1 - Distribution 1

Statistics

Statistics is a mathematical way of collection, analysis, interpretation, and visualization of data

Review of Probability

This course will focus on the statistical side, whilst MATH 411 focused on the probability theory. We will now recall some basics on probability:

Probability Space

A Probability Space is is a 3-tuple (Ω, \mathcal{F}, P) , where Ω is a set, $\mathcal{F} \subset P(\Omega)$ is a <u>Sigma-Algebra</u>, and $P : \Omega \mapsto [0, \infty]$ is a measure such that $P(\Omega) = 1$.

Event (Probability)

```
Given a <u>Probability Space</u> (\Omega, \mathcal{F}, P), an Event is any E \in \mathcal{F}.
```

Recall the concepts of <u>Conditional Probability</u> and <u>Independence</u>.

Random Variables

Once again reviewing definitions

Random Variable

Given a <u>probability space</u>, a Random Variable is a <u>measurable function</u> $X : \Omega \mapsto E$, where E is a <u>measurable space</u>. In the standard case we have $E = \mathbb{R}$.

The probability that X takes on a value in a measureable set $S \subset E$ is written as

$$P(X\in S)=P(\{\omega\in\Omega:X(\omega)\in S\})$$

We will be, at least for now, studying the $E = \mathbb{R}$ case.

The two main types of random variables we will be studying are discrete random variables and continuous random variables.

Cumulative Distribution Function

The Cumulative distribution function or CDF of a \mathbb{R} -valued <u>random variable</u> is the function $F : \mathbb{R} \mapsto [0, 1]$ defined as

$$F(x)=P(X\leq x)=P(\{\omega\in\Omega:X(\omega)\leq x\})$$

the CDF characterizes the distribution of *X* (which is any probability of the form $P(X \in A)$ for $A \subset \mathbb{R}$).

However, we often employ the <u>PMF/PDF</u> to charcaterize the distribution.

Probability Mass Function

For <u>discrete random variables</u>, the **PMF** of *X* is a function $f : \mathbb{N} \mapsto [0, 1]$ such that

 $f(x)=P(X=x)=P(\{\omega\in\Omega:X(\omega)=x\})$

The PDF of a <u>continuous random variable</u> *X* is a function $f : \mathbb{R} \mapsto [0, 1]$ that satisfies

$$F(x)=\int_{-\infty}^x f(u)du$$

Moreover f(x) = F'(x)

Review of Common Discrete Distributions

- Discrete Uniform Distribution
- <u>Hypergeometric Distribution</u>
- Binomial Distribution
- Poisson Distribution
- Geometric Distribution
- <u>Negative Binomial Distribution</u>
- <u>Bernoulli Distribution</u>

Review of Common Continuous Distributions

- <u>Continuous Uniform Distribution</u>
- Exponential Distribution
- Gamma Family
- <u>Normal Distribution</u>
- Beta Distribution

Random Vectors and Independence

Random Vector

A random vector (X_1, \ldots, X_n) is a vector of <u>random variables</u> for which we have a <u>joint probability distribution</u>. The joint CDF is defined as

$$F(x_1,\ldots,x_n)=P(X_1\leq x_1,\ldots,X_n\leq x_n)$$

The <u>marginal distribution</u> of a <u>random variable</u> can be obtained from the joint distribution. For example the marginal <u>CDF</u> of X_1 is given by

$$F_{X_1}(x_1) = \lim_{x_2 o \infty} \dots \lim_{x_n o \infty} F(x_1,\dots,x_n)$$

Now recall the definition of

Independence (Probability)

We say that <u>random variables</u> $(X_1 \dots X_n)$ are <u>independent</u> if the joint distribution factors as the product of the marginals for all possible combinations of real-values arguments:

$$F(x_1,\ldots,x_n)=F_{X_1}(x_1)\cdots F_{X_n}(x_n) \ \ orall (x_1,\ldots,x_n)\in \mathbb{R}^n$$

