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Preface to the Second
Edition

As noted in the preface of the first edition, one of the book’s pri-

mary purposes is to serve as a source of unsolved problems in the

flourishing and relatively “wide-open” area of Ramsey theory on the

integers. We especially hoped the book would provide beginning re-

searchers, including graduate students and undergraduate students,

with a range of accessible topics in which to delve. It seems that

we have already been at least somewhat successful because, since the

publication of the first edition, a good number of the research prob-

lems have been solved or partially solved, and several of the theorems

have been improved upon. As a consequence, the new edition includes

many substantial revisions and additions.

Various new sections have been added and others have been sig-

nificantly updated. Among the newly introduced topics are: rainbow

Ramsey theory, an “inequality” version of Schur’s theorem, monochro-

matic solutions of recurrence relations, Ramsey results involving both

sums and products, monochromatic sets avoiding certain differences,

Ramsey properties for polynomial progressions, generalizations of the

Erdős-Ginzberg-Ziv theorem, and the number of arithmetic progres-

sions under arbitrary colorings. We also offer many new results and

proofs among the topics that are not new to this edition, most of

xiii
                

                                                                                                               



xiv Preface to the Second Edition

which were not known when the first edition was published. Further-

more, the book’s tables, exercises, lists of open research problems,

and bibliography have all been significantly updated. Finally, we

have repaired numerous misprints.
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Preface to the First
Edition

Ramsey Theory on the Integers covers a variety of topics from the

field of Ramsey theory, limiting its focus to the set of integers – an

area that has seen a remarkable burst of research activity during the

past twenty years.

The book has two primary purposes: (1) to provide students with

a gentle, but meaningful, introduction to mathematical research – to

give them an appreciation for the essence of mathematical research

and its inescapable allure and also to get them started on their own

research work; (2) to be a resource for all mathematicians who are

interested in combinatorial or number theoretical problems, particu-

larly “Erdős-type” problems.

Many results in Ramsey theory sound rather complicated and

can be hard to follow; they tend to have a lot of quantifiers and may

well involve objects whose elements are sets whose elements are sets

(that is not a misprint). However, when the objects under consider-

ation are sets of integers, the situation is much simpler. The student

need not be intimidated by the words “Ramsey theory,” thinking that

the subject matter is too deep or complex – it is not! The material

in this book is, in fact, quite accessible. This accessibility, together

with the fact that scores of questions in the subject are still to be

answered, makes Ramsey theory on the integers an ideal subject for

xvii
                

                                                                                                               



xviii Preface to the First Edition

a student’s first research experience. To help students find suitable

projects for their own research, every chapter includes a section of

“Research Problems,” where we present a variety of unsolved prob-

lems, along with a list of suggested readings for each problem.

Ramsey Theory on the Integers has several unique features. No

other book currently available on Ramsey theory offers a cohesive

study of Ramsey theory on the integers. Among several excellent

books on Ramsey theory, probably the most well-known, and what

may be considered the Ramsey theory book, is by Graham, Roth-

schild, and Spencer (Ramsey Theory, 2nd Edition [175]). Other im-

portant books are by Graham (Rudiments of Ramsey Theory [168]),

McCutcheon (Elemental Methods in Ergodic Ramsey Theory [279]),

Nešetřil and Rödl (Mathematics of Ramsey Theory [295]), Prömel

and Voigt (Aspects of Ramsey Theory [305]), Furstenberg (Dynami-

cal Methods in Ramsey Theory [156]), and Winn (Asymptotic Bounds

for Classical Ramsey Numbers [401]). These books, however, gener-

ally cover a broad range of subject matter of which Ramsey theory

on the integers is a relatively small part. Furthermore, the vast ma-

jority of the material in the present book is not found in any other

book. In addition, to the best of our knowledge, ours is the only

Ramsey theory book that is accessible to the typical undergraduate

mathematics major. It is structured as a textbook, with numerous

(over 150) exercises, and the background needed to read the book

is rather minimal: a course in elementary linear algebra and a 1-

semester junior-level course in abstract algebra would be sufficient;

an undergraduate course in elementary number theory or combina-

torics would be helpful, but not necessary. Finally, Ramsey Theory on

the Integers offers something new in terms of its potential appeal to

the research community in general. Books offering a survey of solved

and unsolved problems in combinatorics or number theory have been

quite popular among researchers; they have also proven beneficial by

serving as catalysts for new research in these fields. Examples include

Old and New Problems and Results in Combinatorial Number Theory

[128] by Erdős and Graham, Unsolved Problems in Number Theory

[190] by Guy, and The New Book of Prime Number Records [320]

by Ribenboim. With our text we hope to offer mathematicians an

additional resource for intriguing unsolved problems. Although not
                

                                                                                                               



Preface to the First Edition xix

nearly exhaustive, the present book contains perhaps the most sub-

stantial account of solved and unsolved problems in Ramsey theory

on the integers.

This text may be used in a variety of ways:

• as an undergraduate or graduate textbook for a second

course in combinatorics or number theory;

• in an undergraduate or graduate seminar, a capstone course

for undergraduates, or an independent study course;

• by students working under an REU program, or who are

engaged in some other type of research experience;

• by graduate students looking for potential thesis topics;

• by the established researcher seeking a worthwhile resource

in its material, its list of open research problems, and its

somewhat enormous (often a fitting word when discussing

Ramsey theory) bibliography.

Chapter 1 provides preliminary material (for example, the pi-

geonhole principle) and a brief introduction to the subject, including

statements of three classical theorems of Ramsey theory: van der

Waerden’s theorem, Schur’s theorem, and Rado’s theorem. Chapter

2 covers van der Waerden’s theorem; Chapters 3–7 deal with various

topics related to van der Waerden’s theorem; Chapter 8 is devoted to

Schur’s theorem and a generalization; Chapter 9 explores Rado’s the-

orem; and Chapter 10 presents several other topics involving Ramsey

theory on the integers.

The text provides significant latitude for those designing a syl-

labus for a course. The only material in the book on which other

chapters depend is that through Section 2.2. Thus, other chapters or

sections may be included or omitted as desired, since they are essen-

tially independent of one another (except for an occasional reference

to a previous definition or theorem). We do, however, recommend

that all sections included in a course be studied in the same order in

which they appear in the book.

Each chapter concludes with a section of exercises, a section of

research problems, and a reference section. Since the questions con-

tained in the Research Problem sections are still open, we cannot say
                

                                                                                                               



xx Preface to the First Edition

with certainty how difficult a particular one will be to solve; some

may actually be quite simple and inconsequential. The problems

that we deem most difficult, however, are labeled with the symbol

∗. The reference section of each chapter is organized by section num-

bers (including the exercise section). The specifics of each reference

are provided in the bibliography at the end of the book.

The material covered in this book represents only a portion of

the subject area indicated by the book’s title. Many additional topics

have been investigated, and we have attempted to include at least ref-

erences for these in the reference sections. Yet, for every problem that

has been thought of in Ramsey theory, there are many more which

that problem will generate and, given the great variety of combina-

torial structures and patterns that lie in the set of integers, countless

new problems wait to be explored.

We would like to thank Dr. Edward Dunne and the members of

the AMS production staff for their assistance in producing this book.

We also thank Tom Brown, Scott Gordon, Jane Hill, Dan Saracino,

Dan Schaal, Ralph Sizer, and the AMS reviewers for their helpful com-

ments and advice, which greatly improved the manuscript. We also

express our gratitude to Ron Graham and Doron Zeilberger for their

support of this project. We owe a big debt to the pioneers and masters

of the field, especially Ron Graham, Jarik Nešetřil, Joel Spencer, Neil

Hindman, Tom Brown, Timothy Gowers, Hillel Furstenberg, Vitaly

Bergelson, Vojtěch Rödl, Endre Szemerédi, László Lovász (we had to

stop somewhere), and of course Bartel van der Waerden, Issai Schur,

Richard Rado, and Frank Ramsey. To all of the others who have con-

tributed to the field of Ramsey theory on the integers, we extend our

sincere appreciation. Finally, we want to acknowledge that this book

would not exist without the essential contributions of the late Paul

Erdős. But beyond the content of his achievements, he has personally

inspired the authors as mathematicians. Our professional lives would

have had far less meaning and fulfillment without his work and his

presence in our field. For that pervasive, though perhaps indirect,

contribution to this text, we are in his debt.

                

                                                                                                               



Chapter 1

Preliminaries

Unsolved problems abound, and additional inter-

esting open questions arise faster than solutions to

the existing problems. – F. Harary

The above quote, which appeared in the 1983 article “A Trib-

ute to F. P. Ramsey,” is at least as apropos today as it was then.

In this book alone, which covers only a modest portion of Ramsey

theory, you will find a great number of open research problems. The

beauty of Ramsey theory, especially Ramsey theory dealing with the

set of integers, is that, unlike many other mathematical fields, very

little background is needed to understand the problems. In fact, with

just a basic understanding of some of the topics in this text, and a

desire to discover new results, the undergraduate mathematics stu-

dent will be able to experience the excitement and challenge of doing

mathematical research.

Ramsey theory is named after Frank Plumpton Ramsey and his

eponymous theorem, which he proved in 1928 (it was published post-

humously in 1930). So, what is Ramsey theory? Although there

is no universally accepted definition of Ramsey theory, we offer the

following informal description:

Ramsey theory is the study of the preservation of

properties under set partitions.

1

                                     

                

                                                                                                               



2 1. Preliminaries

In other words, given a particular set S that has

a property P , is it true that whenever S is parti-

tioned into finitely many subsets, one of the sub-

sets must also have property P?

To illustrate further what sorts of problems Ramsey theory deals

with, here are a few simple examples of Ramsey theory questions.

Example 1.1. Obviously, the equation x + y = z has a solution in

the set of positive integers (there are an infinite number of solutions);

for example, x = 1, y = 4, z = 5 is one solution. Here’s the question:

is it true that whenever the set of positive integers is partitioned into

a finite number of sets S1, S2, . . . , Sr, then at least one of these sets

will contain a solution to x+ y = z? The answer turns out to be yes,

as we shall see later in this chapter.

Example 1.2. Is it true that whenever the set S = {1, 2, . . . , 100}
is partitioned into two subsets A and B, then at least one of the two

subsets contains a pair of integers which differ by exactly two? To

answer this question, consider the partition consisting of

A = {1, 5, 9, 13, . . . , 97} ∪ {2, 6, 10, . . . , 98}

and

B = {3, 7, 11, . . . , 99} ∪ {4, 8, 12, . . . , 100}.

We see that neither A nor B contains a pair of integers that differ by

two, so that the answer to the given question is no. So, our original

set S has the property that it contains 2 integers that differ by two;

however, we have presented a partition of S for which none of the

partitioned parts inherit this property.

Example 1.3. True or false: if there are 18 people in a group, then

there must be either 4 people who are mutual acquaintances or 4

people who are mutual “strangers” (no two of whom have ever met).

(You will find the answer to this one later in the chapter.) Here we are

partitioning pairs of people based on the relationship between those

two people. We want to investigate if one of the partition classes

contains all
(
4
2

)
pairs defined between 4 people, for some set of 4

people.
                

                                                                                                               



1.1. The Pigeonhole Principle 3

There is a wide range of structures and sets with which Ram-

sey theory questions may deal, including the real numbers, algebraic

structures such as groups or vector spaces, graphs, points in the plane

or in n dimensions, and others. This book limits its scope to Ramsey

theory on the set of integers. (There is one exception – Ramsey’s

theorem itself – which is covered in this chapter.)

In this chapter we introduce the reader to some of the most well-

known and fundamental theorems of Ramsey theory. We also present

some of the basic terminology and notation that we will use.

1.1. The Pigeonhole Principle

Imagine yourself as a mailroom clerk in a mailroom with n slots in

which to place the mail. If you have n + 1 pieces of mail to place

into the n slots, what can we say about the amount of mail that will

go into a slot? Well, we can’t say much about the amount of mail a

particular slot receives because, for example, one slot may get all of

the mail (or none of the mail). However, we can say that some slot

must end up with at least two pieces of mail. To see this, imagine

that you are trying to avoid having any slot with more than one piece

of mail. By placing one piece of mail at a time into an unoccupied

slot you can sort n pieces of mail. However, since there are more than

n pieces of mail, you will run out of unoccupied slots before you are

done. Hence, at least one slot must have at least two pieces of mail.

This simple idea is known as the pigeonhole principle (or Dirich-

let’s box principle, although this name is much less common), which

can be stated this way:

If more than n pigeons are put into n pigeonholes, then some pigeon-

hole must contain at least two pigeons.

We now present the pigeonhole principle using somewhat more

mathematical language.

Theorem 1.4 (Basic Pigeonhole Principle). If an n-element set is

partitioned into r disjoint subsets where n > r, then at least one of

the subsets contains more than one element.

                

                                                                                                               



4 1. Preliminaries

Example 1.5. Consider the well-known 2-player game Tic-Tac-Toe

and let S be the set of all people who have ever played Tic-Tac-

Toe. We claim that there must be two people in S who have had

the same number of opponents. To see this, let there be n people

in S. Each of these n people has had at least 1 opponent and no

more than n − 1 opponents. Place each person in S into a category

based on the number of other people in S that he/she has had as an

opponent. Since we are placing n people (pigeons) into n−1 categories

(pigeonholes), there must exist 2 people in the same category, thereby

proving the statement.

Theorem 1.4 is a special case of the following more general prin-

ciple.

Theorem 1.6 (Generalized Pigeonhole Principle). If more than mr

elements are partitioned into r sets, then some set contains more than

m elements.

Proof. Let S be a set with |S| > mr. Let S = S1 ∪ S2 ∪ · · · ∪ Sr be

any partition of S. Assume, for a contradiction, that |Si| ≤ m for all

i = 1, 2, . . . , r. Then

|S| =
r∑

i=1

|Si| ≤ mr,

a contradiction. Hence, for at least one i, the set Si contains more

than m elements, i.e., |Si| ≥ m+ 1. �

We see that Theorem 1.4 is a special case of Theorem 1.6 by tak-

ing m = 1. There are other common formulations of the pigeonhole

principle; you will find some of these in the exercises.

Although the pigeonhole principle is such a simple concept, and

seems rather obvious, it is a very powerful result, and it can be used

to prove a wide array of not-so-obvious facts.

Here are some examples.

Example 1.7. For each integer n = 1, 2, . . . , 200, let R(n) be the

remainder when n is divided by 7. Then some value of R(n) must

occur at least 29 times. To see this, we can think of the 200 integers
                

                                                                                                               



1.1. The Pigeonhole Principle 5

as the pigeons, and the seven possible values of R(n) as the pigeon-

holes. Then, according to Theorem 1.6, since 200 > 28(7), one of the

pigeonholes must contain more than 28 elements.

Example 1.8. We will show that within any sequence of n2+1 inte-

gers there exists a monotonic subsequence of length n+1. (A sequence

{xi}mi=1 is called monotonic if it is either nondecreasing or nonincreas-

ing). Let our sequence be {ai}n
2+1

i=1 . For each i ∈ {1, 2, . . . , n2 + 1},
let �i be the length of the longest nondecreasing subsequence starting

at (and including) ai. If �i ≥ n+ 1 for some i, then the result clearly

holds; hence, we may assume that �i ≤ n for all i, 1 ≤ i ≤ n2+1. Since

each of the �i’s has a value between 1 and n, by Theorem 1.6 with

m = r = n, there exists j ∈ {1, 2, . . . , n} so that n+1 of the numbers

�i equal j. Call these �i1 , �i2 , . . . , �in+1
, where i1 < i2 < · · · < in+1.

Next, look at the subsequence ai1 , ai2 , . . . , ain+1
. We claim that this

is a nonincreasing subsequence of length n+ 1. To see this, assume,

for a contradiction, that it is not nonincreasing. Then aik < aik+1
for

some k. Hence, the nondecreasing subsequence of length j starting

with aik+1
creates a nondecreasing subsequence of length j + 1 by

starting with aik . This is a contradiction since �ik = j.

Next, we give another example for which the pigeonhole principle

may not immediately appear to be applicable.

Example 1.9. Color each point in the xy-plane having integer coor-

dinates either red or blue. We show that there must be a rectangle

with all of its vertices the same color. Consider the lines y = 0, y = 1,

and y = 2 and their intersections with the lines x = i, i = 1, 2, . . . , 9.

On each line x = i there are three intersection points colored either

red or blue. Since there are only 23 = 8 different ways to color three

points either red or blue, by the pigeonhole principle two of the ver-

tical lines, say x = j and x = k �= j must have the identical coloring

(i.e., the color of (j, y) is the same as the color of (k, y) for y = 0, 1, 2).

Using the pigeonhole principle again, we see that two of the points

(j, 0), (j, 1), and (j, 2) must be the same color, say (j, y1) and (j, y2).

Then the rectangle with vertices (j, y1), (j, y2), (k, y1), and (k, y2) is

the desired rectangle.
                

                                                                                                               



6 1. Preliminaries

In the last example, we used colors as the “pigeonholes.” Using

colors to represent the subsets of a partition in this way is often

convenient, and is quite typical in many areas of Ramsey theory.

1.2. Ramsey’s Theorem

Ramsey’s theorem can be considered a refinement of the pigeonhole

principle, where we are not only guaranteed a certain number of el-

ements in a pigeonhole, but we also have a guarantee of a certain

relationship between these elements. It is a theorem that is normally

stated in terms of the mathematical concept known as a graph. We

will define what we mean by a graph very shortly, but before doing

so, we consider the following example, known as the Party problem.

Example 1.10. We will prove the following: at a party of six people,

there must exist either three people who have all met one another or

three people who are mutual strangers (i.e., no two of whom have

met). By the pigeonhole principle, we are guaranteed that for each

person, there are three people that person has met or three people

that person has never met. We now want to show that there are

three people with a certain relationship between them; namely, three

people who all have met one another, or three people who are mutual

strangers. First, assign to each pair of people one of the colors red or

blue, with a red “line” connecting two people who have met, and a

blue “line” connecting two people who are strangers. Hence, we want

to show that for any coloring of the lines between people using the

colors red and blue, there is either a red triangle or a blue triangle

(with the people as vertices). To this end, single out one person at the

party, say person X. Since there are five other people at the party,

by the pigeonhole principle X either knows at least three people, or

is a stranger to at least three people. We may assume, without loss

of generality, that X knows at least 3 people at the party. Call these

people A, B, and C. So far we know that the lines connecting X to

each of A, B, and C are red. If there exists a red line between any of

A, B, and C then we are done, since, for example, a red line between

A and B would give the red triangle ABX. If the lines connecting A,

B, and C are all blue, then ABC is a blue triangle.
                

                                                                                                               



1.2. Ramsey’s Theorem 7

Concerning the Party problem, another question we might ask is

this: is 6 the lowest number of party members for the property we

seek to hold? That is, does there exist a way to have five people at

the party and not have either of the types of “triangles” discussed in

the above example? To see that we cannot have only five people at

the party and guarantee the same result, place five people in a circle

and assume that each person knows the two people next to him/her,

but no one else (draw a sketch to see that there is no red triangle and

no blue triangle).

The fact that there is a solution to the Party problem is a spe-

cial case of what is known as Ramsey’s theorem. In order to state

Ramsey’s theorem we will use a few definitions from graph theory.

Definition 1.11. A graph G = (V,E) is a set V of points, called

vertices, and a set E of pairs of vertices, called edges.

Definition 1.12. A subgraph G′ = (V ′, E′) of a graph G = (V,E) is

a graph such that V ′ ⊆ V and E′ ⊆ E.

Definition 1.13. A complete graph on n vertices, denoted Kn, is a

graph on n vertices, with the property that every pair of vertices is

connected by an edge.

Definition 1.14. An edge-coloring of a graph is an assignment of a

color to each edge of the graph. A graph that has been edge-colored

is called a monochromatic graph if all of its edges are the same color.

We may now express the solution to the Party problem in graph-

theoretical language. It says that every 2-coloring, using the colors red

and blue, of the edges of K6 must admit either a red K3 (a triangle)

or a blue K3; and furthermore, that there exists a 2-coloring of the

edges of K5 that fails to have this property.

We now state Ramsey’s theorem for two colors.

Theorem 1.15 (Ramsey’s Theorem for Two Colors). Let k, � ≥ 2.

There exists a least positive integer R = R(k, �) such that every edge-

coloring of KR, with the colors red and blue, admits either a red Kk

subgraph or a blue Kl subgraph.
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Proof. First note that R(k, 2) = k for all k ≥ 2, and R(2, �) = � for

all � ≥ 2 (this is easy). We proceed via induction on the sum k + �,

having taken care of the case when k + � = 5. Hence, let k + � ≥ 6,

with k, � ≥ 3. We may assume that both R(k, � − 1) and R(k − 1, �)

exist. We claim that R(k, �) ≤ R(k − 1, �) + R(k, � − 1), which will

prove the theorem.

Let n = R(k−1, �)+R(k, �−1). Now choose one particular vertex,

v, from Kn. Then there are n− 1 edges from v to the other vertices.

Let A be the number of red edges and B be the number of blue edges

coming out of v. Then, either A ≥ R(k − 1, �) or B ≥ R(k, � − 1),

since if A < R(k − 1, �) and B < R(k, � − 1), then A + B ≤ n − 2,

contradicting the fact that A+B = n− 1. We may assume, without

loss of generality, that A ≥ R(k − 1, �). Let V be the set of vertices

connected to v by a red edge, so that |V | ≥ R(k − 1, �). By the

inductive hypothesis, KV contains either a red Kk−1 subgraph or a

blue K� subgraph. If it contains a blue K� subgraph, we are done. If

it contains a red Kk−1 subgraph, then by connecting v to each vertex

of this red subgraph we have a red Kk subgraph (since v is connected

to V by only red edges), and the proof is complete. �

The numbers R(k, �) are known as the 2-color Ramsey numbers.

The solution to the Party problem tells us that R(3, 3) = 6. By

Ramsey’s theorem, we may extend the Party problem in various ways.

For example, we know there exists a number n so that if there were

n people at a party, then there would have to be either a group of

four mutual acquaintances or a group of five mutual strangers. This

number n is the Ramsey number R(4, 5).

There are other ways to extend the Party problem. For example,

in Exercise 1.11 we consider the case where people either love, hate,

or are indifferent to, each other. In this situation we want to find

three people who all love one another, three people who all hate one

another, or three people who are all indifferent toward one another.

Exercise 1.11 states that 17 people at the party will suffice (in fact 17

is the least such number with this property, but you cannot conclude

this from Exercise 1.11). This is an example of a 3-color Ramsey

number. More generally, Ramsey’s theorem for two colors can easily

be generalized to r ≥ 3 colors (this is left as Exercise 1.18), in which
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case the Ramsey numbers are denoted by R(k1, k2, . . . , kr). In case

ki = k for i = 1, . . . , r, we use the simpler notation Rr(k). Thus, for

example, in the “love-hate-indifferent” problem, we have R(3, 3, 3) =

R3(3) = 17.

The existence of the Ramsey numbers has been known since 1930.

However, they are notoriously difficult to compute; the only known

values are R(3, 3) = 6, R(3, 4) = 9, R(3, 5) = 14, R(3, 6) = 18,

R(3, 7) = 23, R(3, 8) = 28, R(3, 9) = 36, R(4, 4) = 18, R(4, 5) = 25,

and R(3, 3, 3) = 17. (The fact that R(4, 4) = 18 answers, in the

affirmative, the question posed in Example 1.3.)

Obviously, Ramsey theory is named after Frank Ramsey. How-

ever, his famous theorem is the only result of Ramsey’s in the field

named after him. Unfortunately, Ramsey died of complications due

to jaundice in 1930, a month before his 27th birthday, but not before

he left his mark.

1.3. Some Notation

In this section we will cover some notation that we will frequently

use.

We shall denote the set of integers by Z, the set of positive integers

by Z+, and the set of real numbers by R. Most of our work will

be confined to the set of integers. Hence, when speaking about an

“interval” we will mean a set of the form {a, a+1, . . . , b}, where a < b

are integers. Usually we will denote this interval more simply by [a, b].

When dealing with two sets X and Y , we will sometimes use the

set S = X − Y , which we define to be the set of elements in X that

are not in Y . Also, for S a set and a a real number, a + S and aS

will denote {a + s : s ∈ S} and {as : s ∈ S}, respectively. We may

sometimes write S + a instead of a+ S.

Oftentimes we will find it convenient to use symbols such as 0, 1,

or 2 to stand for different “colors” rather than actual color names such

as red or blue. We make this more formal in the following definition.

Definition 1.16. An r-coloring of a set S is a function χ : S → C,

where |C| = r.
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Typically, we will use C = {0, 1, . . . , r − 1} or C = {1, 2, . . . , r}.
We can think of an r-coloring χ of a set S as a partition of S into

r subsets S1, S2, . . . , Sr, by associating the subset Si with the set

{x ∈ S : χ(x) = i}.
The next definition will be used extensively.

Definition 1.17. A coloring χ is monochromatic on a set S if χ is

constant on S.

Example 1.18. Let χ : [1, 5] → {0, 1} be defined by χ(1) = χ(2) =

χ(3) = 1 and χ(4) = χ(5) = 0. Then χ is a 2-coloring of [1, 5] that is

monochromatic on {1, 2, 3} and on {4, 5}.

We will often find it convenient to represent a particular 2-coloring

of an interval as a string of 0’s and 1’s. For example, the coloring in

Example 1.18 could be represented by the string 11100. We may also

abbreviate this coloring by writing 1302. We may extend this nota-

tion to r-colorings for r ≥ 3 by using strings with symbols belonging

to the set {0, 1, 2, . . . , r− 1}. For example, define the 3-coloring χ on

the interval [1,10] by χ(i) = 0 for 1 ≤ i ≤ 5, χ(i) = 1 for 6 ≤ i ≤ 9,

and χ(10) = 2. Then we may write χ = 0000011112 or, equivalently,

χ = 05142.

Sometimes we will want to describe the magnitude of functions

asymptotically. For this purpose we mention two very commonly used

symbols, called “Big-O” and “little-o.”

Let f(n) and g(n) be functions that are nonzero for all n. We say

that f(n) = O(g(n)) if there exist constants c,m > 0, independent

of n, such that 0 <
∣∣∣ f(n)g(n)

∣∣∣ ≤ c for all n > m. In other words,

limn→∞

∣∣∣ f(n)g(n)

∣∣∣ ≤ c, if the limit exists. We say that f(n) = o(g(n)) if

for all c > 0 there exists a constant m > 0, independent of n, such

that
∣∣∣ f(n)g(n)

∣∣∣ < c for all n > m. In other words, limn→∞

∣∣∣ f(n)g(n)

∣∣∣ = 0.

If f and g are nonzero functions such that limn→∞
f(n)
g(n) exists

and is equal to �, where |�| �= ∞ and � �= 0, then f(n) = O(g(n)). If

� = 0 we have f(n) = o(g(n)). If � = ∞, then we have g(n) = o(f(n))

by taking the reciprocal of the argument of the limit. Intuitively,

if f(n) = O(g(n)) and g(n) = O(f(n)), then f(n) and g(n) have
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a similar growth rate (and we may write f(n) = Ω(g(n)), but this

notation won’t be used in this book); and if f(n) = o(g(n)), then

f(n) is insignificant compared to g(n), for large n.

If f(n) and g(n) are functions with the same growth rate, i.e., if

limn→∞
f(n)
g(n) = 1, we may write f(n) ∼ g(n).

An example to explain these concepts is in order.

Example 1.19. Let f(n) = n2

22 + 5n and g(n) = n2. Then f(n) =

O(g(n)), or, equivalently, f(n) = O(n2). We may also describe f(n)’s

rate of growth by f(n) = n2

22 (1 + o(1)). To see this, we have

n2

22
(1 + o(1)) =

n2

22
+ o(1)

n2

22
.

Now, since 5n
n2/22 = 110

n and limn→∞
110/n

1 = 0, we have 5n = o(1)n
2

22 .

We may also write f(n) ∼ n2

22 to describe the growth rate of f(n).

We will also use the following functions. For x a real number,

we use �x
 to denote the greatest integer n such that n ≤ x (this is

often called the “floor” function ). The least integer function of a real

number x, defined as the least integer n such that n ≥ x, is denoted

by �x� (this is often referred to as the “ceiling function.” )

1.4. Three Classical Theorems

Somewhat surprisingly, Ramsey’s theorem was not the first, nor even

the second, theorem in the area now known as Ramsey theory. The

results that are generally accepted to be the earliest Ramsey-type

theorems are due, in chronological order, to Hilbert, Schur, and van

der Waerden. All of these results, which preceded Ramsey’s theorem,

deal with colorings of the integers, the theme of this book. Interest-

ingly, even though Ramsey’s theorem is a theorem about graphs, we

will see later that it can be used to give some Ramsey-type results

about the integers.

In this section we introduce three classical theorems concerning

Ramsey theory on the integers. We will talk much more about each

of these theorems in later chapters.

We start with a reminder of what an arithmetic progression is.
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Definition 1.20. A k-term arithmetic progression is a sequence of

the form {a, a+ d, a+2d, . . . , a+(k− 1)d}, where a ∈ Z and d ∈ Z+.

We now state van der Waerden’s theorem, which was proved in

1927.

Theorem 1.21 (Van der Waerden’s Theorem). For all positive in-

tegers k and r, there exists a least positive integer w(k; r) such that

for every r-coloring of [1, w(k; r)] there is a monochromatic k-term

arithmetic progression.

The numbers w(k; r) are known as the van der Waerden numbers.

Let’s look at a simple case. Let k = r = 2. Hence, we want to find the

minimum integer w = w(2; 2) so that no matter how we partition the

interval [1, w] = {1, 2, . . . , w} into two subsets (i.e., 2-color [1, w]), we

must end up with at least one of the two subsets containing a pair of

elements a, a+d, where d ≥ 1 (i.e., we must end up with a monochro-

matic 2-term arithmetic progression). Consider a 2-coloring of {1, 2}
where 1 and 2 are assigned different colors. Obviously, under such

a coloring, {1, 2} does not contain a 2-term arithmetic progression

that is monochromatic. Thus, w(2; 2) is greater than 2 (not every

2-coloring of [1, 2] yields the desired monochromatic sequence). Does

3 work? That is, does every 2-coloring of [1, 3] yield a monochromatic

2-term arithmetic progression? The answer is yes, by a simple appli-

cation of the pigeonhole principle, since any 2-element set of positive

integers is a 2-term arithmetic progression. Thus, we have shown that

w(2; 2) = 3.

Finding w(2; 2) was rather simple. All the van der Waerden num-

bers w(2; r) are just as easy to find (we leave this as an exercise in

a later chapter). For k ≥ 3, the evaluation of these numbers very

quickly becomes much more difficult. In fact, the only known van

der Waerden numbers are w(3; 2) = 9, w(3; 3) = 27, w(3; 4) = 76,

w(4; 2) = 35, w(5; 2) = 178, and w(6; 2) = 1132. Besides trying to

find exact values of the van der Waerden numbers, there is another

open question that has been one of the most difficult, and most ap-

pealing, problems in Ramsey theory. Namely, finding a reasonably

good estimate of w(k; r) in terms of k and r. We shall talk more
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about such questions, and the progress that has been made on them,

in Chapter 2.

Van der Waerden’s theorem has spawned many results in Ramsey

theory. For this reason, and because the notion of an arithmetic

progression is such a natural and simple concept, a large portion of

this book is dedicated to various offshoots, refinements, extensions,

and generalizations of van der Waerden’s theorem.

The next two main results deal with solutions to equations and

systems of equations. Let E represent a given equation or system of

equations. We call (x1, x2, . . . , xk) a monochromatic solution to E if

x1, x2, . . . , xk are all the same color and they satisfy E .
The next theorem we present, proved by Issai Schur in 1916, is

one of the earliest results in Ramsey theory.

Theorem 1.22 (Schur’s Theorem). For any r ≥ 1, there exists a

least positive integer s = s(r) such that for every r-coloring of [1, s]

there exists a monochromatic solution to x+ y = z.

The numbers s(r) are called the Schur numbers. As a simple

example, we look at s(2). Here we want the least positive integer s

so that whenever [1, s] is 2-colored, there will exist monochromatic

integers x, y, z (not necessarily distinct) satisfying x+ y = z. Notice

that s(2) must be greater than four, because if we take the 2-coloring

χ of [1,4] defined by χ(1) = χ(4) = 0 and χ(2) = χ(3) = 1, then

it is not possible to find x, y, and z all of the same color satisfying

x + y = z. Meanwhile, every 2-coloring of [1, 5] (there are 25 = 32

of them) does yield such a monochromatic triple (this is proved in

Example 8.5). Thus, s(2) = 5.

As it turns out, the only Schur numbers that are currently known

are s(1) = 2, s(2) = 5, s(3) = 14, and s(4) = 45. We will learn much

more about Schur’s theorem in Chapter 8.

The third classical theorem we mention is Rado’s theorem, which

is a generalization of Schur’s theorem. In fact, Richard Rado was a

student of Schur. The idea of Rado’s theorem may be described as

follows. Thinking of Schur’s theorem as a theorem about the homoge-

neous linear equation x+y−z = 0, we ask the following more general

question. Which systems, L, of homogeneous linear equations with
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integer coefficients have the following property: for every r ≥ 1, there

exists a least positive integer n = n(L; r) such that every r-coloring

of [1, n] yields a monochromatic solution to L?
In a series of articles published in the 1930’s, Rado completely

answered this question. Since Rado’s theorem in its most general

form is a bit complicated to describe, we will postpone stating the

general theorem until Chapter 9, which is devoted to Rado’s theorem.

Instead, we mention here the special case of Rado’s theorem in which

the system consists of only a single equation.

We first need the following definition.

Definition 1.23. For r ≥ 1, a linear equation E is called r-regular if

there exists n = n(E ; r) such that for every r-coloring of [1, n] there

is a monochromatic solution to E . It is called regular if it is r-regular

for all r ≥ 1.

Example 1.24. Using Definition 1.23, Schur’s theorem can be stated

as “the equation x+ y = z is regular.”

We now state Rado’s theorem for a single equation.

Theorem 1.25 (Rado’s Single Equation Theorem). Let E represent

the linear equation
∑n

i=1 cixi = 0, where ci ∈ Z− {0} for 1 ≤ i ≤ n.

Then E is regular if and only if some nonempty subset of the ci’s sums

to 0.

Example 1.26. The equation x+ y = z, i.e., x+ y− z = 0, satisfies

the requirements of Theorem 1.25. Hence, as noted before and proved

by Schur, x+ y = z is regular.

Example 1.27. It follows from Rado’s theorem that the equation

3x1 + 4x2 + 5x3 − 2x4 − x5 = 0 is regular, since the sum of the first,

fourth, and fifth coefficients is 0.

1.5. A Little More Notation

The three classical theorems mentioned above all have a somewhat

similar flavor. That is, they have the following general form: there

exists a positive integer n(r) such that for every r-coloring of [1, n(r)]

there is a monochromatic set belonging to a particular family of sets.
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In one case, the family of sets was the k-term arithmetic progressions;

in another case the family consisted of all solutions to a certain equa-

tion; and so on. Throughout this book we will be looking at this type

of problem, and so it will be worthwhile to have a general notation

that can be used for any such problem.

Notation. Let F be a certain family of sets, and let k and r be

positive integers. We denote by R(F , k; r) the least positive integer,

if it exists, such that for any r-coloring of [1, R(F , k; r)], there is a

monochromatic member of F of size k. In the case where no such

integer exists, we say R(F , k; r) = ∞. Because our discussion will

often be confined to the situation in which the number of colors is

two, we often denote the function R(F , k; 2) more simply as R(F , k).

If the length of the sequence is understood (as in Schur’s theorem),

we write R(F ; r).

For certain Ramsey-type functions we deal with, it will be con-

venient to use a notation other than R(F , k; r). For example, later

in the book we will encounter a type of sequence called a descend-

ing wave, for which we will use the notation DW (k; r) rather than

something like R(DW, k; r) (where DW would represent the family

of all descending waves). Similarly, since the notation w(k; r) is so

standard, we will use w(k; r) instead of R(AP, k; r) and w(k) instead

of R(AP, k), where AP is the family of all arithmetic progressions.

Finally, we remark that the notation R(k, �) is reserved for the clas-

sical Ramsey numbers defined in Section 1.2 (note the absence of a

family F here).

Throughout this book we will be considering various collections,

F , of sets of integers and, as with the three classical theorems of Sec-

tion 1.4, wanting to know if, for a specified value of r and a particular

set M ⊆ Z, every r-coloring of M yields a monochromatic member

of F . For the case in which M is the set of positive integers, we have

the following definition.

Definition 1.28. Let F be a family of finite subsets of Z+, and

let r ≥ 1. If for every r-coloring of Z+ and all k ≥ 1, there is a

monochromatic k-element member of F , then we say that F is r-

regular. If F is r-regular for all r, we say that F is regular.
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Sometimes we will replace the phrase “for all k ≥ 1, there is

a monochromatic k-element member of F” by “there are arbitrarily

large members of F .”

Example 1.29. Let F = AP , the collection of all arithmetic pro-

gressions. By van der Waerden’s theorem, F is regular since for every

finite coloring of Z+ there exists, for every k ≥ 1, a monochromatic

k-term arithmetic progression.

Whereas Definition 1.28 pertains to all colorings of a set, we will

also want to consider whether or not a particular coloring of a set M

yields a monochromatic member of the collection F . For this we have

the next definition.

Definition 1.30. Let F be a family of subsets of Z and let k be a

positive integer. Let r ≥ 1. An r-coloring of a set M ⊆ Z is called

(F , k; r)-valid if there is no monochromatic k-element member of F
contained in M .

When the number of colors is understood, we may simply say that

a coloring is (F , k)-valid. Also, when there is no possible confusion

as to the meaning of F or the value of k, we may simply say that a

coloring is valid.

As an example, if F is the family of sets of even numbers, then the

2-coloring of [1, 10] represented by the binary sequence 1110001110 is

(F , 4)-valid since there is no monochromatic 4-term sequence belong-

ing to F (i.e., there do not exist four even numbers that have the

same color).

Let’s consider another example.

Example 1.31. Let F be the family of all subsets of Z+. We will

determine a precise formula for R(F , k; r). First, let χ be any r-

coloring of [1, r(k − 1) + 1]. By the generalized pigeonhole principle,

since we are partitioning a set of r(k−1)+1 elements into r sets, there

must be, for some color, more than k−1 elements of that color. Thus,

under χ, there is a monochromatic k-element member of F . Since χ is

an arbitrary r-coloring, we know that R(F , k; r) ≤ r(k−1)+1. On the

other hand, there do exist r-colorings of the interval [1, r(k− 1)] that

are (F , k)-valid. Namely, assign exactly k−1 members of the interval
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to each of the colors. Then no color will have a k-element member of

F . Thus, R(F , k; r) ≥ r(k−1)+1, and hence R(F , k; r) = r(k−1)+1.

The fact that in Example 1.31 the numbers R(F , k; r) always

exist is not very surprising. After all, F is so plentiful that it is easy

to find a monochromatic member. When the family of sets we are

considering is not as “big,” the behavior of the associated Ramsey

function is much less predictable. For certain F we will find that

R(F , k; r) < ∞ for all k and r, while for others this will only happen

(for all k) provided r does not exceed a certain value. There will even

be cases where R(F , k; r) never exists except for a few small values

of k and r, even though F seems reasonably “big.”

We will encounter many different results in this book, but the

common thread will be an attempt to find answers, to whatever extent

we can, to the following two questions.

1. For which F , k, and r does R(F , k; r) exist?

2. If R(F , k; r) exists, what can we say about its

magnitude?

1.6. Exercises

1.1 A bridge club has 10 members. Every day, four members of

the club get together and play one game of bridge. Prove

that after two years, there is some particular set of four

members that has played at least four games of bridge to-

gether.

1.2 Prove that if the numbers 1, 2, . . . , 12 are randomly posi-

tioned around a circle, then some set of three consecutively

positioned numbers must have a sum of at least 19.

1.3 Prove the following versions of the pigeonhole principle.

a) If a1, a2, . . . , an, c are real numbers such that
∑n

i=1 ai ≥ c,

then there is at least one value of i such that ai ≥ c
n .

b) If a1, a2, . . . , an are integers, and c is a real number such

that
∑n

i=1 ai ≥ c, then there is at least one value of i such

that ai ≥
⌈
c
n

⌉
.
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1.4 With regard to Example 1.8, show that, given a sequence

of only n2 numbers, there need not be a monotonic subse-

quence of length n+ 1.

1.5 Let r ≥ 2. Show that there exists a least positive integer

M = M(k; r) so that any r-coloring of M integers admits a

monochromatic monotonic k-term subsequence. Determine

M(k; r). (Note that from Example 1.8,M(k+1; 1) = k2+1.)

1.6 Let r ≥ 3. Let χ be any r-coloring of the set

S = {(x, y) ∈ R2 : x, y ∈ Z}

(the members of S are sometimes called lattice points). Show

that, under χ, there must exist a rectangle with all vertices

the same color.

1.7 Explain how the Party problem fits the description of Ram-

sey theory offered on page 1.

1.8 Since R(3, 3) = 6, we know that any 2-coloring of K6 must

admit at least one monochromatic triangle. In fact, any

2-coloring of K6 must admit at least two monochromatic

triangles. Prove this fact.

1.9 Show that any 2-coloring of K7 must admit at least four

monochromatic triangles.

1.10 Generalize Exercises 1.8 and 1.9 above to Kn. (Hint: Let

ri, i = 1, 2, . . . , n, be the number of red edges connected to

vertex i. Show that the number of monochromatic triangles

is thus
(
n
3

)
− 1

2

∑n
i−1 ri(n− 1 − ri). Minimize this function

to deduce the result.)

1.11 Show that any 3-coloring of K17 must admit at least one

monochromatic triangle, via an argument similar to the one

showing R(3, 3) ≤ 6, and using the fact that R(3, 3) = 6.

1.12 Prove that R(k, k) exists without making use of the exis-

tence of R(k, �) for k �= �. In other words, prove the follow-

ing statement without introducing another variable: for any

k ∈ Z+, there exists a minimum number of vertices R(k)

such that every 2-coloring of the edges of KR(k) admits a

monochromatic Kk.
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1.13 Explain why R(k, �) = R(�, k).

1.14 Prove that R(k, �) < R(k− 1, �)+R(k, �− 1), if both R(k−
1, �) and R(k, �− 1) are even.

1.15 Show that R(k, �) ≤
(
k+�−2
k−1

)
by showing that the recurrence

R(k, �) = R(k − 1, �) + R(k, � − 1) is satisfied by a certain

binomial coefficient.

1.16 We can determine a lower bound for R(k, k) by using the

probabilistic method (largely due to Erdős). Show that

R(k, k) > k
e
√
2
2

k
2 for large k via the following steps.

a) Randomly color the edges of Kn either red or blue, i.e.,

each edge is colored red with probability 1
2 . Show that for

a given set of k vertices of Kn, the probability that the

complete graph on these k vertices is monochromatic equals
2

2(
k
2)
.

b) Let pk be the probability that a monochromatic Kk sub-

graph exists in our random coloring. Show that

pk ≤
(nk)∑
i=1

21−(
k
2) =

(
n

k

)
21−(

k
2).

c) Use (b) to show that if
(
n
k

)
21−(

k
2) < 1, then R(k, k) > n.

d) Stirling’s formula for the asymptotic behavior of n! says

that n! ∼
√
2πn

(
n
e

)n
. Use Stirling’s formula to finish the

problem.

1.17 Consider the following way to color the edges of Kn. Num-

ber the vertices of Kn in a counterclockwise fashion from 1

to n. Next, partition the numbers {1, 2, . . . , n− 1} into two

subsets. Call these sets R and B for red and blue. Now,

each edge has two vertices, say i and j. Calculate |j − i| for
that edge. If |j − i| ∈ R, then color the edge connecting i

and j red. If |j−i| ∈ B, then color the edge connecting i and

j blue. Such a coloring is called a difference coloring. Since

R(3, 4) = 9, we know that there is an edgewise 2-coloring of

K8 with no red K3 and no blue K4. One such coloring is a
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difference coloring defined as follows. Color an edge red if

|j − i| ∈ {1, 4, 7}, and blue if |j − i| ∈ {2, 3, 5, 6}. Show that

this coloring does indeed prove that R(3, 4) > 8, i.e., that

there is no red K3 and no blue K4.

1.18 Prove Ramsey’s theorem for r colors, where r ≥ 3.

1.19 Show that s(3) ≥ 14, where s(r) is the r-color Schur number.

1.20 Let r ≥ 1. Show that for any integer a, there exists an

integer M = M(a; r) such that, for any r-coloring of [1,M ],

there is a monochromatic solution to x + ay = z. Deduce

Schur’s theorem from this result.

1.7. Research Problems

Note: In this chapter and the next we present some problems which,

although understandable and rather simple to state, are considered

to be extremely difficult to solve. We include them primarily for

illustrative purposes (and because they are intriguing problems). We

suggest that the research problems from Chapters 3 through 10 are

more suitable for beginning research in Ramsey theory.

1.1∗ For n ≥ 3, define g(n) to be the least positive integer with

the following property. Whenever the set of lines through

g(n) points satisfy both (a) no two lines are parallel, and

(b) no three lines intersect in the same point, then the set of

g(n) points contains the vertices of a convex n-gon. Prove or

disprove: g(n) = 2n−2+1. It is known to hold for n = 3, 4, 5.

It is also known that the existence of g(n) is equivalent to

Ramsey’s theorem.

References: [67], [126], [139]

1.2∗ Prove or disprove the following conjecture proposed by Paul

Erdős and V. Sós: R(3, n+ 1)−R(3, n) → ∞ as n → ∞.

References: [20], [125], [230]

1.3∗ Determine limn→∞ R(n, n)1/n if it exists. It is known that

if this limit exists, then it is between
√
2 and 4. (The lower

bound comes from Exercise 1.16 and the upper bound is

deduced from Exercise 1.15 using Stirling’s formula, which

is given in Exercise 1.16.)

References: [135], [378], [379]                
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1.8. References

Harary’s quote appears in [194], which also contains a biographical

sketch of Ramsey.

§1.1. Example 1.8 is due to Erdős and Szekeres [137]. See [402] for

some recent work in this area.

§1.2. Theorem 1.15 is proved in [317]. There is a much more gen-

eral form of Ramsey’s theorem (not confined to edge-colorings); for a

proof, see, for example, [175]. Erdős and Szekeres rediscovered Ram-

sey’s theorem, in an equivalent form, in [137] (see Research Problem
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1.15, is the most recently discovered Ramsey number. See [282] for

details. The Ramsey numbers R(3, 4), R(3, 5), R(4, 4), and R(3, 3, 3)

were discovered by Greenwood and Gleason [182]. Kéry determined

R(3, 6) in [224]. Graver and Yackel [180] determine R(3, 7) by match-

ing the upper bound given by Kalbfleisch in [223]. McKay and Min

[281] determined R(3, 8) by matching the lower bound given by Grin-

stead and Roberts [183]. Grinstead and Roberts [183] determined

R(3, 9) by matching the lower bound given in [223]. For a survey of

the best bounds to date on small Ramsey numbers see [315].

§1.4. Hilbert’s result is in [201]. A proof using more modern language

is in [172, p. 1368]. Recent work regarding Hilbert’s theorem can be

found in [85], [187], and [338]. Van der Waerden’s theorem and its

original proof are in [394]. Schur’s theorem and its original proof can

be found in [364]. Rado’s theorem was proved in the series of papers

[314], [313], and [312]. For a summary of Rado’s theorem see [310].

Additional References: For a very lively account of Ramsey the-

ory results and history (based on 12 years of archival research) see

Soifer’s wonderful book [374] and essay [375]. For specifics on Ram-

sey himself, see [376]. Another brief account of the life and work of

Ramsey can be found in [283]. The book [316] contains an account

of Ramsey’s work as it pertains to philosophy and logic. A brief his-

tory of Ramsey theory is given by Spencer in [381]. For a good list

of open (and difficult) questions from Ron Graham, see [170].

                

                                                                                                               



                

                                                                                                               



Chapter 2

Van der Waerden’s
Theorem

Perhaps the most fundamental Ramsey-type theorem on the integers

is van der Waerden’s theorem concerning arithmetic progressions.

Loosely, it says that for any given coloring of Z+, monochromatic

arithmetic progressions cannot be avoided.

Let’s consider arithmetic progressions of length three. We wish to

find the least positive integer w such that regardless of how the inte-

gers 1, 2, . . . , w are colored, using two colors, there will be a monochro-

matic 3-term arithmetic progression. This number w, denoted by

w(3; 2) (or w(3)), is called a van der Waerden number. Using the no-

tation introduced in Chapter 1, we may also denote it by R(AP, 3; 2),

where AP is the family of all arithmetic progressions. Before finding

w, we describe the standard methodology for finding the exact value

of any particular Ramsey-type number R(F , k; r). The goal is to show

that some number serves both as a lower bound and an upper bound

for the minimum number we desire.

(a) To establish that a certain value v is a lower

bound for a specific Ramsey-type number

R(F , k; r), it suffices to find some r-coloring of

[1, v − 1] that yields no monochromatic k-element

member of F .

23

                                     

                

                                                                                                               



24 2. Van der Waerden’s Theorem

(b) To establish that v serves as an upper bound

for R(F , k; r), it is necessary to show that every r-

coloring of [1, v] yields a monochromatic k-element

member of F .

Back to the determination of w: we will establish that w = 9 by

using the above method to prove that w ≥ 9 and w ≤ 9.

According to (a), to show that w ≥ 9 it suffices to exhibit a

2-coloring of [1, 8] with no monochromatic 3-term arithmetic progres-

sion. One such coloring is the following: color 1, 4, 5, and 8 red, and

color 2, 3, 6, and 7 blue. It is easy to check that this coloring avoids

monochromatic 3-term arithmetic progressions.

To show that w ≤ 9, we must show that every 2-coloring of

[1, 9] admits a monochromatic 3-term arithmetic progression. As-

sume, for a contradiction, that there exists a 2-coloring of [1, 9] with

no monochromatic 3-term arithmetic progression. Using red and blue

as the colors, consider the possible ways in which the integers 3 and

5 may be colored. Can both 3 and 5 be red? If they were, then since

(1, 3, 5) cannot be monochromatic, 1 must be blue. Likewise, since

neither (3, 4, 5) nor (3, 5, 7) can be red, 4 and 7 must be blue. This

situation is not possible because now (1, 4, 7) is blue. Thus we may

conclude that 3 and 5 cannot both be red. The same argument, with

the colors reversed, shows that 3 and 5 cannot both be blue. Hence, 3

and 5 are of different colors. Similarly, 5 and 7 cannot have the same

color, and 4 and 6 cannot have the same color (explain why).

Without loss of generality, we assume the color of 3 is red. By

the observations above, this leaves

χ1 = (red, red, blue, blue, red)

and

χ2 = (red, blue, blue, red, red)

as the only possible colorings of (3, 4, 5, 6, 7). If χ1 is the coloring

of (3, 4, 5, 6, 7) then, because of (2, 3, 4), the color of 2 must be blue.

Then, because of (2, 5, 8), 8 must be red. Because of (1, 4, 7), 1 is

blue. Finally, because of (1, 5, 9), 9 is red. From this we have that

(7, 8, 9) is red, contradicting our assumption. Since χ2 is the reverse

of χ1, a symmetric argument will show that χ2 also leads us to a
                

                                                                                                               



2. Van der Waerden’s Theorem 25

contradiction. Thus, every 2-coloring of [1, 9] yields a monochromatic

arithmetic progression of length 3.

Now that we know that w(3; 2) exists (i.e., that w(3; 2) is finite),

it is natural to ask whether the analogous least positive integer exists

if we use more than two colors and/or require longer arithmetic pro-

gressions. The answer, as it turns out, is yes. This fact is known as

van der Waerden’s theorem. We start by presenting what is usually

called the finite version of van der Waerden’s theorem.

Theorem 2.1 (Van der Waerden’s Theorem). Let k, r ≥ 2 be in-

tegers. There exists a least positive integer w = w(k; r) such that

for any n ≥ w, every r-coloring of [1, n] admits a monochromatic

arithmetic progression of length k.

Van der Waerden’s theorem is one of the most fundamental results

in the area of Ramsey theory. However, because its proof can be

somewhat difficult to follow, we postpone the proof until later in this

chapter.

To help reinforce what van der Waerden’s theorem says, we con-

sider an application.

Example 2.2. Let a, b, k, and r be fixed positive integers. We use

van der Waerden’s theorem to show that every r-coloring of the set

{a, a+b, a+2b, . . . , a+(w(k; r)−1)b} admits a monochromatic k-term

arithmetic progression. Let

χ : {a, a+ b, . . . , a+ (w(k; r)− 1)b} → {0, 1, . . . , r − 1}

be any r-coloring, and define χ′ : [1, w(k; r)] → {0, 1, . . . , r − 1} by

χ′(j) = χ(a+ (j − 1)b). By van der Waerden’s theorem, χ′ admits a

monochromatic k-term arithmetic progression, say

{c, c+ d, . . . , c+ (k − 1)d}.

Hence {a+ cb, a+(c+ d)b, . . . , a+(c+(k− 1)d)b} is monochromatic

under χ, by the definition of χ′. Rewriting this set, we have

{(a+ bc), (a+ bc) + bd, (a+ bc) + 2(bd), . . . , (a+ bc) + (k − 1)(bd)},

the desired monochromatic k-term arithmetic progression.
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As we shall see, there are several other forms of van der Waer-

den’s theorem that, although it is not at all obvious at first glance,

are equivalent to Theorem 2.1 (the finite version). One alternate form

is the statement that under any finite coloring of Z+ there exist ar-

bitrarily long monochromatic arithmetic progressions. That this is

equivalent to Theorem 2.1 requires some explanation.

Note that the existence of arbitrarily long monochromatic arith-

metic progressions under a given coloring of Z+ does not imply that

infinitely long monochromatic arithmetic progressions exist. What it

does say is that for each finite number k we can find a monochromatic

arithmetic progression of length k. We look at an example.

Example 2.3. Consider the following 2-coloring of Z+, with the

colors 0 and 1:

1︸︷︷︸
1

00︸︷︷︸
2

1111︸︷︷︸
4

00 . . . 0︸ ︷︷ ︸
8

11 . . . 1︸ ︷︷ ︸
16

00 . . . ,

i.e., for j ≥ 0, the interval Ij = [2j , 2j+1 − 1] is colored 1 if j is even,

and colored 0 if j is odd. It is clear that for any k, there exists a

monochromatic arithmetic progression of length k (take k consecutive

integers in Ik, which has length 2k). Thus, under this coloring there

are arbitrarily long monochromatic arithmetic progressions.

We next show that there is no monochromatic arithmetic pro-

gression of infinite length. Assume that A = {a, a+ d, a+ 2d, . . . } is

an infinitely long arithmetic progression. Then there is some n such

that 2n > d and A ∩ In is not empty. Since d < 2n, we know that

A∩ In+1 is also not empty. Since the color of In is different from the

color of In+1, the progression A is not monochromatic.

Now that we have clarified what we mean by arbitrarily long

arithmetic progressions, we next show why the following two state-

ments are equivalent: (a) every finite coloring of Z+ admits arbitrarily

long monochromatic arithmetic progressions; and (b) w(k; r) exists

for all k and r. This is the subject of the next section.
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2.1. The Compactness Principle

The compactness principle, also known as Rado’s selection principle,

in its full version, is beyond the scope of this book. We will use a sim-

pler version of this principle and refer to it simply as the compactness

principle.

The compactness principle, in very general terms, is a way of

going from the infinite to the finite. It gives us a “finite” Ramsey-

type statement provided the corresponding “infinite” Ramsey-type

statement is true. For example, we may conclude the “finite” version

of van der Waerden’s theorem for two colors:

For all k ≥ 2, there exists a least integer n = w(k)

such that for every 2-coloring of [1,m], m ≥ n,

there is a monochromatic k-term arithmetic pro-

gression,

from the “infinite” version:

For every 2-coloring of Z+, there are, for every k ≥
2, monochromatic k-term arithmetic progressions.

An alternative way to state the above “infinite” version of van der

Waerden’s theorem (using 2 colors) is to say that every 2-coloring of

Z+ admits arbitrarily long monochromatic arithmetic progressions.

Before stating the compactness principle, we remark here that

this principle does not give us any bound on the number w(k) in the

“finite” version; it only gives us its existence. The proof we give may

seem somewhat familiar, as it is essentially what is known as Cantor’s

diagonal argument, the standard argument used to prove that the set

of real numbers is uncountable.

Theorem 2.4 (The Compactness Principle). Let r ≥ 2 and let F be

a family of finite subsets of Z+. Assume that for every r-coloring of

Z+ there is a monochromatic member of F . Then there exists a least

positive integer n = n(F ; r) such that, for every r-coloring of [1, n],

there is a monochromatic member of F .
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Proof. Let r ≥ 2 be fixed and assume that every r-coloring of Z+

admits a monochromatic member of F . Assume, for a contradiction,

that for each n ≥ 1 there is an r-coloring χn : [1, n] → {0, 1, . . . , r−1}
with no monochromatic member of F . We proceed by constructing a

specific r-coloring, χ, of Z+.

Among χ1(1), χ2(1), . . . there must be some color that occurs an

infinite number of times. Call this color c1 and let χ(1) = c1. Now

let T1 be the collection of all colorings χj with χj(1) = c1. Within

the set of colors {χj(2) : χj ∈ T1}, there must be some color c2 that

occurs an infinite number of times. Let χ(2) = c2 and let T2 be the

collection of all colorings χj ∈ T1 with χj(2) = c2. Continuing in

this fashion, we can find, for each i ≥ 2, some color ci such that the

collection of colorings

Ti = {χj ∈ Ti−1 : χj(i) = ci}

is infinite. We define χ(i) = ci for all i ∈ Z+. The resulting coloring

χ : Z+ → {0, 1, . . . , r − 1} has the property that for every k ≥ 1,

the set Tk is the collection of colorings χi with χ(x) = χi(x) for

x = 1, 2, . . . , k.

By assumption, χ admits a monochromatic member of F . Let S

be this member. Let m = max({s : s ∈ S}). By construction, for

every τ ∈ Tm we have S monochromatic under τ . This contradicts

our assumption that all of the χn’s avoid monochromatic members of

F . �

It is clear that for m > n, if χ is an r-coloring of [1, n] that

yields a monochromatic member of a specific family F , and χ′ is any

extension of χ to [1,m], then χ′ also yields a monochromatic member

of F . Thus, the conclusion of Theorem 2.4 could be replaced by

the stronger-sounding (but equivalent) wording “there exists a least

positive integer n = n(F ; r) such that for every m ≥ n and every

r-coloring of [1,m], there is a monochromatic member of F .”

Note also that the converse of Theorem 2.4 is true. This is because

if it is true that n(F ; r) exists, then certainly it is the case that every

r-coloring of Z+ yields a monochromatic member of F .
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By taking F to be the family of all finite-length arithmetic pro-

gressions, it follows from the compactness principle that if every finite

coloring of Z+ admits arbitrarily long monochromatic arithmetic pro-

gressions, then w(k; r) exists for all r and k.

We remark here that we will often use the compactness principle

or its converse without explicitly stating that we are doing so. Thus,

we may use either the finite or infinite version of a particular Ramsey-

type theorem according to convenience.

2.2. Alternate Forms of van der Waerden’s
Theorem

In the last section we encountered two equivalent forms of van der

Waerden’s theorem (the “finite” and “infinite” versions). There are,

in fact, several equivalent forms of van der Waerden’s theorem. We

state some of these in the following theorem.

Theorem 2.5. The following statements are equivalent.

(i) For k ≥ 2, any 2-coloring of Z+ admits a monochromatic

arithmetic progression of length k.

(ii) For k ≥ 2, w(k; 2) exists.

(iii) For k, r ≥ 2, w(k; r) exists.

(iv) Let r ≥ 2. For any r-coloring of Z+ and any finite subset

S = {s1, s2, . . . , sn} ⊆ Z+, there exist integers a, d ≥ 1 such

that a + dS = {a + s1d, a + s2d, . . . , a + snd} is monochro-

matic.

(v) For k, r ≥ 2, any r-coloring of Z+ admits a monochromatic

arithmetic progression of length k.

(vi) For k ≥ 2, any infinite set of positive integers S = {si}i≥0,

for which c = max{|si+1 − si| : i ≥ 0} exists, must contain

an arithmetic progression of length k.

Proof. By the compactness principle, (i) ⇒ (ii).
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Next, we prove (ii) ⇒ (iii) by induction on r. Statement (ii) is

the initial case (r = 2) of (iii), so now let r ≥ 3 and assume that

w(k; r − 1) exists for all k. We will show that w(k; r) exists for all

k. Let m = w(w(k; r − 1); 2) and let χ be an arbitrary r-coloring

of [1,m], where the colors are red, blue1, blue2, blue3, . . . , bluer−1. We

prove w(k; r) ≤ m by showing that χ admits a monochromatic k-term

arithmetic progression.

If we were to view the colors blue1, blue2, . . . , bluer−1 all as an

identical shade of blue (so that we are only able to distinguish between

the colors red and blue), then we would have a 2-coloring of [1,m]

and hence, under this coloring, there is a “monochromatic” arithmetic

progression of length w(k; r−1) ≥ k. If this progression is red then we

are done, so assume that it is “blue.” However, our “blue” progression

actually consists of the r−1 colors {blue1, blue2, . . . , bluer−1}. Hence,

under χ, we have an (r − 1)-coloring of some arithmetic progression

{a, a+ d, . . . , a+ w(k; r − 1)d}. By Example 2.2, we are done.

To show that (iii) ⇒ (iv), let sn = max({s : s ∈ S}) and w =

w(sn+1; r). Under any r-coloring of [1, w] we have a monochromatic

arithmetic progression {a, a+d, a+2d, . . . , a+snd} for some a, d ≥ 1.

Since a+dS is a subset of this monochromatic arithmetic progression,

we are done.

To prove that (iv)⇒ (v), let k be fixed and take S = {1, 2, . . . , k},
so that a + dS = {a + d, a + 2d, . . . , a + kd}. Hence, by (iv), we are

guaranteed that under any r-coloring of Z+ there exists a monochro-

matic k-term arithmetic progression.

Next, we show that (v) ⇒ (vi). Let S and c be defined as in (vi).

Let T0 = S and define the sets T1, T2, . . . , Tc−1 recursively by

Tj = {s+ j : s ∈ S} −
j−1⋃
i=0

Ti,

i.e., just translate S by j, and make sure that Tj is disjoint from

the previous Ti’s. Since |si+1 − si| ≤ c for all i ≥ 0, the sets

T0, T1, . . . , Tc−1 provide a partition of Z+. Color each z ∈ Z+ with

color j if z ∈ Tj . This defines a c-coloring of Z+. By (v), there is an

arithmetic progression {a, a+ d, . . . , a+ (k − 1)d} ⊆ Tj0 for some j0.
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Hence,

{(a− j0), (a− j0) + d, . . . , (a− j0) + (k − 1)d} ⊆ T0 = S,

which proves (vi).

We complete the proof by showing that (vi) ⇒ (i). Fix k. Con-

sider any 2-coloring of Z+ using the colors red and blue. For one of

the colors, say red, there must be an infinite number of positive inte-

gers r1 < r2 < r3 < · · · with that color. If there exists an i such that

ri+1−ri > k, then we have k consecutive blue integers, which gives us

a monochromatic arithmetic progression of length k. If no such i ex-

ists, then for all i ≥ 0, |ri+1−ri| ≤ k (so that max({|ri+1−ri| : i ≥ 0})
exists), and, by (vi), we have a red arithmetic progression of length

k. �

It is interesting to note that (ii) and (iii) are equivalent when, a

priori, (ii) seems to be weaker than (iii). In fact, in many instances in

this book, we will find statements which hold for 2 colors that don’t

hold for an arbitrary number of colors. As can be seen from the proof

that (ii) implies (iii), the fact that we are dealing with arithmetic

progressions is vital.

2.3. Computing van der Waerden Numbers

Thus far we have focused on the existence of w(k; r). The next natural

step is to determine, if feasible, the values of w(k; r). Below we present

all known nontrivial values of w(k; r). (We leave it as Exercise 2.2 to

prove the trivial values w(2; r) = r + 1.)

w(3; 2) = 9, w(4; 2) = 35, w(5; 2) = 178, w(6; 2) = 1132,

w(3; 3) = 27, w(4; 3) = 293,

w(3; 4) = 76.

So why aren’t more values known? Consider w(3; 5), which is

obviously greater than w(3; 4) = 76. Say we want to check whether

every 5-coloring of [1, 100] admits a monochromatic 3-term arithmetic

progression. Using brute force, there are 5100 colorings to consider.

Assuming (incorrectly) that it takes only one computer step to check
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a coloring for a monochromatic triple in arithmetic progression, we

may need 5100 ≈ 8×1069 computer steps. At a trillion computer steps

per second, if we had a trillion worlds, each with a trillion cities, each

with a trillion computer labs, each with a trillion computers we could

use, it would take 250,000 years to run this many steps. Then, if we

should find success, we would need to check the 5-colorings of [1, 99],

since so far we would know only that w(3; 5) ≤ 100.

So, we can see that the brute force method is not at all feasible.

However, there are algorithms for finding values of w(k; r) that are

somewhat more efficient. We present several such algorithms below.

We encourage the reader to try each of the algorithms, by hand, to

calculate w(3; 2). In the algorithms, we use 1, 2, . . . , r as the colors.

Recall that we say a coloring is valid (in this circumstance) if it admits

no monochromatic k-term arithmetic progression.

In Algorithm 1, gj represents an r-coloring and gj(i) is the color

of i under gj . The final value of n equals w(k; r).

Algorithm 1.

STEP 1: Set n = 1, k = 1, and g1(1) = 1 (at this

point g1 is defined only on {1})
STEP 2: Set S = {g1, g2, . . . , gk} and k = |S|
STEP 3: Increment n by 1

STEP 4: Set S = ∅ and j = 0

STEP 5: Set i = 0 and increment j by 1

STEP 6: Increment i by 1

STEP 7: Set gj(n) = i

STEP 8: If gj : [1, n] → {1, 2, . . . , r} is valid then

set S = S ∪ {gj}
STEP 9: If i < r, go to STEP 6

STEP 10: If j < k, go to STEP 5

STEP 11: If S �= ∅, go to STEP 2

STEP 12: STOP and output n
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This algorithm is more efficient than brute force because we know

that all colorings in S avoid monochromatic arithmetic progressions

of length k. Furthermore, the set S is built up along the way so as

to weed out those colorings that do contain a monochromatic k-term

arithmetic progression.

Even though Algorithm 1 is more efficient than the brute force

method, its usefulness is limited to only two or three nontrivial (i.e.,

k ≥ 3) values of w(k; r); this is due to memory restrictions, as the

set S tends to grow exponentially before the algorithm starts to ef-

fectively weed out invalid colorings.

The next algorithm is also more efficient than the brute force

method, without the memory restrictions of Algorithm 1. In Algo-

rithm 2, g(i) represents the color of i. The final value of w equals

w(k; r).

Algorithm 2.

STEP 1: Set i = 1, g(1) = 1, w = r + 1

STEP 2: Increment i by 1 and set g(i) = 1

STEP 3: If g : [1, i] → {1, 2, . . . r} is valid, go to STEP 2

STEP 4: If g(i) = r, go to STEP 6

STEP 5: Increment g(i) by 1 and then go to STEP 3

STEP 6: If i > w, set w = i

STEP 7: Decrement i by 1

STEP 8: If i > 1, go to STEP 4

STEP 9: STOP and output w

Although Algorithm 2 does not have the memory problem of Al-

gorithm 1, it still has the problem of being very time-intensive. It has

been used to find the values of w(3; 2), w(4; 2), w(5; 2), w(3; 3), and

w(3; 4).

The third algorithm we present is essentially a refinement of Al-

gorithm 2, employing what we call the “culprit method.” Given a

coloring χ of some interval [1,m] and an integer k ≥ 2, we define

a culprit of a positive integer n to be any integer a + (k − 2)d with
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a, d ≥ 1, such that a, a+ d, a+2d, . . . , a+ (k− 2)d is monochromatic

and a + (k − 1)d = n. In other words, it is the (k − 1)st term of an

arithmetic progression whose kth term is n, with the first k− 1 terms

all of the same color. To illustrate how the culprit can be used to cut

down on the number of calculations, we consider an example.

Example 2.6. Assume that we are calculating w(4; 2) (which equals

35) by means of Algorithm 2 . Say that the program is running and

we are at the following point in the computations: w = 30 (this means

that so far we have discovered a valid coloring of [1,29] but not one

of [1,30]); i = 26 and we are about to assign g(i) = 1; the integers

1, 5, 7, 8, 12, 14, 15, 16, 19, 21, 24, 25 all have color 1; and the integers

2, 3, 4, 6, 9, 10, 11, 13, 17, 18, 20, 22, 23 all have color 2. According to

Algorithm 2, since 26 cannot be assigned either color to yield a valid

coloring of [1, 26], we proceed to STEP 7, and then try various colors

on 25; should that fail, we will go back to 24; should that fail, we will

go back to 23, etc. However, the least culprit of 26 with color 1 is 19

(that is, as long as 5, 12, 19 have color 1, we will not be able to assign

the color 1 to the integer 26); and the least culprit of 26 with color 2

is 18 (as long as 2, 10, 18 have color 2, we will not be able to assign the

color 2 to the integer 26). Therefore, to try various color assignments

on any of the integers in the set {20, 21, 22, 23, 24, 25} at this point

would be a waste of time, because we will not find any valid colorings

of [1, 26] until we change the way [1, 19] is colored. Thus, we would

save time by moving 19 into the set with color 2 at this point, rather

than moving 25 into that set, which is the next move in Algorithm 2.

Algorithm 3 takes advantage of the culprit to give a more efficient

algorithm. We use culj(i) to represent the minimum of all culprits of

i having color j.

Algorithm 3.

STEP 1: Set i = 1, g(1) = 1, w = r + 1

STEP 2: Increment i by 1 and set g(i) = 1

STEP 3: If i > w, set w = i

STEP 4: If g : [1, i] → {1, 2, ..., r} is valid, go to STEP 2

STEP 5: If g(i) = r, go to STEP 7
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STEP 6: Increment g(i) by 1 and then go to STEP 4

STEP 7: Set i = max{culj(i) : 1 ≤ j ≤ r}
STEP 8: If g(i) < r, go to STEP 6

STEP 9: Decrement i by 1

STEP 10: If i = 1, STOP and output w

STEP 11: Go to STEP 8

Algorithm 3 is somewhat more efficient than Algorithm 2 but,

it seems, not efficient enough to allow (at least given our current

computational resources) the discovery of new van Waerden numbers.

The values of w(6; 2) and w(4; 3) were discovered using a more

intricate algorithm. We wonder which van der Waerden number will

be the next to be discovered; will it be w(7; 2), w(4; 4), or w(3; 5)?

Even with very sophisticated algorithms, such as that employed to

find w(6; 2), the number of steps required, as a function of the size

of the interval being colored, still grows at an exponential rate. For

example, how might we make a rough comparison between the time

it would take to calculate w(6; 2) = 1132, and the time it would take

to calculate w(7; 2)? It has been observed that the (admittedly few)

known values of w(k; 2) approximate 3k!
2 , so perhaps a reasonable

approximation for w(7; 2) is 7560. Even if w(7; 2) = 4000 (it is known

that w(7; 2) ≥ 3704), the number of different 2-colorings of [1, 4000]

is 24000, whereas the number of 2-colorings of [1, 1132] is 21132. To

get some idea of how the number of computer steps required to find

w(6; 2) would compare to the number required to find w(7, 2), it would

not be unreasonable to compare 24000 to 21132; the ratio of these two

numbers is 22868(!). Looking at how the computing times needed to

calculate w(6; 2) and w(7; 2) compare may help us understand why

the calculation of w(7; 2) appears, at this time, to be out of reach.

Kouril and Paul, using their very efficient algorithm implemented

on over 200 parallel processors, found w(6; 2) = 1132 in about 253

days. With the same resources, w(7; 2) would take about 22876 days.

Considering that a long human life is about 215 days, we will need

to change the “same resources” part of the last sentence to make

progress here.
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We conclude this section by considering what are sometimes called

“mixed” van der Waerden numbers and a table of known values. In-

stead of requiring an arithmetic progression of length k to be of one

of the colors (so that k is a constant that is independent of the color),

the mixed van der Waerden numbers allow the required length to

vary with the color. For example, if the colors are red and blue,

then w(4; 2) represents the least positive integer such that, for every

2-coloring of [1, w(4; 2)], there is either a 4-term red arithmetic pro-

gression or a 4-term blue arithmetic progression. What if we “mix”

the lengths so that we want the least positive integer n such that,

for every 2-coloring of [1, n], there is either a 4-term red arithmetic

progression or a 5-term blue arithmetic progression? We know that

w(4; 2) = 35 and w(5; 2) = 178. So we must have 35 ≤ n ≤ 178

(why?). More generally, we have the following as a corollary of van

der Waerden’s theorem. We leave the proof as Exercise 2.4.

Corollary 2.7. Let r ≥ 2, and let ki ≥ 2 for 1 ≤ i ≤ r. Then there

exists a least positive integer w = w(k1, k2, . . . , kr; r) such that, for

every r-coloring χ : [1, w] → [1, r], there exists, for some i ∈ [1, r], a

ki-term arithmetic progression with color i.

Let’s consider an example.

Example 2.8. According to Corollary 2.7, w(3, 4, 2; 3) is the least

positive integer n such that for every 3-coloring (using the colors 1,

2, and 3) of [1, n], there is a 3-term arithmetic progression with color

1 or a 4-term arithmetic progression with color 2 or a 2-term arith-

metic progression with color 3. It is easy to see that w(3, 4, 2; 3) =

w(4, 3, 2; 2) and, in fact, that any re-ordering of the components of

(k1, k2, . . . , kr) in Corollary 2.7 will have no effect on the value of n.

In Table 2.1 we present all known mixed van der Waerden num-

bers (including the classical van der Waerden numbers) w(k1, k2, . . . ,

kr; r), where ki ≥ 3 for at least two values of i, and r ≤ 4. The table

gives, for r = 2, 3, 4, each r-tuple (k1, k2, . . . , kr) with the ki’s or-

dered in nonincreasing order (as mentioned in Example 2.8, the order

in which the ki’s appear is irrelevant).
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r k1 k2 k3 k4 w

2 3 3 - - 9

2 4 3 - - 18

2 4 4 - - 35

2 5 3 - - 22

2 5 4 - - 55

2 5 5 - - 178

2 6 3 - - 32

2 6 4 - - 73

2 6 5 - - 206

2 6 6 - - 1132

2 7 3 - - 46

2 7 4 - - 109

2 7 5 - - 260

2 8 3 - - 58

2 8 4 - - 146

2 9 3 - - 77

2 9 4 - - 309

2 10 3 - - 97

2 11 3 - - 114

2 12 3 - - 135

2 13 3 - - 160

2 14 3 - - 186

2 15 3 - - 218

2 16 3 - - 238

2 17 3 - - 279

2 18 3 - - 312

2 19 3 - - 349

3 3 3 2 - 14

3 3 3 3 - 27

3 4 3 2 - 21

3 4 3 3 - 51

3 4 4 2 - 40

3 4 4 3 - 89

3 4 4 4 - 293

r k1 k2 k3 k4 w

3 5 3 2 - 32
3 5 3 3 - 80
3 5 4 2 - 71
3 5 5 2 - 180
3 6 3 2 - 40
3 6 3 3 - 107
3 6 4 2 - 83
3 6 5 2 - 246
3 7 3 2 - 55
3 7 4 2 - 119
3 8 3 2 - 72
3 8 4 2 - 157
3 9 3 2 - 90
3 10 3 2 - 108
3 11 3 2 - 129
3 12 3 2 - 150
3 13 3 2 - 171
3 14 3 2 - 202
4 3 3 2 2 17
4 3 3 3 2 40
4 3 3 3 3 76
4 4 3 2 2 25
4 4 3 3 2 60
4 4 4 2 2 53
4 5 3 2 2 43
4 5 3 3 2 86
4 5 4 2 2 75
4 6 3 2 2 48
4 6 4 2 2 93
4 7 3 2 2 65
4 7 4 2 2 143
4 8 3 2 2 83
4 9 3 2 2 99
4 10 3 2 2 119
4 11 3 2 2 141

Table 2.1. Mixed van der Waerden numbers for less
than 5 colors
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2.4. Bounds on van der Waerden Numbers

Since we have seen that finding exact values for van der Waerden

numbers is an extremely difficult problem, we turn to the problem of

finding bounds on these numbers. As we will see, there is a wide gap

between the best known upper bounds on w(k; 2) (and w(k; r), more

generally) and the best known lower bounds. We begin with some

lower bounds.

The best known lower bound on w(k; 2), due to Berlekamp, is

presented in the following theorem. We do not include the proof,

which requires a knowledge of field extensions.

Theorem 2.9. Let p be prime. Then w(p+ 1; 2) ≥ p2p.

The person most responsible for the development of Ramsey the-

ory as a branch of mathematics, in fact for the much broader area of

mathematics known as combinatorial number theory, is Paul Erdős.

The extremely insightful Erdős (also the most prolific mathematician

of the twentieth century) conjectured that limk→∞
w(k)
2k

= ∞ (i.e.,

that w(k) grows significantly faster than 2k). Whether this conjec-

ture is true is uncertain, although Theorem 2.9 lends credence to it.

For general k, i.e., when k− 1 is not necessarily a prime, we have

the following result, provided k is sufficiently large.

Theorem 2.10. Let ε > 0. There exists k0 = k(ε) such that for all

k ≥ k0,

w(k; 2) ≥ 2k

kε
.

We omit the proof of Theorem 2.10, but will prove Theorem 2.11,

which gives a weaker lower bound for w(k; 2), but has a very novel

proof. A word about Theorem 2.11’s proof is in order. Unlike most

lower bound proofs, we will not produce a valid coloring. Rather, we

will use the definition of w(k; r) to manipulate colorings in such a way

that a useful inequality will be produced.

Theorem 2.11. If k ≥ 3 and r ≥ 2, then

w(k; r) >
√
2(k − 2) · r k

2−1.
                

                                                                                                               



2.4. Bounds on van der Waerden Numbers 39

Proof. We will present the proof for r = 2 and leave the cases when

r > 2 as an exercise. Let n = w(k; 2). Since any k-term arithmetic

progression is completely determined by the values of a and d, there

are (for n > k2)

�n−1
k−1 
∑
d=1

n−(k−1)d∑
a=1

1

k-term arithmetic progressions in [1, n]. Calling these progressions

A1, A1, . . . , At, we see that t ≤ n2

2(k−2) (see Exercise 2.1). Hence, for

each i ∈ [1, t], writing i in its binary form, we associate with each Ai

a unique binary string si of length
⌈
log2

n2

2(k−2)

⌉
(where leading 0’s

are not only allowed, but required).

We next describe a map from the set of 2-colorings of [1, n] to

the set of binary strings of length n−k+
⌈
log2

n2

2(k−2)

⌉
+1 as follows.

Given a 2-coloring α, write α as a string of 0’s and 1’s of length n. By

the definition of n, there exists a monochromatic k-term arithmetic

progression in [1, n], say Aj . Remove the k-terms of Aj from the bi-

nary string that represents α, leaving a string of length n− k. Next,

append to this (n− k)-length string the binary string sj (that corre-

sponds to Aj). Finally, append either a 0 or 1 at the end to denote the

color of the monochromatic arithmetic progression that was removed.

The resulting binary string has length n − k +
⌈
log2

n2

2(k−2)

⌉
+ 1, as

desired. (See Example 2.12 below for an exhibition of this map.)

Now, this map is one-to-one (this needs to be checked and is left

to the reader as Exercise 2.9) so that the range of the map is at least

the size of its domain. For this particular map, this means that the

number of 2-colorings of [1, n] is at most the number of binary strings

of length n− k +
⌈
log2

n2

2(k−2)

⌉
+ 1, i.e.,

2n ≤ 2n−k+�log2
n2

2(k−2) �+1.

Taking the logarithm (base 2) of both sides and simplifying gives us

k − 2 ≤ log2
n2

2(k − 2)

so that n ≥
√

2(k − 2) · 2 k
2−1. �
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Before moving on, it may be helpful to view an example of the

maps described in the proof of Theorem 2.11.

Example 2.12. Consider w(4; 2) = 35. Within [1, 35] there are 187

different 4-term arithmetic progressions (check this), namely:

{1, 2, 3, 4}, {1, 3, 5, 7}, . . . , {9, 15, 21, 27}, . . . , {32, 33, 34, 35}.

We associate each of these arithmetic progressions with a unique num-

ber: {1, 2, 3, 4} ↔ 1, {1, 3, 5, 7} ↔ 2, . . . , {9, 15, 21, 27} ↔ 85, . . . ,

{32, 33, 34, 35} ↔ 187.

Now consider the following (random) 2-coloring of [1, 35]:

α = 01100 01011 10001 10011 11010 01010 01011.

By van der Waerden’s Theorem, we know that there exists at least one

monochromatic 4-term arithmetic progression in this coloring. We see

that A85 = {9, 15, 21, 27} is monochromatic, of color 1. (There are

others, for example, {13, 18, 23, 28}; however, we need only one to

complete the map given in the proof of Theorem 2.11.)

Since we have {9, 15, 21, 27} ↔ 85, we write the binary equivalent

of 85, with leading 0’s added so that the length of the resulting binary

string is �log2 n2

2(k−2)� = 9. We have s85 = 001010101.

The map has us remove the monochromatic 4-term arithmetic

progression A85 from α (we have left underscores to represent their

removal):

01100 010 1 1000 10011 1010 0 010 01011.

Next, we append s85 to the end, along with an additional 1 to repre-

sent the color of A85 (we now remove the underscores):

0110001011000100111010001001011 001010101 1.

This string has length n− k+ �log2 n2

2(k−2)�+1 = 35− 4+ 9+ 1 = 41

and is the image of α under the mapping described in the proof of

Theorem 2.11.

We can achieve bounds very similar to those in Theorem 2.11

via completely different machinery. The proof makes use of a graph-

theoretic result due to W.M. Schmidt (Lemma 2.19). The proof of

Theorem 2.20 provides us with a method for obtaining lower bounds
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that may be applied to many of the other types of sequences men-

tioned in this book (these may be fruitful avenues of research to ex-

plore).

Before stating Schmidt’s lemma, we need to give some definitions.

Definition 2.13. A hypergraph Γ = (V, E) is a set of vertices V and

a collection E of subsets of V such that, for every E ∈ E , we have

|E| ≥ 2. The members of E are called hyperedges.

Note that if for every E ∈ E we have |E| = 2, then the hypergraph

(V, E) reduces to a graph as defined in Definition 1.11.

Example 2.14. Let V = {1, 2, 3, 4} and consider the collection

E = {{1, 2, 4}, {3, 4}, {2, 3, 4}}. Then (V, E) is a hypergraph with

3 hyperedges. If G = {{1, 2}, {1, 3}, {4}}, then (V,G) is not a hyper-

graph.

Definition 2.15. Let Γ = (V, E) be a hypergraph. We say that Γ

has Property B if there exists V1 ⊆ V such that for every E ∈ E we

have E ∩ V1 �= ∅ and E ∩ V1 �= E.

We consider an example.

Example 2.16. Let Γ1 = (V, E1) with

V = {1, 2, 3, 4, 5, 6, 7, 8, 9}

and

E1 = {{1, 2, 3, 9}, {1, 4, 5, 6}, {3, 7, 8}}.
Then, by letting V1 = {1, 3}, as in Definition 2.15, we see that Γ1 has

Property B. Let Γ2 = (V, E2), where E2 is the collection of all 3-term

arithmetic progressions contained in [1, 9]. We show, by contradiction,

that Γ2 does not have Property B. Assuming Γ2 does have Property

B, there is a V2 ⊆ [1, 9] such that V2 ∩ E �= ∅ and V2 ∩ E �= E for

every E ∈ E2. Consider the partition of [1, 9] into the two sets V2 and

V − V2. By the fact that w(3; 2) = 9, we know there is some 3-term

arithmetic progression E0 such that either E0 ⊆ V2 or E0 ⊆ V − V2.

If E0 ⊆ V2, then E0 ∩V2 = E0, and if E0 ⊆ V −V2, then E0∩V2 = ∅.
This contradicts our assumption about V2. Hence Γ2 does not have

Property B.
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Definition 2.17. Let Γ = (V, E) be a hypergraph. For k ≥ 2, denote

by μ(k) the minimal number of hyperedges E = {E1, E2, . . . , Eμ(k)}
with |Ei| = k for 1 ≤ i ≤ μ(k) such that Γ does not have Property B.

Example 2.18. In Example 2.16 we saw that the set of all 3-term

arithmetic progressions in [1, 9] is a hypergraph on {1, 2, . . . , 9} not

having Property B. The number of 3-term arithmetic progressions in

[1, 9] is ⌊
9− 1

2

⌋
+

⌊
9− 2

2

⌋
+

⌊
9− 3

3

⌋
+ · · ·+

⌊
9− 7

2

⌋
= 16.

Therefore μ(3) ≤ 16.

We now state Schmidt’s lemma, the proof of which we omit.

Lemma 2.19 (Schmidt’s Lemma). For k ≥ 1,

μ(k) ≥ 2k

1 + 2k−1
.

With the help of Lemma 2.19 we are able to obtain the following

lower bound on w(k).

Theorem 2.20. The following holds: w(k) ≥
√
k · 2 k+1

2 (1− o(1)).

Proof. Let m ≥ w(k). Let E be the collection of all k-term arith-

metic progressions that are contained in [1,m]. Just as we saw in

Example 2.16 that Γ2 (for 3-term arithmetic progressions) does not

have Property B, the hypergraph Γ = ({1, 2, . . . ,m}, E) does not have
Property B (we leave the details to the reader as Exercise 2.11).

To use Schmidt’s lemma, we need to know something about the

size of E . For E = {a, a+ d, a+ 2d, . . . , a+ (k− 1)d} to belong to E ,
we must have d ≤ m−1

k−1 . We also must have a ≤ m− (k − 1)d. Since

each k-term arithmetic progression is completely determined by the

values of a and d, we have

|E| =

�m−1
k−1 
∑
d=1

(m− (k − 1)d)

= m
⌊
m−1
k−1

⌋
− k−1

2

⌊
m−1
k−1

⌋(⌊
m−1
k−1

⌋
+ 1
)

≥ m2

2k
.
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Therefore, if m = w(k), then since Γ does not have Property B, by

Schmidt’s lemma we have

m2

2k
≥ μ(k) ≥ 2k

1 + 2k−1
.

This implies that

m ≥

√
k2k+1

1 + 2k−1
,

and therefore

w(k) ≥
√
k · 2

k+1
2 (1− o(1)),

which completes the proof. �

The following two theorems provide lower bounds on w(k; r) for

arbitrary r. Theorem 2.21 deals with values of k and r related to

prime numbers and extends Theorem 2.9. Theorem 2.22 provides the

best known lower bound for general k and r if r > 2.

Theorem 2.21. Let p ≥ 5 and q be primes. Then

w(p+ 1; q) ≥ p(qp − 1) + 1.

