Counterexamples in Algebra

August 3, 2015

We use k, F, K to denote the fields, and R to denote the rings. Denote by \mathbb{Z} the ring of rational integers, \mathbb{Q} the field of rational numbers, \mathbb{R} the field of real numbers, and \mathbb{C} the field of complex numbers. Denote by \mathbb{A} the ring of algebraic integers.

1 Groups

A Noncyclic Group of Order 4. $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$.
A Presentation Gives a Trivial Group. $\left\langle x, y, z \mid x y x^{-1} y^{-1}=y, y z y^{-1} z^{-1}=z, z x z^{-1} x^{-1}=x\right\rangle$.
Two Nonisomorphic Groups with the Same Character Table. D_{4} and Q_{8}.
A Nonabelian p-Group.

$$
G_{p}=\left\{\left.\left(\begin{array}{ll}
a & b \\
0 & 1
\end{array}\right) \right\rvert\, a, b \in \mathbb{Z} /\left(p^{2}\right), a \equiv 1 \bmod p\right\} .
$$

This is a nonabelian group of order p^{3}.
Another example of a nonzbelian group of order p^{3} is

$$
H_{p}=\left\{\left.\left(\begin{array}{lll}
1 & a & b \\
0 & 1 & c \\
0 & 0 & 1
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{Z} /(p)\right\} .
$$

In fact, these are the only nonabelian groups of order p^{3}. On the other hand, every group of order p^{2} is abelian.
Solvable Groups. Every finite group of order <60, every Abelian group, any p-group.
Finite Simple Groups. Cyclic groups $\mathbb{Z} / p \mathbb{Z}$, alternating groups A_{n} with $n \geq 5$, groups of Lie type, sporadic groups.

Group Homomorphisms of Additive Group of \mathbb{R}.

There are linear functions $f(x)=a x$. There are also nonlinear ones, consider a projection onto one basis element of the vector space \mathbb{R} over \mathbb{Q}.

A Paradoxical Decomposition of a Group.

Let F_{2} be the free group with two generators a, b. Consider $S(a), S\left(a^{-1}\right), S(b)$, and $S\left(b^{-1}\right)$ be the set of elements starting with a, a^{-1}, b, and b^{-1} respectively. Then we have

$$
F_{2}=\langle e\rangle \cup S(a) \cup S\left(a^{-1}\right) \cup S(b) \cup S\left(b^{-1}\right) .
$$

We have also

$$
F_{2}=a S\left(a^{-1}\right) \cup S(a),
$$

and

$$
F_{2}=b S\left(b^{-1}\right) \cup S(b)
$$

These decompositions are used in the proof of Banach-Tarski Theorem.

2 Rings

A Commutative Ring with Identity that is Not an Integral Domain. $\mathbb{Z} \times \mathbb{Z}, \mathbb{Z} / 6 \mathbb{Z}$.
A Commutative Ring without Identity. $2 \mathbb{Z},\{0,2\}$ in $\mathbb{Z} / 4 \mathbb{Z}$.
A Noncommutative Ring without Identity. $M_{2}(2 \mathbb{Z})$.
A Noncommutative Division Ring with Identity. The real quarternion \mathbb{H}.
A Ring with Cyclic Multiplicative Group.
$R=\mathbb{Z} / n \mathbb{Z}$ with $n=2,4, p^{k}, 2 p^{k}$. Any finite fields. Also \mathbb{Z} has units $\{ \pm 1\}$ which is isomorphic to $\mathbb{Z} / 2 \mathbb{Z}$ and is cyclic.
A Subring that is Not an Ideal. $\mathbb{Z} \subset \mathbb{Q}$.
An Order of a Ring is Larger than its Characteristic. Any GF $\left(p^{n}\right)$ for $n \geq 2$.
A Prime Ideal that is Not a Maximal Ideal.
Let $R=\mathbb{Z}[x]$. The ideal $P=(x)$ is a prime ideal since $R / P \cong \mathbb{Z}$ is an integral domain. Since \mathbb{Z} is not a field, P is not a maximal ideal. In PID, every prime ideal is maximal and vice versa. In fact, if R is an integral domain that is not a field, for example \mathbb{Z}, then (0) is a prime ideal that is not maximal.
A Homomorphic Image Need Not be an Ideal. $\mathbb{Z} \subset \mathbb{Q}$.
An Additive Group Homomorphism that is Not a Ring Homomorphism.
The derivative map $D: \mathbb{R}[x] \rightarrow \mathbb{R}[x]$. We have $D(f+g)=D(f)+D(g)$ but $D(f g)=g D(f)+f D(g)$.
A Multiplicative Group Homomorphism that is Not a Ring Homomorphism.
Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be $f(x)=x^{2}$.
The Unique Ring Homomorphism from \mathbb{R} to \mathbb{R}. The identity.
A Commutative Ring with Infinitely Many Units. $\mathbb{Z}[\sqrt{2}]$.
A Noncommutative Ring with Infinitely Many Units. $M_{2}(\mathbb{Z})$.
A Non-Dedekind Domain.
The ring $\mathbb{Z}[\sqrt{-3}]$ is a subring of $\mathbb{A} \cap \mathbb{Q}(\sqrt{-3})=\mathbb{Z}[(1+\sqrt{-3}) / 2]$. This is not Dedekind since it is not integrally closed.
A Dedekind Domain which is Not a UFD. $\mathbb{Z}[\sqrt{-5}]$. This is a ring of integers in $\mathbb{Q}(\sqrt{-5})$. We have the non-unique factorization $6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$.
A UFD which is Not Dedekind. $k[x, y]$. The Krull-dimension of this ring is 2.
A UFD which is Not a PID. $\mathbb{Z}[x]$. Since \mathbb{Z} is UFD, $\mathbb{Z}[x]$ is a UFD. However, this is not PID because $(x, 2)$ is not principal.
A PID which is Not a ED.
The ring of integers in $\mathbb{Q}(\sqrt{-19})$. This is $\mathbb{Z}[(1+\sqrt{-19}) / 2]$.
A Ring \mathbf{R} such that $\mathbf{R} \cong \mathbf{R} \times \mathbf{R}$.
Let $R=\prod_{i=1}^{\infty} \mathbb{Z}$. Then $R \cong R \times R$ by the following isomorphism:

$$
f: R \rightarrow R \times R
$$

defined by

$$
f\left(x_{1}, x_{2}, \cdots\right)=\left(\left(x_{1}, x_{3}, \cdots\right),\left(x_{2}, x_{4}, \cdots\right)\right) .
$$

A Commutative Ring with 4 Elements that is Not Isomorphic to $\mathbb{Z} / 4 \mathbb{Z}$ or $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / \mathbf{Z} \mathbb{Z}$.
The matrices $\left(\begin{array}{ll}x & 0 \\ y & x\end{array}\right)$ over $\mathbb{Z} / 2 \mathbb{Z}=\operatorname{GF}(2)$. This is isomorphic to $\operatorname{GF}(2)[x] /\left(x^{2}\right)$ by

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \mapsto 1+\left(x^{2}\right), \\
& \left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \mapsto x+\left(x^{2}\right) .
\end{aligned}
$$

This is not isomorphic to $\mathbb{Z} / 4 \mathbb{Z}$ since the characteristic is not 4 . This is not isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$ since this ring has two solutions in $x^{2}=0$.

Another example is the 4 -element subring of $\mathbb{Z} / 16 \mathbb{Z}$, where the multiplication of any pair is zero.
A Commutative Ring with Identity that the Converse of CRT Holds.
Let R be a commutative ring with identity. The converse of CRT is:
If I, J are ideals with $I+J \neq R$, then

$$
R / I \cap J \nsubseteq R / I \times R / J .
$$

$\mathbb{Z}, F[x]$ where F is a field. Further, any Dedekind Domain.
A Commutative Ring with Identity that the Converse of CRT does Not Hold. $R=\prod_{i=1}^{\infty} \mathbb{Z}$, and $I=J=(0)$. Then $I+J \neq R$ and $R / I \cap J \cong R / I \times R / J$.
A Commutative Ring with Identity that is Noetherian but not Artinian. $\mathbb{Z}, k[x]$.
A Commutative Ring with Identity that is neither Noetherian nor Artinian.
\mathbb{A} the ring of algebraic integers, $k\left[x_{1}, x_{2}, \cdots\right]$ the ring of polynomials in infinitely many variables.
A Local Noetherian Ring. $k[[x]]$ the formal power series ring over a field k.
This has a unique maximal ideal (x), and it is Noetherian by Hilbert's Basis Theorem. Furthermore, this is a DVR.
Integral Domains A, B which Contains a Field F but A $\otimes_{\mathbf{F}} \mathbf{B}$ is Not an Integral Domain. Let $A=B=\operatorname{GF}(p)(X)$ and $F=\operatorname{GF}(p)\left(X^{p}\right)$. Then A and B are integral domains containing F, but

$$
X \otimes 1-1 \otimes X \in A \otimes_{F} B
$$

is a nonzero element in $A \otimes_{F} B$ satisfying

$$
(X \otimes 1-1 \otimes X)^{p}=X^{p} \otimes 1-1 \otimes X^{p}=0
$$

Hence, $A \otimes_{F} B$ is not an integral domain.
A Group Ring which is Not Semisimple.
$k[x] /\left(x^{p}-1\right)$ with $k=\operatorname{GF}(p)$. This is a group ring $k G$ with a cyclic group G or order p. This is not semisimple by Maschke's theorem. This is a local ring with maximal ideal $I:=\operatorname{ker}(k G \xrightarrow{\epsilon} k)=\operatorname{Rad}(k G)$.

