in a cell all the faces of τ ′ containing a vertex of τ .

We continue with the definition of C′′. and σ′. Set

I′′0 = I2, I′′1 = I1, I′′2 = I0, and C′′ν = ZI′′ν .

Let [s ′′k ] be the elements of the canonical basis C′′0, [a′′j ] those of C′′1 and [ f ′′i ] those
of C′′2.

Define σ′ : C′′. → C′. as follows: for i ∈ I0,

σ′([ f ′′i ]) =
∑

[ f ′i, j,k] ,

the sum being over all ( j, k) such that (i, j, k) ∈ I′2; for j ∈ I1,

σ′([a′′j ]) = [a′j,k] − [a′j,k ′ ]

where k is the index of the face of τ on the left of a j and k ′ that of the face on the
right; for k ∈ I2, σ′([s ′′k ]) = [s ′k].

Define ∂ν : C′′ν → C′′ν−1 so that σ′ is a morphism of chain complexes. This forces

∂2[ f ′′i ] =
∑

−ε(i, j)[a′′j ] and ∂1([a′′j ]) = [s ′′k ] − [s ′′k ′ ] ,

where k (resp. k ′) is the index of the face on the left (resp. on the right) of a j .
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6.6.6

Proposition For all ν, the homomorphism σ′ induces an isomorphism

σ′∗ : HνC′′. → HνC′. = Hν(X, τ ′) .

Proof For λ = 0, 1, 2, define the respective chain subcomplexes F′λC′. and F′λC′′. of
C′. and C′′. as follows:

F′λC′′ν = C′′ν for ν � λ ; F′λC′′ν = 0 for ν > λ ;

F′νC′. is the submodule of C′. generated by the vertices, edges and faces of τ ′ contained
in the λ-skeleton of the dual cell decomposition of τ . More precisely:

F′0C′0 is generated by [s ′k] for k ∈ I2,

F′0C′1 = F′0C′2 = 0,

F′1C′0 is generated by [s ′j ] for j ∈ I1 � I2,

F′1C′1 is generated by [a′j,k] for ( j, k) ∈ I1,2,

F′1C′2 = 0,

F′2C′ν = C′ν .

It can be checked that F′λC′′. and F′λC′. are chain subcomplexes and σ′(F′λC′′. ) ⊂ F′λC′..
Set G′

λC′. = F′λC′./F′λ−1C′. and likewise define G′
λC′′. . Then G′

λC′′. = · · · → 0 →
C′′λ → 0 → · · · . As in Proposition 6.6.4, it suffices to show that σ′∗ : HνG′

λC′′. →
HνG′

λC′. is an isomorphism.
This is immediate for λ = 0, and for λ = 1 the proof is similar to that of Lemma

6.6.4. The chain complex G′
2C′. is of the form

∑
i∈I0

K′
i where K′

i is the chain complex
0 → Z

J2(i) → Z
J1(i) → Z → 0, where J2(i) is the set of (i, j, k) ∈ I′2 with ( j, k) ∈

I1 × I2, and J1(i) is the set of (i, j) ∈ I0,1 � I0,2 with j ∈ I1 � I2. The proposition
then follows from the following lemma:

Lemma H0(K′
i ) = H1(K′

i ) = 0, and H2(K′
i ), generated by

∑

(i, j,k)∈J2(i)

[ f ′i, j,k] ,

is isomorphic to Z.

Proof of the Lemma For (i, j) ∈ J1(i), the element ∂1[a′i, j ] = [s ′j ] − [si ] gives −1
in Z = (K′

i )0. Since si is not isolated, J1(i) �= ∅, and so

∂1 : (K′
i )1 = Z

J1(i) → Z = (K′
i )0

is surjective and H0(K′
i ) = 0.
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We show that H1(K′
i ) = 0. The submodule Ker ∂1 : Z

J1(i) → Z is generated by
all [a′j ] − [a′j ′ ], where j, j ′ ∈ J1(i) (see proof of 6.6.2). Two edges a′j and a′j ′ with
j, j ′ ∈ J1(i) are said to be connected if there is a finite sequence j0 = j, j1, . . . , jN =
j ′ in J1(i) such that a′jn−1

and a′jn are two sides of a same face f ′kn
with kn ∈ J2(i) for

n = 1, . . . , N. Then, ∂2[ f ′kn
] having the same image in G′

2C′. as ±([a′jn ] − [a′jn−1
]),

[a′j ] − [a′j ′ ] ∈ Im ∂2 : (K′
i )2 → (K′

i )1 if a′j and a′j ′ are connected. The set V =⋃
k∈J2(i)

f ′k(T) is a neighbourhood of si in X. The space V− {si } =⋃
( f ′k(T)− {si })

is connected. Indeed, as X is a topological surface, there is a neighbourhood U of
si such that U − {si } is connected, and each ( f ′k(T)− {si }) is connected and meets
U − {si }.

A point x ∈ V− {si } is said to be connected to an edge a′j with j ∈ J1(i) if a′j is
connected to a side a′j ′ of a face containing x . For all j ∈ J1(i), let W j be the set of
all x ∈ V− {si } connected to a′j . The set of W j partitions V− {si } into finite sets,
and hence there is only one, and any two arbitrary edges a′j and a′j ′ with j, j ′ ∈ J1(i)
are connected. Therefore H1(K′

i ) = 0.
As each face f ′k with k ∈ J2(i) contains 2 edges a′j with j ∈ J1(i) (the third one

defining an element of F1C′1) and as each edge a′j with j ∈ J1(i) is contained in 2
faces, the sets J1(i) and J2(i) have the same number n of elements. The Z-module
Im ∂2 = Ker ∂1, being a submodule of a free Z-module of rank n, is free, and Im ∂1 is
of rank 1, while Ker ∂1 is of rank n − 1. Hence Ker ∂2 is free of rank 1. The element∑

k∈J2(i)
f ′k is in Ker ∂1 and generates it since it is not divisible by an integer > 1. �

This completes the proof of the proposition.

6.6.7 Remark

(1) The isomorphisms σ∗ and σ′∗ identify Hν(X, τ ′) = Hν(C′.) and Hν(C′′. ) with
Hν(X, τ ) = Hν(C.).

(2) Identifying C′′ν with the dual of C2−ν , i.e. with HomZ(C2−ν, Z), ∂′′2 : C′′2 →
C′′1 becomes the opposite of the transpose of ∂1 : C1 → C0, and ∂′′1 : C′′1 → C′′0 the
transpose of ∂2 : C2 → C1. Indeed, the entries of the matrix representing ∂ν : Cν →
Cν−1 are the incidence numbers; those of the the matrix representing ∂′′2 are−ε(i, j),
while those of the matrix representing ∂′′1 are ε( j, k).

6.6.8

Proposition The Z-module H1(X, τ ) is finitely generated and free.

Lemma 6.5 Let A be a principal ring, E and F finitely generated free A-modules
and u : E → F a homomorphism. Consider the transpose of u� : F� → E� of u.
The modules Coker u and Coker u� have isomorphic torsion subsets.
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Proof Let ( f1, . . . , fq) be a basis for F adapted to Im u (3.5.2 and 3.5.7), and
a1, . . . , ar ∈ A such that (a1 f1, . . . , ar fr ) is a basis for Im u. Let e1, . . . , er be rep-
resentatives of a1 f1, . . . , ar fr in E. Completing to a basis for E by taking a basis
(er+1, . . . , ep) for Ker u, the matrix representing u is

r
︷ ︸︸ ︷

p−r
︷ ︸︸ ︷

r

⎧
⎪⎨

⎪⎩

q−r

⎧
⎪⎨

⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1 0
...

. . .
...

0 ar

0 0
...

...

0 0
0 0
...

...

0 0

0 0
...

. . .
...

0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

and Coker u is isomorphic to
⊕r

i=1 A/(ai )⊕Aq−r . The matrix representing u� is

r
︷ ︸︸ ︷

q−r
︷ ︸︸ ︷

r

⎧
⎪⎨

⎪⎩

p−r

⎧
⎪⎨

⎪⎩

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a1 0
...

. . .
...

0 ar

0 0
...

...

0 0
0 0
...

...

0 0

0 0
...

. . .
...

0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Coker u� is isomorphic to
⊕r

i=1 A/(ai )⊕Ap−r . In both cases, the torsion subset is⊕r
i=1 A/(ai ). �

Lemma 6.6 Let A be a principal ring, E. a chain complex of finitely generated free
A-modules and E� its dual. Then HnE. and Hn+1E� have isomorphic torsion subsets.

Proof There are exact sequences

0 → HnE. → Coker dn+1 → Im dn → 0 ,

0 → Hn+1E� → Coker dn → Im dn+1 → 0 .

As Im dn ⊂ En−1 is torsion free, HnE. and Coker dn+1 have the same torsion
subset. Likewise, Hn+1E� and Coker dn have the same torsion subset. As dn : En →
En+1 is the transpose of dn+1 : En+1 → En , Lemma 6.6 follows from Lemma 6.5, �

Remark The isomorphisms whose existence was proved in Lemmas 6.5 and 6.6
depend on the choice of an adapted basis. There are no natural ones. (see 2.3, Exercise
4, c).

Proof of the Proposition The module H1(X, τ ) = H1C. is finitely generated since
it is a quotient of a submodule of C1. The torsion subset of H1(X, τ ) = H1C. is
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isomorphic to that of H2C�. Changing the sign of the differential, which does not
impact the homology, enables the identification of C� with C′′. , and

H2C� = H0C′′. = H0C. = Z
π0(X) .

So its torsion subset is 0. Hence H1(X, τ ) is finitely generated and torsion free over
Z, and thus is free (3.5.8, Corollary 3.2).

6.6.9 Intersection Product

Define a bilinear map (c, c′′) �→ c · c′′ from Cν × C′′2−ν to Z by

[si ] · [ f ′′i ′ ] = δi ′
i ,

[a j ] · [a′′j ′ ] = δ
j ′
j ,

[ fk] · [s ′′k ′ ] = δk ′
k ,

where δi ′
i = 1 if i = i ′ and 0 otherwise.

For c ∈ Cν and c′′ ∈ C3−ν , ∂c · c′′ = (−1)νc · ∂c′′. Indeed,

∂[a j ] · [ f ′′i ] = −ε(i, j) = −[a j ] · ∂[ f ′′i ]

and
∂ fk · [a′′j ] = ε( j, k) = [ fk] · ∂[a′′j ] .

Hence restriction and passage to the quotient gives a map from HνC. × H2−νC′′. to
Z or Hν(X, τ )× H2−ν(X, τ ) → Z, called the intersection product. We also write it
(γ, γ′) �→ γ · γ′, and γ · γ′ is called the intersection number of γ and γ′.

Remarks 1. For ν = 0 or 2, H0(X) and H2(X) can be identified with Z (6.6.2, propo-
sition) if X is connected, the intersection becoming the multiplication
Z× Z → Z.

2. We have already mentioned in (6.6.1) that Hν(X, τ ) is independent of τ . Hence
Hν(X) is well defined. Forν = 1, the intersection product on H1(X) can be interpreted
as follows. Let τ = (I0, I1, I2, (si ), (a j ), ( fk)) and τ̃ = (Ĩ0, Ĩ1, Ĩ2, (sı̃ ), (aj̃ ), ( fk̃)) be
two mutually transverse C1 triangulations of X. This means that {si }i∈I0 ∩ {sı̃ }ı̃ ∈̃I0

=
∅ and that for j ∈ I1 and j̃ ∈ Ĩ1, the curves A j = a j (]0, 1[) and Aj̃ = aj̃ (]0, 1[)
intersect transversally at finitely many points. For z = a j (t) = aj̃ (t̃) ∈ A j ∩ Aj̃ , set
θ(z) = 1 if the basis (a′j (t), a′

j̃
(t̃)) for the tangent space TzX consisting of the derived

vectors is direct; set θ(z) = −1 if it is inverse, and a j · aj̃ =∑
z∈A j∩Aj̃

θ(z). For
ξ, η ∈ H1(X), consider ξ as an element in H1(X, τ ) and η as an element in H1(X, τ̃ ).
Choose respective representatives

∑
λ j [a j ] ∈ C1(X, τ ) and

∑
μj̃ [aj̃ ] ∈ C1(X, τ̃ )

of ξ and η. The intersection product can be shown to be given by
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ξ · η =
∑

λ jμj̃ ([a j ] · [aj̃ ]) .

Theorem (Poincaré duality) The intersection product defines an isomorphism from
H2−ν(X, τ ) onto the dual of Hν(X, τ ).

In other words, for any linear form u : Hν(X, τ ) → Z, there is a unique γ′ ∈
H2−ν(X, τ ) such that (∀ γ ∈ H(X, τ )) u(γ) = γ · γ′. This theorem is in fact trivial
except for ν = 1.

Lemma Let A be a principal ring, E. a chain complex of free A-modules such that
HnE. are free for all n, and E� its dual. Then HnE� can be identified with the dual
of HnE. for all n.

Proof There are exact sequences

0 → HnE. → Coker dn+1 → Im dn → 0

and
0 → Hn−1E. → Coker dn → Im dn−1 → 0 .

These are split since the submodules Im dn of En−1 and and Im dn−1 of En−2 are free.
Hence taking the transpose of the former gives an exact sequence 0 → (Im dn)

� →
Ker(d�n+1) → (HnE.)� → 0. As for the second sequence it shows that Coker dn is
free. So the exact sequence 0 → Im dn → En−1 → Coker dn → 0 is split, and the
restriction E�n−1 → (Im dn)

� is surjective. Thus (Im dn)
� has the same image in

Ker(d�n+1) as E�n−1 under d�n , and (HnE.)� can be identified with the n-th homology
of E�. �

Proof of the Theorem Renumbering and changing the sign of the differentials,
which leaves the homology invariant, the complex C′′. can be identified with C�.
By the lemma, H2−ν(X, τ ) = H2−νC′′. can therefore be identified with the dual of
Hν(X, τ ), and this identification can be checked to be given by the intersection prod-
uct. �

6.6.10

Proposition The intersection product H1(X, τ )× H1(X, τ ) → Z is an alternating
bilinear form.

Proof It suffices to show that if c ∈ C1 and c′′ ∈ C′′1 are such that σc − σ′c′′ = ∂b
with b ∈ C′2, then c · c′′ = 0. Let c j be the coefficient of [a j ] in c, etc. Let j ∈ I1,
and define i ′, i ′′, k ′, k ′′ by

ε(i ′, j) = −1, ε(i ′′, j) = 1, ε( j, k ′) = 1, ε( j, k ′′) = −1 .



6.6 Simplicial Homology 357

Then

c j = (σc)i ′ j = −(σc)i ′′ j = (∂b)i ′ j = −(∂b)i ′′ j

= bi ′ jk ′ − bi ′ jk ′′ = bi ′′ jk ′ − bi ′′ jk ′′ ,

c′′j = (σ′c′′) jk ′ = −(σ′c′′) jk ′′ = −(∂b) jk ′ = (∂b) jk ′′

= bi ′ jk ′ − bi ′′ jk ′ = bi ′ jk ′′ − bi ′′ jk ′′ .

Hence

2c j c
′′
j = (bi ′ jk ′ − bi ′ jk ′′)(bi ′ jk ′ + bi ′ jk ′′ − (bi ′′ jk ′ + bi ′′ jk ′′))

= b2
i ′ jk ′ − b2

i ′ jk ′′ − (bi ′′ jk ′ − bi ′′ jk ′′)(bi ′′ jk ′ + bi ′′ jk ′′)

= b2
i ′ jk ′ − b2

i ′ jk ′′ − b2
i ′′ jk ′ + b2

i ′′ jk ′′ =
∑

(i,k)∈I0×I2

−ε(i, j)ε( j, k)b2
i jk .

Therefore, summing over j ,

(∗) 2c · c′′ =
∑

(i, j,k)

−ε(i, j)ε( j, k)b2
i jk .

Note that, for (i, k) ∈ I0,2, there are two values j ′ and j ′′ de j such that ε(i, j)ε( j, k) �=
0, one with+1 (corresponding to face f ′i, j,k on the left of edge a′ik) and one with−1
(corresponding to the righthand face). As (∂b)ik = 0, bi j ′k = bi j ′′k . Hence, the terms
in the sum (∗) mutually cancel each other. So 2c · c′′ = 0 ∈ Z, and c · c′′ = 0. �

6.6.11

Theorem and Definition The Z-module H1(X, τ ) is free of even rank. The number
g defined by dim H1(X, τ ) = 2g is called the genus of X.

Thanks to Propositions 6.6.9 and 6.6.10, it suffices to prove the following lemma:

Lemma Let A be a ring where 2 �= 0 and E a free A-module of rank n. If there is an
alternating bilinear form on E defining an isomorphism from E onto its dual, then n
is even.

Proof Let (ei ) be a basis for E and let (e′i ) be the dual basis. Let u be an
alternating bilinear form defining an isomorphism ũ : E → E�. The homomor-
phism ũ has matrix M = (ui, j ) where ui, j = u(ei , e j ). Then M� = −M, where
det M = det M� = det(−M) = (−1)n det M. As det M is invertible, n is even. �

This completes the proof of the theorem.

Remark The genus g of X can be shown not to depend on the choice of the trian-
gulation τ (6.6, Exercise 1). In what follows, this result will be assumed.
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6.6.12 The Euler-Poincaré Characteristic

Let A be an integral Noetherian ring and E. a complex of A-modules. Assume that all
Hi E. are finitely generated and only finitely many nonzero. Then the Euler-Poincaré
characteristic of E. is the number

χ(E.) =
∑

(−1)i rk(Hi E.) .

Proposition Assume that all Ei are finitely generated and only finitely many nonzero.
Then

χ(E.) =
∑

(−1)i rk(Ei ) .

Proof As rk(Hi E.) = rk(Ker ∂i )− rk ∂i+1 = rk Ei − rk ∂i − rk ∂i+1,

χ(E.) =
∑

(−1)i rk(Ei )−
∑

(−1)i rk ∂i −
∑

(−1)i−1 rk ∂i

=
∑

(−1)i rk(Ei ) .

cqfd

The Euler-Poincaré characteristic of X is the number

χ(X) =
∑

(−1)i dim Hi (X, τ ) .

By the above proposition, χ(X) = k0 − k1 + k2, where k0, k1 and k2 are respectively
the number of vertices, edges and faces of τ . If X is connected, then χ(X) = 2− 2g
by 6.6.2 and 6.6.11. If X is not connected, then χ(X) =∑

χ(Xi ), where the Xi are
the connected components of X.

As seen, the Euler-Poincaré characteristic of a compact Riemann surface is always
even.

6.6.13 The Riemann–Hurwitz Formula

Theorem Let B be a compact Riemann surface and X a finite analytically ramified
d-fold covering of B. Then

χ(X) = d · χ(B)−
∑

x∈R

(ex − 1) ,

where R is the set of ramification points of X, and ex the ramification index of x.

This theorem is an immediate consequence of 6.5.4, Remark 2.
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Corollary 6.5 (a) The number
∑

x∈R(ex − 1) is even.
(b) If X and B are connected, then

g(X)− 1 = d · (g(B)− 1)+ 1

2

∑

x∈R

(ex − 1) ,

where g(X) (resp. g(B)) is the genus of X (resp. of B).

Corollary 6.6 Let X and Y be connected compact Riemann surfaces. If g(Y) >

g(X), every analytic map from X to Y is constant.

Proof Let f : X → Y be a non constant map of degree d . Then either g(X)− 1 �
d · (g(Y)− 1) or g(Y)− 1 � 0 since g(Y) > g(X) � 0; so g(X)− 1 �
d · (g(Y)− 1) � g(Y)− 1, contrary to assumption.

6.6.14 Genus, Uniformization

(1) The Riemann sphere is of genus 0. Every connected compact Riemann surface
of genus 0 is isomorphic to the Riemann sphere (6.6, Exercise 7).

(2) Let � ⊂ C be a closed subgroup isomorphic to Z
2; the quotient group C/� is

a connected compact Riemann surface of genus 1. Such a surface is called a complex
torus. Every connected compact Riemann surface of genus 1 can be shown to be
isomorphic to a complex torus.

(3) Every connected compact Riemann surface can be shown (6.6, Exercise 6) to
be homeomorphic to a surface of the following type (a torus with g holes, where g
is the genus of the surface).
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(4) If X is a connected compact Riemann surface, then it is isomorphic to X̃/G,
where X̃ is a universal covering of X (hence a simply connected Riemann surface),
and G a subgroup of AutX̃ acting freely on X̃.

Every simply connected Riemann surface is isomorphic to the Riemann sphere �,
to the complex plane C or to the unit disk D (uniformization theorem, 6.6, Exercise 8).
If X has genus 0, then X ≈ X̃ ≈ � and G = Id. If X has genus 1, then X̃ ≈ C, the
group G is isomorphic to Z

2 and X is a complex torus. If X has genus g � 2, then
X̃ ≈ D; the automorphisms of D will be studied in § 6.9.

Exercises 6.6. (Homology)
1. (Homology and fundamental group)—(a) Let B be a topological space and G a
group. A covering of B equipped with a continuous action of G inducing a simply
transitive action of G on each fibre is called a principal G-covering of B.

(α) Show that if (B, b0) is a connected pointed space admitting a universal cover-
ing, then the isomorphism classes of principal pointed G-coverings of (B, b0) are in
bijective correspondence with the homomorphisms from π1(B, b0) to G. Study the
functoriality of this correspondence in relation to group homomorphisms.

(β) Show that the isomorphism classes of principal G-coverings correspond to the
conjugation classes of homomorphisms from π1(B, b0) to G. Study the case where
G is commutative.

(b) α) Let X be a surface, τ a triangulation de X, and C. the chain complex
associated to τ . Let G be a commutative group. Defined the chain complex C

.
(G) by

Cν(G) = HomZ(Cν, G).
Show that the isomorphism classes of principal G-coverings of X are in bijective

correspondence with the elements of H1(C
.
(G)) (without necessarily assuming that

X is connected)

(β) Show that Hν(C
.
(G)) = HomZ(Hν(X, τ );G).

(γ) Suppose that X is connected and let x0 ∈ X. Show that H1(X, τ ) and the
quotient of π1(X, x0) by its commutator group are two representatives of the same
covariant functor from Z-Mod to Ens. Deduce that these groups are isomorphic.
Give an isomorphism by describing its action.

(δ) Show that the genus of a Riemann surface is independent of the choice of
triangulation.

2. (Hyperelliptic curves)—Let P ∈ C[X] be a degree d polynomial with distinct
roots, � = {(x, y) ∈ C

2|y2 = P(x)} and π the projection (x, y) �→ x from � to C.

(a) Show that � is a ramified covering of C extending to a ramified covering �̂ of
�. Show that �̂ is (resp. is not) ramified over ∞ if d is odd (resp. even).

(b) What is the genus of �̂ ?

3.—Let d be an integer � 1 and � = {(x, y) ∈ C
2|xd + yd = 1}.

(a) Show that � together with π : (x, y) �→ x is a Galois ramified covering of
C. What is its degree? How many ramification points does it have? What is its
ramification index?
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(b) Show that � extends to a ramified covering �̂ of � unramified over ∞. What
is the genus of �̂ ?

4.—Let P ∈ C[X, Y] be a degree d polynomial, and � the set of (x, y) ∈ C
2 such

that P(x, y) = 0 (algebraic curve with equation P).

(a) Suppose that the coefficient of Yd in P is nonzero, and that the polynomial
y �→ Pd(1, y) has distinct roots, where Pd denotes the homogeneous part of P of
degree d. Show that the curve � has d distinct non vertical asymptotes, and that the
ramified covering (�,π) of C, where π is the projection (x, y) �→ x , extends to a
ramified covering �̂ of �, unramified over ∞.

(b) Let σ ∈ C[X] be the discriminant of P considered an element of (C[X])[Y]
(3.7.12). What is the degree of the polynomial σ?

(c) Suppose that σ only has simple roots. What is the ramification of � over a root
of σ? What is the genus of �̂? Is the ramified covering �̂ Galois?

5. (Fundamental group of a torus with p holes.)—Let D0 be a disk with centre 0 and
radius R in R

2, D1, . . . , Dp the disks of centre Ci = (0, ci ) with −R < c1 < · · · <
cp < R, and sufficiently small radius r so that the disks Di are disjoint and in the

interior of D0. Set a0 = (−R, 0), ai = (−r, ci ) and A = D0 −
(⋃ ◦

Di
)
.

Let f : R
2 → R be a continuous function, > 0 on

◦
A and < 0 on R

2 − A, X the
set of (x, y, z) ∈ R

3 such that z2 = f (x, y) and π the projection (x, y, z) �→ (x, y)

of X onto A. The surface X is called a torus with p holes.

(a) Let ui be the rectilinear path from a0 to ai , vi the loop

t �→ (−r cos t, ci − r sin t)

in A. Denote by � the union of images of all ui and vi , and set U = A − �. Show
that U is contractible, and that there is a contraction

ϕ : [0, 1] × U → U

onto a point of ∂D0 inducing a contraction of ∂D0 − {a0}. Set Ũ = π−1(U). Show
that Ũ is contractible.
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(b) Set X+ = X ∩ (R2 × R+) and X− = X ∩ (R2 × R−). Let ui+ and ui− be the
paths lifting ui in X+ and X− respectively. Set �̃ = π−1(�), and in π1(�̃, a0), let
αi be the class of the loop u−1

i− · ui+ and βi the class of u−1
i+ · vi · ui+. Show that

π1(�̃, a0) is a free group having (α1,β1, . . . ,αp,βp) as basis.

(c) Let ε > 0, and V the set of points of A at a distance < ε from �. Show that,
if ε is chosen sufficiently small, which will be henceforth assumed, then there is a
deformation retraction of V onto � (4.3.16).

Set Ṽ = π−1(V). Show that there is deformation retraction of Ṽ onto �̃.

(d) Show that U ∩ V = V− � is homeomorphic to the product of a closed interval
and an open interval, and that Ũ ∩ Ṽ is homeomorphic to an annulus. Let a′0 ∈
Ũ ∩ Ṽ ∩ ∂D0 be a point over a0, and γ ∈ π1(Ũ ∩ Ṽ, a′0) an element generating the
group. What is the image of γ in π1(Ṽ, a′0) = π1(�̃, a0) ?

(e) Using Van Kampen’s theorem, show that π1(X, a0) can be identified with the
quotient of a free group on (α1,β1, . . . ,αp,βp) by the normal subgroup generated
by

αpβ
−1
p α−1

p βp . . . α1β
−1
1 α−1

1 β1 .

(f) Find a basis α′1,β′1, . . . ,α′p,β′p for π1(�̃, a0) such that π1(X, a0) can be identi-
fied with the quotient of a free group with this basis by the normal subgroup generated
by

α′1β
′
1α

′
1
−1

β′1
−1

. . . α′pβ
′
pα

′
p
−1

β′p
−1

.

6. (Classification of surfaces.)— We keep the notation of the previous exercise, but
denote the set A by Ap and the torus X with p holes Xp.

A set of the form S = H ∩ D0 will be called a segment in Ap when H is the open
half-plane such that S �= ∅, S �= D0, S ∩ Di = ∅ for 1 � i � p.

(a) Show that if S is a segment of Ap, then the inverse image S̃ of S in Xp is

homeomorphic to an open disc, and that S̃ = π−1(S) is homeomorphic to a closed
disc.

(b) Let S1, . . . , Sq be segments of Ap such that S1, . . . , Sq are disjoint, Ap,q =
Ap − (S1 ∪ · · · ∪ Sq), and Xp,q the inverse image of Ap,q in Xp. Then Xp,q will be
said to be a torus with p holes without q disks. The boundary ∂Xp,q is the boundary
of Xp,q in Xp.

Show that Xp,q is a surface with topological boundary, i.e. that any point has a
neighbourhood homeomorphic to an open subset of R

2 or of R+ × R.
Show that the homeomorphism class of Xp,q does not depend on the integers p

and q, and that if σ is a permutation of {1, . . . , q}, there is a homeomorphism h of
Xp inducing a homeomorphism of Xp,q , and such that h(̃S j ) = S̃σ( j) (reduce to the
case where σ is a transposition, and all S j are in [r, R] × R).

(c) Let p, q, p′, q ′ be four integers, I1 and I2 arcs (i.e. subspaces homeomorphic
to [0, 1]) contained in the boundary of Xp,q and Xp′,q ′ respectively, D a disc, J1 and
J2 disjoint arcs in the boundary of D, and Y the quotient of the disjoint unionXp,q �
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Xp′,q ′ � D by an equivalence relation identifying I1 with J1, and I2 with J2, along
homeomorphisms.

Show that the homeomorphism class of Y only depends on the integers p, q, p′,
q ′, and that Y is homeomorphic to Xp+p′,q+q ′−1.

(d) Let w j be the rectilinear path in Ap,q along the boundary of S j keeping S j

to the right; w j+ and w j− paths in Xp,q lifting w j to Xp+ and Xp− respectively.
The connected component of the boundary of Xp,q consisting of the boundary S̃ j

is oriented by the loop w j+ ◦ w−1
j−. Let D be a disk with oriented boundary. Let I1

and I2 be two disjoint arcs in ∂Xp,q , J1 and J2 two disjoint arcs in ∂D, h1 : I1 → J1

and h2 : I2 → J2 homeomorphisms reversing the orientation. Let Y be the quotient
of Xp,q � D by the equivalence relation identifying I1 with J1 by h1 and I2 with J2 by
h2. Show that Y is homeomorphic to Xp,q+1 if I1 and I2 are in the same connected
component of ∂Xp,q , and to Xp+1,q−1 otherwise.

(e) Let X be a compact surface with an oriented triangulation τ (i.e. satisfying the
conclusions of Proposition 6.5.6, which is the case if X is a Riemann surface and τ
C1 and direct). Let f1, . . . , fk be the faces of the dual cell decomposition of τ (see
6.6.5), and Yν the union of the faces f1, . . . , fν . Show by induction on ν that Yν is
the disjoint union of surfaces with boundaries of the form Xp,q . Deduce that if X is
nonempty and connected, then it is homeomorphic to a torus with p holes for some
value of p.

7.—Let X be a connected compact Riemann surface and x ∈ X. Suppose X has
genus 0.

(a) Show that all finite unramified coverings of X are trivial (the Riemann–Hurwicz
theorem may be used).

(b) Show that all homomorphisms from π1(X, x) to the additive group C are trivial
(6.6, exercise 1, may be used).

(c) With the notation of (6.2, Exercise 1, D, c), show that � = 0. Applying the
result of E, (c) of this exercise, deduce that there is a meromorphic function f on
X, holomorphic on X − {x} with a simple pole at x . Show that f is necessarily an
isomorphism from X onto the Riemann sphere.

8. (Proof of the uniformization theorem)—Let X be a non compact, connected Rie-
mann surface. The aim is to show that if X is simply connected, then X is isomorphic
to C or to the disk D.

The language of singular homology is freely used: for any space Y, Hk(Y) is the
k-dimensional homology group of Y with coefficients in Z. If Y is connected and
locally simply path connected and if y0 ∈ Y, then the group H1(Y) can be identified
with the quotient of π1(Y, y0) by its commutator group (see 2.7, Exercise 1). If Y is
a non compact connected surface with boundary, then H2(Y) = H2(Y, ∂Y) = 0.