Theorem 2.22. For all r ≥ 2,

w(k; r) ≥
(√

6− 2

4

)
rk−1

√
k · ln k

(
1− 1

k

)
.

In Table 2.2 we present all known exact values, along with several

of the best known lower bounds, for the classical van der Waerden

numbers.

k \ r 2 3 4 5

3 9 27 76 ≥ 171

4 35 293 ≥ 1049 ≥ 2255

5 178 ≥ 2174 ≥ 17706 ≥ 98741

6 1132 ≥ 11192 ≥ 91332 ≥ 540025

7 ≥ 3704 ≥ 48812 ≥ 420218 ?

Table 2.2. Values and lower bounds for w(k; r)
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The last lower bound we present is for the 2-color mixed van der

Waerden numbers where the length of the progression in one of the

colors is fixed. We omit the proof.

Theorem 2.23. Let � be fixed. For k sufficiently large,

w(k, �; 2) >

(
�− 1

�2

)�(
k

log k

)�−1

.

We now move on to upper bounds for the van der Waerden num-

bers. The main result in this direction is a remarkable theorem due

to Timothy Gowers. In 1998, Gowers received a Fields Medal (the

mathematical equivalent of the Nobel Prize). His work related to

finding an upper bound on the van der Waerden numbers played a

significant part in his winning of this prestigious award.

Before stating Gowers’ result, we give some historical perspective

on the search for an upper bound. First we define some very fast-

growing functions.

For a function f , and n ∈ Z+, denote by f (n) the composition

of f with itself n times (i.e., f (n)(x) = f(f(. . . (f︸ ︷︷ ︸
n times

(x)) . . . ))). For

all k ∈ Z+, let f1 be the function f1(k) = 2k, and let f2 be the

function f2(k) = 2k. Notice that f2(k) = f
(k)
1 (1). Similarly, define

f3(k) = f
(k)
2 (1); and, more generally, for i ∈ Z+ define the functions

fi+1(k) = f
(k)
i (1),

for k ∈ Z+. As the subscript increases, the growth of these functions

accelerates at a phenomenal rate. For example,

f3(k) = 22
..

.2︸ ︷︷ ︸
k 2’s

.

In considering the magnitude of the functions fi(k), for reasons

that are apparent, we will refer to the functions f2(k) and f3(k) as

exp2(k) and tower(k), respectively.

Now consider f4(k). We call this function the wow function due to

its incredible rate of growth, and we denote it by wow(k). To see how

quickly wow(k) grows, consider wow(k) for k = 1, 2, 3, 4. We easily
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have wow(1) = 2, wow(2) = 4, and wow(3) = tower(4) = 65536. For

k = 4, we have

wow(4) = f4(4) = f3(f3(f3(f3(1)))) = f3(65536) = tower(65536),

a tower of 65536 2’s.

Generalizing from f3(3) and f4(4), we now consider a function

on Z+ known as the Ackermann function. The Ackermann function

is defined as ack(k) = fk(k). This function is named after a similar

function derived in 1928 by Wilhelm Ackermann, a high school math

teacher, who received his Ph.D. under the direction of David Hilbert.

This function is perhaps the fastest growing function you will ever

encounter. To get an idea of how fast it grows, consider wow(5) and

ack(5). We have

wow(5) = tower(tower(65536)),

for which calling it enormous would be an understatement. Mean-

while, we have

ack(5) = wow(wow(tower(65536))).

Given the incredibly immense size of wow(5), grasping the magni-

tude of wow(tower(65536)), let alone ack(5), is no easy accomplish-

ment. Comparing tower(5) = 265536, a number with 19719 digits,

to exp2(5) = 25 = 32, may give some insight into how wow(5) and

ack(5) compare.

We introduced the above functions to show the enormity of the

historical upper bounds on w(k; 2). It turns out that the original

proof of van der Waerden’s theorem gives

w(k; 2) ≤ ack(k),

which tells us, in particular, that w(4; 2) ≤ tower(65536). Comparing

this to the actual value w(4; 2) = 35 certainly gives some reason to

suspect that this upper bound might not be the best possible.

For many years, the much-revered mathematician Ronald Gra-

ham offered a $1000 prize to anyone who could prove or disprove that

w(k; 2) ≤ tower(k). The idea of offering monetary prizes for what are

considered difficult problems was championed by Paul Erdős. Gra-

ham and Erdős were good friends, and since Erdős’ passing in 1996,
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Graham has kept this “prize money” tradition alive by honoring all

of Erdős’ prize problems and adding many of his own.

Since there is a very significant difference in magnitude between

the functions tower(k) and ack(k), showing that w(k; 2) ≤ tower(k)

would seem to be quite a feat – some new method of proof would

need to be used.

In 1987, the eminent logician Saharon Shelah, while not answering

Graham’s question, used an argument fundamentally different from

earlier proofs of van der Waerden’s theorem, to prove that

w(k; 2) ≤ wow(k),

quite an improvement over the previous upper bound of ack(k).

Shelah’s result is one of the most significant results in Ramsey

theory. In fact, although Shelah did not answer Graham’s “prize”

question completely, Graham gave him half of the award money any-

way.

When we consider the magnitude of wow(k), for example that

wow(4) = tower(65536), and compare it to the best lower bounds

known for w(k; 2), it would be reasonable to think that this better

upper bound is also not the best possible. In fact, Gowers’ amazing

result showed that the bound could be substantially improved. Here

is Gowers’ bound.

Theorem 2.24. For k ≥ 2,

w(k; 2) ≤ 22
22

2k+9

.

Gowers’ bound is of a much smaller magnitude than tower(k),

thereby settling Graham’s question. As a consequence of Gowers’

result, Graham asked in 1998 whether or not w(k; 2) < 2k
2

and cur-

rently offers $1000 for an answer.

Remark 2.25. Gowers actually proved a more general result than

what we state as Theorem 2.24. Namely, letting f(k; r) = r2
2k+9

, he

showed that

w(k; r) ≤ 22
f(k;r)

.
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We end this section by presenting bounds on the function w(3; r).

The lower bound is the best known and is more than thirty years

old. In the next section we will find another upper bound that is

better (lower) than the one given in Theorem 2.26, provided r is

large enough. However, first we need some more machinery, which

will be covered in the next section.

Theorem 2.26. Let r ≥ 5. There exists a positive constant c such

that

rc log r < w(3; r) <
(r
4

)3r
.

2.5. The Erdős and Turán Function

By van der Waerden’s theorem we know that, for n large enough,

whenever [1, n] is partitioned into a finite number of subsets, at least

one of the subsets must contain a k-term arithmetic progression. In

an effort to find out more about the van der Waerden numbers, Erdős

and Turán defined a function that approaches the problem from what

could be considered the opposite direction. That is, we may ask the

following question: given a positive integer n, what is the maximum

size of a subset of [1, n] that does not contain an arithmetic progres-

sion of length k? Erdős and Turán defined the following function.

Definition 2.27. For k ≥ 2 and n ≥ 3, let S be the collection of sets

S ⊆ [1, n] such that S does not contain an arithmetic progression of

length k. Then

νk(n) = max ({|S| : S ∈ S}) .

The function ν2 is trivial, since ν2(n) = 1 for all n. In the follow-

ing examples we consider νk(n) for some small values of k and n.

Example 2.28. Let k = 3 and n = 8. Since w(3) = 9, we know

that there exists a 2-coloring of [1, 8] with no monochromatic 3-term

arithmetic progression. One such coloring is 11001100. Hence, taking

S = {1, 2, 5, 6}, we have ν3(8) ≥ 4. Furthermore, there are only

two other colorings, up to renaming the colors, of [1, 8] that avoid

monochromatic 3-term arithmetic progressions, each of which has four

integers of each color.
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Hence, for any T ⊆ [1, 8] with |T | ≥ 5, if we color the elements

of T with one color and the elements of R = [1, 8]− T with the other

color, we are guaranteed to have a monochromatic 3-term arithmetic

progression. If |T | ≥ 6, then (since |R| ≤ 2) that arithmetic progres-

sion resides in T . This leaves us to consider |T | = 5 (so that |R| = 3).

If R contains the monochromatic triple, then R is one of the follow-

ing: {1, 2, 3}, {1, 3, 5}, {1, 4, 7}, {2, 3, 4}, {2, 4, 6}, {2, 5, 8}, {3, 4, 5},
{3, 5, 7}, {4, 5, 6}, {4, 6, 8}, {5, 6, 7}, {6, 7, 8}. It is easy to check that

for each of these sets, T also contains a 3-term arithmetic progression.

Hence, ν3(8) ≤ 4, and we have established that ν3(8) = 4.

Example 2.29. We show here that ν3(26) ≥ 9. Since w(3; 3) = 27,

there exists a 3-coloring of [1, 26] that avoids monochromatic 3-term

arithmetic progressions. Clearly, there is some color c such that at

least nine elements have color c. Since there is no 3-term arithmetic

progression with color c, ν3(26) ≥ 9.

The above examples illustrate the relationship between the Erdős

and Turán function and the van der Waerden numbers. One impor-

tant reason for studying νk(n) is that having an upper bound on

these numbers would lead to an upper bound on w(k; r). To be more

precise, we have the following theorem.

Theorem 2.30. Let k ≥ 3, r ≥ 2, and assume νk(m) ≤ f(k,m),

with f(k,m) ≤ m−1
r . Then w(k; r) ≤ rf(k,m) + 1.

Proof. If νk(m) ≤ f(k,m), then for any r-coloring of [1, rf(k,m)+1],

the most used color, say c, would occur more than f(k,m) times. Note

here that we require f(k,m) ≤ m−1
r so that we have at least νk(m)

elements in [1,m] of the same color. Since f(k,m) ≥ νk(m), by the

definition of νk(m) there must be a k-term arithmetic progression

with color c. �

As mentioned in the last section, we now present an upper bound

dependent on the number of colors that is better than the one in

Theorem 2.26, provided the number of colors is big enough. We

present the proof to show how we can use upper bounds on νk(m) to

achieve upper bounds on van der Waerden numbers.

We will make use of the following lemma.
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Lemma 2.31. For m sufficiently large,

ν3(m) < m · (log logm)5

logm
.

Theorem 2.32. For any c > 1, for r sufficiently large, we have

w(3; r) < 2r(log r)10−5 log log r+1 < 2r
c

,

where log is the logarithm with base 2.

Proof. Lemma 2.31 gives us the existence of m0 ∈ Z+ such that,

for all m > m0, we have ν3(m) < m · (log logm)5

logm . We wish to apply

Theorem 2.30 (with f(3,m) = m · (log logm)5

logm ). In order to do so, we

must have

(2.1) m · (log logm)5

logm
≤ m− 1

r
.

Rearrangement of (2.1) yields the following requirement:

r ≤ m− 1

m
· logm

(log logm)5
.

Since 1
2 · logm

(log logm)5 ≤ m−1
m · logm

(log logm)5 , the inequality in (2.1) is sat-

isfied when

(2.2) r ≤ logm

2(log logm)5
.

Let f(r) = 2r
1+

10 log log r
log r

. Then there exists r0 such that for all

r > r0 we have f(r) > m0. Hence, for all r > r0 (i.e., for r sufficiently

large) we may let m = f(r). Thus, we take

m = 2r
1+

10 log log r
log r

and evaluate the right-hand expression in (2.2):

logm

2(log logm)5
=

r1+
10 log log r

log r

2
((

1+ 10 log log r
log r

)
log r

)5 =r · r
10 log log r

log r

2 (log r+10 log log r)5
.

Hence, if

r
10 log log r

log r

2 (log r + 10 log log r)5
≥ 1,
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then (2.2) (and, hence, (2.1)) is satisfied.

We next note that r(log log r)/ log r = log r so that we require

(log r)10 ≥ 2 (log r + 10 log log r)
5
.

Simplifying this, our requirement becomes

log r ≥ 2
1
5

(
1 +

10 log log r

log r

)
.

It is easy to check that this last inequality holds for r ≥ 68. Thus, pro-

vided r ≥ max(68, r0), Inequality (2.2), and hence, Inequality (2.1),

is satisfied.

Applying Theorem 2.30, we have

w(3; r) ≤ rm
(log logm)5

logm
+ 1

= r · 2r
1+

10 log log r
log r ·

(
(log r + 10 log log r)

5

r1+
10 log log r

log r

)
+ 1

= 2r
1+

10 log log r
log r ·

⎛⎜⎝ (log r + 10 log log r)
5(

r
log log r
log r

)10
⎞⎟⎠+ 1

= 2r
1+

10 log log r
log r ·

(
(log r + 10 log log r)5

(log r)10

)
+ 1

=

(
2r
( 10 log log r

log r )
)r

·
(
(log r + 10 log log r)5

(log r)10

)
+ 1

< 2r(log r)10 · 2(log r)
5

(log r)10

=
2r(log r)10+1

(log r)5

= 2r(log r)10−5 log log r+1.
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The bound 2r
c

follows easily from this last bound (and is given to

show the relative size of the middle bound) provided r is large enough

(for a given c > 1). �

Remark 2.33. The bound presented in the above theorem is not

best possible using the methods in its proof; it is presented so as not

to be too algebraically heavy.

The proof of the last result of this section is left to the reader as

Exercise 2.15.

Theorem 2.34. Let n, k ≥ 3. Let rk(n) be the minimum number

of colors required to color [1, n] so that no monochromatic k-term

arithmetic progression exists. Then

νk(n) ≥
⌈

n

rk(n)

⌉
.

One of the most significant results in Ramsey theory, now known

as Szemerédi’s theorem, involves a conjecture made by Erdős and

Turán in 1936. They conjectured that for every k,

lim
n→∞

νk(n)

n
= 0.

In 1952, Roth proved their conjecture for k = 3. In 1969, Szemerédi

showed it holds for k = 4. Then, using an ingenious and very complex

proof, Szemerédi fully settled the conjecture, establishing its truth, in

1975. Unfortunately his proof, which makes use of van der Waerden’s

theorem, does not yield any useful bounds for w(k; r).

2.6. On the Number of Monochromatic
Arithmetic Progressions

Thus far we have been using van der Warden’s theorem as a guarantee

of (at least) one monochromatic arithmetic progression. However, it

actually guarantees many such arithmetic progressions in any finite

coloring of [1, n], when n is large. To see this, first consider the

following proposition, which essentially tells us that the guarantee of a

monochromatic arithmetic progression in an interval is unaffected by

translation (adding a constant integer) and/or dilation (multiplying
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by a positive integer) of the interval. We leave the proof of Proposition

2.35 to the reader as Exercise 2.17.

Proposition 2.35. Let k, r, m, and b be positive integers. Let a be

a nonnegative integer. Every r-coloring of [1,m] yields a monochro-

matic k-term arithmetic progression if and only if every r-coloring

of S = {a, a + b, a + 2b, . . . , a + (m − 1)b} yields a monochromatic

arithmetic progression.

Remark 2.36. The “only if” portion of Proposition 2.35 immediately

implies the result of Example 2.2.

Let’s look at how Proposition 2.35, along with van der Waerden’s

theorem, guarantees “many” monochromatic arithmetic progressions.

Consider w(3; 2) = 9. From Proposition 2.35, we see that each of

the intervals [1, 9], [10, 18], [19, 27], . . . contains a monochromatic 3-

term arithmetic progression under any 2-coloring of Z+. For arbi-

trary lengths and number of colors, the intervals [1, w(k; r)], [w(k; r)+

1, 2w(k; r)], [2w(k; r)+1, 3w(k; r)], . . . each contain a monochromatic

k-term arithmetic progression under any r-coloring of Z+. Hence,

when n is large, any r-coloring of [1, n] must contain many monochro-

matic k-term arithmetic progressions. So, the question is: how many

must it contain? To this end, we make the following definition.

Definition 2.37. Let k, r, n ∈ Z+. We define Jk(n; r) to be the

minimum number of monochromatic k-term arithmetic progressions

over all r-colorings of [1, n]. More formally, for any r-coloring χ of

the positive integers, let δk(χ, n) equal the number of monochromatic

k-term arithmetic progressions contained in [1, n] under χ. Then

Jk(n; r) = min ({δk(χ, n) : χ is an r-coloring of [1, n]}) .

The determination of Jk(n; r) is a difficult problem and not even

the simplest case, J3(n; 2), is known exactly. We can, however, offer

the following result, with reasonably close upper and lower bounds.

Theorem 2.38. We have

1675

32768
n2(1 + o(1)) ≤ J3(n; 2) ≤

117

2192
n2(1 + o(1)).
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Partial Proof. The proof of the lower bound is beyond the scope

of this book and we refer the reader to the Reference section in this

chapter. The upper bound comes from the 2-coloring of [1, n] – where

n is an integer multiple of 548 – given by

0
28
548n 1

6
548n 0

28
548n 1

37
548n 0

59
548n 1

116
548n 0

116
548n 1

59
548n 0

37
548n 1

28
548n 0

6
548n 1

28
548n.

If 548 � n, we use the coloring above for the first 548� n
548
 elements,

and color the few (at most 547) remaining elements arbitrarily. It is

routine (but quite tedious) to show that under this coloring there are
117
2192n

2(1 + o(1)) monochromatic 3-term arithmetic progressions. We

leave this evaluation to the reader as Exercise 2.16. �

2.7. Proof of van der Waerden’s Theorem

For completeness, we restate the finite version of van der Waerden’s

theorem.

Van der Waerden’s Theorem. Let k, r ≥ 2 be integers. There

exists a least positive integer w = w(k; r) such that every r-coloring

of [1, w] admits a monochromatic arithmetic progression of length k.

Before presenting the proof of van der Waerden’s theorem, we go

over some preliminaries.

Definition 2.39. Let r,m, n ≥ 1. Let γ be an r-coloring of [1, nm].

Define χγ,m to be the rm-coloring of [1, n] as follows: for j ∈ [1, n], let

χγ,m(j) be the m-tuple (γ(m(j−1)+1), γ(m(j−1)+2), . . . , γ(mj)).

We call χγ,m a coloring derived from γ, or a derived coloring.

Note that χγ,m of Definition 2.39 is, in fact, an rm-coloring

since there are rm possible m-tuples (γ(m(j − 1) + 1), γ(m(j − 1) +

2), . . . , γ(mj)), for 1 ≤ j ≤ n. Also note that the above definition

states that i, j ∈ [1, n] have the same color under χγ,m precisely when

[in+ 1, in+m] and [jn+ 1, jn+m] are colored in the same fashion

under γ (loosely speaking, these two intervals have the same color

pattern). Consider the following example.

Example 2.40. Take r = 2, m = 3, and n = 6 in Definition 2.39.

Define γ : [1, 18] → {0, 1} by the coloring: 011000111100001101. To

describe the 23-coloring χ3 of [1, 6] derived from γ, we make, for
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convenience, the following correspondence between the set of all 3-

tuples of two colors, T = {(i, j, k) : i, j, k ∈ {0, 1}} (there are 8 of

them), and the colors 0, 1, . . . , 7:

(0, 0, 0) ↔ 0; (1, 0, 0) ↔ 1; (0, 1, 0) ↔ 2; (0, 0, 1) ↔ 3;

(1, 1, 0) ↔ 4; (1, 0, 1) ↔ 5; (0, 1, 1) ↔ 6; (1, 1, 1) ↔ 7.

Since χγ,3(1) corresponds to (γ(1), γ(2), γ(3)) = (0, 1, 1), we see that

χγ,3(1) = 6. Similarly, χγ,3(2) corresponds to (0, 0, 0), so χγ,3(2) =

0. Continuing this, we find that the derived coloring under χγ,3 is

607135.

Definition 2.41. Two monochromatic �-term arithmetic progres-

sions a, a+d, a+2d, . . . , a+(�−1)d and b, b+c, b+2c, . . . , b+(�−1)c

are called end-focused if a + �d = b + �c, i.e., the next term in each

progression is identical, and – crucially – the progressions have differ-

ent colors. If more than two monochromatic arithmetic progressions

are end-focused, then they must all have distinct colors.

We are now ready to present the proof of van der Waerden’s

theorem.

Proof of van der Waerden’s Theorem. We prove this by induc-

tion on k. We find that w(2; r) = r + 1 follows from a simple ap-

plication of the pigeonhole principle. Now assume k ≥ 3 and that

w(k− 1; r) exists for all r ∈ Z+. We will prove that w(k; r) exists for

all r ∈ Z+ by proving the following claim.

Claim. For each s ≤ r, there exists an integer

n = n(s, k; r) such that in every r-coloring of [1, n]

one of the following occurs:

(i) there is a monochromatic k-term arithmetic

progression; or

(ii) there are s monochromatic arithmetic progres-

sions of length k − 1, all end-focused on the same

integer in [1, n]. (Note: by the definition of end-

focused, each of these progressions must have dis-

tinct colors.)
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We will prove the claim via induction on s and by allowing k and

r to be arbitrary. We easily have n(1, k; r) = w(k − 1; r), which at

this point we have assumed exists. Hence, we assume the existence of

N = n(s−1, k; r) and will prove the existence of n(s, k; r) by showing

that n(s, k; r) = 2Nw
(
k − 1; r2N

)
suffices. (Note that we are again

using the assumed existence of w(k − 1; r) for all r ∈ Z+.) So, let

M = 2Nw
(
k − 1; r2N

)
and let γ be an r-coloring of [1,M ].

Let us view [1,M ] as a union of w
(
k − 1; r2N

)
intervals of length

2N :
w(k−1;r2N)⋃

j=1

Ij

where Ij =
[
2(j − 1)N + 1, 2jN

]
.

Referring to Definition 2.39, we consider χ = χγ,2N , the derived

r2N -coloring of [1, w
(
k − 1; r2N

)
] based on γ. In this situation, we

have, for c ∈ [1, w
(
k − 1; r2N

)
], that

χ(c) =
(
γ(2(c− 1)N + 1), γ(2(c− 1)N + 2), . . . , γ(2cN)

)
(loosely speaking, χ(c) is the color pattern of the interval Ic).

By the definition of w
(
k − 1; r2N

)
there exists a monochromatic

(k − 1)-term arithmetic progression under χ. This means that for

some positive integers a and b, the intervals

(2.3) Ia, Ia+b, Ia+2b, . . . , Ia+(k−2)b

are colored identically.

Since each of these intervals has length 2N = 2n(s − 1, k; r), by

the inductive assumption that N exists, the smallest N elements of

each interval (the left-most half of each interval) satisfies either (i) or

(ii) of our claim. If (i) holds, then we are done. Hence, we assume

that (ii) of our claim holds for our inductive assumption.

Having used the derived coloring to prove the existence of the

intervals in (2.3), we are now back under our original coloring γ.

Consider [2(a− 1)N +1, (2a− 1)N ], i.e., the left-most half of the

interval Ia. In this interval we have s−1 monochromatic (k−1)-term

arithmetic progressions all end-focused on the same integer. Let this
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integer be e and note that e ∈ Ia since our monochromatic (k − 1)-

term arithmetic progression has common difference less than N and

last term with a value of at most (2a− 1)N .

Let

Pj = {aj , aj + dj , aj + 2dj , . . . , aj + (k − 2)dj}, 1 ≤ j ≤ s− 1,

be the s − 1 end-focused progressions. Then aj + (k − 1)dj = e for

all 1 ≤ j ≤ s− 1. Also note that γ(e) �∈ {γ(Pj) : 1 ≤ j ≤ s− 1} (for

then we would have a monochromatic k-term arithmetic progression)

and that |{γ(Pj) : 1 ≤ j ≤ s− 1}| = s− 1.

Since Ia, Ia+b, . . . , Ia+(k−2)b are identically colored, we find that

γ(i) = γ(i + 2Nb) = γ(i + 4Nb) = · · · = γ(i + 2(k − 1)Nb) for any

i ∈ Ia. Thus, for 1 ≤ j ≤ s− 1, each

{aj , aj + (dj + 2Nb), aj + 2(dj + 2Nb), . . . , aj + (k − 2)(dj + 2Nb)}

is a distinctly-colored monochromatic (k − 1)-term arithmetic pro-

gression end-focused on aj +(k− 1)(dj +2Nb) = e+2(k− 1)Nb. We

also know – because the intervals are identically colored – that

{e, e+ 2Nb, e+ 4Nb, . . . , e+ 2(k − 2)Nb}

is a monochromatic (k − 1)-term arithmetic progression of a color

different from the other end-focused ones (it must be a different color

by choice of e and Definition 2.41). Note that this progression is also

end-focused on e+ 2(k − 1)Nb. Hence, we have found s end-focused

monochromatic (k−1)-term arithmetic progression of distinct colors.

This proves the claim.

To finish the proof of the theorem, let s = r in the claim. We are

guaranteed a monochromatic k-term arithmetic progression because,

if part (ii) of our claim holds, we have monochromatic (k − 1)-term

arithmetic progressions of every color end-focused on the same inte-

ger. Regardless of the color of this integer, we can extend one of the

monochromatic (k − 1)-term arithmetic progressions to a monochro-

matic k-term one. �

Since we will be using it later, we present the following conse-

quence of van der Waerden’s theorem.
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Corollary 2.42. Let k, r be positive integers. Then there exists

a least positive integer ŵ = ŵ(k; r) such that for every r-coloring

of [1, ŵ] there exists a monochromatic k-term arithmetic progression

{a, a+ d, . . . , a+ (k − 1)d} such that d has the same color as the

arithmetic progression.

Proof. We use induction on the number of colors r, with r = 1 being

trivial for all k. Hence, we assume ŵ(k; r− 1) exists for all k and will

show that ŵ(k; r) exists for arbitrary k.

Let n = w((k − 1)ŵ(k; r − 1) + 1; r) and let χ be any r-coloring

of [1, n]. By van der Waerden theorem, χ admits a monochromatic

((k − 1)ŵ(k; r − 1) + 1)-term arithmetic progression:

{a, a+ d, a+ 2d, . . . , a+ (k − 1)ŵ(k; r − 1)d}.

Let its color be red. If any member of S = {d, 2d, 3d, . . . , ŵ(k; r− 1)}
is red, then the proof is complete. To see this, let jd be red. Then

{a, a + jd, a + 2jd, . . . , a + (k − 1)jd} is red along with its common

difference jd. Hence, we may assume that no member of S is red

so that d[1, ŵ(k; r − 1)] is (r − 1)-colored. By part (iv) of Theorem

2.5 and the induction hypothesis (that ŵ(k; r− 1) exists), the desired

result follows. �

2.8. Exercises

2.1 LetA(n) equal the number of k-term arithmetic progressions

in [1, n]. Show that A(n) = n2

2(k−1) +O(n) and that A(n) ≤
n2

2(k−2) .

2.2 Prove that w(2; r) = r + 1 for all r ≥ 1.

2.3 Show that the following 3-colorings yield no monochromatic

3-term arithmetic progression. Note that w(3; 3) = 27, so

that the following colorings are maximally valid:

a) 00110 01212 20200 10112 02212 1,

b) 21001 01221 12210 10012 20020 2.

2.4 Show that the numbers w(k1, k2, . . . , kr; r), i.e., the mixed

van der Waerden numbers, always exist.
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2.5 For each of the following van der Waerden-like functions,

explain why it is reasonable to say that “the function is not

worth studying.”

a) For positive integers k1 and k2, define f(k1, k2) to be the

least positive integer n with the property that, for every 2-

coloring of [1, n], there is a color i such that there is either

a k1-term arithmetic progression with color i or a k2-term

arithmetic progression with color i.

b) For positive integers k1 and k2, define g(k1, k2) to be the

least positive integer n such that for every 2-coloring (using

the colors red and blue) of [1, n], there is a k1-term arith-

metic progression with color red and a k2-term arithmetic

progression with color blue.

2.6 Prove that, for all k ≥ 2, we have w(k, 2; 2) = 2k − 1 if k is

even, and w(k, 2; 2) = 2k if k is odd.

2.7 Prove that, for all k ≥ 2, we have w(k, 2, 2; 3) = 3k if and

only if k ≡ ±1 (mod 6).

2.8 We can easily obtain a lower bound for w(k; 2) by using the

probabilistic method. Show that w(k; 2) > 2
k
2 for large k

via the following steps.

a) Randomly color the integers in [1, n] either red or blue.

Let A be an arbitrary arithmetic progression of length k

within [1, n]. Show that the probability that A is monochro-

matic is 2
2k

= 21−k.

b) Use Exercise 2.1 to deduce that the probability that a

monochromatic arithmetic progression exists is at most

n2

2(k−1)+O(n)∑
i=1

21−k =
n2

(k − 1)2k
(1 + o(1)).

c) Argue that if n2

(k−1)2k
(1 + o(1)) < 1, then w(k; 2) > n.

d) Conclude that n =
√
k − 1 · 2 k

2−1 satisfies the first in-

equality in (c) for k large enough.
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2.9 Prove that the map defined in the proof of Theorem 2.11 is

one-to-one.

2.10 Generalize Theorem 2.11 to an arbitrary number of colors.

2.11 Fill in the details of Theorem 2.20.

2.12 Let r = 2n. Show that for 3 ≤ n ≤ 12, the upper bound

given by Theorem 2.26 is better than Gowers’ bound (Re-

mark 2.25), but that for n ≥ 13, Gowers’ bound is better.

(A computer will be helpful for this exercise.)

2.13 Find ν3(7) and ν3(9).

2.14 Exhibit a 2-coloring of [1, 14] which shows that ν4(14) ≥ 7.

2.15 Prove Theorem 2.34.

2.16 Evaluate the number of monochromatic 3-term arithmetic

progressions in the coloring given after Theorem 2.38.

2.17 Prove Proposition 2.35 (hint: see Example 2.2).

2.18 Generalize your argument from Exercise 2.17 to prove the

following. Let F be a collection of sets and let a ≥ 0, b > 0

be integers. Assume the following: S ∈ F if and only if

a + bS ∈ F . Let r ∈ Z+. Then every r-coloring of [1, n]

yields a monochromatic member of F if and only if every

r-coloring of a+b[0, n−1] = {a, a+b, a+2b, . . . , a+(n−1)b}
yields a monochromatic member of F .

2.9. Research Problems

2.1 Write a more efficient algorithm for determining w(k; r).

References: [41], [384]

2.2∗ Find w(3; 5), w(4; 4), or w(7; 2), or improve the known

bounds.

References: [102], [199], [200], [240], [308], [384]

2.3 Determine the value of a new “mixed” van der Waerden

number w(k1, k2, . . . , kr; r) (where at least two of the ki’s

are greater than 2), or obtain a lower bound, by using a

computer program.

References: [11], [12], [18], [41], [83], [102], [238], [239],

[258]
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2.4 Find the rate of growth, or improve the known bounds, of

the mixed van der Waerden numbers w(k, k0), as a function

of k, for any fixed k0 ≥ 3. Try similar problems using more

than two colors, where all but one of the ki’s (1 ≤ i ≤ r)

are fixed.

References: [41], [83], [102], [258]

2.5 Investigate the set of maximal length valid colorings for vari-

ous van der Waerden (or mixed van der Waerden) numbers.

References: [11], [12], [13], [14],[41], [83], [102], [239],

[240], [258], [308], [384]

2.6 The first-named author has conjectured the following con-

cerning mixed van der Waerden numbers:

w(k, k) ≥ w(k + 1, k − 1)

≥ w(k + 2, k − 2)

≥ · · · ≥ w(2k − 2, 2)

for all k ≥ 3. Prove or disprove this. Try extending this

to mixed van der Waerden numbers where the number of

colors is greater than two.

References: [11], [12], [13], [14], [41], [83], [102], [227],

[239], [240], [258]

2.7 For k ≥ 3 and r ≥ 2, denote by w2(k; r) the mixed van der

Waerden number w(k, 2, 2, . . . , 2; r). Determine a formula

for w2(k; r) for k < r. More specifically, it has been shown

that for most values of k and r with k < r, the inequality

w2(k; r) ≤ r(k − 1) holds. In fact, if it can be shown that

this inequality holds for those k and r satisfying 3(k−1)
2 ≤

r ≤ 2k + 1, it would follow that it holds whenever k < r;

determine if this is the case.

References: [227] and [258]

2.8 Try to find a “nice” upper bound on w(3, 3, 2, 2, . . . , 2; r).

More generally, for k, � ∈ Z+, what can we say about the

magnitude of the mixed van der Waerden numbers

w(2, 2, . . . , 2, 3, 3, . . . , 3; k + �), where there are k 2’s and �

3’s?

References: [227] and [258]
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2.9 It has been shown that, for k an odd prime, νk+1(2k
2+1) ≥

2k2 − 3k − 3, with equality for k = 3, 5, 7. Determine when

equality holds for larger k.

Reference: [368]

2.10 Determine the asymptotic minimum number of 3-term arith-

metic progressions over all 2-colorings of [1, n]. It is con-

jectured that 117
2192n

2(1 + o(1)) is the correct answer. Try

the same problem for longer length progressions and/or a

greater number of colors.

References: [100], [301]

2.11 Define the “palindromic” van der Waerden numbers simi-

larly to the classical van der Waerden numbers but with the

restriction that only colorings of [1, n] that are symmetric

under reflection at the midpoint are considered, i.e., col-

orings χ for which χ(i) = χ(n + 1 − i) for 1 ≤ i ≤
⌊
n
2

⌋
.

Investigate these numbers.

Reference: [18]

2.12∗ Let A = {a1, a2, . . . } be a sequence of positive integers such

that
∑∞

i=1
1
ai

= ∞. Erdős conjectured that A must con-

tain arbitrarily long arithmetic progressions. It is known

that there exists a set of positive integers {x1 < x2 < · · · }
with no 3-term arithmetic progression such that

∑∞
i=1

1
xi

>

3.00849, which may help to explain why this problem is con-

sidered difficult. Prove or disprove Erdős’ conjecture.

References: [87], [107], [405]

2.13∗ Erdős conjectured (in 1961) that limk→∞
w(k;2)

2k
= ∞. Prove

or disprove this.

References: [53], [365], [386]

2.14∗ Improve on the known upper and lower bounds for w(k; r).

References: [5], [53], [130], [131], [141], [163], [167], [175],

[177], [198], [271], [286], [360], [365], [386]

2.15∗ Find the asymptotic value of w(3; r).

References: [5], [53], [130], [131], [141], [163], [167], [175],

[177], [198], [271], [286], [360], [365], [386]
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2.16∗ Improve on the known upper bound for w(4; r).

References: [5], [53], [130], [131], [141], [163], [167], [175],

[177], [198], [271], [286], [360], [365], [386]

2.17∗ Find an upper bound on νk(n) for general k and n.

References: [16], [331], [337], [387], [388]

2.10. References

§2.1. The statement and proof of the full version of the compactness

principle can be found in [175].

§2.2. Theorem 2.5 is taken primarily from [171, p. 1000], with state-

ment (iv) from [103] and statement (vi) originally from [84]. More

proofs of the equivalence of different forms of van der Waerden’s the-

orem are given in [303] and [307], the latter of which also contains

several corollaries of the theorem.

§2.3. The algorithms, and information about the computer time

needed to find some exact values, may be found in [41] and [384].

The references for the values (except w(3, 3; 2) = 9) given in Table

2.1 are as follows:

w(4,3; 2), w(4,4; 2), w(5,3; 2), w(5,4; 2), w(6,3; 2), w(7,3; 2),

and w(3, 3, 3; 3) are from [102];

w(5; 2) = 178 is from [384];

w(6, 4; 2), w(8, 3; 2), w(9, 3; 2), w(10, 3; 2), w(4, 3, 3; 3), and

w(3, 3, 3, 3; 4) are from [41];

w(6, 5; 2), w(6, 6; 2), w(8, 4; 2), w(13, 3; 2), w(14, 3; 2),

w(15, 3; 2), w(16, 3; 2), w(7, 4, 2; 3), and w(8, 3, 2; 3) are from

[238];

w(7, 4; 2) is from [40];

w(7, 5; 2) is from [14];

w(9, 4; 2) and w(6, 3, 3; 3) are from [13];
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w(11, 3; 2), w(12, 3; 2), w(4, 4, 3; 3), w(5, 3, 3; 3), w(6, 4, 2; 3),

w(7, 3, 2; 3), w(4, 3, 3, 2; 4), w(6, 3, 2, 2; 4), and w(7, 3, 2, 2; 4)

are from [258];

w(17, 3; 2) and w(18, 3; 2) are from [12];

w(19, 3; 2) is from [18];

w(3, 3, 2; 3), w(4, 3, 2; 3), w(4,4,2; 3), w(5, 3, 2; 3), w(5, 4, 2; 3),

w(6, 3, 2; 3), w(3, 3, 2, 2; 4), w(3, 3, 3, 2; 4), w(4, 3, 2, 2; 4),

w(4, 4, 2, 2; 4), and w(5, 3, 2, 2; 4) are from [83];

w(4, 4, 4; 3), w(6, 5, 2; 3), w(8, 4, 2; 3), w(14, 3, 2; 3) and

w(7, 4, 2, 2; 4) are from [239];

w(5, 5, 2; 3), w(9, 3, 2; 3), w(10, 3, 2; 3), w(11, 3, 2; 3),

w(12, 3, 2; 3), w(12, 3, 2; 3), w(13, 3, 2; 3), w(5, 3, 3, 2; 4),

w(5, 4, 2, 2; 4), w(6,4, 2, 2;4), w(8, 3, 2, 2;4), w(9, 3, 2, 2;4),

and w(10, 3, 2, 2;4) are from [11];

w(11, 3, 2, 2; 4) is from [366].

The mixed van der Waerden numbers such that all but one entry

equals 2 are investigated in [227] and [258]. Bounds on some mixed

van der Waerden numbers are in [368]. Bounds on numbers very

similar to the mixed van der Waerden numbers can be found in [193].

For more involved algorithms (e.g., pre- and post-processing, the

zipper method, the wildcards method, the cluster method, SAT

solvers, etc.) used to calculate larger van der Waerden numbers, see

[366] for a good overview of many algorithms and [12], [13], [118],

[200], [238], [239], [240], and [309] for details.

§2.4. Theorem 2.9 is from [53]. Theorem 2.10 is from [386]. Erdős

and Rado [131] showed, in 1952, that

w(k; r) > rk+1 − c
√
(k + 1) ln(k + 1).

A series of improvements (but not as strong as Theorem 2.10) were

subsequently made in [286], [360], and [5]. The bound

w(k; r) >
krk

e(k + 1)2
,
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which is sometimes better than that of Theorem 2.9, was proven by

Everts [141]. The proof of Theorem 2.11 is from [365]. Other results

concerning Property B are found in [4], [6], [7], [8], [9], [36], [72],

[121], [122], [123], [140], [143], and [214]. The function μ(k) (see

Definition 2.15) was defined by Erdős and Hajnal [129]. Schmidt’s

lemma is proven in [359], and later in [135], which also includes a

simpler proof of a weaker bound. Erdős [122] gives an upper bound

for μ(k). The proof of Theorem 2.21 can be easily derived from a

similar proof in [175]. Theorem 2.22 is from [367]; this improves upon

the bound in [130] which makes use of a valuable tool known as the

Lovász Local Lemma (for a clear proof of the Lovász Local Lemma,

see [378]). The lower bounds of Table 2.2 for w(4; 4), w(4; 5), and

w(7; 2) are from [308]; all others are from [199] using methods from

[200]. A more efficient procedure for the methods in [200] can be

found in [309], along with several lower bounds for “larger” van der

Waerden numbers. See [272] for lower bounds based on quadratic

residues. For a survey of lower bounds on w(k; 2) with respect to

constructive methods, see [163]. Theorem 2.23 is from [271]. The

given development of the tower, wow, and ack functions can be found

in [175]. Gowers’ results (Theorem 2.24 and Remark 2.25) can be

found in [167]. The upper bound in Theorem 2.26 is from [198],

while the lower bound can be found in [175]. An upper bound on

w(3; r) of 22
cr

is obtained in [177] by purely combinatorial means.

§2.5. The Erdős and Turán function is defined in [138]. A proof

of Roth’s 1952 result can be found in [331]. Szemerédi’s 1969 result

and proof can be found in [387]. A proof of the conjecture of Erdős

and Turán by Szemerédi is found in [388]. Furstenburg [157] gives

a proof of this result using ergodic theory. A shorter proof is given

in [391]. Bounds on ν3(n) are found in [42], [287], [329], and [337]

(the upper bound in Lemma 2.31 is from this last reference). Rankin

[318] obtains a lower bound on νk(n) for k > 3. Some relatively

early results on the Erdős and Turán function may be found in [334]

and [335]. In [368] there is computational data regarding νk(n).

Pomerance [302] and Riddell [321] consider analogues of Szemerédi’s

theorem in the set of lattice points in the plane (points having both

coordinates in Z).
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§2.6. This results from this section are from [301].

§2.7. For a brief history of van der Waerden’s theorem, see [97], which

contains many references. The original proof of van der Waerden’s

theorem, which was referred to as “Baudet’s conjecture” before it

became a theorem, as presented here is Leader’s retooling of van der

Waerden’s original proof [263]. This proof is markedly different –

and significantly easier – than the proof presented in the first edition

of this book. Van der Waerden’s proof can be found in [394], with

a recounting of its discovery in [395]. A topological proof can be

found in [161], while an algebraic proof can be found in [48]. Other

proofs can be found in [29], [112], [174],[175], [284], [304], [369],

and [389]. For proofs of Corollary 2.42 and additional information,

see [3], [78], [175], [314]. A related result of Graham, Spencer, and

Witsenhausen [179] determines how large a subset of [1, n] can be,

that fails to contain both a k-term arithmetic progression and its gap

d (the answer is a function of n and k).

§2.8. The colorings given in Exercise 2.3 can be found in [102].

Exercise 2.8 uses what is known as the probabilistic method, which

is the subject of a book by Erdős and Spencer [135].

Additional References: For biographies of Paul Erdős, see [211]

and [357]. An algorithm that gives partitions of Z+ into an infi-

nite number of subsets, none of which contain a 3-term arithmetic

progression, is discussed in [164]. Earlier related work is covered in

[165]. In [382], Spencer showed (among other things) that for each

k ≥ 1, there exists a set S of positive integers so that for every finite

coloring of S, there is a monochromatic k-term arithmetic progres-

sion, but such that S is “sparse” enough that it itself does not contain

any (k + 1)-term arithmetic progressions. An alternate proof, using

a direct construction, is given in [294]. A probabilistic threshold for

w(k; r) is given in [324], which builds off of work in [79] and [396].

                

                                                                                                               



                

                                                                                                               



Chapter 3

Supersets of AP

As we discussed in Chapter 1, we can define a function analogous to

the van der Waerden function w(k; r) by substituting for AP (the set

of arithmetic progressions) some other set of sequences. That is, if F
is some specific collection of sequences, denote by R(F , k; r) the least

positive integer m (if it exists) such that every r-coloring of [1,m]

yields a monochromatic k-term member of F .

Of course, there is no guarantee that R(F , k; r) exists, unless we

choose the collection F wisely. As a simple example, let r = 2 and let

F be the family of all sequences of positive integers that begin with

the pattern i, i + 1 for some i. In order for R(F , 2; 2) to exist, there

must exist a number n = R(F , 2; 2) such that for every 2-coloring of

[1, n], there is a monochromatic pair i, i + 1. This is not true since,

for example, the coloring of Z+ where all odd numbers are colored

blue and all even numbers are colored red does not yield such a pair.

Let us assume that F is some collection of sequences such that

R(F , k; 2) exists for all k. If G is a family of sequences such that F ⊆
G, then since we are assured of finding monochromatic k-term mem-

bers of F in [1, R(F , k; 2)], we are also assured of finding monochro-

matic k-term members of G in [1, R(F , k; 2)]. In fact, if F is a proper

subset of G, then it may happen that we do not have to go out as

far as the integer R(F , k; 2) in order to guarantee a monochromatic

k-term member of G. Summarizing, we have the following fact.

67
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Theorem 3.1. Let F be a collection of sequences and let k be a

positive integer such that R(F , k; 2) exists. If F ⊆ G, then R(G, k; 2)
exists and R(G, k; 2) ≤ R(F , k; 2).

Before proceeding, we remind the reader that we may denote

R(F , k; 2) more simply as R(F , k).

As we saw in Chapter 2, R(AP, k) exists for all k; these are just

the van der Waerden numbers w(k). We noted in Chapter 2 that the

determination of the rate of growth of w(k) is a very difficult problem.

Can we alter the problem somewhat so as to make a solution easier to

obtain? Theorem 3.1 suggests a method: replace AP with a different

(appropriately chosen) collection G such that AP ⊆ G.
If S ⊆ T , we call T a superset of S.

In this chapter we will look at several different choices of G such

that G is a superset of AP , and study the corresponding function

R(G, k). In some cases we will see that there are interesting rela-

tionships between R(G, k) and w(k). The supersets of AP that we

present here are by no means exhaustive, and we encourage the reader

to consider other choices of G.

3.1. Quasi-Progressions

An arithmetic progression {a, a+ d, a+2d, . . . } can be thought of as

an increasing sequence of positive integers such that the gap between

each adjacent pair of integers is the constant d. One way of general-

izing the notion of an arithmetic progression is to allow a little more

variance in this gap. For example, we can require only that the gaps

be either d or d + 1 for some positive integer d; or, that the gaps

belong to the set {d, d+1, d+2} for some d ∈ Z+. This prompts the

next definition.

Definition 3.2. Let k ≥ 2 and n ≥ 0. A k-term quasi-progression

of diameter n is a sequence of positive integers {x1, x2, . . . , xk} such

that there exists a positive integer d with the property that

d ≤ xi − xi−1 ≤ d+ n

for i = 2, 3, . . . , k.
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We call the integer d of Definition 3.2 a low-difference for the

quasi-progression X = {x1, x2, . . . , xk}; and, when helpful to the dis-

cussion, we will say that X is a (k, n, d)-progression.

Example 3.3. Let A be any arithmetic progression with gap d. Then

A is a quasi-progression of diameter 0. Note that A may also be

considered a quasi-progression with diameter 1 (since all gaps belong

to {d, d+ 1} for some d). Any 1-element or 2-element sequence may

be considered to have diameter 0.

Example 3.4. Let B = {1, 3, 5, 8}. We see that B is a 4-term

quasi-progression with diameter 1 and low-difference 2; hence it is

a (4, 1, 2)-progression. Note that B may also be considered a (4, 2, 2)-

progression since all of the differences xi − xi−1 belong to the set

{2, 3, 4}. Moreover, B is a (4, n, 2)-progression for all n ≥ 1. Finally,

note that B is a (4, 2, 1)-progression since all of the gaps belong to

{1, 2, 3} – in fact, it is a (4, n, 1)-progression for each n ≥ 2.

We see from Examples 3.3 and 3.4 that the diameter n and low-

difference d of a quasi-progression are not unique, but that the pos-

sible values for the low-difference depend on the choice of diameter.

In particular, any quasi-progression of diameter n ≥ 0 is also a quasi-

progression of diameter m for all m ≥ n. Obviously, for each n ≥ 0,

the set of quasi-progressions of diameter n is a superset of AP .

Although for a given sequence there are many choices for n and

d, it will ordinarily be most advantageous for us to use the minimum

value of n that works, and then to choose the minimum value for

d corresponding to this n. Hence, we usually think of progression

A of Example 3.3 as having low-difference d and diameter 0; and of

progression B of Example 3.4 as having low-difference 2 and diameter

1.

We next mention a convenient notation for the function analogous

to w(k), where we are concerned with quasi-progressions rather than

arithmetic progressions.

Notation. For positive integers n and k, denote by Qn(k) the least

positive integer m such that for every 2-coloring of [1,m] there is a

monochromatic k-term quasi-progression of diameter n.
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In the following theorem we list some rather obvious properties

of Qn(k). We state these without proof and ask the reader to verify

them.

Theorem 3.5. Let n ≥ 0 and k ≥ 2. The following hold:

(i) Qn(k) exists.

(ii) Q0(k) = w(k).

(iii) Q0(k) ≥ Q1(k) ≥ Q2(k) ≥ · · · .

Our goal is to find out as much as we can about the magnitude of

the function Qn(k). We would hope that, for n ≥ 1, a “reasonable”

upper bound for Qn(k) is more easily obtainable than has been the

case for the van der Waerden numbers. From Theorem 3.5(iii), we

see that the larger the value of n, the more likely that we will be able

to obtain a “not-so-big” upper bound on the function Qn(k).

We first look at the easiest case (where the diameter is at least

k − 1). In this case we are able to give the exact value of Qn(k).

We first give a lower bound for Qn(k) that holds for all n ≥ 1

and all k ≥ 2.

Theorem 3.6. Let k ≥ 2 and n ≥ 1. Then Qn(k) ≥ 2k − 1.

Proof. Consider the 2-coloring χ : [1, 2k − 2] → {0, 1} defined by

χ([1, k − 1]) = 1 and χ([k, 2k − 2]) = 0. This coloring admits no

monochromatic k-element set. In particular, it yields no monochro-

matic k-term quasi-progression of diameter n. Therefore, we have

Qn(k) ≥ 2k − 1. �

We next show that the lower bound given in Theorem 3.6 also

serves as an upper bound when n = k − 1.

Theorem 3.7. For all k ≥ 2, we have Qk−1(k) ≤ 2k − 1.

Proof. Let χ be an arbitrary 2-coloring of [1, 2k−1]. By the pigeon-

hole principle, there is some k-element set X = {x1 < x2 < · · · < xk}
that is monochromatic under χ. If for some j ∈ {2, 3, . . . , k}, we have
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xj − xj−1 > k, then

xk − x1 =

k∑
i=2

(xi − xi−1) > k + (k − 2) = 2k − 2,

which is not possible. Thus, X is a monochromatic (k, k − 1, 1)-

progression, since 1 ≤ xi − xi−1 ≤ k for 2 ≤ i ≤ k. This shows that

Qk−1(k) ≤ 2k − 1. �

Note that by Theorems 3.5(iii), 3.6, and 3.7 we have the following

corollary.

Corollary 3.8. For all k ≥ 2 and all n ≥ k − 1, Qn(k) = 2k − 1.

As we alluded to earlier, it would be most desirable to obtain

results in which the diameters are as small as possible. Although no

“nice” upper bound is known for the function Q1(k), we look next at

a lower bound for this function.

It is rather easy to obtain a quadratic lower bound on Q1(k) that

holds for all k.

Theorem 3.9. For k ≥ 2, we have Q1(k) ≥ 2(k − 1)2 + 1.

Proof. Define the 2-coloring χ of [1, 2(k − 1)2] by the string

00 . . . 0︸ ︷︷ ︸
k−1

11 . . . 1︸ ︷︷ ︸
k−1

00 . . . 0︸ ︷︷ ︸
k−1

11 . . . 1︸ ︷︷ ︸
k−1

. . . 00 . . . 0︸ ︷︷ ︸
k−1

11 . . . 1︸ ︷︷ ︸
k−1

,

where each of the (2k−2)-element blocks 00 . . . 0︸ ︷︷ ︸
k−1

11 . . . 1︸ ︷︷ ︸
k−1

appears k−1

times. To prove the theorem, it suffices to show that under this color-

ing there is no monochromatic k-term quasi-progression of diameter

1.

By way of contradiction, let m = 2(k − 1)2, and assume that

X = {x1, x2, . . . , xk} ⊆ [1,m] is a quasi-progression of diameter 1

that is monochromatic under χ. By the symmetry of χ, without

any loss of generality, we may assume that χ(X) = 1. Since each

monochromatic block of color 1 has k − 1 elements, there is some i,

2 ≤ i ≤ k, where xi and xi−1 belong to two different such blocks. For
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this i, we have xi − xi−1 ≥ k. Since X has diameter 1, this implies

that X has a low-difference of at least k−1. Thus, each of the blocks

of k − 1 consecutive 1’s contains no more than one member of X.

Hence, X must have length at most k − 1, a contradiction. �

The lower bound given by Theorem 3.9 is far from being the best

possible bound. The following result has been shown to hold, which

indicates that Q1(k) grows exponentially. Its proof, which we do not

include here, makes use of probabilistic arguments, along with some

ideas from linear algebra and graph theory.

Theorem 3.10. For k ≥ 3 we have Q1(k)≥ (1.08)k.

In the following theorem, we use a generalization of the coloring

used in the proof of Theorem 3.9 to obtain a lower bound for Qk−i(k)

in terms of i and k.

Theorem 3.11. Let 1 ≤ i < k and let m = 1 +
⌊
k−2
i

⌋
. Then

(3.1) Qk−i(k) ≥ 2

(⌊
k − 1

m

⌋
(k − 1− im) + i(k − 1)

)
+ 1.

Before presenting the proof, first notice that this is indeed a

generalization of Theorem 3.9, since if i = k − 1, we have m = 1,

and thus Theorem 3.11 gives Q1(k) ≥ 2((k − 1)(0) + (k − 1)2) + 1.

At the other extreme, if we take i = 1, then m = k − 1, so that

Qk−1(k) ≥ 2((k − 1− (k − 1)) + k − 1) + 1, giving us Theorem 3.6.

Proof of Theorem 3.11. Let s = 2
(
�k−1

m 
(k−1−im) + i(k − 1)
)
.

Define the 2-coloring χ of [1, s] by the string

1y(0k−11k−10k−11k−1 . . . 0k−11k−1)0y,

where within the parentheses the block 0k−11k−1 is repeated
⌊
k−1
m

⌋
times, and where y = i

(
k − 1−m

⌊
k−1
m

⌋)
. Note that this is, in fact,

a string of length s. To establish (3.1) it is sufficient to show that,

under χ, [1, s] contains no monochromatic k-term quasi-progression

of diameter k − i. We proceed by contradiction.
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Assume that X = {x1, x2, . . . , xk} ⊆ [1, s] is a quasi-progression

of diameter k−i that is monochromatic under χ. By the symmetry of

χ, we may assume that χ(X) = 1. Note that since m
⌊
k−1
m

⌋
≥ k −m

(why?) we have

y = i
(
k − 1−m

⌊
k−1
m

⌋)
≤ i(k − 1− (k −m))

= i
⌊
k−2
i

⌋
≤ k − 2.

Hence, there is no block of more than k−1 consecutive 1’s. Thus, for

some j ∈ {2, 3, . . . , k}, we have xj − xj−1 ≥ k, which implies that X

cannot have a low-difference that is less than i.

Since the low-difference of X is at least i, the first block of 1’s

(having length y) contains at most y
i = k − 1 − m

⌊
k−1
m

⌋
members

of X. Similarly, in any block of k − 1 consecutive 1’s, there are at

most 1 +
⌊
k−2
i

⌋
= m members of X. There are

⌊
k−1
m

⌋
blocks of k− 1

consecutive 1’s, so that, accounting for all blocks of 1’s, we see that

X has at most

k − 1−m

⌊
k − 1

m

⌋
+m

⌊
k − 1

m

⌋
= k − 1

elements, a contradiction. �

Computing some actual values of Ramsey-type functions can be

quite helpful in forming conjectures about the magnitude (or rate of

growth) of the functions. As we saw in Chapter 2, for the classical

van der Waerden numbers w(k; r), the computations can be quite

prohibitive. In dealing with supersets of AP, however, we often find

the computations much more reasonable. In fact, in some circum-

stances we have enough computed data to help us form “educated”

conjectures concerning the magnitude of the associated Ramsey-type

function. Such is the situation with Qk−i(k), as computer-generated

values of Qk−i(k) suggest that, with certain restrictions placed on the

size of i in relation to k, we may be able to give an exact formula for
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Qk−i(k). Theorem 3.12, stated below, gives such formulas. The proof

is somewhat involved, and we have decided not to present it here.

Theorem 3.12. Let i ≥ 2 and k ≥ 2i. The following hold:

(i) If k ≡ 0 (mod i)or k ≡ 2 (mod i), then Qk−i(k) = 2ik−4i+3.

(ii) If k ≡ 1 (mod i), then Qk−i(k) = 2ik − 2i+ 1.

That the formulas given in parts (i) and (ii) of Theorem 3.12

serve as lower bounds for Qk−i(k) is easily obtained from Theorem

3.11, as the following proposition shows.

Proposition 3.13. Let 1 ≤ i ≤ k − 1. The following hold:

(i) If k ≡ 0 (mod i), then Qk−i(k) ≥ 2ik − 4i+ 3.

(ii) If k ≡ 1 (mod i), then Qk−i(k) ≥ 2ik − 2i+ 1.

Proof. We will prove (ii), and leave the proof of (i) to the reader as

Exercise 3.2. Letting k = ti+ 1, then using the notation of Theorem

3.11, we have m = 1 + � ti−1
i 
 = t, and �k−1

m 
 = i. Therefore, (3.1)

becomes Qk−i(k) ≥ 2(i(k− 1− it)+ i(k− 1))+ 1 = 2i(k− 1)+ 1. �

We see that Proposition 3.13(ii) implies Theorem 3.9, simply by

letting i = k − 1. Also notice that by letting i = 1 in Proposition

3.13(i), we obtain Qk−1(k) ≥ 2k − 1, as given by Theorem 3.6.

The following theorem is an immediate consequence of parts (i)

and (ii) of Theorem 3.12. We offer a proof, without the use of Theo-

rem 3.12, to illustrate the derivation of upper bounds for Qk−i(k).

Theorem 3.14. Let k ≥ 2. Then

Qk−2(k) =

{
4k − 5 if k is even,

4k − 3 if k is odd.

Proof. Letting i = 2 in Proposition 3.13, we obtain Qk−2(k) ≥ 4k−5

when k is even, and Qk−2(k) ≥ 4k− 3 when k is odd. Hence we need

only establish these as upper bounds for Qk−2(k).
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To obtain the upper bounds, let χ : Z+ → {0, 1} be any 2-

coloring. We will show that if k is even then there is a monochromatic

k-term quasi-progression with diameter k − 2 in [1, 4k − 5], and that

if k is odd then there exists such a progression in [1, 4k − 3].

First note that the upper bound obviously works for k = 2, since

Q0(2) = w(2) = 3. So we may assume that k ≥ 3. Notice that

from the proof of Theorem 3.7, [1, 2k − 3] contains a monochromatic

(k − 1, k − 2, 1)-progression {x1 < x2 < · · · < xk−1}, say of color

1. Now if xk−1 + j has color 1 for some j ∈ {1, 2, . . . , k − 1}, then
[1, 4k − 5] will contain the monochromatic k-term quasi-progression

{x1, x2, . . . , xk−1}∪{xk−1+ j}, having diameter k−2, so in this case

we are done. Thus, we may assume that [xk−1 + 1, xk−1 + k − 1] has

color 0.

If there is some integer b with color 0 that satisfies xk−1−(k−2) ≤
b < xk−1, then {b} ∪ [xk−1 + 1, xk−1 + k− 1] forms a monochromatic

(k, k − 2, 1)-progression, and we are done. Hence, we may further

assume that χ([xk−1 − (k − 2), xk−1 − 1]) = 1. For ease of notation,

we let a = xk−1 − (k − 2), so that χ([a, a+ k − 2]) = 1.

Note that a ≤ k− 1, since xk−1 ≤ 2k− 3. Hence we may assume

that χ(x) = 0 for all x < a, for otherwise for some x0 < a the set

{x0}∪[a, a+k−2] would be a monochromatic k-term quasi-progression

with diameter k−2 (having color 1), and we would be done. Likewise,

we assume that all of [a+ k − 1, a+ 2k − 3] has color 0 (why?), and

hence that all of [a+ 2k − 2, a+ 3k − 4] has color 1. Finally, we may

assume that [a+ 3k − 3, 4k − 3] has color 0.

To complete the proof, we consider three cases. In each case we

find a monochromatic quasi-progression with the desired properties.

Case 1. k is even. In this case, the set

{
a+ 2i : 0 ≤ i ≤ k − 2

2

}⋃{
a+ 2i : k − 1 ≤ i ≤ 3k − 4

2

}

is monochromatic of color 1, has length k, and (since a ≤ k − 1) is

contained in [1, 4k − 5]. It obviously is a quasi-progression having

diameter k − 2 and low-difference 2.
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Case 2. k is odd and a = 1. If χ(4k − 3) = 0, then the interval

[3k − 2, 4k − 3] is a monochromatic k-term quasi-progression with

diameter k−2. If, on the other hand, χ(4k−3) = 1, then the sequence

{1, 4, 6, 8, . . . , k − 1, 2k − 1, 2k + 2, 2k + 4, 2k + 6, . . . , 3k − 3, 4k − 3}
is a k-term quasi-progression with color 1, having diameter k − 2.

Case 3. k is odd and 2 ≤ a ≤ k − 1. Let

A1={a− 1− 2i : 0 ≤ i ≤ �a
2 
 − 1},

A2={a+k−1} ∪ {a+ k + 2, a+ k + 4, . . . , a+ 2k − 5, a+ 2k − 3},
A3={a+ 3k − 3 + 2i : 0 ≤ i ≤ �k−a

2 
}.
ThenA1∪A2∪A3 is contained in [1, 4k−3] and forms a monochromatic

(of color 0) k-term quasi-progression of diameter k− 2. We leave the

details as Exercise 3.3. �

Theorem 3.12 gives a formula for Qk−i(k) whenever k ≥ 2i and

k is congruent to 0, 1, or 2 modulo i. While we do not have a precise

formula for the more general situation of k ≡ r (mod i) and k ≥ 2i,

the following result tells us that a quadratic expression similar to

those of Theorem 3.12 does serve as an upper bound for Qk−i(k) in

these cases. We omit the proof.

Theorem 3.15. Let i ≥ 2 and k ≥ 2i. If k ≡ r (mod i), where

3 ≤ r < i, then Qk−i(k) ≤ 2ik − 4i+ 2r − 1.

We note that Theorems 3.12 and 3.15 show that Qn(k) does not

grow faster than a quadratic polynomial in k if n ≥ k
2 . By Theorem

3.10, we see that Q1(k) grows exponentially. It would be interesting to

know how small n can be in relation to k so thatQn(k) has polynomial

growth.

The following table gives computer-generated values and upper

bounds for Qk−i(k). The table does not include i = 1 or i = 2, since

we have formulas for Qk−i(k) in these cases. The values in the table

that are provided by Theorem 3.12 are marked with *. For entries

in the table that appear as lower bounds on Qk−i(k) and such that

k and i satisfy the the hypotheses of Theorem 3.15, we can narrow

the possible values of the function Q; for example, making use of the

theorem and the entries in the table we have that 108 ≤ Q8(13) ≤ 115

and 119 ≤ Q9(14) ≤ 127.
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k \ i 3 4 5 6 7 8

4 19 - - - - -

5 29 33 - - - -

6 27∗ 49 67 - - -

7 37∗ 65 73 ≥ 124 - -

8 39∗ 51∗ 93 ? ≥ 190 -

9 45∗ 65∗ ≥ 115 ? ? ≥ 287

10 55∗ 67∗ 83∗ ? ? ?

11 57∗ 75 101∗ ? ? ?

12 63∗ 83∗ 103∗ ? ? ?

13 73∗ 97∗ ≥ 108 ? ? ?

14 75∗ 99∗ ≥ 119 ? ? ?

Table 3.1. Values and lower bounds for Qk−i(k)

3.2. Generalized Quasi-Progressions

We now direct our attention to a type of sequence that generalizes

the notion of a quasi-progression. The idea of this generalization is

that we allow the “diameter” to vary with the terms of the sequence.

Specifically, we give the following definition.

Definition 3.16. Let δ : {2, 3, . . . } → [0,∞) be a function. A k-term

generalized quasi-progression with diameter function δ (or a GQδ-

progression ) is a sequence {x1, x2, . . . , xk} such that, for some positive

integer d, we have d ≤ xi − xi−1 ≤ d+ δ(i) for all i = 2, 3, . . . , k.

We see that generalized quasi-progressions have “diameters” that

may vary, and that a quasi-progression of diameter n may be consid-

ered a generalized quasi-progression, where δ is the constant function

n. As we did with quasi-progressions, we will refer to d as the low-

difference of the progression.

Analogous to the notation Qn(k), we use the following nota-

tion for the Ramsey-type function associated with generalized quasi-

progressions.
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Notation. Let δ : {2, 3, . . . } → [0,∞) be a function and k a positive

integer. Denote by GQδ(k) the least positive integer such that for

every 2-coloring of [1, GQδ(k)] there is a monochromatic k-term GQδ-

progression.

Example 3.17. Let δ be the function defined as the constant func-

tion δ(x) = 1 for all x. Then in this case GQδ(k) has the same

meaning as Q1(k). Likewise, if δ is the zero function, then GQδ(k) is

simply the van der Waerden function w(k). Moreover, for any con-

stant function δ(x) = c with c ≥ 0, the function GQδ(k) coincides

with Qc(k).

When δ = δ(x) is a specified function of x, it is often convenient

to use the notation GQδ(x). For example if δ(x) = x2, then we may

refer to a GQδ-progression as a GQx2-progression and denote the

associated Ramsey-type function by GQx2(k).

Example 3.18. Let δ be the function δ(x) = x−1 for all x ≥ 2. Then

{x1, x2, . . . , xk} is a GQx−1-progression provided there is a positive

integer d such that xi−xi−1 ∈ [d, d+i−1] for all i ∈ {2, 3, . . . , k}. For
example, {1, 3, 6, 7, 10, 16} is a GQx−1-progression where d = 1, and

{4, 6, 8, 10, 16} is a GQx−1-progression where d = 2. Thus, unlike

a quasi-progression, where the gaps between consecutive members

of the progression (even an infinite progression) must belong to an

interval [d, d+n] of fixed length (since n is fixed), the set of allowable

gaps in a GQx−1-progression can grow as the terms of the sequence

increase (so that if the progression is infinite, there is no upper bound

on the entire set of possible gaps).

It is clear that the smaller the values of the function δ are, the

closer to the van der Waerden numbers the values of GQδ(k) are.

Moreover, it is easy to see that δ1(x) ≤ δ2(x), for all x, implies

GQδ1(k) ≥ GQδ2(k). For some functions δ, it is not difficult to obtain

upper bounds for GQδ(k). Finding an upper bound for GQx−1(k),

the function discussed in Example 3.18, is left as Exercise 3.4. In

the next theorem, we give an upper bound on GQx−2(k). Our proof

makes use of some known values of GQx−2(k) (these and other values

of GQg(x)(k) are given in Table 3.2 at the end of this section).
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Theorem 3.19. If k ≥ 2 and mk = 1+ 2(k− 1)2 + 2
∑k−1

j=4 j(j − 1),

then every 2-coloring of [1,mk] has a monochromatic k-term GQx−2-

progression with low-difference d ≤ 2(k− 1). In particular, for k ≥ 5,

GQx−2(k) ≤ 2
3k

3 − 8
3k − 13.

Proof. The second claim of the theorem follows from the first via a

straightforward computation, which we leave as Exercise 3.5.

To prove the first claim, we note that the following values are

known: GQx−2(2) = 3, GQx−2(3) = 9, and GQx−2(4) = 19. It is

obvious from these values that for k = 2, 3, 4 it is also true that any

k-term GQx−2-progression has a low-difference not exceeding 2(k−1).

Hence the theorem is true for k = 2, 3, 4.

We shall complete the proof by induction on k. To this end,

assume that k ≥ 4 is an integer for which the statement is true, and

let χ : [1,mk+1] → {0, 1} be any 2-coloring. Therefore, there exists a

monochromatic GQx−2-progression X = {x1 < x2 < · · · < xk} with

low-difference d ≤ 2(k − 1) and xk ≤ mk. Without loss of generality,

let χ(X) = 1.

For 0 ≤ t ≤ 2k− 1, let At = [xk + d+ kt, xk + d+ kt+ k− 1], and

let A2k = {xk + d+ 2k2}. Notice that

xk + d+ 2k2 ≤ 1 + 2(k − 1)2 + 2

k−1∑
j=4

j(j − 1) + 2(k − 1) + 2k2

= 1 + 2k2 + 2

k∑
j=4

j(j − 1)

= mk+1.

Hence, At ⊆ [1,mk+1] for 0 ≤ t ≤ 2k. Now consider the interval

A0 = [xk+d, x+d+k−1]. If any y ∈ A0 has color 1, thenX∪{y} forms

a monochromatic GQx−2-progression of low-difference d, and we are

done (the difference between xk and y does not exceed d+(k+1)−2).

Hence, we may assume that all members of A0 have color 0. From

this we may assume that all members of A1 = [xk + d + k, xk + d +

2k − 1] have color 1; otherwise, for some z ∈ A1, the set A0 ∪ {z} is

a monochromatic (k + 1)-term sequence where the gap between the

largest two terms lies in the interval [1, k], thus forming a GQx−2-

progression with low-difference 1. Using this same argument, we may
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assume that all of A2 has color 0. Continuing in this way, we are left

with the situation in which all members of At have color 1 for t odd,

and color 0 for t even. However, this gives us the monochromatic (of

color 0) set {xk+d+2tk : 0 ≤ t ≤ k}, which is a (k+1)-term GQx−2-

progression (actually an arithmetic progression) with low-difference

2k, which completes the proof. �

Theorem 3.19 gives a cubic polynomial in the variable k as an up-

per bound for GQx−2(k). In Exercise 3.4, you are asked to establish

a quadratic upper bound for GQx−1(k). We might conjecture (al-

though these two results offer quite limited evidence) that for large

enough k, GQx−m(k) is bounded above by a polynomial of degree

m + 1. Noting that GQx−k(k) has the same meaning as w(k), the

truth of a conjecture of this type could have exciting ramifications for

the van der Waerden numbers themselves.

There are other ways in which we could allow the “diameters”

to grow. As one example, we could insist that the first few terms of

the progression (say the first three terms) form an arithmetic pro-

gression, and then allow the diameters to increase as the terms of the

progression increase. Such variations on topics covered in this book

can be the seeds of interesting and meaningful research projects (and,

we hope, research projects that inspire further exploration by others).

We end this section with a table of known values of GQf(x)(k)

for some linear functions f(x). Notice that the classical 2-color van

der Waerden numbers, w(3), w(4), and w(5), indicated in boldface,

lie along a diagonal in the table.

f(x) \ k 3 4 5 6 7 8 9 10

x− 1 6 10 14 20 27 34 44 52

x− 2 9 19 33 52 74 100 ? ?

x− 3 9 22 38 60 ? ? ? ?

x− 4 9 35 59 ≥ 88 ? ? ? ?

x− 5 9 35 178 ? ? ? ? ?

Table 3.2. Values and lower bounds for GQf(x)(k)

                

                                                                                                               



3.3. Descending Waves 81

3.3. Descending Waves

In this section we consider another type of sequence that generalizes

the notion of an arithmetic progression, called a descending wave. We

begin with the definition.

Definition 3.20. For k ≥ 3, an increasing sequence of positive inte-

gers {x1, x2, . . . , xk} is a descending wave if xi − xi−1 ≤ xi−1 − xi−2

for i = 3, 4, . . . , k.

As examples, the sequence {1, 4, 6, 8, 9} is a 5-term descending

wave, while {1, 5, 10} fails to be a descending wave. We will denote

by DW (k) the least positive integer such that for every 2-coloring

of [1, DW (k)] there is a monochromatic k-term descending wave. It

is obvious that every arithmetic progression is a descending wave,

and therefore, by van der Waerden’s theorem, DW (k) exists for all

k. There does not appear to be any obvious implication between

the property of being a descending wave and that of being a quasi-

progression. Clearly, not every quasi-progression of diameter n ≥ 1 is

a descending wave; and conversely, for any given n ≥ 1, it is easy to

find a descending wave of length k ≥ 3 that is not a quasi-progression

of diameter n. For example, if n = 2, then {1, 8, 12} is a descending

wave, but is not a quasi-progression of diameter 2. Although here

we will confine the discussion of descending waves to the existence

and magnitude of the function DW (k), we mention that it is known

that any infinite set of positive integers that contains arbitrarily long

quasi-progressions of diameter d, for some fixed d, must also contain

arbitrarily long descending waves.

We are able to give both upper and lower bounds for DW (k). We

see from the bounds given by Theorems 3.21 and 3.24 (below) that

DW (k) grows like a cubic polynomial.

We start with a simple upper bound.

Theorem 3.21. Let k ≥ 3. Then DW (k) ≤ k3

2 − k2

2 + 1.

Proof. Let n = k3

2 − k2

2 + 1. We will show that for any 2-coloring

χ : [1, n] → {0, 1} there is a monochromatic k-term descending wave.

Assume, without loss of generality, that χ(1) = 0. If there exist k
                

                                                                                                               



82 3. Supersets of AP

consecutive integers of color 1, we are done. So, assume that no k

consecutive integers of color 1 exist under χ. Let x0 = n + 1 and

x1 = n and define, for i ≥ 1,

xi+1 = max {y : xi − y ≥ xi − xi−1, χ(y) = 0} .

We leave it to the reader, in Exercise 3.8, to show that xk, xk−1, . . . , x1

is a monochromatic k-term descending wave contained in [1, n]. �

The best known upper bound is slightly better than that provided

by Theorem 3.21. We state this result, without proof, as Theorem

3.22.

Theorem 3.22. For all k ≥ 3, we have DW (k) ≤ 1
3k

3 − 4
3k + 3.

Turning to lower bounds, we have the following result.

Theorem 3.23. Let k ≥ 3. Then DW (k) ≥ k2 − k + 1.

Proof. Let k ≥ 3 and let χ be the 2-coloring of [1, k2 − k] defined by

the string

00 . . . 0︸ ︷︷ ︸
k−1

11 . . . 1︸ ︷︷ ︸
k−1

00 . . . 0︸ ︷︷ ︸
k−2

11 . . . 1︸ ︷︷ ︸
k−2

. . . 00︸︷︷︸
2

11︸︷︷︸
2

0︸︷︷︸
1

1︸︷︷︸
1

.

We will show that there is no k-term descending wave with color 0.

The proof that there is also none with color 1 is similar and is left as

Exercise 3.10. Assume, for a contradiction, that

X = {x1 < x2 < · · · < xk}

is a descending wave with color 0.

Notice that χ includes exactly k−1 different blocks of consecutive

0’s – call these blocks B1, B2, . . . , Bk−1, where |Bi| = k − i. By the

pigeonhole principle, some block contains more than one member of

X. Let t be the least integer such that |Bt ∩X| ≥ 2. Let

X ′ = X ∩ (B1 ∪B2 ∪ · · · ∪Bt).

Since for i < t, the block Bi contains at most one member of X, we

have

|X ′| ≤ (t− 1) + k − t = k − 1.
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Hence, X ′ = {x1 < x2 < · · · < xr} with xr−1, xr ∈ Bt and r ≤ k − 1.

Therefore,

xr+1 − xr ≥ k − t+ 1 > xr − xr−1,

contradicting our assumption that X is a descending wave. �

We now state, without proof, the best known lower bound, which

shows, in part, that the asymptotic rate of growth of DW (k) is that

of a cubic polynomial.

Theorem 3.24. For all k ≥ 3, there exists a positive constant c such

that DW (k) ≥ ck3.

3.4. Semi-Progressions

Recall that a quasi-progression of diameter n is a sequence {xi}ki=1

such that, for some d ∈ Z+, we have xi − xi−1 ∈ [d, d + n] for all

i ∈ {2, 3, . . . , k}. We might think of this as a “loosening” of the

property of being an arithmetic progression, by allowing the gaps

between consecutive terms “some slack.” Another way to generalize

the notion of an arithmetic progression is to allow the gaps to vary

by multiples of some d, rather than by additions to d. With this idea

in mind, we give the following definition.

Definition 3.25. For k,m ∈ Z+, a k-term semi-progression of scope

m is a sequence of positive integers {x1, x2, . . . , xk} such that, for

some d ∈ Z+, xi − xi−1 ∈ {d, 2d, . . . ,md} for all i, 2 ≤ i ≤ k.

We shall use the notation SPm(k) for the corresponding Ramsey-

type function. That is, we denote by SPm(k) the least positive integer

such that for every 2-coloring of [1, SPm(k)] there is a monochromatic

k-term semi-progression of scopem. Since for each positive integerm,

any arithmetic progression is also a semi-progression of scope m, the

collection of semi-progressions of scope m is a superset of AP . Hence,

SPm(k) exists for all m and k. In fact, the following observation is

an immediate consequence of the definition of a semi-progression.

Proposition 3.26. For all k ≥ 1,

w(k) = SP1(k) ≥ SP2(k) ≥ · · · .
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One of the motivations for studying the Ramsey properties of

supersets of AP is the potential for gaining more information about

w(k). In this regard, the functions SPm(k) may be a more relevant

extension of the the van der Waerden numbers than the functions

Qm(k). Our reason for saying this has to do with the following defi-

nition.

Definition 3.27. Form, k ∈ Z+, define Γm(k) to be the least positive

integer s such that for every s-element set S = {x1, x2, . . . , xs} with

xi − xi−1 ∈ {1, 2, . . . ,m} for all i ∈ {2, 3, . . . , s}, there is a k-term

arithmetic progression in S.

To illustrate this definition, we look at some examples.

Example 3.28. Let us find Γ2(3). We want the least s such that

whenever X = {x1, x2, . . . , xs} is a sequence with xi − xi−1 ∈ {1, 2}
for each i, then X will contain a 3-term arithmetic progression. Does

s = 3 work? No – the set {1, 2, 4} is a 3-term sequence with the

property that the gaps between consecutive terms belong to {1, 2},
yet there is no 3-term arithmetic progression. Does s = 4 work? No

– consider {1, 2, 4, 5}, whose gaps all lie in {1, 2}, but which also fails

to have a 3-term arithmetic progression. As it turns out, Γ2(3) = 5.

To prove this, by a simple translation, it is sufficient to consider all

5-term increasing sequences whose first element is 1, and where each

of the four gaps is either 1 or 2. There are then only 24 = 16 possible

sequences to check. We leave it to the reader to check that each of

these sixteen sequences contains some 3-term arithmetic progression.

Example 3.29. Consider Γ1(k). Here we want to look at sets of

consecutive integers and ask for the size of such sets that would guar-

antee a k-term arithmetic progression. It is easy to see that we have

Γ1(k) = k, since any set of consecutive integers is itself an arithmetic

progression.

The above examples prompt an obvious question: does Γm(k)

always exist? This question is answered, in the affirmative, by the

following proposition.

Proposition 3.30. For all k, r ∈ Z+, we have Γr(k) ≤ w(k; r).
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Proof. Let w = w(k; r) and let X = {xi : 1 ≤ i ≤ w} be a sequence

of positive integers with 1 ≤ xi − xi−1 ≤ r for i = 2, 3, . . . , w. We

wish to show that X contains a k-term arithmetic progression. As

noted in Example 3.28, we may assume x1 = 1.

Consider the coloring χ : [1, w] → {1, 2, . . . , r} defined by

χ(y) = j if and only if j = min{xi − y : xi ≥ y, xi ∈ X}.

To see that χ is an r-coloring, note that no consecutive elements of X

differ by more than r. Hence, since χ is an r-coloring of [1, w], by the

definition of w(k; r) there is a monochromatic arithmetic progression

A = {a+ nd : 0 ≤ n ≤ k − 1}.
Say the color of A is j0. This tells us that for each a + nd ∈ A,

0 ≤ n ≤ k − 1, there is some xin ∈ X such that xin − (a+ nd) = j0.

That is, {xin : 0 ≤ n ≤ k − 1} = {(j0 + a) + nd : 0 ≤ n ≤ k − 1}, so
that X contains a k-term arithmetic progression, as desired. �

Now that we have established the existence of Γm(k), we are able

to explain the significance of the function SPm(k) as it relates to the

search for an upper bound on w(k). The explanation is simply this:

Proposition 3.31. For all k,m ≥ 0, we have w(k) ≤ SPm (Γm(k)) .

This inequality holds because any 2-coloring of [1, SPm (Γm(k))]

must contain a monochromatic semi-progression of scope m having

Γm(k) terms. By the definition of Γm, among these Γm(k) terms

there must be a k-term arithmetic progression.

We next present some results concerning the magnitude of the

function SPm(k). We begin with a simple formula for SPm(k) when

k ≤ m (we leave the proof as Exercise 3.11).

Theorem 3.32. If k ≤ m, then SPm(k) = 2k − 1.

As made evident by Proposition 3.26, the lower the value of m,

the more significant (and probably the more difficult to obtain) any

upper bounds on SPm(k) will be. In the following theorem we give a

nice upper bound for SPm(k), but only provided m is more than half

the value of k.
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Theorem 3.33. Let m ≥ 2. Assume m < k < 2m. Let c =
⌈

m
2m−k

⌉
.

Then SPm(k) ≤ 2c(k − 1) + 1.

Proof. Let � = 2c(k − 1) + 1 and let χ : [1, �] → {0, 1} be any 2-

coloring. We will show that χ admits a monochromatic k-term semi-

progression of scope m. Clearly, among the 2(k − 1) + 1 elements of

[1, �] that are congruent to 1 modulo c, there is a set A with |A| ≥ k

such that A is monochromatic. Assume χ(A) = 1, and let X = {x1 <

x2 < · · · < xk} consist of the k smallest members of A.

Let di = xi − xi−1 for all i ∈ {2, 3, . . . , k}. If di ≤ cm for each

i, then since, by the definition of A, we have di ∈ {c, 2c, . . . ,mc}
for each i, X is the desired semi-progression of scope m. Thus, we

may assume that there exists j ∈ {2, 3, . . . , k} such that dj = cs with

s ≥ m+ 1.

Now let S = {xj−1 + ci : 1 ≤ i ≤ s − 1}. Then χ(S) = 0 and

|S| ≥ m. We consider two cases.

Case 1. c ≥ 3. Notice that if xj−1 ≤ m− c and xj ≥ �− (m− c)+1,

then since xk − x1 ≤ �− 1, this would imply that

k∑
i=2
i�=j

di ≤ (�− 1)− (�− 2m+ 2c+ 1) = 2m− 2c− 2,

which would contradict the fact that
∑

i 
=j di ≥ c(k − 2) (since c ≥ 2

and m < k). Hence, either xj−1 > m − c or xj < � − (m − c) + 1.

We shall cover the case in which xj−1 > m − c; the case in which

xj < �− (m− c) + 1 may be done by a symmetric argument.

So, assume that xj−1 > m− c and let

B = {b �≡ 1(mod c) : xj−1 −m+ c ≤ b < xj}.

For every b ∈ B, there is some t ∈ S so that |t−b| ≤ max({c,m}) = m.

Hence, if there is a set B0 ⊆ B such that |B0| = k−m and χ(B0) = 0,

then S ∪ B0 is a monochromatic semi-progression of scope m with

length at least k, and we are done (it is a semi-progression of scope m

since the gaps between adjacent members all belong to {1, 2, . . . ,m}).
Thus, we may assume that at most k − m − 1 members of B have

color 0. Let Y = {y1 < y2 < · · · < yn} be those members of B having

color 1. To finish the proof of Case 1, we will show that Y provides us
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with the monochromatic semi-progression we are seeking by showing

that the following two statements are true:

(3.2) yi − yi−1 ≤ m for 2 ≤ i ≤ n

and

(3.3) n ≥ k.

For convenience, let r = k − m. To prove (3.2), first list the

elements of B in increasing order: b1 < b2 < · · · . Notice that for any

two elements, bh and bh+g (with g > 0), of B,

bh+g − bh ≤ g +

⌈
g

c− 1

⌉
.

Hence, because |B − Y | ≤ k − m − 1 = r − 1, between any two

consecutive yi’s there are at most r − 1 elements from B − Y . Thus,

for all i there exists h such that yi − yi−1 ≤ bh+r − bh, and therefore

(3.4) yi − yi−1 ≤ r +

⌈
r

c− 1

⌉
=

⌈
rc

c− 1

⌉
.

Also, we note that c ≥ m
2m−k implies that

(3.5)

⌈
rc

c− 1

⌉
≤ m.

By (3.4) and (3.5), we see that (3.2) is true.

To establish (3.3), we first observe that |B| ≥ (c− 1)(m+ �m
c �).

Since |B − Y | ≤ r − 1, Inequality (3.3) will follow by proving that

(3.6) (c− 2)m+ (c− 1)
⌈m
c

⌉
+ 1 ≥ 2r.

Since m > r, Inequality (3.6) is obviously true for c ≥ 4. To finish

Case 1, we will establish (3.6) for c = 3.

Using (3.5),

m+ 2
⌈m
3

⌉
+ 1 ≥

⌈
3r

2

⌉
+ 2

⌈� 3r
2 �
3

⌉
+ 1

≥ 3r

2
+ 2
⌈r
2

⌉
+ 1

≥ 2r,

which completes the proof of Case 1.
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Case 2. c = 2. We have xk − x1 ≤ � − 1 = 4(k − 1) and 3m ≥ 2k.

Therefore, if i �= j, then

(3.7) xi − xi−1 ≤ m,

for otherwise we would have

xk − x1 = xj − xj−1 +
∑
i 
=j

(xi − xi−1)

≥ 2(m+ 1) + (m+ 1) + 2(k − 3)

= 3m+ 2k − 3

≥ 4k − 3.

Let B′ = {xj−1 + 2i + 1 : 0 ≤ i ≤ s − 1}. Clearly, for every b ∈ B′,

there exists t ∈ S such that |t − b| ≤ 1, so that, as in Case 1 for the

set B, we may assume that at most k−m− 1 = r− 1 members of B′

have color 0. Let Y = {y1 < y2 < · · · < yu} = {b ∈ B′ : χ(b) = 1}.
So u ≥ s−(r−1). If for some i ∈ {2, 3, . . . , u} we have yi−yi−1 > 2r,

then

xj − xj−1 > 2r + 2(s− r − 1) + 2 = 2s,

a contradiction. Thus, for each i ∈ {2, 3, . . . , u},

(3.8) yi − yi−1 ≤ 2r.

By the same reasoning, the following hold:

(3.9) xj − yu ≤ 2r,

(3.10) y1 − xj−1 ≤ 2r.

By (3.7)–(3.10) and the fact that m ≥ 2r (since 3m ≥ 2k), X ∪Y is a

semi-progression of scope m. Since X ∪ Y is monochromatic and has

at least k terms, the proof is complete. �

It is interesting to note that the proof of Theorem 3.33 actually

gives a stronger result. Namely, it shows that for every 2-coloring of

[1, 2c(k− 1)+ 1] (where c, k, and m are as in Theorem 3.33), there is

a monochromatic sequence {x1, x2, . . . , xk} such that either

xi − xi−1 ∈ {1, 2, . . . ,m} for i = 2, 3, . . . , k,
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or

xi − xi−1 ∈ {c, 2c, . . . ,mc} for i = 2, 3, . . . , k.

That is, the value of d, from the definition of a semi-progression of

scope m, belongs to the set {1, c}. It would be interesting to try to

find similar results where {1, c} is replaced by some other set.

Example 3.34. For a given m, the “best” (i.e., the largest) value of

k for which Theorem 3.33 provides an upper bound is k = 2m − 1.

For this case, the theorem gives

SPm(2m− 1) ≤ 2c(2m− 2) + 1 = 4(m2 −m) + 1.

Theorem 3.32 gives the somewhat trivial result SPm(m)=2m−1.
Precise formulas for Ramsey-type functions in less trivial cases are

desirable, but typically somewhat difficult to come by. In the case of

the function SPm(k), letting k = m+ 1, an exact formula is known,

which we now present.

Theorem 3.35. Let m ≥ 2. Then

SPm(m+ 1) =

{
4m+ 1 if m is even,

4m− 1 if m is odd.

