- define sector, calc
- define differential action, disc, base of a disc
- define automorphism group of a differential action, let $C^{\prime} \leq C$ be a subsector. Let $Y \subseteq X$ be any subset. The galois group of the differential action is $\operatorname{Aut}_{C^{\prime}}(X / Y)=\left\{\sigma: \sigma: X \leftrightarrow X, \sigma\left(x c^{\prime}\right)=\sigma(x) c^{\prime}, d\left(\sigma(x), \sigma\left(x c^{\prime}\right)\right)=d\left(x, x c^{\prime}\right)\right.$, $\left.\sigma(y)=y \forall c^{\prime} \in C^{\prime}, y \in Y\right\}$. This automorphism group gives us two "dials" to control the level of detail: the size of C^{\prime} and the size of Y. The disc joins these by suggesting the choice of $Y=b C^{\prime}$ for some fixed base point $b \in X$.

Let C, D be sectors and X a right C-set. Let $d: X \rtimes C \rightarrow D$ be a differential action. A disc is a pair (d, b) such that $b \in X$ and $X=b C$, and the ordered pair (X, b) is denoted X^{b}. Let $C^{\prime} \leq C$ be a subsector, and $Y \subseteq X$ a subset such that $b \in Y$. The galois group of the disc is $\operatorname{Aut}_{C^{\prime}}\left(X^{b} / Y\right)=\left\{\sigma \in \operatorname{Aut}_{C^{\prime}}(X / Y): \sigma(b)=b\right\}$. Note that since $\sigma\left(b c^{\prime}\right)=\sigma(b) c^{\prime}=b c^{\prime}$, we have $\operatorname{Aut}_{C^{\prime}}\left(X^{b} / Y\right)=\operatorname{Aut}_{C^{\prime}}\left(X^{b} /(Y \cup\right.$ $\left.b C^{\prime}\right)$). When Y is not given, let $\operatorname{Aut}_{C^{\prime}}\left(X^{b}\right)=\operatorname{Aut}_{C^{\prime}}\left(X^{b} / b C^{\prime}\right)$, and when C^{\prime} is not given, let $\operatorname{Aut}\left(X^{b} / Y\right)=\operatorname{Aut}_{1}\left(X^{b} / Y\right)$.

- define right differential action, right regular disc for a calc
- define right shift action for a calc

Example. Let k be a positive natural number, and let X be the right differential action, X^{b} the right regular disc of the calc $e: \mathbb{N} \rightarrow \mathbb{N}$ defined by $e(n)=\lfloor n / k\rfloor$. Note that the right shift action cannot be turned into a disc (d, b) such that $e(n)=$ $d(b, b n)$ because the cardinality of the range of e is countably infinite whereas the the cardinality of the range of d is no greater than k^{2}. It is left as an exercise for the reader to show that $\operatorname{Aut}(X) \cong S_{k}^{\mathbb{N}}$ and $\operatorname{Aut}\left(X^{b}\right) \cong S_{k-1} \times S_{k}^{\mathbb{N}}$.

From this point of view, the right regular disc for e represents the cycles of a rotating cam, with units emitted counting complete revolutions. A disc automorphism creates a "zig-zag" pattern through each of the segments $[0, k-1],[k, 2 k-1], \ldots$ named by an element of S_{k} for all but the first, an element of S_{k-1}. For the right regular differential action, they're all S_{k}.

Example. Finite step indicators. Let e be as in the last example and let $f(n)=$ $\max (1, e(n))$. In this case, the right shift action can be turned into a disc, letting $d\left(f^{i}, f^{j}\right)=1_{j=k \wedge i<k}$. Let this disc be Z with base f, and let X^{b} be the right regular disc for e. It is left as an exercise for the reader to show that $\operatorname{Aut}\left(X^{b}\right) \cong$ $\operatorname{Aut}(Z / f) \cong S_{k-1}$.

Cascade concatenation operation for two calcs, a finite tuple of calcs, and an infinite sequence of calcs when the domains are all sectors and a relay signal symbol is chosen to switch input over to the next calc in sequence

Experience from the last examples shows that we can count to k and light an indicator lamp, and that the symmetry group for the differential action is S_{k}. If, instead, one lamp is lit after k_{1} steps and another after k_{2}, then we can mix up the k_{1} lower states and the k_{2} higher states as long as transitioning from a lower to a higher lights a lamp. This yields an automorphism group of $S_{k_{1}} \times S_{k_{2}}$ for the differential action. In order to construct this, employ a general mechanic yielding the cascade concatenation of two calcs.

Let C be a sector. A nonempty subset $P \subseteq C$ has the prefix property if for all $p, q \in P, p \in q C \Longrightarrow p=q$. Write $c \mid P$ for $c C \cap P \neq \emptyset$ and $P \mid c$ for $c \in P C$, and note that $c|P \wedge P| c \Longrightarrow c \in P$ when P is prefix.

Let C be a free monoid, and let $|c|$ be the length of c, the sum of the generators in the written representation of c, weighted by number of occurrences.

Prop. Let C be a free monoid and $c \in C$. If $c \in p_{1} C \cap p_{2} C$ for $p_{i} \in C$, then either $p_{1} \in p_{2} C$ or $p_{2} \in p_{1} C$.

Proof. Left as an exercise for the reader. (Hint: split into cases by $\left|p_{1}\right| \leq\left|p_{2}\right|$ or not.)

Let C be a sector. The nonempty prefix subset $T \subseteq C$ has the threshold property if $c|T \vee T| c$ for all $c \in C$.

Let C, D be free monoids, and let $T \subseteq C$ be a nonempty threshold subset. If $T \mid c$ and $c \in t_{1} C \cap t_{2} C$, then either $t_{1} \in t_{2} C$ or $t_{2} \in t_{1} C$, so $t_{1}=t_{2}$. Define ${ }_{\cdot T}: C \rightarrow C$, the restriction map to T, as

$$
c_{\mid T}=\left\{\begin{array}{ll}
c & \text { if } c \mid T \\
\text { the unique } t \in T \text { such that } c \in t C & \text { if } T \mid c
\end{array} .\right.
$$

Define $T^{-}: C \rightarrow C$, left removal, as

$$
T^{-} c= \begin{cases}t^{-1} c & \text { if } T \mid c, \text { where } c \in t C \\ c & \text { if } c \mid T\end{cases}
$$

- define restriction map ${ }_{\mid P}: C \rightarrow C$ and left semidivision $P^{-}: C \rightarrow C$

Prop. Let C, D be free monoids and $e, f: C \rightarrow D$ calcs. Let $T \subseteq C$ be a nonempty threshold subset. Then the map $g: C \rightarrow D$ defined by $g(c)=e\left(c_{\mid T}\right) f\left(T^{-} c\right)$ is a calc.

Intuitively, the teacup T runneth over, spilling out what would have gone to e into f 's teacup.

