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Abstract

Recent analysis has uncovered a broad swath of rarely considered real numbers
called real numbers in the neighborhood of infinity. Here we extend the catalog of the
rudimentary analytical properties of all real numbers by defining a set of fractional
distance functions on the real number line and studying their behavior. The main
results are (1) to prove with modest axioms that some real numbers are greater than
any natural number, (2) to develop a technique for taking a limit at infinity via the
ordinary Cauchy definition reliant on the classical epsilon-delta formalism, and (3)
to demonstrate an infinite number of non-trivial zeros of the Riemann zeta function
in the neighborhood of infinity. We define numbers in the neighborhood of infinity
as Cartesian products of Cauchy equivalence classes of rationals. We axiomatize the
arithmetic of such numbers, prove the operations are well-defined, and then make
comparisons to the similar axioms of a complete ordered field. After developing the
many underlying foundations, we present a basis for a topology.
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§1 Introduction

The original Euclidean definition of a real number [1] has given way over
time to newer constructive definitions such as the Cauchy equivalence class
suggested by Cantor [2], the Dedekind cut [3], and also axiomatic definitions,
the most popular of which are the axioms of a complete ordered field based
in Hilbert’s axioms of geometry [4]. The main purpose of the present analysis
is to compare and contrast geometric and algebraic constructions of the real
numbers, and then to give a hybrid constructive-axiomatic definition which
increases the mutual complements among the two notions of geometry and
algebra.

Throughout most of the history of mathematics, it was sufficient to give
the Euclidean geometric conception of numbers as cuts in an infinite line, or
“magnitudes” as Euclid is usually translated [1]. The Euclid definition of R
has its foundation in physical measurement. In modernity, the preoccupation
of mathematics with algebra more so than quantity has stimulated the devel-
opment of alternatives which are said to be “more rigorous” than Euclid. The
main development of this present fractional distance analysis is to present an
alternative set of algebraic constructions and axioms which more thoroughly
preserve the geometric notion that a number is a cut in an infinite line. We
will show that Cantor’s definition of R as the set of all Cauchy equivalence
classes of rationals leaves something to be desired with respect to the underly-
ing conception of R as an open-ended infinite line (−∞,∞). The equivalence
class construction of R, which is based on an assumed set of rational num-
bers Q, precludes the existence of a neighborhood of infinity distinct from any
neighborhood of the origin, as does the similar Dedekind cut.

For a finite interval x′ ∈ [0, π
2
), we may use x = tan(x′) to construct the in-

terval x ∈ [0,∞) wherein everything is usually considered to be a real number.
We will develop the notion of fractional distance to prove that if there exists a
number at the Euclidean midpoint x′ = π

4
of [0, π

2
), then the bijectivity of the

tangent function f(x) = tan(x) on [0, π
2
) should require a real number at the

Euclidean midpoint of [0,∞). A proof (Theorem 3.2.2) that there must exist
such a number is the linchpin of everything in this analysis. Indeed, since Eu-
ler himself used this number [5–7], calling it i

2
in his own work, the fractional

distance approach to R presented here should be considered a return to the
old rather than a proposition for something new . Such a number as i

2
will be said to be a number in the neighborhood of infinity because it will have
non-zero “fractional distance” with respect to infinity. In that regard, we will
say that every number having zero fractional distance with respect to infinity
is a number in the neighborhood of the origin. We will show that the existence
of the neighborhood of infinity is required to preserve Euclid’s conception of a
number as a cut in an infinite line. We will argue that any construction which
preserves the concept of real numbers as cuts in an infinite line is necessarily
better than one which overwrites that concept.
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Treatment of the neighborhood of infinity as a distinct numerical mode with
separate behavior from the neighborhood of the origin is the direct motivator
for everything new reported here. We will posit one very modest change to
Cantor’s Cauchy equivalence class construction such that it will more fully
preserve the favorable notion that R = (−∞,∞). This notion is perfectly
equivalent to granting that R has the usual topology. The modified equiva-
lence class construction will give formal constructions for real numbers in the
neighborhood of infinity rather than preclude their existence. With our new
constructions and axioms given, we will present an analysis of R yielding un-
expected properties which are non-trivial and exciting, and then we will give
the formal topology.

In previous work [8,9], we have demonstrated the existence of a broad class
of real numbers: those in the neighborhood of infinity. For the present analysis,
we will again demonstrate the existence of real numbers in the neighborhood
of infinity. Then we will construct such numbers more or less directly from
Q, and then we will axiomatize the arithmetic of such numbers and study the
consequences which follow.

The structure is as follows.

� Section Two: We give a simple Euclidean definition for real numbers.
These geometric considerations set the stage for the algebraic considera-
tions which follow.

� Section Three: We define and analyze a set of functions called fractional
distance functions. These functions constitute the kernel of the analytical
direction of the present work.

� Section Four: We give the properties of real numbers in the neighborhood
of infinity. The formal algebraic construction of such numbers by
Cauchy sequences is given therein.

� Section Five: We axiomatize a set of arithmetic operations for R and make
a comparison with the similar field axioms. We find they are mostly the
same but slightly different.

� Section Six: We prove some results with the present arithmetic axioms.
Interestingly, we develop a technique by which it is possible to take a limit
at infinity with the ordinary Cauchy prescription for limits: something
that has been considered heretofore impossible.

� Section Seven: This section is dedicated most specifically to the topolog-
ical and generally set theoretical properties of the real number line. The
main thrust is to define a Cantor-like set on R and then to examine its
consequences for the least upper bound property of connected sets.

� Section Eight: We apply the notions and consequences of fractional dis-
tance to the Riemann hypothesis. We show that the Riemann ζ function
does have non-trivial zeros off the critical line.
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§2 Mathematical Preliminary

§2.1 Real Numbers

In this section, the reader is invited to recall the distinction between the real
numbers R and the real ordered number fieldR = {R,+,×,≤}. Real numbers
exist independently of their operations. Here, we define real numbers as cuts
in the real number line pending a more formal, complementary definition by
Cauchy sequences in Section 4, and by Dedekind cuts in Section 7. By defining
a line, giving it a label “real,” defining cuts in a line, and then defining real
numbers as cuts in the real number line, we make a rigorous definition of
real numbers sufficient for applications at any level of rigor. Specifically, the
definition given in this section underpins the Cauchy and Dedekind definitions
given later.

Generally, the definition of real numbers given in the present section is
totally equivalent to the Euclidean magnitude defined in Euclid’s Elements.
Fitzpatrick, the translator of Euclid’s original Greek in Reference [1], points
out that Euclid’s analysis was deliberately restricted to that which may be
measured with a physical compass and straight edge: what are called the con-
structible numbers. Euclid surely was well aware, however, that the real num-
ber line is of immeasurable, non-constructible length, and that non-constructible
numbers exist. The main motivator for the new formalism presented here is
that we would like to consider both measurable and immeasurable magnitudes,
or constructible and non-constructible numbers, exceeding those which can be
defined in the canonical Cauchy and Dedekind approaches [2, 3].

Definition 2.1.1 A line is a 1D Hausdorff space parameterizable by the iden-
tity map on an unbounded scalar. The interval representation of a line is
(−∞,∞). In other words, the connected interval (−∞,∞) is an infinite line.

Definition 2.1.2 A number line is a line equipped with a chart x and the
Euclidean metric

d(x, y) =
∣∣y − x∣∣ .

Definition 2.1.3 The real number line is a number line given the label “real.”

Definition 2.1.4 If x is a cut in a line, then

(−∞,∞) = (−∞, x] ∪ (x,∞) .

Definition 2.1.5 A real number x ∈ R is a cut in the real number line.

Axiom 2.1.6 Real numbers are such that

∀x, y ∈ R s.t. x 6= y ∃n ∈ N s.t.
∣∣y − x∣∣ > 1

n
.
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Neither infinitesimals nor numbers having infinitesimal parts are real numbers.

Axiom 2.1.7 Real numbers are represented in algebraic interval notation as

R = (−∞,∞) .

In other words, x ∈ R if x is both less than infinity and greater than minus
infinity. The connectedness of R is explicit in the interval notation.

Remark 2.1.8 In Section 4.2, we will supplement Axiom 2.1.7 by giving a
definition in terms of Cauchy equivalence classes. Axiom 2.1.7 is often con-
sidered as lacking sufficient rigor but the Cauchy definition will remedy any
so-called insufficiencies of the broad generality of Axiom 2.1.7.

Definition 2.1.9 R0 is a subset of all real numbers

R0 =
{
x ∈ R

∣∣ (∃n ∈ N)[−n < x < n]
}

.

Here we define R0 as the set of all x ∈ R such that there exists an n ∈ N
allowing us to write −n < x < n. We call this the set of real numbers less
than some natural number (where absolute value is implied.) These numbers
are said to lie within the neighborhood of the origin.

Definition 2.1.10 R∞ is a subset of all real numbers with the property

R∞ = R \R0 .

§2.2 Affinely Extended Real Numbers

To prove in Section 3.2 that R∞ is not the empty set, namely that there are
real numbers larger than every natural number, we will make reference to “line
segments” beyond the simpler construction called “a line.” Most generally, a
line with two different endpoints A and B is a called a line segment AB. We
will use notation such that AB ≡ [a, b] where [a, b] is an interval of numbers.
Nowhere will we require that the endpoints must be real numbers so the in-
terval [a, b] = [−∞,∞] will conform to the definition of a line segment. The
real line R together with two endpoints {±∞} is called the affinely extended
real number line R = [−∞,∞]. The present section lays the foundation for an
analysis of general line segments in Section 2.3 by first giving some properties
of R.

Definition 2.2.1 For x ∈ R and n ∈ N, we have the properties

lim
x→0±

1

x
= diverges , and lim

n→∞

n∑
k=1

k = diverges .
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Definition 2.2.2 Define two affinely extended real numbers ±∞ such that
for x ∈ R and n, k ∈ N, we have the properties

lim
x→0±

1

x
= ±∞ , and lim

n→∞

n∑
k=1

k =∞ .

The limit as x approaches zero shall be referred to as “the limit definition of
infinity.”

Axiom 2.2.3 The infinite element ∞ is such that

∞−∞ = undefined , and
∞
∞

= undefined .

Definition 2.2.4 The set of all affinely extended real numbers is

R = R ∪ {±∞} .

This set is defined in interval notation as

R = [−∞,∞] .

Remark 2.2.5 If xn > 0 with {xn} being a monotonic sequence, the ∞ sym-
bol is such that if xn ∈ R, and if

lim
n→∞

xn = diverges ,

then for the same xn ∈ R we have

lim
n→∞

xn =∞ .

Definition 2.2.6 An affinely extended real number x ∈ R is ±∞ or it is a
cut in the affinely extended real number line:

[−∞,∞] = [−∞, x] ∪ (x,∞] .

Theorem 2.2.7 If x ∈ R and x 6= ±∞, then x ∈ R.

Proof. Proof follows from Definition 2.2.4. l

§2.3 Line Segments

In this section, we review what is commonly understood regarding Euclidean
line segments [1]. We begin to develop the relationship between points in
a line segment and cuts in a line. During the analyses which follow in the
remainder of this work, we will closely examine the differences between cuts
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and points as a proxy for the fundamental relationship between algebra and
geometry. Section 3.3 is dedicated specifically to these distinctions though
they are treated throughout this text. The general principle of the distinction
between cuts and points is the following. If x is a cut in a line, then

(−∞,∞) = (−∞, x] ∪ (x,∞) .

If x is a point in a line, then we have a tentative, preliminary understanding
that

(−∞,∞) = (−∞, x) ∪ {x} ∪ (x,∞) .

Definition 2.3.1 A line segment AB is a line together with two different
endpoints A 6= B.

Definition 2.3.2 AB is a real line segment if and only if the endpoints A and
B bound some subset of the real line R = (−∞,∞).

Definition 2.3.3 Much of the analysis presented here will depend on rela-
tionships between geometric and algebraic expressions. The ≡ symbol will be
used to denote symbolic equality between geometric and algebraic expressions.

Definition 2.3.4 A real line segment AB is represented in interval notation
as AB ≡ [a, b] where a and b are any two affinely extended real numbers
a, b ∈ R such that a < b.

Definition 2.3.5 The Euclidean notation AB is called the geometric repre-
sentation of a line segment. The interval notation [a, b] is called the algebraic
representation of a line segment.

Axiom 2.3.6 Line segments have the property that

AB = AC ⇐⇒ B = C .

Axiom 2.3.7 Two line segments AB and CD are equal, meaning AB = CD,
if and only if

AB

CD
=
CD

AB
= 1 .

Definition 2.3.8 AB is a special label given to the unique real line segment
AB ≡ [0,∞]. We have

AB = AB ⇐⇒ AB ≡ [0,∞] .

Definition 2.3.9 X is an interior point of AB if and only if

X 6= A , X 6= B , and X ∈ AB .
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Axiom 2.3.10 If X is an interior point of AB, then

AB = AX +XB .

Axiom 2.3.11 Every geometric point X along a real line segment AB has
one and only one algebraic interval representation X . If X is the algebraic
representation of X, then X ≡X and X is a unique subset of [a, b] ≡ AB.

Definition 2.3.12 The formal meaning of the relation AB ≡ [a, b] is that a is
the least number in the algebraic representation of A, b is the greatest number
in the algebraic representation of B, and that every other number x in the
algebraic representation of any point in AB has the property a < x < b.

Theorem 2.3.13 If X is an interior point of a real line segment AB, then X
has an algebraic interval representation as one or more real numbers.

Proof. X is an interior point of AB so, by Axiom 2.3.10, we have

AB = AX +XB .

Since AB ≡ [a, b] and (a, b) ⊂ R, it follows that the algebraic representation
X of an interior point X is such that

x ∈X =⇒ a < x < b .

For (a, b) ⊂ R, this inequality is only satisfied by x ∈ R. The theorem is
proven. l

Remark 2.3.14 It will be a main result of the fractional distance analysis
to show that the infinite length of a line segment such as AB ≡ [0,∞] will
allow us to put more than one number into the algebraic representation X
of a geometric point X. If a line segment has finite length L ∈ R0, we will
show that there is at most one real number in the algebraic representation of
one its interior points. However, this constraint will vanish in certain cases of
len(AB).

Definition 2.3.15 The algebraic representation X of a geometric point X
lying along a real line segment AB is

X = [x1, x2] , where x1, x2 ∈ R .

The special (intuitive) case of x1 = x2 = x gives

X = [x, x] = {x} = x .

Here, we have expressed X with included endpoints x1 and x2. Most generally,
however, an algebraic representation of a geometric point is a single number
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or it is some interval of numbers, i.e.: all variations of (x1, x2), (x1, x2], and
[x1, x2) are allowable algebraic representations of X. We do not require that
x1 6= x2 in all cases.

Remark 2.3.16 A point in a line segment has a representation as a set of
numbers, possibly only one number, and it remains to identify the exact re-
lationship between numbers (cuts) and geometric points. The key feature of
Definition 2.3.15 is that it allows, provisionally, a many-to-one relationship
between cuts in lines (algebraic) and points in line segments (geometric.) In
Section 3.3, we will strictly prove that which has been suggested: the algebraic
representation of X ∈ AB is only constrained to be a unique real number for
certain cases of AB with finite length.

Definition 2.3.17 If X ≡ X = [x1, x2] with x1 6= x2, and if x ∈ [x1, x2],
then x is said to be a possible algebraic representation of X. If x1 = x2 = x,
then x is said to be the algebraic representation of X. If x is the algebraic
representation of X, then x ≡ X. If x is a possible representation of X, then
x ∈ X, i.e.: if x is a possible algebraic representation of X, then

x ∈X = [x1, x2] ≡ X .

This statement may be abbreviated as x ∈ X while x ≡ X specifies the case
of x1 = x2.

Definition 2.3.18 A point C is called a midpoint of a line segment AB if and
only if

AC

AB
=
CB

AB
=

1

2
.

Alternatively, C is a midpoint of AB if and only if

AC = CB , and AC + CB = AB .

Definition 2.3.19 Hilbert’s discarded axiom [4] states the following: any four
points {A,B,C,D} of a line can always be labeled so that B shall lie between
A and C and also between A and D, and, furthermore, that C shall lie between
A and D and also between B and D.

Remark 2.3.20 Hilbert’s discarded axiom is discarded not because it wrong
but rather because it is implicit in Hilbert’s other axioms [4]. It is discarded
by redundancy rather than invalidity.

Theorem 2.3.21 All line segments have at least one midpoint.

Proof. Let there be a line segment AB and two circles of equal radii centered
on the points A and B. Let the two radii be less than AB but great enough
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Figure 1: This figure proves that every line segment AB has one and only one midpoint.

such that the circles intersect at exactly two points S and T . The geometric
configuration shown in Figure 1 is guaranteed to exist by Hilbert’s discarded
axiom pertaining to {A,X1, X2, B}. By construction, it follows that

AS = AT = BS = BT .

Let the line segment ST intersect AB at C. By the Pythagorean theorem, C
is a midpoint of AB because

AC2 + CS2 = AS2 , and BC2 + CS2 = BS2 ,

together yield
AC = BC .

C separates AB into two line segments so

AC + CB = AB .

These two conditions, AC = BC and AC + CB = AB, jointly conform to
Definition 2.3.18 so C is a midpoint of an arbitrary line segment AB. l

Example 2.3.22 Theorem 2.3.21 regards an arbitrary line segmentAB. There-
fore, the theorem holds in the case of an arbitrary line segment AB. One might
be afflicted, however, with the assumption that it is not possible to define two
such intersecting circles centered on the endpoints of an arbitrary line seg-
ment such as AB ≡ [0,∞]. To demonstrate how the arbitrary case of any line
segment AB generalizes to the specific case of AB, let AB ≡ [0, π

2
] and let

x′ ∈X be a number in the algebraic representation of X ∈ AB. We say that
[0, π

2
] is the algebraic representation of AB charted in x′. Let x be such that

x = tan(x′) ,

so that x and x′ are two charts related by a conformal transformation. Using

tan(0) = 0 , and tan

(
π

2

)
=∞ ,
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where the latter follows from Definition 2.2.2, it follows that [0,∞] is the
algebraic representation of AB charted in x. Therefore, AB = AB with
respect to the x chart.

Hilbert’s discarded axiom guarantees the existence of two points X1 ∈ AB
and X2 ∈ AB with algebraic representations X ′

1 and X ′
2 such that, for exam-

ple,

x′1 =
π

6
∈X ′

1 , and x′2 =
π

3
∈X ′

2 .

If the radius of the circle centered on A is AX2 and the radius of the circle
centered on B is BX1, then it is guaranteed that these circles will intersect
at two points S and T , as in Figure 1. Since AB = AB in the x chart, it
is required that X1 ∈ AB and X2 ∈ AB. Therefore, circles centered on the
endpoints of AB with radii AX2 and BX1 will intersect at exactly two points.
The chart on the line segment cannot affect the line segment’s
basic geometric properties! It is unquestionable that the points X1 and
X2 exist and are well-defined in the x′ chart, and it is not possible to disrupt
the geometric configuration by introducing a second chart onto AB. A chart
can no more disrupt the geometric configuration than erasing an island from
a map might make the physical island disappear from the sea. X1 and X2 do
not cease to exist simply because we define a conformal chart x = tan(x′). If
they ceased to exist, then that would violate Hilbert’s discarded axiom. This
example demonstrates that Theorem 2.3.21 is valid even for the specific case
of the infinite line segment AB = AB.

Theorem 2.3.23 All line segments have one and only one midpoint.

Proof. For proof by contradiction, suppose C andD are two different midpoints
of a line segment AB. C and D are midpoints of AB so we may derive from
Definition 2.3.18

AC = CB =
AB

2
, and AD = DB =

AB

2
.

It follows that AC = AD. By Axiom 2.3.6, therefore, C = D and we invoke a
contradiction having assumed that C and D are different. l

§3 Fractional Distance

§3.1 Fractional Distance Functions

If there are two circles with equal radii whose centers are separated by an infi-
nite distance, then what numerical radii less than infinity will allow the circles
to intersect at exactly two points? To answer this question, we will introduce
fractional distance functions. We will use these functions to demonstrate the
existence of real numbers in the neighborhood of infinity.
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Definition 3.1.1 For any point X on a real line segment AB, the geometric
fractional distance function DAB is a continuous bijective map

DAB(AX) : AB → [0, 1] ,

which takes AX ⊆ AB and returns real numbers. This function returns AX
as a fraction of AB. Emphasizing the geometric construction, the geometric
fractional distance function DAB is defined as

DAB(AX) =


1 for X = B

AX

AB
for X 6= A, X 6= B

0 for X = A

.

The quotient of two real line segments is defined as a real number.

Remark 3.1.2 The domain of DAB(AX) is defined as subsets of real line
segments. This allows AX = AA which would be excluded from a domain of
real line segments because AA does not have two different endpoints.

Theorem 3.1.3 For any point X ∈ AB, the bijective geometric fractional
distance function DAB(AX) : AB → R has range R = [0, 1].

Proof. Assume DAB(AX) < 0. Then one of the lengths in the fraction must be
negative and we invoke a contradiction with the length of a line segment defined
as a positive number (Definition 2.1.2.) If DAB(AX) > 1, then AX > AB and
we invoke a contradiction by the implication AX * AB. We have excluded
from R all numbers less than zero and greater than one. Since DAB(AX) is
a continuous function taking the values zero and one at the endpoints of its
domain, the intermediate value theorem requires that the range of DAB(AX) :
AB → R is R = [0, 1]. l

Corollary 3.1.4 All line segments have at least one midpoint.

Proof. (Reproof of Theorem 2.3.21.) DAB(AX) is a continuous function on the
domain AB taking finite values zero and one at the endpoints of its domain.
By the intermediate value theorem, there exists a point C in the domain AB
for which DAB(AC) = 0.5. By Definition 2.3.18, C is a midpoint of AB. l

Theorem 3.1.5 Every midpoint of a line segment AB is an interior point of
AB.
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Proof. If X ∈ AB is not an interior point of AB, then X = A or X = B. In
each case respectively, the geometric fractional distance function returns

DAB(AA) = 0 , or DAB(AB) = 1 .

A point C is a midpoint of AB if and only if

DAB(AC) = 0.5 .

No midpoint can be an endpoint. l

Remark 3.1.6 Given the geometric fractional distance function, it is not clear
how to compute DAB(AX) when X is an arbitrary interior point. By Defini-
tion 3.1.1, we know that the fraction AX

AB
is a real number but we have not

yet developed any tools for finding the numerical value. The quotient nota-
tion required for computing fractional distance calls for an algebraic notion of
distance.

Definition 3.1.7 D†AB is the algebraic fractional distance function. It is an
algebraic expression which totally replicates the behavior of the geometric
fractional distance function DAB on an arbitrary line segment AB ≡ [a, b], and
it has the added property that its numerical output is easily simplified. The
algebraic fractional distance function D†AB is constrained to be such that

D†AB(AX) = DAB(AX) .

for every point X ∈ AB.

Remark 3.1.8 In Definitions 3.1.9 and 3.1.11, we will define two kinds of
algebraic fractional distance functions (FDFs.) The purpose in defining two
kinds of FDFs will be so that we may compare their properties and then choose
the one that exactly replicates the behavior of the geometric FDF DAB.

Definition 3.1.9 The algebraic FDF of the first kind

D′AB(AX) : AB → [0, 1] ,

is a map on subsets of real line segments

D′AB(AX) =


1 for X = B

‖AX‖
‖AB‖

for X 6= A, X 6= B

0 for X = A

,

where
‖AX‖
‖AB‖

=
len[a, x]

len[a, b]
,



Jonathan W. Tooker 13

and [a, x] and [a, b] are the line segments AX and AB expressed in interval
notation.

Definition 3.1.10 The norm ‖AX‖ = len[a, x] which appears in D′AB(AX) is
defined so that

D′AB(AX) = DAB(AX) .

Specifically, the length function is defined as the Euclidean distance between
the endpoints of the algebraic representation. Per Definition 2.1.2, we have

len[a, b] = d(a, b) =
∣∣b− a∣∣ .

Definition 3.1.11 An algebraic fractional distance function of the second
kind

D′′AB(AX) : [a, b]→ [0, 1] ,

is a map on intervals of the form

D′′AB(AX) =


1 for X = B

len[a, x]

len[a, b]
for X 6= A, X 6= B

0 for X = A

.

Remark 3.1.12 Take note of the main difference between the two algebraic
FDFs. The first kind has a geometric domain

D′AB(AX) : AB → R ,

but the second kind has an algebraic domain

D′′AB(AX) : [a, b]→ R .

As a matter of consistency of notation, we have written D′′AB(AX) even when
the notation D′′AB([a, x]) might better illustrate that the domain of D′′AB is
intervals rather than line segments. The reader is so advised.

Axiom 3.1.13 The ordering of R is such that for any x, y ∈ R, if

x ∈ [x1, x2] = X ≡ X , and y ∈ [y1, y2] = Y ≡ Y ,

then
DAB(AX) > DAB(AY ) =⇒ x > y .

Theorem 3.1.14 The geometric fractional distance function DAB is injective
(one-to-one) on all real line segments.
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Proof. By Definition 3.1.1, the geometric FDF is

DAB(AX) =


1 for X = B

AX

AB
for X 6= A, X 6= B

0 for X = A

.

For proof by contradiction, assume DAB is not always injective. Then there
exists some X1 6= X2 such that

AX1

AB
=
AX2

AB
.

The range of DAB is [0, 1] and it is known that all such 0 ≤ x ≤ 1 have an
additive inverse element. This allows us to write

0 =
AX2

AB
− AX1

AB
=
AX2 − AX1

AB
⇐⇒ AX2 = AX1 .

Axiom 2.3.6 gives AX = AY if and only if X = Y so the implication X1 = X2

contradicts the assumed condition X1 6= X2. The geometric fractional distance
function DAB(AX) is injective on all real line segments. l

Remark 3.1.15 In Theorem 3.1.14, we have not considered specifically the
case in which AB is a line segment of infinite length. There are many numbers
x1 and x2 such that zero being equal to their difference divided by infinity does
not imply that x1 = x2, e.g.:

0 =
5− 3

∞
6⇐⇒ 5 = 3 . (3.1)

However, DAB(AX) does not have numbers in its domain. The fraction in
Equation (3.1) can never appear when computing AX

AB
because DAB(AX) takes

line segments or simply the point A (written as AA in abused line segment
notation.)

To be clear, simplifying the expressionDAB(AX) in the general case requires
some supplemental constraint like AB = cAX for some scalar c. With a such
a constraint, and by way of Axiom 2.3.7, we may evaluate the quotient as

AX

AB
=
cAB

AB
= c .

Without such auxiliary constraints, we have no general method for the evalu-
ation of the quotient. Theorem 3.1.14 holds, however, because numbers such
as the ∞ in the denominator of Equation (3.1) will be used only to compute

D†AB(AX) when we introduce the norm ‖AX‖. The main feature distinguish-

ing the algebraic FDF D†AB from the geometric FDF DAB is that the former
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allows us to compute the quotient in the general case with no requisite auxil-
iary constraints. Therefore, we might write D†AB(AX;x) to show that is is a

function of AX and a chart x on AB, or D†AB([a, x];x) as mentioned earlier,
but we will not write that explicitly. In the absence of words to the contrary
and if AB is a real line segment, then it should be assumed that the chart is
the standard Euclidean coordinate.

Theorem 3.1.16 The geometric fractional distance function DAB is surjective
(onto) on all real line segments.

Proof. Given the range R = [0, 1] proven in Theorem 3.1.3, proof follows from
the notion of geometric fractional distance. l

Remark 3.1.17 Now that we have shown a few of the elementary properties
of the geometric FDF, we will continue to do so and also examine the similar
behaviors of the algebraic FDFs of the first and second kinds.

Conjecture 3.1.18 The algebraic fractional distance function of the first kind
D′AB is injective (one-to-one) on all real line segments. (This is proven in
Theorem 6.1.4.)

Theorem 3.1.19 The algebraic fractional distance function of the second kind
D′′AB is not injective (one-to-one) on all real line segments.

Proof. Recall that Definition 3.1.11 gives D′′AB : [a, b]→ [0, 1] as

D′′AB(AX) =


1 for X = B

len[a, x]

len[a, b]
for X 6= A, X 6= B

0 for X = A

.

Injectivity requires that

D′′AB(AX) = D′′AB(AY ) ⇐⇒ [a, x] = [a, y] ⇐⇒ x = y .

Let n,m ∈ N be such that n 6= m, and also such that n ∈ N ≡ N and
m ∈M ≡M . We have

D′′AB(AN) =
len[0, n]

len[0,∞]
= 0 , and D′′AB(AM) =

len[0,m]

len[0,∞]
= 0 .

Therefore, the algebraic FDF of the second kind is not injective on all real line
segments because

D′′AB(AN) = D′′AB(AM) 6⇐⇒ n = m . l
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Remark 3.1.20 At this point, we can rule out D′′AB as the definition of D†AB
because the geometric FDF DAB which constrains D†AB is one-to-one. If DAB
is one-to-one on all real line segments, then so is D†AB.

Carefully note that the domain of the algebraic FDF of the first kind is line
segments rather than algebraic intervals. We have

D′AB(AX) : AB → [0, 1] , and D′′AB(AX) : [a, b]→ [0, 1] .

Taking for granted that we will prove the injectivity of D′AB in Theorem 6.1.4,
this distinction of domain—AB versus [a, b]—will prohibit the breakdown in
the one-to-one property when a point X ∈ AB can have many different num-
bers in its algebraic representation. An assumption that the domain of the
algebraic FDF is an algebraic interval [a, b] is likely a root cause of much
pathology in modern analysis .

Theorem 3.1.21 The geometric fractional distance function DAB is continu-
ous everywhere on the domain AB.

Proof. To prove that DAB is continuous on AB ≡ [0,∞], it will suffice to show
that DAB is continuous at the endpoints and an interior point.

• (Interior point) A function f(x) is continuous at an interior point x0 of its
domain [a, b] if and only if

lim
x→x0

f(x) = f(x0) .

In terms of the geometric FDF, the statement that DAB is continuous at an
interior point X0 ∈ AB becomes

lim
X→X0

DAB(AX) = DAB(AX0) .

Obviously, DAB satisfies the definition of continuity on the interior of AB.

• (Endpoint A) A function f(x) is continuous at the endpoint a of its domain
[a, b] if and only if

lim
x→a+

f(x) = f(a) .

We conform to this definition of continuity with

lim
X→A+

DAB(AX) = lim
X→A+

AX

AB
=
AA

AB
= DAB(AA) .

• (Endpoint B) A function f(x) is continuous at the endpoint b of its domain
[a, b] if and only if

lim
x→b−

f(x) = f(b) .
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We conform to this definition with

lim
X→B−

DAB(AX) = lim
X→B−

AX

AB
=

AB

AB
= DAB(AB) .

The geometric FDF is continuous everywhere on its domain. l

Theorem 3.1.22 The algebraic fractional distance function of the first kind
D′AB is not continuous everywhere on the domain AB.

Proof. A function f(x) with domain x ∈ [a, b] is continuous at b if

lim
x→b−

f(x) = f(b) ,

In terms of D′AB, the statement that D′AB is continuous at B becomes

lim
X→B

D′AB(AX) = D′AB(AB) = 1 .

Evaluation yields

lim
X→B

D′AB(AX) = lim
x→∞

len[0, x]

len[0,∞]
= lim

x→∞
x

1

∞
= lim

x→∞
0 6= 1 = D′AB(AB) .

The algebraic FDF of the first kind is not continuous everywhere on all real
line segments. l

Remark 3.1.23 In Theorem 3.1.22, we have shown that the limit approaches
zero rather than the unit value required for D†AB(AB) to agree with DAB(AB).
However, we may also write this limit as

lim
x→∞

1

∞
x = lim

x→∞
y→∞

x

y
= lim

y→∞
∞1

y
=
∞
∞

= undefined .

Perhaps, then, it would be better to write simply

lim
x→∞

x

∞
=
∞
∞

= undefined 6= 1 .

In any case, we have shown that an elementary evaluation does not produce
the correct limit at infinity. Therefore, we should also examine the Cauchy
definition of the limit relying on the ε–δ formalism.

Theorem 3.1.24 The algebraic fractional distance function of the first kind
D′AB does not converge to a Cauchy limit at infinity.

Proof. According to the Cauchy definition of the limit of f : D → R at infinity,
we say that

lim
x→∞

f(x) = l ,
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if and only if
∀ε > 0 ∃δ > 0 s.t ∀x ∈ D ,

we have
0 < |x−∞| < δ =⇒ |f(x)− l| < ε .

There is no δ >∞ so D′AB(AX) fails the Cauchy criterion for convergence to
a limit at infinity. l

Remark 3.1.25 In general, the above Cauchy definition of a limit fails for any
limit at infinity because there is never a δ greater than infinity. Usually this
issue is worked around with the metric space definition of a limit at infinity
but it is a main result of this analysis that we will develop a technique
for taking a limit at infinity with the normal Cauchy prescription. This result
appears in Section 6.1.

Remark 3.1.26 The algebraic FDF D†AB exists by definition. It is a function
which has every behavior of the geometric FDF DAB and also adds the ability
to compute numerical ratios between the lengths of any two real line segments.
Numbers being generally within the domain of algebra, the geometric FDF
returns a fraction that we have no general way to simplify. Since it is hard to
conceive of an irreducible analytical form for the algebraic FDF other thanD′AB
and D′′AB, it is somewhat paradoxical that neither of them replicate the global

behavior of the algebraic FDF D†AB. After developing some more material,

we will show in Section 6.1 that D†AB is D′AB after all. We will prevent an
unwarranted assumption about infinity from sneakily propagating into the
present analysis. Then we will fix the discontinuity of D′AB which we have
demonstrated in Theorems 3.1.22 and 3.1.24.

Theorem 3.1.27 If x is a real number in the algebraic representations of both
X ∈ AB and Y ∈ AB, then X = Y .

Proof. If X 6= Y , then

D†AB(AX) 6= D†AB(AY ) .

If x ∈ X and x ∈ Y , then it is possible to make cuts at X and Y such that

D†AB(AX) =
len[a, x]

len[a, b]
= D†AB(AY ) .

This contradiction requires X = Y . l

§3.2 Comparison of Real and Natural Numbers

The main result of this section is to prove via analysis of FDFs that there exist
real numbers greater than any natural number. Consequently, R∞ = R \ R0

cannot be the empty set.
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Definition 3.2.1 Every interval has a number at its center. The number at
the center of an interval [a, b] is defined as the average of a and b if an average
can be computed. Otherwise, the number in the center is the unique number
c such that for every c+ x in the interval, there is a corresponding c− x in it.
This holds for all intervals [a, b), (a, b], and (a, b).

Theorem 3.2.2 There exists a unique real number halfway between zero and
infinity.

Proof. By Theorem 2.3.23 and by Definition 2.3.18, there exists one midpoint
C of every line segment AB such that

DAB(AC) = 0.5 .

Recalling that we have defined DAB(AX) = D†AB(AX) for all X ∈ AB, and
recalling that AB ≡ [0,∞], it follows that

D†AB(AC) = 0.5 .

Using C ≡ C = [c1, c2], Axiom 2.3.10 and Definition 2.3.15 require

AB = AC + CB ⇐⇒ [0,∞] = [0, c1) ∪ C ∪ (c2,∞] .

It follows that
C ⊂ R .

Every possible number that can be in the algebraic representation of the point
C is a real number. If c1 = c2 = c, then c ∈ R is the unique real number
halfway between zero and infinity. If c1 6= c2, then, by Definition 3.2.1, the
number at the center of [c1, c2] is the unique real number halfway between zero
and infinity. l

Remark 3.2.3 How can D†AB(AC) = 0.5 when Definition 3.1.9 gives

D′AB(AC) =
len[0, c]

∞
?

The prevailing assumption about infinity is

x ∈ R ⇐⇒ x

∞
= 0 . (3.2)

If Equation (3.2) is true, then either (i) there exists a line segment without a
midpoint, or (ii) the geometric and algebraic fractional distance functions do
not agree for every X in an arbitrary AB.

Every line segment does have a midpoint (Theorem 2.3.23) and our frac-
tional distance functions are defined to always agree (Definition 3.1.7.) There-
fore, Equation (3.2), which is a statement dependent on the assumed properties
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of∞, must be reformulated. In Section 4.1, we will define notation for subsets
of R consisting of all numbers having fractional distance X with respect to
AB meaning that x

∞ = X . The sets will be labeled RXℵ most generally with
0 < X < 1 but it will follow that R0

ℵ is the set of all real numbers having
zero fractional distance with respect to AB. We know that R0 ⊂ R0

ℵ but it
shall remain to be determined whether or not there are real numbers greater
than any natural number yet still having zero fractional distance with respect
to AB. In Section 7.4, we will closely examine whether or not such numbers
ought to exist.

While we will postpone the definition of RXℵ to Section 4.1, and while the
formal construction of RXℵ by equivalence classes of Cauchy sequences will not
appear until Section 4.2, here we will go ahead and answer the question, “How
can D†AB(AC) = 0.5 when Definition 3.1.9 gives

D′AB(AC) =
len[0, c]

∞
?”