Proof. First note that setting k = m + 1 in Theorem 3.33 yields

SPm(m+1) ≤ 4m+1. We next establish that SPm(m+1) ≤ 4m− 1

if m is odd. To do this, let m ≥ 3 be odd and let χ : [1, 4m − 1] →
{0, 1} be any 2-coloring. From Exercise 2.18, it follows from Theorem

3.32 that in the interval [m + 1, 3m − 1] there is a monochromatic

set X = {x1, x2, . . . , xm} with xi − xi−1 ∈ {1, 2, . . . ,m} for all i ∈
{2, 3, . . . ,m}. We may assume that χ(X) = 1. We shall consider two

cases.

Case 1. xi − xi−1 > 1 for some i ∈ {2, 3, . . . ,m}. Let j be the

least value of i such that xi − xi−1 > 1. If χ(xj−1 + 1) = 1, then

X∪{xj−1+1} forms a monochromatic (m+1)-term semi-progression

of scope m, and we are done. So we shall assume that χ(xj−1+1) = 0.

Similarly, we may assume that each of x1 − 1, x1 − 2, . . . , x1 −m has

color 0. Then the set

A = [x1 −m,x1 − 1] ∪ {xj−1 + 1} ⊆ [1, 4m− 1]
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is monochromatic. Also, since (xj−1 + 1)− (x1 − 1) = j ≤ m, we see

that A is a semi-progression of scope m.

Case 2. xi − xi−1 = 1 for all i ∈ {2, 3, . . . ,m}. If any member of

Y = [x1 −m,x1 − 1] ∪ [xm + 1, xm +m] has color 1, then clearly we

have a monochromatic (m + 1)-term semi-progression of scope m in

[1, 4m− 1]. So we may assume that χ(Y ) = 0. Now let

B=
{
x1 − (2i− 1) : 1 ≤ i ≤ m+1

2

}⋃{
xm + (2i− 1) : 1 ≤ i ≤ m+1

2

}
.

Then B consists of m+1 elements, has color 0 (since it is a subset of

Y ), and each pair of consecutive elements of B has gap 2 or m + 1.

Hence, since m + 1 is even and m + 1 ≤ 2m, B is a monochromatic

(m+ 1)-term semi-progression of scope m.

We have thus far established that 4m − 1 and 4m + 1 serve as

upper bounds for their respective cases. To complete the proof of the

theorem, we need to show that they also serve as lower bounds. To do

so we shall exhibit, for m odd, a 2-coloring of [1, 4m− 2] that avoids

monochromatic (m + 1)-term semi-progressions of scope m; and, for

m even, a 2-coloring of [1, 4m] that avoids such progressions.

Consider m odd. Color [1, 4m− 2] with the coloring α defined by

the string

11 . . . 1︸ ︷︷ ︸
m−1

00 . . . 0︸ ︷︷ ︸
m

11 . . . 1︸ ︷︷ ︸
m

00 . . . 0︸ ︷︷ ︸
m−1

.

Let C = {x1 < x2 < · · · < x�} be a maximum length monochromatic

semi-progression of scope m. By the symmetry of α, we may assume

α(C) = 1. Let d = min{xi − xi−1 : 2 ≤ i ≤ �}. If d = 1, then

xi − xi−1 ≤ m for each i. For this case, it is evident from the way α

is defined that � ≤ m. If d ≥ 2, then the first and second blocks of 1’s

contain at most m−1
2 and m+1

2 members of C, respectively, so again

� ≤ m. Hence, in all cases, α admits no monochromatic (m+1)-term

semi-progressions of scope m.

Now assume m is even. Essentially the same reasoning as that

used in the case of m odd shows that the coloring of [1, 4m] defined

by the string

11 . . . 1︸ ︷︷ ︸
m

00 . . . 0︸ ︷︷ ︸
m

11 . . . 1︸ ︷︷ ︸
m

00 . . . 0︸ ︷︷ ︸
m
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has no monochromatic (m+1)-term semi-progression of scope m. We

leave the details to the reader as Exercise 3.12. �

We now derive a lower bound for SPm(k) that holds for all m

and k.

Theorem 3.36. Let k ≥ 2 and m ≥ 1. Let λ(k,m) =
⌈

k−1
�k/m�

⌉
.

Then

SPm(k) ≥ 2(k − 1)

(⌈
k

λ(k,m)

⌉
− 1

)
+ 1.

Before giving the proof of Theorem 3.36, we note that for m fixed,

the theorem gives us the asymptotic lower bound

SPm(k) ≥ 2

m
k2(1 + o(1)).

Proof of Theorem 3.36. Let k and m be given, let λ = λ(k,m),

and let n = 2(k − 1)
(⌈

k
λ

⌉
− 1
)
. To prove the theorem we exhibit

a specific coloring of [1, n] that avoids monochromatic k-term semi-

progressions of scope m. We define this coloring by a string of 1’s and

0’s as follows. Let A represent a block of k−1 consecutive 1’s and B a

block of k− 1 consecutive 0’s. Color [1, n] with ABAB . . .AB, where

A and B each occur
⌈
k
λ

⌉
− 1 times (so there is a total of 2

(⌈
k
λ

⌉
− 1
)

blocks).

Assume, for a contradiction, that X = {x1, x2, . . . , xk} is a mono-

chromatic semi-progression of scope m that is contained in [1, n]. Let

d ∈ Z+ be such that xi − xi−1 ∈ {d, 2d, . . . ,md} for i = 2, 3, . . . , k.

Since each of the blocks A and B has length k − 1, and since X is

monochromatic, there is some i such that xi−xi−1 ≥ k. This implies

that d ≥
⌈

k
m

⌉
, and hence each block contains at most

⌈
k−1
d

⌉
≤ λmem-

bers of X. Thus, for each color, there are no more than λ
(⌈

k
λ

⌉
− 1
)

members of X having that color. Since λ
(⌈

k
λ

⌉
− 1
)
≤ k − 1 (this is

true for any positive integers k, λ), we have a contradiction, and the

proof is complete. �

We end this section with a table of values and bounds of SPm(k)

for small m and k, preceded by an exact formula for SPm(k) under

the restriction that k ≤ 3m
2 . A proof is outlined in Exercise 3.13.

Theorem 3.37. Let m+ 2 ≤ k ≤ 3m
2 . Then SPm(k) = 4k − 3.
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m \ k 2 3 4 5 6 7 8 9 10 11

1 3 9 35 178 ? ? ? ? ? ?

2 3 9 17 33 55 ≥ 87 ≥ 125 ≥ 177 ? ?

3 3 5 11 19 31 71 97 ≥ 117 ? ?

4 3 5 7 17 21 35 44 65 ≥ 75 ≥ 84

5 3 5 7 9 19 25 33 49 56 ≥ 69

6 3 5 7 9 11 25 29 33 55 61

7 3 5 7 9 11 13 27 33 37 47

8 3 5 7 9 11 13 15 33 37 41

Table 3.3. Values and lower bounds for SPm(k)

3.5. Iterated Polynomials

By the nth iteration of the function f(x), we mean the composite func-

tion f(f(. . . (f︸ ︷︷ ︸
n times

(x)) . . . )), often denoted f (n)(x). One way of thinking

of an arithmetic progression S = {a, a + d, a + 2d, . . . , a + (k − 1)d}
is as a sequence that results from (k − 1) iterations of the function

f(x) = x + d; that is, S = {a, f(a), f (2)(a), . . . , f (k−1)(a)}. Looking

at arithmetic progressions in this fashion leads us to some natural

ways of forming supersets of AP .

We begin with a definition.

Definition 3.38. A pn-sequence is an increasing sequence of pos-

itive integers {x1, x2, . . . , xk} such that there exists a polynomial

p(x) of degree n, with integer coefficients, so that p(xi) = xi+1 for

i = 1, 2, . . . , k − 1.

We shall call the polynomial p in Definition 3.38 a pn-function

and say that p(x) generates {x1, x2, . . . , xk}.
It will be convenient to adopt the following notation.

Notation. Denote by Pn,k the family of all pn-sequences of length k,

and by Pn the family of all pn-sequences (regardless of their length),

i.e., Pn =
⋃∞

k=1 Pn,k.
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Thus, for example, the sequence {1, 3, 7, 15} is a member of P1,4

because it is generated by p(x) = 2x + 1, a polynomial of degree

one. Of course, it is also a member of P1. Similarly, each arithmetic

progression belongs to P1, since for some d it is generated by x + d;

that is, AP ⊆ P1.

One easy way to produce pn-sequences is to begin with any posi-

tive integer a, and any polynomial p with integer coefficients, and list

the consecutive iterates of a by p; as long as this list is increasing, we

have found a pn-sequence. As one example, let p(x) = x2 − 2x + 3

and a = 1. Since p is increasing on the interval [1,∞), then for each

positive integer i, {1, 2, 3, 6, 27, . . . , p(i)(1)} is a p2-sequence and is a

member of P2,i+1.

We shall give an explicit upper bound, in terms of k, for the

Ramsey-type function R(AP ∪ Pk−2, k; 2) (i.e., we will want every 2-

coloring to produce a monochromatic k-term sequence that is either

a pk−2-sequence or is an arithmetic progression). We will also show

(in Theorem 3.51, below) that if this bound could be improved to

a certain other (somewhat slower growing) function of k, then w(k)

would be bounded above by a similar function.

We will sometimes want to consider the family of polynomials

having degree not exceeding a specified number n. For this reason,

we introduce the following notation:

Sn =

n⋃
i=1

Pi, and Sn,k =

n⋃
i=1

Pi,k.

Thus, for example, S3,5 consists of all 5-term increasing sequences of

positive integers that can be obtained by the iteration of some linear,

quadratic, or cubic polynomial having integer coefficients.

Before getting to the main results on pn-sequences, we need some

lemmas. The first is a rather interesting fact in its own right: if X

is an increasing k-term sequence that is generated by a polynomial

with integer coefficients, then there exists a polynomial with integer

coefficients and degree not exceeding k−2 that also generates X; i.e.,

every k-term sequence that is a member of Pn for some n is also a

member of Sk−2.
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Lemma 3.39. Let k ≥ 3. Then
⋃∞

i=1 Pi,k = Sk−2,k.

Proof. By the definition of Sk−2,k, we need only show that for all

k ≥ 3 and n ≥ 1, every k-term pn-sequence is a member of Sk−2,k.

Let X = {x1, x2, . . . , xk} be generated by the polynomial f(x) =∑n
i=0 aix

i, with ai ∈ Z for each i and an �= 0. To complete the proof

we must show that there exist integers b0, b1, . . . , bk−2 ∈ Z satisfying

the system

(3.11)

b0 + b1x1 + · · ·+ bk−2x
k−2
1 = x2,

b0 + b1x2 + · · ·+ bk−2x
k−2
2 = x3,

...
...

b0 + b1xk−1 + · · ·+ bk−2x
k−2
k−1 = xk.

We see that (3.11) is a system of k − 1 equations in the k − 1

variables b0, . . . , bk−2. The determinant of the coefficient matrix is

the well-known Vandermonde determinant, known to equal∏
1≤�<m≤k−1

(xm − x�).

Since the xi’s are distinct, this determinant is nonzero. By Cramer’s

rule, system (3.11) has the unique solution (b′0, b
′
1, . . . , b

′
k−2), where

for each j ∈ {0, 1, . . . , k − 2},

b′j =
Dj∏

1≤�<m≤k−1

(xm − x�)
,

where Dj is the determinant of the matrix⎛⎜⎜⎜⎜⎜⎝
1 x1 . . . xj−1

1 x2 xj+1
1 . . . xk−2

1

. .

. .

. .

1 xk−1 . . . xj−1
k−1 xk xj+1

k−1 . . . xk−2
k−1

⎞⎟⎟⎟⎟⎟⎠ .

The proof is completed by showing that each b′j is an integer. The

proof of this fact requires a bit of abstract algebra, and is left to the

exercises (see Exercise 3.16). �
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Remark 3.40. It is worth noting from the above proof that for every

sequence of positive integers generated by a polynomial with integer

coefficients, there exists a unique polynomial of degree at most k − 2

that generates the sequence.

The next lemma provides a useful characterization of the p1-

sequences.

Lemma 3.41. A sequence is a p1-sequence of length k ≥ 3 if and

only if it has the form{
t, t+ d, t+ d+ ad, t+ d+ ad+ a2d, . . . , t+ d

k−2∑
i=0

ai

}

for some positive integers t, d, a.

Proof. Let S be a set of the described form. It is easy to see that

the function f(x) = ax + t(1 − a) + d generates S. Hence S is a

p1-sequence.

Conversely, assume that X = {x1, x2, . . . , xk} is an increasing

sequence of positive integers for which there exist a, b ∈ Z such that

the function f(x) = ax+ b generates X. Let t = x1 and d = x2 − x1.

Then, since ax1 + b = x2 and ax2 + b = x3,

(3.12) a =
x3 − x2

x2 − x1
=

x3 − t− d

d
.

Therefore, x2 = t+d and x3 = t+d(1+a). Now assume that n ≥ 3 and

that for j ∈ {n−1, n}, we have xj = t+d
∑j−2

i=0 a
i. We shall complete

the proof via induction on n by showing that xn+1 = t+ d
∑n−1

i=0 ai.

Note that

a =
xn+1 − xn

xn − xn−1

=

xn+1 −
(
t+ d

n−2∑
i=0

ai

)
(
t+ d

n−2∑
i=0

ai

)
−
(
t+ d

n−3∑
i=0

ai

) .
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Therefore,

xn+1 = a

(
d

n−2∑
i=0

ai − d

n−3∑
i=0

ai

)
+ t+ d

n−2∑
i=0

ai

= adan−2 + t+ d

n−2∑
i=0

ai

= t+ d
n−1∑
i=0

ai,

and the proof is complete. �

According to Lemma 3.41, every p1-sequence is completely deter-

mined by its first three terms. Extending this idea to an arbitrary

3-term sequence, we can pose the following “riddle”: if x, y, and z are

the first three numbers of a sequence, what is the the fourth number?

Mathematically, the idea is very elementary. Using (3.12), letting

a = z−y
y−x and b = y−ax, we have a method for getting from one num-

ber in the sequence to the next: multiply by a and then add b. For

example, given the sequence − 1
9 ,−

1
3 ,

5
9 , then by taking a = −4 and

b = − 7
9 , we may answer the riddle by saying that the fourth number

is (−4) 59 − 7
9 = −3. This solution to the riddle works for any three

numbers x, y, z (even complex numbers) provided x �= y.

The following two technical lemmas concerning the growth of

iterated polynomials are stated without proof.

Lemma 3.42. Let {x1 < x2 < · · · < xk} be a pk−2-sequence, gener-

ated by the pk−2-function g(x). Then

g(xk) ≤ xk +
k−1∏
i=1

(xk − xi).

Example 3.43. The sequence {1, 2, 3, 6} is generated by the p2-

function f(x) = x2− 2x+3. Hence, f(6) ≤ 6+3 · 4 · 5 = 126 (in fact,

f(6) = 27).

Lemma 3.44. Let k ≥ 3 and let {x1, x2, . . . , xk} ∈ Sk−2 be generated

by the pn-function g(x) of degree n ≤ k−2. Then for each nonnegative
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integer j, the sequence

{x1, x2, . . . , xk, g(xk) + j

k−1∏
i=1

(xk − xi)}

belongs to Sk−1 and is generated by the function h(x) =
∑k−1

i=1 bix
i,

where bk−1 = j. Furthermore, all members of Sk−1 may be obtained

from members of Sk−2 in this way.

Remark 3.45. Note that, using the notation of Lemma 3.44, the

lemma tells us that for j ≥ 1, the sequence

{x1, x2, . . . , xk, g(xk) + j

k−1∏
i=1

(xk − xi−1)}

belongs to Pk−1.

To help clarify what Lemma 3.44 is saying, we consider two ex-

amples.

Example 3.46. Using the notation of Lemma 3.44, if j = 0, then

{x1, x2, . . . , xk, g(xk)} is generated by g(x), so it is, of course, a mem-

ber of Sk−2 (and hence of Sk−1, where we may take h(x) = g(x), with

bk−1 = 0).

Example 3.47. Consider {1, 2, 3}, a p1-sequence generated by the

polynomial g(x) = x + 1. Lemma 3.44 tells us that each sequence

{1, 2, 3, 4 + 2j}, where j ≥ 0, is a member of S2, and, for j ≥ 1, is

generated by a p2-function whose leading coefficient is j. For instance,

according to Example 3.43, {1, 2, 3, 6} is generated by the p2-function

x2−2x+3. In turn, we can build 5-term p3-sequences from {1, 2, 3, 6}:
each sequence {1, 2, 3, 6, 27 + j(5 · 4 · 3)}, j ≥ 1, is a member of P3,

generated by a cubic polynomial with leading coefficient j. Of more

significance, perhaps, is what the last sentence of the lemma says:

that every p3-sequence of length 5 may be found in this way – by

starting with the 4-term members of S2.

Remark 3.48. Extending the previous example, notice that if X =

{x1, x2, . . . , xk} is any member of Sk−2 −AP whose first k− 1 terms

form an arithmetic progression {x1 + id : 0 ≤ i ≤ k − 2}, then

X is generated by a member of Pk−2, i.e., j �= 0. Furthermore,

xk = x1+(k−1)d+j(d)(2d) · · · ((k−2)d) = x1+(k−1)d+jdk−2(k−2)!.
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We are now able to give an upper bound for R(AP ∪ Pk−2).

Theorem 3.49. For all k ≥ 5,

R(AP ∪ Pk−2, k) ≤ k
(k−2)!

2 .

Proof. The inequality holds for k = 5 since it is known that

R(AP ∪ P3, 5) = 85 (see Table 3.4 at the end of this section). We

proceed by induction on k, letting k ≥ 6 and assuming the theo-

rem is true for k − 1. Let χ be any 2-coloring of [1, k
(k−2)!

2 ], using

the colors red and blue. By the induction hypothesis there exists a

monochromatic (k − 1)-term sequence X ∈ AP ∪ Pk−3 contained in

[1, (k − 1)
(k−3)!

2 ]. Say X = {x1 < x2 < · · · < xk−1} has color red. By

Remark 3.40, there is a unique polynomial f ∈ Sk−3 that generates

X. Hence, by Remark 3.45, for each j = 1, 2, . . . , k,

(3.13)

{
x1, x2, . . . , xk−1, f(xk−1) + j

k−2∏
i=1

(xk−1 − xi)

}
∈ Pk−2.

For ease of notation, let us denote
∏k−2

i=1 (xk−1 − xi) by Π. Now

let A = {f(xk−1)+ jΠ : 1 ≤ j ≤ k} = {y1 < y2 < · · · < yk}. We wish

to show that each member of A belongs to [1, k
(k−2)!

2 ]. To show this,

note that by Lemma 3.42,

yk ≤ xk−1 + (k + 1)Π ≤ xk−1 + (k + 1)xk−2
k−1

≤ (k − 1)
(k−3)!

2 + (k + 1)(k − 1)
(k−2)!

2 .(3.14)

That the expression (3.14) does not exceed k
(k−2)!

2 will follow if

(k − 1)
(k−3)!

2

(k − 1)
(k−2)!

2

+ (k + 1) ≤
(

k

k − 1

) (k−2)!
2

=

(
1 +

1

(k − 1)

) (k−2)!
2

.

This last inequality does indeed hold, since

(3.15) k + 2 ≤
(
1 +

1

k − 1

) (k−2)!
2

.
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We leave the justification for (3.15) to the reader (hint: consider the

binomial expansion of the right-hand side of the inequality). Thus,

we have established that A ⊆ [1, k
(k−2)!

2 ].

We consider two possibilities. If every member of A has color

blue, then A is a monochromatic arithmetic progression. Otherwise,

some member ym of A has color red, in which case, by (3.13), X∪{ym}
is a red pk−2-sequence. In either case we have a monochromatic k-

term member of AP ∪ Pk−2 that lies in [1, k
(k−2)!

2 ]. This completes

the proof. �

The upper bound given by Theorem 3.49, although it may be

an interesting result, seems to involve a much larger collection of

sequences than does AP ; therefore, there is no obvious reason to

think that having an upper bound on R(AP ∪ Pk−2, k) could help us

to find a reasonable upper bound on w(k) = R(AP, k). However, in

the next theorem we show that if we were able to establish a certain

improved upper bound on R(AP ∪Pk−2, k), then we would also have

a similar bound for w(k).

We first prove the following lemma.

Lemma 3.50. Let k ≥ 7. If {x1, x2, . . . , xk} ∈ Sk−2 − AP , then

xk ≥ 2k−1.

Proof. Let {x1, x2, . . . , xk} ∈ Sk−2 − AP , and let j be the largest

integer such that {x1, x2, . . . , xj} is an arithmetic progression (clearly,

2 ≤ j ≤ k − 1).

If j = k − 1, then by Remark 3.48, xk ≥ k + (k − 2)! ≥ 2k−1. If

j < k−1, then by Lemma 3.44, xj+1 ≥ xj+(xj−xj−1)+
∏j−1

i=1 (xj−xi).

Now, xj−1, xj , xj+1 is a p1-sequence and hence is generated by the

polynomial f(x) = ax+ b, where

a =
xj+1 − xj

xj − xj−1
≥ xj − xj−1 +

∏j−1
i=1 (xj − xi)

xj − xj−1

= 1 +

j−2∏
i=1

(xj − xi)

≥ 1 + (j − 1)!.
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Since {xj−1, xj , xj+1, xj+2} ∈ S2, by Lemma 3.44 xj+2 ≥ f(xj+1)

and hence, by Lemma 3.41,

xj+2 ≥ xj + 1 + (j − 1)! + (1 + (j − 1)!)2.

Applying this same argument to each of the triples {x�, x�+1, x�+2},
j − 1 ≤ � ≤ k − 3, we obtain

xk ≥ j +

k−j∑
i=1

[1 + (j − 1)!]i.

That this last expression is no less than 2k−1 is left as Exercise 3.18,

which completes the proof. �

Theorem 3.51. Let τk = 2k−2 +
∏k−3

i=1 (2
k−3 − 2i−1). If k ≥ 7 and

R(AP ∪Pk−2, k) ≤ τk − 1, then w(k− 1) ≤ τk − 2 = 2k
2−4k(1+ o(1)).

Proof. To prove the result, we will show that, for all k ≥ 7, if

X = {x1 < x2 < · · · < xk} is any k-term pk−2-sequence such that

{x1, x2, . . . , xk−1} is not an arithmetic progression, then xk ≥ τk.

From this it follows by Lemma 3.44 that all k-term members of

AP ∪ Pk−2 that are contained in [1, τk − 1] are formed by adding

j
∏k−2

i=1 (xk−1−xi) to the kth term of some arithmetic progression, for

some nonnegative integer j. Hence, by the hypothesis, it follows that

w(k − 1) ≤ τk − 2, which is the desired conclusion.

Thus, we shall show that whenever X is a k-term pk−2-sequence

whose first k − 1 terms do not form an arithmetic progression, then

xk ≥ τk. For the case of k = 7, we ask the reader to prove this by

inspection of all 7-term members of AP ∪P5, with the help of Lemma

3.44. Now let k ≥ 8. If {x1, x2, . . . , xk−1} is generated by the function

g(x) = 2x, then xk−1 ≥ 2k−2, so that xk ≥ τk by Lemma 3.44.

If {x1, x2, . . . , xk−1} is generated by a function other than 2x,

then by Lemma 3.50, there is a least positive integer j ≤ k − 1 such

that xj > 2j−1. Also, by Lemmas 3.44 and 3.50, if i < j, then

xk−1 − xi ≥ 2k−2 − 2i−1.

If j ≤ i ≤ k−2, then since xj −xj−1 > 2j−1−2j−2 = 2j−2, and since

{xi−1, xi, xi+1} is a p1-sequence, but not an arithmetic progression,
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xi+1 − xi ≥ 2(xi − xi−1), and again we have

xk−1 − xi ≥
k−3∑

�=i−1

2� = 2k−2 − 2i−1.

Now let h be the pk−3-function that generates {x1, x2, . . . , xk−1}.
Then by Lemma 3.50, h(xk−1) ≥ 2k−1. Since X is a pk−2-sequence

(but not a pk−3-sequence), we know by Lemma 3.44 that

xk ≥ h(xk−1) +

k−2∏
i=1

(xk−1 − xi) > τk,

completing the proof. �

Other results that are similar to Theorem 3.51 have been found,

where obtaining a seemingly mild improvement over the known bound

on the Ramsey function corresponding to the superset of AP will lead

to a like bound on w(k). References to such work are mentioned in

Section 3.9.

We may also consider Ramsey functions involving iterated poly-

nomials where the number of colors, r, is greater than two. As one

example, the next theorem gives an upper bound forR(P1, 3; r) (hence

an upper bound for R(S1, 3; r)).

Theorem 3.52. R(P1, 3; r) ≤ r!r2 + r for r ≥ 2.

Proof. Direct calculation gives R(P1, 3; 2) = 7, so that the theorem

holds for r = 2. Now assume r ≥ 3, and let χ be any r-coloring of

[1, r!r2 + r + 1]. For i = 0, 1, . . . , r2, define Mi = [r!i+ 1, r!i+ r + 1].

Clearly, each Mi contains a pair ai < bi, such that χ(ai) = χ(bi).

For each i ∈ {0, 1, . . . , r2}, let h(i) be the ordered pair (ai− r!i, χ(i)).

Note that there are a total of only r2 possible ordered pairs (the

set of possible ordered pairs is the same for all i). Thus, by the

pigeonhole principle, there exist i < j such that h(i) = h(j). Since

aj = ai + r!(j − i) and bi − ai ≤ r,

aj = ai + λ(bi − ai),

where λ ≥ 2. Thus, by Lemma 3.41, {ai, bi, aj} is a p1-sequence.

Since {ai, bi, aj} is monochromatic, and since aj < bj ≤ r!j + r + 1,

the theorem is proved. �
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We end this section with a table. Note that by Lemma 3.39, there

is no need to include values of R(Sn, k; r) for which n ≥ k − 1.

n k r R(Sn, k; r) R(AP ∪ Pn, k; r)

1 3 2 7 7

1 4 2 23 ?

2 4 2 20 21

1 5 2 76 76 – 177

2 5 2 72 ?

3 5 2 67 85

4 6 2 68 – 612 192 – 612

1 3 3 14 14

1 4 3 ≥ 71 ?

2 4 3 ≥ 71 ≥ 71

1 3 4 24 24

1 3 5 38 38

Table 3.4. Values and bounds of R(Sn, k; r) and
R(AP ∪ Pn, k; r)

3.6. Arithmetic Progressions as Recurrence
Solutions

By a linear recurrence relation of order n, we mean an equation of

the form

xk = c1xk−1 + c2xk−2 + · · ·+ cnxk−n,

where the ci’s are given constants, with cn �= 0. Solving such a system

means finding a closed formula for xk that holds for all k. As a simple

example, consider the following recurrence of order one: xk = 3xk−1,

k ≥ 1. A “general” solution is xk = 3kx0. To get a “particular”

solution, it suffices to know the initial value x0.

An arithmetic progression may be thought of as the solution to

the recurrence

(3.16) xk = 2xk−1 − xk−2.
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To get a particular solution, it is sufficient to be given two initial

values. For example, if x1 = 1 and x2 = 3, then x3 = 2x2 − x1 = 5,

x4 = 7, etc. This is simply another way of looking at the fact that

arithmetic progressions {x1, x2, . . . } are completely determined by

knowing x1 and x2, since xk − xk−1 = xk−1 − xk−2 for all k.

Thus we see that the family AP may be considered a special

subfamily of the family of those sets that occur as solutions to some

linear recurrence. There are many ways that we can generalize (3.16).

One way is the following. For k ≥ 3, consider the family of those sets

{x1, x2, . . . , xk} with x1 < x2, having the property that there exists

a set {ai ≥ 2 : 3 ≤ i ≤ k} such that for i = 3, 4, . . . , k,

xi = aixi−1 + (1− ai)xi−2.

Let us call this collection of sets R1. We see that every arithmetic

progression belongs toR1 (let ai = 2 for every i). As another example,

let us consider the 6-term sequence obtained by letting a3 = 2, a4 = 3,

a5 = 2, a6 = 7, x1 = 1, and x2 = 3. Then we have x3 = 2x2 − x1,

x4 = 3x3 − 2x2, x5 = 2x4 − x3, and x6 = 7x5 − 6x4, yielding the

sequence {1, 3, 5, 9, 13, 37}, a 6-term member of R1.

It is not hard to obtain an upper bound on the Ramsey-type

function R(R1, k). We do so in the following theorem.

Theorem 3.53. Let k ≥ 3. Then R(R1, k) ≤ 7
24 (k + 1)!.

Proof. We may calculate directly that R(R1, 3) = 7, so that the

result is true for k = 3. Proceeding by induction, assume that k ≥ 4,

and that R(R1, k − 1) ≤ 7
24k!. Let mk = 7

24 (k + 1)! and consider an

arbitrary 2-coloring χ : [1,mk] → {0, 1}. By the induction hypothesis,

in [1,mk−1] there is a monochromatic (k−1)-term member of R1. Say

X = {x1, x2, . . . , xk−1} is such a sequence and that χ(X) = 0. For

each i ∈ {1, 2, . . . , k}, let yi = xk−1+ i(xk−1−xk−2). Notice that, for

each i, the set {x1, x2, . . . , xk−1, yi} is a k-term member of R1 (where,

according to the notation used in the definition of R1, ai = i + 1).

Also notice that every yi is no greater than mk, since

mk−1 + k(mk−1 − xk−2) ≤ (k + 1)mk−1 = mk.

To complete the proof, we consider two possibilities. If there

exists j ∈ {1, 2, . . . , k} such that yj has color 0, then X ∪ {yj} is a
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monochromatic member of R1 that is contained in [1,mk]. Otherwise

{y1, y2, . . . , yk} is a monochromatic arithmetic progression (hence a

member of R1) contained in [1,mk], and the proof is complete. �

There are many other generalizations of (3.16) that may be con-

sidered. For example, instead of the coefficient of xi−2 equaling 1−ai,

we can simply require that if equal −1 for all i. Some examples are

given in the exercises. We encourage the reader to experiment with

other generalizations – it seems likely that there are some interesting

ones that have yet to be explored.

3.7. Exercises

3.1 a) Find all 3-term quasi-progressions with diameter 1 that

are contained in [1,6]. How many are contained in [1,10]?

How many are contained in [1,m]?

b) How many 3-term quasi-progressions with diameter k are

contained in [1,m]?

3.2 Prove Proposition 3.13(i).

3.3 Complete the details of Case 3 in the proof of Theorem 3.14.

3.4 Show that k(k+1)
2 is an upper bound for GQx−1(k) (see Ex-

ample 3.18).

3.5 Show that the last sentence in the statement of Theorem

3.19 follows from the previous sentence.

3.6 Calculate DW (3) and DW (4).

3.7 How many descending waves of length three are contained

in [1, 10]? in [1,m]?

3.8 Finish the proof of Theorem 3.21.

3.9 An ascending wave is an increasing sequence of positive in-

tegers {x1, x2, . . . , xk}, with k ≥ 3, such that xi − xi−1 ≥
xi−1 − xi−2 for i = 3, 4, . . .. Modify the proof of Theorem

3.21 to prove that the same upper bound holds when we

replace “descending waves” with “ascending waves.”

3.10 Finish the proof of Theorem 3.23.

3.11 Prove Theorem 3.32.
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3.12 Complete the proof of Theorem 3.35 by showing that for m

even, the string 11 . . . 1︸ ︷︷ ︸
m

00 . . . 0︸ ︷︷ ︸
m

11 . . . 1︸ ︷︷ ︸
m

00 . . . 0︸ ︷︷ ︸
m

avoids mono-

chromatic (m+ 1)-term semi-progressions of scope m.

3.13 This exercise provides the outline for a proof of Theorem

3.37.

a) Assume m + 2 ≤ k ≤ 3m
2 . Show that if k is even, then

the 2-coloring 11 00 . . . 0︸ ︷︷ ︸
k−2

11 . . . 1︸ ︷︷ ︸
k−2

00 . . . 0︸ ︷︷ ︸
k−2

11 . . . 1︸ ︷︷ ︸
k−2

avoids mono-

chromatic k-term semi-progressions of scope m. Hence, for

k even, SPm(k) ≥ 4k − 3.

b) Use Theorem 3.36 to show that the lower bound of (a)

also holds for k odd.

c) Use the results of (a) and (b), along with Theorem 3.33,

to prove Theorem 3.37, i.e., that SPm(k) = 4k − 3.

3.14 For i an integer, 0 ≤ i ≤ k− 2, let λ(k,m, i) =
⌈

k−i−1
�(k−i)/m�

⌉
.

Prove that

SPm(k) ≥ 2(k − i− 1)

(⌈
k

λ(k,m, i)

⌉
− 1

)
+ 1.

3.15 a) Find specific values of m, k, and i for which the lower

bound on SPm(k) given by Exercise 3.14 is better (greater)

than that given by Theorem 3.36.

b) Find specific values of m and k for which the lower bound

provided by Theorem 3.37 is better than any obtainable by

Exercise 3.14.

3.16 Complete the proof of Lemma 3.39 by showing that each b′j
is an integer. (Requires some abstract algebra.)

3.17 Let d ≥1. Use Lemma 3.41 to show thatX={x1, x2, . . . , xk}
is a member of P1 if and only if dX = {dx1, dx2, . . . , dxk}
is a member of P1.

3.18 Complete the proof of Lemma 3.50 by proving that, for

2 ≤ j ≤ k − 2 and k ≥ 7,

j +

k−j∑
i=1

[1 + (j − 1)!]i ≥ 2k−1.
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(Hint: verify that the inequality holds whenever j = 2 and

use n! > (ne )
n to show that it is true for j ≥ 7; then, show

that it holds for each pair (j, k) in the set {(3, 7), (4, 7), (5, 7),
(6, 8)}, and then use induction on k (where j is fixed).)

3.19 Define a C-sequence to be a sequence of distinct (but not

necessarily increasing) positive integers {x1, x2, . . . , xk} such
that there exists a function f(x) = ax + b, with a ∈ Z+,

b ∈ Z, where f(xi−1) = xi for i = 2, 3, . . . , k. Obviously,

every p1-sequence is a C-sequence. Prove that a sequence S

is a C-sequence if and only if

S =

{
t+ d, t+ d+ ad, t+ d+ ad+ a2d, . . . , t+ d

k−2∑
i=0

ai

}

for some t, a, d ∈ Z, where t, a ≥ 1 and d �= 0.

3.20 Define an E-sequence of length k to be an increasing se-

quence of positive integers generated by a function p(x) =

ax+b, where a ≥ 1 and b ≥ 0 are integers. It is clear that ev-

ery arithmetic progression is an E-sequence, and that every

E-sequence is a p1-sequence. Prove that (x1, x2, x3) is an E-

sequence if and only if it has the form {x, x+ d, x+ d+ad},
where a ≤ d

x + 1.

3.21 Denote byN(AP, k,m) the number of different k-term arith-

metic progressions contained in [1,m]. Define N(P1, k,m)

and N(C, k,m) analogously, replacing the family of arith-

metic progressions with p1-sequences and C-sequences, re-

spectively (see Exercise 3.19). Prove that

N(C, k,m) = 2N(P1, k,m)−N(AP, k,m).

3.22 Define a D-sequence to be any sequence of distinct positive

integers of the form {t, f(t), f (2)(t), . . . , f (k−1)(t)}, where

f(x) = ax + b, a, b ∈ Z. It is clear that every C-sequence

(see Exercise 3.19) is a D-sequence.

a) Prove that every D-sequence of length three is also a

C-sequence.
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b) Prove that a set of size k ≥ 4 is a D-sequence but not a

C-sequence if and only if it has the form{
t, t+ d, t+ d− ad, t+ d− ad+ a2d, . . . , t+ d

k−2∑
i=0

(−1)iai

}
,

where a, d ∈ Z, a ≥ 2, and d �= 0.

c) Using Exercise 3.21’s notation, prove that for all k ≥ 4,

N(D, k,m) = N(C, k,m) + 2

j∑
a=2

s∑
d=1

(m− ak−2d),

where j is the greatest integer such that ak−2 ≤ m− 1 and

s =
⌊
m−1
ak−2

⌋
.

3.23 Define R2 to be the same as R1 (as in Theorem 3.53), except

instead of using the recurrence xi = aixi−1 − bixi−2, where

bi = 1 − ai, we now use the recurrence xi = aixi−1 − xi−2

for all i. Notice that R2 is a superset of AP . Prove that

R(R2, k) ≤ 1
3 (k + 1)! for k ≥ 3.

3.24 As in Exercise 3.23, define R3 to differ from R1 only in that

we require that ai = 2 and bi ≤ −1 for all i. Find an upper

bound on R(R3, k).

3.8. Research Problems

3.1 Let B2(k) be the least positive integer with the following

property: for every 2-coloring of [1, B2(k)], there is a mono-

chromatic sequence {x1, x2, . . . , xk} such that for some pair

of positive integers d1 and d2, we have xi−xi−1 ∈ {d1, d2} for
all i ∈ {2, 3, . . . , k}. Write a computer program to calculate

B2(k). Try to get bounds for B2(k).

References: [86], [244], [248]

3.2 Repeat Research Problem 3.1 above, except consider Bm(k),

the Ramsey-type function for those sequences such that for

some m-element set D = {d1, d2, . . . , dm}, the gaps must

belong to D. Try to determine relationships that exist be-

tween Bm(k) and the Ramsey-type functions discussed in
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this chapter. Write a computer program to calculate spe-

cific values of Bm(k). Try to obtain bounds for Bm(k).

References: [86], [244], [248]

3.3 It has been proven that the upper bound of Theorem 3.15

is the actual value of Qk−i(k) under the added assumption

that 3 ≤ r < min({� i
2�,m + 1}), where k = mi + r (m

an integer). Try to extend this result by weakening these

additional assumptions in some way, and obtaining a precise

value for Qk−i(k). In particular, obtain a formula in the case

where k ≡ 3 (mod i) and k ≥ 2i; or where k ≡ −1 (mod i)

and k ≥ 2i.

References: [86], [213], [248]

3.4 As in Theorem 3.14, obtain an exact formula for Qk−3(k).

References: [213], [248]

3.5 Theorems 3.12 and 3.15 show that, as long as n ≥ k
2 then

Qn(k) grows no faster than a quadratic function of k, while

Theorem 3.10 shows thatQ1(k) has exponential growth. De-

termine if polynomial growth can be obtained for diameters

less than k
2 ? More generally, what is the slowest growing

function f(k) such that Qf(k)(k) has polynomial growth?

Conversely, can an exponential lower bound be obtained for

diameters greater than 1? In particular, does Q2(k) have

exponential growth? Perhaps a cubic lower bound can be

established for Q2(k). It has been conjectured that for each

positive integer d, there exists a positive constant c such

that Q k
d
(k) ≤ ckd. Prove or disprove this conjecture (a first

step might be to determine if Q k
3
(k) can be bounded above

by some polynomial in k).

References: [86], [213], [248], [397]

3.6 Let us say a set of positive integers S has property QP if, for

some fixed n, the set S contains a k-term quasi-progression

of diameter n for every k ≥ 1; that is, S contains arbitrarily

long quasi-progressions of diameter n.

a) Determine if the set of squares {i2 : i = 1, 2, . . . } has

property QP .
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b) It is known that there are infinitely many 4-term quasi-

progressions of diameter 1 among the set of squares. Deter-

mine if there exist any such progressions of length five. If

so, how many?

References: [86], [89], [213], [248]

3.7 Improve on the lower bound given by Theorem 3.10.

References: [213], [248], [397]

3.8∗ Determine a relationship between w(k) and Q1(k) asymptot-

ically (in particular, what happens to the ratio as k → ∞?).

References: [86], [213], [248], [397]

3.9 It was mentioned after the proof of Theorem 3.33 that its

proof establishes an upper bound for the Ramsey function

associated with semi-progressions of scope m, where the

value of d (as in the definition of semi-progression) is re-

stricted to the set D = {1, c}. Try replacing the set D with

various other sets, and attempt to find upper bounds. Per-

haps a more general result can be obtained, where the case

of D = {1, c} would be one special case.

Reference: [244]

3.10 Obtain an upper bound on GQx−3(k). In particular, can we

bound it above by a polynomial of degree four? Attempt to

generalize this to GQx−t(k).

References: [116], [251]

3.11 Denote by SPm(k; r) the least positive integer M such that

for every r-coloring of [1,M ] there will be a monochromatic

k-term semi-progression of scope m. As in the case of two

colors, it is clear that w(k; r) ≤ SPm(Γm(k); r). Study the

function SPm(k; r) for values of r greater than two.

Reference: [244]

3.12 In Table 3.3, we observe that form∈{3, 4, 5, 6}, SPm(2m) =

6(2m − 1) + ε, with ε ∈ {1, 2}. Determine if SPm(2m) =

12m(1 + o(1)).

Reference: [244]

3.13 We see from Table 3.3 that, for the pairs (m, k) = (2, 5) and

(m, k) = (4, 9), we have SPm(k) = 8(k − 1) + 1. Determine
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if this is true for the pair (m, k) = (6, 13) or, more generally,

for (m, k) = (2j, 4j + 1).

Reference: [244]

3.14∗ Attempt to find the precise rate of growth of DW (k); i.e.,

find a such that DW (k) = ak3(1 + o(1)).

References: [27], [86], [265], [268]

3.15 Find bounds on DW (k; r) for r ≥ 3.

References: [27], [86], [265], [268]

3.16 Let AW (k; r) be the Ramsey function for k-term ascending

waves and r colors (see Exercise 3.9). It has been conjec-

tured that, for fixed r, there exists a constant c such that

AW (k; r) ≥ ck2r−1. Prove or disprove this conjecture.

References: [27], [86], [268]

3.17 Improve upon Table 3.4 (either by adding new entries, or by

improving any of the bounds).

References: [181], [252], [253]

3.18 Find an upper bound for R(C, k; r) (see Exercise 3.19). In

particular, find an upper bound for R(C, 3; r) that is less

than that of Theorem 3.52. Also, the following are known:

R(C, 3; 2) = 5, R(C, 4; 2) = 20, R(C, 3; 3) = 13, R(C, 3; 4) =

17, R(C, 4; 3) ≥ 28 and R(C, 5; 2) ≥ 53. Find more of these

values; in particular, find R(C, 5; 2).

References: [181], [242], [243], [250], [252], [253], [262]

3.19 Referring to Exercise 3.20, find upper and/or lower bounds

for the Ramsey-type function R(E, k; 2) associated with k-

term E-sequences. Find a lower bound for R(E, 3; r) (it

is obvious that w(k; r) ≥ R(E, k; r) ≥ R(P1, k; r)). It is

known that R(E, 3; 2) = 9, R(E, 4; 2) = 35, R(E, 3; 3) = 26,

and 62 ≤ R(E, 5; 2) ≤ 177. Find more exact values; in

particular, find R(E, 5; 2).

References: [181], [242], [243], [250], [252], [253], [262]

3.20 Repeat Research Problem 3.18, using D in place of C (see

Exercise 3.22). Also, the following values and bounds are

known: R(D, 3; 2) = 5, R(D, 4; 2) = 19, R(D, 3; 3) = 13,

R(D, 3; 4) = 17, R(D, 4; 3) ≥ 28, and 52 ≤ R(D, 5; 2) ≤ 177.
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Find more exact values; in particular, find R(D, 5; 2).

References: [181], [242], [243], [250], [252], [253], [262]

3.21 Look for other ways to define supersets of AP , and attempt

to obtain nontrivial upper and/or lower bounds on the cor-

responding Ramsey-type function.

3.22 Calculate values and attempt to get bounds on any function

analogous to the Erdős and Turán function, but where the

family AP is replaced by one of the families discussed in

this chapter. If any bound is obtained, use it to try to get

a bound on the corresponding Ramsey-type function.

3.9. References

§3.1. Theorem 3.10 is proved in [397]. Theorems 3.12 and 3.15 are

from [213]. The other results on the Ramsey functions for quasi-

progressions are from [248], which also includes a table of computer-

generated data. Brown, Erdős, and Freedman [86] study the question

of which sets contain arbitrarily long quasi-progressions, and the rela-

tionship between this property and several other properties, including

that of containing arbitrarily long descending waves. They also prove

the equivalence of two properties, one a conjecture of Erdős involving

infinite reciprocal sums (see Research Problem 2.12) and the other

involving quasi-progressions; other results on infinite reciprocal sums

can be found in [87] and [107]. Brown, Freedman, and Shiue [89]

consider the problem of finding quasi-progressions that are contained

in the set of squares.

§3.2. The notion of generalized quasi-progressions is introduced in

[251], which contains a proof of Theorem 3.19, some related results,

and Table 3.2. Functions similar to GQδ(k) are considered in [116].

§3.3. Proofs of Theorems 3.21 and 3.24 may be found in [27]. A

proof of Theorem 3.22 can be found in [86]. Some results concerning

ascending waves (see Exercise 3.9) are also discussed in [27] and [86],

including upper and lower bounds for the associated Ramsey function

AW (k; 2). In [268], this work is extended to r colors, and upper and

lower bounds are given for AW (k; r). In particular, constants c1 and

c2 are given such that c1k
5 ≤ AW (k; 3) ≤ c2k

5(1+o(1)). We can mix
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descending waves with ascending waves by defining ADW (k, �) to be

the least positive integer d such that every 2-coloring of [1, d] contains

either an ascending wave of length k or a descending wave of length

�. See work by Erdős and Szekeres [137] and Lefmann [265] for more

information. The fact that any infinite set of positive integers that

contains arbitrary long quasi-progressions must also contain arbitrar-

ily long descending waves is given in [86], where it is also shown that

the reverse implication is false.

§3.4. The proof of Proposition 3.30 is from [291], which also has

other related results. Rabung provides another proof of the existence

of Γm(k) [307]. Further results on Γm(k) are given in [91]. Theorems

3.32, 3.33, and 3.35–3.37 are from [244].

§3.5. Lemmas 3.42 and 3.44 are from [243]. A slightly weaker re-

sult than that of Theorem 3.49 appears in [181], which also contains

proofs of Lemma 3.50 and Theorem 3.51. In [249], results like Theo-

rem 3.51 are given for certain families of sequences that are properly

contained in AP ∪ Pk−2. Theorem 3.52 is from [242]. Other results

involving Ramsey functions based on polynomial iteration appear in

[253]. The values and bounds in Table 3.4 are from [181], [252],

and [253]. Some properties on the growth of iterated polynomials,

irrespective of Ramsey theory, are explored in [262]. Work on pn-

sequences involving more than two colors is considered in [250] and

[252].

§3.6. Theorem 3.53 and related work may be found in [247].

§3.7. Exercise 3.4 is from [251]. Exercise 3.14 is proven in [244].

Exercises 3.19–3.22 are taken from [243]. Exercises 3.23 and 3.24 are

from [247].

                

                                                                                                               



Chapter 4

Subsets of AP

In Chapter 3 we considered functions analogous to w(k; r) by re-

placing AP , the collection of arithmetic progressions, with certain

collections F such that AP ⊆ F . The existence of the corresponding

van der Waerden-type functions R(F , k; r) was guaranteed by van der

Waerden’s theorem, since each arithmetic progression is a member of

F . The purpose of this chapter is to consider the reverse situation,

F ⊆ AP . Thus, we wish to restrict, in some way, the allowable

arithmetic progressions.

We note that if F is a proper subset of AP , then van der Waer-

den’s theorem does not guarantee the existence of R(F , k; r) for all k

and r. In fact, any positive result we can uncover about such a func-

tion can be considered a strengthening of van der Waerden’s theorem.

For example, if R(F , k; r) < m for some F ⊆ AP , then w(k; r) < m.

As a start, we show that for certain choices of F , k, and r it is

relatively easy to conclude that R(F , k; r) does not exist. We begin

with some examples.

Example 4.1. Let F be the collection of all arithmetic progressions

{a, a + d, a + 2d, . . . } such that a ≥ 1 and d ∈ {1, 2}. To show that

R(F , k) does not exist, it is enough for us to find a 2-coloring of

the positive integers that does not yield any monochromatic k-term

members of F . Consider the coloring χ : Z+ → {0, 1} represented by

the sequence 11001100 . . . . It is easy to see that there do not exist

113
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more than two consecutive numbers with the same color, nor do there

exist x, x + 2 of the same color. Hence, R(F , 3) does not exist and

therefore R(F , k) does not exist if k ≥ 3.

Example 4.2. Let F be the family of all arithmetic progressions

{a, a + d, a + 2d, . . . } such that a = 2i for some i ≥ 0. Consider the

2-coloring of Z+ defined by coloring all the powers of 2 red, and all

other positive integers blue. Then obviously there is no blue member

of F . Also, if X = {x, y, z} is red, where x < y < z, then X cannot be

an arithmetic progression. This is due to the fact that for all k ≥ 0,∑k
i=0 2

i = 2k+1 − 1, so that z − y > y − x. Hence, R(F , k) does not

exist for k ≥ 3.

Examples 4.1 and 4.2 may not be very surprising, since the col-

lection F consists of a rather small part of AP . The next example

uses a much larger collection F .

Example 4.3. Let F be the collection of arithmetic progressions

whose gaps are odd. Then the coloring of the positive integers defined

by coloring the even numbers red and the odd numbers blue yields no

monochromatic 2-term member of F . Thus, R(F , 2) does not exist.

There are many ways that one may choose a subcollection of

AP . Examples 4.1 and 4.3 illustrate one natural way, which is to

require that the gap d of the arithmetic progressions belongs to some

prescribed set of positive integers. This type of subcollection of AP

has been the subject of several recent research articles, and many

interesting problems remain unanswered. For this reason, we devote

most of this chapter to the idea of placing certain restrictions on the

gaps that the desired arithmetic progressions may have.

Before proceeding, we introduce the following notation and lan-

guage.

Notation. For D a set of positive integers, denote by AD the col-

lection of all arithmetic progressions whose gaps belong to D. We

will refer to D as the gap set. We refer to an element of AD as a

D-a.p. Also, if d is a positive integer, by a d-a.p. we shall mean an

arithmetic progression whose gap is d.
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We begin the study of the Ramsey properties of sets of type AD

by considering the case in which D is a finite set.

4.1. Finite Gap Sets

Example 4.1 hints that, for D finite, AD may not be regular (see

Definition 1.28). Indeed, the following theorem shows that such a D

is not even 2-regular.

Theorem 4.4. Let D be a finite set of positive integers. For k suffi-

ciently large, R(AD, k; 2) does not exist.

Proof. Let n = max({d : d ∈ D}). Define the 2-coloring of Z+ by

the string

11 . . . 1︸ ︷︷ ︸
n

00 . . . 0︸ ︷︷ ︸
n

11 . . . 1︸ ︷︷ ︸
n

00 . . . 0︸ ︷︷ ︸
n

. . . .

To prove the theorem, we will show that under this coloring there

is no monochromatic (n+ 1)-term arithmetic progression whose gap

belongs to D. Obviously, any arithmetic progression with gap n al-

ternates color, so there cannot exist even a monochromatic 2-term

arithmetic progression with gap n.

Now assume X is an arithmetic progression with gap less than n.

Then X cannot have more than n consecutive elements of the same

color. Hence R(AD, n+ 1; 2) does not exist. �

The proof of Theorem 4.4 shows that R(AD, n + 1; 2) does not

exist if n = max{d : d ∈ D}. However, it does not say that n + 1

is the minimum value of k such that R(AD, k; 2) does not exist. So

what is the minimum value? The answer seems to depend not only

on the size of D, but also on the specific elements of D.

For example, the third van der Waerden number, w(3), is known

to equal 9. Obviously, any 3-term arithmetic progression that is con-

tained in [1, 9] will have as its gap an element of D = {1, 2, 3, 4}.
Hence, for this choice of D, we have R(AD, 3) = w(3) = 9. On the

other hand, if E = {1, 3, 5, 7}, then (as discussed in Example 4.3) the

coloring 101010 . . . avoids 2-term arithmetic progressions with gaps

in E; hence R(AE, 2) = ∞.
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For D such that |D| ≤ 3, much is known about R(AD, k; 2). In

particular, a complete answer is known if |D| = 1 or |D| = 2. We

summarize these results in the next three theorems.

Theorem 4.5. If |D| = 1, then R(AD, 2; 2) = ∞.

Proof. Let D = {d}. Define a 2-coloring χ of Z+ as follows. First,

color [1, d] in any way. Then, for all x > d, define χ(x) such that

χ(x) �= χ(x − d). Then χ is a 2-coloring of Z+ that does not have

any monochromatic 2-term arithmetic progressions with gap d. This

proves the theorem. �

The next theorem makes use of Lemma 4.6, below, for which we

remind the reader of the following notation.

Notation. For D a set of positive integers and t a real number, we

write tD to denote {td : d ∈ D}.

Lemma 4.6. Let D be a set of positive integers, and let k, t ≥ 1.

Then R(AtD, k; r) = t[R(AD, k; r)− 1] + 1 (if R(AD, k; r) = ∞, then

R(AtD, k; r) = ∞).

Proof. Let m = R(AD, k; r), and assume m < ∞. To show that

R(AtD, k; r) ≤ t(m−1)+1, let χ be any r-coloring of [1, t(m−1)+1].

Define χ′ on [1,m] as follows:

χ′(x) = χ(t(x− 1) + 1).

By the definition of m, for some d ∈ D, within [1,m] there is a

d-a.p., {xi : 1 ≤ i ≤ k}, that is monochromatic under χ′. Then

{t(xi − 1) + 1 : 1 ≤ i ≤ k} is monochromatic under χ and is a k-term

td-a.p. Thus, R(AtD, k; r) ≤ t(m− 1) + 1.

To obtain the reverse inequality, note that by the definition of m,

there exists an r-coloring φ of [1,m − 1] that avoids monochromatic

k-term arithmetic progressions whose gaps belong to D. Define φ′ on

[1, t(m− 1)] as follows:

φ′[t(j − 1) + 1, tj] = φ(j) for each j = 1, 2, . . . ,m− 1.

Then φ′ avoids monochromatic k-term arithmetic progressions whose

gaps belong to tD. Hence, R(AtD, k; r) ≥ t(m− 1) + 1.
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It is easy to check that this same line of reasoning takes care of

the cases when R(AD, k; r) = ∞. �

We now consider 2-element gap sets.

Theorem 4.7. Let D = {a, b}, let g = gcd(a, b), and let k ≥ 2. If a
g

and b
g are not both odd and if k = 2, then R(AD, k) = a+ b− g + 1;

otherwise, R(AD, k) = ∞.

Proof. We first observe that it is sufficient to prove the theorem for

the situation in which g = 1. To see this, assume that the statement

of the theorem is true for all 2-element sets whose greatest common

divisor equals one. Now let D = {a, b} and let a′ = a
g and b′ = b

g not

both be odd. Then gcd(a′, b′) = 1 and therefore by Lemma 4.6 we

have

R(A{a,b}, 2) = g[R(A{a′,b′}, 2)−1]+1 = g(a′+b′−1)+1 = a+b−g+1.

If both a′ and b′ are odd, then by our assumption, R(A{a′,b′}, 2) = ∞,

so that by Lemma 4.6, R(A{a,b}, 2) = ∞.

We begin with the case in which R(AD, k) is finite. We prove

R(AD, 2) ≤ a + b by contradiction. Thus, we assume that a and b

are not both odd, that k = 2, and that there exists a 2-coloring χ of

[1, a+ b] that yields no monochromatic 2-term arithmetic progression

whose gap belongs to {a, b}.
For i, j ∈ Z, we denote by i⊕j the integer r ∈ {0, 1, . . . , a+b−1}

such that i + j ≡ r (mod (a+ b)). Then for all i ∈ [1, a + b] we have

|i⊕ a− i| ∈ {a, b}. Hence, by our assumption,

(4.1) χ(i) �= χ(i⊕ a) for all i ∈ [1, a+ b].

Now,

1⊕ (a+ b− 1)a ≡ (1− a) (mod (a+ b))

so that

1⊕ (a+ b− 1)a ≡ (b+ 1) (mod (a+ b)).(4.2)

Also, since a+ b− 1 is even, by repeated use of (4.1) we have

(4.3) χ(1⊕ (a+ b− 1)a) = χ(1).
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Combining (4.2) and (4.3), we have χ(b + 1) = χ(1), contradicting

our assumption about χ.

To prove R(AD, 2) ≥ a + b, we give a 2-coloring of [1, a + b − 1]

that yields no monochromatic 2-term D-a.p. Since gcd(a, a+ b) = 1,

for each i ∈ [1, a+ b− 1] there exists a unique j ∈ [1, a+ b− 1] such

that i ≡ ja (mod (a+b)). Hence the coloring χ of [1, a+b−1] defined

by

χ(i) =

{
1 if i ≡ ea (mod (a+ b)) with e even,

0 if i ≡ ua (mod (a+ b)) with u odd,

is a well-defined 2-coloring of [1, a+ b− 1].

Now, assume that y, z are both in [1, a + b − 1] with z = y + a.

If y ≡ ja (mod (a+ b)), then z ≡ (j + 1)a (mod (a+ b)), so that, by

the way χ is defined, χ(y) �= χ(z). Also, if y, z ∈ [1, a + b − 1] with

z = y + b, then

(4.4) y ≡ z ⊕ a (mod (a+ b)),

so that y ≡ ta(mod (a+ b)) where t ∈ [2, a+ b−1] (check that t �= 1).

So, from (4.4) and the definition of χ, we have χ(y) �= χ(z). Hence χ

is (AD, 2)-valid (see Definition 1.30) on [1, a+ b−1], which completes

the proof that R(AD, 2) = a+ b.

We now do the cases in which R(AD, k) is infinite. The case in

which a and b are both odd is covered by Example 4.3. Now assume

one of a and b is even (they cannot both be even). It remains only to

show that R(A{a,b}, 3) = ∞. We may assume that a is even.

To complete the proof, we shall exhibit a 2-coloring γ of Z+ that

has period 2a and that has no monochromatic 3-term arithmetic pro-

gression with gap in D.

If b≡ i (mod 2a) with a≤ i< 2a, then, by the periodicity of γ, if

X = {x, x+b, x+2b} were monochromatic under γ, then for any t > 0

with 2ta > b, the set {x+4ta, x+2ta+b, x+2b} would be a monochro-

matic arithmetic progression with gap 2ta− b ≡ −i (mod 2a). Hence,

it is sufficient for us to consider only those b such that b ≡ i (mod 2a),

where 1 ≤ i ≤ a. Also, since γ has period 2a, and since b is odd, we

may assume 1 ≤ b < a.
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We consider the following two cases, and define the coloring γ

(with period 2a) according to the case. In each case we let Bj denote

the interval [(j − 1)a+ 1, ja] for j ≥ 1.

Case 1. 1 ≤ b < a
2 . For each i ≤ a, let γ(i) = 1 if i is odd, and

γ(i) = 0 if i is even; and for each i > a, let γ(i) �= γ(i−a). Then there

is no monochromatic 2-term a-a.p., and γ has period 2a. If {x, x+ b}
is monochromatic with x ∈ Bj , then by the way γ is defined, since b

is odd, x + b ∈ Bj+1. Since x + b ≤ ja + a
2 , we have x + 2b ∈ Bj+1,

so that γ(x + 2b) �= γ(x + b). Thus, there is no monochromatic 3-

term b-a.p. in Z+, and γ has no monochromatic 3-term arithmetic

progressions with gap in D.

Case 2. a
2 ≤ b < a. Define γ as follows. For every � ∈ Z+, let

γ(B�) = 1 for � odd, and γ(B�) = 0 for � even. Clearly, there is no

monochromatic 2-term a-a.p. Also, if {x, x + b} is monochromatic,

with x ∈ Bj , then x+ b must belong to Bj . Thus, x+ 2b ∈ Bj+1 (or

else 2b < a), so that γ(x+2b) �= γ(x). So γ yields no monochromatic

3-term arithmetic progressions with gap in D. �

If we look over the proof of Theorem 4.7, we see that we have

proved something stronger than R(A{a,b}, 3) = ∞: in certain cases in

which |D| = {a, b}, it is possible to 2-color the positive integers so that
there are neither monochromatic 2-term a-a.p.’s nor monochromatic

3-term b-a.p.’s. In fact, it is possible to prove several results about

this type of “mixed” van der Waerden-type function. You will find

some interesting results on this in the exercises of this chapter.

The last proof was rather long for a situation in which the struc-

ture seems quite uncomplicated and small. If we up the ante to

|D| = 3, then, as you may have guessed, we do not have a theorem

akin to Theorem 4.7 – but we can say something.

Theorem 4.8. Let |D| = 3. Then R(AD, 4) = ∞.

Proof. Let D = {a, b, c} and assume a < b < c. The proof splits

naturally into two cases.

Case 1. 2b ≤ c. In this case let χ be the 2-coloring of Z+ defined

recursively as follows:

(i) χ(i) = 1 for 1 ≤ i ≤ a;
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(ii) χ(i) �= χ(i− a) for a < i ≤ b;

(iii) χ(i) �= χ(i− b) for b < i ≤ c;

(iv) χ(i) �= χ(i− c) for i > c.

Note that χ has period 2c. We will show that under χ there is

no monochromatic 4-term arithmetic progression whose gap belongs

to D.

Let j = � c
b�. For 1 ≤ i < j, let Bi = [(i − 1)b + 1, ib], and let

Bj = [(j − 1)b + 1, c]. Clearly, in each Bi, 1 ≤ i ≤ j, there is no

monochromatic 2-term a-a.p. Therefore there is no 3-term a-a.p. in

[1, c]. Notice that there is no monochromatic 2-term a-a.p. in [1, 2a],

and therefore, for each nonnegative integer k, there also cannot be

any in [kc + 1, kc + 2a]. Thus, in Z+ there is no monochromatic 4-

term a-a.p. By the same reasoning, there is no monochromatic 3-term

b-a.p. in Z+ (check this). Finally, it is clear from (iv) that there is no

monochromatic 2-term c-a.p.

Case 2. 2b > c. Let χ′ be the following 2-coloring of Z+ (note that

χ′ has period 4c):

(i) χ′(i) = 1 for 1 ≤ i ≤ a;

(ii) χ′(i) �= χ′(i− a) for a < i ≤ b;

(iii) χ′(i) �= χ′(i− b) for b < i ≤ 2c;

(iv) χ′(i) �= χ′(i− 2c) for i > 2c.

Let d = 2c. Then in the same way that we used 2b ≤ c in Case 1,

we may use 2b ≤ d to show that under χ′ there is no monochromatic 4-

term a-a.p., no monochromatic 3-term b-a.p., and no monochromatic

2-term d-a.p. (we leave the details as Exercise 4.2). Since there is

no monochromatic 2-term d-a.p., there cannot be a monochromatic

3-term c-a.p.

In each case, we have given a coloring of Z+ that yields no

monochromatic 4-term arithmetic progression whose gap belongs to

D, proving the theorem. �

Based on the results obtained above, let us denote by m(n) the

least positive integer m such that whenever D is a set of positive

integers with |D| = n we have R(AD,m) = ∞. The above theorems
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show that m(1) = 2, m(2) = 3, and 3 ≤ m(3) ≤ 4. It would be nice

to know more about the function m(n) (see Section 4.4 for some open

problems about m(n)).

4.2. Infinite Gap Sets

Van der Waerden’s theorem says that R(AZ+ , k; r) exists (is finite) for

all positive integers k and r. If we can find a proper subset D of Z+

such that R(AD, k; r) exists for all k and r, then we have strengthened

van der Waerden’s theorem. In the previous section we learned that

no finite D will work (see Theorem 4.4). For infinite D, the answer

is not so simple.

It is not hard to find certain sets D that strengthen van der

Waerden’s theorem. For example, by the next theorem we see that

we may take D to be the set of all multiples of a fixed positive integer

m. The theorem follows immediately from Lemma 4.6 by taking D

(of Lemma 4.6) to be Z+.

Theorem 4.9. Let m ≥ 2 be a fixed integer. Then for all positive

integers k and r,

R(AmZ+ , k; r) = m(w(k; r)− 1) + 1.

The following corollary is an easy consequence of Theorem 4.9.

We leave its proof as Exercise 4.6.

Corollary 4.10. Let F be a finite set of positive integers. Then

R(AZ+−F , k; r) < ∞.

We next consider a special case of Corollary 4.10 in which the

results are quite interesting.

Notation. For c ∈ Z+, denote by w′(c, k; r) the least positive integer

w′ such that for every r-coloring of [1, w′] there is a monochromatic

k-term arithmetic progression whose gap is at least c.

Notice that if c = 1, then w′(c, k; r) coincides with the classi-

cal van der Waerden number w(k; r). We also see that w′(c, k; r) =

R(AD, k; r), where D = {c, c + 1, c + 2, . . . }, and by Corollary 4.10
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we know that this number always exists. Let us take a closer look at

the numbers w′(c, k; r).

For arithmetic progressions of length three, we have the following

theorem, which is a generalization of the fact that w(3) = 9.

Theorem 4.11. Let c be a positive integer. Then w′(c, 3) = 8c+ 1.

Proof. Since w(3) = 9, by Proposition 2.35, any 2-coloring of

{1, 1 + c, 1 + 2c, . . . , 1 + 8c}
must have a monochromatic arithmetic progression of length three.

Obviously, its gap is at least c. This shows that w′(c, 3) ≤ 8c+ 1.

To show that 8c+ 1 is also a lower bound, consider the coloring

of [1, 8c] represented by the string A1B1A2B2, where Ai = 12c and

Bi = 02c for i = 1, 2.

We shall show, by contradiction, that under this coloring there

is no monochromatic 3-term arithmetic progression whose gap is at

least c. Assume there is such an arithmetic progression, P = {x, y, z}
with x < y < z. By the symmetry of the coloring, we may assume

that P has color 1. Since z − x ≥ 2c, one of the Ai’s must contain

two members of P , and the other Ai must contain one member of

P . Without any loss of generality, say x, y ∈ A1 and z ∈ A2. Then

z − y > 2c, contradicting the fact that y − x < 2c. This shows that

w′(c, 3) ≥ 8c+ 1, completing the proof. �

The same idea that was used to prove the lower bound of Theorem

4.11 can be used to prove the following more general fact (which has

the lower bound of Theorem 4.11 as a special case).

Before stating the theorem, we mention some convenient nota-

tion.

Notation. For positive integers c, k, and r with k, r ≥ 2, let λ(c, k, r)

denote the r-coloring λ : [1, cr(k− 1)2] → {0, 1, . . . , r− 1} defined by

the string (B0B1 . . . Br−1)
k−1, where for each i = 0, 1, . . . , r − 1, we

denote by Bi a string of i’s having length c(k − 1), and where there

are k − 1 copies of the block (B0B1 . . . Br−1).

Example 4.12. The coloring λ(3, 5, 2) is the coloring of [1, 72] rep-

resented by the string (012112)4 = 012112012112012112012112.
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Theorem 4.13. For all c ≥ 1 and k, r ≥ 2, we have

w′(c, k; r) ≥ cr(k − 1)2 + 1.

Proof. To prove this, it suffices to show that, under λ(c, k, r), there

is no monochromatic k-term arithmetic progression whose gap is at

least c. We leave the details as Exercise 4.7. �

When dealing with the functions w′(c, k; r), the following modi-

fication of the terminology used for valid colorings will be useful.

Definition 4.14. An r-coloring that admits no monochromatic k-

term arithmetic progressions with gap at least c is called a (c, k; r)-

valid coloring. For r = 2, we call the coloring (c, k)-valid.

Theorem 4.13 gives a lower bound for w′(c, k; r). Of course, find-

ing an upper bound would be much more significant, as it would

provide an upper bound for the classical van der Waerden numbers

w(k; r) (letting c = 1). This is one of the main reasons for investi-

gating families F that are subsets of AP . One possible approach to

finding an upper bound on w′(c, k; r) would be to first find a fairly

simple description of all maximal length (c, k)-valid colorings. Some

conjectures along these lines have been formulated (see the References

section). For the case of k = 3 and r = 2, it turns out that for each

c ≥ 2, the maximal length valid colorings are quite simple to describe

– in fact, as we shall see in the next theorem, there is only one!

Notice that if χ is any valid r-coloring of the interval [a, b], then

an r-coloring χ′ obtained from χ by merely renaming the colors is

still valid. Hence, when counting valid colorings we will not consider

such pairs χ and χ′ to be distinct colorings, unless otherwise stated.

It is well known that there are three distinct 2-colorings of [1, 8] for

which there is no monochromatic 3-term arithmetic progression, i.e.,

which are (1, 3)-valid. These are represented by 11001100, 10011001,

and 10100101 (the reader should verify this).

Note that the first of these colorings is the coloring λ(1, 3, 2).

Theorem 4.17, below, shows that for c ≥ 2, the coloring λ(c, 3, 2)

is the only maximal length (c, 3)-valid 2-coloring of [1, 8c].

We shall need the following two lemmas.
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Lemma 4.15. Let c, k,m ∈ Z+, and let χ be a (c, k)-valid 2-coloring

of [1,mc]. Let i ∈ {1, 2, . . . , c} and let χ∗ be the 2-coloring of [1,m]

defined by χ∗(j) = χ((j − 1)c+ i) for each j = 1, 2, . . . ,m. Then χ∗

is (1, k)-valid on [1,m].

Proof. Assume χ∗ is not (1, k)-valid on [1,m]. Then under χ∗ there

is a monochromatic arithmetic progression

{x, x+ d, . . . , x+ (k − 1)d} ⊆ [1,m].

Now consider the set S = {(x − 1 + jd)c + i : j = 0, 1, . . . , k − 1},
an arithmetic progression contained in [1,mc]. It follows from the

definition of χ∗ that S is monochromatic under χ. Also, the gap of S

is cd ≥ c, contradicting the assumed validity of χ. �

In the next two proofs we will be using the (AP, 3)-valid 2-

colorings (i.e., the (1, 3)-valid 2-colorings) of [1, 8], including ones that

can be obtained from another coloring by interchanging the names of

the two colors. Hence, there are six such colorings, which we denote

as follows:

σ = 11001100, τ = 10011001, μ = 10100101,

σ′ = 00110011, τ ′ = 01100110, μ′ = 01011010.

Lemma 4.16. Let c ≥ 3, and assume that χ : [1, 8c] → {0, 1} is a

(c, 3)-valid 2-coloring with χ(c) = 1. Then A = {c, 2c, . . . , 8c} must

have the color pattern σ = 11001100.

Proof. Define χ∗ on [1, 8] by χ∗(j) = χ(jc). By Lemma 4.15 (taking

i = c in its statement), χ∗ is (1,3)-valid on [1,8]. Hence, because

χ(c) = 1, as noted before, χ∗ has one of the color patterns σ, τ , or μ.

Thus A has one of these three color patterns. To complete the proof,

we shall show that it is impossible for A to have color pattern τ or μ.

We consider two cases; we will reach a contradiction in each case.

Case 1. c is odd. Let B = {1, c + 1, 2c + 1, . . . , 7c + 1}. By Lemma

4.15, the function χ′ defined on [1,8] by χ′(j) = χ((j − 1)c + 1) has

one of the six color patterns σ, σ′, τ , τ ′, μ, μ′. Hence, under χ, B

has one of these six color patterns.
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Let us first assume that A has color pattern τ ; we will reach a

contradiction.

If B has either coloring σ or μ′, then we have χ(c + 1) =

χ(8c) = 1. Hence, χ
(
9c+1
2

)
= 0, for otherwise

{
c+ 1, 9c+1

2 , 8c
}
would

be a monochromatic arithmetic progression with gap at least c, which

is not possible. This implies that
{
2c+ 1, 9c+1

2 , 7c
}
is monochromatic

under χ, a contradiction.

If B has one of the colorings σ′ or τ , then χ(4c) = χ(7c+1) = 1.

Hence, χ(c− 1) = 0. It follows that {c− 1, 3c, 5c+ 1} has color 0, a

contradiction.

The remaining possibilities for coloring B are τ ′ and μ. For each

of these cases, χ(2c + 1) = χ(5c) = 1, so that χ(8c − 1) = 0. This

implies that {4c+1, 6c, 8c−1} is monochromatic under χ and its gap

is at least c; again a contradiction.

To complete Case 1, now assume that A has color pattern μ.

If B has any of the color patterns σ, τ ′, or μ, then χ(3c) =

χ(5c+ 1) = 1. Therefore, we must have χ(c− 1) = 0 (by the validity

of χ). This implies that {c − 1, 2c, 3c + 1} is monochromatic, which

is not possible. If B has either of the color patterns σ′ or μ′, then

χ(c) = χ(6c + 1) = 1, which implies that χ
(
7c+1
2

)
= 0; but then{

2c, 7c+1
2 , 5c+ 1

}
has color 0, a contradiction. Finally, if B has color

pattern τ , then since χ(3c) = χ(4c+1) = 1, we must have χ(2c−1) =

0; but then {2c− 1, 4c, 6c+ 1} is monochromatic, a contradiction.

Case 2. c is even. This case has a very similar proof to that of

Case 1, the main difference being that instead of using the set B, we

use C = {2, c + 2, 2c + 2, . . . , 7c + 2}. We shall work out two of the

subcases and leave the other subcases as Exercise 4.8.

Subcase i. A has color pattern τ and C has color pattern σ. In this

case, χ(c+ 2) = χ(8c) = 1, so that χ( 92c+ 1) = 0. This implies that{
2c+ 2, 92c+ 1, 7c

}
must be monochromatic, which is not possible.

Subcase ii. A has color pattern τ and C has one of the color patterns

σ′ or τ . In this case, χ(4c) = χ(7c+2) = 1, and therefore χ(c−2) = 0

(by assumption, c − 2 ≥ 1). Thus, all members of {c − 2, 3c, 5c + 2}
have color 0, a contradiction. �
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We are now ready to prove the theorem which shows that for all

c ≥ 2, the only (c, 3)-valid coloring of [1, 8c] is λ(c, 3, 2).

Theorem 4.17. Let c ≥ 2, and assume that χ is a (c, 3)-valid 2-

coloring of [1, 8c] with χ(1) = 1. Then χ = λ(c, 3, 2).

Proof. We can show that the theorem is true for c = 2 directly by

checking that λ(2, 3, 2) = 1111000011110000 is the only (2, 3)-valid

2-coloring of [1, 16] (we leave this to the reader as Exercise 4.9).

Now let c ≥ 3 and let χ be any (c, 3)-valid 2-coloring of [1, 8c]

such that χ(c) = 1. To complete the proof, it is sufficient to show

that for each i = 1, 2, . . . , c,

(4.5) Ai = {(j − 1)c+ i : 1 ≤ j ≤ 8} has color scheme 11001100.

We know from Lemma 4.16 that (4.5) is true for i = c, so let

us assume that i ∈ {1, 2, . . . , c − 1}. Let χi be the coloring of [1, 8]

defined by χi(j) = χ((j − 1)c+ i). By Lemma 4.15, χi is (1, 3)-valid

on [1,8]. Therefore χi has one of the color patterns σ, σ′, τ , τ ′, μ, μ′.

Hence, we will complete the proof if we can show that Ai does not

have any of the color patterns σ′, τ , τ ′, μ, or μ′. We shall do this by

contradiction.

First, assume Ai has one of the color patterns σ′, τ , or μ. Then

χ(c + i) = χ(3c) = 0, so χ(5c − i) = 1. Hence, {5c − i, 6c, 7c + i} is

monochromatic, contradicting the (c, 3)-validity of χ.

Next, assume Ai has the color pattern τ ′. Then χ(2c + i) =

χ(5c) = 1, implying that χ(8c−i) = 0. This gives the monochromatic

arithmetic progression {i, 4c, 8c− i}, a contradiction.

Finally, assume Ai has the pattern μ′. In this case, χ(i) =

χ(4c) = 0, which implies that {3c + i, 5c, 7c − i} is monochromatic,

again impossible. �

In the above discussion, for some constant c, the gaps in the

arithmetic progressions are required to be no less than c. We can

generalize this type of restriction if, instead of choosing c to be the

same constant for all arithmetic progressions, the value of this mini-

mum gap size is dependent on the particular arithmetic progression.

Specifically, given a function f : Z+ → R+, define w′(f(x), k; r) to
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be the least positive integer w′, if it exists, such that for every r-

coloring of [1, w′] there is a monochromatic k-term arithmetic pro-

gression {a, a+d, . . . , a+(k−1)d} with d ≥ f(a). Hence, the function

w′(c, k; r) represents the special case of w′(f(x), k; r) in which f is the

constant function c.

Example 4.18. Let f(x) = x2. Here we are interested in the collec-

tion of arithmetic progressions that consists of all those whose first

term is 1, those whose first term is 2 with gap at least 4, those whose

first term is 3 with gap at least 9, etc. Hence, for w′(f(x), 3; r) we

would not consider progressions such as {2, 3, 4}, {2, 4, 6}, {2, 5, 8},
and {3, 11, 19}, but would consider those such as {2, 6, 10}, {2, 7, 12},
{3, 12, 21}, {3, 13, 23}, and {4, 20, 36}.
Definition 4.19. Let f be a function defined on the positive integers.

IfX = {a, a+d, . . . , a+(k−1)d} is an arithmetic progression such that

d ≥ f(a), we shall call X an f -a.p. Further, if an r-coloring avoids

monochromatic k-term f -a.p.’s, we will say that it is (f, k; r)-valid,

or just (f, k)-valid if r = 2.

The existence of w′(c, k; r) is a direct consequence of van der

Waerden’s theorem. As we can see, for many choices of f(x), there is

a much greater restriction placed on the arithmetic progressions than

there is if we are only requiring that the gap be at least c. Hence, as

you might guess, the existence of w′(f(x), k; r) is not as easy to show.

In fact, as we shall see, in many cases it does not exist.

For 2-term arithmetic progressions, the question of the existence

of w′(f(x), k; r) is relatively easy to answer. According to the next

theorem, not only does it always exist, but we are able to give a precise

formula for its value. For the purpose of keeping the statement of the

theorem as simple as possible, we will assume that f is integer-valued;

however, it is easy to see that w′(f(x), 2; r) will still exist in the more

general case.

Before stating the theorem we remind the reader of the following

notation.

Notation. If g is a function, we denote by g(n)(x) the nth iterate of

g (or the composition of g with itself n times). That is,

g(2)(x) = g(g(x)), g(3)(x) = g(g(g(x))), etc.
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Also, we define g(0)(a) to equal a for all a (that is, g(0) is the identity

function).

Theorem 4.20. Let f : Z+ → Z+ be a nondecreasing function. Let

g(x) = f(x) + x. Then w′(f(x), 2; r) = g(r)(1).

Before delving into the proof, we look at why the existence of

w′(f(x), 2; r) is not surprising. Obviously, for any r-coloring of Z+,

some color must occur an infinite number of times. Hence, if integer

x is colored with this color, then clearly there is another integer y of

the same color such that y − x ≥ f(x) for any function f .

Proof of Theorem 4.20. To show that g(r)(1) is an upper bound,

let χ be any r-coloring of [1, g(r)(1)]. Applying the pigeonhole prin-

ciple, we see that there exist two members of the (r + 1)-element set

{1, g(1), g(2)(1), . . . , g(r)(1)} that have the same color. Say

χ(g(i)(1)) = χ(g(j)(1)),

where 0 ≤ i < j ≤ r. Since

(4.6) g(j)(1)− g(i)(1) ≥ g(i+1)(1)− g(i)(1) = f(g(i)(1)),

{g(i)(1), g(j)(1)} is a monochromatic 2-term f -a.p. This proves the

upper bound.

To show that g(r)(1) is also a lower bound for w′(f(x), 2; r), we

give a 2-coloring of [1, g(r)(1) − 1] that has no monochromatic pair

{a, a+ d} with d ≥ f(a). Note that by (4.6), for each i = 1, 2, . . . , r,

the interval Ai = [g(i−1)(1), g(i)(1) − 1] is not empty. Now define

χ(Ai) = i for each i = 1, 2, . . . , r. By (4.6), no two members of Ai

differ by more than f(g(i−1)(1))−1. Since f is nondecreasing, for each

i there does not exist {a, a+ d} ∈ Ai with d ≥ f(a). This completes

the proof. �

We now consider the existence of w′(f(x), 3; 2) when f is a func-

tion from Z+ to R+. The next theorem shows that w′(f(x), 3; 2)

always exists.

Theorem 4.21. For any function f : Z+ → R+, w′(f(x), 3; 2) < ∞.
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Proof. Obviously, if the theorem is true for a function f1 and if

f1(x) ≥ f2(x) for all x ∈ Z+, then the theorem is also true for f2.

Hence, there is no loss of generality if we assume that f is a nonde-

creasing function.

We will show that for every 2-coloring of Z+ there is a monochro-

matic 3-term arithmetic progression of the desired type. The theorem

then follows by the compactness principle (see Section 2.1).

Let χ be a 2-coloring of Z+. We can think of χ as a sequence of

0’s and 1’s: χ = χ(1)χ(2)χ(3) . . . . We consider two cases.

Case 1. χ does not include infinitely many copies of the pattern 001

or the pattern 110 (i.e., there do not exist infinitely many t such that

χ(t) = χ(t+ 1) and χ(t) �= χ(t+ 2)). In this case, there is some n so

that χ(n)χ(n+ 1)χ(n+ 2) . . . is one of the infinite binary sequences

000. . . , 111. . . , or 101010. . . . For each of these three possibilities,

there is obviously a 3-term arithmetic progression whose first term is

n and whose gap is at least f(n).

Case 2. One of the patterns 001 or 110 occurs infinitely often. With-

out loss of generality, say there are infinitely many occurrences of 001.

Let χ(a) = 0, χ(a+ 1) = 0, and χ(a+ 2) = 1 be one of these occur-

rences. Then there exists another occurrence, χ(b) = 0, χ(b+1) = 0,

and χ(b+2) = 1, where b−a ≥ f(a+2) (otherwise there would not be

infinitely many occurrences of 001). Let d = b−a. Then {a, a+d+1}
has color 0, and {a+ 2, a+ d+ 2} has color 1.

If χ(a + 2d + 2) = 1, then {a + 2, a + d + 2, a + 2d + 2} is a

monochromatic arithmetic progression with gap d ≥ f(a + 2). If

χ(a+ 2d+ 2) = 0, then {a, a+ d+ 1, a+ 2d+ 2} is a monochromatic

arithmetic progression with gap d+ 1 ≥ f(a+ 2) ≥ f(a).

In both cases we have produced the desired type of arithmetic

progression. �

The following theorem, which also tells us that w′(f(x), 3; 2) ex-

ists, is more useful than Theorem 4.21 because it provides more in-

formation about the magnitude of w′(f(x), 3; 2). We do not include

the proof.
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Theorem 4.22. Let f : Z+ → R+ be a nondecreasing function. Let

β = 1 + 4
⌈
f(1)
2

⌉
. Then

w′(f(x), 3; 2) ≤
⌈
4f

(
β + 4

⌈
f(β)

2

⌉)
+ 14

⌈
f(β)

2

⌉
+

7β − 13

2

⌉
.

Theorem 4.22 gives an upper bound for w′(f(x), 3; 2). The next

theorem provides a lower bound. To keep the notation simpler, we

assume f : Z+ → Z+, although a more general result can be obtained

by the same method of proof.

Theorem 4.23. Let f : Z+ → Z+ be a nondecreasing function with

f(n) ≥ n for all n ∈ Z+. Let h = 2f(1) + 1. Then

w′(f(x), 3; 2) ≥ 8f(h) + 2h+ 2− t,

where t is the largest integer such that f(t) + t ≤ 4f(h) + h+ 1.

Proof. Let m = 8f(h) + 2h + 1 − t. To prove the theorem we shall

give a 2-coloring of [1,m] under which there is no monochromatic

3-term f -a.p.

We begin by partitioning [1,m] into the following four intervals:

I1 = [1, h− 1],

I2 = [h, 2f(h) + h− 1],

I3 = [2f(h) + h, 4f(h) + h],

I4 = [4f(h) + h+ 1,m].

Now define the 2-coloring χ on [1,m] as follows: let χ(I1 ∪ I3) = 1

and χ(I2 ∪ I4) = 0.

Assume that there is a monochromatic 3-term arithmetic progres-

sion P = {a, b, c} with d = b−a = c−b ≥ f(a). Since χ(a) = χ(b), we

have the following six cases, each of which leads to a contradiction.

Case 1. a, b ∈ I1. Then d ≤ h− 2, and therefore c = b+ d ≤ 2h− 3.

Also, since d ≥ f(1), we have c ≥ 1 + 2f(1) = h. Thus, c ∈ I2, which

contradicts the fact that P is monochromatic.
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Case 2. a ∈ I1 and b ∈ I3. In this case d ≥ 2f(h) + 1, and therefore

c ≥ 4f(h) + h+ 1. This implies χ(c) = 0, a contradiction.

Case 3. a, b ∈ I3. Then c ≥ a + 2f(a) ≥ 3a ≥ 6f(h) + 3h, and

therefore χ(c) = 0, so P is not monochromatic.

Case 4. a, b ∈ I2. In this case we have d ≤ 2f(h) − 1, and hence

c ≤ b+ 2f(h)− 1 ≤ 4f(h) + h− 2. Also, c ≥ a+ 2f(a) ≥ h+ 2f(h).

So c ∈ I3, a contradiction.

Case 5. a ∈ I2, b ∈ I4. Then d ≥ 4f(h) + h + 1 − a, which implies

c ≥ 8f(h) + 2h + 2 − a. Thus, from the definition of m, it must be

the case that a ≥ t+ 1. Hence, by the meaning of t,

c ≥ a+ 2f(a)

≥ t+ 1 + 2f(t+ 1)

> 4f(h) + h+ 1 + f(t+ 1)

> 8f(h) + 2h+ 2− (t+ 1) = m,

which is not possible.

Case 6. a, b ∈ I4. Then c ≥ a + 2f(a) ≥ 3a > m, which is not

possible. �

Example 4.24. It is not hard to compute bounds based on Theorems

4.22 and 4.23 for the function f(x) = x+ c, where c is a nonnegative

integer. If c is odd, we obtain

1
2 (43c+ 49) ≤ w′(x+ c, 3; 2) ≤ 64c+ 61.

Similar bounds may be obtained if c is even; we leave this as Exercise

4.10.

By the next theorem, we can improve upon the upper bound that

is supplied by Theorem 4.22 for w′(x+c, 3; 2). The proof makes use of

the fact that w′(x, 3; 2) = 24; this and some other computer-generated

values are presented in Table 4.1.
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f(x) w′(f(x), 3; 2))

x 24

x+ 1 46

x+ 2 67

x+ 3 89

x+ 4 110

x+ 5 132

2x 77

2x+ 1 114

Table 4.1. Values of w′(f(x), 3; 2)

Interestingly, every one of these values agrees exactly with the

lower bound given by Theorem 4.23.

Theorem 4.25. Let c be a nonnegative integer. Then⌈
43c

2

⌉
+ 24 ≤ w′(x+ c, 3; 2) ≤ 23c+ 24.

