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1 Introduction

Hamiltonian systems appear in conservative problems of mechanics as in celestial mechanics
but also in statistical mechanics governing the motion of particles and molecules in fluid.
A mechanical system of N planets (particles) is modeled by a Hamiltonian function H(x)
where x = (q, p), q = (q1, . . . , qN), p = (p1, . . . , pN) with (qi, pi) ∈ Rd×Rd being the position
and the momentum of the i-th particle. The Hamiltonian’s equations of motion are

(1.1) q̇ = Hp(q, p), ṗ = −Hq(q, p),

which is of the form

(1.2) ẋ = J̄∇xH(x), J̄ =

[
0 In
−In 0

]
,

where n = dN and In denotes the n×n identity matrix. The equation (1.2) is an ODE that
possesses a unique solution for every initial data x0 provided that we make some standard
assumptions on H. If we denote such a solution by φt(x0) = φ(t, x0), then φ enjoys the group
property

φt ◦ φs = φt+s, t, s ∈ R.

The ODE (1.1) is a system of 2n = 2dN unknowns. Such a typically large system can
not be solved explicitly. A reduction of such a system is desirable and this can be achieved
if we can find some conservation laws associated with our system. To find such conservation
laws systematically, let us look at a general ODE of the form

(1.3)
dx

dt
= b(x),

with the corresponding flow denoted by φt, and study u(x, t) = Ttf(x) = f(φt(x)). A
celebrated theorem of Liouville asserts that the function u satisfies

(1.4)
∂u

∂t
= Lu = b · ux.

Recall that a function f(x) is conserved if d
dt
f(φt(x)) = 0. From (1.4) we learn that a function

f is conserved if and only if

(1.5) b · fx = 0.

In the case of a Hamiltonian system, b = (Hp,−Hq) and the equation (1.5) becomes

(1.6) {f,H} := fq ·Hp − fp ·Hq = 0.
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As an obvious choice, we may take f = H in (1.6). In general, we may have other conservation
laws that are not so obvious to be found. Nother’s principle tells us how to find a conservation
law using a symmetry of the ODE (1.3). With the aid of the symmetries, we may reduce
our system to a simpler one that happens to be another Hamiltonian-type system.

Liouville discovered that for a Hamiltonian system of Nd-degrees of freedom (2Nd un-
knowns) we only need Nd conserved functions in order to solve the system completely by
means of quadratures. Such a system is called completely integrable and unfortunately hard
to come by. Recently there has been a revival of the theory of completely integrable sys-
tems because of several infinite dimensional examples (Korteweg–deVries equation, nonlinear
Schrödinger equation, etc.).

As we mentioned before, the conservation laws can be used to simplify a Hamiltonian
system by reducing its size. To get more information about the solution trajectories, we
may search for other conserved quantities. For example, imagine that we have a flow φt
associated with (1.3) and we may wonder how the volume of φt(A) changes with time for a
given measurable set A. For this, imagine that there exists a density function ρ(x, t) such
that

(1.7)

∫
J(φt(x))ρ0(x)dx =

∫
J(x)ρ(x, t)dx

for every bounded continuous function J . This is equivalent to saying that for every nice set
A,

(1.8)

∫
φ−t(A)

ρ0(x)dx =

∫
A

ρ(x, t)dx.

In words, the ρ0-weighted volume of φ−t(A) is given by the ρ(·, t)-weighted volume of A.
Using (1.4), it is not hard to see that in fact ρ satisfies the (dual) Liouville’s equation

(1.9)
∂ρ

∂t
+ div(ρb) = 0.

As a result, the measure ρ0(x)dx is invariant for the flow φt if and only if

div(ρ0b) = 0.

In particular, if div b = 0, then the Lebesgue measure is invariant. In the case of a Hamil-
tonian system b = J∇H, we do have div b = 0, and as a consequence,

(1.10) vol(φt(A)) = vol(A),

for every measurable set A.
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In our search for other invariance properties, let us now look for vector fields F : Rn → Rn

such that

(1.11)
d

dt

∫
φt(γ)

F · dx ≡ 0

for every closed curve γ. Such an invariance property is of interest in (for example) fluid
mechanics because

∫
γ
F · dx measures the circulation of the velocity field F around γ. To

calculate the left-hand side of (1.11), observe∫
φt(γ)

F · dx =

∫
γ

F (φt(x))Dφt(x) · dx

where Dφt denotes the derivative of φt in x and we regard F as a row vector. Set F =
(F 1, . . . , F k), φ = (φ1, . . . , φk), u = (u1, . . . , uk), u(x, t) = TtF (x) = F ◦φt(x)Dφt(x), so that

uj(x, t) =
∑
i

F i(φt(x))
∂φit
∂xj

(x).

To calculate the time derivative, we write

u(x, t+ h) = F (φt+h)Dφt+h = F (φt ◦ φh) Dφt ◦ φhD φh

= u(φh(x), t)Dφh(x),

so that

d

dh
uj(x, t+ h)

∣∣∣∣
h=0

=
∑
i

[
(∇ui · b)δij + ui

∂bi

∂xj

]
= ∇uj · b+

∑
i

ui
∂bi

∂xj

= (u · b)xj +
∑
i

(ujxi − u
i
xj

)bi.

In summary,

(1.12)
∂u

∂t
= ∇(u · b) + C(u)b

where C(u) is the matrix [uixj − u
j
xi

]. In particular,

(1.13)
d

dt

∫
φt(γ)

F · dx =

∫
γ

C(u)b · dx
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for every closed curve γ. Recall that we would like to find vector fields F for which (1.11) is
valid. For this it suffices to have C(F )b a gradient. Indeed if C(F )b is a gradient, then

d

dt

∫
φt(γ)

F · dx =
d

dh

∫
φt+h(γ)

F · dx

∣∣∣∣∣
h=0

=
d

dh

∫
φh(φt(γ))

F · dx
∣∣∣∣
h=0

=

∫
φt(γ)

C(F )b · dx = 0.

Let us examine this for some examples.

Example 1.1. (i) Assume that k = 2n with x = (q, p) = (q1, . . . , qn, p1, . . . , pn). Let
b(q, p) = (Hp,−Hq)

∗ = J∇H for a Hamiltonian H(q, p). Choose F (q, p) = (p, 0). We then

have C(F ) =

[
0 In
−In 0

]
= J , and C(F )b = JJ∇H = −∇H. This and (1.13) imply that for

a Hamiltonian flow φt and closed γ,

(1.14)
d

dt

∫
φt(γ)

p · dq = 0,

which was discovered by Poincaré originally.
(ii) Assume k = 2n+ 1 with x = (q, p, t) and b(q, p, t) = (Hp,−Hq, 1)∗ where H is now a

time-dependent Hamiltonian function. Define

F (q, p, t) = (p, 0,−H(q, p, t)).

We then have

(1.15) C(F ) =

 0 In H∗q
−In 0 H∗p
−Hq −Hp 0

 =

[
J ∇H t

−∇H 0

]
.

Since C(F )b = 0, we deduce that for any closed (q, p, t)-curve γ,

(1.16)
d

ds

∫
φs(γ)

(q · dp−H(q, p, t)dt) = 0,

proving a result of Poincaré and Cartan. Note that if γ has no t-component in (1.16), then
(1.16) becomes (1.14).
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(iii) Assume n = 3. Then C(F ) =

 0 −α3 α2

α3 0 −α1

−α2 α1 0

 with (α1, α2, α3) = ∇×F . Now if

b = ∇× F , then C(F )b = (∇× F ) × b and d
dt

∫
φt(γ)

F · dx = 0. In words, the F -circulation

of a curve moving with velocity field ∇× F is preserved with time. �

Example 1.2. A Hamiltonian system (1.2) simplifies if we can find a function w(q, t) such
that p(t) = w(q(t), t). If such a function w exists, then q(t) solves

(1.17)
dq

dt
= Hp(q, w(q, t), t).

The equation ṗ gives us the necessary condition for the function w:

ṗ = wq q̇ + wt = wq ·Hp(q, w, t) + wt,

ṗ = −Hq(q, w, t).

Hence w(q, t) must solve,

(1.18) wt + wq ·Hp(q, w, t) +Hq(q, w, t) = 0.

For example, if H(q, p, t) = 1
2
|p|2 + V (q, t), then (1.18) becomes

(1.19) wt + wqw + Vq(q, t) = 0.

The equation (1.17) simplifies to

(1.20)
dq

dt
= w(q, t)

in this case. If the flow of (1.20) is denoted by ψt, then φt(q, w(q, 0)) = (ψt(q), w(ψt(q), t)).
Now (1.14) means that for any closed q-curve η,

d

dt

∫
ψt(η)

w(q, t) · dq = 0.

This is the celebrated Kelvin’s circulation theorem. �

We may use Stokes’ theorem to rewrite (1.14) as

(1.21)
d

dt

∫
φt(Γ)

ω̄ :=
d

dt

∫
φt(Γ)

dp ∧ dq = 0

for every two-dimensional surface Γ. In words, the 2-form ω̄ is invariant under the Hamil-
tonian flow φt. In summary, we have found various invariance principles for Hamiltonian
flows:

6



• The conserved functions f satisfying (1.6) is an example of an invariance principle for
0-forms.

• The Liouville’s theorem (1.10) is an example of an invariance principle of an n-form.

• Poincaré’s theorem (1.21) is an instance of an invariance principle involving a 2-form.

In fact (1.21) implies (1.10) because the invariance of ω̄ implies the invariance of the
k = 2n form ω̄n = ω̄ ∧ · · · ∧ ω̄ which is a constant multiple of the volume form. More
generally, we may take an arbitrary l-form ω and evolve it by the flow φt of a velocity field
b. If we write ω(t) for φ∗tω: ∫

Γ

ω(t) =

∫
Γ

φ∗tω =

∫
φt(Γ)

ω,

then by a formula of Cartan,

dω

dt
= Lbω := d(ibω) + ib(dω)

where Lbω denotes the Lie derivative.
The configuration space of a system with constraints is a manifold. Also, when we use

conservation laws to reduce our Hamiltonian system, we obtain a Hamiltonian system on
a manifold. If the configuration space is a n-dimensional differentiable manifold N , and
L : TN → R is a differentiable Lagrangian function, then p = ∂L

∂q̇
is a cotangent vector. The

cotangent bundle M = T ∗N is an example of a symplectic manifold because it possesses a
natural closed non-degenerate form ω̄ which is simply

∑n
1 dpi∧dqi, in local coordinates. More

generally we may study an even dimensional manifold M , equipped with a non-degenerate
closed 2-form ω, and construct vector fields XH associated with scalar functions H such that
iXH (ω) = −dH. The vector field XH is the analog of J∇H in the Euclidean case M = R2n.
By the non-degeneracy of ω, such XH exists for every differentiable Hamiltonian function
H.

A celebrated theorem of Darboux asserts that any symplectic manifold is locally equiv-
alent to a Euclidean space with its standard symplectic structure. As a result, the most
important questions in symplectic geometry are the global ones.

Consider the Euclidean space (R2n, ω̄). If the hypersurface Γ = H−1(c) is a compact
energy level set with ∇H 6= 0 on Γ, then the unparametrized orbits on Γ of the Hamiltonian
vector field XH = J∇H are independent of the choice of H. One can therefore wonder what
hypersurfaces carry a periodic orbit. P. Rabinowitz showed that every star-like hypersurface
carries a periodic orbit. Later, Viterbo showed that the same holds more generally for
hypersurfaces of contact type, establishing affirmatively a conjecture of A. Weinstein.

Consider two compact connected domains U1 and U2 in Rn with smooth boundaries. U1

and U2 are diffeomorphic and volume(U1) = volume(U2), then we can find a diffeomorphism
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between U1 and U2 that is also volume preserving (DaCorogna–Moser). We may wonder
whether or not there exists a symplectic diffeomorphism between U1 and U2. Gromov’s
squeezing theorem shows that the symplectic transformations are more rigid; if there exists
a symplectic embedding from the ball

BR(0) = {(q, p) : |q|2 + |p|2 < R2}

into the cylinder
Zr(0) = {(q, p) : q2

1 + p2
1 < r2},

then we must have r ≥ R! Motivated by this, Gromov defines the symplectic radius r(M) of
a symplectic manifold (M,ω) as the largest r for which there exists a symplectic embedding
from Br(0) into M . The Gromov’s radius is an example of a symplectic capacity that is a
symplectic invariant. Since the discovery of the Gromov radius, new capacities have been
discovered. The existence of some of these capacities can be used to prove various global
properties of Hamiltonian systems such as Viterbo’s existence of periodic orbits.

Another rigidity of symplectic transformation is illustrated in an important result of
Eliashberg and Gromov: If {fm} is a sequence of symplectic transformation that converges
uniformly to a differentiable function f , then f is also symplectic. The striking aspect of
this result is that our definition of a symplectic function f involves the first derivative of f .
As a result, we should expect to have a definition of symplicity that does not involve any
derivative. This should be compared to the definition of a volume preserving transformation
that can be formulated with or without using derivative.
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2 Quadratic Hamiltonians and Linear Symplectic Ge-

ometry

In this section, we discuss several central concepts and fundamental results of symplectic
geometry in linear setting. More specifically, we establish Darboux Theorem for symplectic
vector spaces, define symplectic spectrum for quadratic Hamiltonian functions, construct
linear symplectic capacities for ellipsoids, establish symplectic rigidity for linear symplectic
maps, and analyze complex structures that are compatible with a symplectic form.

A symplective vector space (V, ω) is a pair of finite dimensional real vector space V
and a bilinear form ω : V × V → R which is antisymmetric and non-degenerate. That is,
ω(a, b) = −ω(b, a) for all a, b ∈ V , and that ∀a ∈ V with a 6= 0, ∃b ∈ V such that ω(a, b) 6= 0.
The non-degeneracy is equivalent to saying that the transformation a 7→ ω(a, ·) is a linear
isomorphism between V and its dual V ∗. Clearly (Rk, ω̄) is an example of a symplectic vector
space when k = 2n and ω(a, b) = J̄a · b, where J̄ was defined in (1.2). More generally, given
a k by k matrix C, the bilinear form ω(a, b) = Ca · b is symplectic if C is invertible and
skew-symmetric. Note that since

detC = detC∗ = det(−C) = (−1)n detC,

necessarily k = 2n is even. Given a symplectic (V, ω), then we say a and b are ω-orthogonal
and write aq b if ω(a, b) = 0. If W is a linear subspace of V , then

Wq = {a ∈ V : aqW}.

In our first result we state a linear version of Darboux’s theorem and some elementary
facts about symplectic vector spaces. Darboux’s theorem in Euclidean setting asserts that
for every invertible skew-symmetric matrix C we can find an invertible matrix T such that
T ∗CT = J̄ .

Proposition 2.1 Let (V, ω) be a symplectic linear space of dimension k = 2n and W be a
subspace of V .

(i) dimW + dimWq = dimV .

(ii)
(
Wq)q = W.

(iii) (W,ω) is symplectic iff W ⊕Wq = V .

(iv) If W is a symplectic subspace, then Wq is also symplectic.

(v) There exists a basis e1, . . . , en, f1, . . . , fn such that ω(ei, ej) = ω(fi, fj) = 0 and ω(fi, ej) =
δij. Equivalently, if x = (q1, . . . , qn, p1, . . . , pn), y = (q′1, . . . , q

′
n, p
′
1, . . . , p

′
n), a =∑n

1 qjej + pjfj, a
′ =
∑n

1 q
′
jej + p′jfj, then ω(a, a′) = ω̄(x, y).
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Proof. (i) Assume that dimV = n and dimW = m. Choose a basis {a1, . . . , am} for
W . Then by non-degeneracy a∗1, . . . , a

∗
m are independent where aI(b) = ω(aj, b). Since

Wq = {a : aI(a) = 0 for j = 1, . . . ,m}, with aI independent, we have that dimWq = n−m.

(ii) Evidently W ⊆ (Wq)q. Since dimW + dimWq = dimWq + dim(Wq)q, we deduce
that W = (Wq)q.

(iii) By definition, (W,ω) is symplectic iff W ∩Wq = {0}. Since dimW +dimWq = dimV ,
we have that W ⊕Wq = V .

(iv) If W is symplectic, then V = W ⊕Wq = (Wq)q⊕Wq, which implies that in fact Wq

is symplectic.

(v) Evidently dimV ≥ 2. Let e1 be a non-zero vector of V . Since ω is non-degenerate,
we can find f1 ∈ V such that ω(f1, e1) = 1. Clearly f1, e1 are linearly independent. Let
V1 = span{e1, f1}. If V = V1, then we are done. Otherwise V = V1 ⊕ V q1 with both (V1, ω),
(V q1 , ω) symplectic. Now we repeat the previous argument to find f2, e2 etc. �

We now turn our attention to quadratic Hamiltonian functions and ellipsoids. By a
quadratic Hamiltonian we mean a function H(x) = 1

2
Bx · x for a symmetric matrix B. We

are particularly interested in the case B ≥ 0. We note that for such quadratic Hamiltonians,
the corresponding Hamiltonian vector field X(x) = JBx is linear. Since the flow of

(2.1) ẋ = JBx,

preserves H, we also study the level sets of nonnegative quadratic functions. By an ellipsoid
we mean a set E of the form

E = {x : H(x) ≤ 1}

where H(x) = 1
2
Bx · x with B ≥ 0. Note that if B > 0, the ellipsoid E is a bounded set.

Otherwise, the set E is unbounded and may be also called a cylinder or cylindrical ellipsoid.
Our goal is to show that we can make a change of coordinates to turn the ODE to a simpler
Hamiltonian system for which B is a diagonal matrix. Before embarking on this, let us first
review some well-known facts about symmetric matrices, which is the symmetric counterpart
of what we will discuss for symplectic matrices.

To begin, let us recall that the standard Euclidean inner product is preserved by a matrix
A if A is orthogonal. That is

Aa · Ab = a · b for all a, b ∈ Rk ⇔ A−1 = A∗.

Let us write O(k) for the space of k × k orthogonal matrices. We also write S(k) for the
space of symmetric matrices. A quadratic function H : Rk → R is defined by H(x) = 1

2
Bx ·x

with B ∈ S(k).
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Proposition 2.2 Let H1 and H2 be two quadratic functions associated with the symmetric
matrices B1 and B2. Then there exists A ∈ O(k) such that H1 ◦ A = H2 if and only if B1

and B2 have the same spectrum.

As a consequence, if H(x) = 1
2
Bx·x and B has eigenvalues λλλ(H) = (λ1, . . . , λk) with λ1 ≥

λ2 ≥ · · · ≥ λk, then there exists A ∈ O(k) such that H(Ax) = 1
2

∑k
j=1 λjx

2
j . In particular,

if B ≥ 0, then λj’s are nonnegative and we may define radii R(H) = (R1(H), . . . , Rk(H)) ∈
(0,∞]k by R2

i = R2
i (H) = 2

λj
so that 0 < R1(H) ≤ R2(H) ≤ · · · ≤ Rk(H) and

H(A(x)) =
k∑
j=1

x2
j

R2
j

.

If E is the corresponding ellipsoid,

E = {x : H(x) ≤ 1} ,

then we write
R(E) = (R1(E), . . . , Rk(E))

for R(H) and refer to its coordinates as the radii of E. We now rephrase Proposition 2.1 as

Corollary 2.1 Let E1 and E2 be two ellipsoids. Then there exists A ∈ O(k) such that
A(E1) = E2 if and only if R(E1) = R(E2).

We next discuss the monotonicity of R.

Proposition 2.3 (i) Let H1 and H2 be two quadratic functions. Then H1 ◦ A ≤ H2 for
some A ∈ O(k) if and only if λλλ(H1) ≤ λλλ(H2).

(ii) Let E1 and E2 be two ellipsoids. Then A(E2) ⊆ E1 for some A ∈ O(k) if and only if
R(E2) ≤ R(E1).

Proof We note that (i) implies (ii) because if Er = {x : Hr(x) ≤ 1} for r = 1 and 2, then

E2 ⊆ A−1E1 ⇔ H1 ◦ A ≤ H2.

As for the proof of (i), observe that if λλλ = λλλ(H1) ≤ λλλ′ = λλλ(H2), then we can find A1 and
A2 ∈ O(k) such that

H1(A1x) =
1

2

k∑
j=1

λjx
2
j ≤

1

2

k∑
j=1

λ′jx
2
j = H2(A2x),

proving the “if” part of (i). The “only if” is an immediate consequence of Courant–Hilbert
Minimax Principle that will be stated in Lemma 2.1 below. �
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Lemma 2.1 (Courant–Hilbert). Let B ∈ S(k) with eigenvalues µ1 ≤ µ2 ≤ · · · ≤ µk. Then

µj = inf
dimV=j

sup
x∈V \{0}

Bx · x
|x|2

,(2.2)

µj = sup
dimV=j−1

inf
x∈V ⊥\{0}

Bx · x
|x|2

,(2.3)

where V denotes a linear subspace of Rk.

Proof Let us write X for the right-hand side of (2.2). Let u1, u2, . . . , uk be an orthonormal
basis with Buj = µjuj, j = 1, . . . , k. Note that

sup

{
Bx · x
|x|2

: x ∈ span{u1, . . . , uj}, x 6= 0

}
= sup

c1,...,cj

∑j
1 µlc

2
l∑j

1 c
2
l

≤ µj,

proving X ≤ µj. For X ≥ µj, pick a linear subspace V of dimension j and choose non-zero
x ∈ V such that x ⊥ u1, . . . , uj−1. Such x exists because dimV = j and we are imposing

j − 1 many conditions. Since we can write x =
∑k

l=j clul, we have

(2.4)
Bx · x
|x|2

=

∑k
j µlc

2
l∑k

j c
2
l

≥ µj.

As a result, X ≥ µj and this completes the proof of (2.2).
As for (2.3), note that if x ⊥ u1, . . . , uj−1, x 6= 0, then Bx·x

|x|2 ≥ µj by (2.4). Hence, if Y de-

notes the right-hand side of (2.3), then Y ≥ µj by choosing V = span{u1, . . . , uj−1}. For µj ≥
Y , let V be any linear space of dimension j−1 and pick a non-zero x ∈ span{u1, . . . , uj}∩V ⊥.
For such a vector x we have x =

∑j
1 clul, (c1, . . . , cj) 6= 0, and Bx·x

|x|2 ≤ µj. This implies that
µj ≥ Y . �

We would like to develop a theory similar to what we have seen in this section but now
for the bilinear form ω̄. The following table summarizes our main results:

Symmetric Antisymmetric
Form a · b ω̄(a, b) = Ja · b
Invariant matrix A ∈ O(k) : A−1 = A∗ T ∈ Sp(n) : T−1 = −J̄T ∗J̄
Vector field ∇H(x) = Bx, B ∈ S(k) J̄∇H(x) = J̄Bx; J̄B ∈ Ham(n)
Spectral theorem Proposition 2.2 Weirstrass Theorem

(Theorem 2.1)
Monotonicity Courant–Hilbert Minimax Theorem 2.2, Lemma 2.2

(Lemma 2.1)
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We say a matrix T is symplectic if ω̄(Ta, Tb) = ω̄(a, b). Equivalently T ∗J̄T = J̄ or
T−1 = −J̄T ∗J̄ . The set of 2n × 2n symplectic matrices is denoted by Sp(n). We say a
matrix C is Hamiltonian if C = J̄B for a symmetric matrix B. The space of 2n × 2n
Hamiltonian matrices is denoted by Ham(n). We have

C ∈ Ham(n)⇔ J̄C + C∗J̄ = 0⇔ C∗ = J̄CJ̄.

We note that if H(x) = 1
2
Bx · x with B ∈ S(2n), then J∇H(x) = J̄Bx with J̄B ∈ Ham(n).

We are now ready to state Weirstrass Theorem which allows us to diagonalize a Hamil-
tonian matrix using a symplectic change of variable.

Theorem 2.1 Let B be a positive matrix. Then the matrix C = J̄B has purely imaginary
eigenvalues of the form ±iλ1, . . . ,±iλn with λ1 ≥ · · · ≥ λn ≥ 0. Moreover there exists
T ∈ Sp(n) such that the quadratic Hamiltonian function H(x) = 1

2
Bx · x can be represented

as

H ◦ T (x) =
n∑
j=1

λj
2

(q2
j + p2

j),

where x = (q1, p1, . . . , qn, pn).

Proof Step 1. Let µ + iλ be an eigenvalue of C associated with the (non-zero) eigenvector
a+ ib. As a result,

Ca = µa− λb, Cb = λa+ µb or Ba = λJb− µJa, Bb = −λJa− µJb.

Hence
Ba · b = µω̄(b, a), Bb · a = −µω̄(b, a), Ba · a = Bb · b = λω̄(b, a).

From this, B = B∗, µ + iλ 6= 0, and a + ib 6= 0, we deduce that µ = 0, ω̄(b, a) 6= 0, and
Ba · b = 0. As a result, for every nonzero eigenvalue iλ, we can find an eigenvector a + ib,
such that

Ba · a = Bb · b = λ, Ba · b = 0,(2.5)

Ca = −λb, Cb = λa.

Step 2. If λ1 = 0, then all eigenvalues are 0 and there is nothing to prove. If λ1 6= 0, we use
Step 1 and (2.5) find a1 and b1 such that

Ba1 · a1 = Bb1 · b1 = λ, Ba1 · b1 = 0, Ca = −λb, Cb = λa.
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As a result, if V1 = span{a1, b1}, then CV1 ⊆ V1, and for q1 and p1 ∈ R,

(2.6) H(q1a1 + p1b1) = q2
1H(a1) + p2

1H(b1) + q1p1Ba1 · b1 =
λ1

2
(q2

1 + p2
1).

By Proposition 2.1, the spaces V1 and V q1 are symplectic and R2n = V1 ⊕ V q1 . We now
claim

(2.7) a ∈ V1, b ∈ V q1 ⇒ Ba · b = 0, and CV q1 ⊆ V q1 .

Indeed if a ∈ V1, b ∈ V q1 , then Ca ∈ V1, and

ω̄(Cb, a) = J̄Cb · a = −Bb · a = −b ·Ba = −J̄b · Ca = −ω̄(b, Ca) = 0,

which proves both claims in (2.7) because we just showed that Cb ∈ V q1 .

Final Step. From (2.7) we learn that if a ∈ V1 and b ∈ V q1 , then

H(a+ b) = H(a) +H(b).

Let us look at the restriction of H to the symplectic vector space (V q1 , ω̄). By Proposition 2.1,
this pair is isomorphic with (R2n−2, ω̄). As a result, we may repeat the above argument to
assert that there exits a pair of vectors a2, b2 ∈ V q1 with ω̄(b2, a2) = −1, H(a2) = H(b2) = r−2

2

and Ba2 · b2 = 0. Continuing this process would yield a basis (a1, b1, a2, b2, . . . , an, bn) such
that

ω̄(ai, aj) = ω̄(bi, bj) = 0, ω̄(bi, aj) = δij,

H(aj) = H(bj) = r−2
j , Baj · bj = 0.

From this we learn that the linear map T : R2n → R2n defined by

T (q1, p1, . . . , qn, pn) =
n∑
1

qjaj + pjbj

is symplectic, and

H(T (x)) =
n∑
1

λj
2

(q2
j + p2

j).

�
Given H(x) = 1

2
Bx · x with B ≥ 0, let us write 1

2
λj = 1

r2
j

so that rj = rj(H) ∈ (0,∞]

satisfy
0 < r1(H) ≤ r2(H) ≤ · · · ≤ rn(H).

We also write r(H) = (r1(H), . . . , rn(H)) and if E is the corresponding ellipsoid, we write
r(E) for r(H). We may rephrase Theorem 2.1 as follows:
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Corollary 2.2 (i) If H1 and H2 are two positive definite quadratic forms, then r(H1) =
r(H2) if and only if H2 = H1 ◦ T for some T ∈ Sp(n).

(ii) Let E1 and E2 be two ellipsoid. Then T (E2) = E1 for T ∈ Sp(n) if and only if
r(E1) = r(E2).

Example 2.1 Let n = 1 and H(q1, p1) =
q2
1

R2
1

+
p2

1

R2
2

so that R(H) = (R1, R2). Here H(x) =
1
2
Bx · x with

B =

[
2
R2

1
0

0 2
R2

2

]
.

We have

C =

[
0 1
−1 0

]
B =

[
0 2

R2
2

− 2
R2

1
0

]
.

The matrix C has eigenvalues ±i 2
R1R2

. Hence r(H) = (r1(H)) with r1(H) =
√
R1R2 and

there exists T ∈ Sp(n) such that H ◦ T (q1, p1) =
q2
1+p2

1

R1R2
. �

As our next corollary to Theorem 2.1, we solve (2.1) with the aid of a symplectic change
of coordinates:

Corollary 2.3 Let H, T and (λ1, . . . , λn) be as in Theorem 2.1. Let x(t) be a solution of
(2.1) and define y(t) = T−1x(t). Then ẏ = J̄B0y, where B0 is a diagonal matrix that has
the entries

λ1, . . . , λn, λ1, . . . , λn,

on its main diagonal.

Proof From (2.1), we learn that T ẏ = J̄BTy. Also, by Theorem 2.1 we know that (BTx) ·
(Tx) = B0x · x, which means that T ∗BT = B0. As a result

ẏ = T−1J̄BTy = −J̄T ∗J̄ J̄BTy = J̄T ∗BT = J̄B0.

�

Remark 2.1 If we write φt(y) for the flow of ẏ = J̄B0y and use the complex notation
y = (z1, . . . , zn) with zj = qj + ipj, then

φt(z1, . . . , zn) = (e−iλ1tz1, . . . , e
−iλntzn).

In particular, for each zj 6= 0, λj 6= 0, if we set ẑj for the complex vector that has zj for the
j-coordinate and 0 for the other coordinates, then the orbit (φt(ẑj) : t ∈ R) is periodic of
period 2π/λj = πr2

j . �
We now turn to the question of monotonicity.
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Theorem 2.2 (i) If H1 and H2 are two non-negative definite quadratic forms, then r(H1) ≥
r(H2) if and only if there exists T ∈ Sp(n) such that H1 ◦ T ≤ H2.

(ii) Let E1 and E2 be two ellipsoids. Then r(E2) ≤ r(E1) if and only if T (E2) ⊆ E1 for
some T ∈ Sp(n).

Proof As before (i) implies (ii). By approximation, it suffices to establish (i) when H1

and H2 are positive definite. In this case, (ii) is an immediate consequence of a variational
formula we obtain for rj(H) in Lemma 2.2 below. �

Lemma 2.2 Let H be a positive definite quadratic function of R2n. Then

(2.8)
1

2
r2
j (H) = inf

dimV=2n+2j
sup

[x,y]∗∈V \{0}

ω̄(x, y)+

H(x) +H(y)
.

Here V is for linear subspace of R4n.

Proof Recall that ±i2r−2
j are the eigenvalues of C = JB where H(x) = 1

2
Bx · x. Hence

± i
2
r2
j are the eigenvalues of C−1. If aj + ibj denotes the corresponding eigenvector, then

C−1(aj + ibj) = i
2
r2
j (aj + ibj). This means

(2.9) C−1aj = −
r2
j

2
bj, C

−1bj =
r2
j

2
aj.

This suggests looking at the 4n× 4n matrix

D =

[
0 C−1

−C−1 0

]
.

From (2.9) we readily deduce

D

[
aj
bj

]
=
r2
j

2

[
aj
bj

]
, D

[
bj
−aj

]
=
r2
j

2

[
bj
−aj

]
,

D

[
bj
aj

]
= −

r2
j

2

[
bj
aj

]
, D

[
−aj
bj

]
= −

r2
j

2

[
−aj
bj

]
.

Note that since aj + ibj 6= 0, the vectors

[
aj
bj

]
,

[
bj
−aj

]
are linearly independent. Hence ± i

2
r2
j

produces eigenvalue ± r2
j

2
of multiplicity 2 for D. We would like to apply Courant–Hilbert
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minimax principle to D, except that D is not symmetric with respect to the dot product of
R4n. However if we define an inner product

〈[x, y]∗, [x′, y′]∗〉 = Bx · x′ +By · y′,

with corresponding norm
‖[x, y]∗‖ = 2H(x) + 2H(y),

then D is 〈·, ·〉-symmetric. Indeed,〈
D

[
x
y

]
,

[
x′

y′

]〉
=

〈[
C−1y
−C−1x

]
,

[
x′

y′

]〉
= BC−1y · x′ −BC−1x · y′

= J̄x′ · y + J̄x · y′,

which is symmetric. Moreover, 〈
D

[
x
y

]
,

[
x
y

]〉
= 2ω̄(x, y).

We are now in a position to apply Lemma 2.1 to obtain (2.8) with ω̄ instead of ω+ in the
numerator. (Note that 1

2
r2
j (H) is the 2n+2j-th eigenvalue of D.) Finally we need to replace

ō with ω̄+. This is plausible because the left-hand side is positive. �

An immediate consequence of Theorem 2.2 is a linear version of Gromov’s non-squeezing
theorem. More precisely, if we define

BR = {x : |x| ≤ R}, ZR = {x : q2
1 + p2

1 ≤ R2},

then r(BR) = (R,R, . . . , R) and r(ZR) = (R,∞,∞, . . . ,∞). By Theorem 2.2(ii) if for some
T ∈ Sp(n), we have T (Br) ⊆ ZR, then r ≤ R. We now slightly improve this and give a
direct proof of it.

Proposition 2.4 Suppose that for some T ∈ Sp(n) and z0 ∈ R2n, T (Br) ⊆ z0 + ZR. Then
r ≤ R.

Proof Write z0 = (q0
1, . . . , q

0
n, p

0
1, . . . , p

0
n) and let (s1, . . . , sn, t1, . . . , tn) denote the rows of T .

By assumption
(x · s1 − q0

1)2 + (x · t1 − p0
1)2 ≤ R2

for x satisfying |x| ≤ r. Hence

(2.10) (x · s1)2 + (x · t1)2 − 2x · (q0
1s1 + p0

1t1) ≤ R2.
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On the other hand, since T ∗ is symplectic,

(2.11) ω̄(s1, t1) = ω̄(T ∗e1, T
∗f1) = ω̄(e1, f1) = −1

where {e1, . . . , en, f1, . . . , fn} denote the standard symplectic basis for R2n, i.e., ej · x = qj
and fj · x = pj for x = (q1, . . . , qn, p1, . . . , pn). From (2.11) we learn that

1 = |ω̄(s1, t1)| = |Js1 · t1| ≤ |s1||t1|.

So either |s1| ≥ 1 or |t1| ≥ 1. Both cases can be treated similarly, so let us assume that
for example |t1| ≥ 1. We then choose x = ±r t1

|t1| in (2.13). We select + or − for x so that

x · (q0
1s1 + p0

1t1) ≤ 0. This would allow us to deduce r2 ≤ R2 from (2.13), and this completes
the proof. �

Remark 2.2 Note that if we consider Z ′R = {x : q2
1 + q2

2 ≤ R2} instead, then r(Z ′R) =
(∞, . . . ,∞) and we can embed Br symplectically inside Z ′R no matter how large r is. This is
because the map T (q, p) = (εq, ε−1p) is symplectic (use ω(q, p, q′, p′) = p · q′ − q · p′ to check
this), and T (Br) consists of points (q, p) such that ε−2|q|2 + ε2|p|2 ≤ r2. �

As our next topic, we address the issue of symplectic rigidity for linear transformations.
Note that the condition | detA| = 1 for a matrix A is equivalent to the claim that the sets
E and A(E) have the same Euclidean volume. To be able to establish Eliashberg-Gromov
rigidity, we would like to have a similar criterion for symplectic maps. Since a symplectic
change of variables does not change symplectic radii, the volume must be replaced with
suitable linear capacities that are defined in terms of the symplectic radii. Though as in the
case of volume, the orientation could be reversed when a symplectic capacity is preserved.
So instead of T ∈ Sp(k), what we really have is

(2.12) |ω̄(Ta, Tb)| = |ω̄(a, b)|.

We set S ′(k) to be the set of matrices T for which (2.12) is valid for all a, b ∈ Rk. We also say
that matrix T is anti-symplectic if ω̄(Tx, Ty) = −ω̄(x, y), or equivalently T ∗J̄T = −J̄ . It is
not hard to show that T ∈ S ′(k) iff T is either symplectic or anti-symplectic (see Exercise 2.1).
On the other hand, it is straightforward to check that a linear map T is anti-symplectic iff
T ◦ τ ∈ S(k), where τ(q, p) = (p, q). From this we learn that indeed in Theorem 2.1 and
Corollary 2.2 apply to anti-symplectic transformations as well. In summary,

Proposition 2.5 (i) Let H be a positive definite quadratic function. Then there exists

T ∈ S ′(k) such that H ◦ T (x) =
∑n

1

q2
j+p2

j

r2
j

, where rj = rj(H).

(ii) Let E1 and E2 be two ellipsoids. Then T (E2) = E1 for some T ∈ S ′(k) if and only if
r(E2) = r(E1).
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We are now ready for a converse to Proposition 2.5, which will be used for the proof of
Eliashberg’s theorem in Section 6.

Theorem 2.3 Let T be an invertible 2n× 2n matrix. Then T ∈ S ′(k) iff r1(E) = r1(T (E))
for every ellipsoid E.