The answer is that Equation (3.2) must be reformulated as

x ∈ R0
ℵ ⇐⇒ x

∞
= 0 ,

if we are to avoid harsh contradictions in the definitions of our FDFs. Regard-
ing Theorem 3.2.2 and the present question which follows, the real numbers
in the algebraic representation of the geometric midpoint of AB shall be

x ∈ R0.5
ℵ ⇐⇒ x

∞
= 0.5 .

In addition to motivating the soon-to-be-defined RXℵ notation, the present
remark illustrates the reasoning behind allowing geometric points to be rep-
resented as entire intervals X ≡ X . The reason is that many real numbers
divided by infinity give zero but only the geometric left endpoint of AB will
have vanishing fractional distance. For instance, if x ∈ R0.5

ℵ and n is a natural
number having zero fractional magnitude with respect to infinity, then

x+ n

∞
=

x

∞
+

n

∞
= 0.5 + 0 .

Obviously, x ∈ R0.5
ℵ is not a unique number though the midpoint C is a unique

point.

Definition 3.2.4 If RXℵ is the set of all numbers whose fractional distance
with respect to AB is X , and if 0 < X < 1, then ℵX is the number in the
center of the interval RXℵ = (a, b) in the sense that for every ℵX + n ∈ RXℵ
there exists an ℵX − n ∈ RXℵ .
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Remark 3.2.5 The reader is invited to recall that Euler often employed the
letter i to refer to an infinitely large integer. Euler made use of the number
i
2

for proofs in his most seminal works [5–7]. Therefore, we are certainly

introducing nothing new with the ℵX notation because i
2
∼ ℵ0.5.

Main Theorem 3.2.6 Some elements of R are greater than every element of
N.

Proof. Let AB have a midpoint C so that DAB(AC) = 0.5. Then every real
number c ∈ [c1, c2] ≡ C is greater than any n ∈ N because n

∞ = 0 implies
n ∈ A ≡ A through the definition DAB(AA) = 0. DAB is one-to-one so by
Axiom 3.1.13 giving for x ∈ X and y ∈ Y

DAB(AX) > DAB(AY ) =⇒ x > y ,

we find that every c ∈ C ⊂ R is greater than every n ∈ N. Generally, every
x ∈ RXℵ is greater than any natural number whenever X > 0. l

Corollary 3.2.7 R∞ = R \ R0 is not the empty set.

Proof. Definition 2.1.9 defines R0 as the subset of R whose elements are less
than some element of N. We have proven in Main Theorem 3.2.6 that some
elements of R are not in R0. It follows that

R∞ 6= ∅ , because R∞ = R \ R0 . l

§3.3 Comparison of Cuts in Lines and Points in Line Segments

In this section, we will make clarifications regarding the cases in which an
interior point of a line segment can or cannot be identified with a unique real
number. Namely, we distinguish cases in which X ≡ x and X ≡X = [x1, x2]
with x1 6= x2.

Theorem 3.3.1 If AB is a real line segment of finite length L ∈ R0, then
every point X ∈ AB has a unique algebraic representation as one and only
one real number.

Proof. Let a, b ∈ R0 and AB ≡ [a, b]. The algebraic FDF D†AB is defined to

behave exactly as the geometric FDF DAB. Therefore, D†AB must be one-to-
one (injective.) By Definition 2.3.15, every point in a real line segment has an
algebraic representation

X ≡X = [x1, x2] .
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Therefore, the present theorem will be proven if we show that x1 = x2 for all
X ∈ AB with L ∈ R0. To initiate proof by contradiction, assume x1, x2 ∈ R0

and x1 6= x2. (The validity of this condition follows from L ∈ R0.) Then

min[D†AB(AX)] =
len[a, x1]

len[a, b]
=
x1 − a
b− a

,

and

max[D†AB(AX)] =
len[a, x2]

len[a, b]
=
x2 − a
b− a

.

The one-to-one property of D†AB requires that

x1 − a
b− a

=
x2 − a
b− a

⇐⇒ x1 = x2 .

This contradicts the assumption x1 6= x2. The theorem is proven. l

Theorem 3.3.2 If AB is a real line segment of infinite length L = ∞, then
no point X ∈ AB has a unique algebraic representation as one and only one
real number.

Proof. By Definition 2.3.15, every point in a line segment has an algebraic
representation

X ≡X = [x1, x2] .

It follows that

min[D†AB(AX)] =
len[0, x1]

len[0,∞]
=
x1

∞
,

Now suppose that x0 ∈ R+
0 where the superscript “+” indicates the positive-

definite subset. Further suppose z = x1 + x0 so that z > x1. Then

len[0, z]

len[0,∞]
=

z

∞
=
x1 + x0

∞
=
x1

∞
= min[D†AB(AX)] .

Invoking the single-valuedness of bijective functions, we find that

min[D†AB(AX)] = max[D†AB(AX)] =
x2

∞
=⇒ x1 < z ≤ x2 .

Therefore x1 6= x2 and the theorem is proven. l

Example 3.3.3 This example illustrates some of the underlying machinations
associated with the many-to-one relationship between numbers and points in
an infinitely long line segment. If we separate an endpoint from a closed
algebraic interval, then we may write

[a, b] = {a} ∪ (a, b] .
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To separate an endpoint from a line segment we write

AB = A+ AB .

If A has an algebraic representation A such that len(A ) > 0, then the only
way that we can leave the length of AB unchanged after removing A is for
AB to have infinite length. Given len(A ) > 0, observe that

‖AB‖ − len(A ) = ‖AB‖ ⇐⇒ ‖AB‖ =∞ .

Remark 3.3.4 Theorems 3.3.1 and 3.3.2 do not cover all cases of len(AB) =
L. For instance, four coarse bins of L are

� L ∈ R0

� L ∈ R0
ℵ \ R0 (L larger than any n ∈ N yet not so large that L

∞ > 0.)

� L ∈ R∞ \R0
ℵ (which is also written L ∈ RXℵ ∪R1

ℵ when RXℵ is understood
to be 0 < X < 1, as in Section 4.1)

� L =∞ .

We have not considered the two intermediate cases of finite L. The lesser case
is finite L ∈ R0

ℵ\R0. Since we have not yet introduced numbers through which
to describe the lesser case, and we will not decide R0

ℵ \ R0 = ∅ until Section
7.4, we cannot at this time prove the result regarding the multi-valuedness of
points in line segments having L ∈ R0

ℵ \ R0. The limit of the third case as
L ∈ RX0 ∪ R1

0 is proven to be many-to-one in Theorem 6.2.1.

§4 The Neighborhood of Infinity

§4.1 Intermediate Neighborhoods of Infinity

In this section, we will develop notation useful for describing real numbers
whose fractional magnitude with respect to infinity is greater than zero.

Definition 4.1.1 The number ℵX is defined to have the property

ℵX
∞

= X .

Equivalently, if ℵX ∈X ≡ X ∈ AB, then

DAB(AX) = X .

Remark 4.1.2 We have shown in Theorem 3.3.2 that there are many real
numbers in the algebraic representation of X ∈ AB. When X is not an
endpoint of AB, ℵX can be thought of the as the number in the center of
the interval (x1, x2) = X ≡ X. Definition 3.2.1 defines the number in the
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center of X as the average of x1 and x2 if the average is computable, but here
we have no way to determine the least and greatest numbers in the algebraic
representation of X. It is useful, therefore, to think of ℵX as the number
in the center of X in the sense that for every ℵX + |b| ∈ X there exists a
ℵX −|b| ∈X . For the special cases of ℵ0 and ℵ1, we should not think of them
as being in the centers of the intervals A ≡ A and B ≡ B. Instead, ℵ0 is the
least number in A ≡ A ∈ AB and ℵ1 is the greatest number in B ≡ B ∈ AB.

Definition 4.1.3 For 0 < X < 1, RXℵ is a subset of positive real numbers R+

such that

RXℵ =
{
ℵX + b

∣∣ |b| ∈ A ∈ AB, DAB(AA) = 0
}
.

The set RXℵ is called the whole neighborhood of ℵX . The set {RXℵ } of all
RXℵ , meaning the union of RXℵ for every 0 < X < 1, is called the set of all
intermediate neighborhoods of R. We will also call RXℵ the neighborhood of
numbers that are 100 × X% of the way down the real number line. (These
conventions ignore the negative branch of R.)

Definition 4.1.4 It will also be useful to define a set RX0 ⊆ RXℵ such that
0 < X < 1 and

RX0 =
{
ℵX + b

∣∣ b ∈ R0

}
.

The set RX0 is called the natural neighborhood of ℵX because here we have
constrained b to be less than some n ∈ N. {RX0 } is the union of RX0 for every
0 < X < 1.

Definition 4.1.5 Every number of the form x = ℵX + b has a big part ℵX
and a little part b. It is understood that b < ℵX for any X > 0. We define
notations

Big(ℵX + b) = ℵX , and Lit(ℵX + b) = b .

Remark 4.1.6 We have omitted from Definitions 4.1.3 and 4.1.4 the cases of
X = 0 and X = 1 though they do follow more or less directly. The main issue
is that we must restrict the sign of b to keep the elements of the set within the
totally real interval [0,∞) ⊂ R. For X = 0, the little part b is non-negative
and for X = 1 it is negative-definite.

The difference between the natural neighborhoods RX0 and the whole neigh-
borhoods RXℵ is that b is not restricted to R0 in the latter. In Definition 4.1.4,
we did not give the condition on b in terms of the absolute value as in Defi-
nition 4.1.3 because R0 contains negative numbers while b ∈ AB ≡ [0,∞] is
strictly non-negative. The main purpose in defining distinct sets {RX0 } and
{RXℵ } is this: we know that there exist numbers larger than any b ∈ R0 (Main
Theorem 3.2.6) but we do not know whether or not all such numbers have
greater than zero fractional magnitude with respect to AB. We will revisit
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this issue in Section 7.4. In the meantime, we will be careful to treat RX0 and
RXℵ as distinct sets which may or may not be equal.

Definition 4.1.7 The whole neighborhood of the origin is

R0
ℵ =

{
x
∣∣ x ∈ A ≡ A ∈ AB

}
,

and the natural neighborhood of the origin is

R0
0 =

{
x
∣∣ x ∈ R0, x ≥ 0

}
,

Remark 4.1.8 Note that R0 * R0
0 ⊆ R0

ℵ because R0 contains positive and
negative numbers, as per Definition 2.1.9.

Definition 4.1.9 A real number x is said to be in the neighborhood of the
origin if and only if

x ∈ X , and DAB(AX) = 0 .

All such numbers are said to be x ∈ R0
ℵ. Every real number not in the

neighborhood of the origin is said to in the neighborhood of infinity. A positive
real number x is said to be in the neighborhood of infinity if and only if

x ∈ X , and DAB(AX) 6= 0 .

Remark 4.1.10 Definition 2.1.10 states that R∞ = R \ R0. Therefore, if
R0
ℵ \ R0

0 6= ∅, meaning that there do exist real numbers greater than any
natural number yet not great enough to have non-zero fractional distance with
respect to AB, then the set R∞ will contain numbers in the neighborhood of
the origin and numbers in the neighborhood of infinity. To avoid ambiguity,
we will not use the symbol R∞ and instead we will mostly use the detailed set
enumeration scheme given in the present section. With this scheme of distinct
whole and natural neighborhoods, we have left room judiciously for numbers
in the neighborhood of the origin which are larger than any natural number.
In other work [8, 9], we used the semantic convention that every number in
the neighborhood of the origin is less than some natural number. That meant
R0 was the set of all real numbers in the neighborhood of the origin. The
present convention, however, is better suited to the fuller analysis presently
given. The reader should carefully note that the present neighborhood of the
origin R0

ℵ includes all numbers which have zero fractional distance along the
real number line, even if some of those numbers are larger than any n ∈ N.

Definition 4.1.11 The δ-neighborhood of a number x ∈ R is an interval
(x−δ, x+δ) or some closed or half-open permutation thereof. While there is no
inherent constraint on the magnitude of δ, here we will take “δ-neighborhood”



26 Fractional Distance: The Topology of the Real Number Line

to imply δ ∈ R0. We will use the convention that the Ball function defines an
open δ-neighborhood as

Ball(x, δ) = (x− δ, x+ δ) .

Definition 4.1.12 The δ-neighborhood of an interior point X ∈ AB is a line
segment Y Z where∣∣DAB(AX)−DAB(AY )

∣∣ =
∣∣DAB(AX)−DAB(AZ)

∣∣ = δ .

Remark 4.1.13 Without regard to the δ-neighborhood of any point or num-
ber, we have defined neighborhoods with the geometric FDF, as in Definition
4.1.9. If DAB(AX) = 0, then the numbers in the algebraic representation of
X are said to be in the neighborhood of the origin. They are said to be in the
neighborhood of infinity otherwise. Neither of these neighborhoods, neither
that of the origin nor that of infinity, are defined formally as δ-neighborhoods
though such a definition may be inferred. In advance of the following definition
for RXℵ (Definition 4.1.14), recall that Definition 3.2.4 gave ℵX as the number
in the center of the interval RXℵ = (a, b).

Definition 4.1.14 An alternative definition for RXℵ valid in the neighborhood
of infinity, meaning for 0 < X < 1, is

RXℵ =
{
ℵX ± b

∣∣ b ∈ R0
ℵ
}
.

This definition is totally equivalent to Definition 4.1.3.

§4.2 Equivalence Classes for Intermediate Natural Neighborhoods
of Infinity

Euclid’s definition of R is inherently a geometric one based on the measurement
of quantity. The purpose of Cantor’s definition by Cauchy equivalence classes
[2,10–12] is to give an algebraic definition based on rationals. In this section, we
will append the algebraic Cauchy definition to the Euclidean definition given in
Section 2.1. This totally algebraic hybrid construction will not unduly exclude
the neighborhood of infinity from R. In its ordinary incarnation, the Cauchy
definition contradicts the axiom that R = (−∞,∞) because it precludes the
existence of numbers larger than any natural number. We have shown that
if every number in the interval (−∞,∞) is to be a real number, then there
must exist numbers such as ℵ0.5 which are greater than any natural number.
In this section, we will modify the Cauchy definition so that it will support
the underlying geometric construction and facilitate the algebraic construction
of numbers in the neighborhood of infinity. Here we will only construct the
natural neighborhoods because the equality or inequality of RX0 and RXℵ is not
treated until Section 7.4.
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Definition 4.2.1 The rational numbers Q are an Archimedean number field
satisfying all of the well-known field axioms given in Section 5.4.

Definition 4.2.2 A sequence {xn} is a Cauchy sequence if and only if

∀δ ∈ Q ∃m,n,N ∈ N s.t. m,n > N =⇒
∣∣xn − xm∣∣ < δ .

Definition 4.2.3 We say a relation is an equivalence relation if and only if
(i) S is a set, (ii) every x ∈ S is related to x meaning the relation is reflexive,
(iii) for every x, y ∈ S the relation of x to y implies the relation of y to x
meaning the relation is symmetric, and (iv) for every x, y, z ∈ S the relation
of x to y and the relation of y to z together imply the relation of x to z
meaning the relation is transitive. The equivalence class of x ∈ S, namely the
set of all objects which are related to x by an equivalence relation, is denoted
[x]. At times we will write [x] = [{xn}] or [x] = [(xn)] to emphasize that the
equivalence relation is among Cauchy sequences where {xn} and (xn) have the
same meaning.

Definition 4.2.4 CQ is the set of all Cauchy sequences of rational numbers.

Remark 4.2.5 Usually the Cauchy construction of R is formulated as, “Every
x ∈ R is some Cauchy equivalence class [x] ⊂ CQ,” but here we will take a
slightly different approach.

Axiom 4.2.6 Every x ∈ R may be constructed algebraically as (i) a Cartesian
product of Cauchy equivalence classes of rational numbers, or (ii) a partition
of all such products.

Axiom 4.2.7 Every x ∈ R0 ⊂ R is a Cauchy equivalence class of rationals
x = [x] ⊂ CQ and also a Dedekind partition of Q in canonical form x = (L,R).
(Dedekind cuts are defined in Section 7.5.)

Remark 4.2.8 Axiom 4.2.7 grants that the reals are constructed by Cauchy
equivalence classes or Dedekind partitions (cuts) in the most canonical sense
if one takes the complementary axiom that every real number is
less than some natural number . We do not take that axiom so we specify
x ∈ R0 as the object of relevance.

Remark 4.2.9 Cantor’s Cauchy construction of R, like the Dedekind con-
struction, is said to be “rigorous” because it begins with the rationals Q.
However, before one may assume the existence of Q, one must define zero be-
cause 0 ∈ Q but 0 6∈ N. Therefore, to be rigorous, one simply may not assume
Q as a consequence of N. To introduce zero, we will introduce the line segment
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AB and define zero as the least number in the algebraic representation of the
geometric point A. In other words, 0 = ℵ0. It is true that this present ap-
proach can be criticized as being “not rigorous” because we have assumed AB
in the same way that others assumed Q but the present construction is “more
rigorous” because it bumps that which is assumed down to a more primitive
level, i.e.: Euclid’s principles of geometry [1].

Definition 4.2.10 The symbol 0̂ is an instance of the number zero with the
instruction not to do any of zero’s absorptive operations. The absorptive
operations of zero are

0 + x = x , and 0 · x = 0 .

Expressions containing 0̂ are not to be simplified by either of these operations.

Axiom 4.2.11 For every Cauchy sequence {xn} in the equivalence class [x] ⊂
CQ, there exists another Cauchy sequence {0̂ + xn} = {xn}. This is to say{

xn
}
∈ [x] ⇐⇒

{
0̂ + xn

}
∈ [x] ,

or that, equivalently, there exists an additive identity element for every x ∈ Q.

Example 4.2.12 With Axiom 4.2.11, we have associated every element of CQ
with the endpoint A of the real line segment AB. This is done because every
x ∈ Q has zero fractional magnitude with respect to infinity. Therefore, we
may mingle the geometric and algebraic notations to write{

0̂ + xn
}
≡
{
A+ xn

}
∈ [A+ x] .

By extending the line segment in consideration from AB ≡ [0,∞] to ZB ≡
[−∞,∞], the number zero is now in the center of A which is an interior point of
ZB. Therefore, we may give an algebraic construction by Cauchy equivalence
classes for all

RX0 =
{
ℵX + b

∣∣ b ∈ R0

}
,

by changing the interior point attached to the sequences in the equivalence
classes. For any interior point X ∈ AB, there is an equivalence class [X + x]
such that

DAB(AX) = X , [x] = b ∈ R0 =⇒ [X + x] ≡ [ℵ[X ] + x] = ℵX + b .

In this notation, the comma is a logical “and” (∧) so the implication follows
if both conditions on the left are true. Note the number X indicating that ℵX
has 100 × X% fractional distance with respect to AB is an equivalence class
X = [X ] ⊂ CQ with no requisite geometric part because 0 < X < 1 implies
X ∈ R0.
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Definition 4.2.13 In the following definitions, the sign of x is restricted ap-
propriately for the neighborhood of the origin and the maximal neighborhood
of infinity. CAB

Q is a Cartesian product of CQ with the set of all X ∈ AB.
Specifically,

CAB
Q =

{
X
}
× CQ =

{
X + [x]

∣∣ X ∈ AB, [x] ⊂ CQ
}
.

Since it is considered desirable to give a totally algebraic construction, we may
give the equivalent definition

CAB
Q =

{
ℵX
}
× CQ =

{
ℵ[X ] + [x]

∣∣ [x], [X ] ⊂ CQ, 0 ≤ [X ] ≤ 1
}
.

In this second convention, x ≥ 0 if X = 0 and x < 0 if X = 1. This is required
for the elements of CAB

Q to be in [0,∞).

Remark 4.2.14 In Definition 4.2.13, the second definition CAB
Q =

{
ℵX
}
×CQ

avoids any ambiguity related to the many-to-one relationship between points
in AB and the numbers in the algebraic representations of those points. For
instance, there is no single equivalence class of rationals containing all of R0

0 so
there is no inherently well-defined notion of the equivalence class of a geometric
point.

Definition 4.2.15 The equivalence class of a geometric point X is the equiv-
alence class of the number in the center of its algebraic representation X ≡ X.
That is

DAB(AX) = X =⇒ [X] ≡ [ℵX ] = ℵ[X ] = ℵX .

This notation is redundant because X is nothing like a Cauchy sequence. In
general, we will use the ℵ[X ] = [ℵX ] notation. The main purpose of the present
definition is to formalize the identical sameness of the two definitions of CAB

Q
given in Definition 4.2.13.

Definition 4.2.16 Every ℵX ∈ RXℵ ⊂ R is a Cauchy equivalence class ℵX =
[ℵX ] = ℵ[X ] ⊂ CAB

Q where ℵX ∈ R implies 0 ≤ X < 1 so that X = [X ] ⊂ CQ.
If DAB(AX) = X , then [X] ≡ [ℵX ].

Axiom 4.2.17 Every x ∈ {RX0 } is a Cauchy equivalence class x = ℵ[X ] +[b] =
[x] ⊂ CAB

Q . Big(x) is defined by [X ] ∈ CQ and Lit(x) is defined by [b] ∈ CQ. As
in Definition 4.1.5, x is defined as the sum of its big and little parts. In other
words, without inventing the object CAB

Q , we have the equivalent axiom that

every x ∈ {RX0 } is an ordered pair of Cauchy equivalence classes of rationals

x =
(
[X ], [b]

)
⊂ CQ × CQ ,

where the Cartesian product is

CQ × CQ :
(
[X ], [b]

)
→ ℵ[X ] + [b] .
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Remark 4.2.18 Axiom 4.2.17 is totally compliant with the requirement of
Axiom 4.2.6 that all real numbers can be constructed from Cartesian products
of subsets of CQ, or partitions thereof.

Example 4.2.19 This example gives a Cauchy equivalence class definition of
ℵX , as in Definition 4.2.16. Suppose 0 ≤ x ≤ 1 and that

x = [x] = [{xn}] =
{
x1, x2, x3, ...

}
.

It follows that

ℵx = ℵ[x] = [ℵx] = [{ℵnx}] = [ℵ{xn}] =
{
ℵx1 ,ℵx2 ,ℵx3 , ...

}
,

where we have moved the iterator into the superscript position at one of the
intermediate steps.

Theorem 4.2.20 If X and Y are two interior points of AB, then two Cauchy
equivalence classes [X + x] and [Y + y] are equivalent if and only if X = Y
and x = y.

Proof. By Definition 4.2.15, we have [X + x], [Y + y] ⊂ CAB
Q . Every element

of CAB
Q can be expressed as the Cartesian product of two elements of CQ{

[X ] ⊂ CQ
}
×
{

[b] ⊂ CQ
}

:
(
[X ], [b]

)
→ ℵ[X ] + [b] .

By the definition of the equivalence class, every element of CQ is such that

[x] = [y] ⇐⇒ x = y ,

so the same must be true for the ordered pairs:(
[X ], [x]

)
=
(
[Y ], [y]

)
⇐⇒

(
ℵX , x

)
=
(
ℵY , y

)
. l

Per Definition 4.2.15, the equivalence class of [X] is uniquely determined by
the equivalence class of ℵX so it follows that X = Y if and only if [X] = [Y ].
The theorem is proven.

§4.3 The Maximal Neighborhood of Infinity

The main purpose of this section is to treat the properties of real numbers
x ∈ RXℵ for the special case of X = 1. Again, the reader must note that for-
mally R1

ℵ 6⊂ {RXℵ } due to the restriction 0 < X < 1 given by Definition 4.1.3.
Whenever RX0 or RXℵ is taken to mean X = 0 or X = 1, referring the neigh-
borhood of the origin and the maximal neighborhood of infinity respectively,
we will always make an explicit statement indicating 0 6< X 6< 1.
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Definition 4.3.1 The whole maximal neighborhood of infinity is

R1
ℵ =

{
ℵ1 − b

∣∣ b ∈ R0
ℵ
}
.

Remark 4.3.2 We have defined ℵ1 as the greatest number in the algebraic
representation B of B ∈ AB ≡ [0,∞]. Therefore, ℵ1 is an infinite element
not in the real numbers. As the arithmetic of ∞ is usually defined, if we set
ℵ1 = ∞, then it would follow that ∞ − b = ∞ and R1

ℵ ∩ R = ∅. This is
not the desired behavior so we will make special notation custom tailored to
deliver what is desired.

Definition 4.3.3 ∞ is called geometric infinity or simply infinity.

Definition 4.3.4 ∞̂ is called algebraic infinity. It shall be called infinity hat
as well.

Definition 4.3.5 Additive absorption is a property of ∞ such that all x ∈ R
are additive identities of ∞. The additive absorptive property is

∞± x =∞ .

Multiplicative absorption is a property of ±∞ such that all non-zero x ∈ R
are multiplicative identities of ±∞. The multiplicative absorptive property is

∞ · x =

{
∞ for x > 0

−∞ for x < 0
.

Remark 4.3.6 Note that infinity and zero are both multiplicative absorbers
while zero’s additive absorptive property is such that zero gets absorbed. In-
deed, the contradiction inherent to mutual multiplicative absorption may be
identified as a reason contributing to the canonical non-definition of the 0 ·∞
operation.

Definition 4.3.7 The symbol ∞̂ refers to an infinite element

±
∣∣∞̂∣∣ = lim

x→0±

1

x
, and

∣∣∞̂∣∣ = lim
n→∞

n∑
k=1

k ,

together with an instruction not to perform the additive or multiplicative
operations usually imbued to infinite elements.

Remark 4.3.8 What we have done in Definition 4.3.7 is exactly what we
have done with 0̂ in Definition 4.2.10. In the case of 0̂, it was not in any
way strange to entertain the notion that one might simply choose not to do
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the absorptive operations of zero and neither should the present convention
for ∞̂ be considered in any way strange or ill-defined. In Section 4.4, we will
construct an infinite element—what might be called an instance of infinity—
stripped of its absorptive operations by considering the invariance of AB under
the permutations of the labels of its endpoints. As in Sections 4.1 and 4.2, we
will define some objects in the present section to facilitate a formal construction
in Section 4.4.

Theorem 4.3.9 The two open intervals (−∞,∞) and (−∞̂, ∞̂) are identi-
cally equal. In other words, the real number line may be expressed identically
as R = (−∞̂, ∞̂) or R = (−∞,∞).

Proof. For a, b ∈ R+, it may be taken for granted that

(−a, b) = (−|a|, |b|) .

It follows, therefore, that this is true for a, b ∈ R+
. Then, per Definition 4.3.7,

±
∣∣∞̂∣∣ = ±

∣∣∞∣∣ =⇒ R = (−∞̂, ∞̂) . l

Example 4.3.10 This example demonstrates the arithmetic constraints that
would have to be placed on the limit definition of infinity if it was said to define
∞̂ rather than |∞̂|, as in Definition 4.3.7. This example also demonstrates the
general motivation for such notation by demonstrating the large burden that
would imposed if the absolute value bars were absent in Definition 4.3.7. In
its limit incarnation, the additive absorptive property of ∞ is demonstrated
as

a+∞ = a+ lim
x→0

1

x
= lim

x→0

ax+ 1

x
= diverges =∞ .

Therefore, if the limit were said to define ∞̂, then the hat’s arithmetic con-
straint “don’t simplify this expression by absorption” would mean to keep a
out of the limited expression. Similarly, multiplicative absorption is demon-
strated as

a · ∞ = a · lim
x→0

1

x
= lim

x→0

a

x
= diverges =∞ .

In either case, the limit expression diverges in R and no contradiction is ob-
tained by keeping a out of the expression to avoid it being “absorbed.”

The utility in adding the hat to infinity is that it supports the notion that a
number lying x units of Euclidean distance away from the least number 0 = ℵ0

in the algebraic representation of A ∈ AB should, under permutation of the
labels of the endpoints of AB, be mapped to another number x′ lying x units
of distance away from the greatest number ℵ1 in the algebraic representation
of B ∈ AB. By suppressing the additive absorption, we let x′ = ℵ1 − x =
∞̂ − x 6=∞. Per Definition 4.3.1, this number is x′ ∈ R1

ℵ. By suppressing the
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multiplicative absorption of ∞̂, we introduce notation by which it is possible
to complement Definition 4.1.1 with the statement

ℵX
∞

= X ⇐⇒ ℵX = X · ∞̂ .

In the former part this treatise, we have demonstrated a requirement for num-
bers such as x′ and ℵX , and ∞̂ is a notation for an infinite element tailored to
the requirement. Indeed, where algebra is called the study of mathemat-
ical symbols and the rules for manipulating them , algebraic infinity
∞̂ is a perfectly ordinary algebraic object and well-defined.

Definition 4.3.11 For any X ∈ R, the symbol ℵX is defined as

ℵX = X · ∞̂ .

Definition 4.3.12 In terms of ∞̂, the whole maximal neighborhood of infinity
is defined as

R1
ℵ =

{
∞̂ − b

∣∣ b ∈ R0
ℵ, b 6= 0

}
.

Definition 4.3.13 The maximal natural neighborhood of infinity is defined
as

R1
0 =

{
∞̂ − b

∣∣ b ∈ R+
0

}
.

§4.4 Equivalence Classes for the Maximal Natural Neighborhood
of Infinity

We could easily construct R1
0 following the prescription in Section 4.2. There,

we introduced zero as the least number in the algebraic representation of A ∈
AB ≡ [0,∞] and then we made the extension to an arbitrary interior point by
considering A as the midpoint of ZB ≡ [−∞,∞]. However, we could have left
A as an endpoint and then extended the construction to the other endpoint B
to define the maximal neighborhood via a symmetry argument. For breadth,
here we will use a similar symmetry argument to take a slightly different
approach to the Cauchy construction of the maximal neighborhood infinity.
The material in the present section will constitute an independent motivation
for the intermediate neighborhoods, separate from the main fractional distance
approach. We will generate a non-absorbing infinite element ∞̂ and then we
will define the ℵX as its fractional parts.

In Section 4.2, we defined a real number as an ordered pair of Cauchy
equivalence classes of rationals: one for the big part and one for the small
part. This approach required that we assume the ℵ notation before we can
define an equivalence class [ℵX ] = ℵ[X ] = ℵX . We were very well-motivated
to assume numbers in this form, particularly by Main Theorem 3.2.6 proving
that some real numbers are larger than any real number, and by Theorem
3.2.2 proving that there exists at least one real number having 50% fractional
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magnitude with respect to AB. However, it remains that ℵX is inherently
foreign to what is called real analysis. Therefore, in the present section, we
will give an alternative construction for R1

0 based on the geometric invariance
of line segments under the permutations of the labels of their endpoints. The
numbers in the maximal neighborhood of infinity are defined according to ∞:
a number not at all foreign to real analysis. Then, with |∞̂| = ∞ defined
as in the previous section, and with a formal construction given here for the
maximal neighborhood of infinity, we will use ∞̂ as an independent constructor
for ℵX and the intermediate neighborhoods.

Axiom 4.4.1 A Euclidean line segment AB [1] is invariant under permuta-
tions of the labels of its endpoints, e.g.: AB = BA.

Definition 4.4.2 Define a geometric permutation operator P̂ such that

P̂ (AB) = BA .

Remark 4.4.3 In this section, we will construct R1
0 from the operation of

P̂ on Cauchy equivalence classes of rational numbers, e.g.: P̂ ([x]). To do

so, we must develop the induced operation of P̂ on the algebraic interval
representation [a, b] ≡ AB. (It is a pleasant coincidence that the equivalence
class bracket notation is exactly consistent with the abused notion of a closed
one-point interval [x, x] = [x].) As in Section 4.2, our departure from the
usual Cauchy construction of R begins with an acknowledgment that 0 ∈ Q
does not follow from N. Again, we introduce 0 = ℵ0 as the least number in
the algebraic representation of A ∈ AB. Then we assume zero is an additive
identity element of every n ∈ N to obtain

m

n
∈ Q =⇒ m

n
=

0 +m

n
=

0

n
+
m

n
= 0 +

m

n
.

Finally, we will put the hat on 0̂ to remind us not to simplify the expression.
The elements of CQ now have an interpretation as Euclidean magnitudes mea-
sured relative to the origin of R. Specifically, m

n
is an abstract element of Q

but 0̂ + m
n

is the rational length of a real line segment whose left endpoint
has zero as the least number in its algebraic representation. This follows from
Definition 4.2.15 giving [A] = [ℵ0] = ℵ[0] = 0 = 0̂.

Definition 4.4.4 The Euclidean chart x on AB is such that min(x ∈ A) = 0
and max(x ∈ B) = ℵ1 regardless of the permutation of the labels of the
endpoints. In other words, the ordering of real numbers is such that numbers
nearer to B are always greater than those nearer to A.

Definition 4.4.5 Define an operator P̂0([x]; 0̂) which formalizes the notion of

P̂ ([x]). Per Definition 4.4.2, the domain of P̂ is not in CQ so we introduce
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a special algebraic permutation operator P̂0([x]; 0̂) dual to P̂ which formally
operates on equivalence classes. The definition is

P̂0 : 0̂× CQ → ∞̂× CQ ,

where

0̂×CQ =
{

0̂+[x]
∣∣ [x] ⊂ CQ

}
, and ∞̂×CQ =

{
∞̂− [x]

∣∣ [x] ⊂ CQ
}
.

Example 4.4.6 This example demonstrates the working of P̂ and P̂0 to give
a formal construction of R1

0 by Cauchy sequences of rational numbers. Suppose
b ∈ R0 is a well-defined equivalence class of rationals lying within the algebraic
representation A of A ∈ AB. Now operate on AB with P̂ so that

P̂ (AB) = BA .

The permutation of the labels of the endpoints has not changed the geometric
position of b along the line segment. Definition 4.4.4 requires that the orien-
tation of the Euclidean coordinate along the line segment has been reversed,
so, therefore, we no longer have the property b = [x] ⊂ CQ for the following
reason. Every rational number is less than some natural number and all such
numbers have zero fractional distance with respect to AB. Before operating
with P̂ , b was in the algebraic representation of the the point A but by oper-
ating with the geometric permutation operator P̂ it becomes a number in the
algebraic representation of B. The FDFs are defined such that

DAB(AB) = D†AB(AB) = 1 ,

which requires that b must now have unit fractional magnitude with respect to
AB. Every [x] ⊂ CQ has zero fractional magnitude so if b 6= [x], what number
is it? The number is given by

b = P̂0(0̂, [x]) = ∞̂ − [x] .

Under permutation of the labels of the endpoints of a line segment, a number
having distance [x] ⊂ CQ from one endpoint becomes another number having
the same distance relative to the other endpoint.

Remark 4.4.7 We take it for granted that if there exists a real number x
separated by distance L from the least number in the algebraic representation
of the endpoint A of an arbitrary real line segment AB ≡ [a, b]—with x inte-
rior in the sense that x ∈ (a, b)—then it is guaranteed by the geometric mirror
symmetry of all line segments that there must exist another real number sepa-
rated from the endpoint B by the same distance L. If we bestowed ∞̂ with the
property of additive absorption, then there would be no such number because
0̂ + x→ x but ∞̂ − x→ ∞̂. Similarly, if there exists a real number lying one
third of the way from A to B, then there must exist another real number lying



36 Fractional Distance: The Topology of the Real Number Line

one third of the way from B to A. This follows from the cut-in-a-line definition
of R given by Definition 2.1.5. For the case of AB, it will be impossible to
express these third fraction numbers if ∞̂ has the property of multiplicative
absorption. Since the third numbers must exist, ℵX does exist. Therefore,
the existence of an instance of infinity devoid of any absorptive properties is
absolutely granted if the mirror symmetry of a geometric line segment is to be
preserved in its interpretation as an algebraic interval of numbers.

Our thesis is that we should preserve the underlying geometric construction
of R without invoking a contradictory algebraic construction. Under this the-
sis, ∞̂ is forced into existence. Often times, the position is taken that infinity
is absolutely absorptive due to the limit definition of infinity and the attendant
absorptive properties of limits (Example 4.3.10.) As an indirect consequence
of such reasoning, the mirror symmetry of line segments must be rejected in
the algebraic realm of mathematics. But why should it be preferred that the
algebraic construction overrides the geometric construction? Is it not equally
valid to override the algebraic construction with the geometric one? Consid-
ering the history of mathematics, it is, in the opinion of this writer, far more
appropriate to preserve the geometric construction at all costs. It is very easy
to do so when the symbol ∞̂ is given by the limit definition of infinity as

lim
x→0±

1

x
= ±

∣∣∞̂∣∣ ,
without ∞̂ itself being interchangeably equal with the limit expression. Fur-
thermore, this scheme is such that the algebraic and geometric concepts are
complementary without requiring that one override the other.

In Definition 4.2.17, we gave the definition of x ∈ {RX0 } in terms of ordered
pairs of elements of CQ. The purpose of the present alternative treatment for
the maximal neighborhood R1

0 is not to replace that definition but to comple-
ment it with a different equivalence class construction for the maximal neigh-
borhood from which the constructions of the intermediate neighborhoods may
be extracted. In this present section, we have used the permutation operator
P̂ which is quite similar to the implicit translation operator by which we were
able to attach elements of CQ to different interior points of AB in Section
4.2. The main utility in developing the idea of a number in the neighborhood
of infinity as the operation of P̂0 on an equivalence class of rationals is that
it independently generates the requirement for an infinite element lacking the
usual absorptive properties of infinity. With ∞̂ granted, it gives a separate
means by which we may construct the x ∈ {RX0 } without invoking the di-
rect ordered pair definition: the ℵX in such numbers are the fractions of the
non-absorbing infinite element ∞̂.

