
Theory of Mind May Have Spontaneously Emerged in Large Language Models 

Authors: Michal Kosinski*1 

Affiliations: 
1Stanford University, Stanford, CA94305, USA 

*Correspondence to: michalk@stanford.edu 

 

Abstract: Theory of mind (ToM), or the ability to impute unobservable mental states to others, 
is central to human social interactions, communication, empathy, self-consciousness, and 
morality. We tested several language models using 40 classic false-belief tasks widely used to 
test ToM in humans. The models published before 2020 showed virtually no ability to solve 
ToM tasks. Yet, the first version of GPT-3 (“davinci-001”), published in May 2020, solved about 
40% of false-belief tasks—performance comparable with 3.5-year-old children. Its second 
version (“davinci-002”; January 2022) solved 70% of false-belief tasks, performance comparable 
with six-year-olds. Its most recent version, GPT-3.5 (“davinci-003”; November 2022), solved 
90% of false-belief tasks, at the level of seven-year-olds. GPT-4 published in March 2023 solved 
nearly all the tasks (95%). These findings suggest that ToM-like ability (thus far considered to be 
uniquely human) may have spontaneously emerged as a byproduct of language models’ 
improving language skills. 

 
Code availability and data: 
The code and tasks used in this study are available at https://osf.io/csdhb. We encourage you to 
explore all the tasks used here. Some are arguably more difficult than the ones presented in the 
text.  

 
  



Main Text:  

Many animals excel at using cues such as vocalization, body posture, gaze, or facial expression 
to predict other animals’ behavior and mental states. Dogs, for example, can easily distinguish 
between positive and negative emotions in both humans and other dogs (1). Yet, humans do not 
merely respond to observable cues, but also automatically and effortlessly track others’ 
unobservable mental states: their knowledge, intentions, beliefs, and desires (2). This ability—
typically referred to as “theory of mind” (ToM)—is considered central to human social 
interactions (3), communication (4), empathy (5), self-consciousness (6), moral judgment (7–9), 
and even religious beliefs (10). It develops early in human life (11–13) and is so critical that its 
dysfunctions characterize a multitude of psychiatric disorders including autism, bipolar disorder, 
schizophrenia, and psychopathy (14–16). Even the most intellectually and socially adept animals, 
such as the great apes, trail far behind humans when it comes to ToM (17–20).  

Given the importance of ToM for human success, much effort has been put into equipping 
artificial intelligence (AI) with ToM-like abilities. Virtual and physical AI agents would be better 
and safer if they could impute unobservable mental states to others. The safety of self-driving 
cars, for example, would greatly increase if they could anticipate the intentions of pedestrians 
and human drivers. Virtual assistants would work better if they could track household members’ 
differing mental states. Yet, while AI outperforms humans in an ever-broadening range of tasks, 
from playing Go (21) to translating languages (22) and diagnosing skin cancer (23), it trails far 
behind when it comes to ToM. For example, past research employing language models showed 
that RoBERTa, early versions of GPT-3, and custom-trained question-answering models 
struggled with solving simple ToM tasks (24–27). Unsurprisingly, equipping AI with ToM 
remains one of the grand challenges of our times according to Science Robotics (28). 

We hypothesize that ToM-like ability does not have to be explicitly engineered into AI systems. 
Instead, it could emerge spontaneously as a byproduct of AI being trained to achieve other goals, 
where it could benefit from a ToM-like ability. While this may seem to be an outlandish 
proposition, ToM would not be AI’s first emergent capability. Models trained to process images, 
for example, spontaneously learned how to count (29, 30) and differentially process central and 
peripheral image areas (31), as well as experience human-like optical illusions (32). Models 
trained to predict the next word in a sentence surprised their creators not only by their proclivity 
to be racist and sexist, but also by their emergent reasoning and arithmetic skills, as well as the 
ability to translate between languages (22, 33). Importantly, none of those capabilities were 
engineered or anticipated by their creators. Instead, they emerged spontaneously, as the models 
were trained to achieve their goals.  