Proof. The lower bound is taken from Example 4.24. For the upper

bound, let χ be any 2-coloring of [1, 23c + 24]. Let χ′ be the 2-

coloring of [1,24] defined by χ′(i) = χ((c + 1)(i − 1) + 1). Since, as

noted above, w′(x, 3; 2) = 24, under χ′ there exists a monochromatic

arithmetic progression {a, a+ d, a+ 2d} with d ≥ a. Therefore

{(c+ 1)(a− 1) + 1, (c+ 1)(a+ d− 1) + 1, (c+ 1)(a+ 2d− 1) + 1}

is an arithmetic progression that is monochromatic under χ with a

gap that is no less than (c + 1)a = (c + 1)(a − 1) + 1 + c. Hence, it

is a monochromatic f -a.p. where f(x) = x+ c, which establishes the

upper bound. �

We know from Theorem 4.21 that w′(f(x), 3; 2) always exists. In

contrast, w′(f(x), 4; 2) does not always exist; in fact, it only exists if

f is a rather slowly growing function. The situation is similar when

more than two colors are used, even for 3-term arithmetic progres-

sions. The details are found in the following theorem.
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Theorem 4.26. For k ≥ 3 and r ≥ 2, let

c =
r−1
√
2− 1

k − 1
.

If k ≥ 4 or r ≥ 3, then w′(cx, k; r) does not exist.

Proof. Assume k ≥ 4 or r ≥ 3 and let b = r−1
√
2. To prove the

theorem, we give an r-coloring of Z+ for which there does not exist a

monochromatic arithmetic progression {a+ jd : 0 ≤ j ≤ k − 1} with

d ≥ ca.

Let χ : Z+ → {0, 1, . . . r − 1} be defined as follows. Whenever

x ∈ Bi = [bi, bi+1 − 1], where i is a nonnegative integer, let χ(x) = ı̄

where i ≡ ı̄ (mod r) and 0 ≤ ı̄ ≤ r − 1.

Let us assume that {a, a+ d, . . . , a+ (k− 1)d} is monochromatic

under χ. We will complete the proof by showing that d must be less

than ca. Let n be such that bn ≤ a+ d < bn+1. Then since d < bn+1,

we know that a + 2d < 2bn+1 = bn+r. Since χ(a + 2d) = χ(a + d),

the only Bi that a+ 2d can belong to is Bn.

Now let us look at a+ 3d. Since a+ 2d ∈ Bn, we have

a+ 3d = (a+ 2d) + d < 2bn+1 = bn+r.

Since χ(a+ 3d) = χ(a+ d), this implies bn ≤ a+ d < a+ 3d < bn+1,

so that a+ 3d ∈ Bn.

We see that by applying this same line of reasoning, we will obtain

a+ 4d, a+ 5d, . . . , a+ (k − 1)d ∈ Bn. Since

bn ≤ a+ d < a+ (k − 1)d < bn+1,

we have

d <
bn+1 − bn

k − 2
.

Thus,

a ≥ bn − d > bn
(
1− b− 1

k − 2

)
≥ bn

2
= bn−(r−1).

Since χ(a) = χ(a+ d), it follows that a ∈ Bn.

We have shown that bn ≤ a < a+ (k − 1)d < bn+1, so that

d <
bn+1 − bn

k − 1
= cbn ≤ ca.
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Thus, we have shown that there is no monochromatic k-term arith-

metic progression {a + jd : 0 ≤ j ≤ k − 1} whose gap is at least ca,

thereby proving the theorem. �

For the case in which r = 2, the following theorem, which we offer

without proof, improves upon Theorem 4.26.

Theorem 4.27. Let k ≥ 4. Then

w′
(

x

k2 − 4k + 3
, k; 2

)
does not exist.

Theorems 4.11, 4.13, 4.17, 4.20–4.23, 4.26 and 4.27 deal with

van der Waerden-type problems in which the set of allowable gaps is

restricted by insisting that the gaps exceed a certain value. In par-

ticular, in Theorems 4.11, 4.13, and 4.17 we restricted the allowable

gaps to belong to sets of the form D = {c, c+1, c+2, . . . } for a fixed

positive integer c, and found, among other things, that in this case

the associated van der Waerden-type numbers always exist. There

are, of course, other ways to restrict the set of allowable gaps and ask

if the corresponding van der Waerden-type function exists. It would

be very nice if we could characterize which sets D have the property

that R(AD, k; r) exists for all k and r. Such a characterization is

not known. However, we will give a partial answer by addressing the

following questions:

1. What general properties must a set D have in

order for R(AD, k; r) to exist for all k and r?

2. Are there any properties that preclude AD from

having this property?

It will be convenient to introduce some terminology.

Definition 4.28. Let D ⊆ Z+. For a fixed positive integer r, we say

that D is r-large if R(AD, k; r) exists for all k. We call D large if it

is r-large for all r ≥ 1.

Note that if s ≥ r, then any set that is s-large must also be

r-large.
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Let us consider Question 1 above. That is, what properties are

necessary for D to be large? One such property is fairly easy to prove.

We state it in the following theorem. Note that the theorem gives a

condition that is necessary in order for a set to be 2-large. By the

previous paragraph, it is also a necessary condition in order for the

set to be large.

Theorem 4.29. If D is 2-large, then it must contain a multiple of

m for every m ∈ Z+.

Proof. Assume that D is a set not containing a multiple of every

positive integer. Let n ∈ Z+ be such that D contains no multiple of

n. The proof is completed by showing that D is not 2-large, i.e., that

there is a 2-coloring of Z+ under which there do not exist arbitrarily

long monochromatic arithmetic progressions with gap belonging to

D. This may be done by an argument that is essentially the same

as the proof of Theorem 4.4; we leave the details to the reader as

Exercise 4.15. �

Note that the condition of Theorem 4.29 – that D must contain

a multiple of every positive integer – is equivalent to the stronger-

sounding condition that D must contain an infinite number of multi-

ples of every positive integer.

Theorem 4.29 quickly rules out 2-largeness for some familiar sets.

Here is one example.

Example 4.30. Let P be the set of prime numbers, and let c ∈ Z+

be even. Using Theorem 4.29, we quickly see that P is not 2-large

since the integer 2 is the only even element in P . Similarly, P + c is

not 2-large (why?).

By Example 4.30, we know that all translations of P by an even

positive integer are not 2-large. For translations by an odd positive

integer, the answer is much less obvious. The following theorem gives

a complete answer. The proof of the second statement of the theorem

is very deep and we do not present it here; we will, however, prove

the first statement.

Theorem 4.31. For all integers c ≥ 2, the set P + c is not 2-large.

The sets P + 1 and P − 1 are large.
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Partial Proof. We prove the first statement. The case in which c is

even was done in Example 4.30. Now assume that c ≥ 3 is odd. For a

contradiction, assume that P + c is 2-large. By Theorem 4.29, some

positive multiple of 3c, say 3mc, belongs to P + c. This implies that

3mc− c = c(3m− 1) is prime. However, this gives us a contradiction,

since c �= 1 and 3m− 1 �= 1. �

As it turns out, a sequence of positive integers that grows too

quickly cannot be large. We now mention two results along these

lines. For other interesting results of this type, we refer the reader to

the references given in Section 4.5.

Theorem 4.32. Let D = {di}∞i=1 be an increasing sequence of posi-

tive integers such that di divides di+1 for all i. Then D is not 2-large.

Proof. Define a 2-coloring χ : Z+ → {0, 1} recursively as follows.

First, for all x ∈ [1, d1] let χ(x) = 1. Once χ has been defined on

[1, di], we extend χ to [1, di+1] by having χ(x) �= χ(x − di) for each

x ∈ [di + 1, di+1].

To complete the proof we will show that for each i ≥ 1 and each

j ≥ 1, there is no monochromatic 3-term di-a.p. contained in [1, dj ].

First note that, by the way χ is defined on each of the intervals

[di + 1, di+1], for every i ≥ 1 there can be no monochromatic 2-term

di-a.p. contained in [1, di+1].

Now assume that j ≥ i+2 and that x1 < x2 < x3 is a monochro-

matic di-a.p. that is contained in [1, dj ]. Since di+1 divides dj , by

the way χ is defined, we see that every subinterval of [1, dj ] of the

form [kdi+1 + 1, (k + 1)di+1], k ≥ 1, either has the same color pat-

tern as [1, di+1], or has the pattern obtainable from that of [1, di+1]

by replacing all 1’s by 0’s and vice versa. Hence, since there is no

monochromatic 2-term di-a.p. in [1, di+1], neither of the pairs {x1, x2}
or {x2, x3} can be contained in any one interval [kdi+1+1, (k+1)di+1].

This implies that x3 − x1 > di+1, and hence x3 − x1 > 2di, which

contradicts the fact that {x1, x2, x3} is a di-a.p.. �

Example 4.33. LetG = {a, ar, ar2, ar3, . . . } be an infinite geometric

sequence. ThenR(AG, k; 2) does not exist for large enough k. In other

words, there exists a 2-coloring of Z+ that does not have, for some k,
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a monochromatic k-term arithmetic progression with difference from

G.

We mention the following result without proof.

Theorem 4.34. Let A = {ai}∞i=i be a set of positive integers such

that ai ≥ 3ai−1 for all i ≥ 2. Then A is not 2-large.

We now shift our attention to finding sufficient conditions for

a set to be large. We begin with a very useful theorem that tells

us that if a union of a finite number of sets is large, then at least

one of the sets itself must be large. This theorem is itself a Ramsey

theorem in the sense in which we described Ramsey theory in Chapter

1: Ramsey theory is the study of the preservation of properties under

set partition. That is, this theorem states that if we have a set that

is large, and if we partition this set into n subsets, then one of the

subsets must be a large set, i.e., if we n-color a large set, then there

must exist a monochromatic large subset.

Theorem 4.35. Let D be a large set, and let n ≥ 1. If

D = D1 ∪D2 ∪ · · · ∪Dn,

then some Di is large.

Proof. We will prove the theorem for n = 2. It is then a simple

induction argument to extend it to general n. Let D = D1 ∪D2, and

assume that neither D1 nor D2 is large. We will prove the theorem

by showing that D is not large.

Since D1 is not large, there exist positive integers k1 and r, and

some r-coloring χ of Z+, under which there is no monochromatic k1-

term D1-a.p. Similarly, there exist positive integers k2 and s, and an

s-coloring φ of Z+, under which there is no monochromatic k2-term

D2-a.p.

Now, let σ to be the rs-coloring of Z+ given by σ(i) = (χ(i), φ(i)).

Thus, the “colors” of σ consist of all ordered pairs whose first coordi-

nate is one of the r colors of χ and whose second coordinate is one of

the s colors of φ. Let k = max{k1, k2}. To show that D is not large

it will suffice to show that if P is any k-term arithmetic progression
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that is monochromatic under σ, then the gap of P does not belong

to D.

Let P = {x1, x2, . . . , xk} be an arithmetic progression that is

monochromatic under σ. Then χ(x1) = χ(x2) = · · · = χ(xk). Hence,

by our assumptions about χ and the fact that k ≥ k1, the gap of P

cannot belong to D1. Similarly, φ(x1) = φ(x2) = · · · = φ(xk), which

implies that the gap of P cannot belong to D2. Hence the gap of

P does not belong to D1 ∪ D2. Since D = D1 ∪ D2, the proof is

complete. �

The following fact is an immediate consequence of Theorems 4.4

and 4.35.

Corollary 4.36. If D is a large set and F is a finite set, then D−F

is large.

Note that the proof of Theorem 4.35 actually tells us more than

the statement of the theorem. It says that if D1 is not r-large, and

if D2 is not s-large, then D1 ∪ D2 is not rs-large. Extending this

statement to n sets, it tells us that if Di is not ri-large for each

i = 1, 2, . . . , n, then D1∪D2∪· · ·∪Dn is not r1r2 · · · rn-large. Looking
at the contrapositive of this, and speaking in somewhat more general

terms, it describes a way of going from a set that has a certain degree

of largeness, to a subset of the set that has another (smaller) degree of

largeness (that is, going from r1r2 · · · rn-largeness to the ri-largeness

of Di for some i).

On the other hand, it is generally more difficult to prove results

that involve showing that the r-largeness of a certain set implies the

r-largeness of a proper subset of that set. One such result that is

relatively easy to prove, however, is the following refinement of the

above corollary.

Theorem 4.37. Let r be a positive integer, and assume D is r-large.

If F is finite, then D − F is r-large.

Proof. It is sufficient to show that for every d ∈ D, the set D − {d}
is r-large (why?). We shall do this by contradiction. So assume

that d0 ∈ D, and that D − {d0} is not r-large. Thus, there exist

an r-coloring χ of Z+, and a positive integer k, such that under χ
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there is no monochromatic k-term arithmetic progression whose gap

belongs to D − {d0}. Since D is r-large, this implies that under χ

there are arbitrarily long monochromatic d0-a.p.’s. By Theorem 4.29,

md0 ∈ D for some m ≥ 2. It is clear that under χ there are arbitrarily

long monochromatic md0-a.p.’s. Since md0 ∈ D − {d0}, we have a

contradiction. �

It is interesting to look at the largeness property for some well-

known sequences. Consider, for example, the Fibonacci sequence,

F = {fi : i ∈ Z+} defined as follows: f1 = f2 = 1 and, for n ≥ 3,

fn = fn−1 + fn−2. We would like to know whether F is large and, if

not, what is the greatest value of r such that F is r-large? A partial

answer is given by the following theorem.

Theorem 4.38. The set of Fibonacci numbers, F , is not 4-large.

Proof. Let D1 be the set of members of F that are even integers, and

let D2 be the set of those members that are odd. By Theorem 4.29,

D2 is not 2-large. Two well-known, and easily verifiable, facts about

F are: (1) D1 = {f3i : i ∈ Z+}; and (2) fk ≥ 3
2fk−1 for all k ≥ 3.

By (1) and (2), we see that D1 satisfies the hypotheses of Theorem

4.34, and hence D1 is not 2-large. From the discussion immediately

following Corollary 4.36, we see that F = D1 ∪D2 is not 4-large. �

In this text we are limiting our methods to what are considered

elementary in the sense that we are relying on the basic techniques of

combinatorics and number theory on the set of integers. Some very

useful and powerful theorems in Ramsey theory have also been proven

by entirely different techniques. For example, several important im-

provements over van der Waerden’s original theorem have been found

by the use of ergodic theory and the methods of measure-preserving

systems. These are very deep results, and we will not be including

any of their proofs here, but we would like to mention at least one

important special case of one of these results, which we shall phrase

in the language of large sets.

Theorem 4.39. Let p(x) be a polynomial with integer coefficients,

with positive leading coefficient, and whose constant term is 0. Then

{p(i) > 0 : i ∈ Z+} is large.
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Theorem 4.39 tells us that the range of any polynomial with the

stated conditions gives us a large set. Denoting, for a function f , the

set {f(x) : x ∈ Z+} by range(f), we see, for example, that range(p)

is large when p(x) = x2. That is, {12, 22, 32, . . . } is a large set. Even

a set as sparse as {x1000 : x ∈ Z+} is large. Note that even as sparse

as this last set is, it does not satisfy the hypothesis of Theorem 4.34

since (x+1)1000

x1000 < e for x ≥ 1000 (the reader should verify this).

Theorem 4.39 is a generalization of van der Waerden’s theorem,

because van der Waerden’s theorem tells us that Z+ itself is large,

which may be considered as the range of the polynomial f(x) = x,

x ∈ Z+.

One hypothesis of Theorem 4.39 is that the constant term of

p(x) equals 0, i.e., that x | p(x). We may extend Theorem 4.39 to

polynomials with any linear factor x + a, where a is an integer, as

given by the following corollary.

Corollary 4.40. Let p(x) be a polynomial with integer coefficients,

with leading coefficient positive, and such that x+ a divides p(x) for

some integer a. Then {p(i) : i ∈ Z+} is large.

Proof. Let p(x) = (x + a)q(x), and let p̂(x) = p(x − a). Then

p̂(x) = xq(x− a).

By Theorem 4.39, range(p̂) ∩ Z+ is large. If a ≤ 0, then we have

range(p̂) ⊆ range(p), and therefore range(p) ∩ Z+ is large. If a > 0,

then range(p) = range(p̂) − F , where F is a finite set, and hence by

Corollary 4.36, range(p) ∩ Z+ is large. �

There are some other interesting results, both positive and nega-

tive, concerning monochromatic arithmetic progressions that satisfy

certain properties. We mention these in Section 4.5.

4.3. Exercises

4.1 Show that if |D| = 1, then R(AD, 2; 2) = ∞, by exhibiting

a specific 2-coloring of the positive integers.

4.2 Fill in the details of the proof of Case 2 of Theorem 4.8

(i.e., explain why there is no monochromatic 4-term a-a.p.,
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no monochromatic 3-term b-a.p., and no monochromatic 3-

term c-a.p.).

4.3 Define w((d1, d2), k1, k2) to be the least positive integer n

such that for every 2-coloring of [1, n] there is either a mono-

chromatic k1-term arithmetic progression whose gap is d1,

or a monochromatic k2-term arithmetic progression whose

gap is d2. Prove that for all d2, k2 ≥ 2,

w((1, d2), 2, k2) = d2(k2 − 1) + 1.

4.4 In this exercise, we extend the notation of Exercise 4.3 above

by denoting by w((d1, d2, d3), k1, k2, k3) the least positive

integer n such that for every 2-coloring of [1, n] there is some

i ∈ {1, 2, 3} such that there is a monochromatic ki-term

arithmetic progression with gap di. Let g = gcd(d1, d2),

and assume that exactly one of the numbers d1

g and d2

g is

even.

a) Use Theorem 4.7 to prove that

w((d1, d2, d3), 2, 2, 3) ≤ d1 + d2 − g + 1.

b) Assuming further that d3 = max{d1, d2, d3}, prove that

w((d1, d2, d3), 2, 2, 3) = d1 + d2 − g + 1.

4.5 Using the notation of Exercise 4.4, prove that

w((1, d2, d3), 2, k2, k3) = (k2 − 1)d2 + 1

if exactly one of d2 and d3 is odd.

4.6 Prove Corollary 4.10.

4.7 Complete the proof of Theorem 4.13.

4.8 Complete the proof of Case 2 of Lemma 4.16.

4.9 Let χ be a (2, 3)-valid 2-coloring of [1,16] with χ(1) = 1.

Show that χ = 1111000011110000. Do this by direct com-

putation; do not use Theorem 4.17.

4.10 Finish Example 4.24 for the case when c is even.

4.11 Use Theorems 4.22 and 4.23 to find upper and lower bounds

for w′(mx, 3; 2) if m is an odd integer and m ≥ 3.
                

                                                                                                               



142 4. Subsets of AP

4.12 Use the method employed in the proof of Theorem 4.25 to

prove that for any positive integer b,

w′(bx+ bc, 3; 2) ≤ (w′(bx, 3; 2)− 1)c+ w′(bx, 3; 2).

4.13 It is known that w′(2x, 3; 2) = 77. Use this to find an upper

bound for w′(2(x+ c), 3; 2) in terms of c.

4.14 Prove that for all k and r,

w′
(

x

w(k; r)− k + 1
, k; r

)
= w(k; r),

so that there is at least some constant c = c(k; r) such that

w′(cx, k; r) exists (w(k; r) here represents the ordinary van

der Waerden function).

4.15 Complete the proof of Theorem 4.29.

4.16 Let c be an integer with c ≤ −2. Prove that P + c is not

2-large.

4.17 Prove that if D is large, and m is a positive integer, then

mD is large.

4.18 Prove that if D is large and m is a positive integer, then

D − {x : m � x} is large.

4.19 Let us call a set of positive integers “small” if it is not large.

Must the complement (with respect to Z+) of a small set be

large? Must the complement of a large set be small?

4.20 Prove: if D is r-large, and if all elements of D are multiples

of the positive integer m, then 1
mD is r-large. Hence if D is

large, then 1
mD is large.

4.4. Research Problems

4.1 Do a more complete study of R(AD, k; 2). In particular,

define m = m(n) to be the least positive integer such that

for all D with |D| = n, we have R(AD,m; 2) = ∞. By

the work discussed in this chapter, we know that m(1) = 2,

m(2) = 3, and m(3) = 3 or 4. Determine the exact value of

m(3) (it has been conjectured that m(3) = 3).

Reference: [245]
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4.2 Using the notation of Research Problem 4.1, find an upper

bound on m(n) as a function of n. In particular, is it true

that m(n) ≤ n for all n?

Reference: [245]

4.3 Using the notation of Exercises 4.3–4.5, characterize those

triples (d1, d2, d3) for which w((d1, d2, d3), 2, 3, 3) < ∞.

Reference: [245]

4.4 Find a formula for w((d1, d2, d3), 2, 2, 3) (see Exercise 4.4).

Reference: [245]

4.5 Prove or disprove: the lower bound of Theorem 4.25 is the

precise value of w′(x + c, k; 2) (computer output suggests

that this may well be the precise value; see Table 4.1).

Reference: [92]

4.6 It is known that there is a function f(x) that tends to infin-

ity as x goes to infinity, such that for each r, w′(f(x), k; r)

exists for all k. This function grows very slowly (something

like an inverse of the classical van der Waerden function

w(k; r)). Try to find a faster growing function that still has

this property.

References: [81], [92]

4.7 Find results analogous to Theorem 4.11 or 4.17, for w′(c, 4; 2)

or w′(c, 3; 3).

Reference: [92]

4.8 Let A(k; r) be the set of all positive real numbers a such that

w′(ax, k; r) < ∞. It has been discovered that w′(x4 , 4; 2) ex-

ists (it happens to equal 134), so that 1
4 ∈ A(4; 2). As noted

in this chapter, w′(x3 , 4; 2) does not exist. Thus, letting

β(k; r) denote sup{a : a ∈ A(k; r)} we have 1
4 ≤ β(4; 2) ≤ 1

3 .

Find the exact value of β(4; 2), or improve its bounds. Do

the same for β(3; 3) (it is known that 1
25 ≤ β(3; 3) ≤

√
2−1
2 )

and for β(3; 4) (here it is known that 1
74 ≤ β(3; 4) ≤

3√2−1
2 ).

Reference: [92]

4.9 The following is known: if w′(c, k; 2) = 2c(k−1)2+1 and j is

a positive integer, then w′(jc, k; 2) = 2jc(k−1)2. It would be

desirable to know if the following stronger statement holds:
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if w′(c, k; 2) = 2c(k − 1)2 + 1 and m ∈ Z+, then

w′(c+m, k; 2) = 2(c+m)(k − 1)2 + 1.

References: [92], [246]

4.10 Theorem 4.27 prompts us to ask whether the fastest growing

function f such that w′(f(x), k; 2) exists for large enough

k, must grow like the function x
k2 . If we cannot answer

this, or if the answer is no, then one might try to answer

the following question: does w′( x
2k
, k; 2) exist for k large

enough? Writing a computer program to calculate various

values of w′(f(x), k; 2) is likely to be a big help with these

types of questions.

Reference: [92]

4.11 Theorem 4.35 says that if a finite union of sets is large, then

at least one of the sets must be large. Is the same true if

we replace the word “large” with “r-large?” In particular,

is it true that if D ∪ E is 2-large, then either D or E must

be 2-large? The proof of Theorem 4.35 shows that if D is

not 2-large and E is not 2-large, then D ∪ E is not 4-large,

but it does not tell us about the 2-largeness or 3-largeness of

D ∪E. It follows from Theorems 4.29 and 4.32 that neither

{2n − 1 : n ∈ Z+} nor {n! : n ∈ Z+} is 2-large. Hence, the

union of these two sets is not 4-large. Is the union 2-large?

3-large?

References: [30], [90], [219]

4.12∗ It has been conjectured that every set that is 2-large must

actually be large. Prove or disprove this conjecture.

References: [30], [90], [219]

4.13 Determine the largest r such that the set of Fibonacci num-

bers F is r-large. If the conjecture in Research Problem 4.12

is true, then by Theorem 4.38, F is not 2-large.

References: [30], [90], [219]

4.14 Which sets B have the property that some translation of B

is large? In other words, for which sets B does there exist

an integer t such that D = B + t = {b + t : b ∈ B} is

large? By Theorem 4.39, the range of a polynomial with
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integer coefficients and positive leading coefficient has this

property, because if f(x) is the polynomial, then f(x)−f(0)

is a polynomial with a zero constant term.

References: [90], [93]

4.15 Let p(x) be any polynomial with integer coefficients, positive

leading coefficient, and p(0) = 0, and let D be a large set.

Determine if {p(d) : d ∈ D} must be large? In particular,

must {d2 : d ∈ D} be large?

References: [90], [93]

4.16 For m a positive integer and 0 ≤ a < m, denote by Sa(m)

the set of all arithmetic progressions whose gaps are not

congruent to a (mod m). Do a study of R(Sa(m), k; r).

References: [92], [93], [241]

4.5. References

§4.1. Theorems 4.7 and 4.8 are found in [245]. More generally,

[245] considers the function w(�d,�k), where �d = (d1, d2, . . . , dn) and
�k = (k1, k2, . . . , kn), defined as the least positive integer m such that

for every 2-coloring of [1,m] there will be, for some i, a monochromatic

ki-term di-a.p.

§4.2. The proof of Theorem 4.11 is from [246]. Theorems 4.13, 4.17,

4.20–4.23, and 4.25–4.27 come from [92], which also gives a result that

is slightly more general than Theorem 4.9. Several conjectures, and

some evidence for them, are also found in [92]. The proofs of Theo-

rems 4.29, 4.32, 4.34, 4.35, 4.37, and Corollary 4.40 are found in [90],

along with some other conditions that are necessary, or are sufficient,

for a set to be large. For instance, if there exists ε > 0 such that the ra-

tio di+1

di
exceeds 1 + ε (asymptotically), then {di : i ≥ 1} is not large.

Some examples and questions are also presented in [90]. Theorem

4.38 appears in [30]. Some additional results and examples on large

sets are given in [217] and [219]. In [151] it is shown that every r-

coloring of the positive integers contains a 3-term arithmetic progres-

sion whose gaps belong to P −1 = {p−1 : p is a prime number}; and
likewise with P +1 replacing P − 1. Further work involving largeness

and the primes may be found in [52], [152], and [404]. Theorem 4.39
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is a special case of a result due to Bergelson and Leibman [51]. They

employ methods of ergodic theory and measure theory. Extensions

of this, and related results, may be found in [43], [154], [157], [158],

[159], [160], [278], [342], and [399]. See [45] and [279] for excellent

extensive surveys of work in ergodic Ramsey theory. Walters [398]

provides a combinatorial proof of the polynomial extensions of van

der Waerden’s theorem due to Bergelson and Leibman.

§4.3. Exercises 4.3–4.5 come from [245]. Exercise 4.13 is from [92].

Exercises 4.17–4.20 are from [90].

Additional References: Brown [81] finds a 2-coloring of Z+ and a

function h such that if P = {a, a + d, . . . a + (k − 1)d} is monochro-

matic then k ≤ min{h(a), h(d)}. That is, in order to have the van

der Waerden property hold, we cannot require d or a to be too small

as a function of k (one corollary of this is Theorem 4.4). Other work

along these lines is done in [37] and [222]. This general problem is

mentioned in the excellent monograph of Erdős and Graham [128];

several other intriguing problems concerning monochromatic arith-

metic progressions are discussed in Chapter 2 of [128].

                

                                                                                                               



Chapter 5

Other Generalizations of
w(k; r)

In Chapter 3 we looked at ways of generalizing the van der Waerden

function w(k; r) by using supersets of the family of arithmetic pro-

gressions. Thus, we ended up with functions, such as Qn(k), which,

under special circumstances (in this case when n = 0), coincide with

the classical van der Waerden function itself. In this chapter we will

consider the Ramsey-type functions for some other generalizations

of arithmetic progressions, constructed by introducing other param-

eters, so that the number w(k; r) is a special case of a more general

function.

5.1. Sequences of Type x, ax + d, bx + 2d

In this section we consider the following generalization of a 3-term

arithmetic progression.

Definition 5.1. Let a ≤ b be fixed positive integers. An (a, b)-triple

is any 3-tuple (x, ax+d, bx+2d), where x and d are positive integers.

It is clear from the definition that we have a generalization of 3-

term arithmetic progressions: (x, y, z) is a 3-term arithmetic progres-

sion if and only if it is a (1, 1)-triple. As further examples, (1, 3, 8) is

147
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a (1, 4)-triple (with x = 1 and d = 2); (2, 7, 10) is a (3, 4)-triple (with

d = 1); and (1, 3, 4) is a (2, 2)-triple (with d = 1).

Notation. Denote by Ta,b the set of all (a, b)-triples. Since in this

discussion we shall be dealing only with sets of size three, for ease of

notation, we shall denote the Ramsey-type function R(Ta,b, 3; r) more

simply as T (a, b; r).

We see that T (1, 1; r) has the same meaning as w(3; r). Thus,

from the known exact values of w(k; r), we have T (1, 1; 2) = 9,

T (1, 1; 3) = 27, and T (1, 1; 4) = 76. However, the existence of

T (a, b; r) for the general pair (a, b) would not seem to follow from

van der Waerden’s theorem. In fact, as we shall see, T (a, b; r) does

not always exist. We seek to answer two natural questions:

1. For which values of a, b, and r does T (a, b; r)

exist?

2. When it does exist, what can we say about the

value of T (a, b; r)?

In regards to the first of these questions, one case that is very

easy to dispense with is covered by the following proposition.

Proposition 5.2. Let a ∈ Z+. Then T (a, 2a; 2) does not exist.

Proof. We will exhibit a 2-coloring of Z+ that admits no monochro-

matic (a, 2a)-triple. Note that for any (a, 2a)-triple (x, y, z), we have

z = 2y. Let γ be any 2-coloring such that γ(2n) �= γ(n) for all n (color

the odd numbers first, arbitrarily, and then color the even numbers

appropriately). Then γ avoids monochromatic (a, b)-triples. �

We are also able to give a rather complete answer to Questions 1

and 2 when b = 2a−1. The results are given by Theorems 5.4 and 5.6

below. We first investigate the relationship between the problem at

hand and some families of arithmetic progressions that were discussed

in Chapter 4.

Note that (1, 3, 5) is not only a (1, 1)-triple, but also a (2, 3)-

triple (taking d = 1). Thus, (a1, b1) �= (a2, b2) does not imply that

Ta1,b1 and Ta2,b2 are disjoint. Is there more we can say about the

relationship between such a pair of families?
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To help answer this question, let us look more closely at the

particular case of (1, 1)-triples versus (2, 3)-triples. In the example

of (1, 3, 5) mentioned above, it is not a coincidence that this triple

belongs to both T2,3 and AP ; if (x, y, z) is any (2, 3)-triple, then

(5.1) z − y = (3x+ 2d)− (2x+ d) = x+ d = y − x,

so that (x, y, z) is an arithmetic progression. Hence T2,3 ⊆ T1,1. On

the other hand, the reverse inclusion does not hold since, by (5.1), for

any (2, 3)-triple (x, y, z), we must have z − y = x+ d ≥ 2.

More generally, we have the following.

Proposition 5.3. Let a ≥ 1. Then (x, y, z) ∈ Ta,2a−1 if and only if

(x, y, z) is an arithmetic progression with gap y − x ≥ (a− 1)x+ 1.

Proof. The ordered tripleX = (x, y, z) belongs to Ta,2a−1 if and only

if z − y = (2a− 1)x+ 2d− (ax+ d) = (a− 1)x+ d = y − x for some

positive integer d, i.e., if and only if X is an arithmetic progression

with gap at least (a− 1)x+ 1. �

As a result of Proposition 5.3, we see that T (a, 2a − 1; 2) is

a special case of the Ramsey-type function w′(g(x), 3; 2) we stud-

ied in Chapter 4, which, you may recall, corresponds to arithmetic

progressions {y, y + d, y + 2d} such that d ≥ g(y). Making use of

bounds given for this function in Chapter 4, we can obtain bounds

for T (a, 2a − 1; 2) (for the particular case in which a = 1, we know

that T (1, 1; 2) = w(3; 2) = 9; see Table 5.1 at the end of this section

for other values of T (a, b; 2)). The following gives a lower bound.

Theorem 5.4. Let a ≥ 2. Then T (a, 2a− 1; 2) ≥ 16a2−12a+6.

Proof. By Proposition 5.3, we have T (a, 2a − 1; 2) = w′(g(x), 3; 2)

where g(x) = (a− 1)x+ 1. Applying Theorem 4.23, we obtain

T (a, 2a− 1; 2) ≥ 8g(2a+ 1) + 2(2a+ 1) + 2− c,

where c is the greatest integer such that (a − 1)c + 1 + c ≤ 4g(2a +

1) + 2a+ 2, i.e., such that ac ≤ 4[(a− 1)(2a+ 1) + 1] + 2a+ 1. This

implies c = � 8a2−2a+1
a 
 = 8a− 2. Therefore,

T (a, 2a− 1; 2) ≥ 8 ((a− 1)(2a+ 1) + 1) + 4a+ 4− 8a+ 2,

which gives us the desired lower bound. �
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Remark 5.5. We may also obtain an upper bound on T (a, 2a − 1)

by using Proposition 5.3 and the upper bound for the function w′

from Theorem 4.22. The bound obtained in this way is a third degree

polynomial. However, below we will give a better upper bound (a

quadratic).

By virtue of Proposition 5.3, we may also use the results of Chap-

ter 4 to tell us about the function T (a, 2a − 1; r) when r ≥ 3; the

following theorem gives us a simple answer.

Theorem 5.6. Let a ≥ 2 and r ≥ 3. Then T (a, 2a − 1; r) does not

exist.

Proof. By Proposition 5.3, we have T (a, 2a − 1; r) = w′(g(x), 3; r),

where g(x) = (a − 1)x + 1. From Theorem 4.26, we know that

w′(
r−1√2
2 x, 3; r) does not exist. Since g(x) ≥

r−1√2
2 x for all x, we

see that w′(g(x), 3; r) does not exist. �

As we see from the last theorem, for a given pair (a, b), the ex-

istence of T (a, b; r) may depend on the size of r. This prompts the

next definition. For convenience we will stray a bit from the way that

“regular” was presented in Chapter 1 (where it is associated with a

collection of sets).

Definition 5.7. Let a and b be positive integers with a ≤ b. If r ∈ Z+

and T (a, b; r) exists, we say that (a, b) is r-regular. If T (a, b; r) does

not exist for some positive integer r, the degree of regularity of (a, b),

denoted dor(a, b), is the largest value of r such that T (a, b; r) exists. If

T (a, b; r) exists for all positive integers r, we say that dor(a, b) = ∞,

and also say that (a, b) is regular.

Obviously, for every pair (a, b), we have dor(a, b) ≥ 1. Also,

Proposition 5.2 says that dor(a, 2a) = 1. By van der Waerden’s theo-

rem, (1, 1) is regular, while Remark 5.5 and Theorem 5.6 tell us that

dor(a, 2a− 1) = 2 for all a ≥ 2.

As a brief aside, it is worth noting that the notion of regularity

may be applied to any type of sequence. Thus, for example, any of the

types of supersets of AP discussed in Chapter 3 may be considered

to be regular. Meanwhile, as we saw in Chapter 4, certain types
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of sets may yield a finite Ramsey-type value only when the number

of colors is not too great (see, for example, Theorem 4.26), so that

they would have a finite degree of regularity. The general question of

which sets are regular and, if not, how regular, is rather intriguing.

In later chapters we shall see some other interesting cases of families

of sequences that are r-regular up to some specific finite value of r,

but which fail to be regular.

Getting back to the degree of regularity for (a, b)-triples, we

would like to know whether there are pairs besides those of the form

(a, 2a − 1) whose degree of regularity is greater than one. The fol-

lowing theorem provides a complete answer to this question. It also

gives an upper bound for T (a, b; 2) whenever dor(a, b) ≥ 2.

We first mention a technical lemma.

Lemma 5.8. Let a, b, k,M, i ∈ Z+ where a ≤ b and k + i ≤ M . Let

χ be an (a, b)-valid 2-coloring of [1,M ] such that χ(k) �= χ(k + i).

(a) Assume

(i) x > ak + ib
2 ;

(ii) M ≥ max({x, 2(x− ak) + bk});

(iii) i(b− 2a) is even;

(iv) χ(x) = χ(k).

Then χ
(
x− i(b−2a)

2

)
= χ(k).

(b) Assume

(i) y > b(k + i);

(ii) M ≥ max({y, y − i(b− 2a)});

(iii) y and b(k + i) have the same parity;

(iv) χ(y) = χ(k + i).

Then χ(y − i(b− 2a)) = χ(k + i).
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Proof. (a) By (i) and (iii),
(
k + i, a(k + i) + y−b(k+i)

2 , y
)
is an (a, b)-

triple. Hence, since χ is valid on [1,M ], by (iv) we have

(5.2) χ

(
a(k + i) +

y − b(k + i)

2

)
= χ(k).

Now,
(
k, a(k + i) + y−b(k+i)

2 , y − i(b− 2a)
)

is an (a, b)-triple in

[1,M ] (with d = ai+y−b(k+i)
2 ), and thus (5.2) implies χ(y−i(b−2a)) =

χ(k + i).

(b) Since x > ak, we know (k, x, bk+2(x−ak)) is an (a, b)-triple,

and hence, by (iv),

(5.3) χ(bk + 2(x− ak)) = χ(k + i).

By (i) and (iii),
(
k + i, x− i(b−2a)

2 , bk + 2(x− ak)
)
is an (a, b)-

triple (with d = x− ak− ib
2 ). By (5.3) and hypothesis (iv), the result

follows. �

Theorem 5.9. Let a, b ∈ Z+ with a ≤ b. Then dor(a, b) = 1 if and

only if b = 2a. Furthermore,

T (a, b; 2) ≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
7b2 − 6ab+ 13b− 10a if b is even with b > 2a,

14b2 − 12ab+ 26b− 20a if b is odd with b > 2a,

3b2 + 2ab+ 16a if b is even with b < 2a,

6b2 + 4ab+ 8b+ 16a if b is odd with b < 2a.

Proof. By Proposition 5.2, the first claim will hold if we can show

that T (a, b; 2) is finite whenever b �= 2a. Hence, it is enough for us to

establish the upper bounds.

We shall present the proof of the upper bound for the first case (b

even and b > 2a) in detail. Since the method of proof is similar in all

the cases, we give more streamlined proofs for the remaining cases.

Case 1. b is even and b > 2a. Let M = 7b2−6ab+13b−10a, and let

χ be an arbitrary 2-coloring of [1,M ]. We will show that χ admits a

monochromatic (a, b)-triple. Since (1, a + 1, b + 2) is an (a, b)-triple,

we may assume there is some c ≤ b+ 1 with χ(c) �= χ(c+ 1). Let

h = 2

⌊
2a(c+ 1)

b− 2a

⌋
+ 2c+ 2,

                

                                                                                                               



5.1. Sequences of Type x, ax + d, bx + 2d 153

and let x0 = (h+ c+ 1)(b− 2a). Observe that x0 ≤ M .

We consider two subcases according to the value of χ(x0).

Subcase A. χ(x0) = χ(c). We will apply Lemma 5.8(a) with x = x0,

k = c, and i = 1. If the hypotheses of the lemma hold, this will

give that χ(x0) = χ
(
x0 − b−2a

2

)
. We will then repeatedly apply the

lemma, in turn, to each of xj = x0− j(b−2a)
2 for j = 1, 2, . . . , h+2c+2,

until we obtain that χ
(

h(b−2a)
2

)
= χ(c). We next check that each of

the hypotheses of the lemma hold at each step in this process.

For hypothesis (i), we have that, for each xj ,

xj ≥
(
h+ 1

2

)
(b− 2a)

=

(⌊
2a(c+ 1)

b− 2a

⌋
+ c+

3

2

)
(b− 2a)

>

(
2a(c+ 1)

b− 2a
+ c+

1

2

)
(b− 2a)

= bc+
b

2
+ a

> ac+
b

2
.

Also, hypothesis (ii) holds for each j, 0 ≤ j ≤ h+ 2c+ 2, since

2xj + c(b− 2a) ≤ (2h+ 3c+ 2)(b− 2a)

=

(
4

⌊
2a(c+ 1)

b− 2a

⌋
+ 7c+ 6

)
(b− 2a)

≤ 8a(c+ 1) + (7c+ 6)(b− 2a)

≤ 8a(b+ 2) + (7b+ 13)(b− 2a)

= M.(5.4)

Finally, it is clear that hypotheses (iii) and (iv) hold.

Thus, we have shown that
(
c, h(b−2a)

2 , (h+ c)(b− 2a)
)
is an (a, b)-

triple that is monochromatic under χ.
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Subcase B. χ(x0) = χ(c + 1). Taking k = c and i = 1, we will

repeatedly apply Lemma 5.8(b), starting with y = x0, until we obtain

χ
(

h(b−2a)
2

)
= χ(c+1). This will give the monochromatic (a, b)-triple(

c+ 1,
h(b− 2a)

2
, x0

)
.

We now check that the hypotheses of Lemma 5.8(b) are satisfied

for each y = x0 − j(b − 2a), j = 0, 1, . . . , h
2 + c. By assumption,

hypothesis (iv) holds, and since b and h are both even, we see that

hypothesis (iii) holds. Now,(
h

2
+ 1

)
(b− 2a) > bc+

b

2
+ a+

b

2
− a = b(c+ 1),

so that hypothesis (i) holds for each application of the lemma. Finally,

since y ≤ 2x0+ c(b−2a), by (5.4) we know that hypothesis (ii) holds.

In each subcase, [1,M ] contains a monochromatic (a, b)-triple,

completing the proof of Case 1.

Case 2. b is odd and b > 2a. Let M = 14b2 − 12ab + 26b − 20a.

Similarly to Case 1, we may assume there is an even number c, with

c ≤ 2b+ 2, satisfying χ(c) �= χ(c+ 2).

Let

x0 = (2h+ c+ 2)(b− 2a), where h = 2

⌊
ac+ 2a

b− 2a

⌋
.

If χ(x0) = χ(c), then, by starting with x = x0, and taking k = c and

i = 2 in Lemma 5.8(a), and repeatedly applying this lemma, we find

that the (a, b)-triple
(
c, h(b−2a)

2 , (h+ c)(b− 2a)
)
, which is contained

in [1,M ], is monochromatic. If χ(x0) = χ(c+ 2) then, by repeatedly

applying Lemma 5.8(b), beginning with y = x0, we find that the

(a, b)-triple (c+ 2, h(b− 2a), (2h+ c+ 2)(b− 2a)), is monochromatic.

It is left to the reader to show that (2h+ c+ 2)(b− 2a) ≤ M , which

completes Case 2.

Case 3. b is even and b < 2a. As in Case 1, there exists c ≤ b + 1

with χ(c) �= χ(c+ 1). Let

h = 2

⌊
ac+ b

2

2a− b

⌋
− c+ 2.
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If χ(h(2a− b)) = χ(c) then, by starting with k = c and using Lemma

5.8(a), we obtain the monochromatic triple (c, h(2a−b), (2h+c)(2a−
b)). If, instead, χ(h(2a − b)) = χ(c + 1), then by employing Lemma

5.8(b) beginning with y = h(2a − b), we obtain the monochromatic

triple (c+1, h(2a− b), (2h+ c+1)(2a− b)). In each of these subcases,

we have a monochromatic (a, b)-triple in [1, 3b2+2ab+16a], as desired.

Case 4. b is odd and b < 2a. We choose c so that c ≤ 2b + 2 and

χ(c) �= χ(c+ 2). Also, let

h = 2

⌊
ac+ b

2a− b

⌋
+ 2− c.

It then follows from Lemma 5.8 that either (c, h(2a−b), (2h+c)(2a−
b)) or (c+2, h(2a−b), (2h+c+2)(2a−b)) is monochromatic, according

to whether χ(h(2a−b)) = χ(c) or χ(h(2a−b)) = χ(c+2), respectively.

It is not hard to show that both of these (a, b)-triples are contained

in [1, 6b2 + 4ab+ 8b+ 16a], as desired. �

Theorem 5.9 provides an upper bound for T (a, b; 2). The next

theorem gives a lower bound.

Theorem 5.10. Let a, b ∈ Z+ with a ≤ b. Then

T (a, b; 2) ≥
{

2b2 + 5b− 2a+ 4 if b > 2a,

3b2 − 2ab+ 5b− 2a+ 4 if b < 2a.

Proof. For each of the two cases we shall exhibit a 2-coloring (of the

appropriate interval) that avoids monochromatic (a, b)-triples.

For the case of b > 2a, let χ : [1, 2b2 + 5b − 2a + 3] → {0, 1} be

the coloring defined by χ([1, b + 1]) = 0, χ([b + 2, b2 + 2b + 1]) = 1,

and χ([b2 + 2b + 2, 2b2 + 5b − 2a + 3]) = 0. There cannot be a

monochromatic (a, b)-triple of color 1 because the largest term of any

(a, b)-triple whose least term lies in [b+2, b2+2b+1] would lie outside

of this interval.

Now assume that (x, y, z) is an (a, b)-triple of color 0. Obviously,

z �∈ [1, b + 1]. Also, if x, y ∈ [1, b + 1], then d ≤ b + 1 − ax (where

ax + d = y), so that z ≤ bx + 2(b + 1 − ax) ≤ b2 + 2b. Hence,

we must have y ≥ b2 + 2b + 2. It follows that if x ≤ b + 1, then
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d ≥ b2 + 2b+ 2− ax, so that

bx+ 2d ≥ 2b2 + 4b+ 4− 2ax+ bx

= 2b2 + 5b+ 4− 2a+ (x− 1)(b− 2a)

> 2b2 + 5b− 2a+ 3,

which is not possible. Thus, we assume that x ≥ b2 + 2b + 2. Then,

since d ≥ 1 and b ≥ 3, we have

z ≥ b3 + 2b2 + 2b+ 2 ≥ 2b2 + 5b− 2a+ 4,

which is also impossible. This completes the case in which b > 2a.

To establish the lower bound for b < 2a, consider the 2-coloring of

[1, 3b2−2ab+5b−2a+3] = [1,m] defined by coloring [b+2, b2+2b+1]

with color 1, and its complement in [1,m] with color 0. We leave

the proof that this coloring avoids monochromatic (a, b)-triples as

Exercise 5.2. �

Now that we have established upper and lower bounds for the

function T (a, b; 2), we look at a few examples.

Example 5.11. Consider T (1, b; 2) where b is some fixed positive

integer. Thus we are concerned with the family of triples that have the

form (x, x+d, bx+2d) for some d ∈ Z+, a natural generalization of the

family of 3-term arithmetic progressions. We know that T (1, 1; 2) =

w(3; 2) = 9, and (by Proposition 5.2) that T (1, 2; 2) does not exist.

Theorem 5.9 gives 3b2(1 + o(1)) as an asymptotic upper bound for

T (1, b; 2) for b even, and it gives 6b2(1+o(1)) as an asymptotic upper

bound for b odd. Meanwhile, Theorem 5.10 gives 2b2(1 + o(1)) as

an asymptotic lower bound. (Exercise 5.3 gives a lower bound for

T (1, b; 2) that is slightly better than that of Theorem 5.10, but which

is asymptotically the same.)

Example 5.12. Let b = a. Theorem 5.9 gives an asymptotic upper

bound on T (a, a; 2) of 5a2(1 + o(1)) for a even, and of 10a2(1 + o(1))

for a odd. In fact, it is known that T (a, a; 2) ≤ 3a2 + a for all even

a ≥ 4, and that T (a, a; 2) ≤ 8a2 + a for all odd a. Meanwhile, for a

lower bound, by Theorem 5.10 we have that T (a, a; 2) ≥ a2 + 3a+ 4;

a slight improvement on this lower bound is given in Exercise 5.4,

along with lower bounds for T (a, a; 3) and T (a, a; 4).
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Example 5.13. Theorems 5.9 and 5.10 yield the asymptotic bounds

8a2(1 + o(1)) ≤ T (a, 2a− 1; 2) ≤ 32a2(1 + o(1)). However, the lower

bound is not as good as that provided by Theorem 5.4: 16a2(1 +

o(1)) ≤ T (a, 2a− 1; 2).

We now return to the problem of determining the degree of reg-

ularity of (a, b)-triples. So far we know: d(a, b) ≥ 2 unless b = 2a (by

Theorem 5.9); d(a, 2a − 1) = 2 when a > 1 (by Theorem 5.6); and

dor(1, 1) = ∞ (by van der Waerden’s theorem). The next theorem

provides an upper bound on dor(a, b) provided b is large in compari-

son to a.

Theorem 5.14. Let 1 ≤ a < b, with b ≥ (2
3
2 − 1)a− (2

3
2 − 2). Then

dor(a, b) ≤ �2 log2 c�, where c =
⌈
b
a

⌉
.

Proof. Let a and b be as stated and let r = �2 log2 c� + 1. To

prove the theorem, we will provide an r-coloring of Z+ that yields no

monochromatic (a, b)-triple. For convenience of notation, let β =
√
2.

We define χ : Z+ → {0, 1, . . . , r − 1} as follows. For each i ≥ 1,

whenever βi ≤ x < βi+1, let χ(x) = ı̄ where i ≡ ı̄ (mod r) and

0 ≤ ı̄ ≤ r − 1. For example (assuming r ≥ 5), χ(1) = 1, χ(2) = 2,

χ(3) = 3, χ([4, 5]) = 4, and χ([�βr�, �βr+1
]) = 0.

Assume, for a contradiction, that there exists an (a, b)-triple

(x, y, z) = (x, ax + d, bx + 2d) that is monochromatic under χ. Let

j ≥ 1 be the integer such that βj ≤ y < βj+1. Since c ≥ 2,

we have z ≤ cy, so that from the meaning of r it follows that

z < βr−1βj+1 = βj+r. Hence, by the way χ is defined and the

fact that χ(y) = χ(z), we must have

(5.5) βj ≤ y < z < βj+1.

We consider two cases.

Case 1. b ≤ 2a. By the hypothesis of the theorem,

b− a ≥ 2a(β − 1)− 2(β − 1).

Therefore,

(5.6)
(a− 1)x

(b− a)x
≤ 1

2(β − 1)
.
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Since b ≤ 2a− 1, we have that (b− a)x ≤ (a− 1)x. Hence, by (5.6),

(a− 1)x+ d

(b− a)x+ d
≤ 1

2(β − 1)
.

Thus, using (5.5),

y − x ≤ z − y

2(β − 1)
<

βj+1 − βj

2(β − 1)
=

βj

2
= βj−2.

Because y ≥ βj , this implies x ≥ βj − βj−2 = βj−2. Since, in this

case, r = 3, and since χ(x) = χ(y), by the way χ is defined we must

have βj ≤ x < βj+1. Therefore, x, y, z ∈ [βj , βj+1). Hence,

z − x = (b− 1)x+ 2d < βj(β − 1) ≤ x(β − 1),

contradicting the fact that b− 1 > β − 1.

Case 2. b > 2a. In this case,

y − x = (a− 1)x+ d < (b− a)x+ d = z − y.

Hence, βj(β − 1) ≤ βj
(
1− 1

βr−1

)
. Since y > βj , this implies

x ≥ βj − βj

(
1− 1

βr−1

)
= βj−r+1.

Since χ(x) = χ(y), by the definition of χ we must have

βj ≤ x < y < βj+1.

Thus, all three numbers x, y, z belong to the interval [βj , βj+1). As

in Case 1, this yields a contradiction. �

Remark 5.15. A similar proof can be used to show that if 2 ≤ b ≤
49, then dor(2, b) ≤ 4. It uses the 5-coloring of Z+ defined as follows:

for each nonnegative integer k, color the interval [(1.6)k, (1.6)k+1)

with the color j ∈ {0, 1, 2, 3, 4} where k ≡ j(mod 5).

We already noted that (1, 1) is regular. Interestingly, as we shall

see in Theorem 5.17 below, (1, 1) is the only regular pair. Our proof

of this result makes use of a special case of what is known as Rado’s

Theorem, a theorem which we shall study in more detail in Chapter 9.
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Rado’s Single Equation Theorem. Let k ≥ 2. For i = 1, 2, . . . , k,

let ci be a nonzero integer. Then the equation c1x1+c2x2+· · ·+ckxk =

0 has a monochromatic solution in Z+ for every finite coloring of Z+

if and only if some nonempty subset of {ci : 1 ≤ i ≤ k} sums to 0.

As an illustration, consider the equation

(5.7) 2x1 + 3x2 + 5x3 − 7x4 = 0.

Since the sum of the coefficients of x1, x3, and x4 equals 0, by Rado’s

single equation theorem we may conclude that, for all r ≥ 1, every

r-coloring of Z+ admits a monochromatic solution to Equation (5.7).

In addition to Rado’s theorem, we will also need the following

lemma.

Lemma 5.16. Let 1 ≤ a ≤ b. For all i, r ≥ 1,

T (a, b; r) ≤ T (a+ i, b+ 2i; r).

Proof. It suffices to show that every (a + i, b + 2i)-triple is also an

(a, b)-triple. Let (x, y, z) be an (a+i, b+2i)-triple. Then, by definition,

for some d > 0, we have y = (a + i)x + d and z = (b + 2i)x + 2d.

That is, (x, y, z) = (x, ax+ ix+ d, bx+ 2(ix+ d)), so that (x, y, z) is

an (a, b)-triple. �

We are now able to prove that the only regular (a, b)-triple is

(1,1).

Theorem 5.17. Let 1 ≤ a ≤ b and (a, b) �= (1, 1). Then (a, b) is not

regular.

Proof. Let (x1, y1, z1) be an (a, b)-triple. Then for some positive

integer d, we have y1 = ax1 + d and z1 = bx1 + 2d. Hence (x1, y1, z1)

is a solution to the linear equation

(5.8) (b− 2a)x+ 2y − z = 0.

Therefore, if r is a positive integer and (a, b) is r-regular, then every r-

coloring of the positive integers must admit a monochromatic solution

to (5.8). Hence, in order for (a, b) to be regular, by Rado’s theorem

some nonempty subset of {b− 2a, 2,−1} must sum to 0.
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By Proposition 5.2, we may assume b− 2a �= 0. This leaves only

three cases to consider: b = 2a − 2, b = 2a + 1, and b = 2a − 1. By

using Lemma 5.16 we see that these three cases may be reduced to

the pairs (2, 2), (1, 3), and (2, 3), respectively. By Theorem 5.6, the

pair (2, 3) is not regular. From Remark 5.15 we know that (2, 2) is not

regular. Finally, Theorem 5.14 shows that (1, 3) is not regular. �

The following theorem, which we present without proof, gives a

stronger result than that of Theorem 5.17.

Theorem 5.18. If 1 ≤ a ≤ b and (a, b) �= (1, 1), then dor(a, b) ≤ 5.

Remark 5.19. There are several other results that provide upper

bounds on the degree of regularity for various infinite families of pairs

(a, b), some of which give an upper bound of 4, others an upper bound

of 3, and still others an upper bound of 2. For example, it is known

that if 1 ≤ i ≤ 5, then dor(a, 2a+ i) ≤ 4 for all a ≥ 1. Known values

and bounds for dor(a, b) for small values of a and b are given in Table

5.2, at the end of this section.

The following specific example seems worthy of being singled out.

Example 5.20. Using a computer program, it has been determined

that T (2, 2; 3) = 88. Hence, from the result mentioned in Remark

5.15, we know that dor(2, 2) ∈ {3, 4}. To date, this is the only pair

besides (1, 1) that is known to have degree of regularity greater than

2.

We may extend the idea of (a, b)-triples to k-tuples. That is, for

fixed positive integers a1 ≤ a2 ≤ · · · ≤ ak−1, we may ask about the

Ramsey-type functions corresponding to k-tuples of the form (x, a1x+

d, a2x + 2d, . . . , ak−1x + (k − 1)d). (Analogous with the notation

T (a, b), these more general Ramsey-type functions are denoted by

T (a1, a2, . . . , ak−1); see, for example, Research Problem 5.9.)

For this discussion, we shall limit ourselves to the special case in

which a1 = a2 = · · · = ak−1. Therefore, for convenience, we use the

notation dork(a) to denote the largest integer r (or ∞, if no such r

exists) such that for every r-coloring of the positive integers there is

a monochromatic k-term progression of the form

(5.9) {x, ax+ d, ax+ 2d, . . . , ax+ (k − 1)d}.
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Noting that for a = 1 we are simply dealing with arithmetic progres-

sions, by van der Waerden’s theorem dork(1) = ∞ for each k. We

have seen that 3 ≤ dor(2, 2) ≤ 4. It is also known that dor(3, 3) and

dor(4, 4) belong to {2, 3} (see Table 5.2 at the end of this section).

Hence 3 ≤ dor3(2) ≤ 4 and 2 ≤ dor3(a) ≤ 3 when a = 3 or a = 4.

In contrast to van der Waerden’s result, the following theorem shows

that for all a �= 1, and large enough k, we have dork(a) < ∞ (in fact,

the degree of regularity is not greater than three).

Theorem 5.21. If a ≥ 2 and k ≥ a2

a+1 + 2, then dork(a) ≤ 3.

Proof. To prove the theorem, it suffices to show that if a and k satisfy

the given hypotheses, then there exists a 4-coloring of Z+ that avoids

monochromatic k-term sequences having the form of (5.9). Clearly,

we may assume k = � a2

a+1�+ 2.

Define χ to be the 4-coloring of the positive integers defined by

coloring each of the intervals [1, a − 1], [a, a2 − 1], [a2, a3 − 1], . . . as

follows: χ([aj , aj+1 − 1]) = j̄, where j ≡ j̄ (mod 4) and 0 ≤ j̄ ≤ 3. We

will complete the proof by showing that if χ(x) = χ(ax + d), then

χ(ax+ (k − 1)d) �= χ(x).

Assume that x and ax+ d have the same color under χ, and let i

be the integer such that x ∈ [ai, ai+1). Obviously, ax+ d �∈ [ai, ai+1).

Hence, by the way χ is defined, there is some m ∈ Z+ such that

ax+ d ∈ [ai+4m, ai+4m+1). From this it follows that

(5.10) ai(a4m − a2) ≤ d ≤ ai+1(a4m − 1).

Note that, by the way m and χ are defined, if we can show that

(5.11) ai+4m+1 ≤ ax+ (k − 1)d < ai+4(m+1),

then ax + (k − 1)d must be colored differently from x and ax + d,

thereby completing the proof. Hence, we proceed to prove (5.11).

To prove ax+(k− 1)d < ai+4(m+1), first note that k < a3+1 for

all a ≥ 2. Hence, 1 + (k − 2)(1− a−4m) < a3, and therefore

(5.12) ai+4m+1 + (k − 2)ai+1(a4m − 1) < ai+4(m+1).
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By (5.10), we have

ax+ (k − 1)d = ax+ d+ (k − 2)d

≤ ai+4m+1 + (k − 2)ai+1(a4m − 1).

This, together with (5.12), implies ax + (k − 1)d < ai+4(m+1), as

desired.

To complete the proof, we show that ai+4m+1 ≤ ax + (k − 1)d.

Since k ≥ a2

a+1 + 2, we have (k − 2)(a2 − 1) ≥ a3 − a2, and therefore

(k − 2)(a2 − a−4(m−1)) ≥ a3 − a2. From this we know that

(5.13) ai+4m + (k − 2)ai(a4m − a2) ≥ ai+4m+1.

Also, from (5.10), we have

(5.14) ax+ (k − 1)d ≥ ai+4m + (k − 2)ai(a4m − a2).

By (5.13) and (5.14) we have ai+4m+1 ≤ ax+(k− 1)d, and the proof

is complete. �

The following two tables give, for small values of a and b, the

known values and lower bounds for T (a, b; 2), and the known degrees

of regularity of (a, b), respectively.

a \ b 1 2 3 4 5 6 7

1 9 ∞ 39 58 81 108 139

2 16 46 ∞ 139 114 159

3 39 60 114 ∞ 247

4 40 87 144 ≥ 214

5 70 100 ≥ 150

6 78 120

7 95

Table 5.1. Values and lower bounds for T (a, b; 2)
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(a, b) dor(a, b) (a, b) dor(a, b)

(1, 1) ∞ (2, 9) 2− 4

(1, 2) 1 (2, 10) 2− 4

(1, 3) 2 (3, 3) 2− 3

(1, 4) 2 (3, 4) 2− 3

(1, 5) 2− 4 (3, 5) 2

(1, 6) 2− 3 (3, 6) 1

(1, 7) 2− 4 (3, 7) 2

(1, 8) 2− 5 (3, 8) 2

(1, 9) 2− 5 (3, 9) 2− 3

(1, 10) 2− 3 (3, 10) 2− 3

(2, 2) 3− 4 (4, 4) 2− 3

(2, 3) 2 (4, 5) 2− 3

(2, 4) 1 (4, 6) 2

(2, 5) 2 (4, 7) 2

(2, 6) 2 (4, 8) 1

(2, 7) 2− 4 (4, 9) 2

(2, 8) 2− 3 (4, 10) 2

Table 5.2. Degree of regularity of (a, b)-triples

5.2. Homothetic Copies of Sequences

Definition 5.22. Let s1, s2, . . . , sk−1 be positive integers. A homo-

thetic copy of the k-tuple (1, 1 + s1, 1 + s1 + s2, . . . , 1 +
∑k−1

i=1 si) is a

k-tuple (a, a + bs1, a + b(s1 + s2), . . . , a + b
∑k−1

i=1 si), where a and b

are any positive integers.

How are homothetic copies related to arithmetic progressions?

Well, consider the collection of all homothetic copies of (1, 2, . . . , k),

i.e., where si = 1 for all i in Definition 5.22. Then this is the collection

of all sequences of the form {a, a+ b, a+2b, . . . , a+(k−1)b}; in other

words, the family of all k-term arithmetic progressions.

For fixed s1, s2, . . . , sk−1, we shall denote by H(s1, s2, . . . , sk−1)

the 2-color Ramsey-type function associated with the family of all ho-

mothetic copies of (1, 1+s1, . . . , 1+
∑k−1

i=1 si). Hence, the classical van

der Waerden function w(k) has the same meaning as H(1, 1, . . . , 1).
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It follows easily from van der Waerden’s theorem that for all k and all

(k−1)-tuples (s1, s2, . . . , sk−1), the number H(s1, s2, . . . , sk−1) exists

(this is left to the reader as Exercise 5.5).

We know that H(1, 1) = w(3) = 9. We now examine the function

H(s, t) for general pairs (s, t). That is, for a fixed pair (s, t), we want

the least positive integer h = H(s, t) such that for every 2-coloring of

[1, h] there is a monochromatic triple of the form (a, a+bs, a+bs+bt)

for some positive integers a and b. As it turns out, for such 3-term

sequences, a precise formula is known for the associated Ramsey-type

function H; here we will present some results which will provide part

of the proof of this formula.

We begin with two very useful lemmas. We leave the proof of

Lemma 5.23 as Exercise 5.6.

Lemma 5.23. For all s, t ≥ 1, we have H(s, t) = H(t, s).

For convenience, from now on we will refer to a homothetic copy

of (1, 1 + s, 1 + s+ t) as an (s, t)-progression.

Lemma 5.24. Let s, t, c be positive integers. Then

H(cs, ct) = c(H(s, t)− 1) + 1.

Proof. Letm = H(s, t). By the definition ofH(s, t), every 2-coloring

of [0,m− 1] yields a monochromatic (s, t)-progression. Hence, every

2-coloring of {0, c, 2c, . . . , (m− 1)c} yields a monochromatic (cs, ct)-

progression. Since, by the definition of a homothetic copy, the prop-

erty of being a (cs, ct)-progression is unaffected by translations, it fol-

lows that every 2-coloring of {1, c+1, 2c+1, . . . , (m−1)c+1} admits

a monochromatic (cs, ct)-progression. This establishes (m − 1)c + 1

as an upper bound for H(cs, ct).

To prove the reverse inequality, first note that there exists a 2-

coloring χ of [1,m−1] that yields no monochromatic (s, t)-progression.

Now define χ′ on [1, c(m− 1)] by

χ′([c(i− 1) + 1, ci]) = χ(i),

for i ∈ {1, 2, . . . ,m− 1}. To complete the proof, we will show that χ′

avoids monochromatic (cs, ct)-progressions.
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Assume, for a contradiction, that {x1 < x2 < x3} ⊆ [1, c(m− 1)]

is a (cs, ct)-progression that is monochromatic under χ′. Then there

exists u > 0 such that x3−x2 = uct and x2−x1 = ucs. For j = 1, 2, 3,

let yj = �xj

c �. Then

y3 − y2 =
⌈x3

c

⌉
−
⌈x2

c

⌉
= ut.

Similarly, y2 − y1 = us.

Hence {y1 < y2 < y3} is an (s, t)-progression. Furthermore,

χ(yj) = χ
(⌈xj

c

⌉)
= χ′(xj) for each j. This contradicts our assump-

tion that there is no monochromatic (s, t)-progression under χ. �

The next result gives an upper bound on H(s, t).

Theorem 5.25. For all s, t ≥ 1, we have H(s, t) ≤ 4(s+ t) + 1.

Proof. By Lemma 5.23, we may assume that s ≤ t. We may also

assume that gcd(s, t) = 1. To justify this last statement, assume that

the inequality holds for all pairs (s1, t1) such that gcd(s1, t1) = 1. Let

d = gcd(s, t). Then by Lemma 5.24, we have

H(s, t) = d
(
H
(
s
d ,

t
d

)
− 1
)
+ 1

≤ d
(
4
(
s
d + t

d

)
+ 1− 1

)
+ 1

= 4(s+ t) + 1.

We noted before that H(1, 1) = 9. We may also calculate directly

that H(1, 2) = 13 and H(1, 3) = 17, so that the theorem holds for

the pairs (1, 1), (1, 2), and (1, 3). Now assume gcd(s, t) = 1, s ≤ t,

and (s, t) �∈ {(1, 1), (1, 2), (1, 3)}. Consider the following collection of

subsets of [1, 15]:

C =
{
{1, 2, 6}, {2, 3, 7}, {3, 4, 8}, {4, 5, 9}, {1, 3, 10}, {2, 4, 11},

{3, 5, 12}, {1, 4, 13}, {2, 5, 14}, {1, 5, 15}, {6, 7, 10}, {7, 8, 11},
{8, 9, 12}, {6, 8, 13}, {7, 9, 14}, {6, 9, 15}, {10, 11, 13},
{11, 12, 14}, {10, 12, 15}, {13, 14, 15}

}
.

We leave it to the reader (Exercise 5.9a) to check that every 2-

coloring of [1, 15] yields a monochromatic triple from this list of twenty

triples in C.
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We now make a one-to-one correspondence between the members

of C and twenty different (s, t)-triples that are in [1, 4(s + t) + 1] by

means of the following associations (that the twenty resulting triples

of elements of [1, 4(s+ t) + 1] are, in fact, distinct (s, t)-triples is left

to the reader as Exercise 5.9b):

1 ↔ 1 2 ↔ s+ 1 3 ↔ 2s+ 1

4 ↔ 3s+ 1 5 ↔ 4s+ 1 6 ↔ s+ t+ 1

7 ↔ 2s+ t+ 1 8 ↔ 3s+ t+ 1 9 ↔ 4s+ t+ 1

10 ↔ 2s+ 2t+ 1 11 ↔ 3s+ 2t+ 1 12 ↔ 4s+ 4t+ 1

13 ↔ 3s+ 3t+ 1 14 ↔ 4s+ 3t+ 1 15 ↔ 4s+ 4t+ 1.

Since every 2-coloring of [1,15] admits a monochromatic member

of C, it is clear that every 2-coloring of [1, 4(s + t) + 1] must admit

a corresponding monochromatic triple from among the twenty (s, t)-

triples that result from the above association scheme. This yields the

desired upper bound on H(s, t). �

As we shall see in Theorem 5.27 below, the upper bound given in

Theorem 5.25 is the actual value of H(s, t) for a very large class of

pairs (s, t); many such pairs, but not all, are covered by the following

result.

Theorem 5.26. Let s ≤ t be positive integers. If neither s
gcd(s,t) nor

t
gcd(s,t) is divisible by 4, then H(s, t) = 4(s+ t) + 1.

Proof. By Theorem 5.25, we see that it is sufficient to show that

H(s, t) ≥ 4(s + t) + 1. We shall split the proof into two cases, in

each one providing a specific 2-coloring of [1, 4(s + t)] that avoids

monochromatic (s, t)-progressions.

Let d = gcd(s, t). Of course, not both s
d and t

d are even.

Case 1. s
d and t

d are both odd. As demonstrated in the proof of

Theorem 5.25, we may assume d = 1. Color [1, 4(s+ t)] according to

the string

1010 . . . 10︸ ︷︷ ︸
2(s+t)

0101 . . . 01︸ ︷︷ ︸
2(s+t)

.
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Assume, for a contradiction, that {x < y < z} is a monochromatic

(s, t)-progression. Then there exists a positive integer b such that

y = x + bs and z = y + bt. Let B1 and B2 represent the intervals

[1, 2(s+ t)] and [2(s+ t) + 1, 4(s+ t)], respectively.

In case b is odd, then (since we are under the assumption that s is

odd), x and y have different parities. Similarly, y and z have different

parities. Since x and y have the same color, yet opposite parity, it is

evident from the way the coloring is defined that x ∈ B1 and y ∈ B2.

Hence z ∈ B2, from which it follows that y and z cannot have the

same color, a contradiction.

If b is even, then x, y, and z are all of the same parity. Hence,

either they all belong to B1 or they all belong to B2. Thus,

b(s+ t) = z − x < 2(s+ t),

which means that b = 1, a contradiction.

Case 2. One (but not both) of s
d and t

d is even. By the hypotheses,

and without loss of generality, we assume that s
d ≡ 2 (mod 4). As in

Case 1, we shall assume that d = 1.

Let λ be the 2-coloring of [1, 4(s + t)] represented by the string

1100 1100 . . . 1100; that is, it consists of s+ t consecutive occurrences

of the string 1100.

We shall show, by contradiction, that λ avoids monochromatic

(s, t)-progressions. Thus, assume that {x < y < z} is an (s, t)-

progression that is monochromatic under λ. Then there exists b ≥ 1

such that y − x = bs and z − y = bt. Now, since

z − x = b(s+ t) ≤ 4(s+ t)− 1,

we have that b ≤ 3.

First assume b = 2. Then z − x = b(s + t) is even. Note that

by the definition of λ, we know that the only way that two integers

i and j can have an even difference and be of the same color is for

j − i to be divisible by 4. Hence, 4 divides z − x. However, by our

assumptions of Case 2, this is impossible since exactly one of s and

t is even. Now assume that b = 1 or b = 3. Because s ≡ 2 (mod 4),

y− x is even but is not divisible by 4; this is also impossible, since bs

is not a multiple of 4. �
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The following result, which we present without proof, expands

upon Theorems 5.25 and 5.26 and, in fact, will yield a formula for the

value of H(s, t) for all pairs (s, t).

Theorem 5.27. Let 1 ≤ s ≤ t and assume gcd(s, t) = 1. Then

H(s, t) =

{
4t+ 4 if s = 1 and 4 | t,
4(s+ t) + 1 otherwise.

The following general formula follows directly from Lemmas 5.23

and 5.24, and Theorem 5.27. We leave its proof as Exercise 5.10.

Corollary 5.28. Let s, t ≥ 1. Then

H(s, t) =

{
4s+ 4t−min(s, t) + 1 if 4s | t or 4t | s,
4s+ 4t+ 1 otherwise.

While a precise formula for H(s, t) is known, much less is known

about H(s1, s2, . . . , sk−1) for k ≥ 4. Likewise, very little is known in

the way of bounds for H(s, t; r), the r-color Ramsey-type function,

when r ≥ 3. Some open problems on this latter topic are mentioned

in Section 5.5.

5.3. Sequences of Type x, x + d, x + 2d + b

One simple way to form a generalization of an arithmetic progression

is expressed in the following definition.

Definition 5.29. Let b ≥ 0. A k-term augmented progression with

tail b is a sequence of the form

{x, x+ d, x+ 2d, . . . , x+ (k − 2)d, x+ (k − 1)d+ b}
for any x, d ∈ Z+.

Denote the family of all augmented progressions with tail b by

AUGb. We see that this provides us with a generalization of w(k),

since AUG0 = AP and therefore w(k) = R(AUG0, k). We shall limit

the discussion to the case of k = 3, so that we are interested in se-

quences of the form {x, x+d, x+2d+b} and the function R(AUGb, 3).

We are unaware of any significant work that has been done for k ≥ 4

(this sounds like a research problem that is wide-open for exploration).
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An obvious question we should ask is: does R(AUGb, 3) exist (in

other words, is it finite?) for every b? We answer this, and more, in

the following theorem.

Theorem 5.30. For b odd, R(AUGb, 3) does not exist. For b even,

R(AUGb, 3) ≤ � 9
4b�+ 9.

Proof. First assume b is odd. Consider the coloring of the positive

integers represented by the string 101010 . . . . Then no triple of the

form {x, x + d, x + 2d + b} can be monochromatic because the first

and third elements of this triple differ by an odd number.

Now let b be even. We consider two cases.

Case 1. b ≡ 0 (mod 4). Since R(AUG0, 3) = w(3) = 9, the theorem

is true when b = 0. Hence, it is sufficient to show that for b ≥ 4,

and m =
⌈
9
4b
⌉
+9, every 2-coloring of [1,m] admits a monochromatic

3-term augmented progression with tail b. Let χ : [1,m] → {0, 1} be

any 2-coloring and assume, by way of contradiction, that χ admits

no such monochromatic set.

Let A={i ∈ [1,m]:χ(i)=1} and B={i ∈ [1,m]:χ(i)=0}. By the

pigeonhole principle, some 3-element set S ⊆ [1, 5] is monochromatic.

Since there are
(
5
3

)
= 10 possibilities for S, we shall consider ten

subcases. We will present four of the subcases here, and leave the

rest to the reader as Exercise 5.12. Without loss of generality, we

shall assume S ⊆ A.

Subcase i. S = {1, 2, 3}. Since 1, 2 ∈ A, and since we are assuming

that there is no monochromatic 3-term augmented progression with

tail b, we must have 3+b ∈ B. Likewise, 2, 3 ∈ A implies 4+b ∈ B, and

1, 3 ∈ A implies 5+ b ∈ B. Using the same line of reasoning, we have

the following sequence of implications (note that each of the integers

occurring in the implications below belongs to [1,m]; note also that

since b ≥ 4, in each implication the 3-term augmented progression

alluded to is, in fact, a set of 3 distinct integers):

3 + b, 4 + b ∈ B implies 5 + 2b ∈ A;

3 + b, 5 + b ∈ B implies 7 + 2b ∈ A;

1, 5 + 2b ∈ A implies 3 + b
2 ∈ B;

3, 5 + 2b ∈ A implies 4 + b
2 ∈ B;
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3, 7 + 2b ∈ A implies 5 + b
2 ∈ B;

3 + b
2 , 4 +

b
2 , 5 +

b
2 ∈ B implies 5 + 3b

2 , 7 +
3b
2 ∈ A;

1, 5 + 3b
2 ∈ A implies 3 + b

4 ∈ B;

3, 5 + 3b
2 ∈ A implies 4 + b

4 ∈ B;

3, 7 + 3b
2 ∈ A implies 5 + b

4 ∈ B;

3 + b
4 , 4 +

b
4 , 5 +

b
4 ∈ B implies 5 + 5b

4 , 6 +
5b
4 ∈ A;

5 + 5b
4 , 6 +

5b
4 ∈ A implies 7 + 9b

4 ∈ B;

3 + b
4 , 7 +

9b
4 ∈ B implies 5 + 3b

4 ∈ A;

5 + b
4 , 7 +

9b
4 ∈ B implies 6 + 3b

4 ∈ A;

5 + 3b
4 , 6 +

3b
4 ∈ A implies 7 + 7b

4 ∈ B.

Thus
{
3 + b

4 , 5 +
b
2 , 7 +

7b
4

}
, an augmented progression with tail b, is

monochromatic, a contradiction.

Subcase ii. S = {1, 2, 4}. By Subcase i, we may assume 3 ∈ B.

Using the same idea as in the proof of Subcase i, we have the following

sequence of implications:

1, 2, 4 ∈ A implies 6 + b, 7 + b ∈ B;

6 + b, 7 + b ∈ B implies 8 + 2b ∈ A;

2, 4, 8 + 2b ∈ A implies 5 + b
2 , 6 +

b
2 ∈ B;

3, 5 + b
2 ∈ B implies 7 + 2b ∈ A;

1, 7 + 2b ∈ A implies 4 + b
2 ∈ B;

4 + b
2 , 5 +

b
2 , 6 +

b
2 ∈ B implies 6 + 3b

2 , 8 +
3b
2 ∈ A;

2, 4, 6+ 3b
2 , 8+

3b
2 ∈ A implies 4+ b

4 , 5+
b
4 , 6+

b
4 ∈ B;

4 + b
4 , 5 +

b
4 , 6 +

b
4 ∈ B implies 6 + 5b

4 , 7 +
5b
4 ∈ A;

6 + 5b
4 , 7 +

5b
4 ∈ A implies 8 + 9b

4 ∈ B;

4 + b
4 , 6 +

b
4 , 8 +

9b
4 ∈ B implies 6 + 3b

4 , 7 +
3b
4 ∈ A;

6 + 3b
4 , 7 +

3b
4 ∈ A implies 8 + 7b

4 ∈ B.

Thus
{
4 + b

4 , 6 +
b
2 , 8 +

7b
4

}
, is a monochromatic augmented progres-

sion with tail b, a contradiction.

Subcase iii. S = {1, 2, 5}. By Subcases i and ii, we may assume

that 3, 4 ∈ B. By the method used in those subcases, it can be shown

that there exists a monochromatic augmented progression with tail b

whose largest element does not exceed max
({

8 + 9b
4 , 10 + 2b

})
≤ m.

We leave the details to the reader as Exercise 5.11.

Subcase iv. S = {2, 3, 4}. That the result holds for this case is

a consequence of Subcase i, by a simple translation of length 1 (see
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Exercise 2.18), because the proof of Subcase i yields a monochromatic

augmented progression with tail b that is contained in [1,m− 1].

Case 2. b ≡ 2 (mod 4). We consider the same ten subcases as for

Case 1. As the proofs are quite similar to those of Case 1, we present

here only one subcase, and leave the proofs of the other subcases to

the reader.

Subcase i. S = {1, 3, 5}. Then 5 + b, 7 + b ∈ B so that 9 + 2b ∈ A.

We then have the following sequence of implications:

3, 5, 9 + 2b ∈ A implies 6 + b
2 , 7 +

b
2 ∈ B;

6 + b
2 , 7 +

b
2 ∈ B implies 8 + 3b

2 ∈ A;

1, 3, 5, 8+ 3b
2 ∈ A implies 9

2 +
b
4 ,

11
2 + b

4 ,
13
2 + b

4 ∈ B;

9
2+

b
4 ,

11
2 + b

4 ,
13
2 + b

4 ∈ B implies 13
2 + 5b

4 ,
15
2 + 5b

4 ∈ A;

13
2 + 5b

4 ,
15
2 + 5b

4 ∈ A implies 17
2 + 9b

4 ∈ B;

9
2+

b
4 ,

13
2 + b

4 ,
17
2 + 9b

4 ∈ B implies 13
2 + 3b

4 ,
15
2 + 3b

4 ∈ A;

13
2 + 3b

4 ,
15
2 + 3b

4 ∈ A implies 17
2 + 7b

4 ∈ B.

Then the augmented progression
{

11
2 + b

4 , 7 +
b
2 ,

17
2 + 7b

4

}
is mono-

chromatic and contained in B; this is a contradiction since all of

the 3-term augmented progressions occurring in the argument are

contained in [1,m]. �

We next provide a lower bound for R(AUGb, 3) (for b even).

Note that this lower bound agrees precisely with all known values

of R(AUGb, 3) (see Table 5.3 at the end of this section).

Theorem 5.31. For b = 2 as well as all even b ≥ 10,

R(AUGb, 3) ≥ 2b+ 10.

Furthermore, R(AUGb, 3) ≥ 2b+ 9 for b ∈ {0, 4, 6, 8}.

Proof. The coloring 1100011110000 avoids monochromatic 3-term

augmented progressions with tail 2, so that R(AUG2, 3) ≥ 14. For

b ∈ {0, 4, 6, 8}, it is easy to check that the coloring defined by the

string

1010 · · · 01︸ ︷︷ ︸
b+2

00 1010 · · · 01︸ ︷︷ ︸
b+2

,
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which has length 2b + 8, avoids monochromatic 3-term augmented

progressions with tail b.

Now let b ≥ 10 be even. Define the coloring χ of [1, 2b + 9] as

follows. Let

B1 = {1, 2},

B2 = {3, 4, 5},

B3 = [6, b+ 2],

B4 = {b+ 3},

B5 = [b+ 4, b+ 7],

B6 = [b+ 8, 2b+ 9].

Let χ(B1) = χ(B3) = χ(B5) = 1 and χ(B2) = χ(B4) = χ(B6) = 0.

We assume that P = {x < y < z} is a monochromatic augmented

progression with tail b, and seek a contradiction. Note that no single

Bi can contain all elements of P , since z − x ≥ b+ 2.

First assume χ(P ) = 1. It is clear that y �= 2, since otherwise

z = b + 3, which is of a different color. Thus, if x ∈ B1, then y ≥ 6;

but then z ∈ B6, which is not possible. If x ∈ B3, then again we have

z ∈ B6.

Now assume χ(P ) = 0. If x, y ∈ B2, it then follows that z ∈ B5,

a contradiction. If x ∈ B2 and y �∈ B2, then z ≥ 3b + 1 > 2b + 9,

which is impossible. Finally, if x = b + 3, then z is again outside of

[1, 2b+ 9]. �

From the discussion above we know that R(AUGb, 3; 2) exists for

every even b (that is, when two colors are used). What happens when

we increase the number of colors? As the next theorem shows, the

situation is different when r = 3, and quite different when r ≥ 4.

Theorem 5.32. If b �≡ 0 (mod 6), then R(AUGb, 3; 3) does not exist.

Furthermore, R(AUGb, 3; 4) does not exist for all b ∈ Z+.

Proof. If b is odd, then this is covered by Theorem 5.30. Hence,

we let b be even but not divisible by 6. Assume, for a contradiction,

that R(AUGb, 3; 3) exists. Color the positive integers according to
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the string 012012012 . . . . Then any monochromatic augmented pro-

gression {x, x+ d, x + 2d + b} must have d a multiple of 3; but then

b must also be a multiple of 3. Since b is even, it must be a multiple

of 6, a contradiction. This proves the first statement.

We now show that the second statement holds. By the case for

three colors, we may assume that b = 6k, where k ∈ Z+. Color

the positive integers with the coloring χ represented by the string

0k1k2k3k0k1k2k3k . . . . Let I0 denote the interval [1, k − 1] and, for

each i ∈ Z+, let Ii denote the interval [4ki − (k − 1), 4ki + (k − 1)].

Note that if s < t, then χ(s) = χ(t) if and only if s− t ∈ Ii for some

i ≥ 0.

We will show that, under χ, there is no monochromatic 3-term

augmented progression with tail b. Assume, for a contradiction, that

(x, y, z) = (x, x+ d, x+ 2d+ b) is monochromatic, where d ∈ Z+. As

noted above, y − x ∈ Ii and z − y ∈ Ij for some i, j ≥ 0. However,

since y − x = d, we have

z − y = d+ b ∈ [4ki− (k − 1) + 6k, 4ki + (k − 1) + 6k]

= [4k(i+ 1) + k + 1, 4k(i+ 1) + 3k − 1].

This interval is disjoint from Ij , giving a contradiction. �

Remark 5.33. We mention, without proof, that it is known that

when b is a multiple of 6, R(AUGb, 3; 3)≤ 55
6 b+1, so thatR(AUGb, 3; 3)

exists if and only if b ≡ 0 (mod 6).

Recall that in Chapter 4 we discussed a generalization of w(k), de-

noted w′(c, k), which pertained to arithmetic progressions whose gaps

were no less than c. In the same way, we may generalize the function

R(AUGb, k) by defining, for each positive integer c, R(c, AUGb, k) to

be the least positive integer m such that for every 2-coloring of [1,m]

there is a monochromatic augmented triple (x, x+ d, x+2d+ b) with

the added restriction that d ≥ c. Since R(c, AUG0, k) has the same

meaning as w′(c, k), we know by Theorem 4.11 that R(c, AUG0, 3) =

8c+ 1. By modifying the proofs of Theorems 5.30 and 5.31, it is not

all that difficult (although it is a bit tedious) to obtain generaliza-

tions of those two theorems, where the parameter c is included. We

do not present the proofs of these generalizations here, but do state
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the results in the next two theorems. The proof of Theorem 5.34

imitates the proof of Theorem 5.30, except instead of considering

the possible colorings of [1, 5], one considers the possible colorings of

{1, 1 + c, 1 + 2c, 1 + 3c, 1 + 4c}. Notice that Theorems 5.30 and 5.31

are, indeed, special cases of Theorems 5.34 and 5.35.

Theorem 5.34. Let b ≥ 0 be even, c ≥ 1, and a = 2b+ 9c. Then

R(c, AUGb, 3)≤

⎧⎪⎪⎪⎨⎪⎪⎪⎩
max

({
9b
4 + 8c+ 1, a+ 1

})
if 4 | b,

max
({

9b
4 + 17c

2 + 1, a+ 1
})

if 4 � b and c is odd,

max
({

9b
4 + 17c

2 + 19
2 , a+ 10

})
if 4 � b and c is even.

Theorem 5.35. Let b ≥ 2 be even, and let c ≥ 1. Then

R(c, AUGb, 3) ≥

⎧⎪⎪⎨⎪⎪⎩
2b+ 7c+ 3 if b ≥ 6c+ 3,

2b+ 7c+ 2 if c+ 2 ≤ b ≤ 6c+ 2,

b+ 8c+ 4 if 2 ≤ b ≤ c+ 1.

The following table gives the known values of R(c, AUGb, 3). Note

that R(AUGb, 3) = R(1, AUGb, 3).

b \ c 1 2 3 4 5 6 7 8 9

0 9 17 25 33 41 49 57 65 73

2 14 22 30 38 46 54 62 70 78

4 17 24 32 40 48 56 64 72 80

6 21 28 35 42 50 58 66 74 ?

8 25 32 39 46 53 60 68 ? ?

10 30 36 43 50 57 64 71 ? ?

12 34 40 47 54 61 68 ? ? ?

14 38 44 51 58 65 ? ? ? ?

16 42 49 55 62 69 ? ? ? ?

18 46 53 59 66 ? ? ? ? ?

20 50 57 63 ? ? ? ? ? ?

22 54 61 ? ? ? ? ? ? ?

24 58 ? ? ? ? ? ? ? ?

26 62 ? ? ? ? ? ? ? ?

Table 5.3. Values of R(c,AUGb, 3)

                

                                                                                                               



5.4. Polynomial Progressions 175

5.4. Polynomial Progressions

A k-term arithmetic progression {a, a + d, a + 2d, . . . , a + (k − 1)d}
can be viewed as the set of images S = {f(0), f(1), . . . , f(k − 1)} of

the polynomial f(x) = dx + a. This idea allows us to generalize the

notion of an arithmetic progression via the following definition.

Definition 5.36. A k-term polynomial progression of degree n is a

set {f(0), f(1), . . . , f(k − 1)} for some polynomial f(x) =
∑n

i=0 aix
i,

where each ai is a nonnegative integer and an, a0 > 0.

