INTEGER TOPOLOGICAL PROOF OF DIRICHLET'S THEOREM

April 16, 2023

ABSTRACT. Closure of product sets in Golomb's topology provides a substantial condition for Dirichlet's theorem on prime numbers in relatively prime arithmetic progressions.

1. INTRODUCTION

Arithmetic progressions of the form $a\mathbb{N} + b$ with coprime coefficients contains infinitely many prime numbers as it was proven by Dirichlet back in 1837 [1], we use a few properties of Golomb's topology [2] over the integers \mathbb{Z} by applying the same approach as in Furstenberg's on the infinitude of Primes [3] to provide another proof of Dirichlet's result.

Recall that Golomb's topology takes as a basis the collection of all sets $p\mathbb{Z} + q$ with relatively prime coefficients (p, q), however in the classical definition the topology is based on the positive integers, this is crucial because otherwise it will apear to be a discrete topology since a few basic properties are required in order to confirm our point, which also require it to be a profinite topological group, you may also notice that it is a regular space [4] as might appear from the first property of 2.0.0.1 and later in 2.0.1

Relatively prime arithmetic progression can be expressed analytically as $S(p,q) = p\mathbb{Z} + q$, gcd(p,q) = 1 with $q \notin S_0(p,q) = p\mathbb{Z}_0 + q$ where we notate $\mathbb{Z}_0 = \mathbb{Z} \setminus \{0\}$, along with that introduce the bijective arithmetic progression s(n) = pn + q and it's image S(p,q) where the set of prime generating numbers is $s_p = s^{-1}(S(p,q) \cap \mathbb{P})$ and it's complement $\mathbb{Z} \setminus s_p = s^{-1}(S(p,q) \setminus \mathbb{P})$

2. Infinitude of prime numbers in Golomb's topology

Let us recall a few notable properties of Golomb's topology

Lemma 2.0.0.1 (Closure of S(p,q) and finite sets). Golomb's topology endows the following simple properties.

- (1) Every relatively prime arithmetic progression S(p,q) is clopen.
- (2) Any finite set is closed but not open.

Proof. First property is due to the fact that S(p,q) is the complement of a union of other arithmetic progressions $S(p, \mathbb{N}_p \setminus q)$, secondly it is obvious that a finite set P cannot be open, it's however closed as it will appear that $S_0(p,0)$ for each $p \in P$ is open, since for any $z \in \mathbb{Z}_0$ we will find α such that $S(\alpha, pz) \subset S_0(p,0)$.

The following part uses the basic topological properties of the product set S(p, 1)S(p, q)in order to show that the set of positive prime numbers $\mathbb{P} \ni 1$ has infinitely many elements to be found in a relatively prime arithmetic progression.

Theorem 2.0.1 (Closure of $S_0(s(n), n)$ under $\mathbb{Z} \setminus s_p$). There is a closure $s_{cl(n)}$ of a relatively prime arithmetic progression $S_0(s(n), n)$ under $\mathbb{Z} \setminus s_p$ for $c = \max s_p$

Proof. Assume that there is such closure $s_{cl(n)} \subseteq \mathbb{Z} \setminus s_p$ of $S_0(s(n), n)$ then it must be obvious that $s_{cl(n)} \subseteq S(c, \mathbb{N}_c \setminus s_p) \cup S(a, b)$ since it's clearly disjoint from s_p with some fitting coprime numbers a, b.

Those can be found via the intersection

$$S_0(s(n), n) \cap S(c, s_p) \subseteq S(lcm(c, s(n)), s(n)\mathbb{Z}_h + n)$$

where $h = \frac{lcm(s(n), c)}{s(n)}$ and $\mathbb{Z}_h = \mathbb{Z} \cap [-h, h] \setminus \{0\}$ implying
 $(a, b) = (lcm(c, s(n)), s(n)\mathbb{Z}_h + n)$

now notice that whenever lcm(s(n), c) = s(n) the index h is necessarily $h = \frac{lcm(s(n),c)}{c}$ and $b = c\mathbb{Z}_h + s_p$ hence $s_{cl(n)}$ must exist.

There can be found a closure of $S_0(s(n), n)$ inside $\mathbb{Z} \setminus s_p$ which will appear to be closed as opposed to our initial assumption, proving the main result.

Theorem 2.0.2 (Infinitude of primes in arithmetic progressions). There are infinitely many prime numbers in relatively prime arithmetic progressions.

Proof. Assume the finitude of prime numbers in S(p,q) implying that the corresponding finite primes generating set s_p cannot be open 2.0.0.1.

The non-prime product set $S_0(p,1)(S(p,q) \cap \mathbb{P}) \subset S(p,q) \setminus \mathbb{P}$ can be excluded in the following way

$$S_{cl}(p,q) = S(p,q) \setminus \mathbb{P} \setminus S_0(p,1) \big(S(p,q) \cap \mathbb{P} \big)$$

It's possible to show that $s^{-1}(S_{cl}(p,q))$ must be clopen since it's complement is as deduced shortly below

$$\mathbb{Z} \setminus s^{-1}(S_{cl}(p,q)) = s^{-1} \left(S(p,q) \setminus S_{cl}(p,q) \right)$$
$$= s^{-1} \left(S(p,1) \left(S(p,q) \right) \right)$$
$$= \bigcup_{s(n) \in \mathbb{P}} S(s(n),n)$$

Following the closure $s_{cl(n)}$ of $S_0(s(n), n)$ under $\mathbb{Z} \setminus s_p$ as proven previously 2.0.1 which is clopen for any $s(n) \in \mathbb{P}$ we conclude that $\mathbb{Z} \setminus s_p$ is clopen since it is a finite union of all such $s_{cl(n)}$ and of $s^{-1}(S_{cl}(p,q))$ however that's contradictory to our initial argument of s_p , hence there must be infinitely many prime numbers in S(p,q).

References

- Dirichlet, P. G. L. (1837), "Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält" [Proof of the theorem that every unbounded arithmetic progression, whose first term and common difference are integers without common factors, contains infinitely many prime numbers], Abhandlungen der Königlichen Preußischen Akademie der Wissenschaften zu Berlin, 48: 45–71
- [2] Golomb, S. W. (1959). A Connected Topology for the Integers. The American Mathematical Monthly, 66(8), 663–665. doi:10.2307/2309340
- Furstenberg, H. (1955). On the Infinitude of Primes. The American Mathematical Monthly, 62(5), 353–353. doi:10.2307/2307043
- [4] Szczuka, Paulina. (2014). Regular open arithmetic progressions in connected topological spaces on the set of positive integers. Glasnik Matematicki. 49. 13-23. doi:10.3336/gm.49.1.02.