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The Art and Craft of Mathematical Problem Solving

Scope: 

1

This is a course about mathematical problem solving. The phrase 
“problem solving” has become quite popular lately, so before we 
proceed, it is important that you understand how I de  ne this term. 

I contrast problems with exercises. The latter are mathematical questions that 
one knows how to answer immediately: for example, “What is 3 + 8?” or 
“What is 3874?” Both of these are simple arithmetic exercises, although the 
second one is rather dif  cult, and the chance of getting the correct answer is 
nil. Nevertheless, there is no question about how to proceed. 

In contrast, a problem is a question that one does not know, at the outset, how 
to approach. This is what makes mathematical problem solving so important, 
and not just for mathematicians. Arguably, all pure mathematical research 
is just problem solving, at a rather high level. But the problem-solving 
mind-set is important for all who take learning seriously, especially lifelong 
learners. Much of the current craze in brain strengthening focuses merely on 
exercises. These are not without merit—indeed, mental exercise is essential 
for everyone—but they miss out on a crucial dimension of intellectual life. 
Our brains are not just for doing crosswords or sudoku—they also can and 
should help us with intensive contemplation, open-ended experimentation, 
long wild goose chases, and moments of hard-earned triumph. That is what 
problem solving is all about. 

An analogy that I frequently use compares an exerciser to a gym rat and a 
problem solver to a mountaineer. The latter’s experience is riskier, messier, 
dirtier, less constrained, less certain, but much more fun. For those of you 
who prefer more civilized pursuits, consider 2 ways to learn Italian. One 
involves toiling over grammar exercises and translations of texts. The other 
method is to spend a few months, perhaps after a short bit of preparation, 
in a small town in Italy where no one else speaks English. Again, the latter 
approach is messier but fundamentally richer. 
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Becoming a good problem solver requires new skills (mathematical as well 
as psychological) and patient effort. My pedagogical philosophy is both 
experiential and analytic. In other words, you cannot learn problem solving 
without working hard at lots of problems. But I also want you to understand 
what you are doing at as high a level as possible. We will break down the 
process of solving a problem into investigation, strategy, tactics, and  ner-
grained tools, and we will often step back to discuss not just how we solved 
a problem but why our methods worked.  

Problems, by de  nition, are hard to solve. Solving problems requires 
investigation, and successful investigations need strategies and tactics. 
Strategies are broad ideas, often not just mathematical, that facilitate 
investigation. Some strategies are psychological, others organizational, and 
others simply commonsense ideas that apply to problems in any  eld. Tactics 
are more narrowly focused, mostly mathematical ideas that help solve many 
problems that have been softened by good strategy. Additionally, there are 
very specialized techniques, called tricks by some, that I call tools.  

This course is devoted to the systematic development of investigation 
methods, strategies, and tactics. Besides this “problemsolvingology,” I 
will introduce you to mathematical folklore: classic problems as well as 
mathematical disciplines that play an important role in the problem-solving 
world. For example, no course on problem solving is complete without some 
discussion of graph theory, which is an important branch of math on its own 
but is also a very accessible laboratory for exploring problem-solving themes. 
Many of the lectures will include small amounts of new mathematics that 
we will build up and stitch together as the course progresses. The topics are 
largely drawn from discrete mathematics (graph theory, integer sequences, 
number theory, and combinatorics), because this branch of math does not 
require advanced skills such as calculus. That does not mean it is easy, but 
we will move slowly and develop new ideas carefully.  

A small but important part of the course explores the culture of problem 
solving. I will draw on my experience as a competitor, coach, and problem 
writer for various regional, national, and international math contests, to make 
the little-known world of math Olympiads come to life. And I will discuss 
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the recent educational reform movement (in which I am a key player) to 
bring Eastern European–inspired mathematical circles to the United States. 

Problem solving is not a vertically organized discipline; it is not something 
that one learns in a linear fashion. Thus the overall organization of this 
course has a recursive, spiral nature. The  rst few lectures introduce the main 
ideas of strategy and tactics, which then are revisited and illuminated by 
different examples. We will often return to and re  ne previously introduced 
ideas. Overall, the topics get more complex toward the end of the course, 
but the underlying concepts do not really change. An analogy is a theme 
and variations musical piece, where the main theme is introduced with a 
slow, stately rhythm and later ends in complex avant-garde interpretations. 
By the end of the course, you should understand the main theme (the basic 
and powerful strategies and tactics of problem solving) quite well because 
you had to struggle with the complex interpretations (the advanced folklore 
problems that used the basic strategies in novel ways). 

Problem solving is not just solving math problems. It is a mental discipline; 
successful investigations demand concentration and patient contemplation 
that few of us can do, at least at  rst. Also, problem solving is an aesthetic 
discipline—in other words, an art—where we create and contemplate objects 
of elegance and beauty. I hope that you enjoy learning about this wonderful 
subject as much as I have! 
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Problems versus Exercises 
Lecture 1 

There is always a porous boundary between problem and exercise, but 
a problem by its very nature requires investigation, sometimes very 
intense and sustained investigation. The investigation of a problem 
employs strategies and tactics, and that’s what this course is about. 

In this introductory lecture, we de  ne the main entity that we will study 
in this course: problems. Problems, by de  nition, are dif  cult, and our 
investigation of them cannot proceed without organized strategies and 

tactics. Indeed, our course focuses on 3 things: investigation, strategies, and 
tactics. Problem solving is at the heart of mathematics. It is not just a way of 
thinking about math but is an intellectual lifestyle with its own mathematical 
folklore and culture. Most of our learning 
will be by example. Almost every lecture 
will revolve around one or more problems. 
You, the viewer, will need to use the Pause 
button and pencil and paper. This lecture 
will include several fun problems not 
requiring any special mathematical skills, 
but in later lectures, the problems will be 
more complex. 

Who am I, and what do I do? I have 
been a professor at the University of San 
Francisco since 1992. I received my Ph.D. 
in Mathematics from the University of 
California, Berkeley, specializing in Ergodic 
Theory, a sort of abstract probability theory. 
I  rst learned about problem-solving mathematics as a mathlete at Stuyvesant 
High School in New York City. I won national awards and participated in 
international competitions, some of the most formative experiences of my 
life. I currently teach problem-solving mathematics to high school and middle 
school teachers, run math clubs, write problems for math competitions, and 
train mathletes.  

Much of the current 
craze in brain 
strengthening focuses 
on exercises. This 
is not without merit, 
but our brains should 
also work on intensive 
contemplation 
and open-ended 
experimentation. 
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What do I mean by “problems versus exercises”? This course is devoted 
to the study of problem-solving investigation and the strategies and tactics 
that facilitate it. An exercise is a mathematical question that you know 
immediately how to answer. You may not answer it correctly, and it may not 
be easy, but there is no doubt about how to proceed. In contrast, a problem is a 
mathematical question that you do not know how to answer, at least initially. 
Problems require investigation, which employs strategies and tactics. 

Why study problem solving? It helps you develop a problem solver’s mind-
set, which involves both heightened mental discipline and an explorer’s 
attitude. Much of the current craze in brain strengthening focuses on 
exercises. This is not without merit, but our brains should also work on 
intensive contemplation and open-ended experimentation. A good problem 
solver is intellectually playful and fearless. 

The Pill Problem 

• This is a recreational problem, in that it requires little or no 
formal mathematics to solve. 

• For 10 days, you must take exactly 1 A and 1 B pill at noon, or 
you will die. The pills are indistinguishable! All goes well until 
day 3. On this day, you shake 1 A and 2 B pills into your hand 
and do not know which is which. Can you survive? If so, how? 

• We will discuss the solution later in this lecture. I urge you 
to work on this and future problems on your own, before we 
present the solutions. It is important to make good use of your 
Pause button in this course! 

In this course, you will learn “problemsolvingology” in an analytic way, 
by systematically developing strategies and tactics. The goal is not for you 
to learn tricks that solve problems but to develop a mind-set that facilitates 
persistent, creative investigation of problems. Problem solving is also an 
art, with folklore and “morals.” These are classic problems whose content 
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and solution tell important stories that teach us about problem solving 
and show us the beautiful interconnectedness of mathematics. From time 
to time, we change our focus from problem solving itself to exploring the 
problem-solving culture. We do this not just because it is interesting but 
because it is essential. 

Learning to become a better problem solver requires a change in attitude. 
There are 2 things that you may be unaccustomed to: (1) Timescale. 
Most of us are not used to thinking hard for more than a minute or so. 
Developing expert skill requires 10,000 hours, which is somewhat more than 
a year without breaks. (2) Failure. One needs to cultivate an attitude that 
investigation is always worthwhile, even if it does not lead to solution. 

The Subway Love-Triangle Problem 

• Anna lives near a subway station located at the middle of the 
line. She has 2 boyfriends, Bert and Curt, who live at either end 
of the subway line. The men demand that she choose between 
them. She proposes to randomly show up at her station every 
day for a month and take the  rst train that comes. Whichever 
boyfriend she visits the most will be the one she chooses. The 
trains come every 20 minutes in each direction, every day, 24 
hours per day. Is Anna’s scheme fair? (You can assume that the 
month has 31 days, so there is no possibility of a tie.) 

• Strategy: Get your hands dirty! There is no way to approach 
this problem without sitting down and writing a train schedule. 

• Consider the following schedule. Anna’s scheme seems fair. 

Northbound Southbound
12:00 12:10
12:20 12:30
12:40 12:50
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• But look at this schedule! 

Northbound Southbound
12:00 12:05
12:20 12:25
12:40 12:45

• The second schedule favors the boyfriend at the northern 
terminus, because there is only a 5-minute window every 20 
minutes during which the southbound train comes  rst. So 
the northern boyfriend has a 3-to-1 advantage. Clearly the 
schedule can be designed to give one boyfriend an even greater 
advantage. So the scheme is not fair; it is less fair than  ipping 
a coin. 

• Notice how this problem could not be investigated, let alone 
solved, without getting your hands dirty. Simple, con  dent 
experimentation is often the key to investigating any problem. 

Solution  to the Pill Problem 

• Wishful thinking suggests trying to get a dosage that is at least 
closer to the correct dose. What you have is both unknown and 
unbalanced. Adding an additional A pill gives you a balanced 
dosage. Here we are using the tactic of imposing symmetry on 
our problem; we will see later that this is a very powerful idea.  

• Now we have a balanced dose but one too big. Wishful thinking: 
Imagine that you are a giant (twice as large as a normal 
person). Then you would be done! This immediately suggests 
the solution: Cut the double-sized dose in half (or grind up and 
divide in half), producing 2 days of correct dosages to get us 
back on track.  



• What we did was use wishful thinking and symmetry. Why we 
did it was to increase our ability to investigate and move our 
solution toward a con  guration with more balance and possibly 
more information. 

• Wishful thinking, get hands dirty, and symmetry: the core of 
the course. We will use these ideas over and over and add new 
and powerful ideas. 

Lehoczky and Rusczyk, The Art of Problem Solving.  

Vakil, A Mathematical Mosaic. 

Zeitz, The Art and Craft of Problem Solving, chap. 1. 

1. You are in the downstairs lobby of a house. There are 3 switches, all in 
the off position. Upstairs, there is a room with a light bulb that is turned 
off. One and only one of the 3 switches controls the bulb. You want to 
discover which switch controls the bulb, but you are only allowed to go 
upstairs once. How do you do it? (No fancy strings, telescopes, and so 
on are allowed. You cannot see the upstairs room from downstairs. The 
light bulb is a standard 60-watt bulb.) 
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    Suggested Reading

    Questions to Consider
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2. You are locked in a 50- × 50- × 50-foot room that sits on 100-foot stilts. 
There is an open window at the corner of the room, near the  oor, with 
a strong hook cemented into the  oor by the window. So if you had a 
100-foot rope, you could tie one end to the hook and climb down the 
rope to freedom. (The stilts are not accessible from the window.) There 
are two 50-foot lengths of rope, each cemented into the ceiling, about 
1 foot apart, near the center of the ceiling. You are a strong, agile rope 
climber, good at tying knots, and you have a sharp knife. You have no 
other tools (not even clothes). The rope is strong enough to hold your 
weight, but not if it is cut lengthwise. You can survive a fall of no more 
than 10 feet. How do you get out alive?  
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Strategies and Tactics 
Lecture 2 

So far we’ve seen the difference between problems and exercises, and 
we’ve solved several problems using 2 very, very simple commonsense 
strategies: wishful thinking and get your hands dirty. What we’ll do 
in this lecture is develop a careful de  nition of strategies and tactics, 
which is what we need to proceed with problem-solving investigations, 
and we’ll look at an analytic approach to problem solving.  … Along the 
way, of course, we’ll solve some classic problems using several different 
approaches. We’ll do some where we concentrate on strategies and 
others where we’re concentrating more on tactics. 

The main goal of this lecture is an overview of the analytic approach 
to problem solving, carefully de  ning the notions of strategy and 
tactics that were introduced in Lecture 1. All problems require 

investigation, and to facilitate investigation, we need many resources. 
These are collectively called strategies, and we will mention several but 
only focus on a few during this 
lecture. Tactics have a narrower 
and more mathematical focus and 
are used, generally, at a later stage 
of investigation, often providing the 
key to solution. In this lecture, we 
will look at 2 classic problems. An 
important aspect of this lecture is 
the stress on the need to deconstruct 
solutions of problems, to understand 
not just how, but also why, we could 
solve them.  

Let’s  rst look at solving standard 
story problems. Here is a typical 
story problem, the sort that freshmen business math students struggle with. 
Such problems are too simple for this course—they are really more like 
exercises for us. 

Strategies are ideas, mostly 
nonmathematical, that 
facilitate investigation of 
almost any problem. Tactics 
are more narrowly focused, 
mostly mathematical, ideas 
that help one solve many 
problems that have been 
“softened” by good strategy.
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Omnicorp Story Problem 

• Omnicorp is sending 216 of its employees to a productivity 
enhancement conference, which involves an overnight stay at 
a hotel. The employees will stay in either 2-person or 4-person 
rooms, which cost $100 and $150 each, respectively. The 
housing budget for the conference is $9600. How many rooms 
of each kind will be reserved?  

• I employ the fantasy answer method, which applies the wishful 
thinking strategy.  

• The method is simple: Just pretend that you have actually 
solved the problem, and write down an answer.  

• The only catch is that the answer must make sense in terms 
of units.  

• The student then takes the fantasy answer, which is entirely 
concrete, and reads the problem again, trying to  gure out 
why the answer is not correct. This, hopefully, will lead to 
understanding how the problem can be set up algebraically. 

• The overarching idea is the utility of wishful thinking as a 
means of facilitating investigation.  

How does the analytic approach to problem solving work? Use strategies 
to begin and facilitate the investigation. Next, deploy tactics to continue 
the investigation and hopefully yield a solution. Use tools (a.k.a. tricks) 
sparingly, at the narrowest focal level. Strategies are ideas, mostly 
nonmathematical, that facilitate investigation of almost any problem. Tactics 
are more narrowly focused, mostly mathematical, ideas that help one solve 
many problems that have been “softened” by good strategy. Tools have very 
narrow applications—and very impressive results when used correctly. 
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The Census Taker Problem 

• A classic example, one of my favorites, that uses the get hands 
dirty strategy. 

• A census taker knocks on a door and asks the woman inside 
how many children she has and how old they are.  

• “I have 3 daughters, their ages are whole numbers, and the 
product of the ages is 36,” says the mother. “That is not enough 
information,” responds the census taker. “I would tell you the 
sum of their ages, but you would still be stumped,” says the 
mom. “I wish you would tell me something more,” begs the 
census taker. The mom responds, “Okay, my oldest daughter, 
Annie, likes dogs.” 

• What are the ages of the 3 daughters? 

• The problem consists of what appear to be too few clues. But 
just start with the  rst clue, and get your hands dirty! 

• The  rst clue says, “The product of the ages is 36.” There are 
only a few possible ways you can multiply 3 whole numbers to 
get 36; it makes sense to systematically list them. 

• The second clue says that if she told him the sum, he would 
still be stumped. It makes sense, then, to compute the sums of 
the possibilities you have listed. 

• Now we see what is going on. Two of the possibilities—9, 2, 
2 and 6, 6, 1—have the same sum (13), and these are the only 
2 with the same sum. So we know that it must be one of these, 
for otherwise we would not have been stumped. 

• Finally, we understand the  nal clue, which merely indicates 
that there is an oldest child. So the answer is 9, 2, 2. 
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The Frog Problem  

• The frog problem is a classic Russian math circle problem. 

• Three frogs are situated at 3 of the corners of a square. Every 
minute, 1 frog is chosen to leap over another chosen frog, so 
that if you drew a line from the starting position to the ending 
position of the leaper, the leapee is at the exact midpoint.  

• Will a frog ever occupy the vertex of the square that was 
originally unoccupied? 

• How can we effectively investigate this problem?  

• Graph paper allows us to attach numbers to the positions of the 
frogs. Once we have numbers, we can employ arithmetical and 
algebraic methods. Thus, place the frogs at (0, 0), (0, 1), and 
(1, 1). The question now is, can a frog ever reach (1, 0)? 

• Thinking about the appropriate venue for investigation is an 
essential starting strategy for any problem. 

• Another investigative idea: Use colored pencils to keep track 
of individual frogs. This adds information, as it allows us to 
keep track of 1 frog at a time. Color the (1, 1), (0, 1), and (0, 0) 
frogs red, blue, and green, respectively. 

• Notice, by experimenting, that the red frog only seems to hit 
certain points, forming a larger (2-unit) grid.  

• Some of the coordinates that the red frog hits are (1, 1), (1, 3), (1, 
1), ( 1, 1), ( 1, 1), and ( 1, 3). They are all odd numbers! 

• Likewise, the blue frog only hits certain points on a 2-unit grid, 
including (0, 1), (2, 1), (4, 1), and (0, 1); these are all of the 
form (even, odd). 
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• Likewise, the green frog only hits (even, even) points. 

• On the other hand, the missing southeast vertex was (1, 
0), which has the form (odd, even). It seems as though it is 
impossible, but how can we formulate this in an airtight way?  

• It is often very pro  table to contemplate parity (oddness 
and evenness).  

• The essential reason for this is that a parity focus reduces a 
problem from possibly in  nitely many states to just 2.  

• Parity involves the number 2. Where in this problem do we see 
this number? In doubling, because of the symmetry of the way 
the frogs leap. When the leaper jumps over the leapee, she adds 
twice the horizontal displacement to her original horizontal 
coordinate. The same holds for vertical coordinates. 

• So when a frog jumps, its coordinates change by 
even numbers! 

• For example, suppose the red (1, 1) frog jumps over the green 
frog at (0, 0). The horizontal and vertical displacements to the 
leapee are both 1 (since it is moving left and down), so the  nal 
change in coordinates will be 2. The horizontal coordinate 
will be 1 + 2 = 1, and the vertical will also be 1. 

• Suppose now that the red frog jumps over the blue frog, 
which is (0, 1). The horizontal displacement is +1, and the 
vertical displacement to the target is +2. So the new horizontal 
coordinate will be 1 (the starting value) + 2 × 1 = +1, and the 
new vertical coordinate will be 1 (the starting value) + 2 × 2 
= 3. Thus the red frog jumps from ( 1, 1) to (1, 3). 
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• In general, when a frog jumps, we will take its starting 
x-coordinate and add twice the horizontal displacement to its 
target. Likewise, we take its starting y-coordinate and add twice 
the vertical displacement to the target. These displacements 
may be positive, negative, or zero. 

• In other words, you take the starting coordinates and add 
even numbers to them. But when you add an even number to 
something, its parity does not change! 

• So the (odd, odd) frog—the red frog—is destined to stay at 
(odd, odd) coordinates, no matter what. 

Polya, How to Solve It. 

Zeitz, The Art and Craft of Problem Solving, chap. 2. 

1. Write the numbers from 1 to 10 in a row and place either a minus or a 
plus sign between the numbers. Is it possible to get an answer of zero? 

2. A group of jealous professors is locked up in a room. There is nothing 
else in the room but pencils and 1 tiny scrap of paper per person. The 
professors want to determine their average (mean, not median) salary so 
that each can gloat or grieve over his or her personal situation compared 
to the others. However, they are secretive people and do not want to 
give away salary information to anyone else. Can they determine the 
average salary in such a way that no professor can discover any fact 
about the salary of anyone but herself? For example, even facts such as 
“one professor earns less than $90,000” are not allowed.  

    Suggested Reading

    Questions to Consider
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The Problem Solver’s Mind-Set 
Lecture 3 

There are 2 lovely quotes about concentration. If we want to paraphrase 
them, the  rst one says that concentration is a human virtue, and the 
second one says obsession begets concentration. You need to relax; 
you need to develop good work habits; and you need to  nd, most 
importantly, problems that are interesting to you, approachable by 
you, and addictive.  

In this lecture, we discuss some of the mental tools needed for successful 
problem solving. A good problem solver needs concentration, 
con  dence, and creativity—but how can one acquire these, and how can 

these attributes be enhanced? We explore some classic puzzlers and begin to 
develop some number theory ideas and to investigate a problem about the 
famous Fibonacci numbers. 

The 3 c’s of mental attitude are concentration, creativity, and con  dence. 
How do we enhance these qualities? Con  dence is the least important, as it 
is derived from the other qualities, and creativity is the most elusive, so it is 
best to start by developing your concentration. You need to relax, develop 
good work habits, and  nd problems that are interesting, approachable, and 
addictive. As with any art or craft, you must set aside a quiet time and place 
for your work and start building your concentration. Start building up a stock 
of back-burner problems. Make good use of unstructured time. 

Let’s look at con  dence and creativity by examining some truly creative 
mathematics. We will look at 2 tools. Recall that tools are narrowly focused 
mathematical ideas that solve certain types of problems. The  rst tool, 
Gaussian pairing, was made famous by Carl Gauss (1777–1855), who is 
universally recognized as one of the greatest mathematicians ever.  

When Gauss was only 10, as legend has it, he was faced with the sum 
1 + 2 + 3 + … + 100. How was he to compute it, in 1787, when there were 
no calculators? He simply paired the terms: (1 + 100) + (2 + 99) + … + 
(50 + 51). Thus the sum is 50(101) = 5050. 
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The second tool is telescoping. We will apply it to a harder sum 
involving fractions: 

 1 1 1 1
1 2 2 3 3 4 99 100

 

Do not let such a problem make you panic: Panicking is bad for your 
con  dence and harms investigation. You must look for things that foster 
investigation. The wishful thinking strategy works for this reason: Pretending 
you have solved a problem—even an easier one—keeps you happy, and that 
keeps you thinking about the problem!  

• A corollary of wishful thinking is the make it easier strategy. This 
strategy is common sense: If the current problem is too hard, make 
it easier by reducing its size or eliminating one or more of the 
elements that make it hard. 