Clearly, van der Waerden’s theorem may be stated as follows:

for all positive integers r, every r-coloring of the positive integers

contains arbitrarily long monochromatic polynomial progressions of

degree one. One natural question we may ask is whether or not this

statement would be true if we were to replace the words “polynomial

progressions of degree one” with “polynomial progressions of degree

n,” where n is a fixed positive integer. As we see from the next

theorem and its proof, the answer to this question follows rather easily

from van der Waerden’s theorem.

Theorem 5.37. For all positive integers r and n, every r-coloring

of Z+ yields arbitrarily long monochromatic polynomial progressions

of degree n.

Proof. Let r, n, k ∈ Z+, and let χ be any r-coloring of Z+. By van

der Waerden’s theorem, under χ there is a monochromatic arithmetic

progression A = {a, a+d, a+2d, . . . , a+(k−1)nd}, for some positive

integers a and d.

Consider the polynomial f(x) = dxn + a. Then

{f(i) : i = 0, 1, . . . , k−1} = {a, a+d, a+2nd, . . . , a+(k−1)nd} ⊆ A.

Thus, we have shown that under χ there is a monochromatic

polynomial progression of degree n. �

By the compactness principle we know there is a “finite” version

of Theorem 5.37: for all positive integers k, r, and n, there is a least

positive integer N = pp(k, n; r) such that every r-coloring of [1, N ]
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yields a monochromatic k-term polynomial progression of degree n.

From the proof of Theorem 5.37, we see that

(5.15) pp(k, n; r) ≤ w((k − 1)n + 1; r).

We obtained the bound in (5.15), making use of van der Waer-

den’s theorem, by considering only those nth degree polynomials of

the form f(x) = dxn+a for some positive integers d and a. Note that

the set of all polynomials that can generate a polynomial progression

of degree n is much larger than the set of polynomials of the form

dxn + a. This, together with the fact that the proof of (5.15) made

use of the much stronger than necessary property that all (k−1)n+1

members of A = {a, a+d, a+2d, . . . , a+(k−1)nd} are monochromatic,

makes it seem likely that pp(k, n; r) grows much more slowly than the

bound of (5.15). To illustrate, for n = 2, the set of polynomials that

generate polynomial progressions is {cx2+bx+a : c > 0, b ≥ 0, a > 0}.
In particular, to find pp(3, 2; r), we are looking for monochromatic 3-

term sequences of the form {a, a+ b+ c, a+2b+4c}, with b possibly

0; on the other hand, w(5; r), which is the upper bound from (5.15),

comes from monochromatic sets of the form {a, a+c, a+2c, a+3c, a+

4c}. It is much easier to find a monochromatic triple of the first form

than to find monochromatic 5-tuples of the latter form.

Theorem 5.37 can be substantially strengthened, as evidenced by

the next theorem. We omit the proof, which is beyond the scope of

this book. Before stating the theorem, we need to introduce some

terminology. Assume that C is a set of nonnegative integers that is

closed under addition and such that C �= {0}. Let D �= {0} be a finite

set of nonnegative integers with 0 ∈ D. We shall call a polynomial a

(C,D)-polynomial if it has the form
∑m

i=0 aix
i, with ai ∈ C for all i,

and such that ai �= 0 if and only if i ∈ D (i.e., the positive powers of

x all belong to D).

Example 5.38. Let C be the set of all positive integers, and let

D = {0, 1}. Then the (C,D)-polynomials are just the linear functions

a+ bx with a, b ∈ Z+.
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Example 5.39. Let C = {1, 2, 4, . . .}, i.e., the set of all nonnegative

integer powers of 2, and let D = {0, 3, 4}. The family of (C,D)-

polynomials consists of all polynomials of the form 2ix4 + 2jx3 + 2k,

where i, j, and k are any nonnegative integers.

For given C and D, we call a sequence a (C,D)-polynomial se-

quence of length k if it is of the form {f(0), f(1), . . . f(k − 1)} where

f is a (C,D)-polynomial. The following theorem is a generalization

of Theorem 5.37.

Theorem 5.40. Let C and D be sets of nonnegative integers, with C

closed under addition, D finite, and C,D �= {0}. Then for all positive

integers r, every r-coloring of Z+ yields arbitrarily long monochro-

matic (C,D)-polynomial sequences.

From Example 5.38, we see that Theorem 5.40 includes van der

Waerden’s theorem as a special case.

5.5. Exercises

5.1 How many (1, 3)-triples are contained in [1, 100]? How many

(a, b)-triples are contained in [1, 100]? How many are con-

tained in [1, n]?

5.2 Complete the proof of Theorem 5.10 by showing that, for

b < 2a, the coloring of [1, 3b2 − 2ab + 5b − 2a + 3] = [1,m]

defined by coloring [b + 2, b2 + 2b + 1] with color 1, and its

complement in [1,m] with color 0, avoids monochromatic

(a, b)-triples.

5.3 By Theorem 5.10, we know that T (1, b; 2) ≥ 2b2 + 5b + 2

for b ≥ 3. Show that this lower bound can be tightened to

T (1, b; 2) ≥ 2b2 + 5b+ 6. (Hint: color

S = [1, b+ 1] ∪ {b+ 3} ∪ [b2 + 2b+ 4, 2b2 + 5b+ 5]

with the color 1, and its complement in [1, 2b2+5b+5] with

the color 0.)

5.4 It was noted in Example 5.12 that T (a, a; 2) ≥ a2 + 3a+ 4.

a) Show that, for a ≥ 4, the 2-coloring of [1, a2+3a+7] that

is red on [1, a+ 1] ∪ [a2 + 2a+ 2, a2 + 3a+ 3] ∪ {a2 + 3a+
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5, a2 + 3a + 7} and blue elsewhere, has no monochromatic

(a, a)-triples; hence T (a, a; 2) ≥ a2 + 3a+ 8 for a ≥ 4.

b) Prove that T (a, a; 3) ≥ 3a3 + 4a2 + 5a + 8 for all a ≥ 2.

(Hint: color the intervals [1, a+1] and [a3+2a2+2a+2, 2a3+

3a2+3a+3] red, the interval [a2+2a+2, a3+2a2+2a+1]

blue, and all remaining elements of [1, 3a3 + 4a2 + 5a + 8]

green.)

c) Prove that T (a, a; 4) ≥ 7a4 + 12a3 + 6a2 + 9a+ 16 for all

a ≥ 2. (Hint: color [1, a + 1] and [a4 + 2a3 + 2a2 + 2a +

2, 2a4 + 4a3 + 3a2 + 3a + 3] red, [a + 2, a2 + 2a + 1] and

[2a4 + 4a3 + 3a2 + 3a + 4, 4a4 + 7a3 + 4a2 + 5a + 7] blue,

[a3 + 2a2 + 2a + 2, a4 + 2a3 + 2a2 + 2a + 1] green, and the

remaining elements yellow.)

5.5 Use van der Waerden’s theorem to prove that for all k and

all (k − 1)-tuples (s1, s2, . . . , sk−1) of positive integers, the

number H(s1, s2, . . . , sk−1) exists (is finite).

5.6 Prove Lemma 5.23.

5.7 Assume that s1, s2, . . . , sk, and c are positive integers and

that H(s1, s2, . . . , sk) = m. Prove that

H(cs1, cs2, . . . , csk) = c(m− 1) + 1.

5.8 Verify that H(1, 2) = 13 and H(1, 3) = 17.

5.9 Answer the following to complete the proof of Theorem 5.25.

a) Show that every 2-coloring of [1,15] yields a monochro-

matic member of the family C as defined in the proof of

Theorem 5.25.

b) Show that the 20 triples of elements of [1, 4(s+t)+1] that

correspond to the 20 members of C (via the correspondence

between elements of [1,15] and elements of [1, 4(s + t) + 1]

given in the proof of Theorem 5.25) are distinct (s, t)-triples.

5.10 Use Lemmas 5.23 and 5.24 and Theorem 5.27 to prove Corol-

lary 5.28.

5.11 Complete the proof of Subcase iii of Case 1 of Theorem 5.30.
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5.12 Prove the subcases of the proof of Theorem 5.30 that were

not done in the text.

5.13 For given nonnegative integers a and b, define f̂(a, b) to be

the least positive integer such that for every 2-coloring of

[1, f̂(a, b)] there is a monochromatic set {x, x + d + a, x +

2d + b} for some positive integers x and d. Prove that if

b ≥ a, then f̂(a, b) = f̂(b− a, b).

5.14 Using the notation of Exercise 5.12, prove that if b ≥ 2a,

then f̂(a, b) = R(a+ 1, AUGb−2a, 3).

5.15 Use Exercises 5.12 and 5.13 to show that if b
a < a ≤ b, then

f̂(a, b) = R(b− a+ 1, AUG2a−b, 3).

5.16 In Section 5.4, it was noted that pp(3, 2; r) corresponds to

the family of sets of the form {a, a+b+c, a+2b+4c}, where
a and c are positive integers and b is a nonnegative integer.

a) Describe the family of sets corresponding to pp(k, 2; r).

b) Describe the family of sets corresponding to pp(k, 3; r).

5.6. Research Problems

5.1 Improve the known bounds for T (a, a; 2) (see Example 5.12).

References: [23], [257]

5.2 Improve the known bounds for T (a, 2a− 1; 2) (see Example

5.13). In particular, determine if the lower bound 16a2 −
12a+6 is the actual value of T (a, 2a− 1; 2) for all a ≥ 2 (it

is the exact value for a = 2 and a = 3).

References: [23], [257]

5.3 Improve the known bounds for T (1, b; 2) (see Example 5.11).

As we see from Table 5.1, the lower bound of 2b2 + 5b + 6

is the actual value of T (1, b) for b = 3, 4, 5, 6, 7; is this the

value of T (1, b) for all b ≥ 3?

References: [23], [257]

5.4 Determine if the following conjecture is true: for all a and

b, 1 ≤ a ≤ b, we have T (b, b) ≤ T (a, b).

References: [23], [257]
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5.5 For fixed b, what can we say about the value of a so that the

function T (a, b) is maximized? Similarly, for fixed a, what

can we say about the “rises” and “falls” of T (a, b) (from

Table 5.2, ignoring those values of T that are infinite, it

seems that for fixed a, the function T (a, b) is “usually” an

increasing function of b - the only exception in the table is

that T (2, 5) > T (2, 6)).

References: [23], [257]

5.6 Find the degree of regularity of some pair (a, b) for which

the degree of regularity is still unknown (see Table 5.2).

References: [23], [148], [153], [257]

5.7 Determine if there is a pair (a, b) such that dor(a, b) > 3. In

particular, determine whether dor(2, 2) = 3 or dor(2, 2) = 4.

References: [23], [148], [153], [257]

5.8 Characterize those pairs (a, b) for which dor(a, b) > 2. As a

partial solution to this, determine whether dor(a, b) = 2 for

all a ≥ 2 such that b �∈ {2a, 2a − 2}. Or, try to find a pair

besides (2, 2) whose degree of regularity is greater than 2.

References: [23], [148], [153], [257]

5.9 Extend the study of T (a, b; 2) to T (a, b, c; 2) by considering

4-tuples of the form (x, ax+ d, bx+ 2d, cx+ 3d). Extend it

to T (a1, a2, . . . , ak−1; 2).

References: [23], [148], [153], [257]

5.10 Let a > 1 and r > 3. Define τ = τ (a; r) to be the least

positive integer such that dorτ (a) ≤ r. Prove or disprove:

there exists s > r such that τ (a; s) < τ (a; r).

References: [148], [153], [257]

5.11 Investigate the function H(s, t, u), i.e., the Ramsey function

corresponding to homothetic copies of 4-term sequences.

References: [94], [228], [229]

5.12 Investigate the function H(s, t; 3); that is, the 3-color Ram-

sey function for homothetic copies of 3-term sequences.

References: [94], [228], [229]
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5.13 Investigate the function R(AUGb, k) for k > 3; in particular,

consider sequences of the form {x, x+ d, x+2d, x+3d+ b}.
References: [61], [246]

5.14 Let f̂(a, b), a ≤ b, be defined as in Exercise 5.13. Prove or

disprove the conjecture that for any fixed even value of b,

the maximum of f̂(a, b) occurs when a = b
2 .

Reference: [246]

5.15 Study the Ramsey properties for sequences of the form

{x, x+ d, x+ 2d+ b1, x+ 3d+ b2}.

References: [61], [246]

5.16 Improve the upper bound for R(AUGb, 3; 3). Find a lower

bound for this function.

References: [61], [246]

5.17 Let f(C,D, k; r) be the least positive integer N such that

every r-coloring of [1, N ] contains a monochromatic k-term

(C,D)-polynomial sequence (defined in Section 5.4). Inves-

tigate the function f for various pairs (C,D).

Reference: [210]

5.18 Study the magnitude of the function pp(k, n; r). In particu-

lar, study pp(3, n; 2) or pp(k, 2; 2)

Reference: [210]

5.7. References

§5.1. Lemma 5.8, Theorem 5.9, and Tables 5.1 and 5.2 are from [23].

The result mentioned in Remark 5.15, the proof of Theorem 5.17, and

Example 5.20 are from [153]. Theorem 5.18 is proven in [148]. The

results referred to in Remark 5.19 may be found in [148] and [153].

The other results in this section are from [257], which also mentions

a result on an extension to k-tuples that is analogous to a result on

arithmetic progressions from [175], as well as a conjecture on dork(a).

§5.2. The results on homothetic copies are from [94] and [229], which

contain a more thorough discussion. In [251] and [253], Ramsey-type

functions are considered for the collection of sequences that, for some
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t ≥ 1, are homothetic copies of the k-tuple

{1, 2, 2 + t, 2 + t+ t2, . . . , 2 + t+ t2 + · · ·+ tk−2}.
What might be called a “mixed” Ramsey-type function for homo-

thetic copies is studied in [228]; that is, the least positive integer n

such that every 2-coloring of [1, n] admits either a homothetic copy

of {1, 1+a1, 1+a1+a2, . . . , 1+a1+a2+ · · ·+ak} in the first color or

a homothetic copy of {1, 1+ b1, 1+ b1 + b2, . . . , 1+ b1 + b2 + · · ·+ b�}
in the second color; tight upper bounds are obtained.

§5.3. The function R(AUGb, 3; r) was first considered in [61], where

it is shown that R(AUGb, 3) does not exist for b odd, and that, for b

even, R(AUGb, 3) ≤ 13
2 b+ 1. The authors of [61] also provide proofs

of Theorems 5.31 and 5.32, and show that R(AUGb, 3; 3) ≤ 55
6 b + 1

for b ≡ 0 (mod 6). Proofs of Theorems 5.34 and 5.35 are found

in [246], for which Theorems 5.30 and 5.31 are special cases; that

paper also investigates the function f̂ (see Exercises 5.13–5.15), and

its relationship to the function R(AUGb, k).

§5.4 The two theorems in this section are from [210], which includes

their proofs.

§5.5 Exercise 5.4 is from [23].

Additional References: An important result, known as the Hales-

Jewett theorem [192], is a generalization of van der Waerden’s theo-

rem. A very short proof of the Hales-Jewett thorem is given in [277].

                

                                                                                                               



Chapter 6

Arithmetic Progressions
(modm)

An arithmetic progression is a sequence in which the gaps between

successive terms are all equal to some positive integer d. In this

chapter we shall consider sequences that are analogous to arithmetic

progressions but where, instead of all of the gaps being equal integers,

they are all congruent modulo m, where m is some prescribed integer.

Another way to think of this analogy is that the gaps of an arithmetic

progression are equal elements of Z, whereas the gaps of one of the

integer sequences discussed here, although possibly nonidentical in-

tegers, are equal when considered as elements of the additive group

Zm. We will discover some rather interesting Ramsey properties in

this setting.

We begin with some basic definitions and notation.

Definition 6.1. Let m ≥ 2 and 0 ≤ a < m. A k-term a(modm)-

progression is a sequence of positive integers {x1 < x2 < · · · < xk}
such that xi − xi−1 ≡ a (modm) for i = 2, 3, . . . , k.

For fixed m and a, denote the family of all a(modm)-progressions

by APa(m).

Definition 6.2. Let m ≥ 2. An arithmetic progression (modm) is a

sequence that is an a(modm)-progression for some a∈{1, 2,. . .,m−1}.

183

                                     

                

                                                                                                               



184 6. Arithmetic Progressions (modm)

Note that in Definition 6.2 we do not allow a = 0 (in the context

of the congruence classes modulo m, having a = 0 is somewhat like

having a gap of 0 in an arithmetic progression).

For a given m ≥ 2, we denote the family of all arithmetic pro-

gressions (modm) by AP(m). Obviously, for any m ≥ 2,

AP(m) =

m−1⋃
a=1

APa(m).

Example 6.3. The sequence {1, 7, 33, 44, 70} is a 5-term 1 (mod 5)-

progression. The sequence {3, 41, 49, 67} is a member of AP8(10) as

well as a member of AP3(5) and AP0(2). Both sequences are members

of AP(5).

We will find the following notation convenient.

Notation. Let m ≥ 2 be given. When it is understood that we

are considering arithmetic progressions modulo m, for i ∈ Z+ we let ī

denote the unique element x ∈ {1, 2, . . . ,m} such that i ≡ x (modm).

6.1. The Family of Arithmetic Progressions
(modm)

Van der Waerden’s theorem tells us that R(AP, k; r) < ∞ for all k

and r; in other words, that the family of arithmetic progressions, AP ,

is regular. In contrast, the next theorem tells us that for every m ≥ 2,

the family of arithmetic progressions (mod m) is not regular (it is not

even 2-regular). The proof makes use of elementary group theory.

Theorem 6.4. Let m ≥ 2 and k > �m
2 �. Then R(AP(m), k; 2) = ∞.

Proof. Let m and k be as in the statement of the theorem. It is

sufficient to find a 2-coloring of Z+ that admits no monochromatic

k-term arithmetic progression (mod m).

Let the following string represent χ : Z+ → {0, 1}:

11 . . . 1︸ ︷︷ ︸
�m

2 �

00 . . . 0︸ ︷︷ ︸
m−�m

2 �

11 . . . 1︸ ︷︷ ︸
�m

2 �

00 . . . 0︸ ︷︷ ︸
m−�m

2 �

. . . .
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We will prove that for each a ∈ {1, 2, . . . ,m−1}, the maximum size of

a monochromatic a (modm)-progression does not exceed
⌈

m
2 gcd(a,m)

⌉
,

which is bounded above by
⌈
m
2

⌉
. It is clear that the theorem follows

from this.

Let a ∈ {1, 2, . . . ,m − 1} be fixed. Let d = gcd(a,m) and let

q = m
d . We will consider the integers 1, 2, . . . ,m as the elements of

Zm, where Zm is the m-element cyclic group of order m, under the

operation of addition modulo m (note: it is more typical to call the

identity element 0, but under addition modulo m, using the element

m as the identity works just as well).

From elementary group theory we know that, since q is a divisor

of m, there is a unique q-element cyclic subgroup H of Zm, with

H = {d, 2d, . . . , qd = m}. Also, since gcd(a,m) = d, the subgroup H

is generated by a, so that

(6.1) H = {d, 2d, . . . , qd} =
{
a, 2a, . . . , qa

}
.

Now assume that X = {x1 < x2 < · · · < xq} is an arbi-

trary q-term a (mod m)-progression (in Z+). Therefore, for each

i ∈ {1, 2, . . . , q − 1} we have

xi+1 = xi + di,

where di ≡ a(mod m). It follows that

{x1, x2, . . . , xq} =
{
x1, x1 + a, . . . , x1 + (q − 1)a

}
= x1 +H.

Let Y = x1 +H, which is a subset of [1,m]. From (6.1) we have that

Y is an arithmetic progression with gap d and length q. Among the

q members of this arithmetic progression, at most
⌈
q
2

⌉
of them can

belong to the interval
[
1,
⌈
m
2

⌉]
, and the same holds for the interval[⌈

m
2

⌉
+ 1,m

]
. Hence, by the way χ is defined, no more than

⌈
q
2

⌉
members of Y can be monochromatic. Further, since χ(xi) = χ(xi)

for each i ∈ {1, 2, . . . , q − 1}, we see that at most
⌈
q
2

⌉
members of X

can form an arithmetic a (modm)-progression, which gives the desired

result. �
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We end this section with a table.

m \ k 2 3 4 5 6 7

2 ∞ ∞ ∞ ∞ ∞ ∞
3 3 ∞ ∞ ∞ ∞ ∞
4 3 ∞ ∞ ∞ ∞ ∞
5 3 9 ∞ ∞ ∞ ∞
6 3 9 ∞ ∞ ∞ ∞
7 3 9 ∞ ∞ ∞ ∞
8 3 9 22 ∞ ∞ ∞
9 3 9 27 ∞ ∞ ∞
10 3 9 22 ∞ ∞ ∞
11 3 9 ∞ ∞ ∞ ∞
12 3 9 25 ∞ ∞ ∞
13 3 9 27 ∞ ∞ ∞
14 3 9 27 ∞ ∞ ∞
15 3 9 27 ∞ ∞ ∞
16 3 9 27 53 ∞ ∞
17 3 9 27 58 ∞ ∞
18 3 9 28 54 97 ≤ R < ∞ ∞
19 3 9 28 ∞ ∞ ∞
20 3 9 30 ∞ ∞ ∞
21 3 9 32 66 ∞ ∞
22 3 9 35 ∞ ∞ ∞
23 3 9 32 64 ∞ ∞
24 3 9 34 67 ∞ ∞
25 3 9 34 79 ∞ ∞
26 3 9 35 65 ∞ ∞
27 3 9 35 63 110 ≤ R < ∞ ∞
28 3 9 35 65 ∞ ∞
29 3 9 35 65 ∞ ∞
30 3 9 35 75 ∞ ∞
31 3 9 35 ∞ ∞ ∞
32 3 9 35 < ∞ < ∞ < ∞

Table 6.1. Values and lower bounds for R(AP(m), k; 2)
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6.2. A Seemingly Smaller Family is More
Regular

It is obvious from Theorem 6.4 that any subset of AP(m) also fails to

be 2-regular. In particular, for any fixed a ∈ {1, 2, . . . ,m − 1}, the
collection APa(m) of all a (modm)-progressions is not 2-regular. This

is not unlike the fact that the family of all arithmetic progressions

whose gaps must be the fixed integer d (in Chapter 4, we denoted this

family by AD, where D = {d}) is not 2-regular. Loosely speaking,

we might say that families such as APa(m) (a �= 0) or A{d} are too

“small” to be 2-regular. This is not surprising, especially for A{d},

since such families restrict the allowable gap (or the gap (modm)) to

just one number. Yet, it turns out that every collection of the form

(6.2) APa(m) ∪A{m}

is, in fact, 2-regular. This statement seems to run counter to our

intuition, since for each m ≥ 2, the family AP(m) is much “larger”

than any of the families having the form in (6.2). We proceed to

establish the 2-regularity of these “smaller” families.

For ease of notation, we shall denote the family of sets in (6.2)

by A∗
a(m).

For families A∗
a(m) in which a = 0, it is fairly easy to show

regularity. We begin with this case. It is clear from the defini-

tions that any member of A{m} is also a member of AP0(m). Hence

A∗
0(m) = AP0(m) ∪ A{m} = AP0(m).

Theorem 6.5. Let k, r ≥ 1 and m ≥ 2. Then

R(AP0(m), k; r) = rm(k − 1) + 1.

Proof. Consider any r-coloring of I = [1, rm(k − 1) + 1]. Exactly

r(k−1)+1 elements of I are congruent to 1 (modm). By the pigeon-

hole principle, at least k of these r(k− 1) + 1 integers have the same

color. Since these k elements are mutually congruent modulo m, they

form a 0 (modm)-progression. This proves that rm(k − 1) + 1 is an

upper bound for R(AP0(m), k; r).
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To show the reverse inequality, let χ be the coloring represented

by the string

(1m2m . . . rm) (1m2m . . . rm) . . . (1m2m . . . rm) ,

where the string (1m2m . . . rm) appears k−1 consecutive times. Since

χ is an r-coloring of [1, rm(k−1)] that avoids monochromatic k-term

0 (mod m)-progressions, the proof is complete. �

We now turn our attention to families A∗
a(m), where a �= 0. We

shall obtain upper and lower bounds for R(AP ∗
a(m), k). As it turns

out, the behavior of R(AP ∗
a(m), k) when

m
gcd(a,m) is even is somewhat

different from the behavior when m
gcd(a,m) is odd. Therefore, we shall

handle these two cases separately.

We will establish bounds on R(AP ∗
a(m), k) by considering a cer-

tain generalization of this Ramsey-type function. The generalization

involves adding one more parameter. While it is often the case that

proving a generalization of a theorem is more difficult than prov-

ing the theorem, an extra parameter can also give us some “leeway”

in the proof. In this particular instance, proving the generalization

appears better suited to the mode of proof than proving the less com-

plex theorem (k = � in Theorem 6.7 below). Also, if we can get a

more sweeping result without more work, all the better. Here is the

generalization of the function.

Definition 6.6. Let k, �, r ≥ 2. For 1 ≤ a < m, let R(AP ∗
a(m), k, �; r)

denote the least positive integer n (if it exists) such that for every

r-coloring of [1, n] there is either a monochromatic k-term a (modm)-

progression or a monochromatic �-term arithmetic progression with

gap m.

As usual, R(AP ∗
a(m), k, �; 2) is abbreviated by R(AP ∗

a(m), k, �).

We begin with the case in which m
gcd(a,m) is even.

Theorem 6.7. Let 1 ≤ a < m such that m
gcd(a,m) is even. Then if

k ≥ 2 and � ≥ 3, we have

(6.3) b+ 1 ≤ R(AP ∗
a(m), k, �) ≤ b+ a(k − 2) + 1,

where b = m(k − 1)(�− 1).
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Proof. To establish the lower bound, we will present a 2-coloring

of [1, n] = [1,m(k − 1)(� − 1)] that avoids both monochromatic k-

term a (mod m)-progressions and monochromatic �-term arithmetic

progressions with gap m. To describe this coloring, we first partition

[1,m(k − 1)(�− 1)] into the k − 1 blocks

Bi = [m(�− 1)(i− 1) + 1,m(�− 1)i],

1 ≤ i ≤ k − 1. Letting d = gcd(a,m), we further partition each Bi

into m(�−1)
d smaller blocks:

Bi =

m(�−1)
d⋃

j=1

Ci,j ,

where

Ci,j = [m(�− 1)(i− 1) + d(j − 1) + 1,m(�− 1)(i− 1) + dj].

Note that each Ci,j contains d integers and that

[1, n] =

m(�−1)
d⋃

j=1

k−1⋃
i=1

Ci,j .

Now define the 2-coloring λ of [1, n] as follows. Let λ : C1,1 → {0, 1}
be defined arbitrarily. For (i, j) �= (1, 1), color Ci,j by the following

rule: for each t ∈ [1, d], set λ (m(�− 1)(i− 1) + d(j − 1) + t) = λ(t)

if and only if i and j have the same parity.

Since |Bi| = m(� − 1) for each i, no single Bi can contain an

�-term arithmetic progression with gap m. Thus, if there exists an �-

term monochromatic arithmetic progression with gap m, there must

exist x, y, i1, j1, j2 with y − x = m, λ(x) = λ(y), x ∈ Ci1,j1 , and

y ∈ Ci1+1,j2 . Since 2d divides m and |Ci,j | = d for all i and j, we

see that j2 − j1 is even. Therefore, by the definition of λ, we have

λ(x) �= λ(y), a contradiction.

To complete the proof of the lower bound, we need to show that,

under λ, there is no monochromatic a (modm)-progression of length

k. Assume, for a contradiction, that such a progression exists. Then

for some i, the block Bi contains at least two terms of this progression.

So assume x, y ∈ Bi, with x < y, λ(x) = λ(y), and y − x ≡ a (mod

m). It follows by the definition of λ that if y ∈ Ci,j and x ∈ Ci,j′ ,
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then j − j′ is even. However, since m
d is even, a

d is odd. This implies

that y − x = ud where u is odd, contradicting the fact that j − j′ is

even. This establishes the lower bound.

For the upper bound, we use induction on k. First assume k = 2

and let χ be any 2-coloring of [1,m(�− 1) + 1]. Let

S = {im+ 1 : 1 ≤ i ≤ �− 1}.

If S is not monochromatic, then some member of S has the same

color as m+ 1− a, and we have a monochromatic 2-term a (modm)-

progression. If S is monochromatic, and if χ(1) = χ(S), then we have

a monochromatic �-term arithmetic progression with gap m. Finally,

if S is monochromatic, but χ(1) �= χ(S), then we must have either

χ(m+ a+1) = χ(1) or χ(m+ a+1) = χ(m+1), each of which gives

us a monochromatic 2-term a (modm)-progression.

Now assume that k ≥ 2 and that the upper bound of (6.3) holds

for k and all � ≥ 3. Let χ be any 2-coloring of

I = [1,mk(�− 1) + a(k − 1) + 1].

We wish to show that, under χ, there is either a monochromatic (k+

1)-term a (modm)-progression or a monochromatic �-term arithmetic

progression with gap m. By the inductive hypothesis, we may assume

that there is some monochromatic k-term a (modm)-progression X

contained in [1,m(k− 1)(�− 1)+ a(k− 2)+1] (or else we would have

the desired monochromatic �-term arithmetic progression). Let xk

denote the largest member of X. If any member z of

Y = {xk + a+ im : 0 ≤ i ≤ �− 1} ⊆ I

has the same color asX, thenX∪{z} is a monochromatic (k+1)-term

a (modm)-progression, as desired. If no member of Y has the same

color as X, then Y is a monochromatic �-term arithmetic progression

with gap m, which completes the proof. �

For k = 2, Theorem 6.7 gives a precise formula for the associated

Ramsey function, which we state as the following corollary.

Corollary 6.8. Let 1 ≤ a < m, and assume m
gcd(a,m) is even. Then

R(AP ∗
a(m), 2, �) = m(�− 1) + 1.
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Under a certain strengthening of the hypotheses of Theorem 6.7,

it can be shown that the lower bound of (6.3) is the exact value of

R(AP ∗
a(m), k, �). The proof being rather complex, we state this result

without proof.

Theorem 6.9. Let 1 ≤ a < m, where m
a is an even integer. Let

k, � ≥ 3 with k−2
�−2 ≤ m

a . Then

R(AP ∗
a(m), k, �) = m(k − 1)(�− 1) + 1.

For k = �, we have the following result as an immediate corollary

of Theorem 6.9.

Corollary 6.10. Let 1 ≤ a < m where where m
a is an even integer.

Then for all k ≥ 3, we have R(AP ∗
a(m), k) = m(k − 1)2 + 1.

We now examine the situation in which m
gcd(a,m) is odd. In the

next theorem we give an upper bound for the associated Ramsey-type

function. We first mention a lemma that will be useful.

Lemma 6.11. Let 1 ≤ a < m. Let k, � ≥ 2 and c ≥ 1. Let n =

R(AP ∗
a(m), k, �; r). Then

R(AP ∗
ca(cm), k, �; r) = c(n− 1) + 1.

Proof. Notice that for any c ≥ 1, the set X = {x1 < x2 < · · · < xk}
is an arithmetic progression with gapm if an only if 1+cX = {1+cxi :

1 ≤ i ≤ k} is an arithmetic progression with gap cm. Also, X

is an a (modm)-progression if and only if 1 + cX is a ca (mod cm)-

progression. Therefore, by the meaning of n, any r-coloring of the set

{1, c + 1, 2c + 1, . . . , (n − 1)c+ 1} must contain a monochromatic k-

term ca (mod cm)-progression or a monochromatic �-term arithmetic

progression with gap ca. Hence, R(AP ∗
ca(cm), k, �; r) ≤ c(n− 1) + 1.

For the reverse inequality, we know there exists an r-coloring

χ of [1, n − 1] that avoids both monochromatic k-term a (modm)-

progressions and monochromatic �-term arithmetic progressions with

gap m. Using χ, we define the r-coloring χ′ of [1, c(n− 1)] as follows:

for each j ∈ {1, 2, . . . , n− 1} let

χ′([c(j − 1) + 1, cj]) = χ(j).
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We complete the proof by showing that χ′ avoids monochromatic

k-term ca (mod cm)-progressions, and also avoids monochromatic �-

term arithmetic progressions with gap cm. Assume, for a contradic-

tion, that {si : i = 1, 2, . . . } is a sequence of one of these types that is

monochromatic with respect to χ′. Let ti =
⌈
si
c

⌉
for each i. Then, by

the definition of χ′, using the reasoning of the previous paragraph, the

sequence {ti : i = 1, 2, . . . } ⊆ [1, n− 1] is either a k-term a (modm)-

progression or an �-term arithmetic progression with gap m that is

monochromatic with respect to χ, a contradiction. �

We remark that the above proof also shows that if, for a particular

triple (k, �; r), one of the two Ramsey-type functions mentioned in the

statement of Lemma 6.11 is infinite, then so is the other.

We now give an upper bound for R(AP ∗
a(m), k, �) when m

gcd(a,m)

is odd.

Theorem 6.12. Let 1 ≤ a < m and let k, � ≥ 2. Let d = gcd(a,m)

and assume m
d is odd. Then

R(AP ∗
a(m), k, �) ≤ m ((k − 2)(�− 1) + 1) + ka− d+ 1.

Proof. We first show that it is sufficient to prove the result for d = 1.

To see this, assume the theorem holds whenever d = 1, and let a′ = a
d

and m′ = m
d . Note that gcd(a′,m′) = 1 and hence, by Lemma 6.11,

we have

R(AP ∗
a(m), k, �) = d

(
R(AP ∗

a′(m′), k, �)− 1
)
+ 1

≤ d (m′((k − 2)(�− 1) + 1) + ka′ − 1) + 1

= m ((k − 2)(�− 1) + 1) + ka− d+ 1.

We complete the proof by using induction on k. For k = 2 we

must show that for any � ≥ 2, the inequality R(AP ∗
a(m), 2, �) ≤ m+2a

holds. Apparently, for k = 2 the value of � is irrelevant; this is so, as

we will show that R(APa(m), 2) ≤ m + 2a. By way of contradiction,

assume there exists a 2-coloring χ of [1,m+2a] that avoids monochro-

matic 2-term a (modm)-progressions. Let ⊕ represent the operation

of addition modulo m + 2a in the group Zm+2a, where we take the

identity element to be m+2a. Notice that if m+a < i ≤ m+2a, then
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i⊕a = i−m−a, so that {i⊕a, i} is a 2-term a (modm)-progression.

Thus, by our assumption, for every i ∈ [1,m+ 2a],

(6.4) χ(i⊕ a) �= χ(i).

Since d = 1, we see that m is odd and therefore m + 2a is odd.

Hence, by (6.4) we must have χ(1 ⊕ (m + 2a)a) �= χ(1). However,

1⊕ (m+ 2a)a = 1, a contradiction.

Now assume that k ≥ 2 is fixed and that the upper bound holds

for k and every � ≥ 2. We will show that it holds for k+1. Let � ≥ 2

and let χ be any 2-coloring of [1,m((k− 1)(�− 1)+1)+(k+1)a]. By

the inductive hypothesis we may assume there is a monochromatic k-

term a (modm)-progression X within [1,m((k−2)(�−1)+1)+ka] (or

else we have the desired �-term progression). The proof is completed

in the very same manner as the last part of the proof of Theorem 6.7;

we leave the details to the reader as Exercise 6.8. �

We next state, without proof, the best known lower bound for

R(AP ∗
a(m), k, �) when

m
gcd(a,m) is odd.

Theorem 6.13. Let 1 ≤ a < m and assume that m
gcd(a,m) is odd.

Then for all k, � ≥ 3,

R(AP ∗
a(m), k, �) ≥ (k − 2)(m(�− 2) + a) + 1.

From Theorems 6.7, 6.12, and 6.13, the following result is imme-

diate.

Corollary 6.14. If 1 ≤ a < m, then

R(AP ∗
a(m), k; 2) = mk2(1 + o(1)).

Note that the magnitude of the Ramsey-type function given by

Corollary 6.14 is significantly smaller than that of w(k; 2) (which

grows at least exponentially – see, for example, Theorem 2.11).

6.3. The Degree of Regularity

Van der Waerden’s theorem tells us that the family of arithmetic

progressions is regular, i.e., the associated Ramsey-type function is

finite for all k regardless of the number of colors being used. According

to Corollary 6.14, if 1 ≤ a < m then the family AP ∗
a(m) is 2-regular.
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However, unlike the family of arithmetic progressions, in most cases

AP ∗
a(m) has degree of regularity only two, and never more than three.

What makes this especially interesting is that the associated Ramsey

function of this family, using two colors, is a much slower growing

function than that of the family of arithmetic progressions. The next

theorem shows that when a �= m
2 , this family is not 3-regular.

Theorem 6.15. Let m ≥ 3 and 1 ≤ a < m. Assume a �= m
2 . Then

R(AP ∗
a(m), k; 3) = ∞ whenever k >

⌈
2m
3

⌉
.

Proof. We actually prove a stronger result: for m, a, and k as in

the statement of the theorem, R(AP ∗
a(m), k, 2; 3) = ∞. That is, we

show that there exists a 3-coloring of Z+ that avoids monochromatic

k-term a (modm)-progressions and monochromatic 2-term arithmetic

progressions with gap m.

As was explained in the proof of Theorem 6.12, by Lemma 6.11

we may assume that gcd(a,m) = 1. Let s =
⌈
2m
3

⌉
and t =

⌈
4m
3

⌉
.

Define χ : Z+ → {1, 2, 3} to be the 3-coloring represented by the

string

122t−232m−t122t−232m−t122t−232m−t . . . .

Note that χ is periodic with period 2m.

We next show that χ yields no monochromatic 2-term arithmetic

progression with gap m. Since m ≥ 3, we have s < m < t. For

any positive integer j, denote by j̄ the least positive integer r such

that j ≡ r (mod 2m). Thus, for any j ∈ Z+, if j̄ ∈ [1, s], then

s+1 ≤ j+m ≤ 2m, so that χ(j+m) �= χ(j). Likewise if j̄ ∈ [s+1, t],

then j+m �∈ [s+1, t], and if j̄ ∈ [t+1, 2m], then j+m �∈ [t+1, 2m].

So for every positive integer j, χ(j) �= χ(j + m), i.e., there is no

monochromatic 2-term member of A{m}.

To complete the proof, let S be any (s + 1)-term a (mod m)-

progression; we show that S is not monochromatic under χ. We see

that S has the form {x, x+ a+ c1m,x+2a+ c2m, . . . , x+ sa+ csm}
with 0 ≤ c1 ≤ c2 ≤ · · · ≤ cs. Let

S =
{
x, x+ a+ c1m,x+ 2a+ c2m, . . . , x+ sa+ csm

}
.

Note that S consists of s+1 distinct elements modulom, for otherwise

there exist i < j with x+ia+cim ≡ x+ja+cjm (modm); then, since
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gcd(a,m)=1 we have i ≡ j (modm), contradicting the fact that 0≤
i <j<m. Clearly, these s+ 1 elements are also distinct modulo 2m.

By the way χ is defined, and since each of [1, s], [s+1, t], and [t+1, 2m]

contains no more than s elements, S cannot be monochromatic under

χ. �

In the above proof we needed the fact that m
gcd(a,m) ≥ 3. The

proof does not work if m
gcd(a,m) = 2, i.e., if a = m

2 . In this one

case, AP ∗
a(m) is 3-regular. In fact, an exact formula for the associ-

ated Ramsey-type function using three colors is known. We state it,

without proof, as the next theorem.

Theorem 6.16. For all m, k ≥ 2, if m
2 ∈ Z+, then

R(AP ∗
m
2 (m), k; 3) =

m(6k2 − 13k + 5)

2
+ 1.

So far we know that the family of sequences AP ∗
a(m) is regular if

a = 0, has degree of regularity at least three if a = m
2 , and has degree

of regularity two otherwise. We will know the degree of regularity for

this family in all cases if we can determine the degree of regularity

when a = m
2 . The next theorem provides us with the solution: the

degree of regularity is exactly three if a = m
2 . What is even more

striking is that although the associated Ramsey function using three

colors exists (is finite) for all values of k (the length of the sequence),

when four colors are used it does not exist even for k = 2.

Theorem 6.17. Let 1 ≤ a < m and assume that m
gcd(a,m) is even.

Then R(AP ∗
a(m), 2; 4) = ∞.

Proof. By Lemma 6.11 it suffices to prove this when gcd(a,m) = 1.

Hence we may assume that m is even and a is odd. To prove the

theorem we provide a 4-coloring of Z+ that admits no monochro-

matic 2-term a (modm)-progressions and no monochromatic 2-term

arithmetic progressions with gap m.

Let χ be the 4-coloring of Z+ represented by

1212 . . . 12︸ ︷︷ ︸
m

3434 . . . 34︸ ︷︷ ︸
m

1212 . . . 12︸ ︷︷ ︸
m

3434 . . . 34︸ ︷︷ ︸
m

. . . .
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It is easy to see that χ admits no monochromatic 2-term arithmetic

progression with gap m. Also, since m is even, by the way χ is

defined, whenever |y − x| is odd, χ(x) �= χ(y). Thus, there is no

monochromatic 2-term a (modm)-progression. �

We conclude this chapter with a table that summarizes what is

known about the degree of regularity of the families in this chapter.

Throughout the table, we assume that 1 < a < m is fixed. Whenever

a family is r-regular, we also give the order of magnitude (as a function

of the length k of the sequence, with r fixed) of the best known upper

bound for the associated function R(F , k; r). For comparison reasons,

we also include the family AP , but do not include Gowers’ bound for

R(AP, k; r) (see Remark 2.25).

F Restriction 2-regular 3-regular r-regular (r ≥ 4)

AP yes yes yes

AP(m) no no no

APa(m) no no no

AP0(m) yes; 2mk yes; 3mk yes; rmk

AP ∗
a(m)

m
a �= 2 yes; mk2 no no

AP ∗
a(m)

m
a = 2 yes; mk2 yes; 3mk2 no

Table 6.2. Degree of regularity of families of type AP(m)

6.4. Exercises

6.1 Let 1 ≤ a < m.

a) Show that there exists a set of positive integers that con-

tains arbitrarily long members of AP ∗
a(m) but that fails to

contain arbitrarily long members of APa(m).

b) Show that there exists a set of positive integers that con-

tains arbitrarily long members of APa(m) but does not con-

tain arbitrarily long descending waves (see Definition 3.20).

c) Show that there exists a set of positive integers that con-

tains arbitrarily long arithmetic progressions but does not

contain arbitrarily long members of AP ∗
a(m).
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6.2 Find a relationship among a, b, and m, so that any set

containing arbitrarily long members of AP ∗
a(m) must also

contain arbitrarily long members of AP ∗
b(m).

6.3 Define g(n) to be the largest value of k such that for every

2-coloring of the group Zn = {0, 1, 2, . . . , n − 1} there is a

monochromatic k-term arithmetic progression (with distinct

members). Note: we are not insisting that the members of

the arithmetic progression be increasing, just distinct. Find

g(6). Also, if it is known that g(n) ≤ k, is there anything

we can say about w(k + 1)?

6.4 Define h(n) to be the same as g(n) in Exercise 6.3, except

the members of the arithmetic progression are not required

to be distinct. Find h(6). Also, find an infinite set S such

that if s ∈ S, then g(s) = h(s).

6.5 Prove that if R(AP(m), k) > (m− 1)(k − 1) + 1, then

w(k) > (m− 1)(k − 1) + 1.

6.6 Prove that if m ≥
⌈
w(k)−1
k−1

⌉
, then R(AP(m), k; 2) ≤ w(k).

6.7 Prove the following implication: if R(AP(m), k; 2) = ∞ for

k ≥ logm, then w(logm) ≥ m logm and hence w(k) ≥ kek.

6.8 Complete the last part of the proof of Theorem 6.12.

6.9 Let 1 ≤ a < m. Prove that R(AP ∗
a(m), 2; 3) ≤ 3m. (Hint:

assume there exists a 3-coloring χ : [1, 3m] → {1, 2, 3} yield-

ing no appropriate monochromatic 2-element set; assume

that χ(m + 1) = 1 and χ(2m + 1) = 2, and arrive at a

contradiction.)

6.10 Let 1 ≤ a < m, let m
gcd(a,m) be odd, and let k ≥ 2.

a) Prove the following, which is a slight improvement over

Theorem 6.12 in certain cases when � = 3:

R(AP ∗
a(m), k, 3; 2) ≤ 2m(k − 1) + a(k − 2) + 1.

b) Prove the following, which gives a slight improvement

over Theorem 6.12 when � = 2:

R(AP ∗
a(m), k, 2; 2) ≤ m(k − 1) + a(k − 1) + 1− ε,

where ε = 0 if a is odd, and ε = gcd(a,m) is a is even.                
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6.11 Consider the following generalization of AP ∗
a(m). For T a set

of positive integers, let AP ∗
a(m),T = APa(m) ∪AT ; that is, it

consists of all a (modm)-progressions and all arithmetic pro-

gressions whose gaps are in T . Now define R(AP ∗
a(m),T , k, �)

to be as in Definition 6.6, except we replace “�-term member

of A{m}” with “�-term member of AT ”. Prove the following.

a) R(AP ∗
a(m),T , k) < ∞ if and only if cm ∈ T for some

c ∈ Z+.

b) Let d = gcd(a,m), and let c ≥ 1, k ≥ 2 and � ≥ 3.

Assume that cm ∈ T . If m
d is even, then

R(AP ∗
a(m),T , k, �) ≤ cm(k − 1)(�− 1) + (k − 2)a+ 1.

c) Under the hypothesis of (b), except assuming m
d is odd,

R(AP ∗
a(m),T , k, �) ≤ cm(k − 2)(�− 1) +m+ ak − d+ 1.

6.5. Research Problems

6.1 Investigate which pairs of integers m and k have the prop-

erty that R(AP(m), k) < ∞. Exercise 6.6 handles the situ-

ation in which m ≥
⌈
w(k)−1
k−1

⌉
. For those values of m and

k that do not satisfy this inequality, the situation is un-

clear. For example, it is known that R(AP(22), 5) = ∞,

while R(AP(21), 5) and R(AP(23), 5) are both finite. In par-

ticular, find a function h(m) (as small as possible) such that

R(AP(m), h(m)) = ∞ for all k ≥ h(m). (See Table 6.1.)

References: [93], [254]

6.2 Prove or disprove: if m and k are such that R(AP(m), k) <

∞, then R(AP(m), k) ≤ w(k). (See Table 6.1.)

References: [93], [254]

6.3 Find bounds for R(AP(m), k) when it exists. (See Table 6.1.)

References: [93], [254]

6.4 Computer calculations suggest that the upper bound of 3m

from Exercise 6.9 is not the best possible. Improve on this

bound (or show it is the best possible).

References: [254], [260]
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6.5 It is known that if m
gcd(a,m) is odd, then R(AP ∗

a(m), 2; 6) =

∞. For certain such pairs a and m the least value of r such

that R(AP ∗
a(m), 2; r) = ∞ is 6; for some it is 5. Determine

if the least r is ever 4 (it is never 3 by Exercise 6.9).

Reference: [260]

6.6 It has been conjectured that Theorem 6.9 is true when the

restriction k−2
�−2 ≤ m

a is removed. Prove or disprove this con-

jecture. (Note: it is known that this formula does not work if

we loosen the requirement to m
gcd(a,m) being even. For exam-

ple, computer calculations have shown R(AP ∗
9(10), 3, 3) = 49,

which is much closer to the upper bound of 50 given by The-

orem 6.7 than to the lower bound of 41. The conjecture has

been proven when m
a = 2, but not for other cases.)

Reference: [254]

6.7 Improve the lower bound given by Theorem 6.13. Perhaps

it can be tightened to m(k − 2)(�− 1) + 1.

Reference: [254]

6.8 Corollary 6.8 gives a formula for R(AP ∗
a(m), k, �) when k = 2

and a
gcd(a,m) is even. Formulas have also been found for this

function when k = 2 and a
gcd(a,m) is odd. No formulas are

known for � = 2 and general k; find such formulas.

Reference: [254]

6.9 Consider the following variation of R(AP ∗
a(m), k, �). Denote

by R′(AP ∗
a(m), k, �) the least positive integer n so that every

2-coloring of [1, n] either admits an �-term monochromatic

arithmetic progression with gapm, or else in each color there

is a monochromatic k-term a (mod m)-progression. It has

been shown that R′(AP ∗
1(2), k, �) ≤ 2(k − 1)(� − 1) + k − 2.

Does this generalize to arbitrary a and m?

Reference: [254]

6.10 Families analogous to type APa(m) have been considered,

where more than one congruence class is allowed. For ex-

ample, the families APa(m),b(n) = APa(m) ∪ APb(n) were

studied, and a characterization was given for those pairs of

congruence classes a (modm) and b (modn) for which such
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a family is 2-regular. An upper bound was also given when

2-regularity occurs. As one special case, if m is even and

b = (c−1)m for some c ≥ 2, then R(APa(m),b(cm), 3) ≤ 4cm.

Prove or disprove the conjecture that under the same hy-

potheses, R(APa(m),b(cm), 3) = 4(c− 1)m+ 1.

Reference: [93]

6.11 Given 1 ≤ a < m fixed, determine the Ramsey properties

of sequences of the form {x1 < x2 < · · · < xk} such that

xi − x1 ≡ a (modm) for all i = 2, 3, . . . , k.

References: [93], [241], [254]

6.12 Let 1 ≤ a < m. Consider the family of all sequences of

positive integers of the form {x1 < x2 < · · · < xk} satisfying

xi − xi−1 = tid, with ti ≡ a (modm) for each i, and where

d is some fixed positive integer. For example, if ti = 1 for

all i, then these are the arithmetic progressions. For m = 2

and a = 1, it has been calculated that for this family (call

it C), R(C, 3) = 9, R(C, 4) = 15, and R(C, 5) = 21. Study C.
One specific question is this: what happens for a = 1 and

arbitrary m?

References: [93], [241], [254]

6.6. References

§6.1. The proof of Theorem 6.4 is from [93], which also discusses the

Ramsey-type functions for APa(m)∪APb(n), as well as unions of more

than two such families. It also contains work related to Exercise 6.11.

§6.2. The family AP ∗
a(m) is introduced by Landman and Long [254],

and its 2-color Ramsey-type functions are studied. This paper con-

tains proofs of Theorems 6.5, 6.7, 6.9, 6.12, and 6.13, and of Lemma

6.11. It also gives an exact formula for R(AP ∗
a(m), 2, �). It discusses

several computer-generated values and patterns which leave us with

several unanswered, but intriguing questions.

§6.3. Proofs of Theorems 6.15–6.17 are in [260]; that paper also

includes more work on R(AP ∗
a(m), 2; r). The generalization of AP ∗

a(m)

to families of the type APa(m) ∪AT is examined in [241], which also
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includes a table summarizing what is known about the regularity of

these and related families, as well as the asymptotic values of their

associated Ramsey-type functions. For an extended version of Table

6.2, see [260].

Additional References: Arithmetic progressions contained in the

group Zn (where the elements of the arithmetic progression are dis-

tinct in Zn) are studied in [377] (we believe that the very last inequal-

ity in the article is incorrect) with upper and lower bounds given for

the associated Ramsey-type functions. A relationship between such

Ramsey functions and the classical van der Waerden numbers yields

a lower bound for w(6).

In [101], monochromatic solutions to certain equations in Zn are

considered. In particular, a lower bound is given for the minimum

number of monochromatic 4-term arithmetic progressions contained

in any 2-coloring of Zn. An improvement on this lower bound for n

prime is given in [403]. This work is extended in [269], including

results for general n and for 5-term arithmetic progressions.

                

                                                                                                               



                

                                                                                                               



Chapter 7

Other Variations on van
der Waerden’s Theorem

The notion of an arithmetic progression, being so basic, has naturally

led to many intriguing mathematical questions. Here we mention a

few selected topics dealing with arithmetic progressions, not covered

in the previous chapters, that fall under the general heading of Ram-

sey theory on the integers.

7.1. The Function Γm(k)

In Chapter 3 the function Γm(k) was introduced. Here is a reminder

of its definition.

Definition 7.1. For m, k ≥ 2, denote by Γm(k) the least positive

integer s such that every set S ⊆ Z+ with S = {x1, x2, . . . , xs} and

xi − xi−1 ∈ {1, 2, . . . ,m}, for all i ∈ {2, 3, . . . , s}, contains a k-term

arithmetic progression.

We showed in Chapter 3 that Γm(k) exists for all m and k. We

also discussed the relevance of Γm(k) to the goal of finding an upper

bound on the van der Waerden numbers: w(k) ≤ SPm(Γm(k)), where

SPm is the Ramsey-type function associated with semi-progressions

of scope m. In this section we look more closely at the Γm function.

We first define a related function.

203

                                     

                

                                                                                                               



204 7. Other Variations on van der Waerden’s Theorem

Definition 7.2. For m, k ≥ 2, define Ωm(k) to be the least positive

integer n such that whenever X = {x1, x2, . . . , xn} with xi ∈ [(i −
1)m, im − 1] for each i ∈ {1, 2, . . . , n}, there is a k-term arithmetic

progression in X.

We consider an example.

Example 7.3. Letm = 2 and k = 3. We wish to find the least integer

n so that every sequence x1, x2, . . . , xn satisfying the conditions x1 ∈
{0, 1}, x2 ∈ {2, 3},. . . , xn ∈ {2n − 2, 2n − 1}, will contain a 3-term

arithmetic progression. The sequence {0, 2, 5, 6, 9, 11}, since it does

not contain a 3-term arithmetic progression, shows that Ω2(3) > 6.

If we check directly, we find that every 7-term sequence x1, x2, . . . , x7

with each xi ∈ {2i − 2, 2i − 1} does contain a 3-term arithmetic

progression. Therefore Ω2(3) = 7.

One obvious question we want to ask is whether Ωm(k) always

exists. The next theorem, which describes a fundamental relationship

between values of the Ω function and w(k; r), answers this question

in the affirmative.

Theorem 7.4. For all k, r ≥ 1,

Ωr(k) ≤ w(k; r) ≤ Ωr(r(k − 1) + 1).

Proof. Let w = w(k; r). We first show that Ωr(k) ≤ w. To this

end, let X = {x1, x2, . . . , xw} with xn ∈ [(n − 1)r, nr − 1] for n =

1, 2, . . . , w. Thus, for each n ∈ [1, w], we have xn = (n − 1)r + cn,

where cn ∈ [0, r− 1]. Let χ : [1, w] → {0, 1, . . . , r− 1} be the coloring

such that χ(n) = j if and only if cn = j. From the definition of w,

there is some monochromatic k-term arithmetic progression under χ.

So assume {a + id : 0 ≤ i ≤ k − 1} ⊆ [1, w] has color j0 for some

a, d ≥ 1. Hence, ca+id = j0 for each i ∈ [0, k − 1], so that

xa+id = (a+ id− 1)r + ca+id

= (a+ id− 1)r + j0

= (a− 1)r + j0 + idr,

for 0 ≤ i ≤ k − 1. Therefore, {xa+id : 0 ≤ i ≤ k − 1} is a k-term

arithmetic progression contained in X, and hence, Ωr(k) ≤ w(k; r).
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Now let m = Ωr(r(k − 1) + 1). To complete the proof, we show

that every r-coloring of [0,m − 1] yields a monochromatic k-term

arithmetic progression (this is equivalent to having w(k; r) ≤ m). Let

λ : [0,m−1] → {0, 1, . . . , r−1} be an arbitrary r-coloring. Define the

sequence A = {ai : 0 ≤ i ≤ m − 1} by letting ai = ir + λ(i). Notice

that for each i, we have ai ∈ [ir, (i+1)r− 1]. By the definition of m,

A must contain an arithmetic progression of length r(k − 1) + 1, say

B = {aij : 0 ≤ j ≤ r(k − 1)} = {ai0 + jd : 0 ≤ j ≤ r(k − 1)}
for some d ≥ 1. Then the set {aijr : 0 ≤ j ≤ k − 1} is a k-term

arithmetic progression with gap rd. Hence, for each j ∈ {1, 2, . . . ,
k − 1}, we have

(7.1) rd = aijr − ai(j−1)r
= r(ijr − i(j−1)r) + λ(ijr)− λ(i(j−1)r).

Since the range of λ is {0, 1, . . . , r− 1}, and since the right-hand side

of (7.1) must be a multiple of r, we have that λ(ijr) = λ(i(j−1)r) for

each j ∈ {1, 2, . . . , k − 1}. Hence, by (7.1), ijr − i(j−1)r = d for each

j. Thus, {ijr : 0 ≤ j ≤ k− 1} is a k-term arithmetic progression that

is monochromatic, and is contained in [1, ar(k−1)] ⊆ [1,m]. �

In the next theorem we show that Γr(k) is bounded above by a

simple function involving Ωr(k).

Theorem 7.5. For all k, r ≥ 2, we have Γr(k) ≤ rΩr(k).

Proof. Let m = Ωr(k). It is necessary to show that every sequence

X = {x1 < x2 < · · · < xrm} satisfying xi − xi−1 ≤ r for each

i ∈ {2, 3, . . . , rm}, contains a k-term arithmetic progression. We

begin with the case in which x1 = 1, so that for each j ∈ {1, 2, . . . ,m},
the interval [(j − 1)r, jr− 1] must contain some element yj of X. By

the definition of m, the sequence Y = {yj : 1 ≤ j ≤ m} contains a

k-term arithmetic progression. Since Y ⊆ X, we are done.

Now assume x1 > 1. Let x′
i = xi−x1+1 for each i∈{1, 2, . . . , rm}.

Since x′
1 = 1, we know that {x′

i : 1 ≤ i ≤ rm} contains a k-term arith-

metic progression {yj : 1 ≤ j ≤ k}. Hence,

{yj + x1 − 1 : 1 ≤ j ≤ k}
is a k-term arithmetic progression contained in X, which completes

the proof. �
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Theorem 7.5 bounds Γr from above by an expression involving the

Ω function. The Ω function may also be used to bound the Γ function

from below. The proof being rather straightforward, we leave it as

Exercise 7.2.

Theorem 7.6. For all k, r ≥ 2, we have Ωr(k) ≤ Γ2r−1(k).

We are now able to tie the van der Waerden numbers more closely

to the Γ function.

Theorem 7.7. Let k, r ≥ 2. Then

Γr(k) ≤ w(k; r) ≤ Γ2r−1(r(k − 1) + 1).

Proof. We first show that Γr(k) ≤ w(k; r). Let w = w(k; r) and let

X = {xi : 1 ≤ i ≤ w} with xi−xi−1 ∈ {1, 2, . . . , r}. We wish to show

that X contains a k-term arithmetic progression. As in the proof of

Theorem 7.5, it suffices to assume that x1 = 1.

Define the coloring χ of [1, w] as follows: χ(n) = j if and only if

j = min({xi − n : xi ≥ n}). Obviously, w ≤ xw. Therefore, χ is an

r-coloring of [1, w] using the colors 0, 1, . . . , r−1. By the definition of

w, there is a monochromatic k-term arithmetic progression under χ;

say {a+ jd : 0 ≤ j ≤ k − 1} has color t. Note that for any n ∈ [1, w]

such that χ(n) = t, we have t + n = xi for some i ∈ {1, 2, . . . , w}.
Hence, for each j ∈ {0, 1, . . . , k − 1}, we have t + a + jd = xij ∈ X.

Thus X contains a k-term arithmetic progression, as desired.

The second inequality follows immediately from Theorems 7.4

and 7.6, since w(k; r) ≤ Ωr(r(k − 1) + 1) ≤ Γ2r−1(r(k − 1) + 1). �

Example 7.8. Taking r = 2 and using Theorems 7.4–7.6, we obtain

(7.2)
1

2
Γ2(k) ≤ Ω2(k) ≤ w(k; 2) ≤ Ω2(2k − 1) ≤ Γ3(2k − 1).

In particular, for k = 3, the leftmost two inequalities agree with our

previous calculations of w(3; 2) = 9, Ω2(3) = 7 (see Example 7.3),

and Γ2(3) = 5 (see Example 3.28), while the other two inequalities

tell us that 9 ≤ Ω2(5) ≤ Γ3(5).

The above series of theorems, although providing a good picture

of how the different functions are interrelated, does not actually pro-

vide any specific upper or lower bound for any of these functions. We
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next mention, without proof, a lower bound for Γr(k). Note that by

(7.2) this also gives a lower bound for Ω2(k)

Theorem 7.9. For every r ≥ 2, there exists a constant c > 0 (de-

pendent upon r) such that Γr(k) > rk−c
√
k for all k ≥ 3.

7.2. Monochromatic Sets a(S + b)

In Chapter 2 we gave several equivalent forms of van der Waerden’s

theorem. One of these is the following: for every r-coloring of Z+

and every finite S ⊆ Z+, there exist integers a, b ≥ 1 such that

aS + b is monochromatic. We can think of aS + b as being derived

from S via the operations, in order, of multiplication and addition.

What happens if we reverse the order of these two operations? More

explicitly, is it true that for every finite S and every r-coloring of Z+,

there must be a monochromatic set of the form a(S+ b)? As we shall

see, the answer is no. This suggests the question: for which S and r

does this Ramsey property hold?

We adopt the following terminology and notation.

Definition 7.10. For S a finite set of positive integers and r ≥ 2,

we say that S is reverse r-regular if for every r-coloring of Z+ there

exist a ≥ 1 and b ≥ 0 such that a(S + b) is monochromatic. We say

S is reverse regular if S is reverse r-regular for all r ≥ 2.

Notation. If S is reverse r-regular, denote by RR(S; r) the least

positive integer m such that for every r-coloring of [1,m] there is a

monochromatic set a(S + b) for some a ≥ 1 and b ≥ 0.

Interestingly enough, the regularity properties of sets of the form

a(S+b) are far different from those of the form aS+b. As mentioned

above, by van der Waerden’s theorem, the latter type are always

regular. The following theorem describes, quite plainly, which sets

are reverse regular. We omit the proof, but we do prove Theorem

7.12, below, which has the “if” part of Theorem 7.11 as an immediate

corollary.

Theorem 7.11. A set S of positive integers is reverse regular if and

only if |S| ≤ 2.
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It is obvious that every 1-element set is reverse regular. For

sets S such that |S| = 2, it is not difficult to give a formula for

RR(S) = RR(S; 2).

Theorem 7.12. Let s, t ≥ 1 with s < t. Then RR({s, t}; 2) = 2t.

Proof. For convenience we will denote RR({s, t}; 2) more simply by

RR(s, t). To show that RR(s, t) > 2t − 1, let d = t− s and consider

the 2-coloring χ of [1, 2t − 1] defined by χ(i) = 1 if
⌊
i
d

⌋
is odd and

χ(i) = 0 if
⌊
i
d

⌋
is even. Clearly, if a(S + b) ⊆ [1, 2t − 1] with b ≥ 0,

then a = 1 and b ≤ t − 1. So it suffices to show that there is no

b ∈ {0, 1, . . . , t − 1} such that S + b is monochromatic. Assume, by

way of contradiction, that {s+b, t+b} is monochromatic. Then
⌊
s+b
t−s

⌋
and

⌊
t+b
t−s

⌋
have the same parity. That is,

⌊
s+b
d

⌋
and

⌊
s+d+b

d

⌋
have

the same parity. Since
⌊
s+d+b

d

⌋
=
⌊
s+b
d

⌋
+ 1, we have arrived at a

contradiction.

To show that RR(s, t) ≤ 2t, consider any 2-coloring of [1, 2t]. At

least two elements of {2s, s + t, 2t} must have the same color. We

consider three cases, depending on which two of these elements are

monochromatic. If 2s and s+t have the same color, then taking b = s

and a = 1, we have a({s, t}+ b) monochromatic. We leave the other

two cases as Exercise 7.4. �

Although the only reverse regular sets are those with two or less

elements, the next theorem tells us that for any finite set S and any

positive integer r, there exists some positive integer c such that cS

is reverse r-regular. That is to say, for every finite S, for arbitrarily

large r there is a multiple of S that is reverse r-regular (whichmultiple

of S this is, however, depends on r).

Theorem 7.13. Let S be a finite set of positive integers, and let

r ≥ 1. Then there exists a positive integer c (depending on S and r)

such that cS is reverse r-regular.

Proof. Let S and r be fixed. From the equivalent form of van der

Waerden’s theorem mentioned in the first paragraph of this section

(see Theorem 2.4(iv)), by using the compactness principle, we know

there is a positive integer m such that for every r-coloring of [1,m]
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there is a monochromatic set of the form aS + b, a ≥ 1, b ≥ 0. Let

c = lcm(1, 2, . . . ,m).

Let χ be any r-coloring of Z+. We wish to show that there exist

a′ ≥ 1 and b′ ≥ 0 such that a′(cS + b′) is monochromatic under χ.

Consider the r-coloring α of [1,m] defined by α(i) = χ(ci). We know

that there exist a ≥ 1, b ≥ 0 such that aS+b is monochromatic under

α. Therefore, caS + cb is monochromatic under χ. Clearly, a ≤ m,

and hence a divides c. Let c = da. Then caS + dab = a(cS + db) is

monochromatic under χ. Hence, letting a′ = a and b′ = db, the proof

is complete. �

7.3. Having Most Elements Monochromatic

In this section we look at a modification of van der Waerden’s theo-

rem by loosening the requirement that there is a k-term arithmetic

progression having all of its terms be of the same color. What if we

instead require only that, in any 2-coloring, there be an arithmetic

progression that is “predominantly” of one color? We formalize this

idea in the following definition.

Definition 7.14. Let k ≥ 1 and let 0 ≤ j < k. Let w∗(k, j) be the

least positive integer n such that for every χ : [1, n] → {0, 1} there is

a k-term arithmetic progression with the property that the number

of elements of color 0 and the number of elements of color 1 differ by

more than j.

It is clear from van der Waerden’s theorem that w∗(k, j) always

exists.

Example 7.15. If j = k − 1, then w∗(k, j) has the same meaning

as w(k) since there must be k elements of one color and none of the

other color. At the opposite extreme, if k is any odd positive integer,

then w∗(k, 0) = k, because in any 2-coloring of [1, k] (which itself is

a k-term arithmetic progression), the number of integers of one color

must exceed the number of the other color.

For the remainder of this section, when working with 2-colorings,

it will be convenient to use 1 and −1 as the colors.
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We saw in Example 7.15 that the case in which k is odd and j = 0

is rather trivial. This is not so when k is even and j = 0.

Theorem 7.16. If k ≥ 2 is even, then w∗(k, 0) = 2j(k−1)+1, where

j is the largest positive integer such that 2j divides k.

Proof. Let m = 2j(k − 1) + 1, and let χ : [1,m] → {1,−1} be an

arbitrary 2-coloring of [1,m]. To show that w∗(k, 0) ≤ m, assume, for

a contradiction, that, under χ, every k-term arithmetic progression

has exactly k
2 of its elements in each color. In particular, for each

a ∈ [1,m− k],

(7.3)
k−1∑
i=0

χ(a+ i) = 0

and

(7.4)
k∑

i=1

χ(a+ i) = 0.

Likewise,

(7.5)
k−1∑
i=0

χ
(
1 + i2j

)
= 0.

Note that from (7.3) and (7.4) we have

(7.6) χ(a) = χ(a+ k) for all a ∈ [1,m− k].

We next show that (7.5) and (7.6) lead to a contradiction.

Let q = k
2j . Note that from the meaning of j, it follows that q

must be odd. Since k − 1 = q2j − 1, we have

k−1∑
i=0

χ
(
1 + i2j

)
=

2j−1∑
s=0

(s+1)q−1∑
i=sq

χ
(
1 + i2j

)

=
2j−1∑
s=0

q−1∑
i=0

χ(1 + (i+ sq)2j)

=
2j−1∑
s=0

q−1∑
i=0

χ
(
1 + i2j + sk

)
.
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By (7.6), for all s and i such that 0 ≤ i ≤ q−1 and 0 ≤ s ≤ 2j−2,

we have χ
(
1 + i2j + sk

)
= χ

(
1 + i2j + (s+ 1)k

)
. Therefore

(7.7)
k−1∑
i=0

χ
(
1 + i2j

)
= 2j

q−1∑
i=0

χ
(
1 + i2j

)
.

From (7.5) and (7.7), we obtain

q−1∑
i=0

χ
(
1 + i2j

)
= 0,

which gives us a contradiction because q is odd.

We still must show that w∗(k, 0) ≥ 2j(k−1)+1. It suffices to find

one 2-coloring λ : [1,m− 1] → {−1, 1} such that for every arithmetic

progression {a, a+ d, . . . , a+ (k − 1)d} ⊆ [1,m− 1], we have

k∑
i=1

λ(a+ (i− 1)d) = 0.

Define λ as follows. Let λ(x) = 1 for 1 ≤ x ≤ k
2 , and let λ(x) = −1

for k
2 < x ≤ k. Finally, for x > k, let λ(x) = λ(x), where x ∈ [1, k]

and x ≡ x (mod k).

Let {a + (i − 1)d : 1 ≤ i ≤ k} be any arithmetic progression

contained in [1,m − 1]. Let e = gcd(d, k) and k′ = k
e . Since d < 2j

we have that k′ is even. Therefore, by the way λ is defined and the

fact that k′d is a multiple of k,

k∑
i=1

λ(a+ (i− 1)d) =
e−1∑
s=0

⎛⎝ (s+1)k′∑
i=sk′+1

λ(a+ (i− 1)d)

⎞⎠
= e

k′∑
i=1

λ(a+ (i− 1)d)

= e

k′
2∑

i=1

(
λ(a+ (i−1)d) + λ

(
a+ (i−1)d+

k′d

2

))
= 0,

because k′d
2 ≡ k

2 (mod k). This completes the proof. �
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Although very little is known about w∗(k, j) for j ≥ 1, progress

has been made on a related question. Before stating the question, we

adopt the following notation. For a 2-coloring χ : [1, n] → {1,−1},
denote by [1, n]1 and [1, n]−1 the sets of elements of [1, n] having the

colors 1 and −1, respectively. The question we wish to ask may now

be stated this way: for n a positive integer, can we determine some

minimum number j, depending on n, such that for every 2-coloring

χ : [1, n] → {1,−1}, there must exist an arithmetic progression A

such that A ∩ [1, n]1 and A ∩ [1, n]−1 differ in size by at least j? The

following theorem gives an asymptotic lower bound for such a j as a

function of n. We omit the proof, which is beyond the scope of this

book.

Theorem 7.17. Let

j(n) = min
χ

max
a,d,k

({∣∣∣∣∣
k∑

i=0

χ(a+ id)

∣∣∣∣∣ : a, d, k ∈ Z+ and a+ kd ≤ n

})
,

where the minimum is taken over all 2-colorings χ : [1, n] → {1,−1}.
Then j(n) = O(n

1
4 ).

Example 7.18. To help get some insight into what the above theo-

rem is saying, consider j(12). For a given coloring of [1, 12], we want

the most “unbalanced” arithmetic progression A, in the sense that

the difference in the sizes of the sets A ∩ [1, 12]1 and A ∩ [1, 12]−1 is

maximized. For example, let χ
 be the coloring such that [1, 12]1 =

{3, 4, 5, 6, 8, 9, 10} and [1, 12]−1 = {1, 2, 7, 11, 12}. Then it is easy

to check that the arithmetic progression A = {3, 4, 5, 6, 7, 8, 9, 10} is

the arithmetic progression we seek because the difference between the

sizes of A∩[1, 12]1 and A∩[1, 12]−1 is six, and no other arithmetic pro-

gression yields as great a difference (check this). Using the notation

of Theorem 7.17, this may be stated (equivalently) as

max
a,d,k

({∣∣∣∣∣
k∑

i=0

χ
(a+ id)

∣∣∣∣∣ : a+ kd ≤ 12

})
= 6.

Denoting this maximum by M(χ
), we have M(χ
) = 6, and this

is obtained with a = 3, d = 1, and k = 7 (it is, of course, possible

that there is more than one arithmetic progression that gives the

maximum). Now, if we do this for each 2-coloring χ of [1, 12], we
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get its associated maximum M(χ). Then by taking the minimum,

j(12), over all 2-colorings χ, we are saying that, for each coloring χ,

there will always be some arithmetic progression A in [1, 12] having

the property that the difference between the number of members of

A with color 1 and the number of members of A with color −1 is at

least j(12). We leave it to the reader as Exercise 7.7 to determine the

value of j(12).

7.4. Permutations Avoiding Arithmetic
Progressions

In this section we are concerned with the question of whether per-

mutations (i.e., arrangements) of certain sequences (possibly infinite)

contain subsequences of a desired length that form an arithmetic pro-

gression. To clarify, we begin with a definition.

Definition 7.19. A sequence (a1, a2, . . . , an) or (a1, a2, . . . ) has a

k-term monotone arithmetic progression if there is a set of indices

{i1 < i2 < · · · < ik} such that the subsequence ai1 , ai2 , . . . , aik is

either an increasing or a decreasing arithmetic progression.

Example 7.20. The sequence (3, 1, 4, 5) contains a 3-term monotone

arithmetic progression (namely, 3, 4, 5), but none of four terms. The

sequence (4, 2, 3, 1) has no 3-term monotone arithmetic progression.

The sequence (1, 9, 7, 6, 2, 4, 5, 3, 8) has a 4-term monotone arithmetic

progression (the subsequence 9, 7, 5, 3 is one), but none of length five.

Here is one simple question: are there any positive integers n

such that every permutation of the sequence (1, 2, . . . , n) has a 3-term

monotone arithmetic progression? This is relatively easy to answer.

Theorem 7.21. Let n ≥ 1. There is a permutation of (1, 2, . . . , n)

that does not contain a 3-term monotone arithmetic progression.

Proof. First note that if 1 ≤ n1 < n2, and if the theorem holds

for n2, then it also holds for n1 (simply take the permutation that

works for n2, and delete those integers greater than n1). Hence, it is

sufficient to prove the theorem for n ∈ {2k : k ≥ 0}. We do this by

induction on k.
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Clearly, the result holds for n = 20. Now assume that k ≥ 0, that

n = 2k, and that there is a permutation (c1, c2, . . . , cn) of (1, 2, . . . , n)

that does not contain a 3-term monotone arithmetic progression.

Consider the sequence

S = (2c1 − 1, 2c2 − 1, . . . , 2cn − 1, 2c1, 2c2, . . . , 2cn).

Note that S is a permutation of the sequence (1, 2, . . . , 2n = 2k+1),

and that the first 2k terms of S are odd and the other 2k terms of S

are even.

In any 3-term monotone arithmetic progression, the first and

third terms must be of the same parity. Therefore, if S contains

a 3-term monotone arithmetic progression P , then either

P ⊆ {2c1 − 1, 2c2 − 1, . . . , 2cn − 1}

or

P ⊆ {2c1, 2c2, . . . , 2cn}.
This is impossible, for if {a, b, c} ⊆ [1, n] is not a monotone arithmetic

progression, then neither is {2a − 1, 2b − 1, 2c − 1} nor {2a, 2b, 2c}.
Therefore, S is a permutation of {1, 2, . . . , 2k+1} that contains no 3-

term monotone arithmetic progression, and the proof is complete. �

Now that we know that for each n there is some permutation of

(1, 2, . . . , n) containing no 3-term monotone arithmetic progression, a

natural question to ask is: how many such permutations are there?

Clearly, for n ≥ 3, not all n! permutations of [1, n] avoid 3-term

monotone arithmetic progressions (for example, (1, 2, . . . , n)). Let

us denote by θ(n) the number of permutations of (1, 2, . . . , n) that

contain no 3-term monotone arithmetic progressions. No formula for

θ(n) is known. However, both upper and lower bounds are known for

θ(n). The following theorem gives a lower bound.

Theorem 7.22. Let n ≥ 1. Then θ(n) ≥ 2n−1.

Proof. We use induction on n. First note that θ(1) = 1, θ(2) = 2,

and θ(3) = 4, so the inequality holds for n ≤ 3. Now assume n ≥ 4,

and that it holds for any n′ < n. We consider two cases.

Case 1. n = 2m is even. By the reasoning used in the proof of

Theorem 7.21, if S1 and S2 are any permutations of [1,m] that avoid
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3-term monotone arithmetic progressions, then ((2S1 − 1), 2S2) and

(2S2, (2S1−1)) are permutations of [1, n] that also avoid 3-term mono-

tone arithmetic progressions. Therefore,

θ(n) = θ(2m) ≥ 2 (θ(m))2 ≥ 2
(
2m−1

)2
= 2n−1.

Case 2. n = 2m+1 is odd. As in Case 1, if S1 and S2 are permuta-

tions of [1,m] and [1,m+1], respectively, that avoid 3-term monotone

arithmetic progressions, then (2S1, (2S2−1)) and ((2S2−1), 2S1) are

permutations of [1, n] that do likewise. Therefore,

θ(n) = θ(2m+ 1) ≥ 2θ(m)θ(m+ 1) ≥ 2(2m−1)(2m) = 2n−1.

In both cases we have shown that θ(n) ≥ 2n−1, thereby complet-

ing the proof. �

We now turn to upper bounds for θ(n).

Theorem 7.23. Let n ≥ 1. If n = 2m − 1, then θ(n) ≤ (m!)2. If

n = 2m, then θ(n) ≤ (m+ 1)(m!)2.

Proof. Denote by Θ(t) the set of permutations of [1, t] that avoid

3-term monotone arithmetic progressions. Note that each member S′

of Θ(n + 1) may be obtained from some member S of Θ(n) by the

insertion of n + 1 somewhere into S = (a1, a2, . . . , an). If ai is such

that

(7.8)

⌈
n+ 3

2

⌉
≤ ai ≤ n,

then {n + 1, ai, 2ai − n − 1} is an arithmetic progression that, from

the meaning of Θ(n+ 1), cannot occur as a monotone progression in

S′. Therefore, for each ai that satisfies (7.8), S
′ cannot have n+1 to

the immediate right of ai if 2ai − n− 1 is to the left of ai. Likewise,

n + 1 cannot be to the immediate left of ai if 2ai − n − 1 is to the

right of ai.

Now, if i < n and if n+1 is allowed neither to the right of ai nor

to the left of ai+1, S cannot be extended to an element of Θ(n+ 1).

Similarly, S cannot be extended if i = 1 and n+1 is not allowed to be

placed to the left of ai; and S cannot be extended if i = n and n+ 1

is not allowed to be placed to the right of ai. Therefore, each of the

n −
⌊
n+3
2

⌋
+ 1 values of ai satisfying (7.8) eliminates at least one of
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the n+1 positions in S′ as a possible location for n+1. Subtracting

this quantity from n+1 leaves us with at most
⌊
n+3
2

⌋
positions where

n+ 1 may be placed. Hence

(7.9) θ(n+ 1) ≤
⌊
n+ 3

2

⌋
θ(n).

By a straightforward induction argument, using the fact that

θ(1) = 1 and θ(2) = 2, (7.9) implies the theorem. We leave the

details to the reader as Exercise 7.9. �

We now turn our attention to permutations of Z+, i.e., of the in-

finite sequence (1, 2, 3, . . . ). For example, S = (2, 1, 4, 3, 6, 5, 8, 7, . . . )

and (12, 1, 2, 3, 4, . . . ) are such permutations. Theorem 7.21 tells us

that not all permutations of the interval [1, n] yield 3-term monotone

arithmetic progressions. Is this also the case for the permutations of

Z+? The following theorem tells us the answer.

Theorem 7.24. There is no permutation of Z+ that avoids 3-term

monotone arithmetic progressions.

Proof. Let S = (a1, a2, . . . ) be any permutation of Z+. Let j be

the least positive integer such that aj > a1. Consider ak = 2aj − a1.

Since aj > a1, we have ak > aj . Also, ak − aj = aj − a1, so that

A = {a1, aj , ak} is an arithmetic progression. By the definition of

j, we know that k > j, and therefore A is a monotone arithmetic

progression in S. �

As for guaranteeing monotone arithmetic progressions of more

than three terms in permutations of Z+, the following theorem is

known, the proof of which we omit.

Theorem 7.25. There exist permutations of Z+ that avoid 5-term

monotone arithmetic progressions

An intriguing question, whose answer is still unknown, is whether

there are any permutations of Z+ that avoid 4-term monotone arith-

metic progressions.
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7.5. Exercises

7.1 Determine the value of Ω3(3).

7.2 Prove Theorem 7.6.

7.3 Verify, by direct computation, the observation in Example

7.8 that 9 ≤ Ω2(5) ≤ Γ3(5).

7.4 Complete the proof of Theorem 7.12 by considering the two

remaining ways in which {2s, s+ t, 2t} may be colored.

7.5 What is the value of w∗(3, 2)? of w∗(3, 1)? How do these

examples generalize to arbitrary values of k (the length of

the arithmetic progression)?

7.6 Determine the value of w∗(4, 1).

7.7 Determine the value of j(12) (see Example 7.18).

7.8 Find θ(4) and θ(5).

7.9 Complete the proof of Theorem 7.23 by using induction to

show that Inequality (7.9) implies the statement of the the-

orem.

7.10 A k-term geometric progression is a sequence of the form

a, ax, ax2, . . . , axk−1. Let g(k) be the least positive integer

such that every 2-coloring of [1, g(k)] contains a monochro-

matic k-term geometric progression such that x is an integer.

Prove that g(k) = 2w(k)−1.

7.6. Research Problems

7.1 Improve the lower bound of Theorem 7.9.

References: [81], [91]

7.2 Run a computer program to calculate values of Γ2(k). Try

to find an upper bound on Γ2(k).

References: [81], [91], [291], [307]

7.3 Run a computer program to calculate values of Γ3(k). Along

the lines of Theorem 7.9, try to find a lower bound for Γ3(k).

References: [81], [91], [291], [307]
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7.4 Is it true that RR(S; r) < ∞ if and only if, for every prime

p, every r-coloring of [1, p−1], every a ≥ 1, and every b ≥ 0,

the set a(S + b) (mod p) is monochromatic?

Reference: [103]

7.5 Characterize those pairs (S, r) for which RR(S; r) exists.

Reference: [103]

7.6 Find an upper bound and/or a lower bound on w∗(k, 1). A

computer program to calculate values may give interesting

results.

References: [39], [128], [135], [380]

7.7 Determine if limk→∞[w∗(k, 1)]
1
k < ∞.

References: [39], [128], [135], [380]

7.8 Determine if limk→∞[w∗(k,
√
k)]

1
k < ∞.

References: [39], [128], [135], [380]

7.9 Improve on Theorem 7.17 (find an improved lower bound).

References: [120], [128], [135], [330], [380]

7.10 Improve the best known upper bound for j(n).

References: [135], [380]

7.11 Determine if there exists a permutation of Z+ that contains

no 4-term monotone arithmetic progressions.

References: [69], [70], [110], [296], [323], [358]

7.12 Does there exist c > 0 such that for all n ∈ Z+, [θ(n)]
1
n ≤ c?

Does limn→∞[θ(n)]
1
n exist?

Reference: [110]

7.13 Investigate the question of avoiding monotone arithmetic

progressions by permutations of Z (rather than Z+).

Reference: [110]

7.14 Determine if it is possible to partition Z+ into two sets,

each of which can be permuted to avoid 3-term monotone

arithmetic progressions. What if we replace Z+ with Z?

Reference: [110]

7.15∗ Let k ≥ 1. Let {a1 < a2 < · · · } be a sequence of positive

integers such that ai+1− ai ≤ k for all i ≥ 1. Must there be

a 3-term arithmetic progression ax, ay, az such that x, y, z is

also an arithmetic progression? This is known to be true for

k ≤ 4.
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7.7. References

§7.1. Theorems 7.4–7.7 are due to Nathanson [291]. Earlier, Rabung

[307] showed that the existence of Γr(k) for all r, k ≥ 1 is equivalent

to van der Waerden’s theorem. Theorem 7.9 is due to Alon and Zaks

[28].

§7.2. Theorems 7.11–7.13 are from [103], which also includes more

on reverse regular sets.

§7.3. Theorem 7.16 is due to Spencer [383]. Roth [330] proved

Theorem 7.17. In the other direction, Spencer [380] showed that

j(n) < c
√
n ln lnn

lnn for some constant c. Further work on j(n) may be

found in [38], [135], [343], [344], [345], [346]. Valko [393] generalizes

the known upper and lower bounds on j(n) to higher dimensions.

Some other results related to j(n) are found in [120], [124], [347].

§7.4 The proof of Theorem 7.21 is from [300]. Theorems 7.22–7.25

and their proofs appear in [110]. Sidorenko [370] gives a permutation

of Z+ in which there are no 3 terms such that both their values and

positions form arithmetic progressions. Modular analogs of some of

this work are considered in [292].

Additional References: This chapter covered only a few of the

many interesting problems related to van der Waerden’s theorem that

have been considered. Another question is this: what is the maximum

number s of subsets C1, C2, . . . , Cs of [1, n] such that for all i �= j,

Ci ∩ Cj is an arithmetic progression? If we include the empty set as

an arithmetic progression, then it is known that

s ≤
(

n

3

)
+

(
n

2

)
+

(
n

1

)
+ 1,

and that this is the best possible upper bound on s [176]. If we do

not allow the empty set to be an arithmetic progression, then it is

known that there is a constant c such that s < cn2 [372]. Define

w(k) as the least positive integer n such that any 2-coloring of [1, n],

using the colors red and blue, admits either a red 3-term arithmetic

progression or k consecutive blue integers. The asymptotic behavior
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of w(k) is studied in [169]. For other interesting variations involving

arithmetic progressions, see [34], [88], and [303].

The paper [178] deals with 3-term geometric progressions rather than

arithmetic progressions. It gives a bound on r(N), the maximum

number of colors such that for every r(N)-coloring of [1, N ] there is

a monochromatic 3-term geometric progression.

                

                                                                                                               



Chapter 8

Schur’s Theorem

Until now we have devoted most of our study to Ramsey-type theo-

rems dealing with variations of van der Waerden’s theorem. There are

many other interesting aspects of Ramsey theory on the integers that

we may explore, and we do so in the remaining chapters. We begin

with a result that came before van der Waerden’s theorem: Schur’s

theorem.

Van der Waerden’s theorem proves the existence, in particular, of

w(3; r). In other words, any r-coloring of Z+ must admit a monochro-

matic 3-term arithmetic progression {a, a+d, a+2d} for some a, d ≥ 1.

Letting x = a, y = a+ 2d, and z = a+ d, this may also be described

as a monochromatic solution to x + y = 2z, where x, y, z ∈ Z+ and

x �= y. Since x + y = 2z is the equation of a plane, it is natural to

ask other questions about coloring points in a plane.

Consider the equation of the simple plane z = x+y. Let P be the

set of the points in this plane whose coordinates are positive integers.

Thus, for example, (1, 1, 2) and (3, 4, 7) are in P (note that we are

not insisting that x and y be distinct). Next, using any finite set of

colors, assign a color to each positive integer.

Now, for each (a, b, c) ∈ P , perform the following. If the colors

of a, b, and c are identical, then color (a, b, c) (in the plane) with

that color. Otherwise, mark (a, b, c) (in the plane) with an X. The

question is: can all of the points in the plane be marked with an X,

221

                                     

                

                                                                                                               



222 8. Schur’s Theorem

or must there be a colored point? We would like to know whether

every coloring yields a colored point; in other words, is it possible to

finitely color Z+ so that no point (x, y, z) ∈ P is colored?

