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TT
he geometric goat problem (not to be confused with
the goat problem in probability theory) is a generic
name for two different geometric problems in

recreational mathematics: the interior goat problem and the
exterior goat problem. Although only the former is dealt
with in this paper, let us briefly review their respective
historical origins for the sake of completeness. According
to the article on the goat problem in Wikipedia,1 the
exterior goat problem dates back to 1748, when it was first
published in The Ladies’ Diary: or, Woman’s Almanack
[23, p. 41]. This annual mathematical periodical featured,
among other things, calendrical information, including
times of sunrise and sunset and the phases of the moon,
along with a list of mathematical questions the solutions to
which were published in the subsequent issue. Reading the
original text of the 1748 issue shows that in the course of
history, a horse was transformed into a goat (see Figure 1):

VIII. QUESTION 302. By Upnorensis.

Observing a Horse tied to feed in a Gentleman’s Park,
with one End of a Rope to his Fore-foot, and the
other End to one of the Circular Iron-Rails, inclosing a
Pond, the Circumference of which Rails being 160
Yards, equal to the Length of the Rope, what Quan-
tity of Ground, at most, could the Horse feed?

Besides the solution in the 1749 issue of the periodical
[6, p. 25], a solution for the more general case in which the
circular iron rails are replaced by a smooth convex curve
was given in [9].2 According to [3], the interior problem was
originally published in the American Mathematical
Monthly’s first issue [7] in 1894, where the problem is posed
as follows (see Figure 2):

30. Proposed by Charles E. Myers, Canton, Ohio.

A circle containing one acre is cut by another whose
centre is on the circumference of the given circle, and
the area common to both is one-half acre. Find that
radius of the cutting circle.

More information on both problems can be found in [3],
which also provides further references to variations of
grazing goat problems; the original solution can be found
in [17]. Nowadays, the interior case is the more prominent
one. A possible reason is that some interesting generaliza-
tions of this problem have been investigated. For instance,
instead of circles one can consider n-balls and ask for the
radius of the cutting n-ball in an arbitrary dimension n. In
[4, 14] it is shown that the radius of the cutting n-ball

converges to
ffiffiffi

2
p

as n tends to infinity. Another reason

1Available online at https://en.wikipedia.org/wiki/Goat_problem.
2The author uses the term tethered-bull problem and does not refer to [23], but to a post in the Internet newsgroup sci.math.
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might stem from the fact that it is surprisingly difficult to
find a closed-form solution, since the radius of the cutting
circle is given as the solution of a transcendental equation.
To the best of my knowledge, only approximate solutions
have been given previously, using either Newton’s method
or another method of choice; see, e.g., [4, 7]. After more
than 120 years it is time to add a new twist to the story by
constructing a closed-form solution to the interior problem.
First, we will review the standard approaches to this

problem and then explain how to find a closed-form
solution by means of elementary complex analysis.

A Closed-Form Solution
Before deriving a closed-form solution, we show that the
goat problem is an instance of a common phenomenon in
mathematics whereby a straightforward approach to a
seemingly easy problem turns out to be unreasonably dif-
ficult. In the case of the problem at hand, such a
straightforward, if not the most straightforward, approach is
to use integration as indicated in Figure 3.

Let Bj , j ¼ 1; 2, denote the region bounded by the circle

kj , the x-axis, and the line connecting x0 and the intersec-

tion point of the two circles; see Figure 3. An easy

calculation shows that x0 ¼ r � R2=ð2rÞ, and the area of Bj

can be computed via integration. We skip the details here,
since they are not relevant to the subsequent construction
of a closed-form solution.3 Doing all the tedious compu-
tations yields

AðB2Þ þ AðB1Þ ¼
Z r�R2

2r

r�R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2 � ðx � rÞ2
q

dx

þ
Z r

r�R2

2r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2 � x2
p

dx

¼ pr2

4
;

where A denotes area, which finally results in the tran-
scendental equation

pR2

4
� R

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4r2 � R2
p

� R2

2
arcsin

R

2r

� �

� r2

2
arcsin

2r2 � R2

2r2

� �

¼ 0:

Another approach, which is somewhat similar to the pre-
vious one, yields a slightly easier term (slightly easier in that
it contains only one arcsine term). We merely state the
resulting equation and refer the reader to Wikipedia. Here
it is:

p
4
ðR2 � r2Þ � R

4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4r2 � R2
p

þ r2 � R2

2

� �

arcsin
R

2r

� �

¼ 0:

These equations do not appear to have a closed-form
solution. It turns out that a first step toward such a solution
is to find an expression for the area of the intersection of
the circles that does not depend on the radii. Let us take a
look at Figure 4, and let A1 denote the portion of the disk
enclosed by the circle k1 lying to the right of the chord QQ0.
Similarly, A2 denotes the portion of the disk enclosed by k2
lying to the left of the chord QQ0. Applying the formula for
calculating the area of a circular segment, we have

AðA1Þ ¼
r2

2
a� sin að Þ and AðA2Þ ¼

R2

2
b� sin bð Þ:

We have the following lemma.