The aim is to show that X is isomorphic to C or D if H1(X) = 0, a weaker
assumption than π1(Y) = 0 (hence a stronger result).

The surface X need not be assumed to be the countable union of compact spaces.
This indeed is not assumed but only for the challenge. Most applications (for example
if X is a universal covering of a compact surface) this is known beforehand. This
mainly entails proceeding with care.
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A. Pieces

A 2-dimensional connected compact R-submanifold P with C∞ boundary in X is

called a piece. The boundary (resp. interior) of P is written ∂P (resp.
◦
P).

The piece P is said to be full if X− P has no relatively compact connected com-
ponent. Given an arbitrary piece P, the union of P and of the relatively compact
connected components is said to be “P filled” and is written P̂. Show that it is a full
piece.

(a) Show that every compact subset of X is contained in a full piece.
(b) Suppose that H1(X) = 0 and that P is a full piece in X. Show that H2(X, P) =

H2(X− ◦
P, ∂P) = 0. Using the exact sequence H2(X, P) → H1(P) → H1(X), show

that H1(P) = 0.

B. Harmonic functions

If U is an open subset of X and h : U → R a C2 function, then the Laplacian of
h is the differential 2-form �h on U whose expression in a C-analytic chart is
(

∂2 ḣ
∂x2 + ∂2 ḣ

∂y2

)
dx ∧ dy, where ḣ is the expression of h (check that this form is indepen-

dent of the choice of the chart). When �h = 0, h is called harmonic.
Show that the real part of a holomorphic function is harmonic, and that if U is

simply connected and open, then every harmonic function h on U is the real part of a
holomorphic function f on U, unique up to addition of an imaginary constant. Then
g = Im f is said to be a harmonic conjugate to h. Show that all harmonic functions
are R-analytic and satisfy the maximum principle.

C. Green’s functions

Given a piece P and a point a ∈ ◦
P, a function G : P − {a} → R is a Green’s function

on P with respect to a if

(G1) G is continuous on P − {a} and vanishes on ∂P;

(G2) G is harmonic on
◦
P − {a};

(G3) If ϕ is a C-analytic chart centered at a, the function G takes the form
− log |ϕ| + h in the neighbourhood of a, where h is harmonic in the neigh-
bourhood of a (check that this condition is independent of the choice of the
chart ϕ).

Show uniqueness: there is at most one Green’s function on P with respect to a.
We next aim to show existence (note that X has been assumed to be non compact,

and so ∂P �= ∅. There are two ways of proceeding. They will be described in (C′)
and (C′′).

C′. Poisson’s equation

(a) Show that, for any C∞ differential 2-form ω with compact support in
◦
P, there is

a C∞ function h : P → R such that �h = ω and h = 0 on ∂P (this requires quite
powerful tools from analysis, see [9]).
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(b) Let ϕ be a C-analytic chart for X centered at a, defined in a neighbourhood V

of a contained in
◦
P, and η : V → R a C∞ function with compact support in V, equal

to 1 in a neighbourhood V′ of a. Define the function g on P − {a} by g = −η log |ϕ|
on V− {a} and g = 0 on P − V, and the differential form ω on P by ω = �g on
P − {a} and ω = 0 on V′. Show that there is a function h : P − {a} → R such that
�h = ω and h = 0 on ∂P. Show that G = g − h is then a Green’s function on P with
respect to a.

C′′. Perron families

Show that any continuous function u : S1 → R has a unique continuous extension
h : D → R harmonic on D. Show that h(0) = ∫ 1

0 u(e2iπt )dt and that the gradient of
h satisfies |∇0h| ≤ supz∈S1 |u(z)|.

Let V be an open subset of C and h : V → R a continuous function. Show that
h is harmonic if and only if for any closed disk Dc,r in V, h(c) = ∫ 1

0 h(c + r ·
e2iπt )dt . If for every closed disk Dc,r in V, h(c) ≤ ∫ 1

0 h(c + r · e2iπt )dt (resp. h(c) ≥
∫ 1

0 h(c + r · e2iπt )dt), h is called subharmonic (resp. superharmonic) . Show that a
locally subharmonic function is subharmonic.

Let U be an open subset of X. A continuous function h : U → R is said to be
subharmonic (resp. superharmonic) if its expression in every C-analytic chart is
subharmonic (resp. superharmonic).

(a) A set F of continuous functions U → R is a Perron family on U if

(P1) h ∈ F⇒ h is subharmonic;
(P2) (h1 ∈ F and h2 ∈ F) ⇒ sup(h1, h2) ∈ F;
(P3) For h ∈ F and � ⊂ U in the domain of the chart ϕ, such that ϕ(�) is a closed

disc, the continuous function h̃ which agrees with h on U −� and is harmonic

on
◦
� is in F.

Show that if U is connected and F is a Perron family on U, then suph∈F h is either
harmonic or identically +∞ (Perron’s theorem).

(b) Let u : ∂P → R be a continuous function. Let Fu be the set of continuous

functions h : P → R, subharmonic on
◦
P and such that h ≤ u on ∂P. Show that the

restrictions of these h ∈ Fu to
◦
P form a Perron family on

◦
P, and that hu = suph∈Fu

h

is a continuous function on P, equal to u on ∂P and harmonic on
◦
P (solution to the

Dirichlet problem).
In particular, if Q is a piece with non connected boundary and B a connected

component of ∂Q, then there is a function hB continuous on Q, harmonic on
◦
Q, 1 on

B and 0 on all other connected components of ∂Q.

(c) Let ϕ : V
≈→Dr be a chart for X centered at a with V ⊂ ◦

P, r ′ and r ′′ such that
0 < r ′ < r ′′ < r . Set V′ = ϕ−1(Dr ′) and V′′ = ϕ−1(Dr ′′), �′ = ∂V′ and �′′ = ∂V′′.
Let h�′ be the continuous function on P − V′, harmonic on

◦
P − V′, 1 on ∂V′ and 0

on ∂P. For m > 0, define λ̃m : V− {a} → R by λ̃m = − log |ϕ| + log r ′ + m, and
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λm : P − {a} → R by λm = λ̃m on V′ − {a} and λm = m · h�′ on P − V′, so that
λm = m on ∂V′. Show that for sufficiently large m, m.h�′ ≤ λ̃m on �′′, and that λm

is therefore superharmonic. Choose m satisfying these properties.

Let G be the set of continuous functions on P − {a}, subharmonic on
◦
P − {a},

vanishing on ∂P and bounded above by− log |ϕ| + O(1) in the neighbourhood of a.
Show that g ∈ G⇒ g ≤ λm and that G = supg∈G g is a Green’s function on P with
respect to a.

D. Uniformization of a piece

Here P is assumed to be a piece in X such that H1(P) = 0 and a ∈ ◦
P. The aim is to

show the existence of a homeomorphism φP from P onto the closed disk D inducing

a C-analytic isomorphism from
◦
P onto D, with φP(a) = 0.

(a) Let � be a neighbourhood of a transformed into a closed disk by a chart
centered at a. By considering the exact sequence

H1(P) → H1(P,�) → H0(�) → H0(P) ,

show that H1(P − {a},�− {a}) = H1(P,�) = 0. Show that the natural map
H1(∂�) → H1(P − {a}) is surjective. Show that if α is a closed differential 1-form
on P − {a} then, for any loop γ in P − {a}, the value of the integral

∫
γ α is an integer

multiple of
∫
∂�

α.
(b) Show that Green’s function G = GP,a has a R/2πZ-valued harmonic con-

jugate, i.e. that there is a continuous function � : P − {a} → R/2πZ such that any
lifting �̃ : U → R of � to a simply connected open set is a harmonic conjugate of
G.

Show that φ = eG+i�, extended by φ(a) = 0, has the desired property.

E. Erdös-Kœbe

(a) Let f : D → D be a holomorphic map such that f (0) = 0 and | f ′(0)| = ρ is
near 1. Set g(z) = f (z)

z and g(0) = ρ. Show that g is a holomorphic map from D to

D. Show that, for |z| ≤ r , |g(z)− ρ| ≤ r 1−ρ2

1−ρr and | f (z)− ρz| ≤ r2 1−ρ2

1−ρr .
Let R and R′ be such that 0 < R < R′, and let ψ : DR → DR′ be a holomorphic

map such that ψ(0) = 0 and ψ′(0) = 1. Show that

|ψ(z)− z| ≤ R′2 − R2

R′(R − r)
.

(b) Let f : DR → C be an injective holomorphic map such that f (0) = 0 and
f ′(0) = 1. Show that f (DR) ⊃ DR/4 (Kœbe quarter theorem). Show that f (DR/16) ⊂
DR/4, and that the function g defined by g(z) = f (z)−z

z2 is bounded above by 80/R on

DR/16, and so | f (z)− z| ≤ 80 r2

R for |z| ≤ r ≤ R
16 .

F. Uniformization of X
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Suppose X is a non compact, connected Riemann surface such that H1(X) = 0 and

a ∈ X. Choose v( �= 0) in the tangent space TaX. For each full piece P such that a ∈ ◦
P,

there is a radius R(P) and an isomorphism �P :
◦
P → DR(P) such that the image of v

under the tangent linear map Ta�P is 1. For each P, the pair (RP,�P) is unique.

Let R(X) be the upper bound of R(P) for all full pieces P such that a ∈ ◦
P. The

aim is to show that X is isomorphic to D if R(X) < ∞ and to C if R(X) = ∞.

(a) Let (Pn) be a sequence of full pieces such that Pn ⊂
◦
Pn+1 for all n and the

radii Rn = R(Pn) tend to R = R(X). Set X′ to be the union of all
◦
Pn .

Using the inequalities proved in (E), show that, for any compact subset K of
X′, for sufficiently large n, �n form a Cauchy sequence with respect to uniform
convergence on K. Show that passing to the limit gives an isomorphism from X′ onto
DR if R < ∞, and onto C if R = ∞.

(b) The aim is to show by contradiction that X′ = X. Let b ∈ X − X′. Construct
a sequence of full pieces (P̃n) such that, for all n, P̃n is in the interior of P̃n+1 and
Pn ∪ {b} in the interior of P̃n . This gives an open subset X̃′ strictly containing X′, and
an isomorphism 
 from DR or from C onto one of its open strict subsets, tangent to
the identity at 0. Deduce a contradiction.

(c) Using the transfinite line (1.6, Exercise 1) or (4.9, Exercise 3), give examples
of surfaces having an R-analytic structure, but not any C-analytic structure.

6.7 Finite Automorphism Groups of Riemann Surfaces

6.7.1 Quotient Riemann Surface

Proposition Let X be a connected Riemann surface and G a finite automorphism
group of X. Then the quotient Y = X/G is a topological surface and Y has a unique
C-analytic structure σ such that the canonical map χ : X → Y is analytic. Let Y′
be an open subset of Y and Z a Riemann surface; a continuous map f : Y′ → Z is
analytic with respect to σ if an only if f ◦ χ : χ−1(Y′) → Z is analytic.

Lemma Let X be a connected Riemann surface, x0 a point of X and H a finite
automorphism group of X fixing x0. Then H is cyclic and there is chart ϕ for X
centered at x0, with domain U preserved by H, such that the expressions of the
elements de H are the maps z �→ a · z, where a is a d-th root of unity, d denoting the
order of H.

Proof Let ϕ be a chart for X centered at x0, with domain U0. Set U1 =⋂
g∈H gU0,

so that U1 is preserved by H. For x ∈ U1, set p(x) =∏
g∈H ϕ(g · x). The function

p is analytic on U1 and has x0 as a zero of order d. Hence in a neighbourhood U2

of x0 which may be assumed to be preserved by H, it can be written as p = ϕd
1 ,

where ϕ1 has x0 as zero of order 1. Then the function ϕ1 induces a homeomorphism
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from a neighbourhood U3 of x0, which may be assumed to be preserved by H, onto a
neighbourhood of 0 in C, containing the open disk with radius r . As p(g · x) = p(x)

for g ∈ H, the open set U of x such that |ϕ1(x)| < r , i.e. |p(x)| < rd , is preserved
by H, and ϕ1 induces a chart for X centered at x0, with domain U.

For x ∈ U − {x0} and g ∈ H, ϕ1(g · x)d = p(g · x) = p(x) = ϕ1(x)d , and so
ϕ1(g · x) = ag,xϕ1(x), where ag,x is a d-th root of unity. The map x �→ ag,x is con-
tinuous, hence locally constant, hence constant since U − {x0} is connected, and
ϕ1(g · x) = agϕ1(x) for x ∈ U. The map g �→ ag from H to the group μd of d-th
roots of unity is a homomorphism. The expression of g in the chart ϕ1 is multipli-
cation by ag . If ag = 1, then the map g agrees with 1X on U, hence, by analytic
continuation, also on X. The homomorphism g �→ ag is therefore injective and as H
and μd are of order d, it is bijective. �

Proof of the Proposition Let y ∈ Y, and χ−1(y) = {x1, . . . , xr }. Denote by S the
stabilizer of x1; the set χ−1(y) can be identified with G/S. Let ϕ1 be a chart centered
at x1, with domain U1, satisfying the properties of the lemma for S. As U1 is preserved
by S, the open set g · U1 only depends on the class of g in G/S. Denote it by Uk if
g(x1) = xk . If necessary by shrinking U1, all Uk may be assumed to be disjoint. The
open set W =⋃

Uk is saturated and so V = χ(W) is open in Y. The map χ induces
a homeomorphism from U1/S onto V. There is a unique map ψ : V → C making
the diagram

U1
ϕ1 � C

V

χ � ψ � C

z �→ zd
�

commutative. This map ψ is a homeomorphism from V onto an open disk of C,
i.e. a chart for Y centered at y. Besides the following property holds: let V′ be an
open subset of V and Z a Riemann surface; if f : V′ → Z is a continuous map then,
f ◦ ψ−1 : ψ(V′) → Z is analytic if and only if so is f ◦ χ : χ−1(V′) → Z.

The charts thereby obtained form an analytic atlas. The analytic structure σ thus
defined on Y has the required properties.

If σ′ is another analytic structure on Y such that χ : X → (Y,σ′) is analytic,
then the identity map from (Y,σ) to (Y,σ′) is analytic and bijective, and so is an
isomorphism, and σ′ = σ. �

Remark The above proof shows that, for all x ∈ X, the ramification index of x for
χ : X → Y is the order d of the stabilizer of x .

6.7.2 Genus g � 2 Case

We show in 6.9.17 that if X is a connected compact Riemann surface of genus � 2,
then the automorphism group of X is finite. Here, without using this result, we prove



6.7 Finite Automorphism Groups of Riemann Surfaces 369

the following theorem (which, given finiteness, provides an upper bound for the
number of automorphisms).

Theorem Let X be a connected compact Riemann surface with genus g � 2 and G
a finite automorphism group of X of order n. Then

n � 84 · (g − 1) .

Proof Set Y = X/G and let g′ be the genus of Y. For each y ∈ Y, the points of χ−1(y)

have conjugate stabilizers, and so the same ramification index sy , and n = rysy ,
where ry is the number of distinct points over y. Let � be the ramification set of X;
if � = {y1, ..., yk}, write si for syi . As

g − 1 = n · (g′ − 1)+ 1

2

∑

y∈�

n

sy
(sy − 1) = n

(
(g′ − 1)+ 1

2

∑

y∈�

(
1− 1

sy

))
,

n = g−1
A with A = g′ − 1+ 1

2

k∑

1

(
1− 1

si

)
, where k is the cardinality of �. We find a

lower bound for A. Now, A > 0 holds. If g′ > 1, then A � 1, if g′ = 1, then k > 0,
so that A � 1

4 . Suppose that g′ = 0. Then

2A = k − 2−
∑ 1

si
,

and so k � 3 since A > 0.
For k = 3,

2A = 1−
∑ 1

si
.

The greatest value < 1 of 1
s1
+ 1

s2
+ 1

s3
, with integers si � 2, is 1− 1

42 . It is reached

for (2, 3, 7), and so A � 1
84 .

For k = 4,

2A = 2−
∑ 1

si
.

the greatest value < 2 of
4∑

1

1
si

, with integers si � 2, is 2− 1
6 . It is reached for

(2, 2, 2, 3), and so A � 1
12 .

For k � 5,

A = −1+ 1

2

k∑

1

(
1− 1

si

)
� −1+ k

4
� 1

4
.

In all cases, A � 1
84 , and so n � 84(g − 1). �
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Remark As will be seen in section 8, this bound is not reached for g = 2. There
is a ramified covering X of the Riemann sphere (6.8, Exercise 1) for which it is for
g = 3; in section 10 we construct X as a quotient of the disk.

6.7.3 Genus 1 Case

Let X be a connected compact Riemann surface of genus 1 and G a finite automor-
phism group of X of order n. Set Y = X/G and let g′ be the genus of Y. As

n

(

g′ − 1+ 1

2

∑(
1− 1

si

))

= 0,

g′ = 1− 1

2

k∑

1

(
1− 1

si

)

since n �= 0 since it is the order of a group. Hence, either g′ = 1 or 0.
If g′ = 1, k = 0, i.e. G acts freely on X. In fact, as already mentioned, X is a

complex torus, i.e. isomorphic to C/� with � ≈ Z
2. Then G can be identified with

a subgroup of C/� acting by translations. The order n of G is arbitrary.
If g′ = 0, then

k∑

1

(
1− 1

si

)
= 2 ,

and so k = 3 or 4 since 1
2 � 1− 1

si
< 1.

for k = 4, si = 2 for all i .
For k = 3, 1

s1
+ 1

s2
+ 1

s3
= 1. The possible solutions are (2, 3, 6), (2, 4, 4) and

(3, 3, 3). These solutions can be shown to be effectively realizable (6.7, Exercise 1).

6.7.4 Genus 0 Case

Let X be a connected compact Riemann surface of genus 0 and G a finite automor-
phism group of X of order n. Set Y = X/G; the surface Y is necessarily of genus 0.
The Riemann–Hurwitz formula gives

k∑

1

(
1− 1

si

)
= 2− 2

n
.

As 1
2 � 1− 1

si
< 1, then 1 < k < 4, and so k = 2 or 3 if n > 1.
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If k = 2, then 1
s1
+ 1

s2
= 2

n . But as si is the order of a subgroup of G, si � n, and
so s1 = s2 = n. There are two points x1, x2 in X fixed by G, the group G is cyclic of
order n (6.7.1, Lemma), and G acts freely on X− {x1, x2}.

Example. X is the Riemann sphere, G the set of maps z �→ ωz, where ω is an
n-th root of unity. In fact, this example is typical of the general situation (6.7,
Exercise 3).

If k = 3, then 1
s1
+ 1

s2
+ 1

s3
= 1+ 2

n . The solutions of this equation with si � 2
are:

(2, 2, d) with n = 2d,
(2, 3, 3) with n = 12,
(2, 3, 4) with n = 24,
(2, 3, 5) with n = 60.

Let us study the case (2, 2, d), n = 2d (dihedral case): Let y3 ∈ Y correspond to
s3 = d. There are two points x ′ and x ′′ in the class y3. The stabilizer H of x ′ is cyclic of
order d and index 2 in G, and hence normal; the stabilizer of x ′′, being a conjugate of
H, is H. Let σ ∈ G − H, then σ(x ′) = x ′′. The automorphism σ has at least one fixed
x1 since there is no nonzero finite group G′ acting freely on X (otherwise k(G′) = 0).
Since χ−1(y3) = {x ′, x ′′}, χ(x1) �= y3; hence it may be assumed that χ(x1) = y1.

As s1 = 2, the stabilizer of x1 has order 2, and so σ is of order 2.
Hence there is a cyclic subgroup H of the group G of order d such that all elements

of G − H are of order 2; this is only possible for the dihedral group, i.e. the crossed
product of Z/(2) and Z/(d), Z/(2) acting on Z/(d) by a �→ −a (see 6.10.1).

Cases (2, 3, 3), (2, 3, 4) and (2, 3, 5) are realizable as finite automorphism groups
of the Riemann sphere, and uniquely so up to conjugation. The groups obtained are
respectively isomorphic to A4 (tetrahedral group), S4 (cubic or octahedral group)
A5 (dodecahedral or icosahedral group) (Exercises 3, 4 and 5).

Exercises 6.7. (Finite Automorphism Groups)
1. (Automorphisms of complex tori)—Let X be a complex torus, i.e. a surface of the
form C/�, where � is a subgroup of C isomorphic to Z

2.

(a) Let f : X → X be an automorphism with respect to the Riemann surface
structure. Show that there is a holomorphic function f̃ : C → C such that the diagram

C
f̃ � C

X

χ � f � X

χ�

commutes. Show that f̃ ′(x + γ) = f̃ ′(x) for γ ∈ � (where f̃ ′ denotes the derivative
of f̃ ). Using the maximum principle (6.1, Exercise 3), deduce that
f̃ is of the form x �→ ax + b, with a� = �.

(b) Show that the number ν of nonzero elements of � with minimum absolute
value can be 2, 4 or 6. For how many elements a ∈ C, does a� = �?
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(c) Let G2 be the group consisting of 1 and x �→ −x . How many points in X are
fixed by G2? What is the genus of X/G2? How many elements does the ramification
set of X → X/G2 have, and what is their ramification index?

(d) Same questions for the group G4 generated by x �→ i x in the case ν = 4, for
the groups G3 generated by x �→ e

2iπ
3 x and G6 generated by x �→ e

iπ
3 x in the case

ν = 6.

(e) Let G be a finite automorphism group of X, and G′ the subgroup consisting
of the translations in G. Set X′ = X/G′. Show that X′ is a complex torus, that X is
an (unramified) covering of X′, and that if G′ �= G, then the Riemann surface of X′,
equipped with the equivalence relation induced by G, is isomorphic to one of the
situations studied in (c) and (d).

2.—Let Y be a complex torus, a and b distinct points of Y.

(a) Show that π1(Y− {a}, b) is a free group with a 2 element basis.

(b) Construct a group G of order 8, with two elements u and v such that uvu−1v−1

is of order 2.

(c) Construct a ramified Galois covering X of Y of degree 8 whose ramification
set is {a}, with ramification index 2 over a.

(d) What is the genus of Y? What is the order of the group AutX(Y)?

3. (Groups SO3 and Aut �)—Let SL2C be the group of 2× 2 matrices with complex
entries having determinant 1.

(a) Show that the automorphism group Aut � of the Riemann sphere can be
identified with SL2C/{+1,−1} (see 6.3.3).

(b) Let G be a finite subgroup of Aut �. Show that there is a Hermitian form h on
C

2 such that all elements g ∈ G are induced by an element g̃ ∈ SL2C preserving h.

(c) The stereographic projection (see 6.1.2) identifies � with the sphere S2 ⊂ R
3.

Show that the group SO3 of direct isometries of S2 can be identified with a sub-
group of Aut �.

(d) Show that for any finite subgroup G of Aut�, there is a subgroup G′ conjugate
to G contained in the group SO3 of isometries of S2 preserving the orientation.

Show that if G is cyclic (resp. dihedral), G′ can regarded as consisting of rotations
about the axis Oz (resp. contained in the group generated by the rotations about the
z-axis Oz and the symmetry about the xy-plane).

4. (Subgroups of SO3 and regular polyhedra)—Let S be the Euclidean unit sphere
of R

3 and G a nontrivial finite subgroup of SO3.

(a) Let g ∈ G be a non-identity element, D the axis of rotation g. Show that, if D
is invariant under G, then G is either cyclic or dihedral (see 6.10.1). Show that, if all
non-identity element of G have order 2, then G is either cyclic of order 2 or dihedral
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of order 4, isomorphic to Z/(2)× Z/(2), consisting of 1 and of the symmetries about
three orthogonal lines.

In the following, it is assumed that G is neither cyclic nor dihedral. Let h ∈ G be
an element of order k > 2, D the axis of rotation h, a one of the two points of D ∩ S,
H the subgroup generated by h. Let � be the set G · a of the images of a, and δ the
minimum distance between two distinct points of �; two points of � are said to be
connected if their distance is δ.

(b) Show that there is a point connected to a. Noting that the set of points of S
whose distance from a is δ is a circle with radius < δ, show that there are at most 5
points connected to a. Deduce that the order k of H can only be 3, 4 or 5, and that H
acts transitively on the set of points connected to a.

(c) Show that G acts transitively on the set of pairs of connected points. If b and c
are connected, show that the symmetry about the line generated by b + c is contained
in G.

(d) For connected b and c, let the arc γb,c be the shortest path from b to c in S,
and � the union of γb,c. Show that � is invariant under G and that G acts transitively
on the connected components of S− �.

(e) Let C be a connected component of S− �. Show that the stabilizer H′ of C in
G acts transitively on � = C ∩�. Show that � is contained in a plane, and consists
of the vertices of a regular polygon F. Show that the order k ′ of H′ must be either 3,
4 or 5.

(f) Show that the angles of F are < 2π
k . Deduce that

(k − 2)(k ′ − 2) < 4 .

What are the possibilities for the pair (k, k ′) ?

(g) Show that the convex envelope P of � is a polyhedron whose boundary is⋃
g∈G gF, and that G is the stabilizer of P in SO3. Show that the numbers k and k ′

define P up to isometry and G up to conjugation. How many conjugation classes of
finite subgroups that are neither cyclic nor dihedral are there in SO3 ?

(h) Show that G is isomorphic to the quotient � of the free group L(α,β, γ) by
the normal subgroup generated by αk , βk ′ , γ2 and αβγ (use the proof given in 6.10).

5. (Dodecahedral and icosahedral group) — Let P be a regular dodecahedral, A the
set of edges of P and G the group of direct isometries of P. Let C be a set with 5
elements, called “colours”.

(a) Colour the edges of P using all the colours of C (i.e. define a map γ from A
to C) in such a way that for each face f of P and each side a of f , the edge a′ not
contained in f terminating at the vertex of f opposite to a is of the same colour as
a. Show that this colouring is unique up to permutation of C.

(b) Show that for all g ∈ G, there is a permutation g̃ of C making the diagram
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A
g � A

C

γ � g̃ � C

γ�

commute.

(c) Show that g �→ g̃ is an isomorphism from G onto the group A5 of even per-
mutations of C.

(d) Show that the set of faces of P can be identified with the quotient of A5 by the
group of circular permutations.

6. (Construction of a Riemann surface of genus 2 with automorphism group iso-
morphic to SL2F3)—(a) Let T be a regular tetrahedron. Show that the group H of
isometries of T preserving the orientation is isomorphic to the group A4 of even
permutations of the vertices of T. Set B = T/H. Show that T is a ramified covering
of B and that B is homeomorphic to the Riemann sphere.

Identify B with the Riemann sphere by a homeomorphism sending the vertices of
T onto ∞.

(b) Show that there is a ramified 2-fold covering X of T whose ramification set is
the set of the midpoints of the edges of T, and that it is unique up to isomorphism.
Show that for any isometry f of T, there is an f -morphism f̃ of X. Deduce that X
is a ramified Galois covering of B. Set G = AutBX. Show that H is isomorphic to a
quotient of G. Find the order of G.

(c) Let L be the inverse image in X of ∞ ∈ B, and V = {O} � L, so that V has 9
elements.

Let F3 be the field Z/(3). Show that V has a unique F3-vector space structure such
that O is the origin and the affine lines are the sets obtained

– by taking O and the 2 points of X over a vertex of T,
or

– by taking the images of 3 vertices of T under a continuous section of X over the
face containing these vertices.

(d) Let GL(V) be the automorphism group of the vector space V and SL(V)

the subgroup of GL(V) consisting of the elements with determinant 1. An element
g ∈ GL(V) defines a permutation of the set P(V) of lines through O. Show that
g ∈ SL(V) if and only if this permutation is even.

(e) Show that each element of G defines an automorphism of V, giving a homo-
morphism ϕ : G → GL(V).

Show that ϕ(G) ⊂ SL(V) and that ϕ is injective, so that ϕ is an isomorphism
from G onto SL(V).
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6.8 Automorphism Groups: The Genus 2 Case

6.8.1 Homogeneity of Topological Surfaces

Proposition Let X be a topological surface, A a closed subset of X, x and y two
points in the same connected component of X− A. Then there is a homeomorphism
h : X → X restricting to the identity on A and such that h(x) = y.

Proof (a) A particular case. Suppose that U = X− A is homeomorphic to the disk
D, and that there is a homeomorphism ϕ : U → D extending to a homeomorphism
from U onto D. It then suffices to show that if a, b ∈ D, then there is a homeomor-
phism h : D → D inducing the identity on S1 = ∂D and such that h(a) = b. Define
fa : [0, 1] × S1 → D by fa(t, u) = (1− t)a + tu. The map fa is surjective and, as
[0, 1] × S1 is compact, it identifies D with the quotient space of [0, 1] × S1 by the
equivalence relation identifying the points of {0} × S1. Define fb likewise. It has the
same property. There is a homeomorphism h making the diagram

[0, 1] × S1

D
h ��

f a

D

fb�

commute and with the desired properties.
(b) General case. Write x ∼ y if there is a homeomorphism h : X → X inducing

the identity on A and such that h(x) = y. It is an equivalence relation. The particular
case implies that all x ∈ X − A have a neighbourhood U which does not meet A and
such that all y ∈ U is equivalent to x . The classes of points of X − A form a partition
of X− A into open subsets. Any two points in a connected component are in the
same class. �

Remark This proof applies to all dimensions.

6.8.2

Corollary 6.7 Let X be a connected topological surface, � ⊂ X a finite set, x and
y points of X−�. Then there is a homeomorphism h : X → X inducing the identity
on � and such that h(x) = y.

Indeed, X−� is connected (6.1.7, Remark 3).

Corollary 6.8 Let X be a topological surface, U a connected open subset of X,
x1, . . . , xk, y1, . . . , yk distinct points of U. Then there is a homeomorphism h of X
restricting to the identity on X− U and such that

h(x1) = y1, . . . , h(xk) = yk .
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Proof For each i , let hi be a homeomorphism of X restricting to the identity on
X− U ∪ {y1, . . . , yi−1, xi+1, . . . , xk} and such that h(xi ) = yi . Then h = hk ◦ · · · ◦
h1 has the desired property. �

Corollary 6.9 Let X be a nonempty connected topological surface, and x1, . . . , xk

points of X. Then there is an open subset U of X homeomorphic to a disk and
containing x1, . . . , xk.

Proof The points xi may be assumed to be distinct. Let V be an open subset of X
homeomorphic to a disc, not containing any xi , and y1, . . . , yk be distinct points of
V. If h : X → X is a homeomorphism such that hi (xi ) = yi , then the open subset
U = h−1(V) has the desired property. �

6.8.3 Coalescence of Ramifications

Proposition and Definition Let B be a topological surface, X a finite ramified cov-
ering of B and �X its ramification set. Let U be an open subset of B homeomorphic
to the disk D and containing �X, and a a point of U. Then there is a finite ramified
covering X̃ of B, unique up to isomorphism, such that �X̃ ⊂ {a} and X̃|W = X|W
for a neighbourhood W of X− U.

X̃ is said to be obtained from X by a coalescence of ramifications at a.