• In our case, that just means we should replace the 99-term 
sum with, say, a 1-term or 2-term sum. When we look at these 
smaller problems, it is easy to conjecture that the 99-term sum 
equals 99/100.  

• Telescoping is the way to see why this conjecture is true. 

• Write the terms as differences.  

  
1  1/ 2  1/ 1  2

1/ 2  1/ 3  3  2 / 2  3   1/ 2  3
1/ 3  1/ 4  4  3 / 3  4   1/ 3  4

 

• Notice that for any k, 1/k  1/(k + 1) = 1/[k(k + 1)]. 

• Thus all terms cancel (telescope) except the  rst and last, yielding 
the answer 1  1/100 = 99/100. 
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How do you get more creative? The 3 c’s are inextricably linked: 
Concentration leads to con  dence, which frees you to explore, which 
facilitates investigation and creativity. You need to set up a problem-solving 
routine. And think about peripheral vision: Many problems cannot be solved 
with direct focus. Many problems need to percolate in your unconscious. 
You need to cultivate a good supply of back-burners and get in the habit 
of not solving problems. The more you 
can cultivate a state of investigation 
and purposeful contemplation, the more 
powerful your mind will get.  

We end with a fun open-ended problem 
designed to facilitate uninhibited 
investigation. There are no wrong 
answers. First, a little introduction 
to modular arithmetic: We write 

moda b m , read “a is congruent to b modulo m,” if a  b is divisible by 
m. The nice thing about congruence is that it preserves addition, subtraction, 
and multiplication. For example, if 17  2 (mod 5) and 8  3 (mod 5), then 
17 × 8  2 × 3 (mod 5). You can think of congruence as a sort of myopia 
in which we lump the in  nitude of integers into just a few categories. In the 
(mod 5) universe, there are only 5 types of numbers, those congruent to 0, 1, 
2, 3, and 4 (mod 5). If we restrict ourselves to the (mod 2) universe, that is 
the same as only worrying about parity. The Fibonacci numbers are de  ned 
by 1 2 1f f  and 1 2n n nf f f  for n greater than 2. The  rst few terms 
are 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, and 144.  

Your assignment: Investigate divisibility patterns of the Fibonacci numbers. 
For example, which Fibonacci numbers are even? Odd? Multiples of 3? 
Of 5? 

• Experiment and conjecture! Don’t worry about why at this point. 

• Investigate by making it easier and getting your hands dirty.  

• Start with mod 2 (parity). Then the sequence is 1, 1, 0, 1, 1, 0, 1, 1, 
0, … . It is evident that every third one is even.  

People are endowed 
unequally with con  dence, 
creativity, and power of 
concentration, but all of 
these are trainable skills. 
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• Trying mod 3, we get 1, 1, 2, 0, 2, 2, 1, 0, 1, 1, 2, 0, … , and we see that 
every fourth one is a multiple of 3. 

• Do more experiments, until you have some good conjectures. We will 
not worry about proofs yet. 

• People are endowed unequally with con  dence, creativity, and power 
of concentration, but all of these are trainable skills. It is possible to 
practice them and improve them—you just need to see lots of creativity 
in action, and you need lots of open-ended opportunity to experiment. 

Gardner, Aha! 

Honsberger, Ingenuity in Mathematics. 

Zeitz, The Art and Craft of Problem Solving, sec. 2.1. 

1. How do you bring a 1.5-meter sword onto a train if no baggage item 
with dimension greater than 1 meter is allowed? 

2. One day Martha said, “I have been alive during all or part of 5 decades.” 
Rounded to the nearest year, what is the youngest she could have been? 

    Suggested Reading

    Questions to Consider
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Searching for Patterns  
Lecture 4 

The moral of the story that we’ve seen is that uninhibited experimentation 
is lots of fun and it often leads to many fun conjectures, but mere 
pattern hunting is not enough if we do not understand the why behind 
what we see. 

In this lecture, we step back a bit and examine the power of simple strategies 
that allow us to simplify problems, make numerical experiments, and 
develop conjectures. We also look at 2 cautionary examples that show 

that experimentation and conjecture is not always enough. The core of this 
lecture is the beginning of an investigation into 
trapezoidal numbers and a search for patterns in 
Pascal’s triangle. This lecture is devoted to the 
search for patterns by getting one’s hands dirty. 
We will look at several examples where this 
strategy succeeds, as well as ones where it is 
clearly not enough. 

It is helpful to build up a stock of knowledge to 
aid our receptiveness to discovery. You must be 

at least passively aware of some of the most important subsets of the integers. 
It is important to develop an obsession with numbers and sequences. 

• Squares: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100 … . 

• Cubes: 1, 8, 27, 64, 125, 216, 343, 512, 729, 1000, … . 

• Primes: 2, 3, 5, 7, 11, 13, 17, 19, 23, … . 

• Powers of 2: 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, … . 

• Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144… . 

Perhaps the 
most important 
mathematical 
playground of all is 
Pascal’s triangle. 
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• Factorials:  

1! = 1, 
2! = 1 × 2 = 2, 
3! = 1 × 2 × 3 = 6, 
4! = 1 × 2 × 3 × 4 = 24, 
5! = 4! × 5 = 120, 
6! = 720, 
7! = 5040. 

• Triangular numbers (called triangular because they can be 
rearranged as dots that form triangles): 

1, 
1 + 2 = 3, 
1 + 2 + 3 = 6, 
1 + 2 + 3 + 4 = 10. 

Let’s look at a problem involving a slightly more exotic sequence, the 
trapezoidal numbers. Find all positive integers that can be written as a sum 
of at least 2 consecutive positive integers. We call such numbers trapezoidal 
since when we depict them with dots, the pattern is trapezoidal. Examples:  

• 6 = 1 + 2 + 3. 

• 36 = 11 + 12 + 13. 

An investigation of the  rst dozen or so trapezoidal numbers yields the 
conjecture that the powers of 2 (1, 2, 4, 8, 16, …) are not trapezoidal. 

Perhaps the most important mathematical playground of all is Pascal’s 
triangle. You should add to your passive stock of integer knowledge the  rst 
10 or so rows. Pascal’s triangle is de  ned by the funnel property: Each term 
is equal to the sum of the 2 above it. For example, 10 = 4 + 6. We label the 
rows starting with row 0. We call the kth number in row n “n choose k” and 

write it 
n
k

. We call these binomial coef  cients. We use the word “choose” 



22

Le
ct

ur
e 

4:
 S

ea
rc

hi
ng

 fo
r P

at
te

rn
s 

 

in binomial coef  cients because n choose k also has a combinatorial 
meaning—the number of ways to choose k things from a set of n objects.  

Our goal for now is to  nd at least 5 interesting patterns in Pascal’s triangle. 
Carefully write out rows 0 to 10, at least. The sums of the elements in each 
row are powers of 2. The alternating sums, however, are always 0. The 
hockey-stick pattern: For example, 1 + 4 + 10 = 15. Triangular numbers 
(1, 3, 6, 10, … ). Fibonacci numbers even appear; it is easier to see this if we 
draw Pascal’s triangle this way: 

1 
1 1 
1 2 1 
1 3 3 1 
1 4 6 4 1 
1 5 10 10 5 1. 

The sums of each southwest-to-northeast diagonal are Fibonacci numbers 
(e.g., 1 + 4 + 3 = 8). The coef  cients of (1 )nx  are the numbers in row n. 
For example, 4 4 3 2(1 ) 4 6 4 1x x x x x . 

What about divisibility in Pascal’s triangle? At the very least, we should 
investigate parity. When we count the number of odd terms in each row, we 
see that these numbers are not only even but seem to be powers of 2. But 
which power of 2? And what are we observing here? We will investigate 
this later. 

There are limits to inductive reasoning. Here are 2 examples of why seeing a 
pattern is not suf  cient if you do not understand why the pattern is there.  

• Can a polynomial output nothing but primes? Consider 
2( ) 41P x x x . P(x) is prime for all positive integers up to 

40. But this numerical investigation distracts us from the why of 
the problem. 2(41) 41 41 41P , which is obviously a multiple 
of 41!  
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• The 5 circles problem: If n points are placed on a circle and all 
pairs of points are joined by line segments, into how many regions 
is the circle divided? Assume that the points are in general position 
(i.e., no 3 lines intersect in a single point). Investigation quickly 
yields the sequence 1, 2, 4, 8, 16. The obvious conjecture is that the 
number of regions is 12n , where n is the number of points. But a 
careful count of the 6-point circle yields only 31 regions! 

The moral of the story is clear: You must understand what you are 
looking at. 

Gardiner, Discovering Mathematics. 

Graham, Knuth, and Patashnik, Concrete Mathematics. 

Guy, “The Strong Law of Small Numbers.” 

1. For each positive integer n,  nd distinct positive integers x and y such 
that 1/x + 1/y = 1/n. 

2. Draw triangles with lattice point vertices. Count the number of lattice 
points in the interior (I) and boundary (B). Is there a formula relating 
these 2 numbers to the area (A)? 

    Suggested Reading

    Questions to Consider
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Closing the Deal—Proofs and Tools 
Lecture 5 

Investigation, as I’ve said before, trumps almost everything. 
Coupled with strategy and tactics, it’s the paramount way to think 
about problems, but it’s not always enough. Sometimes we need 
to close the deal with a creative logical argument or with a clever 
algebraic trick, such as proof by contradiction, direct proof, or even 
algorithmic proof. 

This lecture focuses on closing the deal: turning your investigative 
ideas into rigorous arguments. We  rst develop the ideas of 
deductive proof and proof by contradiction. Many problems also 

require  nely focused ideas known 
as tricks, or tools. We brie  y discuss 
some of the most important of these, 
while strenuously arguing against their 
overuse (a common beginner’s error). 

It is critical to become comfortable 
with mathematical logic. Math is 
fundamentally different from most other 
 elds of inquiry, because things are 

usually either right or wrong. Types of 
statements include conjectures, lemmas, and theorems. Proofs are arguments 
that demonstrate the truth of a theorem. There are direct proofs and indirect 
proofs; let’s look at an example of an indirect proof. 

Indirect Proof for the Irrationality of 2  

• Assume to the contrary that 2  is rational. 

• Then 2 /a b , for some integers a and b. Algebraic manipulations 
yields 2 22b a . 

In  nite processes such 
as sums and fractions 
are de  ned by looking 
at the  nite version and 
considering what happens 
when they converge. 
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• Now count the 2s in the prime factorizations and use the fundamental 
theorem of arithmetic. 

• The left-hand side has an odd number of 2s, while the right-hand 
side has an even number—a contradiction! 

Now we can prove the conjecture about trapezoidal numbers from the 
last lecture. 

• Recall that trapezoidal numbers are sums of at least 2 consecutive 
positive integers. Then if a number T is trapezoidal, there exist 
positive integers a, n, and l, for the starting value, number of terms, 
and ending value, respectively. For example, if T = 18 = 3 + 4 + 5 + 
6, then a = 3, n = 4, and l = 6. 

• Using the Gaussian pairing trick, we can add up a + (a + 1) + … 
+ l and get the important formula T = n(a + l)/2. This makes sense, 
since it says that the sum is equal to the average value of the terms, 
times the number of terms. 

• Thus we have the formula T = n(a + a + n  1)/2 = n(2a + n  1)/2. 

• We want to show 2 things: that T cannot be a power of 2 and that if 
T is anything else, we can  nd an a and n that work. 

• For the  rst goal, since powers of 2 are totally even, it makes 
sense to think about parity. 

• If n is even, then 2a + (n  1) is odd. Hence T = (even)(odd)/2.  

• If n is odd, then 2a + (n  1) is even, but again T = (odd)
(even)/2. 

• So in every case, T must have an odd factor! T cannot be a 
power of 2! Notice the importance of the penultimate step 
strategy here. 
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• In the other direction (showing that all non–powers of 2 work), let T 
be such a number. Then we have to  nd a and n, both positive, with 
n > 1, such that T = n(2a + n  1)/2. 

• Remove the fraction, getting 2T = n(2a + n  1). 

• Since a is at least 1, the second factor of this expression is at 
least n + 1. 

• Thus, for any value of T that has at least one odd factor (besides 
1), compute 2T and factor it into a product of an odd and an 
even. The smaller factor will be n, and the larger will be 2a + 
n  1, and we will be able to solve for a. 

• Example: T = 10. 2T = 20 = 4 × 5. So n = 4, and 2a + 3 = 5, 
making a = 1. 

The in  nitude of primes is a classic proof by contradiction. 

• Assume, to the contrary, that there are  nitely many primes, ending 
with the prime number L. 

• De  ne Q to equal the product of all these primes, plus 1. In other 
words, Q = (2 × 3 × … × L) + 1. 

• Q cannot be prime; it is much bigger than L! 

• But Q cannot be divisible by 2, 3, 5, or any other prime number. 

• Thus there must be a prime that is not in the list 2, 3, 5, … , L—
a contradiction! 

• We conclude that there cannot be a  nite number of primes. 

Now let’s apply these methods to the Fibonacci divisors problem. First 
we need a little tiny lemma. Lemma: If p is prime and ab is congruent to 
0 (mod p), then a = 0 or b = 0. This lemma is not true for composites [2 × 
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3 is congruent to 0 (mod 6)]. We will use this to prove our conjecture about 
Fibonacci divisors. For example, 4 3F , so we conjecture that every fourth 
Fibonacci is a multiple of 3. Modulo 3, the  rst 4 Fibonacci numbers are 1, 
1, 2, and 0. But the  fth and sixth Fibonacci numbers are 2 and 2. The rest 
of the sequence behaves like the  rst terms, only now they are multiplied by 
2! So the second 4 terms are equal to the  rst 4 terms, but multiplied by 2. 
Since 3 is a prime, the only way we will get a zero is when we multiply by 
zero. This argument will work for prime divisors only. But we have proven 
that if a prime p divides nF , then p divides 2 3,n nF F , and so on. 

Now let’s focus on useful tools involving algebraic sums. The mother of all 
tools is telescoping. Sometimes we can take a sum and perturb it so that 
most of the new terms cancel with the old terms. Here is an example of a 
geometric series. 

 

2 3

5

4

2 3 4 5

5(
    

1 )
 

S a ar ar ar ar
rS ar ar ar ar

S rS a a
ar

S
r

r a ar

 

In other words, S(1  r) turned the sum into a telescoping series. We can 
extend this to in  nite geometric series, as long as r is less than 1 in absolute 
value. As n grows, the limiting value will be / (1 )S a r . 

The massage tool is less common than telescoping but quite powerful. It 
says, feel free to mess around with an expression to make it simpler for your 
particular context; do not worry if you have altered its value a little. Let’s 
work an example: The harmonic series is the in  nite sum 1 + 1/2 + 1/3 + 
1/4 + 1/5 + … . Does it converge or diverge? We will prove divergence by 
showing that we can make the sum arbitrarily large if we go out far enough. 

• Key idea: 1/n  1/m if m  n. 

• Thus, 1/3 + 1/4  1/4 + 1/4 (which equals 2/4, which simpli  es 
to 1/2). 
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• Likewise, 1/5 + 1/6 + 1/7 + 1/8  1/8 + 1/8 + 1/8 + 1/8 (which 
equals 4/8 and simpli  es to 1/2). 

• Hence if we look at the terms from 1/9 to 1/16, there are 8 terms, 
each at least as large as 1/16, so their sum is at least 8/16 = 1/2. 

• Likewise, the sum of the 16 terms from 1/17 to 1/32 is at least 1/2. 

• Each time, we go out twice as far and extract a sum that is at 
least 1/2. 

• So we can make the sum as large as we please: It diverges! 

We end with an example of a hard in  nite sum that succumbs to a simple 
algebraic substitution. Compute the in  nite continued fraction  

 
11

11 11
1

. 

In general, in  nite processes such as sums and fractions are de  ned by looking 
at the  nite version and considering what happens when they converge. Get 
your hands dirty: Compute successive fractions. We get 1, 2, 3/2, 5/3, 8/5, 
and so on. Conjecture: These are quotients of successive Fibonacci numbers. 
We compute the limiting value using the creative substitution tool. Let x 
equal the whole limiting value. Then x = 1 + 1/x. The quadratic formula 

yields 1 5
2

, which is approximately 1.6803. This number is known as the 

golden ratio, and it is ubiquitous in mathematics. 
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Solow, How to Read and Do Proofs. 

Velleman, How to Prove It. 

1. Prove that there is no smallest positive real number. 

2. Find the sum 1 × 1! + 2 × 2! + 3 × 3! + … + 100 × 100!. 

    Suggested Reading

    Questions to Consider
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Pictures, Recasting, and Points of View 
Lecture 6 

You’ll soon see how powerful it is to stay  exible, to not commit 
to a particular point of view or even to a particular branch of 
mathematics.  

In this lecture, we explore 3 strategies: draw a picture, change your point 
of view, and recast your problem. We begin with proofs without words; 
then explore the amazing utility of the simple distance-time graph; and 

next move on to harder problems, where the crux idea is the discovery of 
the natural point of view. We will look at an example where the problem is 
geometric, at least on the surface, but cannot be solved until we turn it into a 
logic puzzler. 

Let’s begin with an example that makes strong use, as many pictorial 
problems do, of symmetry: Prove that if T is a triangular number then 8T + 1 
will be a perfect square. 

• For example, 55 is a triangular number (namely, 1 + 2 + … + 10), 
and 8 × 55 + 1 = 441, which is 21 × 21. 

• But why is it true? It is not too hard to prove using algebra, but it is 
more fun to use pictures. 

• The key idea is that 2 identical triangular numbers can be adjoined 
to form a rectangle. 

• Four such rectangles can be arranged symmetrically to form a 
square with a hole. 

And we get for free the algebraic identity 2(2 1) 8 nn T . 

Let’s switch gears to a pure word problem, one with no obvious picture. Pat 
works in the city and lives in the suburbs with Sal. Every afternoon, Pat gets 
on a train that arrives at the suburban station at exactly 5 pm. Sal leaves the 
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house before 5 and drives at a constant speed so as to arrive at the train station 
at exactly 5 pm to pick up Pat. The route that Sal drives never changes. One 
day, this routine is interrupted, because there is a power failure at work. Pat 
gets to leave early and catches a train that arrives at the suburban station at 
4 pm. Instead of phoning Sal to ask for an earlier pickup, Pat decides to get 
a little exercise and begins walking home along the route that Sal drives, 
knowing that eventually Sal will intercept Pat and make a U-turn, and they 
will head home together in the car. This is indeed what happens, and Pat 
ends up arriving at home 10 minutes earlier than on a normal day. Assuming 
that Pat’s walking speed is constant, that the U-turn takes no time, and that 
Sal’s driving speed is constant, for how many minutes did Pat walk? 

The problem can be solved by drawing a distance-time graph. It is 
clear geometrically that this length is 10 minutes. Hence Pat walks for 
55 minutes. 

Every problem has a natural point of view; you need to  nd it. If a problem 
is hard, perhaps you need a new point of view. What is the  rst time after 
noon at which the hour and minute hands meet? This is an amusing and 
moderately hard algebra exercise. However, this problem can be solved in 
a few seconds in your head if you avoid messy algebra and just consider 
the natural point of view. Don’t use a  xed frame 
of reference. Instead, look at it from the point of 
view of the hour hand. At noon, it coincides with 
the minute hand. Then, after somewhat more 
than an hour, the minute hand visits it again!  

How long until the next visit? The same amount 
of time, of course! From the point of view of 
the hour hand, nothing has changed from the 
situation at noon! Clearly there will be 11 meetings between noon and 
midnight, so the time between meetings is exactly 12/11 of an hour. The  rst 
meeting after noon is at 1:05:27.18. 

Here is a somewhat harder problem: A person dives from a bridge into a 
river and swims upstream through the water for 1 hour at constant speed. 
She then turns around and swims downstream through the water at the same 

The most common 
form of recasting 
is between algebra 
and geometry. 
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rate of speed. As the swimmer passes under the bridge, a bystander tells her 
that her hat fell into the river as she originally dived. The swimmer continues 
downstream at the same rate of speed, catching up with the hat at another 
bridge exactly 1 mile downstream from the  rst one. What is the speed of the 
current in miles per hour? 

Look at things from the hat’s point of view. The hat thinks that it is sitting 
still in the water. From its point of view, the swimmer abandoned it and then 
swam away for an hour at a certain speed (namely, the speed of the swimmer 
in still water). Then the swimmer turned around and headed back, going at 
exactly the same speed, since the current is always acting equally on both hat 
and swimmer. Therefore, the swimmer retrieves the hat exactly 1 hour after 
turning around. The whole thing took 2 hours, during which the hat traveled 
1 mile downstream. So the speed of the current is 1/2 mile per hour. 

Let’s turn to recasting. The most common form of recasting is between 
algebra and geometry. Another common recasting is between number theory 
and combinatorics. There are other possibilities, as you will see with the 
private planets problem. 

The Private Planets Problem  

• Consider n identical spherical planets in space, with n > 2. Call 
a point on the surface of a planet private if it cannot be seen 
from any other planet. What is the total private area among all 
the planets? 

• It is easy to experiment with n = 2; the total private area is 
equal to the area of a single planet.  

• For n = 3, it is a similar situation, because the centers of 
the planets lie in a plane. 

• But for n > 3, it gets ugly. The planets may no longer lie on a 
plane, so we are forced to contemplate spherical geometry.  
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• But perhaps it is not really a geometry problem! Crux move: 
Construct a universal north. Imagine that the planets lie in a 
room, and thus the point on each planet that is closest to the 
ceiling of the room is that planet’s north pole.  

• Now imagine a planet A whose north pole is a 
private point. 

• For this to be so, there can be no “eyes” on other planets 
that are north of the plane tangent to A’s north pole. In 
other words, every point on every other planet must lie 
south of this tangent plane. 

• If the north pole is private, the centers of all other planets 
lie south of the equator. 

• Thus, the north poles of all other planets will be visible 
from planet A or else visible from a planet to the south of 
planet A. 

• Generalizing, if a point P is a private point on some planet, 
then it must be public on all other planets! 

• Conversely, if P is public on one planet, it must be private 
on at least one other planet. 

• Conclusion: If a universal location is private on one planet, 
it cannot be private on any other planet, and every universal 
location must be private on at least one planet. Putting these 
2 together, every universal location is private on exactly 
one planet. 

• So the total private area is equal to the surface area of 
one planet!  
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How did we solve the planet problem? The universal frame of reference 
facilitated investigation of the relationships between private and public on 
different planets. We then realized that private/public is not just a geometric 
relationship but a binary logical relationship. We recast a hard geometry 
problem into a relatively simple logic problem! 

Nelson, Proofs without Words. 

Zeitz, The Art and Craft of Problem Solving, sec. 2.4. 

1. Find a “proof without words” that the sum of the  rst n positive odd 
integers is equal to 2n . 

2. Sonia walks up an escalator that is going up. When she walks at 1 step 
per second, it takes her 20 steps to get to the top. If she walks at 2 steps 
per second, it takes her 32 steps to get to the top. She never skips over 
any steps. How many steps does the escalator have? 

