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Rethinking Set Theory

Tom Leinster

Abstract. Mathematicians manipulate sets with confidence almost every day, rarely making
mistakes. Few of us, however, could accurately quote what are often referred to as ‘the’ axioms
of set theory. This suggests that we all carry around with us, perhaps subconsciously, a reliable
body of operating principles for manipulating sets. What if we were to take some of those
principles and adopt them as our axioms instead? The message of this article is that this can
be done, in a simple, practical way (due to Lawvere). The resulting axioms are ten thoroughly
mundane statements about sets.

As mathematicians, we often read a nice new proof of a known theorem, enjoy
the different approach, but continue to derive our internal understanding from
the method we originally learned. This paper aims to change drastically the way
mathematicians think [. . . ] and teach.

—Sheldon Axler [1, Section 10]

Mathematicians manipulate sets with confidence almost every day of their working
lives. We do so whenever we work with sets of real or complex numbers, or with vec-
tor spaces, topological spaces, groups, or any of the many other set-based structures.
These underlying set-theoretic manipulations are so automatic that we seldom give
them a thought, and it is rare that we make mistakes in what we do with sets.

However, very few mathematicians could accurately quote what are often referred to
as ‘the’ axioms of set theory, short of looking them up. We would not dream of working
with, say, Lie algebras without first learning the axioms. Yet many of us will go our
whole lives without learning ‘the’ axioms for sets, with no harm to the accuracy of our
work. This suggests that we all carry around with us, more or less subconsciously, a
reliable body of operating principles that we use when manipulating sets.

What if we were to write down some of these principles and adopt them as our ax-
ioms for sets? The message of this article is that this can be done, in a simple, practical
way. We describe an axiomatization due to F. William Lawvere [3, 4], informally sum-
marized in Figure 1. The axioms suffice for very nearly everything mathematicians
ever do with sets. So we can, if we want, abandon the classical axioms entirely and use
these instead.

Why rethink? The traditional axiomatization of sets is known as Zermelo–Fraenkel
with Choice (ZFC). Great things have been achieved on this axiomatic basis. However,
ZFC has one major flaw: Its use of the word ‘set’ conflicts with how most mathemati-
cians use it.

The root of the problem is that in the framework of ZFC, the elements of a set
are always sets too. Thus, given a set X , it always makes sense in ZFC to ask what the
elements of the elements of X are. Now, a typical set in ordinary mathematics is R. But
ask a randomly-chosen mathematician, ‘what are the elements of π?’, and they will
probably assume they misheard you, or tell you that your question makes no sense. If
forced to answer, they might reply that real numbers have no elements. But this too is
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1. Composition of functions is associative and has identities.
2. There is a set with exactly one element.
3. There is a set with no elements.
4. A function is determined by its effect on elements.
5. Given sets X and Y , one can form their cartesian product X × Y .
6. Given sets X and Y , one can form the set of functions from X to Y .
7. Given f : X −→ Y and y ∈ Y , one can form the inverse image f −1(y).
8. The subsets of a set X correspond to the functions from X to {0, 1}.
9. The natural numbers form a set.

10. Every surjection has a right inverse.

Figure 1. Informal summary of the axioms. The primitive concepts are set, function, and composition of
functions. Other concepts mentioned (such as element) are defined in terms of the primitive concepts.

in conflict with ZFC’s usage of ‘set’: If all elements of R are sets, and they all have no
elements, then they are all the empty set, from which it follows that all real numbers
are equal.

Could we, perhaps, continue to use ZFC while quietly ignoring the requirement that
the elements of a set must be sets too? No; this would leave us unable to state the ZFC
axioms. For example, one axiom states that every nonempty set X has some element x
such that x ∩ X = ∅, which only makes sense if the elements of X are sets. When X
is an ordinary set such as R, few would recognize this axiom as meaningful: What is
π ∩ R, after all?