Proof Let ϕ : U → D be a homeomorphism, and Q ⊂ D an annulus such that
D− Q is a compact set containing ϕ(�X) and ϕ(a). Set V = ϕ−1(Q) and W =
(B− U) ∪ V. For b ∈ Q, π1(Q, b) = π1(D− {ϕ(a)}, b) = Z, and ι∗ : π1(Q, b) →
π1(D− {ϕ(a)}, b) is an isomorphism. Hence

ι∗ : Cov(D− {ϕ(a)}) → Cov(Q)

is an equivalence of categories. In particular every covering of Q extends to a covering
of D− ϕ(a). Hence, every covering of V extends to a covering of U − {a}. The
covering X|V extends to a covering Y of U − {a}. Gluing X|W and Y over V gives
a finite covering of B− {a}, extending to a ramified covering X̃ of B (6.1.11), with
the desired property.

If both X̃1 and X̃2 have this property, then there is a unique isomorphism from
X̃1|U onto X̃2|U inducing the identity over V, hence a unique isomorphism from X̃1

onto X̃2 inducing the identity over W. �

6.8.4

With the notation of 6.8.3, let a1, . . . , ak be the elements of �X and b ∈ W.
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Proposition There are elements γ1, . . . , γk in π1(B−�X, b) such that γi goes round
ai (see 6.1.9, Proposition) in B− (�X − {ai }), and there exists γ ∈ π1(B− {a}, b)

going round a in B, such that the action of γ on X(b) = X̃(b) defined by the covering
X̃|B−{a} agrees with the action of the product γk . . . γ1 on X(b) defined by the covering
X|B−�X .

Proof Keeping the notation of the former proof, we may assume that b ∈ V, and that
a1, . . . , ak are not in V. If necessary multiplying ϕ by a constant with absolute value
1, we may assume that b′ = ϕ(b) ∈ R

∗, and y (6.8.2, Corollary 6.8), that a′ν = ϕ(aν)

are purely imaginary and a′ν = λν i with λν < λν+1.
Let ρ > 0 be such that ρ � 1

2 |a′ν − a′ν+1| for all ν. For each ν, let γ′ν be a loop in
D− {a′1, . . . , a′k} of the form β−1

ν · αν · βν , where βν is a path from b′ to a′ − ρ such
that the real part of βν(t) is < 0 for all t , and αν(t) = a′ − ρ · e2πi t . Let γ′ be the
loop t �→ b′ · e2πi t in Q.

Lemma The loops γ′k . . . γ′1 and γ′ are homotopic in D− {a′1, . . . , a′k}.
Proof The loop αν is of the form

α(3)
ν · α(2)

ν · α(1)
ν ,

where α(1)
ν and α(3)

ν are paths in R− + iR and α(2)
ν in R+ + iR.

Similarly, γ′ is of the form γ(3) · γ(2) · γ(1). Then

γ′k . . . γ′1 = β−1
k . . . α(2)

ν+1 · α(1)
ν+1 · βν+1 · β−1

ν · α(3)
ν · α(2)

ν . . . β1 .

Now, α(1)
ν+1 · βν+1 · β−1

ν · α(3)
ν is homotopic by barycentric subdivision to the rectilin-

ear path εν de a′ν + ρi a′ν+1 − ρi , and so

γ′k . . . γ′1 $ β−1
k · α(3)

k · α(2)
k · εk−1 · α(2)

k−1 . . . ε1 · α(2)
1 · α(1)

1 · β1 .

In a similar way, β−1
k · α(3)

k , α(2)
k · εk−1 . . . ε1 · α(2)

1 and α(1)
1 · β1 are respectively

homotopic to γ(3) · εk , ε−1
k · γ(2) · ε−1

0 and ε0 · γ(1) where ε0 and εk are rectilinear
paths. Hence γ′k . . . γ′1 $ γ′. �
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End of the Proof of the Proposition The loops γν = ϕ−1 ◦ γ′ν and γ = ϕ−1 ◦ γ′
satisfy the required assumptions. The loops γk . . . γ1 and γ are homotopic in B−�X,
and so act similarly on X(b). The actions of γ on X(b) defined by the coverings X
and X̃ agree since γ is a loop in W and X̃|W = X|W. �

6.8.5 Coverings Ramified at a Single Point

Proposition Let B be a connected compact Riemann surface of genus 0, a ∈ B, and
X be a finite ramified covering of B such that �X ⊂ {a}. Then X is a trivial covering
of B. In particular �X = ∅.

1st proof (assuming known that B is homeomorphic to S2) The space B− {a} is
homeomorphic to R

2, and so is simply connected. The covering X|B−{a} is trivial,
and so extends to a trivial covering of B. As the extension to a ramified covering is
unique up to isomorphism (6.1.11), X is a trivial covering. �
2e proof (without the above assumption) We may assume that X �= ∅ and that it is
connected. Let X(a) = {x1, . . . , xk}, ri the ramification index of xi and d the degree
of X. Then d = r1 + · · · + rk . By the Riemann–Hurwitz formula (6.6.13),

2− 2g(X) = 2d −
k∑

1

(ri − 1) = 2d −
∑

ri + k = d + k .

As 2− 2g(X) � 2, d � 1 and k � 1. Therefore d = 1 and k = 1. �

6.8.6

Theorem No connected compact Riemann surface of genus 2 has an automorphism
group of order 84.

Proof (By contradiction) Let X be a Riemann surface of genus 2 and G an automor-
phism group of X of order 84. Set Y = X/G. Then X is a ramified Galois covering
of Y, which implies (6.7.2) that Y has genus 0 and that X is ramified over 3 points
a1, a2 and a3 of Y, with ramification index 2 over a1, 3 over a2 and 7 over a3.

Let X̃ be a ramified covering of Y obtained from X by coalescing the ramifications
at a point a ∈ Y. Let b ∈ Y− {a, a1, a2, a3}, γ1, γ2, γ3 ∈ π1(Y− {a1, a2, a3}, b) and
γ ∈ π1(Y− {a}, b) satisfying the conditions of Proposition 6.8.4. Let � be the image
of π1(Y− {a1, a2, a3}, b) in the permutation group X(b), and σi the image of γi .
By Proposition 6.8.5, X is a trivial covering, and so γ acts trivially on X(b) and
σ3 ◦ σ2 ◦ σ1 = 1. By Proposition 6.1.9, σ1,σ2,σ3 have respective orders 2, 3 and 7.
Indeed, by (4.6.11), the group � is isomorphic to G, and so has 84 elements. The
theorem then follows from the next lemma:
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6.8.7

Lemma There is no group � of order 84 having elements u, v, w of respective orders
2, 3 and 7 with w = v · u.

Proof (By contradiction) Set F = �/(w). The set F has 12 elements and � acts on
F. As v has order 3, the orbits of (v) can have 1 or 3 elements. However, for all x ∈ F,
the stabilizer of x is a conjugate of (w), and so is of order 7 and cannot contain v.
Hence there are 4 orbits of (v), each with 3 elements. For the same reason, there are
6 orbits of (u), each with 2 elements.

We next give the fixed points of w = vu. If x is one such point, then vu · x = x ,
and so u · x = v2x . Hence x = uv2 · x and vuv2 · x = v · x �= v2 · x , since the orbit
of x has 3 distinct elements. Hence v2 · x is not a fixed point. Neither is y = v · x ,
for otherwise x = v2 · y would not be fixed. Hence the orbits of (v) contain at most
one fixed point of w, which therefore fixes at most 4 fixed elements.

However the orbits of (w) have 1 or 7 elements, and there can at most be one
with 7 elements since F only has 12 elements. So w fixes at least 5 points, and
thus 5 � 4. �

Exercises 6.8. (Automorphism group, genus 2)
1.—Let e, a1, . . . , ak be distinct points on the Riemann sphere �.

(a) Show that π1
(
� − {a1, . . . , ak}, e

)
is a free group with k − 1 generators. More

precisely, there are γ1, . . . , γk ∈ π1
(
� − {a1, . . . , ak}, e

)
such that (γ1, . . . , γk−1) is

a basis for this group, and γi go round ai in (� − {a1, . . . , ak}) ∪ {ai } and γk ·
γk−1 · · · γ1 = e.

(b) Let G be a finite group generated by α1, . . . ,αk−1 and set αk = α−1
1 . . . α−1

k−1.
Show that there is a ramified Galois covering X of� with group G, whose ramification
set is in {a1, . . . , ak} with ramification over ai having index the order si of αi in G.

(c) Give the genus of X in terms of the order n of G and of the indices si .

6.9 Poincaré Geometry

The universal covering of a Riemann surface X of genus � 2 can be shown to be
isomorphic to a disk, so that X becomes a quotient of the disk by an automorphism
group. In this section, we study the automorphisms of the disk. There is a metric on
D with respect to which every automorphism of D is an isometry (Poincaré metric).

6.9.1 Homographic Transformations of Circles

A circle on the Riemann sphere � = C ∪ {∞} is a set which is a circle in C, and so
of the form L ∪ {∞}, where L is a line in C. The complement of a circle on � has
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two connected components, called the disks limited by this circle. Hence a disk on
� is either an open disk in C, or an open half-plane in C, or the complement in � of
a closed disk in C.

Proposition The homographic image of a circle (resp. a disk) on � is a circle (resp.
a disk).

Proof The homography group is generated by the maps x �→ ax + b and the map
h : x �→ 1

x . The proposition obviously holds for the former ones. We show that h
sends a circle C on � to a circle. First suppose that C is a circle in C which not passing
through 0, and that a and b are the endpoints of the diameter of C through 0 (an
arbitrary diameter if C is centered at 0). Then x ∈ C if and only if x−a

x−b ∈ iR ∪ {∞}.
As 1/x−1/a

1/x−1/b = b
a

x−a
x−b and b

a ∈ R
∗, x ∈ C if and only if 1

x is in the circle of diameter
[

1
a , 1

b

]
.

If C is a circle in C passing through 0, then let a be such that (0, a) is a diameter.
So x ∈ C if and only if x−a

x ∈ iR ∪ {∞}, i.e. if 1
x is in the inverse image of iR ∪ {∞}

under y �→ 1− ay. This method gives all the circles L ∪ {∞}, where L is a line in C

not passing through 0. As h is involutive, the image of such a circle must be a circle
of C passing through 0.

If C = L ∪ {∞}, where L = λR is a line passing through 0, then the image of C
is 1

λ
R ∪ {∞}.

Finally, as h is a homeomorphism of �, the images of the connected components
of � − C are the connected components of � − h(C), and so are disks. �

6.9.2

Let D be the unit disk of C and S1 the unit circle of C, i.e. D = {z | |z| < 1} and
S1 = {z | |z| = 1}.
Proposition Let h : � → � be a homography. Then, h(S1) = S1 if and only if h is
of the form

x �→ λ
x − a

1− āx
with a ∈ C− S1 and λ ∈ S1, or x �→ λ

x
with λ ∈ S1 .

Proof Suppose that h is a homography. Let b = h−1(∞). Set h0(x) = x−a
1−āx with

a = 1
b̄

if b �= 0 and h0(x) = 1
x if b = 0. Now, h0(b) = ∞ and h0(S1) = S1. Set

u = h ◦ h−1
0 .

The map u is a homography such that u(∞) = ∞, and hence of the form
z �→ λz + β, and u(S1) = S1, which implies that |λ| = 1 and β = 0; so h = λh0.

Conversely, for x ∈ S1, 1− āx = x(x̄ − ā). Thus |1− āx | = |x − a| and
|h(x)| = 1. The case h = (

x �→ λ
x

)
is immediate. �
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Corollary 6.10 Let h be a homography. Then h(D) = D if and only if h is of the
form

ha,λ : x �→ λ
x − a

1− āx
with a ∈ D and λ ∈ S1 .

Proof If h(S1) = S1, the image of D is either D or � − D. If h = ha,λ, then h(0) =
−λa and h(D) = D if a ∈ D.

Conversely, if h(D) = D, then h(S1) = S1 since S1 is the boundary of D; h cannot
be of the form λ

x , and so is of the form ha,λ, and a = h−1(0) ∈ D. �

Corollary 6.11 The homographies h such that h(D) = D form a group acting tran-
sitively on D.

Indeed the orbit of 0 is D since h−1
a,λ(0) = a for a ∈ D.

6.9.3 Automorphisms of D

An automorphism of D is an automorphism of D as a Riemann surface, i.e. a biholo-
morphic bijection (it follows from 6.1.6 that any holomorphic bijection is biholo-
morphic).

Theorem Every automorphism of D is induced by a homography of � preserving
D.

Proof Let f be an automorphism of D. We first suppose that f (0) = 0. Then there
is a holomorphic u with |u(z)| tending to 1 as |z| tends to 1 such that f (z) = z · u(z).
By the maximum principle, |u(0)| � 1, and so | f ′(0)| � 1 since f ′(0) = u(0). Set
g = f −1. Similarly, |g′(0)| � 1. As g′(0) = 1

f ′(0)
, | f ′(0)| = 1 and |u(0)| = 1. Hence

u is a constant λ with absolute value 1, and f (z) = λz.
In the general case, set a = f −1(0) and let f0 be an automorphism of D induced by

a homography and such that f (a) = 0 (see 6.9.2, Corollary 6.11). Set g = f ◦ f −1
0 .

Then g is an automorphism of D such that g(0) = 0, and so is g : z �→ λz with
λ ∈ S1, and f = λ f0. �

6.9.4 Riemannian Metrics

Let U be an open subset of C. A Riemannian metric5 on U is given by a contin-
uous function μ : U → R

∗+. If γ : [a, b] → U is a continuous differentiable path,
then the length of γ with respect to the Riemannian metric defined by μ is
Lμ(γ) = ∫ b

a |γ′(t)|μ(γ(t)) dt . For x, y ∈ U, the distance from x to y with respect to

5The Riemannian metrics considered are those that are compatible with the complex structure.
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the Riemannian metric defined by μ is the lower bound dμ(x, y) of the lengths of
paths continuously differentiable from x to y in U.

Let U1 and U2 be open subsets of C, μ1 and μ2 functions defining Riemannian
metrics on U1 and U2 respectively. Let f : U1 → U2 be a biholomorphic bijection.
Consider the following conditions:

(i) (∀x ∈ U1) μ1(x) = | f ′(x)|μ2( f (x));
(ii) For any continuously differentiable path γ in U1,

Lμ1(γ) = Lμ2( f ◦ γ) ;

(iii) for x, y ∈ U1, dμ1(x, y) = dμ2( f (x), f (y)).

(i)⇒ (ii)⇒ (iii) are immediate.6 These conditions can be shown to be equivalent
(6.9, Exercise 3). Given the function μ2, there is a unique function μ1 satisfying (i);
the Riemannian metric defined by μ1 is the inverse image under f of the Riemannian
metric defined by μ2 and we write μ1 = f ∗μ2.

6.9.5 Poincaré Metric

Theorem and Definition There is a unique Riemannian metric on D defined by a
function μ such that μ(0) = 1, and such that, for any automorphism f of D, f ∗μ = μ.

This Riemannian metric is called the Poincaré metric on D. It is given by μ(x) =
1

1−x x̄ .

Proof (1) Uniqueness. Let μ be another Riemannian metric with the required prop-
erty and x ∈ D. As hx,λ is an automorphism D sending x to 0,

μ(x) = |h′x,λ(x)|μ(0) = |h′x,λ(x)| = 1

|1− x x̄ | =
1

1− x x̄
.

(2) Existence. The function μ : x �→ 1
1−x x̄ is a strictly positive continuous function

on D. Consider the Riemannian metric defined by μ. Let f be an automorphism of
D and x ∈ D. There exists λ ∈ C with absolute value 1 such that hy,1 ◦ f = hx,λ,
where y = f (x). Hence,

|h′y,1(y)|.| f ′(x)| = |h′x,λ(x)| ,

and so | f ′(x)| = |h′x,λ(x)|
|h′y,1(y)| =

μ(x)

μ(y)
and f ∗μ = μ. �

6A not necessarily holomorphic map f is an isometry with respect to the distances defined by μ1
and μ2 if it satisfies condition (iii). It may be shown that, as a result, f is either holomorphic, or
antiholomorphic. We will prove this in the particular case of the Poincaré distance.
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6.9.6

Proposition Let x and y be two points of R ∩ D =] − 1, 1[ with x � y, and γ0 the
path t �→ t from [x, y] to D. For the Poincaré metric μ on D, dμ(x, y) = Lμ(γ0) =
Argth y − Argth x.

Proof Now, Lμ(γ0) =
∫ y

x
1

1−t2 dt = Argth y − Argth x .
Let γ be a continuously differentiable path from x to y. Write

γ(t) = γ1(t)+ iγ2(t) with γ1(t) and γ2(t) reals.

As γ′1(t) = Re γ′(t), |γ′1(t)| � |γ′(t)|, and |γ1(t)| � |γ(t)|; so

1

1− (γ1(t))2
� 1

1− |γ(t)|2
and

Lμ(γ) =
∫ y

x

|γ′(t)|
1− |γ(t)|2 dt � Lμ(γ1) =

∫ y

x

|γ′1(t)|
1− (γ1(t))2

dt

�
∫ y

x

γ′1(t)
1− (γ1(t))2

dt =
∫ y

x

du

1− u2
= Lμ(γ0) ,

�

The distance dμ is called the Poincaré distance.

Remark The above proof shows that if γ is a continuously differentiable path from
x to y whose image is not contained in R, then Lμ(γ) > dμ(x, y).

Corollary 6.12 Let x ∈ D. For the Poincaré metric μ,

dμ(0, x) = Argth |x | .

Indeed, x = λ|x | with λ ∈ S1. As z �→ λz is an isometry with respect to the
Poincaré distance, dμ(0, x) = dμ(0, |x |) = Argth |x |.
Corollary 6.13 The topology defined on D by the Poincaré distance is the Euclidean
topology.

Indeed, the neighbourhoods of 0 are the same. For all x ∈ D, the map hx,1 is a
homeomorphism with respect to the Euclidean topology and an isometry with respect
to the Poincaré distance, transforming x into 0. Hence the neighbourhoods of x are
the same.

Corollary 6.14 Every closed subset of D bounded with respect to the Poincaré
distance is compact.
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6.9.7 Poincaré Circles

The Poincaré circle Ca,r with centre a ∈ D and radius r is the set of x ∈ D such that
dμ(a, x) = r .

Proposition Every Poincaré circle is an Euclidean circle contained in D.

Proof By 6.9.6, Corollary 6.12, the Poincaré circle C0,r is the Euclidean circle with
centre 0 and radius th r . With the notation of 6.9.2, Corollary 6.10, Ca,r = h−1

a,1(C0,r ),
and so, by Proposition 6.9.1, Ca,r is a circle in D. �

Remarks (1) If a �= 0, then it is not the Euclidean centre of the circle Ca,r .
(2) The Poincaré circle Ca,r is in the Euclidean annulus consisting of u such that

(1− |a|2) ρ

1+ ρ
< |u − a| < (1− |a|2) ρ

1− ρ
,

where ρ = th r . Indeed, if u ∈ Ca,r , then u = h−1
a,1(z) = a+z

1+āz , with z ∈ C0,r . Hence

|z| = ρ, and u − a = (1−aā)z
1+āz ; so |u − a| = 1−|a|2

|1+āz| |z|, with 1− ρ < |1+ āz| < 1+ ρ.
Therefore, the Euclidean radius re of Ca,r satisfies

(1− |a|2) ρ

1+ ρ
< re < (1− |a|2) ρ

1− ρ
.

In particular the Euclidean diameter of Ca,r tends to 0 as |a| tends to 1, the radius r
staying bounded (see M.C. Escher’s engraving “Circle Limit III”, opposite 6.10.18,
where all the fish have the same Poincaré diameter).

6.9.8 Geodesic Paths

Let U be an open subset of C and μ a Riemannian metric on U. A continuously
differentiable map γ : [a, b] → U is a geodesic path if for all intervals [a′, b′] ⊂
[a, b],

dμ(γ(a′), γ(b′)) = Lμ

(
γ|[a′,b′]

) = |b′ − a′| .

Lemma For any x, y ∈ D, there is a unique geodesic path γ : [0, dμ(x, y)] → D

from x to y with respect to the Poincaré metric. Its image is an arc of circle of �

orthogonal to S1 passing through x and y.

Proof Suppose first that x = 0 and y ∈ R+. Then the map s �→ th s from [0, Argth t]
to D is a geodesic path from 0 to y and by (6.9.6, Remarque) it is unique. Its image
is an interval of R.

In the general case, there is an automorphism h of D such that h(x) = 0 and
h(y) ∈ R+. If γ0 is the geodesic path from 0 to h(y), then γ = h−1 ◦ γ0 is a geodesic
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path from x to y and it is the only one. The automorphism h extends to a homography,
which we also write h : � → �, and the image of γ is an arc of circle h−1(R ∪ {∞}).
This circle is orthogonal to S1 since R is orthogonal to S1 and h preserves angles, its
tangent linear map being C-linear, and so is a similitude. �

6.9.9 Geodesics

Definition A geodesic in D is any set of the form γ(R), where γ : R → D is a map
such that, for all [a, b] ⊂ R, γ|[a,b] is a geodesic path with respect to the Poincaré
metric.

Proposition The geodesics of D are the sets of the form � ∩ D, where � is a circle
orthogonal to S1.

Proof (a) Any geodesic is of the form � ∩ D: let γ : R → D be as in the above
definition. For each [a, b], γ([a, b]) is in a circle �a,b. For [a′, b′] ⊂ [a, b], �a,b ∩
�a′,b′ ⊃ γ[a′, b′] containing more than 3 points, and so �a,b = �a′,b′ . Hence �a,b

does not depend on the choice of [a, b]. We write it �. Then γ(R) ⊂ � and γ is
an isometry from Euclidean R onto a subset of � ∩ D equipped with the Poincaré
distance. This subset is homeomorphic to R, and so is an open arc. It is complete
and hence closed in � ∩ D. As � ∩ D is connected and γ(R) �= ∅, γ(R) = � ∩ D.

(b) Any set � ∩ D is a geodesic: indeed, R ∩ D is a geodesic since it is the
image of t �→ th t . Let � be a circle orthogonal to S1; choose x ∈ � ∩ D. Let h be a
homography preserving D and such that h(x) = 0. Then h(�) is a circle on � passing
through 0 and orthogonal to S1. Hence h(�) must be of the form L ∪ {∞}, where L is
a line passing through 0, and we may assume that L = R. Then � ∩ D = h−1(R ∩ D)

is a geodesic. �

6.9.10

Corollary 6.15 The geodesics passing through 0 are the sets of the form L ∩ D,
where L is a line passing through 0.

Corollary 6.16 There is a a unique geodesic through two distinct points of D.

Corollary 6.17 There is a unique geodesic passing through a tangent point to a
given differentiable curve. In particular, two distinct geodesics are never tangent.

Corollary 6.18 The automorphism group of D acts transitively on the set of
geodesics of D.
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6.9.11 Isometries of D

Let τ be the bijection x �→ x̄ from D onto D. For any continuously differentiable
path γ in D, Lμ(τ ◦ γ) = Lμ(γ). Hence τ is an isometry with respect to the Poincaré
distance.

Proposition Any isometry f : D → D with respect to the Poincaré distance is either
an automorphism of D or of the form τ ◦ h, where h is an automorphism of D.

Lemma 6.7 Let a, b ∈ D, a �= b, and r, r ′ ∈ Z, r, r ′ > 0. Then Ca,r �= Cb,r ′ .

Proof Let � = γ(R) be the geodesic passing through a and b, with γ satisfying the
conditions of definition 6.9.9; define α and β by γ(α) = a and γ(β) = b. The circle
Ca,r meets � at two points γ(α1) and γ(α2) with

α1 = α− r and α2 = α+ r ;

so α = 1
2 (α1 + α2). Similarly,

� ∩ Cb,r ′ = {γ(β1), γ(β2)} with β = 1

2
(β1 + β2) .

If Ca,r = Cb,r ′ , then α = β, and thus a = b. �
Lemma 6.8 Let f : D → D be an isometry fixing two distinct points a and b of
R ∩ D. Then f = 1D or f = τ .

Let x ∈ D− R and r = dμ(a, x), r ′ = dμ(b, x). The point f (x) is in Ca,r ∩ Cb,r ′ .
Now, by Lemma 6.7, Ca,r and Cb,r ′ are distinct Euclidean circles with intersection
consisting of x and τ (x). Hence f (x) = x or f (x) = x̄ . We may write f (x) =
Re(x)+ ε(x) Im(x) · i , where ε(x) = ±1. As f is continuous, the map ε : D− R →
{+1,−1} is continuous, hence constant on each half-disc. This constant is the same
on both, for otherwise f (x) = f (x̄) and f would not be injective. Therefore, f
agrees with either 1D or τ on D− R, hence on D by continuity.

Proof of the Proposition Choose a point c ∈ D ∩ R
∗+, set a = f −1(0) and b =

f −1(c). There is an automorphism h de D such that h(a) = 0 and h(b) ∈ R+.
As dμ(0, h(b)) = dμ(a, b) = dμ(0, c), h(b) = c. Set g = h ◦ f −1. Then g(0) = 0,
g(c) = c and g is an isometry. By Lemma 6.8, g = 1D or g = τ , and so f = h or
f = τ ◦ h. �

6.9.12

Proposition and Definition Let � be a geodesic of D. There is a unique isometry σ�

such that � is the set of points fixed by σ� . The latter, called the geodesic symmetry,
is antiholomorphic.
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Proof The case � = R ∩ D follows from 6.9.11, Lemma 6.8: then σ� = τ . The
general case follows from 6.9.10, Corollary 6.16.

Remarks (1) The symmetry σ� is induced by inversion with respect to the circle
containing �.

(2) The map σ� can be described as follows: let x ∈ D; there is a unique geodesic H
orthogonal to � and passing through x . It crosses � at a point h. if x �= h, y = σ�(x)

is the point of H distinct from x such that dμ(h, y) = dμ(h, x).

6.9.13

Proposition and Definition Let a ∈ D, θ ∈ R/2πZ; there is a unique isometry ra,θ

of D fixing a, whose tangent map at a is the rotation t �→ eiθt . It is called the Poincaré
rotation around the centre a with angle θ and is holomorphic. Any automorphism
of D fixing a is of the form ra,θ.

Proof The proposition is immediate if a = 0; the isometry ra,θ is then the Euclidean
rotation around O of angle θ.

The general case follows by transference using an automorphism h of D such that
h(a) = 0, noting that

(h′(a))−1 · 1 ◦ eiθ · 1 ◦ h′(a) · 1 = eiθ · 1 ,

�
Corollary 6.19 Let � and �′ be geodesics of D intersecting at a point a with angle
θ. Then σ�′ ◦ σ� = ra,2θ.

Corollary 6.20 Let a ∈ D, θ ∈ R/2πZ and � a geodesic through a. Then ra,θ ◦ σ� ,
(resp. σ� ◦ ra,θ) is the geodesic symmetry

ra, θ
2
(�)

(
resp. ra,− θ

2
(�)

)
.
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6.9.14 Geodesically Convex Sets

Let a and b be points of D and γ the geodesic path from a to b.
The image de γ is called the geodesic segment with endpoints a and b, and is

written [a, b]. Let α and β be such that γ(α) = a and γ(β) = b. For u, v ∈ R+ such
that u + v = 1, we call the point γ(uα+ vβ) the geodesic barycentre of a and b
with coefficients u and v, and write it Bar(a, u ; b, v).

The map (a, b, u) �→ Bar(a, u ; b, 1− u) from D× D× [0, 1] to D is continuous.
Contrary to what happens in Euclidean geometry, if u, v and w are three numbers
> 0 such that u + v + w = 1, then the points

Bar(a, u ; (b, v; c, w)) = Bar
(
a, u;Bar

(
b,

v

v + w
; c,

w

v + w

)
, v + w

)

and

Bar((a, u ; b, v); c, w) = Bar
(
Bar

(
a,

u

u + v
; b,

v

u + v

)
, u + v ; c, w

)

are usually distinct.
A subset A of D is said to be geodesically convex if for all a, b ∈ A, the geodesic

segment [a, b] is in A. All geodesically convex sets are connected.
Let � be a geodesic of D. The complement of � has two connected components

D1 and D2. The sets H1 = D1 ∪ � and H2 = D2 ∪ � are called the half-disks limited
by �. They are closed and their boundary is �. They are geodesically convex: indeed,
let a, b ∈ H1 and γ : [u, v] → D be the geodesic path from a to b. Suppose that for
some w ∈ [u, v], γ(w) ∈ D2. Then there exist u1 ∈ [u, w[ and v1 ∈ ]w, v] such that
γ(u1) ∈ �, and γ(v1) ∈ �, which is impossible since the geodesic through a and b
can only meet � at one point if it is distinct from �.

6.9.15 Geodesic Triangles

Let a, b, c ∈ D be points not on the same geodesic. Let �b,c denote the geodesic
through b and c and Ha the half-disk limited by �b,c containing a. Define Hb and
Hc likewise. The geodesic triangle with vertices a, b, c is T = Ha ∩ Hb ∩ Hc. The
set T is geodesically convex, and hence is connected. As it is closed, the formula
∂(A ∩ B) = (∂A ∩ B) ∪ (A ∩ ∂B) which holds for any two arbitrary closed sets
implies that its boundary is

∂T = [a, b] ∪ [b, c] ∪ ]c, a] .
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The set T is bounded with respect to the Poincaré distance. Indeed, for all x ∈ T,
the Poincaré circle through x and with centre a contains points that are not in T since
it contains points of each half-disk limited by �a,b; hence it meets ∂T, and dμ(a, x)

is bounded above by
sup
y∈∂T

dμ(a, y) ,

a number independent of x , which is finite since ∂T is compact. So the set T is
compact (6.9.6, Corollary 6.14).

6.9.16 Sum of the Angles of a Geodesic Triangle

Let a, b, c ∈ D, u (resp. v) the derivative at the origin of the geodesic path from a
to b (resp. from a to c) . There is a unique α ∈ ]−π,+π[ such that v = eiα · u. We
say that |α| is the (unorieunorientednted) angle at a of the geodesic triangle T with
vertices a, b, c.

Theorem (a) The sum of the three angles of a geodesic triangle is strictly less than
π.

(b) Given α, β, γ in ]0,π[ such that α+ β + γ < π, there is a geodesic triangle
in D with angles α, β and γ.

Proof (a) If f is an automorphism of D, the angle of T at a equals the angle of f (T)

at f (a). Hence we may assume that a = 0. Then the geodesics �a,b and �a,c are
Euclidean line segments, and a is in the region outside the circle containing �b,c.
Let ω be the Euclidean centre of this circle, α′ and β′ the angles at b and c of the
Euclidean triangle with vertices a, b, c.

Then α = α′ − 1
2δ and β = β′ − 1

2δ, where δ in the Euclidean angle bωc. Hence
α+ β + γ < α+ β′ + γ′ = π.

(b) Set

δ = π − (α+ β + γ) , β′ = β + 1

2
δ and γ′ = γ + 1

2
δ .

We first construct an Euclidean triangle with vertices a, b, c having angles α, β′, γ′,
then an isosceles Euclidean triangle with vertices ω, b, c, the angle at the vertex ω
being δ, and such that the points a and ω are on opposite sides of the line bc. Let � be
the circle through b and c centered at ω. As α = π − δ − β − γ < π − δ

2 , the point
a is outside the region encircled by �. Let �1 be the circle centered at a orthogonal
to �. As δ

2 < β′, b is in the region inside �1, and so is c. If necessary by applying
a similitude, we may assume that a = 0 and �1 = S1. The geodesic triangle with
vertices a, b, c has the required property. �
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6.9.17 Finiteness of the Automorphism Group (g � 2)

Theorem Let X be a compact Riemann surface whose universal covering X̃ is
isomorphic to D. Then the automorphism group G = Aut(X) is finite.

