Finding Vector Potentials ${ }^{1}$

Let \mathbf{F} be a vector field in \mathbb{R}^{3}. If $\nabla \cdot \mathbf{F}=0$ then \mathbf{F} is said to be divergence free. For divergence free vector fields it is known that there exists a vector field \mathbf{G} such that $\mathbf{F}=\nabla \times \mathbf{G}$. Such a vector field is called a vector potential for \mathbf{F}. Here we shall develop a method for finding a vector potential. Write $\mathbf{F}=\left\langle F_{1}, F_{2}, F_{3}\right\rangle$ and $\mathbf{G}=\left\langle G_{1}, G_{2}, G_{3}\right\rangle$ then solving $\nabla \times \mathbf{G}=\mathbf{F}$ amounts to simultaneously solving

$$
\begin{aligned}
& \frac{\partial G_{3}}{\partial y}-\frac{\partial G_{2}}{\partial z}=F_{1} \\
& \frac{\partial G_{1}}{\partial z}-\frac{\partial G_{3}}{\partial x}=F_{2} \\
& \frac{\partial G_{2}}{\partial x}-\frac{\partial G_{1}}{\partial y}=F_{3}
\end{aligned}
$$

To do this we exploit the fact that \mathbf{G} is far from unique. Suppose $\mathbf{H}=\left\langle H_{1}, H_{2}, H_{3}\right\rangle$ has curl \mathbf{F}. Let f be any differentiable scalar function on \mathbb{R}^{3}. Notice that

$$
\nabla \times(\mathbf{H}+\nabla f)=\nabla \times \mathbf{H}+\nabla \times(\nabla f)=\nabla \times \mathbf{H}+\mathbf{0}=\nabla \times \mathbf{H}
$$

Thus $\mathbf{G}=\mathbf{H}+\nabla f$ is also a vector potential for \mathbf{F}. Choose f so that $\frac{\partial f}{\partial z}=-H_{3}$. This can be done by simply integrating H_{3} with respect to z,

$$
f(x, y, x)=-\int H_{3}(x, y, z) d z
$$

using any choice you like for the arbitrary constant of integration. Thus we can assume that $\mathbf{G}=\left\langle G_{1}, G_{2}, 0\right\rangle$ and we now only need to solve

$$
\begin{gathered}
-\frac{\partial G_{2}}{\partial z}=F_{1} \\
\frac{\partial G_{1}}{\partial z}=F_{2} \\
\frac{\partial G_{2}}{\partial x}-\frac{\partial G_{1}}{\partial y}=F_{3} .
\end{gathered}
$$

We illustrate how to do this with two examples.
Example 1. Let $\mathbf{F}=\left\langle x^{2}, 3 x z^{2},-2 x z\right\rangle$. Show that $\nabla \cdot F=0$ and find a vector potential \mathbf{G} for \mathbf{F}. Verify directly that $\nabla \times \mathbf{G}=\mathbf{F}$.

Solution. Firstly, $\nabla \cdot \mathbf{F}=2 x+0-2 x=0$. Next

$$
-\frac{\partial G_{2}}{\partial z}=x^{2} \Longrightarrow G_{2}(x, y, z)=-x^{2} z+C_{2}(x, y)
$$

and

$$
\frac{\partial G_{1}}{\partial z}=3 x z^{2} \Longrightarrow G_{1}(x, y, z)=x z^{3}+C_{1}(x, y)
$$

[^0]where the C_{1} and C_{2} are arbitrary differentiable functions of x and y only. And $\left(G_{2}\right)_{x}-\left(G_{1}\right)_{y}=-2 x z$ implies
$$
\left(-2 x z+\frac{\partial C_{2}}{\partial x}\right)-\left(0+\frac{\partial C_{1}}{\partial y}\right)=-2 x z
$$
or
$$
\frac{\partial C_{2}}{\partial x}=\frac{\partial C_{1}}{\partial y}
$$