I will anticipate an objection to these criticisms. The traditional approach to set the-
ory involves not only ZFC, but also a collection of methods for encoding mathematical
objects of many different types (real numbers, differential operators, random variables,
the Riemann zeta function, . . . ) as sets. This is similar to the way in which computer
software encodes data of many types (text, sound, images, . . . ) as binary sequences. In
both cases, even the designers would agree that the encoding methods are somewhat
arbitrary. So, one might object, no one is claiming that questions like ‘what are the
elements of π?’ have meaningful answers.

However, the criticisms made in earlier paragraphs have nothing to do with the
matter of encoding. The bare facts are that in ZFC, it is always valid to ask of a set
‘what are the elements of its elements?’, and in ordinary mathematical practice, it is
not. Perhaps it is misleading to use the same word, ‘set’, for both purposes.

Three misconceptions. The axiomatization presented below is Lawvere’s Elementary
Theory of the Category of Sets, first proposed half a century ago [3, 4]. Here it is
phrased in a way that requires no knowledge of category theory whatsoever.

Because of the categorical origins of this axiomatization, three misconceptions
commonly arise.

The first is that the underlying motive is to replace set theory with category theory.
It is not. The approach described here is not a rival to set theory: It is set theory.

The second is that this axiomatization demands more mathematical sophistication
than others (such as ZFC). This is false, but understandable. Almost all of the work
on Lawvere’s axioms has taken place within topos theory, a beautiful and profound
subject, but not one easily accessible to outsiders. It has always been known that the
axioms could be presented in a completely elementary way, and although some authors
have emphasized this [3, 5, 6, 10, 11], it is not as widely appreciated as it should be.
This paper aims to make it plain.
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The third misconception is that because these axioms for sets come from category
theory, and because the definition of category involves a collection of objects and a
collection of arrows, and because ‘collection’ might mean something like ‘set’, there
is a circularity; in order to axiomatize sets categorically, we must already know what
a set is. But although our approach is categorically inspired, it does not depend on
having a general definition of category. Indeed, our axiomatization (Section 2) does
not contain a single instance of the word ‘category’.

Put another way, circularity is no more a problem here than in ZFC. Informally,
ZFC says ‘there are some things called sets, there is a binary relation on sets called
membership, and some axioms hold.’ We will say ‘there are some things called sets
and some things called functions, there is an operation called composition of func-
tions, and some axioms hold.’ In neither case are the ‘things’ required to form a set
(whatever that would mean). In logical terminology, both axiomatizations are simply
first-order theories.

1. PRELUDE: ELEMENTS AS FUNCTIONS. The working mathematician’s vo-
cabulary includes terms such as set, function, element, subset, and equivalence rela-
tion. Any axiomatization of sets will choose some of these concepts as primitive and
derive the others. The traditional choice is sets and elements. We use sets and functions.

The formal axiomatization is presented in Section 2. However, it will be helpful to
consider one aspect in advance: how to derive the concept of element from the concept
of function.

Suppose for now that we have found a characterization of one-element sets without
knowing what an element is. (We do so below.) Fix a one-element set 1 = {•}. For any
set X , a function 1 −→ X is essentially just an element of X , since, after all, such a
function f is uniquely determined by the value of f (•) ∈ X (Figure 2(c)). Thus:

Elements are a special case of functions.

This is such a trivial observation that one is apt to dismiss it as a mere formal trick.
On the contrary, similar correspondences occur throughout mathematics. For example
(Figure 2):

• a loop in a topological space X is a continuous map S1
−→ X ;

• a straight line in Rn is a distance-preserving map R −→ Rn;

S1 X
(a)

R Rn

(b)

1 X
(c)

Figure 2. Mapping out of a basic object (S1, R, or 1) picks out figures of the appropriate type (loops, lines, or
elements).
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• a sequence in a set X is a function N −→ X ;
• a solution (x, y) of the equation x2

+ y2
= 1 in a ring A is a homomorphism

Z[X, Y ]/(X 2
+ Y 2

− 1) −→ A.