Proof Let π : D → X be an analytic map transforming D into a universal covering
of X. Then X can be identified with D/�, where � = AutX(D) (4.5.1, Remark).
Equip D with the Poincaré metric dD. The group � acts on D by isometries and equip
X with the quotient metric

dX(x, y) = inf
ỹ∈π−1(y)

dD(x̃, ỹ) ,

where x̃ is an arbitrary point of π−1(x).
Equip G with the metric of uniform convergence

dG(g, g′) = sup
x∈X

dX(g(x), g′(x)) .

The group G acts on X by isometries and X is compact; so G is compact by the
Ascoli theorem. We show that it is discrete.

Set �∗ = � − {1D}, and for u ∈ D, let ρ̃(u) = infγ∈�∗ dD(u, γ(u)). The map
ρ̃ : D → R

∗+ is continuous, and ρ̃(u) only depends on x = π(u). Hence there is
a continuous map ρ : X → R

∗+ such that ρ̃ = ρ ◦ π. Set δ = inf x∈X ρ(x). As X is
compact, δ > 0. �

Lemma Let g ∈ G. If dG(1X, g) < δ
2 , then g = 1D.

Proof of the Lemma Assume that dG(1X, g) = α < δ
2 . For u ∈ D, there is a unique

v ∈ D such that π(v) = g(π(u)) and dD(u, v) ≤ α, and the map g̃ : u �→ v thus
defined is continuous. Since π ◦ g̃ = g ◦ π, g̃ : D → D is holomorphic. With respect
to the Poincaré metric, dD(u, g̃(u)) ≤ δ

2 . With respect to the Euclidean metric,
|g̃(u)− u| tends to 0 as |u| tends to 1 (6.9.8, Remark 2). But the function
u �→ g̃(u)− u is holomorphic, and hence by the maximum principle is null. So
g̃ = 1D and g = 1X. �

End of the the proof of the theorem The lemma implies that the identity element 1X

in the group G is isolated. Hence G is discrete. As it is compact, it is finite. �
Exercises 6.9. (Poincaré geometry)
1. (The upper half-plane.)— Let � be the set of z ∈ C such that Im(z)>0.

(a) Show that z �→ z−i
z+i is an isomorphism from � onto D.

(b) Show that the homographies preserving � are those of the form

z �→ az + b

cz + d
with a, b, c, d ∈ R and ad − bc > 0 .

What are the automorphisms of � (as a Riemann surface)?
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(c) Show that there is a unique Riemannian metric on �, invariant under the
automorphisms, and define it.

2.—Prove the triangular inequality with respect to the distance defined by a Rieman-
nian metric.

3. (Isometries with respect to the Riemannian metric) — Let U be an open subset of
C and μ : U → R

∗+ a continuous function.
(a) Let a ∈ U and r > 0 be such that the Euclidean disk Da,r is contained in U.

Let m and M ∈ R+ be such that

m � μ(x) � M for all x ∈ Da,r .

Show that for all x ∈ Da,r and all differentiable path γ from a to x in U,

Lμ(γ) � m|x − a| .

Deduce that
(∀x ∈ Da,r ) m|x − a| � dμ(a, x) � M|x − a| .

(b) Show that, if γ is a differentiable path in U with γ(0) = a, then the function
t �→ dμ(a, γ(t)) is differentiable at 0 with derivative μ(a) · |γ′(0)|.

(c) Deduce that (iii) ⇒ (i) in 6.9.4.
(d) With the notation of 6.9.4, let g : U1 → U2 be a not necessarily holomorphic

C1 real map. Assume that g satisfies relation (iii).
Show that μ2(g(x))

μ1(x)
Txg is an R-linear isometry of C. Deduce that g is either holo-

morphic or antiholomorphic.
(e) Does this result continue to hold if g is no longer assumed to be a C1 real map?

4.—Let a, b, c ∈ D be points not on the same geodesic. Show that the map ϕ :
(u, v, w) �→ Bar(a, u; (b, v; c, w)) from T0 = {(u, v, w) ∈ R

3+ | u + v + w = 1}
to D is a homeomorphism from the Euclidean triangle T0 onto the geodesic triangle
T with vertices a, b, c.

5.—Let a and b be distinct points of D. Show that the set of points of D equidistant
from a and b with respect to the Poincaré distance is a geodesic, which will be called
the bisector of (a, b).

Let a, b, c ∈ D, M1, M2 and M3 the bisectors of (a, b), (b, c) and (c, a). Show
that, if M1 meets M2 at a point ω, then the geodesic M3 passes through ω. Give an
example where M1 ∩ M2 = ∅. Show that, in all cases, the circles containing M1, M2

and M3 are in the same linear sheaf (set of circles orthogonal to two given circles).

6.—Let � = γ(R) be a geodesic with γ as in Definition 6.9.9, and λ ∈ R.
(a) Show that there is a unique automorphism f of D such that f (γ(t)) = γ(t + λ)

for all t ∈ R. Then f is said to be the translation of axis � oriented by γ and unit λ.
(b) Let x ∈ D. Show that there is a unique geodesic H through x and orthogonal

to �. Give an explicit description of f (x).
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(c) Let D1 be one of the half-disks limited by � and ρ > 0. Show that the set of
points of D1 at a (Poincaré) distance ρ from � is the intersection of D with a circle
of � which is not orthogonal to the limit circle S1. Show that, if λ �= 0, then � is the
only geodesic preserved by f .

(d) Show that, for all M /∈ �, dμ(M, f (M)) > |λ|.
7.—Let f be an antiholomorphic isometry of D. Show that f extends to a home-
omorphism (also written f ) of D = D ∪ S1. Show that f |S1 necessarily fixes two
distinct points u and v.

Let � be the geodesic of D with endpoints u, v.
Show that f is the composition of a translation of axis � and of a symmetry with

respect to �.

8. (Automorphisms of D)—(a) Let ϕ be an isomorphism of the half-plane � (6.9,
Exercise 1) on D and λ ∈ R, Tλ the translation x �→ x + λ from � to �, and a =
ϕ(∞) ∈ S1.

Show that P = ϕ ◦ Tλ ◦ ϕ−1 is an automorphism of D whose extension to D has a
unique fixed point a. It is said to be a parabolic transformation. Show that all tangent
circles to S1 at a and in D are preserved by P, and that if � is a geodesic with endpoint
a, then so is P(�).

(b) Show that an automorphism f of D is either a rotation, or a translation of
axis a geodesic of D, or a parabolic transformation (consider the fixed points of the
homography extending f ).

(c) Define a topology on the group Aut(D) and give a description of the
1-parameter subgroups, i.e. of the continuous homomorphisms from R to Aut(D).

9.—Let a, b, c ∈ D be points not on the same geodesic. Denote by Ma and M′
a the

interior and exterior bisector geodesics of ([a, b], [a, c]); similarly for Mb, etc.
Show that Ma , Mb and Mc are concurrent.
Show that if Ma and M′

b intersect at a point α, then the geodesic M′
c passes through

α. Show that in general the circles containing Ma , M′
b and M′

c are in a same linear
sheaf.

10.—(a) Show that in Poincaré geometry, the three heights of a triangle lie on three
circles in the same linear sheaf.

(b) Does the same hold for the three bisectors?

11.—Let A, A′, B, B′ be four points of D, I the midpoint of [A, A′] (i.e. Bar
(
A, 1

2 ;
A′, 1

2

)
and J the midpoint of [B, B′]). Show that

dμ(I, J) � 1

2

(
dμ(A, B)+ dμ(A

′, B′)
)
.

(Show that C = rJ,π(A′) can be obtained from A by applying a translation of axis the
geodesic � passing through I and J and of unit 2dμ(I, J), then use 6.9, Exercise 6, (d).)



6.10 Tiling of the Disk 393

6.10 Tiling of the Disk

6.10.1 The Dihedral Group

Let X be a topological space. A tiling of X is a locally finite family (Ai )i∈I of closed
subsets of X with disjoint interiors whose union is X.

Let n be an integer. Let �1 and �2 be two lines in C, π
n the angle between them, �1

and �2 two closed half-planes limited by �1 and �2 respectively, �2 being obtained
from �1 by a rotation of angle π

n + π. Set S = �1 ∩�2, �+
i = �i ∩ S. Let u and v

be the symmetries with respect to �1 and �2 respectively, G the isometry group of
C (with respect to the Euclidean metric) generated by u and v.

Proposition and Definition (a) The group G has 2n elements and is said to be the
dihedral group of order 2n.

(b) The family (g(S))g∈G is a tiling of C.
(c) Let g, g′ ∈ G and x, x ′ ∈ S. If g(x) = g′(x ′), then x = x ′; and g(x) = g′(x)

if and only if

– g′ = g if x ∈ ◦
S;

– g′ = g or g′ = gw (resp. gv) if x ∈ �+
1 − {0} (resp. �+

2 − {0}).
Lemma Let G be a group generated by the two elements u and v such that

u2 = v2 = (vu)n = e

(identity element). Then any element of G can be written as (vu)k or (vu)kv, with
0 � k � n − 1. In particular, G has at most 2n elements.

Proof of the Lemma (vu)k can be defined for k ∈ Z/(n). Then,

u = u−1 = (vu)n−1v, v = v−1 = (vu)0v, (vu)k(vu)k ′ = (vu)k+k ′ ,

(vu)kv.(vu)k ′ = (vu)k(uv)k ′−1u = (vu)n+k−k ′v,

(vu)kv.(vu)k ′v = (vu)n+k−k ′ .

The set H of elements of the above form is stable, and contains u, v and their inverses;
so H = G. �

Proof of the Proposition We may assume that �1 = R, �2 = e
π
n i

R, and that S is
the set of ρ.eiθ with ρ ∈ R+, θ ∈ [0, π

n

]
. Then v ◦ u is the rotation of angle 2π

n and
(v ◦ u)n = 1. If x = ρ.eiθ, then (v ◦ u)k(x) = ρ.eiθ′ with θ′ = 2kπ

n + θ and (v ◦ u)k ◦
v(x) = ρ.eiθ′ with θ′ = (2k+1)π

n + π
n − θ.

For all y ∈ C
∗, there exist g ∈ G and x ∈ S such that y = g(x). Indeed, if y =

ρ.eiθ′ , then θ′ = m
n π + θ for some m ∈ Z/(2n) and θ ∈ [0, π

n

]
. If θ′ is not a multiple of
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π
n , then the pair (m, θ) is unique. Now, y = (v ◦ u)k(x) with x = ρ.eiθ if m = 2k, and
y = (v ◦ u)kv(x) with x = ρ.ei( π

n −θ) if m = 2k + 1, and y can be uniquely written

as g(x). This already shows that all (v ◦ u)k(
◦
S) and (v ◦ u)k ◦ v(

◦
S) are disjoint; i.e.

G has 2n elements and all g(
◦
S) are disjoint.

If θ′ = 2kπ
n

(
resp (2k+1)π

n

)
, then y can be written as g(x) in two different ways,

namely y = (v ◦ u)k(x) and (v ◦ u)k−1 ◦ v(x) with x = ρ, (resp. y = (v ◦ u)k(x)

and (v ◦ u)k ◦ v(x) with x = ρ.ei π
n ). This proves (c) and completes the proof

of (b). �

6.10.2 A Tiling of D

Let Ismet(D) denote the isometry group of the disk D with respect to the Poincaré
metric, and σa,b the Poincaré symmetry with respect to the geodesic through a and
b. Let n, p and q be integers such that

1

n
+ 1

p
+ 1

q
< 1 ,

and let T be a geodesic triangle in D with angles π
n , π

p
π
q , and vertices a, b, c

(Theorem 6.9.16). We give a presentation by generators and relations of the subgroup
of Ismet(D) generated by the symmetries σb,c, σc,a and σa,b. Let L = L(U, V, W)

be the free group on three indeterminates. Define

ψ : L → Ismet(D) by ψ(U) = σb,c, ψ(V) = σc,a and ψ(W) = σa,b .

Then ψ(U2) = ψ(V2) = ψ(W2) = ψ((UV)q) = ψ((VW)n) = ψ((WU)p) = 1. Let
N be the normal subgroup of L generated by U2, V2, W2, (UV)q , (VW)n and (WU)p.
Set G = L/N and let χ : L → G be the canonical map. Define ϕ : G → Ismet(D)

by the commutative diagram:

L

G

χ
� ϕ� Ismet(D)

ψ
�

The group G acts on D by isometries via ϕ.
Let u, v, w be the images of U, V, W in G.

Theorem The family (g · T)g∈G of the transforms of T is a tiling of D. In particular,
ϕ is injective.

The proof of this theorem is quite long. It will be completed in 6.10.9. We begin by
constructing a space E containing T and acted on by G, for which it will be easy to
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see that for g ∈ G, g · T form a tiling of E. Define a map π : E → D compatible with
the actions of G. The difficulty lies in showing that π is a homeomorphism.

6.10.3 Construction of E

Let R be the equivalence relation on G × T identifying (g, x) with (gu, x) if x ∈
[b, c], with (gv, x) if x ∈ [a, c], with (gw, x) if x ∈ [a, b]. (In other words, R is the
equivalence relation generated by the above pairs). Denote by E the quotient space
(G × T)/R. The map (g, x) �→ g · x from G × T to D induces a continuous map
π : E → D.

By passing to the quotient, the action (h, (g, x)) �→ (hg, x) of G on G × T gives
an action of G on E and π is compatible with the actions of G on E and D.

Let Ga (resp. Gb, resp. Gc) be the subgroup of G generated by v and w (resp. w

and u, resp. u and v). For x ∈ ]a, b[, (resp. ]b, c[, resp. ]c, a[), set Gx = {e, w} (resp.

{e, u}, resp. {e, v}); for x ∈ ◦
T, set Gx = {e}. If (g, x) ∼ (g′, x ′) with respect to R,

then x = x ′. Indeed, the projection pr2 : G × T → T is compatible with R. Now,
(g, x) ∼ (g′, x) if and only if g′ ∈ g · Gx . Indeed, the relation thus described is an
equivalence relation which implies R and is satisfied by all pairs generating R.

Let χ be the canonical map from G × T to E. Then the map ι : x �→ χ(e, x) from
T to E is injective, and identifies T with its image in E.

6.10.4 The Star of a in E

For x ∈ T, let Ex be the image of Gx × T in E; this set is called the star of x . An open
star of x is the image E′x of Gx × T′x in E, where T′x is T without the sides that do
not contain x (for example T′a = T − [b, c], T′x = T − ([b, c] ∪ [c, a]) if x ∈ ]a, b[,
T′x =

◦
T if x ∈ ◦

T).
For all x , the open start of x is open in E since it is the image of a saturated open

subset of G × T; the closed star of x is a compact neighbourhood of x .

Lemma 6.9 The map π induces a homeomorphism from Ea onto a neighbourhood
of a in D.

Proof (a) Reduction to the case a = 0. Let h be an automorphism of D such that
h(a) = 0. Set T̃ = h(T), and let Ẽ be the quotient of G × T̃ by the equivalence
relation obtained by transferring R. There is a commutative diagram
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G × T
1G × h� G × T̃

E
� h∗ � Ẽ

�

D

π � h � D

π̃�

where the horizontal arrows are homeomorphisms. The space Ẽ is obtained from T̃
in the same manner in which E is obtained from T. Hence we may assume that a = 0.

(b) Proof of the lemma in this case. The geodesics �a,c and �a,b are then part of
Euclidean lines �1 and �2, the Poincaré symmetries σa,c and σa,b are induced by
Euclidean symmetries with respect to �1 and �2, and T is a neighbourhood of 0 in
a sector S of angle π

n .
The group Ga can be identified with the dihedral group of order 2n. The equiva-

lence relation induced on Ga × T by the map (g, x) �→ g · x is the one described in
Proposition 6.10.1, (c); it implies the one induced by R. Hence, π|Ea is injective. As
T is a neighbourhood of a in S, the set π(Ea) =⋃

g∈Ga
g · T is a neighbourhood of

a in
⋃

g∈Ga
g · S = C.

As Ga is finite, Ga × T is compact, and so Ea is quasi-compact; and as D is
Hausdorff, π induces a homeomorphism from Ea onto its image. �

6.10.5

Lemma 6.10 The map π : E → D is etale.

Proof The set
◦
T in open in E, and π induces the identity on

◦
T. Hence π is etale

on
◦
T.
For x ∈ ]a, b[, the map π|Ex is injective since T − [a, b] and its image under σa,b

are in disjoint open half-disks, and so are disjoint.
As T is a neighbourhood of x in the closed half-disk limited by �a,b, the set

π(Ex ) = T ∪ σa,b(T) is a neighbourhood of x in D. As Ex in quasi-compact, π
induces a homeomorphism from Ex onto its image.

Hence, π is etale at x . Similarly, π is etale at all points either of ]b, c[ or of ]c, a[.
By Lemma 1 (6.10.4), π is etale at a. Similarly, π is etale at b and at c, hence on

T.
Let m = χ(g, x) ∈ E. There is a commutative diagram

E
t �→ g · t� E

D

π � g � D

π�
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where the horizontal arrows are homeomorphisms, and π is etale at x . Hence π is
etale at m = g · x . �

6.10.6

Lemma 6.11 There exists r > 0 such that, with respect to the Poincaré metric, for
all t ∈ E, there is a continuous section s of E defined on the ball of radius r centered
at π(t), with s(π(t)) = t .

Proof For t ∈ T, let R(t) be the upper bound in R+ of all r for which there is a
continuous section s of E defined on the ball Dt,r of radius r centered at t relative to
the Poincaré metric, with s(t ′) = t ′ for all t ′ ∈ Dt,r ∩ T. As E is etale, R(t) > 0 for
all t . For t ′ ∈ Dt,r ,

Dt ′,r−d(t,t ′) ⊂ Dt,r ;

Hence R(t ′) � R(t)− d(t, t ′), and the function R is either constant, equal to +∞,
or Lipschitz with constant 1. In particular, it is continuous; as T is compact, it has a
minimum R0 > 0 and any r < R0 has the required property for all t ∈ T.

Let t = g · t0 ∈ E with t0 ∈ T, and s0 : Dt0,r → E be a continuous section with
s0(t0) = t0. Then s : x �→ g · s0(g

−1(x)) is a continuous section of Dπ(t),r in E with
s(π(t)) = t . Hence there is some r < R0 has the required property for all t ∈ E. �

6.10.7

Lemma 6.12 Let B be a metric space and E an etale Hausdorff space over B.
Suppose there exists r > 0 such that, for all t ∈ E, there is a continuous section s
of E defined on the ball of radius r centered at π(t), with s(π(t)) = t . Suppose also
that the intersection of two balls of B is connected. Then E is a covering of B.

Proof Let x ∈ B and U be the ball of radius r centered at x . Set F = E(x). For
all t ∈ F, there is a continuous section st : U → E such that st (x) = t . For t �= t ′,
st (y) �= st ′(y) for all y ∈ U. Indeed, U is connected and the set of y such that st (y) =
st ′(y) is open since E is etale, closed since E is Hausdorff, and does not contain x ; so
is empty. The map ϕ : (y, t) �→ st (y) from U× F to E|U is injective, a U-morphism,
and is open. We show that it is surjective:

Let t ′ ∈ E|U, x ′ = π(t ′) and U′ the ball of radius r centered at x ′. There is a
continuous section s ′ : U′ → E with s ′(x ′) = t ′. Since x ′ ∈ U, x ∈ U′. Set t = s ′(x).
The continuous sections s ′ and st agree at x ; as E is etale and Hausdorff and U ∩ U′
is connected, they agree on U ∩ U′. In particular, ϕ(x ′, t) = st (x ′) = t ′. Hence, ϕ is
a homeomorphism and E|U is a trivial covering. �
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6.10.8

Lemma 6.13 The space E is Hausdorff and connected.

Proof (a) E is Hausdorff: The projection pr2 : G × T → T is compatible with the
equivalence relation R, hence defines a continuous map q : E → T. Therefore, g · t
and g′ · t ′ can be separated for t �= t ′. If g · t �= g′ · t , then the sets g · E′t and g′ · E′t
are open and disjoint.

(b) E connectedness: Let A be a clopen subset of E. For all g, the image of {g} × T
is in A or in E − A. Let M be the set of g ∈ G for which the image of {g} × T is in A.
If g ∈ M, then gu ∈ M since (gu, x) and (g, x) have the same image for x ∈ [b, c].
As u−1 = u in G, gu−1 ∈ M. Similarly, gv, gv−1, gw, gw−1 are in M. Since G is
generated by u, v, w, M = G or M = ∅, and so A = E or A = ∅. �

6.10.9 Proof of Theorem 6.10.2

In the space D equipped with the Poincaré distance, the balls are the Euclidean
disks. Hence the intersection of two balls is connected. Thanks to lemmas 3 and 5,
the assumptions of lemma 4 hold. Therefore E is a covering of D. As D is simply
connected, this covering is trivial. As E connected, it is of degree 1. In other words,
π is a homeomorphism. �

6.10.10 Crossed Products

Let A and B be two groups and (b, a) �→ ba an action of B on A by automorphisms
(hence bb′a = b(b′a) and b(aa′) = ba · ba′ for a, a′ ∈ A, b, b′ ∈ B). For the sake of
convenience, we assume that A ∩ B = {e}, where e is the identity element common
to A and B.

Proposition and Definition There is a group C such that A is a normal subgroup of
C, B a subgroup of C, b · a · b−1 = ba for a ∈ A and b ∈ B, and such that canonical
map χ ◦ ι : B → C/A is an isomorphism. If C and C′ satisfy these conditions, then
there is a unique isomorphism from C onto C′ inducing the identity on A and B.

We say that C is thecrossed product (or semi-direct product) of A by B. It is
written C = A � B.

Proof (a) Uniqueness: Let C be a group with the desired property. The map (a, b) �→
a · b from A × B to C is bijective. For a, a′ ∈ A and b, b′ ∈ B, a · b · a′ · b′ = a ·
ba′ · b · b′. Hence C can be identified with the product set A × B equipped with the
composition law

((a, b), (a′, b′)) �→ (a ba′, bb′) .
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(b) Existence: The composition law defined by

(a, b) · (a′, b′) = (a ba′, bb′)

on A × B is associative with

(a, b) · (a′, b′) · (a′′, b′′) = (a ba′ bb′a′′, bb′b′′) ,

and each element has an inverse

(a, b)−1 = (b−1
a−1, b−1) .

The set A × B equipped with this law is a group C with the desired property. �

6.10.11

Consider the group G = L(U, V, W)/N defined in (6.10.2), and the homomorphism
ε : G → {+1,−1} defined by ε(u) = ε(v) = ε(w) = −1.

Set G+ = Ker ε = ϕ−1(Aut D). The group G+ is a normal subgroup of index 2 in
G, and G can be identified with the crossed product G+ � (u), where (u) = {e, u}.

Consider the elements α = vw, β = wu and γ = uv in G+. As αn = β p = γq =
αβγ = e, the canonical map

ψ1 : L(α,β, γ) → G+

induces ϕ1 : � → G+, where � is the quotient of L(α,β, γ) by the normal subgroup
generated by αn β p, γq and αβγ.

Proposition The homomorphism ϕ1 : � → G+ is an isomorphism.

Proof Define an action of (u) on � such that ϕ1 is a (u)-homomorphism. The action
of (u) on G+ by inner automorphism in G satisfies

(∗)
⎧
⎨

⎩

uα = β−1α−1β,
uβ = β−1,
uγ = γ−1 .

Define an endomorphism x �→ u x of L(α,β, γ) by formulas (∗).
It can be checked to be involutive, i.e. u(u x) = x . Hence there is an action of (u)

on L(α,β, γ). Passing to the quotient, it can be checked to define an action of (u)

on � by automorphisms. By construction, ϕ1 is a (u)-homomorphism.
The homomorphism ϕ1 defines a homomorphism

ϕ1 : � � (u) → G+ � (u) = G .
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We show that ϕ1 is an isomorphism by constructing an inverse. The homomor-
phism U �→ u, V �→ u · γ, W �→ β · u from L(U, V, W) to � � (u) can be checked
to pass to the quotient and to define a homomorphism σ : G → � � (u). As can be
verified, this is an inverse of ϕ1.

In the commutative diagram

Ker ε′ = �
ϕ1� G+ = Ker ε

� � (u)
� ϕ1 � G+ � (u)

�

{+1,−1}�
ε ′
�

ϕ1 is an isomorphism, and so ϕ1 is an isomorphism. �

6.10.12

Proposition Let g ∈ G+. If ϕ(g) ∈ Aut D has a fixed point in D, then g is the con-
jugate in G+ of a power of either α, β or γ.

Proof We may assume that g �= e. Let x ∈ D be such that g · x = x . By Theorem

6.10.2, x = h · t for some h ∈ G, t ∈ T. Set g′ = h−1gh; then g′ · t = t . t /∈ ◦
T since

the images of
◦
T are disjoint. If t ∈ ]a, b[, then g′ = w, which is impossible since

g ∈ G+, which is normal. Similarly t /∈ ]b, c[ and t /∈ ]c, a[. Hence t is a vertex. It
follows from the construction of E (6.10.3) that the stabilizer of a in G is Ga . Hence,
if t = a, then g′ ∈ Ga ∩ G+ = {1,α, . . . ,αn−1}. Similarly, if t = b (resp. c), then g′
is a power of β (resp. γ). This gives the result when h ∈ G+. Otherwise h = h′u, and
g is conjugate in G+ to

uαku−1 = β−1αn−kβ, or to uβku−1 = β p−k, or to uγku−1 = γq−k .

�

6.10.13

Proposition Let H be a normal subgroup of G+. Suppose that the images of α, β
and γ in G+/H are elements of orders n, p and q respectively.

(a) The group H acts freely on D and D is a covering of the quotient X = D/H.
The space X is Hausdorff.
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(b) There is a unique Riemann surface structure on X such that the canonical map
χ : D → X is analytic.

(c) The space X is compact if and only if H is of finite index in G.

Proof (a) Let h ∈ H be such that ϕ(h) has a fixed point in D. By Proposition 6.10.12,
h is conjugate to some αk , βk or γk . Its image χ(h) ∈ G/H is then conjugate to χ(α)k

(resp. χ(β)k , resp. χ(γ)k); As it is zero, k is a multiple of n (resp. p, resp. q), and
h = 1. Hence H acts freely on D.

For t ∈ T , g ∈ G and h �= e in H, h · g · E′t ∩ g · E′t = ∅ since g−1hg is a nonzero
element of H, hence is not in Gt . Thus the assumptions of Theorem 4.3.13 hold, and
D is a covering of X. As π identifies E with D, the continuous map from E to T
induced by pr2 : G × T → T defines, by passing to the quotient, a continuous map
X → T. Thus the images of g · t and g′ · t ′ can be separated for t �= t ′ ∈ T. If g · t
and g′ · t have distinct images in X, then

g′ /∈ g · H · Gt = H · g · Gt ,

and the open saturated subsets H · g · E′t and H · g′ · E′t of D are disjoint. Hence X is
Hausdorff.

(b) Every continuous section σ : U → D, where U is an open subset of X is a chart
with domain U, and these charts form an atlas, the change of charts being induced
by automorphisms of D. The map χ is analytic with respect to the Riemann surface
structure defined by this atlas, and it follows from 6.1.10 that this structure is the
only one with the required property.

(c) Let (gi )i∈I be a family of representatives for the elements of G/H. The image
of
⋃

i gi · T is X. If G/H is finite, then so is I, and both
⋃

i gi · T and X are compact.

Let t ∈ ◦
T. The set G · t is discrete and closed in D; hence so is its image in X.

If X is compact, this image is finite; hence, as it is in bijective correspondence with
G/H, G/H is finite if X is compact. �

6.10.14

We keep the assumptions of 6.10.13 and further assume that H is of finite index7 in G.
The group � = G+/H can be identified with an automorphism group of the Riemann
surface X, and the space Y = X/� can be identified with D/G+. Moreover, Y has a
natural Riemann surface structure (6.7.1), and X is a ramified Galois covering of Y.
Let π be the canonical map from X onto Y, and â, b̂ and ĉ the images of a, b and c
under π ◦ χ.

7In fact, this assumption can be shown to be superfluous for the results of this subsection and of
6.10.15.
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Proposition The ramification set of X over Y is {â, b̂, ĉ}. For ξ ∈ X over â (resp.
b̂, resp. ĉ), the ramification index of X over Y at ξ is n (resp. p, resp. q).

Proof For ξ = χ(x) ∈ X, the stabilizer �ξ of ξ in � can be identified with the sta-
bilizer (G+)x of x in G+. Indeed, if χ(g) · ξ = ξ, then g · x = h · x for some h ∈ H,
and h−1g ∈ Gx . Hence the canonical map Gx → �ξ is surjective; its kernel is Gx ∩ H
and it is trivial since H acts freely.

Write x as g · t with g ∈ G, t ∈ T. The group (G+)x is conjugate to (G+)t , hence
nontrivial if and only if t is one of the 3 vertices of T. If t is a vertex, then x = g′ · t
with g′ ∈ G+. So ξ = χ(g′) · χ(t), and π(ξ) = â, b̂ or ĉ. The ramification index of
X at ξ is the cardinal of (G+)t , i.e. n if π(ξ) = â, p if π(ξ) = b̂ and q if π(ξ) = ĉ. �

6.10.15

Proposition Under the assumptions of 6.10.14, the Riemann surface Y has genus 0.

Proof We construct a triangulation of Y. We keep the notation of this section as well
as that of 6.5.1. Let θ : T → T be a C1 homeomorphism on T− {α0,α1,α2} with
Jacobian > 0, and such that θ ◦ ιν is a geodesic path for ν = 1, 2 or 3. Set

θ1(t) = u
(
θ((1+ j)t̄ )

)
.

Set f0 = π ◦ χ ◦ θ and f1 = π ◦ χ ◦ θ1. Let a1 (resp. a2, resp. a3) be the image under
π ◦ χ of the geodesic path from a to b (resp. from b to c, resp. from c to a), and
s1 = â, s2 = b̂, s3 = ĉ. This gives a triangulation τ of Y with 3 vertices, 3 edges and
2 faces. The Euler-Poincaré characteristic of Y (equipped with τ ) is 2, and so its
genus is 0. �

Remark Using this triangulation, Y can be checked to be homeomorphic to the
Riemann sphere.

6.10.16

Let d be the cardinal of �, i.e. the index of H in G+.

Corollary The genus g of X is 1+ d
2

(
1− 1

n − 1
p − 1

q

)
.

Proof There are d
n ramification points of index n, d

p of index p and d
q of index q.

The Riemann–Hurwitz formula 6.6.13 gives
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g − 1 = −d + 1

2

(d

n
(n − 1)+ d

p
(p − 1)+ d

q
(q − 1)

)
.

�

6.10.17

Theorem Let g, n, p and q be integers such that g � 2, 1
n + 1

p + 1
q < 1, and d =

2g−2
1− 1

n− 1
p− 1

q
is integral. Assume that there is a group � of order d with three elements

α̂, β̂, γ̂ of respective orders n, p and q satisfying α̂β̂γ̂ = e. Then there is a Riemann
surface X of genus g such that � is identified with an automorphism group of X.

