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Preface

Spectral theory is an important part of functional analysis. It has numerous appli-
cations in many parts of mathematics and physics including matrix theory, func-
tion theory, complex analysis, differential and integral equations, control theory
and quantum physics.

In recent years, spectral theory has witnessed an explosive development.
There are many types of spectra, both for one or several commuting operators,
with important applications, for example the approximate point spectrum, Taylor
spectrum, local spectrum, essential spectrum, etc.

The present monograph is an attempt to organize the available material
most of which exists only in the form of research papers scattered throughout the
literature. The aim is to present a survey of results concerning various types of
spectra in a unified, axiomatic way.

The central unifying notion is that of a regularity, which in a Banach algebra
is a subset of elements that are considered to be “nice”. A regularity R in a Banach
algebra A defines the corresponding spectrum σR(a) = {λ ∈ C : a − λ /∈ R} in
the same way as the ordinary spectrum is defined by means of invertible elements,
σ(a) = {λ ∈ C : a − λ /∈ Inv(A)}.

Axioms of a regularity are chosen in such a way that there are many natural
interesting classes satisfying them. At the same time they are strong enough for
non-trivial consequences, for example the spectral mapping theorem.

Spectra of n-tuples of commuting elements of a Banach algebra are described
similarly by means of a notion of joint regularity. This notion is closely related to
the axiomatic spectral theory of Żelazko and S�lodkowski.

The book is organized in five chapters. The first chapter contains spectral
theory in Banach algebras which form a natural frame for spectral theory of op-
erators.

In the second chapter the spectral theory of Banach algebras is applied to
operators. Of particular interest are regular functions – operator-valued functions
whose ranges (kernels) behave continuously. Applied to the function z �→ T − z
where T is a fixed operator, this gives rise to the important class of Kato operators
and the corresponding Kato spectrum (studied in the literature under many names,
e.g., semi-regular operators, Apostol spectrum etc.).
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The third chapter gives a survey of results concerning various types of essen-
tial spectra, Fredholm and Browder operators etc.

The next chapter concentrates on the Taylor spectrum, which is by many
experts considered to be the proper generalization of the ordinary spectrum of
single operators. The most important property of the Taylor spectrum is the exis-
tence of the functional calculus for functions analytic on a neighbourhood of the
Taylor spectrum. We present the Taylor functional calculus in an elementary way,
without the use of sheaf theory or cohomological methods.

Further we generalize the concept of regular functions. We introduce and
study operator-valued functions that admit finite-dimensional discontinuities of
the kernel and range. This is closely related with stability results for the index of
complexes of Banach spaces.

The last chapter is concentrated on the study of orbits of operators. By
an orbit of an operator T we mean a sequence {T nx : n = 0, 1, . . . } where x
is a fixed vector. Similarly, a weak orbit is a sequence of the form {〈T nx, x∗〉 :
n = 0, 1, . . . } where x ∈ X and x∗ ∈ X∗ are fixed, and a polynomial orbit
is a set {p(T )x : p polynomial}. These notions, which originated in the theory
of dynamical systems, are closely related to the invariant subspace problem. We
investigate these notions by means of the essential approximate point spectrum.

All results are presented in an elementary way. We assume only a basic knowl-
edge of functional analysis, topology and complex analysis. Moreover, basic notions
and results from the theory of Banach spaces, analytic and smooth vector-valued
functions and semi-continuous set-valued functions are given in the Appendix.

The author would like to express his gratitude to many experts in the field
who influenced him in various ways. In particular, he would like to thank V. Pták
for his earlier guidance and later interest in the subject, and A. So�ltysiak and
J. Zemánek who read parts of the manuscript and made various comments. The au-
thor is further indebted to V. Kordula, W. Żelazko, M. Mbekhta, F.-H. Vasilescu,
C. Ambrozie, E. Albrecht, F. Leon and many others for cooperation and useful
discussions over the years. Finally, the author would like to acknowledge that this
book was written while he was partially supported by grant No. 201/00/0208 of
the Grant Agency of the Czech Republic.

Prague
November 2001

V. M.
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Since this book was written several years ago, further progress has been made in
some parts of the theory. I use the opportunity to include some of the new results,
improve the arguments in other places, and also to correct some unfortunate errors
and misprints that appeared in the first edition.

My sincere thanks are due to A. So�ltysiak, J. Bračič and J. Vršovský who
contributed to the improvement of the text. The work was supported by grant
No. 201/06/0128 of GA ČR.

Prague
April 2007
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Chapter I

Banach Algebras

In this chapter we study spectral theory in Banach algebras. Basic concepts and
classical results are summarized in the first two sections. In the subsequent sections
we study the approximate point spectrum, which is one of the most important
examples of a spectrum in Banach algebras. The approximate point spectrum is
closely related with the notions of removable and non-removable ideals.

The axiomatic theory of spectrum is introduced in Sections 6 and 7. This
enables us to study various types of spectra, both of single elements and commuting
n-tuples, in a unified way.

All algebras considered here are complex and unital. The field of complex
numbers will be denoted by C.

1 Basic Concepts

This section contains basic definitions and results from the theory of Banach al-
gebras. For more details see the monograph [BD] or some other textbook about
Banach algebras (e.g., [Ric], [Zel6], [Pal]).

Definition 1. An algebra A is a complex linear space A together with a multi-
plication mapping (x, y) �→ xy from A × A into A which satisfies the following
conditions (for all x, y, z ∈ A, α ∈ C):

(i) (xy)z = x(yz);
(ii) x(y + z) = xy + xz, (x + y)z = xz + yz;
(iii) (αx)y = α(xy) = x(αy);
(iv) there exists a unit element e ∈ A such that e �= 0 and ex = xe = x for all

x ∈ A.

It is easy to show that the unit element is determined uniquely. Indeed, if
e′ is another unit element, then e = ee′ = e′. The unit element of an algebra A
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will be denoted by 1A, (or simply 1 when no confusion can arise). Similarly, for a
complex number α, the symbol α also denotes the algebra element α · 1A.

Definition 2. Let A be an algebra. An algebra seminorm in A is a function ‖ · ‖ :
A → 〈0,∞), x �→ ‖x‖ satisfying (for all x, y ∈ A, α ∈ C):

(i) ‖αx‖ = |α| · ‖x‖;
(ii) ‖x + y‖ ≤ ‖x‖ + ‖y‖;
(iii) ‖xy‖ ≤ ‖x‖ · ‖y‖;
(iv) ‖1A‖ = 1.

An algebra norm in A is an algebra seminorm such that

(v) if ‖x‖ = 0, then x = 0.

Definition 3. A normed algebra is a pair (A, ‖ ·‖), where A is an algebra and ‖ ·‖ is
an algebra norm in A. A Banach algebra is a normed algebra that is complete in
the topology defined by the norm (in other words, (A, ‖ · ‖) considered as a linear
space is a Banach space).

Examples 4. There are many examples of Banach algebras that appear naturally
in functional analysis.

(i) For the purpose of this monograph the most important example of a Banach
algebra is the algebra B(X) of all (bounded linear) operators acting on a
Banach space X , dim X ≥ 1, with naturally defined algebraic operations
and with the operator-norm ‖T ‖ = sup{‖Tx‖ : x ∈ X, ‖x‖ = 1}. The unit
element in B(X) is the identity operator I defined by Ix = x (x ∈ X).
In particular, if dimX = n < ∞, then B(X) can be identified with the
algebra of all n × n complex matrices.

(ii) Let K be a non-empty compact space. Then the algebra C(K) of all contin-
uous complex-valued functions on K with the sup-norm ‖f‖ = sup{|f(z)| :
z ∈ K} is a Banach algebra.

(iii) Let E be a non-empty set. The set of all bounded complex-valued functions
defined on E with pointwise algebraic operations and the sup-norm is a Ba-
nach algebra.
Similarly, let L∞ be the set of all bounded measurable complex-valued func-
tions defined on the real line (as usually, we identify two functions that differ
only on a set of Lebesgue measure zero). Then L∞ with pointwise algebraic
operations and the usual L∞ norm ‖f‖∞ = ess sup{|f(t)| : t ∈ R} is a
Banach algebra.

(iv) Let D be the open unit disc in the complex plane. Denote by H∞ the algebra
of all functions that are analytic and bounded on D.
The disc algebra A(D) is the algebra of all functions that are continuous on
D and analytic on D. Both H∞ and A(D) with the sup-norm are important
examples of Banach algebras.
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(v) Let S be a semigroup with unit and let �1(S) be the set of all functions
f : S → C satisfying ‖f‖ =

∑
s∈S |f(s)| < ∞. Then �1(S) with the multipli-

cation defined by (fg)(s) =
∑

t1t2=s f(t1)g(t2) is a Banach algebra.
More generally, if α : S → (0,∞) is a submultiplicative function and
α(1S) = 1, then {f : S → C :

∑ |f(s)|α(s) < ∞} is a Banach algebra
with the norm ‖f‖ =

∑ |f(s)|α(s) and the above-defined multiplication.

(vi) Let L1 be the set of all integrable functions f : R → C. Define the multipli-
cation and norm in L1 by

(f ∗ g)(s) =
∫ ∞

−∞
f(t)g(s − t) dt

and
‖f‖ =

∫ ∞

−∞
|f(t)| dt.

Then L1 satisfies all axioms of Banach algebras except of the existence of the
unit element. The unitization (see C.1.1) L1(R)⊕C with the norm ‖f ⊕λ‖ =
‖f‖ + |λ| and multiplication (f ⊕ λ) · (g ⊕ µ) = f ∗ g + λg + µf ⊕ λµ is a
Banach algebra.

Remark 5. Sometimes little bit different definitions of Banach algebras are used.
Frequently the existence of the unit element is not assumed or condition (iii) of
Definition 2 is replaced by a weaker condition of continuity of the multiplication.
However, it is possible to reduce these more general definitions of Banach algebras
to the present definition, see C.1.1 and C.1.3. Many results get a more natural
formulation in this way and the proofs are not obscured by technical difficulties.

Definition 6. Let A,B be algebras. A linear mapping ρ : A → B is called a
homomorphism if ρ(xy) = ρ(x)ρ(y) for all x, y ∈ A and ρ(1A) = 1B.

Let A and B be normed algebras. A homomorphism ρ : A → B is continuous
if ‖ρ‖ := sup{‖ρ(x)‖ : x ∈ A, ‖x‖ = 1} < ∞. A continuous homomorphism ρ
satisfying inf{‖ρ(x)‖ : x ∈ A, ‖x‖ = 1} > 0 is called an isomorphism. A homo-
morphism ρ is called isometrical if ‖ρ(x)‖ = ‖x‖ for all x ∈ A.

A subset M of an algebra A is called a subalgebra if it is closed under the
algebraic operations (i.e., M is a linear subspace of A, 1A ∈ M and x, y ∈ M ⇒
xy ∈ M).

If A is a closed subalgebra of a Banach algebra B, then A with the restricted
norm is again a Banach algebra.

Each normed algebra A has a completion – the uniquely determined (up to
an isometrical isomorphism) Banach algebra B such that A is a dense subalgebra
of B.

Remark 7. Let A be a Banach algebra. For a ∈ A define the operator La : A → A
by Lax = ax. It is easy to verify that the mapping a �→ La is an isometrical
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homomorphism A → B(A). If we identify A with the image of this homomorphism,
then we can consider A as a closed subalgebra of B(A).

This simple but important construction enables us often to generalize results
from operator theory to Banach algebras.

Definition 8. Let A be a Banach algebra. A set J ⊂ A is called a left (right) ideal
in A if J is a subspace of A and ax ∈ J (xa ∈ J) for all x ∈ J , a ∈ A. J is a
two-sided ideal in A if J is both a left and right ideal in A. An ideal J ⊂ A (left,
right or two-sided) is called proper if J �= A. Equivalently, J is proper if and only
if 1A /∈ J .

Let ρ : A → B be a continuous homomorphism from a Banach algebra A to
a Banach algebra B. It is easy to see that Ker ρ = {x ∈ A : ρ(x) = 0} is a closed
two-sided ideal in A.

Conversely, if J ⊂ A is a closed proper two-sided ideal in A, then we can
define a multiplication in the quotient space A/J by (x+J)(y +J) = xy +J . The
space A/J then becomes a Banach algebra with the unit 1A+J . For the canonical
homomorphism π : A → A/J defined by πx = x+J (x ∈ A) we have Kerπ = J .

Invertible elements

Definition 9. Let x, y be elements of an algebra A. Then y is called a left (right)
inverse of x if yx = 1 (xy = 1). If y is both a left and right inverse of x, then it is
called an inverse of x. If x has a left inverse y and a right inverse z, then y = z.
Indeed, we have y = y(xz) = (yx)z = z. In particular, an element has at most one
inverse.

An element of A for which there exists an inverse (left inverse, right inverse)
will be called invertible (left invertible, right invertible). The unique inverse of an
invertible element x will be denoted by x−1. The set of all invertible elements in an
algebra A will be denoted by Inv(A). Similarly, the set of all left (right) invertible
elements in A will be denoted by Invl(A) and Invr(A),

Invl(A) = {x ∈ A : there exists y ∈ A such that yx = 1},

Invr(A) = {x ∈ A : there exists y ∈ A such that xy = 1}.
Obviously, Inv(A) = Invl(A) ∩ Invr(A).

It is easy to see that an element a ∈ A is left (right) invertible if and only if
there is no proper left (right) ideal containing a.

Remark 10. The left and right properties in Banach algebras are perfectly sym-
metrical. The simplest way how to give an exact meaning to this statement is to
consider the following construction: for a Banach algebra A consider the reversed
multiplication a � b = ba for all a, b ∈ A. In this way we obtain the Banach
algebra revA, and the left ideals, left inverses etc. in A correspond to the right
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objects in the algebra revA. Using this construction, each one-sided result implies
immediately the corresponding symmetrical result.

Theorem 11. Let A be a Banach algebra. Then:

(i) if a ∈ A, ‖a‖ < 1, then 1 − a ∈ Inv(A);
(ii) the sets Invl(A), Invr(A) and Inv(A) are open;

(iii) the mapping x �→ x−1 is continuous in Inv(A).

Proof. (i) If ‖a‖ < 1, then ‖aj‖ ≤ ‖a‖j for all j, so the series
∑∞

j=0 aj is convergent
in A and

(1 − a)
∞∑

j=0

aj =
( ∞∑

j=0

aj
)
(1 − a) = lim

k→∞

( k∑
j=0

aj −
k∑

j=0

aj+1

)
= lim

k→∞
(1 − ak+1) = 1.

(ii) Let yx = 1 and let ‖u‖ < ‖y‖−1. Then y(x + u) = 1 + yu, where ‖yu‖ ≤
‖y‖ · ‖u‖ < 1. By (i), y(x + u) is invertible and

(
y(x + u)

)−1
y(x + u) = 1. Thus

x + u ∈ Invl(A). Hence Invl(A) is an open set.
Similarly, Invr(A) and Inv(A) = Invl(A) ∩ Invr(A) are open subsets of A.

(iii) Let a ∈ Inv(A) and let ‖x‖ < ‖a−1‖−1. Then the series
∑∞

i=0(xa−1)i is
convergent in A and one can check directly that

(a − x)−1 = a−1
∞∑

i=0

(xa−1)i.

Thus

‖(a − x)−1 − a−1‖ =
∥∥∥∥a−1

∞∑
i=1

(xa−1)i

∥∥∥∥
≤ ‖a−1‖ ·

∞∑
i=1

‖x‖i · ‖a−1‖i =
‖x‖ · ‖a−1‖2

1 − ‖x‖ · ‖a−1‖ ,

and so (a − x)−1 → a−1 for ‖x‖ → 0. �

Lemma 12. Let x, xn, yn (n = 1, 2, . . . ) be elements of a Banach algebra A, xn → x
and supn{‖yn‖} < ∞. If ynxn = 1 for all n, then x ∈ Invl(A).

If xnyn = 1 for all n, then x ∈ Invr(A).

Proof. Choose n such that ‖x − xn‖ < (sup ‖yn‖)−1. Then ynx = ynxn + yn(x −
xn) = 1 + yn(x − xn), where ‖yn(x − xn)‖ < 1, and so ynx ∈ Inv(A). Thus
(ynx)−1ynx = 1 and x ∈ Invl(A).

The second statement can be proved similarly. �

Definition 13. An element a of a Banach algebra A is called a left (right) divisor
of zero if ax = 0 (xa = 0) for some non-zero element x ∈ A.
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An element a of a Banach algebra A is called a left topological divisor of zero
if inf

{‖ax‖ : x ∈ A, ‖x‖ = 1
}

= 0. Similarly, a is a right topological divisor of zero
if inf

{‖xa‖ : x ∈ A, ‖x‖ = 1
}

= 0.

Topological divisors of zero are closely related to non-invertible elements.

Theorem 14. Let a be an element of a Banach algebra A. Then:

(i) if a is left (right) invertible, then a is not a left (right) topological divisor of
zero;

(ii) if a is invertible, then a is neither a left nor a right topological divisor of zero;

(iii) if a ∈ ∂ Invl(A) (the topological boundary of Invl(A)), then a is a right
topological divisor of zero;

(iv) if a ∈ ∂ Inv(A), then a is both a left and right topological divisor of zero.

Proof. (i) Suppose that b is a left inverse of a, ba = 1. For x ∈ A, ‖x‖ = 1 we have
1 = ‖x‖ = ‖bax‖ ≤ ‖b‖ · ‖ax‖, so inf

{‖ax‖ : x ∈ A, ‖x‖ = 1
} ≥ ‖b‖−1 > 0 and a

is not a left topological divisor of zero.
The right version can be proved similarly.

This implies also (ii).

(iii) Let a ∈ ∂ Invl(A). Then there exist an, bn ∈ A such that limn→∞ an = a and
bnan = 1 for all n. By Lemma 12, lim ‖bn‖ = ∞. Set cn = bn

‖bn‖ . Then ‖cn‖ = 1
for every n and

‖cna‖ =
∥∥∥∥ bn

‖bn‖(an + (a − an))
∥∥∥∥ ≤ 1

‖bn‖ + ‖a − an‖,

so limn→∞ ‖cna‖ = 0 and a is a right topological divisor of zero.

(iv) Let a ∈ ∂ Inv(A). Then there exist an ∈ Inv(A) with an → a (n → ∞). By
Lemma 12, limn→∞ ‖a−1

n ‖ = ∞. Set cn = a−1
n

‖a−1
n ‖ . Then ‖cn‖ = 1 and, as in (iii),

one can get easily that ‖cna‖ → 0 and ‖acn‖ → 0. Thus a is both a left and right
topological divisor of zero. �

Spectrum and spectral radius

Definition 15. Let a be an element of a Banach algebra A. The spectrum of a in
A is the set of all complex numbers λ such that a − λ is not invertible in A. The
spectrum of a in A will be denoted by σA(a), or σ(a) if the algebra is clear from
the context.

By Theorem 11, σ(a) is a closed subset of C. The function λ �→ (a − λ)−1

defined in the open set C \ σ(a) is called the resolvent of a.

Theorem 16. Let a be an element of a Banach algebra A. Then the resolvent
λ �→ (a − λ)−1 is analytic in C \ σ(a).
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Proof. For λ, µ /∈ σ(a) we have

(a − µ)−1 − (a − λ)−1 = (a − µ)−1
(
(a − λ) − (a − µ)

)
(a − λ)−1

= (µ − λ)(a − µ)−1(a − λ)−1,

and so

lim
µ→λ

(a − µ)−1 − (a − λ)−1

µ − λ
= (a − λ)−2.

Thus the function λ �→ (a − λ)−1 is analytic in C \ σ(a). �

The following theorem is one of the most important results in the theory of
Banach algebras.

Theorem 17. Let x be an element of a Banach algebra A. Then σ(x) is a non-empty
compact set.

Proof. Let λ ∈ C, |λ| > ‖x‖. Then the series
∑∞

j=0
xj

λj+1 is convergent in A and

(x − λ)
∞∑

j=0

−xj

λj+1
= −

∞∑
j=1

xj

λj
+

∞∑
j=0

xj

λj
= 1.

Similarly
(∑∞

j=0
−xj

λj+1

)
(x − λ) = 1, and so λ /∈ σ(x). Thus σ(x) is bounded and

hence compact.

Suppose on the contrary that σ(x) = ∅. Consider the function f : C → A
defined by f(λ) = (x − λ)−1. By Theorem 16, f is an entire function. For |λ| >

‖x‖ we have f(λ) =
∑∞

j=0
−xj

λj+1 , and so ‖f(λ)‖ ≤ ∑∞
j=0

‖x‖j

|λ|j+1 = 1
|λ|−‖x‖ . Thus

f(λ) → 0 for λ → ∞. By the Liouville theorem, f(λ) = 0 for each λ ∈ C. This is
a contradiction, since f(λ) is invertible for each λ. �

Remark 18. Let T be an operator on a finite-dimensional Banach space X (i.e., T
is a square matrix). Then σ(T ) is finite and consists of eigenvalues of T .

Since the eigenvalues of a matrix are precisely the roots of its characteristic
polynomial, the non-emptiness of σ(T ) is equivalent to the “fundamental theorem
of algebra” that each complex polynomial has a root. This illustrates how deep is
the previous theorem, and also that operators on finite-dimensional spaces are far
from being trivial.

Corollary 19. (Gelfand, Mazur) Let A be a Banach algebra such that every non-
zero element of A is invertible (i.e., A is a field). Then A consists of scalar multiples
of the identity, A = {λ · 1A : λ ∈ C}. Thus A is isometrically isomorphic to the
field of complex numbers C.

Proof. For every x ∈ A there exists λ ∈ σ(x) such that x − λ · 1A /∈ Inv(A). Thus
x = λ · 1A. �
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Definition 20. The spectral radius r(x) of an element x ∈ A is the number

r(x) = max{|λ| : λ ∈ σ(x)}.
Lemma 21. Let s1, s2, . . . be non-negative real numbers. Then:

(i) if sn+m ≤ sn · sm for all m, n ∈ N, then the limit limn→∞ s
1/n
n exists and is

equal to infn s
1/n
n ;

(ii) if sn > 0 and sn+m ≥ sn · sm for all m, n ∈ N, then the limit limn→∞ s
1/n
n

exists and is equal to supn s
1/n
n .

Proof. (i) Write t = infn s
1/n
n and let ε > 0. Fix k such that s

1/k
k < t + ε. Any

number n ≥ k can be expressed in the form n = n1k + r, where 0 ≤ r ≤ k− 1 and
n1 ≥ 1. Then

sn ≤ sr · sn1
k ≤ max{1, s1, s2, . . . , sk−1} · (t + ε)kn1

and
s1/n

n ≤ max{1, s1, s2, . . . , sk−1}1/n · (t + ε)kn1/n → t + ε

as n → ∞, since kn1/n → 1. Thus lim supn→∞ s
1/n
n ≤ t + ε and, since ε was

arbitrary, we have limn→∞ s
1/n
n = t = infn s

1/n
n .

(ii) The second statement can be reduced to (i) by considering the numbers s−1
n .
�

Theorem 22. (spectral radius formula) Let a be an element of a Banach algebra A.
Then

r(a) = lim
n→∞ ‖an‖1/n = inf

n
‖an‖1/n.

Proof. Since ‖am+n‖ ≤ ‖am‖ · ‖an‖ for all m, n, by the previous lemma the limit
lim ‖an‖1/n exists and is equal to the infimum.

Let λ be a complex number with |λ| > lim ‖an‖1/n. Then
∑∞

n=0
an

λn+1 con-
verges and it is easy to verify that (a − λ)−1 =

∑∞
n=0

−an

λn+1 . Consequently, r(a) ≤
lim ‖an‖1/n.

It remains to show that lim ‖an‖1/n ≤ r(a). Consider the function f(λ) =
(1 − λa)−1.

For λ �= 0 we have f(λ) = λ−1(λ−1 − a)−1. Clearly f is analytic in {λ ∈ C :
0 < |λ| < r(a)−1} and continuous in {λ ∈ C : |λ| < r(a)−1}. So f is analytic in
{λ ∈ C : |λ| < r(a)−1} (if r(a) = 0, then f is analytic in C). For |λ| < ‖a‖−1 we
can write f(λ) = (1−λa)−1 =

∑∞
n=0 anλn. Therefore we have f(λ) =

∑∞
n=0 anλn

for all λ, |λ| < r(a)−1.
For the radius of convergence of the power series

∑
anλn we have (see The-

orem A.2.1)
lim inf ‖an‖−1/n ≥ r(a)−1,

and so
r(a) ≥ lim sup ‖an‖1/n = lim ‖an‖1/n. �
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Definition 23. Let M be a subset of a Banach algebra A. The commutant of M is
defined by M ′ =

{
a ∈ A : am = ma (m ∈ M)

}
. We write M ′′ instead of (M ′)′

for the second commutant of M . If xy = yx for all x, y ∈ A, then A is called
commutative.

Lemma 24. Let M, N be subsets of a Banach algebra A. Then:

(i) M ′ is a closed subalgebra of A;

(ii) if M ⊂ N , then M ′ ⊃ N ′ and M ′′ ⊂ N ′′;

(iii) M ⊂ M ′′ and M ′ = M ′′′;

(iv) if M consists of mutually commuting elements, then M ⊂ M ′′ ⊂ M ′ and M ′′

is a commutative Banach algebra.

Proof. The first three statements are clear.
To see (iv), note first that M ⊂ M ′. Therefore M ′′ ⊂ M ′ = M ′′′, which

means that M ′′ is a commutative algebra. �

Lemma 25. Let a ∈ A and let λ ∈ C \ σ(a). Then (a− λ)−1 ∈ {a}′′. In particular,
σ(a) equals to the spectrum of a in the commutative Banach algebra {a}′′.
Proof. Let b ∈ A and ab = ba. Then (a − λ)b = b(a − λ) and, by multiplicating
this equality from both sides by (a − λ)−1, we get b(a − λ)−1 = (a − λ)−1b. Thus
(a − λ)−1 ∈ {a}′′. �

Theorem 26. Let A,B be Banach algebras, ρ : A → B a homomorphism and let
x ∈ A. Then σB(ρ(x)) ⊂ σA(x).

Proof. Let λ ∈ C \ σA(x) and let y = (x − λ)−1 ∈ A. Then (ρ(x) − λ) · ρ(y) =
ρ(x − λ) · ρ(y) = ρ(1A) = 1B and similarly ρ(y) · (ρ(x) − λ) = 1B. �

Theorem 27. Let A be a subalgebra of a Banach algebra B and let x ∈ A. Then:

(i) if x is a left (right) topological divisor of zero in A, then x is a left (right)
topological divisor of zero in B;

(ii) ∂σA(x) ⊂ σB(x) ⊂ σA(x).

Proof. (i) We have

inf
{‖xb‖ : b ∈ B, ‖b‖ = 1

} ≤ inf
{‖xa‖ : a ∈ A, ‖a‖ = 1

}
= 0.

(ii) If λ ∈ ∂σA(x), then x − λ is a left topological divisor of zero in A, and so, by
(i), λ ∈ σB(x).

The inclusion σB(x) ⊂ σA(x) follows from the previous theorem. �

Consequently, σA(x) is obtained by filling in some holes in σB(x).
In the algebra B(X) we have additional information.
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Theorem 28. Let X be a Banach space, dimX ≥ 1 and let T ∈ B(X). Then:

(i) T is invertible if and only if T is one-to-one and onto;

(ii) if λ ∈ ∂σ(T ), then (T − λ)X �= X and inf
{‖(T − λ)x‖ : x ∈ X, ‖x‖=1

}
= 0.

Proof. (i) Follows from the open mapping theorem.

(ii) By Theorem 14, there exist operators Sn ∈ B(X) (n ∈ N) such that ‖Sn‖ = 1
and ‖Sn(T − λ)‖ → 0. For each n there exists xn ∈ X with ‖xn‖ = 1 and
‖Snxn‖ ≥ 1/2. Suppose on the contrary that T − λ is onto. By the open mapping
theorem, there exists k > 0 such that (T − λ)BX ⊃ kBX where BX denotes the
closed unit ball in X . Thus there exists yn ∈ X such that (T − λ)yn = xn and
‖yn‖ ≤ k−1. Hence

‖Sn(T − λ)‖ ≥
∥∥∥∥Sn(T − λ)

yn

‖yn‖
∥∥∥∥ =

1
‖yn‖‖Snxn‖ ≥ k

2
,

a contradiction with the assumption that ‖Sn(T − λ)‖ → 0.
Similarly, there exist operators Rn ∈ B(X) (n ∈ N) such that ‖Rn‖ = 1 and

‖(T − λ)Rn‖ → 0. There exist vectors xn ∈ X with ‖xn‖ = 1 and ‖Rnxn‖ ≥ 1/2.
Set yn = Rnxn

‖Rnxn‖ . Then ‖yn‖ = 1 and

‖(T − λ)yn‖ =
‖(T − λ)Rnxn‖

‖Rnxn‖ ≤ 2‖(T − λ)Rn‖ → 0.

Hence inf
{‖(T − λ)x‖ : x ∈ X, ‖x‖ = 1

}
= 0. �

Theorem 29. Let a, b ∈ A and let λ be a non-zero complex number. Then ab − λ
is left (right) invertible if and only if ba − λ is left (right) invertible.

Proof. Let c ∈ A, c(ab − λ) = 1. Then

(−λ−1 + λ−1bca)(ba − λ) = −λ−1ba + 1 + λ−1bcaba− bca

= 1 − λ−1ba + λ−1bc(ab − λ)a = 1.

Similarly, if (ba − λ)d = 1 for some d ∈ A, then

(ab − λ)(−λ−1 + λ−1adb) = 1. �

Corollary 30. Let x, y be elements of a Banach algebra A. Then

σ(xy) \ {0} = σ(yx) \ {0}.

In general, the spectrum and the spectral radius in a Banach algebra do not
behave continuously, see C.1.14. However, they are always upper semicontinuous
(for definitions and basic properties of semicontinuous set-valued functions see Ap-
pendix A.4). Moreover, we prove later in Section 6 that the set of all discontinuity
points of the spectrum is a set of the first category.
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Theorem 31. (upper semicontinuity of the spectrum) Let A be a Banach algebra,
x ∈ A, let U be an open neighbourhood of σ(x). Then there exists ε > 0 such that
σ(y) ⊂ U for all y ∈ A with ‖y − x‖ < ε. In particular, the function x �→ r(x) is
upper semicontinuous.

Proof. Suppose on the contrary that for every n there exist xn ∈ A and λn ∈
σ(xn) \ U such that ‖xn − x‖ < 1/n. Then |λn| ≤ ‖xn‖ ≤ ‖x‖ + 1, and so there
exists a subsequence of (λn) converging to some λ ∈ C\U . Since xn−λn /∈ Inv(A),
we have x − λ /∈ Inv(A) by Theorem 11. Thus λ ∈ σ(x) and λ /∈ U , which is a
contradiction with the assumption that U is a neighbourhood of σ(x). �

Equivalent norms

Two norms ‖ · ‖ and ‖ · ‖′ on a vector space X are called equivalent if there exists
a positive constant k such that

k−1‖x‖ ≤ ‖x‖′ ≤ k‖x‖

for all x ∈ X .

Theorem 32. Let (A, ‖ · ‖) be a Banach algebra and let S ⊂ A be a bounded
semigroup. Then there exists an equivalent algebra norm ‖ · ‖′ on A such that
‖s‖ ≤ 1 for every s ∈ S.

More precisely, there is such a norm ‖ · ‖′ satisfying

k−1‖a‖ ≤ ‖a‖′ ≤ k‖a‖

for all a ∈ A, where k = sup{1, ‖s‖ : s ∈ S}.
Proof. Without loss of generality we can assume that 1 ∈ S. Thus k := sup{‖s‖ :
s ∈ S} ≥ 1.

For a ∈ A define q(a) = sup{‖sa‖ : s ∈ S}. Since 1 ∈ S, we have q(a) ≥ ‖a‖.
Thus

‖a‖ ≤ q(a) ≤ k‖a‖
for all a ∈ A.

Clearly, q is a norm. We have q(1) = k and q(s) ≤ k for every s ∈ S.
For a ∈ A and s ∈ S we have

q(sa) = sup{‖s′sa‖ : s′ ∈ S} ≤ q(a).

Further, for a1, a2 ∈ A we have

q(a1a2) = sup{‖sa1a2‖ : s ∈ S} ≤ sup{‖sa1‖ · ‖a2‖ : s ∈ S}
≤ q(a1)‖a2‖ ≤ q(a1)q(a2).
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Define now

‖a‖′ = sup
{
q(ax) : x ∈ A, q(x) ≤ 1

}
= sup

{q(ax)
q(x)

: x �= 0
}
.

Since q(ax) ≤ q(a)q(x), we have ‖a‖′ ≤ q(a) ≤ k‖a‖ and ‖a‖′ ≥ q(a)
q(1) ≥ k−1‖a‖.

Hence
k−1‖a‖ ≤ ‖a‖′ ≤ k‖a‖

for every a ∈ A.
Clearly ‖ · ‖′ is a norm and ‖1‖′ = 1.
Let a1, a2 ∈ A. We show that ‖a1a2‖′ ≤ ‖a1‖′‖a2‖′. This is clear if a1a2 = 0.

If a1a2 �= 0, then

‖a1a2‖′ = sup
{q(a1a2x)

q(x)
: x �= 0

}
= sup

{q(a1a2x)
q(x)

: x �= 0, q(a1a2x) �= 0
}

= sup
{q(a1a2x)

q(a2x)
· q(a2x)

q(x)
: q(a1a2x) �= 0

}
≤ ‖a1‖′‖a2‖′.

Finally, for s ∈ S we have

‖s‖′ = sup
{q(sx)

q(x)
: x �= 0

}
≤ 1. �

Corollary 33. Let (A, ‖ · ‖) be a Banach algebra and let x ∈ A. Then

r(x) = inf
{‖x‖′ : ‖ · ‖′ is an equivalent algebra norm on A}

.

Proof. Since r(x) does not depend on the choice of an equivalent algebra norm,
we have r(x) ≤ ‖x‖′ for every equivalent algebra norm ‖ · ‖′.

Conversely, let ε > 0. Consider the semigroup

S =

{(
x

r(x) + ε

)n

: n = 0, 1, . . .

}
.

Then S is a bounded semigroup and, by Theorem 32, there exists an equivalent
algebra norm ‖ · ‖′ on A such that ‖s‖′ ≤ 1 for each s ∈ S. In particular, ‖x‖′ ≤
r(x) + ε. This completes the proof. �

Functional calculus

Let p(z) =
∑n

i=0 αiz
i be a polynomial with coefficients αi ∈ C. For x ∈ A we

write p(x) =
∑n

i=0 αix
i. It is clear that the mapping p �→ p(x) is a homomorphism

from the algebra of all polynomials to A. The spectra of x and p(x) and related
in the following way:
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Theorem 34. (spectral mapping theorem) Let x be an element of a Banach algebra
A and let p be a polynomial. Then σ(p(x)) = p(σ(x)).

Proof. The equality is clear if p is a constant polynomial. Suppose p is non-constant
and let λ ∈ C. Then we can write p(z) − λ = β(z − α1) · · · (z − αn) for some
β, α1, . . . , αn ∈ C, β �= 0, n ≥ 1. Clearly, p(x) − λ = β(x − α1) · · · (x − αn) and
p(x) − λ is non-invertible if and only if at least one of the factors x − αi is non-
invertible, i.e., if αi ∈ σ(x) for some i. Thus λ ∈ σ(p(x)) if and only if p(z)−λ = 0
for some z ∈ σ(x). Hence σ(p(x)) = p(σ(x)). �

In Banach algebras we can substitute an element a ∈ A not only to polyno-
mials but also to functions analytic on a neighbourhood of the spectrum σ(a).

If f is a function analytic on a disc {z : |z| < R} where R > r(a) and
f(z) =

∑∞
i=0 αiz

i is the Taylor expansion of f , then the series
∑∞

i=0 αia
i converges

in A to an element denoted by f(a).
If f is a function analytic only on a neighbourhood U of σ(a), then we can

define f(a) by means of a Cauchy integral. We define

f(a) =
1

2πi

∫
Γ

f(z)(z − a)−1dz,

where Γ is a contour surrounding σ(a) in U , see Appendix A.2. The integral is
well defined since the mapping z �→ (z − a)−1 is continuous on Γ by Theorem 11.
By the Cauchy formula, the integral does not depend on the choice of Γ. The
definition coincides with the previous definition for polynomials:

Proposition 35. Let a be an element of a Banach algebra A, let Γ be a contour
surrounding σ(a). Let p(z) =

∑n
j=0 αjz

j be a polynomial with complex coefficients
αj . Then

1
2πi

∫
Γ

p(z)(z − a)−1dz =
n∑

j=0

αja
j .

Proof. It is sufficient to show that

1
2πi

∫
Γ

zk(z − a)−1dz = ak

for all k ≥ 0. For R > r(a) we have

1
2πi

∫
Γ

zk(z − a)−1dz =
1

2πi

∫
|z|=R

zk(z − a)−1dz =
1

2πi

∫
|z|=R

zk
∞∑

j=0

aj

zj+1
dz

=
1

2πi

∫
|z|=R

(
zk−1 + azk−2 + · · · + ak−2z + ak−1 +

∞∑
j=0

ak+j

zj+1

)
dz = ak,

by the residue theorem. �
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Proposition 36. Let a ∈ A, let Γ be a contour surrounding σ(a) and let p(z)
q(z) be a

rational function such that no zero of q is surrounded by Γ. Then

1
2πi

∫
Γ

p(z)
q(z)

(z − a)−1dz = p(a)q(a)−1

(note that q(a)−1 exists by Theorem 34).

Proof. We first prove that for k = 0, 1, . . . and for λ ∈ C not surrounded by Γ we
have

1
2πi

∫
Γ

1
(z − λ)k

(z − a)−1dz = (a − λ)−k. (1)

For k = 0 this was proved in Proposition 35. Suppose that (1) is true for some
k ≥ 0. We have

(z − a)−1 − (λ − a)−1 = (z − a)−1
(
(λ − a) − (z − a)

)
(λ − a)−1

= (λ − z)(z − a)−1(λ − a)−1.

Thus (z − a)−1 = (λ − a)−1 + (a − λ)−1(z − λ)(z − a)−1 and

1
2πi

∫
Γ

1
(z − λ)k+1

(z − a)−1dz

=
1

2πi

∫
Γ

1
(z − λ)k+1

(λ − a)−1dz +
(a − λ)−1

2πi

∫
Γ

1
(z − λ)k

(z − a)−1dz

= (a − λ)−(k+1)

by the induction assumption (the first integral is equal to 0 since the function
z �→ 1

(z−λ)k+1 is analytic inside Γ).

Let now p(z)
q(z) be an arbitrary rational function, let λ1, . . . , λn be the roots

of q of multiplicities k1, . . . , kn. Then p(z)
q(z) can be expressed as

p(z)
q(z)

= p1(z) +
n∑

j=1

kj∑
s=1

cj,s

(z − λj)s

for some polynomial p1 and complex numbers cj,s. It is easy to verify that

p(a)q(a)−1 = p1(a) +
n∑

j=1

kj∑
s=1

cj,s(a − λj)−s,

and, by (1), we have

1
2πi

∫
Γ

p(z)
q(z)

(z − a)−1dz = p1(a) +
n∑

j=1

kj∑
s=1

cj,s(a − λj)−s = p(a)q(a)−1. �
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For a non-empty compact set K ⊂ C denote by HK the set of all functions
analytic on a neighbourhood of K. We identify two such functions if they coincide
on a neighbourhood of K. Thus, more precisely, HK is the algebra of all germs of
functions analytic on a neighbourhood of K.

Theorem 37 (functional calculus). Let a be an element of a Banach algebra A.
Then there exists a homomorphism f �→ f(a) from the algebra Hσ(a) into A with
the following properties:

(i) if f(z) =
∑n

i=0 αiz
i is a polynomial with complex coefficients αi, then f(a) =∑n

i=0 αia
i;

(ii) f(a) ∈ {a}′′ for each f ;

(iii) if U is a neighbourhood of σ(a), f, fk are analytic on U and fk → f uniformly
on U , then fk(a) → f(a);

(iv) σ
(
f(a)

)
= f

(
σ(a)

)
.

Properties (i) and (iii) determine this homomorphism uniquely.

Proof. Define

f(a) =
1

2πi

∫
Γ

f(z)(z − a)−1dz,

where Γ is a contour surrounding σ(a) in the domain of definition of f . The
linearity of the mapping f �→ f(a) is clear and (i) was proved in Proposition 35.

(ii) follows directly from the definition since {a}′′ is a closed algebra containing
(z − a)−1 for every z ∈ Γ.

To prove (iii), we can replace Γ by a contour Γ′ surrounding σ(a) in U . Then
fk(z) → f(z) uniformly on Γ′ and (iii) is clear.

By Proposition 36, (f1f2)(a) = f1(a)f2(a) if f1, f2 are rational functions with
poles outside σ(a). By the Runge theorem, any f ∈ Hσ(a) can be approximated
uniformly on some neighbourhood of σ(a) by rational functions, so we conclude
that the mapping f �→ f(a) is multiplicative. Since property (i) determines f(a)
uniquely for rational functions f , we see that properties (i) and (iii) determine the
functional calculus uniquely.

It remains to prove (iv). If λ /∈ f(σ(a)), then g(z) = (f(z) − λ)−1 is a function
analytic on a neighbourhood of σ(a). Thus (f(a) − λ)g(a) = 1 and λ /∈ σ(f(a)).

Conversely, if λ ∈ f(σ(a)), then there exists z0 ∈ σ(a) with f(z0) = λ and
f(z)−λ = (z− z0)g(z) for some function g ∈ Hσ(a). Then f(a)−λ = (a− z0)g(a)
and, since a − z0 /∈ Inv(A), we have f(a) − λ /∈ Inv(A). Hence λ ∈ σ(f(a)). �

We mention at least one important corollary of the functional calculus for
the algebra of operators:

Corollary 38. Let T be an operator on a Banach space X , dimX ≥ 1. Suppose
that U1, U2 are disjoint open subsets of C such that σ(T ) ⊂ U1 ∪ U2. Then there
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exist closed subspaces X1, X2 ⊂ X such that X = X1 ⊕ X2, TXi ⊂ Xi and
σ(T |Xi) ⊂ Ui (i = 1, 2).

Proof. Let f : U1 ∪ U2 → C be defined by f |U1 = 1, f |U2 = 0. Since f2 = f ,
the operator P = f(T ) is a projection. Set X1 = PX and X2 = (I − P )X .
Clearly, X1 and X2 are invariant with respect to T and X = X1 ⊕ X2. Write
Ti = T |Xi (i = 1, 2). We show that σ(T1) ⊂ U1. Let λ /∈ U1 and define g :
U1 ∪ U2 → C by g(z) = (z − λ)−1 (z ∈ U1), g|U2 = 0. Then (z − λ)gf = f ,
and so (T − λ)g(T )P = P . We have g(T )X1 = g(T )PX = Pg(T )X ⊂ X1, and so
the restriction of the last equality to X1 gives (T1 − λ)g(T )|X1 = IX1 , where IX1

denotes the identity operator on X1. Thus λ /∈ σ(T1) and σ(T1) ⊂ U1. Similarly,
σ(T2) ⊂ U2. �

The spaces X1, X2 given in the preceding corollary are called the spectral
subspaces of T corresponding to U1 and U2, respectively.

Radical

We finish this section with the basic properties of a radical.

Definition 39. Let A be a Banach algebra, let J ⊂ A be a left ideal. We say that
J is a maximal left ideal if J is proper and if the only proper left ideal containing
J is J itself.

Similarly we define maximal right ideals.

Theorem 40. Let A be a Banach algebra. Then:

(i) the closure of a proper left ideal is a proper left ideal;

(ii) every proper left ideal is contained in a maximal left ideal;

(iii) every maximal left ideal is closed.

Proof. (i) If J ⊂ A is a proper left ideal, then Inv(A) ∩ J = ∅. By Theorem 11,
dist{1A, J} ≥ 1, and so 1A /∈ J . Hence J is proper.

(ii) is an easy application of the Zorn lemma and (iii) follows from (i). �

Theorem 41. Let A be a Banach algebra. The following sets are identical:

(i) the intersection of all maximal left ideals in A;

(ii) the intersection of all maximal right ideals in A;

(iii) the set of all x ∈ A such that 1 − ax is invertible for every a ∈ A;

(iv) the set of all x ∈ A such that 1 − xa is invertible for every a ∈ A.

Proof. By Theorem 29, the sets described in (iii) and (iv) are equal. It is sufficient
to show the equivalence of (i) and (iii) since the equivalence of (ii) and (iv) can
be proved similarly.
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Suppose that 1 − ax is invertible for all a ∈ A and let J be a maximal left
ideal such that x /∈ J . Then J +Ax is a left ideal containing J , and so J +Ax = A.
Thus there exists a ∈ A such that 1− ax ∈ J . Since 1− ax ∈ Inv(A), we conclude
that 1 ∈ J , a contradiction.

In the opposite direction, let x be in the intersection of all maximal left ideals
of A. Suppose that there exists a ∈ A such that 1 − ax is not invertible. Thus
σ(ax) �= {0} and let λ ∈ σ(ax) satisfy |λ| = r(ax) > 0. By Theorem 14, λ − ax is
a left topological divisor of zero, and so λ−ax is not left invertible. Consequently,
A(λ − ax) is a proper left ideal, and so there exists a maximal left ideal J ⊃
A(λ − ax). We have λ− ax ∈ J and x ∈ J , and so 1 = λ−1(λ − ax) + λ−1ax ∈ J ,
a contradiction. �

Definition 42. The set of all x with properties (i)–(iv) of the previous theorem is
called the radical of A and denoted by radA. Evidently, radA is a closed two-sided
ideal of A.

An algebra A is called semisimple if radA = {0}.

Theorem 43. Let A be a Banach algebra. Then:

(i) A/ radA is semisimple;

(ii) an element x ∈ A is invertible in A if and only if x + radA is invertible in
A/ radA;

(iii) if x ∈ radA, then σ(x) = {0}.

Proof. (i) Denote by ρ : A → A/ radA the canonical projection. If x ∈ A, x /∈
radA, then there exists a maximal left ideal J with x /∈ J . Since radA ⊂ J , it
is easy to check that J + radA = ρ(J) is a maximal left ideal in A/ radA and
ρ(x) = x + radA /∈ ρ(J). Thus x + radA /∈ rad(A/ radA).

Since x was an arbitrary element in A\ radA, the algebra A/ radA is semisimple.

(ii) If x ∈ Inv(A), then ρ(x) ∈ Inv(A/ radA) by Theorem 26. Conversely, if ρ(x) ∈
Inv(A/ radA), then there exists y ∈ A such that xy ∈ 1+radA, yx ∈ 1+radA. By
Theorem 41 (iii) and (iv), the elements 1 + 1(xy− 1) = xy and 1 + 1(yx− 1) = yx
are invertible. Hence x ∈ Inv(A).

(iii) Let x ∈ radA and λ �= 0. Then λ − x = λ(1 − λ−1x), which is invertible by
Theorem 41 (iii). �

Theorem 44. B(X) is semisimple for every Banach space X with dimX ≥ 1.

Proof. Let T ∈ B(X), T �= 0. Then Tx �= 0 for some non-zero x ∈ X . Choose
g ∈ X∗ such that g(Tx) = 1 and define S ∈ B(X) by Sy = g(y) · x (y ∈ X).
Then STx = x, and so 1 ∈ σ(ST ). By Theorem 41, T /∈ rad(B(X)). Hence B(X)
is semisimple. �
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2 Commutative Banach algebras

In this section we give a survey of basic results of the theory of commutative
Banach algebras.

The most important example of a commutative Banach algebra is the algebra
C(K) of all complex-valued continuous functions defined on a non-empty compact
space K with the sup-norm ‖f‖ = sup{|f(z)| : z ∈ K}. For further examples see
1.4 (iii), (iv), (vi).

In commutative algebras the notions of left, right and two-sided ideals coin-
cide. In the same way, the notions of maximal left (right) ideals and left (right)
topological divisors of zero coincide. We are going to speak only about ideals,
maximal ideals and topological divisors of zero.

Theorem 1. Every maximal ideal in a commutative Banach algebra is closed and
of codimension 1.

Proof. Let J be a maximal ideal in A. By Theorem 1.40, J is closed. Furthermore,
A/J is a commutative Banach algebra with no non-trivial ideals, and so every
non-zero element of A/J is invertible. By Corollary 1.19, dimA/J = 1. �

Definition 2. Let A be a commutative Banach algebra. A linear functional ϕ : A →
C is called multiplicativeif ϕ(1A) = 1 and ϕ(xy) = ϕ(x)ϕ(y) for all x, y ∈ A (in
other words, ϕ is a homomorphism).

Multiplicative functionals are in 1-1 correspondence with maximal ideals.

Theorem 3. Let A be a commutative Banach algebra. Then:

(i) if ϕ is a multiplicative functional on A, then Kerϕ is a maximal ideal;

(ii) if J ⊂ A is a maximal ideal in A, then A =
{
x + λ · 1A : x ∈ J, λ ∈ C

}
and the mapping ϕ : A → C defined by ϕ(x + λ · 1A) = λ is a multiplicative
functional. Clearly, Kerϕ = J .

Proof. An easy verification. �

The set of all multiplicative functionals on a commutative Banach algebra A
will be denoted by M(A). As the multiplicative functionals are in 1-1 correspon-
dence with the maximal ideals, multiplicative functionals are frequently identified
with the corresponding maximal ideals (we are not going to use this convention).
From this reason M(A) is usually called the maximal ideal space.

Theorem 4. Let x be an element of a commutative Banach algebra A. Then:

(i) if ϕ ∈ M(A), then ϕ(x) ∈ σ(x);
(ii) if λ ∈ σ(x), then there exists ϕ ∈ M(A) such that ϕ(x) = λ;

(iii) an element x ∈ A is invertible if and only if ϕ(x) �= 0 for every ϕ ∈ M(A).
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Proof. (i) If ϕ ∈ M(A), then x− ϕ(x) · 1A ∈ Kerϕ. Since Kerϕ is a proper ideal,
the element x − ϕ(x) · 1A is not invertible, and so ϕ(x) ∈ σ(x).

(ii) If λ ∈ σ(x), then x − λ is contained in a proper ideal, and so there exists
a maximal ideal containing x − λ. The corresponding multiplicative functional ϕ
then satisfies ϕ(x − λ) = 0, and so ϕ(x) = λ.

(iii) Follows from (i) and (ii). �

Corollary 5. Let A be a commutative Banach algebra. Then M(A) �= ∅.
Theorem 6. Let ϕ be a multiplicative functional on a commutative Banach algebra
A. Then ϕ is continuous and ‖ϕ‖ = 1.

Proof. For x ∈ A we have ϕ(x) ∈ σ(x), and so |ϕ(x)| ≤ r(x) ≤ ‖x‖. Thus ‖ϕ‖ ≤ 1,
and since ϕ(1A) = 1, we have ‖ϕ‖ = 1. �

We consider the topology of pointwise convergence of multiplicative func-
tionals on M(A). The base of open neighbourhoods of a multiplicative functional
ϕ ∈ M(A) is formed by the sets

Ux1,...,xn,ε =
{
ψ ∈ M(A) : |ψ(xi) − ϕ(xi)| < ε, i = 1, . . . , n

}
,

where x1, . . . , xn ∈ A, ε > 0.

Theorem 7. M(A) with the above-defined topology is a non-empty compact Haus-
dorff space.

Proof. M(A) is non-empty by Corollary 5 and Hausdorff by definition. Since the
closed unit ball BA∗ of A∗ is compact in the w∗-topology and M(A) is a w∗-closed
subset of BA∗ , we conclude that M(A) is compact. �

Consider the Banach algebra C(M(A)) of all complex-valued continuous
functions on the compact space M(A) with the sup-norm.

Definition 8. The mapping G : A → C(M(A)) defined by

G(a)(ϕ) = ϕ(a)
(
a ∈ A, ϕ ∈ M(A)

)
is called the Gelfand transform.

The Gelfand transform has the following properties:

Theorem 9. Let A be a commutative Banach algebra. Then:

(i) G : A → C(M(A)) is a continuous homomorphism, ‖G‖ = 1;

(ii) ‖G(a)‖ = r(a) (a ∈ A);

(iii) G(a)(M(A)) = σ(a) (a ∈ A);
(iv) G(a) = 0 ⇐⇒ σ(a) = {0} ⇐⇒ a ∈ radA.
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Proof. (iii) We have
{
G(a)(ϕ) : ϕ ∈ M(A)

}
=

{
ϕ(a) : ϕ ∈ M(A)

}
= σ(a).

(ii) By (iii), ‖G(a)‖ = sup
{|G(a)(ϕ)| : ϕ ∈ M(A)

}
= sup{|λ| : λ ∈ σ(a)} = r(a).

(i) By (ii), ‖G‖ ≤ 1. Since ‖G(1A)‖ = r(1A) = 1, we have ‖G‖ = 1.

(iv) The first equivalence follows from (ii). An element a belongs to the radical
if and only if it is contained in every maximal ideal, i.e., if ϕ(a) = 0 for every
ϕ ∈ M(A). This means that σ(a) = {0}. �

The spectrum in commutative Banach algebras has a number of nice prop-
erties. The following result means the continuity of the spectrum.

Theorem 10. Let A be a commutative Banach algebra, x, xk ∈ A (k ∈ N), xk → x.
Then λ ∈ σ(x) if and only if there exist points λk ∈ σ(xk) (k = 1, 2, . . . ) such
that λ = limk→∞ λk.

Proof. If λ ∈ σ(x), then there exists ϕ ∈ M(A) with ϕ(x) = λ. Set λk = ϕ(xk).
Then λk ∈ σ(xk) and λk → λ.

Conversely, let λk ∈ σ(xk) and λk → λ. For each k there exists ϕk ∈ M(A)
with ϕk(xk) = λk. Set µk = ϕk(x) ∈ σ(x). Then

|λ−µk| ≤ |λ−λk|+|λk−µk| = |λ−λk|+|ϕk(xk)−ϕk(x)| ≤ |λ−λk|+‖xk−x‖ → 0.

Thus µk → λ and λ ∈ σ(x). �

Theorem 11. Let A be a Banach algebra, x, y ∈ A, xy = yx. Then:

(i) σ(xy) ⊂ σ(x) · σ(y) and σ(x + y) ⊂ σ(x) + σ(y);

(ii) r(xy) ≤ r(x) · r(y) and r(x + y) ≤ r(x) + r(y).

In particular, the spectral radius in a commutative Banach algebra is an algebra
seminorm.

Proof. Clearly, (ii) is a consequence of (i).
To prove (ii), suppose first that A is a commutative Banach algebra. Then

σ(xy) =
{
ϕ(xy) : ϕ ∈ M(A)

}
=

{
ϕ(x)ϕ(y) : ϕ ∈ M(A)

}
⊂ {

ϕ(x)ψ(y) : ϕ, ψ ∈ M(A)
}

= σ(x) · σ(y).

In the same way, σ(x + y) ⊂ σ(x) + σ(y).
In general, write A0 = {x, y}′′. By Lemma 1.24, A0 is a commutative Banach

algebra and it is easy to check that σA0(x) = σA(x), σA0 (y) = σA(y), σA0(xy) =
σA(xy) and σA0(x+y) = σA(x+y). Thus the result follows from the corresponding
inclusions for the commutative Banach algebra A0. �
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The following result characterizes multiplicative functionals.

Theorem 12. (Gleason-Kahane-Żelazko) Let A be a commutative Banach algebra
and let ϕ : A → C be a linear functional. Then ϕ is multiplicative if and only if
ϕ(x) ∈ σ(x) for every x ∈ A.

Proof. If ϕ ∈ M(A), then ϕ(x) ∈ σ(x) for every x ∈ A by Theorem 4.
Suppose that ϕ is a linear functional satisfying ϕ(x) ∈ σ(x) for all x ∈ A.

Then ϕ(1A) = 1. First, we prove the implication ϕ(a) = 0 ⇒ ϕ(a2) = 0 for all
a ∈ A.

Let ϕ(a) = 0, n ≥ 2 and denote by p the polynomial p(λ) = ϕ((λ− a)n). Let
λ1, . . . , λn be the roots of p. Since 0 = p(λi) = ϕ((λi − a)n), we have (λi − a)n /∈
Inv(A), and so λi − a /∈ Inv(A). Thus λi ∈ σ(a) for i = 1, . . . , n. We can write

p(λ) = (λ − λ1) · · · (λ − λn) = λn − λn−1
n∑

i=0

λi + λn−2
∑
i�=j

λiλj + · · ·

= λn − λn−1nϕ(a) + λn−2 n(n − 1)
2

ϕ(a2) + · · · .

Thus we have
∑

λi = nϕ(a) = 0 and
∑

i�=j λiλj = n(n−1)
2 ϕ(a2). We have 0 =(∑

λi

)2

=
∑

λ2
i + 2

∑
i�=j λiλj , and so

|ϕ(a2)| =
|2∑

i�=j λiλj |
n(n − 1)

=
∑

λ2
i

n(n − 1)
≤ n(r(a))2

n(n − 1)
=

(r(a))2

n − 1
.

Letting n → ∞ yields ϕ(a2) = 0.
Let a ∈ A. Then ϕ

(
a−ϕ(a) · 1A

)
= 0, and so ϕ

(
a2 − 2aϕ(a) + (ϕ(a))2

)
= 0,

which implies ϕ(a2) = (ϕ(a))2.
Consequently, for x, y ∈ A we have(

ϕ(x))2 + 2ϕ(x)ϕ(y) + (ϕ(y)
)2 =

(
ϕ(x) + ϕ(y)

)2 =
(
ϕ(x + y)

)2

= ϕ((x + y)2) = ϕ(x2) + 2ϕ(xy) + ϕ(y2),

and so ϕ(xy) = ϕ(x)ϕ(y). �

The Gelfand transform commutes with the functional calculus which was
introduced in the previous section.

Theorem 13. Let A be a commutative Banach algebra, x ∈ A and let f be a
function analytic on a neighbourhood of σ(x). Then:

(i) ϕ(f(x)) = f(ϕ(x)) for all ϕ ∈ M(A);

(ii) G(f(x)) = f(G(x)).



22 Chapter I. Banach Algebras

Proof. (i) We have f(x) = 1
2πi

∫
Γ f(z)(z−x)−1dz, where Γ is a contour surrounding

σ(x). Since the integral is defined as a limit of Riemann’s sums and ϕ is continuous
and multiplicative, we have

ϕ(f(x)) =
1

2πi

∫
Γ

f(z)
(
z − ϕ(x)

)−1dz = f(ϕ(x)).

The second statement follows from the definition of the Gelfand transform. �
In commutative Banach algebras it is possible to introduce the notion of

spectrum for n-tuples of elements.

Definition 14. Let A be a commutative Banach algebra, x1, . . . , xn ∈ A. The
spectrum σ(x1, . . . , xn) is the set

σ(x1, . . . , xn) =
{
(ϕ(x1) . . . ϕ(xn)) : ϕ ∈ M(A)

}
.

Theorem 15. Let x1, . . . , xn be elements of a commutative Banach algebra A.
Then:

(i) The spectrum σ(x1, . . . , xn) is a non-empty compact subset of Cn;

(ii) λ ∈ σ(x1, . . . , xn) if and only if the ideal (x1 − λ1)A + · · · + (xn − λn)A is
proper, i.e., if 1A /∈ (x1 − λ1)A + · · · + (xn − λn)A;

(iii) if m < n, then σ(x1, . . . , xm) = Pσ(x1, . . . , xn), where P : Cn → Cm is the
natural projection onto the first m coordinates.

Proof. (i) Since M(A) �= ∅, the spectrum σ(x1, . . . , xn) is also non-empty. The
mapping ϕ �→ (ϕ(x1, . . . , ϕ(xn)) from M(A) onto σ(x1, . . . , xn) is continuous,
and so σ(x1, . . . , xn) is compact.

(ii) If (λ1, . . . , λn) ∈ σ(x1, . . . , xn), then there exists ϕ ∈ M(A) such that ϕ(xi) =
λi (i = 1, . . . , n). Then (x1 −λ1)A+ · · ·+(xn −λn)A is contained in Kerϕ, and
so it is a proper ideal.

Conversely, if (x1 −λ1)A+ · · ·+ (xn −λn)A is a proper ideal, then it is con-
tained in a maximal ideal. The corresponding multiplicative functional ϕ satisfies
ϕ(xi) = λi (i = 1, . . . , n), and so (λ1, . . . , λn) ∈ σ(x1, . . . , xn).

(iii) Clear. �
Theorem 16. Let A be a commutative Banach algebra with a finite number of
generators x1, . . . , xn (i.e., A is the smallest closed algebra containing the elements
x1, . . . , xn). Then M(A) is homeomorphic to σ(x1, . . . , xn).

Proof. Consider the mapping Ψ : M(A) → σ(x1, . . . , xn) defined by

Ψ(ϕ) = (ϕ(x1), . . . , ϕ(xn)) (ϕ ∈ M(A)
)
.

Clearly, Ψ is continuous and onto. It is sufficient to show that Ψ is one-to-one. If
ϕ1, ϕ2 ∈ M(A) with Ψ(ϕ1) = Ψ(ϕ2), then ϕ1(xi) = ϕ2(xi) for all i = 1, . . . , n.
Since A is generated by x1, . . . , xn, we have ϕ1 = ϕ2. �
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Denote by P(n) the set of all complex polynomials in n variables. If p ∈ P(n)
and x1, . . . , xn ∈ A, then we define p(x1, . . . , xn) in the natural way.

Definition 17. Let K be a non-empty compact subset of Cn. The polynomially
convex hull of K is the set

K̂ =
{
z ∈ Cn : |p(z)| ≤ max{|p(w)| : w ∈ K} for every polynomial p ∈ P(n)

}
.

A set K is called polynomially convex if K̂ = K.

In the case n = 1 there is a simple characterization of polynomially convex
sets: a non-empty compact subset K ⊂ C is polynomially convex if and only if
C \ K is a connected set. Thus the polynomially convex hull of a compact subset
K of C is the union of K with the bounded components of C \ K.

Theorem 18. Let A be a commutative Banach algebra with a finite number of
generators x1, . . . , xn. Then σ(x1, . . . , xn) is a polynomially convex subset of Cn.

Proof. Fix λ = (λ1, . . . , λn) in the polynomially convex hull of σ(x1, . . . , xn). Then

|p(λ)| ≤ sup
{|p(z1, . . . , zn)| : z1, . . . , zn ∈ σ(x1, . . . , xn)

}
= sup

{|p(ϕ(x1), . . . , ϕ(xn))| : ϕ ∈ M(A)
}

= sup
{|ϕ(p(x1, . . . , xn))| : ϕ ∈ M(A)

}
= r(p(x1, . . . , xn))

≤ ‖p(x1, . . . , xn)‖

for each polynomial p ∈ P(n). Set A0 =
{
p(x1, . . . , xn) : p ∈ P(n)

}
and let

ψ : A0 → C be defined by ψ : p(x1, . . . , xn) �→ p(λ). Since |ψ(y)| ≤ ‖y‖ for
all y ∈ A0, the definition of ψ is correct and ψ can be uniquely extended to a
multiplicative functional (denoted also by ψ) on A0 = A. Thus (λ1, . . . , λn) =
(ψ(x1), . . . , ψ(xn)) ∈ σ(x1, . . . , xn), and so σ(x1, . . . , xn) is polynomially convex.

�

In particular, if A is generated by a single element x, then σA(x) has no holes
(C \ σA(x) is connected).

Let A be a Banach algebra and x1, . . . , xn ∈ A. We denote by 〈x1, . . . , xn〉 the
closed subalgebra generated by the elements x1, . . . , xn. By definition, 〈x1, . . . , xn〉
contains the unit of A.

Examples 19.

(i) Let K be a non-empty compact Hausdorff space and C(K) the algebra of
all continuous functions on K with the sup-norm. It is not difficult to show
that the multiplicative functionals on C(K) are precisely the evaluations
Eλ (λ ∈ K) defined by Eλ(f) = f(λ). Thus M(C(K)) is homeomorphic to
K and the Gelfand transform is the identical mapping.
For f ∈ C(K), we have σC(K)(f) = f(K).
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(ii) If K is a non-empty compact subset of Cn and P(K) the uniform closure on
K of all polynomials, then M(P(K)) can be identified with the polynomially
convex hull K̂.
This applies also to the disc algebra A(D), see Example 1.4 (iv), since A(D) =
P(D).

(iii) Consider the Banach algebra H∞ of all bounded analytic functions on the
open unit disc. The maximal ideal space M(H∞) is quite large and compli-
cated. The celebrated corona theorem of Carleson says: if f1, . . . , fn ∈ H∞

and infz∈D

∑n
i=1 |fi(z)| > 0, then

∑
figi = 1 for some gi ∈ H∞. This can

be reformulated as follows: the set of all evaluations Eλ (λ ∈ D) is dense in
M(H∞).
Thus σH∞

(f) = f(D) for f ∈ H∞.

(iv) Let T = {z ∈ C : |z| = 1} be the unit torus and let A be the algebra of
all continuous functions on T with absolutely convergent Fourier series (i.e.,
f(z) =

∑∞
−∞ αiz

i where
∑ |αi| < ∞). It is easy to see that M(A) coincides

with T. Thus the Gelfand theory gives a very simple proof of the following
Wiener theorem: if f ∈ A and f(z) �= 0 (z ∈ T), then 1/f ∈ A.

(v) Multiplicative functionals on L1 (see Example 1.4 (vi)) are of the form

f �→
∫ ∞

−∞
f(x)eitx dx

where t ∈ R. Thus M(L1 ⊕C) coincides with the one-point compactification
of R. The Gelfand transform is closely connected with the Fourier transform.

In commutative Banach algebras it is possible to extend the functional cal-
culus to analytic functions of n-variables. Here we formulate the result without
proof since it will be an easy consequence of the more general Taylor functional
calculus that will be discussed later. Recall that for a non-empty compact subset
of K ⊂ Cn we denote by HK the algebra of all functions analytic on a neighbour-
hood of K (more precisely, HK is the algebra of all germs of functions analytic on
a neighbourhood of K).

Theorem 20. Let A be a commutative Banach algebra. To each finite family a =
(a1, . . . , an) of elements of A and each function f ∈ Hσ(a) it is possible to assign
an element f(a1, . . . , an) ∈ A such that the following conditions are satisfied:

(i) if p(z1, . . . , zn) =
∑

α∈Zn
+

cαzα1
1 · · · zαn

n is a polynomial in n variables with

complex coefficients cα, then p(a) =
∑

α∈Zn
+

cαaα1
1 · · ·aαn

n ;

(ii) the mapping f �→ f(a1, . . . , an) is an algebra homomorphism from the algebra
Hσ(a) to A;

(iii) if ϕ ∈ M(A) and f ∈ Hσ(a), then

ϕ
(
f(a1, . . . , an)

)
= f

(
ϕ(a1), . . . , ϕ(an)

)
;
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(iv) σ
(
f(a1, . . . , an)

)
= f

(
σ(a1, . . . , an)

)
;

(v) if U is a neighbourhood of σ(a1, . . . , an), f , fk (k ∈ N) are functions analytic
on U and fk converge to f uniformly on U , then

fk(a1, . . . , an) → f(a1, . . . , an).

We finish this section with the basic properties of the Shilov boundary.

Let K be a compact Hausdorff space. For a non-empty subset M ⊂ K and a
continuous function f : K → C write ‖f‖M = sup{|f(z)| : z ∈ M}.

Definition 21. Let K be a non-empty compact Hausdorff space, let A ⊂ C(K) be an
algebra of continuous functions containing the constant functions and separating
the points of K. The Shilov boundary Γ(K,A) is the subset of all points x ∈ K
with the following property: for every neighbourhood U of x there exists a function
f ∈ A such that ‖f‖U > ‖f‖K\U .

Theorem 22. Let K be a non-empty compact Hausdorff space, let A ⊂ C(K) be an
algebra of continuous functions containing the constant functions and separating
the points of K. Then:

(i) Γ(K,A) is a closed subset of K;

(ii) ‖f‖Γ(K,A) = ‖f‖K for every f ∈ A;

(iii) if F is a closed subset of K with the property that ‖f‖K = ‖f‖F for all
f ∈ A, then F ⊃ Γ(K,A).

Proof. (i) follows directly from the definition.

(iii) For f ∈ A write S(f) = {x ∈ K : |f(x)| = ‖f‖K}. Clearly, S(f) is a non-
empty compact subset of K for every f ∈ A. We say that a closed subset F ⊂ K
is maximizing if ‖f‖F = ‖f‖K for every f ∈ A. Obviously, F is maximizing if and
only if S(f) ∩ F �= ∅ for every f ∈ A.

Let F be a maximizing set and x ∈ Γ(K,A). For every neighbourhood U of
x there exists f ∈ A with S(f) ⊂ U , and so F ∩ U �= ∅. Since U was an arbitrary
neighbourhood of x and F is closed, we conclude that x ∈ F . This proves (iii).

(ii) Denote by F the family of all maximizing sets ordered by inclusion. If {Fα}α is
a totally ordered subset of F , then F =

⋂
α Fα is also a maximizing set. Indeed, for

every f ∈ A, S(f) ∩ Fα is a totally ordered family of non-empty compact subsets
of K, and so F ∩ S(f) =

⋂
α(S(f)∩Fα) �= ∅. Thus F =

⋂
α Fα is maximizing. By

the Zorn lemma there exists a minimal maximizing set F0.
By (iii), Γ(K,A) ⊂ F0. Conversely, let x ∈ F0 and let U be an open neigh-

bourhood of x in K. For every y ∈ K \ U there exists fy ∈ A with fy(x) = 0 and
fy(y) = 1. Let Uy = {z ∈ K : |fy(z)| > 1/2}. Since the set K \ U is compact, we
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can find finitely many points y1, . . . , yn ∈ K \U with
⋃

Uyi ⊃ K \U , and functions
f1 = fy1 , . . . , fn = fyn ∈ A such that

U0 :=
{
z ∈ K : |fi(z)| < 1/2 (i = 1, . . . , n)

} ⊂ U.

Since F0 is a minimal maximizing set, there exists f ∈ A such that ‖f‖F0\U0 <
‖f‖F0 = ‖f‖K (otherwise F0 \ U0 would be a maximizing set smaller than F0).
We may assume that ‖f‖K = 1 and, by replacing f by a suitable power fm if
necessary, ‖f‖F0\U0 < 1

2max{‖f1‖K ,...,‖fn‖K} . For i = 1, . . . , n we have

‖ffi‖K = max
{‖ffi‖F0\U0 , ‖ffi‖F0∩U0

}
< 1/2.

Let y ∈ F0 be a point with the property that |f(y)| = ‖f‖K = 1. Then |fi(y)| =
|(ffi)(y)| < 1/2 (i = 1, . . . , n), and so y ∈ U0. Thus S(f) ⊂ U0 ⊂ U and
x ∈ Γ(K,A).

Hence F0 = Γ(K,A) and Γ(K,A) is a maximizing set. �
Let A be a commutative Banach algebra. The Shilov boundary of A is the

set Γ(A) = Γ
(M(A), G(A)

)
.

The Shilov boundary of a commutative Banach algebra A has the following
properties:

Corollary 23. Let A be a commutative Banach algebra. Then:

(i) Γ(A) is a non-empty closed subset of M(A);
(ii) max

{|ϕ(a)| : ϕ ∈ Γ(A)
}

= max
{|ϕ(a)| : ϕ ∈ M(A)

}
= r(a) for every a ∈ A;

(iii) if F is a closed subset of M(A) satisfying max
{|ϕ(a)| : ϕ ∈ F

}
= r(a) for

every a ∈ A, then F ⊃ Γ(A);
(iv) if ϕ ∈ M(A), then ϕ ∈ Γ(A) if and only if for every neighbourhood U of ϕ

there exists a ∈ A such that

sup
{|ψ(a)| : ψ ∈ U

}
> sup

{|ψ(a)| : ψ ∈ M(A) \ U
}
.

3 Approximate point spectrum in commutative

Banach algebras

In this section we introduce and study the approximate point spectrum in com-
mutative Banach algebras. This is, apart from the ordinary spectrum, the most
important example of a spectrum.

All algebras in this section will be commutative.
Let x1, . . . , xn be elements of a commutative Banach algebra A. We will write

dA(x1, . . . , xn) = inf
{ n∑

i=1

‖xiz‖ : z ∈ A, ‖z‖ = 1
}

.

If no confusion can arise we write simply d(x1, . . . , xn) instead of dA(x1, . . . , xn).
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Clearly, an element x1 ∈ A is a topological divisor of zero in A if and only if
dA(x1) = 0.

Lemma 1. Let x1, . . . , xn, y1, . . . , yn be elements of a commutative Banach algebra
A. Then:

(i) d(x1, . . . , xn) ≤ ∑n
i=1 ‖xi‖;

(ii)
∣∣d(x1, . . . , xn) − d(y1, . . . , yn)

∣∣ ≤ n∑
i=1

‖xi − yi‖;
(iii) the function d : An → 〈0,∞) is continuous, where An is considered with the

product topology;

(iv) d(x1)d(y1) ≤ d(x1y1) ≤ ‖x1‖d(y1);
(v) if x1 is invertible, then d(x1) = ‖x−1‖−1.

Proof. (i)–(iv) Clear.

(v) For y ∈ A we have ‖y‖ = ‖x−1
1 x1y‖ ≤ ‖x−1

1 ‖ · ‖x1y‖, and so d(x1) ≥ ‖x−1
1 ‖−1.

On the other hand, we have ‖x1 ·x−1
1 ‖ = ‖1A‖ = 1, and so d(x1) ≤ ‖x−1

1 ‖−1. �

Definition 2. Let M be a subset of a commutative Banach algebra A. We say that
M consists of joint topological divisors of zero if d(x1, . . . , xn) = 0 for every finite
subset {x1, . . . , xn} ⊂ M .

Theorem 3. A set M ⊂ A consists of joint topological divisors of zero if and only
if there exists a net (zα) ⊂ A such that ‖zα‖ = 1 for all α and limα zαx = 0 for
each x ∈ M .

Proof. If there exists such a net, then clearly M consists of joint topological divisors
of zero.

Suppose on the contrary that M consists of joint topological divisors of zero.
For each finite subset F ⊂ M and each k ∈ N there exists an element zF,k ∈ A such
that ‖zF,k‖ = 1 and

∑
x∈F ‖zF,kx‖ ≤ k−1. Consider the order (F, k) ≤ (F ′, k′) if

and only if F ⊂ F ′ and k ≤ k′. Then the net (zF,k)F,k satisfies the conditions of
the theorem. �

Theorem 4. Let (zα) be a net of elements of a commutative Banach algebra A
such that ‖zα‖ = 1 for every α. Then the set M = {x ∈ A : limα xzα = 0} is a
closed ideal.

Proof. It is clear that M is an ideal. Let x ∈ M . For every ε > 0 there exists
y ∈ M such that ‖x − y‖ < ε

2 and α0 such that ‖yzα‖ < ε
2 for all α ≥ α0. Then

‖xzα‖ ≤ ‖(x − y)zα‖ + ‖yzα‖ < ε

for all α ≥ α0. Hence x ∈ M and M is closed. �

Corollary 5. Let M ⊂ A consist of joint topological divisors of zero. Then the
smallest closed ideal containing M consists of joint topological divisors of zero.
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The following construction is very important in the study of topological di-
visors of zero.

Let A be a commutative Banach algebra. Denote by �∞(A) the set of all
bounded sequences of elements of A. If we consider the pointwise algebraic oper-
ations and the norm ‖(aj)∞j=1‖ = supj ‖aj‖, then �∞(A) becomes a commutative
Banach algebra. Denote by c0(A) the set of all sequences (aj) with limj→∞ aj = 0.
Clearly, c0(A) is a closed ideal in �∞(A). Denote by Q(A) the quotient algebra
�∞(A)/c0(A).

The elements of Q(A) can be considered as bounded sequences of elements
of A where we identify two sequences (aj) and (a′

j) whenever they satisfy
limj→∞ ‖aj − a′

j‖ = 0. With this convention ‖(aj)‖Q(A) = lim supj→∞ ‖aj‖ and
Q(A) contains A as a subalgebra of constant sequences.

The most useful property of the algebra Q(A) is that topological divisors of
zero in A become divisors of zero in Q(A).

Theorem 6. Let A be a commutative Banach algebra and let a ∈ A. Then:

(i) dA(a) = dQ(A)(a) for all a ∈ A;

(ii) if a1, . . . , an ∈ A and dA(a1, . . . , an) = 0, then there exists b̃ ∈ Q(A) of norm
1 such that b̃ · ai = 0 for i = 1, . . . , n.

Proof. (i) Clearly, dQ(A)(a) ≤ dA(a). Conversely, we have ‖ab‖ ≥ dA(a) · ‖b‖ for
all b ∈ A. Let b̃ = (bj) ∈ Q(A). Then

‖ab̃‖Q(A) = lim sup
j→∞

‖abj‖ ≥ lim sup
j→∞

(
dA(a) · ‖bj‖

)
= dA(a) · ‖b̃‖Q(A).

Thus dQ(A)(a) ≥ dA(a).

(ii) If dA(a1, . . . , an) = 0, then there exists a sequence b̃ = (bj) of elements
of A with ‖bj‖ = 1 (j = 1, 2, . . . ) and limj→∞ ‖aibj‖ = 0 for i = 1, . . . , n. Then
‖b̃‖Q(A) = 1 and aib̃ = 0 (i = 1, . . . , n). �

Theorem 7. Let x0, x1, . . . , xn be elements of a commutative Banach algebra A
satisfying d(x1, . . . , xn) = 0. Then there exists λ ∈ C such that

d(x0 − λ, x1, . . . , xn) = 0.

Proof. Regard A as a subalgebra of the algebra Q(A) constructed above. Set

J =
{
ã = (ai) ∈ Q(A) : xr ã = 0 (r = 1, . . . , n)

}
.

Then J is a closed ideal in Q(A) and, by the preceding lemma, J �= {0}. Define
the operator T : J → J by T

(
(ai)

)
= (x0ai).

Let λ ∈ ∂σB(J)(T ). Then, by Theorem 1.28, there exist ũj ∈ J (j ∈ N) such
that ‖ũj‖Q(A) = 1 and limj→∞ ‖(T − λ)ũj‖Q(A) = limj→∞ ‖(x0 − λ)ũj‖Q(A) = 0.
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For every k ∈ N there exists j ∈ N such that ‖(x0 − λ)ũj‖Q(A) < k−1.
As ũj ∈ J , we can find an element zk of the sequence ũj such that ‖xrzk‖ <
k−1 (r = 1, . . . , n), ‖(x0 − λ)zk‖ < k−1 and 1 − k−1 < ‖zk‖ < 1 + k−1. If we
consider the sequence

(
zk

‖zk‖
)
, it is easy to see that d(x0 − λ, x1, . . . , xn) = 0. �

Let A be a commutative Banach algebra. Denote by �l(A) the set of all ideals
in A consisting of joint topological divisors of zero.

Corollary 8. Let A be a commutative Banach algebra and let I ∈ �l(A). Then there
exists a maximal ideal J such that J ∈ �l(A) and J ⊃ I.

Proof. It follows easily from the Zorn lemma that there exists an ideal J in �l(A)
containing I that is maximal in this class with respect to the inclusion. It is
sufficient to show that codimJ = 1.

If codimJ ≥ 2, then there exists x ∈ A such that x /∈ J + C · 1A.
For every finite subset F = {x1, . . . , xn} ⊂ J set

CF =
{
λ ∈ C : d(x − λ, x1, . . . , xn) = 0

}
.

By the previous theorem, we have CF �= ∅. Moreover, CF is compact and CF ∩
CF ′ ⊃ CF∪F ′ �= ∅ for all finite subsets F, F ′ ⊂ J . Hence the system {CF } has the
finite intersection property and there exists λ ∈ ⋂

F CF .
Let J ′ be the ideal generated by J and x − λ. Then J ⊂ J ′, J �= J ′ and, by

Corollary 5, we have J ′ ∈ �l(A), which is a contradiction. �

The set of all multiplicative functionals ϕ ∈ M(A) with Kerϕ ∈ �l(A) is
called the cortex of A and denoted by corA.

Definition 9. Let x1, . . . , xn be elements of a commutative Banach algebra A. The
approximate point spectrum τ(x1, . . . , xn) is defined by

τ(x1, . . . , xn) =
{
(λ1, . . . , λn) ∈ Cn : d(x1 − λ1, . . . , xn − λn) = 0

}
.

The approximate point spectrum has similar properties as the spectrum σ
defined in the previous section.

Theorem 10. Let x = (x1, . . . , xn) be an n-tuple of elements of a commutative
Banach algebra A. Then:

(i) τ(x) = {(ϕ(x1), . . . , ϕ(xn)) : ϕ ∈ corA};
(ii) ∂σ(x1) ⊂ τ(x1) ⊂ σ(x1);
(iii) corA is a non-empty compact subset of M(A) and τ(x) is a non-empty

compact subsets of Cn;

(iv) if m ≤ n and P : Cn → Cm is the canonical projection onto the first m
coordinates, then τ(x1, . . . , xm) = Pτ(x1, . . . , xn);
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(v) if f = (f1, . . . , fm) is an m-tuple of functions analytic in a neighbourhood of
σ(x), then τ

(
f(x)

)
= f

(
τ(x)

)
;

(vi) if B is a closed subalgebra of A and x1, . . . , xn ∈ B, then

τB(x) ⊂ τA(x) ⊂ σA(x) ⊂ σB(x);

(vii) the polynomially convex hulls of τ(x) and σ(x) coincide, i.e.,

τ̂ (x) = σ̂(x) = σ〈x〉(x).

Proof. (i) If ϕ ∈ corA, then xi − ϕ(xi) ∈ Kerϕ (i = 1, . . . , n), and so (ϕ(x1),
. . . , ϕ(xn)) ∈ τ(x1, . . . , xn). Conversely, if (λ1, . . . , λn) ∈ τ(x1, . . . , xn), then
d(x1 − λ1, . . . , xn − λn) = 0 and, by Corollary 8, there is a ϕ ∈ corA such that
xi − λi ∈ Kerϕ and ϕ(xi) = λi (i = 1, . . . , n).

(ii) follows from Theorem 1.14.

(iii) Since τ(x1) ⊃ ∂σ(x1), the set τ(x1) is non-empty. By (i), corA �= ∅ and
also τ(x1, . . . , xn) �= ∅.

We show that corA is a closed subset of M(A). Let ϕα be a net of elements
of corA and ϕα → ϕ ∈ M(A). Let y1, . . . , ym ∈ Kerϕ and ε > 0. Then |ϕα(yj)| <
ε/2 for all j and all α sufficiently large. Further, yj − ϕα(yj) · 1A ∈ Kerϕα and
there is a u ∈ A with ‖u‖ = 1 and ‖(yj − ϕα(yj))u‖ < ε/2 (j = 1, . . . , m). Then
‖yju‖ < ε (j = 1, . . . , m) and, consequently, d(y1, . . . , ym) = 0. Hence ϕ ∈ corA
and corA is compact.

Consider the mapping ϕ �→ (ϕ(x1), . . . , ϕ(xn)) from corA onto τ(x1, . . . , xn).
The mapping is continuous and therefore τ(x1, . . . , xn) is compact.

(iv) follows from (i).

(v) By Theorem 2.20, we have

f(τ(x)) =
{
f(ϕ(x)) : ϕ ∈ corA}

=
{
ϕ(f(x)) : ϕ ∈ corA}

= τ(f(x)).

(vi) The first inclusion follows from the inequality

dA(x1 − λ1, . . . , xn − λn) ≤ dB(x1 − λ1, . . . , xn − λn)

for all (λ1, . . . , λn) ∈ Cn.
The second inclusion is clear. To show the third inclusion, let (λ1, . . . , λn) ∈

σA(x1, . . . , xn). Then there exists a multiplicative functional ϕ ∈ M(A) such that
ϕ(xi) = λi (i = 1, . . . , n). The restriction ψ = ϕ|B ∈ M(B) has the same property,
and so (λ1, . . . , λn) ∈ σB(x1, . . . , xn).

(vii) For each polynomial p we have

max
{|p(λ)| : λ ∈ σ(x)

}
= max

{|µ| : µ ∈ σ(p(x))
}

= max
{|µ| : µ ∈ τ(p(x))

}
= max

{|p(λ)| : λ ∈ τ(x)
}
.

Hence τ̂ (x) = σ̂(x).



3. Approximate point spectrum in commutative Banach algebras 31

By Theorem 2.18, σ〈x〉(x) is polynomially convex. By (vi), we have τ 〈x〉(x) ⊂
τA(x) ⊂ σA(x) ⊂ σ〈x〉(x) and τ̂ 〈x〉(x) = σ̂〈x〉(x). Hence σ̂A(x) = σ〈x〉(x). �

If we replace the norm by the spectral radius in the definition of ideals con-
sisting of joint topological divisors of zero, then we get similar results.

Let A be a commutative Banach algebra. Denote by γ(A) the set of all ideals
J in A such that

inf
{ n∑

i=1

r(xiy) : y ∈ A, r(y) = 1
}

= 0

for every finite subset {x1, . . . , xn} ⊂ J .
This notion is closely related to the Shilov boundary Γ(A) of the algebra A.

Theorem 11. Let ϕ be a multiplicative functional on a commutative Banach algebra
A. Then ϕ ∈ Γ(A) if and only if Kerϕ ∈ γ(A).

Proof. Let ϕ ∈ Γ(A), x1, . . . , xn ∈ Kerϕ and ε > 0.
Consider the neighbourhood

U =
{
ψ ∈ M(A) : |ψ(xi)| < ε (i = 1, . . . , n)

}
of ϕ in M(A). By Corollary 2.23, there exists y ∈ A such that r(y) = 1 and

sup
{|ψ(y)| : ψ ∈ M(A) \ U

}
< 1.

For a suitable power z = yk we have r(z) = 1 and

sup
{|ψ(z)| : ψ ∈ M(A) \ U

}
< ε.

Then

r(xiz) = max
{

sup{|ψ(xiz)| : ψ ∈ U}, sup{|ψ(xiz)| : ψ ∈ M(A) \ U}}
≤ ε · max

{
1, ‖x1‖, . . . , ‖xn‖

}
.

Hence
∑n

i=1 r(xiz) ≤ nε · max
{
1, ‖x1‖, . . . , ‖xn‖

}
and, consequently, Kerϕ ∈

γ(A).
In the opposite direction, let Kerϕ ∈ γ(A). Let x1, . . . , xn ∈ A, ε > 0 and

let
U =

{
ψ ∈ M(A) : |ψ(xi) − ϕ(xi)| < ε (i = 1, . . . , n)

}
.

Then yi := xi − ϕ(xi) · 1A ∈ Kerϕ (i = 1, . . . , n), and so there exists z ∈ A with
r(z) = 1 and

∑n
i=1 r(zyi) < ε/2.

If ψ ∈ M(A) \ U , then there exists i ∈ {1, . . . , n} with |ψ(xi) − ϕ(xi)| ≥ ε.
Then |ψ(yi)| = |ψ(xi) − ϕ(xi)| ≥ ε, and so

|ψ(z)| =
|ψ(zyi)|
|ψ(yi)| ≤ r(zyi)

ε
<

1
2
.
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Hence

1 = r(z) = sup
{|ψ(z)| : ψ ∈ U

}
>

1
2
≥ sup

{|ψ(z)| : ψ ∈ M(A) \ U
}
,

and so ϕ ∈ Γ(A). �

Lemma 12. Let J be an ideal in a commutative Banach algebra A. Then J ∈ γ(A)
if and only if there exists a net (zα)α of elements of A such that r(zα) = 1 for all
α and limα r(xzα) = 0 for all x ∈ J .

Proof. Let J ∈ γ(A). For every finite set F ⊂ J and every n ∈ N find zF,n ∈ A
with r(zF,n) = 1 and r(zF,nx) < 1/n (x ∈ F ). As in Theorem 3 we can show
that (zF,n)F,n is the required net.

The opposite implication is clear. �

Theorem 13. Let I be an ideal in a commutative Banach algebra A. Then I ∈ γ(A)
if and only if there exists a multiplicative functional ϕ ∈ Γ(A) such that I ⊂ Kerϕ.

Proof. If ϕ ∈ Γ(A) and I ⊂ Kerϕ, then Kerϕ ∈ γ(A) by Theorem 11. Conse-
quently, I ∈ γ(A).

For the converse, let I ∈ γ(A). By Theorem 2.11, the spectral radius is an
algebra norm in the algebra A/ radA. Let B be the completion of the algebra(A/ radA, r(·)) and let ρ = ρ2ρ1 : A → B where ρ1 : A → A/ radA is the
canonical projection and ρ2 : A/ radA → B the natural embedding. Clearly, ρ is
a continuous homomorphisms with dense range and we have ‖ρ(x)‖B = r(x) for
each x ∈ A. Using the spectral radius formula and the continuity of the spectral
radius in the commutative Banach algebra B we see that the norm in B coincides
with the spectral radius. In particular, γ(B) = �l(B).

Using Corollary 5 we obtain that ρ(I) is contained in an ideal in γ(B) = �l(B).
By Corollary 8, there exists a maximal ideal J1 ∈ �l(B) such that J1 ⊃ ρ(I). Set
J = ρ−1(J1). Then I ⊂ J , and J is a maximal ideal in A since it is of codimension
1. Furthermore, J1 ∈ γ(B), and so there exists a net (zα) ⊂ B with r(zα) = 1 and
r(zαu) → 0 for all u ∈ J1. Since ρ(A) is dense in B, we can choose (zα) ⊂ ρ(A).
Since ρ preserves the spectral radius, we can see that J = ρ−1(J1) ∈ γ(A). By
Theorem 11, J = Kerϕ for some ϕ ∈ Γ(A), and so I ⊂ Kerϕ. �

Lemma 14. Let x1, . . . , xn, y be elements of a commutative Banach algebra A.
Then

n∑
i=1

r(xiy) ≥ d(x1, . . . , xn) · r(y).

Proof. The inequality is clear if d(x1, . . . , xn) = 0.
Suppose that c := d(x1, . . . , xn) > 0. Let B be the set of all formal power

series in variables t1, . . . , tn of the form
∑

α∈Zn
+

cαtα satisfying
∑

α∈Zn
+
‖cα‖ < ∞,
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where α = (α1, . . . , αn), cα ∈ A and tα = tα1
1 · · · tαn

n (α ∈ Zn
+). Together with the

naturally defined algebraic operations and the norm∥∥∥ ∑
α∈Zn

+

cαtα
∥∥∥ =

∑
α∈Zn

+

‖cα‖,

B is a commutative Banach algebra containing A as a subalgebra of constants. Set
u =

∑n
i=1 xiti. Then ‖uy‖ ≥ c · ‖y‖ for all y ∈ A. We can show easily by induction

that ∑
α∈Z

n
+

|α|=k

k!
α1! · · ·αn!

‖xαy‖ ≥ ck‖y‖,

and so

‖uky‖ =
∥∥∥∥ ∑

α∈Z
n
+

|α|=k

k!
α1! · · ·αn!

xαtαy

∥∥∥∥ =
∑

α∈Z
n
+

|α|=k

k!
α1! · · ·αn!

‖xαy‖ ≥ ck‖y‖

for all y ∈ A, k ∈ N. Thus ‖ukyk‖ ≥ ck‖yk‖ and r(uy) ≥ c r(y) for all y ∈ A.
Hence

c · r(y) ≤ r(uy) ≤
n∑

i=1

r(xitiy) ≤
n∑

i=1

r(xiy)

for every y ∈ A, since r(ti) = 1 (i = 1, . . . , n) and the spectral radius in B is
subadditive and submultiplicative. �
Corollary 15. Let A be a commutative Banach algebra. Then γ(A) ⊂ �l(A) and
Γ(A) ⊂ corA.

Let A be a commutative Banach algebra. We have already studied the spec-
trum

σ(x1, . . . , xn) =
{
(ϕ(x1), . . . , ϕ(xn)) : ϕ ∈ M(A)

}
and the approximate point spectrum

τ(x1, . . . , xn) =
{
(ϕ(x1), . . . , ϕ(xn)) : ϕ ∈ corA}

.

Another important closed subset of M(A) is the Shilov boundary Γ(A). We
define the Shilov spectrum σΓ for (x1, . . . , xn) ∈ An by

σΓ(x1, . . . , xn) =
{
(ϕ(x1), . . . , ϕ(xn)) : ϕ ∈ Γ(A)

}
.

It is easy to see that σΓ has similar properties as the spectrum σ and the ap-
proximate point spectrum τ . Later we formulate a result of this kind for general
spectral systems.

Theorem 16. Let x = (x1, . . . , xn) be an n-tuple of elements of a commutative
Banach algebra A. Then:
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(i) σΓ(x) is a non-empty compact subset of Cn and σΓ(x) ⊂ τ(x) ⊂ σ(x);
(ii) if f = (f1, . . . , fm) is an m-tuple of functions analytic in a neighbourhood of

σ(x), then
σΓ

(
f(x)

)
= f

(
σΓ(x)

)
;

(iii) max{|λ| : λ ∈ σΓ(x1)} = r(x1) for all x1 ∈ A;

(iv) the polynomially convex hulls of σΓ(x) and σ(x) coincide, i.e.,

σ̂Γ(x) = σ̂(x) = σ〈x〉(x).

In particular, ∂σ(x1) ⊂ σΓ(x1) ⊂ σ(x1).

4 Permanently singular elements and

removability of spectrum

Let A,B be Banach algebras. We say that B is an extension of A if there exists
an isometrical homomorphism ρ : A → B. If we identify A with the image ρ(A)
we can consider A as a closed subalgebra of B and write simply A ⊂ B.

In fact, if the homomorphism ρ is only isomorphic, then we can renorm B
such that ρ becomes an isometrical embedding.

Theorem 1. Let (B, ‖ · ‖) be a Banach algebra and A ⊂ B a subalgebra. Let k ≥ 1
and let | · | be an algebra norm on A satisfying

k−1|a| ≤ ‖a‖ ≤ k|a| (a ∈ A).

Then there exists an algebra norm |||·||| on B equivalent to ‖·‖ such that |||a||| = |a|
for every a ∈ A.

Proof. Consider the bounded semigroup S = {a ∈ A : |a| ≤ 1}. By Theorem 1.32,
there exists an algebra norm ‖ · ‖′ on B such that

k−1‖b‖ ≤ ‖b‖′ ≤ k‖b‖
for every b ∈ B and ‖a‖′ ≤ |a| (a ∈ A).

Define the new norm ||| · ||| on B by

|||b||| = inf
{|a| + k2‖b − a‖′ : a ∈ A}

.

For a ∈ A we have |||a||| ≤ |a| and

|||a||| = inf
{|a1| + k2‖a − a1‖′ : a1 ∈ A} ≥ inf

a1∈A
(|a1| + k‖a − a1‖

)
≥ inf

a1∈A
(|a1| + |a − a1|) ≥ |a|.

Hence |||a||| = |a| for every a ∈ A.
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For b ∈ B we have |||b||| ≤ k2‖b‖′ ≤ k3‖b‖ and

|||b||| = inf
{|a| + k2‖b − a‖′ : a ∈ A} ≥ inf

a∈A
(
k−1‖a‖ + k‖b − a‖) ≥ k−1‖b‖.

Hence ||| · ||| is a norm on B equivalent to ‖ · ‖.
It remains to show the submultiplicativity of ||| · |||. We have

|||b1||| · |||b2||| = inf
a1,a2∈A

(
(|a1| + k2‖b1 − a1‖′) · (|a2| + k2‖b2 − a2‖′)

)
≥ inf

a1,a2∈A

(
|a1| · |a2| + k2

(‖a1‖′ · ‖b2 − a2‖′ + ‖b1 − a1‖′ · ‖a2‖′

+ ‖b1 − a1‖′ · ‖b2 − a2‖′
))

≥ inf
a1,a2∈A

(
|a1a2| + k2‖b1b2 − a1a1‖′

)
≥ |||b1b2|||. �

By Theorem 1.27 (ii), a topological divisor of zero is singular (= non-invert-
ible) in any extension B ⊃ A. For commutative Banach algebras the opposite
statement is also true.

Definition 2. An element x in a commutative Banach algebra A is called perma-
nently singular if it is singular in each commutative Banach algebra B ⊃ A.

Theorem 3. Let x be an element of a commutative Banach algebra A. Then x is
permanently singular if and only if it is a topological divisor of zero.

Proof. Let x ∈ A be a topological divisor of zero and let B be a commutative
extension of A. Then there exists a sequence (uk)∞k=1 ⊂ A, ‖uk‖ = 1 (k = 1, 2, . . . )
such that limk→∞ ukx = 0. Suppose on the contrary that x is invertible in B, so
there exists y ∈ B such that xy = 1. Then 1 = ‖uk‖ = ‖ukxy‖ ≤ ‖ukx‖ · ‖y‖ → 0,
a contradiction.

In the opposite direction, suppose that x ∈ A is not a topological divisor of
zero. Let q = (dA(x))−1, so ‖a‖ ≤ q‖ax‖ for all a ∈ A. Consider the algebra C of
all power series

∑∞
i=0 aib

i with coefficients ai ∈ A in one variable b such that∥∥∥ ∞∑
i=0

aib
i
∥∥∥ =

∞∑
i=0

‖ai‖qi < ∞.

With the multiplication given by( ∞∑
i=0

aib
i

)
·
⎛⎝ ∞∑

j=0

a′
jb

j

⎞⎠ =
∞∑

k=0

bk

⎛⎝ ∑
i+j=k

aia
′
j

⎞⎠ ,

C is a commutative Banach algebra containing A as a subalgebra of constants.
Let J be the closed ideal generated by the element 1 − xb and set B = C/J .
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Let ρ : A → B be the composition of the embedding A → C and the canonical
homomorphism C → B = C/J . Then

ρ(x) · (b + J) = (x + J)(b + J) = 1A + J = 1B,

and so it is sufficient to show that ρ is an isometry, i.e., that for each a ∈ A we
have ‖a‖A = ‖ρ(a)‖B.

Obviously, ‖ρ(a)‖B = infc∈C ‖a + (1 − xb)c‖C ≤ ‖a‖A.
Conversely, let c =

∑∞
i=0 aib

i ∈ C. So
∑∞

i=0 ‖ai‖qi < ∞ and

‖a + (1 − xb)c‖C =
∥∥∥∥(a + a0) +

∞∑
i=1

bi(ai − ai−1x)
∥∥∥∥
C

= ‖a + a0‖ +
∞∑

i=1

‖ai − ai−1x‖qi ≥ ‖a‖ − ‖a0‖ +
∞∑

i=1

qi
(‖ai−1x‖ − ‖ai‖

)
≥ ‖a‖ − ‖a0‖ +

∞∑
i=1

(
qi−1‖ai−1‖ − qi‖ai‖

)
= lim

k→∞
(‖a‖ − qk‖ak‖

)
= ‖a‖.

Hence ρ is an isometry and B is the required extension of A. �

Corollary 4. Let x be an element of a commutative Banach algebra A. Then

τA(x) =
⋂
B⊃A

σB(x)

(the intersection of all subsets of C that are of the form σB(x) for some commu-
tative extension B ⊃ A).

In fact, a stronger result is true – there is a single extension B ⊃ A such that
τA(a) = σB(x). To show this we need several lemmas.

Lemma 5. Let A be a commutative Banach algebra, x ∈ A, let G be an open
connected subset of C \ τ(x), let U be a non-empty open subset of G. Suppose
that f : G → A and g : U → A are analytic functions satisfying

f(z) = (x − z)g(z) (z ∈ U). (1)

Then it is possible to extend g to an analytic function on G (it is clear that the
extension, denoted also by g, satisfies (1) for all z ∈ G).

Proof. Denote by G0 the set of all z ∈ G such that there exists an analytic solution
of (1) in a neighbourhood of z. Since for z ∈ G the value of g(z) is determined by
(1) uniquely, it is sufficient to show that G0 = G.

Let λ ∈ G and let ϕ : 〈0, 1〉 → G be a continuous function with ϕ(0) ∈ U ⊂
G0 and ϕ(1) = λ. Let Z = {ϕ(t) : t ∈ 〈0, 1〉} and let r be a positive constant
satisfying dist{Z, C \ G} > r and infz∈Z d(x − z) ≥ r. Let M = max

{‖f(z)‖ :
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dist{z, Z} ≤ r
}
. Let µ ∈ G0 ∩ Z. Then there exist a neighbourhood U1 of µ and

an analytic function g : U1 → A such that U1 ⊂ G, f(z) = (x − z)g(z) (z ∈ U1),
and f(z) =

∑∞
i=0 fi(z−µ)i, g(z) =

∑∞
i=0 gi(z−µ)i (z ∈ U1) for some coefficients

fi, gi ∈ A (i = 0, 1, . . . ). By the Cauchy formulas, ‖fi‖ ≤ M
ri (i = 0, 1, . . . ).

Furthermore,

∞∑
i=0

fi(z − µ)i = f(z) = (x − z)g(z) =
(
(x − µ) − (z − µ)

) ∞∑
i=0

gi(z − µ)i

= (x − µ)g0 +
∞∑

i=1

(z − µ)i
(
(x − µ)gi − gi−1

)
for all z ∈ U1. Thus f0 = (x−µ)g0 and (x−µ)gi = gi−1+fi (i ≥ 1). Hence ‖g0‖ ≤
d(x − µ)−1‖f0‖ ≤ r−1M and ‖gi‖ ≤ d(x − µ)−1(‖gi−1‖ + ‖fi‖) ≤ r−1

(‖gi−1‖ +
Mr−i

)
. It is easy to show by induction that ‖gi‖ ≤ (i+1)Mr−(i+1) (i = 1, 2, . . . ).

Thus the series
∑∞

i=0 gi(z − µ)i converges for |z − µ| < r, and so {z : |z − µ| <
r} ⊂ G0.

Let t0 = sup
{
t ∈ 〈0, 1〉 : ϕ(s) ∈ G0 for every s, 0 ≤ s ≤ t

}
. It is easy to check

that t0 = 1, and so λ ∈ G0. Hence G0 = G. �

Lemma 6. Let a, x be elements of a commutative Banach algebra A, let U be an
open neighbourhood of τ(x) and let g : U → A be an analytic function satisfying
a = (x − z)g(z) (z ∈ U). Then a = 0.

Proof. Let G be a component of C\τ(x). Obviously, U∩G �= ∅. By Lemma 5, there
is an analytic function gG : G → A satisfying a = (x − z)gG(z) (z ∈ G). Since
the function gG is uniquely determined on G, it coincides with g on G∩U . Hence
the function g can be extended to an entire function (denoted also by g) satisfying
a = (x−z)g(z) (z ∈ C). For |z| > ‖x‖ we have g(z) = (x−z)−1a. Thus g(z) → 0
as z → ∞. By the Liouville theorem, g = 0, and so a = (x − z)g(z) = 0. �

Let A be a commutative Banach algebra and let U be an open subset of the
complex plane. Denote by H∞(U,A) the algebra of all bounded analytic functions
f : U → A with the norm ‖f‖U = sup

{‖f(z)‖ : z ∈ U
}
. Clearly, H∞(U,A) is a

commutative Banach algebra.

Lemma 7. Let A be a commutative Banach algebra, x ∈ A, let U be an open
neighbourhood of τ(x), Then there exists a constant k > 0 such that ‖a‖ ≤ k·‖g‖U

whenever a ∈ A, f, g ∈ H∞(U,A) and a = g(z) + (x − z)f(z) (z ∈ U).

Proof. Without loss of generality we can assume that U is bounded. Suppose on
the contrary that there exist an ∈ A, fn, gn ∈ H∞(U,A) (n = 1, 2, . . . ) such that

an = gn(z) + (x − z)fn(z) (z ∈ U, n = 1, 2, . . . ),

‖an‖ = 1, and ‖gn‖U → 0 (n → ∞).
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Consider the algebra Q(A) = �∞(A)/c0(A) defined in Section 3. The
elements of Q(A) are bounded sequences of elements of A with the norm
‖(un)‖Q(A) = lim supn→∞ ‖un‖; we identify sequences (un) and (vn) in Q(A)
if limi→∞ ‖ui − vi‖ = 0.

Write ã = (an) ∈ Q(A). Then ‖ã‖Q(A) = lim supi→∞ ‖ai‖ = 1. Define
g̃ : U → Q(A) by g̃(z) = (gn(z))n. Since ‖gn‖U → 0 we have g̃ = 0. Let Z =
{z ∈ U : dist{z, τ(x)} ≥ 1/2 dist{τ(x), C \ U}. The continuity of the function
z �→ d(x − z) implies that d(x − z) ≥ r (z ∈ Z) for some positive r. Thus, using
the maximum modulus principle,

sup
n

‖fn(z)‖U = sup
n

‖fn(z)‖Z ≤ r−1 sup
n

‖(x − z)fn(z)‖Z

= r−1 sup
n

‖an − gn(z)‖Z < ∞.

Define f̃ : U → Q(A) by f̃(z) = (fn(z)). Let λ ∈ U , 0 < s < dist{λ, C \ U},
M = supn ‖fn‖U and let

fn(z) =
∞∑

i=0

fn,i(z − λ)i
(|z − λ| < dist{λ, C \ U}).

Then ‖fn,i‖ ≤ M
si , and so f̃i := (fn,i)n ∈ Q(A) for all i ≥ 0. Furthermore,

f̃(z) =
∑∞

i=0 f̃n,i(z−λ)i (|z−λ| < s). Thus f̃ : U → Q(A) is a bounded analytic
function. Further, ã = (x − z)f̃(z) (z ∈ U) and U ⊃ τA(x) = τQ(A)(x). By the
previous lemma, we have ã = 0, which is a contradiction. �

Proposition 8. Let A be a commutative Banach algebra, x ∈ A, let U be an open
neighbourhood of τ(x). Then there exists a commutative Banach algebra B ⊃ A
such that σB(x) ⊂ U .

Proof. Consider the Banach algebra H∞(U,A) of all bounded analytic functions
f : U → A. Let J ⊂ H∞(U,A) be the closed ideal generated by the function
z �→ x− z · 1A and let B = H∞(U,A)/J . Let ρ : A → B be the composition of the
natural embedding A → H∞(U,A) and the canonical projection H∞(U,A) → B.
Clearly, ‖ρ(a)‖B ≤ ‖a‖A (a ∈ A). On the other hand,

‖ρ(a)‖B = inf
f∈H∞(U,A)

∥∥a − (x − z)f
∥∥

U
≥ k−1‖a‖ (a ∈ A),

where k is the constant from the previous lemma. Thus ρ is an isomorphism.
Let λ /∈ U . Then z �→ (z − λ)−11A ∈ H∞(U,A) and

(z − λ)−1(x − λ) = (z − λ)−1
(
(z − λ) + (x − z)

)
= 1 + (x − z)(z − λ)−1 ∈ 1A + J,

and so ρ(x) − λ is invertible in B. Thus σB(ρ(x)) ⊂ U .
By Theorem 1, it is possible to renorm B such that it becomes an extension

of A. �
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Let A be a commutative Banach algebra and let x ∈ A. We construct by
transfinite induction algebras Aα (α ≤ ω1) by A0 = A, Aα+1 = Q(Aα) and
for a limit ordinal α let Aα be the completion of

⋃
β<α Aβ . Here ω1 is the first

uncountable ordinal. Note that we consider each Aα to be a subalgebra of Aα+1 =
Q(Aα), so we have Aα ⊂ Aβ whenever α ≤ β.

Set A′ = Aω1 . Note that A′ =
⋃

α<ω1
Aα. Indeed, let (xn) be a Cauchy

sequence in
⋃

α<ω1
Aα. Then xn ∈ Aαn for some αn < ω1. Let α = sup αn. Then

the sequence (xn) is convergent in Aα ⊂ A′.
By Theorem 3.6, it is easy to show that dAα(a) = dA(a) for all a ∈ A and

α ≤ ω1. Consequently, τA′
(x) = τA(x).

Lemma 9. Let A be a commutative Banach algebra, x ∈ A, let U1, U2, . . . be open
subsets of C such that U1 ⊃ U2 ⊃ · · · ⊃ τ(x). Let A′ be the algebra constructed
above. Then there exist numbers 1 ≤ k1 ≤ k2 ≤ · · · with the following property:
if n ∈ N, a ∈ A′, a �= 0, f ∈ H∞(Un,A′), gi ∈ H∞(Ui,A′) (i = 1, . . . , n) and

a =
n∑

i=1

gi(z) + (x − z)f(z) (z ∈ Un),

then ‖a‖ <
∑n

i=1 ki‖gi‖Ui .

Proof. We find the numbers ki inductively. The existence of k1 was proved in
Lemma 7.

Suppose that the statement of Lemma 9 is true for n, so there are positive
constants k1, . . . , kn such that

‖a‖ <

n∑
i=1

ki‖gi‖Ui (2)

whenever a = (x − z)f(z) +
∑n

i=1 gi(z) (z ∈ Un) for some non-zero a ∈ A′ and
bounded analytic functions f : Un → A′ and gi : Ui → A′ (i = 1, . . . , n). We
prove (2) for n + 1. Suppose on the contrary that there is no constant kn+1 for
which (2) were true. Then there exist elements a(r) ∈ A′ of norm 1 and analytic
functions f (r) : Un+1 → A′, g

(r)
i : Ui → A′ (i = 1, . . . , n + 1, r ∈ N) such that

a(r) = (x − z)f (r)(z) +
n∑

i=1

g
(r)
i (z) (z ∈ Un+1)

and
n∑

i=1

ki‖g(r)
i ‖Ui + r · ‖g(r)

n+1‖Un+1 ≤ 1.

In particular, ‖g(r)
n+1‖Un+1 ≤ r−1 and ‖g(r)

i ‖Ui ≤ k−1
i (i = 1, . . . , n, r ∈ N).

Passing to a subsequence if necessary, we can assume that the sequences
(‖g(r)

1 ‖U1)
∞
r=1, . . . , (‖g(r)

n ‖Un)∞r=1 are convergent.
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It is easy to see that there is an ordinal β < ω1 such that a(r) ∈ Aβ and the
functions f (r), g

(r)
i are Aβ-valued for all r and i (to see this, note that a continuous

function h is Aβ-valued if h(z) ∈ Aβ for all z in a given countable set dense in the
domain of definition of h).

Let ã = (a(r)). Then ã can be considered as element of Q(Aβ) = Aβ+1 ⊂ A′

with ‖ã‖ = lim supr→∞ ‖a(r)‖ = 1. In the same way we define functions f̃ :
Un+1 → Q(Aβ) and g̃i : Ui → Q(Aβ) (i = 1, . . . , n + 1) by f̃(z) = (f (r)(z))∞r=1

and g̃i(z) = (g(r)
i (z))∞r=1. We have

‖g̃i‖Ui = sup
z∈Ui

lim sup
r→∞

‖g(r)
i (z)‖ ≤ k−1

i (i = 1, . . . , n)

and
‖g̃n+1‖Un+1 = sup

z∈Un+1

lim sup
r→∞

‖g(r)
n+1(z)‖ ≤ lim sup

r→∞
r−1 = 0,

so g̃n+1 = 0. As in the proof of Lemma 7 we can show that functions f (r) are
uniformly bounded on Un+1, and so g̃1, . . . , g̃n, f̃ are bounded analytic functions.
We have ã =

∑n
i=1 g̃i(z) + (x − z)f̃(z) (z ∈ Un+1). By Lemma 5, f̃ can be

extended to Un. Since Q(Aβ) = Aβ+1 ⊂ A′, by the induction assumption we have

1 = ‖ã‖ <

n∑
i=1

ki‖g̃i‖Ui =
n∑

i=1

ki sup
z∈Ui

lim sup
r→∞

‖g(r)
i (z)‖

≤
n∑

i=1

ki lim sup
r→∞

‖g(r)
i ‖Ui = lim

r→∞

n∑
i=1

ki‖g(r)
i ‖Ui ≤ 1,

a contradiction. �
Theorem 10. Let x be an element of a commutative Banach algebra A. Then there
exists a commutative extension B ⊃ A such that τA(x) = σB(x).

Proof. For i = 1, 2, . . . set Ui =
{
z ∈ C : dist{z, τA(x)} < 1/i

}
. Then Ui are open

subsets of C, U1 ⊃ U2 ⊃ · · · and
⋂∞

i=1 Ui = τA(x). Let k1, k2, . . . be the positive
numbers constructed in the previous lemma. Let C be the algebra of all A-valued
functions analytic on a neighbourhood of τA(x) (more precisely, the algebra of all
germs of analytic functions). For h ∈ C define |||h||| by

|||h||| = inf
{
‖c‖A +

n∑
i=1

ki‖gi‖Ui

}
,

where the infimum is taken over all n ∈ N, c ∈ A and over all bounded analytic
functions gi : Ui → A (i = 1, . . . , n) such that, for some f ∈ H∞(Un,A),

h(z) = c +
n∑

i=1

gi(z) + (x − z)f(z) (z ∈ Un).

We identify elements of A with the corresponding constant functions; so A ⊂ C.
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Let a ∈ A. We have |||a||| ≤ ‖a‖A and, by the preceding lemma,

|||a||| = inf
{
‖c‖A +

n∑
i=1

ki‖gi‖Ui : a = c +
n∑

i=1

gi(z) + (x − z)f(z)
}

≥ inf
c∈A

{‖c‖A + ‖a − c‖A} ≥ ‖a‖A.

Thus |||a||| = ‖a‖A for all a ∈ A.
It is clear that |||h + h′||| ≤ |||h||| + |||h′||| and |||αh||| = |α| · |||h||| for all

h, h′ ∈ C, α ∈ C.
We show that ||| · ||| is submultiplicative. Let h, h′ ∈ C and ε > 0. By the def-

inition of ||| · |||, there are c, c′ ∈ A, n, m ∈ N and functions gi ∈ H∞(Ui,A) (i =
1, . . . , n), f ∈ H∞(Un,A), g′j ∈ H∞(Uj ,A) (j = 1, . . . , m), f ′ ∈ H∞(Um,A)
such that

h(z) = c +
n∑

i=1

gi(z) + (x − z)f(z) (z ∈ Un),

h′(z) = c′ +
m∑

j=1

g′j(z) + (x − z)f ′(z) (z ∈ Um),

|||h||| ≤ ε + ‖c‖A +
n∑

i=1

ki‖gi‖Ui

and

|||h′||| ≤ ε + ‖c′‖A +
m∑

j=1

kj‖g′j‖Uj .

For some function u ∈ H∞(Umax{n,m},A) we have

(hh′)(z) = cc′ +
n∑

i=1

c′gi(z) +
m∑

j=1

cg′j(z) +
n∑

i=1

m∑
j=1

gi(z)g′j(z) + (x − z)u(z)

for z ∈ Umax{n,m}. By definition,

|||hh′||| ≤ ‖c‖ · ‖c′‖ +
n∑

i=1

ki‖c′‖ · ‖gi‖Ui +
m∑

j=1

kj‖c‖ · ‖g′j‖Uj

+
n∑

i=1

m∑
j=1

kmax{i,j}‖gig
′
j‖Umax{i,j}

≤
{
‖c‖ +

n∑
i=1

ki‖gi‖Ui

}
·
{
‖c′‖ +

m∑
j=1

kj‖g′j‖Uj

}
≤ (|||h||| + ε)(|||h′||| + ε).

Since ε > 0 was arbitrary, we have |||hh′||| ≤ |||h||| · |||h′|||.
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Let J = {h ∈ C : |||h||| = 0}. It is clear that J is an ideal in C. Denote by B
the completion of C/J . Then B is an extension of A. Furthermore, (x − z)f ∈ J
for each f ∈ C. Let λ ∈ C \ τA(x). Then

(z − λ)−1(x − λ) = (z − λ)−1
(
(x − z) + (z − λ)

)
= 1 + (x − z)(z − λ)−1 ∈ 1 + J,

and so x − λ is invertible in B. Hence σB(x) ⊂ τA(x) and the opposite inclusion
is clear. �

The following theorem is an analogue of the spectral radius formula.

Theorem 11. Let x be an element of a commutative Banach algebra A. Then the
limit limk→∞ d(xk)1/k exists and

lim
k→∞

d(xk)1/k = sup
k∈N

d(xk)1/k = min{|λ| : λ ∈ τ(x)}. (3)

Proof. If 0 ∈ τ(x), then 0 ∈ τ(xk) for all k by the spectral mapping theorem, and
both sides of (3) are equal to 0.

Suppose that 0 /∈ τ(x). By Lemma 3.1, d(xk+l) ≥ d(xk) ·d(xl) for all k, l ∈ N.
By Lemma 1.21, the limit limk→∞ d(xk)1/k exists and is equal to the supremum.

Let λ ∈ C, |λ| < d(x). Then d(x−λ) ≥ d(x)−|λ| > 0, and so λ /∈ τ(x). Thus
d(x) ≤ min{|λ| : λ ∈ τ(x)}. Similarly,

d(xk) ≤ min
{|µ| : µ ∈ τ(xk)

}
= min

{|λ| : λ ∈ τ(x)
}k

for each k ∈ N. Hence

lim
k→∞

d(xk)1/k ≤ min
{|λ| : λ ∈ τ(x)

}
.

To prove the opposite inequality, let B ⊃ A be a commutative extension of
the algebra A satisfying σB(x) = τA(x). Then x is invertible in B, and so

min{|λ| : λ ∈ τA(x)} = min{|λ| : λ ∈ σB(x)} = r(x−1)−1

= lim
k→∞

‖x−k‖−1/k = lim
k→∞

dB(xk)1/k ≤ lim
k→∞

dA(xk)1/k. �

5 Non-removable ideals

The notion of permanently singular elements can be generalized to ideals.

Definition 1. An ideal I in a commutative Banach algebra A is called non-re-
movable if in every commutative Banach algebra B ⊃ A there exists a proper ideal
J ⊃ I.

Non-removable ideals are closely related to permanently singular elements.
Clearly, x ∈ A is permanently singular if and only if the ideal xA is non-removable.
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It is easy to see that an ideal consisting of joint topological divisors of zero
is non-removable.

Our goal will be to show that the opposite statement is also true, so there is
an analogy with the characterization of permanently singular elements.

Theorem 2. Let u1, . . . , un be elements of a commutative Banach algebra A such
that d(u1, . . . , un) > 0. Then there exist a commutative Banach algebra B ⊃ A
and elements b1, . . . , bn ∈ B such that

∑n
i=1 uibi = 1.

Proof. For n = 1, the result was proved in Theorem 4.3. Assume that n ≥ 2. The
extension B ⊃ A will be constructed in a similar way.

We may assume that ‖u1‖ = · · · = ‖un‖ = 1. Let q = (d(u1, . . . , un))−1, so
‖x‖ ≤ q

∑n
i=1 ‖xui‖ for every x ∈ A. In particular, for x = 1A we get qn ≥ 1.

Set R = 8(n − 1)2(nq)2n+1. Let C be the �1-algebra over A and adjoined
elements b1, . . . , bn such that ‖b1‖ = · · · = ‖bn‖ = R. More precisely, the elements
of C are power series

∑
α∈Zn

+
aαbα1

1 · · · bαn
n in n variables b1, . . . , bn with coefficients

aα ∈ A (α = (α1, . . . , αn) ∈ Zn
+) such that∥∥∥∥ ∑

α∈Zn
+

aαbα1
1 · · · bαn

n

∥∥∥∥ =
∑

α∈Zn
+

‖aα‖R|α| < ∞.

The multiplication in C is defined by( ∑
α∈Zn

+

aαbα

)
·
( ∑

β∈Zn
+

a′
βbβ

)
=

∑
γ∈Zn

+

( ∑
α+β=γ

aαa′
β

)
bγ ,

where bα stands for bα1
1 · · · bαn

n .
It is clear that C is a commutative Banach algebra containing A as a subal-

gebra of constants.
Let z = 1 − u1b1 − · · · − unbn and let J be the closed ideal in C generated

by z.
Set B = C/J . Let ρ : A → B be the composition of the embedding A → C and

the canonical homomorphism C → B. Then ρ(u1) ·(b1+J)+ · · ·+ρ(un) ·(bn +J) =
1B, so it is sufficient to show that ρ is an isometry.

Obviously, ‖ρ(a)‖B ≤ ‖a‖A for all a ∈ A. Suppose on the contrary that there
exists a ∈ A such that

‖a‖A > ‖ρ(a)‖B = inf
c∈C

‖a + cz‖C.

Thus there exists c =
∑

α∈Zn
+

aαbα such that

‖a‖ >

∥∥∥∥a + z
∑

α∈Zn
+

aαbα

∥∥∥∥
C
.
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Since the polynomials are dense in C, we can assume that only finitely many
coefficients aα are non-zero and

‖a‖ >

∥∥∥∥a + z
∑

α∈Zn
+

aαbα

∥∥∥∥
C

=
∥∥∥∥a + (1 − u1b1 + · · · + unbn)

∑
α∈Zn

+

aαbα

∥∥∥∥
C

=
∥∥∥∥a + a0 +

∑
α∈Z

n
+

|α|≥1

fαbα

∥∥∥∥
C

= ‖a + a0‖ +
∑

α∈Z
n
+

|α|≥1

‖fα‖ · R|α|

≥ ‖a‖ − ‖a0‖ +
∑

α∈Z
n
+

|α|≥1

‖fα‖ · R|α|,

where
fα = aα −

∑
1≤t≤n
αt �=0

aα1,...,αt−1,...,αnut (α ∈ Zn
+, |α| ≥ 1). (1)

Thus
‖a0‖ >

∑
α∈Z

n
+

|α|≥1

‖fα‖R|α|.

Without loss of generality we can assume that ‖a0‖ = 1. For k ∈ N write

Sk =
∑

α∈Z
n
+

|α|=k

‖fα‖ · R|α|,

so
∑∞

k=1 Sk < 1. We will show that this is impossible.
The idea of the proof is to express aα in terms of fγ ’s (which are small in the

norm) and aγ ’s with |γ| > |α| (which are equal to zero for |γ| large enough since
only finitely many of the elements aγ are non-zero).

First, we need some technical lemmas.
We will use the standard multi-index notation, see Appendix A.2. For j, n ≥ 1

and α ∈ Zn
+ write

mj,α =
(|α| + j − 1

j − 1

)
· |α|!

α!
.

Note that m1,α = |α|!
α! , and so mj,α =

(|α|+j−1
j−1

) · m1,α.

Lemma 3. If α ∈ Zn
+ and |α| ≥ 1, then

m1,α =
∑
β≤α

|β|=|α|−1

m1,β .



5. Non-removable ideals 45

Proof. We have

α!
∑
β≤α

|β|=|α|−1

m1,β = α1! · · ·αn!
∑

1≤t≤n

αt �=0

(|α| − 1)!
α1! · · · (αt − 1)! · · ·αn!

=
n∑

t=1

αt(|α| − 1)! = |α|!,

which implies the statement of Lemma 3. �

Lemma 4. For all α ∈ Zn
+ and s ≥ 0 we have∑

α∈Z
n
+

|α|=s

m1,α = ns.

Proof. The proof follows from the identity

(x1 + · · · + xn)s =
∑

α∈Z
n
+

|α|=s

m1,αxα1
1 · · ·xαn

n

by substituting x1 = · · · = xn = 1. �

Note that for n = 2, the statement of Lemma 4 reduces to the well-known
identity

∑n
k=0

(
s
k

)
= 2s.

Lemma 5. For j ≥ 1 and α ∈ Zn
+ we have

mj,α =
∑

β∈Z
n
+

β≤α

m1,βmj−1,α−β .

Proof. The number m1,α is the number of ways to order n elements x1, . . . , xn

into a sequence of length |α| in which every element xt occurs exactly αt times
(permutations with repetition). The number mj,α is the number of ways to divide
these sequences into j (possibly empty) subsequences (combinations with repeti-
tion), i.e., in how many ways it is possible to form j sequences s1, . . . , sj from the
elements x1, . . . , xn such that xt occurs in them altogether αt times (sequences
s1, s2 and s2, s1 are counted twice).

The right-hand side is the same number obtained in another way: for β ≤ α,
m1,βmj−1,α−β is the number of ways how to form these subsequences in such a
way that xt occurs in the first subsequence exactly βt-times (t = 1, . . . , n). �

For α = (α1, . . . , αn) ∈ Zn
+ we write α′ = (α1, . . . , αn−1). Similarly, we write

u′ = (u1, . . . , un−1) and u′α′
= uα1

1 · · ·uαn−1
n−1 .
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Lemma 6. Let k, j ≥ 1, α ∈ Zn
+, |α| = k. Then

aαuk+j
n =

∑
β≤α′

(−1)|β|mjβaα′−β,αn+|β|+ju
′βuk−|β|

n

+
j∑

p=1

∑
β≤α′

(−1)|β|+1mp,βfα′−β,αn+|β|+pu
′βuk+j−p−|β|

n .

Proof. Note that all terms aγuδ and fγuδ which appear in the statement of
Lemma 6 satisfy γ + δ = (α′, αn + k + j). In order to simplify the notation,
for γ = (γ′, γn) ∈ Zn

+ with γ ≤ (α′, αn + k + j) write

dγ = aγu′α′−γ′
uαn+k+j−γn

n ,

gγ = fγu′α′−γ′
uαn+k+j−γn

n .
(2)

Using this notation, the statement of Lemma 6 can be rewritten as

dα =
∑
β≤α′

(−1)|β|mj,βdα′−β,αn+|β|+j +
j∑

p=1

∑
β≤α′

(−1)|β|+1mp,βgα′−β,αn+|β|+p. (3)

We prove (3) by induction on j.
For j = 1, (3) becomes

dα =
∑
β≤α′

(−1)|β|m1,β

(
dα′−β,αn+|β|+1 − gα′−β,αn+|β|+1

)
. (4)

By (1) and (2) we have
gδ = dδ −

∑
γ≤δ

|γ|=|δ|−1

dγ

for every δ. Thus (4) can be rewritten as

dα =
∑
β≤α′

(−1)|β|m1,β

∑
γ≤(α′−β,αn+|β|+1)

|γ|=|α|

dγ . (5)

The condition γn ≤ αn + |β| + 1 means |γ| − |γ′| ≤ |α| − |α′| + |β| + 1, and so
|β| ≥ |α′ − γ′| − 1. Thus (5) becomes

dα =
∑

|γ|=|α|
γ′≤α′

dγ

( ∑
β≤α′−γ′

|β|≥|α′−γ′|−1

(−1)|β|m1,β

)
. (6)

By Lemma 3, the expression in the parenthesis is equal to 0 whenever γ′ �= α′.
This proves (6), and also (3) for j = 1.
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Suppose that (3) holds for some j ≥ 1. We prove it for j + 1. Substituting
(4) into the induction assumption (3) yields

dα =
∑
β≤α′

(−1)|β|mj,β

∑
γ≤α′−β

(−1)|γ|m1,γ

· (dα′−β−γ,αn+|β|+j+|γ|+1 − gα′−β−γ,αn+|β|+j+|γ|+1

)
+

j∑
p=1

∑
β≤α′

(−1)|β|+1mp,βgα′−β,αn+|β|+p.

Using Lemma 5, the first sum can be rewritten as∑
β≤α′

∑
γ≤α′−β

(−1)|β+γ|mjβm1γ ·(
dα′−β−γ,αn+|β|+|γ|+j+1 − gα′−β−γ,αn+|β|+|γ|+j+1

)
=

∑
δ≤α′

( ∑
β+γ=δ

mjβm1γ

)
(−1)|δ|

(
dα′−δ,αn+|δ|+j+1 − gα′−δ,αn+|δ|+j+1

)
=

∑
δ≤α′

mj+1,δ(−1)|δ|
(
dα′−δ,αn+|δ|+j+1 − gα′−δ,αn+|δ|+j+1

)
.

Thus (replacing δ by β) we have

dα =
∑
β≤α′

(−1)|β|mj+1,β

(
dα′−β,αn+|β|+j+1 − gα′−β,αn+|β|+j+1

)
+

j∑
p=1

∑
β≤α′

(−1)|β|+1mp,βgα′−β,αn+|β|+p,

which is (3) for j + 1. This finishes the proof of Lemma 6. �
For k, j ∈ N set

sk,j = max
α∈Z

n
+

|α|=k

max
β∈Z

n
+

|β|=j

‖aαuβ‖.

Corollary 7. If k, j ≥ 1, α, γ ∈ Zn
+ and |α| = k, then

‖aαuk+j
n uγ‖ ≤ 2k+j(n − 1)ksk+j,|γ|+k + 2k(n − 1)kR−k−1

k+j∑
p=k+1

Sp.

Proof. By the previous lemma, we have

‖aαuk+j
n uγ‖ ≤

∑
β≤α′

mj,β

∥∥aα′−β,αn+|β|+ju
′βuk−|β|

n uγ
∥∥

+
j∑

p=1

∑
β≤α′

mp,β‖fα′−β,αn+|β|+p‖.
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We have

mp,β =
(|β| + p − 1

p − 1

)
m1,β ≤ 2|β|+p−1 · (n − 1)|β| ≤ 2k+p−1 · (n − 1)k

and ∑
β≤α′

mj,β ≤
∑

β≤α′
mj,βm1,α′−β = mj+1,α′ ≤ 2k+j(n − 1)k.

Thus

‖aαuk+j
n uγ‖ ≤ 2k+j(n − 1)ksk+j,|γ|+k + 2k(n − 1)k

j∑
p=1

∑
β≤α′

2p−1‖fα′−β,αn+|β|+p‖.

Furthermore,
j∑

p=1

∑
β≤α′

2p−1‖fα′−β,αn+|β|+p‖

=
1

Rk+1

j∑
p=1

2p−1

Rp−1

∑
β≤α′

‖fα′−β,αn+|β|+p‖Rk+p

≤ 1
Rk+1

j∑
p=1

2p−1

Rp−1
Sk+p ≤ 1

Rk+1

k+j∑
p=k+1

Sp,

which gives the statement of Corollary 7. �
For k ∈ N set rk = sk,nk.

Corollary 8. If k ∈ N, then

rk ≤ Rk
1r2k +

1
RRk

1

2k∑
p=k+1

Sp,

where R1 = 4(n − 1)(nq)n+1.

Proof. For each x ∈ A we have

‖x‖ ≤ q ·
n∑

t=1

‖xut‖ ≤ qn max{‖xut‖ : 1 ≤ t ≤ n}.

It is easy to show by induction on j that

‖x‖ ≤ (qn)j max{‖xuγ‖ : γ ∈ Zn
+, |γ| = j}.

Let α, β ∈ Zn
+, |α| = k, |β| = nk. Then

‖aαuβ‖ ≤ (qn)nk max{‖aαuβ+γ‖ : γ ∈ Zn
+, |γ| = nk}.

Since |β + γ| = 2nk, there exists an index t, 1 ≤ t ≤ n such that (β + γ)t ≥ 2k.
Since the situation is symmetrical in indices, we can apply Corollary 7.
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Thus, for j = k,

‖aαuβ‖ ≤ (qn)nk

(
22k(n − 1)ks2k,2nk−k + 2k(n − 1)kR−k−1

2k∑
p=k+1

Sp

)

≤ (qn)nk

(
4k(n − 1)k(qn)kr2k + 2k(n − 1)kR−k−1

2k∑
p=k+1

Sp

)

= Rk
1r2k +

1
R

· (qn)nk2k(n − 1)k

8k(n − 1)2k(qn)2nk+k

2k∑
p=k+1

Sp = Rk
1r2k +

1
RRk

1

2k∑
p=k+1

Sp. �

Continuation of the proof of Theorem 2:

We prove by induction on j that

R1r1 ≤ R2j

1 r2j +
1
R

2j∑
p=2

Sp. (7)

For j = 1 this follows from Corollary 8. If the statement is true for some j ≥ 1,
then, by the induction assumption and Corollary 8,

R1r1 ≤ R2j

1

(
R2j

1 r2j+1 +
1

RR2j

1

2j+1∑
p=2j+1

Sp

)
+

1
R

2j∑
p=2

Sp = R2j+1

1 r2j+1 +
1
R

2j+1∑
p=2

Sp,

which gives (7) for j + 1.
Since rk = 0 for k sufficiently large, we have R1r1 ≤ 1

R

∑∞
p=2 Sp < 1

R and
r1 < 1

RR1
.

Furthermore, we have

‖a0‖ ≤ q
n∑

t=1

‖a0ut‖ ≤ q
n∑

t=1

(‖a0,...,0︸︷︷︸
t−1

,1,0,...,0‖ + ‖a0ut − a0,...,0︸︷︷︸
t−1

,1,0,...,0‖
)

≤ qns1,0 + q

n∑
t=1

‖f0,...,0︸︷︷︸
t−1

,1,0,...,0‖ ≤ (qn)n+1r1 +
qS1

R
≤ (qn)n+1

RR1
+

q

R
< 1,

which is a contradiction. �

Theorem 9. An ideal in a commutative Banach algebra is non-removable if and
only if it consists of joint topological divisors of zero.

Proof. Let I be an ideal in a Banach algebra A consisting of joint topological
divisors of zero. Then there exists a net {zα} ⊂ A of elements of norm 1 such
that zαx → 0 for every x ∈ I. Let B ⊃ A be a commutative extension and let
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J = {x1b1 + · · · + xnbn : n ∈ N, x1, . . . , xn ∈ I, b1, . . . , bn ∈ B} be the smallest
ideal in B containing I. Suppose on the contrary that J is not proper, and so
1B = x1b1 + · · · + xnbn for some x1, . . . , xn ∈ I, b1, . . . , bn ∈ B. Then

1 = ‖zα‖ =
∥∥∥∥ n∑

i=1

zαxibi

∥∥∥∥ ≤
n∑

i=1

‖zαxi‖ · ‖bi‖ → 0,

which is a contradiction. Hence I is non-removable.
Conversely, let I /∈ �l(A). It means that there are elements u1, . . . , un ∈ I such

that d(u1, . . . , un) > 0.
Let B ⊃ A be the extension constructed in Theorem 2. Clearly, I is contained

in no proper ideal in B, and so I is a removable ideal. �
Corollary 10. Let ϕ be a multiplicative functional on a commutative Banach alge-
bra A. The following statements are equivalent:

(i) ϕ ∈ corA;

(ii) for every commutative Banach algebra B ⊃ A there exists a multiplicative
functional ψ ∈ M(B) such that ϕ = ψ|A;

(iii) for every commutative Banach algebra B ⊃ A there exists a multiplicative
functional ψ ∈ corB such that ϕ = ψ|A.

Proof. (i) ⇒ (iii): Let ϕ ∈ corA and B ⊃ A. Since Kerϕ ∈ �l(A), there exists a
net (zα)α of elements of A of norm 1 such that xzα → 0 for every x ∈ Kerϕ. Let
I =

{
y ∈ B : yzα → 0

}
. Then I ⊃ Kerϕ and I ∈ �l(B), so there exists a maximal

ideal J ∈ �l(B) containing I. The corresponding multiplicative functional ψ ∈ corB
satisfies ψ|A = ϕ.
(iii) ⇒ (ii): Clear.
(ii) ⇒ (i): If B ⊃ A and ψ ∈ M(B) extends ϕ, then Kerϕ ⊂ Kerψ. Hence Kerϕ
is a non-removable ideal, and ϕ ∈ corA. �
Corollary 11. Let A be a commutative Banach algebra, ϕ ∈ Γ(A) and let B be a
commutative extension of A. Then there exists ψ ∈ Γ(B) such that ϕ = ψ|A.

Proof. By Theorem 3.11, Ker(ϕ) ∈ γ(A). By Lemma 3.12, there exists a net
(zλ)α ⊂ A such that r(zα) = 1 for every α and limα r(xzα) = 0 for all x ∈ Kerϕ.
Let I = {b ∈ B : limα r(bzα) = 0}. Then I ∈ γ(B) and there exists a multiplicative
functional ψ ∈ Γ(B) such that Kerϕ ⊂ I ⊂ Kerψ. Thus ψ is the required extension
of ϕ. �

The following result is an easy consequence of Theorem 2.

Theorem 12. Let x1, . . . , xn be elements of a commutative Banach algebra A. Then

τA(x1, . . . , xn) =
⋂
B⊃A

σB(x1, . . . , xn),

(the intersection of all subsets of Cn that are of the form σB(x1, . . . , xn) for some
commutative extension B ⊃ A).
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6 Axiomatic theory of spectrum

In Section 1 we studied the basic properties of the set-valued function a �→ σ(a)
defined on a Banach algebra A. Since there are many naturally defined set-valued
functions with similar properties, in this section we introduce an axiomatic spectral
theory.

The ordinary spectrum of an element a ∈ A is defined by means of invertible
elements, σ(a) = {λ : a − λ /∈ Inv(A)}. In the same way we define a generalized
spectrum by means of “regular elements”.

Definition 1. Let A be a Banach algebra. A non-empty subset R of A is called a
regularity if it satisfies the following conditions:

(i) if a ∈ A and n ∈ N, then a ∈ R ⇔ an ∈ R;
(ii) if a, b, c, d are mutually commuting elements of A and ac + bd = 1A, then

ab ∈ R ⇔ a ∈ R and b ∈ R.

A regularity R ⊂ A assigns to each a ∈ A a subset of C defined by

σR(a) = {λ ∈ C : a − λ /∈ R}.
This mapping will be called the spectrum corresponding to the regularity R.

Proposition 2. Let R be a regularity in a Banach algebra A. Then:

(i) 1A ∈ R;

(ii) Inv(A) ⊂ R;

(iii) If a, b ∈ A, ab = ba and a ∈ Inv(A), then ab ∈ R ⇔ b ∈ R.

In particular, if a ∈ R and λ ∈ C, λ �= 0, then λa ∈ R;

(iv) σR(a) ⊂ σ(a) for all a ∈ A;

(v) σR(a − λ) = σR(a) − λ for all a ∈ A, λ ∈ C.

Proof. (i) Choose b ∈ R. We have 1A ·1A + b ·0 = 1A and 1A · b ∈ R. Thus 1A ∈ R.

(ii) Let c ∈ Inv(A). Then c · c−1 + c−1 · 0 = 1A and c · c−1 ∈ R by (i). Thus c ∈ R.

(iii) We have a · a−1 + b · 0 = 1A, so we can apply property (ii) of Definition 1.

(iv) and (v) are clear. �
In general, σR(a) is neither compact nor non-empty.

Theorem 3. Let A be a Banach algebra. Then:

(i) if (Rα)α is a family of regularities in A, then R =
⋂

α Rα is a regularity. The
corresponding spectrum satisfies

σR(a) =
⋃
α

σRα(a).
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(ii) if (Rα) is a directed system (i.e., for all α, β there exists γ such that Rγ ⊃ Rα∪
Rβ) of regularities in A, then R′ =

⋃
α Rα is a regularity. The corresponding

spectrum satisfies

σR′ (a) =
⋂
α

σRα(a);

(iii) if J is a closed two-sided ideal in A, π : A → A/J the canonical projection
and R a regularity in A/J , then π−1R is a regularity in A.

Proof. Clear. �
In many cases it is possible to verify the axioms of a regularity using the

following criterion:

Theorem 4. Let R be a non-empty subset of a Banach algebra A satisfying

ab ∈ R ⇔ a ∈ R and b ∈ R (P1)

for all commuting elements a, b ∈ A. Then R is a regularity.

Proof. Clear. �
Examples 5. Let A be a Banach algebra. The following sets are regularities since
they satisfy (P1).

(i) R1 = A; the corresponding spectrum is empty for every a ∈ A.
(ii) R2 = Inv(A); this gives the ordinary spectrum σR(a).
(iii) The sets R3 = Invl(A) and R4 = Invr(A) of all left (right) invertible elements

of A.
(iv) The sets R5 and R6 all elements of A which are not left (right) topological

divisors of zero.
(v) The sets R7 and R8 of all elements that are not left (right) divisors of zero.