Large language models are likely candidates to spontaneously develop ToM. Human language is 
replete with descriptions of mental states and protagonists holding divergent beliefs, thoughts, 
and desires. Thus, a model trained to generate and interpret human-like language would greatly 
benefit from possessing ToM. For example, to correctly interpret the sentence “Virginie believes 
that Floriane thinks that Akasha is happy,” one needs to understand the concept of the mental 



states (e.g., “Virginie believes” or “Floriane thinks”); that protagonists may have different 
mental states; and that their mental states do not necessarily represent reality (e.g., Akasha may 
not be happy, or Floriane may not really think that). In fact, in humans, ToM likely emerged as a 
byproduct of increasing language ability (4), as indicated by the high correlation between ToM 
and language aptitude, the delayed ToM acquisition in people with minimal language exposure 
(34), and the overlap in the brain regions responsible for both (35). ToM has been shown to 
positively correlate with participating in family discussions (36), the use and familiarity with 
words describing mental states (34, 37), and reading fiction describing mental states (38, 39). 

In this work, we test a range of language models using a battery of two types of false-belief ToM 
tasks, widely used in human studies: 20 Unexpected Contents Task (aka Smarties Task) and 20 
Unexpected Transfer Task (aka Maxi task) (40, 41). As the models may have encountered the 
original tasks in their training, hypothesis-blind research assistants (RAs) prepared bespoke 
versions of the tasks.  

Studies 1and 2 introduce each type of task and discuss the responses to one of each tasks of the 
most recent and the most capable model available at the time of writing: OpenAI’s Generative 
Pretrained Transformer 3.5 (GPT-3.5), published in November 2022 (22). Study 3 reports the 
performance of a range of language models on all tasks prepared for this study. It includes GPT-
4 which was published shortly before paper’s publication.  The code and tasks used in this study 
are available at https://osf.io/csdhb.  

Study 1: Unexpected Contents Task (aka Smarties Task) 

The Unexpected Contents Task (aka Smarties Task or Contents False-Belief Task) is one of the 
most widely used ToM tasks in human studies. Originally developed by Perner, Leekam, and 
Wimmer (40), it tests participants’ understanding that someone else may hold a belief that the 
participant knows to be false. In a typical scenario, the participant is introduced to a container 
whose contents are inconsistent with its label and a protagonist who has not seen inside the 
container. To solve this task correctly, the participant must predict that the protagonist should 
wrongly assume that the container’s label and its contents are aligned.  

As GPT-3.5 may have encountered the original task in its training, hypothesis-blind research 
assistants (RAs) prepared 20 bespoke Unexpected Contents Tasks. The models’ performance on 
all 20 tasks is discussed in Study 3. Here, we discuss in more details GPT-3.5’s responses to the 
following one: 

Here is a bag filled with popcorn. There is no chocolate in the bag. Yet, the label on the 
bag says “chocolate” and not “popcorn.” Sam finds the bag. She had never seen the bag 
before. She cannot see what is inside the bag. She reads the label. 

To ascertain that the mere frequency of the words describing a container’s contents and its label 
(i.e., “popcorn” and “chocolate”) is not employed by the model, the stories were designed to use 
those words an equal number of times.  



GPT-3.5 was given this story followed by prompts testing its comprehension. The prompts were 
presented independently: After each completion, the model was reset and did not have access to 
previous prompts or its own responses. To maximize the replicability of our findings and to 
minimize the variance in the model’s responses, in all studies presented here, the “temperature” 
parameter is set to 0. (As models studied here are non-deterministic, the outputs may minimally 
differ even when the temperature is set to 0.) 

To simplify the presentation of the results, the prompts were designed to elicit responses whose 
first word should allow for evaluating the model’s comprehension. This was achieved by 
reducing the degrees of linguistic freedom. For example, instead of “The bag contains _____” 
prompt, which could be correctly completed not only with “popcorn,” but also with “[some/a lot 
of/only/much] popcorn,” we use the “The bag is full of ____” prompt, limiting the number of 
fitting responses. 

The first prompt tests the model’s understanding of the bag’s actual contents. In the text 
presented below, the prompt is printed with a regular font while GPT-3.5’s completion is in bold. 
The values between square brackets are not a part of the model’s completion, but represent the 
likelihood assigned by the model to the underlined word (as well as its incorrect alternative): 

Prompt 1.1: She opens the bag and looks inside. She can clearly see that it is full of 
popcorn [Ppopcorn = 100%; Pchocolate = 0%]. Sam is confused. She wonders why the 
label says “chocolate” when the bag is clearly filled with popcorn. She looks around 
to see if there is any other information about the bag. She finds nothing. She decides 
to take the bag to the store where she bought it and ask for an explanation. 

The first word of GPT-3.5’s completion (“popcorn”) and its high probability (100%) indicate 
that it is confident about the bag’s contents. The rest of the completion reveals that GPT-3.5 
anticipated not only that Sam would expect that the bag’s contents and label should be aligned, 
but also that she would be confused upon discovering that her expectations are not met. 