Proof Given a pair of vectors (a, b) with ω̄(a, b) 6= 0, let us define

Z(a, b) = {x : (x · a)2 + (x · b)2 ≤ 1},

which is a cylinder. We claim that in fact Z(a, b) is a (degenerate) ellipsoid with

(2.13) r1(Z(a, b)) = |ω̄(a, b)|−1/2, rj(Z(a, b)) =∞, for j ≥ 2.

Once we establish this, we are done: If r1(Z(a, b)) = r1(T (Z(a, b)) for every a and b with
ω̄(a, b) 6= 0, then using Z(a, b) = T

(
Z(T ∗a, T ∗b)

)
, we deduce

|ω̄(a, b)| = |ω̄(T ∗a, T ∗b)|,

whenever ω̄(a, b), ω̄(T ∗a, T ∗b) 6= 0. As a result

A := {(a, b) : |ω̄(a, b)| 6= |ω̄(T ∗a, T ∗b)|} ⊆ A′ := {(a, b) : ω̄(a, b)ω̄(T ∗a, T ∗b) = 0}.

Since the set A is open and the set A′ is the union of two linear sets of codimension 1, we
must have A = ∅, which in turn implies that T ∗ ∈ S ′(k). From this, we can readily show
that T ∈ S ′(k).

It remains to verify (2.13). First observe that if r = |ω̄(a, b)|−1/2 and (a1, b1) = r(a, b),
then |ω̄(a1, b1)| = 1, and

Z(a, b) =
{
x : H(x) :=

[
(x · a′)2 + (x · b′)2

]
/r2 ≤ 1

}
.

Without loss of generality, let us assume that in fact ω̄(a1, b1) = −1. We then build a
(symplectic) basis {a1, . . . , an, b1, . . . , bn} such that

ω̄(bj, ai) = δi,j, ω̄(ai, aj) = ω̄(bi, bj) = 0,

for all i and j. Let us write {e1, . . . , en, f1, . . . , fn} for the standard basis, in other words,
ei and fi satisfy ei · x = qi and fi · x = pi. We then choose a map T̂ so that T̂ ∗ai = ei and
T̂ ∗bi = fi. We have

H ◦ T̂ (x) =
[
(T̂ x · a1)2 + (T̂ x · b1)2

]
/r2 =

[
(x · e1)2 + (x · f1)2

]
/r2 = (q2

1 + p2
1)/r2.

From this we deduce (2.13) by definition. �
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As we observed in Remark 2.1, sometimes it is beneficiary to identify R2n with Cn and
use complex number. More precisely, we may write zj = qj + ipj, so that if a = (z1, . . . , zn)
and b = (z′1, . . . , z

′
n) are in Cn, then J̄a = (−iz1, . . . ,−izn), and

a · b = Re

n∑
j=1

zj z̄
′
j, ω̄(a, b) = Im

n∑
j=1

zj z̄
′
j.

More generally, given a symplectic vector space (V, ω), we may try to express ω as

(2.14) ω(a, b) = g(Ja, b),

where g is an inner product on V and J : V → V is a linear map satisfying J2 = −I. When
(2.14) is true, we say that the pair (g, J) is compatible with ω. Let us write I(ω) for the
space of compatible pairs (g, J). We also define

G(ω) := {g : (g, J) ∈ I(ω), for some J} .

Note that if (g, J) ∈ I(ω), then

g(Ja, Jb) = ω(a, Jb) = −ω(Jb, a) = g(b, a) = g(a, b),

which means that J∗J = I, where J∗ is the g-adjoint or transpose of J . From this and J2 =
−I, we learn that for every (g, J) ∈ I(ω), we have J∗ = −J . Define T ∗(g)(a, b) = g(Ta, Tb)
and T ∗ω(a, b) = ω(Ta, Tb).

Proposition 2.6 Let T : V → V be an invertible linear map. Then T ∗ω = ω′ iff T ∗(G(ω)) ⊆
G(ω′).

Proof Set T̂ (J) = T−1JT . If (g, J) ∈ I(ω), then

(T ∗ω)(a, b) = ω(Ta, Tb) = g(JTa, T b) = ω(T T̂ (J)a, T b) = (T ∗ω)(T̂ (J)a, b).

From this we deduce that if (g, J) ∈ I(ω), then (T ∗g, T̂ (J)) ∈ I(T ∗ω). As a result,
T ∗(G(ω)) ⊆ G(T ∗ω). Similarly, (T−1)∗G(T ∗ω) ⊆ G(ω). Hence T ∗(G(ω)) = G(T ∗ω). From
this we learn that we only need to show that if G(α) ⊆ G(β), then α = β. �

Example 2.2 Identifying a metric g(a, b) = Ga · b with the matrix G > 0, one can readily
show

(2.15) G(ω̄) = {G : G > 0, G ∈ S(2n)}.

Indeed if g(a, b) = Ga · b and (g, J) ∈ I(ω), then J̄ = GJ so that G = −J̄J. This implies

GJ̄G = J̄JJ̄ J̄J = J̄ ,
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which means that G is symplectic. Conversely, if G > 0 and G ∈ S(2n), then set J = G−1J̄
and observe that since G−1 is also symplectic, then J2 = G−1J̄G−1J̄ = J̄ J̄ = −I. �

When g ∈ G(ω), we know how to calculate the area of the parallelogram associated with
two vectors a and b, namely

Ag(a, b) =
(
‖a‖2

g‖b‖2
g − g(a, b)2

) 1
2 ,

where ‖a‖g = g(a, a)1/2. Of course ω(a, b) offers the symplectic area of the same parallelo-
gram. In the next proposition, we compare these two areas.

Proposition 2.7 For every g ∈ G(ω), we have

(2.16) ω(a, b) ≤ Ag(a, b) ≤
1

2

(
‖a‖2

g + ‖b‖2
g

)
.

Moreover we have equality iff b = Ja.

Proof The second inequality is obvious and the first inequality is also obvious when g(a, b) =
0, because

ω(a, b)2 = g(Ja, b)2 ≤ g(Ja, Jb)g(b, b) = ‖a‖2
g‖b‖2

g.

Given arbitrary a and b, with a 6= 0, set t = −g(a, b)/g(a, a) so that g(a, b′) = 0, for
b′ = ta+ b. We certainly have

ω(a, b)2 = ω(a, b′)2 ≤ g(Ja, Ja)g(b′, b′) = g(a, a)g(b′, b′) = g(a, a)g(b′, b)

= g(a, a)g(b, b) + tg(a, a)g(a, b) = Ag(a, b),

with equality iff Ja = θb′ for some θ ≥ 0. However, if we require 2ω(a, b)2 = ‖a‖2
g + ‖b‖2

g,
then g(a, b) = 0, g(a, a) = g(b, b), and ω(a, b)2 = g(a, a)2. As a result,

‖Ja− b‖2
g = ‖a‖2

g + ‖b‖2
g − 2g(Ja, b) = 2‖a‖2

g − 2ω(a, b) = 0,

as desired. �

Exercise 2.1

(i) Let V be a vector space with dimV = 2n. Then a 2-form ω : V × V → R is non-
degenerate if and only if ωn = ω ∧ · · · ∧ ω︸ ︷︷ ︸

n times

6= 0.

(ii) Use part (i) to deduce that if T ∈ Sp(n), then detT = 1.

(iii) Recall that an invertible matrix T can be written as T = PO with P > 0 symmetric
and O orthogonal, and that this decomposition is unique (polar decomposition). Show
that if T ∈ Sp(n), then P and O ∈ Sp(n).
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(iv) Show that if T ∈ Sp(n) ∩ O(2n), then T =

[
X −Y
Y X

]
with X, Y two n × n matrices

such that X + iY is a unitary matrix.

(v) Let V be a vector space with dimV = 2n + 1. Assume β is an antisymmetric 2-form
on V with

dim{v ∈ V : β(v, a) = 0 for all a ∈ V ) = 1.

Then there exists a basis {e1, . . . , en, f1, . . . , fn, ā} such that β(ei, ej) = β(fi, fj) = 0,
β(fj, ei) = δij, and β(ā, fj) = β(ā, ej) = 0.

(vi) If T ∈ Sp(n) and A ∈ Ham(n), then T−1AT ∈ Ham(n).

(vii) An invertible T maps the flows of dx
dt

= Ax to the flows of dx
dt

= Bx iff B = TAT−1.

(viii) If C1, C2 ∈ Ham(n) and r ∈ R, then C1+C2, [C1, C2] = C1C2−C2C1, C
t
1, rC1 ∈ Ham(n).

(ix) If T1, T2 ∈ Sp(n), then T−1
1 , T ∗1 , T1T2 ∈ Sp(n).

(x) Show that if (2.13) is true for all a and b, then T is either symplectic or ani-symplectic.

(xi) If Z(t0, t) denotes the fundamental solution of ẋ = JB(t)x with B : [t0,∞)→ S(2n) a
C1-function, then Z(t0, t) ∈ Sp(n) for every t ≥ t0.

(xii) If etC ∈ Sp(n) for every t, then C ∈ Ham(n).

(xiii) If C ∈ Ham(n), and pC(λ) = det(λI − C), then pC(λ) = pC(−λ).

(xiv) If T ∈ Sp(n), then pT (λ−1) = λ−2npT (λ).

(xv) Let T be an invertible matrix and assume that n ≥ 2. Show that if r2(T (E)) = r2(E)
for every ellipsoid E, then T ∈ S ′(2n).

�
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3 Symplectic Manifolds and Darboux’s Theorem

Before discussing symplectic manifolds, let us review some useful facts about our basic
example (R2n, ω̄) with ω̄(a, b) = J̄a · b. We write Sp(R2n) for the space of differentiable
functions ϕ such that ϕ∗ω̄ = ω. This means

ϕ∗ω̄(a, b) = ω̄(ϕ′(x)a, ϕ′(x)b) = ω̄(a, b),

for every a, b, x ∈ R2n. Here ϕ′(x) denotes the derivative of ϕ. A function ϕ ∈ Sp(R2n)
is called symplectic. Note that ϕ ∈ Sp(R2n) iff ϕ′(x) ∈ Sp(2n) for every x. Hence for a
symplectic transformation ϕ, we have

ϕ′(x)∗J̄ϕ′(x) = J̄ .

Evidently ω̄ =
∑n

i=1 dpi ∧ dqi = dλ̄ where λ̄ =
∑n

1 pidqi = p · dq. Let us define

(3.1) A(γ) =

∫
γ

λ̄.

Clearly ϕ ∈ Sp(R2n) iff d(ϕ∗λ̄− λ̄) = 0. Hence ϕ ∈ Sp(R2n) is equivalent to saying

(3.2) A(ϕ ◦ γ) = A(γ)

for every closed curve γ. It is worth mentioning that if γ is parametrized by θ 7→ x(θ),
θ ∈ [0, T ], then

(3.3) A(γ) =

∫ T

0

p · q̇dθ =
1

2

∫ 1

0

(p · q̇ − q · ṗ)dθ =
1

2

∫ 1

0

(J̄x · ẋ)dθ.

Given a scalar-valued (0-form) function H, we may use non-degeneracy of ω̄ to define a
vector-field XH such that

ω̄(XH(x), a) = −dH(x)a = −∇H(x) · a,

which means that XH = J∇H. We write φt = φHt for the corresponding flow:

(3.4)

{
d
dt
φt(x) = XH(φt(x)),

φ0(x) = x.

Our interest in symplectic transformation stems from two important facts. Firstly, φt ∈
Sp(R2n) if φt is a Hamiltonian flow. We have seen this in Section 1 and will be proved later
in this section for general symplectic manifolds. Secondly a symplectic change of coordinates
preserve Hamiltonian structure (see Proposition 3.1 below). More precisely, if ϕ ∈ Sp(R2n),
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and φt is the flow of XH , then ψt = ϕ−1 ◦ φt ◦ ϕ is the flow of a Hamiltonian system. To
guess what the Hamiltonian function of ψt is, observe

d

dt
ψt

∣∣∣∣
t=0

= (ϕ−1)′ ◦ ϕ XH ◦ ϕ = (ϕ′)−1 J̄∇H ◦ ϕ

= −J̄(ϕ′)∗ J̄ J̄∇H ◦ ϕ = J̄(ϕ′)∗ ∇H ◦ ϕ = J̄∇(H ◦ ϕ).

A pair (M,ω) is called a symplectic manifold if M is an even dimensional manifold and ω
is a closed non-degenerate 2-form on M . This implies that for each x ∈M , the pair (TxM,ωx)
is a symplectic vector space. Also, by Exercise 2.1(i) we know that if dim(M) = 2n, then
the form ωn is a volume form. Hence M is an orientable manifold. In fact if M is a compact
symplectic manifold without boundary, then ω is never exact. This is because if ω = dλ,
then Ω := ωn = d(λ ∧ ωn−1). But by Stokes’ theorem

∫
M

Ω =
∫
M
d(λ ∧ ωn−1) = 0, which

contradicts the non-degeneracy of Ω. Note however that (R2n, ω̄) is an example of a non-
compact symplectic manifold with ω̄ = dλ̄.

Example 3.1 (i) Any orientable 2-dimensional manifold is symplectic where ω is chosen to
be any volume form.

(ii) The sphere S2n with n > 1 is not symplectic because any closed 2-form is exact, hence
degenerate.

(iii) The classical example (R2n, ω̄) has a natural generalization that is relavant for models in
classical mechanics: Every cotangent bundle T ∗M can be equipped with a symplectic ω = dλ
where λ is a standard 1-form that can be defined in two ways; using local charts and pull-
backing λ̄ to λ, or giving a chart-free description. We start with the former. Let us assume
that M is an n-dimensional C2 manifold and choose an atlasA of charts (U, h) of M such that
U is an open subset of M and h : U → h(U) := V ⊆ Rn is a diffeomorphism. This induces
a C1 transformation dh : TU → TV = V × Rn. We next define a natural transformation
h̄ : T ∗U → T ∗V = V × Rn. To construct h̄, take the standard basis {e1, . . . , en} of Rn

and define êj(q) = (dφ)q(ej), where φ = h−1. (We may define TqM as the equivalence
classes of curves γ : (−δ, δ) → M with γ(0) = q, and two such curves γ1 and γ2 are
equivalent if (h ◦ γ1)′(0) = (h ◦ γ2)′(0). We may then define êj(q) as the equivalent class of
γj(θ) = h−1(h(q)+θej). ) Certainly {ê1(q), . . . , ên(q)} defines a basis for TqM . We now define

a basis for T ∗q L by taking dual vectors e∗1, . . . , e
∗
n that are defined e∗i (q)

(∑n
j=1 vj êj(q)

)
= vj.

We now define h̄ by

h̄

(
q,

n∑
j=1

pje
∗
j(q)

)
= (h(q), (p1, . . . , pn)).

We finally define λ as the unique 1-form such that for each chart (U, h), the restriction of
λ to T ∗U is given by λ = h̄∗λ̄. For an alternative chart-free description, observe that if
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π̂ : T ∗Rn → Rn is the projection π̂(q, p) = q, then

dπ̂ : T (T ∗Rn)→ TRn = Rn × Rn

is simply given by
dπ̂(q,p)(α, β) = α.

Hence we may write λ̄(q,p)(α, β) = p · α = p · (dπ̂)(q,p)(α, β). Going back to M , let us also
define π : T ∗M → M to be the projection onto the base point, i.e., π(q, p) = q with q ∈ M
and p ∈ T ∗qM . Since the following diagram commutes

T ∗U
π−−−→ U

h̄

y yh
R2n −−−→

π̂
Rn

we also have that their derivatives

T (T ∗U)
dπ−−−→ TU

dh̄

y ydh
TR2n −−−→

dπ̂
R2n

commute. Hence we also have

λ(q,p)(a) = p
(
dπ(q,p)(a)

)
,

which gives the desired chart-free description of λ. �

A differentiable map f : (M1, ω
1)→ (M2, ω

2) between two symplectic manifolds is called
symplectic if f ∗ω2 = ω1. This means

(3.5) ω2
f(x)(df(x)a, df(x)b) = ω1

x(a, b)

for x ∈ M1 and a, b ∈ TxM1. We write Sp(M1,M2) for the space of symplectic transforma-
tions. When M1 = M2 = M and ω1 = ω2 = ω, we simply write Sp(M) for Sp(M1,M2).
We note that if f ∈ Sp(M1,M2), then df(x) is injective by (3.5) and non-degeneracy of ω1

x.
Hence, if such f exists, then dimM1 ≤ dimM2.

Let (M,ω) be a symplectic manifold and assume that X is sufficiently nice vector field
for which the ODE ẋ = X(x, t) is well defined. The flow of this vector field is denoted by
φt = φXt . We wish to find conditions on X to guarantee that φ∗tω = ω. To prepare for this
let us take an arbitrary `-form α and evolve it with the flow; set α(t) = φ∗tα. We would like
to derive an evolution equation for α(t). Let’s examine some examples.

Example 3.2 Assume that (M,ω) = (R2n, ω̄).
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(i) If α = f is a 0-form, then α(t) is a function u that is given by u(x, t) = f(φt(x)). By
differentiating u at t = 0 and using the group property of the flow (see the proof of
Proposition 3.1 below), we can readily show

ut = X · ux.

(ii) If α = m(x) dx1 . . . dxk, with k = 2n, then α(t) = m(φt(x)) det(φ′t(x)) dx1 . . . dxk. In
this case, differentiating in t yields,

ρt = ρx ·X + ρ divX = div(ρX),

because for small t, we have det(φ′t(x)) = det(I + tX ′(x) + o(t)) = 1 + tdivX + o(t).

(iii) If ω = F · dx is a 1-form, then

α(t) = φ∗tα = F (φt(x)) · φ′t(x)dx = φ′t(x)∗F (φt(x)) · dx.

Hence, if we set u(x, t) = φ′t(x)∗F (φt(x)), then

(3.6) ut(x, t) = Xx(x, t)
∗u(x, t) + ux(x, t)X(x, t).

If u = (u1, . . . , uk) and X = (X1, . . . , Xk), then the i-th component of the right-hand
side of (3.6) equals∑

j

(
Xj
xi
uj + uixjX

j
)

=

(∑
j

Xjuj

)
xi

+
∑
j

(uixj − u
j
xi

)Xj.

As a result,

(3.7) ut = (X · u)x + C(u)X.
�

As Example 3.2(iii) indicates, a simple manipulation of the right-hand side of (3.6) leads
to the compact expression of the right-hand side of (3.7), that may be recognized as

[(X · u)x + C(u)X] · dx = d (iXα(t)) + iXdα(t).

More generally we have the following useful result of Cartan:

Proposition 3.1 (i) Let X be a vector field with flow φt and let α be a `-form. Then

(3.8)
d

dt
φ∗tα = LXφ∗tα = φ∗tLXα

with LX = iX ◦ d+ d ◦ iX .
(ii) Let X(·, t) be a possibly time dependent vector field and denote is flow by φs,t. If α(t) =

φtα for φt = φ0,t, then
d

dt
α(t) = LX(·,t)α(t).
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Proof We only establish Part (i) as the proof of (ii) is similar. Let us define

Lβ = lim
h→0

1

h
(φ∗hβ − β)

whenever the limit exists. Since

(φ∗t+h − φ∗t )α = φ∗t (φ
∗
hα− α) = φ∗h(φ

∗
tα)− φ∗tα,

it suffices to show that L = LX . Let us study some properties of L. From φ∗t (α ∧ β) =
φ∗tα ∧ φ∗tβ, we learn

φ∗t (α ∧ β)− α ∧ β = (φ∗tα− α) ∧ φ∗tβ + α ∧ (φ∗tβ − β).

From this we deduce

(3.9) L(α ∧ β) = α ∧ Lβ + Lα ∧ β.

From φ∗t ◦ d = d ◦ φ∗t , we deduce

(3.10) L ◦ d = d ◦ L.

We can readily show that LX satisfy (3.9) and (3.10) as well. Since locally every form can
be built from 0-th forms using the operations ∧ and d, we only need to check that L = LX
on 0-forms. That is, if f : M → R, then Lf = iX ◦ df = df(X). This is trivially verified
because φt(x) = x+ tX(x) + o(t). �

Armed with (3.8), we can readily find necessary and sufficient conditions on a vector field
X such that the flow of X preserves ω. In view of Proposition 3.1,(

φXt
)∗
ω = ω for all t iff LXω = d (iXω) = 0.

This leads to two definitions:

Definition 3.1

• We call a vector field X symplectic iff iXω is exact.

• Given a differentiable H : M → R, we can find a unique vector field X = XH = Xω
H

such that
(iXHω) = ω(XH , ·) = −dH.

(Note that the non-degeneracy of ω guarantees the existence XH .) The vector field
XH is called Hamiltonian and its corresponding flow is denoted by φHt .
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Example 3.2 If ωx(v1, v2) = C(x)v1 · v2 is a symplectic form in R2n, then XH = −C−1∇H.
�

As in the case of ω̄, a change of coordinates turn a Hamiltonian flow to another Hamil-
tonian flow as our next Proposition demonstrates.

Proposition 3.2 Let (M,ω) be a symplectic manifold. If ϕ : N → M is a diffeomorphism
and H : M → R is a smooth Hamiltonian, then Xϕ∗ω

H◦ϕ = (dϕ)−1Xω
H ◦ ϕ. In other words,

ϕ∗Xω
H = Xϕ∗ω

H◦ϕ, and

ϕ−1 ◦ φX
ω
H

t ◦ ϕ = φ
ϕ∗Xω

H
t = φ

Xϕ∗ω
H◦ϕ

t ,

where φXt denotes the flow of the vector field X.

Proof By Lemma 10.2 of Appendix A, ψt is the flow of ϕ∗Xω
H . Furthermore, for X = Xω

H

and X̂ = (dϕ)−1X ◦ ϕ,

(ϕ∗ω)x(X̂(x), v) = ωϕ(x)

(
(dϕ)xX̂(x), (dϕ)xv

)
= ωϕ(x) (X(ϕ(x)), (dϕ)xv)

= −(dH)ϕ(x) ((dϕ)xv) = − (ϕ∗(dH))x (v) = −d(H ◦ ϕ)x(v),

for every v. Hence X̂ = Xϕ∗ω
H◦ϕ, as desired. �

We now turn to the question of the equivalence of two symplectic manifolds or the
embedding of one symplectic manifold inside another symplectic manifold. As a warm-up,
let us discuss the analogous question for volume forms.

Theorem 3.1 (Moser) Let M be a connected oriented compact manifold with no boundary.
Assume that α and β are two volume forms. Then there exists a diffeomorphism ϕ such that
ϕ∗α = β iff

∫
M
α =

∫
M
β.

Proof Evidently if for some diffeomorphism ϕ, we have ϕ∗α = β, then∫
M

β =

∫
M

ϕ∗α =

∫
ϕ(M)

α =

∫
M

α.

As for the converse, assume that c =
∫
M
α =

∫
M
β. Without loss of generality, we may

assume that c = 1, and regard α and β as two mass (or probability) distributions on M .
We may interpret ϕ as a plan of transportation; a unit mass at x is transported to φ(x)
so that after this transportation is performed for all points, the mass distribution changes
from α to β. With this interpretation in mind, we may design a route for our transportation
so that this change of transportation is carried out in one unit of time. Equivalently, we
may search for a (possibly time dependent) vector field X such that if φt denotes its flow,
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then ϕ = φ1. Note that if we set α(t) = φ∗tα, then α(0) = α and α(1) = β. This scheme
of finding ϕ has a chance to work only if there exists a path of volume forms connecting
α to β. So for achieving our goal, let us first such a path. We now argue that in fact
the path α(t) = tβ + (1 − t)α would do the job. Since α and β are volume forms, locally
α = a dx1∧· · ·∧dxk and β = b dx1 · · ·∧ . . . dxk with a and b non-zero and continuous. Since∫
M
α =

∫
M
β, the functions a and b must have the same sign. Hence tβ + (1 − t)α is never

zero, and as a result, α(t) is never degenerate. We next search for a vector field X(·, t) such
that its flow φt satisfies φ∗tα = tβ + (1 − t)α. Differentiating both sides with respect to t
yields

β − α =
d

dt
α(t) = LXα(t) = d(iX(·,t)α(t)).

by Proposition 3.1. But
∫
M

(β − α) = 0 implies that β − α = dγ for some k − 1-form γ (See
Lemma A1 of the Appendix). The existence of X(·, t) with iX(·,t)α(t) = γ follows from the
non-degeneracy of α(t). �

Remark 3.1. (i) As a consequence of Theorem 3.1, if M and N are two oriented compact
closed manifolds with volume forms α and η respectively, then they there exists a diffeomor-
phism φ : N →M with φ∗α = η iff M and N are diffeomorphic and

∫
M
α =

∫
N
η. Indeed if

ψ : M → N is a diffeomorphism, then α and β = ψ∗η are two volume forms on M for which
Theorem 3.1 applies: there exists a diffeomorphism ϕ : M → M , such that φ∗α = ψ∗η. We
then set φ = φ ◦ ψ−1 to deduce that φ∗α = η.

(ii) If M = Tk and α = α̂(x) dx1 ∧ · · · ∧ dxk, β = β̂(x) dx1 ∧ · · · ∧ dxk, then ϕ∗α = β means
that α̂(ϕ(x)) detϕ′(x) = β̂(x). If ϕ = ∇w for some w : Tk → R, then α̂(∇w) det(D2w) = β̂.
This is the celebrated Monge–Ampère’s equation. However the function ϕ in Moser’s proof
is not a gradient. In fact the vector field X in the proof of Theorem 3.1 can be constructed
by the following recipe: First find a vector field Y such that div Y = β̂ − α̂, so that if
γ =

∑k
1(−1)j−1Y jdx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxk, then dγ = β − α. Such a vector field Y exists

because
∫

(β̂ − α̂)dx = 0. We then set

X(x, t) = − Y (x)

tβ̂(x) + (1− t)α̂(x)
.

In fact for the existence of Y , we may try a gradient Y = ∇u so that the scalar-valued
function u satisfies ∆u = β̂− α̂. Again this equation has a solution because

∫
(β̂− α̂)dx = 0.

(iii) There has been new developments for Moser’s theorem. In fact the transformation ϕ
in Theorem 3.1 is by no means unique. However, one may wonder whether or not a “nice”
ϕ exists. More precisely, let (M, g) be a Riemannian manifold. Assume that M is compact,
connected with no boundary. Using g we can talk about a Riemannian distance. More
precisely, let d(x, y) be the length of the geodesic distance between two points x and y.

29



We have a natural volume form Ω that is expressed by (det[gij])
1/2dx1 ∧ · · · ∧ dxk in local

coordinates. Consider two forms α = aΩ and β = bΩ with a, b > 0 and
∫
M
α =

∫
M
β = 1.

Set
S(α, β) = {f : M →M with ϕ∗α = β}.

By Moser’s theorem, this set is non-empty. Monge’s problem searches for a function f ∈
S(α, β) which minimizes the cost function

I(f) =

∫
M

c(x, f(x))β,

with c(x, y) a suitable function of M × M . If we choose c(x, y) = 1
2
(d(x, y))2, then the

minimizer ϕ is of the form ϕ = ∇w for a convex function w. This was shown by Brenier
(1987, 1991) in the Euclidean case and by McCann in (2001) in the case of a Riemannian
manifold. Brenier observed that such a minimizer can be used to find a non-linear polar
decomposition. To explain this, let F : U → Rk be an invertible integrable function with
α = (F−1)∗β where β = dx1 ∧ · · · ∧ dxk and α is a volume form. According to Brenier’s
theorem, there exists a convex function ψ such that (∇ψ)∗α = β. If we write ρ = (∇ψ)−1◦F ,
then ρ∗β = F ∗(∇ψ)−1∗β = F ∗α = β. As a consequence, any function F can be decomposed
as F = ∇ψ◦ρ with ψ convex and ρ volume preserving. It turns out that polar decomposition
implies the Hodge decomposition. To see this assume that F ε(x) = x + εf(x) with ε small.
We then expect to have ψε(x) = 1

2
|x|2 + εϕ(x) + o(ε) and ρε(x) = x+ εm(x) + o(ε). Hence

x+ εf(x) = x+ ε∇ϕ(x+ εm(x)) + εm(x) + o(ε)

= x+ ε(∇ϕ(x) +m(x)) + o(ε).(3.11)

On the other hand, since ρε is volume preserving,

1 = det(id+ εm′) = 1 + ε div(m) + o(ε).

From this and (3.11) we learn

f(x) = ∇ϕ(x) +m(x) with div m = 0.

(iv) Theorem 3.1 can be used to show that the total volume is the only invariant of volume
preserving diffeomorphisms. More precisely, if

V(M) = {α : α is a volume form on M}

with M compact and closed, and
c : V(M)→ R
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is a function such that c(α) = c(β) whenever ϕ∗α = β for some diffeomorphism ϕ, then c
must be a function of

∫
M
α. �

Given a manifold M with two symplectic forms α and β, we may wonder whether or
not for some diffeomorphism ϕ, we have ϕ∗α = β. By Theorem 3.1, this would be the
case if dim M = 2 and

∫
M
α =

∫
M
β. However, when dim M = 2n ≥ 4, we may have

non-isomorphic symplectic forms α and β with
∫
M
αn =

∫
M
βn. To see how the proof of

Theorem 3.1 breaks down, we note that we may fail to find a path of symplectic forms α(t)
that connects α to β. Even if such a path exists, the equation LXα(t) = d iXα(t) = dα(t)/dt
requires that dα(t)/dt to be exact for t ∈ [0, 1]. Though both of these issues can be handled
locally as the next theorem demonstrate.

Theorem 3.2 (Darboux) Let (M,ω) be a symplectic manifold of dimension 2n and take
x0 ∈M . Then there exists an open set U ⊆ R2n with 0 ∈ U and a diffeomorphism ϕ : U →M
such that ϕ(0) = x0 and ϕ∗ω = ω̄.

Proof Since M is locally diffeomorphic to an open subset of R2n, we may assume that
M = U0 ⊆ R2n and x0 = 0 ∈ U . In view of Proposition 2.1, we may also assume that ω0 = ω̄.
Our goal is finding an open set U ⊆ U0 with 0 ∈ U , and a diffeomorphism ϕ : U → U with
ϕ(0) = 0 and ϕ∗ω = ω̄ = ω0. Indeed if ωx(v1, v2) = C(x)v1 · v2 and ω(t) = ω̄ + t(ω − ω̄), for
t ∈ [0, 1], then ω(t)x(v1, v2) = C(x, t)v1 · v2, with C(x, t) = J̄ + t(C(x) − J̄) and C(0) = J̄ .
Clearly, we can find an open neighborhood U = Br(0) of 0 such that for x ∈ U we have that
‖C(x)−J̄‖ < ‖J̄‖ = 1, which in turn guarantees that C(x, t) is invertible for (x, t) ∈ U×[0, 1].
This means that in U , the form ω(t) is symplectic for all t ∈ [0, 1]. We then search for a
time-dependent vector field X(·, t) such that its flow φt satisfies

φ∗tω = ω(t) for t ∈ [0, 1].

From differentiating both sides with respect to t and using Proposition 3.1, we learn

(3.12) ω − ω̄ = LX(·,t)ω(t) = d iX(·,t)ω(t).

In the ball U = Br(0), we can express ω − ω̄ = dα for a 1-form α such that α0 = 0. Hence
(3.12) would follow if we can find a time-dependent vector field X such that iX(·,t)ω(t) = α.
By nondegeneracy of ω(t), such a vector field X exists with X(0, t) = 0 for every t ∈ [0, 1].
We are done. �

Remark 3.2 If we write ω = u · dx and ω̄ = ū · dx near the origin, then X constructed in
the proof has the form

X(x, t) = C
(
tu(x) + (1− t)ū(x)

)−1
(u(x)− ū(x)) = C(x, t)−1(u(x)− ū(x)).
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As an immediate consequence of Darboux’s theorem we learn that any symplectic mani-
fold M of dimension 2n has a an atlas consisting of pairs {(Uj, hj} with hj : Uj → R2n, such
that

hi ◦ h−1
j : hj(Ui ∩ Uj)→ hi(Ui ∩ Uj)

is symplectic for every i and j. The family {(Uj, hj)} is an example of a symplectic atlas
that always exists by Darboux’s theorem.

Exercise 3.1 (i) Show that LX = d ◦ iX + iX ◦ d satisfy

LX ◦ d = d ◦ LX , LX(α ∧ β) = (LXα) ∧ β + α ∧ (LXβ) .

(ii) Let (M,ω) be a 2n-dimensional symplectic manifold. Assume that M is compact with
no boundary. Then for every j ∈ {1, . . . , n}, there exists a closed 2j-form which is not exact.

(iii) Let (M1, ω
1) and (M2, ω

2) be two symplectic manifolds. Define (M1×M2, ω
1×ω2) with

(ω1 × ω2)(x,y)((a1, a2), (b1, b2)) = ω1
x(a1, b1) + ω2

y(a2, b2).

Show that (M1 ×M2, ω
1 × ω2) is symplectic.

(iv) Let (M,ω) be a symplectic manifold. Show that if ϕ∗ω = fω for some diffeomorphism
ϕ : M →M , and C1 scalar function f , then either dim M = 2 or f is a constant function.

(v) Use polar coordinates in R2n to write qi = ri cos θi, pi = ri sin θi, and let ei (respectively
fi) denote the vector for which the qi-th coordinate (respectively pi-th coordinate) is 1 and
any other coordinate is 0. Set

ei(θi) = (cos θi)ei + (sin θi)fi, fi(θi) = −(sin θi)ei + (cos θi)fi.

Given a vector field u, we may write

u =
n∑
i=1

(
aiei(θi) + bifi(θi)

)
.

The form α = u · dx can be written as

α =
n∑
i=1

(
aidri + rib

idθi
)

=:
n∑
i=1

(
aidri +Bidθi

)
.

Assume that all ais and bis depend on r = (r1, . . . , rn) only. What are the the necessary and
sufficient conditions on a and B in order for ω = dα to be symplectic.
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(vi) Let U1 and U2 ⊂ Br be two planar open sets with smooth boundaries that are diffeomor-
phic to a disc. Show that if area(U1) = U2, then there is an area preserving diffeomorphism
ψ : R2 → R2 such that ψ(U1) = U2 and ψ(x) = x for x /∈ Br. Here Br = {x : |x| < r}.
Hint: Construct ψ from three diffeomrphisms ψ1, ψ2 and ψ3 with the following properties:

• ψ1 : R2 → R2 with ψ1(x) = x, for x /∈ Br, ψ1(U1) = U2, and ψ1 is area-preserving on a
small neigberhood of ∂U1.

• ψ2 : Ū1 → Ū2 is area preserving and ψ2(x) = ψ1(x) for x near ∂U1.

• ψ3 : Br \ Ū1 → Br \ Ū2 is area-preserving and ψ3(x) = ψ1(x) for x near ∂U1 ∪ ∂Br.
�
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4 Contact Manifolds and Weinstein Conjecture

In this section we will give two motivations for studying contact manifolds. As our first
motivation we observe that we can construct exotic symplectic forms on R4 from certain
contact forms in R3. Our second motivation is the Weinstein’s conjecture that predicts every
compact nonsingular contact level set of a Hamiltonian function carries at least one periodic
orbit of the corresponding Hamiltonian vector field.

We first give a simple recipe for constructing a symplectic form on M̂ = M × R from
certain 1-forms on a manifold M : Given a 1-form α on M , define α̂(x,s)(v, τ) = esαx(v) for
every x ∈ M , v ∈ TxM , and s, τ ∈ R. There is nothing special about es and our approach
is applicable if we replace es with a strictly increasing or decreasing C1 function of s. The
question is whether or not ω̂ = dα̂ is symplectic.

Proposition 4.1 Let M be any manifold of odd dimension and α any 1-form on M . Then
the form dα̂ is symplectic iff `x(α) ∩ ξx(α) = {0} for every x ∈M , where

`x = `x(α) = {v ∈ TxM : dαx(v, w) = 0 for every w ∈ TxM} ,
ξx = ξx(α) = kerαx = {v ∈ TxM : αx(v) = 0} .

Proof We certainly have dα̂ = es
(
dα− α ∧ ds

)
. As a result,

(dα̂)(x,s)

(
(v, τ), (w, τ ′)

)
= es

(
(dα)x(v, w)− αx(v)τ ′ + αx(w)τ

)
.

From this we can readily show that if v ∈ `x ∩ ξx, then

(dα̂)(x,s)

(
(v, 0), (w, τ ′)

)
= 0,

for every (w, τ ′) ∈ TxM × R.
Conversely, suppose that `x(α) ∩ ξx(α) = {0}, and that for some (v, τ) ∈ TxM × R, we

have

(4.1) (dα)x(v, w)− αx(v)τ ′ + αx(w)τ = 0,

for every (w, τ ′) ∈ TxM × R. We wish to show that (v, τ) = 0. To see this, first vary τ ′ in
(4.1), to deduce that αx(v) = 0, or v ∈ ξx. Hence we now have

(4.2) (dα)x(v, w) + αx(w)τ = 0,

for every w ∈ TxM . If τ = 0, then (4.2) means that v ∈ `x. As a result, v ∈ `x ∩ ξx = {0}
and we are done. On the other hand, if τ 6= 0, choose any non-zero w ∈ `x in (4.2) to deduce
that αx(w) = 0, or w ∈ ξx, which contradicts our assumption `x∩ ξx = {0}. (Note that since
the dimension of M is odd, `x 6= {0}.) This completes the proof. �
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Note that since dimM = 2n − 1 is odd, the dimension of `x is at least 1. Hence the
condition `x ∩ ξx = {0} implies that dim `x = 1 and dim ξx = 2n− 2. Equivalently,

(4.3) TxM = `x ⊕ ξx,

for every x ∈M .