Proof By Proposition 6.10.11, � can be identified with a quotient of G+ in such a
way that α̂, β̂ and γ̂ are the respective images of α, β and γ. Then the assumptions
6.10.14 hold and the Riemann surface X = D/H has the required property. �

6.10.18

Corollary There is a Riemann surface of genus 3 with an automorphism group of
order 168.

This corollary follows from Theorem 6.10.17 applied to g = 3, n = 2, p = 3,
q = 7, which implies d = 168, and from the following lemma:

Lemma Let k = F2 be the field Z/(2). The group � = GL(k3) of invertible 3× 3
matrices with entries in k has 168 elements. There are three elements A, B, C in �

of respective order 2, 3 and 7 such that A · B · C = I.

Proof There is a bijection between the group � and the set of bases (V1, V2, V3)

for k3. For V1, there are 7 possible choices; V1 being chosen, there are 6 ways of
choosing V2 and, V1 and V2 being chosen, 4 of choosing V3. The order of G is
therefore 7× 6× 4 = 168.

Take

A =
⎛

⎝
1 0 1
0 1 0
0 0 1

⎞

⎠ B =
⎛

⎝
0 0 1
1 0 0
0 1 0

⎞

⎠

in � of respective orders 2 and 3. The “sagittal diagram” (Oh modern mathematics,
what have you got into?)
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shows that A ◦ B has order 7. Then C = (A ◦ B)−1 has the required property. �

Exercises 6.10. (Disk tilings)
1.—Observe M. C. Escher’s engraving. Ignoring the colours, it represents a tiling of
the disk of the form (gP)g∈G+ , where G+ is defined as in 6.10.11 (the fundamental
domain has the shape of a fish).

(a) What are the values of n, p, q?
(b) Let P be a fish. The elements g ∈ G+ for which gP has the same colour as P

form a subgroup of H. What is the index of H ?
Is the equivalence relation “gP and g′P are of the same colour” between elements

g, g′ ∈ G, g′ ∈ gH or g′ ∈ Hg?
Is the union of four fish of different colours necessarily a fundamental domain for

the action of H?

(c) Give the permutations of G/H = {gH}g∈G defined by the action of G. How
many are there?

(d) Consider the subgroup � of G+ consisting of the elements preserving the
colouring. Show that � is the largest normal subgroup of G+ in H. Give its index in
G+.

(e) Show that � acts freely on D and that the Riemann surface X = D/� is
compact.

(f) Give the equivalence relation identifying the space B = D/G+ with the quo-
tient of P. Show that B is homeomorphic to the sphere S2, and so is a Riemann
surface of genus 0. What are the ramification indices of D over B? What is the genus
of B/H? of B/�? (The Riemann–Hurwitz formula may be applied.)

(g) Are the spines of the fish geodesics?
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The tiling of the Theorem 6.10.2 for n = 2, p = 3, q = 7
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Chapter 7
Dessins d’Enfants

Introduction
The Galois group G = AutQ(Q), where Q is an algebraic closure of Q, let us say in
C, fascinates arithmeticians. This profinite group is hard to grasp. It certainly embeds
in the product of S(P−1(0)), as P runs through the set of irreducible polynomials of
Z[X], but this set is itself not easy to understand if only because there is no natural
way of numbering the roots of a polynomial.

The aim of Grothendieck’s theory of dessins d’enfants is to make G act on finite
sets defined combinatorially in order to gather information about it.

The “arithmetic” Riemann surfaces are those that can be defined over a “number
field”, i.e. a finite extension of Q. In section 1, we explain what a Riemann surface
defined over a subfield of C is. The theory begins with Belyi’s theorem, according to
which any arithmetic Riemann surface is a covering of the Riemann sphere ramified
only over 0, 1 and ∞. The classification of these coverings becomes a combinatorial
problem.

7.1 Definability

7.1.1 Defining Polynomials

The algebra of meromorphic functions for the Riemann sphere � M(�) can be
identified with the field C(X) of rational fractions in one indeterminate X.

Let (S,π) be an analytic ramified covering of �, and consider M(S) as a
C(X)-algebra using π∗ : C(X) → M(S). This is the situation in subsection 6.2.5,
whose notation we keep (with Y instead of Z). Then M(S) is an etale algebra over
C(X) (Theorem 6.2.3). If η ∈ M(S) is a primitive element with minimal polynomial

P(Y) = Yd + ad−1(X)Yd−1 + · · · + a0(X) ∈ C(X)[Y] ,

then the algebra M(S) can be identified with C(X)[Y]/(P), and S is a compactifica-
tion of

S′ = V′
P = {(x, y) ∈ C

2 | x ∈ C − �P , P(x, y) = 0} ,
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where �P = �M(S),η is the set of x ∈ C for which P(x, Y) ∈ C[Y] either has a
multiple root or is not defined.

Each ai ∈ C(X) can be uniquely written as pi

qi
with pi and qi coprime in C[X]

and qi monic. Let bd be the (monic) l.c.m. of the polynomials qi , bi = bdai ∈ C[X]
and Q = bdYd + bd−1Yd−1 + · · · + b0. The polynomial Q ∈ C[X, Y] is called the
polynomial obtained from P ∈ C(X)[Y] by eliminating denominators. It will be said
to be a defining polynomial of (S,π).

The polynomial Q has the following property: the decomposition of Q into prime
factors has no repetition, nor any factor such as X − a. A polynomial Q ∈ C[X, Y]
with this property is called regular in Y. The set �Q = �P is the set of x ∈ C for
which Q(x, Y) ∈ C[Y] has either a multiple root or Y-degree strictly less than that
of Q. The space S′ can be identified with

V′
Q = V′

P = {(x, y) ∈ C
2 | x /∈ �Q, Q(x, y) = 0} .

Conversely, if Q ∈ C[X, Y] is a regular polynomial in Y, then the set

V′
Q = {(x, y) ∈ (C − �Q) × C | Q(x, y) = 0} ,

together with π : (x, y) �→ x , is a finite covering of C − �Q. By 6.1.10, this covering
is induced by a finite analytic ramified covering ̂VQ of �. ̂VQ is said to be the analytic
ramified covering defined by Q.

Proposition The closure of S′ in C
2 is the algebraic set

VQ = {(x, y) ∈ C
2 | Q(x, y) = 0} .

Proof The set VQ is closed and contains V′
Q, hence so does its closure. We show

the converse inclusion, which concerns the continuity of the roots of the polynomial
(see Chap. 3, Exercise 8). Let (x0, y0) be a point such that Q(x0, y0) = 0, and (xn)

a sequence in C − �Q tending to x0. Let ν be the multiplicity of y0 as a root of
Q(x0, Y). For sufficiently small r > 0, the point Q(x0, y) wraps around 0 ν times as
y runs through the boundary of the disc Dy0,r . Hence the same holds for Q(xn, y) for
sufficiently large n. So for sufficiently large n, Q(xn, Y) has a root in Dy0,r . Hence
there is a sequence (yn) tending to y0 such that (xn, yn) ∈ V′

Q for all sufficiently large
n. �

7.1.2 Definability of a Ramified Covering

Let K be a subfield of C and A an etale algebra over K(X). Then the algebra AC =
C(X) ⊗K(X) A is an etale algebra over C(X). By (6.2.4), as a C(X)-algebra, it is
isomorphic to M(S), where (S,π) is an analytic ramified covering of �. A primitive
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element η of the K(X)-algebra A remains primitive in the C(X)-algebra-AC, and S
can be taken to be the Riemann surface ̂S(AC, η).

Proposition and Definition Let (S,π) be an analytic ramified covering of � and
K a subfield of C. The following conditions are equivalent:

(i) there is a defining polynomial Q ∈ K[X, Y] of (S,π);
(ii) there is a K(X)-subalgebra A in M(S) such that the natural map C(X) ⊗K(X)

A → M(S) is an isomorphism.

If these conditions hold, then (S,π) is said to be definable over K. An algebra A
satisfying condition (ii) is called a K-structure on (S,π).

Proof (a) (i) ⇒ (ii): Set A = K(X)[Y]/(Q). Then C(X) ⊗K(X) A = C(X)[Y]/(Q)

can be identified with M(S).
(b) (ii) ⇒ (i): Let y be a primitive element of A over K(X), P ∈ K(X)[Y] its

minimal polynomial and Q ∈ K[X, Y] obtained by eliminating the denominators.
Then Q is a defining polynomial. �

Remark C ⊗K K[X] = C[X], but in general C ⊗K K(X) 
= C(X). The algebra
C ⊗K K(X) is the ring of fractions with numerators in C[X] and denominators in
K[X]; its an integral ring and C(X) can be identified with its field of fractions.

7.1.3 Semi-definability

Proposition and Definition Let (S,π) be an analytic ramified covering of � and
K a subfield of C. The following conditions are equivalent:

(i) (S,π) is definable over a finite extension L of K in C ;
(i’) (S,π) is definable over the algebraic closure K of K in C;
(ii) (S,π) is isomorphic to a ramified covering (union of connected components) of

an analytic ramified covering definable over K.

If these conditions hold, (S,π) will be said to be semi-definable over K.

Proof The equivalence (i) ⇔ (i′) is immediate.
(a) (i) ⇒ (ii): Let A be an etale algebra over L(X), where L is a finite extension

of K in C, such that M(S) can be identified with C(X) ⊗L(X) A. Let η be a prim-
itive element of A and P its minimal polynomial, so that A can be identified with
L(X)[Y]/(P). Let E be a Galois extension of K in C containing L, and G the Galois
group of AutK(E). As G acts on the coefficients of the polynomial of E(X, Y), it can
be made to act on E(X, Y) by leaving fixed the indeterminates. Let g∗Q denote the
image of Q under g; note that if Q is monic, then so is g∗Q.

Let˜P be the l.c.m. of g∗P: it is the product of polynomials g∗Q with g ∈ G and Q
an irreducible factor of P, taken without repetition.
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Hence˜P = P · P1 with P1 and P coprime. Then ˜AE = E(X)[Y]/(˜P) is isomorphic
to AE × A′

E, where AE = E(X)[Y]/(P) = E(X) ⊗L(X) A and A′
E = E(X)[Y]/(P1).

Set ˜AC = C(X) ⊗K(X)
˜AE, A′

C
= C(X) ⊗K(X) A′

E, ˜S = ̂S(ÃC, η) 6.2.9, S′ =
̂S(A′

C
, η), with η denoting the image of Y. Then ˜AC is isomorphic to AC × A′

C

and S̃ is a sum, i.e. a disjoint union of S and S′.
Moreover˜P ∈ E(X)[Y] is left invariant by G; hence˜P ∈ K(X)[Y] and˜S together

with its projection onto � is definable over K.
(b) (ii) ⇒ (i): Assume that S is a clopen subset of ˜S definable over K. We may

assume that ˜S = ̂S(A, η̃), where A = C(X)[Y]/(˜P) and η̃ is the image of Y. Hence
˜S = S � S1.

As in (6.2.5), let �
˜P be the set of x ∈ C for which either one of the coefficients

of ˜P(x, Y) is not defined or this polynomial is a multiple root; it is a finite set. For
all x ∈ C − �

˜P,

˜P(x, Y)=
∏

y∈˜S(x)

(Y − y) =
(

∏

y∈S(x)

(Y − y)
)

·
(

∏

y∈S1(x)

(Y − y)
)

= P(x) · P1(x) ,

where S(x) = η̃(π−1
S (x)), etc.

The coefficients of P(x) are the symmetric functions of zi in S(x); their depen-
dence on x is holomorphic on C − �

˜P, with growth of the order of O
(

1
|x−a|k

)

in the
neighbourhood of a ∈ δ

˜P, and polynomial at infinity. Thanks to (6.2.2, Proposition),
P, P1 ∈ C(X)[Y]. Then S = ̂S(A, η), where A = C(X)[Y]/(P) and η is the image
of Y.

We show that the coefficients of P are algebraic over K. Let � be an algebraic
closure of C(X). Since P = ∏

i∈I(Y − ηi ) with algebraic ηi over K(X) and I ⊂˜I,
˜P = ∏

i∈˜I(Y − ηi ) in �[Y] Hence the coefficients of P as a polynomial in Y are
algebraic elements of C(X) over K(X). The proposition then follows from the next
lemma:

Lemma For all algebraic polynomials f ∈ C(X) over K(X), there is a finite exten-
sion L of K such that f ∈ L(X).

Proof of the Lemma f can be uniquely written as f = Q(X)

Q0(X)
with Q and Q0 coprime

in C[X] and Q0 monic. Set G = AutK(C) and make G act on C(X) by leaving X
fixed. The G-orbit of f is finite, and so the same holds for those of Q, Q0 and of each
of their coefficients. Hence, each coefficients of Q and Q0 is algebraic over K, and
L can be taken to be the extension of K in C generated by these coefficients. �

7.1.4 Definability for Riemann Surfaces

Definition Let S be a compact Riemann surface and K a subfield of C. S is said to
be definable (resp. semi-definable) over K if there is a function f ∈ M∗∗(S) such
that the ramified covering (S, f ) is definable (resp. semi-definable) over K.
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We remind the reader that f ∈ M∗∗(S) means that there is no connected compo-
nent of S on which f is constant. A subalgebra A of M(S) is called a K-structure
on S if there is a function f ∈ M∗∗(S) such that A is a K-structure on (S, f ).

Proposition Let A be a K-subalgebra of M(S). Then, A is a K-structure on S if and
only if

(i) A is a finite product of extension fields of K with transcendence degree 1;
(ii) λ f �→ λ f extends to an isomorphism from the total ring of fractions of C ⊗K A

onto M(S).

Proof Suppose that A is a K-structure for (S,π), where π = f . Then A is an etale
algebra over K(X), hence a finite product of extensions of K with transcendence
degree 1. The algebra M(S) = C(X) ⊗K(X) A is the algebra of fractions with numer-
ators in A and denominators in C(X) − {0}. Hence it is contained in the total ring of
fractions of A, itself contained in M(S). Hence A satisfies (i) and (ii).

Conversely, suppose that A satisfies (i); let f ∈ A be transcendental over K
such that A is a finite algebra over K( f ) = K(X). Let g be a primitive element of
K(X)-algebra A. Then A can be identified with K(X)[Y]/(P), where P is the minimal
polynomial of g. The algebra C(X) ⊗K(X) A = C(X)[Y]/(P) is the ring of fractions
with numerators in C[X, Y]/(Q) (where Q is obtained from P by eliminating denom-
inators) and denominators in K[X] − {0}. Hence it is contained in the total ring of
fractions of C ⊗K A. As it is an etale algebra over K(X), it is a product of fields;
it contains C ⊗K A, hence also its total ring of fractions. Thus the total ring of
fractions of C ⊗K A is must be C(X) ⊗K(X) A = C(X)[Y]/(P) = M(S), and A is a
K-structure on (S, f ). �

Remarks (1) For any homographic function f ∈ M(�), i.e. of the form aX+b
cX+d with

a, b, c, d ∈ C and ad − bc 
= 0, the algebra K( f ) is a K-structure on �. Then,
K( f ) = K(g) if and only if there exist α, β, γ, δ ∈ K such that αδ − βγ 
= 0 and
g = α f +β

γ f +δ
. If K is countable (for example Q), this gives uncountably many distinct

K-structures on �. These algebras are however isomorphic.
(2) If S is connected with genus � 2 (or more generally if each connected com-

ponent of S is of genus � 2), and if K is algebraically closed, then there is at most
one K-structure on S (Exercise 7.1.3).

Exercices 7.1 (Definability)
1.—Let S be a compact Riemann surface.

(a) Show that endowing S with an R-structure is equivalent to defining an anti-
holomorphic homeomorphism τ : S → S such that τ ◦ τ = IS.

(b) The real points of S are then the fixed points of τ . Give examples related to
the same Riemann surface where the set S(R) of real points in empty, and of others
where it is not.

(c) Show that the number of R-structures on S is bounded above by the cardinality
of the automorphism group of S. Give examples with arbitrarily large numbers of
R-structures.
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2.—Let S be a Riemann surface with a defining polynomial Y2 − f (X), where
f ∈ Q[X] is non constant.

(a) Show that for a ∈ Q
∗, the Q-subalgebra Aa generated by X and

√
a.Y defines

a Q-structure on S.

(b) Show that this gives infinitely many distinct Q-structures on S.

(c) Give examples where these distinct Q-structures are isomorphic, and example
where they are not.

3.—Let S be a compact Riemann surface all of whose connected components have
genus � 2 and K an algebraically closed subfield of C (for example the algebraic
closure Q of Q in C). The aim is to show that there is at most one K-structure on S.

Let A1 and A2 be K-structures on S, and Q1, Q2 ∈ K[X, Y] defining polynomials
of respective Y-degrees d1 and d2 . The identity of M(S) gives an isomorphism φ
from the total ring of fractions of C ⊗K A1 onto that of C ⊗K A2. The isomorphism
φ is given by rational fractions ri,ε with ε = 0, 1, such that

φ(X) =
d2−1
∑

i=0

ri,0(X) · Yi , φ(Y) =
d2−1
∑

i=0

ri,1(X) · Yi .

Consider the algebraic Galois group G = AutK(C). The action of G on the coef-
ficients defines rational fractions gri,ε ∈ C(X) for g ∈ G. Show that these gri,ε define
an automorphism of S. Using (6.9.17), show that the G-orbit of the coefficients of
ri,ε is finite. Deduce that these are elements of K and that A1 = A2.

7.2 Belyi’s Theorem

7.2.1 Statement of the Theorem

For f ∈ M∗∗(S) (see 7.1.4), let �( f ) be the set of critical values of f considered
an analytic map from S to the Riemann sphere �. A polynomial f ∈ C[X] will be
considered a map � → �; in particular ∞ ∈ �( f ) if the degree of f is > 1.

The algebraic closure of a subfield K of C in C will be denoted K.

Definition A compact Riemann surface is said to be arithmetic if it is semi-definable
over Q.

The aim of this section is to prove the following theorem:

Theorem Let S be a compact Riemann surface. The following conditions are equiv-
alent:

(i) S is arithmetic;
(ii) there exists f ∈ M∗∗(S) such that �( f ) ⊂ Q ∪ {∞} ;
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(iii) there exists f ∈ M∗∗(S) such that �( f ) ⊂ {0, 1,∞}.
The implication (iii) ⇒ (ii) is trivial. The equivalence (i) ⇔ (ii) is standard, but its

detailed proof is long. The originality of the result due to Belyi lies in the implication
(ii) ⇒ (iii).

The equivalence (i) ⇔ (ii) is a particular case of the more general statement:

Proposition Let S be a compact Riemann surface and K a subfield of C. The fol-
lowing conditions are equivalent:

(i) S is semi-definable over K ;
(ii) there exists f ∈ M∗∗(S) such that �( f ) ⊂ K ∪ {∞}.

In particular, if K is algebraically closed, for example if it is Q, then S is definable
over K if and only if there exists f ∈ M∗∗(S) such that �( f ) ⊂ K ∪ {∞}.

Implication (i) ⇒ (ii) will be proved in 7.2.2. Implication (ii) ⇒ (i) will be proved
in 7.2.5 using a density result stated in 7.2.3 as well as classic results of algebraic
geometry. We will also give a method to obtain the number of distinct roots of a
polynomial (7.2.4).

7.2.2 Implication (i) ⇒ (ii)

Suppose that S = ̂VQ (see 7.1.1), Q ∈ L[X, Y], is regular of degree d in Y, where L
is a finite extension of K. Then M(S) = C(X)[Y]/(P), where P is the polynomial Q
made monic in C(X)[Y]. Set A = L(X)[Y]/(P) and let f be an arbitrary element of
A∗∗ = A ∩ M∗∗(S). We show that �( f ) ⊂ L ∪ {∞} = K ∪ {∞}.

Let c ∈ S be a critical point of f and set v = f (c). The function f is representable
by a unique polynomial F ∈ L(X)[Y] of degree < d:

F = f0 + · · · + fd−1Yd−1 .

1st case: c is a point (xc, yc) of V′
Q and xc is not a pole of any fi .

The derivative g = DS f de f with respect to X along S is given by:

g = ∂F

∂X
− ∂Q/∂X

∂Q/∂Y
· ∂F

∂Y
.

Hence it is in A.
The resultant h = Res(g, P) in is L(X). As h(x) = ∏

y∈S(x) g(x, y) for
x ∈ C − �Q, and h(xc) = 0, xc is algebraic over L. Since Q(xc, yc) = 0, the ordinate
yc is also algebraic over L, and the same holds for v = F(xc).

2nd case: The image of c under the map (X, Y) : ̂VQ → �2 is a point (xc, yc)

with xc ∈ �Q, where xc is a pole of some fi .
In this case, xc is obviously algebraic over L, and S can be analytically parametrized

in the neighbourhood of c by T, where Tk = X − xc. Then Y can be expressed
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as a series in T, with coefficients following from an algebraic calculation. Hence
Y ∈ L[[T]]. The function f = F(X, Y) is represented by an element of L((T)), i.e.
by a fraction with numerator in L[[T]] and denominator a power of T. And v = f (c),
obtained by setting T = 0, is in L ∪ {∞}.

This completes the proof of implication (i) ⇒ (ii) in (7.2.1, proposition).

7.2.3 Density

Proposition Let K be a subfield of C, and K its algebraic closure in C. Let f =
( f1, ..., f p) ∈ K[X1, ..., Xn]p, and M the set of points z = (z1, ..., zn) ∈ C

n such
that f1(z) = · · · = f p(z) = 0. Then M ∩ K

n
is dense in M.

Proof The set M is algebraic in C
n . The set M∗ of regular points of M is open and

dense in M [1, 2]. Let x = (x1, ..., xn) ∈ M∗, and d be the dimension of M∗ at x .
There is a partition of {1, ..., n} in J′ and J′′ with Card (J′) = d such that, identifying
C

n with C
J′ × C

J′′
, the vector space Tx M∗ is the graph of a linear map C

J′ → C
J′′

.
We then write x = (x ′, x ′′). By the implicit function theorem, there are neighbour-

hoods U′ of x ′ and U′′ of x ′′ such that M∗ ∩ (U′ × U′′) is the graph of a C-analytic
map h : U′ → U′′. This map is algebraic over K[(Xi )i∈J′ ], in the following sense: for
all j ∈ J′′, the map h j : U′ → C satisfies a relation

a j,m j h
m j

j + · · · + a j,0 = 0 ,

where all a j,k are in K[(Xi )i∈J′ ] and a j,m j 
= 0. Hence y′ ∈ U′ ∪ K
J′

such that
a j,m j (y′) 
= 0 for all j , the coordinates of the point y′′ = h(y′) are in K, and

y = (y′, y′′) ∈ M∗ ∩ (U′ × U′′) ∩ K
n
. Therefore, M∗ ∩ (U′ × U′′) ∩ K

n
is dense in

M∗ ∩ (U′ × U′′). It follows that M∗ ∩ K
n

is dense in M∗, hence so in M. �

7.2.4 Polynomials with k Distinct Roots

Proposition Let Q ∈ C[X] be a polynomial of degree d, with k distinct roots. Then
the function hQ : C → C assigning to t the discriminant discr(Q − t) has a zero of
order d − k at 0.

Proof Let α1,...,αk be the distinct roots of Q with multiplicities μ1,...,μk . For t near
0, the polynomial Q − t has μi roots ξi,1,...,ξi,μi near αi , with ξi, j − αi infinitely
small of the order of |t |1/μi as t tends to 0, as well as ξi, j − ξi, j ′ for j 
= j ′. Indeed,
by proposition 6.1.4, there is a chart ϕ de C in the neighbourhood of αi such that
Q(z) = ϕ(z)μi for z in the domain of ϕ; then let ξi, j be ϕ−1(s j ), where the s j are the

μi th roots of t . The product
∏

j 
= j ′
(ξi, j − ξi, j ′) is of the order of (|t |1/μi )μ

2
i −μi = |t |μi −1;
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and ξi, j − ξi ′, j ′ is of the order of 1 for i 
= i ′. Hence

discr(Q − t) =
∏

(i, j)
=(i ′, j ′)

(

ξi, j − ξi ′, j ′
)

is of the order of |t |ν , where ν = ∑

μi − 1 = d − k. �

Corollary In the space of polynomials Q ∈ C[X] of degree � d, identifiable with
C

d+1, the set of polynomials of degree < d or with at most k distinct roots is a
Q-algebraic set.

Proof This is the set on which polynomial functions Q �→ h(r)
Q (0) with 0 � r <

d − k over Z vanish. �

7.2.5 Implication (ii) ⇒ (i)

Proposition Let S be a Riemann surface, K an algebraically closed subfield of C

and f ∈ M∗∗(S). Suppose that �( f ) ⊂ K ∪ {∞}. Then S is definable over K.

Proof Let P(X, Y) = ad(X)Yd + · · · + a0(X) be a defining polynomial of (S, f ).
With the notation of 7.1.1,

̂�P = �P ∪ {∞} ⊃ �( f ).

Let ξ1,...,ξs be the points of ̂�P, with �( f ) = {ξ1,...,ξr }. For 1 � i � s, let Ai be
disjoint closed discs centered at ξi if ξi ∈ C, of the form � − DR if ξi = ∞. Set
A∗

i = Ai − {ξi } and let �i be the boundary of Ai .
For 1 � i � r , the ramified covering (S, f ) induces a non trivial covering of �i ;

with the notation of 6.2.5, for r < i � s, the following holds:
• if ξi ∈ �′, then one of ai

ad
is not defined; so ad(ξi ) = 0, and the point ad(x) ∈ C

∗
goes round νi 
= 0 times as x runs through �i ;

• if ξi = ∞, one of a j (x) goes round a non-trivial number of times;
• if ξi ∈ �′′ − �′, then the set π−1(Ai ) ∩ VP is the union of graphs of d holo-

morphic functions η1,...,ηd : Ai → C, and there are two indices j 
= j ′ such that
η j ′(x) − η j (x) goes round νi 
= 0 times as x runs through �i .

For 0 � i � d, let ei be the degree of ai ∈ C[X], e = ed , and E the set of polyno-
mials Q = bd(X)Yd + · · · + b0(X) ∈ C[X, Y] such that bi is of degree � ei for
all i , and bd is monic of degree e. This set can be identified with C

N, where
N = ∑

(ei + 1) − 1. Let EK be the set of Q ∈ E with coefficients in K.
Let M be the set of Q ∈ E such that ̂�Q ⊃ �( f ) and Card (�Q) � Card (�P).

Lemma 7.1 For Q ∈ M sufficiently near P, as a ramified covering of �, the Riemann
surface ̂VQ is isomorphic to ̂VP, hence to S equipped with f .
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Proof The set B = � − ⋃
◦
Ai is compact, and X �→ discrP(X) as well as ad de not

vanish on B. Let � be a connected relatively compact neighbourhood of P in E such
that for Q ∈ �, the functions X �→ discrQ(X) and bd do not vanish on B. Then, by
(4.3.12, Proposition),

Z = {(Q, x, y) ∈ � × B × C | Q(x)(y) = 0},

together with the projection π : (Q, x, y) �→ (Q, x) is a covering of � × B. Indeed, π
is etale by the implicit function theorem, and proper since the functions bi are bounded
and bd is bounded below by a strictly positive constant. The injections x �→ (P, x)

and x �→ (Q, x) are homotopic; so VP and VQ induce coverings isomorphic to B
(4.3.17, Corollary 1).

In particular, for all i , the coverings of �i induced by VP and VQ are isomorphic.
Each set Ai has at least one point of ̂�Q. Indeed, for 1 � i � r , VQ induces a non
trivial covering of �i ; for i such that ξi ∈ �′ ∪ {∞}, bi (x) stays near ai (x) as x
runs through �i , and goes round 0 νi times; for i such that ξi ∈ �′′ − �′, there are
functions ηQ

1 ,..., ηQ
d near η1,..., ηd , where ηQ

j ′(x) − η j (x) goes round νi times as x
runs through �i .

As Card (̂�Q) � Card (̂�P), each set Ai has exactly one point ξQ
i of ̂�Q, and the

covering of Ai − {ξQ
i } induced by VQ is determined by its restriction to �i .

For r < i � s, this covering is trivial; Hence VQ induces an (unramified) covering
of � − ⋃r

i=1 Ai , and an isomorphism between the coverings induced by ̂VP and ̂VQ

over � − ⋃

Ai extends to coverings induced over � − ⋃r
i=1 Ai .

For 1 � i � r , ξQ
i = ξi and an isomorphism between the coverings induced by

̂VP and ̂VQ over � − ⋃r
i=1 Ai extends to an isomorphism of ramified coverings of

� between ̂VP and ̂VQ, �

Lemma 7.2 The set M ∩ EK is dense in M.

Proof The set M is K-algebraic. Indeed, the coefficients of the discriminant δQ =
discrYQ ∈ C[X] are polynomials whose coefficients are integral with respect to the
coefficients of Q. For each ξ ∈ �( f ) − {∞} ⊂ K, the set of Q = bdYd + · · · + b0 ∈
E such that (bdδQ)(ξ) = 0 is K-algebraic. As a result of (7.2.4, Corollary) the set of
Q ∈ E such that Card (�Q) � Card (�P) is Q-algebraic. The intersection M of all
these sets is therefore a K-algebraic subset of E.

The lemma then follows from (7.2.3, Proposition). �

End of the Proof of the Proposition With the above notation, S is isomorphic to
̂VP, hence also to ̂VQ for Q ∈ M sufficiently near P (Lemma 7.1). By Lemma 7.2,
Q ∈ M ∩ EK may be chosen sufficiently near P for this to hold. Then ̂VQ is defined
on K. �

This completes the proof of (7.2.1, Proposition).
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7.2.6 The Action f!

Let S and S′ be compact Riemann surfaces and f : S → S′ an analytic map. For any
finite subset A of S, set

f!(A) = f (A) ∪ �( f )

where �( f ) is the set of critical values of f . Then

f!(∅) = �( f ) ,

f!(A ∪ B) = f!(A) ∪ f!(B) = f!(A) ∪ f (B) ,

(g ◦ f )!(A) = g!( f!(A)) .

In particular,

�(g ◦ f ) = g!(�( f )) .

We will apply this to the case where S = S′ = � and f is a polynomial of degree
d � 2. Then �( f ) = �∗( f ) ∪ {∞}, where �∗( f ) is the set of critical values of
f : C → C.

7.2.7 Rational Critical Values

Proposition For a compact Riemann surface of S, (ii) ⇒ (ii′), where:
(ii) there exists f ∈ M∗∗(S) such that �( f ) ⊂ Q ∪ {∞},
(ii ′) there exists f ∈ M∗∗(S) such that �( f ) ⊂ Q ∪ {∞}.

Lemma Let A ⊂ Q ∪ {∞} ∪ P−1(0) be a finite set, with P ∈ Q[X] of degree d.
Then there is a polynomial h such that h!(A) ⊂ Q ∪ {∞} ∪ P−1

1 (0) with P1 ∈ Q[X]
of degree � d − 1.