This question was answered by Issai Schur in 1916, and is one

of the first Ramsey-type theorems. However, Erdős and Szekeres’

rediscovery of Ramsey’s theorem in 1935 is due most of the credit for

popularizing the subject.

Schur was not motivated by the idea of coloring points in the

plane, but rather by perhaps the most famous and elusive of all math-

ematical problems, Fermat’s Last Theorem (which was not officially

a theorem until Wiles proved it in 1995). Schur’s result, which states

that the answer to the above question is “no, there must be a colored

point,” has become known as Schur’s theorem, but was only used as

a lemma for the main theorem in his paper, which is given below as

Theorem 8.1. We will prove this theorem after we have acquired a

necessary tool.

Theorem 8.1. Let n ≥ 1. There exists a prime q such that for all

primes p ≥ q the congruence xn + yn ≡ zn (mod p) has a solution in

the integers with xyz �≡ 0 (mod p).

From Theorem 8.1 we can garner some insight into why Fermat’s

Last Theorem was so difficult to prove, and why no elementary proof

(if one exists) has surfaced yet: Fermat’s Last Theorem is false if we

replace the equation by a congruence. Because of Schur’s result, we

know that we cannot prove Fermat’s Last Theorem just by considering

congruences.

8.1. The Basic Theorem

We now state and prove Schur’s theorem. We make use of Ramsey’s

theorem (see Section 1.2). We remind the reader of the following

terminology.

Given a coloring χ of a set of positive integers and an equation

E in the variables x1, x2, . . . , xn, we say that E has a monochromatic

solution under χ if there exist values of x1, x2, . . . , xn that satisfy E
and that are monochromatic under χ.
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Theorem 8.2 (Schur’s Theorem). For any r ≥ 1, there exists a least

positive integer s = s(r) such that for any r-coloring of [1, s] there is

a monochromatic solution to x+ y = z.

Proof. Ramsey’s theorem states, in particular, that for any r ≥ 1

there exists an integer n = R(3; r) such that for any r-coloring of Kn

(the complete graph on n vertices) there is a monochromatic triangle.

We will use a specific coloring, described as follows. Number the ver-

tices of Kn by 1, 2, . . . , n. Next, arbitrarily partition {1, 2, . . . , n− 1}
into r sets. In other words, randomly place each x ∈ {1, 2, . . . , n− 1}
into exactly one of the r sets. These sets will correspond to the r col-

ors. Color the edge that connects vertices i and j according to the set

of which |j− i| is a member. By Ramsey’s theorem, a monochromatic

triangle must exist. Let the vertices of this monochromatic triangle

be a < b < c. Hence, b− a, c− b, and c− a are all the same color. To

finish the proof, let x = b − a, y = c − b, and z = c − a, and notice

that x+ y = z. �

Definition 8.3. We call the numbers that satisfy Schur’s theorem

the Schur numbers and denote them by s(r). (Some books define

the Schur number as the maximal number m = m(r) such that there

exists an r-coloring of [1,m] that avoids monochromatic solutions to

x+ y = z. We prefer to use the same type of notation as that of the

van der Waerden numbers.)

Definition 8.4. A triple {x, y, z} that satisfies x+ y = z is called a

Schur triple.

The only values known for the Schur numbers are for r = 1, 2, 3, 4:

s(1) = 2, s(2) = 5, s(3) = 14, and s(4) = 45. In the next example we

show that s(2) = 5.

Example 8.5. In Section 1.4 we showed that s(2) ≥ 5 (color 1 and

4 red; color 2 and 3 blue). We now show that s(2) ≤ 5. Consider any

2-coloring of [1, 5]. Without loss of generality we may assume that

1 is colored red. Assume, by way of contradiction, that there is no

monochromatic Schur triple. Since 1 + 1 = 2, we must color 2 blue.

Since 2+2 = 4, we must color 4 red. Since 1+4 = 5, we must color 5

blue. All that remains is to color 3. However, if 3 is red, then {1, 3, 4}
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is a red Schur triple and, if 3 is blue, then {2, 3, 5} is a blue Schur

triple.

Having Theorem 8.2 under our belt, we are now in a position to

prove Theorem 8.1. The proof uses elementary group theory.

Proof of Theorem 8.1. Let p > s(n) be a prime and let

Z∗
p = {1, 2, . . . , p− 1}

be the group (under multiplication) of nonzero residues modulo p.

Let S = {xn (mod p): x ∈ Z∗
p}. Notice that S is a subgroup of Z∗

p.

Hence, we can write Z∗
p as a union of cosets Z∗

p =
⋃r

i=1 diS, where

|S| = n
gcd(n,p−1) so that r = gcd(n, p− 1).

Next, define an r-coloring of Z∗
p by assigning the element t ∈ Z∗

p

the color j if and only if t ∈ djS. Since r ≤ n and p − 1 ≥ s(n),

we have p − 1 ≥ s(r). Hence, by Schur’s theorem there exists a

monochromatic triple {a, b, c} ⊆ Z∗
p such that a + b = c. That is,

for some i ∈ {1, 2, . . . , r}, there exist a, b, c ∈ diS with a + b = c.

Hence, there exist x, y, z ∈ Z∗
p such that dix

n + diy
n ≡ diz

n (mod p).

Multiplying through by d−1
i completes the proof. �

Although Schur’s original proof of Theorem 8.2 did not involve

Ramsey numbers (in fact, Ramsey’s theorem was not proved until

1928, while Schur proved his result in 1916), it is clear from our

proof that the Schur numbers and Ramsey numbers are related. In

particular, we have the following corollary. (Recall that Rr(3) denotes

R(3, 3, . . . , 3), where we are using r colors.)

Corollary 8.6. Let r ≥ 1. Then s(r) ≤ Rr(3)− 1.

Proof. Using the coloring given in the proof of Theorem 8.2, we have

a correspondence between certain edgewise colorings of Kn and col-

orings of [1, n − 1]. More explicitly, for any r-coloring of [1, n − 1]

we derive an r-coloring of Kn by numbering the vertices of Kn and

considering the differences between all pairs of vertices. By Ramsey’s

theorem, for n = Rr(3) we are guaranteed a monochromatic triangle.

By the definition of our coloring, this monochromatic triangle corre-

sponds to a monochromatic Schur triple. Hence, if n = Rr(3), we

have s(r) ≤ n− 1 = Rr(3)− 1. �
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Corollary 8.6 gives us an upper bound. However, the upper bound

is not very useful unless we have an explicit upper bound for Rr(3).

Fortunately, we do.

Lemma 8.7. For r ≥ 1, we have Rr(3) ≤ 3r!.

Proof. For r = 1 we have R1(3) = 3, so that the given bound is

true. We now assume that r ≥ 2. For 1 ≤ i ≤ r, denote by R
(i)
r (3)

the Ramsey number R(3, 3, . . . , 3︸ ︷︷ ︸
i−1

, 2, 3, 3, . . . , 3︸ ︷︷ ︸
r−i

). We begin by showing

that

(8.1) Rr(3) ≤
r∑

i=1

R(i)
r (3).

To prove (8.1) we will use the same method of proof as that employed

to prove Theorem 1.15. Let m =
∑r

i=1 R
(i)
r (3) and consider any r-

coloring of the edges of Km. Select one vertex, say v. Using the

colors 1, 2, . . . , r, we let Ci, i = 1, 2, . . . , r, denote the set of vertices

connected to v by an edge of color i. By the pigeonhole principle

there must exist j ∈ {1, 2, . . . , r} such that |Cj | ≥ R
(j)
r (3). Hence,

the complete graph on Cj must contain either a K2 of color j or a

monochromatic triangle of color c ∈ {1, 2, . . . , j−1, j+1, j+2, . . . , r}.
If it contains a monochromatic triangle, we are done. If it contains

a K2 of color j, then these two vertices, together with v, create a

monochromatic triangle of color j, thereby proving (8.1).

Next, we show that for any i ∈ {1, 2, . . . , r},

(8.2) R(i)
r (3) = Rr−1(3).

Let n = R
(i)
r (3). Clearly, n ≥ Rr−1(3). It remains to show that

n ≤ Rr−1(3). By the definition of n, there must exist an r-coloring

of the edges of Kn−1 that avoids monochromatic triangles of color

c ∈ {1, 2, . . . , i− 1, i+1, i+2 . . . , r} and avoids a K2 of color i. Since

we must avoid a K2 of color i, no edge may have color i. Hence, we

actually have an (r − 1)-coloring of the edges of Kn−1 that avoids

monochromatic triangles. Thus, Rr−1(3) ≥ n, and we conclude that

(8.2) holds.
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Using (8.2), we see that
∑r

i=1 R
(i)
r (3) = rRr−1(3). Hence, by

(8.1), Rr(3) ≤ rRr−1(3) for r ≥ 2. By repeated application of this

inequality and the fact that R2(3) = 6, we get Rr(3) ≤ 3r!. �

From Corollary 8.6 and Lemma 8.7, we have the following result.

Theorem 8.8. For r ≥ 1, we have s(r) ≤ 3r!− 1.

Now that we have an upper bound on the Schur numbers, we

turn our attention to a lower bound.

Theorem 8.9. Let r ≥ 1. Then s(r) ≥ 3r+1
2 .

Proof. Let n ≥ 1 and assume χ : [1, n] → {1, 2, . . . , r} is an r-

coloring of [1, n] that has no monochromatic Schur triple. Define an

(r + 1)-coloring χ̂ : [1, 3n + 1] → {1, 2, . . . , r + 1} that extends χ

as follows. For all x ∈ [n + 1, 2n + 1], let χ̂(x) = r + 1; and for all

x ∈ [1, n]∪ [2n+2, 3n+1], let χ̂(x) = χ(y), where x ≡ y (mod 2n+1).

We now argue that [1, 3n+ 1] contains no monochromatic Schur

triple under χ̂. Let {x, y, z} with x ≤ y be a Schur triple. First,

consider the color r + 1. Since 2(n + 1) > 2n + 1, {x, y, z} cannot

be a monochromatic Schur triple of color r + 1. Now consider any

color j �= r + 1. Since χ̂ is identical to χ on [1, n], {x, y, z} ⊆ [1, n]

cannot be a monochromatic Schur triple of color j. Furthermore,

since (2n + 2) + (2n + 2) = 4n + 4 > 3n + 1, it is not possible that

x, y ∈ [2n + 2, 3n + 1]. Thus, [2n + 2, 3n + 1] does not contain a

Schur triple of color j. Hence, any Schur triple of color j must have

x ∈ [1, n] and y ∈ [2n+ 2, 3n+ 1].

However, if {x, y, z} is such a Schur triple of color j, by taking

y′, z′ ∈ [1, n] with y′ ≡ y (mod (2n+ 1)) and z′ ≡ z (mod (2n+ 1)),

we see that {x, y′, z′} is a Schur triple of color j contained in [1, n], a

contradiction.

Thus, we have shown that if s(r) ≥ n+1, then s(r+1) ≥ 3n+2.

Hence,

(8.3) s(r + 1) ≥ 3s(r)− 1.

The proof is completed by induction on r. Clearly, s(1) = 2 ≥ 31+1
2 .

Now assume that r ≥ 1 and that s(r) ≥ 3r+1
2 . Then, by (8.3),

s(r + 1) ≥ 3s(r)− 1 ≥ 3
(
3r+1

2

)
− 1 = 3r+1+1

2 . �
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Since we have the existence of at least one monochromatic Schur

triple in any r-coloring of [1, s(r)], we must have an infinite number

of Schur triples in any r-coloring of the natural numbers. Although

Exercise 2.18 gives this result, we include an explanation for com-

pleteness.

First, note that if [1, n] contains a monochromatic Schur triple,

then so does k[1, n] = {k, 2k, . . . , nk}, for any positive integer k. This

holds by the trivial observation that x+y = z if and only if kx+ky =

kz for any k ∈ Z+. Now consider the sets Sj = s(r)j [1, s(r)] for

j = 0, 1, 2, . . . . For each j we have a monochromatic Schur triple that

resides in Sj . Consequently, any r-coloring of the positive integers

must contain an infinite number of monochromatic Schur triples.

With regards to the infinitude of monochromatic Schur triples,

we consider the following problem: find the minimum number of

monochromatic Schur triples that a 2-coloring of [1, n] must have.

We will answer this question in Theorem 8.15. As is often the case

with such questions, the answer is given asymptotically, and so we will

be using the O(n) and o(n) notation (see Section 1.5). To solve the

above problem, we have need of the following notation and lemmas.

Notation. We denote by Δ{a<b<c} the triangle on vertices a, b, c.

Notation. Let χ be a coloring of [1, n]. Denote byMχ(n) the number

of monochromatic Schur triples in [1, n] under χ.

Lemma 8.10. In every edgewise 2-coloring of the complete graph

Kn, there are at least n3

24 +O(n2) monochromatic triangles.

The proof of Lemma 8.10 is left to the reader as Exercise 1.10.

Lemma 8.11. Over all 2-colorings of [1, n], the minimum number of

monochromatic Schur triples is of order n2, i.e., there exist positive

constants b and c such that, for n sufficiently large,

bn2 ≤ min({Mχ(n) : χ is a 2-coloring of [1, n]}) ≤ cn2.

Proof. We note first that for any 2-coloring χ, we have Mχ(n) ≤
cn2(1 + o(1)) for some positive constant c, which is independent of χ

(we leave this to the reader; see Exercise 8.2). To complete the proof,
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we use Lemma 8.10 to show that Mχ(n) ≥ n2

48 (1 + o(1)) for any 2-

coloring χ. Examining the proof of Schur’s theorem, we see that there

is a natural connection between triangles and Schur triples: with each

triangle Δ{a<b<c} we can associate the Schur triple {b−a, c−b, c−a}.
Define a⊕ b = j, where a+ b ≡ j (mod n) and 1 ≤ j ≤ n.

Next, we notice that, for j = 1, 2, . . . , n, the triangles

Δ{a⊕j<b⊕j<c⊕j} and Δ{a⊕j<(a+c−b)⊕j<c⊕j}

have the same associated Schur triple. Consequently, each Schur triple

corresponds to at most 2n triangles (why?). Combining this with

Lemma 8.10, we have at least n2

48 (1 + o(1)) monochromatic Schur

triples, thereby proving the lemma. �

Lemma 8.12. Let c > 0 and let n be sufficiently large. Let χ be a

2-coloring of [1, n+ 1] and let χ̄ be χ restricted to [1, n]. If Mχ̄(n) =

cn2(1 + o(1)), then Mχ(n+ 1) = cn2(1 + o(n)). Hence, we may take

n to be even when determining the rate of growth of Mχ(n).

Proof. The only monochromatic Schur triples counted in Mχ(n+1)

that are not counted in Mχ̄(n) are of the form {x, y, n + 1} with

x + y = n + 1. There are only
⌈
n
2

⌉
possibilities, since {x, y} must

belong to
{
{1, n}, {2, n− 1}, . . . ,

{⌊
n+1
2

⌋
, n+ 1−

⌊
n+1
2

⌋}}
. Hence,

0 ≤ Mχ(n+ 1)−Mχ̄(n) ≤
n

2
+ 1,

so the conclusion of the lemma holds. �

Lemma 8.13. Let χ : [1, n] → {red, blue} be described by R, the set

of red integers under χ, and B, the set of blue integers under χ. Let

N+ be the set of nonmonochromatic pairs {a, b} ⊆ [1, n] such that

a+ b > n. Then

(8.4) 2Mχ(n) =

(
n

2

)
− 2|R||B|+ |N+|.

Proof. To justify (8.4), we will view the Schur triples as ordered

sets, so that we consider (a, b, a+b) and (b, a, a+b) to be distinct (for

a �= b). Thus, we will actually count each Schur triple twice. This is

the reason why 2Mχ(n) is on the left-hand side of (8.4), instead of

just Mχ(n).
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First, note that
(
n
2

)
counts all ordered Schur triples by choosing

y and z in x + y = z. Next, let a ∈ R and b ∈ B. Then the ordered

Schur triples (|b − a|, a, b) and (a, b, a + b) are not monochromatic,

and thus we want to remove these from the set of
(
n
2

)
Schur triples.

Hence, we subtract 2|R||B| from
(
n
2

)
. However, the ordered Schur

triples (a, b, a + b) with a + b > n were not counted in
(
n
2

)
. Hence,

since these were subtracted once in −2|R||B|, we need to add |N+|.
This establishes (8.4). �

We are now in a position to give the asymptotic minimum number

of monochromatic Schur triples over all 2-colorings of [1, n]. We start

with Theorem 8.14, which gives an upper bound on this minimum.

Theorem 8.14. Let C be the set of all 2-colorings of [1, n]. Then

min({Mχ(n) : χ ∈ C}) ≤ n2

22
(1 + o(1)).

In other words, over all 2-colorings of [1, n], the minimum number of

monochromatic Schur triples is at most n2

22 (1 + o(1)).

Proof. It is sufficient to prove the result for those n that are multiples

of 11, since if 11 � n we may apply Lemma 8.12 at most 10 times to get

the desired result. Hence, assume 11 | n and consider the 2-coloring of

[1, n] defined by R = [ 4n11 ,
10n
11 ] and B = [1, 4n

11 −1]∪ [ 10n11 +1, n], where

R is the set of red integers and B is the set of blue integers. To prove

this theorem we will show that this coloring admits, asymptotically,

only n2

22 +O(n) monochromatic Schur triples. By letting n = 11k, our

coloring is R = [4k, 10k] and B = [1, 4k − 1] ∪ [10k + 1, 11k].

We start by counting the red Schur triples. Thus, we will count

the number of solutions to x + y = z in the interval [4k, 10k]. First,

note that z ≥ 8k. It follows that the red Schur triples are the triples{
{4k + c, z − 4k − c, z} : 8k ≤ z ≤ 10k, 0 ≤ c ≤ z−8k

2

}
.

(So that we do not count any red Schur triple more than once, we

require 4k + c ≤ z − 4k − c, i.e., 0 ≤ c ≤ z−8k
2 .) Now, by summing
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over all possible values for z we have

10k∑
z=8k

(⌊
z−8k

2

⌋
+ 1
)
= 2

k∑
z=1

z + (k + 1)

= k(k + 1) + (k + 1)

= k2 + 2k + 1

red Schur triples.

Next, we count the blue Schur triples. The same analysis as above

shows that within the interval [1, 4k − 1] there are 4k2 + O(k) blue

Schur triples. The details for this are left to the reader as Exercise

8.3. Furthermore, there is obviously no blue Schur triple within the

interval [10k + 1, 11k]. However, we have not counted all of the blue

Schur triples yet; for example, {1, 10k + 1, 10k + 2} has not been

counted.

In order to count the remaining blue Schur triples {x, y, z}, let
x ∈ [1, 4k − 1] and let z ∈ [10k + 1, 11k]. Notice that we must have

y ∈ [10k + 1, 11k] in order to have x + y = z. Writing x = 1 + c

and y = z − c − 1 with c ≥ 0, we must have z − 1 − c ≥ 10k + 1,

i.e., c ≤ z − 10k − 2. Hence, we wish to count the number of triples

{1 + c, z − c− 1, z} with 0 ≤ c ≤ z − 10k − 2 and z ∈ [10k + 1, 11k].

Summing over all possible values of z, we have

11k∑
z=10k+2

(z − 10k − 1) = 1
2

(
(11k)2 − (10k)2

)
− 10k2 +O(k)

= k2

2 +O(k)

remaining blue Schur triples.

Adding all cases together, we have

11

2
k2 +O(k) =

11

2

( n

11

)2
+O(n) =

n2

22
+O(n) =

n2

22
(1 + o(1))

monochromatic Schur triples. �

We now show that the upper bound given in Theorem 8.14 is

actually the minimum.
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Theorem 8.15. Let C be the set of all 2-colorings of [1, n]. Then

min({Mχ(n) : χ ∈ C}) = n2

22
(1 + o(1)).

In other words, over all 2-colorings of [1, n], the minimum number of

monochromatic Schur triples is n2

22 (1 + o(n)).

Proof. Denote by R and B the sets of red integers and blue inte-

gers, respectively, in any red-blue coloring χ. Let N+ be the set of

nonmonochromatic pairs {a, b} ⊆ [1, n] such that a + b > n, and let

N− be the set of nonmonochromatic pairs {a, b} ⊆ [1, n] such that

a+ b ≤ n.

From Lemma 8.13, we have 2Mχ(n) =
(
n
2

)
−2|R||B|+ |N+|. Now,

since |R|+ |B| = n, we have

(8.5) |R| = n
(
1
2 + α

)
and |B| = n

(
1
2 − α

)
for some α ∈

[
− 1

2 ,
1
2

]
. Notice that for α and n fixed, |R| and |B| are

determined, so that by minimizing |N+| we are minimizing Mχ(n).

Hence, our first goal is to minimize |N+| for α and n fixed. To this

end, notice that

(8.6) |N+|+ |N−| = |R||B| = n2
(
1
4 − α2

)
.

Our next step is to find an upper bound for |N−| − |N+|. Such

an upper bound, when coupled with (8.6), will give a lower bound for

|N+|, thereby bounding the number of monochromatic Schur triples

from below. From Lemma 8.12, we may assume that n is even, so

that to obtain an upper bound for |N−| − |N+| we may decompose

[1, n] into disjoint 2-element subsets {x, n+ 1− x}, x = 1, 2, . . . , n2 .

For the pair of sets X = {a, n+1−a} and Y = {b, n+1−b} with

a �= b, we will count the contribution of the elements of these sets to

N+ and toN−. In the following we will only consider x+y with x ∈ X

and y ∈ Y . Thus, we do not count pairs of the form {x, n + 1 − x}.
The reason for this is that each such pair only contributes one to N+,

and since the number of such pairs is n
2 = O(n), by Lemma 8.11 we

may safely ignore these pairs in the asymptotic calculation.

We consider four cases. In each case, let

P = {(x, y) : x ∈ X, y ∈ Y } .
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We will determine the number of pairs in P contributing to N− and

the number contributing to N+. By doing so, we will find a function

f(n) such that |N−| − |N+| ≤ f(n). Such a function, together with

(8.6), will provide a lower bound for |N+|.
Case 1. X and Y are monochromatic of different colors. These two

sets produce four nonmonochromatic pairs in P whose sums are

a+ b, n+ 1+ a− b, n+ 1+ b− a, and 2n+ 2− a− b. Clearly two of

these sums exceed n and the other two are less than n. Consequently,

|P ∩N+| = |P ∩N−|, i.e., the number of pairs in P contributing to

N+ is equal to the number of pairs in P contributing to N−.

Case 2. X and Y are nonmonochromatic with a and b being different

colors. These sets produce two nonmonochromatic pairs with sums

a+ b and 2n+ 2− a− b. Hence, |P ∩N+| = |P ∩N−|.
Case 3. X and Y are nonmonochromatic with a and b being the

same color. These sets produce two nonmonochromatic pairs with

sums n+ 1 + b− a and n+ 1 + a− b. Thus, |P ∩N+| = |P ∩N−|.
Case 4. X is monochromatic and Y is nonmonochromatic with a and

b different colors. These sets produce two nonmonochromatic pairs

with sums a+b and n+1+b−a. Since in our decomposition a+b < n,

both of these sums are at most n. In this situation the contribution

of these pairs to N− is 2 greater than their contribution to N+, i.e.,

|P ∩N+|+ 2 = |P ∩N−|.
Since our goal is to find some f(n) such that |N−|−|N+| ≤ f(n),

we note that only Case 4 gives us a situation where |N−| is larger than
|N+| (so that we must have f(n) > 0 for n > 0). We now analyze

Case 4 to determine f(n).

Let βn be the number of nonmonochromatic sets {x, n + 1 −
x}. Then exactly one of x, n + 1 − x is in R. Thus, using (8.5),

we see that the number of monochromatic sets {x, n + 1 − x} in R

is 1
2

(
n
(
1
2 + α

))
− βn

2 =
(
1
2 + α− β

)
n
2 . Looking at the details of

Case 4, we see that for every nonmonochromatic set {b, n + 1 − b},
a monochromatic set {a, n + 1 − a} with a and b of different colors

will have sums that contribute exactly 2 more to N− than to N+.
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Therefore,

|N−| − |N+| = 2βn
(
1
2 + α− β

) (
n
2

)
+O(n)

≤
(
1
2 + α

)2
4

n2 +O(n),(8.7)

where the second expression equals the third expression precisely

when β = 1
2

(
1
2 + α

)
. Thus, we have found an upper bound on

|N−| − |N+| as sought.
Combining (8.6) and (8.7), we get

(8.8) |N+| ≥
(

1
4 − α2

2
−
(
1
2 + α

)2
8

)
n2(1 + o(1)).

Using (8.4) with (8.8), we have

(8.9) 2Mχ(n) ≥
(
11
(
2α− 1

11

)2
32

+
1

11

)
n2(1 + o(1)).

We can easily see that the right-hand side of (8.9) is minimized when

α = 1
22 , giving 2Mχ(n) ≥ n2

11 (1 + o(1)), i.e., Mχ(n) ≥ n2

22 (1 + o(1)).

The proof is complete, since the upper bound given in Theorem

8.14 matches, asymptotically, this lower bound. �

Now that we see that the coloring in Theorem 8.14 attains the

minimum, we remark that it can be shown that this coloring is essen-

tially the only coloring that attains the minimum number of mono-

chromatic Schur triples.

We have an extension of Theorem 8.14 that gives the following

upper bound for the analogous r-colored question (r ≥ 2).

Corollary 8.16. Let r ≥ 2. Let Cr be the set of r-colorings of [1, n].

Then

min({Mχ(n) : χ ∈ Cr}) ≤
n2

11 · 22r−3
(1 + o(1)).
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Proof. Extending the coloring defined in the proof of Theorem 8.14,

we define, for n ≥ 2r, the coloring χ : [1, n] → {1, 2, . . . , r} by

χ(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
j if n

2j < i ≤ n
2j−1 for 1 ≤ j ≤ r − 2,

r − 1 if 1 ≤ i ≤ 4n
2r−211 or 10n

2r−211 < i ≤ n
2r−2 ,

r if 4n
2r−211 < i ≤ 10n

2r−211 .

The calculation showing that χ admits only n2

11·22r−3 (1 + o(1))

monochromatic Schur triples is left to the reader as Exercise 8.5. �

According to the following theorem, the bound given in Corollary

8.16 can be improved in the cases r = 3, 4, 5. The proof (which will not

be presented here) is based on the so-called “greedy algorithm,” where

consecutive integers are colored with one color for as long as possible

(while minimizing the number of monochromatic Schur triples) before

changing to another color. This method is also the basis for the

derivation of the 2-coloring given in Exercise 9.5 in the next chapter.

Theorem 8.17. For r ∈ {3, 4, 5}, let Cr be the set of r-colorings of

[1, n]. Then

min({Mχ(n) : χ ∈ C3}) ≤
n2

132
(1 + o(1)),

min({Mχ(n) : χ ∈ C4}) ≤
n2

963
(1 + o(1)),

min({Mχ(n) : χ ∈ C5}) ≤
n2

7610
(1 + o(1)).

8.2. A Generalization of Schur’s Theorem

We turn our attention to a generalization of Schur’s theorem, given

below as Theorem 8.18. Another, more powerful, generalization was

done by Richard Rado, a student of Schur, and is investigated in

Chapter 9.

It will be convenient to use the following notation.

Notation. For t ≥ 3, let L(t) represent the equation x1 + x2 + · · ·+
xt−1 = xt, where x1, x2, . . . , xt are variables.
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Theorem 8.18. Let r ≥ 1 and, for 1 ≤ i ≤ r, assume that ki ≥ 3.

Then there exists a least positive integer S = S(k1, k2, . . . , kr) such

that every r-coloring of [1, S] admits a solution to L(kj) of color j for

some j ∈ {1, 2, . . . , r}.

The numbers S(k1, k2, . . . , kr) are called the generalized Schur

numbers. The reader might notice that the numbers S(k1, k2, . . . , kr)

are similar in nature to the mixed van der Waerden numbers

w(k1, k2, . . . , kr; r). For the particular case in which k1 = k2 = · · · =
kr = k, Theorem 8.18 gives a result analogous to the existence of

w(k; r). We single out this special case of Theorem 8.18 via the fol-

lowing immediate corollary.

Corollary 8.19. For r ≥ 1 and k ≥ 3, there exists a least posi-

tive integer n = Sr(k) such that every r-coloring of [1, n] admits a

monochromatic solution to L(k).

To fully understand Theorem 8.18, consider the following exam-

ples.

Example 8.20. Any red-blue-green coloring of [1, S(3, 4, 5)] must

contain a solution to L(3) consisting of only red integers, or a solution

to L(4) consisting of only blue integers, or a solution to L(5) consisting
of only green integers. Theorem 8.18 tells us that S(3, 4, 5) is the least

positive integer such that the above condition is met.

Example 8.21. If ki = 3 for 1 ≤ i ≤ r we have S(3, 3, . . . , 3) = s(r),

the r-colored Schur number we have already investigated.

Example 8.22. We will determine S(4, 5). To see that S(4, 5) ≥ 14,

consider the 2-coloring of [1, 13] defined by R = {1, 2, 12, 13} and

B = [3, 11], where R is the set of red integers and B is the set of blue

integers. It is easy to check that this coloring admits no red solution

to L(4) and no blue solution to L(5). To show that S(4, 5) ≤ 14, let

R be the set of red integers and B be the set of blue integers in a

given red-blue coloring of [1, 14]. We must show that there is either

a red solution to L(4) or a blue solution to L(5).
We proceed by contradiction, so assume that no red solution to

L(4) and no blue solution to L(5) exist in the given coloring. First

consider the case in which 1 ∈ R. Since 1 + 1 + 1 = 3 we must have
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3 ∈ B. Next, since 3 + 3 + 3 + 3 = 12 we must have 12 ∈ R. This

implies that 10, 14 ∈ B, for otherwise 1+1+10 = 12 or 1+1+12 = 14

would be a red solution. Next, since 2+2+3+3 = 10, we must have

2 ∈ R. This implies that we must have 5 ∈ B to avoid the red solution

1 + 2 + 2 = 5, which gives 3 + 3 + 3 + 5 = 14 as a blue solution, a

contradiction. The case 1 ∈ B is left to the reader in Exercise 8.7.

Just as the proof of Schur’s theorem follows easily from Ramsey’s

theorem, so does the proof of Theorem 8.18.

Proof of Theorem 8.18. Let n = R(k1, k2, . . . , kr) be the r-colored

Ramsey number. Consider the same edgewise coloring as in the proof

of Schur’s theorem. That is, number the vertices of Kn by 1, 2, . . . , n

and arbitrarily partition the set {1, 2, . . . , n− 1} into r subsets, with

each of these subsets corresponding to a different color. Color the

edge connecting vertices i and j according to the subset of which

|j − i| is a member.

By Ramsey’s theorem, this coloring of Kn must admit a mono-

chromatic Kkj
subgraph for some color 1 ≤ j ≤ r. For ease of

notation let k = kj . Let the vertices of this monochromatic subgraph

be {v0, v1, . . . , vk−1}, and define the differences di = vi − v0. By

ordering and renaming the vertices we may assume that di−1 < di for

2 ≤ i ≤ k − 1. Since Kk is monochromatic of color j, we have that

the edges vi−1vi, i = 1, 2, . . . , k− 1, and vk−1v0 must all have color j.

Since vi−vi−1 = di−di−1, for i = 2, 3, . . . , k−1, we see that d1, dk−1,

and di− di−1, i = 2, 3, . . . k− 1, must all have color j. Hence we have

the solution to L(k) of color j given by d1+
∑k−1

i=2 (di−di−1) = dk−1

in any r-coloring of {1, 2, . . . , n− 1}. �

Now that we have established the existence of generalized Schur

numbers, we investigate the values and bounds for some of these

numbers. We start with Theorem 8.23, which gives the exact values

for all 2-color generalized Schur numbers. We give part of the proof

of Theorem 8.23, and leave the remainder to the reader as Exercise

8.8.
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Theorem 8.23. Let k, � ≥ 3. Then

S(k, �) =

⎧⎪⎪⎨⎪⎪⎩
3�− 4 if k = 3 and � is odd ,

3�− 5 if k = 3 and � is even,

k�− �− 1 if 4 ≤ k ≤ �.

Proof. For all colorings below, we denote by R the set of red integers

and by B the set of blue integers.

We start by showing that the given expressions serve as lower

bounds for their respective cases. To do this, for each case we exhibit

a valid 2-coloring, i.e., one that avoids both a red solution to L(k)
and a blue solution to L(�).
Case 1. k = 3 and � ≥ 3 is odd. Consider the coloring of [1, 3� − 5]

given by

R = {n : 1 ≤ n ≤ �−2, n odd} ∪ {n : 2�−2 ≤ n ≤ 3�−5, n even};
B = [1, 3�− 5]−R.

We will first establish that there is no red solution to L(3). Let

x1 ≤ x2 < x3 ≤ 3� − 5 be red integers. If {x1, x2} ⊆ [1, � − 2], then

x1 + x2 belongs to [2, 2� − 4] and is even. Thus x1 + x2 is colored

blue, so that {x1, x2, x3} is not a red solution to L(3). Hence, we

assume that x1 ∈ [1, � − 2] and x2 ∈ [2� − 2, 3� − 5]. Here we have

x1+x2 ∈ [2�− 1, 4�− 7] and is odd. This shows that either x1+x2 is

colored blue or out of bounds, so that {x1, x2, x3} is not a red solution

to L(3). Finally, we assume {x1, x2} ⊆ [2� − 2, 3� − 5]. This gives

x1 + x2 ≥ 4� − 4 > 3� − 5. In this situation, since the sum is out of

bounds, {x1, x2, x3} cannot be a red solution to L(3).
Next, we show that there is no blue solution to L(�). Assume

x1 ≤ x2 ≤ · · · ≤ x�−1 < x� ≤ 3� − 5 are � integers all colored blue.

If {x1, x2, . . . , x�−1} ⊆ [2, � − 3], then
∑�−1

i=1 xi ≥ 2� − 2 and is even.

This implies that
∑�−1

i=1 xi is either colored red or is out of bounds.

Hence {x1, x2, . . . , x�} is not a blue solution to L(�). If, on the other

hand, there exists j ∈ {1, 2, . . . , � − 1} such that xj �∈ [2, �− 3], then

x1, x2, . . . , xj−1 ≥ 2 implies that
∑j

i=1 xi ≥ 2(j − 1) + �− 1 ≥ 3j − 2.

This implies that
∑�−1

i=1 xi ≥ 3j−2+(�−j−1)(�−1). As the � = 3 case

is trivial, we may assume that � ≥ 5 so that
∑�−1

i=1 xi ≥ 3� − 5, since
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x� ≤ 3� = 5, we may assume that
∑�−1

i=1 xi = l − 5, which is colored

red. This shows that {x1, x2, . . . , x�} cannot be a blue solution to

L(�).
This completes the proof of the lower bound for k = 3 and � odd.

The lower bounds for the other cases are left to the reader in Exercise

8.8.

We now move on to the upper bounds. We prove one case and

leave the other cases to the reader in Exercise 8.8. We will consider

4 ≤ k ≤ � and 1 ∈ R. We prove the equivalent statement:

S(k + 1, �+ 1) ≤ k�+ k − 1 for 3 ≤ k ≤ �.

Assume, for a contradiction, that there exists a 2-coloring of

[1, k� + k − 1] that avoids both a red solution to L(k + 1) and a

blue solution to L(�+ 1).

Since 1 ∈ R, it follows that k ∈ B, and hence k� ∈ R, which in

turn implies that � ∈ B. Since 1, k� ∈ R, we have k�+k−1 ∈ B.

We deduce from this that 2k − 1 ∈ R (or else the (� + 1)-tuple

{k, k, . . . , k, 2k−1, k�+k−1} would be a blue solution). Since 2k−1 is

red, we must have 2 ∈ B or else the (k+1)-tuple {1, 2, 2, . . . , 2, 2k−1}
would be red. This implies that 3�− 2 ∈ R in order to avoid the blue

solution given by the (�+1)-tuple {2, 2, . . . , 2, �, 3�− 2}. This in turn

shows that we must have 3� + k − 3 ∈ B in order not to have the

(k + 1)-tuple {1, 1, . . . , 1, 3�− 2, 3�+ k − 3} be red.

We next show that �+1 ∈ B. First note that 3 ∈ R, for otherwise

{3, 3, . . . , 3, k, 3� + k − 3} would be blue. Since 1, 3 ∈ R, it follows

that k + 2 ∈ B. Now assume, for a contradiction, that � + 1 ∈ R.

Under this assumption, we have 2�+ k ∈ B, so that the (k+1)-tuple

{1, 1, . . . , 1, � + 1, � + 1, 2� + k} is not red. This leads to the blue

solution to L(� + 1) given by {2, 2, . . . , 2, k + 2, 2� + k}, the desired

contradiction. Thus, �+ 1 ∈ B.

We have shown that 2, k, �+1 and 3�+ k− 3 are all blue, so that

the (�+ 1)-tuple {2, 2, . . . , 2, k, �+ 1, 3�+ k− 3} gives a blue solution

to L(�+ 1), a contradiction. �
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We continue by determining upper and lower bounds for the gen-

eralized Schur number Sr(k). We start with an upper bound, the

proof of which is very similar to the proof of Corollary 8.6.

Theorem 8.24. Let r ≥ 2. If k ≥ 3, then Sr(k) ≤ Rr(k)− 1, where

Rr(k) is the r-color Ramsey number.

Proof. The proof of Theorem 8.18 gives a correspondence between

the edgewise r-colorings of Kn and the r-colorings of [1, n−1]. Hence,

if n = Rr(k), we have Sr(k) ≤ n− 1 = Rr(k)− 1. �

As we did in the proof of Lemma 8.7, it is possible to use Ram-

sey’s theorem to obtain an upper bound independent of the Ramsey

numbers. However, the formula is rather cumbersome, and we will

not present it here.

On the other hand, we do have a nice formula for a lower bound.

The lower bound is a generalization of Theorem 8.9. The proof is

quite similar to that of Theorem 8.9 and we leave much of it to the

reader as Exercise 8.9.

Theorem 8.25. Let r ≥ 2. If k ≥ 3, then Sr(k) ≥ kr+1−2kr+1
k−1 .

Proof. Let χ : [1, n] → {1, 2, . . . , r} be an r-coloring of [1, n] with no

monochromatic solution to L(k). Define an (r + 1)-coloring

χ̂ : [1, kn+ k − 2] → {1, 2, . . . , r + 1}

that extends χ as follows: for x ∈ [n+1, (k−1)n+k−2] let χ̂(x) = r+1;

otherwise let χ̂(x) = χ(y), where x ≡ y (mod ((k− 1)n+ k− 2)). We

leave it to the reader to deduce that under χ̂, the interval [1, kn+k−2]

contains no monochromatic solution to L(k). Thus, we have that if

Sr(k) ≥ n+1, then Sr+1(k) ≥ kn+k−1. Hence, Sr+1(k) ≥ kSr(k)−1.

Noting that S1(k) = k − 1, we leave it to the reader to show that

Sr(k) ≥ kr+1−2kr+1
k−1 . �

8.3. Refinements of Schur’s Theorem

Schur’s theorem (Theorem 8.2) tells us that any r-coloring of [1, s(r)]

must contain a monochromatic solution to x + y = z. However, x
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and y need not be distinct, and, in fact, this was crucial in showing

that s(2) = 5 (see Example 8.5). You may have asked yourself: does

Schur’s theorem hold if we require that x and y be distinct? This

is obviously a stricter condition and, as we have seen, this can turn

Ramsey-type statements into false statements. However, in this case,

the resulting Ramsey-type statement is true.

Theorem 8.26. For any r ∈ Z+, there exists a minimum integer

ŝ = ŝ(r) such that every r-coloring of [1, ŝ] admits a monochromatic

solution to x+ y = z with x �= y.

Proof. We will prove that ŝ(r) exists by induction on r. For r = 1

we have ŝ(1) = 3. Now let r ≥ 2 and assume that ŝ(r− 1) exists. We

will show that ŝ(r) ≤ w(2ŝ(r− 1)+1; r), where w(k; r) is the van der

Waerden function.

For any r-coloring of [1, w(2ŝ(r− 1) + 1; r)] there is a monochro-

matic arithmetic progression {a, a+ d, a+ 2d, . . . , a+ 2ŝ(r − 1)d} of

color, say, red. If there exists i ∈ {1, 2, . . . , ŝ(r − 1)} such that id is

red, then x = id, y = a + id, and z = a + 2id are all red, so that

we have x + y = z with x < y. Hence, assume that d[1, ŝ(r − 1)] =

{id : 1 ≤ i ≤ ŝ(r − 1)} is void of the color red. Then, d[1, ŝ(r − 1)]

is (r− 1)-colored. By the inductive assumption and Exercise 2.18 we

have a monochromatic solution to x+ y = z with x < y. �

Since we now have the existence of monochromatic solutions to

x + y = z with x �= y in any r-coloring of Z+, we can make the

following definition.

Definition 8.27. Let r be a positive integer. The least positive in-

teger ŝ = ŝ(r) such that every r-coloring of [1, ŝ] admits a monochro-

matic solution to x+y = z with x < y is called a strict Schur number.

A different proof of existence of ŝ(r) can be had by considering

the possible monochromatic solutions in [1, n] of x + x = z (i.e.,

when x = y). Since we have O(n) such solutions, by repeated use

of Lemmas 8.10 and 8.11 (see Exercise 8.6 for a guided explanation)

we can conclude that any r-coloring of [1, n] has cn2 monochromatic

solutions to x+ y = z with x �= y for some positive constant c.
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From previous chapters we have seen that the best known upper

bounds on the van der Waerden numbers are very large. Hence,

the upper bound for ŝ(r) provided by the above proof is not very

useful. For example, the proof gives ŝ(2) ≤ w(7; 2). Gowers’ bound

(Theorem 2.24) gives the smallest known (at least to our knowledge)

upper bound for w(7; 2):

22
22

65536

,

a number whose decimal representation cannot be written down be-

cause it exceeds the number of atoms in the universe (estimated as

1078 atoms).

As it turns out, much better upper bounds for ŝ(r) are known.

We can fairly easily provide one such bound; this bound is given in

Theorem 8.28, below. The best known upper bound is then given in

Theorem 8.29, which we state without proof.

Theorem 8.28. For r ≥ 1, we have ŝ(r) ≤ 23r!−1.

Proof. Let n = 3r!. Let {ai}ni=1 be an increasing sequence of positive

integers with no arithmetic progression of length 3.

We first claim that any r-coloring of [1, an] must contain a mono-

chromatic solution to x+y = z with x �= y. To see this, we show that

there exist ai < aj < ak such that ak −aj , ak −ai, aj −ai ∈ [1, an] all

have the same color.

Recall that Rr(3) is the r-color Ramsey number. From Lemma

8.7 we have Rr(3) ≤ n. Hence, any edgewise r-coloring of Kn must

contain a monochromatic triangle. Label the vertices of Kn with the

ai’s. We use the same coloring as defined in the proof of Schur’s

theorem, i.e., we color the edge between vertices ai < aj depending

upon aj −ai. As a result, we have a monochromatic triangle on three

vertices, say ai < aj < ak.

Now, since ak − ai = (ak − aj) + (aj − ai) and ak − aj �= aj − ai
(because ai, aj , ak are not in arithmetic progression), we have proven

the claim.

To complete the proof, let ai = 2i−1, i = 1, 2, . . . , n, and note

that {2i}n−1
i=0 contains no arithmetic progression of length three. �

Theorem 8.29. For r ≥ 1, we have ŝ(r) ≤ �r!re
+ 1.
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There is still room for improvement on the upper bound of The-

orem 8.29. Via a computer search it can be shown that ŝ(2) = 9; the

bound from Theorem 8.29 gives ŝ(2) ≤ 11.

We conclude this chapter with a result that combines the concepts

of both strict and generalized Schur numbers. Recall that we denote

by L(t) the equation x1 + x2 + · · ·+ xt−1 = xt.

Theorem 8.30. For any r ≥ 1, there exists a least positive integer

Ŝ = Ŝ(k1, k2, . . . , kr) such that for any r-coloring of [1, Ŝ] there is a

monochromatic solution to L(kj) of color j for some j ∈ {1, 2, . . . , r}
with x1, x2, . . . , xkj

distinct.

Proof. Let n = R(k1, k2, . . . , kr). Let {ai}ni=1 be an increasing se-

quence of positive integers such that

am − a� �= aj − ai for all 1 ≤ i < j ≤ � < m ≤ n.

We first claim that any r-coloring of [1, an] must contain a mono-

chromatic solution to L(kj) of color j with x1, x2, . . . , xkj
distinct. To

establish this claim, we show that for some j ∈ {1, 2, . . . , r} there exist
ai1 < ai2 < · · · < aikj

such that {ait+1
−ait : 1 ≤ t ≤ kj −1} ⊆ [1, an]

is monochromatic.

By the definition of n, any edgewise r-coloring ofKn must contain

a j-colored Kkj
for some 1 ≤ j ≤ r. Label the vertices of Kn with the

ai’s. For all pairs of vertices as < at, coloring the edge between as and

at with the color at−as, we have, for some j ∈ [1, r], a monochromatic

Kkj
of color j on k = kj vertices, say an1

< an2
< · · · < ank

. Now,

since ank
− an1

=
∑k−1

i=1 (ani+1
− ani

) and all the differences at − as,

1 ≤ s < t ≤ n, are distinct, we have proven the claim.

To complete the proof, let ai = 2i−1, i = 1, 2, . . . , n. To show

that the differences at−as, 1 ≤ s < t ≤ n, are distinct, assume (for a

contradiction) that there exist 0 ≤ w < x ≤ y < z ≤ n− 1 such that

2z − 2y = 2x − 2w. Then 2y(2z−y − 1) = 2w(2x−w − 1) and hence

2y−w(2z−y − 1) = 2x−w − 1,

a contradiction since the left side is even and the right side is odd. �

The following two theorems, the proofs of which are not included

here, provide information about the magnitude of some strict Schur
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numbers. The first result is for 2-colorings, while, for an arbitrary

number of colors, the second result gives an upper bound.

Theorem 8.31. The following hold:

Ŝ(3, k) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

9 if k = 3,

16 if k = 4,

3k2−7k
2 + 3 if k ≥ 5 and k ≡ 0, 1 (mod 4),

3k2−7k
2 + 4 if k ≥ 5 and k ≡ 2, 3 (mod 4) .

Theorem 8.32. Let r ≥ 2 and k ≥ 3. Then

Ŝ(k, k, . . . , k︸ ︷︷ ︸
r

) ≤
⌊
r!

2
(k − 2)r(kr − r + 1)e

1
k−2 +

1

k − 2

⌋
+ 1.

8.4. Schur Inequality

One direction that researchers have investigated comes from replacing

the Schur equation x+y = z with the Schur inequality x+y < z; more

generally, the generalized Schur equation
∑k−1

i=1 xi = xk is replaced

with the generalized Schur inequality
∑k−1

i=1 xi < xk.

We start by making sure that these Schur-type numbers exist.

Notation. Let t ≥ 3 and denote by M(t) the inequality

x1 + x2 + · · ·+ xt−1 < xt.

Theorem 8.33. For any r ≥ 1, and any k1, k2, . . . , kr ≥ 3, there

exists a least positive integer I = I(k1, k2, . . . , kr) such that for any

r-coloring of [1, I] there is a monochromatic solution to M(kj) of

color j for some j ∈ {1, 2, . . . , r}.

Proof. We induct on r, with r = 1 being trivial. So, we assume that

I(k1, k2, . . . , kr−1) exists for all (r − 1)-tuples (k1, k2, . . . , kr−1) and

will show that I(k1, k2, . . . , kr) exists for all r-tuples (k1, k2, . . . , kr).

Let n = S(k1, k2, . . . , kr) + 1. Let

m = max({I(k1, k2, . . . , k�−1, k�+1, . . . , kr) : 1 ≤ � ≤ r}).
We claim that

I(k1, k2, . . . , kr) ≤ nm.
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Consider any arbitrary r-coloring of [1, nm]. Then, by the defini-

tion of n, within [1, n − 1] there exists a monochromatic solution to

L(kj) (see notation above Theorem 8.18) for some j ∈ {1, 2, . . . , r}.
Let (a1, a2, . . . , akj

) be such a solution. If there exists an integer

greater than akj
of color j, then we have a monochromatic solu-

tion to M(kj). Otherwise, [n, nm] is (r − 1)-colored. By the induc-

tive assumption and the fact that I(k1, k2, . . . , kj−1, kj+1, . . . , kr) ≤
m, it follows that for some t ∈ {1, 2, . . . , r} − {j}, there exists a

monochromatic solution to inequality M(kt) that lies in {n, 2n, . . . ,
nI(k1, k2, . . . , kj−1, kj+1, . . . , kr)} (we are using the fact that solutions
to M(k) are preserved under dilation, i.e., t1 < t2 implies nt1 ≤ nt2
for any n ∈ Z+). �

In the 2-color case, we are able to provide a precise formula for

I(k, �). Interestingly, the value of I(k, �) is rather close to the value

of S(k, �).

Theorem 8.34. Let k ≥ � ≥ 3. Then I(k, �) = k�− �+ 1.

Proof. Let red be associated with M(k) and blue with M(�). By

considering the coloring such that [1, �−1] is blue and [�, k�−�] is red

we easily have I(k, �) > k� − k, as this coloring avoids red solutions

to M(k) and blue solutions to M(�).

To prove that I(k, �) ≤ k� − k + 1, let χ be any 2-coloring of

[1, k� − k + 1]. If χ(1) is red, then if some t ≥ k is also red, we have

a red solution to M(k) since k − 1 = 1 + 1 + · · ·+ 1 < t. Hence, we

may assume that [k, k� − �+ 1] is entirely blue. But then

k�− k =
�−1∑
i=1

k < k�− �+ 1

and we have a blue solution. In the case when χ(1) is blue, then either

some integer s ≥ � is also blue (and we are done) or [�, k� − � + 1] is

entirely red. But then

k�− � =
k−1∑
i=1

� < k�− �+ 1.

Since the upper and lower bounds agree, the proof is complete. �
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Remark 8.35. If we require that all terms in inequality M(k) be

distinct and let Î(k, k) be the associated Schur-type number, then it

has been shown that Î(k, k) ≈ 9
16k

3 − k2 + k.

As was done with Schur numbers, one interesting avenue of in-

vestigation regarding Schur inequalities is the determination of the

minimum number of monochromatic solutions to x+ y < z that can

occur in any 2-coloring of [1, n]. The answer appears in the next

theorem; the proof is elementary, but too lengthy for inclusion here.

Theorem 8.36. The minimum number of monochromatic solutions

to x+ y < z, over all 2-colorings of [1, n], is

n3

12(1 + 2
√
2)2

(1 + o(1)).

8.5. Exercises

8.1 Regarding the discussion in the introduction of this chapter,

explain why the planes x + y = z and x + y = 2z must,

under any given finite coloring, contain an infinite number

of colored points with positive integer coordinates.

8.2 The maximum number, asymptotically, of monochromatic

Schur triples over all r-colorings of [1, n] is known to be

cn2 +O(n), for some c > 0. Find c.

8.3 Use Exercise 8.2 to complete the proof of Theorem 8.14 by

showing that within [1, 4k− 1] there are 4k2(1+ o(1)) Schur

triples.

8.4 Use Lemma 8.11 to show that under any 2-coloring of [1, n],

the number of monochromatic 3-term arithmetic progres-

sions is cn2(1 + o(1)).

8.5 Show that the coloring given in the proof of Corollary 8.16

admits only n2

11·22r−3 +O(n) monochromatic Schur triples.

8.6 Use the following steps to show that there exists a constant

c = c(r) > 0 so that every r-coloring of [1, n] admits at least

cn2(1 + o(1)) monochromatic Schur triples.

a) Use induction on the number of colors r to show that

every edgewise r-coloring of Kn admits at least dn3+O(n2)
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monochromatic triangles for some positive constant d =

d(r). (Hint: see the proof of (ii) ⇒ (iii) in Theorem 2.5;

use Lemma 8.10 as the base case.)

b) Follow the method used in the proof of Lemma 8.11 to

finish this exercise.

8.7 Finish Example 8.22 by

a) showing that the given coloring of [1, 13] is indeed a valid

coloring, i.e., that there is no red solution to L(4) and no

blue solution to L(5), and
b) concluding that any 2-coloring of [1, 14] with 1 ∈ B must

admit either a red solution to L(4) or a blue solution to

L(5).

8.8 Finish the proof of Theorem 8.23 as follows:

a) Show that the following colorings provide lower bounds

for the stated cases:

i) For � ≥ 4 and even, the 2-coloring of [3� − 6]

given by R = R1 ∪ R2 and B = [1, 3� − 6] − R,

where R1 = {n : 1 ≤ n ≤ � − 3, n odd} and

R2 = {n : 2�− 2 ≤ n ≤ 3�− 6, n even};
ii) For 4 ≤ k ≤ �, the 2-coloring of [k� − � − 2]

given by R = R1 ∪R2 and B = [1, k�− �− 2]−R,

where R1 = {n : (k − 1)(�− 1) ≤ n ≤ k� − �− 2}
and R1 = {n : 1 ≤ n ≤ k − 2}.

b) Finish the upper bound 4 ≤ k < � for 1 ∈ B. (Hint: in

the case where 1 ∈ R, interchange all occurrences of the set

R with the set B, of the word ‘red’ with the word ‘blue’,

and of the value k with the value �. Check to make sure

that the resulting argument is correct.)

c) Deduce the upper bounds for k = 3 and � ≥ 4 and even,

and for k = 3 and � ≥ 3 and odd, in a fashion similar to the

case presented in the proof of Theorem 8.23. (Hint: begin

by considering two subcases: 1 ∈ R and 1 ∈ B.)

8.9 Finish the proof of Theorem 8.25 by showing that
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a) χ̂ admits no monochromatic solution to L(k), and

b) Sr(k) ≥ kr+1−2kr+1
k−1 .

8.10 Adapt the proof of Theorem 8.34 to show that Î(k, k) ≤
9
(
k
3

)
+ 2k − 1. Start by using the pigeonhole principle on

[1, 2k − 3].

8.6. Research Problems

8.1. Prove or disprove the conjecture that s(5) = 160.

References: [142], [155]

8.2. For r ≥ 3, find the minimum number, asymptotically, over

all r-colorings of [1, n], of monochromatic Schur triples.

References: [109], [327], [361], [390]

8.3. Find the asymptotic minimum number, over all 2-colorings

of [1, n], of monochromatic 3-term arithmetic progressions.

(The best current bounds are found in Theorem 2.38.)

References: [100], [301], [327], [361]

8.4. Determine new bounds and/or values for the r-colored gen-

eralized Schur numbers, for r ≥ 3. In particular, it has been

conjectured that S3(k) = S(k, k, k) = k3 − k2 − k − 1.

References: [15], [56], [326]

8.5. Improve upon the upper bound given for the strict Schur

numbers ŝ(r) (from Theorem 8.28).

Reference: [71]

8.6. Determine the exact value of the 2-colored strict generalized

Schur numbers (see Theorems 8.30 and 8.31), i.e., determine

the least positive integer Ŝ(k, �) such that any 2-coloring of

[1, Ŝ(k, �)] must admit either a red solution to x1 + · · · +
xk−1 = xk with x1 < x2 < · · · < xk, or a blue solution to

x1 + · · · + x�−1 = x� with x1 < x2 < · · · < x�. Note that

Ŝ(k, �) has already been determined for � = 3, while the

cases when � ≥ 4 are still open.

References: [17], [65], [175], [326]
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8.7. Improve upon the upper bound given for the strict general-

ized Schur numbers Ŝr(k) (from Theorem 8.32).

Reference: [212]

8.8. Determine the minimum, over all r-colorings of [1, n], of the

number of monochromatic solutions to x+ y < z for r ≥ 3.

Reference: [237]

8.9. Determine the minimum, over all r-colorings of [1, n], of the

number of monochromatic solutions to x+ay < z for a ≥ 2.

References: [237], [390]

8.7. References

§8.1. Theorem 8.1, Schur’s theorem, and Theorem 8.9 can be found in

[364]. See [400] for a brief summary of Wiles’ proof of Fermat’s Last

Theorem. Erdős and Szekeres’ rediscovery of Ramsey’s theorem can

be found in [137]. Goodman’s result on the number of monochro-

matic triangles in any 2-coloring of the edges of Kn can be found

in [166]. The problem of finding the asymptotic minimum number

of Schur triples over all 2-colorings of [1, n] was first posed by Gra-

ham, Rödl, and Ruciński in [173]. It was first solved, independently,

by Robertson and Zeilberger [327], and Schoen [361]. The proof of

Lemma 8.11 can be found in [173]. The proof of Theorem 8.15 is

due to Datskovsky [109]. The coloring given in Theorem 8.14 is due

to Zeilberger. The fact that the coloring in Theorem 8.14 is essen-

tially the only minimal coloring is proved in [361]. Corollary 8.16 is

from [327]. A different type of multiplicity problem is investigated in

[352]. Theorem 8.17 is derived from [390], in which more accurate

bounds are given. Schur’s theorem still holds if we consider only those

monochromatic solutions where the value of x divides the value of y,

as shown in [68].

§8.2. The proof of Theorem 8.18 is from [322]. Theorem 8.18 proves

the existence, in particular, of Sr(k); however, this is implied by

Rado’s single equation theorem (Theorem 9.5), which was established

before Theorem 8.18. The values for the 2-color generalized Schur

numbers S(k, �) (in Theorem 8.23) were determined for k = � in [56]

and for all k and � in [326].
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§8.3. The proof of existence of ŝ(r) is adapted from the proof of

Theorem 2 in [175]. The proof of Theorem 8.29 is found in [71].

A weaker bound than that in Theorem 8.29 is given by Irving [212],

which also established the upper bound Theorem 8.32. The r = 2 case

of Theorem 8.29 was first considered in [371]. The determination of

Ŝ(3, k) (Theorem 8.31) may be found in [17].

§8.4. The k = � case of Theorem 8.34, along with a proof in this case,

is from [65], in which the exact values for the Schur-type numbers

Î(k, k) are also determined. Theorem 8.36 is from [237].

Additional References: For a tribute to Schur and an overview of

his work, see [285]. Exoo [142], and Fredricksen and Sweet [155],

give the current best known lower bounds for the Schur numbers

s(5), s(6), and s(7). Defining S = {p− 1 : p is a prime}, Li and Pan

[269] have shown that Schur’s theorem holds when we restrict x, y,

and z to be in S. Bergelson, in [44], uses ergodic theory to prove

a density statement which generalizes and strengthens Schur’s theo-

rem. McCutcheon gives a noncommutative Schur theorem in [280].

A combinatorial proof of Bergelson’s result is provided in [150]. Ad-

ditional density results appear in [49]. Schaal [349], and Schaal and

Bialostocki [65], consider variations of Schur numbers that are not

guaranteed to exist. The 1892 result of Hilbert [201] can be special-

ized to give Schur’s theorem. Work on the numbers associated with

Hilbert’s theorem can be found in [85].

                

                                                                                                               



                

                                                                                                               



Chapter 9

Rado’s Theorem

The previous chapter, on Schur’s theorem, included the extension

of Schur’s theorem to equations of the form
∑k−1

i=1 xi = xk. In other

words, we found that for any finite coloring of Z+ there is a monochro-

matic solution to an equation of this form. The extension can be

taken further, and was taken further, by one of Schur’s Ph.D. stu-

dents, Richard Rado.

In a series of papers in the 1930s, Rado determined, in particu-

lar, exactly which linear equations
∑k

i=1 cixi = 0 are guaranteed to

have monochromatic solutions under any finite coloring of the pos-

itive integers. In fact, part of this result is contained in his Ph.D.

thesis.

9.1. Rado’s Single Equation Theorem

Before stating the goal of this section, we remind the reader that a

linear homogeneous equation over the integers is any equation of the

form
k∑

i=1

cixi = 0,

where each ci ∈ Z is a nonzero constant and each xi is a variable.

Since we will be considering only linear equations, when we use “ho-

mogeneous” we will mean “linear homogeneous.”

251
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Remark 9.1. We remind the reader of Definition 1.23. We say that

an equation L is regular if, for all r ≥ 1, for every r-coloring of Z+

there is a monochromatic solution to L. From Theorem 8.18, we see

that x1 + x2 + · · ·+ xk−1 = xk is regular.

In this section, we classify those linear equations c1x1 + c2x2 +

· · ·+ckxk = b that, under any r-coloring of Z+, have a monochromatic

solution. We start by considering homogeneous equations, with the

goal of finding a condition on the constants ci in the equation

k∑
i=1

cixi = 0

so that the equation is regular. Clearly, some restriction on the con-

stants is needed. For example, if all the constants are positive or all

are negative, then there is no solution in the positive integers, much

less a monochromatic one. So, at least one of the constants must be

positive and at least one must be negative. This simple observation

leads us to the following result.

Theorem 9.2. Let k ≥ 3 and ci ∈ Z+−{0} for i = 1, 2, . . . , k. Let D
represent the equation

∑k
i=1 cixi = 0. If there exist i, j ∈ {1, 2, . . . , k}

such that ci < 0 and cj > 0, then D is 2-regular.

Proof. We may rewrite D as
∑m

i=1 αiyi =
∑n

i=1 βizi, where m ≥ 2,

n ≥ 1, and all coefficients are positive. Note that m+ n = k.

We consider a certain subset of solutions to D; namely, those in

which y = y1 = y2 = · · · = ym−1, w = ym, and z = z1 = z2 =

· · · = zn. We will show that under any 2-coloring of Z+, there exists

a monochromatic solution to

ay + bw = cz,

where a =
∑m−1

i=1 αi, b = αm, and c =
∑n

i=1 βi. This is clearly a

stronger statement than the statement of the theorem.

Denote ay+bw = cz by E and note that a, b, and c are all positive

integers.
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Consider all possible solutions to E . For each solution (y, w, z) =

(ŷ, ŵ, ẑ), determine max(ŷ, ŵ, ẑ). Let (ỹ, w̃, z̃) be a solution for which

this maximum is minimal. Let A = max(ỹ, w̃, z̃).

Assume, for a contradiction, that there exists a 2-coloring of Z+

with no monochromatic solution to E . Let red and blue be the colors.

Let � = lcm
(

a
gcd(a,b) ,

c
gcd(b,c)

)
so that b�

a and b�
c are positive in-

tegers. We may assume, without loss of generality, that � is red.

Define s to be the smallest element in {i� : i = 1, 2, . . . , A} that

is blue, say s = j� for some j ∈ {2, 3, . . . , A}. Such an element exists

since

(9.1) {in : i = 1, 2, . . . , A} is not monochromatic for any n ∈ Z+;

otherwise, (ỹn, w̃n, z̃n) is a monochromatic solution, which we are

assuming does not exist.

For some p ∈ Z+, we have that t = b
a (s− �)p is blue; otherwise,{

i · b
a (s− �) : i = 1, 2, . . .

}
would be red, contradicting (9.1).

Now, q = b
c ((s− �)p+ s) must be red, for otherwise (t, s, q)

is a blue solution. Since � and q are both red, we deduce that
b
a (s − �)(p + 1) must be blue, for otherwise

(
b
a (s− �)(p+ 1), �, q

)
is a red solution to E . Hence, we have deduced that if b

a (s − �)p

is blue, then so is b
a (s − �)(p + 1). As a consequence, we see that{

i · b
a (s− �) : i = p, p+ 1, . . .

}
is monochromatic. This gives us, in

particular, that {
i · b

a
(s− �)p : i = 1, 2, . . . , A

}
is monochromatic, contradicting (9.1) (with n = b

a (s− �)p). �

Recall that Theorem 8.18 is a “mixed” (or “off-diagonal”) gen-

eralization of Schur’s theorem where the generalized Schur equations

are allowed different numbers of variables for different colors. Using

Theorem 9.2, we are able to prove a similar generalization of Theorem

9.2, where each color can be associated with a different equation.

Corollary 9.3. Let E0 and E1 be two equations that each satisfy the

conditions given in Theorem 9.2. Then any (red,blue)-coloring of Z+

admits either a red solution to E0 or a blue solution to E1.
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Proof. Following the argument in the first two paragraphs of the

proof of Theorem 9.2, we let a0, a1, b0, b1, c ∈ Z+ and denote by Gi

the equation aix+ biy = cz for i = 0, 1 (where Gi is derived from Ei).
We are able to assume that the coefficients of z are the same in G0

and G1 since we can form equivalent equations by finding the least

common multiple of the original coefficients of z and adjusting the

other coefficients accordingly. As in the proof of Theorem 9.2, we will

prove the statement of this theorem for G0 and G1.

From Theorem 9.2, there exist monochromatic solutions to each

of G0 and G1. Hence, we assume, for a contradiction, that every

monochromatic solution to G0 is blue and that every monochromatic

solution to G1 is red. This implies that for any i ∈ Z+,

(9.2) if ci is blue, then (a1 + b1)i is red

(else (x, y, z) = (ci, ci, (a1 + b1)i) is a blue solution to G1).

Now consider monochromatic solutions in cZ+. Via the obvious

one-to-one mapping between colorings of cZ+ and Z+ and the fact

that linear homogeneous equations are unaffected by dilation (see

Exercise 2.18), Theorem 9.2 implies the existence of monochromatic

solutions in cZ+. Let (cx, cy, cz) be a monochromatic solution in cZ+

to G0. By assumption, each of cx, cy, and cz is blue. Hence, by (9.2)

we have that x̂ = (a1 + b1)x, ŷ = (a1 + b1)y, and ẑ = (a1 + b1)z are

all red. But then (x̂, ŷ, ẑ) is a red solution to G0, a contradiction. �

Theorem 9.2 cannot be extended to three colors; for example, it

is known that the equation x + 2y − 4z = 0 is not 3-regular. Hence,

there must be a stronger condition on an equation’s coefficients in

order to guarantee regularity (as opposed to just 2-regularity) than

the conditions in Theorem 9.2. Up to this point, we have found

only one family of regular linear homogeneous equations, namely the

generalized Schur equations x1 + x2 + · · · + xk−1 − xk = 0. (see

Theorem 8.18)

Using techniques and results already covered in this book, we are

able to offer another family of regular linear homogeneous equations,

where not all coefficients are 1 or −1. The equations in this family

are closely tied to the generalized Schur equations; their regularity

is implied by use of the technique in the proofs of Theorem 9.2 and
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Corollary 9.3 in which the number of variables was reduced. Specifi-

cally, let x1 = x; let x2 = x3 = · · · = xk−1 = y; and let xk = z in the

generalized Schur equation. The resulting equation, x+(k− 2)y = z,

is not guaranteed to be regular by Theorem 8.18. To show the reg-

ularity of this equation, we need to a different proof. (The thorough

reader will notice that this answers Exercise 1.20.)

Theorem 9.4. The equation x + jy = z is regular for all positive

integers j.

Proof. Let n = ŵ(j + 1; r) be the van der Waerden-type number

from Corollary 2.42. Hence, for any r-coloring of [1, n] there exist

positive integers a and d so that all of the following have the same

color: a, a+ d, a+2d, . . . , a+ jd, and d. In particular a, d, and a+ jd

are identically colored. Let x = a, y = d, and z = a+ jd and we are

done. �

Unfortunately, the method of proof above does not immediately

generalize to arbitrary linear homogeneous equations. It does, how-

ever, play a role in the proof of the following result.

Theorem 9.5 (Rado’s Single Equation Theorem). Let k ≥ 2. Let

ci ∈ Z− {0}, for all i ∈ {1, 2, . . . , k}, be constants. Then

(9.3)

k∑
i=1

cixi = 0

is regular if and only if there exists a nonempty D ⊆ {ci : 1 ≤ i ≤ k}
such that

∑
d∈D d = 0.

Proof. We first prove the ‘if’ part. We show that for all r ≥ 1, if

there exists a nonempty subset D as above, then (9.3) is r-regular.

We use induction on r, starting with the case of r = 1. Without

loss of generality, let D = {c1, c2, . . . , cm} with c1 > 0. If m = k, then

we may take xi = 1 for 1 ≤ i ≤ k as our monochromatic solution.

Hence, we assume that m < k. Thus, s = cm+1 + cm+2 + · · · + ck is

nonempty and nonzero.
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Let x2 = x3 = · · · = xm and xm+1 = xm+2 = · · · = xk. Equation

(9.3) reduces to

c1x1 + x2(c2 + c3 + · · ·+ cm) + xm+1(cm+1 + cm+2 + · · ·+ ck) = 0.

Since c1 + c2 + · · ·+ cm = 0, we have

(9.4) c1(x1 − x2) + sxm+1 = 0.

Any positive integers x1 and x2 such that x2 − x1 = s, together

with xm+1 = c1, provide a (monochromatic) solution to (9.4), com-

pleting the case when r = 1.

Now let r ≥ 2 and assume that the result holds for 1 ≤ t ≤ r− 1.

We show that it holds for r. For each t ≤ r − 1, let n(t) be the

least positive integer such that for every t-coloring of [1, n(t)] there

is a monochromatic solution to (9.3) (n(t) exists by the induction

hypothesis).

Assume, without loss of generality, that c1 + c2 + · · · + cm = 0,

with m maximal and c1 > 0. Again, we may assume that m �= k, so

that s = cm+1 + cm+2 + · · ·+ ck is a nonempty sum. Note that s �= 0

(for otherwise, the choice of m as maximal would be violated).

Let b =
∑k

i=1 |ci| and let n = n(r− 1). We will show that n(r) ≤
bw(n+1; r), where w represents the usual van der Waerden function.

We continue by showing that every r-coloring of [1, bw(n+1; r)] admits

a monochromatic solution to (9.3).

Let x2 = x3 = · · · = xm and xm+1 = xm+2 = · · · = xk. As in the

case when r = 1, Equation (9.3) reduces to Equation (9.4).

Let χ be an r-coloring of [1, bw(n+ 1; r)]. We shall now find x1,

x2, and xm+1 satisfying (9.4), with χ(x1) = χ(x2) = χ(xm+1). We

see that, by Theorem 4.9, χ must yield an monochromatic (n + 1)-

term arithmetic progression with gap a multiple of |s| (note that we

have 1 ≤ |s| < b). That is, we have that

A = {a, a+ d|s|, a+ 2d|s|, . . . , a+ nd|s|}

is monochromatic for some a, d ≥ 1, with a+ nd|s| ≤ bw(n+ 1; r).

If there exists j ∈ [1, n] such that χ(jdc1) = χ(a), then, de-

pending on whether or not s is positive, either (x1, x2, xm+1) =
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(a, a+jd|s|, jdc1) or (x1, x2, xm+1) = (a+jd|s|, a, jdc1) is a monochro-

matic solution to Equation (9.4), and hence Equation (9.3). In this

situation, we would be done. If, on the other hand, for all j ∈ [1, n] we

have χ(jdc1) �= χ(a), then {dc1, 2dc1, . . . , ndc1} = dc1[1, n] is (r− 1)-

colored, and by the inductive assumption (along with Exercise 2.18),

we are done.

For the ‘only if’ part of the theorem, we prove the contrapositive.

Let c1, c2, . . . , ck be fixed with no subset summing to zero. We prove

the existence of an r-coloring of Z+, for some r ≥ 1, that admits no

monochromatic solution to (9.3).

Choose a prime p such that for any C ⊆ {ci : 1 ≤ i ≤ k} we have

p �
∑

c∈C c. Since C is a finite set, such a choice is obviously possible.

We now define a (p − 1)-coloring χ : Z+ → {1, 2, . . . , p − 1} as

follows. For i ∈ Z+, write i in its p-ary expansion, i.e., i =
∑

j≥0 ajp
j

with 0 ≤ aj < p. Let χ(i) = a� where � = min({j : aj �= 0}).
To prove that χ admits no monochromatic solution to (9.3), as-

sume, for a contradiction, that Y = {y1, y2 . . . , yk} is a monochro-

matic solution under χ; say, χ(Y ) = u. Re-indexing the subscripts in

Y if necessary, by the definition of χ we have y1, y2, . . . , yt ≡ u (mod

p) with 1 ≤ u < p and yt+1, yt+2, . . . , yk ≡ 0 (mod p). Note that

yi ≡ u (mod p) means that in the p-ary expansion of yi we have that

� = 0 so that a0 = u �= 0; while, yi ≡ 0 (mod p) if and only if a0 = 0.

Hence, since
∑k

i=1 ciyi = 0, we see that u
∑t

i=1 ci ≡ 0 (mod p) with

p � u. If t ≥ 1, then u and
∑t

i=1 ci are both nonzero, and the prime p

divides u
∑t

i=1 ci. This is a contradiction, since p � u and p �
∑t

i=1 ci.

If t = 0, then we have y1, y2, . . . , yk ≡ 0 (mod p). Let m be the

maximum integer such that pm | yi for every i ∈ {1, 2, . . . , k} and let

ŷi =
yi

pm , 1 ≤ i ≤ k. Then, at least one ŷi must satisfy ŷi ≡ u (mod

p). We then appeal to the argument used for t ≥ 1. �

Remark 9.6. Using the notation from Theorem 9.5, Corollary 8.19

follows from Rado’s single equation theorem since x1+x2+· · ·+xk−1−
xk = 0 satisfies the necessary subset requirement (ck−1 + ck = 0);

Theorem 9.4 holds since x1 + jx2 − x3 = 0 has c1 + c3 = 0 for any

j ∈ Z+.
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Theorem 9.5 can be strengthened as seen in the following theo-

rem, which we offer without proof.

Theorem 9.7. Let r ∈ Z+. For every r-coloring of Z+ there ex-

ists a monochromatic solution (x1, x2, . . . , xk) = (b1, b2, . . . , bk) to∑k
i=1 cixi = 0, where the bi’s are distinct, if and only if

∑k
i=1 cixi = 0

is regular and there exist distinct integers (not necessarily positive)

y1, y2, . . . , yn such that (y1, y2, . . . , yn) is a solution of
∑k

i=1 cixi = 0.

Example 9.8. Let {a, a+ d, a+2d} be a 3-term arithmetic progres-

sion. Setting x = a, y = a+2d and z = a+d, we see that x+y = 2z.

Hence, x+ y = 2z, with x �= y, is another way of describing a 3-term

arithmetic progression. Thus, Theorem 9.7 proves the existence of a

monochromatic 3-term arithmetic progression in any finite coloring of

Z+. However, Theorem 9.7 does not imply the same result for arith-

metic progressions of length more than three. For this we need Rado’s

“full” theorem, which is presented later in this chapter as Theorem

9.36.

So far we have considered equations that are 2-regular and equa-

tions that are regular, but have not considered equations whose de-

gree of regularity if finite, but greater than 2. A priori, it is not

clear that such equations even exist. Rado believed they existed and

conjectured, in his Ph.D. dissertation, that, for all r ∈ Z+, there are

equations that are r-regular but not (r + 1)-regular. This conjecture

has been resolved as the next theorem, which we offer without proof.

Theorem 9.9. For every r ∈ Z+, the equation

r∑
i=1

2i

2i − 1
xi =

(
r∑

i=1

2i

2i − 1
− 1

)
xr+1

is r-regular but not (r + 1)-regular.

Remark 9.10. Although the coefficients in the equation in Theorem

9.9 are rational, we can find a common denominator d and multiply

through the equation by d to transform it into an equivalent equation

with integer coefficients (see Exercise 9.1).

Rado also made his famous “boundedness conjecture” stating,

in particular, that for each k ≥ 3, there exists c = c(k) so that any
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equation with k variables that is c-regular is, in fact, regular. Theorem

9.9 only gives us c(k) > k + 1; it does not disprove this conjecture.

The best known result in this area is given below (without proof),

as Theorem 9.11. It states, loosely speaking, that in the case of 3-

variable equations, twenty-four colors suffice.

Theorem 9.11. If a linear homogeneous equation with integers co-

efficients and three unknowns is 24-regular, then it is regular.

Rado’s single equation theorem deals only with homogeneous

equations. An obvious question is: is there a similar result con-

cerning nonhomogeneous linear equations, i.e., equations of the form∑
i cixi = b, where b is a nonzero integer? As we will see, it is possible

in this setting to have a nonempty subset of the coefficients summing

to 0 while not being guaranteed a monochromatic solution. Know-

ing this, any regularity result will most probably be dependent upon

the value of b. In the following proposition, we state what is known

about one of the simplest nonhomogeneous cases. Before doing so,

we introduce the following notation.

Notation. Let E be a linear equation. Denote by r(E ; s) the minimal

integer, if it exists, such that any s-coloring of [1, r(E ; s)] must admit

a monochromatic solution to E . For s = 2 we may write simply r(E).

Definition 9.12. The numbers r(E ; s) are called s-color Rado num-

bers for equation E .

Proposition 9.13. Let b ∈ Z − {0}. Then r(x − y = b; 2) does not

exist.

Proof. Consider the 2-coloring of Z+ defined by 0|b|1|b|0|b|1|b| . . . .

Clearly, under this coloring, no two positive integers having the same

color can have their difference equal to b. Hence, we cannot have a

monochromatic solution to x− y = b. �

We next present a theorem that generalizes the equation of Propo-

sition 9.13.

Theorem 9.14. Let b ≥ 1, k ≥ 3, and let E(b) represent the equation

x1 +x2 + · · ·+xk−1 −xk = −b. Then r(E(b)) does not exist precisely
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when k is even and b is odd. Otherwise,

r(E(b)) = k2 + (b− 1)(k + 1).

Proof. We start by showing that r(E(b)) does not exist if k is even

and b is odd. We do this by giving a 2-coloring of Z+ with no

monochromatic solution to E(b). To this end, color all even inte-

gers with one color and all odd integers with the other color. If all of

the xi are the same color, then x1+x2+ · · ·+xk−1−xk is even. Since

b is odd, we see that a monochromatic solution cannot exist under

this coloring.

Now assume that k is odd or b is even, and let

n = k2 + (b− 1)(k + 1).

We show that n is a lower bound for r(E(b)) by providing a 2-

coloring χ : [1, n− 1] → {0, 1} that does not admit a monochromatic

solution to E(b). Define χ as follows:

χ(j) = 0 if and only if j ∈ [k + b− 1, k2 + (b− 2)k].

Assume, by way of contradiction, that Y = {yi : 1 ≤ i ≤ k} is a

monochromatic solution to E(b).
If χ(Y ) = 0, then yi ≥ k + b− 1 for 1 ≤ i ≤ k − 1. Hence,

b+

k−1∑
i=1

yi ≥ (k − 1)(k + b− 1) = k2 + (b− 2)k + 1,

a contradiction since yk ≤ k2 + (b− 2)k.

Now assume χ(Y ) = 1. If Y − {yk} ⊆ [1, k + b− 2], then

k + b− 1 ≤ b+

k−1∑
i=1

yi ≤ k2 + (b− 3)k + 2.

Note that since k ≥ 2 we have k2 + (b − 3)k + 2 ≤ k2 + (b − 2)k.

Hence, b+
∑k−1

i=1 yi ∈ [k + b− 1, k2 + (b− 2)k], a contradiction since

this interval is of color 0. Therefore, if χ(Y ) = 1 we must have

yk−1 ∈ [k2 + (b− 2)k + 1, n− 1]. Then

b+
k−1∑
i=1

yi ≥ b+ (k − 2) + k2 + (b− 2)k + 1 = n,

and again we have a contradiction, since yk ≤ n− 1.                
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We conclude that χ is a valid 2-coloring of [1, n − 1], so that

r(E(b)) ≥ k2 + (b− 1)(k + 1).

For the upper bound, let m ∈ Z+ and let χ : [1,m] → {0, 1} be

a 2-coloring that admits no monochromatic solution to E(b). Define

the set

A(χ) = {x : x ∈ [1,m− 1] and χ(x) �= χ(x+ 1)}.

Note that |A(χ)| is the number of times the color changes as we

proceed from 1 to m.

We finish the proof via a series of claims.

Claim 1. If |A(χ) ∩ [1, k + b− 2]| is even, then m ≤ k + b− 2.

Proof of Claim 1. Assume, for a contradiction, that m ≥ k + b − 1.

By the definition of A(χ) we have χ(1) = χ(k + b− 1). Hence,

xi = 1, 1 ≤ i ≤ k − 1,

xk = k + b− 1

is a monochromatic solution to E(b), a contradiction. �
Claim 2. If |A(χ)∩ [1, k+b−2]| = 1, then m ≤ k2+(b−1)(k+1)−1.

Proof of Claim 2. Without loss of generality, assume there exists

a1 ≥ 1 such that χ([1, a1]) = 0 and χ([a1 + 1, k + b − 1]) = 1. Note

that

(9.5) a1 ≤ k + b− 2.

Since

xi = k + b− 1, 1 ≤ i ≤ k − 1,

xk = k2 + (b− 2)k + 1

is a solution to E(b), either |A(χ)| = 1 and m ≤ k2 + (b − 2)k, or

|A(χ)| ≥ 2. If |A(χ)| = 1 we are done, so assume |A(χ)| ≥ 2.

Since |A(χ)| ≥ 2, we know there exists a2 ≥ k + b − 1 such

that χ([1, a1]) = 0, χ([a1 + 1, a2]) = 1, and χ(a2 + 1) = 0. Now,

since χ(a1 + 1) = 1, we have that χ((k − 1)(a1 + 1) + b) = 0 or

m < (k − 1)(a1 + 1) + b. In either case we have

(9.6) a2 ≤ (k − 1)(a1 + 1) + b− 1.
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Next, since

xi = 1, 1 ≤ i ≤ k − 2,

xk−1 = a2 + 1,

xk = a2 + k + b− 1

is a solution to E(b), either m ≤ a2+k+b−2 or χ(a2+k+b−1) = 1.

We show that χ(a2 + k + b − 1) = 1 contradicts the fact that χ

is valid. Since [1, a1] has color 0, we see that [k+ b− 1, (k− 1)a1 + b]

has color 1. Thus, a2 ≥ (k − 1)a1 + b. This implies that

a2 + k + b− 1 ≥ (k − 1)(a1 + 1) + 2b.

Since a2 ≥ 2, we have a2 ≥ k−1
k−2 , i.e., (k− 2)a2 ≥ k− 1. From this we

see that a2 + k + b− 1 ≤ (k − 1)a2 + b. Hence,

(k − 1)(a1 + 1) + b ≤ a2 + k + b− 1 ≤ (k − 1)a2 + b.

By the above equation and the fact that the interval [a1 + 1, a2] has

color 1, there exist x1, x2, . . . , xk−1 ∈ [a1 + 1, a2] for which

k−1∑
i=1

xi + b = a2 + k + b− 1,

and we have found a monochromatic solution to E(b), a contradiction.

Hence, we cannot have χ(a2 + k + b− 1) = 1. We conclude that

(9.7) m ≤ a2 + k + b− 2.

Combining (9.7) with (9.5) and (9.6), we see that

m ≤ k2 + (b− 1)(k + 1)− 1,

thereby completing the proof of Claim 2. �
Claim 3. If k is odd and |A(χ) ∩ [1, k + b − 2]| ≥ 3, then we have

m ≤ k2 + (b− 2)k − 2.

Proof of Claim 3. Without loss of generality, assume there exist a1
and a2 such that 1 < a1 < a2 ≤ k + b − 2, χ(1) = 0, χ(a1) = 1,

χ([a1 + 1, a2]) = 0, and χ(a2 + 1) = 1. Since

xi = a1 + 1, 1 ≤ i ≤ k−1
2 ,

xi = a2,
k+1
2 ≤ i ≤ k − 1,

xk = k−1
2 (a2 + a1 + 1) + b
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satisfies E(b), we have either

(9.8) m <
(
k−1
2

)
(a2 + a1 + 1) + b

or

(9.9) χ
((

k−1
2

)
(a2 + a1 + 1) + b

)
= 1.

However, if (9.9) holds, then we have the monochromatic solution

xi = a1, 1 ≤ i ≤ k−1
2 ,

xi = a2 + 1, k+1
2 ≤ i ≤ k − 1,

a contradiction. Hence, (9.8) holds. Since a1 + 1 ≤ a2 ≤ k + b − 2,

this gives

m ≤ (k − 1)(k + b− 2) + b− 1

= k2 − k + (b− 2)(k − 1) + (b− 2) + 1

≤ k2 + (b− 2)k − 2,

as required. This completes the proof of Claim 3. �
Claim 4. If k and b are both even and |A(χ)∩ [1, k+ b− 2]| = i ≥ 3

with i odd, then m ≤ k2 + (b− 2)k − 1.

Proof of Claim 4. Let

A(χ) ∩ [1, k + b− 2] = {a1 < a2 < · · · < ai}.

We assume, without loss of generality, that χ(aj)=0 and χ(aj+1)=1

for j = 1, 3, 5, . . . , i; and that χ(aj) = 1 and χ(aj + 1) = 0 for

j = 2, 4, . . . , i− 1. If there exists t ∈ [1, i− 1] such that at+1 �= at+1,

then we have the following two solutions to E(b):

xi = at, 1 ≤ i ≤ k
2 ,

xi = at+1 + 1, k
2 + 1 ≤ i ≤ k − 1,

xk = k
2 (at) + (k2 − 1)(at+1 + 1) + b− 1

and

xi = at + 1, 1 ≤ i ≤ k
2 ,

xi = at+1,
k
2 + 1 ≤ i ≤ k − 2,

xk−1 = at+1 − 1,

xk = k
2 (at) + (k2 − 1)(at+1 + 1) + b− 1.
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One of these solutions must be monochromatic unless

m ≤ k

2
(at) +

(
k

2
− 1

)
(at+1 + 1) + b− 2.

Since at < at+1 + 1 ≤ k + b− 1, this implies that

m ≤ (k − 1)(k + b− 1) + b− 2 = k2 + (b− 2)k − 1.

Thus, we may assume that aj+1 = aj + 1 for all j ∈ [1, i − 1].

Since k + b− 2 is even, either a1 �= 1 or ai �= k + b− 2.

If a1 �= 1, then we can assume, without loss of generality, that

χ(a1 − 1) = χ(a1) = 0. Hence, the following solutions both satisfy

E(b):
xi = a1 + 1, 1 ≤ i ≤ k − 1,

xk = (k − 1)(a1 + 1) + b

and

x1 = a1 − 1,

xi = a1, 2 ≤ i ≤ k
2 − 1,

xi = a1 + 2, k
2 ≤ i ≤ k − 1,

xk = (k − 1)(a1 + 1) + b,

one of which is monochromatic unless m ≤ (k − 1)(a1 + 1) + b − 1.

Since a1 + 1 ≤ k + b− 3 and k ≥ 3, this implies that

m ≤ k2 + (b− 4)k + 2 ≤ k2 + (b− 2)k − 4.

If ai �= k+b−2, we may also assume that χ(ai−1) = 0, χ(ai) = 1,

and χ([ai+1, k+ b− 1]) = 0. The following solutions ({xi} and {yi})
both satisfy E(b):

xi = ai − 1, 1 ≤ i ≤ k
2 , yi = ai, 1 ≤ i ≤ k − 1,

xi = ai + 1, k
2 + 1 ≤ i ≤ k − 2, yk = (k − 1)ai + b;

xk−1 = ai + 2,

xk = (k − 1)ai + b,

one of which is monochromatic unless m ≤ (k − 1)ai + b − 1. Since

ai ≤ k + b− 3, this gives m ≤ k2 + (b− 4)k + 2 ≤ k2 + (b− 2)k − 4.

