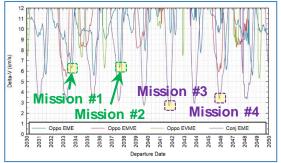
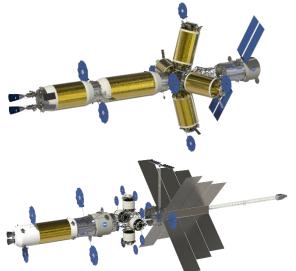
This document contains no ITAR or EAR controlled technical information

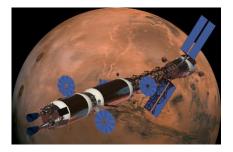
Space Nuclear Propulsion: From Current Efforts to a Future Human Mars Campaign February 2, 2022




Presenter: Tim Kokan / Timothy.Kokan@Rocket.com Future In-Space Operations (FISO) Briefing

Introduction

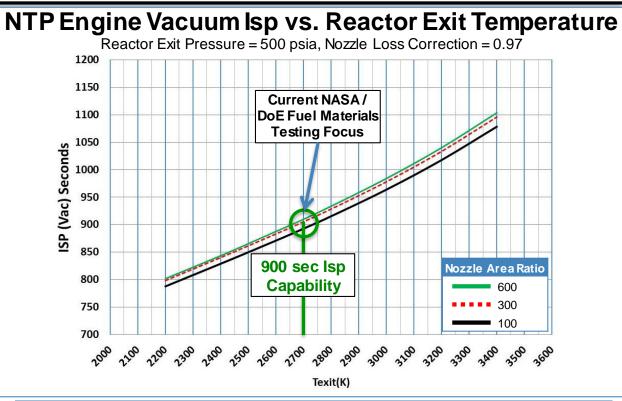
- Current Space Nuclear Propulsion Efforts
- Overview of Envisioned Human Mars Campaign
- Nuclear Thermal Propulsion (NTP) Human Mars Campaign
- Nuclear Electric Propulsion (NEP) / Chemical Propulsion Hybrid Human Mars Campaign
- Campaign Summary and Future Work





Current Space Nuclear Propulsion (SNP) Efforts

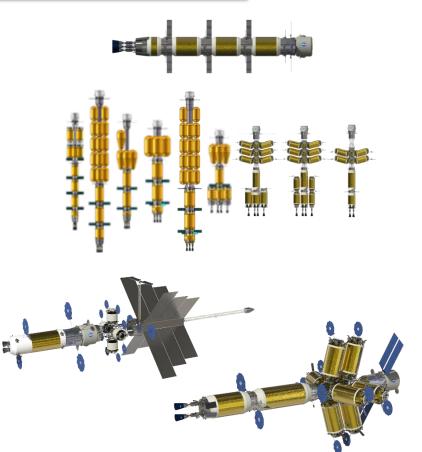
- In 2016, AR began supporting a NASA-led SNP effort to analyze and assess High-Assay Low Enriched Uranium (HALEU) for Nuclear Thermal Propulsion (NTP) with a goal to prove feasibility – proven
- Through 2019 and 2020, AR supported the NASA-led SNP team with the development of various Design Analysis Cycles providing increased fidelity for a NTP engine design leveraging the NASA-led work in fuels testing and reactor core design provided confidence in lsp ≥ 900 sec
- Current NASA-led NTP efforts focused on: fuels and materials testing; subscale prototype reactor and engine design (subscale prototype to demonstrate fuel and component technologies and operational capability); ground and flight test options; regulatory issues and mitigation requirements; and cryofluid management (CFM) technology
- Current NASA-led NEP effort is focused on developing a technology maturation plan for several key tech areas: Megawatt space power production, power conversion, heat rejection, high power / high voltage power management, high power (≥100 kWe) electric propulsion



3 of 29

NTP Isp Performance Capability

Current NASA / DOE Fuel Materials Testing Focused on Achieving LEU NTP Performance > 900 Sec – Target for Human Mars Missions