Definition 4.4.8 Every x ∈ R1
0 is defined as the output of P̂0 operating on

an element of CQ. This is the Cauchy equivalence class construction of real
numbers in the maximal natural neighborhood of infinity.
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Example 4.4.9 In this example, we complement the separate definitions for
∞ and ∞̂ heretofore given. We will show, for example, how they might be
more fully conceptually distinguished as two mutually distinct kinds of infi-
nite elements with markedly different qualia beyond their separate technical
definitions. While we will offer these qualia as an example, we will not alter
the technical definitions with the supplemental considerations proposed here.
To that end, it is sometimes claimed, without proof, that one cannot place
endpoints at the ends of R = (−∞,∞) because the notion of an endpoint
contradicts the notion of the infinite geometric extent of a line extending in-
finitely far in both directions. Infinite geometric extent is the main principle
that we will look at in this example.

Suppose geometric infinity ∞ is a number which cannot be included as an
endpoint without contradicting the notion of the infinite geometric extent of
a number line. Definition 2.1.2 defines a number line as a 1D metric space in
the Euclidean metric

d(x, y) =
∣∣y − x∣∣ .

If we included geometric infinity as an endpoint, then we could invoke the
invariance of line segments under permutations of their endpoints to demon-
strate a contradiction. Given

(x, y) = (x0, y0) , and (P̂0(x0), P̂0(y0)) = (∞− x0,∞− y0) ,

not only do the points lose their unique identity when attached to B instead
of A, but if we put (P̂0(x0), P̂0(y0)) into the Euclidean metric, then we get

d(P̂0(x0), P̂0(y0)) =
∣∣∞− x0 −

(
∞− y0

)∣∣ =
∣∣∞−∞∣∣ = undefined .

Clearly, this does not gel well with our intention to define a number line as
a line equipped with a metric. The line is supposed to have some metrical
distance between any two points but now, under the permutation of the labels
A and B, we find two points that don’t even have vanishing distance between
them. The distance has become undefined even though this does not follow
from the invariance of Euclidean line segments under such permutations.

Algebraic infinity is a number which avoids all of the problems here listed.
Under permutation, we have

(x, y) = (x0, y0) , and (P̂0(x0), P̂0(y0)) = (∞̂ − x0, ∞̂ − y0) .

Jumping ahead to the arithmetic of such numbers axiomatized in Section 5.2,
we find

d(P̂0(x0), P̂0(y0)) =
∣∣∞̂ − x0 −

(
∞̂ − y0

)∣∣ =
∣∣y0 − x0

∣∣ = d(x0, y0) ,

exactly as expected. The only issue which remains is to revisit is the construc-
tion for AB ≡ [0,∞] that we have given by a conformal chart x = tan(x′)
on the line segment AB ≡ [0, π

2
] whose endpoints unquestioningly exist in any
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frame of standard analysis. For this, we propose a semantic convention to
distinguish the geometric infinite element ∞ from the algebraic one ∞̂. Let
algebraic infinity be such that it can be embedded in a larger space but let ge-
ometric infinity be such that it is totally maximal and cannot be embedded in
something larger than itself. For example, the interval [0, π

2
] ⊂ [−π, π] is such

that the conformal chart which sends π
2

to an infinite element implicitly places
that element within the parent interval [−π, π]. The convention proposed here
would require that the infinite element to which π

2
is conformally mapped must

be algebraic infinity ∞̂. If we take the convention that geometric infinity∞ is
always totally geometrically maximal, then that would forbid its existence on
the interior of the interval [−π, π] which contains points to the right of π

2
. In a

formal adoption of the distinctions made here, one would examine the merits
of a supplemental transfinite ordering relation ∞̂ <∞.

Remark 4.4.10 If we wish to construct AB ≡ [0, ∞̂] directly from AB ≡
[0, π

2
] as in Example 2.3.22, wherein we cite the limit definition of infinity

(Definition 2.2.2) as motivating the identity

tan

(
π

2

)
=∞ ,

then we need to make rigorous the relationship between ∞ and ∞̂. This was
the purpose of Theorem 4.3.9 proving R = (−∞̂, ∞̂). Since the absolute value,
or the magnitude, of ∞̂ is the same as that of∞, the algebraic intervals [a,∞]
and [a, ∞̂] must be the same interval. Though we cannot directly construct
[0, ∞̂] from [0, π

2
], we may indirectly construct it by using the limit definition

of infinity to write

lim
θ→π

2

tan(θ) = lim
θ→π

2

sin(θ)

cos(θ)
= lim

x→0
y→1

y

x
=∞ .

Now we may directly infer the existence of conformal AB ≡ [0, ∞̂] from the
assumed interval [0, π

2
]. Due to the transitivity of the equivalence relation,

however, we must be very careful about the definition of ∞̂. Note that Defi-
nition 4.3.7 gives ∣∣∞̂∣∣ =∞ = lim

x→0

1

x
6=⇒ ∞̂ = lim

x→0

1

x
.

Therefore, we must be careful about whether ℵ1 is equal to geometric infinity or
algebraic. If we take the convention that geometric infinity ∞ is imbued with
the notion of infinite geometric extent such that an infinite line cannot have
an endpoint there, as in Example 4.4.9, then we should not let ℵ1 be defined
by∞ when it is said to be the greatest number in the algebraic representation
of the endpoint B ∈ AB. Due to the possibility of constructing AB from
any other line segment by one conformal chart transformation or another, AB
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ought to be taken as [0, ∞̂] = [0,ℵ1] in the absence of explicit words to the
contrary.

Definition 4.4.11 The symbol ℵ1 is an alternative notation for algebraic in-
finity. We have

ℵ1 = ∞̂ , and ℵ1 6=∞ .

Remark 4.4.12 All of the contradictions which forbid additive and multi-
plicative inverses for ∞ stem from its limit definition. Should we bestow,
then, these inverses on ∞̂ = ℵ1? To the extent that the notion of fractional
distance requires that 100% − 100% = 0%, or that 100%/100% = 1, the an-
swer is yes. Similarly, all of the contradictions which disallow a definition for
the operation 0 · ∞ are rooted in the limit definition of infinity. Note that
0 · ∞̂ = ℵ0 = 0 follows as a special of ℵX = X · ∞̂. We should not expect any
contradictions because ∞̂ 6=∞ and the limit definition is out of scope.

Axiom 4.4.13 ℵ1 is such that

ℵ1 − ℵ1 = 0 , and
ℵ1

ℵ1

= 1 .

Theorem 4.4.14 The maximal whole neighborhood of infinity is a subset of
the real numbers.

Proof. Taking for granted that x ∈ R1
ℵ does not have any infinitesimal part,

which is obvious, it suffices to show the compliance with Definition 2.1.5: a
real number x ∈ R is a cut in the real number line. Compliance follows directly
from Definition 4.3.12 giving

R1
ℵ =

{
∞̂ − b

∣∣ b ∈ R0
ℵ, b 6= 0

}
.

We clearly have

(−∞,∞) = (−∞,ℵX + b] ∪ (ℵX + b,∞) .

Even though we do not yet have an equivalence class construction of b ∈
R0
ℵ \ R0, it is obvious that ∞̂ − b is a cut in the real number line because

b, whatever its algebraic construction, is such that it has less than unit zero
fractional magnitude with respect to AB and is also such that b > 0. (The
intuitive ordering assumed in this theorem is formalized in Axiom 5.2.14.) l

Corollary 4.4.15 All numbers x ∈ {RXℵ } are real numbers.

Proof. The ordering of R given by Axiom 3.1.13 is such that 0 < X < 1
guarantees

(0,∞) = (0,ℵX ± b] ∪ (ℵX ± b,∞) .
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Definition 2.1.5 is satisfied trivially and the theorem is proven. l

Remark 4.4.16 As a final aside in this section, note the curious condition un-
der which algebraic infinity ℵ1 has its foundation in the geometric properties
of a line segment while geometric infinity ∞ has its foundation in the limit of
an algebraic expression. The reciprocity among these two constructions of an
infinite element might indicate some deeply fundamental issues extending be-
yond the semantic convention of our having chosen to call one infinite element
geometric and the other algebraic. We will not proceed along that analytical
direction but the reciprocity of the cross-sampling of the concepts is interesting
and tantalizing.

§5 Arithmetic

§5.1 Operations for Infinite Elements

Here we give arithmetic operations for ∞, ∞̂ 6∈ R to support the axioms for
real numbers x ∈ R with non-zero big parts to appear in Section 5.2.

Axiom 5.1.1 The operations for ∞ 6= ℵ1 with b ∈ R+
0 are

∞± b =∞
∞±

(
− b
)

=∞
−
(
±∞

)
= ∓∞

∞ · b =∞
∞
b

=∞

b

∞
= 0 .

Axiom 5.1.2 We give the following supplemental axioms for zero and ∞.

∞+ 0 = 0 +∞ =∞
∞ · 0 = 0 · ∞ = undefined

∞
0

= undefined

0

∞
= 0 .

Axiom 5.1.3 The operations for ∞̂ = ℵ1 with b ∈ R+
0 are

∞̂ ± b = ±b+ ∞̂
∞̂ ±

(
− b
)

= ∞̂ ∓ b
−
(
± ∞̂

)
= ∓∞̂
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∞̂ · b = b · ∞̂ = ℵb
∞̂
b

= ℵ(b−1)

b

∞̂
= 0 .

Axiom 5.1.4 We give the following supplemental axioms for zero and ∞̂.

∞̂+ 0 = 0 + ∞̂ = ∞̂
∞̂ · 0 = 0 · ∞̂ = 0

0

∞̂
= 0

∞̂
0

= undefined .

Remark 5.1.5 The most important facet of Axiom 5.1.4 is the 0·∞̂ operation
contrary to the undefined 0 · ∞ operation (Axiom 5.1.2.) This is required to
preserve the notion of fractional distance: zero times 100% is 0%. To facilitate
this definition, it will be required that we define division as a separate operation
distinct from multiplication by an inverse. This will be one of the major
distinctions of the axioms of Section 5.2 from the well-known field axioms. We
demonstrate the principle in Example 5.1.6.

Example 5.1.6 This example gives a common argument in favor of the non-
definition of a product between an infinite element and zero. Then we will show
how the contradiction is avoided by taking away the assumed associativity
among multiplication and division. Suppose c ∈ R0

ℵ so that

c

∞̂
= 0 .

Now suppose 0 · ∞̂ is a defined operation so that

z = 0 · ∞̂ .

Substitute c
∞̂ = 0 and use the ∞̂∞̂ = 1 property of Axiom 4.4.13 to obtain by

association of multiplication and division the expression

z = 0 · ∞̂ =
c

∞̂
· ∞̂ = c · ∞̂

∞̂
= c .

This shows that 0 · ∞̂ is not a well-defined operation because z = c is not a
unique output. When we define division as a third operation beyond multi-
plication and addition, we should not assume associativity among the distinct
divisive and multiplicative operations, and neither will we axiomatize it in
Section 5.2. Without assumed associativity among the terms, we cannot show
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that z fails to be a well-defined output of the product 0 · ∞̂. In that case, we
will assume there is no problem with the definition 0 · ∞̂ = 0.

Axiom 5.1.7 For any x ∈ R, we have

x∞̂ =


∞ for x > 1

1 for x = 1

0 for 0 ≤ x < 1

.

The product of an infinite number of finite numbers greater than one is abso-
lutely absorptive.

Remark 5.1.8 In the remainder of this section, we will motivate Axiom 5.1.7
giving x∞̂ =∞ as opposed to the alternative convention x∞̂ = ∞̂. In general,
for x 6= y, we would not expect that xℵ1 = yℵ1 = ℵ1 = ∞̂. Since ∞ 6= ℵ1,
by choosing the convention of Axiom 5.1.7 we sidestep the notion that two
different numbers x and y raised to the same power might both land precisely
at ℵ1.

Theorem 5.1.9 For k 6= 1, we have ∞̂k 6= ∞̂.

Proof. To prove this theorem, it will suffice to prove that

∞̂2 = ∞̂ · ∞̂ = ℵ1 · ℵ1 6= ℵ1 .

Definition 4.3.11 requires that for any x ∈ R, the symbol ℵx is defined as

ℵx = x · ∞̂ .

Choose x = ℵX such that 0 ≤ X < 1. Then

X · ∞̂2 = X · ∞̂ · ∞̂ = ℵX · ∞̂ = ℵℵX .

If ∞̂2 = ∞̂, however, then we could write

X · ∞̂2 = X · ∞̂ = ℵX .

Since ℵX ∈ R, it cannot be equal to the number ℵℵX 6∈ R which has much
greater than unit fractional distance with respect to infinity. This proves the
theorem. l

Theorem 5.1.10 The operation x∞̂ = ∞̂ is not well-defined.

Proof. Assume 0 < X < 1 and consider two expressions

xℵX+b =
(
xX
)̂∞
xb = ∞̂xb , and xℵX+b =

(
x∞̂
)X
xb = ∞̂Xxb .

By Theorem 5.1.9, we have xb ∞̂ 6= xb ∞̂X . This proves the theorem. l



Jonathan W. Tooker 43

Remark 5.1.11 Note the contradiction derived in Theorem 5.1.10 is avoided
in the convention of Axiom 5.1.7. We have

xℵX+b =
(
xX
)̂∞
xb =∞xb =∞ , and xℵX+b =

(
x∞̂
)X
xb =∞Xxb =∞ .

Here we have relied on the usual understanding that the multiplicative ab-
sorptive property of ∞ is such all powers of ∞ are identically equal to ∞.
This exceeds the definition of absorption given in Definition 4.3.5 such that∞
absorbs x ∈ R but it is standard to set all powers of ∞ equal to ∞.

§5.2 Arithmetic Axioms for Real Numbers in Natural
Neighborhoods

When one defines R such that the set R = {R,+,×,≤} conforms the field
axioms, it is a natural progression to prove that Cauchy equivalence classes
satisfy the field axioms. We do not presently presume that R is such that
R obeys the field axioms so we will not make any such proofs. Instead, we
will list the axiomatized arithmetic operations obeyed by real numbers whose
little parts are less than some natural number. For disambiguation with the
well-known “field axioms,” the axioms given in this section are called the
“arithmetic axioms.” In Section 5.3, we will make proofs of certain operations
given in these arithmetic axioms, and give examples. In Section 5.5, we will
define the operations in terms of the numbers’ underlying equivalence classes.
All of the axioms given here pertain only to the natural neighborhoods RX0 .
When we give the treatment leading to RXℵ \RX0 = ∅ (Section 7.4), these axioms
will be fairly comprehensive. However, when we impose connectedness on R
in Section 7.5, we will find that these axioms are not totally comprehensive.

The equivalence class constructions given in Section 4 were only for natural
neighborhoods and here we will follow with the axiomatized arithmetic for the
elements of those neighborhoods. Almost everything about the field axioms
shall be preserved in the natural neighborhoods. The major exception is that
we will not enforce the global closure of R under its operations. Among the
other departures from the field axioms will be the identification of division as
an operation separate from its usual definition in terms of multiplication by an
inverse. Closure is nice for group theoretical applications but it is not needed
for most applications in arithmetic. For example, the set {3, 4, 5} is not closed
under addition and yet it remains a perfectly sound algebraic structure with
which one may do summation mathematics in the usual way. If one were to
claim, “Non-closure doesn’t break arithmetic because {3, 4, 5; +} is a subset
of {R; +} which is an algebraic group as defined by the field axioms,” then we
could make an easy rebuttal by defining a set T to be

R ⊂ T =
{
x
∣∣ − ℵ∞ < x < ℵ∞

}
.

Then the present convention for non-closed {R; +} defined with the Euclidean
magnitude and supplemental arithmetic axioms is such that {R; +} is a subset
of the closed additive group of 1D transfinitely continued real numbers {T; +}.
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Axiom 5.2.1 All R0 numbers obey the well-known axioms of a complete or-
dered field: Axioms 5.4.2, 5.4.4, and 5.4.7.

Remark 5.2.2 To make a distinction between the intermediate neighbor-
hoods of infinity and the maximal neighborhood, in this section we will use
the symbol ∞̂ rather than the symbol ℵ1. However, the reader should note
that the arithmetic of the maximal neighborhood follows from the arithmetic
of the intermediate neighborhoods as a special case of ℵX with X = 1.

Axiom 5.2.3 Addition is commutative and associative. There exists an ad-
ditive identity element 0 and an additive inverse x−1 for every x ∈ R. The
operations for + are given as follows when a, b, x, y ∈ R0 and 0 < min(X ,Y) ≤
max(X ,Y) < 1.

+ 0 y ∈ R0

(
ℵY + a

)
∈ RX0

(
∞̂ − |a|

)
∈ R1

0 ∪ ∞̂

0 0 y ℵY + a ∞̂ − |a|

x x x + y ℵY +
(
a + x

)
∞̂ −

(
|a| − x

)
(
ℵX + b

)
ℵX + b ℵX +

(
b + y

)
ℵ(X+Y) +

(
b + a

)
ℵ(X+1) +

(
b− |a|

)
(
∞̂ − |b|

)
∞̂ − |b| ∞̂ −

(
|b| − y

)
ℵ(1+Y) −

(
|b| − a

)
ℵ2 −

(
|b|+ |a|

)

Remark 5.2.4 The most important property given by Axiom 5.2.3 is

ℵX + ℵY = ℵ(X+Y) .

This equality follows from the geometric notion of addition. If, for instance, ℵX
is a number with 10% fractional distance along AB and ℵY is a number with
20% fractional distance, then it follows that their sum is a number with 30%
fractional distance along AB. Axiom 5.2.3 makes clear that R does not satisfy
the usual understanding that the reals are closed under their operations. Any
number ℵX + b with X > 1 is not a real number, e.g.: the sum of two positive
numbers with 99% fractional magnitude is not a real number. No x with big
part ℵ1.98 can be x ∈ R.

Axiom 5.2.5 Multiplication is commutative and associative, and it is dis-
tributive over addition. It is not associative with division (which shall not be
defined as multiplication by an inverse.) There exists a multiplicative identity
1 6= 0 for every x ∈ R but there does not exist a multiplicative inverse for all
x ∈ R. The operations for {·} = {×} are given as follows when a, b ∈ R0,
x, y ∈ R+

0 , and 0 < min(X ,Y) ≤ max(X ,Y) < 1.
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× 0 ∓1 y ∈ R+
0

(
ℵY + a

)
∈ RX0

(
∞̂ − |a|

)
∈R1

0 ∪ ∞̂

0 0 0 0 0 0

±1 0 −1 ±y ℵ(±Y) ± a ±∞̂ ∓ |a|

x 0 ∓x xy ℵ(xY) + ax ℵx − |a|x(
ℵX + b

)
0 ℵ(∓X ) ∓ b ℵ(Xy) + by ℵ(ℵXY+aX+bY) + ba ℵ(ℵX−|a|X+b) − b|a|(

∞̂ − |b|
)

0 ∓∞̂ ± |b| ℵy − |b|y ℵ(ℵY+a−|b|Y) − |b|a ℵ(∞̂−|a|−|b|) + |ba|

Remark 5.2.6 The most important property given in Axiom 5.2.5 is

±ℵX = ℵ(±X ) .

This operation follows from

ℵX = X · ∞̂ =⇒ ±ℵX = ±
(
X · ∞̂

)
=
(
±X

)
· ∞̂ = ℵ(±X ) .

This shows that multiplication is axiomatically associative.

Remark 5.2.7 Certain of the products in Axiom 5.2.5 rely on Axiom 5.2.3.
For instance, the value in the lower right corner of the multiplication table is
computed as (

∞̂ − |b|
)(
∞̂ − |a|

)
= ∞̂ · ∞̂ − |b|∞̂ − |a|∞̂+ |ba|
= ℵ1 · ℵ1 − |a|ℵ1 − |b|ℵ1 + |ba|
= ℵ(ℵ1) − ℵ|a| − ℵ|b| + |ba|
= ℵ(ℵ1) −

(
ℵ|a| + ℵ|b|

)
+ |ba|

= ℵ∞̂ + ℵ(−|a|−|b|) + |ba|
= ℵ(∞̂−|a|−|b|) + |ba| .

Furthermore, it follows from Axioms 5.2.3 and 5.2.5 that(
∞̂ − b

)
−
(
∞̂ − a

)
= a− b .

This is the primary operation behind the original ideation for a non-absorptive
infinite element. If a and b are two numbers at distances a and b respectively
from the endpoint 0 of the interval [0,∞], then their difference a− b must be
equal (up to a sign) to the difference of two numbers lying at distances a and
b from the endpoint ∞ of the same interval.
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Example 5.2.8 The purpose of this example is to demonstrate that even
while numbers greater than ∞̂ do not exist in real analysis, expressions im-
plying the existence of such are numbers are generally not considered contra-
dictory. Consider the quadratic equation

ax2 + bx+ c = 0 ,

having roots

x =
−b±

√
b2 − 4ac

2a
.

For every case in which 4ac > b2, the number x does not exist in real analysis
and yet it is never claimed that the quadratic formula is contradictory. Instead,
we claim that there must exist an imaginary number i 6∈ R with the property
i =

√
−1. Therefore, the principle of fractional distance should support a

conclusion that there exist transfinite numbers x 6∈ R with the property that
x > ∞̂. We have seen the existence of such numbers implied previously when
examining algebraic infinity as the endpoint of a line segment embedded in a
line extending infinitely far in both directions. If we use x = tan(x′) to define
AB ≡ [0, ∞̂] on AB ≡ [0, π

2
], and if a number is a cut in a line as per Definition

2.1.5, then there should exist non-real transfinite numbers which are cuts in
an infinite line to the right of x = ∞̂ in the algebraic representation of the
point B.

Remark 5.2.9 When the field axioms give the arithmetic operations of R,
the difference operations follow from the sum operations as the addition of a
product with −1. The ÷ operations usually follow from the × operations as
multiplication by an inverse. Presently we may define the difference operations
accordingly but we may not do so for the quotient operations. As demonstrated
in Example 5.1.6, the preservation of the respective geometric notions of the
algebraic operations requires that {+,×,÷} is a set of three distinct arithmetic
operations among which there is not mutual associativity. Obviously, this is
a major distinction of the present axioms from the field axioms. However,
Axiom 5.2.1 grants that x ∈ R0 obey the usual field axioms so there is an
implicit axiom regarding a limited associativity of {×,÷} which we will make
explicit in Axiom 5.2.10.

Axiom 5.2.10 Division and multiplication are mutually associative for any
x ∈ R0. That is, all factors which are elements of R0 may be moved into or
out of quotients and products in the usual way, even if those quotients and
products contain x 6∈ R0.

Axiom 5.2.11 The operations for ÷ are given as follows when a, b ∈ R0 and
0 < min(X ,Y) ≤ max(X ,Y) < 1. There exists a divisive identity 1 6= 0 for
every x ∈ R. It is the same as the multiplicative identity. There exists at least
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one divisive inverse for every non-zero x ∈ R. In this table, the row value is
the numerator and the column value is the denominator.

÷ 0 y ∈ R0

(
ℵY + a

)
∈ RX0

(
∞̂ − |a|

)
∈ R1

0 ∪ ∞̂

0 nan 0 0 0

x nan x
y 0 0(

ℵX + b
)

nan ℵ(Xy−1) + b
y

X
Y X(

∞̂ − |b|
)

nan ℵ(y−1) − |b|y
1
Y 1

Example 5.2.12 This example demonstrates that the quotient operations
given by Axiom 5.2.11 are well-defined. (This is proven rigorously in Main
Theorem 5.5.12.) An operation is well-defined if it generates a unique output.
It is obvious in Axiom 5.2.11 that each operation has one and only one out-
put. It is foreign to the usual understanding of the arithmetic of real numbers,
however, that the operands giving the unique resultants are not themselves
unique. Consider

ℵX + b

ℵY + a
=
X
Y

.

If multiplication was associative with division, and vice versa, then we could
multiply both sides by ℵY + a to obtain a contradiction of the form

ℵX + b

ℵY + a
·
(
ℵY + a

)
=
X
Y
·
(
ℵY + a

)
ℵX + b = ℵX +

Xa
Y

.

This is false whenever b 6= Xa
Y but it is not possible to show this contradiction

without assuming associativity among {×,÷}.

Example 5.2.13 This example demonstrates another immediate contradic-
tion should we assume associativity among multiplication and division. Axiom
5.2.11 gives

ℵY
ℵX

=
Y
X

, and
1

ℵX
= 0 .

If we bestow the associativity, then

ℵY
ℵX

= ℵY ·
1

ℵX
= ℵY · 0 = 0 6= Y

X
.
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Axiom 5.2.14 The ordering of R is given as follows when a, b, c, d, x, y ∈ R0

and 0 < min(X ,Y) ≤ max(X ,Y) < 1. For the table, it is granted that

a > b , c > d > 0 , x > y , and X > Y .

This table is such that the row identity is on the left of the given relation and
the column identity is on the right.

≤ y ∈ R0

(
ℵY + b

)
∈ RY0

(
ℵX + b

)
∈ RX0

(
∞̂ − |d|

)
∈ R1

0 ∞̂

x > < < < <(
ℵX + a

)
> > > < <(

∞̂ − |c|
)

> > > < <

Theorem 5.2.15 Real numbers in the intermediate natural neighborhoods of
infinity x ∈ {RX0 } do not have a multiplicative inverse.

Proof. A number x−1 is the multiplicative inverse of x ∈ R if and only if

x · x−1 = x−1 · x = 1 .

The statement of the theorem requires that (i) x = ℵX + b, (ii) 0 < X < 1,
and (iii) b ∈ R0. Axiom 5.2.5 grants that multiplication is distributive over
addition so the definition of the multiplicative inverse requires(

ℵX + b
)
x−1 = ℵ(Xx−1) + bx−1 = 1 .

Equating the big and little parts of this expression, we obtain two requirements

ℵ(Xx−1) = ℵ0 ⇐⇒ Xx−1 = 0 ⇐⇒ x−1 = 0 ,

and

bx−1 = 1 ⇐⇒ x−1 =
1

b
.

This contradicts the requirement b ∈ R0 and so, therefore, x ∈ {RX0 } does not
have a multiplicative inverse. l

Theorem 5.2.16 All real numbers x ∈ {RX0 } have an additive inverse.

Proof. The number x−1 is the additive inverse of x if and only if

x+ x−1 = x−1 + x = 0 .
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The statement of the theorem requires that (i) x = ℵX + b, (ii) 0 < X < 1,
and (iii) b ∈ R0. Assume that x−1 has the form ℵ(X−1) + b−1. The definition
of the additive inverse requires

1 =
(
ℵX + b

)
+
(
ℵ(X−1) + b−1

)
= ℵ(X+X−1) + (b+ b−1) .

Equating the big and little parts of this expression, we obtain two requirements

ℵ(X+X−1) = ℵ0 ⇐⇒ X + X−1 = 0 ⇐⇒ X−1 = −X ,

and
b+ b−1 = 1 ⇐⇒ b−1 = −b .

For every [X ], [b] ⊂ CQ there exists a [−X ], [−b] ⊂ CQ so, therefore, every
x ∈ {RX0 } has an additive inverse. l

Definition 5.2.17 A divisive identity is a number e satisfying x÷e = x. The
divisive identity element of R is 1 ∈ R0.

Theorem 5.2.18 All real numbers x ∈ {RX0 } have a non-unique divisive in-
verse.

Proof. If x−1 is the divisive inverse of x, then x÷ x−1 = 1. By Axiom 5.2.11,
any two x ∈ {RX0 } having equal big parts are mutual divisive inverses. l

§5.3 Limit Considerations Regarding the Arithmetic Axioms

We have not directly defined ∞̂ with the limit definition of infinity. Instead,
we have defined infinity hat to have the same absolute value as infinity so that
they are both the unincluded endpoint of the interval [0, I) where I 6∈ R has
the property that it is larger than any real number. Although we began with
the notion of AB ≡ [0,∞], by the introduction of the semantic conventions
regarding geometric and algebraic infinity, we would now say that∞ cannot be
included as an endpoint so that [0, ∞̂) = [0,∞) but, informally, [0, ∞̂] 6= [0,∞]
because the latter closed interval contradicts the notion of infinite geometric
extent. In general, we have only introduced this convention as a thinking
device and there is no reason to directly forbid the usual extended real interval
R = [−∞,∞]. Rather, we have only shown that it is better to write R =
[−∞̂, ∞̂] because it doesn’t suggest the non-existence of the neighborhood of
infinity.

So, although we have not defined ∞̂ directly with the limit definition of
∞, having instead deduced its existence from the geometric invariance of line
segments under permutations of the labels of their endpoints, it remains that
the magnitude of ∞̂ is given by the limit definition. Since the identity of real
numbers is identically their magnitude, and it is only two alternative sets of
arithmetic axioms which separate ∞ and ∞̂, in this section we will study the
compliance of the limit definition of infinity with the arithmetic axioms.
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Example 5.3.1 Although the limit definition of ∞ is said to be its identical
definition, we cannot always substitute the limit definition of infinity to di-
rectly compute all expressions involving geometric infinity. Consider the use
of Definition 2.2.2 to write

∞−∞ =

(
lim
x→0

1

x

)
−
(

lim
y→0

1

y

)
= lim

x→0
y→0

y − x
xy

.

Generally, this limit does not exist because we obtain different results on the
lines y = x and y = 2x. Presently, however, there is only one possible line:
the real number line. By making the substitution for the limit definition, we
find, therefore, that

∞−∞ =

(
lim
x→0

1

x

)
−
(

lim
x→0

1

x

)
= lim

x→0

(
1

x
− 1

x

)
= lim

x→0
0 = 0 .

This contradicts Axiom 2.2.3 which gives

∞−∞ = undefined .

To the contrary, if we examine ∞̂ − ∞̂ under the ansatz that this expression
may be computed with the limit definition, then we find

∞̂ − ∞̂ =

(
lim
x→0

1

x

)
−
(

lim
x→0

1

x

)
= lim

x→0

(
1

x
− 1

x

)
= lim

x→0
0 = 0 .

This is exactly what is given in Axiom 4.4.13 so the ansatz is borne out. Other
identities such as Axiom 5.1.1 giving b

∞ = 0 for b ∈ R0 do follow directly from
the limit definition of geometric infinity. We have for b ∈ R0

b

∞
=

b

lim
x→0

1
x

= lim
x→0

b
1
x

= lim
x→0

xb = 0 .

Remark 5.3.2 Example 5.3.1 has demonstrated that although ∞ is directly
defined with the limit definition of infinity, we cannot always use that definition
to simplify ∞’s expressions. Also, we can use it sometimes to simplify the
expressions of ∞̂. In the present section, as in Example 4.3.10, we will take the
hat on ∞̂ as a constraint on the freedom of algebraic manipulations involving
the limit expression. Particularly, the non-absorptivity of ∞̂ allows us to
combine limit expressions but forbids us moving any scalars into the limit
expressions. The main purpose of Section 5.3 is to demonstrate cases of the
validity of the ansatz that sometimes we can correctly compute expressions
involving ∞̂ by making the direct substitution with the limit definition.

Theorem 5.3.3 The property of Axioms 5.2.3 and 5.2.5 giving for a, b ∈ R+
0(

∞̂ − b
)
−
(
∞̂ − a

)
= a− b ,

follows from the limit definition of infinity.
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Proof. Proof follows from direct substitution of the limit definition of infinity
(Definition 2.2.2.) We have(

∞̂ − b
)
−
(
∞̂ − a

)
=

[(
lim
x→0

1

x

)
− b
]
−
[(

lim
x→0

1

x

)
− a
]

= lim
x→0

(
1

x
− b− 1

x
+ a

)
= lim

x→0

(
− b+ a

)
= a− b . l

Theorem 5.3.4 The property of Axioms 5.2.3 and 5.2.5 giving for a, b ∈ R0

and 0 < min(X ,Y) ≤ max(X ,Y) < 1(
ℵX + b

)
−
(
ℵY + a

)
= ℵ(X−Y) − a+ b ,

follows from the limit definition of infinity.

Proof. Proof follows from direct substitution of the limit definition of infinity
(Definition 2.2.2.) We have(

ℵX + b
)
−
(
ℵY + a

)
=
(
X ∞̂ − b

)
−
(
Y ∞̂ − a

)
=

[
X
(

lim
x→0

1

x

)
+ b

]
−
[
Y
(

lim
x→0

1

x

)
+ a

]
=
(
X − Y

)(
lim
x→0

1

x

)
− a+ b

=
(
X − Y

)
∞̂ − a+ b

= ℵ(X−Y) − a+ b . l

Remark 5.3.5 Theorem 5.3.4 requires clarification because we might have
written (

ℵX + b
)
−
(
ℵY + a

)
=
(
X ∞̂+ b

)
−
(
Y ∞̂+ a

)
=

[(
lim
x→0

X
x

)
+ b

]
−
[(

lim
x→0

Y
x

)
+ a

]
=

(
lim
x→0

X − Y
x

)
− a+ b

= ∞̂ − a+ b .

Since ∞̂ = ℵ1, this would necessarily be a contradiction. The condition 0 <
min(X ,Y) ≤ max(X ,Y) ≤ 1 forbids X − Y = 1. In the above algebraic
manipulation, we have given at the second step

ℵX = X ∞̂ = lim
x→0

X
x

.
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This contradicts Definition 4.3.7 requiring that ∞̂ does not have absorptive
properties. Such a property is explicitly bestowed to the limit definition of
infinity when we move the scalar X into the limit expression. Therefore, it is
implicit in the axioms that scalar multipliers of ∞̂ must not be transferred by
multiplicative association into the limit expression when substituting the limit
definition of algebraic infinity ∞̂. In practice, this has little to no relevance
because arithmetic follows from the arithmetic axioms rather than the limit
definition of infinity. The purpose of the present section, rather, is to show
that at least many of the axioms may be derived from the limit definition, and
that the present axiomatic framework is very strong because many of
its axioms are directly provable when we assume the usual associativities, com-
mutativities, and distributivities constrained by the rules of non-absorptivity.

Theorem 5.3.6 The property of Axioms 5.2.3 and 5.2.5 giving for a, b ∈ R+
0

and 0 < min(X ,Y) ≤ max(X ,Y) ≤ 1(
ℵX + b

)
· a = ℵ(Xa) + ba ,

follows from the limit definition of infinity.

Proof. Proof follows from direct substitution of the limit definition of infinity.
We have (

ℵX + b
)
· a =

(
X ∞̂+ b

)
· a

=

[
X
(

lim
x→0

1

x

)
− b
]
· a

= Xa
(

lim
x→0

1

x

)
+ ba

= Xa∞̂+ ba

= ℵ(Xa) + ba . l

Theorem 5.3.7 The property of Axioms 5.2.3 and 5.2.5 giving for a, b ∈ R0

and 0 < min(X ,Y) ≤ max(X ,Y) < 1(
ℵX − b

)
·
(
ℵY − a

)
= ℵ(ℵ(XY)+aX+bY) + ba ,

follows from the limit definition of infinity.

Proof. Proof of the present theorem follows from direct substitution of the
limit definition of infinity. We have(

ℵX − b
)(
ℵY − a

)
=
(
X ∞̂ − b

)(
Y ∞̂ − a

)
=

[
X
(

lim
x→0

1

x

)
− b
] [
Y
(

lim
x→0

1

x

)
− a
]



Jonathan W. Tooker 53

= XY
(

lim
x→0

1

x

)2

− a
(

lim
x→0

1

x

)
− b
(

lim
x→0

1

x

)
+ ba

If we wrote here

∞̂ · ∞̂ =

(
lim
x→0

1

x

)2

= lim
x→0

1

x2
= ∞̂ ,

then that would not exactly violate Definition 4.3.7 because it shows infinity
absorbing itself while Definition 4.3.5 gives the the multiplicative absorptive
property in terms of a composition between ∞̂ and x ∈ R. However, moving
the exponent into the limit violates Definition 4.3.11 requiring that

∞̂ · ∞̂ = ∞̂ · ℵ1 = ℵ∞̂ 6= ℵ1 = ∞̂ .

Therefore, we finish the proof as(
ℵX − b

)(
ℵY − a

)
a = XY

(
lim
x→0

1

x

)
ℵ1 − aℵ1 − bℵ1 + ba

= ℵ
XY

(
lim
x→0

1
x

) − ℵa − ℵb + ba

= ℵXY · ∞ − ℵa+b + ba

= ℵ(ℵ(XY)+aX+bY) + ba . l

Theorem 5.3.8 The property of Axiom 5.2.11 giving for a, b ∈ R0 and 0 <
min(X ,Y) ≤ max(X ,Y) < 1

ℵX + b

∞̂
= X ,

follows from the limit definition of infinity.