In each case, the word ‘is’ can be taken either as a definition or as an assertion of
a canonical, one-to-one correspondence. In the first, we map out of the circle, which
is a ‘free-standing’ loop; in the second, R is a free-standing line; in the third, the
elements 0, 1, 2, . . . of N form a free-standing sequence; in the last, the pair (X, Y ) of
elements of Z[X, Y ]/(X 2

+ Y 2
− 1) is the free-standing solution (x, y) of x2

+ y2
=

1. Similarly, in our trivial situation, the set 1 is a free-standing element, and an element
of a set X is just a map 1 −→ X .

We could write x̄ , say, for the function 1 −→ X with value x ∈ X . However, we
will write x̄ as simply x , blurring the distinction. In fact, we will later define an element
of X to be a function 1 −→ X .

This will make some readers uncomfortable. There is, you will agree, a canonical
one-to-one correspondence between elements of X and functions 1 −→ X , but per-
haps you draw the line at saying that an element of X literally is a function 1 −→ X .
If so, this is not a deal-breaker. We could adapt the axiomatization in Section 2 by
adding ‘element’ to the list of primitive concepts. Then, however, we would need to
complicate it further by adding clauses to guarantee that (among other things) there is
a one-to-one correspondence between elements of X and functions 1 −→ X , for any
set X . It can be done, but we choose the more economical route.

We have seen that elements are a special case of functions. There is another funda-
mental way in which functions and elements interact: Given a function f : X −→ Y
and an element x ∈ X , we can evaluate f at x to obtain a new element, f (x) ∈ Y .
Viewing elements as functions out of 1, this element f (x) is nothing but the compos-
ite of f with x . That is, f (x) = f ◦ x , as illustrated below.

1
x
//

f (x) ��

X

f
��

Y.

Hence:

Evaluation is a special case of composition.

2. THE AXIOMS. Here we state our ten axioms on sets and functions, in entirely
elementary terms.

The formal axiomatization is in a different typeface, to distinguish it from the ac-
companying commentary. Some diagrams appear, but they are not part of the formal
statement.

First we state the data to which our axioms will apply:

• some things called sets;
• for each set X and set Y , some things called functions from X to Y , with

functions f from X to Y written as f : X −→ Y or X
f
−→ Y ;

• for each set X , set Y , and set Z , an operation assigning to each f : X −→ Y
and g : Y −→ Z a function g ◦ f : X −→ Z ;

• for each set X , a function 1X : X −→ X .
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This last item can be included in the list or not, according to taste. See the comments
after the first axiom, which now follows.

Associativity and identity laws.

Axiom 1. For all sets W , X , Y , and Z , and all functions

W
f
−→ X

g
−→ Y

h
−→ Z ,

we have h ◦ (g ◦ f ) = (h ◦ g) ◦ f . For all sets X and Y and functions f : X −→ Y ,
we have f ◦ 1X = f = 1Y ◦ f .

If we wish to omit the identity functions from the list of primitive concepts, we must
replace the second half of Axiom 1 by the statement that for all sets X , there exists a
function 1X : X −→ X such that g ◦ 1X = g for all g : X −→ Y and 1X ◦ f = f for
all f : W −→ X . These conditions characterize 1X uniquely.

One-element set. We would like to say ‘there exists a one-element set’, but for the
moment we lack the expressive power to say ‘element’. However, any one-element
set T should have the property that for each set X , there is precisely one function
X −→ T . Moreover, only one-element sets should have this property. This motivates
the following definition and axiom.

A set T is terminal if for every set X , there is a unique function X −→ T .

Axiom 2. There exists a terminal set.

It follows quickly from the definitions that if T and T ′ are terminal sets, then there
is a unique isomorphism from T to T ′. (A function f : A −→ B is an isomorphism
if there is a function f ′ : B −→ A such that f ′ ◦ f = 1A and f ◦ f ′ = 1B .) In other
words, terminal sets are unique up to unique isomorphism. It is therefore harmless to
fix a terminal set 1 once and for all. Readers concerned by this are referred to the last
few paragraphs of this section.