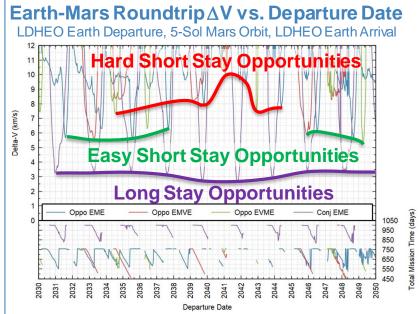

Overview of Envisioned Human Mars Campaign

This document contains no ITAR or EAR controlled technical information

Campaign Background

- Since 2016, AR has supported the NASA Space Nuclear Propulsion project with an initial focus on Conjunction Class Mars mission and Nuclear Thermal Propulsion (NTP) engine risk reduction
- In late 2019, attention shifted within NASA to Opposition Class Mars missions and AR developed several NTP vehicle configurations to satisfy a mission in the late 2030s
- Since 2020, AR has examined options for a human Mars campaign: a series of missions, starting with initial sorties to Mars, and leading to the eventual permanent human presence on the surface of Mars
 - Examined both NTP and NEP / Chem Mars Transport Vehicle (MTV) options

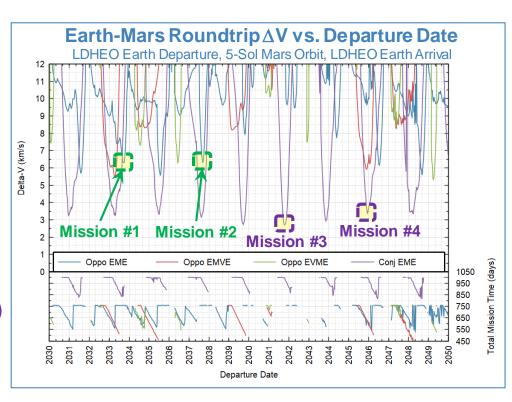
Campaign Goal and Key Assumptions


- Campaign Goal: The eventual human settlement of Mars, starting with crew on the surface of Mars in the late 2030's and the build-up of a surface outpost
- Crew Size: Four crew in Deep Space Habitat (DSH); Two crew to Mars surface for short stay missions; Four crew to Mars surface for long stay missions
- Mars Surface Site: Land at the same Mars surface site for initial missions to build up surface outpost
- Reusability: Deep Space Habitat is reusable; Crew and Cargo Mars Transport Vehicles (MTV), either NTP-based or NEP/Chem-based, are reusable and can be used for three missions; Mars surface habitats and surface power system are reusable
- In-Situ Resource Utilization (ISRU): ISRU of Mars atmospheric O₂ for Mars Ascent Vehicle (MAV) oxidizer (MAV fuel launched with MAV from Earth)
- Launch Vehicles: Leverage mixture of SLS B2 (Long 8.4m Fairing) and large commercial launch vehicles (Blue Origin New Glenn and SpaceX Starship)

 This document contains no ITAR or EAR controlled technical information

Campaign Mission Selection Rationale

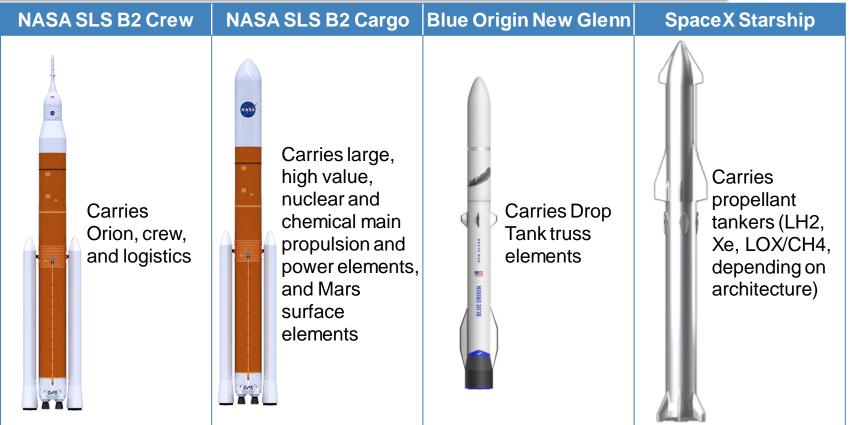
- Start with an uncrewed mission to shake down in-space transportation system
- First crewed mission is **short stay** minimizes required surface infrastructure, but challenge of more difficult interplanetary trajectories
 - Choose mission opportunity wisely: avoid hard short stay opportunities to limit in-space transportation system complexity
- Subsequent crewed missions are long stay
 - Enables more substantial surface science and exploration activities
 - Allows for development required for long duration surface infrastructure
 - Initially target the same surface location to build up surface outpost; eventually expand to other landing sites of interest This document contains no ITAR or EAR controlled technical information