    Suggested Reading

    Questions to Consider
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The Great Simpli  er—Parity 
Lecture 7 

Any time you have a situation of mutuality, where you might have 2 
players, in some sense, connected by some relationship, there should be 
a nice systematic way of analyzing it. ... There’s a branch of mathematics 
designed for handling these situations, called graph theory. 

Parity is such an important tactical idea that we devote most of this 
lecture to it. Parity analysis helps to solve problems because it 
allows us to reduce the possibly in  nite complexity of a situation to 

just 2 states. We apply parity to a number of diverse problems involving 
information  ow, changing con  gurations, and maps of countries. We also 
introduce a topic that will recur several times in this course: graph theory, 
the study of networks.  

The Evil Wizard Hat Problem 

An evil wizard has imprisoned 64 people. The wizard announces the 
following: Tomorrow I will have you stand in a line, and I will put 
a hat on each of your heads. The hat will be either white or black. 
You will be able to see the hats of everyone in front of you, but you 
will not be able to see your hat or the hats of the people behind you. 
I will begin by asking the person at the back of the line to guess his 
or her hat color. If the guess is correct, that person will be released. 
If the guess is wrong, that person will be killed in a painful way. 
Then I will ask the next person in line, and so on. When it is your 
turn to speak, you are only allowed to say the single word ‘black’ 
or ‘white,’ and otherwise you are not allowed to communicate with 
each other while you are standing in line. Although you will not be 
able to see the people behind you, you will know (by hearing) if 
they have answered correctly or not. 
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The prisoners are allowed to chat for a few minutes before their 
ordeal begins. What is the largest number of prisoners that can be 
guaranteed to survive? 

Clearly, it is possible to save half the people, where the sacri  cial 
lambs agree to say the color of the person in front of them. But 
we can do much better, using the observation that as we count 
something, its parity alternates. This seems trivial, but sometimes 
it is enough! For example, suppose you can see 10 hats in front 
of you, and you count 7 black and 3 white. Use wishful thinking: 
What do you wish you knew? We need some way to communicate 
the parity of the number of black hats in front of us to the person 
directly in front of us, using the code “black” = odd and “white” = 
even, and the  rst person to speak (the one at the back of the line) 
will use this code for the parity of the number of black hats that he 
or she sees.  

He may not survive, of course. The next person in line, however, is 
guaranteed to live, if he pays attention. He knows that the person 
behind him saw an even number of black hats. If he sees an odd 
number, then he knows his hat is black. If he sees an even number, 
then he knows his hat is white. And everyone else is also safe: By 
listening to the people behind them, they can keep track of the 
current parity of the number of black hats. 

Here is a completely different application of parity: the classic proof (dating 
back to Euclid) that 2  is irrational. We use 3 simple facts.  

• If a number is even, it can be written in the form 2m for some 
integer m. 

• If an even integer is a perfect square, then its square root is 
also even. 
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• If a number is rational, then it can be expressed as a fraction in 
simplest form, in which case the numerator and denominator cannot 
both be even.  

We will do a proof by contradiction. Assume, to the contrary, that 2  is a 
rational number. Then we can write it as a fraction a/b in lowest terms; so a 
and b are both integers and not both even. If we square this, we get 2.  

• So 2 2/ 2a b , or 2 22a b .  

• But 22b  is even by fact 1 above, so 2a  is even, so a is even by fact 
2. Then we can write a = 2u for some integer u (by fact 1).  

• Squaring this, we get 2 24a u , and substituting this back into 
2 22a b , we get 2 24 2u b , or 2 22u b . But now we deduce that 
2b  is even, so b is even. 

• Conclusion: a and b are both even. That is impossible, so 2  
cannot be rational. 

The next problem, the locker problem, we will not solve completely in 
this lecture.  

The Locker Problem  

• Lockers in a row are numbered 1, 2, 3, … , 1000. At  rst, all 
the lockers are closed. A person walks by and opens every 
other locker, starting with locker 2. Thus lockers 2, 4, 6, … , 
998, 1000 are open. Another person walks by and changes the 
state of every third locker, starting with locker 3. Then another 
person changes the state of every fourth locker, starting with 
locker 4, and so on. This process continues until no more 
lockers can be altered. Which lockers will be closed? 
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• A simple investigation quickly leads to the conjecture that 
squares remain closed. 

• Look at the penultimate step. What determines if a locker is 
open or closed? The parity of the number of times the locker’s 
state changed.  

• Clearly, locker L will only be changed at step S if S divides L. 

• So we have reduced our problem about lockers to the equivalent 
number theory question: Can we prove that a number has an 
odd number of divisors if and only if it is a perfect square? 

The next problem comes from the Bay Area Mathematical Olympiad. A 
lock has 16 keys arranged in a 4 × 4 array, and each key is oriented either 
horizontally or vertically. In order to open it, all the keys must be vertically 
oriented. When a key is switched to another position, all the other keys in the 
same row and column automatically switch their positions too. Show that no 
matter what the starting positions are, it is always possible to open this lock. 
(Only one key at a time can be switched.) 

Parity can be used whenever there are just 2 states in a problem, and here 
vertical and horizontal certainly  t the bill. We need to be able to change any 
key, but the problem is that when we turn a single key, it changes 7 keys, 
including itself. We would like to only change one key. However, if a key 
is changed twice, it is as if it was never changed (odd + odd is even). We 
need to  nd a move or sequence of moves that changes lots of keys an even 
number of times but changes only one key an odd number of times. There 
are not too many things to try, and a number of them work. You can check 
that if you pick any speci  c key and turn all 7 keys in its cross, this will do 
the trick. 
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Here is another problem from a regional Olympiad (Colorado): If 127 people 
play in a singles tennis tournament, prove that at the end of the tournament, 
the number of people who have played an odd number of games is even. 
Note that the tournament can have any 
structure; the only restriction is that each 
game requires 2 people. 

Suppose each person pays a dollar to the 
tournament each time they play a game. 
Each game played makes the tournament 
owner $2 richer. If we add up the amount 
of money each person pays, it will be 
equal to 2 times the number of games 
played, and will be even. And it is the 
same as adding up the number of games each person plays. So, if there are 
127 people, and we add up the number of games each person played, we 
are adding 127 numbers and getting an even sum. So the number of people 
who played an odd number of games is even. This problem involves mutual 
relationships (playing in a game). This is a ubiquitous situation and can be 
modeled in many other contexts. This leads to the abstract idea of a graph: an 
entity of vertices and edges. 

Parity solves problems with ease because it reduces the complexity of a 
problem, which increases our information level and allows us to understand 
things better. 

Fomin and Itenberg, Mathematical Circles, chap. 1. 

Zeitz, The Art and Craft of Problem Solving, secs. 3.4, 4.1. 

Parity analysis helps to 
solve problems because 
it allows us to reduce 
the possibly in  nite 
complexity of a situation 
to just 2 states. 

    Suggested Reading
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1. A Pythagorean triple a, b, c are integers satisfying 2 2 2a b c . Prove 
that at least one of these integers must be even. 

2. Given 4 points A, B, C, D in the plane, it is possible to join A to B, B 
to C, C to D, and D back to A with 4 straight line segments, creating a 
quadrilateral. It is possible to join these line segments in such a way so 
that a straight line can be drawn through the interior of all 4 segments. The 
trick is to make the polygon intersect itself (imagine ABDC as the vertices 
of a square going around clockwise). But can this be done with 5 points?  

    Questions to Consider
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The Great Uni  er—Symmetry 
Lecture 8 

If an object is unchanged, in other words, invariant, with respect to 
some sort of transformation, a geometrical transformation, it’s called 
symmetric, and the transformation itself is called a symmetry. 

Like parity, the symmetry tactic is so important that we need to spend an 
entire lecture on it. Symmetry is one of the most important underlying 
principles in mathematics. Symmetrical structures (geometric or 

otherwise) are simpler than asymmetric structures and hence easier to 
investigate. Thus, searching for symmetry—or if need be, imposing it where 
it was not at  rst—is a powerful tactic for 
investigating problems. In this lecture, we 
explore symmetry not just visually but 
also algebraically. 

What is symmetry? An object (which may 
or may not be geometric) is symmetrical 
if a transformation leaves it invariant. This 
can take many forms. Geometric symmetry is the simplest to understand. 
Objects can have rotational, re  ectional, and other symmetries. Metaphorical 
symmetry is more subtle. Examples of metaphorical symmetry are the pills 
problem (once the pills were balanced, the problem was almost solved); the 
private planets problem (private/public duality); and the handshake lemma 
(handshake is a symmetrical relation). Thus parity is, in a sense, an example 
of metaphorical symmetry in action. 

What’s so good about symmetry? A problem, by de  nition, is information-
poor and disordered. Symmetry increases order. Thus, you should 
systematically search for symmetry, and if it does not appear to be present, 
you should attempt to impose it. The Gaussian pairing trick is an example of 
imposing symmetry. 

There are hundreds 
of proofs of the 
Pythagorean theorem. 
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• The sum 1 + 2 + 3 + 4 + … + 100 is not symmetrical. 

• But the below is. It has rotational symmetry! 

1 + 2 + 3 + … + 100 
100 + 99 + 98 + … + 1 

Symmetry is related to the search for natural points of view. Often this 
point (or line, etc.) is one of symmetry. The classic 4 bugs problem is an 
excellent example. 

The 4 Bugs Problem 

There are 4 bugs, each situated at a vertex of a unit square. Suddenly, 
each bug begins to chase its counterclockwise neighbor. If the bugs 
travel at 1 unit per minute, how long will it take for the 4 bugs to 
crash into one another? 

• What is the critical point of view? Clearly, the center point! 
Hence, we need to  gure out the radial speed r. 

• This can be computed using vectors: Each bug moves at a 
constant speed, always making a 45° angle with the radial 
vector. So we can compute the component of speed along this 
vector. 

• The actual value of r is 2 / 2  (which equals 0.707), but the 
precise value is not important. Since the radial speed is r units 
per minute, and the radial distance is also r units, the time it will 
take to reach the center will be r/r, which equals 1 minute! 
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There are hundreds of proofs of the Pythagorean theorem. Here is a simple 
one that uses the imposition of symmetry. First we reformulate 2 2 2a b c  
into an equality of areas of squares. The sum of the areas of the 2 smaller 
squares must be equal to the area of the large square. 

• Start with the large square ( 2c ) and add copies of the original 
triangle, symmetrically. 

• Thus, 2c  equals the area of 4 of the original triangles plus the area 
of the square in the center. 

• The length of this square is the equal to (a  b), and the area of one 
triangle is ab/2. 

• Repacking this algebraically, we get 2 2( ) 4( / 2)a b ab c , which 
is equivalent to 2 2 2a b c . 

Symmetry can be applied to number theory. Recall the locker problem in the 
last lecture? We did not quite solve it; we need to show that an integer has 
an odd number of divisors if and only if it is a perfect square (a square of an 
integer). Remember, divisors include 1 and the number itself. For example, 
for N = 12, pair each factor with its mate. Since 12 is not a perfect square, 
each divisor has a distinct mate, different from itself. 

1  × 12 
2 × 6 
3 × 4 

Since 36 is a perfect square, the mate of 6 is itself. So 6 is literally the odd 
man out. What we used here is the natural correspondence (metaphorical 
symmetry) between the divisor d of a number N and its mate N/d. 

1  × 36 
2 × 18 
3 × 12 
4 × 9 
6 × 6 
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These ideas also apply to algebra. Let’s use symmetry to solve the 
fourth-degree equation 4 3 2 1 0x x x x . This equation is nearly 
“symmetrical”; we can make it more so by dividing by 2x , getting  
x2 + x + 1 + 1/x + 1/x2 = 0. We have imposed an interesting algebraic 
symmetry. There is a correspondence between terms of the form kx  and 
terms of the form 1/ kx .This suggests a natural symmetrical substitution: 
y = x + 1/x. Notice that (x + 1/x)2 = x2 + 2 + 1/x2. So our equation now 
becomes 2 2 1 0y y , a quadratic equation that can be solved by 
the quadratic formula. Then we can solve for x, again using the quadratic 
formula! Once again, imposing symmetry was the key. 

Conway, Burgiel, and Goodman-Strauss, The Symmetry of Things. 

Weyl, Symmetry. 

Zeitz, The Art and Craft of Problem Solving, sec. 3.1. 

1. Determine the minimum perimeter of a triangle, one of whose vertices 
is (4, 3), the other is on the x-axis, and the third is on the line y = x. 

2. The set {1, 2, 3, 4, 5, 6} has 64 subsets, including the empty set and 
the set itself. For how many of these subsets is the sum of the elements 
greater than 10? 

    Suggested Reading

    Questions to Consider
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Symmetry Wins Games! 
Lecture 9 

In this lecture, we’re going to do something a little different. Rather 
than focusing on problem-solving ... strategies and tactics, we’re 
going to apply them. Speci  cally, we will introduce a little bit of 
the theory of combinatorial games, which is a nice illustration of 
metaphorical symmetry. 

This is our  rst applied lecture, where we focus more on using 
problem-solving ideas than on developing new ones. We study 
combinatorial games, which apply literal and metaphorical symmetry. 

Our cornerstone is Wythoff’s Nim, which is an absurdly easy game that is 
amazingly hard to play well, until you use symmetry and a few other ideas. 
It is also one of the many mathematical phenomena in which the Fibonacci 
numbers and the related golden ratio play an important role. 

All combinatorial games have the same basic structure: Two players, A and 
B, alternate taking turns. A goes  rst. The game ends when no legal moves 
can be made. The last person to make a legal move wins. Our goal: Given a 
game, discover the winning strategy. 

The Takeaway Game 

Start with 17 pennies. A legal move consists of removing 1, 2, 3, or 
4 pennies. What is the winning strategy? 

• The get your hands dirty and make it simpler strategies compel 
us to change the 17 to smaller values, such as 1, 2, 3, and 
so on. 
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• Looking at these simpler games shows us that if you are left with 
5, no matter what you do, your opponent will win on the next 
move. So if you can present your opponent with 5, you win. 

• If you are presented with 6, 7, 8, or 9, then you can always 
present your opponent with 5 and thus win. 

• Notice that the values 0 and 5 belong together, as do the values 
1, 2, 3, 4 and 6, 7, 8, 9: If you move to (i.e., present to your 
opponent) 0 or 5, you will win; if you move to 1, 2, 3, 4 or 6, 7, 
8, 9, you will lose, because your opponent will move to 0 or 5. 

• The pattern clearly continues. Let us call the values 0, 5, 10, 15, 
… the oases and the other values the desert. If you move to an 
oasis value, your opponent must move to a desert value. If your 
opponent moves to a desert value, you can always move to an 
oasis. Thus, if a player moves to an oasis, he or she can control 
the game, always moving to oases and forcing the opponent to 
stay in the desert—until the end, when the lucky oasis traveler 
moves to the  nal oasis value, 0, and wins the game. 

Here is a graphical way to analyze the game. We use the penultimate 
step strategy to work backward from the very beginning. 

• Start with the value 0. Assume that you have gotten there 
(wishful thinking), so you have won. Color this value green. 

• Analyze backward: Color red all values that can get to 0 in 
one move. 

• The next value, 5, has not been colored yet; it is colored green. 

• Notice that from this green value, one can only move to 
red values, and from there, one can always move to another 
green value. 
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• Continuing, we color red the next values that in one move can 
get to green. We continue this recursive process inde  nitely. 

• In the desert/oasis model, the game really switches between 2 
metaphorically symmetrical states. The winner is the person 
who controls the switching. 

The Divide and Conquer Game 

Start with 100 pennies. A legal move consists of removing a proper 
divisor of the number of pennies left. Thus, on the  rst move, A 
could remove 1, 2, 4, 5, 10, 20, 25, or 50 pennies, but not 100 
pennies. The game ends when there is exactly 1 penny left (since 
then there are no legal moves possible).  

• One possible game: Start with 100. Player A’s moves are 
bolded: 98, 97, 96, 48, 24, 21, 14, 7, 6, 4, 2, 1. Hence B wins. 

• What is the winning strategy? Parity is a natural  rst choice, 
since it is a good binary property; there tend to be symmetries 
between odd and even positions. 

• Since the winning position is to present your opponent with 1, 
we want to see if it is possible to control oddness. 

• If we can present our opponent with an odd number, then 
since all divisors of an odd number are odd, the opponent 
must present us with an even number! 

• And if we are given an even number, we can always 
turn the tables and present our opponent with an odd, by 
subtracting 1! 
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• So the winning strategy is this: A subtracts an odd from 100 
and thereafter keeps presenting odd numbers to B. In general, A 
can always win if the starting number is even, and B can always 
win if the starting number is odd. 

The next game, which I call cat and mouse, also relies on parity and 
symmetry. A very polite cat chases an equally polite mouse. They take turns 
moving on a grid. Initially, the cat is at the point labeled C; the mouse is at 
M. The cat goes  rst and can move to any neighboring point connected to it 
by a single edge. Thus the cat can go to points 1, 2, or 3, but no others, on its 
 rst turn. The cat wins if it can reach the mouse in 15 or fewer moves. Can 

the cat win? 

At  rst, it seems impossible; the mouse can always be one step away from 
the cat. If you look carefully at the grid, you will discover that it contains 
only rectangles glued together, with one triangle at the top left. Temporarily 
pretend that the triangle is not there (make it easier). Then we can color 
the vertices with alternating colors, like a chessboard. Let the cat’s starting 
position be blue. Notice that the mouse’s starting color is also blue. So if 
we ignore the triangle, the cat moves from blue to red. Then the mouse 
moves from blue to red. Then the cat moves from red to blue, and the mouse 
follows suit. The cat and mouse are always on same-colored vertices, so it is 
impossible for the cat to make a single move 
in which it catches the mouse! But if the cat 
moves into the triangle, it is possible for the 
cat to gain a tempo and change its color to the 
opposite of the mouse’s. Then the cat has a 
chance at catching the mouse. And it will—
try it! 

The cat and mouse game illustrates the idea 
of bipartite graphs. A graph is bipartite if the 
vertices can be put into 2 nonoverlapping sets (e.g., boys and girls) in such 
a way that every edge joins vertices of opposites (e.g., opposite sexes). If a 
graph is bipartite it cannot have any odd cycles (triangles, pentagons, etc.), 

All combinatorial 
games have the same 
basic structure: Two 
players, A and B, 
alternate taking turns. 
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for if it did, you would have a chain of dance partners: B G B G B, and then 
B is connected to B. 

Our  nal game is called Wythoff’s Nim, a.k.a. “puppies and kittens.” Start 
with a pet shelter with, say, 10 puppies and 7 kittens. A and B alternate turns 
adopting animals. On each turn, you must adopt at least one animal, and you 
must only adopt one kind of animal, unless you adopt equal numbers of both 
kinds. As always, the winner is the one who makes the last legal move—in 
this case, the one who clears out the pet shelter. We can use the oasis/desert 
analysis method to quickly build up a repertoire of oasis positions that will 
make us unbeatable. 

• Crux idea: Plot positions as ordered pairs (k, p) and use 
graph paper! 

• Here is a list of oases (leaving out symmetrical pairs): (1, 2), (3, 5), 
(4, 7), (6, 10), (8, 13). 

• Here is another way to generate oases. 

• Start with (1, 2). 

• This eliminates all other ordered pairs with difference of 1 and with 
either p or k equal to 1 or 2. 

• So we cannot use 1, 2, or any difference of 1. 

• Thus the next oasis is (3, 5). 

• The next one after that must be (4, 7), and so on. 
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Berlekamp, Conway, and Guy, Winning Ways for Your Mathematical Plays. 

Gardner, Penrose Tiles to Trapdoor Ciphers, chap. 8. 

1. Modify the takeaway game so that the last penny is “poison,” and the 
person who takes this penny away loses. 

2. Two players take turns choosing numbers from 1 to 9 inclusive. Once a 
number is chosen, the other player cannot choose it. The winner is the 
person whose numbers add up exactly to 15. Is there a winning strategy? 
Does this game remind you of another game? 

    Suggested Reading

    Questions to Consider
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Contemplate Extreme Values 
Lecture 10 

We’ll look at several interesting examples, and in each case, the problem 
is generally rather dif  cult until we use the extreme principle. When we 
use the extreme principle, the problem becomes nearly trivial. 

This lecture focuses on an incredibly productive but little known (by 
laypeople) tactic that simply advises one to contemplate the extremal 
values in a problem. For example, look at the triangle of least area, the 

largest variable, or the  rst time something occurs. This tactic has the nearly 
magical ability to solve hard problems in a line or 2. I have often compared 
expert use of the extreme principle to watching a martial artist break a board, 
something that looks impossible yet effortless to the uninitiated. 

How do you apply the extreme principle? Put your things in order, 
contemplate the largest and/or smallest of these things, and be creative about 
just what a thing is and how to measure it. 

Here is a warm-up example: There are  nitely many points in the plane, 
colored red or blue. Between any 2 red points, there is a blue point on the line 
segment connecting them. Between any 2 blue points, there is a red point on 

the line segment connecting them. What 
kinds of con  gurations are possible? 

Investigation yields the conjecture that 
the only con  gurations are linear, with 
points alternating colors. But how do 
we prove this rigorously? Assume to the 
contrary that there is a 2-dimensional 
con  guration. Consider the triangle of 
smallest positive area. Two vertices of 

this triangle must be the same color, forcing a point to lie between them; this 
creates a smaller triangle, which contradicts the minimality of the triangle. 
So a 2-dimensional con  guration is impossible! 

Sometimes the hardest 
thing about an extreme 
principle problem is 
 guring out which entity 

should be contemplated. 
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Here is a problem from the Canadian Mathematical Olympiad: On a large, 
 at  eld, n people (n > 1) are positioned so that for each person, the distances 

to each of the other people are different. Each person holds a water pistol and 
at a given signal  res and hits the person who is closest. When n is odd, show 
that there is at least 1 person left dry. Is this always true when n is even? 

• When n is even, it is possible to have pairs of mutual antagonists, so 
everyone gets wet. 

• If n is odd, there must be at least some people whose victims are not 
shooting them. 

• Consider the person among these who shoots the furthest distance. 

• Claim: This person stays dry! 

The Handshake Problem 

In the handshake problem, we use the extreme principle to solve a 
problem that seems to have too little information for a solution. 

• I invite 10 couples to a party at my house. I ask everyone 
present, including my wife, how many people they shook hands 
with. It turns out that everyone questioned—I did not question 
myself, of course—shook hands with a different number of 
people. If we assume that no one shook hands with his or her 
partner, how many people did my wife shake hands with?  

• Make it easier by looking at smaller parties (with 0, 1, or 2 
guests), which quickly leads to the conjecture that if there are 
n guest couples, the hostess must shake hands with n people. 
Thus we claim that the hostess shook hands with 10 people. 
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• But how do we prove it? 