Definition 6. The spectra corresponding to the regularities R3–R8 are:
the left spectrum

σl(a) =
{
λ ∈ C : a − λ �= Invl(A)

}
=

{
λ ∈ C : 1A /∈ A(a − λ)

}
;

the right spectrum

σr(a) =
{
λ ∈ C : a − λ �= Invr(A)

}
=

{
λ ∈ C : 1A /∈ (a − λ)A}

;

the left approximate point spectrum

τl(a) =
{
λ ∈ C : a − λ is a left topological divisor of zero

}
;

the right approximate point spectrum

τr(a) =
{
λ ∈ C : a − λ is a right topological divisor of zero

}
;

the left point spectrum πl(a) =
{
λ ∈ C : a − λ is a left divisor of zero

}
and

the right point spectrum πr(a) =
{
λ ∈ C : a − λ is a right divisor of zero

}
.
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Obviously, πl(a) ⊂ τl(a) ⊂ σl(a), πr(a) ⊂ τr(a) ⊂ σr(a) and ∂σ(a) ⊂ τl(a) ∩
τr(a). Theorems 1.14 and 1.17 imply that σl, σr, τl and τr are always closed and
non-empty. The point spectra πl and πr can be both empty and non-closed.

Further examples of regularities will be given later.
Every spectrum defined by a regularity satisfies the spectral mapping theo-

rem:

Theorem 7. (spectral mapping theorem) Let R be a regularity in a Banach algebra
A and let σR be the corresponding spectrum. Then

σR(f(a)) = f(σR(a))

for every a ∈ A and every function f analytic on a neighbourhood of σ(a) which
is non-constant on each component of its domain of definition.

Proof. Let µ ∈ C. It is sufficient to show that

µ /∈ σR(f(a)) ⇔ µ /∈ f(σR(a)). (1)

Since f − µ has only a finite number of zeros λ1, . . . , λn in σ(a), it can be written
as f(z) − µ = (z − λ1)k1 · · · (z − λn)kn · g(z), where g is a function analytic on
a neighbourhood of σ(a) and g(z) �= 0 for z ∈ σ(a). Then f(a) − µ = (a −
λ1)k1 · · · (a − λn)kn · g(a) and g(a) is invertible by the spectral mapping theorem
for the ordinary spectrum.

Thus (1) is equivalent to

f(a) − µ ∈ R ⇔ a − λi ∈ R (i = 1, . . . , n). (2)

Since g(a) is invertible, by Proposition 2 (iii) and Definition 1 (ii), this is equivalent
to

(a − λ1)k1 · · · (a − λn)kn ∈ R ⇔ (a − λi)ki ∈ R (i = 1, . . . , n). (3)

Since for all relatively prime polynomials p, q there exist polynomials p1, q1 such
that pp1 + qq1 = 1, we have p(a)p1(a) + q(a)q1(a) = 1A and it is possible to apply
property (ii) of Definition 1 inductively to get (3). This completes the proof. �

We will see later that the assumption that f is non-constant on each compo-
nent is really necessary. However, in many cases this condition can be left out. The
question whether the spectral mapping theorem is true for all analytic functions is
closely related to the non-emptiness of the spectrum (clearly the spectral mapping
theorem for constant functions cannot be true if σR(x) = ∅ for some x ∈ A and
0 /∈ R. We give a simple criterion (in the most interesting case of the algebra
B(X)) which is usually easy to verify.

Let X be a Banach space, let R be a regularity in B(X) and let X = X1⊕X2.
Let us write R1 =

{
T1 ∈ B(X1) : T1⊕I ∈ R

}
and R2 =

{
T2 ∈ B(X2) : I⊕T2 ∈ R

}
.

If Xi �= {0}, then Ri is a regularity in B(Xi) (i = 1, 2). Indeed, to see condition (ii)
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of Definition 1 (e.g., for R1), note that if A1C1 +B1D1 = IX1 for some commuting
A1, B1, C1, D1,∈ B(X1), then

(A1 ⊕ I)(C1 ⊕ I) + (B1 ⊕ I)(D1 ⊕ 0) = IX .

If T1 ∈ B(X1) and T2 ∈ B(X2), then

T1 ⊕ T2 ∈ R ⇔ T1 ∈ R1 and T2 ∈ R2.

Indeed, this follows from the observation that

(T1 ⊕ I)(0 ⊕ I) + (I ⊕ T2)(I ⊕ 0) = IX .

Note that in all examples given above the regularities R1, R2 are defined in a canon-
ical way: for example, if R =

{
T ∈ B(X) : T is left invertible

}
, then we have R1 ={

T1 ∈ B(X1) : T1 is left invertible
}

and R2 =
{
T2 ∈ B(X2) : T2 is left invertible

}
.

Theorem 8. Let X be a Banach space, let R be a regularity in B(X) and let
σR be the corresponding spectrum. Suppose that for all pairs of complementary
subspaces X1, X2, X = X1 ⊕ X2 such that R1 =

{
S1 ∈ B(X1) : S1 ⊕ I ∈ R

} �=
B(X1) the corresponding spectrum σR1(T1) = {λ : T1 − λ /∈ R1} is non-empty
for every T1 ∈ B(X1). Then σR(f(T )) = f(σR(T )) for every T ∈ B(X) and every
function f analytic on a neighbourhood of σ(T ).

Proof. Let µ ∈ C. It is sufficient to show that

µ /∈ σR(f(T )) ⇐⇒ µ /∈ f(σR(T )).

Let U1, U2 be open subsets of the domain of definition of f such that U1 ∪ U2 ⊃
σ(T ), f |U1 is identically equal to µ and (f −µ)|U2 can be written as (f −µ)|U2 =
p(z)g(z), where p is a non-zero polynomial and g is analytic and has no zeros in
U2 ∩ σ(T ). Let X1, X2 be the spectral subspaces corresponding to U1 and U2, i.e.,
X = X1 ⊕ X2, T = T1 ⊕ T2 where Ti = T |Xi and σ(Ti) ⊂ Ui (i = 1, 2), see
Corollary 1.38.

Let R1 ⊂ B(X1) and R2 ⊂ B(X2) be the regularities defined above and let
σR1 , σR2 be the corresponding spectra. It is clear that σR(T ) = σR1(T1)∪σR2 (T2).

The following statements are equivalent:

µ /∈ σR(f(T )); f(T ) − µ ∈ R;
0 ∈ R1 and f(T2) − µIX2 ∈ R2; R1 = B(X1) and p(T2) ∈ R2;
σR1(T1) = ∅ and 0 /∈ p(σR2(T2)); µ /∈ f(σR1(T1) ∪ σR2(T2));
µ /∈ f(σR(T )). �

We are now going to study the continuity properties of spectra.
For basic definitions and properties of semicontinuous set-valued mappings

we refer to Appendix A.4.
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Let R be a regularity in a Banach algebra A and let σR be the corresponding
spectrum. We consider the following properties of R (or σR):

(P2) “Upper semicontinuity of σR”: if an, a ∈ A, an → a, λn ∈ σR(an) and
λn → λ, then λ ∈ σR(a).

(P3) “Upper semicontinuity on commuting elements”: if an, a ∈ A, an → a,
ana = aan for every n, λn ∈ σR(an) and λn → λ, then λ ∈ σR(a).

(P4) “Continuity on commuting elements”: if an, a ∈ A, an → a and ana =
aan for every n, then λ ∈ σR(a) if and only if there exists a sequence
λn ∈ σR(an) such that λn → λ.

Evidently, either (P2) or (P4) implies (P3). If σR satisfies (P3), then, by
considering a constant sequence an = a, the spectrum σR(a) is closed for every
a ∈ A.

Proposition 9. Let R be a regularity in a Banach algebra A, let σR be the corre-
sponding spectrum. The following conditions are equivalent:

(i) (P2);

(ii) σR(a) is closed for every a ∈ A and the mapping a �→ σR(a) is upper semi-
continuous;

(iii) R is an open subset of A.

Proof. (iii) ⇒ (i): Let an, a ∈ A, an → a, λn ∈ σR(an) and λn → λ. Then
an − λn /∈ R. Since A\R is closed, we conclude that a−λ /∈ R. Hence λ ∈ σR(a).

(i) ⇒ (iii): We prove that A \ R is closed. Let an ∈ A \ R, an → a. Then
0 ∈ σR(an) for each n. From (i) we conclude that 0 ∈ σR(a). Hence a ∈ A \ R.

(i) ⇔(ii) follows from Theorem A.4.3. �

Proposition 10. Let R be a regularity in a Banach algebra A and let σR be the
corresponding spectrum. The following conditions are equivalent:

(i) (P3);

(ii) σR(a) is closed for every a ∈ A, and for each neighbourhood U of σR(a) there
exists ε > 0 such that σR(a+u) ⊂ U whenever u ∈ A, au = ua and ‖u‖ < ε;

(iii) If a ∈ R, then there exists ε > 0 such that u ∈ A, ua = au and ‖u‖ < ε
implies a + u ∈ R.

Proof. Analogous to Proposition 9. �

Recall that for two sets L, M ⊂ C we write ∆(L, M) = supl∈L dist{l, M}.
The Hausdorff distance is defined by ∆̂(L, M) = max

{
∆(L, M), ∆(M, L)

}
.
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Proposition 11. Let R be a regularity in a Banach algebra A, let σR be the corre-
sponding spectrum.

(i) Suppose that, for every a ∈ A,

inf
{|z| : z ∈ C, a − z /∈ R

}
= inf

{‖u‖ : u ∈ A, ub = bu, a − u /∈ R
}
.

Then ∆̂(σR(a), σR(b)) ≤ ‖a − b‖ for all commuting a, b ∈ A.

(ii) If σR(a) is closed for every a ∈ A and ∆(σR(a), σR(b)) ≤ ‖a − b‖ for all
commuting a, b ∈ A, then σR satisfies (P4).

Proof. (i) Let a, b ∈ A, ab = ba and let λ ∈ σR(a). We prove dist{λ, σR(b)} ≤
‖a− b‖. This is clear if λ ∈ σR(b). If λ /∈ σR(b), then

‖a − b‖ = ‖(a − λ) − (b − λ)‖
≥ inf

{‖u‖ : u ∈ A, u(b − λ) = (b − λ)u, (b − λ) + u /∈ R
}

= inf{|z| : z ∈ σR(b − λ)} = dist{0, σR(b − λ)} = dist{λ, σR(b)}.

Thus
∆(σR(a), σR(b)) = sup

λ∈σR(a)

dist{λ, σR(b)} ≤ ‖a − b‖

and, by symmetry, ∆̂(σR(a), σR(b)) ≤ ‖a − b‖.
(ii) Let ana = aan, an → a, λn ∈ σR(an) and λn → λ. Then, for each n, there

exists µn ∈ σR(a) with |µn − λn| ≤ ‖an − a‖. Clearly, µn → λ, and so λ ∈ σR(a)
since σR(a) is closed. This proves the upper semicontinuity.

If we restrict σR to the set {a, a1, a2, . . . }, then the lower semicontinuity
follows from Theorem A.4.4. �

In general, the left and right point spectra are not closed, and so they do
not satisfy (P3) (and therefore neither (P2) nor (P4)). On the other hand σl, σr, τl

and τr are defined by open regularities, so these spectra satisfy (P2). They satisfy
also (P4) (we prove a more general result in the next section).

The upper semicontinuity on commuting elements enables us to weaken the
axioms of regularity.

Theorem 12. Let R be a non-empty subset of a Banach algebra A satisfying (P3)
and

(i) if a ∈ R and n ∈ N, then an ∈ R,

(ii) if a,b,c,d, are mutually commuting elements of A and ac + bd = 1A, then
ab ∈ R ⇔ a ∈ R and b ∈ R.

Then R is a regularity.
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Proof. It is sufficient to show the implication an ∈ R ⇒ a ∈ R (n ≥ 2). By (P3),
an − µa = a(an−1 − µ) ∈ R for some non-zero complex number µ. Since

(an−1 − µ) · (−µ−1) + a(µ−1an−2) = 1A,

we have a ∈ R by (ii). �

Let R be a regularity in a Banach algebra A and σR the corresponding
spectrum. We say that σR is spectral-radius-preserving if σR(a) is closed and
max{|λ| : λ ∈ σR(a)} = r(a) for each a ∈ A.

Theorem 13. Let R be a regularity in a Banach algebra A such that the corre-
sponding spectrum σR is spectral-radius-preserving. Then ∂σ(a) ⊂ σR(a) for all
a ∈ A.

Proof. Suppose on the contrary that λ0 ∈ ∂σ(a) and there exists ε > 0 such that
{z : |z−λ0| < ε}∩σR(a) = ∅. Choose λ1 ∈ C\σ(a) with |λ0−λ1| < ε/2. Consider
the function f(z) = (z − λ1)−1. Then

dist{λ1, σR(a)}−1 = sup
{|f(z)| : z ∈ σR(a)

}
= sup

{|z| : z ∈ σR(f(a))
}

= r(f(a)) = max{|f(z)| : z ∈ σ(a)} ≥ 1
|λ0 − λ1| >

2
ε
.

Thus there exists λ2 ∈ σR(a) with |λ2 − λ1| < ε/2, and so |λ2 − λ0| < ε, a
contradiction. �

Upper semicontinuous spectra have always many continuity points.

Theorem 14. Let R be a regularity in a Banach algebra A satisfying property (P2)
(upper semicontinuity). Then the set of all discontinuity points of the set-valued
function a �→ σR(a) is of the first category.

Proof. For every complex number λ let fλ : A → 〈0,∞〉 be the function defined by
fλ(a) = dist{λ, σR(a)} (if σR(a) = ∅, then we set fλ(a) = ∞). The result follows
from the following three statements:
(a) fλ is lower semicontinuous for every λ.
(b) The mapping a �→ σR(a) is continuous at x if and only if fλ is continuous at

x for every λ from a dense subset of C.
(c) The set of all discontinuity points of a lower semicontinuous function f : A →

〈0,∞〉 is of the first category.

(a) Let a ∈ A, λ ∈ C. We must show that fλ(a) ≤ lim infx→a fλ(x). This
is clear if fλ(a) = 0. Suppose that fλ(a) > 0 and choose r, 0 < r < fλ(a) =
dist{λ, σR(a)}. Then σR(a) ⊂ C \ {z : |z − λ| ≤ r}, so there exists δ > 0 such that
σR(x) ⊂ C \ {z : |z − λ| ≤ r} for every x ∈ A with ‖x − a‖ < δ. For x in this
neighbourhood we have fλ(x) ≥ r and lim infx→a fλ(x) ≥ r. Since r < fλ(a) was
arbitrary, we have lim infx→a fλ(x) ≥ fλ(a) and fλ is lower semicontinuous.
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(b) Suppose that x �→ σR(x) is continuous at a ∈ A. Let λ ∈ C. We show that
fλ is continuous at a. By (a), it is sufficient to show that fλ(a) ≥ lim supx→a fλ(x).
This is clear if fλ(a) = ∞, i.e., if σR(a) = ∅. Suppose that σR(a) �= ∅. Let ε > 0. By
lower semicontinuity of σR, there exists δ > 0 such that dist{λ, σR(x)} ≤ fλ(a)+ε
whenever ‖x−a‖ < δ. Thus lim supx→a fλ(x) ≤ fλ(a)+ε and, since ε was arbitrary,
we have lim supx→a fλ(x) ≤ fλ(a). Hence fλ is continuous at a.

Conversely, let x �→ σR(x) be discontinuous at a. Since σR is upper semi-
continuous, there exist an open set U ⊂ C and points x1, x2, · · · ∈ A such that
U ∩ σR(a) �= ∅, xn → a and U ∩ σR(xn) = ∅ for every n. Choose λ0 ∈ U ∩ σR(a)
and let r be a positive number with {z : ‖z − λ0‖ < r} ⊂ U . Choose λ in the
dense subset of C with |λ − λ0| < r/3. Then fλ(a) = dist{λ, σR(a)} < r/3 and
fλ(xn) > 2r/3 for every n. Hence fλ is not continuous at a.

(c) Let f : A → 〈0,∞〉 be a lower semicontinuous function. Suppose f is
not continuous at a point a ∈ A. Then f(a) < lim supx→a f(x). Find a rational
number r such that f(a) < r < lim supx→a f(x). Then f−1

(〈0, r〉) is a closed
subset of A and a ∈ ∂f−1

(〈0, r〉). Hence the set of all discontinuity points of f is
contained in

⋃{∂f−1
(〈0, r〉) : r rational}, which is of the first category. �

7 Spectral systems

In Section 3 we studied the spectrum, approximate point spectrum and the Shilov
spectrum defined for n-tuples of elements of a commutative Banach algebra. In this
section we introduce and study general spectra defined for commuting n-tuples in
a (in general non-commutative) Banach algebra.

Let A be a Banach algebra. Denote by cn(A) the set of all n-tuples of mu-
tually commuting elements of A and set c(A) =

⋃∞
n=1 cn(A).

Definition 1. Let R be a subset of c(A), R =
⋃∞

n=1 Rn where Rn ⊂ cn(A). The set
R is called a joint regularity if it satisfies the following conditions (for all n ≥ 1):

(i) if (x1, . . . , xn, y1, . . . , yn) ∈ c(A) and
n∑

i=1

xiyi = 1A, then (x1, . . . , xn) ∈ Rn;

(ii) if (x1, . . . , xn) ∈ Rn and xn+1 commutes with xi (1 ≤ i ≤ n), then
(x1, . . . , xn, xn+1) ∈ Rn+1;

(iii) if (x0, x1, . . . , xn) ∈ c(A) and (x0 − λ, x1, . . . , xn) ∈ Rn+1 for every λ ∈ C,
then (x1, . . . , xn) ∈ Rn.

Proposition 2. Let R =
⋃∞

i=1 Rn be a joint regularity in a Banach algebra A and
let (x1, . . . , xn) ∈ Rn. Then (xπ(1), . . . , xπ(n)) ∈ Rn for every permutation π of the
set {1, . . . , n}.
Proof. By (ii), we have (x1, . . . , xn, xπ(1), . . . , xπ(n)) ∈ R2n. Let λ ∈ C, λ �= 0.
Then x1 appears in the n-tuple xπ(1), . . . , xπ(n) and −λ−1(x1 − λ) + 0x2 + · · · +
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0xn + λ−1x1 = 1A. Thus, by Definition 1 (i),

(x1 − λ, x2, . . . , xn, xπ(1), . . . , xπ(n)) ∈ R2n.

By (iii), we conclude that (x2, . . . , xn, xπ(1), . . . , xπ(n)) ∈ R2n−1. By repeating this
argument we get (x3, . . . , xn, xπ(1), . . . , xπ(n)) ∈ R2n−2, and finally, (xπ(1), . . . ,
xπ(n)) ∈ Rn. �

Corollary 3. Let R be a joint regularity in a Banach algebra A, let n ≥ 2 and
1 ≤ k ≤ n. Then:

(i) if (x1, . . . , xn) ∈ cn(A) and (x1, . . . , xk−1, xk+1, . . . , xn) ∈ Rn−1, then

(x1, . . . , xn) ∈ Rn;

(ii) if (x1, . . . , xk−1, xk − λ, xk+1, . . . , xn) ∈ Rn for all λ ∈ C, then

(x1, . . . , xk−1, xk+1, . . . , xn) ∈ Rn−1.

Definition 4. Let A be a Banach algebra. A spectral system is a mapping which
assigns to every finite family x1, . . . , xn of mutually commuting elements of A a
subset σ̃(x1, . . . , xn) ⊂ Cn that satisfies the following conditions:

(i) if x = (x1, . . . , xn) ∈ cn(A) and 〈x〉 is the algebra generated by x1, . . . , xn,
then σ̃(x) ⊂ σ〈x〉(x);

(ii) (projection property) if 1 ≤ m ≤ n, 1 ≤ i1 < i2 < · · · < im ≤ n and
(x1, . . . , xn) ∈ cn(A), then σ̃(xi1 , . . . , xim) = Qσ̃(x1, . . . , xn) where Q : Cn →
Cm is the projection defined by Q(λ1, . . . , λn) = (λi1 , . . . , λim).

Spectral systems are in one-to-one correspondence with the joint regularities.

Theorem 5. Let A be a Banach algebra. Then:

(i) if R ⊂ c(A) is a joint regularity, then σR defined by

σR(x1, . . . , xn) = {(λ1, . . . , λn) ∈ Cn : (x1 − λ1, . . . , xn − λn) /∈ Rn}

is a spectral system;

(ii) if σ̃ is a spectral system, then R =
⋃∞

n=1 Rn defined by

Rn = {(x1, . . . , xn) ∈ cn(A) : (0, . . . , 0) /∈ σ̃(x1, . . . , xn)}

is a joint regularity.

Proof. (i) If (x1, . . . , xn) ∈ cn(A) and λ = (λ1, . . . , λn) /∈ σ〈x〉(x), then
∑n

i=1(xi −
λi)yi = 1A for some y1, . . . , yn ∈ 〈x〉. Then, by Definition 1 (i), (x1 − λ1, . . . , xn −
λn) ∈ Rn, and so (λ1, . . . , λn) /∈ σR(x1, . . . , xn).
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Let 1 ≤ k ≤ n and let P : Cn → Cn−1 be the projection defined by
P (λ1, . . . , λn) = (λ1, . . . , λk−1, λk+1, . . . , λn). By Corollary 3, we get

σR(x1, . . . , xk−1, xk+1, . . . , xn) = PσR(x1, . . . , xn).

The projection property can be obtained by a repeated use of this observation.

(ii) Conversely, let σ̃ be a spectral system and let R be defined by R =⋃∞
n=0 Rn, where Rn =

{
(x1, . . . , xn) ∈ cn(A) : (0, . . . , 0) /∈ σ̃(x1, . . . , xn)

}
. Then R

is a joint regularity. Indeed, axioms (ii) and (iii) of Definition 1 follow immediately
from the projection property. Let (x1, . . . , xn, y1, . . . , yn) ∈ c2n(A),

∑n
i=1 xiyi =

1A. Then
(0, . . . , 0︸ ︷︷ ︸

n

) /∈ σ〈x1,...,xn,y1,...,yn〉(x1, . . . , xn),

and so, by the projection property of the spectrum in the commutative Banach
algebra 〈x1, . . . , xn, y1, . . . , yn〉,

(0, . . . , 0, λ1, . . . , λn) /∈ σ〈x1,...,xn,y1,...,yn〉(x1, . . . , xn, y1, . . . , yn)

for all (λ1, . . . , λn) ∈ Cn. Thus (0, . . . , 0, λ1, . . . , λn) /∈ σ̃(x1, . . . , xn, y1, . . . , yn)
and, by the projection property, (0, . . . , 0) /∈ σ̃(x1, . . . , xn). Hence (x1, . . . , xn) ∈
Rn. �

Proposition 6. Let R ⊂ c(A) be a joint regularity and σR the corresponding
spectral system. The following conditions are equivalent:

(i) {0} /∈ R1;

(ii) σR(x1, . . . , xn) is non-empty for all (x1, . . . , xn) ∈ c(A);
(iii) there exist (x1, . . . , xn) ∈ c(A) such that σR(x1, . . . , xn) �= ∅;
(iv) R �= c(A).

Proof. (i) ⇒ (ii): Let x = (x1, . . . , xn) ∈ c(A). We have 0 ∈ σR(0) and so, by the
projection property, there exists λ ∈ Cn such that (0, λ) ∈ σR(0, x). Again by the
projection property, λ ∈ σR(x).

The implications (ii) ⇒ (iii) and (iii) ⇒ (iv) are trivial.

(iv) ⇒ (i): Let (x1, . . . , xn) ∈ c(A) and suppose that 0 ∈ R1. Then λ · 1A ∈
R1 for every λ ∈ C, and so (λ, x1, . . . , xn) ∈ R for all λ ∈ C. Consequently,
(x1, . . . , xn) ∈ R. �

An arbitrary spectral system possesses the spectral mapping property.

Theorem 7. Let A be a Banach algebra, σ̃ a spectral system in A and suppose
that x = (x1, . . . , xn) ∈ c(A). Let f = (f1, . . . , fm) be an m-tuple of functions
analytic in a neighbourhood of σ〈x〉(x). Then

σ̃
(
f(x)

)
= f

(
σ̃(x)

)
, where f(x) =

(
f1(x), . . . , fm(x)

)
.
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Proof. We have

σ̃(x, f(x)) ⊂ σ〈x,f(x)〉(x, f(x)) = σ〈x〉(x, f(x))

=
{
(ϕ(x), ϕ(f(x))) : ϕ ∈ M(〈x〉)} =

{
(z, f(z)) : z ∈ σ〈x〉(x)

}
.

The following statements are equivalent:
w ∈ f(σ̃(x));
there exists z ∈ σ̃(x) such that w = f(z);
there exists z ∈ σ̃(x) such that (z, w) ∈ σ̃(x, f(x));
w ∈ σ̃(f(x)). �

Theorem 8. Let R be a joint regularity in a Banach algebra A. Then R1 = {x1 ∈
A : {x1} ∈ R} is a regularity satisfying property (P1).

Proof. Let a, b ∈ A, ab = ba. If a, b ∈ R1, then

σR(ab) = {λµ : (λ, µ) ∈ σR(a, b)} ⊂ {λµ : λ ∈ σR(a), µ ∈ σR(b)}
⊂ {λµ : λ, µ �= 0} ⊂ C \ {0},

and so ab ∈ R1.
Conversely, if a /∈ R1, then 0 ∈ σR(a) and there exists λ ∈ C such that

(0, λ) ∈ σR(a, b). By Theorem 7, 0 = 0 · λ ∈ σR(ab) and ab /∈ R1. Similarly,
b /∈ R1 ⇒ ab /∈ R1.

This proves (P1) and also that R1 is a regularity. �

Remark 9. Condition (P1) provides a criterion whether a spectrum given for single
elements can be extended to commuting n-tuples, cf. C.7.4. Questions of this type
appear frequently in spectral theory.

Theorem 10. Let σ̃ be a spectral system in a Banach algebra A. Then

(x1, . . . , xn) �→ σ̃(x1, . . . , xn)

is also a spectral system.

Proof. Obviously, σ̃(x) ⊂ σ〈x〉(x) for every x ∈ c(A).
Let 1 ≤ i1 < · · · < im ≤ n and let Q : Cn → Cm be the projection defined by

Q(λ1, . . . , λn) = (λi1 , . . . , λim). Since σ̃(xi1 , . . . , xim) = Qσ̃(x1, . . . , xn), we have
Q
(
σ̃(x1, . . . , xn)

) ⊂ σ̃(xi1 , . . . , xim).
The equality follows from the fact that Q

(
σ̃(x1, . . . , xn)

)
is compact and

contains σ̃(xi1 , . . . , xim). �

A spectral system σ̃ will be called compact-valued if σ̃(x1, . . . , xn) is a compact
subset of Cn for all (x1, . . . , xn) ∈ c(A). The most important spectral systems
satisfy this property.
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Theorem 11. Let A be a Banach algebra. Then:

(i) if (Rα)α is a family of joint regularities in A, then R = ∩αRα is a joint
regularity. The corresponding spectral system satisfies

σR(a) =
⋃
α

σRα(a) (a ∈ c(A));

(ii) if (Rα) is a directed system (i.e., for all α, β there exists γ such that Rγ ⊃
Rα ∪ Rβ) of joint regularities in A such that the corresponding spectral
systems are compact-valued, then R′ =

⋃
α Rα is a joint regularity. The

corresponding spectral system satisfies

σR′(a) =
⋂
α

σRα (a ∈ c(A));

(iii) if J is a closed two-sided ideal in A, π : A → A/J the canonical projection
and R a joint regularity in A/J , then π−1R = {a ∈ c(A) : π(a) ∈ R} is a
joint regularity in A.

Proof. (i) and (iii) are clear.

(ii) The first two axioms of Definition 1 are clear. To prove the third axiom,
let (x0, x1, . . . , xn) ∈ c(A) and suppose that for each λ ∈ C there exists α such
that (x0 − λ, x1, . . . , xn) ∈ Rα. Thus (x − µ, x1, . . . , xn) ∈ Rα for all µ in a
certain neighbourhood of λ. From the compactness of σ〈x0,x1,...,xn〉(x0) and the
fact that (Rα) is a directed system we conclude that there is a β such that (x0 −
µ, x1, . . . , xn) ∈ Rβ for all µ ∈ C. Hence (x1, . . . , xn) ∈ Rβ ⊂ R. �

In the commutative case it is possible to describe all compact-valued spectral
systems easily. They are in 1-1 correspondence with compact subsets of M(A).
For x = (x1, . . . , xn) ∈ cn(A) and ϕ ∈ M(A) write ϕ(x) =

(
ϕ(x1), . . . , ϕ(xn)

)
.

Theorem 12. Let A be a commutative Banach algebra. Then:

(i) if K is a compact subset of M(A), then the mapping

x ∈ c(A) �→ σ̃(x) = {ϕ(x) : ϕ ∈ K}
is a compact-valued spectral system;

(ii) if K1, K2 are compact subset of M(A) and K1 �= K2, then there exists a
finite family x ∈ c(A) such that

{ϕ(x) : ϕ ∈ K1} �= {ϕ(x) : ϕ ∈ K2};

(iii) if σ̃ is a compact-valued spectral system, then

K(σ̃) =
{
ϕ ∈ M(A) : ϕ(x) ∈ σ̃(x) for all x ∈ c(A)

}
is a compact subset of M(A);
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(iv) if σ̃ is a spectral system in A, then σ̃(x) ⊂ σA(x) for all x = (x1, . . . , xn) ∈
c(A);

(v) if σ̃ is a compact-valued spectral system, x = (x1, . . . , xn) ∈ cn(A) and
λ = (λ1, . . . , λn) ∈ σ̃(x), then there exists ϕ ∈ K(σ̃) such that ϕ(x) = λ.

Proof. The proof of (i) is clear.

(ii) For x ∈ c(A) write

σ̃1(x) = {ϕ(x) : ϕ ∈ K1} and σ̃2(x) = {ϕ(x) : ϕ ∈ K2}.

Suppose on the contrary that σ̃1(x) = σ̃2(x) for every x ∈ c(A).
Let ϕ ∈ K1. For x ∈ c(A) set Mx =

{
ψ ∈ K2 : ψ(x) = ϕ(x)

}
. By assumption,

ϕ(x) ∈ σ̃1(x) = σ̃2(x), and so Mx is a non-empty compact subset of M(A). Since
Mx ∩My = M(x,y) for all x, y ∈ c(A), the system {Mx}x∈c(A) has the intersection
property and we have

⋂
x∈c(A) Mx �= ∅. Let ψ ∈ ⋂

x∈c(A) Mx. Then ψ ∈ K2 and
ψ(x1) = ϕ(x1) for every x1 ∈ A. Thus ψ = ϕ, ϕ ∈ K2 and K1 ⊂ K2.

By symmetry, we get K1 = K2, which is a contradiction.

(iii) Clearly,
{
ϕ ∈ M(A) : ϕ(x) ∈ σ̃(x)

}
is a compact set for every x ∈ c(A),

and so
K(σ̃) =

⋂
x∈c(A)

{
ϕ ∈ M(A) : ϕ(x) ∈ σ̃(x)

}
is a compact subset of M(A).

(iv) Let x = (x1, . . . , xn) ∈ c(A). Suppose on the contrary that there is a
λ = (λ1, . . . , λn) ∈ σ̃(x)\σA(x). Then there are elements y1, . . . , yn ∈ A such that∑n

i=1(xi − λi)yi = 1. Write y = (y1, . . . , yn). By the projection property for σ̃,
there is a µ ∈ Cn such that (λ, µ) ∈ σ̃(x, y) ⊂ σ〈x,y〉(x, y), a contradiction.

(v) Let x ∈ c(A) and λ ∈ σ̃(x). For every y ∈ c(A) set My =
{
ϕ ∈ M(A) :

ϕ(x) = λ, ϕ(y) ∈ σ̃(y)
}
. By the projection property, there exists µ such that

(λ, µ) ∈ σ̃(x, y) ⊂ σA(x, y). Hence My �= 0 and it is clearly a compact set. Fur-
thermore,

My ∩ Mz ⊃ M(y,z) �= 0
(
y, z ∈ c(A)

)
,

so the system {My}y∈c(A) has the intersection property and
⋂

y∈c(A) My �= ∅. Let
ϕ ∈ ⋂

y∈c(A) My. Then ϕ(x) = λ and ϕ(y) ∈ σ̃(y) for every y ∈ c(A). �

Corollary 13. Let A be a commutative Banach algebra. Then the mapping

σ̃ �→ K(σ̃) =
{
ϕ ∈ M(A) : ϕ(x) ∈ σ̃(x) for every x ∈ c(A)

}
is a one-to-one correspondence between the compact-valued spectral systems and
compact subsets of M(A).

For all (x1, . . . , xn) ∈ c(A), σ̃(x1, . . . , xn) =
{
(ϕ(x1), . . . , ϕ(xn)) : ϕ ∈

K(σ̃)
}
.
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Any spectral system behaves continuously (even uniformly continuously) on
commuting elements. For the definition of Hausdorff distance ∆̂ see Definition
A.4.2.

Theorem 14. Let σ̃ be a spectral system in a Banach algebra A and let R1 = {x1 ∈
A : 0 /∈ σ̃(x1)}. Then:

(i) if a, u ∈ A, au = ua, a ∈ R1 and

inf{|z| : z ∈ σ̃(a)} > sup{|z| : z ∈ σ̃(u)},
then a + u ∈ R1;

(ii) if a ∈ A, then

dist{0, σ̃(a)} = inf
{‖u‖ : u ∈ A, ua = au, a + u /∈ R1

}
;

(iii) if a, b ∈ A are commuting elements, then

∆̂(σ̃(a), σ̃(b)) ≤ ‖a− b‖.
Proof. (i) Denote by A0 the commutative Banach algebra generated by a and u.
By Theorem 12, there exists a compact subset K ⊂ M(A0) such that σ̃(y) =
{ϕ(y) : ϕ ∈ K} for all y ∈ A0. In particular, σ̃(a + u) = {ϕ(a + u) : ϕ ∈ K}. For
ϕ ∈ K we have

|ϕ(a + u)| ≥ |ϕ(a)| − |ϕ(u)| ≥ inf{|ψ(a)| : ψ ∈ K} − sup{|ψ(u)| : ψ ∈ K} > 0.

Thus 0 /∈ σ̃(a + u) and a + u ∈ R1.

(ii) Clearly, dist{0, σ̃(a)} ≥ inf
{‖u‖ : u ∈ A, ua = au, a + u /∈ R1

}
.

To prove the opposite inequality, let u ∈ A, ua = au and ‖u‖ < dist{0, σ̃(a)}.
Then

sup{|z| : z ∈ σ̃(u)} ≤ ‖u‖ < dist{0, σ̃(a)} = inf{|z| : z ∈ σ̃(a)},
and so a + u ∈ R1 by (i).

The third statement follows from Proposition 6.11. �
Corollary 15. Let σ̃ be a compact-valued spectral system in a Banach algebra A.
Then R1 = {x ∈ A : 0 /∈ σ̃(a)} is a regularity satisfying property (P4) (continuity
on commuting elements).

Theorem 16. Let σ̃ be a spectral system in a Banach algebra A and let R1 = {a ∈
A : 0 /∈ σ̃(a)}. Let a ∈ R1 and let u be a quasinilpotent (i.e., r(u) = 0) commuting
with a. Then a + u ∈ R1.

Proof. Since σ̃(a, u) ⊂ σ̃(a)× σ̃(u) = σ̃(a)×{0}, the projection property of σ̃ gives
that σ̃(a, u) = σ̃(a) × {0}.

By the spectral mapping property (Theorem 7), we have σ̃(a + u) =
{
λ+ µ :

(λ, µ) ∈ σ̃(a, u)
}

= σ̃(a). �
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Definition 17. We say that a spectral system σ̃ in a Banach algebra A is upper
semicontinuous, if σ̃(a) is closed for all a ∈ c(A) and the mapping (a1, . . . , an) ∈
cn(A) �→ σ̃(a1, . . . , an) is upper semicontinuous for all n ∈ N.

Theorem 18. Let R =
⋃∞

n=1, Rn ⊂ cn(A) be a joint regularity in a Banach algebra
A. The following conditions are equivalent:

(i) Rn is open in cn(A) for all n ∈ N,

(ii) the corresponding spectral system is upper semicontinuous.

Proof. Straightforward (cf. Appendix A.4). �
By definition, each upper semicontinuous spectral system is compact-valued.
In commutative Banach algebras, a spectral system is compact-valued if and

only if it is upper semicontinuous (and if and only if it is continuous).
Let A be a commutative algebra and a1, . . . , an ∈ A. Let IA(a1, . . . , an)

denote the smallest ideal in A containing the elements a1, . . . , an. It is easy to see
that IA(a1, . . . , an) =

{∑n
i=1 aibi : b1, . . . , bn ∈ A

}
.

Proposition 19. Let K be a compact Hausdorff space and A a subalgebra of C(K).
Let n ∈ N, f1, . . . , fn, g ∈ A and suppose that IA(f1, . . . , fn) consists of functions
which achieve zero on K. Then there exists µ ∈ C such that IA(f1, . . . , fn, g − µ)
consists of functions which achieve zero on K.

Proof. Suppose on the contrary that for each µ ∈ C there are functions h
(µ)
1 , . . . ,

h
(µ)
n+1 ∈ A such that

n∑
i=1

h
(µ)
i fi + h

(µ)
n+1(g − µ)

does not vanish on K. Clearly g(K) is a compact subset of the complex plane. Let
∆ be the polynomially convex hull of g(K).

For m ∈ N let Um be the set of all µ ∈ ∆ such that there are functions
h

(µ)
1 , . . . , h

(µ)
n+1 ∈ A with ‖h(µ)

n+1‖ < m and

inf
z∈K

∣∣∣ n∑
i=1

h
(µ)
i (z)fi(z) + h

(µ)
n+1(z)

(
g(z) − µ

)∣∣∣ > 1. (1)

Clearly, the sets Um are open, U1 ⊂ U2 ⊂ · · · and
⋃∞

m=1 Um = ∆. Therefore
there exists m0 ∈ N such that Um0 = ∆, i.e., for each µ ∈ ∆ there are functions
h

(µ)
1 , . . . , h

(µ)
n+1 ∈ A satisfying (1) and ‖h(µ)

n+1‖ < m0.
Find a finite subset {ν1, . . . , νk} ⊂ ∆ such that dist{µ, {ν1, . . . , νk}} < 1

m0
for each µ ∈ ∆. For j = 1, . . . , k let

uj =
n∑

i=1

h
(νj)
i fi + h

(νj)
n+1(g − νj).

Then uj ∈ A. Since infz∈K |uj(z)| > 1, we have ‖u−1
j ‖ < 1.
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Let B be the smallest subalgebra of C(K) containing A and the functions
u−1

1 , . . . , u−1
k . Let I = IB(f1, . . . , fn). Every function v ∈ I can be expressed as

v =
n∑

i=1

∑
α∈Zn

+

fiu
−αbi,α, (2)

where the second sum is finite, bi,α ∈ A for all i and α, and uα stands for
uα1

1 · · ·uαk

k .
For v given by (2) find β ∈ Zk

+ such that β ≥ α whenever bi,α �= 0 for some
i. Then

vuβ =
n∑

i=1

∑
α∈Zk

+

fiu
β−αbi,α ∈ IA(f1, . . . , fn).

By assumption, vuβ vanishes on K, and so does v. Thus I is a closed ideal in the
Banach algebra B consisting of functions singular in B, and so I �= B. Therefore
there exists a multiplicative functional ϕ ∈ M(B) with I ⊂ Kerϕ.

Set µ0 = ϕ(g). Then µ0 ∈ σB(g) ⊂ σ̂C(K)(g) = ĝ(K) = ∆. Therefore there
exists j ∈ {1, . . . , k} such that |µ0 − νj | < 1

m0
. Then

w :=
n∑

i=1

h
(νj)
i fi + h

(νj)
n+1(g − µ0) =

n∑
i=1

h
(νj)
i fi + h

(νj)
n+1(g − νj) + h

(νj)
n+1(νj − µ0)

= uj + h
(νj)
n+1(νj − µ0).

We have ‖u−1
j ‖ < 1 and

‖wu−1
j − 1‖ = ‖h(νj)

n+1(νj − µ0)u−1
j ‖ < 1.

Thus wu−1
j is invertible in B and so w ∈ Inv(B). This is a contradiction with the

fact that ϕ(w) = 0. This completes the proof. �

Theorem 20. Let A be a commutative Banach algebra. Let R1 ⊂ A be an open
regularity satisfying (P1). Then the following conditions are equivalent:

(i) there is a joint regularity R in A such that R1 = R ∩ c1(A) and the corre-
sponding spectral system is compact-valued;

(ii) for every x ∈ A \ R1 there exists ϕ ∈ M(A) such that x ∈ Kerϕ ⊂ A \ R1;

(iii) if I ⊂ A is an ideal satisfying I ⊂ A \ R1, then there exists ϕ ∈ M(A) such
that I ⊂ Kerϕ ⊂ A \ R1;

(iv) if a1, . . . , an ∈ A, IA(a1, . . . , an) ⊂ A\R1 and b ∈ A, then there exists µ ∈ C

such that IA(a1, . . . , an, b − µ) ⊂ A \ R1.

Proof. (iii) ⇒ (ii): Let x ∈ A \ R1. Since R1 satisfies (P1), we have IA(x) = {xa :
a ∈ A} ⊂ A \ R1. By (iii), there exists ϕ ∈ M(A) such that x ∈ Kerϕ ⊂ A \ R1.
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(ii) ⇒ (i): Let K = {ϕ ∈ M(A) : Kerϕ ⊂ A \ R1}. Since

K =
⋂

x∈A
{ϕ ∈ M(A) : ϕ(x) ∈ σR1(x)},

K is a compact subset of M(A).
Let x ∈ A. By (ii), we have x /∈ R1 if and only if there exists ϕ ∈ K with

ϕ(x) = 0. Hence σR1(x) = {ϕ(x) : ϕ ∈ K} for each x ∈ A, and so the joint
regularity corresponding to K extends R1.

(iv) ⇒ (iii): Let I be an ideal satisfying I ⊂ A \ R1. Consider the set of all
ideals in A which are contained in A \ R1 ordered by the inclusion. By the Zorn
lemma, there exists an ideal J ⊃ I which is maximal among those contained in A\
R1. It is sufficient to show that codim J = 1 since the corresponding multiplicative
functional will satisfy the required properties.

Suppose on the contrary that codimJ ≥ 2. Let b ∈ A satisfy b /∈ J + C · 1A.
For a finite subset F = {a1, . . . , an} of J let

MF = {µ ∈ C : IA(a1, . . . , an, b − µ) ⊂ A \ R1.

By assumption, MF �= ∅. Clearly MF ⊂ σA(b), and so MF is bounded. If µk ∈
MF (k ∈ N) and µk → µ, then every element of IA(a1, . . . , an, b − µ) can be
written as a limit of elements of IA(a1, . . . , an, b − µk) ⊂ A \ R1. Since A \ R1 is
closed, µ ∈ MF , and so MF is compact. Furthermore, MF MF∪F ′MF ′ ⊃ MF∩F ′ �=
∅, and so the system (MF )F has finite intersection property. Thus there exists
µ ∈ ⋂

F MF . It means that the ideal generated by J and g − µ is contained in
A \ R1 and is strictly greater than J . This contradicts to the assumption that J
was maximal in this class of ideals and proves (iii).

(i) ⇒ (iv): Let K ⊂ M(A) be a compact set satisfying x ∈ A\R1 if and only
if there exists ϕ ∈ K with ϕ(x) = 0. Let a1, . . . , an ∈ A, IA(a1, . . . , an) ⊂ A \ R1

and let b ∈ A. Consider the algebra G(A)|K = {G(x)|K : x ∈ A} and the
functions G(a1)|K, . . . , G(an)|K, G(b)|K ∈ C(M(A)). By Proposition 19, there
exists µ ∈ C such that IA(a1, . . . , an, b − µ) ⊂ A \ R1. �

As an application of the previous theorem, consider the regularity consisting
of all elements that are not topological divisors of zero. We get the following
analogy of Corollary 3.8.

Corollary 21. Let A be a commutative Banach algebra, let I ⊂ A be an ideal
consisting of topological divisors of zero. Then there exists a maximal ideal J ⊃ I
consisting of topological divisors of zero.

Proof. Follows from the implication (i) ⇒ (iii) of Theorem 20. �
Theorem 22. Let A be a Banach algebra and let σ1, σ2 be compact-valued spectral
systems in A satisfying σ1(x) ⊂ σ2(x) and

max{|λ| : λ ∈ σ1(x)} = max{|λ| : λ ∈ σ2(x)}
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for all x ∈ A. Then Γ
(
σ2(a1, . . . , an),P(n)

)⊂ σ1(a1, . . . , an) for all commuting
n-tuples a1, . . . , an ∈ A.

In particular, the polynomially convex hulls of the sets σ1(a1, . . . , an) and
σ2(a1, . . . , an) coincide.

Similarly, the closed convex hulls of σ1(a1, . . . , an) and σ2(a1, . . . , an) coin-
cide.

Proof. Let λ ∈ Γ
(
σ2(a1, . . . , an),P(n)

)
and let U be a neighbourhood of λ in Cn.

By the definition of the Shilov boundary, there exists a polynomial p ∈ P(n) such
that

sup
{|p(z)| : z ∈ U ∩ σ2(a1, . . . , an)

}
> sup

{|p(z)| : z ∈ σ2(a1, . . . , an) \ U
}
.

Write y = p(a1, . . . , an). Then

max
{|p(z)| : z ∈ σ1(a1, . . . , an)

}
= max

{|µ| : µ ∈ σ1(y)
}

= max
{|µ| : µ ∈ σ2(y)

}
= max

{|p(z)| : z ∈ σ2(a1, . . . , an)
}
.

Thus U ∩ σ1(a1, . . . , an) �= ∅. Since U was an arbitrary neighbourhood of λ
and σ1(a1, . . . , an) is closed, λ ∈ σ1(a1, . . . , an). Consequently, σ̂1(a1, . . . , an) =
σ̂2(a1, . . . , an).

By considering the linear polynomials, we obtain in the same way that the
closed convex hulls of σ1(a1, . . . , an) and σ2(a1, . . . , an) coincide. �

We say that a spectral system σ̃ in a Banach algebra A is spectral-radius-
preserving if σ̃(a) is closed for all a ∈ c(A) and max{|λ| : λ ∈ σ̃(a1)} = r(a) for
each a1 ∈ A.

In Section 3 we studied already three spectral-radius-preserving spectral sys-
tems in commutative Banach algebras: the spectrum σ, the approximate point
spectrum τ and the Shilov spectrum σΓ.

From the properties of the Shilov boundary it follows easily that σΓ is the
smallest spectral system with this property:

Theorem 23. Let σ̃ be a spectral-radius-preserving spectral system in a commu-
tative Banach algebra A. Then σΓ(a1, . . . , an) ⊂ σ̃(a1, . . . , an) for all commuting
n-tuples a1, . . . , an ∈ A.

8 Basic spectral systems in Banach algebras

We now introduce the basic spectral systems in non-commutative Banach algebras.

Definition 1. Let A be a Banach algebra, x = (x1, . . . , xn) ∈ c(A). We define the
left spectrum σl(x) as the set of all λ = (λ1, . . . , λn) ∈ Cn such that

A (x1 − λ1) + · · · + A (xn − λn) �= A.
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Equivalently,

λ ∈ σl(x) ⇐⇒ 1A /∈ A (x1 − λ1) + · · · + A (xn − λn).

The right spectrum σr(x) is defined analogously:

λ ∈ σr(x) ⇐⇒ (x1 − λ1)A + · · · + (xn − λn)A �= A
⇐⇒ 1A /∈ (x1 − λ1)A + · · · + (xn − λn)A.

The Harte spectrum σ(x) is defined as the union of the left and right spec-
trum, σH(x) = σl(x) ∪ σr(x) (x ∈ c(A)).

For single elements the Harte spectrum coincides with the ordinary spectrum
and Definition 1 coincides with Definition 6.6. If A is a commutative Banach
algebra, then σl(x1, . . . , xn) = σr(x1, . . . , xn) = σ(x1, . . . , xn).

Proposition 2. Let A be a Banach algebra, (x0, x1, . . . , xn) ∈ c(A) and let
(0, . . . , 0, ) ∈ σl(x1, . . . , xn). Then there exists λ ∈ C such that (λ, 0, . . . , 0) ∈
σl (x0, x1, . . . , xn).

Proof. Let J = Ax1 + · · · + Axn. Clearly, J is a proper left ideal. Consider the
Banach space X = A/J and the operator T : X → X defined by T (a+J) = ax0 +
J (a + J ∈ X). The definition is correct since Jx0 ⊂ J . Choose λ ∈ ∂σB(X)(T ).
By Theorem 1.28, (T − λ)X �= X . Thus J + A (x0 − λ) �= A, which finishes the
proof. �

Theorem 3. Let A be a Banach algebra. Then σl, σr and σH are upper semicon-
tinuous spectral systems.

Proof. For n ≥ 1 let Rn =
{
(x1, . . . , xn) ∈ cn(A) : 1A ∈ x1A+ · · ·+xnA

}
. Clearly,

R =
⋃∞

n=1 is a joint regularity (the only non-trivial part was proved in Proposition
2) and σl is the corresponding spectral system. Further, Rn is open in cn(A), and
so σl is upper semicontinuous.

For the right spectrum the result follows by symmetry and for the Harte
spectrum σH = σl ∪ σr by Theorem 7.11 (i). �

Definition 4. For x = (x1, . . . , xn) ∈ c(A) let

dl(x) = inf

{
n∑

j=1

‖xju‖ : u ∈ A, ‖u‖ = 1

}

and

dr(x) = inf

{
n∑

j=1

‖uxj‖ : u ∈ A, ‖u‖ = 1

}
.

The left and right approximate spectra are defined by

τl(x) =
{
λ ∈ Cn : dl(x − λ) = 0

}
and τr(x) =

{
λ ∈ Cn : dr(x − λ) = 0

}
.
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It is easy to see that τl(x) ⊂ σl(x) and τr(x) ⊂ σr(x). For single elements
τl(x1) =

{
λ1 ∈ C : x1 − λ1 is a left topological divisor of 0

}
and τr(x1) =

{
λ1 ∈

C : x1 − λ1 is a right topological divisor of 0
}
. For commutative Banach algebras

τl(x1, . . . , xn) = τr(x1, . . . , xn) = τ(x1, . . . , xn).

The next lemma enables us to reduce problems for non-commutative Banach
algebras to the commutative case.

Lemma 5. Let A be a closed commutative subalgebra of a Banach algebra B. Then
there exists a commutative Banach algebra C containing A as subalgebra such that
dBl (x1, . . . , xn) = dC(x1, . . . , xn) for every (x1, . . . , xn) ∈ An.

Proof. Let C = A × B =
{
(a, b) : a ∈ A, b ∈ B}

. Define in C algebraic operations
(for all a, a′ ∈ A, b, b′ ∈ B, α ∈ C) by

(a, b) + (a′, b′) = (a + a′, b + b′),
α (a, b) = (αa, αb),

(a, b) · (a′, b′) = (aa′, ab′ + a′b)

and the norm ‖(a, b)‖ = ‖a‖ + ‖b‖. It is easy to show that C is a commutative
Banach algebra with the unit element (1A, 0). If we identify a ∈ A with (a, 0) ∈ C,
then A is a subalgebra of C. Let (x1, . . . , xn) ∈ An. Then

dC
(
(x1, 0), . . . , (xn, 0)

)
= inf

{ n∑
i=1

‖(xi, 0)(a, b)‖ : a, b ∈ A, ‖a‖ + ‖b‖ = 1
}

= inf

{
n∑

i=1

(‖xia‖ + ‖xib‖) : a, b ∈ A, ‖a‖ + ‖b‖ = 1

}
= dBl (x1, . . . , xn). �

Corollary 6. Let A be a Banach algebra, (x0, x1, . . . , xn) ∈ c(A), and let dl (x1,
. . . , xn) = 0. Then there exists λ ∈ C such that dl (x0 − λ, x1, . . . , xn) = 0.

Proof. The statement follows from the previous lemma and the corresponding
result 3.7 for commutative Banach algebras (in fact, the proof of Theorem 3.7
works without any change in the non-commutative case, too). �

Corollary 7. The left and right approximate point spectra are upper semicontinu-
ous spectral systems.

Proof. Let Rn = {x1, . . . , xn) ∈ cn(A) : dl(x1, . . . , xn) > 0}. Using Corollary 6 we
can see that R =

⋃∞
n=1 Rn is a joint regularity. Furthermore, Rn is an open subset

of cn(A), and so τl is an upper semicontinuous spectral system.
The statement for τr follows by symmetry. �
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Thus all results for general spectral system apply for σl, σr, σH , τl and τr. In
particular we have:

Theorem 8. Let A be a Banach algebra. Let σ̃ stand for any of σl, σr, σH , τl, τr.
Then, for all x = (x1, . . . , xn) ∈ cn(A) we have:

(i) σ̃(x) is a non-empty compact subset of Cn, τl(x) ⊂ σl(x), τr(x) ⊂ σr(x),
σH(x) = σl(x) ∪ σr(x);

(ii) if (x0, x1, . . . , xn) ∈ cn+1(A), then σ̃(x1, . . . , xn) = P σ̃(x0, x1, . . . , xn) where
P : Cn+1 → Cn is the projection onto the last n coordinates;

(iii) if f = (f1, . . . , fm) is an m-tuple of functions analytic in a neighbourhood of
σ〈x〉(x1, . . . , xn), then

f(σ̃(x) = σ̃(f(x));

(iv) ∂σ(x1) ⊂ τl(x1) ∩ τr(x1) for all x1 ∈ A;

(v) Γ(σ〈x〉(x),P(n)) ⊂ τl(x) ∩ τr(x);

(vi) the polynomially convex hull of σ̃(x) is equal to σ〈x〉(x).

Theorem 9. Let x be an element of a Banach algebra B. Then

lim
k→∞

dl(xk)1/k = sup
k∈N

dl(xk)1/k = min{|λ| : λ ∈ τl(x)}.

Similarly,

lim
k→∞

dr(xk)1/k = sup
k∈N

dr(xk)1/k = min{|λ| : λ ∈ τr(x)}.

Proof. Let A = 〈x〉 and let C be the commutative Banach algebra constructed in
Lemma 5.

Since dBl (y) = dC
(
(y, 0)

)
and τB

l (y) = τC(y, 0) for every y ∈ 〈x〉, the proof of
the first statement follows from Theorem 4.11 for the algebra C.

The second statement follows by symmetry. �

In Section 1 we have proved that σ(ab) \ {0} = σ(ba) \ {0} for all elements
a, b in a Banach algebra A. Similar relations are also true for other spectra.

Proposition 10. Let a, b be elements of a Banach algebra A, let λ ∈ C, λ �= 0.
Then:

(i) ab − λ is a left (right) divisor of zero if and only if ba − λ is a left (right)
divisor of zero;

(ii) ab−λ is a left (right) topological divisor of zero if and only if ba−λ is a left
(right) topological divisor of zero.
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Proof. (i) Let ab− λ be a left divisor of zero. Let x ∈ A, x �= 0 and (ab− λ)x = 0.
Then abx = λx �= 0, and so bx �= 0. We have

(ba − λ)bx = b(ab − λ)x = 0,

and so ba − λ is a left divisor of zero.
The converse implication and the statement for right divisors of zero follow

by symmetry.

(ii) Let ab−λ be a left topological divisor of zero. Let xn ∈ A, ‖xn‖ = 1 (n =
1, 2, . . . ) and (ab − λ)xn → 0. Then limn→∞ ‖abxn‖ = limn→∞ ‖λxn‖ = |λ| > 0,
and so lim infn→∞ ‖bxn‖ > 0. Further,

(ba − λ)bxn = b(ab − λ)xn → 0,

and so ba − λ is a left topological divisor of zero.
The rest follows by symmetry. �

Corollary 11. Let a, b be elements of a Banach algebra A. Then σ̃(ab) \ {0} =
σ̃(ba) \ {0}, where σ̃ stands for any of σl, σr, τl, τr, πl, πr.

Proof. For σl and σr the statement follows from Theorem 1.29, for the remaining
spectra from the previous proposition. �

Comments on Chapter I

By C.i.j we denote the jth comment on Section i.

C.1.1. Let A be an algebra without unit, i.e., A satisfies only axioms (i)–(iii) of
Definition 1.1. Then it is possible to define the unitization A1 of A by A1 = {α+a :
α ∈ C, a ∈ A}, with the algebraic operations

(α + a) + (β + b) = (α + β) + (a + b),
(α + a) · (β + b) = αβ + (αb + βa + ab),

α · (β + b) = αβ + αb

for all a, b ∈ A, α, β ∈ C. Then A1 is an algebra with the unit element 1 + 0A.
If ‖ · ‖ is an algebra norm on A, then ‖α + a‖ = |α|+ ‖a‖ defines an algebra

norm on A1, and A1 contains an isometrical copy of A. In this way it is possible
to define the spectrum of elements of an algebra without unit as the spectrum in
its unitization.

An alternative approach uses the concept of quasi-inverses, see [BD].

C.1.2. Let A be a real algebra, i.e., suppose that A satisfies all axioms of Definition
1.1 with the complex field replaced by the field of real numbers. Then it is possible
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to define the complexification Ac = {a+ib : a, b ∈ A} with the algebraic operations
defined by

(a + ib) + (c + id) = (a + c) + i(b + d),
(a + ib) · (c + id) = (ac − bd) + i(ad + bc),
(α + iβ) · (a + ib) = (αa − βb) + i(αb + βa)

for all a, b, c, d ∈ A, α, β ∈ R. Then Ac is a (complex) algebra with the unit
element 1A + i · 0A.

If ‖ · ‖ is a (real) algebra norm in A, then it is possible to extend it to Ac by

‖a + ib‖Ac = inf
{ n∑

j=1

|λj | · ‖aj‖ : n ∈ N, λj ∈ C, aj ∈ A and
n∑

j=1

λjaj = a + ib

}
.

In this way it is possible to define the spectrum of an element a of a real algebra A
as the spectrum of a + i · 0 in Ac. Note that the spectrum is still complex in this
case.

C.1.3. Let A be an algebra (in the sense of Definition 1.1) and let ‖ · ‖ be a norm
on A which makes of A a Banach space such that the multiplication is (jointly)
continuous (an → a, bn → b implies anbn → ab). Thus ‖ · ‖ satisfies conditions (i),
(ii) and (v) of Definition 1.2 and condition (iii) is replaced by a weaker condition

(iii′): there exists k > 0 such that ‖xy‖ ≤ k‖x‖ · ‖y‖ (x, y ∈ A).

Define a new norm ||| · ||| on A by |||a||| = sup
{‖ax‖ : x ∈ A, ‖x‖ ≤ 1

}
. It is

easy to check that ||| · ||| is equivalent to the original norm ‖ · ‖, and ||| · ||| satisfies
all conditions of Definition 1.2.

Thus the definition of Banach algebras which uses the continuity of the mul-
tiplication (this definition is natural in the context of topological algebras) is
essentially equivalent to Definition 1.3. Also, the axiom ‖1A‖ = 1 is not essential.

The condition (iii′) of joint continuity of multiplication can be replaced by a
seemingly weaker assumption that the multiplication is only separately continuous,
i.e., that the operators La, Ra : A → A defined by Lax = ax, Rax = xa are
continuous for every a ∈ A. Indeed, an easy application of the Banach-Steinhaus
theorem gives the joint continuity of the multiplication.

C.1.4. The most important generalizations of Banach algebras are locally convex
algebras and m-convex algebras, see [Mi], [Zel1], [Zel4].

A locally convex algebra A is a locally convex space A together with a jointly
continuous multiplication which makes of A an algebra. Equivalently, the topology
of A can be given by a system of seminorms {‖ · ‖α : α ∈ Λ} satisfying:

(i) the system {‖ · ‖α : α ∈ Λ} is directed, i.e., for all α, β ∈ Λ there exists γ ∈ Λ
such that

max{‖x‖α, ‖x‖β} ≤ ‖x‖γ (x ∈ A), (1)
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(ii) for every α ∈ Λ there exists β ∈ Λ such that

‖xy‖α ≤ ‖x‖β · ‖y‖β (x, y ∈ A).

If A is a metrizable locally convex algebra, then its topology can be given
by means of a sequence {‖ · ‖n : n ∈ N} of seminorms satisfying (for all n ∈ N,
x, y ∈ A)

‖x‖n ≤ ‖x‖n+1

and
‖xy‖n ≤ ‖x‖n+1 · ‖y‖n+1.

Complete metrizable locally convex algebras are sometimes called B0-algebras.

C.1.5. A locally convex algebra A is called m-convex (multiplicatively convex) if
its topology can be given by means of a system of seminorms {‖ · ‖α : α ∈ Λ}
satisfying (1) and

‖xy‖α ≤ ‖x‖α · ‖y‖α (α ∈ Λ, x, y ∈ A).

Then, for each α ∈ Λ, Jα = {x ∈ A : ‖x‖α = 0} is a closed two-sided ideal and
(A/Jα, ‖ · ‖α) is a normed algebra. In this way it is easy to show that complete
m-convex algebras are projective limits of Banach algebras. This enables us to
generalize many properties of Banach algebras to complete m-convex algebras.

Complete metrizable m-convex algebras are called Fréchet algebras.

C.1.6. The openness of the set of all invertible elements in a topological algebra is
sometimes called property Q. Obviously, property Q implies the compactness of
the spectrum.

An example of a Fréchet algebra where the invertible elements are not open
is the algebra of all entire functions with the topology given by a sequence of
seminorms ‖f‖n = max|z|≤n |f(z)| (n = 1, 2, . . . ).

C.1.7. The mapping x �→ x−1 is continuous for every m-convex algebra. For
locally convex (even B0) algebras this is not true. An example is the algebra
Lω =

⋂
p≥1 Lp(0, 1) with the topology given by seminorms of Ln (n = 1, 2, . . . ),

see [Ar1], [Zel1].
For B0-algebras the continuity of the mapping x �→ x−1 is equivalent to the

condition that the set Inv(A) is Gδ, see [Zel1].

C.1.8. Let A be a Banach algebra and let a ∈ ∂ Inv(A). By Theorem 1.14, there
is a sequence (xn) of norm 1 elements of A such that both xna → 0 and axn → 0.

On the other hand, it is possible (example of P.G. Dixon, see [BD, p. 13])
that an element b ∈ A is both left and right topological divisor of zero and yet
there is no sequence (un) of norm 1 elements of A with both unb → 0 and bun → 0.

C.1.9. By Theorem 1.14, ∂σl(a) ⊂ τr(a). On the other hand, the inclusion ∂σl(a) ⊂
τl(a) is not true in general, see [Pi1, pp. 367–368], [Bu1, Example 1.11] or [Mü20].
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C.1.10. The basic properties of the spectrum including the spectral radius for-
mula were proved by Gelfand [Ge]. The Gelfand-Mazur theorem (Corollary 1.19)
appeared in [Ma] and [Ge] (the Mazur’s proof was not published from technical
reasons).

C.1.11. The spectrum of an element a in an algebra A can be defined in the same
way as in Banach algebras by σ(a) =

{
λ ∈ C : a − λ is not invertible

}
.

Let A be a normed algebra. Considering its completion gives easily that
the spectrum in normed algebras is always non-empty. In general, however, it is
neither bounded nor closed (consider for example the algebra of all polynomials
p(z) =

∑
i ciz

i with the norm ‖p‖ =
∑

i |ci| and the polynomial p(z) = z, or the
algebra of all “trigonometrical polynomials”

∑
i∈Z

ciz
i with the same norm; all

sums are finite).
Similarly, it is easy to see that the spectrum in m-convex algebras is always

non-empty.
The spectrum in locally convex algebras (even in B0-algebras) can be empty.

However, if we define the set Σ(a) = σ(a) ∪ σ′(a) ∪ σ∞(a) ⊂ C ∪ {∞}, where
σ′(a) = {λ : z �→ (a − z)−1 is discontinuous at λ} and

σ∞(a) =

{
∅ z �→ (1 − za)−1 is continuous at 0,

{∞} otherwise,

then Σ(a) �= ∅ for all elements a in a locally convex algebra, see [Zel4]. For similar
concepts of spectrum in locally convex algebras see [Wa], [All1] and [Neu1], [Neu2].

C.1.12. By the Gelfand-Mazur theorem, the complex numbers are the only Banach
algebra where all non-zero elements are invertible. For real Banach algebras the
situation is more complicated. There are three such examples: the real numbers,
complex numbers and the field of quaternions, see [Ric, p. 40] or [BD, p. 73].

C.1.13. By the Gelfand-Mazur theorem and Theorem 1.14, a Banach algebra ei-
ther possesses non-zero one-sided topological divisors of zero or it is isometrically
isomorphic to the complex field. An analogous statement fails even for Fréchet
algebras.

However, each m-convex algebra different from the complex field possesses
generalized topological divisors of zero, i.e., there is a neighbourhood U of zero
such that 0 ∈ (A \ U)2. On the other hand, this is no longer true for locally convex
algebras [AZ].

C.1.14. In general neither the spectrum nor the spectral radius in a Banach algebra
is continuous.

Let H be the Hilbert space with an orthonormal basis {ei : i ∈ Z}. Let
T, Tn ∈ B(H) be the bilateral weighted shifts defined by Tnei = ei+1 (i �= 0),
Tne0 = n−1e1, Te0 = 0 and Tei = ei+1 (i �= 0). It is easy to see that ‖Tn−T ‖ →
0, σ(T ) = D and σ(Tn) = T for all n, hence the spectrum is discontinuous.
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In the previous example the spectral radius behaves continuously. An example
of discontinuous spectral radius was given by Kakutani, see [Ric, pp. 282–283].

Let K be the Hilbert space with an orthonormal basis {e1, e2, . . . }. Let T ∈
B(K) be the weighted shift defined by Ten = wnen+1, where wn = 2−k if n can be
written as n = 2k ·m with m odd. It is a matter of routine to verify that r(T ) > 0
but T is a limit of nilpotent operators: define Ts by Tsen = wnen+1 if wn ≥ 2−s,
and Tsen = 0 otherwise. Then T 2s+1

s = 0, and so r(Ts) = 0 for all s.

C.1.15. An example of a Banach algebra with continuous spectral radius but dis-
continuous spectrum was given by Apostol [Ap4]. In [Mü1] it was given an example
that the spectrum (and the spectral radius) in a Banach algebra can be discon-
tinuous even on straight lines. For details and further examples see [Au1].

C.1.16. The upper semicontinuity of spectrum in Banach algebras was proved in
[New]. Although the spectral radius and the spectrum are in general discontinuous,
there are plenty of continuity points. By Theorem 6.14, the set of all continuity
points is dense and residual.

Let a be an element of a Banach algebra and let U1, U2 be disjoint open
subsets such that σ(a) ⊂ U1 ∪ U2 and σ(a) ∩ U1 �= ∅. Then U1 ∩ σ(b) �= ∅ for all b
sufficiently close to a [New]. Indeed, let f ≡ 1 on U1 and f ≡ 0 on U2. Then f(b) is
defined for all b in a neighbourhood of a, f(b)2 = f(b) and limb→a f(b) = f(a) �= 0.
Consequently, σ(b) ∩ U1 �= ∅.

In particular, the spectrum is continuous at a if the spectrum of a is totally
disconnected, [New].

For a survey of results concerning the continuity of spectrum and the spectral
radius see [Bu2].

C.1.17. Let G be an open subset of the complex plane and let f : G → A be an
analytic function. Although the function z ∈ G → r(f(z)) can be discontinuous,
by [Ve1] it is always subharmonic (a function f : G → R is subharmonic if it is
upper semicontinuous and f(z) ≤ 1

2π

∫ 2π

0 f(z + reit) dt whenever G contains the
ball {w : |z−w| ≤ r}). Moreover, the function z �→ log r(f(z)) is also subharmonic
[Ve2].

The subharmonicity of these functions has many interesting consequences,
see [Au1]. For example, it implies the maximum principle for the spectral radius.
Furthermore, r(f(z)) = lim supw→z r(f(w)) for all z ∈ G.

C.1.18. The functional calculus for one operator was first used by Riesz [Ri1]
for construction of the spectral projections of a compact operator. The general
spectral mapping theorem was proved by Dunford [Du1].

C.1.19. Various types of radical were studied intensely in the ring theory; the
radical defined in Definition 1.42 is due to Jacobson [Ja]. For a detailed information
about the history of radical see [Pal].
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C.2.1. The basic results concerning commutative Banach algebras are due to
Gelfand [Ge]. It is possible to formulate the Gelfand theory for algebras with-
out unit. The maximal ideal space for a non-unital Banach algebra A is only
locally compact; the maximal ideal space of the corresponding unitization A1 (see
C.1.1) is the one-point compactification of M(A).

C.2.2. By Theorem 2.6, every multiplicative functional on a commutative Banach
algebra is automatically continuous. A much more general result of this type was
proved by B.E. Johnson [J]:

Let A,B be Banach algebras, B semisimple and let ϕ : A → B be a surjec-
tive homomorphism. Then ϕ is continuous. In particular, all algebra norms on a
semisimple Banach algebra are equivalent.

This result was further generalized by Aupetit [Au4], Theorem 5.5.1:

Let A,B be Banach algebras, B semisimple, let ϕ : A → B be a surjective
linear mapping satisfying r(ϕ(x)) ≤ r(x) for all x ∈ A. Then ϕ is continuous.

It is an open problem whether it is sufficient to assume in the above results
that ϕ has only dense range. For details on automatic continuity see [Sin], [Dal].

C.2.3. Let A be a commutative Banach algebra. It is easy to see that the Gelfand
transform is an isometry if and only if r(a) = ‖a‖ for all a ∈ A. Equivalently,
‖a2‖ = ‖a‖2 (a ∈ A). Algebras with this property are called function algebras.

Another possible definition is that function algebras are closed subalgebras
of C(X) that contain the constant functions and separate the points of X , where
X is a compact Hausdorff space.

C.2.4. It is easy to see that every commutative m-convex algebra has at least
one continuous multiplicative functional. This is not true if the algebra is not m-
convex. The algebra Lω defined in C.1.7 is an example of a B0-algebra without
multiplicative functionals, see [Zel1].

C.2.5. It is a longstanding open problem (see Michael [Mi]) whether each multi-
plicative functional on a commutative Fréchet algebra is automatically continuous.
This is true for finitely generated Fréchet algebras [Ar3]. The Michael problem is
not true if we drop the assumption of metrizability. An example of a complete
commutative m-convex algebra with a discontinuous multiplicative functional is
the algebra C(Tω1) of all continuous functions with the compact open topol-
ogy on the compact space Tω1 , where ω1 is the first uncountable ordinal, and
Tω1 = {α : α < ω1} with the order topology.

C.2.6. Denote by Q the set of all quasinilpotent elements of a Banach algebra A,
Q = {x ∈ A : r(x) = 0}. By Theorem 2.9, Q = radA for commutative Banach
algebras.
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For non-commutative Banach algebras this is no longer true. An extreme
example was given by [Di]: there exists an infinite-dimensional semisimple Banach
algebra such that the closure of the nilpotent elements is an ideal of codimension 1.

Theorem 2.9 implies that a subalgebra of a semisimple commutative Banach
algebra is also semisimple. For non-commutative Banach algebras this is not true:
consider the semisimple algebra of all n × n matrices and its subalgebra of upper
triangular matrices.

The radical of a non-commutative Banach algebra can be characterized as
follows [Ze1], [Ze3], [Ze4]:

Theorem. a ∈ radA if and only if a + Q ⊂ Q.

C.2.7. It is easy to see that the spectral radius and the spectrum are continuous
in Banach algebras that are commutative modulo the radical. An example of
a semisimple non-commutative Banach algebra with continuous spectrum is the
algebra of all n × n matrices.

In [Au2], see also [PZ], [Ze2], the following result was proved:

Theorem. Let A be a Banach algebra. The following properties are equivalent:

(i) the spectral radius is uniformly continuous on A;

(ii) r(x + y) ≤ r(x) + r(y) (x, y ∈ A);
(iii) r(xy) ≤ r(x) · r(y) (x, y ∈ A);
(iv) the algebra A/ radA is commutative.

C.2.8. The Gleason-Kahane-Żelazko theorem was proved in [Gle] and [KZ]. The
same statement is true also for non-commutative Banach algebras, see [Zel2].

The following stronger version of the Gleason-Kahane-Żelazko theorem was
proved in [KS]:

Theorem. Let A be a commutative Banach algebra and let ϕ : A → C be an
arbitrary function. Suppose that ϕ(0) = 0 and ϕ(x) − ϕ(y) ∈ σ(x − y) for all
x, y ∈ A. Then ϕ is a multiplicative functional.

C.2.9. The Gelfand theory can be generalized to Banach algebras satisfying a poly-
nomial identity (PI-algebras). An important role for PI-algebras play the standard
identities en(x1, . . . , xn) = 0 for all x1, . . . , xn in the algebra, where

en(x1, . . . , xn) =
∑

π

(−1)sign πxπ(1) · · ·xπ(n)

and the sum is taken over all permutations π of the set {1, . . . , n}. If an algebra
satisfies any polynomial identity, then it satisfies some standard identity.

Note that e2(x1, x2) = x1x2 − x2x1, and so commutative Banach algebras
are PI. By [AL], the algebra of all n × n matrices satisfies the standard identity
e2n(A1, . . . , A2n) = 0 for all matrices A1, . . . , A2n. Thus the PI-algebras include
also the matrix algebras.
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For PI-algebras it is possible to develop the Gelfand theory (with multiplica-
tive functionals replaced by finite-dimensional representations), see [Kr].

C.2.10. The multivariable functional calculus in commutative Banach algebras
was constructed by Arens, Calderon [AC], Waelbroeck [Wa] and Shilov [Sh2]. For
simpler proofs see [BD] or [Ga].

The calculus is uniquely determined by properties (i), (ii), (iii) and (v) of
Theorem 2.20, see [Zam]. In Section 30 we show a weaker unicity property.

C.2.11. The concept of the Shilov boundary is due to Shilov [Sh1].
It is easy to see that the Shilov boundary of the algebra C(K) is equal to its

maximal ideal space, Γ(C(K)) = M(C(K)) ∼ K.
The maximal ideal space of the disc algebra A(D) can be identified with D;

the Shilov boundary then coincides with the topological boundary of D.

C.3.1. The construction of the algebra Q(A) is attributed in [Ha5] to Berberian
[Ber] and Quigley, see [Ric], page 25. It was simplified by Wolff, see [ChD].

C.3.2. Theorem 3.7 and its consequences (Corollary 3.8 and the projection property
for the approximate point spectrum) were proved in [Sl1] and [ChD].

C.3.3. The cortex corA was defined by Arens [Ar4] as the set of all elements of
M(A) that admit an extension to a multiplicative functional on any commutative
extension B ⊃ A. The present definition is equivalent, see Section 5.

C.3.4. The inclusion Γ(A) ⊂ corA was proved in [Zel5], cf. also [Sh1].
The class γ(A) and the characterization of the Shilov boundary given in

Theorem 3.11 are new, but the ideas are present already in [Zel5]. The definition
of the spectrum σΓ is also new.

C.3.5. The analogue of the Gleason-Kahane-Żelazko theorem for the cortex is not
true as the following example of Żelazko shows. Let A be the Banach algebra of
all functions analytic on the unit ball B = {(λ, µ) ∈ C2 : |λ|2 + |µ|2 < 1} and
continuous in B. For (λ, µ) ∈ B let Eλ,µ be the evaluation functional on A defined
by Eλ,µ(f) = f(λ, µ). Then Γ(A) = {Eλ,µ : (λ, µ) ∈ ∂B} and

E0,0(f) = f(0, 0) ∈ {
f(λ, µ) : (λ, µ) ∈ ∂B

}
=

{
ϕ(f) : ϕ ∈ Γ(A)

} ⊂ τ(f)

for all f ∈ A. On the other hand, it is easy to see that E0,0 /∈ corA since z1, z2 ∈
KerE0,0 and (z1, z2) are not joint topological divisors of zero since ‖z1f‖+‖z2f‖ ≥
‖f‖ for all f ∈ A.

C.4.1. Theorem 4.1 was proved for commutative Banach algebras in [Li] and for
general Banach algebras in [FM].

The characterization of permanently singular elements (Theorem 4.3) is due
to Arens [Ar2].
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C.4.2. If F is a finite subset of a commutative Banach algebra A such that no
f ∈ F is a topological divisor of zero, then their product in not a topological
divisor of zero either. Using Theorem 4.3 for this product, we see that there exists
a commutative extension B ⊃ A such that all f ∈ F are invertible in B.

This result was generalized by Bollobás [Bo1] for countable sets, i.e., it is
always possible to adjoin inverses to a countably many elements of a commutative
Banach algebra that are not permanently singular.

In general, this is not possible for uncountable sets, see [Bo1] or [Mü5].

C.4.3. The statement analogous to Theorem 4.3 is not true in non-commutative
Banach algebras. By [Mü10], there exists a non-commutative Banach algebra A
and an element a ∈ A such that ‖ax‖ ≥ ‖x‖ (x ∈ A) (i.e., a is not a left
topological divisor of zero) but a is left invertible in no Banach algebra B ⊃ A.

C.4.4. By [Mü8], there exists a (non-commutative) Banach algebra A, an element
a ∈ A and two extensions B1 ⊃ A and B2 ⊃ A such that a is left invertible in
B1, right invertible in B2 but a is invertible (both left and right) in no extension
B ⊃ A.

C.4.5. Theorem 4.10 was proved by Read [Re2] who gave a positive answer to a
problem posed by Bollobás [Bo3].

C.4.6. If x, y are elements of a commutative Banach algebra A, then in general
there is no extension B ⊃ A such that both σB(x) = τA(x) and σB(y) = τA(y),
see [Mü5], [Re5].

Consequently, by the spectral mapping theorem for both σ and τ , there is no
extension B ⊃ A where σB(x, y) = τA(x, y). On the other hand, we always have
τA(x, y) =

⋂
B⊃A σB(x, y) by Theorem 5.12.

C.4.7. The “inverse” spectral radius formula (Theorem 4.11) was proved in [MZ]
(using the sheaf theory) and in [Mü4] (by combinatorial methods). The present
proof is based on the above-mentioned result of Read (Theorem 4.10). Note that
for the proof of Theorem 4.11 it is sufficient to use only the simpler result of
Proposition 4.8.

C.5.1. Removable and non-removable ideals were introduced and studied by Arens,
[Ar2], [Ar4], [Ar5] and further by Żelazko [Zel3], [Zel5]. The problem whether an
ideal in a commutative Banach algebra is non-removable if and only if it consists
of joint topological divisors of zero was raised in [Ar4]. A positive answer was
given in [Mü2]. The present proof follows the line of [Mü2] but the estimates are
essentially improved here.

C.5.2. Let u1, . . . , un be elements of a commutative Banach algebra A and c a
positive constant such that

∑n
i=1 ‖uix‖ ≥ c · ‖x‖ (x ∈ A). An interesting open

problem is what are the smallest norms of elements bi in a commutative extension
B ⊃ A for which

∑n
i=1 uib1 = 1.
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By Theorem 4.3, if n = 1, then it is possible to take ‖b1‖ = c−1 (which is also
the smallest possible norm). For n ≥ 2 the situation is much more complicated. In
the simplest non-trivial case of n = 2, c = 1 the present proof gives the existence
of elements b1, b2 ∈ B ⊃ A with b1u1 + b2u2 = 1 and ‖bi‖ ≤ 28 (the original proof
only gave ‖bi‖ = 217).

On the other hand, rather surprisingly, in general it is not possible to find
an extension B and b1, b2 ∈ B with ‖bi‖ ≤ 1 (i = 1, 2), see [Bo2]. Thus there is
still an enormous gap between the upper and lower estimates.

C.5.3. Let I1, I2, . . . be a countable family of removable ideals in a commutative
Banach algebra A. Then there exists a commutative extension B ⊃ A in which all
ideals I1, I2, . . . are removed (= neither of them is contained in a proper ideal in the
extension), see [Mü6]. This generalizes the corresponding result of Bollobás [Bo1]
for non-permanently singular elements, cf. C.4.2.

C.5.4. A stronger version of Theorem 4.3 (with essentially the same proof) says: if
u, v are elements of a commutative Banach algebra A and c is a positive constant
such that ‖ux‖ ≥ c · ‖vx‖ (x ∈ A), then there exists a commutative extension
B ⊃ A and b ∈ B such that ub = v. The analogous result is not true for n-tuples
[Mü3]: it is possible to have v, u1, u2 ∈ A with ‖u1x‖ + ‖u2x‖ ≥ ‖vx‖ (x ∈ A)
and yet there is no extension B ⊃ A and b1, b2 ∈ B such that u1b1 + u2b2 = v.

C.6.1. The notion of regularity and the corresponding axiomatic spectral theory
was presented in [KM2].

For other related approaches see [GL] and [Rn].

C.6.2. Theorem 6.14 for the ordinary spectrum in the algebra of operators on a
Hilbert space was noted in [CM]. In general form it was proved in [Rn], Proposi-
tion 3, see also [LvS]. The argument is based on a classical result of Kuratowski,
cf. [Au4], p. 50.

C.7.1. The definition of spectral systems for n-tuples of commuting elements (Def-
inition 7.4) is a slightly modified concept of S�lodkowski and Żelazko [SZ1] and
Żelazko [Zel7], see also Curto [Cu4].

C.7.2. By [SZ1], it is possible to replace condition (i) of Definition 7.4 (σR(x) ⊂
σ〈x〉(x) for all n-tuples x of commuting elements) by the same condition only for
commuting triples of elements.

Using the Kowalski-S�lodkowski theorem (see C.2.8) it is even sufficient to
require this only for commuting pairs. On the other hand, it is not sufficient to
require in Definition 7.4 the condition σ̃(x) ⊂ σ(x) for single elements x only; an
example is the product σ̃(x1, . . . , xn) =

∏
i σ(xi).

C.7.3. Let σ̃ be a compact-valued spectral system in a Banach algebra A. It is
possible to extend σ̃ to infinite commuting subsets of A. Indeed, let σ̃((xα)α∈Λ)
be the set of all (λα)α∈Λ such that (λα1 , . . . , λαn) ∈ σ̃(xα1 , . . . , xαn) for all finite
subsets {α1, . . . , αn} ⊂ Λ, see [SZ1].
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A compactness argument gives that σ̃((xα)α∈Λ) is non-empty for all com-
muting families (xα)α∈Λ.

C.7.4. An interesting problem is to characterize those regularities that can be
extended to joint regularities (equivalently, which spectra σ̃ defined for single
elements can be extended to n-tuples of commuting elements).

Necessary conditions are property (P1), stability of the spectrum under
commuting quasinilpotent perturbations (Theorem 7.16), and the property that
∆̂(σ̃(a), σ̃(b)) ≤ ‖a− b‖ for all commuting a, b (uniform continuity on commuting
elements, see Theorem 7.14).

C.7.5. By [SZ2], a complex-valued function ϕ defined on a Banach algebra A is
called a semicharacter if its restriction to any commutative subalgebra of A is a
multiplicative functional (sometimes also called a character).

Any set K of semicharacters on a Banach algebra A defines a spectral system
by

σK(a1, . . . , an) =
{
(ϕ(a1), . . . , ϕ(an)) : ϕ ∈ K

}
.

On the other hand, it is not possible to describe all spectral system in this way
since there are Banach algebras (for example the algebra of all 3 × 3 matrices)
without semicharacters.

Clearly, each multiplicative functional is a semicharacter. An example of a
discontinuous semicharacter can be found in the algebra of all 2×2 matrices [SZ2].
An example of a continuous semicharacter which is not a multiplicative functional
was found in [KM4].

It is an open problem whether a uniformly continuous semicharacter is al-
ready automatically a multiplicative functional.

C.7.6. Proposition 7.20 and Corollary 7.22 were proved in [Waw].

C.8.1. The one-sided and one-sided approximate point spectra for n-tuples of ele-
ments in a Banach algebra were introduced and studied by Harte [Ha1] and [Ha2].

C.8.2. The one-sided and one-sided approximate point spectra can be defined,
using exactly the same definitions, for non-commuting n tuples of Banach algebra
elements, see Harte [Ha1]. However, in this case the spectrum can be empty. The
simplest example are the matrices

A1 =
(

0 1
0 0

)
A2 =

(
0 0
1 0

)
in the Banach algebra of 2× 2 matrices. It is easy to verify that A2

1 = A2
2 = 0 and

A1A2 + A2A1 = I. Thus σl(A1, A2) = σr(A1, A2) = ∅.
Similarly, the projection property is not satisfied since σ(A1) �= ∅. In general,

for non-commuting n-tuples there is only one inclusion.
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C.8.3. Let A be a Banach algebra. By [FS1], σl(a1, . . . , an) �= ∅ for all (non-
commuting) n-tuples a1, . . . , an ∈ An if and only if there exists a multiplicative
functional on A.

Further, τl(a1, . . . , an) �= ∅ for all n-tuples a1, . . . , an ∈ An if and only if
there exists a multiplicative functional on A whose kernel consists of joint left
topological divisors of zero, see [So3].

Similar statements are true also for the right spectra.

C.8.4. By [FS2], a Banach algebra A is commutative modulo its radical if and only
if σl(a1, . . . , an) ⊂ σr(a1, . . . , an) for all n-tuples a1, . . . , an ∈ A.

C.8.5. By Theorem 8.9, it is possible to calculate the distance of 0 to the left
(right) approximate point spectrum of a Banach algebra element.

An interesting problem is to obtain a similar formula for the distance of 0 to
the left (right) spectrum. In [Ze5] it was conjectured that

dist{0, σl(a)} = sup{r(b)−1 : ba = 1}. (2)

If a is invertible, then this reduces to the spectral radius formula. Also, (2) is true
in the algebra B(H) of all bounded operators on a Hilbert space H , see [BM].

In general, it is easy to see that the inequality ≥ in (2) is always true; the
opposite inequality is an open problem. By [Ze5], the conjecture is also equivalent
to another interesting problem:

For each compact subset K of the disc
{
z ∈ C : |z| < sup{r(b)−1 : ba = 1}}

there exists an analytic A-valued function g defined on a neighbourhood U of K
such that

g(z)(a − z) = 1
g(z) − g(w) = (z − w)g(z)g(w)

for all z, w ∈ U (so-called left resolvent of a), cf. C.13.2.
Note that the resolvent z �→ (a − z)−1 defined on the complement of σ(a)

satisfies the resolvent identity (a− z)−1 − (a−w)−1 = (z −w)(a− z)−1(a−w)−1,
cf. Theorem 1.16.



Chapter II

Operators

In this chapter we study the Banach algebra of all operators acting on a Banach
space. All Banach spaces are assumed to be complex and non-trivial, of dimension
at least 1. By an operator we always mean a bounded linear mapping between two
Banach spaces.

Let X, Y be Banach spaces. Denote by B(X, Y ) the set of all operators from
X to Y . Write for short B(X) = B(X, X). For T ∈ B(X, Y ) define the operator
norm ‖T ‖ = sup

{‖Tx‖ : x ∈ X, ‖x‖ ≤ 1
}
. It is clear that B(X, Y ) with this norm

becomes a Banach space and B(X) is a Banach algebra. The unit element in B(X)
is the identity operator denoted by IX (or simply I if no confusion can arise).

For basic results and notations from operator theory see Appendix A.1.

9 Spectrum of operators

In this section we reformulate the results from Section 8 for the algebra B(X) of
all operators acting on a Banach space X .

We start with the left and right point spectra πl and πr.

Theorem 1. Let T be an operator acting on a Banach space X and let λ ∈ C.
Then:

(i) λ ∈ πl(T ) if and only if λ is an eigenvalue of T (i.e., Ker(T − λ) �= {0});
(ii) λ ∈ πr(T ) if and only if (T − λ)X �= X .

Proof. (i) If λ ∈ πl(T ), then (T − λ)S = 0 for some S ∈ B(X), S �= 0. Let x ∈ X
satisfy Sx �= 0. Then (T − λ)Sx = 0, and so Sx is an eigenvector of T .

Conversely, let (T − λ)x = 0 for some non-zero x ∈ X . Let f ∈ X∗ satisfy
f(x) = 1 and define S ∈ B(X) by Sy = f(y)x (y ∈ X). Then Sx = x; so S �= 0
and (T − λ)S = 0.
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(ii) Let S(T − λ) = 0 for some S ∈ B(X), S �= 0. Then (T − λ)X ⊂
KerS �= X .

Conversely, if (T − λ)X �= X , then there exists a non-zero functional f ∈ X∗

such that f |(T − λ)X = 0. Let x ∈ X be any non-zero vector and define S ∈ B(X)
by Sy = f(y) · x. Then S �= 0 and S(T − λ) = 0. �

Corollary 2. Let T ∈ B(X). Then πl(T ) ⊂ πr(T ∗) and πr(T ) = πl(T ∗).

Proof. Follows from Theorem 1 and Appendix A.1.15. �

In general, πl(T ) is not equal to πr(T ∗), since it is possible that T is an
injective operator such that RanT ∗ is not dense (in general, RanT ∗ is only w∗-
dense). As an example, consider the operator (an) �→ (n−1an) acting in �1.

The equality πl(T ) = πr(T ∗) is true for operators in reflexive Banach spaces.
Characterizations similar to those in Theorem 1 are also true for the approx-

imate point spectra. We start with the definition of two quantities connected with
an operator. Recall that BX denotes the closed unit ball in X .

Definition 3. Let X, Y be Banach spaces and let T ∈ B(X, Y ). We define the
injectivity modulus of T (sometimes also called the minimum modulus) by

j(T ) = inf
{‖Tx‖ : x ∈ X, ‖x‖ = 1

}
and the surjectivity modulus by

k(T ) = sup
{
r ≥ 0 : TBX ⊃ r · BY

}
.

We say that T is bounded below if j(T ) > 0.

Clearly, j(T ) ≤ ‖T ‖ and k(T ) ≤ ‖T ‖ since TBX ⊂ ‖T ‖ · BY . Furthermore,

j(T ) = inf
{‖Tx‖

‖x‖ : x ∈ X, x �= 0
}

.

Theorem 4. An operator T ∈ B(X, Y ) is bounded below if and only if it is one-to-
one and Ran T is closed. T is onto if and only if k(T ) > 0.

Proof. If T is onto, then k(T ) > 0 by the open mapping theorem. If T is not onto,
then k(T ) = 0 by definition.

If T is one-to-one and Ran T is closed, then j(T ) > 0 by the open mapping
theorem. Conversely, if j(T ) > 0, then T is one-to-one and T : X → RanT is an
isomorphism. Thus Ran T is complete and therefore closed in Y . �

Theorem 5. Let T ∈ B(X, Y ). Then T is bounded below if and only if T ∗ is onto.
T is onto if and only if T ∗ is bounded below.

Proof. Follows from Corollary A.1.15 and Theorem A.1.16. �
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Theorem 6. Let X, Y, Z be Banach spaces, T ∈ B(X, Y ) and S ∈ B(Y, Z). Then:

(i) j(ST ) ≤ ‖S‖ · j(T );
(ii) j(ST ) ≥ j(S) · j(T );
(iii) k(ST ) ≤ k(S) · ‖T ‖;
(iv) k(ST ) ≥ k(S) · k(T ).

Proof. (i) j(ST ) = inf
{

‖STx‖
‖x‖ :x ∈ X, x �= 0

}
≤ ‖S‖ · inf

{
‖Tx‖
‖x‖ :x ∈ X, x �= 0

}
=

‖S‖ · j(T ).

(ii) For x ∈ X we have ‖STx‖ ≥ j(S) · ‖Tx‖ ≥ j(S)j(T )‖x‖, and so j(ST ) ≥
j(S)j(T ).

(iii) The statement is clear if k(ST ) = 0. Suppose that ST is onto, and so
T �= 0. Let z ∈ Z, ‖z‖ < k(ST )

‖T‖ . Then there exists x ∈ X such that STx = z

and ‖x‖ ≤ ‖T ‖−1. Then y = Tx ∈ BY and Sy = z. Thus k(S) ≥ k(ST )
‖T‖ , which

gives (iii).

(iv) The statement is clear if either k(T ) or k(S) is equal to 0. Let both T
and S be onto and let ε > 0, ε < min{k(S), k(T )}. We have

(ST )BX ⊃ S
(
(1 − ε)k(T )BY

)
= (1 − ε)k(T )SBY ⊃ (1 − ε)2k(T )k(S)BX .

Thus k(ST ) ≥ (1 − ε)2k(S)k(T ). Letting ε → 0 gives k(ST ) ≥ k(S)k(T ). �

Theorem 7. If T ∈ B(X, Y ) is bijective, then j(T ) = ‖T−1‖−1 = k(T ).

Proof. We have

j(T ) = inf
{‖Tx‖

‖x‖ : x ∈ X, x �= 0
}

=
(

sup
{ ‖x‖
‖Tx‖ : x ∈ X, x �= 0

})−1

=
(

sup
{‖T−1y‖

‖y‖ : y ∈ Y, y �= 0
})−1

= ‖T−1‖−1.

Let c > 0. The following statements are equivalent:

c < k(T ); c−1TBX ⊃ BY ;

c−1BX ⊃ T−1BY ; ‖T−1‖ ≤ c−1; ‖T−1‖−1 ≥ c.

Hence k(T ) = sup{c > 0 : c < k(T )} = ‖T−1‖−1. �

Theorem 8. Let T ∈ B(X, Y ). Then j(T ) = k(T ∗) and k(T ) = j(T ∗).

Proof. (a) By Theorem 5, j(T ) = 0 if and only if k(T ∗) = 0. If j(T ) > 0, then
RanT is closed and T = JT0, where T0 : X → RanT is induced by T and
J : RanT → Y is the natural embedding. Clearly, j(T ) = j(T0) = ‖T−1

0 ‖−1 =
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‖T ∗−1
0 ‖−1 = k(T ∗

0 ). Further, T ∗ = T ∗
0 J∗ where J∗ : Y ∗ → (Ran T )∗ assigns to

each functional f ∈ Y ∗ the restriction f |Ran T , cf. A.1.19. By the Hahn-Banach
theorem, J∗BY ∗ = B(Ran T )∗ . Thus k(J∗) = 1 = ‖J∗‖, k(T ∗) = k(T ∗

0 ) by Theorem
6, and k(T ∗) = j(T ).

(b) By Theorem 5, k(T ) = 0 if and only if j(T ∗) = 0. Suppose that k(T ) >
0; so T is onto. Then T = T0Q, where Q : X → X/ KerT is the canonical
projection and T0 : X/ KerT → Y is one-to-one and onto. We have k(T0)k(Q) ≤
k(T ) ≤ k(T0)‖Q‖. Since ‖Q‖ = 1 = k(Q), we have k(T ) = k(T0) = ‖T−1

0 ‖−1 =
‖(T ∗

0 )−1‖−1 = j(T ∗
0 ). Further, T ∗ = Q∗T ∗

0 where Q∗ is the natural embedding of
(X/ KerT )∗ = (KerT )⊥ into X∗, see A.1.20. Therefore j(T ∗) = j(T ∗

0 ) = k(T ).
�

Proposition 9. Let T, S ∈ B(X, Y ). Then
∣∣j(T ) − j(S)

∣∣ ≤ ‖T − S‖ and
∣∣k(T ) −

k(S)
∣∣ ≤ ‖T − S‖. In particular, the injectivity and surjectivity moduli are contin-

uous.

Proof. Let x ∈ X , ‖x‖ = 1. Then ‖Sx‖ ≥ ‖Tx‖ − ‖(T − S)x‖ ≥ j(T ) − ‖T − S‖,
and so j(T ) − j(S) ≤ ‖T − S‖. The symmetry implies the first statement of
Proposition 9 and the second one follows from Theorem 8. �
Proposition 10. Let T ∈ B(X, Y ). Then:

(i) j(T ) = sup
{
r > 0 : T − S is bounded below for all S ∈ B(X, Y ), ‖S‖ < r

}
;

(ii) k(T ) = sup
{
r > 0 : T − S is onto for all S ∈ B(X, Y ), ‖S‖ < r

}
.

Proof. (i) Let S ∈ B(X, Y ), ‖S‖ < j(T ). Then j(T − S) ≥ j(T )−‖S‖ > 0, and so
T − S is bounded below.

Conversely, let ε > 0. Then there exists x0 ∈ X of norm 1 such that ‖Tx0‖ <
j(T ) + ε. Let f ∈ X∗ satisfy ‖f‖ = 1 = f(x0). Define S ∈ B(X, Y ) by Sx =
f(x) · Tx0. Then ‖S‖ = ‖Tx0‖ < j(T ) + ε and (T − S)x0 = 0. Hence T − S is not
one-to-one.

(ii) The statement is clear if k(T ) = 0. Suppose that k(T ) > 0.
Let S ∈ B(X, Y ), ‖S‖ < k(T ). Then k(T − S) ≥ k(T ) − ‖S‖ > 0, and so

T − S is onto.
Conversely, let ε > 0 and let y ∈ Y satisfy ‖y‖ < k(T ) + ε and y /∈ TBX .

Choose x0 ∈ X such that Tx0 = y. It is clear that dist{x0, KerT } ≥ 1. Let
f ∈ (KerT )⊥ satisfy ‖f‖ = 1 and f(x0) = dist{x0, KerT } ≥ 1. Define S by
Sx = f(x)f(x0)−1Tx0. Then ‖S‖ = ‖Tx0‖f(x0)−1 < k(T ) + ε. We show that
y /∈ Ran(T − S). We have (T − S)x0 = 0, and so Ran(T − S) = T Ker f . Suppose
on the contrary that there is an x ∈ Ker f such that y = Tx. Then x − x0 ∈
KerT ⊂ Ker f and 0 = f(x) = f(x0) ≥ 1, a contradiction. �

Recall that for an n-tuple (A1, . . . , An) of operators in a Banach space X we
write

d
B(X)
l (A1, . . . , An) = inf

{ n∑
i=1

‖AiS‖ : S ∈ B(X), ‖S‖ ≤ 1
}
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and

dB(X)
r (A1, . . . , An) = inf

{ n∑
i=1

‖SAi‖ : S ∈ B(X), ‖S‖ ≤ 1
}

.

Theorem 11. Let A = (A1, . . . , An) be an n-tuple of mutually commuting operators
on a Banach space X . Then:

(i) d
B(X)
l (A) = inf

{∑n
i=1 ‖Aix‖ : x ∈ X, ‖x‖ = 1

}
;

(ii) d
B(X)
r (A) = sup{r : A1BX + · · · + ArBX ⊃ rBX}.

Proof. (i) Let x ∈ X , ‖x‖ = 1 and let f ∈ X∗ satisfy f(x) = 1 = ‖f‖. Define
S ∈ B(X) by Sz = f(z) · x (z ∈ X). Then ‖S‖ = 1 and

n∑
i=1

‖AiS‖ =
n∑

i=1

sup
{‖AiSz‖ : z ∈ X, ‖z‖ = 1

}
=

=
n∑

i=1

sup
{|f(z)| · ‖Aix‖ : z ∈ X, ‖z‖ = 1

} ≤
n∑

i=1

‖Aix‖.

Thus

dl(A) ≤ inf

{
n∑

i=1

‖Aix‖ : x ∈ X, ‖x‖ = 1

}
.

To show the opposite inequality, let S ∈ B(X), ‖S‖ = 1. For each ε > 0 there
exists y ∈ X, ‖y‖ = 1 such that ‖Sy‖ ≥ 1 − ε. Then Sy

‖Sy‖ is of norm 1 and

inf

{
n∑

i=1

‖Aix‖ : x ∈ X, ‖x‖ = 1

}
≤

n∑
i=1

‖AiSy‖
‖Sy‖ ≤ (1 − ε)−1

n∑
i=1

‖AiS‖.

Since S and ε were arbitrary, we have

inf

{
n∑

i=1

‖Aix‖ : x ∈ X, ‖x‖ = 1

}
≤ dl(A).

(ii) Suppose that A1BX + · · ·+AnBX ⊃ rBX . Let S : X → X be an operator
of norm 1 and ε > 0. Then there exists y ∈ X , ‖y‖ = r such that ‖Sy‖ > (1− ε)r
and x1, . . . , xn ∈ BX such that y =

∑n
i=1 Aixi.

We have
n∑

i=1

‖SAi‖ ≥
n∑

i=1

‖SAixi‖ ≥ ‖Sy‖ > (1 − ε)r.

Thus
dr(A) ≥ sup

{
r : A1BX + · · · + AnBX ⊃ rBX

}
.
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Conversely, let x ∈ X , ‖x‖ = 1 and x /∈ r−1 ·(A1BX + · · ·+AnBX). For every
ε > 0 we have x /∈ (r + ε)−1A1BX + · · · + AnBX . By the Hahn-Banach theorem
A.1.3, there exists a functional f ∈ X∗ such that

f(x) = 1 > (r + ε)−1 sup
{∣∣∣f ( n∑

i=1

Aixi

)∣∣∣ : ‖x1‖ = · · · = ‖xn‖ = 1
}

.

Define S ∈ B(X) by Sz = f(z) · x (z ∈ X). Then ‖S‖ = ‖f‖ ≥ 1 and

n∑
i=1

‖SAi‖ = sup
{ n∑

i=1

‖SAixi‖ : xi ∈ X, ‖x1‖ = · · · = ‖xn‖ = 1
}

= sup
{ n∑

i=1

|f(Aixi)| : ‖x1‖ = · · · = ‖xn‖ = 1
}

= sup
{∣∣∣f( n∑

i=1

Aixi

)∣∣∣ : ‖x1‖ = · · · = ‖xn‖ = 1
}

< r + ε.

Thus
dr(A) ≤ sup{r : A1BX + · · · + AnBX ⊃ rBX}. �

Remark 12. The symmetry between the left and right spectrum is rather lost in
the algebra B(X). The left point spectrum of an operator is much more important
than the right point spectrum. Therefore in operator theory the left point spectrum
is usually called just the point spectrum; the right point spectrum is rather the
point spectrum of the adjoint operator.

Similarly, the left approximate point spectrum of an operator is much more
important than the right approximate point spectrum. Therefore the left ap-
proximate point spectrum in B(X) is usually called only the approximate point
spectrum. The right approximate point spectrum is called the surjective spectrum
(sometimes also the defect spectrum).

The point, approximate point, and surjective spectrum of a commuting n-
tuple A = (A1, . . . , An) of operators on a Banach space X are denoted by σp(A),
σπ(A) and σδ(A), respectively.

The notation is not consistent with the notation used in the Banach algebra
theory, but since it is generally accepted and is also quite convenient (it is not
necessary to remember which spectrum is left and which is right), we are going to
use it.

Corollary 13. Let A = (A1, . . . , An) be an n-tuple of mutually commuting opera-
tors on a Banach space X . Then

σp(A) =
{

λ ∈ Cn :
n⋂

i=1

Ker(Ai − λi) �= {0}
}

,
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σπ(A) =
{

λ ∈ Cn : inf
{ n∑

i=1

‖(Ai − λi)x‖ : x ∈ X, ‖x‖ = 1
}

= 0
}

,

σδ(A) =
{

λ ∈ Cn : (A1 − λ1)X + · · · + (An − λn)X �= X

}
.

In particular, for a single operator T ∈ B(X) we have σp(T ) = {µ ∈ C : T −
µ is not one-to-one}, σπ(T ) = {µ ∈ C : T −µ is not bounded below} and σδ(T ) =
{µ ∈ C : T − µ is not onto}.

Let A = (A1, . . . , An) be a mutually commuting n-tuple of operators on a
Banach space X . Denote by Xn

1 and Xn
∞ the Banach space X ⊕ · · · ⊕ X︸ ︷︷ ︸

n

with the

norms

‖x1 ⊕ · · · ⊕ xn‖1 =
n∑

i=1

‖xi‖,

and
‖x1 ⊕ · · · ⊕ xn‖∞ = max{‖xi‖ : i = 1, . . . , n},

respectively.
Denote by δA : X → Xn

1 the operator defined by

δAx = A1x ⊕ · · · ⊕ Anx (x ∈ X).

By Theorem 11, we have dl(A) = j(δA). Similarly, dr(A) = k(ηA) where ηA =
Xn∞ → X is defined by

ηA(x1 ⊕ · · · ⊕ xn) =
n∑

i=1

Aixi (x1, . . . , xn ∈ X).

Corollary 14. Let A = (A1, . . . , An) be an n-tuple of mutually commuting oper-
ators on a Banach space X . Write A∗ = (A∗

1, . . . , A
∗
n) ∈ B(X∗). Then σπ(A∗) =

σδ(A) and σδ(A∗) = σπ(A)

Proof. Let δA : X → Xn
1 and let ηA : Xn∞ → X be the operators defined above.

Similarly define operators δA∗ : X∗ → (X∗)n
1 and ηA∗ : (X∗)n

∞ → X∗. Clearly,
δA∗ = (ηA)∗ and ηA∗ = (δA)∗. Thus

d
B(X∗)
l (A∗) = j(δA∗) = k(ηA) = dB(X)

r (A)

and
dB(X∗)

r (A∗) = k(ηA∗) = j(δA) = d
B(X)
l (A).

Consequently, σπ(A∗) = σδ(A) and σδ(A∗) = σπ(A). �
Remark 15. Note that there are two different conventions of taking adjoints. We
are using the Banach space convection: for an operator T on a Banach space X
and α ∈ C we have (T − αIX)∗ = T ∗ − αIX∗ .
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If X is a Hilbert space, then X∗ is usually identified with X and with this
(Hilbert space) convention (T − αI)∗ = T ∗ = ᾱI. In this notation we have rather
σπ(T ∗) = {z̄ : z ∈ σδ(T )} and a similar change must be done in all duality results.

Theorem 16. Let X, Y be Banach spaces and T ∈ B(X, Y ). Then there exists and
operator S : Y → X satisfying ST = IX if and only if T is bounded below and
RanT is a complemented subspace of Y .

Similarly, there exists an operator S : Y → X with TS = IY if and only if T
is onto and KerT is a complemented subspace of X .

Proof. Let S : Y → X , ST = IX . Then (TS)2 = TS and RanT ⊃ Ran TS ⊃
RanTST = RanT . Hence TS is a projection onto RanT and RanT is a com-
plemented subspace of Y . In particular, RanT = Ker(I − TS), which is closed.
Clearly, T is one-to-one and hence bounded below.

Conversely, let T be bounded below and let P ∈ B(X) be a projection onto
RanT . Let S0 : RanT → X be the inverse of T . Set S = S0P . Then ST = IX .

Suppose now that TS = IY for some S : Y → X . Then T is onto and (ST )2 =
ST is a projection satisfying Ker(ST ) = KerT . Hence KerT is a complemented
subspace of X .

Conversely, let T be onto and let X = KerT ⊕ M for some closed subspace
M ⊂ X . The restriction T |M : M → Y is one-to-one and onto; let S0 be its inverse.
Let J : M → X be the natural embedding and S = JS0. Then TS = IY . �
Theorem 17. Let A = (A1, . . . , An) be an n-tuple of mutually commuting operators
on a Banach space X . Then:

(i) (0, . . . , 0) /∈ σl(A) if and only if j(δA) > 0 and the space δAX is comple-
mented;

(ii) (0, . . . , 0) /∈ σr(A) if and only if A1X + · · · + AnX = X and Ker ηA is
complemented.

Proof. (i) Let j(δA) > 0 and let δAX be a complemented subspace of Xn
1 . By the

preceding theorem, there exists an operator S : Xn
1 → X such that SδA = IX . If

we express S in the matrix form as S = (B1, . . . , Bn), we have B1A1+· · ·+BnAn =
IX . Hence 0 /∈ σl(A).

Conversely, if
∑

BiAi = IX for some Bi ∈ B(X), then SδA = IX for
S : Xn

1 → X defined by S(x1 ⊕ · · ·⊕xn) =
∑

Bixi. By the preceding theorem, δA

is bounded below and Ran δA complemented.
The second statement can be shown similarly. �

Corollary 18. Let A = (A1, . . . , An) be an n-tuple of mutually commuting opera-
tors on a Hilbert space H . Then

σl(A) = σπ(A) and σr(A) = σδ(A).

Proof. The spaces Hn
1 , Hn∞ are isomorphic to a Hilbert space, so every closed

subspace is complemented. �
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Example 19. The preceding result is not true for Banach spaces. An example is
based on the well-known fact that the space c0 is not complemented in �∞.

Let X = c0 ⊕ �∞ and let T ∈ B(X) be defined by

T
(
(x1, x2, . . . ) ⊕ (y1, y2, . . . )

)
= (0, 0, . . . ) ⊕ (x1, y1, x2, y2, . . . ).

It is easy to see that T is an isometry and Ran T is not complemented in X . Thus
0 ∈ σl(T ) \ σπ(T ).

A similar example can be constructed to show that in general σr �= σδ.

Theorem 20. Let T be an operator in a Banach space X . Then

σ(T ) = σp(T ) ∪ σδ(T ) = σp(T ∗) ∪ σπ(T ).

Proof. Evidently, σp(T ) ∪ σδ(T ) ⊂ σ(T ). If λ /∈ σp(T ) ∪ σδ(T ), then T − λ is both
one-to-one and onto. Thus T − λ is invertible by the open mapping theorem.

The second equality can be proved similarly. �

Remark 21. The equality σ(a) = τl(a) ∪ πr(a) = τr(a) ∪ πl(a), which is true for
operators by Theorem 20, is not true for Banach algebras.

An easy example is the algebra of all formal power series
∑∞

i=0 αix
i with

complex coefficients αi such that ‖∑αix
i‖ =

∑ |αi| < ∞. It is easy to check
that σ(x) = {z ∈ C : |z| ≤ 1}, τl(x) = τr(x) = {z ∈ C : |z| = 1}, and so even
σ(x) �= τl(x) ∪ τr(x).

Note that for any Banach algebra element x we have a weaker relation σ(x) =
σl(x) ∪ πr(X) = σr(x) ∪ πl(x). Indeed, suppose that yx = 1 and x is not a right
divisor of zero. Then (xy − 1)x = 0, and so xy = 1. Hence x is invertible.

Examples 22. (i) Let H be a Hilbert space with an orthonormal basis {ei}i≥0.
The weighted unilateral shift with weights wi ≥ 0 is the operator on H defined by
Tei = wiei+1. Its adjoint (satisfying T ∗e0 = 0 and T ∗ei+1 = wiei for i ≥ 0) is the
weighted backward shift. If H has an orthonormal basis {ei}i∈Z and T is defined by
Tei = wiei+1 (i ∈ Z), then T is called the weighted bilateral shift with weights
wi > 0.

Weighted shifts are an important source of examples and counterexamples.
For weighted shifts all spectra are circularly symmetrical since cT is unitarily

equivalent to T for |c| = 1.
Let T be a weighted unilateral shift. Then

‖T ‖ = sup wi,

j(T ) = inf wi,

r(T ) = lim
n

sup
i

(wi · · ·wi+n−1)1/n,

σ(T ) =
{
z ∈ C : |z| ≤ r(T )

}
,

σπ(T ) =
{
z ∈ C : m(T ) ≤ |z| ≤ r(T )

}
,
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where m(T ) = limn infi(wi · · ·wi+n−1)1/n. Furthermore,

{0} ∪ {
z ∈ C : |z| < r′(T )

} ⊂ σp(T ∗) ⊂ {
z ∈ C : |z| ≤ r′(T )

}
where r′(T ) = lim inf(w0 · · ·wn−1)1/n.

For bilateral weighted shifts there are similar formulas but little bit more
complicated. For example, σ(T ) =

{
z ∈ C : m(T ) ≤ |z| ≤ r(T )

}
and σπ(T ) can

be in general a union of two annuli. For details see [Shl].

(ii) Weighted shifts play an important role in analysis. Let H2 be the Hardy
space of all functions analytic on the open unit disc satisfying

‖f‖2
2 =

1
2π

sup
0<r<1

∫ 2π

0

|f(reit)|2 dt < ∞.

Then H2 is a Hilbert space and the operator of multiplication by the variable z is
a unilateral shift (with weights equal to 1). Many deep results in analysis can be
formulated in the language of operator theory, see [Ni].

Similarly, weighted shifts can be considered as multiplication operators in
various spaces of analytic functions (e.g., Bergman spaces), see [Shl].

(iii) An important example of commuting n-tuples of operators are multishifts
and weighted multishifts. Let H be Hilbert space with an orthogonal basis eα (α ∈
M), where M is a “translation invariant” subset of Zn, (i.e., m ∈ M, 1 ≤ j ≤ n ⇒
m+εj ∈ M where εj = (0, . . . , 0︸ ︷︷ ︸

j−1

, 1, 0, . . . , 0)). Define operators S1, . . . , Sn ∈ B(H)

by
Sjem = em+εj (m ∈ M).

Then (S1, . . . , Sn) is a commuting n-tuple of operators.
More generally, we can define Sjem = wm,jem+εj where wm,j (m ∈ M, j =

1, . . . , n) are positive weights such that wm,iwm+εi,j = wm,jwm+εj ,i for all m, i, j.
The most important examples of the index set M are Zn and Zn

+ but there
are many other possibilities

(
e.g., for n = 2 the sets {(i, j) : i + j ≥ 0} or {(i, j) :

either i ≥ 0 or j ≥ 0}).
Weighted multishifts can be frequently interpreted as n-tuples of multiplica-

tions by variables z1, . . . , zn in various spaces of analytic functions of n variables
(e.g., in the Hardy and Bergman spaces over the unit polydisc, unit ball etc.).

(iv) An operator T on a Hilbert space H is called selfadjoint if T ∗ = T and
normal if TT ∗ = T ∗T . A normal operator is selfadjoint if and only if its spectrum
is contained in the real line.

The structure of a normal operator is described by the spectral decomposition

T =
∫

z dE(z)
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where E is the spectral measure of T and suppE = σ(T ). Normal operators satisfy
‖T ‖ = r(T ) and σ(T ) = σπ(T ) = σδ(T ).

Commuting n-tuples of normal operators have similar properties. If T =
(T1, . . . , Tn) is an n-tuple of mutually commuting normal operators, then TiT

∗
j =

T ∗
j Ti (i, j = 1, . . . , n) by the Fuglede-Putnam theorem and σπ(T ) = σδ(T ) =

σ(T ). Furthermore, it is possible to express T as

Ti =
∫

σ(T )

zi dE(z) (i = 1, . . . , n)

where E is the joint spectral measure of (T1, . . . , Tn).

(v) Let H be a Hilbert space with an orthonormal basis {ei}i≥0; let (ci)i≥0 be
a bounded sequence of complex numbers. Let T ∈ B(H) be the diagonal operator
defined by Tei = ciei. Then ‖T ‖ = sup{|ci| : i ≥ 0} = r(T ), σp(T ) = {ci : i ≥ 0}
and σ(T ) = σπ(T ) = σδ(T ) = {ci : i ≥ 0}−.

Theorem 23. Let T be an operator on a Banach space X . Then there exists a
Banach space Y containing X as a closed subspace and an operator S ∈ B(Y )
such that S|X = T and σB(Y )(S) = σ

B(X)
π (T ) (clearly, σπ(T ) ⊂ σπ(S) ⊂ σ(S)

whenever S ∈ B(Y ), S|X = T ).

Proof. Let A be a closed commutative subalgebra of B(X) containing T .
Set B = A ⊕ X . Define the norm and multiplication in B by ‖A ⊕ x‖ =

‖A‖+‖x‖ and (A⊕x)(A′⊕x′) = AA′⊕(Ax′ +A′x) (A, A′ ∈ A, x, x′ ∈ X). Then
B is a commutative Banach algebra and A �→ A ⊕ 0 (A ∈ A) is an isometrical
embedding A → B.

Let λ ∈ C. It is easy to show (cf. Lemma 8.5) that

dBl
(
(T − λ) ⊕ 0) = d

B(X)
l (T − λ),

and so
τB(T ⊕ 0) = σB(X)

π (T ).

By Theorem 4.10, there exists a commutative Banach algebra C ⊃ B such that

σC(T ⊕ 0) = τB(T ⊕ 0) = σπ(T ).

Consider the operator S : C → C defined by Sc = (T ⊕ 0)c (c ∈ C). Then

σB(C)(S) ⊂ σC(T ⊕ 0) = σπ(T ).

For x ∈ X we have

S(0 ⊕ x) = (T ⊕ 0)(0 ⊕ x) = 0 ⊕ Tx.

If we identify x ∈ X with 0 ⊕ x ∈ B ⊂ C, then S|X = T and σ(S) = σπ(T ). �
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Theorem 24. Let T = (T1, . . . , Tn) be an n-tuple of mutually commuting operators
on a Banach space X , let 0 /∈ σπ(T ). Then there exist a Banach space Y ⊃ X and
commuting operators S1, . . . , Sn, V1, . . . , Vn ∈ B(Y )n such that Si|X = Ti (i =
1, . . . , n) and

∑n
i=1 SiVi = IY .

Proof. We use the construction from the previous theorem and Theorem 5.12. �
Theorem 25. Let T ∈ B(X). Then

dist{0, σπ(T )} = lim
n→∞ j(T n)1/n and dist{0, σδ(T )} = lim

n→∞ k(T n)1/n.

Proof. Since d
B(X)
l (T n) = j(T n) and d

B(X)
r (T n) = k(T n), the statement is a

reformulation of Theorem 8.9. �
The theory of Banach algebras and operator theory are closely related. Ob-

viously, every result for Banach algebras holds also for operators. On the other
hand, it is possible to generalize many results for operators to general Banach
algebras in the following way:

Let A be a Banach algebra and let b ∈ A. Define operators Lb, Rb: A → A
by Lbx = bx, Rbx = xb (x ∈ A). For an n-tuple a = (a1, . . . , an) ∈ c(A) write
La = (La1 , . . . , Lan), Ra = (Ra1 , . . . , Ran) ∈ c

(B(A)
)
. The spectrum of a ∈ c(A)

in the algebra A and the spectra of La, Ra in B(A) are closely related.

Theorem 26. Let A be a Banach algebra and a ∈ c(A). Then:

(i) τA
l (a) = σ

B(A)
π (La), τA

r (a) = σ
B(A)
π (Ra);

(ii) σA
r (a) = σ

B(A)
δ (La) = σr(La), σA

l (a) = σ
B(A)
δ (Ra) = σr(Ra).

Proof. (i) By Corollary 13, we have

σB(A)
π (La) =

{
λ ∈ Cn : inf

{ n∑
i=1

‖Lai−λix‖ : x ∈ A, ‖x‖ = 1
}

= 0
}

=
{

λ ∈ Cn : inf
{ n∑

i=1

‖(ai − λi)x‖ : x ∈ A, ‖x‖ = 1
}

= 0
}

= τA
l (a).

Similarly, σ
B(A)
π (Ra) = τA

r (a).

(ii) We have

σ
B(A)
δ (La) =

{
λ ∈ Cn : La1−λ1A + · · · + Lan−λnA �= A

}
=

{
λ ∈ Cn : (a1 − λ1)A + · · · + (an − λn)A �� 1

}
= σA

r (a).

Since a ∈ A �→ La ∈ B(A) is an isometrical embedding, we have σ
B(A)
r (La) ⊂

σA
r (a) = σ

B(A)
δ (La) ⊂ σ

B(A)
r (La), which proves the first statement of (ii).

The second statement can be proved analogously. �
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10 Operators with closed range

Operators with closed range play an important role in operator theory. The fol-
lowing quantity is closely connected with the closeness of the range.

Let X, Y be Banach spaces and let T : X → Y be a non-zero operator. The
reduced minimum modulus of T is defined by

γ(T ) = inf
{‖Tx‖ : x ∈ X, dist{x,KerT } = 1

}
.

Formally we set γ(0) = ∞.
If T is one-to-one, then clearly γ(T ) = j(T ).
An operator T : X → Y defines naturally the operator T0 : X/ KerT →

RanT by T0(x + KerT ) = Tx.

Lemma 1. γ(T ) = j(T0).

Proof. We have

j(T0) = inf
{‖T0(x + KerT )‖ : ‖x + KerT ‖X/ KerT = 1

}
= inf

{‖Tx‖ : dist{x,KerT } = 1
}

= γ(T ). �

The notion of the reduced minimum modulus is motivated by the following
characterization:

Theorem 2. Let T : X → Y be an operator. Then RanT is closed if and only if
γ(T ) > 0.

Proof. The statement is clear for T = 0. If T �= 0, then RanT = RanT0 and
RanT0 is closed if and only if j(T0) > 0. �

Theorem 3. γ(T ) = γ(T ∗) for every operator T : X → Y .

Proof. By Theorem 2, γ(T ) = 0 if and only if γ(T ∗) = 0.
Let γ(T ) > 0; so RanT is closed. We have T = JT0Q, where Q : X →

X/ KerT is the canonical projection, T0 : X/ KerT → RanT is one-to-one and
onto and J : RanT → Y is the natural embedding. The corresponding decompo-
sition for T ∗ is T ∗ = Q∗T ∗

0 J∗. We have γ(T ) = j(T0) = ‖T−1
0 ‖−1 = ‖T ∗−1

0 ‖−1 =
j(T ∗

0 ) = γ(T ∗). �

Corollary 4. Let T ∈ B(X, Y ). Then

γ(T ) = sup
{
c ≥ 0 : TBX ⊃ c · (BY ∩ RanT )

}
. (1)

In particular, if T is onto, then γ(T ) = k(T ).

Proof. Let T = JT0Q be the canonical decomposition of T as above. Suppose
first that RanT is closed. Then γ(T ) = j(T0) = ‖T−1

0 ‖−1 = k(T0). Further,
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k(T0)k(Q) ≤ k(T0Q) ≤ k(T0)‖Q‖ and k(Q) = 1 = ‖Q‖; so

k(T0) = k(T0Q) = sup
{
c ≥ 0 : T0QBX ⊃ c · (BY ∩ Ran T )

}
= sup

{
c ≥ 0 : TBX ⊃ c(BY ∩ Ran T )

}
.

If Ran T is not closed, then γ(T ) = 0. We show that the right-hand side of
(1) is also equal to 0. Suppose on the contrary that there is a c > 0 such that
TBX ⊃ c · (BY ∩ Ran T ). Then T induces an isomorphism from X/ KerT onto
RanT . Thus Ran T is complete and hence closed, a contradiction. �

The reduced minimum modulus γ is closely connected with the gap function:

Definition 5. Let M, L be subspaces of a Banach space X . Define

δ(M, L) = sup
x∈M
‖x‖≤1

dist{x, L}.

The gap δ̂(M, L) is defined by δ̂(M, L) = max
{
δ(M, L), δ(L, M)

}
.

The gap measures the “distance” between two subspaces. Clearly,

0 ≤ δ(M, L) ≤ 1, δ(M, L) = δ(M, L) and δ̂(M, L) = δ̂(M, L).

For closed subspaces M and L we have δ(M, L) = 0 if and only if M ⊂ L and
δ̂(M, L) = 0 ⇔ M = L.

The following result is a kind of triangular inequality.

Lemma 6. Let M1, M2, M3 be closed subspaces of a Banach space X . Then

δ(M1, M3) ≤ δ(M1, M2) + δ(M2, M3) + δ(M1, M2)δ(M2, M3).

Proof. Let x ∈ M1, ‖x‖ < 1. Then there exists y ∈ M2 with ‖x− y‖ ≤ δ(M1, M2).
Clearly, ‖y‖ ≤ ‖x‖ + ‖x − y‖ < 1 + δ(M1, M2) and there exists z ∈ M3 with
‖y − z‖ ≤ (1 + δ(M1, M2))δ(M2, M3). Hence

dist{x, M3} ≤ ‖x − z‖ ≤ ‖x − y‖ + ‖y − z‖
≤ δ(M1, M2) + δ(M2, M3) + δ(M1, M2)δ(M2, M3). �

Lemma 7. Let M be a closed subspace of X , x ∈ X and f ∈ X∗. Then:

(i) dist{x, M} = sup
{|〈x, g〉| : g ∈ M⊥, ‖g‖ ≤ 1

}
;

(ii) dist{f, M⊥} = sup
{|〈m, f〉| : m ∈ M, ‖m‖ ≤ 1

}
.

Proof. (i) Let Q : X → X/M be the canonical projection. By Theorem A.1.20,
Q∗ : (X/M)∗ → X∗ is an isometry with range M⊥. Then

dist{x, M} = ‖Qx‖ = sup{|〈Qx, h〉| : h ∈ (X/M)∗, ‖h‖ ≤ 1}
= sup{|〈x, Q∗h〉| : h ∈ (X/M)∗, ‖h‖ ≤ 1}
= sup{|〈x, g〉| : g ∈ M⊥, ‖g‖ ≤ 1}.
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(ii) Let J : M → X be the natural embedding. By Theorem A.1.19, for
f ∈ X∗ we have J∗f = f |M and ‖J∗f‖ = ‖f + M⊥‖X∗/M⊥ . Thus

dist{f, M⊥} = ‖f + M⊥‖X∗/M⊥ = ‖f |M‖M∗

= sup{|〈m, f〉| : m ∈ M, ‖m‖ ≤ 1}. �

Theorem 8. Let M, L be closed subspaces of X . Then δ(M, L) = δ(L⊥, M⊥) and

δ̂(M, L) = δ̂(L⊥, M⊥).

Proof. We have

δ(M, L) = sup
x∈BM

dist{x, L} = sup
x∈BM

sup
g∈B

L⊥
|〈x, g〉|

= sup
g∈B

L⊥
sup

x∈BM

|〈x, g〉| = sup
g∈B

L⊥
dist{g, M⊥} = δ(L⊥, M⊥). �

The following result is intuitively clear but the proof is surprisingly deep; it
uses essentially the Borsuk antipodal theorem A.1.26.

Lemma 9. Let M and L be subspaces of a finite-dimensional Banach space X such
that dim M > dimL. Then there exists m ∈ M such that ‖m‖ = 1 = dist{m, L}.
Proof. Suppose first that X is strictly convex, i.e., ‖u+v

2 ‖ < 1 for all u, v ∈ X, ‖u‖ =
‖v‖ = 1 and u �= v.

Let SM = {m ∈ M : ‖m‖ = 1} be the unit sphere in M . For m ∈ SM let
d(m) = dist{m, L}. If l ∈ L, ‖l‖ > 2, then ‖m − l‖ ≥ ‖l‖ − ‖m‖ > 1 ≥ d(m);
so d(m) = inf

{‖m − l‖ : l ∈ L, ‖l‖ ≤ 2
}
. From the compactness of the ball

{l ∈ L : ‖l‖ ≤ 2} it follows that there is a vector g(m) ∈ L nearest to m,
‖m− g(m)‖ = d(m).

Moreover, g(m) is determined uniquely by this property. Indeed, if l, l′ ∈ L,
l �= l′ and ‖m− l‖ = ‖m− l′‖ = d(m), then

∥∥∥m− l+l′
2

∥∥∥ =
∥∥∥ (m−l)+(m−l′)

2

∥∥∥ < d(m),
a contradiction. Consequently, g(−m) = −g(m).

We show that g is continuous. Suppose on the contrary that there is a se-
quence (mk) in SM converging to an m ∈ SM such that g(mk) �→ g(m). Passing
to a subsequence if necessary, we may assume that g(mk) → l for some l ∈ L,
l �= g(m).

Set ε = ‖m − l‖ − ‖m − g(m)‖. By assumption, ε > 0. Choose k such that
‖mk − m‖ < ε/3 and ‖g(mk) − l‖ < ε/3. Then

‖mk − g(m)‖ ≤ ‖mk − m‖ + ‖m − g(m)‖ < ε/3 + ‖m − l‖ − ε

≤ ‖m − l‖ − ‖m− mk‖ − ‖l − g(mk)‖ ≤ ‖mk − g(mk)‖,

which is a contradiction with the definition of g(mk). Hence g : SM → L is
continuous.
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By the Borsuk antipodal theorem, there exists m ∈ M with ‖m‖ = 1 and
g(m) = 0. Thus dist{m, L} = ‖m − g(m)‖ = ‖m‖ = 1.

In the general case choose any Hilbert norm ||| · ||| on X and define strictly
convex norms ‖ · ‖n = ‖ · ‖ + 1

n ||| · ||| for n ∈ N. Let mn ∈ M be vectors satisfying
‖mn‖n = 1 = distn{mn, L}, where distn means the distance in the sense of ‖ · ‖n.
Evidently, ‖mn‖ ≤ 1 for all n. Passing to a subsequence if necessary, we can assume
that (mn) is a convergent sequence. Its limit m clearly satisfies the conditions
required. �

Corollary 10. Let M, L be subspaces of a Banach space X . If δ(M, L) < 1, then

dimM ≤ dimL. If δ̂(M, L) < 1, then dimM = dimL.

Proof. The first statement is clear if dim L = ∞. Suppose on the contrary that
δ(M, L) < 1, dimL < ∞ and dimM > dimL. Choose a subspace M0 ⊂ M
with dim M0 = dimL +1. By the previous lemma for the finite-dimensional space
M0 + L, there exists m ∈ M0 ⊂ M with ‖m‖ = 1 = dist{m, L}, which is a
contradiction with the assumption that δ(M, L) < 1.

The second statement follows from the first one. �

Note that the dimension of a subspace is either finite or it is equal to ∞ (we
do not distinguish different infinite cardinalities).

In most of the applications it is sufficient to replace the preceding result by
the following statement which can be proved quite elementarily: if L ⊂ X , then
there exists ε > 0 such that δ(M, L) < ε ⇒ dim M ≤ dimL.

Complemented subspaces are also stable under small perturbations.

Theorem 11. Let M be a complemented subspace of a Banach space X . Let P ∈
B(X) be a projection with Ran P = M and let M ′ ⊂ X be a closed subspace

satisfying δ̂(M, M ′) < 1
‖P‖+1 . Then M ′ is also complemented.

More precisely, there exists a projection Q ∈ B(X) satisfying Ran Q = M ′

and KerQ = KerP .

Proof. Write L = KerP . We show first that M ′ ∩ L = {0}.
Suppose on the contrary that x ∈ M ′ ∩L, ‖x‖ = 1. Then there exists y ∈ M

with ‖x−y‖ < 1
‖P‖+1 . Therefore ‖Py‖ = ‖y‖ ≥ ‖x‖−‖x−y‖ ≥ 1− 1

‖P‖+1 = ‖P‖
‖P‖+1 .

On the other hand, ‖Py‖ = ‖P (y − x)‖ ≤ ‖P‖ · ‖y −x‖ < ‖P‖
‖P‖+1 , a contradiction.

Hence M ′ ∩ L = {0}.
We show now that M ′ + L = X . Let x0 ∈ X , ‖x0‖ = 1. Set l0 = (I − P )x0.

There exists m′
0 ∈ M ′ with ‖m′

0−Px0‖ < ‖Px0‖
‖P‖+1 ≤ ‖P‖

‖P‖+1 . Set x1 = x0−(m′
0+l0).

Then ‖x1‖ = ‖Px0 − m′
0‖ ≤ ‖P‖

‖P‖+1 . We have ‖l0‖ ≤ ‖P‖ + 1 and ‖m′
0‖ ≤

‖Px0‖ + ‖m′
0 − Px0‖ ≤ ‖P‖ + ‖P‖

‖P‖+1 .
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By induction we can construct elements m′
n ∈ M ′, ln ∈ L and xn := xn−1 −

(m′
n−1 + ln−1) ∈ X such that ‖xn‖ ≤

(
‖P‖

‖P‖+1

)n

, ln = (I − P )xn, ‖ln‖ ≤ (‖P‖ +

1)‖xn‖ and ‖m′
n‖ ≤

(
‖P‖ + ‖P‖

‖P‖+1

)
· ‖xn‖.

Set m′ =
∑∞

n=0 mn and l =
∑∞

n=0 ln. Clearly these series are convergent,
m′ ∈ M ′ and l ∈ L. Further x0 = m′ + l. Hence M ′ ⊕ L = X . �

Lemma 12. Let T, T ′ ∈ B(X, Y ) and let Ran T be closed. Then:

(i) δ
(
KerT ′, KerT

) ≤ γ(T )−1‖T − T ′‖;
(ii) δ

(
RanT, RanT ′) ≤ γ(T )−1‖T − T ′‖.

Proof. Let s be a positive number, s < γ(T ).
(i) Let x ∈ KerT ′, ‖x‖ = 1. Then ‖Tx‖ = ‖(T − T ′)x‖ ≤ ‖T − T ′‖. There

exists x1 ∈ X such that Tx1 = Tx and ‖x1‖ ≤ s−1‖Tx‖ ≤ s−1‖T − T ′‖. Since
x − x1 ∈ KerT , we have

dist{x,KerT } ≤ ‖x − (x − x1)‖ = ‖x1‖ ≤ s−1‖T − T ′‖,
and so δ(KerT ′, KerT ) ≤ s−1‖T − T ′‖.

Hence δ(KerT ′, KerT ) ≤ γ(T )−1‖T − T ′‖.
(ii) Let y ∈ RanT , ‖y‖ = 1. Then there exists x ∈ X such that Tx = y and

‖x‖ ≤ s−1. So

dist{y, RanT ′} ≤ ‖y − T ′x‖ = ‖(T − T ′)x‖ ≤ s−1‖T − T ′‖
and δ(Ran T, RanT ′) ≤ s−1‖T − T ′‖.

Hence δ(Ran T, RanT ′) ≤ γ(T )−1‖T − T ′‖. �

Lemma 13. Let T, T ′ ∈ B(X, Y ) and δ(KerT, KerT ′) < 1/2. Then

γ(T ) ≤ ‖T − T ′‖ + γ(T ′)
1 − 2δ(KerT, KerT ′)

.

Proof. If T ′ = 0, then the inequality is clear. If T = 0, then the assumption
δ
(
KerT, KerT ′) < 1/2 implies that T ′ = 0; so the inequality is also clear. Suppose

that T �= 0, T ′ �= 0. Let ε be a positive number, ε < 1 − 2δ(KerT, KerT ′). Find
x′ ∈ X \ KerT ′ such that ‖T ′x′‖

dist{x′,KerT ′} ≤ (1 + ε)γ(T ′). Find x ∈ X such that
T ′x = T ′x′ and ‖x‖ ≤ (1+ ε) dist{x′, KerT ′} = (1+ ε) dist{x,KerT ′}. Obviously,
x �= 0. We have

‖T ′x‖ ≤ (1 + ε)γ(T ′) dist{x,KerT ′} ≤ (1 + ε)‖x‖γ(T ′).

Furthermore,

dist{x,KerT } = inf
{‖x − u‖ : u ∈ KerT, ‖u‖ < 2‖x‖}.
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For every u ∈ KerT with ‖u‖ < 2‖x‖ there exists z ∈ KerT ′ such that

‖u − z‖ ≤ 2‖x‖δ(KerT, KerT ′).

Then ‖x− u‖ ≥ ‖x− z‖− ‖u− z‖ ≥ dist{x,KerT ′}− 2‖x‖δ(KerT, KerT ′). Thus
dist{x,KerT } ≥ dist{x,KerT ′} − 2‖x‖δ(KerT, KerT ′) and

γ(T ) ≤ ‖Tx‖
dist{x,KerT } ≤ ‖(T − T ′)x‖ + ‖T ′x‖

dist{x,KerT ′} − 2‖x‖δ(KerT, KerT ′)

≤ ‖T − T ′‖ · ‖x‖ + (1 + ε)‖x‖γ(T ′)
(1 + ε)−1‖x‖ − 2‖x‖δ(KerT, KerT ′)

=
‖T − T ′‖ + (1 + ε)γ(T ′)

(1 + ε)−1 − 2δ(KerT, KerT ′)
.

Letting ε → 0 gives the required inequality. �
Theorem 14. Let c ≥ 0. Then the set {T ∈ B(X, Y ) : γ(T ) ≥ c} is closed.

Proof. The statement is clear for c = 0. Suppose that c > 0, γ(Tn) ≥ c and
‖T − Tn‖ → 0. We prove that γ(T ) ≥ c. By Theorem 3, it is sufficient to show
that γ(T ∗) ≥ c.

Let y∗ ∈ Y ∗ and 0 < ε < c. For each n find y∗
n ∈ Y ∗ such that T ∗

ny∗
n = T ∗

ny∗

and ‖y∗
n‖ < (c−ε)−1‖T ∗

ny∗‖. Since closed balls in Y ∗ are w∗-compact, there exists
a w∗-accumulation point u∗ of the sequence {y∗

n}.
We show that T ∗u∗ = T ∗y∗. Let x ∈ X . Then there exists a subsequence

(y∗
nk

) such that 〈Tx, y∗
nk
〉 → 〈Tx, u∗〉. We have

〈x, T ∗u∗〉 = 〈Tx, u∗〉 = lim
k→∞

〈Tx, y∗
nk
〉 = lim

k→∞
〈Tnk

x, y∗
nk
〉

= lim
k→∞

〈x, T ∗
nk

y∗〉 = lim
k→∞

〈Tnk
x, y∗〉 = 〈Tx, y∗〉 = 〈x, T ∗y∗〉.

Hence T ∗u∗ = T ∗y∗ and

‖u∗‖ ≤ lim sup
n

‖y∗
n‖ ≤ (c − ε)−1‖T ∗y∗‖.

Thus γ(T ∗) ≥ c − ε. Letting ε → 0 gives γ(T ) = γ(T ∗) ≥ c. �

Corollary 15. The function γ : B(X, Y ) → 〈0,∞〉 is upper semicontinuous.

Example 16. In general, the function γ is not continuous. Let Tn =
(

1 0
0 1/n

)
and

T =
(

1 0
0 0

)
. Then γ(Tn) = 1/n, Tn → T and γ(T ) = 1.

Theorem 17. Let X, Y be Banach spaces, T, Tk ∈ B(X, Y ) (k = 1, 2, . . . ), sup-
pose that T has closed range and let limk→∞ ‖Tk − T ‖ = 0. Then the following
statements are equivalent:

(i) γ(T ) = limk→∞ γ(Tk);
(ii) lim infk→∞ γ(Tk) > 0;
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(iii) limk→∞ δ(KerT, KerTk) = 0;

(iv) limk→∞ δ̂(KerT, KerTk) = 0;

(v) limk→∞ δ(Ran Tk, Ran T ) = 0;

(vi) limk→∞ δ̂(Ran Tk, Ran T ) = 0.

Proof. We have lim
k→∞

δ(KerTk, KerT ) = 0 and lim
k→∞

δ(Ran T, RanTk) = 0 by

Lemma 12. This means that (iii) ⇔ (iv) and (v) ⇔ (vi).
The implication (i) ⇒ (ii) is clear.
(ii) ⇒ (iii): There exists a positive constant s such that γ(Tk) ≥ s for all

k large enough. By Lemma 12, we have δ(Ker T, KerTk) ≤ γ(Tk)−1‖Tk − T ‖ ≤
s−1‖Tk − T ‖, and so limk→∞ δ(KerT, KerTk) = 0.

(iii) ⇒ (i): For k large enough we have δ(KerT, KerTk) < 1/2. By Lemma 13,
γ(Tk) ≥ (

1−2δ(KerT, KerTk)
)
γ(T )−‖Tk−T ‖, and so lim infk→∞ γ(Tk) ≥ γ(T ) >

0. Since γ(T ) ≥ lim supk→∞ γ(Tk) by Corollary 15, we have γ(T ) = limk→∞ γ(Tk).

(v) ⇔ (i): The following statements are equivalent:
limk→∞ δ(Ran Tk, Ran T ) = 0;
limk→∞ δ

(
(Ran T )⊥, (Ran Tk)⊥

)
= 0;

limk→∞ δ(KerT ∗, KerT ∗
k ) = 0;

limk→∞ γ(T ∗
k ) = γ(T ∗);

limk→∞ γ(Tk) = γ(T ). �

Corollary 18. Let T, Tk ∈ B(X) (k = 1, 2, . . . ), let

‖Tk − T ‖ → 0 and δ(Ker T, KerTk) → 0.

Then γ(Tk) → γ(T ).

Proof. If γ(T ) = 0, then the upper semicontinuity of γ implies that γ(Tk) → γ(T ).
If γ(T ) > 0, then RanT is closed and the statement follows from the previous

theorem. �

Corollary 19. Let T, Tk ∈ B(X, Y ) (k = 1, 2, . . . ), limk→∞ ‖Tk − T ‖ = 0 and
let lim supk→∞ γ(Tk) > 0. Suppose that y ∈ Y and yk ∈ Ran Tk such that
limk→∞ yk = y. Then y ∈ Ran T .