Given a set X , we write x ∈ X to mean x : 1 −→ X , and call x an element of
X . Given x ∈ X and a function f : X −→ Y , we write f (x) for the element f ◦
x : 1 −→ Y of Y .

Empty set.

Axiom 3. There exists a set with no elements.

Functions and elements. A function from X to Y should be nothing more than a way
of turning elements of X into elements of Y .

Axiom 4. Let X and Y be sets and f, g : X −→ Y functions. Suppose that f (x) =
g(x) for all x ∈ X . Then f = g.

Axioms 1, 2, and 4 imply that a set is terminal if and only if it has exactly one
element. This justifies the usage of ‘one-element set’ as a synonym for ‘terminal set’.

Cartesian products. We want to be able to form cartesian products of sets. An el-
ement of X together with an element of Y should uniquely determine an element of
X × Y . More generally, for any set I , a function f1 : I −→ X together with a func-
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tion f2 : I −→ Y should uniquely determine a function f : I −→ X × Y , given by
f (t) = ( f1(t), f2(t)). (To see that this really is ‘more generally’, take I = 1.) We can
recover f1 from f by composing with the projection p1 : X × Y −→ X , and similarly
f2, as in the following definition.

Let X and Y be sets. A product of X and Y is a set P together with functions

X
p1
←− P

p2
−→ Y , with the following property (Figure 3):

For all sets I and functions X
f1
←− I

f2
−→ Y , there is a unique function

( f1, f2) : I −→ P such that p1 ◦ ( f1, f2) = f1 and p2 ◦ ( f1, f2) = f2.

I

P

X Y

f1

��

f2

��

( f1, f2)��

p1
uu p2 ))

Figure 3. The characteristic property of products

Axiom 5. Every pair of sets has a product.

Strictly speaking, a product consists of not only the set P , but also the projections
p1 and p2. Any two products of X and Y are uniquely isomorphic: Given products
(P, p1, p2) and (P ′, p′1, p′2), there is a unique isomorphism i : P −→ P ′ such that
p′1 ◦ i = p1 and p′2 ◦ i = p2. As in the case of terminal sets, this makes it harmless to
choose once and for all a preferred product (X × Y, prX,Y

1 , prX,Y
2 ) for each pair X , Y of

sets. Again, this convention is justified at the end of the section.

Sets of functions. In everyday mathematics, we can form the set Y X of functions from
one set X to another set Y . For any set I , the functions q : I × X −→ Y correspond
one-to-one with the functions q̄ : I −→ Y X , simply by changing the punctuation:

q(t, x) = (q̄(t))(x) (1)

(t ∈ I , x ∈ X ). For example, when I = 1, this reduces to the statement that the func-
tions X −→ Y correspond to the elements of Y X .

In (1), we are implicitly using the evaluation map

ε : Y X
× X −→ Y

( f, x) 7−→ f (x).

Then (1) becomes the equation q(t, x) = ε(q̄(t), x), as in the following definition.

Let X and Y be sets. A function set from X to Y is a set F together with a
function ε : F × X −→ Y , with the following property (Figure 4):

For all sets I and functions q : I × X −→ Y , there is a unique function
q̄ : I −→ F such that q(t, x) = ε(q̄(t), x) for all t ∈ I and x ∈ X .

Axiom 6. For all sets X and Y , there exists a function set from X to Y .
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I × X

q̄×1X

��

q

""
F × X

ε

// Y

Figure 4. The characteristic property of function sets

Inverse images. Ordinarily, given a function f : X −→ Y and an element y of Y , we
can form the inverse image or fiber f −1(y). The inclusion function j : f −1(y) ↪→ X
has the property that f ◦ j has constant value y. Moreover, whenever q : I −→ X is a
function such that f ◦ q has constant value y, the image of q must lie within f −1(y);
that is, q = j ◦ q̄ for some q̄ : I −→ f −1(y) (necessarily unique).

