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We use k, F , K to denote the fields, and R to denote the rings. Denote by Z the ring of rational
integers, Q the field of rational numbers, R the field of real numbers, and C the field of complex numbers.
Denote by A the ring of algebraic integers.

1 Groups

A Noncyclic Group of Order 4. Z/2Z× Z/2Z.
A Presentation Gives a Trivial Group. 〈x, y, z|xyx−1y−1 = y, yzy−1z−1 = z, zxz−1x−1 = x〉.
Two Nonisomorphic Groups with the Same Character Table. D4 and Q8.
A Nonabelian p-Group.

Gp =

{(
a b
0 1

)
|a, b ∈ Z/(p2), a ≡ 1 mod p

}
.

This is a nonabelian group of order p3.
Another example of a nonzbelian group of order p3 is

Hp =


1 a b

0 1 c
0 0 1

 |a, b, c ∈ Z/(p)

 .

In fact, these are the only nonabelian groups of order p3. On the other hand, every group of order p2 is
abelian.
Solvable Groups. Every finite group of order < 60, every Abelian group, any p-group.
Finite Simple Groups. Cyclic groups Z/pZ, alternating groups An with n ≥ 5, groups of Lie type,
sporadic groups.
Group Homomorphisms of Additive Group of R.

There are linear functions f(x) = ax. There are also nonlinear ones, consider a projection onto one
basis element of the vector space R over Q.
A Paradoxical Decomposition of a Group.

Let F2 be the free group with two generators a, b. Consider S(a), S(a−1), S(b), and S(b−1) be the set
of elements starting with a, a−1, b, and b−1 respectively. Then we have

F2 = 〈e〉 ∪ S(a) ∪ S(a−1) ∪ S(b) ∪ S(b−1).

We have also
F2 = aS(a−1) ∪ S(a),

and
F2 = bS(b−1) ∪ S(b).

These decompositions are used in the proof of Banach-Tarski Theorem.



2 Rings

A Commutative Ring with Identity that is Not an Integral Domain. Z× Z, Z/6Z.
A Commutative Ring without Identity. 2Z, {0, 2} in Z/4Z.
A Noncommutative Ring without Identity. M2(2Z).
A Noncommutative Division Ring with Identity. The real quarternion H.
A Ring with Cyclic Multiplicative Group.

R = Z/nZ with n = 2, 4, pk, 2pk. Any finite fields. Also Z has units {±1} which is isomorphic to Z/2Z
and is cyclic.
A Subring that is Not an Ideal. Z ⊂ Q.
An Order of a Ring is Larger than its Characteristic. Any GF(pn) for n ≥ 2.
A Prime Ideal that is Not a Maximal Ideal.

Let R = Z[x]. The ideal P = (x) is a prime ideal since R/P ∼= Z is an integral domain. Since Z is not
a field, P is not a maximal ideal. In PID, every prime ideal is maximal and vice versa. In fact, if R is an
integral domain that is not a field, for example Z, then (0) is a prime ideal that is not maximal.
A Homomorphic Image Need Not be an Ideal. Z ⊂ Q.
An Additive Group Homomorphism that is Not a Ring Homomorphism.

The derivative map D : R[x]→ R[x]. We have D(f + g) = D(f) +D(g) but D(fg) = gD(f) + fD(g).
A Multiplicative Group Homomorphism that is Not a Ring Homomorphism.

Let f : R→ R be f(x) = x2.
The Unique Ring Homomorphism from R to R. The identity.
A Commutative Ring with Infinitely Many Units. Z[

√
2].

A Noncommutative Ring with Infinitely Many Units. M2(Z).
A Non-Dedekind Domain.

The ring Z[
√
−3] is a subring of A ∩ Q(

√
−3) = Z[(1 +

√
−3)/2]. This is not Dedekind since it is not

integrally closed.
A Dedekind Domain which is Not a UFD. Z[

√
−5]. This is a ring of integers in Q(

√
−5). We have

the non-unique factorization 6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

A UFD which is Not Dedekind. k[x, y]. The Krull-dimension of this ring is 2.
A UFD which is Not a PID. Z[x]. Since Z is UFD, Z[x] is a UFD. However, this is not PID because
(x, 2) is not principal.
A PID which is Not a ED.

The ring of integers in Q(
√
−19). This is Z[(1 +

√
−19)/2].

A Ring R such that R ∼= R×R.
Let R =

∏∞
i=1 Z. Then R ∼= R×R by the following isomorphism:

f : R→ R×R

defined by
f(x1, x2, · · · ) = ((x1, x3, · · · ), (x2, x4, · · · )) .

A Commutative Ring with 4 Elements that is Not Isomorphic to Z/4Z or Z/2Z× Z/2Z.

The matrices

(
x 0
y x

)
over Z/2Z = GF(2). This is isomorphic to GF(2)[x]/(x2) by

(
1 0
0 1

)
7→ 1 + (x2),

(
0 0
1 0

)
7→ x+ (x2).