Figure 2. The interior goat problem. A goat is tethered to the

boundary of a circular field of radius r. How long must the

length R of the rope be chosen such that the goat can graze

exactly half the field?

hh

Figure 1. The exterior goat problem. A goat is tethered to a

fence surrounding a circular pond P (the white circle), where

the length R of the rope equals the circumference of P. The

gray shaded region (light and dark gray areas combined) is

that in which the goat can graze. It consists of a semicircle and

the area bordered by the pond and the interior of two curves,

both of which are involutes of P.

3The interested reader can find the detailed calculations at http://www.bigbandi.de/dokus/ziege/index.html.
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LEMMA 1. [3] With the above notation, we have

1. a ¼ 2p� 2b and R ¼ 2r cosðb=2Þ,
2. AðA2Þ ¼ r2ðbþ b cos b� sin b� sin b cos bÞ,

AðA1Þ ¼ r2ðp� bþ sin b cos bÞ.

PROOF. Consider the triangle M1M2Q in Figure 4. Since it

is isosceles, we have ]M1QM2 ¼ b=2, whence

a
2
þ b

2
þ b

2
¼ p:

Consequently, a ¼ 2p� 2b and

AðA1Þ ¼
r2

2
2p� 2b� sinð2p� 2bÞð Þ

¼ r2ðp� bþ sin b cos bÞ:
By Thales’s theorem, triangle PM2Q is a right triangle, so

R ¼ 2r cosðb=2Þ. Because of AðA2Þ ¼ R2ðb� sin bÞ=2, we
then get

AðA2Þ ¼
ð2r cosðb=2ÞÞ2

2
b� sin bð Þ

¼ r2ð1þ cos bÞðb� sin bÞ
¼ r2ðbþ b cos b� sin b� sin b cos bÞ;

where we have used the well-known identity

cos
u
2

� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ cosu
2

r

:

(

Thus we have reduced the goat problem to finding the
solution of the equation

sin b� b cos b� p
2
¼ 0:

This equation seems much more tractable than the two
above, although it is still transcendental. In the past, there
have been attempts to find closed-form solutions of tran-
scendental equations, since the problem of finding the
zeros of transcendental functions is encountered in engi-
neering applications such as heat transfer [5, 15, 19, 20] and
even quantum mechanics [21]. One of the first methods
given is due to Burniston and Siewert [1]. It is based on the
theory of singular integral equations as developed by
Muskhelishvili in [16]. The crucial part of their method lies
in ‘‘establishing the appropriate Riemann problem and
making use of several elementary properties of the result-
ing solution to deduce roots of the given transcendental
equation.’’

With regard to the goat problem, their approach seems
to be promising, since the exact solution of the equation
tanb ¼ xb is given in [1], where x is real, which is very
close to our problem. However, a disadvantage of this
method is that it is unstable under ‘‘adding constants.’’ By
this we mean that a solution of an equation of the form
f ðbÞ ¼ 0 might be derived by means of this method,
whereas in the corresponding ‘‘inhomogeneous’’ case
f ðbÞ ¼ c, c 6¼ 0, it is difficult to implement and leads to
expressions that cannot be evaluated in a straightforward
manner. It turns out that this is the case with f ðbÞ ¼
sin b� b cos b and c ¼ p=2. Instead, we will apply an
approach that is surprisingly easy to implement, provided
that the transcendental function is analytic and the multi-
plicity of its zero is low. According to [12], this method was
first proposed by Jackson [10, 11] and rediscovered in [13].
It can be stated as the following theorem.

THEOREM 1. Let U � C be an open simply connected

subset and f : U �! C a nonzero analytic function. For

every simple zero z0 2 U of f, there is a closed curve C in U

such that

z0 ¼

I

C

z dz

f ðzÞ
I

C

dz

f ðzÞ

:

Figure 3. Using integration to solve the goat problem, where

the circle k1 represents the boundary of the field.

Figure 4. Geometric diagram for the closed-form solution.
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PROOF. If z0 2 U is a zero of f, there exist e[ 0 and an

open simply connected subset U 0 � U such that �Bðe; z0Þ �
U 0 and z0 is the only zero of f in U 0.4 Let C be the closed

curve oBðe; z0Þ. Obviously, the function ðz � z0Þ=f ðzÞ is

analytic on U 0, and Cauchy’s integral theorem yields
I

C

z � z0
f ðzÞ dz ¼ 0 :

Rearranging the terms completes the proof. (

REMARK 1. Note that in the situation of the above theo-

rem, one can also consider zeros z0 of higher multiplicity

n 2 N. In this case, Cauchy’s theorem yields a polynomial

expression zn0 þ an�1z
n�1
0 þ � � � þ a0 ¼ 0. From this and the

famous Abel–Ruffini theorem it follows that there is always

an explicit expression for zeros with multiplicity n \ 5.