• Crux idea: Focus on the partner of the person who shakes 
everyone’s hand (extreme principle). This person has to be the 
one who shakes hands with no one.  

• Now what? Banish this couple from the party! 

• What remains? A party with 1 fewer couple but obeying the 
same rules. Hence the 0-shaker must once again be partnered 
with the maximal person. 

• Continue until only 2 people are left, me and the person who 
shook hands with 10 people. 

Sometimes the hardest thing about an extreme principle problem is  guring 
out which entity should be contemplated; this is what makes the following 
problem rather dif  cult. Imagine a  xed network of homes (i.e., a graph). 
Each home is populated by a family that belongs to one of 2 ethnic groups. 
A network is called diverse if for each home, it is never the case that the 
majority of the neighbors come from the same ethnic group. Given any  xed 
network, can it be made diverse? 

How do you quantify network diversity? Look at the edges. The crux idea is 
to maximize balanced edges! Given any  xed network, there are only  nitely 
many ways to color the vertices. For each coloration, count the number of 
balanced edges. Find the coloration with the greatest number of balanced 
edges. This will be a diverse network! 

How do we know this? Assume, to the contrary, that this network is not 
diverse. Then there is a “bad” vertex. Change its color! This produces a 
new coloration, with more balanced edges. But this is impossible! We have 
created our contradiction. 
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Andreescu and Savchev, Mathematical Minatures, chap. 25. 

Zeitz, The Art and Craft of Problem Solving, sec. 3.2. 

1. Given an in  nite chessboard with positive integers in each square, 
arranged so that each square’s value is the average of its 4 neighbors to 
the north, south, east, and west, prove that all the values must be equal. 

2. Suppose you are given a  nite set of coins in the plane, all with 
different diameters. Show that one of the coins is tangent to at most 5 of 
the others. 

    Suggested Reading

    Questions to Consider
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The Culture of Problem Solving 
Lecture 11 

There is a mathematical community. It’s a community of people who 
are passionate about math. There’s a parallel culture that celebrates 
intellectual intensity. It’s one that started in Eastern Europe, in a certain 
sense, but it’s now  rmly entrenched in North America. If you’ve stuck 
with me this far, then I will declare that you are now of  cially inducted 
into this culture. 

We take a brief detour from solving mathematics problems to 
look at problem solving as a cultural force. In Eastern Europe, 
mathematics has long been respected, even among children, and 

math contests play a role not unlike sports in the United States. We look at 
the history of the Mathematical Olympiad culture and assess whether this 
culture has a chance of taking root in the United States. I will draw upon my 
experiences as a member of the  rst U.S. team to compete in the International 
Mathematical Olympiad; my later career as a coach, problem writer, and 
editor for these and other contests; and my current efforts to make the 
San Francisco Bay Area become more like Bulgaria—at least with respect 
to mathematics. 

The culture of math circles, math contests, and math nerds (“nerd” is not a 
pejorative) is a world where excellence in math is a social bene  t and where 
math contests are as popular as sports contests are in the United States. This 
culture exists, but it is rare, both in space and time. Its roots are primarily 
Eastern European. My  rst introduction to this culture was as a student at 
Stuyvesant High School in New York, one of several specialized schools for 
math and science. Unique features of this school included social acceptance 
of intellectual achievement and opportunities for independent study with 
teachers with doctorates. 

Why did this culture  ourish in Eastern Europe? Mathematics and physics 
were ways to escape totalitarianism. More intellectuals were drawn to math 
and physics than in Western democracies. And the state rewarded scientists 
with of  cial status.  
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What is a math circle? The word “circle” is a direct translation of the 
Russian word kruzhok. Math circles are like math clubs on steroids. They 
are highly intensive and feature interaction with college and graduate 
students, professors, and world-famous research mathematicians. The 
curriculum is based on problem solving, and there is a deliberate effort to 
transmit the folklore of problem solving. Most math circles are linked with 
math competitions. 

Here is a brief and incomplete history of these contests. The  rst modern one 
was the Hungarian Problems, which began in 1906. The Moscow Olympiads 
began in the 1930s. The International 
Mathematical Olympiad began in 1959. At 
 rst, its participants were only Iron Curtain 

countries, but gradually it has become more 
inclusive. The United States  rst participated 
in 1974, and today nearly 100 nations 
participate. The style of these math contests is 
unusual. In the United States, many exams are 
still multiple choice, but the Olympiad style is 
always essay-proof. 

How did this culture migrate to the United 
States? Oversimplifying things, I will say this 
was due to 2 important historical events. The 
launch of Sputnik in 1957 impelled the West to emulate Eastern educational 
achievement. The decline and fall of communism led to a great immigration 
of Eastern European mathematicians. 

Let’s look at the “math nerd culture.” There are now quite a few specialized 
schools. There are also several summer camps devoted to mathematical 
folklore transmission. There are online communities and an international 
nerd culture that features T-shirts, frisbees, silly word games, and fetishistic 
memorization of numbers such as . Famous mathematicians visit math 
camps and clubs, and such luminaries become worshipped. The important 
thing about this culture is that it celebrates intellectual inquiry and intensity 
and encourages passion for investigating mathematics. 

The important thing 
about this culture 
is that it celebrates 
intellectual inquiry 
and intensity and 
encourages passion 
for investigating 
mathematics. 
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Bell, Men of Mathematics. 

Olson, Count Down. 

    Suggested Reading
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Recasting Integers Geometrically 
Lecture 12 

This and the next lecture focus on number theory, the study of the 
integers. We’ve seen a little number theory so far in earlier lectures, but 
now that we understand basic strategies and tactics, we can go deeper. 

This lecture focuses on the chicken nuggets problem, a classic folklore 
puzzle that originated in England over a century ago and is now a 
mainstay of math clubs around the world. This rich problem can be 

analyzed with induction, pictures, symmetry, careful counting principles, and 
other approaches. We focus here on a visual approach, recasting the problem 
into one of counting lattice points, with symmetry playing a key role. 

The fundamental objects that we will be exploring are lattice points: the 
points (x, y) on the coordinate plane, where both x and y are integers. By 
contemplating lattice points as natural objects, we can convert algebraic 
questions involving natural numbers into geometric questions, and 
vice versa.  

The Chicken Nuggets Problem 

Bay Area Rapid Foods sells chicken nuggets in boxes of 7 and boxes 
of 10. A number n is feasible if it is possible to buy n nuggets. For 
example, 7 is the smallest feasible number, and the next ones after 
that are 10, 14, 17, 20, 21, and 24. There are 2 natural questions. 

• Is there a largest nonfeasible number, and if so, what is it? 

• If there is a largest nonfeasible number, then how many 
nonfeasible numbers are there? 
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The values 7 and 10 are probably not critical; we should look at 
smaller, simpler values and try to get a general picture. In other 
words, given positive integers a and b, if nuggets come in boxes of 
size a and size b, what is the largest nonfeasible number, and how 
many nonfeasible numbers are there?  

• Here is the algebraic formulation: A number n is feasible if there 
exist nonnegative integers x and y such that ax + by = n. If these 
nonnegative numbers do not exist, we say that n is nonfeasible. 

• Example: Let a = 5 and b = 7. Then list the nonfeasible and 
feasible numbers. 

• Nonfeasible: 1, 2, 3, 4, 6, 8, 9, 11, 13, 16, 18, 23.  

• Feasible: 5, 7, 10, 12, 14, 15, 17, 19, 20, 21, 22, 24, 25, 26, 27, 
28. It is clear that all values starting with 24 are feasible (since 
5 in a row are). 

• In general, we can assume that a and b are relatively prime.  

• Why? Suppose, for example, that a = 15 and b = 21, both 
sharing the factor of 3. Then the feasible numbers are those 
values of n such that there exist nonnegative integers x and 
y with 15x + 21y = n.  

• But the left-hand side factors into 3(5x + 7y). 

• Thus, n must be a multiple of 3. So let’s write n = 3m. We 
now get 3(5x + 7y) = 3m, and we can divide both sides by 
3, getting 5x + 7y = m. 

• In other words, n is feasible for a = 15, b = 21 if and only if 
it is a multiple of 3 and if n/3 is feasible for a = 5 and b = 7.  
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Can we  nd a visual interpretation?  

• Of course! Suppose that 19 is feasible. Then there exist 
nonnegative integers x and y such that 5x + 7y = 19. (Indeed, 
x = 3, y = 2 works). But 5x + 7y = 19 is the equation of a line in 
the coordinate plane! 

• Visually, this is the same as saying that the line 5x + 7y = 19 
contains a lattice point in the  rst quadrant. 

• In other words, n is feasible if and only if the line 5x + 7y = n 
has at least one lattice point in the  rst quadrant. 

• If a and b are relatively prime, then a line with slope a/b either 
has no lattice points on it or hits lattice points in a systematic 
way, with each lattice point separated from the next by the 
same vector. 

• What about nonfeasible numbers? For example, 11 is 
nonfeasible. That means that there is no lattice point on the line 
5x + 7y = 11 in the  rst quadrant.  

• One solution is (5, 2). All solutions are separated by the vector 
( 7, 5). Remember that there are no lattice points on the dotted 
line between the 2 lattice points. 

• In other words, we can think of the solution lines 
5x + 7y = n as parallel lines that come with lattice points, 
spaced at equal intervals, and we need to  nd the ones that 
have lattice points in quadrant 1. Those n’s are feasible, and the 
others are nonfeasible. 
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Breakthrough idea: Let’s change our point of view and count lattice 
points, not feasible or nonfeasible numbers! 

• The highest nonfeasible number will be the highest “bad” 
line stuck with a lattice point in quadrant 2. That will be 
the line corresponding to (6, 1). If we plug (6, 1) into the 
equation 5x + 7y, we get 23, which we know is the largest 
nonfeasible number.  

• In general, if a and b are relatively prime, using this exact 
same procedure, the lattice point corresponding to the largest 
nonfeasible number will be at (b  1, 1). So if we plug 
x = b  1 and y = 1 into ax + by when we do the algebra, 
we get ab  a  b, and that is our formula for the largest 
nonfeasible number. 

• Is there a relationship between the feasible and nonfeasible 
numbers? If you look at that highest nonfeasible line and then 
look at the line going through zero, you see a parallelogram 
that is perfectly symmetrical, with rotational symmetry. Clearly 
the number of feasible lattice points is going to be equal to the 
number of nonfeasible lattice points, because the lattice points 
that lie on the x and y axes are in quadrant 1 proper. There are 
exactly the same number as the ones that lie in quadrant 2. 

• Using symmetry, we can conclude that if you look at the 
numbers between 0 and ab  a  b, exactly half will be feasible, 
and exactly half will be nonfeasible. For example, if you go 
from 0 to 23, that is a total of 24 numbers: 12 of them will be 
feasible, and 12 of them will not be feasible.  
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Beck and Robbins, Computing the Continuous Discretely. 

Sylvester, “Question 7382.” 

1. Pick’s theorem (see Lecture 4, problem 2) is true for any polygon 
whose vertices are lattice points. Try drawing several polygons to test 
this empirically. 

2. Suppose you accept on faith that Pick’s theorem is true for triangles. 
How can you use this to prove that it is true for all polygons? 

    Suggested Reading

    Questions to Consider
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Recasting Integers with Counting and Series 
Lecture 13 

Like the last lecture, what we’re presenting here is pretty dif  cult 
mathematics. We’ll prove Fermat’s little theorem, which is one of 
the most important theorems of elementary number theory, but 
we’re going to prove it in a way that was not found in most number 
theory textbooks. 

This lecture employs the powerful strategies of recasting and rule 
breaking to 2 classical theorems in number theory: Euler’s proof 
of the in  nitude of primes and Fermat’s little theorem. We use the 

knowledge of modular arithmetic and in  nite series that we developed 
earlier. We begin by using simple counting ideas to explore number theory, 
using the basic principle that if something can be counted, it is an integer. 

Let’s go back, for a moment, to the earlier lecture about chicken nuggets. If 
you were really, really observant, you may have noticed a gap in our argument. 
We associated each lattice point with either a feasible or nonfeasible number. 
But we blithely assumed for each number n that the equation ax + by = n

must pass through lattice points. How 
do we know if it does? In other words, 
given relatively prime numbers a and b
and an integer n, can we be guaranteed 
that there are integers x and y such that 
ax + by = n? 

We only need to consider n = 1. If we 
can  nd a solution for that, we can easily 
get one for n = 2 and so on. A concrete 
example: Show that 5x + 7y = 1 has 

integer solutions. We will  nd a result that can easily be generalized to any 
values of a and b. We count lattice points. For each integer n, the equation 
5x + 7y = n determines a line with slope 5/7. As n ranges from 0 to 35, we 
get a family of 36 parallel lines. Notice that if a line intersects one of the 

We begin by using 
simple counting ideas to 
explore number theory, 
using the basic principle 
that if something can be 
counted, it is an integer. 
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lattice points, it will not intersect another. So each lattice point corresponds 
to a different line. Thus, we just need to count the lattice points. They are 
arranged in a parallelogram, but we can move the bottom points up. By 
symmetry, we get a rectangle, and clearly there are 7 × 5 lattice points. Each 
of the 35 lines for n = 0 to n = 34 hits a lattice point. So the n = 1 line hits a 
lattice point, and we are done. 

We can exploit the idea of counting in many other ways. Combinatorics has 
its own logic and rules, which are pretty simple, at the start. Let’s look at 
Fermat’s little theorem. We begin with an example: Find the remainder when 

10002  is divided by 13. We can use modular arithmetic to solve this. 

• Start with 12  = 2 (mod 13), and successively multiply by 2. 

• Thus, 22 = 4, 23 = 8, and 24 = 16, which equals 3 (mod 13). 

• Then 52 6  and 62 12  (mod 13). Now notice that 12 = 1 
(mod 13). So instead of multiplying by 2, we square both sides. 

• We get 6 2 2(2 ) ( 1) 1 (mod 13). In other words, 212 = 1 
(mod 13). 

• This is the crux move, since now we can raise this to any 
power we want with ease. Since 1000 = 12(83) + 4, we have 

12 83 83(2 ) 1 1  (mod 13). 

• Hence 9962 1 (mod 13), and  nally, 10002 3  (mod 13). 

The crux was  nding the exponent of 2 that equals 1 (mod 13). On the other 
hand, if we try a nonprime mod, like (mod 10), we discover that the powers 
of some numbers are never equal to 1 (mod 10), and for others we get 1, but 
never when we raise to the ninth power. The sensible conjecture to try is that 
if p is prime, then 1pa  = 1 (mod p) for any number that is not a multiple of p 
itself. This is Fermat’s little theorem. We will prove this, but  rst we modify 
the statement by multiplying both sides by a: pa a  (mod p).  
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Let’s replace number theory with combinatorics. We will prove Fermat’s 
little theorem for the concrete values p = 7 and a = 4 and demonstrate 
that 74 4  is a multiple of 7 using simple counting principles. Imagine a 
necklace with 7 identical beads. We wish to color them using any of 4 colors. 
How many different necklaces are possible? Let’s make it easier. If it were 
not a necklace but just a line of beads, then the number of different necklaces 
would be 4 × 4 × 4 × 4 × 4 × 4 × 4 = 74 . That is promising, since it is a 
number we are interested in. But since we have a necklace, we can slide 
beads around. In fact, there will be 7 different linear sequences of colors that 
are all really the same necklace.  

Indeed, almost any linear color sequence is 1 of 7 “sisters” that form the same 
necklace. In other words, each linear sequence is in a 7-member sorority. 
The only exceptions are the 4 monochromatic sequences. These 4 sequences 
belong to exclusive sororities: Each sorority has just 1 member. Notice that 
we are using the fact that 7 is prime. If we had a 6-bead necklace, then the 
pattern black-red-black-red-black-red would only give rise to 2 sisters. We 
started with 74  linear color sequences. Of these, just 4 were monochromatic. 
The remaining 74 4  sequences can be grouped into 7-member sororities 
where each sorority member is actually the same necklace. So the total 
number of different necklaces is ( 74 4 )/7 + 4. So 74 4  had to be a 
multiple of 7, which was what we wanted to prove! 

For our  nal example, we will give a second proof of the in  nitude of primes, 
due to Euler, that is notable for its surprise use of in  nite series. We start 
with the harmonic series, which is in  nite.  

• De  ne 2
1 11kS
k k

, and consider the in  nite product 

2 3 5 7S S S S , where the subscripts run through the prime numbers. 

• The in  nite product begins with 2 2
1 1 1 1(1 )(1
2 32 3

)

2
1 1(1 )
5 5

… . 
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• When we expand this in  nite product, it will give us each term of 
the harmonic series; hence it is in  nite. 

• Each kS  is just an in  nite (but convergent) geometric series. 

• Now, assume to the contrary that there are only  nitely many 
primes. Then there are only  nitely many kS  terms in our product. 
That would make the harmonic series  nite. But it is in  nite! 
So there must be in  nitely many kS  terms and hence in  nitely 
many primes! 

Vanden Eynden, Elementary Number Theory. 

Zeitz, The Art and Craft of Problem Solving, chap. 7. 

1. Use Fermat’s little theorem to  nd the remainder when 20093  is divided 
by 19. 

2. How many different necklaces can be made using 6 beads, if each bead 
is a different color? 

    Suggested Reading

    Questions to Consider
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Things in Categories—The Pigeonhole Tactic 
Lecture 14 

What’s the unifying idea behind these pigeonhole problems? The 
unifying idea is that we try to strive for commonality, for coincidence, 
for uniformity, for equality. These are often things that we want to  nd 
in a problem. 

Like the extreme principle, this tactic seems almost vacuous: If you try 
to put n + 1 pigeons into n pigeonholes, at least 1 hole will contain 
at least 2 pigeons. Yet the pigeonhole principle allows us to solve an 

amazing variety of problems. Among the applications we will explore is a 
graph theory subject known as Ramsey theory, which provides a systematic 
way of  nding patterns in seemingly random structures. 

The simplest version of the pigeonhole principle is as follows: If you have 
more things (pigeons) than categories (pigeonholes), at least 2 of the things 
belong to the same category. For example: Suppose you color the in  nite 
plane in 2 colors, red and blue, in any arbitrary way. Prove that there are 2 
points exactly 1 meter apart that are the same color. 

• Pigeonhole solution: Consider an equilateral triangle with side 
length 1 meter. 

• Each of the 3 vertices is colored; there are only 2 possible colors. 

• Let the vertices be pigeons, and the colors be holes. Since 3 > 2, 
there is a hole with at least 2 pigeons. 

Here is another example: People are seated around a circular table at a 
restaurant. The food is placed on a lazy Susan in the center of the table. Each 
person ordered a different dish, and it turns out that no one has the correct 
dish in front of him or her! Show that it is possible to rotate the platform so 
that at least 2 people will have the correct dish. 
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• People are the pigeons, but what are the holes? 

• This is the challenging part of using the pigeonhole principle: 
carefully formulating a penultimate step that will solve 
the problem. 

• Suppose there are n people. We can measure distance around the 
table where n units is a full circle. Everyone starts out a certain 
nonzero clockwise distance from their correct dish. The possible 
distances are thus 1, 2, 3, … , n  1. 

• So at least 2 of them are the same distance from their correct dish.  

• Move that distance, and we are done! 

A third example: Prove that among any group of people, 2 of them have the 
same number of friends in the group. 

• Crux recasting: graph theory! Prove that in any graph, 2 of the 
vertices must have the same degree. 

• This problem seems perfect for the pigeonhole principle, with 
vertices as pigeons (things) and degree values as holes (categories). 
For example, in a 6-vertex graph, there are 6 pigeons. So our 
penultimate step would be 5 possible degree values. 

• But there are 6 possible values! In a 6-vertex graph, a vertex can 
have 0, 1, 2, 3, 4, or 5 neighbors. 

• Wishful thinking and the extreme principle tell us that there must be 
a way to get rid of at least 1 degree value.  

• Consider degree 0. If a graph has such a vertex, it is isolated from 
the others, in which case no vertex can have degree 5. 
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• Conversely, if a vertex has degree 5, it is connected to all other 
vertices, so no vertex can have degree 0. 

• Thus the possible degree values are between 0 and 5, inclusive, but 
cannot include both 0 and 5. So there are only 5 possible values, 
and with 6 vertices, we can conclude that 2 vertices must have the 
same degree! 

Now we look at the intermediate version of the pigeonhole principle. Suppose 
we put p pigeons into h holes. Then at least 1 hole contains at least /p h  
pigeons, where the brackets mean ceiling (the ceiling of x is the least integer 
that is greater than or equal to x). Here is an 
example: Suppose you have a drawer with 23 
socks, and the socks come in 4 colors. Then 
you must have 23 / 4 5.75 6  socks 
that are the same color. 

Ramsey theory, named after Frank Ramsey, is 
a branch of discrete math that concerns itself 
with what kind of order is guaranteed, even in 
a random structure. A typical Ramsey theorem says something like, “Given a 
large enough structure, we are guaranteed to see a smaller substructure.” For 
example, no matter how we 2-color the plane, we are guaranteed 2 points a 
meter apart that are the same color.  

Here is a classic example: Show that among any 6 people, either 3 of them 
are mutual friends, or 3 are mutual strangers. Graph theory recasting: If you 
2-color the edges of a complete graph with 6 vertices, then there must be 
a monochromatic triangle! Use green and red. We want to see lots of one 
color, since that would make it more likely to get a monochrome triangle. 
The extreme principle suggests that we search for the vertex that has, say, the 
maximum number of red edges emanating from it. The pigeonhole principle 
gives us that maximum: Each vertex has 5 edges emanating from it. At least 

5 / 2 3  edges are the same color (say, red). Focus on the vertex we started 
with plus the 3 others that are joined to it with a red edge. If any of these 3 
vertices are joined with a red edge, we are done. But if none of them are red, 
we have created a green monochromatic triangle. 

The pigeonhole 
principle allows us 
to solve an amazing 
variety of problems. 
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Let’s generalize this problem. We just showed that if the edges of a 6K  are 
2-colored, then there must be a monochromatic triangle. The Ramsey number 
formulation of this is R(3, 3) = 6. The Ramsey number R(a, b) is de  ned to 
be the smallest number N such that if the edges of a NK  are colored blue 
and red, then there must be a red aK  or a blue bK . Ramsey numbers can 
use more than 2 colors. For example, R(3, 3, 3) is equal to the smallest N
such that if you 3-color the edges of a NK , you must have a monochromatic 
triangle. Ramsey’s theorem states that the numbers R(a, b, c, … ) exist and 
are  nite. Example: R(3, 3, 3), the only nontrivial Ramsey number known 
involving more than 2 colors, is equal to 17. 

Soifer, Mathematics as Problem Solving. 

Zeitz, The Art and Craft of Problem Solving, sec. 3.3. 

1. Given a unit square, show that if 5 points are placed anywhere inside or 
on this square, then 2 of them must be at most 2

2
 units apart. 