Proof In fact, h = P is suitable. Set A = A′ ∪ A′′, where A′ ⊂ P−1(0) and A′′ ⊂
Q ∪ {∞}. Then, P(A′) ⊂ {0} and P(A′′) ⊂ Q ∪ {∞}. The set �∗(P) of the finite
critical values of P has at most d − 1 elements, and is invariant under AutQ(C), and
equals P−1

1 (0), for some P1 ∈ Q[X] of degree � d − 1. And
P!(A) = P(A) ∪ �(P) ⊂ Q ∪ {∞} ∪ P−1

1 (0) . �

A repeated application of this lemma gives:

Corollary Let A ⊂ Q ∪ {∞} be a finite set. Then there is a polynomial h ∈ Q[X]
such that h!(A) ⊂ Q ∪ {∞}.
Proof of the Proposition Let f be such that �( f ) ⊂ Q ∪ {∞}. By the above corol-
lary, there exists h ∈ Q[X] such that �(h ◦ f ) = h!(�( f )) ⊂ Q ∪ {∞} . �
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7.2.8 Reduction of the Number of Critical Values

Proposition Let A ⊂ Q ∪ {∞} be a finite set such that ∞ ∈ A and Card (A) > 3.
There is a polynomial h ∈ Q[X] for which Card (h!(A)) < Card (A).

Lemma For f = f p,q = Xp(1 − X)q and A = {

0,
p

p+q , 1,∞}

, Card ( f!(A)) = 3.

Proof The critical points of f in C are 0, 1 and p
p+q ; hence �∗( f ) = {

0, f
( p

p+q

)}

,

and f!(A) = f (A) = {

0, f
( p

p+q

)

,∞}

. �

Proof of the Proposition Let A = {a1, a2, ..., an−1,∞} with a1 < a2 < a3. Let α be
the affine map C → C such that α(a1) = 0 and α(a3) = 1. Then α(a2) ∈ Q ∩ ]0, 1[
is of the form p

p+q . Take f = Xp(1 − X)q and h = f ◦ α. Then h!({a1, a2, a3,∞}) =
f!
({

0,
p

p+q ,∞})

, and h!(A) = h!({a1, a2, a3,∞}) ∪ h(a4, ..., an−1}) has at most
3 + n − 4 = n − 1 elements. �

Corollary 7.1 For any finite set A ⊂ Q ∪ {∞}, there is a polynomial h ∈ Q[X] such
that h!(A) ⊂ {0, 1,∞}.
Proof Repeated application of the proposition gives a polynomial H ∈ Q[X] such
that Card (H!(A)) � 3. This implies ∞ ∈ H!(A), and so H!(A) ⊂ {b1, b2,∞} with
b1 < b2. Let β be affine and such that β(b1) = 0 and β(b2) = 1. For h = β ◦ H,
h!(A) ⊂ {0, 1,∞}. �

Corollary 7.2 For any finite set A ⊂ Q ∪ {∞}, there is a polynomial h ∈ Q[X] such
that h!(A) ⊂ {0, 1,∞}.
Proof The lemma follows from Corollary 7.1 and (7.2.7 Corollary). �

End of the Proof of Belyi’s Theorem We keep the notation of (7.2.1) and (7.2.7).
It remains to prove that (ii′) ⇒ (iii). If g ∈ M∗∗(S) such that �(g) ⊂ Q ∪ {∞},
then by Corollary 7.1, there exists h ∈ Q[X] for which h!(�(g)) ⊂ {0, 1,∞}. Then
�(h ◦ g) = h!(�(g)) ⊂ {0, 1,∞}. �

7.3 Equivalence Between Various Categories

In a dark and deep unity,
Vast as the night and clarity

Ch. B. (F. d. M.)

In this section, we define equivalences between several categories seemingly from
different domains: algebra, topology, combinatorics, complex analysis. This should
establish correspondences between these different domains, thereby contributing to
their enrichment.
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7.3.1 Ramification Locus of an Algebra

Let K be a subfield of C and A an etale K(X)-algebra. Denote by AC the
C(X)-algebra C(X) ⊗K(X) A. With the notation of (6.2.11), set �A = �AC

: hence
it is the ramification set of an analytic ramified covering (S,π) of � such that as a
C(X)-algebra, M(S) is isomorphic to AC.

7.3.2 Transfer of �

Let K be a field of characteristic 0 and A an etale K(X)-algebra; set α to be the ring
homomorphism K(X) → A defining the algebra structure of A. Let ι1 and ι2 be two
embeddings of K into C. For i = 1, 2, set Ki = ιi (K). Extend ιi to an embedding
K(X) → C(X) by ιi (X) = X. Let Ai be the Ki (X)-algebra obtained by equipping
the ring A of αi = α ◦ ι−1

i : Ki → A, and �i the subset �Ai of C.

Proposition Set σ = ι2 ◦ ι−1
1 : K1 → K2, and let τ be an algebraic automorphism

of C inducing σ. Then τ (�1) = �2.

Proof Extend σ to K1(X) and τ to C(X)[Y] by σ(X) = X, τ (X) = X and τ (Y) = Y.
Then τ is a σ-morphism. Hence there is a morphism

τ∗ = τ ⊗ 1A : (A1)C = C(X) ⊗K1(X) A1 → C(X) ⊗K2(X) A2 = (A2)C .

If η1 is a primitive element in (A1)C, then η2 = τ∗(η1) is primitive in (A2)C, and the
automorphism τ∗ of C(X)[Y] inducing τ on C and fixing X and Y maps the minimal
polynomial P1 of η1 onto the minimal polynomial P2 of η2. The definition of �E,η in
(6.2.5) being of an algebraic nature,

�(A2)C,η2 = τ (�(A1)C,η1) .

Thanks to (6.2.12, Proposition), taking the intersection over all primitive elements
gives

�(A2)C
= τ (�(A1)C

) . cqfd

7.3.3

Corollary Let K be a subfield of C and A an etale K(X)-algebra. Then the set �A

is contained in K and generates a Galois extension of K.

Proof For any algebraic automorphism τ of C inducing the identity on K, τ (�A) =
�A. As �A is finite, the elements of �A only have finitely many conjugates. Hence
they are algebraic over K. The extension generated by �A is invariant under AutK(K),
and so is Galois. �
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7.3.4 The Category A

Let A denote the category of etale algebras A over Q(X) such that �A ⊂ {0, 1,∞}.
The morphisms are the homomorphisms of Q(X)-algebras.

The Galois group G = AutQ(Q) acts on the right on A in the following sense:
any element g ∈ G defines a (covariant) functor g∗ : A → A, (g.h)∗ = h∗ ◦ g∗ and
(1

Q
)∗ = 1A. If A is an etale Q(X)-algebra, denoting by α : Q(X) → A the ring

homomorphism defining its structure, the algebra g∗A is the ring A equipped with
α ◦ g. By (7.3.2, Proposition), �g∗A = �A. Hence g∗A is indeed an object of A.
If ϕ : A → B is a morphism of Q(X)-algebras, then the same map is a morphism
g∗A → g∗B. Hence, we may set g∗ϕ = ϕ.

Remark For each g the functor g∗ is a covariant functor from A to itself, but g∗
depends “contravariantly” on g.

7.3.5 Characterization of the Elements of an Etale Algebra

Proposition Let K be an algebraically closed subfield of C and A an etale
K(X)-algebra. Set E = C(X) ⊗K(X) A; identify K(X) and A with subsets of E by
f �→ f 1 and a �→ 1a. Then A is the algebraic closure K(X) in E.

Proof The algebra A is finite over K(X), and hence is in the algebraic closure of
K(X) in E. We show that no f ∈ E − A is algebraic over K(X).

Identify A with K(X)[Y]/(P), where P is a polynomial of degree d = [A : K(X)]
(minimal polynomial of a primitive element). Then (1, y, ..., yd−1) is a basis for
A as a K(X)-vector space, and of E as a C(X)-vector space. Any f ∈ E can be
uniquely written as f0 + f1 y + · · · + fd−1 yd−1. If f ∈ E − A, then for some i , fi

is in C(X) − K(X). This fi can be uniquely written as p
q , where p, q ∈ C[X] such

that g.c.d.(p, q) = 1 and q monic: at least one of the coefficients of p or q is in
C − K, hence transcendental over K. The orbit of this coefficient under the action of
GK = AutK(C) is infinite. Hence so is the orbit of f under the action of GK acting
on C(X)[Y]/(P) by keeping fixed X and Y. As E is a finite product of extensions of
K(X), this shows that f is transcendental over K(X). �

7.3.6 The Categories E and V

Let E be the category of etale C(X)-algebras E such that �E ⊂ {0, 1,∞}, the mor-
phisms being the homomorphisms of C(X)-algebras.

Let V be the category V�,{0,1,∞} of analytic ramified coverings X of the Rie-
mann sphere � such that �X ⊂ {0, 1,∞}. The functor M which assigns to each
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Riemann surface S the algebra M(S) of meromorphic functions on S defines an
anti-equivalence of categories M : V → E (6.2.4). (6.2.11).

As a result of (7.2.5), every algebra object E of E contains a Q(X)-subalgebra A
such that E is identified with AC = C(X) ⊗

Q(X) A, and by (7.3.5) this subalgebra is

the algebraic closure of Q(X) in E. Hence, the functor of scalar extension A �→ AC

from A to E and the functor α : E → A which assigns to each C(X)-algebra E the
algebraic closure of Q(X) in E are quasi-inverse equivalences of categories.

7.3.7 A Diagram of Categories

By (6.1.10, Corollary), the forgetful functor V → RR. = RR�,{0,1,∞} (category
of finite topological ramified coverings S of � such that �S ⊂ {0, 1,∞}) is an equiv-
alence of categories. By (6.1.11, Proposition) the restriction functor S �→ S|C−{0,1,∞}
is an equivalence of categories fromRR. onto the category Covf. = CovfC−{0,1}
of finite coverings of C − {0, 1}.

Choose a basepoint z0 in C − {0, 1}, for example z0 = 1
2 , and let � be the funda-

mental group π1(C − {0, 1}, z0). This is a (non commutative) free group on 2 gener-
ators γ0 and γ1, represented by loops around 0 and 1 respectively (6.4). Its profinite
completion ̂� = ̂�� = π̂1(C − {0, 1}, z0) is a profinite free group on 2 generators,
which we also write γ0 and γ1. By (4.5.3, Theorem), the functor S �→ S(z0) defines
an equivalence from Covf. onto the categories �-Setf (resp. ̂�-Setf) of finite
sets on which � acts (resp.̂� acts continuously), in other words of finite sets equipped
with two permutations.

Let � be an algebraic closure of Q(X), and �{0,1,∞} the (by (6.2.11) directed)
union sub-extension in � of sub-extensions that are objets of A. Let ̂�alg be the
Galois group of Aut

Q(X)�{0,1,∞}. By (5.9.4 Theorem), the functor A �→ Hom
Q(X)-AAAlllggg

(A,�{0,1,∞}) defines an anti-equivalence of categories from A onto ̂�alg-Setf.
This gives a diagram of functors all of which are equivalences or anti-equivalences

of categories (the arrows representing contravariant functors are circled):

̂�alg-Setf←◦−A � E
M←◦− V → RR. → Covf. → �-Setf ← ̂�-Setf

In the following, we expand this diagram.

Remarks (1) The categorieŝ�alg-Setf and̂�-Setf being equivalent, the profinite
groups ̂� and ̂�alg are isomorphic (2.9.8, Corollary); in particular ̂�alg is a profinite
free group on 2 generators.

(2) The group G = AutQ(Q) acts on A. Hence it also acts on all categories in
the above diagram. For example, to each g ∈ G can be assigned a functor g∗ from
the category Covf. to itself in such a way that the functors (g · h)∗ and g∗ ◦ h∗ are
isomorphic for g and h in G, and 1∗ ≈ 1Covf. . These are merely isomorphic functors
following from the transference of the action of G on A using equivalences of
categories without quasi-inverses. There are also anti-equivalences, but the functors
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g∗ are always covariant, and (g.h)∗ ≈ g∗ ◦ h∗ is always the case. In other words the
group G always acts on the left.

Proposition Let E and E′ be finite ̂�-sets with E′ = g∗(E) for g ∈ G. Then there
is an automorphism φ of ̂� such that E′ ≈ φ∗E. In particular there is a bijection
β : E → E′ mapping ̂� (or �) onto the the group �E′ in S(E′), which is the image
of �E (similarly defined) under f �→ β ◦ f ◦ β−1.

Proof The element g ∈ G defines an equivalence g∗ from the category ̂�-Setf to
itself. By (2.9.8, Corollary) there is an automorphism φ of ̂� such that the functors g∗
and φ∗ are isomorphic. An isomorphism from φ∗ onto g∗ gives a bijection β : E → E′
such that β(φ(g) · x) = g · β(x). Letting σg (resp. σ′

g) be the action of g ∈ � on E
(resp. on E′), β ◦ σφ(g) = σ′

g ◦ β, i.e. σ′
g = β ◦ σφ(g) ◦ β−1. �

7.3.8 Cyclic Order

Let O be a finite set of cardinality k. A cyclic order on O is an equivalence class
consisting of bijections ϕ : O → Z/(k) for the equivalence relation identifying ϕ
with ϕ + a, a being a constant. The bijections in this class are called the cyclic
charts for the cyclically ordered set O.

The map σ = ϕ ◦ T ◦ ϕ−1 : O → O, where T is the translation t �→ t + 1 in
Z/(k), is independent of the choice of the cyclic chart ϕ. Each x has a next ele-
ment σ(x). If E is a finite set and f a permutation of E, i.e. a bijection E → E, then
there is a unique cyclic order on each orbit O of f such that the restriction of f to
O is the map taking elements to the next one. Defining a cyclic order on O is thus
equivalent to defining a permutation of O acting transitively (assuming that O 
= ∅:
there is no cyclic order on ∅!)

Let O and O′ be two cyclically ordered sets of cardinalities k and k ′. A map
h : O′ → O will be said to be ramified if h ◦ σ′ = σ ◦ h, where σ and σ′ are the
maps assigning the next element in O and O′. As a result, k ′ is a multiple of k, and
the expression ϕ−1 ◦ ϕ′ in the cyclic charts is of the form i �→ χ(i) + a, for some
canonical map χ : Z/(k ′) → Z/(k) and constant a ∈ Z/(k).

7.3.9 Graphs

Here we give a different definition of graphs from the one used in § 4.8.
A finite graph consists of:

(1) a finite set N whose elements are called vertices;
(2) a finite set A whose elements are called directed edges;
(3) two maps ε0, ε1 : A → N called source and range;
(4) a fixed point free reversing involution τ : A → A such that ε0 ◦ τ = ε1

(whence ε1 ◦ τ = ε0).
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In this chapter, for simplicity’s sake a finite graph will be called a graph. The
main differences with the definition given in (4.8.1) are:

(1) (ε0, ε1) : A → N2 is not assumed to be injective (two vertices may be con-
nected by several edges), so A cannot be identified to a subset of N × N,

(2) the image of (ε0, ε1) is not assumed to avoid the diagonal: loops are allowed,
(3) N and A are assumed to be finite.
The geometric realization |H| of a graph H = (N, A, ε0, ε1) is the quotient of

N � (A × [0, 1]) by the equivalence relation generated by (a, 0) ∼ ε0(a), (a, 1) ∼
ε1(a) and (a, t) ∼ (τ (a), 1 − t) for a ∈ A and t ∈ [0, 1].

The elements of A/τ are called (undirected) edges.

7.3.10 The Category H

A bicoloured graph is a graph H = (N, A, ε0, ε1, τ ) equipped with a map π :
N → {0, 1} such that π(ε1(a)) 
= π(ε0(a)) for a ∈ A. A vertex s is called white
if π(s) = 0, black if π(s) = 1. The set A is the disjoint union of the set A+ of outgo-
ing directed edges (white source, black range) and of the set A− of incoming directed
edges (black source, white range).

The category of bicoloured graphs cyclically ordered at each vertex. will be
denoted H. Hence an object of H is a bicoloured graph H = (N, A, ε0, ε1, τ ,π)

equipped, for each vertex s ∈ N, with a cyclic order ωs on the set As of directed
edges with source s.

Defining cyclic orders ωs is equivalent to defining the map σ : A → A assigning
to each directed edge a, the next one with respect to the cyclic order ωε0(a), and
subject to the condition ε0 ◦ σ = ε0 and to acting transitively on the fibres of ε0.

A morphism f : (H′, (ω′
s ′)) → (H, (ωs)) is given by two maps fN : N′ → N and

fA : A′ → A such that ε0 ◦ fA = fN ◦ ε′
0, ε1 ◦ fA = fN ◦ ε′

1, fA ◦ τ ′ = τ ◦ f ′
A, π ◦

fN = π′, and such that fA induces a branching map f ′
s : A′

s ′ → A f (s ′) for all vertices
s ′ of H′ (in other words, fA ◦ σ′ = σ ◦ fA).

Remark A graph with a cyclic order at the vertices has no isolated vertex: the map
ε0 : A → N is surjective since the emptyset has no cyclic order, and so is ε1 since
ε1 = ε0 ◦ τ . The map fN in a morphism of H is thus determined by fA.

Let σ0 (resp. σ1) be the permutation of A+ induced by σ (resp. by τ ◦ σ ◦ τ ).

Proposition The functor ((H, (ωs)) �→ (A+,σ0,σ1) is an equivalence of categories
from H onto the category H̆ of finite sets equipped with two permutations σ0, σ1.

Proof Define (A,σ) from (B,σ0,σ1), where σ0 and σ1 are permutations of B, by
A = B × {0, 1} and σ(b, i) = (σi (b), i). Then define the object (H, (ωs)) of H by
taking N0 to be the set B/σ0 of orbits of σ0, N1 = B/σ1, and N = N0 � N1. Set
τ (b, i) = (b, 1 − i). Take εi (b, j) to be the class of b in Ni+ j (mod 2), π = 0 on N0
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and 1 on N1, and ωs to be the cyclic order with respect to which the next element is
given by the restriction of σ.

This defines a functor H̆ → H. It is a quasi-inverse of the functor H → H̆. �

7.3.11 The Functor θ : RR. → H

If (S,πS) is an object of RR. = RR�,{0,1,∞}, then the space π−1
S ([0, 1]) is identi-

fied with the geometric realization of the bicoloured graph H = (N, A, ε0, ε1, τ ,π)

defined as follows:
• N=π−1

S ({0, 1}); the map π :N→{0, 1} is the restriction of πS ;
• A+ (resp. A−) is the set of continuous maps a : [0, 1] → S such that π(a(t)) = t

(resp. = 1 − t),
• τ (a) is the map t �→ a(1 − t),
• ε0(a) = a(0), ε1(a) = a(1).
Indeed, the geometric realization |H| of the graph H is a quotient of A × [0, 1],

the map (a, t) �→ a(t) of A × [0, 1] passes to the quotient and defines a continuous
map |H| → π−1

S ([0, 1]). It can be checked to be bijective; as |H| is compact, it is a
homeomorphism.

Define as follows a cyclic order at the vertices of H. If s ∈ S(0) (resp. S(1)), there
is (6.1.8) a chart ϕ for S in the neighbourhood of s such that π(x) = (ϕ(x))d (resp.
π(x) = (1 − ϕ(x))d ), where d is the local degree of the projection π : S → � at s.
The directed edges a� with source s are given by ϕ(a�(t)) = e2iπ�/d t , for � ∈ Z/(d).
The bijection � �→ a� defines a cyclic order ωs on As , independent of the choice of
ϕ. The bicoloured graph H, equipped with (ωs)s∈N, is an object of H which will be
written θ(S).

If f : S′ → S is a morphism of RR., then the map f induces fN : N′ → N and
fA : A′ → A. These define a morphism f∗ of bicoloured graphs. The map f turns S′
into a ramified covering of S (this can be either directly seen or by using (6.1.10) and
(6.1.5). Consequently, for s ′ ∈ S′, fA induces a branching map A′

s ′ → A f (s ′). Hence
f∗ is a morphism of H, and θ becomes a functor RR. → H.

We construct a quasi inverse functor η of a functor θ̇ related to θ, and then deduce
that θ is an equivalence of categories.

7.3.12 The Functor η

Let H = (N, A, ε0, ε1, τ ,π, (ωs))be an object ofH, i.e. a bicoloured graph cyclically
ordered at each vertex. We construct a ramified covering Ṡ of C from H, with
�Ṡ ⊂ {0, 1}.

Let H be the closed upper half-plane: H = {x + iy | x ∈ R, y � 0}, and con-
sider � = A × H. Define π� : � → C by π�(a, z) = z if a is an outgoing edge,
π�(a, z) = 1 − z if a is an incoming edge. Equip � with the equivalence relation
generated by:
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• (a, t) ∼ (τ (a) , 1 − t) for t ∈ [0, 1],
• (a, t) ∼ (τ (σ(a)) , 1 − t) for t � 0, where σ(a) is the directed edge along a

with respect to the cyclic order at the source vertex of a.

These conditions imply (a, 0) ∼ (a′, 0) if a and a′ have the same source, and
(a, 1) ∼ (a′, 1) if a and a′ have the same range. Indeed, (a, 0) ∼ (τ (σ(a)), 1) ∼
(σ(a), 0), (a, 1) ∼ (τ (a), 0) ∼ (σ1(a), 1) where σ1 = τ ◦ σ ◦ τ , and σ (resp. σ1)
acts transitively on the set of directed edges having a given source (resp. range).

Let S be the quotient space of � by the equivalence relation thus defined. Two
equivalent points have the same image under the map π�. Hence there is a continuous
map πS : S → C. Let η(H) be the space S equipped with πS.

Proposition (a) The space S equipped with πS is a finite ramified covering of C,
with �S ⊂ {0, 1}.

(b) If f = ( fN, fA) : H′ → H is a morphism in H, by passing to the quo-
tient derived from fA × 1

H
: A′ × H → A × H gives a morphism f∗ : S′ → S in

RRC,{0,1}. This defines a covariant functor η : H → RRC,{0,1}.
(c) The functor θ is of the form θ̇ ◦ ρ, where ρ : RR. → RRC,{0,1} is the restric-

tion functor, which is an equivalence of categories. The functor η is a quasi-inverse
of θ̇.

Proof (a) The restriction of S to (C − R) ∪ ]0, 1[ is a quotient of A × (H∪]0, 1[)
by the equivalence relation identifying (a, t) with (τ (a), 1 − t) for t ∈ ]0, 1[; it is a
trivial covering of the open subset (C − R) ∪ ]0, 1[, with fibre A+.

The restriction of S to (C − R) ∪ R
∗− is the quotient of

(A+ × (H ∪ R
∗
−) ∪ (A− × (H ∪ ]1,∞[)

by the equivalence relation identifying (a, t) with (τ (σ(a)), 1 − t) for a ∈ A+, t < 0;
it is a trivial covering of the open subset (C − R) ∪ R∗−, with fibre A+.

The restriction of S to (C − R) ∪ ]1,∞[ is the quotient of

(A− × (H ∪ R
∗
−) ∪ (A+ × (H ∪ ]1,∞[)

by the equivalence relation identifying (a, t) with (τ (σ(a)), 1 − t) for a ∈ A−, t < 0;
it is a trivial covering of the open subset (C − R) ∪ ]1,∞[, with fibre A+.

Hence, S induces a covering of C − {0, 1}.
Let χ be the quotient map � → S, a ∈ A, and d the number of directed edges

with source s = ε0(a). Define ϕa in the neighbourhood of ṡ = χ(a, 0) in S by
ϕa(χ(σ�(a)), z) = e2iπ�/d · z1/d , and ϕa(χ(τσ�(a)), z) = e2iπ�/d · (1 − z)1/d , com-
puted with Arg(z) ∈ [0,π] and Arg(1 − z) ∈ [−π, 0] for z ∈ H. Then ϕa is a chart
for S in the neighbourhood of ṡ, and letting ψ denote the chart for C which is the
identity if a ∈ A+ and z �→ 1 − z if a ∈ A−, the expression of πS in the charts ϕa

and ψ is z �→ zd .
The cyclic order defined by this chart on the set of directed edges originating at s

agrees with ωs .
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(b) It suffices to check.
(c) It is a matter of defining for an object H of H an isomorphism H → H′ =

θ̇(η(H)), and for a ramified covering S of C with �S ⊂ {0, 1} an isomorphism
S → S′ = η(θ̇(S)).

Let H = (N, A, ...) be an object of H; set (S,πS) = η(H) with S = �/∼ as
above, and H′ = (N′, A′, ...) = θ(S,πS). The set N′

0 = π−1
S (0) is the quotient of A+

by the equivalence relation identifying a with a′ if ε0(a) = ε0(a′), hence can be
identified with N0. Likewise, N′

1 can be identified with N1. Assigning to a ∈ A the
map t �→ χ(a, t) defines a bijection A → A′ compatible with ε0, ε1, τ and π. Hence
there is an isomorphism H → H′ to H.

Let (S,πS) be a ramified covering of C with �S ⊂ {0, 1}, H = (N, A, ...) = θ̇(S)

and (S′,πS′) = η(H). The space S′ is a quotient of �′ = A × H. For a ∈ A, the map
a : [0, 1] → S is a unique continuous extension â to H such that πS ◦ â(z) = z if
a ∈ A+, and 1 − z if a ∈ A−. Hence there is a continuous map �′ → S compatible
with the equivalence relation, and so giving a map S′ → S. It can be checked that
the latter is a homeomorphism over C, and that the entire construction depends
functoriality on S. �

Corollary The functor θ : RR. → H is an equivalence of categories.

7.3.13 Action of G on H

So there is a diagram of equivalences of categories

̂�-Setf
�

̂�alg-Setf←◦→A ←→ E←◦→V ←→ RR. ←→ H

The group G = AutQ(Q) acts on A, hence also on all the categories of the above
diagram, in particular on H. Here too it is an action in a weak sense, as in (7.3.7).
However G acts on the set X of isomorphism classes of objects of H.

The valency of a vertex s in a graph H which is an object ofH is the number vH(s)
of directed edges having source s. Letting X, E and A denote the objects of RR., E,
A corresponding to H, the valency vH(x) is the local degree at sX corresponding to s
under the projection X → �. It can also be defined algebraically: it is the dimension
of the vector space As/mπ(s) · As over Q, where As is the subalgebra of A consisting
of functions defined at s, and mπ(s) the ideal consisting of functions of Q(X) defined
and vanishing at π(s).

A valency function νH is the map {0, 1} × N → N assigning to (u, v) the number
of vertices s of H such that π(s) = u and νH(s) = v. For g ∈ G and H an object of
H, the graphs H and g∗(H) have the same valency function.
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Several equivalence relations can be considered on the set X: Given x, x ′ ∈ X

represented by the objets H and H′ of H, we write
• x ∼gb x ′ or H ∼gb H′, if H and H′ are isomorphic as bicoloured graphs, irre-

spective of the cyclic order at the vertices;
• x ∼ν x ′ or H ∼ν H′, if H and H′ have the same valency function, i.e. νH = νH′ .
• x ∼G x ′ or H ∼G H′, if there exists g ∈ G = AutQ(Q) mapping x onto x ′

(i.e. H into an object of H isomorphic to H′).
The relation ∼ν is weaker than the other two: x ∼gb x ′ ⇒ x ∼ν x ′ and x ∼G x ′ ⇒

x ∼ν x ′ (this latter implication follows from the algebraic definition of valency).
Clearly, x ∼ν x ′

� x ∼gb x ′. In section (7.5) we will see that x ∼gb x ′
� x ∼G

x ′, (and necessarily x ∼ν x ′
� x ∼G x ′), and that x ∼G x ′

� x ∼gb x ′ (in particular
the action of G is not trivial). In fact, already in section (7.4), we will see that the
action of G on X is faithful.

All this continues to hold in the full subcategory T of H whose objets are the
trees, and in the set Y of isomorphism classes of objects of T.

7.3.14 A Numerical Equivalence Class

The graph along H1 has

– 4 white vertices of valency 1;
– 2 white vertices of valency 3;
– 1 white vertices of valency 4;
– 7 black vertices of valency 2;

There are 31 isomorphism classes of objects of H in the same class of ∼ν (same
valency function).

A bicoloured graph all of whose black vertices have valency 2 can be uniquely
obtained from an uncoloured graph—or, equivalently, monocoloured white—by sub-
dividing each edge by a black vertex. Moreover, a cyclic order at the vertices of the
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monocoloured graph extends uniquely to the bicoloured graph. This gives a bijection
between the set X2 of isomorphism classes of objects of H with bivalent black ver-
tices, and the setZ of isomorphism classes of monocoloured white graphs, cyclically
ordered at each vertex.

The 31 points of Z corresponding to those of the class of ∼ν from H1 to X2 are
represented by the graphs of the page 429.

These objects are divided into 8 classes of ∼gb:

{G1, G2, G3}, {G4, G5}, {G6, G11},
{G7, G8, G9, G10, G12, G13}, {G14, G15},
{G16, . . . , G21}, {G22, . . . , G28}, {G29, G30, G31} .
This does not tell us much on the action of the group G. Proposition 7.3.7 gives

a necessary condition for two dessins d’enfants to be in the same orbit of the action
of G. Two new invariants will give other necessary conditions: the extended valency
function and the automorphism group.

7.3.15 The Extended Valency Function

To each object H of H corresponds an object X of the ramified covering RR. of
�, such that �X ⊂ {0, 1,∞}. The integer νH(0, k) (resp. νH(1, k)) is the number of
points of X of local degree k over 0 (resp. 1). Similarly, let νH(∞, k) be the number
of points of X of local degree k over ∞. This defines an extended valency function
ν̂H : {0, 1,∞} × N → N.

If H′ = g∗H with g ∈ G, then ν̂H′ = ν̂H. This follows from the algebraic definition
of the local degree. Define the strengthened numerical equivalence ∼ν̂ by setting
H ∼ν̂ H′ if ν̂H′ = ν̂H. This equivalence relation is stronger that ∼ν but weaker than
∼G. As will be seen in the example of 7.3.14, it is neither stronger nor weaker than
∼gb.

Let H = (N, A, ε0, ε1, τ , (ωs)s∈N) be an object ofH and X the object correspond-
ing to RR.. The number of edges is

a =
∑

k∈N

k.νH(0, k) =
∑

k∈N

k.νH(1, k) .

This is also the degree of X as a ramified covering of �. The number f of points of X
over ∞ equals the number of connected components of X − |H| = X − π−1([0, 1]);
it is also the number of cycles of the permutation τ ◦ σ of A, and νH(∞, k) is the
number of 2k-cycles.

The space X is connected if and only if this is the case of H. If H is connected, then
X is a surface of genus g given by the Euler formula 2 − 2g = n − a + f , where
n = n0 + n1 is the number of vertices, n0 the number of white vertices and n1 the
number of black ones.

In the examples of 7.3.14, n0 = 7, n1 = 7, a = 14, f = 2, g = 0. The extended
valency function is given by the local degrees of the points of X over ∞; it varies
with the example but the sum total is always 14:
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– in G1 to G10, there is a point of degree 1 and a point of degree 13;
– in G14, G16, G17 and G29, there is a point of degree 2 and a point of degree 12;
– in G12, G13 and G22, there is a point of degree 3 and a point of degree 11;
– in G15, G18, G19, G20 and G30, there is a point of degree 4 and a point of degree

10;
– in G23, G24 and G26, there is a point of degree 5 and a point of degree 9;
– in G21 and G31, there is a point of degree 6 and a point of degree 8;
– in G11, G25, G27 and G28, there are two points of degree 7.

The class of ∼ν considered decomposes into 7 classes of ∼ν̂ . There are at least 7
classes of ∼G.

The only graphs having a non trivial automorphism (as object of H) are G11, G27

and G28: for these three objets there is an automorphism of order 2 exchanging the
two points over ∞. Hence G25 is not in the same class of ∼G as these three, and the
lower bound becomes 8.