Let f : X −→ Y be a function and y ∈ Y . An inverse image of y under f is a set
A together with a function j : A −→ X , such that f ( j (a)) = y for all a ∈ A and
the following property holds (Figure 5):

For all sets I and functions q : I −→ X such that f (q(t)) = y for all t ∈ I ,
there is a unique function q̄ : I −→ A such that q = j ◦ q̄.

A 1

X Y

I

j
��

//

f

//

y
��

q
!!

''q̄ ((

Figure 5. The characteristic property of inverse images

Axiom 7. For every function f : X −→ Y and element y ∈ Y , there exists an inverse
image of y under f .

Inverse images are essentially unique: If j : A −→ X and j ′ : A′ −→ X are both
inverse images of y under f , then there is a unique isomorphism i : A −→ A′ such
that j ′ ◦ i = j .

Characteristic functions. Sometimes we want to define a function on a case-by-case
basis. For example, we might want to define h : R −→ R by h(x) = x sin(1/x) if
x 6= 0 and h(0) = 0. A simple instance is the definition of characteristic function.

Fix a two element-set 2 = {t, f } (for ‘true’ and ‘false’). The characteristic function
of a subset A ⊆ X is the function χA : X −→ 2 defined by χA(x) = t if x ∈ A, and
χA(x) = f otherwise. It is the unique function χ : X −→ 2 such that χ−1(t) = A.

This is how characteristic functions work ordinarily. To ensure that they work in the
same way in our set theory, we now demand that there exist a set 2 and an element
t ∈ 2 with the property just described: Whenever X is a set and A ⊆ X , there is a
unique function χ : X −→ 2 such that χ−1(t) = A.

Since we do not yet have a definition of subset, we phrase the axiom in terms of
injections instead. (The thought here is that every subset inclusion A ↪→ X is injective,
and, up to isomorphism, every injection arises in this way.)
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An injection is a function j : A −→ X such that j (a) = j (a′) =⇒ a = a′ for
a, a′ ∈ A.

A subset classifier is a set 2 together with an element t ∈ 2, with the following
property (Figure 6):

For all sets A and X and injections j : A −→ X , there is a unique function
χ : X −→ 2 such that j : A −→ X is an inverse image of t under χ .

A //

j
��

1

t
��

X
χ

// 2

Figure 6. The characteristic property of subset classifiers

Axiom 8. There exists a subset classifier.

The notation 2 is merely suggestive. There is nothing in the definition saying that 2
must have two elements, but, nontrivially, our ten axioms do in fact imply this.

Natural numbers. In ordinary mathematics, sequences can be defined recursively:
Given a set X , an element a ∈ X , and a function r : X −→ X , there is a unique se-
quence (xn)

∞

n=0 in X such that

x0 = a and xn+1 = r(xn) for all n ∈ N.

A sequence in X is nothing but a function N −→ X , so the previous sentence is really
a statement about the set N. It also refers to two pieces of structure on N: the element
0 and the function s : N −→ N given by s(n) = n + 1.

A natural number system is a set N together with an element 0 ∈ N and a function
s : N −→ N , with the following property (Figure 7):

Whenever X is a set, a ∈ X , and r : X −→ X , there is a unique function
x : N −→ X such that x(0) = a and x(s(n)) = r(x(n)) for all n ∈ N .

1
0
//

11
��

N
s
//

x

��

N

x

��
1

a
// X

r
// X

Figure 7. The characteristic property of natural number systems

Axiom 9. There exists a natural number system.

Natural number systems are essentially unique, in the usual sense that between any
two of them there is a unique structure-preserving isomorphism. This justifies speaking
of the natural numbers N, as we invariably do.
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Choice. A function with a right inverse is certainly surjective. The axiom of choice
states the converse.

A surjection is a function s : X −→ Y such that for all y ∈ Y , there exists x ∈ X
with s(x) = y.