8 of 29

Campaign Initial Missions

- Mission #1: 2033 Uncrewed short stay or flyby mission – dress rehearsal for first crewed mission
- Mission #2: 2037 Crew (2035 Cargo)
 - Crewed short stay mission first humans on the surface of Mars
- Mission #3: 2041 Crew (2039 Cargo)
 - Crewed long stay mission first human extended Mars surface stay
- Mission #4+: 2045 Crew (2043 Cargo)

 Series of crewed long stay missions with extended Mars surface stays, building up surface infrastructure



Common Campaign Elements Between NTP and NEP / Chem Human Mars Campaigns

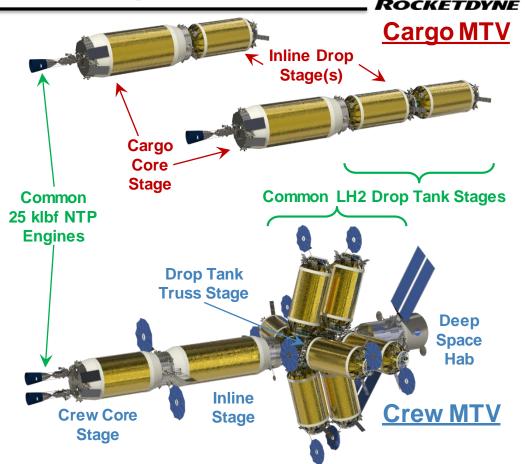
Launch Vehicles

Images Credit: NASA, Blue Origin, SpaceX

Mars Surface Elements

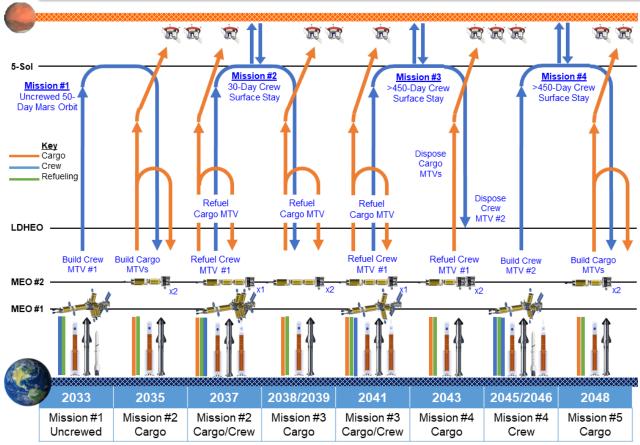
AEROJET ROCKETDYNE

Mars Descent Stage	Mars Ascent Vehicle	Mars Surface Habitat / Pressurized Rover	Long Duration Surface Habitat	Surface Logistics Module	Mars Surface Power System
Function: Transport	Function: Transport	Function: Provide	Function: Provide	Function: Provide	Function: Provide
Mars surface	crew from surface of	habitation and	habitation for the	logistics (food,	power to Mars
elements from Mars	Mars to Crew MTV	logistics for Mars	Mars crew for	water, other	Ascent Vehicle, LOX
intercept trajectory	in Mars orbit.	crew for descent	descent from Mars	supplies) for the	ISRU system, and
to surface of Mars.		from Mars orbit to	orbit to the surface	Mars crew while on	Mars Surface
One Mars Descent	Mass: 20 t during	the surface of Mars,	of Mars, and while	the surface for >400	Habitat systems
Stage is used for	EDL (incl ISRU	and while on the	on the surface for	days	while on the surface
each lander.	systems); 39 t at	surface for 30 days	>400 days		of Mars
	launch (not incl	-		Mass: 20 t	
Mass: 45 t fully	ISRU systems)	Mass: 20 t	Mass: 20 t, with no		Mass: 20 t
fueled	• •		logistics		
Images Credit: NASA					