Definition 4.1 The pair (M,α) of a manifold M and 1-form α is called a contact manifold
if `x(α) ∩ ξx(α) = {0} for every x ∈ M . The Reeb vector field R = Rα is the unique R ∈ `x
such that α(R) = 1. The R-projection onto ξ is denoted by π = πα; πx(v) = v− αx(v)R(x).

�
One of the main interest in contact manifold is the following conjecture:

Weinstein Conjecture The Reeb vector field of a closed contact manifold has a closed
(periodic) orbit. �

We next discuss the analog of Hamiltonian vector fields for contact manifolds.

Proposition 4.2 Let (M,α) be a contact manifold, and let H : M → R be a C1 function.
Set Ĥ(x, s) = esH(x). If Xdα̂

Ĥ
= (Z, V ), then the vector field Z and the function V : M → R

depend on x and are uniquely determined by the equations

(4.4) iZdα = dH(Rα)α− dH, α(Z) = H, V = −dH(Rα).

Moreover, LZα = −V α.

Proof By definition

i(Z,V )dα̂ = es (iZdα− α(Z) ds+ V α) = −es (H ds+ dH) .

This implies that α(Z) = H and iZdα+V α = −dH. By evaluating both sides at Rα we learn
that V = −dH(Rα), completing the proof of (4.4). The vector field Z is uniquely determined
by the first two equations of (4.4) because the restriction of dα to ξ is symplectic, and π(Z)
satisfies

iπ(Z)dα = iZdα = dH(Rα)α− dH := ν,

with ν(R) = 0. Finally,

LZα = iZdα + d
(
α(Z)

)
= iZdα + dH = dH(Rα)α = −V α,

by (4.4). �

Definition 4.2 Given a contact manifold (M,α), we say that a vector field Z is an α-
contact, if LZα+V α = 0, for some function V : M → R. Moreover, given a C1 Hamiltonian
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function H, the unique α-contact vector field Z and scalar-valued function V satisfying(4.4)
are denoted by ZH = Zα

H and V α
H = VH respectively. �

Remark 4.1 (i) Note that if the flow of an α-contact vector filed Z is denoted by φt, then

d

dt
φ∗tα = φ∗tLZα = −φ∗t (V α) = −(V ◦ φt)φ∗tα,

which implies (
φ∗tα

)
x

= e−
∫ t
0 φθ(x)dθαx.

(ii) Since LRα α = 0, the Reeb vector field is an example of an α-contact vector field. In
fact the flow of Rα preserves α. �

Example 4.1 When M = R3, the form α = u · dx is contact if and only if ρ = (∇× u) · u
is never 0. Indeed,

dα(v1, v2) =
(
(∇× u)× v1

)
· v2 =:

[
(∇× u), v1, v2

]
which implies that when (∇ × u)(x) 6= 0, the set `x is the line spanned by (∇ × u)(x). In
this case the Reeb vector field is given by R = ρ−1(∇× u), and

(4.5) α ∧ dα = ρ dx1 ∧ dx2 ∧ dx3,

is a volume form. Moreover, if we write LZ(u · dx) =
(
L′Zu

)
· dx, then

(4.6) L′Zu = ∇(u · Z) + (∇× u)× Z.

The contact vector field associated with H is given by

(4.7) ρXH = u×∇H +H(∇× u).

More generally, if M = R2n−1 with n ≥ 2, we may express a 1-form α as α = u · dx for a
vector field u. Moreover

βx(v1, v2) = dαx(v1, v2) = C(u)v1 · v2,

where C(u) = Du− (Du)∗. The form α is contact iff u never vanishes, and the null space of
C(u)(x) is not orthogonal to u. The set `x is one dimensional and Rα is the unique vector
in `x such that u(x) ·R(x) ≡ 1. Writing u⊥ and R⊥ for the space of vectors perpendicular to
u and R respectively, then ξ = u⊥, and we may define a matrix C ′(u) which is not exactly
the inverse of C(u) (because C(u) is not invertible), but it is specified uniquely by two
requirements:
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• (i) C ′(u) restricted to R⊥ is the inverse of C(u) : u⊥ → R⊥.

• (ii) C ′(u)u = 0.

The α-contact vector field associated with H is given by

(4.8) XH = −C ′(u)∇H +HR.

�
As Example 4.1 and (4.5) indicates, in dimension 3, a form α is contact iff α ∧ dα is a

volume form. More generally we have the following elementary result.

Proposition 4.3 Let α be a 1-form on a manifold M . Then α is contact iff α ∧ (dα)n−1 is
a volume form.

Proof. Assume that (M,α) is contact and set γ = (dα)n−1. Since the restriction of
dα to ξx is non-degenerate and dim ξx = 2(n − 1), we may use Exercise 2.1(i) to assert
that (dα)n−1

x is a volume form on ξx. More specifically, we may choose a symplectic basis
{e1, . . . , en−1, f1, . . . , fn−1} for ξx so that if their duals are denoted by

{e∗1, . . . , e∗n−1, f
∗
1 , . . . , f

∗
n−1} =: {dx1 . . . , dx2n−2}

then dαx =
∑

i f
∗
i ∧ e∗i . From this we deduce

γx = (n− 1)! dx1 ∧ · · · ∧ dx2n−2.

To show that α ∧ γ is a volume form, observe

(α ∧ γ)(v1, . . . , v2n−1) =
2n−1∑
i=1

(−1)i−1α(vi)γ(v1, . . . , v̂i, . . . , v2n−1)

which means that if dz denotes the dual of the vector R, then

α ∧ γ = (n− 1)! dz ∧ dx1 ∧ · · · ∧ dx2n−2.

The converse is left as an exercise. (See Exercise 4.1(ii).) �

If (N,ω) is a symplectic manifold and M is a closed co-dimension 1 submanifold of N , we
may wonder whether or not we can find a contact form α on M , δ > 0, and a diffeomorphism
ψ : M̂ = M × (−δ, δ)→ U ⊆M , such that ψ∗ω = ω̂, where ω̂ = dα̂, for α̂ = esα. In words,
a neighborhood U of N in M is isomorphic to (M̂, ω̂). As we will see below that this is
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possible whenever M is compact and there is a vector field X that plays the role of ∂
∂s

. The
point is that if the flow of the vector field ∂

∂s
is denoted by φt, then φt(x, s) = (x, s+ t) and

φ∗t α̂ = es+tα = etα̂.

Hence φ∗t ω̂ = es+tdα = etω̂, which means(
ψ ◦ φt ◦ ψ−1

)∗
ω = etω.

As a result, if

X = ψ∗

(
∂

∂s

)
,

then

(4.9)
(
φXt
)∗
ω = etω.

In fact the existence of a vector field X that satisfies (4.9) is exactly what we need for ω to
be isomorphic to ω̂ in a neighborhood of M .

Definition 4.3 Let X be a vector field on a symplectic manifold (M,ω). We say X is
an ω-Liouville vector field if LXω = diXω = ω. Equivalently, X is ω-Liouville if (4.9) is
valid. �

Remark 4.2 Note that if a Liouville vector field X exists, then we can define a 1-form
α′ = iXω which satisfies dα′ = ω. Moreover, since α′(X) = ω(X,X) = 0, we also have

(4.10) LXα′ = iXdα
′ = iXω = α′,

(
φXt
)∗
α′ = etα′.

�

Theorem 4.1 Let (N,ω) be a symplectic manifold of dimension 2n, and let M be compact
closed submanifold of M with dimM = 2n− 1. The following statements are equivalent:

(i) There exists a neighborhood U of M in N and an ω-Liouville vector field X such that
X is transverse to M .

(ii) There exists a contact form α on M such that dα is the restrictions of ω to M .

(iii) There exists a contact form α on M , δ > 0, and a diffeomorphism ψ : M̂ = M ×
(−δ, δ) → U ⊆ M , with ψ(x, 0) = 0, such that if α̂ = esα and α′ =

(
ψ−1

)∗
α̂, then

dα′ = ω.
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Proof Suppose that (i) is true. In other words, there exists a Liouville vector field X such
that X(x) /∈ TxM for every x ∈M . Set α′ = iXω so that dα′ = ω. Write α for the restriction
of α′ to M . Set ξx = kerα, and

`x := {v ∈ TxM : ωx(v, w) = 0 for all w ∈ TxM},

for x ∈ M . We wish to show that `x ∩ ξx = {0}. Pick any v ∈ `x ∩ ξx. By definition,
ωx(v, w) = 0 for all w ∈ TxM . On the other hand ωx(X(x), v) = αx(v) = 0. Hence
ωx(v, a) = 0 for all v ∈ TxN because X transverses to M . Since ωx is symplectic, we deduce
that v = 0. Thus α is contact. In summary (i) implies (ii).

The converse is carried out in several steps.

Step1. Starting from a contact form α on M with dα = ω|M , we wish extend α to α′ with
dα′ = ω, and construct a Liouville vector field X in a neighborhood of M . First we construct
X on M . Recall that R = Rα denotes the Reeb vector field and ξx = kerαx ⊂ TxM is of
dimension 2n− 2. Since we hope to find X satisfying α = iXω on M , the restriction of such
X to M much satisfy ωx(X(x), v) = α(v) for every v ∈ TxM . As a result, for every x ∈ M
and v ∈ ξx, we must have

(4.11) ωx(X(x), R(x)) = 1, ωx(X(x), v) = 0.

It is not hard to construct a vector field X that satisfies (4.11). For example, we may use
Proposition 4.2 to take an almost complex structure J and a Riemannian metric g so that
ω(v1, v2) = g(Jv1, v2). We then search for a vector field X of the form

X(x) = f(x)JxR(x) + Y (x), Y (x) ∈ ξx,

with f : M → R a scalar-valued function. To satisfy (4.11), we need

f = −g(R,R)−1, iY ω = −f
(
iJR ω

)
.

The latter equation has a unique solution Y ∈ ξ because dα|ξ is symplectic. We note that
the first requirement in (4.11) implies that X(x) /∈ TxM for every x ∈ M . In summary, we
have constructed a vector field X that transverses to M and satisfies iXω = α on M .

Step2. So far our vector field X(x) is defined only on M . Since M is compact and X
transverses to M , we can use the g-exponential map to define ϕ(x, s) = expx(sX(x)), so
that ϕ : M × (−δ, δ) → U ⊆ N is a diffeomorphism. Here ϕ(x, s) = γ(s), where γ is the
unique geodesic with γ(0) = x and γ̇(0) = X(x). (Alternatively, extend X to a vector field

X̂ that is defined on a neighborhood of M , and set ϕ(x, s) = φX̂s (x).) This map has the
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desired property on M ;

(ϕ∗ω)(x,0)

(
(v1, τ1), (v2, τ2)

)
= ωx

(
dϕ(x,0)(v1, τ1), dϕ(x,0)(v2, τ2)

)
= ωx

(
v1 + τ1X(x), v2 + τ2X(x)

)
= ωx(v1, v2) + τ1ωx(X(x), v2) + τ2ωx(v1, X(x))

= ωx(v1, v2) + τ1α(v2)− τ2α(v1)

= (ω + ds ∧ α)(x,0)

(
(v1, τ1), (v2, τ2)

)
,

because ϕ(x,0)(v, τ) = τX(x) + v. Hence, if we define α̂ = esα and ω̂ = dα̂ on M̂ =
M × (−δ, δ), then ϕ∗ω = ω̂ on M = M × {0}. As a result, if we set ω′ = ϕ∗ω, then
η := ω′− ω̂ is a closed form on M̂ such that η|M = 0. As we will see in Lemma 4.1 below, the
form η is necessarily exact. In fact, there exists a 1-form β such that β|M = 0 and dβ = η.

Hence, ω′ = d(α̂ + β) with (α̂ + β)|M = α. From this we learn that if α′ =
(
ϕ−1

)∗
(α̂ + β),

then dα′ = ω, and α′|M = α.

Step3. So far we now that there exists a neighborhood U of M , and a 1-form α′ that is
defined in U and satisfies

α′|M = α, dα′ = ω.

Since ω is symplectic, we can find a vector field X in U such that iXω = α′. This vector field
is a Liouville vector field because diXω = dα′ = ω. Moreover, since ωx(X(x), v) = αx(v),
for every x ∈ M and v ∈ TxM , we learn that X(x) /∈ TxM for every x ∈ M ; otherwise
αx(R(x)) = 0 which is impossible. This completes the proof of (i).

It remains to show the equivalence of (i) and (iii). If (i) is true, simply define ψ(x, s) =
φXs (x). Note that by (4.10), we have φ∗sα

′ = esα′. Since

φ̂t(x, s) :=
(
ψ−1 ◦ φt ◦ ψ

)
(x, s) = (x, t+ s),

we deduce

ψ∗X =
∂

∂s
.

On the other hand, if α̂ = ψ∗α′, then
(
φ̂s
)∗
α̂ = esα̂, which implies that α̂(x,s)(v, τ) = esαx(v),

because φ̂ is the flow of ∂/∂s. We are done.
Conversely, if (iii) is true, then the Liouville vector field is given by

X =
(
ψ−1

)∗ ∂
∂s
.

�

We continue with the proof of a Poincaré-type lemma that was used in the proof of
Theorem 4.1.
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Lemma 4.1 Let η be a closed l-form on M̂ = M × (−δ, δ) with η|M×{0} = 0. Then there

exists an (l − 1)-form β on M̂ such that dβ = η and β|M×{0} = 0.

Proof Define Φθ(x, s) = (x, eθs) for y = (x, s) ∈ M̂ and θ ∈ R. Note that d
dθ

Φθ(y) =
Y (Φθ(y)), for Y (x, s) = (0, s). Let us simply write M for M×{0}. Since Φ0(x,−∞) = (x, 0),
we have Φ∗−∞η = η|M = 0 by our assumption. We now write

η = Φ∗0η − Φ∗−∞η =

∫ 0

−∞

d

dθ
Φ∗θη dθ =

∫ 0

−∞
Φ∗θLY η dθ

= d

[∫ 0

−∞
Φ∗θiY η dθ

]
=: dβ.

For example, when l = 2,

β(x,s)(v, τ) =

∫ 0

−∞
η(x,eθs)

(
(0, eθs), (v, eθτ)

)
dθ

=

∫ 0

−∞
η(x,eθs)

(
(0, s), (v, eθτ)

)
eθdθ

=

∫ 1

0

η(x,θs)

(
(0, s), (v, θτ)

)
dθ.

From this we learn that β is well-defined and that β|M = 0. The case of general l can be
treated in the same way. �

Definition 4.2 If the assumptions of Theorem 4.1 are satisfied, we say that the submanifold
M is of contact type. �

Remark 4.3 An important consequence of Theorem 4.1 is that a neighborhood of a sub-
manifold M of contact type is isomorphic to

(
M̂, ω̂

)
. This means that such a neighborhood

can be foliated into submanifolds that are, in some sense isomorphic to M . More pre-
cisely, if φt is the flow of the corresponding Liouville vector field X, then the hypersurfaces(
M s = φs(M) : s ∈ (−δ, δ)

)
are all of contact type. In fact if we write `(M s) for the

corresponding line bundle,

`x(M
s) = {v ∈ TxM s : ωx(v, w) = 0 for all w ∈ TxM s},

and Rs(x) for the Reeb vector field associated with
(
M s, α′|Ms

)
, then we have the following

identities:

(4.12) (dφs)x
(
`x(M

0)
)

= `φs(x)(M
s), (dφs)x(R

0(x)) = esRs(φs(x)).
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The second equation is a consequence of (4.10):

es = esαx(R
0(x)) = esα′x(R

0(x)) =
(
φ∗sα

′)
x
(R0(x)) = α′φs(x)

(
(dφs)x(R

0(x))
)
.

We may also define a Hamiltonian function K = KM : U → (−δ, δ) with K(M s) = es. In
other words, if ψ is as in Theorem 4.1(iii) and Ĥ : M̂ → (−δ, δ) is defined by Ĥ(x, s) = es,
then

(4.13) K = Ĥ ◦ ψ−1.

We can readily show
X ω̂
Ĥ

(x, s) = (R(x), 0).

From this we deduce

Xω
K(φs(x)) = (dψ)(x,s)(R(x), 0) = (dφs)x(R(x)) = esRs(φs(x)),

because by Proposition 3.2 Xω
K ◦ ψ = (dψ)X ω̂

Ĥ
. In summary,

(4.14) (Xω
K)|Ms = esRs.

Hence the periodic orbits of K coincide with the closed orbits of
(
Rs : s ∈ (−δ, δ)

)
. �

As we learned from Remark 4.2, the hypersurfaces of contact-type may be regarded as
the level sets of a Hamiltonian function for which the corresponding Hamiltonian vector field
is closely related to the Reeb vector field. Now imagine that we start with a 2n dimensional
symplectic manifold (N,ω) and a Hamiltonian vector field Xω

H , and wonder whether or not
level sets of H carry periodic orbits. We note that when the Hamiltonian function H is
independent of time, then the level sets of H are conserved because

d

dt

(
H ◦ φHt

)
= dH

(
Xω
H ◦ φHt

)
= −ω

(
Xω
H , X

ω
H

)
◦ φHt = 0.

Let us write M(c) = {x : H(x) = c}, and set `x(c) := (TxM(c))q. We call M = M(c)
regular if dHx 6= 0 for all x ∈ M(c). Since dimTxM(c) = 2n− 1 for a regular M(c), we use
Proposition 2.1(i) to assert

dim `x(c) = 1.

On the other hand, since
TxM(c) = {w : (dH)x(w) = 0},

we deduce that indeed XH(x) ∈ `x(c), for c = H(x) because for every w ∈ TxM(c),

ωx(XH(x), w) = −(dH)x(w) = 0.
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This means that the line lx is parallel XH(x). What we learn from this is that the existence
of a periodic orbit of XH on M = M(c) is a property of M and ω and does not depend on H.
In other words, if M possesses a periodic orbit of XH and if M = {x : H ′(x) = c′} for another
regular H ′, then XH′ possesses a periodic orbit as well. Evidently lx = (TxM)q offers an
H-independent candidate for the tangent lines to the orbit. More precisely, if M is a closed
hypersurface of a symplectic manifold (N,ω), define `x(M) = (TxM)q which is a line. We
always have `x(M) ⊆ TxM because if v ∈ `x(M) but v /∈ TxM , then v q

(
`x(M)⊕ TxM

)
=

TxN which implies v = 0 because ω is symplectic. As a result, LM =
⊔
x∈M lx is a line

bundle of M , and we can express our question of the existence of periodic orbits purely in
terms of this line bundle. The existence of periodic orbits is now reduced to the existence of
closed characteristics of the line bundle LM . It turns out that there are hypersurfaces M and
symplectic structures ω such that the corresponding line bundle has no closed characteristics.
However Weinstein’s conjecture asserts that if M is of contact type, then such a closed
characteristic can be found. In view of (4.14), the existence of a closed orbit of the Reeb
vector field follows from the existence of a periodic orbit of the vector field XK where K was
defined by (4.13). From the preceding discussion and (4.14) we learn that we only need to
find a periodic orbit in a neighborhood of a hypersurface of contact type:

Proposition 4.4 Let M be a compact hypersurface of contact type of the symplectic manifold
(M,ω). Let K = KM : U → R be the corresponding Hamiltonian function that is defined for
a neighborhood U of M as in (4.13). If the vector field Xω

K has a periodic orbit in U , then
the Reeb vector field of M has a closed orbit.

Remark 4.4 As we mentioned in the introduction, Weinstein’s conjecture has been estab-
lished for the hypersurfaces of (R2n, ω̄) by Viterbo. As we will see in Section 6 below, we
will use Hofer-Zehnder Capacity to give a rather straightforward proof of Viterbo’s theorem.
The point is that if Hofer-Zehnder Capacity of a neighborhood U of a contact type hyper-
surface M is positive, then by very definition of this capacity, a periodic orbit would exist
for every Hamiltonian vector field with compact support inside U . From this it is not hard
to deduce that XKM also possesses periodic orbits. We then use Proposition 4.4 to conclude
that M carries a closed orbit. It is not known how to use the same line of reasoning to
settle Weinstein’s conjecture for general (N,ω); it is not known how to show the positivity
of Hofer-Zehnder Capacity of open sets of general symplectic manifolds. Though the Wein-
stein’s conjecture has now been established for all closed 3-dimensional manifolds by Taubes
(2007) employing a variant of Seiberg-Witten Floer homology. �

Starting from a symplectic manifold (N,ω) with dimN = 2n, and a Hamiltonian function
H : N → R for which the level set M = {x : H(x) = c} is compact and regular, we have
seen that the line bundle `x(c) = (TxM)q is well-defined. If we already know that ω = dα′

for a 1-form α′, in a neighborhood U of M , then using the fact that ω is symplectic, we learn
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that there exists a unique vector field X such that iXω = α′. On the other hand

iXω
H
ω = −dH, and iXω = α′ ⇒ α′

(
Xω
H

)
= dH(X).

Hence
X(x) /∈ TxM for all x ∈M ⇔ α = α′|M is of contact type.

If M = M(c) is of contact type, then we also have a natural volume form α∧(dα)n−1 that
is defined on M and we expect it to be invariant under the flow of Xω

H . Indeed, if (M̂, ω̂)
with ω̂ = dα̂ is as in Theorem 4.1, then

Ω̂ := (n!)−1 ω̂n = (n!)−1 ens ds ∧ α ∧ (dα)n−1 = dĤ ∧m,

where Ĥ = es, and
m = (n!)−1 e(n−1)s α ∧ (dα)n−1.

Using ψ as in Theorem 4.1, we can write

(4.15) Ω := (n!)−1 ωn = dH ∧ µ,

where H = Ĥ ◦ ψ−1, and µ =
(
ψ−1

)∗
m. In particular, µ|M is a volume form for M when M

is of contact type. We now assert that in general we can always find a 2n − 1- form on M
that satisfies (4.15).

Proposition 4.5 Let (N,ω) be a symplectic manifold with dimN = 2n, and assume that
H : N → R is a function for which the level set M = {x : H(x) = c} is compact and regular.

(i) There exists a (2n−1)-form µ such that the volume form Ω = (n!)−1 ωn can be expressed
as

(4.16) Ω = dH ∧ µ,

in a neighborhood of M .

(ii) The form µ|M is uniquely determined by (4.16): If ω = dH∧µ = dH∧µ′ then µ|M = µ′|M .

(ii)
(
φHt
)∗
µ|M = µ|M . In words, µ is invariant for φHt , restricted to M .

Proof (i) The existence of µ is an immediate consequence of the non-degeneracy of dH 6= 0
on M . (See Exercise 4.1(vi).)

(ii) Write j : M → N for the inclusion map. We certainly have dH ∧ (µ − µ′) = 0. From
Exercise 4.1(vii) below we deduce that for some 2n−2 form γ, µ−µ′ = dH ∧γ. As a result,
I(µ− µ′) = I(dH ∧ γ) = (IdH) ∧ Iγ = 0 because IdH = d(H ◦ j) = 0.
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(iii) Write φt for φHt . By (4.16),

Ω = φ∗tΩ = (φ∗tdH) ∧ φ∗tµ = d(H ◦ φt) ∧ φ∗tµ = dH ∧ φ∗tµ.

By uniqueness result of (ii), we deduce Iφ∗tµ = Iµ, or (φt ◦ j)∗µ = Iµ. We may write
φt ◦j = j ◦φt where the second φt : M →M is the restriction of φt to M . Hence Φ∗tIµ = Iµ,
as desired. �
Remark 4.4 When (N,ω) = (R2n, ω̄), we can describe the form µ of (4.16) explicitly. To

ease the notation, let us write k = 2n. Note that if {gj : j = 1, . . . , k} is a collection of

smooth functions with
∑k

j=1 gjHxj(−1)j−1 ≡ 1, then we may choose for µ,

µ =
k∑
j=1

gjdx1 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxk.

For example gj = (−1)j−1Hxj/|∇H|2 would do the job.) We now claim

(4.17)

∫
Γ

α = c0

∫
Γ

|∇H|−1dσ,

for a constant c0. To see this, let us assume Hxk 6= 0 so that locally we can find a function
f(x1, . . . , xk−1) with

H(x1, . . . , xk−1, f(x1, . . . , xk−1)) = c.

This means that the graph of f gives a parametrization of M and that fxj = −Hxj
Hxk

for

j = 1, . . . , k − 1. On the other we can use the function f to express the volume measure
on M that is induced by the standard volume of Rk. More precisely, consider the vector
a = (a1, . . . , ak) with

aj =
∂(x1, . . . , x̂j, . . . , xk)

∂(x1, . . . , xk−1)
= (−1)k−j

Hxj

Hxk

, .

for 1 ≤ j ≤ k. If Γ = {(x1, . . . , xk−1, f(x1, . . . , xn−1)) : (x1, . . . , xk) ∈ U}, then∫
Γ

µ =

∫
U

(
k∑
j=1

ajgj

)
dx1, . . . , dxk−1.

On the other hand

ā =

(
k∑
j=1

a2
j

)1/2

=
|∇H|
|Hxk |

.
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Since locally either Hxk > 0 or Hxk < 0, we have∫
Γ

µ =

∫
U

(−1)k−1 1

Hxk

dx1, . . . , dxk−1

= ±
∫
U

1

|∇H|
ā dx1, . . . , dxk−1 = ±

∫
Γ

1

|∇H|
dσ,

proving (4.17). Note that this is consistent with the coarea formula∫
f dx1, . . . , dxk =

∫ ∞
−∞

[∫
H=c

f
dσ

|∇H|

]
dc.

�

We now give examples of contact type hypersurfaces.

Example 4.2(i) Let N = T ∗Q for an n-dimensional manifold Q, and let ω = dλ denotes its
standard symplectic form as was defined in Example 3.1. The level set M of H : T ∗Q→ R
is of contact type if

(4.18) λ(q,p)

(
XH(q, p)

)
= p

(
(dπ)(p,q) (XH(q, p))

)
6= 0,

on M . When Q = Rn, then (4.19) means that p ·Hp 6= 0 on M .

(ii) Let M be as in (i) and assume that H : T ∗Q → R is homogeneous of degree l > 0 in
the p-variable: for every r > 0,

(4.19) H(q, rp) = rlH(q, p).

We claim that this condition is equivalent to

(4.20) iXHλ = lH.

The proof of the equivalence of (4.19) and (4.20) is straightforward when Q = Rn: By
differentiating both sides of (4.19) we can show that H is homogeneous of degree l > 0 iff
p · Hp = lH, which is exactly (4.20). The proof of general Q is similar. Use the Darboux
charts we defined in Example 3.1, namely take h : U → Rn as a chart of Q and use this to
construct h̄ : T ∗U → R2n so that λ = h̄∗λ̄. Define H̄ : h(U) × Rn → R so that H̄ ◦ h̄ = H.
By the construction,

h̄(q, p) = (h(q), p̄) ⇒ h̄(q, rp) = (h(q), rp̄),

for every r > 0. This implies that H is homogeneous of degree l > 0 iff H̄ is homogeneous
of degree l > 0. Similarly,

iXω̄
H̄
λ = lH̄ ⇔ h̄∗

(
iXω̄

H̄
λ
)

= lH̄ ◦ h̄ ⇔ iXHλ = lH.
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This completes the proof of the equivalence of (4.19) and (4.20). From this and (4.18) we
deduce that M = {x : H(x) = c} is always of contact type for every homogeneous H and
non-zero c. �

Remark 4.5 We note that the Hamiltonian vector field XH on T ∗Q preserves the 1-form λ
if and only if H(q, p) is (positively) homogeneous of degree 1 in p. Indeed by Proposition 3.1,
the form λ is preserved by the flow of XH iff

0 = LXHλ = d ◦ iXHλ+ iXH ◦ dλ = d
(
iXHλ−H

)
.

This is equivalent to assert that iXHλ −H is a constant. Since adding a constant does not
change XH , we may assume that the constant is zero so that the condition now is iXHλ = H.
In view of the equivalence of (4.19) and (4.20), we deduce that LXHλ = 0 is equivalent to
the degree-1 p-homogeneity of H. �

The positions of a conservative system are points in an n-dimensional manifold M that is
known as the configuration space. The phase space in Lagrangian formulation is the tangent
bundle TQ. The motion is determined by a Lagrangian L : TQ → R. In the Hamiltonian
formulation we use a Hamiltonian function H : M = T ∗Q → R to determine the motion of
the system. In our next example we study the level set of classical Hamiltonians.
Example 4.3 Observe that the Riemannian metric g on a manifold Q, allows us to define

an operator ] : T ∗Q→ TQ that maps 1-forms to vector fields by requiring

gq ((]p)q, v) = pq(v),

for every vector v ∈ TqM . This duality also induces a metric on T ∗Q by

Gq(p, p
′) = gq(]p, ]p

′).

Given a smooth potential energy V : Q→ R, we define

(4.21) H(q, p) =
1

2
Gq(p, p) + V (q).

We now claim

(4.22) λ (Xω
H) = Gq(p, p),

for H given by (4.21). The proof is very similar to the equivalence of (4.19) and (4.20);
using h and h̄ as in Examples 3.1 and 4.2, we can find a metric Ḡ on h(U) and a function
V̄ : h(U)→ R such that V = V̄ ◦ h, and H = H̄ ◦ h̄, where

H̄(q, p) =
1

2
Ḡq(p, p) + V̄ (q).
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Writing Ḡq(p, p) = A(q)p · p with A > 0, we deduce that X ω̄
H̄

= (S(q)p,−∇V (q)). From this
we can readily deduce

λ̄ (X ω̄
H̄) = Ḡq(p, p).

We then apply h̄∗ to both sides to arrive at (4.22). Using the elementary Lemma 4.10, we
can now readily show that if

ME = {(q, p) : H(q, p) = E}

is compact and regular, and if E > maxV , then ME is of contact type simply because for
such E we always have p 6= 0, whenever (q, p) ∈ME. It turns out that ME is of contact type
even when E ≤ maxV (See [HZ]). It is worth mentioning that when E > maxV , then we
can define a new Riemannian metric

Ĝq(p, p) =
Gq(p, p)

E − V (q)
,

that is known as the Jacobi metric. We then have

ME = {(q, p) = H(q, p) = E} =

{
(q, p) =

1

2
Ĝq(p, p) = 1

}
.

The Hamiltonian Ĥ(q, p) = 1
2
Ĝq(p, p) induces a Hamiltonian vector field XĤ . It is simply

related to XH by

(4.23) XH(q, p) = Gq(p, p)XĤ(q, p), (q, p) ∈ S.

Hence a periodic orbit exists on ME for XH if the same is true for XĤ . Geometrically, XĤ

generates the geodesic flow defined by the Jacobi metric Ĝ on M = T ∗Q. �
We next discuss some examples of non-contact types hypersurfaces.

Example 4.3 (Zehnder [Z])

(i) Let M̂ = T3 × I where T3 is the 3-dimensional torus and I is an open interval. We
write θ = (θ1, θ2, θ3) ∈ T3 for points in T3 and define H : M̂ → I by H(θ, s) = s. The level
sets of H are Ms = T3 × {s} for s ∈ I. Writing (x1, . . . , x4) for (θ1, θ2, θ3, s), any constant
skew-symmetric C = [cij], define a 2-form ω =

∑
i<j cijdxi∧dxj. Note that each dθi is closed

(but not exact), and ds is exact. Hence ω is always closed because C is constant. As a result,
ω is symplectic iff C is invertible. Given a vector ζ = (ζ1, ζ2, ζ3) with ζ3 6= 0, we define C by

−C−1 = Ĉ :=


0 1 0 ζ1

−1 0 0 ζ2

0 0 0 ζ3

−ζ1 −ζ2 −ζ3 0

 .
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We further assume that ζ is irrational in the following sense:

a ∈ Z3, a · ζ = 0 ⇒ a = 0.

Evidently, XH = Xω
H = Ĉ∇H that in our case leads to XH = (ξ, 0). Hence φHt (θ, s) =

(θ + tζ, s) where θ + sζ is understood as a (mod 1) summation; here we identify T as the
interval [0, 1] with 0 and 1 regarded as the same point. The irrationality ζ guarantees that
XH has no periodic orbit. Hence ω|Ms does not induce a contact structure.

(ii) Let us write x = (q1, q2, p1, p2) for angles in a 4-dimensional torus T4 that may be defined
as [0, 1]4 with 0 = 1. Take a 1-periodic function f : R→ R that can be regarded as a function
on the circle T. Let ω = dp1 ∧ dq1 + dp2 ∧ dq2 + ζdp1 ∧ dq2 for an irrational number ζ. Take
H(x) = f(p1) so that Xω

H(x) = (f ′(p1), ζf ′(p1), 0, 0). The corresponding flow is

φHt (x) = (q1 + tf ′(p1), q2 + ζf ′(p1), p1, p2),

with (mod 1) additions. Again since ζ is irrational, φHt (x) is never periodic whenever f ′(p1) 6=
0. �

As we mentioned in the beginning of this section, contact structures in R3 can be used
to produce exotic structures. The process of going from a contact manifold (M,α) to the
symplectic manifold (M̂, ω̂) as in Proposition 4.1 is called the symplectization. For example
we equip

R2n−1 = {(q, p, z) : q, p ∈ Rn−1, z ∈ R},
with the so-called standard contact form ᾱ = p·q+dz, then the corresponding symplectization
(R2n, ω̂) is isomorphic to the standard (R2n, ω̄). However if we equip R3 with an overtwisted
contact form, the symplectization yields a symplectic form on R4 that is not equivalent to the
standard symplectic structure. Before giving the definition of overtwised contact structures,
let us observe that if (M,α) is contact, then ξ = kerα is never integrable. The reason is that
the integrability of ξ is equivalent to α∧ dα = 0 (see Lemma A.4 in Appendix), whereas the
contact assumption requires α∧ (dα)n−1 to be a volume form by Proposition 4.3. In fact we
have a following results for integrals of ξ:

Proposition 4.6 Let (M,α) be a contact manifold of dimension 2n−1. If Γ is an l dimen-
sional submanifold of M with TxΓ ⊆ ξx = kerαx for every x ∈ Γ, then dim Γ ≤ n− 1.

Proof Using Lemma A.3 of the Appendix, we can readily show that if X and Y are two
vector fields that are tangent to Γ, then dα(X, Y ) = 0. Simply because for X, Y ∈ ξ, we
have α(X) = α(Y ) = 0, and from X, Y ∈ TΓ we know that [X, Y ] ∈ TΓ by Frobenius’
theorem. This means that if we use the symplectic form ω = dα|ξ for orthogonality, then
TxΓ ⊆ (TxΓ)q, which by Proposition 2.1 implies

2n− 2 = dimTxΓ + dim(TxΓ)q ≥ 2 dimTxΓ.
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This clearly implies that dimTxΓ ≤ n− 1. �

Definition 4.3 We call a submanifold Γ of a 2n − 1 dimensional contact manifold (M,α)
Legendrian if TxΓ ⊂ TxM and dim Γ = n− 1. �

Let us now examine contact forms on R3. If α is a contact form on R3 and ξ = kerα is
the corresponding contact structure, we expect that the plan field ξ experience some twists
as we move along a hypersurface because ξ is not integrable. Given a 2 dimensional surface
Γ, we may define a plane field γx = TxΓ ∩ ξx. For generic points of Γ, γx is a line and the
integrals of this line bundle have been used to classify the contact structures in R3 or even
arbitrary 3-dimensional manifolds. The simplest way to produce examples of exotic contact
structures in R3 is using cylindrical coordinates; q = r cos θ, p = r sin θ so that if x = (q, p, z),
then

dq = cos θ dr − sin θ rdθ, dp = sin θ dr + cos θ rdθ.

Example 4.4(i) If α = qdp− pdq − dz = r2 dθ − dz, then for x = (q, p, z),

ξx = {(q̂, p̂, ẑ) : qp̂− pq̂ = ẑ}.

Observe that for Γ = {z = 0}, the set γx = TxΓ ∩ ξx is a line only when x 6= 0. More
precisely,

γx = {(q̂, p̂, 0) : qp̂− pq̂ = 0},
is the ray {(sq, sp, 0) : s ∈ R} if x 6= 0, whereas ξ0 = Γ. So the line bundle {γx : x ∈ Γ}
has a singularity at 0. For example, on the {(s, 0, 0) : s > 0}, the vector u = (−p, q,−1)
twists from −π/2 to 0 as s goes from 0 to ∞.