2. People have at most 150,000 hairs on their head. How many people must 
live in a city in order to guarantee that at least 10 people have exactly 
the same number of hairs on their head? 

    Suggested Reading

    Questions to Consider
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The Greatest Uni  er of All—Invariants 
Lecture 15 

The central idea of this course is the analytic approach to problem 
solving, looking at things from a higher level. We want, as often as 
possible, to have a bird’s-eye view. Invariants are a very, very high-level 
way at looking at many, many problems. It’s important to cultivate this 
attitude of deconstructing and analyzing problems that are solved and 
even unsolved to see the central underlying ideas behind them. 

Invariants are central to mathematics, yet most laypeople have never 
heard of them. In this lecture, we show how the concept of invariants 
contains both symmetry and parity. We tweak it to look at monovariants 

and use these to study some interesting games. We also continue our study of 
modular arithmetic, which we now see is merely a special case of the grand 
unifying principle of invariants. 

An invariant is any quantity or quality that stays unchanged. A geometric 
example is the power of a point theorem. In any circle, when 2 chords intersect 
inside a circle, they obey the equation AE × EB = DE × EC. Likewise, when 
chords intersect outside the circle, EA × EB = ED × EC. 

These 2 theorems seem like related results about intersecting lines and 
circles, but in fact they are actually manifestations of a single fact. For any 
 xed point P and any  xed circle, draw any line through P that intersects 

the circle in points X and Y. De  ne the power of P to be the quantity (PX)
(PY). The power of a point theorem says that for any  xed circle and any 
 xed point, this quantity is invariant, no matter which line we choose. This 

invariant formulation is true no matter where the point is located. 
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The Hotel Room Paradox  

This is a classic brainteaser that exploits our native instinct to look 
for invariants. Three women check into a hotel room that advertises 
a rate of $117 per night. They each give $40 to the porter, and they 
ask him to bring back $3. The porter goes to the desk, where he 
learns that the room is actually only $115 per night. He gives $115 
to the desk clerk and gives the guests back each $1, deciding not 
to tell them about the actual rate. Thus the porter has pocketed $2, 
while each guest has spent $39, for a total of 2 + (3 × 39) = $119. 
What happened to the other dollar? 

• The question is not what happened to the dollar, but how do the 
variables relate to one another? What is invariant? 

• The money the guests paid is equal to the amount that the 
hotel received (“hotel” means the porter and the desk). In other 
words, if g, p, and d are respectively equal to what the guests 
pay, what the porter pockets, and what the desk receives, then 
the quantity g  p  d is an invariant, always equal to 0. 

• The “paradox” is the fact that g + p = 119, which is close to 
120. But this quantity is not invariant, and it can assume many 
values. For example, if the actual price of the hotel was $100, 
then the porter would give the desk $100, return $3 to the 
guests, and keep $17. Then g + p = 119 + 17 = 126, which 
seems less paradoxical. 

• What confuses people is that they think $120 is invariant. 
And it is, as long as you think clearly about it: 120 is not the 
invariant amount of dollars “in circulation.” Instead, 120 is the 
invariant “net worth” of the guests: the sum of the dollars they 
possess, the value of their room, and the amount that the porter 
stole. These numbers indeed add up to 120. 
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Here is another classic puzzler: Bottle A contains a quart of milk, and bottle 
B contains a quart of black coffee. Pour a half-pint of coffee from B into A, 
mix well, and then pour a half-pint of this mixture back into bottle B. What 
is the relationship between the fraction of coffee in A and the fraction of milk 
in B? It is possible to do this with algebra, and when we do so, we discover 
the surprising fact that the fraction of coffee in A is equal to the fraction 
of milk in B. But this can made obvious once we think about invariants. 
The coffee and milk both satisfy conservation of mass (really, volume). So if 

bottle A has x ounces of coffee “pollution,” then 
bottle B is missing x ounces of coffee and thus 
has x ounces of milk pollution. Both bottles are 
equally polluted. 

Here is an example using a parity invariant: 
Let 1 2, ,   , na a a  represent an arbitrary 
arrangement of the numbers 1, 2, 3, … , n. Prove 

that if n is odd, the product 1 2( 1)( 2) ( )na a a n  is even. First, we give 
a solution that uses a pigeonhole argument. An alternative solution uses 
invariants. Given any permutation 1 2, ,   , na a a , observe that the quantity 

1 2( 1) ( 2) ( )na a a n  is invariant; namely, equal to zero! Thus the 
terms in the product we are interested in add up to zero, and there are an 
odd number of them. Clearly, they cannot all be odd, since a sum of an odd 
number of odd numbers is always odd, and zero is even. So one term must 
be even. 

Here is an example that uses congruence: At  rst, a room is empty. Each 
minute, either 1 person enters or 2 people leave. After exactly an hour, could 
the room contain 100 people? Get your hands dirty to work out examples. 
Is there anything that all the possible outcomes have in common at a  xed 
time? Yes! Suppose the population is p at some time. A minute later, the 
population will be either p + 1 or p  2. Notice that these numbers differ by 
3. This pattern will continue inde  nitely, so at any  xed time, there will be 
many different outcomes, but they will all be congruent (mod 3). In other 
words, for any  xed time, population is invariant modulo 3. One possible 
outcome is a population of 60. Thus, all possible outcomes in 60 minutes 
are congruent to 60 (mod 3). Since 60 is a multiple of 3, and 100 is not, we 
conclude that the population cannot equal 100 after an hour. 

A monovariant 
is a quantity that 
changes, but only 
in one direction. 
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A monovariant is a quantity that changes, but only in one direction. 
Monovariants are useful for studying evolving systems. Here is a simple 
example (due to John Conway), called Belgian waf  es. Two people take 
turns cutting up a waf  e that is 6 squares × 8 squares. They are allowed to 
cut the waf  e only along a division between the squares, and cuts can be only 
straight lines. The last player who can cut the waf  e wins. Is there a winning 
strategy for the  rst or second player? This is actually a fake game. There 
is no strategy because of this simple monovariant: Each move increases the 
number of pieces by 1! You start with 1 piece (the whole waf  e), so the 
game ends in 47 moves no matter what the players do! 

The next problem illustrates the power of monovariants to cut through the 
complexity of evolving systems. At time t = 0 minutes, a virus is placed into 
a colony of 2009 bacteria. Every minute, each virus destroys 1 bacterium, 
after which all the bacteria and viruses divide in 2. For example, at t = 1, 
there will be 2008 × 2 = 4016 bacteria and 2 viruses. Will the bacteria be 
driven to extinction? If so, when will this happen? There are complicated 
algebraic formulas that will do the trick, but monovariants are a better way. 
Let b and v be the respective populations at a certain time, and let b  and 
v  be the populations 1 minute later. It is easy to see that b  = 2(b  v) = 
2b  2v and that v  = 2v. The trick is to manipulate these quantities to recover 
something that is almost constant. If we divide, we get  

2 2 1
2

b b v b
v v v

. 

In other words, the ratio b/v is a monovariant: It decreases by 1 each minute. 
At t = 0, the ratio is 2009/1 = 2009. In 2009 minutes, it will decrease to 0, 
and the bacteria will be wiped out. 

Engel, Problem-Solving Strategies, chap. 1. 

Zeitz, The Art and Craft of Problem Solving, sec. 3.4. 

    Suggested Reading
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1. A graph that can be drawn so that edges do not cross is called a planar 
graph. For example, a typical picture of a 4K  has the 2 diagonal edges 
crossing, but it is possible to draw this graph where one diagonal is 
“inside” and the other is “outside,” so that 4K  is planar. Given any 
planar graph, it is easy to count the number of vertices (v), edges (e), 
and regions bounded by edges (r). Discover an invariant involving 
these variables. 

2. Can you  nd distinct integers a, b, and c such that a  b evenly divides 
b  c, b  c evenly divides c  a, and c  a evenly divides a  b? 

    Questions to Consider
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Squarer Is Better—Optimizing 3s and 2s 
Lecture 16 

In this lecture, we will return to our old friend symmetry to explore 
questions of distribution and optimization. Along the way, we will 
develop a new proof method called algorithmic proof, where we imagine 
a sequence of steps, an algorithm, which [is] guaranteed to solve 
our problem. 

Our anchor problem is an International Mathematical Olympiad
problem about a maximal product: Determine, with proof, the 
largest number that is the product of positive integers whose sum is 

1976. Intuition may tell us to try a square: 988 × 988 = 976,144. But we can 
do better. For example, 987 × 987 × 2 = 1,948,338. Clearly we need more 
investigation! First, let’s consider simpler, more constrained questions. 

• Warm-up: A rectangle is made of 12 inches of wire. What should 
the dimensions be to maximize the area? 

• One solution is to appeal to symmetry: Obviously, the rectangle of 
largest area is the most symmetrical. So the dimensions are 3 × 3. 

• How do we do this rigorously? General question: If x and y have 
 xed sum S, what is the maximum value of the product P = xy, and 

what will x and y be when this maximum is attained? 

• Conjecture: Maximum is 2( / 2)S , when x = y = S/2.  

• This can be proven with calculus.  

But a better way to prove this squarer-is-better principle is with a picture. 
Let S = x + y. In other words, S is the diameter of the semicircle. By similar 
triangles, g/x = y/g, so g xy . The maximum value of xy is attained when 
x = y = S/2. As the distance between 2 positive numbers decreases, their 
product increases, provided that their sum stays constant. Note that this is a 
dynamic principle. 
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A reformulation of this is the 2-dimensional arithmetic-geometric mean 
inequality (AM-GM): If x and y are nonnegative, then (x + y)/2 xy , with 
equality attained when x = y. The AM-GM is also true in higher dimensions. 

For example, in 3 dimensions, the statement is 
(x + y + z)/3 3 xyz , which is very hard to 
prove using algebra alone. The 2-dimensional 
AM-GM is not too hard to prove with algebra. It 
is equivalent to 2( ) 0x y , which is certainly 
always true. But it is hopeless to prove the general 
n-dimensional AM-GM with algebraic methods. 

However, we can use the 2-dimensional 
squarer-is-better principle to prove AM-GM in 

any dimension if we leave algebra behind and instead view the problem in 
terms of physics. The original formulation for n variables is as follows:  

• Let 1 2, ,   , nx x x  be positive real numbers.  

• Then 1 2
1 2

n n
n

x x x
x x x

n
, with equality only when the 

numbers are equal. 

Here is a reformulation: Let the sum S of 1 2, ,   , nx x x  be  xed, and let 
the product be P. Then the AM-GM asserts that / nS n P , with equality 
only when the ix  are all equal. Raising by the nth power, we get ( / )nP S n

 

. 
We prove this reformulated version by using an algorithmic method with 
weights. We make the process of  nding an optimal product a physical 
process. The breakthrough idea is to make the ix  unit weights placed on a 
number line. Then their average value corresponds to their balancing point! 

Let’s return to the 1976 International Mathematical Olympiad problem. We 
have seen how powerful symmetry is. Our instinct that equal values optimize 
products has been rigorously proven. But what if we are unable to make the 
parts equal?  

But a better way 
to prove this 
squarer-is-better 
principle is with 
a picture. 
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• There are 2 dif  culties: We are not told how many numbers are in 
the product. And even if we were, we could not guarantee that the 
values would be integers if we made them all equal. 

• Begin your investigation by replacing 1976 with smaller values. 

• Conjecture: Use only 3s and 2s.  

• Why? Once again, try an algorithmic method. Assume that we have 
a maximal product of integers with a  xed sum and that we have 
numbers that are not 3s and 2s. 

• Conclusion: The only numbers possible in an optimal product are 
2s and 3s. 

• Next, notice that if you have three 2s, you can replace them 
with two 3s. 

• So that gives us the optimal breakdown: all 3s, unless you have 
to have some 2s, but never more than two 2s. For example, 12 
breaks into 3 × 3 × 3 × 3, but 13 gives us 3 × 3 × 3 × 2 × 2. 

• And 1976 breaks into 6583 2 . 

Kazarinoff, Geometric Inequalities. 

Niven, Maxima and Minima without Calculus. 

Suggested Reading
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1. If you have a  xed length of wire and you are to make a rectangle of 
maximum area, you know that a square is optimal. But what if one side 
of your rectangle is already provided? For example, suppose you are 
building a rectangular fence, one of whose sides is a river? What will 
the optimal dimensions be? (Hint: symmetry.) 

2. Use the arithmetic-geometric mean inequality and symmetry to prove 
the nice inequality (a + b)(b + c)(c + a)  8abc, for positive a, b, and c. 

    Questions to Consider
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Using Physical Intuition—and Imagination 
Lecture 17 

This lecture, like the earlier one about games, does not attempt to 
teach you new problem-solving strategies or tactics. Instead, we will 
look at a few problems in depth and use methods that we’ve already 
seen. Our goal is to continue to reinforce the all-important ideas of 
symmetry, but now we’ll add its “mother,” invariance, now that we’ve 
learned something about that. In particular, we will channel our 
intuition about the so-called “real world” to use physical invariants to 
solve a problem. 

This lecture is inspired by a problem that I proposed for the USA 
Mathematical Olympiad only to  nd out that a variant of it had been 
used for years as a job interview question for a hedge fund. This 

challenging problem about marbles on a track combines much of what we 
have studied: invariants, symmetry, drawing pictures, and getting your hands 
dirty. Notably, we use physical intuition to get to the heart of the problem.  

The  Marbles on a Track Problem 

Several marbles are placed on a circular track of circumference 
1 meter. The width of the track and the radii of the marbles are 
negligible. Each marble is randomly given an orientation, clockwise 
or counterclockwise. At time zero, each marble begins to travel with 
speed 1 meter per minute, where the direction of travel depends 
on the orientation. Whenever 2 marbles collide, they bounce back 
with no change in speed, obeying the laws of inelastic collision. 
What can you say about the possible locations of the marbles after 
1 minute with respect to their original positions? There are 3 factors 
to consider: the number of marbles, their initial locations, and their 
initial orientations. 
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This is a challenging problem, and we need a good venue for investigation. 
The geometry of the circle is irrelevant; only the fact that there is no beginning 
or end is important. Hence the following warm-up, Martin Gardner’s classic 
airplane problem. Several planes are based on 
a small island. The tank of each plane holds 
just enough fuel to take it halfway around the 
world. Fuel can be transferred from the tank 
of 1 plane to the tank of another while the 
planes are in  ight. The only source of fuel is 
on the island, and we assume that there is no 
time lost in refueling either in the air or on the ground. What is the smallest 
number of planes that will ensure the  ight of 1 plane around the world on a 
great circle, assuming that the planes have the same constant speed and rate 
of fuel consumption and that all planes return safely to the base?  

• Key idea: Circular motion can be modeled on a distance-time graph; 
just remember that the start and end are really the same point. 

• We will show that it is possible to  y around the world with just 3 
planes. Call the planes A, B, and C. 

• First A, B, and C leave together,  ying for 1 unit (1/8 of the 
way around the world). 

• Then C transfers 1 unit each to the other 2 planes. This gives 
C enough to return to base, while the other 2 now have 
full tanks. 

• A and B travel for 1 more unit, and then B transfers 1 unit to 
A. This leaves A with a full tank and B with enough to return 
to base. 

We use physical 
intuition to get to the 
heart of the problem. 
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• A now has enough fuel to get to within 2 units of the 
destination. As soon as B returns to base (when A has 
reached the halfway point, with 2 units of fuel left), B 
refuels and heads for A’s location (traveling backward 
this time).  

• When B reaches A, B transfers 1 unit to A, and they both 
 y toward base. Meanwhile, C heads out again, reaching 

A and B, transferring 1 unit to each of them, and then all 3 
head home.  

• Notice how the second half of the story is symmetrical with respect 
to the  rst. 

Here is another warm-up problem, one that uses re  ection: A laser 
strikes mirror BC at point C. The beam continues its path, bouncing 
off mirrors AB and BC according to the rule angle of incidence equals 
angle of re  ection. If AB = BC, determine the number of times the 
beam will bounce off the 2 line segments (including the  rst bounce, 
at C). 

• Key insight: The broken-line path of the laser will be unbroken if 
you re  ect across the mirror. 

• If it works once, it can be done again. Relentless re  ection solves 
the problem by straightening out the path. 

• Instead of the actual laser path, look at the straight line. We merely 
need to count the number of times it intersects the boundary of one 
of the re  ected mirrors. Answer: 6 bounces. 
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The Marbles on a Track Problem, Solved 

It is possible to  nd starting positions that change after 1 minute. 

In one example, we start with 5 balls, and they end up in different 
positions. However, the ending locations are a permutation of 
the original locations. For example, the black ball is now at the 
starting position of the blue ball, and the blue ball is where the 
green ball was. The principle of re  ection and the clever use of a 
simple distance-time representation on graph paper help us see that 
the problem is not that complex. Suppose we were color-blind. A 
diagram of the paths would be the same as before, but we could 
not keep track of which marble is which. Pretend that the marbles 
are ghosts that can pass through one another. Then, of course, each 
marble ends up at exactly the same spot where it began. 

This explains why the  nal positions of the marbles must coincide 
with the original positions, up to a permutation. Which permutations 
are possible? Remember that marbles cannot actually pass through 
one another, so the order of the marbles cannot change. All that can 
happen is a cyclic permutation. How do we predict the permutation? 
If we started with 6 balls, there are 6 possible permutations. 
However, there are 2 × 2 × 2 × 2 × 2 × 2, which equals 64, different 
choices of initial orientation for the balls. How do these orientations 
in  uence the  nal result? 

An invariant saves the day: Collisions only happen between balls 
of opposite velocity, and when they collide, the 2 balls swap 
velocities (and paths). Thus the sum of the velocities is constant. 
This is the same as conservation of angular momentum. In general, 
if the net clockwise excess is c, then the net clockwise travel will 
be c full rotations of the circle. The only cyclic permutation that 
accomplishes this is the one in which each ball moves c balls 
clockwise. The key ideas we used were physical intuition, looking 
for invariants, and symmetry. 
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Gardner, Martin Gardner’s Sixth Book, chap. 4.  

Kendig, Sink or Float? 

Tanton, Solve This. 

1. A monk climbs a mountain. He starts at 8 am and reaches the summit 
at noon. He spends the night on the summit. The next morning, he 
leaves the summit at 8 am and descends by the same route that he used 
the day before, reaching the bottom at noon. Prove that there is a time 
between 8 am and noon at which the monk was at exactly the same spot 
on the mountain on both days. (Notice that we do not specify anything 
about the speed that the monk travels. For example, he could race at 
1000 miles per hour for the  rst few minutes, then sit still for hours, 
then travel backward, etc. Nor does the monk have to travel at the same 
speeds when going up as going down.) 

2. Imagine a laser beam that starts at the southwest corner of a square and 
moves northeast with a slope of 7/11. How many times will it bounce 
before it returns to its starting point? 

    Suggested Reading

    Questions to Consider
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Geometry and the Transformation Tactic 
Lecture 18 

There’s lots of geometry to study. ... What we will look at is 
transformational geometry. I’ve chosen it because of its unexpectedness 
and its very much higher-order connections to problem-solving ideas 
that we’ve already seen, such as symmetry and invariance. 

This is the only lecture in the course wholly devoted to geometry. We 
look at geometric transformation, a great example of the problem-
solving strategy of reversing one’s point of view. We apply this idea 

to a number of problems that initially appear completely intractable but 
become almost trivial once we are comfortable with dynamic entities like 
rotations, vectors, and re  ections. 

We devote this lecture to a tiny fraction of transformational geometry because 
of its connections to ideas already familiar to us, in particular, symmetry and 
invariants. Before we get into the details of transformational geometry, here 
is a problem to think about that we will solve later with the transformational 
methods we develop. Suppose a pentagon (not necessarily regular) is drawn 

on the plane. The midpoints of each side 
are found. Then, suppose the original 
pentagon is erased, leaving only the 
midpoints. Can the original pentagon 
be reconstructed? 

Transformational geometry was 
pioneered in 1872 by the German 
mathematician Felix Klein and is an 
example of the strategy of reversing 
one’s point of view. Klein suggested that 
the proper way to think about geometry 

was not to focus on the objects but instead to contemplate the transformations 
that act on them. Why are transformations important? Because they are 
not just geometric but also algebraic entities. You do not add or subtract 
transformations, but you can sort of multiply them by composition.  

Transformational 
geometry was pioneered 
in 1872 by the German 
mathematician Felix Klein 
and is an example of the 
strategy of reversing 
one’s point of view. 
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In our exploration of the algebra of transformations, we restrict our attention 
to the plane and look at just 3 types of transformations: re  ections, rotations, 
and translations. Let’s look at the composition of re  ections: Let hF  denote 
a re  ection across line h. Note that hF  leaves all the points of h invariant. 
In general, the  xed points of a re  ection are a line. When composing 2 
re  ections, there are 3 cases: The lines are the same, parallel, or meet in a 
single point. 

Let’s look at the composition of 2 rotations. First we need a lemma about 
what happens to a line under rotation. Rotated line lemma: Suppose line h is 
rotated by a rotation with center A and angle . Let h  be the image of h. Then 
h  makes an angle of  with h. The proof is a similar triangles argument. Now 
that you have a feel for rotating lines, here is a fantastic example. Suppose 
you are given 3 parallel lines: 1 2 3, ,  and . Is it possible to construct 
an equilateral triangle such that each vertex of the triangle lies on one of 
each of these lines? Starting with A, what transformation leaves parts of the 
triangle invariant?  

• One idea: Clockwise rotation by 60° about A.  

• Now consider this rotation, but let line 3  go along for the ride! 

• Its image is 4 , and where it intersects 2  is the point B. Now we 
can construct the triangle. 

By using parts of the  gure and the knowledge that the rotation moved one 
point of the unknown triangle to another unknown point, we were able to 
construct the location of both points! Now we are ready to understand the 
composition of 2 rotations. No matter where the centers are, the composition 
is just another rotation about this center, where the angle is just the sum 
of the 2 angles. But if the angles for 2 rotations add up to 360°, then the 
composition of the 2 rotations is a translation. This is an unexpected but 
helpful fact that is the tool we need for the pentagon problem. Let’s call it the 
re  ection-translation tool. 
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Now let’s use this tool to solve the pentagon problem that we began our 
lecture with. 

• Use wishful thinking to pretend you know the pentagon’s vertices: 
A, B, C, D, and E. In reality, the only points that we know about are 
the midpoints: X, Y, Z, V, and W. 

• Crux idea: Rotations of 180° about midpoints. These rotations bring 
(unknown) vertices to vertices. 

• Compose the 5 rotations by 180° about X, Y, Z, V, and W; this brings 
A back to its starting point. 

• So do one more rotation of 180°, about X again. That brings A to B. 

• It was a composition of 6 rotations, each of 180°, and 6 × 180° = 
1080° = 3 × 360°. 

• So it is a translation!  