A right inverse of a function s : X −→ Y is a function i : Y −→ X such that
s ◦ i = 1Y .

Axiom 10. Every surjection has a right inverse.

A right inverse of a surjection s : X −→ Y is a choice, for each y ∈ Y , of an element
of the nonempty set s−1(y).

This concludes the axiomatization.

The meaning of ‘the’. It remains to reassure any readers concerned by the liberty
taken in Axioms 2 and 5, where we chose once and for all a terminal set and a cartesian
product for each pair of sets.

This type of liberty is very common in mathematical practice. We speak of the
trivial group, the 2-sphere, the direct sum of two vector spaces, etc., even though we
can conceive of many trivial groups or 2-spheres or direct sums, all isomorphic but
not equal. Anyone asking ‘but which trivial group?’ is likely to be met with a hard
stare, and for good reason: No meaningful statement about groups depends on what
the element of the trivial group happens to be named.

However, we should be able to state the axioms with scrupulous rigor, and we can.
One way to do so is not to single out a particular terminal set or particular products,
but instead to adopt some circumlocutions. For example, we replace the phrase ‘for all
elements x ∈ X ’ by ‘for all terminal sets T and functions x : T −→ X .’

More satisfactory, though, is to extend the list of primitive concepts. To the existing
list (sets, functions, composition and identities) we add:

• a distinguished set, 1;
• an operation assigning to each pair of sets X, Y a set X × Y and functions

X X × Y
prX,Y

1
oo

prX,Y
2
//Y. (2)

Axiom 2 is replaced by the statement that 1 is terminal, and Axiom 5 by the statement
that for all sets X and Y , the set X × Y together with the functions (2) is a product of
X and Y .

This approach has the virtue of reflecting ordinary mathematical usage. We usually
speak as if taking the product of two sets (or spaces, groups, etc.) were a procedure
with a definite output: the product, not a product. But since products are in any case
determined uniquely up to unique isomorphism, whether or not we nominate one as
special makes no significant difference.

3. DISCUSSION. The ten axioms are familiar in their intuitive content, but less so
as an axiomatic system. Here we discuss the implications of using them as such.

Building on the axioms. Any axiomatization of anything is followed by a period of
lemma-proving. The present axioms are no exception. Here is a very brief sketch of
the development.

It is convenient formally to define a subset of a set X as a function X −→ 2, but
we constantly use the correspondence between functions X −→ 2 and injections into
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X , provided by Axiom 8. Two injections j , j ′ into X correspond to the same subset of
X if and only if they have the same image (that is, there exists an isomorphism i such
that j ′ = j ◦ i).

The main task is to build the everyday equipment used for manipulating sets. For
example, given a function f : X −→ Y , we construct the image under f of a subset
of X and the inverse image of a subset of Y . An equivalence relation ∼ on a set X is
defined to be a subset of X × X with the customary properties, and the axioms allow
us to construct the quotient set X/∼. Some constructions are tricky. For instance, the
axioms imply that any two sets X and Y have a disjoint union X t Y , but no known
proof is simple.

We then define the usual number systems. Addition, multiplication, and powers of
natural numbers are defined directly using Axiom 9. From N, we successively con-
struct Z, Q, R, and C in the standard way. For example, Z = (N × N)/∼, where
∼ is the equivalence relation on N × N given by (m, n) ∼ (m ′, n′) if and only if
m + n′ = m ′ + n. As this illustrates, past a certain point, the development is literally
identical to that for other axiomatizations of sets.

How strong are the axioms? Most mathematicians will never need more properties
of sets than those guaranteed by the ten axioms. For example, McLarty [13] argues
that no more is needed anywhere in the canons of the Grothendieck school of alge-
braic geometry, the multi-volume works Éléments de Géométrie Algébrique (EGA)
and Séminaire de Géométrie Algébrique (SGA).