(ii) Let β = sin r rdθ + cos r dz, so that

ξx = {(q̂, p̂, ẑ) : (r tan r)θ̂ = ẑ},

where (1 + tan2 θ)θ̂ = q−2(qdp− pdq). Note that the curve {r = π, z = 0} is Legendrian. If
we set

Γε = {(q, p, ε) : r ≤ π,

then the interior Γε has no singular point for ε > 0 and ∂Γ is Legendrian. We say a contact
form is over twisted if such Γ = Γε exists for β. Note that for this particular example, if
we move along a ray emanating from the origin, the plane ξx make complete turns infinitely
many times. �

Exercise 4.1

(i) Verify (4.6)-(4.8).

(ii) Let M be a manifold of dimension 2n − 1 and let α be a 1-form on M . Show that if
α ∧ (dα)n−1 is a volume form, then α is contact.
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(iii) Consider (R2n, ω̄) and let S be the boundary of a set A that is star-shaped with respect
to the origin. Assume that each ray emanating from the origin intersect S at exactly one
point. Show that S is of contact type. Hint: Show that X(x) = 1

2
x is a Liouville vector

field.

(iv) Consider the contact manifold (R2n−1, ᾱ). Let H(q, p, z) be a smooth function. Show
that the corresponding contact vector field ZH is given by

(Hp,−Hq + pHz,−p ·Hp +H).

(v) Let S2n−1 be a unit sphere in R2n. The form λ̄ induces a 1-form µ̄ on S2n−1. Show that
(S2n−1, µ̄) is not a contact manifold. Define µ = 1

2
(p · dq − q · dp). Show that (S2n−1, µ) is a

contact manifold. Find its Reeb flow.

(vi) Let Ω be a volume form and let τ be a non-degenerate 1-form. Show that there exists
a form β such that Ω = τ ∧ β.

(vii) Let η be an l-form and τ a 1-form with τ ∧ η = 0. Show that η = τ ∧ γ for some
(l − 1)-form γ.

(viii) Verify (4.22). �
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5 Variational Principle and Convex Hamiltonian

In this section, we use variational techniques to prove the following result of A. Weinstein:

Theorem 5.1 Assume that the hypersurface S ⊆ R2n is the smooth boundary of a compact
strictly convex region. Then the Reeb’s vector field on S has a periodic orbit.

In fact Theorem 5.1 allows us to define some kind of a symplectic width or capacity of
convex sets K with nonempty interiors:

(5.1) c0(K) := inf
{
|A(γ)|; γ is a Reeb characteristic of ∂K

}
,

where the symplectic action A(γ) of γ was defined by (3.1). Of course Theorem 5.1 guarantees
that c0(K) < ∞ for every bounded convex set K of nonempty interior. Our strategy for
proving Theorem 5.1 is by figuring out an alternative dual like variational principle of (5.1).
Once this dual problem is formulated, we can readily establish its finiteness.

Example 5.1 Assume that U is an ellipsoid with 0 ∈ U . We learned in Chapter 2 that
there are radii r1 ≤ · · · ≤ rn and a linear symplectic T such that T (U) = E, where E = {x :
H(x) ≤ 1}, with

H(x) =
n∑
j=1

q2
j + p2

j

r2
j

.

The corresponding Hamiltonian flow is φt(z1, . . . , zn) =
(
e−iλ1tz1, . . . , e

−iλntzn
)
, where zj =

qj + ipj, and λj = 2/r2
j . For y = (z1, . . . , zn) and γ : [0, T ] → R2n, defined by γ(t) = φt(y),

we have

A(γ) =
1

2

∫ T

0

ω̄(γ(s), γ̇(s)) ds =
1

2

∫ T

0

∑
j

Im
(
e−iλjszj iλje

iλjsz̄j
)
ds

=
1

2
T
∑
j

λj|zj|2 = TH(γ(0)).

If this γ lies on ∂E, we must have H(γ(0)) = 1 which means that A(γ) = T for such γ. Now
if γ is a periodic orbit of period T > 0, then we must have

zj 6= 0 ⇒ λjT = 2kπ, for some k ∈ N.

This implies T ≥ 2π/λ1 = πr2
1. Hence, c0(E) ≥ πr2

1. On the other hand, if we choose
(z1, . . . , zn) satisfying |z1| = r1, and zj = 0 for j 6= 1, we have that A(γ) = T = πr2

1 for the
corresponding γ. From all this we deduce that for an ellipsoid E,

(5.2) c0(E) = πr1(E)2.

52



�

Before embarking on finding the dual problem associated with (5.1), let us first review the
Lagrangian formulation of Hamiltonian systems. As we will see below, this formulation is not
well-suited for finding periodic characteristics on the boundary of a convex set. Nonetheless
we will learn some fruitful ideas from it that will play essential role later in showing the
finiteness of c0(U).

To study Newton’s equation with constraints, Lagrange initiated variational formulation
of conservative mechanical problems. Let L : TQ → R be a C1-function. Given q0, q1 ∈ Q,
we define B : ΓT (q0, q1)→ R with

ΓT (q0, q1) = {γ : [0, T ]→ Q is C1 and γ(0) = q0, γ(T ) = q1},

B(γ) =

∫ T

0

L(γ(t), γ̇(t))dt.

Let us denote the argument of L by (q, v) with v ∈ TqQ and write Lq and Lv for the partial
derivatives of L.

We now claim that if q(·) is a critical point of B, then q solves the Euler–Lagrange–
Newton’s equation

(5.3)
d

dt
Lv(q, q̇) = Lq(q, q̇).

Indeed if we use the L2-inner product, then the derivative of B is given by

(5.4) ∂B(γ) = Lq(γ, γ̇)− d

dt
Lv(γ, γ̇),

for every γ ∈ ΓT (q0, q1). To see this, take any η = η(θ, t) with θ ∈ (−δ, δ) and t ∈ [0, T ],
such that ηθ(0, t) = τ(t), and η(0, ·) = γ(·). Now

〈∂B(γ), τ〉 :=
d

dθ
B(η(θ, ·))

∣∣∣∣
θ=0

=

∫ T

0

[Lq(γ, γ̇) · τ + Lv(γ, γ̇) · τ̇ ] dt

=

∫ T

0

[
Lq(γ, γ̇)− d

dt
Lv(γ, γ̇)

]
· τ dt.

Here we used the fact that τ(0) = τ(T ) = 0 which follows from η(θ, 0) = q0, η(θ, T ) = q1

for all θ. As an example, let L(q, v) = m
2
|v|2− V (q) in Rn. Then the equation (5.3) reads as

mq̈ = −∇V (q).
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To explain the connection between Lagrangian formulation with the the Hamiltonian, let
us assume that Q = Rn and that for p ∈ Rn = T ∗qQ, we can solve the relationship

p = Lv(q, v)

uniquely for v. Denoting the solution by v(q, p), and setting

H(q, p) = p
(
v(p, q)

)
− L(q, v(q, p)),

we learn

Hp = v + pvp − vpLv = v + pvp − pvp = v,

Hq = pvq − Lq(q, v)− Lv(q, v)vq = −Lq(q, v).

Hence

(5.5) p = Lv(q, v) ⇔ Hp(q, p) = v,

and

(5.6) Hq(q, p) = −Lq(q, v).

If we set p(t) = Lv(q(t), q̇(t)), then by (5.3), (5.5), and (5.6),

q̇ = Hp(q, p), ṗ = −Hq(q, p).

The inversion (5.5) is possible if we assume that L is strictly convex in v. In this case H can
be constructed from L by Legendre transform:

H(q, p) = sup
v

(p · v − L(q, v)).

More generally, if L : TQ→ R is convex in v, we may define H : T ∗Q→ R by

H(q, p) = sup
v

(
p(v)− L(q, v)

)
.

This relationship maybe inverted to yield

L(q, v) = sup
p

(
p(v)−H(q, p)

)
.

If we assume that L has superlinear growth in variable v as |v| → ∞, then H is finite
and the supremum is attained at v = v(q, p) so that (5.5) is valid.
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For a v-convex L, we may find solutions to (5.1) by minimizing B. For example, if for
some constants c1, c2 > 0 and α > 1,

(5.7) L(q, v) ≥ c1|v|α − c2,

for every v ∈ TqN and q ∈ N , and if γl is a sequence in ΓT (q0, q1) such that liml→∞ B(γl) =
A = inf B, then by (5.7) we have the bound

sup
l

∫ T

0

|γ̇l(t)|αdt <∞.

This bound allows us to extract a subsequence of γl which converges weakly with respect to
the topology of Sobolev space W 1,α. It turns out that B is lower semicontinuous because L
is convex in v. This allows us to deduce that for any limit point q(·) of the sequence γl(·),
we have that B(q) ≤ A. Since A = inf B, we learn that B(q) = A and that the infimum is
achieved.

In spite of the appeal of the above argument, it is not clear how to use it to prove
Theorem 5.1. Recall that we are searching for a periodic solution on a given energy surface.
Of course we could have chosen q0 = q1 so that our solution satisfies q(0) = q(T ). But
to lie on the surface S we need to make sure that (q(0), p(0)) ∈ S. In fact the solution
we have found may not even be periodic in (q, p) coordinates because we cannot guarantee
p(0) = p(T ).

To this end let us define another functional A of which critical points solve the Hamilto-
nian system. Set A : ΓT → R to be

A(x(·)) =

∫
x(·)

[p · dq −H(x)] dt

=

∫ T

0

[
1

2
J̄x · ẋ−H(x)

]
dt,

where
ΓT = {x : R→ R2n is C1 and T -periodic}.

We have

(5.8) ∂A(x(·)) = −J̄ ẋ−∇H(x),

because

〈∂A(x(·)), τ(·)〉 =
d

dδ
A(x+ δτ)

∣∣∣∣
δ=0

=

∫ T

0

[
1

2
J̄τ · ẋ+

1

2
J̄x · τ̇ −∇H(x) · τ

]
dt

= −
∫ T

0

(J̄ ẋ+∇H(x)) · τ dt
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for every x, τ ∈ ΓT . From (5.8) we learn that ∂A(x(·)) ≡ 0 iff x solves

(5.9) ẋ = J̄∇H(x).

Note that A involves H explicitly and no additional assumption such as convexity is needed.
However typically the critical points of A are saddle points and it is helpless to search for
(local) maximizers or minimizers. Because of this, finding critical points for A is far more
challenging. Before discovering a remedy for this, let us show that a hypersurface S as in
Theorem 5.1 can be realized as a level set of a convex homogeneous Hamiltonian function.

Definition 5.1 Let U ⊆ R2n be an open convex set with 0 ∈ U . Set K = Ū for its closure.

(i) The gauge function associated with K is defined by

gK(x) = ‖x‖K = inf{r > 0 : x/r ∈ K} = inf{r > 0 : x/r ∈ U}.

(ii) The polar set associated with K is defined by

Ko := {x : x · y ≤ 1 for all y ∈ K}.

(iii) The support function hK associated with K is defined by

(5.10) hK(x) := sup
y
{x · y : y ∈ K}.

�

Proposition 5.1 Let U ⊆ R2n be an open convex set with 0 ∈ U and K = Ū .

(i) The gauge function ‖ · ‖K is a norm. Its Legendre transform is given by

sup
y

(
x · y − ‖y‖K

)
=

{
0 if x ∈ Ko;

∞ otherwise,

(ii) We have

(5.11) K = {y : x · y ≤ hK(x) for all x}.

(iii) We have K◦◦ = K. Moreover,

(5.12) ‖x‖K◦ = hK(x), ‖x‖K = hK◦(x).

(iv) If HK(x) = 1
2
‖x‖2

K, then its Legendre transform is given by H∗K = 1
2
h2
K = HK◦.
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Proof The proof of (i) and (ii) are left as an exercise. As for (iii), observe

‖x‖K◦ = inf{ρ > 0 : x/ρ ∈ K◦} = inf{ρ : x · y ≤ ρ for every y ∈ K}
= inf{ρ : hK(x) ≤ ρ} = hK(x).

For the second equality, observe that since x · y ≤ ‖x‖K for every y ∈ K◦, we have

hK◦(x) = sup{x · y : y ∈ K◦} ≤ ‖x‖K .

On the other hand, by (5.11),

‖x‖K = inf{ρ : x/ρ ∈ K} = inf{ρ : ρ−1(x · z) ≤ hK(z) for every z}
= inf{ρ : (x · z/hK(z)) ≤ ρ for every z} = sup

z
(x · z/hK(z))

≤ sup
y∈K◦

(x · y) = hK◦(x),

because z/hK(z) ∈ K◦ always. This completes the proof of second equality in (5.12). Note
that two equalities of (5.12) imply that ‖x‖K = ‖x‖K◦◦ . As an immediate consequence we
conclude that K = K◦◦.

We now turn to (iv). We certainly have

H∗K(x) = sup
y

(
x · y − 1

2
‖y‖2

K

)
= sup

y
sup
t≥0

(
tx · y − t2

2
‖y‖2

K

)
.

If x · y > 0, then the t-supremum is attained at t = (x · y)/‖y‖2
K ; otherwise the t-supremum

is 0. As a result,

2H∗K(x) = sup
y

((x · y)+)
2

‖y‖2
K

= sup
y

[(
x · y

‖y‖K

)+
]2

=
[

sup {x · y : ‖y‖K = 1}
]2

=
[

sup {x · y : ‖y‖K ≤ 1}
]2

=
[

sup {x · y : y ∈ K}
]2

= hK(x)2,

as desired. �
We next address the regularity of the function HK .

Lemma 5.1 Let U ⊆ R2n be an open strictly convex set with 0 ∈ U , S = ∂U , and K = Ū .
If S is C2, then HK is C1 and strictly convex.

Proof Write F (x) = ‖x‖K , 2H = 2HK = F 2. Note that F is not differentiable at 0. On the
other hand,

(5.13) D2F (x)|TxS > 0, D2F (x)x = 0
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for x ∈ S. The latter follows from the homogeneity of F ; x · ∇F = F and D2F (x)x = 0. To

see (5.13), let us look at the curvatures of S. Note that n(x) = ∇F (x)
|∇F (x)| is the unit normal to

S and
Dn(x) = |∇F (x)|−1D2F (x) +∇F (x)⊗∇(|∇F (x)|−1).

As a result,

Dn(x)a · a = |∇F (x)|−1D2F (x)a · a+ (∇F (x) · a)(∇|∇F (x)|−1 · a).

As a result, if a ∈ TxS, then

(5.14) Dn(x)a · a = |∇F (x)|−1D2F (x)a · a.

Since S is strictly convex, we have Dn(x) > 0. This and (5.14) imply (5.13).
Evidently H is C1 and C2 off the origin. Since H is homogeneous of degree 2,

∇H = F∇F,
D2H = ∇F ⊗∇F + FD2F.

Hence,
D2H(x)a · a = (∇F (x) · a)2 + F (x)D2F (x)a · a.

Note that if a = b+c with b‖x and c ∈ TxS, then (∇F (x)·a)2 > 0 if b 6= 0 and D2F (x)a·a > 0
if b = 0 and c 6= 0. Hence D2H(x) > 0 for all x 6= 0. �

Let us set H = HK and study the corresponding functional A. Note that A = AT
is defined for T -periodic functions whereas for Theorem 5.1 we need a periodic orbit on
S = {H = 1/2} of some period. Of course if x(·) is such a periodic orbit of period T , then
y(t) = x (Tt) is 1-periodic and

(5.15) ẏ = T J̄∇H(y).

In view of the form of functional AT , perhaps we should fix the period to be 1 always and
now insist that y(·) solves (5.15) for some T . As a result, we now want to find a critical
point of

T−1

∫ 1

0

[
1

2
J̄y · ẏ − TH(y)

]
dt =

1

2T

∫ 1

0

J̄y · ẏ dt−
∫ 1

0

H(y) dt

with y a 1-periodic path and some T ∈ R. The scalar η = T−1 resembles a Lagrange
multiplier that now is employed for a functional defined on an infinite dimensional space.
Motivated by this, define C : Λ→ R by

C(x(·)) =

∫ 1

0

H(x(t)) dt
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with

Λ =

{
x : R→ R2n is C1, 1-periodic and

∫ 1

0

J̄x · ẋ dt = 1

}
.

It is not hard to show that Λ 6= ∅.

Lemma 5.2 (i) Let y(·) be a non-constant critical point of C : Λ → R. Then either
∇H(y) ≡ 0, or there exists a constant T such that ẏ = T J̄∇H(y).

(ii) If H = HK, then any critical y(·) satisfies ẏ = T J̄∇H(y) for some T > 0. Moreover,
z(t) =

√
Ty(t/T ) is a T -periodic solution of ż = J̄∇H(z), such that A

(
z(·)
)

= T/2 and
2H(z) ≡ 1.

Proof First, let us determine the space Ty(·)Λ. Take a path z : (−δ, δ)→ Λ with z(·, 0) = y(·)
and zθ(·, 0) = τ(·). The condition∫ 1

0

J̄z(·, θ) · zt(·, θ) dt = 1

can be differentiated with respect to θ to yield

0 =

∫ 1

0

[
J̄y · τ̇ + J̄τ · ẏ

]
dt = −2

∫ 1

0

J̄ ẏ · τ dt.

In other words, for τ ∈ Ty(·)Λ, we always have

(5.16)

∫ 1

0

J̄ ẏ · τ dt = 0.

The converse is also true; if a 1-periodic function τ satisfies (5.16), then the path z(t, θ) =
y(t) + θτ(t) lies in Λ and satisfies zθ(·, 0) = τ(·).

Now, if y(·) is critical for C, then d
dθ
C(z(·, θ))

∣∣
θ=0

= 0. This means that y(·) is critical iff

(5.17)

∫ 1

0

J̄ ẏ · τ dt = 0 ⇒
∫ 1

0

∇H(y) · τ dt = 0.

In particular if y ∈ Λ satisfies∇H(y) ≡ 0, it is critical. Assume that∇H(y) is not identically
0. We then use (5.17) to deduce that for every 1-periodic τ satisfying (5.16), and every T ∈ R,
we have

(5.18)

∫ 1

0

(
J̄ ẏ + T∇H(y)

)
· τ dt = 0.
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We wish to select τ = J̄ ẏ+T∇H(y) to deduce that J̄ ẏ+T∇H(y) = 0. For the admissibility
of such selection, we need ∫ 1

0

|ẏ|2 dt+ T

∫ 1

0

J̄ ẏ · ∇H(y) dt = 0.

This can be solved for T if

(5.19)

∫ 1

0

J̄ ẏ · ∇H(y) dt 6= 0.

In fact if (5.19) were not the case, then we could choose τ = ∇H(y) in (5.17) to deduce that
∇H(y) = 0, which contradicts our assumption. Hence y must satisfy ẏ = T J̄∇H(y).

We now turn to the proof of (ii). For a critical y ∈ Λ, we know that ẏ = T J̄∇H(y). On
the other hand, since H is homogeneous of degree 2, we also know that y · ∇H(y) = 2H(y).
Hence

(5.20) 1 =

∫ 1

0

J̄y · ẏ dt = 2T

∫ 1

0

H(y) dt = 2TH(y),

because H(y) is a constant function. Since y cannot be identically 0 by the constraint, we
deduce that T > 0 and that H(y) = (2T )−1. Now if z(t) =

√
Ty(t/T ), then obviously z is

T -periodic with H(z) = 1/2 by the homogeneity of H. On the other hand,

ż(t) = T−1/2 ẏ(t/T ) =
√
T J̄ ∇H

(
y(t/T )

)
= J̄ ∇H

(√
Ty(t/T )

)
= J̄ ∇H(z(t)).

Finally

A(z) =
1

2

∫ T

0

J̄z · ż dt =
T

2

∫ T

0

J̄y(t/T ) · ẏ(t/T )T−1 dt =
T

2

∫ 1

0

J̄y(t) · ẏ(t) dt =
T

2
.

This completes the proof of (ii). �

On account of Lemma 5.2, we only need to find critical points for C on Λ. Since H is
convex, we may wonder whether or not a minimum provides us with a critical point. It turns
out that supΛ C = +∞ and infΛ C = 0. Note that for H as in Lemma 5.2 infimum is not
achieved because if C(x(·)) = 0, then x(·) ≡ 0 and 1

2

∫ 1

0
J̄x · ẋ 6= 1 for such x(·). Let us study

an example to see why the infimum is not achieved.

Example 5.2 Assume that n = 1 and H : R2 → R is given by H(x) = π|x|2. We already
know how to solve the corresponding system ẋ = J̄∇H(x); the solutions are given by
x(t) = (q(t), p(t)) = r(sin 2πt, cos 2πt), t ≥ 0. The set {x : H(x) = 1/2} carries the periodic

orbit x(t) = (2π)−1/2(sin 2πt, cos 2πt). The set Λ consists of 1-periodic y with
∫ 1

0
J̄y ·ẏ dt = 1.
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If y is a simple curve with coordinates q and p, then
∫ 1

0
J̄y · ẏ dt is twice the area enclosed by

y. We can easily construct a sequence yl(t) in Λ with C(yl) → ∞ as l → ∞. For example,

set yl(t) =
(

2
√
l sin 2πt, 1

π
√
l
cos 2πt

)
, so that yl ∈ Λ and C(yl) = 2πl + 1

2πl
. This confirms

supΛ C = +∞. As for the infimum, let us choose a sequence zl ∈ Λ of high oscillation, say
zl(t) = (2πl)−1/2(sin 2πlt, cos 2πlt). Since H(zl) = (2l)−1, we learn that infΛ C = 0. �

From Example 5.2 it is clear that a control on C(yl) for yl ∈ Λ guarantees no control on ẏl
and this results in infΛ C = 0. We now follow an idea of Clarke to switch to a new functional
D which involves the derivative. To motivate the definition, observe that if

(5.21) ẏ = T J̄ ∇H(y),

for some T > 0, then for any constant c ∈ R2n,

d

dt
J̄(c− y) = T∇H(y).

Writing w = J̄(c− y), we deduce that for H = HK and G = HK◦ ,

(5.22) ∇G(ẇ) = T (J̄w + c).

because ∇H is homogeneous of degree 1 and
(
∇H

)−1
= ∇G. Here we are using Proposi-

tion 5.1 to assert that H∗ = G. The condition
∫ 1

0
J̄y · ẏ dt = 1 becomes

1 =

∫ 1

0

J̄(J̄w + c) · J̄ẇ dt =

∫ 1

0

J̄w · ẇ dt.

Motivated by this and (5.21), let us define D : Λ→ R by

D(y) =

∫ 1

0

G(ẏ(t)) dt.

Lemma 5.3 If w(·) is a C1 critical point of D : Λ → R, then w solves (5.22) for some
constants T > 0 and c ∈ R2n. Moreover if y = J̄w + c, then y ∈ Λ, y satisfies (5.21),

2TH(y(·)) ≡ 1, and
∫ 1

0
G(ẏ) dt = T/2.

Proof As in the proof of Lemma 5.2, we can show that if w is a critical point for D on Λ,
then ∫ 1

0

J̄ẇ · τ dt = 0 ⇒
∫ 1

0

∇G(ẇ) · τ̇ dt = 0,
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for every periodic C1 path τ . This can be rewritten as∫ 1

0

J̄w · τ̇ dt = 0 ⇒
∫ 1

0

∇G(ẇ) · τ̇ dt = 0,

Hence

(5.23)

∫ 1

0

(
T J̄w + c′ −∇G(ẇ)

)
· τ̇ dt = 0,

for every T ∈ R and c′ ∈ R2n. We wish to choose τ so that

(5.24) τ̇ = T J̄w + c′ −∇G(ẇ).

For this, we need to satisfy two conditions:∫ 1

0

(
T J̄w + c′ −∇G(ẇ)

)
dt = 0,

∫ 1

0

(
T J̄w + c′ −∇G(ẇ)

)
· J̄w dt = 0.

These equations determine c′ and T because w ∈ Λ is never a constant. Indeed if we solve
the first equation for c′ and substitute it in the second equation, we get a linear equation for
T that has the coefficient ∫ 1

0

|Jw|2 dt−
(∫ 1

0

Jw dt

)2

,

which is never 0 unless w is constant. Now choosing τ satisfying (5.24) in (5.23) implies that
τ̇ is identically 0, which in turn implies

(5.25) ∇G(ẇ) = T J̄w + c′.

Since G is homogeneous of degree 2, we know that ẇ · ∇G(ẇ) = 2G(ẇ). From this and
(5.25) we deduce ∫ 1

0

2G(ẇ) dt =

∫ 1

0

ẇ · ∇G(ẇ) dt = T

∫ 1

0

J̄w · ẇ dt = T.

Hence T > 0 because G > 0 away from 0. We then choose c so that cT = c′. Substituting
this in the (5.25) yields (5.22). We can readily show that if y = J̄w + c, then y ∈ Λ and y
satisfies (5.21). Clearly (5.21) implies that 2TH(y) = 1 by (5.20). We are done. �

We are now ready for the proof of Theorem 5.1.

Proof of Theorem 5.1 First we obtain some useful properties of G. Note that by homo-
geneity of G,

G(x) = |x|2G
(
x

|x|

)
.
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As a result, there are positive constants c1 and c2, such that

(5.26) c1
|x|2

2
≤ G(x) ≤ c2

|x|2

2

for all x ∈ R2n. From the homogeneity of G, we also know that ∇G(a) = |a|∇G
(
a
|a|

)
. This

in turn implies that for some constant c3,

(5.27) |∇G(a)| ≤ c3|a|.

We then remark that even though we have worked with the space C1, our Lemma 5.3 is
valid for a larger space H1. The space H1 consists of 1-periodic functions w : R→ R2n which
are weakly differentiable with the weak derivative ẇ ∈ L2. That is, there exists v ∈ L2 such
that for every ζ ∈ C1, ∫ 1

0

w · ζ̇ dt = −
∫ 1

0

v · ζ.

We simply write ẇ for the weak derivative v. Note that we can define D : Λ̄→ R where

Λ̄ =

{
w ∈ H1 :

∫ 1

0

J̄w · ẇ dt = 1

}
.

In Lemma 5.3, we may replace Λ with Λ̄.
On account of our extension of Lemma 5.3, it suffices to find a critical point of D : Λ̄→ R.

This can be achieved by showing the existence of a minimizer of D.
Set a = infΛ̄D and choose a sequence wl ∈ Λ̄ such that wl(0) = 0 and D(wl) → a. In

view of (5.24), we certainly have

(5.28) c4 := sup
l

∫ 1

0

|ẇl|2 dt <∞.

From this and Exercise 5.1(ii) we know

|wl(t)− wl(s)| ≤
√
c4|t− s|1/2.

This and wl(0) imply that wl has a convergent subsequence with respect to the uniform
topology. On account of (5.28) we may choose a subsequence such that

wl → w uniformly,

ẇl → v weakly,

for some v ∈ L2 and continuous w. We now assert that in fact w is weakly differentiable and
its weak derivative is v. Indeed if ζ ∈ C1, then∫ 1

0

w · ζ̇ dt = lim
l→∞

∫ 1

0

wl · ζ̇ dt = − lim
l→∞

∫ 1

0

ẇl · ζ dt = −
∫ 1

0

v · ζ dt.
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It remains to show that w ∈ Λ̄ and

(5.29) a = D(w).

For the former observe∫ 1

0

J̄w · ẇ dt =

∫ 1

0

J̄w · (ẇ − ẇl) dt+

∫ 1

0

J̄(w − wl) · ẏl dt+

∫ 1

0

J̄wl · ẇl dt

=: Ω1 + Ω2 + Ω3.

We certainly have that liml→∞Ω1 = 0 and Ω3 = 1. Moreover

|Ω2| ≤ ‖w − wl‖L2‖ẇl‖L2 → 0

as l→∞ by (5.28) and uniform convergence of wl to w. This shows that w ∈ Λ̄.
It remains to establish (5.29). Since a = inf D, it suffices to show that D(w) ≤ a. This

follows from the lower semi-continuity of the functional D which is a consequence of the
convexity of G. Indeed by convexity of G,

G(ẇ) +∇G(ẇ) · (ẇl − ẇ) ≤ G(ẇl).

Hence, ∫ 1

0

G(ẇ) dt+

∫ 1

0

∇G(ẇ) · (ẇl − ẇ) dt ≤
∫ 1

0

∇G(ẇl) dt.

We now send l → ∞. Since ∇G(ẇ) ∈ L2 by (5.17) and ẇ ∈ L2, we know that the second
term on the left-hand side goes to 0. As a result,∫ 1

0

G(ẇ) dt ≤ lim inf
l→∞

∫ 1

0

G(ẇl) = a.

Using H1 version of Lemma 5.3, we know that for some y ∈ H1, and T > 0, we have
ẏ = T J̄∇H(y). Since the right-hand side is continuous, we use Exercise 5.6(i) to deduce
that for almost all t,

y(t) = y(0) + T

∫ t

0

J̄∇H(y(s)) ds.

From this we deduce that in fact y ∈ C1. As in Lemma 5.2, we may use y to construct a
solution x to ẋ = J̄∇H(x) with 2H(x) = 1 to complete the proof. �

As a corollary to the proof of Theorem 5.1, we derive two useful expressions for the
symplectic capacity that was defined in (5.1).
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Theorem 5.2 For every compact set K with the origin in its interior, we have c0(K) =
c′0(K) = c′′0(K), where

c′0(K) : = inf
w∈Λ

1

2

∫ 1

0

h2
K(ẇ) dt(5.30)

c′′0(K) : = inf

{
T

2
: There exists a T -periodic orbit of XHK on ∂K

}
.

Proof Let w be a 1-periodic function in Λ that minimizes D. By Lemma 5.3, we can find
T > 0 and c ∈ R2n such that

(5.31) ẏ = T J̄∇H(y),

∫ 1

0

J̄y · ẏ dt = 1, 2TH(y) = 1,

∫ 1

0

G(ẏ) dt =
T

2
,

for y = J̄w + c. We then build z out of y by z(t) =
√
Ty(t/T ), so that z is T -periodic and

(5.32) ż = J̄∇H(z), A
(
z(·)
)

=
T

2
, 2H(z) = 1,

by Lemma 5.2. Hence z(·) is a periodic orbit of XH that lies on S = ∂K. This immediately
implies

(5.33) c0(K) ≤ c′0(K), c′′0(K) ≤ c′0(K).

For the reverse inequalities, let z be a periodic orbit of the Reeb vector field. By reversing
the orientation if necessary, we may assume that A(z) > 0. After a reparametrization, we
may assume that z is a T -periodic orbit of the vector field XH with H = HK , that lies on
the level set H = 1/2. Note that since H satisfies z · ∇H(z) = 2H, we have

1

2

∫ T

0

J̄z · ż dt =
1

2

∫ T

0

J̄z · J̄∇H(z) dt =
1

2

∫ T

0

2H(z) dt =
T

2
.

This implies that c0 = c′′0. Also this z (a T -periodic orbit of the vector field XH) satisfies
(5.32). Defining y(t) = T−1/2z(Tt) yields a 1-periodic function which satisfies the first three
equations in (5.31). We then take any constant c ∈ R2n and set w = J̄(c− y) so that (5.22)
is valid, which in turn can be used as in the proof of Lemma 5.3 to derive the last equation
of (5.31). As in the calculation right after (5.22), we can use (5.32) to assert that y ∈ Λ.
From this and the last equation of (5.31) we deduce that c′0(K) ≤ c0(K) = c′′0(K). This and
(5.33) complete the proof. �

Remark 5.1(i) In (5.1), we defined c0(K) for a convex set with smooth boundary. However
the equality c0(K) = c′0(K) gives us an expression that is well defined for arbitrary convex
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sets with nonempty interior. In fact if w is a minimizer for c′(K) and z is the corresponding
orbit as in Lemmas 5.2 and 5.3, then z still solves ż = J̄∇H(z) in some generalized sense.
Given any convex function H, we may define its subdifferential ∂H(z) as the set of vectors
v such that

H(a)−H(z) ≥ v · (a− z),

for all a ∈ R2n. Now the corresponding Hamiltonian ODE reads as

ż± ∈ J∂H(z),

where ż± denotes the left and right derivatives. Similarly, the line bundle `x for x ∈ ∂K
consists of lines in the direction Jv, where v ∈ ∂gK(x). So a Reeb orbit will be tangent to a
single line in the direction of J∇gK(x) if it passes through a point x ∈ ∂K at which ∇gK(x)
exists; otherwise there is a cone of directions {Jv : v ∈ ∂gK(x)} that represents `x.

(ii) When H = HK , then a T -periodic orbit z(·) on ∂K yields periodic orbits on the other
level sets of the same period. Indeed if λ > 0 and u(t) =

√
2λz(t), then u still solves

u̇ = J̄∇H(u), simply because ∇H is homogeneous of degree 1. What we learn from this is
that if T is the smallest period that a periodic orbit of XH can have on ∂K, then this T is
the smallest period that a non-constant periodic orbit can have any where in R2n. Moreover,
since H(u) = 2λH(z) = λ, then

c0 ({H ≤ λ}) = Tλ.

It is this formula that generalizes to the Hofer-Zehnder capacity in Chapter 6. �

Example 5.3 Let V and W be two open convex subsets of Rn with 0 ∈ V and W . Set
K = A× B, where A = V̄ and B = W̄ . This convex set does not have a smooth boundary.
Nonetheless we can use c′(K) to define its symplectic capacity as we discussed in Remark 5.1.
We certainly have

∂K =
(
∂V ×W

)
∪
(
V × ∂W

)
∪
(
∂V × ∂W

)
.

It is the set ∂U × ∂V that is responsible for the non-smoothness of ∂K. (For example if
n = 1, then K is a rectangle and ∂U × ∂V consists of its 4 corners.) To figure out how a
Reeb orbit looks like, let us use the Hamiltonian function gK for which K is the level set
{gK = 1}. In this case gK(q, p) = max{gA(q), gB(p)}, and ∂gK(x) = {∇gK(x)} is singleton
only in

(
∂V ×W

)
∪
(
V × ∂W

)
:

∇gK(q, p) =

{(
0,∇gB(p)

)
if (q, p) ∈ V × ∂W(

∇gA(q), 0
)

if (q, p) ∈ ∂V ×W.

The corresponding Hamiltonian vector field is given by

XgK (q, p) =

{(
∇gB(p), 0

)
if (q, p) ∈ V × ∂W(

0,−∇gA(q)
)

if (q, p) ∈ ∂V ×W.
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We now describe an orbit (q(t), p(t)) of XgK on ∂K with (q(0), p(0)) = (q0, p0) ∈ V × ∂W :

(i) While in V × ∂W , p(t) stays put and q(t) travels with velocity ∇gB(p0);

(ii) At some time t0, the position q(t) reaches the boundary ∂V . Then it enters the set
∂V ×W through the point (q(t0), p0) ∈ ∂V ×∂W . While in ∂V ×W , q(t) = q(t0) = q1 stays
put and p(t) travels in W with velocity −∇gA(q(t0)).

(iii) At some time t1, the momentum p(t) reaches the boundary ∂W . Then it enters the
set V × ∂W through the point (q(t0), p(t1)) ∈ ∂V × ∂W . Then (i) is repeated with (q0, p0)
replaced with (q(t0), p(t1)).

The orbit we described in (i)-(iii) is a trajectory of a Minkowski Billiard. To see why
we have a billiard, let us describe the orbit when W = B0(1) is the unit ball in Rn: Given
q0 ∈ V and p0 of length 1, we have the following orbit:

(i) A particle starts at q0 and travels with velocity p0 in V .

(ii) As q reaches the boundary at q1 = q(t0), it enters {q(t0)}×B0(1). Then q(t0) stays put
while p0 travels with velocity −n(q1) = −∇gA(q1) which is the inward normal to ∂V at q1.

(iii) As p(t) reaches the boundary of the unit ball at time t1, we simply have p1 = p(t1) =
p0 − 2(n1 · p1)n1, where n1 = n(q1). So, the relationship between p0 and p1 is that of a
specular reflection.

From the preceding description, it is clear the if we ignore the time spent in ∂V ×W , what
we have is a billiard trajectory. The part of dynamics spent in ∂V ×W is for transforming
the incident velocity p(t2i) to the reflecting velocity p(t2i+1). If we calculate the symplectic

action of an orbit
∫ T

0
p · dq, the part of the orbit inside ∂V ×W does not contribute because

q(t) stays put. From this we learn that for the capacity of K, we are dealing with a billiard
trajectory that is defined in the following way:

(i) We start from a point q0 ∈ V that has a velocity ∇gA(p0) with p0 ∈ ∂W . The q-point
travels according to its velocity until it reaches the boundary.

(ii) At the boundary point q1 = q(t0), the velocity changes from ∇gA(p0) to ∇gA(p1), where
p1 = ηB(p0, q1). The function ηB depends on the incoming velocity and the normal at the
boundary point.

Now a periodic Reeb orbit corresponds to a periodic Minkowski billiard trajectory. If we
write q0, q1, . . . , ql ∈ ∂V with ql = q1, for the hitting locations of a periodic Reeb orbit γ of
the boundary, then

A(γ) = (q1 − q0) · p0 + · · ·+ (ql − ql−1) · pl−1,

where p0, p1, . . . , pl are the corresponding momenta with pl = p1, and pi+1 = ηB(qi, pi).
In the case of a standard billiard (when B = B0(1) is the unit ball), we have that pi =
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(qi+1−qi)/|qi+1−qi|, and A(γ) is the total length of the billiard trajectory. So, c0

(
A×B0(1)

)
is simply the length of the shortest periodic billiard trajectory in the convex set A. �

In Example 5.3, we related c0(A × B) to the the shortest (with respect to B) periodic
billiard trajectories in A. However in general it is hard to calculate the capacity of a convex
body. We now state a conjecture that would allow us to compare the capacity of a set with
its volume.