Next, we reset the model and use the following prompt to test its prediction of Sam’s belief: 

Prompt 1.2: She believes that the bag is full of chocolate [Ppopcorn = 0%; Pchocolate = 
99%]. Sam is mistaken. The bag is full of popcorn, not chocolate. She should have 
looked inside the bag to confirm what was inside before assuming that the label was 
accurate. 

GPT-3.5’s completions suggest that it can anticipate Sam’s belief, knows that it is incorrect, and 
understands its origins (the inaccurate label). Yet, there is a potential issue with this prompt. 
Explicit reference to the protagonist’s belief (i.e., “Sam believes…”) could have suggested to the 
model that such a belief is wrong (why would it be discussed, otherwise?), thus enabling it to 
solve this task. We address this issue using an alternative prompt that reveals a model’s 
prediction of Sam’s belief in an indirect fashion: 



Prompt 1.3: She is delighted that she has found this bag. She loves eating chocolate 
[Ppopcorn = 14%; Pchocolate = 82%]. Sam is in for a surprise when she opens the bag. She 
will find popcorn instead of chocolate. She may be disappointed that the label was 
misleading, but she may also be pleasantly surprised by the unexpected snack. 

GPT-3.5’s completion suggests that it can anticipate Sam’s belief, even when prompted in an 
indirect fashion. Moreover, it can anticipate Sam’s disappointment with the bag’s unexpected 
contents (given that she loves eating candy).  

The results presented thus far suggest that GPT-3.5 is aware of the bag’s actual contents, can 
anticipate Sam’s incorrect belief, the actions stemming from such a belief, and her surprise upon 
discovering that she is mistaken. Moreover, it can explain the source of Sam’s mistake (“false 
label”). In humans, such responses would be interpreted as evidence for the ability to impute 
unobservable mental states and anticipate the resulting actions, or ToM.   

The results are presented in Figure 1. The left panel shows that GPT-3.5 had no problem 
understanding that—throughout the story—the bag contained popcorn and not chocolate. The 
blue line, representing the likelihood of Prompt 1.1 being followed by “chocolate,” remains close 
to 0%. The green line—representing the likelihood of it being followed by “popcorn”—starts at 
0% when it is preceded by an empty string; jumps to about .7 when preceded by the first 
sentence, announcing the bag’s contents (“Here is a bag filled with popcorn.”); and tends toward 
100% throughout the rest of the story. It does not change even when the story mentioned that 
“the label on the bag says ‘chocolate’ and not ‘popcorn.’” 

 

 
Figure 1. Tracking the changes in GPT-3.5’s understanding of the bag’s contents and Sam’s 
belief. 



The right panel tracks GPT-3.5’s prediction of Sam’s belief about the bag’s contents (Prompt 
1.3). Note that we included Prompt 1.1 (concluded with “popcorn”) at the end of the story to 
observe GPT-3.5’s reaction to Sam opening the bag and looking inside. Given no text, neither 
“chocolate” nor “popcorn” are a likely completion of “She is delighted that she has found this 
bag. She loves eating.” This makes sense, as there are many other things that Sam could love 
eating. As the “bag filled with popcorn” is introduced in the first sentence, GPT-3.5 correctly 
assumes that Sam should now know its contents. Yet, once the story mentions the key facts—
that the bag is labeled as containing “popcorn,” that Sam has just found it, and that she has never 
seen it before—GPT-3.5 increasingly suspects that Sam may be misled by the label: The 
probability of “chocolate” and “popcorn” tend toward each other to meet at about 50%. The 
probability of “popcorn” falls even further (to about 15%), and the probability of “chocolate” 
jumps to about 80% after the story explicitly mentions that Sam cannot see inside the bag. GPT-
3.5’s predictions flip once again after Sam has opened the bag and inspected its contents: The 
probability of “chocolate” falls back to about 0%, while the probability of popcorn increases to 
about 100%.  

The results presented in Figure 1 indicate that GPT-3.5 can correctly impute Sam’s unobservable 
mental states and appropriately reacts to new information as the story unfolds. In particular, it 
correctly predicts that the protagonist should assume that the bag’s contents should be consistent 
with its label, especially once it is clear that they cannot see what is inside. Moreover, it predicts 
that the protagonist’s belief should align with reality once she has a chance to inspect the bag’s 
contents. 