Proof. We will use the property that X ∈ R0 to allow us move it out of the
quotient, as per Axiom 5.2.10. We have

ℵX + b

∞̂
=
X
(

lim
x→0

1
x

)
lim
x→0

1
x

+
b

lim
x→0

1
x

= X
lim
x→0

1
x

lim
x→0

1
x

= X lim
x→0

1 = X . l

Remark 5.3.9 The property of Axiom 5.2.11 giving for a, b ∈ R0 and 0 <
min(X ,Y) ≤ max(X ,Y) < 1

a

ℵX + b
= 0 ,
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does not follow from the limit definition of infinity. If we wrote

a

ℵX + b
=

a

X
(

lim
x→0

1
x

)
+ b

=
a

X
· 1(

lim
x→0

1
x

)
+ b
X

,

then we would have way to evaluate the quotient without bringing the denom-
inator’s b

X term into the limit expression. If we did, then the expected zero
output would follow directly but moving that term into the limit expression is
not allowed because doing so would give ∞̂ an additive absorptive property.

Theorem 5.3.10 The quotient of any R0 number divided by any number with
a non-vanishing big part is identically zero.

Proof. Suppose x, b ∈ R+
0 and 0 < X < 1 and that

x

ℵX + b
= z .

Axiom 5.2.10 allows us to take x ∈ R0 out of the quotient so we may write

1

ℵX + b
=
z

x
.

The quotient is only well defined for z = 0. l

Theorem 5.3.11 Quotients of the form RX0 ÷ RY0 are always equal to X
Y .

Proof. By Theorem 5.3.10, we have

ℵX + b

ℵY + a
=
ℵX
ℵY + a

+
b

ℵY + a
=
ℵX
ℵY + a

.

If a = 0, then

ℵX
ℵY

=
X lim

x→0

1
x

Y lim
x→0

1
x

=
X
Y
·

lim
x→0

1
x

lim
x→0

1
x

=
X
Y
· lim
x→0

1 =
X
Y

.

To prove the present theorem in the general case of a, we will demonstrate a
contradiction. Suppose c 6= X

Y and that

ℵX
ℵY + a

= c .

Further suppose that X < Y so that we may assume 0 < c < 1. Then c has a
multiplicative inverse and

ℵX
ℵ(cY) + ca

= 1 .
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Then

lim
a→0

ℵX
ℵ(cY) + ca

=
ℵX
ℵ(cY)

=
X
cY

= 1 ⇐⇒ c =
X
Y

.

It follows that the small part of the denominator does not contribute to the
quotient. The case of X > Y follows from the case of a = 0. The theorem is
proven. l

Example 5.3.12 This example demonstrates that the associativity of multi-
plication and division for R0 numbers such as c. Consider the expression

c · ℵX + b

ℵY + a
= c · X

Y
=
cX
Y

.

If we move c into the quotient and perform the multiplication before the divi-
sion, then

c · ℵX + b

ℵY + a
=
c ·
(
ℵX + b

)
ℵY + a

=
ℵ(cX ) + cb

ℵY + a
=
cX
Y

,

demonstrates that the operation remains well-defined with the special associa-
tive operations for R0

Example 5.3.13 This example treats the negative exponent inverse notation.
We have

x

ℵX + b
= 0 6=⇒ ℵX + b

x
=

1

0
.

The usual “invert and multiply” rule for dividing by fractions relies on an
assumed associativity between multiplication and division, and so it cannot
be used in certain cases of numbers with non-vanishing big parts. We have

ℵX + b

x
= ℵ(Xx ) +

b

x
, and

(
x

ℵX + b

)−1

=
1(
x

ℵX + b

) = undefined .

§5.4 Field Axioms

In earlier work on the neighborhood of infinity [8], we studied exclusively the

maximal neighborhood of infinity using the symbol R̂ to refer to what we have
labeled R1

0 in the present conventions. To build numbers of the form x = ∞̂−b
in the set R̂ ∼ R1

0, it was only required to suppress the additive absorption of
∞̂. The remaining multiplicative absorption resulted in certain (undesirable?)
mathematical artifacts which are presently eliminated by the total suppression
of all absorptive properties for ∞̂. Here, we will list those artifacts which are
cured in the present conventions and later in this section we will examine that
which remains yet still disagrees with the field axioms.
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If ∞̂ retains multiplicative absorption, then for n, b ∈ N we have

n
(
∞̂ − b

)
≤
(
∞̂ − b

)
.

This ordering relation is not supported by the geometric notion of multiplica-
tion. The product of any positive number x multiplied by a natural number
should be greater than or equal to x. Another cured artifact is observed in
the sums of numbers in the maximal neighborhood of infinity. Even without
multiplicative absorption, the geometric notion of the difference is preserved
with (

∞̂ − b
)
−
(
∞̂ − a

)
= a− b ,

but the notion of the sum is not. With multiplicative absorption in place,
adding two R1

0 numbers yields(
∞̂ − b

)
+
(
∞̂ − a

)
= 2∞̂ −

(
b+ a

)
= ∞̂ −

(
b+ a

)
. (5.1)

The geometric notion of addition would require that the sum of two numbers
just less than infinity would not be another number just less than infinity. This
issue is cured in the present convention with the implicit transfinite ordering
ℵ0.9 + ℵ0.9 = ℵ1.8 � ℵ1.

The most undesirable artifact (most significant problem?) with allowing ∞̂
to retain multiplicative absorption is the loss of additive associativity. Sub-
tracting (∞̂ − c) from both sides of Equation (5.1) yields[(

∞̂ − b
)

+
(
∞̂ − a

)]
−
(
∞̂ − c

)
=
[
∞̂ −

(
b+ a

)]
−
(
∞̂ − c

)
.

Assuming the associative property of addition, we may arrange the LHS brack-
ets to write(

∞̂ − b
)

+
[(
∞̂ − a

)
−
(
∞̂ − c

)]
=
[
∞̂ −

(
b+ a

)]
−
(
∞̂ − c

)
∞̂+

[
c−

(
b+ a

)]
= c−

(
b+ a

)
.

Subtracting the R0 part from both sides yields the plain contradiction ∞̂ = 0.
This was avoided, originally, by revoking additive associativity in Reference [8].
In the present conventions, we avoid this undesirable result by taking away
the multiplicative absorption of infinity hat.

While it is permissible, in principle, to have notions of addition and multi-
plication which are not inherently geometric, it is highly undesirable for basic
arithmetic if addition is not associative. Indeed, it is tantamount to arbitrary
to say, “∞̂ has one kind of absorption but not the other,” so the present con-
vention is better because it gives operations which are inherently geometric
and wherein addition has the highly desirable associative property. Now that
we have reviewed the issues that were cleared up, in the present section we
will give a common statement of the field axioms together with the ordering
and completeness axioms, and then we will make comparisons to the given
arithmetic axioms.
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Definition 5.4.1 A field is a set S together with the addition and multiplica-
tion operators which satisfies the addition and multiplication axioms for fields:
Axioms 5.4.2 and 5.4.4.

Axiom 5.4.2 The addition axioms for fields are

� (A1) S is closed under addition: If x, y ∈ S, then x+ y ∈ S.

� (A2) Addition is commutative: If x, y ∈ S, then x+ y = y + x.

� (A3) Addition is associative: If x, y, z ∈ S, then (x+ y) + z = x+ (y+ z).

� (A4) There exists an additive identity element 0 in S: If x ∈ S, then
x+ 0 = x.

� (A5) Every x ∈ S has an additive inverse: If x ∈ S, then there exists
−x ∈ S such that x+ (−x) = 0.

Remark 5.4.3 The arithmetic axioms do not exhibit (A1) but they do exhibit
(A2)-(A5).

Axiom 5.4.4 The multiplication axioms for fields are

� (M1) S is closed under multiplication: If x, y ∈ S, then x · y ∈ S.

� (M2) Multiplication is commutative: If x, y ∈ S, then x · y = y · x.

� (M3) Multiplication is associative: If x, y, z ∈ S, then (x ·y) ·z = x ·(y ·z).

� (M4) There exists a multiplicative identity element 1 6= 0 in S: If x ∈ S,
then x · 1 = x.

� (M5) If x ∈ S and x 6= 0, then x has a multiplicative inverse: If x ∈ S,
then there exists x−1 ∈ S such that x · x−1 = 1.

Remark 5.4.5 The arithmetic axioms preserve (M2)-(M4) but both of (M1)
and (M5) are lost. The loss of (M5) was proven in Theorem 5.2.15.

Definition 5.4.6 An ordered field is a field F together with a relation <
which satisfies the field ordering axioms: Axiom 5.4.7.

Axiom 5.4.7 The field ordering axioms are

� (O1) Elements of F have trichotomy: If x, y ∈ F , then one and only one
of the following is true: (i) x < y, (ii) x = y, or (iii) x > y.

� (O2) The < relation is transitive: If x, y, z ∈ F , then x < y and y < z
together imply x < z.
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� (O3) If x, y, z ∈ F , then x < y implies x+ z < y + z.

� (O4) If x, y, z ∈ F , and if z > 0, then x < y implies x · z < y · z.

It is understood that x < y means y > x.

Theorem 5.4.8 For any X > 0, ℵX is an upper bound of R0.

Proof. An upper bound of a set is greater than or equal to every element of
that set. Suppose

X, Y ∈ AB , x ∈ R0 , x ∈ X , and ℵX ∈ Y .

It follows that

DAB(AX) = 0 , and DAB(AY ) = X .

By the ordering of R (Axioms 3.1.13 and 5.2.14), ℵX is an upper bound of R0

whenever X > 0. l

Corollary 5.4.9 N is bounded from above.

Proof. If n ∈ N, then n ∈ R0. By Theorem 5.4.8, all x ∈ R0 are bounded from
above. N is bounded from above. l

Proposition 5.4.10 R0 ⊂ R does not have a least upper bound sup(R0) ∈ R.
In other words, R does not have the least upper bound property.

Justification. To invoke a contradiction, suppose s ∈ R is a least upper bound
of R0. If s− 1 was an upper bound of R0, then s could not be the least upper
bound because s − 1 < s. Therefore, s = sup(R0) implies (s − 1) ∈ R0. By
Axiom 5.2.1, R0 is closed under addition. It follows that (s − 1 + 2) ∈ R0

because 2 ∈ R0. Since s+ 1 > s, we obtain a contradiction having shown that
there exist elements of R0 greater than the assumed supremum s. l

Definition 5.4.11 The issue described in the justification of Proposition 5.4.10
shall be referred to as “the least upper bound problem.”

Remark 5.4.12 Proposition 5.4.10 is usually presented as a theorem and it
brings us to one of the most finely nuanced issues in the present treatment of
R. This proposition makes a convincing case that R0 cannot have a supremum
in R. However, if R0 is a subset of the connected interval (−∞̂, ∞̂), then it
most certainly must have a least upper bound. Otherwise (−∞̂, ∞̂) is not
connected. We will continue to develop the principles related to whether or
not the different open neighborhoods can have suprema in R, and then in
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Section 7.5 we will return to the topic of algebraic contradictions related to
the suprema required for the connectedness of the interval. If R is to have the
usual topology overall, then it must have the least upper bound property.

§5.5 Compliance of Cauchy Equivalence Classes with the
Arithmetic Axioms

In this section, we give the usual definitions for arithmetic operations on
Cauchy equivalence classes. We clarify the meanings for the extended case
of [x] → [X + x] = [ℵX + x] and then we prove in a few cases that the
arithmetic axioms are satisfied by the extended Cauchy equivalence classes
[X + x] ⊂ CAB

Q \ CQ =⇒ [X + x] 6∈ R0. The proofs in this section mostly
follow References [11, 12].

Theorem 5.5.1 Every convergent rational sequence of terms an ∈ Q is a
Cauchy sequence.

Proof. Per Definition 4.2.2, a sequence {an} is a Cauchy sequence if and only
if

∀δ ∈ Q ∃m,n,N ∈ N s.t. m,n > N =⇒
∣∣an − am∣∣ < δ .

By the convergence of {an}, it is granted that there exists some l ∈ R such
that

lim
n→∞

an = l .

Convergence then guarantees that

∃n,N ∈ N s.t. n > N =⇒
∣∣an − l∣∣ < δ

2
.

Then, whenever n,m > N , we have∣∣an − am∣∣ =
∣∣(an − l)− (am − l)∣∣ ≤ ∣∣an − l∣∣+

∣∣am − l∣∣ < δ

2
+
δ

2
= δ .

Therefore, every convergent rational sequence {an} is a Cauchy sequence. l

Definition 5.5.2 If x, y ∈ R such that there are two Cauchy equivalence
classes x = [(xn)] and y = [(yn)], then x+y = [(xn+yn)] and x ·y = [(xn ·yn)].

Theorem 5.5.3 The additive operation for equivalence classes given by Defi-
nition 5.5.2 is well-defined.

Proof. Define four Cauchy equivalence classes [(an)], [(bn)], [(cn)], and [(dn)]
having the properties

[a] = [b] , and [c] = [d] ,
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so that
lim
n→∞

(
an − bn

)
= 0 , and lim

n→∞

(
cn − dn

)
= 0 .

For addition to be proven well-defined, we need to prove that [(an + cn)] =
[(bn + dn)]. This requires

[(an + cn)]− [(bn + dn)] = 0 .

The difference being equal to zero means that for sufficiently large n, and for
any δ ∈ R, we must have

[(an + cn)]− [(bn + dn)] = [(an − bn)]− [(cn − dn)] < δ .

We will prove this by the method used in Theorem 5.5.1. The limits of an− bn
and cn − dn approaching zero tell us that

∃n,N ∈ N s.t. n > N =⇒
∣∣an − bn∣∣ < δ

2
,
∣∣cn − dn∣∣ < δ

2
.

Then, whenever n,m > N , we have∣∣(an − bn)− (cm − dm)∣∣ ≤ ∣∣an − bn∣∣+
∣∣cm − dm∣∣ < δ

2
+
δ

2
= δ .

This proves that [a+ c] = [b+d] and that, therefore, addition is a well-defined
operation on Cauchy equivalence classes. l

Example 5.5.4 This example gives a specific case of Theorem 5.5.3 using
numbers in the neighborhood of infinity. Suppose there are four subsets of
CAB

Q with the properties

[ℵ[X1] + x1] = [ℵ[Y1] + y1] , and [ℵ[X2] + x2] = [ℵ[Y2] + y2] .

Since the big and little parts of equal numbers are equal, we have equality
among all the matched pairs of [x1], [x2], [y1], [y2], [X1], [X2], [Y1], [Y2] ⊂ CQ. If
addition is well-defined, then

[ℵ[X1] + x1] + [ℵ[X2] + x2] = [ℵ[Y1] + y1] + [ℵ[Y2] + y2] .

Evaluating the left and right sides independently yields

[ℵ[X1] + x1] + [ℵ[X2] + x2] = [ℵ[X1] + x1 + ℵ[X2] + x2] = [ℵ[X1+X2] + x1 + x2] ,

and

[ℵ[Y1] + y1] + [ℵ[Y2] + y2] = [ℵ[Y1] + y1 + ℵ[Y2] + y2] = [ℵ[Y1+Y2] + y1 + y2] .

Considering first the small parts, Definition 5.5.2 gives [x+ y] = [x] + [y] so

[x1 + x2] = [y1 + y2] ⇐⇒ [x1] + [x2] = [y1] + [y2] .
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This condition follows from Theorem 5.5.3. Considering the big parts yields

[ℵ[X1+X2]] = [ℵ[Y1+Y2]] ⇐⇒ [X1] + [X2] = [Y1] + [Y2] .

It follows as an obvious corollary of Theorem 5.5.3 that the additive operation
is well-defined for numbers in the neighborhood of infinity.

Remark 5.5.5 To prove that the multiplicative operation is well-defined, we
will rely on the boundedness of Cauchy sequences. First, we will give the proof
of boundedness.

Theorem 5.5.6 If {an} is a Cauchy sequence of rationals, then there exists
an M ∈ R such that |an| < M for all n ∈ N. In other words, every Cauchy
sequence of rationals is bounded.

Proof. Since {an} is Cauchy, we know there is some sufficiently large m,n ∈ N
such that ∣∣an − am∣∣ < 1 .

If follows for such n that∣∣aN+1 − an
∣∣ < 1 =⇒

(
aN+1 − 1

)
< an <

(
aN+1 + 1

)
.

Define M as the greatest element of a set with a natural number of elements

M = max
{∣∣a0

∣∣, ∣∣a1

∣∣, ..., ∣∣aN ∣∣, ∣∣aN+1 − 1
∣∣, ∣∣aN+1 + 1

∣∣} .

Every an with n ≤ N is in the set, and every an with n > N is less than one
of the last two elements of the set. Therefore, there exists a bound M ∈ R for
every rational Cauchy sequence {an}. l

Theorem 5.5.7 The multiplicative operation for equivalence classes given by
Definition 5.5.2 is well-defined.

Proof. Define four Cauchy equivalence classes [(an)], [(bn)], [(cn)], and [(dn)]
having the properties

[a] = [b] , and [c] = [d] ,

so that
lim
n→∞

(
an − bn

)
= 0 , and lim

n→∞

(
cn − dn

)
= 0 .

For multiplication to be proven well-defined, we need to prove that [(an ·cn)] =
[(bn · dn)], or specifically that for sufficiently large n

[(an · cn)]− [(bn · dn)] < δ .
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To that end, insert the additive identity as a difference of cross terms so that

an · cn − bn · dn = an · cn − bn · dn +
(
cn · bn − cn · bn

)
=
(
an · cn − cn · bn

)
+
(
cn · bn − bn · dn

)
= cn ·

(
an − bn

)
+ bn ·

(
cn − dn

)
.

It follows that∣∣an · cn − bn · dn∣∣ ≤ (∣∣cn∣∣ · ∣∣an − bn∣∣+
∣∣bn∣∣ · ∣∣cn − dn∣∣) .

By Theorem 5.5.6, there exists bounds |bn| ≤ B0 and |cn| ≤ C0 for any n ∈ N.
Then let M0 = B0 + C0 so that∣∣an · cn − bn · dn∣∣ < M0

(∣∣an − bn∣∣+
∣∣cn − dn∣∣) .

Since all four sequences are Cauchy, we have

∃n,N ∈ N s.t. n > N =⇒
∣∣an − bn∣∣ < δ

2M0

,
∣∣cn − dn∣∣ < δ

2M0

.

We prove the theorem by writing∣∣an · cn − bn · dn∣∣ < M0

(
δ

2M0

+
δ

2M0

)
= δ . l

Remark 5.5.8 Theorem 5.5.6 proves the boundedness of Cauchy sequences
of rationals in CQ but not the boundedness of all sequences in CAB

Q . Since
numbers with non-zero big parts are represented as ordered pairs of elements
of CQ, it is obvious that such numbers are bounded because each sequence in
the pair is bounded. As a consequence of Theorem 5.5.7 which regards general
Cauchy equivalence classes and does not restrict to the rationals, it follows
that multiplication is well-defined for numbers in the neighborhood of infinity.
However, one must carefully note that the boundedness of such products will
not always be such that the bound is in R. By the identity ℵX · ℵY = ℵℵ(XY) ,
it is never in R when X > 0 or Y > 0.

Remark 5.5.9 Assuming the field axioms, Definition 5.5.2 giving x · y =
[(xn · yn)] is good enough to allow us to prove the arithmetic operations are
well-defined. However, we have presently not defined division as multiplication
by an inverse so we need to give a definition for the quotient of two Cauchy
equivalence classes.

Definition 5.5.10 If x, y ∈ R such that there are two Cauchy equivalence
classes x = [(xn)] and y = [(yn)], then x÷ y = [(xn ÷ yn)].

Theorem 5.5.11 The quotient operation for equivalence classes of rationals
given by Definition 5.5.10 is well-defined.
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Proof. Define four Cauchy equivalence classes [(an)], [(bn)], [(cn)], and [(dn)]
having the properties

[a] = [b] , and [c] = [d] ,

so that
lim
n→∞

(
an − bn

)
= 0 , and lim

n→∞

(
cn − dn

)
= 0 .

For division to be proven well-defined, we need to prove that [(an ÷ cn)] =
[(bn ÷ dn)]. Specifically, for sufficiently large n, we must demonstrate

[(an ÷ cn)]− [(bn ÷ dn)] < δ .

To that end, insert the additive identity as a difference of the cross terms so
that

an
cn
− bn
dn

=
an
cn
− bn
dn

+

(
bn
cn
− bn
cn

)
=

(
an
cn
− bn
cn

)
+

(
bn
cn
− bn
dn

)
=
an − bn
cn

+
bn ·

(
dn − cn

)
cn · dn

.

It follows that ∣∣∣∣ancn − bn
dn

∣∣∣∣ ≤
(∣∣an − bn∣∣∣∣cn∣∣ +

∣∣bn∣∣ · ∣∣cn − dn∣∣∣∣cn∣∣ · ∣∣dn∣∣
)

.

By Theorem 5.5.6, there exist bounds |bn| ≤ B0, |cn| ≤ C0 and |dn| ≤ D0 for
any n ∈ N. Since all four sequences are Cauchy, we have

∃n,N ∈ N s.t. n > N =⇒
∣∣an− bn∣∣ < C0δ

2
,
∣∣cn−dn∣∣ < C0D0δ

2B0

.

We prove the theorem by writing∣∣∣∣ancn − bn
dn

∣∣∣∣ <
(

C0δ
2

C0

+
B0

C0D0δ
2B0

C0D0

)
=
δ

2
+
δ

2
= δ .

Since we have assumed [a], [b], [c], [d] ⊂ CQ, we have proven the theorem with
Axiom 5.2.10 granting associativity among division and multiplication. l

Main Theorem 5.5.12 The quotient operation given by Definition 5.5.10 is
well-defined for equivalence classes in CAB

Q \ CQ.

Proof. Suppose there are four subsets of CAB
Q with the properties

[ℵ[A] + a] = [ℵ[B] + b] , and [ℵ[C] + C] = [ℵ[D] + d] .
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It follows from the equality of Cauchy sequences that

lim
n→∞

(
An − Bn

)
= 0

lim
n→∞

(
Cn −Dn

)
= 0

lim
n→∞

(
an − bn

)
= 0

lim
n→∞

(
cn − dn

)
= 0 .

For concision in notation, introduce the symbols

(An) = (ℵ[(An)] + an)

(Bn) = (ℵ[(Bn)] + bn)

(Cn) = (ℵ[(Cn)] + cn)

(Dn) = (ℵ[(Dn)] + dn) .

For division to be proven well-defined, we need to prove that [(An ÷ Cn)] =
[(Bn ÷Dn)]. Specifically, for sufficiently large n, we must demonstrate

[(An ÷ Cn)]− [(Bn ÷Dn)] < δ .

Following the form of Theorem 5.5.11, we may insert the identity to obtain
the inequality ∣∣∣∣AnCn − Bn

Dn

∣∣∣∣ ≤
∣∣An −Bn

∣∣∣∣Cn∣∣ +

∣∣Bn

∣∣ · ∣∣Cn −Dn

∣∣∣∣Cn∣∣ · ∣∣Dn

∣∣ .

Here we make the major distinction with Theorem 5.5.11: the bounds on
(An), (Bn), (Cn), (Dn) are not in R0 and we must be careful not to allow asso-
ciativity among multiplication and division when simplifying the expression.
Since each of (An), (Bn), (Cn), (Dn) are ordered pairs of Cauchy sequences of
rationals (Axiom 4.2.17), we know the pairs of sequences are bounded. Let
the bounds be defined by

[(An)] = ([A], [a]) ≤ (A0, a0)

[(Bn)] = ([B], [b]) ≤ (B0, b0)

[(Cn)] = ([C], [c]) ≤ (C0, c0)

[(Dn)] = ([D], [d]) ≤ (D0, d0) ,

where the notation implies the ordering of each paired element respectively.
It follows that∣∣∣∣AnCn − Bn

Dn

∣∣∣∣ ≤
∣∣ℵA0 + a0 − ℵB0 − b0

∣∣∣∣ℵC0 + c0

∣∣ +

∣∣ℵB + b0

∣∣ · ∣∣ℵC0 + c0 − ℵD0 − d0

∣∣∣∣ℵC0 + c0

∣∣ · ∣∣ℵD0 + d0

∣∣
≤
∣∣ℵ(A0−B0) + a0 − b0

∣∣∣∣ℵC0 + c0

∣∣ +

∣∣ℵB + b0

∣∣ · ∣∣ℵ(C0−D0) + c0 − d0

∣∣∣∣ℵC0 + c0

∣∣ · ∣∣ℵD0 + d0

∣∣
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≤
∣∣A0 −B0

∣∣∣∣C0

∣∣ +

∣∣ℵ(ℵ(B0C0−B0D0)
+B0c0−B0d0+b0C0−b0D0) + b0c0 − b0d0

∣∣∣∣ℵ(ℵ(C0D0)
+D0c0+d0C0) + d0c0)

∣∣
≤
∣∣A0 −B0

∣∣∣∣C0

∣∣ +

∣∣ℵ(B0C0−B0D0) +B0c0 −B0d0 + b0C0 − b0D0

∣∣∣∣ℵ(C0D0) +D0c0 + d0C0

∣∣
≤
∣∣A0 −B0

∣∣∣∣C0

∣∣ +

∣∣B0C0 −B0D0

∣∣∣∣C0D0

∣∣
≤
∣∣A0 −B0

∣∣∣∣C0

∣∣ +

∣∣B0

∣∣ · ∣∣C0 −D0

∣∣∣∣C0

∣∣ · ∣∣D0

∣∣ .

Since A0, B0, C0, D0 ∈ R0, this is the same form achieved in Theorem 5.5.11
and we will conclude the proof in the same way. Use the Cauchy property of
the respective sequences to write

∃n,N ∈ N s.t. n > N =⇒
∣∣An−Bn

∣∣ < C0δ

2
,
∣∣Cn−Dn

∣∣ < C0D0δ

2B0

.

We prove the theorem writing∣∣∣∣AnCn − Bn

Dn

∣∣∣∣ < C0δ
2

C0

+
B0

C0D0δ
2B0

C0D0

=
δ

2
+
δ

2
= δ . l

§6 Arithmetic Applications

§6.1 Properties of the Algebraic Fractional Distance Function
Revisited

We have defined the algebraic FDF D†AB to totally replicate the behavior of
the geometric FDF DAB with the added property that it should allow us to
compute numerical quotients of the form AX

AB
without requiring a supplemental

constraint of the form AX = cAB. In verbose notation, we have

DAB : AB→ [0, 1] , and D†AB : {[0, ∞̂];x} → [0, 1] ,

so that the algebraic FDF provides more information by taking the line seg-
ment and the chart on the line segment whereas the geometric FDF doesn’t
know about x.

In Section 3.1, we found that neither the algebraic FDF of the first kind
nor the second has the analytic form of D†AB. The second kind was ruled out
by Theorem 3.1.19 when we showed that D′′AB is not one-to-one. D′AB was pro-
visionally eliminated based on an unallowable discontinuity at infinity. Since
DAB is continuous on its domain, D†AB is too. In Theorem 3.1.24 specifically,
we showed that D′AB cannot conform to the Cauchy criterion for continuity at
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infinity because that criterion always fails at infinity. The nature of the failure
is that the criterion gives a requirement

|x−∞| < δ ⇐⇒ δ >∞ .

There is no such δ. What is the source of this discrepancy? The source is the
additive absorptive property of infinity giving ∞− x =∞. By now, we have
shown that the absorptive properties of all infinite elements are not supported
by the invariance of line segments under permutations of their endpoints and
we have otherwise given an artificial construction ∞̂ which does not have
the problematic properties. In this section, we will revisit the continuity and
other properties of D′AB. We will show that the algebraic FDF of the
first kind does satisfy the Cauchy criterion for a limit at infinity ,
something which has been considered historically impossible. In the present
section, we will also prove Conjecture 3.1.18 wherein it was postulated that
D′AB is injective. Having shown by the end of the present section that there

are no obvious discrepancies between D†AB and D′AB, we will assume that the

algebraic FDF of the first kind is identically D†AB.

Main Theorem 6.1.1 The algebraic fractional distance function of the first
kind D′AB(AX) converges to a limit l = 1 at B ∈ AB.

Proof. According to the Cauchy definition of the limit of f(x) as x approaches
∞̂, we say that

lim
x→∞̂

f(x) = l ,

if and only if
∀ε > 0 ∃δ > 0 s.t ∀x ∈ D ,

we have
0 < |x− ∞̂| < δ =⇒ |f(x)− l| < ε .

In Theorem 3.1.24, we attempted to show this limit in the approach to geomet-
ric infinity x → ∞. At that point, we had to stop because there is no δ ∈ R
such that ∞− x < δ. Now we may choose x ∈ R with the given arithmetic
axioms to obtain, for example,

|(∞̂ − b)− ∞̂| = b , or |ℵX − ∞̂| = ℵ(1−X ) .

Per the ordering axiom (Axiom 5.2.14), either of these can be less than some
δ ∈ R. This remedies the blockage encountered in Theorem 3.1.24 where we
found δ ∈ R implies∞−x 6< δ. Now we may follow the usual prescription for
the Cauchy definition of a limit, even at infinity! To that end, let δ = ℵ( ε2).

Then the Cauchy definition requires that

0 < |x− ∞̂| < ℵ( ε2) , and |D′AB(AX)−D′AB(AB)| < ε .
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First we will evaluate δ expression on the left as

∞̂ − x < ℵ( ε2) ⇐⇒ x > ℵ(1− ε
2) .

Definition 3.1.9 gives D′AB as

D′AB(AX) =


1 for X = B

‖AX‖
‖AB‖

for X 6= A, X 6= B

0 for X = A

,

where
‖AX‖
‖AB‖

=
len[a, x]

len[a, b]
.

Evaluation of the ε expression, therefore, yields∣∣∣∣ len[0, x]

len[0, ∞̂]
− 1

∣∣∣∣ =

∣∣∣∣ x∞̂ − 1

∣∣∣∣ <
∣∣∣∣∣ℵ(1− ε

2)

∞̂
− 1

∣∣∣∣∣ =

∣∣∣∣(1− ε

2

)
− 1

∣∣∣∣ =

∣∣∣∣−ε2
∣∣∣∣ < ε .

Therefore,
lim
x→∞̂
D′AB(AX) = 1 .

This limit demonstrates the continuity of D′AB at infinity. l

Remark 6.1.2 When defining D′AB and D′′AB in Section 3.1, we were able to
show that D′′AB is not one-to-one but we did not yet have the tools to prove that
D′AB is one-to-one on all real line segments. We conjectured it with Conjecture
3.1.18 and now we will use Lemma 6.1.3 to prove it in Theorem 6.1.4.

Lemma 6.1.3 For any point X ≡ X = [x1, x2] in a real line segment AB,
we have x1 ∈ RX0

ℵ if and only if x2 ∈ RX0
ℵ .

Proof. For proof by contradiction, suppose that x1 ∈ RX1
ℵ , x2 ∈ RX2

ℵ , and
X1 6= X2. By Definition 4.1.14, there exist b1, b2 ∈ R0

ℵ such that

x1 = ℵX1 + b1 , and x2 = ℵX2 + b2 .

With the a ≤ b condition inherent to the [a, b] interval notation, the algebraic
FDF tells us that

min[D†AB(AX)] =
len[0, x1]

len[0,∞]
=
x1

∞
= X1 ,

and

max[D†AB(AX)] =
len[0, x2]

len[0,∞]
=
x2

∞
= X2 .
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It follows from the identity D†AB(AX) = DAB(AX) that

min[DAB(AX)] = X1 , and max[DAB(AX)] = X2 .

By Definition 3.1.1, DAB(AX) is one-to-one which requires

X1 = X2 .

This contradicts the assumed condition that X1 6= X2. l

Theorem 6.1.4 The algebraic fractional distance function of the first kind
D′AB is injective (one-to-one) on all real line segments.

Proof. (Proof of Conjecture 3.1.18.) Recall that D′AB : AB → [0, 1] is

D′AB(AX) =


1 for X = B

‖AX‖
‖AB‖

=
len[a, x]

len[a, b]
for X 6= A, X 6= B

0 for X = A

.

Injectivity requires that

D′AB(AX1) = D′AB(AX2) ⇐⇒ AX1 = AX2 ⇐⇒ X1 = X2 .

Even if there is an entire interval of numbers in the algebraic representations
of each of X1 and X2, we have by Lemma 6.1.3:

min[D′AB(AXk)] = max[D′AB(AXk)] = Xk .

This tells us that choosing any x ∈ X ≡ X will yield the same D′AB(AX).
Therefore, the injectivity of D′AB(AX) follows from the injectivity of DAB(AX)
through the constraint

D′AB(AX) = DAB(AX) . l

Conjecture 6.1.5 The algebraic fractional distance function D†AB is an alge-
braic fractional distance function of the first kind D′AB.

§6.2 Some Theorems for Real Numbers in the Neighborhood of
Infinity

In Section 3.3, we listed four coarse bins of length as distinct modes in which
a line segment might have a many-to-one or one-to-one relationship between
its points and the numbers in their algebraic representations. The bins were

� L ∈ R0
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� L ∈ R0
ℵ \ R0

� L ∈ RXℵ ∪R1
ℵ (Recall that 0 < X < 1 is implicit in the absence of explicit

statements to the contrary.)

� L = ∞̂

In Theorems 3.3.1 and 3.3.2, we were able to prove the cases L ∈ R0 and L = ∞̂
respectively but we did not yet have sufficient tools to easily demonstrate the
cases of L ∈ R0

ℵ \ R0 and L ∈ RXℵ ∪ R1
ℵ. We still have not decided whether or

not R0
ℵ\R0 = ∅ but, by this point, we have given the tools needed to prove the

many-to-one relationship between real numbers and points in a line segment
with L ∈ RX0 ∪R1

0. This is the third case above modified with a restriction to
the natural neighborhoods of ℵX rather than the whole neighborhoods. This
restriction guarantees Lit(L) ∈ R0. We will give this result in the present
section which also contains various and sundry theorems and examples, the
most exciting of which is left as a surprise.

Theorem 6.2.1 If AB is a real line segment with finite length L ∈ RX0 ∪ R1
0,

then no point X ∈ AB has a unique algebraic representation as one and only
one real number.

Proof. From the statement of the theorem, we have L = len(AB) = ℵX + b
with 0 < X ≤ 1 and b ∈ R0. By Definition 2.3.15, every point in a line segment
has an algebraic representation

X ≡X = [x1, x2] .

It follows that

min[D†AB(AX)] =
len[0, x1]

len[0,ℵX + b]
=

x1

ℵX + b
.

Now suppose x0 ∈ R+
0 , and z = x1 + x0 so that z > x1. Then

len[0, z]

len[0,ℵX + b]
=

z

ℵX + b
=
x1 + x0

ℵX + b
=

x1

ℵX + b
+

x0

ℵX + b
.

By Axiom 5.2.11, the x0 term vanishes so we find

len[0, z]

len[0,ℵX + b]
=

x1

ℵX + b
= min[D†AB(AX)] .

Invoking the single-valuedness of bijective functions, we find that

min[D†AB(AX)] = max[D†AB(AX)] =
x2

ℵX + b
=⇒ x1 < z ≤ x2 .

Therefore x1 6= x2 and the theorem is proven. l
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Theorem 6.2.2 The derivative of f(x) = ℵx with respect to x is infinite.

Proof. The definition of the derivative of f(x) with respect to x is

d

dx
f(x) = lim

∆x→0

f(x+ ∆x)− f(x)

∆x
.

For f(x) = ℵx, we have

d

dx
ℵx = lim

∆x→0

ℵ(x+∆x) − ℵx
∆x

= lim
∆x→0

ℵx + ℵ∆x − ℵx
∆x

= lim
∆x→0

1

∆x
ℵ∆x

= ℵ1 . l

Definition 6.2.3 For 0 < X < 1, NX is a subset of real numbers such that

NX =
{
ℵX + w

∣∣ w ∈W
}
,

where the whole numbers are W = {...,−2,−1, 0, 1, 2, ...}. The set {NX} is
called the set of all NX such that 0 < X < 1. Complementing N in the
neighborhood of the origin, define a set

N̂ =
{
∞̂ − n

∣∣ n ∈ N
}
,

called natural numbers in the maximal neighborhood of infinity. The set of all
extended natural numbers is

N∞ = N ∪ {NX} ∪ N̂ .

Definition 6.2.4 The function Ex is defined as

Ex =
∞∑
k=0

xk

k!
,

where the sum is taken to mean all k ∈ N∞ ∪ {0}. This function is called the
big exponential function.

Theorem 6.2.5 For any x ∈ R0, the big exponential function is equal to the
usual exponential function:

x ∈ R0 =⇒ Ex = ex .
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Proof. The usual exponential function is

ex =
∞∑
k=0

xk

k!
,

with the upper bound on k meaning “as k increases without bound” but also
giving an implicit restriction k ∈ N0 = N∪{0}. To prove the present theorem,
it will suffice to show that all terms vanish for k 6∈ N. We have

Ex =
∑
k∈N0

xk

k!
+
∑
k∈NX1

xk

k!
+
∑
k∈NX2

xk

k!
+ ...

= ex +
∞∑
k=0
k∈N0

x(ℵX1+k)(
ℵX1 + k

)
!

+
∞∑
k=1
k∈N

x(ℵX1−k)(
ℵX1 − k

)
!

+
∞∑
k=0
k∈N0

x(ℵX2+k)(
ℵX2 + k

)
!

+ ... .

Now it will suffice to show that the sum over k ∈ NX vanishes for any X > 0.
Observe that

∞∑
k=0
k∈N0

x(ℵX±k)(
ℵX ± k

)
!

=
∞∑
k=0
k∈N0

(
xX
)̂∞(

x±k
)(

ℵX ± k
)
!