So we just need to pick functions $C_{1}(x, y)$ and $C_{2}(x, y)$ that satisfy this condition. We will take the easy way out and just set both equal to zero! Thus our solution is

$$
\mathbf{G}=\left\langle x z^{3},-x^{2} z, 0\right\rangle .
$$

Finally we check our answer.

$$
\nabla \times\left\langle x z^{3},-x^{2} z, 0\right\rangle=\left\langle 0-\left(-x^{2}\right), 3 x z^{2}-0,-3 x^{2} z-0\right\rangle=\mathbf{F} .
$$

Example 2. Let $\mathbf{F}=\langle y z, x z, x y\rangle$. Show that $\nabla \cdot F=0$ and find a vector potential \mathbf{G} for \mathbf{F}. Verify directly that $\nabla \times \mathbf{G}=\mathbf{F}$.
Solution. Firstly, $\nabla \cdot \mathbf{F}=0+0+0=0$. Next we have

$$
\begin{aligned}
-\frac{\partial G_{2}}{\partial z} & =y z \Longrightarrow G_{2}(x, y, x)=-\frac{1}{2} y z^{2}+C_{2}(x, y) \\
\frac{\partial G_{1}}{\partial z} & =x z \Longrightarrow G_{1}(x, y, x)=\frac{1}{2} x z^{2}+C_{1}(x, y) .
\end{aligned}
$$

Then $\left(G_{2}\right) x-\left(G_{1}\right)_{y}=x y$ implies $\left(C_{2}\right)_{x}-\left(C_{1}\right)_{y}=x y$. We just have to pick functions that do this. Let $C_{2}=\frac{1}{2} x^{2} y$ and $C_{1}=0$. Thus our solution is

$$
\mathbf{G}=\left\langle\frac{1}{2} x z^{2}, \frac{1}{2} x^{2} y-\frac{1}{2} y z^{2}, 0\right\rangle .
$$

Finally we check our answer.

$$
\nabla \times\left\langle\frac{1}{2} x z^{2}, \frac{1}{2} x^{2} y-\frac{1}{2} y z^{2}, 0\right\rangle=\langle 0-(-y z), x z-0, x y-0\rangle=\mathbf{F} .
$$

In physics courses vector potentials come up because magnetic fields are divergence free and so have vector potentials. However, they typically take a different approach to finding these. They use the fact that usually a magnetic field is the result of a stream of charged particles called a current. Using this one can find a vector potential that is more physically natural.

Given a divergence free vector field \mathbf{F} one might wonder what is the set of all vector potentials for \mathbf{F}. If the \mathbf{G} is a vector potential for \mathbf{F} and f is any differentiable scalar function then we have seen that $\mathbf{G}+\nabla f$ is also a vector potential for \mathbf{F}. It can be shown that these are in fact all of the possible vector potentials of \mathbf{F}. This is analogous to the fact that if $h^{\prime}(x)=q(x)$ then the set of all anti-derivatives of $q(x)$ can be expressed as $h(x)+C$. Likewise for all the scalar potentials of a conservative field.

Problems.

(1) Redo Example 1 but assume $G_{2}=0$. Show that the difference between your answer and the one obtained before has gradient zero.
(2) Redo Example 2 but assume $G_{1}=0$. Show that the difference between your answer and the one obtained before has gradient zero.
(3) Let $\mathbf{F}=\langle y, z, x\rangle$. Show that \mathbf{F} is divergence free; find a vector potential; then check your result.
(4) Let $\mathbf{F}=\left\langle z^{2} x-1,-z^{2} y, 1-x^{2}\right\rangle$. Show that \mathbf{F} is divergence free; find a vector potential; then check your result.
(5) Let $\mathbf{F}=\langle x, 0,0\rangle$. Then $\nabla \cdot \mathbf{F}=1 \neq 0$. Try to find a vector potential anyway and see what goes wrong.

[^0]: ${ }^{1}$ Copyright © Michael Sullivan, 2012