Proof. Without loss of generality we can assume that infk→∞ γ(Tk) > 0. By
Corollary 15, we have γ(T ) ≥ limk→∞ γ(Tk) > 0. Thus RanT is closed and
δ(RanTk, RanT ) → 0. For every k find a vector y′

k ∈ Ran T such that ‖yk −y′
k‖ ≤

‖yk‖ ·
(
δ(Ran Tk, Ran T ) + k−1

)
. So

dist{y, RanT } ≤ ‖y − y′
k‖ ≤ ‖y − yk‖ + ‖yk − y′

k‖
≤ ‖y − yk‖ + ‖yk‖ ·

(
δ(Ran Tk, Ran T ) + k−1

) → 0

as k → ∞. Since Ran T is closed, we have y ∈ RanT . �
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Corollary 20. Let ε > 0. Then the function T �→ γ(T ) is continuous on the set{
T ∈ B(X, Y ) : γ(T ) ≥ ε

}
.

Definition 21. Let M be a metric space, let T : M → B(X, Y ) be a norm-continuous
function and let w ∈ M . We say that the function T is regular at w if the range
of T (w) is closed and the function z �→ γ(T (z)) is continuous at w. We say that
T is regular in M if T is regular at each point w ∈ M .

The following theorem is an easy consequence of Theorem 17.

Theorem 22. Let M be a metric space, let T : M → B(X, Y ) be a norm-continuous
function and let w ∈ M . Suppose that RanT (w) is closed. Then the following
statements are equivalent:

(i) T is regular at w;

(ii) lim infz→w γ(T (z)) > 0;

(iii) limz→w δ
(
KerT (w), KerT (z)

)
= 0;

(iv) limz→w δ̂
(
KerT (w), KerT (z)

)
= 0;

(v) limz→w δ
(
RanT (z), RanT (w)

)
= 0;

(vi) limz→w δ̂
(
RanT (z), RanT (w)

)
= 0.

Corollary 23. A norm-continuous function T : M → B(X, Y ) is regular at w ∈ M
if and only if the function z ∈ M �→ T (z)∗ ∈ B(Y ∗, X∗) is regular at w. The set
{w ∈ M : T is regular at w} is open.

Examples 24. (i) Let T be an operator on a finite-dimensional Banach space X .
Then

Ker(T − z) = {0} ⇐⇒ z /∈ σ(T ) ⇐⇒ Ran(T − z) = X.

Thus the function z �→ T − z is regular on the set C \ σ(T ) and it is not regular
at the points of spectrum.

For λ ∈ σ(T ) both Ker(T − z) and Ran(T − z) are discontinuous: Ker(T −λ)
is “larger” than Ker(T − z) and Ran(T − λ) is “smaller” than Ran(T − z) for z
close to λ.

By Theorem 22, this is a general fact for norm-continuous functions with
closed range: continuity of the range is equivalent to the continuity of the kernel.

(ii) Let M be a metric space, let T : M → B(X, Y ) be a norm-continuous
function, w ∈ M and suppose that T (w) is bounded below. Then T (z) is bounded
below in a certain neighbourhood U of w, so KerT (z) = {0} for z ∈ U and T is
regular at w.

(iii) Similarly, if T (w) is onto, then there is a neighbourhood U of w such
that T (z) is onto for z ∈ U . So RanT (z) = Y for z ∈ U and T is regular at w.

(iv) Let X, Y, Z be Banach spaces, let T : M → B(X, Y ) and S : M →
B(Y, Z) be norm-continuous functions satisfying S(z)T (z) = 0 for z ∈ M . Let
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w ∈ M , and suppose that KerS(w) = RanT (w) and RanS(w) is closed. Then
limz→w δ

(
RanT (w), Ran T (z)

)
= 0 and limz→w δ

(
KerS(z), KerS(w)

)
= 0 by

Lemma 12. Thus

δ
(
Ran T (z), RanT (w)

)
= δ

(
Ran T (z), KerS(w)

) ≤ δ
(
KerS(z), KerS(w)

) → 0.

Similarly, δ
(
KerS(w), KerS(z)

) ≤ δ
(
RanT (w), Ran T (z)

) → 0. Hence T and S
are regular at w.

In fact, (ii) and (iii) are particular cases of (iv) for either X = 0 or Z = 0.

If the function T is not only continuous but also Lipschitz, then we have a
better information about the behaviour of the function z �→ γ(T (z)).

Theorem 25. Let M be a convex subset of a Banach space Z, let k > 0 and let
T : M → B(X, Y ) be a regular function satisfying ‖T (z) − T (w)‖ ≤ k · |z −
w| (z, w ∈ M). Then |γ(T (z)) − γ(T (w))| ≤ 3k · |z − w| for all z, w ∈ M .

Proof. Fix z, w ∈ M and ε > 0. Let S : 〈0, 1〉 → B(X, Y ) be defined by S(t) =
T (z+t(w−z)). So S(0) = T (z), S(1) = T (w) and ‖S(t)−S(s)‖ ≤ k|t−s| ·‖z−w‖.

We first prove that for every t ∈ 〈0, 1〉 there exists ηt > 0 such that

γ(S(t)) − γ(S(s)) ≤ (3 + ε)k|t − s| · ‖z − w‖ (s ∈ Ut),

where Ut = {s ∈ 〈0, 1〉 : |s − t| < ηt}. To see this, take ηt such that γ(S(t))
γ(S(s)) <

1 + ε/2 (s ∈ Ut) and ηt < 1
2k‖z−w‖ · min{γ(S(u)) : u ∈ 〈0, 1〉}. For s ∈ Ut we

have
‖S(t) − S(s)‖ < ηtk‖z − w‖ <

1
2

min{γ(S(u)) : u ∈ 〈0, 1〉}.
So, by Lemma 12, δ

(
KerS(t), KerS(s)

)
< 1/2. By Lemma 13,

γ(S(t)) ≤ ‖S(t) − S(s)‖ + γ(S(s))
1 − 2δ

(
KerS(t), KerS(s)

) ,

and so

γ(S(t)) − γ(S(s)) ≤ ‖S(t) − S(s)‖ + 2γ(S(t))δ
(
KerS(t), KerS(s)

)
≤ ‖S(t) − S(s)‖ + 2

γ(S(t))
γ(S(s))

· ‖S(t) − S(s)‖ ≤ (3 + ε)‖S(t) − S(s)‖
≤ (3 + ε)k|t − s| · ‖z − w‖.

Let t0 = max
{
s ∈ 〈0, 1〉 : γ(S(0)) − γ(S(s)) ≤ (3 + ε)ks‖z − w‖}. If t0 < 1,

then for t1 with t0 < t1 < t0 + ηt0 we have γ(S(0)) − γ(S(t1)) ≤ γ(S(0)) −
γ(S(t0)) + γ(S(t0)) − γ(S(t1)) ≤ (3 + ε)kt0‖z − w‖ + (3 + ε)k(t1 − t0)‖z − w‖ =
(3 + ε)kt1‖z − w‖, a contradiction with the maximality of t0. Thus t0 = 1 and
γ(T (z)) − γ(T (w)) = γ(S(0)) − γ(S(1)) ≤ (3 + ε)k‖z − w‖. Letting ε → 0 gives
γ(T (z))− γ(T (w)) ≤ 3k‖z − w‖.

The statement of the theorem now follows by symmetry. �
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11 Factorization of vector-valued functions

In this section we study in more details regular and analytic regular functions.

Theorem 1. Let M be a metric space, let T : M → B(X, Y ) be a regular function
and let f : M → Y be a continuous function satisfying f(z) ∈ Ran T (z) (z ∈
M). Let ε > 0. Then there exists a continuous function g : M → X satisfying
T (z)g(z) = f(z) and ‖g(z)‖ ≤ ‖f(z)‖ · γ(T (z))−1 + ε for all z ∈ M .

Moreover, if w0 ∈ M and x0 ∈ X satisfy T (w0)x0 = f(w0) and ‖x0‖ <
‖f(w0)‖ · γ(T (w0))−1 + ε, then it is possible to choose g : M → X in such a way
that g(w0) = x0.

Proof. Note that the function z �→ γ(T (z)) is continuous and positive in M .
We first prove an approximate version of the theorem.

Claim A. Let T : M → B(X, Y ) be regular, f : M → Y continuous, let f(z) ∈
RanT (z) for all z ∈ M , let ε > 0, w0 ∈ M , x0 ∈ X , T (w0)x0 = f(w0) and ‖x0‖ <
‖f(w0)‖·γ(T (w0))−1+ε. Then there exists a continuous function h : M → X such
that h(w0) = x0, ‖T (z)h(z)−f(z)‖ ≤ ε·γ(T (z)) and ‖h(z)‖ ≤ ‖f(z)‖·γ(T (z))−1+ε
for all z ∈ M .

Proof of Claim A. For every w ∈ M find a vector xw ∈ X with T (w)xw = f(w) and
‖xw‖ < ‖f(w)‖γ(T (w))−1 + ε; for w = w0 set xw0 = x0. Choose a neighbourhood
Uw of w such that ‖T (z)xw−f(z)‖ < ε ·γ(T (z)) and ‖xw‖ < ‖f(z)‖γ(T (z))−1 +ε
for all z ∈ Uw.

For w �= w0 we can also assume that w0 /∈ Uw. Then {Uw : w ∈ M} is an
open cover of M .

Let {ϕα} be a partition of unity subordinate to this cover, i.e., ϕα : M →
〈0, 1〉 are continuous functions, for each α there exists a point wα ∈ M such
that suppϕα ⊂ Uwα , for each z ∈ M there is a neighbourhood V of z such that
suppϕα ∩V �= ∅ for only a finite number of α’s, and

∑
α ϕα(z) = 1 (z ∈ M), see

A.3.1.
Set h(z) =

∑
α ϕα(z)xwα . The sum is well defined, the function h(z) : M →

X is continuous and

‖T (z)h(z)− f(z)‖ =
∥∥∥∥ ∑

α:z∈suppϕα

T (z)ϕα(z)xwα − f(z)
∥∥∥∥

=
∥∥∥∥ ∑

α:z∈supp ϕα

ϕα(z)
(
T (z)xwα − f(z)

)∥∥∥∥ ≤
∑

α

ϕα(z) · ε · γ(T (z)) = ε · γ(T (z))

for all z ∈ M .
Furthermore,

h(w0) =
∑

w0∈supp ϕα

ϕα(w0)xwα = x0
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and

‖h(z)‖ =
∥∥∥ ∑

α:z∈suppϕα

ϕα(z)xwα

∥∥∥
≤

∥∥∥∥ ∑
z∈Uxα

ϕα(z)
(‖f(z)‖γ(T (z))−1 + ε

)∥∥∥∥ = ‖f(z)‖γ(T (z))−1 + ε.

Proof of Theorem 1. Using A, we can find a continuous function h1 : M → X such
that ‖T (z)h1(z)−f(z)‖ ≤ ε/3 ·γ(T (z)), ‖h1(z)‖ ≤ ‖f(z)‖ ·γ(T (z))−1+ε/3 (z ∈
M) and h1(w0) = x0.

Set f1(z) = f(z) − T (z)h1(z). So f1(z) ∈ RanT (z), ‖f1(z)‖ ≤ γ(T (z)) · ε/3
for all z ∈ M , and f1(w0) = 0. For i = 2, 3, . . . we construct inductively functions
hi, fi : M → X such that ‖fi−1(z) − T (z)hi(z)‖ ≤ ε3−iγ(T (z)),

‖hi(z)‖ ≤ ‖fi−1(z)‖ · γ(T (z))−1 +
ε

3i
,

hi(w0) = 0 and fi(z) := fi−1(z) − T (z)hi(z) ∈ Ran T (z) for all z ∈ M . Thus
‖hi(z)‖ ≤ 3−i+1ε + 3−iε.

Set g(z) =
∑∞

i=1 hi(z). The sum converges uniformly in M , and so g :
M → X is a continuous function. We have g(w0) = h1(w0) = x0,

‖g(z)‖ ≤
∞∑

i=1

‖hi(z)‖ ≤ ‖f(z)‖ · γ(T (z))−1 +
ε

3
+

∞∑
i=2

( ε

3i−1
+

ε

3i

)
= ‖f(z)‖ · γ(T (z))−1 + ε,

and

T (z)g(z) =
∞∑

i=1

T (z)hi(z) = f(z)− f1(z) +
∞∑

i=2

(
fi−1(z) − fi(z)

)
= f(z)

for all z ∈ M . �

An alternative proof of Theorem 1 can be done using the Michael selection
theorem, see A.4.5. In fact, the method of the present proof can be used to prove
also the Michael selection theorem.

Lemma 2. Let X, Y, Z be Banach spaces, let T : X → Y and S : Y → Z be
operators satisfying ST = 0. The following statements are equivalent:

(i) RanT = KerS and Ran S is closed;

(ii) RanS∗ = KerT ∗ and RanT ∗ is closed.

Proof. (i) ⇒ (ii): It is clear that RanT is closed, and so is Ran T ∗. We have
T ∗S∗ = 0, and so RanS∗ ⊂ KerT ∗.
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Let y∗ ∈ KerT ∗. For all x ∈ X we have 〈Tx, y∗〉 = 〈x, T ∗y∗〉 = 0. Define a
functional z∗1 ∈ (Ran S)∗ by

〈Sy, z∗1〉 = 〈y, y∗〉 (y ∈ Y ).

If Sy = 0, then y ∈ Ran T and 〈y, y∗〉 = 0, so z∗1 is well defined.
We show that z∗1 is continuous. Let 0 < s < γ(S) and z ∈ RanS, ‖z‖ = 1.

Then there exists y ∈ Y with ‖y‖ ≤ s−1 and Sy = z. We have

|〈z, z∗1〉| = |〈Sy, z∗1〉| = |〈y, y∗〉| ≤ ‖y‖ · ‖y∗‖ ≤ s−1‖y∗‖.
Hence z∗1 is continuous. By the Hahn-Banach theorem, we can extend z∗1 to a
functional z∗ ∈ Z∗ with the same norm. Furthermore, for all y ∈ Y we have
〈y, S∗z∗〉 = 〈Sy, z∗〉 = 〈y, y∗〉, and so y∗ = S∗z∗ ∈ Ran S∗. Hence KerT ∗ =
RanS∗.

(ii) ⇒ (i): Ran S∗ is closed, and so is Ran S. Similarly, RanT is closed. By
the previous implication, RanT ∗∗ = KerS∗∗. Hence, by Corollary A.1.17,

RanT = RanT ∗∗ ∩ Y = KerS∗∗ ∩ Y = KerS. �

The following lemma is useful in many situations:

Lemma 3. Let X, Y, Z be Banach spaces, let T : X → Y and S : Y → Z be
operators satisfying RanT = KerS and let Ran S be closed. Let 0 < c < 1. Then
there exists ε > 0 such RanT ′ = KerS′, γ(T ′) > c · γ(T ) and γ(S′) > c · γ(S)
for all pairs of operators T ′ : X → Y and S′ : Y → Z satisfying ‖T ′ − T ‖ < ε,
‖S′ − S‖ < ε and S′T ′ = 0.

Proof. Consider the metric space

Λ =
{
(T ′, S′) : T ′ ∈ B(X, Y ), S′ ∈ B(Y, Z), S′T ′ = 0

}
with the metric dist

{
(T ′, S), (T ′′, S′′)

}
= max

{‖T ′ − T ′′‖, ‖S′ − S′′‖}. Let Q1 :
Λ → B(X, Y ), Q2 : Λ → B(Y, Z) be defined by Q1(T ′, S′) = T ′, Q2(T ′, S′) = S′.

By Example 10.24 (iv), the functions Q1, Q2 are regular at (T, S), and so
they are regular in a certain neighbourhood of (T, S). In particular, there is a
positive ε′ such that (T ′, S′) ∈ Λ, ‖T ′ − T ‖ < ε′ and ‖S′ − S‖ < ε′ implies that
γ(T ′) > c · γ(T ) and γ(S′) > c · γ(S).

Let ε = min
{
ε′, 1

3γ(T ), 1
3γ(S)

}
, ‖T ′ − T ‖ < ε and ‖S′ − S‖ < ε. By Lemma

10.12, we have δ(KerS′, KerS) < 1/3 and δ(Ran T, RanT ′) < 1/3. Furthermore,

δ(KerS′, RanT ′)
≤ δ(Ker S′, KerS) + δ(KerS, RanT ′) + δ(Ker S′, KerS) · δ(KerS, Ran T ′)
≤ 1/3 + 4/3 δ(KerS, RanT ′) = 1/3 + 4/3 δ(Ran T, RanT ′) < 1.

Since Ran T ′ ⊂ KerS′, we conclude that RanT ′ = KerS′. �
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Theorem 4. Let M be a metric space, let T : M → B(X, Y ) be a continuous
function such that Ran T (z) is closed for all z ∈ M . The following statements are
equivalent:

(i) T is regular in M ;

(ii) there exist a Banach space Z and a continuous function S : M → B(Z, X)
such that RanS(z) = KerT (z) (z ∈ M);

(iii) there exist a Banach space Z ′ and a continuous function V : M → B(Y, Z ′)
such that RanT (z) = KerV (z) and Ran V (z) is closed for all z ∈ M .

Proof. By Example 10.24 (iv), either (ii) or (iii) implies (i).
(i) ⇒ (ii): Let (gα)α∈Λ be the set of all continuous functions gα : M → X

such that T (z)gα(z) = 0 and ‖gα(z)‖ ≤ 1 (z ∈ M). By Theorem 1, for all w ∈ M
and x ∈ KerT (w) with ‖x‖ < 1 there exists α ∈ Λ with gα(w) = x.

Let Z be the �1 space over the set Λ, i.e., Z is the set of all functions c : Λ → C

with ‖c‖ =
∑

α∈Λ |c(α)| < ∞ and define S(z) : Z → X by S(z)(c) =
∑

α∈Λ c(α) ·
gα(z) (z ∈ M). It is clear that

‖S(z)c‖ ≤
∑
α∈Λ

|c(α)| · ‖gα(z)‖ ≤
∑
α∈Λ

|c(α)| = ‖c‖,

and so ‖S(z)‖ ≤ 1. Further, RanS(z) = KerT (z) for all z ∈ M .

(i) ⇒ (iii): The function T ∗ : M → B(Y ∗, X∗) defined by T ∗(z) = (T (z))∗

is regular in M , and so, by (ii), there exist a Banach space Z and a continuous
function S : M → B(Z, Y ∗) such that RanS(z) = KerT ∗(z) (z ∈ M). By
Lemma 2, Ran(T (z))∗∗ = Ker(S(z))∗ (z ∈ M). Let V : M → B(Y, Z∗) be the
restriction V (z) = (S(z))∗|Y . By Corollary A.1.17,

RanT (z) = Y ∩ Ran(T (z))∗∗ = Y ∩ Ker(S(z))∗ = KerV (z) (z ∈ M).

It remains to show that Ran V (z) is closed.
Fix z ∈ M . Write E = Y/⊥ Ran S(z) and let Q : Y → E be the canonical pro-

jection. By A.1.11, E∗ is isometrically isomorphic to (⊥ Ran S(z))⊥ = RanS(z),
since RanS(z) = KerT (z)∗, and therefore it is w∗-closed. Furthermore, Q∗ is
an isometrical embedding of E∗ into Y ∗. Thus we can write S(z) = Q∗S0 for
the operator S0 : Z → E∗ induced by S(z). It is clear that S0 is onto. Con-
sequently, S(z)∗ : Y ∗∗ → Z∗ can be written as S(z)∗ = S∗

0Q∗∗. Then we have
RanV (z) = S∗

0Q∗∗Y = S∗
0QY = S∗

0E. Since S∗
0 is bounded below, we conclude

that RanV (z) is closed. �
In the following we study analytic regular functions.
For w = (w1, . . . , wn) ∈ Cn and r > 0 we write

∆(w, r) =
{
(z1, . . . , zn) ∈ Cn : |zi − wi| < r (i = 1, . . . , n

}
and

∆(w, r) =
{
(z1, . . . , zn) ∈ Cn : |zi − wi| ≤ r (i = 1, . . . , n

}
.
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For simplicity we start with functions of one variable.

Theorem 5. Let G be an open subset of C, let T : G → B(X, Y ) and f : G → Y be
analytic functions, let w, wk ∈ G (k = 1, 2 . . . ), lim

k→∞
wk = w, lim sup

k→∞
γ
(
T (wk)

)
>

0 and f(wk) ∈ RanT (wk) (k = 1, 2, . . . ). Then there exist a neighbourhood U
of w and an analytic function g : U → X such that T (z)g(z) = f(z) (z ∈ U).

More precisely, if r and s are positive numbers such that ∆(w, r) ⊂ G, s <
min{1, γ(T (w))} and M = max

z∈∆(w,r)
max

{
1, ‖T (z)‖, ‖f(z)‖}, then we can take U =

∆(w, r′) where r′ = rs
2M . If x ∈ X satisfies T (w)x = f(w), then there exists an

analytic function g : U → X such that g(w) = x, T (z)g(z) = f(z) and ‖g(z)−x‖ ≤
|z−w|

r′−|z−w| max{1, ‖x‖} for all z ∈ U .

Proof. Without loss of generality we can assume that w = 0. Then γ(T (0)) ≥
lim supk→∞ γ(T (wk)) > 0.

Let r, s, M and x satisfy the conditions of the theorem. Let T (z) =
∞∑

i=0

Tiz
i

and f(z) =
∞∑

i=0

fiz
i be the Taylor expansions of T and f about 0. Then ‖Ti‖ ≤ M

ri

and ‖fi‖ ≤ M
ri (i = 0, 1, . . . ). Set r′ = rs

2M and U = ∆(0, r′).
To find the required analytic function g : U → X , it is sufficient to construct

its coefficients gi ∈ X (i = 0, 1, . . . ) such that g0 = x,

fm =
m∑

i=0

Tm−igi (1)

and ‖gi‖ ≤ r′−i max{1, ‖x‖} for all i ≥ 0. Indeed, if gi (i = 0, 1, . . . ) satisfy (1),
then g(z) =

∑∞
i=0 giz

i is convergent in U , g(0) = x, T (z)g(z) = f(z) and

‖g(z)− x‖ =
∥∥∥ ∞∑

i=1

giz
i
∥∥∥ ≤

∞∑
i=1

‖gi‖ · |z|i ≤ |z|
r′ − |z| max{1, ‖x‖}.

We construct the vectors gi ∈ X (i = 0, 1, . . . ) satisfying (1) inductively. Suppose
that we have already found elements g0 = x, g1, . . . , gm−1 ∈ X with properties (1).
For k large enough we have |wk| < r′ ≤ r. Set

yk = f(wk) −
m−1∑
i=0

wi
kT (wk)gi ∈ Ran T (wk)

and

y′
k =

m∑
j=0

fjw
j
k −

m−1∑
i=0

wi
k

m−i∑
l=0

wl
kTlgi.
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Clearly, y′
k is an approximation of yk and

‖yk − y′
k‖ =

∥∥∥∥∥
∞∑

j=m+1

fjw
j
k −

m−1∑
i=0

wi
k

( ∞∑
l=m−i+1

wl
kTl

)
gi

∥∥∥∥∥
≤

∞∑
j=m+1

M

rj
|wj

k| +
m−1∑
i=0

∞∑
l=m−i+1

|wk|i+l‖gi‖ · M

rl
≤ c · |wm+1

k |,

where c is a constant independent of k.
Set u = fm −∑m−1

j=0 Tm−jgj. Using the induction assumption, we have

wm
k u = wm

k

⎛⎝fm −
m−1∑
j=0

Tm−jgj

⎞⎠ +
m−1∑
i=0

wi
k

⎛⎝fi −
i∑

j=0

Ti−jgj

⎞⎠ = y′
k.

Furthermore, yk

wm
k

∈ Ran T (wk) and

lim
k→∞

yk

wm
k

= lim
k→∞

yk − y′
k

wm
k

+ lim
k→∞

y′
k

wm
k

= u.

By Corollary 10.19, u ∈ Ran T (0). Thus there exists a vector gm ∈ X with
T (0)gm = u = fm −∑m−1

j=0 Tm−jgj and

‖gm‖ ≤ s−1‖u‖ ≤ s−1

(
M

rm
+

m−1∑
j=0

M

rm−j

1
r′j

max{1, ‖x‖}
)

≤ max{1, ‖x‖} · M

s

(
1

rm
+

m−1∑
j=0

2jM j

rm−jrjsj

)

≤ max{1, ‖x‖} · Mm

rmsm

(
1 +

m−1∑
j=0

2j
)

= r′−m · max{1, ‖x‖}.

This finishes the induction step and also the proof. �

Corollary 6. Let G be an open subset of C, w ∈ G and let T : G → B(X, Y ) be an
analytic function. Then:

(i) the limit lim
z→w

γ
(
T (z)

)
exists;

(ii) T is regular at w if and only if lim
z→w

γ
(
T (z)

)
> 0.

Proof. Both statements are trivial if lim sup
z→w

γ
(
T (z)

)
= 0.

If lim sup
z→w

γ
(
T (z)

)
> 0, then there exists a sequence (wk) converging to w

such that lim sup
k

γ
(
T (wk)

)
> 0. Thus γ(T (w)) > 0.
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We show that T is regular at w. Let f : G → Y be identically equal to 0
and let U be the neighbourhood of w constructed in the previous theorem. For
x ∈ KerT (w), ‖x‖ = 1 we can find an analytic function g : U → X such that
g(w) = x, T (z)g(z) = 0 (z ∈ U) and ‖g(z)− x‖ = ‖g(z)− g(w)‖ ≤ c(z) · |z −w|,
where c(z) is a constant independent of x and lim supz→w c(z) < ∞. Since g(z) ∈
KerT (z), we have dist{x,KerT (z)} ≤ c(z)|z − w|, and so

lim
z→w

δ
(
KerT (w), KerT (z)

)
= 0.

Hence T is regular at w and limz→w γ(T (z)) = γ(T (w)). �

Corollary 7. Let G be an open subset of C and let T : G → B(X, Y ) be an analytic
function. Then the set of all w ∈ G such that Ran T (w) is closed and T is not
regular at w is at most countable.

Proof. For k = 1, 2, . . . denote by Mk the set of all w ∈ G such that γ
(
T (w)

) ≥ 1/k
and T is not regular at w. The previous theorem implies that every w ∈ Mk is an
isolated point of Mk, so the set Mk is at most countable. The same is clearly true

for the union
∞⋃

k=1

Mk. �

Corollary 8. Let G be an open connected subset of C, let T : G → B(X, Y ) be
an analytic function regular in G and let f : G → Y be an analytic function. Let
w, wk ∈ G (k = 1, 2, . . . ), lim

k→∞
wk = w and f(wk) ∈ Ran T (wk) for all k ∈ N.

Then f(z) ∈ Ran T (z) for all z ∈ G.

Proof. Let u ∈ G. Connect w and u by a continuous curve ψ : 〈0, 1〉 → G such
that ψ(0) = w and ψ(1) = u. Since z �→ γ(T (z)) is a continuous positive function
in G, it is bounded below on the curve {ψ(t) : 0 ≤ t ≤ 1}.

Let M =
{
t ∈ 〈0, 1〉 : f(ψ(t)) ∈ Ran T (ψ(t)) for all s, 0 ≤ s ≤ t

}
and

t0 = sup{t : t ∈ M}. Theorem 5 implies that t0 > 0 and also, using a standard
argument, one can see that t0 = 1. Thus f(u) ∈ Ran T (u). �

Similar results can be proved for analytic functions of n variables.

Theorem 9. Let G be an open subset of Cn, w ∈ G, let T : G → B(X, Y ) be
an analytic function. Suppose that T satisfies the following condition: if wk ∈ G,
wk → w, yk ∈ Ran T (wk) and yk → y, then y ∈ Ran T (w) (in particular, this
condition is satisfied if T is regular at w).

Let f : G → Y be an analytic function satisfying f(z) ∈ RanT (z) (z ∈
G). Then there exists a neighbourhood U of w such that, for each x ∈ X with
T (w)x = f(w), there exists an analytic function g : U → X satisfying T (z)g(z) =
f(z) (z ∈ U) and g(w) = x.

Proof. The argument is similar to the proof of Theorem 5. We can assume that
w = 0.
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Considering the constant sequence wk = 0 gives that RanT (0) is closed.
Let r, s and M satisfy ∆(0, r) ⊂ G, r ≤ 1, 0 < s < min{1, γ(T (0))} and M =
maxz∈∆(0,r) max{1, ‖T (z)‖, ‖f(z)‖}. Set U = ∆(0, rs

4Mn ).
For z ∈ ∆(0, r) we can express T (z) and f(z) as power series T (z) =∑

α∈Zn
+

Tαzα and f(z) =
∑

α∈Z+

fαzα, where fα ∈ Y, Tα ∈ B(X, Y ), ‖fα‖ ≤ M
r|α|

and ‖Tα‖ ≤ M
r|α| for all α ∈ Zn

+.
We define a new order ≺ on Zn

+. If β, γ ∈ Zn
+, then write β ≺ γ if either

|β| < |γ|, or |β| = |γ| and there exists j, 1 ≤ j ≤ n such that βi = γi (1 ≤ i < j)
and βj < γj (i.e., ≺ is the lexicographic order on each set {α ∈ Zn

+, |α| = const}).
Let x ∈ X satisfy T (0)x = f(0).
Let g0 = x. We construct inductively (with respect to the order ≺) points

gα ∈ X (α ∈ Zn
+) such that

fα =
∑
β≤α

Tα−βgβ (2)

and ‖gα‖ ≤ (
4Mn

rs

)|α| max{1, ‖x‖}.
Let α ∈ Zn

+, |α| = m ≥ 1 and suppose that we have already found points
gα′ ∈ X (α′ ≺ α) satisfying (2).

For ε > 0 set wε =
(
ε1+ 1

m+1 , ε
1+ 1

(m+1)2 , . . . , ε1+ 1
(m+1)n

)
. It is clear that wε ∈

G for all ε small enough. Set yε = f(wε) − ∑
γ≺α

wγ
ε T (wε)gγ and let y′

ε be its

approximation

y′
ε =

∑
|β|≤m

fβwβ
ε −

∑
γ≺α

wγ
ε

∑
|δ|≤m−|γ|

wδ
εTδgγ .

Obviously, yε ∈ RanT (wε).
We have card{β ∈ Zn

+ : |β| = j} =
(
n+j−1

j

)
. For j ≥ n we have

(
n+j−1

j

) ≤(
2j
j

) ≤ 22j = 4j . For 2 ≤ j < n we have
(
n+j−1

j

) ≤ (n + j − 1)j ≤ (2n)j . Thus
card{β ∈ Zn

+ : |β| = j} ≤ (2n)j for all j.
For all ε small enough we have

‖yε − y′
ε‖ =

∥∥∥∥∥∥
∑

|β|≥m+1

fβwβ
ε −

∑
γ≺α

∑
|δ|≥m−|γ|+1

wδ+γ
ε Tδgγ

∥∥∥∥∥∥
≤

∑
|β|≥m+1

M

r|β|
ε|β| +

∑
γ≺α

∑
|δ|≥m−|γ|+1

ε|δ+γ| M

r|δ|
· ‖gγ‖

≤
∞∑

k=m+1

Mr−kεk(2n)k +
∑
γ≺α

∞∑
k=m−|γ|+1

ε|γ|+kMr−k(2n)k‖gγ‖

≤ c · εm+1,

where c is a constant independent of ε.
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Set u = fα −∑
γ≤α
γ �=α

Tα−γgγ .

Using the induction assumption we have

y′
ε =

∑
|β|≤m

wβ
ε

⎛⎜⎝fβ −
∑
γ≤β
γ≺α

Tβ−γgγ

⎞⎟⎠ = wα
ε u +

∑
|β|=m
β�α

wβ
ε

⎛⎜⎝fβ −
∑
γ≤β
γ≺α

Tβ−γgγ

⎞⎟⎠ .

If |β| = m = |α|, β � α, then there exists j ≤ n − 1 such that βj > αj and
βi = αi (i = 1, . . . , j − 1). So∣∣∣wβ

ε

wα
ε

∣∣∣ = ε
βj−αj

(m+1)j · ε
∑n

i=j+1
βi−αi
(m+1)i ≤ ε

1
(m+1)j

− m

(m+1)j+1 ≤ ε
1

(m+1)j+1 ≤ εb,

where b = (m + 1)−n. Similarly,∣∣∣εm+1

wα
ε

∣∣∣ = ε
1−∑n

i=1
αi

(m+1)i ≤ ε
1

m+1 ≤ εb.

So ∥∥∥∥ yε

wα
ε

− u

∥∥∥∥ ≤
∥∥∥∥yε − y′

ε

wα
ε

∥∥∥∥ +
∥∥∥∥ y′

ε

wα
ε

− u

∥∥∥∥
≤ c · εb +

∑
|β|=m
β�α

wβ
ε

wα
ε

∥∥∥∥fβ −
∑
γ≤β
γ≺α

Tβ−γgγ

∥∥∥∥ ≤ c′εb,

where c′ is a constant independent of ε.
Since yε

wα
ε
∈ Ran T (wε) and lim

ε→0+

yε

wα
ε

= u, we conclude that u ∈ RanT (0).

Thus there exists gα ∈ X such that T0gα = u = fα − ∑
γ≤α
γ �=α

Tα−γgγ , i.e.,

fα =
∑

γ≤α Tα−γgγ .
We can choose the point gα in such a way that

‖gα‖ ≤ s−1‖u‖ ≤ s−1

⎛⎜⎜⎝ M

r|α| +
∑
γ≤α
γ �=α

M

r|α|−|γ| ·
(

4Mn

rs

)|γ|
· max{1, ‖x‖}

⎞⎟⎟⎠

≤
(

M

rs

)|α|
max{1, ‖x‖}

⎛⎜⎜⎝1 +
∑
γ≤α
γ �=α

n|γ|4|γ|

⎞⎟⎟⎠
≤

(
M

rs

)m

max{1, ‖x‖}
(

1 +
m−1∑
i=0

ni4i · (2n)m−i

)
≤

(
4Mn

rs

)m

max{1, ‖x‖}

(we used the estimate card{γ ≤ α : |γ| = i} = card{γ ≤ α : |γ| = m − i} ≤
(2n)m−i).
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Define now g(z)=
∑

α∈Zn
+

gαzα. This series converges for all z∈U =∆(0, rs
4Mn ).

For z ∈ U we have

T (z)g(z) =
∑

β∈Zn
+

Tβzβ

⎛⎝ ∑
γ∈Zn

+

gγzγ

⎞⎠ =
∑

α∈Zn
+

zα

⎛⎝∑
γ≤α

Tα−γgγ

⎞⎠ =
∑

α∈Zn
+

fαzα = f(z).

�

Theorem 10. Let G be an open subset of Cn, w ∈ G and let T : G → B(X, Y ) be
an analytic function such that RanT (w) is closed. The following statements are
equivalent:

(i) T is regular at w;

(ii) there exist a neighbourhood U of w, a Banach space Z and an analytic
function S : U → B(Z, X) such that Ran S(z) = KerT (z) (z ∈ U), (i.e.,
the sequence Z

S(z)−→X
T (z)−→Y is exact for z ∈ U);

(iii) there exist a neighbourhood U of w, a Banach space Z ′ and an analytic
function S′ : U → B(Y, Z ′) such that Ran T (z) = KerS′(z) (i.e., the sequence

X
T (z)−→Y

S′(z)−→Z ′ is exact) and RanS′(z) is closed for all z ∈ U .

(iv) there exist a neighbourhood U of w, a Banach space Z ′ and an analytic
function S′ : U → B(Y, Z ′) such that RanT (z) = KerS′(z) (z ∈ U).

Proof. Clearly, (ii) implies (i) by Example 10.24 (iv).

(i) ⇒ (ii): Let T be regular at w. By Theorem 9, there exists a neighbour-
hood U1 of w and a system {gα}α∈Λ of analytic functions, gα : U1 → X , such
that {gα(w), α ∈ Λ} = KerT (w) and T (z)gα(z) = 0 (z ∈ U1, α ∈ Λ). Let U2 be
a neighbourhood of w such that U2 ⊂ U1. Let Z = �1(Λ), i.e., Z is the space of
all complex valued functions c : Λ → X such that ‖c‖ :=

∑
α∈Λ

‖c(α)‖ < ∞. For

z ∈ U2, define S(z) : Z → X by

S(z)(c) =
∑
α∈Λ

c(α)gα(z)
max{1, ‖gα‖U2

} .

Then S : U2 → B(Z, X) is an analytic function, T (z)S(z) = 0 (z ∈ U2) and
RanS(w) = KerT (w). By Lemma 3, there exists a neighbourhood U of w such
that RanS(z) = KerT (z) for all z ∈ U .

The implication (i) ⇒ (iii) can be proved as in Theorem 4 using the duality
argument.

The implication (iii) ⇒ (iv) is trivial.

(iv) ⇒ (ii): If wk ∈ G, wk → w, yk ∈ Ran T (wk) and yk → y, then
S(wk)yk = 0 for all k and ‖S(w)y‖ = ‖S(w)y − S(wk)yk‖ ≤ ‖S(w)(y − yk)‖ +
‖(S(w)−S(wk))yk‖ → 0. Hence y ∈ KerS(w) = Ran T (w). Thus the conditions of
Theorem 9 are satisfied and we can prove (ii) as in the implication (i) ⇒ (ii). �
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Let G ⊂ Cn be an open set. A subset M of G is called analytic if for every
w ∈ Cn there exists a neighbourhood U of w and a family {fα} of analytic scalar-
valued functions defined in U such that M ∩ U =

{
z : fα(z) = 0 for all α

}
.

Corollary 11. Let G be an open subset of Cn, let T : G → B(X, Y ) and f : G → Y
be analytic functions and let T be regular in G. Then the set

{
z ∈ G : f(z) ∈

RanT (z)
}

is analytic.

Proof. Let w ∈ G and let U be a neighbourhood of w, M a Banach space and
S : U → B(Y, M) an analytic function satisfying RanT (z) = KerS(z) (z ∈ U),
see Theorem 10. For z ∈ U we have f(z) ∈ RanT (z) if and only if S(z)f(z) = 0,
which is equivalent to the condition 〈S(z)f(z), m∗〉 = 0 for all m∗ ∈ M∗. Thus{
z ∈ G : f(z) ∈ Ran T (z)

}
is an analytic set. �

A typical problem of complex analysis is to construct from local solutions
(Theorem 9) a global analytic solution. The global version is also true. We state
the results without proof since it involves rather advanced techniques of complex
analysis (cf. C.11.2). Note that the next theorem applies in particular to any
domain in C.

Theorem 12. Let G be a domain of holomorphy in Cn, let T : G → B(X, Y ) be an
analytic function regular in G. Then:

(i) for every analytic function f : G → Y satisfying f(z) ∈ Ran T (z) for each
z ∈ G there exists an analytic function g : G → X such that T (z)g(z) =
f(z) (z ∈ G);

(ii) there exist a Banach space Z and a regular analytic function S : G → B(Z, X)
such that RanS(z) = KerT (z) (z ∈ G);

(iii) there exist a Banach space Z ′ and a regular analytic function S′ : G →
B(Y, Z ′) such that RanT (z) = KerS′(z) for all z ∈ G.

Corollary 13. Let G ⊂ Cn be a domain of holomorphy, let T : G → B(X, Y ) and
f : G → Y be analytic functions, and let T (z) be onto for all z ∈ G. Then there
exists an analytic function g : G → X such that T (z)g(z) = f(z) (z ∈ G).

Proof. If T (z) is onto for every z ∈ G, then T is regular in G. The rest follows
from Theorem 12. �

Corollary 14. Let A be a Banach algebra, let G ⊂ C be an open set and let
a : G → A be an analytic function such that a(z) is right invertible for every z ∈ G.
Then there exists an analytic function b : G → A such that a(z)b(z) = 1 (z ∈ G).

Proof. Consider the analytic function z �→ La(z) ∈ B(A). Since La(z) is onto for all
z ∈ G, by the previous theorem there exists an analytic function b : G → A such
that a(z)b(z) = La(z)b(z) = 1 (z ∈ G). �

Using the algebra with the reversed multiplication we can formulate the anal-
ogous result for left inverses.
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12 Kato operators

In this section we study the regularity of the function z �→ T − z where T is an
operator on a Banach space X .

We start with a simple purely algebraic lemma.

Lemma 1. Let T ∈ B(X), k, n ∈ N, k < n. Suppose that KerT k ⊂ Ran T n−k.
Then KerT j ⊂ RanT n−j for all j, 1 ≤ j < n.

Proof. It is sufficient to show two implications:

(i) if 1 ≤ k ≤ n − 2 and KerT k ⊂ RanT n−k, then KerT k+1 ⊂ Ran T n−k−1;

(ii) if 2 ≤ k ≤ n − 1 and KerT k ⊂ RanT n−k, then KerT k−1 ⊂ Ran T n−k+1.

To prove (i), suppose that 1 ≤ k ≤ n − 2 and KerT k ⊂ Ran T n−k. Let
x ∈ KerT k+1. Then Tx ∈ KerT k ⊂ RanT n−k, so Tx = T n−ky for some y ∈ X .
Thus

x − T n−k−1y ∈ KerT ⊂ KerT k ⊂ RanT n−k ⊂ RanT n−k−1,

and so x ∈ RanT n−k−1.
To prove (ii), let 2 ≤ k ≤ n − 1, KerT k ⊂ Ran T n−k and let x ∈ KerT k−1.

Then x ∈ KerT k ⊂ RanT n−k, and so x = T n−ky for some y ∈ X .
Since T kT n−k−1y = T k−1x = 0, we have T n−k−1y ∈ KerT k ⊂ Ran T n−k and
T n−k−1y = T n−kz for some z ∈ X . Thus x = T n−ky = T (T n−k−1y) = T n−k+1z ∈
RanT n−k+1. �

For T ∈ B(X) write R∞(T ) =
⋂∞

n=1 RanT n and N∞(T ) =
⋃∞

n=1 KerT n.
Clearly both R∞(T ) and N∞(T ) are linear subspaces of X but in general neither
R∞(T ) nor N∞(T ) is closed.

Theorem 2. Let T ∈ B(X) and let Ran T be closed. The following conditions are
equivalent:

(i) the function z �→ γ(T − z) is continuous at 0;

(ii) lim supz→0 γ(T − z) > 0;

(iii) limz→0 δ̂
(
KerT, Ker(T − z)

)
= 0;

(iv) limz→0 δ̂
(
Ran(T − z), RanT

)
= 0;

(v) KerT ⊂ R∞(T );
(vi) N∞(T ) ⊂ Ran T ;

(vii) N∞(T ) ⊂ R∞(T );
(viii) KerT ⊂ R∞(T ).

Moreover, if any of the previous conditions is satisfied, then Ran T k is closed for
all k ∈ N.
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Proof. The equivalence of the first four condition is true in general, see Theorem
10.17 and Corollary 11.6.

The equivalence of (v), (vi) and (vii) follows from the previous lemma and
the implication (v) ⇒ (viii) is obvious.

(i) ⇒ (v): The function z �→ γ(T − z) is regular at 0. Let x ∈ KerT . By
Theorem 11.5, there exist a neighbourhood U of 0 and an analytic function f :
U → X such that f(0) = x and (T − z)f(z) = 0 (z ∈ U). Let

f(z) =
∞∑

i=0

xiz
i (z ∈ U)

be the Taylor expansion of f . Then x0 = x and xi = Txi+1 (i = 0, 1, . . . ). Thus
x = x0 = Tx1 = T 2x2 = · · · , and so x ∈ R∞(T ).

(vi) ⇒ (iii): Let s be a positive number, s < γ(T ) and let x ∈ KerT ⊂ Ran T ,
‖x‖ = 1. We construct inductively a sequence x0 = x, x1, x2, . . . of points of X
such that Txi+1 = xi and ‖xi+1‖ ≤ s−1‖xi‖ for all i (clearly, for every i we
have xi ∈ N∞(T ) ⊂ Ran T ). Thus ‖xi‖ ≤ s−i (i ∈ N). For |z| < s define
f(z) =

∑∞
i=0 xiz

i. Clearly, (T − z)f(z) = 0 and

dist{x,Ker(T − z)} ≤ ‖x − f(z)‖ =
∥∥∥ ∞∑

i=1

xiz
i
∥∥∥ ≤

∞∑
i=1

‖xi‖ · |zi|

≤
∞∑

i=1

( |z|
s

)i

=
|z|

s − |z| .

Thus δ
(
KerT, Ker(T − z)

) ≤ |z|
s−|z| and limz→0 δ

(
KerT, Ker(T − z)

)
= 0. Since

limz→0 δ
(
Ker(T − z), KerT

)
= 0 is true in general by Lemma 10.12, we have (iii).

(viii) ⇒ (v): We prove by induction on k that RanT k is closed for all k ≥ 1.
This is assumed for k = 1.

Suppose that k ≥ 1, RanT k is closed and Ker T ⊂ R∞(T ) ⊂ RanT k.
Let u ∈ Ran T k+1. By the induction assumption, u ∈ RanT k, and so u = T kv

for some v ∈ X . Furthermore, there are vectors vj ∈ X (j = 1, 2, . . . ) such that
T k+1vj → u (j → ∞). Thus T (T kvj − T k−1v) → 0. Consider the operator
T̂ : X/ KerT → RanT induced by T . It is clear that T̂ is bounded below and
T̂ (T kvj − T k−1v + KerT ) → 0, so T kvj − T k−1v + KerT → 0 (j → ∞) in the
quotient space X/ KerT . Thus there exist vectors wj ∈ KerT ⊂ Ran T k such that
T kvj + wj → T k−1v. Since RanT k is closed, we have T k−1v ∈ Ran T k. Hence
u = T kv ∈ Ran T k+1 and RanT k+1 is closed.

Thus R∞(T ) =
⋂∞

k+1 Ran T k is also closed and (viii) implies (v). �

Definition 3. Let T ∈ B(X). We say that T is Kato if Ran T is closed and T
satisfies any of the (equivalent) conditions of the previous theorem.
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Corollary 4. T ∈ B(X) is Kato if and only if T ∗ is Kato. If T is Kato, then T −z is
Kato for all z in a neighbourhood of 0. Moreover, dimKerT = limz→0 dimKer(T−
z) and codimRanT = limz→0 codim Ran(T − z).

Proof. See Corollary 10.23. The last statement follows from Corollary 10.10. �
Example 5. Any operator that is either onto or bounded below is Kato. In partic-
ular, the isometrical shift S on a Hilbert space H is Kato. Note that in this case
R∞(S) = {0} = N∞(S).

Similarly, S∗ is also Kato and R∞(S∗) = H = N∞(S).
The direct sum S ⊕S∗ is an example of a Kato operator that is neither onto

nor bounded below.

Proposition 6. Let T, S ∈ B(X), TS = ST . If TS is Kato, then both T and S are
Kato.

Proof. It is sufficient to show that T is Kato. We have KerT n ⊂ Ker(TS)n ⊂
Ran(TS) ⊂ Ran T for all n, and so N∞(T ) ⊂ Ran T .

It remains to show that RanT is closed. Let xk ∈ X and Txk → v for
some v ∈ X . Then STxk → Sv, and so Sv = STu for some u ∈ X . Thus
v − Tu ∈ KerS ⊂ Ker(TS) ⊂ Ran(TS) ⊂ Ran T , and so v ∈ RanT . �
Theorem 7. Let T ∈ B(X). The following conditions are equivalent:

(i) T is Kato;

(ii) T n is Kato for all n ∈ N;

(iii) T n is Kato for some n ∈ N.

Proof. (ii) ⇒ (iii): Clear.

(iii) ⇒ (i): The implication follows from the preceding proposition.

(i) ⇒ (ii): Since KerT ⊂ KerT 2 ⊂ · · · , we have N∞(T n) = N∞(T ) for all
n ∈ N. Similarly, R∞(T n) = R∞(T ). Thus N∞(T n) ⊂ R∞(T n).

Moreover, Ran T n is closed by Theorem 2, and so T n is Kato for each n. �
To show that the set of all Kato operators is a regularity, we need the following

lemma, which will also be useful later.

Lemma 8. Let A, B, C, D be mutually commuting operators on X such that AC +
BD = I. Then:

(i) for every n there are Cn, Dn ∈ B(X) such that An, Bn, Cn, Dn are mutually
commuting and AnCn + BnDn = I;

(ii) Ran(AnBn) = Ran An∩RanBn and Ker(AnBn) = KerAn+KerBn for each
n. Consequently, R∞(AB) = R∞(A) ∩ R∞(B) and N∞(AB) = N∞(A) +
N∞(B);

(iii) N∞(A) ⊂ R∞(B) and N∞(B) ⊂ R∞(A);
(iv) Ran(AnBn) is closed if and only if Ran An and RanBn are closed.
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Proof. (i) We have

I = (AC + BD)2n−1 =
2n−1∑
i=0

(
2n − 1

i

)
AiCiB2n−1−iD2n−1−i = AnCn + BnDn

for some Cn, Dn ∈ B(X) commuting with An, Bn.

(ii) Clearly, Ran(AB) ⊂ Ran A∩RanB. If x ∈ RanA∩Ran B, x = Au = Bv
for some u, v ∈ X , then set w = Cv + Du. Then

Bw = BCv + BDu = Cx + u − ACu = u,

and so x = Au = ABw ∈ Ran(AB). Thus Ran(AB) = Ran A ∩ Ran B.
By (i), we have Ran(AnBn) = RanAn ∩ RanBn for all n and

R∞(AB) =
⋂
n

Ran(AnBn) =
⋂
n

(Ran An ∩ Ran Bn) = R∞(A) ∩ R∞(B).

Similarly, KerA+KerB ⊂ Ker(AB). If x ∈ Ker(AB), then x = ACx+BDx,
where ACx ∈ KerB and BDx ∈ KerA. Thus Ker(AB) = KerA + KerB and, by
(i), Ker(AnBn) = KerAn + KerBn. Hence

N∞(AB) =
⋃
n

Ker(AnBn) =
⋃
n

(Ker An + KerBn) = N∞(A) + N∞(B).

(iii) If x ∈ KerA, then x = BDx ∈ Ran B. Thus KerA ⊂ Ran B and, by
(i), KerAn ⊂ Ran Bn for all n. If m ≥ n, then KerAn ⊂ KerAm ⊂ Ran Bm,
so KerAn ⊂ R∞(B). Consequently, N∞(A) ⊂ R∞(B). The inclusion N∞(B) ⊂
R∞(A) follows by symmetry.

(iv) If RanAn and RanBn are closed, then clearly Ran(AnBn) = RanAn ∩
RanBn is closed.

Suppose that Ran(AnBn) is closed and let (xk) be a sequence of elements
of X such that Anxk → v ∈ X . Then AnBnxk → Bnv, and so Bnv = AnBnu
for some u ∈ X . Thus v − Anu ∈ KerBn ⊂ Ran An, and so v ∈ Ran An. Hence
RanAn is closed. �
Theorem 9. The set of all Kato operators is a regularity.

Proof. The first axiom of regularities was proved in Theorem 7 and one implication
of the second axiom follows from Proposition 6. Thus it is sufficient to show that if
A, B, C, D ∈ B(X) are mutually commuting operators, AC+BD = I and A, B are
Kato, then AB is Kato. By Lemma 8, Ran(AB) = RanA∩Ran B, and so Ran(AB)
is closed. Since A, B are Kato, we have KerA ⊂ R∞(A) and KerB ⊂ R∞(B). By
Lemma 8, Ker A ⊂ R∞(B) and KerB ⊂ R∞(A). Thus

Ker(AB) = KerA + KerB ⊂ R∞(A) ∩ R∞(B) = R∞(AB).

Hence AB is Kato. �
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Definition 10. For T ∈ B(X) denote by σK(T ) = {λ ∈ C : T − λ is not Kato} the
Kato spectrum corresponding to the regularity of all Kato operators.

Theorem 11. Let T ∈ B(X). Then:

(i) σK(T ) is a non-empty compact subset of the complex plane;

(ii) ∂σ(T ) ⊂ σK(T ) ⊂ σπ(T ) ∩ σδ(T ) ⊂ σ(T );
(iii) σK(f(T )) = f(σK(T )) for every function f analytic on a neighbourhood of

σ(T );
(iv) σK(T ∗) = σK(T ).

Proof. (i) and (ii): The set of all regularity points of the function z �→ T −z is open,
so σK(T ) is closed. Since the operators that are bounded below or onto are Kato,
we have σK(T ) ⊂ σπ(T )∩σδ(T ). To show that σK(T ) is non-empty, it is sufficient
to prove ∂σ(T ) ⊂ σK(T ). Suppose on the contrary that there exists λ ∈ ∂σ(T )
and λ /∈ σK(T ). By Corollary 4, dimKer(T − λ) = 0 = codim Ran(T − λ). Thus
T − λ is invertible, a contradiction.

(iii) If X = X1 ⊕ X2 for closed subspaces X1, X2 of X and T1 ∈ B(X1),
T2 ∈ B(X2), then σK(T1 ⊕ T2) = σK(T1) ∪ σK(T2). By (i), σK(T1) �= ∅ whenever
X1 �= {0}, and so the spectral mapping theorem follows from Theorem 6.8.

(iv) is clear from Corollary 4. �

Theorem 12. Let T ∈ B(X) and let λ be a complex number. Then the limit
limz→λ γ(T − z) exists and λ ∈ σK(T ) if and only if limz→λ γ(T − z) = 0.

Proof. See Corollary 11.6.

Theorem 13. The set
{
λ ∈ σK(T ) : Ran(T − λ) is closed

}
is at most countable.

Proof. See Corollary 11.7.

Examples 14. (i) By the preceding theorem, the set{
λ ∈ σK(T ) : Ran(T − λ) is closed

}
is at most countable. The following example shows that this set can contain a
convergent sequence.

Let H be a separable infinite-dimensional Hilbert space, let T ∈ B(H ⊕ H)
be given in the matrix form by

T =
(

D I
0 0

)
,

where D (with respect to an orthonormal basis) is a diagonal operator, D =
diag(1, 1/2, 1/3, . . . ). Note that Ran(T − z) = H ⊕H for z /∈ {0}∪ {1/n : n ∈ N},
codimRan(T − 1/n) = 1 and RanT = H ⊕ 0. Thus Ran(T − λ) is closed for
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all λ and the Kato spectrum σK(T ) = {0} ∪ {1/n : n ∈ N} contains a convergent
sequence.

(ii) The product of two commuting Kato operators need not be Kato in
general. Thus the set of all Kato operators does not satisfy condition (P1) of
Section 6. In particular, it is not possible to extend reasonably the Kato spectrum
to n-tuples of commuting operators.

Let H be a Hilbert space with an orthonormal basis {ei,j : i, j ∈ Z, ij ≤ 0}.
Define T ∈ B(H) by Tei,j = 0 if i = 0, j > 0 and Tei,j = ei+1,j otherwise.

Similarly, let Sei,j = 0 if j = 0, i > 0 and Sei,j = ei,j+1 otherwise. It is easy
to verify that TS = ST , both T and S are Kato but their product TS is not.

(iii) The set of all Kato operators is not open, so the Kato spectrum is not
upper semicontinuous.

Let H be a Hilbert space with an orthonormal basis {ei,j : i ≥ 1, j ≥ 0}. Let
T ∈ B(H) be defined by Tei,j = ei,j+1, i.e., T is a direct sum of countably many
isometrical shifts. Let S ∈ B(H) be defined by Sei,0 = i−1ei,0 and Sei,j = 0 for
j ≥ 1.

For each ε > 0, the range of T + εS is non-closed. So T is Kato while T + εS
is not.

Theorem 15. Let T ∈ B(X) be a Kato operator. Then:

(i) R∞(T ) is closed;

(ii) if x ∈ X and Tx ∈ R∞(T ), then x ∈ R∞(T );

(iii) TR∞(T ) = R∞(T ).

Proof. (i) Since R∞(T ) =
⋂

n RanT n and RanT n is closed for all n by Theorem 2,
we have (i).

(ii) Let n ∈ N. Then Tx = T n+1y for some y ∈ X . Thus x − T ny ∈ KerT ⊂
RanT n, and so x ∈ Ran T n. Since n was arbitrary, we have x ∈ R∞(T ).

(iii) Clearly, TR∞(T ) ⊂ R∞(T ). If x ∈ R∞(T ), then x = Ty for some y ∈ X .
By (ii), y ∈ R∞(T ), and so R∞(T ) = TR∞(T ). �

Remark 16. The space N∞(T ) need not be closed even for Kato operators. The
simplest example is the backward shift in a separable Hilbert space.

Theorem 17. Let T be a Kato operator on a Banach space X . Then:

(i) R∞(T ∗) = N∞(T )⊥;

(ii) R∞(T ) = ⊥N∞(T ∗);

(iii) N∞(T ) = ⊥R∞(T ∗);

(iv) N∞(T ∗)
w∗

= R∞(T )⊥.
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Proof. (i) We have

N∞(T )⊥ =
( ∞⋃

n=1

KerT n
)⊥

=
∞⋂

n=1

(KerT n)⊥ =
∞⋂

n=1

RanT ∗n = R∞(T ∗).

(iii) ⊥R∞(T ∗) = ⊥
(
N∞(T )⊥

)
= N∞(T ).

(ii) and (iv) can be proved similarly using A.1.11 and A.1.12. �

Theorem 18. Let T ∈ B(X) be Kato and let G be an open connected subset of
C \ σK(T ) containing 0. Then:

(i) R∞(T ) =
⋂

z∈G Ran(T − z);

(ii) N∞(T ) =
∨

z∈G Ker(T − z).

Proof. (i) Suppose that x ∈ ⋂
z∈G Ran(T − z). By Theorem 11.5, there exist a

neighbourhood U of 0 and an analytic function g : U → X satisfying (T −z)g(z) =
x (z ∈ U). Let g(z) =

∑∞
i=0 xiz

i be the Taylor expansion of g about 0. The
equality (T − z)g(z) = x implies that Tx0 = x and Txi = xi−1 for all i ≥ 1. Thus
x = Tx0 = T 2x1 = T 3x2 = · · · , and so x ∈ R∞(T ).

In the opposite direction, let x ∈ R∞(T ). Let s be a positive number, s <
γ(T ). By Theorem 15, we can find inductively a sequence of points xk ∈ R∞(T )
such that Tx0 = x, Txk = xk−1 (k = 1, 2, . . . ) and ‖xk‖ ≤ s−1‖xk−1‖. Then
the series g(z) =

∑∞
i=0 xkzk converges for |z| < s and (T − z)g(z) = x. Thus

x ∈ Ran(T − z) for all |z| < s, and so for all z ∈ G, by Corollary 11.8.

(ii) We have

N∞(T ) = ⊥(R∞(T ∗)) = ⊥
( ⋂

z∈G

Ran(T ∗ − z)
)

⊃
∨
z∈G

⊥ Ran(T ∗ − z) =
∨
z∈G

Ker(T − z).

Conversely, let n ∈ N and x ∈ KerT n. Let s be a positive number such that
s < γ(T ) and {z ∈ C : |z| < s} ⊂ G. Set xn = x, xn−k = T kx (k = 1, 2, . . . , n −
1). Since x ∈ KerT n ⊂ R∞(T ), we can find inductively points xn+1, xn+2, · · · ∈
R∞(T ) such that Txi+1 = xi and ‖xi+1‖ ≤ s−1‖xi‖. Set g(z) =

∑∞
i=1 xiz

i. This
series converges for |z| < s and (T − z)g(z) = 0. Thus g(z) ∈ Ker(T − z) and, by
the Cauchy formula,

x = xn =
1

2πi

∫
|z|=s/2

g(z)
zn+1

dz ∈
∨
z∈G

Ker(T − z). �



124 Chapter II. Operators

Corollary 19. Let T ∈ B(X) and let G be a component of C \ σK(T ). Then:

(i) the mapping λ �→ R∞(T − λ) is constant on G;

(ii) the mapping λ �→ N∞(T − λ) is constant on G;

(iii) for all λ ∈ G and x ∈ Ker(T −λ) there exists an analytic function f : G → X
such that f(λ) = x and (T − z)f(z) = 0 (z ∈ G).

Proof. The first two statements follow from the previous theorem, the constants
are

⋂
z∈G Ran(T − z) and

∨
z∈G Ker(T − z), respectively.

(iii) follows from Theorem 11.12. �
In fact, if T ∈ B(X) is Kato, then R∞(T + S) = R∞(T ) and N∞(T + S) =

N∞(T ) for all S commuting with T such that ‖S‖ is small enough. We postpone
the proof to Section 21.

Theorem 20. Let T ∈ B(X) be an operator with closed range. The following
conditions are equivalent:

(i) T is Kato;

(ii) RanT ⊃ ⋂
z �=0 Ran(T − z);

(iii) KerT ⊂ ∨
z �=0 Ker(T − z).

Proof. (i) ⇒ (ii) and (i) ⇒ (iii): Let G be the connected component of C \ σK(T )
containing 0. Let G′ be an open subset of G such that 0 /∈ G′ and let w ∈ G′.
Then

RanT ⊃ R∞(T ) = R∞(T − w) =
∞⋂

z∈G′
Ran(T − z) ⊃

⋂
z �=0

Ran(T − z)

and

KerT ⊂ N∞(T ) = N∞(T − w) =
∨

z∈G′
Ker(T − z) ⊂

∨
z �=0

Ker(T − z).

(iii) ⇒ (i): Let λ �= 0 and x ∈ Ker(T − λ). Then Tx = λx and x = T nx
λn ∈

RanT n, so x ∈ R∞(T ). Thus KerT ⊂ ∨
z �=0 Ker(T − z) ⊂ R∞(T ) and T is Kato.

(ii) ⇒ (i): Let x ∈ KerT n and z �= 0. Then

(T − z)(T n−1 + zT n−2 + · · · + zn−1)x = T nx − znz = −znx,

and so x ∈ Ran(T − z). Thus N∞(T ) ⊂ ⋂
z �=0 Ran(T − z) ⊂ Ran T and T is

Kato. �
Theorem 21. Let T ∈ B(X). Then T is Kato if and only if there exists a closed
subspace M ⊂ X invariant with respect to T such that T |M is onto and the

operator T̂ : X/M → X/M induced by T is bounded below.

For the space M it is possible to take R∞(T ).
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Proof. Let T be Kato and set M = R∞(T ). Then M is closed. By Theorem 15,
TM = M and the operator T̂ : X/M → X/M induced by T is one-to-one.

Moreover, RanT is closed and M ⊂ RanT . Then Ran T̂ = RanT +M , which
is is closed. Indeed, let x, xn ∈ X and Txn + M → x + M in X/M . There are
mn ∈ M such that Txn + mn → x. Thus x ∈ RanT and x + M ∈ Ran T̂ . Hence
T̂ is bounded below.

Conversely, let M be a subspace of X with the required properties. The
condition TM = M implies that M ⊂ R∞(T ). If Tx = 0, then T̂ (x + M) = 0 and
the injectivity of T̂ implies that x ∈ M . Thus KerT ⊂ M ⊂ R∞(T ).

It remains to prove that T has closed range. Let Q : X → X/M be the
canonical projection. We show that RanT = Q−1 Ran T̂ . If y ∈ Ran T, y = Tx for
some x ∈ X , then Qy = Tx+M = T̂ (x+M) ∈ Ran T̂ , and so RanT ⊂ Q−1 Ran T̂ .
If y ∈ X and Qy ∈ Ran T̂ , then y + M = Tx + M for some x ∈ X , and so
y ∈ Tx + M ⊂ Ran T , since M ⊂ Ran T . Thus RanT = Q−1 Ran T̂ , which is
closed, since Ran T̂ is closed and Q continuous. �

Corollary 22. The regularity of all Kato operators satisfies (P4), so σK is contin-
uous on commuting elements.

Proof. Let T ∈ B(X) be Kato. Let ε = inf
{|z| : T − z is not Kato

}
and M =

R∞(T ). Since R∞(T − λ) = M for |λ| < ε, we have (T − λ)M = M and the
induced operator T̂ − λ : X/M −→ X/M is bounded below.

If UT = TU and ‖U‖ < ε, then UM ⊂ M and we can define the operator
Û : X/M → X/M induced by U . Clearly, ‖Û‖ ≤ ‖U‖ < ε. By Theorem 7.14 (ii)
for the spectral systems σπ and σδ, we conclude that (T + U)M = M and T̂ + Û
is bounded below. By Theorem 21, T + U is Kato.

By Theorem 6.11, the regularity of all Kato operators satisfies property (P4).
�

Corollary 23. Let T, Q ∈ B(X), TQ = QT , let T be Kato and Q quasinilpotent.
Then T + Q is Kato.

Proof. Let M = R∞(T ). Then QM ⊂ M . Let T̂ and Q̂ be the operators acting in
X/M induced by T and Q, respectively. By the spectral radius formula, Q1 = Q|M
is a quasinilpotent operator commuting with T1 = T |M and Q̂ is a quasinilpotent
operator commuting with T̂ . Theorem 7.16 for the spectral systems σπ and σδ

implies that T1 + Q1 is onto and T̂ + Q̂ is bounded below. Consequently, T + Q is
Kato. �

Theorem 24. Let T ∈ B(X) be Kato. Then γ(T m+n) ≥ γ(T m) · γ(T n) for all
m, n ∈ N.

Proof. Fix ε > 0 and let x ∈ RanT n+m. Then there exists y ∈ X such that
T my = x and ‖y‖ ≤ (γ(T m) − ε)−1‖x‖. Further, x = T n+mz for some z ∈ X .
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Thus T nz − y ∈ KerT m ⊂ Ran T n, and so y ∈ Ran T n. There exists u ∈ X such
that T nu = y and

‖u‖ ≤ (γ(T n) − ε)−1‖y‖ ≤ (γ(T n) − ε)−1(γ(T m) − ε)−1‖x‖.
Hence γ(T n+m) ≥ (γ(T n) − ε)(γ(T m) − ε). Letting ε → 0 yields γ(T n+m) ≥
γ(T n) · γ(T m). �
Lemma 25. Let T ∈ B(X) be Kato. Suppose that T is neither onto nor bounded

below. Let M = R∞(T ), let T1 : M → M and T̂ : X/M → X/M be the operators
induced by T . Then the limit limn→∞ γ(T n)1/n exists and

lim
n→∞ γ(T n)1/n = min

{
lim

n→∞ k(T n
1 )1/n, lim

n→∞ j(T̂ n)1/n
}
.

Proof. By the preceding theorem and Lemma 1.21, the limit limn→∞ γ(T n)1/n

exists. By Theorem 21, T1 is onto and T̂ is bounded below, so the limits on the
right-hand side exist by Theorem 9.25.

Since KerT n ⊂ R∞(T ) = M , we have KerT n
1 = KerT n. Thus

k(T n
1 ) = γ(T n

1 ) = inf
{ ‖T n

1 x‖
dist{x,KerT n

1 }
: x ∈ M\KerT n

1

}
= inf

{ ‖T nx‖
dist{x,KerT n} : x ∈ M\KerT n

}
≥ γ(T n).

Since TM = M , we have

j(T̂ n) = inf
{‖T̂ n(x + M)‖

‖x + M‖ : x �∈ M

}
= inf

{‖T nx + M‖
dist{x, M} : x �∈ M

}
= inf

{‖T nx + T nm‖
dist{x, M} : x �∈ M, m ∈ M

}
= inf

{ ‖T ny‖
dist{y, M} : y �∈ M

}
≥ inf

{ ‖T ny‖
dist{y, KerT n} : y �∈ M

}
≥ γ(T n).

Thus γ(T n) ≤ min{k(T n
1 ), j(T̂ n)} and

lim
n→∞ γ(T n)1/n ≤ min

{
lim

n→∞ k(T n
1 )1/n, lim

n→∞ j(T̂ n)1/n
}
.

To prove the opposite inequality, let

0 < s < min
{

lim
n→∞ k(T n

1 )1/n, lim
n→∞ j(T̂ n)1/n

}
.

We prove that limn→∞ γ(T n)1/n ≥ s.

Let n ≥ 1, x = x0 ∈ Ran T n, ‖x‖ = 1 and let ε > 0. Then x + M ∈ Ran T̂ n

and

‖T̂−i(x + M)‖ ≤ j(T̂ i)−1‖x + M‖ ≤ j(T̂ i)−1 (i = 1, . . . , n).
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Thus there exist vectors xi ∈ T̂−i(x + M) such that

‖xi‖ ≤ j(T̂ i)−1(1 + ε) (i = 1, . . . , n).

For i = 0, . . . , n − 1 write mi = Txi+1 − xi. Then

‖mi‖ ≤ ‖T ‖ · ‖xi+1‖ + ‖xi‖ ≤ (1 + ε)
(‖T ‖j(T̂ i+1)−1 + j(T̂ i)−1

)
for all i = 0, . . . , n − 1. Further, T̂ i(mi + M) = T i+1xi+1 − T ixi + M = M , so
mi ∈ M for each i. We have

n−1∑
i=0

T imi = (T nxn − T n−1xn−1) + (T n−1xn−1 − T n−2xn−2) + · · ·

· · · + (Tx1 − x0) = T nxn − x.

Since T1 : M → M is onto, there exist vectors m′
i ∈ M such that T n−im′

i = mi

and ‖m′
i‖ ≤ (1 + ε)k(T n−i

1 )−1‖mi‖. Thus

T n
(
xn −

n−1∑
i=0

m′
i

)
= T nxn −

n−1∑
i=0

T imi = x

and∥∥∥xn −
n−1∑
i=0

m′
i

∥∥∥ ≤ (1+ ε)j(T̂ n)−1+
n−1∑
i=0

(1+ ε)2k(T n−i
1 )−1

(
‖T ‖j(T̂ i+1)−1 + j(T̂ i)−1

)
.

Thus

γ(T n)−1 ≤ (1 + ε)j(T̂ n)−1 +
n−1∑
i=0

(1 + ε)2k(T n−i
1 )−1

(
‖T ‖j(T̂ i+1)−1 + j(T̂ i)−1

)
.

Find n0 such that k(T i
1) ≥ si and j(T̂ i) ≥ si for all i ≥ n0. Set

K = max
1≤i≤n0+1

max
{
k(T i

1)
−1, j(T̂ i)−1, s−i

}
.

For n large enough we have

γ(T n)−1 ≤ (1 + ε)2
(

s−n +
n0−1∑
i=0

si−n
(‖T ‖ · K + K

)
+

n−n0−1∑
i=n0

si−n
(‖T ‖s−i−1 + s−i

)
+

n−1∑
i=n−n0

K
(‖T ‖s−i−1 + s−i

))
≤ (1 + ε)2sn0−n

(
K + 2n0K(‖T ‖ · K + K) + (n − 2n0)(K · ‖T ‖ + K)

)
≤ (1 + ε)2sn0−nn · K ′,
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where K ′ is a constant independent of n. Hence

lim
n→∞ γ(T n)1/n ≥ lim

n→∞ s
n−n0

n = s.

Letting

s → min
{

lim
n→∞ k(T n

1 )1/n, lim
n→∞ j(T̂ n)1/n

}
yields the required equality. �

Theorem 26. Let T ∈ B(X) be Kato. Then

dist{0, σK(T )} = lim
n→∞ γ(T n)1/n = sup

n
γ(T n)1/n.

Proof. By Theorem 24 and Lemma 1.21, the limit lim γ(T n)1/n exists and equals
to the supremum.

Set r = dist{0, σK(T )}. Suppose first that T is neither onto nor bounded
below. Let M = R∞(T ), let T1 = T |M and T̂ : X/M → X/M be the operators
induced by T . If λ is a complex number satisfying

|λ| < lim
n→∞ γ(T n)1/n = min

{
lim

n→∞ k(T n
1 )1/n, lim

n→∞ j(T̂ n)1/n
}

,

then T1−λ is onto and T̂ −λ is bounded below. Thus T −λ is Kato by Theorem 21
and limn→∞ γ(T n)1/n ≤ r.

Conversely, by Corollary 19, R∞(T − λ) = M for |λ| < r. If |λ| < r, then
(T − λ)M = M and T̂ − λ = T̂ − λ : X/M → X/M is bounded below. Thus
limn→∞ k(T n

1 )1/n ≥ r and limn→∞ j(T̂ n)1/n ≥ r. Hence limn→∞ γ(T n)1/n ≥ r by
Lemma 25.

If T is bounded below, then lim γ(T n)1/n = dist{0, σπ(T )} ≤ dist{0, σK(T )}
by Theorem 9.25. Moreover, N∞(T − z) = N∞(T ) = {0} for all z with |z| < r,
and so dist{0, σπ(T )} = dist{0, σK(T )}.
Similarly, if T is onto, then lim γ(T n)1/n = dist{0, σδ(T )} = dist{0, σK(T )}. �

Theorem 27. Let T ∈ B(X) be Kato. Then

γ(T ) − γ(T − z) ≤ 3|z|

for all z ∈ C.

Proof. The inequality is trivial if |z| ≥ γ(T ). By the previous theorem, the function
z �→ T − z is regular in {z : |z| < γ(T )}. Thus the inequality for |z| < γ(T ) follows
from Theorem 10.25. �
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Proposition 28. Let T, S ∈ B(X), λ ∈ C, λ �= 0 and k ∈ N. Then:

(i) Ker(ST − λ)k = S Ker(TS − λ)k;

(ii) Ran(ST − λ)k = T−1 Ran(TS − λ)k;

(iii) dim Ker(ST − λ)k = dim Ker(TS − λ)k;

(iv) dim Ran(ST − λ)k = dimRan(TS − λ)k.

Proof. We have (ST −λ)S = S(TS−λ) and so (ST −λ)kS = S(TS−λ)k for each
k ≥ 0.

(i) If x ∈ Ker(TS − λ)k, then (ST − λ)kSx = S(TS − λ)kx = 0. Hence
S Ker(TS − λ)k ⊂ Ker(ST − λ)k for each k.

We prove the opposite inclusion by induction on k. This is clear for k = 0.
Suppose that S Ker(TS − λ)k = Ker(ST − λ)k and let x ∈ Ker(ST − λ)k+1.

Then (TS − λ)k+1Tx = T (ST − λ)k+1x = 0. So Tx ∈ Ker(TS − λ)k+1 and
STx ∈ S Ker(TS−λ)k+1. By induction assumption, (ST −λ)x ∈ Ker(ST −λ)k =
S Ker(TS − λ)k ⊂ S Ker(TS − λ)k+1, and so

x = −λ−1(ST − λ)x + λ−1STx ∈ S Ker(TS − λ)k+1.

Hence Ker(ST − λ)k+1S = S Ker(TS − λ)k+1.

(iii) Since Ker(ST − λ)k = S Ker(TS − λ)k, we have dimKer(ST − λ)k ≤
dimKer(TS − λ)k. The equality follows by symmetry.

(ii) Let x ∈ Ran(ST − λ)k, i.e., x = (ST − λ)ky for some y ∈ X . Then
Tx = T (ST − λ)ky = (TS − λ)kTy ∈ Ran(TS − λ)k. Hence Ran(ST − λ)k ⊂
T−1 Ran(TS − λ)k for all k.

We prove the opposite inclusion by induction on k. This is clear for k = 0.
Suppose that Ran(ST−λ)k = T−1 Ran(TS−λ)k and let x ∈ T−1 Ran(TS−λ)k+1.
Then Tx = (TS − λ)k+1y for some y ∈ X and STx = S(TS − λ)k+1y = (ST −
λ)k+1Sy ∈ Ran(ST − λ)k+1.

By the induction assumption, x ∈ T−1 Ran(TS − λ)k+1 ⊂ T−1 Ran(TS −
λ)k = Ran(ST − λ)k, and so x = −λ−1(ST − λ)x + λ−1STx ∈ Ran(ST − λ)k+1.
Hence Ran(ST − λ)k+1 = T−1 Ran(TS − λ)k+1.

(iv) Since Ran(ST−λ)k = T−1 Ran(TS−λ)k, we have codimRan(ST−λ)k ≤
codimRan(TS − λ)k. The equality follows by symmetry. �

Proposition 29. Let T, S ∈ B(X), λ ∈ C, λ �= 0 and k ∈ N. Then:

(i) Ran(TS − λ)k is closed if and only if Ran(ST − λ)k is closed;

(ii) Ker(TS − λ) ⊂ R∞(TS − λ) if and only if Ker(ST − λ) ⊂ R∞(ST − λ).

Proof. (i) Suppose that Ran(ST − λ)k is closed. Let xn ∈ Ran(TS − λ)k, xn =
(TS − λ)kyn for some yn ∈ X (n = 1, 2, . . . ) and xn → x.

Then Sxn → Sx, where Sxn = S(TS − λ)kyn = (ST − λ)kSyn ∈ Ran(ST −
λ)k, and so Sx = (ST − λ)ky for some y ∈ X . We have TSx = T (ST − λ)ky =
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(TS−λ)kTy ∈ Ran(TS−λ)k. Therefore (TS)jx ∈ Ran(TS−λ)k for all j ≥ 1. We
have (TS−λ)kx = (−λ)kx+

∑k
j=1

(
k
j

)
(TS)j(−λ)k−jx, and so x ∈ Ran(TS−λ)k.

(ii) Suppose that Ker(TS − λ) ⊂ R∞(TS − λ). It is sufficient to show that
Ker(ST − λ) ⊂ Ran(ST − λ)k foe each k ∈ N.

We have TS Ker(TS−λ) ⊂ Ker(TS−λ) ⊂ Ran(TS−λ)k, and so Ker(ST −
λ) = S Ker(TS − λ) ⊂ T−1 Ran(TS − λ)k = Ran(ST − λ)k. �

Corollary 30. Let T, S ∈ B(X). Then σK(TS) \ {0} = σK(ST ) \ {0}.

13 General inverses and Saphar operators

Let X, Y be Banach spaces and T ∈ B(X, Y ) an operator. An operator S : Y → X
is called a generalized inverse of T if TST = T and STS = S.

It is easy to see that if S : Y → X is a one-sided inverse of T (i.e., either
TS = IY or ST = IX), then S is a generalized inverse of T .

Proposition 1. Let X, Y be Banach spaces, let T : X → Y be an operator. The
following conditions are equivalent:

(i) T has a generalized inverse;

(ii) there exists an operator S : Y → X such that TST = T ;

(iii) RanT is closed and both KerT and Ran T are complemented subspaces of
X and Y , respectively.

Proof. (ii) ⇒ (i): Let TST = T for some operator S : Y → X . Set S′ = STS. It is
easy to check that TS′T = T and S′TS′ = S′.

(i) ⇒ (iii): Let TST = T and STS = S. Then (TS)2 = TS and RanT ⊃
Ran(TS) ⊃ Ran(TST ) = RanT , so TS is a projection onto RanT .

Similarly, ST is a projection with Ker(ST ) = KerT .

(iii) ⇒ (ii): Let X = KerT ⊕ M and let P ∈ B(Y ) be a projection onto
RanT . Then T |M : M → Ran T is one-to-one and onto. Set S = (T |M)−1P .
Then TST = T (T |M)−1PT = T . �

Corollary 2. Let T ∈ B(H1, H2) where H1, H2 are Hilbert spaces. Then T has a
generalized inverse if and only if RanT is closed.

The difference between the left spectrum and the approximate point spectrum
(the right spectrum and the defect spectrum) consists in the requirement that
certain subspace should be complemented. This is a typical situation; frequently
spectra in B(X) appear in pairs that differ in this way.

In this section we study the “complemented” version of the Kato operators.

Definition 3. An operator T ∈ B(X) is called Saphar if T is Kato and has a
generalized inverse.
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Equivalently, T is Saphar if and only if T has a generalized inverse and
KerT ⊂ R∞(T ).

Obviously, in Hilbert spaces the Saphar operators coincide with the Kato
operators.

Our aim is to show that the set of all Saphar operators is a regularity. This
will be an immediate consequence of the following three lemmas, which are of
independent interest.

Lemma 4. Let A ∈ B(X) be a Saphar operator, let S ∈ B(X) satisfy ASA = A
and let n ∈ N. Then AnSnAn = An. In particular, An is a Saphar operator.

Proof. Let S ∈ B(X) satisfy ASA = A. We prove by induction on n that
AnSnAn = An.

Suppose that n ≥ 1 and AnSnAn = An. Then

An+1Sn+1An+1 = A
(
AnSn(SA − I) + AnSn

)
An.

Since AnSnAn = An and ASA = A, we can check easily (cf. the proof of Propo-
sition 1) that AnSn is a projection onto RanAn and I − SA is a projection onto
KerA ⊂ Ran An. Thus

An+1Sn+1An+1 = A
(
(SA − I) + AnSn

)
An = A · AnSnAn = An+1.

Hence An+1 is a Saphar operator. �
Lemma 5. Let A, B, C, D be mutually commuting operators on a Banach space X
satisfying AC + BD = I. Then AB has a generalized inverse if and only if both
A and B have generalized inverses.

Proof. Suppose that ASA = A and BTB = B for some S, T ∈ B(X). Then

ABTSAB = ABT (CA + BD)SAB = ABTCASAB + ABTBDSAB

= ABTCAB + ABDSAB = ABT (I − BD)B + A(I − AC)SAB

= ABTB − ABTBDB + ASAB − ACASAB

= AB − ABDB + AB − ACAB = 2AB − A(BD + CA)B = AB.

For the converse, let ABZAB = AB for some Z ∈ B(X). Then

A
(
C + BZ(I − AC)

)
A = ACA + ABZA − ABZACA

= ACA + ABZA(I − CA)
= ACA + ABZABD = ACA + ABD = A,

and similarly, B
(
D + AZ(I − BD)

)
B = B. �

Lemma 6. Let T ∈ B(X) be a Saphar operator. Then there exists ε > 0 such that
T − U has a generalized inverse for every operator U ∈ B(X) commuting with T
such that ‖U‖ < ε.

More precisely, if T is Kato, TST = T , UT = TU and ‖U‖ < ‖S‖−1, then
(T − U)S(I − US)−1(T − U) = T − U .
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Proof. Let TST = T , UT = TU and ‖U‖ < ‖S‖−1.
We first prove by induction on n that U(SU)n KerT ⊂ KerT n+1. This is clear

for n = 0. Suppose that U(SU)n−1 KerT ⊂ KerT n ⊂ Ran T and let z ∈ KerT .
Then U(SU)n−1z = Tv for some v ∈ X , and

T n+1U(SU)nz = T n+1USTv = T nUTSTv = T nUTv = UT nU(SU)n−1z = 0

by the induction assumption. Thus U(SU)n KerT ⊂ KerT n+1 for all n.
Since I − ST is a projection onto KerT , we have

U(SU)n(I − ST )X ⊂ KerT n+1 ⊂ Ran T (n ≥ 0),

and so
(I − TS)U(SU)n(I − ST ) = 0 (n ≥ 0).

Then

(T − U)S(I − US)−1(T − U) = (T − U)S
∞∑

i=0

(US)i(T − U)

= TST − UST − TSU + TSUST

+
∞∑

i=0

(
TS(US)i+2T − US(US)i+1T − TS(US)i+1U + US(US)iU

)
= T − UST − TSU + TSUST +

∞∑
i=0

(I − TS)(US)i+1U(I − ST )

= T − U + (I − TS)U(I − ST ) = T − U.

Hence T − U has a generalized inverse. �
Theorem 7. The set of all Saphar operators in X is a regularity satisfying (P3)
(upper semi-continuity on commuting elements).

Proof. The proof follows immediately from Theorem 6.12 and the preceding three
lemmas. �

For T ∈ B(X) denote by σSap(T ) = {λ ∈ C : T − λ is not Saphar} the
corresponding spectrum. Property (P3) implies that σSap(T ) is always a compact
set. Further, ∂σ(T ) ⊂ σK(T ) ⊂ σSap(T ), and so σSap(T ) is non-empty.

If X = X1 ⊕ X2 is a decomposition of X and T1 ∈ B(X1), then it is easy to
verify that T1 is Saphar if and only if T1 ⊕ IX2 is Saphar. By Theorem 6.8, this
gives the spectral mapping property.

Corollary 8. Let T ∈ B(X). Then σSap(f(T )) = f(σSap(T )) for every function f
analytic on a neighbourhood of σ(T ).

If T is a Saphar operator, then T−z is Saphar, and therefore has a generalized
inverse, for every z in a certain neighbourhood of 0. In fact, the generalized inverse
can be chosen in such a way that it depends analytically on z.
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Theorem 9. Let T ∈ B(X). The following conditions are equivalent:

(i) T is Saphar;

(ii) there exist a neighbourhood U ⊂ C of 0 and an analytic function S : U →
B(X) such that (T − z)S(z)(T − z) = T − z.

More precisely, it is possible to take S(z) = S(I−zS)−1 =
∑∞

i=0 Si+1zi

for |z| < ‖S‖−1, where S is a generalized inverse of T .

Proof. (i) ⇒ (ii): Let S ∈ B(X) satisfy TST = T . For |z| < ‖S‖−1 set S(z) =
S(I − zS)−1. By Lemma 6, (T − z)S(z)(T − z) = T − z for all |z| < ‖S‖−1.

(ii) ⇒ (i): Let S(z) be a function analytic on a neighbourhood U of 0 satis-
fying (T − z)S(z)(T − z) = T − z (z ∈ U). It is sufficient to show that KerT ⊂
R∞(T ). Let x ∈ KerT . Since TS(0)T = T , I − S(0)T is a projection onto KerT .
Set g(z) = (I − S(z)(T − z))x (z ∈ U). Clearly, (T − z)g(z) = 0 (z ∈ U) and
g(0) = x. Let g(z) =

∑∞
i=0 xiz

i be the Taylor expansion of g about 0. The above
relations give x0 = x and Txi = xi−1 (i ≥ 1). Thus x = x0 = Tx1 = T 2x2 = · · · ,
and so x ∈ R∞(T ). �

The next theorem shows that it is possible to find a global analytic general
inverse of T − z.

Theorem 10. Let T ∈ B(X). Let G = {z ∈ C : T − z is Saphar}. Then there exists
an analytic function S : G → B(X) such that

(T − z)S(z)(T − z) = T − z

and
S(z)(T − z)S(z) = S(z) (z ∈ G).

Proof. The set G is open by Theorem 9. For z ∈ G let Φ(z) : B(X) → B(X) be
the operator defined by

Φ(z)A = (T − z)A(T − z) (A ∈ B(X)).

Evidently, Φ : G → B(B(X)) is an analytic function and T − z ∈ Ran Φ(z) for all
z ∈ G.

We show that Φ is regular at each point λ ∈ G. By Theorem 9, there is
a neighbourhood U of λ and an analytic function S1 : U → B(X) such that
(T − z)S1(z)(T − z) = T − z (z ∈ U). For z ∈ U let Ψ(z) : B(X) → B(X)
be the operator defined by Ψ(z)A = (T − z)S1(z)AS1(z)(T − z) − A. It is clear
that Ψ is analytic and Ψ(z)Φ(z) = 0 (z ∈ U). If A ∈ KerΨ(z), then A =
(T − z)S1(z)AS1(z)(T − z) ∈ Ran Φ(z) for all z ∈ U .

Thus RanΦ(z) = KerΨ(z) and Φ is regular in U by Theorem 11.10.
Hence Φ is regular in G. By Theorem 11.12, there exists an analytic function

S2 : G → B(X) such that Φ(z)S2(z) = T − z, i.e., (T − z)S2(z)(T − z) = T − z
for z ∈ G. Set

S(z) = S2(z)(T − z)S2(z) (z ∈ G).
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Then

(T − z)S(z)(T − z) = (T − z)S2(z)(T − z)S2(z)(T − z) = T − z

and

S(z)(T − z)S(z) = S2(z)(T − z)S2(z)(T − z)S2(z)(T − z)S2(z)
= S2(z)(T − z)S2(z) = S(z)

for all z ∈ G. �

Proposition 11. Let T, S ∈ B(X), λ ∈ C, λ �= 0. Then TS − λ has a generalized
inverse if and only is ST − λ has a generalized inverse.

Proof. Let A ∈ B(X) satisfy (TS − λ)A(TS − λ) = TS − λ. Set B = −λ−1I +
λ−1SAT . Then

(ST − λ)B(ST − λ) = λ−1(ST − λ)SAT (ST − λ) − λ−1(ST − λ)2

= λ−1S(TS − λ)A(TS − λ)T − λ−1(ST − λ)2

= λ−1S(TS − λ)T − λ−1(ST )2 + 2ST − λ = ST − λ. �

Corollary 12. Let T, S ∈ B(X). Then σSap(ST ) \ {0} = σSap(TS) \ {0}.
Theorem 9 enables us to extend the notion of Saphar spectrum for elements

in a Banach algebra.
Let A be a Banach algebra, a, b ∈ A. As in the case of operators, we say that

b is a generalized inverse of a if aba = a and bab = b.

Definition 13. An element a in a Banach algebra A is called Saphar if there exist
a neighbourhood U of 0 in C and an analytic function f : U → A such that
(a − z)f(z)(a − z) = a − z (z ∈ U).

For the study of Saphar elements in a Banach algebraA it is useful to consider
the operator of left multiplication La : A → A defined by Lax = ax (x ∈ A).
Clearly, if a ∈ A is Saphar, then La is also Saphar (as an element of B(A)).
The opposite is not true: let A be the algebra of all power series

∑∞
i=0 αia

i with
complex coefficients αi such that ‖∑∞

i=0 αia
i‖ =

∑ |αi| < ∞. Then La is bounded
below and RanLa is complemented in A, since it is of codimension 1. Thus La is
Saphar. On the other hand, aba ∈ a2A for every b ∈ A, so a has no generalized
inverse and thus it is not Saphar.

We have the following characterization:

Theorem 14. An element a ∈ A is Saphar if and only if it has a generalized inverse
and KerLa ⊂ R∞(La).

Proof. If a ∈ A is Saphar, then it has a generalized inverse and La is Saphar, so
KerLa ⊂ R∞(La).
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Conversely, let a have a generalized inverse b ∈ A. Then Lb is a generalized
inverse of La and La is Saphar. By Theorem 9,

∑∞
i=0 Li+1

b zi is an analytically
dependant generalized inverse of La − z for |z| < ‖Lb‖−1 = ‖b‖−1. Note that∑∞

i=0 Li+1
b zi = Lb(z) where b(z) =

∑∞
i=0 bi+1zi, and so b(z) is a generalized inverse

of a − z depending analytically on z. �

Theorem 15. The set of all Saphar elements in a Banach algebra A is a regularity
satisfying (P3) (upper semicontinuity on commuting elements).

Proof. Recall that a ∈ A is Saphar if and only if it has a generalized inverse and La

is Kato. The Kato operators form a regularity satisfying (P3), see Theorem 12.9.
To prove that the set of all Saphar elements satisfies the conditions of Theorem
6.12 it is sufficient to show:

(a) a is Saphar, n ∈ N ⇒ an has a generalized inverse;
(b) if a, b, c, d are mutually commuting elements of A such that ac+ bd = 1, then

ab has a generalized inverse ⇐⇒ a, b have generalized inverses;

(c) if a ∈ A is Saphar, then there exists ε > 0 such that u ∈ A, ua = au and
‖u‖ < ε implies that a − u has a generalized inverse.

Note that an element x ∈ A has a generalized inverse if and only if Lx has a
generalized inverse which belongs to the set {Ly : y ∈ A}. This is really the case
if we apply Lemmas 4, 5 and 6 to the operators of left multiplication. In this way
we obtain (a), (b) and (c), which finishes the proof. �

It is easy to see that Proposition 11 and Corollary 12 are also true for elements
of a Banach algebra.

In commutative Banach algebras the class of Saphar elements coincides with
the invertible elements.

Theorem 16. Let A be a commutative Banach algebra. An element a ∈ A is Saphar
if and only if it is invertible.

Proof. Clearly, invertible elements are Saphar.
Let a ∈ A be Saphar and let b(z) =

∑∞
i=0 biz

i be a function analytic on a
neighbourhood of 0 satisfying (a−z)b(z)(a−z) = a−z. Comparing the coefficients
at z we get −1 = a2b1 − 2ab0 = a(ab1 − 2b0). Hence a is invertible. �

14 Local spectrum

Further important examples of regularities are provided by local spectra.

Let x be a vector in a Banach space X . Denote by Rx(X) the set of all
operators T ∈ B(X) for which there exists a neighbourhood U of 0 in C and an
analytic function f : U → X such that (T − z)f(z) = x (z ∈ U).
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If f(z) =
∑∞

i=0 xi+1z
i is the Taylor expansion of f in a neighbourhood of 0,

then (T − z)f(z) = Tx1 +
∑∞

i=1 zi(Txi+1 −xi), so Txi+1 = xi (i = 1, 2, . . . ) and
Tx1 = x. Thus T ∈ Rx(X) if and only if there exist vectors x1, x2, · · · ∈ X such
that Txi = xi−1 (i = 1, 2, . . . ), where x0 = x, and supi≥1 ‖xi‖1/i < ∞.

We start with the following lemma which is a refined formulation of Lemma
12.8 (ii).

Lemma 1. Let A, B, C, D be mutually commuting operators on a Banach
space X such that AC + BD = I and let u, v ∈ X satisfy Au = Bv. Then there
exists w ∈ X such that Aw = v, Bw = u and ‖w‖ ≤ (‖C‖+‖D‖) ·max{‖u‖, ‖v‖}.
Proof. Set w = Du + Cv. Then ‖w‖ ≤ (‖C‖ + ‖D‖) · max{‖u‖, ‖v‖}, Aw =
ADu + ACv = ADu + (I − BD)v = DAu + v − DBv = v and similarly, Bw =
BDu + BCv = u − ACu + BCv = u. �

Theorem 2. Let x be a vector in a Banach space X . Then Rx(X) is a regularity.
Moreover, for each T ∈ Rx(X) there exists ε > 0 such that T + U ∈ Rx(X) for all
U ∈ B(X) commuting with T such that ‖U‖ < ε.

Thus Rx(X) satisfies (P3) (upper semicontinuity on commuting elements).

Proof. Clearly I ∈ Rx(X), and so Rx(X) is non-empty.
Suppose that T ∈ Rx(X) and let n be a positive integer. Write x0 = x

and let xi ∈ X satisfy Txi = xi−1 (i = 1, 2, . . . ) and supi≥1 ‖xi‖1/i < ∞. Set
yi = xni (i = 0, 1, . . . ). Then T nyi = yi−1 (i = 1, 2, . . . ), y0 = x and

sup
i≥1

‖yi‖1/i ≤ (
sup
i≥1

‖xi‖1/i
)n

< ∞.

Thus T n ∈ Rx(X).
Let AB = BA ∈ Rx(X). Let xi ∈ X satisfy ABxi = xi−1 (i = 1, 2, . . . )

with x0 = x and let supi≥1 ‖xi‖1/i < ∞. Set yi = Bixi. Then y0 = x, Ayi =
ABixi = Bi−1xi−1 = yi−1 (i = 1, 2, . . . ) and

sup
i≥1

‖yi‖1/i ≤ ‖B‖ · sup
i≥1

‖xi‖1/i < ∞.

Thus A ∈ Rx(X) and similarly B ∈ Rx(X). In particular, T n ∈ Rx(X) implies
T ∈ Rx(X).

Let A, B, C, D be mutually commuting operators with AC + BD = I and
let A, B ∈ Rx. Let xi,0, x0,j ∈ X (i, j = 1, 2, . . . ) satisfy Axi,0 = xi−1,0, Bx0,j =
x0,j−1 (i, j ≥ 1), where x0,0 = x and ‖xi,0‖ ≤ ki, ‖x0,j‖ ≤ kj for some k, 1 ≤ k <
∞. Using Lemma 1 inductively, we can construct elements xi,j = Dxi−1,j+Cxi,j−1

such that Axi,j = xi−1,j , Bxi,j = xi,j−1 and

‖xi,j‖ ≤ (‖C‖ + ‖D‖) · max{‖xi,j−1‖, ‖xi−1,j‖} (i, j ≥ 1).
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It is easy to show by induction that ‖xi,j‖ ≤ (
k · max{1, ‖C‖+ ‖D‖})i+j‖x‖. Set

yi = xi,i. Then AByi = yi−1, y0 = x and sup ‖yi‖1/i < ∞, so AB ∈ Rx. Hence Rx

is a regularity.
To prove property (P3), let T ∈ Rx(X), let xi ∈ X satisfy Txi = xi−1 (i =

1, 2, . . . ), x0 = x and supi≥1 ‖xi‖1/i = k < ∞. Let U ∈ B(X), UT = TU and
‖U‖ < k−1. Set g(λ) =

∑∞
i=0(λ − U)ixi+1. This series is convergent for |λ| <

k−1 − ‖U‖ and we have

(T + U − λ)g(λ) = Tx1 +
∞∑

i=1

T (λ − U)ixi+1 −
∞∑

i=0

(λ − U)i+1xi+1 = Tx1 = x.

Thus T + U ∈ Rx(X). �

Denote by γx the spectrum corresponding to the regularity Rx(X). Since
Rx(X) satisfies (P3), γx(T ) is always closed. Obviously, γx(T ) ⊂ σ(T ).

Remark 3. The standard notation is γT (x). For our approach, however, the nota-
tion γx(T ) seems to be more natural. The set γx(T ) is called the local spectrum of
T at x.

Corollary 4. Let x be a vector in a Banach space X , let T ∈ B(X). Then

γx(f(T )) = f(γx(T ))

for each function f analytic on a neighbourhood of σ(T ) which is non-constant on
every component of its domain of definition.

Examples 5. (i) γx(T ) can be empty.
Let H be a Hilbert space with an orthonormal basis {ei : i ≥ 0}, let S be

the unilateral shift (Sei = ei+1) and let S∗ be its adjoint, S∗ei = ei−1 (i ≥ 1),
S∗e0 = 0. Clearly, S∗S = I. Let x =

∑∞
i=0 2−iei. Then S∗x = x

2 . For |z| > 1/2 set
f(z) = −∑∞

i=0
S∗ix
zi+1 . Clearly,

(S∗ − z)f(z) = −
∞∑

i=0

S∗i+1x

zi+1
+

∞∑
i=0

S∗ix

zi
= x (|z| > 1/2).

Further, set g(z) =
∑∞

i=0 Si+1xzi. This sum is convergent for |z| < 1 and

(S∗ − z)g(z) =
∞∑

i=0

Sixzi −
∞∑

i=0

Si+1xzi+1 = x.

Hence γx(S∗) = ∅.
(ii) The previous example also shows that in general it is not possible to find

a global analytic solution of the equation (S∗ − z)h(z) = x (z /∈ γx(T )).
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Suppose on the contrary that there exists an entire function h satisfying
(S∗ − z)h(z) = x (z ∈ C). Since for |z| > 1 = r(S∗) the function h is uniquely
determined by h(z) = (S∗ − z)−1x and (S∗ − z)−1x → 0 as z → ∞, the Liouville
theorem gives h ≡ 0. So x = 0, a contradiction.

(iii) The assumption in Corollary 4 that f is non-constant on each component
is really necessary, since γx(T ) might be empty and γx(I) �= ∅.

(iv) Rx(X) does not satisfy (P2) (upper semicontinuity of γx). To see this,
consider a 2-dimensional space X with a basis x, y, and let

T =
(

1 0
0 0

)
.

Then T ∈ Rx(X) and (
1 0
ε 0

)
�∈ Rx(X)

for each ε > 0. Hence Rx(X) is not open, and so γx does not satisfy (P2).

(v) Rx(X) does not satisfy (P4) (continuity on commuting elements).
Consider the operator S∗ and the vector x from (i). Then S∗

n → 0 and
γx(S∗

n ) = ∅ for all n. On the other hand, γx(0) = {0} �= ∅.
(vi) Rx does not satisfy (P1):
Let H be a Hilbert space with an orthonormal basis {ei,j : i ≥ 0 or j ≥ 0}

and let the operators A, B ∈ B(H) be defined by Aei,j = ei+1,j , Bei,j = ei,j+1.
It is clear that AB = BA. Let x = e0,0. It is easy to see that A, B ∈ Rx and
AB /∈ Rx, since x /∈ Ran(AB).

Consider now the subset R(X) ⊂ B(X) defined by: T �∈ R(X) if and only if
there exists a function f : U −→ X analytic on a neighbourhood U of 0 such that
f is not identically equal to 0 and (T − z)f(z) = 0 (z ∈ U).

As above, it is easy to see that T �∈ R(X) if and only if there exist vectors
xi ∈ X (i = 1, 2, . . . ) not all of them equal to 0 such that Txi = xi−1 (i =
1, 2, . . . ), where x0 = 0 and supi≥1 ‖xi‖1/i < ∞. We can assume that x1 �= 0.

Evidently, if T /∈ R(X), then there is an open neighbourhood of 0 consisting
of eigenvalues of T . The simplest example of an operator T /∈ R(X) is the backward
shift.

Theorem 6. R(X) is a regularity.

Proof. The set R(X) is non-empty, since I ∈ R(X).
Let A, B ∈ B(X), AB = BA �∈ R(X). We prove that either A �∈ R(X) or

B �∈ R(X). Let xi ∈ X satisfy ABxi = xi−1 (i = 1, 2, . . . ), where x0 = 0, x1 �= 0
and supi≥1 ‖xi‖1/i < ∞. Set ui = Bixi (i = 0, 1, . . . ). Then u0 = 0, Aui = ui−1

for all i ≥ 1 and supi≥1 ‖ui‖1/i < ∞. If u1 �= 0, then A �∈ R(X).
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Suppose on the contrary that u1 = Bx1 = 0. Set v0 = 0, vi = Ai−1xi for all
i ∈ N. Then Bvi = vi−1 (i = 1, 2, . . . ), supi≥1 ‖vi‖1/i < ∞ and v1 = x1 �= 0.
Thus B �∈ R(X). Hence A, B ∈ R(X), AB = BA implies AB ∈ R(X).

In particular, A ∈ R(X) ⇒ An ∈ R(X) for all n.
Let A �∈ R(X) and let xi ∈ X satisfy the conditions required. Then yi = xni

satisfy all the required conditions for An, and so An �∈ R(X). Hence An ∈ R(X) ⇒
A ∈ R(X).

Suppose that A, B, C, D are mutually commuting operators satisfying AC +
BD = I and A /∈ R(X). Let xi,0 ∈ X satisfy Axi,0 = xi−1,0 for all i = 1, 2, . . . ,
x0,0 = 0, x1,0 �= 0 and supi≥1 ‖xi,0‖1/i < ∞.

Set x0,j = 0 (j = 0, 1, . . . ). Using Lemma 1 inductively, we construct vectors
xi,j = Dxi−1,j + Cxi,j−1 (i, j ∈ N). As in the proof of Theorem 2 we can show
that ABxi,i = xi−1,j−1 (i ≥ 1), x1,1 �= 0 and supi ‖xi,i‖1/i < ∞. Thus AB /∈
R(X) and AB ∈ R(X) ⇒ A, B ∈ R(X).

Hence R(X) is a regularity. �
Denote by S0(T ) the spectrum of T corresponding to the regularity R(X).

Clearly S0(T ) is the union of all open subsets U ⊂ C for which there is an analytic
function f : U → X not identically equal to 0 satisfying (T −z)f(z) = 0 (z ∈ U).
Obviously, S0(T ) is contained in the point spectrum of T . In general, S0(T ) is not
closed (on the contrary, it is always open), and so R(X) cannot satisfy (P2), (P3)
or (P4). Neither does R(X) satisfy (P1). To see this, let X be a separable Hilbert
space, A = 0 and let B be the backward shift. It is easy to see that 0 = AB ∈ R(X)
and B �∈ R(X).

The closure of S0(T ) is called the analytic residuum of T and denoted by
S(T ). An operator T is said to have the single value extension property (SVEP)
if S0(T ) is empty.

Corollary 7. Let T ∈ B(X) and let f be a function analytic on a neighbourhood of
σ(T ) which is non-constant on each component of its domain of definition. Then

S0(f(T )) = f(S0(T )) and S(f(T )) = f(S(T )).

The set S(T ) ∪ γx(T ) will be denoted by σx(T ); this set is also called the
local spectrum (the standard notation is again rather σT (x) instead of σx(T )).

Proposition 8. Let T ∈ B(X), x ∈ X, x �= 0. Then S0(T )∪γx(T ) �= ∅. In particular,
σx(T ) �= ∅.
Proof. Suppose on the contrary that S0(T ) ∪ γx(T ) = ∅. Then for every w ∈ C

there exists a neighbourhood Uw of w and an analytic function fw : Uw → X such
that (T − z)fw(z) = x (z ∈ Uw). Since S0(T ) = ∅, functions fw and fw′ coincide
on Uw ∩ Uw′ (w, w′ ∈ C), so we have an entire function f : C → X such that
(T − z)f(z) = x (λ ∈ C).

For |z| > r(T ) we have f(z) = (T − z)−1x, so limz→∞ f(λ) = 0. By the
Liouville theorem, f ≡ 0, and so x = 0, a contradiction. �
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Theorem 9. Let T ∈ B(X), x ∈ X, x �= 0 and let f be a locally non-constant
function analytic on a neighbourhood of σ(T ). Then

S0(f(T )) ∪ γx(f(T )) = f(S0(T )) ∪ f(γx(T )) and σx(f(T )) = f(σx(T )).

Proof. Since Rx(X) ∩ R(X) is a regularity, we have

S0(f(T )) ∪ γx(f(T )) = f(S0(T )) ∪ f(γx(T )).

Taking closures on both sides we get

σx(f(T )) = f(S0(T )) ∪ f(γx(T )) = f(S0(T )) ∪ f(γx(T )) = f(σx(T )). �

Example 10. (i) The assumption that f is locally non-constant is really necessary.
This does not contradict to Theorem 6.8 since σx(T ) is non-empty only for x �= 0;
if x = 0, then σx(T ) can be either empty or non-empty.

For an example, let S∗ be the backward shift on a separable Hilbert space H
and let u be a non-zero vector in H . Consider T = S∗ ⊕ 2I ∈ B(H ⊕ H) and
x = 0 ⊕ u. It is easy to verify that S(T ) = {z ∈ C : |z| ≤ 1} and γx(T ) = {2}.
Let f = 0 on a neighbourhood of {z : |z| ≤ 1} and f = 1 on a neighbourhood
of {2}. Then f(σx(T )) = {0} ∪ {2}. Further, f(T ) = 0 ⊕ 2I, S(f(T )) = ∅ and
σx(f(T )) = γx(f(T )) = {2}. Hence σx(f(T )) �= f(σx(T )).

(ii) The local spectrum has a natural meaning for normal operators. Let
T =

∫
z dE(z) be a normal operator on a Hilbert space H , let x ∈ H . Then T has

SVEP and σx(T ) is the support of the scalar measure ‖E(·)x‖2 = 〈E(·)x, x〉.
Proposition 11. Let T, U ∈ B(X). Then S0(TU) = S0(UT ) and S(TU) = S(UT ).

Proof. Let λ ∈ C, λ �= 0. Suppose that λ ∈ S0(TU). Then there are x1, x2, · · · ∈ X
such that x1 �= 0, (TU−λ)xi = xi−1 (i ≥ 2), (TU−λ)x1 = 0 and sup ‖xi‖1/i < ∞.

Set yi = Uxi (i = 1, 2, . . . ). For i ≥ 2 we have (UT −λ)yi = (UT −λ)Uxi =
U(TU − λ)xi = Uxi−1 = yi−1 and (UT − λ)y1 = U(TU − λ)x1 = 0. Further,
TUx1 = λx1 �= 0, and so y1 = Ux1 �= 0. Clearly sup ‖yi‖1/i < ∞. Hence for λ �= 0
we have λ ∈ S0(TU) ⇔ λ ∈ S0(UT ).

The same equivalence is true also for λ = 0. Let 0 ∈ S0(TU). Let xi ∈ X
satisfy TUxi = xi−1 (i ≥ 2), TUx1 = 0, x1 �= 0 and sup ‖xi‖1/i < ∞. Set
yi = Uxi. Then UTyi = UTUxi = Uxi−1 = yi−1 (i ≥ 2) and UTy1 = UTUx1 =
0. We have sup ‖yi‖1/i < ∞ and Ty2 = TUx2 = x1 �= 0. Hence y2 �= 0 and
0 ∈ S0(UT ). �

Definition 12. Let T be an operator on a Banach space X and let x ∈ X . The local
spectral radius rx(T ) is defined by rx(T ) = lim supn→∞ ‖T nx‖1/n.

The standard notation of the local spectral radius is r(T, x); we choose the
present notation in order to have an agreement with the notation for the local
spectra.
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The formula defining the local spectral radius is similar to the spectral radius
formula r(T ) = lim ‖T n‖1/n. It is easy to see that in general the limit lim ‖T nx‖1/n

does not exist. The meaning of the local spectral radius is the following: the
series f(z) = −∑∞

i=0
T ix
zi+1 is convergent for |z| > rx(T ) and (T − z)f(z) = x; for

|z| > r(T ) we have f(z) = (T − z)−1x.
The connection between the local spectral radius and the local spectra is the

following:

Theorem 13. Let T ∈ B(X) and x ∈ X . Then

max{|λ| : λ ∈ γx(T )} ≤ rx(T ) ≤ max{|λ| : λ ∈ σx(T )}

(if γx(T ) = ∅, then the left maximum is considered to be 0).

Proof. Set f(z) = −∑∞
i=0

T ix
zi+1 . This series converges for |z| > rx(T ) and (T −

z)f(z) = x. Thus |z| > rx(T ) implies x /∈ γx(T ), which is the first inequality.
For |z| > max{|λ| : λ ∈ σx(T )} there is a unique analytic function g(z)

satisfying (T − z)g(z) = x. For |z| > r(T ) necessarily g(z) = (T − z)−1x =
−∑∞

i=0 T ixz−(i+1), and so limz→∞ g(z) = 0.
Consider the function h(z) = g(1

z ) (0 �= |z| < max{|λ| : λ ∈ σx(T )}−1),
h(0) = 0. Clearly, h(z) =

∑∞
i=0(T

ix)zi+1 for |z| < max{|λ| : λ ∈ σx(T )}−1. Since
the radius of convergence of the series

∑
(T ix)zi+1 is equal to(

lim sup
i→∞

‖T ix‖1/i
)−1

= (rx(T ))−1,

we conclude that rx(T )−1 ≥ (
max{|λ| : λ ∈ σx(T )})−1. Hence rx(T ) ≤ max{|λ| :

λ ∈ σx(T )}. �

Example 14. In general, the inequalities in the previous theorem are strict. Con-
sider the backward shift S∗ ∈ B(H) and the vector x =

∑∞
i=0 2−iei which were

studied in Example 5 (i). We have S∗x = x
2 , and so

rx(S∗) = lim sup ‖S∗ix‖1/i =
1
2
.

Further, γx(S∗) = ∅, and so max{|λ| : λ ∈ γx(S∗)} = 0. Finally, the function
g(z) =

∑∞
i=0 ziei is convergent for |z| < 1 and (S∗ − z)g(z) = 0. So σx(S∗) = {z :

|z| ≤ 1} and max{|λ| : λ ∈ σx(S∗)} = 1.

The relation between the local spectral radius and the local spectra is closer
for operators with SVEP. In this case γx(T ) and σx(T ) coincide, and so we have

Corollary 15. Let T ∈ B(X) be an operator with SVEP and x ∈ X . Then

max{|λ| : λ ∈ γx(T )} = rx(T ) = max{|λ| : λ ∈ σx(T )}.
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In general, σx(T ) ⊂ σ(T ) and rx(T ) ≤ r(T ). Our next goal is to show that
there are always many points x ∈ X with the local spectrum σx(T ) equal to the
global spectrum σ(T ).

We start with the following observation:

Proposition 16. Let T ∈ B(X) satisfy TX = X and 0 ∈ σ(T ). Then 0 ∈ S0(T ).

Proof. Since 0 ∈ σ(T ) and TX = X , there exists a non-zero vector x0 ∈ X with
Tx0 = 0. By the open mapping theorem, there is a constant k > 0 such that
TBX ⊃ k · BX . We can construct inductively vectors x1, x2, · · · ∈ X such that
Txi = xi−1 and ‖xi‖ ≤ k−1‖xi−1‖, so ‖xi‖ ≤ k−i‖x0‖. Set f(z) =

∑∞
i=0 xiz

i.
This series is convergent for |z| < k and (T − z)f(z) = 0. Since f(0) = x0 �= 0, we
have 0 ∈ S0(T ). �

Corollary 17. σ(T ) = S0(T ) ∪ {
λ ∈ C : (T − λ)X �= X

}
.

Recall that the set
{
λ ∈ C : (T −λ)X �= X

}
is the surjective spectrum σδ(T ).

Theorem 18. Let T ∈ B(X). Then the set
{
x ∈ X : σx(T ) �= σ(T )

}
is of the first

category.

Proof. Let {λ1, λ2, . . . } be a countable set dense in σ(T ). Set Mi =
{
x ∈ X :

λi /∈ σx(T )
}
. Since

{
x ∈ X : σx(T ) �= σ(T )

}
=

⋃∞
i=1 Mi, it is sufficient to show

that each set Mi is of the first category. If x ∈ Mi, then λi /∈ S0(T ), and so
(T − λi)X �= X . Furthermore, λi /∈ γx(T ), which implies x ∈ (T − λi)X . Thus
Mi ⊂ (T − λi)X �= X . By A.1.8, Mi is of the first category. �

Theorem 19. Let T ∈ B(X). Then the set
{
x ∈ X : σδ(T ) \ γx(T ) �= ∅} is of the

first category.

In particular, the set
{
x ∈ X : ∂σ(T ) \ γx(T ) �= ∅} is of the first category.

Proof. Choose a countable subset {λ1, λ2, . . . } dense in σδ(T ) and let Mi = {x ∈
X : λi /∈ γx(T )}. Since

{
x ∈ X : σδ(T ) \ γx(T ) �= ∅} =

∞⋃
i=1

Mi,

it is sufficient to show that each Mi is of the first category. Let x ∈ Mi. Since
λi ∈ σδ(T ), we have (T − λi)X �= X . Further, λi /∈ γx(T ), and so x ∈ (T − λi)X .
Thus Mi ⊂ (T − λi)X , which is of the first category by A.1.8. �

Corollary 20. Let T ∈ B(X). The set of all x ∈ X for which σx(T ) = σ(T ),
rx(T ) = r(T ) and γx(T ) ⊃ σδ(T ) is residual (= complement of a set of the first
category), and therefore dense in X .

Proof. Follows from Theorems 13, 18 and 19. �
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Theorem 21. Let T ∈ B(X). Then the following statements are equivalent:

(i) T has SVEP;

(ii) γx(T ) �= ∅ for every non-zero x ∈ X .

Proof. (i) ⇒ (ii): If T has SVEP, then γx(T ) = σx(T ) for all x ∈ X and the
statement follows from Proposition 8.

(ii) ⇒ (i): Suppose that T has not SVEP. Then there exist a non-empty
open subset U ⊂ C and a non-zero analytic function f : U → X such that
(T − z)f(z) = 0 (z ∈ U).

Fix λ ∈ U such that f(λ) �= 0 and let f(z) =
∑∞

i=0 fi(z − λ)i be the Taylor
expansion of f about λ. Then (T − λ)f0 = 0 and (T − λ)fi = fi−1 for all i ≥ 1.
We show that γf0(T ) = ∅. We have

(T − z)
∞∑

i=1

fi(z − λ)i−1 =
(
(T − λ) + (λ − z)

) ∞∑
i=1

fi(z − λ)i−1

=
∞∑

i=1

fi−1(z − λ)i−1 −
∞∑

i=1

fi(z − λ)i = f0

in a neighbourhood of λ, and so λ /∈ γf0(T ). On the other hand, for z �= λ we have

(T − z)
( f0

λ − z

)
= (T − λ)

( f0

λ − z

)
+ (λ − z)

( f0

λ − z

)
= f0,

and so γf0(T ) ⊂ {λ}. Hence γf0(T ) = ∅. �

Comments on Chapter II

C.9.1. The basic results concerning the approximate point spectrum and the sur-
jective spectrum of n-tuples of operators are due to Harte [Ha1], [Ha2], [Ha3].

Theorem 9.17 is a folklore (but, surprisingly, it seems that it has never been
published in this form).

C.9.2. Let T = (T1, . . . , Tn) be a commuting n-tuple of operators on a Hilbert
space. By the Dash lemma [Das],

σl(T ) = σπ(T ) =
{

λ ∈ Cn :
n∑

j=1

(Tj − λj)∗(Tj − λj) is not invertible
}

and

σr(T ) = σδ(T ) =
{

λ ∈ Cn :
n∑

j=1

(Tj − λj)(Tj − λj)∗ is not invertible
}

.
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C.9.3. Theorem 9.23 was proved in [Mü8] and [Re5]; it gives a positive answer to
a problem of Bollobás [Bo4].

By [Re4], if T is an operator on a Hilbert space H , then it is possible to find
a Hilbert space K ⊃ H and an extension S ∈ B(K) such that σ(S) = σπ(T ).

C.9.4. The basic results concerning the spectra of the multiplication operators La

and Ra (Theorem 9.26) are due to Harte [Ha3]. More generally, let (a1, . . . , an) and
(b1, . . . , bn) be commuting n-tuples of elements in a Banach algebra A. Operators
of the form x �→ ∑n

i=1 aixbi (x ∈ A) are called elementary operators; they have
been studied intensely, see, e.g., [LR], [DR], [Cu5], [Fi1], [Fi2], [CF].

C.9.5. Let T be an operator on a Banach space X such that r(T ) < 1. Then there
is an n ∈ N such that ‖T n‖ < 1. Define a new norm on X by

|||x||| = sup
n≥0

‖T nx‖. (1)

Clearly, ||| · ||| is equivalent to the original norm and |||Tx||| ≤ |||x||| for each
x ∈ X . Thus T : (X, ||| · |||) → (X, ||| · |||) is a contraction.

Hence for an operator T ∈ B(X) we have r(T ) = inf{|||T |||} where the
infimum is taken over all operator norms that arise from the norms on X equivalent
to the original one. This is a stronger result than the corresponding statement for
Banach algebras, see Corollary 1.33.

If X is a Hilbert space, then it is possible to consider only equivalent Hilbert
space norms on X : we can replace (1) by

|||x||| =
(n−1∑

i=0

‖T ix‖2
)1/2

.

C.9.6. Complemented and uncomplemented subspaces play an important role in
spectral theory. The uncomplemented subspaces are quite common. In fact, the
following result is true, see [LT].

Theorem. All closed subspaces of a Banach space X are complemented if and only
if X is isomorphic to a Hilbert space.

On the other hand, it is not easy to construct concrete examples of uncom-
plemented subspaces. The best-known example of an uncomplemented subspace
is the space c0 in �∞.

C.9.7. It is easy to see that if T ∈ B(X) is left (right) invertible, then T ∗ ∈ B(X∗)
is right (left) invertible. The converse implications are true in reflexive Banach
spaces but not in general, see [Pi1, pp. 366–367].

Thus in reflexive Banach spaces σl(T ) = σr(T ∗) and σr(T ) = σl(T ∗). In
general, we have only σl(T ) ⊃ σr(T ∗) and σr(T ) ⊃ σl(T ∗).
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C.9.8. If X is a finite-dimensional Banach space, then σ(T ) = σl(T ) = σπ(T ) for
each operator T ∈ B(X). By [GwM] there is an example of an infinite-dimensional
Banach space with the same property (compare with C.8.4).

C.10.1. The notion of gap was introduced and the fundamental lemma 10.9 proved
in [KKM], see also [GhK1], [Kat1].

For a survey of results concerning the reduced minimum modulus and the
gap see [Kat2].

C.10.2. Instead of the gap δ̂(M, N) between two subspaces M, N ⊂ X it is possible
to consider the Hausdorff distance ∆̂(SM , SN ) between their unit spheres, see
Appendix A.4. These two quantities are closely related by

δ̂(M, N) ≤ ∆̂(SM , SN ) ≤ 2δ̂(M, N), (2)

see [GhM]. The advantage of ∆̂ is that it satisfies the triangular inequality. On
the other hand, the gap δ̂ is more convenient to work with.

By (2), the gap and the Hausdorff distance ∆̂ define the same topology on the
set of all closed subspaces of a Banach space. Moreover, this topology is complete.

C.10.3. Theorem 10.14 is due to Apostol [Ap3]. Theorem 10.17 was proved by
Markus [Mar].

C.10.4. A subspace M of a Banach space is called paraclosed if there are a Banach
space Y and T ∈ B(Y, X) with RanT = M . Paraclosed subspaces (sometimes also
called paracomplete or operator ranges) were studied by a number of authors, see,
e.g., [FW], [Em], [Cr].

Equivalently, a subspace M of (X, ‖ · ‖) is paraclosed if and only if there is a
complete norm ||| · ||| on M which is greater than the original norm ‖ · ‖.

Clearly, each closed subspace is paraclosed but the opposite is not true. Al-
though there are many linear subspaces of X that are not paraclosed, practically
all subspaces that appear in operator theory are paraclosed.

If M and L are paraclosed subspaces of X , then both M ∩L and M + L are
paraclosed. Thus paraclosed subspaces form a lattice.

C.10.5. Let M, L be closed subspaces of a Hilbert space H . Then the gap between
M and L can be expressed in a simpler way by δ̂(M, L) = ‖PM − PL‖ where PM ,
PL are orthogonal projections onto M and L, respectively.

Consequently, in Hilbert spaces the gap satisfies the triangular inequality.
By [Ap6], for T ∈ B(H) we have γ(T ) = inf

(
σ(|T |) \ {0}) where |T | =

(T ∗T )1/2.

C.11.1. The factorization of continuous vector-valued functions (Theorem 11.1)
was proved by Taylor [Ta1] (formulated for exact sequences).

Lemma 11.3 is a folklore; the proof is, e.g., in [Fa2] or [Va5].



146 Chapter II. Operators

C.11.2. Factorization of analytic vector-valued functions was proved for exact se-
quences by Taylor [Ta1] and in general by S�lodkowski [Sl4], see also [Jan]. Here we
presented a different proof of the local result Theorem 11.9. The original proof of
S�lodkowski was done by induction and based on the following linearization result
[GKL], [Boe]:

Theorem. Let U ⊂ C be an open connected set. Let T : U → B(X, Y ) be a function
analytic on U . Then there exist a Banach space Z, operators S, V ∈ B(X⊕Z, Y⊕Z)
and analytic functions C1 : U → B(X ⊕ Z), C2 : U → B(Y ⊕ Z) such that C1(z)
and C2(z) are invertible operators and

C2(z)(T (z)⊕ IZ)C1(z) = S − zV (z ∈ U).

The global result (Corollary 11.12) uses a result of Leiterer [Le]; its proof is
based on the operator version of the classical Cartan lemma.

Corollary 11.14 was proved by Allan [All2], [All3], see also [Shu]. In this case
an elementary proof is available.

C.11.3. Note that the statement of Theorem 11.9 is weaker than the corresponding
one-dimensional result Theorem 11.5. In Theorem 11.5 we assumed only that
inf γ(T (wk)) > 0 for a convergent sequence (wk); in Theorem 11.9 we assumed in
fact that infz∈U γ(T (z) > 0 for some neighbourhood U of w ∈ G. This suggests
the following

Conjecture. In Theorem 11.9 it is sufficient to assume that infz∈M γ(T (z)) > 0 for
some set M ⊂ G with the property

f analytic in a neighbourhood U of w, f |(M ∩ U) ≡ 0 =⇒ f ≡ 0 on U.

C.11.4. A factorization result analogous to Theorem 11.1 for C∞-functions was
proved by Mantlik [Man].

C.12.1. Kato and Saphar operators were studied under various names by a number
of authors, see, e.g., [Kat1], [Ka1], [GlK], [Gr1], [Ap6], [Mb1], [MO1], [MO2],
[Mü15], [Sm1], [Sm2], [Sap], [Ra4]. Many authors call Kato and Saphar operators
semi-regular and regular, respectively. In the present monograph we prefer the
names introduced by Schmoeger, since the words like “regular” are overused in
mathematics (by a regular operator many mathematicians would understand an
invertible operator).

C.12.2. For T ∈ B(X) it is possible to define a family of ranges Rα(T ) indexed by
ordinal numbers by R0(T ) = X , Rα+1(T ) = TRα(T ) and Rα(T ) =

⋂
β<α Rβ(T )

for limit ordinals α. The transfinite ranges form a monotone family; its intersection
co(T ) is called the couer of T . Properties of the transfinite ranges were studied in
[Sap]. It is easy to see that T co(T ) = co(T ) and co(T ) is the maximal subspace
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(not necessarily closed) with this property. Clearly, co(T ) ⊂ R∞(T ). For Kato
operators we have co(T ) = R∞(T ) but this equality is not true in general.

C. 12.3. Propositions 12.28, 12.29 and 13.11 implying σ̃(TS) \ {0} = σ̃(ST ) \ {0}
for many types of spectrum were proved by Barnes [Ba3].

C.13.1. For information about generalized inverses see Groetsch [Gro]. The gener-
alized inverses originated in the Moore-Penrose inverses of matrices [Mo], [Pe].

C.13.2. Let T ∈ B(X) be Saphar and let S : U → B(X) be the analytic generalized
inverse S(z) =

∑∞
i=0 Si+1zi constructed in a neighbourhood U of 0, see Theorem

13.9. It is easy to verify that KerS(z) and RanT (z) are constant and S satisfies
the resolvent identity

S(z) − S(w) = (z − w)S(z)S(w) (z, w ∈ U)

cf. C.8.5. It is an interesting open question, see [ApC1], [ApC2], whether there
is a global analytic generalized inverse defined on C \ σSap(T ) (or at least on a
neighbourhood of a given compact set K ⊂ C \ σSap(T )) satisfying this additional
condition. For a positive answer in Hilbert spaces, see [BM].

C.13.3. The existence of a global analytic generalized inverse on the complement
of the Saphar spectrum (Theorem 13.10) was proved in [Shu], see also [Mü15].

C.13.4. The Saphar spectrum in Banach algebras was studied in [Ko1] and [Mb2].

C.14.1. The local spectral theory was originated by Dunford [Du2]. It was mo-
tivated by the theory of scalar and decomposable operators that were studied
intensely by a number of authors, see, e.g., [CF]. For a recent survey see [LN].

The spectral mapping property is due to Vasilescu [Va1], see also [Vr]; the
present proof was given in [KM2]. The existence of many points with the local
spectrum equal to the (global) spectrum was proved by Vrbová [Vr].

C.14.2. Let T ∈ B(X) and x ∈ X . In general, the limit limn→∞ ‖T nx‖1/n does not
exist. In fact [Dan], the set of all accumulation points of the sequence (‖T nx‖1/n)
is the whole interval

〈
lim inf ‖T nx‖1/n, rx(T )

〉
.

C.14.3. Let T ∈ B(X) and x ∈ X . Then the local resolvent g : C \ σx(T ) → X
satisfying (T − z)g(z) = x (z ∈ C \ σx(T )) is a uniquely determined analytic
function.

For functions f analytic on a neighbourhood of σx(T ) define the local func-
tional calculus by

f(T )x =
1

2πi

∫
Γ

f(z)g(z) dz,

where Γ is a contour surrounding σx(T ). In general, f(T ) is defined only for those
x ∈ X such that σx(T ) is contained in the domain of definition of f .
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Essential Spectrum

In this chapter we study various types of essential spectra of operators on a Banach
space X . They are closely connected with the Calkin algebra B(X)/K(X), where
K(X) denotes the ideal of compact operators.

We start with the classical theory of compact and Fredholm operators.

15 Compact operators

Definition 1. Let X, Y be Banach spaces. An operator T ∈ B(X, Y ) is called
compact if the set TBX is totally bounded (i.e., if TBX is compact, where BX

denotes the closed unit ball in X).
We say that T is of finite rank if dimRanT < ∞.

The set of all compact (finite-rank) operators from X to Y will be denoted
by K(X, Y ) and F(X, Y ), respectively. If Y = X , then we write K(X) = K(X, X)
and F(X) = F(X, X) for short.

Clearly, T ∈ B(X, Y ) is compact if and only if for every ε > 0 there exists a
finite set {x1, . . . , xn} ⊂ BX such that min{‖Tx − Txi‖ : 1 ≤ i ≤ n} ≤ ε for all
x ∈ BX .

The next theorem summarizes the basic properties of compact and finite-rank
operators.

Theorem 2. Let X and Y be Banach spaces. Then:

(i) K(X, Y ) is a closed subspace of B(X, Y );

(ii) F(X, Y ) is a subspace of B(X, Y ) and F(X, Y ) ⊂ K(X, Y );

(iii) if X1 and Y1 are Banach spaces, U ∈ B(X1, X), T ∈ K(X, Y ) and S ∈
B(Y, Y1), then STU ∈ K(X1, Y1). If T ∈ F(X, Y ), then STU ∈ F(X1, Y1);



150 Chapter III. Essential Spectrum

(iv) in particular, if Y = X , then F(X) is a 2-sided ideal and K(X) is a closed
2-sided ideal in B(X);

(v) if T ∈ K(X, Y ), then T is of finite rank if and only if RanT is closed.

Proof. (i) Let T, S ∈ K(X, Y ) and let ε > 0. Then there exist finite subsets
{x1, . . . , xn} and {x′

1, . . . , x
′
m} of BX such that min

{‖Tx−Txi‖ : 1 ≤ i ≤ n
} ≤ ε/2

and min
{‖Sx − Sx′

j‖ : 1 ≤ j ≤ m
} ≤ ε/2 for every x ∈ BX . Consider the finite

set {Txi + Sx′
j : 1 ≤ i ≤ n, 1 ≤ j ≤ m}. For x ∈ BX we have

min
{‖(T + S)x − (Txi + Sx′

j)‖ : 1 ≤ i ≤ n, 1 ≤ j ≤ m
} ≤ ε.

Since ε was arbitrary, the set (T + S)BX is compact.
In a similar way it is possible to show that the set K(X, Y ) is closed and that

a scalar multiple of a compact operator is compact.

(ii) The inclusion F(X, Y ) ⊂ K(X, Y ) follows from the fact that closed balls
in finite-dimensional Banach spaces are compact.

(iii) Let U ∈ B(X1, X), T ∈ K(X, Y ) and S ∈ B(Y, Y1). Then TBX and
S(TBX) are compact. Hence the set (STU)BX ⊂ ST (‖U‖ · BX) = ‖U‖ ·S(TBX)
is also compact and STU ∈ K(X, Y ).

The statement for finite-rank operators is clear.

This implies also (iv).

(v) Clearly, each finite-rank operator has closed range.
For the converse, let T : X → Y be compact and Ran T closed. By the open

mapping theorem, there is a positive constant k with TBX ⊃ k · BRan T . Since T
is compact, we conclude that k · BRan T is compact. Hence dimRan T < ∞. �

Proposition 3. If T ∈ K(X, Y ), then RanT is separable.

Proof. We have RanT = (
⋃∞

k=1 kTBX)− and kTBX is totally bounded for every k.
�

Theorem 4. Let T ∈ B(X, Y ). Then T is compact if and only if T ∗ is compact.

Proof. Suppose that T is compact and let ε > 0. We must show that there exists
a finite subset {y∗

1 , . . . , y
∗
p} ⊂ BY ∗ such that for every y∗ ∈ BY ∗ there exists r,

1 ≤ r ≤ p with ‖T ∗y∗ − T ∗y∗
r‖ ≤ ε.

Since T is compact, there exists a finite subset {x1, . . . , xn} ⊂ BX such that
min{‖Tx− Txj‖ : 1 ≤ j ≤ n} ≤ ε/3 for every x ∈ BX .

The set
{
(〈Tx1, y

∗〉, . . . , 〈Txn, y∗〉) : y∗ ∈ BY ∗
}

is a bounded subset of Cn,
therefore there exists a finite subset {y∗

1 , . . . , y
∗
p} of BY ∗ such that for each y∗ ∈

BY ∗ there exists r ∈ {1, . . . , p} with the property

|〈Txj, y
∗ − y∗

r 〉| ≤ ε/3 (1 ≤ j ≤ n). (1)

We show that {y∗
1 , . . . , y

∗
p} is the required subset of BY ∗ .
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Let y∗ ∈ BY ∗ . Find r ∈ {1, . . . , p} with (1). Let x ∈ BX . Then there is
a j ∈ {1, . . . , n} such that ‖Tx− Txj‖ ≤ ε/3 and we have

|〈x, T ∗y∗〉 − 〈x, T ∗y∗
r 〉|

≤ |〈x − xj , T
∗y∗〉| + |〈xj , T

∗(y∗ − y∗
r )〉| + |〈xj − x, T ∗y∗

r〉|
= |〈Tx − Txj , y

∗〉| + |〈Txj , y
∗ − y∗

r 〉| + |〈Txj − Tx, y∗
r〉| ≤ ε.

Thus
‖T ∗y∗ − T ∗y∗

r‖ = sup{|〈x, T ∗y∗ − T ∗y∗
r〉| : x ∈ BX} ≤ ε

and T ∗ is compact.
Suppose now that T ∗ is compact. Then T ∗∗ is compact and so is T = T ∗∗|X ,

since TBX = T ∗∗(BX∗∗ ∩ X) ⊂ T ∗∗BX∗∗ , which is compact. �

Theorem 5. Let T ∈ B(X, Y ). The following conditions are equivalent:

(i) T is compact;

(ii) if (xα)α is a net of elements of BX and xα → 0 weakly, then ‖Txα‖ → 0;

(iii) the restriction T |BX is a continuous mapping from BX with the weak topol-
ogy into Y with the norm topology;

(iv) for every ε > 0 there exists a closed subspace M ⊂ X with codimM < ∞
such that sup

{‖Tx‖ : x ∈ M, ‖x‖ = 1
} ≤ ε.

Proof. (i) ⇒ (ii): Let (xα) be a net of elements of BX , xα → 0 weakly. It is easy to
show that also Txa → 0 weakly. Suppose on the contrary that ‖Txα‖ �→ 0. Then
there exists a positive constant c and a subnet (xαβ

)β such that ‖Txαβ
‖ ≥ c for all

β. Since TBX is compact, the net (Txαβ
) has an accumulation point y. Clearly,

‖y‖ ≥ c. On the other hand, Txαβ
→ 0 weakly and so y = 0, a contradiction.

(ii) ⇒ (iii): Let (xα) ⊂ BX , xα → x weakly. Then xα − x → 0 weakly, and
so ‖Tx − Txα‖ → 0. Hence Txα → Tx in the norm topology.

(iii) ⇒ (iv): Suppose that (iv) is not true, so there exists c > 0 such that, for
every closed subspace M ⊂ X of finite codimension, there exists xM ∈ M with
‖xM‖ = 1 and ‖TxM‖ ≥ c. Consider the net (xM )M directed by the inclusion,
M ≥ M ′ ⇔ M ⊂ M ′. It is easy to see that xM → 0 weakly and ‖TxM‖ �→ 0.

(iv) ⇒ (i): Suppose that T is not compact, so there exists c > 0 such that
TBX can not be covered by a finite number of balls of radius c. Choose x1 ∈ BX

arbitrarily and construct inductively a sequence (xi) of points in BX such that
‖Txi − Txj‖ ≥ c for all i, j ∈ N, i �= j. Clearly, ‖xi − xj‖ ≥ c

‖T‖ .
Let M ⊂ X be a closed subspace of finite codimension and let P ∈ B(X) be

a projection onto M . Let ε > 0. Since dimRan(I − P ) < ∞, we can find j, k ∈ N,
j �= k such that ‖(I − P )xj − (I − P )xk‖ < ε. Then

‖P (xj − xk)‖ ≤ ‖xj − xk‖ + ‖(I − P )(xj − xk)‖ ≤ 2 + ε
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and

‖TP (xj − xk)‖ ≥ ‖Txj − Txk‖ − ‖T (I − P )(xj − xk)‖ ≥ c − ε‖T ‖.

Thus

sup{‖Tu‖ : u ∈ M, ‖u‖ = 1} ≥ ‖TP (xj − xk)‖
‖P (xj − xk)‖ ≥ c − ε‖T ‖

2 + ε
.

Letting ε → 0 gives sup
{‖Tu‖ : u ∈ M, ‖u‖ = 1

} ≥ c/2 and (iv) is not true. �

Corollary 6. Let T ∈ B(X, Y ) be a compact operator and (xn) a sequence of
elements of X , xn → 0 weakly. Then ‖Txn‖ → 0.

Proof. A weakly converging sequence is bounded by the Banach-Steinhaus theo-
rem. �

Theorem 7. Let T ∈ B(X) be a compact operator and λ ∈ C, λ �= 0. Then
Ran(T − λ) is closed.

Proof. Let M be a subspace of X of finite codimension satisfying the condition
sup

{‖Tx‖ : x ∈ M, ‖x‖ = 1
} ≤ |λ|

2 . Then

‖(T − λ)x‖ ≥ |λ| · ‖x‖ − ‖Tx‖ ≥ |λ|
2
‖x‖

for all x ∈ M . Thus the restriction (T − λ)|M : M → X is bounded below
and (T − λ)M is closed. Let N be a finite-dimensional subspace of X such that
X = M ⊕N . Then (T −λ)X = (T −λ)M + (T − λ)N , where dim(T − λ)N < ∞.
Hence Ran(T − λ) is closed. �

Lemma 8. Let X be a Banach space, let M ⊂ X be a closed subspace, M �= X
and let ε > 0. Then there exists x ∈ X such that ‖x‖ ≤ 1 + ε and dist{x, M} = 1.

If codimM = ∞, then there exists a sequence (xi)∞i=1 of elements of X such

that ‖xk‖ ≤ 1 + ε and dist
{
xk+1, M ∨∨k

i=1 xi

}
= 1 for every k.

Proof. Choose any x0 ∈ X with ‖x0 + M‖X/M = 1. Since 1 = ‖x0 + M‖X/M =
inf{‖x0 + m‖ : m ∈ M}, we can find m ∈ M such that x = x0 + m satisfies
dist{x, M} = dist{x0, M} = 1 and ‖x‖ ≤ 1 + ε.

Using the first statement repeatedly gives the second statement. �

Theorem 9. Let T ∈ B(X) be a compact operator and let λ ∈ C, λ �= 0. Then
dimKer(T − λ) < ∞.

Proof. Suppose on the contrary that dim Ker(T − λ) = ∞. By Lemma 8, there
exists a sequence (xi)∞i=1 of elements of Ker(T − λ) such that ‖xk‖ = 1 and
dist

{
xk+1,

∨k
i=1 xi

} ≥ 1/2 for all k. Then (xi) is a bounded sequence and (Txi)
contains no convergent subsequence, since ‖Txi−Txj‖ = ‖λxi−λxj‖ = |λ| · ‖xi−
xj‖ ≥ |λ|

2 for all i �= j. �
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Theorem 10. Let K ∈ B(X) be a compact operator. Then:

(i) there exists k ∈ N such that Ker(I + K)k+1 = Ker(I + K)k;

(ii) there exists j ∈ N such that Ran(I + K)j+1 = Ran(I + K)j ;

(iii) dim Ker(I + K) ≥ codim Ran(I + K).

Proof. (i) Write T = I + K. We have KerT ⊂ KerT 2 ⊂ · · · . Suppose on the
contrary that KerT k+1 �= KerT k for all n. Using Lemma 8 inductively we find a
sequence of elements xk ∈ KerT k such that ‖xk‖ ≤ 2 and dist{xk, KerT k−1} = 1
for each k. For i > j we have

‖Kxj − Kxi‖ = ‖Txj − xj − Txi + xi‖ ≥ dist{xi, KerT i−1} = 1,

since Txj −xj −Txi ∈ KerT i−1. Thus the sequence (Kxi) contains no convergent
subsequence, which is a contradiction with the compactness of K. Hence there is
a k ∈ N such that KerT k+1 = KerT k.

(ii) For each k ≥ 0, the operator (I + K)k can be expressed as I + K ′ for
some compact operator K ′ ∈ B(X). Thus Ran(I + K)k is closed for each k.