NTP Human Mars Campaign

Cargo and Crew NTP Mars Transport Vehicles

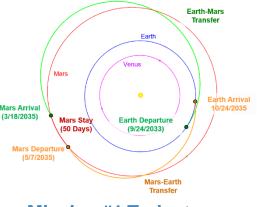

- Cargo and Crew MTV's provide in-space transportation for Mars landers and Crew in Deep Space Hab
- MTV's are reusable for up to three missions
- MTV's use common NTP engine for primary propulsion and common Drop Tank Stages
- Modular design enables MTV's to support a wide variety of missions throughout the campaign

This document contains no ITAR or EAR controlled technical information

AEROJET

Human Mars Exploration Campaign Using NTP

Mission #1: 2033 Uncrewed short stay mission – dress rehearsal for first crewed mission


- Mars analog of Artemis I
- Mission #2: 2037 Crewed short stay mission – first humans on the surface of Mars
 - Mars analog of Artemis III
- Mission #3: 2041 Crewed long stay mission – buildup of surface infrastructure through multiple missions
- Mission #4: 2045 Sustained long stay missions – series of extended Mars surface stays
 - Mars analog of follow-on Sustainable Artemis Missions

ImagesCredit: NASA, SpaceX, BlueOrigin

Mission #1: Uncrewed Opposition Class Mission

- Mission #1: Uncrewed short stay demonstration mission
- First mission in envisioned campaign, demonstrating vehicle performance and allowing additional development time for surface elements
- NTP Crew MTV (uncrewed) flies on 2033 EME Opposition trajectory
 - -Time away from Earth limited to 760 days; Mars orbit for 50 days
 - -Core Stage, Inline Stage, Drop Tank Truss, 7x Drop Tank Stages
 - -2x NTP engines operating at 848 sec (900 sec nominal)
 - -MTV mass at final assembly: 391 t; mass at Earth departure: 208 t
- Upon return to Earth, Crew MTV is returned to Medium Earth Orbit (MEO) maintenance orbit and prepped for Mission #2
- Launches: 2 SLS Cargo, 2 New Glenn, 11 Starship

Mission #1 Trajectory

Mission #2: Crewed 30-Day Surface Stay

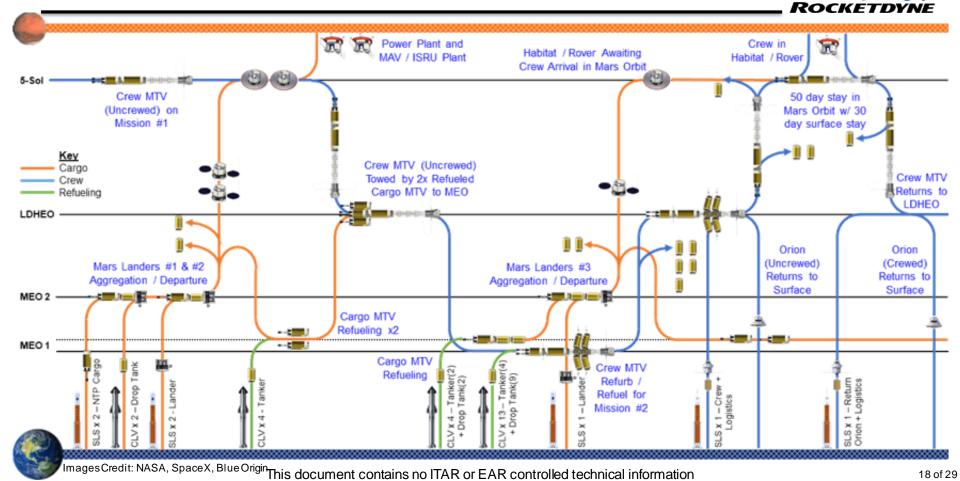
- Mission #2: Crewed short stay mission to surface of Mars
- NTP Crew MTV on 2037 EME Opposition trajectory
 - -Time away from Earth limited to 760 days; 2 Crew on surface for 30 days
 - -8 Drop Tank Stages required
 - -2x NTP engines operating at 888 sec (900 sec nominal)