All the graphs G1 to G10 can be shown to be in the same class of ∼G. Complex
conjugation induces an element of G exchanging G12 and G13, G16 and G17, G18 and
G19, G23 and G24, G27 and G28.

Hence, the number of classes of ∼G in the given class of ∼ν is bounded above by
17.

Exercise 7.3. (Equivalence between various categories)
1.—Let G be a group and C a category. We use the following language:

An exact action ρ of G on C consists of a functor ρ(g) : C → C for all g ∈ G
such that for g1, g2 ∈ G, ρ(g1.g2) = ρ(g1) ◦ ρ(g2).

A weak action ρ of G on C consists of of a functor ρ(g) : C → C for all g ∈ G
such that for g1, g2 ∈ G, the functors ρ(g1.g2) and ρ(g1) ◦ ρ(g2) are isomorphic.

Two weak actions ρ and ρ′ are equivalent if for all g ∈ G, the functors ρ(g) and
ρ′(g) are isomorphic. A strong action is a weak action equivalent to an exact action.

(A) Suppose that C is a category with a single object ω such that Hom(ω;ω) is
a group F. Set H = Aut(F), and let J be the subgroup of H consisting of the inner
automorphisms of F.

(a) Show that J is a normal subgroup of H.

(b) Show that the exact actions of G onC correspond to homomorphisms G → H.
Show that the equivalence classes of weak actions correspond to homomorphisms
G → H/J.

(c) Give an example of a weak action which is not strong.
(B) Show that the actions of G = AutQ(Q) on the categories described in

Remark 2 of 7.3.7 are strong actions.

2.—Show that the composite functor θ̆ : RR. → H̆ of θ : RR. → H and of the
functor H → H̆ defined in 7.3.10 assign to (S, f ) the set S−1

(

1
2

)

equipped with the
permutations induced by the loops around 0 and 1 respectively.
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7.4 Belyi Polynomials

7.4.1 Ramified Polynomial Coverings

Proposition and Definition Let (S,π) be an analytic ramified covering of the Rie-
mann sphere �. The following conditions are equivalent:

(i) S is homeomorphic to the sphere S2 and the set π−1(∞) is reduced to a point;
(ii) there is an isomorphism φ : S → � and a polynomial f ∈ C[X] such that

π = f ◦ φ .

If these conditions hold, then (S,π) is said to be a ramified polynomial covering.

Proof The implication (ii)⇒ (i) is immediate. We show that (i)⇒ (ii). If the Riemann
surface of S is homeomorphic to S2, it is then isomorphic to � by the Riemann
uniformization theorem. If moreover π−1(∞) is reduced to a point e, then there is
an isomorphism φ : S → � such that φ(e) = ∞. Then f = π ◦ φ−1 is an analytic
map � → � such that f −1(∞) = {∞}, hence a polynomial. �

Remark The isomorphism φ is uniquely defined up to left composition by an affine
isomorphism of �, and the polynomial f up to right composition: if π = f1 ◦ φ1 =
f2 ◦ φ2 as above, then there is an affine isomorphism A : � → � such that f2 =
f1 ◦ A and φ2 = A−1 ◦ φ1.

7.4.2

Let (S,π) be an analytic ramified covering of � such that �π ⊂ {0, 1,∞}, H the
graph π−1([0, 1]), and set S′ = S − π−1(∞).

Proposition (S,π) is a ramified polynomial covering if and only if the graph H is a
tree (i.e. is simply connected).

Lemma The graph H is a deformation retract of S′.

Proof Let H (resp. −H) be the closed upper (resp. lower) half-plane in C. Let ρ :
C → [0, 1] be a continuous retraction such that ρ(R−) = {0} and ρ([1,∞[) = {1} .
Let (t, z) �→ ρt (z) be a homotopy from IC to ρ such that each ρt preserves R− and
[0,∞[, and fixes each point of [0, 1]. Set S+ = π−1(H) and S− = π−1(−H). These
may be written

S+ =
⋃

i∈I+
σi (H) , S− =

⋃

i∈I−
σi (−H) ,

where σi are the continuous sections. Set ρt
i = σi ◦ ρt ◦ π onto the image of σi . Then,

for each t , the maps ρt
i can be glued together to give a map ρ̃t : S′ → S′, and this

defines a homotopy from IS′ to a retraction ρ̃ from S′ onto H. �
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Proof of the Proposition If (S,π) is polynomial, then S′ is isomorphic to C, hence
is simply connected, and H is a tree. If H is a tree, then S′ is simply connected, hence
isomorphic to D, C or � by the Riemann uniformization theorem. The space S′ is
a nonempty ramified covering of C; so π : S′ → C is surjective, S′ is not compact,
and � is excluded. Every bounded holomorphic function on S′ is constant. Indeed,
if ζ is such a function, then the coefficients of the minimal polynomial of ζ over
C[X] are bounded holomorphic functions on C, hence constant, and ζ can only take
finitely many values; as S′ is connected, ζ is constant. Hence, D is excluded, and S′
is isomorphic to C.

The set S − S′ = π−1(∞) has exactly one point. Indeed, there is an open neigh-
bourhood U of ∞ in � such that each connected component of π−1(U) contains a
point of π−1(∞) and a connected component of π−1(U) ∩ S′. Hence there is a bijec-
tion between π−1(∞) and the set of relatively compact connected components of
S′ ∩ π−1(U) = S′ − π−1(C − U) (see 6.1, Exercise 2, end compactification). Now,
C − U is compact; so is π−1(C − U) since π is proper, and the complement of a
compact subset of C has exactly one relatively compact connected component; so
does S′. Hence Card π−1(∞) = 1.

Therefore, S is isomorphic to �. �

7.4.3 Belyi Polynomials

If �( f ) ⊂ {0, 1,∞}, f ∈ C[X] is called a Belyi polynomial. For any subfield K of
C, let Belpol(K) denote the set of Belyi polynomials with coefficients in K, and
Aff(K) the group of affine transformations z �→ az + b with (a, b) ∈ K∗ × K. It
acts on the right on Belpol(K) by (A, f ) �→ f ◦ A.

Proposition If K ⊂ C is an algebraically closed subfield, then the set of isomorphism
classes of ramified polynomial coverings (S,π) of � such that �π ⊂ {0, 1,∞} can
be identified with the quotient Belpol(K)/Aff(K).

Proof Let (S,π) be a ramified polynomial d-fold covering of � such that �π ⊂
{0, 1,∞}. It is definable over Q (7.2.5), and let Q ∈ Q[X, Y] be a defining polyno-
mial. As (S,π) is polynomial, there is an isomorphism φ : S → � mapping π−1(∞)

onto ∞. The inverse � de φ induces a map ψ : �′ → VQ, where �′ is the com-
plement of a finite set. The map ψ is of the form ( f, g), where f ∈ C[T] is a Belyi
polynomial and g ∈ C(T).

The isomorphism φ is not uniquely defined, but its choice determines ψ, f and g.

Lemma φ may be chosen so that f ∈ Q(T).

Proof Let (x0, y0) and (x1, y1) be distinct points of VQ such that x0 and x1 are in
Q − �Q. Then y0, y1 ∈ Q since Q(xi , yi ) = 0. Choose φ so that ψ(0) = (x0, y0)

and ψ(1) = (x1, y1). Then f ∈ Belpol(C) and g ∈ C(T) are characterized by
Q( f (T), g(T)) = 0 and deg( f ) = d. These are algebraic conditions defined on Q.
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Hence the coefficients of f are left invariant by all algebraic automorphisms from C

onto Q; hence they are in Q. �

End of the Proof of the Proposition We have shown that there exist f0 ∈
Belpol(Q) ⊂ Belpol(K) and an isomorphism φ0 : S → � such that f0 ◦ φ0 =
π. If f ∈ Belpol(K) and φ : S

≈−→� satisfy f ◦ φ = π, then there exists A of
the form t �→ at + b such that φ0 = A ◦ φ. So π = f0 ◦ A ◦ φ = f ◦ φ, and hence
f = f0 ◦ A since φ is surjective.

Comparing the leading coefficients gives ad ∈ K; thus a ∈ K since K is alge-
braically closed. Comparing the coefficients of the terms of degree d − 1 shows that
b ∈ K. �

7.4.4 Statement of the Faithfulness Theorem

By 7.4.3, proposition and 7.3.13, the set of isomorphism classes of ramified poly-
nomial coverings (S,π) of � such that �π ⊂ {0, 1,∞} can be naturally identified
with the following sets:

– the quotient Belpol(C)/Aff(C) ;
– the quotient Belpol(Q)/Aff(Q) ;
– the set T of isomorphism classes of bicoloured trees cyclically ordered at each

vertex.

The Galois group AutQ(Q) acts on Q[X] by (g, f ) �→ g∗( f ) (action on the coef-
ficients with g∗(X) = X). The set Belpol(Q) is invariant; so is Aff(Q); Hence
AutQ(Q) acts on the quotient Belpol(Q)/Aff(Q) and on T.

The following theorem states that this action is faithful.

Theorem (Lenstra–Schneps) For all nontrivial g ∈ AutQ(Q), there is a Belyi poly-
nomial f ∈ Belpol(Q) such that g∗( f ) cannot be written as f ◦ A, where
A ∈ Aff(Q).

The proof will be given in (7.4.6). It is taken from [3] and rests on a uniqueness
property up to action of Aff of the factorization of polynomials by composition. It
will be given in (7.4.5).

7.4.5 Comparing Factorizations

Proposition Let K be a subfield of C, f1, f2, g1 and g2 polynomials of degrees
> 0 such that g1 ◦ f1 = g2 ◦ f2. Suppose that f1 and f2 have the same degree d
with coefficients in K, and that g1 and g2 have the same degree d ′. Then there is an
automorphism A ∈ Aff(K) such that f2 = A ◦ f1 and g2 = g1 ◦ A−1.
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Remark Set h = g1 ◦ f1 = g2 ◦ f2. As deg(h) = deg( f1) · deg(g1) = deg( f2) ·
deg(g2), each of the assumptions deg( f1) = deg( f2) and deg(g1) = deg(g2) implies
the other.

For any polynomial f ∈ C[X], define the equivalence relation ∼ f on C by x ∼ f

y ⇔ f (x) = f (y). We will say it is defined by f .

Lemma Under the assumptions of the proposition, f1 and f2 define the same relation
on C.

Proof Set h = g1 ◦ f1 = g2 ◦ f2; let L1, L2 and M be the graphs of the equivalence
relations defined respectively by f1, f2 and h: M = {(x, y) ∈ C

2 | h(x) = h(y)} and
L j = {(x, y) ∈ C

2 | f j (x) = f j (y)}. Then L j ⊂ M.
Let π be the projection (x, y) �→ x and �M the set of x ∈ C such that the polyno-

mial h(Y) − h(x) ∈ C[Y] has a multiple root. As �M = h−1(�h), where �h is the
set of critical values of h, the set �M is finite. The space M equipped with π induces
a (non ramified) covering M′ of C − �M of degree d · d ′. Defining �L j likewise,
�L j ⊂ �M. Set L′

j = L j − π−1(�M). The spaces L′
1 and L′

2 are subcoverings of M′
over C − �M.

In the neighbourhood of infinity, the covering M′ is trivial: for sufficiently large
R, there are d · d ′ analytic sections τk : C − DR → M′, for 0 � k � d · d ′ − 1, such
that the restriction of M′ to C − DR is the union of their images, τk (x)

x tending to

e2iπ k
d.d′ as x tends to ∞. This follows from the fact that the part of highest degree in

h(Y) − h(X) is of the form c · (Ydd ′ − Xdd ′
).

Similarly the restriction of L′
j to C − DR is the union of the images of d sections

σ
j
k for 1 � k � d − 1, with σ

j
k (x)

x tending to e2iπ k
d as x tends to ∞. However L′

j is a
subcovering of M′. This forces σ1

k = σ2
k = τk.d ′ . So L′

1 and L′
2 agree over C − DR.

As these are subcoverings of M′ over C − �M, the latter being connected, L′
1 = L′

2.
By (7.1.1, Proposition), L j is the closure of L′

j . Thus L1 = L2. �

Proof of the Proposition A non constant polynomial f : C → C is an open map,
and so defines a homeomorphism f∗ : C/∼ f → C. The maps ( f1)∗ and ( f2)∗ are
homeomorphisms of C/∼ f1 = C/∼ f2 over C, and A = ( f2)∗ ◦ ( f1)

−1∗ is a homeo-
morphism C → C satisfying f2 = A ◦ f1.

In the neighbourhood of a point z which is not a critical value of f1, A = f2 ◦ ψ,
where ψ is a branch of f −1

1 . Hence A is holomorphic. The map A, being continuous
and holomorphic on the complement of a finite set, is holomorphic. Similarly for
A−1, and so A is a C-analytic automorphism of C; therefore A ∈ Aff(C).

Setting A(z) = a.z + b, f2 = a · f1 + b. Comparing the leading terms, a ∈ K,
and b = f2 − a · f1 ∈ K. �
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7.4.6 Proof of the Faithfulness Theorem

Let γ ∈ AutQ(Q) be a nontrivial element. Then there exists α1 ∈ Q such that α2 =
γ(α1) 
= α1.

Let f1 ∈ Q[X] be a polynomial whose derivative f ′
1 has 0, 1 and α1 as roots with

distinct multiplicities m0, m1, mα. The polynomial f2 = γ∗( f1) has a derivative f ′
2

whose roots are 0, 1 and α2 with the same multiplicities m0, m1, mα.
Now, �( f1) ⊂ Q ∪ {∞}. By (7.2.8, Corollary), there exists g ∈ Q[X] such that

�(g ◦ f1) = g!(�( f1)) ⊂ {0, 1,∞}. Then h1 = g ◦ f1 ∈ Belpol(Q). So�( f2) =
γ(�( f1)), and h2 = g ◦ f2 ∈ Belpol(Q).

The faithfulness theorem then follows from the next lemma:

Lemma The polynomial h2 cannot be written as h1 ◦ A with A ∈ Aff(C).

Proof Suppose that h2 = h1 ◦ A with A ∈ Aff(C), i.e. g ◦ f2 = g ◦ f1 ◦ A. By
(7.4.5, Proposition), there exists B ∈ Aff(C) such that f2 = B ◦ f1 ◦ A and g =
g ◦ B−1.

Write A(z) = a · z + a0 and B(z) = b · z + b0. Then f2 = B ◦ f1 ◦ A has deriva-
tive f ′

2 = ab( f ′
1 ◦ A). The roots of f ′

1 are the images under A of the roots of f ′
2 with

their multiplicities preserved. Hence, A(0) = 0, A(1) = 1, A(α2) = α1. The first
two equalities imply that A is the identity, and then α1 = α2 by the last one, giving
a contradiction. �

This completes the Proof of Theorem 7.4.4.

7.5 Two Examples

In this section we give two examples:
• an example of two Belyi polynomials giving non-isomorphic trees, regardless

of the colouring and of the cyclic order at vertices, but which are conjugate under
the action of the group G = AutQ(Q);

• an example, taken from Zapponi [4], of two Belyi polynomials giving isomor-
phic bicoloured trees with distinct cyclic order at each vertex, and which are not
conjugate under the action of G.

7.5.1 First Example: Setting of the Problem

Consider the following bicoloured trees
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They have the same valency function: they both have two white vertices of
valency 2, a white vertex of valency 3, three black vertices of valency 1 and two
black vertices of valency 2. Up to isomorphism, these are the only bicoloured trees
with this valency function, and this remains true if the cyclic order at each vertex is
taken account of.

Are they in the same orbit under the action of G = AutQ(Q)? In other words, is
there some g ∈ G such that g∗(T1) = T2? Proposition 7.5.4 will provide the answer.

7.5.2 The Polynomial Qc

The bicoloured trees T1 and T2 correspond to the Belyi polynomials P1 and P2 of
degree 7, with one triple root and two double ones, unique up to pre-composition
with an affine map. Thus the origin can be taken to be the triple root, and then such
a polynomial can be written as P = az3(z2 − 2bz + c)2.

For P1 and P2, b 
= 0. Otherwise P would be an odd polynomial and 1 would be a
critical value only if it so was −1. Hence we may assume that b = 1 since the action
of a homothety on the variable can be expressed as b �→ λb, c �→ λ2c.

Let Qc be the polynomial z3(z2 − 2z + c)2. Let us find the values of c for which
Qc has two nonzero equal critical values, given by two distinct critical points. For
such a value v of c, P = 1

v
Qc with equal to one of P1, P2; and P1 and P2 can be

obtained in this manner.

7.5.3 Study of Q = Qc

Derivative. Q′(z) = z2(z2 − 2z + c)G(z), where G(z) = 7z2 − 10z + 3c.
Critical points (other than the roots). They are given by the equation G(α) = 0.

The reduced discriminant is � = 25 − 21c. Set δ = √
�. Then c = 1

21 (25 − δ2); the
critical points other than the roots are α = 1

7 (5 + δ) and α′ = 1
7 (5 − δ).

We express the critical value N corresponding toα in terms of δ, that corresponding
to α′ will follow by replacing δ by −δ:

α2 = 1
49 (25 + 10δ + δ2);

α3 = 1
343 (125 + 75δ + 15δ2 + δ3);

α2 − 2α + c = 4
147 (10 − 3δ − δ2);

(α2 − 2α + c)2 = 16
9·74 (100 − 60δ − 11δ2 + 6δ3 + δ4).

Non-zero critical values.
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Q(α) = α3(α2 − 2α + c)2

= 16
9·77 (12500 − 4375δ2 − 875δ3 + 350δ4 − 154δ5 + 21δ6 + δ7).

Difference of these critical values.
Q(α) − Q(α′) = 32

9·77 δ
3(−875 − 154� + �2).

The values of c for which Qc has two nonzero equal critical values correspond to
the values of δ for which this expression vanishes.

7.5.4 Interpretation of These Results

The value δ = 0 gives c = 25
21 . For this value, Qc has a double critical point (hence of

local degree 3) with nonzero critical value. The Belyi polynomial P = 1
12500 Qc gives

the tree

It is the only bicoloured tree with this valency function.
The polynomial R(�) = �2 − 154� − 875 has two real roots �+ > 0 and �− <

0. In both cases, c = 1
21 (25 − �) ∈ R, the coefficients of Qc and P are real, and the

tree realized in C is symmetric with respect to R. The root �+ gives two nonzero
real values for δ, hence two distinct real values for the critical point α, i.e. two white
points on the real axis; it corresponds to the tree T1. The root �− gives two distinct
complex conjugate values for δ, hence also for α; it corresponds to the tree T2.

The reduced discriminant of R is 772 + 875 = 6804 = 182 · 21. It follows that

Proposition An element g ∈ G = AutQ(Q) exchanges the trees T1 and T2 if and
only if it exchanges the two square roots of 21.

7.5.5 Second Example: “Leila’s bouquet”

Consider the bicoloured tree L

with 1 black pentavalent vertex O, 15 monovalent black vertices, and 5 white vertices
S1, ... , S5, Si being of valency di = i + 1. Up to isomorphism, L is the only bicoloured
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tree with this valency function. Let ai denote the edge from O to Si . For any cyclic
order ω on {1, ..., 5}, let Lω be an objet of H obtained by equipping L with the order
ω on the edges ai (the cyclic order at white vertices is unimportant). This gives, up
to isomorphism, all the objects of H with this valency function. A cyclic order will
be defined by a bijection ϕ : {1, ..., 5} → {1, ..., 5}.

Are all the objects Lω in the same orbit under the action of G = AutQ(Q)? The
corollary of the above Theorem 7.5.8 shows that this is not the case. The Proof
of Theorem 7.5.8 will be completed in 7.5.16; to state this theorem, we need to
define two rationals δ(P) = δalg(P) and δtop(P), and these definitions rest on the
calculation given in 7.5.6.

The figure below shows two examples of objects Lω .

7.5.6 Computing Discriminants

Let P be a degree 20 Belyi polynomial such that P−1([0, 1]) is a bicoloured tree
isomorphic to L, in other words such that θ(P) is an object of H isomorphic to one
of Lω . For each ω, there is a unique such polynomial P up to pre-composition with an
affine transformation. Hence P may be chosen to be monic with the black pentavalent
vertex O at 0.

Letting xi be the root of P corresponding to the white vertex Si ,

P(Z) =
5

∏

i=1

(Z − xi )
di where di = i + 1 .

Here we use the “algebraic” numbering of xi given by their multiplicity as roots.
This numbering provides a cyclic order which may be different from the “topologi-

cal” cyclic order induced by the extension of the tree in C.
Let Q be the monic polynomial having xi as simple roots:
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Q(Z) =
5

∏

i=1

(Z − xi ) .

Let � be the discriminant of Q:

� =
∏

i, j | i 
= j

(xi − x j ) =
∏

i, j | i< j

(xi − x j )
2

(note that there are 10 pairs (i, j) such that i < j and that 10 is even. This is why
the latter equality has a + sign).

Proposition

� =
(200

3

)2 ·
∏

i

x4
i .

Lemma
P′(Z)

P(Z)
=

∑

i

di

Z − xi
= 20

Z4

Q(Z)
.

Proof (a) As P(Z) = ∏

(Z − xi )
di , P′

P = log′(P) = ∑ di
Z−xi

.

(b) The only zero of the rational fraction P′
P in C is one of multiplicity 4 at the

point 0, and the only pole is a simple at each xi ; hence P′
P is of the form k · Z4

Q(Z)
. As

Z tends to infinity, P′
P is equivalent to 20

Z , and soù k = 20. �

Proof of the Proposition

20Z4 = Q · P′

P
=

∑

i

di · Q

Z − xi
=

∑

i

di

∏

j | j 
=i

(Z − x j ) .

All terms of the sum vanish at Z = xi0 except the one corresponding to i = i0; so

20x4
i = di

∏

j | j 
=i

(xi − x j ) .

Taking the product over the different values of i gives:

205 ·
∏

i

x4
i =

(
∏

i

di

)

· � .

Hence, as
∏

di = 6! = 720 = 24 · 32 · 5,

�
∏

x4
i

= 21055

24325
= 2654

32
=

(2352

3

)2 =
(200

3

)2
.

�
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7.5.7 The Invariant δalg

If P is a Belyi polynomial satisfying the conditions of 7.5.6, define δ(P) = δalg(P)

by
∏

i, j | i< j

(xi − x j ) = δ(P) ·
∏

i

x2
i .

It follows from Proposition 7.5.6. that δalg(P) = ± 200
3 . In particular δalg(P) is

rational.

Proposition The rational δalg(P) only depends on the orbit of the isomorphism
class of the object θ(P) of H under the action of G = AutQ(Q).

Proof Let P1 and P2 be two polynomials satisfying the conditions of (7.5.6). Let x (1)
i

and x (2)
i be the respective roots of P1 and P2 of multiplicity i + 1.

(a) If the objects θ(P1) and θ(P2) of H are isomorphic, then there exists λ such
that P2(Z) = P1(λZ). So x (1)

i = λx (2)
i , and hence

∏

i< j

(x (1)
i − x (2)

j ) = λ10
∏

i< j

(

x (2)
i − x (2)

j

)

∏
(

x (1)
i

)2 = λ10
∏

(

x (2)
i

)2
.

Finally, δalg(P1) = δalg(P2) .

(b) If there is an automorphism g ∈ G such that P2 = g∗(P1), then x (2)
i = g(x (1)

i ).
So δ(P2) = g(δ(P1)). As δ(P1) ∈ Q, this implies δalg(P2) = δalg(P1). �

7.5.8 Definition of δtop(P)

Under the assumptions of (7.5.6), for a permutation ϕ of {1, ..., 5}, define δϕ(P) by

∏

i, j |ϕ(i)<ϕ( j)

(xi − x j ) = δϕ(P) ·
∏

i

x2
i .

Then δϕ(P) = ε(ϕ) · δ(P), where ε(ϕ) is the signature of ϕ. In particular, δϕ(P) only
depends on the cyclic order defined by ϕ on the set of xi (note that 5 is odd!). We
write δξ(P) = δϕ(P) if ξ is the cyclic order defined by ϕ.

Set δtop(P) = δω(P), where ω is the cyclic order on all ai such that θ(P) is
isomorphic to Lω , i.e. the cyclic order of the graph H = P−1([0, 1]) at 0 induced by
its inclusion in C.

Theorem (Zapponi) For any Belyi polynomial P satisfying the conditions of (7.5.6),
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δtop(P) = −200

3
.

Corollary Let ω1 and ω2 be two cyclic orders on {1, ..., 5}, and P1 and P2 the Belyi
polynomials satisfying conditions of 7.5.6 and realizing Lω1 and Lω2 respectively.
Let ϕ1 and ϕ2 be bijections from {1, ..., 5} onto Z/(5) defining ω1 and ω2. Set σ =
ϕ2 ◦ ϕ−1

1 (so that σ transforms ω1 into ω2).
If ε(σ) = −1, then δalg(P2) = −δalg(P1), and there is no g ∈ G transforming

P1 into P2.

The rest of this section is dedicated to the proof of the theorem. It will be completed
in (7.5.16). If A is an affine transformation, then δtop(P) = δtop(P ◦ A). The focus
will be on Q (equipped with a numbering of its roots) and not on P. We construct a
connected space B+ such that, for all P, there is an affine A such that the polynomial
Q corresponding to P ◦ A is in B+; we also construct θtop : B+ → R

∗ such that
δtop(P) = θtop(Q). The function θtop, being continuous, its sign remains invariant;
this is why the sign of δtop(P) does not depend on P.

If P is a Belyi polynomial satisfying the conditions of (7.5.6), then

1

20

P′(Z)

P(Z)
= Z4

Q(Z)
=

∑ ri

Z − xi

with ri = 1
20 · di . We investigate the most general situation where there is a monic

polynomial Q of degree 5, such that fQ(Z) = Z4

Q(Z)
can be written as

∑ ri
Z−xi

, with
ri ∈ R

∗+.

7.5.9 Notation

Let A be the set of monic polynomials Q of degree 5 with 5 distinct roots, and ˜A

the set of ˜Q = (Q, x1, ..., x5) such that Q ∈ A and Q−1(0) = {x1, ..., x5}. The sets
A and ˜A are C-analytic submanifolds of dimension 5 in C

6 and C
11 respectively,

and the projection � : (Q, x1, ..., x5) �→ Q makes ˜A a covering of degree 5! = 120
of A (there are 5! ways to number the roots).

For Q ∈ A, set fQ(Z) = Z4

Q(Z)
. The rational fraction fQ has simple poles at the

zeros xi of Q, and it is of the form 1
Z + O

(

1
Z2

)

as Z → ∞. Hence

fQ(Z) =
∑ ri

Z − xi
,

where ri are given by

ri = ri (˜Q) = x4
i

Q′(xi )
= x4

i
∏

j | j 
=i (xi − x j )
;

They are nonzero and
∑

ri = 1. This defines a map
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ρ : ˜Q = (Q, x1, ..., x5) �→ (r1, ..., r5)

from ˜A to the subset W of C
5 consisting of r = (ri ) such that (∀i) ri 
=0 and

∑

ri =
1. The set W is a submanifold of dimension 4 in C

5, and the map ρ is analytic.
LetZ be the set of r = (ri ) ∈ W such that there is a nonempty subset J of {1, ..., 5}

with
∑

i∈J ri = 0, and W∗ = W − Z. Set ˜A
∗ = ρ−1( ˜W

∗
) ⊂ ˜A, A∗ = �( ˜A

∗
), and

W+ = {r = (ri ) ∈ W | (∀i) ri ∈ R
∗+}. Let W+ ⊂ W∗. Set ˜A

+ = ρ−1(W+) and

A+ = �( ˜A
+
).

The polynomial Q is determined by the xi . Multiplying the xi by a same factor
λ 
= 0, changes the polynomial Q to λ5Q

(

Z
λ

)

, the fraction fQ to 1
λ

fQ
(

Z
λ

)

, and leaves
the ri invariant.

LetB be the set of Q ∈ A such that Q(0) = −1, i.e.
∏

xi = 1. Set ˜B = �−1(B),
˜B

∗ = ˜A
∗ ∩ ˜B, ˜B

+ = ˜A
+ ∩ ˜B, B∗ = A∗ ∩ B, B+ = A+ ∩ B.

The map (λ, Q, (xi )) �→ (λ5Q
(

Z
λ

)

, (λxi )) makes C
∗ × ˜B a 5-fold covering of ˜A.

7.5.10 A Covering Property

Proposition The map ρ makes ˜B
∗

into a finite covering of W∗.

Corollary The map ρ makes ˜B
+

a trivial finite covering of W+.

Note that W+ = {r ∈ ]0, 1[5 | ∑

ri = 1} is contractible.
The proposition then follows by (4.3.12, Proposition) and by Lemmas (7.5.11)

and (7.5.12) given below.

7.5.11 The Tangent Linear Map ρ

Lemma For all ˜Q = (Q, x1, ..., x5) ∈ ˜B, the tangent linear map T
˜Qρ induces an

isomorphism T
˜Q

˜B → TrW.

Proof (a) Differentiation of Q �→ fQ on A.
Let Q ∈ A and consider a family (Qε)ε∈V, where Qε = Q + εH, with H a poly-

nomial of degree � 4, and V a neighbourhood of 0 in C, which will be assumed to
be connected and which we will allow ourselves to contract.

For z ∈ C such that Q(z) 
= 0, there is a finite expansion

fQε
(z) = fQ(z) − z4H(z)

Q(z)2
ε + O(ε2) .

It holds uniformly as z runs through a compact subset of C − Q−1(0).
(b) Differentiation of ρ on ˜A.
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Let ˜Q = (Q, x1, ..., x5) ∈ ˜A. By the implicit functions theorem, there are holo-
morphic functions ξi on V such that ξi (0) = xi and Qε(ξi (ε)) = 0. Set ˜Qε =
(Qε, ξ1(ε), ..., ξ5(ε)). Since

ρi (˜Qε) = 1

2iπ

∫

γi

Qε(z)dz ,

where γi is a loop only going round the roots xi , and doing so only once. It follows
that

ρi (˜Qε) = ρi (Qε) − Residuexi

(Z4H

Q2

)

· ε + O(ε2) .

Therefore the tangent linear map to ρ is

T
˜Qρ : H �→

(

− Residuexi

(Z4H

Q2

))

i∈{1,...,5}
.

(c) Injectivity of T
˜Qρ on T

˜Q
˜B.

The space T
˜Q

˜B = TQB consists of all H ∈ C[Z] of degree � 4 such that H(0) =
0. Let H ∈ T

˜Q
˜B and suppose that

(∀i) Residuexi

(Z4H

Q2

)

= 0 .

Then Z4H
Q2 is of the form

∑ ai
(Z−xi )2 = R′, where R = ∑ −ai

Z−xi
.

The rational fraction R0 = R − R(0) is bounded at infinity and has simple poles
only at xi ; hence it is of the form G

Q , where G is a polynomial of degree � 5. As

R(0) = 0 and R′ = Z4H
Q2 has a zero of order � 4 at 0, R0 has a zero of order � 5 at 0.