Conjecture 5.1 (Viterbo) If B2n denotes the unit ball in R2n, then

(5.34)
c0(K)

c0(B2n)
≤
[
V ol(K)

V ol(B2n)

] 1
n

,

for every bounded convex set K ⊂ R2n. �
Of course we know that c0(B2n) = π and V ol(B2n) = πn/n!. Also we have equality in

(5.34) if K is a ball.
Recently Artstein-Avidan, Karasev and Ostrover have observed that Viterbo’s conjecture

implies an old conjecture of Mahler in Convex Geometry that was formulated in 1939.

Conjecture 5.2 (Mahler) For every centrally symmetric convex set A of Rn with 0 in its
interior,

(5.35) V ol(A) V ol(A◦) ≥ 4n/n!.

�
To see how (5.34) implies (5.35), observe that if we apply (??) to the set A × A◦, then

(5.34) reads as
cn(A× A◦)

πn
≤ n! V ol(A) V ol(A◦)

πn
,

which implies (5.34) if we can show that c0(A×A◦) ≥ 4. This inequality was established by
Artstein-Avidan et al. in [AKO]. According to [AKO],

c0(A×B) = 4 max{r > 0 : rB◦ ⊂ A}.

Remark 5.2(i) Several weaker versions of (5.34) have been already established. Viterbo
showed

c0(K)

c0(B2n)
≤ γn

[
V ol(K)

V ol(B2n)

] 1
n

,

where γn = 2n for a centrally symmetric K and γn = 32n for general convex K. Accord-
ing to Arestein-Avidan Milman and Ostrove (2007), we can choose the constant γn to be
independent of n.
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(ii) For a centrally symmetric convex set K with the origin in the interior, Gluskin and
Ostrover [GO] obtained the following bound(

sup
a,b∈K◦

ω̄(a, b)

)−1

≤ c0(K) ≤ 4

(
sup
a,b∈K◦

ω̄(a, b)

)−1

.

�

Exercise 5.1 (i) Verify Parts (i) and (ii) of Proposition 5.1.

(ii) Let w ∈ H1. Show that w(t) =
∫ t

0
ẇ(θ)dθ for almost all t. Also show

|w(t)− w(s)| ≤ ‖ẇ‖L2 |t− s|
1
2 .

for s, t ∈ [0, 1] and L2 = L2[0, 1]. (iii) Prove that if y ∈ H1 and
∫ 1

0
y dt = 0, then

‖y‖L2 ≤ 1

2π
‖ẏ‖L2 .

(iv) Show that if A is a centrally symmetric convex subset Rn with 0 in its interior, then
c0(A× A◦) ≤ 4. (Hint: Show that if the Hamiltonian flow starts from (0,∇gA(q)) for some
q ∈ ∂A then it reaches the boundary at q and reflect backs on itself to hit ∂A at −q for the
next hitting location. Such a periodic orbit has the value 4 for its action.) �

69



6 Capacities and Their Applications

In this chapter we assume the existence of a capacity for the symplectic manifolds and
deduce several properties of Hamiltonian systems. As we mentioned in the introduction the
non-squeezing theorem of Gromov inspired the search for symplectic capacities.

In (5.1), we assign a positive number c0(K) to every convex set with nonempty interior.
By Theorem 5.2, we have an alternative variational expression c′0(K) for c0(K) that allows
us to easily verify two important properties of c0(·):

(6.1) K ⊆ K ′ ⇒ c0(K) ≤ c0(K ′), c0(λK) = λ2c0(K),

for every λ > 0. Moreover, (5.1) allows us to show that c0(K) is invariant under a symplectic
change of coordinates. More precisely, if ψ is a symplectic diffeomorphism and both K and
ψ(K) are convex then

(6.2) c0(K) = c0(ψ(K)),

because (dψ)xTx(∂K) = Tψ(x)(∂ψ(K)), which implies

(dψ)x
(
`x(∂K)

)
= `ψ(x)(ψ(∂K)),

where the line `x(A) denotes the kernel of ω̄|A. (See also (4.12) and Proposition 4.4.) Clearly
the finiteness of c0(K) is exactly Weinstein’s conjecture for convex subsets of R2n. We now
wonder whether c0(·) has an extension to all subsets of R2n. The finiteness of c0(A) for a
bounded A would lead to the existence of a periodic orbit of the Reeb vector field on ∂A as we
discussed in Remark 4.4. As a naive guess we may try c0(K) = inf |A(γ)|, with infimum over
the periodic characteristic of the line bundle `x(∂K), which is always well-defined because ω̄
is symplectic. But this cannot be a useful extension for our purposes because many smooth
hypersurfaces carry no periodic orbit as we saw in Example 4.3. We will offer shortly several
legitimate extensions of (5.1). Let us first formulate our wish-list for what an extension
should satisfy.

Definition 6.1 Write P
(
R2n
)

for the set of subsets of R2n. Then c : P
(
R2n
)
→ [0,∞] is

called a weak Euclidean capacity if the following conditions hold:

(i) If ψ : R2n → R2n is a symplectomorphism (i.e., a symplectic diffeomorphism with
ψ(R2n) = R2n) and ψ(A) ⊆ B then c(A) ≤ c(B).

(ii) c(λA) = λ2c(A) for λ > 0.

(iii) c(B2n(1)) > 0 and c(Z2n(1)) <∞, where B2n(1) is the Euclidean ball of radius 1, and
Z2n(1) is the cylinder {(q, p) : q2

1 + p2
1 ≤ 1}.
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We say c is a strong Euclidean capacity if in place of (iii), we require the stronger
assumption

c(B2n(1)) = c(Z2n(1)) = π.

�

Definition 6.2 Write SM for the set of all symplectic manifolds. Then c : SM → [0,∞]
is a weak symplectic capacity if the following conditions hold:

(i) If ψ : (M1, ω1) → (M2, ω2) is a symplectic embedding and dimM1 = dimM2, then
c(M1, ω1) ≤ c(M2, ω2).

(ii) c(M,λω) = λc(M,ω) for λ > 0.

(iii) c(B2n(1), ω̄) > 0, and c(Z2n(1), ω̄) <∞.

We say c is a strong symplectic capacity if in place of (iii), we require the stronger
assumption

(6.3) c(B2n(1), ω̄) = c(Z2n(1), ω̄) = π.

�

Note that the condition c(B2n(1), ω̄) > 0, guarantees that c ≡ 0 is not a capacity.
The requirement c(Z2n(1)) < ∞, disqualifies c(M,ω) = |

∫
M
ωn|1/n, n = dim(M), to be a

capacity. A strong capacity for symplectic manifolds can be used to define a strong Euclidean
capacity by

(6.4) c(A) = inf
{
c(U, ω̄) : A ⊆ U, U open in R2n

}
.

The proof of this is left to the reader (Exercise 6.1(i)).
We now define four capacities.

Definition 6.3(i) (Gromov Width)

c(M,ω) = sup
{
πr2 : There exists an embedding from (B2n(r), ω̄) into (M,ω)

}
,

c̄(M,ω) = inf
{
πr2 : There exists an embedding from (M,ω) into (Z2n(r), ω̄)

}
(ii) (Hofer-Zehnder Capacity) Given a symplectic (M,ω), we first set H(M) to denote the
set C1 functions H : M → [0,∞) such that H = maxH outside a compact subset of M and
H = minH = 0 on some non-empty open set. We then set

Ĥ(M,ω) = {H ∈ H(M) : XH has no periodic orbit of period T ∈ (0, 1]}.

71



We now define

(6.5) cHZ(M,ω) = sup
H∈Ĥ(M,ω)

maxH.

(iii) (Displacement Energy) First we define it for open subsets U ⊆ R2n. Given a time
dependent Hamiltonian function H : R2n × [0, 1]→ R, define

‖H‖∞,1 :=

∫ 1

0

(
sup
x
H(x, t)− inf

x
H(x, t)

)
dt.

We then define the displacement energy of a set U by

e(U) := inf
{
‖H‖∞,1 : φH1 (U) ∩ U = ∅, H is of compact support

}
.

As in (6.4), we may also define e(A) for arbitrary subsets of R2n. More generally, if (M,ω)
is symplectic and U is an open subset of M , then

e(U ;M,ω) := inf
{
‖H‖∞,1 : φH,ω1 (U) ∩ U = ∅, H is of compact support

}
.

�

Remark 6.1(i) The motivation behind the definition is Gromov’s non-squeezing theorem.
Later in Chapter 10, we give a minimax-type expression for c and c̄ that is based on Gromov’s
proof of non-squeezing theorem and involves pseudo-holomorphic curves.

(ii) Let us write

Tmin(H;ω) = Tmin(H) = inf
{
T : Xω

H has a non-constant periodic orbit of period T
}
.

We may then write

cHZ(M,ω) = sup
H∈H(M)

{
maxH : Tmin(H;ω) ≥ 1

}
.

Obviously,
cHZ(M,ω) ≤ sup

H∈H(M)

(
Tmin(H;ω) maxH

)
.

Since a T -periodic orbit x(·) of XH yields a T/λ-periodic orbit y(t) = x(tλ) of XλH , we learn

(6.6) Tmin(λH) = λ−1Tmin(H),

for every λ > 0. As a result, if H ∈ H(M) and T̄ = Tmin(H), then Tmin(T̄H) = 1 and
T̄H ∈ Ĥ(M,ω), which in turn implies that T̄ maxH ≤ cHZ(M,ω). In summary, for every
H of compact support,

(6.7) Tmin(H;ω) ≤ cHZ(M,ω)

maxH
, and cHZ(M,ω) = sup

H∈H(M)

(
Tmin(H;ω) maxH

)
.
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When M = U is a convex open subset of R2n with 0 ∈ U and K = Ū , then we may set
H = min{HK , 1/2} so that H = 1/2 in the complement of K and H(0) = 0. In some sense H
is the Hamiltonian for which the supremum in (6.7) is attained. Since H /∈ H(U), we choose a
sequenceHl ∈ H(U) so thatHl → H as l→∞. This implies that cHZ(U) = cHZ(Ū) ≥ c(Ū).
The details are left to the reader (see Exercise 6.1((v)).

(iii) If XH = X ω̄
H has a periodic orbit x of period T , then y(t) = x(Tt) is 1-periodic and

solves ẏ = T J̄∇H(y). By differentiating we obtain ÿ = T J̄D2H(y)ẏ, which in turn yields
the bound

‖ÿ‖L2 ≤ aT‖ẏ‖L2 ≤ aT

2π
‖ÿ‖L2 ,

where a = max |D2H| and for the last inequality we used Exercise 5.1(iii). From this we
learn

(6.8) Tmin(H) ≥ 2π

max |D2H|
.

However, the capacity cHZ(M,ω), provides us with an upper-bound on the period that
depends on ‖H‖ only. Note that if we write T (H) = T (H;ω) for Tmin(H;ω), then in some
sense, T (H) measures the size of the function H in some symplectic sense. In fact, for
H ∈ H(U) and λ > 0,

T (λH) = λT (H), cHZ(U)−1 maxH ≤ T (H) ≤ (2π)−1 max |D2H|.

(iii) From comparing (6.8) with (6.7) we deduce the bound

‖H‖ ≤ (2π)−1cHZ(U) max |D2H|,

for every H with compact support in U . In fact it is elementary to show

‖H‖ ≤ diam(U) max |∇H|, max |∇H| ≤ diam(U) max |D2H|,

where diamU denotes the diameter of U . So, we have maximum-type-principle inequality of
the form

‖H‖ ≤ diam(U)2 max |D2H|.
According to Alexandroff-Bakelman-Pucci (ABP) Maximum Principle,

max
U

u ≤ max
∂U

u+
diam(U)

V ol(B2n)1/n

[∫
U

| detD2u| dx
] 1
n

.

In Viterbo [V], a symplectic geometry proof of ABP is given by using Hofer’s theorem for
the displacement energy (Theorem 6.2 (iv) below). �

Here are some straightforward properties of capacities.

73



Proposition 6.1 Suppose that c is a strong capacity.

(i) For every ellipsoid E, we have c(E, ω̄) = πr1(E)2.

(ii) For every symplectic manifold (M,ω),

c(M,ω) ≤ c(M,ω) ≤ c̄(M,ω).

Proof By Corollary 2.2, the ellipsoid E is symplectomorphic to the ellipsoid

E ′ =

{
x :

n∑
1

r−2
j (q2

j + p2
j) ≤ 1

}
.

Hence c(E, ω̄) = c(E ′, ω̄). On the other hand,

B2n(r1) ⊆ E ⊆ Z2n(r1).

As a result, πr2
1 ≤ c(E ′, ω̄) = c(E, ω̄) ≤ πr2

1. This completes the proof of (i). The proof of
(ii) is left as an exercise. �

In Chapter 5 we had a candidate for the symplectic capacity of a convex set. It is
conjectured that all capacities coincide on convex sets.

Conjecture 6.1 (Viterbo) For every convex subset K of R2n with nonempty interior, c(K) =
c̄(K). �

In Chapter 7 we will show that cHZ is a capacity.

Theorem 6.1 The Hofer-Zehnder function cHZ is a strong capacity.

Remark 6.2 As we will see in Exercise 6.1(iv), it is not hard to show that cHZ
(
B2n(1)

)
≤ π.

Chapter 7 is devoted to the proof of cHZ
(
Z2n(1)

)
≤ π. Let us explain how the coarea

formula can be used to prove the latter bound for n = 1. In fact we can even show that
cHZ(U) ≤ area(U) for every connected open set in the plane. According to the coarea
formula, ∫

f |∇H| dx =

∫ ∞
−∞

(∫
{H=r}

f d`

)
dr,

where dx and d` denote the area and the length integration (see Proposition 4.5 and Re-
mark 4.4, or [EG] for the coarea formula). Hence if H ∈ H(M) with support in an open set
U ,

(6.9) area (U ∩ {∇H 6= 0}) =

∫ maxH

0

(∫
U∩{H=r}

11(∇H 6= 0)
d`

|∇H|

)
dr.
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Now if x(·) is a periodic orbit of period T that lies on the level set {H = r}, then its arc
length is given by

d` = |ẋ(t)|dt = |∇H(x(t))|dt.

Hence

(6.10)

∫
U∩{H=r}

11(∇H 6= 0)
d`

|∇H|
≥ T

If T̂ is the smallest possible period for the non-constant periodic orbits of XH , then by (6.9)
and (6.10), we have

(maxH)T̂ ≤ area(U).

This in turn implies that cHZ(U) ≤ area(U). For the reverse inequality cHZ(U) ≥ area(U),
we need to find H : U → [0,∞) so that each nonzero level set {H = r} consists of exactly
one periodic orbit of period very close to area(U). In fact when U is convex with 0 ∈ U , then
a slight modification of HŪ would do the job as we demonstrated this in Remark 5.1(ii).
If U is simply connected, we can find an area preserving ϕ such that ϕ(B2n(r)) = U with
πr2 = area(U). Then a modification of H(x) = |x|2 yields a Hamiltonian in H(B2n(r), and
this will be pushed forward to U by ϕ to yield the desired Hamiltonian. �

We now discuss four fundamental results in symplectic geometry that will be established
in this chapter with the aid of Theorem 6.1.

Theorem 6.2 (i) (Gromov) If there exists a symplectic diffeomorphism ψ : R2n → R2n with
ψ(B2n(r)) ⊆ Z2n(R), then r ≥ R.

(ii) (Gromov, Eliashberg) If ψk : R2n → R2n are symplectomorphisms such that ψk → ψ
uniformly with ψ a diffeomorphism, then ψ is symplectic.

(iii) (Viterbo) The Reeb vector field of a closed hypersurface S of contact type in R2n has a
periodic orbit.

(iv) (Hofer) For every open set U , we have cHZ(U) ≤ e(U).

As we will see later, parts (i) and (ii) are consequences of the existence a strong sym-
plectic capacity. Though (iii) and (iv) relies on the form of cHZ .

Proof of Theorem 6.2(i) If ψ is a symplectomorphsim with ψ(B2n(r)) ⊆ Z2n(R), and c
is a strong capacity, then

r2π = c(rB2n(1)) = c(B2n(r)) = c(ψ(B2n(r)) ≤ c(Z2n(R)) = R2π,

as desired.
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Proof of Theorem 6.2(iii) On account of Proposition 4.4, we only need to show that if
K = KS, then the Hamiltonian vector field XK has a periodic orbit in a bounded neighbor-
hood V of S. Recall that there exists an open set U with U = ∪t∈(−δ,δ)St, and K(Ss) = es.
To turn K to a Hamiltonian H ∈ H(U), take a smooth function g : [e−δ, eδ] → [0, 1] such
that

g(r) = 0 for r ≤ e−δ/2, g(r) = 1 for r ≥ eδ/2, g′(r) > 0 for e−δ/2 < r < eδ/2.

If we H = g(K), then H ∈ H(U). By Theorem 6.1, we know that cHZ(U) <∞. From this
and (6.7), we deduce that XH has a non-constant periodic orbit in U . This periodic orbit
must lie in

V = ∪{St : t ∈ (−δ/2, δ/2)}.
We are done by Proposition 4.4. �

We now turn to the proof of Theorem 6.2(ii). The key idea of the proof is an equivalent
criterion for the symplecticity of a transformation that does not involve any derivative. This
should be compared to the notion of a volume preserving transformations. We can say that
a transformation is volume preserving if its Jacobian is one, or equivalently it preserves the
volume. The latter criterion is more useful when we want to show that a limit of a sequence
of measure preserving transformations is again measure preserving.

Theorem 6.3 (Ekeland-Hofer) Let c be a strong capacity and let ψ : R2n → R2n be a
diffeomorphism. Then the following statements are equivalent:

(i) For every small ellipsoid E, we have c(ψ(E)) = c(E).

(ii) Either ψ∗ω̄ = ω̄ or ψ∗ω̄ = −ω̄.

Proof Evidently if ψ∗ω̄ = ω̄, then (i) is true. If ψ∗ω̄ = −ω̄, then ψ̂∗ω̄ = ω̄ for ψ̂ = ψ ◦ τ ,
where τ is given by τ(q, p) = (p, q). We then have that for an ellipsoid E, c(ψ(τ(E))) = c(E).
On the other hand, if E is a standard ellipsoid given by

n∑
i=1

r−2
i (q2

i + p2
i ) ≤ 1,

then τ(E) = E. Hence for such ellipsoids, c(ψ(E)) = c(E). Since for any symplectic ϕ we
have (ψ ◦ ϕ)∗ω̄ = −ω̄, we also have

c(ϕ(E)) = c(E) = c(ψ(ϕ(E))),

for any standard ellipsoid . Now any ellipsoid can be represented as ϕ(E) for some linear
symplectic ϕ and a standard E. This completes the proof of (ii) ⇒ (i).
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For the converse, assume (i) is true and define

φk(x) = k(ψ(a+ k−1x)− ψ(a)).

We have that φk(x) → ψ′(a)x locally uniformly as k → ∞. Note that if E is an ellipsoid
and ψ satisfies (i), then

c(φk(E)) = c(kψ(a+ k−1E)− kψ(a))

= k2c(ψ(a+ k−1E))

= k2c(k−1E) = c(E).

On the other hand, it follows from Lemma 6.1 below that limφk(·) = ψ′(a) also satisfies
(i). We finally use Theorem 2.3 to deduce that the matrix A = ψ′(a) satisfies A∗ω̄ = ω̄ or
A∗ω̄ = −ω̄. By continuity we have ψ(a)′∗ω̄ = ω̄ for all a or ψ(a)′∗ω̄ = −ω̄ for all a. �

To complete the proof of Theorem 6.3, we till need to show that the property (i) of
Theorem 2.3 is preserved under a uniform limit. In Lemma 6.1 we prove a stronger variant
that does not assume that the functions {ψk}k∈N are diffeomorphism.

Lemma 6.1 Let {ψk} be a sequence of continuous functions for which (i) of Theorem 6.3 is
valid. If ψk → ψ locally uniformly and ψ is a homeomorphism, then ψ satisfies (i) as well.

Proof Imagine that we can prove this: For every λ ∈ (0, 1) and every 0-centered ellipsoid
E, there exists k0 such that for k > k0 we have

(6.11) ψk(λE) ⊆ ψ(E) ⊆ ψk(λ
−1E).

Then we are done because

c(ψ(E)) ≤ c(ψk(λ
−1E)) = c(λ−1E) = λ−2c(E),

c(ψ(E)) ≥ c(ψk(λE)) = c(λE) = λ2c(E)

and yields property (i) for ψ by sending λ to 1.
To establish (6.11), let us write ϕk = ψ−1◦ψk. Clearly the sequence ϕk converges identity,

locally uniformly in large k limit. From this it is clear that for large k,

ψ−1 ◦ ψk(λE) ⊆ E,

establishing the first inclusion in (6.11).
If ψk is a homeomorphism for each k, then the second inclusion in (6.11) can be established

in the same way. It remains to show that for large k,

(6.12) E ⊆ ϕk(λ
−1E),
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even when ψk’s are not homeomorphism. If (6.12) fails, then there exists a sequence kl →∞
and yl ∈ E such that yl /∈ ϕkl(λ−1E). This allows us to define

Fl(x) =
ϕkl(x)− yl
|ϕkl(x)− yl|

,

for x ∈ λ−1E =: Eλ. It follows from Lemma A.1 of the Appendix that deg fl = 0 where
fl : ∂Eλ → S2n−1 is the restriction of Fl to ∂Eλ. On the other hand, we may define

gl : ∂Eλ → ∂S2n−1 by gl(x) =
ϕkl (x)

|ϕkl (x)| . The function gl is well-defined for large l because ϕkl
is uniformly close to identity over the set ∂Eλ. The function gl has deg 1 simply because gl
is uniformly close to x 7→ x

|x| which has degree 1. To arrive at a contradiction, it suffices to

show that gl is homotopic to fk. (By Lemma A.1 homotopic transformations have the same
degree.) For homotopy, define

Φl(x, t) =
ϕkl(x)− tyl
|ϕkl(x)− tyl|

,

for x ∈ ∂Eλ, t ∈ [0, 1]. Again, since ϕk → id and tyl ∈ E the homotopy is well-defined.
�

With Theorem 6.3 and Lemma 6.1 at our disposal, we can now give a straightforward
proof for Theorem 6.2((iii).

Proof of Theorem 6.2(iii) Let ψk be a sequence of symplectic transformations such that
ψk → ψ locally uniformly. Assume that ψ is a diffeomorphism. By Lemma 6.1, ψ preserves
the capacity of ellipsoids and by Theorem 6.3, either ψ∗ω̄ = ω̄ or ψ∗ω̄ = −ω̄. We now need
to rule out the second possibility. Indeed if ψ∗ω̄ = −ω̄, and we define

φn = ψn × id : R4n → R4n, ω = ω̄ × ω̄,

then φ∗nω = ω, and φn → φ := ψ×id locally uniformly. But φ∗ω = ψ∗ω̄×ω̄ = (−ω̄)×ω̄ 6= ±ω.
As a result, we must have ψ∗ω̄ = ω̄. �

Motivated by Theorem 6.3, we may define the notion of symplecticity for homeomor-
phism. Note that if ψ : R2n → R2n is a diffeomorphism with ψ∗ω̄ = −ω̄, then ψ∗ω̄n =
(−1)nω̄n, and if n is odd then ψ can not be orientation preserving. Based on this we have
the following definition.

Definition 6.3 Let ψ : R2n → R2n be a homeomorphism. We say ψ is a symplectic
homeomorphism if either n is odd and ψ is an orientation preserving transformation for
which c(ψ(E)) = c(E) for every ellipsoid E. Or n is even and ψ × id : R2n+2 → R2n+2 is a
symplectic homeomorphism.
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From the proof of Theorem 6.2(iii) it is clear that if ψk is a sequence of symplectic home-
omorphism such that ψk → ψ locally uniformly, then ψ is also a symplectic homeomorphism.

We now turn our attention to the energy displacement. A fundamental theorem of Hofer
relates e to cHZ :

Theorem 6.4 For every set A ⊂ R2n,

(6.13) cHZ(A) ≤ e(A).

The proof of Theorem 6.3 will be given in Chapter 8. Following [MS], we use Theo-
rem 6.1(iii) to establish a weaker version of Theorem 6.3 but in the more general setting:

Theorem 6.5 Let (M,ω) be a symplectic manifold such that cHZ(M × B2(r) ≤ πr2 for
every r > 0. Then for every open set U ⊂M ,

(6.14) c(U, ω) ≤ 2e(U ;M,ω).

Note that the condition c(M × B2(r) ≤ πr2 is valid for M = R2n. As a preparation, we
start with two straightforward propositions:

Proposition 6.2 Let (M,ω) be a symplectic manifold, and H : M × R → R be a time
dependent Hamiltonian function. Set

M̃ := M × R2 = {(x, h, t) : x ∈M, h, t ∈ R}, ω̃ := ω + dt ∧ dh,
ψ(x, h, t) := (φt(x), h+H (φt(x), t) , t) ,

with φt = φH,ωt . Then transformation ψ is ω̃-symplectic.

Proof Observe that if z = (x, h, t) and ẑ = (x̂, ĥ, t̂) ∈ TxM × R2, then

(dψ)z ẑ =
(

(dφt)xx̂+ t̂XH(φt(x)), ĥ+ t̂Ht (φt(x), t) + (dH)φt(x)

(
t̂XH(φt(x)) + (dφt)xx̂

)
, t̂
)
.

As a result,
(
ψ∗ω̃

)
z
(ẑ, ẑ′) equals to

(φ∗tω)x (x̂, x̂′) + t̂ ωφt(x) (XH(φt(x)), (dφt)xx̂
′)− t̂′ ωφt(x) (XH(φt(x)), (dφt)xx̂)

+ (dt ∧ dk)
((

ĥ+ t̂Ht (φt(x), t) + (dH)φt(x)

(
t̂XH(φt(x)) + (dφt)xx̂

)
, t̂
)
,(

ĥ′ + t̂′Ht (φt(x), t) + (dH)φt(x)

(
t̂′XH(φt(x)) + (dφt)xx̂

′) , t̂′))
= ωx(x̂, x̂

′) + (φ∗t (iXHω))x (t̂x̂′ − t̂′x̂) + (dt ∧ dk)
(
(ĥ, t̂), (ĥ′, t̂′)

)
+ (dt ∧ dk)

((
d(H ◦ φt)xx̂, t̂

)
,
(
d(H ◦ φt)xx̂′, t̂′

))
= ω̃z(ẑ, ẑ

′)− (φ∗tdH)x (t̂x̂′ − t̂′x̂) + (dt ∧ dk)
((
d(H ◦ φt)xx̂, t̂

)
,
(
d(H ◦ φt)xx̂′, t̂′

))
= ω̃z(ẑ, ẑ

′),
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as desired. �

Remark 6.3(i) In the case of M = R2n, simply write φt(q, p) = (Q,P ), and k = h +
H
(
φHt (x), t

)
, and observe∑

i

dP i ∧ dQi + dt ∧ dk =
∑
i

dpi ∧ dqi +
∑
i

[
P i
t dQ

i ∧ dt+Qi
t dt ∧ dP i

]
+ dt ∧ dh

+
∑
i

[
Hqi(Q,P, t) dQ

i ∧ dt+Hpi(Q,P, t) dP
i ∧ dt

]
=
∑
i

dpi ∧ dqi + dh ∧ dt.

(ii) Observe that if α = p · dq − H(x, t)dt, then dα = ω̄ + dt ∧ dh, where h = H(x, t).
Regarding h as a new coordinate we get ω̃ = ω̄ + dt ∧ dh. It is worth mentioning that if
Ĥ(x, h, t) = H(x, t)− h, and H t(x, s) := H(x, t+ s), then

φĤ,ω̃s (x, h, t) =
(
φH

t,ω̄
s (x), H

(
φH

t,ω̄
s (x), t+ s

)
−H(x, t) + h, t+ s

)
,

which resembles ψ. �

Proposition 6.3 For any pair of sympletic manifolds (M,ω) and (M ′, ω′), we have

(6.15) cHZ(M ×M ′, ω ⊕ ω′) ≥ min
{
cHZ(M,ω), cHZ(M ′, ω′)

}
.

Proof Given H ∈ H(M) and H ′ ∈ H(M ′) with maxH = maxH ′ = 1, set K(x, y) =
H(x)H ′(y). Note thatK ∈ H(M×M ′) with maxK = 1, andXK(x, y) = (H ′(y)XH(x), H(x)XH′(y)).
Moreover if ż = XK(z), with z = (x, y), then

ẋ = H ′(y)XH(x), ẏ = H(x)XH′(y).

Clearly
d

dt
H(x) =

d

dt
H ′(y) = 0.

So if z is a T -periodic orbit with λ = H(x) and λ′ = H(y), then x̂(t) = x(t/λ) is a Tλ
periodic orbit of XH and ŷ(t) = y(t/λ′) is a Tλ′ periodic orbit of XH′ . Hence

T ≥ λT ≥ Tmin(H,ω), T ≥ λ′T ≥ Tmin(H ′, ω′).

If both x and y are non-constant. Similarly, if x or y is constant but not both, then either
T ≥ Tmin(H,ω), or T ≥ Tmin(H ′, ω′). In summary,

Tmin(K,ω ⊕ ω′) ≥ min
{
Tmin(H,ω), Tmin(H ′, ω′)

}
.
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By taking the supremum over such pairs of (H,H ′), we get (6.15). �

Proof of Theorem 6.4 To ease the notation, we write ‖ · ‖ for ‖ · ‖∞,1. First observe
that it suffices to establish (6.14) for open sets U that are symplectomorphic to Euclidean
balls Br = {x : |x| ≤ r}. More precisely, imagine that we can show the the following: If
ϕ : (Br, ω̄)→ (U, ω) is a symplectic embedding, and φ = φH,ω1 displaces V = ϕ(Br), then

(6.16) πr2 ≤ 2‖H‖.

Once this is established, we then take the infimum over such H to deduce

πr2 ≤ 2e(V ;M,ω) ≤ 2e(U ;M,ω).

We then take the supremum over such balls to conclude (6.14).
Before embarking on the proof (6.16), let us explain the idea behind the proof. Observe

that the condition φH1 (V )∩V = ∅ is a property of the flow at time 1, whereas the right-hand
side of (6.15) involves the Hamiltonian function H. Because of this, we switch from φH1 to
ψ of Proposition 6.2 that explicitly involves the Hamiltonian function. Let us define

h+(t) = max
x

H(x, t), h−(t) = min
x
H(x, t), ψ0(x, t) = ψ(x, 0, t), Γ = ψ0(V × [0, 1]).

The set Γ is a hypersurface in M̃ , and Γ ⊆M × A0, where

E0 = {(h, t) : t ∈ [0, 1], h ∈ [h−(t), h+(t)]},

In other words, ψ0 embeds V × [0, 1] into a cylinder like set M × E0, and we wish to show

(6.17) πr2 ≤ 2 area(E0).

This indeed has the same flavor as our non-squeezing fact Theorem 6.2(iii), though V × [0, 1]
is not a symplectic manifold. To rectify this, we replace [0, 1] with a planar set A and use ψ
instead of ψ0. More precisely,

A =
(
[−a, a]× [−2a, 0]

)
∪
(
[−ε, ε]× [0, 1]

)
∪
(
[1, 2a]× [−2a, 0]

)
=: A− ∪ A0 ∪ A+.

Note that since V is an open set, we may change H slightly without losing the property
φ(V ) ∩ V = ∅. More precisely, if we take a smooth function χ = χδ such that 0 ≤ χ ≤ 1,
χ(t) = 1, for t ∈ [δ, 1 − δ], and χ(t) = 0 for t /∈ (0, 1), then for the Hamiltonian function

H ′(x, t) = χ(t)H(x, t), we have that ‖H‖ − ‖H ′‖ = O(δ), and if φ′ = φH
′,ω

1 , then φ′ is close
to φ = φH,ω1 and we still have φ′(V ) ∩ V = ∅, for sufficiently small δ. So without loss of
generality, we may assume that H(x, t) = 0 for t close to 0 or 1. This allows us to extend
H for all times by setting H(x, t) = 0 for t < 0 or t > 1. We set U = Br × A with A a
connected open subset of R2. Note
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• ψ(x, h, t) = (x, h, t) for t ≤ 0,

• ψ(x, h, t) = (φ(x), h, t) for t ≥ 1.

As a result, if we write W± = V × A±, W 0 = V × A0, then

ψ(W−) = W−, ψ(W+) = φ(V )× A+, ψ(U0) ⊂M × E(ε),

where E(ε) is a small neighborhood of E0 for small ε. We have the embedding

ψ : V × A ↪→M × (A− ∪ E(ε) ∪ A+).

We now want to use φ(V ) ∩ V = ∅ to replace Z with a slimmer cylinder. To achieve this,
take a symplectic covering map λ : R2 →

[
R× S1

]
∪
[
R× (0,∞)

]
such that

λ(R× [0, 1]) = R× S1, λ(h, t) = (h, 1− t), for t ≥ 1.

Since φ(V ) ∩ V = ∅, we have that the map ψ̂(x, h, t) = ψ(x, λ(h, t)) is a symplectic diffeo-
morphism. This time

(6.18) ψ̂ : V × A ↪→M × (A− ∪ E ′(ε)) := M × E ′′.

with area(E ′(ε))→ ‖H‖ as ε→ 0. From (6.18) we learn

(6.19) cHZ(V × A) ≤ cHZ(M × E ′′).

Choose an area preserving diffeomorphism ζ with ζ(E ′′) is a disc D with area(E ′′) =
area(D). Using the symplectic map id × ζ we learn that M × E ′′ is symplectomorphic
to M ×D and by assumption cHZ(M ×D) ≤ area(D). Hence cHZ(M × E ′′) ≤ area(E ′′).
On the other hand V × A is symplectomorphic to Br × A. Hence (6.19) implies

(6.20) cHZ(Br × A) ≤ area(E ′′).

To get a lower bound for the left-hand side, observe that by Theorem 6.1 and Proposition 6.3,

cHZ(Br × A) ≥ min{πr2, area(A)}.

This and (6.20) yield min{πr2, area(A)} ≤ area(E ′′). We then send ε to 0 to obtain

min{πr2, 2(2a)2} ≤ (2a)2 + ‖H‖.

Finally choosing r so that πr2 = 2(2a)2, yields πr2/2 ≤ ‖H‖. This completes the proof of
(6.16), which in turn implies (6.14). �

Exercise 6.1(i) Show that c given by (6.4) is a strong Euclidean capacity.
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(ii) Verify properties (i) and (ii) for c, c̄, cHZ , and Euclidean e. (Hint: For e, use Ĥ(x) =
λ2H(x/λ).)

(iii) Verify Proposition 6.1(ii).

(iv) Show that cHZ(B2n(1), ω̄) ≥ π.

(v) Show that cHZ(K, ω̄) ≥ c0(K) for every bounded convex subset of R2n with nonempty
interior.

(vi) Show that e(U) = area(U) for every simply connected open subset U ⊂ R2. Use this
to show e(Z2n(1)) ≤ π. Hint: Use Exercise 3.1(vi) to reduce the problem to the case of
U = [0, a]2. �
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7 Hofer-Zehnder Capacity

This section is devoted to the proof of Theorem 6.1. In fact we have the following result of
Hofer and Zehnder.

Theorem 7.1 For every convex set K of nonempty interior, cHZ(K) = c0(K).

On account of Exercise 6.1(v), we only need to show that cHZ(K) ≤ c0(K). Similarly,
for Theorem 6.1, we only need to verify cHZ(Z2n(1), ω̄) ≤ π. We now state a theorem that
would imply this.

Theorem 7.2 Assume H0 ∈ Ĥ(Z2n(1)) with supH0 > π. Then the Hamiltonian flow of H0

has a non-constant periodic orbit of period 1.

Let H0 ∈ H(Z2n(1)). In fact we may assume that H0 vanishes near the origin. This
is because we may replace H with H ◦ ψ for a symplectic ψ : Z(1) → Z(1) that satisfies
ψ(x) = x outside a compact subset of Z(1). Indeed we may choose ψ = φh1 where h is a
suitable Hamiltonian function that vanishes outside a compact subset of Z(1). For example,
first choose h0(x) = J̄x · a for a fix vector a, so that φh0

1 (x) = x + a, then set h = h0χ,
where χ is a function of compact support in Z(1) that is identically 1 in a neighborhood of
the line segment connecting the origin to a. Using such ψ, we may shift a minimizer of H
to the origin. Since the flows of XH and XH◦ψ are conjugated, it suffices to find the desired
1-periodic orbit for H0 ◦ ψ. From now on we assume that H0 in Theorem 7.2 vanishes near
the origin.

As our next step we extend H0 to a Hamiltonian function H : R2n → R. For this, we
take an ellipsoid

E0 =

{
x ∈ R2n : Q(x) = q2

1 + p2
1 +

1

l2

n∑
j=2

(q2
j + p2

j) < 1

}
.