Under the above conditions, the theorem ensures the

existence of a curve that can be used to find a closed-form

expression for the zero of the given function. As can be

seen from the proof, the equation

z0 ¼

I

C

z dz

f ðzÞ
I

C

dz

f ðzÞ

holds for every Jordan curve C such that z0 2 U is an ele-
ment of the interior of C and the only zero of f in the union
of C and its interior.

Consider now the entire function f ðzÞ ¼ sin z�
z cos z � p=2. On the interval ½0; p�, f increases monotoni-
cally from �p=2 to p=2, so there is a unique zero z0 on the
interval. Since f 0ðzÞ ¼ z sin z, z0 has multiplicity 1, and
Theorem 1 applies. Thus there is a curve that can be used
to derive a closed-form expression for z0. For the sake of
completeness and to evaluate this closed-form expression
we want to specify a curve that meets the requirement in
the second paragraph of Remark 1. In other words, we
have to find an enclosure for z0. Finding zeros of holo-
morphic functions along with suitable enclosures is a well-
studied problem, e.g., [2, 8, 18, 22]. An important basis for
this is the argument principle, which states that for a non-
constant meromorphic function g in R � C not having any
zeros or poles on the simple closed counterclockwise ori-
ented contour oR, we have

1

2pi

Z

oR

g0ðzÞ
gðzÞ dz ¼ N � P ;

where N and P are the respective numbers of zeros and
poles of g inside R, counted with multiplicity. If only ana-
lytic functions are under consideration, then P ¼ 0, and the
above integral equals the number of zeros of the function.
However, we are in the fortunate situation that there is no

need to draw on such techniques. Instead, it is possible to
show the desired result using elementary inequalities and
some well-known Taylor series expansions.

LEMMA 2. The function f is nonvanishing on the bound-

ary of the square R ¼ ½p=2; p� � i½�p=4; p=4�, and z0 is the

only zero of f inside R.

PROOF. We begin by observing that

Im f ðx þ iyÞ ¼ ðcos x þ x sin xÞ sinh y � y cos x cosh y:

For p=2 \ x � p we trivially have cos x þ x sin x � cos x,
and so

Im f ðx þ iyÞ � � cos xðy cosh y � sinh yÞ

if y[ 0. Comparing the series y cosh y ¼ y þ y3=2!þ � � �
and sinh y ¼ y þ y3=3!þ � � � yields y cosh y[ sinh y for
y[ 0, from which we conclude that Im f ðx þ iyÞ[ 0. For
x ¼ p=2 and y[ 0 we have Im f ðx þ iyÞ ¼ p

2 sinh y[ 0.

Thus, due to f ð�zÞ ¼ �f ðzÞ, we know that f has no zeros
in the domain R n ð½p=2; p� � f0gÞ but has exactly one zero
in �p=2; p½�f0g, since f is strictly increasing there. (

THEOREM 2. Let z0 denote the unique zero of the entire

function f ðzÞ ¼ sin z � z cos z � p=2 inside the interval

�p=2; p½.

1. We have

z0 ¼

I

jz�3p=8j¼p=4
z dz=ðsin z � z cos z � p=2Þ

I

jz�3p=8j¼p=4
dz=ðsin z � z cos z � p=2Þ

:

2. In the situation of the goat problem, the radius R of k2 is
given by

R ¼ 2r cos
1

2

I

jz�3p=8j¼p=4
z dz=ðsin z � z cos z � p=2Þ

I

jz�3p=8j¼p=4
dz=ðsin z � z cos z � p=2Þ

0

B

B

@

1

C

C

A

:

Numerical Approximation
Note that the closed-form expression presented in Theo-
rem 2 gives rise to a numerical approximation of z0, as
observed in [13]. Specifically, in the situation of Theorem 1,
assume that the contour C is parameterized by
cðtÞ ¼ w þ r expð2pitÞ, t 2 ½0; 1�, for some w 2 C, r[ 0.
Then the equation for z0 can be rewritten as

4Recall that the zero set of a nonzero analytic function that is defined on an open connected set is discrete.
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z0 ¼ w þ r

R 1

0 gðtÞe4pit dt
R 1
0 gðtÞe2pit dt

¼ w þ r
c�2

c�1
;

where gðtÞ ¼ 1=f ðw þ r exp 2pitÞ, 0 � t � 1, and ck, k 2 Z,
denote the Fourier coefficients of g, defined by

ck ¼
Z 1

0

gðtÞe�2pikt dt ðk 2 ZÞ :

An efficient algorithm to compute these coefficients is
provided by the fast Fourier transform (FFT), which is
based on a sampling vector ðt0; t1; . . .; tN�1Þ,
0 ¼ t0 \ � � � \ tN�1 \ 1, with equidistant elements tj ,

where N is a power of 2. The following table shows some
approximations (to eleven decimal places) using FFT:

N z0 R/r

8 1.90567113225 1.15874852123
32 1.90569572932 1.15872847301
128 1.90569572931 1.15872847302
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