Independence in Statistics

A random sample is typically modeled as a collection of <u>independent and identically distributed (i.i.d.) random variables</u> We write $X_1, \ldots, X_n \sim F$ to denote a random sample of size *n* from a distribution with <u>cdf</u> F. The joint <u>CDF</u> can be expressed as

$$F\left(x_{1},\ldots,x_{n}
ight)=F\left(x_{1}
ight)\cdots F\left(x_{n}
ight)=\prod_{i=1}^{n}F\left(x_{i}
ight)$$

$$f(x_1,\ldots,x_n) = \prod_{i=1}^n f(x_i)$$

Example: A Random Sample From a Bernoulli Distribution

Consider a random sample of size n from the Bernoulli distribution with parameter $p \in (0, 1)$. Show that the joint PMF can be written only as a function that depends on the sample mean

$$ar{X_n} = rac{1}{n}\sum_{i=1}^n X_i$$

Solution

The joint PMF is:

$$P(X_1=x_1,\ldots,X_n=x_n)$$

Since $(X_i)_{i=1}^n$ are <u>i.i.d</u> then this is equal to

$$=\prod_{i=1}^{n} f(x_i)$$

$$=\prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i}$$

$$=p^{\sum_{i=1}^{n} x_i} (1-p)^{n-\sum_{i=1}^{n} x_i}$$

$$= (p(1-p)^{n-1})^{\sum_{i=1}^{n} x_i}$$

$$= (p(1-p)^{n-1})^{n\bar{X}}$$

$$= (\frac{p}{1-p})^{\bar{X}}$$

② Question >

Should now note I am confused -- as always -- as to the roles of X_i and x_i . The former is a measurable function $\Omega \mapsto \mathbb{R}$. The latter is a simply a value in \mathbb{R} . Why was I able to change $\sum_{i=1}^{n} x_i$ to $\sum_{i=1}^{n} X_i$? Because they are equal retard. By the very premise of the question or right above where you wrote $P(X_1 = x_1, \dots, X_n = x_n)$.

Expectation of Random variables

Expectated Value

The expectation of a <u>random variable</u> in a given <u>probability space</u> (Ω, \mathcal{F}, P) is essentially a weighted average. More rigorously:

$$E(X) = \int_\Omega X(\omega) \ dP(\omega) = \int_\Omega X \ dP(\omega)$$

Note the trivial application to the standard case in \mathbb{R} as well as the discrete case.

 μ is often used to denote E(X)

We can also calculate the expectations of functions of <u>random variables</u> and <u>vectors</u> by integrating using the appropriate <u>PDF/PMF</u>: given $X : \Omega \mapsto E$ and $g : E \mapsto M$, where M is a <u>measurable space</u>

$$E(g(X)) = \int_\Omega g(X(\omega)) \ dP(\omega) = \int_\Omega g(X) \ dP$$

We will now recall some important quantities:

Random Variables

The r-th moment of a <u>random variable</u> *X* is

$$\mu_r = E(X^r) = \int_\Omega X^r dP$$

Note in the definition below that <u>Variance</u> is simply the 2nd-moment of X - E(X):

Variance

The variance of a <u>random variable</u> X is given by

$$\sigma^2 = Var(X) = E((X - E(X))^2)$$

Covariance

The covariance of two random variables, X and Y, is given by

$$Cov(X,Y) = E[(X-E[X])(Y-E[Y])]$$

Recall the following properties of *expectations*:

- Linearity: E(aX+Y) = aE(X) + E(Y) for any $a \in \mathbb{R}$
- Variance Identity: $Var(X) = E(X^2) E(X)^2$
- Covariance Identity: Cov(X, Y) = E(XY) E(X)E(Y)
- $Var(aX+b) = a^2Var(X)$
- $\bullet \ Var(X+Y) = Var(X) + Var(Y) + 2Cov(X,Y)$
- Cov(X+Y,Z) = Cov(X,Z) + Cov(Y,Z)
- If *X* and *Y* are <u>Independent</u>, then $E(XY) = E(X)E(Y) \implies Cov(X,Y) = 0$
- And many more (Check Chapter 3 of the textbook)

Sample Mean and Sample Variance

Sample Mean

Consider a random sample of <u>i.i.d. random variables</u> $X_1 \dots X_n \sim F$. The sample mean is defined as the <u>random variable</u> \bar{X} such that

$$ar{X} = rac{1}{n}\sum_{i=1}^n X_i$$

Sample Variance

Consider a random sample of <u>i.i.d. random variables</u> $X_1 \dots X_n \sim F$. The sample variance is defined as the <u>random variable</u> S^2 such that

$$S^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - ar{X})^2$$

Where \bar{X} is the <u>sample mean</u>.

Note we will sometimes write the subscript \bar{X}_n or S_n^2 to emphasize the dependence on the sample size n.