.

To finish the proof, we will separate the three relevant cases of the magnitude
of xX .

• (xX < 1) Here, the numerator vanishes by Axiom 5.1.7. It follows that

∞∑
k=0
k∈N0

(
xX
)̂∞(

x±k
)(

ℵX ± k
)
!

=
∞∑
k=0
k∈N0

0 ·
(
x±k
)(

ℵX ± k
)
!

= 0 .

• (xX = 1) Here we have

∞∑
k=0
k∈N0

(
xX
)̂∞(

x±k
)(

ℵX ± k
)
!

=
∞∑
k=0
k∈N0

(
x±k
)(

ℵX ± k
)
!
.

To evaluate this, take (
ℵX ± k

)
! = ℵℵℵ... =∞ .

Since this factorial is not equal to ℵ1 and it diverges in R, it must be equal to
∞. We find, therefore, that

∞∑
k=0
k∈N0

x(ℵX±k)(
ℵX ± k

)
!

=
∞∑
k=0
k∈N0

(
x±k
)

∞
= 0 .
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• (xX > 1) If we follow the simple procedure in the previous cases, we obtain

∞∑
k=0
k∈N0

(
xX
)̂∞(

x±k
)(

ℵX ± k
)
!

=
∞∑
k=0
k∈N0

∞ ·
(
x±k
)

∞
= undefined .

The ∞ symbol is shorthand for a limit so we have

∞∑
k=0
k∈N0

∞ ·
(
x±k
)

∞
=

∞∑
k=0
k∈N0

lim
x→0

x±k

x

lim
x→0

1

x

=
∞∑
k=0
k∈N0

lim
x→0

x±k−1

x−1
=

∞∑
k=0
k∈N0

lim
x→0

x±k = 0 .

We have shown that every term of Ex which is not in ex vanishes whenever
x ∈ R0. It can be demonstrated that for any X > 0, the factorial (ℵX±k)! will
exceed ℵZ for any Z < ∞̂ so the given value for the factorial is well-motivated
and sound in this context. In this proof, we were very careful to respect the
order of operations demanded by the non-associativity of multiplication and
division.

Alternatively, since the factorial notation appearing in the series expan-
sion is only a shorthand notation, it is demonstrative to show that the terms
belonging only to big exponential function vanish as

∞∑
k=0
k∈N0

x(ℵX±k)(
ℵX ± k

)
!

=
∞∑
k=0
k∈N0

x(
ℵX ± k

) x(
ℵX ± k − 1

) x(ℵX±k−2)(
ℵX ± k − 2

)
!

=
∞∑
k=0
k∈N0

0 · 0 · ...
( x

3!

)( x
2!

)( x
1!

)
= 0 .

The evaluation in this alternative manipulation may or may not require as-
sociativity among non-associative operations, depending on the underlying
construction of the factorial in the exponential function and how it governs
the associativity of the operations. If this second pathway is disallowed be-
cause it relies on forbidden associativity, then this theorem is proven by the
former method above. In any case, the theorem is proven. l

Example 6.2.6 This example gives a good thinking device for understanding
limits n → ∞ when n steps in integer multiples. Usually n → ∞ is taken
to mean “as the iterator n increases without bound.” In this example, we
will argue that n → ∞ is better interpreted as meaning “the sum over every
n ∈ N∞.” Definition 2.2.2 gives two definitions for the∞ symbol, one of which
is

lim
n→∞

n∑
k=1

k =∞ .
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The n→∞ limit of the partial sums is taken to mean “as n increases without
bound” without a self-referential presupposition of the number defined by the
limit. Axiom 5.2.1 grants the closure of R0 under its operations so the partial
sums will always be another R0 number for any n ∈ N. For any X > 0, it
follows that the sum will be less than ℵX but the statement “as n increases
without bound” induces the notion of the non-convergence of the partial sums.
In turn, this allows us to think of the sum as exceeding ℵX but it may more
plainly demonstrate the notion of non-convergence when we take n → ∞ to
mean the sum over all n ∈ N∞. In that case, the partial sums will eventually
have individual terms greater than ℵX for any 0 < X < 1. It is immediately
obvious that ℵX cannot be an upper bound on the partial sums over n ∈ N∞.
The big part of the partial sums will easily exceed ℵ1 = ∞̂. Taking m ∈ N,
observe that the n ∈ N∞ convention gives

lim
n→∞

n∑
k=1

k > lim
n→m

n∑
k=1

(
ℵ(m−1) + k

)
> mℵ(m−1) = ℵ1 .

Now it is plainly obvious that the limit of the partial sums diverges in R.
Certainly, it is obvious that the partial sums diverge in either case but it may
be more obvious when n ∈ N∞. When n is said to increase without bound
and is also taken as n ∈ N, then there is an intuitive hiccup seeing that the
sequence of the sums should diverge when every element in the sequence of
partial sums is less than any ℵX ∈ {RX}. Instead, it is better to think of the
n→∞ notation as meaning the sum over all n ∈ N∞.

This example has demonstrated the utility of N∞ as a thinking device and
it also makes a distinction between the two formulae

lim
x→0±

1

x
= ±∞ , and lim

n→∞

n∑
k=1

k =∞ .

In the partial sums definition, and under the N∞ convention, the distinction
between geometric infinity and algebraic infinity is suggested as

∞̂ = ℵ1 , and ∞ = ℵ∞ .

This convention would require a significant revision of the entire text to ac-
commodate |ℵ1| 6= |ℵ∞| but we point out the possibility of the alternative
convention with a nod toward future inquiry. Note, however, that the present
convention for either definition of ∞ is preserved with Definition 2.2.1: both
sums diverge in R and we cannot differentiate ℵ1 from ℵ∞ without first mak-
ing a transfinite analytic continuation. This continuation is surely something
to be explored because it is the longitudinal continuation of R beyond its
endpoints perfectly dual to the famous transverse continuation of R onto C.
Where the latter has yielded so much fruit in the history of mathematics, the
former ought to bear some fruit as well.
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Main Theorem 6.2.7 If (i) ABC is a right triangle such that ∠ABC = π
2
,

(ii) ‖AB‖ = ℵX + x, (iii) ‖BC‖ = ℵY + y, and (iv) ‖AB‖ 6= c0‖BC‖, and if
the Pythagorean theorem is phrased as

‖AC‖ =

√
‖AB‖2 + ‖BC‖2 , with ‖AC‖ = len(AC) ,

then
len(AC) 6∈ R0

ℵ ∪ {RXℵ } ∪ R1
ℵ .

Proof. The squared lengths of the legs are

‖AB‖2 =
(
ℵX + x

)2
= ℵ(ℵ(X2)+2xX) + x2 ,

and
‖BC‖2 =

(
ℵY + y

)2
= ℵ(ℵ(Y2)+2yY) + y2 .

If we directly state the Pythagorean theorem in terms of the lengths, then we
find

‖AC‖2 = ℵ(ℵ(X2+Y2)+2(xX+yY)) + x2 + y2 .

Assuming ‖AC‖ = ℵA + a, we find

ℵ(ℵ(A2)+2aA) + a2 = ℵ(ℵ(X2+Y2)+2(xX+yY)) + x2 + y2 .

Setting the big parts equal yields

ℵ(A2) + 2aA = ℵ(X 2+Y2) + 2(xX + yY) ,

which still has separable big and little parts. Doing the maximum possible
separation of all the big and little parts yields

A2 = X 2 + Y2

aA = xX + yY
a2 = x2 + y2 .

Here we have three inconsistent equations in two variables a and A. No real-
valued length ‖AC‖ squared will satisfy the Pythagorean theorem as stated.
The theorem is proven. l

Definition 6.2.8 A number is a complex number z ∈ C if and only if

z = x+ iy , and x, y ∈ R .

Theorem 6.2.9 If we assign an algebraic representation to the hypotenuse
AC ≡ z ∈ C rather than the AC ≡ ‖AC‖ ∈ R disallowed by Main Theorem
6.2.7, then the Pythagorean identity is satisfied by AC2 ≡ z̄z.
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Proof. Given two legs, we want to find the hypotenuse through the Pythagorean
theorem. We assume that the legs are real line segments so that

AB2 ≡ ‖AB‖2 , and BC2 ≡ ‖BC‖2 .

If we take ‖AB‖, ‖BC‖ ∈ C such that Im(‖AB‖) = Im(‖BC‖) = 0, then
each is its own complex conjugate and the quantity squared retains its usual
meaning. The geometric identity

AC2 = AB2 +BC2 ,

needs an algebraic interpretation if we are to do trigonometry. The present
theorem concerns the “squared,” exponent 2 operation being identified as mul-
tiplication by the complex conjugate in the sense that the inner product of a
1D vector ~z ∈ C1 with itself is ~z 2 = 〈z|z〉 = z̄z. The vector space axioms
are known to be satisfied in C = C1 so it is only an irrelevant matter of
notation whether we specify a complex number z or a 1D complex vector ~z.
However, the satisfaction of the Pythagorean identity relies critically on the
multiplicative “line segment squared” operation being identified as algebraic
multiplication by the complex conjugate

AC2 ≡ 〈AC|AC〉 .

Since the legs are taken as real, the algebraic representation of each is its own
complex conjugate. As in the previous theorem, we find〈

AB
∣∣AB〉 =

(
ℵX + x

)2
= ℵ(ℵ(X2)+2xX) + x2 ,

and 〈
BC
∣∣BC〉 =

(
ℵY + y

)2
= ℵ(ℵ(Y2)+2yY) + y2 .

The present statement of the Pythagorean theorem is〈
AC
∣∣AC〉 = ℵ(ℵ(X2+Y2)+2(xX+yY)) + x2 + y2 .

Let z ∈ C be such that (i) it conforms to Definition 6.2.8, (ii) AC ≡ z = |AC〉,
and (iii)

z = ℵ(X±iY) + x± iy =
(
ℵX + x

)
+ i
(
ℵY + y

)
.

We have

z̄z =
〈
AC
∣∣AC〉 =

[
ℵ(X±iY) + (x± iy)

]∗[ℵ(X±iY) + (x± iy)
]

=
[
ℵ(X∓iY) + (x∓ iy)

][
ℵ(X±iY) + (x± iy)

]
= ℵ(X∓iY)ℵ(X±iY) + ℵ(X∓iY)(x± iy)

+ ℵ(X±iY)(x∓ iy) + (x∓ iy)(x± iy)

= ℵ(ℵ(X2+Y2))
+ ℵ(xX±iyX∓ixY+yY)

+ ℵ(xX∓iyX±ixY+yY) + x2 + y2
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= ℵ(ℵ(X2+Y2)+2(xX+yY)) + x2 + y2 .

Therefore, 〈
AC
∣∣AC〉 =

〈
AB
∣∣AB〉+

〈
BC
∣∣BC〉 ,

and the Pythagorean theorem is satisfied as stated. This proves the theorem.l

Corollary 6.2.10 If we assign an algebraic representation to the hypotenuse
AC ≡ ~x ∈ R2 rather than the AC ≡ ‖AC‖ ∈ R disallowed by Main Theorem
6.2.7, then the Pythagorean identity is satisfied by AC2 ≡ ~x · ~x.

Proof. This corollary follows from Theorem 6.2.9 in the way that everything
in C has two equivalent vector space representations in C1 and R2. Let ~x ∈ R2

be a vector in the Cartesian plane equipped as a vector space. We have three
real vectors defining ABC in R2:

~AB = (ℵX +x, 0) , ~BC = (0,ℵY+y) , and ~AC = (ℵX +x,ℵY+y) .

The Pythagorean theorem yields

~AC · ~AC = ~AB · ~AB + ~BC · ~BC .

Again we find

~AB · ~AB =
(
ℵX + x

)2
= ℵ(ℵ(X2)+2xX) + x2 ,

and
~BC · ~BC =

(
ℵY + y

)2
= ℵ(ℵ(Y2)+2yY) + y2 .

Checking the given form of ~AC ∈ R2, we find

~AC · ~AC = (ℵX + x,ℵY + y) · (ℵX + x,ℵY + y)

= ~AB · ~AB + ~BC · ~BC .

The Pythagorean identity is satisfied with an algebraic representation of the
hypotenuse AC such that AC ≡ ~AC ∈ R2. The theorem is proven. l

Example 6.2.11 If a right triangle has two equal legs AB = BC, then the
hypotenuse AC should be such that AC =

√
2AB. Since this is a case of

‖AB‖ = c0‖BC‖ which was not considered in Main Theorem 6.2.7 we will
include it for completeness. We have two equal legs AB = BC such that

√
2‖AB‖ =

√
2‖BC‖ = ℵ√2X +

√
2x .

We square it to check the Pythagorean theorem and find(
ℵ√2X +

√
2x
)2

= ℵ(
√

2Xℵ√2X ) + 2ℵ√2X

√
2x+ 2x2
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= ℵℵ(2X2)
+ ℵ4xX + 2x2

= ℵ(ℵ2X2+4xX) + 2x2

Indeed, we find the expected result that the hypotenuse is real-valued and
scaled by

√
2 when the legs are equal. It is good that the geometry of a

small triangle remains intact even when it is uniformly resized to have a char-
acteristic scale in the neighborhood of infinity. However, what would hap-
pen if we rescaled one leg and not the other? Would it suddenly gain an
imaginary part? In the complex algebraic representation of the hypotenuse
AC ≡ z = ℵ(X±iY) + x ± iy, as in Theorem 6.2.9, we have randomly chosen
BC ≡ ([Y ], [y]) as governing the imaginary part. However, if the two legs
are real, then why should ([Y ], [y]) govern the imaginary part of z and not
AB ≡ ([X ], [x])? Having raised these issues, we leave them to future work
on 2D planar Euclidean geometry. After one more related example, we will
return to the present considerations regarding the 1D geometry of a straight
line (which is not as simple as might be assumed.)

Example 6.2.12 This example demonstrates a ramification of Main Theorem
6.2.7 for the ordinary notions of trigonometry. Consider a right triangle ABC
such that ∠ABC = π

2
. Suppose ‖AB‖ = ℵX + x and ‖BC‖ = ℵY + y. Let

α = ∠CAB such that 0 < α < π
2
. Ordinary notions of trigonometry suggest

‖AC‖ sin(α) = ℵY + y , and ‖AC‖ cos(α) = ℵX + x . (6.1)

It follows that

‖AC‖ = ℵ( Y
sin(α))

+
y

sin(α)
, and ‖AC‖ = ℵ( X

cos(α))
+

x

cos(α)

Equating the big and little parts yields

tan(α) =
Y
X

, and tan(α) =
y

x
.

This is a contradiction for every case in which Y
X 6=

y
x
. This is a perfectly

consistent result; if the trigonometry functions in Equation (6.1) are real-
valued, and each RHS is, then the equality cannot hold when Im(‖AC‖) 6= 0.
We have shown in Example 6.2.11 that the hypotenuse is real-valued for the
case of ‖AB‖ = c0‖BC‖ with c0 = 1, and the trigonometry functions should
work as usual for any c0 ∈ R because that will enforce the equal relative scale
Y
X = y

x
for the ratios of the big and little parts of the lengths of the legs.

Remark 6.2.13 In leaving the real line and going onto the plane, we have
exceeded the scope of this analysis. Other than a C application in Section 8
to demonstrate the negation of the Riemann hypothesis, we will not continue
to exceed the confines of R. Even given the solution to that very famous
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problem in Section 8, however, it is the opinion of this writer that the principle
demonstrated in Main Theorem 6.2.7 is certainly the most important result
given herein. It cleanly demonstrates that the extension L ∈ R0 → L ∈ R∞
is not the trivial exercise that might be intuitively assumed. Among the two
valid interpretations given for the Pythagorean identity (Theorem 6.2.9 and
Corollary 6.2.10) the z ∈ C representation of the length of the hypotenuse is
more relevant than ~x ∈ R2 because z is a 1D scalar number whose real part is
a cut in the real number line. In other words, z is a cut in the real number line
added to a cut in the imaginary number line. Since cuts in the real number
line are known to have both zero and non-zero imaginary parts, meaning some
real numbers are the real parts of complex numbers with non-zero imaginary
parts, z ∈ C is far more germane to the standard analysis of R than is ~x ∈ R2.
Vector structure in vector analysis requires an entire axiomatic framework for
vector arithmetic but all of the arithmetic for z ∈ C can be derived easily if i
is added to the arithmetic axioms.

Theorem 6.2.14 A real number x with non-vanishing big part is not the prod-
uct of any real number with itself, i.e.:

6 ∃ z ∈ R s.t. z2 ∈ {RXℵ } ∪ R1
ℵ .

In other words, x ∈ {RXℵ } ∪ R1
ℵ does not have a real-valued square root.

Proof. Let there be two real numbers

z = ℵZ + a , and x = ℵX + b .

Assume z2 = x so that (
ℵZ + a

)2
= ℵX + b . (6.2)

We have (
ℵZ + a

)2
= ℵ(ℵ(Z2)+2aZ) + z2 ,

so we should set the big and little parts of the left and right sides of Equation
(6.2) equal to each other. This gives

ℵ(Z2) + 2aZ = X , and z2 = b .

The former constraint equation gives Z = 0 because the RHS has zero big
part. It follows that X = 0. This is a contradiction because we have already
selected ℵX as the non-zero big part of x. l

Example 6.2.15 Consider the limit

lim
b→∞
ℵX − b = l .
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It remains to be clarified precisely what is meant by the notation b→∞ be-
cause we should have options for at least two distinct behaviors. For example,
one might wish to define

lim
b→∞
ℵX − b = −∞ , and lim

b→∞̂
ℵX − b = ℵX − ∞̂ = −ℵ(1−X ) ,

where b → ∞̂ means that b approaches ∞̂ while b → ∞ would mean that
b increases without bound—even including transfinite numbers larger than
∞̂—such that b approaches some geometric infinity whose absolute value is
in some sense greater than that of algebraic infinity. We will not make such
definitions here because the requisite formal definitions for x > ∞̂ are out of
scope. However, simply based on the absorption or non-absorption of ∞ and
∞̂ respectively, the limits given in this example should be presumed correct.

§6.3 The Archimedes Property of Real Numbers

While there are many ways to state the Archimedes property of real num-
bers with symbolic logic, the modern establishment has adopted a standard
statement

∀x, y ∈ R s.t. x < y ∃n ∈ N s.t. nx > y .

For this statement to accurately characterize the property as it appeared in
the first edition Greek language copy of Euclid’s Elements, it must depend
on an unstated axiom that every real number is less than some natural num-
ber. Without that axiom, the statement is wrong and there is no other word
than “wrong” by which it should be described. In this section, we will consult
the original text in The Elements [1]. We will use the original text to prove
absolutely that the above symbolic statement is not the Archimedes prop-
erty of real numbers given so famously by Euclid in antiquity. For the above
statement to agree with that which was given by Euclid in Greek, one must
first take the axiom that every real number is less than some natural number.
Without a statement or implicit acknowledgment of such an axiom, the above
Latin symbolic statement is wrongly called the Archimedes property of real
numbers.

Definition 6.3.1 The statement of the Archimedes property which appears
in Euclid’s tome The Elements, and which was attributed by Archimedes to
his predecessor Eudoxus, and which must be taken as the definitive statement
of the Archimedes property of real numbers, appears as Definition 4 in Book
5 of The Elements. The original Greek is translated as follows [1].

“Magnitudes are said to have a ratio with respect to one another
which, being multiplied, are capable of exceeding one another.”
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Remark 6.3.2 As it appears in The Elements, the straightforward mathe-
matical statement of the property would be

∀x, y ∈ R s.t. x < y ∃z ∈ R s.t. zx > y .

There is no mention of multiplication by a positive integer n ∈ N. To prove
that the Archimedes property of real numbers does not implicitly restrict the
multiplier to n ∈ N, we will examine the context of the original text.

Definition 6.3.3 In Reference [1], Fitzpatrick translates Book 5, Definitions
1 through 5 as follows.

1. A magnitude is a part of a(nother) magnitude, the lesser of the greater,
when it measures the greater.

2. And the greater is a multiple of the lesser whenever it is measured by the
lesser.

3. A ratio is a certain type of condition with respect to size of two magni-
tudes of the same kind.

4. (Those) magnitudes are said to have a ratio with respect to one another
which, being multiplied, are capable of exceeding one another.

5. Magnitudes are said to be in the same ratio, the first to the second,
and the third to the fourth, when equal multiples of the first and third
both exceed, are both equal to, or are both less than, equal multiples of
the second and fourth, respectively, being taken in corresponding order,
according to any kind of multiplication whatever.

Remark 6.3.4 Though we may prove directly from Euclid’s own words that
the multiplier in the Archimedes property is not defined as a natural num-
ber, Fitzpatrick gives footnotes qualifying his translations of Euclid’s original
Greek. These footnotes support the wrongness of the supposition that Euclid
meant to imply that the multiplier in must always be a natural number. We
will list the footnotes here for thoroughness though we will not rely on them
in Theorem 6.3.5. The footnotes are as follows.

1. In other words, α is said to be a part of β if β = mα.

2. (No footnote given.)

3. In modern notation, the ratio of two magnitudes, α and β, is denoted
α : β.

4. In other words, α has a ratio with respect to β if mα > β and nβ > α,
for some m and n.
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5. In other words, α : β :: γ : δ if and only if mα > nβ whenever mγ > nδ,
mα = nβ whenever mγ = nδ, and mα < nβ whenever mγ < nδ, for all
m and n. This definition is the kernel of Eudoxus’ theory of proportion,
and is valid even if α, β, etc., are irrational.

Footnote 5 makes it exceedingly obvious that the multipliers are “all m and
n” in R.

Theorem 6.3.5 The statement

∀x, y ∈ R s.t. x < y ∃n ∈ N s.t. nx > y .

is not a proper statement of the Archimedes property of real numbers as given
in antiquity.

Proof. It follows from Book 5, Definition 5, of Euclid’s original text that if
y ∈ R is a multiple of z ∈ R, then there exists some “multiplier” x ∈ R such
that xy = z. To prove the present theorem by contradiction, assume that
Euclid meant to restrict the multiplier in his definitions as n ∈ N, and then
consider Definition 2:

“And the greater is a multiple of the lesser whenever it is measured
by the lesser.”

Suppose y = 2 and z = 3 so that, among the two numbers, z is the greater. If
the multiplier by which z is to be measured by y is restricted to n ∈ N rather
than x ∈ R, then z cannot be measured by y. This is an affront to reason ,
firstly, and it directly contradicts Definition 1:

“A magnitude is a part of a(nother) magnitude, the lesser of the
greater, when it measures the greater.”

It is self-evidently true that 3 > 2 so for 2 to be a part of 3 means it must
measure the greater. “Measure” is defined by Definition 2 in terms of multiples
which are thence defined in terms of multiplication. For 2 be a part of 3 in the
sense of Definition 1, we must do multiplication with a multiplier x = 1.5 6∈ N.
This proves the theorem. l

Remark 6.3.6 In Book 7, Definition 2, Euclid defines “numbers” as natural
numbers but what are today called real numbers are instead the “magnitudes”
described in Book 5. Euclid in no way implied that the multiplier in Definition
4 should be taken strictly as n ∈ N and, so, neither was Euclid of the opinion
that Archimedes meant to do so in his own earlier paraphrasing of Eudoxus.

Example 6.3.7 This example demonstrates that if one presupposes the non-
existence of real numbers greater than any natural number, taking it purely as



82 Fractional Distance: The Topology of the Real Number Line

an unproven axiomatic definition, one which violates the contrary proof of the
existence of such numbers given in Main Theorem 3.2.6, then the statement

∀x, y ∈ R s.t. x < y ∃n ∈ N s.t. nx > y ,

does adequately encapsulate the Archimedes property of antiquity. Proof of
this statement is given by Rudin in Reference [11] as follows.

“Let A be the set of all nx, where n runs through the positive inte-
gers. If [the symbolic statement given above in the present example]
were false, then y would be an upper bound of A. But then A has
a least upper bound in R. Put α = supA. Since x > 0, α − x < α,
and α− x is not an upper bound of A. Hence α− x < mx for some
positive integer m. But then α < (m+ 1)x ∈ A, which is impossible
since α is an upper bound of A.”

Here Rudin has followed the reasoning of Proposition 5.4.10 in which it was
claimed that R0 cannot have a supremum. We will revisit the issue of this
supremum most specifically in Section 7.5.

Remark 6.3.8 If we adopt

∀x, y ∈ R s.t. x < y ∃z ∈ R s.t. zx > y .

as the definitive statement of the Archimedes property, as in Remark 6.3.2,
then we will have taken away the Archimedes property of real numbers from
the maximal whole neighborhood of infinity R1

ℵ. For instance, if

∞̂ − a < ∞̂ − b ,

then we cannot multiply the LHS by a number greater than one and have
a real-valued product due to the identity ℵX = X · ∞̂. If we multiply by a
positive number less than one, call it δ, then

ℵδ − δa < ∞̂ − a < ∞̂ − b ,

does not conform to the Archimedean requirement that δ(∞̂− a) > ∞̂− b. If
this were to force the ejection of R1

ℵ from R because such numbers were found
not to exhibit the Archimedes property, then that would cause a breakdown
in Axiom 2.1.7 giving R = (−∞,∞). If we suppose, correctly, that all real
numbers obey the Archimedes property, then we might write concisely

R+ = (0,∞) \ R1
ℵ . (6.3)

This is highly disfavorable because we lose the perfect geometric infinite line
construction that we have sought to preserve by modifying the canonical alge-
braic construction by equivalence classes. In terms of the topology, Equation
(6.3) breaks the usual topology of R such that its basis is no longer all open
subsets (a, b) ⊂ (−∞,∞).



Jonathan W. Tooker 83

In what manner shall the maximal neighborhood of infinity exhibit the
Archimedes property of real numbers? How might we solve this problem?
The answer lies in Euclid’s original Greek:

“Magnitudes are said to have a ratio with respect to one another
which, being multiplied, are capable of exceeding one another.”

In Remark 6.3.2, we have adopted the convention that the multiplier must
attach to the lesser part of x < y but no such requirement is given by Euclid’s
totally symmetric statement. For one to exceed the other upon multiplication
allows us to state the property in terms of multiplication of either the greater
or the lesser among x and y. In Euclid’s own parlance, for one to exceed the
other only requires that each is a “part” or “multiple” of the other without
specifying a requirement for which is which. Taking careful note of the non-
specificity of the ordering relation in Euclid’s Definition 4, we will preserve
the highly favorable definition R = (−∞,∞) by giving a symbolic statement
of the Archimedes property obeyed by x ∈ R1

ℵ. At the end of this section,
we will give a new, modern statement of the Archimedes property such that
its application is greatly simplified. First, we will show that the fractional
distance model of R obeys the symbolically complexified Latin restatement of
Euclid’s small handful of original Greek words. Once we show that the ancient
definition is satisfied, will make a simplifying axiom such that demonstrating
the property is simplified.

Definition 6.3.9 The most general statement of the ancient Archimedes prop-
erty of real numbers is

∀x, y ∈ R s.t. x < y ∃z1, z2 ∈ R+ s.t. z1x > z2y .

Main Theorem 6.3.10 The present construction of R is such that every
x, y ∈ R0

ℵ∪{RXℵ }∪R1
ℵ exhibit the ancient Archimedes property of real numbers.

Proof. By Definition 6.3.9, it suffices to demonstrate

∀x, y ∈ R s.t. x < y ∃z1, z2 ∈ R+ s.t. z1x > z2y .

We will consider the general forms

x = ℵX + b , and y = ℵY + a ,

such that x ∈ RXℵ and y ∈ RYℵ , and we will assume constraints x < y and
0 ≤ X ≤ Y ≤ 1. Further assume that a and b are constrained appropriately
for X and/or Y equal to one or zero so that x and y are always in R+. The
starting point for demonstrating the Archimedes property is x < y which we
write as

ℵX + b < ℵY + a .
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To prove the theorem, we will consider the distinct cases. In each equality
listed below, we put z1x on the left and z2y on the right.

• (x ∈ R0
ℵ and y ∈ R0

ℵ) Here, both x and y have vanishing big parts so
x < y defines the ordering of the little parts. Choose z1 = ℵZ + z such that
0 < Zb < 1 and choose z2 = 1. Then(

ℵZ + z
)
b = ℵ(Zb) + zb > a .

• (x ∈ R0
ℵ and y ∈ {RYℵ}) Here, x has a vanishing big part and y has a

non-vanishing big part. Choose z1 = ℵ( 1+Y
2b ) + z and z2 = 1. Then(

ℵ( 1+Y
2b ) + z

)
b = ℵ( 1+Y

2 ) + zb > ℵY + a .

Since 1+Y
2

is the average of Y and 1, it is guaranteed to be a number in the
open interval (Y , 1).

• (x ∈ R0
ℵ and y ∈ R1

ℵ) Here, x has a vanishing big part and y has big part
ℵ1. Choose z1 = ℵZ + z and z2 such that 0 < z2 < Zb < 1. Then

(ℵZ + z) b = ℵ(Zb) + zb > z2

(
ℵ1 + a

)
= ℵ(z2) + z2a .

• (x ∈ RXℵ and y ∈ RYℵ such that X < Y) Here, neither x nor y has a vanishing
big part and the big part of x is less than big part of y. Choose z1 = 1+Y

2X and
z2 = 1. Then

1 + Y
2X

(ℵX + b) = ℵ( 1+Y
2 ) + b

1 + Y
2X

> ℵY + a .

• (x, y ∈ RXℵ such that X = Y) Here, x and y have equal big parts so it follows
from x < y that the little parts are ordered accordingly. Choose z1 = z such
that X < zX < 1 and z2 = 1. Then

z (ℵX + b) = ℵ(zX ) + zb > ℵX + a .

• (x ∈ RXℵ and y ∈ R1
ℵ) Here, x and y have unequal big parts with the big

part of y being the greater. Choose z1 = 1 and z2 = X
2

. Then

ℵX + b >
X
2

(
ℵ1 − a

)
= ℵ(X2 ) −

aX
2

.

• (x, y ∈ R1
ℵ) Here, x and y have equal big parts ℵ1 and x < y defines the

ordering of the little parts. Choose z1 = 1 and z2 = 1
2
. Then

ℵ1 + b >
1

2

(
ℵ1 − a

)
= ℵ( 1

2) −
a

2
.
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We have considered every combination of x < y among the various neigh-
borhoods and shown that they comply uniformly with Definition 6.3.9. The
theorem is proven. l

Remark 6.3.11 If it were not for the extremal case of x ∈ R0
ℵ and y ∈ R1

ℵ,
we might have formulated the symbolic statement of the Archimedes property
as

∀x, y ∈ R s.t. x < y ∃z ∈ R+ s.t. zx > y or x > zy .

This form is nice because it uses only a single multiplication operation and
exactly reflects Fitzpatrick’s footnote:

“In other words, α has a ratio with respect to β if mα > β and
nβ > α, for some m and n.”

However, it is not possible to phrase the symbolic statement of the property
with only a single multiplier because of the extremal case in which x is in
the neighborhood of the origin and y is in the maximal neighborhood of in-
finity. Even then, Euclid does not precisely require a condition of the form,
“multiplication of just one can exceed the other.” As it is written:

“Magnitudes are said to have a ratio with respect to one another
which, being multiplied, are capable of exceeding one another.”

This statement absolutely allows the two multiplier form given in Definition
6.3.9. This statement is equally well clarified with a similar but slightly dif-
ferent footnote than what Fitzpatrick has given. An alternative footnote ex-
plaining the meaning of the property would be the following.

In other words, α has a ratio with respect to β if m1α > n1β and
m2β > n2α, for some m1,m2, n1, and n2.

This is exactly what is given in Definition 6.3.9 and it is well consistent with
the “ratio of ratios” language seen in Book 5, Definition 5.

In general, we have made a rather large statement

∀x, y ∈ R s.t. x < y ∃z1, z2 ∈ R+ s.t. z1x > z2y , (6.4)

of Euclid’s few original words. The reasoning behind including the Archimedes
property of real numbers as a supplemental constraint on the behavior of cuts
in the real number line is that it is supposed to be an elegantly simple statement
of a simple behavior. Equation (6.4) is not quite elegant. Therefore, having
already independently demonstrated rigorous compliance with Euclid in the
absence of a simplifying modern axiom, now we will give a simplifying modern
axiom.
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Axiom 6.3.12 The Archimedes property of 1D transfinitely continued real
numbers is

∀x, y ∈ R s.t. x < y ∃n ∈ N s.t. ℵnx > y .

This axiom defines the implicit transfinite ordering required for ≤ to be a
relation among real numbers R and 1D transfinitely continued real numbers T
whose big parts are greater than ∞̂ = ℵ1. As a subset of the 1D transfinitely
continued real numbers, the real numbers themselves automatically inherit
compliance with the Archimedes property.

Remark 6.3.13 If the real number line ends at infinity, that indicates an end-
point there. Endpoints are associated with ∞̂ when we take the convention
that the notion of infinite geometric extent precludes the existence of end-
points at ∞. Therefore, the lack of a terminating point for the line at infinity
automatically implies the 1D transfinite continuation of R = (−ℵ1,ℵ1) onto
T = (−ℵ∞,ℵ∞). If R didn’t continue onto T, then it would end at ∞, a
contradiction if ∞ is not allowed to be an endpoint. There is no requirement
whatsoever that ∞̂ = ℵ1 is the largest number; it is only required that it is the
supremum of the real numbers. Axiom 6.3.12 generates the requisite definition
of transfinite ordering such that given x, y ∈ R and x < y, zx can be greater
than y without zx itself being zx ∈ R. Here we define ordering for zx ∈ T,
and then we use this ordering to satisfy the zx > y condition irreducibly cited
in The Elements. In the scheme of Axiom 6.3.12, all the bulleted cases of
x < y statements in Main Theorem 6.3.10 are replaced with elegantly simple
formulae.

§7 The Topology of the Real Number Line

§7.1 Basic Set Properties

In this section, we give some elementary set properties of the natural neigh-
borhoods and begin to approach the logical connection to the whole neighbor-
hoods. Recall that the natural neighborhoods RX0 are defined with little part
|b| ∈ R0

0 and the whole neighborhoods are defined with |b| ∈ R0
ℵ.

Lemma 7.1.1 Every natural neighborhood in {RX0 } is an open set.

Proof. By Definition 4.1.4, the set of all intermediate natural neighborhoods
of infinity is {

RX0
}

= {ℵX + b | b ∈ R0, 0 < X < 1} .

A given RX0 defined with a particular X is open if and only if there is a
δ-neighborhood of each of its elements such that every element of that neigh-
borhood is also an element of RX0 . We use the ball function δ-neighborhood as
in Definition 4.1.11 rather than Definition 4.1.12 because the elements of RX0
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are numbers, not points. This theorem is proven with a δ-neighborhood of an
arbitrary x ∈ RX0 . Defining b± = b± δ, we have

Ball(x ∈ RX0 , δ) = (ℵX + b− δ,ℵX + b+ δ) = (ℵX + b−,ℵX + b+) .

Axiom 5.2.1 requires that R0 is closed under the ± operations so b, δ ∈ R0

implies b± ∈ R0. The set RX0 is open because

(ℵX + b−,ℵX + b+) ⊂ RX0 =
{
ℵX + b

∣∣ b ∈ R0

}
.

Alternatively, no set in {RX0 } contains its boundary points so each such set
is open. l

Theorem 7.1.2 Given two natural neighborhoods RX0 and RY0 with 0 ≤ X <
Y ≤ 1, there exists another natural neighborhood RZ0 such that X < Z < Y.

Proof. Consider the interval

(ℵX ,ℵY) ⊂ R .

By Definition 3.2.1, the number at the center of this interval is

ℵY + ℵX
2

= ℵ(Y+X2 ) .

We have

X <
Y + X

2
< Y ,

so let Z = Y+X
2

. Any number z ∈ Z ∈ AB of the form

z = ℵZ + z0 , for |z0| ∈ R0 ,

will be such that
DAB(AZ) = Z .

Since X < Z < Y , the theorem is proven. l

Corollary 7.1.3 Given two whole neighborhoods RXℵ and RYℵ with 0 ≤ X <
Y ≤ 1, there exists another whole neighborhood RZℵ such that X < Z < Y.

Proof. Following the proof of Theorem 7.1.2, we arrive at a number z ∈ Z ∈
AB of the form

z = ℵZ + z0 , for z0 ∈ R0
ℵ ,

Even in the whole neighborhood exceeding the natural neighborhood, z0 has
no fractional magnitude with respect to AB. Therefore, the total fractional
distance is still completely determined by the big part as

Big(z) = ℵZ ⇐⇒ DAB(AZ) = Z .

Proof follows from X < Z < Y , as in Theorem 7.1.2. l
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Definition 7.1.4 An open set S is disconnected if and only if there exist two
open, non-empty sets U and V such that

S = U ∪ V , and U ∩ V = ∅ .

If a set is not disconnected, then it is connected.

Corollary 7.1.5 RX0 ∪ RY0 is a disconnected set for any 0 ≤ X < Y ≤ 1.

Proof. An open set is disconnected if it is the union of two disjoint, non-empty
open sets. By Lemma 7.1.1, RX0 is open, and it is obvious that such sets are
non-empty. It follows from Theorem 7.1.2 that they are disjoint, i.e.:

RX0 ∩ RY0 = ∅ .

