Exercise 5.55 (Dual space of a direct sum). Let I be a non-empty set of indices and let $\left\{V_{i}\right\}_{i \in I}$ be vector spaces over a field \mathbb{F}. Show

$$
\left(\bigoplus_{i \in I} V_{i}\right)^{*} \cong \prod_{i \in I} V_{i}^{*}
$$

by constructing a canoncial isomorphism.
Proof. When $\left\{V_{i}\right\}_{i \in I}$ are all the 0 vector space, then the dual space of their direct sum and their inner product are the 0 vector space for all $i \in I$; hence, the 0 mapping is a natural isomorphism.
We presuppose that there is vector space a V_{i} for $i \in I$ that is not the 0 vector space. Consider

$$
\Phi:\left(\bigoplus_{i \in I} V_{i}\right)^{*} \ni \alpha \mapsto\left(\alpha_{i}\right)_{i \in I} \in \prod_{i \in I} V_{i}^{*}
$$

where α_{i} is defined as

$$
\alpha_{i}: \bigoplus_{i \in I} V_{i} \mapsto\left(\alpha \circ \iota \circ \mathrm{pr}_{i}\right)(v) \in \mathbb{F}
$$

for a functional $\alpha \in\left(\bigoplus_{i \in I} V_{i}\right)^{*}$ and an index $i \in I$; additionally, it is ι is the inclusion into the vector space $\bigoplus_{i \in I} V_{i}$ and pr_{i} is the projection onto the i-th component of a vector $v \in \bigoplus_{i \in I} V_{i}$.
Let $\alpha, \beta \in\left(\bigoplus_{i \in I} V_{i}\right)^{*}$ and $\lambda, \mu \in \mathbb{F}$. It follows,
$\Phi((\lambda \alpha)+(\mu \beta))=\left(\left(\lambda \alpha_{i}\right)+\left(\mu \beta_{i}\right)\right)_{i \in I}=\lambda\left(\alpha_{i}\right)_{i \in I}+\mu\left(\beta_{i}\right)_{i \in I}=\lambda \Phi(\alpha)+\mu \Phi(\beta)$.
This shows that Φ is a linear transformation. Let $\alpha \in\left(\bigoplus_{i \in I} V_{i}\right)^{*}$ and $\alpha \neq 0$. It exists a $v \in \bigoplus_{i \in I} V_{i}$ with $\alpha(v) \neq 0$; meaning, there exists an $i \in I$, such that $\alpha_{i}(v) \neq 0$. Therefore, $\Phi(\alpha)(v)=\left(\alpha_{i}(v)\right)_{i \in I} \neq 0$ and in consequence $\Phi(\alpha) \neq 0$. Because the Φ is a linear transformation, it is $\Phi(0)=0$. The injectivity of Φ results from $\operatorname{ker} \Phi=\{0\}$. Let $\left(\beta_{i}\right)_{i \in I} \in \prod_{i \in I} V_{i}^{*}$; note that the indices do not refer to the definition of α_{i}. Let $\left\{b_{j}^{i}\right\}_{j \in J}$ for $i \in I$ be bases of the respective vector spaces V_{i}. Define $\gamma \in\left(\bigoplus_{i \in I} V_{i}\right)^{*}$ as the functional with $\left\{\gamma\left(b_{j}^{i}\right)=\beta_{i}\left(b_{j}^{i}\right)\right\}_{j \in J}$ for all $i \in I$; it is $\Phi(\gamma)=\left(\gamma_{i}\right)_{i \in I}=\left(\beta_{i}\right)_{i \in I}$ therefore and Φ is surjective; note that the indices of $\left(\gamma_{i}\right)_{i \in I}$ now do refer to the definition of α_{i}. We conclude: The mapping Φ is a natural isomorphism from $\bigoplus_{i \in I} V_{i}$ to $\prod_{i \in I} V_{i}^{*}$.