Since H0 ∈ H(Z2n(1)), we have that H0 = maxH0 for x /∈ K where K is a compact subset
of Z := Z2n(1). Choose l sufficiently large so that K ⊆ E0. We now pick ε > 0 so that
maxH0 > π+ ε and pick a smooth function f : [0,∞)→ [0,∞) such that f(r) = maxH for
r ∈ [0, 1], f(r) = (π + ε)r for large r, f(r) ≥ (π + ε)r for all r, and 0 < f ′(r) ≤ π + ε for
r > 1. We now define

(7.1) H(x) =

{
H0(x) if x ∈ E0,

f(Q(x)) if x /∈ E0.

We note that H(x) = (π + ε)Q(x) for large x.
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Lemma 7.1 Assume that x(·) is a 1-periodic solution of ẋ = J̄∇H(x) with

(7.2) A(x(·)) =

∫ 1

0

(
1

2
J̄x · ẋ−H(x)

)
dt > 0.

Then x(t) ∈ E0 for all t and x(·) is non-constant.

Proof Evidently XH = 0 on ∂E0. Hence, all points on ∂E0 are equilibrium points and if
x(t) ≡ a ∈ ∂E0, then A(x(·)) = −H(a) ≤ 0 which contradicts (7.2). As a result, either
x(t) ∈ E0 for all t, or x(t) /∈ E0 for all t. It remains to rule out the latter possibility.

If x(t) /∈ E0 for all t, then

ẋ = J̄∇H(x) = f ′(Q(x))J̄∇Q(x),

d

dt
Q(x) = f ′(Q(x))∇Q(x) · J̄∇Q(x) = 0.

Hence, for such x(·) we have that Q(x(·)) = Q0, and

A(x(·)) =

∫ 1

0

(
1

2
J̄x · ẋ−H(x)

)
dt

=

∫ 1

0

[
1

2
f ′(Q0)∇Q(x) · x− f(Q0)

]
dt

= f ′(Q0)Q0 − f(Q0) ≤ (π + ε)Q0 − (π + ε)Q0 = 0,

which contradicts (7.2). Here we used the fact that 2Q(x) = ∇Q(x) · x. �

In view of Lemma 7.1, we only need to find a critical point of A which satisfies (7.2). Let
us first observe that A is not bounded from below or above. Indeed if yk(t) = (cos 2πkt)a+
(sin 2πkt)J̄a, for some a ∈ R2n, then∫ 1

0

|yk(t)|2dt = |a|2,
∫ 1

0

J̄yk(t) · ẏk(t)dt = 2πk|a|2,

which in particular implies that limk→±∞A(yk) = ±∞, whenever a 6= 0. Because of this, we
search for saddle-type critical points of A. A standard way of locating such critical points
is by using the celebrated minimax principle.

To prepare for this, let us first extend the domain of definition of A from C1 to the largest
possible Sobolev space which turns out to be the space of function with “half” a derivative.
We begin with H0 = L2 which consists of measurable functions

x(t) =
∑
k∈Z

e2πktJ̄xk =
∑
k∈Z

[(cos 2πkt)I + (sin 2πkt)J̄ ]xk
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with xk ∈ R2n and ‖x‖0 =
∑

k |xk|2 < ∞. Here we are using the Fourier expansion of x(·)
where instead of i =

√
−1 we use −J̄ . We write

〈x, y〉0 =

∫ 1

0

x(t) · y(t)dt,

for the standard inner product of H0. Note that if

x(t) =
∑
k

e2πktJ̄xk and y(t) =
∑
k

e2πktJ̄yk,

then 〈x, y〉0 =
∑

k xk · yk and ‖x‖2
0 = 〈x, x〉0. We note that

∫ 1

0
H(x(t))dt is well defined for

every x ∈ H0 because H(x) = Q(x) for large x. However, to make sense of
∫ 1

0
J̄x · ẋdt, we

need to assume that x(·) possesses half a derivative. To see this first observe that if x ∈ C1,
with x =

∑
k e

2πktJ̄xk, then ∫ 1

0

1

2
J̄x · ẋdt = π

∑
k

k|xk|2.

This suggests defining

H1/2 =

{
x ∈ H0 :

∑
k

|k||xk|2 <∞

}
.

We turn H1/2 into a Hilbert space by defining

〈x, y〉 = 〈x, y〉1/2 = x0 · y0 + 2π
∑
k∈Z

|k|(xk · yk).

More generally, we define

〈x, y〉s = x0 · y0 + (2π)2s
∑
k∈Z

|k|2s(xk · yk),

for every s > 0 and Hs consists of function x ∈ H0 such that ‖x‖2
s = 〈x, x〉s <∞. Observe

that if x ∈ C1, then
∫ 1

0
|ẋ(t)|2dt =

∑
k(2πk)2|xk|2 and that in general x ∈ H1 iff x has a

weak derivative in L2.
So far we know that our functional A is defined on the Hilbert space H1/2. Let us take

an arbitrary Hilbert space E and a function F : E → R, and explain the idea of minimax
principle for such a function.

Definition 7.1(i) We say that F is continuously differentiable with a derivative ∇F if
∇F : E → E is a continuous function such that for all x and a,

F (x) = F (a) + 〈∇F (x), x− a〉+ o(‖x− a‖).
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We say that x is a critical point of F if ∇F (x) = 0.

(ii) We say that F ∈ C1(E ;R) satisfies Palais–Smale (PS) condition if the conditions

(7.3) sup
l
|F (xl)| <∞, lim

l→∞
∇F (xl) = 0,

for a sequence {xl} imply that {xl} has a convergent subsequence. �

Given a family F of subsets of E , define

α(F,F) = inf
A∈F

sup
x∈A

F (x) ∈ [−∞,+∞].

Theorem 7.3 (Minimax Principle). Let F : E → R be a Palais–Smale function and assume
that the flow φt of the gradient ODE ẋ = −∇F (x) is well-defined for all t ∈ R+. If φt(A) ∈ F
for A ∈ F and that α = α(F,F) ∈ R, then there exists x∗ ∈ E such that

(7.4) ∇F (x∗) = 0 and F (x∗) = α(F,F).

Proof It suffices to show

(7.5) inf
{
‖∇F (x)‖ : α− < F (x) < α+

}
= 0,

for every pair of constants α+ and α− such that α− < α < α+. Indeed if (7.5) is true, then
for every l ∈ N, we can find xl such that

α− l−1 < F (xl) < α + l−1, ‖∇F (xl)‖ ≤ l−1.

We then use the Palais–Smale property of F to assert that {xl} has a convergent subsequence
that converges to x∗. Since F ∈ C1, we deduce that ∇F (x∗) = 0.

To establish (7.5), we argue by contradiction. Suppose to the contrary,

(7.6) inf
{
‖∇F (x)‖ : α− < F (x) < α+

}
= ε > 0.

By the definition of α, we can find a set A ∈ F such that

sup
x∈A

F (x) < α+.

To get a contradiction, we use the flow of φt to come up with another set Â = φt(A) ∈ F
for which supÂ F ≤ α− for sufficiently large t. Indeed, if x ∈ A and F (φt(x)) > α−, then

α− < F (φs(x)) < α+,
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for every s ∈ [0, t]. From this and (7.6) we deduce

α− < F (φt(x)) = F (x)−
∫ t

0

‖∇F (φs(x))‖2 ds < α+ − tε2,

which is impossible if t > (α+ − α−)/ε2. Hence we must have F (φt(x)) ≤ α−, for such large
t. This in turn implies

sup
φt(A)

F ≤ α−,

which contradicts our assumption α− < α. Thus (7.5) must be true. �

Example 7.1 Let F ∈ C1(Rd;R) be a function which satisfies the Palais–Smale condition.
Assume that F is bounded from below. Then F has a minimizer x∗, i.e., F (x∗) = inf F .
This can be shown using Theorem 7.3 by taking F = {{x} : x ∈ Rd}. Similarly, when F is
bounded above, take F = {E} to deduce that the function F has a maximizer. �

We now give two applications of Theorem 7.3.

Proposition 7.1 Let F ∈ C1(E) be a Palais–Smale function.

(i) (Mountain Pass Lemma of Ambrosetti and Rabinowitz) Assume that R ⊆ E is a mountain
range relative to F in the following sense:

• E \R is not connected,

• infR F =: β > −∞,

• If A is a connected component of E \R, then infA F < β.

Then F has a critical value α satisfying α ≥ β.

(ii) Let Γ and Σ be two bounded subsets of E such that infΓ F = β > −∞, φt(Σ)∩Γ 6= ∅ for
all t ≥ 0, and supΣ F <∞. Then F has a critical point x∗ such that

F (x∗) = inf
t≥0

sup
x∈φt(Σ)

F (x) ≥ β.

(As in Theorem 7.3, φt denotes the flow of −∇F.)

Proof (i) Let E1 and E2 be two connected components of E \ R and set Ê i = {x ∈ E i :
F (x) < β}, for i = 1 and 2. We now define

F = {γ[0, 1] such that γ : [0, 1]→ E is continuous with γ(0) ∈ Ê1 and γ(1) ∈ Ê2}.
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We set α = α(F,F) and would like to apply Theorem 7.2. Note that if A = γ[0, 1] ∈ F , then
A∩R 6= ∅ and supA F ≥ β. Hence α ≥ β. Evidently α <∞ because A ∈ F is compact. On
the other hand, if A = γ[0, 1] ∈ F with γ(0) = a1 ∈ Ê1 and γ(1) = a2 ∈ Ê2, then φt(aj) ∈ Ê j
for j = 1, 2 and t ≥ 0, because

F (φt(aj)) ≤ F (aj) < β

and φt(aj) /∈ R by infR F = β. (ii) We simply take F = {φt(Σ) : t ≥ 0}. Evidently

α(F,F) ≤ supΣ F <∞. Moreover, since φt(Σ) ∩ Γ 6= ∅, we have

sup
t∈φt(Σ)

F (x) ≥ β

for every t ≥ 0. We can now apply Theorem 7.3 to complete the proof. �

Our goal is proving Theorem 7.2 with the aid of Lemma 7.1 and Proposition 7.1 for
F = A and E = H1/2. Let us write A = A0 − C where

A0(x) =
1

2

∫ 1

0

J̄x · ẋdt, C(x) =

∫ 1

0

H(x)dt.

To differentiate A, we need the following operators: given x =
∑

k e
2πktJ̄xk, set

P±x =
∑
±k>0

e2πktJ̄xk, P 0x = x0,

I(x) = x0 +
∑
k 6=0

1

2π|k|
e2πktJ̄xk.

When we differentiate x(·), the k-th Fourier coefficient is multiplied by 2πkJ̄ = −2πki, where
as in the definition of I(x), the k-th coefficient is divided by 2π|k|. In some sense I is an
integration operator and it is easy to see

(7.7) ‖I(x)‖1 = ‖x‖0.

Proposition 7.2 (i) The function A is C1 with

(7.8) ∇A(x) = P+x− P−x−∇C(x) = P+x− P−x− I
(
∇H(x)

)
.

(ii) The operator C is a compact operator with

‖∇C(x)−∇C(y)‖1/2 ≤ c0‖x− y‖,
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where c0 = sup ‖D2H‖.

(iii) The flow for the vector field −∇A is well-defined for all times.

(iv) If ∇A(x) = 0, then x is C1 and ẋ = J̄∇H(x).

(v) If ∇A(xl) → 0 in H1/2, then the sequence {xl} has a convergent subsequence. In
particular, the function A satisfies the (PS) condition.

Proof (i) Note that A0 is quadratic and therefore smooth. In fact for x =
∑

k e
2πktJ̄xk,

A0(x) =
∑
k

πk|xk|2 =
1

2
‖P+x‖2 − 1

2
‖P−x‖2,

which in turn implies

(7.9) ∇A0(x) = (P+ − P−)x.

We now turn to the functional C. Of course C is differentiable with respect to L2-inner
product and its derivative is given by ∇H(x). More precisely, since sup ‖D2H‖ = c0 < ∞,
we have

|H(x+ h)−H(x)−∇H(x) · h| ≤ c0

2
|h|2.

As a result,

|C(x+ h)− C(x)− 〈∇H(x), h〉0| ≤
c0

2
‖h‖2

0 ≤
c0

2
‖h‖2

1/2

which implies ∇C(x) = I(∇H(x)), because

〈∇H(x), h〉0 = 〈I(∇H(x)), h〉1/2,

completing the proof of (7.7).

(ii) The operator x(·)→ ∇H(x(·)) maps bounded subsets of H0 = L2 to bounded subset of
H0 because |∇2H(x)| ≤ c0. The operator I maps bounded subset of H0 to bounded subsets
of H1 by (7.7). By Exercise 7.1(iv) below, bounded subsets of H1 are precompact in H1/2.
Hence ∇C is a compact operator.

For Lipschitzness of ∇C, observe that by (7.7)

‖∇C(x)−∇C(y)‖1/2 = ‖I(∇H(x)−∇H(y))‖1/2 ≤ ‖I(∇H(x)−∇H(y))‖1

= ‖∇H(x)−∇H(y)‖0 ≤ c0‖x− y‖0 ≤ c0‖x− y‖1/2.

(iii) Since ∇C is Lipschitz and ∇A0 is linear, we learn that ∇A is Lipschitz. This guarantees
that the gradient flow is well-defined.
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(iv) Since ∇A(x) = 0, we have that P+x− P−x = I
(
∇H(x)

)
. If

x =
∑
k

e2πktJ̄xk, ∇H(x) =
∑
k

e2πktJ̄ak,

then we deduce that a0 = 0 and sgn(k)xk = (2π|k|)−1ak for k 6= 0, or 2πkxk = ak for all k.
Since ∇H(x) ∈ H0 = L2, we learn that

∑
k |k|2|xk|2 < ∞, or x ∈ H1. From 2πkxk = ak,

we can readily deduce that ẋ = J̄∇H(x) weakly. Since the right-hand side is continuous by
H1 ⊆ C(S1), we learn that x ∈ C1(S1).

(v) Step 1. Take a sequence {xl} such that

(7.10) ∇A(xl) = P+xl − P−xl −∇C(xl)→ 0,

as l→∞. We first prove the boundedness of {xl}. Assume to the contrary

lim
l→∞
‖xl‖1/2 =∞.

Observe that if yl = xl
‖xl‖1/2

, then by (7.8),

(7.11) P+yl − P−yl − I
(

1

‖xl‖1/2

∇H(xl)

)
→ 0.

Now we use ∥∥∥∥∇H(xl)

‖xl‖1/2

∥∥∥∥
0

≤ c0
‖xl‖0

‖xl‖1/2

≤ c0,

to deduce that the sequence

I
(

1

‖xl‖1/2

∇H(xl)

)
,

has a convergent subsequence in H1/2. This and (7.11) implies that the sequence {P+yl −
P−yl} has a convergent subsequence. Without loss of generality, we may assume that the
sequence {P+yl − P−yl} is convergent. Since P+ and P− project onto the positive and
negative frequencies, we deduce that both sequences {P+yl} and {P−yl} are convergent.
Since the sequence {yl} is bounded, the sequence {P 0yl} is bounded in R2n. Hence, by
switching to a subsequence if necessary, we may assume that yl = P+yl + P−yl + P 0yl is
convergent. Let us continue to use {yl} for such a subsequence and write y for its limit.
Recall that for z ∈ R2n with large |z|,

H(z) = (π + ε)Q(z) =: Q̂(z)

where Q(z) = q2
1 + p2

1 + l−2
∑n

j=2(q2
j + p2

j). We now argue

(7.12) lim
l→∞

∥∥∥∥∇H(xl)

‖xl‖1/2

−∇Q̂(y)

∥∥∥∥
0

= 0.
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To see this, observe∥∥∥∥∇H(xl)

‖xl‖1/2

−∇Q̂(y)

∥∥∥∥
0

≤ ‖∇H(xl)−∇Q̂(xl)‖‖xl‖−1
1/2 + ‖∇Q̂(yl)−∇Q̂(y)‖0.

Now (7.12) follows because |∇H − ∇Q̂| is uniformly bounded and ‖yl − y‖1/2 → 0. From
(7.12) and (7.7) we deduce

lim
l→∞

1

‖xl‖1/2

I(∇H(xl)) = I
(
∇Q̂(y)

)
,

in H1/2. From this, liml→∞ yl = y, and (7.11) we deduce

P+y − P−y − I
(
∇Q̂(y)

)
= 0,

for y satisfying ‖y‖ = 1. This means that y is a critical point of

A1(y) =

∫ 1

0

[
1

2
J̄y · ẏ − Q̂(y)

]
dt.

We then apply part (iv) where H is replaced with Q̂. As a result y is C1 and ẏ = J̄∇Q̂(y).
Hence

y(t) =
(
e−2(π+ε)ita1, e

−2
(π+ε)

l2
ita2, . . . , e

−2
(π+ε)

l2
itan

)
.

This is 1-periodic only if y ≡ 0, contradicting ‖y‖ = 1. Hence the sequence {xl} must be
bounded.

Step 2. For a sequence {xl} satisfying (7.10), we know that {xl} is bounded. This implies
the precompactness of {∇C(xl)} by the compactness of the operator ∇C. This and (7.10)
imply that x+

l −x
−
l has a convergent subsequence. As in Step 1, we learn that {P+xl+P

−xl}
has a convergent subsequence. From this we deduce that {xl} has a convergent subsequence
because {P 0xl} is also bounded. �

We are now ready to establish Theorem 7.2. On the account of Lemma 7.1, we need to
find a critical point of A with A(x) > 0. Note that our Hamiltonian H is supposed to vanish
on some neighborhood of the origin.

Proof of Theorem 7.2 Step 1. To ease the notation, let us write x± = P±x, and
x0 = P 0x. We also write

H1/2 = E = E− ⊕ E0 ⊕ E+,

where E± and E0 denote the ranges of the operators P± and P 0 respectively. Let us use the
variation of constants formula to derive a nice representation for the flow φt of the vector
field −∇A:

(7.13) φt(x) = etx− + x0 + e−txt +K(x, t),
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for a function K : E ×R→ E that is continuous and compact. To see this, observe that the
flow φ̄t of the vector field −∇A0 = P− − P+ is simply given by

φ̄t(x) = etx− + x0 + e−tx+.

From this, we can readily deduce (7.13) with K given by

K(x, t) =

∫ t

0

(et−sP− + P 0 + es−tP+)∇C(φs(x))ds

= I
∫ t

0

(et−sP− + P 0 + es−tP+)∇H(φs(x))ds.

Here we are using the fact that P± and P 0 commute with I. Now the compactness of K fol-
lows from the facts that the flow φs maps bounded sets to bounded sets (see Exercise 7.1(iii))
and that I is a compact operator.

Step 2. To establish Theorem 7.2 with the aid of Proposition 7.1(ii), we need to come up
with suitable candidates for the sets Γ and Σ. Define

Γ = Γ(r) = {x ∈ E+ : ‖x‖ = r},
Σ = Σ(θ) = {x : x = x− + x0 + se+ : ‖x− + x0‖ ≤ θ, 0 ≤ s ≤ θ}

where e+(t) = e2πtJ̄e1 with e1 = (1, 0, . . . , 0) ∈ R2n. Evidently supΣA <∞, because

A(x) ≤ 1

2
‖P+x‖2

1/2 ≤
θ2

2
‖e+‖2

1/2.

Let us check that indeed infΓ(r)A = β > 0, for r > 0 sufficiently small. Recall that
|H(z)| ≤ c1|z|2 for a constant c1. This however doesn’t do the job and we need to use the
fact that H vanishes near the origin. This property implies that for every p ∈ (2,∞), we
can find a constant c1(p) such that |H(z)| ≤ c1(p)|z|p. On the other hand, by a well-known
Sobolev-type inequality,

‖x‖Lp =

(∫ 1

0

|x(t)|p dt
) 1

p

≤ c0(p)‖x‖1/2,

for a universal constant c0(p) (see Appendix B). As a result, if x ∈ Γ(r), and p > 2, then

A(x) =
1

2
‖x+‖2

1/2 −
∫ 1

0

H(x(t)) dt ≥ 1

2
‖x+‖2

1/2 − c1(p)

∫ 1

0

|x(t)|p dt

≥ 1

2
‖x‖2

1/2 − c1(p)c0(p)p‖x‖p =
1

2
r2 − c1(p)c0(p)prp =: β.
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Evidently β > 0, if r is sufficiently small.

Step 3. On account of Proposition 7.1(ii), it suffices to show that if θ is sufficiently large,
then φt(Σ(θ)) ∩ Γ 6= ∅ for all t ≥ 0. The idea is that in some sense ∂Σ and Γ link with
respect to φt. That is, φt(∂Σ) can not cross the circle Γ as t increases, so Γ must intersect
the “frame” φt(Σ). For this to work, we first show

(7.14) φt(∂Σ) ∩ Γ = ∅,

for every t ≥ 0. If fact for (7.14) the requirement H(x) = (π+ ε)Q(x) with π+ ε > 1
2
‖e+‖1/2

is used in an essential way. This is the only place that the condition of maxZ H0 > π of
Theorem 7.2 is used. Since infΓA = β > 0, it suffices to show

sup
t≥0

sup
φt(∂Σ)

A ≤ 0.

Since d
dt
A(φt(x)) ≤ 0, it suffices to show

(7.15) sup
∂Σ
A ≤ 0.

We write ∂Σ = ∂1Σ ∪ ∂2Σ where ∂1Σ = {x ∈ ∂Σ : x = x− + x0}. In the case of x ∈ ∂1Σ, we
have

A(x) = −1

2
‖x−‖2 −

∫ 1

0

H(x) dt ≤ 0

because H ≥ 0. It remains to show that sup∂2ΣA ≤ 0, for sufficiently large θ. Recall that
there exists a constant c1 such that H(x) ≥ (π+ ε)Q(x)− c1. Hence, for x = x−+ x0 + se+,

A(x) =
1

2
s2‖e+‖2 − 1

2
‖x−‖2 −

∫ 1

0

H(x) dt

≤ πs2 − 1

2
‖x−‖2 − (π + ε)

∫ 1

0

Q(x− + x0 + se+) dt+ c1

= πs2 − 1

2
‖x−‖2 − (π + ε)

[∫ 1

0

Q(x−) dt+

∫ 1

0

Q(x0) dt+

∫ 1

0

Q(se+) dt

]
+ c1

≤ −1

2
‖x−‖2 − (π + ε)

[∫ 1

0

Q(x−) dt+Q(x0)

]
− εs2 + c1

≤ c1 − c2(‖x− + x0‖2 + ‖se+‖2)

for some constant c2, where for the first inequality we used H ≥ (π+ε)Q−c1 and ‖e+‖2 = 2π,
and for the second equality we used the fact that Q is quadratic and that E+, E−, E0 are
orthogonal with respect to L2-inner product. It is now clear that if either ‖x− + x0‖ = θ or

94



s = θ with θ sufficiently large, then A(x) ≤ 0, proving sup∂2ΣA ≤ 0. This completes the
proof of (7.15) which in turn implies (7.14).

Step 3. To show that φt(Σ) ∩ Γ 6= ∅ for t ≥ 0, we need to find x ∈ Σ such that ‖φt(x)‖ = r
and (P− + P 0)φt(x) = 0. The latter means

etx− + x0 + (P− + P 0)K(x, t) = 0,

or equivalently,

(7.16) x0 + P 0K(x, t) = 0, x− + e−tP−K(x, t) = 0.

To combine this with the former condition ‖φt(x)‖ = r, define

L(x, t) = (e−tP− + P 0)K(x, t) + P+{(‖φt(x)‖ − r)e+ − x}.

We can readily show that φt(Σ) ∩ Γ 6= ∅ is equivalent to finding x ∈ Σ such that

(7.17) x+ L(x, t) = 0.

We wish to find a solution of (7.17) in the interior of Σ, which is an open bounded subset of

Ê = E− ⊕ E0 ⊕ Re+.

Note that L : Ê × R → Ê is a compact operator simply because K is compact and E+ part
of Ê is one-dimensional.

Step 4. We will use Leray-Schauder degree theory to solve (7.17). (We refer to Appendix C,
for a review of Degree Theory.) Note that by (7.14),

0 /∈ (I + L(·, t))(∂Σ).

Because of this, deg0(I +L(·, t)) is well-defined. Observe that (I +L(·, s) : s ∈ [0, t]) defines
a homotopy, which implies

(7.18) deg0(I + L(·, t)) = deg0(I + L(·, 0)).

From the definition of K given in (7.13), we know that K(·, 0) ≡ 0. As a result,

L(x, 0) = P+{(‖x‖ − r)e+ − x}.

To calculate the right-hand side of (7.18), let us define

Lα(x) = P+{(α‖x‖ − r)e+ − αx},
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for α ∈ [0, 1]. We claim

(7.19) 0 /∈ (I + Lα)(∂Σ).

Indeed if (I + Lα)(x) = 0 for some x ∈ ∂Σ, then x = se+ for some s ∈ {0, θ} and s +
αs‖e+‖ − r − αs = 0, or s((1 − α) + α

√
2π) = r because ‖e+‖ =

√
2π. Evidently s 6= 0

because r 6= 0. To rule out s = θ, observe that we may take θ large enough to have θ > r.
But r = s((1 − α) +

√
2πα) > s which implies that θ > s. In summary x + Lα(x) = 0 has

no solution in ∂Σ, or equivalently (7.19) holds.
By (7.19), deg0(I + Lα) is well-defined and by the homotopy invariance of degree,

deg0(I + L(·, 0)) = deg0(I + L1) = deg0(I + L0)

= deg0(I − re+) = degre+(I) = 1,

provided that re+ ∈ Σ, which is true by our assumption r < θ. From this and (7.18) we
deduce that (7.17) has a solution x ∈ Σ, for which A(x) ≥ β > 0. This completes the proof
of Theorem 7.2 . �

Remark 7.1 The proof of Theorem 7.1 is similar to the proof of Theorem 7.2. We refer
to [HZ] for details and only give a list of adjustments that we need to make to the proof of
Theorem 7.2:

(i) Take a bounded compact set K with 0 in its interior. Given H0 ∈ H(K) with maxH0 >
c0(K), pick m > maxH, and define

H(x) =

{
H0(x) if x ∈ K,

f(Q(x)) if x /∈ K.

where Q = g2
K , and f : R → R is a smooth function such that f(r) = maxH for r ∈ [0, 1],

f(r) = mr for large r, f(r) ≥ mr for all r, and 0 < f ′(r) ≤ m for r > 1. We then have the
analog of Lemma 7.1 for H provided that the ellipsoid E is replaced with K.

(ii) As we verify PS condition, let y be as in the proof of Proposition 7.2(v). We need to
get a contradiction from the conditions ‖y‖1/2 = 1 and ẏ = mJ̄∇Q(y), where Q = g2

K . Note
that y is a 1-periodic solution of XmQ. On the other hand,

Tmin(mQ) = (2m)−1 Tmin(HK) = (2m)−1 2c0(K) < 1,

where we used Remark 5.1(ii) for the second equality. This of course does not lead to a
contradiction. However, it is possible to find a new compact set K ′ near K so that K ′ has
no 1-periodic orbit. We then choose Q = g2

K′ in part (i) in our extension.
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(iii) We now explain what the analog of the orbit e+ in the definition of § is. Set m̄ = c0(K)
and consider the Hamiltonian equation ·x = m̄J̄∇Q(x). This corresponds to the Hamiltonian
function m̄Q with

Tmin(m̄Q) = (2m̄)−1 Tmin(HK) = 1,

which means that the vector field m̄XQ has a 1-periodic orbit x̄ that lies on ∂K. We
then set e+ = P+x̄. We note that A(x̄) = m̄ > 0 which implies that e+ 6= 0, because
2A(x̄) = ‖P+x̄‖2 − ‖P−x̄‖2. In fact it was in the proof of

(7.20) sup
∂Σ
A ≤ 0,

in Step 3 that the form of e+ played an essential role. We refer to [HZ] for the proof of
(7.20). �

Exercise 7.1(i) Assume F ∈ C1(Rd;R) satisfies lim|x|→∞ F (x) = ∞ and that F possesses
two distinct relative minima x1 and x2. Show that F has a third critical point x3 that is
different from x1 and x2. Hint: Use paths connecting x1 to x2 for the members of F in
Theorem 7.2.

(ii) Show that F (x, y) = e−x − y2 does not satisfy Palais–Smale condition. Let

E± = {(x, y) : F (x, y) ≤ 0, ±y ≥ 0}

and set

F = {γ[0, 1] : γ : [0, 1]→ R2, γ(0) ∈ E−, γ(1) ∈ E+ and γ is continuous}.

Show that α(F,F) = 0 but there is no x∗ with F (x∗) = 0 and that F has no critical point.

(iii) Let G : E → E be a Lipschitz function and let φt denote the flow of the ODE ẋ = G(x).
Show that for every l > 0,

sup
0≤t≤l

sup
‖x‖≤l

‖φt(x)‖ <∞.

(iv) Let Hs = {x ∈ L2 : ‖x‖s < ∞}. Show that if s < t, then a bounded subset of H t is
precompact in Hs.

(v) Show that if x ∈ Hθ and θ > 1/2, then x is Hölder continuous with

|x(t)− x(s)| ≤ c‖x‖|t− s|α

with α = min
(
1, θ − 1

2

)
. Hint: Given x =

∑
k e

2πktJ̄xk, write x = y + z with z =∑
|k|≤N e

2πktJ̄xk. Estimate sup|t−s|<δ |y(t) − y(s)| and supt |z(t)| in terms of δ and N . This

yields a bound for |x(t)− x(s)| that can be minimized with respect to N . �
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8 Hofer Geometry
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9 Generating Function, Twist Map and Arnold’s Con-

jecture

A Hamiltonian vector field XH is generated by a scalar-valued function H. It turns out that
a similar phenomenon is true for any symplectic diffeomorphism at least locally. To explain
this, let us take a symplectic diffeomorphism ψ : U → R2n with U a simply connected open
subset of R2n, and write

ψ(q, p) = (Q,P )

with Q and P ∈ Rn. Since ψ∗dλ̄ − dλ̄ = d(ψ∗λ̄ − λ̄) = 0 for λ̄ = q · dp, we have that there
exists a scalar-valued function S such that ψ∗λ̄− λ̄ = dS. In coordinates,

(9.1) P · dQ− p · dq = dS.

The form of (8.1) suggests that perhaps we should regard S as a function of q and Q so that
(8.1) is equivalent to

(9.2)
∂S

∂Q
= P and

∂S

∂q
= −p.

The scalar-valued function S is an example of a generating function. Its existence is guar-
anteed if we make some non-degeneracy assumptions on ψ.

Proposition 9.1 Let ψ : U → R2n be a symplectic transformation and assume that at
(q0, p0) ∈ U ,

(9.3) det
∂Q

∂p
(q0, p0) 6= 0.

Then there exist a neighborhood V of q0 and Q0 = Q(q0, p0), and a C1 function S : V → R
such that (9.2) holds.

Proof From (9.3) and Implicit Function Theorem, the relation Q = Q(q, p) can be solved
for p = p(q,Q) for q and Q near q0 and Q0. We then set P (q,Q) = P (q, p(q,Q)). To solve
(8.2) for S, we need to verify the solvability criterion

Pq + pQ = 0,

regarding P and p as functions of q and Q. This is exactly d(P · dQ− p · dq) = 0. �

Later we will discuss other types of generating functions. But let us first study some
examples. As our first example, consider ψ = φt0t where φt0s is the flow of the Hamiltonian
ODE

(9.4) ẋ = J̄∇H(x, s).
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More precisely, x(s) = φt0s(a) solves (9.4) subject to the condition φ(t0) = a. Let us write
α(s) and β(s) for the q and p components of x(s). We assume that for some open set V , the
equation (9.4) can be solved if (q,Q) ∈ V is specified. More precisely, if x(s) = (α(s), β(s))
with α, β ∈ Rn, then (9.4) has a unique solution subject to the initial and terminal conditions
α(t0) = q and α(t) = Q. We then set

(9.5) S(q,Q; t0, t) =

∫ t

t0
[β(s) · α̇(s)−H(x(s), s)]ds,

with x(s) = x(s; q,Q).

Proposition 9.2 Under the above conditions, the function S is a generating function for
ψ = φt0t. Moreover, S satisfies the Hamilton–Jacobi equation

(9.6) St +H(Q,SQ, t) = 0.

Proof Differentiating both sides of (9.5) with respect to qj yields

Sqj =

∫ t

t0
[βqj · α̇ + β · α̇qj −∇H · xqj ]ds

=

∫ t

t0
[βqj · α̇− αqj · β̇ −∇H · xqj ]ds+ β(t) · αqj(t)− β(t0) · αqj(t0)

=

∫ t

t0
[−J̄ ẋ−∇H(x, s)] · xqjds+ β(t) · αqj(t)− β(t0) · αqj(t0).(9.7)

The first term vanishes because of (9.4). On the other hand, since

α(t0; q,Q) = q, β(t0; q,Q) = p α(t; q,Q) = Q,

we learn that αqj(t) = 0, and αqj(t
0) = ej, where ej denotes the standard unit j-th vector.

As a result, Sqj = −pj. The proof of SQj = Pj is similar.
As for (9.6), first observe

S(q, α(t); t0, t) =

∫ t

t0
[β(s) · α̇(s)−H(α(s), s)]ds.

Differentiating both sides with respect to t yields

SQ · α̇ + St = β(t) · α̇(t)−H(α(t), t).

This immediately implies (8.6) because SQ = P = β and α(t) = (Q,P ) = (Q,SQ). �
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As our second example, let us study generating functions in the simplest case n = 1. For
this we consider symplectic ϕ : A→ A with

A = {(q, p) : R2
− ≤ q2 + p2 ≤ R2

+}.

Such a transformation was encountered by Poincaré as he used a Poincaré’s section to study
solutions to Hamiltonian systems. Poincaré was interested in fixed points of ϕ because they
correspond to periodic orbits of the corresponding Hamiltonian system. As we will see such
fixed points exist if ϕ is a twist map.

A function ϕ : A→ A is called a twist map if the following conditions are met:

(i) ϕ is a homeomorphism and the restriction of ψ to A0 is a diffeomorphism with detϕ′ ≡
1.

(ii) ϕ maps the circles C± = {q2 + p2 = R2
±} to themselves with degϕ|C± = ±1.

Our main result about twist maps is the following result of Poincaré and Birkhoff.

Theorem 9.1 Any twist map has at least two fixed points.

In fact Poincaré established Theorem 9.1 provided that ϕ has a global generating function.
Such a generating function exists if ϕ is a monotone twist map. To prepare for this, let us
first observe that any twist map on A yields a twist map on the cylinder S1 × [R−, R+].
Indeed, if h : S1 × [R−, R+] → A is given by h(x, y) = (

√
y cos 2πx,

√
y sin 2πx), then

ψ = h−1 ◦ ϕ ◦ h is again orientation and area preserving because dq ∧ dp = −πdx∧ dy. Now
ψ : S1 × [R−, R+]→ S1 × [R−, R+] has a lift

Ψ : R× [R−, R+]→ R× [R−, R+]

which satisfies the following conditions:

(i) Ψ is a homeomorphism and the restriction of Ψ to R × (R−, R+) is a diffeomorphism
with det Ψ′ ≡ 1.

(ii) Ψ maps R× {R±} onto itself with

Ψ(x,R±) = (±x+ f±(x), R±),

where f± is 1-periodic.

(iii) Ψ(x+ 1, y) = Ψ(x, y) + (1, 0).
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Such a map Ψ is again called a twist map. We also write Ψ(x, y) = (X, Y ) with X and
Y functions of (x, y). We note that we may replace (ii) with the condition Y (x,±R) = ±R
and ±A±(x) := ±X(x,±R) > ±x.

We now formulate a condition on Ψ that would guarantee the existence of a global
generating function S(x,X) for Ψ. A twist map Ψ is called monotone if

(9.8)
∂X

∂y
(x, y) > 0,

for all (x, y) ∈ R× (R−, R+).

Proposition 9.3 Let Ψ be a monotone twist map. Then there exists a C2 function S : U →
R with

U = {(x,X) : A−(x) < X < A+(x)}
such that

Ψ(x,−Sx(x,X)) = (X,SX(x,X)).

Moreover

(9.9) S(x+ 1, X + 1) = S(x,X), SxX < 0.

Proof The image of the line segment {x}× [R−, R+] under Ψ is a curve γ with parametriza-
tion γ(y) = (X(x, y), Y (x, y)). By (9.8), the relation X(x, y) = X can be inverted to yield
y = y(x,X) which is increasing in X. The set γ[R−, R+] can be viewed as a graph of the
function

X 7→ Y (x, y(x,X))

with X ∈ [A−(x), A+(x)]. The anti-derivative of this function yields S. This can be geomet-
rically described as the area of the region ∆ between the curve γ([R−, R+]), the line Y = R−

and the vertical line {x} × [R−, R+]. We now apply Ψ−1 on this region. The line segment
{X}× [R−, R+] is mapped to a curve γ̂([R−, R+]) which coincides with a graph of a function
x 7→ y. Since Ψ is area preserving the area of Ψ−1(∆) is S(x,X). From this we deduce that
SX = −y. Here we have used the fact that Ψ−1 is a (negative) twist map. (Negative because
the degree of Ψ−1 restricted to the top boundary is −1 whereas the degree of Ψ−1 restricted
to the bottom boundary is 1.) This is because if we write Ψ−1(X, Y ) = (x(X, Y ), y(X, Y )),
then

(Ψ−1)′ =

[
xX xY
yX yY

]
=

[
Xx Xy

Yx Yy

]−1

=

[
Yy −Xy

−Yx Xx

]
which implies that ∂x

∂Y
= −∂X

∂y
< 0.