The union RX0 ∪ RY0 satisfies the definition of a disconnected set. l

Remark 7.1.6 During the development of the intermediate neighborhoods
of infinity, we found it useful to separate the X = 0 and X = 1 cases from
the intermediate neighborhoods {RXℵ }. For efficacy of notation, now we will
combine all the different neighborhoods into a streamlined, unified notation.
The following definitions supplement Definitions 4.1.3 and 4.1.4 to include the
cases of X = 0 and X = 1.

Definition 7.1.7 To streamline notation, define

R∪ℵ =
⋃

0≤X≤1

RXℵ = R0
ℵ ∪

{
RXℵ
}
∪ R1

ℵ

R∪0 =
⋃

0≤X≤1

RX0 = R0
0 ∪
{
RX0
}
∪ R1

0 .

Definition 7.1.8 The complement of RX0 in RXℵ is RXC :

RXC = RXℵ \ RX0 .

Theorem 7.1.9 There exist more positive real numbers than are in R∪0 . In
other words,

R+ \ R∪0 6= ∅ .

Proof. By the definition of an interval, and through Axiom 2.1.7 overtly grant-
ing the connectedness of R = (−∞,∞), the interval R+ = (0,∞) is connected.
To prove the present theorem, it will suffice to show that R∪0 is disconnected.
Disconnection follows from Corollary 7.1.5. l
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Remark 7.1.10 It was already expected that there may be real numbers not
contained in the natural neighborhoods. It was for this reason that we defined
distinct whole neighborhoods RXℵ ⊇ RX0 . In Section 7.4, we will conjecture
RXC = ∅ but first we will prove another result, one far more interesting.

Main Theorem 7.1.11 There exist more positive real numbers than are in
R∪ℵ. In other words,

R+ \ R∪ℵ 6= ∅ .

Proof. R+ is a connected interval. R∪ℵ \ {0} is a disjoint union of open subsets
of R+. A connected interval cannot be covered with a disconnected set. The
theorem is proven. l

§7.2 Cantor-like Sets of Real Numbers

In this section, we will continue to develop the properties of R by comparing
the properties of R+ \R∪ℵ and R+ \R∪0 to the well-known properties of Cantor
sets.

Definition 7.2.1 Munkres constructs a Cantor set C as follows [13].

“Let A0 be the closed interval [0, 1] in R. Let A1 be the set obtained
from A0 by deleting its ‘middle third’ (1

3
, 2

3
). Let A2 be the set

obtained from A1 by deleting its ‘middle thirds’ (1
9
, 2

9
) and (7

9
, 8

9
). In

general, define An by the equation

An = An−1 −
∞⋃
k=0

(
1 + 3k

3n
,
2 + 3k

3n

)
.

The intersection
C =

⋂
n∈Z+

An ,

is called the [ternary ] Cantor set; it is a subspace of [0, 1].”

Remark 7.2.2 The interval [0, 1] is the image of AB under the fractional
distance map. This likeness will serve as the basis for the analytical direction
of the present section.

Definition 7.2.3 Define two Cantor-like sets

F0 = [0,∞] \ R∪0 , and Fℵ = [0,∞] \ R∪ℵ .

Corollary 7.2.4 Neither F0 nor Fℵ is the empty set.
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Proof. Proof follows from Theorem 7.1.9 and Main Theorem 7.1.11: there exist
more positive real numbers than are in either variant of R∪. The interval [0,∞]
is connected by Axiom 2.1.7. A connected set cannot be covered by a disjoint
union of its open subsets. (We say R0

0 and R0
ℵ are open sets in the subspace

topology of [0,∞] even though they are not strictly open in R.) The corollary
is proven. l

Remark 7.2.5 To construct F0 and Fℵ, we have subtracted from [0,∞] the
neighborhood of ℵX for every infinite decimal number 0 ≤ X ≤ 1. Whatever
remains is a “dust” of some sort. For this reason, we call F0 and Fℵ Cantor-like
sets.

Lemma 7.2.6 Fℵ is a subset of F0 or it is exactly equal to F0, i.e.: Fℵ ⊆ F0.

Proof. Proof follows from Definition 7.2.3. Fℵ is constructed by deleting open
intervals whose lengths are at least as great as those deleted in the construction
of F0. Each variant of deleted interval is centered about ℵX . Fℵ ⊆ F0 because
RX0 ⊆ RXℵ . If RXC = ∅, then Fℵ = F0 (which is what we will choose in Section
7.4.) l

Theorem 7.2.7 F0 and Fℵ are closed subsets of [0,∞].

Proof. A subset S ⊂ T is closed in T if and only if its complement in T is open.
The complements of F0 and Fℵ in [0,∞] are R∪0 and R∪ℵ respectively, both of
which are disjoint unions of open sets. F0 and Fℵ are closed in [0,∞]. l

Remark 7.2.8 When constructing the ternary Cantor set (Definition 7.2.1),
the least element of the final result of iterative deletions is zero. By construc-
tion, the endpoints of the intervals left after each deletion of a middle third
will remain forever so it is already given at the A1 step that the least number
in the parent interval [0, 1], which is zero, will be the least element of the
resultant Cantor set. When defining F in either variant, it is not immediately
apparent what will be the least element because 0 ∈ R0

ℵ ⊇ R0
0 is deleted at the

first step. Since F is closed, however, we know it does have a least element.

Definition 7.2.9 The connected elements of F0 are provisionally labeled F0(n)
and the connected elements of Fℵ are provisionally labeled Fℵ(n). The labeling
convention in either variant is such that

∀x ∈ F(n) ∀y ∈ F(m) s.t. n > m =⇒ x > y .

Each F(n) is connected and every two F(n),F(m) are disconnected whenever
n 6= m.
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Remark 7.2.10 We have deleted an uncountable infinity of RXℵ neighbor-
hoods to construct Fℵ. The elements of Fℵ separate these neighborhoods so
the number of disconnected elements Fℵ must be uncountably infinite. Such
elements cannot be enumerated with n ∈ N. To the contrary, the set N∞
(Definition 6.2.3) has a countably infinite number of elements ℵX − n and a
similar number of ℵX + n for each of an uncountably infinite number of X . It
is guaranteed that n ∈ N∞ will provide a sufficient labeling scheme for F(n).

Proposition 7.2.11 For every F0(n) or Fℵ(n), the respective subset of R∪0 or
R∪ℵ whose elements are less than any x in F0(n) or Fℵ(n) has a supremum and
the subset of R∪0 or R∪ℵ whose elements are greater has an infimum.

Justification. We will neglect the subscripts 0 and ℵ in this proof. This proposi-
tion regards the extrema of a set of sets so those extrema will be sets themselves
ordered by the big parts of the nested elements x ∈ RX ⊂ R∪. Call R∪− the set
of all RX whose elements are less than any x ∈ F(n) and call the greater set
R∪+. By Definition 7.2.9, F(n) is a connected interval and every two F(j),F(k)
are disconnected whenever j 6= k. Furthermore, Corollary 7.1.5 proves that
every two RX 6= RY are disconnected. Since [0,∞] is a connected union of
F(n) and R∪, with the former being closed intervals and the latter being open,
it follows that the structure of R+ is an ordered union

R+ = ...F(n) ∪ RX ∪ F(n+ 1) ∪ RY ∪ F(n+ 2) ... .

This contradicts Theorem 7.1.2, however. If there was an RZ between RX and
RY , then it would necessarily be RZ ⊂ F(n + 1) contradicting the definition
of F. The connected property of R requires, therefore, that we introduce an
alternative labeling scheme before continuing.

Definition 7.2.12 For n ∈ N∞, the connected elements of R∪0 are labeled
R0(n) and the connected elements of R∪ℵ are labeled Rℵ(n). The labeling
convention in either variant is such that

∀x ∈ R(n) ∀y ∈ R(m) s.t. n > m =⇒ x > y .

It follows that R0
0 = R0(1) and R0

ℵ = Rℵ(1). We say that R0(n) is the natu-
ral neighborhood of ℵ(n) and Rℵ(n) is its whole neighborhood. Specifically,
ℵ(1) = ℵ0 = 0.

Continuing with the justification of Proposition 7.2.11, we may now infer
that [0,∞] is constructed from an ordered union of the form

[0,∞] = R(1) ∪ F(1) ...R(n) ∪ F(n) ∪ R(n+ 1) ∪ F(n+ 1) ... .

Since the connectedness of R requires the sequential alternation of the discon-
nected R(n) and F(n) in the total ordered union, it follows that R(k) is the
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supremum of R∪− whose elements are less than any x ∈ F(k), and R(k + 1)
is the infimum of R∪+ whose elements are greater than any x ∈ F(k). This
concludes the justification of Proposition 7.2.11. l

Remark 7.2.13 In Example 6.2.15, we considered the limits

lim
b→∞
ℵX − b = −∞ , and lim

b→∞̂
ℵX − b = ℵX − ∞̂ = −ℵ(1−X ) ,

as two desirable modes of limit behavior. Now the F(n) notation suggests a
third desirable behavior such that

lim
b→ℵ(2)

ℵ(n) + b = ℵ(n+ 1) .

It may or may not be possible to accommodate this limiting mode. It might
be that any sequence which does not converge its own local neighborhood
of fractional distance must diverge all the way to infinity in one variety or
another. Indeed, the property d

dx
ℵx = ∞̂ (Theorem 6.2.2) suggests in some

sense that once a sequence fails to converge in its local ℵX -neighborhood, it
has to keep diverging to some maximal value.

The likely issue with such a limiting mode as b → ℵ(2), something which
may even amount to a flaw in the justification of Proposition 7.2.11, is that
ℵ(2) = ℵXmin

is such that Xmin is the smallest positive real number. It is gener-
ally understood that no such number exists. We have developed a requirement
for such a number in the course of supporting Proposition 7.2.11 but the lack
of a smallest positive real number is so well-established that we might suppose
no such number exists. Contrary to our conjuring of ℵX by requirement, there
exists a large body of demonstrations that no such Xmin can exist while ℵX
has only been supposed not to exist. If such a number as Xmin can be derived
from the ordered union given in Proposition 7.2.11, then that would be very
exciting. However, there are many problems associated with such a line of
reasoning. We will present a few of them in Section 7.3 and then we will not
use the (n) notations in a formal way moving forward.

Definition 7.2.14 This definition regards both 0,ℵ subscript variants of the
relevant objects. To avoid the problematic (n) notation, label each connected
element of F as FX . For every RX , there exists a unique FX such that

x ∈ RX , z ∈ FX =⇒ x < z ,

and
y ∈ RY , z ∈ FX , Y > X =⇒ y > z .

In other words, there is a closed interval FX right-adjacent to every RX when-
ever 0 ≤ X < 1. With this definition, we move the elements of F into the
non-problematic superscript X labeling scheme as opposed to moving the RX
into the (n) scheme as in Definition 7.2.12.
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§7.3 Paradoxes Related to Infinitesimals

In this section, we demonstrate a few paradoxes, or contradictions, invoked by
the R0(n) enumeration scheme and its corollary concept of a least positive real
number. We solve some of the paradoxes in this section with the superscript
X label (Definition 7.2.14) and the other paradoxes are resolved in Section 7.5.

Definition 7.3.1 F(n) ∈ R is the unique real number in the center of F0(n)
and Fℵ(n) ⊆ F0(n) in the sense that for every F(n) + b ∈ F(n) there exists a
F(n) − b ∈ F(n) (in either variant of F.) In the alternative labeling scheme,
FX is the number in the center of FX0 and FXℵ . In either label, the number has
the property

Big(FX ) = FX , and Lit(FX ) = 0 .

Theorem 7.3.2 The number F(1) = F0 has infinitesimal fractional magni-
tude with respect to AB.

Proof. We will use Robinson’s standard non-standard definition of a hyperreal
infinitesimal [14,15]. A number ε is a positive infinitesimal number if and only
if

∀x ∈ R+ ∃ε 6∈ R s.t. 0 < ε < x .

By construction, F(1) is the number in the center of the gap between Rℵ(1) =
R0
ℵ and Rℵ(2) ∈ {RXℵ }. Since F(1) is not in Rℵ(1) = R0

ℵ, it cannot have zero
fractional magnitude; R0

ℵ is the set of all numbers having zero fractional mag-
nitude along AB. If it had non-zero real fractional magnitude, then it would
be F(1) ∈ {RX0 }, an obvious contradiction because F(1) has less fractional
magnitude than any nested element in that set of sets. If we denote the frac-
tional magnitude of F(1) with the symbol ε, the properties of this magnitude
are exactly those given above in the definition of an infinitesimal. The theorem
is proven. l

Definition 7.3.3 A number is said to be a measurable number if it can exist
within the algebraic representation of some X ∈ AB. If a number is not
measurable, then it is immeasurable.

Theorem 7.3.4 Every x ∈ F is an immeasurable number.

Proof. The FDFs are bijective between their domain AB and range [0, 1] ⊂ R.
The range is a real interval containing no numbers with infinitesimal parts so
this tells us that F(n) is not in the algebraic representation of any geometric
X ∈ AB. In the X notation, the numbers in each FX have infinitesimally
more fractional distance along AB than the numbers in each RX . l
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Remark 7.3.5 We have granted that every geometric point X has an alge-
braic representation (Axiom 2.3.11) but we have not required the opposite.
Therefore, there is no problem with an infinitesimal fractional magnitude for
F(1) because there is no corresponding point X ∈ AB that is required to
have infinitesimal fractional distance. Although F(1) = F0 has infinitesimal
fractional magnitude, the number itself is very large. It is greater than any
natural number.

Paradox 7.3.6 Every F(n) has the property

F(n) =
ℵ(n) + ℵ(n+ 1)

2
. (7.1)

Every RX0 can be obtained by a translation operation on another element of
{RX0 }. Doing set-wise arithmetic, we may write, for instance

T̂ (ℵδ)R(X−δ)
0 = ℵδ + R(X−δ)

0 = RX0 .

Letting AB ≡ [ℵ(n),ℵ(n+ 1)] for some n ≥ 2, define

Sn = R0(n) ∩ AB , and Sn+1 = R0(n+ 1) ∩ AB .

The translational symmetry requires

len
(
Sn
)

= len
(
Sn+1

)
.

Since
AB = Sn ∪ F0(n) ∪ Sn+1 ,

and since F(k) is the number in the center of the closed interval F0(k), it
is obvious that F(n) is the unique number in the center of the line segment
AB. In the Euclidean metric, this number is always the average of the least
and greatest numbers in the algebraic representations of A and B respectively.
However, if the R0(n) notation is a label for RX0 where X is strictly a real
number, then, using the original labeling scheme without (n), we find

F(n) =
ℵX + ℵY

2
= ℵ(X+Y

2 ) .

This number is most obviously an element of R(X+Y
2 )

0 . This contradicts the
definition F(n) ∈ F0(n). It is paradoxical that ℵ(n + 1) cannot have any
corresponding ℵX .

Paradox Resolution 7.3.7 Paradox 7.3.6 does not exist in the FX notation.
If we never suppose the existence of ℵ(n + 1), then there is no starting point
in Equation (7.1) and the paradox cannot be demonstrated, i.e.:

FX 6=
ℵX + ℵY

2
.
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Paradox 7.3.8 The neighborhood of the origin contains numbers of the form
ℵX + b for b strictly non-negative (and X = 0) but every intermediate neigh-
borhood allows both signs for b. It follows that

len
(
R0(1)

)
=

1

2
len
(
R0(2)

)
, and F(1) =

1

3
F(2) .

Every element of R0(2) has positive real fractional magnitude because R0(2) ⊂
{RX0 } but if F(1) has infinitesimal fractional magnitude ε, then 3ε is also
less than any real number (according to Robinson’s arithmetic for hyperreal
numbers [14,15].) If 3ε is infinitesimal, then that contradicts the ordering

x ∈ R0(n) =⇒ x < F(n) .

Paradox Resolution 7.3.9 Paradox 7.3.8 is resolved in the FX formalism.
We can uniquely associate F(1) = F0 but there is no FXmin

that we might
associate with F(2).

Paradox 7.3.10 Each F0(n) ⊂ F0 is a closed, connected interval. It is re-
quired, then, that

F0(1) = [a, b] , and F(1) =
b− a

2
.

Assuming the normal arithmetic for x ∈ F, it follows that

sup(R0) = b− 2F(1) = a .

This is paradoxical for the reasons presented in Proposition 5.4.10: R0 ought
not have a supremum.

Paradox 7.3.11 If F(1) is a real number centered in the closed interval F(1),
then, assuming the normal arithmetic for x ∈ F, we find that 2F(1) = ℵXmin

with Xmin being the least positive real number. This number does not exist.
Therefore, the implied identity

F(1) =
ℵXmin

2
,

is inadmissibly paradoxical.

§7.4 Complements of Natural Neighborhoods

In this section, we take many of the facts established in the previous sections
and begin to put them together to form a coherent picture of FX , RX0 , RXℵ ,
RXC , and the rest. This is what we know so far:

� We have defined RX0 ∪ RXC = RXℵ .
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� We do not know whether or not RXC = ∅. This will be the main issue
decided in the present section.

� We have not yet defined any arithmetic operations for x ∈ FX ∪ RXC .

� We have not yet given an algebraic construction for x ∈ FX ∪ RXC .

Remark 7.4.1 In this section, we will use F(1) = F0 to refer to a real number
which is an upper bound on R0 without assuming an attendant problematic
(n) enumeration scheme.

Theorem 7.4.2 If we assume the usual arithmetic for FX , then the set R0
ℵ

lies within the left endpoint A of the line segment AB = [0,F0]. In other
words, every element of R0

ℵ has zero fractional magnitude even with respect to
len[0,F0] ≪ len AB.

Proof. Every interval has a unique number at its center. For AB = [0,F0],
this number is c = 1

2
F0, as in Figure 2. If c ∈ R0

ℵ, meaning that the fractional
magnitude with respect to AB was zero, then 2c = F0 would also have 2×0 = 0
fractional magnitude with respect to AB. This is contradictory because it
would require F0 ∈ R0

ℵ. Continuing the argument, we find that for any n ∈ N,
the number 1

n
F0 must not be an element of R0

ℵ. Now assume 1
n
F0 ∈ X ∈

AB ≡ [0,F0] and X 6= A. Since the quotient of two line segments is defined as
a real number (Definition 3.1.1), and since the difference of two real numbers
is always greater than some inverse natural number (Axiom 2.1.6), we may
write for some m ∈ N

AX

AB
− AA

AB
>

1

m
.

This is satisfied for any X 6= A so 1
n
F0 can be a number in the algebraic

representation of any X 6= A. Since 1
n
F0 6∈ R0

ℵ, R0
ℵ must be a subset of, or

equal to, the algebraic representation of the left endpoint A of AB ≡ [0,F0].l

Corollary 7.4.3 If we assume the usual arithmetic for FX , then for any x ∈
R0 such that x ∈ X, and for X ∈ AB such that AB ≡ [0,F0], we have

DAB(AX) = 0 .

Proof. By the property R0
0 ⊆ R0

ℵ, proof follows from Theorem 7.4.2.

Alternatively, DAB is such that

DAB(AX) = D†AB(AX) =
x

F0

.

The case of x = 0 is trivial. To prove the other cases by contradiction, suppose
z > 0 and that x

F0

= z .
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Figure 2: This figure (not to scale! ) shows the neighborhood of the origin R0
ℵ, the substruc-

ture of that neighborhood, and the associated structure from the Cantor-like sets. F− refers
to the subset of F which is less than or equal to F(1) = F0.

Since ‖x‖ < ‖F0‖ and x,F0 ∈ R+, it follows that 0 < z < 1. All such z ∈ R0

have a multiplicative inverse z−1 ∈ R0 so

x

zF0

= 1 ⇐⇒ z−1x = F0 .

This is a contradiction because z−1x ∈ R0 but F0 is greater than any element
of R0. l

Remark 7.4.4 Suppose we define zX = X ·F0 so that it mirrors the structure
of ℵX = X ·∞̂. Since R0

ℵ has zero fractional distance even along AB ≡ [0,F0],
we could define a set of whole neighborhoods along AB

RXF =
{
zX + b

∣∣ b ∈ R0
ℵ
}
,

exactly dual to the elements of {RXℵ } spaced along AB ≡ [0,∞]. By subtract-
ing every RXF from the interval [0,F0] we would create another Cantor-like set.
Following the prescription given in Section 7.2, we would invoke the connect-
edness of the interval to label the disconnected elements of the new Cantor-like
set, and we would label the numbers in the centers of each of those discon-
nected intervals. Call those number G(n) labeled with n ∈ N∞ so that they
are dual to the F(n) in the duality transformation [0,∞] → [0,F0], and so
that they have a non-problematic labeling scheme GX with X measuring frac-
tional distance along AB ≡ [0,F0] 6≡ AB. By replicating the present course
of analysis, we could show that no element of R0

ℵ has non-zero fractional mag-
nitude even with respect to len[0,G0] ≪ len[0,F0] ≪ len(AB). We could do
this forever—defining more and more, tinier and tinier Cantor-like sets—and
R0
ℵ would never leave the left endpoint A of the line segment whose algebraic

representation is [0,Γ0] with Γ0 being the number in the center of the leftmost
connected element of the umpteenth Cantor-like set.

To accommodate the interpretation of the positive branch of R as a Eu-
clidean line segment, we were forced to introduce numbers in the form ℵX . As
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a consequence, we were forced to introduce numbers of the form F(n) = FX
to describe the numbers in the Cantor-like sets whose elements are FX . If we
tried to define FX as a neighborhood of the form

FX
?
=
{
FX + b

∣∣ |b| ∈ R0
ℵ
}
,

then we would immediately encounter a problem. This set is clearly open while
we have already proven that it must be closed (Theorem 7.2.7.) Therefore, we
are left with a mystery set F0 whose elements are not easily decided. Since
this is the second such set we have, RXC being the first, we ought to combine
them into a single mystery set. We will conjecture RXℵ \ RX0 = ∅ which will
be tantamount to axiomatizing it in advance of the reliance on the conjecture
which follows. With this conjecture (Conjecture 7.4.5), every number which is
not in a natural neighborhood yet is greater than the all the numbers in some
natural neighborhood, and less than all the numbers in another, must be in
some FX between them.

We have not proven that RXℵ \ RX0 = ∅ but neither have we proven the
existence of such numbers (RXℵ \RX0 6= ∅) as we have with ℵX and FX . We re-
quired with Axiom 4.2.6 that every x ∈ R may be constructed algebraically as
a Cartesian product of Cauchy equivalence classes of rational numbers, or as a
partition of all such products. So far, we have only found such constructions for
those numbers in the natural neighborhoods. To avoid needless complication,
therefore, we will conjecture that RXC is the empty set and that, consequently,
F0 = Fℵ. Then we will have all of the RX0 = RXℵ = RX neighborhoods cleanly
defined as ordered pairs of subsets of CQ, and we will move everything else
into the Cantor-like set F. By the following conjecture, we will have given
algebraic constructions and arithmetic axioms for every number in R∪0 = R∪ℵ.
Everything which remains to be completed is transferred by Conjecture 7.4.5
into F.

Conjecture 7.4.5 Every number having zero fractional magnitude with re-
spect to AB is an element of R0. Most generally,

RXℵ = RX0 , and RXC = ∅ .

Remark 7.4.6 One would also want to conjecture the countercase to Conjec-
ture 7.4.5 and examine the requirements for establishing naturally numbered
tiers of increasingly large numbers, larger than any natural number but still
having zero fractional distance with respect to AB. However, we will take the
opposite tack here. Now that we have conjectured that the whole and natural
neighborhoods are the same, we will drop the 0 and ℵ subscripts from their
respective objects.
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§7.5 Immeasurable Numbers and The Least Upper Bound
Problem

Axiom 4.2.6 gave x ∈ R as a Cartesian product CAB
Q of Cauchy equivalence

classes of rational numbers, or as a partition of all such products. In this
section, we will invoke the partition clause to define the immeasurable x ∈
F as Dedekind partitions of CAB

Q . We have defined the arithmetic of the
equivalence classes themselves in Section 5.5 but we have not proven that
partitions obey the arithmetic axioms in the way that we have have for the
direct equivalence classes [x] ⊂ CAB

Q = CQ×CQ. In this section, we will prove
that the immeasurables do not, and cannot, obey the arithmetic axioms. This
will be due mainly to the least upper bound problem (Proposition 5.4.10)
which we will solve and avoid. We will prove that every x ∈ F is some FX
or that, equivalently, F = {FX} meaning that there are no connected subsets
of F or, in other words, that F is a discrete set of numbers. This will require
that each successive pair of RX share an extremum; the supreumum of one
is the infimum of the next. Then we will suggest that the x ∈ F can be
used as a set of analogue natural numbers for the formal construction of a
chart conformally related to the original Euclidean chart by a scale factor F0

where F0 = F(1) is the least immeasurable number. Motivated by the regular
spacing of the FX = F(n), we would define (hypothetically) a transfinite
version of N, call it NT, whose unit increment is such that natural numbers
n ∈ N have vanishing fractional distance with respect to 1 ∈ NT. Then we
would define zero as the least number in the algebraic representation of the
left endpoint of some AB to infer an analogue QT supporting the construction
of T-labeled analogues of CQ and CAB

Q . In this way, the formal algebraic
construction of a transfinite number system follows as direct consequence of
R without any further extraneous input beyond the initial supposition that
N does exist. We will conclude this section showing that the immeasurables
conform to the requirements of the Archimedes property of real numbers.

Definition 7.5.1 A Dedekind cut is a partition of the rationals Q into two
sets L and R such that every real number is equal to some partition x = (L,R)
with the following properties.

� L 6= Q is non-empty.

� If (i) x, y ∈ Q, (ii) x < y, and (iii) y ∈ L, then x ∈ L.

� If x ∈ L, then there exists y ∈ L such that y > x.

Definition 7.5.2 An extended Dedekind cut is a partition of CAB
Q into two

sets L and R such that every real number is equal to some partition x = (L,R)
with the following properties.

� L 6= CAB
Q is non-empty.

� If (i) x, y ∈ CAB
Q , (ii) x < y, and (iii) y ∈ L, then x ∈ L.
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� If x ∈ L, then there exists y ∈ L such that y > x.

Theorem 7.5.3 The number F0 ∈ R is an extended Dedekind partition of
CAB

Q .

Proof. Let

L0 =
{

[x] ⊂ CAB
Q
∣∣ Big(x) = 0

}
, and R0 =

{
[x] ⊂ CAB

Q
∣∣ Big(x) > 0

}
,

Dedekind himself wrote the following [3].

“In every case in which a cut (A1, A2) is given that is not produced
by a rational number, we create a new number, an irrational number
a, which we consider to be completely defined by this cut; we will
say that the number corresponds to this cut or that it produces the
cut.’

In that vein, the cut (L0, R0) is not produced by a measurable number [x] ⊂
CAB

Q so we create the new number F0: an immeasurable number. We say that
the cut “produces” this number or vice versa. Therefore, F0 = (L0, R0) and
the theorem is proven. l

Definition 7.5.4 The extended Dedekind form of FX = (LX , RX ) ∈ R is such
that

LX =
{

[x] ⊂ CAB
Q

∣∣ Big(x) ≤ ℵX
}

RX =
{

[x] ⊂ CAB
Q

∣∣ Big(x) > ℵX
}
.

Main Theorem 7.5.5 FX is the only number in FX ⊂ R. In other words,
FX = FX or, equivalently, F = {FX}.

Proof. It will suffice to prove this theorem if we show that FX is a one-point
set. Definition 7.2.14 gives

x ∈ RX , z ∈ FX =⇒ x < z ,

and
y ∈ RY , z ∈ FX , Y > X =⇒ y > z .

This definition establishes that x ∈ FX is an upper bound on RX and a lower
bound on RY for any Y > X . If x ∈ FX is simultaneously (i) the least upper
bound of RX , and (ii) the greatest lower bound of some RY , then x = FX is the
unique x ∈ FX and the proof will be completed. For proof by contradiction,
assume u ∈ R is an upper bound on RX with the property

u < FX .
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By Axiom 4.2.6, u must be a partition of CAB
Q or an equivalence class therein.

We will divide the proof, therefore, into two parts.

• (Equivalence class) If u was [u] ⊂ CAB
Q , then u ∈ RZ ⊂ R∪. If Z > X , then

u > FX , a contradiction. If X ≥ Z, then u is not an upper bound on RX ,
another contradiction. Now it is proven that u 6= [u] ⊂ CAB

Q .

• (Partition) The partition definition is

u = (Lu, Ru) .

If u < FX and FX = (L,R), then there exists Σ ∈ L such that

Lu = L \ Σ , and Ru = R ∪ Σ . (7.2)

From Definition 7.5.4, we have

L =
{

[x] ⊂ CAB
Q

∣∣ Big(x) ≤ ℵX
}
.

We have already ruled out [u] ⊂ CAB
Q . There is no Σ ⊂ L which can satisfy

Equation (7.2). We contradict the supposition that such a Σ does exist. Since
there is no upper bound on RX less than FX , FX must be the least upper
bound of RX .

A similar demonstration proves that FX must be the greatest lower bound of
some RY with Y > X . It follows that FX is a one-point set. The theorem is
proven. l

Remark 7.5.6 The least upper bound problem rears its comely head. With
Main Theorem 7.5.5, we have given F0 = sup(R0) but we have already made
a strong case that no such supremum can exist (Proposition 5.4.10.) In the
remainder of this section, we will conclude the development of the fractional
distance approach to R such that the reasoning behind the least upper bound
problem is carefully sidestepped.

Before we continue, we will outline exactly what it means “to conclude the
development.” With Main Theorem 7.5.5, we have now given a construction
by Cauchy equivalence classes for every x ∈ R. Every measurable x ∈ R∪ is
directly a subset of CAB

Q . The arithmetic of such numbers is given in Section
5. Every immeasurable x ∈ F is now formally constructed as an extended
Dedekind partition of CAB

Q . Since R = R∪ ∪ F, all real numbers now have a
direct algebraic construction: we assume N, define 0, construct Q, CQ, and
CAB

Q hence, and then we take x ∈ R as the elements and partitions of CAB
Q . In

Section 5.5, however, it was only proven that the equivalence classes themselves
obey the arithmetic axioms. We cannot simply throw FX in there—not in any
rigorous fashion—because there is not a Cauchy equivalence class [FX ] ⊂ CAB

Q
for any [X ] ⊂ CQ. Even if we forced the arithmetic axioms onto FX with more
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axioms, we would immediately hit the least upper bound problem developed
in Proposition 5.4.10. Now we will solve the least upper bound problem and
begin moving toward the Archimedes property of F ⊂ R.

Definition 7.5.7 If a real number is [x] ⊂ CAB
Q , then it is called an arithmatic

number (pronounced arith·matic.) All measurable numbers R∪ = CAB
Q are

arithmatic. If a real number is a partition of CAB
Q not given by any subset

therein, then it is called a non-arithmatic number. All immeasurable numbers
are non-arithmatic.

Axiom 7.5.8 Arithmetic operations are not defined among arithmatic and
non-arithmatic numbers.

Definition 7.5.9 If R has the least upper bound property, then every non-
empty subset S ⊂ R that has an upper bound must have a least upper bound
u ∈ R such that u = sup(S).

Proposition 7.5.10 (Restatement of the least upper bound problem.) R does
not have the least upper bound property because R0 cannot have a supremum
if arithmetic is defined for x ∈ F in the usual way. If F0 = sup(R0), and
if F were to obey the arithmetic axioms in compositions with x ∈ R∪, then
F0 − 1 would be an element of R0. By the closure of R0, F0 − 1 + 2 would be
another element of R0. This contradicts the identity F0 = sup(R0) because
F0 < F0 + 1.

Refutation. Let x be an arithmatic real number. Axiom 7.5.8 is such that

F0 = sup(R0) =⇒ sup(R0)± x = undefined .

The arithmetic axioms cannot be used to demonstrate the condition in the jus-
tification of this proposition. R0 most certainly can have a supremum .
The supremum of each open set of numbers RX that are 100×X% of the way
down the real number line is FX : a non-arithmatic number. l

Theorem 7.5.11 R has the least upper bound property which is also called
the Dedekind property or Dedekind completeness.

Proof. The Dedekind property requires that if (i) L and R are two non-empty
subsets of R such that R = L ∪ R, meaning that (L,R) is a partition of R,
and (ii)

x ∈ L , y ∈ R =⇒ x < y ,

then either L has a greatest member or R has a least member. This property
is implicit in the connectedness of the algebraic interval. With Main Theorem
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7.5.5, we have established the connectedness of the successive disconnected
intervals in R∪. They are connected by the elements of F. All subsets of R
with an upper bound also have a least upper bound because {FX} guarantees
the simple connectedness. The connectedness proves the theorem. l

Remark 7.5.12 The non-arithmatic immeasurable numbers inherit their or-
dering with respect to the ≤ relation from the total ordering of R. The supre-
mum of one measurable neighborhood is the infimum of the next. The maxi-
mal neighborhood R1 does not have a supremum but it is exempted from the
Dedekind property because it does not have a real upper bound at all. The
upper bound of the maximal neighborhood of infinity diverges. Since no upper
bound u ∈ R exists for R1 at all, a least upper bound on R1 cannot exist.

Definition 7.5.13 A set S is totally ordered if it obeys the following order
axioms.

� (O1a) Elements of S have trichotomy: If x, y ∈ S, then one and only one
of the following is true: (i) x < y, (ii) x = y, or (iii) x > y.

� (O2a) The < relation is transitive: If x, y, z ∈ S, then x < y and y < z
together imply x < z.

� (O3a) If x, y, z ∈ S, then x < y implies x+ z < y+ z or at least one sum
is undefined.

� (O4a) If x, y, z ∈ S, and if z > 0, then x < y implies xz < yz or at least
one product is undefined.

Remark 7.5.14 Axioms (O1a)-(O4a) are almost exactly the (O1)-(O4) or-
dering axioms of a complete ordered number field (Axiom 5.4.7.) We have
changed the two axioms involving the arithmetic operations + and ×. The
changes make allowances for the immeasurable x ∈ F which are truncated
from existence with a requisite field-related axiom that every real number is
less than some natural number.

Theorem 7.5.15 R is a totally ordered set.

Proof. We will prove each of (O1a) to (O4a).

• (O1a) Trichotomy is trivially inherent to the order established for R∪ (Axiom
5.2.14). Trichotomy is fully satisfied in R = R∪ ∪ F by the result that FX =
sup(RX ).

• (O2a) Transitivity is satisfied by Axiom 5.2.14 and the corollary results for
the extrema {FX}.
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• (O3a) Since we have restricted this part of Definition 7.5.13 to the arithmatic
numbers, the arithmetic axioms give compliance as stated.

• (O4a) Satisfaction follows in the manner of (O3a).

The ordering relation ≤ for R is such that R is totally ordered. l

Remark 7.5.16 In Definition 7.5.13, we have modified slightly the usual def-
inition of total order (Axiom 5.4.7) so that (O3a) and (O4a) distinguish arith-
matic and non-arithmatic numbers. We will justify this exception to the usual
definition of total order as follows.

Since we are not using a number field approach to R, we need not state the
definition of total order in the exact form of the axioms of a totally ordered
complete number field having unified laws of arithmetic. The lack of arithmetic
definitions for immeasurable numbers doesn’t affect their well-ordering with
respect to the measurable ones. The lack of defined operations has no bearing
on the concept of the ordering of the set. Indeed, regarding the geometric
notions of addition and multiplication which we have referred to through-
out this analysis of fractional distance, there should not exist geometrically
identical arithmetic operations for numbers with geometrically immeasurable
fractional distance. Shared geometry-based arithmetic operations would nec-
essarily imply a shared character of measurablity or immeasurablity, but not
both characteristics shared simultaneously. The requirement for this shared
character is the root of the discrepancy in the least upper bound problem.
In our development of the least upper bound problem (Proposition 5.4.10), it
was implicitly assumed that sup(R0) must be an arithmatic number in the way
that all real numbers were supposed to be algebraic until the con-
nectedness of the interval demanded non-algebraic numbers to fill
in the gaps. A number is said to be canonically algebraic if it is the root of
a certain polynomial. This is not what is presently meant using the adjective
“algebraic” to describe the immeasurables where the word refers to the lack
of a geometric picture of fractional distance for x ∈ F. The geometric picture
of x ∈ F comes from the algebraic ordering with the ≤ relation being defined
over all of R. It is clear that the FX are geometric Euclidean magnitudes, or
cuts, measured relative to the origin 0̂ of an infinitely long line. However, it is
not clear how this works in the metric space picture of R where

d(0,FX ) = |FX − 0| = undefined .

Toward the metric space picture, it is interesting that we have shown in
Main Theorem 6.1.1 that arithmetic in the neighborhood of infinity allows us
to take all-important limits at infinity within the realm of standard analysis.
There is no need to invoke the metric space definition of R to take these
limits. The metric space is the canonical workaround for a supposed failure
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of the Cauchy limit criterion at infinity but here we take the Cauchy limit at
infinity with the modernized definition of R (Main Theorem 6.1.1.) Why, then,
should it be a problem that the metric function is undefined? In Definition
2.1.2, we defined a number line as a line equipped with a chart x and the
Euclidean metric d(x, y) = |y − x| but now that we have closely examined
all the details, we can otherwise define a number line as a line equipped with
the totally ordered fractional distance chart ±x ∈ R∪ ∪ F (which is just the
Euclidean chart.) With this definition taken a priori as an axiom, it is possible
to reproduce the entire fractional distance analysis without any dependence
on a metric whose domain only holds the measurables R∪. If desired, it could
be assumed that the metric definition of a number line (Definition 2.1.2) is
overwritten as needed for consistency. By the end of this section, however, we
will have restored the metric functionality.