This completes the proof of Claim 4. �
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To complete the proof of the theorem, it suffices to show that

the hypothesis of one of the above claims is true. For the cases when

|A(χ)| ∈ {0, 1, 2, 4, 6, . . . }, we see that the hypothesis of either Claim

1 or Claim 2 holds. If |A(χ)| ≥ 3 and |A(χ)| and k are both odd, then

the hypothesis of Claim 3 holds. Finally, if |A(χ)| ≥ 3 with |A(χ)|
odd and k even, then the hypothesis of Claim 4 holds (according to

our earlier assumption, since k is even, b must be even).

We can now conclude that for any valid 2-coloring of [1,m] we

have m ≤ k2+(b−1)(k+1)−1. This inequality, along with the lower

bound for r(E(b)) given earlier, yields r(E(b)) = k2+(b−1)(k+1). �

A result analogous to, and as complete as, Theorem 9.14, but

with b negative and/or more than two colors, has yet to be found.

However, some progress has been made. In particular, for k = 3,

we have the following result, the proof of which we omit (note that

Exercise 9.8 provides a lower bound for part (i) of the theorem).

Theorem 9.15. For b ≥ 1, the following hold:

(i) r(x+ y − z = b) = b−
⌈
b

5

⌉
+ 1;

(ii) r(x+ y − z = −b; 3) = 13b+ 14;

(iii) r(x+ y − z = b; 3) = b−
⌈
b− 1

14

⌉
.

We noted before that any regularity result concerning nonhomo-

geneous equations will most likely be dependent upon the constant b

in
∑k

i=1 cixi = b.

For the remainder of this section, we use the following notation.

Notation. Let k ≥ 2 and let c1, c2, . . . , ck be nonzero integers. For

any integer �, let E�(c1, c2, . . . , ck) represent the equation

k∑
i=1

cixi = �.

Let Ēb = Eb(1, 1, . . . , 1,−1). From Proposition 9.13, we have that Ēb
is not regular if k = 2 (for b �= 0). Theorem 9.14 specifies those values
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of k and b (with the restriction that b < 0) for which Ēb is 2-regular

and those values for which Ēb is not 2-regular. Ultimately, we would

like to determine those values of c1, c2, . . . , ck and b (if any) for which

Eb(c1, c2, . . . , ck) is regular (i.e., r-regular for all r ≥ 1).

One reason we see more regularity with Theorem 9.14 than Propo-

sition 9.13 is that the more variables the equation has, the easier it

is to find solutions in Z+. At the same time, the more colors we use

to color Z+, the harder it is to be guaranteed a monochromatic so-

lution. Fortunately, we have the following result, which completely

determines which equations are regular.

Theorem 9.16. Let E(b) represent Eb(c1, c2, . . . , ck) and let s =∑k
i=1 ci. Then E(b) is regular if and only if one of the following

two conditions holds:

(i) b
s ∈ Z+;

(ii) b
s is a negative integer and E(0) is regular.

Proof. Let r ≥ 1. We first prove the ‘if’ portion of the theorem. If

(i) holds, then xi =
b
s , 1 ≤ i ≤ k, is a monochromatic solution under

any r-coloring of Z+.

If (ii) holds, let μ be any r-coloring of Z+. We may assume a

solution to E(0) in
∣∣ b
s

∣∣ + Z+; otherwise, by defining the r-coloring γ

by γ(i) = μ
(
i− b

s

)
, i ∈ Z+, we would have an r-coloring of Z+ that

avoids monochromatic solutions to E(0).
Now, let χ be an arbitrary r-coloring of Z+ and define γ(i) =

χ
(
i− b

s

)
, i ∈ Z+. Let y1, y2, . . . , yk be a monochromatic solution,

under χ, to E(0) with yi >
∣∣ b
s

∣∣ for i = 1, 2, . . . , k. Under γ, we have

that yi +
b
s , i = 1, 2, . . . , k, are all the same color.

Since
k∑

i=1

ciyi = 0,

we see that
k∑

i=1

ci

(
yi +

b

s

)
= b.
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Since χ is an arbitrary coloring, we can consider γ to be an arbitrary

coloring of Z+. Hence, every arbitrary r-coloring of Z+ admits a

monochromatic solution to E(b). This completes the proof of the ‘if’

portion of the theorem.

For the ‘only if’ part of the theorem, we will prove its contrapos-

itive. We first assume that s � b.

Note that we may rewrite E(b) as

(9.10)

k∑
i=2

ci(xi − x1) = b− sx1.

We consider two cases.

Case 1. s = 0. Let p be a prime such that p > b. By (9.10), we have

(9.11)
k∑

i=2

ci(xi − x1) = b.

Define χ : Z+ → {0, 1, . . . , p−1} by χ(i) = ı̄, where i ≡ ı̄ (mod p). For

any monochromatic solution to (9.11) we have, by the definition of

χ, that p divides the left-hand side of (9.11). Hence, p must divide b.

However, this contradicts our choice of p. Thus, E(b) is not p-regular.
Case 2. s �= 0. We assume, without loss of generality, that s > 0.

Define γ : Z+ → {0, 1, . . . , s − 1} by γ(i) = ı̄, where i ≡ ı̄ (mod s).

Assume, for a contradiction, that y1, y2, . . . , yk is a monochromatic

solution to (9.10). By the definition of γ, we find that s divides∑k
i=2 ci(yi − y1). Hence, we must have

b− sy1 ≡ 0 (mod s),

i.e., b ≡ 0 (mod s). Thus, s divides b, a contradiction. Hence, E(b) is
not |s|-regular.

Since we have shown that E(b) is not p-regular in Case 1 and not

|s|-regular in Case 2, we have shown that if s � b, then E(b) is not

regular.

To finish proving the contrapositive, assume that b
s is a negative

integer, but that E(0) is not regular. Then there exist a finite t and

a t-coloring χ of Z+ such that, under χ, there is no monochromatic

solution to E(0). Assume, for a contradiction, that E(b) is regular.
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Define the t-coloring γ by γ(i) = χ
(
i− b

s

)
. Since b

s is a negative

integer, γ is well-defined. By assumption, there exists, under γ, a

monochromatic solution to E(b), say y1, y2, . . . , yk. By the definition

of γ, this means that y1 − b
s , y2 −

b
s , . . . , yk − b

s are monochromatic

under χ. Since

k∑
i=1

ci

(
yi −

b

s

)
=

k∑
i=1

ciyi −
b

s

k∑
i=1

ci

= b− b

= 0,

we have that y1 − b
s , y2 −

b
s , . . . , yk −

b
s is a monochromatic (under χ)

solution to E(0), a contradiction. This concludes the proof. �

9.2. Some Rado Numbers

In this section we present several values and bounds for some 2-color

Rado numbers associated with various linear equations in three vari-

ables. Theorems 9.17, 9.18, and 9.21 deal with equations that, by

Rado’s single equation theorem and Theorem 9.7, are regular, while

the 2-color numbers in Theorems 9.22–9.25 are guaranteed to exist

by Theorem 9.2.

Theorem 9.17. Let a, b ≥ 1 with gcd(a, b) = 1. Then

r(ax+ by = bz) =

⎧⎪⎪⎨⎪⎪⎩
a2 + 3a+ 1 if b = 1,

b2 if a < b,

a2 + a+ 1 if 2 ≤ b < a.

Proof. We separate the proof into the three obvious cases.

Case 1. b = 1. Let n = a2 + 3a + 1. Color [a + 1, a(a + 2)] one

color and its complement in [1, n− 1] the other color. We leave it to

the reader in Exercise 9.9 to verify that this is a valid 2-coloring of

[1, n− 1], which implies that r(ax+ y = z) ≥ n.

For the upper bound, assume, for a contradiction, that there ex-

ists χ : [1, n] → {0, 1} that is valid. We may assume that χ(1) = 0,

and hence χ(a+ 1) = 1, which in turn implies that χ
(
(a+ 1)2

)
= 0.

Since (x, y, z) =
(
a+ 2, 1, (a+ 1)2

)
satisfies the equation, we must
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have χ(a+2) = 1. So that
(
a+ 2, a+ 1, a2 + 3a+ 1

)
is not monochro-

matic we must have χ
(
a2 + 3a+ 1

)
= 0. This gives us the monochro-

matic solution
(
1, (a+ 1)2, a2 + 3a+ 1

)
, a contradiction.

Case 2. a < b. Let n = b2. We leave it to the reader in Exercise 9.9

to verify that a valid 2-coloring of [1, n − 1] is given by coloring the

set b[1, b− 1] one color and its complement the other color.

For the upper bound, assume, for a contradiction, that there

exists χ : [1, n] → {0, 1} that is valid.

Assume, without loss of generality, that χ(b) = 0. We now show

that χ(ib) = 0 for 1 ≤ i ≤ b by considering the following solutions

(which require a < b) for 1 ≤ i ≤ b− 1:

s1(i) = (ib, i(b− a), ib),

s2(i) = (b, ib, ib+ a),

s3(i) = ((i+ 1)b, i(b− a), ib+ a).

Since none of these solutions is monochromatic (by assumption),

we have, for i = 1, 2, . . . , b − 1, in order, the following sequence of

implications:

s1(i) not monochromatic implies χ(i(b− a)) = 1,

s2(i) not monochromatic implies χ(ib+ a) = 1,

s3(i) not monochromatic implies χ((i+ 1)b) = 0.

Since b, 2b, . . . , b2 are all of color 0 and a < b, we have a monochro-

matic solution given by (b2, b(b− a), b2), a contradiction.

Case 3. 2 ≤ b < a. Let n = a2 + a + 1. The coloring defined by

coloring b[1, a] one color and its complement the other color is a valid

2-coloring of [1, n − 1] (the details are left to the reader in Exercise

9.9).

For the upper bound, assume, for a contradiction, that there

exists χ : [1, n] → {0, 1} that is valid. Clearly, there exists a maximal

k such that, for all i, 1 ≤ i ≤ k, we have χ(ib) = 0. We may rule out

k > a, since, in this case,
(
b2, b, (a+ 1)b

)
would be a monochromatic

solution.
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We now show that k ≥ a − 1. Assume, for a contradiction, that

χ(kb) = 0 and χ((k + 1)b) = 1 with k < a − 1. To avoid the triple

((k + 1)b, 1, 1 + (k + 1)a) being monochromatic, either χ(1) = 0 or

χ(1 + (k + 1)a) = 0.

First, consider χ(1) = 0. Let i ∈ {1, 2, . . . , k}. We must have

χ(1 + ia) = 1 (so that (ib, 1, 1 + ia) is not monochromatic). Next,

so that ((k + 1)b, 1 + ia, 1 + (k + i + 1)a) is not monochromatic, we

have χ(1 + (k + i + 1)a) = 0, provided k + i ≤ a. This implies

that χ((k + i + 1)b) = 1, so that ((k + i + 1)b, 1, 1 + (k + i + 1)a)

is not monochromatic. Now, provided k + i ≤ a − 1, we have that

χ((k + 2)b) = 1 implies χ(1 + (k + i + 2)a) = 0, so that the solution

((k+2)b, 1+ia, 1+(k+i+2)a) is not monochromatic. Hence, we have

χ(1+(k+2)a) = χ(1+(k+3)a) = 0 (where 1+(k+3)a ≤ 1+(a+1)a

since k < a−1). Thus, (b, 1+(k+2)a, 1+(k+3)a) is a monochromatic

solution, a contradiction. So, if χ(1) = 0, then k ≥ a− 1.

Next, consider χ(1 + (k + 1)a) = 0. We may assume χ(1) = 1.

So that the solution (ib, 1 + (k − i + 1)a, 1 + (k + 1)a) is not mono-

chromatic, we have χ(1 + ia) = 1 for 1 ≤ i ≤ k. Now, because

((k+1)b, 1+ia, 1+(k+i+1)a) cannot be monochromatic for i = 0, 1,

we have χ(1 + (k + 1)a) = χ(1 + (k + 2)a) = 0. This gives the

monochromatic solution (b, 1+(k+1)a, 1+(k+2)a), a contradiction.

Hence, if χ(1 + (k + 1)a) = 0, then k ≥ a− 1.

Since k ≥ a − 1, from the above two paragraphs we have that

χ(1 + ia) = 1 and χ(ib) = 0 for 1 ≤ i ≤ a− 1. Because gcd(a, b) = 1,

it follows that {ib (mod a): 1 ≤ i ≤ a − 1} is a complete residue

system modulo a. Thus, there exists x ∈ [1, a − 1] such that xb ≡ 1

(mod a). Since 1 < xb < ab, we have xb ∈ {1 + ia : 1 ≤ i ≤ a − 1}.
This is a contradiction, since χ(1+ ia) = 1 for all 1 ≤ i ≤ a−1, while

χ(xb) = 0. �

Note that as an immediate consequence of Theorem 9.17, we also

know the value of r(ax + by = bz) when gcd(a, b) �= 1. To see this,

let gcd(a, b) = g, divide both sides of ax + by = bz by g to obtain
a
gx + b

gy = b
g z with (ag ,

b
g ) = 1, and then apply Theorem 9.17. This

same analysis may also be applied to the next theorem.
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Theorem 9.18. Let a, b ≥ 1 with gcd(a, b) = 1. Define n(a, b) to

be the least positive integer such that every 2-coloring of [1, n(a, b)]

admits a monochromatic solution to ax+ by = (a+ b)z, where x, y, z

are distinct. Then n(a, b) ≤ 4(a+ b) + 1.

Proof. By means of a computer search (or by hand), it can be shown

that n(1, 2) = 13, n(1, 3) = 11, n(1, 4) = 19, n(1, 5) = 25, n(1, 6) =

29, n(2, 3) = 21, n(2, 5) = 29, and n(3, 4) = 27. Furthermore,

n(1, 1) = w(3; 2) = 9. These values show that n(a, b) ≤ 4(a + b) + 1

for a + b < 8. Hence, in the remainder of the proof we assume that

a+ b ≥ 8. Let E represent the equation ax+ by = (a+ b)z.

Assume, for a contradiction, that χ : [1, 4(a+b)+1] → {red, blue}
is a coloring that admits no monochromatic solution to E .

Consider

S = {1 + xa+ yb : 0 ≤ x, y ≤ 4} ⊆ [1, 4(a+ b) + 1].

We first show that the elements of S are distinct. Assume, for a con-

tradiction, that there exist i1, i2, j1, j2 ∈ [0, 4] with (i1, j1) �= (i2, j2)

such that 1 + i1a+ j1b = 1 + i2a+ j2b. Since (i1 − i2)a = (j2 − j1)b

and gcd(a, b) = 1, we have i1 − i2 = kb and j2 − j1 = ka for some

k ≥ 1. The restriction on S implies that i1 − i2 and j2 − j1 cannot

both equal 4, and thus i1 − i2 + j2 − j1 ≤ 7, a contradiction since

i1 − i2 + j2 − j1 ≥ a+ b ≥ 8.

Rewriting E as

a(x− z) = b(z − y),

we see that (x′, y′, z′) is a solution if and only if it has the form

(d + kb, d − ka, d) for some d, k ≥ 1 (provided d + kb ≤ 4(a + b) + 1

and 1 ≤ d− ka ). Hence, for any k ∈ Z+, if

1 ≤ 1 + x′a+ y′b− ka < 1 + x′a+ y′b+ kb ≤ 4(a+ b) + 1,

then

(1 + x′a+ (y′ + k)b, 1 + (x′ − k)a+ y′b, 1 + x′a+ y′ + b)

cannot be monochromatic (or else we would have a contradiction).

For ease of notation, for any pair of integers s and t, we denote

by λ(s,t) the integer 1+sa+ tb. From the previous paragraph we have

the following fact.
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Fact 1. For 0 ≤ j ≤ i ≤ k, k �= 0, the integers λ(i−k,j), λ(i,j), and

λ(i,j+k) cannot all have the same color.

We call the three integers λ(i−k,j), λ(i,j), and λ(i,j+k) an isosce-

les triple since, associating λ(s,t) with the point (s, t), the associated

points form an isosceles (right) triangle in the plane:

�
�

�

•

•

•

i− k
|

i
|

j−

j + k−

Applying Fact 1, we have the following two facts.

Fact 2. λ(0,0), λ(2,2), and λ(4,4) cannot all have the same color.

Fact 3. For i ∈ {0, 1, 2}, λ(i,i), λ(i+1,i+1), and λ(i+2,i+2) cannot all

have the same color.

Fact 2 holds because otherwise λ(0,0), λ(2,2), and λ(4,4) are all the

same color, say red. By Fact 1, this implies that λ(2,0), λ(4,0) and

λ(4,2) are all blue, contradicting Fact 1. To prove Fact 3, assume it is

false. Then for some i ∈ {0, 1, 2}, the integers λ(i,i), λ(i+1,i+1), and

λ(i+2,i+2) all have the same color, say red. By Fact 1, this implies

that λ(i+1,i), λ(i+2,i), and λ(i+2,i+1) must all be blue, contradicting

Fact 1.

Consider all possible 2-colorings of the set

T = {λ(x,x) : 0 ≤ x ≤ 4} ⊆ S.

By the pigeonhole principle, one color, say red, must occur at least

three times. From Facts 1, 2, and 3 the only possible colorings of(
χ(λ(0,0)), χ(λ(1,1)), χ(λ(2,2)), χ(λ(3,3)), χ(λ(4,4))

)
(using r for red and b for blue) belong to

{(r, r, b, r, b), (b, r, r, b, r), (r, b, b, r, r), (r, r, b, r, r)} .
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We illustrate these four colorings graphically as follows, associat-

ing λ(s,t) with the point (s, t), and using the standard (x, y)-axes.

b

r

b

r

r

r

b

r

r

b

r

r

b

b

r

r

r

b

r

r

(1) (2) (3) (4)

We finish the proof graphically by determining, for each of the

colorings, the colors of most of the remaining elements of T . The

steps consist solely of avoiding monochromatic isosceles triples (see

Fact 1). By obtaining the colors of enough of the elements, we will

arrive at a contradiction in each case.

Coloring 1.

b

r

b

r

r

−→

b

r

b r

r b

r b b

−→

b

r

b r

r b

r b r b

−→

b

r

b r

r b

r b r b b

−→

b

r r

b x r

r b r

r b r b b

Coloring 2.

r

b

r

r

b

−→

r

b

r b

r b b

b r

−→

r

b r

r b

r b r b

b r

−→

r

b r

r b

r b r b

b b r

−→

r

b r

r b

r b r b

b x b r r

Coloring 3.

r

r

b

b

r

−→

r

r b

b

b r

r b b

−→

r

r b

b

b r r

r r b b

−→

r

r b

b

b r r

r r b b b

−→

r

r b

b x

b r r r

r r b b b
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Coloring 4.

r

r

b

r

r

−→

r

r

b

r x

r b b

In each of the four colorings, regardless of the color assignment

of x, we have a monochromatic isosceles triple, a contradiction. �

Before moving on to the next equation, we mention a couple of

examples that are interesting consequences of Theorem 9.18 and its

proof.

Example 9.19. In this book we focus on coloring integers; however,

we may also color the set of real numbers by using r-colorings with

domain R and range {1, 2, . . . , r}. We can, of course, define an r-

coloring on any set, for example the real plane R2. Using this domain,

as an immediate consequence of the proof of Theorem 9.18, we have

the following, rather formidable sounding, result: any 2-coloring of

R2 must admit an isosceles right triangle with vertices all of the same

color. (In fact, any 2-coloring of {(x, y) : x, y ∈ Z, 0 ≤ y ≤ x ≤ 4}
admits such a triangle, but this may not seem as grand a statement.)

Example 9.20. (A Tic-Tac-Toe Type Triangle) A 2-player game

is played on a board B, where B = {(x, y) : 0 ≤ y ≤ x ≤ 4}.
Graphically, B looks like

.

This game is played on the above board, with one player being X

and one player being O. The object is to be the first player to create

an isosceles right triangle with the same orientation as the board (i.e.,

the right angle is to the bottom right) with all vertices marked by the

player’s letter (X or O). As we have seen from the proof of Theorem
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9.18, unlike the standard Tic-Tac-Toe game, it is impossible not to

have a winner.

The next theorem refines Theorem 9.18 for the cases when a = 1

and a ≤ b.

Theorem 9.21. Let b ≥ 1 and define n(b) to be the least positive

integer such that for any 2-coloring of [1, n(b)], there is a monochro-

matic solution to x+ by = (1 + b)z with x, y, z distinct. Then

n(b) = 4b+ 5 if 4 � b

and

n(b) ≥ 4b+ 3 if 4 | b.

Proof. First note that if 4 � b, then n(b) ≤ 4b+ 5 is immediate from

Theorem 9.18.

To establish the desired lower bounds, we consider three cases.

For each case we give a valid 2-coloring of the appropriate interval,

and leave it to the reader, in Exercise 9.11, to verify that these col-

orings are indeed valid.

Case 1. 4 | b. Let b = 4k. We want to find a valid 2-coloring of

[1, 4(1+b)−2] = [1, 16k+2]. Let S = [4k+1, 8k+1]∪ [8k+3, 12k+3].

Define the coloring α on [1, 4b+ 2] as follows:

α(i) =

⎧⎪⎪⎨⎪⎪⎩
0 if i ∈ S and i is even,

0 if i �∈ S and i is odd,

1 otherwise.

Case 2. b is odd. Let T = [1, 2b + 2]. Define the coloring β on

[1, 4(1 + b)] by

β(i) =

⎧⎪⎪⎨⎪⎪⎩
0 if i ∈ T and i is even,

0 if i �∈ T and i is odd,

1 otherwise.

Case 3. b ≡ 2 (mod 4). Define γ on [1, 4(1 + b)] as

γ(i) =

{
0 if i ≡ 1 (mod 4) or i ≡ 2 (mod 4),

1 if i ≡ 3 (mod 4) or i ≡ 4 (mod 4). �
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By Theorems 9.5 and 9.7, the Rado numbers given in the last

three theorems are guaranteed to exist since the corresponding equa-

tions each satisfy the subset condition of Theorem 9.5. We have seen

in Theorems 9.9 and 9.14 that some equations that do not satisfy

the requirements of Theorem 9.16 (and hence are not regular) are, in

fact, r-regular for some r ≥ 2. In the following three theorems, we

consider some homogeneous equations that do not satisfy the subset

condition of Theorem 9.5 (which is needed for regularity) but satisfy

Theorem 9.2’s stipulations, and hence are 2-regular.

Theorem 9.22. For a ≥ 1, we have r(ax+ ay = z) = a(4a2 + 1).

Proof. Let E represent the equation ax + ay = z. To show that

r(ax+ay = z) ≥ a(4a2+1), we give a 2-coloring of [1, a(4a2+1)− 1]

with no monochromatic solution to E . Color [2a, 4a2−1] one color and

its complement a different color. It is left to the reader in Exercise 9.12

to show that no monochromatic solution exists under this coloring.

We complete the proof by showing that any given 2-coloring of

[1, a(4a2+1)] must admit a monochromatic solution to E . Assume, for

a contradiction, that χ : [1, a(4a2+1)] → {0, 1} admits no monochro-

matic solution.

We may assume, without loss of generality, that χ(1) = 0. There-

fore, χ(2a) = 1. Define k ≥ 2 to be the maximal integer so that

χ([1, k − 1]) = 0. Note that we must have k ≤ 2a, and that χ(k) = 1.

This implies that χ(2ak) = 0, since (x, y, z) = (k, k, 2ak) is a solution.

Since χ(1) = χ(k− 1) = 0, we have χ(ak) = 1 (to avoid (1, k− 1, ak)

being of color 0). Since χ(ak) = 1, we have χ(2a2k) = 0. This, in

turn, gives χ(2ak − (k − 1)) = 1, so that (k − 1, 2ak − (k − 1), 2a2k)

is not of color 0. To avoid (2ak− (k− 1), k, a(2ak+1)) being of color

1, we have χ(a(2ak + 1)) = 0. Therefore, (1, 2ak, a(2ak + 1)) is a

monochromatic solution, a contradiction. �

Theorem 9.23. Let a ≥ 1. Then r(ax+ ay = 2z) = a(a2+1)
2 .

Proof. Let E represent the equation ax + ay = 2z. Let n(a, b) =

r(ax+ ay = bz) and let n = n(a, 2). From Theorem 9.22, if a is even

we have n = a(a2+1)
2 , since n = n

(
a
2 , 1
)
. Furthermore, for a = 1 we
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have the trivial monochromatic solution x = y = z = 1. Hence, we

assume that a ≥ 3 is odd.

To show that n ≥ a(a2+1)
2 , we will give a 2-coloring of the inter-

val I =
[
1, a(a2+1)

2 − 1
]
with no monochromatic solution to E . Color

[a, a2 − 1] red and its complement in I blue. It is left to the reader in

Exercise 9.14 to show that under this coloring there is no monochro-

matic solution to E .
To finish the proof we show that n ≤ a(a2+1)

2 . Assume, for a

contradiction, that there exists a 2-coloring χ : [1, a(a2+1)
2 ] → {0, 1}

that admits no monochromatic solution to E . Then neither (1, 1, a)

nor (a, a, a2) is monochromatic; therefore 1 and a2 must have the

same color. We may assume that χ(1) = χ(a2) = 0 and χ(a) = 1.

Consider the solutions

s1(j) =
(
1, a2 − (a− 1)j, a

2 (a
2 − (a− 1)j + 1)

)
, and

s2(j) =
(
1, a2 − (a− 1)(j + 1), a2 (a

2 − (a− 1)j + 1)
)

for 0 ≤ j ≤ a− 1.

Denote si(j) by
(
1, s

(2)
i (j), s

(3)
i (j)

)
for i = 1, 2 and 0 ≤ j ≤ a−1.

Since none of these solutions si(j) may be monochromatic, we have,

for j = 0, 1, . . . , a−2, in order, the following sequence of implications:

s1(j) and s2(j) not monochromatic implies χ
(
s
(3)
1 (j)

)
= 1,

χ
(
s
(3)
1 (j)

)
= 1 implies χ

(
s
(2)
2 (j)

)
= 0,

χ
(
s
(2)
2 (j)

)
= 0 implies χ

(
s
(3)
1 (j + 1)

)
= 1.

Since χ
(
s
(2)
2 (a− 1)

)
= χ

(
a2 − (a− 1)2

)
= 0, we have that(

1, a2−(a− 1)2, a2
)
is a monochromatic solution, a contradiction. �

Remark 9.24. When a = 1 in Theorem 9.23 we have the equation

x + y = 2z, which we have noted corresponds to 3-term arithmetic

progressions. Theorem 9.23 gives us an associated Rado number of 1

instead of 9 = w(3; 2) because we do not require x �= y in Theorem

9.23, while x �= y is necessary to have a 3-term arithmetic progression.
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The above two theorems are implied by the the following, broader,

result, which gives the value of r(ax + ay = bz) for all a and b. We

present this without proof.

Theorem 9.25. Assume gcd(a, b) = 1 and let r = r(ax+ ay = bz).

Then

r =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a(4a2 + 1) if b = 1,

a(a2+1)
2 if b = 2,

9 if b = 3 and a = 1,

10 if b = 3 and a = 2.

For b = 3 and a ≥ 4,

r =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a(4a2+2a+3)
9 if a ≡ 1 (mod 9),

a(4a2+a+9)
9 if a ≡ 2 (mod 9),

a(4a2+2a+9)
9 if a ≡ 4 (mod 9),

a(4a2+4a+6)
9 if a ≡ 5 (mod 9),

a(4a2+5a+3)
9 if a ≡ 7 (mod 9),

a(4a2+a+6)
9 if a ≡ 8 (mod 9).

For b ≥ 4,

r =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

r =
(
b+1
2

)
if 1 ≤ a ≤ b

4 ,

r = � b
2� if b

4 < a < b
2 ,

r = ab if b
2 < a < b,

r = �a2

b �a if b < a.

Recently, there has been quite a bit of progress in the determina-

tion of Rado numbers for an arbitrary number of variables. We give

some highlights below and refer the reader to the Reference section

of this chapter for more information.
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Theorem 9.26. Let a1, a2, . . . , ak be positive integers. Define m =

min({a1, a2, . . . , ak}) and s =
∑k

i=1 ai. Then, for any integer c ≥
1− s,

r

(
k∑

i=1

aixi = xk+1 − c

)
= ms2 + s−m+ c(ms+m+ 1).

Theorem 9.27. Let a and k be positive integers with a ≥ 2 and

k ≥
{

2a if 3 | a,
2a+ 1 otherwise.

Then

r

(
k∑

i=1

xi = axk+1

)
=

⌈
k

a

⌈
k

a

⌉⌉
.

It would be nice to have the 2-color Rado numbers for all possible

linear equations. As we can infer from the two theorems above, the

next equation to consider may be

k∑
i=1

cixi = ck+1xk+1, ck+1 �= 1;

an even more ambitious project would be to consider

k−1∑
i=1

cixi = ckxk + xk+1.

9.3. Generalizations of the Single Equation
Theorem

We present two main results in this section, one without proof, both

of which generalize Rado’s single equation theorem (Theorem 9.5).

The way that the first result generalizes Theorem 9.5 is similar to

the way in which the Ramsey numbers R(k1, k2, . . . , kr) generalize

Rr(k). Recall, for example (taking r = 2), that R2(k) = R(k, k)

is the least positive integer such that every 2-coloring of the edges

of the complete graph on R(k, k) vertices admits a monochromatic

complete graph on k vertices. Meanwhile, the more general Ramsey

number R(k, �) denotes the least positive integer such that for every

red-blue coloring of the edges on R(k, �) vertices, there is either a red
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complete graph on k vertices or a blue complete graph on � vertices.

The numbers R(k, k) are called diagonal Ramsey numbers, and when

k �= l, R(k, �) is called an off-diagonal Ramsey number.

Now consider Rado’s single equation theorem, which guarantees a

monochromatic solution to certain equations under any finite coloring

of Z+. This has a flavor similar to that of the diagonal Ramsey

numbers, and we call the analogous Rado numbers diagonal Rado

numbers. Now, if we have two different homogeneous equations, is

it true that under any red-blue coloring of Z+ there must be either

a red solution to the first equation or a blue solution to the second?

What we are considering here are off-diagonal Rado numbers (if they

exist). The next theorem proves their existence and is easily derived

from the proof of Theorem 9.5.

Theorem 9.28. Let r ≥ 1. For 1 ≤ j ≤ r, let nj ≥ 2 and let

Ej represent the equation
∑nj

i=1 c
(j)
i xi = 0. If each Ej, 1 ≤ j ≤ r,

is r-regular, then there is a least positive integer n so that for every

r-coloring of [1, n], there exists t ∈ {1, 2, . . . , r} such that Et has a

solution of color t.

If a set S of r homogeneous equations satisfies the conditions of

Theorem 9.28, we will say that S is r-regular.

Before delving into the proof of this theorem, we look at an ex-

ample to help solidify the meaning of Theorem 9.28.

Example 9.29. Consider the three equations given below:

−x1 + 2x2 + x3 = 0,

3x1 − x2 + x3 + 7x4 = 0,

2x1 + 4x2 − 3x3 + x4 + 6x5 = 0.

Each of these equations is regular by Rado’s theorem, since each has a

nonempty subset of coefficients that sums to zero: (using the notation

of Theorem 9.28) c
(1)
1 +c

(1)
3 = 0, c

(2)
2 +c

(2)
3 = 0, and c

(3)
1 +c

(3)
3 +c

(3)
4 = 0.

Applying Theorem 9.28, we are guaranteed that any 3-coloring, say

red-blue-green, of Z+ must contain one of the following:

a red solution to −x1 + 2x2 + x3 = 0;
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a blue solution to 3x1 − x2 + x3 + 7x4 = 0;

a green solution to 2x1 + 4x2 − 3x3 + x4 + 6x5 = 0.

We now present a sketch of the proof of Theorem 9.28. The proof

is very similar to that of Theorem 9.5 so we leave some justification

to the reader as Exercise 9.15.

Proof of Theorem 9.28 (sketch). Let S = {E1, E2, . . . , Er}. The

proof is by induction on r. The case r = 1 holds by Theorem 9.5.

Let n = n(S; r − 1) be the least positive integer such that for any

(r − 1)-coloring of [1, n] there is a solution to Ei of color i for some

i ∈ {1, 2, . . . , r − 1}.
Assume that for each j ∈ {1, 2, . . . , r}, we have c

(j)
1 + c

(j)
2 + · · ·+

c
(j)
mj = 0 with mj < nj maximal, and that

sj = c
(j)
mj+1 + c

(j)
mj+2 + · · ·+ c(j)nj

is a nonempty, nonzero sum (this needs to be justified).

Let bj =
∑nj

i=1 |c
(j)
i |. Define b =

∏r
j=1 bj and s =

∏r
j=1 |sj |.

We claim that n(S; r) ≤ brw(n + 1; r). We show that any r-coloring

of [1, brw(n + 1; r)] must admit a solution to Ei of color i, for some

i ∈ {1, 2, . . . , r}.
Let χ : [1, brw(n+1; r)] → {1, 2, . . . , r}. Let x2 = x3 = · · · = xmj

and xmj+1 = xmj+2 = · · · = xnj
for each j, 1 ≤ j ≤ r. Hence, we

can write Ej , for 1 ≤ j ≤ r, under these conditions, as c
(j)
1 (x1−x2)+

sjxmj+1 = 0.

By Theorem 4.9, χ admits an monochromatic (n+1)-term arith-

metic progression with gap a multiple of s. Let {a, a+ds, . . . , a+nds}
be one such arithmetic progression of color, say, t. If there ex-

ists j ∈ s
|st| [1, n] such that χ

(
jdc

(t)
1

)
= t, then we are done (this

needs to be justified). If, on the other hand, for all j ∈ s
|st| [1, n] we

have χ
(
jdc

(t)
1

)
�= t, then dc

(t)
1

s
|st| [1, n] is (r − 1)-colored (verify that

dc
(t)
1

s
|st|n ≤ brw(n+1; r)). Let S′ = S−Et. Since we have an (r−1)-

coloring of s
st
[1, n] using the colors 1, 2, . . . , t− 1, t+1, t+2, . . . , r, by
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the inductive assumption there exists c ∈ [1, r]−{t} such that Ec has
a solution of color c. This completes the proof. �

Just as Rado’s single equation theorem was strengthened to show

the existence of monochromatic solutions consisting of distinct inte-

gers, Theorem 9.28 can be strengthened in the same way. This is

given by the next theorem, which we state without proof.

Theorem 9.30. Let r ≥ 1. Let S = {E1, E2, . . . , Er}, where the Ei’s
are defined as in Theorem 9.28. For every r-coloring of Z+, there

exist j, 1 ≤ j ≤ r, and distinct bi, 1 ≤ i ≤ nj, of color j, that satisfy

Ej, if and only if S is r-regular and for all j, 1 ≤ j ≤ r, there exist

distinct y
(j)
i ∈ Z, 1 ≤ i ≤ nj, that satisfy Ej.

As an interesting application of Theorem 9.30, we look at the

following example.

Example 9.31. Consider the set of equations {x+y = z, x+y = 2z}.
By Theorem 9.30, there exists a minimal integer n such that any red-

blue coloring of [1, n] must contain either a red solution to x+ y = z

(of distinct integers) or a blue solution to x + y = 2z (of distinct

integers). In other words, there must exist either a red strict Schur

triple or a blue 3-term arithmetic progression. In fact, n = 10. To

see that n ≥ 10, color 3, 5, 6, 7 red, and color 1, 2, 4, 8, 9 blue. The

fact that every 2-coloring of [1, 10] admits either a red strict Schur

triple or a blue 3-term arithmetic progression is left to the reader as

Exercise 9.6.

We now state, without proof, the full version of Rado’s theorem,

for which Rado’s single equation theorem (Theorem 9.5) is a special

case. This is a very powerful theorem, as it describes precisely when

we are guaranteed monochromatic solutions to a homogeneous system

of linear equations. In order to state Rado’s full theorem clearly, we

make the following definitions, the first being an obvious extension of

Definition 1.23.

Definition 9.32. Let S be a system of equations. We say that S is

r-regular if, for r ≥ 1, for every r-coloring of Z+ there is a monochro-

matic solution to S. If S is r-regular for all r ≥ 1, we say that S is

regular.
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Definition 9.33. Let C = (�c1 �c2 . . . �cn) be a k × n matrix, where

�ci ∈ Zk for 1 ≤ i ≤ n. We say that C satisfies the columns condition

if we can order the columns �ci in such a way that there exist indices

i0 = 1 < i1 < i2 < · · · < it = n such that the following two conditions

hold for �sj =
∑ij

ij−1+1 �ci (2 ≤ j ≤ t):

(i) �s1 = �0.

(ii) �sj+1 can be written as a linear combination of �c1,�c2, . . . ,�cij
for 1 ≤ j ≤ t− 1; that is, there exist integers a1, a2, . . . , aij
such that �sj+1 =

∑ij
k=1 ak�ck.

To help clarify Definition 9.33, we look at a couple of examples.

Example 9.34. Consider the following matrix:⎛⎝ 1 0 2 −3 2

0 −1 2 −2 1

4 2 −5 1 6

⎞⎠ .

To see that this matrix satisfies the columns condition, rearrange the

columns to obtain ⎛⎝ 1 2 −3 0 2

0 2 −2 −1 1

4 −5 1 2 6

⎞⎠ .

Using the notation of Definition 9.33, take t = 2, i1 = 3, and i2 = 5.

Then �s1 = �0 ∈ Z3 and �s2 = (2 0 8)t = 2�c1 (where t denotes the

transpose).

Example 9.35. The following matrix does not satisfy the columns

condition: ⎛⎜⎜⎝
1 3 0 −3 1

−2 −1 2 7 0

5 3 −5 2 −3

1 −2 3 4 −5

⎞⎟⎟⎠ .

By inspection (check!) we see that there does not exist a set of

columns that sums to the zero vector.
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The key to comprehending Rado’s full theorem is having a clear

understanding of the columns condition. We now state Rado’s full

theorem. We do not include its proof, as it is beyond the scope of

this book.

Theorem 9.36 (Rado’s Full Theorem). Let S be a (finite) system of

linear homogeneous equations. Write S as A�x = �0. Then S is regular

if and only if A satisfies the columns condition. Furthermore, S has

a monochromatic solution of distinct positive integers if and only if

S is regular and there exist distinct (not necessarily monochromatic)

integers that satisfy S.

Rado’s full theorem opens the door to many new Ramsey-type

functions. The next two examples investigate one such function.

Example 9.37. Using Rado’s theorem, we will prove the following:

for r ≥ 1, there exists a positive integer n = n(r) such that under any

r-coloring of [1, n] we must have both a monochromatic Schur triple

and a monochromatic 3-term arithmetic progression, both having the

same color.

To show the existence of such a monochromatic structure, con-

sider the following system in the variables x1, x2, . . . , x6, y:

x1 + x2 = x3, x4 − x5 = y, x5 − x6 = y.

If xi, 1 ≤ i ≤ 6, are all the same color, then x1 + x2 = x3 is a

monochromatic Schur triple and x6, x5, x4 is a monochromatic 3-term

arithmetic progression with gap y.

Writing the above system in matrix form (using the notation of

Definition 9.33 and Theorem 9.36) with �x = (x1 x2 . . . x6 y)t, we get

C�x = �0, where

C =

⎛⎝ 1 1 −1 0 0 0 0

0 0 0 1 −1 0 −1

0 0 0 0 1 −1 −1

⎞⎠ .

Rearranging the columns of C, we have

(�c1 �c2 . . . �c7) =

⎛⎝ 1 −1 0 0 0 1 0

0 0 1 −1 0 0 −1

0 0 0 1 −1 0 −1

⎞⎠ .
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Since
∑5

i=1 �ci =
�0 ∈ Z3, �c6 = �c1, and �c7 = �c4 + 2�c5, we have satisfied

the columns condition. By Rado’s full theorem we know that for

any finite coloring of Z+, there is a monochromatic solution to the

given system of equations. Hence, we have a monochromatic Schur

triple and a monochromatic 3-term arithmetic progression (with gap

y) with both triples having the same color. Note that, in addition, y

has this same color.

Example 9.38. Let n be the least positive integer such that any 2-

coloring of [1, n] must contain a Schur triple and a 3-term arithmetic

progression, both monochromatic of the same color. We show that

n ≤ 16.

We know that s(2) = 5 and w(3) = 9, where s and w are the usual

Schur and van der Waerden functions, respectively. Clearly, in any

red-blue coloring of [1, 16] there exist both a monochromatic Schur

triple and a monochromatic 3-term arithmetic progression. Assume,

for a contradiction, that the colors of every such pair of triples are

different.

Let a, a + d, a + 2d be, say, a red 3-term arithmetic progression.

Since a + a = 2a, a + (a+ d) = 2a + d, and a + (a+ 2d) = 2a + 2d,

we must have 2a, 2a + d, and 2a + 2d all be blue in order to avoid a

red Schur triple. Note that 2a+2d ≤ 16, since w(3) = 9 implies that

a+ 2d ≤ 9 and a ≤ 7.

Hence, we have that 2a, 2a+d, 2a+2d is a blue 3-term arithmetic

progression, a contradiction since we now have a Schur triple and a

3-term arithmetic progression with the same color.

9.4. Solutions to Linear Recurrences

In this section we consider the regularity of the collection of k-term

sequences that satisfy a given linear recurrence relation. Recall (from

Section 3.6) that a linear recurrence relation of order n ∈ Z+ is any

equation of the form xj = c1xj−1 + c2xj−2 + · · ·+ cnxj−n, where the

ci’s are constants and cn �= 0.

As a first example, let us look at the recurrence relation for the

Fibonacci numbers.
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Example 9.39. Denote by Fk the family of all k-term sequences of

positive integers {a1, a2, a3, a4} that satisfy the Fibonacci recurrence

aj = aj−1 + aj−2. Consider k = 4. We would like to know if every

finite coloring of Z+ admits a monochromatic member of F4. That is,

whether or not every finite coloring of Z+ admits a monochromatic

solution to the following system of equations:

x1 + x2 − x3 = 0,

x2 + x3 − x4 = 0.

Employing Rado’s theorem, we ask whether the matrix

A =

(
1 1 −1 0

0 1 1 −1

)
satisfies the columns condition. Noting that the sum of the first, third,

and fourth columns gives �0, while the second column is the difference

between the first and fourth columns, we see that the matrix does

satisfy the columns condition. Hence, by Rado’s theorem the family

F4 is regular.

Interestingly, F5 is not regular; in fact, it is not even 2-regular.

To see this, let α be the 2-coloring of Z+ defined as follows: for each

i ≥ 0, color the interval [2i, 2i+1 − 1] red if i is odd and color it blue

if i is even. We leave it to the reader in Exercise 9.18 to show that α

admits no monochromatic members of F5.

Remark 9.40. If, in Example 9.39, we consider only those members

of F4 such that a1 ≤ a2, then the resulting family is not 2-regular

(the coloring α of Example 9.39 avoids monochromatic members of

this more restricted family).

Example 9.39 prompts the following notation.

Notation. Let r ∈ Z+, and let R be a recurrence relation. Let Rk

be the family of all k-term sequences of positive integers that satisfy

R. If there exists a k ∈ Z+ such that Rk is not r-regular, we let

c(R; r) denote the largest k such that Rk is r-regular; otherwise, we

write c(R; r) = ∞.

If Rf represents the Fibonacci recurrence, then from Example

9.39, we have that c(Rf ; 2) = 4. Here is another example.
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Example 9.41. The recurrenceX : xn = 2xn−1−xn−2 has c(X; r) =

∞ for every r. This follows from van der Waerden’s theorem, because

any arithmetic progression a, a + d, a + 2d, . . . , a + (k − 1)d satisfies

the recurrence X.

Remark 9.42. As we saw in Example 9.39, Rado’s full theorem

can be useful in determining that c(R; r) < k0, for some particular

k0. More generally, since any recurrence can be represented by a

system of linear equations, such a conclusion would be reached if the

matrix obtained from the system of equations corresponding to the

recurrence R does not satisfy the columns condition. On the other

hand, if the system does not satisfy the columns condition, we would

know only that there is some value of r such that the associated family

of k0-term sequences is not r-regular – but we would not know the

least such r.

To the best of our knowledge, Ramsey-type results for linear re-

currences have been studied only for recurrences of order two. Below

we present some known results, the proofs of which are left to the

reader.

Theorem 9.43. For integers i, j, and k, denote by Q(i, j, k) the re-

currence ixn + jxn−1 + kxn−2 = 0. Then the following hold:

(i) c(Q(4,−1,−1); 2) ≥ 4;

(ii) c(Q(p,−1,−1); 2) = 3 for odd primes p;

(iii) for i, j, k ∈ Z+ with k ≤ j, we have c(Q(i, j,−k); 2) ≤ 4;

(iv) if j ≥ 3, then c(Q(1,−j, 1); 2) = 3.

9.5. Mixing Addition and Multiplication

Since addition and multiplication are related through the elemen-

tary algebraic laws of exponents, we can often convert Ramsey-type

results involving addition into results involving multiplication. The

next theorem gives one such example.

Proposition 9.44. Every finite coloring of Z+ admits a monochro-

matic solution to xy = z.
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Proof. Let r ≥ 1, and let χ be an arbitrary r-coloring of [1, 2s(r)],

where s(r) is the Schur number. Now define an r-coloring γ of

[1, s(r)] by γ(i) = χ(2i). By Schur’s theorem, under γ there ex-

ists a monochromatic triple (j, k, j + k). By construction, we have

χ(2j) = χ(2k) = χ(2j+k). Setting x = 2j , y = 2k, and z = 2j+k

completes the proof. �

The proof technique used in the proof of Proposition 9.44 can be

applied to any “additive” result (see, for example, Exercise 9.22). But

what if we want results that include both addition and multiplication

(e.g., Exercise 9.4)? The main question in the area of mixing addition

and multiplication has still escaped solution. That question is:

Does every finite coloring of Z+ admit a monochro-

matic set of the form {x, y, x+ y, xy}?

The only case for which the above question has been answered is for

2 colors; the associated Ramsey-type number (assuming x �= y since

x = y = 2 yields x+ y = xy) has been determined to be 252.

Many powerful results mixing addition and multiplication have

been produced, including some that are tantalizingly close to answer-

ing the above question. The tools that are used to prove these results

are (far) beyond the scope of this book, and here we present a few

highlights of specific cases of more general results (without proof).

Theorem 9.45. In any finite coloring of the positive integers, there

exist integers x, y, z, and w such that {x, y, z, w, x+ y, zw} is mono-

chromatic.

The next result, Theorem 9.46 (stated without proof), may give

some insight into why the {x, y, x + y, xy} question has yet to be

solved. It follows from Rado’s theorem that, for any n ∈ Z+, ev-

ery finite coloring of Z+ admits a set {xi}ni=1 such that {xi + xj :

1 ≤ i < j ≤ n} is monochromatic. This result is given as Exer-

cise 9.23. Translating this result into the multiplicative setting, we

can guarantee a set {yi}ni=1 such that {yi · yj : 1 ≤ i < j ≤ n} is

monochromatic. Obviously, we do not have a result that allows us

to take {xi}ni=1 = {yi}ni=1 for that would answer the {x, y, x+ y, xy}
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question. We do, however, have the following negative result if we

consider “n = ∞.”

Theorem 9.46. There exists a 7-coloring of Z+ such that no

sequence {xi}∞i=1 exists with

{xi + xj : 1 ≤ i < j < ∞} ∪ {xi · xj : 1 ≤ i < j < ∞}

monochromatic.

On the other hand, we have the following positive result.

Theorem 9.47. For any finite coloring of Z+, there exist distinct

integers x, y, z, and w such that x + y = z · w and {x, y, z, w, x + y}
is monochromatic.

Another intriguing question, with a somewhat similar flavor (for

which Ron Graham has offered $250 for an answer) is the following

Pythagorean triples question:

Is the equation x2 + y2 = z2 regular? In other

words, given any finite coloring of Z+, must there

exist positive integers x, y, and z, all the same

color, that satisfy x2 + y2 = z2?

Recently, a few results in the direction of this question have been

proved. We present these, without proof, to end this chapter.

Theorem 9.48. Let f be a nonconstant polynomial with integer co-

efficients such that some even integer is in its range. Let r ≥ 2. Then

there exists a minimal integer N (dependent on r and f) such that

every r-coloring of [1, N ] admits x, y, and z of the same color with

x+ y = f(z).

Theorem 9.49. Let a, c, n ∈ Z+ with n ≥ 2. Then every 2-coloring

of [1, N ] admits a monochromatic solution to E , where

N =

⎧⎪⎪⎨⎪⎪⎩
2n+1 + 1 when E is x+ yn = z,

c2 + 7c+ 7 when E is x+ y2 + c = z,

a− 1 when E is x+ y2 = az,

and N is the minimal such integer.
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9.6. Exercises

9.1 Prove that in the statement of Theorem 9.5 we may take

E ∈ Q[x], i.e., the coefficients may be rational.

9.2 Which of the following equations are 2-regular? regular?

a) x− y = 7z;

b) x+ y + z = 5w;

c) x1 + 2x2 + 3x3 + 4x4 = 5x5;

d) x1 − 2x2 + 4x3 − 8x4 + 16x5 − 32x6 = 0;

e) 1
3x1 − 1

4x2 + 2x3 − 1
12x5 = 0.

9.3 Give two different equation(s)/system(s) whose r-regularity

proves the existence of monochromatic 3-term arithmetic

progressions in any r-coloring of Z+.

9.4 Mimic the proof of Theorem 9.4 to prove that every r-

coloring of the positive integers admits integers x, y, and

z such that x, x+ y, z, and x+ yz are all the same color.

9.5 Let j ∈ Z+ and let c = 1
j2+2j+3 . Show that the 2-coloring

of [1, n] given by

0�(j+1)cn� 1�(j
2+j+1)cn� 0�cn�

admits only n2

2j(j2+2j+3) (1 + o(1)) monochromatic solutions

to x+ jy = z. Start by showing that [1,m] contains m2

2j (1+

o(1)) solutions. (See also Research Problem 9.2.)

9.6 Show that the minimal integer n such than every red-blue

coloring of [1, n] must admit either a red strict Schur triple,

or a blue 3-term arithmetic progression is n = 10. The fact

that n ≥ 10 comes from the coloring given in Example 9.31.

9.7 The following system is regular according to Rado’s full the-

orem (Theorem 9.36). Prove this. Also, what monochro-

matic object is guaranteed to exist?

x1 − x2 = x7,

x2 − x3 = x7,

x3 − x4 = x7,

x4 − x5 = x7,

x5 − x6 = x7.
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9.8 Let b �= 0. Let E(b) represent the equation x + y − z = b.

Define the 2-coloring χ :
[
1, b−

⌈
b
5

⌉]
→ {0, 1} by

χ(x) =

⎧⎨⎩ 0 if x ∈
[⌈

b
5

⌉
+ 1,

⌊
b+� b

5�
2

⌋]
,

1 otherwise.

Show that χ is a valid coloring for E(b).
9.9 Verify the fact that the three colorings used in the proof of

Theorem 9.17 are each valid colorings.

9.10 In the proof of Theorem 9.18 it is stated that n(1, 2) =

13, n(1, 3) = 11, n(1, 4) = 19, n(1, 5) = 25, and n(2, 3) =

21. Verify this. (A computer may be helpful, but is not

necessary.)

9.11 Verify the fact that the three colorings used in the proof of

Theorem 9.21 are each valid colorings. Also, what is the

standard notation for n(1) in this context?

9.12 Do the following problems concerning the proof of Theorem

9.22.

a) Show that the coloring given for the lower bound is valid.

b) The statement that (1, 2ak, a(2ak + 1)) is a monochro-

matic solution, which is given at the end of the proof, is not

valid unless k ≤ 2a. Verify this.

c) What is the standard notation for n(1) in this context?

9.13 Prove that for a ≥ 4, we have r(x+ y = az) =
(
a+1
2

)
.

9.14 Verify that the coloring given in Theorem 9.23 is valid. Also,

for the upper bound, why must we insist that a ≥ 3?

9.15 Fill in the details for the proof of Theorem 9.28.

9.16 Deduce the existence of the off-diagonal generalized Schur

numbers using one of the theorems in this chapter.

9.17 Find the exact value of the number n of Example 9.38.

9.18 Fill in the details of Example 9.39.

9.19 To prove part (i) of Theorem 9.43, show that any 2-coloring

of [1, 71] admits x, y, z, w such that x+ y = 4w and y+w =

4z. A computer may prove beneficial.
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9.20 Prove Theorem 9.43 (iii) by 2-coloring the integers in the

intervals [t�, t�+1), where t = i+j
k ; see Example 9.39.

9.21 Prove Theorem 9.43 (iv). Note that c(X (1,−b, 1); 2) ≥ 3

can be deduced from Theorem 9.2.

9.22 Prove that every finite coloring of Z+ admits a monochro-

matic solution to xy = z2.

9.23 Let n ∈ Z+ with n ≥ 2. Use Rado’s theorem to prove that

every finite coloring of Z+ admits a monochromatic set of

the form {xi + xj : 1 ≤ i < j ≤ n}.

9.7. Research Problems

9.1 Find a generalization of Rado’s full theorem which is analo-

gous to Theorem 9.28’s extension of Rado’s single equation

theorem.

Reference: [98]

9.2∗ Find the asymptotic minimum number, over all 2-colorings

of [1, n], of monochromatic solutions to x + jy = z. It has

been conjectured that the answer is

n2

2j(j2 + 2j + 3)
(1 + o(1)).

References: [327], [361], [390]

9.3∗ Theorem 9.16 characterizes those nonhomogeneous equa-

tions that are not regular. Further characterize these equa-

tions by the greatest number, m, of colors for which they

are m-regular (i.e., by their degrees of regularity).

9.4 The exact value of r(ax + by = (a + b)z) is known when

a = 1 and b �≡ 0 (mod 4). Determine r(ax + by = (a + b)z)

for all other pairs (a, b). Bounds for these remaining pairs

are given by Theorems 9.18 and 9.21.

Reference: [98]

9.5 Determine the 2-color Rado numbers for aw+ bx+ cy = cz

for all a, b, and c. Start with a = b = 1, c > 1.

References: [189], [195], [196], [325], [326], [339]
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9.6 Complete the result analogous to Theorem 9.14 for b < 0

(the references listed directly below indicate which cases re-

main open).

References: [235], [349]

9.7∗ Extend Theorem 9.14 to r ≥ 3 colors.

Reference: [349]

9.8 Let c1, c2, . . . , ck+1 ∈ Z+ with ck+1 �= 1. Determine the 2-

color Rado numbers for the equation
∑k

i=1 cixi = ck+1xk+1.

References: [189], [325], [339]

9.9 Let c1, c2, . . . , ck+1 ∈ Z+. Determine the the 2-color Rado

numbers for the equation
∑k

i=1 cixi = ckxk + xk+1.

References: [189], [325], [339]

9.10 Let S be a set of linear equations, with |S| ≥ 2. The r-

color disjunctive Rado number of S is the minimum integer

n (if it exists) such that every r-coloring of [1, n] admits a

monochromatic solution to some equation in S. Investigate

these numbers (in particular, when S has three or more

equations).

References: [215], [236], [333], [261]

9.11∗ Let χ be a given red-blue coloring of [1, n]. Define Sχ to

be the number of red Schur triples in [1, n] under χ, and Vχ

to be the number of blue 3-term arithmetic progressions in

[1, n] under χ. Determine the asymptotic minimum sum of

the number of red Schur triples and the number of blue 3-

term arithmetic progressions; i.e., find min(Sχ +Vχ), where

the minimum is over all red-blue colorings χ of [1, n].

References: [109], [327], [361]

9.12∗ Let χ be a given red-blue coloring of [1, n]. Define Sχ to

be the number of monochromatic Schur triples in [1, n] un-

der χ, and Vχ to be the number of monochromatic 3-term

arithmetic progressions in [1, n] under χ. Determine the as-

ymptotic minimum sum of the number of monochromatic

Schur triples and the number of 3-term arithmetic progres-

sions; i.e., find min(Sχ+Vχ), where the minimum is over all
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red-blue colorings χ of [1, n].

References: [109], [327], [361]

9.13 Prove or disprove: if integers k, �, and m do not sum to 0,

then c(kxn + �xn−1 +mxn−2; 2) ≤ 6 (see the notation after

Remark 9.40 for the definition of the function c).

References: [30], [31], [196]
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equations are studied in [96] and [266]. Results for nonlinear equa-

tions over finite fields can be found in [108].

                

                                                                                                               



Chapter 10

Other Topics

The previous chapters were primarily devoted to three classical the-

orems of Ramsey theory – van der Waerden’s theorem, Schur’s theo-

rem, and Rado’s theorem – and to many generalizations, extensions,

and other modifications of these three theorems. There are quite a

few interesting topics and problems that are not naturally placed in

the aforementioned category, but which definitely belong to the area

of Ramsey theory on the integers. In this chapter we touch upon a

few such topics.

10.1. Monochromatic Sums

The Folkman-Rado-Sanders theorem, also known as Folkman’s the-

orem1, involves the existence of certain monochromatic sets of sums

under finite colorings of the positive integers. It can be deduced by

using only van der Waerden’s theorem (as Folkman proved), by ap-

pealing to Rado’s theorem, or by the sole use of Ramsey’s theorem

(as Sanders proved). We begin with a definition.

Definition 10.1. Let T ⊆ Z+. We define

FS(T ) =
{∑

r∈R

r : R ⊆ T with 1 ≤ |R| < ∞
}

and call FS(T ) the set of finite sums of T .

1Sanders deduced the same result independently in his Ph.D. thesis, in which he
also conjectured what is now known as Hindman’s theorem (see Theorem 10.10).
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Note that the set of finite sums of a set T consists only of sums

obtainable by adding distinct elements of T . In particular, t ∈ T does

not imply that t+ t ∈ FS(T ).

Example 10.2. For the set T = {2, 5, 8}, we find that FS(T ) =
{2, 5, 7, 8, 10, 13, 15}. First, note that T ⊆ FS(T ) here, and, in fact,

for any set T . Also note that 4 = 2+2 �∈ FS(T ), while 10 = 2+8 (=

5 + 5) ∈ FS(t).

We now state the main result of this section.

Theorem 10.3 (Folkman-Rado-Sanders Theorem). For all k, r ≥ 1,

there exists a least positive integer F = F (k; r) such that for every

r-coloring of [1, F ], there is a k-element subset T ⊆ [1, F ] such that

FS(T ) is monochromatic.

Note that the statement of Theorem 10.3 is the “finite” form of

the Folkman-Rado-Sanders theorem. This is equivalent (by means of

the compactness principle) to the “infinite” form: if r ≥ 1, then in

every r-coloring of Z+, there exist arbitrarily large sets T such that

FS(T ) is monochromatic.

Example 10.4. Consider F (2; r). If n = F (2; r), then for each r-

coloring of [1, n] there are integers a and b such that the set {a, b, a+b}
is monochromatic. This may look familiar: it is the statement of the

existence of the strict Schur numbers (see Definition 8.27); for any

r ≥ 1, there exists an integer n = ŝ(r) such that for every r-coloring

of [1, n], there is a monochromatic solution to x+ y = z with x �= y.

The astute reader may notice that the Folkman-Rado-Sanders

theorem is a special case of Rado’s full theorem (Theorem 9.36); it

follows by elementary, although somewhat untidy, means. However,

the Folkman-Rado-Sanders theorem is of sufficient independent in-

terest to warrant our providing a different proof. We will use the

following lemma to prove Theorem 10.3.

Lemma 10.5. For all k, r ≥ 1, there is an integer n = n(k; r) so that

for any r-coloring of [1, n], there exist x1 < x2 < · · · < xk ∈ [1, n]
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with
∑k

i=1 xi ≤ n such that

St =

{∑
r∈R

xr : R ⊆ [1, k] with t = max({r : r ∈ R})
}

is monochromatic for t = 1, 2, . . . , k.

Proof. We use induction on k, with k = 1 being trivial. Let k ≥ 1,

let r be arbitrary, and assume that n(k; r) exists. We will show that

n(k + 1; r) ≤ 2w(k · n(k; r) + 2; r), where w(k; r) is the usual van der

Waerden function.

Let m = 2w(k ·n(k; r)+2; r), and consider an arbitrary r-coloring

of [1,m]. By van der Waerden’s theorem, using Proposition 2.35,

there is a monochromatic arithmetic progression

A = {a+ jd : 0 ≤ j ≤ k · n(k; r) + 1} ⊆
(m
2
,m
]
.

Now consider the set

D = {d, 2d, . . . , n(k; r)d} = d[1, n(k; r)].

Using Exercise 2.18, along with the inductive assumption, there exist

x1 < x2 < · · · < xk in D such that the associated St’s are monochro-

matic for t = 1, 2, . . . , k. Our goal is to find an xk+1 so that Sk+1 is

also monochromatic.

We will show that we may take xk+1 = a + d. Since a > m
2 and

a+ n(k; r)d ≤ m, we see that n(k; r)d < m
2 . Hence, a+ d > xk, since

xk ∈ D. Because (a+d)+
∑

r∈R⊆[1,k] xr ⊆ A, by taking xk+1 = a+d

we have xk+1 > xk and

Sk+1 ⊆ (a+ d) +
∑

r∈R⊆[1,k]

xr ⊆ A.

Hence, Sk+1 is monochromatic, thereby completing the induction. �

We now apply the above lemma to prove Theorem 10.3.

Proof of Theorem 10.3. We show that F (k; r) ≤ n((k−1)r+1; r),

where n(k; r) is defined as in Lemma 10.5.

Let x1 < x2 < · · · < x(k−1)r+1 satisfy Lemma 10.5, with associ-

ated sets S1, S2, . . . , S(k−1)r+1. By the pigeonhole principle, k of these

sets must have the same color. Denote these k sets by Si1 , Si2 , . . . , Sik .
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Consider T = {i1, i2, . . . , ik}. Then

FS(T ) =
{∑

r∈R

xr : R ⊆ T,R �= ∅
}

is monochromatic, since max({r : r ∈ R}) ∈ {i1, i2, . . . , ik}. �

Now that we have proven the existence of F (k; r) for all k, r ≥ 1,

we refer to F (k; r) as a Folkman-Rado-Sanders number.

As noted in Section 9.5, additive results (e.g., the finite sums

result above) imply multiplicative results. As such, we have the fol-

lowing immediate corollary. We first mention some notation.

Definition 10.6. Let T ⊆ Z+ be finite. Define

P(T ) =

{∏
r∈R

r : R ⊆ T,R �= ∅
}
.

Example 10.7. Consider T = {2, 5, 8}. Then we see that P(T ) =

{2, 5, 8, 10, 16, 40, 80}.

Corollary 10.8. For all k, r ≥ 1, there exists a least positive integer

F 
 = F 
(k; r) such that for every r-coloring of [1, F 
], there is a

k-element subset T ⊆ [1, F 
] with P(T ) monochromatic.

Proof. We will show that F 
(k; r) ≤ 2F (k;r). Let n = 2F (k;r) and let

χ be an r-coloring of [1, n]. Consider {2i : 1 ≤ i ≤ F (k; r)}. Let γ be

the r-coloring of [1, F (k; r)] defined by γ(i) = χ(2i).

Let T = {t1 < t2 < · · · < tk} ⊆ [1, F (k; r)] be a k-element set

such that FS(T ) ⊆ [1, F (k; r)] is monochromatic under γ. By the

definition of γ, this implies that Q = {2t1 < 2t2 < · · · < 2tk} is

monochromatic under χ. Since FS(T ) is monochromatic and∏
r∈R

2tr = 2

∑
r∈R tr

for any R ⊆ T , we see that P(Q) ⊆ [1, n] is monochromatic. �

With regard to bounds on the Folkman-Rado-Sanders numbers,

we see from the proofs of Theorem 10.3 and Lemma 10.5 that F (k; r)

is bounded from above by 2w(t; r) for some suitably large t, where
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w(t; r) is the usual van der Waerden function. As such, Gower’s

bound for the van der Waerden numbers (Remark 2.25) also provides

an upper bound for the Folkman-Rado-Sanders numbers (note that

“Folkman numbers” are commonly associated with graphs). For a

lower bound, we turn to a result of Erdős and Spencer, which we

offer without proof.

Theorem 10.9. There exists a constant c > 0 such that

F (k; 2) > 2c
k2

log k

for all k ∈ Z+.

We end this section with a powerful generalization of the Folkman-

Rado-Sanders theorem. In the Folkman-Rado-Sanders theorem we

are guaranteed a monochromatic finite set T such that the finite sums

of T are monochromatic. The next theorem states that we can take

T to have infinitely many elements and still have a monochromatic

set of finite sums. The theorem is presented without proof as it is

beyond the scope of this book.

Theorem 10.10 (Hindman’s Theorem). Let r ≥ 2. For any r-

coloring of Z+ there exists an infinite sequence of integers x1, x2, . . .

such that FS({xi}∞i=1) is monochromatic.

Remark 10.11. As previously remarked, the Folkman-Rado-Sanders

theorem follows from Rado’s theorem (Theorem 9.36); Hindman’s

theorem does not. Theorem 10.10 implies that the following infinite

system of equations is regular:

x1 + x2 = y1,

x1 + x2 + x3 = y2,

x1 + x3 = y3,
...

...

xi1 + xi2 + · · · + xit = yjs ,
...

...

As Rado’s theorem pertains only to finite systems of equations, it

does not imply Hindman’s result.
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10.2. Doublefree Sets

As noted in Example 10.4, taking k = 2 in Theorem 10.3 gives us

a “strengthened” Schur’s theorem, which says that, under any given

r-coloring of Z+, there exist x �= y such that {x, y, x+y} is monochro-

matic. Now, what happens if, instead of requiring that x and y be

distinct, we require that x = y? In other words, does every r-coloring

of Z+ admit a monochromatic set of the form {x, 2x}? The answer

is no. To see this, consider the 2-coloring χ of Z+ defined as follows:

for i = 2jq, where q is odd, let χ(i) = 0 if j is even, and χ(i) = 1 if j

is odd. After a moment of thought, we see that this is a well-defined

coloring of Z+ with no monochromatic set of the form {x, 2x}.

Definition 10.12. A set T ⊆ [1, n] is called doublefree if T admits

no subset of the form {x, 2x}.

Since colorings of [1, n] are just partitions of [1, n] into subsets,

we consider the question: what is the size of the largest doublefree

subset of [1, n]? The following result answers this question.

Theorem 10.13. The largest size of a doublefree subset of [1, n] is

|T |, where T = {u4i : u is odd and u4i ≤ n}.

Proof. Each positive integer can be expressed uniquely in the form

u2i, where u is odd and i ≥ 0. For each fixed odd positive integer

u ≤ n, let iu denote the largest integer such that u2iu ≤ n.

Consider Tu = {u2i : 0 ≤ i ≤ iu}. Assume T is a double-free

subset of [1, n]. Then T cannot contain a pair of elements u2i−1 and

u2i, with u odd and i ≥ 1. Therefore, for each fixed odd positive

integer u, a maximum-sized subset of Tu that is contained in T is

Au = {u20, u22, u24, . . . , u2m}, where

m =

{
iu if 4 | iu,
iu − 1 if 4 � iu.

Therefore, the size of T is no larger than the size of

S =
{
u22k : u is odd and u22k ≤ n

}
=
{
u4k : u is odd and u4k ≤ n

}
.

Since S is doublefree, we are done. �
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10.3. Diffsequences

In Chapter 4 we investigated the Ramsey properties of certain sub-

families of the family of arithmetic progressions, where the common

gap between consecutive integers is restricted to a prescribed set. In

particular, recall that if D ⊆ Z+, then AD denotes the family of all

arithmetic progressions with gaps belonging to D. We remind the

reader also that a set D is called large if for all k, r ≥ 1, there is

a least positive integer R(AD, k; r) such that every r-coloring of Z+

yields a k-term member of AD (when this condition is satisfied for a

fixed r, D is said to be r-large). In this section we consider a notion

related to largeness. Yet, the topic of this section could be consid-

ered more like the families we encountered in Chapter 3, where we

“loosened” the requirements in the sense that the gaps were allowed

some “slack.” How can these two contrasting concepts be somehow

blended? Actually, it is quite simple: we restrict the gaps to a pre-

scribed set D, but we throw out the requirement that the terms of

the sequence form an arithmetic progression.

We begin with some terminology.

Definition 10.14. Let D ⊆ Z+. A sequence of positive integers

x1 < x2 < · · · < xk is called a k-term D-diffsequence if xi −xi−1 ∈ D

for i = 2, 3, . . . , k.

Example 10.15. Let D = {1, 5} and let E = 2Z+. The sequence

of integers 3, 8, 9, 14, 19 is a 5-term D-diffsequence, and the sequence

1, 2, 7, 8 is a 4-term D-diffsequence. A set is an E-diffsequence if and

only if it consists entirely of even numbers or entirely of odd numbers.

Thus, for example, 3, 7, 21, 25, 31, 41 is an E-diffsequence.

Definition 10.16. Let r ≥ 1. A set of positive integers D is called

r-accessible if for every k ≥ 1, there exists a least positive integer

Δ = Δ(D, k; r) such that whenever [1,Δ] is r-colored, there is a

monochromatic k-term D-diffsequence. If D is r-accessible for all

positive integers r, we say that D is accessible.

Note that by the compactness principle, the following is an al-

ternative definition for a set D being r-accessible: whenever Z+ is

r-colored, there are arbitrarily long monochromatic D-diffsequences.
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Let us consider some examples.

Example 10.17. Consider D = {10n : n ≥ 1}. We know from Theo-

rem 4.9 (or Example 2.2) that for every finite coloring of the positive

integers, there are arbitrarily long monochromatic arithmetic progres-

sions whose gaps belong toD. Certainly, if we remove the requirement

of being an arithmetic progression, and instead require merely that

the difference between consecutive terms of the progression be a mul-

tiple of 10, the corresponding Ramsey property will still hold; i.e., D

is accessible.

Example 10.18. Let D be the set of odd positive integers. Coloring

Z+ as 101010 . . . shows thatD is not 2-accessible (in fact, this coloring

even avoids monochromatic 2-term D-diffsequences).

Remark 10.19. As made evident in Example 10.17, if a set is r-large,

then it must also be r-accessible.

We start our investigation of the Ramsey theory of diffsequences

with a very useful lemma that uses the following notation.

Notation. Let S, T ⊆ Z and let c ∈ Z. We denote the set {s + c :

s ∈ S} by S+ c; we denote the set {s+ t : s ∈ S and t ∈ T} by S+T .

Lemma 10.20. Let c ≥ 0 and r ≥ 2, and let D be a set of pos-

itive integers. If every (r − 1)-coloring of D yields arbitrarily long

monochromatic (D + c)-diffsequences, then D + c is r-accessible.

Proof. Let D = {di : i = 1, 2, . . . } and assume every (r− 1)-coloring

of D admits arbitrarily long monochromatic (D + c)-diffsequences.

Let χ be an r-coloring of Z+. By induction on k, we show that,

under χ, there are monochromatic k-term (D + c)-diffsequences for

all k. Since there are obviously 1-term sequences, assume k ≥ 1 and

that under χ there is a monochromatic k-term (D + c)-diffsequence

X = {x1, x2, . . . , xk}. We may assume X has color red. Consider the

set A = {xk + di + c : di ∈ D}. If some member of A is colored red,

then we have a red (k + 1)-term (D + c)-diffsequence. Otherwise we

have an (r−1)-coloring of A and therefore, by the hypothesis, A must

contain arbitrarily long monochromatic (D + c)-diffsequences. �
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Remark 10.21. The converse of Lemma 10.20 is false. As one ex-

ample, let S be the set of odd positive integers, and let D = S ∪ {2}.
Let χ be the 2-coloring of D defined by χ(x) = 1 if x ≡ 1 (mod 4) or

x = 2, and χ(x) = 0 if x ≡ 3 (mod 4). Then χ does not yield arbi-

trarily long monochromatic D-diffsequences (there are none of length

four). On the other hand, Theorem 10.27, below, tells us that D is

3-accessible (in fact, Δ(D, k; 3) ≤ 6k2 − 13k + 6).

We now present two additional lemmas, the proofs of which are

left to the reader as Exercises 10.3 and 10.4.

Lemma 10.22. Let m ≥ 2 and i ≥ 1, and assume gcd(i,m) = 1.

Let D = {x ∈ Z+ : x ≡ i (modm)}. Then D is not 2-accessible.

Lemma 10.23. If D is not r-accessible and E is not s-accessible,

and if D + E ⊆ D or D + E ⊆ E, then D ∪ E is not rs-accessible.

We next investigate the accessibility of some specific sets.

Theorem 10.24. Let D = {2i : i = 0, 1, . . . }. For all k ≥ 3,

8(k − 3) + 1 ≤ Δ(D, k; 2) ≤ 2k − 1.

Proof. We start with the upper bound. Let α : [1, 2k − 1] → {0, 1}.
We show that under α there must be a monochromatic k-term D-

diffsequence. We do this by induction on k. Obviously, it holds for

k = 1. Now assume k ≥ 2, and that Δ(D, k − 1; 2) ≤ 2k−1 − 1. Let

X = {x1, x2, . . . , xk−1} be a monochromatic D-diffsequence, say of

color 0, that is contained in [1, 2k−1 − 1]. Consider the set

A = {xk−1 + 2i : i = 0, 1, . . . , k − 1}.

Note that A ⊆ [1, 2k−1]. If there exists y ∈ A of color 0, then X∪{y}
is a monochromatic k-term D-diffsequence. If, on the other hand, no

such y exists, then A is a monochromatic k-term D-diffsequence.

For the lower bound, first note that by direct calculation we find

that Δ(D, 3; 2) = 7 and Δ(D, 4; 2) = 11 (see Table 10.1 at the end

of this section). To complete the proof we show by induction on k

that, for k ≥ 5, the 2-coloring χk of [1, 8(k − 3)] that is represented

by (10010110)k−3 avoids monochromatic k-term D-diffsequences. It

is easy to check that this statement is satisfied by k = 5. So now
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assume k ≥ 5, that χk avoids k-term D-diffsequences, and consider

χk+1.

Let X = {x1, x2, . . . , xm} be a maximal length monochromatic

D-diffsequence under χk+1. We wish to show that m ≤ k. Assume,

by way of contradiction, that m ≥ k + 1. Then xm−1 and xm both

belong to [8(k − 3) + 1, 8(k − 2)], or else the inductive assumption

would be contradicted. We have the following two cases.

Case 1. χk+1(X) = 1. We consider 2 subcases.

Subcase i. xm−2 ∈ [8(k−3)+1, 8(k−2)]. We have xm−2 = 8k−20,

xm−1 = 8k−18, and xm = 8k−17. By the structure of χk, we see that

xm−3 ≡ 4 (mod 8). Hence, there exists, under χk, a monochromatic

D-diffsequence of length m− 1, contradicting our assumption about

χk.

Subcase ii. xm−2 �∈ [8(k−3)+1, 8(k−2)]. Then xm−1 = 8k−18 and

xm = 8k−17. By the structure of χk, this implies xm−2 ≡ 6 (mod 8).

Then there is an monochromatic (m− 1)-term D-diffsequence under

χk, a contradiction.

Case 2. χk+1(X) = 0. We again consider 2 subcases.

Subcase i. xm−2 ∈ [8(k−3)+1, 8(k−2)]. We have xm−2 = 8k−22,

xm−1 = 8k − 21, and xm = 8k − 19. Then either xm−3 = 8(k − 3) or

xm−3 ≡ 2 (mod 8). If xm−3 = 8(k − 3), then m− 3 ≤ k − 3, because

there can be only one term of a D-diffsequence per 10010110-string,

a contradiction. If xm−3 ≡ 2 (mod 8), then there is an (m − 1)-term

D-diffsequence of color 0 under χk, a contradiction.

Subcase ii. xm−2 �∈ [8(k−3)+1, 8(k−2)]. Then xm−1 = 8k−21 and

xm = 8k−19, and hence xm−2 ≡ 3 (mod 8). This is not possible, since

there would then be a monochromatic (m − 1)-term D-diffsequence

under χk. �

Before continuing, we need one more definition.

Definition 10.25. If D ⊆ Z+ is not accessible, the degree of acces-

sibility of D is the largest value of r such that D is r-accessible. We

denote the degree of accessibility of a set D by doa(D).
                

                                                                                                               



10.3. Diffsequences 307

As a corollary to Theorem 10.24, we have the following result

concerning the degree of accessibility of the set of powers of 2. The

proof is left to the reader as Exercise 10.5.

Corollary 10.26. Let D = {2i : i = 0, 1, . . . }. Then doa(D) = 2.

As mentioned in Remark 10.21, ifD consists of the set of odd pos-

itive integers along with 2, then doa(D) ≥ 3. The following theorem

tells us more.

Theorem 10.27. Let D = {2i+ 1 : i ≥ 0} ∪ {2}. Then doa(D) = 3.

Furthermore,

(10.1) Δ(D, k; 2) =

{
3k − 4 if k is odd,

3k − 3 if k is even.

Proof. We first show that doa(D) ≥ 3. Assume, for a contradic-

tion, that γ : Z+ → {0, 1, 2} is a 3-coloring without arbitrarily

long monochromatic D-diffsequences. Let s1 < s2 < · · · < sm be

a monochromatic D-diffsequence of maximal length. We may assume

this diffsequence has color 2. Then S = {sm + j : j odd} is void of

color 2. Let S =
⋃

i≥0 Si, where

Si = {sm + 2i(m+ 1) + j : j ∈ {1, 3, 5, . . . , 2m+ 1}}.

Also, for i ≥ 0, let

Ti = {sm + 2i(m+ 1) + j : j ∈ {2, 4, 6, . . . , 2m+ 2}}.

Each Ti must contain an element of either color 0 or color 1, for

otherwise Ti would be an (m + 1)-term D-diffsequence of color 2,

contradicting the choice of m. Furthermore, each Si must contain

elements of both color 0 and color 1 (since it is void of color 2), for

otherwise Si would be a monochromatic (m+1)-term D-diffsequence.

Clearly, for one of the colors, say color 0, there are an infinite

number of Ti’s that contain that color. Hence, there exist sequences

{ij}∞j=1 and {xij}∞j=1 such that the following hold for all j ≥ 1 :

(1) xij ∈ Tij , with xij having color 0; and

(2) ij+1 ≥ ij + 2.
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For each j ≥ 1, let yij ∈ Sij+1 be of color 0. Then the sequence

xi1 , yi1 , xi2 , yi2 , . . . is an infinitely long D-diffsequence of color 0, con-

tradicting the existence of m.

The fact that doa(D) < 4 follows from Lemma 10.23. To see

this, note that by Example 10.18 the set of odd positive integers

is not 2-accessible, and that the 2-coloring of Z+ represented by

001100110011 . . . shows that {2} is not 2-accessible since 2+{2j+1 :

j ∈ Z+} ⊆ {2j + 1 : j ∈ Z+}. Thus, by Lemma 10.23, doa(D) ≤ 3,

and hence doa(D) = 3.

We now move on to the evaluation of Δ(D, k; 2). Let f(k) be

the function on the right side of (10.1). We will first prove that f(k)

is an upper bound for Δ(D, k; 2). By direct computation, we find

that this is true for k = 2 and k = 3. To prove that f(k) serves

as an upper bound if k ≥ 4, it is sufficient to show that for every

χ : [1, f(k)] → {0, 1}, there existD-diffsequences S = {s1, s2, . . . , sk1
}

and T = {t1, t2, . . . , tk2
} such that χ(S) = 0, χ(T ) = 1, and k1+k2 ≥

2k− 1. We leave it as Exercise 10.6 to show that this condition holds

for k = 4 and k = 5. To show it holds for all k, we proceed by

induction on k, showing that its truth for k+2 follows from its truth

for k.

Assume that k ≥ 4, and that every 2-coloring of [1, f(k)] ad-

mits monochromatic sequences S and T as described above. Let

χ : [1, f(k + 2)] → {0, 1} be an arbitrary 2-coloring. To complete

the proof we show that there exist a k′1-term D-diffsequence of color

0 and a k′2-term D-diffsequence of color 1 such that

(10.2) k′1 + k′2 ≥ 2k + 3.

We may assume, without loss of generality, that sk1
≥ tk2

. Let

U = {sk1
+ 1, sk1

+ 2, . . . , sk1
+ 6}.

We consider three cases.

Case 1. There exist at least four elements of U that have color 0. It

is easy to see that by appending these four elements to S, we have a

monochromatic D-diffsequence, and hence (10.2) holds.

Case 2. Exactly three elements of U have color 0. Then there exist

two of these three elements, a and b, such that S ∪ {a, b} forms a
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(k1 + 2)-term D-diffsequence. Likewise there exist two elements, c

and d, of T , with color 1 and such that T ∪ {c, d} forms a (k2 + 2)-

term T -diffsequence. This implies that (10.2) holds for this case.

Case 3. At most two elements of U have color 0. Then we may ex-

tend T to a D-diffsequence, monochromatic of color 1, having length

k′2 ≥ k2 + 4. Again (10.2) holds.

To complete the determination of Δ(D, k; 2), we will show that

Δ(D, k; 2) ≥ f(k) by exhibiting a specific 2-coloring of [1, f(k) − 1]

that avoids monochromatic k-term D-diffsequences. Starting with

the case in which k is even, let χk : [1, 3k − 4] → {0, 1} be the 2-

coloring represented by 1(000111)
k−2
2 0. By symmetry it suffices to

show that, under χk, there is no k-term D-diffsequence with color 1.

We show this by induction on j, where k = 2j. Obviously the coloring

10 avoids monochromatic 2-term D-diffsequences, and the coloring

10001110 avoids monochromatic 4-term D-diffsequences, and hence

the result holds for j = 1 and j = 2.

Now assume j ≥ 2, and that χk does not yield any k-term

monochromatic D-diffsequences with color 1. Note that χk+2 may be

represented by χk001110. Let A be a monochromatic D-diffsequence,

under χk, of color 1, and having maximal length. Obviously, at least

one of 3k−7, 3k−6 belongs to A, which implies that 3k−5 also belongs

to A. Therefore, at most two members of {3k − 1, 3k, 3k + 1} may

be tacked on to A to form a monochromatic D-diffsequence. Thus,

under the coloring χk+2, there is no (k+2)-term D-diffsequence with

color 1. This completes the proof for k even.

Next, consider k odd. Let λk be the coloring represented by

11(000111)
k−3
2 00. The proof is completed in a straightforward man-

ner, similar to the even case, by induction on � = k−1
2 , by show-

ing that the longest D-diffsequence with color 1 cannot have length

greater than k − 1. We leave the details to the reader as Exercise

10.7. �

We next investigate the ubiquitous Fibonacci sequence. Let F =

{1, 2, 3, 5, . . . } be the set of Fibonacci numbers. We learned from

Theorem 4.38 that F is not 4-large, i.e., that the degree of regularity
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of the family of arithemtic progressions with gaps in F does not exceed

three. We wish to learn about the degree of accessibility of F .

It is clear that any r-large set must be r-accessible. However,

the reverse implication is not true. To see this, consider D = {2i :

i = 1, 2, . . . }. Corollary 10.26 tells us that D is 2-accessible while

Theorem 4.32 tells us that D is not 2-large.

Theorem 10.28. Let F = {1, 2, 3, 5, 8, . . . } be the set of Fibonacci

numbers. Then 2 ≤ doa(F ) ≤ 5.

Proof. To establish the lower bound, we claim that Δ(F, k) ≤ fk+3−
2 for all k ≥ 2, where fi is the i

th Fibonacci number with f1 = 1, f2 =

1, f3 = 2, f4 = 3, f5 = 5 . . . . We will prove this claim by induction

on k. First, it is clear that every 2-coloring of [1, 3] contains a pair of

elements of the same color with difference belonging to {1, 2} ⊆ F .

Hence, Δ(F, 2) ≤ 3 = f5 − 2, so the claim is true for k = 2.

Now assume that the claim is true for some k ≥ 2 and let χ

be an arbitrary 2-coloring of [1, fk+4 − 2] = [1, (fk+3 − 2) + fk+2],

using the colors red and blue. To complete the proof, we will show

that χ admits a moncohroamtic (k + 1)-term F -diffsequence. By the

inductive assumption, within [1, fk+3 − 2] there exists a monochro-

matic k-term F -diffsequence of color, say, red. Let x be the last

term of this diffsequence, so that x ≤ fk+3 − 2. If any of x + fi,

i = 2, 3, . . . , k + 2 are red, then we are done since we can extend the

red diffsequence to length k + 1 (note that x + fk+2 ≤ fk+4 − 2).

Hence, we may assume that x + fi, i = 2, 3, . . . , k + 2, are all blue.

Since x + fi+1 − (x + fi) = fi+1 − fi = fi−1 for i = 2, 3, . . . , k + 1,

we have a blue (k+1)-term F -diffsequence under χ, and we are done

with the lower bound.

For the upper bound, we will define a 6-coloring of Z+ that ad-

mits no 2-term F -diffsequence, i.e., there will be no two elements of

the same color such that the difference between them is a Fibonacci

number.

For n ∈ Z+, define the function G(n) recursively by G(0) = 0

and, for n ≥ 1,

G(n) = n−G(G(n− 1)).
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Now let

g(m) = 4m+ 2G(m− 1),

for m ∈ Z+.

To complete the proof, we will use the following facts, which are

stated without proof.

Fact 1. The set of even Fibonacci numbers is precisely {f3k}∞k=1.

Fact 2. For any m ∈ Z+, we have {g(m), g(m) + 2} ∩ F = ∅.

Fact 3. Let m ≥ 0 and n ≥ 1. Then

G(n+m)−G(n− 1) ∈ {G(m), G(m) + 1}.

Next, for i ∈ Z+, define the sequence

si = 4 + 2(G(i)−G(i− 1)).

From Fact 3, we have si ∈ {4, 6} for all i. We now define the 6-

coloring χ : Z+ → {0, 1, 2, 3, 4, 5}, denoting by Cj the set of integers

having color j. Let t1 = 1 and for n ≥ 2, define

tn = 1 +
n−1∑
i=1

si.

Now let C0 = {ti : i ∈ Z+}. Since the gap between two consecutive

elements of color 0 is at most six, we translate C0 to obtain the other

color classes: for i = 1, 2, . . . , 5, let

Ci = (i+ C0)−
i−1⋃
j=0

Cj .

To complete the proof of the upper bound, assume, for a con-

tradiction, that there exists a monochromatic 2-term F -diffsequence

under this coloring. We may assume that the elements of this diffse-

quence are of color 0. Since the nonzero color classes are each trans-

lations of C0, it follows from the definition of a diffsequence that if

one of the sets Ci, i ∈ {1, 2, . . . , 5}, contains a 2-term F -diffsequence,

then so must C0.

We next see, by the definition of the ti’s, that the difference

between any two ti’s must be even. Hence, we are assuming that there
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exist integers m and n, with m > n, such that tm − tn ∈ {f3n}∞n=1

(see Fact 1).

By the way that the tn’s are defined, we have

tm − tn = tn+k − tn =
n+k−1∑
j=n

sj

= 4k + 2(G(n+ k − 1)−G(n− 1)).