By (i), there exists j ≥ 0 such that Ker(IX∗ + K∗)j+1 = Ker(IX∗ + K∗)j .
Thus Ran(I + K)j+1 = ⊥ Ker(IX∗ + K∗)j+1 = ⊥ Ker(IX∗ + K∗)j = Ran(I + K)j .

(iii) Let T = I + K and let k satisfy Ker T k+1 = KerT k. By Theorem 9, we
have dim KerT < ∞. Since T k = (I + K)k, we can write T k in the form I + K ′

for some compact operator K ′, and so dim KerT k < ∞.
Let a1, . . . , am be a basis of KerT and let a1, . . . , am, am+1, . . . , ar be its

completion to a basis of KerT k = KerT k+1. Since T KerT k ⊂ KerT k, we have
T KerT k ⊂ ∨{Tam+1, . . . , T ar}, and so dim T KerT k ≤ r − m. Choose another
basis b1, . . . , br in KerT k such that bn+1, . . . , br is a basis of T KerT k. Thus r−n =
dimT KerT k ≤ r − m, and so m ≤ n. We now prove that codimRanT ≥ n. To
show this, it is sufficient to prove that b1, . . . , bn are linearly independent modulo
RanT .

Suppose on the contrary that
∑n

i=1 αibi ∈ Ran T for some αi ∈ C. Let
b ∈ X satisfy

∑n
i=1 αibi = Tb. Since

∑n
i=1 αibi ∈ KerT k, we have b ∈ KerT k+1 =

KerT k. Thus Tb ∈ T KerT k and Tb is a linear combination of bn+1, . . . , br. There-
fore α1 = · · · = αn = 0. Hence codimRan T ≥ n ≥ m = dim KerT . �

Theorem 11. Let K ∈ B(X) be a compact operator and let λ ∈ C, λ �= 0. Then

dimKer(K − λ) = dim Ker(K∗ − λ)
= codimRan(K − λ) = codimRan(K∗ − λ).

Proof. By A.1.14 and Theorem 7, dim Ker(K − λ) = codimRan(K∗ − λ) and
dimKer(K∗ − λ) = codimRan(K − λ). By the preceding theorem, we have
dimKer(K − λ) ≥ codim Ran(K − λ) = dim Ker(K∗ − λ). Since K∗ is also com-
pact, dim Ker(K∗ − λ) ≥ dim Ker(K∗∗ − λ). Further, K − λ = (K∗∗ − λ)|X , and
so Ker(K − λ) ⊂ Ker(K∗∗ − λ). Hence dim Ker(K − λ) = dim Ker(K∗ − λ). �
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Lemma 12. Let T ∈ B(X), let λ1, λ2, . . . be distinct non-zero eigenvalues of T , and
let x1, x2, . . . be corresponding non-zero eigenvectors. Then the vectors xi (i ∈ N)
are linearly independent.

Proof. We prove by induction on n that x1, . . . , xn are linearly independent. This
is clear for n = 1 since x1 �= 0.

Suppose that x1, . . . , xn are linearly independent and x1, . . . , xn+1 are lin-
early dependent. So xn+1 =

∑n
i=1 αixi for some αi ∈ C. We have xn+1 =

λ−1
n+1Txn+1 = λ−1

n+1

∑n
i=1 αiTxi =

∑n
i=1

λiαi

λn+1
xi. Thus αi = λiαi

λi+1
, which implies

αi = 0 for i = 1, . . . , n. Hence xn+1 = 0, a contradiction. �
Theorem 13. Let K ∈ B(X) be a compact operator, λ ∈ σ(K) and λ �= 0. Then λ
is an isolated point of σ(K).

Proof. Suppose on the contrary that there exists a sequence (λk) ⊂ σ(K) converg-
ing to λ. By Theorem 11, λk are eigenvalues of K. Let xk be corresponding eigen-
vectors, i.e., xk �= 0, Txk = λkxk (k ∈ N). For k ∈ N let Mk =

∨{x1, . . . , xk}.
By Lemma 12, M1 �= M2 �= · · · . Clearly, KMk ⊂ Mk and (K − λk)Mk ⊂
Mk−1 (k ∈ N). By Lemma 8, we can find elements yk ∈ Mk such that ‖yk‖ ≤ 2
and dist{yk, Mk−1} = 1 (k ≥ 2). For i > j > 1 we have

‖Kyi−Kyj‖ = ‖λiyi +(K −λi)yi −λjyj − (K−λj)yj‖ ≥ dist{λiyi, Mi−1} = |λi|.
Since λk → λ �= 0, the sequence (Kyi) contains no convergent subsequence. This
is a contradiction with the compactness of K. �
Corollary 14. Let K ∈ B(X) be a compact operator. Then σ(K) is at most count-
able. If λ ∈ σ(K), λ �= 0, then λ is an isolated point of σ(K) and

0 �= dimKer(K − λ) = codimRan(K − λ)
= dimKer(K∗ − λ) = codimRan(T ∗ − λ) < ∞.

Examples 15. (i) An important example of compact operators are integral opera-
tors.

Consider the Banach space C〈a, b〉 of all continuous complex-valued functions
on a bounded closed interval 〈a, b〉 with the sup-norm.

A continuous function K(s, t) defined on 〈a, b〉 × 〈a, b〉 defines an operator T
on C〈a, b〉 by

(Tf)(s) =
∫ b

a

K(s, t)f(t)dt.

It follows from classical results of analysis that T is a compact operator.
The classical Fredholm integral equation is

λf(s) −
∫ b

a

K(s, t)f(t)dt = g(s) (a ≤ s ≤ b),

where g ∈ C〈a, b〉 is given, λ is a parameter and f is unknown. Clearly, we can
write the equation as (λI − T )f = g.
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This was the original motivation that led to the study of operators of the
form λI −T where T is compact, see Riesz [Ri2]. The theory of these operators is
sometimes referred to as the Riesz-Schauder theory.

(ii) Let X, Y be Banach spaces, x∗ ∈ X∗ and y ∈ Y . Denote by y ⊗ x∗ :
X → Y the operator defined by (y ⊗ x∗)x = 〈x, x∗〉y (x ∈ X). Obviously,
‖y ⊗ x∗‖ = ‖y‖ · ‖x∗‖ and dim Ran(y ⊗ x∗) = 1.

Finite-rank operators are precisely finite linear combinations of operators of
this form.

Operators that can be expressed as
∑∞

i=1 yi⊗x∗
i for some yi ∈ Y and x∗

i ∈ X∗

with
∑

i ‖yi‖ ·‖x∗
i ‖ < ∞ are called nuclear. It is easy to see that nuclear operators

are norm-limits of finite-rank operators and therefore they are compact.
Nuclear operators acting on X form a non-closed two-sided ideal.

(iii) A diagonal operator diag(c1, c2, . . . ) acting on a separable Hilbert space
is compact if and only if lim ci = 0; it is nuclear if and only if

∑ |ci| < ∞. The
same characterization is true for unilateral weighted shifts with weights ci.

(iv) Let H be a Hilbert space with an orthonormal basis (ei)i≥1. Opera-
tors T ∈ B(H) defined by Tei =

∑∞
j=1 αi,jej (j ≥ 1), where αi,j ∈ C satisfy∑

i,j |αi,j |2 < ∞, are called Hilbert-Schmidt. Clearly,
∑

i,j |αi,j |2 =
∑

j ‖Tej‖2;
this number does not depend on the choice of an orthonormal basis (ej).

Hilbert-Schmidt operators are an important example of compact operators.

(v) The Volterra operator V : L2(0, 1) → L2(0, 1) is defined by (V f)(x) =∫ x

0
f(y)dy. V is an example of a compact operator with σ(V ) = {0}.

(vi) Let 1 ≤ p < q < ∞. By the Pitt theorem, every operator T : �q → �p

is compact. Furthermore, if X is reflexive, then each operator T ∈ B(X, �1) or
T ∈ B(c0, X) is compact.

16 Fredholm and semi-Fredholm operators

Definition 1. Let X, Y be Banach spaces, let T ∈ B(X, Y ). We say that:

(i) T is upper semi-Fredholm if RanT is closed and dim Ker T < ∞;
(ii) T is lower semi-Fredholm if codim RanT < ∞;
(iii) T is Fredholm if dim KerT < ∞ and codimRanT < ∞.

The set of all upper semi-Fredholm, lower semi-Fredholm and Fredholm op-
erators will be denoted by Φ+(X, Y ), Φ−(X, Y ) and Φ(X, Y ), respectively. Obvi-
ously, Φ(X, Y ) = Φ+(X, Y ) ∩ Φ−(X, Y ). Operators in Φ+(X, Y ) ∪ Φ−(X, Y ) will
be called shortly semi-Fredholm. If Y = X , then we write Φ(X) = Φ(X, X) and
similarly Φ+(X) and Φ−(X) for short.

The definition of semi-Fredholm operators is seemingly asymmetrical. How-
ever, the condition codim RanT < ∞ implies that the range of T is closed.
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Lemma 2. Let T ∈ B(X, Y ) and let F ⊂ Y be a finite-dimensional subspace.
Suppose that Ran T + F is closed. Then Ran T is closed.

In particular, if codimRanT < ∞, then RanT is closed.

Proof. Let F0 = RanT ∩ F and choose a subspace F1 such that F0 ⊕ F1 = F . Let
S :

(
X/ KerT

)⊕ F1 → Y be the operator defined by S(x + KerT )⊕ f = Tx + f .
Then RanS = RanT + F and S is one-to-one. Hence S is bounded below, and
consequently, the space Ran T = S

(
X/ KerT ⊕ {0}) is closed. �

Definition 3. Let T ∈ B(X, Y ) be an operator with closed range. We write α(T ) =
dimKerT and β(T ) = codimRan T . If T is semi-Fredholm (either upper or lower),
then the index of T is defined by ind(T ) = α(T ) − β(T ).

Clearly, if T is Fredholm, then ind(T ) < ∞. If T ∈ Φ+(X, Y )\Φ(X, Y ), then
ind(T ) = −∞. If T ∈ Φ−(X, Y ) \ Φ(X, Y ), then ind(T ) = +∞.

Theorem 4. Let T ∈ B(X, Y ) be an operator with closed range. Then α(T ∗) = β(T )
and β(T ∗) = α(T ). Thus:

T ∈ Φ(X, Y ) ⇔ T ∗ ∈ Φ(Y ∗, X∗);
T ∈ Φ+(X, Y ) ⇔ T ∗ ∈ Φ−(Y ∗, X∗);
T ∈ Φ−(X, Y ) ⇔ T ∗ ∈ Φ+(Y ∗, X∗).

If T is semi-Fredholm, then indT ∗ = − indT .

Proof. We have

β(T ) = dim Y/ RanT = dim (Y/ Ran T )∗= dimRan T⊥= dimKerT ∗ = α(T ∗).

Similarly,

α(T ) = dim KerT = dim (KerT )∗

= dim X∗/(KerT )⊥ = dim X∗/ RanT ∗ = β(T ∗). �

Theorem 5. Let X, Y and Z be Banach spaces, T ∈ B(X, Y ) and S ∈ B(Y, Z).
Then:

(i) if T and S are lower semi-Fredholm, then ST is lower semi-Fredholm;

(ii) if T and S are upper semi-Fredholm, then ST is upper semi-Fredholm;

(iii) if T and S are Fredholm, then ST is Fredholm.

Proof. (i) Let Y0 ⊂ Y and Z0 ⊂ Z be finite-dimensional subspaces such that
RanT +Y0 = Y and RanS +Z0 = Z. Then Z = Z0 +SY = Z0 +S Ran T +SY0 =
Ran(ST ) + (Z0 + SY0), where dim(Z0 + SY0) < ∞. Thus ST ∈ Φ−(X, Z).

(ii) If T, S are upper semi-Fredholm, then T ∗, S∗ are lower semi-Fredholm
and, by (i), T ∗S∗ is lower semi-Fredholm. Thus ST is upper semi-Fredholm.

(iii) Follows from (i) and (ii). �
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Theorem 6. Let X, Y and Z be Banach spaces, T ∈ B(X, Y ) and S ∈ B(Y, Z).
Then:

(i) if ST is lower semi-Fredholm, then S is lower semi-Fredholm;

(ii) if ST is upper semi-Fredholm, then T is upper semi-Fredholm;

(iii) if ST is Fredholm, then S is lower semi-Fredholm and T is upper semi-
Fredholm.

Proof. (i) We have RanS ⊃ Ran(ST ), so codimRan S ≤ codim Ran(ST ) < ∞.

(ii) If ST is upper semi-Fredholm, then its adjoint (ST )∗ = T ∗S∗ is lower
semi-Fredholm, so T ∗ is lower semi-Fredholm and T is upper semi-Fredholm.

(iii) Follows from (i) and (ii). �

Corollary 7. The sets Φ(X), Φ+(X) and Φ−(X) are regularities.

Proof. If T, S ∈ B(X) and TS = ST , then the previous two theorems imply

TS ∈ Φ(X) ⇔ T ∈ Φ(X) and S ∈ Φ(X),

and analogous equivalences also for Φ+(X) and Φ−(X).
Thus the sets of all Fredholm, upper and lower semi-Fredholm operators

satisfy property (P1) of Section 6. �

The corresponding spectra are called essential, essential approximate point
and essential surjective, respectively:

σe(T ) = {λ ∈ C : T − λ /∈ Φ(X)};
σπe(T ) = {λ ∈ C : T − λ /∈ Φ+(X)};
σδe(T ) = {λ ∈ C : T − λ /∈ Φ−(X)}.

Properties of these important spectra will be studied later where we also
show that they can be extended to commuting n-tuples of operators.

Clearly, λ ∈ σδe(T ) if and only if codimRan(T − λ) = ∞. The name of the
essential approximate point spectrum is justified by the following result:

Theorem 8. Let T ∈ B(X, Y ). Then T is upper semi-Fredholm if and only if there
exists a closed subspace M ⊂ X of finite codimension such that inf

{‖Tx‖ : x ∈
M, ‖x‖ = 1

}
> 0. Consequently, λ ∈ σπe(T ) if and only if

inf
{‖(T − λ)x‖ : x ∈ M, ‖x‖ = 1

}
= 0

for each closed subspace M of finite codimension.

Proof. Let T ∈ Φ+(X, Y ). Then dim KerT < ∞ and we can find a closed subspace
M ⊂ X such that X = KerT⊕M . The restriction T |M : M → Ran T is one-to-one
and onto, and so it is bounded below.
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Conversely, let M ⊂ X be a closed subspace of finite codimension and
inf{||Tx‖ : x ∈ M, ‖x‖ = 1} > 0. Since KerT ∩M = {0}, we have dimKerT < ∞.
Let F be a finite-dimensional subspace of X such that F ⊕ M = X . Then
RanT = TF + TM , where TM is closed since T |M is bounded below and
dimTF < ∞. Hence RanT is closed. Therefore T is upper semi-Fredholm. �

Theorem 9. Let T ∈ B(X, Y ) and K ∈ K(X, Y ). Then:

(i) T ∈ Φ+(X, Y ) ⇒ T + K ∈ Φ+(X, Y );
(ii) T ∈ Φ−(X, Y ) ⇒ T + K ∈ Φ−(X, Y );
(iii) T ∈ Φ(X, Y ) ⇒ T + K ∈ Φ(X, Y ).

Proof. (i) Let T ∈ Φ+(X, Y ) and let M1 be a closed subspace of X such that
codimM1 < ∞ and inf

{‖Tx‖ : x ∈ M1, ‖x‖ = 1
}

= c > 0. Since K is compact,
there exists a closed subspace M2 ⊂ X with codimM2 < ∞ and sup

{‖Tx‖ : x ∈
M2, ‖x‖ = 1

}
< c/2. Set M = M1 ∩ M2. Then codim M < ∞ and inf

{‖(T +
K)x‖ : x ∈ M, ‖x‖ = 1

} ≥ inf
{‖Tx‖ − ‖Kx‖ : x ∈ M, ‖x‖ = 1

} ≥ c/2. Hence
T + K ∈ Φ+(X, Y ).

(ii) If T ∈ Φ−(X, Y ) and K ∈ K(X, Y ), then T ∗ is upper semi-Fredholm and
K∗ is compact. By (i), T ∗ + K∗ is upper semi-Fredholm, and so T + K is lower
semi-Fredholm.

(iii) Follows from (i) and (ii). �

Theorem 10. Let T ∈ Φ+(X, Y ) and let M be a closed subspace of X . Then TM
is closed.

Proof. Let X = KerT⊕M1; so T |M1 be bounded below. Then M = (M∩M1)+M0

for some finite-dimensional subspace M0. Thus TM = T (M ∩ M1) + TM0 where
T (M ∩ M1) is closed since T |M1 is bounded below, and dimTM0 < ∞. Hence
TM is closed. �

Theorem 11. The sets Φ+(X, Y ), Φ−(X, Y ) and Φ(X, Y ) are open.

More precisely, if T ∈ Φ+(X, Y )
(
T ∈ Φ−(X, Y )

)
, then there exists ε > 0

such that α(T + S) ≤ α(T )
(
β(T + S) ≤ β(T )

)
for every S ∈ B(X, Y ) with

‖S‖ < ε. In particular, the functions α : Φ+(X, Y ) → 〈0,∞) and β : Φ−(X, Y ) →
〈0,∞) are upper semicontinuous.

Proof. Let T ∈ Φ+(X, Y ). Let M be a closed subspace of X such that X = KerT ⊕
M . Then T |M is bounded below. If S ∈ B(X, Y ) satisfies ‖S‖ < j(T |M), then
(T+S)|M is bounded below, and so T+S ∈ Φ+(X, Y ). Since Ker(T+S)∩M = {0},
we have α(T + S) = dim Ker(T + S) ≤ codimM = dimKerT = α(T ).

By taking adjoints we get the corresponding statements for lower semi-
Fredholm operators. Finally, the set Φ(X, Y ) = Φ+(X, Y )∩Φ−(X, Y ) is open. �

We show later that it is possible to take ε = γ(T ) in the previous theorem.
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Theorem 12. Let S ∈ B(X, Y ) and T ∈ B(Y, Z). If both S and T are lower semi-
Fredholm (or both are upper semi-Fredholm), then indTS = indT + indS.

Proof. Let us first suppose that both T and S are Fredholm. Let Y0 = RanS ∩
KerT . Then dim Y0 < ∞. Choose subspaces Y1 and Y2 such that RanS = Y0 ⊕Y1

and KerT = Y0⊕Y2. We have Y2∩Ran S ⊂ KerT∩Ran S = Y0, and so Y2∩Ran S =
{0}. Choose a finite-dimensional subspace Y3 such that Y = Ran S ⊕ Y2 ⊕ Y3 =
Y0 ⊕ Y1 ⊕ Y2 ⊕ Y3. Then

TY = TY1 ⊕ TY3 = T (Y1 ⊕ Y0) ⊕ TY3 = T RanS ⊕ TY3,

and so codimRan(TS) = codimRan T + dimTY3 = codimRanT + dimY3.
Furthermore, dimKerT = dimY0 + dim Y2 and codimRanS = dim Y2 +

dimY3. Consider the operator Ŝ = S|Ker(TS) : Ker(TS) → Y0. Clearly, Ŝ is onto
and Ker Ŝ = KerS. Hence dim Y0 = dimKer(TS)− dim KerS. Thus

ind(TS) = dim Ker(TS) − codimRan(TS)
= dim Y0 + dimKerS − codimRanT − dimY3

= dim KerT − dimY2 + dimKerS − codimRanT − codimRanS + dimY2

= ind T + indS.

If S ∈ Φ−(X, Y ) \ Φ(X, Y ), then dim Ker(TS) ≥ dim KerS = ∞, and so
ind(TS) = ∞ = indT + indS.

Let S be Fredholm and T ∈ Φ−(Y, Z) \Φ(Y, Z). Then dim KerT = ∞. Since
codimRanS < ∞, we have dim(RanS ∩ KerT ) = ∞. Since S maps Ker(TS)
onto RanS ∩ KerT , we conclude that dim Ker(TS) = ∞. Hence indTS = −∞ =
indT + indS.

Thus indTS = −∞ = indT +indS if both S and T are lower semi-Fredholm.
If S and T are both upper semi-Fredholm, then the statement follows by

duality. �
Theorem 13. Let T ∈ B(X, Y ). The following statements are equivalent:

(i) T is Fredholm;

(ii) there exist S ∈ B(Y, X), F1 ∈ F(X) and F2 ∈ F(Y ) such that ST = IX +F1

and TS = IY + F2;

(iii) there exist S ∈ B(Y, X), K1 ∈ K(X) and K2 ∈ K(Y ) such that ST = IX +K1

and TS = IY + K2.

Proof. (i) ⇒ (ii): Let Q ∈ B(Y ) be a projection onto RanT , let M be a closed
subspace of X such that X = KerT ⊕ M . Then T |M : M → RanT is one-
to-one and onto. Let S1 : RanT → M be its inverse and set S = S1Q. Then
(ST − IX)m = 0 for all m ∈ M , and so ST − IX ∈ F(X).

Further (TS − IY )|Ran T = 0, and so TS − IY ∈ F(Y ).
(ii) ⇒ (iii): Clear.
(iii) ⇒ (i): Since ST = IX + K1 ∈ Φ(X), we have T ∈ Φ+(X, Y ). Similarly,

TS = IY + K2 ∈ Φ(Y ) implies that T ∈ Φ−(X, Y ). Hence T is Fredholm. �
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Thus the Fredholm operators are precisely the operators invertible modulo
the ideal of compact operators. Next, we characterize also the one-sided invertibil-
ity.

Theorem 14. Let T ∈ B(X, Y ). The following conditions are equivalent:

(i) T ∈ Φ+(X, Y ) and Ran T is complemented;

(ii) there exist S ∈ B(Y, X) and F ∈ F(X) such that ST = IX + F ;

(iii) there exist S ∈ B(Y, X) and K ∈ K(X) such that ST = IX + K.

Proof. (i) ⇒ (ii): Let Q ∈ B(Y ) be a projection onto RanT , let M be a closed
subspace of X such that X = KerT ⊕ M . Then T |M : M → RanT is one-
to-one and onto. Let S1 : RanT → M be its inverse and set S = S1Q. Then
(IX − ST )|M = 0, and so IX − ST is a finite-rank operator.

(ii) ⇒ (iii): Clear.

(iii) ⇒ (i): Let ST = IX + K for some S ∈ B(Y, X) and K ∈ K(X). Then
ST is Fredholm and T ∈ Φ+(X, Y ) by Theorem 6.

By Theorem 15.10, there exists k such that Ran(ST )k = Ran(ST )k+1. Set
M = Ran(ST )k. Since (ST )k ∈ Φ(X), codimM < ∞. Let P ∈ B(X) be a
projection onto M . Write T0 = T |M : M → Y and S0 = PS : Y → M . Then
S0T0 = (ST )|M = IM + K|M , K|M is compact and S0T0M = M . By Theorem
15.11, S0T0 ∈ B(M) is invertible, so (S0T0)−1S0T0 = IM . By Theorem 9.16,
RanT0 = TM is complemented in Y . Since Ran T = TM + T (I − P )X and
dimT (I − P )X < ∞, Lemma A.1.25 (iii) implies that RanT is complemented.
This finishes the proof. �

Operators satisfying any of the conditions of the previous theorem will be
called left essentially invertible. The right essentially invertible operators can be
characterized similarly.

Theorem 15. Let T ∈ B(X, Y ). The following conditions are equivalent:

(i) T ∈ Φ−(X, Y ) and KerT is complemented;

(ii) there exist S ∈ B(Y, X) and F ∈ F(Y ) such that TS = IX + F ;

(iii) there exist S ∈ B(Y, X) and K ∈ K(Y ) such that TS = IX + K.

Proof. The proof is analogous to the previous theorem. �
It is clear that the sets of all left (right) essentially invertible operators from X

to X satisfy (P1) and therefore they are regularities. We define the corresponding
left (right) essential spectra of T ∈ B(X) by

σle(T ) = {λ ∈ C : T − λ is not left essentially invertible},
σre(T ) = {λ ∈ C : T − λ is not right essentially invertible}.

Again, we will show later that these spectra can be extended to commuting n-
tuples of operators.
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For operators on a Hilbert space the left (right) essential spectrum coin-
cides with the essential approximate point spectrum and the essential surjective
spectrum, respectively (from this reason, some authors call σπe and σδe the left
and right essential spectrum even for Banach space operators; this terminology is
rather confusing).

Theorem 16. Let T ∈ B(X, Y ) be a semi-Fredholm operator and let K ∈ K(X, Y ).
Then T + K is semi-Fredholm and ind(T + K) = indT .

Proof. By Theorem 9, Φ(X, Y ), Φ+(X, Y ) and Φ−(X, Y ) are invariant under com-
pact perturbations.

Let T ∈ Φ(X, Y ). By Theorem 13, there exist S ∈ B(Y, X) and K1 ∈ K(X)
such that ST = IX + K1. By Theorem 12 and Corollary 15.14, indT + indS =
ind(IX + K1) = 0, so indT = − indS. Further, S(T + K) = IX + (K1 + SK),
where K1 + SK ∈ K(X), and so indS + ind(T + K) = 0. Hence ind(T + K) =
− indS = ind T .

If T ∈ Φ+(X, Y ) \ Φ(X, Y ), then T + K ∈ Φ+(X, Y ) \ Φ(X, Y ), and so
ind(T + K) = indT = −∞.

The statement for T ∈ Φ−(X, Y ) \ Φ(X, Y ) can be proved similarly. �

Theorem 17. Let T ∈ Φ(X, Y ). Then there exists ε > 0 such that T +R ∈ Φ(X, Y )
and ind(T + R) = indT for every R ∈ B(X, Y ) with ‖R‖ < ε.

Proof. By Theorem 13, there exist S ∈ B(Y, X) and K ∈ K(X) such that ST =
IX + K; we can assume that S is Fredholm. Thus indT + indS = indST = 0. If
R ∈ B(X, Y ), ‖R‖ < ‖S‖−1, then S(T + R) = (IX + SR) + K. Since IX + SR is
invertible, we have indS + ind(T + R) = ind(IX + SR) + K = ind(IX + SR) = 0.
Thus ind(T + R) = − indS = indT . �

The stability of the index for semi-Fredholm operators is true too; it will be
proved later. Moreover, the precise estimate of ε will be given.

Theorem 18. Let T ∈ B(X, Y ). The following conditions are equivalent:

(i) T ∈ Φ+(X, Y );
(ii) dim Ker(T − K) < ∞ for every K ∈ K(X, Y );
(iii) there exists ε > 0 such that dim Ker(T − K) < ∞ for every K ∈ K(X, Y )

with ‖K‖ ≤ ε.

Proof. (i) ⇒ (ii) and (ii) ⇒ (iii): Clear.

(iii) ⇒ (i): Suppose that T /∈ Φ+(X, Y ), so j(T |M) = 0 for every subspace
M ⊂ X of finite codimension. Let ε > 0. We construct inductively points xk ∈ X ,
x∗

k ∈ X∗ (k ∈ N) such that 〈xk, x∗
j 〉 = δkj , ‖xk‖ = 1, ‖x∗

j‖ ≤ 2j and ‖Txk‖ ≤
ε ·2−2k for all j, k ∈ N. The existence of x1 with ‖x1‖ = 1 and ‖Tx1‖ ≤ ε/4 follows
from the fact that j(T ) = 0. By the Hahn-Banach theorem there exists x∗

1 ∈ X∗

such that ‖x∗
1‖ = 1 = 〈x1, x

∗
1〉.
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Suppose that we have constructed vectors x1, . . . , xn ∈ X , x∗
1, . . . , x

∗
n ∈ X∗

satisfying all the conditions required. Consider the space M =
⋂n

i=1 Kerx∗
i . Since

codimM < ∞, we can find xn+1 ∈ M such that ‖xn+1‖ = 1 and ‖Txn+1‖ <
ε ·2−2(n+1). Let g ∈ X∗ satisfy ‖g‖ = 1 = 〈xn+1, g〉. Set x∗

n+1 = g−∑n
i=1〈xi, g〉x∗

i .
Then 〈xi, x

∗
n+1〉 = δi,n+1 and ‖x∗

n+1‖ ≤ 1 +
∑n

i=1 ‖x∗
i ‖ ≤ 2n+1.

Let xk ∈ X and x∗
k ∈ X∗ be the vectors constructed above. For n ∈ N define

Fn ∈ B(X) by Fnx =
∑n

i=1〈x, x∗
i 〉Txi. For m > n and x ∈ X we have

‖(Fm − Fn)x‖ =
∥∥∥∥ m∑

i=n+1

〈x, x∗
i 〉Txi

∥∥∥∥ ≤
m∑

i=n+1

‖x‖ · ‖x∗
i ‖ · ‖Txi‖

≤ ‖x‖ ·
m∑

i=n+1

ε2i

22i
≤ ‖x‖ · ε

m∑
i=n+1

2−i < 2−nε‖x‖.

Thus the sequence (Fn) is convergent (in the norm) and its limit K is a compact
operator. Further, Kx =

∑∞
i=1〈x, x∗

i 〉Txi, ‖K‖ ≤ ε and (T − K)xi = 0 for all i.
Since the elements xi are linearly independent, we have dim Ker(T −K) = ∞. �
Theorem 19. Let T ∈ B(X, Y ). The following conditions are equivalent:

(i) T ∈ Φ−(X, Y );
(ii) codimRan(T − K) < ∞ for every K ∈ K(X, Y );
(iii) there exists ε > 0 such that codimRan(T − K) < ∞ for each compact oper-

ator K ∈ K(X, Y ) with ‖K‖ ≤ ε.

Proof. (i) ⇒ (ii) and (ii) ⇒ (iii): Clear.

(iii) ⇒ (i): The argument is similar to the previous proof. Suppose that T is
not lower semi-Fredholm, so T ∗ /∈ Φ+(Y ∗, X∗) and for every subspace M ⊂ Y ∗

of finite codimension we have j(T ∗|M) = 0. Let ε > 0. We construct inductively
points yk ∈ Y , y∗

k ∈ Y ∗ (k ∈ N) such that 〈yk, y∗
j 〉 = δkj , ‖yk‖ ≤ 4k, ‖y∗

j ‖ = 1
and ‖T ∗y∗

k‖ < ε8−k for all j, k ∈ N. The existence of y∗
1 with ‖y∗

1‖ = 1 and
‖T ∗y∗

1‖ ≤ ε/8 follows from the fact that T ∗ is not bounded below. We can find
y1 ∈ T such that ‖y1‖ ≤ 4 and 〈y1, y

∗
1〉 = 1.

Suppose that we have constructed vectors y1, . . . , yn ∈ Y , y∗
1 , . . . , y∗

n ∈ Y ∗

satisfying all the conditions required. Consider the space M = {y1, . . . , yn}⊥. Since
codimM < ∞ and j(T ∗|M) = 0, we can find y∗

n+1 ∈ M such that ‖y∗
n+1‖ = 1 and

‖T ∗y∗
n+1‖ < ε8−(n+1). There exists y ∈ Y such that ‖y‖ ≤ 2 and 〈y, y∗

n+1〉 = 1.
Set yn+1 = y − ∑n

i=1〈y, y∗
i 〉yi. Then we have ‖yn+1‖ ≤ 2 +

∑n
i=1 2 · 4i ≤ 4n+1,

〈yn+1, y
∗
n+1〉 = 〈y, y∗

n+1〉 = 1 and 〈yn+1, y
∗
j 〉 = 〈y, y∗

j 〉 −
∑n

i=1〈y, y∗
i 〉〈yi, y

∗
j 〉 = 0 for

1 ≤ j ≤ n.
Let yk ∈ Y and y∗

k ∈ Y ∗ be the vectors constructed above. For n ∈ N define
Fn ∈ B(X, Y ) by Fnx =

∑n
i=1〈x, T ∗y∗

i 〉yi. For m > n and x ∈ X we have

‖(Fm − Fn)x‖ =
∥∥∥∥ m∑

i=n+1

〈x, T ∗y∗
i 〉yi

∥∥∥∥ ≤
m∑

i=n+1

‖x‖ε8−i · 4i ≤ ‖x‖ε2−n,
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so the sequence (Fn) is convergent, its limit K is a compact operator and ‖K‖ ≤ ε.
Further, Kx =

∑∞
i=1〈x, T ∗y∗

i 〉yi and 〈Kx, y∗
k〉 = 〈x, T ∗y∗

k〉 = 〈Tx, y∗
k〉 for all x ∈ X

and k ∈ N. Thus y∗
k ∈ Ran(T − K)⊥ for all k. Since the elements y∗

k are linearly
independent, we have dimRan(T − K)⊥ = codim Ran(T − K) = ∞. �

We finish the section with the Kato decomposition of semi-Fredholm opera-
tors. We start with the following lemma:

Lemma 20. Let T ∈ B(X) be an operator with closed range. Suppose that for
each k ∈ N there exists a finite-dimensional subspace Fk ⊂ X such that KerT ⊂
RanT k + Fk. Then:

(i) RanT k is closed for each k ∈ N;

(ii) either T is Kato, or there exist closed subspaces Y1, Y2 ⊂ Y invariant with
respect to T such that X = Y1 ⊕ Y2, 1 ≤ dim Y1 < ∞ and T |Y1 is nilpotent.

Proof. (i) We prove by induction on k that RanT k is closed for all k.
By assumption, this is true for k = 1. Suppose that k ≥ 1, RanT k is closed

and let KerT ⊂ RanT k+1 + Fk+1 for some finite-dimensional subspace Fk+1. We
may assume that Fk+1 ⊂ KerT .

Let u ∈ Ran T k+1. By the induction assumption, u ∈ RanT k, and so u = T kv
for some v ∈ X . Further, there are vectors vj ∈ X (j = 1, 2, . . . ) such that
T k+1vj → u (j → ∞). Thus T (T kvj − T k−1v) → 0. Consider the operator
T̂ : X/ KerT → RanT induced by T . Clearly, T̂ is bounded below and T̂ (T kvj −
T k−1v+KerT ) → 0, so T kvj +T k−1v+KerT → 0 (j → ∞) in the quotient space
X/ KerT . Thus there exist vectors wj ∈ KerT such that T kvj+wj → T k−1v. Since
wj ∈ KerT ⊂ Ran T k+Fk+1 and RanT k+Fk+1 is closed, we have T k−1v = T kx+f
for some x ∈ X and f ∈ Fk+1 ⊂ KerT . Hence u = T kv = T k+1x ∈ Ran T k+1 and
RanT k+1 is closed.

(ii) Let k ≥ 1 be the smallest integer such that KerT �⊂ Ran T k; so KerT ⊂
RanT k−1. Since KerT ⊂ RanT k +Fk, for all u1, . . . , un ∈ KerT with n > dim Fk

there is a non-trivial linear combination
∑n

i=1 αiui ∈ Ran T k ∩ KerT . Thus
dim KerT/

(
KerT ∩ RanT k

) ≤ dimFk and there is a finite-dimensional subspace
Lk−1 such that

KerT = Lk−1 ⊕
(
KerT ∩ Ran T k

)
.

Let r = dimLk−1. Then 1 ≤ r < ∞.
As Lk−1 ⊂ KerT ⊂ Ran T k−1, we can find a subspace L0 such that dimL0 =

r and T k−1L0 = Lk−1. For i = 1, . . . , k − 1 set Li = T iL0. Clearly, Li ⊂ RanT i

and Li ∩ RanT i+1 = {0} for all i. Therefore the subspaces L0, L1, . . . , Lk−1 and
RanT k are linearly independent in the following sense: if li ∈ Li (0 ≤ i ≤ k − 1),
x ∈ R(T k) and x + l0 + · · · + lk−1 = 0, then x = l0 = · · · = lk−1 = 0.

Let x1, . . . , xr be a basis in L0. Since T k−1x1, . . . , T
k−1xr are linearly in-

dependent modulo RanT k + L0 + · · · + Lk−2, we can find linear functionals
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f1, . . . , fr ∈ (
Ran T k + L0 + · · · + Lk−2

)⊥ such that 〈T k−1xi, fj〉 = δij for all
i, j = 1, . . . , r. Set

Y1 =
k−1∨
i=0

Li and Y2 =
k−1⋂
i=0

r⋂
j=1

Ker(T ∗ifj).

Clearly, dimY1 < ∞, TY1 ⊂ Y1 and (T |Y1)k = 0. Further, TY2 ⊂ Y2. Indeed, if
x ∈ Y2, then

〈Tx, T ∗ifj〉 = 〈x, T ∗(i+1)fj〉 = 0 for 0 ≤ i ≤ k − 2

and 〈Tx, T ∗(k−1)fj〉 = 〈T kx, fj〉 = 0.
Since

〈T ixj , T
∗i′fj′〉 = 〈T i+i′xj , fj′〉 =

{
1 (j = j′, i + i′ = k − 1),
0 otherwise,

the sets
{
T ixj : 0 ≤ i ≤ k − 1, 1 ≤ j ≤ r

}
and

{
T ∗ifj : 0 ≤ i ≤ k − 1, 1 ≤ j ≤ r

}
form a biorthogonal system. Thus it is easy to show that X = Y1 ⊕ Y2. �

Theorem 21. (Kato decomposition) Let T ∈ B(X) be semi-Fredholm. Then there
exist closed subspaces X1, X2 ⊂ X invariant with respect to T such that X =
X1 ⊕ X2, dimX1 < ∞, T |X1 is nilpotent and T |X2 is Kato.

Proof. Suppose first that T is upper semi-Fredholm. If T is Kato, then we can take
X1 = {0}, X2 = X .

If T is not Kato, then we can use the previous lemma to find a decomposition
X = Y1 ⊕ Y2 such that TYi ⊂ Yi (i = 1, 2), 1 ≤ dimY1 < ∞ and T |Y1 nilpotent.
Let Ti = T |Yi (i = 1, 2). Clearly, KerT = KerT1 ⊕ KerT2, and so dim KerT2 <
dimKerT . If T2 is Kato, then the proof is finished, otherwise we can repeat the
same construction for the operator T2. After a finite number of steps we obtain
the required decomposition.

If T is lower semi-Fredholm, then we can proceed similarly. In this case

codimRanT2 < codimRanT1 + codimRan T2 = codimRan T.

Again, after a finite number of steps we obtain the required decomposition. �

17 Construction of Sadovskii/Buoni, Harte, Wickstead

In this section we introduce a construction which is very useful in the study of
Fredholm operators and essential spectra.

Let X be a Banach space. Denote by �∞(X) the set of all bounded sequences
of elements of X . It is clear that �∞(X) with the natural algebraic operations and
with the norm ‖(xi)∞i=1‖ = supi∈N ‖xi‖ is a Banach space.
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For x̃ = (xi) ∈ �∞(X) let q(x̃) be the infimum of all ε > 0 such that the
set {xi : i ∈ N} is contained in the union of a finite number of open balls with
radius ε.

It is easy to see that q(x̃) = 0 if and only if the set {xi : i ∈ N} is totally
bounded (i.e., its closure is compact). So q is a “measure of non-compactness”.
Let further m(X) =

{
x̃ ∈ �∞(X) : q(x̃) = 0

}
.

The basic properties of q and m(X) are given in the next lemma.

Lemma 1. Let X be a Banach space. Then for all x̃, ỹ ∈ �∞(X) and λ ∈ C we
have:

(i) q(x̃) ≤ ‖x̃‖;
(ii) q(x̃ + ỹ) ≤ q(x̃) + q(ỹ), q(λx̃) = |λ|q(x̃) (so q is a seminorm on �∞(X));
(iii) m(X) is a closed subspace of �∞(X);
(iv) m(X) is the closure of the set of all sequences (xi) ∈ �∞(X) such that

dim
∨{xi : i ∈ N} < ∞;

(v) q(x̃) = inf
{‖x̃ + m̃‖ : m̃ ∈ m(X)

}
.

Proof. Straightforward. �
Lemma 2. Let M, N be closed subspaces of a Banach space X and let M ⊂ N .
Then:

(i) if dimN/M < ∞, then �∞(M) + m(X) = �∞(N) + m(X);
(ii) if dimN/M = ∞, then dim

(
�∞(M) + m(X)

)
/
(
�∞(N) + m(X)

)
= ∞.

Proof. (i) Let P : N → M be a bounded projection onto M . If ñ = (ni) ∈ �∞(N),
then (ni) = (Pni) + ((I − P )ni), where (Pni) ∈ �∞(M) and ((I − P )ni) ∈
�∞(Ker P ) ⊂ m(X).

(ii) By Lemma 15.8, there exist vectors x1, x2, . . . in N such that ‖xk‖ ≤
2 and dist

{
xk+1, M ∨ {x1, . . . , xk}

}
= 1 for every k. Consider the sequences

x̃(1), x̃(2), · · · ∈ �∞(N) defined by x̃(k) = (xk+1, xk+2, . . . ).
We show that these sequences are linearly independent modulo �∞(M) +

m(X). Suppose on the contrary that for some k there are m̃ = (mi) ∈ �∞(M),
l̃ = (li) ∈ m(X) and α1, . . . , αk−1 ∈ C such that x̃(k) = m̃ + l̃ +

∑k−1
i=1 αix̃

(i).
Equivalently,

lj = xk+j − mj −
k−1∑
i=1

αixi+j

for all j ≥ 1. Thus for 1 ≤ j < j′ we have

‖lj′ − lj‖ =
∥∥∥∥xk+j′ − xk+j − mj′ + mj −

k−1∑
i=1

αixi+j′ −
k−1∑
i=1

αixi+j

∥∥∥∥
≥ dist{xk+j′ , M ∨ {x1, . . . , xk+j′−1}} ≥ 1,

and so l̃ /∈ m(X), a contradiction. �
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For a Banach space X write X̃ = �∞(X)/m(X). Thus the elements of X̃ can
be viewed as bounded sequences of elements of X with the new norm q(x̃); we
identify x̃ and ỹ if q(x̃ − ỹ) = 0.

Let X, Y be Banach spaces and let T : X → Y be an operator. Define
T∞ : �∞(X) → �∞(Y ) by T∞(xi) = (Txi). It is easy to see that

q(T∞(x̃)) ≤ ‖T ‖ · q(x̃) (x̃ ∈ �∞(X)),

and so T∞m(X) ⊂ m(Y ).
Let T̃ : X̃ → Ỹ be the operator defined by T̃ (x̃ + m(X)) = T∞x̃ + m(Y ).

Lemma 3. Let T ∈ B(X, Y ), S ∈ B(Y, Z). Then:

(i) ‖T̃‖ ≤ ‖T ‖;
(ii) S̃T = S̃T̃ ;

(iii) if IX is the identity operator on X , then ĨX = IX̃ ;

(iv) T̃ = 0 if and only if T is compact.

Proof. Straightforward. �
Lemma 4. Let T : X → Y be an operator with closed range. Then Ran T∞ =
�∞(Ran T ).

Proof. It is clear that RanT∞ ⊂ �∞(Ran T ). The opposite inclusion is a conse-
quence of the open mapping theorem. �
Theorem 5. Let X, Y be infinite-dimensional Banach spaces and let T : X → Y
be an operator. Then:

(i) if T is onto, then T̃ is onto. More precisely, k(T̃ ) ≥ k(T ), where k is the
surjectivity modulus;

(ii) if T is bounded below, then T̃ is bounded below. More precisely, j(T̃ ) ≥
1
2 j(T ), where j is the injectivity modulus;

(iii) if RanT is closed, then Ran T̃ is closed.

Proof. (i) If T is onto, then T̃ is onto by the preceding lemma. Let ỹ = (yi) ∈ �∞(Y )
satisfy q(ỹ) < 1. Then there are a finite number of elements z1, . . . , zn ∈ Y such
that dist

{
yi, {z1, . . . , zn}

}
< 1 (i ∈ N). For every j = 1, . . . , n choose uj ∈ X

such that Tuj = zj. For i ∈ N find j(i) ∈ {1, . . . , n} such that ‖yi − zj(i)‖ < 1
and vi ∈ X such that Tvi = yi − zj(i) and ‖vi‖ ≤ k(T )−1. Set x̃ = (xi), where
xi = vi + uj(i). Then Txi = yi and dist

{
xi, {u1, . . . , un}

} ≤ ‖xi − uj(i)‖ = ‖vi‖ ≤
k(T )−1. Thus q(x̃) ≤ k(T )−1 and k(T̃ ) ≥ k(T ).

(ii) Let (xi) ∈ �∞(X) and let q((Txi)) < 1. Then the set {Txi : i ∈ N} can
be covered by a finite number of balls B1, . . . , Bn of radius 1. We can assume that
each ball Bj contains at least one element Txij . Then {Txi : i ∈ N} ⊂ ⋃n

j=1

{
y ∈

Y : ‖y−Txij‖ ≤ 2
}
. We have {xi : i ∈ N} ⊂ ⋃n

j=1

{
x ∈ X : ‖x−xij‖ ≤ 2j(T )−1

}
,

and so q((xi)) ≤ 2j(T )−1. Hence j(T̃ ) ≥ 1
2j(T ).
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(iii) Let RanT be closed. Then T can be expressed as the composition T =
T2T1, where T1 : X → RanT is induced by T , and T2 : RanT → Y is the natural
embedding. By (i) and (ii), T̃1 is onto and T̃2 is bounded below. Thus T̃ = T̃2T̃1,
and so Ran T̃ = T̃2 Ran T̃1, which is closed. �

The factor 1
2 in Theorem 5 (ii) is really necessary, see Example 24.6.

Theorem 6. Let T : X → Y . The following statements are equivalent:

(i) T is lower semi-Fredholm (i.e., codimRanT < ∞);

(ii) T̃ is onto;

(iii) T̃ is lower semi-Fredholm;

(iv) Ran T̃ is dense in Ỹ .

Proof. Suppose that T is lower semi-Fredholm. Since Ran T is closed and of finite
codimension, we have �∞(Ran T ) + m(Y ) = �∞(Y ) by Lemma 2. Thus T̃ is onto.

Conversely, suppose that T is not lower semi-Fredholm. By Theorem 16.19,
there exists T1 ∈ B(X, Y ) such that T − T1 is compact and codim Ran T1 = ∞.
Then T̃1 = T̃ , RanT∞

1 ⊂ �∞(Ran T1) and, by Lemma 2,

dim �∞(Y )/
(
�∞(Ran T1) + m(Y )

)
= ∞.

Thus codim Ran T̃1 = ∞ and T̃ is not lower semi-Fredholm.
Also, there exists a sequence ỹ = (yi) ∈ �∞(Y ) such that ‖yi‖ ≤ 2 and

dist
{
yi, Ran T1 ∨ {y1, . . . , yi−1}

}
= 1 for all i ∈ N. Thus for all x̃ ∈ �∞(X) and

i �= j we have ‖(yi −T1xi)− (yj − T1xj)‖ ≥ 1, and so q
(
ỹ − (T∞

1 x̃)
) ≥ 1/2. Hence

ỹ + m(Y ) /∈ Ran T̃1 = Ran T̃ and Ran T̃ is not dense in Ỹ . �
Lemma 7. Let (xi) ∈ m(X). Then there exist numbers 1 ≤ n1 < n2 < · · · with
the property that

dist
{
xi, {x1, . . . , xnk

}} ≤ 2−k

for all k, i ∈ N.

Proof. We construct the numbers nk inductively. Let k ∈ N. There exists a finite
set F ⊂ X such that dist{xi, F} ≤ 2−(k+1) for each i. We can assume that F
is a minimal set with this property. For every f ∈ F choose if ∈ N such that
‖xif

− f‖ ≤ 1
2k+1 . Choose nk ≥ max{if : f ∈ F} such that nk > nk−1. Obviously,

dist
{
xi, {x1, . . . , xnk

}} ≤ 2−k for each i. �
Lemma 8. Let T : X → Y be an operator with closed range, let (xi) ∈ �∞(X)
and (Txi) ∈ m(Y ). Then there exists a sequence (x′

i) ∈ m(X) such that xi − x′
i ∈

KerT (i ∈ N). In particular, Ker T̃ = �∞(KerT ) + m(X).
If T is onto, then T∞m(X) = m(Y ).

Proof. Let (xi) ∈ �∞(X) and (Txi) ∈ m(Y ). Let 0 < s < γ(T ). By Lemma 7,
there exist numbers 1 ≤ n1 < n2 < · · · such that

dist
{
Txi, {Tx1, . . . , Txnk

}} ≤ 2−k (k, i ∈ N).
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We construct inductively points x′
i ∈ X such that Tx′

i = Txi and

dist
{
x′

i, {x′
1, . . . , x

′
nk
}} ≤ 1

s · 2k
(k, i ∈ N, nk < i ≤ nk+1). (1)

For i ≤ n1 set x′
i = xi.

Suppose that k ≥ 1 and the points x′
1, . . . , x

′
nk

satisfying (1) have already
been constructed. For each i, nk < i ≤ nk+1, there exists j(i) ≤ nk such that
‖Txi−Txj(i)‖ ≤ 2−k. Find ui ∈ X such that Tui = Txi−Txj(i) and ‖ui‖ ≤ 1

s·2k .
Set x′

i = x′
j(i) + ui. Then Tx′

i = Txj(i) + Tui = Txi and we have ‖x′
i − x′

j(i)‖ =
‖ui‖ ≤ 1

s·2k . Thus x′
i satisfy (1) and we can continue the induction.

Note that the sequence (x′
i) satisfying (1) also satisfies

dist
{
x′

i, {x′
1, . . . , x

′
nk
}} ≤ 1

s · 2k−1
(k, i ∈ N). (2)

This is clear for i ≤ nk+1. Let nl < i ≤ nl+1 for some l ≥ k + 1. Then there
exists jl ≤ nl with ‖x′

i − x′
jl
‖ ≤ 1

s·2l and we can construct inductively indices
jl−1 ≤ nl−1, . . . , jk ≤ nk such that ‖x′

jl
−x′

jl−1
‖ ≤ 1

s·2l−1 , . . . , ‖x′
jk+1

−x′
jk
‖ ≤ 1

s·2k .
Thus

‖x′
i − xjk

‖ ≤ 1
s · 2l−1

+
1

s · 2l−2
+ · · · + 1

s · 2k
≤ 1

s · 2k−1
.

Clearly, (2) implies that (x′
i) ∈ m(X). �

Theorem 9. Let T ∈ B(X, Y ). The following conditions are equivalent:

(i) T is upper semi-Fredholm;

(ii) T̃ is one-to-one;

(iii) T̃ is bounded below;

(iv) T̃ is upper semi-Fredholm.

Proof. Suppose that T is upper semi-Fredholm. Then Ran T̃ is closed. By Lemma 8,
Ker T̃ = �∞(KerT ) + m(X) = m(X). So T̃ is one-to-one and therefore bounded
below.

Conversely, if T is not upper semi-Fredholm, then there exists a compact
operator K : X → Y such that T1 = T + K satisfies dim KerT1 = ∞. Clearly,
KerT∞

1 = �∞(KerT1) and, by Lemma 2, dim
(
KerT∞

1 + m(X)
)
/m(X) = ∞. So

dimKer T̃1 = ∞. Thus T̃ = T̃1 is neither one-to-one nor upper semi-Fredholm. �
Corollary 10. Let T ∈ B(X). Then σ(T̃ ) = σe(T ), σπ(T̃ ) = σπe(T ) and σδ(T̃ ) =
σδe(T ).

Theorem 11. Let X, Y, Z be Banach spaces, let T : X → Y , S : Y → Z be
operators such that ST = 0. The following conditions are equivalent:

(i) dim KerS/ RanT < ∞ and Ran S is closed;

(ii) Ran T̃ = Ker S̃;

(iii) dim Ker S̃/ Ran T̃ < ∞.
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Proof. Suppose that (i) is true. Then RanT is closed and

Ran T∞ + m(Y ) = �∞(RanT ) + m(Y ) = �∞(KerS) + m(Y ) = KerS∞ + m(Y ).

Thus Ran T̃ = Ker S̃ by Lemma 8.
Conversely, suppose that (i) is false. Suppose first that dimKerS/ RanT =

∞. By Theorem 16.19, there exists T1 : X → Y such that T − T1 is com-
pact, RanT1 ⊂ KerS and dimKerS/RanT1 = ∞. Thus Ran T∞

1 + m(Y ) ⊂
�∞(Ran T1) + m(Y ) and

dim
(
�∞(KerS) + m(Y ))

)
/
(
�∞(Ran T1 + m(Y ))

)
= ∞.

So dim Ker S̃/ Ran T̃ = dimKer S̃/ Ran T̃1 = ∞.
Suppose now that dim KerS/ RanT < ∞ and RanS is not closed. Then

RanT is closed. Consider the operator S′ : Y/ RanT → Z induced by S. Since
RanS′ = RanS, which is not closed, S′ is not upper semi-Fredholm and there
exists operator S′

1 : Y/ RanT → Z such that S′−S′
1 is compact and dim KerS′

1 =
∞. Let P : Y → Y/ RanT be the canonical projection and S1 = S′

1P . Then
S1T = 0, dim KerS1/ RanT = ∞ and S − S1 = (S′ − S′

1)P , which is compact.
Hence dim Ker S̃/ Ran T̃ = dimKer S̃1/ Ran T̃ = ∞. �

18 Perturbation properties of Fredholm and
semi-Fredholm operators

In this section we give quantitative stability results for Fredholm and semi-Fred-
holm operators.

Lemma 1. Let T ∈ ∂Φ(X, Y ). Then T /∈ Φ+(X, Y ) ∪ Φ−(X, Y ).

Proof. Let Tn ∈ B(X, Y ) be a sequence of Fredholm operators that converges in
the norm topology to T /∈ Φ(X, Y ). Then the operators T̃n are invertible, T̃n → T̃
and T̃ is not invertible, and so T̃ is neither one-to-one nor onto. Thus T is not
semi-Fredholm. �
Corollary 2. Let T ∈ B(X, Y ) be a semi-Fredholm operator. Then there exists ε > 0
such that T + S is semi-Fredholm and ind(T + S) = indT for every S ∈ B(X, Y )
with ‖S‖ < ε.

Proof. If T is Fredholm, then the result was proved in Theorem 16.17. Suppose
that T ∈ Φ+(X, Y ) \ Φ(X, Y ). Then indT = −∞. Since the set of all upper
semi-Fredholm operators is open and, by Lemma 1, T is not a limit of Fredholm
operators, ind(T + S) = −∞ for every S with norm small enough.

The same argument can be used for lower semi-Fredholm operators. �
Corollary 3. The index is constant on every component of connectivity of

Φ+(X, Y ) ∪ Φ−(X, Y ).
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Proof. Let G be a component of connectivity of Φ+(X, Y )∪Φ−(X, Y ). Fix T0 ∈ G.
By Corollary 2, function T �→ ind T is continuous on G. Therefore the set {T ∈
G : indT = indT0} is both open and closed, and thus it is equal to G. Hence the
index is constant on G. �

Theorem 4. If T ∈ B(X, Y ) is semi-Fredholm and S ∈ B(X, Y ) satisfies ‖S‖ <
γ(T ), then T + S is semi-Fredholm, ind(T + S) = indT , α(T + S) ≤ α(T ) and
β(T + S) ≤ β(T ).

Proof. Suppose that T is upper semi-Fredholm and ‖S‖ < γ(T ).
By Lemma 10.12, δ

(
Ker(T + S), KerT

) ≤ γ(T )−1‖S‖ < 1, and so, by Corol-
lary 10.10, α(T + S) = dim Ker(T + S) ≤ dim KerT = α(T ).

From the same reason dim Ker(T + S + K) ≤ dim KerT < ∞ for every
compact operator K with ‖K‖ < γ(T )−‖S‖. By Theorem 16.18 we conclude that
T + S is upper semi-Fredholm.

By Corollary 3, ind(T + S) = indT .
For lower semi-Fredholm operators the statement follows by duality. �

Proposition 5. Let T ∈ Φ+(X, Y ). Then

γ(T ) = sup
{
s > 0 : α(T + S) ≤ α(T ) for every S with ‖S‖ < s

}
.

If T ∈ Φ−(X, Y ), then

γ(T ) = sup
{
s > 0 : β(T + S) ≤ β(T ) for every S with ‖S‖ < s

}
.

Proof. Let T ∈ Φ+(X, Y ) ∪ Φ−(X, Y ) and ε > 0. We show that there exists
S ∈ B(X, Y ) such that ‖S‖ < γ(T )+ε, Ker(T +S) ⊃ KerT , Ran(T +S) ⊂ Ran T
and both inclusions are strict.

By the definition of the reduced minimum modulus there exists x0 ∈ X
such that dist{x0, KerT } = 1 and ‖Tx0‖ < γ(T ) + ε. Let x∗ ∈ (Ker T )⊥ satisfy
〈x0, x

∗〉 = 1 and ‖x∗‖ = dist{x0, KerT } = 1. Let S be defined by Sx = −〈x, x∗〉 ·
Tx0 (x ∈ X). Then ‖S‖ = ‖x∗‖·‖Tx0‖ < γ(T )+ε and Ker(T+S) ⊃ KerT∪{x0}.

Furthermore, Ran(T + S) = (T + S)Kerx∗ ∨ {(T + S)x0} = T Kerx∗ and
RanT = T Kerx∗ ∨ {Tx0}.

We show that Tx0 /∈ T Kerx∗. Suppose on the contrary that there is an
x′ ∈ Kerx∗ such that Tx′ = Tx0. Then x0 − x′ ∈ KerT and

1 = 〈x0, x
∗〉 = 〈x0 − x′, x∗〉 = 0,

a contradiction. Thus Ran(T + S) is strictly smaller that Ran T . �

Remark 6. In general, it is possible that γ(T ) is strictly smaller than the number
sup

{
s > 0 : T + S ∈ Φ+(X, Y ) for every S with ‖S‖ < s

}
. Consider the diagonal

operator diag(1, 2, 2, 2, . . . ) on a separable Hilbert space. Then γ(T ) = 1 and T +S
is Fredholm for every S with ‖S‖ < 2.
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By Theorem 4, semi-Fredholm operators are inner points of the set of all
operators with closed range. Conversely, if T : X → Y is not semi-Fredholm and
ε > 0, then using the technique of Theorem 16.18 it is possible to construct an
operator S : X → Y with ‖S‖ < ε such that the range of T − S is not closed.

Theorem 7. (punctured neighbourhood theorem) Let T ∈ Φ+(X) ∪ Φ−(X). Then
there exists ε > 0 such that the functions α(T − z) and β(T − z) are constant for
0 < |z| < ε.

Proof. Let X = X1 ⊕ X2 be the Kato decomposition of T , i.e., dimX1 < ∞,
both X1 and X2 are invariant with respect to T , T |X1 is nilpotent and T |X2

Kato. Let T1 = T |X1 and T2 = T |X2. By Corollary 12.4, there exists ε > 0 such
that dimKer(T2 − z) and codim Ran(T2 − z) are constant for |z| < ε. Also, for
z �= 0, T1 − z is invertible. Thus for 0 < |z| < ε, α(T − z) = dimKer(T − z) =
dimKer(T2 − z) = const and β(T − z) = codimRan(T2 − z) = const. �
Theorem 8. Let T ∈ B(X) be upper semi-Fredholm. Then limn→∞ γ(T n)1/n exists
and is equal to

sup
{
s > 0 : T − z ∈ Φ+(X) and α(T − z) is constant for 0 < |z| < s

}
.

An analogous statement is true for lower semi-Fredholm operators (with α
replaced by β).

Proof. Let T ∈ Φ+(X). By Theorem 16.21, there exists a decomposition X =
X1 ⊕ X2 such that dimX1 < ∞, T1 = T |X1 is nilpotent and T2 = T |X2 is Kato
and upper semi-Fredholm (the Kato decomposition). Let P be the projection with
RanP = X2 and KerP = X1. Let x2 ∈ X2. For n ≥ dimX1 we have

dist{x2, KerT n
2 } = inf

{‖x2 − y2‖ : y2 ∈ X2, T
n
2 y2 = 0

}
≤ ‖P‖ inf

{‖y1 ⊕ (x2 − y2)‖ : y1 ∈ X1, y2 ∈ X2, T
n
2 y2 = 0

}
= ‖P‖ dist{x2, KerT n} ≤ ‖P‖ dist{x2, KerT n

2 }.
Then

γ(T n
2 ) = inf

{ ‖T n
2 x2‖

dist{x2, KerT n
2 }

: x2 ∈ X2\KerT n
2

}
≤ inf

{ ‖T nx2‖
dist{x2, KerT n} : x2 ∈ X2\KerT n

}
= inf

{ ‖T n(x1 ⊕ x2)‖
dist{x1 ⊕ x2, KerT n} : x1 ⊕ x2 ∈ X\KerT n

}
= γ(T n)

and

γ(T n) ≤ inf
{ ‖T n

2 x2‖
dist{x2, KerT n} : x2 ∈ X2\KerT n

2

}
≤ ‖P‖ inf

{ ‖T n
2 x2‖

dist{x2, KerT n
2 }

: x2 ∈ X2\KerT n
2

}
= ‖P‖γ(T n

2 ).

Hence limn→∞ γ(T n)1/n = limn→∞ γ(T n
2 )1/n.
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By Theorem 12.26, the limit r = lim(γ(T n
2 ))1/n is equal to

sup
{
s > 0 : T2 − z is Kato for every z ∈ C, |z| < s

}
.

For 0 < |z| < r we have α(T − z) = dim Ker(T − z) = dim Ker(T2 − z), which is
constant. Denote this constant by a.

On the other hand, there exists w ∈ C with |w| = r such that T2 − w is not
Kato. We prove that either T − w /∈ Φ+(X) or α(T − w) > a. Suppose on the
contrary that T − w is upper semi-Fredholm. Then T2 − w = (T − w)|X2 is also
upper semi-Fredholm. Since T2−w is not Kato, the Kato decomposition of T2−w
is non-trivial, and so α(T2 −w) > limz→0 α(T2 −w + z) = a. Hence α(T −w) > a.

The statement for lower semi-Fredholm operators follows by duality. �

19 Essential spectra

We assume in this section that X is an infinite-dimensional Banach space (for
finite-dimensional spaces all results would be trivial).

In Section 16 we showed that the sets of all Fredholm, upper (lower) semi-
Fredholm and left (right) essentially invertible operators in X form regularities.
Recall that the corresponding spectra – the essential spectrum, essential approx-
imate point spectrum, essential surjective spectrum and left (right) essential spec-
trum – were defined by

σe(T ) = {λ ∈ C : T − λ /∈ Φ(X)},
σπe(T ) = {λ ∈ C : T − λ /∈ Φ+(X)},
σδe(T ) = {λ ∈ C : T − λ /∈ Φ−(X)},
σle(T ) = {λ ∈ C : T − λ is not left essentially invertible},
σre(T ) = {λ ∈ C : T − λ is not right essentially invertible}.

The essential spectra satisfy the same relations as the one-sided and approx-
imate point spectra:

Proposition 1. Let T ∈ B(X). Then σπe(T ) ⊂ σle(T ), σδe(T ) ⊂ σre(T ), σe(T ) =
σle(T ) ∪ σre(T ) = σπe(T ) ∪ σδe(T ), ∂σe(T ) ⊂ σπe(T ) ∩ σδe(T ).

Proof. All statements with the exception of the last one are trivial. The inclusion
∂σe(T ) ⊂ σπe(T ) ∩ σδe(T ) follows from Lemma 18.1. �

Definition 2. Let T ∈ B(X). The essential spectral radius of T is defined by re(T ) =
max{|λ| : λ ∈ σe(T )} and the essential norm by ‖T ‖e = inf{‖T+K‖ : K ∈ K(X)}.

Clearly, ‖T ‖e is the norm of the class T + K(X) in the Calkin algebra
B(X)/K(X), and σe(T ) is the spectrum of the class T + K(X) in this algebra.
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Corollary 3. Let T ∈ B(X). Then re(T ) = limn→∞ ‖T n‖1/n
e = infn ‖T n‖1/n

e .

Since re(T ) = r(T̃ ) where T̃ is the operator considered in Section 17, we also have
re(T ) = limn→∞ ‖T̃ n‖1/n = infn ‖T̃ n‖1/n.

Theorem 4. Let T ∈ B(X), let G be a component of C \ σe(T ). Then either
G ⊂ σ(T ) or G ∩ σ(T ) consists of at most countably many isolated points.

Proof. Let λ ∈ G ∩ σ(T ). By the punctured neighbourhood theorem, there is an
open neighbourhood U of λ such that either U ∩ σ(T ) = {λ} or U ⊂ σ(T ).

Denote by G0 the union of all open subsets of G which are contained in σ(T ).
Obviously, G0 is both open and relatively closed and therefore either G0 = G (in
this case G ⊂ σ(T )) or G0 = ∅, so G∩ σ(T ) has no limit point in G and therefore
it is at most countable. �

Remark 5. The punctured neighbourhood theorem implies similarly that if G is a
component of C\ (σπe(T )∩σδe(T )), then both α(T −z) and β(T −z) are constant
in G with the exception of at most countable many isolated points of G.

In particular, either G ⊂ σπ(T ) or G ∩ σπ(T ) consists of at most countably
many isolated points. An analogous statement is also true for σδ.

Theorem 6. Let T, S ∈ B(X). Then σ̃(TS) \ {0} = σ̃(ST ) \ {0}, where σ̃ stands
for any of σe, σπe, σδe, σle, σre.

Proof. For σe, σπe and σδe this follows from Propositions 12.28 and 12.29.
For σle and σre note that an operator is left (right) essentially invertible if and

only if it is upper (lower) semi-Fredholm and has a generalized inverse, see Theo-
rems 16.14 and 16.15. Thus the statement follows from Proposition 13.11. �

Clearly all spectra σe, σπe, σδe, σle and σre are invariant with respect to
compact perturbations. Thus:

σe(T ) ⊂
⋂

{σ(T + K) : K ∈ K(X)};
σπe(T ) ⊂

⋂
{σπ(T + K) : K ∈ K(X)};

σδe(T ) ⊂
⋂

{σδ(T + K) : K ∈ K(X)};
σle(T ) ⊂

⋂
{σl(T + K) : K ∈ K(X)};

σre(T ) ⊂
⋂

{σr(T + K) : K ∈ K(X)}.

In general, the opposite inclusions are not true. The next result characterizes the
above intersections.

Theorem 7. Let T ∈ B(X). Then T can be expressed as T = S + K, where
S, K ∈ B(X), K is compact and S is invertible (bounded below, onto, left in-
vertible, right invertible) if and only if T is Fredholm with indT = 0

(
T upper

semi-Fredholm with indT ≤ 0, T lower semi-Fredholm with indT ≥ 0, T is left
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essentially invertible with indT ≤ 0, and T is right essentially invertible with
indT ≥ 0, respectively

)
. Thus:⋂

{σ(T + K) : K ∈ K(X)} = σe(T ) ∪ {
λ ∈ C : ind(T − λ) �= 0

}
;⋂

{σπ(T + K) : K ∈ K(X)} = σπe(T ) ∪ {
λ ∈ C : ind(T − λ) > 0

}
;⋂

{σδ(T + K) : K ∈ K(X)} = σδe(T ) ∪ {
λ ∈ C : ind(T − λ) < 0

}
;⋂

{σl(T + K) : K ∈ K(X)} = σle(T ) ∪ {
λ ∈ C : ind(T − λ) > 0

}
;⋂

{σr(T + K) : K ∈ K(X)} = σre(T ) ∪ {
λ ∈ C : ind(T − λ) < 0

}
.

The compact operators in all statements can be replaced by finite-rank operators.

Proof. If T = S + K where S is invertible and K compact, then T is Fredholm
and indT = indS = 0.

Conversely, suppose that T is Fredholm and indT = 0. Then dimKerT =
codimRanT < ∞. Let P ∈ B(X) be a projection onto KerT . Let x1, . . . , xn

be a basis in KerT and let y1, . . . , yn be linearly independent vectors in X such
that RanT ∨ {y1, . . . , yn} = X . Let U : KerT → X be the operator defined by
Uxi = yi (i = 1, . . . , n) and let F = UP . Then F is a finite-rank operator and
T + F is invertible.

The remaining statements can be proved similarly. �
The sets described in the previous theorem do not satisfy in general the

spectral mapping property; for their properties see Section 23.

Recall that the essential spectrum of an operator T ∈ B(X) is equal to the
ordinary spectrum of the class T +K(X) in the Calkin algebra B(X)/K(X). This
suggests the following definition:

Definition 8. Let T1, . . . , Tn be a commuting n-tuple of operators on X . Denote
by Q : B(X) → B(X)/K(X) the canonical projection. We define the left (right)
essential spectrum of (T1, . . . , Tn) by

σle(T1, . . . , Tn) = σl

(
Q(T1), . . . , Q(Tn)

)
,

σre(T1, . . . , Tn) = σr

(
Q(T1), . . . , Q(Tn)

)
.

The essential Harte spectrum of T1, . . . , Tn is defined by

σHe(T1, . . . , Tn) = σH

(
Q(T1), . . . , Q(Tn)

)
= σle(T1, . . . , Tn) ∪ σre(T1, . . . , Tn).

We say that (T1, . . . , Tn) is left essentially invertible if and only if there are K ∈
K(X) and operators S1, . . . , Sn ∈ B(X) such that S1T1 + · · ·+SnTn = I +K. The
right essentially invertible n-tuples are defined analogously.

The following properties of the essential spectra follow easily from the defi-
nition.
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Theorem 9. σle, σre and σHe are upper semicontinuous spectral systems.

For a commuting n-tuple T = (T1, . . . , Tn) ∈ B(X)n the sets σle(T ), σre(T )
and σHe(T ) are non-empty compact subsets of Cn, σle(T ) ⊂ σl(T ), σre(T ) ⊂ σr(T )
and σHe(T ) ⊂ σH(T ).

Although in general F(X) �= K(X), Theorem 16.13 gives for T1 ∈ B(X) that

σB(X)/K(X)(T1) = σB(X)/F(X)(T1).

An analogous equality also holds for n-tuples of operators.

Theorem 10. Let T = (T1, . . . , Tn) be a commuting n-tuple of operators on a
Banach space X . Then

σ
B(X)/K(X)
l (T1, . . . , Tn) = σ

B(X)/F(X)
l (T1, . . . , Tn).

The same equalities are also true for σr and σH .

Proof. It is sufficient to show that (0, . . . , 0) /∈ σle(T1, . . . , Tn) if and only if

(0, . . . , 0) /∈ σ
B(X)/F(X)
l (T1, . . . , Tn).

If (0, . . . , 0) /∈ σle(T1, . . . , Tn), then there exist operators S1, . . . , Sn ∈ B(X)
and K ∈ K(X) such that

∑n
i=1 SiTi = I + K. By Theorem 16.13, there ex-

ist operators A ∈ B(X) and F ∈ F(X) such that A(I + K) = I + F . Thus∑n
i=1(ASi)Ti = A(I + K) = I + F and (0, . . . , 0) /∈ σ

B(X)/F(X)
l (T1, . . . , Tn).

The opposite implication is clear. �

Definition 11. Let T = (T1, . . . , Tn) be a commuting n-tuple of operators in a
Banach space X . We say that the n-tuple T is upper semi-Fredholm if there exists
a subspace M ⊂ X of finite codimension such that

inf
{ n∑

i=1

‖Tix‖ : x ∈ M, ‖x‖ = 1
}

> 0.

T is called lower semi-Fredholm if codim(T1X + · · · + TnX) < ∞.

Clearly, T = (T1, . . . , Tn) is upper semi-Fredholm if and only if the operator
δT : X → Xn defined by δT x = (T1x, . . . , Tnx) is upper semi-Fredholm. Similarly,
the n-tuple T is lower semi-Fredholm if and only if the operator ηT : Xn → X
defined by ηT (x1, . . . , xn) =

∑n
i=1 Tixi is lower semi-Fredholm. As in the proof of

Corollary 9.14 we get:

Corollary 12. Let T = (T1, . . . , Tn) be a commuting n-tuple of operators on a
Banach space X . Then:

(T1, . . . , Tn) is upper semi-Fredholm ⇔ (T ∗
1 , . . . , T ∗

n) is lower semi-Fredholm;

(T1, . . . , Tn) is lower semi-Fredholm ⇔ (T ∗
1 , . . . , T ∗

n) is upper semi-Fredholm.
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In the following we use the construction T ∈ B(X) �→ T̃ ∈ B(X̃), which was
defined in Section 17; for this purpose it is more convenient to consider the space
Xn in the definition of operators δT and ηT with the �∞ norm.

With this convention �∞(Xn) can be identified with (�∞(X))n and X̃n with
X̃n. Thus δ̃T x̃ = (T̃1x̃, . . . , T̃nx̃) and η̃T (x̃1, . . . , x̃n) =

∑n
i=1 T̃ix̃i.

Using the corresponding results for the operators δT and ηT (Theorems 17.6
and 17.9) we get:

Corollary 13. An n-tuple T = (T1, . . . , Tn) is upper semi-Fredholm if and only if
inf

{∑n
i=1 ‖T̃ix̃‖ : x̃ ∈ X̃, ‖x̃‖ = 1

}
> 0. T is lower semi-Fredholm if and only if

T̃1X̃ + · · · + T̃nX̃ = X̃.

Definition 14. The essential approximate point spectrum and the essential surjec-
tive spectrum of T = (T1, . . . , Tn) are defined by

σπe(T ) =
{
λ ∈ Cn : T − λ is not upper semi-Fredholm

}
,

σδe(T ) =
{
λ ∈ Cn : T − λ is not lower semi-Fredholm

}
.

Theorem 15. Let T = (T1, . . . , Tn) be an n-tuple of commuting operators acting on
a Banach space X . Then σπe(T1, . . . , Tn) = σπ(T̃1, . . . , T̃n) and σδe(T1, . . . , Tn)=
σδ(T̃1, . . . , T̃n).

In particular, σπe and σδe are upper semicontinuous spectral systems.

Proof. Follows from Theorems 17.6 and 17.9. �

Corollary 16. Let T = (T1, . . . , Tn) be an n-tuple of commuting operators on a
Banach space X . Denote by P(n) the algebra of all polynomials in n variables.
Then Γ(σHe(T ),P(n)) ⊂ σπe(T ) ∩ σδe(T ). In particular, the polynomially convex
hulls of σHe(T ), σπe(T ) and σδe(T ) coincide.

Proof. Follows from Theorem 8.8 and Corollary 9.13. �

Theorem 17. An n-tuple T = (T1, . . . , Tn) is left essentially invertible if and only if
T is upper semi-Fredholm and the operator δT has complemented range. T is right
essentially invertible if and only if T is lower semi-Fredholm and the operator ηT

has complemented kernel.

Proof. Let K ∈ K(X) and S1, . . . , Sn ∈ B(X). Then S1T1 + · · · + SnTn = I + K
if and only if ηSδT = I + K, where ηS : Xn → X is defined by ηS(x1, . . . , xn) =∑n

i=1 Sixi. By Theorem 16.14, δT is essentially left invertible if and only if δT is
upper semi-Fredholm and Ran δT is complemented in Xn.

The second statement can be proved similarly. �

For a single operator T1 the set σ(T1) \ σe(T1) can be easily described, see
Theorem 4. For n-tuples of operators the situation is more complicated.
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Theorem 18. Let T = (T1, . . . , Tn) be an n-tuple of commuting operators on an
infinite-dimensional Banach space X . Let λ = (λ1, . . . , λn) ∈ σH(T ) \ σ̂He(T ).
Then:

(i) λ is an isolated point of σH(T );
(ii) λ is a joint eigenvalue of operators T1, . . . , Tn of finite multiplicity, i.e.,

1 ≤ dim
n⋂

i=1

Ker (Ti − λi) < ∞.

In particular, σH(T ) \ σ̂He(T ) is at most countable.

Proof. (i) Let λ ∈ σH(T )\ σ̂He(T ). Then there exists a polynomial p of n variables
such that |p(λ)| > max

{|p(µ)| : µ ∈ σHe(T )
}
. By the spectral mapping theorem

for the Harte spectrum we have p(λ) ∈ σ(p(T )) and

max
{|µ| : µ ∈ σe(p(T ))

}
= max

{|p(µ)| : µ ∈ σHe(T )
}

< |p(λ)|.
Thus p(λ) lies in the unbounded component of C \ σe(p(T )), and so it is an
isolated point of σ(p(T )). This means that there is a neighbourhood U0 of λ such
that p(σH(T ) ∩ U0) = {p(λ)}.

Let ε be a sufficiently small positive number, so that

|qi(λ)| > max
{|qi(µ)| : µ ∈ σHe(T )

}
(i = 1, . . . , n),

where qi are polynomials of n variables defined by

qi(z1, . . . , zn) = p(z1, . . . , zn) + εzi.

Repeating the same considerations for qi instead of p, we get that there are
neighbourhoods Ui of λ such that qi(σH(T ) ∩ Ui) = {qi(λ)} (i = 1, . . . , n). Let
W =

⋂n
i=0 Ui and let µ = (µ1, . . . , µn) ∈ σH(T ) ∩ W . Then p(µ) = p(λ) and

p(µ) + εµi = qi(µ) = qi(λ) = p(λ) + ελi.

So µi = λi (i = 1, . . . , n) and µ = λ. Hence λ is an isolated point of σH(T ).
This implies that the set σH(T ) \ σ̂He(T ) is at most countable.

(ii) Let p be the polynomial constructed in part (i) such that

|p(λ)| > max
{|p(µ)| : µ ∈ σHe(T )

}
.

So there is an open neighbourhood V of σ̂He(T ) such that |p(λ)| > sup
{|p(µ)| :

µ ∈ V
}
. By (i), σH(T ) \ V is a finite set, σH(T ) \ (V ∪ {λ}) = {λ(1), . . . , λ(k)}.

Find polynomials q1, . . . , qn such that qi(λ(i)) = 0 �= qi(λ) (i = 1, . . . , k). Then,
for a positive integer s large enough, the polynomial h = psq1 · · · qk satisfies

|h(λ)| > sup
{|h(µ)| : µ ∈ V

}
= sup

{|h(µ)| : µ ∈ σH(T ) \ {λ}}.
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Thus λ ∈ Γ(σH(T ),P(n)). By Corollary 9.13 and Theorem 8.8, λ ∈ σπ(T ), and
so the operator δT−λ : X → Xn defined by δT−λx =

(
(T1 − λ1)x, . . . , (Tn − λn)x

)
is not bounded below. Furthermore, λ /∈ σHe(T ), and so δT−λ is upper semi-
Fredholm. In particular, Ker δT−λ =

⋂n
i=1 Ker(Ti − λi) is finite dimensional and

Ran δT−λ is closed. Thus Ker δT−λ �= {0}.
This completes the proof. �

20 Ascent, descent and Browder operators

Let T be an operator on a Banach space X . It is easy to see that Ker T ⊂ KerT 2 ⊂
KerT 3 ⊂ · · · and RanT ⊃ Ran T 2 ⊃ · · · .

Lemma 1. If k ≥ 0 and KerT k+1 = KerT k, then KerT p = KerT k for every p ≥ k.
Similarly, if RanT k+1 = RanT k, then Ran T p = RanT k (p ≥ k).

Proof. We show the implications KerT k+1 = KerT k ⇒ KerT k+2 = KerT k+1 and
RanT k+1 = RanT k ⇒ Ran T k+2 = RanT k+1; the rest follows easily by induction.

Suppose that KerT k+1 = KerT k and let x ∈ KerT k+2. Then

Tx ∈ KerT k+1 = KerT k,

and so x ∈ KerT k+1.
Similarly, if RanT k+1 = RanT k and x ∈ Ran T k+1, then x = T k+1y for

some y ∈ X and T ky ∈ Ran T k = Ran T k+1. So x = T (T ky) ∈ RanT k+2. �

Definition 2. Let T ∈ B(X). The ascent of T is defined by

a(T ) = min{n : KerT n = KerT n+1}
(if no such n exists, then we set a(T ) = ∞). Similarly, the descent of T is defined by

d(T ) = min{n : RanT n = RanT n+1}.

The following simple lemma is useful in many situations.

Lemma 3. Let T ∈ B(X, Y ), let M be a closed subspace of Y such that both
M + RanT and M ∩ Ran T are closed. Then RanT is closed.

Proof. Write for short N = M ∩ RanT and L = T−1N . Clearly, L is a closed
subspace of X . Let Φ : (X/L) ⊕ (M/N) → (Ran T + M)/N be the operator
defined by

Φ
(
(x + L) ⊕ (m + N)

)
= (Tx + m) + N.

It is easy to check that the definition of Φ is correct, Φ is onto and one-to-one.
Thus Φ is bounded below, and so Φ(X/L) is closed.

Let Q : RanT + M → (Ran T + M)/N be the canonical projection. Then
RanT = Q−1

(
RanT/N

)
= Q−1Φ(X/L), and so RanT is closed. �
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Theorem 4. Let T ∈ B(X), k ≥ 0 and suppose that KerT k+1 = KerT k and
RanT k+1 = RanT k. Then RanT k is closed and X = KerT k ⊕ RanT k.

Proof. We must show that RanT k ∩ KerT k = {0} and RanT k + KerT k = X .
Let x ∈ Ran T k∩Ker T k. Then x = T ky for some y ∈ X and 0 = T kx = T 2ky.

Thus y ∈ KerT 2k = KerT k and x = T ky = 0. Hence RanT k ∩ KerT k = {0}.
Let x ∈ X . Then T kx ∈ Ran T k = RanT 2k, and so T kx = T 2ky for some

y ∈ X . Consequently, x = T ky + (x − T ky) where T ky ∈ Ran T k and x − T ky ∈
KerT k.

Lemma 3 for the operator T k now implies that RanT k is closed. �
Corollary 5. Let T ∈ B(X) and let a(T ) < ∞ and d(T ) < ∞. Then a(T ) = d(T ).
If k = a(T ) = d(T ), then X = KerT k ⊕ Ran T k.

Proof. Let k = max{a(T ), d(T )}. By Theorem 4, X = KerT k ⊕ RanT k and
both RanT k and KerT k are invariant with respect to T . Write T1 = T |KerT k :
KerT k → KerT k and T2 = T |RanT k : RanT k → Ran T k. Then Ran T2 =
T Ran T k = Ran T k+1 = Ran T k. Further, if x ∈ KerT2, then x = T ky for some
y ∈ X , so y ∈ KerT k+1 = KerT k and x = T ky = 0. Thus T2 is invertible.
Furthermore, T k

1 = 0. Hence

a(T ) = a(T1) = min{n : T n
1 = 0} = d(T1) = d(T ). �

Definition 6. We say that an operator T ∈ B(X) is upper semi-Browder if it is
upper semi-Fredholm and has finite ascent.

Similarly, T is lower semi-Browder if it is lower semi-Fredholm and has finite
descent. An operator T is Browder if it is both lower and upper semi-Browder.
Equivalently, this means that T is Fredholm and has finite both ascent and descent.

By Section 15, any operator of the form K+λI where K : X → X is compact
and λ �= 0 is Browder.

Theorem 7. Let T ∈ B(X). Then:

(i) T is upper semi-Browder ⇔ T ∗ is lower semi-Browder;

(ii) T is lower semi-Browder ⇔ T ∗ is upper semi-Browder;

(iii) T is Browder ⇔ T ∗ is Browder.

Proof. Follows from the corresponding results for semi-Fredholm operators and
Theorem A.1.14.

Recall that R∞(T ) =
⋂

n Ran T n and N∞(T ) =
⋃

n KerT n.

Proposition 8. Let T ∈ B(X). Then:

(i) T is upper semi-Browder ⇔ Ran T is closed and dimN∞(T ) < ∞;

(ii) T is lower semi-Browder ⇔ codimR∞(T ) < ∞;

(iii) T is Browder ⇔ dimN∞(T ) < ∞ and codimR∞(T ) < ∞.
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Proof. If T is upper semi-Browder, then RanT is closed and k = a(T ) < ∞. Since
T k is upper semi-Fredholm, we have dimN∞(T ) = dim KerT k < ∞.

Conversely, if Ran T is closed and dim N∞(T ) < ∞, then T is upper semi-
Fredholm. Further, KerT ⊂ KerT 2 ⊂ · · · ⊂ N∞(T ), and so there exists k with
KerT k+1 = KerT k. Hence a(T ) < ∞.

The remaining statements can be proved similarly. �

Lemma 9. Let T ∈ B(X) be upper semi-Browder and Kato. Then T is bounded
below. If T is lower semi-Browder and Kato, then T is onto.

Proof. Suppose that there exists a non-zero vector x0 ∈ KerT . Since KerT ⊂
RanT , there exists x1 ∈ X such that Tx1 = x0. Further, x1 ∈ KerT 2 ⊂ Ran T
and we can construct inductively vectors xi ∈ X satisfying Txi = xi−1 (i ≥ 1).
It is easy to show that the vectors xi are linearly independent and xi ∈ N∞(T ),
a contradiction with Proposition 8.

The second statement can be proved by duality. �

Theorem 10. An operator T ∈ B(X) is upper semi-Browder (lower semi-Browder,
Browder) if and only if there exists a decomposition X = X1 ⊕ X2 such that
dimX1 < ∞, TXi ⊂ Xi (i = 1, 2), T |X1 is nilpotent and T |X2 is bounded below
(onto, invertible, respectively).

If T is upper semi-Browder, then the space X1 is uniquely determined and
X1 = N∞(T ). If T is lower semi-Browder, then X2 = R∞(T ). If T is Browder,
then the decomposition is unique: N∞(T ) ⊕ R∞(T ).

Proof. Suppose that T ∈ B(X) is upper semi-Browder and let X = X1⊕X2 be the
Kato decomposition, i.e., dimX1 < ∞, T |X1 is nilpotent and T2 = T |X2 is Kato.
Evidently, T2 is upper semi-Browder, and so T2 is bounded below by Lemma 9.
Clearly, X1 ⊂ N∞(T ). Furthermore, if T n(x1⊕x2) = 0 for some n, then T nx2 = 0,
and so x2 = 0. Thus KerT n ⊂ X1 for all n and hence X1 = N∞(T ).

In the opposite direction, it is easy to see that an operator that can be written
as a direct sum of a finite-dimensional nilpotent and an operator bounded below
is upper semi-Browder.

The statements for lower semi-Browder and Browder operators can be ob-
tained similarly. �

Corollary 11. If T is upper semi-Browder, then indT ≤ 0. If T is lower semi-
Browder, then ind T ≥ 0. If T is Browder, then indT = 0.

Proof. Let T ∈ B(X) be upper semi-Browder, and let X = X1 ⊕ X2 be the
decomposition from the preceding theorem: dimX1 < ∞, TXi ⊂ Xi (i =
1, 2), T |X1 nilpotent and T |X2 bounded below. Then indT = ind(T |X2) =
− dimX2/ RanT2 ≤ 0.

The statements for lower semi-Browder and Browder operators can be proved
analogously. �
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It is not difficult to show that the Browder and upper (lower) semi-Browder
operators form regularities. Our aim is to prove a stronger result and to extend
these notions to commuting n-tuples of operators.

We discuss the lower semi-Browder case; the upper case will be dual.
Let T = (T1, . . . , Tn) be an n-tuple of mutually commuting operators on a

Banach space X .
For k = 0, 1, 2, . . . set Mk(T ) = RanT k

1 + · · ·+RanT k
n and let M ′

k(T ) be the
smallest subspace of X containing the set

⋃{
RanT α : α ∈ Zn

+, |α| = k
}
. Clearly,

X = M0(T ) ⊃ M1(T ) ⊃ M2(T ) ⊃ · · · and X = M ′
0(T ) ⊃ M ′

1(T ) ⊃ M ′
2(T ) ⊃ · · · .

Furthermore,
M ′

n(k−1)+1(T ) ⊂ Mk(T ) ⊂ M ′
k(T ). (1)

Indeed, if α = (α1, . . . , αn) ∈ Zn
+ and |α| = n(k − 1) + 1, then there exists i,

1 ≤ i ≤ n such that αi ≥ k. So RanT α ⊂ Ran T k
i ⊂ Mk(T ). This proves the first

inclusion of (1) and the second inclusion is clear.
Let R∞(T ) =

⋂∞
k=0 Mk(T ) =

⋂∞
k=0 M ′

k(T ).
If M ′

k(T ) = M ′
k+1(T ) for some k, then it is easy to see by induction that

M ′
m(T ) = M ′

k(T ) for every m ≥ k, and so R∞(T ) = M ′
k(T ).

We say that T = (T1, . . . , Tn) is lower semi-Browder if codimR∞(T ) <

∞. It is clear that the lower semi-Browder n-tuples are contained in Φ(n)
− (X),

where Φ(n)
− (X) denotes the set of all lower semi-Fredholm n-tuples of commuting

operators on X .
Define the corresponding lower semi-Browder spectrum by

σB−(T ) = {λ ∈ Cn : T − λ is not lower semi-Browder}.

By Theorem 19.15, (T1, . . . , Tn)∈ Φ(n)
− (X) if and only if (T k

1 , . . . , T k
n )∈ Φ(n)

− (X).
Thus codimM1(T ) < ∞ implies codim Mk(T ) < ∞ for all k.

Theorem 12. Let T = (T1, . . . , Tn) be an n-tuple of mutually commuting operators
on a Banach space X . The following statements are equivalent:

(i) T is lower semi-Browder;

(ii) T ∈ Φ(n)
− (X) and there exists k such that M ′

k(T ) = M ′
k+1(T );

(iii) T ∈ Φ(n)
− (X) and there exists k such that Mk(T ) = Mk+1(T );

(iv) there exists a closed subspace Y ⊂ X invariant with respect to all Ti (i =
1, . . . , n) such that codimY < ∞ and T1Y + · · ·+ TnY = Y . It is possible to
take Y = R∞(T ).

Proof. (iii) ⇒ (ii): Let Mk(T ) = Mk+1(T ) for some k. Using the same argument
as in the proof of (1) it is possible to show that M ′

n(k−1)+1(T ) = M ′
n(k−1)+2(T ).

(ii) ⇒ (i): Let M ′
k(T ) = M ′

k+1(T ) for some k. Then Mk(T ) ⊂ M ′
k(T ) =

R∞(T ). Moreover, T ∈ Φ(n)
− (X), which implies that codim Mk(T ) < ∞, and so T

is lower semi-Browder.
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(i) ⇒ (iv): Set Y = R∞(T ). Clearly Y is invariant with respect to Ti (i =
1, . . . , n), codimY < ∞ and Y = Mk(T ) = Mk+1(T ) for some k. If y ∈ Y , then,
for some x1, . . . , xn ∈ X , we have

y =
n∑

i=1

T k+1
i xi =

n∑
i=1

Ti(T k
i xi) ∈ T1Y + · · · + TnY.

(iv) ⇒ (iii): Since M1(T ) ⊃ M1(T |Y ) = Y , we have codim M1(T ) < ∞, and
so T ∈ Φ(n)

− (X). Further, R∞(T ) ⊃ Y , and so codimR∞(T ) < ∞. �

Theorem 13. Let T = (T1, . . . , Tn) be a lower semi-Browder n-tuple of operators
on a Banach space X . Then there exists ε > 0 such that S is lower semi-Browder
for every commuting n-tuple S = (S1, . . . , Sn) ∈ B(X)n with

∑n
i=1 ‖Si − Ti‖ < ε.

Proof. Choose k such that Mk(T ) = R∞(T ) and codimR∞(T ) ≤ k. Then (T k+1
1 ,

. . . , T k+1
n ) ∈ Φ(n)

− (X). Consider the operator η : Xn → X defined by

η(x1, . . . , xn) =
n∑

i=1

T k+1
i xi.

Clearly,
codimRan η = codimMk+1(T ) = codimR∞(T ) ≤ k.

By Theorem 16.11, there exists ν > 0 such that codimRan η′ ≤ k for each operator
η′ : X → Xn with ‖η′ − η‖ < ν. If S = (S1, . . . , Sn) is a commuting n-tuple of
operators in X close enough to T , then (Sk+1

1 , . . . , Sk+1
n ) ∈ Φ(n)

− (X) and

codimM1(Sk+1
1 , . . . , Sk+1

n ) ≤ codim η ≤ k.

Since M1(S) ⊃ M2(S) ⊃ · · · ⊃ Mk+1(S) and codimMk+1(S) ≤ k, there exists
j ≤ k such that Mj(S) = Mj+1(S). Consequently, S is lower semi-Browder. �

Proposition 14. Let T1, . . . , Tn, S1, . . . , Sn be mutually commuting operators on X
such that

∑n
i=1 TiSi = I. Then the n-tuple (T1, . . . , Tn) is lower semi-Browder.

Proof. Clearly M1(T1, . . . , Tn) = X = M0(T1, . . . , Tn), and so (T1, . . . , Tn) is lower
semi-Browder. �

Lemma 15. Let T0, T1, . . . , Tn be mutually commuting operators on a Banach space
X . Suppose that codimR∞(T1, . . . , Tn) = ∞ and let k ∈ N. Then there exists a
complex number λ such that

codim
(
Ran(T0 − λ)k + RanT k

1 + · · · + RanT k
n

) ≥ k. (2)
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Proof. Using condition (iii) of Theorem 12, we can distinguish two cases:

(a) Let (T1, . . . , Tn) /∈ Φ(n)
− (X). By the spectral mapping property for the

essential surjective spectrum (Theorem 19.14), there exists λ ∈ C such that (T0 −
λ, T1, . . . , Tn) /∈ Φ(n+1)

− (X). Thus

codim
(
Ran(T0 − λ)k + RanT k

1 + · · · + RanT k
n

)
≥ codim

(
Ran(T0 − λ) + RanT1 + · · · + RanTn

)
= ∞.

(b) Suppose that T = (T1, . . . , Tn) ∈ Φ(n)
− (X) and codimR∞(T ) = ∞. Then

codimMj(T ) < ∞ for all j. Since codimR∞(T ) = ∞, we have Mj(T ) �= Mj+1(T )
for all j ≥ 1.

Fix k ∈ N. Then there exists i, 1 ≤ i ≤ n such that RanT k−1
i �⊂ Mk(T )

(otherwise Mk−1(T ) = Mk(T )). Let Y = X/Mk(T ), and let S : Y �→ Y be defined
by S(x + Mk(T )) = Tix + Mk(T ). Clearly, dimY < ∞, Sk = 0 and Sk−1 �= 0.

Consider the operator U : Y �→ Y defined by U(x +Mk(T )) = T0x+ Mk(T ).
Obviously, US = SU . Let Z be a subspace of Y satisfying Z ⊕ KerSk−1 = Y . In
this decomposition U can be written as

U =
(

U11 0
U12 U22

)
.

Choose an eigenvalue λ of U11 − λ and let z ∈ Z be a corresponding eigenvector;
so z �= 0 and (U − λ)z ∈ KerSk−1. Since z ∈ KerSk \ KerSk−1, we have

Sk−jz ∈ KerSj \ KerSj−1 (j = 1, . . . , k).

Furthermore,

(U − λ)Sk−jz = Sk−j(U − λ)z ∈ Sk−j KerSk−1 ⊂ KerSj−1.

Let 1 ≤ j ≤ k and write M = KerSj−1 ∨ {Sk−jz}. Then M ⊂ KerSj and
(U − λ)jM ⊂ (U − λ)j−1 KerSj−1 ⊂ M . We have

dim
(
KerSj/(U − λ)j KerSj

)
= dimKer

(
(U − λ)j |KerSj

)
≥ dimKer

(
(U − λ)j |M)

= dim
(
M/(U − λ)jM

)
≥ dim

(
M/(U − λ)j−1KerSj−1

)
= dim

(
KerSj−1/(U − λ)j−1KerSj−1

)
+ 1,

since Sk−jz �∈ KerSj−1. Thus, by induction,

dim
(
KerSj/(U − λ)j KerSj

) ≥ j (j = 1, . . . , k).

In particular, dim(Y/(U − λ)kY ) ≥ k. Consequently,

codim
(
Ran(T0 − λ)k) + RanT k

1 + · · · + RanT k
n

) ≥ k. �
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Corollary 16. Let T0, T1, . . . , Tn be mutually commuting operators on a Banach
space X . Suppose that codimR∞(T1, . . . , Tn) = ∞. Then there exists λ ∈ C such
that

codimR∞(T0 − λ, T1, . . . , Tn) = ∞.

Proof. For each k ≥ 1 we can find λk ∈ C such that

codimR∞(T0 − λk, T1, . . . , Tn)

≥ codim
(
Ran(T0 − λk)k + RanT k

1 + · · · + RanT k
n

) ≥ k.

It is clear that λk ∈ σ(T0) for every k. Thus we may assume (by passing to a
subsequence if necessary) that the sequence (λk) is convergent, λk → λ ∈ σ(T0).
We have

lim
k→∞

codimR∞(T0 − λk, T1, . . . , Tn) = ∞.

By Theorem 13, this implies that codim R∞(T0 − λ, T1, . . . , Tn) = ∞. �

Corollary 17. σB− is an upper semicontinuous spectral system.

Upper semi-Browder n-tuples can be defined similarly. Let T = (T1, . . . , Tn)
be an n-tuple of commuting operators on a Banach space X . Recall that T is upper
semi-Fredholm if the mapping δT : X �→ Xn defined by δT x = (T1x, . . . , Tnx) is
upper semi-Fredholm. We say that T is upper semi-Browder if T is upper semi-
Fredholm and dim N∞(T ) < ∞, where

N∞(T ) =
∞⋃

k=1

(
KerT k

1 ∩ · · · ∩ KerT k
n

)
.

We say that T is Browder if it is both upper and lower semi-Browder.
Write T ∗ = (T ∗

1 , . . . , T ∗
n) ∈ B(X∗)n.

Theorem 18. Let T = (T1, . . . , Tn) be an n-tuple of mutually commuting operators
in a Banach space X . Then:

(i) T is lower semi-Browder ⇐⇒ T ∗ is upper semi-Browder;

(ii) T is upper semi-Browder ⇐⇒ T ∗ is lower semi-Browder;

(iii) T is Browder ⇐⇒ T ∗ is Browder.

Proof. The corresponding equivalences for semi-Fredholm n-tuples were proved in
Corollary 19.12. Furthermore,

KerT k
1 ∩ · · · ∩ KerT k

n = ⊥(
Ran T ∗k

1 + · · · + RanT ∗k
n

)
.

and (
Ran T k

1 + · · · + RanT k
n

)⊥ = KerT ∗k
1 ∩ · · · ∩ KerT ∗k

n .

The statement of Theorem 18 is now an easy consequence of these identities. �
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For a commuting n-tuple T = (T1, . . . , Tn) ∈ B(X)n we define the upper
semi-Browder spectrum of T by

σB+(T ) = {λ ∈ Cn : T − λ is not upper semi-Browder}
and the Browder spectrum

σB(T ) = {λ ∈ Cn : T − λ is not Browder} = σB−(T ) ∪ σB+(T ).

By the previous theorem, it is easy to see that σB+ and σB satisfy the same
properties as σB− .

From the general theory of spectral systems it is easy to deduce the following
properties:

Theorem 19.

(i) σB− , σB+ and σB are upper semicontinuous spectral systems.

(ii) (spectral mapping property) If (T1, . . . , Tn) is a commuting n-tuple of opera-
tors on a Banach space X and p = (p1, . . . , pm) is an m-tuple of polynomials,
then:

σB+(p(T1, . . . , Tn)) = p(σB+(T1, . . . , Tn));
σB−(p(T1, . . . , Tn)) = p(σB−(T1, . . . , Tn));
σB(p(T1, . . . , Tn)) = p(σB(T1, . . . , Tn)).

(iii) (continuity on commuting operators) If {Tk}∞k=1 ⊂ B(X), T ∈ B(X),
lim Tk = T and TkT = TTk, k = 1, 2, . . . , then:

λ ∈ σB−(T ) ⇐⇒ there exist λk ∈ σB−(Tk) such that λk → λ;
λ ∈ σB+(T ) ⇐⇒ there exist λk ∈ σB+(Tk) such that λk → λ;
λ ∈ σB(T ) ⇐⇒ there exist λk ∈ σB(Tk) such that λk → λ.

(iv) (property (P1) of Section 6) Let T, S ∈ L(X), TS = ST . Then TS is lower
semi-Browder (upper semi-Browder, Browder) if and only if both T and S
have the same property.

(v) ∂σe(T ) ⊂ σB+(T )∩σB−(T ). In particular, max{|z| : z ∈ σB+(T )} = max{|z| :
z ∈ σB−(T )} = max{|z| : z ∈ σB(T )} = re(T ) for all T ∈ B(X).

(vi) Let T, S ∈ L(X), TS = ST . Then:

∆̂
(
σB−(T ), σB−(S)

) ≤ re(T − S);

∆̂
(
σB+(T ), σB+(S)

) ≤ re(T − S);

∆̂
(
σB(T ), σB(S)

) ≤ re(T − S),

where ∆̂ denotes the Hausdorff distance and re the essential spectral radius.

(vii) If T ∈ B(X) is upper semi-Browder (lower semi-Browder, Browder), U ∈
B(X), UT = TU and re(U) = 0, then T + U is upper semi-Browder (lower
semi-Browder, Browder, respectively).

In particular, this is true if U is either quasinilpotent or compact.
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For single operators we have another characterization of the Browder and
semi-Browder spectrum.

Denote by accL the set of all accumulation points of a set L ⊂ C.

Corollary 20. Let T ∈ B(X). Then:

σB(T ) = σe(T ) ∪ accσ(T );
σB+(T ) = σπe(T ) ∪ accσπ(T );
σB−(T ) = σδe(T ) ∪ accσδ(T ).

Proof. We prove the statement for the Browder spectrum; the remaining state-
ments can be proved similarly.

Suppose that λ /∈ σB(T ), so T − λ is Browder. Let X = X1 ⊕ X2 be the
Kato decomposition of T − λ, so (T − λ)|X1 is a finite-dimensional nilpotent, and
(T − λ)|X2 is invertible. Clearly, T − µ is invertible for all µ �= λ close enough to
λ. Thus λ is not an accumulation point of σ(T ). Also, λ /∈ σe(T ) since T − λ is
Fredholm.

Conversely, let λ /∈ σe(T )∪accσ(T ). Then T−λ is Fredholm. Let X = X1⊕X2

be the Kato decomposition of T −λ, so (T −λ)|X1 is a finite-dimensional nilpotent
and (T − λ)|X2 is Kato. By assumption, T − µ is invertible for all µ sufficiently
close to λ, µ �= λ, and so (T − µ)|X2 is invertible. Since (T − λ)|X2 is Kato,
(T − λ)|X2 is also invertible. Thus T − λ is Browder. �
Theorem 21. Let T ∈ B(X). Then:

σB−(T ) =
⋂

{σδ(T + K) : K ∈ K(X), TK = KT };
σB+(T ) =

⋂
{σπ(T + K) : K ∈ K(X), TK = KT };

σB(T ) =
⋂

{σ(T + K) : K ∈ K(X), TK = KT }.

Proof. By Theorem 19 (vii), σB−(T ) = σB−(T +K) ⊂ σδ(T +K) if K is a compact
operator commuting with T . Thus σB−(T )⊂⋂{σδ(T +K) :K∈K(X),TK =KT }.

Conversely, let λ /∈ σB−(T ); so T −λ is lower semi-Browder. Let X = X1⊕X2

be the Kato decomposition of T −λ satisfying dimX1 < ∞, TXi ⊂ Xi (i = 1, 2),
(T − λ)|X1 is nilpotent and (T − λ)|X2 onto. Set K = I ⊕ 0. Clearly, K is a
compact (even finite rank) operator commuting with T and T − λ + K is onto.
Thus λ /∈ σδ(T + K).

The statements for the upper semi-Browder and Browder spectrum can be
proved similarly. �

Clearly, the compact operators in the last theorem can be replaced by finite-
rank operators.

Theorem 22. Let T, S ∈ B(X). Then σ̃(TS) \ {0} = σ̃(ST ) \ {0}, where σ̃ stands
for any of σB , σB− , σB+ .

Proof. Follows from Propositions 12.28 and 12.29.
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21 Essentially Kato operators

Recall that an operator T ∈ B(X) is Kato if RanT is closed and KerT ⊂ R∞(T ).
For equivalent conditions see Theorem 12.2.

In this section we study an essential version of this class of operators.
For subspaces M, N of X we write M

e⊂N (M is essentially contained in N)
if there exists a finite-dimensional subspace F ⊂ X such that M ⊂ N + F .

Similarly, we write M
e=N if both M

e⊂N and N
e⊂M .

We recall one simple algebraic result.

Lemma 1. Let M, N be subspaces of a vector space X . Then dimM/(M ∩ N) =
dim(M + N)/N .

Proof. The identity operator induces an isomorphism from M/(M ∩ N) onto
(M + N)/N . �

We summarize the basic properties of the relation
e⊂.

Proposition 2. Let M, N, L be subspaces of a Banach space X . Then:

(i) M
e⊂N ⇔ dim M/(M ∩ N) < ∞ ⇔ dim(M + N)/N < ∞ ⇔ there is a

finite-dimensional subspace F ⊂ M such that M ⊂ N + F ;

(ii) M
e⊂N , N

e⊂L ⇒ M
e⊂L;

(iii) M
e⊂N , L

e⊂N ⇒ M + L
e⊂N ;

(iv) M
e⊂N , M

e⊂L ⇒ M
e⊂N ∩ L.

Proof. A simple verification. �
Theorem 3. Let T ∈ B(X) be an operator with closed range. Then the following
conditions are equivalent:

(i) KerT
e⊂R∞(T );

(ii) KerT
e⊂R∞(T );

(iii) N∞(T )
e⊂RanT ;

(iv) N∞(T )
e⊂R∞(T );

(v) (Kato decomposition) there exists a decomposition X = X1 ⊕ X2 with the
properties that TX1 ⊂ X1, TX2 ⊂ X2, dimX1 < ∞, T |X1 is nilpotent and
T |X2 is Kato;

(vi) KerT
e⊂∨

z �=0 Ker(T − z);

(vii) RanT
e⊃⋂

z �=0 Ran(T − z);

Proof. Clearly (v) implies any of the remaining conditions (see the corresponding
properties of Kato operators, Theorems 12.2 and 12.20).

(i) ⇒ (v): By Lemma 16.20, either T is Kato or there exists a decomposition
X = Y1 ⊕ Y2 such that 1 ≤ dimY1 < ∞, TYi ⊂ Yi (i = 1, 2) and T |Y1 is
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nilpotent. Write Ti = T |Yi (i = 1, 2). We have dim
(
KerT/(KerT ∩ R∞(T ))

)
<

∞, R∞(T ) = R∞(T2) and KerT = KerT1 ⊕ KerT2; so

dim KerT/(KerT ∩ R∞(T )) = dimKerT1 + dim KerT2/(KerT2 ∩ R∞(T2)).

Thus dim KerT2/
(
KerT2 ∩ R∞(T2)

)
< dimKerT/

(
KerT ∩ R∞(T )

)
.

Using the construction of Lemma 16.20 for T2 repeatedly, after a finite num-
ber of steps we obtain a decomposition X = X1 ⊕ X2 such that dimX1 < ∞,
TX1 ⊂ X1, TX2 ⊂ X2, T |X1 is nilpotent and Ker(T |X2) ⊂ R∞(T |X2), i.e., T |X2

is Kato.

(ii) ⇒ (i): By Lemma 16.20 (i), R(T k) is closed for all k, and so is R∞(T ).

(iii) ⇒ (v): We prove by induction on k that KerT
e⊂Ran T k. This is clear for

k = 1. Let k ≥ 1 and suppose that the statement is true for all l ≤ k. Thus there
are finite-dimensional subspaces Fl ⊂ KerT such that KerT ⊂ Ran T l + Fl (l =
1, . . . , k). We prove the statement for k + 1. We have KerT k+1

e⊂RanT , so there
is a finite-dimensional subspace G such that KerT k+1 ⊂ RanT + G. So

KerT ⊂ (KerT ∩ RanT k) + Fk = T k KerT k+1 + Fk ⊂ RanT k+1 + T kG + Fk.

Hence KerT
e⊂RanT k+1, which completes the induction step.

By Lemma 16.20, either T is Kato or there is a decomposition X = Y1 ⊕ Y2

such that 1 ≤ dimY1 < ∞, TYi ⊂ Yi and T1 = T |Y1 is nilpotent. Write Ti =
T |Yi (i = 1, 2). Since dimN∞(T )/(N∞(T ) ∩ Ran T ) < ∞ and N∞(T ) = Y1 ⊕
N∞(T2), we have

dimN∞(T )/(N∞(T ) ∩ Ran T )
= dimY1/ RanT1 + dimN∞(T2)/(N∞(T2) ∩ RanT2),

so dim N∞(T2)/(N∞(T2) ∩ RanT2) < dimN∞(T )/(N∞(T ) ∩ RanT ).
Thus, using the same construction for T2, after a finite number of steps we

obtain the required decomposition X = X1 ⊕ X2.

The implication (iv) ⇒ (i) is clear.

(vi) ⇒ (ii): It is easy to see that Ker(T − z) ⊂ R∞(T ) for z �= 0. Thus

KerT
e⊂

∨
z �=0

Ker(T − z) ⊂ R∞(T ).

(vii) ⇒ (iii): Let x ∈ KerT n and z �= 0. Then

(T − z)(T n−1 + zT n−2 + · · · + zn−1)x = (T n − zn)x = −znx,

and so x ∈ Ran(T − z). Thus N∞(T ) ⊂ ⋂
z �=0 Ran(T − z)

e⊂Ran T

This completes the proof. �
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Definition 4. We say that an operator T ∈ B(X) is essentially Kato if RanT is
closed and T satisfies any of the equivalent conditions of Theorem 3.

Clearly, any semi-Fredholm operator is essentially Kato.

Theorem 5. Let T ∈ B(X). Then:

(i) if T is essentially Kato, then T n is essentially Kato for every n;

(ii) T is essentially Kato if and only if T ∗ ∈ B(X∗) is essentially Kato.

Proof. (i) Let X = X1 ⊕ X2 be the Kato decomposition of T (see condition (v)
of Theorem 3). The same decomposition is clearly also the Kato decomposition of
T n.

(ii) Suppose that T is essentially Kato, so N∞(T ) ⊂ Ran T + F for some
finite-dimensional subspace F ⊂ X . Then RanT n and RanT ∗n are closed for all
n and

R∞(T ∗) =
∞⋂

n=1

Ran T ∗n =
∞⋂

n=1

(KerT n)⊥ =
( ∞⋃

n=1

KerT n
)⊥

= N∞(T )⊥ ⊃ (
Ran T + F

)⊥ = (RanT )⊥ ∩ F⊥ = KerT ∗ ∩ F⊥.

Since codim F⊥ < ∞, we have KerT ∗ e⊂R∞(T ∗), and T ∗ is essentially Kato.
Conversely, if T ∗ is essentially Kato, then RanT n and RanT ∗n are closed

for all n and T ∗∗ ∈ B(X∗∗) is essentially Kato; so Ker T ∗∗ e⊂R∞(T ∗∗). Further,
KerT = KerT ∗∗∩X and RanT n = Ran T ∗∗n∩X for all n, so R∞(T ) = R∞(T ∗∗)∩
X and KerT

e⊂R∞(T ). �

Theorem 6. Let A, B ∈ B(X), AB = BA. If AB is essentially Kato, then A and
B are essentially Kato.

Proof. We have KerA ⊂ Ker(AB)
e⊂R∞(AB) ⊂ R∞(A), so it is sufficient to prove

that RanA is closed.
There exists a finite-dimensional subspace F ⊂ X such that Ker(AB) ⊂

Ran(AB) + F . We prove that RanA + F is closed. Let vj ∈ X , fj ∈ F and Avj +
fj → u. Then BAvj +Bfj → Bu and Bu ∈ Ran(AB)+BF since Ran(AB)+BF
is closed. Thus Bu = ABv + Bf for some v ∈ X and f ∈ F ; so

Av + f − u ∈ KerB ⊂ Ker(AB) ⊂ Ran(AB) + F ⊂ Ran A + F.

Hence u ∈ Ran A + F and RanA + F is closed.
The closeness of Ran A follows from Lemma 16.2. �

The following lemma is an analogue of Theorem 12.21 for essentially Kato
operators:
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Theorem 7. Let T ∈ B(X). The following conditions are equivalent:

(i) T is essentially Kato;

(ii) there exists a closed subspace M ⊂ X such that TM = M and the operator

T̂ : X/M → X/M induced by T is upper semi-Fredholm;

(iii) there exists a closed subspace M ⊂ X such that TM ⊂ M , T |M is lower

semi-Fredholm and the operator T̂ : X/M → X/M induced by T is upper
semi-Fredholm.

If T is essentially Kato, then it is possible to take M = R∞(T ) in (ii) or (iii).

Proof. (i) ⇒ (ii): Let T be essentially Kato. Set M = R∞(T ). If X = X1 ⊕ X2 is
the Kato decomposition of T (dim X1 < ∞, TX1 ⊂ X1, TX2 ⊂ X2, T1 = T |X is
nilpotent and T2 = T |X2 Kato), then M = R∞(T2) ⊂ X2 and TM = T2M = M .
If x = x1⊕x2 satisfies Tx ∈ M , then T2x2 ∈ M , and so x2 ∈ M . Thus x ∈ X1+M
and Ker T̂ ⊂ X1 + M . Hence dimKer T̂ ≤ dimX1 < ∞.

Let Q : X → X/M be the canonical projection. Since M ⊂ Ran T and
Ran T̂ = {Tx + M : x ∈ X} = Q RanT , the range of T̂ is closed. Thus T̂ is upper
semi-Fredholm.

(ii) ⇒ (iii): Clear.

(iii) ⇒ (i): We first prove that RanT is closed. Let Q : X → X/M be the
canonical projection and let F be a finite-dimensional subspace of M satisfying
M = TM + F . Clearly, RanT ⊂ Q−1 Ran T̂ . If y ∈ X and Qy ∈ Ran T̂ , then
y ∈ Ran T + M ⊂ RanT + F . Thus Ran T is a subspace of finite codimension of
the closed space Q−1 Ran T̂ . By Lemma 16.2, Ran T is also closed.

Since Q KerT ⊂ Ker T̂ and dimKer T̂ < ∞, we have KerT
e⊂M . Thus there

is a finite-dimensional subspace F1 ⊂ KerT such that KerT ⊂ F1 + (KerT ∩M).
Thus

KerT ⊂ F1 + KerT |M e⊂R∞(T |M) ⊂ R∞(T ).

Hence T is essentially Kato. �
Theorem 8. Let T ∈ B(X) be essentially Kato. Then limn→∞ γ(T n)1/n exists and

lim
n→∞ γ(T n)1/n = max

{
r : T − λ is Kato for 0 < |λ| < r

}
= dist

{
0, σK(T )\{0}}.

Moreover, if S ∈ B(X), ST = TS and ‖S‖ < limn→∞ γ(T n)1/n, then T + S is
essentially Kato and (T + S)R∞(T ) = R∞(T ).

Proof. Let X = X1 ⊕ X2 be the Kato decomposition of T (i.e., dimX1 < ∞,
TX1 ⊂ X1, TX2 ⊂ X2, T1 = T |X1 is nilpotent and T2 = T |X2 is Kato). As in the
proof of Theorem 18.8 we can show that

lim
n→∞ γ(T n)1/n = lim

n→∞ γ(T n
2 )1/n.

By Theorem 12.26, this limit is equal to dist{0, σK(T2)}.
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If λ �= 0, then T − λ is Kato if and only if T2 − λ is Kato. Then

max
{
r : T − λ is Kato for 0 < |λ| < r

}
= dist{0, σK(T2)} = lim

n→∞ γ(T n)1/n.

Let S ∈ B(X), ST = TS and ‖S‖ < limn→∞ γ(T n)1/n. Write M = R∞(T ).
Clearly TM = M and SM ⊂ M . Denote by TM , SM ∈ B(M) the restrictions of T

and S to M , respectively. Similarly, let T̂ , Ŝ ∈ B(X/M) be the operators induced
by T and S, respectively.

If M = X , then T is onto and (T + S)M = M = X by Theorems 9.25 and
7.14 (ii).

If M = {0}, then T is upper semi-Fredholm and so is T + S by Theorems
18.8 and 17.14.

Suppose that {0} �= M �= X . By Theorem 7, TM is onto and T̂ is upper
semi-Fredholm. Using lemma 12.25 for T2 and the proof of Theorem 18.8 we have

lim
k→∞

γ(T k)1/k = min
{

lim
k→∞

γ((TM )k)1/k, lim
k→∞

γ(T̂ k)1/k
}
,

Clearly ‖SM‖ ≤ ‖S‖ < limk→∞ γ((TM )k)1/k. By Theorem 9.25, TM +SM is onto,
i.e., (T + S)R∞(T ) = R∞(T ).

Similarly, ‖Ŝ‖ ≤ ‖S‖ < limk→∞ γ(T̂ k)1/k. By Theorems 18.8 and 7.14, T̂ + Ŝ
is upper semi-Fredholm. By Theorem 7, T + S is essentially Kato. �

Theorem 9. Let T, A ∈ B(X), TA = AT , let T be essentially Kato and let A be
either compact or a quasinilpotent. Then T + A is essentially Kato.

Proof. Let T be essentially Kato and let A be an operator commuting with T .
Let M = R∞(T ), T1 = T |M and let T̂ : X/M → X/M be the operator induced
by T . Since AM ⊂ M , we can define the operators A1 = A|M and Â : X/M →
X/M induced by A. Suppose that A is either compact or quasinilpotent. Then
both A1 and Â have the same property, and consequently, T1 + A1 is lower semi-
Fredholm and T̂ + Â is upper semi-Fredholm. Thus T + A is essentially Kato by
Theorem 7. �

Theorem 10. The set of all essentially Kato operators in X is a regularity satisfying
(P3) (upper semicontinuity on commuting elements).

Proof. By Theorems 5, 6 and 6.12, it is sufficient to show that if A, B, C, D ∈
B(X) are mutually commuting operators satisfying AC + BD = I and A, B are
essentially Kato, then AB is essentially Kato. By Lemma 12.8, we have Ran(AB) =
RanA ∩ RanB, and so Ran(AB) is closed. Further, KerA

e⊂R∞(A) and KerA ⊂
R∞(B). So KerA

e⊂R∞(A) ∩ R∞(B) = R∞(AB). By symmetry, we also have
KerB

e⊂R∞(AB), and thus Ker(AB) = KerA + KerB
e⊂R∞(AB). Hence AB is

essentially Kato. �
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Denote by

σKe(T ) = {λ ∈ C : T − λ is not essentially Kato}
the corresponding spectrum.

Theorem 11. Let dimX = ∞ and T ∈ B(X). Then:

(i) σKe(T ) ⊂ σK(T ) and σK(T ) \ σKe(T ) consists of at most countably many
isolated points;

(ii) σKe(T ) is a non-empty compact set;

(iii) ∂σe(T ) ⊂ σKe(T ) ⊂ σπe(T ) ∩ σδe(T ) ⊂ σe(T );
(iv) σKe(f(T )) = f(σKe(T )) for every function f analytic on a neighbourhood of

σ(T ).

Proof. (i) Let λ ∈ σK(T )\σKe(T ). Then T −λ is essentially Kato, so there exists a
decomposition X = X1⊕X2 with TX1 ⊂ X1, TX2 ⊂ X2, dim X1 < ∞, (T −λ)|X1

nilpotent and (T − λ)|X2 Kato. Then (T − z)|X2 is Kato for all z in a certain
neighbourhood U of λ and (T − z)|X1 is Kato (even invertible) for every z �= λ.
Thus T − z is Kato for z ∈ U − {λ} and λ is an isolated point of σK(T ).

Clearly, σK(T ) \ σKe(T ) is at most countable.

(ii) By Theorem 8, σKe(T ) is closed.
The non-emptiness of σKe(T ) follows from the inclusion ∂σe(T ) ⊂ σKe(T ),

which will be proved next.

(iii) Suppose λ ∈ ∂σe(T ) and λ /∈ σKe(T ). Then T − λ is essentially Kato,
so Ran(T − λ) is closed and there exists a decomposition X = X1 ⊕X2 such that
dimX1 < ∞, TX1 ⊂ X1, TX2 ⊂ X2, (T − λ)|X1 is nilpotent and (T − λ)|X2 is
Kato. Choose a sequence λn → λ such that λn /∈ σe(T ), i.e., T − λn is Fredholm.
We have

dim Ker(T − λn)|X2 ≤ dim Ker(T − λn) < ∞
and, since T |X2 is Kato, we conclude that

dim Ker(T − λ)|X2 < ∞
and dimKer(T − λ) < ∞.

Similarly, we can prove that codim Ran(T − λ) < ∞, so T − λ is a Fredholm
operator and λ /∈ σe(T ), a contradiction.

Thus ∂σe(T ) ⊂ σKe(T ).
Since semi-Fredholm operators are Kato, we have σKe(T ) ⊂ σπe(T )∩σδe(T ).

(iv) If X = X1 ⊕ X2 and Ti ∈ B(Xi) (i = 1, 2), then σKe(T1 ⊕ T2) =
σKe(T1) ∪ σKe(T2). The non-emptiness of σKe and Theorem 6.8 imply (iv). �

Theorem 12. Let T ∈ B(X) be essentially Kato and let F ∈ B(X) be a finite-rank
operator. Then T + F is also essentially Kato.
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Proof. Clearly, it is sufficient to consider only the case of dimRanF = 1. Thus F
is of the form Tx = f(x)v for some v ∈ X and f ∈ X∗.

Since Ran(T + F ) e= RanT , Ran(T + F ) is closed and it is sufficient to show
only the algebraic condition in the definition of essentially Kato operators for
T + F .

Since T is essentially Kato, Ran T k is closed for all k. The existence of the
Kato decomposition implies that there exists d ∈ N such that KerT ∩ Ran T d ⊂
R∞(T ). Let M = RanT d and T1 = T |M . Then KerT1 = KerT ∩ RanT d ⊂
R∞(T ) = R∞(T1), and so T1 is Kato.

It is sufficient to show that

KerT1

e⊂R∞(T + F ). (1)

Indeed, since

KerT1 = KerT ∩ Ran T d e= Ker(T + F ) ∩ Ran(T + F )d,

(1) implies that

Ker(T + F ) ∩ Ran(T + F )d e⊂R∞(T + F ).

Consequently,

Ker(T + F ) e=KerT
e⊂KerT ∩ RanT d e=Ker(T + F ) ∩ Ran(T + F )d e⊂R∞(T + F )

and T + F is essentially Kato.
To prove (1), we distinguish two cases:

(a) Let N∞(T1) ⊂ Ker f . Let x0 ∈ KerT1. Since T1 is Kato, there exist
vectors x1, x2, · · · ∈ R∞(T1) such that Txi = xi−1 for all i. By assumption, f(xi) =
0, and so Fxi = 0 for all i. For n ∈ N we have

(T + F )nxn = (T + F )n−1xn−1 = · · · = (T + F )x1 = x0,

and so x0 ∈ Ran(T + F )n. Since n was arbitrary, KerT1 ⊂ R∞(T + F ).

(b) There exists k ≥ 1 such that KerT k
1 �⊂ Ker f . Choose the minimal k with this

property, so KerT k−1
1 ⊂ Ker f and there exists u ∈ KerT k

1 with f(u) = 1.
Denote by Y the set of all vectors x0 ∈ KerT1 ∩ Ker f for which there exist

x1, . . . , xk−1 ∈ M ∩ Ker f satisfying Txi = xi−1 (i = 1, . . . , k − 1).
Clearly, Y

e=KerT1, and so it is sufficient to show Y ⊂ R∞(T + F ).
Let x0 ∈ Y . We prove by induction on n the following statement:

there exist xn ∈ M such that

T nxn = x0 and T ixn ∈ Ker f (i = 0, . . . , n − 1). (2)
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If (2) is proved, then of course

(T + F )nxn = (T + F )n−1Txn = · · · = (T + F )T n−1xn = x0,

and so x0 ∈ Ran(T + F )n for all n. Thus Y ⊂ R∞(T + F ) and the theorem is
proved.

Statement (2) is clear for n ≤ k − 1. Suppose (2) is true for some n ≥
k − 1, so there is an xn ∈ M such that T nxn = x0 and T ixn ∈ Ker f (i =
0, . . . , n− 1). Since T1 is Kato, we can find x′

n+1 ∈ M such that Tx′
n+1 = xn. Set

xn+1 = x′
n+1 − f(x′

n+1)u. Clearly, T n+1xn+1 = T nxn − f(x′
n+1)T

n+1u = x0 and
f(xn+1) = 0. For i ≥ 1 we have f(T ixn+1) = f(T i−1xn) − f(x′

n+1)f(T iu) = 0
since T iu ∈ KerT k−1

1 ⊂ Ker f .
This finishes the proof of (2) and also of the theorem. �

Theorem 13. Let T, S ∈ B(X). Then σKe(TS) \ {0} = σKe(ST ) \ {0}.
Proof. Let λ ∈ C, λ �= 0. By Proposition 12.29, Ran(TS − λ) is closed if and only
if Ran(ST − λ) is closed.

Suppose that TS − λ is essentially Kato, i.e., N∞(TS − λ) ⊂ Ran(TS − λ).
By Proposition 12.28,

N∞(ST − λ) =
⋃
n

Ker(ST − λ)n = S
(⋃

n

Ker(TS − λ)n
)

e⊂S Ran(TS − λ)

= ST Ran(ST − λ) ⊂ Ran(TS − λ). �

Let T be essentially Kato. We can write N∞(T ) = F +
(
R∞(T ) ∩ N∞(T )

)
,

where F is a finite-dimensional subspace and F ∩ R∞(T ) = {0}. Then N∞(T ) =
F + R∞(T ) ∩ N∞(T ) and

R∞(T ) ∩ N∞(T ) = R∞(T ) ∩ N∞(T ). (3)

Similarly, by Appendix 1.22, one can show that

R∞(T ∗) ∩ N∞(T ∗)
w∗

= R∞(T ∗) ∩ N∞(T ∗)
w∗

. (4)

Theorem 14. Let T ∈ B(X) be essentially Kato, let S ∈ B(X), ST = TS and
‖S‖ < lim γ(T k)1/k. Then T + S is essentially Kato,

R∞(T + S) ∩ N∞(T + S) = R∞(T ) ∩ N∞(T )

and
R∞(T + S) + N∞(T + S) = R∞(T ) + N∞(T ).

Proof. By Theorem 8, T + S is essentially Kato and (T + S)R∞(T ) = R∞(T ).
Thus R∞(T + S) ⊃ R∞(T ).
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(a) N∞(T + S) ⊂ N∞(T ).
Proof. We have

R∞(T ) =
∞⋂

k=0

RanT k =
∞⋂

k=0

⊥ KerT ∗k = ⊥
∞⋃

k=0

KerT ∗k = ⊥N∞(T ∗)

and

N∞(T ) = ⊥
(
N∞(T )⊥

)
= ⊥

( ∞⋂
k=0

(KerT k)⊥
)

= ⊥
( ∞⋂

k=0

Ran T ∗k
)

= ⊥R∞(T ∗).

The analogous equalities are true also for the operator T +S. By duality argument,
we have

N∞(T ) = ⊥R∞(T ∗) ⊃ ⊥R∞(T ∗ + S∗) = N∞(T + S).

(b) R∞(T + S) ∩ N∞(T + S) ⊂ R∞(T ).
Proof. Using (3) for T +S it is sufficient to show that R∞(T +S)∩Ker(T +S)k ⊂
R∞(T ) for k = 1, 2, . . .. We will do this by induction on k. The statement is clear
for k = 0. Let k ≥ 1 and assume that the inclusion holds for k − 1.

Let x0 ∈ R∞(T + S) ∩ Ker(T + S)k. Since T + S maps R∞(T + S) onto
itself, we can find an infinite sequence x0, x1, . . . in R∞(T + S) such that (T +
S)xj = xj−1 (j = 1, . . . ). This sequence is contained in N∞(T ) by (a). We
have N∞(T )

e⊂R∞(T ), i.e., m := dim N∞(T )/(R∞(T ) ∩ N∞(T )) is finite. Thus
x0, . . . , xm are linearly dependent, i.e., there exists a non-trivial linear combination
x :=

∑m
i=0 αixi ∈ R∞(T ). Let l be such that αl �= 0 and αj = 0 for j = l+1, . . . , m.

We obtain

(T + S)lx = αlx0 +
l−1∑
j=0

αj(T + S)lxj ∈ αlx0 +
(
Ker(T + S)k−1 ∩ R∞(T + S)

)
.

Since R∞(T ) is invariant for T and S, we have (T + S)lx ∈ R∞(T ). Therefore
x0 ∈ R∞(T ).

Let M = R∞(T ). Let TM and SM ∈ B(M) be the restrictions of T and S to
M , respectively.

(c) Let c be a positive number such that S′ = cS satisfies ‖S′‖ < 1
2γ(TM ). Then

R∞(T ) ∩ N∞(T ) ⊂ N∞(T + S′).
Proof. By (3), it is sufficient to show that R∞(T ) ∩ KerT n ⊂ N∞(T + S′) for
all n.

Let n ≥ 1 and x0 ∈ KerT n ∩ M . Since TM = M , SM ⊂ M and ‖S′‖ <
γ(TM ), we have (T + S′)M = M and

γ((T + S′)|M) ≥ γ(TM ) − ‖S′‖ >
1
2
γ(TM ).

Therefore we can find inductively vectors x1, x2, · · · ∈ M such that (T + S′)xk =
xk−1 and ‖xk‖ < 2γ(TM )−1‖xk−1‖ for all k ≥ 1.
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For k ≥ n set yk = x0 −
∑n−1

j=0

(
k
j

)
T jS′k−jxk. Then yk ∈ M and we have

(T + S′)kyk = (T + S′)kx0 −
n−1∑
j=0

(
k

j

)
T jS′k−jx0 = 0.

Thus yk ∈ N∞(T + S′) for all k. Moreover,

‖yk − x0‖ =
∥∥∥n−1∑

j=0

(
k

j

)
T jS′k−jxk

∥∥∥ ≤
n−1∑
j=0

(
k

j

)
‖T j‖ · ‖S′‖k−j · ‖xk‖

≤
( 2‖S′‖

γ(TM )

)k

·
n−1∑
j=0

(
k

j

)‖T j‖ · ‖x0‖
‖S′‖j

→ 0

as k → ∞. Thus x0 ∈ N∞(T + S′), and so N∞(T ) ∩ R∞(T ) ⊂ N∞(T + S′).

Proof of Theorem 14. By statements (a)–(c), the spaces R∞(T +zS)∩N∞(T + zS)
are constant for all complex numbers z with |z| small enough

(|z| < γ(TM )
2‖S‖

)
. By

a standard argument, these spaces are constant on each connected set for which
T + zS is essentially Kato. In particular,

R∞(T + S) ∩ N∞(T + S) = R∞(T ) ∩ N∞(T ).

The second statement can be obtained by duality argument. As in (a), we

have N∞(T )⊥ = R∞(T ∗) and R∞(T )⊥ =
(
⊥N∞(T ∗)

)⊥
= N∞(T ∗)

w∗
.

By (4), we have

N∞(T ) + R∞(T ) = ⊥
((

N∞(T ) + R∞(T )
)⊥)

= ⊥
(
N∞(T )⊥ ∩ R∞(T )⊥

)
= ⊥

(
R∞(T ∗) ∩ N∞(T ∗)

w∗)
= ⊥

(
R∞(T ∗) ∩ N∞(T ∗)

)−w∗

.

Similarly,

N∞(T + S) + R∞(T + S) = ⊥
(
R∞(T ∗ + S∗) ∩ N∞(T ∗ + S∗)

)−w∗

,

and so
N∞(T + S) + R∞(T + S) = N∞(T ) + R∞(T ). �

Corollary 15. Let T ∈ B(X) be Kato, S ∈ B(X), ST = TS and

‖S‖ < lim
n→∞ γ(T n)1/n.

Then T + S is Kato, R∞(T + S) = R∞(T ) and N∞(T + S) = N∞(T ).
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22 Classes of operators defined by means of
kernels and ranges

In this section we give a systematic survey of various classes of operators that are
defined by means of kernels and ranges of powers of an operator. Some of the classes
were already introduced; we mention them again for the sake of completeness of
the survey.

For an operator T ∈ B(X) we have already defined α(T ) = dimKerT
and β(T ) = codimRanT . More generally, for every n ≥ 0 we define numbers
αn(T ) = dim KerT n+1/ KerT n and βn(T ) = dim RanT n/ RanT n+1. In this no-
tation α0(T ) = α(T ) and β0(T ) = β(T ).

Write further kn(T ) = dim
(
Ran T n ∩ KerT

)
/
(
RanT n+1 ∩ KerT

)
.

Lemma 1. Let T ∈ B(X) and n ≥ 0. Then αn(T ) = dim
(
Ran T n ∩ KerT

)
and

βn(T ) = codim
(
Ran T + KerT n

)
.

Proof. Clearly, T n induces an isomorphism from KerT n+1/ KerT n onto the space
RanT n ∩ KerT . Thus αn(T ) = dim

(
RanT n ∩ KerT

)
.

In the same way, T n induces an isomorphism from X/(RanT +KerT n) onto
RanT n/ RanT n+1, and so βn(T ) = codim

(
Ran T + KerT n

)
. �

To characterize the numbers kn(T ), we need the following elementary lemma.

Lemma 2. Let U, V and W be subspaces of a Banach space X and let U ⊂ W .
Then (U + V ) ∩ W = U + (V ∩ W ).

Proof. A simple verification. �

Lemma 3. Let T be an operator on a Banach space X and n ≥ 0. Then kn(T )
defined by kn(T ) = dim

(
Ran T n ∩ KerT

)
/
(
Ran T n+1 ∩ KerT

)
is equal to any of

the following quantities:

(i) the dimension of the kernel of the operator

T̂ : RanT n/ RanT n+1 −→ Ran T n+1/ RanT n+2

induced by T ; this operator is onto;

(ii) the codimension of the range of the operator

T ′ : KerT n+2/ KerT n+1 −→ KerT n+1/ KerT n

induced by T ; this operator is one-to-one;

(iii) dim
(
RanT + KerT n+1

)
/
(
RanT + KerT n

)
.
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Proof. Clearly, T̂ is onto and T ′ is one-to-one. By Lemmas 2 and 21.1, we have

dimKer T̂ = dim
(
T−1 Ran T n+2 ∩ Ran T n

)
/ RanT n+1

= dim
((

KerT + RanT n+1
) ∩ RanT n

)
/ RanT n+1

= dim
((

KerT ∩ Ran T n
)

+ RanT n+1
)
/ RanT n+1

= dim
(
Ran T n ∩ KerT

)
/
(
Ran T n+1 ∩ KerT

)
= kn(T ).

Similarly,

codimRanT ′ = dimKerT n+1/
(
T KerT n+2 + KerT n

)
= dimKerT n+1/

((
Ran T ∩ KerT n+1) + KerT n

)
= dimKerT n+1/

((
Ran T + KerT n

) ∩ KerT n+1
)

= dim
(
Ran T + KerT n+1

)
/
(
RanT + KerT n

)
.

Finally, T n induces an isomorphism from

KerT n+1/
((

Ran T ∩ KerT n+1
)

+ KerT n
)

onto the space
(
Ran T n ∩ KerT

)
/
(
Ran T n+1 ∩ KerT

)
. As we have proved above,

the former space is isomorphic to
(
Ran T + KerT n+1

)
/
(
Ran T + KerT n

)
. �

Corollary 4. Let T ∈ B(X). Then α0(T ) ≥ α1(T ) ≥ α2(T ) ≥ · · · and β0(T ) ≥
β1(T ) ≥ · · · . If αn+1(T ) < ∞, then kn(T ) = αn(T ) − αn+1(T ). Similarly, if
βn+1(T ) < ∞ for some n ≥ 0, then kn(T ) = βn(T ) − βn+1(T ).

Proof. The inequality βn+1(T ) ≤ βn(T ) follows from the surjectivity of the oper-
ator T̂ . If βn+1(T ) < ∞, then kn(T ) = βn(T ) − βn+1(T ) by Lemma 3 (i). The
analogous statements for αn follow from Lemma 3 (ii). �

Note that if αn(T ) = αn+1(T ) = ∞, then kn(T ) can be arbitrary. For an
example, let 0 ≤ m ≤ ∞ and T =

⊕∞
i=1 S ⊕⊕m

j=1 Sn+1 where S is the backward
shift on a separable Hilbert space and Sn+1 is a shift on an (n + 1)-dimensional
space. Then αn(T ) = αn+1(T ) = ∞ and kn(T ) = m.

In general, direct sums of various shift operators can serve as model examples
for all classes considered in this section.

Sequences αi(T ), βi(T ) and ki(T ) give rise to three families of reasonable
classes of operators.

A. Descent

We start with the numbers βi(T ). Recall that the descent of T is defined by
d(T ) = min{n : βn(T ) = 0}. Similarly we define the essential descent de(T ) =
min{n : βn(T ) < ∞} = min{n : RanT n+1 e=RanT n}. If d = de(T ) < ∞, then
RanT d e=RanT n for all n ≥ d (of course RanT d e=R∞(T ) is not true in general;
an example is the unilateral shift).
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The following two lemmas enable us an easy verification of axioms of regu-
larity:

Lemma 5. Let T ∈ B(X), m ≥ 1, n ≥ 0. Then βn(T m) =
∑m−1

i=0 βmn+i(T ). In
particular,

βmn(T ) ≤ βn(T m) ≤ m · βmn(T ).

Proof. We have

βn(T m) = dim
(
Ran T mn/ RanT mn+m

)
=

m−1∑
i=0

dim
(
Ran T mn+i/ RanT mn+i+1

)
=

m−1∑
i=0

βmn+i(T ) . �

Lemma 6. Let A, B, C, D be mutually commuting operators on a Banach space X
satisfying AC + BD = I and let n ≥ 0. Then

max{βn(A), βn(B)} ≤ βn(AB) ≤ βn(A) + βn(B) .

Proof. We first prove βn(A) ≤ βn(AB). This is clear if βn(AB) = ∞. Suppose that
βn(AB) < ∞. Set m = βn(AB) + 1 and let x1, . . . , xm be arbitrary elements of
RanAn. Then Bnxi ∈ RanAnBn (i = 1, . . . , m), and so there exists a non-trivial
linear combination

m∑
i=1

ciB
nxi ∈ Ran(An+1Bn+1).

By Lemma 12.8, we have
m∑

i=1

cixi ∈ Ran(An+1B) + KerBn ⊂ RanAn+1.

Since the vectors x1, . . . , xm were arbitrary, we conclude that

βn(A) = dim
(
Ran An/ RanAn+1

) ≤ βn(AB).

This implies the first inequality.
The second inequality is clear if βn(A) + βn(B) = ∞. Let βn(A) + βn(B) be

finite. If m > βn(A)+βn(B) and x1, . . . , xm are arbitrary vectors in Ran(AnBn) =
RanAn ∩ RanBn, then there exists a non-trivial linear combination such that∑m

i=1 cixi ∈ Ran An+1 and
∑m

i=1 cixi ∈ Ran Bn+1. By Lemma 12.8,
∑m

i=1 cixi ∈
Ran(An+1Bn+1). Hence βn(AB) ≤ βn(A) + βn(B). �

Let us consider the following classes of operators:
(1) Ra

1 = {T ∈ B(X) : d(T ) = 0}.
Equivalently, T ∈ Ra

1 ⇔ β0(T ) = 0 ⇔ βn(T ) = 0 for all n ⇔ T is onto.
(2) Ra

2 = {T ∈ B(X) : d(T ) < ∞ and de(T ) = 0}.
Equivalently,

∑∞
i=0 βi(T ) < ∞ ⇔ β0(T ) < ∞ and there exists d ∈ N such

that βd(T ) = 0 ⇔ T is lower semi-Fredholm and T has finite descent ⇔ T is lower
semi-Browder.
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(3) Ra
3 = {T ∈ B(X) : de(T ) = 0}.
Equivalently, β0(T ) < ∞ ⇔ βn(T ) < ∞ for every n ⇔ T is lower semi-

Fredholm.
(4) Ra

4 = {T ∈ B(X) : d(T ) < ∞}.
Equivalently, there exists d ∈ N such that βn(T ) = 0 (n ≥ d) ⇔ T has finite

descent.
(5) Ra

5 = {T ∈ B(X) : de(T ) < ∞}.
Equivalently, there exists d ∈ N such that βn(T ) < ∞ (n ≥ d) ⇔ T has

finite essential descent.