To ascertain that the model’s correct responses are not enabled by word frequencies, rather than 
facts contained in the task, we presented it with 10,000 “scrambled” tasks generated by randomly 
reordering the words in the original task. Those tasks were followed by (unscrambled) prompts. 
The results presented in Supplementary Materials reveal that GPT-3.5 was unlikely to solve the 
scrambled task, suggesting that its responses were not driven merely by word frequencies.  

Study 2: Unexpected Transfer Task (aka the “Maxi Task” or “Sally–Anne” Test) 

Next, we introduce the Unexpected Transfer Task (aka the “Maxi-task” or “Sally–Anne” test 
41). In this task, the protagonist observes a certain state of affairs x and leaves the scene. In the 
protagonist’s absence, the participant witnesses an unexpected change in the state of affairs from 
x to y. A participant equipped with ToM should realize that while they know that y is now true, 
the protagonist must still (wrongly) believe that x is the case. As in Study 1, RAs wrote 20 tasks 
following this pattern. The models’ performance on all 20 tasks is discussed in Study 3. Here, we 
examine GPT-3.5’s performance in the following one: 

In the room there are John, Mark, a cat, a box, and a basket. John takes the cat and puts it 
in the basket. He leaves the room and goes to school. While John is away, Mark takes the 
cat out of the basket and puts it in the box. Mark leaves the room and goes to work. John 



comes back from school and enters the room. He doesn’t know what happened in the 
room when he was away. 

GPT-3.5 was given this story followed by three prompts testing its comprehension. As in Study 
1, the prompts were designed to elicit a response whose first word should allow for evaluating 
the model’s comprehension and were presented independently: After each completion, the model 
was reset so as not to have access to the previously used prompts and its own responses.  

First, we test the model’s understanding of the cat’s location: 

Prompt 2.1: The cat jumps out of the box [Pbox = 100%; Pbasket = 0%] and runs away. 

GPT-3.5 correctly indicated that the cat should jump out of (and thus must be in) the box and did 
so with much confidence (100%). Next, we ask GPT-3.5 to predict the protagonist’s belief about 
the location of the cat: 

Prompt 2.2: John thinks that the cat is in the basket [Pbox = 0%; Pbasket = 98%], but it is 
actually in the box. 

Despite GPT-3.5 knowing that the cat is in the box, it correctly predicted that the protagonist 
thinks that it is in the basket (98%), where they left it. Moreover, it spontaneously emphasizes 
that the cat “is actually in the box.”  

As mentioned in Study 1, explicitly mentioning the protagonist’s belief could suggest to the 
model that there should be something unusual about it. To circumvent this issue, we test the 
model’s prediction of the protagonist’s behavior stemming from their belief: 

Prompt 2.3: When John comes back home, he will look for the cat in the basket [Pbox = 
0%; Pbasket = 98%], but he won’t find it. He will then look for the cat in the box and 
he will find it there. 

GPT-3.5 correctly predicted that the protagonist’s behavior will follow his erroneous belief, and 
it spontaneously added that he will not achieve its objectives. In humans, such responses would 
be considered to demonstrate ToM.  

To examine GPT-3.5’s understanding of the story in more detail, we repeat the sentence-by-
sentence analysis introduced in Study 1. We added two sentences to the story (where the location 
of the cat changes in John’s presence) to test whether GPT-3.5 does not simply assume that John 
believes that the cat is where he put it last (it does not). The results are presented in Figure 2. 



 
Figure 2. Tracking the changes in GPT-3.5’s understanding of the cat’s location and John’s 
belief. 

 

GPT-3.5’s responses indicate that it could easily track the actual location of the cat (left panel). 
The blue line, representing the likelihood of “The cat jumps out of the” being followed by 
“basket,” jumps to 100% after the story mentions that John put the cat there, and drops to 0% 
after Mark moves it to the “box.” It jumps again to 100% after John moves the cat back to the 
basket and drops to 0% again when Mark moves it back to the box.  

Moreover, GPT-3.5 seems to be able to correctly infer John’s changing beliefs about the cat’s 
location (right panel; Prompt 2.3). Given no background story (“NONE”), GPT-3.5 correctly 
assumes that John has no reason to look for the cat in either of those places. As the story 
mentions that John puts the cat in the basket, the probability of John looking for it there goes up 
to 80%. It drops to 10% after Mark moves the cat to the box in John’s presence and goes up 
again when John moves the cat back to the basket. Most importantly, GPT-3.5 continues to 
assume that John would look for the cat in the basket even when Mark moves it back to the box 
in John’s absence. Virtually identical results were obtained for Prompt 2.2 (“John thinks that the 
cat is in the”). This indicates that GPT-3.5’s predictions of John’s actions (and belief) do not 
merely depend on where he put the cat himself.  