The periodicity (9.9) is an immediate consequence of Ψ(x+ 1, y) = Ψ(x, y) + (1, 0);

Ψ({x+ 1} × [R−, R+]) = Ψ({x} × [R−, R+]) + (1, 0).
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As for the second assertion in (9.9), recall that y(x,X) is increasing in X. Hence

SxX = −yX < 0.

�

A partial converse to Proposition 9.3 is true, namely if a function S satisfies (9.9), then
it generates a map Ψ which is area preserving. We don’t address the behavior of Ψ on the
boundary lines and for simplicity assume that S is defined on R2.

Proposition 9.4 Let S be a C2 function satisfying (9.9). Then there exists a C1-function
Ψ such that

(i) Ψ(x+ 1, y) = Ψ(x, y) + (1, 0)

(ii) Ψ(x,−Sx(x,X)) = (X,SX(x,X))

(iii) det Ψ′ ≡ 1.

Proof. Since SxX < 0, the function X 7→ −Sx(x,X) is increasing. As a result, y =
−Sx(x,X) can be inverted to yield X = X(x, y). We then set

Y (x, y) = SX(x,X(x, y)) and Ψ(x, y) = (X(x, y), Y (x, y)).

Evidently (ii) is true and (i) follows from (ii) and (8.9) because Sx(x+ 1, X + 1) = Sx(x,X),
and SX(x + 1, X + 1) = SX(x,X). It remains to verify (iii). For this, set Ŝ(x, y) =
S(x,X(x, y)). We have

Ŝx = Sx + SXXx = −y + Y Xx,

Ŝy = SXXy = Y Xy.

Differentiating again yields

Ŝxy = −1 + YyXx + Y Xxy,

Ŝyx = YxXy + Y Xyx.

Since S ∈ C2, we must have Ŝxy = Ŝyx, which yields YyXx − YxXy = 1, as desired. �

We now show how the existence of a generating function can be used to prove the existence
of fixed points.

Proof of Theorem 9.1 for a monotone twist map Define L(x) = S(x, x). We first
argue that a critical point of L corresponds to a fixed point of Ψ. Indeed, if L′(x0) = 0,
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then Sx(x
0, x0) + SX(x0, x0) = 0. Since Ψ(x0,−Sx(x0, x0)) = (x0, SX(x0, x0)), we deduce

that Ψ(x0, y0) = (x0, y0) for y0 = −Sx(x0, x0) = SX(x0, x0). On the other hand, by (9.9),
we have that L(x + 1) = L(x). Either L is identically constant which yields a continuum
of fixed points for Ψ, or L is not constant. In the latter case, L has at least two distinct
critical points, namely a maximizer and minimizer. These yield two distinct critical points
of Ψ. �

Before we discuss the proof of Theorem 9.1 for general twist maps, let us study an example
of a map which is not quite a twist map but still possesses a global generating function.

Example 9.1 (Billiard map in a convex domain). Let C be a strictly bounded convex
domain in R2 and denote its boundary by S. Without loss of generality, we assume that the
total length of S is 1. First we describe the billiard flow in C. This is the flow associated
with the Hamiltonian function H(q, p) = 1

2
|p|2 + V (q) where

V (q) =

{
0 if q ∈ C
∞ if q /∈ C.

Here is the interpretation of the corresponding flow: A ball of velocity p starts from a
point q ∈ C and is bounced off the boundary S by the law of reflection. This induces a
transformation for the hitting location and reflection angle. More precisely, if a trajectory
q + tp, t > 0 hits the boundary at a point γ(x) and a post-reflection angle θ, then we write
γ(X) and Θ for the location and post-reflection angle of the next reflection. Here x is the
length of arc between a reference point A ∈ S and γ(x) on S in positive direction, and θ
measures the angle between the tangent at γ(x) and the post-reflection velocity vector. We
write ϕ for the map (x, θ) 7→ (X,Θ) with x,X ∈ S1 and θ,Θ ∈ [0, π]. It is more convenient
to define y = − cos θ so that in the (x, y) coordinates, we have a map ψ : S1 × [−1, 1] →
S1 × [−1, 1]. As before, we write Ψ for its lift. We claim that Ψ is a monotone twist map
except that the twist conditions on the boundary lines y = ±1 are violated. We show this
by applying Proposition 8.5. In fact the generating function is simply given by

S(x,X) = −|γ(x)− γ(X)|,

because

−Sx(x,X) = −(γ(X)− γ(x))

|γ(X)− γ(x)|
· γ̇(x) = − cos θ,

SX(x,X) = −(γ(X)− γ(x))

|γ(X)− γ(x)|
· γ̇(X) = cos Θ,

SXx(x,X) = sin Θ
∂Θ

∂x
.
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Note that if Θ ∈ (0, π), then sin Θ > 0, and Θ is decreasing in x which means that SXx <
0. Here of course we are using the strict convexity. As for the boundary lines, we have
Ψ(x,−1) = (x,−1), Ψ(x, 1) = (x + 1, 1). Note that S(x,X) is defined for (x,X) satisfying
X ∈ [x, x+ 1]. Also note that Ψ has no fixed point inside R× (−1, 1). �

The generating function S can be used to study periodic orbits of monotone twist maps.
To explain this, let us observe that the twist condition means that if ρ+ and ρ− denote the
rotation numbers of the top and bottom boundary circles of the cylinder, then ρ− < 0 < ρ+.
By rotation number we mean

(9.10) ρ± = lim
n→∞

An±(x)

n
.

In fact it is well-known that the limit in (9.10) exists because A± is a lift of a circle homeo-
morphism, and that ±ρ± > 0 because ±A±(x) > x. Now we can interpret Theorem 9.1 as
saying that since 0 ∈ (ρ−, ρ+), the map Ψ has an orbit which projects onto an x-sequence
of 0 rotation number, namely a fixed point. The following theorem generalizes this property
to assert the existence of an orbit which projects onto an x-sequence of rotation number
ρ ∈ (ρ−, ρ+) provided that ρ is rational. To this end, let us formulate a definition concerning
periodic orbits. We say that the point (x, y) is (r, s)-periodic point with r, s ∈ N and r, s
relatively prime, if (xn, yn) = Ψn(x, y) satisfies xn+s = xn+r for every n. This means that on
cylinder, the x-projection of the orbit (ψn(x, y) : n ∈ Z) wraps r times around the cylinder
in s iterates.

Theorem 9.2 Let Ψ be a twist map. If ρ ∈ (ρ−, ρ+) with ρ = r
s
, r and s coprime, then Ψ

has at least two (r, s)-periodic orbits.

We do not present a full proof of Theorem 9.2. We only indicate that its proof is very
similar to the proof of Theorem 9.1 and uses a variational principle. If Ψ is a monotone
twist map, then the variational principle is the discrete analog of the Lagrange variational
principle, as can be seen in the following proposition.

Proposition 9.5 Let Ψ be a monotone twist map with generating function S. Then the
following statements are true.

(i) Given x and X ∈ R, the sequence x1, x2, . . . , xn−1 is a critical point of

L(x1, x2, . . . , xn−1) =
n−1∑
j=0

S(xj, xj+1),

with x0 = x, and xn = X, if and only if there exist y0, y1, . . . , yn such that Ψj(xj, yj) =
(xj+1, yj+1) for j = 1, 2, . . . , n− 1.

105



(ii) The sequence x0, x1, x2, . . . , xs−1 is a critical point of

K(x1, x2, . . . , xs) = S(xs−1, x0 + r) +
s−2∑
j=0

S(xj, xj+1)

if and only if there exist y0, y1, y2, . . . , ys−1 such Ψj(xj, yj) = (xj+1, yj+1) for j = 0, . . . , s−1,
with xs = x0 + r.

Proof We only prove (ii) because (i) can be proved by a verbatim argument. Let (x0, . . . , xs−1)
be a critical point and set xs = x0 + r. We also set yj = −Sx(xj, xj+1). The result follows
because if Yj = SX(xj, xj+1), then

Kxj = yj − Yj−1

for j = 0, 1, 2, . . . , s− 1 and Ψ(xj, yj) = (xj+1, Yj). �

Example 9.2 (Billiard map revisited) Let Ψ be the Billiard map as in Example 8.6. We
certainly have ρ− = 0 and ρ+ = 1. According to Theorem 8.7, Ψ has at least two periodic
orbits of type (r, s) whenever r and s are relatively prime and r < s. Recall that the function
K of Proposition 8.8 is defined for (x0, x1, . . . , xs−1) provided that xj+1 ∈ [xj, xj + 1] for
j = 0, 1, . . . , s − 1 with xs = x0 + r. This however does not reflect the ordering of the
orbit. For our purposes we define K on a smaller set Λ which consists of (x0, x1, . . . , xs−1)
such that there exists z0 ≤ z1 ≤ · · · ≤ zrs, with zi+s = zi + 1 for i = 0, 1, . . . , (r − 1)s,
and xj = zjr for j = 0, 1, . . . , s. Note that once (x0, x1, . . . , xs−1) ∈ Λ is known, then all zj
can be determined. Of course x ∈ Λ imposes various inequalities between x0, x1, . . . , xs−1.
On the other hand, we can regard K as a function of z0, z1, . . . , zrs. Also there are only s
many independent variables among them, say z0, z1, . . . , zs−1. So, we now have a function
K̂(z0, z1, . . . , zs−1) = K(x0, x1, . . . , xs−1). The advantage of K̂ to K is that it has a domain
which is much easier to describe, namely

Λ̂ = {(z0, z1, . . . , zs−1) : z0 ≤ z1 ≤ · · · ≤ zs−1 ≤ z0 + 1}.

Since K(x0 + 1, . . . , xs−1 + 1) = K(x0, . . . , xs−1), we learn that K̂(z0 + 1, . . . ,s−1 +1) =
K̂(z0, . . . , zs−1). Introducing wj = zj − zj−1, we have that z = (z0, . . . , zs−1) ∈ Λ̂ if and only
if (z0, w1, . . . , ws−1) belongs to the set of points with

0 ≤ w1, w2, . . . , ws−1, w1 + w2 + · · ·+ ws−1 ≤ 1.

Writing K̄ for K̂ as a function of z0, w1, . . . , ws−1, then K̄ is defined on

Λ̄ = {(z0, w1, . . . , ws−1) : z0 ∈ R, w1, . . . , ws−1 ≥ 0,
s−1∑

1

wj ≤ 1}.
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Since K̄(z0 + 1, w1, . . . , ws−1) = K(z0, w1, . . . , ws−1), K̄ is a lift of a function k̄ which is
defined on the set

λ = S1 × {(w1, . . . , ws−1) : w1, . . . , ws−1 ≥ 0,
s−1∑

1

wj ≤ 1} ⊆ S1 × [0, 1]s−1.

Of course k̄ has a maximizer and a minimizer. We now argue that a minimizer yields a
critical point which is in the interior of λ. To see this, let us assume that to the contrary the
minimizer is a point on the boundary. To explain this in its simplest non-trivial case, let us
take a boundary point of the form

zn−1 < zn = zn+1 < zn+2.

Recall that Ψ(x, y(x,X)) = (X, Y (x,X)) where y(x,X) = −Sx(x,X) is increasing in X
and Y (x,X) = SX(x,X) is decreasing in x. We now examine several cases:

(i) y(zn, zn+r) < Y (zn−r, zn)

In this case ∂K̂
∂zn

= SY (zn−r, zn) + Sy(zn, zn−r) > 0. Hence by decreasing zn a little bit, we

decrease K̂. This contradicts the fact that z is a minimizer.

(ii) y(zn+1, zn+r+1) > Y (zn−r+1, zn+1)

In this case ∂K̂
∂zn+1

= SY (zn−r+1, zn+1) +Sy(zn, zn−r) < 0. Hence by increasing zn+1, the value

K̂ decreases, contradicting the fact that ẑ = (z0, . . . , zs−1) is a minimizer.

(iii) If (i) and (ii) do not occur, then

Y (zn−r, zn) ≤ y(zn, zn+r) = y(zn+1, zn+r)

≤ y(zn+1, zn+r+1) ≤ Y (zn−r+1, zn−1)

= Y (zn−r+1, zn) ≤ Y (zn−r, zn).

Hence zn−r+1 = zn−r, zn+r+1 = zn+r and

Y (zn−r, zn) = y(zn, zn+r),

Y (zn−r+1, zn+1) = y(zn−1, zn+r+1)

which means that (zn−r, zn, zn+1) is the x-coordinate of an orbit. This is what we wanted.
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In fact the other critical point is a saddle point in λ. To see this, let us examine the
problem when s = 2 and r = 1 which corresponds to a periodic orbit of period 2. In this
case, we simply have

K(x1, x2) = S(x1, x2) + S(x2, x1 + 1) = 2S(x1, x2)

which is defined on the set

Λ = {(x1, x2) : x1 ≤ x2 ≤ x1 + 1}.

Note that K(x1, x2) = 0 if (x1, x2) ∈ ∂Λ and we always have K(x1, x2) < 0 if (x1, x2) ∈ Λ0.
Writing K in terms of x1 and w2 = x2−x1 yields K̂(x1, w2) = 2S(x1, x1+w2) which is defined
for (x1, w2) ∈ R × [0, 1]. Since K̂ is periodic in x1, K̂ is the lift of k̂ : S1 × [0, 1] → R and
evidently its minimum is attained in the interior of S1 × [0, 1]. Note that −min k̂ is simply
the diameter of the convex set C. We now assert that k̂ has a saddle critical point which
corresponds to the width of C. To see this, for any x1 ∈ S1, we can find η(x1) = x2 ∈ S1

such that the tangents at x1 and x2 = η(x1) are parallel. Now −maxx1 S(x1, η(x1)) =
−S(x∗1, η(x∗1)) yields the width of C. We assert that (x∗1, x

∗
2) = (x∗1, η(x∗1)) is the other critical

point of K. Indeed, since Θ = π − θ, we have

Sx(x1, η(x1)) = SX(x1, η(x1))

for all x1. On the other hand, at a maximizer x∗1 of S(x1, η(x1)), we must have

0 = Sx(x
∗
1, η(x∗1)) + SX(x∗1, η(x∗1))η′(x∗1)

= Sx(x
∗
1, x
∗
2)(1 + η′(x∗1)).

It is not hard to show that in fact η′(x∗1) > 0. Hence we must have Sx = SX = 0 at (x∗1, x
∗
2).
�

So far we have seen that for ρ ∈ (ρ−, ρ+) ∩ Q we can find at least two periodic orbit
of rotation number ρ. The variational principle can be used to find orbits corresponding to
irrational ρ ∈ (ρ−, ρ+). This is the subject of Mather Theory. For any irrational ρ ∈ (ρ−, ρ+),
there exists an invariant set on the cylinder which projects onto either a Cantor-like subset
of S1 or the whole S1. The invariant set lies on a graph of a Lipschitz function defined on
S1. These invariant sets are known as Aubry–Mather sets and correspond to the irrational
rotations of Exercise 9.1(i).

We now turn to Theorem 9.2. So far we have a proof in the case of a monotone twist
map. Following an idea of Chaperon, we try to express a twist map as a composition of
monotone twist maps. To this end, let us define some function spaces.
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(i) T denotes a space of homeomorphism ψ from cylinder C = S1× [0, 1] onto itself which
is an orientation and area preserving diffeomorphism in the interior of C and preserves
the boundary circles S1 × {0} and S1 × {1}. The rotation numbers of ψ restricted to
S1 × {0} and S1 × {1} are denoted by ρ−(ψ) and ρ+(ψ) respectively.

(ii) T ∗ denotes the space of ψ ∈ T such that ρ−(ψ) 6= ρ+(ψ). T + denotes the space of
ψ ∈ T with ρ−(ψ) < ρ+(ψ). T − denotes the space of ψ ∈ T with ρ+(ψ) < ρ+(ψ). M+

denotes the space of monotone twist maps.

We equip the space of T with the topology of C1-convergence in the interior of C and
uniform-convergence up to the boundary. Evidently T is a topological group with mul-
tiplication given by composition. As an example, note that the shear map ξ with lift
(x, y) 7→ (x + y, y) belongs to T + whereas ξ−1 = λ belongs to T −. We have the follow-
ing straightforward lemma.

Lemma 9.1 Every element ψ in the connected component of identity in T can be written
as

(9.11) ψ = λ ◦ ψ1 ◦ λ ◦ ψ2 ◦ · · · ◦ λ ◦ ψn

with ψ1, ψ2, . . . , ψn ∈M+.

Proof Evidently there exists an open set U in T such that ξ ∈ U ⊆ M+. As a result,
id ∈ ξ−1U = λU =: V is an open neighborhood of identity and each ψ ∈ V can be written as
ψ = λ◦ψ1 with ψ1 ∈M+. We now write Ω for the set of ψ in T for which the decomposition
(9.11) exists with ψ1, ψ2, . . . , ψn ∈ V . Clearly Ω is open because V is open. If we can show
that V is also closed, then we deduce that Ω is the connected component of id in T . To
see the closedness of Ω, let {ϕm} be a convergent sequence in Ω. If limm→∞ ϕm = ϕ, then
limm→∞ ϕ ◦ϕ−1

m = id and, as a result, ϕ ◦ϕ−1
m ∈ V , for large m. Hence there exists ψ̄ ∈M+,

such that ϕ ◦ ϕ−1
m = λ ◦ ψ̄ for a sufficiently large m. That is, ϕ = λ ◦ ψ̄ ◦ ϕm. Since ϕm ∈ Ω,

we deduce that ϕ ∈ Ω, completing the proof of closedness of Ω. �

Proof of Theorem 9.2 Let Ψ be a twist map. On account of Lemma 9.1, there exist
monotone twist maps Ψ1,Ψ2, . . . ,Ψn such that

Ψ = Λ ◦Ψ1 ◦ Λ ◦Ψ2 ◦ · · · ◦ Λ ◦Ψn.

Each Ψj has a generating function Sj(x,X) with Sj : Γj → R with

Γj = {(x,X) : Aj−(x) ≤ X ≤ Aj+(x)}.

Note that the generating function for Λ is T (x,X) = −1
2
(X−x)2 which is defined on the set

{(x,X) : x− 1 ≤ X ≤ x}.
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We now define

L(x0, x1, . . . , x2n−1) = −
n−1∑
j=0

1

2
(xij − xij+1)2 +

n−2∑
j=0

Sj(x2j+1, x2j+2) + Sn(x2n−1, x0)

on the set Γ which consists of points x0, x1, . . . , x2n−1 such that for j = 0, 1, . . . , n− 2

−1 ≤ x2j − x2j+1 ≤ 0, Aj−(x2j+1) ≤ x2j+2 ≤ Aj+(x2j+1)

with x2j = x0. Now as in Proposition 8.8, we can show that if x0, x1, . . . , x2n−1 is a critical
point of L, then

Λ(x2j, y2j) = (x2j+1, y2j+1), Ψj(x2j+1, y2j+1) = (x2j+2, y2j+2)

for j = 0, 1, . . . , n− 1, where y2j+1 = TX(x2j, x2j+1) = x2j − x2j+1, y2j+2 = SX(x2j+1, x2j=2),
x2j = x0 and y2j = y0. Of course, in particular (x0, y0) is a fixed point of Ψ. �

So far we have used generating functions to study various properties of twist maps on
cylinders. We now discuss possible generalizations of such global properties for other mani-
folds. As a start, let us take a symplectic ψ : T2n → T2n and wonder how many fixed points
it can have. Evidently a rotation or translation on T2 is a symplectic diffeomorphism with
no fixed point. The question is what plays the role of the twist condition to guarantee the
existence of fixed points.

We first examine the issue of generating function. In section 8, we showed that a gen-
erating function S(q,Q) always exists locally provided that ∂Q

∂p
(q0, p0) is non-singular. Note

that this condition fails for the identity. We now discuss another type of generating func-
tion that exists trivially for identity. Again for Ψ : R2n → R2n with Ψ(q, p) = (Q,P ) and
P · dQ− p · dq = dS, we write

P · dQ+ q · dp = d(p · q) + dS =: dŜ,

which suggests a generating function Ŝ(Q, p). The following proposition can be proved as
Proposition 9.1.

Proposition 9.6 Let Ψ(q, p) = (Q,P ) be a symplectic diffeomorphism with

(9.12) det
∂Q

∂q
(q0, p0) 6= 0.

Then there exist a neighborhood V of Q0 = Q(q0, p0) and p0, and a C1-function Ŝ : V → R
such that

(9.13)
∂Ŝ

∂Q
= P,

∂Ŝ

∂p
= q.
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We note that identity transformation has such a generating function with Ŝ(Q, p) = Q ·p.
More generally, we may write Ŝ(Q, p) = Q · p− V (Q, p) with V now satisfying

(9.14) P − p = −VQ, Q− q = Vp,

which can be thought of as a discrete analog of a Hamiltonian where V (Q, p) plays the role
of the Hamiltonian.

Using the generating function V , it is not hard to come up with a compelling conjecture
regarding the fixed points of a symplectic ψ : T2n → T2n. Let us write Ψ : R2n → R2n for
the lift of ψ. If we assume that Ψ has a globally defined generating function V , then a point
(q, p) is a fixed point of Ψ if and only if the corresponding (Q, p) is a critical point of V . This
should be compared to our proof of Poincaré–Birkhoff Theorem in the case of a monotone
twist map. To have an analogous result, we need to say something about the critical points
of a C1-function of T2n. In this connection we have the following:

Theorem 9.3 (Ljusternik–Schnirelman) Let M be a compact manifold. Then any C1-
function V : M → R has at least I(M) many critical points where I(M) denotes the cup
length of M .

Here is the definition of cup length: I(M) is the smallest number l such that there exist
open simply connected sets U1, . . . , Ul such that M = U1 ∪ · · · ∪Ul. Alternatively, for closed
forms α1, α2, . . . , αl, we have that α1 ∧ α2 ∧ · · · ∧ αl is exact. Here each αj is a kj-form with
kj ≥ 1 for j = 1, . . . , l.

Example 9.3 I(Tk) = k + 1.

From Theorem 9.3 and Proposition 9.6 we deduce

Proposition 9.7 Let ψ : T2n → T2n be a symplectic diffeomorphism which is a small per-
turbation of identity. Then ψ has at least 2n+ 1 many fixed points.

We are now in a position to formulate a similar result for more general symplectic dif-
feomorphism. With our experience from the previous section we search for a condition on
ψ that guarantees to a representation ψ = ψ1 ◦ ψ2 ◦ · · · ◦ ψN where each ψj is a small per-
turbation of identity. To this end, let us assume that Ψ = φ01 where φst is the flow of a
Hamiltonian ODE

ẋ = H(x, t)

where H is 1-periodic in x and t, that is

H(x+ n, t) = H(x, t+ 1) = H(x, t)

for every n ∈ Z2d. Such a function Ψ is called a Hamiltonian symplectomorphism. Evidently
Ψ is a lift of a symplectomorphism on the torus T2n.
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Theorem 9.4 (Conley-Zehnder) Any symplectomorphism ψ : T2n → T2n has at least 2n+1
many fixed points.

Note that ψ = φ0,1 = φ0, 1
N
◦ φ 1

N
, 2
N
◦ · · · ◦ φN−1

N
,1 and if N is sufficiently large, then each

ψj = φ j−1
N
, j
N

has a generating function Vj.

Exercise 9.1(i) Consider the Billiard map in a circle. Determine the generating function.
Find periodic orbits and describe the remaining orbits.

(ii) Consider the Billiard map in an ellipse. Show that the 2-periodic orbits correspond to
the reflection along the axes of symmetry. Show that the 2-periodic orbit associated with
the shorter axis of symmetry is a saddle point of the generating function. Hint: (x∗1, x

∗
2)

maximizers of S(x1, η(x1)) but is a local minimum for S(x∗1, x2). �
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10 Pseudo-Holomorphic Curves and Gromov Width

In Chapters 5-8, we use the invariance (3.2) of the action A(γ) to construct various symplectic
capacities. For our constructions, we use the periodic orbits of the Hamiltonian systems in an
essential role. In this chapter, we focus on the invariance if

∫
Γ
ω to analyze symplectic maps.

Our main tool will be the pseudo-holomorphic curves of Gromov. We give two motivations
for the relevance of such complex curves (or rather real surfaces):

1. Observe that if Γ = w(D) is a 2-dimensional surface with the parametrization w : D →
R2n for a planar domain D, then∫

Γ

ω̄ =

∫
D

ω̄(ws, wt) dsdt =

∫
D

J̄ws · wt dsdt.

This integral is simply −area(Γ) when n = 1. For n > 1, the integral
∫

Γ
ω is not of a definite

sign and does not represent any kind of size of the surface Γ. However, if w satisfies

(10.1) ws = J̄wt,

then ws · ws = 0, and

(10.2)

∫
Γ

(−ω̄) =

∫
D

|ws|2 dsdt =

∫
D

(
|ws|2|wt|2 − (ws · ws)2

)1/2
dsdt = area(Γ).

This means that for such surfaces, −
∫

Γ
ω̄ is indeed the area of Γ. If we write w = (u, v) with

u and v representing the position and momentum, then (10.1) reads as

us = vt, vs = −ut,

which are nothing other than Cauchy-Riemann equations. When (10.1) is satisfied, we say
that w is a holomorphic curve. Holomorphic curves are not preserved under a symplectic
change of coordinates. However, if ϕ ◦ ŵ = w, then

(10.3) ŵs = J(ŵ)ŵt,

where
J = (ϕ′)−1J̄ϕ′,

is an example of an almost complex structure and ŵ is called a J-holomorphic curve. Observe
that if we set ḡ(a, b) = a · b, and define a metric g = ϕ∗ḡ, then

(10.4) ω̄(a, b) = ω̄(ϕ′(x)a, ϕ′(x)b) = ḡ(J̄ϕ′(x)a, ϕ′(x)b) = (ϕ∗ḡ)x(J(x)a, b).

We can now repeat our calculation in (10.2) to assert that if Γ̂ = ŵ(D), then∫
Γ

(−ω̄) = areag(Γ̂),
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where areag denotes the area with respect to the metric g.

2. Recall that if H(x, t) is a time dependent Hamiltonian function, then the critical points
of the functional

A(x) =

∫ 1

0

[
p · q̇ −H(x, t)

]
dt,

corresponds to the 1-periodic orbits of ẋ = J̄∇H(x, t). For example if H : T2n × R → R is
1-periodic in t, and if we regard A : C1(S1,R2n) → R, then the gradient of A with respect
to the L2-inner product is given by

∂A(x(·)) = −J̄ ẋ(·)−∇H(x(·), t).

Observe that the gradient with respect to H1/2-inner product, namely ∇A is related to ∂A
by the formula ∇A = I∂A. In fact the critical points of A corresponds to the fixed points
of the map ψ = φH1 and following an idea of Floer, we may study such critical points by
developing a Morse-type theory of A. Morse theory may be developed by studying the
gradient flow

(10.5)
dw

ds
= −∂A(w).

Regarding w : R× S1 → R2n as a function of two variables s and t, (10.5) reads as

(10.6) ws = J̄wt +∇H(w, t).

This is very different from the corresponding

(10.7)
dw

ds
= −∇A(w) = −I∂A(w);

the right-hand side of (10.7) is an intergro-differential equation and is well-defined as an
ODE, whereas the equation (10.6) is an elliptic PDE and not well-posed as an initial-value
problem. Evidently, (10.6) is the same as (10.1) when H = 0. The elliptic PDE (10.1) is
well-posed for a prescribed w(∂D). �

Motivated by (10.4), let us give a general definition for almost complex structures. Let
M be a C1 manifold. By an almost complex structure on M , we mean a continuous x 7→ Jx
with Jx : TxM → TxM linear function satisfying J2

x = −id. The pair (M,J) is called an
almost complex manifold. If (M,ω) is symplectic, then we say (J, g) and ω are compatible if

(10.8) gx(a, b) = ωx(a, Jxb), a, b ∈ TxM

is a Riemannian metric on M . We write I(M,ω) for the compatible pairs (g, J). We also
set

G(M,ω) = {g : (g, J) ∈ I(M,ω)}, J (M,ω) = {J : (g, J) ∈ I(M,ω)}.
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Proposition 10.1 (i) Let (M,ω) be symplectic with a Riemannian metric ĝ. Then I(M,ω)
is nonempty.

(ii) If g ∈ G(M,ω) and dimM = 2n, then µ := (n!)−1ωn is the Riemannian volume form
associated with the Riemannian metric g.

Proof Fix x. Both a 7→ ωx(a, ·) and a 7→ ĝx(a, ·) are linear isomorphisms between TxM
and (TxM)∗. Hence there exists a linear invertible Ax : TxM → TxM such that ωx(a, b) =
ĝx(Axa, b). Note that Ax is skew symmetric because

ĝ(A∗a, b) = ĝ(a,Ab) = ĝ(Ab, a) = ω(b, a) = −ω(a, b) = −ĝ(Aa, b).

In fact a candidate for J is simply the orthogonal matrix that appears in the polar de-
composition of A. More precisely, if we use the unique representation Ax = SxJx, with
Sx = (AxA

t
x)

1/2 = (−A2
x)

1/2, and Jx orthogonal with respect to ĝx, then J ∈ J (M,ω).
To verify this, we build this polar decomposition directly. The idea is that since A is real
and skew-symmetric, its eigenvalues appear as ±iλ with λ real. Hence the eigenvalues of
−A@ = 2 are positive and of even multiplicities. In fact, the matrix B = A2 is negative
definite, and if v is an eigenvector of B associated with the eigenvalue −λ2 for some positive
λ, then w = λ−1Av is another eigenvector for B that is orthogonal to v:

ĝ(v, w) = λ−1ĝ(v, Av) = λ−1ω(v, v) = 0, Bw = λ−1ABv = λAv = λ2w.

We now describe S and J on {v, w}, and hence on the span of {v, w}:

Av = λw, Sv = λv, Jv = w,

Aw = −λv, Sw = λw, Jw = −v.

More generally, we can find an orthonormal basis {v1, . . . , v2n} and positive numbers λ1, . . . , λ2n

such that Bvi = −λ2
i vi for each i. We can readily show that {wi = λ−1

i Avi : i = 1, . . . , 2n} is
also an orthonormal set and that Awi = −λivi, Bwi = λ2

iwi. But since A is skew symmetric,
wi and vi are orthogonal eigenvectors of B associated with the same eigenvalue −λ2

i . We
relabel our eigenvalues and eigenvectors so that Av2i = λiv2i−1 and Av2i−1 = −λiv2i for
i = 1, . . . n. We then define S and J by Sv2i = λiv2i, Sv2i−1 = λiv2i−1, Jv2i = v2i−1 and
Jv2i−1 = −v2i. It is straightforward to check that A = SJ , J2 = −id and J∗ = −J . We
also have

g(a, b) := ω(a, Jb) = g(Aa, Jb) = g(Sa, b).

We are done because S > 0.

(ii) First we claim that there exists a local orthonormal frame for (M, ĝ) of the form En =
{e1, Je1, . . . , en, Jen}. This frame is construction inductively; if we already have 2k many
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vector fields Ek = {e1, Je1, . . . , en, Jek} with ĝ(ei, ej) = δij, ĝ(ei, Jej) = 0 for i, j = 1, . . . k,
then locally we can find a new vector field ek+1 which is orthogonal to vectors in Ek and
ĝ(ek+1, ek+1) = 1. We then use (3.14) and J2 = −id to deduce that Jek+1 is also orthogonal
to Ek and ek+1 and that ĝ(Jek+1, Jek+1) = 1.

From ω(ei, ej) = ω(Jei, Jej) = 0 and ω(ei, Jej) = δij, we can readily deduce

ωn(e1, Je1, . . . , en, Jen) = n!,

and this implies that µ is the Riemannian volume. �

In the prominent work [G], Gromov uses the J-Holomorphic curves to establish his non-
squeezing result, namely Theorem 6.2(i). The main ingredient for his proof is an existence
result:

Theorem 10.1 (Gromov) For every J ∈ J (R2n, ω̄) and every x0 ∈ Z2n(1), there exists a
J-holomorphic ŵ : D→ Z2n(1) such that x0 ∈ ŵ(D), w(∂D) ⊂ ∂Z2n(1), and

(10.9)

∫
ŵ(D)

(−ω̄) = π.

Let us first see how Theorem 10.1 implies the non-squeezing property of symplectomorphisms.

Proof of Theorem 6.2(i) Let ϕ : R2n → R2n be a symplectomorphism such that ϕ(BR) ⊂
Z2n(1), where BR = {x : |x| ≤ R}. Let J be as in (10.3). By Theorem 10.1, we can find
ŵ : D→ Z2n(1) such that ϕ(0) ∈ ŵ(D), and (10.9) is true. Let w = ϕ−1 ◦ ŵ, so that w solves
(10.1), 0 ∈ w(D), and

Area(w(D)) =

∫
w(D)

(−ω̄) =

∫
ŵ(D)

(−ω̄) = π,

by (10.9). On the other-hand by a classical theorem of Lelong, we must have

π = Area(w(D)) ≥ Area(BR) = πR2.

Thus, R ≤ 1. �

Before embarking on the proof of Theorem 10.1, let us develop some feel for the equation
(10.3). To ease the notation, let us write w for ŵ. Also, to avoid the occurring minus sign,
we take J ∈ J (R2n,−ω̄), so that instead of (10.3), we now have

(10.10) wt = J(w)ws.
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Note that now J as in (10.3) satisfies

(10.11) J = (ϕ′)−1iϕ′,

where i = −J̄ is simply the multiplication by i, when we use the identification R2n = Cn.
We now give two interpretations for the equation (10.10).

1. In our first interpretation, we compare (10.10) with its equivalent formulation that we
obtain by multiplying both sides of (10.1) by J(w):

(10.12) wt = J(w)ws − ws = J(w)wt.

Regarding dw : TD→ TR2n, i : TD→ D, and J : TR2n → TR2n, we may rewrite (10.12) as

(10.13) dw ◦ i = J ◦ dw;

if we evaluate both sides of (10.13) at the vector fields ∂
∂s

and ∂
∂t

, we obtain the equations
of (10.12), because

i

(
∂

∂s

)
=

∂

∂t
, i

(
∂

∂t

)
= − ∂

∂s
.

The reader may compare (10.13) with (10.11) that may be written as

(10.14) i ◦ dϕ = dϕ ◦ J.

The advantage of the formulation (10.13) is that it has an obvious formulation to arbitrary
manifolds.

Definition 10.1 Let M be a manifold and J : TM → TM be an almost complex structure
i.e. J2 = −id.
(i) We say that w : D → M is a J-holomorphic curve if (10.3) is valid. We also define the
operator

(10.15) ∂̄Jw =
1

2

(
dw + J ◦ dw ◦ i

)
,

so that the equation (10.13) may be written as ∂̄Jw = 0.

(ii) We say that J is a complex structure if for every x ∈ M , we can find U ⊂ Cn and a
diffeomorphism ϕ : U →M such that x ∈ ϕ(U), and (10.14) is valid. �

2. Let us use complex-variable notation to write z = s+ it and z̄ = s− it. We also use the
notations

dz = ds+ idt, dz̄ = ds− idt,
∂

∂z
=

1

2

(
∂

∂s
− i ∂

∂t

)
,

∂

∂z̄
=

1

2

(
∂

∂s
+ i

∂

∂t

)
.

117



By definition,
wt = i(wz − wz̄), ws = (wz + wz̄).

Hence, if i+ J is invertible, the (10.10) may be written as

(10.16) wz̄ = K(w)wz.

where
K(w) := (i+ J(w))−1(i− J(w)).

Proposition 10.2 If J ∈ J (R2n,−ω̄), then i+ J is invertible and ‖K‖ < 1.

Proof First observe that since J ∈ J (R2n,−ω̄), we know

(10.17) a 6= 0 ⇒ (ia) · (Ja) = (−ω̄)(a, Ja) > 0.

To show that i + J is invertible, note that if to the contrary we can find a 6= 0, such that
(i+ J)a = 0, then

(ia) · (Ja) = −|ia|2 < 0,

which contradicts (10.17).
To show that ‖K‖ < 1, it suffices to check that |b| < |a| whenever K(a) = b and a 6= 0.

We have
K(w)a = b ⇔ (i− J)(a) = (i+ J)(b) ⇔ b− a = iJ(b+ a).