In case of ambiguity we write Ra
i (X) instead of Ra

i (i = 1, . . . , 5).
It is easy to see, by Lemmas 5 and 6, that the sets Ra

1 , . . . , Ra
5 are regularities.

So the corresponding spectra satisfy the spectral mapping theorem (for locally
non-constant analytic functions).

The conditions defining the sets Ra
1 , . . . , R

a
5 are purely algebraic (therefore

we use the upper index a). We could define these classes for linear mappings in
an arbitrary vector space. The spectral mapping theorem would remain true (of
course, for non-constant polynomials only).

An operator T ∈ B(X) with codim RanT < ∞ has automatically closed
range (and in this case Ran T n is also closed for every n). This is not the case for
operators with finite descent.

Example 7. Let H be a separable Hilbert space and let K ∈ B(H) be an operator
with non-closed range. Consider the operator T :

⊕∞
i=0 H → ⊕∞

i=0 H defined by
T (h0, h1, h2, . . . ) = (Kh1, h2, h3, . . . ). Clearly, RanT 2 = RanT and RanT is not
closed.

From the point of view of operator theory it is more interesting to combine the
algebraic conditions defining regularities Ra

4 and Ra
5 with a topological condition –

closeness of Ran T d. It is easy to see that if βd(T ) = dim(RanT d/ RanT d+1) < ∞,
then RanT d is closed if and only if RanT d+1 is closed. Thus, by induction, if
βd(T ) < ∞ and RanT n is closed for some n ≥ d, then RanT i is closed for every
i ≥ d.

The classes of operators which we are really interested in are the follow-
ing ones (the first three sets remain unchanged since the topological condition is
already implicitly contained in the definition; we repeat them only in order to
preserve the symmetry with the subsequent situations):

R1 = {T ∈ B(X) : T is onto};
R2 = {T ∈ B(X) : T is lower semi-Browder};
R3 = φ−(X);

R4 = {T ∈ B(X) : d(T ) < ∞ and RanT d(T ) is closed};
R5 = {T ∈ B(X) : de(T ) < ∞ and RanT de(T ) is closed} .

Obviously, R1 ⊂ R2 = R3 ∩ R4 ⊂ R3 ∪ R4 ⊂ R5.
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It is easy to see that the sets R1, . . . , R5 are regularities, cf. Lemma 12.8.
The first three of them were already studied and it was shown that they can be
extended to commuting n-tuples of operators. The classes R4 and R5 are new.

Denote by σi (i = 1, . . . , 5) the corresponding spectra.

Corollary 8. Let T ∈ B(X) and let f be a function analytic on a neighbourhood
of σ(T ). Then:

(i) σi(f(T )) = f(σi(T )) (i = 1, 2, 3);
(ii) if f is non-constant on each component of its domain of definition, then

σi(f(T )) = f(σi(T )) (i = 4, 5).

B. Ascent

Similar considerations apply to the dual situation.
Recall that the ascent of T is defined by

a(T ) = inf{n : αn(T ) = 0} = inf{n : KerT n+1 = KerT n}.
The essential ascent is defined similarly by

ae(T ) = inf{n : αn(T ) < ∞} = inf{n : KerT n+1 e=KerT n}.
As in Lemmas 5 and 6 it is possible to show that

αnm(T ) ≤ αn(T m) ≤ m · αnm(T ) (m ≥ 1, n ≥ 0)

and, for commuting A, B, C, D satisfying AC + BD = I,

max{αn(A), αn(B)} ≤ αn(AB) ≤ αn(A) + αn(B) .

The dual versions of the regularities Ra
1 , . . . , Ra

5 are the following classes:

Ra
6 = {T ∈ B(X) : T is one-to-one};

Ra
7 = {T ∈ B(X) : dim KerT < ∞ and a(T ) < ∞};

Ra
8 = {T ∈ B(X) : dim KerT < ∞};

Ra
9 = {T ∈ B(X) : a(T ) < ∞};

Ra
10 = {T ∈ B(X) : ae(T ) < ∞} .

It is easy to see that the sets Ra
6 , . . . , Ra

10 are regularities. So the correspond-
ing spectra satisfy the spectral mapping theorem (for locally non-constant analytic
functions). Note that Ra

6 defines the point spectrum (= the set of all eigenvalues).
If we consider the topological versions of these regularities, there is a small

difference from the dual case, since the ranges of operators in Ra
6 , R

a
7 and Ra

8 need
not be closed.
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The dual versions of R1, . . . R5 are:

R6 = {T ∈ B(X) : T is bounded below};
R7 = {T ∈ B(X) : T is upper semi-Browder};
R8 = φ+(X);

R9 = {T ∈ B(X) : a(T ) < ∞ and RanT a(T )+1 is closed};
R10 = {T ∈ B(X) : ae(T ) < ∞ and RanT ae(T )+1 is closed}.

Obviously, R6 ⊂ R7 = R8 ∩ R9 ⊂ R8 ∪ R9 ⊂ R10.
To explain the exponents in the definitions of R9 and R10 we need the fol-

lowing lemma:

Lemma 9. Let T be an operator on a Banach space X with ae(T ) < ∞. Then the
following two statements are equivalent:

(i) there exists n ≥ ae(T ) + 1 such that RanT n is closed;
(ii) RanT n is closed for all n ≥ ae(T ).

Proof. The implication (ii) ⇒ (i) is trivial.

(i) ⇒ (ii): Let n ≥ ae(T ) + 1 and let RanT n be closed. We first prove
that RanT n−1 is also closed. To see this, note that Ran T n ∩ KerT is closed and
kn−1(T ) = αn−1(T ) − αn(T ) < ∞.

Thus RanT n∩KerT is of finite codimension in RanT n−1∩KerT by Lemma 3,
and so RanT n−1 ∩ KerT is closed. Further, RanT n−1 + KerT = T−1(RanT n) is
closed. By Lemma 20.3, we conclude that RanT n−1 is closed.

Repeating these considerations, we get that Ran T i is closed for all i with

ae(T ) ≤ i ≤ n.

Furthermore, T |RanT n−1 is an upper semi-Fredholm operator; so

RanT i = Ran
(
(T |RanT n−1)i−n+1

)
is closed for all i ≥ n. �

It is easy to see that the sets Ri (i = 6, . . . , 10) are regularities; so the
corresponding spectra σi(T ) = {λ : T − λ /∈ Ri} satisfy the spectral mapping
theorem (in the case of i = 6, 7, 8 for all analytic functions; in the case of i = 9, 10
for analytic functions which are locally non-constant).

Further, T ∈ B(X) belongs to Ri(X) (i = 1, . . . , 5) if and only if T ∗ ∈
Ri+5(X∗). Similarly, T ∈ Ri(X) (i = 6, . . . , 10) if and only if T ∗ ∈ Ri−5(X∗).

Moreover, since the intersection of two (or more) regularities is again a reg-
ularity, we can obtain the spectral mapping theorem for a large number of com-
binations of R1, . . . , R10. Of particular interest are the symmetrical combinations
Ri ∩ Ri+5 (i = 1, . . . , 5).
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Clearly, R1 ∩ R6 = Ra
1 ∩ Ra

6 is the set of all invertible operators, R2 ∩ R7 =
Ra

2 ∩ Ra
7 is the set of all Browder operators, and R3 ∩ R8 = Ra

3 ∩ Ra
8 is the set of

all Fredholm operators. We characterize the remaining combinations R4 ∩R9 and
R5 ∩ R10.

Theorem 10. Let T be an operator on a Banach space X . The following statements
are equivalent:

(i) T ∈ R4 ∩ R9;

(ii) T ∈ Ra
4 ∩ Ra

9 ;

(iii) a(T ) < ∞ and d(T ) < ∞;

(iv) T can be written as T1 ⊕ T2 where T1 is nilpotent and T2 invertible;

(v) either T is invertible or 0 is an isolated point of σ(T ) and T |X1 is nilpotent,
where X1 is the spectral subspace corresponding to {0};

(vi) either T is invertible or the resolvent z �→ (T − z)−1 has a pole at 0;

(vii) there are S ∈ B(X) and n ∈ N such that ST = TS, STS = S and T nST =
T n (such an operator T is sometimes called Drazin invertible; the operator
S with properties described here is called the Drazin inverse of T );

(viii) there are S ∈ B(X) and n ∈ N such that ST = TS and T n+1S = T n.

Proof. The implication (i) ⇒ (ii) and the equivalence (ii) ⇔ (iii) are clear.

(iii) ⇒ (i): Follows from Theorem 20.4.

(iii) ⇒ (iv): By Theorem 20.4, we have X = KerT n ⊕ RanT n where n =
a(T ) = d(T ), and RanT n is closed. Let T1 = T |KerT n and T2 = T |RanT n. Then
T n

1 = 0. Since KerT n+1 = KerT n and RanT n+1 = RanT n, it is easy to see that
T2 is invertible.

(iv) ⇒ (v): If X = X1 ⊕ X2 with T |X1 nilpotent and T |X2 invertible, then
either T is invertible or 0 is an isolated point of σ(T ). It is easy to see that the set
X1 = {x ∈ X : rx(T ) = 0} is the spectral subspace corresponding to {0}.

The implication (v) ⇒ (iv) is clear.

(iv) ⇒ (vi): In a punctured neighbourhood U of 0 we have

(T − z)−1 = (T1 − z)−1 ⊕ (T2 − z)−1 =
∞∑

i=0

T i
1z

−(i+1) ⊕ (T2 − z)−1,

where (T2 − z)−1 is analytic in U ∪ {0}. Thus the resolvent z �→ (T − z)−1 has a
pole at 0 of order n = min{j : T j

1 = 0}.
The implication (vi) ⇒ (v) can be proved similarly.

(iv) ⇒ (vii): Set S = 0⊕T−1
2 and let n satisfy T n

1 = 0. Then S satisfies (vii).

(vii) ⇒ (viii): Obvious.

(viii) ⇒ (iii): We have RanT n = Ran(T n+1S) ⊂ RanT n+1. So d(T ) ≤ n.
Let x ∈ KerT n+1. Then T nx = ST n+1x = 0, so x ∈ KerT n and a(T ) ≤ n. �
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Lemma 11. Let T ∈ B(X) satisfy ae(T ) < ∞ and de(T ) < ∞. Then ae(T ) = de(T )
and Ran T ae(T ) is a closed and complemented subspace of X .

Proof. Let n=max{ae(T ),de(T )}. The operator from KerT 2n/KerT n to KerT n∩
RanT n induced by T n is onto, so

dim(Ker T n ∩ Ran T n) ≤ dimKerT 2n/ KerT n

=
2n−1∑
i=n

dimKerT i+1/ KerT i =
2n−1∑
i=n

αi(T ) < ∞.

Similarly, the operator from X/(RanT n+KerT n) to Ran T n/ RanT 2n induced by
T n is one-to-one, and so codim(Ran T n + KerT n) ≤ dimRanT n/ RanT 2n < ∞.

Let F be a finite-dimensional subspace satisfying F⊕(Ran T n+KerT n) = X .
Lemma 20.3 for the spaces Ran T n and KerT n + F implies that RanT n is closed.

Let L be a closed subspace satisfying L ⊕ (Ran T n ∩ KerT n) = KerT n. It
is easy to see that RanT n ⊕ L = Ran T n + KerT n and X = RanT n ⊕ (F + L).
Hence Ran T n is a complemented subspace.

It remains to show that ae(T ) = de(T ) = n. This is clear if n = 0. Sup-
pose that n ≥ 1. We have αn(T ) < ∞, βn(T ) < ∞, and αn−1(T ) − αn(T ) =
kn−1(T ) = βn−1(T ) − βn(T ). Thus αn−1(T ) < ∞ ⇔ βn−1(T ) < ∞. Since
n = max{ae(T ), de(T )}, we conclude that ae(T ) = n = de(T ). �

Next we characterize the intersection R5 ∩ R10. Operators in this class are
sometimes called B-Fredholm.

Theorem 12. Let T be an operator on a Banach space X . The following statements
are equivalent:

(i) T ∈ R5 ∩ R10;

(ii) T ∈ Ra
5 ∩ Ra

10;

(iii) ae(T ) < ∞ and de(T ) < ∞;

(iv) there exists n such that RanT n is closed and T |RanT n is Fredholm;

(v) (Kato decomposition) there are closed subspaces X1, X2 such that X = X1⊕
X2, TXi ⊂ Xi (i = 1, 2), T |X1 is nilpotent and T |X2 Fredholm.

Proof. The implication (i) ⇒ (ii) and the equivalence (ii) ⇔ (iii) are clear. The
implication (iii) ⇒ (i) follows from Lemmas 9 and 11.

(v) ⇒ (iv): Let X = X1 ⊕ X2, TXi ⊂ Xi (i = 1, 2), T n|X1 = 0 and let
T |X2 be Fredholm. Then RanT n = RanT n|X2, which is of finite codimension in
X2. Therefore RanT n is closed. It is easy to see that T |RanT n is Fredholm.
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(iv) ⇒ (iii): Let RanT n be closed and T2 = T |RanT n Fredholm. Then

αn(T ) = dim KerT ∩ Ran T n = α(T2) < ∞
and

βn(T ) = dim RanT n/ RanT n+1 = β(T2) < ∞.

Hence ae(T ) < ∞ and de(T ) < ∞.

(iii) ⇒ (v): Since αj(T ) and βj(T ) are finite for all j sufficiently large, and
these sequences are non-increasing, there exists n ∈ N such that αj(T ) = αn(T ) <
∞ and βj(T ) = βn(T ) < ∞ for all j ≥ n. Therefore kj(T ) = 0 for j ≥ n and
KerT ∩Ran T n ⊂ R∞(T ). By Lemma 11, RanT n is closed. By Lemma 12.1 for the
restriction T |RanT n, we also have N∞(T |RanT n) = N∞(T )∩Ran T n ⊂ R∞(T ).

If n = 0, then T is Fredholm and the decomposition is trivial. In the following
we assume that n ≥ 1.

Since dim(RanT n ∩ KerT ) = αn(T ) < ∞, there exists a closed subspace L
such that X = L ⊕ (RanT n ∩ KerT ).

We define closed subspaces Nj (j = 0, . . . , n) inductively by N0 = {0} and
Nj+1 = T−1Nj ∩ L (j < n).

Clearly, TNj+1 ⊂ Nj ∩Ran T . Conversely, let x ∈ Nj ∩RanT . Then x = Tu
for some u ∈ X . Express u = l + v with l ∈ L and v ∈ KerT ∩ RanT n. Then
u − v = l ∈ L and T (u − v) = Tu = x. Thus u − v ∈ Nj+1 and x ∈ TNj+1.

Hence
TNj+1 = Nj ∩ Ran T (j < n).

We prove by induction on j that Nj ⊂ Nj+1. The statement is clear for j = 0.
Suppose that j ≥ 0, Nj ⊂ Nj+1 and let x ∈ Nj+1. Then Tx ∈ Nj ⊂ Nj+1, and so
x ∈ T−1Nj+1. Since x ∈ Nj+1 ⊂ L, we conclude that x ∈ Nj+2.

Hence
Nj ⊂ Nj+1 (j = 0, 1, . . . , n − 1).

One can see easily that Nj ⊂ KerT j for all j.
We now prove by induction on j that

KerT j ⊂ Nj + (KerT j ∩ RanT n). (1)

The inclusion is clear for j = 0. For j = 1 we have KerT = (KerT ∩L)+ (KerT ∩
RanT n) = N1 + (KerT ∩ Ran T n). Let j ≥ 1, KerT j ⊂ Nj + (KerT j ∩ RanT n)
and let x ∈ KerT j+1. Then Tx ∈ KerT j, and so Tx = v1 + v2 for some v1 ∈ Nj

and v2 ∈ KerT j ∩ RanT n = KerT j ∩ Ran T n+1 = T (KerT j+1 ∩ Ran T n). Thus
v1 ∈ Nj ∩ Ran T = TNj+1 and

x ∈ Nj+1 + (KerT j+1 ∩ Ran T n) + KerT

= Nj+1 + (KerT j+1 ∩ Ran T n) + (KerT ∩ L) + (Ker T ∩ RanT n)

= Nj+1 + (KerT j+1 ∩ Ran T n).

Hence (1).
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Finally, we prove by induction that Nj∩RanT n = {0}. This is clear for j = 0.
Let j ≥ 0, Nj ∩ RanT n = {0} and let x ∈ Nj+1∩Ran T n. Then Tx ∈ Nj ∩Ran T n

and so, by the induction assumption, Tx = 0. Thus x ∈ KerT ∩ Ran T n and
x ∈ Nj+1 ⊂ L, and so x = 0. Hence

Nj ∩ Ran T n = {0} (j ≤ n).

Set N = Nn. Then TN ⊂ N and N ⊂ KerT n. Further, N+RanT n ⊃ KerT n

by (1), and N ∩Ran T n = {0}. Note also that N + RanT n = KerT n + RanT n =
T−n Ran(T 2n), which is closed, since Ran T 2n is closed by Lemma 9.

Consider the dual operator T ∗ ∈ B(X∗). It is easy to see that Ran(T ∗j) is
closed, αj(T ∗) = βj(T ) and βj(T ∗) = αj(T ) for all j ≥ n. Thus we can use the
same construction for T ∗.

Since dim(KerT ∗ ∩ RanT ∗n) = αn(T ∗) = βn(T ) < ∞, there exists a finite-
dimensional subspace G ⊂ X such that ⊥(KerT ∗ ∩ Ran T ∗n) ⊕ G = X . Set L′ =
G⊥. Then L′ is a w∗-closed subspace and L′ ⊕ (Ker T ∗ ∩ Ran T ∗n) = X∗.

Define subspaces M ′
0 ⊂ M ′

1 ⊂ · · · ⊂ M ′
n ⊂ X∗ by M ′

0 = {0} and M ′
j+1 =

T ∗−1Mj ∩ L′. By induction, M ′
j is w∗-closed for all j.

Set M ′ = M ′
n. As above we have T ∗M ′ ⊂ M ′ ⊂ KerT ∗n, M ′∩RanT ∗n = {0}

and KerT ∗n ⊂ M ′ + RanT ∗n. Moreover, M ′ + RanT ∗n is a closed subspace.
Set M = ⊥M ′. Then TM ⊂ M and M = ⊥M ′ ⊃ ⊥ KerT ∗n = RanT n.
Further,

Ran T n = ⊥ KerT ∗n ⊃ ⊥(
M ′ + RanT ∗n

)
= ⊥M ′ ∩ ⊥ RanT ∗n = M ∩ KerT n

and M +KerT n = ⊥M ′+⊥ Ran T ∗n = ⊥(
M ′∩Ran T ∗n

)
= X (the middle equality

follows from A.1.13).
Thus

M + N ⊃ M + RanT n + N ⊃ M + RanT n + KerT n = X

and
M ∩ N ⊂ M ∩ KerT n ∩ N ⊂ Ran T n ∩ N = {0}.

Hence X = N ⊕ M , TN ⊂ N , TM ⊂ M and (T |N)n = 0.
Let T2 = T |M . We have

KerT2 = KerT ∩ M ⊂ KerT n ∩ M = ⊥(Ran T ∗n + M ′)

= ⊥(Ran T ∗n + KerT ∗n) = KerT n ∩ RanT n ⊂ R∞(T ).

Thus kj(T2) = 0 for all j ≥ 0. Hence the sequences αj(T2) and βj(T2) are constant.
Since αn(T2) = αn(T ) < ∞ and βn(T2) = βn(T ) < ∞, we conclude that α(T2) <
∞ and β(T2) < ∞. So T2 is Fredholm. �
Proposition 13. Let T, S ∈ B(X). Then σi(TS) \ {0} = σi(ST ) \ {0} for i =
1, 2, . . . , 10. The same relation is true also for all unions of these spectra, in par-
ticular for σ4 ∪ σ9 and σ5 ∪ σ10.

Proof. Follows from Propositions 12.28 and 12.29.
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C. Kato, essentially Kato and quasi-Fredholm operators

In this section we replace the numbers βn(T ) = dimRanT n/ RanT n+1 and
αn(T ) = dim KerT n+1/ KerT n by the numbers

kn(T ) = dim(RanT + KerT n+1)/(Ran T + KerT n)

= dim(KerT ∩ RanT n)/(KerT ∩ RanT n+1).

Note that kn(T ) = 0 if and only if KerT ∩ Ran T n ⊂ Ran T n+1. Similarly,
kn(T ) < ∞ if and only if KerT ∩ RanT n

e⊂Ran T n+1.
We start with an analogue of Lemmas 5 and 6.

Lemma 14. Let A, B, C, D be mutually commuting operators on a Banach space
X satisfying AC + BD = I and let n ≥ 0. Then:

(i) Ran(AnBn) ∩ Ker(AB) =
(
RanAn ∩ KerA

)
+

(
RanBn ∩ KerB

)
;

(ii) max{kn(A), kn(B)} ≤ kn(AB) ≤ kn(A) + kn(B).

Proof. (i) By Lemma 12.8, we have

Ran(AnBn) ∩ Ker(AB) = Ran An ∩ RanBn ∩ (KerA + KerB)

⊃ (
Ran An ∩ Ran Bn ∩ KerA

)
+

(
Ran An ∩ RanBn ∩ KerB

)
=

(
Ran An ∩ KerA

)
+

(
Ran Bn ∩ KerB

)
.

(2)

On the other hand, if x ∈ RanAn ∩ Ran Bn ∩ (
KerA + KerB

)
, then x = y + z

for some y ∈ KerA ⊂ RanBn and z ∈ KerB ⊂ Ran An. Thus we also have
y = x − z ∈ RanAn and z = x − y ∈ RanBn. So

x ∈ (
RanAn ∩ Ran Bn ∩ KerA

)
+

(
Ran An ∩ Ran Bn ∩ KerB

)
and we have equality in (2).

(ii.a) We prove kn(A) ≤ kn(AB). If x1, . . . , xm ∈ Ran An ∩ KerA where m >
kn(AB), then Bnxi ∈ Ran(AnBn) ∩ KerA ⊂ Ran(AnBn) ∩ Ker(AB) for all i =
1, . . . , m. Thus there exists a non-trivial linear combination

m∑
i=1

ciB
nxi ∈ Ran(An+1Bn+1) ⊂ Bn RanAn+1.

So
m∑

i=1

cixi ∈ Ran An+1 + KerBn ⊂ RanAn+1.

Hence kn(A) = dim
(
RanAn ∩ KerT

)
/
(
Ran An+1 ∩ KerT

) ≤ kn(AB).

(ii.b) To prove the second inequality, let x1, . . . , xm ∈ Ran(AnBn) ∩ Ker(AB)
where m > kn(A) + kn(B). By (i), we can write xi = yi + zi (i = 1, . . . , m)
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for some yi ∈ Ran An ∩ KerA and zi ∈ RanBn ∩ KerB. Thus there exists a non-
trivial linear combination such that

∑m
i=1 ciyi ∈ RanAn+1∩KerA and

∑m
i=1 cizi ∈

RanBn+1∩KerB. Hence
∑m

i=1 cixi ∈ Ran(An+1Bn+1)∩Ker(AB) and kn(AB) <
m. This proves the second inequality. �
Lemma 15. Let T ∈ B(X), n ≥ 0 and m ≥ 1. Then

kn(T m) = kmn(T ) + 2kmn+1(T ) + 3kmn+2(T ) + · · · + mkmn+m−1(T )
+ (m − 1)kmn+m(T ) + · · · + kmn+2m−2(T ).

In particular,
kmn(T ) ≤ kn(T m) ≤ m2 max

0≤i≤2m−2
kmn+i(T ).

Proof. Consider the mapping

T̂j : RanT j/ RanT j+m → Ran T j+1/ RanT j+m+1

induced by T . By Lemmas 2 and 21.1, we have

dimKer T̂j = dim
(
T−1 RanT j+m+1 ∩ Ran T j

)
/ RanT j+m

= dim
((

KerT + RanT j+m
) ∩ RanT j

)
/ RanT j+m

= dim
((

KerT ∩ RanT j
)

+ RanT j+m
)
/ RanT j+m

= dim
(
KerT ∩ RanT j

)
/
(
KerT ∩ Ran T j+m

)
=

m−1∑
i=0

ki+j(T ).

Since the mapping RanT mn/ RanT mn+m → Ran T mn+m/ RanT mn+2m in-
duced by T m is equal to the composition T̂mn+m−1T̂mn+m−2 · · · T̂mn and all these
mappings are onto, we have

kn(T m) =
mn+m−1∑

j=mn

dim Ker T̂j =
mn+m−1∑

j=mn

m−1∑
i=0

kj+i(T ),

which gives the statement of the lemma. �
We now define the classes of operators analogous to Ra

1 , . . . , Ra
5 :

Ra
11 = {T ∈ B(X) : kn(T ) = 0 for all n ≥ 0};

Ra
12 = {T ∈ B(X) :

∞∑
i=0

ki(T ) < ∞};

Ra
13 = {T ∈ B(X) : kn(T ) < ∞ for all n ≥ 0};

Ra
14 = {T ∈ B(X) : there exists d ∈ N such that kn(T ) = 0 for all n ≥ d};

Ra
15 = {T ∈ B(X) : there exists d ∈ N such that kn(T ) < ∞ for all n ≥ d}.
The condition in Ra

11 means that

KerT = KerT ∩ RanT = KerT ∩ Ran T 2 = · · · = KerT ∩ R∞(T ),

and so Ra
11 = {T : KerT ⊂ R∞(T )}.
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Similarly,
∑∞

i=0 ki(T ) < ∞ means that there is a d ∈ N such that

KerT
e= KerT ∩Ran T

e= KerT ∩Ran T 2 e= · · · e= KerT ∩Ran T d = KerT ∩R∞(T ),

and so Ra
12 = {T : KerT

e⊂R∞(T )} . The condition defining Ra
13 can be rewritten

as KerT m
e⊂Ran T n for all m, n ∈ N. The condition in Ra

14 is equivalent to KerT ∩
RanT d ⊂ R∞(T ).

It follows from Lemmas 14 and 15 that the sets Ra
11 · · ·Ra

15 are regularities;
so the corresponding spectra satisfy the spectral mapping theorem (for locally
non-constant analytic functions).

Before we introduce the topological version of Ra
11, . . . , R

a
15 we state several

simple lemmas.

Lemma 16. Let T ∈ B(X), m ≥ 0 and n ≥ i ≥ 1. If Ran T n + KerT m is closed,
then RanT n−i + KerT m+i is closed.

Proof. It is sufficient to show that

Ran T n−i + KerT m+i = T−i
(
RanT n + KerT m

)
. (3)

The inclusion ⊂ is clear. Conversely, suppose that T iz ∈ Ran T n + KerT m,
so T iz = T nx + u for some x ∈ X and u ∈ KerT m. Then u ∈ RanT i, and so
u = T iv for some v ∈ KerT m+i. Consequently, z − T n−ix − v ∈ KerT i. Thus
z ∈ Ran T n−i + KerT m+i + KerT i = Ran T n−i + KerT m+i and we have equality
in (3). �

Lemma 17. Let T ∈ B(X) and let n ≥ 0. If Ran T n is closed and Ran T + KerT n

is closed, then Ran T n+1 is closed.

Proof. Let uj ∈ X (j = 1, 2, . . . ) and let T n+1uj → z as j → ∞. Then z ∈
RanT n, z = T nu for some u ∈ X and T n(u − Tuj) → 0.

Consider the operator T̂ n : X/ KerT n → X induced by T n.
Clearly, T̂ n is one-to-one and has closed range, therefore it is bounded below,

and T̂ n(u − Tuj + KerT n) → 0 (j → ∞) implies u − Tuj + KerT n → 0 in
X/ KerT n. Thus there are elements vj ∈ KerT n such that Tuj + vj → u, and so
u ∈ RanT + KerT n. Hence z = T nu ∈ Ran T n+1. �

Lemma 18. Let T ∈ B(X), d ∈ N and let ki(T ) < ∞ for every i ≥ d. Then the
following statements are equivalent:

(i) there exists n ≥ d + 1 such that RanT n is closed;

(ii) RanT n is closed for all n ≥ d;

(iii) RanT n + KerT m is closed for all m, n with m + n ≥ d.

Proof. Clearly, (iii) ⇒ (ii) ⇒ (i). The implication (ii) ⇒ (iii) follows from Lem-
ma 16.
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(i) ⇒ (ii) : If RanT n is closed, then, by Lemma 16, Ran T + KerT n−1 is
closed. Since RanT +KerT n−1

e⊂Ran T +KerT n
e⊂ · · · , we get that RanT +KerT i

is closed for every i ≥ n. Thus, by Lemma 17, we get inductively that RanT i is
closed for every i ≥ n.

To show that RanT i is closed for all i, d ≤ i ≤ n, we can proceed exactly as
in the proof of Lemma 9. �

We use the following notation:

R11 = {T ∈ B(X) : KerT ⊂ R∞(T ) and RanT is closed};
R12 = {T ∈ B(X) : KerT

e⊂R∞(T ) and RanT is closed};
R13 = {T ∈ B(X) : kn(T ) < ∞ for every n ∈ N and RanT is closed};
R14 = {T ∈ B(X) : there exists d ∈ N such that

kn(T ) = 0 (n ≥ d) and RanT d+1 is closed};
R15 = {T ∈ B(X) : there exists d ∈ N such that

kn(T ) < ∞ (n ≥ d) and RanT d+1 is closed} .

The sets R11 and R12 are the classes of all Kato and essentially Kato operators,
respectively. The operators in R14 are called quasi-Fredholm.

Clearly, R11 ⊂ R12 = R13 ∩ R14 ⊂ R13 ∪ R14 ⊂ R15, R1 ∪ R6 ⊂ R11,
R2 ∪ R7 ⊂ R3 ∪ R8 ⊂ R12, R4 ∪ R9 ⊂ R14 and R5 ∪ R10 ⊂ R15.

It is easy to see that the sets R11 · · ·R15 are regularities.
Let σi (i = 11, . . . , 15) be the corresponding spectra defined by σi(T ) =

{λ : T − λ /∈ Ri}. If X = X1 ⊕ X2 is a decomposition of X with closed X1, X2

and if T1 ∈ B(X1), T2 ∈ B(X2), then

σi(T1 ⊕ T2) = σi(T1) ∪ σi(T2) (i = 11, . . . , 15) .

Since σ11(T1) �= ∅ ⇔ X1 �= {0}, and σi(T1) �= ∅ ⇔ dimX1 = ∞ for i = 12, 13, we
have the following spectral mapping theorems:

Theorem 19. Let T ∈ B(X) and let f be a function analytic on a neighbourhood
of σ(T ). Then

σi(f(T )) = f(σi(T )) (i = 11, 12, 13).

If f is non-constant on each component of its domain of definition, then

σi(f(T )) = f(σi(T )) (i = 14, 15).

Examples 20. Let Sn be the shift in an n-dimensional Hilbert space. A typical
example of an operator in the class R13 is T =

⊕∞
n=1 Sn; then kn(T ) = 1 for all

n ≥ 0.
An example of a quasi-Fredholm operator (class R14) is T ′ =

⊕∞
j=1 Sn, where

n ∈ N is fixed. Then kn−1(T ′) = ∞ and ki(T ′) = 0 (i �= n − 1).
The operator T ′′ = T ⊕ T ′ is an example of an operator in the class R15.
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Lemma 21. If T ∈ B(X), n ∈ N and RanT n, RanT n+1 and RanT n+2 are closed,
then kn(T ∗) = kn(T ).

Proof. The space Ran T +KerT n = T−n Ran T n+1 is closed, and similarly, Ran T +
KerT n+1 is closed. Thus

kn(T ) = dim(RanT + KerT n+1)/(RanT + KerT n)

= dim(RanT + KerT n)⊥/(RanT + KerT n+1)⊥

= dim(KerT ∗ ∩ RanT ∗n)/(KerT ∗ ∩ Ran T ∗n+1) = kn(T ∗). �

Corollary 22. T ∗ ∈ Ri ⇔ T ∈ Ri for i = 11, . . . , 15.

23 Semiregularities and miscellaneous spectra

Some spectra studied in literature satisfy the conditions required in Section 6 only
partially. We met some examples of this kind in the previous sections.

Recall that a non-empty subset R of a Banach algebra A is called a regularity
if it satisfies the following two conditions:

(i) if a ∈ A and n ∈ N, then a ∈ R ⇔ an ∈ R,

(ii) if a, b, c, d are mutually commuting elements of A satisfying ac + bd = 1A,
then ab ∈ R ⇔ a, b ∈ R.

Axioms (i) and (ii) can be divided into two parts, each of them implying a
one-way spectral mapping theorem.

There are many natural examples of classes of operators or Banach algebras
elements that satisfy only one half of the axioms of regularities. This motivates
the definition of semiregularities.

Lower semiregularities

Definition 1. Let R be a non-empty subset of a Banach algebra A. Then R is called
a lower semiregularity if

(i) a ∈ A, n ∈ N, an ∈ R ⇒ a ∈ R,

(ii) if a, b, c, d are mutually commuting elements of A satisfying ac+bd = 1A and
ab ∈ R, then a, b ∈ R.

For a lower semiregularity R let σR be the corresponding spectrum defined
by σR by σR(a) = {λ ∈ C : a − λ /∈ R}.

Clearly the intersection R =
⋂

α Rα of any system of lower semiregularities is
again a lower semiregularity. The corresponding spectra satisfy σR(a) =

⋃
α σRα(a)

for all a ∈ A.
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Note that also the union R =
⋃

α Rα of any system of lower semiregularities
is again a lower semiregularity. The corresponding spectrum then satisfies σR(a) =⋂

α σRα(a).

Lemma 2. Let R ⊂ A be a lower semiregularity. Then:

(i) 1A ∈ R;

(ii) Inv(A) ⊂ R;

(iii) if a ∈ R, b ∈ Inv(A) and ab = ba, then ab ∈ R;

(iv) σR(a) ⊂ σ(a);
(v) (translation property) σR(a + λ) = λ + σR(a).

Proof. (i) Let b ∈ R. We have 1 · 1 + b · 0 = 1 and 1 · b = b ∈ R. Thus 1 ∈ R.

(ii) Let a ∈ Inv(A). Then a · a−1 + a−1 · 0 = 1 and a · a−1 = 1 ∈ R. Hence
a ∈ R.

(iii) We have (ab) · 0 + b−1 · b = 1 and (ab) · b−1 = a ∈ R, so ab ∈ R.
The remaining statements are clear. �

Remark 3. Suppose that R ⊂ A is a non-empty subset satisfying

a, b ∈ A, ab = ba, ab ∈ R ⇒ a, b ∈ R. (1)

Then clearly R is a lower semiregularity.

Theorem 4. Let R ⊂ A be a lower semiregularity and a ∈ A. Then

f(σR(a)) ⊂ σR(f(a))

for each locally non-constant function f analytic on a neighbourhood of σ(a).

Proof. Suppose on the contrary that λ ∈ f(σR(a)) \ σR(f(a)). Since the function
f(z)− λ has only a finite number of zeros α1, . . . , αn in σ(a), we can write

f(z)− λ = (z − α1)k1 . . . (z − αn)kng(z),

for some ki ≥ 1 and a function g analytic on a neighbourhood of σ(a) such that
g(z) �= 0 (z ∈ σ(a)). Thus

f(a) − λ = (a − α1)k1 . . . (a − αn)kng(a),

where f(a) − λ ∈ R and g(a) ∈ Inv(A). By Lemma 2 (iii),

(a − α1)k1 · · · (a − αn)kn ∈ R.

Let i ∈ {1, . . . , n}. For certain polynomials p, q we have

(z − αi)ki · p(z) +
(∏

j �=i

(z − αj)kj

)
· q(z) = 1.

The corresponding identity for z replaced by a gives (a−αi)ki ∈ R. Thus a−αi ∈ R
and αi /∈ σR(a) (i = 1, . . . , n). Hence λ /∈ f(σR(a)), a contradiction. �
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Corollary 5. Let R ⊂ A be a lower semiregularity and 0 /∈ R. Then p(σR(a)) ⊂
σR(p(a)) for all polynomials p.

Proof. It is sufficient to verify the inclusion for the constant polynomials p(z) ≡ λ.
In this case we have p(σR(a)) ⊂ {λ} and σR(p(a)) = σR(λ · 1A) = {λ}. �

The assumption in Theorem 4 that the function f is locally non-constant can
be frequently omitted.

Theorem 6. Let R ⊂ A be a lower semiregularity satisfying the following condition:
if c = c2 ∈ R, a ∈ A and ac = ca, then c+(1−c)a ∈ R . Then f(σR(a)) ⊂ σR(f(a))
for all a ∈ A and f analytic on a neighbourhood of σ(a).

Proof. Let U be the domain of definition of f . Suppose on the contrary that
λ ∈ f(σR(a)) \ σR(f(a)). Let U1 be the union of all components of U where f is
identically equal to λ, and U2 = U \ U1. Let h be defined by

h(z) =

{
0 (z ∈ U1),
1 (z ∈ U2).

Then we can write

f(z) − λ = h(z)(z − α1)k1 · · · (z − αn)kn · g(z)

where α1, . . . , αn ∈ σ(a) ∩ U2, g is analytic on U and g(z) �= 0 (z ∈ σ(a)). Set
p(z) = (z − α1)k1 · · · (z − αn)kn . Thus f(a) − λ = h(a)p(a)g(a) = h(a)p(a)

(
1 −

h(a) + g(a)h(a)
)
, where 1− h(a) + g(a)h(a) ∈ Inv(A). We have f(a)− λ ∈ R and

so, by Lemma 2 (iii), h(a)p(a) ∈ R.
Consider the function r defined by

r(z) =

{
p(z)−1 (z ∈ U1),
0 (z ∈ U2).

Then p(a)(1−h(a))·r(a)+h(a)·1 = 1 and p(a)h(a) ∈ R, and so p(a) ∈ R, h(a) ∈ R.
As in Theorem 4, p(a) ∈ R implies a − αi ∈ R (i = 1, . . . , n) and so αi /∈ σR(a).

Since λ ∈ f(σR(a)), there is a β ∈ U1∩σR(a). Further, h(a) is an idempotent
in R and, by assumption, we have (a−β)(1−h(a))+h(a) ∈ R. Since (1−h(a))+
(a − β)h(a) ∈ Inv(A), we have

a − β =
(
(a − β)(1 − h(a)) + h(a)

) · ((1 − h(a)) + (a − β)h(a)
) ∈ R.

This contradicts to the fact that β ∈ σR(a). �
Remark 7. In particular the condition of the previous theorem is satisfied if the
unit element is the unique idempotent in R.

Another typical application is when A is the algebra of all bounded opera-
tors on a Banach space, all idempotents in R are projections onto subspaces of
finite codimension and R is invariant under finite rank perturbations (for example
Fredholm operators, upper (lower) semi-Fredholm operators etc.).
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Theorem 8. Let R ⊂ A be a lower semiregularity. The following conditions are
equivalent:

(i) R is open;

(ii) σR(a) is closed for each a ∈ A and the set-valued function a �→ σR(a) is
upper semicontinuous.

Proof. Straightforward. �

Remark 9. Let R ⊂ A be a lower semiregularity. Then the spectrum σR can be
extended to n-tuples of commuting elements of A in such a way that

p(σR(a1, . . . , an)) ⊂ σR(p(a1, . . . , an))

for all commuting n-tuples a1, . . . , an ∈ A and all non-constant polynomials p in
n variables. Indeed, define

σR(a1, . . . , an) = {(λ1, . . . , λn) : p(a1, . . . , an) − p(λ1, . . . , λn) /∈ R for all p}.

The extension is not unique; other (trivial) extension is σR(a1, . . . , an) = ∅
whenever n ≥ 2.

The first extension is maximal among all extensions satisfying the one-way
spectral mapping property (clearly the trivial extension is minimal).

We show now some examples of lower semiregularities. Of course every reg-
ularity is also a lower semiregularity. Therefore we restrict here only to examples
of lower semiregularities that are not regularities.

Let X be a Banach space. The set Φ+(X) ∪ Φ−(X) of all semi-Fredholm
operators is a lower semiregularity (since it is a union of two regularities). The
corresponding semi-Fredholm spectrum is defined by σsF (T ) = {λ ∈ C : T −
λ is not semi-Fredholm}.

By Remark 7, the one-way spectral mapping f(σsF (T )) ⊂ σsF (f(T )) is sat-
isfied for all functions analytic on a neighbourhood of σ(T ).

Another example of a lower semiregularity in a Banach algebra A is the set
Invl(A) ∪ Invr(A) of all one-side invertible elements.

Let T ∈ B(X) and n ≥ 0. Recall the definitions from the previous section:

αn(T ) = dim KerT n+1/ KerT n,

βn(T ) = dim RanT n/ RanT n+1,

kn(T ) = dim(RanT n ∩ KerT )/(RanT n+1 ∩ KerT ).

Fix m ≥ 0. It follows from the results in the previous sections that the
following subsets of B(X) are lower semiregularities:
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(i) {T ∈ B(X) : dim KerT ≤ m} = {T : sup αi(T ) ≤ m},
(ii) {T ∈ B(X) : dimN∞(T ) ≤ m} = {T :

∑
αi(T ) ≤ m},

(iii) {T ∈ B(X) : limαi(T ) ≤ m},
(iv) {T ∈ B(X) : codim RanT ≤ m} = {T : sup βi(T ) ≤ m},
(v) {T ∈ B(X) : codimR∞(T ) ≤ m} = {T :

∑
βi(T ) ≤ m},

(vi) {T ∈ B(X) : limβi(T ) ≤ m},
(vii) {T ∈ B(X) : supki(T ) ≤ m},
(viii) {T ∈ B(X) :

∑
ki(T ) ≤ m},

(ix) {T ∈ B(X) : lim sup ki(T ) ≤ m}.
(x) {T ∈ B(X) : dim KerT ≤ m and RanT is closed},
(xi) {T ∈ B(X) : dimN∞(T ) ≤ m and RanT is closed},
(xii) {T ∈ B(X) : there is a j such that αj(T ) ≤ m and RanT j+1 is closed},
(xiii) {T ∈ B(X) : supki(T ) ≤ m and RanT is closed},
(xiv) {T ∈ B(X) :

∑
ki(T ) ≤ m and RanT is closed},

(xv) {T ∈ B(X) : kn(T ) ≤ m and RanT n is closed for every n ≥ n0}.
Note that the ranges in classes (iv)–(vi) are closed automatically.
This shows that it is rather easy to find examples of lower semiregularities.

Upper semiregularities

Definition 10. A subset R of a Banach algebra A is called an upper semiregularity if

(i) a ∈ R, n ∈ N ⇒ an ∈ R,
(ii) if a, b, c, d are mutually commuting elements of A satisfying ac+bd = 1A and

a, b ∈ R, then ab ∈ R,
(iii) R contains a neighbourhood of the unit element 1A.

The definitions of upper and lower semiregularities are only seemingly asym-
metric. In fact, condition (iii) for lower semiregularities was satisfied automatically.

Clearly R is a regularity if and only if it is both a lower and upper semireg-
ularity.

Define again σR(a) = {λ ∈ C : a − λ /∈ R}. Clearly the intersection of any
family of upper semiregularities is again an upper semiregularity. Also the mapping
a �→ σR(a) is upper semicontinuous if and only if R is open.

Remark 11. If R ⊂ A is a semigroup, then conditions (i) and (ii) of Definition 10
are satisfied. Thus a semigroup containing a neighbourhood of the unit element is
an upper semiregularity.

Lemma 12. Let R ⊂ A be an upper semiregularity, let a ∈ R∩ Inv(A). Then there
exists ε > 0 such that {b ∈ A : ab = ba, ‖b − a‖ < ε} ⊂ R.
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Proof. Let δ > 0 satisfy {c ∈ A : ‖c − 1A‖ < δ} ⊂ R. Let a ∈ R ∩ Inv(A). Set
ε = δ

‖a−1‖ . Suppose that b ∈ A, ab = ba and ‖b − a‖ < ε. Then ‖a−1b − 1‖ =
‖a−1(b−a)‖ ≤ ‖a−1‖·‖b−a‖ < δ, and so a−1b ∈ R. Further, a·a−1+(a−1b)·0 = 1,
hence b = a · (a−1b) ∈ R. �
Lemma 13. Let R ⊂ A be an upper semiregularity, an ∈ R ∩ Inv(A) (n =
1, 2, . . . ), a ∈ Inv(A), an → a and ana = aan. Then a ∈ R.

Proof. For each n we have an · a−1
n + (a−1

n a) · 0 = 1. Further, a−1
n a → 1, and so

a−1
n a ∈ R for n large enough. Thus a = an · (a−1

n a) ∈ R. �
Theorem 14. Let R ⊂ A be an upper semiregularity, let a ∈ A. Let M be a
component of C \ σ(a). Then either M ⊂ σR(a) or M ∩ σR(a) = ∅.
Proof. Let L = {a − λ : λ ∈ M, a − λ ∈ R}. By Lemma 12, L is open and, by
Lemma 13, it is relatively closed in M . Thus either L = ∅ or L = M . �
Corollary 15. Let R ⊂ A be an upper semiregularity. Then λ · 1A ∈ R for each
non-zero complex number λ.

Proof. Consider the element a = 0. The set M = {λ ∈ C : λ �= 0} is a component
of C \ σ(0). Further, 1 ∈ R, so λ ∈ R for all λ ∈ M . �
Lemma 16. Let R ⊂ A be an upper semiregularity, let a ∈ R, b ∈ R ∩ Inv(A) and
ab = ba. Then ab ∈ R.

Proof. We have a · 0 + b · b−1 = 1, so ab ∈ R. �
Theorem 17. Let R ⊂ A be an upper semiregularity, let a ∈ A. Then σR(a) ⊂ σ̂(a).
Further, σR(a) \ σ(a) is a union of some bounded components of C \ σ(a).

Proof. For |λ| large enough we have 1 − a
λ ∈ R, so a − λ = −λ(1 − a

λ) ∈ R. By
Theorem 14 the unbounded component of C\σ(a) is disjoint with σR(a) and thus
σR(a) ⊂ σ̂(a). �
Theorem 18. Let R ⊂ A be an upper semiregularity, let a ∈ A. Then σR(p(a)) ⊂
p(σR(a)) for all non-constant polynomials p.

Moreover, if σR(b) �= ∅ for all b ∈ A, then σR(p(a)) ⊂ p(σR(a)) for all
polynomials p.

Proof. Let p be a non-constant polynomial. Let λ /∈ p(σR(a)). Write p(z) − λ =
β · (z − α1)k1 · · · (z − αn)kn where n ≥ 1 and α1, . . . , αn, β ∈ C, β �= 0. Thus

p(a) − λ = β · (a − α1)k1 · · · (a − αn)kn .

By assumption, αi /∈ σR(a) (i = 1, . . . , n). Thus a − αi ∈ R and (a − αi)ki ∈ R.
As in Theorem 4 we have (z − α1)k1 · · · (z − αn)kn ∈ R and p(a) − λ ∈ R, i.e.,
λ /∈ σR(p(a)). Thus σR(p(a)) ⊂ p(σR(a)) for all non-constant polynomials.

Suppose that σR(b) �= ∅ for all b ∈ A. Let p(z) = λ be a constant polynomial.
Then

σR(p(a)) = σR(λ · 1A) = {λ} = p(σR(a)). �
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Theorem 19. Let R ⊂ A be an upper semiregularity. Suppose that R satisfies the
condition

b ∈ R ∩ Inv(A) ⇒ b−1 ∈ R. (2)

Then σR(f(a)) ⊂ f(σR(a)) for all a ∈ A and all locally non-constant functions f
analytic on a neighbourhood of σ(a) ∪ σR(a).

Further, σR(f(a)) ⊂ f(σR(a) ∪ σ(a)) for all functions f analytic on a neigh-
bourhood of σR(a) ∪ σ(a).

Proof. Suppose first that f is locally non-constant and suppose on the contrary
that there is a λ ∈ σR(f(a))\f(σR(a)). Then f(a)−λ = q(a)g(a) where q(a) = (z−
α1)k1 · · · (a−αn)kn and g is a function analytic and non-zero on a neighbourhood
of σ(a)∪σR(a). By assumption, f(a)−λ /∈ R and αi /∈ σR(a), i.e., a−αi ∈ R (i =
1, . . . , n). As in Theorem 4 we obtain that q(a) ∈ R. Further, there are a compact
neighbourhood V of σ(a) ∪ σR(a) and rational functions pn(z)

qn(z) with poles outside

V such that pn(z)
qn(z) → g(z) uniformly on V . We can assume that the polynomials

pn, qn are non-constant and pn(z) �= 0 on σ(a) ∪ σR(a).
By Theorem 18, this means that pn(a) ∈ R, qn(a) ∈ R. By assumption,

qn(a)−1 ∈ R. Thus we have pn(a)qn(a)−1 ∈ R and, by Lemma 13, g(a) =
lim pn(a)qn(a)−1 ∈ R. Since q(a) ∈ R and g(a) ∈ R∩Inv(A), we have f(a)−λ ∈ R,
a contradiction.

Suppose now that f is analytic on a neighbourhood of σ(a) ∪ σR(a) and λ ∈
σR(f(a))\ (f(σ(a)∪σR(a))

)
. Let U be the domain of definition of f , U = U1∪U2

where U1, U2 are disjoint open sets, f |U1 ≡ λ and f is not identically equal to λ
on any non-empty open subset of U2. By assumption, (σR(a) ∪ σ(a)) ∩U1 = ∅, so
U2 is an open neighbourhood of σ(a) ∪ σR(a). The proof proceeds as in the first
part. �

In many cases the inclusion σR(f(a)) ⊂ f(σR(a)) is true for all analytic
functions. By Theorem 19, this is true if R satisfies (2) and R ⊂ Inv(A), i.e.,
σR(a) ⊃ σ(a) for all a.

Another typical situation is described in the following theorem.

Theorem 20. Let R ⊂ B(X) be an upper semiregularity satisfying (2) such that

(i) if T ∈ R and F ∈ B(X) is a finite rank operator commuting with T , then
T + F ∈ R,

(ii) if T ∈ B(X), U1, U2 are disjoint open sets, σ(T ) ⊂ U1 ∪ U2 and σR(T ) ⊂ U2,
then the spectral projection of T corresponding to U1 is of finite rank.

Then σR(f(T ) ⊂ f(σR(T )) for all T ∈ B(X) and f analytic on a neighbourhood
of σ(T ) ∪ σR(T ).
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Proof. Let f be analytic on a neighbourhood of σ(T ) ∪ σR(T ) and suppose that
there is λ ∈ σR(f(T ))\f(σR(T )). Let U1, U2 be disjoint open sets, f |U1 ≡ λ and f
is not identically equal to λ on any non-empty open subset of U2. By assumption,
σR(T ) ∩ U1 = ∅, so σR(T ) ⊂ U2. Let h be defined by

h(z) =

{
0 (z ∈ U1),
1 (z ∈ U2).

By (ii), I − h(T ) is a finite rank projection. We can write

f(z) − λ = h(z)(z − α1)k1 · · · (z − αn)kng(z)

for some α1, . . . , αn ∈ σ(a) ∩ U2, g analytic on U1 ∪ U2 and g(z) �= 0 (z ∈ σ(a)).
Set q(z) = (z − α1)k1 · · · (z − αn)kn .

We have αi /∈ σR(T ), so T − αi ∈ R and, as in Theorem 4, q(T ) ∈ R.
As in Theorem 19 we get g(T ) ∈ R ∩ Inv(B(X)), and so q(T )g(T ) ∈ R. By (i),
f(T )− λ = h(T )q(T )g(T ) ∈ R, a contradiction. �
Examples 21.

(i) Let R be the principal component of Inv(A), i.e., the component of Inv(A)
containing the unit. Then R is an open semigroup and so an upper semireg-
ularity. The corresponding spectrum is the exponential spectrum σexp (the
name is justified by the fact that R = {exp(a1) · · · exp(an) : n ∈ N, a1, . . . ,
an ∈ A}).

By Theorems 17 and 19, σ(a) ⊂ σexp(a) ⊂ σ̂(a) and σexp(f(a)) ⊂
fσexp(a) for each function f analytic on a neighbourhood of σexp(a).

(ii) Let R = {T ∈ Φ(X) : indT = 0}. Then R is an open semigroup and thus
an upper semiregularity. The corresponding spectrum is the Weyl spectrum
(sometimes also called the Schechter spectrum) σW (T ) = {λ ∈ C : T − λ /∈
Φ(X) or indT �= 0}. By Theorem 19.7, σW (T ) =

⋂
σ(T + K) where the

intersection is taken over the set of all compact operators K. By Theorem
20, we have σW (f(T )) ⊂ f(σW (T )) for each function f analytic on a neigh-
bourhood of σ(T ).

In fact, the Weyl spectrum is closely related to the exponential spec-
trum. It is easy to see that T is a Fredholm operator with indT = 0 if and
only if T lies in the principal component of Φ(X).

(iii) More generally, let J be a closed two-sided ideal in a Banach algebra A and
R = {a + b : a ∈ Inv(A), b ∈ J}. It is easy to check that R is a semigroup
containing Inv(A), and so an upper semiregularity.

(iv) Let A = B(X). Then the sets

Φ−
+(X) = {T ∈ Φ+(X) : indT ≤ 0} and

Φ+
−(X) = {T ∈ Φ−(X) : indT ≥ 0}.
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are upper semiregularities. The corresponding spectra σΦ−
+

and σΦ+
−

satisfy

σΦ−
+
(T ) =

⋂
{σπ(T + K) : K compact},

σΦ+
−
(T ) =

⋂
{σδ(T + K) : K compact}

and the one-way spectral mapping theorem for all analytic functions, cf.
Theorem 20.

Closed-range spectrum

Most of the classes of “nice” operators require that the operators have closed
ranges. Thus it is natural to consider the closed-range spectrum of an operator
T ∈ B(X) defined by

σcr(T ) = {λ ∈ C : Ran(T − λ) is not closed}.
This spectrum is sometimes called the Goldberg spectrum. However, the closed-
range spectrum has not good properties. For example, it is possible that RanT is
closed but RanT 2 is not. Conversely, it is also possible that Ran T 2 is closed but
RanT is not. In particular, operators with closed range are not a semiregularity.

In fact it is possible to construct the following extreme example:

Example 22. Let M ⊂ N be any subset. Then there exists an operator T acting
on a separable Hilbert space H such that RanT n is closed if and only if n ∈ M .

Construction: If M = N, then the statement is clear (take for example T = I). So
we may assume that M �= N.

Let K be a separable infinite-dimensional Hilbert space and fix an oper-
ator V ∈ B(K) with ‖V ‖ = 1 and RanV non-closed (for example, let V =
diag(1, 1/2, 1/3, . . . )).

Let m ∈ N. We construct an operator Tm such that ‖Tm‖ ≤ 2, γ(T j
m) = 1

for 1 ≤ j ≤ m − 1, RanT m
m is not closed and T m+1

m = 0.
Set Hm =

⊕m
i=−m+1 K. The operator Tm ∈ B(Hm) will be defined by

Tm

(
x−m+1, x−m+2, . . . , x−1, x0, x1, . . . , xm

)
=

(
0, x−m+1, x−m+2, . . . , x−2, x−1 + V x1, x2, . . . , xm, 0

)
.

Clearly ‖Tm‖ ≤ 2 and T m+1
m = 0.

For 1 ≤ j ≤ m − 1 we have

RanT j
m = 0 ⊕ · · · ⊕ 0︸ ︷︷ ︸

j

⊕K ⊕ · · · ⊕ K︸ ︷︷ ︸
2m−2j

⊕ 0 ⊕ · · · ⊕ 0︸ ︷︷ ︸
j

.

Thus RanT j
m is closed for j = 1, . . . , m − 1. It is easy to see that γ(T j

m) = 1.
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Further,
Ran T m

m = 0 ⊕ · · · ⊕ 0︸ ︷︷ ︸
m−1

⊕RanV ⊕ 0 ⊕ · · · ⊕ 0︸ ︷︷ ︸
m

,

and so RanT m
m is not closed.

Set now H =
⊕

m∈N\M Hm and T =
⊕

m∈N\M Tm. Then

Ran T j =
⊕

m∈N\M

RanT j
m

for each j. Consequently, RanT j is closed if and only if m ∈ M .

Note that the Kato spectrum, which has very nice spectral properties, is
not too far from the closed-range spectrum. Clearly σcr(T ) ⊂ σK(T ) and, by
Theorem 12.13, σK(T )\σcr(T ) is at most countable. Thus the Kato spectrum can
be considered as a nice completion of the closed-range spectrum.

Generalized spectrum

Another type of spectrum considered in literature is the generalized spectrum,
σg(T ) = {λ ∈ C : T − λ has not a generalized inverse}.

For operators on Hilbert spaces, the generalized spectrum coincides with the
closed range spectrum. Therefore the last example is also valid for the generalized
spectrum.

24 Measures of non-compactness and other
operator quantities

The basic operator quantities connected with an operator T ∈ B(X) are the norm,
the injectivity modulus j(T ) and the surjectivity modulus k(T ).

In this section we study various essential versions of these quantities.
We start with the Hausdorff measure of non-compactness:

Definition 1. Let Ω be a bounded subset of a Banach space X . The Hausdorff
measure of non-compactness of Ω is defined by

qX(Ω) = inf{ε > 0 : there exists a finite set F ⊂ X such that Ω ⊂ F + εBX}.
If no confusion can arise, then we write simply q(Ω) instead of qX(Ω).

For sequences this definition coincides with the norm in the space X̃ , see
Section 17.

Proposition 2. Let Ω, Ψ be bounded subsets of X , let c > 0. Then:

(i) q(Ω) = q(Ω);
(ii) q(Ω) = 0 ⇔ Ω is compact;
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(iii) if Ω ⊂ Ψ, then q(Ω) ≤ q(Ψ);
(iv) q(cΩ) = cq(Ω);
(v) q(Ω + Ψ) ≤ q(Ω) + q(Ψ).

Proof. (v): Let δ > 0. There are finite subsets F, F ′ ⊂ X such that Ω ⊂ F +(q(Ω)+
δ)BX and Ψ ⊂ F ′+(q(Ψ)+δ)BX . Thus Ω+Ψ ⊂ (F +F ′)+(q(Ω)+q(Ψ)+2δ)BX

and q(Ω + Ψ) ≤ q(Ω) + q(Ψ) + 2δ. Letting δ → 0 yields (v).
The remaining statements are straightforward. �

Proposition 3. Let X be a closed subspace of a Banach space Y and let Ω ⊂ X be
a bounded set. Then qY (Ω) ≤ qX(Ω) ≤ 2qY (Ω).

Proof. The first inequality is clear.
Let s > qY (Ω) and let F ⊂ Y be a finite set such that Ω ⊂ F + sBY . We can

assume that F is a minimal set with this property. So for each f ∈ F there is an
xf ∈ Ω with ‖f − xf‖ ≤ s. Set F ′ = {xf : f ∈ F}. Clearly, F ′ is a finite subset of
X . Let x ∈ Ω and let f ∈ F satisfy ‖x − f‖ ≤ s. Then

dist{x, F ′} ≤ ‖x − xf‖ ≤ ‖x − f‖ + ‖f − xf‖ ≤ 2s.

Thus qX(Ω) ≤ 2s. Letting s → qY (Ω) yields qX(Ω) ≤ 2qY (Ω). �

Later we give an example that the estimates given in Proposition 3 are the
best possible.

Proposition 4. If X is an infinite-dimensional Banach space, then q(BX) = 1.

Proof. Clearly, q(BX) ≤ 1. Suppose on the contrary that q(BX) < s < 1. Then
there exists a finite set F ⊂ X such that BX ⊂ F + sBX . Thus BX ⊂ F + s(F +
sBX) ⊂ (F + sF )+ s2BX , and so q(BX) ≤ s2. Since s > q(BX) was arbitrary, we
have q(BX) ≤ (q(BX))2. Hence q(BX) = 0, and so BX is compact, a contradiction
with the assumption that dimX = ∞. �

Proposition 5. Let Ω ⊂ X be a bounded set. Then

sup{q(C) : C ⊂ Ω, C countable} ≥ 1
2
q(Ω).

Proof. Let r < q(Ω). Choose x1 ∈ Ω arbitrarily. Since {x1}+rBX �⊃ Ω, there exists
x2 ∈ Ω such that ‖x2−x1‖ > r. We can construct inductively a sequence x1, x2, . . .
of points of Ω such that ‖xi − xj‖ > r for all i, j ∈ N, i �= j. Set C = {x1, x2, . . . }.
Since every closed ball of radius r/2 contains at most one point of C, C can not be
covered by a finite number of closed balls of radius r/2. Hence q(C) ≥ r/2. �

Example 6. Let I be an uncountable set and let

X =
{
f : I → C : supp f countable, sup |f(i)| < ∞}

.
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Clearly, X with the sup-norm is a Banach space. Let Ω = {ei : i ∈ I}. Then
q(Ω) = 1 and q(C) = 1/2 for each countable subset C ⊂ Ω. Thus the estimate in
Proposition 5 is the best possible.

Let Y be the Banach space of all bounded functions f : I → C with the sup-
norm. Let y ∈ Y be the constant function y(i) = 1/2 (i ∈ I). Then ‖ω−y‖ = 1/2
for all ω ∈ Ω; so qY (Ω) = 1/2 = 1/2qX(Ω). Thus the estimate in Proposition 3 is
also the best possible.

Let M be a closed subspace of X . Denote by JM the natural embedding
JM : M → X and by QM : X → X/M the canonical projection.

Definition 7. Let T ∈ B(X, Y ). We consider the following quantities:

‖T ‖e = inf{‖T + K‖ : K ∈ K(X, Y )};
‖T̃‖;
‖T ‖µ = inf{‖TJM‖ : M ⊂ X, codimM < ∞};
‖T ‖q = inf{‖QNT ‖ : N ⊂ Y, dimN < ∞}

(where T̃ is the operator acting in �∞/m(X) which was studied in Section 17).
It is easy to see that all these quantities are seminorms.
The first quantity ‖T ‖e = dist{T,K(X, Y )} is the essential norm of T .

Clearly, ‖T ‖e = 0 if and only if T is compact. Also, ‖T̃‖ = 0 ⇔ T is compact ⇔
‖T ‖µ = 0 by Lemma 17.3 and Theorem 15.5. It will be shown later that the latter
three seminorms are equivalent. Thus, in particular, ‖T ‖q = 0 ⇔ T is compact.

From this reason the quantities defined in Definition 7 are usually called
measures of non-compactness.

The first result gives the connection with the Hausdorff measure of non-
compactness:

Proposition 8. Let T ∈ B(X, Y ). Then ‖T ‖q = q(TBX).

Proof. Let ε > 0 and let F ⊂ Y be a finite set such that dist{Tx, F} ≤ q(TBX) +
ε (x ∈ BX). Let N be the subspace of Y spanned by F . Then

‖QNT ‖ = sup
x∈X
‖x‖=1

inf
u∈N

‖Tx + u‖ ≤ sup
x∈X
‖x‖=1

dist{Tx, F} ≤ q(TBX) + ε.

Thus ‖T ‖q ≤ q(TBX) + ε, and letting ε → 0 yields ‖T ‖q ≤ q(TBX).

Conversely, let ε > 0 and let N be a finite-dimensional subspace of Y . Let
F be a finite ε-net in the ball in N with radius ‖QNT ‖ + ε + ‖T ‖. Let x ∈ BX

and y = Tx. Then ‖QNy‖ = ‖QNTx‖ ≤ ‖QNT ‖, and so there exists u ∈ N with
‖y−u‖ ≤ ‖QNT ‖+ε. Clearly, ‖u‖ ≤ ‖y−u‖+‖y‖ ≤ ‖QNT ‖+ε+‖T ‖, and so there
exists y′ ∈ F with ‖y′−u‖ ≤ ε. Thus ‖y−y′‖ ≤ ‖y−u‖+‖u−y′‖ ≤ ‖QNT ‖+2ε.
Hence q(TBX) ≤ ‖QNT ‖ + 2ε. Since ε and N were arbitrary, we conclude that
q(TBX) ≤ ‖T ‖q. �
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Proposition 9. Let T ∈ B(X, Y ). Then

‖T̃‖ = sup
{
q(C) : C ⊂ TBX , C countable

}
.

Consequently, ‖T̃‖ ≤ ‖T ‖q ≤ 2‖T̃‖.
Proof. By definition, ‖T̃‖ = sup

{
q(TC) : C ⊂ X, C countable , q(C) < 1

} ≥
sup

{
q(TC) : C ⊂ BX , C countable

}
.

On the other hand, if C = {x1, x2, . . . } is a countable subset of X with
q(C) < 1, then there are a sequence C′ = {x′

i} ⊂ BX and a finite set F ⊂ X such
that xi − x′

i ∈ F for all i. Thus q(TC) ⊂ q(TC′ + TF ) = q(TC′) and we have the
equality ‖T̃‖ = sup

{
q(C) : C ⊂ TBX , C countable

}
.

The second statement follows from Proposition 5. �

Theorem 10. Let T ∈ B(X, Y ). Then:

(i) ‖T ∗‖q = ‖T ‖µ;

(ii) ‖T ∗‖µ ≤ ‖T ‖q ≤ 2‖T ∗‖µ.

Proof. We have

‖T ‖µ = inf
{‖TJM‖ : M ⊂ X, codimM < ∞}

= inf
{‖J∗

MT ∗‖ : M ⊂ X, codimM < ∞}
= inf

{‖QM⊥T ∗‖ : M ⊂ X, codimM < ∞}
≥ inf{‖QNT ∗‖ : N ⊂ X∗, dimN < ∞} = ‖T ∗‖q.

Similarly,

‖T ‖q = inf{‖QNT ‖ : N ⊂ Y, dimN < ∞}
= inf{‖T ∗JN⊥‖ : N ⊂ Y, dimN < ∞}
≥ inf{‖T ∗JL‖ : L ⊂ Y ∗, codimL < ∞} = ‖T ∗‖µ.

Further, ‖T ‖µ ≥ ‖T ∗‖q ≥ ‖T ∗∗‖µ. If M ′′ ⊂ X∗∗ and codimM ′′ < ∞, then M ′′∩X
is a subspace of finite codimension in X and

‖T ∗∗‖µ = inf
{‖T ∗∗JM ′′‖ : M ′′ ⊂ X∗∗, codimM ′′ < ∞}

≥ inf
{‖TJM ′′∩X‖ : M ′′ ⊂ X∗∗, codimM ′′ < ∞} ≥ ‖T ‖µ.

Thus ‖T ∗‖q = ‖T ‖µ.
Finally,

‖T ∗‖µ = ‖T ∗∗‖q = qY ∗∗(T ∗∗BX∗∗) ≥ qY ∗∗(TBX) ≥ 1
2
qY (TBX) =

1
2
‖T ‖q. �

Theorem 11. Let T ∈ B(X, Y ) and S ∈ B(Y, Z). Then ‖ST ‖q ≤ ‖S‖q · ‖T ‖q and
‖ST ‖µ ≤ ‖S‖µ · ‖T ‖µ.
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Proof. Let ε > 0 and let FY ⊂ Y, FZ ⊂ Z be finite sets satisfying TBX ⊂ FY +
(‖T ‖q + ε)BY , SBY ⊂ FZ + (‖S‖q + ε)BZ . Then

STBX ⊂ S
(
FY + (‖T ‖q + ε)BY

) ⊂ SFZ + (‖T ‖q + ε)
(
FZ + (‖S‖q + ε)BZ

)
.

Thus ‖ST ‖q ≤ (‖T ‖q + ε)(‖S‖q + ε). Letting ε → 0 gives ‖ST ‖q ≤ ‖S‖q‖T ‖q.
Further,

‖ST ‖µ = ‖T ∗S∗‖q ≤ ‖T ∗‖q‖S∗‖q = ‖S‖µ‖T ‖µ. �

Theorem 12. Let T ∈ B(X, Y ). Then ‖T ‖q ≤ 2‖T ‖µ ≤ 4‖T ‖q.

Proof. ‖T ‖q ≤ 2‖T ‖µ: Let ε > 0 and let M ⊂ X be a closed subspace of finite
codimension such that ‖TJM‖ ≤ ‖T ‖µ + ε. Let P be a projection onto M .

Since I − P is compact, there exists a finite set F ⊂ BX such that

min
{‖(I − P )(x − x0)‖ : x0 ∈ F

} ≤ ε (1)

for every x ∈ BX . Let x ∈ BX and find x0 ∈ F satisfying (1). We have

‖P (x − x0)‖ ≤ ‖x − x0‖ + ‖(I − P )(x − x0)‖ ≤ ‖x − x0‖ + ε ≤ 2 + ε

and

‖T (x − x0)‖ ≤ ‖TP (x− x0)‖ + ‖T (I − P )(x − x0)‖
≤ (‖T ‖µ + ε) · ‖P (x − x0)‖ + ‖T ‖ · ε
≤ ‖T ‖ · ε + (‖T ‖µ + ε)(2 + ε).

Thus dist{TBX, TF} ≤ 2‖T ‖µ + ε(‖T ‖ + ‖T ‖µ + 2 + ε). Letting ε → 0 gives
‖T ‖q = q(TBX) ≤ 2‖T ‖µ.

‖T ‖µ ≤ 2‖T ‖q: By Theorem 10 and the preceding inequality, we have

‖T ‖µ = ‖T ∗‖q ≤ 2‖T ∗‖µ ≤ 2‖T ‖q. �

The essential versions of the injectivity modulus of an operator T ∈ B(X, Y ) are:

je(T ) = sup
{
j(T + K) : K ∈ K(X, Y )

}
;

j(T̃ );

jµ(T ) = sup
{
j(TJM ) : M ⊂ X, codimM < ∞}

.

The first two quantities do not depend on compact perturbations. The same
is true for jµ:

Lemma 13. Let T, K ∈ B(X, Y ) and let K be compact. Then jµ(T + K) = jµ(T ).
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Proof. Let ε > 0 and let M ⊂ X be a closed subspace of finite codimension such
that j(TJM ) > jµ(T )−ε. By Theorem 15.5, there exists a closed subspace M ′ ⊂ X
of finite codimension such that ‖KJM ′‖ ≤ ε. Thus

j
(
(T + K)JM∩M ′

) ≥ j(TJM∩M ′) − ‖KJM∩M ′‖ ≥ jµ(T ) − 2ε.

Letting ε → 0 yields jµ(T + K) ≥ jµ(T ) and the opposite inequality follows by
symmetry. �
Theorem 14. Let T ∈ B(X, Y ). Then

j(T ) ≤ je(T ) ≤ jµ(T ) ≤ 2j(T̃ ) ≤ 4jµ(T ).

Proof. j(T ) ≤ je(T ): Clear.

je(T ) ≤ jµ(T ): For every K ∈ K(X, Y ) we have j(T + K) ≤ jµ(T + K) =
jµ(T ), and so je(T ) ≤ jµ(T ).

jµ(T ) ≤ 2j(T̃ ): Let M ⊂ X be a closed subspace of finite codimension. Then
J̃M : M̃ → X̃ is bounded below and onto, and so, by Theorem 17.5, j(TJM ) ≤
2j(T̃ J̃M ) ≤ 2j(T̃ )‖J̃M‖ ≤ 2j(T̃ ).

j(T̃ ) ≤ 2jµ(T ): Let s > jµ(T ). Then for every closed subspace M ⊂ X with
codimM < ∞ there exists x ∈ M with ‖x‖ = 1 and ‖Tx‖ < s. Choose x1 ∈ X
with ‖x1‖ = 1 and ‖Tx1‖ < s. Let x∗

1 ∈ X∗ be a functional satisfying ‖x∗
1‖ =

1 = 〈x1, x
∗
1〉 and set M1 = Kerx∗

1. Clearly, codimM1 = 1 < ∞, so there exists
x2 ∈ M1 with ‖x2‖ = 1 and ‖Tx2‖ < s. Further, ‖x2 − x1‖ ≥ |〈x1 − x2, x

∗
1〉| = 1.

We can construct inductively a sequence {x1, x2, . . . } ⊂ X such that ‖xi‖ = 1,
‖Txi‖ < s (i ∈ N) and ‖xi − xj‖ ≥ 1 (i �= j). Let x̃ = (xi) ∈ X̃ . It is easy to
see that q(x̃) ≥ 1/2 and q(T̃ x̃) = q((Txi)) ≤ s. Thus j(T̃ ) ≤ 2s. Since s > jµ(T )
was arbitrary, we have j(T̃ ) ≤ 2jµ(T ). �
Theorem 15. Let T ∈ B(X, Y ). Then:

(i) jµ(T ) > 0 ⇔ j(T̃ ) > 0 ⇔ T is upper semi-Fredholm;

(ii) je(T ) > 0 ⇔ T is upper semi-Fredholm and ind T ≤ 0.

Proof. (i) The first equivalence follows from Theorem 14. The second one was
proved in Theorem 17.9.

(ii) Clearly, je(T ) > 0 if and only if T can be written as T = S + K where
S is bounded below and K is compact. By Theorem 19.6, this is equivalent to the
condition that T is upper semi-Fredholm and indT ≤ 0. �
Theorem 16. The quantities je, j(̃·) and jµ are supermultiplicative, i.e., je(ST ) ≥
je(S)je(T ), j(S̃T ) ≥ j(S̃)j(T̃ ) and jµ(ST ) ≥ jµ(S) · jµ(T ) for all T ∈ B(X, Y )
and S ∈ B(Y, Z).

Proof. The first two statements follow immediately from the supermultiplicativity
of the injectivity modulus j.
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To prove the third inequality, let M ⊂ X and L ⊂ Y be closed subspaces of
finite codimension. Set M ′ = M ∩ T−1L. Then codimM ′ < ∞ and

j(STJM ′) ≥ j(TJM ) · j(SJL).

Since M and L were arbitrary, we have jµ(ST ) ≥ jµ(S) · jµ(T ). �

The essential versions of the surjectivity modulus of an operator T ∈ B(X, Y )
are:

ke(T ) = sup
{
k(T + K) : T ∈ K(X, Y )

}
;

k(T̃ );

kq(T ) = sup
{
k(QNT ) : N ⊂ Y, dimN < ∞}

.

It is easy to see that the first two quantities are supermultiplicative and do not
depend on compact perturbations. The same is true for kq.

Proposition 17.

(i) If T ∈ B(X, Y ) and K ∈ K(X, Y ), then kq(T + K) = kq(T ).
(ii) If T ∈ B(X, Y ) and S ∈ B(Y, Z), then kq(ST ) ≥ kq(S)kq(T ).

Proof. (i) Let ε > 0. Let F ⊂ Y be a finite set such that dist{Kx, F} ≤ ε for all
x ∈ BX . Let N be the subspace generated by F . Then ‖QnK‖ ≤ ε and

kq(T + K) = sup
{
k(QN ′(T + K)) : N ′ ⊂ N ⊂ Y, dimN ′ < ∞}

≥ sup
{
k(QN ′T ) − ‖QN ′K‖ : N ′ ⊂ N ⊂ Y, dimN ′ < ∞} ≥ kq(T ) − ε.

Letting ε → 0 gives kq(T + K) ≤ kq(T ) and the second inequality follows by
symmetry.

(ii) Let N ⊂ Y and N ′ ⊂ Z be finite-dimensional subspaces. Then

kq(ST ) = sup
{
k(QF ST ) : F ⊂ Z, dim F < ∞}

= sup
{
j(T ∗S∗JM ) : M ⊂ N

′⊥ ∩ S∗−1(N⊥), codimM < ∞}
≥ j(T ∗JN⊥S∗JN ′⊥) ≥ j(T ∗JN⊥)j(S∗JN ′⊥) = k(QNT )k(QN ′S).

Taking the supremum over all N and N ′, we obtain the required inequality. �

Theorem 18. Let T ∈ B(X, Y ). Then

k(T ) ≤ ke(T ) ≤ kq(T ) ≤ k(T̃ ) ≤ 2kq(T ).

Proof. k(T ) ≤ ke(T ): Clear.

ke(T ) ≤ kq(T ): For every compact operator K : X → Y we have k(T +K) ≤
kq(T + K) = kq(T ), and so ke(T ) ≤ kq(T ).
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kq(T ) ≤ k(T̃ ): Let N ⊂ Y , dimN < ∞. Then Q̃N : Ỹ → Ỹ/N is an isometry
onto Ỹ/N , by Lemma 17.5, and so k(QNT ) ≤ k(Q̃N T̃ ) = k(T̃ ).

k(T̃ ) ≤ 2kq(T ): Let ε > 0 and let s be a number satisfying kq(T ) < s.
Let N ⊂ Y be a finite-dimensional subspace. Then k(QNT ) < s or, equivalently,
j(T ∗JN⊥) < s.

Find y∗
1 ∈ Y ∗ such that ‖y∗

1‖ = 1 and ‖T ∗y∗
1‖ < s. Choose y1 ∈ Y such

that ‖y1‖ = 1 and 〈y1, y
∗
1〉 > 1 − ε. We construct inductively vectors y∗

i ∈
{y1, . . . , yi−1}⊥ and yi ∈ Y such that ‖y∗

i ‖ = 1 = ‖yi‖, ‖T ∗y∗
i ‖ < s and 〈yi, y

∗
i 〉 >

1 − ε for all i ∈ N. Set ỹ = (yi). Clearly, q(ỹ) ≤ 1. Let x̃ = (xi) ∈ X̃ satisfy
T̃ x̃ = ỹ. Thus there exists a totally bounded sequence (ui) ∈ �∞(Y ) such that
Txi −ui = yi (i ∈ N). Passing to a subsequence if necessary, we can assume that
the sequence (ui) is convergent, and so ‖ui − uj‖ < ε for all i, j sufficiently large.
For i > j we have

‖xi − xj‖ ≥ |〈xi − xj , T
∗y∗

i 〉|
‖T ∗y∗

i ‖
≥ s−1 ·

∣∣∣〈yi − yj , y
∗
i 〉 + 〈ui − uj , y

∗
i 〉
∣∣∣ ≥ 1 − 2ε

s

and q(x̃) ≥ 1−2ε
2s . Consequently, k(T̃ ) ≤ 2s

1−2ε . Letting ε → 0 and s → kq(T ) yields
k(T̃ ) ≤ 2kq(T ). �
Theorem 19. Let T ∈ B(X, Y ). Then:

(i) kq(T ) > 0 ⇔ k(T̃ ) > 0 ⇔ T is lower semi-Fredholm;

(ii) ke(T ) > 0 ⇔ T is lower semi-Fredholm and indT ≥ 0.

Proof. (i) The first equivalence follows from the preceding theorem. The second
one was proved in Theorem 17.6.

(ii) Clearly, ke(T ) > 0 if and only if T can be written as T = S + K where
S is onto and K is compact. By Theorem 19.6, this is equivalent to the condition
that T is lower semi-Fredholm and ind T = indS ≥ 0. �
Theorem 20. Let T ∈ B(X, Y ). Then kq(T ∗) = jµ(T ) and kq(T ) ≤ jµ(T ∗) ≤
16kq(T ).

Proof. We have

jµ(T ) = sup
{
j(TJM ) : M ⊂ X, codimM < ∞}

= sup
{
k(QM⊥T ∗) : M ⊂ X, codimM < ∞}

≤ sup
{
k(QNT ∗) : N ⊂ X∗, dimN < ∞}

= kq(T ∗).

Similarly,

kq(T ) = sup
{
k(QNT ) : N ⊂ Y, dimN < ∞}

= sup
{
j(T ∗JN⊥) : N ⊂ Y, dimN < ∞}

≤ sup
{
j(T ∗JM ′) : M ′ ⊂ Y ∗, codimM ′ < ∞}

= jµ(T ∗).
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Further, jµ(T ) ≤ kq(T ∗) ≤ jµ(T ∗∗). If M ′′ is a subspace of X∗∗ of finite codimen-
sion, then M ′′ ∩ X is of finite codimension in X . Thus

jµ(T ∗∗) = sup
{
j(T ∗∗JM ′′ ) : M ′′ ⊂ X∗∗, codimM ′′ < ∞}

≤ sup
{
j(TJM ′′∩X) : M ′′ ⊂ X∗∗, codimM ′′ < ∞}

≤ sup
{
j(TJM ) : M ⊂ X, codimM < ∞}

= jµ(T ).

Hence jµ(T ) = kq(T ∗).
The remaining inequality jµ(T ∗) ≤ 16kq(T ) is clear if T is not lower semi-

Fredholm, see Theorems 15 and 19.
Suppose that T is lower semi-Fredholm, let T0 : X/ KerT → Y be the op-

erator induced by T and let Q : X → X/ KerT be the canonical projection.
Then T̃0 is invertible, and so jµ(T0) ≤ 2j(T̃0) = 2k(T̃0) ≤ 4kq(T0). Similarly,
jµ(T ∗

0 ) ≤ 4k(T ∗
0 ). We have T = T0Q and T ∗ = Q∗T ∗

0 , where Q∗ is the em-
bedding of (X/ KerT )∗ = (KerT )⊥ = RanT ∗ into X∗. It is easy to see that
jµ(T ∗) = jµ(T ∗

0 ) and, by Theorem 9.6,

kq(T ) = sup
{
k(QNT0Q) : N ⊂ Y, dimN < ∞}

= sup
{
k(QNT0) : N ⊂ Y, dimN < ∞}

= kq(T0).

Hence

jµ(T ∗) = jµ(T ∗
0 ) ≤ 4kq(T ∗

0 ) = 4jµ(T0) ≤ 16kq(T0) = 16kq(T ). �

Comments on Chapter III

C.15.1. The results in section 15 are classical. The definition and basic properties
are due to Hilbert [Hi] and Riesz [Ri2]. Theorem 15.4 (T ∗ is compact ⇔ T is
compact) was proved by Schauder [Sd].

C.15.2. A Banach space X is reflexive if and only if BX is compact in the weak
topology.

If X is a reflexive Banach space, Y a Banach space and T ∈ B(X, Y ), then
TBX is a convex weakly compact subset of Y and therefore it is closed in the
norm topology.

Consequently, for reflexive Banach spaces it is not necessary to take the
closure TBX in the definition of compact operators.

C.15.3. For a long time it was an open question whether each compact operator
T ∈ B(X) is a norm-limit of finite-rank operators. This is true for Hilbert spaces
and for most of naturally defined Banach spaces (including all Banach spaces
having a Schauder basis). The problem was solved by Enflo [En1] who constructed
an example of a separable reflexive Banach space X where F(X) �= K(X).
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C.15.4. Let X, Y be Banach spaces, let T : X → Y be a linear mapping. Denote by
w the weak topology. The following statements are equivalent, cf. [Hal1, Problem
130]:

(i) T : (X, ‖ · ‖) → (Y, ‖ · ‖) is continuous;

(ii) T : (X, w) → (Y, w) is continuous;

(iii) T : (X, ‖ · ‖) → (Y, w) is continuous.

Further, T : (X, w) → (Y, ‖ · ‖) is continuous if and only if T is of finite rank.

C.15.5. If X is reflexive, then T ∈ B(X, Y ) is compact if and only if T maps
weakly converging sequences to convergent sequences, cf. Theorem 15.6 (this was
the original definition of Hilbert of compact operators in �2; operators satisfying
this condition are sometimes called completely continuous).

C.15.6. The ideal F(X) is the smallest ideal in B(X). Every left, right or two-sided
ideal in B(X) contains the ideal of finite-rank operators.

C.15.7. If H is a separable Hilbert space, then K(X) is the only non-trivial closed
two-sided ideal in B(X), see Calkin [Ca]. The same is true for the spaces �p (1 ≤
p ≤ ∞) and c0, see Gohberg, Markus, Fel’dman [GMF].

On the other hand, there are Banach spaces with a rich structure of closed
two-sided ideals in B(X), see [CPY, p. 80].

C.15.8. In general, the Calkin algebra B(X)/K(X) is not semisimple. An example
is the Banach space L1(m) of all Lebesgue integrable functions f on 〈0, 1〉 such
that

∫ 1

0
|f |dm < ∞, see [CPY, p. 33].

Operators T with the property that T + K(X) ∈ radB(X)/K(X) are called
inessential. Clearly, the set I(X) of all inessential operators is a closed two sided
ideal.

The ideal I(X) can be characterized by T ∈ I(X) ⇔ T + Φ(X) ⊂ Φ(X).

C.15.9. An operator T : X → Y is called strictly singular if T |M is not bounded
below for each closed infinite-dimensional subspace M ⊂ X .

Denote by S(X) the set of all strictly singular operators acting on X . Then
S(X) is a closed two-sided ideals in B(X) and K(X) ⊂ S(X) ⊂ I(X).

If X is a Hilbert space, then K(X) = S(X) = I(X). In Banach spaces the
inclusions can be strict, see [CPY, p.101].

C.15.10. There is an example of a Banach space X with the property that each
operator T ∈ B(X) can be written as λI+K for some λ ∈ C and a strictly singular
operator K, see [GwM].

It is an open problem whether there is a Banach space X with the property
that each operator on X can be expressed as a sum of a scalar multiple of the
identity and a compact operator.
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C.15.11. A particular case of Theorem 15.11 is called the Fredholm alternative: if
T ∈ B(X) is compact and λ �= 0, then either T − λ is both one-to-one and onto,
or it is neither one-to-one nor onto (in the notation of Section 15, α(T −λ) = 0 ⇔
β(T − λ) = 0).

C.15.12. An operator T ∈ B(X, Y ) is called weakly compact if the weak closure
of TBX is compact in the weak topology of Y . By [DS, VI-4], an operator T ∈
B(X, Y ) is weakly compact if and only if T ∗∗X∗∗ ⊂ Y (where we identify Y with
a subspace of Y ∗∗). If either X or Y is reflexive, then each operator in B(X, Y ) is
weakly compact. Furthermore, T ∈ B(X, Y ) is weakly compact if and only if T ∗

is weakly compact.
For any Banach space X , the weakly compact operators form a closed two-

sided ideal in B(X).

C.16.1. The basic ideas concerning Fredholm and semi-Fredholm operators ap-
peared in [At], [Goh1], [Goh2] and [Yo1]. For a survey of results see [GhK1],
[Kat2], and [CPY].

Further results including detailed historical comments can be found in [RN].

C.16.2. Many results from the Fredholm theory can be extended to unbounded
closed operators. For a survey of results in this direction see [GhK1], [Kat2] and
[Sch2].

C.16.3. A generalization of the Fredholm theory to the Banach algebras setting
was done by Barnes [Ba1], [Ba2]. For a survey of results see [BMSW].

C.16.4. The characterizations of semi-Fredholm operators given in Theorems 16.18
and 16.19 are due to Lebow and Schechter [LS].

Theorem 16.21 (Kato decomposition) was proved in [Kat1].

C.17.1. The construction of Section 17 was given in [Sa] and independently in
[BHW], [HW].

A similar construction of the space �∞(X)/c0(X) where c0(X) denotes the
set of all sequences of elements of X converging to zero was used by Berberien
and Quigly (we used this construction for Banach algebras, see C.3.1).

The latter construction can be used for reducing the approximate point spec-
trum to the point spectrum.

For properties of these constructions see also [FL].

C.17.2. If X is a Hilbert space, then it is possible to modify both constructions of
the previous comment in order to obtain again a Hilbert space.

Fix a Banach limit and denote it by LIM . Then |||(xn)||| =
(
LIM‖xn‖2

)1/2

is a seminorm on �∞(X). Set N = {(xn) : |||(xn)||| = 0}. Clearly, N ⊃ c0(X)
and the completion of (�∞(X)/N, ||| · |||) is a Hilbert space (since it satisfies the
parallelogram law) containing X as constant sequences.
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As for the construction of Section 17, set |||(xn)|||′ = limM |||(PMxn)|||, where
M ⊂ X is a subspace of finite codimension and PM is the orthogonal projection
onto M . Clearly, N ′ := {(xn) : |||(xn)|||′ = 0} ⊃ m(X) and the completion of
(�∞(X)/N ′, ||| · |||′) is a Hilbert space.

C.17.3. Let X be the �1 space over the set {ei, fi : i = 1, 2, . . . }. Let M =
∨{ei :

i ∈ N} and L =
∨{ei + 1

i fi : i ∈ N}. Then �∞(M) + m(X) = �∞(N) + m(X) and
M ∩ L = {0}. So M is not essentially equal to L.

Thus the condition M ⊂ L in Lemma 17.2 is necessary.

C.17.4. It is possible that T ∈ B(X) has not closed range but Ran T̃ is closed:
consider any compact operator with non-closed range.

We do not know whether each operator T with Ran T̃ closed can be written
as T = S + K where RanS is closed and K is compact.

C.18.1. The punctured neighbourhood theorem 18.7 was proved by Gohberg
[Goh2].

C.18.2. Using the linearization technique (cf. C.11.2) it is possible to prove the
following generalization of the punctured neighbourhood theorem [Mü21]:

Theorem. Let X, Y, Z be Banach spaces, let U be an open subset of C and w ∈ U .
Suppose that S : U → B(X, Y ), T : U → B(Y, Z) are analytic functions satisfying
T (z)S(z) = 0 (z ∈ U). Write α(z) = dimKerT (z)/ RanS(z). Suppose that
α(w) < ∞ and RanT (w) is closed. Then there exist ε > 0 and a constant c ≤ α(w)
such that α(z) = c for all z, 0 < |z − w| < ε.

Clearly, the classical punctured neighbourhood theorem follows easily from
this generalization for the sequences 0 −→ X

T−z−→Y and X
T−z−→Y −→ 0, respectively.

C.18.3. Theorem 18.8 was proved in [FK] and [Ze6]. For further results concerning
the stability of semi-Fredholm operators see [SW], [RZ].

C.19.1. It is clear that ‖T ∗‖e ≤ ‖T ‖e for each operator T ∈ B(X). For reflexive
Banach spaces the equality ‖T ∗‖e = ‖T ‖e holds. This is no longer true for non-
reflexive Banach spaces. By [Ty2], these two quantities are even not equivalent.

C.19.2. The Calkin algebras B(X)/K(X) were first studied by Calkin [Ca] in the
most important case of a separable Hilbert space. The Calkin algebras over Banach
spaces were first studied by Yood [Yo2].

C.19.3. An operator T ∈ B(X) is called Riesz if σe(T ) = {0}. Riesz operators are
a generalization of compact operators and exhibit many of their properties.

C.19.4. Let T be a Riesz operator on a Hilbert space H . Then there exists a
compact operator K ∈ K(H) and a quasinilpotent operator Q ∈ B(X) such that
T = Q + K (so-called West decomposition [Wes1]). The same statement is true
for the spaces �p and Lp; it is not known for general Banach spaces.
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In general, it is not possible to require that Q and K in the West decompo-
sition commute.

C.19.5. The West decomposition is a particular case of the following more general
result [St], see also [Ap2]:

Theorem. Let T be an operator on a Hilbert space H . Then there exists a compact
operator K ∈ K(H) such that

σ(T + K) =
⋂

K′∈K(H)

σ(T + K ′) (= σW (T ), see Section 23).

C.19.6. By Theorem 16.13, an operator T ∈ B(X) is Fredholm if and only if it is
invertible modulo the ideal of compact operators. A characterization of one-sided
inverses in the Calkin algebra was given in Theorems 16.14 and 16.15.

If X is a Hilbert space, then T ∈ Φ+(X) (T ∈ Φ−(X)) if and only if the
class T +K(X) is not a left (right) topological divisor of zero in the Calkin algebra
B(X)/K(X). In general, for Banach space operators there is no relation between
these notions, see [AT] and [Ty1].

C.19.7. Let T ∈ Φ−
+(X) = {T ∈ Φ+(X) : ind T ≤ 0}. Then there is a finite-rank

operator F such that T + F is bounded below. In general, it is not possible to
choose F commuting with T , cf. Theorem 20.21. It is always possible to find F
such that (TF − FT )2 = 0, see [LW], [Se].

Similar statements are true for T ∈ Φ+
−(X) and for the intersection Φ−

+(X)∩
Φ+

−(X) =
{
T ∈ Φ(X) : indT = 0

}
.

C.20.1. The ascent and descent were introduced and studied first in [Tay], [La]
and [Kat1].

Heuser [He] proved the following relations between the ascent, descent and the
defect numbers α(T ) = dim KerT , β(T ) = codim RanT of an operator T ∈ B(X):

Let min{α(T ), β(T )} < ∞. Then a(T ) < ∞ ⇒ β(T ) ≥ α(T ) and d(T ) < ∞ ⇒
β(T ) ≤ α(T ). Moreover, if α(T ) = β(T ) < ∞, then a(T ) = d(T ).

C.20.2. Semi-Browder operators were studied by a number of authors, see [Gr1],
[KV], [Ra2], [Ra5], [Ra6], [Wes2]. The name was introduced in [Ha8].

The Browder operators are sometimes also called Riesz-Schauder, cf. [CPY].

C.20.3. The extension of the Browder and semi-Browder spectra to commuting
n-tuples presented in Section 20 appeared in [KMR].

For a single operator A ∈ B(X) we have σB(A) = σe(A) ∪ accσ(A) where
accσ(A) denotes the set of all accumulation points of σ(A). This equality was
used by Curto and Dash [CD] for other extension of the Browder spectrum to
commuting n-tuples:

σb(A1, . . . , An) = σTe(A1, . . . , An) ∪ accσT (A1, . . . , An),
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where σT and σTe denote the Taylor and essential Taylor spectrum, see Chap-
ter IV.

Then σb defined in this way is also a spectral system, which in general differs
from σB defined in Section 20, see [KMR].

Thus the extension of the Browder spectrum for single operators to a spectral
system is not unique.

C.20.4. Lemma 20.3 is due to Neubauer, see [Lab], Proposition 2.1.1. In fact, a
more general formulation is also true: if M1, M2 are paraclosed subspaces of a
Banach space X (see C.10.4) and both M1 ∩ M2, M1 + M2 are closed, then M1

and M2 are closed.

C.21.1. Essentially Kato operators or similar classes of operators were studied by
a number of authors, see, e.g., [Ka1], [GlK], [Gr2], [Ra4], [Mü15], [Ko2], [KM3],
[BO].

C.21.2. Theorem 21.12 is due to Kordula [Ko2]. Theorem 21.15 was proved by
Livčak [Liv], implicitly it is also contained in papers of M.A. Gol’dman and S.N.
Kračkovskǐı.

C.21.3. An operator T ∈ B(X) is called essentially Saphar if KerT
e⊂R∞(T ) and

T has a generalized inverse. Clearly, the essentially Saphar operators form a regu-
larity since they are the intersection of the classes of essentially Kato and Saphar
operators. Consequently, the corresponding spectrum satisfies the spectral map-
ping property.

C.22.1. The numbers kn(T ) were introduced and studied by Grabiner [Gr2].
Most of the results in Section 22 are taken from [MM].

C.22.2. Let R1, . . . , R5 be the regularities introduced in Section 22. The following
properties of them and the corresponding spectra were studied in [MM] (to avoid
trivialities we consider infinite-dimensional Banach spaces X only):

(A) σi(T ) �= ∅ for every T ∈ B(X);

(B) σi(T ) is closed for every T ∈ B(X);

(C) if T ∈ Ri, then there exists ε > 0 such that T + U ∈ Ri whenever TU = UT
and ‖U‖ < ε (this means property (P3), the upper semicontinuity of σi on
commuting elements);

(D) if T ∈ Ri and F ∈ B(X) is a finite-rank operator, then T + F ∈ Ri;

(E) if T ∈ Ri and K is a compact operator commuting with T , then T +K ∈ Ri;

(F) if T ∈ Ri and Q ∈ B(X) is a quasinilpotent operator commuting with T ,
then T + Q ∈ Ri.

These properties for Ri (i = 1, . . . , 5) are summarized in Table 1. For details we
refer to [MM].
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(A) (B) (C) (D) (E) (F)
σi �= ∅ σi closed small

comm.
perturb.

finite-
rank
perturb.

commut.
comp.
perturb

commut.
quasinilp.
perturb.

R1

onto
yes yes yes no no yes

R2

φ−(X) and
d(T ) < ∞

yes yes yes no yes yes

R3

φ−(X)
yes yes yes yes yes yes

R4

d(T ) < ∞ no yes no no no no

R5

de(T ) < ∞ no yes no yes no no

Table 1.

Since the properties (A)–(F) considered above are preserved by taking ad-
joints, the regularities R6 . . . R10 satisfy exactly those properties as R1, . . . , R5. So
Table 1 remains valid for R1, . . . , R5 replaced by R6, . . . , R10.

C.22.3. Drazin invertible operators (class R4 ∩ R9) were studied, e.g., in [RoS] or
[Kol]. B-Fredholm operators (class R5∩R10) were introduced and studied in [Be1]
and [Be2].

C.22.4. The properties (A)–(F) of C.22.2 for regularities R11, . . . , R15 are summa-
rized in Table 2. For details see [MM] and [KMMP].

C.22.5. Quasi-Fredholm operators (class R14) in Hilbert spaces were introduced
and studied by Labrousse [Lab]. Equivalently, an operator T on a Hilbert space H
is quasi-Fredholm if and only if there is a Kato decomposition H = H1 ⊕H2 with
THi ⊂ Hi, T |H1 nilpotent and T |H2 Kato.

The same decomposition exists also for quasi-Fredholm operators on Banach
spaces under the additional assumption that the subspaces KerT ∩ Ran T d and
KerT d + RanT are complemented, see Remark after Theorem 3.2.2 in [Lab]. In
fact, the proof of Theorem 22.12, (iii) ⇒ (v) is a simplified version of the proof of
Labrousse; without any change it works also for quasi-Fredholm operators.

C.23.1. The notions of upper and lower semiregularity were introduced and basic
properties proved in [Mü21].

C.23.2. Joint spectra satisfying the one-way spectral mapping property (see Re-
mark 23.9) were studied in [MW].
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(A) (B) (C) (D) (E) (F)
σi �= ∅ σi closed small

comm.
perturb.

finite-
rank
perturb.

commut.
comp.
perturb

commut.
quasinilp.
perturb.

R11

Kato
yes yes yes no no yes

R12

ess. Kato
yes yes yes yes yes yes

R13 yes no no yes no no

R14

qφ
no yes no yes no no

R15 no no no yes no no

Table 2.

C.23.3. The semi-Fredholm spectrum

σsF (T ) = {λ ∈ C : T − λ is not semi-Fredholm}

was studied by Kato [Kat2], Oberai [Ob2], Gramsch and Lay [GL], and others. It
is sometimes called the Kato essential spectrum; we used this name for something
else.

C.23.4. The exponential spectrum was introduced by Harte [Ha4].
For the Weyl/Schechter spectrum

σW (T ) =
{
λ : T − λ is not Fredholm or ind(T − λ) �= 0

}
=

⋂
K compact

σ(T + K)

see [Ob1], [Sch1]).
The spectrum corresponding to the regularity R = {a+b : a ∈ Inv(A), b ∈ J},

where J is a closed two-sided ideal in a Banach algebra A was studied in [Ha7]
under the name of T -Weyl spectrum.

The spectra

σΦ−
+
(T ) =

⋂{
σπ(T + K) : K ∈ K(X)

}
and

σΦ+
−
(T ) =

⋂{
σδ(T + K) : K ∈ K(X)

}
were studied in [Ra2], [Ra3] and [Ze7] under the names of essential approximate
point spectrum and essential defect spectrum.
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C.24.1. The operational quantities defined in Section 24 were considered by a
number of authors. The measures of non-compactness ‖T ‖µ and ‖T ‖q were studied
in [GGM], [GlM] and [LS]. For remaining operational quantities and related topics
see [Sch4], [Ra1], [Fa4], [GnM1], [GnM2], [Mb3].

C.24.2. Further operational quantities closely related to those studied in Section
24 are (see [Pi2]): the approximation numbers

an(T ) = inf{‖T − L‖ : L ∈ B(X, Y ), dimRanL < n};

Gelfand numbers
cn(T ) = inf{‖TJM‖ : codimM < n};

Kolmogorov numbers

kn(T ) = inf{‖QF T ‖ : dimF < n};

Berstein numbers
un(T ) = sup{j(TJM ) : dimM ≥ n};

Mytiagin numbers

vn(T ) = sup{k(QMT ) : codimM ≥ n}.

All these numbers have lower analogues, see [RZ] and [RZi].

C.24.3. The essential version of the reduced minimal modulus

γe(T ) = sup{γ(T + K) : K compact}

for operators on Hilbert spaces was studied in [MP].
It was shown that the supremum is attained for some compact operator K

and γe(T ) = inf σe(T ) \ {0}, cf. C.10.5.



Chapter IV

Taylor Spectrum

In this chapter we introduce and study another important spectral system for
commuting operators – the Taylor spectrum. Although the definition of the Taylor
spectrum is rather complicated, the Taylor spectrum has a distinguished property
among other spectral systems, namely the existence of the functional calculus for
functions analytic on a neighbourhood of the Taylor spectrum. From this reason
many experts consider the Taylor spectrum to be the proper generalization of the
ordinary spectrum for single operators.

25 Basic properties

Let s = (s1, . . . , sn) be a system of indeterminates. Denote by Λ[s] the exterior
algebra generated by s1, . . . , sn, i.e., Λ[s] is the free complex algebra generated by
s1, . . . , sn, where the multiplication operation ∧ in Λ[s] satisfies the anticommu-
tative relations si ∧ sj = −sj ∧ si (i, j = 1, . . . , n).

In particular, si ∧ si = 0 for all i.
For F ⊂ {1, . . . , n}, F = {i1, . . . , ip} with 1 ≤ i1 < i2 < · · · < ip ≤ n write

sF = si1 ∧ · · · ∧ sip . Every element of Λ[s] can be written uniquely in the form∑
F⊂{1,...,n}

αF sF

with complex coefficients αF . Clearly, s∅ is the unit in Λ[s].
For p = 0, 1, . . . , n let Λp[s] be the set of all elements of Λ[s] of degree p,

i.e., Λp[s, X ] is the subspace generated by the elements sF with cardF = p. Thus
Λ[s] =

⊕n
p=0 Λp[s], dimΛp[s] =

(
n
p

)
and dim Λ[s] = 2n.

Let X be a vector space. Write Λ[s, X ] = X ⊗ Λ[s]. So

Λ[s, X ] =
{ ∑

F⊂{1,...,n}
xF sF : xF ∈ X

}
;
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to simplify the notation, we omit the symbol “⊗”. Similarly, for p = 0, . . . , n write
Λp[s, X ] = X ⊗ Λp; so

Λp[s, X ] =
{ ∑

F⊂{1,...,n}
card F=p

xF sF : xF ∈ X

}
.

Thus Λp[s, X ] is a direct sum of
(
n
p

)
copies of X and Λ[s, X ] is a direct sum of 2n

copies of X .
In the following X will be a fixed Banach space. Then Λ[s, X ] can be con-

sidered to be also a Banach space. For the following considerations it is not es-
sential which norm we take on Λ[s, X ]; we can assume it to be ‖∑xF sF ‖ =(∑ ‖xF ‖2

)1/2

.

For j = 1, . . . , n let Sj : Λ[s, X ] → Λ[s, X ] be the operators of left multipli-
cation by sj ,

Sj

(∑
F

xF sF

)
=

∑
F

xF sj ∧ sF =
∑

F⊂{1,...,n}
j /∈F

(−1)card{i∈F :i<j}xF sF∪{j}. (1)

Clearly, SjSi = −SiSj (i, j = 1, . . . , n). In particular, S2
i = 0 for all i.

For an operator T ∈ B(X) we denote by the same symbol the operator
T : Λ[s, X ] → Λ[s, X ] defined by

T
(∑

F

xF sF

)
=

∑
F

(TxF )sF .

Obviously, TSj = SjT for all j.
Let A = (A1, . . . , An) be an n-tuple of mutually commuting operators on X .

Denote by δA the operator δA : Λ[s, X ] → Λ[s, X ] defined by

δA =
n∑

i=1

AiSi.

Clearly,

(
δA

)2 =
n∑

i=1

n∑
j=1

AiSiAjSj =
∑

1≤i<j≤n

AiAj(SiSj + SjSi) = 0,

and so Ran δA ⊂ Ker δA (note that we have used the commutativity of the opera-
tors Ai).

Definition 1. An n-tuple A = (A1, . . . , An) of mutually commuting operators on a
Banach space X is called Taylor regular if Ker δA = Ran δA.
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The Taylor spectrum σT (A) is the set of all λ ∈ Cn such that the n-tuple
(A1 − λ1, . . . , An − λn) is not Taylor regular.

Since δAΛp[s, X ] ⊂ Λp+1[s, X ] (p = 0, 1, . . . , n−1), we can define operators
δp
A : Λp[s, X ] → Λp+1[s, X ] as the restrictions of δA to Λp[s, X ]. Thus δA defines

the following sequence of operators

0 → Λ0[s, X ]
δ0

A−→Λ1[s, X ]
δ1

A−→ · · · δn−1
A−→Λn[s, X ] → 0, (2)

where δp+1δp = 0 for each p. A sequence of this type is called a complex; we are
going to study complexes in more details in one of the subsequent sections.

Complex (2) is called the Koszul complex of A. It is easy to see that A is
Taylor regular if and only if the Koszul complex is exact, i.e., if Ran δi

A = Ker δi+1
A

for all i, where we set formally δp
A to be the zero operators for p < 0 or p ≥ n.

Remark 2. (i) Let n = 1. We can identify Λ0[s, X ] and Λ1[s, X ] with X , and so
the Koszul complex of a single operator A1 ∈ B(X) becomes

0 → X
A1−→X → 0.

This complex is exact if and only if A1 is invertible. Thus for single operators the
Taylor spectrum coincides with the ordinary spectrum.

(ii) Let n = 2 and let A = (A1, A2) be a commuting pair of operators on X .
Then the Koszul complex of A becomes

0 → X
δ0

A−→X ⊕ X
δ1

A−→X → 0,

where δ0
A and δ1

A are defined by δ0
Ax = A1x ⊕ A2x (x ∈ X) and δ1

A(x ⊕ y) =
−A2x + A1y (x, y ∈ X).

(iii) The most important parts of the Koszul complex of an n-tuple A =
(A1, . . . , An) are its ends. The first mapping δ0

A can be interpreted as δ0
A : X → Xn

defined by δ0
Ax =

⊕n
i=1 Aix (x ∈ X), cf. Section 9. Thus the Koszul complex

of A is exact at Λ0[s, X ] if and only if 0 /∈ σπ(A). Similarly, δn−1
A : Xn → X

is defined by δn−1
A (x1 ⊕ · · · ⊕ xn) =

∑n
i=1(−1)i−1Aixi, and so the exactness at

Λn[s, X ] means that 0 /∈ σδ(A).

The main result of this section will be that the Taylor regular n-tuples form
a joint regularity, and so the Taylor spectrum is a spectral system.

Proposition 3. Let A1, . . . , An, B1, . . . , Bn be mutually commuting operators on a
Banach space X satisfying

∑n
i=1 AiBi = I. Then the n-tuple A = (A1, . . . , An) is

Taylor regular.

Consequently, σT (A) ⊂ σ〈A〉(A) for all commuting n-tuples A.

Proof. For j = 1, . . . , n let Hj : Λ[s, X ] → Λ[s, X ] be the operators defined by

Hj

( ∑
F⊂{1,...,n}

xF sF

)
=

∑
F⊂{1,...,n}

j∈F

(−1)card{i∈F :i<j}xF sF\{j}. (3)
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We have

(HjSj + SjHj)xF sF =

{
(−1)card{i∈F :i<j}SjxF sF\{j} = xF sF (j ∈ F ),
(−1)card{i∈F :i<j}HjxF sF∪{j} = xF sF (j /∈ F ),

and so HjSj + SjHj = I (j = 1, . . . , n).
Further, for i �= j, we have HiSj +SjHi = 0. Indeed, if either j ∈ F or i /∈ F ,

then (HiSj + SjHi)xsF = 0. Suppose that j /∈ F and i ∈ F . Then

xsF = (−1)card{k∈F :k<i}xsi ∧ sF\{i}

and

(HiSj + SjHi)xsi ∧ sF\{i} = Hixsj ∧ si ∧ sF\{i} + SjxsF\{i}
= −xsj ∧ sF\{i} + xsj ∧ sF\{i} = 0.

Suppose that
∑n

i=1 AiBi = I. As above, denote by the same symbols Bi the
operators acting on Λ[s, X ]. Let εB : Λ[s, X ] → Λ[s, X ] be the operator defined
by εB =

∑n
j=1 HjBj . Then

εBδA + δAεB =
n∑

i=1

n∑
j=1

(HjBjSiAi + SiAiHjBj)

=
n∑

i=1

(HiSiBiAi + SiHiAiBi) +
∑
i�=j

(HjSi + SiHj)BjAi

=
n∑

i=1

BiAi = IΛ[s,X].

Let ψ ∈ Ker δA. Then ψ = (εBδA + δAεB)ψ = δAεBψ, and so ψ ∈ Ran δA. Hence
Ker δA = Ran δA and the n-tuple A is Taylor regular. �
Theorem 4. The set of all commuting Taylor regular n-tuples is relatively open in
the set of all commuting n-tuples.

Consequently, σT (A) is a closed subset of Cn.

Proof. Consider the sequence

Λ[s, X ] δA−→Λ[s, X ] δA−→Λ[s, X ]

and apply Lemma 11.3. �
Lemma 5. Let Z1, Z2 be Banach spaces, let B : Z1 → Z1, D : Z1 → Z2 and
C : Z2 → Z2 be operators satisfying DB = CD, see the following diagram:

Z1
D−→ Z2⏐⏐2B

⏐⏐2C

Z1
D−→ Z2
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Suppose that DZ1 �= Z2. Then there exists a complex number λ such that DZ1 +
(C − λ)Z2 �= Z2.

Proof. We reduce the statement of Lemma 5 to the projection property of the
surjective spectrum. Consider the Banach space Z = Z2 ⊕ Z1 ⊕ Z1 ⊕ · · · (for
example with the �1 norm) and operators U, V ∈ B(Z) given in the matrix form by

U =

⎛⎜⎜⎜⎝
0 D 0 0 · · ·
0 0 I 0
0 0 0 I
...

. . .

⎞⎟⎟⎟⎠ and V =

⎛⎜⎜⎜⎝
C 0 0 · · ·
0 B 0
0 0 B
...

. . .

⎞⎟⎟⎟⎠ .

It is easy to check that UV = V U . Furthermore, UZ �= Z since DZ1 �= Z2. By
the projection property for the surjective spectrum, there exists λ ∈ C such that
UZ + (V − λ)Z �= Z. Since UZ ⊃ 0 ⊕ Z1 ⊕ Z1 ⊕ · · · , this is equivalent to the
condition DZ1 + (C − λ)Z2 �= Z2. �

To prove the projection property for the Taylor spectrum we are going to
investigate the exactness of the Koszul complex in more details.

For k = 0, . . . , n denote by Γ(n)
k the set of all commuting n-tuples of operators

A = (A1, . . . , An) ∈ B(X)n such that the Koszul complex of A is exact at Λk(X),
i.e., Ran δk−1

A = Ker δk
A. In agreement with our convention we set formally Γ(n)

−1 to
be the set of all commuting n-tuples of operators.

Proposition 6. Let A0, A1, . . . , An be commuting operators on a Banach space

X , let 0 ≤ k ≤ n and (A1, . . . , An) /∈ Γ(n)
k . Then there exists λ ∈ C such that

(A0 − λ, A1, . . . , An) /∈ Γ(n+1)
k+1 .

Proof. Write for short A = (A1, . . . , An), Aλ = (A0 −λ, A1, . . . , An) (λ ∈ C) and
s = (s1, . . . , sn). Suppose that A /∈ Γ(n)

k . We show that there is a λ ∈ C such that
(A0−λ, A) /∈ Γ(n+1)

k+1 . Clearly, A0 Ker δk
A ⊂ Ker δk

A. Consider the following diagram

Λk−1[s, X ]
δk−1

A−→ Ker δk
A⏐⏐2A0

⏐⏐2A0

Λk−1[s, X ]
δk−1

A−→ Ker δk
A.

By Lemma 5, there is a λ ∈ C such that Ran δk−1
A +(A0 −λ)Ker δk

A �= Ker δk
A. We

prove that Ran δk
Aλ

�= RanKerk+1
Aλ

.
Let ψ ∈ Ker δk

A \ (
Ran δk−1

A + (A0 − λ)Ker δk
A

)
. Then

δk+1
Aλ

S0ψ =
(
(A0 − λ)S0 +

n∑
i=1

AiSi

)
S0ψ =

n∑
i=1

AiSiS0ψ = −S0δ
k
Aψ = 0.

We show that S0ψ /∈ Ran δk
Aλ

.
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Suppose on the contrary that there is a ϕ ∈ Λk[s0, s, X ] with δk
Aλ

ϕ = S0ψ.
Write ϕ = S0ϕk−1+ϕk for ϕk−1 ∈ Λk−1[s, X ], ϕk ∈ Λk[s, X ]. Then S0ψ = δk

Aλ
ϕ =

S0

(−δk−1
A ϕk−1 + (A0 − λ)ϕk

)
+ δk

Aϕk. Thus ϕk ∈ Ker δk
A and ψ = −δAϕk−1 +

(A0 − λ)ϕk ∈ Ran δk−1
A + (A0 − λ)Ker δk

A, which is a contradiction. �

Proposition 7. Let A1, . . . , An, An+1 be commuting operators on a Banach space

X , let 0 ≤ k ≤ n. Suppose that (A1, . . . , An) ∈ Γ(n)
k−1 ∩ Γ(n)

k . Then

(A1, . . . , An, An+1) ∈ Γ(n+1)
k .

Proof. Write A = (A1, . . . , An), s = (s1, . . . , sn), and A′ = (A1, . . . , An, An+1).
Suppose that Ker δk−1

A = Ran δk−2
A and Ker δk

A = Ran δk−1
A .

We prove that Ker δk
A′ ⊂ Ran δk−1

A′ (the opposite inclusion is always true).
Let ψ ∈ Ker δk

A′ . Express ψ = ηk + Sn+1ηk−1 for some ηk ∈ Λk[s, X ] and
ηk−1 ∈ Λk−1[s, X ]. Then

0 = δk
A′ψ =

n+1∑
i=1

AiSiηk +
n∑

i=1

AiSiSn+1ηk−1 = δk
Aηk + Sn+1(An+1ηk − δk−1

A ηk−1).

Thus δk
Aηk = 0, and so ηk = δk−1

A ξk−1 for some ξk−1 ∈ Λk−1[s1, . . . , sn, X ]. Fur-
ther,

0 = An+1ηk − δk−1
A ηk−1 = δk−1

A (An+1ξk−1 − ηk−1),

and so An+1ξk−1 − ηk−1 = δk−2
A ξk−2 for some ξk−2 ∈ Λk−2[s, X ]. Hence

ψ = ηk + Sn+1ηk−1 = δk−1
A ξk−1 + Sn+1An+1ξk−1 − Sn+1δ

k−2
A ξk−2

= δk−1
A′ ξk−1 + δk−1

A′ Sn+1ξk−2 ∈ Ran δk−1
A′ . �

Corollary 8. The Taylor spectrum is an upper semicontinuous spectral system.

Proof. By Propositions 6 and 7, the Taylor regular tuples of operators form a joint
regularity. Thus the Taylor spectrum is a spectral system. The upper semiconti-
nuity follows from Theorem 4. �

In fact, we have proved more. For a fixed k ≥ 0 and a commuting n-tuple
A = (A1, . . . , An) of operators in X define

σδ,k(A) =
{

λ /∈ Cn : A − λ /∈
k⋂

j=0

Γ(n)
n−j

}

where A − λ = (A1 − λ1, . . . , An − λn). Clearly, the condition in the definition of
σδ,k means the non-exactness of the Koszul complex at some of the last k positions.
By Remark 2 (iii), we have σδ(A) = σδ,0(A) ⊂ σδ,1(A) ⊂ · · · ⊂ σδ,n(A) = σT (A).
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Dually we define

σπ,k(A) =
{

λ /∈ Cn : A − λ /∈
k⋂

j=0

Γ(n)
j or Ran δk

A is not closed
}

.

Evidently, σπ(A) = σπ,0(A) ⊂ σπ,1(A) ⊂ · · · ⊂ σπ,n(A) = σT (A).

Theorem 9. σδ,k and σπ,k are upper semicontinuous spectral systems for each
k ≥ 0.

Proof. By Propositions 6 and 7, σδ,k is a spectral system. The upper semicontinuity
follows from Lemma 11.3. The statements for σπ,k follow from the following duality
result. �
Theorem 10. Let A = (A1, . . . , An) be a commuting n-tuple of operators on a
Banach space X and let 0 ≤ k ≤ n. Then:

(i) σδ,k(A∗
1, . . . , A

∗
n) = σπ,k(A1, . . . , An);

(ii) σπ,k(A∗
1, . . . , A

∗
n) = σδ,k(A1, . . . , An).

Proof. We may identify Λ[s, X∗] with the dual of Λ[s, X ]; the duality is given by
the formula

〈xsF , x∗sG〉 =

{
(−1)c(F )〈x, x∗〉 if G = {1, . . . , n} \ F,

0 otherwise,

where c(F ) =
∑

i∈F (i − 1). For 1 ≤ j ≤ n denote by Sj,X (Sj,X∗) the left
multiplication by sj in Λ[s, X ] and in Λ[s, X∗], respectively, see (1). Let x ∈ X ,
x∗ ∈ X∗ and F, G ⊂ {1, . . . , n}. If j ∈ F or G �= {1, . . . , j − 1, j + 1, . . . , n} \ F ,
then

〈Sj,XxsF , x∗sG〉 = 0 = 〈xsF , Sj,X∗x∗sG〉.
Suppose that j /∈ F and G = {1, . . . , j − 1, j + 1, . . . , n} \ F . Then

〈Sj,XxsF , x∗sG〉 = (−1)card{i∈F :i<j}〈xsF∪{j}, x∗sG〉
= (−1)card{i∈F :i<j}(−1)c(F )+j−1〈x, x∗〉 = (−1)card{i∈G:i<j}(−1)c(F )〈x, x∗〉
= (−1)card{i∈G:i<j}〈xsF , x∗sG∪{j}〉 = 〈xsF , Sj,X∗x∗sG〉.

Thus (Sj,X)∗ = Sj,X∗ and (δA)∗ = δA∗ . More precisely, we have
(
Λp[s, X ]

)∗ =
Λn−p[s, X∗] and (δp

A)∗ = δn−p
A∗ .

Let 0 ≤ k ≤ n. By Lemma 11.2, the following statements are equivalent:

– A is σπ,k regular;
– the complex

0 → Λ0[s, X ]
δ0

A−→Λ1[s, X ]
δ1

A−→ · · · δn−1
A−→Λn[s, X ] → 0

is exact at Λj[s, X ] (j ≤ k) and Ran δk
A is closed;
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– the complex

0 ← Λn[s, X∗]
δn−1

A∗←−Λn−1[s, X∗]
δn−2

A∗←− · · · δ0
A∗←−Λ0[s, X∗] ← 0

is exact at Λj[s, X∗] (j ≥ n − k);
– A∗ is σδ,k-regular.

This proves (i).

The second statement can be proved similarly. �

Proposition 11. Let A = (A1, . . . , An) be a commuting n-tuple of operators acting
on a Banach space X . Let j ∈ {1, . . . , n}. Then Aj Ker δA ⊂ Ran δA.

Proof. Let ψ ∈ Ker δA. Write ψ = sj ∧ψ1 + ψ2, where ψ2 does not contain sj . We
have

0 = δAψ = sj ∧ Ajψ2 +
∑
i�=j

si ∧ sj ∧ Aiψ1 +
∑
i�=j

si ∧ Aiψ2.

In particular, Ajψ2 −
∑

i�=j si ∧ Aiψ1 = 0. Thus

δAψ1 = sj ∧ Ajψ1 +
∑
i�=j

si ∧ Aiψ1 = sj ∧ Ajψ1 + Ajψ2 = Ajψ. �

Remark 12. The precise name of complex (2) is the cochain Koszul complex of A.
It is possible to assign to a commuting n-tuple A = (A1, . . . , An) ∈ B(X)n also
another “dual” complex (called the chain Koszul complex of A). As in the proof of
Proposition 3, for j = 1, . . . , n define operators Hj : Λ[s, X ] → Λ[s, X ] by (3) and
set εA =

∑n
j=1 AjHj : Λ[s, X ] → Λ[s, X ]. Equivalently, for 1 ≤ i1 < i2 < · · · <

ip ≤ n we have

εAxsi1 ∧ · · · ∧ sip =
p∑

k=1

(−1)k−1Aik
xsi1 ∧ · · · ∧ ŝik

∧ · · · ∧ sip ,

where the hat denotes the omitted term.
It is easy to verify that HjB = BHj for all B ∈ B(X) and HiHj =

−HjHi (1 ≤ i, j ≤ n). Thus (εA)2 = 0. Clearly, εAΛp[s, X ] ⊂ Λp−1[s, X ] for
all p, and so εA defines a complex

0 ← Λ0[s, X ]
ε0

A←−Λ1[s, X ]
ε1

A←− · · · εn−1
A←−Λn[s, X ] ← 0, (4)

where εp
A is the restriction of εA to Λp+1[s, X ] (p = 0, . . . , n). Complex (4) is

called the chain Koszul complex of A.
The chain complex can also be used for the definition of the Taylor spectrum

of A (in fact this was the original definition of Taylor). Fortunately, these two
definitions coincide since the chain Koszul complex of A is exact if and only if the
cochain Koszul complex is exact.
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To see this, denote by J : Λ[s, X ] → Λ[s, X ] the operator defined by

JxsF = (−1)c(F )xsF̄ (x ∈ X, F ⊂ {1, . . . , n}),

where c(F ) =
∑

i∈F (i − 1) and F̄ = {1, . . . , n} \ F denotes the complement of F .
It is easy to see that J is an invertible operator.

Let x ∈ X and F ⊂ {1, . . . , n}. If j /∈ F , then JHjxsF = 0 = SjJxsF ; if
j ∈ F , then

SjJxsF = (−1)c(F )xsj ∧ sF̄ = (−1)c(F )(−1)card{k∈F̄ :k<j}xsF̄∪{j}
= (−1)c(F\{j})(−1)card{k∈F :k<j}xsF̄∪{j} = JHjxsF .

Thus SjJ = JHj (j = 1, . . . , n) and δAJ = JεA. Consequently, Ran δA =
Ran(δAJ) = Ran(JεA) = J Ran εA, Ker εA = Ker(δAJ) = J−1 Ker δA and
Ker δA = J Ker εA. Thus Ker δA = Ran δA if and only if Ker εA = Ran εA and
the exactness of both Koszul complexes is equivalent.

Note also that for 0 ≤ p ≤ n the exactness of one of the Koszul complexes at
Λp[s, X ] is equivalent to the exactness of the other Koszul complex at Λn−p[s, X ].

26 Split spectrum

In this section we study a variant of the Taylor spectrum. The relation between
the split spectrum and the Taylor spectrum is analogous to the relation between
the left (right) spectrum and the approximate point (surjective) spectrum.

Definition 1. Let A = (A1, . . . , An) be an n-tuple of commuting operators on a
Banach space X . We say that A is split regular if it is Taylor regular and the
mapping δA : Λ[s, X ] → Λ[s, X ] has a generalized inverse.

The split spectrum σS(A) is the set of all λ = (λ1, . . . , λn) ∈ C such that the
n-tuple (A1 − λ1, . . . , An − λn) is not split regular.

The following result characterizes the split regular n-tuples of operators.

Proposition 2. Let A = (A1, . . . , An) be an n-tuple of mutually commuting oper-
ators on a Banach space X . The following conditions are equivalent:

(i) A is split regular;

(ii) A is Taylor regular and Ker δp
A is a complemented subspace of Λp[s, X ] for

each p = 0, . . . , n − 1;

(iii) there exist operators W1, W2 : Λ[s, X ] → Λ[s, X ] such that W1δA + δAW2 =
IΛ[s,X];

(iv) there exists an operator V : Λ[s, X ] → Λ[s, X ] such that V δA + δAV = I,
V 2 = 0 and V Λp[s, X ] ⊂ Λp−1[s, X ] (p = 0, . . . , n). Equivalently, there
are operators Vp : Λp+1[s, X ] → Λp[s, X ] (see the diagram below) such that
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Vp−1Vp = 0 and Vpδ
p
A + δp−1

A Vp−1 = IΛp[s,X] for every p (for p = 0 and p = n

this reduces to V0δ
0
A = IΛ0[s,X] and δn−1

A Vn−1 = IΛn[s,X], respectively).

0 → Λ0[s, X ]
δ0

A−→←−
V0

Λ1[s, X ]
δ1

A−→←−
V1

· · ·
δn−1

A−→←−
Vn−1

Λn[s, X ] → 0

Proof. (iv) ⇒ (iii) is clear.

(iii) ⇒ (i): If W1δA + δAW2 = I, then δAW1δA = δA, so δA has gener-
alized inverse and Ker δA is complemented. Furthermore, if x ∈ Ker δA, then
x = δAW2x ∈ Ran δA, and so Ker δA = Ran δA. Hence A is Taylor regular.

(i) ⇒ (ii): Denote by Jp : Λp[s, X ] → Λ[s, X ] the natural embedding, let
Qp : Λ[s, X ] → Λp[s, X ] be the natural projection and let P : Λ[s, X ] → Ker δA be
a bounded projection onto Ker δA.

Clearly, Qp(Ker δA) = Ker δp
A. Then QpPJp is a bounded projection from

Λp[s, X ] onto Ker δp
A.

(ii) ⇒ (iv): Let Mp be a closed subspace of Λp[s, X ] such that Ker δp
A⊕Mp =

Λp[s, X ]. The operator δp
A|Mp : Mp → Ran δp

A = Ker δp+1
A is a bijection. In the

decompositions Λp[s, X ] = Ker δp
A ⊕ Mp, Λp+1[s, X ] = Ker δp+1

A ⊕ Mp+1 we have

δp
A =

(Ker δp
A Mp

Ran δp
A 0 δp

A|Mp

Mp+1 0 0

)
.

Set

Vp =
( Ran δp

A Mp+1

Ker δp
A 0 0

Mp (δp
A|Mp)−1 0

)
.

Then Vp−1Vp = 0 since Ran Vp ⊂ Mp ⊂ KerVp−1. For x ∈ Mp we have

(Vpδ
p
A + δp−1

A Vp−1)x = Vpδ
p
Ax = x.

For x ∈ Ker δp
A we have

(Vpδ
p
A + δp−1

A Vp−1)x = δp−1
A Vp−1x = x.

Thus Vpδ
p
A + δp−1

A Vp−1 = IΛp[s,X] for each p (for p = 0 and p = n we set formally
V−1 = 0 and Vn = 0). �

Remark 3. For single operators on a Banach space the split spectrum coincides
with the Taylor spectrum (and with the ordinary spectrum).

By Proposition 2 (ii), the split spectrum coincides with the Taylor spectrum
also for n-tuples of commuting operators on a Hilbert space. For general Banach
spaces the split spectrum differs from the Taylor spectrum, see C.26.1.
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Theorem 4. Let A = (A1, . . . , An) be an n-tuple of commuting operators on a
Banach space X . Then σS(A) ⊂ σ〈A〉(A).

Proof. The result was essentially proved already in Proposition 25.3.
It is sufficient to show that if (0, . . . , 0) /∈ σ〈A〉(A), then A is split regular.
Suppose that there are operators B1, . . . , Bn in the algebra generated by A

satisfying
∑n

i=1 AiBi = I. The operator εB : Λ[s, X ] → Λ[s, X ], see the proof of
Proposition 25.3, satisfies εBδA + δAεB = I. By the previous theorem, this implies
that A is split regular. �

More generally, it is possible to define analogues of the partial Taylor spectra
σπ,k and σδ,k.

Definition 5. Let A = (A1, . . . , An) be an n-tuple of commuting operators on
a Banach space X , let 0 ≤ k ≤ n. We say that A is σl,k-regular if Ker δj

A =
Ran δj−1

A (j = 0, . . . , k) and the operators δ0
A, δ1

A, . . . , δk
A have generalized in-

verses.
Dually, A is called σr,k-regular if Ker δj

A = Ran δj−1
A (j = n− k, . . . , n) and

the operators δn−k−1
A , δn−k

A , . . . , δn−1
A have generalized inverses.

Write

σl,k(A) =
{
λ ∈ Cn : (A1 − λ1, . . . , An − λn) is not σl,k regular

}
and

σr,k(A) =
{
λ ∈ Cn : (A1 − λ1, . . . , An − λn) is not σr,k regular

}
.

Then σl,k(A) ⊃ σπ,k(A) and σr,k(A) ⊃ σδ,k(A), and so all the sets σl,k(A) and
σr,k are non-empty. Furthermore,

σl(A) = σl,0(A) ⊂ σl,1(A) ⊂ · · · ⊂ σl,n(A) = σS(A)

and
σr(A) = σr,0(A) ⊂ σr,1(A) ⊂ · · · ⊂ σr,n(A) = σS(A).

To characterize the spectra σl,k and σr,k, we need the following modification
of Proposition 2:

Lemma 6. Let X, Y, Z be Banach spaces, and let A1 : X → Y , A2 : Y → Z be
operators satisfying A2A1 = 0. The following statements are equivalent:

(i) A1 and A2 have generalized inverses and Ran A1 = KerA2;

(ii) there exist operators V1 : Y → X and V2 : Z → Y such that A1V1 + V2A2 =
IY ;

(iii) there exist operators V1 : Y → X and V2 : Z → Y satisfying V1V2 = 0 and
A1V1 + V2A2 = IY .
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Proof. (iii) ⇒ (ii): Clear.

(ii) ⇒ (i): If we multiply the relation A1V1 + V2A2 = IY by A2 from the
left-hand side (by A1 from the right-hand side), then we get A2V2A2 = A2 and
A1V1A1 = A1. Thus A1 and A2 have generalized inverses.

Furthermore, if y ∈ KerA2, then y = A1V1y ∈ Ran A1, and so RanA1 =
KerA2.

(i) ⇒ (iii): As in the proof of Proposition 2. �

The next result shows the relations between the partial Taylor and split
spectra of an n-tuple A and left (right) multiplication operators LA and RA. It is
a generalization of Theorem 9.26.

Theorem 7. Let A = (A1, . . . , An) be an n-tuple of commuting operators on a
Banach space X . Then, for all k, 0 ≤ k ≤ n:

(i) σr,k(A) = σδ,k(LA) = σr,k(LA);

(ii) σl,k(A) = σδ,k(RA) = σr,k(RA).

In particular, σS(A) = σT (LA) = σS(LA) = σT (RA) = σS(RA).

Proof. (i) For ψ =
∑

F⊂{1,...,n} TF sF ∈ Λ[s,B(X)] and x ∈ X it is natural to
define ψx ∈ Λ[s, X ] by ψx =

∑
F⊂{1,...,n}(TF x)sF . With this notation we have(

δLAψ
)
x = δA(ψx).

(i.1) Suppose that A is σr,k-regular and let n− k ≤ p ≤ n. By Lemma 6, there are
operators Vp−1 : Λp[s, X ] → Λp−1[s, X ] and Vp : Λp+1[s, X ] → Λp[s, X ] satisfying
δp−1
A Vp−1 + Vpδ

p
A = IΛp[s,X], see the diagram below.

Λp−1[s, X ]
δp−1

A−→←−
Vp−1

Λp[s, X ]
δp

A−→←−
Vp

Λp+1[s, X ]. (1)

For q = p − 1, p express Vq in the matrix form as

Vq

( ∑
card G=q+1

xGsG

)
=

∑
card G=q+1

∑
card F=q

VF,GxGsF , (2)

where VG,F ∈ B(X) are uniquely determined operators.
Define operators Wq : Λq+1[s,B(X)] → Λq[s,B(X)] as the multiplication by

the matrices defining Vq. More precisely,

Wq

( ∑
card G=q+1

TGsG

)
=

∑
card G=q+1

∑
card F=q

VF,GTGsF

for q = p−1, p, TG ∈ B(X). So (Wqψ)x = Vq(ψx) for all x ∈ X . It is easy to verify
that δp−1

LA
Wp−1 + Wpδ

p
LA

= IΛp[s,B(X)].
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Consequently, if A is σr,k-regular, then LA is σr,k-regular. So

σr,k(A) ⊃ σr,k(LA) ⊃ σδ,k(LA).

(i.2) We prove by induction on k that if LA is σδ,k-regular, then A is σr,k-regular.
For k = 0 this was proved in Theorem 9.26.

Let k ≥ 1 and suppose that LA is σδ,k-regular. By the induction hypothesis, A
is σr,k−1-regular. In particular, δn−k

A has generalized inverse, and so there exists an
operator Vn−k : Λn−k+1[s, X ] → Λn−k[s, X ] such that δn−k

A Vn−kδn−k
A = δn−k

A . It
is sufficient to show that there is an operator Vn−k−1 : Λn−k[s, X ] → Λn−k−1[s, X ]
(see the diagram below) such that δn−k−1

A Vn−k−1 + Vn−kδn−k
A = IΛn−k[s,X].

Λn−k−1[s, X ]
δn−k−1

A−→←−
Vn−k−1

Λn−k[s, X ]
δn−k

A−→←−
Vn−k

Λn−k+1[s, X ]

Set U = I − Vn−kδn−k
A : Λn−k[s, X ] → Λn−k[s, X ]. Express U in the matrix

form as

UxsG =
∑

card G′=n−k

UG′,GxsG′ (x ∈ X, cardG = n − k), (3)

where UG′,G ∈ B(X).
For each G with cardG = n−k set ψG =

∑
card G′=n−k

UG′,GsG′ ∈ Λk[s,B(X)].

Then ψGx = U(xsG) for all x ∈ X and (δLAψG)x = δA(ψGx) = δAUxsG = 0. So
ψG ∈ Ker δn−k

LA
= Ran δn−k−1

LA
. Therefore there is an ηG ∈ Λn−k−1[s,B(X)] such

that δn−k−1
LA

ηG = ψG. Let V A
n−k−1 : Λn−k[s, X ] → Λn−k−1[s, X ] be the operator

defined by Vn−k−1xsG = ηGx. We have

δn−k−1
A Vn−k−1xsG = δn−k−1

A (ηGx) = (δn−k−1
LA

ηG)x = ψGx = UxsG.

Thus δn−k−1
A Vn−k−1 = U = I − Vn−kδn−k

A and A is σr,k-regular.
By Lemma 6, this implies that σr,k(A) ⊂ σδ,k(LA), which finishes the proof

of (i).

(ii) The proof of the second statement is similar to part (i). Since the left spectra
of A correspond the the right spectra of RA, we use instead of the cochain Koszul
complex of RA rather the chain Koszul complex, see Remark 25.12. Recall the
operators εq

RA
: Λq+1[s,B(X)] → Λq[s,B(X)] defined in Proposition 25.3,

εq
RA

TsF =
∑
i∈F

TAi(−1)card{j∈F :j<i}sF\{i}

for T ∈ B(X), F ⊂ {1, . . . , n}, cardF = q + 1.

(ii.1) Let 0 ≤ p ≤ n and suppose that there are operators Vp−1 : Λp[s, X ] →
Λp−1[s, X ] and Vp : Λp+1[s, X ] → Λp[s, X ] satisfying δp−1

A Vp−1 + Vpδ
p
A = IΛp[s,X],
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see (1). Express Vp−1 and Vp in the matrix form (2). For all x ∈ X and G ⊂
{1, . . . , n}, cardG = p we have

xsG = (δp−1
A Vp−1 + Vpδ

p
A)xsG = δp−1

A

∑
card F=p−1

VF,GxsF + Vp

∑
i/∈G

Aixsi ∧ sG

=
∑
i/∈F

∑
card F=p−1

AiVF,Gxsi ∧ sF +
∑

card G′=p

∑
i/∈G

VG′,G∪{i}Ai(−1)card{j∈G:j<i}xsG′

=
∑

card G′=p

(∑
i∈G′

AiVG′\{i},G(−1)card{j∈G′:j<i}

+
∑
i/∈G

VG′,G∪{i}Ai(−1)card{j∈G:j<i}
)

xsG′ ,

so ∑
i∈G′

AiVG′\{i},G(−1)card{j∈G′:j<i}

+
∑
i/∈G

VG′,G∪{i}Ai(−1)card{j∈G:j<i} =

{
I G = G′,
0 G �= G′.

(4)

Define operators Wp−1 and Wp (see the diagram below) by

WqTsG =
∑

card F=q+1

TVG,F sF (q = p − 1, p, T ∈ B(X), cardG = q).

Λp−1[s,B(X)]
Wp−1−→←−
εp−1

RA

Λp[s,B(X)]
Wp−→←−
εp

RA

Λp+1[s,B(X)]

By (4), we have(
Wp−1ε

p−1
RA

+ εp
RA

Wp

)
TsG

= Wp−1

∑
i∈G

(−1)card{j∈G:j<i}TAisG\{i} + εp
RA

∑
card F=p+1

TVG,F sF

=
∑

card G′=p

∑
i∈G

(−1)card{j∈G:j<i}TAiVG\{i},G′sG′

+
∑
i∈F

∑
card F=p+1

TVG,F AisF\{i}(−1)card{j∈F :j<i}

=
∑

card G′=p

T

(∑
i∈G

AiVG\{i},G′(−1)card{j∈G:j<i}

+
∑
i/∈G′

VG,G′∪{i}Ai(−1)card{j∈G′:j<i}
)

sG′ .

By (4), the last expression is equal to TsG, and so Wp−1ε
p−1
RA

+εp
RA

Wp = IΛp[s,B(X)].
This implies that σr,k(RA) ⊂ σl,k(A).
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(ii.2) We prove by induction on k that the σδ,k-regularity of RA implies the σl,k-
regularity of A. For k = 0 this was proved in Theorem 9.26.

Let k ≥ 1 and let RA be σδ,k-regular. By the induction hypothesis, A is
σl,k−1-regular. In particular, δk−1

A has a generalized inverse, and so there exists
an operator Vk−1 : Λk[s, X ] → Λk−1[s, X ] such that δk−1

A Vk−1δ
k−1
A = δk−1

A . It is
sufficient to show that there is an operator Vk : Λk+1[s, X ] → Λk[s, X ] such that
Vkδk

A + δk−1
A Vk−1 = IΛk[s,X].

Set U = I − δk−1
A Vk−1 : Λk[s, X ] → Λk[s, X ]. Express U in the matrix form

by

UxsG =
∑

card G′=k

UG′,GxsG′ (x ∈ X, cardG = k). (5)

For x ∈ X and cardF = k − 1 we have

0 = Uδk−1
A xsF = U

∑
i/∈F

Aixsi ∧ sF

=
∑

card G′=k

∑
i/∈F

(−1)card{j∈F :j<i}UG′,F∪{i}AixsG′ .

Hence ∑
i/∈F

(−1)card{j∈F :j<i}UG′,F∪{i}Ai = 0 (6)

for all G′, F ⊂ {1, . . . , n} with cardG′ = k and cardF = k − 1. For each G with
cardG = k define ψG ∈ Λk[s,B(X)] by ψG =

∑
card G′=k UG,G′sG′ . Then, by (6),

εRAψG =
∑

card G′=k

∑
i∈G′

UG,G′AisG′\{i}(−1)card{j∈G′:j<i}

=
∑

card F=k−1

(∑
i/∈F

UG,F∪{i}Ai(−1)card{j∈F :j<i}
)
sF = 0.

Thus ψG ∈ Ker εk−1
RA

= Ran εk
RA

and therefore εk
RA

ηG = ψG for some ηG =∑
card K=k+1 TG,KsK ∈ Λk+1[s,B(X)]. For each G with cardG = k we have∑

card G′=k

UG,G′sG′ = ψG = εk
RA

ηG = εk
RA

∑
card K=k+1

TG,KsK

=
∑

card K=k+1

∑
i∈K

TG,KAisK\{i}(−1)card{j∈K:j<i}.