• We can perform this 6-rotation composition on any point we like. It 
took A to B. However, there is one problem: We do not know where 
A is! 

• Just pick a random point P. Perform the 6-rotation composition on 
P, getting successive points 1 2 6, ,   ,P P P . 

• We know that the vector from P to 6P  is the same as the vector 
from A to B! 

• The line segment joining 1P  and 6P  has the same length as the 
mystery side AB of our pentagon. Draw a line parallel to this 
segment that goes through X, and mark off equal segments on either 
side of X whose length is half of AB. We have just reconstructed 
segment AB!  
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Why did it work? The higher-level reason for this is that we did not use 
the transformations randomly, but instead searched for transformations that 
leave parts of our problem invariant. 

Liu, Hungarian Problem Book III. 

Needham, Visual Complex Analysis, chap. 1. 

Yaglom, Geometric Transformations I. 

Zeitz, The Art and Craft of Problem Solving, sec. 8.5. 

1. Let IJK be an arbitrary triangle with equilateral triangles constructed on 
each edge. Thus IJL, KJM, and IKN are all equilateral triangles. Prove 
that IM, KL, and JN have exactly the same length. (Hint: Perform a 
rotation or 2.) 

2. Let Rk denote rotation by 90° counterclockwise about the point (k, 0) in 
the plane. The composition of R0, R1, R2, R3, in that order, has a total of 
360° of rotation and hence is a translation (possibly the identity). What 
translation is it? Can you generalize to n rotations, where each is about 
(k, 0), and the angle is 360/n? 

    Suggested Reading

    Questions to Consider
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Building from Simple to Complex with Induction 
Lecture 19 

Induction has its own context. Inductive proofs usually involve problems 
that involve evolving structures that build upon simpler structures or 
problems that have recurrence, for example, the recurrence relation 
de  ning the Fibonacci numbers.

Mathematical induction is the natural way to prove assertions that are 
recursive, that is, where simpler cases evolve into more complex 
cases that depend on the earlier cases. Our cornerstone problem is 

a folkloric tiling of a punctured chessboard, and we also apply induction to 
combinatorial geometry and a probability problem from the Putnam exam. 

Mathematical induction is a proof method closely related to algorithmic 
proof. It especially works with problems involving evolving structures that 
build upon simpler structures. Let’s begin with a folklore problem that we 
will eventually solve using mathematical induction: Consider a 2009 20092 2
chessboard with a single 1 × 1 square removed. Show that no matter where 
the small square is removed, it is possible to tile this “punctured” chessboard 
with L-trominos (2 × 2 squares with one 1 × 1 square removed). 

We know that 2009 is a red herring, so we focus on whether it will work for 
any chessboard of size 2 2n n . It certainly works when n = 1 or n = 2. Can 
we bootstrap from n = 2 to n = 3 to n = 4 and so on? Mathematical induction 
allows us to prove an empirical pattern and show how it extends inde  nitely.
In general, mathematical induction proof involves a sequence of propositions, 

nP , indexed by natural numbers. We wish to prove that 1 2,  ,  P P  are all 
true. To do this, we  rst show that 1P  (the base case) is true. Then we need 
to establish the principle that if each case is true, the next one will be as well: 
In other words, for all positive integers n, if nP  is true, then 1nP  will also be 
true. The assumption that nP  is true is called the inductive hypothesis. We do 
not know if it is true, but we use its truth to prove that 1nP  is true.  

A simple example: The plane is divided into regions by straight lines. 
Show that it is always possible to color the regions with 2 colors so that 
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adjacent regions are never the same color. Let’s call colorings such as the 
above “nice.” De  ne nP  to be “If the plane is divided into regions by n 
straight lines, then it is possible to color nicely.” This is clearly true for n 
= 1 (we have proven the base case). But what about, say, n = 10? We need 
an algorithm for moving from the nth case to the (n + 1)th case. Keep things 
concrete: Suppose I can nicely color any 5-line con  guration. How can I 
use this to nicely color an arbitrary 6-line con  guration? Here is the formal 
solution for the inductive step.  

• Suppose nP  is true. Given any (n + 1)-line con  guration, temporarily 
ignore one of the lines. 

• Now you have an n-line con  guration, which you know you can 
color nicely.  

• Finally, invert the colors on one side of the (n + 1)th line. 

Another problem about lines: Lines in a plane are in general position if no 2 
are parallel and no 3 meet in a point. If 10 lines are drawn in general position 
in the plane, into how many regions do they divide the plane? 

Clearly we want to discover a formula for n lines. If we let nR  denote the 
number of regions made by n lines in general position, we conjecture that 

nR  = n + 1nR . Notice that this is the key to 
a rigorous induction proof, because it actually 
suggests the way that you go from the (n – 1)
th case to the nth case (from one case to the next 
case). Suppose we have n  1 lines in general 
position, creating 1nR  regions. 

Imagine drawing a new line so that it is not 
parallel to any of the other lines and does not 
intersect them in any of the previous intersection 
points. This new line will intersect each of the (n  1) old lines, producing 
a new region each time an intersection is achieved. When the new line 
intersects the last of the old lines and exits, one  nal new region will be 
produced, for a total of n new regions. 

Mathematical 
induction is a 
proof method 
closely related to 
algorithmic proof.
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Here is a probability example from the 2002 Putnam exam: Shanille O’Keal 
shoots free throws on a basketball court. She hits the rst and misses the 
second; thereafter, the probability that she hits the next shot is equal to the 
proportion of shots she has hit so far. What is the probability she hits exactly 
50 of her rst 100 shots?  

• After the second toss, the proportion of successes is 1/2, so on toss 
3, we have a 1/2 chance of getting another basket. 

• For toss 4, it gets more complex. We employ the draw a picture 
strategy loosely and create a tree diagram that shows all 
the scenarios.  

• The outcomes have equal probability! This is somewhat surprising, 
but we can attempt to prove it with induction. 

• Let P(b, t) denote the probability that we get b baskets in t tosses. 
Our conjecture is that P(b, t) = 1/(t  1) for each of the valid values 
of b (between 1 and t  1). 

• We will prove this by induction on t. This time, our base case is 
t = 2, and it is trivially true. 

• Suppose that P(b, t) = 1/(t  1) for some value of t greater than 
or equal to the base case of 2. We will use this to prove that 
P(b, t + 1) = 1/t. 

• How do we get b baskets in t + 1 tosses? Either we get a basket on 
the t + 1 toss, or we do not.  

• Suppose we do not get a basket. Then we accumulated b 
baskets in the  rst t tosses. By the inductive hypothesis, this 
has probability 1/(t  1). At this point, the probability we will 
get a new basket is equal to the current proportion, b/t. So the 
probability that we end up with b baskets by missing the last 
toss is [1/(t  1)](1  b/t) = (t  b)/t(t  1). 
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• Now suppose we do get a basket on the  nal toss. Then we 
accumulated b  1 baskets in the  rst t tosses. By the inductive 
hypothesis, this also has probability 1/(t  1). The probability 
we will get a new basket is equal to the current proportion, 
(b  1)/t. So the probability that we end up with b baskets by 
missing the last toss is [1/(t  1)](b  1)/t = (b  1)/t(t  1). 

• Adding these 2 probabilities, we get (b  1)/t(t  1) + (t  b)/
t(t  1) = (t  1)/t(t  1) = 1/t. 

The induction proof is formally correct but not fully illuminating. This is a 
feature of some induction proofs. You can verify how to get from t to t + 1, 
but you sometimes do not know why it works. 

Let’s return to the tromino problem. Here is a way to go from n = 3 to n = 4. 

• The crux idea: symmetry! 

• Given an arbitrary 16 × 16 tile board missing 1 tile, without loss of 
generality, the hole is in the southwest quandrant. 

• Place a tromino in the center so that it takes a single bite out of each 
of the other quadrants. 

• Now all 4 quadrants have a single hole; by the inductive hypothesis 
(for the 8 × 8 minus 1 board), we can tile each of them! 

• Clearly this can be generalized; this is our inductive algorithm. 

Fomin and Itenberg, Mathematical Circles, chap. 9. 

Goodaire and Parmenter, Discrete Mathematics with Graph Theory, 
sec. 5.1. 

Maurer and Ralston, Discrete Algorithmic Mathematics, chap. 2. 

    Suggested Reading
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1. Conjecture a formula for the sum of the  rst n Fibonacci numbers. Then 
prove your formula by induction. 

2. Prove that 2n
nF , where nF  denotes the nth Fibonacci number. 

    Questions to Consider
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Induction on a Grand Scale 
Lecture 20 

Imagine that you had a lot of time and you wrote out many, many rows 
of Pascal’s triangle, like a couple quadrillion rows. Then you took all of 
those numbers, and you put them on little pieces of paper, and you put 
it in a hat. Then you shook the hat really, really well, and you picked out 
a number at random, and you check to see if it’s odd or even. What’s 
the probability that that number will be even? That’s the question 
we’re going to ask, but since Pascal’s triangle is in  nite, we have to 
think about an in  nite process.  

What is the probability that a randomly chosen number in Pascal’s 
triangle is even? This problem is surprisingly easy to investigate 
but requires sophistication to resolve. By this stage, you have a 

good grasp of investigative methods, summation, mathematical induction, 
and modular arithmetic, so you are ready for this investigation, the  rst of 
the advanced lectures as we approach the end of the course. 

So what is the probability that a randomly chosen member of Pascal’s triangle 
is even? This is a meaningless question as posed; Pascal’s triangle is in  nite!
A reformulation: Let nP  be the probability that a randomly chosen element 
from the  rst n rows of Pascal’s triangle is even. Does nP  converge to 
something as n approaches in  nity? We are asking a question about density. 
De  ne the density of a subset S of the natural numbers by computing the 
probability that a randomly chosen integer from the  rst n integers is in S. 
Then we see what happens to nP  as n gets arbitrarily large. If it converges, 
then that is S’s density. The density of the even integers is 1/2. The density 
of the perfect squares is 0, since among the  rst n2 integers, exactly n are 
squares, so the relative frequency is 1/n, which gets arbitrarily small. 

Recall that we called the elements of Pascal’s triangle binomial coef  cients 
and asserted that the elements of row n Pascal’s triangle were the coef  cients 
of the binomial (1 )nx . For example, 4 4 3 2(1 ) 4 6 4 1x x x x x , and 
indeed, the coef  cients are the numbers in row 4. This is actually quite easy 
to prove, now that we know about induction. Let nP  be the statement that the 
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coef  cients of (1 )nx  are the elements of row n. The base case is obvious, 
since row 0 is just 1, and row 1 is 1, 1. We want to prove the inductive 
step now, but let’s keep it concrete and informal. We will just show that 5P  
implies 6P ; our argument will generalize easily. 

• Start with the inductive hypothesis:  (1 + x)5 = 1x5 + 5x4 + 10x3 + 
10x2 + 5x + 1. 

• Thus 6(1 )x  will be this polynomial, multiplied by (1 + x). 

• This is exactly how we get row 6 of Pascal’s triangle: 
6 6 25 4 3(1 ) 1 6 1 115 20 5 6xx x x x xx . 

Now let’s look at the parity of the numbers of Pascal’s triangle. We will work 
(mod 2). Look at the  rst 9 rows. At  rst, there are not many evens at all. But 
row 4 and row 8 are all even, except for the ubiquitous 1s that start and end 
every row. And notice that rows 3 and 7 are all 1s. We conjecture that row 
2 1n  will be all 1s and that row 2n  will be all 0s, except for the  rst and 
last terms. Clearly, the second statement follows from the  rst, but how do 
we prove the  rst statement? 

Now look at rows 0–32. We see a fractal structure, with inverted triangles 
of 0s. What causes them? The seed of the 0 triangles is the row of all 1s, 
since this forces the next row to be all 0s (except the  rst and last terms). 
The natural way to look at the parity of Pascal’s triangle is by successive 
doublings of it. Let Tn be the nth-order triangle that ends with a row of 1s. 
T1 is the triangle consisting of rows 0 and 1 (i.e., it contains three 1s), and 
T2 is the triangle that is built out of 3 copies of T1, with a 0 in the middle. 
In general, Tn is the triangle that ends with row 2 1n , which is all 1s. This 
starts 2 seeds at opposite ends, with 0s in between, which then grow 2 more 
copies of Tn, producing a new structure, Tn+1.  

Now that we have inductively proven the fractal structure of Pascal’s 
triangle, we can try to count the even terms. This turns out to be complicated, 
but using the  ip your point of view strategy, we instead look at odd terms. 
This is nearly trivial, since T1 has exactly three 1s, and Tn+1 is composed of 
3 copies of Tn with 0s in the center. If we de  ne Un to be the number of 1s 
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in Tn, we get the simple formula Un = 3n. Our  nal step is to compute the 
relative fraction of 1s in nT  and then let n get large. 

How many elements are in Tn? It is a triangle starting with one element and 
ending with 2n elements. So the number of elements in Tn is the 2n triangular 
number! This is equal to 1 + 2 + … + 2n = 2n(2n + 1)/2. Thus, the probability 
that an element in the  rst 2n rows is odd is equal to 2(3n)/2n(2n + 1). Despite 
the factor of 2 in the numerator, the 4n in the denominator will eventually 
overpower it, so the limit is 0. A more rigorous way to see this is by dividing 
numerator and denominator by 4n. As n grows larger, the entire fraction 
approaches 0. So the probability that an 
element is odd approaches 0. That means that 
the probability an element is even approaches 
100%, which is truly surprising. In other 
words, essentially all binomial coef  cients 
are even!  

We just proved an absolutely amazing fact 
about long-term convergence of parity, an 
asymptotic property of Pascal’s triangle. 
But it would be nice to analyze the parity in 
a more exact way. In Lecture 4, we counted 
the number of evens and odds in each row, and the number of odd terms 
was a power of 2. Which power of 2? What is the appropriate point of view 
for investigating powers of 2? The binary (base-2) system, where we write 
numbers as sums of powers of 2. When we make a table of the number of 
odd terms in each row and look at the row numbers in binary, the conjecture 
is clear: The number of 1s in row n is equal to 2 raised to the number of 1s in 
n when n is written in base 2! 

But why? Remember that the elements of Pascal’s triangle are the coef  cients 
of (1 )nx . When n = 2, we have 2 2(1 ) 1 2x x x , but (mod 2), the 
middle term disappears. So 2 2(1 ) 1x x  (mod 2). If we square this again, 
we get 24 2 4(1 ) (1 1)x x x  (mod 2). In general, we see that for any n, 

2 2(1 ) 1
n n

x x  (mod 2). This immediately explains why row 2n  has just 
two 1s! 

By this stage, you 
have a good grasp 
of investigative 
methods, summation, 
mathematical 
induction, and 
modular arithmetic. 
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But what about an arbitrary row, say, row 11?  

• Write 11 in binary: 1011. 

• Then look at row 11 of Pascal’s triangle by expanding 11(1 )x . 

• We see that 11 8 2 1(1 ) (1 ) (1 ) (1 )x x x x , using the binary 
representation. There were three 1s in the binary representation for 
11, and hence there are 3 terms in the product.  

• But reducing this modulo 2, we get 11(1 )x  8 2(1 )(1 )(1 )x x x
 

, 
a product of 3 binomials. When they are multiplied out, we will 
have 8 different nonzero terms. 

Here is a slicker way to see it: When 11(1 )x  is multiplied out and simpli  ed 
modulo 2, it will be a sum of powers of nx , where the coef  cients will either 
be 0 or 1. 

Edwards, Pascal’s Arithmetical Triangle. 

Tabachnikov, Kvant Selecta, chap. 1. 

1. There is a fun pattern in Pascal’s triangle: Row 0 is 1, row 1 is 11, row 2 
is 121, row 3 is 1331, and row 4 is 14641. Notice that for each k, row k
is 11 raised to the kth power! Explain why this pattern is true and why it 
fails for k greater than 4. 

2. Investigate the same question that we did in the lecture, but modulo 3. In 
other words, look at the patterns of when elements of Pascal’s triangle 
are multiples of 3. It is a little more subtle than before, because now 
there are 3 possible values (mod 3): 0, 1, and 2. 

    Suggested Reading

Questions to Consider
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Recasting Numbers as Polynomials—Weird Dice 
Lecture 21 

Our overall strategy in using generating functions is we’ll take a 
problem, we’ll turn it into a sequence, we’ll turn that into polynomials, 
we’ll manipulate these polynomials in a useful way using algebra, and 
that will somehow inform us about the original sequence of numbers 
and help us to solve our problem. 

This is an advanced lecture that uses algebra more than most, including 
in  nite geometric series. Can we renumber 2 dice with positive whole 
numbers that are not the standard 1, 2, 3, 4, 5, and 6 in such a way that 

the various sums still range from 2 to 12 inclusive, with the same probabilities 
as standard dice? Amazingly, the answer is yes. We use generating functions, 
which glue most of mathematics to polynomial algebra. 

Generating functions are a method of using polynomial algebra to recast 
many types of problems. Any sequence of numbers 0 1 2,  ,  ,  a a a
gives rise to a generating function, the (possibly in  nite) polynomial 

2 3
0 1 2 3a a x a x a x . The crux idea behind generating functions 

is the simple observation that a b a bx x x . Here is the basic generating 
function strategy.  

• A problem gives rise to sequences of numbers. 

• The sequences are converted into polynomials. 

• The polynomials are manipulated in a useful way with algebra, 
which may tell us something about our original sequence. 
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The Dice Problem 

Ordinary dice are numbered 1, 2, 3, 4, 5, and 6. When you roll 2 
dice, the probability that you get a sum of 10 will be 3/36, since 
there are exactly 3 ways to get a 10 and there are 36 ways of rolling 
2 dice. Our question is whether it is possible to renumber 2 dice 
with positive integers so that neither is an ordinary die, yet all 
possible sums occur with the same probability as they do with a 
pair of ordinary dice. 

• Suppose such dice exist. We will call them weird dice. If you 
roll 2 weird dice (and they may not be 2 identical dice), the 
probability of getting a sum of 10 will still be 3/36.  

• The denominator of 36 is not important; what matters is the 
number of ways to get each sum.  

• Let’s label one die 1 2 6,  ,   ,  a a a  and the other 
1 2 6,  ,   ,  b b b

 

. 

• We want the 36 possible sums of i ja b  to behave like 
ordinary dice. 

• Note that a weird die can have multiple faces with the same 
label—for example, three 1s, two 2s, and one 5. 

• Our problem is simple. All we need to do is look at all 
the possible ways to label dice and all the possible sums. 
A computer could do that in microseconds, but we are 
not computers. 

• How do we organize such masses of data? With 
generating functions. 
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Here are some examples of sequences transforming into generating functions 
or vice versa. 

• 1, 2, 3  21 2 3x x . 

• 1, 1, 1, 1, …  2 3 41 1/ (1 )x x xx x . 

• 1, 7, 21, 35, 35, 21, 7, 1  7(1 )x . 

Many operations are possible with generating functions, but we will stick 
to multiplication. Let’s look at some examples. Compute (2 + x)(1 + 3x) = 

22 6 3x x x , using the FOIL method. There are 4 raw terms. What is 
the coef  cient of 6x  in 3 2 4 3(  2 )(3 2 )x x x x x x ? We want to look at 
the ways we can multiply terms and get the 
exponent of 6. The 3x  and 32x  and the 22x  
and 43x  combine to give an answer of 1 × 2 + 
2 × 3, which equals 8. 

Generating functions can shed light on 
combinatorics. Consider the simplest type of 
die (i.e., a coin). Put 0 on one side and 1 on the 
other. Then the generating function will be 1 + x. Suppose 7 people are each 
 ipping a coin to decide if they will get a prize (0 = no, 1 = yes). The number 

of prizes possible ranges from 0 to 7. There are 27 different outcomes. Each 
is encoded by the expansion (1 + x)7 = (1 + x)(1 + x)(1 + x)(1 + x)(1 + x)(1 + 
x)(1 + x) = 1 + 7x + 21x2 + 35x3 + 35x4 + 21x5 + 7x6 + x7. How many outcomes 
had 3 prizes? 35. In other words, there are 35 ways to choose 3 prize winners 
out of 7 contestants. Thus 735 3 . 

Now we are ready to recast the original dice problem into polynomial 
form. The generating function for a single die is D(x) = 2 3x x x  

4 5 6x x x . The generating function for the sums of 2 ordinary 
dice is just D(x)D(x) = 2 3 4 5 6 2( )x x x x x x . This expands to 

2 3 4 5 11 122 3 4 2x x x x x x . If weird dice exist, we must have A(x)
B(x) = 2 3(x x x  4 5 6 2)x x x . Now we have converted a tricky question 
into a relatively simple one: Can we factor 2 3 4 5 6 2( )x x x x x x  in a 
different way? 

Generating functions 
can shed light on 
combinatorics. 



101

We can do this with algebraic tools. Use the geometric series tool to simplify 
x + x2 + … + x6 = x(x6  1)/(x  1). We have to factor (x + x2 + … + x6)2 = 
x2(x6  1)2/(x  1)2. We need to get rid of the denominator. The full 
factorization thus is x2(1 + x)2(1  x + x2)2(1 + x + x2)2, and now it is a 
matter of rearranging them in a nonsymmetrical way. In other words, if we 
write each distinct prime as P(x) = x, Q(x) = (1 + x), R(x) = 1  x + x2, and 
S(x) = 1 + x + x2, then D(x) = PQRS. 

We want to break up the product DD = PPQQRRSS into 2 factors that are 
not the same. DD = (PQRS)(PQRS) does not work; it gets us back to where 
we started. There are so many choices; how do we narrow them down? The 
math team lemma saves the day. For each die, the sum of the coef  cients 
must be exactly 6. So let’s look at the sum of the coef  cients of our 
prime factors. 

• P(1) = 1. 

• Q(1) = 2. 

• R(1) = 1. 

• S(1) = 3. 

• Notice that the product of these numbers is 6, as it must be! 

So for each die, we need exactly 1 Q and 1 S, since that is the only way to 
get the proper coef  cient sum. We can do whatever we want with the other 
factors, as long as each die also has 1 P. We conclude that our weird dice are 
1, 2, 2, 3, 3, 4 and 1, 3, 4, 5, 6, 8. 

Even though we did not draw a single picture, there is a strong 
correspondence between what we did with generating functions and with 
transformational geometry.  
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Gardner, Penrose Tiles to Trapdoor Ciphers, chap. 19. 

Graham, Knuth, and Patashnik, Concrete Mathematics, chap. 7. 

Wilf, generatingfunctionology. 

Zeitz, The Art and Craft of Problem Solving, sec. 4.3. 

1. The coef  cient of 13x  when you expand 17(1 )x  is, of course, 17
13 . 

But you can also write 17(1 )x  as 10 7(1 ) (1 )x x  and expand each of 
those factors. What binomial coef  cient identity do you get? 