To get a sense of the reach of the axioms, let us consider infinite cartesian products.
Let I be a (possibly infinite) set and (X i )i∈I a family of sets. Can we form the product∏

i∈I X i ? The answer depends on what is meant by ‘family’. We could define an I -
indexed family to be a set X together with a function p : X −→ I , viewing the fiber
p−1(i) as the i th member X i . In that case,

∏
X i can be constructed as a subset of

X I . Specifically, p induces a function p I
: X I
−→ I I , and

∏
X i is the inverse image

under p I of the element of I I corresponding to 1I .
However, we could interpret ‘I -indexed family’ differently, as an algorithm or for-

mula that assigns to each i ∈ I a set X i . It is not obvious that we can then form the
disjoint union X =

∐
i∈I X i , which is what would be necessary in order to obtain a

family in the previous sense. In fact, writing P(S) = 2S for the power set of a set S,
the ten axioms do not guarantee the existence of the disjoint union

N t P(N) t P(P(N)) t · · · (3)

unless they are inconsistent [8, Section 9].
If we wish to change this, we can add an eleventh axiom (or properly, axiom

scheme). It is called ‘replacement’, formally stated in [12, Section 8], and informally
stated as follows. Suppose that we have a set I and a first-order formula so that each
i ∈ I specifies a set X i up to isomorphism. Then we require that there exist a set X
and a function p : X −→ I such that p−1(i) is isomorphic to X i for each i ∈ I . This
guarantees the existence of sets such as (3).

The relationship between our axioms and ZFC is well understood. The ten ax-
ioms are weaker than ZFC, but when the eleventh is added, the two theories have
equal strength and are bi-interpretable (the same theorems hold). This extra strength is
sometimes needed; for example, replacement is important in parts of infinitary com-
binatorics. It is also known to which fragment of ZFC the ten axioms correspond:
‘Zermelo with bounded comprehension and choice’. The details of this relationship
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were mostly worked out in the early 1970s [2, 14, 15]. Good modern accounts are in
[7, Section VI.10] and [9, Chapter 22].

A broader view. Our ten axioms are a standard rephrasing of Lawvere’s Elementary
Theory of the Category of Sets (ETCS), published in 1964. It was some years before
ETCS found its natural home, and that was with the advent of topos theory.

The notion of topos was invented by Grothendieck for reasons that had nothing to
do with set theory. For Grothendieck, a topos was a generalized topological space.
Formally, a topos is a category with certain properties, and a topological space X is
associated with the topos whose objects are the sheaves of sets on X .

Lawvere and Tierney swiftly realized that, after a slight loosening of Grothendieck’s
definition, the ETCS axioms could be restated neatly in topos-theoretic terms [16, 17].
Indeed, ETCS says exactly that sets and functions form a topos of a special sort: a
‘well-pointed topos with natural numbers object and choice’. So a topos is not only a
generalized space; it is also a generalized universe of sets.

An attractive feature of ETCS is that each of the axioms is meaningful in a broader
context than set theory. For example, Axiom 1 states that sets and functions form a
category. The job of the remaining axioms is to distinguish sets from other structures
that form categories. Axioms 2 and 5 state that the category of sets has finite products.
This important property is shared by (for example) the categories of topological spaces
and smooth manifolds, which is exactly what makes it possible to define ‘topological
group’ and ‘Lie group’. But for one detail, Axioms 1, 2, 5, 6, 7 and 8 state that sets
and functions form a topos.

The axiom of choice as formulated in Axiom 10 highlights a special feature of sets.
In most other categories of sets-with-structure, it fails, and its failure is a point of
interest. For instance, not every continuous surjection between topological spaces has
a continuous right inverse, a typical example being the nonexistence of a continuous
square root defined on the complex plane.

What kind of set theory should we teach? As Figure 1 indicates, we already teach a
diluted form of the ten axioms, even in introductory courses. For example, we certainly
tell our students that an element of X × Y is an element of X together with an element
of Y , and we routinely write a function f taking values in R2 as ( f1, f2), although we
are less likely to state explicitly that, given functions f1 : I −→ X and f2 : I −→ Y ,
there is a unique function f : I −→ X × Y with f1 and f2 as components.