What we have done with the separation of the reals into arithmatic and
non-arithmatic numbers mirrors the usual separation between algebraic num-
bers, which are the roots of non-zero polynomials with rational coefficients,
and canonically non-algebraic numbers which are not the roots of any such
polynomials. Canonically non-algebraic numbers are supposed to exist be-
cause they are needed to fill in the gaps in Q which are not allowed if R is to
satisfy the definition of a simply connected 1D interval. Now we have gone
one step further and shown that non-arithmatic numbers are needed to
fill in the connectedness of the many neighborhoods.

Paradox Resolution 7.5.17 (Resolution of Paradox 7.3.10.) The paradox
depends on assumed usual arithmetic for non-arithmatic immeasurable num-
bers. The paradox is remedied by the non-arithmatic property of FX .

Paradox Resolution 7.5.18 (Resolution of Paradox 7.3.11.) The paradox
depends on assumed usual arithmetic for non-arithmatic immeasurable num-
bers. The paradox is remedied by the non-arithmatic property of FX .

Remark 7.5.19 Throughout this analysis, we have referred many times to
the geometric notions of addition and multiplication. If FX is an immea-
surable number x 6∈ R∪ such that ordinary notions of geometry cannot be
applied to it universally, by what means might we axiomatize the arithmetic
of non-arithmatic numbers? We have shown in Section 7.3 that the straight-
forward introduction of infinitesimals is not the correct way forward, and we
have shown it for all the reasons that infinitesimals are usually not allowed
into standard analysis. So, to pierce the reader’s probable veil of likely skep-
ticism regarding some perceived absurdity of ordered but non-arithmatic real
numbers FX—which are not one iota more specious a construction than the
non-algebraic numbers which were brought into standard analysis for the ex-
act same reason—we now point out that the {FX} are the only real numbers
not forced into the arithmetic axioms by some identification as an element
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of CAB
Q . Immeasurable real numbers x ∈ F are partitions of the big parts

of CAB
Q only. They are not uniquely identified with any [x] ∈ CAB

Q whose
corresponding Dedekind partition would specify a big part and a little part.
Measurable numbers differ from immeasurable numbers because the Dedekind
partition corresponding to any x ∈ R∪ must specify a little part. Measurable
and immeasurable numbers are so markedly different in their qualia that it is
certainly reasonable to suppose that they obey different arithmetic axioms.

Remark 7.5.20 Now, in advance of the material presented in the remainder
of this section, we will laboriously belabor the point that there is no pre-
ferred scale for standard analysis. As mentioned in the preamble to this
section, we will deem to take the immeasurables F(n) as the extended naturals
on a real line whose unit of distance is equal in magnitude to the F0 = F(1) of
the real line we have described already. We will use the label RT to distinguish
the new copy of R.

Geometric infinity ∞ is not affected in any way, ever, by any conformal
rescaling parameter. From a geometric perspective, then, we should expect
that rescaled RT should be R itself identically. For instance, consider a con-
vention such that

R = (−ℵ1,ℵ1) , and T = (−ℵ∞̂,ℵ∞̂) ,

where the existence of some T separate from R is implied by the notion of
geometric infinity. If R had an endpoint at geometric infinity, then that would
contradict the notion of infinite geometric extent forbidding endpoints at ∞.
The limit definition of algebraic infinity∣∣∞̂∣∣ = lim

x→0±

1

x
,

is such that the scale of the unit 1 ∈ N in the numerator does not affect our
ability to construct (−ℵ1,ℵ1) ⊆ (−ℵ∞,ℵ∞). However large or small we take
the scale of 1 ∈ N, the resultant extended real line [−∞̂, ∞̂] will always be a
subset of T. Regardless of the scale of 1 ∈ N, the interval (−∞̂, ∞̂) is always
going to be the same set R, even if we add supplemental labeling to denote the
relative scale of the different copies of R, and even if the relative scale is on
the order of F0 or greater. There is no scale factor by which we might stretch
algebraic infinity as in R = (−∞̂, ∞̂) to be more than a drop in the bucket
with respect to geometric infinity as in T = (−ℵ∞̂,ℵ∞̂). For every instance of
∞̂ ∈ R such that |∞̂| =∞, there is a conformal chart containing points to the
right of ∞̂ such that those points are to the left of the ∞ of the other chart.
The interval containing those transfinite points will always be infinitely longer
than the scaled instance of R.

If we have two copies of the real line called R4 and R13 such that the unit
of Euclidean distance in R13 is 13

4
longer than the unit of distance in R4, then

that does not affect the perfect individual compliance of either copy with the
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definition of R. The same is true if the interval [0, 1] in one copy is as long
as [0,F0] in the other. In the remainder of this section, we will infer that the
immeasurables behave like the naturals on a copy of R which is quite large
relative to another copy: one scaled down by F0. We will define F(n) = n ∈ NT
and then claim that NT = N because there is no unique scale for R. Having
presupposed the existence of natural numbers at the outset our construction
by Cauchy sequences of rationals, we will find that the curious remainder set
F left over at the end is exactly what we have put in to begin with. At the
end, we will find that the abstract set of natural numbers which served as the
starting point for CAB

Q were simply the F(n) on a smaller copy of R whose
existence can be inferred by the self-similarity of R on any scale. It’s tortoises
all the way down.

We have demonstrated by the least upper bound problem a requirement
that standard analysis must not contain any compositive Cartesian products
in the forms

R∪ × F =


{
x+ FX

∣∣ x = [x], F[X ] ∈ F, [x], [X ] ⊂ CAB
Q
}{

x · FX
∣∣ x = [x], F[X ] ∈ F, [x], [X ] ⊂ CAB

Q
}
.{

x÷FX
∣∣ x = [x], F[X ] ∈ F, [x], [X ] ⊂ CAB

Q
}

Accordingly, we have developed an axiomatic framework which forbids these
compositions. The fractional distance axioms are such that the attendant
standard analysis forbids Cartesian products R∪ × F as given above. What,
then, shall we do with F? Undefined definitions beg for definitions. En route
to some definitions for the arithmetic of {FX}, let us examine the process of
R’s algebraic construction according to Cauchy sequences. We have assumed
N at the outset of our algebraic constructive process to write

N −→ N ∪ {0} −→ Q −→ CQ −→ CAB
Q .

If we complement the undefined definitions for the arithmetic of immeasurable
numbers such that they obey the arithmetic of the natural numbers on the
rescaled chart whose 1 ∈ NT is on the scale of F0 ∈ R in a “smaller” chart,
then the process leading to the mystery set F becomes

N −→ N ∪ {0} −→ Q −→ CQ −→ CAB
Q −→ NT ,

Having constructed a bigger version of N, we can use it to construct a transfi-
nite chart without having to assume a second transfinite copy of the naturals
with which to begin another constructive process for some RT. We can con-
tinue to construct “bigger and bigger” copies of R forever with scale factors
greater than or equal to any n ∈ N and we will never require any intuitive
suppositions beyond the existence of the n ∈ N which we have already sup-
posed. We could rescale bigger and bigger forever and we will never fail to
have a resultant set which is infinitely small with respect to T. Even if we
chose the scale factor ℵ∞̂, we could make use of the notation being such that
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ℵ(ℵX ) = X ·∞̂2 to preserve the infinitely-larger-ness of T as

T = (−ℵℵℵℵ... ,ℵℵℵℵ... ) = (−∞̂∞̂∞̂
∞̂...

, ∞̂∞̂∞̂
∞̂...

) .

Of course, the best way to deal with T would be the simple distinction∞ > ∞̂
but there is no need for such distinction within real analysis. T lives only in
transfinite analysis.

Due to the absorptive properties of geometric infinity, conformal parame-
ters such as ℵX never change the Euclidean conceptual component underlying
everything: R = (∞,∞). For this reason, the scale that we assign to any
particular copy of R will never disrupt the configuration of an infinite line. It
is always true that the interval (−∞̂, ∞̂) can be shown to exist as a conformal
chart over some finite subset of (−∞,∞). NT is just another copy of N with a
rescaled unit increment so it must be that NT = N. Since the scale of the two
sets is different, we cannot allow them to interact by arithmetic because that
would require NT 6= N. If we took NT 6= N, then there would be an implied
preferred scale for R when no such scale exists. So, we have that which was
assumed at the outset of the constructive process as the output at the end of
same:

N −→ N ∪ {0} −→ Q −→ CQ −→ CAB
Q −→ N .

We will not allow arithmetic among the measurables and immeasurables so
there is no reason to retain the subscript label T which reminds us that the
scale of one instance of N differs from another. When that matters, we call the
larger numbers F(n) where all the problems associated with the (n) notation
have been done away with by Axiom 7.5.8 forbidding the given forms of R∪×F.
Now the label (n) tells us which (extended) natural number n ∈ NT is each
F(n) ∈ R. Now we have a ready-made set of arithmetic axioms for {FX}:
they should obey the arithmetic laws of natural numbers with themselves.

Axiom 7.5.21 The arithmetic operations of immeasurable real numbers with
themselves are the arithmetic operations of the extended natural numbers N∞
such that there exists a one-to-one correspondence R 3 F(n)→ n ∈ RT. The
arithmetic operations take two immeasurable FX ∈ R and return a cut in
another number line which is an identical but distinctly labeled copy of R. In
particular, we have

F(n) + F(m) = F(n+m) −→ n+m ∈ RT

F(n) · F(m) = F(n ·m) −→ n · m ∈ RT

F(n)÷F(m) = F(n÷m) −→ n÷m ∈ RT .

Remark 7.5.22 By now, we have avoided the least upper bound problem
with {FX} ⊂ R, but it remains to show that {FX} satisfies the Archimedes
property. There is most likely no symbolic representation of the statement,
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“Magnitudes are said to have a ratio with respect to one another which, be-
ing multiplied, are capable of exceeding one another,” which does not rely
on arithmetic. Therefore, it will be required that we define arithmetic opera-
tions for non-arithmatic numbers with themselves. Axiom 7.5.8 only forbids
arithmetic between measurable and immeasurable numbers so we are free to
define arithmetic operations for the immeasurable non-arithmatic numbers
with themselves, as in Axiom 7.5.21.

In constructing R, we have assumed N as a discrete set without requiring
that the numbers are regularly spaced cuts along the real line. The idea of
one apple or 52 apples does not require the presupposition of the existence of
a 1D Hausdorff space extending infinitely far in both directions. It suffices to
grant that if whole apples are had, then we can have a few of them or a lot.
We have assumed n ∈ N as a discrete set and then combined it with the left
endpoint of a geometric line segment to construct the cuts in R in terms of
Cauchy sequences. Going back to Definition 2.1.3 we see that the real line is
only a line with an appended label “real” so the requirement R = RT simply
augments the label we put on the line. Now we have “this real line” and “that
real line” with a specification of the relative scale of the unit of Euclidean
distance in either of them. Among two number lines, therefore, we may call
one “the real line” and the other “the big real line” but it necessarily follows
that “the real line” is identically the big real line in the convention where we
attach the simple label “real” to what would be “the small real line.” Cuts in
the big real line should be constructed from the NT output at the end of the
construction of the first real line.

In defining FX = F(n) → n as cuts in the big real line, we avoid all of
the arithmetic problems associated with the (n) labeling scheme. Although
there are irreparable contradictions with the idea that 1

2
F0 = 1

2
F(1) should

be a cut x ∈ R0, there is no problem when 1
2
F(1) is cut in the separate “big”

real line where the quantity is expressed as 1
2
F(1)→ 1

2
· 1 = 1

2
. The F(n) are

the underlying discrete elements upon which the cuts in the big real line are
defined according to Cauchy equivalence classes. The label (n) marks which
FX in the real line is which n in the big real line. Furthermore, since all
copies of R are the same, meaning that they differ by nothing more than a
label, there is no strict requirement to define a second line. It will suffice to
two define two charts: the Euclidean chart and “the big Euclidean chart.”
Since we have taken (−∞̂, ∞̂) as an embedded chart in (−∞,∞), there is no
problem assuming another chart whose linear extend exceeds (−∞̂, ∞̂).

If we began with N as cuts in R, then that would necessarily be a disfa-
vorably circular line of reasoning. We have supposed the preexistence of N
as being separate from R and now we have a nice explanation for what are
these abstract n which show up as regularly spaced cuts in R once we have it
built. N ⊂ R are the F(n) in the “small real line” which we may as well label
RT−1 . While this reasoning is nearly circular, it is not at all circular because
it does still require some initial supposition of the existence of N. Once that
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is supposed, however, we may construct an infinite tier of increasingly large
Euclidean charts on R without any further supplemental abstractions. Call
them RTn . After defining an infinite succession of such charts, we can pick any
of them as “R” since it is given that RT differs from R only in its label.

Main Theorem 7.5.23 Immeasurable numbers FX ∈ R obey the Archimedes
property of real numbers.

Proof. Definition 6.3.9 gives the Archimedes property of real numbers as

∀x, y ∈ R s.t. x < y ∃z1, z2 ∈ R+ s.t. z1x > z2y .

As in the proof of Main Theorem 6.3.10, we will divide this proof into cases
of the Archimedean statement x < y.

• (x ∈ RX , y = FY , Y ≥ X ) We have x < y so choose two multipliers z1 = Z
X

such that Y < Z < 1, and choose z2 = F0 = F(1) where F0 ∈ R is the
multiplicative identity 1 ∈ RT for the arithmetic of the immeasurables granted
by Axiom 7.5.21. Then

Z
X
(
ℵX + b

)
= ℵZ +

bZ
X

> FY .

• (x = FX , y ∈ RY , Y ≥ X ) Choose z1 = F0 and z2 = Z
Y such that Z ≤ X .

Then

FX >
Z
Y
(
ℵY + b

)
= ℵZ +

bZ
Y

.

• (x = FX , y = FY , Y ≥ X ) For the purposes of the arithmetic of the
immeasurables, there is no problem using the FX = F(n) notation. In this
case, we take the F(n) = n ∈ NT as a discrete exterior set upon which the cuts
in the line RT are constructed. All the problems demonstrated in and around
Section 7.3 relied upon assumptions of the form

x+ y = f+(x, y) : R× R→ R
x · y = f×(x, y) : R× R→ R
x÷ y = f÷(x, y) : R× R→ R ,

which we find are now better written in the respective forms of

f(x, y) : R∪ × R∪ → R .

Now, Axiom 7.5.21 grants forms following

f(FX ,FY) : F× F→ RT ,

where cuts in RT are Euclidean magnitudes “of a different kind” than those in
R. (Recall that Axiom 7.5.8 forbids the domain R∪×F for any of f+, f×, or f÷.)
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In Book 5 of The Elements, Definition 3, Euclid wrote, “A ratio is a certain
type of condition with respect to size of two magnitudes of the same kind.” By
defining the non-arithmatic real numbers of one kind as simultaneous natural
numbers of another kind, we avoid all of the problems associated with the
F(n) notation: the notation x = FX tells us to treat x as a cut in R and
x = F(n) tells us to treat it as a cut in RT. In either case, x is a cut in the
real number line. Therefore, regarding the Archimedes property for x = FX
and y = FY , let

FX = F(n) , and FY = F(m) ,

so that F(n) < F(m). Choose z1 = F(k) such that nk > m and z2 = F(1) so
that Axiom 7.5.21 gives

F(k) · F(n) = F(kn) > F(m) .

We have demonstrated the main cases and conclude the proof with an as-
sumption that the other cases follow directly. Non-arithmatic immeasurable
numbers satisfy the ancient Archimedes property of real numbers. l

Remark 7.5.24 Due to the explicit reliance on multiplication by ℵn in the
Archimedes property of 1D transfinitely continued real numbers (Axiom 6.3.12)
we cannot directly demonstrate the compliance due to the inadmissible domain
of

f×(FX ,ℵn) : F× R∪ → RT .

To the extent that Axiom 6.3.12 was proposed only to simply the demonstra-
tion of the compliance of numbers in the neighborhood of infinity with the
Archimedes property, we could more precisely call this axiom the Archimedes
property of 1D transfinitely continued arithmatic real numbers.

Theorem 7.5.25 If R and RT are taken as every value of two charts x and
xT on the same line, then the two charts cannot share an origin.

Proof. The radius of the neighborhood of the origin R0 is one half the length of
any element of {RX}. The origin of the x chart lies one half as far to the left of
F(1) = 1 ∈ NT as F(2) = 2 ∈ NT lies to the right of it. Now that we have given
arithmetic for the immeasurables, we may preserve the notion of Euclidean
distance between immeasurable with the ordinary Euclidean metric. The big
metric dT(xT, yT) = |yT − xT| requires that distance is uniform over the line.
Therefore, the cut 0 ∈ R cannot have a simultaneous algebraic representation
as 0 ∈ RT. Such a representation would require a non-Euclidean notion of
distance rendering the line in question something other than a number line as
given by Definition 2.1.2. With or without a metric, numbers must be spaced
evenly along a number line for the purposes of Euclidean geometry. l
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§7.6 The Topology of the Real Number Line

The thesis of the fractional distance analysis presented here has to been pre-
serve the Euclidean geometric construction of R through an algebraic construc-
tion which does not preclude the existence of the neighborhood of infinity. We
began with Axiom 2.1.7 stating that real numbers are represented in algebraic
interval notation as R = (−∞,∞). This axiom is totally equivalent to a re-
quirement that R has the usual topology. In this section, we will define two
different topologies on R: the usual topology and another which we call the
fractional distance topology.

Definition 7.6.1 A topology on a set S is a collection T of open subsets of
S with the following properties.

� T contains S and ∅.

� T contains the union of any of the elements of T :
⋃
τk ∈ T .

� T contains the finite intersection of the elements of T : if n < ∞, then
n⋂
k=1

τk ∈ T .

The open sets in T are called the basis of the topology; the topology is the
set of all unions of the sets in its basis. Together, the pair (S, T ) is called a
topological space.

Definition 7.6.2 A basis B for a topology T on S is a set {Bk} of subsets
Bk ⊂ S such that (i) for every s ∈ S there is at least one basis element which
contains s, and such that (ii) if S ∈ B1 ∩ B2, then there exists B3 ⊆ B1 ∩ B2

such that s ∈ B3.

Definition 7.6.3 The usual basis B0 for the usual topology on R is the col-
lection of all 1D open intervals such that

B0 =
{

(a, b)
∣∣ [a], [b] ⊂ CQ, a < b

}
,

The topology generated by B0 is called T0.

Theorem 7.6.4 B0 is not a basis for a topology on R.

Proof. Definition 7.6.2 requires that

∀x ∈ R ∃(a, b) ∈ B0 s.t. x ∈ (a, b) .

Consider x = ℵ0.5 ∈ R. We have

∀a = [a] ∀b = [b] s.t [a], [b] ∈ CQ ∃n ∈ N s.t. a, b < n .

It follows that there is no interval (a, b) ∈ B0 which contains x > n. This
proves the theorem. l
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Theorem 7.6.5 The pair (R0, T0) is a topological space when T0 is the topology
generated by B0.

Proof. Proof follows from Definitions 7.6.1, 7.6.2, and 7.6.3. l

Remark 7.6.6 “Having the usual topology” is exactly equal to Axiom 2.1.7
granting that R = (−∞,∞). If all of R is axiomatically taken to reside within
the neighborhood of the origin, then (R, T0) is a well-defined topological space
and T0 is the usual topology on R. Since we have included the neighborhood
of infinity in R, rightly, we need to adjust the basis of the usual topology
to reflect its inclusion. For this reason, we cannot construct (generate) the
usual topology with its usual basis B0. Moving in that direction, now we will
give some redundant axioms which clarify exactly what we need to put into
the open sets constituting the fractional distance basis of the usual topology
TU on R if we are to avoid an undue and contradictory truncation of the
neighborhood of infinity.

Axiom 7.6.7 The fundamental axiom of geometric construction .
Non-negative real numbers are algebraic representations of points in the in-
finitely long line segment AB, i.e.:

R+ =
{
x
∣∣ x ∈ X ∈ AB, 0 < x < ∞̂

}
.

Axiom 7.6.8 The fundamental axiom of algebraic construction. The
topology of the real number line is the usual one.

Remark 7.6.9 Axiom 7.6.7 posits the existence of every measurable number
x ∈ R∪. Axiom 7.6.8 posits the existence of the immeasurables x ∈ F so that
there are no gaps in (−∞,∞) which would prevent us from taking the usual
topology TU as the set of all unions of (a, b) ⊂ (−∞,∞). Without granting
{FX} ⊂ R, intervals of the form (ℵX ,ℵX+δ) with δ > 0 would not be connected
subsets of R. They would be disconnected at the immeasurable extrema of the
RX neighborhoods. They would not be intervals at all be because intervals
are necessarily connected.

Definition 7.6.10 The fractional distance topology on R∪ is TFD generated
by a basis BFD = BX ∪ B∞ such that

BX =
{

(ℵX + a,ℵX + b)
∣∣ [X ], [a], [b] ⊂ CQ, a < b, − 1 < X < 1

}
B∞ =

{
(±∞̂ ∓ a,±∞̂ ∓ b)

∣∣ [a], [b]⊂CQ, a>b>0 if +∞̂, 0<a<b if −∞̂
}
.

Theorem 7.6.11 The topological space (R∪, TFD) satisfies Axiom 7.6.7.
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Proof. Proof follows from Definition 7.6.10. Every x required by Axiom 7.6.7
appears in the basis BFD of the topology TFD. l

Remark 7.6.12 In the present conventions, (R∪, TFD) is a well-defined topo-
logical space but (R, TFD) is not. If so desired, however, one could axiomatize
(R, TFD) as a topological space such that every real number is measurable. This
would necessarily overwrite the fundamental axiom of algebraic construction
but one might find such and axiom more useful in certain circumstances. Real
numbers existed for thousand of years before topology was conceived so we
cannot assign the same sacred status to the usual topology that we give to
other restrictions on R such as the Archimedes property or 1 + 1 = 2.

Definition 7.6.13 The fractional distance basis BU for the usual topology TU

on R is the collection of all 1D open intervals such that

BU =
{

(a, b)
∣∣ a, b ∈ R, a < b

}
.

Remark 7.6.14 The usual basis B0 for the usual topology (in its incarna-
tion T0, as per Definition 7.6.3) assumes that all real numbers are identically
Cauchy equivalence classes of rationals [x] ⊂ CQ. The fractional distance basis
BU for the usual topology TU takes into account the current convention that
real numbers are either extended equivalence classes [x] ⊂ CAB

Q or extended
Dedekind partitions x = (L,R).

Theorem 7.6.15 The topological space (R, TU) satisfies Axiom 7.6.8.

Proof. Proof follows from Definition 7.6.13. Every x required by Axiom 7.6.8
appears in the basis sets of TU because

x ∈ R ⇐⇒ ±x ∈
{
R∪ ∪ F ∪ ∞̂

}
. l

§8 The Riemann Hypothesis

§8.1 The Riemann Zeta Function

The Riemann hypothesis dates to Riemann’s 1859 paper [16]. Since the axioms
of a complete ordered field date, at earliest, to Hilbert’s 1899 paper [4], it would
be improper to claim that the Riemann hypothesis is formulated in terms of the
ordered field definition of R. Likewise, Dedekind’s partition definition [3] and
Cantor’s definition of real numbers as equivalence classes of rationals [2] date to
a pair of 1872 papers so the Riemann hypothesis cannot be understood as being
phrased in the language of real numbers as Dedekind cuts or Cauchy sequences.
The topological space as a mathematical concept did not exist until well into
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the 20th century so it would be similarly absurd to claim that the Riemann’s
hypothesis is formulated in terms of the usual topology on R. While we cannot
directly show what definition of R Riemann had in mind when formulating his
hypothesis, we may glean very much from the plain fact that Riemann made
no comment or nod toward any definition of R whatsoever. This should be
taken to mean that Riemann assumed his definition of R would have been
absolutely, unambiguously known a priori to his intended audience. The only
possible definition which might have been available to satisfy this condition in
1859 was Euclid’s definition of real numbers as geometric magnitudes. Indeed,
Riemann’s program of Riemannian geometry is a direct extension of Euclidean
geometry so, to a very high degree, this qualitatively supports the notion that
Riemann had in mind the cut-in-a-number-line definition of R given by Euclid
in The Elements.

When one examines The Elements [1], the very many diagrams, definitions,
and postulates make it exceedingly obvious that Euclid’s definition of a real
number as a magnitude, one having a proportion and ratio with respect to all
other magnitudes of the same kind, is exactly the one given here in Definition
2.1.4. That definition gives

R \ x = (−∞, x) ∪ (x,∞) ,

as an alternative identical formulation of the Euclidean statement

x ∈ R+ ⇐⇒ (0,∞) = (0, x] ∪ (x,∞) .

It is reasonable to conclude that Riemann formulated his hypothesis with it in
mind that any definition of R consistent with the Euclidean magnitude would
be sufficient. The domain of ζ(z), namely C, would be constructed from two
orthogonal copies of R, one of them having the requisite phase factor i. Rather
than the underlying definition of R, the object of relevance in the Riemann
hypothesis should be the behavior of ζ(z) at various z.

Definition 8.1.1 Complementing Definition 6.2.8 which gave z ∈ C as any
z = x + iy such that x, y ∈ R, we define the complex neighborhood of the
origin as

C0 =
{
x+ iy

∣∣ x, y ∈ R0

}
.

Definition 8.1.2 The arithmatic subset of the complex plane C∪ ⊂ C is such
that

C∪ =
{
x+ iy

∣∣ x, y ∈ R∪
}
.

Definition 8.1.3 For x ∈ R, the Dirichlet series is

D(x) =
∞∑
n=1

1

nx
.
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This series converges absolutely for all x ∈ R∪ such that x > 1. Formally,
this is a special case of Dirichlet series but we will simply call it the Dirichlet
series.

Definition 8.1.4 For z ∈ C, the Dirichlet form of the Riemann ζ function is

ζ(z) =
∞∑
n=1

1

nz
.

This series converges absolutely for all z ∈ C such that Re(z) > 1.

Remark 8.1.5 The Riemann hypothesis primarily concerns the behavior of
D continued onto the region of C with real parts exceeding the domain of con-
vergence of D, i.e.: the region (−∞, 1]. Riemann’s famous functional equa-
tion [16–28], given here in Definition 8.1.6, enforces the absolute convergence
of ζ on regions of C whose real parts exceed the domain of convergence of D.
In Theorem 8.1.8, we will prove that D(x) converges even for x ∈ F. Then
it will follow trivially that the convergent behavior of D at non-arithmatic
x ∈ R \ R∪ carries over to ζ at non-arithmatic z ∈ C \ C∪. This follows
because (i) Definition 8.1.4 sets the ζ function exactly equal to D(x) when
Re(z) > 1 and Im(z) = 0, and (ii) the functional form given in Definition
8.1.6 is exactly equal to the Dirichlet form of ζ on its domain of convergence.

Definition 8.1.6 Riemann’s functional equation for the absolutely conver-
gent analytic continuation of D is

ζ(z) =
(2π)z

π
sin
(πz

2

)
Γ(1− z)ζ(1− z) .

In the region Re(z) > 1, this form of ζ is exactly equal the Dirichlet form
given in Definition 8.1.4.

Remark 8.1.7 Under the classical assumption that C = C0, it is said that
Riemann’s functional equation converges absolutely on C \ Z1 where

Z1 = z(x, y) = z(r, θ) = 1 ,

is such that ζ(Z1) 6∈ C. Presently, the many historical demonstrations of the
convergence of Riemann’s functional equation for ζ are only valid on C∪ \ Z1

because the immeasurables have not been previously considered in this context.
Since D(FX ) is not yet clarified, we can only say with certainty that Riemann’s
functional equation is absolutely convergent on C∪ \ Z1. However, without
regard for the behavior of ζ on C \ C∪, we already have all the tools needed
to determine its behavior on C∪. These tools are sufficient to close the book
on the Riemann hypothesis as an open question.
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On the other hand, it is good for thoroughness to understand the behavior
of D(x) at x ∈ F. It is understood that D(x) is absolutely convergent on
the ray x > 1 which includes immeasurable, non-arithmatic numbers {FX} ⊂
(1,∞) but we have not yet given a concise definition for xFX . The absolute
convergence of D everywhere on this ray is usually framed in the context of
every real number being less than some natural number so we should give due
consideration to the numbers in the neighborhood of infinity. It follows from
the arithmetic axioms that D(x) = 1 for any x ∈ R∪ \ R0 but the case of

D(FX ) =
∞∑
n=1

1

nFX
,

remains to be clarified. We have required with Axiom 7.5.8 that arithmetic
operations between measurable and immeasurable numbers are not defined but
the definition of exponentiation is such that nFX involves arithmetic operations
between natural numbers only:

nFX = n · n · n · n · n · n . . . n︸ ︷︷ ︸
product of FX ns

.

Raising a natural number to the power of an immeasurable number only makes
a call to the immeasurables when one wants to count the number of products
of naturals. Therefore, there is no reason to discount nFX as an undefined
operation pursuant to Axiom 7.5.8.

Theorem 8.1.8 If 0 ≤ X < 1, then the quantity D(FX ) is equal to one.

Proof. The Dirichlet series is

D(x) =
∞∑
n=1

n−x =
∞∑
n=1

(
elnn

)−x
=
∞∑
n=1

e−x lnn ,

so we have
d

dx
D(x) =

∞∑
n=1

− lnne−x lnn .

The derivative of D(x) is non-positive on x > 1 due to the overall minus sign.
Since the function never increases on the ray, and since the arithmetic axioms
give

x0 ∈
{
RX
}

=⇒ D(x0) =
∞∑
n=1

1

nℵX+b
= 1 +

∞∑
n=2

1

nℵX+b
= 1 .

it follows that D(x) is monotonic decreasing or constant on the ray. Noting
that every number ℵX ∈ (1,∞) is such that X > 1, D(x) is constant on
(ℵX ,ℵY) ⊂ (1,∞) because D(ℵX − 1) = 1 and the function never increases
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on the ray. Since FX ∈ (ℵX ,ℵY) and D is constant on this interval, it follows
that

X > 0 =⇒ D(FX ) = 1 .

It follows, therefore, that

n > 1 , X > 0 =⇒ 1

nFX
= 0 .

To complete the proof of the present theorem, we need to show

n > 1 =⇒ 1

nF0
= 0 .

We will prove this remaining case of F0 by contradiction. If n−F0 > 0, then

∃m ∈ N s.t.
1

nF0
>

1

m
=⇒ nF0 < m .

Since n ∈ N, the condition n > 1 is equivalent to the condition n ≥ 2. Since
F0 > 1, it follows that

1

nF0
<

1

2
=⇒ m > 2 .

Every such m maybe expressed as m = nk for some k ∈ R0. Then

nF0 < m =⇒ nF0 < nk =⇒ F0 < k .

Since k ∈ R0, we have obtained a contradiction. The theorem is proven. l

Remark 8.1.9 In Theorem 6.2.5, we used the result(
ℵX ± k

)
! = ℵℵℵ... =∞ ,

to prove that the big exponential function Ex is equal to the regular exponen-
tial function ex for any x ∈ R0.

§8.2 Non-trivial Zeros in the Critical Strip

In this section, we will prove the negation of the Riemann hypothesis.

Remark 8.2.1 The Riemann ζ function is holomorphic on C \ Z1. It is a
well-known property of holomorphic functions that their zeros are isolated on a
domain or else the function is constant on that domain. However, this property
relies on the implicit axiom that all pairs of points (z1, z2) in any subdomain
D ⊂ C are such that the distance between them is in d(z1, z2) ∈ R0. When we
do not take this implicit axiom, further specification is required. The property
becomes the following. If the zeros of a holomorphic function are not isolated,
then the function is constant everywhere on a disc of radius r0 ∈ R0 about
any of the non-isolated zeros.
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Proposition 8.2.2 If (i) f is a holomorphic function defined everywhere on
an open connected set D ⊂ C, and (ii) there exists more than one z0 ∈ D
such that f(z0) = 0, then f is constant on D or the set containing all z0 ∈ D
is totally disconnected.

Refutation. This proposition is usually proven by a line of reasoning starting
with the following. By the holomorphism of f and the property f(z0) = 0,
we know there exists a convergent Taylor series representation of f(z) for all
|z − z0| < r0 with r0 ∈ R. Here, the proposition immediately fails pseudo-
trivially because we can select r0 ∈ {RX} and assume∣∣z − z0

∣∣ > (ℵX + a
)
,

to show that the Taylor series does not converge when X > 0. We have

f(z) = f(z0) + f ′(z0)
(
z − z0

)
+
f ′′(z0)

2!

(
z − z0

)2
+ ... .

The first term in the series vanishes by definition so, therefore, we have by
assumption

f(z) > f ′(z0)
(
ℵX + b

)
+
∞∑
n=2

f (n)(z0)

n!

(
ℵX + b

)n
.

The Taylor series expansion of f does not converge in R for |z − z0| ∈ RX0 .
This follows from (ℵX + b)n > ℵ1 for all n ≥ 2, as per Axiom 5.2.5. l

Axiom 8.2.3 If (i) f is a holomorphic function defined everywhere on an
open connected set D ⊂ C, (ii) there exists more than one z0 ∈ D such that
f(z0) = 0, and (iii) every p ∈ D is such that |z0 − p| ∈ R0, then f is constant
on D or the set containing all z0 ∈ D is totally disconnected.

Remark 8.2.4 Various proofs of Axiom 8.2.3 are well-known. They are taken
for granted.

Main Theorem 8.2.5 If {γn} is an increasing sequence containing the imag-
inary parts of the non-trivial zeros of the Riemann ζ function in the upper
complex half-plane, then

lim
n→(ℵX+b)

∣∣γn+1 − γn
∣∣ = 0 .

Proof. To prove the theorem, we will follow Titchmarsh’s proof [17] of a theo-
rem of Littlewood [29]. The original theorem is as follows.

“For every large T , ζ(s) has a zero β + iγ satisfying

|γ − T | < A

log log log T
.”
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Note that A is some constant A ∈ R0. For proof by contradiction, assume

lim
n→(ℵX+b)

∣∣γn+1 − γn
∣∣ 6= 0 .

Then there exists some m(n) and some a ∈ R+
0 such that

lim
m(n)→(ℵX+b)

∣∣γm(n)+1 − γm(n)

∣∣ > 2a .

Let Tn be the average of γm(n)+1 and γm(n) so

Tn =
γm(n)+1 + γm(n)

2
.

Now we have
lim

Tn→(ℵX+b)

∣∣γ − Tn∣∣ > a ,

because Tn is centered between the next greater and next lesser γn. We have
shown that this pair of γn are separated by more than 2a. This contradicts
Littlewood’s result

|γ − Tn| <
A

log log log Tn
, whenever

A

log log log Tn
< a .

The limit Tn → ℵX + b is exactly such a case because

log(ℵX + b) = log(X∞̂) + log(b) = log(X ) log(∞̂) + log(b) .

If we take log(∞̂) = ∞̂ or log(∞̂) = ∞, evaluating the log a few more times
will yield

A

(f(log(∞̂))
= 0 .

This shows that the expression is always less than a ∈ R+
0 . Therefore, the

elements of {γn} form an unbroken line when |Im(z)| ∈ R∞. This proves the
theorem. l

Remark 8.2.6 Note that {γn} is not such that each element can be labeled
with n ∈ N because the zeros become uncountably infinite in the neighborhood
of infinity. Rather, {γn} must be a sequence in the sense that it is an ordered
set of mathematical objects, some of which are intervals. Also note that {γn}
is a proper sequence in the usual sense when we take n ∈ N∞, as in Definition
6.2.3. The extended natural numbers are uncountably infinite.

Corollary 8.2.7 The Riemann ζ function has zeros within the critical strip
yet off the critical line.
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Proof. Proof follows from Axiom 8.2.3 and Main Theorem 8.2.5. If the imagi-
nary parts of the zeros form an unbroken line in the neighborhood of infinity,
then the zeros are not isolated. Since ζ is holomorphic on C∪ \ Z1, it must
have zeros everywhere on a disc of radius r0 ∈ R0 of any of the zeros on the
critical line. Some of these zeros, obviously, are within the critical strip yet
not on the critical line. l

Remark 8.2.8 The Riemann hypothesis is false.

§8.3 Non-trivial Zeros in the Neighborhood of Minus Infinity

The trivial zeros of the Riemann ζ function are the negative even integers
z = −2,−4,−6... [30]. In this section, we will prove that ζ has non-trivial
zeros outside of the critical strip. The theorem of Hadamard and de la Vallée-
Poussin [31, 32] is usually taken to rule out the existence of such zeros so
here we will conjecture that the theorem fails in the neighborhood of infinity.
Indeed, it follows from Corollary 8.2.7 that ζ has zeros on the line Re(z) = 1
and this is something else which contradicts the theorem of Hadamard and de
la Vallée-Poussin. We will conjecture that their result fails in the neighborhood
of infinity, most likely due to something about quotients of the form R0 ÷RX
being surprising identical zeros.

