Let $a_{1}<a_{2}<\cdots<a_{m}$ and $b_{1}<b_{2}<\ldots b_{n}$ be real numbers such that for any real x :

$$
\sum_{1}^{m}\left|a_{i}-x\right|=\sum_{1}^{n}\left|b_{i}-x\right|
$$

Show that $m=n$ and $a_{i}=b_{i}$, for all i.
Let:

$$
a_{0}=b_{0}=-\infty \quad a_{m+1}=b_{n+1}=+\infty
$$

Define k_{x}, l_{x} to be functions such that:

$$
a_{k_{x}} \leq x<a_{k_{x}+1} \quad b_{k_{x}} \leq x<b_{k_{x}+1}
$$

See that it is well defined for any $x \in \mathbb{R}$. Then the equation simplifies to:

$$
\begin{equation*}
\left[(m-n)-2\left(k_{x}-l_{x}\right)\right] x-\sum_{1}^{k_{x}} a_{i}+\sum_{k_{x}+1}^{m} a_{i}+\sum_{1}^{l_{x}} b_{i}-\sum_{l_{x}+1}^{m} b_{i}=0 \tag{1}
\end{equation*}
$$

which is a constant, namely 0 .
Let $x \in\left(-\infty, \min \left\{a_{1}, b_{1}\right\}\right)$. Then, $k_{x}=l_{x}=0$ and (1) reduces to:

$$
\begin{equation*}
(m-n) x+\sum_{1}^{m} a_{i}-\sum_{1}^{n} b_{i}=0 \tag{2}
\end{equation*}
$$

The only way (2) can be constant over the interval is if:

$$
m=n
$$

Suppose $a_{i} \neq b_{i}$ for some i. Let i be the smallest (positive) integer such that $a_{i} \neq b_{i}$. Then $a_{i-1}=b_{i-1}$. Assume without loss in generality that $a_{i}<b_{i}$, and consider the interval $\left[a_{i}, \min \left\{a_{i+1}, b_{i}\right\}\right)$. See that it is non-empty. Over this interval, it must be that:

$$
k_{x}=i \wedge l_{x}=i-1 \Longrightarrow\left(k_{x}-l_{x}\right)=1
$$

But then (1) can no more be a constant. Hence, $a_{i}=b_{i}$ for all i.