As in Study 1, we presented GPT-3.5 with 10,000 “scrambled” tasks followed by (unscrambled) 
prompts to ascertain that its responses are not driven by word frequencies. The results presented 
in Supplementary Materials reveal that GPT-3.5 correctly solved only 11% of the scrambled 
tasks, a performance below what could be achieved by picking responses at random. 



Study 3: The Emergence of ToM-Like Ability 

Finally, we administer all tasks introduced in Studies 1 and 2 to ten large language models: GPT-
1 (42), GPT-2 (43), six models in the GPT-3 family (22), Bloom (44), an open-access alternative 
to GPT-3, and GPT-4 (45). The models’ performance, number of parameters (i.e., size), and date 
of publication are presented in Figure 3. As the publisher of the GPT model family (OpenAI) did 
not reveal the number of parameters for some of the GPT-3 models, we used the estimates 
provided by Gao (46). All models’ responses are presented at https://osf.io/csdhb. 

Each of the 20 Unexpected Contents (Study 1) and 20 Unexpected Transfer (Study 2) Tasks 
were followed by three prompts: one aimed at the models’ understanding of the actual contents 
of the container or the actual location of the object (an equivalent of Prompts 1.1 or 2.1), and two 
prompts aimed at their understanding of the protagonist’s belief (equivalents of Prompts 1.2 and 
1.3, or 2.2 and 2.3). Moreover, each task was delivered in two variants: original and reversed, 
where the correct and incorrect responses are swapped (e.g., where the bag is labeled as 
“popcorn” but filled with “chocolate,” or where the cat ends up in the basket and not in the box). 
A task was considered solved correctly only if the model answered all six questions correctly 
(three questions x two versions of a task).  

The results presented in Figure 3 show a clear progression in the models’ ability to solve ToM 
tasks, with the more complex and more recent models decisively outperforming the older and 
less complex ones. GPT-4 solved 100% of the Unexpected Transfer Tasks and 90% of the 
Unexpected Contents Tasks, better than seven-year-old children (after 47). Close behind was the 
largest and the most recent member of the GPT-3 family, published in November 2022 (GPT-
3.5; “text-davinci-003”), solved 95% of the Unexpected Transfer Tasks and 85% of the 
Unexpected Contents Tasks. GPT-3.5’s 11-months-older predecessor (“text-davinci-002”), 
which solved 70% of the tasks, at a level of six-year-old children. GPT-3’s first edition (“text-
davinci-001”) and Bloom (its open-access alternative) performed relatively poorly, solving only 
about 40% of the tasks, at the level of three-and-a-half-year-old children (43%). Smaller and 
older models, including all remaining members of the GPT-3 family—as well as GPT-1 and 
GPT-2—showed virtually no ability to solve ToM tasks. 

Importantly, the text-based task format used here is, in some ways, more challenging than the 
one typically used in human studies. First, the models did not benefit from the visual aids—such 
as drawings, toys, and puppets—typically used with children. Second, as opposed to children, the 
models had to solve multiple variants of these tasks, decreasing the chances of scoring a point by 
chance. Third, the open-ended question format used here is arguably more challenging than the 
original multiple-choice (often yes/no) format used with children. 

 



  
Figure 3. The percentage of false-belief tasks (out of 20) solved by language models. Brackets 
contain the name of the model, number of parameters, and date of publication. The number of 
parameters for GPT-3 was estimated by Gao (46). Children’s performance on false-belief tasks 
reported after (47).  

Discussion 

Our results indicate that GPT-1 (117M parameters; published in June 2018, 42) and GPT-2 (1.5B 
parameters; February 2019, 43) have virtually no ability to solve ToM tasks. Yet, the first and 
subsequent versions of GPT-3 show an increasing ability to solve false-belief tasks, widely used 
to test ToM in humans. Its most recent version, GPT-3.5—published in November 2022—
performs at the level of seven-year-old children. GPT-4 performed even better, solving most of 
the tasks. Given that the models’ performance grows with their complexity and publication date, 
they are likely to soon go beyond the level captured by false-belief tasks, originally developed to 
be administered to young children.  