Hence, for all G, G′ with cardG = cardG′ = k, we have

UG,G′ =
∑
i/∈G′

TG,G′∪{i}Ai(−1)card{j∈G′:j<i}. (7)
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Define Vk : Λk+1[s, X ] → Λk[s, X ] by VkxsK =
∑

card G=k TG,KxsG. For x ∈ X
and cardG′ = k we have, using (6) and (5),

Vkδk
AxsG′ = Vk

∑
i/∈G′

Aixsi ∧ sG′

=
∑

card G=k

∑
i/∈G′

TG,G′∪{i}Ai(−1)card{j∈G′:j<i}xsG

=
∑

card G=k

UG,G′xsG = UxsG′ .

Hence Vkδk
A = U and δk−1

A Vk−1 + Vkδk
A = IΛk[s,X]. Thus A is σl,k-regular. Hence

σl,k(A) ⊂ σδ,k(RA) ⊂ σr,k(RA), which finishes the proof. �

Corollary 8. σr,k, σl,k and σS are upper semicontinuous spectral systems for all k,
0 ≤ k ≤ n.

Proof. The statement follows from Theorem 7 and from the corresponding state-
ments for σδ,k and σπ,k. �

Proposition 9. Let A be a commutative Banach algebra and a = (a1, . . . , an) ∈ An.
Let La = (La1 , . . . , Lan) ∈ B(A)n, where Laj : A → A is defined by Lajb =
ajb (b ∈ A, j = 1, . . . , n). Then σT (La) = σS(La) = σ(a).

Proof. If 0 /∈ σ(a), then
∑

aibi = 1A for some bi ∈ A. Then
∑

LaiLbi = IA, and
so La is split regular by the proof of Theorem 4. So σS(La) ⊂ σ(a).

Conversely, by Theorem 9.26, σ(a) = σr(a) = σδ(La) ⊂ σT (La) ⊂ σS(La).
�

27 Some non-linear results

A great advantages of Hilbert spaces is the existence of projections onto all closed
subspaces. In general Banach spaces it is sometimes possible to use non-linear
techniques instead of it. We have already used the Borsuk antipodal theorem; in
this section we give several other results which are based essentially on the Michael
selection theorem, see Appendix A.4. Some applications in operator theory will be
given in this and the subsequent sections.

Definition 1. Let X, Y be Banach spaces. Denote by H(X, Y ) the set of all con-
tinuous mappings f : X → Y that are homogeneous (i.e., f(αx) = αf(x) for all
α ∈ C and x ∈ X). Write for short H(X) instead of H(X, X).

Let f ∈ H(X, Y ). The continuity of f at 0 implies that f is bounded, i.e.,
sup{‖f(x)‖ : x ∈ X, ‖x‖ ≤ 1} < ∞. Clearly, H(X, Y ) with this norm is a Banach
space and B(X, Y ) ⊂ H(X, Y ).
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Lemma 2. Let X, Y be Banach spaces. For each x ∈ X let G(x) ⊂ Y be a non-
empty closed convex set such that the mapping x �→ G(x) is lower semicontinuous
and

⋃{G(x) : x ∈ X, ‖x‖ = 1} is a bounded subset of Y .

Suppose further that G(αx) = αG(x) for all x ∈ X and α ∈ C. Then there
exists a mapping g ∈ H(X, Y ) such that g(x) ∈ G(x) for all x ∈ X .

Proof. Let SX be the unit sphere in X . By Micheal’s theorem (see Theorem A.4.5)
there exists a continuous selection f : SX → Y satisfying f(x) ∈ G(x) for all
x ∈ SX . For x ∈ SX set

g(x) =
1
2π

∫ 2π

0

e−itf(eitx)dt.

We have e−itf(eitx) ∈ e−itG(eitx) = G(x). Since G(x) is closed and convex, g(x)
(as a limit of convex combinations) also belongs to G(x). Evidently, g : SX → Y
is continuous by the Lebesgue dominated convergence theorem. It is easy to see
that g(λx) = λg(x) for all x ∈ SX and λ ∈ C, |λ| = 1.

Extend g to X by g(0) = 0 and g(x) = ‖x‖ · g( x
‖x‖ ) (x �= 0). It is easy to

see that g is continuous and satisfies all the conditions required. �

Theorem 3. (Bartle-Graves) Let M be a closed subspace of a Banach space X
and let ε > 0. Then there exists h ∈ H(X/M, X) such that ‖h‖ < 1 + ε and
h(x + M) ∈ x + M for each class x + M ∈ X/M .

Proof. For x + M ∈ X/M , x + M �= M set

G(x + M) =
{
u ∈ X : u ∈ x + M, ‖u‖ < (1 + ε)‖x + M‖}−

.

Let G(M) = {0}. Clearly, G(αx+M) = αG(x+M) and G(x+M) is a non-empty
closed convex subset of X for all x ∈ X and α ∈ C.

We show that the mapping G is lower semicontinuous. Clearly, G is lower
semicontinuous at M . Let x ∈ X \ M and let U be an open subset of X with
U ∩ G(x + M) �= ∅. Find u ∈ U such that u ∈ x + M and ‖u‖ < (1 + ε)‖x + M‖.

Let δ be a positive number satisfying
{
v ∈ X : ‖v − u‖ < δ

} ⊂ U and
‖u‖ < (1 + ε)(‖x + M‖ − 2δ). If ξ ∈ X/M satisfies ‖ξ − (x + M)‖ < δ, then there
exists x′ ∈ ξ such that ‖x′ − x‖ < δ. Then x′ + u− x ∈ ξ and ‖(x′ + u− x)− u‖ =
‖x′ − x‖ < δ, and so x′ + u − x ∈ U . Further,

‖x′ + u − x‖ ≤ ‖u‖ + ‖x′ − x‖ < (1 + ε)(‖x + M‖ − 2δ) + δ

≤ (1 + ε)(‖x + M‖ − δ‖) ≤ (1 + ε)‖ξ‖.

Thus x′ + u − x ∈ U ∩ G(ξ) and G is lower semicontinuous.
By the previous lemma, there exists a homogeneous continuous selection

h : X/M → X . Clearly, h satisfies all the conditions required. �
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Corollary 4. Let M be a closed subspace of a Banach space X and let ε > 0.
Then there exists a continuous homogeneous mapping p : X → M such that
‖x− px‖ ≤ (1+ ε) dist{x, M} and p(x+m) = p(x)+m for all x ∈ X and m ∈ M .

In particular, pm = m for all m ∈ M , and so p is a (non-linear) projection
onto M .

Proof. Let h : X/M → X be the mapping constructed in Theorem 3. So h(x +
M) ∈ x + M and ‖h(x + M)‖ ≤ (1 + ε)‖x + M‖ for all x + M ∈ X/M . Set
px = x− hQx where Q : X → X/M is the canonical projection. Then ‖x− px‖ =
‖hQx‖ ≤ (1 + ε)‖Qx‖ = (1 + ε) dist{x, M}. For x ∈ X and m ∈ M we have
p(x + m) = x + m − hQ(x + m) = x + m − hQx = px + m. �

Proposition 5. Let X, Y be Banach spaces and let T : X → Y be a bounded linear
operator with closed range. Then:

(i) if f ∈ H(Y ) satisfies f(Y ) ⊂ RanT , then there exists g ∈ H(Y, X) such that
f = Tg. In particular, if T is onto, then there exists g ∈ H(Y, X) such that
Tg = IY ;

(ii) if T ∈ B(X, Y ) is bounded below, then there exists g ∈ H(Y, X) such that
gT = IX .

Proof. (i) Let h : X/ KerT → X be the selection given by the Bartle-Graves
theorem. Let T0 : X/ KerT → RanT be the operator induced by T . Set g =
hT−1

0 f . For y ∈ Y we have Tgy = ThT−1
0 fy = fy, and so Tg = f .

(ii) Let T ∈ B(X, Y ) be bounded below. Let p ∈ H(Y ) be the non-linear
projection onto RanT constructed in Corollary 4. Then T−1p ∈ H(Y, X) is the
required non-linear left inversion of T . �

By the preceding proposition, the operators that are bounded below or onto
become one-sided invertible if we admit non-linear mappings. In the same way,
the Taylor regular n-tuples of operators get the split property.

Proposition 6. Let A = (A1, . . . , An) be an n-tuple of mutually commuting op-
erators on a Banach space X . Then A is Taylor regular if and only if there are
mappings Vi ∈ H(Λi+1[s, X ], Λi[s, X ]) (i = 0, . . . , n − 1) such that

V0δ
0
A = IΛ0[s,X],

Vjδ
j
A + δj−1

A Vj−1 = IΛj [s,X] (j = 1, . . . , n − 1),

δn−1
A Vn−1 = IΛn[s,X].

Proof. Suppose that the mappings Vi satisfy the conditions of the theorem. Let
ψ ∈ Ker δj

A. Then ψ =
(
Vjδ

j
A + δj−1

A Vj−1

)
ψ = δj−1

A Vj−1ψ ∈ Ran δj−1
A (note that

the same relation also holds for j = 0, n). Hence A is Taylor regular.
Conversely, suppose that A is Taylor regular. Since δn−1

A is onto, by Propo-
sition 5 there exists Vn−1 ∈ H(Λn[s, X ], Λn−1[s, X ]) satisfying δn−1

A Vn−1 = I.
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We construct the mappings Vj inductively. Suppose that 1 ≤ j ≤ n − 1 and
the mappings Vj and Vj+1 satisfy Vj+1δ

j+1
A + δj

AVj = I (for j = n− 1 set formally
Vn = 0). We have

δj
A(I − Vjδ

j
A) = δj

A − δj
AVjδ

j
A = δj

A − (I − Vj+1δ
j+1
A )δj

A = 0,

and so, by Proposition 5, there exists Vj−1 ∈ H(Λj [s, X ], Λj−1[s, X ]) such that
δj−1
A Vj−1 = I − Vjδ

j
A, i.e., Vjδ

j
A + δj−1

A Vj−1 = I.
At the end, suppose that V0 ∈ H(Λ1[s, X ], Λ0[s, X ]) satisfies V1δ

1
A+δ0

AV0 = I.
Then δ0

A = δ0
AV0δ

0
A. Since δ0

A is injective, we have V0δ
0
A = I. �

Let A = (A1, . . . , An) be an n-tuple of commuting operators on a Banach
space X . By Theorem 26.7, σT (LA) = σS(A), where LA = (LA1 , . . . , LAn) and
LAj are the operators of left multiplication by Aj on B(X).

The situation changes if we consider the operators of left multiplication acting
on H(X).

Let L′
A = (L′

A1
, . . . , L′

An
), where L′

Ai
f = Aif (f ∈ H(X), i = 1, . . . , n).

Then L′
A is an n-tuple of commuting operators acting on H(X).

Corollary 7. σT (L′
A) = σT (A).

Proof. It is sufficient to show that A is Taylor regular if and only if L′
A is Taylor

regular. We can consider an element ϕ ∈ Λ[s,H(X)] as a continuous homogeneous
mapping ϕ : X → Λ[s, X ]. With this convention we have (δL′

A
ϕ)x = δA(ϕ(x)) for

all x ∈ X .
Let A be Taylor regular. Let Vj (0 ≤ j ≤ n−1) be the mappings constructed

in Proposition 6. Define V ∈ H(Λ[s, X ]) by V
(⊕n

i=0 ψi

)
=

⊕n
i=0 Vi−1ψi. Then

V δA +δAV = IΛ[s,X]. If we lift V naturally to a mapping acting on Λ[s,H(X)], we
have V δL′

A
+ δL′

A
V = IΛ[s,H(X)]. Let ψ ∈ Ker δL′

A
. Then ψ = (δL′

A
V + V δL′

A
)ψ =

δL′
A
V ψ ∈ Ran δL′

A
.

Conversely, suppose that A is not Taylor regular. Then there exists ψ ∈
Ker δA \ Ran δA. Let x∗ ∈ X∗ be any non-zero functional and let ϕ ∈ Λ[s,H(X)]
be defined by ϕ(x) = x∗(x) · ψ (x ∈ X). For each x ∈ X we have (δL′

A
ϕ)(x) =

δAϕ(x) = x∗(x) · δAψ = 0. Hence ϕ ∈ Ker δL′
A

and similarly one can show that
ϕ /∈ Ran δL′

A
. �

The next result is a generalization of Corollary 10.10.

Theorem 8. Let R, R1, N, N1 be closed subspaces of a Banach space X and let
R ⊂ N . Suppose that δ(R, R1) + δ(N1, N) + δ(R, R1)δ(N1, N) < 1. Then

dimN1/(R1 ∩ N1) ≤ dimN/R + dimR1/(R1 ∩ N1).

In particular, if also R1 ⊂ N1, then dim N1/R1 ≤ dimN/R. Consequently,

if R ⊂ N , R1 ⊂ N1, δ̂(R, R1) < 1/3 and δ̂(N1, N) < 1/3, then dimN1/R1 =
dimN/R.
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Proof. Suppose on the contrary that δ(R, R1) + δ(N1, N) + δ(R, R1)δ(N1, N) < 1
and

dimN1/(R1 ∩ N1) > dimN/R + dimR1/(R1 ∩ N1).

Let ε be a positive number small enough (the exact condition on ε will be clear from
the proof). Let QR : N → N/R and QN1∩R1 : R1 → R1/(N1∩R1) be the canonical
projections, let h : N1/(N1∩R1) → N1 be the mapping constructed in Theorem 3
(in particular, h(n1 + (N1 ∩ R1)) ∈ n1 + (N1 ∩ R1) and

∥∥h(n1 + (N1 ∩ R1))
∥∥ ≤

(1 + ε)‖n1 + (N1 ∩ R1)‖ for all n1 ∈ N1) and let pN : X → N , pR1 : X → R1

be the continuous non-linear projections constructed in Corollary 4 (in particular,
‖x − pNx‖ ≤ (1 + ε) dist{x, N}, ‖x − pR1x‖ ≤ (1 + ε) dist{x, R1} for all x ∈ X).

Let Φ : N1/(N1 ∩ R1) → N/R ⊕ R1/(N1 ∩ R1) be the mapping defined by

Φ(ξ) = QRpNh(ξ) ⊕ QN1∩R1pR1h(ξ)
(
ξ ∈ N1/(N1 ∩ R1)

)
.

Clearly, Φ is a continuous homogeneous mapping. By the Borsuk antipodal the-
orem, there exists ξ ∈ N1/(N1 ∩ R1) such that ‖ξ‖ = 1 and Φ(ξ) = 0. Set
x = h(ξ) ∈ N1. Then ‖x‖ ≤ 1 + ε, QRpNx = 0 and QN1∩R1pR1x = 0; so pNx ∈ R
and pR1x ∈ N1 ∩ R1.

We have

‖x − pNx‖ ≤ (1 + ε) dist{x, N} ≤ (1 + ε)‖x‖δ(N1, N) ≤ (1 + ε)2δ(N1, N)

and ‖pNx‖ ≤ ‖x‖ + ‖x − pNx‖ ≤ 1 + ε + (1 + ε)2δ(N1, N). Thus

1 = ‖ξ‖ = dist{x, N1 ∩ R1} ≤ ‖x − pR1x‖ ≤ (1 + ε) dist{x, R1}
≤ (1 + ε)

(‖x − pNx‖ + dist{pNx, R1}
)

≤ (1 + ε)3δ(N1, N) + (1 + ε)‖pNx‖δ(R, R1)

≤ (1 + ε)3
(
δ(N1, N) + δ(R, R1) + δ(N1, N)δ(R, R1)

)
< 1

for ε small enough. This gives a contradiction. �

The assumption R ⊂ N in the preceding theorem is not necessary. First, we
replace this condition by the assumption R

e⊂N .

Theorem 9. Let R, N be closed subspaces of a Banach space X , let R
e⊂N . Then

there exists ε > 0 such that, for all closed subspaces R1 and N1 of X with
δ(R, R1) < ε and δ(N1, N) < ε, we have

dimN1/(R1 ∩ N1) + dimR/(R ∩ N) ≤ dimN/(R ∩ N) + dim R1/(R1 ∩ N1).

Proof. For R ⊂ N this was proved in the previous theorem. We reduce the general
situation to this case.

Choose a finite-dimensional subspace F ⊂ R such that (R∩N)⊕F = R. Let
dimF = k < ∞ and let f1, . . . , fk be a basis in F with ‖f1‖ = · · · = ‖fk‖ = 1.
Clearly, F ∩ N = {0}.
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For f =
∑k

i=1 αifi ∈ F where αi ∈ C consider three norms: ‖f‖, dist{f, N}
and

∑k
i=1 |αi|. Since these three norms are equivalent, there exists c > 0 such that

c ·
k∑

i=1

|αi| ≤ dist
{ k∑

i=1

αifi, N
}
≤

∥∥∥ k∑
i=1

αifi

∥∥∥ ≤
k∑

i=1

|αi|

for all α1, . . . , αk ∈ C. Clearly, c ≤ 1.
Set ε = c

8 . Let R1 and N1 be closed subspaces of X such that δ(R, R1) < ε
and δ(N1, N) < ε.

For i = 1, . . . , k find elements gi ∈ R1 such that ‖fi − gi‖ < ε. Then ‖gi‖ <
1 + ε (i = 1, . . . , k).

Denote by G the subspace of R1 generated by g1, . . . , gk.
We prove that the elements g1, . . . , gk are linearly independent modulo N1.

Suppose that
∑k

i=1 αigi ∈ N1 for some αi ∈ C. Then

k∑
i=1

|αi| ≤ c−1 dist
{ k∑

i=1

αifi, N
}
≤c−1

( k∑
i=1

|αi|‖fi − gi‖ + dist
{ k∑

i=1

αigi, N
})

≤ c−1ε
k∑

i=1

|αi| + c−1
∥∥∥ k∑

i=1

αigi

∥∥∥ · δ(N1, N)

≤
(ε

c
+

ε(1 + ε)
c

)
·

k∑
i=1

|αi| ≤ 1
2

k∑
i=1

|αi|,

and so α1 = · · · = αk = 0. In particular, dim G = k and G ∩ N1 = {0}.
Write N ′ = N + F and N ′

1 = N1 + G. Then N ′ = N + R ⊃ R.
We prove that δ(N ′

1, N
′) < 3/4. Let n1 +

∑k
i=1 αigi ∈ N ′

1, where n1 ∈ N1,

αi ∈ C (i = 1, . . . , k), and
∥∥∥n1 +

∑k
i=1 αigi

∥∥∥ = 1. Then

‖n1‖ ≤ 1 + (1 + ε)
k∑

i=1

|αi|.

There exists n ∈ N such that ‖n1 − n‖ ≤ ε‖n1‖ ≤ ε + ε(1 + ε)
∑k

i=1 |αi|. We have

c

k∑
i=1

|αi| ≤ dist
{ k∑

i=1

αifi, N
}
≤

∥∥∥ k∑
i=1

αifi + n
∥∥∥

≤
∥∥∥ k∑

i=1

αi(fi − gi)
∥∥∥ +

∥∥∥ k∑
i=1

αigi + n1

∥∥∥ + ‖n − n1‖

≤ ε
k∑

i=1

|αi| + 1 + ε + ε(1 + ε)
k∑

i=1

|αi| ≤ 1 + ε + 3ε
k∑

i=1

|αi|.
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Thus
k∑

i=1

|αi| ≤ 1 + ε

c − 3ε
≤ 1

4ε

and

dist
{
n1 +

k∑
i=1

αigi, N
′
}
≤ ‖n1 − n‖ +

∥∥∥ k∑
i=1

αi(fi − gi)
∥∥∥

≤ ε + ε(1 + ε)
k∑

i=1

|αi| + ε
k∑

i=1

|αi| <
11
16

.

Hence δ(N ′
1, N

′) < 3/4 and

δ(N ′
1, N

′) + δ(R, R1) + δ(N ′
1, N

′)δ(R, R1) < 1.

By Theorem 8, we have

dim N ′
1/(R1 ∩ N ′

1) ≤ dimN ′/R + dimR1/(R1 ∩ N ′
1). (1)

By Lemma 21.1,

dim N1/(R1 ∩ N1) = dim(N1 + R1)/R1

= dim(N ′
1 + R1)/R1 = dimN ′

1/(R1 ∩ N ′
1)

(2)

and
dimN/(R ∩ N) = dim(N + R)/R = dimN ′/R. (3)

Furthermore,
dimR/(R ∩ N) = k (4)

and

dimR1/(R1 ∩ N1) = dim(N1 + R1)/N1

= dim(N1 + R1)/(N1 + G) + dim(N1 + G)/N1

= dim(N ′
1 + R1)/N ′

1 + k = dimR1/(R1 ∩ N ′
1) + k.

(5)

Thus, by (1)–(5), we have

dim N1/(R1 ∩ N1) + dimR/(R ∩ N)
= dim N ′

1/(R1 ∩ N ′
1) + k

≤ dim N ′/R + dimR1/(R1 ∩ N ′
1) + k

= dim N/(R ∩ N) + dimR1/(R1 ∩ N1). �

The assumption R
e⊂N in the previous theorem can be omitted. To show this,

recall the construction of Section 17. Let m(X) ⊂ �∞(X) be the subspace of all
totally bounded sequences.
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We need the following lemma.

Lemma 10. Let M, L be closed subspaces of a Banach space X . Let M̂ = �∞(M)+
m(X) and L̂ = �∞(L) + m(X) be the corresponding subspaces of �∞(X). Then

δ(M̂, L̂) ≤ 2δ(M, L).

Proof. Let x̃ = (xi) ∈ M̂ , ‖x̃‖ = sup ‖xi‖ = 1. We can write xi = mi + gi, where
mi ∈ M and (gi) ∈ m(X). Let ε > 0. Then there is a finite set F = {f1, . . . , fn}
and indices ji ∈ {1, . . . , n} such that ‖gi − fji‖ < ε. Replacing fj by some f ′

j ∈
fj +M if necessary, we can assume that ‖fj‖ < (1+ε) dist{fj, M} (j = 1, . . . , n).
Thus we have

‖fji‖ < (1 + ε) dist{fji , M} ≤ (1 + ε)‖fji + mi‖
≤ (1 + ε)

(‖fji − gi‖ + ‖xi‖
) ≤ (1 + ε)2,

and so ‖mi‖ = ‖xi−gi‖ ≤ ‖xi‖+‖gi−fji‖+‖fji‖ ≤ 1+ε+(1+ε)2. Thus there are
li ∈ L with ‖mi − li‖ ≤ 2(1+ ε)2δ(M, L). Let ỹ = (li + gi) ∈ �∞(L)+m(X). Then
‖x̃ − ỹ‖ = sup ‖mi − li‖ ≤ 2(1 + ε)2δ(M, L) and so δ(M̂, L̂) ≤ 2(1 + ε)2δ(M, L).
Letting ε → 0 gives δ(M̂, L̂) ≤ 2δ(M, L). �
Theorem 11. Let R, N be closed subspaces of a Banach space X . Then there exists
ε > 0 such that

dimN1/(R1 ∩ N1) + dim R/(N ∩ R) ≤ dimN/(N ∩ R) + dimR1/(R1 ∩ N1)

for all closed subspaces R1, N1 ⊂ X with δ(R, R1) < ε and δ(N1, N) < ε.

Proof. If R
e⊂N , then the statement (i) was proved in Theorem 9.

Suppose that dimR/(N ∩ R) = ∞. Let N1, R1 ⊂ X be closed subspaces
satisfying δ(R, R1) < 1/6 and δ(N1, N) < 1/6.

It is sufficient to show that dim N/(N∩R)+dimR1/(N1∩R1) = ∞. Suppose
on the contrary that R1

e⊂N1 and N
e⊂R.

Set

N̂ = �∞(N) + m(X),

R̂ = �∞(R) + m(X),

N̂1 = �∞(N1) + m(X),

R̂1 = �∞(R1) + m(X).

By Lemma 17.2, R̂1 ⊂ N̂1 and N̂ ⊂ R̂. By Lemma 10, δ(R̂, R̂1) < 1/3 and
δ(N̂1, N̂) < 1/3. Thus

δ(R̂, N̂) ≤ δ(R̂, R̂1) + δ(R̂1, N̂) + δ(R̂, R̂1)δ(R̂1, N̂)

< 1/3 + 4/3 δ(R̂1, N̂) ≤ 1/3 + 4/3 δ(N̂1, N̂) ≤ 1/3 + 4/9 < 1.

Therefore N̂ = R̂. Since N
e⊂R, Lemma 17.2 implies that R

e=N , a contradiction.
�
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28 Taylor functional calculus for the split spectrum

The most important property of the Taylor spectrum is the existence of the func-
tional calculus for functions analytic on a neighbourhood of the Taylor spectrum.

As the construction of the Taylor functional calculus is rather technical, in
this section we introduce a simpler version for functions analytic on a neighbour-
hood of the split spectrum. Since the split spectrum contains the Taylor spectrum,
this split Taylor functional calculus is less rich. However, the construction of the
calculus is much simpler.

Note that for Hilbert space operators the split spectrum coincides with the
Taylor spectrum and so the corresponding functional calculi also coincide. The
split functional calculus is also sufficient for the construction of the functional
calculus in commutative Banach algebras, cf. Section 2.

Theorem 1. Let A = (A1, . . . , An) be an n-tuple of mutually commuting operators
in a Banach space X . Suppose that A is split regular, i.e., Ker δA = Ran δA and δA

has a generalized inverse. Then there exists a neighbourhood U of 0 in Cn and an
analytic function V : U → B(Λ[s, X ]) such that V (λ)δA−λ + δA−λV (λ) = IΛ[s,X]

for every λ ∈ U .

Moreover, we may assume that V (λ)2 = 0 (λ ∈ U) and

V (λ)Λp[s, X ] ⊂ Λp−1[s, X ] (λ ∈ U, p = 0, . . . , n).

Proof. By Proposition 26.2, there exists an operator V : Λ[s, X ] → Λ[s, X ] such
that V 2 = 0, δAV + V δA = IΛ[s,X], and V Λp[s, X ] ⊂ Λp−1[s, X ] for every p.

For λ ∈ Cn write Hλ = δA−λ − δA. Let U be the set of all λ ∈ Cn such
that ‖Hλ‖ < ‖V ‖−1. Clearly, U is a neighbourhood of 0 in Cn and, for λ ∈ U , the
operators I+HλV and I+V Hλ are invertible. We have V (I+HλV ) = (I+V Hλ)V ,
and so (I + V Hλ)−1V = V (I + HλV )−1. For λ ∈ U set V (λ) = (I + V Hλ)−1V .
Then

δA−λV (λ) + V (λ)δA−λ

= (δA + Hλ)V (I + HλV )−1 + (I + V Hλ)−1V (δA + Hλ)

= (I + V Hλ)−1
(
(I + V Hλ)(δA + Hλ)V

+ V (δA + Hλ)(I + HλV )
)
(I + HλV )−1.

The expression in the middle is equal to

δAV + HλV + V HλδAV + V H2
λV + V δA + V Hλ + V δAHλV + V H2

λV

= (I + V Hλ)(I + HλV ) + V (HλδA + δAHλ + H2
λ)V

= (I + V Hλ)(I + HλV ) + V
(
(δA + Hλ)2 − (δA)2

)
V = (I + V Hλ)(I + HλV )

since (δA)2 = 0 and (δA + Hλ)2 = (δA−λ)2 = 0. Thus

δA−λV (λ) + V (λ)δA−λ = IΛ[s,X] (λ ∈ U).
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Further,
V (λ)2 = (I + V Hλ)−1V · V (I + HλV )−1 = 0.

Finally, V (λ) =
∑∞

i=0(−1)i(V Hλ)iV where

(V Hλ)Λp[s, X ] ⊂ Λp[s, X ] (p = 0, . . . , n),

and so
V (λ)Λp[s, X ] ⊂ Λp−1[s, X ] (λ ∈ U, p = 0, . . . , n). �

Corollary 2. Let A = (A1, . . . , An) be an n-tuple of mutually commuting operators
on a Banach space X . Let G = Cn \ σS(A). Then there exists an operator-valued
C∞-function V : G → B(Λ[s, X ]) such that δA−λV (λ) + V (λ)δA−λ = IΛ[s,X] and

V (λ)Λp[s, X ] ⊂ Λp−1[s, X ] (λ ∈ G, p = 0, . . . , n).

Proof. For every µ ∈ G there exists a neighbourhood Uµ of µ and an ana-
lytic operator-valued function Vµ : Uµ → B(Λ[s, X ]) such that Vµ(λ)δA−λ +
δA−λVµ(λ) = IΛ[s,X] and

Vµ(λ)Λp[s, X ] ⊂ Λp−1[s, X ] (λ ∈ Uµ, p = 0, . . . , n).

Let {ψi}∞i=1 be a C∞-partition of unity subordinated to the cover {Uµ, µ ∈ G} of
G, i.e., ψi are C∞-functions, 0 ≤ ψi ≤ 1, suppψi ⊂ Uµi for some µi ∈ G, for each
µ ∈ G there exists a neighbourhood U of µ such that all but finitely many of the
functions ψi are 0 on U and

∑∞
i=1 ψi(µ) = 1 for each µ ∈ G.

For λ ∈ G set V (λ) =
∑∞

i=1 ψi(λ)Vµi (λ). Then

δA−λV (λ) + V (λ)δA−λ =
∞∑

i=1

(
δA−λVµi(λ) + Vµi(λ)δA−λ

)
ψi(λ) = IΛ[s,X]

and
V (λ)Λp[s, X ] ⊂ Λp−1[s, X ]

for all λ ∈ G and p = 0, 1, . . . , n. �

Remark 3. It is possible to require also that V (z)2 = 0 and V (z)δA−zV (z) = V (z)
for all z ∈ G. In particular, in this case V (z) is a generalized inverse of δA−z.

Indeed, let V : G → B(Λ[s, X ]) be the C∞-function constructed in Corol-
lary 2, i.e., δA−zV (z) + V (z)δA−z = I and V (z)Λp[s, x] ⊂ Λp−1[s, X ].

Clearly, δA−zV (z)δA−z = δA−z. Set V ′(z) = V (z)δA−zV (z). Then

δA−zV
′(z)δA−z = δA−zV (z)δA−zV (z)δA−z = δA−z

and

V ′(z)δA−zV
′(z) = V (z)δA−zV (z)δA−zV (z)δA−zV (z) = V (z)δA−zV (z)=V ′(z).
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Furthermore,

δA−zV
′(z) + V ′(z)δA−z = δA−zV (z)δA−zV (z) + V (z)δA−zV (z)δA−z

= δA−zV (z) + V (z)δA−z = I.

Finally, we have

V ′(z) =
(
V ′(z)δA−z + δA−zV

′(z)
)
V ′(z) = V ′(z) + δA−zV

′(z)2,

and so δA−zV
′(z)2 = 0. Thus V ′(z)2 =

(
V ′(z)δA−z + δA−zV

′(z)
)
V ′(z)2 = 0.

These additional properties of the generalized inverse V , however, are not
essential for our purpose and we are not going to use them in the sequel.

In the following we fix a commuting n-tuple A = (A1, . . . , An) of bounded
linear operators on a Banach space X , the set G = Cn \σS(A) and a C∞-function
V : G → B(Λ[s, X ]) with the properties of Corollary 2.

Consider the space C∞(G, Λ[s, X ]). Clearly, this space can be identified with
the set Λ[s, C∞(G, X)].

The function V : G → B(Λ[s, X ]) induces naturally the operator (denoted
by the same symbol) V : C∞(G, Λ[s, X ]) → C∞(G, Λ[s, X ]) by

(V y)(z) = V (z)y(z)
(
z ∈ G, y ∈ C∞(G, Λ[s, X ])

)
.

Similarly, we define the operator δA−z (or δ for short if no ambiguity can arise)
acting in C∞(G, Λ[s, X ]) by

(δy)(z) = δA−z y(z)
(
z ∈ G, y ∈ C∞(G, Λ[s, X ])

)
.

Clearly, δ2 = 0, V δ + δV = IΛ[s,C∞(G,X)] and both V and δ are “graded”, i.e.,

V Λp[s, C∞(G, X)] ⊂ Λp−1[s, C∞(G, X)] and

δΛp[s, C∞(G, X)] ⊂ Λp+1[s, C∞(G, X)].

Consider now another indeterminates dz̄ = (dz̄1, . . . ,dz̄n) and the space
Λ[s, dz̄, C∞(G, X)]. Let ∂̄ : Λ[s, dz̄, C∞(G, X)] → Λ[s, dz̄, C∞(G, X)] be the linear
mapping defined by

∂̄fsi1 ∧ · · · ∧ sip ∧ dz̄j1 ∧ · · · ∧ dz̄jq =
n∑

k=1

∂f

∂z̄k
dz̄k ∧ si1 ∧ · · · ∧ sip ∧ dz̄j1 ∧ · · · ∧dz̄jq ,

see Appendix A.3. Obviously, ∂̄2 = 0.
The operators V and δ can be lifted to Λ[s, dz̄, C∞(G, X)] in a natural way.

Clearly, the properties of V and δ are preserved: δ2 = 0, V δ + δV = I and both
V and δ are graded. Note also that δ∂̄ = −∂̄δ and (∂̄ + δ)2 = 0.
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Let W : Λ[s, dz̄, C∞(G, X)] → Λ[s, dz̄, C∞(G, X)] be the mapping defined in
the following way: if ψ ∈ Λ[s, dz̄, C∞(G, X)], ψ = ψ0 + · · · + ψn, where ψj is the
part of ψ of degree j in dz̄, then set Wψ = η0 + · · · + ηn, where

η0 = V ψ0,

η1 = V (ψ1 − ∂̄η0),
...

ηn = V (ψn − ∂̄ηn−1).

(1)

Note that ηj is the part of Wψ of degree j in dz̄.

Lemma 4. Let W : Λ[s, dz̄, C∞(G, X)] → Λ[s, dz̄, C∞(G, X)] be the mapping
defined by (1). Then:

(i) suppWψ ⊂ supp ψ for all ψ;

(ii) if G′ is an open subset of G and ψ ∈ Λ[s, dz̄, C∞(G, X)] satisfies (∂̄+δ)ψ = 0
on G′, then (∂̄ + δ)Wψ = ψ on G′;

(iii) (∂̄ + δ)W (∂̄ + δ) = ∂̄ + δ.

Proof. (i) Clear.

(ii) Let ψ = ψ0 + · · · + ψn, where ψj is the part of ψ of degree j in dz̄. The
condition (∂̄ + δ)ψ = 0 on G′ can be rewritten as

δψ0 = 0,

∂̄ψ0 + δψ1 = 0,
...

∂̄ψn−1 + δψn = 0

(2)

(the condition ∂̄ψn = 0 is satisfied automatically).
Let Wψ = η0 + · · ·+ ηn, where ηj are defined by (1). The required condition

(∂̄ + δ)Wψ = ψ becomes
δη0 = ψ0,

∂̄η0 + δη1 = ψ1,
...

∂̄ηn−1 + δηn = ψn

(3)

on G′ (again, ∂̄ηn = 0 automatically).
By (1) and (2), we have δη0 = δV ψ0 = (δV + V δ)ψ0 = ψ0 and ∂̄η0 + δη1 =

∂̄η0 + δV (ψ1 − ∂̄η0) = ∂̄η0 + (I − V δ)(ψ1 − ∂̄η0) = ψ1 − V δ(ψ1 − ∂̄η0) = ψ1, since
δ(ψ1 − ∂̄η0) = δψ1 + ∂̄δη0 = δψ1 + ∂̄ψ0 = 0.

We prove (3) by induction. Suppose that ∂̄ηj−1 + δηj = ψj for some j ≥ 1.
Then δ(ψj+1 − ∂̄ηj) = δψj+1 + ∂̄δηj = δψj+1 + ∂̄ψj = 0 and, by the induction as-
sumption, ∂̄ηj+δηj+1 = ∂̄ηj+δV (ψj+1−∂̄ηj) = ∂̄ηj+(I−V δ)(ψj+1−∂̄ηj) = ψj+1.

(iii) Since (∂̄ + δ)2 = 0, the statement follows from (ii). �
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Let P be the natural projection P : Λ[s, dz̄, C∞(G, X)] → Λ[dz̄, C∞(G, X)]
that annihilates all terms containing at least one of the indeterminates s1, . . . , sn

and leaves invariant all the remaining terms.

Let U be a neighbourhood of σS(A). Let f be a function analytic in U . It is
possible to find a compact neighbourhood ∆ of σS(A) such that ∆ ⊂ U and the
boundary ∂∆ is a smooth surface. Define f(A) : X → X by

f(A)x =
−1

(2πi)n

∫
∂∆

Pf(z)Wxs ∧ dz (x ∈ X), (4)

where dz stands for dz1 ∧ · · · ∧ dzn and s = s1 ∧ · · · ∧ sn. By the Stokes formula,

f(A)x =
−1

(2πi)n

∫
∆

∂̄ϕPf(z)Wxs ∧ dz,

where ϕ is a C∞-function equal to 0 on a neighbourhood of σS(A) and to 1 on
Cn \ ∆ (consequently, ϕ = 1 also on ∂∆).

On Cn \ ∆ we have

∂̄ϕPfWxs = Pf(∂̄ + δ)Wxs = Pfxs = 0.

Thus we can write

f(A)x =
−1

(2πi)n

∫
Cn

∂̄ϕPf(z)Wxs ∧ dz. (5)

It is clear from the Stokes theorem that the definition of f(A)x does not
depend on the choice of the function ϕ and, by (5), it is independent of ∆.

We show that f(A) does not depend on the choice of the generalized inverse V
which determines W .

Suppose that W1, W2 are two operators satisfying

(∂̄ + δ)Wixs = xs (i = 1, 2).

For those z where ϕ ≡ 1 we have

(∂̄ + δ)ϕf(z)(W1 − W2)xs = 0,

and so the form η = (∂̄ + δ)ϕf(z)(W1 − W2)xs has a compact support. We have∫
Cn

∂̄ϕPf(z)W1xs ∧ dz −
∫

Cn

∂̄ϕPf(z)W2xs ∧ dz

=
∫

Cn

P ∂̄ϕf(z)(W1 − W2)xs ∧ dz =
∫

Cn

P (∂̄ + δ)ϕf(z)(W1 − W2)xs ∧ dz

=
∫

Cn

Pη ∧ dz =
∫

Cn

P (∂̄ + δ)W1η ∧ dz =
∫

Cn

∂̄PW1η ∧ dz = 0

by the Stokes theorem.
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In fact, in the same way it is possible to show that

f(A)x =
−1

(2πi)n

∫
Cn

∂̄ϕfPψ ∧ dz (6)

for any form ψ satisfying (∂̄ + δ)ψ = fxs on Cn \ σS(A).
It is possible to express the mapping PW that appears in the definition of

the functional calculus more explicitly. By the definition of W , we have

PWxs = (−1)n−1V (∂̄V )n−1xs = (−1)n−1V0∂̄V1∂̄ · · · ∂̄Vn−1xs.

Note that we can write formulas (4) and (5) also globally:

f(A) =
−1

(2πi)n

∫
∂∆

Pf(z)WIs ∧ dz =
−1

(2πi)n

∫
Cn

∂̄ϕPf(z)WIs ∧ dz

=
(−1)n

(2πi)n

∫
Cn

∂̄ϕfV (∂̄V )n−1Is ∧ dz,

(7)

where I = IX is the identity operator on X . The coefficients of forms in (7) are
B(X)-valued C∞-functions. Therefore f(A) ∈ B(X).

Proposition 7. For n = 1, the functional calculus defined by (7) coincides with the
classical functional calculus given by the Cauchy formula.

Proof. Let A ∈ B(X) and let f be a function analytic on a neighbourhood of σ(A).
Then Wxs = V xs = (A−z)−1x. Thus, for a suitable contour Σ surrounding σ(A),
we have

f(A)=
−1
2πi

∫
Σ

PfWIs∧ dz =
−1
2πi

∫
Σ

f(z)(A− z)−1Idz =
1

2πi

∫
Σ

f(z)(z −A)−1dz,

which is the Cauchy formula. �

We postpone the proof of basic properties of this functional calculus to Sec-
tion 30 where we prove it more generally, for functions analytic on a neighbourhood
of the Taylor spectrum.

It is worth to note that this simpler split functional calculus is sufficient for
introducing the functional calculus for n-tuples of elements in commutative Banach
algebras. Indeed, let A be a commutative Banach algebra and a = (a1, . . . , an) ∈
An. Consider the n-tuple LA = (LA1 , . . . , LAn) ∈ B(A)n. Then σS(LA) = σA(a)
and for any function f analytic on a neighbourhood of σA(a) we may define
f(LA) ∈ B(A). Then the functional calculus for a may be defined by f(a) =
f(LA)(1A). We postpone the details to Section 30.
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29 Local spectrum for n-tuples of operators

Definition 1. Let A = (A1, . . . , An) be a commuting n-tuple of operators on a
Banach space X and let x ∈ X . The local spectrum of A at the point x is the
subset γx(A) ⊂ Cn defined by: λ = (λ1, . . . , λn) /∈ γx(A) if and only if there exist
a neighbourhood U of λ and analytic functions f1, . . . , fn : U → X such that∑n

i=1(Ai − zi)fi(z) = x (z ∈ U).
Clearly, γx(A) is a closed subset of Cn. For single operators this definition

coincides with the definition given in Section 14.

Theorem 2. Let A = (A1, . . . , An) be a commuting n-tuple of operators on a Ba-
nach space X , let x ∈ X . Then λ /∈ γx(A) if and only if there exist a neighbourhood
U of λ and ψ ∈ Λn−1

[
s, dz̄, C∞(U, X)

]
such that (∂̄ + δA−z)ψ = xs (z ∈ U),

where s = s1 ∧ · · · ∧ sn.

Proof. As in the previous section, write for short δ instead of δA−z.
Suppose that

∑n
i=1(Ai − zi)fi(z) = x (z ∈ U) for some analytic functions

fi : U → X . Set ψ =
∑n

i=1(−1)i−1fi(z)s1 ∧ · · · ∧ si−1 ∧ si+1 ∧ · · · ∧ sn. Then
(∂̄ + δ)ψ = δψ =

∑n
i=1(Ai − zi)fi(z)s1 ∧ · · · ∧ sn = xs.

Let now U be a polydisc centered at λ, and let ψ ∈ Λn−1
[
s, dz̄, C∞(U, X)

]
be a form satisfying (∂̄ + δ)ψ = xs. Write ψ = ψ0 + · · · + ψn−1, where ψj is of
degree j in dz̄. Then

δψ0 = xs,

∂̄ψ0 + δψ1 = 0,

...
∂̄ψn−2 + δψn−1 = 0,

∂̄ψn−1 = 0.

By A.3.5, the sequence

0 → H(U, X)
j−→C∞(U, X) ∂̄−→Λ1[s, dz̄, C∞(U, X)] ∂̄−→ · · ·

· · · ∂̄−→Λn[s, dz̄, C∞(U, X)] → 0

is exact, where j is the natural embedding. Thus there exists ϕn−2 of degree n−2
in dz̄ such that ∂̄ϕn−2 = ψn−1. Then 0 = ∂̄ψn−2 + δ∂̄ϕn−2 = ∂̄(ψn−2 − δϕn−2),
and so there exists ϕn−3 of degree n − 3 in dz̄ such that ∂̄ϕn−3 = ψn−2 − δϕn−2.

If we continue in this way we can construct forms ϕi (i = n−2, n−3, . . . , 0)
of degree i in dz̄ such that ∂̄ϕi = ψi+1−δϕi+1. Set ξ = ψ0−δϕ0. Then ∂̄ξ = ∂̄ψ0+
δ∂̄ϕ0 = ∂̄ψ0 + δψ1 = 0. Thus ξ ∈ Λn−1

[
s, C∞(U, X)

]
has analytic coefficients,

ξ =
∑n

i=1 fi(z)s1∧· · ·∧si−1∧si+1∧· · ·∧sn for some analytic functions fi : U → X .
Further, δξ = δψ0 = xs, and so

∑n
i=1(−1)i−1(Ai − zi)fi(z)x = xs (z ∈ U). �

Recall that σδ(A) denotes the surjective spectrum of A.
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Theorem 3. Let A = (A1, . . . , An) be a commuting n-tuple of operators on a
Banach space X and let x ∈ X . Then:

(i) γx(A) ⊂ σδ(A) for all x ∈ X ;

(ii) the set of all x ∈ X with γx(A) = σδ(A) is residual.

Proof. (i) Let x ∈ X and λ /∈ σδ(A). Then there is an open neighbourhood U
of λ disjoint with σδ(A). Thus the operator δn−1

A−z : Λn−1[s, X ] → Λn[s, X ] is onto
for z ∈ U . By Corollary 11.10, there is a neighbourhood V of λ and an analytic
function f : V → Λn−1[s, X ] such that δn−1

A−zf(z) = xs (z ∈ V ). This means
exactly that λ /∈ γx(A).

(ii) Let {w(j)} be a countable dense subset of σδ(A). For each j let Mj =
(A1 −w

(j)
1 )X + · · ·+ (An −w

(j)
n )X . Since w(j) ∈ σδ(A), we have Mj �= X , and so

it is a set of the first category by A.1.8. We have{
x ∈ X : γx(A) �= σδ(A)

}
=

⋃
j

{
x ∈ X : w(j) /∈ γx(A)

} ⊂
⋃
j

Mj ,

which is a set of the first category. �

Next we define an analogue of the analytic residuum and the local spectrum
σx for n-tuples of operators.

Definition 4. Let A = (A1, . . . , An) be a commuting n-tuple of operators on a
Banach space X . Denote by ρ(A) the union of all open sets U ⊂ Cn with the
following property: the sequence

0 → Λ0
[
s, dz̄, C∞(G, X)

] ∂̄+δ−→Λ1
[
s, dz̄, C∞(G, X)

] ∂̄+δ−→ · · ·
· · · ∂̄+δ−→Λn

[
s, dz̄, C∞(G, X)

] (1)

is exact for each open subset G ⊂ U .
Let S(A) = Cn \ ρ(A). For x ∈ X define σx(A) = γx(A) ∪ S(A).

For n = 1, this definition coincides with that in Section 14. Indeed, if A1 ∈
B(X), G ⊂ C is open and the sequence

0 → Λ0[s1, dz̄1, C
∞(G, X)] ∂̄+δ−→Λ1[s1, dz̄1, C

∞(G, X)]

is not exact, then there exists a non-zero C∞-function f : G → X such that
(∂̄ + δ)f = 0. This means that f is analytic and (A1 − z1)f(z) = 0 (z ∈ G).

We show that S(A) is contained in the Taylor spectrum σT (A), i.e., that
sequence (1) is exact for each open subset G ⊂ Cn \ σT (A).

The exactness of (1) for p = 0 is clear. If f ∈ C∞(G, X) and (∂̄ + δ)f = 0,
then f is analytic on G and δf = 0. Since δA−z is injective for z ∈ G ⊂ Cn\σT (A),
we have f = 0 on G.
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To prove the exactness of (1) for p ≥ 1 we need several lemmas.

Proposition 5. Let w ∈ Cn \ σT (A), 1 ≤ p ≤ 2n and let G ⊂ Cn \ σT (A) be an
open neighbourhood of w. Let η ∈ Λp[s, dz̄, C∞(G, X)] and (∂̄ + δ)η = 0. Then
there exists an open set G′, w ∈ G′ ⊂ G and ψ ∈ Λ[s, dz̄, C∞(G′, X)] such that
(∂̄ + δ)ψ = η on G′.

Proof. Let η ∈ Λp[s, dz̄, C∞(G, X)] and (∂̄ + δ)η = 0. Let η = η0 + · · ·+ ηp where
ηj is the part of η of degree j in dz̄. The condition (∂̄ + δ)η = 0 means

∂̄ηp = 0,

∂̄ηp−1 + δηp = 0,
...

∂̄η0 + δη1 = 0,

δη0 = 0.

Let D be an open polydisc, w ∈ D ⊂ G.
Since ∂̄ηp = 0, there exists ψp−1 ∈ Λp−1[s, dz̄, C∞(D, X)] such that ∂̄ψp−1 =

ηp by A.3.5. We have ∂̄(ηp−1 − δψp−1) = ∂̄ηp−1 + δ∂̄ψp−1 = ∂̄ηp−1 + δηp = 0, and
so there exists ψp−2 ∈ Λp−2[s, dz̄, C∞(D, X)] with ∂̄ψp−2 = ηp−1 − δψp−1. In the
same way we construct inductively ψj ∈ Λj [s, dz̄, C∞(D, X)] (j = p − 1, . . . , 0)
such that ∂̄ψj = ηj+1 − δψj+1 (j = p − 1, . . . , 0).

At the end we have δ∂̄ψ0 = δη1 = −∂̄η0, and so ∂̄(δψ0 − η0) = 0. Since the
degree of δψ0 − η0 in dz̄ is zero, the coefficients of δψ0 − η0 are analytic functions
and δ(δψ0−η0) = 0. By Theorem 11.9, there are an open set G′, w ∈ G′ ⊂ D ⊂ G
and ψ′

0 on G′ whose coefficients are analytic functions such that δψ′
0 = δψ0 − η0.

Set ψ = ψp−1 + · · · + ψ1 + ψ0 − ψ′
0. Then (∂̄ + δ)ψ = ∂̄ψp−1 + (∂̄ψp−2 +

δψp−1) + · · · + (∂̄ψ0 + δψ1) + δψ0 − δψ′
0 = ηp + · · · + η1 + η0 = η on G′. �

Lemma 6. Let U1, U2 be open subsets of Cn and let f ∈ C∞(U1 ∩ U2). Then
f = f1 − f2 on U1 ∩ U2 for some functions f1 ∈ C∞(U1) and f2 ∈ C∞(U2).

Proof. Let {ϕj} be a C∞-partition of unity subordinate to the cover {U1, U2}
of U1 ∪ U2. This means that 0 ≤ ϕj ≤ 1,

∑
j ϕj = 1, each z ∈ U1 ∪ U2 has a

neighbourhood intersecting only finitely many supports of ϕj , and either suppϕj ⊂
U1 or suppϕj ⊂ U2.

Define f1 ∈ C∞(U1) and f2 ∈ C∞(U2) by

f1(z) =

{∑
supp ϕj⊂U2

f(z)ϕj(z) (z ∈ U1 ∩ U2),
0 (z ∈ U1 \ U2)

and

f2(z) =

{
−∑

supp ϕj �⊂U2
f(z)ϕj(z) (z ∈ U1 ∩ U2),

0 (z ∈ U2 \ U1).
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Obviously, f1− f2 = f on U1∩U2 and f1 is smooth on U1 \ ∂U2. Let λ ∈ U1∩∂U2

Then there exists a neighbourhood V of λ intersecting only finitely many supports
of ϕi. Thus there exists a neighbourhood V ′ ⊂ V of λ such that V ′ ∩ supp ϕi = ∅
whenever suppϕi ⊂ U2. So f1 vanishes on V ′. Hence f1 ∈ C∞(U1).

Since suppϕj �⊂ U2 implies suppϕj ⊂ U1, the same considerations can be
done for f2. �
Lemma 7. Let 2 ≤ p ≤ 2n, let U1, U2 be open subsets of Cn and suppose that the
sequence

Λp−2
[
s, dz̄, C∞(U1 ∩ U2, X)

] ∂̄+δ−→Λp−1
[
s, dz̄, C∞(U1 ∩ U2, X)

]
∂̄+δ−→Λp

[
s, dz̄, C∞(U1 ∩ U2, X)

]
is exact. Let η ∈ Λp

[
s, dz̄, C∞(U1 ∪ U2, X)

]
and (∂̄ + δ)ψi = η on Ui for some

ψi ∈ Λp−1
[
s, dz̄, C∞(Ui, X)

]
(i = 1, 2).

Then there exists a form ψ in Λp−1
[
s, dz̄, C∞(U1 ∪ U2, X)

]
such that (∂̄ +

δ)ψ = η on U1 ∪ U2.

Proof. We have (∂̄+δ)(ψ1−ψ2) = 0 on U1∩U2, and so ψ1−ψ2 = (∂̄+δ)ξ for some
ξ ∈ Λp−2

[
s, dz̄, C∞(U1∩U2, X)

]
. By the previous lemma, we can write ξ = ξ1−ξ2

on U1 ∩ U2 for some ξi ∈ Λp−2
[
s, dz̄, C∞(Ui, X)

]
(i = 1, 2). Define

ψ(z) =

{
ψ1(z) − (∂̄ + δ)ξ1(z) (z ∈ U1),
ψ2(z) − (∂̄ + δ)ξ2(z) (z ∈ U2).

The definition is correct, since for z ∈ U1 ∩ U2 we have ψ1(z) − (∂̄ + δ)ξ1(z) =
ψ1(z)−(∂̄ +δ)(ξ+ξ2(z)) = ψ2(z)−(∂̄ +δ)ξ2(z). Clearly, ψ is the required solution
of (∂̄ + δ)ψ = η on U1 ∪ U2. �
Lemma 8. Let 2 ≤ p ≤ 2n and let G be an open subset of Cn. Suppose that the
sequence

Λp−2
[
s, dz̄, C∞(G′, X)

]∂̄+δ−→Λp−1
[
s, dz̄, C∞(G′, X)

]∂̄+δ−→Λp
[
s, dz̄, C∞(G′, X)

]
is exact for each open subset G′ ⊂ G. Let η ∈ Λp

[
s, dz̄, C∞(G, X)

]
and suppose

that, for every w ∈ G, there are a neighbourhood Uw ⊂ G of w and a form
ψw ∈ Λp−1

[
s, dz̄, C∞(Uw, X)

]
satisfying (∂̄ + δ)ψw = η on Uw. Then there exists

a global solution ψ ∈ Λp−1
[
s, dz̄, C∞(G, X)

]
satisfying (∂̄ + δ)ψ = η on G.

Proof. Since every compact subset K ⊂ G can be covered by a finite number
of neighbourhoods Uw, the repetitive use of Lemma 7 gives that there exist a
neighbourhood UK of K and a form ψK ∈ Λp−1

[
C∞(UK , X), s, dz̄

]
with (∂̄ +

δ)ψK = η on UK .
Let (Ki)∞i=1 be an increasing sequence of compact subsets of G such that⋃∞

i=1 Ki = G. We will construct inductively (p − 1)-forms ψi defined on a neigh-
bourhood of Ki such that (∂̄ + δ)ψi = η and ψi+1 = ψi on a neighbourhood
of Ki.
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Suppose that ψ1, . . . , ψk have already been constructed and let ψ′
k+1 be an

arbitrary solution of (∂̄ + δ)ψ′
k+1 = η on a neighbourhood of Kk+1. Then (∂̄ +

δ)(ψ′
k+1−ψk) = 0 on a neighbourhood of Kk, and so ψ′

k+1−ψk = (∂̄+δ)ξ for some
(p− 2)-form ξ defined on a neighbourhood V of Kk. Let ϕ ∈ C∞(G) satisfy ϕ = 1
on a neighbourhood of Kk and ϕ = 0 outside V . Set ψk+1 = ψ′

k+1−(∂̄+δ)ϕξ. Then
(∂̄ + δ)ψk+1 = η on a neighbourhood of Kk+1 and ψk+1 = ψk on a neighbourhood
of Kk. Define ψ(z) = limk→∞ ψk(z). Clearly, ψ is the required global solution. �

Using Lemmas 5 and 8 inductively we get the following theorem.

Theorem 9. Let G ⊂ Cn \ σT (A) be an open subset. Then the sequence

0 → Λ0[s, dz̄, C∞(G, X)] ∂̄+δ−→· · · ∂̄+δ−→Λ2n[s, dz̄, C∞(G, X)] → 0

is exact. In particular, S(A) ⊂ σT (A) and σx(A) ⊂ σT (A) for all x ∈ X .

Corollary 10. For each x ∈ X there is a solution ψ ∈ Λn−1[s, dz̄, C∞(Cn \
σx(A), X)] satisfying (∂̄ + δ)ψ = xs.

Proof. Use Lemma 8 for G = Cn \σx(A) and p = n. The assumptions of Lemma 8
are satisfied by the definition of σx(A) = S(A) ∪ γx(A). �
Corollary 11. Let G ⊂ Cn \σT (A), η ∈ Λ[s, dz̄, C∞(G, X)] and (∂̄ + δ)η = 0. Then
it is possible to find a form ψ ∈ Λ[s, dz̄, C∞(G, X)] such that (∂̄ + δ)ψ = η and
the support of ψ is contained in any given neighbourhood of supp η.

Proof. Let V be a neighbourhood of supp η. By Theorem 9, there exists ξ ∈
Λ[s, dz̄, C∞(G, X)] such that (∂̄ + δ)ξ = η on G. Then (∂̄ + δ)ξ = 0 on G \ supp η.
By Theorem 9, there exists ξ′ ∈ Λ[s, dz̄, C∞(G\supp η, X)] such that (∂̄+δ)ξ′ = ξ.

Let ϕ be a C∞-function such that ϕ = 0 on a neighbourhood of supp η and
ϕ = 1 on a neighbourhood of Cn \ V . Set ψ = ξ − (∂̄ + δ)ϕξ′. Then (∂̄ + δ)ψ = η
on G and suppψ ⊂ V . �
Remark 12. Without any change it is possible to prove the preceding theorem in
a more general form. Let z �→ A(z) be an analytic function defined on an open
subset G ⊂ Cn such that the values A(z) are Taylor regular n-tuples of operators
on X for all z ∈ G. Let ψ ∈ Λ[s, dz̄, C∞(G, X)] satisfy (∂̄ + δA(z))ψ = 0. Then
there exists a form θ ∈ Λ[s, dz̄, C∞(G, X)] such that ψ = (∂̄ +δA(z))θ. Moreover, θ
can be chosen in such a way that supp θ is contained in any given neighbourhood
of suppψ.

As for single operators, σx(A) �= ∅ for each x �= 0. We postpone the proof of
this fact till the next section.

Theorem 13. Let w = (w1, . . . , wn) /∈ S(A) and (A1−w1)X+· · ·+(An−wn)X = X .
Then A − w is Taylor regular.

Proof. We must prove the exactness of the Koszul complex

0 → Λ0[s, X ]
δ0

A−w−→Λ1[s, X ]
δ1

A−w−→ · · · δn−2
A−w−→Λn−1[s, X ]

δn−1
A−w−→Λn[s, X ] → 0. (2)
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The condition (A1 −w1)X + · · ·+(An −wn)X = X means that δn−1
A−w is onto and

the Koszul complex (2) is exact at Λn[s, X ].
We prove the exactness of the complex (2) by “downward” induction.
Suppose that 1 ≤ p ≤ n and Ker δp

A−w = Ran δp−1
A−w. Let ψ ∈ Ker δp−1

A−w. By
Lemma 11.3, there exists a neighbourhood U of w such that Ker δp

A−z = Ran δp−1
A−z

for all z ∈ U . By Example 10.24 (iv), the function z �→ δp−1
A−z is regular and

analytic in U . Thus there exist a neighbourhood U0 of w and an analytic function
f : U0 → Λp−1[s, X ] such that f(w) = ψ and δp−1

A−zf(z) = 0 (z ∈ U0). Then
(∂̄ + δA−z)f = 0 on U0. We can assume that U0 ∩ S(A) = ∅.

Since w /∈ S(A), there exists g ∈ C∞(U0, Λp−2[s, dz̄, X ]) such that (∂̄ +
δA−z)g = f . Let g0 ∈ C∞(U0, Λp−2[s, X ]) be the part of g of degree 0 in dz̄. Then
δA−zg0 = f . In particular, ψ = f(w) = δA−wg0(w) ∈ Ran δp−2

A−w.

Continuation of the induction argument gives that T − w is Taylor regular. �

Theorem 14. The set
{
x ∈ X : σx(A) �= σT (A)

}
is of the first category.

Proof. Let w ∈ σT (A). We prove first that
{
x ∈ X : w /∈ σx(A)

}
is of the

first category. Indeed, if w /∈ σx(A), then x =
∑n

j=1(Aj − zj)fj(z) for some
analytic X-valued functions defined on a neighbourhood of w. In particular, x ∈
(A1 − w1)X + · · · + (An − zn)X = Ran δn−1

A−w. The previous theorem implies that
(A1 − w1)X + · · · + (An − wn)X �= X , and so

{
x ∈ X : w /∈ σx(A)

} ⊂ Ran δn−1
A−w,

which is a set of the first category.
Let {w(j)} be a countable dense subset of σT (A). Then{

x ∈ X : σx(A) �= σT (A)
}

=
⋃
j

{
x ∈ X : w(j) /∈ σx(A)

}
,

which is of the first category. �

30 Taylor functional calculus

The most important property of the Taylor spectrum is the existence of the ana-
lytic functional calculus.

Let A = (A1, . . . , An) be an n-tuple of commuting operators on a Banach
space X . Let G = Cn \ σT (A).

Let x ∈ X . By Corollary 29.10, there exists ψ ∈ Λ[s, dz̄, C∞(G, X)] such
that (∂̄ + δ)ψ = xs. As it was noted in Section 28, this form can be used for the
definition of the Taylor functional calculus. However, it is possible to consider such
a form also globally, on the whole space X .

For i = 1, . . . , n let L′
Ai

: H(X) → H(X) be defined by L′
Ai

f = Aif (f ∈
H(X)). Let L′

A = (L′
A1

, . . . , L′
An

). Clearly L′
A is a commuting n-tuple of bounded

linear operators acting on the Banach space H(X).



272 Chapter IV. Taylor Spectrum

By Corollary 27.7, σT (L′
A) = σT (A). By Corollary 29.10, there is a form

WA ∈ Λn−1[s, dz̄, C∞(G,H(X))] such that (∂̄ + δL′
A−λ

)WA(λ) = Is, where I is
the identity operator on X . The form WA can be also considered to be a mapping
WA : X → Λn−1[s, dz̄, C∞(G, X)]. Then (∂̄ + δA−λ)WA(λ)x = xs for all x ∈ X .

The definition of the Taylor functional calculus is analogous to the definition
of the split functional calculus.

Recall that we interpret the differential form

(2i)−ndz̄1 ∧ · · · ∧ dz̄n ∧ dz1 ∧ · · · ∧ dzn (1)

as the Lebesgue measure in Cn = R2n.
Let P be the natural projection P : Λ[s, dz̄, C∞(G, X)] → Λ[dz̄, C∞(G, X)]

that annihilates all terms containing at least one of the indeterminates s1, . . . , sn

and leaves invariant all the remaining terms.
Let U be a neighbourhood of σT (A) and let f be a function analytic on U .

It is possible to find a compact neighbourhood ∆ of σT (A) such that ∆ ⊂ U and
the boundary ∂∆ is a smooth surface. Define f(A) : X → X by

f(A) =
−1

(2πi)n

∫
∂∆

PfWA ∧ dz. (2)

By the Stokes formula,

f(A) =
−1

(2πi)n

∫
∆

∂̄ϕPfWA ∧ dz,

where ϕ is a C∞-function equal to 0 on a neighbourhood of σT (A) and to 1 on
Cn \ ∆ (consequently, ϕ = 1 also on ∂∆).

On Cn \ ∆ we have

∂̄ϕPfWA = Pf(∂̄ + δ)WA = PfIs = 0.

Thus we can write
f(A) =

−1
(2πi)n

∫
Cn

∂̄ϕPfWA ∧ dz. (3)

It is clear from the Stokes theorem that the definition of f(A) does not
depend on the choice of the function ϕ and, by (3), it is independent of ∆.

We show that f(A) does not depend on the choice of the form WA.
The following simple lemma will be used frequently.

Proposition 1. Let η ∈ Λn[s, dz̄, C∞(G, X)] be a differential form with compact
support disjoint with σT (A) such that (∂̄ + δ)η = 0. Then∫

Cn

Pη ∧ dz = 0.



30. Taylor functional calculus 273

Proof. By Corollary 29.11, there exists ψ ∈ Λ[s, dz̄, C∞(G, X)] with a compact
support disjoint with σT (A) such that (δ + ∂̄)ψ = η. We have

Pη = P (∂̄ + δ)ψ = P ∂̄ψ.

By the Stokes theorem, we have∫
Cn

Pη ∧ dz =
∫

Cn

∂̄Pψ ∧ dz = 0. �

Let x ∈ X and let ψ1, ψ2 ∈ Λ[s, dz̄, C∞(G, X)] satisfy (δ+∂̄)ψ1 = (δ+∂̄)ψ2 =
xs. Let ϕ be a C∞-function equal to 0 on a neighbourhood of σT (A) and to 1 on
Cn \ U . Then∫

∂̄ϕPfψ1 ∧ dz −
∫

∂̄ϕPfψ2 ∧ dz =
∫

P (δ + ∂̄)ϕf(ψ1 − ψ2) ∧ dz.

On Cn \ ∆ we have ϕ ≡ 1, and so (δ + ∂̄)ϕf(ψ1 − ψ2) = f(δ + ∂̄)(ψ1 − ψ2) = 0.
Thus the form (δ + ∂̄)ϕf(ψ1 − ψ2) has a compact support disjoint with σT (A).
By Proposition 1,

∫
P (δ + ∂̄)ϕf(ψ1 −ψ2)∧ dz = 0. In particular, the definition of

f(A) does not depend on the choice of WA.
Note that for the definition of f(A)x we can use any form ψ satisfying (∂̄ +

δA−z)ψ = xs. This implies that for functions analytic on a neighbourhood of
σS(A) the Taylor functional calculus coincides with the split functional calculus
introduced in Section 28. By Proposition 28.7, for n = 1 the Taylor functional
calculus coincides with the standard definition used in Section 1.

Lemma 2. f(A) ∈ B(X).

Proof. Clearly f(A) ∈ H(X), so it is sufficient to show the additivity of f(A).
Let x, y ∈ X . Then (δ + ∂̄)(WAx + WAy) = (x + y)s, and so f(A)(x + y) =∫

Cn ∂̄ϕPf(WAx + WAy) ∧ dz = f(A)x + f(A)y. �
Proposition 3. Let f be a function analytic on a neighbourhood of σT (A), 1 ≤ j ≤
n and g(z) = zjf(z). Then g(A) = Ajf(A).

Proof. The statement is well known for n = 1. Suppose that n ≥ 2. Then

−(2πi)n
(
Ajf(A) − g(A)

)
= Aj

∫
Cn

∂̄ϕPfWA ∧ dz −
∫

Cn

∂̄ϕPfzjWA ∧ dz

=
∫

Cn

∂̄ϕf · (Aj − zj)PWA ∧ dz.

For F ⊂ {1, . . . , n}, F = {i1, . . . , ip} with i1 < i2 < · · · < ip write sF = si1 ∧ · · · ∧
sip . Express WA ∈ Λn−1

[
s, dz̄, C∞(G,H(X))

]
as

WA =
∑

F⊂{1,...,n}
sF ∧ ξF ,
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where ξF contains no variable from s1, . . . , sn. Since (∂̄ + δA−z)WA = Is, for each
F �= {1, . . . , n} we have

∂̄ξF +
∑
k∈F

(−1)card{k′∈F :k′<k}(Ak − zk)ξF\{k} = 0.

In particular, for F = {j} we have

∂̄ξ{j} = −(Aj − zj)ξ∅ = −(Aj − zj)PWA.

Thus ∫
Cn

∂̄ϕf · (Aj − zj)PWA ∧ dz = −
∫

Cn

∂̄ϕf ∂̄ξ{j} ∧ dz

= −
∫

Cn

∂̄
(
ϕ∂̄fξ{j} − ∂̄ϕfξ{j}

) ∧ dz = 0

by the Stokes theorem. Hence g(A) = Ajf(A). �

Proposition 3 implies that the definition of the Taylor functional calculus for
polynomials coincides with the usual definition. This also implies that the local
spectrum σx(A) of any non-zero vector x is non-empty.

Theorem 4. σx(A) �= ∅ for every x �= 0.

Proof. Let x ∈ X and suppose that σx(A) = ∅. By Corollary 29.10, there exists
ψ ∈ Λ[s, dz̄, C∞(Cn, X)] such that (∂̄ + δA−z)ψ = xs. We have

−(2πi)nx = −(2πi)nIx =
∫

Cn

∂̄Pψ∧dz =
∫

Cn

P (∂̄ +δ)ψ∧dz =
∫

Cn

Pxs∧dz = 0,

and so x = 0. �

Proposition 5. Let A = (A1, . . . , An) ∈ B(X)n, B = (B1, . . . , Bm) ∈ B(X)m.
Suppose that (A, B) = (A1, . . . , An, B1, . . . , Bm) is a commuting (n + m)-tuple
and let f and g be functions analytic on a neighbourhood of σT (A) and σT (B),
respectively. Let h be defined by h(z, w) = f(z) · g(w). Then h(A, B) = g(B)f(A).

Proof. Write z = (z1, . . . , zn) and w = (w1, . . . , wm). Denote by ∂̄z, ∂̄w and ∂̄z,w

the ∂̄ mapping corresponding to z, w and (z, w), respectively. We associate with
B another system t = (t1, . . . , tm) of exterior indeterminates when defining the
operator δB−w.

Choose forms WA, WB and WA,B corresponding to the tuples A, B and
(A, B). Let ∆′ and ∆′′ be compact neighbourhoods of σT (A) and σT (B) con-
tained in the domains of definition of f and g, respectively. Let ϕ, ψ and χ be
C∞-functions equal to 0 on a neighbourhood of σT (A)

(
σT (B) and σT (A, B)

)
, and

to 1 on a neighbourhood of Cn \∆′ (Cm \∆′′ and Cn+m \∆′ ×∆′′, respectively
)
.
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Denote by Ps and Pt the projections which annihilate all terms containing at
least one of the variables s1, . . . , sn (t1, . . . , tm, respectively) and leave invariant
the remaining terms. Set P = PsPt.

Let x ∈ X . We have

f(A)x =
−1

(2πi)n

∫
Cn

∂̄zϕPsfWAx ∧ dz =
−1

(2πi)n

∫
Cn

Psξ ∧ dz,

where ξ = (∂̄z +δA−z)ϕfWAx−fxs. If ϕ ≡ 1, then ξ ≡ 0. Thus supp ξ is compact,
supp ξ ⊂ Int∆′. Further,

g(B)f(A)x =
1

(2πi)n+m

∫
Cm

Pt(∂̄w + δB−w)ψgWB

(∫
Cn

Psξ ∧ dz
)
∧ dw. (4)

On the other hand, −(2πi)m+nh(A, B)x =
∫

Pη1 ∧ dz ∧ dw, where

η1 = (∂̄z,w + δA−z,B−w)χhWA,Bx − hxs ∧ t.

Clearly, supp η1 ⊂ ∆′ × ∆′′.
We have (∂̄z,w + δA−z,B−w)ξ ∧ t = (∂̄z + δA−z)ξ ∧ t = 0. By Corollary

29.11, there exists α ∈ Λ[s, t, dz̄, dw̄, C∞(Cn+m \ σT (A, B), X)] such that (∂̄z,w +
δA−z,B−w)α = ξ ∧ t. Moreover, we can assume that supp α ⊂ ∆′ × Cm. Let

η2 = (∂̄z,w + δA−z,B−w)ψgα − gξ ∧ t.

We have (∂̄z,w − δA−z,B−w)(η1−η2) = 0. Clearly, supp η2 ⊂ ∆′×Cm. Moreover, if
ψ ≡ 1, then η2 ≡ 0, and so supp η2 is compact. On a neighbourhood of σT (A, B)
we have η2 = −gξ ∧ t = fgxs∧ t = −η1. By Proposition 1, we have

∫
P (η1 + η2)∧

dz ∧ dw = 0, and so

(2πi)m+nh(A, B)x =
∫

Cn+m

Pη2 ∧ dz ∧ dw

= (−1)mn

∫
Cm

(∫
Cn

Pt(∂̄z,w + δB−w)ψgPsα ∧ dz
)
∧ dw

by the Fubini theorem (the factor (−1)mn is caused by convention (1) defining the
Lebesgue measures in Cn, Cm and Cm+n, respectively). By the Stokes theorem,
we have

(2πi)m+nh(A, B)x = (−1)mn

∫
Cm

Pt(∂̄w + δB−w)g
(∫

Cn

ψPsα ∧ dz
)
∧ dw.

Consider the form

η3 = (−1)mn(∂̄w + δB−w)g
∫

Cn

ψPsα ∧ dz − (∂̄w + δB−w)ψgWB

∫
Cn

Psξ ∧ dz ∧ t.
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Clearly, (∂̄w + δB−w)η3 = 0. If ψ ≡ 1, then, by the Stokes theorem,

η3 = (−1)mng

∫
Cn

Ps(∂̄z,w + δA−z,B−w)α ∧ dz − (−1)mng

∫
Cn

∂̄zPsα ∧ dz

− g

∫
Cn

Psξ ∧ dz ∧ t = (−1)mng

∫
Cn

Psξ ∧ t ∧ dz − g

∫
Cn

Psξ ∧ dz ∧ t = 0.

Thus supp η3 is compact and disjoint with σT (B). Hence
∫

Ptη3 ∧ dw = 0 and

(2πi)n+mh(A, B)x =
∫

Cm

Pt(∂̄w + δB−w)ψgWB

∫
Cn

Psξ ∧ dz ∧ dw

= (2πi)m+ng(B)f(A)x

by (4). Hence h(A, B) = g(B)f(A). �
We will use the following simple lemma:

Lemma 6. Let K be a compact subset of Cn and let f be a function analytic on an
open neighbourhood of K. Then there are functions hj (j = 1, . . . , n) analytic
on a neighbourhood of the set D = {(z, z) : z ∈ K} such that

f(z) − f(w) =
n∑

j=1

(zj − wj) · hj(z, w).

Proof. For j = 1, . . . , n define gj by

gj(z1, . . . , zn, w1, . . . , wn)
= f(z1, . . . , zj, wj+1, . . . , wn) − f(z1, . . . , zj−1, wj , . . . , wn).

It is easy to see that gj is analytic on a neighbourhood of D.

Let hj(z, w) = gj(z,w)
zj−wj

. Clearly, hj is analytic at each point (z, w) with zj �=
wj . By the Weierstrass division theorem (see [GR], p. 70), hj can be defined and
is analytic also on a neighbourhood of each point (z, w) with zj = wj . Thus hj is
analytic on a neighbourhood of D. Hence

n∑
j=1

(zj − wj) · hj(z, w) =
n∑

j=1

gj(z, w) = f(z) − f(w). �

Recall that HK denotes the algebra of all functions analytic on a neighbour-
hood of a compact set K ⊂ Cn (more precisely, the algebra of all germs of functions
analytic on a neighbourhood of K).

Theorem 7. Let A = (A1, . . . , An) be an n-tuple of mutually commuting operators
on X . Then:

(i) the mapping f �→ f(A) is linear and multiplicative, i.e., the Taylor functional
calculus is a homomorphism from HσT (A) to B(X);
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(ii) if p is a polynomial, p(z) =
∑

α∈Zn
+

cαzα, then p(A) =
∑

α∈Zn
+

cαAα;

(iii) if fn → f uniformly on a compact neighbourhood of σT (A), then fn(A) →
f(A) in the norm topology;

(iv) f(A) ∈ (A)′′ for each f ∈ HσT (A).

Proof. (i) The linearity of the mapping f �→ f(A) is clear. Let f and g be functions
analytic on a neighbourhood of σT (A). Consider the (2n)-tuple (A, A). It is easy
to see that σT (A, A) = {(z, z) : z ∈ σT (A)}. Define functions h1(z, w) = f(z)g(w)
and h2(z, w) = f(z)g(z). By Lemma 6, we can write g(z) − g(w) =

∑n
i=1(zi −

wi)qi(z, w) for some functions q1, . . . , qn analytic on a neighbourhood of σT (A, A).
By Proposition 5, we have h1(A, A) = f(A)g(A) and h2(A, A) = (fg)(A). Thus,
by Proposition 3,

(fg)(A) − f(A)g(A) = h2(A, A) − h1(A, A) =
n∑

i=1

(Ai − Ai)(fqi)(A, A) = 0.

Hence (fg)(A) = f(A)g(A).

(ii) The statement follows from Proposition 5.

(iii) Follows from the definition.

(iv) Let S ∈ B(X) be an operator commuting with A1, . . . , An. By Propo-
sition 5, it is possible to consider f(A) to be a function of the (n + 1)-tuple
(A1, . . . , An, S). Therefore f(A) commutes with its argument S. Hence f(A) ∈
(A)′′. �

It follows from the general theory that the Taylor spectrum satisfies the
spectral mapping property for all polynomials (and consequently, for all functions
that can be approximated by polynomials uniformly on a neighbourhood of the
Taylor spectrum). In fact, the spectral mapping property is true for all analytic
functions.

By Proposition 25.11, each Aj behaves as the zero operator on the quotient
Ker δA/ Ran δA. It is natural to expect that f(A) behaves as f(0) on this quotient
space. However, there is a technical difficulty because in general Ran δA is not
closed, and so the quotient Ker δA/ Ran δA is not a Banach space. Therefore the
proof is a little bit more complicated.

Lemma 8. Let A = (A1, . . . , An) be a commuting n-tuple of operators on X , let
c = (c1, . . . , cn) ∈ σT (A) and let f be a function analytic on a neighbourhood of
σT (A). Consider exterior indeterminates t = (t1, . . . , tn) and the operator δA−c,t :
Λ[t, X ] → Λ[t, X ] defined by δA−c,tψ =

∑n
j=1(Aj − cj)tj ∧ ψ for all ψ ∈ Λ[t, X ].

Let η ∈ Ker δA−c,t. Then (f(A) − f(c))η ∈ δA−c,tΛ[t, X ].

Proof. To define f(A), consider exterior indeterminates s = (s1, . . . , sn), the
mapping δA−z acting on Λ[s, dz̄, C∞(Cn \ σT (A), X)] defined by the formula
δA−zψ =

∑n
j=1(Aj − zj)sj ∧ ψ, and the mapping WA corresponding to A. Note
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that δA−z and WA are connected with variables s; the mapping δA−c,t is related
to variables t.

Without loss of generality we can assume that η is homogeneous of degree p,
0 ≤ p ≤ n.

Since η ∈ Λp[t, X ] and Λp[t, X ] is a direct sum of
(
n
p

)
copies of X , it is possible

to define the form ξ0 := WAη ∈ Λ[s, t, dz̄, C∞(G, X)]. We have (∂̄ + δA−z)ξ0 =
s ∧ η and (∂̄ + δA−z)δA−c,tξ0 = −δA−c,t(∂̄ + δA−z)ξ0 = 0. Thus there exists
ξ1 ∈ Λ[s, t, dz̄, C∞(G, X)] such that (∂̄ + δA−z)ξ1 = δA−c,tξ0.

In the same way we can construct forms ξ1, . . . , ξn−p ∈ Λ[s, t, dz̄, C∞(G, X)]
such that (∂̄ + δA−z)ξk+1 = δA−c,tξk. Clearly the degree of ξk in t is p + k.

Set ξ =
∑n−p

k=0 (−1)kξk Then

(∂̄ + δA−z + δA−c,t)ξ =
n−p∑
k=0

(−1)k(∂̄ + δA−z)ξk +
n−p∑
k=0

(−1)kδA−c,tξk = s ∧ η,

since δA−c,tξn−p = 0.
Let ∆ be a compact neighbourhood of σT (A) contained in the domain of

definition of f . Let ϕ be a C∞-function equal to 0 on a neighbourhood of σT (A)
and to 1 on a neighbourhood of Cn \ ∆. Let Ps be the projection annihilating all
terms that contain at least one of the variables s1, . . . , sn and leaving invariant all
other terms.

Consider the integral

∫
(∂̄ + δA−c,t)Psϕξ ∧ dz =

∫
(∂̄ + δA−c,t)Psϕ

n−p∑
k=0

(−1)kξk ∧ dz.

Since ξk has degree p + k in t and n − k − 1 in (s, dz̄), the only relevant term in
the integral above is ξ0. Thus∫

(∂̄ + δA−c,t)Psϕξ ∧ dz =
∫

(∂̄ + δA−c,t)Psϕξ0 ∧ dz

=
∫

∂̄PsϕWAη ∧ dz

= −(2πi)nf(A)η.

Consider now the n-tuple B = (c1I, . . . , cnI) ∈ B(X)n. Since f can be
approximated by polynomials uniformly on a neighbourhood of c, we note that
f(B) = f(c) · I.

As above, consider the mappings δB−z and WB connected with variables s.
Let ξ′0 = WBη and inductively define ξ′k ∈ Λ[s, t, dz̄, C∞(G, X)] satisfying (∂̄ +
δB−z)ξ′k+1 = δA−c,tξ

′
k.
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Let ξ′ =
∑n−p

k=0 (−1)kξ′k. As above, we have (∂̄ + δB−z + δA−c,t)ξ′ = s∧ η and∫
(∂̄ + δA−c,t)Psϕξ′ ∧ dz =

∫
(∂̄ + δA−c,t)PsϕWBη ∧ dz

=
∫

∂̄PsϕWBη ∧ dz = −(2πi)nf(B)η = −(2πi)nf(c)η.

To show that (f(A)−f(c))η0 ∈ δA−c,tΛ[t, X ], consider the linear mapping U acting
on Λ[s, t, dz̄, C∞(Cn \ σT (A), X)] defined by

U
(
ti1 ∧ · · · ∧ tim ∧ ψ

)
= (ti1 − si1) ∧ · · · ∧ (tim − sim) ∧ ψ

for all i1, . . . , im and ψ ∈ Λ[s, dz̄, C∞(Cn \ σT (A), X)]. We have PsU = Ps and,
for each ψ ∈ Λ[s, t, dz̄, C∞(Cn \ σT (A), X)],

U(∂̄ + δA−z + δA−c,t)ψ

= ∂̄Uψ +
∑

(Aj − zj)sj ∧ Uψ +
∑

(Aj − cj)(tj − sj) ∧ Uψ

= (∂̄ + δB−z + δA−c,t)Uψ.

We have

− (2πi)nf(A)η =
∫

(∂̄ + δA−c,t)Psϕξ ∧ dz =
∫

Ps(∂̄ + δA−z + δA−c,t)ϕξ ∧ dz

=
∫

PsU(∂̄ + δA−z + δA−c,t)ϕξ ∧ dz =
∫

Ps(∂̄ + δB−z + δA−c,t)ϕUξ ∧ dz.

Thus

−(2πi)n
(
f(A) − f(c)

)
η =

∫
Ps(∂̄ + δB−z + δA−c,t)ϕ(Uξ − ξ′) ∧ dz =

∫
Psθ ∧ dz,

where θ = (∂̄ + δB−z + δA−c,t)ϕ(Uξ − ξ′). If ϕ ≡ 1, then

θ = (∂̄+δB−z +δA−c,t)Uξ−s∧η = U(∂̄+δA−z +δA−c,t)ξ−η = U(s∧η)−s∧η = 0;

so supp θ ⊂ Int∆. Furthermore, θ can be written as θ = (∂̄ + δB−z + δA−c,t)ψ for
some form ψ ∈ Λ[s, t, dz̄, C∞(Cn, X)] with compact support. Indeed, by Remark
29.12, there exists a form ϑ ∈ Λ[s, t, dz̄, dw̄, C∞(C2n, X)] with suppϑ ⊂ ∆ × Cn

such that (∂̄z,w + δB−z + δA−c,t)ϑ = θ.
Set ψ(z) = ϑ0(z, c), where ϑ0 is the part of ϑ containing none of the variables

dw̄j . Then suppψ ⊂ ∆ and (∂̄z + δB−z + δA−c,t)ψ = θ. By the Stokes theorem,∫
Psθ ∧ dz =

∫
Ps(∂̄z + δB−z + δA−c,t)ψ ∧ dz

=
∫

∂̄zPsψ ∧ dz +
∫

PsδA−c,tψ ∧ dz

= δA−c,t

∫
Psψ ∧ dz ∈ δA−c,tΛ[t, X ]. �



280 Chapter IV. Taylor Spectrum

Proposition 9. Let A = (A1, . . . , An) be a commuting n-tuple of operators on X ,
c = (c1, . . . , cn) ∈ σT (A) and let f be a function analytic on a neighbourhood of
σT (A). Then the (n + 1)-tuple

(
A1 − c1, . . . , An − cn, f(A)

)
is Taylor regular if

and only if f(c) �= 0.

Proof. To the (n + 1)-tuple (A − c,f(A)) we relate exterior variables s1, . . . , sn+1.
Write for short s = (s1, . . . , sn). Let δA−c : Λ[s, X ] → Λ[s, X ] be defined by
δA−cψ =

∑
(Aj−cj)sj∧ψ (ψ ∈ Λ[s, X ]). We have Λ[s, sn+1, X ] = Λ[s, X ]⊕sn+1∧

Λ[s, X ]. The operator δA−c,f(A) corresponding to the (n + 1)-tuple (A − c, f(A))
can be written in this decomposition in the matrix form

δA−c,f(A) =
(

δA−c 0
f(A) −δA−c

)
.

We distinguish two cases:

(a) f(c) = 0.
Since c ∈ σT (A), there is a ψ ∈ Λ[s, X ] such that δA−cψ = 0 and ψ /∈

δA−cΛ[s, X ]. By the preceding lemma, there is an η ∈ Λ[s, X ] such that f(A)ψ =
δA−cη. Then δA−c,f(A)(ψ+sn+1∧η) = 0 and (ψ+sn+1∧η) /∈ δA−c,f(A)Λ[s, sn+1, X ]
since ψ /∈ δA−cΛ[s, X ].

Thus the (n + 1)-tuple (A − c, f(A)) is Taylor singular.

(b) f(c) �= 0. Without loss of generality we can assume that f(c) = 1.
Let ψ, ξ ∈ Λ[s, X ], δA−c,f(A)(ψ+sn+1∧ξ) = 0. Then δA−cψ = 0 and f(A)ψ−

δA−cξ = 0. By the preceding lemma, f(A)ψ − ψ ∈ δA−cΛ[s, X ]. Since f(A)ψ ∈
δA−cΛ[s, X ], we have ψ = δA−cη for some η ∈ Λ[s, X ].

Further, δA−c(f(A)η − ξ) = f(A)ψ − δA−cξ = 0. Thus there is a θ ∈ Λ[s, X ]
with f(A)(f(A)η − ξ) − (f(A)η − ξ) = δA−cθ. Set η′ = η − (f(A)η − ξ). Then
δA−cη

′ = δA−cη = ψ and f(A)η′ − δA−cθ = f(A)η − f(A)(f(A)η − ξ) + δA−cθ =
f(A)η − (f(A)η − ξ) = ξ. Hence δA−c,f(A)(η′ − sn+1 ∧ θ) = (ψ + sn+1 ∧ ξ) and the
(n + 1)-tuple (A − c, f(A)) is Taylor regular. �

Lemma 10. Let A = (A1, . . . , An) be a commuting n-tuple of operators on X , let f
be a function analytic on a neighbourhood of σT (A). Denote by A the commutative
Banach algebra generated by A1, . . . , An and f(A). Let ϕ be a multiplicative
functional on A such that ϕ(B) ∈ σT (B) for all tuples B = (B1, . . . , Bm) of
operators in A. Then ϕ(f(A)) = f(ϕ(A)).

Proof. Consider the (n + 1)-tuple
(
A1 −ϕ(A1), . . . , An −ϕ(An), f(A)−ϕ(f(A))

)
.

By assumption, this (n + 1)-tuple is Taylor singular. By Proposition 9, we have
f(ϕ(A)) − ϕ(f(A)) = 0. �

Corollary 11. (spectral mapping property) Let σ̃ be a compact-valued spectral
system on B(X) which is contained in the Taylor spectrum. Let A = (A1, . . . , An)
be a commuting n-tuple of operators on X and let f = (f1, . . . , fm) be an m-tuple
of functions analytic on a neighbourhood of σT (A). Then σ̃(f(A)) = f(σ̃(A)).
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In particular, σT (f(A)) = f(σT (A)). Similarly, σπk(f(A)) = f(σπk(A)) and
σδk(f(A)) = f(σδk(A)) for all k = 0, . . . , n.

Proof. Consider the commutative Banach algebra A generated by A1, . . . , An and
f1(A), . . . , fm(A). Since the restriction of σ̃ to A is again a compact-valued spectral
system, there is a compact subset K ⊂ M(A) such that σ̃(B) = {ϕ(B) : ϕ ∈ K}
for each tuple B = (B1, . . . , Bk) ⊂ A.

Then

σ̃(f(A)) = {(ϕ(f1(A), . . . , ϕ(fm(A))) : ϕ ∈ K}
= {(f1(ϕ(A)), . . . , fm(ϕ(A))) : ϕ ∈ K}
= {f(c) : c ∈ σ̃(A)} = f(σ̃(A)). �

Theorem 12. (superposition principle) Let A = (A1, . . . , An) be a commuting n-
tuple of operators on X , let f = (f1, . . . , fm) be an m-tuple of function analytic
on a neighbourhood of σT (A), let B = f(A), let g be a function analytic on a
neighbourhood of σT (B) and let h(z) = g(f1(z), . . . , fm(z)). Then h(A) = g(B).

Proof. By Lemma 5, g(v) − g(w) =
∑m

j=1(vj − wj)rj(v, w) for some functions
r1, . . . , rm analytic on a neighbourhood of the set

{
(v, v) : v ∈ σT (B)

}
. Thus

g(f(z))− g(w) =
∑m

j=1(fj(z)−wj)r′j(z, w), where r′j(z, w) = rj(f(z), w)) and the
functions r′j are analytic on a neighbourhood of the set σT (A, f(A)) =

{
(z, f(z)) :

z ∈ σT (A)
}
. Thus h(A) − g(B) =

∑m
j=1(fj(A) − Bj)r′j(A, B) = 0. Hence h(A) =

g(B). �
As a corollary of the Taylor functional calculus we obtain the properties of

the functional calculus in commutative Banach algebras which were formulated
without proof in Section 2. For convenience, we state them here once more in an
extended form.

Theorem 13. Let A be a commutative Banach algebra. To each finite family a =
(a1, . . . , an) of elements of A and each function f ∈ Hσ(a) it is possible to assign
an element f(a) ∈ A such that the following conditions are satisfied:

(i) if f(z1, . . . , zn) =
∑

α∈Zn
+

cαzα1
1 · · · zαn

n is a polynomial in n indeterminates,

then f(a1, . . . , an) =
∑

α∈Zn
+

cαaα1
1 · · · aαn

n ;

(ii) the mapping f �→ f(a1, . . . , an) is an algebra homomorphism from the algebra
Hσ(a1,...,an) to A;

(iii) if U is a neighbourhood of σ(x1, . . . , xn), f , fk (k ∈ N) are analytic in U and
fk converge to f uniformly on U , then

fk(a1, . . . , an) → f(a1, . . . , an);

(iv) if ϕ ∈ M(A) and f ∈ Hσ(a1,...,an), then

ϕ
(
f(a1, . . . , an)

)
= f

(
ϕ(a1), . . . , ϕ(an)

)
;
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(v) σ̃
(
f(a1, . . . , an)

)
= f

(
σ̃(a1, . . . , an)

)
for each compact-valued spectral system

in A;

(vi) if a1, . . . , am ∈ A, n < m, f ∈ Hσ(a1,...,an) and f̃ ∈ Hσ(a1,...,am) sat-

isfy f̃(z1, . . . , zm) = f(z1, . . . , zn) for all z1, . . . , zm in a neighbourhood of
σ(a1, . . . , am), then

f̃(a1, . . . , am) = f(a1, . . . , an);

(vii) if f1, . . . , fm ∈ Hσ(a), bi = fi(a), g ∈ Hσ(b1,...,bm) and h ∈ Hσ(a) is defined by
h(z) = g(f1(z), . . . , fm(z), then h(a) = g(b);

(viii) properties (i), (ii), (iii) and (vi) determine the functional calculus (a, f) �→
f(a) uniquely.

Proof. For an n-tuple a = (a1, . . . , an) ∈ An consider the left multiplication
operators Lai ∈ B(A) defined by Laix = aix (x ∈ A, i = 1, . . . , n). Then
La = (La1 , . . . , Lan) is a commuting n-tuple of operators. Further, σ(a) = σT (La)
by Proposition 26.9.

For a function f analytic on a neighbourhood of σ(a) set f(a) = f(La)1A.
Since f(La) ∈ (La)′′, for each b ∈ A we have f(La)(b) = f(La)Lb(1A) =

Lbf(La)(1A) = b · f(a) = Lf(a)(b). Thus f(La) = Lf(a).
Properties (i), (ii), (iii), (vi) and (vii) follow from the corresponding proper-

ties of the Taylor functional calculus; the multiplicativity follows from the obser-
vation that

(fg)(a) = (fg)(La)(1A) = f(La)g(La)(1A) = Lf(a)g(a) = f(a)g(a).

Property (iv) follows from Lemma 10; this implies also (v).
It remains to show the uniqueness of the functional calculus (viii). Let f be

a function analytic in an open neighbourhood U of σ(a1, . . . , an).

(a) We first show that there are elements

an+1, . . . , am ∈ A such that σ〈a1,...,am〉(a1, . . . , an) ⊂ U.

Set
Z =

{
(z1, . . . , zn) ∈ Cn : |zj | ≤ ‖aj‖ (j = 1, . . . , n)

}
.

If λ = (λ1, . . . , λn) ∈ Z \ U , then λ /∈ σA(a1, . . . , an), and so there exist

yλ,1, . . . , yλ,n such that
n∑

j=1

(aj − λj)yλ,j = 1.

Thus
λ /∈ σ〈a1,...,an,yλ,1,...,yλ,n〉(a1, . . . , an)



31. Taylor functional calculus in Banach algebras 283

and there exists an open neighbourhood Uλ of λ such that

Uλ ∩ σ〈a1,...,an,yλ,1,...,yλ,n〉(a1, . . . , an) = ∅.
Since Z \U is compact, there are points λ(1),...,λ(m)∈Z \U such that

⋃m
i=1Uλ(i) ⊃

Z \U . If A0 is the algebra generated by a1, . . . , am where

{an+1, . . . , am} = {yλ(1),1, . . . , yλ(1),n, . . . , yλ(m),1, . . . , yλ(m),n},
then σA0(a1, . . . , an) ⊂ U .

Extend f to U×Cm−n by f̃(z1, . . . , zm) = f(z1, . . . , zn). Clearly, f̃ is analytic
on a neighbourhood of σA0(a1, . . . , am).

(b) Write K = σA0(a1, . . . , am). By Theorem 2.18, K is a polynomially
convex set. We show that there is a polynomially convex neighbourhood V of K
such that V ⊂ U × Cm−n.

Choose r > 0 such that σA0(a1, . . . , am) ⊂ ∆(0, r) = {(z1, . . . , zm) ∈ Cm :
|zi| ≤ r, i = 1, . . . , m}. For every λ ∈ ∆(0, r)\(U×Cm−n) there exists a polynomial
p such that |p(λ)| > max{|p(z)| : z ∈ K}. Using the compactness of the set
∆(0, r) \ (U × Cm−n), we get that there exist a finite number of polynomials
p1, . . . , ps and positive numbers ε1, . . . , εs such that

V =
{
z ∈ ∆(0, r) : |pi(z)| ≤ ‖pi‖K + εi (i = 1, . . . , s)

} ⊂ U × Cm−n.

Clearly, V is a compact polynomially convex neighbourhood of σA0(a1, . . . , am).
Thus f̃ can be approximated by polynomials uniformly on V . Consequently,

f(a1, . . . , an) = f̃(a1, . . . , am) is determined uniquely. �

31 Taylor functional calculus in Banach algebras

A natural idea how to define the Taylor spectrum and Taylor functional calculus
for a commuting n-tuple a = (a1, . . . , an) in a (non-commutative) Banach algebra
A is to consider the n-tuple LA = (LA1 , . . . , LAn) ∈ B(A)n. However, if A = B(X)
for some Banach space X and A = (A1, . . . , An) ∈ B(X)n is a commuting n-tuple
of operators, then σT (LA) = σS(A), which is in general bigger than the Taylor
spectrum of A. So this is not a proper way how to define the Taylor spectrum and
Taylor functional calculus for commuting elements in Banach algebras.

In this section we suggest a way how to overcome this difficulty. We introduce
the concept of semidistributive Banach algebras.

Definition 1. By a semidistributive Banach algebra we mean a Banach space
(A, ‖ · ‖) together with a multiplication in A satisfying the following conditions
(for all x, y, z ∈ A, α ∈ C):

(i) (xy)z = x(yz);
(ii) (x + y)z = xz + yz;
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(iii) (αx)y = α(xy) = x(αy);
(iv) ‖xy‖ ≤ ‖x‖ · ‖y‖;
(v) A has a unit 1A satisfying ‖1A‖ = 1.

In other words, semidistributive Banach algebras satisfy all axioms of Banach
algebras except of one of the distributive laws.

Let A be a semidistributive Banach algebra. Denote by D(A) the distributive
center of A, i.e., the set of all elements x ∈ A such that x(y + z) = xy + xz for all
y, z ∈ A.

Example 2. Let X be a Banach space and H(X) the set of all continuous ho-
mogeneous mappings ϕ : X → X . It is easy to check that H(X) with the norm
‖ϕ‖ = sup{‖ϕx‖ : x ∈ X, ‖x ≤ 1} is a semidistributive Banach algebra.

Let A ∈ B(X). It is easy to see that A(ϕ1 +ϕ2) = Aϕ1 +Aϕ2 for all ϕ1, ϕ2 ∈
H(X). So A ∈ D(H(X)). In fact, it is easy to check that D(H(X)) = B(X).

Let A be a semidistributive Banach algebra and a = (a1, . . . , an) an n-tuple
of commuting elements of D(A). Since aj ∈ D(A), the mappings Laj defined by
Lajb = ajb (j = 1, . . . , n, b ∈ A) are commuting bounded linear operators acting
on A. Let La = (La1 , . . . , Lan).

Definition 3. Let A be a semidistributive Banach algebra and a = (a1, . . . , an) an
n-tuple of commuting elements of D(A). We say that a is Taylor regular if La is
Taylor regular (in the sense of Section 25).

The Taylor spectrum σA
T (a) of a is defined as the set of all λ ∈ Cn such that

the n-tuple a−λ = (a1−λ1, . . . , an−λn) is not Taylor regular, i.e., σA
T (a) = σT (La).

Clearly, the Taylor regularity and the Taylor spectrum depend on the choice
of the semidistributive algebra A.

Let X be a Banach space, A = (A1, . . . , An) commuting linear operators
on X . Then {A1, . . . , An} ⊂ D(H(X)) and, by Corollary 27.7, σ

H(X)
T (A) = σT (A)

where σT (A) is the Taylor spectrum of the n-tuple A of operators in the sense of
Section 25.

The basic property of the Taylor spectrum in semidistributive algebras is the
existence of the functional calculus.

Theorem 4. Let A be a semidistributive Banach algebra, let a = (a1, . . . , an) be
a commuting n-tuple of elements of D(A). Let U be an open neighbourhood of
σA

T (a). Then there exists an algebraic homomorphism Φ : H(U) → A, f �→ f(a)
such that

(i) if f ≡ 1, then f(a) = 1A;

if f ≡ zj, then f(a) = aj (j = 1, . . . , n);
(ii) if fn → f uniformly on U , then fn(a) → f(a);
(iii) f(a) ∈ D(A) for all f ∈ H(U).
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Proof. We have σT (La) = σA
T (a) ⊂ U . Thus for f ∈ H(U) we can define f(La) ∈

B(A) by the Taylor functional calculus constructed in Section 30.
Define f(a) ∈ A by f(a) = f(La)(1A). Clearly, the mapping f �→ f(a) is

linear and satisfies (i) and (ii).
Let f ∈ H(U) and b ∈ A. Then the mapping Rb : A → A defined by

Rbc = cb is linear and Laj Rb = RbLaj (j = 1, . . . , n). Since f(La) ∈ (La)′′, we
have f(La)Rb = Rbf(La). Hence

f(La)b = f(La)Rb(1A) = Rbf(La)(1A) = f(a)b

for every b ∈ A. Consequently, f(La) = Lf(a).
Let f, g ∈ H(U). We have

(fg)(a) = (fg)(La)(1A) = f(La)g(La)(1A) = Lf(a)g(a) = f(a)g(a).

Hence the functional calculus f �→ f(a) is multiplicative.

(iii) Let x, y ∈ A. Since f(La) is a linear operator, we have

f(a)(x + y) = Lf(a)(x + y) = f(La)(x + y) = f(La)x + f(La)y = f(a)x + f(a)y.

Hence f(a) ∈ D(A). �

32 k-regular functions

In Sections 10 and 11 we studied operator-valued functions with continuously
changing ranges and kernels. In this section we generalize this notion to operator-
valued functions with finite-dimensional “jumps” in the range (kernel).

Definition 1. Let L, N be subspaces of a Banach space X . Let k ≥ 0. Set

δk(L, N) = inf
{
δ(L, N ′) : N ′ ⊃ N, dimN ′/N ≤ k

}
,

δ̂k(L, N) = inf
{
δ̂(L, N ′) : N ′ ⊃ N, dimN ′/N ≤ k

}
and

ϑk(L, N) = inf
{
δ(L′, N) : L′ ⊂ L, dimL/L′ ≤ k

}
.

Let M be a closed subspace of a Banach space X with codimM = k < ∞.
Recall that there exists a projection P ∈ B(X) with ‖P‖ < k +1 and KerP = M ,
see A.1.25.

The quantities δk and ϑk are closely connected.

Lemma 2. Let L, N be closed subspaces of X . Then:

(i) δk(L, N) ≤ (k + 2)ϑk(L, N);

(ii) ϑk(L, N) ≤ (k + 1)2δk(L, N).
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Proof. (i) Let L′ ⊂ L, dimL/L′ ≤ k. Let P ∈ B(L) be a projection satisfying
KerP = L′ and ‖P‖ < k + 1. Let F = Ran P . Then L = L′ ⊕ F and dimF ≤ k.

We show that δ(L, N + F ) ≤ (k + 2) · δ(L′, N). Let x ∈ L, ‖x‖ = 1. Then
x = l′ + f for some l′ ∈ L′ and f ∈ F , and ‖l′‖ = ‖(I −P )x‖ < k + 2. There is an
n ∈ N with ‖l′ − n‖ ≤ (k + 2)δ(L′, N). Thus

dist{x, N + F} ≤ ‖x − n − f‖ = ‖l′ − n‖ ≤ (k + 2)δ(L′, N).

Hence δ(L, N + F ) ≤ (k + 2)δ(L′, N). This proves (i).

(ii) Let N ′ ⊃ N , dim N ′/N ≤ k. Let P ∈ B(N ′) be a projection such that
KerP = N and ‖P‖ < k + 1. Let F = Ran P . Then dimF ≤ k and N ′ = N ⊕ F .

By the Auerbach Lemma, see A.1.23, there is a biorthogonal system fj ∈ F ,
f∗

j ∈ F ∗ (j = 1, 2, . . . ,dimF ) such that ‖fi‖ = 1 = ‖f∗
j ‖ and 〈fi, f

∗
j 〉 = δij for

all i, j.
Extend f∗

j to functionals on y∗
j on N ′ by setting y∗

j |N = 0. For x ∈ N ′ we
have

|〈x, y∗
j 〉| = |〈Px, f∗

j 〉| ≤ ‖P‖ · ‖x‖.
By the Hahn-Banach theorem we can extend y∗

j to a functional on X (denoted
by the same symbol y∗

j ) with the same norm ‖y∗
j ‖ ≤ ‖P‖ < k + 1. Let L′ =

L ∩⋂dim F
j=1 Ker y∗

j . Clearly, dimL/L′ ≤ k.
We prove that δ(L′, N) ≤ (k + 1)2δ(L, N ′). Let x ∈ L′ ⊂ L, ‖x‖ < 1.

Then there exists y ∈ N ′ with ‖x − y‖ ≤ δ(L, N ′). Let Q ∈ B(X) be defined
by Qx =

∑
j〈x, y∗

j 〉fj . Then Q is a projection onto F , KerQ ⊃ L′ and ‖Q‖ ≤
k · max{‖y∗

j ‖} ≤ k(k + 1). We have

dist{x, N} ≤ ‖x − (I − Q)y‖ ≤ ‖I − Q‖ · ‖x − y‖
≤ (

1 + k(k + 1)
)
δ(L, N ′) ≤ (k + 1)2δ(L, N ′).

Hence δ(L′, N) ≤ (k + 1)2δ(L, N ′). This proves (ii). �

Theorem 3. Let k ≥ 0 and ε > 0. Then there exists a positive number η = η(k, ε)
with the following property: if M, N, M ′ are closed subspaces of a Banach space
X , M ⊂ M ′, dimM ′/M ≤ k, δ(M, N) < η and δ(N, M ′) < η, then there exists a

subspace G ⊂ X with dim G ≤ k and δ̂(N, M + G) ≤ ε.

Proof. We prove the statement by induction on k. For k = 0 the statement is clear
with G = {0} and η(0, ε) = ε.

Suppose that the statement is true for k − 1 ≥ 0. Let ε′ = η(k − 1, ε) be
the number given by the induction assumption; we may assume that 0 < ε′ ≤
ε ≤ 1. Choose η < εε′

4(k+2)2 . Let M, N, M ′ satisfy the conditions of the theorem, so
M ⊂ M ′, dimM ′/M ≤ k, δ(M, N) < η and δ(N, M ′) < η. Let P ∈ B(M ′) be a
projection such that KerP = M and ‖P‖ < k + 1. Set F = RanP . So dimF ≤ k
and M ′ = M ⊕ F .
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The statement is clear if δ(N, M) ≤ ε; in this case it is sufficient to take
G = {0}. Suppose on the contrary that δ(N, M) > ε, so there is an x ∈ N with
‖x‖ = 1 and dist{x, M} ≥ ε. By assumption, there are m0 ∈ M and f ∈ F such
that ‖x− (m0 + f)‖ < η. We have ‖m0 + f‖ ≤ ‖x− (m0 + f)‖+ ‖x‖ < 1 + η and
‖m0‖ = ‖(I − P )(m0 + f)‖ < (k + 2)(1 + η). Furthermore,

ε ≤ dist{x, M} ≤ ‖x − m0‖ ≤ ‖x − (m0 + f)‖ + ‖f‖ < η + ‖f‖,
and so ‖f‖ > ε − η.

Set M1 = M ∨ {f}. Since dist{x, M} ≥ ε and dist{x, M1} < η < ε, we have
M1 �= M and dimM ′/M1 ≤ k − 1. It is sufficient to show that δ(M1, N) ≤ ε′.
Indeed, the induction assumption then gives the existence of G′ with dimG′ ≤ k−1
and δ̂(M1 + G, N) ≤ ε, and so we can take G = G′ ∨ {f}.

To show that δ(M1, N) ≤ ε′, let u = m + αf ∈ M1 with ‖u‖ = 1, m ∈ M
and α ∈ C. Then ‖m‖ = ‖(I − P )u‖ < k + 2 and ‖αf‖ = ‖Pu‖ < k + 1. Thus
|α| = ‖αf‖

‖f‖ < k+1
ε−η . Then there exists n ∈ N with

‖m − n‖ ≤ (k + 2)δ(M, N) < (k + 2)η.

Similarly, there exists n0 ∈ N with

‖m0 − n0‖ ≤ (k + 2)(1 + η)δ(M, N) < (k + 2)(1 + η)η.

Thus

dist{u, N} ≤ ‖m + αf − n − α(x − n0)‖ ≤ ‖m − n‖ + |α| · ‖f − x + n0‖
≤ ‖m − n‖ + |α|(‖f − x + m0‖ + ‖n0 − m0‖

)
< (k + 2)η +

k + 1
ε − η

(
η + (k + 2)(1 + η)η

) ≤ 4η(k + 2)2

ε
< ε′. �

Lemma 4. Let k ≥ 0 and ε > 0. Then there exists η > 0 with the following property:
if M, N, M ′ are closed subspaces of a Banach space X , M ⊂ M ′, dim M ′/M = k

and δ̂(M ′, N) < η, then there exists a subspace G ⊂ N such that dimG = k,

δ̂(M + G, N) ≤ ε and

‖m + g‖ ≥ 1
4(k + 1)

max{‖m‖, ‖g‖} (m ∈ M, g ∈ G).

Proof. We can assume that ε ≤ 1. Let M, M ′, N satisfy the conditions of the
lemma and let η be a positive number satisfying η < ε

4(k+2)2 .
Let P ∈ B(M ′) be a projection satisfying KerP = M and ‖P‖ < k + 1. Set

F = Ran P . Then dimF = k and M ′ = M ⊕ F . Choose a biorthogonal system
f1, . . . , fk ∈ F , f∗

1 , . . . , f∗
k ∈ F ∗ such that ‖fi‖ = 1 = ‖f∗

j ‖ and 〈fi, f
∗
j 〉 = δij for

all i, j. If αi ∈ C (i = 1, . . . , k), then∥∥∥ k∑
i=1

αifi

∥∥∥ ≥
∣∣∣〈 k∑

i=1

αifi, f
∗
j

〉∣∣∣ = |αj |
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for all j. Hence

max{|αj| : j = 1, . . . , k} ≤
∥∥∥ k∑

i=1

αifi

∥∥∥ ≤
k∑

j=1

|αj |.

For each j=1,...,k there exists nj ∈ N with ‖nj − fj‖ < η. Set G=
∨{n1,...,nk}.

Then G ⊂ N .
Let Φ : M + F → M + G be the operator defined by

Φ
(
m +

k∑
i=1

αifi

)
= m +

k∑
i=1

αini (m ∈ M, αi ∈ C).

Let m ∈ M , f =
∑

αifi ∈ F and let x = m + f be an element of M + F of norm
one. Then ‖m‖ = ‖(I − P )x‖ < k + 2 and |αi| ≤ ‖f‖ = ‖Px‖ < k + 1 for all
i = 1, . . . , k. Hence

‖x − Φx‖ =
∥∥∥ k∑

i=1

αi(fi − ni)
∥∥∥ ≤ k(k + 1)η.

Thus ‖Φ‖ ≤ 1+k(k+1)η ≤ 2. Further, Φ is onto and ‖Φx‖ ≥ 1−k(k+1)η ≥ 1/2.
Hence Φ is invertible and ‖Φ−1‖ ≤ 2.

Let x = m + g ∈ M + G, ‖x‖ = 1. Let f = Φ−1g. Then

‖m‖ = ‖(I − P )(m + f)‖ ≤ (k + 2)‖m + f‖ = (k + 2)‖Φ−1x‖ ≤ 2(k + 2)

and

‖g‖ = ‖Φf‖ ≤ ‖Φ‖ · ‖P‖ · ‖m + f‖ ≤ 2(k + 1)‖Φ−1x‖ ≤ 4(k + 1).

Hence
‖m + g‖ ≥ 1

4(k + 1)
max{‖m‖, ‖g‖}

for all m ∈ M and g ∈ G.
We show that δ(N, M + G) < ε. Let n ∈ N , ‖n‖ = 1. Then there exist

m ∈ M and f =
∑

αifi ∈ F such that ‖n − m − f‖ < η. Thus ‖m + f‖ < 1 + η,
‖m‖ = ‖(I −P )(m+ f)‖ < (k +2)(1+ η) and ‖f‖ = ‖P (m+ f)‖ < (k +1)(1+ η).
Hence |αi| ≤ (k + 1)(1 + η) for all i. We have

dist{n, M + G} ≤
∥∥∥∥n −

(
m +

k∑
i=1

αini

)∥∥∥∥
≤ ‖n − (m + f)‖ +

k∑
i=1

|αi| · ‖fi − ni‖ < η + k(k + 1)(1 + η)η < ε.

Hence δ(N, M + G) ≤ ε.
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Finally, we show that δ(M + G, N) ≤ ε. Let m ∈ M , g =
∑

αini ∈ G and
‖m+g‖ = 1. Then ‖m‖ = ‖(I−P )Φ−1(m+g)‖ < 2(k+2) and there exists n ∈ N
with ‖m− n‖ < ‖m‖ · η ≤ 2(k + 2)η. Further ‖g‖ ≤ ‖m‖+ ‖m + g‖ < 2k + 5 and
|αi| ≤

∥∥∥∑k
i=1 αifi

∥∥∥ = ‖Φ−1g‖ ≤ 2‖g‖ ≤ 4k + 10. Hence

dist{m + g, N} ≤ ‖m − n‖ +
k∑

i=1

|αi| · ‖ni − fi‖

≤ 2(k + 2)η + k(4k + 10)η < ε. �

Theorem 5. Let X, Y be Banach spaces and U a metric space. Let T : U → B(X, Y )
be a norm-continuous function, w ∈ U , k ≥ 0 and suppose that Ran T (w) is closed.
The following statements are equivalent:

(i) limz→w δk

(
Ran T (z), RanT (w)

)
= 0;

(ii) limz→w ϑk

(
RanT (z), RanT (w)

)
= 0;

(iii) limz→w δ̂k

(
Ran T (z), RanT (w)

)
= 0;

(iv) limz→w δk

(
KerT (w), KerT (z)

)
= 0;

(v) limz→w ϑk

(
KerT (w), Ker T (z)

)
= 0;

(vi) limz→w δ̂k

(
KerT (w), KerT (z)

)
= 0;

(vii) limz→w ϑk

(
RanT (z)∗, Ran T (w)∗

)
= 0.

Moreover, if any of condition (i)–(vii) is satisfied, then RanT (z) is closed for all z
in a neighbourhood of w.

Proof. By Lemma 2, (i) ⇔ (ii) and (iv) ⇔ (v).
Since δ

(
Ran T (w),Ran T (z)

) → 0 and δ
(
KerT (z),KerT (w)

) → 0 by Lemma
10.12, the equivalences (i) ⇔ (iii) and (iv) ⇔ (vi) follow from Theorem 3.

(iii) ⇒ (iv): Let ε be a positive number, ε ≤ 1. By Lemma 4, there exists a
neighbourhood U0 of w with the following property: if z ∈ U0, then there exists a
subspace F ⊂ Ran T (z) with dimF ≤ k, δ̂

(
RanT (w) + F, Ran T (z)

)
< ε/6, and

‖T (w)x + f‖ ≥ 1
4(k + 1)

max
{‖T (w)x‖, ‖f‖} (1)

for all x ∈ X and f ∈ F . We may also assume that ‖T (z)− T (w)‖ < ε·γ(T (w))
48(k+1) for

all z ∈ U0.
Fix z ∈ U0 and F with the above-described property. Let Sw, Sz : X⊕F → Y

be defined by

Sw(x ⊕ f) = T (w)x + γ(T (w)) · f,

Sz(x ⊕ f) = T (z)x + γ(T (w)) · f
for all x ∈ X , f ∈ F ; here X ⊕ F denotes the �1 direct sum of X and F .
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Clearly, Ran Sw = RanT (w) + F and RanSz = RanT (z) + F = Ran T (z).
Thus δ̂(Ran Sw, Ran Sz) < ε/6.

We show that γ(Sw) ≥ γ(T (w))
8(k+1) . Let 0 < s < γ(T (w)) and let y ∈ Ran Sw =

RanT (w)+F be a vector of norm one. Express y = T (w)x+f for some x ∈ X and
f ∈ F . Then there exists x′ ∈ X with T (w)x′ = T (w)x and ‖x′‖ ≤ s−1‖T (w)x‖.
We have Sw

(
x′ ⊕ γ(T (w))−1f

)
= T (w)x + f = y and, by (1),∥∥x′⊕γ(T (w))−1f

∥∥≤s−1(‖T (w)x‖+‖f‖)≤8(k+1)s−1‖T (w)x+f‖=8(k+1)s−1.

Hence γ(Sw) ≥ s
8(k+1) . Letting s → γ(T (w)) gives γ(Sw) ≥ γ(T (w))

8(k+1) .
By Lemma 10.13, we have

γ(Sz) = γ(S∗
z ) ≥ γ(S∗

w)
(
1 − 2δ(KerS∗

w, KerS∗
z )
)
− ‖S∗

w − S∗
z‖

= γ(Sw)
(
1 − 2δ(RanSz, Ran Sw)

)
− ‖Sw − Sz‖

≥ γ(T (w))
8(k + 1)

(
1 − ε

3

)
− εγ(T (w))

48(k + 1)
≥ γ(T (w))

16(k + 1)
.

In particular, RanT (z) = RanSz is closed for each z ∈ U0.
Furthermore,

δ(KerSw, KerSz) ≤ γ(Sz)−1‖Sw − Sz‖ ≤ 16(k + 1)
γ(T (w))

· εγ(T (w))
48(k + 1)

< ε.

Find a subspace G ⊂ X with T (z)G = F and dimG = dimF ≤ k. We
have KerSw = KerT (w) and KerSz = KerT (z) +

{
g ⊕ −γ(T (w))−1T (z)g :

g ∈ G
}
. Consequently, δk

(
KerT (w), KerT (z)

) ≤ δ
(
KerT (w), KerT (z) + G

) ≤
δ
(
KerSw, KerSz

)
< ε. Thus

lim
z→w

δk

(
KerT (w), KerT (z)

)
= 0.

(iv) ⇒ (vii): Let ε > 0. Since limz→w δk

(
KerT (w), KerT (z)

)
= 0, there

exists a neighbourhood U0 of w with the following property: if z ∈ U0, then
RanT (z) is closed, and there is an N ⊃ KerT (z) with dimN/ KerT (z) ≤ k and
δ
(
KerT (w), N

)
< ε. Thus δ(N⊥, Ran T (w)∗) < ε where N⊥ ⊂ Ran T (z)∗ and

dimRanT (z)∗/N⊥ = dimN/ KerT (z) ≤ k. Hence ϑk

(
RanT (z)∗, RanT (w)∗

)
< ε

and
lim
z→w

ϑk

(
RanT (z)∗, Ran T (w)∗

)
= 0.

(vii) ⇒ (ii): Let ε > 0. Then there exists a neighbourhood U1 of w with the
following property: if z ∈ U1, then RanT (z)∗ is closed and there is a subspace F ′ ⊂
X∗ with dimF ′ ≤ k and δ

(
Ran T (z)∗, RanT (w)∗ + F ′) < ε. Hence δ

(
KerT (w) ∩

⊥F ′, KerT (z)
)

< ε. Consequently, ϑk

(
KerT (w), KerT (z)

) → 0. �
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Definition 6. Let X, Y be Banach spaces and U a metric space. Let T : U →
B(X, Y ) be a norm-continuous function. Let w ∈ U and k ≥ 0. We say that T is
k-regular at w if RanT (w) is closed and T satisfies any of the equivalent conditions
of Theorem 5.

Corollary 7. A function T : U → B(X, Y ) is k-regular at w if and only if the
function z �→ T (z)∗ is k-regular at w.

As we have seen in Section 10, regular functions are closely related to exact se-
quences. Similarly, k-regular functions are connected with “Fredholm sequences”.

Theorem 8. Let X, Y, Z be Banach spaces and U a metric space. Let T : U →
B(X, Y ) and S : U → B(Y, Z) be norm-continuous functions satisfying S(z)T (z) =
0 for all z ∈ U . Let w ∈ U , let Ran S(w) be closed and dimKerS(w)/ Ran T (w) =
k < ∞. Then both T and S are k-regular at w.

Proof. By Lemma 16.2, Ran T (w) is closed as a subspace of finite codimension in
KerS(w). Let F be a subspace satisfying KerS(w) = RanT (w)⊕F and dimF = k.
We have

δk

(
Ran T (z), RanT (w)

) ≤ δ
(
Ran T (z), RanT (w) + F

)
= δ

(
Ran T (z), KerS(w)

) ≤ δ
(
KerS(z), KerS(w)

) → 0.

Thus T is k-regular at w.
Similarly, let M ⊂ X be a subspace of codimension k such that RanT (w) =

KerS(w) ∩ M . Then

ϑk

(
KerS(w), Ker S(z)

) ≤ δ
(
KerS(w) ∩ M, KerS(z)

)
= δ

(
RanT (w), KerS(z)

)
≤ δ

(
Ran T (w), Ran T (z)

) → 0.

Hence S is k-regular at w.

Definition 9. Let M, N be closed subspaces of a Banach space X . Suppose that
there exists a subspace M ′ ⊃ M such that dimM ′/M < ∞ and δ̂(M ′, N) <

√
2−1.

Then we define jump(M, N) = dimM ′/M .

The definition is correct: if M ′′ ⊃ M is another subspace with dim M ′′/M <

∞ and δ̂(M ′′, N) <
√

2 − 1, then

δ̂(M ′, M ′′) ≤ δ̂(M ′, N) + δ̂(N, M ′′) + δ̂(M ′, N) · δ̂(N, M ′′) < 1.

By Theorem 27.8, this means that dimM ′/M = dimM ′′/M .

Theorem 5 gives immediately an important result that for k-regular functions
the jump in the kernel is always equal to the jump in the range. This is well known
for operators in finite-dimensional spaces. Another classical result of this type is
for the function z �→ T −z where T is a compact operator, see Theorem 15.11. The
Kato decomposition gives the same result also for the function z �→ T − z where
T is a semi-Fredholm operator, or more generally, an essentially Kato operator.
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Theorem 10. Let T : U → B(X, Y ) be k-regular at a point w ∈ U . Then there
exists a neighbourhood U0 of w such that

jump
(
KerT (z), KerT (w)

)
= jump

(
RanT (w), Ran T (z)

)
for each z ∈ U0.

Proof. There is a neighbourhood U1 of w such that δ̂k

(
Ran T (z), RanT (w)

)
<√

2 − 1 and δ̂k

(
KerT (w), KerT (z)

)
<

√
2 − 1 for all z ∈ U1. For each z ∈ U1 fix

subspaces Fz, Gz such that dimFz ≤ k, δ̂
(
Ran T (z), RanT (w) + Fz

)
<

√
2 − 1,

Fz ∩Ran T (w) = {0}, dimGz ≤ k, δ̂
(
KerT (w), KerT (z)+Gz

)
<

√
2−1 and Gz ∩

KerT (z) = {0}. Moreover, we can assume that limz→w δ̂
(
RanT (z), RanT (w) +

Fz

)
= 0 and limz→w δ̂

(
KerT (w), KerT (z) + Gz

)
= 0.

By definition, we have dimFz = jump
(
Ran T (w), RanT (z)

)
and dimGz =

jump
(
KerT (z), KerT (w)

)
.

We show that dimFz = dimGz for all z in a certain neighbourhood of w.
Suppose on the contrary that there is a sequence (zn) converging to w with
dimFzn �= dimGzn . By passing to a subsequence if necessary we may assume
that dim Fzn and dimGzn are constant; denote this constants by a and b. By
assumption, a �= b. We have limn→∞ δ̂a

(
Ran T (zn), Ran T (w)

)
= 0, and so, by

Theorem 5, limn→∞ δ̂a

(
KerT (w), KerT (zn)

)
= 0. Thus for all n sufficiently large

we have b = jump
(
KerT (zn), KerT (w)

) ≤ a. Similarly, it is possible to show that
a ≤ b, which is a contradiction. Hence

jump
(
KerT (z), KerT (w)

)
= jump

(
RanT (w), Ran T (z)

)
for all z in a certain neighbourhood of w. �

Theorem 11. Let M0, M1 and M2 be closed subspaces of a Banach space X , let
k, n ≥ 0. Then

δ̂k+n(M2, M0) ≤ 4(n + 2)max
{
δ̂k(M1, M0), δ̂n(M2, M1)

}
.

In particular, if max
{
δ̂k(M1, M0), δ̂n(M2, M1)

}
<

√
2−1

4(n+2) , then

jump(M0, M2) = jump(M0, M1) + jump(M1, M2).

Proof. We may assume that max
{
δ̂k(M1, M0), δ̂n(M2, M1)

}
< 1/8, since the state-

ment is trivial otherwise. Let d > max
{
δ̂k(M1, M0), δ̂n(M2, M1)

}
. Then there ex-

ist subspaces L0 ⊃ M0 and L1 ⊃ M1 such that dim L0/M0 ≤ k, dimL1/M1 ≤ n,
δ̂(L0, M1) < d and δ̂(L1, M2) < d. Let P ∈ B(L1) be a projection with ‖P‖ < n+1
and KerP = M1. Set F = Ran P .

We show that δ̂(L0 + F, M2) ≤ 4(n + 2)d. We may assume that d < 1
4(n+2) .
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(a) Let x ∈ M2, ‖x‖ = 1. Then there exists l1 ∈ L1 with ‖x−l1‖ < d. Express
l1 = m1 + f with m1 ∈ M1 and f ∈ F . Then ‖m1‖ = ‖(I −P )l1‖ < (n + 2)‖l1‖ ≤
(n + 2)(1 + d), and so there exists l0 ∈ L0 with ‖m1 − l0‖ < (n + 2)(1 + d)d. We
have

dist{x, L0 + F} ≤ ‖x − (l0 + f)‖ ≤ ‖x − l1‖ + ‖l1 − (l0 + f)‖
≤ d + ‖m1 − l0‖ ≤ d + (n + 2)(1 + d)d < 2(n + 2)d ≤ 4(n + 2)d.

Thus δ(M2, L0 + F ) ≤ 4(n + 2)d.

(b) Let x ∈ L0 + F and ‖x‖ = 1. Express x = l0 + f with l0 ∈ L0 and
f ∈ F . Then there exists m1 ∈ M1 with ‖l0 − m1‖ < ‖l0‖ · d, and so ‖m1‖ >
‖l0‖− ‖l0 −m1‖ > ‖l0‖(1− d). Since m1 = (I −P )(m1 + f), we have ‖m1 + f‖ ≥
‖m1‖
‖I−P‖ > ‖l0‖(1−d)

n+2 . Hence

1 = ‖l0 + f‖ ≥ ‖m1 + f‖ − ‖m1 − l0‖ >
‖l0‖(1 − d)

n + 2
− ‖l0‖d ≥ ‖l0‖ 1

2(n + 2)
.

Hence ‖l0‖ ≤ 2(n + 2) and there exists m1 ∈ M1 with ‖l0 − m1‖ < 2(n + 2)d.
Therefore ‖m1 + f‖ ≤ ‖l0 + f‖ + ‖m1 − l0‖ < 1 + 2(n + 2)d and there exists
m2 ∈ M2 with ‖m2 − (m1 + f)‖ < (2(n + 2)d + 1)d. Hence

dist{x, M2} ≤ ‖l0 + f − m2‖ ≤ ‖l0 − m1‖ + ‖m1 + f − m2‖
< 2(n + 2)d + 2(n + 2)d2 + d ≤ 4(n + 2)d.

Thus δ(L0 + F, M2) ≤ 4(n + 2)d and so δ̂k+n(M2, M0) ≤ 4(n + 2)d.
Suppose now that max

{
δ̂k(M1, M0), δ̂n(M2, M1)

}
<

√
2−1

4(n+2) . Using the pre-
vious construction we have jump(M0, M1) = dimL0/M0 and jump(M1, M2) =
dimL1/M1 = dimF . It is sufficient to show that F ∩ L0 = {0}. Indeed, this
will imply that jump(M0, M2) = dim(L0 + F )/M0 = dim L0/M0 + dimF =
jump(M0, M1) + jump(M1, M2).

Suppose on the contrary that F ∩ L0 �= {0}. Let f ∈ F ∩ L0, ‖f‖ = 1. Then
there exists m1 ∈ M1 with ‖m1 − f‖ <

√
2−1

4(n+2) . Hence ‖P (m1 − f)‖ = ‖ − f‖ = 1

and so ‖P‖ ≥ 4(n+2)√
2−1

> n + 2, a contradiction with the assumption that ‖P‖ <

n + 1. �

33 Stability of index of complexes

Recall the most important stability results concerning the index indT = α(T ) −
β(T ) = dimKerT − codimRanT of a semi-Fredholm operator T : X → Y :

(a) there exists ε > 0 such that α(T ′) ≤ α(T ) and β(T ′) ≤ β(T ′) for all T ′ :
X → Y with ‖T ′ − T ‖ < ε;

(b) if K : X → Y is a compact operator, then ind(T + K) = indT ;
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(c) there exists ε > 0 such that indT ′ = ind T for all T ′ : X → Y with
‖T ′ − T ‖ < ε;

(d) there exists ε > 0 such that both α(T − λ) and β(T − λ) are constant in the
punctured neighbourhood {λ ∈ C : 0 < |λ| < ε}.
In this and the next sections we discuss generalizations of these properties

to complexes of Banach spaces.

Definition 1. By a complex K = (Xi, ψi)n
i=0 we mean an object of the following

type:
0 → X0

ψ0−→X1
ψ1−→· · · ψn−2−→Xn−1

ψn−1−→Xn → 0 (1)

where Xi are Banach spaces and ψi : Xi → Xi+1 operators satisfying ψi+1ψi = 0
for all i. Formally we set Xi = {0} for either i < 0 or i > n. Similarly, ψi is the
zero operator if either i < 0 or i ≥ n. Write αi(K) = dimKerψi/ Ranψi−1. In
particular, α0(K) = dimKerψ0 and αn(K) = codim Ran ψn−1.

Complex (1) is called Fredholm if αi(K) < ∞ for all i. Obviously, in this case
the operators ψi have closed ranges.

The index of a Fredholm complex K is defined by

indK =
n∑

i=0

(−1)iαi(K). (2)

A complex K is called semi-Fredholm if the operators ψi have closed ranges and
the index indK is well defined by (2) (either +∞ and −∞ does not appear in the
formula).

Note that this definition generalizes the classical definition of the index of a
semi-Fredholm operator T : X → Y . It is easy to see that ind T is equal to the
index of the semi-Fredholm complex 0 → X

T−→Y → 0.
For two complexes K = (Xi, ψi)n

i=0 and K′ = (Xi, ψ
′
i)

n
i=0 we set dist{K,K′} =

max
{‖ψj − ψ′

j‖ : j = 0, . . . , n − 1
}
.

Property (a) for semi-Fredholm complexes was essentially proved in Section
27 even in a more general form.

Theorem 2. Let X, Y, Z be Banach spaces, let S : X → Y and T : Y → Z be
operators with closed ranges. Then there exists η > 0 such that

dimRanS/
(
Ran S ∩ KerT

)
+ dimKerT1/

(
RanS1 ∩ KerT1

)
≤ dimRanS1/

(
Ran S1 ∩ KerT1

)
+ dim KerT/

(
RanS ∩ KerT

) (3)

for all operators S1 : X → Y , T1 : Y → Z with closed ranges such that ‖T1−T ‖ < η
and ‖S1 − S‖ < η.

Proof. Set N = KerT and R = RanS. Let ε be the number constructed in
Theorem 27.11. Set η = ε

max{γ(S),γ(T )} .
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If S1 : X → Y and T1 : Y → Z are operators with closed ranges satisfying
‖S − S1‖ < η and ‖T − T1‖ < η, then, by Lemma 10.12, δ(Ran S, Ran S1) ≤
γ(S)−1‖S − S1‖ < ε and δ(KerT1, KerT ) ≤ γ(T )−1‖T − T1‖ < ε. Thus the
inequality follows from Theorem 27.11. �

Corollary 3. Let K = (Xi, ψi)n
i=0 be a semi-Fredholm complex. Then there exists

ε > 0 such that αi(K′) ≤ αi(K) (i = 0, . . . , n) for each semi-Fredholm complex
K′ = (Xi, ψ

′
i)

n
i=0 satisfying dist{K′,K} < ε.

In particular, the functions K �→ αi(K) are upper semicontinuous.

Next, we show the stability of index under finite-rank perturbations.

Lemma 4. Let X1 and X2 be Banach spaces, let T, T ′ ∈ B(X1, X2) be operators
such that T − T ′ is a finite-rank operator and let Z1 ⊂ X1, Z2 ⊂ X2 be closed
subspaces such that Z1

e= KerT , Z2
e= RanT . Then

dimKerT/(Z1 ∩ KerT ) − dimZ1/(Z1 ∩ KerT )
− dimZ2/(Z2 ∩ Ran T ) + dim RanT/(Z2 ∩ Ran T )

= dim KerT ′/(Z1 ∩ KerT ′) − dimZ1/(Z1 ∩ KerT ′)
− dimZ2/(Z2 ∩ Ran T ′) + dimRanT ′/(Z2 ∩ Ran T ′).

(4)

Proof. Set

M1 = KerT ∩ KerT ′ ∩ Z1,

M2 = Z2 ∩ RanT ∩ RanT ′,
Y1 = KerT + KerT ′ + Z1 and
Y2 = Z2 + RanT + RanT ′.

Then dim Y1/M1 < ∞ and dimY2/M2 < ∞. Note that RanT and RanT ′ are
closed. Denote by L and R the expressions at the left- and right-hand sides of (4),
respectively. Then

L = dimKerT/M1 − dimZ1/M1 − dimZ2/M2 + dim RanT/M2,

R = dimKerT ′/M1 − dim Z1/M1 − dimZ2/M2 + dimRan T ′/M2

and

L − R = dim KerT/M1 − dimKerT ′/M1 + dimRan T/M2 − dim RanT ′/M2.

Let T̂ , T̂ ′ : X1/M1 → Y2 be the operators defined by T̂ (x1 +M1) = Tx1 and
T̂ ′(x1 + M1) = T ′x1 for all x1 + M1 ∈ X1/M1. Clearly, T̂ , T̂ ′ ∈ Φ+(X1/M1, Y2),
Ran T̂ = RanT , Ran T̂ ′ = RanT ′, T̂ − T̂ ′ is a finite-rank operator and

dimY2/M2 =dimY2/ RanT + dimRan T/M2 =dimY2/ RanT ′ + dimRan T ′/M2.
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Thus

L − R = dimKer T̂ − dimKer T̂ ′ + dimRan T̂ /M2 − dimRan T̂ ′/M2

= dimKer T̂ − dimKer T̂ ′ − codimRan T̂ + codimRan T̂ ′

= ind T̂ − ind T̂ ′ = 0

by the stability of index of semi-Fredholm operators, see Theorem 16.16. �
Theorem 5. Let K = {Xi, ψi}n

i=0, K′ = {Xi, ψ
′
i}n

i=0 be semi-Fredholm complexes
such that ψi − ψ′

i are finite-rank operators for all i = 0, . . . , n − 1. Then indK =
indK′.

Proof. If indK = ±∞, then ±∞ appears in the expression defining the index of K.
Clearly, the corresponding term for K′ is also equal to ±∞, and so indK = indK′.
Therefore we can assume that both complexes are Fredholm.

For j = 0, . . . , n define

cj =
j−1∑
i=0

(−1)iαi(K′) + (−1)j dimKerψj/(Kerψj ∩ Ran ψ′
j−1)

− (−1)j dimRanψ′
j−1/(Kerψj ∩ Ran ψ′

j−1) +
j−1∑

i=j+1

(−1)iαi(K).

We have

c0 = dimKerψ0 +
n∑

i=1

(−1)iαi(K) = indK,

and similarly,

cn =
n−1∑
i=0

(−1)iαi(K′) + (−1)n dimXn/ Ranψ′
n−1 = indK′.

Thus it is sufficient to show that cj+1 = cj for j = 0, . . . , n−1. Fix j, 0 ≤ j ≤ n−1.
We have

(−1)j(cj − cj+1)
= dim Kerψj/(Kerψj ∩ Ran ψ′

j−1) − dimRanψ′
j−1/(Kerψj ∩ Ranψ′

j−1)

− dimKerψj+1/ Ranψj − dimKerψ′
j/ Ranψ′

j−1

+ dimKerψj+1/(Kerψj+1 ∩ Ran ψ′
j) − dimRanψ′

j/(Kerψj+1 ∩ Ranψ′
j) = 0

by Lemma 4 for Z1 = Ranψ′
j−1, Z2 = Kerψj+1, T = ψj and T ′ = ψ′

j . This
completes the proof. �

The stability of index under compact perturbations is also true but the proof
is much more complicated. We state the result here without proof; for an outline
of the basic ideas see C.33.4.
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Theorem 6. Let K = (Xi, ψi)n
i=0, K′ = (Xi, ψ

′
i)

n
i=0 be semi-Fredholm complexes

such that ψi−ψ′
i are compact operators for all i = 0, . . . , n−1. Then indK = indK′.

The stability of index of Fredholm complexes under small perturbations fol-
lows from the results of the previous section.

Theorem 7. Let K = (Xi, ψi)n
i=0 be be a Fredholm complex. Then there exists

ε > 0 such that indK′ = indK for each Fredholm complex K′ = (Xi, ψ
′
i)

n
i=0

satisfying dist{K,K′} < ε.

Proof. Let k = max{αj(K) : j = 0, . . . , n}. Let U be the metric space of all
Fredholm complexes (Xi, ψi)n

i=0 with the distance defined above.
By Theorem 32.8, the functions (Xi, ξi)n

i=0 �→ ξj are k-regular at K for all
j = 0, . . . , n − 1. By Theorem 32.10, there exists ε > 0 such that, for all j and
all complexes K′ = (Xi, ψ

′
i) with dist{K′,K} < ε, we have δ̂k(Kerψ′

j , Kerψj) <√
2−1

16(k+2)2 , δ̂k(Ran ψ′
j , Ran ψj) <

√
2−1

16(k+2)2 and

jump(Kerψ′
j , Kerψj) = jump(Ranψj , Ranψ′

j).

Fix a complex K′ with dist{K′,K} < ε. Let cj = jump(Ker ψ′
j , Kerψj) =

jump(Ranψj , Ran ψ′
j). Then cj ≤ k. Formally set c−1 = 0 = cn.

Using Theorem 32.12 twice we get

αj(K) = jump(Ranψj−1, Kerψj)
= jump(Ranψj−1, Ran ψ′

j−1) + jump(Ranψ′
j−1, Kerψ′

j) + jump(Ker ψ′
j , Kerψj)

= cj−1 + αj(K′) + cj .

Hence

indK =
n∑

j=0

(−1)jαj =
n∑

j=0

(−1)j(cj−1 + α′
j + cj) =

n∑
j=0

(−1)jα′
j = indK′. �

Corollary 8. Let K be a Fredholm complex and 0 ≤ m ≤ n. Then there exists
ε > 0 such that, for each Fredholm complex K′ with dist{K′,K} < ε, we have:

(i) if m is odd, then
∑m

j=0(−1)jαj(K′) ≥ ∑m
j=0(−1)jαj(K) and∑m

j=0(−1)jαn−j(K′) ≥ ∑m
j=0(−1)jαn−j(K);

(ii) if m is even, then
∑m

j=0(−1)jαj(K′) ≤ ∑m
j=0(−1)jαj(K) and∑m

j=0(−1)jαn−j(K′) ≥ ∑m
j=0(−1)jαn−j(K).

Proof. Let k = max
{
αj(K) : j = 0, . . . , n

}
and let ε be the number constructed in

the previous theorem. Let K′ be a Fredholm complex satisfying dist{K′,K} < ε.
As in the previous proof we set

cj = jump(Ranψj , Ranψ′
j) = jump(Kerψ′

j , Kerψj).
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We have

m∑
j=0

(−1)jαj(K) =
m∑

j=0

(−1)j(cj−1 + αj(K′) + cj) =
m∑

j=0

(−1)jαj(K′) + (−1)mcm.

This proves the first inequalities both in (i) and (ii).
The remaining statements can be proved similarly. �

The previous stability result can be extended to semi-Fredholm complexes.
We need the following lemma.

Lemma 9. Let X, Y be Banach spaces, let S : X → Y and T : Y → X be operators
with closed ranges such that Ran S = KerT and RanT ⊂ KerS. Then there exists
ε > 0 such that

dim KerS/ RanT = dimKerS1/ RanT1

for all operators S1 : X → Y and T1 : Y → X such that ‖S1−S‖ < ε, ‖T1−T ‖ < ε,
RanS1 ⊂ KerT1 and RanT1 ⊂ KerS1.

Proof. The sequence X
S−→Y

T−→X is exact in the middle. By Lemma 11.3, there
exist positive constants ε1 > 0 and c such that RanS1 = KerT1, γ(S1) ≥ c and
γ(T1) ≥ c for all operators S1 : X → Y , T1 : Y → X satisfying ‖S1 − S‖ < ε1,
‖T1 − T ‖ < ε1 and RanS1 ⊂ KerT1.