2. Consider the in  nite series 2 31 ( ) ( ) ( )D x D x D x , where 
( )D x  is the die generating function. When this in  nite series is 

simpli  ed, it is the generating function for what easily stated sequence? 

    Suggested Reading

    Questions to Consider
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A Relentless Tactic Solves a Very Hard Problem 
Lecture 22 

There is no limit to what we can achieve if we harness the in  nitely 
compressible universe of mathematics and couple it with the 
irrepressible imagination of a good problem solver. 

This advanced lecture is a continuation of the ideas begun in Lecture 
14. We use the pigeonhole principle relentlessly to study Gallai’s 
theorem, a Ramsey-style assertion. Our investigation takes us into the 

realm of the nearly in  nite, where we contemplate numbers far larger than 
the number of atoms in the universe. The strategic principle we highlight is 
more earthbound: Don’t give up. 

Our focus will be on  nding structure within seemingly randomly colored 
lattices. Our basic tool is just the pigeonhole principle and the notion of 
coloring. If you 2-color the points on a number line, you only need to look 
at 3 points, and you are guaranteed that 2 are the same color. If you have a 
3 × 3 grid, there are 29 ways to color it. If you were using 10 colors, it would 
be 109. 

Let’s do a warm-up problem: Color the lattice points of the plane in 2 colors. 
Prove that there must be a rectangle (with sides parallel to the axes) each 
of whose vertices are the same color. The pigeonhole principle applied to 
3 consecutive lattice points in a horizontal line forces there to be at least 2 
points of the same color (points are pigeons, colors are holes). We would be 
done if we had 2 identical patterns, one on top of the other. But how do we 
guarantee this can happen?  

Here’s the crux idea: Look at 9 rows of 3 points, and we are guaranteed that 2 
of the rows will be identical! After all, there are only 8 different 2-colorings 
of 3 points! And since each row contains 2 points of the same color 
(at least), we will have a monochrome rectangle. Thus every 3 × 9 grid of 
points contains a monochrome rectangle. This is a worst-case scenario, of 
course; we could have gotten lucky with just a 2 × 2 grid, but 3 × 9 guarantees 
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it. This can be easily generalized. If we 5-colored the lattice points of the 
plane, there would still be a monochromatic rectangle, but we would need to 
look at rows of 6 points (to guarantee that each row contains at least 2 points 
of the same color) and then consider 56 + 1 (or 15,626) rows. 

An innocent, obvious generalization is can we get a monochrome square? 
This is called Gallai’s theorem: If you 2-color the lattice points, you are 
guaranteed to  nd a monochrome square. We will proceed as we did with the 
rectangle and build up our square in stages. First we need a monochrome line, 
then a monochrome isosceles right triangle, 
and  nally a monochrome square. The line is 
easy: Just pick any 3 points, and at least 2 of 
them must be the same color. But how do we 
get the rest of our right angle? How can we 
control the distance between the points of the 
same color? 

We need at most 3 points to get our 2 
monochrome points, so our 2 monochrome 
points lie in at most a 3 × 1 grid. If we are 
to build a right angle with this as a starting 
place, we will need a 3 × 3 grid. With 2 
colors and 9 points in the grid, there are 29, 
which equals 512, possible 3 × 3 grids. Thus, if we looked at a row of 513 
3 × 3 grids, at least 2 of them would be colored in exactly the same way. And 
we are guaranteed that each of these grids will have 2 points of the same 
color at the top. We could have a monochrome right angle in a 3 × 3 grid, 
but we may not. The worst-case scenario is that among our 513 grids, 2 are 
the same, but neither have right angles. Wishful thinking says to build a right 
angle! We do not have control over the colors in the third 3 × 3 grid, but we 
can focus on the point on the lower left. This was a worst-case scenario. We 
are guaranteed that in any 1539 × 1539 grid, we must have a monochromatic 
right angle. Let R(c) equal the size of the grid that guarantees a monochrome 
right angle if we use c colors. So R(2) = 1539. De  ne S(c) to be the size of a 
c-colored grid that guarantees a monochrome square. We wish to prove that 
S(2) is  nite. 

Our investigation 
takes us into the 
realm of the nearly 
in  nite, where we 
contemplate numbers 
far larger than the 
number of atoms in 
the universe. 
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How do we create a monochrome square? Certainly the monochrome right 
angle is a start. What if we could make a monochrome right angle out of 
monochrome right angles? The worst-case scenario is that the lower right 
corner is not red. In this case, we can guarantee a structure where 3 of the 
4 vertices are red but the fourth vertex is blue. Then we can again make a 
right angle with these structures. Then we are done; no matter what color the 
lower right-hand point is, we have created a monochrome square. However, 
in order to do this, we needed a right-angle construction with identical right 
angles. We can only get monochrome right-angles so far using 2 colors. But 
what if we could get right angles using any number of colors? That is what 
we need to complete our proof. 

• We know that any 2-colored 1539 × 1539 grid is guaranteed to have 
a monochrome right angle. 

• There are only B = 2(1539×1539) different ways to 2-color this 
1539 × 1539 grid. This is a number with 712,996 digits. It is 
unimaginably larger than any “real” number.  

• There are about 1080 particles in the universe. If every one of those 
particles could count at a speed of a billion billion billion billion 
billion numbers per second, it would take the universe 10712870 
seconds, or 10712863 years, just to count this number. 

• Suppose it were possible to get a monochrome right angle if we 
color the lattice in B colors. In other words, there is some size 
G = R(B) such that any G × G grid that is B-colored is guaranteed to 
have a monochrome right angle. 

• Assign a different color to each of the B possible ways to 2-color a 
1539 × 1539 grid.  
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Now view the entire 2-colored lattice, but in 1539 × 1539 chunks. You can 
think of this as a B-colored lattice. If R(B) is the  nite value G, then there is a 
grid of G × G chunks that is guaranteed to contain a monochrome right angle 
of chunks! 

Thus, if we can show that R(B) is  nite, we are done. It was already pretty 
hard to compute R(2), but we will con  dently compute R(3), and do it in a 
way that can clearly be generalized to higher numbers of colors. Our guiding 
principles are to stick to worst-case scenarios and build structures with focal 
points. We start by considering a row of 4 points. This guarantees 2 identical 
colors somewhere in this row. There are 316 different ways to 3-color this 4 × 
4 grid, so just string 316 + 1 of them together in a row, and we are guaranteed 
to see 2 identically colored grids. Let M = 316 + 1. 

Next, focus on a grid that would contain the third vertex of our right angle. 
Since it is a worst-case scenario, it is possible that this focal point is colored 
green. Thus, we have shown that in any 4M × 4M grid of 3-colored points, 
we may not have a monochrome right angle, but we at least are guaranteed 
a structure like the one we built: an almost, hopeful monochrome right 
angle. How many different 4M × 4M grids can there be? Just 

2163 M . This 
is a very large number, which dwarfs the superbig number B. Let’s add 
1 to this number and call the sum G, for gigantic. If we place G of these 
4M × 4M grids in a row, we are guaranteed to get 2 that have the same color. 
But remember that every 4M × 4M grid is guaranteed to have an almost 
monochrome right angle structure. Once again, we focus on the hopeful 
lower left corner. Whether it is green, blue, or red, we have a monochrome 
right angle. Clearly, it is possible to keep doing this, creating mind-boggling 
structures until we manage to guarantee a monochrome right angle for 
B colors. 
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Graham, Rothschild, and Spencer, Ramsey Theory. 

Soifer, The Mathematical Coloring Book. 

Recall that in Lecture 14 we used the pigeonhole principle to prove 
that if we color the plane in 2 colors, no matter how we color the plane 
we are guaranteed to have 2 points that are the same color and are 
exactly 1 meter apart. Here are 2 problems that prove stronger things 
with this same hypothesis. Use the worst-case scenario methods from 
this lecture. 

1. Color the plane in 2 colors. Prove that 1 of these colors contains pairs 
of points at every mutual distance. In other words, 1 of the 2 colors, 
say, red, has the property that for each distance x, there are 2 red points 
exactly x units apart. (Hint: Use proof by contradiction.) What is the 
negation of the assertion? 

2. Color the plane in 2 colors. Prove that there will always exist an 
equilateral triangle with all its vertices of the same color. 

    Suggested Reading

    Questions to Consider
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Genius and Conway’s In  nite Checkers Problem 
Lecture 23 

No course on problem solving is complete without a look at Conway’s 
checker problem. It’s a fantastic example of creative, fearless analysis 
of a game, and it’s a mainstay of mathematical circles and competitive 
problem-solving teams. 

In our penultimate lecture, we sketch John Conway’s brilliant solution 
to a classic puzzle. Our focus is not just on the mathematics, which is 
a wonderful mix of the ubiquitous golden ratio and monovariants, but 

we also engage in a discussion of mathematical culture, particularly the 
cult of genius that surrounds Conway and other mathematical “rock stars,” 
including Paul Erdös and Évariste Galois.  

The Checkers Problem 

Place checkers at every lattice point of the half plane of nonpositive 
y coordinates. The only legal moves are horizontal and vertical 
jumps. By this, we mean that a checker can leap over a neighbor, 
ending 2 units up, down, right, or left of its original position, 
provided the destination point is unoccupied. After the jump is 
complete, the checker that was jumped over is removed from the 
board. Is it possible to make a  nite number of legal moves and get 
a checker to reach the line y = 5? 

• It is easy to get to y = 2, and with work, we can get to y = 3. It 
is reasonable to conjecture that we cannot get to y = 5. 

• What methods do we have for proving impossibility? 

• Come up with a quantity that can be calculated for 
each con  guration. 
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• This quantity should be a monovariant. 

• If the quantity, say, always decreases but needs to increase 
in order to get to y = 5, we would be done. 

• Conway’s monovariant: Using the coordinate system with all 
checkers at y = 0 and below, let the target point be C = (0, 5). 
We wish to prove that we can never reach this point. 

• De  ne the number z = ( 1 5) / 2 . 

• For each point in the plane, compute its “taxicab distance” d 
to the target point C. For example, the point (2, 1) has distance 
2 + 4 = 6. 

• Then compute the value zd. 

• For each con  guration of checkers on the plane, add up 
the values zd for each point that has a checker. This will 
be an in  nite series. This is the Conway sum for that 
con  guration. 

• For example, the entire  rst row (y = 0) has the Conway sum 
5 6 72( )zz z .  

• This simpli  es to 
6

5 2
1

zz
z

. 

• Since z2 + z = 1, we simplify this further to 
6

5
2

2zz
z

 

5 4 3 2 4 3 42 ( )z z z z z z z z 2 2 2( )z z z z . 
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• Likewise, the Conway sum for the row y = 1 will be z3, 
and so on, so the starting Conway sum of our problem is 

2 3 4z z z  
2 2

2 1
1

z z
z z

. 

• Why is this a monovariant? Consider any con  guration of 
checkers, and look at what happens to the Conway sum when 
a jump occurs.  

• For example, suppose there are checkers at (4, 1) and (4, 2), 
and (4, 3) is unoccupied, so the  rst checker can jump over 
the second.  

• Before the jump, there is a checker at a distance of 8 and 
one at a distance of 7. 

• Afterward, the checker with a distance of 8 is now at 
distance 6, and the 7 checker is gone. 

• So the Conway sum changes by the net amount of z6  z7  z8 = 
z6(1  z  z2) = 0. In other words, if a checker jumps toward the 
target point C, the Conway sum does not change! 

• Consider a jump away from the target. Suppose a checker is at 
distance 10 and jumps over a checker at distance 11 to end up 
at distance 12. Then the net change is z12  z11  z10 = z10(z2  z  
1) = z10(1  z  z  1) = z10( 2z), which is negative. 

• Thus if you jump away from C, the Conway sum decreases.  
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• There is one other case to check: that where your jump does 
not change the distance to C. For example, if you jump from 
( 1, 2) to (1, 2). 

• In this case, we start with 2 checkers, one at distance d 
(the jumper) and one at distance d  1 (the jumpee). After 
the jump, the jumpee is gone, and the jumper is still at 
distance d. 

• So the net change is zd  (zd + z(d 1)) = z(d 1), which is 
again negative. 

• Thus, the Conway sum is a true monovariant, never increasing 
from its initial value of 1. 

• All that remains is to note that if we ever were to get a checker 
to C, the Conway sum would be larger than 1, since z0 = 1 
would be supplied by C, and there would still be in  nitely 
many other checkers to add up. 

• But our starting value is 1, and the Conway sum is a 
monovariant. So we can never reach C! 

It takes a certain type of intellect to solve problems at this level. The key 
ingredient is a passion to investigate without any worry about consequence. 
Conway is one of a triumvirate of such 
heroes that also includes Paul Erdös and 
Évariste Galois. All 3 are iconoclastic 
rebels, belying the myth of the boring nerd, 
who supply romantic inspiration for the 
next generation. John Conway has led an 
unconventional life and made incredible 
contributions to math. He is like an eternal 
child in his ability to play, break rules, work on whatever pleases him, and 
continually ask questions, with a willingness to get his hands dirty. Paul Erdös 

The key ingredient is a 
passion to investigate 
without any worry 
about consequence. 
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led a life of deliberate homelessness and celibacy. He wrote more papers and 
collaborated with more people than any mathematician in history. Évariste 
Galois died in a duel at age 20. His 60 pages of mathematics are considered 
by some to be the most important 60 pages ever written in mathematics. His 
greatest achievement, now called Galois theory, is a point of view  ip. 

All 3 of these people had passion, commitment, and a willingness to 
investigate relentlessly. This is something that we can all strive for, even if 
we cannot all possess genius. 

Berlekamp, Conway, and Guy, “The Solitaire Army,” in Winning Ways for 
Your Mathematical Plays. 

Hardy, A Mathematician’s Apology. 

Hoffman, The Man Who Loved Only Numbers. 

Honsberger, Mathematical Gems II, chap. 3. 

1. The solution to the checkers problem was pretty subtle. Test your 
understanding: Why not just assign a large value—say, 100—to the 
point C? Then if a checker occupied C, the Conway sum would be at 
least equal to 100. But since the Conway sum starts at the value of 1 and 
never increases, it can never reach a value this large and hence never 
occupy C. What is wrong with this argument? 

2. Here is a puzzle about Erdös numbers. (Assume, for simplicity, that 
when mathematicians write joint papers there are only 2 collaborators.) 
There are 5 mathematicians in a room. Each of them has written a paper 
with at least 1 of the others in the room. Exactly 1 of them has written 
papers with 3 of the others in the room, and exactly 1 has written papers 
with 2 others. One of the 5 mathematicians is Erdös himself. What are 
the possible Erdös numbers of these 5 people? 

    Suggested Reading

    Questions to Consider
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How versus Why—The Final Frontier 
Lecture 24 

Why complex numbers? Think of them as yet a new playground for 
you, like graph theory was, but this is an algebraic, geometric, physics 
playground, which has an incredible potential for connecting many 
branches of math when properly studied. 

In this  nal lecture, we look back on what we have learned, talk about 
what we should study next, and re  ect on what we do not know. We 
begin to ponder the ultimate purpose of an investigation: the quest 

for why something is true, not just how. I will share some of my favorite 
examples of this elusive intellectual quest. 

First, some reminders about how to approach problems tactically, with the 
assumption that by now you have internalized key strategies.  

• Proof by contradiction should be used when the thing you are trying 
to prove is easier to contemplate when negated.  

• The extreme principle is useful when your problem has entities that 
become simpler at the boundary.  

• The pigeonhole principle works well when the penultimate step can 
be formulated with 2 things belonging to the same category. 

• Use induction when your problem involves recursion. 

• The most important thing is to ask what type of problem you are 
trying to solve. This is half the battle. 

What should you study next? Complex numbers! They are another 
playground with incredible potential for connecting many branches of 
math. Complex numbers are 4 things simultaneously: numbers, locations 
in the plane, vectors, and transformations! Complex numbers allow you to 
recast to and from physics, with dynamic interpretations of hitherto static 
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objects. They also have connections to every branch of math, including 
number theory.  

The bird’s-eye view of problem solving means the following. 

• We favor tactics over tools, and strategies over tactics. 

• Yet we also favor investigation over rigor. In other words, we want 
to understand why things are true, rather than how. 

• “How” arguments are rigorous and have clear details, but the global 
picture is murky. 

• In contrast, a “why” argument is: 

• Not always rigorous. 

• Sometimes not even correct! 

• Globally clear, even if missing some details. 

• Magical yet inevitable. 

• Often a surprising yet natural point of view. 

Here are some examples from our course and elsewhere.  

• The proof that 8 times a triangular number equals a perfect square 
(Lecture 6) is a typical “why” argument.  

• The bug problem (Lecture 8) can be solved analytically, with 
differential equations. This is a “how” argument, in contrast to our 
“why” argument. 

• “Why” is at the heart of most mathematicians’ Platonic beliefs. 
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• Problems fall all along the spectrum from completely opaque to 
completely understood in the “why” sense. 

• The Shanille O’Keal problem from Lecture 19 was a good example 
of a “how.”  

• An example of something without even a “how,” because all we 
had was a false conjecture, was the 5 circles problem of Lecture 4. 

What do the “why” arguments have in common? What can we learn 
from them? 

• Pictures (8T + 1 problem). 

• Natural point of view and symmetry (bug problem). 

• Physical intuition (arithmetic-geometric mean inequality). 

• Using a physical object (Fermat’s little theorem, Shanille O’Keal). 

• Dynamic visualization of lines, evolving structures, and using 
important combinatorial facts (5 circles). 

So what’s next? Keep learning facts, but do not forget the need to build up 
 exibility, visualization, recasting, physical intuition, and the ability to see a 

natural point of view. Learn about complex numbers, which incorporate all of 
these ideas. Remember that problem solving is not just a textbook subject—
it is a lifestyle, with a culture. The true underpinnings of this culture are 
passion and persistence. 
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Aigner and Ziegler, Proofs from THE BOOK. 

Lansing, Endurance. 

Needham, Visual Complex Analysis. 

Zeitz, The Art and Craft of Problem Solving, sec. 4.2. 

    Suggested Reading



Solutions 

Lecture 1 

1. The problem is that there are 3 switches, but a light bulb only has 2 
states: on and off. Use wishful thinking: What if you had a light bulb 
with 3 states? You do, since a bulb can be on, off and cold, or off and 
warm. So turn one switch on, leave one switch off, and turn the third 
one on brie  y and then off. Go upstairs and check to see which state the 
bulb is in! 

2. Once again, use wishful thinking: If you had a hook in the ceiling, you 
would be done, since you could tie the ends together at the bottom, 
climb up, hang onto the hook, cut both ropes at the top, slide one end 
through, climb down the doubled rope, and then pull it loose from the 
hook. Indeed, you can create a hook: Just cut off a small chunk at the top 
of one rope and make a loop right near the ceiling! 

Lecture 2 

1. It is not possible. The numbers 1, 3, 5, 7, and 9 are odd; the others are 
even. Adding or subtracting an even number does not change parity, but 
adding or subtracting an odd number does. We start with zero (nothing 
written yet) and then proceed to add or subtract 5 odd numbers and 5 
even numbers. Parity changes 5 times, so the  nal result will always be 
odd. But zero is even! 

2. The  rst professor writes a random number and shows it to the next 
professor, who then writes the sum of her salary and the  rst number on 
her piece of paper. This process of writing the running sum is continued 
until the last professor shows her sum to the  rst, who then subtracts her 
random number and adds her real salary. Now the sum (and hence the 
average) is known.  

117
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Lecture 3 

1. Just use 3 dimensions. A 1 × 1 × 1 box has a long diagonal of 3, which 
is greater than 1.5. 

2. She could be just a few moments older than 30, if she was born at 
11:59 pm on December 31, 1959, and she uttered her words early on 
January 1, 1990. 

Lecture 4 

1. Guided by 1/3 + 1/6 = 1/2, we get x = n(n + 1) and y = n + 1. 

2. Indeed, A = B/2 + I  1. This is called Pick’s theorem. 

Lecture 5 

1. If there were a smallest number, say m, then m/2 would be even 
smaller. Contradiction! 

2. Write n(n!) as (n + 1)!  n!; then the sum telescopes to 101! – 1. 

Lecture 6 

1. Draw the odds as successive Ls of dots. For example, 5 is an L that is 3 
dots high and 3 dots wide (with a common dot at the corner). 

2. The second trip takes 4 fewer seconds, but 12 more steps are stepped 
on. So the escalator is traveling 3 steps per second. Therefore, on the 
 rst trip, her net speed is 4 steps per second, and in 20 seconds she goes 

80 steps, the “true” distance. 

Lecture 7 

1. Assume, to the contrary, that all 3 are odd. Then the sum of the squares 
of 2 of them would be the sum of 2 odds, which is even. Yet the square 
of the third one is odd. Contradiction! 
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2. No. Assume, to the contrary, that there is such a line. Move your diagram 
so that this line is horizontal. Then, without loss of generality, A lies 
above the line. Thus B is below, C is above, D is below, E is above, and 
we have a contradiction, since the segment EA should be intersected by 
this horizontal line! 

Lecture 8 

1. Let A = (4, 3), and let B and C be the points on the x-axis and the line 
y = x, respectively. If we re  ect the picture across the x-axis, we see that 
line segment AB will have the same length as the line segment from 
(4, 3) to B. If we re  ect now across the line y = x, we see that AC has 
the same length as the line segment from C to (3, 4). So the perimeter of 
the triangle is equal to the sum of the lengths of the line segments from 
(4, 3) to B, from B to C, and from C to (3, 4). This is clearly minimized 
by the straight segment joining (4, 3) to (3, 4). By the Pythagorean 
theorem, this minimal length is 2 21 7 , which is 50 . 

2. It is certainly possible to do this by hand, but if we observe that 1 + 
2 + 3 + 4 + 5 + 6 = 21 and notice that 10 is about half of that, we can 
use symmetry. Suppose A is subset whose elements are greater than 10. 
Then the complement of A (i.e., the leftover elements) has to have a sum 
less than or equal to 10 (or else the sum of all elements would be greater 
than 21). So there is a metaphorical symmetry between the subsets with 
sum greater than 10 and those with sum less than or equal to 10. So 
exactly half of the subsets, or 32, have each property. 

Lecture 9 

1. It is exactly equivalent to ordinary takeaway, but with one fewer starting 
number of pennies. 
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2. Consider the magic square below.  

2 7 6
9 5 1
4 3 8

 Each row, column, and diagonal adds up to 15. Hence our game is 
equivalent to tic-tac-toe, which we all know will be a draw if players 
play optimally. But you can win this game if you have the magic square 
picture in mind and your opponent does not. 

Lecture 10 

1. Suppose that they are not all equal. Then there is a value m that is the 
least value on the board, and at least somewhere on the board, since the 
values are not all equal, this value m must be adjacent to a value M that is 
greater than m. But then m is the average of 4 values, including M, which 
forces one of the values to be strictly less than m, a contradiction. 