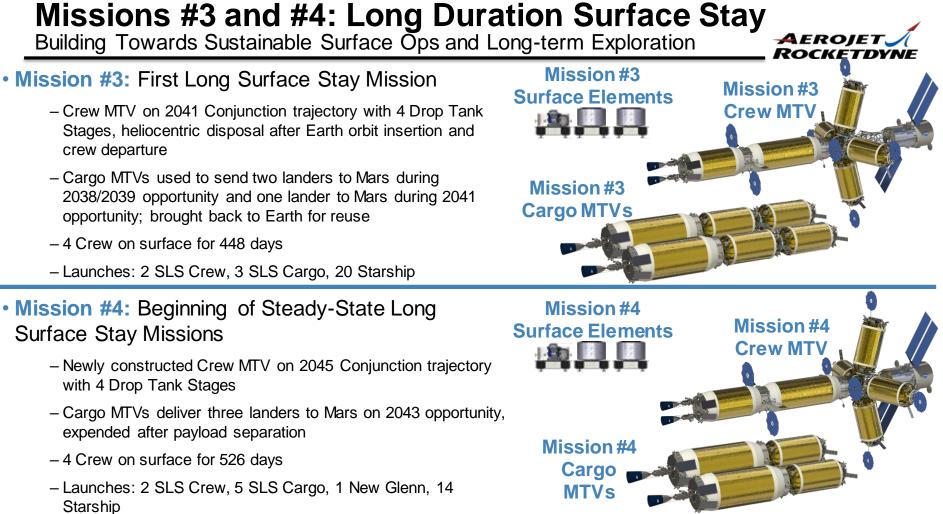
-MTV mass at final assembly: 471 t; mass at Earth departure: 301 t

- Two Cargo MTVs used to deliver three Mars landers on Mars intercept trajectories two in 2035, one in 2037
 - -65 t Mars Lander (45 t Mars Descent Stage + 20 t Cargo)
 - After payload separation, Cargo MTVs return to Earth orbit for reuse on later missions
- Upon return to Earth, Mission #2 Crew MTV prepped for Mission #3
- Launches: 2 SLS Crew, 5 SLS Cargo, 22 Starship

Lander Images Credit: NASA

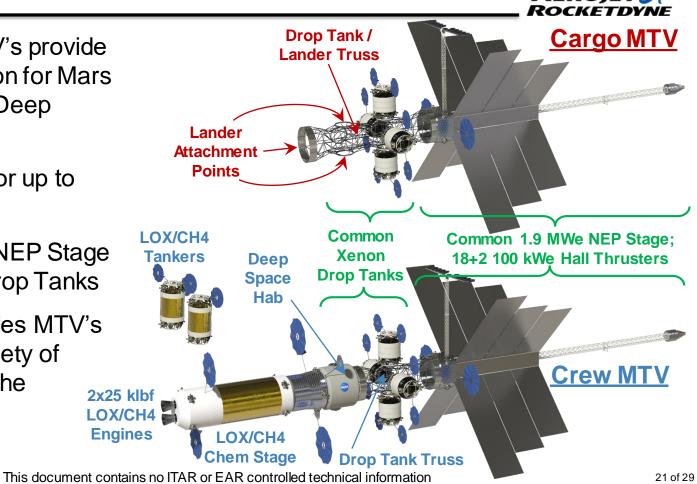
This document contains no ITAR or EAR controlled technical information



