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Review of Probability
This course will focus on the statistical side, whilst MATH 411 focused on the probability theory. We will now recall some basics on
probability:

Recall the concepts of Conditional Probability and Independence.

Random Variables
Once again reviewing definitions

We will be, at least for now, studying the  case.

The two main types of random variables we will be studying are discrete random vairbales and continuous random variables.

However, we often employ the PMF/PDF to charcaterize the distribution. 

Statistics

Statistics is a mathematical way of collection, analysis, interpretation, and visualization of data

Probability Space

A Probability Space is is a 3-tuple , where  is a set,  is a Sigma-Algebra, and  is a measure such that 
 = 1.

(Ω,F ,P) Ω F ⊂ P(Ω) P : Ω ↦ [0, ∞]

P(Ω)

Event (Probability)

Given a Probability Space , an Event is any .(Ω,F ,P) E ∈ F

Random Variable

Given a probability space, a Random Variable is a measurable function , where E is a measurable space. In the standard case we
have .

The probability that  takes on a value in a measureable set  is written as

X : Ω ↦ E

E = R

X S ⊂ E

P(X ∈ S) = P({ω ∈ Ω : X(ω) ∈ S})

E = R

Cumulative Distribution Function

The Cumulative distribution function or CDF of a -valued random variable is the function  defined as

the CDF characterizes the distriubtion of  (which is any probability of the form ) for ).

R F : R ↦ [0, 1]

F(x) = P(X ≤ x) = P({ω ∈ Ω : X(ω) ≤ x})

X P(X ∈ A A ⊂ R

Probability Mass Function

For discrete random variables, the PMF of  is a function  such thatX f : N ↦ [0, 1]

f(x) = P(X = x) = P({ω ∈ Ω : X(ω) = x})



Review of Common Discrete Distributions
Discrete Uniform Distribution

Hypergeometric Distribution

Binomial Distribution

Poisson Distribution

Geometric Distribution

Negative Binomial Distribution

Bernoulli Distribution

Review of Common Continuous Distributions
Continuous Uniform Distribution

Exponential Distribution

Gamma Family

Normal Distribution

Beta Distribution

Random Vectors and Independence

The marginal distribution of a random variable can be obtained from the joint distribution. For example the marginal CDF of  is given by

Now recall the definition of

Independence in Statistics
A random sample is typically modeled as a collection of independent and identically distributed (i.i.d.) random variables 
We write  to denote a random sample of size  from a distribution with cdf F. The joint CDF can be expressed as

Probability Density Function

The PDF of a contiuous random variable  is a function $ that satisfies

Moreover 

X f : R ↦ [0, 1]

F(x) = ∫
x

−∞
f(u)du

f(x) = F ′(x)

Random Vector

A random vector  is a vector of random variables for which we have a joint probaability distribution. The joint CDF is defined
as

(X1, … ,Xn)

F(x1, … ,xn) = P(X1 ≤ x1, … ,Xn ≤ xn)

X1

FX1(x1) = lim
x2→∞

… lim
xn→∞

F(x1, … ,xn)

Independence (Probability)

We say that random variables  are independent if the joint distribution factors as the product of the marginals for all possible
combinations of real-values arguments:

(X1 …Xn)

F(x1, … ,xn) = FX1(x1) ⋯FXn
(xn)   ∀(x1, … ,xn) ∈ R

n

X1, … ,Xn ∼ F n

F (x1, … ,xn) = F (x1) ⋯F (xn) =
n

∏
i=1

F (xi)



Similarly the joint PMF/PDF can be written as

Example: A Random Sample From a Bernoulli Distribution
Consider a random sample of size n from the Bernoulli distribution with parameter . Show that the joint PMF can be written only as a
function that depends on the sample mean

Solution

The joint PMF is:

Since  are i.i.d then this is equal to

Expectation of Random variables

We can also calculate the expectations of functions of random variables and vectors by integrating using the appropriate PDF/PMF: given 
 and , where  is a measurable space

f(x1, … ,xn) =
n

∏
i=1

f(xi)

p ∈ (0, 1)

X̄n =
1

n

n

∑
i=1

Xi

P(X1 = x1, … ,Xn = xn)

(Xi)ni=1

=
n

∏
i=1

f(xi)

=
n

∏
i=1

pxi(1 − p)1−xi

= p∑
n

i=1 xi(1 − p)n−∑
n

i=1 xi

= (p(1 − p)n−1)∑
n

i=1 xi

= (p(1 − p)n−1)nX̄

= (
p

1 − p
)X̄

Question

Should now note I am confused -- as always -- as to the roles of  and . The former is a measurable function  . The latter is a

simply a value in . Why was I able to change  to  ? Because they are equal retard. By the very premise of the question or

right above where you wrote .

Xi xi Ω ↦ R

R

n

∑
i=1

xi

n

∑
i=1

Xi

P(X1 = x1, … ,Xn = xn)

Expectated Value

The expectation of a random variable in a given probability space  is essentially a weighted average. More rigorously:

Note the trivial application to the standard case in  as well as the discrete case.

(Ω,F ,P)

E(X) = ∫
Ω

X(ω) dP(ω) = ∫
Ω

X dP

R

Note

 is often used to denote μ E(X)

X : Ω ↦ E g : E ↦ M M

E(g(X)) = ∫
Ω

g(X(ω)) dP(ω) = ∫
Ω

g(X) dP



We will now recall some important quantities: 

Note in the definition below that Variance is simply the 2nd-moment of : 

Recall the following properties of expectations:

Linearity:  for any 

Variance Identity: 

Covariance Identity: 

If  and  are Independent, then 

And many more (Check Chapter 3 of the textbook)

Sample Mean and Sample Variance

Note we will sometimes write the subscript  or  to emphasize the dependence on the sample size .