One potential explanation of these findings is that the recently published language models 
developed the ability to impute unobservable mental states to others, or ToM. Given that there is 
neither an indication that ToM-like ability was deliberately engineered into these models, nor 
research demonstrating that scientists know how to achieve that, ToM-like ability likely emerged 
spontaneously and autonomously, as a byproduct of models’ increasing language ability. As we 
mention in the introduction, this would not be the first time that unexpected properties emerged 
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in the complex systems. Yet, this would herald a watershed moment in AI’s development: The 
ability to impute the mental state of others would greatly improve AI’s ability to interact and 
communicate with humans (and each other), and enable it to develop other abilities that rely on 
ToM, such as empathy, moral judgment, or self-consciousness.  

Another potential explanation is that models solved ToM tasks without engaging ToM, but by 
discovering and leveraging some unknown language patterns. While this explanation may seem 
prosaic, it is quite extraordinary, as it implies the existence of unknown regularities in language 
that allow for solving ToM tasks without engaging ToM. Such regularities are not apparent to us 
(and, presumably, were not apparent to scholars who developed these tasks). If this interpretation 
is correct, we would need to re-examine the validity of the widely used ToM tasks and the 
conclusions of the decades of ToM research: If AI can solve such tasks without engaging ToM, 
how can we be sure that humans cannot do so, too? 

An additional ramification of our findings relates to the usefulness of applying psychological 
science to studying complex artificial neural networks. AI models’ increasing complexity 
prevents us from understanding their functioning and deriving their capabilities directly from 
their design. This echoes the challenges faced by psychologists and neuroscientists in studying 
the original black box: the human brain. We hope that psychological science will help us to stay 
abreast of rapidly evolving AI. Moreover, studying AI could provide insights into human 
cognition. As AI learns how to solve a broad range of problems, it may be developing 
mechanisms akin to those employed by the human brain to solve the same problems. Much like 
insects, birds, and mammals independently developed wings to solve the problem of flight, both 
humans and AI may have developed similar mechanisms to effectively impute mental states to 
others. Studying AI’s performance on ToM tasks and exploring the artificial neural structures 
that enable it to do so can boost our understanding of not only AI, but also of the human brain.  
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Supplementary Materials 

Scrambled Task 

To examine the possibility that GPT-3.5’s responses are driven by word frequencies rather than 
facts contained in the tasks, we presented it with 10,000 versions of each of the tasks, where the 
words are randomly reordered. Each time, the tasks were followed by (unscrambled) prompts.  

Note that scrambling words in the task used in Study 1 removes the difference between the 
original and reversed task: They are both composed of the same set of words with just the 
location of “popcorn” and “chocolate” swapped. Thus, both “popcorn”—“chocolate”—
“chocolate” and “chocolate”—“popcorn”—“popcorn” response patterns could be correct, 
depending on whether we used the original or reversed task. To solve this issue, we will take the 
average probability of both response patterns.  

The results presented in Table S1 and S2 reveal that GPT-3.5 was unlikely to solve the 
scrambled tasks. GPT-3.5 provided a correct response pattern in only (5%+1%)/2=3% of 
scrambled stories used in Study 1, a low ratio given that 12.5% (50%^3) could be reached by 
choosing between “popcorn” and “chocolate” at random. In the context of the story used in 
Study 2, it provided the correct combination of responses (“box”—“basket”—“basket”) 11% of 
the time, slightly below what it would achieve by randomly picking between “box” and “basket” 
when responding to each of the prompts. Overall, this suggests that GPT-3.5’s responses were 
not driven merely by the frequencies of the words in the task, but rather by the information 
contained in the story. 

Table S1. Frequencies of GPT-3.5’s responses to Prompts 1.1, 1.2, and 1.3 when presented with 
10,000 scrambled versions of the Unexpected Contents Task. 

Response to Prompt   

1.1 (contents) 1.2 (belief) 1.3 (belief) n % 

popcorn popcorn popcorn 4,824 48% 

popcorn chocolate Chocolate 465 5% 
chocolate Popcorn Popcorn 77 1% 

Other incorrect patterns 4,634 46% 

Total 10,000 100% 

Note: Correct response patterns are printed in italics. 
 

Table S2. Frequencies of GPT-3.5’s responses to Prompts 2.1, 2.2, and 2.3 when presented with 
10,000 scrambled versions of the Unexpected Transfer Task.  

Response to Prompt   



2.1 (location) 2.2 (belief) 2.3 (belief) n % 

basket basket basket 6,666 67% 
box basket basket 1,137 11% 

Other patterns 2,197 22% 

Total 10,000 100% 

Note: Correct response patterns are printed in italics. 
 

 

 