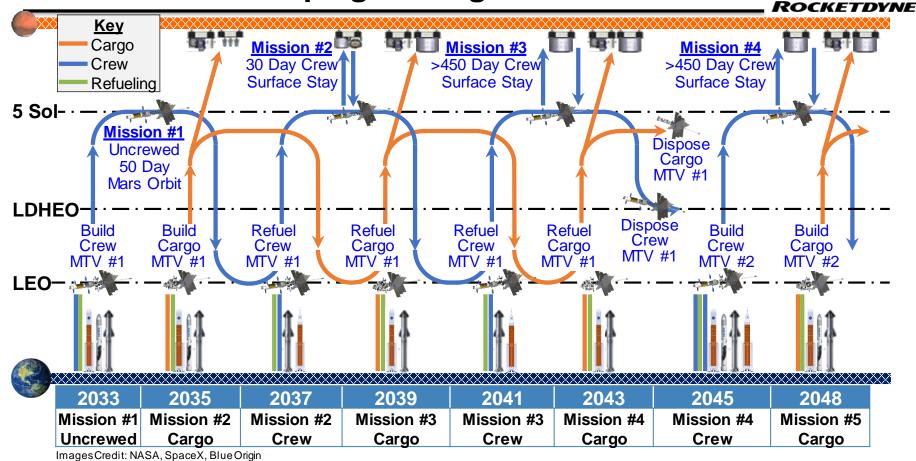

AEROJET

Mission Concept of Operations Example: Mission #2

Lander Images Credit: NASA



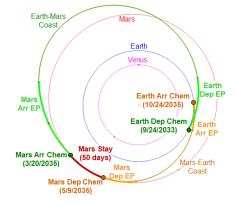
NEP / Chemical Hybrid Human Mars Campaign



Cargo and Crew NEP/Chem Mars Transport Vehicles

- Cargo and Crew MTV's provide in-space transportation for Mars landers and Crew in Deep Space Hab
- MTV's are reusable for up to three missions
- MTV's use common NEP Stage design with Xenon Drop Tanks
- Modular design enables MTV's to support a wide variety of missions throughout the campaign

Human Mars Campaign Using NEP / Chem


This document contains no ITAR or EAR controlled technical information

AEROIET

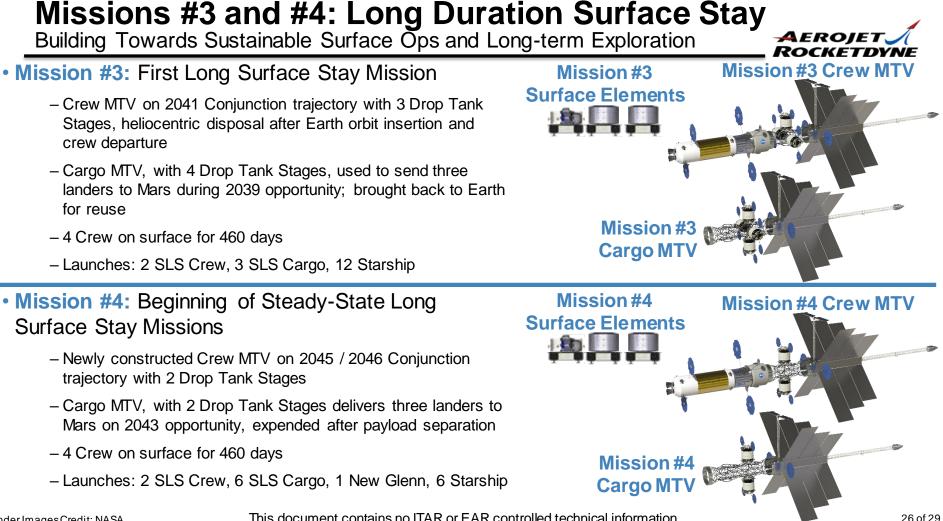
Mission #1: Uncrewed Opposition Class Mission

- Mission #1: Uncrewed short stay demonstration mission
- First mission in envisioned campaign, demonstrating vehicle performance and allowing additional development time for surface elements
- NEP/Chem Crew MTV (uncrewed) flies on 2033 EME Opposition trajectory
 - -Time away from Earth limited to 760 days; Mars orbit for 50 days
 - -NEP Stage, Chem Stage, Drop Tank Truss, 4x Drop Tank Stages
 - -18+2 100 kWe EP thrusters operating at 2500 sec
 - -2x 25 klbf LOX/CH4 chemical engines operating at 360 sec
 - -MTV mass at final assembly: 500 t; mass at Earth departure: 290 t
- Upon return to Earth, Crew MTV is returned to Low Earth Orbit (LEO) maintenance orbit and prepped for Mission #2
- Launches: 3 SLS Cargo, 1 New Glenn, 8 Starship This document contains no ITAR or EAR controlled technical information