From Fact 3, this gives us that tm − tn equals either g(k) = 4k +

2G(k − 1) or g(k) + 2. From Fact 2, tm − tn cannot be a Fibonacci

number, contradicting our assumption. �

Clearly, no matter how we decide to do the counting, for any given

(nontrivial) k andD, there are a lot more k-termD-diffsequences than

there are k-term members of AD (arithmetic progressions with gaps

inD). It is therefore not surprising that some fundamental differences

between properties that pertain to accessibility and properties that

pertain to largeness are known. For example, currently there are no

known sets that are r-large for some r ≥ 2 that are not also large (in

fact, it has been conjectured that there is no such set (see Research

problem 4.12)); this is in sharp contrast to our next theorem.

Theorem 10.29. For each r ≥ 1, there exists a set D ⊆ Z+ such

that doa(D) = r.

Proof. For m ≥ 2, let Vm be the set of all positive integers not

divisible by m. We will show that doa(Vm) = m − 1, which imme-

diately implies the statement of the theorem. We first show that

doa(Vm) ≤ m − 1 by proving the following more general result: if

there exists r ∈ Z+ such that S ⊆ Z+ contains no multiple of r, then

S is not r-accessible. To see this, consider χ : Z+ → {0, 1, . . . , r − 1}
defined by χ(x) = i if x ≡ i (mod r). It is obvious that χ avoids

monochromatic 2-term S-diffsequences. Thus, since, by definition,

Vm contains no multiple of m, we conclude that doa(Vm) ≤ m− 1.

We now show that dor(Vm) ≥ m− 1 by employing Lemma 10.20.

Since V2 is the set of odd positive integers which, as we have already

seen is not 2-accessible, we need only consider m ≥ 3. Let χ be any

(m− 2)-coloring of Vm. By the pigeonhole principle, some color must
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yield an infinite number of elements from each of at least two of the

congruence classes 1 (modm), 2 (modm), . . . , (m−1) (modm). Thus,

some color admits arbitrarily long Vm-diffsequences. By Lemma 10.20,

Vm is (m− 1)-accessible. Let D = Vr+1 to complete the proof. �

As mentioned above, every large set is accessible. As we will

show in Theorem 10.31, the converse turns out to be false. The proof

of Theorem 10.31 makes use of the following result which may be

of independent interest because it will show that a set can be very

“sparse” and still be accessible (for example, even the set {t! − s! :

1 ≤ s < t} is accessible – by the way, we do not know if it is large).

Theorem 10.30. Let T ⊆ Z+ be an infinite set. Then T � T =

{t− s : s < t and s, t ∈ T} is accessible.

Proof. Let r ≥ 1, and consider any r-coloring of T � T . Fix s ∈ T .

Let {t1 < t2 < · · · } = {t ∈ T : t > s} and define A = {ti − s : i =

1, 2, . . . }. Obviously, there exists a monochromatic infinite B ⊆ A.

Since B is a (T � T )-diffsequence, by Lemma 10.20, T � T is (r+1)-

accessible. Since r is arbitrary, T � T is accessible. �

We can now prove an important result which states that the col-

lection of large sets is a proper subset of the collection of accessible

sets. The proof uses some elements of real analysis.

Theorem 10.31. There exists a set that is accessible but not large.

Proof. We will construct a set with the stated property. We start

by defining the function ψ : R → R+ ∪ {0} by

ψ(x) = min({|x+m| : m ∈ Z}).

It is easy to check that

(10.3) ψ(x+ y) ≤ ψ(x) + ψ(y)

holds for all x, y ∈ R, which implies, by repeated application (with

x = y), that ψ(kx) ≤ kψ(x) for any k ∈ Z+.

It is a fact (that will not be proven here) that for any irrational

number α ∈ (0, 1) and any number a ∈ (0, 1), given ε > 0, there exists
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an integer n ∈ Z+ such that

(10.4) max({ψ(nα), ψ(n2α− a)}) < ε.

So, loosely speaking, we can guarantee, when ε is close to 0, that some

multiple of α is close to an integer, while, at the same time, n2α − a

is close to an integer. We will construct an infinite sequence {si},
recursively, based on (10.4).

Fix an irrational α ∈ (0, 1), let ε < 1
8 , and define

gα(n, a) = max({ψ(nα), ψ(n2α− a)}).
Choose s1 ∈ Z+ so that gα

(
s1,

1
4

)
< ε. Now, given that s1, s2, . . . , sk

have been chosen, let sk+1 ∈ Z+ be an integer that satisfies

gα

(
sk+1,

1

4

)
<

ε

s1s2 · · · sk
.

By the definition of gα, we have ψ
(
s2iα− 1

4

)
< ε < 1

8 for i =

1, 2, . . . , k + 1, as well as

ψ(sisjα) ≤ siψ(sjα) < si ·
ε

s1s2 · · · sk

=
ε

s1s2 · · · si−1si+1 · · · sk
< ε,(10.5)

for 1 ≤ i < j ≤ k + 1.

We will use the above inequality to show that S = {st}∞t=1 is, in

fact, an infinite set by showing that si �= sj when i �= j. To this end,

we have

ψ

(
(si − sj)

2α− 1

2

)
= ψ

(
s2iα− 2sisjα+ s2j −

1

2

)
= ψ

((
s2iα− 1

4

)
− 2sisjα+

(
s2jα− 1

4

))
≤ ψ

(
s2iα− 1

4

)
+ 2ψ(sisjα) + ψ

(
s2jα− 1

4

)
< ε+ 2ε+ ε

= 4ε(10.6)

<
1

2
(10.7)
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by expanding the argument on the left-hand side, and using Inequality

(10.3) followed by Inequality (10.5). Inequality (10.7) holds since

ε < 1
8 . If we assume that S is not infinite, then we have si = sj for

some i �= j. This implies that ψ
(
(si − sj)

2α− 1
2

)
= ψ

(
− 1

2

)
= 1

2 .

However, Inequality (10.7) gives us ψ
(
(si − sj)

2α− 1
2

)
�= 1

2 for all

i �= j. Hence, S must be infinite.

Now that we know that S is infinite, we can apply Theorem 10.30

and conclude that S � S is accessible. We will finish the proof by

showing that it is not large. To this end, we will provide a finite

coloring of Z+ with no monochromatic 3-term arithmetic progression

with common difference from S � S.

Recall that the S is based on the chosen values of α and ε < 1
8 .

Let r ∈ Z+ be such that 1
r ≤ 1

6

(
1
2 − 4ε

)
and define the r-coloring χ :

Z+ → {1, 2, . . . , r} by χ(n) = i precisely when ψ
(

n2

2 α
)
∈
(
i−1
r , i

r

)
.

In other words, partition (0, 1) into subintervals of length 1
r (note that

ψ
(

n2

2 α
)
= j

r has no solution when j ∈ Z+, since α is irrational).

By our choice of r, we have that

(10.8) ψ

(
n2

2
α− i− 1

r

)
∈
(
0,

1

r

)
with χ(n) = i.

The arguments that follow rely on the easily-checked inequality:

(10.9) ψ(x− y) ≥ ψ(x)− ψ(y)

for x, y ∈ R.

Let {a, a + d, a + 2d} be a 3-term arithmetic progression that is

monochromatic under χ; say it has color c. Applying (10.8) with

n = a+ d we see that

1

r
>ψ

(
(a+ d)2

2
α− c− 1

r

)
≥ψ

(
d2

2
α+ adα

)
− ψ

(
a2

2
α− c− 1

r

)

≥ ψ

(
d2

2
α+ adα

)
− 1

r
.

Hence,

(10.10) ψ

(
d2

2
α+ adα

)
<

2

r
.

                

                                                                                                               



316 10. Other Topics

Applying (10.8) with n = a+ 2d we obtain

1
r > ψ

(
(a+2d)2

2 α− c−1
r

)
≥ ψ

(
2d2α+ 2adα

)
− ψ

(
a2

2 α− c−1
r

)
= ψ

(
d2α+ d2α+ 2adα

)
− ψ

(
a2

2 α− c−1
r

)
≥ ψ(d2α)− ψ

(
2
(

d2

2 α+ adα
))

− ψ
(

a2

2 α− c−1
r

)
.

Using (10.10) and ψ(kx) ≤ kψ(x), we continue the above chain of

inequalities:

1
r ≥ φ(d2α)− ψ

(
2
(

d2

2 α+ adα
))

− ψ
(

a2

2 α− c−1
r

)
> ψ(d2α)− 2 · 2

r − 1
r .

Hence,

(10.11) ψ(d2α) <
6

r
.

Now let si − sj be an element of the set S � S. By Inequality

(10.9),
1

2
− ψ

(
(si − sj)

2α
)
≤ ψ

(
(si − sj)

2α− 1

2

)
so that, using Inequality (10.6), we obtain

ψ
(
(si − sj)

2α
)
>

1

2
− 4ε ≥ 6

r
.

Comparing this last inequality with (10.11), we see that the value of

d in {a, a+d, a+2d} cannot equal si−sj for any si and sj with i �= j.

Hence, S � S is not large and the proof is complete. �

The last stop on our tour of accessibility concerns the set of

primes, which we will denote by P . Example 4.30 informs us that

P is not 2-large. Theorem 4.31 states that for any positive integer

c ≥ 2, P + c is also not 2-large. However, these does not rule out P

and P + c from being 2-accessible, or even accessible. So, what can

we say, if anything, about the degree of accessibility of P and P + c?

First of all, what about P itself? Is it 2-accessible? As we ex-

plained Example 4.30, P is not 2-large because it doesn’t contain a

multiple of 4; but such a reason does not exclude 2-accessibility (for
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example, the set of powers of 2 is 2-accessible, but has no multiple of

3). On the other hand, we do know, by the proof of Theorem 10.29,

that P is not 4-accessible, since it is, in particular, a subset of V4. In

fact, we do not know whether P is 2-accessible. By the next theorem,

however, we do know for sure that it is not 3-accessible.

Theorem 10.32. Let P be the set of primes. Then doa(P ) ≤ 2.

Proof. It suffices to find a 3-coloring of the positive integers that does

not yield arbitrarily long monochromatic P -diffsequences. Consider

the coloring χ : Z+ → {0, 1, 2} defined by

χ(i) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 if 9 | i,

1 if i is even and 9 � i,

2 if i is odd and 9 � i.

It is clear that there is not even a 2-term P -diffsequence of color 0.

Consider the elements of color 1. For any sequence a1 < a2 < · · · < a9
of color 1, there must be some i ∈ {2, 3, . . . , 9}, such that ai − ai−1

exceeds 2 (and is even). Hence there is no 9-term P -diffsequence of

color 1. Similarly, there is no 9-term P -diffsequence of color 2. �

As noted in Theorem 4.31, P + 1 is large, and therefore accessi-

ble. For all other positive c ≥ 2, the following result, which we offer

without proof, shows that P + c is not accessible.

Theorem 10.33. Let P be the set of primes and let c ≥ 2. Let a be

the smallest prime factor of c. Then doa(P + c) ≤ a.

For c ≥ 2, the results we have seen so far on the accessibility of

P + c give only upper bounds on the degree of accessibility, with no

evidence that any translation by a positive integer (other than P +1)

is even 2-accessible. We do, however, have a positive result for odd

translations of P , presented below as Theorem 10.35. Before stating

it, we give a lemma that, when used with Lemma 10.20, gives us

Theorem 10.35.

Lemma 10.34. Let c ∈ Z+ be odd. Then, for any k ≥ 2, there exist

p1, p2, . . . , pk ∈ P such that pi − pi−1 ∈ P + c for all i ∈ {2, 3, . . . , k}.
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We do not include the proof of Lemma 10.34, which is beyond

the scope of the book. Using Lemma 10.34, the following result can

be shown. We leave the proof to the reader as Exercise 10.13.

Theorem 10.35. Let P be the set of primes. If c is an odd positive

integer, then P + c is 2-accessible.

There are many interesting questions left unanswered about ac-

cessibility. We present several of these in Section 10.8.

We end this section with a table of values of Δ(D, k; 2) for several

choices of D and small k. The symbols T , F , P , and Vn denote

{2i : i ≥ 0}, the set of Fibonacci numbers, the set of primes, and the

set of positive integers not divisible by n, respectively.

D \ k 2 3 4 5 6 7 8 9 10

T 3 7 11 17 25 35 51 ? ?

F 3 5 9 11 15 19 21 28 32

P 5 9 13 21 25 33 37 42 49

P + 1 7 13 21 27 35 43 ? ? ?

P + 2 9 17 25 33 41 ? ? ? ?

P + 3 11 21 31 42 53 ? ? ? ?

P + 4 13 25 37 49 ? ? ? ? ?

P + 5 15 29 43 57 ? ? ? ? ?

P + 6 17 33 49 ? ? ? ? ? ?

P + 7 19 37 55 ? ? ? ? ? ?

V5 3 5 7 11 13 15 19 ? ?

V6 3 5 7 9 13 15 17 ? ?

Table 10.1. Values of Δ(D, k)

10.4. Brown’s Lemma

The main result of this short section could have been included in the

last section, since it is so closely related to diffsequences. However,

the result is of sufficient interest to warrant its own section. We will

formalize this result after presenting a definition.
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Definition 10.36. A set S ⊆ Z+ is called piecewise syndetic if there

exists d ∈ Z+ such that S contains arbitrarily long {1, 2, . . . , d}-
diffsequences.

Theorem 10.37 (Brown’s Lemma). Let r ≥ 1. Any r-coloring of

Z+ admits a monochromatic piecewise syndetic set.

Proof. We induct on the number of colors. For r = 1, the result

is trivial since Z+ is clearly piecewise syndetic. Assume the result

holds for r ≥ 1 colors and let χ : Z+ → {0, 1, . . . , r} be an arbitrary

(r + 1)-coloring.

If the color 0 occurs only finitely many times, then there exists

n such that {n, n + 1, . . . } is r-colored. By Exercise 2.18 and the

inductive hypothesis, we are done. Hence, we assume that the color 0

occurs infinitely often. Let R = {r1 < r2 < · · · } be the set of integers

with color 0.

If R is piecewise syndetic we are done, so we assume that R is

not piecewise syndetic. Hence, the differences between consecutive

elements of R are not bounded. Let r2 − r1 = k0. Then there exists

an i1 ≥ 2 such that ri1+1 − ri1 = k1 > k0, so that the interval

[ri1 + 1, rii+1 − 1] is void of color 0. Similarly, we may choose i2 ≥ i1
such that ri2+1 − ri2 = k2 > k1. Repeating this process, for each

j ≥ 2, denote by Ij the interval [rij +1, rij+1 − 1], where ij is chosen

so that rij+1−rij > rij−1+1−rij−1
and ij ≥ ij−1. Hence, the interval

Ij is void of color 0 and |Ij | > |Ij−1| for j ≥ 2.

We now define γ, an r-coloring of Z+, as follows. Denote by Ij(k)

the kth smallest element of Ij . Within χ(I1(1)), χ(I2(1)), χ(I3(1)), . . .

some color (not 0, since the Ij ’s are void of the color 0) must occur

an infinite number of times. Call this color c1 and let γ(1) = c1. Let

T1 be the set consisting of those intervals Ij such that χ(Ij(1)) = c1.

Within {χ(Ij(2)) : Ij ∈ T1} there must be some color c2 that occurs

an infinite number of times. Let γ(2) = c2 and let T2 be the set of

those intervals Ij ∈ T1 such that χ(Ij(2)) = c2. We continue in this

way to find, for each i ≥ 2, some color ci such that

Ti = {Ij ∈ Ti−1 : χ(Ij(i)) = ci}
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is infinite, and we define γ(i) = ci. The coloring γ : Z+ → {1, 2, . . . , r}
has the property that for any n ≥ 1, Tn is the set of intervals Ij such

that χ(Ij(i)) = γ(i) for i = 1, 2, . . . , n.

By the inductive assumption, γ yields a monochromatic piecewise

syndetic set, say X. Thus, X contains arbitrarily long {1, 2, . . . , d}-
diffsequences for some d ∈ Z+. Let {a1 < a2 < · · · < an} ⊆ X be one

such diffsequence. Let I ∈ Tan
and consider

S = {I(a1) < I(a2) < · · · < I(an)}.

By the definition of γ, S is monochromatic. By construction, S is

piecewise syndetic. Since n can be arbitrarily large, we have found an

arbitrary large monochromatic (under χ) piecewise syndetic set. �

There is also a “finite form” of Brown’s lemma. The fact that this

is equivalent to Theorem 10.37 is left to the reader as Exercise 10.14.

To state it, we define, for a finite set A = {a1 < a2 < · · · < an} ⊆ Z+,

the gap size of A to be

gs(A) = max({aj+1 − aj : 1 ≤ j ≤ n− 1}).

If |A| = 1, we set gs(A) = 1.

Theorem 10.38. Let f : Z+ → Z+ be any function, and let r ≥ 1.

Then there exists a least positive integer B(f ; r) such that for every

r-coloring of [1, B(f, r)], there exists a monochromatic set A with

|A| > f(gs(A)).

Proof. Assume, without loss of generality, that f is nondecreasing.

For simplicity of notation, denote B(f, r) by B(r). We use induction

on r.

Clearly B(1) = f(1)+1, since if the interval [1, f(1)+1] is colored

with one color, the interval itself constitutes a monochromatic set A

with gs(A) = 1, so that |A| > f(gs(A)) = f(1).

Now, let r ≥ 2 and assume that B(r − 1) exists. Let

(10.12) m = rf(B(r − 1)) + 1.

We will show that B(r) ≤ m. Assume, for a contradiction, that there

is an r-coloring χ of [1,m] such that for every monochromatic set A
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we have |A| ≤ f(gs(A)). Let Ci = {j : χ(j) = i}, 1 ≤ i ≤ r. Then

|Ci| ≤ f(gs(Ci)).

Also, gs(Ci) ≤ B(r− 1) for each i, 1 ≤ i ≤ r; otherwise, for some

a ≥ 1, the set {a+1, a+2, . . . , a+B(r−1)} ⊆ [1,m] would have only

r − 1 colors (it would be void of color i). By Exercise 2.18 and the

inductive assumption, this would give a monochromatic set T with

|T | > f(gs(T )), contradicting our assumption about χ.

Since f is nondecreasing, f(gs(Ci)) ≤ f(B(r − 1)). Hence,

|Ci| ≤ f(gs(Ci)) ≤ f(B(r − 1))

for all i, 1 ≤ i ≤ r. Since [1,m] = C1 ∪ C2 ∪ · · · ∪ Cr, we get m ≤
rf(B(r − 1)), contradicting (10.12). Thus, any r-coloring of [1,m]

satisfies the conditions of the theorem. This proves the existence of

B(r), since B(r) ≤ m = rf(B(r − 1)) + 1. �

We may rephrase Brown’s lemma (Theorem 10.37) as follows:

for any r-coloring of Z+, there exists d ≥ 1 such that for any n ≥ 2,

there exists a monochromatic set A = {a1 < a2 < · · · < an}, where
aj+1 − aj ≤ d for 1 ≤ j ≤ n − 1. Comparing this statement to the

statements given in Theorem 2.5, we see that Brown’s lemma is very

reminiscent of van der Waerden’s theorem. However, it is known that

Brown’s lemma neither implies, nor is implied by, van der Waerden’s

theorem.

10.5. Monochromatic Sets Free of Prescribed
Differences

The previous two sections are concerned with monochromatic se-

quences x1, x2, . . . , xk which have gaps xi+1 − xi belonging to some

prescribed set. In this section, we turn the situation on its head in

some sense; here, we investigate monochromatic sequences for which

all differences between terms (not just between successive terms) are

not members of a prescribed set.

Definition 10.39. Let T ⊆ Z+. We say a sequence x1 < x2 < · · · <
xk is difference T -free if for all 1 ≤ i < j ≤ k we have xj − xi �∈ T .
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In the case when T = {t} we refer to the sequence as difference t-free

(instead of the more cumbersome difference {t}-free).

Based on this definition, we adopt the following notation.

Notation. Let k, r ∈ Z+ with k ≥ 2. For T ⊆ Z+, let DT (k; r) be

the minimal integer n, if it exists, such that every r-coloring of [1, n]

admits a monochromatic difference T -free sequence of length k. If

DT (k; r) does not exist, we write DT (k; r) = ∞.

Determining the existence of DT (k; r) for arbitrary sets T can be

reduced to the situation in which r = 1 via the following lemma.

Lemma 10.40. Let k, r ∈ Z+ with k ≥ 2. Let T ⊆ Z+. Then

DT (k; r) ≤ DT (r(k − 1) + 1; 1).

Proof. Clearly there is nothing to prove if DT (r(k − 1) + 1; 1) = ∞
so we assume that DT (r(k − 1) + 1; 1) < ∞.

Let n = DT (r(k − 1) + 1; 1). Then [1, n] contains a difference T -

free sequence X = {xi} of length r(k − 1) + 1. Under any r-coloring

of [1, n], by the pigeonhole principle, there exists a monochromatic

k-term subsequence of X. Since none of the differences xj − xi (with

j > i) of X are members of T , then the same condition holds true for

the monochromatic subsequence, which completes the proof. �

When |T | = 1, a precise formula for DT (k; r) is known, as pre-

sented in the following theorem. In this situation, for T = {t}, we
use the notation Dt(k; r) in place of D{t}(k; r).

Theorem 10.41. For all k, r, t ∈ Z+,

Dt(k; r) = r(k − 1) + t

⌊
r(k − 1)

t

⌋
+ 1.

Proof. Let n = Dt(k; r) − 1 and consider an r-coloring χ : [1, n] →
{1, 2, . . . , r} that contains no monochromatic k-term difference t-free

sequence. Let Cj , 1 ≤ j ≤ r, be the color classes; i.e., Cj = {i ∈
[1, n] : χ(i) = j}. We next determine the number of monochromatic

pairs of elements in [1, n] whose difference is t.
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For each color class Cj , let m
(j)
0 = min({i : i ∈ Cj}) and let

S
(j)
0 =

⎧⎨⎩ {m(j)
0 ,m

(j)
0 + t} if m

(j)
0 + t ∈ Cj ,

{m(j)
0 } otherwise.

Now, for k = 1, 2, . . . , let

m
(j)
k = min

({
i ∈ Cj : i �∈

k−1⋃
�=0

S
(j)
�

})
;

i.e., the minimum integer in the color class Cj that has not been

placed in some S
(j)
� already. We also define, for k = 1, 2, . . . ,

S
(j)
k =

⎧⎨⎩ {m(j)
k ,m

(j)
k + t} if m

(j)
k + t ∈ Cj ,

{m(j)
k } otherwise.

Continue this process until
⋃

� S
(j)
� = Cj for each j ∈ {1, 2, . . . , r}.

We have now partitioned each color class Cj into subsets S�, where

each subset consists of either a pair of elements with difference t or a

single element.

For each color class j, let p(j) denote the number of subsets in

the partition of size two, and let q(j) denote the number of singleton

sets. Note that, for each j ∈ {1, 2, . . . , r}, we have 2p(j)+q(j) = |Cj |.
Consider a difference t-free sequence in Cj (i.e., of color j). Call

this sequence X. By our assumption about χ, we know that for each

�, at most one member of S
(j)
� belongs to X. Hence, |X| ≤ p(j)+q(j).

Since n = Dt(k; r)− 1, it follows that p(j)+ q(j) = k− 1 for each j ∈
{1, 2, . . . , r}. To see this, assume that for some color c ∈ {1, 2, . . . , r}
we have p(j) + q(j) < k − 1 (we can’t have p(j) + q(j) > k − 1 by

the definition of χ). We can extend χ to a coloring of [1, n + 1] by

letting χ(n + 1) = c. Hence, any difference s-free sequence of color

c has length at most k − 1. But this is still true for the other colors

as well. Hence, we would have a coloring of [1, Dt(k; r)] with no

monochromatic k-term difference t-free sequence, which contradicts

the definition of Dt(k; r).
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Hence, since p(j) + q(j) = k − 1 for each j ∈ {1, 2, . . . , r},
r∑

j=1

(p(j) + q(j)) = r(k − 1).

Letting

p =

r∑
j=1

p(j) and q =

r∑
j=1

q(j)

we have p+ q = r(k− 1). Furthermore, we know that 2p(j) + q(j) =

|Cj | for each color class Cj so that, summing over j ∈ {1, 2, . . . , r}
yields 2p + q = n. Since n = (p + q) + p = r(k − 1) + p, we now

investigate the value of p.

We proceed by considering how n compares with t. If n < t,

then we easily have p = 0. Hence, we consider n ≥ t. We will

first show that in this situation we must, in fact, have n ≥ 2t. To

show this, assume, for a contradiction, that t ≤ n < 2t. Extend

χ to [1, n + 1] = [1, Dt(k; r)] by setting χ(n + 1) = χ(n + 1 − t).

By the definition of Dt(k; r), this coloring of [1, n + 1] must admit a

monochromatic k-term difference t-free sequence, which must include

the integer n+1 (and, hence, not n+1−t). But, if we replace n+1 by

n+1−t it remains a monochromatic k-term difference t-free sequence

(because n < 2t). This is a contradiction since χ does not admit such

a sequence in [1, n].

Hence, we proceed with the assumption that n ≥ 2t. We will use

the coloring χ to derive another coloring χ′ that also avoids monochro-

matic k-term difference t-free sequences. Let m ∈ Z+ be the maximal

integer such that 2mt+2t ≤ n. We partition [1, n] into either 2m+2

or 2m+ 3 intervals as follows:

[1, t]∪[t+1, 2t]∪[2t+1, 3t]∪[3t+1, 4t]∪· · ·∪[2mt+t+1, 2mt+2t]∪H,

where H = [1, n]− [1, 2mt+ 2t].

Now, for i ∈ [1, t]∪ [2t+1, 3t]∪ [4t+1, 5t]∪· · ·∪ [2mt+1, 2mt+ t]

we let χ′(i) = χ(i). We also let χ′(i) = χ(i) for all i ∈ H. For

all other elements, we let χ′(i) = χ(i − s), so that each consecutive

pair of intervals is identically colored. We leave it to the reader as

Exercise 10.15 to show that χ′ does not admit a monochromatic k-

term difference t-free sequence.
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We now show that |H| < t. To prove this, assume otherwise, i.e.,

that n ≥ 2mt+3t. Under this assumption, we can extend χ′ by giving

[2mt+3t+1, 2mt+4t] the same coloring as [2mt+2t+1, 2mt+3t].

This extended coloring is free of monochromatic k-term difference t-

free sequences (by the same reasoning used to prove Exercise 10.15).

However, since this is a coloring of [1, 2t(m + 1) + 2t], it contradicts

our choice of m as maximal.

We now have all of the tools necessary to wrap up the proof.

The values of p under χ and χ′ are equal since both are maximally

valid colorings of [1, n]. However, under χ′, by construction we have

p = t(m+ 1) and q = |H| < t. Thus,

p = t · p
t
= t ·

⌊p
t

⌋
= t

⌊
p+ q

t

⌋
= t

⌊
r(k + 1)

t

⌋
.

Hence, we have determined that

Dt(k; r)− 1 = n = 2p+ q = (p+ q) + p = r(k − 1) + t

⌊
r(k + 1)

t

⌋
,

thereby completing the proof. �

While we have an exact formula for Dt(k; r), this is not the case

when |T | > 1. We do have, however, some results for select sets T .

We present these without proof.

Theorem 10.42. Let T ⊆ Z+ and let k, r ∈ Z+. If there exists

m ∈ Z+ such that m � t for all t ∈ T , then DT (k; r) ≤ mr(k− 1) + 1.

Example 10.43. Let P be the set of primes and consider T = P∪{1}
(we include 1 to avoid trivial solutions to the problem). Theorem

10.42, with the set T and m = 4, states that [1, 4k − 3] contains a

k-term sequence with no pair of differences equal to a prime or 1. We

see that the k-term arithmetic progression {1, 5, 9, . . . , 4k−3} is such

a sequence (and the only one).

When the prescribed set T is an interval of integers, we have the

following formulas.

Theorem 10.44. Let a, b, k, n, r ∈ Z+ with a < b. Then

D[1,n](k; r) = r(k − 1)(n+ 1) + 1,
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and

D[a,b](k; 1) = k + b

⌊
k − 1

a

⌋
.

10.6. Patterns in Colorings

Most of this book has dealt with the presence of specific monochro-

matic structures under finite colorings of the integers. In this section,

rather than being concerned with finding structures, we will investi-

gate colorings themselves.

For convenience, we will be working with colorings of Z+ or [1, n];

however, the integers are used only as placeholders for the colors.

Definition 10.45. Let n, r ≥ 1 and let χ be an r-coloring of [1, n]

or Z+. We say χ is squarefree if we cannot write χ = xzzy where

each of x, y, z is an r-coloring (written as a string of colors) and z is

nonempty. We say s is cubefree if we cannot write s = xzzzy where

x, y, z are r-colorings and z is nonempty.

Note that Definition 10.45 does not say that x or y must be

nonempty.

Example 10.46. There are no 2-colorings of [1, 4] that are square-

free. To see this, assume χ : [1, 4] → {0, 1} is a squarefree coloring.

Without loss of generality, we may assume that χ(1) = 0. Since χ is

squarefree, χ(2) must be 1. Likewise, χ(3) = 0, and χ(4) = 1. Now

we have the coloring zz, where z = 01, a contradiction.

Since it is quite easy to show that there is no squarefree 2-coloring

of an interval of length more than three (by Example 10.46), the next

result might seem somewhat remarkable.

Theorem 10.47. Let r ≥ 3. There exists γ : Z+ → {0, 1, . . . , r − 1}
such that γ is squarefree.

Concerning cubefree colorings, we have the following result.

Theorem 10.48. Let r ≥ 2. There exists γ : Z+ → {0, 1, . . . , r − 1}
such that γ is cubefree.

We next provide the colorings that are used to establish Theorems

10.47 and 10.48.
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Definition 10.49. Let c be a string of colors 0 and 1. Define f � c

to be the string obtained by transforming each occurrence of 0 into

01, and each occurrence of 1 into 10, i.e.,

f � 0 = 01 and f � 1 = 10.

The Thue-Morse sequence, also known as the Prouhet-Thue-Morse

sequence, is

lim
n→∞

fn � 0 = 01101001100101101 . . . .

To understand the Thue-Morse sequence, consider the first few

iterations of f acting on 0. We have

0
f→ 01

f→ 0110
f→ 01101001

f→ 0110100110010110 = f4 � 0.

We see that the action of f appears to be such that fn−1 � 0 is the

left half of fn � 0, while the right half is fn−1 � 0 with the 0’s and 1’s

interchanged. This is indeed true, but will not be proven here.

Using the Thue-Morse sequence, we can derive a related sequence.

Definition 10.50. Let S = {s1, s2, s3, . . . } be the sequence defined

by letting si equal the number of 1’s between the ith and (i+1)th 0’s

in the Thue-Morse sequence. Hence, S = {2, 1, 0, 2, 0, 1, 2, . . . }. We

call S the ternary Thue-Morse sequence.

It turns out that the Thue-Morse sequence is an example of a

cubefree 2-coloring of Z+, and that the ternary Thue-Morse sequence

is an example of a squarefree 3-coloring of Z+.

Some natural questions we may now ask are:

1. For n ≥ 1, how many squarefree 3-colorings of

length n are there?

2. For n ≥ 1, how many cubefree 2-colorings of

length n are there?

In investigating these questions we will use the following notation.
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Notation. For n ∈ Z+, let sq(n) denote the number of squarefree

3-colorings of length n, and let c(n) denote the number of cubefree

2-colorings of length n.

For small n, the exact values of sq(n) and c(n) are known. We

give the first 10 values of each:

n sq(n) c(n)

1 1 1

2 3 2

3 6 4

4 12 6

5 18 10

6 30 16

7 42 24

8 60 36

9 78 56

10 108 80

Table 10.2. Number of squarefree and cubefree colorings

Although no exact formula for sq(n) or c(n) is known, the fol-

lowing result, which we present without proof, gives upper and lower

bounds for these functions. Of particular interest is how close the

upper and lower bounds are to each other, for each of sq(n) and c(n).

Theorem 10.51. Let n ≥ 1. There exist constants a, b, d, e > 0 such

that
a(1.30125)n ≤ sq(n) < b(1.3018)n,

d(1.456975)n ≤ c(n) < e(1.4576)n.

10.7. Rainbow Ramsey Theory on the Integers

Thus far, we have looked at the problem of guaranteeing a monochro-

matic configuration of some kind under all r-colorings of a large

enough set. What if we instead were interested in basically the oppo-

site goal – that is, to guarantee the existence of a specific configuration

that is asmulti-colored as possible in the larger set (provided there are
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“enough” elements of each color in the larger set)? The study of this

type of problem has been given the rather fitting name of “rainbow”

Ramsey theory.

We begin with the following definition.

Definition 10.52. Let k, r ≥ 1. Let χ be an r-coloring of Z+. We

call an integer sequence S = s1, s2, . . . , sk rainbow if |{χ(si) : i =

1, 2, . . . , k}| = k. In other words, S is rainbow if no two terms have

the same color.

The work of the last two sections, which involved focusing on

colorings that avoided certain monochromatic structures, is a good

starting point for the discussion. As one example, consider the ternary

Thue-Morse sequence (see Definition 10.50) as a 3-coloring of Z+. It is

known that this coloring is squarefree (see Definition 10.45). Hence, if

d ∈ Z+, for every interval of length 2d, say [i+1, i+2d], we know that

[i+1, i+d] and [i+d+1, i+2d] are not identically colored. Thus, within

[i+1, i+2d] we are guaranteed to have a 2-term arithmetic progression

with common difference d whose terms have different colors.

Restating the above argument, we can use the Thue-Morse se-

quence as an example of a 3-coloring with the following property: for

every d ∈ Z+, every interval of length 2d admits a rainbow 2-term

arithmetic progression with common difference d. However, from Ex-

ample 10.46, we see that we cannot make the same claim if we use

only two colors. Hence, we make the following definition.

Definition 10.53. For k ≥ 2, let C(k) be the minimum number of

colors r such that there exists an r-coloring of Z+ with the following

property: for each d ∈ Z+, every interval of length kd admits a

rainbow k-term arithmetic progression with common difference d.

From the above discussion, we have C(2) = 3. We can provide a

general lower bound fairly easily.

Proposition 10.54. For k ≥ 2, we have C(k) ≥ k + 1.

Proof. Assume, for a contradiction, that for some r ≤ k, there exists

an r-coloring χ of Z+ with the property that for any d ∈ Z+, every

interval of length kd admits a rainbow k-term arithmetic progression
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with common difference d. Then, in particular (taking d = 1), no two

elements in any interval of length k may be the same color. However,

if r < k this is not possible by the pigeonhole principle. Hence, we

consider r = k.

Let c1c2 . . . ck be χ restricted to [1, k], where ci �= cj for i �= j.

Since [2, k + 1] must also contain all k colors, we see that the integer

k + 1 must have color c1. Shifting to [3, k + 2] gives us that c2 must

be the color of the integer k + 2. Repeating this, we find that the

coloring of the interval [1, k2] must be

c1c2 . . . ck c1c2 . . . ck · · · c1c2 . . . ck,

i.e., the color pattern c1c2 · · · ck is repeated k times. Now consider

d = k. We see that, under χ, every k-term arithmetic progression

with common difference k must be monochromatic. Hence, there is

no rainbow arithmetic progression with common difference k in [1, k2],

a contradiction. �

The above proposition would be meaningless if the numbers C(k),

k ≥ 3, did not exist (we know C(2) = 3). Fortunately, we have the

following upper bound on C(k), which implies their existence. We

omit the proof.

Theorem 10.55. For k ≥ 2, we have

C(k) ≤ k2(k − 1)

2
· e

k(2k−1)

(k−1)2 + 1.

Note that the upper bound for k = 2 gives us C(2) ≤ 807. Since

C(2) = 3, there is probably room for substantial improvement here.

This does not imply that improvement will be easy (consider Gowers’

bound on the van der Waerden numbers), nor that the stated upper

bound doesn’t become tight for large k (for large enough k, the bound

in Theorem 10.55 is less than 4k2(k − 1)).

We continue our study of rainbow arithmetic progressions by

turning the tables a bit – we fix the number of colors and investi-

gate which families of colorings guarantee the existence of rainbow

arithmetic progressions. The research in this area that has been done

has focused on results where the number of colors is equal to the

length of a desired rainbow arithmetic progression. As such, if we are
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searching for a rainbow k-term arithmetic progression and we con-

sider k-colorings that are void of at least one color, then, trivially, we

have no rainbow k-term arithmetic progression. Hence, our results

will assume bounds on the number of times each color is used.

Before the reader starts to believe that rainbow k-term arith-

metic progressions always exist under colorings of Z+ when each color

is used an equal number of times, we present the following “anti-

Ramsey” result, after a definition.

Definition 10.56. Let r, n ∈ Z+. We call an r-coloring of [1, rn]

equinumerous if each color is used exactly n times.

Theorem 10.57. Let k ≥ 3. For any n that is divisible by k, every

equinumerous k-coloring of [1, n] contains a rainbow k-term arith-

metic progression if and only if k = 3.

Partial proof. We will present the cases k ≥ 5. For k = 3 and k = 4,

we refer the reader to the references at the end of this chapter. Given

k ≥ 5, fix m ∈ Z+ and let n = 2mk. Define Ij = [2(j− 1)m+1, 2jm]

for j = 1, 2, . . . , k. Let t =
⌊
k
2

⌋
and define the k-coloring χ : [1, n] →

{0, 1, . . . , k − 1} by

χ(i) =

⎧⎪⎪⎨⎪⎪⎩
j − 1 if i ∈ Ij and j �= t, t+ 2,

t− 1 if i ∈ It ∪ It+2 and i is even,

t+ 1 if i ∈ It ∪ It+2 and i is odd.

Clearly, χ is an equinumerous k-coloring of [1, n] (where each

color is used 2m times). Assume, for a contradiction, that {a, a +

d, . . . , a+(k− 1)d} is a rainbow k-term arithmetic progression under

χ. Then we must have one term of this arithmetic progression in

each interval Ij , j = 1, 2, . . . , k. To see this, notice that the only

possible intervals that could contain two terms are It and It+2. If one

of these intervals contains two terms, then the other interval must not

contain a term. If an interval contains two terms, then we must have

the arithmetic progression’s common difference d < 2m. However, if

an interval does not contain a term, but intervals on either side do,

then we have d ≥ 2m. Since we cannot have d < 2m and d ≥ 2m, we

conclude that each of It and It+2 contains exactly one term (as do
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all of the other intervals). Hence, there exists � ∈ {2, 3, . . . , t} such

that a+ �d ∈ It (note that t ≤ k − 3 since k ≥ 5). This implies that

a + (� + 2)d ∈ It+2. But then a + �d and a + (� + 2)d must be the

same color since they are either both even or both odd. Hence, our

arithmetic progression cannot be rainbow, and we are done. �

Combining the idea of how C(k) is defined (see Definition 10.53)

with Theorem 10.57, we wonder if we can guarantee rainbow k-term

arithmetic progressions when we use more than k colors.

Question 10.58. Let k ≥ 4. Does there exist a minimum integer

r = r(k) such that every equinumerous r-coloring of [1, rn] contains

a rainbow k-term arithmetic progression?

In addition to investigating rainbow arithmetic progressions, rain-

bow solutions to linear equations have been explored. The Schur

equation result in Theorem 10.59, below, may be the earliest rainbow

result on the integers.

Theorem 10.59. Every equinumerous 3-coloring of [1, 3n] admits a

rainbow solution to x+ y = z (with x �= y, necessarily).

Proof. Assume, for a contradiction, that we have an equinumerous 3-

coloring of [1, 3n] with no rainbow solution. We let the color classes be

A, B, and C and have |A| = |B| = |C| = n. We may assume, without

loss of generality, that there exists k ≥ 2 such that [1, k− 1] ⊆ A and

k ∈ B.

Let a ∈ C and note that a ≥ k + 1. Suppose, for a (sub-)

contradiction, that a− 1 ∈ C. Consider a− k. If a− k ∈ A we have

that (x, y, z) = (k, a−k, a) is a rainbow solution, so we conclude that

a−k �∈ A. If a−k ∈ B, then (a−k, k−1, a−1) is a rainbow solution,

so we see that a− k �∈ B. Hence, a− k ∈ C.

Since a−k ∈ C, we know that a−k ≥ k+1 so that a−k−1 ≥ k.

So, consider a−k−1. It cannot be in A; otherwise (a−k−1, k, a−1)

is a rainbow solution. It cannot be in B; otherwise (1, a−k−1, a−k)

is a rainbow solution. Hence, a− k − 1 ∈ C.

At this point we have shown that a− k ∈ C and a− k − 1 ∈ C.
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Now let i ∈ Z+. We will show that a−ik ∈ C and a−ik−1 ∈ C by

induction on i. Since we have shown the base case above, we assume

that, for i ≥ 2, we have a− (i− 1)k ∈ C and a− (i− 1)k− 1 ∈ C. If

a− ik ∈ A, then (k, a− ik, a− (i− 1)k) is a rainbow solution, while if

a− ik ∈ B, then (a− ik, k− 1, a− (i− 1)k− 1) is a rainbow solution.

Hence, a−ik ∈ C. If a−ik−1 ∈ A, then (a−ik−1, k, a−(i−1)k−1)

is a rainbow solution, and if a− ik−1 ∈ B, then (1, a− ik−1, a− ik)

is a rainbow solution. Hence, a− ik − 1 ∈ C.

So far we have a− ik ∈ C for i = 0, 1, 2, . . . , provided a− ik ≥ 1.

However, we see that for some j ∈ Z+, we have a− jk ∈ [1, k]. But,

[1, k] ∩ C = ∅ (i.e., none of the first k elements are from C). This is

our (sub-)contradiction. Hence, a−1 �∈ C. In fact, a−1 ∈ A because,

otherwise, (1, a− 1, a) would be a rainbow solution if a− 1 ∈ B.

So, we have shown above that if a ∈ C then a − 1 ∈ A. This

holds for arbitrary a ∈ C.

Letting C = {c1 < c2 < · · · < cn} we have {c1 − 1 < c2 − 1 <

· · · < cn − 1} ⊆ A. However, since c1 ≥ k+1 we have c1 − 1 ≥ k ≥ 2,

so that c1 − 1 �= 1. Since 1 ∈ A, we now have that |A| ≥ n + 1, a

contradiction. �

We end this section by presenting, without proof, some refined

results about rainbow solutions for a few standard linear equations.

Theorem 10.60. Let n ∈ Z+.

(i) Every 3-coloring of [1, n], with each color being used more

than n
4 times, admits a rainbow solution to x+y = z (where,

necessarily, x �= y).

(ii) Every 3-coloring of [1, n], with each color being used more

than n+4
6 times, admits a rainbow solution to x + y = 2z

(where, necessarily, x �= y).

(iii) Every 4-coloring of [1, n], with each color being used more

than n+1
6 times, admits a rainbow solution to x+ y = z+w

(where, necessarily, x, y, z, and w are all distinct).

Remark 10.61. Part (ii) of Theorem 10.60 implies the existence of

a rainbow 3-term arithmetic progression since x, z, y are in arithmetic

progression with common difference z − x.
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10.8. Zero-Sums and m-Sets

This section seems a fitting way to conclude this book, insomuch as

it involves results obtained from the pigeonhole principal, the most

basic principle of Ramsey theory. We begin with a definition.

Definition 10.62. Let k, r ≥ 1 and let χ : Z+ → {0, 1, . . . , r− 1} be

an r-coloring. For x1, x2, . . . , xk ∈ Z+ we say that (x1, x2, . . . , xk) is

a modulo r zero-sum sequence if
∑k

i=1 χ(xi) ≡ 0 (mod r).

It is convenient to use the language “S is zero-sum” to refer to

a sequence S that is a modulo r zero-sum sequence when r is situ-

ationally understood. We also use zero-sum to describe sets whose

elements, when viewed as a sequence, are zero-sum.

Before stating perhaps the most well-known zero-sum theorem,

we start with two nice applications of the pigeonhole principle.

Theorem 10.63. Let r ≥ 1. Let χ : [1, r] → {0, 1, . . . , r − 1} be an

r-coloring. There exist i, j ∈ [1, r] with i+ j ≤ r such that

(i, i+ 1, i+ 2, . . . , i+ j − 1)

is zero-sum.

Proof. Assume, for a contradiction, that no such i and j exist. For

k = 1, 2, . . . , r define sk ∈ {0, 1, . . . , r − 1} such that

sk ≡
k∑

i=1

χ(i) (mod r).

By assumption, sk �= 0 for k = 1, 2, . . . , r. By the pigeonhole princi-

ple, there exist x, y, 1 ≤ x < y ≤ r, such that sx = sy. Thus,

x∑
i=1

χ(i) ≡
y∑

i=1

χ(i) (mod r).

This yields
y∑

i=x+1

χ(i) ≡ 0 (mod r),

and we are done by taking i = x+ 1 and j = y − x. �
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Lemma 10.64. Let r ≥ 3, and let χ : Z+ → [0, r − 1] be an r-

coloring. Let A = {χ(i) : i ∈ Z+}. Assume that |A| = k > 1 + r
2 and

write A = {c1, c2, . . . , ck}. Then, for any c ∈ [0, r − 1], there exist

i, j, 1 ≤ i < j ≤ k, such that c ≡ (ci + cj) (mod r).

Proof. Let χ and A be as in the statement, and let c ∈ [0, r − 1] be

given. For any integer n, denote by n̄ the least nonnegative integer s

such that n ≡ s (mod r). Define

B = {c− c1, c− c2, . . . , c− ck}

(so that |B| = k). Since |A∩B| = |A|+ |B|− |A∪B| and |A|+ |B| >
2+r, while |A∪B| ≤ r, we see that A and B must have at least three

elements in common. Say x, y, z ∈ A ∩B. Thus,

x ≡ (c− x′) (mod r), y ≡ (c− y′) (mod r), z ≡ (c− z′) (mod r)

for some x′, y′, z′ ∈ A. If we have x �= x′, y �= y′, or z �= z′, then

we are done because we have two distinct elements of A summing

(modulo r) to c. Hence, assume x = x′, y = y′, and z = z′. Since

2x ≡ 2y ≡ 2z ≡ c (mod r) we have

2(x− y) ≡ 0 (mod r), 2(x− z) ≡ 0 (mod r), 2(y − z) ≡ 0 (mod r),

i.e., there are three solutions to 2t ≡ 0 (mod r). Since we may have

at most two distinct solutions to 2t ≡ 0 (mod r) (check!), one of the

following must hold:

(i) x− z ≡ (y − z) (mod r);

(ii) x− y ≡ (x− z) (mod r);

(iii) x− y ≡ (y − z) (mod r).

If (i) holds, then x = y, contradicting the fact that x and y are

distinct. If (ii) holds, then y = z, again a contradiction. If (iii)

holds, we have x + z ≡ 2y ≡ c (mod r), which implies that x = z

since 2x = x+ x ≡ c (mod r), contradicting the fact that x and z are

distinct. �

We now state and prove the main result of this section.
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Theorem 10.65 (Erdős-Ginzburg-Ziv Theorem). Let r ≥ 2. Let S

be a set of 2r− 1 elements. For any r-coloring S → {0, 1, . . . , r− 1},
there exist distinct t1, t2, . . . , tr ∈ S such that (t1, t2, . . . , tr) is zero-

sum.

Proof. Let χ be a given r-coloring. We use induction on the number

of (not necessarily distinct) prime factors of r. We start with the base

case: r is prime. Let 0 ≤ c1 ≤ c2 ≤ · · · ≤ c2r−1 be the colors used

by χ (all of the colors are not necessarily used). If ci = ci+r−1 for

some i ≤ r−1, then we are done since
∑i+r−1

j=i cj ≡ 0 (mod r). Hence,

assume Ci = {ci, ci+r−1}, i = 1, 2, . . . , r − 1, are 2-element sets.

For any integer n, denote by n̄ the least nonnegative integer s

such that n ≡ s (mod r). Define, for 1 ≤ k ≤ r − 1,

Xk =

⎧⎨⎩
k∑

i=1

xi : xi ∈ Ci, i = 1, 2, . . . , k

⎫⎬⎭ .

We will show that |Xk| ≥ k+1 by means of induction on k. For k = 1

the result is trivial. Let k < r − 1 and assume |Xk| ≥ k + 1. We will

show that |Xk+1| ≥ k + 2. Clearly, the set

Y = {si + ck+1 : si ∈ Xk, i = 1, 2, . . . , |Xk|}

consists of |Xk| distinct elements. We may assume that |Xk| = k+1,

or else |Y | ≥ k + 2 and we are done since Y ⊆ Xk+1.

Hence, it remains to show that there exists sj ∈ Xk such that

(sj + cr+k) (mod r) �∈ Y . Assume, for a contradiction, that no such

sj exists, i.e., for every sj , j ∈ {1, 2, . . . , k + 1}, there exists s′j ∈ Xk

such that

(10.13) s′j + ck+1 ≡ (sj + cr+k) (mod r).

Let d = ck+1 − cr+k. Then d �= 0, and hence we can rewrite (10.13)

as

(10.14) s′j ≡ (sj − d) (mod r).

Since |Xk| = k+1, there exist t1, t2, . . . , tr−k−1, distinct residues

modulo r, that are not members of Xk. Note that k < r − 1 gives

us r − k − 1 ≥ 1. Since r is prime, there exists s ∈ Xk such that

s − d ≡ ti (mod r) for some i ∈ {1, 2, . . . , r − k − 1}, contradicting
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the existence of an s′j ∈ Xk satisfying (10.14). This completes the

demonstration that |Xk| ≥ k + 1 for 1 ≤ k ≤ r − 1.

Let X = Xr−1. Hence, |X| = r (since there are only r residues

modulo r). Consider c2r−1, which is not a member of any Ci. Since

X contains all residues modulo r, for all i ∈ {1, 2, . . . , r − 1} there

exist xi ∈ Ci such that

r−1∑
i=1

xi ≡ −c2r−1 (mod r).

Hence,

x1 + x2 + · · ·+ xr−1 + c2r−1 ≡ 0 (mod r),

and we have r elements that satisfy the conclusion of the theorem.

This completes the base case.

Now, let r = pm with p a prime and m �= 1. Clearly, the number

of prime factors of m is less than the number of prime factors of r.

Taking all colors modulo p, the base case gives us the existence of a

p-element subset T1 ⊆ S with
∑

t∈T1
χ(t) ≡ 0 (mod p). Consider S1 =

S−T1, so that |S1| = (2m− 1)p− 1. Again, taking all colors modulo

p, there exists a p-element subset T2 ⊆ S1, such that
∑

t∈T2
χ(t) ≡

0 (mod p). Let S2 = S1 − T2. Continuing to take all colors modulo

p, for each i ∈ {2, 3, . . . , 2m − 1}, there exists a p-element subset

Ti ⊆ Si−1 where Si−1 = Si−2 − Ti−1 (taking S0 = S). Hence, there

exist 2m − 1 pairwise disjoint subsets of S, say, T1, T2, . . . , T2m−1,

with each Ti satisfying
∑

t∈Ti
χ(t) ≡ 0 (mod p).

For i = 1, 2, . . . , 2m − 1, let kip =
∑

t∈Ti
χ(t) and consider the

set S′ = {ki : 1 ≤ i ≤ 2m − 1}. By the induction hypothesis, S′

contains ki1 , ki2 , . . . , kim such that
∑m

j=1 kij ≡ 0 (modm). Hence,

T = Ti1 ∪ Ti2 ∪ · · · ∪ Tim is a subset of S with pm elements such that∑
t∈T χ(t) ≡ 0 (mod pm), which completes the proof. �

As can be seen from the above proof, the fact that the set S has

2r − 1 elements is crucial. To see that we cannot r-color a set with

only 2r− 2 elements and expect the same result to hold, consider the

following example.

Example 10.66. For all r ≥ 2, there exists χ : [1, 2r− 2] → [0, r− 1]

such that for any distinct t1, t2, . . . , tr ∈ [1, 2r − 2], the sequence
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(t1, t2, . . . , tr) is not zero-sum. To show this, let χ to be the coloring

defined by χ(i) = 0 for i = 1, 2, . . . , r − 1, and χ(i) = 1 for i =

r, r + 1, . . . , 2r − 2 (χ uses only two of the possible r colors). Since∑r
i=1 χ(xi) ≤ r − 1 and is positive, for any distinct t1, t2, . . . , tr ∈

[1, 2r − 2], we see that (t1, t2, . . . , tr) is not zero-sum.

In Example 10.66, we used only two colors. In fact, it is known

that for any r-coloring χ : S → {0, 1, . . . , r − 1}, where S is a set

of 2r − 2 elements, if there do not exist t1, t2, . . . , tr ∈ S such that

(t1, t2, . . . , tr) is zero-sum, then, in fact, it must be the case that

χ : S → {x, y}, where r − 1 elements of S have color x, and the

remaining r − 1 elements of S have color y. Hence, if χ is an r-

coloring that uses at least three colors, then we may use |S| = 2r− 2

in Theorem 10.65.

Based on the previous example, we refine Theorem 10.65 by

means of the following definition and subsequent results.

Definition 10.67. For 1 ≤ k ≤ r, define g = g(r, k) to be the least

integer such that for all S with |S| = g and all χ : S → {0, 1, . . . , r−1},
whenever |χ(S)| = k (i.e., the range of χ contains k colors), there exist

t1, t2, . . . , tr ∈ S such that (t1, t2, . . . , tr) is zero-sum.

Note that Theorem 10.65 implies that g(r, k) is well-defined, since

g(r, k) ≤ 2r − 1.

From the discussion after Example 10.66, we see that the follow-

ing result is true.

Proposition 10.68. Let 2 < k ≤ r. Then g(r, 2) = 2r − 1 and

g(r, k) ≤ 2r − 2.

Investigating g(r, k) further, we have the following two theorems.

Theorem 10.69. For r ≥ 1,

g(r, r) =

{
r if r is odd,

r + 1 if r is even.

Proof. By definition, g(r, r) ≥ r for all r. For an upper bound, let

|S| = r and let χ be a coloring of S such that χ(S) = {0, 1, . . . , r−1}.
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First consider r odd. By definition, all colors are used by χ, so

that

(10.15)
∑
s∈S

χ(s) =
r−1∑
i=0

i =
r(r − 1)

2
.

Since r is odd we see that r−1
2 ∈ Z+, and hence the elements of S are

zero-sum.

Now let r be even, so that r
2 ∈ Z+. To see that g(r, r) > r,

consider the coloring 012 . . . (r − 1). By (10.15) and the fact that
r
2 ∈ Z+, we see that

∑r
i=1(i− 1) �≡ 0 (mod r).

We now turn to showing that g(r, r) ≤ r + 1. To this end, let

T = {t1, t2, . . . , tr+1} and γ : T → {0, 1, . . . , r − 1}, with |γ(S)| = r.

We may assume that γ(tr+1) is the sole duplicate color.

Hence, for r even,

r∑
i=1

γ(ti) =

r−1∑
i=0

i ≡ s (mod r)

for some s �= 0. Let d = s+γ(tr+1). Then there exists j ∈ {1, 2, . . . , r}
such that γ(tj) ≡ d (mod r). Thus,

r∑
i=1
i�=j

γ(ti) ≡ (s− d) (mod r),

which gives us

γ(tr+1) +

r∑
i=1
i�=j

γ(ti) ≡ 0 (mod r),

and hence (t1, t2, . . . , tj−1, tj+1, tj+2, . . . , tr+1) is zero-sum. Since γ is

arbitrary, this implies that g(r, r) ≤ r + 1. Hence, we have g(r, r) =

r + 1 for r odd, thereby completing the proof. �

Theorem 10.70. If r ≥ 5 and 1+ r
2 < k ≤ r−1, then g(r, k) = r+2.

Proof. To show that g(r, k) ≤ r+2, let χ : [1, r+2] → {0, 1, . . . , r−1}
be a coloring that uses exactly k colors. Let s ∈ {0, 1, . . . , r − 1}
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be such that s ≡
∑r+2

i=1 χ(i) (mod r). By Lemma 10.64, there exist

x, y ∈ [1, r + 2], with x < y, such that s ≡ (x+ y) (mod r). Hence,

(1, 2, . . . , x− 1, x+ 1, x+ 2, . . . , y − 1, y + 1, y + 2, . . . , r + 2)

is zero-sum. This proves that g(r, k) ≤ r + 2.

To prove that g(r, k) ≥ r + 2 we present a valid 2-coloring of

[1, r+1]. For any integer n, denote by n̄ the least nonnegative integer

s such that n ≡ s (mod r). Let X = {2x : x = 2, 3, . . . , k}.
We start by noting that, if r is even,

X = {0, 2, 4, . . . , r − 2},

while, if r is odd,

X = {1, 3, 5, . . . , 2k − r} ∪ {4, 6, 8, . . . , r − 1}.

We consider three cases.

Case 1. r is even, with k ≡ 2 (mod 4) or k ≡ 3 (mod 4). In this case,(
k
2

)
is odd. Thus, we can take some x ∈ {2, 3, . . . , k} such that

2x ≡
((

k

2

)
+ 1

)
(mod r).

Let χ : [1, r + 1] → {0, 1, . . . , x − 1, x + 1, . . . , k} be the k-coloring

represented by

0 . . . 0︸ ︷︷ ︸
r−k+1

1 1 2 3 . . . (x− 1) (x+ 1) (x+ 2) . . . k.

Let

s = 1 +
k∑

i=1
i�=x

i,

so that

s =

(
k

2

)
− x+ 1 ≡ x (mod r).

For any r elements in [1, r + 1], the sum of their colors, under χ, is

congruent to (s − t) (mod r) for some t ∈ {0, 1, . . . , x − 1, x + 1, x +

2, . . . , k}. By our choice of x, we have s − t ≡ (x − t) �≡ 0 (mod r).

Hence, there is no collection of r elements that is zero-sum under χ

in this case.
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Case 2. r is even, with k ≡ 0 (mod 4) or k ≡ 1 (mod 4). In this case,(
k
2

)
is even. Hence, we can choose x ∈ {2, 3, . . . , k} such that

2x ≡
(
k

2

)
(mod r).

Let χ : [1, r + 1] → {0, 1, . . . , x − 1, x + 1, . . . , k} be the k-coloring

represented by

0 . . . 0︸ ︷︷ ︸
r−k+2

1 2 3 . . . (x− 1) (x+ 1) (x+ 2) . . . k.

Let

s =

k∑
i=1
i�=x

i,

so that

s =

(
k

2

)
− x ≡ x (mod r).

For any r elements in [1, r + 1], the sum of their colors, under χ, is

(s − t) (mod r) for some t ∈ {0, 1, . . . , x − 1, x + 1, x + 2, . . . , k}. By

our choice of x, we have s − t ≡ (x− t) �≡ 0 (mod r). Hence, there is

no collection of r elements that is zero-sum under χ in this case.

Case 3. r is odd. Let
(
k
2

)
+ 1 ≡ i (mod r), with 0 ≤ i ≤ r − 1. We

can then argue as in Case 1 or Case 2, depending on whether i is even

or odd, respectively. We leave the details to the reader as Exercise

10.16.

These cases exhaust all possibilities, so that g(r, k) ≥ r+2. This

completes the proof. �

One way to expand on the Erdős-Ginzberg-Ziv theorem is by con-

sidering situations when we want two zero-sum sets. In this direction,

the following result is known.

Theorem 10.71. Let m ≥ 2. In every m-coloring of [1, 4m−5] there

exist two modulo m zero-sum sets, A and B, such that |A ∩ B| = 2.

In every m-coloring of [1, 4m−3] there exist modulo m zero-sum sets,

C and D, such that |C ∩D| = 1.
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The previous theorem concerns the interaction of two sets. Along

these lines, we now turn our attention to m-sets, which can be con-

sidered to be special cases of zero-sum sets.

Definition 10.72. Given a finite coloring of Z+, we call A ⊆ Z+ an

m-set if A is a monochromatic set of size m.

To see that an m-set is a special case of a modulo m zero-sum

sequence, note that if we have m elements of the same color, then the

sum of their colors is congruent to 0 modulo m.

Now, m-sets by themselves are not very interesting since any r-

coloring of the first r(m−1)+1 positive integers contains an m-set by

the pigeonhole principle. However, the study of Ramsey properties

associated with certain kinds of sequences ofm-sets proves to be much

more interesting.

Definition 10.73. We say that the m-sets A1, A2, . . . , Ak are non-

overlapping, and write A1 ≺ A2 ≺ · · · ≺ Ak, if

max({a : a ∈ Ai}) < min({a : a ∈ Ai+1})

for all i ∈ {1, 2, . . . , k − 1}.

Before stating the next theorem, we need one more definition.

Definition 10.74. For any finite set S = {s1 < s2 < · · · < st}, the
diameter of S, written diam(S), is st − s1.

Theorem 10.75. Let m ≥ 2. The minimum integer n such that

every 2-coloring of [1, n] admits nonoverlapping m-sets A ≺ B with

diam(A) ≤ diam(B) is n = 5m− 3.

Proof. We first exhibit a 2-coloring χ : [1, 5m − 4] → {0, 1} that

avoids such m-sets. Consider 01m−10m−11m−102m−2. We see that

any m-set A within the first 3m − 2 elements must have diameter

at least 2m − 2 and that we do not have two such m-sets within

[1, 3m − 2]. Since we require the set B to have diameter at least

2m− 2, and there is no such m-set in 02m−2, we must use a 0 not in

the 02m−2 part of the coloring. But then the m-set A must overlap B,

a contradiction. If we consider A not to be contained in [1, 3m − 2],

we will obtain the same conclusion.
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We now let χ be an arbitrary 2-coloring of [1, 5m − 3]. By the

pigeonhole principle, there exists an m-set A in [1, 2m − 1]. Hence,

diam(A) ≤ 2m − 2. We proceed by showing that any 2-coloring of

[2m, 5m − 3] contains either an m-set B with diam(B) ≥ 2m − 2 or

two nonoverlapping m-sets C ≺ D with diam(C) ≤ diam(D). Once

this is shown, the proof will be complete.

For ease of exposition, we consider an arbitrary 2-coloring χ of

[1, 3m− 2] instead of [2m, 5m− 3]. Using the colors 0 and 1, we may

assume, without loss of generality, that χ(1) = 0. Let i ∈ {0, 1}. If

the number of elements of color i is less than m, then we have at least

2m − 1 elements of color 1 − i. These 2m − 1 elements necessarily

contain an m-set of diameter at least 2m− 2. Hence, we can assume

that we have at least m elements of each color.

If the largest element of color 0 is greater than 2m − 2, since

we have m elements of color 0 and χ(1) = 0, we have an m-set of

color 0 with diameter at least 2m − 2, and are done. Hence, we can

assume that all elements of color 0 are in [1, 2m − 2]. In particular,

χ(3m − 2) = 1. Now, if the smallest element of color 1 is less than

m+1, since we have at least m elements of color 1, we have an m-set

of color 1 with diameter at least 2m− 2. Hence, we can assume that

all elements of color 1 are in [m+ 1, 3m− 2]. Consequently, we have

that [1,m] is entirely of color 0 while [2m − 1, 3m − 2] is entirely of

color 1. Hence, we have two nonoverlapping m-sets, each of diameter

m− 1, so that the diameters are, in particular, nondecreasing. �

Having the above theorem under our belt, we make the following

definition.

Definition 10.76. Letm, k, r ≥ 2 and define b(m, k; r) to be the min-

imum integer n such that every r-coloring of [1, n] admits k nonover-

lapping m-sets A1 ≺ A2 ≺ · · · ≺ Ak with

diam(A1) ≤ diam(A2) ≤ · · · ≤ diam(Ak).

We can restate Theorem 10.75 by stating that b(m, 2; 2) = 5m−3.

The following theorem tells us more about these numbers.
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Theorem 10.77. The following hold:

(i) b(m, 2; 3) = 9m− 7 for m ≥ 2;

(ii) b(m, 2; 4) = 12m− 9 for m ≥ 2;

(iii) b(m, 3; 2) = 8m− 5 +
⌈
2m−2

3

⌉
for m ≥ 5.

We can modify the definition of b(m, k; r) in several ways. We

end this section with a few results (without proofs) that address some

of these modifications, and refer the reader to the Reference section

for more information.

Theorem 10.78. For m ≥ 2, let f(m, k) be the minimum integer

n such that every 2-coloring of [1, n] admits k nonoverlapping m-sets

A1 ≺ A2 ≺ · · · ≺ Ak such that diam(A1) ≤ diam(A2) ≤ · · · ≤
diam(Ak) or diam(A1) ≥ diam(A2) ≥ · · · ≥ diam(Ak) (i.e., the di-

ameters are monotonic). Then

f(m, 2) = 4m− 2,

f(m, 3) = 8m− 5, and

2(m− 1)(k + 1) + 1 ≤ f(m, k) ≤ (2m− 1)(k2 − 2k + 2) for k ≥ 4.

Theorem 10.79. Let m, r ≥ 2. Let h(m; r) be the minimum integer

n such that every r-coloring of [1, n] admits m-sets A and B with

a1 = min({a : a ∈ A}) and bm = max({b : b ∈ B}) such that A ≺ B

and diam(A) ≤ bm−a1

2 . Then

h(m; 2) = 5m− 4,

h(m; 3) = 7m− 6 +
⌊
m
2

⌋
for m ≥ 4, and

h(m; 4) = 10m− 9 for m ≥ 3.

Theorem 10.80. Let m, r ≥ 2. Let i(m; r) be the minimum integer

n such that every r-coloring of [1, n] admits m-sets A = {a1 < a2 <

· · · < am} and B = {b1 < b2 < · · · < bm} such that A ≺ B and

diam(A) + (am−1 − a1) ≤ diam(B) + (bm−1 − b1).

Then i(m; 2) = 5m− 3.
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Theorem 10.81. Let m, r ≥ 2. Let j(m; r) be the minimum integer

n such that every r-coloring of [1, n] admits m-sets A = {a1 < a2 <

· · · < am} and B = {b1 < b2 < · · · < bm} such that A ≺ B and

b1 − a1 ≤ b2 − a2 ≤ · · · ≤ bm − am.

Then j(m; 2) = 6m− 5.

10.9. Exercises

10.1 Find F (3; 2).

10.2 Let F̂ be the least positive integer such that for any 2-

coloring of [1, F̂ ], there exist x, y ∈ [1, F̂ ] (not necessarily

distinct) such that {x, y, x+y, xy} is monochromatic. Show

that F̂ = 39.

10.3 Prove Lemma 10.22.

10.4 Prove Lemma 10.23. (Hint: see Theorem 4.35.)

10.5 Prove Corollary 10.26 by showing that D is not 3-accessible.

10.6 Using the notation of the proof of Theorem 10.27, show that

for k = 4 and k = 5, for every 2-coloring of [1, f(k)], there

exist S and T as described in the proof.

10.7 Complete the proof of Theorem 10.27.

10.8 Prove that a = 2 is the only value of a ≥ 2, for which

{ai : i = 0, 1, 2, . . . } is 2-accessible.

10.9 Let k ≥ 2. Show that Δ(V3, k; 2) = 4k − 5 and

Δ(V4, k; 2) =

{
3k − 4 if k is odd,

3k − 3 if k is even.

10.10 Let Vm,n be the set of positive integers divisible by neither

m nor n. Do parts (a) and (b) to show that Δ(V3,4, k; 2) =

7k − 12 for k ≥ 3.

a) Show that Δ(V3,4, k; 2) ≥ 7k − 12 for k ≥ 3 by proving:

i) for k even, the coloring 1(10011000110011)
k−2
2 avoids

monochromatic k-term V3,4-diffsequences, and
                

                                                                                                               



346 10. Other Topics

ii) for k odd, the coloring 1(10011000110011)
k−3
2 (1001100)

avoids monochromatic k-term V3,4-diffsequences.

b) Show that Δ(V3,4, k; 2) ≤ 7k − 12 for k ≥ 3. (Hint:

show that every 2-coloring of [1, 7k − 12] has monochro-

matic V3,4-diffsequences X = {x1, x2, . . . , xm} and Y =

{y1, x2, . . . , yn}, of different colors, such that m+n ≥ 2k−1.

Then consider xm − yn ≡ i (mod 12) for i = 0, 1, . . . , 11.)

10.11 Show that Δ(P + c, 2; 2) = 2c+ 5 for all c ≥ 0.

10.12 Prove that Δ(P +c, k; r) ≥ r(k−1)(c+2+1) for all k, r ≥ 2

and all c ≥ 0.

10.13 Prove Theorem 10.35.

10.14 Prove that Theorems 10.37 and 10.38 are equivalent.

10.15 Show that the coloring χ′ is Theorem 10.41 admits no

monochromatic k-term difference s-free sequence.

10.16 Fill in the details for Case 3 of Theorem 10.70.

10.10. Research Problems

10.1∗ Prove or disprove: For all r ≥ 1, any r-coloring of Z+ must

admit a monochromatic set of the form {x, y, x+ y, xy}.
References: [203], [204], [205], [206], [311], [336]

10.2 Determine if the set of primes P is 2-accessible. More gen-

erally, characterize those nonnegative even integers e (if

any) such that P + e is 2-accessible (by Theorem 10.33,

doa(P + e) ≤ 2). If any such e exists, find bounds on

Δ(P + e, k; 2). Extending the table of known values of Δ

(see Table 10.1), via a computer program, may be helpful.

References: [256], [259]

10.3 Let c ≥ 3 be an odd positive integer. Determine if the upper

bound on doa(P + c) given by Theorem 10.33 is the true

value of doa(P +c). In particular, determine if doa(P +3) =

3. Try to obtain bounds on Δ(P + c, k; 2) or Δ(P + c, k; 3)

(the discovery of new values of Δ, by computer, may be

useful).

References: [256], [259]
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10.4 For a set D that is not r-accessible, denote by m(D; r) the

largest integer k such that every r-coloring of Z+ admits

a monochromatic k-term D-diffsequence. A few values of

m(P + c; 3) are known for some small values of c. In partic-

ular, it is known that m(P ; 3) = 5. Determine more about

m(P + c; q + 1), for c ≥ 2, where q is the smallest prime

dividing c (see Theorem 10.33).

References: [256], [259]

10.5 Let S = {2}∪{2i+1 : i ≥ 1}. Study the function Δ(S, k; 2).

Reference: [256]

10.6 Determine the true order of magnitude of Δ(F, k; 2), where

F is the set of Fibonacci numbers.

References: [30], [256]

10.7 Determine doa(F ), where F is the set of Fibonacci numbers.

Computer output strongly suggests that doa(F ) ≤ 3.

References: [30], [256]

10.8 Let T = {2i : i ≥ 0}. Determine the order of magnitude of

Δ(T, k; 2).

Reference: [256]

10.9 Extend the results on Δ(F, k; 2) and Δ(T, k; 2) (see Research

problems 10.5 and 10.7) to more than 2 colors.

Reference: [256]

10.10 Find a formula for Δ(Vm, k; 2) for m ≥ 5.

Reference: [256]

10.11 Find a formula for Δ(Vm,n, k; 2) for 3 ≤ m < n. (See Exer-

cise 10.10 for the definition of Vm,n.)

Reference: [256]

10.12 Investigate DT (k; r), the difference T -free function, using

sets T for which the function values are not already known.

Start with T ={a, b} with gcd(a, b)=1.

Reference: [255]

10.13 Prove or disprove the conjecture that, for positive integers

a < b, and any k, r ∈ Z+, we have

D[a,b](k; r) = r(k − 1) + b

⌊
r(k − 1)

a

⌋
+ 1.

Reference: [255]
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10.14 Prove or disprove the conjecture that

DT (k; r) = DT (r(k − 1) + 1; 1)

for any k, r ∈ Z+.

References: [232], [233], [234], [255]

10.15∗ Determine the rate of growth of sq(n) or c(n); see Theorem

10.51.

References: [77], [119], [297], [385]

10.16 Find g(r, k) for 5 ≤ k ≤ 1 + r
2 (see Definition 10.67).

References: [19], [58], [62], [75], [76], [162]

10.17 Prove or disprove the conjecture that C(k) = k+ c for some

constant c. Barring that, provide a quadratic upper bound

for C(k) or show that C(k) = o(k2).

Reference: [186]

10.18 Answer Question 10.58.

References: [32], [105], [220], [221]

10.19∗ Determine the minimum number of rainbow 3-term arith-

metic progressions that must exist in an equinumerous 3-

coloring of [1, 3n].

References: [32], [220], [221], [301]

10.20 Determine the formula for the function f(m, k) of Theorem

10.78.

Reference: [66]

10.21 Determine the formula for the function i(m; r) of Theorem

10.80.

Reference: [332]

10.22 Determine the formula for the function j(m; r) of Theorem

10.81.

Reference: [106]
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10.11. References

§10.1. Folkman’s original proof of the Folkman-Rado-Sanders theo-

rem is unpublished, but reproduced in [175]. The proof presented in

this section is essentially his proof. It was also proved by Rado [311]

and, independently, by Sanders [336]. The proof of Theorem 10.9 can

be found in [133]. A proof based only on Ramsey’s theorem (and not

van der Waerden’s theorem) can be found in [293]. Theorem 10.10

is from [202]. A simpler proof of Hindman’s theorem was given by

Baumgartner [35]. Related work is found in [205] and [206]; also see

[208] for an excellent survey, and [373].

§10.2. Theorem 10.13, along with some results on extensions of dou-

blefree sets, can be found in [134].

§10.3. The proof of the upper bound on the degree of accessibility in

Theorem 10.28 is from [30]. The fact that F is 2-accessible, as well

as the upper bound on Δ(F, k; 2) that is derived in the proof of The-

orem 10.28, are mentioned in [256]. The function G(n) in the proof

of 10.28 is called the Hofstadter G-sequence and is known to equal⌊
(n+1)(

√
5−1)

2

⌋
. Theorem 10.31 was proved by Jungić [218]. Theorem

10.33, with its proof, is from [259]. All other results in this section

are from [256], which contains additional work on accessibility.

§10.4. Brown’s lemma is due to Tom Brown and is taken from [80].

We have denoted the numbers in Theorem 10.38 by B(f ; r) in honor

of his contributions to the field of Ramsey theory on the integers. A

generalization of Brown’s lemma is investigated in [82].

§10.5. Results from this section are found in [255].

§10.6. The Thue-Morse sequence was defined originally by Prouhet

[306], and rediscovered by Thue (see [392]) with additional work by

Morse [288]. For a proof that this sequence is cubefree and that the

associated ternary sequence is squarefree, see [25]. For a good ex-

pository article about Thue, see [55]. The Morse-Hedlund sequence,

which is similar to the ternary Thue-Morse sequence, is found in [289].

Regarding Theorem 10.51, the lower bound for sq(n) is from [231],

the upper bound for sq(n) is from [299] , the lower bound for c(n) is
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also from [231], and the upper bound for c(n) is from [119]. Good

general references for this section are [24], [77], [274], [275], and

[297].

§10.7 The coloring in Definition 10.52 is referred to in the literature

as k-nonrepetitive. Theorem 10.55 uses the Lovász Local Lemma and

is found in [186]. The coloring given in the proof of 10.57 is from

[32]. The case k = 3 of Theorem 10.57 was originally conjectured by

Radoičić and proofs can be found in [220] (for the associated density

result) and [32] (for general n); the k = 4 case (the last case to be

resolved) is from [105] and [191]. See [221] for a survey of some

rainbow Ramsey results, including extensions to colorings of cyclic

groups. More rainbow results in colorings of cyclic groups can be

found in [104]; other rainbow extensions can be found in [33] and

[145]. Theorem 10.59 is due to Alekseev [21]; the proof here is (to

the best of our knowledge) the first English translation (from Russian)

of this result. Theorem 10.60(i) is found in [362], part (ii) is proved

in [32] and part (iii) is in [147]. Rainbow-free colorings of the cyclic

group Zp for equations of the form x+ y = cz can be found in [273].

§10.8. There are at least five different proofs of the Erdős-Ginzburg-

Ziv theorem. The one given here follows the original [127], which can

be found in [26], along with four other proofs of the Erdős-Ginzburg-

Ziv theorem. The definition of g(n, k) is given in [62]. Theorem

10.63 can be found in [19]. The proof of Lemma 10.64 is from [162],

but was first proved in [75]. In [76], Brakemeier considers g(n, k)

for n prime. Proposition 10.68 is from [58]. The cases k = 3, 4 of

g(n, k) are studied in [62]. Theorem 10.70 was first proved in [76]

and then independently in [162]. See [60] for a proof of Theorem

10.71. Bialostocki, Erdős, and Lefmann [59] proved Theorem 10.75

and part (i) of Theorem 10.77. Part (ii) of Theorem 10.77 is from

[184], while part (iii) is from [54]. We have denoted the numbers in

Definition 10.76 by b(m, k; r) in honor of Bialostocki’s contributions

to the zero-sum subfield of Ramsey theory. Theorem 10.78 is from

[66]. Theorem 10.79 is from [363]. Theorem 10.80 is from [332].

Theorem 10.81 is from [106]. For further information on m-sets, see

[57], [63], [64], [185].
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Additional References: There are many other Ramsey-type prob-

lems that have not been discussed in this book, but which are cer-

tainly of interest. Abbott, Liu, and Riddell [10] considered a function

much like the Erdős and Turán function (see Section 2.5), but where

one tries to avoid arithmetic progressions in a set of n real numbers,

rather than in [1, n]. For example, let m(n) represent the largest in-

teger m such that there exists a k-term sequence in [1,m] with the

property that no member of the sequence is equal to the mean of the

other members. Bounds on m(n) are given in [1], [2], [73], [132], and

[136].

                

                                                                                                               



                

                                                                                                               



Notation

Notation Description Page

�·� Ceiling function 11

�·� Floor function 11

⊕ Modular addition 117

� A � B = {a − b : a ∈ A, b ∈ B} 313

[a, b] {a, a + 1, . . . , b} 9

A − B {x ∈ A : x 
∈ B} 9

A ≺ B Nonoverlapping sets: max(a ∈ A) < min(b ∈ B) 342

A AD Family of arithmetic progressions with gaps in D 114

ADW (k, �) Ascending/descending waves numbers 112

AP Family of arithmetic progressions 15

APa(m) Family of arithmetic progressions with gaps

congruent to a (mod m) 183

AP ∗
a(m) APa(m) ∪ A{m} 187

AP(m) Set of arithmetic progressions (mod m) 184

AUGb Family of augmented progressions with tail b 168

AW (k; r) Ascending waves number 110

B B(f ; r) “Brown” number 320

b(m, k; r) Ramsey-type number for nonoverlapping m-sets 343

C c(R; r) Rado-type number for recurrences 286

culj Culprit of color j 34

C(k) k-nonrepetitive number 329

D Δ{a,b,c} Triangle on vertices a, b, c 227

Δ(D,k; r) Ramsey-type number for diffsequences 303

DS(k; r) Difference S-free number 322

diam Diameter of a set 342

doa Degree of accessibility 306

dor Degree of regularity 150

dork Degree of regularity for Tk−1(a) 160

DW (k) 2-color descending wave number 81

353
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Notation Description Page

F fn Fibonacci number 139

F (k; r) Folkman-Rado-Sanders number 298

FS(T ) Finite Sums of set T 297

G Γm(k) Least s guaranteeing k-term arithmetic

progressions in all s-term [1,m]-gap

sequences 84

GQδ(k) 2-color Ramsey-type function for

generalized quasi-progressions 78

g(r, k) Least integer such that for all S with

|S| = g and all χ : S → {0, . . . , r − 1},
whenever|χ(S)| = k there exist

t1, t2, . . . , tr ∈ S with (t1, t2, . . . , tr)

zero-sum 338

gs Gap size 320

K (k, n, d)-progression k-term quasi-progression with

diameter n and low-difference d 69

H H(s1, . . . , sk) 2-color Ramsey-type function for

homothetic copies of

{1, 1 + s1, . . . , 1 + s1 + · · · + sk} 163

I I(k1, k2, . . . , kr) Schur inequality numbers 243

Î(k, k) Strict Schur inequality numbers 245

J Jk(n; r) Asymptotical minimum number of

monochromatic arithmetic progressions 52

L λ(c, k; r) Special r-coloring of [1, cr(k − 1)2] that

avoids monochromatic k-term c-a.p.’s 122

L(k) Equation x1 + · · · + xk−1 = xk 234

M μ(k) min{|E| : Γ = (V, E) is a hypergraph not

satisfying Property B and |E| = k

for all E ∈ E} 42

M(k) Inequality x1 + · · · + xk−1 < xk 243

Mχ(n) Number of monochromatic Schur triples

in [1, n] under χ 227

N ν(k) Erdős and Turán function 47

O Ωm(k) Least n so that every {x1, . . . , xn}
with xi ∈ [(i− 1)m, im − 1] contains

a k-term arithmetic progression 204

P Pn Family of sequences generated by

iteration of a polynomial of degree n 92

Pn,k Family of k-term members of Pn 92

pp(k, n; r) Polynomial progression numbers 175

Q Qn(k) 2-color Ramsey-type function for

quasi-progressions 69
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Notation Description Page

R R The set of real numbers 9

R(AP ∗
a(m), k, l; r) Generalization of R(AP ∗

a(m), k; r) 188

r(E; s) Rado number for equation E 259

R(F , k; r) Ramsey-type number for family F 15

R(k1, . . . , kr) r-color (classical) Ramsey number 9

Rr(k) R(k, . . . , k
︸ ︷︷ ︸

r

) 9

RR(S; r) Reverse r-regular number 207

S S(k1, . . . , kr) Generalized Schur number 235

Sr(k) Generalized Schur number with all ki = k 235

Ŝ(k1, . . . , kr) Strict generalized Schur number 242

Sn Family of sequences generated by

iteration of a polynomial of degree ≤ n 93

Sn,k Family of k-term members of Sn 93

SPm(k) Ramsey-type number for semi-progressions 83

s(r) Schur number 223

ŝ(r) Strict Schur number 240

T Ta,b Family of (a, b)-triples 148

T (a, b; r) Ramsey-type number for (a, b)-triples 148

T (a1, . . . , ak−1) Ramsey-type function for

generalization of (a, b)-triples 160

Tk−1(a) Ramsey-type function T (a1, . . . , ak−1)

with a = a1 = a2 = · · · = ak−1 160

Θ(n) Set of permutations of [1, n] with

no 3-term arithmetic progression 215

θ(n) |Θ(n)| 214

V Vm {x ∈ Z+ : m � x} 312

Vm,n {x ∈ Z+ : m � x and n � x} 345

W w(k) w(k; 2) 15

w(k; r) van der Waerden number 12

w(k1, . . . , kr; r) Mixed van der Waerden number 36

w2(k; r) Mixed van der Waerden number

w(k, 2, 2, . . . , 2; r) 60

ŵ(k; r) van der Waerden number with

d same color 57

w′(c, k; r) Ramsey-type number for arithmetic

progressions with gaps at least c 121

w′(f(x), k; r) Ramsey-type number for f-a.p.’s 126

w∗(k, j) Ramsey-type number for arithmetic

progressions with color discrepancy

at least j 209

w(k) Ramsey-type number for 3-term

arithmetic progression of one color or k

consecutive integers of the other color 219

Z Z Set of integers 9

Z+ Set of positive integers 9
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Ramsey results involving the Fibonacci numbers, Fibonacci Quart.
46/47 (2008/09), 10-17.
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the multidimensional Szemerédi and polynomial van der Waerden
theorems, C. R. Math. Acad. Sci. Paris 349 (2011), 123-125.

[53] E. Berlekamp, A construction for partitions which avoid long arith-
metic progressions, Canad. Math. Bull. 11 (1968), 409-414.

[54] D. Bernstein, D. Grynkiewicz and C. Yerger, On three sets with non-
decreasing diameter, submitted.

[55] J. Berstel, Axel Thue’s work on repetitions in words, Séries Formelles
et Combinatoire Algébrique 11 (1992), LaCIM, Université de Québec
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[140] Péter Erdős, Some generalizations of property B and the splitting
property, Annals Combin. 3 (1999), 53-59.

[141] F. Everts, Colorings of Sets, Ph.D. thesis, University of Colorado,
1977.

[142] G. Exoo, A lower bound for Schur numbers and multicolor Ramsey
numbers of K3, Electron. J. Combin. 1 (1994), R8.

[143] G. Exoo On constructing hypergraphs without Property B, Ars Com-
bin. 30 (1990), 3-12.

[144] J. Fox, An infinite color analogue of Rado’s theorem, J. Combin.
Theory Ser. A 114 (2007), 1456-1469.
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[213] A. Jobson, A. Kézdy, H. Snevily, and S. White, Ramsey functions for
quasi-progressions with large diameter, J. Combin. 2 (2011), 557-573.

[214] D. Johnson, On property Br, J. Combin. Theory Ser. B 20 (1976),
64-66.

[215] B. Johnson and D. Schaal, Disjunctive Rado numbers, J. Combin.
Theory Ser. A 112 (2005), 263-276.

[216] S. Jones and D. Schaal, Two-color Rado numbers for x+ y+ c = kz,
Discrete Math. 289 (2004), 63-69.
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Rainbow arithmetic progressions and anti-Ramsey results, Combin.
Probab. Comput. 12 (2003), 599-620.
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Lefmann, Discrete Math. 306 (2006), 244-253.

[364] I. Schur, Uber die kongruenz xm + ym = zm (mod p), Jahresber.
Deutsch. Math.-Verein. 25 (1916), 114-117.

[365] P. Schweitzer, Using the incompressibility method to obtain local
lemma results for Ramsey-type problems, Inform. Process. Lett. 109
(2009), 229-232.

[366] P. Schweitzer, Problems of Unknown Complexity, Ph.D. thesis, Uni-
versität des Saarlandes, 2009.

[367] D. Shabanov, On a lower bound for the van der Waerden function,
translation in Math. Notes 87 (2010), 918-920.

[368] Z. Shao, F. Deng, M. Liang, and X. Xu, On sets without k-term
arithemtic progressions, J. Comput. System Sci. 78 (2012), 610-618.

[369] S. Shelah, Primitive recursive bounds for van der Waerden numbers,
J. Amer. Math. Soc. 1 (1988), 683-697.

[370] A. Sidorenko, An infinite permutation without arithmetic progres-
sions, Discrete Math. 69 (1988), 211.
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Jungić, V., 349
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63 Maŕıa Cristina Pereyra and Lesley A. Ward, Harmonic Analysis,

2012

62 Rebecca Weber, Computability Theory, 2012

61 Anthony Bonato and Richard J. Nowakowski, The Game of Cops
and Robbers on Graphs, 2011

60 Richard Evan Schwartz, Mostly Surfaces, 2011

59 Pavel Etingof, Oleg Golberg, Sebastian Hensel, Tiankai Liu, Alex
Schwendner, Dmitry Vaintrob, and Elena Yudovina, Introduction to
Representation Theory, 2011
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nomial progressions, generalizations of the Erdos-Ginzberg-Ziv theorem, and 
the number of arithmetic progressions under arbitrary colorings. Many new 
results and proofs have been added, most of which were not known when the 
first edition was published. Furthermore, the book’s tables, exercises, lists of 
open research problems, and bibliography have all been significantly updated.

This innovative book also provides the first cohesive study of Ramsey theory 
on the integers. It contains perhaps the most substantial account of solved and 
unsolved problems in this blossoming subject. This breakthrough book will 
engage students, teachers, and researchers alike.
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