When it comes to teaching axiomatic set theory, the approach outlined here has ad-
vantages and disadvantages. The great advantage is that such a course is of far wider
benefit than one using the traditional axioms. It directly addresses a difficulty experi-
enced by many students: the concept of function (and worse, function space). It also
introduces in an elementary setting the idea of universal property. This is probably
the hardest aspect of the axioms for a learner, but since universal properties are im-
portant in so many branches of advanced mathematics, the benefits are potentially
far-reaching.

The disadvantages are perhaps only temporary. There is at present a lack of teaching
materials (the book [5] being the main exception). For example, the axioms imply
that any two sets have a disjoint union, and most books on topos theory contain an
elegant and sophisticated proof of a generalization of this fact, but to my knowledge,
there is only one place where a purely elementary proof can be found [18]. A second
disadvantage is that any student planning a career in set theory will need to learn ZFC
anyway, since almost all research-level set theory is done with the iterated-membership
conception of set. (That is the current reality, which is not to say that set theory must
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be done this way.) Such a course might usefully include a comparison of the types of
set theory available.

Reactions to an earthquake. Perhaps you will wake up tomorrow, check your email,
and find an announcement that ZFC is inconsistent. Apparently, someone has taken
the ZFC axioms, performed a long string of logical deductions, and arrived at a con-
tradiction. The work has been checked and re-checked. There is no longer any doubt.

How would you react? In particular, how would you feel about the implications for
your own work? All your theorems would still be true under ZFC, but so too would
their negations. Would you conclude that your life’s work had been destroyed?

An informal survey suggests that most of us would be interested but not deeply
troubled. We would go on believing that our theorems were true in a sense that their
negations were not. We are unlikely to feel threatened by the inconsistency of axioms
to which we never referred anyway.

In contrast, the ten axioms above are such core mathematical principles that an in-
consistency in them would be devastating. If we cannot safely assume that composition
of functions is associative, or that repeatedly applying a function f : X −→ X to an
element a ∈ X produces a sequence ( f n(a)), we are really in trouble.

The difference in reactions is telling. Our response to an inconsistency in an ax-
iomatization of set theory reflects our degree of belief that it describes the operating
principles we actually employ, in ordinary mathematical practice.

In summary, simply by writing down a few mundane, uncontroversial statements
about sets and functions, we arrive at an axiomatization that fits well with how sets are
really used in mathematics.
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An Elementary Application of Brouwer’s Fixed Point Theorem
to Transition Matrices

Transition matrices play an essential role in the study of Markov processes ([3],
ch. 11), which have many important practical applications in business, finance,
medicine, etc. ([2], ch. 8). A transition matrix T is a n × n stochastic matrix such
that each entry pi j lies between 0 and 1, the sum of each column of T equals 1,
and each element of the matrix represents the probability of transitioning from
state i to state j . Moreover, the equilibrium state of the process represents a fixed
point vector (i.e., T p = p), where p is a probability vector such that

∑
pi = 1.

What is interesting here is that the set of probability vectors form a simply con-
nected compact convex set, because given two probability vectors p and q , we
have that λp + (1− λ)q(0 ≤ λ ≤ 1) is also a probability vector, so we may ap-
ply the well-known Brouwer fixed point theorem to the transition matrix T (see
([1], pp. 251–255) for an elementary discussion of this theorem and ([4], pp.
42–45) for the general case). Consequently, we are guaranteed a fixed point by
the theorem as well as an eigenvalue of 1. Note that when considering infinite
dimensional spaces, the theorem fails since infinite dimensional bounded sets are
not necessary compact such as the unit ball in l2. However, it does hold if the set
is convex and compact ([4], pp. 45–46). Nevertheless, in the finite dimensional
case, this is certainly an elegant application of the theorem.
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