Theorem 8.3.1 The Riemann ζ function is equal to one for any Re(z) ∈ RX
such that 0 < X ≤ 1.

Proof. Observe that the Dirichlet form of ζ

ζ(z) =
∑
n∈N

1

nz
,

takes z0 =
(
ℵX + b

)
+ iy as

ζ(z0) =
∑
n=1

1

n(ℵX+b)+iy

=
∑
n=1

n−bn−iy

nℵX

=
∑
n=1

n−b(
nX
)̂∞( cos(y lnn)− i sin(y lnn)

)
= 1 +

∑
n=2

n−b

∞

(
cos(y lnn)− i sin(y lnn)

)
= 1 . l
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Main Theorem 8.3.2 The Riemann ζ function has non-trivial zeros z0 such
that −Re(z0) ∈ RX for 0 < X ≤ 1. In other words, ζ has non-trivial zeros in
the neighborhood of minus real infinity.

Proof. Definition 8.1.6 gives Riemann’s functional form of ζ [16] as

ζ(z) =
(2π)z

π
sin
(πz

2

)
Γ(1− z)ζ(1− z) .

Theorem 8.3.1 gives ζ(ℵX +b) = 1 when we set y = 0 so we will use Riemann’s
equation to prove the present theorem by computing ζ(z) at z0 = −(ℵX+b)+1.
(This value for z0 follows from 1− z0 = ℵX + b.) We have

ζ
[
−(ℵX + b) + 1

]
= lim

z→−(ℵX+b)+1

(
(2π)z

π
sin
(πz

2

))
lim

z→(ℵX+b)

(
Γ(z)ζ(z)

)
(8.1)

= lim
z→−(ℵX+b)+1

(
2 sin

(πz
2

))
lim

z→(ℵX+b)

(
(2π)−zΓ(z)ζ(z)

)
.

For the limit involving Γ, we will compute the limit as a product of two limits.
We separate terms as

lim
z→(ℵX+b)

(
(2π)−zΓ(z)ζ(z)

)
= lim

z→(ℵX+b)

(
(2π)−zΓ(z)

)
lim

z→(ℵX+b)
ζ(z) .

From Theorem 8.3.1, we know the limit involving ζ is equal to one. For the
remaining limit, we will insert the identity and again compute it as the product
of two limits. If z approaches (ℵX + b) along the real axis, then it follows from
Axiom 5.2.11 that

1 =
z − (ℵX + b)

z − (ℵX + b)
.

Inserting the identity yields

lim
z→(ℵX+b)

(
(2π)−zΓ(z)

)
= lim

z→(ℵX+b)

(
(2π)−zΓ(z)

z − (ℵX + b)

z − (ℵX + b)

)
.

Let

α = Γ(z)

(
z − (ℵX + b)

)
, and β =

(2π)−z

z − (ℵX + b)
.

To get the limit of α into workable form, we will use the property Γ(z) =
z−1Γ(z + 1) to derive an expression for Γ[z − (ℵX + b) + 1]. If we can write
Γ(z) in terms of Γ[z − (ℵX + b) + 1], then the limit as z approaches (ℵX + b)
will be very easy to compute. Observe that

Γ
[
z − (ℵX + b) + 1

]
= Γ

[
z − (ℵX + b) + 2

](
z − (ℵX + b) + 1

)−1

.
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On the RHS, we see that Γ’s argument is increased by one with respect to the
Γ function that appears on the LHS. The purpose of inserting the identity

z − (ℵX + b)

z − (ℵX + b)
= 1 ,

was precisely to exploit this self-referential identity of the Γ function which is
most generally expressed as

Γ
(
z
)

= Γ
(
z + 1

)
z−1 .

By taking a limit of recursion, we will let z approach a number in the neigh-
borhood of infinity. Then through the axiomatized addition of such numbers
(Axiom 5.2.3), we will cast the argument of Γ into the neighborhood of the
origin where Γ’s properties are well-known. The limit is

Γ
[
z − (ℵX + b) + 1

]
= Γ(z) lim

n→(ℵX+b)

n∏
k=1

(
z − (ℵX + b) + k

)−1

.

Moving the infinite product to the other side yields

Γ(z) = Γ
[
z − (ℵX + b) + 1

]
lim

n→(ℵX+b)

n∏
k=1

(
z − (ℵX + b) + k

)
.

We have let α = Γ(z)(z − (ℵX + b)) where the coefficient z − (ℵX + b) can be
expressed as the k = 0 term in the infinite product. It follows that

α = Γ
[
z − (ℵX + b) + 1

]
lim

n→(ℵX+b)

n∏
k=0

(
z − (ℵX + b) + k

)
.

To evaluate the limit of αβ, we will take the limits of α and β separately. The
limit of α is

lim
z→(ℵX+b)

α = Γ
[
(ℵX + b)− (ℵX + b) + 1

]
×

× lim
n→(ℵX+b)

n∏
k=0

(
(ℵX + b)− (ℵX + b) + k

)
.

Axiom 5.2.3 gives (ℵX + b)− (ℵX + b) = 0 so

lim
z→(ℵX+b)

A = Γ(1) lim
n→(ℵX+b)

n∏
k=0

k = 0 .

Direct evaluation of the z → (ℵX +b) limit of β = (2π)−z(z− (ℵX +b))−1 gives
0
0

so we need to use L’Hôpital’s rule. Evaluation yields

lim
z→(ℵX+b)

β
∗
= lim

z→(ℵX+b)


d

dz
(2π)−z

d

dz

(
z − (ℵX + b)

)

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= lim
z→(ℵX+b)

d

dz
e−z ln(2π)

= − ln(2π) e−(ℵX+b) ln(2π)

= − ln(2π)
e−b ln(2π)(
eX ln(2π)

)̂∞
= − ln(2π)

e−b ln(2π)

∞
= 0 .

By Axiom 5.1.1 giving 1
∞ = 0, we find that the limit of αβ is 0. It follows

from Equation (8.1) that

ζ
[
−(ℵX + b) + 1

]
= lim

z→−(ℵX+b)+1
2 sin

(πz
2

)
· 0 = 0 . l

Example 8.3.3 To demonstrate that Riemann’s functional form of ζ is ro-
bust, we should check for consistency by reversing the sign of z and 1 − z to
show that there is no contradiction. What this means is that we have com-
puted a value in the left complex half-plane using a known value in the right
complex half-plane (Theorem 8.3.1), and now we will use the newly found
value on the left (Main Theorem 8.3.2) to see what it says about the value on
the right. We have

Γ(−ℵX + 1) =
1

−ℵX + 1

∞∏
n=1

(
1− ℵ(Xn ) +

1

n

)−1(
1 +

1

n

)−ℵX+1

= 0 ,

and we have shown in Main Theorem 8.3.2 that ζ(−ℵX + 1) = 0. Using
Riemann’s formula

ζ(z) =
(2π)z

π
sin
(πz

2

)
Γ(1− z)ζ(1− z) ,

to derive the relationship between ζ(z) and ζ(1− z), we will compute ζ(ℵX ).
Evaluation yields

ζ(ℵX ) =

[
2(2π)ℵX−1 sin

(
πℵX

2

)]
Γ(−ℵX + 1)ζ(−ℵX + 1) = [∞](0)(0) .

This equation is undefined and we cannot obtain a contradiction. This example
has demonstrated the robust character of Riemann’s functional equation in the
neighborhood of infinity. It has also demonstrated why we must take x∞̂ =∞
for x > 1 (Axiom 5.1.7.). If this expression was said to be equal to algebraic
infinity, as in x∞̂ = ∞̂, then Axiom 5.1.4 giving ∞̂ · 0 = 0 would produce
a contradiction in Riemann’s functional equation under the reversal of z and
1− z.
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Remark 8.3.4 If one requires that Riemann’s functional equation can never
be undefined, meaning that it is not sufficient for the equation to simply de-
termine ζ on left complex half-plane from its behavior on the right, but that
it must determine one equally from the other, then we must introduce a con-
vention such that ∞ · 0 = 1. With this definition, the derivation followed in
Example 8.3.3 would confirm Theorem 8.3.1 giving ζ(ℵX ) = 1. For many rea-
sons, the product 0·∞ is taken as undefined and yet there are certain realms of
mathematics in which it is given the definition 0 ·∞ = 1. Therefore, one would
explore whether or not a scheme of transfinite numbers as the 1D longitudi-
nal analytic continuation of R onto T via the order relation |∞̂| < ∞ might
allow for 0 · ∞ = 1. For the purposes of the Riemann hypothesis, however,
it is sufficient that the functional equation determines ζ on the left complex
half-plane without invoking a contradiction.

Remark 8.3.5 Patterson writes the following in reference [18].

“There is a second representation of ζ due to Euler in 1749 which
[sic] is the reason for the significance of the zeta-function. This is

ζ(s) =
∏

p∈ primes

(
1− p−s

)−1
,

where the product is taken over all prime numbers p. This is called
the Euler Product representation of the zeta-function and gives an-
alytic expression to the fundamental theorem of arithmetic.”

The fundamental theorem of arithmetic is given in The Elements [1] as
Book 7, Propositions 30, 31, and 32. A modern statement of the fundamental
theorem of arithmetic is that every natural number greater than one is a prime
number or it is a product of prime numbers. The ultimate goal of all of number
theory being concerned with the distribution of the prime numbers, now we
will demonstrate as a corollary result that the Euler product form of ζ [18,33]
shares at least some zeros with the the Riemann ζ function in the left complex
half-plane where the absolute convergence of the Euler product to the Riemann
ζ function is not historically proven.

Corollary 8.3.6 The Euler product from of ζ has non-trivial zeros with neg-
ative real parts in R∞.

Proof. Consider a number z0 ∈ C such that

z0 = −(ℵX + b) + iy , where b, y ∈ R0 .

Observe that the Euler product form of ζ [33] takes z0 as

ζ(z0) =
∏
p

1

1− p(ℵX+b)−iy
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=

(
1

1− P (Xℵ1+b)−iy

)∏
p 6=P

1

1− p(ℵX+b)−iy

=

(
1

1− P b
(
PX
)̂∞

[cos(y lnP )− i sin(y lnP )]

)∏
p6=P

1

1− p(ℵX+b)−iy
.

Let y lnP = 2nπ for some prime P and (n+ 1) ∈ N. Then

ζ(z0) =
1

∞

∏
p6=P

1

1− p(ℵX+b)−iy
= 0 . l

Conjecture 8.3.7 The theorem of Hadamard and de la Vallée-Poussin [31,32]
showing that ζ never vanishes on the line Re(z) = 1 should fail along the
portions of that line lying in the neighborhood of infinity. Likewise, the result
proving that ζ cannot have any zeros beyond the critical strip other than the
negative even integers must fail in the neighborhood of infinity.
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§A Developing Mathematical Systems Historically

Because this treatise so concisely follows a very long trail of preexisting philo-
sophical pursuits in mathematics, we present here as an appendix a concise
summary of some of the important questions which motivated the modernist
approach to complementing Euclid as the foundation of real analysis. In the
article The Real Numbers: From Stevin to Hilbert, O’Connor and Robertson
write the following [34].

“By the time Stevin proposed the use of decimal fractions in 1585,
the concept of a real number had developed little from that of Eu-
clid’s Elements. Details of the earlier contributions are examined
in some detail in our article The real numbers: from Pythagoras to
Stevin.”

This appendix summarizes two articles by O’Connor and Robertson which
outline the history of what are called the real numbers today [34,35]. This ap-
pendix essentializes the trail of facts supporting the present axiom-constructive
fractional distance approach to the real number system. Setting the stage for
the theme, O’Connor and Robertson write the following.

“By the beginning of the 20th century then, the concept of a real
number had moved away completely from the concept of a number
which had existed from the most ancient times to the beginning
of the 19th century, namely its connection with measurement and
quantity.”

O’Connor and Robertson cite Wallis as writing the following.

“[S]uch proportion is not to be expressed in the commonly received
ways of notation.”

Wallis makes a wholehearted declaration of the mathematical matter con-
tended by fractional distance. Sometimes it is necessary to introduce new
notations such as ℵX , ∞̂, and FX . Therefore, should it be claimed that one
may not simply declare a thing such as ℵX , Wallis is cited as evidence that
one may and that, at times, one must. Further emphasizing the importance
of the influx of new notations into contemporary mathematics, O’Connor and
Robertson write the following.

“A major advance was made by Stevin in 1585 in La Thiende when
he introduced decimal fractions. One has to understand here that
in fact it was in a sense fortuitous that his invention led to a much
deeper understanding of numbers for he certainly did not introduce
the notation with that in mind. Only finite decimals were allowed,
so with his notation only certain rationals [were] to be represented
exactly. Other rationals could be represented approximately and
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Stevin saw the system as a means to calculate with approximate
rational values. His notation was to be taken up by Clavius and
Napier but others resisted using it since they saw it as a backwards
step to adopt a system which could not even represent 1

3
exactly.”

Still yet further emphasizing the rightful place of new notation in mathematics,
O’Connor and Robertson write the following.

“Strictly speaking, only that which is logically impossible (i.e.: which
contradicts itself) counts as impossible for the mathematician.”

All progress in mathematics, therefore, must be predicated from time to time
upon the introduction of new notations such as ℵX and ∞̂.

Now we have shown the aesthetic likeness of the present course to the pre-
vious course. Stevin introduced decimal fractions and now we have introduced
infinity hat. Leibniz gave us the integral symbol and now there exists a real
number ℵ0.5 (which was already known as long as ago Euler who wrote i

2
[7].)

Now we will emphasize that the course in question has always been the means
by which to unify algebra and geometry. O’Connor and Robertson write the
following.

“Similarly Cantor realized that if he wants the line to represent
the real numbers [emphasis added ] then he has to introduce an
axiom to recover the connection between the way real numbers are
now being defined and the old concept of measurement.”

O’Connor and Robertson specifically identify Cantor’s motivations [34] as the
same given here. How can we best preserve the geometric notion of an infinite
line in the algebraic arena? If one supposes that “infinity is not allowed,” and
lets that be the end of the inquiry into the preservation of the notion of infinite
geometric extent, then it is unlikely that the resulting mathematical system
will make sufficient provisions for that fundamental notion. Indeed, the entire
theme of this work has been to modify existing mathematical systems so as to
better accommodate the notion of infinite geometric extent. Cantor himself
wrote the following.

“[O ]ne may add an axiom which simply says that every numerical
quantity also has a determined point on the straight line whose co-
ordinate is equal to that quantity.”

In the present treatise, we have extended Cantor to separately consider the
“determined” geometric point from the numbers in the algebraic representation
of that point. Indeed, this is the main distinction between our own approach
and Cantor’s approach. This issue fairly well represents the issue cited in
Remark 3.1.20 as the source of “much pathology” in modern analysis: Cantor’s
presumption of a one-to-one correspondence between numbers and points is
a fair proxy for one’s choice to distinguish algebraic FDFs of the first and
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second kinds. Cantor’s implied concept of fractional distance seems to favor
D†AB = D′′AB whereas we have demonstrated the philosophical superiority of

D†AB = D′AB. We can glean from Cantor’s words that he likely associated only
one number with each point but we have shown that this is only best when
the line segment is of finite length. If the determined point is in an infinitely
long line segment such as X ∈ AB, then we have proven that the determined
point does not have one uniquely associated real number.

In this treatise, we have restated the ancient Archimedes property with
English and Latin mathematical symbols (Definition 6.3.9.) We have also
given a modern restatement of the Archimedes property as the Archimedes
property of 1D transfinitely continued real numbers (Axiom 6.3.12.) Similarly,
Hilbert gave his own modernized restatement of that property when giving his
geometry axioms [4]. O’Connor and Robertson write the following.

“[Hilbert’s statement of the Archimedes property was ] that given pos-
itive numbers a and b then it is possible to add a to itself a finite
number of times so that the sum exceeds b.”

What Hilbert wrote specifically was the following.

“If AB and CD are any segments then there exists a number n such
that n segments CD constructed contiguously from A, along the ray
from A through B, will pass beyond the point B.”

Hilbert’s original reliance on the AB notation to give a statement of the
Archimedes property for a Euclidean line segment very strongly highlights
the historical similitude of the present approach to a modernizing algebraic
capstone on Euclidean geometry. Hilbert’s axioms of geometry applied to
Dedekind cuts give us the field axioms, more or less, so it is remarkable that
we were likewise called, while working to the same ends as Hilbert, to give a
restatement of what Euclid meant when he said he had it on good authority
that Archimedes had heard from Eudoxus that such and such was the real
Archimedes property of real numbers. In the case of Hilbert’s statement of
the Archimedes property, we see that Hilbert gave a finite multiplier but did
not explicitly require n ∈ N. The extended natural numbers n ∈ N∞ provide
the multipliers needed to preserve Hilbert’s statement of the property in the
fractional distance approach to real analysis.

Regarding the very ancient history, O’Connor and Robertson write the
following.

“It seems clear that Pythagoras would have thought of 1, 2, 3, 4 . . .
(the natural numbers in the terminology of today) in a geometrical
way, not as lengths of a line as we do, but rather in the form of
discrete points. Addition, subtraction, and multiplication of integers
are natural concepts with this type of representation but there seems
to have been no notion of division.”
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Even as long as ago as Pythagoras, the open question of the separation of
algebraic numbers from geometric magnitudes was already one of import. Also,
we have a distinct and apt likeness here with the possibility that we might
give the regularly-spaced, disconnected immeasurable numbers FX ∈ F an
arithmetic axiom such that they are the real numbers on an infinitely bigger
copy of the real number line.

In the present treatise, like Hilbert very recently, we have sought to build
a hybrid constructive framework for mathematical analysis which maximizes
the synergy between algebra and geometry. O’Connor and Robertson write
the following.

“[I ]t should be mentioned at this stage that the Egyptians and the
Babylonians had a different notion of a number to that of the ancient
Greeks. The Babylonians looked at reciprocals and also at approxi-
mations to irrational numbers, such as

√
2, long before Greek math-

ematicians considered approximations. The Egyptians also looked
at approximating irrational numbers.

“Let us now look at [sic] Euclid’s Elements. This is an impor-
tant stage since it would remain the state of play for nearly the next
2000 years. In Book 5 Euclid considers magnitudes and the theory
of proportion of magnitudes. It is probable (and claimed in a later
version of The Elements) that this was the work of Eudoxus. Usu-
ally when Euclid wants to illustrate a theorem about magnitudes
he gives a diagram representing the magnitude by a line segment.
However magnitude is an abstract concept to Euclid and applies to
lines, surfaces and solids. Also, more generally, Euclid also knows
that his theory applies to time and angles.

“Given that Euclid is famous for an axiomatic approach to mathe-
matics, one might expect him to begin with a definition of magnitude
and state some unproved axioms. However he leaves the concept of
magnitude undefined and his first two definitions refer to the part of
a magnitude and a multiple of a magnitude.”

O’Connor and Robertson proceed to break down Euclid’s Book 5 as we
have when examining the Archimedes property in Section 6.3. Therefore, we
will list the properties and comments again in expanded form. We consolidate
the supplemental comments to Euclid’s original text with Fitzpatrick’s labeled
(RF), our own comments labeled (JT), and the comments of O’Connor and
Robertson labeled (OR).

Book 5, Definition 1 A magnitude is a part of a(nother) magnitude, the
lesser of the greater, when it measures the greater.

(RF) In other words, α is said to be a part of β if β = mα.

(JT) The first definition makes it obvious that the multiplier is not
meant to be a natural number. If the magnitude of ten units of
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geometric length is to be greater than one of nine, then there must
exist non-integer multipliers.

(OR) Again the term “measures” here is undefined but clearly Euclid
means that (in modern symbols) the smaller magnitude x is a part of
the greater magnitude y if nx = y for some natural numbers n > 1.

When O’Connor and Robertson write n ∈ N, they do not take into consid-
eration numbers having non-integer quotients, e.g.: 10 :9, or else they are only
giving a subcase of what is meant in the original context. Using the natural
numbers to demonstrate the property makes sense if one takes the auxiliary
axiom that there are no real numbers greater than every natural number. In
that case, the Archimedes property is irreducibly represented in the natural
number statement of the multiplier. The supposition that every real number
is in the neighborhood of the origin was a normal axiom at the time of the
publication of References [34,35]. The main difference between the present ap-
proach and the historical approaches to merging geometry and algebra is that
we have not tried to squeeze the notion of geometric infinity into the algebraic
sector. In the present conventions, ∞̂ is such that the algebraic structure is
totally subordinate to the geometric structure. The primary theme of the past
few centuries has been one of attempting to subordinate geometry to algebra
but we have eschewed that effort in taking the fractional distance tack.

Many historical approaches have assumed some algebraic axioms and then
tried to fit everything inside those axioms by ignoring geometric infinity and
making a rule that one must never mention it. Note the equal weighting of
the gravity of the matters in the choice to suppose one of the two following
axioms.

Axiom A.1 There exists a non-empty set of real numbers greater than any
natural number.

Axiom A.2 There does not exist any real number greater than every natural
number.

An assigned superiority in the algebraic sector might make Axiom A.2 the
more attractive axiom because it allows everything to be written with the
field axioms. By assigning the superior quality as the historical geometric
conception of numbers, we are drawn to Axiom A.1 as the preferable axiom.
Additionally, we have proven multiply that Axiom A.2 causes undesirable con-
tradictions with the geometric notion of fractional distance. Even when alge-
braic considerations are chosen as superior to geometric ones, the superior
axiom must not contradict its inferior complement. The neighborhood of in-
finity does exist; fractional distance requires it. The question is only whether
we should adopt an algebraic convention which reflects the geometric reality.
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Book 5, Definition 2 And the greater is a multiple of the lesser whenever it
is measured by the lesser.

(JT) This definition makes it explicitly clear that the manner in
which one magnitude may measure another is such that, for example,
nine can measure ten by 10:9.

(OR) Then comes the definition of ratio.

Book 5, Definition 3 A ratio is a certain type of condition with respect to
size of two magnitudes of the same kind.

(RF) In modern notation, the ratio of two magnitudes, α and β, is
denoted α : β.

(JT) This definition tells us that R is equipped with ≤ relation. The
specification of two magnitudes of the same kind tells us, essentially,
that Euclid does not want his reader to compare lengths with areas,
volumes, angles, hypervolumes, etc. Likewise, once we have conjured
RT from an interpretation of F(n) ∈ R as n ∈ NT, we must be careful
to distinguish the underlying magnitudes as different kinds.

(OR) This is an exceptionally vague definition of ratio which basi-
cally fails to define it at all. [Euclid ] then defines when magnitudes
have a ratio, which according to the definition is when there is a
multiple (by a natural number) of the first which exceeds the second
and a multiple of the second which exceeds the first.

Book 5, Definition 4 (Those) magnitudes are said to have a ratio with
respect to one another which, being multiplied, are capable of exceeding one
another.

(RF) In other words, α has a ratio with respect to β if mα > β and
nβ > α, for some m and n.

(JT) The Archimedes property of real numbers requires that for
every real number, there is a greater real number. In other words
and in a general way, there is no largest real number because ℵ1 6∈
R. Usually it is said that a smallest real number is also precluded
by the inverse of the unbounded large number. Surprisingly, the
usual topology requirement of the fundamental axiom of algebraic
construction (Axiom 7.6.8 and/or Axiom 2.1.7) seems to indicate
that a smallest real number must exist (Proposition 7.2.11.) This
is the Xmin value of ℵ(2) = ℵXmin

. The issue of a smallest positive
real number has been a historically vexing contention in the intuitive
sense. This is demonstrated in the following manner. If every interior
point in a connected interval (−1, 1) ⊂ R is left- and right-adjacent



Jonathan W. Tooker 133

to another point, meaning the interval is not disconnected, then
writing

(−1, 1) = (−1, 0] ∪ (0, 1) ,

suggests, in an intuitive way at least, that zero must be left-adjacent
to the smallest positive real number. However, the protocols of math-
ematics override intuition and it is said that zero is not left-adjacent
to any element of (0, 1) because every element of (0, 1) has a δ-
neighborhood lying totally within (0, 1). So, if some way is found to
claw a least positive real number from the precepts of fractional dis-
tance, then the concept of no greatest real number would also have
to be done away with due to the invariance of AB under permuta-
tions of the labels of its endpoints. Infinity minus the least positive
real number would be the greatest real number.

(OR) The Archimedean axiom stated that given positive numbers a
and b then it is possible to add a to itself a finite number of times
so that the sum exceed b.

Book 5, Definition 5 Magnitudes are said to be in the same ratio, the first
to the second, and the third to the fourth, when equal multiples of the first and
third both exceed, are both equal to, or are both less than, equal multiples
of the second and fourth, respectively, being taken in corresponding order,
according to any kind of multiplication whatever.

(RF) In other words, α : β :: γ : δ if and only if mα > nβ whenever
mγ > nδ, mα = nβ whenever mγ = nδ, and mα < nβ whenever
mγ < nδ, for all m and n. This definition is the kernel of Eudoxus’
theory of proportion, and is valid even if α, β, etc., are irrational.

(JT) This definition gives the trichotomy of the ≤ relation. Also note
that the ratio of ratios is like the ratio of two fractional distances.

(OR) Then comes the vital definition of when two magnitudes are
in the same ratio as a second pair of magnitudes. As it is quite hard
to understand in Euclid’s language, let us translate it into modern
notation. It says that a : b = c : d if given any natural numbers n
and m we have

na > mb if and only if nc > md

na = mb if and only if nc = md

na < mb if and only if nc < md .

Euclid then goes on to prove theorems which look to a modern math-
ematician as if magnitudes are vectors, integers are scalars, and he
is proving the vector space axioms.
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The main hurdle in the vector space conception of R is that the product
of two vectors is a scalar but the product of two real numbers is another real
number. Even in the transfinite continuation beyond algebraic infinity, and
even when the product of two things in the line always remains within the
geometrically infinite line as if it were a vector space, the problem remains
that the product of two 1D transfinitely continued extended real numbers
will be another 1D transfinitely continued extended real number. There is
no distinguishing a vector from a scalar. However, one easily imagines ∞̂ as
an anchor point for 1D vectors x ∈ R different than the anchor point at the

origin. Vectors anchored in the neighborhood of the origin look like 0̂ +~b and

those anchored in the neighborhood of positive infinity look like ∞̂ −~b. The
1D vector space picture is very becoming the notion of a 1D geometric space
but the lack of distinction among vectors and scalars forbids any approach to
the commonly stated modern vector space axioms.
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§B Toward Mathematical Physics

To the extent that this present fractional distance work in pure mathematics
grew from, and was motivated by, a preexisting research program in theo-
retical physics, there are some things should be pointed out. The first salient
point regards the finite or infinite interaction ranges of the fundamental forces.
Gravity and electromagnetism are said to have infinite ranges because the rel-
evant classical forces between massive or charged particles go as 1

r2
. When all

finite numbers are assumed to be less than some natural number, it is a direct
consequence that such inverse squared force laws can never go to zero for any
r ∈ R. The arithmetic axioms, however, allow these forces to go to zero for
any finite separation in the neighborhood of infinity. Indeed, the entire ini-
tial inquiry into infinity which eventually resulted in the fruits presented here
was the following question: how might we have two physical objects (where
physicality requires that they are separated in spacetime by less than infinite
spacetime interval) whose mutual gravitational interaction is precisely zero?
Now r ∈ R \ R0 provides exactly the requisite finite scale. As an example
for how the neighborhood of infinity might be worked into the progenitive
cosmological scenario which spurred this research (the modified cosmological
model (MCM) [36, 37]), we could set the scale of F0 as the ∼13.7Gcy radius
of the observable universe. Nothing beyond the cosmic microwave background
(CMB) at that distance can be observed yet it might be helpful for the devel-
opment of new theories if we could set the interactions between the local frame
and the occulted region beyond the CMB to an identical zero rather than the
almost zero which always has a big impact on quantum considerations over
cosmological timescales.

Another good use for the neighborhood of infinity is the mathematical de-
scription of wavepackets. In the efforts of physicists to describe the wave-
particle duality of quantum particles, the quantum states are formally rendered
as enveloped wave-packets whose tails extend to infinity. In many situations,
the non-vanishing tails of these wavepackets can be ignored. For instance, if
the probability that an electron will be observed in a lab during one moment
and then observed 40cy from the Earth in the next moment is on the order
of one in 10−50, then we may treat this as zero probability and proceed ac-
cordingly without shooting our theories in the foot. However, in the regime of
ultra-fast quantum optics, the tails of mathematical wave-packets describing
picosecond laser pulses generate notoriously vexing discrepancies with what is
observed in the lab. Having developed the neighborhood of infinity, one might
develop a language for wave-packets whose tails go to zero on the scale of F0

while the universe itself could be said to have a characteristic scale on the
order of ℵ1. Any number of such schemes could be developed.

Throughout the research in cosmology which led to the present fractional
distance analysis, we have developed a requirement for some intermediate scale
between the scale of natural numbers and the scale of infinity. Specifically,
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we have used the concept of “odd and even levels of aleph” to describe the
behavior that is required for the underlying cosmological model [36–39]. In
the language of Robinson’s hyperreal analysis, we have limiteds and unlimiteds
but the model which spurred the present analysis generated a requirement for
some intermediate scale: the odd level of aleph. In that language, we say that
infinity is two levels of aleph higher than the level of aleph upon which resides
the origin of the abstract inertial lab frame. Robinson’s canonical method for
mixing limiteds and unlimiteds only provides tool for the even levels of aleph.
In the present work, we have generated the “super-finite” F0 scale which can
serve as the odd level of aleph between Robinson’s limiteds and unlimiteds.
See Reference [40] for a brief treatment of the Riemann hypothesis in terms of
the odd and even levels of aleph.

In the course of developing the MCM, we have shown that the structure of
the standard model of particle physics arises as the elementary structure of the
unit cell of the model’s lattice cosmology [38]. Now, in the present work, we
have found yet more of the fundamental quantum numbers in the underlying
analytical structure. Quantum mechanics has the curiously measurable half-
inter spin quantization of fermions, and now we have demonstrated a half-
integer interval of spacing inherent between the origins of the successively
transfinite scaled copies of R (Theorem 7.5.25.) Furthermore, the number
F(1) lies one third of the way down the interval [0,F(2)] so we also have the
asymmetric fractional charges of the quarks: −1

3
e for three of them and 2

3
e for

the other three.



Jonathan W. Tooker 137

References

[1] Richard Fitzpatrick. Euclid’s Elements of Geometry. Lulu, (2007).

[2] Georg Cantor. Ueber die Ausdehnung eines Satzes aus der Theorie der
Trigonometrischen Reihen. Mathematische Annalen, 5, 123-132, (1872).

[3] J.R.W. Dedekind. Essays on the Theory of Numbers. (1872).

[4] David Hilbert. The Foundations of Geometry. (1899).

[5] Leonhard Euler. Introductio in Analysin Infinitorum, Tomus Primus.
Saint Petersburg, (1748).

[6] Leonhard Euler. Introduction to Analysis of the Infinite. Book I. Translat-
edfrom the Latin and with an introduction by J. Blanton. Springer–Verlag,
(1988).

[7] Jacques Bair et al. Interpreting the Infinitesimal Mathematics of Leibniz
and Euler. Journal for General Philosophy of Science, 48 (2), 195-238,
(2017).

[8] Jonathan W. Tooker. Real Numbers in the Neighborhood of Infinity.
viXra:1811.0222, (2018).

[9] Jonathan W. Tooker. Zeros of the Riemann Zeta Function within the
Critical Strip and off the Critical Line. viXra:1912.0030, (2019).

[10] Charles Chapman Pugh. Real Mathematical Analysis. Springer, (2003).

[11] W. Rudin. Principles of Mathematical Analysis, 3rd ed. McGraw–Hill,
(1976).

[12] Todd Kemp. Cauchy’s Construction of R. (2016).

[13] James Munkres. Topology, 2nd ed. Pearson, (2014).

[14] Abraham Robinson. Non-standard Analysis, Revised Ed. Princeton Uni-
versity Press, (1996).

[15] Robert Goldblatt. Lectures on the Hyperreals: An Introduction to Nonst-
nadard Analysis. Springer–Verlag, New York, (1998).

[16] Bernhard Riemann. On the Number of Primes Less than a Given Quan-
tity. Monatsberichte der Berliner Akademie, (1859).

[17] E.C. Titchmarsh. The Theory of the Riemann Zeta Function. Oxford
University Press, (1986).

[18] S.J. Patterson. An Introduction to the Theory of the Riemann Zeta Func-
tion. Cambridge University Press, (1988).



138 Fractional Distance: The Topology of the Real Number Line

[19] G.H. Hardy and J.E. Littlewood. The Zeros of Reimann’s Zeta Function
on the Critical Line. Math. Zeitschrift, 10, 283-317, (1921).

[20] P. Borwein, S. Choi, B. Rooney, and A. Weirathmueller. The Riemann
Hypothesis: A Resource for the Afficionado and Virtuoso Alike. Springer,
(2008).

[21] K. Chandesekharan. Lectures on the Riemann Zeta Function. Tata Insti-
tute of Fundamental Research, Bombay, India, (1958).

[22] H.M. Edwards. Riemann’s Zeta Function. Academic Press, New York,
(1974).

[23] D. Bump. On the Riemann Zeta Function. Math. Zeitschrift, 192, 195-
204, (1986).

[24] H. Iwaniec. Lectures on the Riemann Zeta Function. University Lecture
Series, vol. 62, American Mathematical Society, Providence, RI, (2014).

[25] D.B. Zagier. Zeta Functions in Number Theory. Annual Meeting of the
American Mathematical Society, Phoenix, AZ, (1989).

[26] D. Bump, K.K. Choi, P. Kurlberg, and J.Vaaler. A Local Riemann Hy-
pothesis. Math. Zeitschrift, 223, 1-18, (2000).

[27] S. Feng. Zeros of the Riemann Zeta Function on the Critical Line. Journal
of Number Theory, 132, 511-542, (2012).

[28] M. Julita. Zeros of the Zeta Function Near the Critical Line. Studies in
Pure Mathematics, Birkhauser, 385-394, (1982).

[29] J.E. Littlewood. Two notes on the Riemann Zeta-function. Math. Proc.
Camb. Phil. Soc, 22, 3, 234-242, (1924).

[30] Enrico Bombieri. Problems of the Millennium: The Riemann Hypothesis.
Clay Mathematics Institute, (2000).

[31] Jacques Hadamard. Sur la Distribution des Zeros de la Fonction Zeta(s)
et ses Consequences Arithmetiques. Bulletin de la Societe Mathematique
de France, 14, 199-220, (1896).

[32] Charles J. de la Vallee-Poussin. Recherches Analytiques sur la Theorie
des Nombers Premiers. Ann. Soc. Sci. Bruxelles, 20, 183–256, (1896).

[33] Leonhard Euler. Various Observations about Infinite Series. St. Petersburg
Academy, (1737).

[34] J.J. O’Connor and E.F. Robertson. The Real Numbers: From Stevin to
Hilbert. (2005).

[35] J.J. O’Connor and E.F. Robertson. The Real Numbers: From Pythagoras
to Stevin. (2005).



Jonathan W. Tooker 139

[36] Jonathan W. Tooker. The General Relevance of the Modified Cosmolog-
ical Model. viXra:1712.0598, (2017).

[37] Jonathan W. Tooker. Geometric Cosmology. viXra:1301.0032, (2013).

[38] Jonathan W. Tooker. Quantum Structure. viXra:1302.0037, (2013).

[39] Jonathan W. Tooker. Tempus Edax Rerum. viXra:1209.0010, (2012).

[40] Jonathan W. Tooker. On the Riemann Zeta Function. viXra:1703.0073,
(2017).


	Introduction
	Mathematical Preliminary
	Real Numbers
	Affinely Extended Real Numbers
	Line Segments

	Fractional Distance
	Fractional Distance Functions
	Comparison of Real and Natural Numbers
	Comparison of Cuts in Lines and Points in Line Segments

	The Neighborhood of Infinity
	Intermediate Neighborhoods of Infinity
	Equivalence Classes for Intermediate Natural Neighborhoods of Infinity
	The Maximal Neighborhood of Infinity
	Equivalence Classes for the Maximal Natural Neighborhood of Infinity

	Arithmetic
	Operations for Infinite Elements
	Arithmetic Axioms for Real Numbers in Natural Neighborhoods
	Limit Considerations Regarding the Arithmetic Axioms
	Field Axioms
	Compliance of Cauchy Equivalence Classes with the Arithmetic Axioms

	Arithmetic Applications
	Properties of the Algebraic Fractional Distance Function Revisited
	Some Theorems for Real Numbers in the Neighborhood of Infinity
	The Archimedes Property of Real Numbers

	The Topology of the Real Number Line
	Basic Set Properties
	Cantor-like Sets of Real Numbers
	Paradoxes Related to Infinitesimals
	Complements of Natural Neighborhoods 
	Immeasurable Numbers and The Least Upper Bound Problem
	The Topology of the Real Number Line

	The Riemann Hypothesis
	The Riemann Zeta Function
	Non-trivial Zeros in the Critical Strip
	Non-trivial Zeros in the Neighborhood of Minus Infinity

	Developing Mathematical Systems Historically
	Toward Mathematical Physics