Set ε = min{ε1,
c
9}. Let S1 and T1 be operators satisfying ‖S1 − S‖ < ε,

‖T1 − T ‖ < ε, Ran S1 ⊂ KerT1 and RanT1 ⊂ KerS1. Then, by Lemma 10.12, we
have δ̂(KerS, KerS1) ≤ c−1‖S1−S‖ < 1/9 and δ̂(Ran T, RanT1) ≤ c−1‖T1−T ‖ <
1/9. By Theorem 27.8, we have the required equality. �

Theorem 10. Let K = (Xi, ψi)n
i=0 be a semi-Fredholm complex. Then there exists

ε > 0 such that indK′ = indK for every semi-Fredholm complex K′ satisfying
dist{K′,K} < ε.

Proof. To simplify the statement, set

X =
⊕

i even

Xi, Y =
⊕
i odd

Xi, T =
⊕

i even

ψi and S =
⊕
i odd

ψi.

Then

TS = 0, ST = 0 and indK = dimKerT/ RanS − dimKerS/ RanT.

Consider the operators T̃ : X̃ → Ỹ and S̃ : Ỹ → X̃ defined in Section 17. So
S̃T̃ = 0 and T̃ S̃ = 0.

Let K′ = (Xi, ψ
′
i)

n
i=0 be a semi-Fredholm complex close to K and define

similarly the operators T ′ : X → Y and S′ : Y → X corresponding to K′. So
T ′S′ = 0, S′T ′ = 0 and max{‖T ′ − T ‖, ‖S′ − S‖} = dist{K′,K}.
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We distinguish two cases:
(a) Let dim KerS/ RanT = ∞. Since the complex K is semi-Fredholm,

we have dim KerT/ RanS < ∞, and so Ker T̃ = Ran S̃. By Theorem 17.10,
dimKer S̃/ Ran T̃ = ∞. By the previous lemma, dimKer S̃′/ Ran T̃ ′ = ∞ for each
semi-Fredholm complex K′ sufficiently close to K. So dim KerS′/ RanT ′ = ∞.
Hence indK′ = ∞ = indK.

Similar considerations can be done if dim KerT/ RanS = ∞.

(b) It remains the case dim KerT/ RanS < ∞ and dimKerS/ RanT < ∞.
Then K is a Fredholm complex, and so Ran S̃ = Ker T̃ and Ran T̃ = Ker S̃.

By Lemma 9, Ran S̃′ = Ker T̃ ′ and Ran T̃ ′ = Ker S̃′ whenever T ′, S′ are
operators induced by a semi-Fredholm complex K′ which is sufficiently close to K.
Thus K′ is also a Fredholm complex.

The equality indK′ = indK for Fredholm complexes K′ close enough to K
was proved in Theorem 7. �

Corollary 11. Let A = (A1, A2) be a pair of commuting operators on a Banach
space X . Then ∂σT (A) ⊂ σπ(A) ∪ σδ(A).

Proof. Let λ ∈ ∂σT (A)\(σπ(A)∪σδ(A)
)
. Then the Koszul complex of the pair A−λ

is semi-Fredholm. Furthermore, there is a sequence λ(j) ∈ C2\σT (A) converging to
λ. Thus the Koszul complex K(A−λ(j)) of A−λ(j) is exact, and so indK(A−λ(j)) =
0 for all j. By the continuity of the index we have indK(A − λ) = 0. Since
λ /∈ σπ(A) ∪ σδ(A), the Koszul complex K(A − λ) is exact, and so λ /∈ σT (A),
which is a contradiction. �

34 Essential Taylor spectrum

Definition 1. Let A = (A1, . . . , An) be a commuting n-tuple of operators on a
Banach space X . The essential Taylor spectrum σTe(A) is the set of all λ =
(λ1, . . . , λn) ∈ Cn such that the Koszul complex of A−λ = (A1−λ1, . . . , An−λn)
is not Fredholm.

Clearly, σTe(A) ⊂ σT (A). For single operators we have σTe(A1) = σe(A1).
Let X̃ = �∞(X)/m(X) and Ã = (Ã1, . . . , Ãn) ∈ B(X̃)n be the construction

studied in Section 17. By Theorem 17.10, the Koszul complex of A is Fredholm if
and only if the Koszul complex of Ã is exact. Thus σTe(A) = σT (Ã).

Corollary 2. The essential Taylor spectrum is an upper semicontinuous spectral
system.

Another corollary of the equality σTe(A) = σT (Ã) is:

Theorem 3. Let A = (A1, . . . , An) and B = (B1, . . . , Bn) be commuting n-tuples
of operators on a Banach space X such that operators Ai − Bi are compact for
i = 1, . . . , n. Then σTe(A) = σTe(B).
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For one operator the difference σ(A1) \σe(A1) can be characterized easily. It
consists of whole components of C \ σe(A1) and at most countably many isolated
points, see Theorem 19.4.

The difference σT (A) \ σTe(A) for n-tuples of operators can be more compli-
cated. As in Theorem 19.17 one can show that the set σT (A) \ σ̂Te(A) consists of
countable many isolated points.

We are going to show that σT (A) \ σTe(A) is always an analytic set.

Let U ⊂ Cn be an open set. Recall that a subset M ⊂ U is called analytic
in U if for every w ∈ U there exists a neighbourhood U0 of w and a family
{fα : α ∈ Λ} ⊂ H(U0) such that M ∩ U0 = {z ∈ U0 : fα(z) = 0 for all α ∈ Λ}.

The set {fα} can be always chosen to be finite, see [GR, p. 86].

We start with the following lemma:

Lemma 4. Let U ⊂ Cn be an open subset, let T : U → B(X, Y ) be an analytic
function, let k ∈ N. Then the set {z ∈ U : dimRanT (z)) < k} is analytic.

Proof. If x1, . . . , xk ∈ X , y∗
1 , . . . , y∗

k ∈ Y ∗, z ∈ U and dim RanT (z) < k, then the
vectors T (z)x1, . . . , T (z)xk are linearly dependent and det

(〈T (z)xi, y
∗
j 〉
)

= 0.
On the other hand, if dimRanT (z) ≥ k, then there are vectors x1, . . . , xk ∈ X

and y∗
1 , . . . , y∗

k ∈ Y ∗ such that 〈T (z)xi, y
∗
j 〉 = δij , and so det

(〈T (z)xi, y
∗
j 〉
) �= 0.

Thus{
z ∈ U : dimRanT (z)) < k

}
=

{
z ∈ U : det

(〈T (z)xi, y
∗
j 〉
)

= 0 for all x1, . . . , xk ∈ X, y∗
1 , . . . , y

∗
k ∈ Y ∗},

which is an analytic set. �

Corollary 5. Let X, Y, Z be Banach spaces and let U be an open subset of Cn. Let
S : U → B(X, Y ) and T : U → B(Y, Z) be analytic functions and k ∈ N. Then the
set

{
z ∈ U : dimRanS(z)/

(
Ran S(z) ∩ KerT (z)

)
< k

}
is analytic.

Proof. We have dimRan S(z)/
(
RanS(z)∩Ker T (z)

)
= dim Ran

(
T (z)S(z)

)
, so the

corollary follows from the preceding lemma. �

Lemma 6. Let U be an open subset of Cn, let S : U → B(X, Y ) and T : U →
B(Y, Z) be functions regular in U . Suppose that KerT (z) e=RanS(z) for all z ∈ U .
Then the function α defined by

α(z) = dim KerT (z)/(KerT (z) ∩ Ran S(z))
− dim RanS(z)/(KerT (z) ∩ Ran S(z))

is constant on each component of U .
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Proof. Let U0 be a component of U . If there is no w ∈ U0 with α(w) < ∞, then
clearly α(z) = ∞ on U0.

Let w ∈ U satisfy α(w) < ∞. Then limz→w δ̂
(
KerT (w), KerT (z)

)
= 0 and

limz→w δ̂
(
RanS(w), Ran S(z)

)
= 0 by Theorem 10.21 (iv) and (vi). Thus, by

Theorem 27.8, α(z) = α(w) for all z sufficiently close to w.
A standard argument gives that α(z) is constant on the whole component of

connectivity U0. �

Lemma 7. Let U be an open subset of Cn, let S : U → B(X, Y ) and T : U →
B(Y, Z) be analytic functions satisfying T (z)S(z) = 0 (z ∈ U). Suppose that
there are Banach spaces X1 and Z1 and regular analytic functions S1 : U →
B(X1, Y ), T1 : U → B(Y, Z1) satisfying KerT1(z) ⊂ RanS(z) ⊂ KerT (z) ⊂
RanS1(z), see the diagram below. Suppose that dimRanS1(z)/ KerT1(z) < ∞
for all z ∈ U . Then the set

{
z ∈ G : dimKerT (z)/ RanS(z) ≥ k

}
is analytic in U

for each k ≥ 0.

X
S(z)−→

X1⏐⏐2S1(z)

Y⏐⏐2T1(z)

Z1

T (z)−→ Z

Proof. We can assume that U is connected. For each j set

Aj =
{
z ∈ U : dimRanS(z)/ KerT1(z)) ≤ j

}
and

Bj =
{
z ∈ U : dimRanS1(z)/ KerT (z) ≤ j

}
.

By Corollary 5, Aj and Bj are analytic sets. By Lemma 6, there is a constant c
such that dimRanS1(z)/ KerT1(z) = c in U . Thus{

z ∈ G : dimKerT (z)/ RanS(z) ≥ k
}

=
{
z ∈ G : dimRanS1(z)/ KerT (z) + dim RanS(z)/ KerT1(z) ≤ c − k

}
=

c−k⋃
i=0

Ai ∩ Bc−k−i.

The last set is clearly analytic. �

Theorem 8. Let U be an open subset of Cn, let S : U → B(X, Y ) and T :
U → B(Y, Z) be analytic operator-valued functions. Suppose that T (z)S(z) = 0,
dimKerT (z)/ RanS(z) < ∞ and the operators S(z) and T (z) have generalized
inverses for all z ∈ U . Let k ∈ N. Then the set {z ∈ G : α(z) ≥ k} is analytic.
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Proof. Let w ∈ U . Let V be a generalized inverse of S(w), so V S(w)V = V and
S(w)V S(w) = S(w). Set P = I − S(w)V . Then P is a projection and KerP =
RanS(w).

The operator I +(S(z)−S(w))V is invertible for all z close to w. Set P (z) =
P
(
I + (S(z) − S(w))V

)−1 ∈ B(Y ). Since Ran S(z) = RanP is constant, the
function z �→ P (z) is regular at w. We prove that KerP (z) ⊂ RanS(z). Let
y ∈ KerP (z). Then(

I +
(
S(z) − S(w)

)
V
)−1

y ∈ KerP = Ran S(w),

and so y ∈
(
I +

(
S(z) − S(w)

)
V
)
S(w)X = S(z)V S(w)X ⊂ RanS(z).

Similarly, let W be a generalized inverse of T (w). Set Q = I −WT (w). Then
Q is a projection with RanQ = KerT (w). For z close to w define Q(z) ∈ B(Y )

by Q(z) =
(
I + W

(
T (z) − T (w)

))−1

Q. Since KerQ(z) = KerQ is constant, the
function z �→ Q(z) is regular. We have

WT (z) = WT (w) + W
(
T (z)− T (w)

)
= I − Q + W

(
T (z)− T (w)

)
and(
I + W

(
T (z)− T (w)

))−1

WT (z) = I −
(
I + W

(
T (z)− T (w)

))−1

Q = I − Q(z).

Consequently, KerT (z) ⊂ RanQ(z). Thus we have

KerP (z) ⊂ Ran S(z) ⊂ KerT (z) ⊂ Ran Q(z)

and

dimRanQ(w)/KerP (w) = dimRanQ/KerP = dimKerT (w)/Ran S(w) < ∞.

The rest follows from Lemma 7. �

In particular, if A = (A1, . . . , An) is an n-tuple of commuting Hilbert space
operators, then the difference σT (A) \ σTe(A) is an analytic set.

To show the same statement for Banach space operators is a little bit more
complicated. We need the following two lemmas.

Lemma 9. Let U be an open subset of Cn, let S : U → B(X, Y ) and T : U →
B(Y, Z) be analytic functions satisfying T (z)S(z) = 0 (z ∈ U). Suppose that
there are Banach spaces X1, Z1, finite-dimensional Banach spaces F, G and reg-
ular analytic functions S1 : U → B(X1, Y ⊕ F ) and T1 : U → B(Y ⊕ G, Z1)
with the property that Ran S1(z) ⊃ KerT (z), RanS(z) + G ⊃ KerT1(z) and
dim

(
Ran S1(z)+G

)
/ KerT1(z) < ∞ (z ∈ U), see the diagram below. Let k ∈ N.
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Then the set
{
z ∈ U : dimKerT (z)/ RanS(z) ≥ k

}
is analytic in U .

X1

X

S1(z)−→
−→
S(z)

{
F
⊕
Y
⊕
G

} T (z)−→
−→
T1(z)

Z

Z1

Proof. Set Y ′ = Y ⊕ F ⊕ G. For z ∈ U define operators S′(z) : X ⊕ G → Y ′,
T ′(z) : Y ′ → Z ⊕ F , S′

1(z) : X1 ⊕ G → Y ′ and T ′
1(z) : Y ′ → Z1 ⊕ F by

S′(z)(x ⊕ g) = S(z)x + g,

T ′(z)(y ⊕ f ⊕ g) = T (z)y + f,

S′
1(z)(x1 ⊕ g) = S1(z)x1 + g and

T ′
1(z)(y ⊕ f ⊕ g) = T1(z)(y ⊕ g) + f

for all x ∈ X , f ∈ F , g ∈ G and x1 ∈ X1. Thus RanS′(z) = RanS(z) + G,
KerT ′(z) = KerT (z)+G, RanS′

1(z) = RanS1(z)+G and KerT ′
1(z) = KerT1(z).

We have RanS′
1(z) ⊃ KerT ′(z) ⊃ Ran S′(z) ⊃ KerT ′

1(z). Clearly, S′
1 and T ′

1 are
regular functions.

By Lemma 7, the set
{
z ∈ U : dimKerT ′(z)/ RanS′(z) ≥ k

}
is analytic

in U . This set, however, is equal to {z ∈ U : dimKerT (z)/ RanS(z) ≥ k}. �
Lemma 10. Let U be an open subset of Cn, let S : U → B(X, Y ) and T :
U → B(Y, Z) be analytic operator-valued functions satisfying T (z)S(z) = 0
and dimKerT (z)/ RanS(z) < ∞ (z ∈ U). Let w ∈ U . Suppose that there
are finite-dimensional spaces G, H , a neighbourhood U1 of w and a regular an-
alytic function T1 : U1 → B(Y ⊕ G, Z ⊕ H) such that T1(z)|Y = T (z). Then
there exist a finite-dimensional space F , a neighbourhood U2 of w and a regular
analytic function S1 : U2 → B(X ⊕ F, Y ⊕ G) such that S1(z)|X = S(z) and
RanS1(z) = KerT1(z) ⊃ KerT (z).

X
⊕
F

} S(z)−→
−→
S1(z)

Y
⊕
G

} T (z)−→
−→
T1(z)

Z
⊕
H

}

Proof. We have

dimKerT1(z)/ RanS(z) = dim KerT1(z)/ KerT (z)
+ dimKerT (z)/RanS(z)<∞.

Let y1, . . . , yr be linearly independent vectors in KerT1(w) such that

RanS(w) ∨ {y1, . . . , yr} = KerT1(w).

Since T1 is regular, for i = 1, . . . , r there exists a (Y ⊕G)-valued analytic function
ϕi defined in a neighbourhood of w such that T1(z)ϕi(z) = 0 and ϕi(w) = yi. Let
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F be an r-dimensional space with a basis f1, . . . , fr and define S1(z) : X ⊕ F →
Y ⊕ G by

S1(z)
(
x ⊕

r∑
i=1

βifi

)
= S(z)x +

r∑
i=1

βiϕi(z) (x ∈ X, βi ∈ C).

We have T1(z)S1(z) = 0 and RanS1(w) = KerT1(w), so there is a neighbourhood
of w where KerT1(z) = RanS1(z). Thus S1 is regular in a neighbourhood of w
and satisfies all the conditions required. �

Theorem 11. Let X0, X1, . . . , Xn be Banach spaces, U an open subset of Cn. Let

0 → X0
δ0(z)−→X1

δ1(z)−→ · · · δn−1(z)−→ Xn → 0

be a Fredholm complex analytically dependent on z ∈ U .

Let 0 ≤ j ≤ n and k ∈ N. Then the set
{
z ∈ U : dimKer δj/ Ran δj−1 ≥ k

}
is analytic in U .

Proof. Let w ∈ U . Using Lemma 10 repeatedly it is easy to see by downward
induction that there are finite-dimensional spaces Fj−1, Fj and a regular an-
alytic function S(z) : Xj−1 ⊕ Fj−1 → Xj ⊕ Fj defined on a neighbourhood
of w such that S(z)|Xj−1 = δj−1(z) and RanS(z) ⊃ Ker δj(z). In particular,
dimRanS(z)/ Ker δj−1(z) < ∞.

Consider the “adjoint” complex

0 → X∗
0

δ∗
0 (z)←−X∗

1

δ∗
1 (z)←− · · · δ∗

n−1(z)←− X∗
n → 0

where we write for short δ∗j (z) instead of (δj(z))∗. Since this complex is also Fred-
holm, similarly as above there exist finite-dimensional spaces Gj and Gj+1 and a
regular analytic function T (z) : X∗

j+1 ⊕ Gj+1 → X∗
j ⊕ Gj defined in a neighbour-

hood of w such that RanT (z) ⊃ Ker δ∗j−1(z) and

dim RanT (z)/ Ker δ∗j−1(z) < ∞.

Further, the operator S(z)∗ : X∗
j ⊕ F ∗

j → X∗
j−1 ⊕ F ∗

j−1 satisfies

KerS(z)∗ = (RanS(z))⊥ ⊂ (Ker δj(z))⊥ + F ∗
j = Ran δ∗j (z) + F ∗

j .

By Lemma 9, the set
{
z : dimKer δ∗j−1(z)/ Ran δ∗j (z) ≥ k

}
is analytic. Since

dimKer δ∗j−1(z)/ Ran δ∗j (z) = dim Ker δj(z)/ Ran δj−1(z),

this finishes the proof. �

Corollary 12. Let A = (A1, . . . , An) be an n-tuple of commuting operators on a
Banach space X . Then the set σT (A) \ σTe(A) is analytic in Cn \ σTe(A).
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Comments on Chapter IV

C.25.1. The Taylor spectrum was introduced by J.L. Taylor in [Ta1]. The “partial
Taylor spectra” σπ,k and σδ,k were defined by S�lodkowski [Sl2].

The projection property for the Taylor spectrum was proved in [Ta1]; we
followed a simpler argument from [Sl2].

C.25.2. Let A, B be C∗-algebras, A ⊂ B and let a = (a1, . . . , an) be commuting el-
ements of A. Consider the n-tuples LA

a = (LA
a1

, . . . , LA
an

) and LB
a = (LB

a1
, . . . , LB

an
)

of multiplication operators by a in the algebras A and B, respectively. By [Cu2],
σT (LA

a ) = σT (LB
a ). This phenomenon, which is well known for single elements, is

called the spectral permanence.

C.25.3. Let A = (A1, . . . , An) be commuting operators on a Banach space X . Let
M ⊂ B(X) be a commutative algebra containing A1, . . . , An. Then M is contained
in the commutant (A)′ of A. As in Proposition 25.3 one can show that

σT (A) ⊂ σ
(A)′

l (A) ⊂ σM(A).

There is an example in [Ta1] (for n = 5) that the first inclusion is strict. Thus
in general the Taylor spectrum is smaller than the spectrum in any commutative
subalgebra of B(X) containing A1, . . . , An.

The example was improved by Albrecht [Al2] who constructed a commuting
n-tuple A = (A1, . . . , An) (for n ≥ 2) such that the Taylor functional calculus is
richer (it contains more analytic functions) than the calculus in any commutative
algebra containing A. Moreover, there are two maximal commutative subalgebras
M1, M2 containing A such that the spectra σM1(A) and σM2(A) are different.

C.26.1. The split spectrum is a natural modification of the Taylor spectrum. It
was considered, e.g., in [Es3] and [Ha6]; some ideas appeared implicitly already in
the original paper of Taylor [Ta1].

In Hilbert spaces the Taylor spectrum and the split spectrum coincide. The
same is true for commuting tuples of operators in �∞ and �1, see [Ha6].

In general, these two spectra are different. An example of a commuting pair
of operators A = (A1, A2) with σS(A) �= σT (A) was given in [Mü17]. The example
also shows that in general there is no inclusion between the Taylor and Harte
spectrum, cf. [BS].

C.26.2. Theorem 26.7 was proved in [Cu5], see also [EP].

C.26.3. Equivalently, it is possible to use for the definition of σr,k and σl,k the
chain Koszul complex, see Remark 25.12. From the considerations there it is easy
to see that δp

A has generalized inverse if and only if εn−p
A has generalized inverse.

C.27.1. Theorem 27.3 is usually attributed to Bartle-Graves [BG], see also [ZKKP].
Theorem 27.7 is due to Fainshtein [Fa3]; the partial case of R1 ⊂ N1 was proved
in [FS2], see also [Va7]. Theorem 10 was proved in [Mü18].
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C. 28.1 The split functional calculus for Hilbert space operators was constructed
by Vasilescu see [Va3], [Va6]. For Banach space operators it was generalized in
[KM1].

For Hilbert space operators it is possible to choose V = (δA−z + δ∗A−z)
−1 in

Corollary 28.2. Formula (7) defining the Taylor functional calculus is then quite
explicit.

C.29.1. Definition 29.1 is due to Albrecht [Al1]. An alternative definition of the
local spectrum was given by Frunza [Fr] as the complement of the union of all
open sets U ⊂ Cn on which there is a solution of the equation xs = (∂̄ + δA−z)ψ.

The equivalence of these two definitions (Theorem 29.2) was shown by Es-
chmeier [Es2].

C.29.2. An n-tuple A of commuting operators on X is said to have property SVEP
(single value extension property) if S(A) = ∅. By Definition 29.4, A has SVEP if
and only if the sequence

0 → Λ0
[
s, dz̄, C∞(G, X)

] ∂̄+δ−→Λ0
[
s, dz̄, C∞(G, X)

] ∂̄+δ−→ · · ·
· · · ∂̄+δ−→Λn

[
s, dz̄, C∞(G, X)

]
is exact for each open set G ⊂ Cn.

By [Es1], see also [Fr], this is equivalent to the condition that the sequence

0−→Λ0
[
s, H(G, X)

] δ−→Λ0
[
s, H(G, X)

] δ−→ · · · δ−→Λn
[
s, H(G, X)

]
is exact for each open polydisc G ⊂ Cn.

C.29.3. Let A = (A1, . . . , An) be a commuting n-tuple of operators on a Banach
space X and let x ∈ X . As in the case of one operator (cf. C.14.3) it is possible to
define the local functional calculus, see [Es1]. If f is analytic on a neighbourhood
of σx(A), then define

f(A)x =
−1

(2πi)n

∫
Γ

Pfψ ∧ dz,

where (∂̄+δ)ψ = xs and Γ is a smooth surface surrounding σx(A). As in the case of
n = 1, f(A) is defined only for those x for which f is analytic on a neighbourhood
of σx(A).

C.29.4. The local spectrum γx(A) does not satisfy the projection property. As an
example, take A1 ∈ B(X) and x ∈ X such that γx(A1) = ∅ (see Example 14.5 (i)),
and let A2 = IX . Then γx(A2) �= ∅, which contradicts to Proposition 7.6.

A similar argument shows that neither the analytic residuum S(A) nor the
local spectrum σx(A) = γx(A) ∪ SA satisfy the projection property. For example,
let A1 be the backward shift and A2 = IX ; then SA1 �= ∅ and SA2 = ∅. For σx, see
Example 14.10 (i).
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Trivially, γx(A1, . . . , An) ⊃ Qγx(A1, . . . , An, An+1) where Q : Cn+1 → Cn

is the natural projection. On the other hand, as in [Es1] one can show that
S(A1,...,An) ⊂ QS(A1,...,An,An+1) and σx(A1, . . . , An) ⊂ Qσx(A1, . . . , An, An+1).

A better situation is for the n-tuples A with SVEP. Then σx(f(A)) =
f(σx(A)) for all x ∈ X and all m-tuples f = (f1, . . . , fm) of functions analytic on
a neighbourhood of σx(A), see [Es1].

C.29.5. Theorem 29.12 was proved in [Va4].

C.30.1. The Taylor functional calculus was constructed in [Ta2]. For simplified
versions of the calculus see [Lev1], [Va4], [Hel1], [Hel2], [Alb], [EP] and [An].

C.30.2. There are many variants of formulas (2), (3) in Section 30 defining the
Taylor functional calculus that differ from each other in the sign in front of the
integral. There are several sources of differences:

(i) Instead of the n-tuple A−z = (A1−z1, . . . , An−zn) it is possible to consider
the n-tuple z − A (which appears naturally in the Cauchy formula). In this
approach the additional factor (−1)n in front of the integrals (2), (3) appears.

(ii) Instead of (1) it is possible to use the convention that the Lebesgue measure
in Cn is (2i)−ndz̄1 ∧ dz1 ∧ · · · ∧ dz̄n ∧ dzn. With this convention the Fubini
theorem becomes more natural. In formula (2), however, the additional factor
(−1)(

n
2) would appear.

(iii) It is also possible to modify the definition of the mappings δp
A in the Koszul

complex as in [Lev1]: δp
Axsi1 ∧ · · · ∧ sip =

∑
j Ajxsi1 ∧ · · · ∧ sip ∧ sj . This

convention results also in the additional factor (−1)(
n
2) in formula (2).

(iv) In order to obtain more symmetrical formulas, it is possible to replace the
variables s1, . . . , sn by dz1, . . . ,dzn. In this case δ and ∂̄ act in the space
Λ[dz, dz̄, C∞(G, X)] and the projection P in formulas (2), (3) can be omitted.

C.30.3. The commutativity of the Gelfand transform with the Taylor functional
calculus (Lemma 30.10 and Corollary 30.11) was proved by Putinar [Pu3], see also
[AS].

The superposition principle (Theorem 30.12) is also due to Putinar [Pu1].

C.30.4. Let A ∈ B(X)n be a commuting n-tuple and U an open neighbourhood of
σT (A). By [Pu2], there is exactly one continuous functional calculus from H(U) to
B(X), which satisfies the spectral mapping property. Thus the Taylor functional
calculus is uniquely determined (in the above sense).

C.32.1. By Theorem 11.4, an operator-valued function T : U → B(X, Y ) is regular
if and only if it can be completed to an exact sequence

T (z)−→ S(z)−→.
Let T : U → B(X, Y ) be k-regular at a point w ∈ U . In general, it is not pos-

sible to complete it to a Fredholm sequence
T (z)−→ S(z)−→ (the opposite implication was

proved in Theorem 32.8). The reason is that, for all z in a certain neighbourhood
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of w, RanT (z) is close to Ran T (w) + Fz for some finite-dimensional subspace Fz

but the space Fz depends on z. If T can be completed to a Fredholm sequence
T (z)−→ S(z)−→, then it is possible to take Fz to be constantly equal to a complement of
RanT (w) in KerS(w).

Example: Let H be a Hilbert space with an orthonormal basis {ei : i ∈ N},
let U = {1/n : n ∈ N} ∪ {0}, T (0) = 0 and let T (1/n) : H → H be defined
by T (1/n)en = n−1en and T (1/n)ej = 0 (j �= n). Then we have δ̂1(Ran T (0),
RanT (1/n)) = 0 for all n and T is a 1-regular function. It is easy to see that it
can not be completed to a Fredholm sequence. Indeed, if S(z)T (z) = 0 for all z,
dimKerS(0) < ∞ and S(0) has closed range, then KerS(1/n) ⊃ {en} and

1 = lim sup
n→∞

δ
(
KerS(1/n), KerS(0)

) ≤ lim sup
n→∞

γ(S(0))−1‖S(1/n)− S(0)‖ = 0,

which is a contradiction.

C.33.1. The concepts of a Fredholm complex and its index (sometimes called the
Euler characteristic) appeared in [Cu1], [Va5] and [FS1]; it is a particular case of a
more general concept of Fredholm complexes of vector bundles [Seg]. An important
motivation for the study of Fredholm complexes was the Taylor spectrum.

The index of Fredholm complexes of Hilbert spaces can be reduced to the
index of a certain operator, see [AV]. In the context of Banach spaces the situation
is much more complicated.

C.33.2. The basic stability results for index of Fredholm complexes of Banach
spaces (Corollary 33.3 and Theorem 33.7) were proved by Vasilescu [Va5], see also
[AV]. Here we present a new proof based on k-regular functions. The stability of
index under compact perturbations (Theorem 33.6) was a long standing problem,
which was answered by Ambrozie [Am2]. His proof is quite technical and he was
forced to consider more general stability results for Fredholm chains, see below.

C.33.3 By a Fredholm chain we mean a sequence K = (Xi, ψi)n
i=0 of the following

type:
0 → X0

ψ0−→X1
ψ1−→· · ·ψn−2−→Xn−1

ψn−1−→Xn → 0, (1)

where Xi are Banach spaces and ψi operators satisfying Kerψi+1
e=Ranψi for all i.

Clearly, in this case the operators ψi have closed ranges.
The index of a Fredholm chain K is defined by

indK =
n∑

i=0

(−1)iαi(K), (2)

where

αj(K) = dimKerψj/(Kerψj ∩ Ran ψj−1) − dim Ranψj−1/(Kerψj ∩ Ran ψj−1).
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A sequence K of the form (1) is called a semi-Fredholm chain if operators ψi

have closed ranges and the index indK is well defined by (2) (either +∞ and −∞
does not appear in the formula).

For semi-Fredholm complexes the definition coincides with Definition 33.1.
An advantage of semi-Fredholm chains is that they are closed under finite-

rank perturbations.
The stability results for index can be generalized to Fredholm and semi-

Fredholm chains.
Some of the results were essentially proved already in Section 33. Let K be

a semi-Fredholm chain. Then:

(i) αj(K′) ≤ αj(K) for all semi-Fredholm chains sufficiently close to K (see
Theorem 33.2).

(ii) indK′ = indK if K = (Xi, ψi)n
i=0 and K′ = (Xi, ψ

′
i)

n
i=0 are semi-Fredholm

chains such that ψi − ψ′
i are finite-rank operators for all i, see Lemma 33.4.

The stability of index of Fredholm chains under small perturbations was proved
by Ambrozie [Am1].

C.33.4. The stability results for the index of Fredholm chains under small and
finite-rank perturbations give immediately the stability of the index of Fredholm
chains under perturbations that are limits of finite-rank operators. The stability
of the index of Fredholm chains under compact perturbations is more difficult. It
was proved by Ambrozie [Am2].

Let K = (Xi, ψi)n
i=0 and K′ = (Xi, ψ

′
i)

n
i=0 be a Fredholm chains and suppose

that ψi − ψ′
i is compact for all i. As in the proof of Theorem 33.10, set X =⊕

i even Xi, Y =
⊕

i odd Xi, T =
⊕

i even ψi and S =
⊕

i odd ψi; similarly define
T ′ and S′.

The main idea is to consider X and Y as subspaces of greater spaces E ⊃
X and F ⊃ Y such that T − T ′ and S − S′ are already limits of finite-rank
operators X → E (Y → F , respectively). As E one can take the space

(
X ×

C〈0, 1〉)/{(x, Jx) : x ∈ Ran(T ′ − T )} where J : Ran(T ′ − T ) → C〈0, 1〉 is an
isometrical embedding. The space F can be constructed similarly.

C.33.5. All stability results can be extended to semi-Fredholm chains in a way
similar to Theorem 33.10. It was done in [AV] and [Mü23].

C.33.6. The inclusion ∂σT (A1, A2) ⊂ σπ(A1, A2) ∪ σδ(A1, A2) (Corollary 33.11)
for Hilbert spaces was proved in [ChT], for Banach spaces see [Wr] and [Cu3].

For more than two commuting operators the inclusion is not true, see [Cu3].
For an n-tuple A of commuting operators we have

∂σT (A) ⊂ σπ,k(A) ∪ σδ,n−k−2(A) (k = 0, . . . , n − 2)

and ∂σT (A) ⊂ σπ,n−1(A) ∩ σδ,n−1(A), see [Mü14].
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More generally, Γk(σT (A),P(n)) ⊂ σπk(A) ∩ σδk(A) and Γk(σT (A),P(n)) ⊂
σπ,k ∪ σδ,k−j−1(A) (0 ≤ j < k ≤ n − 1), where Γk(σT (A),P(n)) are the higher
Shilov boundaries of the set σT (A); for details see [Mü14].

C.34.1. Let S : U → B(X, Y ) and T : U → B(Y, Z) be analytic operator-
valued functions defined in an open set U ⊂ Cn. Suppose that T (z)S(z) = 0
and dimKerT (z)/ RanS(z) < ∞ (z ∈ U). Let k ≥ 0. The following problem is
open:

Problem. Is the set
{
z ∈ U : dimKerT (z)/ RanS(z) ≥ k

}
analytic?

By Theorem 34.8, the answer is positive if RanS(z) is complemented for all
z ∈ U . By [Kab1], [Kab2], the answer is positive if either S(z) ≡ 0 or T (z) ≡ 0;
so the remaining function is semi-Fredholm-valued.

For a discussion about this problem see [Mü23].

C.34.2. The essential Taylor spectrum was studied in [Lev1] and [Fa1]. The fact
that the difference σT (A)\)σTe(A) is an analytic set was announced without proof
in [Lev1], [Lev2]. The present proof is taken from [Mü23], see also [Pu4].



Chapter V

Orbits and Capacity

Let T be an operator on a Banach space X . By an orbit of T we mean a sequence
(T nx)∞n=0, where x ∈ X is a fixed vector. This notion, which originated in the the-
ory of dynamical systems, is closely related to the concepts of local spectral radius
and capacity of an operator. Further motivations come from stability problems of
semigroups of operators and the invariant subspace problem.

In this chapter we give a survey of results concerning orbits and related
concepts. The main tool for most of the results will be the properties of the essential
approximate point spectrum.

35 Joint spectral radius

One of the most important concepts of the spectral theory is that of the spectral
radius of a Banach algebra element. In this section we generalize this notion to
commuting n-tuples.

Two difficulties arise for n ≥ 2: there are many reasonable spectra for com-
muting n-tuples and there is not a unique norm in Cn.

The first difficulty is not a serious problem. We will see later that all reason-
able spectral systems give the same joint spectral radius.

As for the norm in Cn, we consider the �p-norms: for z = (z1, . . . , zn) ∈ Cn

define |z|∞ = max{|zi| : i = 1, . . . , n} and |z|p =
(∑n

i=1 |zi|p
)1/p

for 1 ≤ p < ∞.

Definition 1. Let a = (a1, . . . , an) be a commuting n-tuple of elements in a Banach
algebra A. For 1 ≤ p ≤ ∞ define the spectral radius by

rp(a) = max{|λ|p : λ ∈ σH(a)},

where σH(a) is the Harte spectrum of a, see Definition 8.1.
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Since the Harte spectrum is a compact set, the maximum really exists. For
a single Banach algebra element a1 ∈ A the just defined spectral radius rp(a)
does not depend on p and coincides with the ordinary spectral radius r(a1) =
max{|λ1| : λ1 ∈ σ(a1)}.

The Harte spectrum can be replaced by any other spectral-radius-preserving
spectral system (i.e., any compact-valued spectral system σ̃ satisfying max{|λ1| :
λ1 ∈ σ̃(a1)} = r(a1) for each single element a1).

Proposition 2. Let σ̃ be a spectral-radius-preserving spectral system in a Banach
algebra A. Let ||| · ||| be any norm in Cn. Then

max
{|||λ||| : λ ∈ σ̃(a1, . . . , an)

}
= max

{|||λ||| : λ ∈ σH(a1, . . . , an)
}

for all commuting n-tuples a = (a1, . . . , an) ∈ An.

In particular, max
{|λ|p : λ ∈ σ̃(a1, . . . , an)

}
= rp(a1, . . . , an) for 1 ≤ p ≤ ∞.

Proof. By Theorem 7.22, we have conv σ̃(a1, . . . , an) = conv σH(a1, . . . , an). Thus

max
{|||λ||| : λ ∈ σ̃(a1, . . . , an)

}
= max

{|||λ||| : λ ∈ conv σ̃(a1, . . . , an)
}

= max
{|||λ||| : λ ∈ conv σH(a1, . . . , an)

}
= max

{|||λ||| : λ ∈ σH(a1, . . . , an)
}
. �

The most important result for a single element a1 of a Banach algebra A is
the spectral radius formula,

r(a1) = lim
k→∞

‖ak
1‖1/k = inf

k
‖ak

1‖1/k.

Our goal is to generalize this formula for commuting n-tuples.
Let a = (a1, . . . , an) be a commuting n-tuple of elements of a Banach alge-

bra A. Instead of powers of a single element it is natural to consider all possible
products of a1, . . . , an.

Denote by F (k, n) the set of all functions from {1, . . . , k} to {1, . . . , n}. Let

s′k,∞(a) = max
f∈F (k,n)

r(af(1) · · · af(k))

and

s′k,p(a) =
( ∑

f∈F (k,n)

rp(af(1) · · · af(k))
)1/p

(1 ≤ p < ∞)

(for short we write rp(x) instead of (r(x))p). Similarly, let

s′′k,∞(a) = max
f∈F (k,n)

‖af(1) · · · af(k)‖

and

s′′k,p(a) =
( ∑

f∈F (k,n)

‖af(1) · · ·af(k)‖p

)1/p

(1 ≤ p < ∞).
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Using the standard multi-index notation, we can simplify the definitions of
s′k,p and s′′k,p. For α = (α1, . . . , αn) ∈ Zn

+ write |α| = α1 + · · ·+αn, α! = α1! · · ·αn!
and aα = aα1

1 · · · aαn
n . If k is an integer, k ≥ |α|, then write(

k

α

)
=

k!
α!(k − |α|)!

(for n = 1 this definition coincides with the classical binomial coefficients).
Using this notations, the definitions of s′ and s′′ for a commuting n-tuple

a = (a1, . . . , an) ∈ An assume a simpler form:

s′k,∞(a) = max
{
r(aα) : α ∈ Zn

+, |α| = k
}
,

s′′k,∞(a) = max
{‖aα‖ : α ∈ Zn

+, |α| = k
}
,

and, for 1 ≤ p < ∞,

s′k,p(a) =
( ∑

|α|=k

(
k

α

)
rp(aα)

)1/p

and s′′k,p(a) =
( ∑

|α|=k

(
k

α

)
‖aα‖p

)1/p

.

We will use frequently the following formula (for commuting variables xi):

(x1 + · · · + xn)k =
∑
|α|=k

(
k

α

)
xα.

In particular, for x1 = · · · = xn = 1 we have
∑

|α|=k

(
k
α

)
= nk.

Lemma 3. Let a = (a1, . . . , an) be a commuting n-tuple of elements of a Banach
algebra A, let 1 ≤ p ≤ ∞. Then s′k+l,p(a) ≤ s′k,p(a) · s′l,p(a) and s′′k+l,p(a) ≤
s′′k,p(a) · s′′l,p(a) for all k, l ∈ N.

Proof. The second statement is obvious for p = ∞. For p < ∞ we have(
s′′k,p(a) · s′′l,p(a)

)p

=
∑

f∈F (k,n)

‖af(1) · · ·af(k)‖p ·
∑

g∈F (l,n)

‖ag(1) · · ·ag(l)‖p

≥
∑
f,g

‖af(1) · · ·af(k)ag(1) · · · ag(l)‖p =
(
s′′k+l,p(a)

)p
.

The statements for s′k can be proved similarly using the submultiplicativity of the
spectral radius for commuting elements. �

By Lemma 1.21, the previous lemma implies that limk→∞
(
s′k,p(a)

)1/k exists

and is equal to infk

(
s′k,p(a)

)1/k. Similarly,

lim
k→∞

(
s′′k,p(a)

)1/k = inf
k

(
s′′k,p(a)

)1/k
.
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This leads to the following definition:

Definition 4. Let a = (a1, . . . , an) be a commuting n-tuple of elements in a Banach
algebra A. For 1 ≤ p ≤ ∞ we write

r′p(a) = lim
k→∞

(
s′k,p(a)

)1/k

and
r′′p (a) = lim

k→∞
(
s′′k,p(a)

)1/k
.

Thus
r′∞(a) = lim

k→∞
(
max{r(aα) : |α| = k})1/k

and
r′′∞(a) = lim

k→∞
(
max{‖aα‖ : |α| = k})1/k

.

For 1 ≤ p < ∞ we have

r′p(a) = lim
k→∞

( ∑
f∈F (k,n)

rp(af(1) · · · af(k))
)1/pk

= lim
k→∞

( ∑
|α|=k

(
k

α

)
rp(aα)

)1/pk

and

r′′p (a) = lim
k→∞

( ∑
f∈F (k,n)

‖af(1) · · · af(k)‖p

)1/pk

= lim
k→∞

( ∑
|α|=k

(
k

α

)
‖aα‖p

)1/pk

.

We start with the spectral radius formula in the simplest case of p = ∞.

Theorem 5. Let a = (a1, . . . , an) be an n-tuple of mutually commuting elements
of a Banach algebra A. Then

r∞(a) = max{r(ai) : i = 1, . . . , n} = r′∞(a) = r′′∞(a).

Proof. (i) The inequality r′∞(a) ≤ r′′∞(a) is clear.

(ii) r′′∞(a) ≤ max{r(ai) : i = 1, . . . , n}: Write R = max{r(ai) : i = 1, . . . , n}. Let
ε > 0. There exists k ∈ N such that ‖aj

i‖ ≤ (R + ε)j for all j > k and 1 ≤ i ≤ n.
Let

M = max
{‖aj

i‖(R + ε)−j : 1 ≤ i ≤ n, 0 ≤ j ≤ k
}
.

Then M ≥ 1 and ‖aj
i‖ ≤ M(R + ε)j for all j ∈ N, 1 ≤ i ≤ n.

Let α ∈ Zn
+. Then

‖aα‖ ≤
n∏

i=1

‖aαi

i ‖ ≤
n∏

i=1

M(R + ε)αi = Mn(R + ε)|α|.

Thus s′′j,∞(a) ≤ Mn(R + ε)j and r′′∞(a) = limj→∞
(
s′′j,∞(a)

)1/j ≤ R + ε. Letting
ε → 0 gives r′′∞(a) ≤ R.
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(iii) max{r(ai) : i = 1, . . . , n} ≤ r∞(a): Let i ∈ {1, . . . , n} and let µ ∈ σ(ai) satisfy
|µ| = r(ai). By the projection property, there exists λ = (λ1, . . . , λn) ∈ σH(a) such
that λi = µ. Thus r∞(a) ≥ |λ|∞ ≥ |λi| = r(ai).

(iv) r∞(a) ≤ r′∞(a): Let λ = (λ1, . . . , λn) ∈ σH(a) and k ∈ N. Then

s′k,∞ = max
{
r(aα) : α ∈ Zn

+, |α| = k
} ≥ max

{
r(ak

i ) : i = 1, . . . , n
}

≥ max
{|λi|k : i = 1, . . . , n

}
= |λ|k∞.

Thus r′∞(a) = limk→∞ s′1/k
k,∞ ≥ |λ|∞, and so r′∞(a) ≥ r∞(a). �

Similar formulas are also true for p < ∞; the proofs, however, are more
complicated.

Theorem 6. Let a = (a1, . . . , an) be an n-tuple of mutually commuting elements
of a Banach algebra A. Let 1 ≤ p < ∞. Then

rp(a) = r′p(a) = r′′p (a).

Proof. The inequality r′p(a) ≤ r′′p (a) is clear.

We show that rp(a) ≤ r′p(a).
Let λ = (λ1, . . . , λn) ∈ σH(a). Denote by A0 the closed subalgebra of A

generated by the unit 1 and the elements a1, . . . , an. Let h : A0 → C be a multi-
plicative functional such that h(aj) = λj (j = 1, . . . , n). Then

(s′k,p(a))p =
∑
|α|=k

(
k

α

)
rp(aα) ≥

∑
|α|=k

(
k

α

)
|h(aα)|p

=
∑
|α|=k

(
k

α

)
|λ1|pα1 · · · |λn|pαn =

(|λ1|p + · · · + |λn|p
)k = |λ|pk

p .

So (s′k,p(a))1/k ≥ |λ|p and

r′p(a) = lim
k→∞

s′k,p(a)1/k ≥ max{|λ|p : λ ∈ σH(a)} = rp(a).

For the proof of the remaining inequalities it is convenient to reformulate the
definitions of r′p(a) and r′′p (a).

Recall that the number of all partitions of the set {1, . . . , k} into n parts is
equal to

(
k+n−1

n−1

) ≤ (k + n − 1)n−1.
We have

max
|α|=k

(
k

α

)
‖aα‖p ≤

∑
|α|=k

(
k

α

)
‖aα‖p ≤

(
k + n − 1

n − 1

)
max
|α|=k

(
k

α

)
‖aα‖p.
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Note that

lim
k→∞

(
k + n − 1

n − 1

)1/k

= 1.

Thus

r′p(a) = lim
k→∞

max
|α|=k

((
k

α

)
r(aα)p

)1/kp

.

Similarly,

r′′p (a) = lim
k→∞

max
|α|=k

((
k

α

)
‖aα‖p

)1/kp

.

We now prove the inequality r′p(a) ≤ rp(a):
Choose k and α ∈ Zn

+, |α| = k. Let µ ∈ σ(aα) satisfy |µ| = r(aα). By
the spectral mapping property, there exists λ = (λ1, . . . , λn) ∈ σH(a) such that
µ = λα1

1 · · ·λαn
n . Then(

k

α

)
rp(aα) =

(
k

α

)
|µ|p =

(
k

α

)
|λ1|α1p · · · |λn|αnp

≤
∑
|β|=k

(
k

β

)
|λ1|β1p · · · |λn|βnp =

(|λ1|p + · · · |λn|p
)k = |λ|pk

p ≤ rpk
p (a).

Thus

r′p(a) = lim
k→∞

max
|α|=k

((
k

α

)
rp(aα)

)1/kp

≤ rp(a).

The remaining inequality r′′p (a) ≤ r′p(a) will be proved by induction on n.
For n = 1, Theorem 6 reduces to the well-known spectral radius formula for

a single element.
Let n ≥ 2 and suppose that the inequality r′′p ≤ r′p is true for all commuting

(n − 1)-tuples. Let a = (a1, . . . , an) be a commuting n-tuple of elements of A.
For each k there is an α ∈ Zn

+, |α| = k such that(
k

α

)
‖aα‖p = max

|β|=k

(
k

β

)
‖aβ‖p.

Using the compactness of 〈0, 1〉n, we can choose a sequence

{α(i)}∞i=1 =
{
(α1(i), . . . , αn(i)

}∞
i=1

⊂ Zn
+

such that limi→∞ |α(i)| = ∞,(|α(i)|
α(i)

)
‖aα(i)‖p = max

|β|=|α(i)|

(|α(i)|
β

)
‖aβ‖p (i = 1, 2, . . . ) (1)
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and the sequences
{

αj(i)
|α(i)|

}∞

i=1
are convergent for j = 1, . . . , n. Write k(i) = |α(i)|

and
tj = lim

i→∞
αj(i)
k(i)

∈ 〈0, 1〉 (j = 1, . . . , n).

By (1), we have

r′′pp (a) = lim
i→∞

((
k(i)
α(i)

)
‖aα(i)‖p

)1/k(i)

.

We distinguish two cases:

(a) There exists j ∈ {1, . . . , n} such that tj = 0. Without loss of generality
we can assume that tn = 0.

Write a′ = (a1, . . . , an−1), α′(i) =
(
α1(i), . . . , αn−1(i)

) ∈ Z
n−1
+ and

k′(i) = |α′(i)| = k(i) − αn(i).

We have limi→∞
k′(i)
k(i) = 1 and ‖aα(i)‖ ≤ ‖a′α′(i)‖ · ‖an‖αn(i). Then

r′′pp (a′) ≥ lim sup
i→∞

((
k′(i)
α′(i)

)
‖a′α′(i)‖p

)1/k′(i)

≥ L1 · L2 · L3,

where

L1 = lim sup
i→∞

((
k′(i)
α′(i)

)(k(i)
α(i)

) )1/k′(i)

, L2 = lim
i→∞

((
k(i)
α(i)

)
‖aα(i)‖p

)1/k′(i)

and
L3 = lim

i→∞
‖an‖−αn(i)p/k′(i).

Since limi→∞
αn(i)
k′(i) = 0, we have L3 = 1.

Furthermore,

L2 = lim
i→∞

(((
k(i)
α(i)

)
‖aα(i)‖p

)1/k(i)
)k(i)/k′(i)

= r′′pp (a).

Finally,

L1 = lim sup
i→∞

(
k′(i)! · αn(i)!

k(i)!

)1/k′(i)

≥ lim sup
i→∞

((αn(i)
3

)αn(i)

k(i)αn(i)

)1/k′(i)

= lim sup
i→∞

(
αn(i)
3k(i)

)αn(i)
k(i) · k(i)

k′(i)
= 1,
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since limi→∞
k(i)
k′(i) = 1 and

lim
i→∞

(
αn(i)
3k(i)

)αn(i)
k(i)

= lim
x→0+

(
x

3

)x

= lim
x→0+

ex(ln x−ln 3) = 1.

Thus r′′p (a′) ≥ r′′p (a).
By the induction assumption, we have r′′p (a′) = r′p(a

′) = rp(a′) and, by
definition, rp(a′) ≤ rp(a) = r′p(a). Hence r′′p (a) ≤ r′p(a).

(b) It remains the case tj > 0 (j = 1, . . . , n), where tj = limi→∞
αj(i)
k(i) .

Choose ε > 0, ε < min1≤j≤n
tj

n . For i sufficiently large and j = 1, . . . , n we have

tj − ε

4
≤ αj(i)

k(i)
≤ tj +

ε

4
. (2)

We approximate t1, . . . , tn by rational numbers. Fix positive integers d and
c1, . . . , cn such that

tj − ε

2
≤ cj

d
≤ tj − ε

4
(j = 1, . . . , n).

Let γ = (c1, . . . , cn) and u = aγ = ac1
1 · · · acn

n . For each i we can write k(i) =
m(i)d + z(i), where 0 ≤ z(i) ≤ d − 1. For i sufficiently large we have

cj

d
≤ αj(i)

k(i)
,

αj(i)
k(i)

− cj

d
≤ 3ε

4

and

αj(i) − m(i)cj = αj(i) − k(i) − z(i)
d

· cj = k(i)
(

αj(i)
k(i)

− cj

d

)
+

z(i)cj

d
.

Thus, for 1 ≤ j ≤ n and for i large enough,

0 ≤ αj(i) − m(i)cj ≤ k(i)
3ε

4
+ cj ≤ εk(i), (3)

and so

0 ≤ k(i) − m(i)|γ| =
n∑

j=1

(
αj(i) − m(i)cj

) ≤ εnk(i). (4)

We have

‖aα(i)‖ ≤ ‖am(i)c1
1 · · ·am(i)cn

n ‖ · ‖a1‖α1(i)−m(i)c1 · · · ‖an‖αn(i)−m(i)cn

≤ ‖um(i)‖ · Knεk(i),
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where K = max{1, ‖a1‖, . . . , ‖an‖}. Then

r′pp (a) ≥ lim sup
i→∞

((
m(i)|γ|
m(i)γ

)
rp(am(i)γ)

)1/m(i)|γ|

= lim sup
i→∞

(
m(i)|γ|
m(i)γ

)1/m(i)|γ|
· r(u)p/|γ|

= lim sup
i→∞

((
m(i)|γ|
m(i)γ

)
‖um(i)‖p

)1/m(i)|γ|
≥ L1 · L2 · L3,

where

L1 = lim inf
i→∞

((m(i)|γ|
m(i)γ

)(k(i)
α(i)

) )1/m(i)|γ|
,

L2 = lim inf
i→∞

((
k(i)
α(i)

)
‖aα(i)‖p

)1/m(i)|γ|

and

L3 = lim inf
i→∞

K−nεpk(i)/m(i)|γ|.

By (4), we have

1 ≤ k(i)
m(i)|γ| ≤

1
1 − nε

(5)

for all i sufficiently large. Thus L3 ≥ K− nεp
1−nε .

Since

lim
i→∞

((
k(i)
α(i)

)
‖aα(i)‖p

)1/k(i)

= r′′pp (a),

we have L2 ≥ min
{
r′′pp (a), (r′′pp (a))1/1−nε

}
.

To estimate L1, we use the well-known Stirling formula

l! = lle−l
√

2πl(1 + o(l)).

Consequently,

(1 − ε)
(αj(i)

e

)αj(i)/m(i)|γ|
≤ (

αj(i)!
)1/m(i)|γ| ≤ (1 + ε)

(αj(i)
e

)αj(i)/m(i)|γ|

for j = 1, . . . , n and for all i sufficiently large. Similar estimates we can use for
(m(i)cj)!, (m(i)|γ|)! and |α(i)|!. Thus, for i sufficiently large, we have

(
to simplify
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the expressions we write m, k and α instead of m(i), k(i) and α(i), respectively
)

((
m|γ|
mγ

)(
k
α

) )1/m|γ|
=

( (m|γ|)!α1! · · ·αn!
k!(mc1)! · · · (mcn)!

)1/m|γ|

≥
(1 − ε

1 + ε

)n+1 m|γ| · αα1/m|γ|
1 · · ·ααn/m|γ|

n · ek/m|γ| · ec1/|γ| · · · ecn/|γ|

e · eα1/m|γ| · · · eαn/m|γ| · kk/m|γ| · (mc1)c1/|γ| · · · (mcn)cn/|γ|

=
(1 − ε

1 + ε

)n+1( α1

mc1

)c1/|γ|
· · ·

( αn

mcn

)cn/|γ|
α

(α1−mc1)/m|γ|
1 · · ·

α(αn−mcn)/m|γ|
n · m|γ|

kk/m|γ|

≥
(1 − ε

1 + ε

)n+1

·
(α1

k

)(α1−mc1)/m|γ|
· · ·

(αn

k

)(αn−mcn)/m|γ|
· m|γ|

k
.

By (3) and (5), we have

αj − mcj

m|γ| =
αj − mcj

k
· k

m|γ| ≤
ε

1 − nε
,

and so, by (2),

L1 ≥
(1 − ε

1 + ε

)n+1

(1 − nε)
(
(t1 − ε/4) · · · (tn − ε/4)

) ε
1−nε .

Hence

r′pp (a) ≥
(1 − ε

1 + ε

)n+1

(1 − nε)
(
(t1 − ε/4) · · · (tn − ε/4)

) ε
1−nε

· K− nεp
1−nε · min

{
r′′pp (a), (r′′pp (a))1/1−nε

}
.

Letting ε → 0 yields r′p(a) ≥ r′′p (a). �

We now apply the previous result to the case of n-tuples of operators.
Let T = (T1, . . . , Tn) be an n-tuple of commuting operators on a Banach

space X . Set

‖T ‖∞ = sup
{‖Tjx‖ : j = 1, . . . , n, x ∈ X, ‖x‖ = 1

}
and, for 1 ≤ p < ∞,

‖T ‖p = sup
{( n∑

j=1

‖Tjx‖p

)1/p

: x ∈ X, ‖x‖ = 1
}

.

Equivalently, ‖T ‖p is the norm of the operator δT : X → Xn
p , where Xn

p is the
direct sum of n copies of X endowed with the �p-norm, and δT x = T1x⊕· · ·⊕Tnx.



36. Capacity 321

Let T = (T1, . . . , Tn) ∈ B(X)n and S = (S1, . . . , Sm) ∈ B(X)m. Denote by
TS the mn-tuple

TS = (T1S1, . . . , T1Sm, T2S1, . . . , T2Sm, . . . , TnS1, . . . , TnSm).

Further, let T 2 = TT and T k+1 = T · T k (k ∈ N). With this notation we can
state the spectral radius formula in a familiar way:

Theorem 7. Let T = (T1, . . . , Tn) be an n-tuple of mutually commuting operators

on a Banach space X , let 1 ≤ p ≤ ∞. Then rp(T ) = limk→∞ ‖T k‖1/k
p .

Proof. For p = ∞ the statement follows directly from Theorem 5. Suppose that
1 ≤ p < ∞. We have

‖T k‖p = sup
‖x‖=1

( ∑
|α|=k

(
k

α

)
‖T αx‖p

)1/p

and

rp(T ) = lim
k→∞

( ∑
|α|=k

(
k

α

)
‖T α‖p

)1/kp

= lim
k→∞

max
|α|=k

((
k

α

)
‖T α‖p

)1/kp

= lim
k→∞

max
|α|=k

sup
‖x‖=1

((
k

α

)
‖T αx‖p

)1/kp

= lim
k→∞

sup
‖x‖=1

max
|α|=k

((
k

α

)
‖T αx‖p

)1/kp

= lim
k→∞

sup
‖x‖=1

( ∑
|α|=k

(
k

α

)
‖T αx‖p

)1/kp

= lim
k→∞

‖T k‖1/k
p . �

36 Capacity

In this section we study the notion of capacity in Banach algebras. This notion
was inspired by the classical capacity of compact subsets of C that is studied in
potential theory.

We start with the capacity of single Banach algebra elements.
For k ∈ N denote by P1

k the set of all complex polynomials in one variable of
degree k with leading coefficient equal to 1 (these polynomials are called monic).

Let a be an element of a Banach algebra A. For k ∈ N set capk a =
inf{‖p(a)‖ : p ∈ P1

k}. Since the product of two monic polynomials is again monic,
we have

capk+m a ≤ capk a · capm a

for all k, m ∈ N. By Lemma 1.21, this implies that the limit limk→∞(capk a)1/k

exists and is equal to infk(capk a)1/k.
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Definition 1. The capacity of an element a of a Banach algebra A is defined by

capa = lim
k→∞

(capk a)1/k = inf
k

(capk a)1/k.

Clearly, there is an analogy between the capacity and the spectral radius
r(a) = limk→∞ ‖an‖1/n = infk ‖ak‖1/k. We have capk a ≤ ‖T k‖ for all k, and so
capa ≤ r(a).

The capacity in Banach algebras is closely related to the classical capacity
of compact subsets of C. If K is a non-empty compact subset of C and k ∈ N,
then we set capk K = inf{‖p‖K : p ∈ P1

k}. As above it is easy to see that the
limit limk→∞(capk K)1/k exists and is equal to the infimum. The capacity of K is
defined by

cap K = lim
k→∞

(capk K)1/k = inf
k

(capk K)1/k.

The use of the name capacity for Banach algebras elements is also justified
by the following observation: if C(K) is the algebra of all continuous functions on
K with the sup-norm, and a ∈ C(K) is defined by a(z) = z (z ∈ K), then the
capacity of a in the Banach algebra C(K) is equal to the classical capacity of the
set K. Thus, in some sense, the capacity in Banach algebras is a generalization of
the classical capacity of compact sets.

The next theorem shows that these two capacities are connected even more:

Theorem 2. Let a be an element in a Banach algebra A. Then:

(i) cap a = limk→∞(cap′
k a)1/k = infk(cap′

k a)1/k, where

cap′
k a = inf

{
r(p(a)) : p ∈ P1

k

}
;

(ii) cap a = cap σ(a).

Proof. (i) If k, l ∈ N, p ∈ P1
k and q ∈ P1

l , then pq ∈ P1
k+l and r((pq)(a)) ≤

r(p(a)) · r(q(a)). Thus cap′
k+l a ≤ cap′

k a · cap′
l a. As above, this implies that the

limit limk→∞(cap′
k a)1/k exists and is equal to the infimum.

Obviously, cap′
k a ≤ capk a for all k, and so limk→∞(cap′

k a)1/k ≤ capa.
Conversely, let p ∈ P1

k . For all m ∈ N we have

‖(p(a))m‖1/km ≥ (capkm a)1/km ≥ capa,

and so r(p(a)) = limm→∞ ‖(p(a))m‖1/m ≥ (cap a)k. Thus r(p(a))1/k ≥ cap a and
(cap′

k a)1/k ≥ capa for all k ∈ N. Hence limk→∞(cap′
k a)1/k ≥ capa.

(ii) For each p ∈ P1
k we have

r(p(a)) = max
{|µ| : µ ∈ σ(p(a))

}
= max

{|p(z)| : z ∈ σ(a)
}

= ‖p‖σ(a),

and so cap′
k a = capk σ(a). Thus

capσ(a) = lim
k→∞

(cap′
k a)1/k = cap a. �
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We next generalize the concept of capacity to commuting n-tuples of Banach
algebra elements.

A polynomial of degree ≤ k in n variables can be written as

p(z1, . . . , zn) =
∑

α∈Z
n
+

|α|≤k

cαzα,

where, as usually, zα = zα1
1 · · · zαn

n and cα ∈ C. We say that p is monic of degree k
if

∑
|α|=k |cα| = 1. The set of all polynomials of degree ≤ k in n variables will be

denoted by Pk(n). Denote by P1
k(n) the set of all monic polynomials of degree k.

Let a = (a1, . . . , an) be mutually commuting elements of a Banach algebra A.
As in the one variable case, for k ∈ N set

capk a = inf
{‖p(a)‖ : p ∈ P1

k(n)
}
.

For n ≥ 2 there is a technical difficulty since the product of two monic polynomial
need not be monic. Therefore the sequence capk a is not submultiplicative and it
is not clear that the limit limk→∞(capk a)1/k exists (we will see later that this is
still true). Therefore we define:

Definition 3. Let a = (a1, . . . , an) be a commuting n-tuple of elements in a Banach
algebra A. The capacity of the n-tuple a is defined by

cap a = lim sup
k→∞

(capk a)1/k.

For a compact subset K ⊂ Cn define the corresponding capacity (sometimes
called the Tshebyshev constant) by

capK = lim sup
k→∞

(capk K)1/k,

where
capk K = inf

{‖p‖K : p ∈ P1
k(n)

}
.

We show that the capacity can be expressed in another, more convenient way.
Denote by Qk(n) the set of all polynomials p(z) =

∑
|µ|≤k cµzµ ∈ Pk(n) such that

sup
{∣∣∣ ∑

|ν|=k

cµzν
∣∣∣ : z ∈ Tn

}
= 1,

where Tn =
{
z = (z1, . . . , zn) ∈ Cn : |z1| = · · · = |zn| = 1

}
is the n-dimensional

torus.
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Theorem 4. Let x1, . . . , xn be mutually commuting elements of a Banach algebra
A. Then:

(i) cap (x1, . . . , xn) = limk→∞ capk(x1, . . . , xn)1/k = infk inf
{‖p(x)‖1/k : p ∈

Qk(n)
}
;

(ii) cap (x1, . . . , xn) = infk inf
{
(cap p(x1, . . . , xn))1/k : p ∈ Qk(n)

}
;

(iii) cap (x1, . . . , xn) = cap σH(x1, . . . , xn).

Proof. (i) Let p =
∑

|ν|≤k cνzν ∈ Pk(n). By the Cauchy formulas, for each µ ∈ Zn
+

with |µ| = k we have

|cµ| ≤ max

{∣∣∣∣ ∑
|ν|=k

cνzν

∣∣∣∣ : z ∈ Tn

}
=

∥∥∥∥ ∑
|ν|=k

cνzν

∥∥∥∥
Tn

.

Further, ∥∥∥∥ ∑
|ν|=k

cνzν

∥∥∥∥
Tn

≤
∑
|µ|=k

|cµ| ≤
(

k + n − 1
n − 1

)∥∥∥∥ ∑
|ν|=k

cνzν

∥∥∥∥
Tn

,

where
(
k+n−1

n−1

)
is the number of coefficients cµ with |µ| = k. Write

αk = inf
{‖p(x1, . . . , xn)‖ : p ∈ Qk(n)

}
.

Then

capk(x1, . . . , xn) ≤ αk ≤
(

k + n − 1
n − 1

)
capk(x1, . . . , xn). (1)

Let p ∈ Qk(n) and let m, s be non-negative integers, 0 ≤ s ≤ k − 1.
Then q = pm · zs

1 ∈ Qmk+s(n). Thus αmk+s ≤ αm
k · ‖x1‖s, α

1/mk+s
mk+s ≤ α

m
mk+s

k ·
max{1, ‖x1‖k−1}1/mk+s and lim supr→∞ α

1/r
r ≤ α

1/k
k . So the limit limk→∞ α

1/k
k

exists and is equal to infk α
1/k
k .

By (1), the limit limk→∞
(
capk(x1, . . . , xn)

)1/k also exists and

cap (x1, . . . , xn) = lim
k→∞

(
capk(x1, . . . , xn)

)1/k = lim
k→∞

α
1/k
k

= inf
k

α
1/k
k = inf

k
inf

{‖p(x1, . . . , xn)‖1/k : p ∈ Qk(n)
}
.

(ii) Let p ∈ Qk(n) and let q = zs +
∑s−1

i=0 aiz
i ∈ P1

s (1) = Qs(1). Then
q ◦ p ∈ Qsk(n), and so, by (i),

cap(x1, . . . , xn) ≤ ‖(q ◦ p)(x1, . . . , xn)‖1/sk (q ∈ Qs(1)). (2)
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Hence

cap (x1, . . . , xn) ≤ inf
s

inf
{‖q(p(x1, . . . , xn))‖1/sk : q ∈ Qs(1)

}
= (cap p(x1, . . . , xn))1/k

and

cap (x1, . . . , xn) ≤ inf
k

inf
{
(cap p(x1, . . . , xn))1/k : p ∈ Qk(n)

}
.

On the other hand, cap p(x1, . . . , xn) ≤ ‖p(x1, . . . , xn)‖ for every p ∈ Qk(n).
Together with (i) this gives

cap (x1, . . . , xn) = inf
k

inf
{
(cap p(x1, . . . , xn))1/k : p ∈ Qk(n)

}
.

(iii) Let p ∈ Qk(n). By (ii), we have

(cap(x1, . . . , xn))k ≤ cap p(x1, . . . , xn) ≤ r(p(x1, . . . , xn))
= max{|p(z)| : z ∈ σH(x1, . . . , xn)} = ‖p‖σH(x1,...,xn).

So

cap (x1, . . . , xn) ≤ inf
k

inf
{‖p‖1/k

σH(x1,...,xn) : p ∈ Qk(n)
}

≤ inf
k

(
k + n − 1

n − 1

)1/k(
capk σH(x1, . . . , xn)

)1/k
.

Hence cap (x1, . . . , xn) ≤ capσH(x1, . . . , xn).
On the other hand,

‖p(x1, . . . , xn)‖ ≥ r(p(x1, . . . , xn)) = ‖p‖σH(x1,...,xn)

for each polynomial p ∈ Pk(n), so

capk(x1, . . . , xn) ≥ capk σH(x1, . . . , xn)

and
cap (x1, . . . , xn) ≥ cap σH(x1, . . . , xn). �

Theorem 5. Let A be a Banach algebra and let σ̃ be a compact-valued spectral
system satisfying cap σ̃(x1) = cap σ(x1) for each x1 ∈ A. Then

cap σ̃(x1, . . . , xn) = cap σH(x1, . . . , xn) = cap (x1, . . . , xn)

for all n-tuples x1, . . . , xn of mutually commuting elements of A.

Proof. Let x1, . . . , xn be mutually commuting elements of A. Consider the algebra
C(K) of all continuous functions on the compact set K = σ̃(x1, . . . , xn) ⊂ Cn

with the sup-norm on K and let z1, . . . , zn be the independent variables.
As ‖q‖K = ‖q(z1, . . . , zn)‖C(K) for each polynomial q, it is easy to see that

cap K = cap (z1, . . . , zn) and cap p(K) = cap p(z1, . . . , zn) for all polynomials p.
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Thus

cap (x1, . . . , xn) = inf
k

inf
{(

cap p(x1, . . . , xn)
)1/k : p ∈ Qk(n)

}
= inf

k
inf

{(
cap σ(p(x1, . . . , xn))

)1/k : p ∈ Qk(n)
}

= inf
k

inf
{(

cap σ̃(p(x1, . . . , xn))
)1/k : p ∈ Qk(n)

}
= inf

k
inf

{(
cap p(σ̃(x1, . . . , xn))

)1/k : p ∈ Qk(n)
}

= inf
k

inf
{(

cap p(z1, . . . , zn)
)1/k : p ∈ Qk(n)

}
= cap (z1, . . . , zn) = cap σ̃(x1, . . . , xn). �

Corollary 6. Let σ̃ be a spectral-radius-preserving spectral system in a Banach
algebra A. Then cap(a1, . . . , an) = cap σ̃(a1, . . . , an) for all commuting n-tuples
(a1, . . . , an) ∈ A.

Proof. By Theorem 7.22, ∂σ(a1) ⊂ σ̃(a1) ⊂ σ(a1) for all a1 ∈ A. By the maxi-
mum principle, cap σ̃(a1) = capσ(a1), so the statement follows from the previous
theorem. �

Another important example for which we can use Theorem 5 is the essential
spectrum.

Lemma 7. Let X be a Banach space. Then cap σe(T ) = cap σ(T ) for all T ∈ B(X).

Proof. Clearly, cap σe(T ) ≤ cap σ(T ).
Conversely, let ε > 0. There exists k ∈ N and p ∈ P1

k such that sup{|p(z)| :
z ∈ σe(T )} < (cap σe(T ) + ε)k. Let U = {z ∈ C : |p(z)| < (capσe(T ) + ε)k}.
Then σ(T ) \ U is a finite set, σ(T ) \ U = {λ1, . . . , λr}. Let n ∈ N and set q(z) =
(p(z))n(z − λ1) · · · (z − λr). Then q ∈ P1

nk+r and

max{|q(z)| : z ∈ σ(T )} ≤ max{|p(z)| : z ∈ U}n · m ≤ (cap σe(T ) + ε)kn · m,

where m = max{|(z − λ1) · · · (z − λr)| : z ∈ σ(T )}. Consequently, we have
capσ(T ) ≤ (cap σe(T ) + ε)

kn
kn+r · m

1
kn+r . If n → ∞, then we get capσ(T ) ≤

capσe(T ) + ε. Letting ε → 0 yields capσ(T ) ≤ capσe(T ). �
Corollary 8. Let X be a Banach space, let σ̃ be a spectral system in B(X) satisfying
∂σe(T ) ⊂ σ̃(T ) for all T ∈ B(X). Then

cap σ̃(T1, . . . , Tn) = capσH(T1, . . . , Tn) = cap(T1, . . . , Tn)

for all commuting n-tuples T1, . . . , Tn of operators on X .

Proof. For all T ∈ B(X) we have cap σe(T ) ≤ cap σ̃(T ) ≤ capσ(T ) = capσe(T ),
and so we can use Theorem 5. �

In fact, the condition ∂σe(T ) ⊂ σ̃(T ) for all T ∈ B(X) was satisfied by all
spectral systems considered in this monograph.
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37 Invariant subset problem and large orbits

By an orbit of T ∈ B(X) we mean a sequence of the form (T nx)∞n=0, where x ∈ X
is a fixed vector.

Orbits of operators are closely connected with the most important open prob-
lem of operator theory – the invariant subspace/subset problem.

Let T ∈ B(X). A non-empty subset M ⊂ X is called invariant for T if
TM ⊂ M . The set M is non-trivial if {0} �= M �= X (the trivial subsets {0}
and X are always invariant for any operator T ∈ B(X)). The invariant subspace
problem may be formulated as follows:

Problem 1. Let T be an operator on a Hilbert space H of dimension ≥ 2. Does
there exist a non-trivial closed subspace invariant for T ?

It is easy to see that the problem has sense only for separable infinite-
dimensional spaces. Indeed, if H is non-separable and x ∈ H any non-zero vector,
then the vectors x, Tx, T 2x, . . . span a non-trivial closed subspace invariant for T .

If dimH < ∞, then T has at least one eigenvalue and the corresponding
eigenvector generates an invariant subspace of dimension 1. Note that the existence
of eigenvalues is equivalent to the fundamental theorem of algebra that each non-
constant complex polynomial has a root. Thus the invariant subspace problem is
non-trivial even for finite-dimensional spaces.

Examples of Banach space operators without non-trivial closed invariant sub-
spaces were given by Enflo [En2], Beuzamy [Bea1] and Read [Re1]. Read [Re6] also
gave an example of an operator T (acting on �1) with a stronger property that T
has no non-trivial closed invariant subset.

It is not known whether such an operator exists on a Hilbert space. The
following “invariant subset problem” may be easier than Problem 1.

Problem 2. (invariant subset problem) Let T be an operator on a Hilbert space
H . Does there exist a non-trivial closed subset invariant for T ?

Both Problems 1 and 2 are also open for operators on reflexive Banach spaces.
More generally, the following problem is open:

Problem 3. Let T be an operator on a Banach space X . Does T ∗ have a non-trivial
closed invariant subset/subspace?

The existence of non-trivial invariant subspaces/subsets is closely connected
with the behaviour of orbits. It is easy to see that an operator T ∈ B(X) has
no non-trivial closed invariant subspace if and only if all orbits corresponding
to non-zero vectors span all the space X (i.e., each non-zero vector is cyclic).
Similarly, T ∈ B(X) has no non-trivial closed invariant subset if and only if all
orbits corresponding to non-zero vectors are dense, i.e., all non-zero vectors are
hypercyclic.

Thus orbits provide the basic information about the structure of an operator.
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Typically, the behaviour of an orbit (T nx) depends essentially on the choice
of the initial vector x. This can be illustrated by the following simple example:

Example 4. Let S be the backward shift on a Hilbert space H , i.e., Se0 = 0 and
Sei = ei−1 (i ≥ 1), where {ei : i = 0, 1, 2, . . .} is an orthonormal basis in H . Let
T = 2S. Then:

(i) there is a dense subset of points x ∈ H such that ‖T nx‖ → 0;
(ii) there is a dense subset of points x ∈ H such that ‖T nx‖ → ∞;
(iii) there is a residual subset of points x ∈ H such that the set {T nx : n =

0, 1, . . . } is dense in H .

Statement (i) is easy to show: any vector x which is a finite linear combination
of the basis vectors ei satisfies ‖T nx‖ → 0. Statements (ii) and (iii) are not so
obvious. They will follow from the subsequent general results.

Note that it is very simple to find an operator such that almost all (up to a
set of the first category) vectors are hypercyclic, but it is very difficult to find an
operator such that all non-zero vectors are hypercyclic.

In this section we study orbits that are “large” in some sense (e.g., of type
(ii)). Note that orbits satisfying ‖T nx‖ → ∞ provide a simple example of a non-
trivial closed invariant subset.

It is an easy consequence of the Banach-Steinhaus theorem that an operator
T ∈ B(X) has unbounded orbits if and only if sup ‖T n‖ = ∞.

Another result of this type was proved in Section 14. For each operator
T ∈ B(X) there are points x ∈ X with the property that the local spectral radius
rx(T ) = lim supn→∞ ‖T nx‖1/n is equal to the spectral radius r(T ). In particular,
for such points x there are infinitely many powers such that ‖T nx‖ is “large”
(asymptotically, ‖T nx‖ ∼ r(T )n).

More precisely, it is possible to prove the following stronger result:

Theorem 5. Let T ∈ B(X), let (an)n≥0 be a sequence of positive numbers such
that an → 0. Then the set of all x ∈ X with the property that

‖T nx‖ ≥ an‖T n‖ for infinitely many powers n

is residual.

Consequently, the set
{
x ∈ X : rx(T ) = r(T )

}
is residual.

Proof. For k ∈ N set

Mk =
{
x ∈ X : there exists n ≥ k such that ‖T nx‖ > an‖T n‖}.

Clearly, Mk is an open set. We prove that Mk is dense. Let x ∈ X and ε > 0.
Choose n ≥ k such that anε−1 < 1. There exists z ∈ X of norm 1 such that
‖T nz‖ > anε−1‖T n‖. Then

2an‖T n‖ < ‖T n(2εz)‖ ≤ ‖T n(x + εz)‖ + ‖T n(x − εz)‖,
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and so either ‖T n(x + εz)‖ > an‖T n‖ or ‖T n(x − εz)‖ > an‖T n‖. Thus either
x+εz ∈ Mk or x−εz ∈ Mk, and so dist{x, Mk} ≤ ε. Since x and ε were arbitrary,
the set Mk is dense.

By the Baire category theorem, the intersection
⋂∞

k=1 Mk is a dense Gδ-set,
hence it is residual. Clearly, each x ∈ ⋂∞

k=1 Mk satisfies ‖T nx‖ > an‖T n‖ for
infinitely many powers n.

In particular, for an = n−1 we obtain

rx(T ) = lim sup
n→∞

‖T nx‖1/n ≥ lim sup
n→∞

(‖T n‖
n

)1/n

= r(T )

for all x in a residual subset of X . �

In fact, a much stronger result is also true: there are points x ∈ X such that
all powers T nx are “large” in the norm.

The following lemma is a useful technical tool in many constructions.

Lemma 6. Let E be a finite-dimensional subspace of a Banach space X , let ε > 0.
Then there exists a closed subspace Y ⊂ X of finite codimension such that

‖e + y‖ ≥ (1 − ε)max
{‖e‖, ‖y‖/2

}
for all e ∈ E and y ∈ Y .

Proof. We can assume that ε < 1. The unit sphere in E is compact, therefore there
exists a finite subset D ⊂ {e ∈ E : ‖e‖ = 1} with the property that dist{e, D} ≤ ε
for all e ∈ E, ‖e‖ = 1. For each d ∈ D there exists a functional fd ∈ X∗ such that
〈d, fd〉 = 1 = ‖fd‖. Set Y =

⋂
d∈D Ker fd. Clearly, codimY < ∞.

To prove the required inequality, let e ∈ E and y ∈ Y . We can assume that
‖e‖ �= 0 since the assertion is clear for e = 0. Find d ∈ D with

∥∥∥d − e
‖e‖

∥∥∥ ≤ ε.
Then

‖e + y‖ ≥ |〈e + y, fd〉| =
∣∣〈e − ‖e‖d, fd〉 + 〈‖e‖d, fd〉

∣∣
≥ ‖e‖ − ∥∥e − ‖e‖d∥∥ ≥ ‖e‖(1 − ε).

Furthermore,

‖e + y‖ ≥ 1
2
(1 − ε)

2 − ε

1 − ε
‖e + y‖ =

1
2
(1 − ε)

(
‖e + y‖ +

1
1 − ε

‖e + y‖
)

≥ 1
2
(1 − ε)

(‖y‖ − ‖e‖ + ‖e‖) =
1
2
(1 − ε)‖y‖. �

If X is a Hilbert space, then we can take Y = E⊥. Thus the constructed
subspace Y ⊂ X substitutes the role of the orthogonal complement of a finite-
dimensional subspace for general Banach spaces.
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Lemma 7. Let T ∈ B(X), re(T ) = 1, x ∈ X and let {aj}∞j=0 be a sequence of
positive numbers satisfying limj→∞ aj = 0. Let m0, m1, m2 be integers, 0 ≤ m0 ≤
m1 ≤ m2 and let δ > 0 satisfy sup{aj : j ≥ m1 + 1} < δ/3. Suppose that
‖T jx‖ > aj (j = m0 +1, . . . , m1). Then there exists y ∈ X such that ‖y−x‖ ≤ δ
and ‖T jy‖ > aj (j = m0 + 1, . . . , m2).

Proof. Let λ ∈ σe(T ) satisfy |λ| = 1. Then λ ∈ ∂σe(T ) ⊂ σπe(T ), and so

inf
{‖(T − λ)u‖ : u ∈ M, ‖u‖ = 1

}
= 0

for each subspace M ⊂ X of finite codimension.
Let E =

∨{T jx : j = m0 + 1, . . . , m1}. Choose ε > 0 such that

‖T jx‖(1 − ε) − m1δε‖T ‖j−1 > aj (j = m0 + 1, . . . , m1)

and ε
2 + j‖T ‖j−1ε < 1

6 (j = m1 + 1, . . . , m2). Let Y be the subspace constructed
in Lemma 6, i.e., codimY < ∞ and ‖e+u‖ ≥ (1−ε)max{‖e‖, ‖u‖/2} for all e ∈ E
and u ∈ Y . Find z ∈ Y such that ‖z‖ = 1 and ‖(T − λ)z‖ < ε. Set y = x + δz.
Clearly, ‖y − x‖ = δ and

‖T jz − λjz‖ =
∥∥(T j−1 + λT j−2 + · · · + λj−1)(T − λ)z

∥∥ ≤ j‖T ‖j−1ε.

For j = m0 + 1, . . . , m1 we have

‖T jy‖ = ‖T jx + δT jz‖ ≥ ‖T jx + δλjz‖ − ‖δ(T j − λj)z‖
≥ (1 − ε)‖T jx‖ − δj‖T ‖j−1ε > aj.

Similarly, for j = m1 + 1, . . . , m2 we have

‖T jy‖ = ‖T jx + δT jz‖ ≥ ‖T jx + δλjz‖ − ‖δ(T j − λj)z‖
≥ 1

2
(1 − ε)δ − δj‖T ‖j−1ε ≥ δ

2
− δ

6
=

δ

3
> aj . �

Theorem 8. Let T ∈ B(X), let (aj)∞j=0 be a sequence of positive numbers satisfying
limj→∞ aj = 0. Then:

(i) for each ε > 0 there exists x ∈ X such that ‖x‖ ≤ sup{aj : j = 0, 1, . . . } + ε
and ‖T jx‖ ≥ ajr(T j) for all j ≥ 0;

(ii) there is a dense subset L of X with the following property: for each y ∈ L
we have ‖T jy‖ ≥ ajr(T j) for all n sufficiently large.

Proof. We distinguish two cases:
(a) Suppose first that r(T ) > re(T ).
Choose λ ∈ σ(T ) with |λ| = r(T ). Then λ is an isolated eigenvalue of T . Let

x be a corresponding eigenvector, ‖x‖ = s where s = sup{aj : j = 0, 1, . . . }. Then
‖T jx‖ = s · r(T )j ≥ ajr(T j) for all j.
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To prove (ii), let F be the spectral subspace corresponding to λ, see Corollary
1.38, and let P be the corresponding spectral projection onto F . Then dimF < ∞
and (T − λ)|F is a nilpotent operator. Set L = {y ∈ X : Py �= 0}. Clearly, L is a
dense subset of X . Let y ∈ L. Write z = Py. Then PT jy = T jz, and so

‖T jy‖ ≥ ‖P‖−1‖T jz‖ (1)

for all j. Let k be the integer such that (T − λ)kz = 0 and (T − λ)k−1z �= 0. Let
Q ∈ B(F ) be a projection such that Qz = z and Q Ker(T − λ)k−1 = {0}. Then
Q(T − λ)T j−1z = 0, and so QT jz = λQT j−1z for all j ≥ 1. Thus, by induction,
QT jz = λjz and

‖T jz‖ ≥ ‖Q‖−1r(T j)‖z‖ (j = 0, 1, 2, . . . ).

Using (1), this gives

‖T jy‖ ≥ r(T j)‖Py‖
‖Q‖ · ‖P‖ (j = 0, 1, 2, . . . ).

Hence ‖T jy‖ ≥ ajr
j for all j sufficiently large.

(b) Let r(T ) = re(T ). Replacing aj by sup{ai : i ≥ j}, we can assume that
a0 ≥ a1 ≥ a2 ≥ · · · . Also, we can assume that r(T ) = 1.

(i) For i = 0, 1, . . . let ni be the smallest index such that ani < ε
3·2i+2 .

Find λ ∈ σe(T ) with |λ| = 1. Then λ ∈ ∂σe(T ) ⊂ σπe(T ), so there is an
approximate eigenvector x0 ∈ X satisfying ‖x0‖ = a0 + ε/2 and ‖(T j − λj)x0‖ <
ε/2 (j = 0, 1, . . . , n0). For j = 0, 1, . . . , n0 we have

‖T jx0‖ ≥ ‖λjx0‖ − ‖(T j − λj)x0‖ > a0 + ε/2 − ε/2 = a0 ≥ aj .

Using the previous lemma repeatedly, we construct a sequence (xk) of vectors in X
such that ‖xk+1 − xk‖ ≤ ε

2k+2 and ‖T jxk‖ > aj (j = 0, 1, . . . , nk). Denote by x
the limit of the Cauchy sequence (xk). Then ‖T jx‖ = limk→∞ ‖T jxk‖ ≥ aj for all
j ≥ 0 and ‖x‖ ≤ ‖x0‖ + ‖x1 − x0‖ + · · · ≤ a0 + ε

2 + ε
4 + · · · = a0 + ε.

(ii) Let x ∈ X and δ > 0. For i = 0, 1, . . . let ni be the smallest index
such that ani < δ

3·2i+1 . Set y0 = x. Using Lemma 7 repeatedly we construct a
sequence (yk) of vectors in X such that ‖yk+1 − yk‖ ≤ ε

2k+1 and ‖T jyk‖ > aj for
j = n0 + 1, . . . , nk. Let y = limk→∞ yk. Then ‖y − x‖ ≤ ε

2 + ε
4 + · · · = ε and

‖T jy‖ ≥ aj for all j ≥ n0 + 1. This completes the proof. �

Taking an = n−1 in the previous theorem yields the following corollary:

Corollary 9. The set
{
x ∈ X : lim supn→∞ ‖T nx‖1/n = r(T )

}
is residual for each

T ∈ B(X). The set
{
x ∈ X : lim infn→∞ ‖T nx‖1/n = r(T )

}
is dense.

In particular, there is a dense subset of points x ∈ X with the property that
the limit limn→∞ ‖T nx‖1/n exists and is equal to r(T ).
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Corollary 10. Let T ∈ B(X). Then

sup
x∈X
‖x‖=1

inf
n≥1

‖T nx‖1/n = inf
n≥1

sup
x∈X
‖x‖=1

‖T nx‖1/n = r(T ).

Proof. The statement is clear if r(T ) = 0. Let r(T ) > 0 and let ε be a posi-
tive number, ε < r(T ). By Theorem 8, there is an x ∈ X of norm 1 such that
‖T nx‖ ≥ (r(T ) − ε)n for all n. Thus infn ‖T nx‖1/n ≥ r(T ) − ε. Letting ε → 0
gives sup‖x‖=1 infn≥1 ‖T nx‖1/n ≥ r(T ).

The second inequality is clear. �

In general it is not possible to replace the word “dense” in Corollary 9 by
“residual”.

Example 11. Let H be a separable Hilbert space with an orthonormal basis {ej :
j = 0, 1, . . .} and let S be the backward shift, Sej = ej−1 (j ≥ 1), Se0 = 0.
Then r(S) = 1 and the set

{
x ∈ H : lim infn→∞ ‖Snx‖1/n = 0

}
is residual.

In particular, the set
{
x ∈ H : the limit limn→∞ ‖Snx‖1/n exists

}
is of the

first category (but it is always dense by Corollary 9).

Proof. For k ∈ N let

Mk =
{
x ∈ X : there exists n ≥ k such that ‖Snx‖ < k−n

}
.

Clearly, Mk is an open subset of X . Further, Mk is dense in X . To see this, let
x ∈ X and ε > 0. Let x =

∑∞
j=0 αjej and choose n ≥ k such that

∑∞
j=n |αj |2 < ε2.

Set y =
∑n−1

j=0 αjej . Then ‖y − x‖ < ε and Sny = 0. Thus y ∈ Mk and Mk is a
dense open subset of X .

By the Baire category theorem, the intersection M =
⋂∞

k=0 Mk is a dense
Gδ-subset of X , hence it is residual.

Let x ∈ M . For each k ∈ N there is an nk ≥ k such that ‖Snkx‖ < k−nk ,
and so lim infn→∞ ‖Snx‖1/n = 0.

Since the set
{
x ∈ H : lim supn→∞ ‖Snx‖1/n = r(S) = 1

}
is also residual,

we see that the set
{
x ∈ H : the limit limn→∞ ‖Snx‖1/n exists

}
is of the first

category.

Remark 12. If r(T ) = 1 and an > 0, an → 0, then Theorem 8 says that there
exists x such that ‖T nx‖ ≥ an for all n. This is the best possible result since the
previous example S ∈ B(H) satisfies Snx → 0 for all x ∈ H . By Theorem 8, there
are orbits converging to 0 arbitrarily slowly.

Theorem 8 implies that there is always a dense subset of points x satisfying∑
j

‖T jx‖
r(T j) = ∞. In fact, the set of all points with this property is even residual.
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Theorem 13. Let T ∈ B(X), r(T ) �= 0 and let 0 < p < ∞. Then the set{
x ∈ X :

∞∑
j=0

(‖T jx‖
r(T j)

)p

= ∞
}

is residual.

Proof. For k ≥ 1 set

Mk =
{

x ∈ X :
∞∑

j=0

(‖T jx‖
r(T j)

)p

> k

}
.

Clearly, Mk is an open subset of X . It is sufficient to show that Mk is dense.
Indeed, by the Baire category theorem, the intersection⋂

k

Mk =
{
x ∈ X :

∑
j

(‖T jx‖
r(T j)

)p

= ∞
}

is a dense Gδ set.
Fix x ∈ X , ε > 0 and k ∈ N. We show that there is a u ∈ X such that

‖u − x‖ ≤ ε and u ∈ Mk.
By Theorem 8, there is a v ∈ X of norm 1 such that ‖T jv‖ ≥ 1

(j+2)1/p r(T j)
for all j ≥ 0. We have

‖T j(x + εv)‖p + ‖T j(x − εv)‖p ≥ max
{‖T j(x + εv)‖, ‖T j(x − εv)‖}p

≥
(‖T j(x + εv)‖ + ‖T j(x − εv)‖

2

)p

≥
(‖T j(2εv)‖

2

)p

= εp‖T jv‖p ≥ εpr(T j)p

j + 2

and ∞∑
j=0

(‖T j(x + εv)‖
r(T j)

)p

+
∞∑

j=0

(‖T j(x − εv)‖
r(T j)

)p

≥
∞∑

j=0

εp

j + 2
= ∞.

Thus either y = x+εv or y = x−εv satisfies ‖y−x‖ = ε and
∑∞

j=0

(
‖T jy‖
r(T j)

)p

= ∞,
so y ∈ Mk. Hence Mk is dense and

⋂
k Mk is residual. �

In Theorem 5 we proved an estimate of ‖T nx‖ in terms of the norm ‖T n‖.
It is also possible to construct points x ∈ X with ‖T nx‖ ≥ an · ‖T n‖ for all n; in
this case, however, there is a restriction on the sequence (an).

Theorem 14. Let X, Y be Banach spaces, let (Tn) ⊂ B(X, Y ) be a sequence of
operators. Let (an) be a sequence of positive numbers such that

∑∞
n=1 an < ∞.

Then there exists x ∈ X such that ‖Tnx‖ ≥ an‖Tn‖ for all n.

Moreover, it is possible to choose such an x in each ball in X of radius greater
than

∑∞
n=1 an.
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Proof. Let u ∈ X and ε > 0. We find x ∈ X such that ‖x− u‖ ≤ ∑∞
n=1 an + ε and

‖Tnx‖ ≥ an‖Tn‖ for all n.
Without loss of generality we can assume that Tn �= 0 for all n.
Let s =

∑∞
n=1 an and a′

n = an

s+ε/2 . Then
∑∞

n=1 a′
n < 1. For each n find

y∗
n ∈ Y ∗ such that ‖y∗

n‖ = 1 and ‖T ∗
ny∗

n‖ > ‖T ∗
n‖ · s+ε/2

s+ε = ‖Tn‖ · s+ε/2
s+ε . Let

x∗
n = T∗

ny∗
n

‖T∗
ny∗

n‖ . Then ‖x∗
n‖ = 1 for all n.

By Theorem A.5.1, there exists x′ ∈ X such that ‖x′ − u/(s + ε)‖ ≤ 1 and
|〈x′, x∗

n〉| ≥ a′
n for all n. Let x = (s+ε)x′. Then ‖x−u‖ = (s+ε)‖x′−u/(s+ε)‖ ≤

s + ε. Furthermore,

‖Tnx‖ ≥ |〈Tnx, y∗
n〉| = (s + ε)|〈Tnx′, y∗

n〉| = (s + ε)|〈x′, T ∗
ny∗

n〉|

= (s + ε)|〈x′, x∗
n〉| · ‖T ∗

ny∗
n‖ ≥ (s + ε)a′

n

s + ε/2
s + ε

‖Tn‖ = an‖Tn‖

for all n. �

Lemma 15. Let an > 0 (n = 1, 2, . . . ), ε > 0 and let
∑∞

n=1 an < ε. Then there
exist positive numbers βn (n ∈ N) such that βn → ∞ and

∑∞
n=1 βnan < ε.

Proof. Let δ = ε −∑∞
n=1 an. For each k ∈ N let nk be the smallest number such

that
∑∞

i=nk+1 ai < 2−2kδ.

Let βi = 1 for 1 ≤ i ≤ n1 and βi = 2k (nk < i ≤ nk+1). Then βi → ∞ and

∞∑
i=1

βiai =
n1∑
i=1

ai +
∞∑

k=1

2k

nk+1∑
i=nk+1

ai ≤
∞∑

i=1

ai +
∞∑

k=1

∞∑
i=nk+1

2kai

< ε − δ +
∞∑

k=1

2−kδ = ε. �

Corollary 16. Let T ∈ B(X) satisfy
∑∞

n=1 ‖T n‖−1 < ∞. Then there exists a dense
subset of points x ∈ X such that ‖T nx‖ → ∞.

Proof. Let u ∈ X and ε > 0. Find n0 such that
∑∞

n=n0
‖T n‖−1 < ε.

Find positive numbers βn such that βn → ∞ and
∑∞

n=n0

βn

‖T n‖ < ε. Let

an = βn

‖T n‖ . Then
∑∞

n=n0
an < ε. By Theorem 14, there exists x ∈ X such that

‖x − u‖ < ε and ‖T nx‖ ≥ an‖T n‖ = βn for all n ≥ n0. Hence ‖T nx‖ → ∞. �

Better results can be obtained for Hilbert space operators.

Theorem 17. Let H , K be Hilbert spaces and let Tn ∈ B(H, K) be a sequence of
operators. Let an be a sequence of positive numbers such that

∑∞
n=1 a2

n < ∞. Let
ε > 0. Then:
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(i) there exists x ∈ H such that ‖x‖ ≤
(∑∞

n=1 a2
n

)1/2

+ ε and ‖Tnx‖ ≥ an‖Tn‖
for all n;

(ii) there is a dense subset of vectors x ∈ H such that ‖Tnx‖ ≥ an‖Tn‖ for all n
sufficiently large.

Proof. Without loss of generality we may assume that all operators Tn are non-
zero.

(i) Let s =
(∑∞

n=1 a2
n

)1/2

. For each n we find yn ∈ K with ‖yn‖ = 1 and

‖T ∗
nyn‖ > s+ε/2

s+ε ‖Tn‖. By Theorem A.5.2, there is a u ∈ H with ‖u‖ = 1 and∣∣∣〈u,
T∗

nyn

‖T∗
nyn‖

〉∣∣∣ ≥ an

s+ε/2 . Let x = (s + ε)u. Then ‖x‖ = s + ε and

‖Tnx‖ = (s + ε)‖Tnu‖ ≥ (s + ε)|〈Tnu, yn〉| = (s + ε)|〈u, T ∗
nyn〉|

≥ an
s + ε

s + ε/2
‖T ∗

nyn‖ ≥ an‖T n‖

for all n ∈ N.

(ii) Let y ∈ H , y �= 0 and ε > 0. We show that there is an x ∈ H such that
‖x − y‖ < ε and ‖Tnx‖ ≥ an‖Tn‖ for all n sufficiently large.

Without loss of generality we may assume that ‖y‖ = 1. Indeed, for general
non-zero y ∈ H replace y by y

‖y‖ and the numbers an by an

‖y‖ .

Let ‖y‖ = 1, 0 < ε < 1 and set δ = 1 − ε2/2. Find n0 such that

∞∑
n=n0

(2an)2 < 1 − δ2.

For each n ≥ n0 find yn ∈ K such that ‖yn‖ = 1 and ‖T ∗
nyn‖ ≥ 1

2‖Tn‖. By
Theorem A.5.2, there is a u ∈ H such that ‖u‖ = 1, |〈u, y〉| ≥ δ and∣∣∣〈u,

T ∗
nyn

‖T ∗
nyn‖

〉∣∣∣ ≥ 2an (n ≥ n0).

Set x = 〈y,u〉
|〈y,u〉| · u. Then ‖x‖ = 1 and 〈x, y〉 = |〈u, y〉| ≥ δ. Therefore ‖x − y‖2 =

‖x‖2 + ‖y‖2 − 2 Re〈x, y〉 ≤ 2− 2δ = ε2, and so ‖x− y‖ ≤ ε. Finally, for n ≥ n0 we
have

‖Tnx‖ = ‖Tnu‖ ≥ |〈Tnu, yn〉| = |〈u, T ∗
nyn〉| ≥ 2an‖T ∗

nyn‖ ≥ an‖Tn‖. �

Corollary 18. Let T ∈ B(H) be a Hilbert space operator and
∑∞

n=1 ‖T n‖−2 < ∞.
Then there exists a dense subset of points x ∈ H such that ‖T nx‖ → ∞.
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Proof. By Lemma 15, there are positive numbers βn such that βn → ∞ and∑∞
n=1

βn

‖T n‖2 < ∞. By Theorem 17, there is a dense subset of vectors x ∈ H such
that

‖T nx‖ ≥ β
1/2
n

‖T n‖ · ‖T n‖ = β1/2
n

for all n sufficiently large. Hence ‖T nx‖ → ∞. �

Corollary 19. Let T ∈ B(X) satisfy
∑∞

n=1 ‖T n‖−1 < ∞. Then T has a non-trivial
closed invariant subset.

If X is a Hilbert space, then it is sufficient to assume that
∑∞

n=1 ‖T n‖−2 < ∞.

Proof. By Corollaries 16 and 18, there exists x ∈ X such that ‖T nx‖ → ∞. Hence
the set {T x : n = 0, 1, . . . } is a non-trivial closed subset invariant for T . �

Corollary 20. Let T ∈ B(X) satisfy r(T ) �= 1. Then T has a non-trivial closed
invariant subset.

Proof. If r(T ) > 1, then there exists an x ∈ X with ‖T nx‖ → ∞. If r(T ) < 1, then
‖T nx‖ → 0 for each x ∈ X . In both cases there are non-trivial closed invariant
subsets. �

The previous results are in some sense the best possible.

Example 21. There exists a Banach space X and an operator T ∈ B(X) such that
‖T n‖ = n + 1 for all n, but there is no vector x ∈ X with ‖T nx‖ → ∞.

There exists a Hilbert space operator T such that ‖T n‖ =
√

n + 1 for all n
and there in no vector x with ‖T nx‖ → ∞.

Proof. We construct both operators simultaneously. Let either p = 1 or p = 2. Let
(ek)∞k=1 be the standard basis in the space X = �p. Let T ∈ B(X) be the weighted
backward shift defined by

Tek =

⎧⎨⎩
(

k
k−1

)1/p

ek−1 for k > 1,

0 for k = 1.

Hence

‖T n‖ =
n+1∏
k=2

(
k

k − 1

)1/p

= (n + 1)1/p

for all n. Suppose on the contrary that there is an x =
∑∞

k=1 ckek ∈ �p such that

‖x‖ =
(∑∞

k=1 |ck|p
)1/p = 1 and ‖T nx‖ → ∞ as n → ∞. Consequently,

1
n

2n−1∑
j=n

‖T jx‖p → ∞ as n → ∞.
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Let us estimate the above arithmetic mean. We have

‖T jx‖p =
∥∥∥∥ ∞∑

k=j+1

(
k

k − j

)1/p

ckek−j

∥∥∥∥p

=
2j∑

k=j+1

|ck|p k

k − j
+

∞∑
k=2j+1

|ck|p k

k − j
,

where the second sum can be estimated by 2‖x‖p ≤ 2 since k
k−j < 2 for k > 2j.

We have

2n−1∑
j=n

‖T jx‖p ≤ 2n +
2n−1∑
j=n

2j∑
k=j+1

|ck|p k

k − j

≤ 2n +
4n∑

k=n+1

|ck|p
k∑

i=1

k

i
≤ 2n +

4n∑
k=n+1

|ck|p4n(1 + log 4n),

and so

2 + 4(1 + log 4n)
4n∑

k=n+1

|ck|p ≥ 1
n

2n−1∑
j=n

‖T jx‖p → ∞.

Hence, for all n large enough, the left-hand side is greater than 6, i.e., if we write
sn =

∑4n
k=n+1 |ck|p, then

sn ≥ 1
1 + log 4n

.

But this is a contradiction since for such an n we have

1 =
∞∑

k=1

|ck|p ≥ sn + s4n + s42ṅ + s43·n + . . .

≥
∞∑

j=1

1
1 + log 4jn

=
∞∑

j=1

1
1 + log n + j log 4

= ∞. �

It is also possible to consider orbits that are large in the sense of
∑ ‖T nx‖

‖T n‖ .

Theorem 22. Let X, Y be Banach spaces, let (Tj) ⊂ B(X, Y ) be a sequence of
non-zero operators and let 0 < p < 1. Then the set{

x ∈ X :
∞∑

j=1

(‖Tjx‖
‖Tj‖

)p

= ∞
}

is residual in X .
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Proof. For k ≥ 1 set

Mk =
{

x ∈ X :
∞∑

j=1

(‖Tjx‖
‖Tj‖

)p

> k

}
.

Clearly, Mk is an open subset of X . It is sufficient to show that Mk is dense.
Indeed, the Baire theorem then implies that the intersection

⋂
k Mk =

{
x ∈ X :∑

j

( ‖Tjx‖
‖Tj‖

)p

= ∞
}

is a dense Gδ set.

Fix x ∈ X , δ > 0 and k ∈ N. We show that there is a u ∈ X such that
‖u − x‖ ≤ δ and u ∈ Mk.

Let ε = 1
p − 1. Then ε > 0 and s =

∑∞
j=1

1
j1+ε < ∞. For i = 1, 2, . . . set

εi = δ
si1+ε . So

∑∞
j=1 εi = δ and

∑∞
i=1 εp

i =
(

δ
s

)p ∑∞
i=1

1
i = ∞. Fix n such that

3
8p+1

∑n
i=1 εp

i > k.
For i = 1, . . . , n find ui ∈ X of norm 1 such that ‖Tiui‖ ≥ ‖Ti‖/2. Set

Λ =
{
λ = (λ1, . . . , λn) ∈ Cn : |λi| ≤ εi (i = 1, . . . , n)

}
.

For λ ∈ Λ set xλ = x+
∑k

i=1 λiui. Clearly, ‖xλ−x‖ ≤ ∑n
i=1 εi ≤ δ for each λ ∈ Λ.

For i = 1, . . . , n let Λi =
{

λ ∈ Λ :
(

‖Tixλ‖
‖Ti‖

)p

< 1
2

(
εi

8

)p}
.

Let 1 ≤ i ≤ n and suppose that λ, λ′ ∈ Λi where λ = (λ1, . . . , λn) and
λ′ = (λ1, . . . , λi−1, λ

′
i, λi+1, . . . , λn). Then(εi

8

)p

≥
(‖Tixλ‖

‖Ti‖
)p

+
(‖Tixλ′‖

‖Ti‖
)p

≥ max
{‖Tixλ‖

‖Ti‖ ,
‖Tixλ′‖
‖Ti‖

}p

≥
(‖Tixλ‖ + ‖Tixλ′‖

2‖Ti‖
)p

≥
(‖Ti(xλ − xλ′)‖

2‖Ti‖
)p

= |λ − λ′|p
(‖Tiui‖

2‖Ti‖
)p

≥ |λ − λ′|p
4p

.

Thus |λ − λ′| ≤ εi

2 .
Consequently, for fixed λ1, . . . , λi−1, λi+1, . . . , λn, the set{

ν ∈ C : (λ1, . . . , λi−1, ν, λi+1, . . . , λn) ∈ Λi

}
is contained in a ball of radius εi

2 .
Let m be the Lebesgue measure in Cn. Then m(Λ) =

∏n
i=1(πε2

i ) and, by the
Fubini theorem,

m(Λi) ≤ π
ε2

i

4

∏
1≤j≤n

j �=i

(πε2
j ) =

m(Λ)
4

.
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Set f(λ) =
∑n

i=1

(
‖Tixλ‖
‖Ti‖

)p

. Then

1
m(Λ)

∫
Λ

f(λ) dm =
1

m(Λ)

n∑
i=1

∫ (‖Tixλ‖
‖Ti‖

)p

dm ≥
n∑

i=1

εp
i

2 · 8p

3
4

> k.

Thus there exists λ ∈ Λ such that f(λ) > k, and so xλ ∈ Mk. Hence Mk is dense
and the proof is complete. �
Corollary 23. Let T ∈ B(X) be a non-nilpotent operator and 0 < p < 1. Then the
set {

x ∈ X :
∞∑

j=0

(‖T jx‖
‖T j‖

)p

= ∞
}

is residual.

The previous result is not true for p = 1.

Example 24. There are a Banach space X and a non-nilpotent operator T ∈ B(X)
such that

∑∞
n=0

‖T nx‖
‖T n‖ < ∞ for all x ∈ X .

Proof. Let X be the �1 space with the standard basis {e0, e1, . . . }. Let T ∈ B(X) be
the weighted backward shift defined by Te0 = 0 and Tek = (k+1

k )2ek−1 (k ≥ 1).
For n ∈ N we have

T nek =

{
0 (n > k),

(k+1)2

(k−n+1)2 ek−n (n ≤ k)

and ‖T n‖ = (n + 1)2.
Let x ∈ X , x =

∑∞
k=0 αkek where

∑∞
k=0 |αk| < ∞. Then

∞∑
n=0

‖T nx‖
‖T n‖ =

∞∑
n=0

∞∑
k=n

|αk|(k + 1)2

(n + 1)2(k − n + 1)2
=

∞∑
k=0

|αk|
k∑

n=0

(k + 1)2

(n + 1)2(k − n + 1)2
.

We have
k∑

n=0

(k + 1)2

(n + 1)2(k − n + 1)2

=
[k/2]∑
n=0

(k + 1)2

(n + 1)2(k − n + 1)2
+

k∑
n=[k/2]+1

(k + 1)2

(n + 1)2(k − n + 1)2

≤
[k/2]∑
n=0

4
(n + 1)2

+
k∑

n=[k/2]+1

4
(k − n + 1)2

≤ 8
∞∑

j=1

1
j2

=
4π2

3
.

Thus ∞∑
n=0

‖T nx‖
‖T n‖ ≤

∞∑
k=0

|αk| · 4π2

3
=

4‖x‖π2

3
< ∞. �
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It is also possible to construct vectors x in a prescribed infinite-dimensional
subspace with all powers ‖T nx‖ large.

Recall the quantity jµ(T ) = sup
{
j(T |M) : M ⊂ X, codimM < ∞}

, which
was studied in Section 24.

Lemma 25. Let T1, . . . , Tk ∈ B(X, Y ), let X1 ⊂ X be an infinite-dimensional
subspace. Let ε > 0. Then there exists x ∈ X1 of norm 1 such that ‖Tix‖ >
jµ(Ti) − ε (i = 1, . . . , k).

Proof. For i = 1, . . . , k there is a subspace Mi ⊂ X of finite codimension such that
j(Ti|Mi) > jµ(Ti) − ε. Let x be any vector of norm 1 in X1 ∩

⋂k
i=1 Mi. Then

‖Tix‖ ≥ j(T |Mi) > jµ(Ti) − ε

for all i = 1, . . . , k. �

Theorem 26. Let X, Y be Banach spaces, let Tn ∈ B(X, Y ) (n = 1, 2, . . . ), let
(an) be a sequence of positive numbers such that limi→∞ ai = 0 and let X1 ⊂ X
be a closed infinite-dimensional subspace. Let δ > 0. Then there exists a vector
x ∈ X1 with ‖x‖ ≤ supi ai + δ and ‖Tnx‖ ≥ an · jµ(Tn) for all n ∈ N.

Moreover, there is a subset X2 dense in X1 with the property that for each
x ∈ X2, ‖Tnx‖ ≥ anjµ(Tn) for all n sufficiently large.

Proof. Without loss of generality we can assume that a1 ≥ a2 ≥ · · · . Let ε > 0
satisfy (1−ε)2(a1 + δ

2 ) > a1. For each k = 0, 1, . . . find rk with ark
< (1−ε)3δ

2k+3 . Find
z0 ∈ X1 such that ‖z0‖ = a1+δ/2 and ‖Tnz0‖ > (1−ε)(a1+δ/2)jµ(Tn) (n ≤ r0).

Let k ≥ 0 and suppose that z0, . . . , zk have already been constructed. Let
Ek =

∨{
Tnzi : 0 ≤ i ≤ k, 1 ≤ n ≤ rk+1

}
. Let Mk be a subspace of X of finite

codimension such that

‖e + m‖ ≥ (1 − ε)max{‖e‖, ‖m‖/2} (e ∈ E, m ∈ M).

Since the space Lk =
⋂k

i=1

⋂rk+1
n=1 T−1

n Mi < ∞ is of finite codimension, we can
choose zk+1 ∈ X1 ∩ Lk such that ‖zk+1‖ = δ2−(k+2) and

‖Tnzk+1‖ ≥ (1 − ε)δ2−(k+2)jµ(Tn) (1 ≤ n ≤ rk+1).

Set z =
∑∞

i=0 zi. Then z ∈ X1 and

‖z‖ ≤
∞∑

i=0

‖zi‖ ≤ a1 + δ/2 +
∞∑

i=1

δ2−(i+1) = a1 + δ.

For n = 1, . . . , r0 we have

‖Tnz‖ =
∥∥∥∥Tnz0 +

∞∑
i=1

Tnzi

∥∥∥∥ ≥ (1 − ε)‖Tnz0‖ > a1jµ(Tn) ≥ anjµ(Tn).
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Let k ≥ 0 and rk < n ≤ rk+1. Then

‖Tnz‖ =
∥∥∥∥ ∞∑

i=0

Tnzi

∥∥∥∥ ≥ (1 − ε)
∥∥∥∥k+1∑

i=0

Tnzi

∥∥∥∥
≥ (1 − ε)2

2
‖Tnzk+1‖ ≥ (1 − ε)3

2
· δ

2k+2
jµ(Tn) ≥ an · jµ(Tn).

Thus ‖Tnx‖ ≥ anjµ(Tn) for all n ∈ N.
To show the second statement, let u ∈ X1 and ε > 0. Find n0 such that

an < ε for all n ≥ n0. As in the first part, taking z0 = u, construct a vector
x ∈ X1 with ‖x − u‖ ≤ ε and ‖Tnx‖ ≥ anjµ(Tn) (n ≥ n0). �

Corollary 27. Let Tn ∈ B(X, Y ) satisfy that jµ(Tn) → ∞. Let M ⊂ X be a closed
infinite-dimensional subspace. Then there exists a dense subset of vectors x ∈ M
such that ‖Tnx‖ → ∞.

Proof. There exists a sequence (βn) of positive numbers such that βn → 0 and
βnjµ(Tn) → ∞. �

Corollary 28. Let T ∈ B(X), let inf{|λ| : λ ∈ σe(T )} > 1. Let M ⊂ X be a closed
infinite-dimensional subspace. Then there exists a dense subset of vectors x ∈ M
such that ‖T nx‖ → ∞.

Proof. By Theorem 24.14, Corollary 17.10 and Theorem 9.25, lim jµ(T n)1/n =
limn→∞ j(T̃ n)1/n = inf{|λ| : λ ∈ σπe(T )} > 1. Thus jµ(T n) → ∞ and we can
apply Corollary 27. �

38 Hypercyclic vectors

In the last section we studied vectors x with “very regular” orbits (T nx). In this
section we will study the opposite extreme – vectors with very irregular orbits.

Definition 1. Let T ∈ B(X) be an operator. A vector x ∈ X is called hypercyclic
for T if the set {T nx : n ∈ N} is dense in X . An operator T is called hypercyclic
if there is a vector hypercyclic for T .

The notion has sense only in separable Banach spaces. Clearly, in non-
separable Banach spaces there are no hypercyclic operators.

It is easy to find an operator that has no hypercyclic vectors. For example, if
‖T ‖ ≤ 1, then all orbits are bounded, and therefore not dense. On the other hand,
if T is hypercyclic, then almost all vectors are hypercyclic for T .

Theorem 2. Let T ∈ B(X) be a hypercyclic operator. Then the set of all vectors
x ∈ X that are hypercyclic for T is a dense Gδ set, and hence residual in X .
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Proof. Let x ∈ X be a vector hypercyclic for T . For any n ∈ N, the vector T nx
is also hypercyclic for T and therefore the set of all vectors hypercyclic for T is
dense in X .

Note that the space X is separable. Let (Uj) be a countable base of open
sets in X . A vector u ∈ X is hypercyclic for T if and only if it belongs to the set⋂∞

j=1

(⋃∞
n=0 T−nUj

)
, which is a Gδ set. �

Lemma 3. Let T ∈ B(X) be a hypercyclic operator. Then σp(T ∗) = ∅.
Proof. Suppose on the contrary that λ ∈ C belongs to the point spectrum of T ∗.
Let x∗ ∈ X∗ be a corresponding eigenvector, i.e., x∗ �= 0 and T ∗x∗ = λx∗.

Let x ∈ X be a vector hypercyclic for T . Then the set {〈T nx, x∗〉 : n =
0, 1, . . .} is dense in C. We have

{〈T nx, x∗〉 : n = 0, 1, . . .} = {〈x, T ∗nx∗〉 : n = 0, 1, . . .}
= {λn〈x, x∗〉 : n = 0, 1, . . .}.

The last set is bounded if either |λ| ≤ 1 or 〈x, x∗〉 = 0. If |λ| > 1 and 〈x, x∗〉 �= 0,
then |λn〈x, x∗〉| → ∞. So the set {λn〈x, x∗〉 : n = 0, 1, . . . } cannot be dense in C,
which is a contradiction. �

Corollary 4. Let dimX < ∞. Then there are no hypercyclic operators acting in X .

Theorem 5. Let T ∈ B(X) be a hypercyclic operator. Then there exists a dense
linear manifold M ⊂ X such that each non-zero vector x ∈ M is hypercyclic for T .

Proof. Let x ∈ X be a vector hypercyclic for T . Let

M = {q(T )x : q a polynomial}.

Clearly M is a dense linear manifold since it contains the orbit {T nx : n =
0, 1, . . .}. We show that q(T )x is hypercyclic for T for each non-zero polynomial q.

Write q(z) = β(z − α1) · · · (z − αn), where n ≥ 0, α1, . . . , αn are the roots
of q and β �= 0. Since σp(T ∗) = ∅, the operators T − αi have dense ranges. Hence
q(T ) has also dense range. We have

{T nq(T )x : n = 0, 1, . . . } = q(T ){T nx : n = 0, 1, . . .},

which is dense in X , since {T nx : n = 0, 1, . . . } is dense in X . �

Hypercyclic vectors seem to be very strange and exceptional but in fact they
are quite common. The next theorem provides a criterion for hypercyclicity of an
operator.

Theorem 6. Let X be a separable Banach space. Let T ∈ B(X). Suppose that there
exists an increasing sequence of positive integers (nk) such that the following two
conditions are satisfied:
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(i) there exists a dense subset X0 ⊂ X such that limk→∞ T nkx = 0 (x ∈ X0);
(ii)

⋃
k T nkBX = X .

Then T is hypercyclic.

Proof. To simplify the notation we write for short Tk = T nk (k ∈ N). We first
show that for all c > 0 and k0 ∈ N we have

⋃
k≥k0

Tk(cBX) = X . Let u ∈ X , u �= 0
and ε > 0, ε < min{c, ‖u‖}. Choose s > ε−1‖u‖ + max{‖Ti‖ : 1 ≤ i < k0}. Find
v ∈ BX and k ∈ N such that

∥∥∥Tkv− su
‖u‖

∥∥∥ < 1. For k < k0 we have
∥∥∥Tkv− su

‖u‖
∥∥∥ ≥

s − ‖Tkv‖ > ε−1‖u‖ > 1. Thus k ≥ k0 and
∥∥∥Tk

(
v‖u‖

s

)
− u

∥∥∥ < ‖u‖
s < ε. Further,

v‖u‖
s ∈ cBX .

We now show that T is hypercyclic. Let (xi)∞i=1 be a sequence dense in X ;
without loss of generality we can assume that each member of the sequence appears
in the sequence infinitely many times.

We construct vectors uk ∈ X0 and an increasing sequence sk (k ∈ N) of
positive integers. Set formally s0 = 0.

Let k ≥ 1 and suppose that the vectors u1, . . . , uk−1 ∈ X0 and numbers
s0 < s1 < · · · < sk−1 have already been constructed. Since u1, . . . , uk−1 ∈ X0,
there exists m ∈ N such that ‖Tjui‖ < 1

2i+k (j ≥ m, i = 1, . . . , k − 1). Find
sk > max{m, sk−1} and uk ∈ X0 such that

‖uk‖ <
1

2k max{1, ‖Ts1‖, . . . , ‖Tsk−1‖}
and

‖Tsk
uk − xk‖ <

1
2k

.

Set u =
∑∞

i=1 ui. Clearly, the series is convergent. Further,

‖Tsk
u − xk‖ ≤

k−1∑
i=1

‖Tsk
ui‖ + ‖Tsk

uk − xk‖ +
∞∑

i=k+1

‖Tsk
ui‖

<

k−1∑
i=1

1
2i+k

+
1
2k

+
∞∑

i=k+1

1
2i

≤ 3 · 2−k.

Since each xk is contained in the sequence (xi) infinitely many times, u is a hy-
percyclic vector. �

The last criterion is usually easy to apply. For example, it implies easily
the hypercyclicity of the operator T = 2S, where S is the backward shift, see
Example 37.4.

In the same way it is possible to obtain the hypercyclicity of any weighted
backward shift with weights wi which satisfy supn(w1 · · ·wn) = ∞.
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It was a longstanding open problem whether there are hypercyclic operators
that do not satisfy the conditions of Theorem 6. The problem has several equiva-
lent formulations. The simplest formulation is whether there exists a hypercyclic
operator T ∈ B(X) such that T ⊕ T ∈ B(X ⊕ X) is not hypercyclic. The prob-
lem was solved recently by [DeR], see also [BaM], where such an operator was
constructed in any space �p (1 ≤ p < ∞) or c0.

Theorem 7. Let X be a separable Banach space and let T ∈ B(X). Then T is
hypercyclic if and only if, for all non-empty open sets U, V ⊂ X , there exists
n ∈ N such that T nU ∩ V �= ∅.
Proof. Suppose that T is hypercyclic and let U, V be non-empty open subsets of
X . Since the set of all hypercyclic vectors is dense, there is an x ∈ U hypercyclic
for T . Therefore there is an n ∈ N such that T nx ∈ V , and so T nU ∩ V �= ∅.

Conversely, suppose that T nU ∩ V �= ∅ for all non-empty open subsets U, V
of X . Let (Uj) be a countable basis of open subsets of X . For each j let Mj =⋃

n∈N
T−nUj. Clearly, Mj is open. We show that it is also dense.
Let y ∈ X and ε > 0. By assumption, there are n ∈ N and x ∈ X , ‖x−y‖ < ε

such that T nx ∈ Uj. Thus x ∈ Mj and Mj is dense.
By the Baire category theorem,

⋂
j Mj is non-empty and clearly each vector

in
⋂

j Mj is hypercyclic for T . �

For T ∈ B(X) and x ∈ X write Orb(T, x) = {T nx : n = 0, 1, . . .}. For y ∈ X
and ε > 0 denote by B(y, ε) = {u ∈ X : ‖u − y‖ < ε} the open ball with center y
and radius ε.

Theorem 8. Let T ∈ B(X), d > 0 and let x ∈ X satisfy that for each y ∈ X there
is an n ∈ N with ‖T nx − y‖ < d. Then T is hypercyclic.

Proof. Clearly, X is separable. Further, dim X = ∞ (if dimX < ∞, then consider
the Jordan form of T ). Let U, V be non-empty open subsets of X . We show that
T nU ∩ V �= ∅ for some n ∈ N.

Choose u ∈ U , v ∈ V and ε > 0 such that {y ∈ X : ‖y − u‖ < ε} ⊂ U and
{y ∈ X : ‖y − v‖ < ε} ⊂ V .

Let x′ = εx
3d . We show first that the set Orb(T, x′) intersects each open ball

with radius ε/3. If y ∈ X , then there is an n such that ‖T nx− 3dy
ε ‖ < d. Therefore

‖T nx′ − y‖ < ε
3d‖T nx − 3dy

ε ‖ < ε
3 .

Next we show that Orb(T, x′) intersects each ball with radius ε in an in-
finite set. Suppose on the contrary that there is a y ∈ X such that the set
{n : ‖T nx′ − y‖ < ε} is finite. Since the ball B(y, 2ε

3 ) cannot be covered by a
finite number of balls of radii ε

3 by Proposition 24.4, there is a y1 ∈ B(y, 2ε
3 ) such

that dist{y1, Orb(T, x′)} ≥ ε
3 . Thus Orb(T, x′) ∩ B(y1, ε/3) = ∅, a contradiction.

Therefore there exist n1, n2 ∈ N such that T n1x′ ∈ B(u, ε) ⊂ U , n2 > n1

and T n2x′ ∈ B(v, ε) ⊂ V . Hence T n2−n1T n1x′ ∈ V , and so T n2−n1U ∩ V �= ∅. By
Theorem 7, T is hypercyclic. �
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Theorem 9. Let T ∈ B(X) and x ∈ X . Suppose that Orb(T, x) has non-empty
interior. Then x is hypercyclic for T .

Proof. Write F = Orb(T, x) and let U be the interior of F . Without loss of
generality we can assume that x ∈ U . Indeed, there exists n0 such that T n0x ∈ U .
Clearly, the interiors of the sets Orb(T, T n0x) and Orb(T, x) are equal and the
hypercyclicity of x is equivalent to the hypercyclicity of T n0x.

We prove the statement in several steps.

(a) σp(T ∗) = ∅ and q(T ) has dense range for each non-zero polynomial q.

Proof. Suppose on the contrary that λ ∈ σp(T ∗). Let x∗ be a corresponding eigen-
vector of T ∗. Then {〈T nx, x∗〉 : n = 0, 1, . . .}− has non-empty interior in C.
However,

|〈T nx, x∗〉| = |〈x, T ∗nx∗〉| = |λn| · |〈x, x∗〉|
and this sequence either converges to zero (for |λ| < 1), or is constant (for |λ| = 1
or 〈x, x∗〉 = 0), or tends to infinity (for |λ| > 1 and 〈x, x∗〉 �= 0). So the closure
{〈T nx, x∗〉 : n = 0, 1, . . .}− cannot have non-empty interior. Hence σp(T ∗) = ∅
and T − λ has dense range for each λ ∈ C.

If q is a non-zero polynomial, then q(T ) can be written as a product of a
finite number of operators with dense range. Hence q(T ) has also dense range.

(b) The set {q(T )x : {q a polynomial} is dense in X .

Proof. The set {q(T )x : q a polynomial}− is a closed subspace of X containing
Orb(T, x) which has non-empty interior. Note that the only closed subspace of X
with non-empty interior is the whole space X .

(c) T (X \ U) ⊂ X \ U .

Proof. Suppose on the contrary that there is a y ∈ X \ U such that Ty ∈ U .
Without loss of generality we can assume that y /∈ F . Indeed, if y ∈ F \ U , then
y ∈ ∂F and we can replace y by a vector y′ /∈ F close enough to y such that still
Ty′ ∈ U .

Since the set {q(T )x : q a polynomial} is dense in X , we can change y′ slightly
to obtain a polynomial q such that q(T )x /∈ F and Tq(T )x ∈ U .

Since U ⊂ F and TF ⊂ F , we have Orb(T, T q(T )x) ⊂ F . However,
Orb(T, T q(T )x) = {q(T )T nx : n = 1, 2, . . . }. For n ≥ 1 we have q(T )T nx =
T nq(T )x ∈ F . Since x is a limit point of {T nx : n ≥ 1}, by continuity of q(T ) we
get q(T )x ∈ F , a contradiction.

(d) Let q be a non-zero polynomial. Then q(T )x /∈ ∂U .

Proof. Suppose on the contrary that q(T )x ∈ ∂U ⊂ F . Let P be the set of all
polynomials p such that p(T )x ∈ X \F . Then {p(T )x : p ∈ P}− = X \ F = X \U .
Let M = U ∪ {p(T )x : p ∈ P}. Clearly M = X .
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Since q(T ) has dense range, we have q(T )M = X . Each point in U is a limit
of {T nx : n = 0, 1, . . .}. We have q(T )T nx = T nq(T )x ⊂ T n(X \ U) ⊂ X \ U .
Thus q(T )U ⊂ X \ U .

Let p ∈ P . We have

q(T )p(T )x = p(T )q(T )x ∈ p(T )F = p(T ){T nx : n = 0, 1, . . . }−
⊂ {T np(T )x : n = 0, 1, . . . }− ⊂ X \ U.

Hence q(T )M ⊂ X \ U , a contradiction.

(e) x is hypercyclic for T .

Proof. The set {p(T )x : p a non-zero polynomial} is connected, contains points of
U (e.g., x) and contains no boundary points of U . Therefore

{p(T )x : p a non-zero polynomial} ⊂ U

and
F = U ⊃ {p(T )x : p a non-zero polynomial}− = X.

Hence x is hypercyclic for T . �
Corollary 10. Let T ∈ B(X), k ∈ N. Suppose that T is k-hypercyclic, i.e., there

are vectors x1, x2, . . . , xk ∈ X such that
⋃k

i=1 Orb(T, xi) is dense in X . Then T is
hypercyclic.

Proof. We have X =
⋃k

i=1 Orb(T, xi) =
⋃k

i=1 Orb(T, xi). By the Baire category
theorem, there is a j, 1 ≤ j ≤ k such that Orb(T, xj) has non-empty interior. By
Theorem 9, xj is hypercyclic for T . �
Corollary 11. Let T ∈ B(X) be a hypercyclic operator. Then for every positive n,
the operator T n is also hypercyclic. Moreover, T and T n share the same collection
of hypercyclic vectors.

Proof. Let x be hypercyclic for T . We have Orb(T, x) =
⋃n−1

j=0 Orb(T n, T jx) and
as above, there is a k, 0 ≤ k ≤ n − 1 such that Orb(T n, T kx) has non-empty
interior. By Theorem 9, T kx is hypercyclic for T n. Since T has dense range, the
set T n−k Orb(T n, T kx) = Orb(T n, T nx) is also dense. So T nx is hypercyclic for
T n, and so x is also hypercyclic for T n. �

Let T ∈ B(X) and let x ∈ X be a hypercyclic vector for T . Then x is also
hypercyclic for −T . Indeed,

Orb(−T, x) ⊃ {(−T )2nx : n = 0, 1, . . .} = Orb(T 2, x),

which is dense by Corollary 11.
Similarly, one can show that x is hypercyclic for each operator λT , where

λ = e2πit with t rational, 0 ≤ t < 1. The next result shows that in fact x is
hypercyclic for each operator λT with |λ| = 1.

It is easy to show that in general x is not hypercyclic for λT if |λ| �= 1.
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Theorem 12. Let T ∈ B(X) be a hypercyclic operator and let λ ∈ C, |λ| = 1.
Then λT is also hypercyclic. Moreover, T and λT share the same collection of
hypercyclic vectors.

Proof. For u, v ∈ X set

Fu,v =
{
µ ∈ T : µv ∈ Orb(λT, u)

}
.

Clearly Fu,v is a closed subset of the unit circle T = {µ ∈ C : |µ| = 1}.
The proof will be done in several steps:

(a) Let u ∈ X be hypercyclic for T . Then Fu,v �= ∅ for all v ∈ X .
Proof. There is a sequence (nk) of positive integers such that T nku → v. Passing
to a subsequence if necessary, we can assume that (λnk) is convergent, λnk → µ
for some µ ∈ T. Then

‖(λT )nku − µv‖ ≤ ‖(λT )nku − λnkv‖ + ‖(λnk − µ)v‖ → 0.

Thus µ ∈ Fu,v .

(b) Let u, v, w ∈ X , µ1 ∈ Fu,v and µ2 ∈ Fv,w. Then µ1µ2 ∈ Fu,w .

Proof. Let ε > 0. There exist n1 ∈ N with ‖(λT )n1v − µ2w‖ < ε/2 and n2 ∈ N

such that ‖(λT )n2u − µ1v‖ < ε
2‖T n1‖ . Then∥∥(λT )n1+n2u−µ1µ2w

∥∥ ≤ ∥∥(λT )n1
(
(λT )n2u−µ1v

)∥∥+
∥∥µ1

(
(λT )n1v−µ2w

)∥∥ < ε.

Hence µ1µ2 ∈ Fu,w.

Let x ∈ X be a fixed vector hypercyclic for T . By (a) and (b), Fx,x is a
non-empty closed subsemigroup of the unit circle T.

Suppose first that Fx,x = T. Then (a) and (b) imply that Fx,y = T for each
y ∈ X . In particular, 1 ∈ Fx,y, and so y ∈ Orb(λT, x) for all y ∈ X . Hence x is
hypercyclic for λT .

In the following we shall assume that Fx,x �= T. We show that this assumption
leads to a contradiction.

(c) There exists k ∈ N such that Fx,x = {e2πij/k : j = 0, 1, . . . , k − 1}.
Proof. Let s = inf{t > 0 : e2πit ∈ Fx,x}. Clearly, s > 0, since otherwise Fx,x would
be dense in T. We have e2πis ∈ Fx,x. Let k = min{n ∈ N : ns ≥ 1}. If ks > 1,
then e2πi(ks−1) ∈ Fx,x and 0 < ks − 1 < s, a contradiction with the definition of
s. Hence ks = 1 and

Fx,x ⊃ {e2πij/k : j = 0, 1, . . . , k − 1}.
If there is an µ ∈ Fx,x \ {e2πij/k : j = 0, 1, . . . , k − 1}, then µ = e2πit

and j0/k < t < (j0 + 1)/k for some j0, 0 ≤ j0 ≤ k − 1. Then µ · e−2πij0/k =
e2πi(t−j0/k) ∈ Fx,x where 0 < t − j0/k < 1/k = s, which is again a contradiction
with the definition of s.

Thus Fx,x = {e2πij/k : j = 0, 1, . . . , k − 1}.
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(d) Let y ∈ X be a vector hypercyclic for T . Then there exists µy ∈ T such that
Fx,y = {µye

2πij/k : j = 0, 1, . . . , k − 1}.
Proof. By (a), there are µ ∈ Fx,y and α ∈ Fy,x. By (b), we have µFx,x ⊂ Fx,y and
αFx,y ⊂ Fx,x. In particular, cardFx,y = cardFx,x and Fx,y = µFx,x = {µe2πij/k :
j = 0, 1, . . . , k − 1}.

By the proof of Theorem 5, each non-zero vector y in the subspace generated
by x and Tx is hypercyclic for T . For such a y define f(y) = µk where µ is any
element of Fx,y. Clearly the function f is well defined by (d).

(e) f is a continuous function.

Proof. Suppose on the contrary that there exist non-zero vectors un, u ∈ ∨{x, Tx}
such that un → u and f(un) �→ f(u). Without loss of generality we can assume
that the sequence (f(un)) converges to some α ∈ T, α �= f(u). Let µn ∈ Fx,un .
Passing to a subsequence if necessary we can assume that µn → µ for some µ ∈ T.
Then µnun ∈ Orb(λT, x) and µnun → µu. So we have µu ∈ Orb(λT, x) and
µ ∈ Fx,u. Hence α = lim f(un) = limµk

n = µk = f(u), a contradiction. Hence f is
continuous on the set

∨{x, Tx} \ {0}.
Proof of Theorem 12. Since x is hypercyclic for T , the vectors x and Tx are linearly
independent.

Let g : D → T be the function defined by g(z) = f
(
zx + (1 − |z|)Tx

)
.

Clearly g is continuous. For all z satisfying |z| = 1 we have Fx,zx = z−1Fx,x

and g(z) = f(zx) = z−kf(x) = z−k. It is well known that such a function g
cannot exist, see, e.g., [R], Theorem 10.40. Indeed, the function g would provide a
homotopy between the constant path γ1 : 〈0, 2π〉 → T defined by γ1(t) = g(0) and
the path γ2 : 〈0, 2π〉 → T given by γ2(t) = g(eit) = e−kit, which has the winding
number −k.

Thus Fx,x = T and the set Orb(λT, x) is dense in X . �

39 Weak orbits

By a weak orbit of an operator T ∈ B(X) we mean a sequence of the form
(〈T jx, x∗〉)∞j=0, where x ∈ X and x∗ ∈ X∗.

Some results concerning orbits also remain true for weak orbits. An example
is the statement of Theorem 37.5.

Theorem 1. Let T be an operator on a Banach space X , let (an)n≥0 be a sequence
of positive numbers such that an → 0. Then the set of all pairs (x, x∗) ∈ X × X∗

such that

|〈T nx, x∗〉| ≥ an‖T n‖ for infinitely many powers n

is residual in X × X∗.
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In particular, the set
{
(x, x∗) ∈ X×X∗ : lim supn→∞ |〈T nx, x∗〉|1/n = r(T )

}
is residual in X × X∗.

Proof. For k ∈ N set

Mk =
{
(x, x∗) ∈ X × X∗ : there exists n ≥ k such that |〈T nx, x∗〉| > an‖T n‖}.

Clearly, Mk is an open subset of X × X∗. We prove that Mk is dense. Let x ∈
X, x∗ ∈ X∗ and ε > 0. Choose n ≥ k such that an < ε2. There is a vector
u ∈ X of norm 1 such that ‖T nu‖ > an

ε2 ‖T n‖. Let u∗ ∈ X∗ satisfy ‖u∗‖ = 1 and
〈T nu, u∗〉 = ‖T nu‖. We have

|〈T n(x + εu), x∗ + εu∗〉| + |〈T n(x + εu), x∗ − εu∗〉|
+ |〈T n(x − εu), x∗ + εu∗〉| + |〈T n(x − εu), x∗ − εu∗〉|

≥
∣∣∣〈T n(εu + x), εu∗ + x∗〉 + 〈T n(εu + x), εu∗ − x∗〉

+ 〈T n(εu − x), εu∗ + x∗〉 + 〈T n(εu − x), εu∗ − x∗〉
∣∣∣

= |4〈T nεu, εu∗〉| = 4ε2‖T nu‖ > 4an‖T n‖.

Thus there is a pair

(y, y∗) ∈ {
(x+εu, x∗+εu∗), (x+εu, x∗−εu∗), (x−εu, x∗+εu∗), (x−εu, x∗−εu∗)

}
such that |〈T ny, y∗〉| > an‖T n‖. Hence (y, y∗) ∈ Mk and Mk is dense in X × X∗.

By the Baire category theorem, the intersection M =
⋂∞

k=1 Mk is a residual
subset of X × X∗ and all pairs (y, y∗) ∈ M satisfy |〈T ny, y∗〉| > an‖T n‖ for
infinitely many powers n.

In particular, for an = n−1 we obtain that

lim sup
n→∞

|〈T ny, y∗〉|1/n ≥ lim sup
n→∞

(‖T n‖
n

)1/n

= r(T )

for all pairs (y, y∗) in a residual subset of X × X∗. �

The analogy of Theorem 37.8 for weak orbits is not true. If T ∈ B(X) and
an > 0, an → 0, then in general it is not possible to find x ∈ X and x∗ ∈ X∗ such
that |〈T nx, x∗〉| ≥ anr(T n) for all n, cf. C.39.4. However, it is possible to prove
some weaker results.

We start with the following lemma:

Lemma 2. Let X be a Banach space, T ∈ B(X), re(T ) = 1, n0 ∈ N, ε > 0, m ∈ N.
Then there are numbers n0 < n1 < · · · < nm such that in each subspace M ⊂ X
of finite codimension there exists a vector x ∈ M of norm 1 with ‖T njx − x‖ ≤
ε (j = 1, 2, . . . , m).
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Proof. Let λ ∈ σe(T ), |λ| = 1. Then λ ∈ ∂σe(T ) ⊂ σπe(T ). Find s ∈ N such that
s > n0 and |λs − 1| ≤ ε/2m. Then

|λsj − 1| = |λs − 1| · |λs(j−1) + λs(j−2) + · · · + 1| ≤ ε/2

for j = 1, 2, . . . , m. Let x ∈ M be a vector of norm 1 satisfying ‖T sjx − λsjx‖ ≤
ε/2 (j = 1, . . . , m). Then ‖T sjx − x‖ ≤ ‖T sjx − λsjx‖ + ‖λsjx − x‖ ≤ ε. �

Theorem 3. Let X be a Banach space, T ∈ B(X) and let (aj)j≥1 be a sequence of
positive numbers with aj → 0. Then there exist x ∈ X , x∗ ∈ X∗ and an increasing
sequence (nj) of positive integers such that

Re〈T njx, x∗〉 ≥ aj · r(T )nj

for all j ≥ 1.

Proof. Without loss of generality we can assume that r(T ) = 1 and that 1 > a0 ≥
a1 ≥ · · · . We distinguish two cases:

(a) Suppose that there are x ∈ X , x∗ ∈ X∗ and c > 0 such that |〈T nx, x∗〉| ≥
c for infinitely many powers n (i.e., T n does not tend to 0 in the weak operator
topology).

Then

|〈T nx,x∗〉|≤√
2 ·max

{
Re〈T nx,x∗〉,Re〈T nx,ix∗〉,Re〈T nx,−x∗〉,Re〈T nx,−ix∗〉}.

Thus there are c1 > 0 and x∗
1 ∈ X∗ such that Re〈T nx, x∗

1〉 ≥ c1 for infinitely many
powers n. Hence we get the statement of Theorem 3 for a suitable multiple of x∗

1.

(b) Suppose that 〈T nx, x∗〉 → 0 for all x ∈ X, x∗ ∈ X∗.
Using the uniform boundedness theorem twice yields that M := sup{‖T n‖ :

n = 0, 1, . . . } < ∞. The assumption also implies that there are no eigenvalues
of modulus 1, and so re(T ) = 1. Let s = 8M . Find numbers mk ∈ N such that
0 = m0 < m1 < m2 < · · · and

aj ≤ 1
16s2k

(k ≥ 0, j > mk).

We construct inductively sequences (uk)k≥0 ⊂ X , (u∗
k)k≥0 ⊂ X∗ and an increasing

sequence of positive integers (nj) in the following way:
Set u0 = 0 and u∗

0 = 0. Let k ≥ 0 and suppose that vectors u0, . . . , uk ∈ X ,
u∗

0, . . . , u
∗
k ∈ X∗ and numbers n1, . . . , nmk

have already been constructed. Write
xk =

∑k
i=1

ui

si−1 and x∗
k =

∑k
i=1

u∗
i

si−1 . Find qk such that |〈T jxk, x∗
k〉| ≤ 1

16s2k (j ≥
qk). Find numbers nmk+1, . . . , nmk+1 satisfying the properties of Lemma 2 for
ε = 1/16 such that

max{nmk
, qk} < nmk+1 < nmk+2 < · · · < nmk+1 .
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Let Ek =
∨{

T njui : 0 ≤ i ≤ k, 0 ≤ j ≤ mk+1

}
. By Lemma 37.6, there exists a

subspace Yk of finite codimension such that

‖e + y‖ ≥ max{‖e‖/2, ‖y‖/4} (e ∈ Ek, y ∈ Yk).

Let uk+1 ∈ Yk ∩ ⊥
(∨{

T ∗nju∗
i : 1 ≤ i ≤ k, 0 ≤ j ≤ mk+1

})
be a vector of norm 1

such that
‖T njuk+1 − uk+1‖ < 1/16 (mk < j ≤ mk+1).

Find u∗
k+1 ∈ E⊥

k such that ‖u∗
k+1‖ = 1 and

〈uk+1, u
∗
k+1〉 = dist{uk+1, Ek} ≥ 1/4.

Note that 〈T nj ui, u
∗
k+1〉 = 0 and 〈T njuk+1, u

∗
i 〉 = 0 for all i ≤ k and j ≤ mk+1.