3 Fields

An Algebraically Closed Field of Finite Characteristic. $\overline{\mathrm{GF}(p)}$.
An Infinite Field of Finite Characteristic. $\overline{\operatorname{GF}(p)}, \operatorname{GF}(p)(x)$ the field of rational functions over $\mathrm{GF}(p)$.
A Real Transcendental Extension. $\mathbb{Q} \subset \mathbb{Q}(\pi)$.
A Real Field which is Not Totally Real. $\mathbb{Q}\left(2^{\frac{1}{3}}\right)$.
A Totally Real Field. $\mathbb{Q}(\sqrt{2})$.
A Normal Extension of a Normal Extension may Not be Normal. $\mathbb{Q} \subset \mathbb{Q}(\sqrt{2}) \subset \mathbb{Q}(\sqrt{\sqrt{2}})$.
An Algebraic Extension of Infinite Degree. $\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5}, \cdots)$ over $\mathbb{Q}, \overline{\mathbb{Q}}$ over $\mathbb{Q}, \overline{\mathrm{GF}}(p)$ over $\operatorname{GF}(p)$.
A Nontrivial Finite Extension that is Isomorphic to the Ground Field.
Let $F=\mathbb{Q}(x)$ and $k=\mathbb{Q}(\sqrt{x})$. Then k is a degree- 2 extension of F. However, they are isomorphic.
A Finite Extension which Contains Infinitely Many Subextensions.
Let p be a prime. Let $F=\operatorname{GF}(p)(x, y)$ and $k=\operatorname{GF}(p)\left(x^{\frac{1}{p}}, y^{\frac{1}{p}}\right)$. For any $f(y) \in \operatorname{GF}(p)(y)$,

$$
K=F\left(x^{\frac{1}{p}} f(y)+y^{\frac{1}{p}}\right)
$$

is a nontrivial subextension of k.
An Irreducible Polynomial $\mathbf{f} \in \mathbb{Q}[\mathbf{x}]$ with Reducible $\overline{\mathbf{f}} \in \mathbb{Z} / \mathbf{p} \mathbb{Z}[\mathbf{x}]$ for Every p.
Let $x^{4}+1 \in \mathbb{Q}[x]$. If $p=2$, then $x^{4}+1=\left(x^{2}+1\right)^{2}$. If $p \neq 2$, then $x^{4}+1\left|x^{8}-1\right| x^{p^{2}-1}-1$.

4 Modules

A Noetherian Module which is Not Artinian. \mathbb{Z}-module \mathbb{Z}.
An Artinian Module which is Not Noetherian. \mathbb{Z}-module $M=\cup_{i=1}^{\infty}\left(p^{-i} \mathbb{Z} / \mathbb{Z}\right)$.
A Free Module with Infinite Basis. \mathbb{Q}-vector space \mathbb{R}.
An Injective Module which is Not Torsion-Free. \mathbb{Z}-module \mathbb{Q} / \mathbb{Z}
A Torsion-Free Module which is Not Flat.
Let $R=k[x, y]$ and $I=(x, y)$. Then I is a torsion-free R-module. This is not flat because

$$
I \otimes I \rightarrow I \otimes R
$$

is not injective. In fact, $0 \neq x \otimes y-y \otimes x \in \operatorname{Ker}(I \otimes I \rightarrow I \otimes R)$.

A Projective Module which is Not Free.

Let $R=\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z}$, and consider $\mathbb{Z} / 2 \mathbb{Z} \times(0)$ a submodule of R-module R. This is projective since it is a direct summand of free module but it is too small to be free.
A Flat Module which is Not Projective. \mathbb{Z}-module \mathbb{Q}.
A Flat Module which is Neither Projective Nor Injective.
The \mathbb{Z}-module $\mathbb{Q} \oplus \mathbb{Z}$. This is flat because it is a direct sum of flat modules. This is not projective because of \mathbb{Q}, not injective because of \mathbb{Z}.
A Semisimple Module which is Not Simple. $\mathbb{C} S_{3} \cong \mathbb{C} \times \mathbb{C} \times M_{2}(\mathbb{C})$.
A Module which is Faithful and Flat, but Not Faithfully Flat. \mathbb{Z}-module \mathbb{Q}.