This is not isomorphic to Z/4Z since the characteristic is not 4. This is not isomorphic to Z/2Z × Z/2Z
since this ring has two solutions in x2 = 0.



Another example is the 4-element subring of Z/16Z, where the multiplication of any pair is zero.
A Commutative Ring with Identity that the Converse of CRT Holds.

Let R be a commutative ring with identity. The converse of CRT is:
If I, J are ideals with I + J 6= R, then

R/I ∩ J 6∼= R/I ×R/J.

Z, F [x] where F is a field. Further, any Dedekind Domain.
A Commutative Ring with Identity that the Converse of CRT does Not Hold.

R =
∏∞
i=1 Z, and I = J = (0). Then I + J 6= R and R/I ∩ J ∼= R/I ×R/J .

A Commutative Ring with Identity that is Noetherian but not Artinian. Z, k[x].
A Commutative Ring with Identity that is neither Noetherian nor Artinian.

A the ring of algebraic integers, k[x1, x2, · · · ] the ring of polynomials in infinitely many variables.
A Local Noetherian Ring. k[[x]] the formal power series ring over a field k.

This has a unique maximal ideal (x), and it is Noetherian by Hilbert’s Basis Theorem. Furthermore,
this is a DVR.
Integral Domains A, B which Contains a Field F but A⊗F B is Not an Integral Domain.

Let A = B = GF(p)(X) and F = GF(p)(Xp). Then A and B are integral domains containing F , but

X ⊗ 1− 1⊗X ∈ A⊗F B

is a nonzero element in A⊗F B satisfying

(X ⊗ 1− 1⊗X)p = Xp ⊗ 1− 1⊗Xp = 0.

Hence, A⊗F B is not an integral domain.
A Group Ring which is Not Semisimple.

k[x]/(xp − 1) with k = GF(p). This is a group ring kG with a cyclic group G or order p. This is not
semisimple by Maschke’s theorem. This is a local ring with maximal ideal I := ker(kG

ε−→ k) = Rad(kG).

3 Fields

An Algebraically Closed Field of Finite Characteristic. GF(p).
An Infinite Field of Finite Characteristic. GF(p), GF(p)(x) the field of rational functions over GF(p).
A Real Transcendental Extension. Q ⊂ Q(π).

A Real Field which is Not Totally Real. Q(2
1
3 ).

A Totally Real Field. Q(
√

2).

A Normal Extension of a Normal Extension may Not be Normal. Q ⊂ Q(
√

2) ⊂ Q(
√√

2).
An Algebraic Extension of Infinite Degree. Q(

√
2,
√

3,
√

5, · · · ) over Q, Q over Q, GF(p) over GF(p).
A Nontrivial Finite Extension that is Isomorphic to the Ground Field.

Let F = Q(x) and k = Q(
√
x). Then k is a degree-2 extension of F . However, they are isomorphic.

A Finite Extension which Contains Infinitely Many Subextensions.

Let p be a prime. Let F = GF(p)(x, y) and k = GF(p)(x
1
p , y

1
p ). For any f(y) ∈ GF(p)(y),

K = F (x
1
p f(y) + y

1
p )

is a nontrivial subextension of k.
An Irreducible Polynomial f ∈ Q[x] with Reducible f̄ ∈ Z/pZ[x] for Every p.

Let x4 + 1 ∈ Q[x]. If p = 2, then x4 + 1 = (x2 + 1)2. If p 6= 2, then x4 + 1|x8 − 1|xp2−1 − 1.



4 Modules

A Noetherian Module which is Not Artinian. Z-module Z.
An Artinian Module which is Not Noetherian. Z-module M = ∪∞i=1(p

−iZ/Z).
A Free Module with Infinite Basis. Q-vector space R.
An Injective Module which is Not Torsion-Free. Z-module Q/Z
A Torsion-Free Module which is Not Flat.

Let R = k[x, y] and I = (x, y). Then I is a torsion-free R-module. This is not flat because

I ⊗ I → I ⊗R

is not injective. In fact, 0 6= x⊗ y − y ⊗ x ∈ Ker (I ⊗ I → I ⊗R).
A Projective Module which is Not Free.

Let R = Z/2Z× Z/2Z, and consider Z/2Z× (0) a submodule of R-module R. This is projective since
it is a direct summand of free module but it is too small to be free.
A Flat Module which is Not Projective. Z-module Q.
A Flat Module which is Neither Projective Nor Injective.

The Z-module Q ⊕ Z. This is flat because it is a direct sum of flat modules. This is not projective
because of Q, not injective because of Z.
A Semisimple Module which is Not Simple. CS3 ∼= C× C×M2(C).
A Module which is Faithful and Flat, but Not Faithfully Flat. Z-module Q.