Mission #1 Trajectory

Mission #2: Crewed 30-Day Surface Stay

- Mission #2: Crewed short stay mission to surface of Mars
- NEP/Chem Crew MTV on 2037 EME Opposition trajectory
 - -Time away from Earth limited to 760 days; 2 Crew on surface for 30 days
 - -4 Drop Tank Stages required
 - -18+2100 kWe EP thrusters operating at 2500 sec
 - -2x 25 klbf LOX/CH4 chemical engines operating at 360 sec
 - -MTV mass at final assembly: 519 t; mass at Earth departure: 297 t
- NEP Cargo MTV with 4 Drop Tank Stages used to deliver three Mars landers on Mars intercept trajectories 2035 Earth SOI departure
 - -65 t Mars Lander (45 t Mars Descent Stage + 20 t Cargo)
 - After payload separation, Cargo MTVs return to Earth orbit for reuse on later missions
- Upon return to Earth, Mission #2 Crew MTV prepped for Mission #3
- Launches: 2 SLS Crew, 5 SLS Cargo, 2 New Glenn, 12 Starship Lander Images Credit: NASA This document contains no ITAR or EAR controlled technical information

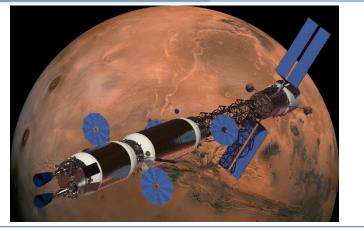


Mission #2 Surface Elements

Mission Concept of Operations Example: Mission #2 ROCKETDYNE Crew in Power Plant and Habitat / Rover MAV / ISRU Plant 5 Sol 50 day stay in Mars Habitat / Rover Crew MTV Orbit w/ 30 day Awaiting Crew Cargo MTV (Uncrewed) on Mars Surface Stav Arrival in Mars Orbit **Return to Earth** Mission #1 Crew MTV Refurb and Refuel for Next Mission LDHEO Crew MTV MEO (Uncrewed) Partially **Refueled in LDHEO** LEO Mars Crew Cargo Crew **Orion Return** MTV Return Orion + Crew MTV MTV (with crew) + Refurb Logistics for Mars Refueling **Refueling** Logistics 4 Cargo Next Missior. and Crew / for LDHEO Dump MTV Logistics Refuel to LEO Assembly launched for Next Transfer Crew MTV Mission to LDHEO Key **Refueling for** Cargo LDHEO to Crew **LEO** Transfer Refueling ****** ImagesCredit: NASA, SpaceX, BlueOrigin

Lander Images Credit: NASA

Campaign Summary and Future Work


- Four Mars missions
 - Three missions with crew to the surface of Mars
 - Total of 12 crew with 10 crew to the surface (2 for 30 days, 8 for 450+ days)
 - Nearly 3,750-4,000 person-days available for Mars surface science, exploration, and ops
- 9 Mars landers: 3 MAV's, 1 Pressurized Rover, 1 Fission Surface Power System, 2 Long Duration Surface Habs, 2 Surface Logistics Modules
- NTP-based Campaign:
 - 2 Reusable Crew MTV's, 4 Reusable Cargo MTV's
 - 1.2 SLS launches / yr, 4.1 CLV launches / yr

- NEP/Chem-based Campaign:
 - 2 Reusable Crew MTV's, 2 Reusable Cargo MTV's
 - 1.4 SLS launches / yr, 2.5 CLV launches / yr
- Established Mars surface outpost for continued / expanded future use

Future Architecture Work

- Further refine NTP vehicle architecture and campaign analysis, working toward architecture optimization
- Evaluate alternative mission concepts, surface and transportation elements, and NTP vehicle configurations
- Perform MAV optimization by trading propellant combinations, design configuration, insertion orbit, and ISRU technology
- MTV subsystem trades with a particular focus on NEP Stage subsystem design attributes: reactor/shield, power conversion, heat rejection, power management & distribution, structures
- Campaign refinement: mission duration trades, Mars orbit option trades, Chem Stage staging trades, all-NEP Crew MTV option for Conjunction missions, alternative NEP Stage uses at end-of-life, abort capabilities