Random Variables
The r-th moment of a random variable  isX

μr = E(X r) = ∫
Ω
X rdP

X − E(X)

Variance

The variance of a random variable  is given byX

σ2 = V ar(X) = E((X − E(X))2)

Covariance

The covariance of two random variables,  and , is given byX Y

Cov(X,Y ) = E[(X − E[X])(Y − E[Y ])]

E(aX + Y ) = aE(X) + E(Y ) a ∈ R

V ar(X) = E(X 2) − E(X)2

Cov(X,Y ) = E(XY ) − E(X)E(Y )

V ar(aX + b) = a2V ar(X)

V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X,Y )

Cov(X + Y ,Z) = Cov(X,Z) + Cov(Y ,Z)

X Y E(XY ) = E(X)E(Y ) ⟹ Cov(X,Y ) = 0

Sample Mean

Consider a random sample of i.i.d. random variables . The sample mean is defined as the random variable  such thatX1 …Xn ∼ F X̄

X̄ =
1

n

n

∑
i=1

Xi

Sample Variance

Consider a random sample of i.i.d. random variables . The sample variance is defined as the random variable  such that

Where  is the sample mean.

X1 …Xn ∼ F S 2

S 2 =
1

n − 1

n

∑
i=1

(Xi − X̄)2

X̄

X̄n S 2
n n

Proposition

Given a random sample of i.i.d. random variables  the expectation and variance of the sample mean are given byX1 …Xn ∼ F



Moment Generating function
Recall the r-th moment of a random variable. 

Let  be a random variable with mgf . The moments of  can be obtained by

Properties of Moment Generating Functions

Linear Combinations of Random Variables via MGF

Asymptotic Theory
In statistics we are often interested in functions  that maps a random variable of size  into a real-valued random variable :

For example take the sample mean and sample variance 
We often need to know the distribution of  to make probabilistic statements about it. In some cases deriving the exact distribution of  is
possible (for example the sample mean of a normal distribution). 
When the exact distribution is not available, we often need to rely on large sample theory. 
We are interested in asymptotic properties of , specifically:

Does the sequence  converge to a meaningful limit?

What is the distribution of  as ? 

and

Fruthermore, the expectation and variance of the sample variance are given by

and

E(X̄) = μ = E(Xi)

V ar(X̄) =
σ

n2

E(S 2) = σ2

V ar(S 2) =
1

n
(μ4 −

n − 3

n − 4
σ4)

Proof

Will only prove the first claim.

We note the claim on  was done in homework #1. Simply recall that  are independent and identically distributed
random variables 

E(X̄) =
1

n
∑
i

E(Xi) =
1

n
nμ = μ

V ar(X̄) X1 …Xn ∼ F

⟹ Cov(Xi,Xj) = 0

Moment Generating Function

Given a random variable , the function

is called the moment generating function, or mgf, for , assuming it is finite for all  in some open interval containing zero

X

Mx(t) = E(etX)

X t

X Mx(t) X

E(X r) =
drMx(t)

dtr t=0∣gn : Rn ↦ R n Tn

Tn = gn(X1, … ,Xn)

Tn Tn

Tn

(Tn)n∈N

Tn n → ∞



In our case we use probability space . If we now let , in other words let it be a constant, then we have convergence in
probability 

Convergence in Measure

Let  be a be a measure space. Let  be measurable functions. The sequence  is said to converge in

measure,  if 

(X, Σ,μ) f, (fn)n∈N : X ↦ R fn

fn → f
μ

∀ϵ > 0

lim
n→∞

μ({x ∈ X : |f(x) − fn(x)| ≥ ϵ}) = 0

(Ω,F ,P) f = α ∈ R

Weak Law of Large Numbers

Theorem

Consider a random sample  with  and  (both finite). Then the sample mean 
converges in probability to . In other words

(Xi)n∈N
i.i.d.
∼ F E(Xi) = μ V ar(Xi) = σ2 X̄n

μ

X̄n μ
P

−→

Proof

TODO

Example: WLLN and Poisson Distribution

Convergence in Distribution

We say that a sequence of random variables  converges in distribution to a random variable . denoted by  if :Tn ∼ Fn T ∼ F T T
D

−→ ∀x ∈ R

lim
n→∞

Fn(x) = F(x)

Central Limit Theorem

Theorem

Let  be a random sample, with  and  (both finite). Then

In other words it converges in distribution to a normal random variable with parameters  and 

(Xi)i∈N
i.i.d.
∼ F E(X) = μ V ar(X) = σ2

X̄ − μ
σ

√n

Z ∼ N(0, 1)
D

−→

μ σ2

Proof

TODO

Example: CLT and Poisson Distribution
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Exponential Family

Properties of the Normal Distribution

Exponential Family

A distribution is said to belong k-parameter exponential family if it has a PMF/PDF of the form:

Note when  we have the one parameter exponential family of the form:

f(x; θ1, … , θn) = c(θ1, … , θn)h(x) exp(
k

∑
j=1

wj(θj)tj(x))

k = 1

f(x, θ) = c(θ)h(x) exp(w(θ)t(x))