Clearly, if a+ b = 0, then a = b = 0. Now if a, a+ b 6= 0, then by (10.17),

|b|2 − |a|2 = (b− a) · (b+ a) = (iJ)(b+ a) · (b+ a) = −
[
J(b+ a) · i(b+ a)

]
< 0,

as desired. �

Remark 10.1 The equation (10.13), is equivalent to the classical Beltrami Equation when
n = 1. This equation is related to the theory of quasi-conformal maps and a generalization
of the Riemann mapping theorem. To explain this, first observe that (10.13) and (10.14) are
equivalent in the case of n = 1 by setting ϕ = w−1. As we showed in Example 2.2, the set
I(R2,−ω̄) consists of pairs (g, J), with g(a, b) = Ga · b, such that

(10.18) G =

[
α β
β γ

]
, J =

[
−β −γ
α β

]
,

with α, γ > 0 and αγ−β2 = 1. Now let us write ϕ(z) = u+ iv with z = s+ it, and evaluate
both sides of (10.14) at the vector fields ∂

∂s
and ∂

∂t
, with J as in (10.18). We obtain

iϕs = −βϕs + αϕt, iϕt = −γϕs + βϕt.
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This is equivalent to ϕt = jϕs for j = (β + i)/α = γ/(β − i). Equivalently,

(10.19) ϕz̄ = µ(z)ϕz, with µ =
i− j
i+ j

.

This equation is known as the Beltrami Equation, and resembles (10.16) because

|µ| =
∣∣∣∣β + (α− 1)i

β + (α + 1)i

∣∣∣∣ < 1,

by our assumption α > 0. We refer to Appendix D for more information about the Beltami
Equation.

As for the equation (10.16) in dimension 2, observe that when n = 1,

K =

[
−β −γ − 1
α + 1 β

]−1 [
β γ − 1

1− α −β

]
= (α + γ + 2)−1

[
β γ + 1

−α− 1 −β

] [
β γ − 1

1− α −β

]
= (α + γ + 2)−1

[
γ − α −2β
−2β α− γ

]
.

From this, we deduce that in fact the equation (10.16) can be written as

(10.20) wz̄ = m(w)w̄z,

where m = (γ − α− 2βi)/(α + γ + 2). We note

|m|2 =
(α + γ)2 − 4

(α + γ + 2)2
=
α + γ − 2

α + γ + 2
= 1− 4(α + γ + 2)−1 < 1.

�
As we discussed in Remark 10.1, the equation (10.16) is a multi-dimensional general-

ization of the classical Beltrami-equation. Ignoring the boundary condition requirements
of Theorem 10.2 we can use the classical transforms of Cauchy and Beurling to construct
solutions of equation (10.16). We define

(10.21) C(h)(z) = − 1

π

∫
D

h(ζ)

ζ − z
dsdt, B(h)(z) =

1

π
PV

∫
D

h(ζ)

(ζ − z)2
dsdt,

where PV stands for the principle value (see Appendix D). The main property of the Cauchy
Transform C is that C(h)z̄ = h and that its z derivative is the Buerling transform; C(h)z =
B(h). Moreover, by Caldron-Zygmund Theory, the operator B is bounded on Lp for every
p ∈ (1,∞). In fact B is an isometry on L2 and its norm C(p) on the Lp converges to 1 as
p→ 2. We refer to Theorem D.1 of Appendix D for more details.
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Theorem 10.2 Assume that ‖K‖L∞ = c0 < 1. Let q1, . . . , qn : D → C be n holomorphic
functions. Then there exists p = p(c0) > 2 and a function w = (U1, . . . , Un) ∈ W 1,p,
Ui : D→ C, of the form

Ui = C(ui) + qi, ui ∈ Lp(D),

that solves the equation (10.16) weakly.

Proof We use column vectors to write

w =

U1
...
Un

 , u =

u1
...
un

 , q =

q1
...
qn

 , q̂(w) = K(w)

q
′
1
...
q′n

 , B̂(u) =

B(u1)
...

B(un)

 .
Using the definition of C and B, we can write (10.17) as

(10.22) wz̄ = u = K(w)B̂(u) + q̂(w).

We wish to invert the operator I −K(w)B̂ for a given vector w. Since B is an isometry on
L2, the operator of B̂ is also an isometry. Using Theorem D.1 of the Appendix, we can show
that for every p ∈ (1,∞), there exists a constant c(p) such that lim c(p) = 1 as p→ 2, and

‖B̂(u)‖Lp ≤ c(p)‖u‖Lp .

From this we learn
‖A(w)B̂(u)‖Lp ≤ c(p)c0‖u‖Lp .

Choose p > 2 such that c(p)c0 < 1. For such p,∥∥∥(I − A(w)B̂
)−1

h
∥∥∥
Lp
≤
(
1− c(p)c0

)−1‖h‖Lp .

This in turn implies that if

D(w) =
(
I − A(w)B̂

)−1
(q̂(w)),

then
‖D(w)‖Lp ≤ c0

(
1− c(p)c0

)−1‖q̂‖Lp := c1(p).

By applying Theorem D.1 of Appendix

‖C ◦ D(w)‖W 1,p ≤ c2,

for some constant c2 = c2(p). Then rewrite (10.16) as

(10.23) w =
(
C ◦ D

)
(w) + q := E(w).
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Hence w is a fixed point of the operator E . Set

ΓL =
{
w : ‖w‖L∞ ≤ L

}
.

We wish to show that E : ΓL → ΓL and it has a fixed point. As a preparation, we first bound
the nonlinear D. Since p > 2, we may apply Morrey Inequality to deduce

(10.24) ‖C ◦ D(w)‖C1−2/p ≤ c2(p)‖C ◦ D(w)‖W 1,p ≤ C(p)c1(p) = c3(p),

where Cα denotes the space of α-Hölder continuous functions. In particular

‖C ◦ D(w)‖L∞ ≤ c3(p).

Setting L = c3(p) + ‖q‖L∞ , we deduce that E(Lp) ⊆ ΓL. In particular, E maps ΓL into
itself. On the other hand, the bound (D.12) implies that the image of ΓL under E is in fact
relatively compact. This allows us to use the Schauder Fixed Point Theorem to deduce that
E has a fixed point. �

In this chapter, we will describe two approaches for establishing Theorem 10.1. In our
first approach, we will follow a work of Sukhov and Tumanov [ST] that treats (10.16) as a
generalization of the Beltrami equation and use Cauchy and Beurling transforms to construct
solutions. (We refer to Appendix D for a thorough discussion of these transforms and their
use in solving Beltrami-type equations.) The main ingredient of the proof of Theorem 10.16
a la [SK] is a variant of the Cauchy operator that is designed to solve the d-bar problem
with a boundary condition. More precisely, given a holomorphic function Q : D→ C that is
nonzero inside D, we define

(10.25) CQ(f)(z) =
Q(z)

2πi

∫∫
D

[
f(ζ)

Q(ζ)(ζ − z)
+

f(ζ)

Q(ζ)(zζ̄ − 1)

]
dζ ∧ dζ̄.

We note

(10.26) CQ(f) = QC(f/Q) + hQ,

for a function hQ that is holomorphic inside D. The type of Q we have in mind are

(10.27) Q(z) = a0

l∏
j=1

(z − aj)αi ,

with a1, . . . , al ∈ ∂D distinct and α1, . . . , αl ∈ (0, 1]. We can take a branch of the holomorphic
Q that is defined on

ΩQ = C \ ∪αj<1{raj : r > 0}.
The following theorem of Monakhov guarantees that the operator CQ and BQ(f) =

(
CQ(f)

)
z

satisfy many properties of the Cauchy and Beurling Transforms.
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Theorem 10.3 Let Q be as in (10.26). For every p ∈ (p1, p2) with

p1 = max
j

(1− αj/2)−1, p2 = 2 max
j

(1− αj)−1,

the operators CQ : Lp(D)→ W 1,p(D), and BQ : Lp(D)→ Lp(D), are bounded.

In view of (10.26) and Theorem 10.2, we have

CQ(h)z̄ = h, CQ(h)z = B(h),

weakly. We note that when when z ∈ D, then we can write

(10.28) CQ(f)(z) =
Q(z)√
z

∫∫
D

[ √
zf(ζ)

Q(ζ)(ζ − z)
+

√
zf(ζ)

Q(ζ)(zζ̄ − 1)

]
dζ ∧ dζ̄

2πi
.

What we learn from this is that CQ(f)(z) is a real multiple of Q(z)/
√
z whenever |z| = 1.

Hence the boundary behavior of CQ(f) is tied to that of Q(z)/
√
z. It is this property of CQ

that we use later on in the proof of Theorem 10.1.

Proof of Theorem 10.1 Step 1. Without loss of generality, we may assume that n = 2.
Also, the surface w we wish to construct may embed into a set that is sympletomorphic to
Z4(R) for some R. For our purposes, we choose T × C with T ⊂ C a triangle with vertices
±1 and i. We wish to find a transformation w = (U, V ) : D → C2 that solves (10.16) and
satisfies the following properties:

(i) U : D→ T , with U(∂D) = ∂T , and V : D→ C,

(ii) (u0, v0) ∈ w(D),

(iii) 2area(w(D)) = i
∫
D dU ∧ dŪ + dV ∧ dV̄ = 2.

Note that we switched from (10.9) to (iii) because area(T ) = 1. Pick a ∈ D. We search for
solutions of the form

U = C1(u) + q, V = C2(v)− C2(v)(a) + v0,

for u, v : D→ C in Lp, and a holomorphic function q. The operators C1 and C2 are defined
as Ci(f) = CQi(f), where

Q1(z) = e3iπ/4(z − 1)1/4(z + 1)1/4(z − i)1/2, Q2(z) = z − 1.

�
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A Vector Fields and Differential Forms

Lemma A.1 (De Rham) Let M be a compact connected orientable k-dimensional manifold
and let α be a k-form with

∫
M
α = 0. Then α is exact.

Proof Let {U1, . . . , Ur} be a finite cover of M with each Ui diffeomorphic to a simply
connected subset of Rk. To ease the notation, we assume that r = 2. Choose ϕ1 and ϕ2 with
ϕ1 +ϕ2 = 1, ϕ1, ϕ2 ≥ 0, ϕ1, ϕ2 ∈ C1 and supp ϕi ⊆ Ui for i = 1, 2. We can readily construct
a k-form β such that supp β ⊆ U1∩U2 and

∫
M
β = 1. Define γ = ϕ1α−cβ with c =

∫
M
ϕ1α.

Then supp γ ⊆ U1 and
∫
U1
γ = 0. By Poincaré’s lemma, there exists a form γ̂ such that

dγ̂ = γ. Similarly, if τ = ϕ2α + cβ, then supp τ ⊆ U2 and
∫
U2
τ =

∫
M

(1 − ϕ1)α + cβ =∫
M
α = 0. Hence, we can apply Poincaré’s lemma to find τ̂ with dτ̂ = τ . We now have

d(γ̂ + τ̂) = ϕ1α− cβ + ϕ2α + cβ = α.

�

Lemma A.2 Let X be a C1 vector field of X and write φXt for its flow. If ϕ : N →M is a
diffeomorphism, then ψt = ϕ−1 ◦ φXt ◦ ϕ, is the flow of the vector field ϕ∗X := (dϕ)−1X ◦ ϕ.

Proof We have

dψt
dt

(x) =
(
dϕ−1

)
φXt ◦ϕ(x)

(
X ◦ φXt ◦ ϕ

)
(x) =

(
dϕ−1

)
ϕ◦ψXt (x)

(
X ◦ ϕ ◦ ψXt

)
(x)

= (dϕ)−1
ψXt (x)

(X ◦ ϕ)
(
ψXt (x)

)
,

which means
ψt = φ

(dϕ)−1X◦ϕ
t .

�
The vector field ϕ∗X is called the pull-back of X. Also, if Y is a vector field on N , we

define its ϕ-push-forward by

(ϕ∗Y )(y) = (dϕ)ϕ−1(y)Y
(
ϕ−1(y)

)
.

We define the Lie derivative of a vector field Y with respect to another vector field X by

(A.1) [X, Y ] = LXY := lim
t→0

t−1
((
φXt
)∗
Y − Y

)
.

Using (
φXt
)∗ (

φXs
)∗
Y =

(
φXs+t

)∗
Y,
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we can readily show

(A.2)
d

dt

(
φXt
)∗
Y = LX

(
φXt
)∗
Y =

(
φXt
)∗ LXY.

In particular Z(x, t) =
(
φXt
)∗
Y satisfies

Zt = [X,Z] = LXZ.

Lemma A.3 For every 1-form α and vector fields X and Y , we have

(A.3) dα(X, Y ) = LX
(
α(Y )

)
− LY

(
α(X)

)
+ α

(
[X, Y ]

)
.

Proof To ease the notation, we write φt for φXt . By definition

(φ∗tα) (φ∗tY ) = α(Y ) ◦ φt.

We now differentiate both sides with respect to t and set t = 0. We obtain

(LXα) (Y ) + α
(
[X, Y ]

)
= LX

(
α(Y )

)
.

By Cartan’s formula, the left hand side equals

(iXdα) (Y ) + d
(
α(X)

)
(Y ) + α

(
[X, Y ]

)
= dα(X, Y ) + LY

(
α(X)

)
+ α

(
[X, Y ]

)
,

which implies (A.3). �
Given a sub-bundle ξ of TM of dimension m, we may wonder whether or not there exists

a foliation of M that consists of submanifolds N such that for each x ∈ N , we have TxN = ξx.
If such a foliation exists locally, we say that ξ is integrable. According to Frobenius Theorem
the sub-bundle ξ is integrable iff for every vector fields X, Y ∈ ξ, we have [X, Y ] ∈ ξ.

We are particularly interested in the case of ξx = kerαx, for a 1-form α. For example, if
M = Rk and α = u·dx, then ξx = u⊥ consists of vectors that are perpendicular to u. If k = 3,
D = B1(0) is the unit disk, and w : D →M parametrizes a surface with Txw(D) = u⊥, then
by Stokes’ theorem,

0 =

∫
w(γ)

α =

∫
w(Γ)

dα =

∫
Γ

(dα)w(s1,s2) (ws1(s1, s2), ws2(s1, s2)) ds1ds2

=

∫
Γ

[(ws1 × ws2) · (∇× u)(w)] ds1ds2.

for every open subset Γ ⊂ D with ∂Γ = γ. By varying Γ and using the assumption that u
is parallel to ws1 ×ws2 , we learn that (∇× u) · u ≡ 0. More generally we have the following
consequence of Lemma 10.3.
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Lemma A.4 Let α be a non-degenerate 1-form on M and set ξ = kerα. The following
statements are equivalents:

(i) The sub-bundle ξ is integrable.

(ii) For every vector fields X, Y ∈ ξ, we have dα(X, Y ) = 0.

(iii) α ∧ dα = 0.

Proof The equivalence of (i) and (ii) is an immediate consequence of (A.3). We now show
that (ii) implies (iii). Assume (ii). Take any vector fields X, Y in ξ and any vector field R
such that α(R) = 1. Define π(v) = v− α(v)R so that πx is the R(x)-projection onto ξx. We
have

(α ∧ dα)(v1, v2, v3) = α(v1)dα(v2, v3)− α(v2)dα(v1, v3) + α(v3)dα(v1, v2)

= α(v1)
[
α(v2)dα(R, π(v3)) + α(v2)dα(π(v2), R)

]
− α(v2)

[
α(v1)dα(R, π(v3)) + α(v3)dα(π(v1), R)

]
+ α(v3)

[
α(v1)dα(R, π(v2)) + α(v2)dα(π(v1), R)

]
= 0,

which means that α ∧ dα = 0.
Conversely, if (iii) is true and X, Y are any two vector fields in ξ, then

0 = (α ∧ dα)(R,X, Y ) = α(R)dα(X, Y )− α(X)dα(R, Y ) + α(Y )dα(R,X) = dα(X, Y ),

as desired. �

B Sobolev Inequality

It is well-known that H1/2 is a subset of the space of functions of bounded mean oscillation
(BMO). In particular H1/2 ⊂ Lp for all p ≥ 2. We will prove this for p < 3.

Lemma B.1 For every p ∈ [2, 3), there exists a constant c0 = c0(p) such that(∫ 1

0

|x(t)|p dt
)1/p

≤ c0(p)‖x‖.

Proof We identify R2n with Cn and write −i for J̄ . Hence x(t) =
∑

k e
2πktJ̄xk can be

rewritten as
∑

k e
−2πktixk with xk ∈ Cn. Since it suffices to establish the inequality for each

component, we may assume without loss of generality that n = 1.
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We now find an expression of ‖x‖ that involves the function x(·) directly and does not
involve its Fourier coefficients. We claim

(B.1)

∫ 2π

0

∫ 2π

0

|x(eiθ)− x(eiϕ)|2

|eiθ − eiϕ|2
dθdϕ = 4π2

∑
k

|k||xk|2.

This follows from a direct calculation; the left-hand side equals∫ 2π

0

∫ 2π

0

|eiθ − eiϕ|−2

∣∣∣∣∣∑
k

xke
−ikθ −

∑
k

xke
−ikϕ

∣∣∣∣∣
2

dθdϕ

=

∫ 2π

0

∫ 2π

0

|1− eiτ |−2

∣∣∣∣∣∑
k

xk(1− e−ikτ )e−ikθ
∣∣∣∣∣
2

dθdτ

= 2π

∫ 2π

0

|1− eiτ |−2
∑
k

|xk|2|1− e−ikτ |2dτ = (2π)2
∑
k

|k||xk|2,

because ∫ 2π

0

|1− e−ikτ |2

|1− eiτ |2
dτ =

∫ 2π

0

(e−i(k−1)τ + · · ·+ 1)(ei(k−1)τ + · · ·+ 1)dτ = 2π.

Let us write Λ(x) for the left-hand side of (??). To simplify the notation write y(θ) =
x(eiθ). We have that for constants c1 and c2,

(B.2)

∫ 2π

0

∫ 2π

0

|y(θ)− y(ϕ)|211(|θ − ϕ| < l−1)dθdϕ ≤ c1l
−2Λ(x) = c2l

−2‖x‖2.

Given l ≥ 1, define zl(t) = l
∫ l−1

0
x(t+ α) dα. By (B.2),∫ 1

0

|x(t)− zl(t)|2dt =

∫ 1

0

∣∣∣∣∣l
∫ l−1

0

(x(t)− x(t+ α)) dα

∣∣∣∣∣
2

dt

≤ l

∫ 1

0

∫ l−1

0

|x(t)− x(t+ α)|2 dtdα

≤ c2l
−1‖x‖2.

From this we deduce that for every l ≥ 1,

x = zl + wl

with
‖wl‖2

0 ≤ c2l
−1‖x‖2, ‖zl‖L∞ ≤ l‖x‖,
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because

|zl(t)| ≤ l

∫ 1

0

|x(t)| dt ≤ l‖x‖0.

Hence we apply Chebyshev’s inequality to assert

|{t : |x(t)| > 2l‖x‖}| ≤ |{t : |wl(t)| > l‖x‖}| ≤ ‖w
l‖2

0

l2‖x‖2
≤ c2l

−3,

whenever l ≥ 1. On the other hand∫ 1

0

|x(t)|p dt ≤ 1 +

∫ ∞
0

plp−1|{x > l}|dl

≤ 1 + c3‖x‖3

∫ ∞
1

plp−1l−3dl

= 1 + c4(p)‖x‖3

with c4(p) <∞ whenever p < 3. Finally, we replace x with λx, λ > 0 to deduce

‖x‖pLp ≤ λ−p + c4(p)λ3−p‖x‖3.

Minimizing the right-hand side over λ > 0 yields the desired inequality. �

C Degree Theory

We first review the classical Brouwer degree theory. Consider triplets (f, U, y) with U ⊆ Rd

open and bounded, f : Ū → Rd continuous and y /∈ f(∂U). We now would like to assign
an integer deg(f, U, y) to (f, U, y) that, in some sense, counts the solutions to the equation
f(x) = y, x ∈ U , with a sign. This degree satisfies the following properties:

(i) If V ⊆ U and f−1({y}) ⊆ V , then deg(f, V, y) = deg(f, U, y).

(ii) For a constant a, deg(f + a, U, y + a) = deg(f, U, y).

(iii) If U ∩V = ∅ and y /∈ f(∂U)∪f(∂V ), then deg(f, U ∪V, y) = deg(f, U, y)+deg(f, V, y).

(iv) If f : Ū × [0, 1]→ Rd is continuous with y /∈ f(∂U, t) for every t ∈ [0, 1], then

deg(f(·, 1), U, y) = deg(f(·, 0), U, y).

(v) If deg(f, U, y) 6= 0, then f(x) = y has a solution in U .

(vi) deg(id, B, 0) = 1 where B = {x : |x| < 1}.
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It turns out that the above properties determine “deg” uniquely. Indeed one can show
that for any triplet as above, we can find (g, U, y) with g smooth and f and g homotopic.
As for g ∈ C1, deg is defined by

deg(g, U, y) =
∑

x∈f−1{y}

sgn(det g′(x)).

In the same fashion, we can define the degree of a continuous map between manifolds.
Given two compact manifolds M and N , and a C1 map f : N →M , we say x ∈ N is regular
if dfx is invertible. We say x ∈M is a regular value if f−1{x} consists of regular points. By
inverse mapping theorem, it is not hard to show that if x is a regular value, then f−1{x} is
finite. For such a value we may define the degree by

(C.1) degx(f) =
∑

y∈f−1{x}

εy,

where εy = ±1 according to whether dfx preserves or reverses orientation. In the Euclidean
case εy = sgn det Dxf . The degree of a continuous f : N → M defined to be the degree of
a C1 function g : N → M that is sufficiently close to f . As we will see in Lemma C.1, this
is well-defined.

Lemma C.1 (i) If f : N → M is a C1 function and Ω is a volume form with Ω > 0,∫
M

Ω = 1, then for every regular value x ∈M ,

degx f =

∫
N

f ∗Ω.

(ii) The degree is invariant under homotopies consisting of C1-maps.

(iii) Any two C1-maps f, g : N → M that are sufficiently C0-close are homotopic via C1-
maps.

(iv) Let X be an orientable manifold with ∂X = N and let F : X → M be a continuous
map. Then the degree of f = F |N is zero.

Proof (i) Let x be a regular value and assume f−1{x} = {x1, . . . , xk}. Find an open
neighborhood V of x such that f−1(V ) = U1 ∪ · · · ∪ Uk with U1, . . . , Uk, open and disjoint,
xi ∈ Ui for i = 1, . . . , k, and f |Ui : Ui → V a diffeomorphism for every i. We now take an
n-form α with support in V such that

∫
V
α = 1. By Lemma 3.10, we may find an (n−1)-form

β such that Ω = α + dβ. We now have∫
N

f ∗Ω =

∫
N

f ∗α +

∫
N

df ∗β =

∫
N

f ∗α

=
k∑
i=1

∫
Ui

f ∗α =
k∑
i=1

εxi .

128



(ii) Clearly degree is C1-continuous and locally constant.

(iii) Put a Riemannian metric on M . Given x ∈ N , we may find a geodesic curve connecting
f(x) to g(x). We now define ψ(t, x) = γ(t; f(x), g(x)) where γ(t; a, b) is defined to be a point
on the geodesic connecting a to b with γ(0; a, b) = a, γ(1; a, b) = b. This can be done
smoothly for a, b sufficiently close.

(iv) Let Ω be a volume form on M with
∫
M

Ω = 1, Ω > 0. We then have

deg(f) =

∫
N

f∗Ω =

∫
∂X

f∗Ω =

∫
X

d(F∗Ω) =

∫
X

F∗dΩ = 0.

�
The Leray–Schander Theory allows us to have a similar notion of degree for functions of

the form f = I + L : Ū → E with E a Banach space, U a bounded open subset of E , and L
a compact operator. Again we wish to define deg(f, U, y) provided that y /∈ f(∂U). To do
so, first we find a sequence Lm : Ū → E such that the range of Lm, denoted by Lm(Ū), is a
subset of finite dimensional space Em, and

lim
m→∞

sup
x∈Ū
‖Lm(x)− L(x)‖ = 0.

We then set

(C.2) deg(f, U, y) = deg(fm, Em ∩ U, y),

for large m, where fm = I + Lm : Em ∩ Ū → Em. For this to work, we need to check
that y /∈ fm(∂U) for sufficiently large m. By Exercise C(ii), the set f(∂U) is closed. Since
x /∈ f(∂U), we have dist.(x, f(∂U)) = δ > 0. Then we find m0 such that if m > m0, then
dist.(x, fm(∂U)) ≥ δ/2. Hence the right-hand side of (A.2) is well-defined by Lemma C.2
below.

Lemma C.2 Let U be an open bounded subset of Rn = Rn1⊕Rn2. Consider f(x) = x+L(x)
with L : Ū → Rn1, f : Ū → Rn. If y /∈ f(∂U) and y ∈ Rn1, then

deg(f, U, y) = deg(f |U1 , U1, y)

where U1 = U ∩ Rn1.

Proof We may assume f ∈ C1(U) and y = 0. Let us take two continuous functions ϕ1, ϕ2

with ϕi : Rni → R,
∫
ϕidyi = 1, for i = 1, 2, and both ϕ1, ϕ2 have support near 0. Set

ϕ(y1, y2) = ϕ1(y1)ϕ2(y2) and ω = ϕ(y1, y2)dy1dy2 is a volume form of total volume 1. We
then have

deg(f, U, y) =

∫
U

f ∗ω,
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by Lemma A.1. But det(In +∇L) = det
(
In1 + ∂L

∂x1

)
. As a result,

deg(f, U, y) =

∫
ϕ1(x1 + L(x))ϕ2(x2) det

(
In1 +

∂L

∂x1

)
dx1dx2.

We may send ϕ2 to δ0 to yield

deg(f, U, y) =

∫
ϕ1(x1 + L(x)) det

(
In1 +

∂L

∂x1

)
dx1

= deg(f |U1 , U1, 0).

�

Exercise C Let E be a Banach space and K : Ω → E be a compact operator with Ω a
bounded closed subset of X.

• (i) Show that K is a uniform limit of finite dimensional transformations. Hint: Cover

the compact set K(Ω) by finitely many open balls, and use a partition of unity.

• (ii) Show that I +K maps closed sets to closed sets.
�

D Cauchy and Beurling Transforms

A classical way of solving the Laplace and Poisson equation in an bounded open subset
of Rk with regular boundary is by first finding its Green’s function. That is a function
G : Ū × Ū → R, such that {

∆xG(x, y) = δy(dx), x ∈ U,
G(x, y) = 0, x ∈ ∂U.

Once such G is found, we then use Green’s identity to derive the following identity:

(D.1) u(x) =

∫
U

∆u(y) G(x, y) dy +

∫
∂U

u(y)
∂G

∂n
(x, y) dy,

where ∂G/∂n denotes the normal derivative of G. Once the Green’s function G and the
Poisson’s function ∂G/∂n are known, then we can use (D.1) to solve the PDE{

∆u(x) = f(x), x ∈ U,
u(x) = g(x), x ∈ ∂U.

for the given f and g. In C an analogous representation formula can be derived that in turn
can be used to solve the celebrated d-bar and Beltrami equations.

130



Proposition D.1 (Cauchy-Pompeiu Formula) Let U ⊂ C a bounded domain with a bound-
ary that is positively oriented and parametrized by a curve γ. Then, for every C1 function
f : C→ C,

f(z) =
1

2πi

∮
γ

f(ζ)

ζ − z
dζ +

1

2πi

∫∫
U

fζ̄(ζ)

ζ − z
dζ ∧ dζ̄,(D.2)

f(z) = − 1

2πi

∮
γ

f(ζ)

ζ̄ − z̄
dζ̄ +

1

2πi

∫∫
U

fζ̄(ζ)

ζ̄ − z̄
dζ ∧ dζ̄.

Proof We only derive the first formula in (D.2) because the second identity can be established
by a verbatim argument. Write ζ = s+ it and pick any C1 function g = u+ iv. Note

i

2
(dζ ∧ dζ̄) = ds ∧ dt.

Using the Green’s formula,∮
γ

g(ζ)dζ =

∮
γ

(u ds− v dt) + i(u dt+ v ds) =

∫∫
U

[
− (ut + vs) + i(us − vt)

]
dsdt

= i

∫∫
U

[
(us − vt) + i(ut + vs)

]
dsdt = i

∫∫
U

(gs + igt) dsdt

= 2i

∫∫
U

gζ̄ dsdt.(D.3)

A more compact version of the above calculation is∮
γ

g(ζ)dζ =

∫∫
U

dg ∧ dζ =

∫∫
U

gζ̄ dζ̄ ∧ dζ = 2i

∫∫
U

gζ̄ dsdt.

We now take z ∈ U , choose ε > 0 so small that Bε(z) ⊂ U , set g(ζ) = f(ζ)/(ζ − z) and
replace U with U/Bε(z) in (D.3) to deduce

1

2πi

∮
|ζ−z|=ε

f(ζ)

ζ − z
dζ =

1

2πi

∮
γ

f(ζ)

ζ − z
dζ − 1

π

∫∫
U

fζ̄(ζ)

ζ − z
dsdt.

It remains to show that the right-hand side converges to f(z) as ε → 0. For this it suffices
to check

lim
ε→0

1

2πi

∮
|ζ−z|=ε

f(ζ)− f(z)

ζ − z
dζ = 0.

This is an immediate consequence of the Lipschitzness of f that implies the boundedness of
the integrand. �

131



Given a C1 function h : Ū → C, we wish to find w : Ū → C such that wz̄ = h(z) in U .
Indeed if w is a solution, then by (D.2), w = C(h) + Γ(h), where the Cauchy operators Γ
and C are defined by

Γ(g) =
1

2πi

∫
γ

g(ζ)

ζ − z
dζ, C(h) = − 1

π

∫∫
U

h(ζ)

ζ − z
dsdt.

This means that a solution can be expressed as w = C(h) + q for a holomorphic function q.
Put this differently, what we learn from (D.2) is

(D.4)
∂

∂z̄
C(h) = h,

∂

∂z
C̄(h) = h,

where

C̄(h) = − 1

π

∫∫
U

h(ζ)

ζ̄ − z̄
dsdt.

With the aid of the Cauchy operator/transform C, we can also solve the Beltrami’s
equation

(D.5) ϕz̄ = µϕz.

This is an elliptic PDE only if |µ(z)| < 1 for all z. We may set h = ϕz̄ and express ϕ as
ϕ = C(h) + q, for a holomorphic function q. Observe that if ϕ satisfies (D.5), then

h = ϕz̄ = µϕz = µB(h) + µq′,

where B is the Beurling’s operator:

B(h) =
∂

∂z
C(h).

This means that the function h satisfies

(D.6) (I − µB)h = µq′.

In other words, for every holomorphic q, we first solve (D.6) for h and using this h = hq,
we have a solution for (D.5) in the form ϕ = q + C(hq). Note that q = 0 yields the trivial
solution ϕ = 0. For a nontrivial example, search for a solution of the form var = C(h) + 1,
where h solves

(I − µB)h = µ.

This or more generally (D.6) can be solve if ‖µB‖ < 1, for a suitable operator norm. As we
will see below, if we take the operator norm with respect to the L2 space, then ‖B‖ = 1 and
if supz ‖µ(z)‖ < 1, then we can invert I − µB and solve (D.6) in L2.
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The operator B is the complex-variable analog of the Hilbert Transform; from (D.4) we
can readily deduce

B(fz̄) = fz +Q,

for some holomorphic Q. It turns out that if we assume U = C and that f and its first
derivative vanish at infinity, then Q = 0 (because a bounded entire function is constant),
and we simply have B(fz̄) = fz. If we write

F(h)(η) = ĥ(η) =

∫
exp

(
Re(zη̄)

)
h(z) dz,

for the Fourier Transform of h, then we have

F(fz)(η) = −iη̄
2
F(f)(η), F(fz̄)(η) = −iη

2
F(f)(η).

Hence

F(B(h)) =
η̄

η
F(h)(η).

From this and Plancherel’s equation we deduce that

(D.7) ‖B(h)‖L2 = ‖h‖L2 .

In fact B is a singular operator that may be defined by

B(h)(z) =
1

π
PV

∫
h(ζ)

(ζ − z)2
dsdt = lim

ε→0

1

π

∫
|ζ−z|>ε

h(ζ)

(ζ − z)2
dsdt,

and is also bound on Lp for p ∈ (1,∞) by Calderon-Zygmund Theory.

Theorem D.1 Define the operators C and B on smooth functions by

(D.8) C(h)(z) = − 1

π

∫
D

h(ζ)

ζ − z
dsdt, B(h)(z) =

1

π
PV

∫
D

h(ζ)

(ζ − z)2
dsdt.

Then for every p ∈ (1,∞), there exists constants C(p) and C ′(p) such that limC ′(p) = 1 as
p→ 2, and

‖C(h)‖W 1,p ≤ C(p)‖h‖Lp , ‖B(h)‖Lp ≤ C ′(p)‖h‖Lp .

Writing C : Lp(C)→ W 1,p(C) and B : Lp(C)→ Lp(C) for their extensions, we have

C(h)z̄ = h, C(h)z = B(h),

weakly.
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Remark D.1(i) Assuming that for some p0 > 2, there exists a constant c0 such that

‖B(h)‖Lp0 ≤ c0‖h‖Lp0 ,

for every h, then we can use (D.7) and Riesz-Thorin Interpolation Theorem to assert that if

1

pθ
=
θ

2
+

1− θ
p0

,

then
‖B(h)‖Lpθ ≤ c1−θ

0 ‖h‖Lpθ .

This allows us to choose C ′(pθ) = c1−θ
0 , for θ ∈ [0, 1], which enjoys the property

lim
p→2

C ′(p) = 1.

(ii) Clearly there are many solutions to (D.5). In fact if µ = 0, then (D.5) simply requires
that ϕ to be holomorphic and if we also specify ϕ(D), then we still have many solutions by
the Riemann Mapping Theorem. Even if µ is nonzero, we can still require ϕ(D) to be a
simply connected domain U 6= C and solve (D.5) provided that ‖µ‖L∞ < 1. Indeed if ϕ is
any solution to (D.5) and ϕ(D) = V , then by the Riemann Mapping Theorem, we can find a
holomorphic function f : V → C such that f(V ) = U . Now ϕ̃ = f ◦ ϕ does the job because

ϕ̃z̄ = (f ′ ◦ ϕ)ϕz̄, ϕ̃z = (f ′ ◦ ϕ)ϕz.

This may be seen from

dϕ̃ = fϕ dϕ+ fϕ̄ dϕ̄ = (f ′ ◦ ϕ) dϕ = (f ′ ◦ ϕ)(ϕz dz + ϕz̄ dz̄).

(iii) Observe that if q,Q : D → C are two holomorphic functions with Q 6= 0 anywhere
inside D, then f = QC(g/Q) + q would solve the equation fz̄ = g.

�

After solving the Beltami Equation, we may wonder whether the solution ϕ of (D.5) is
a homeomorphism. One strategy for verifying the invertibility of ϕ is to derive an equation
for its inverse, verify its solvability, and show that the solution is indeed the inverse of ϕ. As
we have seen in Remark 10.1, the inverse w solves

(D.9) wz̄ = m(w)wz,

with |m| < 1.
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Theorem D.2 Assume that ‖m‖L∞ = c0 < 1. Then there exists p = p(c0) > 2 and a
function w ∈ W 1,p that solves the equation (D.9) weakly.

Proof The method we described above would not work and need to be modified. Indeed if
we set v = wz̄, we certainly have w = C(v) + q for a holomorphic q. On the other hand

(D.10) v = m(w)B̄(v) +m(w)q′,

which cannot be solved as before because m depends on the unknown. To get around this,
observe that for given w, the operator I−m(w)B̄ is invertible because ‖m‖L∞ = c0 < 1. Let
us define

D(w) =
(
I −m(w)B̄

)−1(
m(w)q′

)
Then we use (D.10) to rewrite (D.9) as

(D.11) w =
(
C ◦ D

)
(w) + q := E(w).

Hence w is a fixed point of the operator E . To show that E has a fixed point, we first decide
on its domain of definition. Set

ΓL =
{
w : ‖w‖L∞ ≤ L

}
.

We wish to show that E : ΓL → ΓL and it has a fixed point. As a preparation, we first bound
the nonlinear D. Let C ′(p) be as in Theorem D.1. Choose p > 2 such that c0C

′(p) < 1. By
Theorem D.1, ∥∥∥(I −m(w)B̄

)−1
h
∥∥∥
Lp
≤
(
1− c0C

′(p)
)−1‖h‖Lp .

This in turn implies,

‖D(w)‖Lp ≤ c0

(
1− c0C

′(p)
)−1‖q′‖Lp := c1(p).

By applying Theorem D.1 again we learn

‖C ◦ D(w)‖W 1,p ≤ C(p)c1.

Since p > 2, we may apply Morrey Inequality to deduce

(D.12) ‖C ◦ D(w)‖C1−2/p ≤ c2(p)‖C ◦ D(w)‖W 1,p ≤ C(p)c1(p) = c3(p),

where Cα denotes the space of α-Hölder continuous functions. In particular

‖C ◦ D(w)‖L∞ ≤ c3(p).

Setting L = c3(p) + ‖q′‖L∞ , we deduce that E(Lp) ⊆ ΓL. In particular, E maps ΓL into
itself. On the other hand, the bound (D.12) implies that the image of ΓL under E is in fact
compact. This allows us to use the Schauder Fixed Point Theorem to deduce that E has a
fixed point. �
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