Therefore R0 is of the form λ Z5

Q(Z)
, and

Z4H

Q2
= R′

0 = λ
5Z4Q − Z5Q′

Q2
;

so H = λ(5Q − ZQ′) and H(0) = −5λ. Hence as H(0) = 0, λ = 0 and H = 0.
Therefore the map T

˜Q
˜B → TrW induced by T

˜Qρ is injective. The initial and end
spaces having dimension 4, it is an isomorphism. �

7.5.12 A Properness Property

Lemma The map ρ : ˜B
∗ → W∗ is proper.
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Proof For ˜Q = (Q, x1, ..., x5) ∈ ˜A set R(Q) = sup(|xi |) and N(˜Q) = (N(Q),

Y1, ..., Y5), where Yi = xi
R(Q)

and N(Q) = ∏

(Z − Yi ). Then ri = Residuexi fQ =
ResidueYi fN(Q), where fN(Q) = Z4

N(Q)
.

Let (˜Qn) = ((Qn, x (n)
1 , ..., x (n)

5 )) be a sequence in ˜B such that ρ(˜Qn) tends to a
point r = (ri ) ∈ W∗. If necessary extracting a subsequence, x (n)

i may be supposed
to converge to a limit xi ∈ � = C ∪ {∞}. We need to show that all xi are in C

∗ and
are distinct.

If all xi are finite, then
∏

xi = 1, and so xi ∈ C
∗ for all i , and

(∀i)
∏

j | j 
=i

(xi − x j ) = x4
i

ri

= 0 ;

hence the xi are distinct.
Suppose that some xi equals ∞. Then Rn = R(Qn) → ∞, and Y(n)

i = x (n)
i

Rn
satisfies

|Y(n)
i | � 1. If necessary extracting a subsequence, Y(n)

i may be supposed to converge
to a limit Yi ∈ C. As

∏

Yi = lim R−5
n = 0, the set J of i such that Yi = 0 is nonempty,

and its cardinal k satisfies 0 < k < 5.
The polynomial N(Qn) tends to

∏

(Z − Yi ) = Zk · ∏

i /∈J(Z − Yi ), and the rational
fraction fN(Q) tends to

g = Z4−k

∏

i /∈J(Z − Yi )

which has no pole at 0. Hence
∑

i∈J r (n)
i → 0, and

∑

i∈J ri = 0, giving a
contradiction. �

This completes the Proof of Proposition 7.5.10.

7.5.13 A Uniqueness Property

Proposition Let ˜Q = (Q, x1, ..., x5) ∈ ˜B and r = (ri ) = ρ(˜Q). If ri = 1
5 for all i ,

then Q = Z5 − 1.

Proof The function 5 fQ = 5Z4

Q(Z)
= ∑ 1

Z−xi
is the logarithmic derivative of Q =

∏

(Z − xi ). So Q′ = 5Z4, and Q is of the form Z5 − c. As c = ∏

xi = 1, where
Q(Z) = Z5 − 1,

Corollary The covering map ρ : ˜B
∗ → W∗ is of degree 5! = 120.

7.5.14 Topological Numbering

For Q ∈ B+, there is a natural topological way to number the roots of Q.
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First let Q ∈ B be arbitrary. On a sufficiently small connected neighbourhood V of
0, there is a unique holomorphic function F such that F′ = fQ = Z4

Q and F(0) = 0. As

fQ(z) = −z4 + O(z5), F(z) = − 1
5 z5 + O(z6). If necessary contracting V, we find a

holomorphic map φ : V → C such that F(z) = − 1
5 (φ(z))5, φ(0) = 0 and φ′(0) = 1,

and φ may be assumed to be an isomorphism from V onto a disc D�.
Now suppose that Q ∈ B+. Then there are ri > 0 such that fQ(Z) = ∑ ri

Z−xi
; set

h(z) = ∑

ri log |z − xi | and U = {z | h(z) < 0}. On V, h = �(F).
The set U is an open relatively compact subset in C since as z tends to infinity,

h(z) ∼ log |z| tends to infinity. The open V ∩ U = {z | �((φ(z))5 > 0} is the union
of 5 sectors S1, ..., S5, where

Sk =
{

z ∈ V − {0} ∣

∣

∣

∣ arg(φ(z)) − 2πk

5

∣

∣ <
π

10

}

(here, for θ ∈ T = R/Z, set |θ| = inf |t |, where t is a representative of θ).

Proposition (a) For Q ∈ B+, the open subset U has five connected components
(Ui )i∈Z/(5) with Ui ∩ V = Si ;

(b) Each connected component Ui contains a unique root xtop
i of Q.

(c) As Q varies in B+, for each i ∈ Z/(5) the root xtop
i (Q) depends continuously

on Q.

Proof (a) and (b) Let Ui be the connected component of U containing Si . The Ui are
distinct, for otherwise there would be a Jordan curve in U around some connected
component of V − U, contradicting the maximum principle.

Thanks to this principle (or rather to the minimum one), each connected compo-
nent of U contains a root of Q; so U at most 5 connected components.

Hence, U has exactly 5 connected components, each meets V along a unique Si

and contains a unique root of Q.
(c) We make Q vary in B+; We will write Si (Q), xtop

i (Q), etc. Let Q0 ∈ A+ and
i ∈ Z/(5). We choose a point a ∈ Si (Q0) and a path γ from a to xtop

i (Q0) in UQ0 . The
implicit function theorem enables us to find a continuous function Q �→ ξ(Q) defined
in the neighbourhood of Q0, such that ξ(Q) is a root of Q and ξ(Q0) = xtop

i (Q0), and
a path γQ from a to ξ(Q) in C continuously dependent on Q. For Q sufficiently near
Q0, a ∈ Si (Q), and the path γQ is contained in UQ. Then ξ(Q) is in the same con-
nected component as a ∈ Si (Q); thus ξ(Q) = xtop

i (Q), which implies that xtop
i (Q)

is continuously dependent on Q. �

Corollary 7.3 The spaceB+ is homeomorphic toW+. In particular, it is connected.

Proof Let E be a connected component of B+. The map Q �→ (Q, xtop
0 (Q), ...,

xtop
4 (Q)) is a continuous section B+ → ˜B

+
; it induces a homeomorphism from

E onto a connected component of ˜B
+

, and ρ induces a homeomorphism from this
component onto W+ since the latter is connected. This gives a homeomorphism
ψ : E → W+.
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In particular there exists Q1 ∈ B+ such that ψ(Q1) = ρ(˜Q1) = ( 1
5 , ..., 1

5 ) for some
˜Q1 over Q1. However this implies that Q1 = Z5 − 1. Hence B+ only has one con-
nected component, namely Z5 − 1. �
Corollary 7.4 The space A+ is connected.

Proof The map (λ, Q) �→ λ5Q(Z
λ
) from C

∗ × B+ to A+ is continuous and surjec-
tive, since there is a lifting (λ, Q, (xi )) �→ (λ5Q(Z

λ
), (λxi )), which is a covering.

Hence A+ is connected. �

7.5.15 The Invariant θtop(Q)

Let ˜Q = (Q, x1, ..., x5) ∈ ˜A and r = (ri ) = ρ(˜Q). As fQ(Z) = Z4

Q(Z)
= ∑ ri

Z−xi
and

r−1
i = x−4

i

∏

j | j 
=i (xi − x j ),
∏

r−1
i = ∏

i, j | j 
=i (xi − x j ).
Set

θ(˜Q) =
∏

x−2
i ·

∏

i, j |i< j

(xi − x j ) .

The number of factors in this product is 10, which is even. Thus (θ(˜Q))2 = ∏

r−1
i .

If σ is a permutation of {1, ..., 5}, then

θ(Q, xσ(1), ..., xσ(5)) = ε(σ) · θ(Q, x1, ..., x5) .

As 5 is odd, any cyclic permutation is even, and θ(˜Q) only depends on the chosen
cyclic order on the roots of Q.

So θ(λ5Q(Z
λ
),λx1, ...,λx5) = θ(Q, x1, ..., x5).

If ˜Q ∈ ˜A
+

, then (θ(˜Q))2 = ∏

r−1
i ∈ R

∗+, and so θ(˜Q) ∈ R
∗.

For Q ∈ B+, set θtop(Q) = θ(Q, (xtop
i (Q))i∈Z/(5)). For Q ∈ A+, there exists λ

such that Q1 = λ5Q(Z
λ
) ∈ B+. Then set θtop(Q) = θtop(Q1); there are 5 possible

values for λ, but they all give the same cyclic order on the set of roots of Q, so that
θtop(Q) is well defined.

Proposition For all Q ∈ A+, θtop(Q) < 0.

Proof The map θtop : A+ → R
∗ is continuous by (7.5.14, Proposition), (c); hence

its sign remains constant. It suffices to check that θtop(Z5 − 1) < 0.
Setting xk = e2iπk/5, for k = −2, ..., 2,

θtop(Z5−1) = ((x−2−x−1)(x1−x2)) · ((x−2−x0)(x0−x2)) · ((x−1−x0)

(x0−x1)) · ((x−1−x2)(x2−x1)) · ((x−2−x2)(x−1−x1)).

In this product of 5 factors, the first 4 are < 0 as they are the opposite of the product
of two conjugates, and the last one is a product of two purely imaginary numbers of
the same sign. Hence θtop(Z5 − 1) < 0. �
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7.5.16 Relation Between δtop(P) and θtop(Q)

Let P be a Belyi polynomial satisfying the conditions of (7.5.6). Then Q(Z) =
∏

(Z − xi ) ∈ A, with ri = di
20 . The function h(Z) = ∑

ri log |Z − xi | equals 1
20

∑

di

log |Z − xi | = 1
20 log |P(Z)|. Hence the edges connected to 0 in the graph P−1([0, 1])

are each contained in a connected component of the open subset U = {Z | h(Z) < 0},
and the cyclic order defined on the set of xi by the topological numbering of (7.5.14)
agrees with that defined by the branches of the graph P−1(0).

Therefore
θtop(Q) = δtop(P) .

By Proposition 7.5.15, δtop(P) = θtop(Q) < 0, proving Theorem 7.5.8.
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Index of Notation

Classical notation

Card X: cardinal of X.
A − B: A ∩ �B.
P(X): set of all subsets of X.
x ∼μ y: x and y are equivalent with respect to relation μ.
∃�
�: there exists a unique

inf, sup: infimum, supremum.
l.c.m.: least common multiple.
g.c.d.: greatest common divisor.
L(E, F): space of linear maps from E to F.
�2: space of square integrable sequences.
〈x, y〉: scalar product.
̂E: completion of E.
A[[X1, ..., Xn]]: ring of formal series with coefficients in A.
C{X1, ..., Xn}: convergent power series in the neighbourhood of O.
ℵ0: countably infinite cardinal.
Pn

R, Pn
C : n-dimensional real projective space, resp. complex.

Sn: unit sphere in R
n+1.

X/G: quotient of X by the equivalence relation whose classes are the
G-orbits.

On (resp. Un): group of linear isometries of R
n (resp. C

n).
S(E): permutation group of E.
A(E): alternating group.
SOn (resp. SUn): subgroup of On (resp. Un) of matrices with determinant +1.
P(E): set of all subsets of E.
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Notation Defined in Text

F ∧ G (F and G filters), 16
HomC(X, Y), 22
End(X), g ◦ f , 1X, 22
X ≈ Y, 22
EnsU, 22
GrU, AnnU, A-ModU, TopU, G-EnsU,

22
Ens, Gr, Top, etc., 23
Co, 25
FX,Y : HomC(X, Y) → HomC′ (F(X), F(Y)),

26
f∗, f ∗, 26
C(X, R), 26
X�, 27
X̌, 27
̂X, 27
CatU, 28
ξ̂Y( f ), ξ̂Y, ξ̂, 34
FI, A(I), 36
̂C (C category), 37
∏

i∈I Xi (Xi are objects of a category), 39
X ×S Y, 40
((Xi ), ( f j

i )), (Xi )i∈I, (Xi ), 40
lim←−
i∈I

Xi , 40

X∞, ϕ∞, 42
̂Z, ̂Zp , 46
⊔

i∈I Xi , 46
X �S Y, 46
∗i∈IGi , 47
⊕i∈IGi , 47
X∞, lim−→ Xi , 48
C←−, F←−, 59

Setf, 60
Grf, GrTop, 64
Grf←−−, 64

G-Setf, G-Ens, 65
̂G, 66
G-Prof, 66
A∗ = A − {0}, 72
x̂(p), 74
x〈y, 80
Mon(A), Mon∗(A), 83
⊕

i∈I Ei , 91
Hom(E, F), 92
S(E), 94
̂
Qp , 97
A(I), 100
M(ϕ), 103
MX

Y(ϕ), 103
det α, 104
Min j1,..., jr

i1,...,ir
(α), Minĵ

ı̂ (α), 104
c(x), 113
δx , 113
Ass(M), Ann(x), 123
A[S], A[X, Y, Z], A[X1, ..., Xn], A[(Xs)s∈S],

129
|n|, d(P), 130
V(I),

√
I, 137

E ⊗A F, E ⊗ F, x ⊗ y, 143
f ⊗ g, 145
⊗

i∈I Ei , 146
rkM, rk f , 153
A-AlgAlgAlg, 153
�B/A, 157

ϕE,E′
F,F′ , αE

F , βE,F, 158
Tr( f ), 162
E···, E···(k), 167
E···, 167
Hn(E···), 167
X(b), 179
fb, 179
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454 Notation Defined in Text

X ×B Y, 179
h∗(X), X|A, 180
Vp(R

n), Vp(C
n), Gp(R

n), Gp(C
n), Dp1,p2,p3 ,

187
CovB, 193
degb(X), deg(X), 194
AutB(E), 212
G-Ens, D, S : D → G-Ens, 213
εX, ⊥, 213
π1(B, b0), 217
� : CovB → π1(B, b0)-Ens, 222
C1 ×D C2, 231

G1
H
� G2, 238

|S, A|, 238
c0 � c1, 245
c̃, 247
γX · x , γ · x , 247
π̃1(B, b0), 248
(A : K), degK A, 255
K[x]A, 255
LK(A, L), 257
Res(P, Q), 259
Fp , Fq , 266
Asep, 275
Lrad, 280
FixGL, 284
G-Setf, D, S : D → G-Setf, 288
A, G-Prof, S : A → G-Prof, 303
V1

B, 305
�, 306

VB, RR, 311
RR�,CovfB−�, ρ : RR� → CovfB−�,

311
M(X), 315
M : VB → EB, 317
�E,ζ , 318
S(E, ζ), 318
̂S(E, ζ), 320
�E, 323
L̂(I), 330
��, 332
Hν(X, τ ), 346
π0(X), 348
D, S1, 380
dμ(x, y), 382
dμ, 383
Ismet(D), 394
A � B, 398
�( f ), 412
f!, 417
AC, 419
V, 420
H, 423
θ, 424
νH(0, k), νH(1, k), 428
Belpol(K), 432
Aff(K), 432
δ, 440
δalg, 440
δtop, 440
A, 441



Index

A
Acyclic, 168
Adapted basis, 112, 337, 354
Adjoint functor, 51, 151
Algebra, 95

Banach, 125, 140, 211
diagonal, 270
etale, 273, 316
finite, 255, 257, 260
monoid, 128, 129
polynomial, 128
radical over another, 282
reduced, 257

Algebraic
element, 255
extension, 262
Riemann surface, 319

Algebraically closed field, 263
Algebraically independent, free, 134, 143, 258
Algebraic closure, 264
Algebraic set, 137
Alternating multilinear map, 36, 94, 98, 356
Alternating n-linear form, 99
Alterning multilinear map, 324
Amalgamated sum, 46, 154, 234–236
Annihilator, 88, 260
Anti-equivalence of categories, 31, 69, 272,

288, 329
Arithmetic Riemann surface, 412
Ascending chain complex, 167
Associated

monoid, 83
prime ideal, 123

Atlas (equivalent), 306
Automorphism, 22
Automorphism group, 428
Automorphism of D, 381

Axiom
of choice, 2
universe, 24

B
Banach-Tarski paradox, 3
Banach (theorem), 125
Barycentric subdivision, 348
Basepoint, 206
Basis

adapted, 112, 337, 354
adapted basis theorem, 114
canonical, 101
normal, 292
of a module, 98
of a monoid, 81
transcendental, 258

Belyi
polynomial, 432
theorem, 412

Belyi polynomial, 432
Bezout (identity), 84
Biduality

functor, 27
morphism, 29

Boolean ring, 272
Boundaries, 167
Boundary operators, 346
Bundle

vector, 110

C
C-analytic atlas, 306
C-analytic structure, 306
Canonical factorization, 88
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456 Index

Canonical injection, 91
Canonical morphism, 37
Cantor set, 63
Cardano (formula), 301
Cardinality (lemma)

for extensions, 264
of coverings, 209

Category, 22
anti-equivalence of, 31
direct limit of, 49
equivalence of, 30
of categories, 28
of functors, 30
of groups, 22
of modules, 22
of rings, 22
of sets, 22
of topological spaces, 22
opposite, 25
product, 25

Čech compactification, 57
Centered chart, 306
τ -chain, 9
Chain, 5
Chain complex, 167
Change

basepoint, 220
of basis, 180

Characteristic (Euler-Poincaré), 358
Characteristic of a field, 266
Chinese remainder (theorem), 257
Choice

axiom of, 2
function, 1

Circle (on the Riemann sphere), 379
Closed map, 187
Cluster point, 16, 17, 181, 186
Coalescence of ramifications, 376
Codiagonal morphism, 49
Cofinal set, sequence, 6, 42
Cokernel, 88
Cokernel of a double arrow, 46
Column of a matrix, 103
Comb, 189
Commutator group, 57
Compact convergence (topology of), 37
Compactification (end), 314
Compatible filters, 16
Complement (submodules), 89
Completely regular, 57
Completion, 36

profinite, 66
Complex associated to a triangulation, 346

Complex chart, chart centered at x0, 306
Complexification, 152
Composite (functor), 27
Composition, 22, 161
Congruence, 88
Conjugate elements, 265
Connected vertices of a graph, 238
co-Noetherian ordered set, 15
Content, 113
Continuity of roots, 140
Contractible, 202
Contraction, 161
Contravariant functor, 26
Coordinate map, 91
Covariant functor, 26
Cover

product of an infinite family, 208
Covering, 193

finite, 194
finite ramified analytic, 309
of a graph, 239
pointed, 206
pointed universal, 206
ramified finite, 309
ramified polynomial, 431
trivial, 193
universal, 206

Cramer (theorem), 105
Cubic group, 371
Cycle, 167, 198, 296
Cyclic, 87
Cyclic chart, 422
Cyclic order, 422
Cyclotomic polynomials, 300

D
d’Alembert (theorem), 263

alternative proofs, 205, 211, 225, 314
Decomposition field, 285
Dedekind ring, 127
Dedekind (theorem), 257
Definability

for a ramified covering, 409
for a Riemann surface, 410

Defining polynomial, 408
Degree

local, 309
of a covering, 194
of a finite ramified covering, 309
of a map from S1 to S1, 224
of an algebra, of an extension, 255
of an element of an algebra, 256
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of a polynomial, 130
transcendence, 328
transcendental, 258

Descending chain complex, 167
Descent, 187
Determinant, 104
Diagonal algebra, 270
Diagonalize, 273
Differential of a complex, 167
Dihedral group, 371, 393
Dimension, 100
Direct

system, 47
Directed, 18
Direct limit, 48
Discrete valuation ring, 77
Discriminant, 137, 291
Disk (on the Riemann sphere), 380
Distance with respect to the Riemannian

metric, 381
Divide, strictly divide, 80
Divisible module, 175
Dodecahedral group, 371, 373
Domain of a chart, 306
Dominate, 210
Dual complex, cellular decomposition, 351
Duality functor, 27

E
Edges, 423

directed, 422
of a graph, 238
of a triangulation, 338

Elementary divisors, 116
Eliminate denominators, 408
End compactification, 314
Endomorphism, 22
Equivalence

homotopy, 169, 202
of categories, 30

Equivalent atlas, 306
Escher, 404
Essentially surjective, 30
Etale algebra, 273
Etale space, 180
Euclidian ring, 75
Euler-Poincaré characteristic, 358
Exact sequence, 89
Exponential, 139
Expression, 135, 307
Extension, 256

Kummer, 295

of scalars, 151
purely inseparable, 279
solvable, 295

Extension of identities (principle), 138
Exterior product, 36

F
Faces of a triangulation, 338
Factor

direct, 90
invariant, 117

Faithful, fully faithful, 30
Faithfulness, 433
Fiber, 179, 182
Fiber bundle

Hopf, 188, 210
trivial, 182
with fiber F, 182

Fibered product, 39
Fibration, 187

Hopf, 188
Field of fractions, 72, 152
Filter, finer filter, 16
Finite

set of characters, 11
Finite algebra, extension, 255
Finite character, 11
Finitely

generated module, 87
Finitely generated, 87
Fitting ideal, 118
Forgetful functor, 26
Fourier series, 58
Fourier transform, 270
Fourier transform for Z/(n), 270
Fractions (field of), 72
Free

commutative monoid, 81, 82
family, module, 98
group, 233

Free profinite group, 330
Frobenius endomorphism, 266
Full subcategory, 24
Fully faithful, 30
Functor, 26

adjoint, 51, 151
biduality, 27
composite, 27
contravariant, 26
covariant, 26
duality, 27
forgetful, 26
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inclusion, 26
Fundamental group, 217

with respect to a germ of path, 333

G
Galois

finite extension, 283
infinite extension, 304

Galois covering, 212
Galois group

of a covering, 212
of an extension, 283

g.c.d., 82
G-covering

principal, 226
Gelfand–Mazur (theorem), 125, 211
Gelfand transform, 55, 270, 271, 287
Generated

submodule, 87
submonoid, 80

Generating family, 87
Genus, 357
Geodesic, 385
Geodesically convex, 388
Geodesic barycentre, 388
Geodesic segment, 388
Geodesic triangle, 388
Geometric realization, 423
Geometric realization of a graph, 238
Gluing topologies (lemma), 208
Gluing trivializations, 185
G-morphism, 23
Go round, 310
G-principal covering, 226
Graded A-module, 167
Graph

bicoloured, 423
connected, 241
finite, 422
locally finite, 243
simple, 237

Grassmannian, 96, 187, 195
oriented, 195, 204

Greatest element, 5
Group

alternating, 296
free on a set, 232
simple, 297
solvable, 296
symmetric, 296

Group (Poincaré), 248
G-set, 23

H
Half-disks, 388
Hamilton–Cayley (theorem), 139
Hausdorff over B, 180
Holomorphic, 307
Homogeneity of surfaces, 375
Homogeneous polynomial, 130
Homography, 328
Homology (module), 167
Homology of a Riemann surface, 346
Homomorphism

connecting, 170
module, 86

Homotopic, homotopy, 23, 168, 202
Homotopic paths, 245
Homotopy type, 202
Hopf fibration, 188

I
Icosahedral group, 371, 373
Ideal

associated prime, 123
Fitting, 118
fractional, 127
maximal, 72
of algebraic relations, 134
prime, 72
prime ideal, 123

Identity, 22
Image, 87
Image filter, 17
Implicit function (theorem), 180
Incidence number, 339
Inclusion functor, 26
Induced topology, 36
Induction

Noetherian, 15
transfinite, 8

Inductive
ordered set, 11

Infimum, supremum, 5
Initial object, 25
Injective module, 174
Injective resolution, 176
Integral domain, 71
Integrally closed, 84
Intersection number, product, 355
Inverse, 22

limit, 40
system, 40

Irreducible
element of a monoid, 81
element of a ring, 83
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Isometries of D, 386
Isomorphic functors, 30
Isomorphism, isomorphic, 22

J
Juxtaposition, 246

K
Kernel, 87

of a double arrow, 40
knot, 314
Kronecker homomorphism, 158
Krull (theorem), 73
K-structure, 411
Kummer extension, 295

L
l.c.m., 82
Least element, 5
Leila’s bouquet, 437
Lemma

Zorn, 12
Length of a path, 245
Length of a path with respect to the Riemannian

metric, 381
Lenstra–Schneps (theorem), 433
Lexicographic order, 6
Lexicographic product, 9
Lifting

of a path, 247
of a triangulation, 342

Limit
direct, 48
inverse, 40

Linear, A-linear, h-linear, 86
Linearly disjoint algebras, 260
Liouville numbers, 261
Locally connected space, 188
Locally simply connected, 198

arc, 248
Local homeomorphism, 180
Local ring, 260
Logarithm, 139
Loop, 248
Lower bound, strict lower bound, 5
Lower central series, 70

M
MacLane (criterion), 280
m-adic topology, 76

Mapping cylinder, 171
Maschke (theorem), 277
Matrix, matrix representing f , 103
Maximal ideal, 72
Maximum principle, 314
Measures, 2–4, 28
Meromorphic, 307
Meromorphic function, 307
Meromorphism (criterion), 315
Mesh of an open cover, 184
Metric (Riemannian), 381
Minimal polynomial, 256
Minor, 104
Mittag-Leffler(theorem), 45
Möbius strip, 183, 314
Module, 86

graded, 167
homology, 167
of A-differentials of B, 157
of homomorphisms, 92
projective, 101

Modulo (congruence), 88
Modulus

of continuity, 192
of local connectivity, 190

Monoid, 80
associated to an integral domain, 83
free commutative, 82
regular, 80
submonoid, 80

Monomial, 129
Moore-Smith convergence, 18
Morphism, 22, 179

of chain complexes, 168
of functors, 29
resolution, 172

Multilinear, 94

N
Nilpotent, 73
Nilradical, 73
n-linear form (alternating), 99
Noetherian

ordered set, 15
ring, 121

Noetherian induction, 15
Non-functoriality

of π1, 227
of the algebraic closure, 267
of universal covering, 210

Non-standard reals, 19
Norm
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ε, 164
nuclear, 164
π, 38

Normal basis, 292
Normal polynomial, 85
Nullstellensatz, 138, 142, 143
Number field, 407

O
Objects, 22
On the right, on the left of an edge, 344
Opposite category, 25
Ordered, order, 5
Orthocentre in Poincaré geometry, 392
Over B (space), 179

P
Parabolic transformation, 392
Partition of unity, 110
Path, 245

geodesic, 384
standard, 245

Perfect field, 276
Periodic point, 198
Permutation, 94
Permutation type, 297
p-group, 300
p-group, Sylow p-group, 70
Plücker conoid, 314
Poincaré

circle, 384
distance, 383
duality, 356
geometry, 379
group, 248
metric, 382
rotation, 387

Poincaré duality, 356
Poincaré metric, 382
Poincaré rotation, 387
Poincaré symmetry, 386
Poincaré translation, 391
Pointed homotopy, 221
Pointed space, 206
Polynomial algebra, 128
Polynomial function, 134
Polynomial map, 135
Polynomial (minimal), 256
Polynomial (ramified covering), 431
p-primary component, 116
Preparation (theorem), 85

Pre-proper map, 187
Presentation, 107
Presented

finite, 107
Primary decomposition, 116
Prime ideal, 72, 123
Primitive element, 278
Primitive polynomial, 132
Principal domain, ideal, 75
Product, 38

category, 25
crossed, 398
direct, 91
fiber, 179
fibered, 39
free, 47
intersection, 355

Product (category, commuting functor), 38
Profinite

completion, 66
group, 64
space, 60

Projection, 39, 90, 179
Projective

module, 101
resolution, 172

Pro-object, 59
Proper, 181
Purely inseparable extension, 279

Q
Quasi-inverse, 30
Quaternions, 236
Quotient

module, 35, 88
Riemann surface, 367
set, 35

R
Radical element, extension, 279
Ramification

algebraic definition, 330
index, 307, 309
points, set of, 309

Ramification index, 307
Ramified, 422
Ramified covering, 309
Range, 422
Rank

of a module, 100, 153
of a tensor, 145, 163
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Reduced algebra, 257
Reduced ring, 74
Reduced suspension, 53
Regular, 408
Regular polyhedra, 372
Relatively prime elements of a principal ideal

domain, 115
Removable singularity (theorem), 85
Representable

contravariant functor, 33
covariant functor, 35

Resolution, 172
Resultant, 135
Retract, 202
Retraction, 202

deformation, 202
Reversing, 422
Riemann–Hurwitz (formula), 358
Riemannian metric, 381
Riemann sphere, 307
Riemann surface, 306

algebraic, 319
arithmetic, 407, 412

Right directed, 40
Row of a matrix, 103

S
Scalar restriction, 86
Section of a surjective map, 3
Semi-definability, 409, 410
Separable

algebra, 274
element, 274
polynomial, 274

Separable closure, 275
Separation (theorem), 315
Short exact sequence, 89
Signature of a permutation, 94
Simply connected, 198

arc, 248
Skeletons, 339
Solvable

extension, 295
group, 296

Source, 422
Spectrum

of a Banach algebra, 55
of a ring, 74

Sphere (Riemann), 307
Spiral around circle, 189
Split exact sequence, 90
Standard paths, 245

star, 238, 395
open, 239, 395

Stiefel manifold, 187, 195, 204
Strengthened numerical equivalence, 428
Subcategory, 24
Subdivision (barycentric), 348
Subgraph, 238
Submodule, 87
Substitution, 134
Sum, 46

amalgamated, 46, 154, 234–236
direct, 47, 89

Supernatural numbers, 69
Support of a family, 81
Surface (Riemann), 306
Surfaces (classification), 362
Sylow subgroup, 70
Symmetric multilinear map, 94
Symmetry, 145
System

direct, 47
inverse, 40

T
Tensor product, 35

matrix, 148
of algebras, 153
of modules, 35, 143

Tensors, simple tensors, 144
Terminal object, 25
Tetrahedral group, 371
Theorem

adapted basis, 114
Banach, 125
Belyi, 407, 412
Chinese remainder, 257
Cramer, 105
d’Alembert, 263
Dedekind, 257
faithfulness, 433
Gelfand–Mazur, 125, 211
Hamilton–Cayley, 139
implicit function, 180
Krull, 73
Lenstra-Schneps, 433
Maschke, 277
Mittag-Leffler, 45
preparation, 85
primitive element, 277
removable singularity, 85
separation, 315
Tychonoff, 18
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Van Kampen, 235
Zermelo, 13

Tiling, 393
Topological numbering, 444
Topological surface, 306
Topologists’ sine curve, 189
Topology (m-adic), 76
Topology (Zariski), 77, 138
Torsion element, submodule, module, 87
Torsion-free, 87
Torus, 313, 371

with g holes, 359
Totally disconnected, 59
Trace, 162
Transcendence of e, 261
Transcendental, 134, 258
Transfinite line, 14
Transform (Fourier), 270
Transform (Gelfand), 270, 271, 287
Transition

map, 306
Transition matrix, 103
Tree, 240
Triangulation, 338

direct C1, 340
Trivialization, 182, 193
Trivialization of a vector bundle, 110
Tychonoff (theorem), 18

U
Ultrafilter, 16
Uniformly locally connected, 190

Unique factorization domain, 83
Unital algebra, 95
Universal problem, property, 35
Universe, 23
Upper bound of the roots, 320
Upper bound, strict upper bound, 5
Upper half-plane, 390
Upper set, lower set, 5

V
Valency, 426
Valency function, 426

extended, 428
Van Kampen (theorem), 235
Vertex, 422

of a graph, 237
of a triangulation, 338

W
Well-ordered set, 6

Y
Yoneda (lemma), 34

Z
Zariski topology, 77, 138
Zermelo (theorem), 13
Zero divisor, 71
Zorn (lemma), 12
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