<u>A</u> Proposition

Given a random sample of <u>i.i.d.</u> random variables $X_1 \dots X_n \sim F$ the <u>expectation</u> and <u>variance</u> of the <u>sample mean</u> are given by

$E(\bar{X}) = \mu = E(X_i)$

$$Var(ar{X}) = rac{\sigma}{n^2}$$

Fruthermore, the expectation and variance of the sample variance are given by

$$E(S^2) = \sigma^2$$

and

$$Var(S^2)=rac{1}{n}(\mu_4-rac{n-3}{n-4}\sigma^4)$$

Proof

Will only prove the first claim.

$$E(\bar{X}) = \frac{1}{n} \sum_{i} E(X_i) = \frac{1}{n} n\mu = \mu$$

We note the claim on $Var(\bar{X})$ was done in homework #1. Simply recall that $X_1 \dots X_n \sim F$ are <u>independent and identically distributed</u> random variables $\implies Cov(X_i, X_j) = 0$

Moment Generating function

Recall the <u>r-th moment of a random variable</u>.

Moment Generating Function

Given a <u>random variable</u> X, the function

$$M_x(t) = E(e^{tX})$$

is called the moment generating function, or mgf, for X, assuming it is finite for all t in some open interval containing zero

Let *X* be a <u>random variable</u> with $\underline{mgf} M_x(t)$. The <u>moments</u> of *X* can be obtained by

$$E(X^r) = rac{d^r M_x(t)}{dt^r}\Big|_{t=0}$$

Properties of Moment Generating Functions

Linear Combinations of Random Variables via MGF

Asymptotic Theory

In <u>statistics</u> we are often interested in functions $g_n : \mathbb{R}^n \mapsto \mathbb{R}$ that maps a <u>random variable</u> of size *n* into a real-valued random variable T_n :

$$T_n = g_n(X_1, \ldots, X_n)$$

For example take the sample mean and sample variance

We often need to know the distribution of T_n to make probabilistic statements about it. In some cases deriving the exact distribution of T_n is possible (for example the sample mean of a <u>normal distribution</u>).

When the exact distribution is not available, we often need to rely on large sample theory.

We are interested in asymptotic properties of T_n , specifically:

- Does the sequence $(T_n)_{n \in \mathbb{N}}$ converge to a meaningful limit?
- What is the distribution of T_n as $n \to \infty$?

Convergence in Measure

Let (X, Σ, μ) be a be a <u>measure space</u>. Let $f, (f_n)_{n \in \mathbb{N}} : X \mapsto \mathbb{R}$ be <u>measurable functions</u>. The sequence f_n is said to converge in measure, $f_n \stackrel{\mu}{\to} f$ if $\forall \epsilon > 0$

$$\lim_{n o\infty}\mu(\{x\in X: |f(x)-f_n(x)|\geq\epsilon\})=0$$

In our case we use <u>probability space</u> (Ω , \mathcal{F} , P). If we now let $f = \alpha \in \mathbb{R}$, in other words let it be a constant, then we have <u>convergence in</u> <u>probability</u>

Weak Law of Large Numbers

4 Theorem

Consider a random sample $(X_i)_{n \in \mathbb{N}} \stackrel{\text{i.i.d.}}{\sim} F$ with $E(X_i) = \mu$ and $Var(X_i) = \sigma^2$ (both finite). Then the sample mean \bar{X}_n converges in probability to μ . In other words

 $ar{X}_n \stackrel{P}{
ightarrow} \mu$

Proof

TODO

 \equiv Example: WLLN and Poisson Distribution

Convergence in Distribution

We say that a sequence of <u>random variables</u> $T_n \sim F_n$ converges in distribution to a random variable $T \sim F$. denoted by $T \xrightarrow{\mathcal{D}} T$ if $\forall x \in \mathbb{R}$:

 $\lim_{n\to\infty}F_n(x)=F(x)$

Central Limit Theorem

4 Theorem

Let $(X_i)_{i\in\mathbb{N}} \stackrel{\text{i.i.d.}}{\sim} F$ be a random sample, with $E(X) = \mu$ and $Var(X) = \sigma^2$ (both finite). Then

$$rac{ar{X}-\mu}{rac{\sigma}{\sqrt{n}}} \stackrel{\mathcal{D}}{ o} Z \sim N(0,1)$$

In other words it <u>converges in distribution</u> to a <u>normal random variable</u> with parameters μ and σ^2

O Proof

TODO

Example: CLT and Poisson Distribution

Slide 33

Exponential Family

Exponential Family

A distribution is said to belong k-parameter exponential family if it has a <u>PMF/PDF</u> of the form:

$$f(x; heta_1,\ldots, heta_n)=c(heta_1,\ldots, heta_n)h(x)\exp\left(\sum_{j=1}^k w_j(heta_j)t_j(x)
ight)$$

Note when k = 1 we have the one parameter exponential family of the form:

$$f(x, heta)=c(heta)h(x)\expig(w(heta)t(x)ig)$$

Properties of the Normal Distribution