2. Just consider the smallest of the coins. It is easy to check (draw a 
picture) that no more than 5 coins can be tangent to it (remember, they 
all are larger). 

Lecture 11 

Not applicable. 

Lecture 12 

1. Not applicable.  
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2. Let’s show that it is true for a quadrilateral ABCD. Divide it into 
triangles ABC and ACD. The area of the quadrilateral will be the sum of 
the areas of the triangles. For each triangle, the area is equal to half the 
boundary lattice points, plus the interior lattice points, minus 1. When 
we apply this to both triangles and add, the boundary count includes 
the lattice points on segment AC twice. Suppose AC contains exactly x 
lattice points (including A and C). Then half the boundary count for the 
2 triangles will be equal to half the boundary count for the quadrilateral, 
plus x  1. (The minus 1 is because A and C are counted twice.) However, 
the interior count of the 2 triangles does not include any of the x  2 
lattice points that are on AC (not including A and C). So the interior 
counts of the 2 triangles added will be equal to the interior count of the 
quadrilateral, minus x  2. The  nal bit of accounting is to note that the 
triangle count includes two 1s, and for the rectangle, just one 1, so it 
balances out. This can be extended to larger polygons. 

Lecture 13 

1. By Fermat’s little theorem, 183  = 1 (mod 19). Since 18 × 111 = 1998, 
by raising the previous equation to the 111th power, we get 19983  = 
1 (mod 19). Notice that 32009 = 19983  × 113 . Hence our answer will be 
whatever 113  equals modulo 19. We compute 2 33 9,  3 27 8 ,

4 53 24 5,  and 3 15 4 . Squaring this last one, we get 
103 16 3 , and then  nally 113 3 3 9 10  (all mod 19). 

2. If it was a line instead of a necklace, there would be 6 choices for the 
 rst bead, 5 for the second, and so on, for 6 × 5 × 4 × 3 × 2 × 1 = 720 

choices. But since it is a necklace, we can take any arrangement such as 
bcadfe and cyclically permute it, say, to cadfeb. There are 6 members in 
each sorority, so we divide by 6, getting 120 as our answer. 

Lecture 14 

1. Partition the unit square into four 1/2 × 1/2 squares. By pigeonhole, 
one of these smaller squares must contain at least 2 points. Since the 
diagonal of each small square is 2 / 2 , that is the maximum distance 
between the 2 points. 
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2. There are 150,001 categories (include bald people!). We need to  nd the 
minimum population p such that the ceiling of p divided by 150,001 is 
equal to 10. Thus p = 9 × 150,001 + 1 = 1,350,010. 

Lecture 15 

1. Getting your hands dirty should yield the formula v  e + r = 1. This is 
called Euler’s formula. 

2. You cannot. If you could, then the quotients (b  c)/(a  b), (c  a)/
(b  c), and (a  b)/(c  a) would all be integers. However, the product 
of these 3 quotients is invariant; it is 1. The only way that 3 integers can 
multiply to 1 is if all of them are equal to 1. But that would mean that 
2b = a + c, 2c = a + b, and 2a = b + c. In other words, a, b, and c are 
each the average of the other 2. Using the extreme principle, let, say, 
a be the smallest of the 3 numbers (remember, the numbers are distinct). 
Then we have a contradiction. How can a be the average of 2 numbers 
that are both larger than a? The other possibility is if one of the quotients 
is 1 and the other 2 are 1. But if a quotient equaled 1, for example, the 
 rst quotient, we would get b  c = b – a, which makes c = a, another 

contradiction. 

Lecture 16 

1. Re  ect across the stream. Then when you build your optimal rectangle 
with perimeter S, the mirror rectangle also has perimeter S, and 
collectively, you are building a rectangle with 4 sides that is to have 
maximal area, with a  xed perimeter of 2S. You know that this optimal 
shape is a square. So the answer to the original question is a half square: 
a rectangle whose sides are in the ratio 1:2, with the longer side on 
the stream. 

2. Just multiply the 3 inequalities ( ) 2 ,  ( ) 2 ,a b ab b c bc  and  
( ) 2c a ca, and you are done. 
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Lecture 17 

1. Imagine, on the second day, a clone of the  rst monk who starts at the 
bottom at 8 am and exactly imitates what the  rst monk did the day 
before. Clearly the 2 monks will meet on the trail, and this time and 
place are the solution. 

2. Draw a lattice of squares. Start at (0, 0), and begin drawing a line with 
slope 7/11. As it goes northeast, it will  rst hit another lattice point at 
(11, 7). To count bounces, just count the number of times this line hits a 
horizontal or vertical lattice line. It will hit x = 1, 2, 3, …, 10 and y = 1, 
2, 3, …, 6, for a total of 16 bounces. 

Lecture 18 

1. Just rotate the diagram 60° clockwise about the center K. Then J moves 
to M, and N moves to I. Hence JN = IM. Likewise, a rotation about I will 
show that LK = JN. 

2. Start with the point (0, 0). The  rst rotation leaves it  xed; the second 
one, about (1, 0), brings it to (1, 1); the third brings it to (3, 1); and 
the  nal one brings it to (4, 0). So the translation (of any starting point) 
will be “move 4 units to the east.” You might conjecture that if you 

have n rotations, about (0, 0), (1, 0), … , (n  1, 0), each by 360
n

° 

counterclockwise, the net result would be a translation by n units to the 
right, and this is correct. The easiest way to see it is to imagine a regular 
n-gon with side length 1 unit whose “top” side is the line segment joining 
(0, 1) and (0, 0). Then the rotations are equivalent to rolling this n-gon 
along the x-axis, ending up n units to the right. Try this for n = 3, n = 4, 
or n = 5 to see for sure. 
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Lecture 19 

1. It is easy to conjecture that the sum is 2 1nF . The base case is clearly 
true (1 = 3F   1). For the inductive step, assume that it is true that the 
sum of the  rst k Fibonacci numbers is equal to the (k + 2)th Fibonacci 
minus 1. Then we want to  nd the sum of the  rst (k + 1) Fibonaccis. 
This sum is 1 2 1k kF F F F , which by the inductive hypothesis 
can be written as 2 11k kF F . By the de  nition of Fibonacci numbers, 
this is equal to 3 1kF , which is what we wanted. 

2. Once again, the base case is obvious, since the  rst Fibonacci number 
is less than 2. Thereafter, it is simple as well: Since each successive 
Fibonacci is equal to the sum of the 2 preceding it, and since the 
sequence is an increasing one, each Fibonacci number is strictly less 
than twice the one before it. 

Lecture 20 

1. Just plug in x = 10 into the expression (1 )kx . For example, if k = 4, 
we get 114 = 104 + 4·103 + 6·102 + 4·101 + 1. Since we use the base-10 
system, that is the number 14,641. The reason it fails for greater values 
of k is because some of the coef  cients of the binomial are greater than 
9. For example, if k = 5 we get 115 = 105 + 5·104 + 10·103 + 10·102 + 
5·101 + 1. We cannot just read this off as a base-10 number as we did the 
last time, because this number has a thousands place digit of 10 and a 
hundreds place digit of 10. In base 10, digits cannot be greater than 9. 

2. The analysis is similar to what we did in the lecture, but this time, 
recursive structures are successive powers of 3, and each new triangle 
consists of 6 triangles of the previous kind, with an inverted 0 in 
the middle. You can search the Web for “Pascal’s triangle modulo 3” 
to  nd good illustrations and interactive applets; one example is 
at http://faculty.salisbury.edu/~kmshannon/pascal/article/twist.htm. The 
reason for the number 6 is that it is equal to 1 + 2 + 3. The limit of the 
number of nonzeros (mod 3) goes to 0 as the number of rows increases, 
so just as before, almost all elements of Pascal’s triangle are multiples 
of 3! 
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Lecture 21 

1. Using the multiplication rule for generating functions, we get 

17 10 7 10 7 10 7 10 7 10 7
13 6 7 7 6 8 5 9 4 10 3 . This has 

a good combinatorial interpretation: The left-hand side is the number of 
ways to pick 13 children from a pool of 17. The right-hand side counts 
the same thing but supposes that the children consist of 10 girls and 7 
boys, and it breaks the outcomes into the 5 cases of 6 girls and 7 boys, 7 
girls and 6 boys, 8 girls and 5 boys, 9 girls and 4 boys, and 10 girls and 
3 boys. 

2. The series is 1 + x + 2x2 + 4x3 + 8x4 + 16x5 + 32x6 + 63x7 + 
125x8 + …, and the coef  cient of nx  is equal to the number of ways that 
any number of dice can add up to n. For example, there are 2 ways to get 
2: two 1s or one 2. And there are 16 ways to get 5: 5; 1, 4; 4, 1; 1, 1, 3; 
1, 3, 1; 3, 1, 1; 3, 2; 2, 3; 1, 2, 2; 2, 1, 2; 2, 2, 1; 1, 1, 1, 2; 1, 1, 2, 1; 
1, 2, 1, 1; 2, 1, 1, 1; or 1, 1, 1, 1, 1. The reason this works is because 
for each k, ( ) kD x  is the generating function for dice sums when k 
dice are rolled. You may enjoy looking up this sequence in The Online 
Encyclopedia of Integer Sequences; they are called the “hexanacci” 
numbers. Can you see why? Because they satisfy the recurrence 
formula that each number in the sequence is equal to the sum of the 6 
previous numbers! 
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Lecture 22 

1. Use proof by contradiction. Assume, to the contrary, that for neither of 
the 2 colors is it true that one can  nd 2 points of the same color at 
any mutual distance. In other words, there are distances x and y such 
that there are no 2 red points x units apart and no 2 blue points y units 
apart. Without loss of generality, suppose that x is greater than or equal 
to y (i.e., use the extreme principle on 2 numbers). Now, consider a red 
point. There must be at least 1 red point, for otherwise the color blue 
would not have a forbidden distance y. Draw a circle with radius x and 
center at this red point. Every point on this circle must be blue, since no 
2 red points are x units apart. But now we have achieved a contradiction: 
Since y is less than or equal to x, it is certainly possible to  nd 2 (blue) 
points on this circle that are y units apart. 

2. Start by  nding 2 points that are the same color, say, red, at locations 
A and B. Now consider the con  guration below made of equilateral 
triangles. Besides the small equilateral triangles, note that there are 
larger equilateral triangles, such as CDE and AEH. The existence of 
these alternatives is key for a miniature Gallai-style argument: Either C 
or D are red; then we would be done. Otherwise, both C and D are blue. 
Then if E is blue, we are done again (triangle CDE). But if E is red, then 
we will be done if either F or G is red. If not, they are both blue. But now 
we have a focal point at H. If it is red, we have a large red equilateral 
triangle (AEH). If it is blue, we have the small equilateral triangle HCF. 
No matter what, a monochrome equilateral triangle is guaranteed. 
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Lecture 23 

1. If we assign a value greater than 1 to the point C, the Conway sum is 
no longer a monovariant, if you look at moves involving C itself. For 
example, if a checker 2 units to the left of C jumped over a checker 1 
unit to the left of C and then occupied C, then the Conway sum would 
actually increase!  

2. Model it with a graph: Use vertices for mathematicians and 
edges to indicate joint papers. There is only one graph that satis  es 
the conditions.  

 The Erdös numbers depend on which one is Erdös. If Erdös is person I, 
then L, K, and J have Erdös number 1, and M has Erdös number 2. But if 
we put Erdös anywhere else, it is possible for someone to have an Erdös 
number of 3. 

Lecture 24 

Not applicable. 
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Timeline 

1787................................................. Ten-year-old Carl Gauss uses 
Gaussian pairing.

1796................................................. Teenaged Carl Gauss solves the 
problem of how to construct the regular 
heptadecagon (17-gon), something 
that had eluded mathematicians since 
Euclid’s time.

1832................................................. French algebraist Évariste Galois dies in 
Paris from a duel at the age of 20.

1894................................................. The Eotvos contest, the  rst 
Olympiad-style math competition, 
begins in Hungary.

1907................................................. Willem Abraham Wythoff writes about 
the game later called Wythoff’s Nim, 
actually an older game that probably 
originated in China. 

1930................................................. Frank Ramsey’s paper “On a Problem 
in Formal Logic” is published; Tibor 
Gallai’s theorem is proven around the 
same time.

1938................................................. Annual Putnam competitions for college 
undergraduates begin. 

1939................................................. Physicist Richard Feynman is named a 
Putnam Fellow.

1952................................................. High school mathematics contests 
sponsored by the Mathematical 
Association of America begin across 
the U.S.
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1959................................................. The  rst International Mathematical 
Olympiad is held in Romania, with 
teams from 7 countries.

1961................................................. John Conway analyzes the 
checker problem.

1970................................................. John Conway invents the 
cellular automaton Game of Life, 
popularized by Martin Gardner in 
Scienti  c American.

1972................................................. The  rst USA Mathematical Olympiad 
is held.

1974................................................. The U.S. participates for the  rst time 
in the International Mathematical 
Olympiad (in East Germany), placing 
second after the USSR.

1977................................................. Wythoff’s Nim is popularized by Martin 
Gardner in Scienti  c American.

1981................................................. The International Mathematical 
Olympiad is held in the U.S. for the  rst 
time, with 27 countries participating.

1985................................................. The Colorado Mathematical Olympiad 
begins, founded by Soviet émigré 
Alexander Soifer. This was the  rst 
regional Olympiad-style contest in 
the U.S.

1994................................................. The U.S. team comes in  rst place at 
the 35th International Mathematical 
Olympiad (held in Hong Kong), with 
all 6 team members receiving perfect 
scores. This was the  rst and only time 
a team has received a perfect score at 
that competition.
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1996................................................. Hungarian-born Paul Erdös, the most 
proli  c mathematician and problem 
solver of modern times, dies.

2001................................................. The U.S. hosts the International 
Mathematical Olympiad for the second 
time, with 83 countries attending.



Glossary 

algorithmic proof: Proof where we imagine a sequence of steps that is 
guaranteed to solve our problem. 

binomial coef  cients: The numbers n
k , which are equal to (1) the 

coef  cient of kx  in (1 )nx , (2) the number of ways of choosing k things 
from a set of n things, and (3) the number n(n  1) … (n – k + 1)/k!. 

bipartite graph: A graph whose vertices can be colored red and blue in such 
a way that no edge connects vertices of the same color. 

congruence: Two integers are said to be congruent (modulo m) if their 
difference is multiple of m. 

crux move: The crucial step in a problem-solving investigation that solves 
the problem. This step can be technical or can be a strategic breakthrough. 

degree: A graph theory term; the degree of a vertex is the number of edges 
emanating from it. 

extreme principle: The problem-solving tactic that says, “contemplate the 
extremal values of your problem.” 

Fibonacci numbers: The sequence 1, 1, 2, 3, 5, … in which each term 
is equal to the sum of the 2 previous. Named after Leonardo Fibonacci 
(c. 1170–c.1250), it is one of the most accessible playgrounds of recreational 
mathematics. 

fundamental theorem of arithmetic: All integers can be factored into 
primes, and this factorization is unique (up to order). 
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generating function: Given a sequence 0 1 2, , ,a a a , its generating function 
is the polynomial 2

0 1 2aa x a x  . The generating function encodes 
information about the entire sequence; algebraic manipulations of generating 
functions can thus shed light on questions about the sequence. 

Goldbach conjecture: A famous unsolved problem asserting that all even 
numbers greater than 2 can be written as a sum of 2 primes. 

golden ratio: The number (1 5) / 2 , which crops up in many places in 
mathematics, including the Fibonacci numbers. 

graph theory: The branch of math that studies abstract networks, also 
known as graphs, which are entities of vertices joined by edges. It is easy to 
learn and therefore a very accessible laboratory for exploring a number of 
problem-solving themes. 

handshake lemma: An important graph theory result stating that the sum of 
the degree of each of the vertices of a graph is equal to twice the number of 
edges in the graph. 

harmonic series: The sum of the reciprocals of the positive integers, which 
is a divergent series (meaning the sum is in  nite).  

induction: Technically called mathematical induction, this is a powerful 
method of proving recursive statements. An inductive proof always has 2 
parts: A base case proving the  rst stage is followed by the inductive step, 
where it is shown that each intermediate stage logically implies the next. 

integers: The positive and negative whole numbers, including zero. 

International Mathematical Olympiad (IMO): An elite problem-solving 
contest, initiated by Eastern Bloc countries in 1959, that now includes nearly 
100 nations every year.  
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invariant: A very high-level tactic for looking at many problems where a 
quantity or quality stays unchanged. A monovariant is a quantity that changes 
in only one direction; monovariants are very useful for studying evolving 
systems and proving that they terminate or that certain states are impossible. 

modulus: A mathematical entity that in a congruence divides the difference 
of 2 congruent members without leaving a remainder. See also congruence. 

monovariant: See invariant. 

number theory: The branch of math dealing with integers. Because integers 
are familiar to us beginning in grade school, number theory, like graph 
theory, is an excellent venue for mathematical investigation for beginners. 

Olympiad: A style of math contest that features relatively few questions 
(usually fewer than 10) of the essay-proof type. 

parity: The property of oddness or evenness for an integer. Parity is a 
powerful tactic that reduces a problem from a large, or in  nite, number of 
states to only 2 states. 

Pascal’s triangle: Perhaps the greatest of all the elementary mathematical 
laboratories for investigation. This is a triangle of numbers where row n 

consists of the binomial coef  cients , 0,1, 2, ,n k nk . 

pigeonhole principle: A fundamental problem-solving tactic stating that if 
you have more things (pigeons) than categories (pigeonholes), at least 2 of 
the things belong to the same category. 

prime number: A positive integer that has no positive integer divisors other 
than 1 and itself. The  rst few primes are 2, 3, 5, 7, 11, and 13. 
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problem: A mathematical question that one does not know, at least 
initially, how to approach and that therefore requires investigation, often 
using organized strategies and tactics. We contrast this with an exercise: a 
question that may be dif  cult but is immediately approachable with little 
or no investigation. 

proof by contradiction: A method of proof that starts by assuming that the 
conclusion is false and then proceeds to a logical contradiction, concluding 
that the conclusion’s falsehood was untenable. 

Putnam exam: An Olympiad-style contest for American and Canadian 
undergraduates, notorious for having a median score, most years, of 0 or 1 
out of 120 possible points. 

Pythagorean theorem: The sum of the squares of the legs of a right triangle 
is equal to the square of its hypotenuse. There are hundreds of known proofs 
of this theorem, the earliest thousands of years old. 

Ramsey theory: A branch of mathematics named in honor of Frank Ramsey 
(1903–1930), whose seminal 1930 paper “On a Problem of Formal Logic” 
began the subject with a statement and proof of what is now called Ramsey’s 
theorem. The theorem essentially asks the question, how large must a 
structure be in order that it is guaranteed to contain a speci  ed substructure? 
The pigeonhole principle is the trivial case of Ramsey’s theorem, and Gallai’s 
theorem about squares is an example of a Ramsey-like theorem. 

recasting: The problem-solving strategy of radically changing the venue of 
a problem, for example, from number theory into geometry, or vice versa. 
Certain mathematical ideas, such as generating functions, are useful precisely 
because of their recasting potential. 

recursive de  nition: A sequence or evolving structure where the later terms 
(or more complex structures) depend on the previous, simpler ones. The 
Fibonacci numbers are a simple example; the chessboard tromino problem 
of Lecture 19 is another.  
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strategies: Mostly commonsense organizational ideas that help overcome 
creative blocks to begin and facilitate a problem-solving investigation. 
Strategies in this course include wishful thinking, make it easier, get hands 
dirty, chainsaw the giraffe, draw a picture, change your point of view, and 
recast your problem. 

symmetry: An object (not necessarily geometric) is symmetrical if a 
transformation leaves it invariant. A natural point of view is often a point of 
symmetry. Symmetry increases order in a problem, so you should seek, and 
even impose, symmetry where possible.  

tactics: Narrower than strategies, tactics are broad ideas within mathematics 
generally used at a later stage of investigation, often providing the key to 
a solution. Examples in this course include symmetry, parity, the extreme 
principle (contemplate extreme values), the pigeonhole principle, and squarer 
is better. 

tools: Mathematical ideas of very narrow application that are nonetheless 
capable of very impressive results when used correctly. Examples in this 
course include Gaussian pairing, telescoping, and massage. Some useful 
tools (e.g., creative algebraic substitution) are better understood as a narrow 
instance of a broader strategy (e.g., wishful thinking). 

tromino: A shape made out of 3 contiguous square units. There are only 2 
types of tromino, the L and the I (a straight line of 3 squares). Trominos and 
more complex shapes (e.g., the 12 different pentominos, made of 5 squares) 
are popular objects of study in recreational mathematics. 

United States of America Mathematical Olympiad (USAMO): The  rst 
national Olympiad of the United States, which began in 1972 with funding 
from numerous mathematical societies and the Department of Defense. It is 
the culminating exam that begins with multiple-choice tests taken by several 
hundred thousand high school and middle school students. Since 1974, the 
top scorers on this exam have competed for places on the 6-person team to 
the International Mathematical Olympiad. 
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Wythoff’s Nim: One of the many names of a simple combinatorial game 
whose solution involves Fibonacci numbers and the golden ratio. Nim is an 
ancient game in which 2 players typically take turns removing objects from 
piles until none are left. 



Biographical Notes 

Conway, John Horton (b. 1937): A British-born mathematician and professor 
at Princeton University who is famous for fundamental contributions to many 
branches of mathematics, including recreational math.  

Erdös, Paul (1913–1996): The most proli  c mathematician of modern 
times (perhaps ever), Erdös was also known for collaborating with more 
mathematicians than any other. He was famous for his deliberately homeless 
and celibate life, devoted entirely to mathematics. 

Euler, Leonhard (1707–1783): A Swiss mathematician, about as proli  c as 
Erdös for his time, who was the father of graph theory. Euler was known for 
unconventional, “rule-breaking” approaches to hard mathematical problems. 

Fermat, Pierre de (1601–1665): A French mathematician who was one of 
the  rst investigators of what is now modern number theory. 

Gallai, Tibor (1912–1992): A Hungarian mathematician who was an 
important collaborator and lifelong friend of Erdös. 

Galois, Évariste (1811–1832): This French mathematician, famous for his 
short but productive life, died in a duel. He made seminal and highly original 
contributions to the algebra of polynomials, among other things.  

Gardner, Martin (b. 1914): Editor of the Mathematical Games column 
of Scienti  c American from 1956 to 1981, Gardner is unquestionably the 
greatest modern expositor of mathematics writing in English. 

Gauss, Carl Friedrich (1777–1855): A German mathematician who 
is universally recognized as one of the greatest 2 or 3 mathematicians in 
history. He made fundamental advances in all branches of mathematics, 
usually generations ahead of his time. 
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Klein, Felix (1849–1925): A German mathematician and in  uential 
expositor. He proposed the important point of view change that geometry is 
best understood by looking at transformations rather than objects. 
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