Continue the inductive construction, and set finally x =
∑∞

i=1
ui

si−1 and x∗ =∑∞
i=1

u∗
i

si−1 .
To show that x, x∗ and the sequence (nj) satisfy the properties required, let

k ≥ 0 and mk < j ≤ mk+1. We have

Re〈T nj x, x∗〉 = Re
〈

T nj

(
xk +

∞∑
i=k

ui+1

si

)
, x∗

k +
∞∑

i=k

u∗
i+1

si

〉

= Re〈T njxk, x∗
k〉 +

1
s2k

Re〈T nj uk+1, u
∗
k+1〉 +

∞∑
i=k+1

1
s2i

Re〈T njui+1, u
∗
i+1〉

≥ − 1
16s2k

+
1

s2k

(
Re〈uk+1, u

∗
k+1〉 − Re〈uk+1 − T njuk+1, u

∗
k+1〉

)
−

∞∑
i=k+1

M

s2i

≥ 1
s2k

(
− 1

16
+

1
4
− 1

16
− 2M

s2

)
≥ 1

16s2k
≥ aj . �

Corollary 4. Let X be a Banach space, let T ∈ B(X), 0 < p < ∞, r(T ) �= 0. Then
the set {

(x, x∗) ∈ X × X∗ :
∞∑

n=0

( |〈T nx, x∗〉|
r(T n)

)p

= ∞
}

is residual in X × X∗.

Proof. For k ∈ N set

Mk =
{

(x, x∗) ∈ X × X∗ :
∞∑

n=0

( |〈T nx, x∗〉|
r(T n)

)p

> k

}
.

Clearly Mk is open in X ×X∗. To show that Mk is dense, let x ∈ X , x∗ ∈ X∗ and
ε > 0. By the previous theorem for a suitable sequence (an), there are u ∈ X and
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u∗ ∈ X∗ such that
∑∞

n=0

(
|〈T nu,u∗〉|

r(T n)

)p

= ∞. We can assume that ‖u‖ < ε and
‖u∗‖ < ε. Since( |〈T nu, u∗〉|

r(T n)

)p

=
∣∣∣∣ 〈T n(u + x), u∗ + x∗〉

4r(T n)
+

〈T n(u + x), u∗ − x∗〉
4r(T n)

+
〈T n(u − x), u∗ + x∗〉

4r(T n)
+

〈T n(u − x), u∗ − x∗〉
4r(T n)

∣∣∣∣p
≤ max

{ |〈T n(u + x), u∗ + x∗〉|
r(T n)

,
|〈T n(u + x), u∗ − x∗〉|

r(T n)
,

|〈T n(u − x), u∗ + x∗〉|
r(T n)

,
|〈T n(u − x), u∗ − x∗〉|

r(T n)

}p

,

we have that
∑∞

n=0

(
|〈T ny,y∗〉|

r(T n)

)p

= ∞ for at least one pair

(y, y∗) ∈ {
(x + u, x∗ + u∗), (x + u, x∗ − u∗), (x − u, x∗ + u∗), (x − u, x∗ − u∗)

}
.

Thus Mk is dense in X × X∗ and

M =
⋂
k

Mk =
{

(x, x∗) ∈ X × X∗ :
∞∑

n=0

( |〈T nx, x∗〉|
r(T )n

)p

= ∞
}

is residual in X × X∗. �

The following result is analogous to Theorem 37.14.

Theorem 5. Let X, Y be Banach spaces, let (Tn) ⊂ B(X, Y ) be a sequence of

operators. Let an > 0,
∑∞

n=1 a
1/2
n < ∞. Then there are x ∈ X , y∗ ∈ Y ∗ such that

|〈T nx, y∗〉 ≥ an‖T n‖ for all n. Moreover, given balls B ⊂ X , B′ ⊂ Y ∗ of radii

grater than
∑∞

n=1 a
1/2
n then it is possible to find x ∈ B and y∗ ∈ B′.

Proof. Let s =
∑∞

n=1 a
1/2
n . Let u ∈ X , v∗ ∈ Y ∗ and ε > 0. We find x ∈ X , y∗ ∈ Y ∗

such that ‖x − u‖ ≤ s + ε, ‖y∗ − v∗‖ ≤ s + ε and |〈Tnx, y∗〉| ≥ an‖Tn‖ for all n.
Without loss of generality we may assume that Tn �= 0 for all n. For n ∈ N

let a′
n = an

(s+ε/2)2 . Then
∑∞

n=1 a′
n

1/2
< 1.

For n ∈ N find xn ∈ X such that ‖xn‖ = 1 and ‖Tnx‖ ≥ s+ε/2
s+ε ‖Tn‖. By

Theorem A.5.1 applied to X∗, there exists y′∗ ∈ Y ∗ such that ‖y′∗ − v∗
s+ε‖ ≤ 1

and ∣∣∣〈 Tnxn

‖Tnxn‖ , y′∗
〉∣∣∣ ≥ a′

n
1/2

for all n.
Applying Theorem A.5.1 again to the functionals T∗

ny′∗

‖T∗
ny′∗‖ , we obtain x′ ∈ X

such that ‖x′ − u
s+ε‖ ≤ 1 and

∣∣∣〈x′, T∗
ny′∗

‖T∗
ny′∗‖

〉∣∣∣ ≥ a′
n

1/2 for all n. Set x = (s + ε)x′
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and y∗ = (s + ε)y′∗. Then ‖x − u‖ ≤ s + ε and ‖y∗ − v∗‖ ≤ s + ε. For n ∈ N we
have

|〈Tnx, y∗〉| = (s + ε)2|〈x′, T ∗
ny′∗〉| ≥ (s + ε)2a′

n
1/2‖T ∗

ny′∗‖
≥ (s + ε)2a′

n
1/2|〈xn, T ∗

ny′∗〉| ≥ (s + ε)2a′
n

1/2|〈Tnxn, y′∗〉|

≥ (s + ε)2a′
n‖Tnxn‖ ≥ an

(s + ε)2

(s + ε/2)2
· s + ε/2

s + ε
‖Tn‖ ≥ an‖Tn‖. �

Corollary 6. Let X , Y be Banach spaces, Tn ∈ B(X, Y ),
∑∞

n=1 ‖Tn‖−1/2 < ∞.
Then there exist x ∈ X and y∗ ∈ Y ∗ such that |〈Tnx, y∗〉| → ∞. Moreover, the
set of such pairs (x, y∗) is dense in X × Y ∗.

Proof. Let u ∈ X , v∗ ∈ Y ∗, ε > 0. By Lemma 37.15, we can find positive numbers
βn such that βn → ∞ and s =

∑∞
n=1

βn

‖Tn‖1/2 < ∞.

Find n0 such that
∑∞

n=n0
βn‖Tn‖−1/2 < ε. By Theorem 5, there are x ∈ X

and y∗ ∈ X∗ such that ‖x − u‖ < ε, ‖y∗ − v∗‖ < ε and

|〈T nx, y∗〉| ≥ β2
n

‖T n‖ · ‖Tn‖ = β2
n

for all n ≥ n0. Hence |〈T nx, y∗〉| → ∞. �
Corollary 7. Let X be a Banach space, let T ∈ B(X). Then the set{

(x, x∗) ∈ X × X∗ : lim inf
n→∞ |〈T nx, x∗〉|1/n = r(T )

}
is dense in X × X∗. In particular, there is a dense subset L of X × X∗ with the
property that the limit limn→∞ |〈T nx, x∗〉|1/n exists and is equal to r(T ) for each
pair (x, x∗) ∈ L.

Proof. Let u ∈ X , u∗ ∈ X∗ and ε > 0. Find n0 such that
∑∞

n=n0
n−3/2 < ε. By

Theorem 5, there are x ∈ X and x∗ ∈ X∗ such that ‖x − u‖ < ε, ‖x∗ − u∗‖ < ε
and

|〈T nx, x∗〉| ≥ n−3‖T n‖
for all n sufficiently large. Then

lim
n→∞ |〈T nx, x∗〉|1/n ≥ lim

n→∞n−3/n‖T n‖1/n = r(T ).

So limn→∞ |〈T nx, x∗〉|1/n = r(T ). �
Better results are true for Hilbert space operators.

Theorem 8. Let H, K be Hilbert spaces, let (Tn) ⊂ B(H, K) be a sequence of
operators. Let an > 0,

∑∞
n=1 an < ∞. Then:

(i) there are x ∈ H , y ∈ K such that |〈T nx, y〉 ≥ an‖T n‖ for all n.

(ii) there is a dense subset of pairs (x, y) ∈ H ×H such that |〈T nx, y〉| ≥ an‖Tn‖
for all n sufficiently large.
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Proof. (i) By Theorem 37.17, there exists x ∈ H such that ‖Tnx‖ ≥ a
1/2
n ‖Tn‖ for

all n ∈ N. By Theorem A.5.2, there is an y ∈ H such that∣∣∣〈 Tnx

‖Tnx‖ , y
〉∣∣∣ ≥ a1/2

n

for all n ∈ N. Then |〈Tnx, y〉| ≥ a
1/2
n ‖Tnx‖ ≥ an‖Tn‖ for all n ∈ N.

(ii) Let u ∈ H , v ∈ K and ε > 0. By Theorem 37.17 (ii), there exists x ∈ H ,
‖x − u‖ < ε such that ‖Tnx‖ ≥ a

1/2
n ‖Tn‖ for all n sufficiently large.

Consider the operators y �→ 〈Tnx, y〉 from K to C. Using Theorem 37.17 (ii)
again, there exists y ∈ K such that ‖y − v‖ < ε and

|〈Tnx, y〉| ≥ a1/2
n ‖Tnx‖ ≥ an‖Tn‖

for all n large enough. �

Corollary 9. Let H be a Hilbert space, T ∈ B(H),
∑∞

n=1 ‖T n‖−1 < ∞. Then there
exist x, y ∈ H such that |〈T nx, y〉| → ∞. Moreover, the set of such pairs (x, y) is
dense in H × K.

Proof. By Lemma 37.15, there are βn → ∞ such that
∑∞

n=1
βn

‖T n‖ < ∞. By
Theorem 8, there is a dense subset of pairs (x, y) ∈ H × H such that

|〈T nx, y〉| ≥ βn

‖T n‖ · ‖T n‖ = βn

for all n large enough. Hence |〈T nx, y〉| → ∞. �

Theorem 10. Let X, Y be Banach spaces, let T1, T2, . . . be a sequence of non-zero
operators from X to Y and let 0 < p < 1/2. Then the set{

(x, y∗) ∈ X × Y ∗ :
∞∑

j=1

( |〈Tjx, y∗〉|
‖Tj‖

)p

= ∞
}

is residual in X × Y ∗.
If X, Y are Hilbert spaces, then the same statement is true for all p, 0 < p < 1.

Proof. For k ≥ 1 set

Mk =
{

(x, y∗) ∈ X × Y ∗ :
∞∑

j=1

( |〈Tjx, y∗〉|
‖Tj‖

)p

> k

}
.

Clearly, Mk is an open subset of X . It is sufficient to show that Mk is dense.
Indeed, by the Baire theorem, the intersection

⋂
k Mk =

{
(x, y∗) ∈ X × Y ∗ :∑

j

( |〈Tjx,y∗〉|
‖Tj‖

)p

= ∞
}

is a dense Gδ subset of X × Y ∗.
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Fix u ∈ X , v∗ ∈ Y ∗, δ > 0 and k ∈ N. Let ε = 1−2p
p and an = 1

n2+ε . Then

ε > 0 and
∑

n a
1/2
n < ∞. Let n0 satisfy

∑∞
n=n0

a
1/2
n < δ. By Theorem 5, there exist

u ∈ X , v∗ ∈ Y ∗ such that ‖x − u‖ ≤ δ, ‖y∗ − v∗‖ ≤ δ and |〈Tnx, y∗〉| ≥ an‖Tn‖
for all n ≥ n0. Then

∞∑
n=1

(
|〈Tnx, y∗〉|

‖Tn‖

)p

≥
∞∑

n=n0

ap
n =

∞∑
n=n0

1
n

= ∞.

Hence (x, y∗) ∈ Mk and Mk is dense in X × Y ∗.
The statement for Hilbert space operators can be proved similarly. �

We finish this section with an important partial case in which the statement
analogous to Theorem 37.8 is true for weak orbits. For simplicity we formulate it
only for Hilbert space operators; for Banach space analogy see C.39.4.

An operator T ∈ B(X) is called power bounded if supn ‖T n‖ < ∞. T is of
class C0· if ‖T nx‖ → 0 for all x ∈ X . T is of class C1· if there is no non-zero x ∈ X
with ‖T nx‖ → 0. T is of class C·0 (C·1) if T ∗ is of class C0· (C1·). Finally, T is
of class Cαβ (α, β = 0, 1) if T is both of class Cα· and C·β . We start with the
following lemma.

Lemma 11. Let K ≥ 1. Then there exist positive numbers ci (i ∈ N) such that∑∞
i=1 c2

i = 1 and
∑∞

i=k+1 c2
i > 3Kck for all k ≥ 1.

Proof. Note first that

lim
k→∞

k2/3
∞∑

i=k+1

i−4/3 = ∞. (1)

Indeed, we have
∑∞

i=k+1 i−4/3 ≥ ∫ ∞
k+1 x−4/3 dx = 3(k + 1)−1/3, and so

lim
k→∞

k2/3
∞∑

i=k+1

i−4/3 ≥ lim
k→∞

3k2/3

(k + 1)1/3
= ∞.

By (1), there exists k0 such that

k2/3
∞∑

i=k+1

i−4/3 > 3K

( ∞∑
i=1

i−4/3

)1/2

(2)

for all k ≥ k0. For j ∈ N set

cj = (j + k0)−2/3

( ∞∑
i=k0+1

i−4/3

)−1/2

.
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Then
∑∞

i=1 c2
i = 1. Let k ≥ 1. Then, by (2),

∞∑
i=k+1

c2
i =

∞∑
i=k+1

(k0 + i)−4/3

∞∑
i=k0+1

i−4/3

>

3K
( ∞∑

i=1

i−4/3
)1/2

∞∑
i=k0+1

i−4/3

· (k + k0)−2/3

≥ 3K(k + k0)−2/3( ∞∑
i=k0+1

i−4/3
)1/2

= 3Kck. �

The next result is an analogy of Theorem 37.8.

Theorem 12. Let T be an operator of class C0· acting on a Hilbert space H
such that 1 ∈ σ(T ). Let (an)∞n=1 be a sequence of positive numbers such that
limn→∞ an = 0 and sup an < 1. Then there exists x ∈ H of norm 1 such that
Re〈T nx, x〉 > an for all n ≥ 1.

Proof. By the Banach-Steinhaus theorem, T is power bounded. Let K =supn‖T n‖.
Clearly K ≥ 1 and r(T ) = 1.

Suppose first that 1 /∈ σe(T ). Then 1 is an eigenvalue of T and there exists
x ∈ H of norm 1 such that Tx = x. Then Re〈T nx, x〉 = 1 for all n.

Let 1 ∈ σe(T ). Then 1 ∈ ∂σe(T ), and so T − I is not upper semi-Fredholm,
see Proposition 19.1. Consequently, for all ε > 0 and M ⊂ H with codimM < ∞
there exists u ∈ M of norm 1 such that ‖Tu − u‖ < ε. Moreover, given n0 ∈ N,
we also can find v ∈ M of norm 1 such that ‖T jv − v‖ < ε for all j ≤ n0.

Replacing the numbers an by sup{ai : i ≥ n} we can assume without loss of
generality that 1 > a1 ≥ a2 ≥ · · · . By Lemma 11, there are positive numbers ci

such that
∑∞

i=1 c2
i = 1 and

∑∞
i=k+1 c2

i > 3Kck for all k ≥ 1.
For i = 1, 2, . . . let δi be a positive number satisfying δi < 1−a1

2i and δi <

min
{

Kck

i·2i−k+1 : k = 1, . . . , i + 1
}
.

Find m0 ∈ N such that am0 <
∑∞

i=2 c2
i − 3Kc1. We construct inductively an

increasing sequence (mi)∞i=0 of positive integers and a sequence (xi)∞i=1 ⊂ H in
the following way:

Let k ∈ N and suppose that xi ∈ H and mi have already been constructed
for all i < k. Choose xk ∈ X of norm 1 such that

xk ⊥ T jxi (i < k, 0 ≤ j ≤ mk−1) and ‖T jxk − xk‖ < δk (j ≤ mk−1).

Find mk > mk−1 such that

‖T jxi‖ < δk (i ≤ k, j ≥ mk)

and

amk
<

∞∑
i=k+2

c2
i − 3Kck+1.
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Suppose that xi and mi have been constructed in the above-described way.
Set x =

∑∞
i=1 cixi. Since (xi) is an orthonormal sequence, we have

‖x‖ =
( ∞∑

i=1

c2
i

)1/2

= 1.

For n ≤ m0 we have

Re〈T nx, x〉 = Re
∞∑

i=1

ci〈T nxi, x〉 = Re
∞∑

i=1

ci

(〈xi, x〉 − 〈xi − T nxi, x〉
)

≥
∞∑

i=1

c2
i −

∞∑
i=1

ci‖xi − T nxi‖ ≥ 1 −
∞∑

i=1

ciδi > 1 −
∞∑

i=1

1 − a1

2i
= a1 ≥ an.

Let k ≥ 1 and mk−1 < n ≤ mk. Then

Re〈T nx, x〉 = Re
k−1∑
i=1

ci〈T nxi, x〉 + Re ck〈T nxk, x〉 + Re
∞∑

i=k+1

ci〈T nxi, x〉

≥ −
k−1∑
i=1

ci‖T nxi‖ − Kck + Re
∞∑

i=k+1

ci

(
〈xi, x〉 − 〈xi − T nxi, x〉

)

≥ −
k−1∑
i=1

ciδk−1 − Kck +
∞∑

i=k+1

c2
i −

∞∑
i=k+1

ci‖xi − T nxi‖

≥ −(k − 1)δk−1 − Kck +
∞∑

i=k+1

c2
i −

∞∑
i=k+1

δi

≥
∞∑

i=k+1

c2
i − 3Kck > amk−1 ≥ an.

Thus Re〈T nx, x〉 > an for all n ≥ 1. �

Corollary 13. Let T ∈ B(H) be an operator of class C0· satisfying r(T ) = 1. Let
an > 0 (n ∈ N) and an → 0. Then there exists x ∈ H such that |〈T nx, x〉| ≥ an

for all n ∈ N. Moreover, given ε > 0, it is possible to find x ∈ H with this property

such that ‖x‖ < supn a
1/2
n + ε.

Proof. Let λ ∈ σ(T ), |λ| = 1. Then 1 ∈ σ(λ−1T ) and the statement follows from
Theorem 12. �

Let C be a subset of a Banach space X . We say that C is a cone if C +C ⊂ C
and tC ⊂ C for all t ≥ 0.

Theorem 14. Let T be an operator a Hilbert space H of class C0· such that
1 ∈ σ(T ). Then T has a non-trivial closed invariant cone.
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Proof. By Theorem 12, there is a non-zero vector x ∈ H with Re〈T nx, x〉 ≥ 0
for all n. Let C =

{∑n
i=1 αiT

ix : n ∈ N, αi ≥ 0 for 1 ≤ i ≤ n
}−. Clearly C is a

closed cone invariant for T . We have x ∈ C, so C �= {0}. For each u ∈ C we have
Re〈u, x〉 ≥ 0, so C �= H (for example, −x /∈ C). �

The assumption that T is of class C0· is not essential. It can be omitted by
a standard reduction technique.

Let X, Y be Banach spaces, T ∈ B(X) and S ∈ B(Y ). We write T ≺ S if
there is a one-to-one operator A : X → Y with dense range such that AT = SA.
We say that T is quasisimilar to S if T ≺ S and S ≺ T . It is easy to see that
T ≺ S implies S∗ ≺ T ∗. Furthermore, if T ≺ S and S ≺ V , then T ≺ V .

Theorem 15. Let T be a power bounded operator of class C11 acting on a Hilbert
space H . Then T is quasisimilar to a unitary operator.

Proof. Fix a Banach limit – a linear functional LIM : �∞ → C such that, for all
(an) ∈ �∞, we have LIM(an+1) = LIM(an), an ≥ 0 (n ∈ N) ⇒ LIM(an) ≥ 0
and LIM(an) = lim an whenever (an) is a convergent sequence.

Define in H a new norm ||| · ||| by |||x||| = LIM‖T nx‖. Clearly, |||x||| ≥
infn ‖T nx‖ > 0 for each x ∈ H , x �= 0. Then H with this norm is a pre-Hilbert
space (since the norm ||| · ||| can be defined by the new scalar product [x, y] =
LIM〈T nx, T ny〉). Let k = sup ‖T n‖. Clearly |||x||| ≤ k‖x‖ and |||Tx||| = |||x|||
for all x ∈ H .

Let K1 be the completion of the space (H, ||| · |||) and let U1 ∈ B(K1) be the
uniquely determined extension of the operator x �→ Tx acting in (H, ||| · |||). Then
U1 is an isometry.

Since T is of class C11, the operator T ∗ is one-to-one, and so T has dense
range. Consequently, U1 has a dense range in K1, and so it is unitary. Let W1 :
H → K1 be the operator induced by the identity on H . Clearly ‖W1‖ ≤ 1, W1 is
one-to-one and has dense range. We have W1T = U1W1 and so T ≺ U1.

Applying the same considerations to T ∗ instead of T , there are a Hilbert
space K2 and a unitary operator U2 ∈ B(K2) such that T ∗ ≺ U2. Consequently,
U∗

2 ≺ T ≺ U1 and so U∗
2 ≺ U1. Let W : K2 → K1 be a one-to-one operator with

dense range satisfying WU∗
2 = U1W . By the Fuglede-Putnam theorem, WU2 =

U∗
1 W , which means U2 ≺ U∗

1 . Thus U1 ≺ U∗
2 . Hence U1 ≺ U∗

2 ≺ T ≺ U1 and T is
quasisimilar to U1. �

Theorem 16. Let dimH ≥ 2 and let T ∈ B(H) be a power bounded operator of
class C11. Then T has a non-trivial closed invariant subspace.

Proof. By Theorem 15, T is quasisimilar to a unitary operator U ∈ B(K). So there
are one-to-one operators W1 : H → K and W2 : K → H with dense ranges such
that W1T = UW1 and TW2 = W2U .

We have (W1W2)U = W1TW2 = U(W1W2).
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If U = λI for some λ ∈ C, then W1Tx = λW1x, and so Tx = λx for all
x ∈ H . Hence T has non-trivial closed invariant subspaces.

If U is not a scalar multiple of the identity, then cardσ(U) ≥ 2. Let K0 ⊂ K
be any non-trivial spectral subspace of U . Then UK0 ⊂ K0 and W1W2K0 ⊂ K0,
since W1W2 commutes with U .

Let H0 = W2K0. We have TW2K0 = W2UK0 ⊂ W2K0 ⊂ H0 and so TH0 ⊂
H0. Clearly H0 �= {0}. Further, W1W2K0 ⊂ K0, and so W2K0 ⊂ W−1

1 K0 and
H0 ⊂ W−1

1 K0. Since W1 has dense range, W−1
1 K0 �= H , and so H0 is non-

trivial. �

Theorem 17. Let T be a power bounded operator on a Hilbert space H such that
1 ∈ σ(T ). Then T has a non-trivial closed invariant cone.

Proof. Let H1 = {x ∈ H : T nx → 0}. Then H1 is a closed subspace of H invariant
for T . If H1 is non-trivial, then T has even a non-trivial closed invariant subspace.
If H1 = H , then the statement follows from Theorem 14. Therefore we may assume
that H1 = {0}.

Let H2 = {x ∈ H : T ∗nx → 0}. Then H2 is a closed subspace invariant for
T ∗, and so H⊥

2 is a closed subspace invariant for T . If H2 is non-trivial, then the
theorem is proved. If H2 = H , then, by Theorem 12, there is a non-zero vector
x ∈ H with Re〈T nx, x〉 = Re〈x, T ∗nx〉 ≥ 0, and so x generates a non-trivial closed
cone invariant for T .

Hence we may assume that M1 = {0} = M2. So T is of class C11. If dimH ≥
2, then T has a non-trivial closed invariant subspace by Theorem 16. If dimH = 1,
then T = I and the statement is clear. �

40 Scott Brown technique

The Scott Brown technique is an efficient way of constructing invariant subspaces.
It was first used for subnormal operators but later it was adapted to contractions
on Hilbert spaces and, more generally, to polynomially bounded operators on
Banach spaces. Some results are also known for n-tuples of commuting operators.

We are going to give two illustrative examples showing how this method
works.

The basic idea of the Scott Brown technique is to construct a weak orbit
{〈T nx, x∗〉 : n = 0, 1, . . .} which behaves in a precise way. Typically, vectors
x ∈ X and x∗ ∈ X∗ are constructed such that

〈T nx, x∗〉 =

{
0 n ≥ 1;
1 n = 0.

Equivalently,
〈p(T )x, x∗〉 = p(0) (1)
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for all polynomials p. Then T has a non-trivial closed invariant subspace. Indeed,
either Tx = 0 (and x generates a 1-dimensional invariant subspace) or the vectors
{T nx : n ≥ 1} generate a non-trivial closed invariant subspace.

The vectors x and x∗ satisfying the above-described conditions are con-
structed as limits of sequences that satisfy (1) approximately.

Let D = {z ∈ C : |z| < 1} denote the open unit disc in the complex plane
and T = {z ∈ C : |z| = 1} the unit circle. Denote by P the normed space of all
polynomials with the norm ‖p‖ = sup{|p(z)| : z ∈ D}. Let P∗ be its dual with the
usual dual norm.

Let φ ∈ P∗. By the Hahn-Banach theorem, φ can be extended without chang-
ing the norm to a functional on the space of all continuous function on T with the
sup-norm. By the Riesz theorem, there exists a Borel measure µ on T such that
‖µ‖ = ‖φ‖ and φ(p) =

∫
p dµ for all polynomials p. Clearly, the measure is not

unique.
Let L1 be the Banach space of all complex integrable functions on T with

the norm ‖f‖1 = 1
2π

∫ π

−π
|f(eit)| dt.

Of particular interest are the following functionals on P :

(i) Let λ ∈ D. Denote by Eλ the evaluation at the point λ, i.e., Eλ is defined by
Eλ(p) = p(λ) (p ∈ P). Clearly, ‖Eλ‖ = 1.

(ii) Let f ∈ L1. Denote by Mf ∈ P∗ the functional defined by

Mf (p) =
1
2π

∫ π

−π

p(eit)f(eit) dt (p ∈ P).

Then ‖Mf‖ ≤ ‖f‖1.
The evaluation functionals Eλ are also of this type. Indeed, for λ ∈ D we have

Eλ = MPλ
, where Pλ(eit) = 1−|λ|2

|λ−eit|2 is the Poisson kernel. In particular, if g = 1,
then Mg(p) = p(0) for all p, and so Mg is the evaluation at the origin.

(iii) Let k > 0 and let T : X → X a polynomially bounded operator with polynomial
bound k, i.e., T satisfies the condition ‖p(T )‖ ≤ k‖p‖ for all polynomials p. Fix
x ∈ X and x∗ ∈ X∗. Let x ⊗ x∗ ∈ P∗ be the functional defined by

(x ⊗ x∗)(p) = 〈p(T )x, x∗〉 (p ∈ P).

Since T is polynomially bounded, x ⊗ x∗ is a bounded functional and we have
‖x ⊗ x∗‖ ≤ k‖x‖ · ‖x∗‖.

Of course the definition of x ⊗ x∗ depends on the operator T but since we
are going to consider only one operator T , this cannot lead to a confusion.

By the von Neumann inequality, any contraction on a Hilbert space is poly-
nomially bounded with polynomial bound equal to 1.



40. Scott Brown technique 361

Denote by L∞ the space of all bounded measurable functions on T with
the usual norm. Since P ⊂ L∞ = (L1)∗, the space P inherits the w∗-topology
from L∞.

Of particular importance for the Scott Brown technique are those functionals
on P that are w∗-continuous, i.e., that are continuous functions from (P , w∗) to
C. Equivalently, these functionals can be represented by absolutely continuous
measures. For basic properties of w∗-continuous functionals on P see Appendix 6.

Let T ∈ B(X) be a polynomially bounded operator such that ‖T nu‖ → 0
for all u ∈ X . Then all the functionals x ⊗ x∗ can be represented by absolutely
continuous measures. Equivalently, these functionals are w∗-continuous.

For each polynomially bounded operator T is is possible to extend the poly-
nomial calculus by continuity to the norm-closure of P , i.e., to the disc algebra
A(D). If T is of class C0·, then it is even possible to extend this functional calculus
to H∞. We summarize the results in the following theorem.

Theorem 1. Let T ∈ B(X) be a polynomially bounded operator with polynomial
bound k. Suppose that ‖T nu‖ → 0 for all u ∈ X . Then:

(i) x⊗x∗ can be represented by an absolutely continuous measure for all x ∈ X
and x∗ ∈ X∗. Equivalently, x ⊗ x∗ is w∗-continuous;

(ii) there exists an algebraic homomorphism H∞ → B(X), h ∈ H∞ �→ h(T )
such that

‖h(T )‖ ≤ k‖h‖ for each h ∈ H∞;

h(z) ≡ 1 ⇒ h(T ) = I;

h(z) ≡ z ⇒ h(T ) = T ;

if h, hn ∈ H∞, hn
w∗−→h, then ‖(hn(T )x − h(T )x‖ → 0 for each x ∈ X ;

(iii) the set {h(T )x : h ∈ H∞, ‖h‖ ≤ 1} is compact for all x ∈ X .

Proof. (i) Recall that a sequence (pn)n ⊂ P is called Montel if sup ‖pn‖ < ∞ and
lim

n→∞ pn(z) = 0 for all z ∈ D. We show that 〈pn(T )x, x∗〉 → 0 for any Montel

sequence (pn).
Without loss of generality we can assume that sup ‖pn‖ ≤ 1, ‖x‖ ≤ 1 and

‖x∗‖ ≤ 1. Let pn(z) =
∑∞

j=0 cn,jz
j. By the Cauchy formula and the Lebesgue

dominated convergence theorem, we have limn→∞ cn,j = 0 for each j ≥ 0.
Let ε be a positive number such that ε < 2k. Choose l such that ‖T lx‖ ≤

ε/ 4k. There exists n0 sufficiently large such that for every n ≥ n0 we have |cn,j | <

ε/ 2lk (j = 0, . . . , l). Fix such an n and write g(z) =
∑l−1

j=0 cn,jz
j. Then pn(z) =

g(z) + zlh(z) for some polynomial h. Clearly ‖g‖ ≤ ∑l−1
j=0 |cn,j| ≤ ε/ 2k and
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‖h‖ = ‖pn − g‖. Thus

|〈pn(T )x, x∗〉| ≤ ‖pn(T )x‖ ≤ ‖g(T )x‖ + ‖(pn − g)(T )x‖
≤ k‖g‖ + ‖h(T )‖ · ‖T lx‖ ≤ ε

2
+ k‖pn − g‖ · ε

4k

≤ ε

2
+

ε

4
· (‖pn‖ + ‖g‖) < ε.

Thus 〈pn(T )x, x∗〉 → 0. By Theorem A.6.3, x ⊗ x∗ is w∗-continuous.
Note that we have proved even that ‖pn(T )x‖ → 0 for each Montel sequence

(pn).

(ii) By (i) and Theorem A.6.3, for all x ∈ X and x∗ ∈ X∗ there exists
fx,x∗ ∈ L1 such that ‖f‖1 ≤ k‖x‖ · ‖x∗‖ and 〈p(T )x, x∗〉 = 1

2π

∫ 2π

0
p(eit)f(eit) dt

for all p ∈ P .
For h ∈ H∞ define Fh(x, x∗) = 1

2π

∫ 2π

0
h(eit)fx,x∗(eit) dt. Clearly, Fh is a

bilinear form and |Fh(x, x∗)| ≤ k‖x‖ · ‖x∗‖ for all x ∈ X and x∗ ∈ X∗. Hence Fh

defines a bounded linear operator h(T ) : X → X∗∗ by 〈h(T )x, x∗〉 = Fh(x, x∗).
Clearly, ‖h(T )‖ ≤ k‖h‖ and the mapping h �→ h(T ) is linear.

Moreover, for each k ∈ N and p ∈ P we have

1
2π

∫ 2π

0

p(eit)
(
eiktfx,x∗(eit) − fT kx,x∗(eit)

)
dt

= 〈p(T )T kx, x∗〉 − 〈p(T )T kx, x∗〉 = 0,

and so, for each h ∈ H∞,

〈(zkh)(T )x, x∗〉 =
1
2π

∫ 2π

0

h(eit)eiktfx,x∗(eit) dt

=
1
2π

∫ 2π

0

h(eit)fT kx,x∗(eit) dt = 〈h(T )T kx, x∗〉.

Hence (zkh)(T ) = h(T )T k.
As in (i), we can prove that ‖hn(T )x‖ → 0 for every x ∈ X and every Montel

sequence (hn) ⊂ H∞. For each h ∈ H∞ there is a sequence (pn) ⊂ P such that
pn

w∗−→h. Hence h(T )x = limn→∞ pn(T )x ∈ X and h(T ) ∈ B(X).
We show that the mapping h �→ h(T ) is multiplicative. Let h, h′ ∈ H∞. There

exist sequences (pn), (p′n) ⊂ P such that pn
w∗−→h and p′n

w∗−→h′. Then pnp′n
w∗−→hh′

and

(hh′)(T )x = lim
n→∞ pn(T )p′n(T )x = lim

n→∞ pn(T )h′(T )x = h(T )h′(T )x.

(iii) Let x ∈ X and let (gn) ⊂ H∞ be a bounded sequence. Then there exists
a pointwise convergent subsequence gnk

w∗−→g for some g ∈ H∞. Then gnk
(T )x →

g(T )x, which means that the set {h(T )x : h ∈ H∞, ‖h‖ ≤ 1} is compact. �
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Proposition 2. Let T ∈ B(X) be a polynomially bounded operator with polynomial
bound k, let λ ∈ C, x ∈ X , x∗ ∈ X∗, ‖x‖ = 1 = ‖x∗‖, ε > 0 and ‖(T − λ)x‖ < ε.
Then

‖x ⊗ x∗ − Eλ〈x, x∗〉‖ <
2kε

1 − |λ| .

Proof. We have∥∥x ⊗ x∗ − Eλ〈x, x∗〉∥∥ = sup
‖p‖=1

∣∣〈p(T )x, x∗〉 − p(λ)〈x, x∗〉∣∣.
For p ∈ P , ‖p‖ = 1 write q(z) = p(z)−p(λ)

z−λ . Then ‖q‖ ≤ 2‖p‖
1−|λ| = 2

1−|λ| . Thus∣∣〈p(T )x, x∗〉 − p(λ)〈x, x∗〉∣∣ =
∣∣〈q(T )(T − λ)x, x∗〉∣∣

≤ ‖q(T )‖ · ‖(T − λ)x‖ ≤ 2kε

1 − |λ| . �

The previous lemma shows that the points in the approximate point spectrum
of T are of particular interest for the Scott Brown technique. Even more useful
are the points of the essential approximate point spectrum. For simplicity, we
formulate the next result only for Hilbert space operators. However, it can be
adapted to Banach spaces easily.

Proposition 3. Let T be a polynomially bounded operator on a Hilbert space H .
Let u1, . . . , un ∈ H , λ ∈ σπe(T ) and ε > 0. Then there exists x ∈ H of norm 1
such that x ⊥ {u1, . . . , un} and

‖x ⊗ x − Eλ‖ ≤ ε,

‖x ⊗ ui‖ ≤ ε (i = 1, . . . , n),
‖ui ⊗ x‖ ≤ ε (i = 1, . . . , n).

Proof. Since the set {p(T )x : p ∈ P , ‖p‖ ≤ 1}− is compact, there are vectors
v1, . . . , vm ∈ H such that dist{p(T )x, {v1, . . . , vm}} < ε for each polynomial p,
‖p‖ ≤ 1. Choose x ∈ {u1, . . . , un, v1, . . . , vm}⊥, ‖x‖ = 1 and ‖(T −λ)x‖ < ε(1−|λ|)

2k ,
where k is the polynomial bound of T . Then the first two inequalities are satisfied
by Proposition 2.

For the last inequality (note that the second and third inequalities are not
symmetrical!), let i ∈ {1, . . . , n} and p ∈ P , ‖p‖ ≤ 1. Find j such ‖p(T )ui−vj‖ < ε.
Then

|〈p(T )ui, x〉| ≤ |〈p(T )ui − vj , x〉| ≤ ‖p(T )x − vj‖ < ε. �

Now we are able to give an illustrative example how the Scott Brown tech-
nique can be applied.

A subset Λ ⊂ D is called dominant if supz∈Λ |f(z)| = ‖f‖ for all f ∈ H∞,
see Appendix 6.
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Theorem 4. Let T be a polynomially bounded operator of class C0· on a Hilbert
space H such that σ(T ) ∩ D is dominant in D. Then T has a non-trivial closed
invariant subspace.

Proof. Without loss of generality we can assume that neither T nor T ∗ has eigen-
values. In particular, σπe(T ) = σ(T ).

By Proposition 3, we can approximate (with an arbitrary precision) the eval-
uation functionals Eλ for λ ∈ σπe(T ) by the functionals of the type x ⊗ x with
x ∈ H , ‖x‖ = 1.

We show first the following result:

(a) Let ψ ∈ P∗ be a w∗-continuous functional, let x, y ∈ H and ε > 0. Then there
are x′, y′ ∈ H such that

‖x′ ⊗ y′ − ψ‖ < ε,

‖x′ − x‖ ≤ ‖x ⊗ y − ψ‖1/2,

‖y′ − y‖ ≤ ‖x ⊗ y − ψ‖1/2.

Proof. By Theorem A.6.4, there are elements λ1, . . . , λn ∈ σπe(T ) and non-zero
complex numbers α1, . . . , αn such that

∑n
i=1 |αi| ≤ ‖x ⊗ y − ψ‖ and∥∥∥x ⊗ y − ψ +

n∑
i=1

αiEλi

∥∥∥ < ε/2.

Let δ be a sufficiently small positive number.
By Proposition 3, we can find inductively mutually orthogonal unit vectors

u1, . . . , un ∈ H such that

‖x ⊗ ui‖ < δ,

‖ui ⊗ y‖ < δ,

‖ui ⊗ uj‖ < δ (i �= j),
‖ui ⊗ ui − Eλi‖ < δ.

Set x′ = x+
∑n

i=1
αi

|αi|1/2 ui and y′ = y+
∑n

i=1 |αi|1/2ui. Since the vectors u1, . . . , un

are orthonormal, we have ‖x′ − x‖2 =
∑n

i=1 |αi| ≤ ‖x ⊗ y − ψ‖, and similarly,
‖y′ − y‖2 ≤ ‖x ⊗ y − ψ‖. Furthermore,

‖x′ ⊗ y′ − ψ‖ ≤
∥∥∥x ⊗ y − ψ +

n∑
i=1

αiEλi

∥∥∥ +
∥∥∥ n∑

i=1

αi

(
ui ⊗ ui − Eλi

)∥∥∥
+

n∑
i=1

|αi|1/2‖ui ⊗ y‖ +
n∑

i=1

|αi|1/2‖x ⊗ ui‖ +
∑
i�=j

|αi|1/2 · |αj |1/2 · ‖ui ⊗ uj‖

≤ ε/2 + δ
( n∑

i=1

|αi| + 2
n∑

i=1

|αi|1/2 +
∑
i�=j

|αi|1/2|αj |1/2
)

< ε

provided δ is sufficiently small.
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(b) There are x, y ∈ H such that x ⊗ y = E0.
Proof. Set x0 = 0 = y0. Using (a) it is possible to construct inductively vectors
xj , yj ∈ H (j ∈ N) such that

‖xj ⊗ yj − E0‖ ≤ 2−2j ,

‖xj+1 − xj‖ ≤ ‖xj ⊗ yj − E0‖1/2 ≤ 2−j and

‖yj+1 − yj‖ ≤ 2−j .

Clearly, the sequences (xj) and (yj) are Cauchy. Let x and y be their limits. It is
easy to verify that x⊗y = E0. Indeed, for each polynomial p with ‖p‖ = 1 we have∣∣〈p(T )x, y〉 − 〈p(T )xn, yn〉

∣∣ ≤ ∣∣〈p(T )x, y − yn〉
∣∣ +

∣∣〈p(T )(x − xn), yn〉
∣∣

≤ k‖y − yn‖ · ‖x‖ + k‖x − xn‖ · ‖yn‖,
and so 〈p(T )x, y〉 = limn→∞〈p(T )xn, yn〉 = p(0).

It was shown above that (b) implies the existence of a non-trivial closed
invariant subspace. Indeed, M =

∨{T nx : n ≥ 1} is a closed subspace invariant
for T . Since we assumed that σp(T ) is empty, we have Tx �= 0. We have y �= 0 and
〈T nx, y〉 = 0 for all n ≥ 1, and so M �= H . �

The condition that T nx → 0 for all x ∈ H can be omitted by a standard
reduction argument.

Theorem 5. Let T be a polynomially bounded operator on a Hilbert space H such
that the spectrum σ(T ) ∩ D is dominant in D. Then T has a non-trivial closed
invariant subspace.

Proof. Let M1 = {x ∈ H : T nx → 0}. It is easy to see that M1 is a closed subspace
of H invariant for T . If M1 = H , then T has a non-trivial invariant subspace by
Theorem 4. Thus we can assume without loss of generality that M1 = {0}.

Let M2 = {x ∈ H : T ∗nx → 0}. Then M2 is a closed subspace invariant for
T ∗. Consequently, M⊥

2 is invariant for T . If M2 = H , then T ∗ has a non-trivial
closed invariant subspace by Theorem 4 and so has T . Thus we can also assume
that M2 = {0}.

Hence T is of class C11. By Theorem 39.15, T is quasisimilar to a unitary
operator. By Theorem 39.16, T has a non-trivial closed invariant subspace. �

The assumption that the spectrum of T is dominant can be replaced by a
weaker assumption that σ(T ) ⊃ T. Note that the points λ ∈ σ(T ) with |λ| = 1
cannot be used directly in the Scott Brown technique, cf. Proposition 2.

The following lemma gives the basic idea how to use the information that
σ(T ) ⊃ T for the Scott Brown technique.

Definition 6. A subset Λ ⊂ D is called Apostol if

sup{r ∈ [0, 1) : reiθ ∈ Λ} = 1

for all but countably many numbers θ ∈ (−π, π〉.
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Theorem 7. Let T be a polynomially bounded operator on a Banach space such
that σ(T ) ⊃ T and T has no non-trivial closed invariant subspace. Let ε > 0. Then
the set

{λ ∈ D : there exists u ∈ X with ‖u‖ = 1 and ‖Tu− λu‖ ≤ ε(1 − |λ|)2} (2)

is an Apostol set.

Proof. We can assume that T − λ is one-to-one with dense range for each λ ∈ C

(otherwise T has a non-trivial closed invariant subspace). Thus T −λ is invertible
for all λ ∈ D \ Λ and ‖(T − λ)−1‖ ≤ 1

ε(1−|λ|)2 . Clearly, σ(T ) ⊂ D and for |λ| > 1

we have ‖(T −λ)−1‖ =
∥∥∥−∑∞

n=0
T n

λn+1

∥∥∥ ≤ k
|λ|−1 , where k is the polynomial bound

of T .
Suppose that the set Λ defined in (2) is not Apostol. Then there exists an

uncountable set Ω ⊂ T such that, for each ω ∈ Ω, there exists rω < 1 such that
{rω : rω ≤ r < 1} ⊂ D \Λ. Consequently, there exists a component G of the open
set D \Λ and mutually distinct points ω1, . . . , ω4 such that {rω : rω ≤ r < 1} ⊂ G
for j = 1, . . . , 4. Suppose that ω1, . . . , ω4 are arranged in counter clockwise order.

It is possible to find two rectifiable simple closed curves Γ, Γ′ such that Γ ∩
Γ′ = ∅, Γ ∩ T = {ω1, ω2}, Γ′ ∩ T = {ω3, ω4}, Γ and Γ′ intersect T along radial
segments and Γ ∩ D ⊂ G, Γ′ ∩ D ⊂ G.

Define operators

A =
1

2πi

∫
Γ

(z − ω1)2(z − ω2)2(z − T )−1 dz

and
A′ =

1
2πi

∫
Γ′

(z − ω3)2(z − ω4)2(z − T )−1 dz.

By definition, A and A′ are well-defined operators commuting with T . Hence AX
is a closed subspace invariant for T . To show that AX is non-trivial it is sufficient
to show that A �= 0, A′ �= 0 and A′A = 0.

Let A = {T, A, A′}′′ (the bicommutant of {T, A, A, }). Then A is a commu-
tative Banach algebra and σA(T ) = σB(X)(T ).

Fix a point η ∈ T surrounded by Γ. Then η ∈ σA(T ) and there exists a
multiplicative functional ϕ ∈ M(A) such that ϕ(T ) = η. We have

ϕ(A) =
1

2πi

∫
Γ

(z − ω1)2(z − ω2)2ϕ((z − T )−1) dz

=
1

2πi

∫
Γ

(z − ω1)2(z − ω2)2(z − η)−1 dz = (η − ω1)2(η − ω2)2

by the Cauchy theorem. Thus ϕ(A) �= 0, and so A �= 0.
Similarly, A′ �= 0.



40. Scott Brown technique 367

For the proof that AA′ = 0 we use the resolvent equality. With the notation
p(z) = (z − ω1)2(z − ω2)2, q(z) = (z − ω3)2(z − ω4)2 we have

(2πi)2A′A =
∫

Γ′

∫
Γ

p(z)q(w)(z − T )−1(w − T )−1 dz dw

=
∫

Γ′

∫
Γ

p(z)q(w)
w − z

(
(z − T )−1 − (w − T )−1

)
dz dw

=
∫

Γ

p(z)(z − T )−1
(∫

Γ′

q(w)
w − z

dw
)

dz

−
∫

Γ′
q(w)(w − T )−1

(∫
Γ

p(z)
w − z

dz
)

dw = 0

since the inner integrals are equal to 0 by the Cauchy theorem. �

Note that points λ satisfying (2) provide less information than the points of
the approximate point spectrum. On the other hand, we have a larger set of such
points (any Apostol set is dominant but not conversely).

For every λ ∈ D, let Pλ(t) = 1−|λ|2
|λ−eit|2 (t ∈ R) denote the Poisson kernel.

Recall that
∫ π

−π
Pλ dt = 2π and maxt Pλ(t) = 1+|λ|

1−|λ| .

For λ = reiθ ∈ D with |λ| ≥ 3/4, set Iλ = {eit : |t− θ| < 2(1− r)} and define
the 2π–periodic function Qλ on R by: Qλ(t) = Pλ(t) if eit ∈ Iλ, and Qλ(t) = 0
otherwise. Denote by m the Lebesgue measure both on the real line R and on the
unit circle T.

Lemma 8. For any λ ∈ D with |λ| ≥ 3/4 we have
∫ π

−π Qλ(t) dt ≥ 7π
6 .

Proof. Without loss of generality we can suppose that λ = r ≥ 3/4. We have
sin2(1 − r) ≤ sin(1 − r) ≤ 1 − r. If |t| ≤ π and eit ∈ Iλ, then

cos t ≥ cos 2(1 − r) = 1 − 2 sin2(1 − r) ≥ 2r − 1

and |r − eit|2 = (r − cos t)2 + sin2 t ≤ (1 − r)2 + t2. Hence∫ π

−π

Qλ(t) dt =
∫ 2(1−r)

−2(1−r)

1 − r2

|r − eit|2 dt

= 2(1 − r2)
∫ 2(1−r)

0

dt

|r − eit|2

≥ 2(1 − r2)
∫ 2(1−r)

0

dt

(1 − r)2 + t2

= 2(1 − r2)
[

1
1 − r

arctg
t

1 − r

]2(1−r)

0

= 2(1 + r) arctg 2 ≥ 7
2
· arctg

√
3 =

7π

6
. �
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Corollary 9. For each λ ∈ D with |λ| ≥ 3/4 we have∫ π

−π

(Pλ(t) − Qλ(t)) dt ≤ 5
7

∫ π

−π

Qλ(t) dt.

Proof. By Lemma 8, we have the estimates∫ π

−π(Pλ(t) − Qλ(t)) dt∫ π

−π Qλ(t) dt
=

∫ π

−π Pλ(t) dt∫ π

−π Qλ(t) dt
− 1 ≤ 2π ·

(
7π

6

)−1

− 1 =
5
7
. �

Lemma 10. Let Λ ⊂ D be an Apostol set. Let t1, t2 ∈ R with −π ≤ t1 < t2 ≤ π.
Let f(t) = 1 if t1 ≤ t ≤ t2, and f(t) = 0 otherwise. Then there is an n0 ≥ 1 such
that for every n ≥ n0 there exist a finite set F ⊂ Λ and positive real numbers
αλ (λ ∈ F ) with the following properties:

(i) Iλ ⊂ {eit : t1 < t < t2} for any λ ∈ F ;

(ii) the sets Iλ (λ ∈ F ) are pairwise disjoint;

(iii) m(
⋃

λ∈F Iλ) ≥ 1
40π (t2 − t1);

(iv) |λ| ≥ 3/4 and |λn − 1| < 1
9 for all λ ∈ F ;

(v)
∑

λ∈F αλ ≤ t2−t1
7 ;

(vi)
∫ π

−π

∣∣∑
λ∈F αλλnPλ(t) − f(t)

∣∣ dt ≤ c1 (t2 − t1), where c1 = 1 − 1
1920 .

Proof. For every n ≥ 1, set Mn = {t ∈ (t1, t2) : |ei nt − 1| ≤ 1/10}. Clearly for all
n sufficiently large we have

m(Mn) >
t2 − t1
10 · 2π

. (3)

Fix n satisfying (3). Let ε > 0 satisfy m(Mn)− ε > (t2 − t1)/ 20π. Let S ⊂ (t1, t2)
be the exceptional set of the Apostol set λ, i.e., sup{0 ≤ r < 1 : reiθ ∈ Λ} = 1 for
all θ ∈ (t1, t2) \ S. Since S is at most countable, it can be covered by a countable
union U of open intervals with m(U) < ε/2. Then the set M ′ defined by

M ′ =
(

Mn ∩ 〈t1 + ε/4, t2 − ε/4〉
)
\ U

is compact with m(M ′) > (t2−t1)/ 20π. For each t ∈ M ′ we can find rt ≥ 3/4 such
that λt := rte

it ∈ Λ, |λn
t − 1| < 1/9 and Iλt ⊂ {eis : t1 < s < t2}. Then {eis : s ∈

M ′} ⊂ ⋃
t∈M ′ Iλt . Since {eis : s ∈ M ′} is a compact subset of the 1-dimensional set

T, there exists a finite subcover of (Iλt)t∈M ′ such that any three of these subsets
have empty intersection. Considering a cover of the minimal cardinality with this
property it is easy to see that there are numbers λ1, . . . , λk ∈ Λ with λj = |λj |eisj

such that t1 < s1 < · · · < sk < t2,
⋃k

j=1 Iλj ⊃ {eis : s ∈ M ′} and Iλj ∩ Iλj′ = ∅ if
|j′ − j| ≥ 2. Let F1 = {λ1, λ3, . . .} and F2 = {λ2, λ4, . . .}. Let F be one of the sets
F1, F2 such that

m
( ⋃

λ∈F

Iλ

)
= max

{
m
( ⋃

λ∈F1

Iλ

)
, m

( ⋃
λ∈F2

Iλ

)}
.
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Then Iλ ∩ Iλ′ = ∅ for all distinct λ, λ′ in F , and m
(⋃

λ∈F Iλ

)
≥ m(M ′)/2 >

(t2 − t1)/ 40π. For any λ ∈ F , set αλ = (1 − |λ|)(1 + |λ|)−1. Then αλ > 0 and∑
λ∈F

αλ ≤ 4
7

∑
λ∈F

(1 − |λ|) =
1
7

∑
λ∈F

m(Iλ) ≤ t2 − t1
7

.

Finally,∫ π

−π

∣∣∣∑
λ∈F

αλλnPλ(t) − f(t)
∣∣∣dt

≤
∫ π

−π

∣∣∣∑
λ∈F

αλλn(Pλ(t) − Qλ(t))
∣∣∣ dt +

∫ π

−π

∑
λ∈F

αλ|λn − 1|Qλ(t) dt

+
∫ t2

t1

(
1 −

∑
λ∈F

αλQλ(t)
)

dt ≤
∑
λ∈F

αλ

∫ π

−π

(
Pλ(t) − Qλ(t)

)
dt

+
1
9

∫ t2

t1

∑
λ∈F

αλQλ(t) dt + (t2 − t1) −
∫ t2

t1

∑
λ∈F

αλQλ(t) dt

≤ t2 − t1 +
(5

7
+

1
9
− 1

)∫ t2

t1

∑
λ∈F

αλQλ(t)dt ≤ t2 − t1 − 1
7

∫ t2

t1

∑
λ∈F

αλQλ(t)dt

≤ t2 − t1 − 1
7

∑
λ∈F

1 − |λ|
1 + |λ| ·

7π

6
≤ t2 − t1 − π

12

∑
λ∈F

(1 − |λ|)

= t2 − t1 − π

48
· m

( ⋃
λ∈F

Iλ

)
≤ c1(t2 − t1),

where c1 = 1 − 1
1920 . �

Corollary 11. Let c1 be the constant from the previous lemma and let c2 ∈ (c1, 1).
Let f : (−π, π〉 → 〈0,∞) be an integrable function and let Λ be an Apostol set.
Then for any n sufficiently large there are a finite set F ⊂ Λ and positive numbers
αλ (λ ∈ F ) such that:

(i) the sets (Iλ)λ∈F are pairwise disjoint;

(ii) |λ| ≥ 3/4 and |λn − 1| ≤ 1
9 for all λ ∈ F ;

(iii)
∑

λ∈F αλ ≤ 1
2π

∫ π

−π f(t) dt;

(iv)
∫ π

−π

∣∣∣∑λ∈F αλλnPλ(t) − f(t)
∣∣∣ dt ≤ c2

∫ π

−π
f(t) dt.

Proof. Let ε > 0 be sufficiently small (ε < min{ c2−c1
2 , 7

2π − 1}). Let g be a step
function g : (−π, π〉 → 〈0,∞) such that

∫ π

−π |f − g| dt ≤ ε
∫ π

−π f(t) dt. By Lemma
10, applied to each interval where g is constant, we can find a finite set F ⊂ Λ
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and positive numbers αλ (λ ∈ F ) satisfying (i), (ii) and∑
λ∈F

αλ ≤ 1
7

∫ π

−π

g(t) dt ≤ 1
7

(∫ π

−π

f(t) dt +
∫ π

−π

|f − g| dt
)

≤ 1
7
(1 + ε)

∫
f(t) dt ≤ 1

2π

∫ π

−π

f(t) dt.

Further, ∫ π

−π

∣∣∣∑
λ∈F

αλλnPλ(t) − g(t)
∣∣∣dt ≤ c1

∫ π

−π

g(t) dt.

Then we have∫ π

−π

∣∣∣∑
λ∈F

αλλnPλ(t) − f(t)
∣∣∣dt

≤
∫ π

−π

∣∣∣∑
λ∈F

αλλnPλ(t) − g(t)
∣∣∣ dt +

∫ π

−π

|f(t) − g(t)| dt

≤ c1

∫ π

−π

g(t) dt + ε

∫ π

−π

f(t) dt

≤ (c1 + 2ε)
∫ π

−π

f(t) dt ≤ c2

∫ π

−π

f(t) dt. �

Let b be the constant from the Carleson theorem, see Theorem A.6.5, i.e., if
F ⊂ {z : 3/4 ≤ |z| < 1} is a finite set with (Iλ)λ∈F pairwise disjoint and cλ ∈
C (λ ∈ F ), then there exists a function f ∈ H∞ such that f(λ) = cλ (λ ∈ F )
and ‖f‖ ≤ b · supλ∈F |cλ|.
Lemma 12. Let T ∈ B(X) be a polynomially bounded operator with polyno-
mial bound k. Let F ⊂ D be a finite set with (Iλ)λ∈F pairwise disjoint and
|λ| ≥ 3/4 (λ ∈ F ). Suppose that there are vectors uλ ∈ X and complex
numbers µλ (λ ∈ F ) such that ‖uλ‖ = 1, ‖(T − λ)uλ‖ < 1

2kbπ (1 − |λ|)2 and
‖∑λ∈F µλuλ‖ = 1. Then |µλ| ≤ 2kb for all λ ∈ F .

Proof. Let λ0 ∈ F satisfy |µλ0 | = maxλ∈F |µλ|. By Theorem A.6.5, there is a
function f ∈ H∞ such that ‖f‖ ≤ b, f(λ0) = 1 and f(λ) = 0 for λ ∈ F \ {λ0}.

Let u =
∑

λ∈F µλuλ. Then ‖f(T )u‖ ≤ kb‖u‖ = kb.

For λ ∈ F define gλ(z) = f(z)−f(λ)
z−λ . Clearly gλ is analytic on a neighbourhood

of D and ‖gλ‖ ≤ 2‖f‖(1− |λ|)−1 ≤ 2b(1 − |λ|)−1. Hence

kb ≥ ‖f(T )u‖ ≥
∥∥∥∑

λ∈F

f(λ)µλuλ

∥∥∥−
∥∥∥∑

λ∈F

µλ

(
f(λ) − f(T )

)
uλ

∥∥∥
≥ ‖µλ0uλ0‖ −

∑
λ∈F

|µλ| · ‖gλ(T )(T − λ)uλ‖
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≥ |µλ0 | − |µλ0 |
∑
λ∈F

2kb(1 − |λ|)−1 1
2kbπ

(1 − |λ|)2

≥ |µλ0 |
(
1 −

∑
λ∈F

π−1(1 − |λ|)
)
≥ |µλ0 |

2
,

since
∑

λ∈F (1 − |λ|) ≤ 1
4m

(⋃
λ∈F Iλ

)
≤ π

2 . Hence |µλ| ≤ |µλ0 | ≤ 2kb for each
λ ∈ F . �

Let c3 be a constant satisfying c2 < c3 < 1, where c2 is the constant from
Corollary 11.

Theorem 13. Let T : X → X be a polynomially bounded operator with polynomial
bound k, such that σ(T ) ⊃ T and T has no non-trivial closed invariant subspace.
Let f ∈ L1 be a non-negative function with ‖f‖1 = 1. Then there is an n0 such
that for any n ≥ n0 there exist xn ∈ X and x∗

n ∈ X∗ with ‖xn‖ ≤ 1, ‖x∗
n‖ ≤ 1

and ‖T nxn ⊗ x∗
n − Mf‖ < c3.

Proof. Let ε > 0 satisfy ε < c3−c2
2πk2b . Let

Λ = {λ ∈ D : there exists u ∈ X with ‖u‖ = 1 and ‖(T − λ)u‖ < ε(1 − |λ|)2}
which is an Apostol set, by Theorem 7. Let n ∈ N be sufficiently large. By Corollary
11, there exist a finite set F ⊂ Λ and numbers αλ > 0 (λ ∈ F ) such that (Iλ)λ∈F

are pairwise disjoint,
∑

λ∈F αλ ≤ 1, |λ| ≥ 3/4 and |λn − 1| ≤ 1/9 (λ ∈ F ) and∫ π

−π

∣∣∣∑
λ∈F

αλλnPλ(t) − f(eit)
∣∣∣ dt ≤ c2

∫ π

−π

f(eit) dt = 2πc2.

For λ ∈ F write λ = rλeiθλ with rλ ≥ 0 and −π < θλ ≤ π. For each λ ∈ F , fix
uλ ∈ X with ‖uλ‖ = 1 such that ‖(T − λ)uλ‖ < ε(1 − |λ|)2. Slightly perturbing
and renorming the vectors uλ makes them linearly independent without affecting
these inequalities. By the Zenger theorem, see Theorem A.5.3, there exist x ∈ X ,
x∗ ∈ X∗ and numbers µλ (λ ∈ F ) such that x =

∑
λ∈F µλuλ, ‖x‖ ≤ 1, ‖x∗‖ ≤ 1

and 〈µλuλ, x∗〉 = αλ for every λ ∈ F . By Lemma 12, we have the estimates
|µλ| ≤ 2kb. Let g ∈ L1 be defined by g(eit) =

∑
λ∈F αλλnPλ(t).

We have

‖T nx ⊗ x∗ − Mf‖ ≤
∥∥∥∑

λ∈F

µλT nuλ ⊗ x∗ − Mg

∥∥∥ + ‖Mg − Mf‖

≤ sup
p∈P,‖p‖≤1

∣∣∣∑
λ∈F

〈µλT np(T )uλ, x∗〉 −
∑
λ∈F

αλλnp(λ)
∣∣∣ + ‖g − f‖1

≤ sup
p∈P,‖p‖≤1

∣∣∣∑
λ∈F

〈
µλ

(
T np(T ) − λnp(λ)

)
uλ, x∗〉∣∣∣ + c2.

The supremum can be estimated in a standard way. For λ ∈ F and p ∈ P with
‖p‖ ≤ 1, write

znp(z) − λnp(λ) = (z − λ)q(λ),
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where q ∈ P . Clearly,

‖q‖ ≤ 2‖p‖(1 − |λ|)−1 ≤ 2(1 − |λ|)−1.

Then ‖q(T )‖ ≤ 2k(1 − |λ|)−1. Hence∥∥(T np(T ) − λnp(λ)
)
uλ

∥∥ = ‖q(T )(T − λ)uλ‖ ≤ ‖q(T )‖ · ‖(T − λ)uλ‖
≤ 2k(1 − |λ|)−1ε(1 − |λ|)2 = 2kε(1 − |λ|).

It follows that

‖T nxn ⊗ x∗
n − Mf‖ ≤

∑
λ∈F

|µλ| · 2kε(1 − |λ) + c2

≤
∑
λ∈F

4k2bε(1 − |λ|) + c2 = k2bε · m
( ⋃

λ∈F

Iλ

)
+ c2

≤ 2πk2bε + c2 < c3. �

Theorem 14. Let T : X → X be a polynomially bounded operator with polynomial
bound k, suppose that ‖T nx‖ → 0 and ‖T ∗nx∗‖ → 0 for all x ∈ X and x∗ ∈ X∗.
Suppose that σ(T ) ⊃ T and T has no non-trivial closed invariant subspace. Let
x1, . . . , xk ∈ X , x∗

1, . . . , x
∗
k ∈ X∗, f ∈ L1, f ≥ 0 and ε > 0. Then there exist u ∈ X

and u∗ ∈ X∗ such that

(i) ‖u ⊗ u∗ − Mf‖ ≤ c3 · ‖f‖1;

(ii) ‖u ⊗ x∗
j‖ < ε and ‖xj ⊗ u∗‖ < ε for all j = 1, . . . , k ;

(iii) ‖u‖ ≤ k‖f‖1/2
1 and ‖u∗‖ ≤ k‖f‖1/2

1 .

Proof. Choose n large enough such that ‖T nxj‖·‖f‖1/2
1 < εk−1, ‖T ∗nx∗

j‖·‖f‖1/2
1 <

εk−1 (j = 1, . . . , k) and such that, by Theorem 13, there exist v ∈ X , v∗ ∈ X∗

with ‖v‖ ≤ ‖f‖1/2
1 , ‖v∗‖ ≤ ‖f‖1/2

1 and

‖T 2nv ⊗ v∗ − Mf‖ ≤ c3 · ‖f‖1.

Set u = T nv and u∗ = T ∗nv∗. Then

‖u ⊗ u∗ − Mf‖ = ‖T nv ⊗ T ∗nv∗ − Mf‖ = ‖T 2nv ⊗ v∗ − Mf‖ ≤ c3‖f‖1.

For each j = 1, . . . , k we have

‖u ⊗ x∗
j‖ = ‖T nv ⊗ x∗

j‖ = ‖v ⊗ T ∗nx∗
j‖ ≤ k‖v‖ · ‖T ∗nx∗

j‖ < ε

and similarly,

‖xj ⊗ u∗‖ = ‖xj ⊗ T ∗nv∗‖ = ‖T nxj ⊗ v∗‖ ≤ k‖T nxj‖ · ‖v∗‖ < ε.

Finally, ‖u‖ = ‖T nv‖ ≤ k‖f‖1/2
1 and ‖u∗‖ = ‖T ∗nv∗‖ ≤ k‖f‖1/2

1 . �
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Fix a positive constant C < 1 and a positive integer N such that we have
c3 + π/N < C < 1. Set ν = e2πi /N . For any j = 0, . . . , N − 1, let Lj be the set of
all z = reit with r > 0 and −π/N ≤ t − 2πj /N < π/N .

Lemma 15. For any f ∈ L1 there are non-negative functions g0, . . . , gN−1 ∈ L1

such that ‖f‖1 =
∑N−1

j=0 ‖gj‖1 and∥∥∥f −
N−1∑
j=0

νjgj

∥∥∥
1
≤ πN−1 ‖f‖1.

Proof. We use the above notation. Fix a representative of f and let Aj = f−1(Lj) =
{z ∈ T : f(z) ∈ Lj}. Then the sets A0, . . . , AN−1, f

−1({0}) form a measurable
partition of T. Set gj = |f |χj where χj is the characteristic function of Aj . Let
arg : C\{0} → 〈0, 2π) denote the argument. For all j and t ∈ (−π, π〉 with eit ∈ Aj

we have

|f(eit) − νjgj(eit)| = |f(eit)| · |ei arg f(eit) − ei 2πj /N |
≤ |f(eit)| · | arg f(eit) − 2πjN−1| ≤ |f(eit)|πN−1.

Hence∥∥∥f −
N−1∑
j=0

νjgj

∥∥∥
1

=
N−1∑
j=0

‖fχj − νjgj‖1 ≤
N−1∑
j=0

‖fχj‖1 · πN−1 = πN−1‖f‖1.

The equality ‖f‖1 =
∑N−1

j=0 ‖gj‖1 is obvious. �
Theorem 16. Let T : X → X be a polynomially bounded operator of class C00

with polynomial bound k. Suppose that σ(T ) ⊃ T and T has no non-trivial closed
invariant subspace. Let x ∈ X , x∗ ∈ X∗ and h ∈ L1. Then there are y ∈ X and
y∗ ∈ X∗ such that

(i) ‖y − x‖ ≤ Nk‖h‖1/2
1 ;

(ii) ‖y∗ − x∗‖ ≤ Nk‖h‖1/2
1 ;

(iii) ‖y ⊗ y∗ − x ⊗ x∗ − Mh‖ ≤ C‖h‖1.

Proof. By Lemma 15, there are non-negative functions g0, . . . , gN−1 ∈ L1 such
that

∑N−1
j=0 ‖gj‖1 = ‖h‖1 and ‖h−∑N−1

j=0 νjgj‖1 ≤ πN−1‖h‖1.
Let ε be a positive number such that c3 + πN−1 + N(N + 1)ε < C. By

Theorem 14, find inductively vectors u0, . . . , uN−1 ∈ X and u∗
0, . . . u

∗
N−1 ∈ X∗

such that ‖uj‖ ≤ k‖gj‖1/2
1 , ‖u∗

j‖ ≤ k‖gj‖1/2
1 ,

‖uj ⊗ u∗
j − Mgj‖ ≤ c3 · ‖gj‖1,

‖uj ⊗ u∗
k‖ ≤ ε‖h‖1 (j �= k),

‖x ⊗ u∗
j‖ ≤ ε‖h‖1,

‖uj ⊗ x∗‖ ≤ ε‖h‖1.
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Set y = x +
∑N−1

j=0 νjuj and y∗ = x∗ +
∑N−1

j=0 u∗
j . Then

‖y − x‖ ≤
N−1∑
j=0

k‖gj‖1/2
1 ≤ Nk‖h‖1/2

1

and

‖y∗ − x∗‖ ≤
N−1∑
j=0

k‖gj‖1/2
1 ≤ Nk‖h‖1/2

1 .

Further,

‖y ⊗ y∗ − x ⊗ x∗ − Mh‖

=
∥∥∥N−1∑

j=0

νjuj ⊗ u∗
j +

N−1∑
j=0

x ⊗ u∗
j +

N−1∑
j=0

νjuj ⊗ x∗ +
∑
j �=k

νjuj ⊗ u∗
k − Mh

∥∥∥
≤

N−1∑
j=0

‖νjuj ⊗ u∗
j − Mνjgj

‖ +
∥∥∥N−1∑

j=0

νjgj − h
∥∥∥

1
+

(
2N + N(N − 1)

)
ε‖h‖1

≤
N−1∑
j=0

c3‖gj‖1 + πN−1‖h‖1 + N(N + 1)ε‖h‖1

≤ ‖h‖1

(
c3 + πN−1 + N(N + 1)ε

) ≤ C‖h‖1. �

Theorem 17. Let T : X → X be a polynomially bounded operator of class C00

on a complex Banach space X . Suppose that the spectrum of T contains the unit
circle. Then T has a non-trivial closed invariant subspace.

Proof. Suppose on the contrary that T has no non-trivial closed invariant subspace.
We construct inductively convergent sequences (xj) ⊂ X and (x∗

j ) ⊂ X∗ such that
‖xj ⊗ x∗

j − M1‖ → 0, where 1 denotes the constant function equal to 1 on T.
Set x0 = 0 and x∗

0 = 0. Let φ0 = x0 ⊗ x∗
0 − M1. Then ‖φ0‖ = 1 < 2.

Suppose that we have already constructed vectors xj ∈ X and x∗
j ∈ X∗ such

that ‖φj‖ < 2Cj where φj = xj ⊗ x∗
j − M1. By Theorem 1, there exists h ∈ L1

representing the functional φj . Moreover, we can assume that ‖h‖1 < 2Cj. By
Theorem 16, there are xj+1 ∈ X and x∗

j+1 ∈ X∗ such that

‖xj+1 − xj‖ ≤ kN‖h‖1/2 ≤
√

2kNCj/2,

‖x∗
j+1 − x∗

j‖ ≤ kN‖h‖1/2 ≤ √
2kNCj/2

and for φj+1 := xj+1 ⊗ x∗
j+1 − M1 we have

‖φj+1‖ = ‖xj+1 ⊗ x∗
j+1 − xj ⊗ x∗

j + φj‖ ≤ C‖h‖1 < 2Cj+1.
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Clearly (xj) and (x∗
j ) are Cauchy sequences. Let x = limxj and x∗ = limx∗

j .
For each polynomial p with ‖p‖ = 1 we have∣∣〈p(T )xj , x

∗
j 〉 − 〈p(T )x, x∗〉∣∣

≤ ∣∣〈|p(T )xj , x
∗
j 〉 − 〈p(T )xj , x

∗〉∣∣ +
∣∣〈p(T )xj , x

∗〉 − 〈p(T )x, x∗〉∣∣
≤ k‖xj‖ · ‖x∗ − x∗

j‖ + k‖xj − x‖ · ‖x∗‖ → 0

uniformly on the unit ball in P . Thus x ⊗ x∗ = limj→∞ xj ⊗ x∗
j = M1 and

〈p(T )x, x∗〉 = p(0) for each polynomial p. This implies that T has a non-trivial
invariant subspace. Indeed, either Tx = 0 (in this case x generates a 1-dimensional
invariant subspace) or the vectors T kx (k ≥ 1) generate a non-trivial closed
invariant subspace. �

As before, the assumption that T ∈ C00 can be omitted (at least for reflexive
Banach spaces). By using a refined version of the Zenger theorem it is possible to
replace the C00 condition by the weaker C0· condition (for any Banach space).

By a standard technique (cf. Theorem 6 or 39.18), it is possible to omit then
the C0· condition. Thus it is possible to prove the following result (we omit the
details).

Theorem 18. Let T ∈ B(X) be a polynomially bounded operator satisfying σ(T ) ⊃
T. Then T ∗ has a non-trivial invariant subspace. In particular, if the space X is
reflexive, then T itself has a non-trivial closed invariant subspace.

Since any contraction on a Hilbert space is polynomially bounded by the von
Neumann inequality, we have

Corollary 19. Let T be a contraction on a Hilbert space satisfying σ(T ) ⊃ T. Then
T has a non-trivial closed invariant subspace.

41 Kaplansky’s type theorems

Many results in operator theory connect local properties of an operator on a
Banach space with its global properties. A trivial example, which is in some sense a
prototype of this type of results, is the following observation: an operator T ∈ B(X)
is locally nilpotent (i.e., for every x ∈ X there exists n ∈ N such that T nx = 0)
if and only if it is nilpotent. This observation is an immediate consequence of the
Baire category theorem.

An approximate version of this result was proved in Section 14: an operator
T ∈ B(X) is quasinilpotent (i.e., r(T ) = 0) if and only if it is locally quasinilpotent
(i.e., rx(T ) = lim supk→∞ ‖T kx‖1/k = 0 for all x ∈ X).

The classical Kaplansky theorem considers polynomials instead of the powers:

Theorem 1. (Kaplansky) Let T ∈ B(X). Then T is algebraic (i.e., p(T ) = 0 for
some non-zero polynomial p) if and only if it is locally algebraic (i.e., for every
x ∈ X there exists a non-zero polynomial p such that p(T )x = 0).
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The main result of this section is an analogous statement for n-tuples of
operators. An approximate version of the Kaplansky theorem will be proved in
the next section.

Theorem 2. Let Y , Z be Banach spaces, let (Tj)j≥1 be a finite or countable infinite
family of operators from Y to Z. Suppose that for each y ∈ Y the set {Tjy : j =
1, 2, . . .} is linearly dependant. Then there exists a non-trivial linear combination
of operators Tj that is a finite-rank operator.

Proof. For each j let

Mj =
{
Tj +

j−1∑
i=1

αiTi : α1, . . . , αj−1 ∈ C

}
⊂ B(Y, Z).

Let F be a finite-dimensional subspace of Z. For j = 1, 2, . . . set

YF,j =
⋃

S∈Mj

S−1F.

By assumption, we have Y =
⋃

j YF,j , so there exists k = k(F ) such that YF,k

is of the second category and YF,l is of the first category for l < k. Choose a
finite-dimensional subspace F ⊂ Z such that

k = k(F ) = min
{
k(G) : G ⊂ Z, dim G < ∞}

.

For s ∈ N let

M
(s)
k =

{
Tk +

k−1∑
i=1

αiTi : αi ∈ C,

k−1∑
i=1

|αi| ≤ s

}
and Y

(s)
F,k =

⋃
S⊂M

(s)
k

S−1F.

Thus Mk =
⋃∞

s=1 M
(s)
k , and so YF,k =

⋃∞
s=1 Y

(s)
F,k.

We prove that the set Y
(s)
F,k is closed for all s. Let yj ∈ Y

(s)
F,k (j = 1, 2, . . . )

and yj → y ∈ Y . Then there exist operators Sj ∈ M
(s)
k such that Sjyj ∈ F . It

is easy to see that there exists a subsequence Sjr and an operator S ∈ M
(s)
k such

that
lim ‖Sjr − S‖ = 0.

Then

Sy = lim
r→∞Sjry = lim

r→∞
(
Sjryjr + Sjr (y − yjr )

)
= lim

r→∞Sjryjr ∈ F,

and so y ∈ Y
(s)
F,k.

Thus there exist s ∈ N and a non-empty open subset U ⊂ Y
(s)
F,k. Since⋃

l<k YF,l is a set of the first category, there exists w ∈ U \ ⋃
l<k YF,l. Let ε > 0

satisfy
{y ∈ Y : ‖y − w‖ < ε} ⊂ Y

(s)
F,k ⊂ YF,k.
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Let S1 = Tk +
∑k−1

i=1 αiTi be an operator such that

S1w ∈ F. (1)

Denote by F ′ the subspace of Z generated by F and by the elements Tiw (i =
1, . . . , k). Obviously, dim F ′ < ∞. Set V = YF,k \ ⋃

l<k YF ′,l. It follows from the
choice of the subspace F that the set V is of the second category.

Let v ∈ V . Then v ∈ YF,k, and so there exists S2 = Tk +
∑k−1

i=1 βiTi such that

S2v ∈ F. (2)

Since w ∈ U ⊂ Y
(s)
F,k and U is open, there exists a non-zero complex number λ

such that w + λv ∈ Y
(s)
F,k. Thus there exists an operator S3 = Tk +

∑k−1
i=1 γiTi such

that
S3(w + λv) ∈ F. (3)

Thus S3v = λ−1
(
S3(w + λv) − S3w

) ∈ F ′ and, by (2), (S3 − S2)v ∈ F ′, where
S3−S2 =

∑k−1
i=1 (γi−βi)Ti. Since v /∈ ⋃

l<k YF ′,l, we have γi = βi (i = 1, . . . , k−1).
So S3 = S2.

Thus S3v = S2v ∈ F a S3w ∈ F by (3). Further, (S3 − S1)w ∈ F , where

S3 − S1 =
k−1∑
i=1

(γi − αi)Ti.

Since w /∈ ⋃
l<k YF,l, we get S3 − S1 = 0, and so S3 = S1. Hence S1v ∈ F for

all v ∈ V . The preimage S−1
1 F is a closed subspace of Y which is of the second

category since S−1
1 F ⊃ V . Thus S−1

1 F = Y , S1Y ⊂ F and S1 is a finite-rank
operator. �

For n ∈ N denote by P(n) the set of all polynomials in n variables.

Definition 3. Let A = (A1, . . . , An) be a commuting n-tuple of operators on a
Banach space X . We say that the n-tuple A is algebraic, if p(A) = 0 for some non-
zero polynomial p ∈ P(n). We say that A is locally algebraic if, for each x ∈ X ,
there exists a non-zero polynomial px ∈ P(n) such that px(A)x = 0.

Corollary 4. Let A = (A1, . . . , An) be an n-tuple of mutually commuting operators
on a Banach space X . Then A is algebraic if and only if it is locally algebraic.

Proof. Let A = (A1, . . . , An) be a locally algebraic n-tuple. Consider the countable
set {Aα : α ∈ Zn

+} ⊂ B(X). By Theorem 2, there exists a non-zero polynomial
p ∈ P(n) such that p(A) is of finite rank. Hence (q◦p)(A) = 0, where q ∈ P(1) is the
characteristic polynomial of the finite-dimensional operator p(A)|Ran

(
p(A)

)
. �

Theorem 5. Let A = (A1, . . . , An) be a commuting n-tuple of operators on a
Banach space X , which is not algebraic. Then there exist points x1, x2, , · · · ∈ X
such that

∑k
i=1 pi(A)xi �= 0 for all k ∈ N and all k-tuples of polynomials p1, . . . ,

pk ∈ P(n), that are not all equal to zero.
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Proof. Suppose on the contrary that for each sequence x1, x2, . . . of elements of
X there exist k and polynomials p1, . . . , pk ∈ P(n), (p1, . . . , pk) �= (0, . . . , 0) such
that

∑k
i=1 pi(A)xi = 0.

Denote by Y = l∞(X) the space of all bounded sequences of elements of X
with the sup-norm. For k ∈ N and α ∈ Zn

+ let Sk,α : Y → X be the operator
defined by Sk,α

({xi}∞i=1

)
= Aαxk.

By Theorem 2, there exists a finite-dimensional subspace F ⊂ X , k ∈ N and
polynomials p1, . . . , pk ∈ P(n), (p1, . . . , pk) �= (0, . . . , 0) such that

∑k
i=1 pi(A)xi ∈

F for each sequence {xi}∞i=1 ∈ l∞(X). Choose j ∈ {1, . . . , k} such that pj �= 0.
For x1 = · · · = xj−1 = 0 = xj+1 = · · · = xk we have pj(A)xj ∈ F for all xj ∈ X ,
i.e., pj(A) is a finite-rank operator. As in the proof of Corollary 4 we get that A
is an algebraic n-tuple. �

42 Polynomial orbits and local capacity

Recall that P(n) denotes the set of all polynomials in n variables and Pk(n) the
set of all polynomials of degree ≤ k of n variables.

By a polynomial orbit of an operator T ∈ B(X) at x ∈ X we mean the set
{p(T )x : p ∈ P(1)}.

In this section we generalize some results concerning orbits. We prove that
there are always points x ∈ X such that ‖p(T )x‖ is “large” for all polynomials p.
The results are also formulated for n-tuples of commuting operators. Further, we
introduce the local capacity of operators and prove an approximate version of the
Kaplansky theorem.

Lemma 1. Let X be a Banach space, let E ⊂ X and M ⊂ B(X) be finite-
dimensional subspaces and let ε > 0. Then there exists a subspace Y ⊂ X of finite
codimension such that

‖S(e + y)‖ ≥ (1 − ε)max{‖Se‖, ‖Sy‖/2}
for all e ∈ E, y ∈ Y and S ∈ M.

Proof. Let T1, . . . , Tk be a basis of M ⊂ B(X). Set E1 =
∨k

i=1 TiE. By Lemma
37.6, there exists a subspace Y1 ⊂ X of finite codimension such that

‖e + y‖ ≥ (1 − ε)max{‖e‖, ‖y‖/2} (e ∈ E1, y ∈ Y1).

Set Y =
⋂k

i=1 T−1
i Y1. Then codim Y < ∞. For e ∈ E, y ∈ Y and S ∈ M we have

Se ∈ E1 and Sy ∈ Y1, so

‖S(e + y)‖ ≥ (1 − ε)max{‖Se‖, ‖Sy‖/2}. �

Lemma 2. Let A = (A1, . . . , An) be an n-tuple of mutually commuting operators
on a Banach space X , let (0, . . . , 0) ∈ σπe(A), ε > 0, let E, Y be subspaces of X
such that dimE < ∞ and codimY < ∞. Then there exists a vector u ∈ Y of



42. Polynomial orbits and local capacity 379

norm 1 such that ∥∥∥∥∥(I +
n∑

i=1

αiAi

)
(e + u)

∥∥∥∥∥ ≥ 1 − ε

2

for all e ∈ E and α1, . . . , αn ∈ C.

Proof. Let M be the subspace of B(X) generated by the operators A1, . . . , An;
without loss of generality we can assume that these operators are linearly inde-
pendent. Denote by M1 the set of all finite-rank operators in M, M1 = M∩F(X).
Let M2 be a complement of M1 in M, i.e., M1∩M2 = {0} and M1 +M2 = M.
Let S1, . . . , Sk be a basis in M2 and Sk+1, . . . , Sn a basis in M1.

Let ε′ be a positive number satisfying (1−ε′)3

1+ε′ ≥ 1−ε and ε′ < 1. By Lemma 1,
there exists a subspace Y1 ⊂ X of finite codimension such that∥∥∥∥(I +

n∑
i=1

αiAi

)
(e + y)

∥∥∥∥ ≥ 1 − ε′

2

∥∥∥∥(I +
n∑

i=1

αiAi

)
y

∥∥∥∥
for all e ∈ E, y ∈ Y1 and α1, . . . , αn ∈ C. Clearly, we can assume that Y1 ⊂
Y ∩⋂n

i=k+1 KerSi since codimKerSi < ∞ for k + 1 ≤ i ≤ n. Thus S|Y1 = 0 for
all S ∈ M1.

By Theorem 41.2, there exists y1 ∈ Y1 of norm 1 such that the vectors
S1y1, . . . , Sky1 are linearly independent (otherwise there would be a non-zero op-
erator in M2 of finite rank).

For β1, . . . , βn ∈ Cn consider the norms
∑k

j=1 |βj | and
∥∥∥∑k

j=1 βjSjy1

∥∥∥.
These two norms are equivalent, so there exists a positive constant c such that∥∥∥∥ k∑

j=1

βjSjy1

∥∥∥∥ ≥ c ·
k∑

j=1

|βj |

for all β1, . . . , βk ∈ C.
By Lemma 1, there is a subspace Y2 ⊂ X of finite codimension such that∥∥∥∥(I +

n∑
i=1

αiAi

)
(e+y)

∥∥∥∥ ≥ (1−ε′)max

{∥∥∥∥(I +
n∑

i=1

αiAi

)
e

∥∥∥∥,
1
2

∥∥∥∥(I +
n∑

i=1

αiAi

)
y

∥∥∥∥
}

for all e ∈ E ∨ {y1} ∨ {Sy1 : S ∈ M}, y ∈ Y2 and α1, . . . , αn ∈ C. We can assume
that Y2 ⊂ Y1 ⊂ Y .

Since (0, . . . , 0) ∈ σπe(A) and the operators S1, . . . , Sn are linear combina-
tions of A1, . . . , An, we also have (0, . . . , 0) ∈ σπe(S1, . . . , Sn) and there exists a
vector y2 ∈ Y2 of norm 1 such that

‖Siy2‖ < cε′2 (i = 1, . . . , n).

Set u = y2+ε′y1
‖y2+ε′y1‖ . Obviously, u ∈ Y1 and ‖u‖ = 1.

Let α1, . . . , αn ∈ C. Then
∑n

i=1 αiAi =
∑n

j=1 βjSj for some β1, . . . , βn ∈ C.
Let e ∈ E.
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We distinguish two cases:

(a) Let
∑k

j=1 |βj | ≤ 1
cε′ . Then

∥∥∥∥(I +
n∑

i=1

αiAj

)
(e + u)

∥∥∥∥ =
∥∥∥∥(I +

n∑
j=1

βjSj

)(
e +

ε′y1 + y2

‖ε′y1 + y2‖
)∥∥∥∥

≥ 1 − ε′

2‖ε′y1 + y2‖
∥∥∥∥(I +

n∑
j=1

βjSj

)
y2

∥∥∥∥ ≥ 1 − ε′

2(1 + ε′)

(
‖y2‖ −

∥∥ n∑
j=1

βjSjy2

∥∥)

≥ 1 − ε′

2(1 + ε′)

(
1 −

k∑
j=1

|βj | · max{‖Sjy2‖ : 1 ≤ j ≤ k}
)
≥ (1 − ε′)2

2(1 + ε′)
≥ 1 − ε

2
.

(b) Let
∑k

j=1 |βj | > 1
cε′ . Then

∥∥∥∥(I +
n∑

i=1

αiAj

)
(e + u)

∥∥∥∥ =
∥∥∥∥(I +

n∑
j=1

βjSj

)(
e +

ε′y1 + y2

‖e′y1 + y2‖
)∥∥∥∥

≥ (1 − ε′)
∥∥∥∥(I +

n∑
j=1

βjSj

)(
e +

ε′y1

‖ε′y1 + y2‖
)∥∥∥∥

≥ (1 − ε′)2ε′

2‖ε′y1 + y2‖
∥∥∥∥(I +

n∑
j=1

βjSj

)
y1

∥∥∥∥ ≥ (1 − ε′)2ε′

2(1 + ε′)

(∥∥∥ k∑
j=1

βjSjy1

∥∥∥− ‖y1‖
)

≥ (1 − ε′)2ε′

2(1 + ε′)

(
c

k∑
j=1

|βj | − 1
)
≥ (1 − ε′)2ε′

2(1 + ε′)
·
( 1

ε′
− 1

)
>

1 − ε

2
. �

Corollary 3. Let T = (T1, . . . , Tn) be a commuting n-tuple of operators on a
Banach space X , λ ∈ σπe(A), k ∈ N and ε > 0. Let E, Y be subspaces of X such
that dimE < ∞ and codimY < ∞. Then there exists a vector u ∈ Y of norm 1
such that

‖p(T )(e + u)‖ ≥ 1 − ε

2
|p(λ)|

for all e ∈ E and p ∈ Pk(n).

Proof. Without loss of generality we can assume that λ = (0, . . . , 0). Consider the
tuple A formed by the operators T α (α ∈ Zn

+, 1 ≤ |α| ≤ k). Then (0, . . . , 0) ∈
σπe(A) and the statement follows from the previous lemma. �

Corollary 3 gives the existence of a point u ∈ X of norm 1 such that ‖p(T )u‖
is “large” for all polynomials p with deg p ≤ k. The estimate is given in terms of
|p(λ)| where λ is a given point of σπe(T ).
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Our goal is to give an estimate of ‖p(T )u‖ in terms of max
{|p(λ)| : λ ∈

σπe(T )
}
. By the spectral mapping theorem we have

max
{|p(λ)| : λ ∈ σπe(T )

}
= max

{|µ| : µ ∈ σπe(p(T ))
}

= max
{|µ| : µ ∈ σe(p(T ))

}
= re(p(T )).

The next lemma enables us to reduce a general compact set to a finite set.

Lemma 4. Let n, k be positive integers and K ⊂ Cn a non-empty compact set.
Then there exists a finite subset K ′ ⊂ K with cardK ′ = m ≤ (

n+k
n

)
such that

‖p‖K ≤ m · ‖p‖K′

for each polynomial p ∈ Pk(n).

Proof. Let L = {p ∈ Pk(n) : ‖p‖K = 0} and let M be a complementary space
of L in Pk(n), i.e., M ∩ L = {0} and M + L = Pk(n). Let m = dimM ≤
dimPk(n) =

(
n+k

n

)
and let q1, . . . , qm ∈ M be a basis of M . For x1, . . . , xm ∈ K

define V (x1, . . . , xm) = det(qi(xj))m
i,j=1. The polynomials q1, . . . , qm are linearly

independent on K, so there exist points x1, . . . , xm ∈ K such that the matrix
(qi(xj))m

i,j=1 is regular, i.e., V (x1, . . . , xm) �= 0. Choose k1, . . . , km ∈ K such that

|V (k1, . . . , km)| = max
{|V (y1, . . . , ym)| : y1, . . . , ym ∈ K

}
.

Then V (k1, . . . , km) �= 0. For j = 1, . . . , m define polynomials L(j) ∈ Pk(n) by

L(j)(z) = V
(
k1, . . . , kj−1, z, kj+1, . . . , km

)
/V (k1, . . . , km).

Evidently, |L(j)(z)| ≤ 1 for all z ∈ K. The polynomials L(j) are linear combina-
tions of the polynomials q1, . . . , qm, and so L(j) ∈ M (j = 1, . . . , m). Further,
L(j)(ki) = δij (the Kronecker symbol), so the polynomials L(1), . . . , L(m) are lin-
early independent and each polynomial p ∈ M is a linear combination of them.
Obviously,

p(z) =
m∑

j=1

p(kj)L(j)(z) (p ∈ M, z ∈ K).

Set K ′ = {k1, . . . , km}. Each polynomial p ∈ Pk(n) can be written in the form
p = p1 + p2 for some p1 ∈ L and p2 ∈ M , and p2 =

∑m
j=1 p2(kj)L(j). Hence

‖p‖K = ‖p2‖K = max
{∣∣∣∣ m∑

j=1

p2(kj)L(j)(z)
∣∣∣∣ : z ∈ K

}

≤
m∑

j=1

|p2(kj)| ≤ m · ‖p‖K′. �
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Theorem 5. Let T = (T1, . . . , Tn) be an n-tuple of mutually commuting operators
on a Banach space X , let k ∈ N and ε > 0. Let Y be a subspace of X with
codimY < ∞. Then there exists y ∈ Y of norm 1 such that

‖p(T )y‖ ≥ (1 − ε)
2

(
n + k

n

)−2

re(p(T ))

for all polynomials p ∈ Pk(n).

Proof. Set K = σπe(T ). As noted above, for each p ∈ Pk(n) we have

‖p‖K = max
{|p(z)| : z ∈ σπe(T )

}
= max

{|p(z)| : z ∈ σe(T )
}

= re(p(T )).

By the previous lemma, there exist elements λ1, . . . , λm ∈ K, m ≤ (
n+k

n

)
such that

‖p‖K ≤ m · max
{|p(λi)| : i = 1, . . . , m

}
for all p ∈ Pk(n). We construct points y1, . . . , ym ∈ Y inductively. Suppose that
0 ≤ j < m and that the points y1, . . . , yj have already been found. Set Ej =∨{

p(T )yi : p ∈ Pk(n), 1 ≤ i ≤ j
}
. By Lemma 1, there is a subspace Yj ⊂ X of

finite codimension such that

‖p(T )(e + y)‖ ≥
(
1 − ε

2

)
max

{
‖p(T )e‖, 1

2
‖p(T )y‖

}
for all e ∈ Ej , y ∈ Yj and p ∈ Pk(n).

By Corollary 3, there is a vector yj+1 ∈ Y ∩⋂j
i=1 Yi of norm 1 such that

‖p(T )(e + yj+1)‖ ≥ 1 − ε/2
2

|p(λj+1)|
for all e ∈ Ej , p ∈ Pk(n).

Let y1, . . . , ym be constructed in the above-described way.
Set y = a−1

∑m
i=1 yi, where a = ‖∑m

i=1 yi‖. We have a ≥ 1−ε/2 since y1 ∈ E1

and
∑m

i=2 yi ∈ Y1. Further, a ≤ m. Obviously, y ∈ Y and ‖y‖ = 1. Let p ∈ Pk(n)
and 1 ≤ j ≤ m. We have

‖p(T )y‖ = a−1

∥∥∥∥ m∑
i=1

p(T )yi

∥∥∥∥ ≥
(
1 − ε

2

)
m−1

∥∥∥∥ j∑
i=1

p(T )yi

∥∥∥∥
≥

(
1 − ε

2

)2

· 1
2m

|p(λj)| ≥ 1 − ε

2m
|p(λj)|.

Thus

‖p(T )y‖ ≥ 1 − ε

2m
max{|p(λj)| : j = 1, . . . , m}

≥ 1 − ε

2m2
‖p‖K =

1 − ε

2m2
re(p(T )). �

It is easy to see that for Hilbert space operators it is possible to obtain a
better estimate in the preceding theorem. In fact, using a Dvoretzky’s type result
enables us to generalize this improved estimate to Banach spaces, see C.42.1.
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Theorem 6. Let T = (T1, . . . , Tn) be an n-tuple of mutually commuting operators
on a Banach space X , let x ∈ X and ε > 0. Then there exists y ∈ X and a
constant C = C(ε) such that ‖y − x‖ < ε and

‖p(T )y‖ ≥ C(1 + deg p)−(2n+ε)re(p(T ))

for all polynomials p ∈ P(n).

Proof. Find k0 ≥ 1 such that
∑∞

i=k0

1
i2 < ε, 2k0 ≥ n and k2 ≤ 2ε(k−1) (k ≥ k0).

Set C = 1
8k2

0
(n + 2k0)−2n. Choose positive numbers εi (i ≥ k0) such that εi < 1

and
∏∞

i=k0
(1 − εi) ≥ 1

2 . We construct inductively points yk0 , yk0+1, · · · ∈ X of
norm 1. Suppose that yk0 , . . . , yk−1 have already been constructed. Set Ek =∨{x, yk0 , . . . , yk−1}. By Lemma 1, there exists a subspace Z ⊂ X with codimZ <
∞ such that

‖p(T )(e + z)‖ ≥
(
1 − εk

2

)
max

{
‖p(T )e‖, 1

2
‖p(T )z‖

}
for all e ∈ Ek, z ∈ Z and p ∈ P2k(n). By Lemma 5, there exists yk ∈ Z of norm 1
such that

‖p(T )yk‖ ≥ 1
2

(
1 − εk

2

)(n + 2k

n

)−2

re(p(T ))

for all p ∈ P2k(n). Thus

‖p(T )(e + yk)‖ ≥
(
1 − εk

2

)
max

{
‖p(T )e‖, 1

4

(
1 − εk

2

)(n + 2k

n

)−2

re(p(T ))
}

≥ (1 − εk)max
{
‖p(T )e‖, 1

4

(
n + 2k

n

)−2

re(p(T ))
} (1)

for all e ∈ Ek and p ∈ P2k(n)).
Set y = x+

∑∞
i=k0

yi

i2 . Clearly, ‖y−x‖ ≤ ∑∞
i=k0

1
i2 < ε. Let p be a polynomial

of degree r.

We distinguish two cases:

(a) Let r ≤ 2k0 . Then, by (1), for N ≥ k0 we have∥∥∥∥p(T )x+
N∑

i=k0

1
i2

p(T )yi

∥∥∥∥≥(1−εN)
∥∥∥∥p(T )x+

N−1∑
i=k0

1
i2

p(T )yi

∥∥∥∥≥···

≥
N∏

i=k0+1

(1−εi) ·
∥∥∥p(T )x+

1
k2
0

p(T )yk0

∥∥≥ N∏
i=k0

(1−εi) · 1
4k2

0

(
n+2k0

n

)−2

re(p(T ))

≥ 1
8k2

0

(n+2k0)−2nre(p(T ))≥C ·re(p(T )).
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(b) Let 2k−1 < r ≤ 2k for some k > k0. For N ≥ k we have∥∥∥∥p(T )x +
N∑

i=k0

1
i2

p(T )yi

∥∥∥∥ ≥
N∏

i=k+1

(1 − εi) ·
∥∥∥∥p(T )x +

k∑
i=k0

1
i2

p(T )yi

∥∥∥∥
≥

N∏
i=k

(1 − εi) · 1
4k2

(
n + 2k

n

)−2

re(p(T )) ≥ 1
8
2−ε(k−1)(n + 2k)−2nre(p(T ))

≥ 1
8
r−ε(3r)−2nre(p(T )) ≥ Cr−(2n+ε)re(p(T )).

So for each polynomial p we have

‖p(T )y‖ = lim
N→∞

∥∥∥∥p(T )x +
N∑

i=k0

1
i2

p(T )yi

∥∥∥∥ ≥ C(1 + deg p)−(2n+ε)re(p(T )). �

Recall that P1
k(n) denotes the set of all monic polynomials of degree k,

P1
k(n) =

{
p ∈ P(n) : p =

∑
|α|≤k

aαzα,
∑
|α|=k

|aα| = 1
}

.

Let T = (T1, . . . , Tn) be an n-tuple of mutually commuting operators on a
Banach space X . The joint capacity of T was defined by

capT = lim sup
k→∞

(capk T )1/k,

where
capk(T ) = inf

{‖p(T )‖ : p ∈ P1
k(n)

}
(note that the limsup in the definition of capT can be replaced by limit by Theorem
36.4 (i)). For a compact subset K ⊂ Cn the corresponding capacity was defined
by

capK = lim sup
k→∞

(capkK)1/k,

where
capkK = inf

{‖p‖K : p ∈ P1
k(n)

}
.

By Theorems 36.4 (iii) and Corollary 36.8, capT = capσH(T ) = capσπe(T ).
The local capacity of T at a point x can be defined analogously.

Definition 7. Let T = (T1, . . . , Tn) be an n-tuple of mutually commuting operators
on a Banach space X and let x ∈ X . The local capacity capx T is defined by

capx T = lim sup
k→∞

(capx,k T )1/k,

where
capx,k T = inf

{‖p(T )x‖ : p ∈ P1
k(n)

}
.

Clearly, capx T ≤ capT and capx T ≤ rx(T ) for every x ∈ X .
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Theorem 8. Let T = (T1, . . . , Tn) be an n-tuple of mutually commuting operators
on a Banach space X . Then there is a dense subset L of X with the property that
lim infk→∞(capx,k T )1/k = capT for all x ∈ L.

In particular, the limit limk→∞(capx,k)1/k exists and is equal to capT for all
x ∈ L.

Proof. Let x ∈ X and ε > 0. Then there exists y ∈ X with ‖y − x‖ < ε and

‖p(T )y‖ ≥ C(1 + deg p)−(2n+ε)re(p(T ))

for all polynomials p. Thus

capk(T, y) = inf
{‖p(T )y‖ : p ∈ P1

k(n)
}

≥ C(1 + k)−(2n+ε) inf
{
re(p(T )) : p ∈ P1

k(n)
}
,

where
re(p(T )) = sup{|p(z)| : z ∈ σHe(T )},

and so
capk(T, y) ≥ C(1 + k)−(2n+ε)capk(σHe(T )).

Hence, by Corollary 36.8,

lim inf
k→∞

(capy,k T )1/k ≥ lim inf
k→∞

(capk σHe(T ))1/k = cap(σHe(T )) = capT.

The opposite inequality lim infk→∞(capy,k T )1/k ≤ capT is trivially satisfied for
all y ∈ X . �

Remark 9. Example 37.11 shows that it in the previous theorem it is not possible
to replace the word “dense” by “residual”.

Theorem 10. Let T = (T1, . . . , Tn) be an n-tuple of mutually commuting operators
on a Banach space X . Then the set

{
x ∈ X : capx T = cap T

}
is residual in X .

Proof. Write K = σHe(T ). The statement is clear if capT = 0. In the following
we assume that cap T = capK > 0. In particular, p|K �≡ 0 for each non-zero
polynomial p.

For j ∈ N denote by Mj the set of all x ∈ X with the property that there
exists k ≥ j such that

‖p(T )x‖ >
1
4k

(
n + k

n

)−2

‖p‖K

for all non-zero p ∈ Pk(n).
We first prove that Mj is open. Let j ∈ N and x ∈ Mj . Let k ≥ j satisfy

‖p(T )x‖ > 1
4k

(
n+k

n

)−2‖p‖K for all p ∈ Pk(n). For each polynomial p ∈ P(n),
p =

∑
α∈Zn

+
aαzα write |p| =

∑
α∈Zn

+
|aα|. By a compactness argument, there is a
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positive number δ such that ‖p(T )x‖ > 1
4k

(
n+k

n

)−2‖p‖K + δ for all p ∈ Pk(n) with
|p| = 1. Let y ∈ X , ‖y − x‖ < δ

max{‖T α‖:|α|≤k} . Then

‖p(T )y‖ ≥ ‖p(T )x‖ − ‖p(T )(y − x)‖

>
1
4k

(
n + k

n

)−2

‖p‖K + δ − max{‖T α‖ : |α| ≤ k} · ‖y − x‖

≥ 1
4k

(
n + k

n

)−2

‖p‖K

for all p ∈ Pk(n) with |p| = 1. Thus y ∈ Mj and the set Mj is open.
We show that Mj is dense. Let x ∈ X and ε > 0. Choose k ≥ j such that

4
k < ε. By Lemma 1, there is a subspace Y ⊂ X of finite codimension such that

‖p(T )(x + y)‖ ≥ max
{‖p(T )x‖/2, ‖p(T )y‖/4

}
for all y ∈ Y and p ∈ Pk(n).

By Theorem 5, there is a vector u ∈ Y of norm 1 such that

‖p(T )u‖ >
1
4

(
n + k

n

)−2

‖p‖K

for all non-zero p ∈ Pk(n). Then
∥∥(x + 4u

k ) − x
∥∥ < ε and∥∥∥p(T )

(
x +

4u

k

)∥∥∥ ≥ 1
k
‖p(T )u‖ >

1
4k

(
n + k

n

)−2

‖p‖K

for all non-zero p ∈ Pk(n). Thus x + 4u
k ∈ Mj and Mj is dense in X .

By the Baire category theorem, the set
⋂∞

j=1 Mj is residual. Let x ∈ ⋂∞
j=1 Mj .

Then there are infinitely many positive integers k for which

‖p(T )x‖ >
1
4k

(
n + k

n

)−2

‖p‖K

(
p ∈ Pk(n)

)
.

For such k we have

capx,k T = inf
{‖p(T )x‖ : p ∈ P1

k(n)
}

≥ inf
{

1
4k

(
n + k

n

)−2

‖p‖K : p ∈ P1
k(n)

}
=

1
4k

(
n + k

n

)−2

capk K ≥ 1
4k

(n + k)−2n capk K.

Hence

capx T = lim sup
k→∞

(capx,k T )1/k ≥ lim sup
k→∞

(capk K)1/k = capK = cap T.

Since capx T ≤ capT for all x ∈ X , the set {x ∈ X : capx T = capT } is residual.
�
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Definition 11. Let T = (T1, . . . , Tn) be an n-tuple of mutually commuting operators
on a Banach space X . We say that T is quasialgebraic if capT = 0. We say that
T is locally quasialgebraic if capx T = 0 for each x ∈ X .

Thus we have the following approximate version of the Kaplansky theorem:

Corollary 12. An n-tuple of mutually commuting operators is locally quasialgebraic
if and only if it is quasialgebraic.

Comments on Chapter V

C.35.1. The joint spectral radius was first studied by Rotta and Strang [RtS],
where the radius r′′∞(a) = limn max{‖aα‖ : |α| = n}1/n was introduced. The
radius r′∞(a) = limn max{r(aα) : |α| = n}1/n was defined by Berger and Wang
[BW].

The general rp radii were introduced in [So5], cf. also [ChZ]. In the case of
Hilbert space operators the radius r2 was considered by Bunce [Bun].

Proposition 35.2 was proved in [ChZ], see also [So4]. The spectral radius
formula for p = ∞ (Theorem 35.5) was proved in [So5], the corresponding result
for p < ∞ (Theorem 35.6) in [Mü18].

C.35.2. The definition of the joint spectral radius rp(a) = max{|λ|p : λ ∈ σH(a)}
and the formula

r′′p (a) = lim
k→∞

( ∑
f∈F (k,n)

‖af(1) · · ·af(k)‖p
)1/pk

(1)

make sense also for non-commuting n-tuples a = (a1, . . . , an) of elements in a
Banach algebra A.

Since the limit lim
k→∞

(∑
f∈F (k,n) rp(af(1) · · · af(k))

)1/pk

in general does not
exist, we set

r′p(a) = lim sup
k→∞

( ∑
f∈F (k,n)

rp(af(1) · · · af(k))
)1/pk

.

For non-commuting n-tuples it is true only

rp(a) ≤ r′p(a) ≤ r′′p (a)

and these inequalities may be strict, see [Gu], [RsS]. However, by [BW], r′∞(a) =
r′′∞(a) for all n-tuples (even for infinite bounded families) of matrices. This was
generalized by [TS] to precompact families of weakly compact operators. In par-
ticular, r′∞(T ) = r′′∞(T ) for all n-tuples of operators on a reflexive Banach space.
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C.35.3. Since the definitions of rp(a) and r′p(a) depend only on the spectrum, the
equality rp(a) = r′p(a) is true also for n-tuples a = (a1, . . . , an) of elements that
are mutually commuting modulo radA.

It is an open problem whether also r′′p (a) = r′p(a) is this situation, see [RsS].

C.35.4. The previous question for p = ∞ is closely related to the following inter-
esting problem, see [Tu]:
Suppose that A is a radical Banach algebra (i.e., a non-unital Banach algebra
consisting of quasinilpotents). Is then A finitely quasinilpotent

(
in our notation, is

it true that r′′∞(a) = 0 for all finite tuples a = (a1, . . . , an), where r′′∞(a) is defined
by (1)

)
?

C.35.5. The previous question may be considered as an approximate version of the
Nagata-Higman theorem:

If A is an algebra (without unit) which is nilpotent of order n (i.e., an = 0 for all
a ∈ A), then there exists m ∈ N such that a1 · · · am = 0 for all a1, . . . , am ∈ A.

The original proof of the Nagata-Higman theorem gave m = 2n − 1; the best
known result gives m = n2. There is a conjecture that one can take m =

(
n
2

)
; it is

known that in general m cannot be smaller. For details see [Fo].

C.35.6. Theorem 35.7 for p = 2 in the algebra of operators on a Hilbert space (the
�2-norm seems to be natural in this setting) was conjectured by Bunce [Bun] and
proved in [MS1] (for finite-dimensional Hilbert space case see [ChH]).

C.36.1. The concept of capacity for single Banach algebra elements is due to Hal-
mos [Hal2], who also proved Theorem 36.2.

The capacity of commuting n-tuples was introduced in [Sti1], where the es-
timate

cap σH(a1, . . . , an) ≤ cap(a1, . . . , an) ≤ 2n capσH(a1, . . . , an)

was proved. The equality cap(a1, . . . , an) = capσH(a1, . . . , an) as well as the ex-
istence of the limit limk→∞(capk(a1, . . . , an)1/k was proved in [Mü13].

C.36.2. For the classical capacity of compact subsets of C see [Ts]. The capacity
of compact subsets of Cn is treated in [Za] and [Si2].

C.36.3. Lemma 36.7 (the equality capσe(T ) = cap σ(T )) was proved in [Sti2].
It also follows directly from a general result from potential theory that

cap(K∪C) = cap K whenever K ⊂ C is compact and C countable, see [Ts, p. 53–
55]. Therefore we have cap σe(T ) = cap σ̂e(T ) = capσ(T ), since σ(T ) \ σ̂e(T ) is at
most countable.

C.36.4. Let f be an analytic function from a domain D ⊂ C into a Banach algebra
A. Then the functions z �→ cap f(z) and z �→ log cap f(z) are subharmonic, see
[Sl3].
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C.36.5. Another concept of capacity of n-tuples of commuting Banach algebra
elements was introduced in [So1] and [So2]. Instead of monic polynomials p(z) =∑

|α|≤n cαzα with
∑

|α|=n |cα| = 1 it uses polynomials satisfying
∑

|α|=n cα = 1.

C.37.1. The notion of orbits originated in the theory of dynamical systems. In the
context of operator theory it was first used by Rolewicz [Ro]. Orbits in Hilbert
spaces were studied intensely by Beauzamy; for a survey of results and relations
with the invariant subspace problem see [Bea2].

For a survey of results concerning orbits in Banach spaces see [Mü22].

C.37.2. Orbits are also closely related to problems concerning the stability of semi-
groups of operators. For results in this direction see Datko [Dat], Pazy [Pa] and
van Neerven [Ne3].

C.37.3. It is simple to find an operator without non-trivial invariant subspaces on
a real Hilbert space H with dimH = 2. For example, take

T =
(

0 1
−1 0

)
.

It is an open problem whether each operator on a real Hilbert space H with
dimH ≥ 3 has a non-trivial closed invariant subspace.

C.37.4. Theorem 37.8 was proved in [Mü9]. The same statement for Hilbert space
operators was proved in [Bea2, p. 48].

Theorem 37.13 is due to Zabczyk [Zab].
Theorems 37.14 and 37.17 were proved in [MV]. The essential tool is the

plank theorem due to K. Ball [B1], [B2], see Appendix 5.

C.37.5. Let T ∈ B(H) be a non-nilpotent Hilbert space operator. By [Bea2], there
exists x ∈ H such that

∑ ‖T nx‖
‖T n‖ = ∞. This is not true for Banach space operators,

see Example 37.24.
For Hilbert space operators the following result can be shown [Mü22]: let

T ∈ B(H) be non-nilpotent, let 0 < p < 2. Then the set of all x ∈ H such that∑(
‖T nx‖
‖T n‖

)p

= ∞ is residual.

C.38.1. The first example of a hypercyclic vector was constructed by Rolewicz
[Ro].

Various versions of criterion 38.6 appeared in [GS], [Ki] and [GS], for related
questions see also [GLM] and [LM].

C. 38.2. Theorem 38.8 appeared in [Fel], Theorem 38.9 was proved by Bourdon
and Feldman [BF].

C.38.3. Theorem 38.11 is due to Ansari [Ans]. Theorem 38.12 was proved in [LMü].
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C.39.1. Weak orbits were studied in [Ne1], [Ne2]. A version of Theorem 3 was first
proved in [Ne2], where the following generalization was also shown: if T ∈ B(X),
r(T ) = 1, 1 ≤ p < ∞, βn > 0 and

∑
n βn = ∞, then there exist x ∈ X and

x∗ ∈ X∗ such that
∑

n βn|〈T nx, x∗〉|p = ∞.

C.39.2. Corollary 39.4 is due to Weiss [We]. Theorems 39.5 and 39.8 are again
consequences of the plank theorem, see Appendix 5. They appeared in [MV].

C.39.3. By [Mü22], there is a Hilbert space operator T ∈ B(H) such that∑ |〈T nx, y〉|
‖T n‖ < ∞ for all x, y ∈ H.

So the result of Theorem 10 is the best possible.

C.39.4. In general it is not true that for T ∈ B(X) and a sequence (an) of positive
numbers tending to 0 there exist x ∈ X and x∗ ∈ X∗ with |〈T nx, x∗〉| ≥ anr(T n)
for all n. A simple example for real spaces (in a 2-dimensional Hilbert space) was
given in [Ne2]. The complex case is more complicated. An example of a unitary
operator without orbits tending to 0 arbitrarily slowly was constructed in [BMü].

In many cases, however, it is possible to find x ∈ X and x∗ ∈ X∗ with
|〈T nx, x∗〉| ≥ anr(T n) for all n. For example this is true for positive operators in
Banach lattices [Ne2].

In Corollary 39.13 we stated the same result for Hilbert space operators of
class C0· with spectral radius equal to 1. It is also true for Banach space operators
of the same class [Mü25], and for all completely non-unitary contractions on a
Hilbert space with spectral radius equal to 1, see [BMü].

C.40.1. The Scott Brown technique was first used in [Br] for the construction of
invariant subspaces for subnormal operators. Theorem 40.4 was proved for Hilbert
space contractions in [BCP1].

C.40.2. Theorem 40.7 is due to Apostol [Ap5].

C.40.3. The existence of invariant subspaces for Hilbert space contractions with
spectrum containing the unit circle was proved by Brown, Chevreau and Pearcy
in [BCP2].

The Banach space version was proved in [AM].

C.40.4. By the von Neumann inequality, every operator on a Hilbert space which
is similar to a contraction is polynomially bounded. It was a longstanding problem
due to Halmos whether the opposite statement is also true. The problem was solved
by Pisier [Pis], who constructed a polynomially bounded Hilbert space operator
which is not similar to a construction.

C.41.1. The classical Kaplansky theorem (Theorem 41.1) was proved in [Kap]. A
stronger version (Theorem 41.5 for single operators) was proved by Sinclair [Sin].
Theorem 41.2 and its corollaries 41.4 and 41.5 were proved in [Mü11].
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A similar result was proved in [Au3]: if T1, . . . , Tn ∈ B(X, Y ) and the vectors
T1x, . . . , Tnx are linearly dependant for each x ∈ X , then there is a non-trivial
linear combination of these operators with rank ≤ n − 1.

C.41.2. By Theorem 41.2, if T1, T2, · · · ∈ B(X) and the vectors T1x, T2x, . . . are
linearly dependant for all x ∈ X , then there is a non-trivial linear combination of
the operators Ti which is a finite-rank operator. In general, it is not true that the
operators Ti are linearly dependant, so there in no non-trivial linear combination
of the operators Ti giving 0, see [Mü11].

C.41.3. Corollary 41.4 and Theorem 41.5 are also true for countable families of op-
erators. Also, they are true for non-commuting families (in this case it is necessary
to consider polynomials in non-commuting variables in the definition of algebraic
tuples). The proofs remain essentially the same, see [Mü11].

C.42.1. Lemma 42.4 uses the idea of extremal points of Fekete-Leja, see [Fe], [Si1].
Theorems 42.5 and 42.6 were proved in [Mü12] for single operators and in [MS2]
for n-tuples.

Using a Dvoretzky’s type result, it is possible to improve the estimate in
Theorem 42.5 to

‖p(T )y‖ ≥ (1 − ε)
(

n + k

n

)−1

re(p(T ))

for all p ∈ Pk(n); this estimate is the best possible. Similarly, in Theorem 42.6 it
is possible to obtain

‖p(T )y‖ ≥ C(1 + deg p)−(n+k)re(p(T ))

for all polynomials p, see [Mü24].
Theorem 42.10 was proved in [Mü22].

C.42.2. An alternative definition of the local capacity of operators was studied by
Vasilescu in [Va2]. For T ∈ B(X) and x ∈ X define

cap′(T, x) = lim sup
n

cap′
n(T, x)1/n,

where cap′
n(T, x) = inf

{
rx(p(T )) : p monic of degree n

}
.

It is easy to see that cap(T, x) ≤ cap′(T, x).
By [Va2], cap γx(T ) ≤ cap′(T, x) ≤ cap σx(T ). In particular, the equality

capσx(T ) = cap′(T, x) holds for all operators with SVEP. This also implies that
T ∈ B(X) is quasialgebraic if and only if cap′(T, x) = 0 for all x ∈ X .



Appendix

A.1 Banach spaces

We summarize here basic notations, definitions and results from the theory of
Banach spaces. The results are well known and the proofs can be found in any
textbook on functional analysis. We do not state the results in the greatest gen-
erality but only in the form which is relevant for spectral theory.

The reader may wish to use this section merely for reference regarding notation.

As usual, we denote by N, Z, R and C the set of all positive integers, integers,
real and complex numbers, respectively.

As throughout this monograph we consider only complex Banach spaces
(however, all results in this section are true also for real spaces).

Let X, Y be Banach spaces. By an operator T : X → Y we mean a bounded
linear mapping. It is well known that a linear mapping is bounded if and only if it
is continuous. The set of all operators from X to Y will be denoted by B(X, Y ).

The norm of T ∈ B(X, Y ) is defined by ‖T ‖ = sup
{‖Tx‖ : x ∈ X, ‖x‖ ≤ 1

}
.

With this norm B(X, Y ) becomes a Banach space. If Y = X then we write briefly
B(X) instead of B(X, X).

For Y = C we obtain the dual X∗ = B(X, C), i.e., the space of all bounded
linear functionals on X . For x ∈ X and f ∈ X∗ it is sometimes more convenient
to denote the value of f at x by 〈x, f〉 instead of f(x). We use alternatively both
notations.

The duality between X and X∗ defines the weak topology on X and the
w∗-topology on X∗.

The w∗-topology on X∗ is the weakest topology for which the mappings
f �→ 〈x, f〉 are continuous for every x ∈ X . In other words, the w∗-topology is the
topology of pointwise convergence of functionals, i.e., if (fα) is a net of elements
of X∗ and f ∈ X∗ then fα → f in the w∗-topology if and only if 〈x, fα〉 → 〈x, f〉
for all each x ∈ X .

Analogously, the weak topology on X is the weakest topology on X for which
all functionals f ∈ X∗ are continuous. Equivalently, xα → x weakly if and only if
〈xα, f〉 → 〈x, f〉 for each f ∈ X∗.
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When we are speaking about convergence, closure etc. without any specifi-
cation it is always meant the convergence in the norm topology.

It is well known that X can be isometrically embedded into the second dual
X∗∗, so X is usually regarded as a closed subspace of X∗∗.

We list the basic results from the theory of Banach spaces.

Theorem 1. (Hahn-Banach) Let M be a closed subspace of a Banach space X . Let
f ∈ M∗. Then there exists g ∈ X∗ such that ‖g‖ = ‖f‖ and g|M = f .

The following two results are variants of the Hahn-Banach theorem:

Theorem 2. Let M be a closed subspace of X and let x ∈ X . Then there exists
g ∈ X∗ such that ‖g‖ = 1, 〈x, g〉 = dist{x, M} and g|M = 0.

In particular, if x ∈ X then there exists g ∈ X∗ such that ‖g‖ = 1 and
〈x, g〉 = ‖x‖.
Theorem 3. Let L be a closed absolutely convex subset of X (i.e., L is convex and
c ∈ L, α ∈ C, |α| ≤ 1 ⇒ αc ∈ L). Let x ∈ X \ C. Then there exists f ∈ X∗ such
that |〈c, f〉| ≤ 1 for all c ∈ L and 〈x, f〉 > 1.

An easy consequence of the Hahn-Banach theorem is that a convex set (in
particular a subspace) is closed if and only if it is closed in the weak topology.

A w∗-closed subspace is closed but a closed subspace is not necessarily closed
in the w∗-topology.

Denote by BX = {x ∈ X : ‖x‖ ≤ 1} the closed unit ball in a Banach space X .

Theorem 4. BX is compact if and only if X is finite dimensional.

Theorem 5. (Banach-Alaoglu) The closed unit ball BX∗ = {f ∈ X∗ : ‖f‖ ≤ 1} is
compact in the w∗-topology.

The unit ball in X is not always weakly compact. In fact, BX is weakly
compact if and only if X is reflexive (i.e., X∗∗ = X).

Theorem 6. (Banach open mapping theorem) Let T be an operator from a Banach
space X to a Banach space Y . The following conditions are equivalent:

(i) T is onto;

(ii) there exists a positive constant k such that TBX ⊃ k · BY ;

(iii) there exists a positive constant k such that TBX ⊃ k · BY .

Corollary 7. If an operator T ∈ B(X, Y ) is one-to-one and onto, then T−1 is
bounded.

Another consequence of the open mapping theorem is:

Corollary 8. Let T ∈ B(X, Y ) and TX �= Y . Then the range TX is of the first
category in Y .
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Theorem 9. (closed graph theorem) A linear mapping T : X → Y is bounded if
and only if its graph {(x, Tx) : x ∈ X} is closed in X × Y .

In particular, suppose that a linear mapping T satisfies the following con-
dition: if (xi)∞i=1 ⊂ X , xi → 0, y ∈ Y and Txi → y, then y = 0. Then T is
bounded.

Theorem 10. (Banach-Steinhaus uniform boundedness theorem) Let M be a subset
of B(X, Y ) such that sup{‖Tx‖ : T ∈ M} < ∞ for every x ∈ X . Then sup{‖T ‖ :
T ∈ M} < ∞.

In particular, any weakly converging sequence of elements of X is bounded.

Let M be a subset of a Banach space X . Its annihilator M⊥ is defined by

M⊥ =
{
f ∈ X∗ : 〈x, f〉 = 0 for all x ∈ M

}
.

Clearly, M⊥ is a w∗-closed (and so closed) subspace of X∗.
Similarly, if L is a subset of X∗ then the preannihilator ⊥L is defined by

⊥L =
{
x ∈ X : 〈x, f〉 = 0 for all f ∈ L

}
.

Clearly, ⊥L is a closed subspace of X .

Theorem 11. If M is a subspace of X then ⊥(M⊥) = M . If L is a subspace of X∗

then (⊥L)⊥ is the w∗-closure of L.

Theorem 12. If {Mα}α is any family of subsets of X then(⋃
α

Mα

)⊥
=

⋂
α

M⊥
α .

If {Lα}α is any family of subsets of X∗ then

⊥
(⋃

α

Lα

)
=

⋂
α

⊥Lα.

In particular, if M1, M2 are closed subspaces then (M1 +M2)⊥ = M⊥
1 ∩M⊥

2 ,
where M1 + M2 =

{
m1 + m2 : m1 ∈ M1, m2 ∈ M2

}
.

The dual relation (M1 ∩ M2)⊥ = M⊥
1 + M⊥

2 is not always true; it is true
under the assumption that M1 + M2 is closed.

Theorem 13. Let M1, M2 be closed subspaces of a Banach space X . The following
assertions are equivalent:

(i) M1 + M2 is closed;

(ii) M⊥
1 + M⊥

2 is closed;

(iii) (M1 ∩ M2)⊥ = M⊥
1 + M⊥

2 ;

(iv) ⊥(M⊥
1 ∩ M⊥

2 ) = M1 + M2.



396 Appendix

Let T : X → Y be an operator. Its adjoint T ∗ is the uniquely determined
operator T ∗ : Y ∗ → X∗ satisfying

〈Tx, g〉 = 〈x, T ∗g〉 for all x ∈ X and g ∈ Y ∗.

Then

‖T ∗‖ = ‖T ‖ = sup
{|〈Tx, g〉| : x ∈ X, g ∈ Y ∗, ‖x‖ ≤ 1, ‖g‖ ≤ 1

}
.

If X, Y and Z are Banach spaces, S ∈ B(X, Y ) and T ∈ B(Y, Z) then (TS)∗ =
S∗T ∗ and ‖TS‖ ≤ ‖T ‖ · ‖S‖. It is easy to check that T = T ∗∗|X .

For T ∈ B(X, Y ) denote by KerT its kernel, KerT = {x ∈ X : Tx = 0},
and by RanT its range, RanT = TX = {Tx : x ∈ X}. Clearly, KerT is a closed
subspace of X and RanT is a (not necessarily closed) subspace of Y . It is easy to
check that KerT ∗ is even a w∗-closed subspace of Y ∗.

Theorem 14. Let T ∈ B(X, Y ). Then

KerT ∗ = (RanT )⊥ and KerT = ⊥(Ran T ∗) = KerT ∗∗ ∩ X.

Furthermore, ⊥ KerT ∗ = Ran T and (KerT )⊥ = Ran T ∗w∗
(the w∗-closure

of Ran T ∗).

Corollary 15. Let T ∈ B(X, Y ). Then T ∗ is one-to-one if and only if Ran T is
dense. Similarly, T is one-to-one if and only if Ran T ∗ is w∗-dense.

Theorem 16. Let T ∈ B(X, Y ). Then the following statements are equivalent:

(i) RanT is closed;

(ii) RanT ∗ is closed;

(iii) RanT ∗ is w∗-closed.

Corollary 17. If Ran T is closed then Ran T = ⊥(KerT ∗) and RanT ∗ = (KerT )⊥.
Furthermore, Ran T = Ran T ∗∗ ∩ Y .

Corollary 18. Let T ∈ B(X, Y ). Then T is one-to-one and onto if and only if T ∗

is one-to-one and onto.

Theorem 19. Let M be a closed subspace of a Banach space X . Then M∗ can be
identified with X∗/M⊥.

More precisely, let J : M → X be the natural embedding of M into X . Then
J∗ : X∗ → M∗ assigns to a functional f ∈ X∗ the restriction J∗f = f |M ∈ M∗.
Clearly, KerJ∗ = M⊥, so J∗ defines an operator S : X∗/M⊥ → M∗ by S(f +
M⊥) = J∗f . A straightforward calculation shows that S is an isometry. So M∗ can
be identified with X∗/M⊥ and J∗ with the canonical projection X∗ → X∗/M⊥.

Theorem 20. Let M be a closed subspace of X . Then (X/M)∗ can be identified
with M⊥.
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More precisely, let Q : X → X/M be the canonical projection. Then Q∗ :
(X/M)∗ → X∗ is an isometrical operator and Ran Q∗ = (KerQ)⊥ = M⊥. Thus
Q∗ defines an isometrical operator from (X/M)∗ onto M⊥.

Theorem 21. Let T ∈ B(X, Y ). Then T decomposes in the following way:

X
Q−→ X/ KerT

T0−→ RanT
J−→ Y,

where T = JT0Q, Q : X → X/ KerT is the canonical projection, the operator
T0 : X/ KerT → Ran T induced by T is one-to-one with dense range, and J :
RanT → Y is the natural embedding.

The corresponding decomposition for T ∗ is T ∗ = Q∗T ∗
0 J∗.

Let M be a subset of a Banach space X . The span of M , denoted by
∨

M , is
the smallest closed subspace of X containing M (= the intersection of all closed
subspaces containing M). Similarly, we write M ∨ M ′ =

∨
(M ∪ M ′).

If M, M ′ are closed subspaces of X then M + M ′ is not necessarily closed.

Theorem 22. Let M be a closed subspace of X and let F be a finite-dimensional
subspace of X . Then M +F is closed. In particular, a finite-dimensional subspace
is closed.

Similarly, if M ′ ⊂ X∗ is a w∗-closed subspace and F ′ is a finite-dimensional
subspace of X∗, then M ′ + F ′ is w∗-closed.

Theorem 23. (Auerbach lemma) Let X be a finite-dimensional Banach space. Then
there exist bases {x1, . . . , xn} in X and {f1, . . . , fn} in X∗ such that ‖xi‖ = 1 =
‖fj‖ and 〈xi, fj〉 = δij (the Kronecker symbol ) for all i, j = 1, . . . , n.

An operator P ∈ B(X) is called a projection if P 2 = P . If P ∈ B(X) is a
projection then I − P is also a projection (here I denotes the identity operator
on X). Further, RanP = Ker(I − P ) and KerP = Ran(I − P ). In particular, the
range of a projection is closed.

Let M be a closed subspace of a Banach space X . Then M is called comple-
mented in X if there exists a closed subspace M ′ ⊂ X such that X = M ⊕ M ′

(i.e., M ∩ M ′ = {0} and M + M ′ = X).

Theorem 24. Let M be a closed subspace of a Banach space X . The following
statements are equivalent:

(i) M is complemented;

(ii) there exists a projection P ∈ B(X) such that Ran P = M ;

(iii) there exists a projection Q ∈ B(X) such that KerQ = M .

It is well known that every closed subspace of a Hilbert space is comple-
mented.
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Theorem 25.

(i) Let F be a finite-dimensional subspace of a Banach space X . Then F is
complemented. More precisely, there exists a projection P ∈ B(X) such that
Ran P = F and ‖P‖ ≤ (dim M)1/2.

(ii) Let M be a closed subspace of finite codimension in X . Then M is comple-
mented. More precisely, for every ε > 0 there exists a projection Q ∈ B(X)
such that KerQ = M and ‖Q‖ ≤ codimM + ε.

(iii) Let L be a complemented subspace of X , let L′ ⊂ X be a closed subspace.
Suppose that either L′ ⊂ L, dimL/L′ < ∞, or L′ ⊃ L, dim L′/L < ∞. Then
L′ is complemented.

We finish this section with the following deep result from the algebraic topol-
ogy that will be used frequently:

Theorem 26. (Borsuk antipodal theorem) Let M, L be finite-dimensional Banach
spaces with dimM > dimL, let SM = {m ∈ M : ‖m‖ = 1} be the unit sphere in
M and let g : SM → L be a continuous mapping satisfying g(−m) = −g(m) for
all m ∈ SM . Then there exists m ∈ SM with g(m) = 0.

A.2 Analytic vector-valued functions

Many well-known results for complex functions are true also for vector-valued
functions.

Let K be a compact Hausdorff space, let µ be a finite complex Borel measure
on K and let f be a continuous function from K into a Banach space X . Then,
exactly as in the case of scalar functions, it is possible to define

∫
f dµ as the limit

of the Riemann sums. It is easy to verify that 〈∫ f dµ, x∗〉 =
∫ 〈f(z), x∗〉dµ(z) for

every bounded linear functional x∗ ∈ X∗. More generally, if Y is another Banach
space and T ∈ B(X, Y ) then T (

∫
f dµ) =

∫
(T ◦ f) dµ.

Let aj (j = 0, 1, 2, . . . ) be elements of a Banach space X . Consider the
power series

∑∞
j=0 ajz

j (z ∈ C). Its radius of convergence is the number de-
fined by

sup
{
r ≥ 0 :

∞∑
j=1

ajz
j converges for all z ∈ C, |z| < r

}
.

Theorem 1. The radius of convergence of the power series
∑∞

j=0 ajz
j is equal to

lim infj→∞ ‖aj‖−1/j .

Analytic functions with values in a Banach space play an important role
in spectral theory. There are several possible definitions of analytic vector-valued
functions. Fortunately, for Banach spaces all possibilities are equivalent:



A.2. Analytic vector-valued functions 399

Theorem 2. Let f be a function from an open subset G ⊂ C into a Banach space
X . The following conditions are equivalent:

(i) the function z �→ 〈f(z), x∗〉 is analytic for each x∗ ∈ X∗;

(ii) the limit limz→w
f(z)−f(w)

z−w exists for every w ∈ G;

(iii) for every w ∈ G there is a neighbourhood U of w, U ⊂ G and elements
xj ∈ X, j = 0, 1, . . . such that f(z) =

∑∞
j=0 xj(z − w)i (z ∈ U).

A function satisfying any of the conditions of Theorem 2 will be called ana-
lytic (on G). The set of all X-valued functions analytic on G will be denoted by
H(G, X).

Condition (i) of Theorem 2 enables us to generalize most of the properties
of analytic scalar-valued functions to the vector-valued case. In particular, the
Cauchy and Liouville theorems remain true.

If G ⊂ C is an open set and K a compact subset of G, then it is always
possible to find a contour Γ that surrounds K in G. By this we mean that Γ is a
finite union of disjoint, piecewise smooth simple closed curves in G \ K such that
the winding number

IndΓ(w) =
1

2πi

∫
Γ

1
z − w

dz =

{
1 (w ∈ K)
0 (w /∈ G).

For details see [Co].

Theorem 3. (Cauchy) Let f ∈ H(G, X), let w ∈ G, and let Γ be a contour in G
that surrounds {w}. Then

∫
Γ f(z) dz = 0 and f(w) = 1

2πi

∫
Γ f(z)(z − w)−1 dz.

Moreover, the coefficients xj in condition (iii) of Theorem 2 can be expressed
as xj = 1

2πi

∫
Γ

f(z)(z − w)−j−1 dz.

Corollary 4. If f ∈ H(G, X), w ∈ G, r > 0, {z : |z − w| ≤ r} ⊂ G, M =
max

{‖f(z)‖ : |z −w| = r
}

and f(z) =
∑∞

j=0 xj(z −w)j for all z with |z −w| < r,
then

‖xj‖ ≤ M

rj
(j = 0, 1, . . . ).

Theorem 5. (Liouville) Let f : C → X be a bounded analytic function. Then f is
a constant.

Theorem 6. (residue theorem) Let xj (j ∈ Z) be elements of a Banach space X ,
r > 0 and w ∈ C. Let

f(z) =
∞∑
−∞

xj(z − w)j

be convergent in {z ∈ C : 0 < |z − w| < r}. Then

1
2πi

∫
|z|=r/2

f(z) dz = x−1.
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Theorem 7. (maximum principle) Let G be an open subset of C, let f ∈ H(G, X),
and let K be a compact subset of G. Then

max
{|f(z)| : z ∈ K

}
= max

{|f(z)| : z ∈ ∂K
}
.

The analogy between the properties of scalar analytic functions and the an-
alytic functions with values in a Banach space remains true also for analytic func-
tions of n variables.

We use the standard multi-index notation. Denote by Z+ the set of all non-
negative integers. For α = (α1, . . . , αn) ∈ Zn

+ and z = (z1, . . . , zn) ∈ Cn we write
|α| = α1 + · · · + αn, α! = α1! · · ·αn! and zα = zα1

1 · · · zαn
n .

Theorem 8. Let G be an open subset of Cn and let f be a function from G to a
Banach space X . The following properties are equivalent:

(i) the function z �→ 〈f(z), x∗〉 is analytic for each x∗ ∈ X∗;

(ii) for every w ∈ G there exists a neighbourhood U of w and elements xα ∈
X (α ∈ Zn

+) such that

f(z) =
∑

α∈Zn
+

xα(z − w)α (z ∈ U);

(iii) f is analytic in each variable separately.

A function satisfying the conditions of Theorem 8 is called analytic on G.
The coefficients xα from condition (ii) can be expressed by means of a multiple
Cauchy integral. In particular, if w ∈ G, r > 0,

{
z = (z1, . . . , zn) : |zk − wk| ≤

r, k = 1, . . . , n
} ⊂ G and M = max

{‖f(z)‖ : |zk − wk| ≤ r, k = 1, . . . , n
}
, then

f(w) =
1

(2πi)n

∫
|z1−w1|=r

· · ·
∫
|zn−wn|=r

f(z)(z1 − w1)−1 · · · (zn − wn)−1dz1 · · ·dzn

and ‖xα‖ ≤ M
r|α| for all α ∈ Zn

+.

If X, Y are Banach spaces then B(X, Y ) is also a Banach space. So we can
consider operator-valued analytic functions.

Theorem 9. Let G be an open subset of Cn and let T : G → B(X, Y ) be a function.
The following conditions are equivalent:

(i) T : G → B(X, Y ) is analytic on G;

(ii) the function z �→ T (z)x is analytic for each x ∈ X ;

(iii) the function z �→ 〈T (z)x, y∗〉 is analytic for all x ∈ X and y∗ ∈ Y ∗.



A.3. C∞-functions 401

A.3 C∞-functions

The existence of partitions of unity is a standard tool in complex analysis.

Theorem 1. (partition of unity) Let M be a metric space, let O be an open cover
of M . Then there exist continuous functions fα : M → 〈0, 1〉 (α ∈ Λ) such that:

(i)
∑

α∈Λ fα(z) = 1 (z ∈ M);
(ii) for every α ∈ Λ there exists an open set U ∈ O such that the support of fα,

supp fα = {z ∈ M : fα(z) �= 0}−, is contained in U ;

(iii) for every z ∈ M there is a neighbourhood U of z such that U intersects
supp fα for only a finite number of indices α.

The functions fα with the properties of Theorem 1 are called a partition of
unity subordinate to the cover O.

Let G be an open subset of Cn. Then we can consider G as a subset of R2n

and denote by C∞(G) the set of all functions f : G → R that have continuous
(real) partial derivatives of all orders.

In Cn there exist partitions of unity consisting of smooth functions. Moreover,
any partition of unity is countable.

Theorem 2. Let G be a subset of Cn, let O be an open cover of G. Then there exist
C∞-functions fi : G → 〈0, 1〉 (i = 1, 2, . . . ) with the properties of Theorem 1.

Let G be an open subset of Cn and let X be a Banach space. Write zj =
xj + iyj and denote by C∞(G, X) the set of all functions f : G → X that
have continuous partial derivatives of all orders with respect to the real variables
x1, . . . , xn, y1, . . . , yn.

Instead of the derivatives ∂f
∂xj

and ∂f
∂yj

of a function f ∈ C∞(G, X) it is usual
to consider the formal derivatives

∂f

∂zj
=

1
2

( ∂f

∂xj
− i

∂f

∂yj

)
,

∂f

∂z̄j
=

1
2

( ∂f

∂xj
+ i

∂f

∂yj

)
.

By the Cauchy-Riemann conditions, a function f ∈ C∞(G, X) is analytic if
and only if ∂f

∂z̄j
= 0 (j = 1, . . . , n). In this case ∂f

∂zj
coincide with the familiar

complex derivatives of f .
Let 0 ≤ p, q ≤ n. A differential form of bidegree (p, q) with coefficients in

C∞(G, X) can be expressed as

ηp,q =
∑

0≤i1<···<ip≤n

∑
0≤j1<···<jq≤n

fi1,...,ip,j1,...,jqdzi1 ∧· · ·∧dzip ∧dz̄j1 ∧· · ·∧dz̄jq (1)

where fi1,...,ip,j1,...,jq ∈ C∞(G, X).
Functions in C∞(G, X) can be identified with differential forms of bidegree

(0, 0).
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A differential form of degree r can be written as η =
∑

p+q=r ηp,q, where ηp,q

are differential forms of bidegree (p, q). Denote by Λr[dz, dz̄, C∞(G, X)] the linear
space of all differential forms of degree r with coefficients in C∞(G, X). Further,
denote by Λ[dz, dz̄, C∞(G, X)] =

⊕2n
r=0 Λr[dz, dz̄, C∞(G, X)] the linear space of

all differential forms.
On Λ[dz, dz̄, C∞(G, X)] we consider the wedge product defined by the fol-

lowing properties (for all ω, η, τ ∈ Λ[dz, dz̄, C∞(G, X)], f, g ∈ C∞(G, X)):

(i) ω ∧ (η + τ) = ω ∧ η + ω ∧ τ ;
(ii) (ω + η) ∧ τ = ω ∧ τ + η ∧ τ ;

(iii) ω ∧ (η ∧ τ) = (ω ∧ η) ∧ τ ;

(iv) (fω) ∧ (gη) = fgω ∧ η;

(v) if ω ∈ Λk[dz, dz̄, C∞(G, X)], η ∈ Λl[dz, dz̄, C∞(G, X)] then
ω ∧ η = (−1)klη ∧ ω.
In particular, s ∧ t = −t ∧ s for all s, t ∈ {dz1, . . . ,dzn, dz̄1, . . . ,dz̄n}.

For a function f ∈ C∞(G, X) we set

∂f =
n∑

j=1

∂f

∂zj
dzj, ∂̄f =

n∑
j=1

∂f

∂dz̄j
dz̄j and df = ∂f + ∂̄f.

For a differential form ηp,q of type (1) we set

∂̄η =
∑

0≤i1<···<ip≤n

∑
0≤j1<···<jq≤n

∂̄fi1,...,ip,j1...,jq ∧dzi1 ∧· · ·∧dzip ∧dz̄j1 ∧· · ·∧dz̄jq .

Similarly we define ∂η and dη = ∂η + ∂̄η. This defines linear mappings ∂, ∂̄ and
d acting in the space Λ[dz, dz̄, C∞(G, X)] which map Λr[dz, dz̄, C∞(G, X)] into
Λr+1[dz, dz̄, C∞(G, X)] for all r, 0 ≤ r ≤ 2n − 1.

It is easy to verify that d(dη) = 0 for every form η.

We interpret
(2i)−ndz̄1 ∧ · · ·dz̄n ∧ dz1 ∧ · · · ∧ dzn

as the Lebesgue measure in R2n. Then we can define integrals of differential forms
of degree 2n on subsets of Cn. Analogously we define integrals of differential forms
on submanifolds of Cn. For details see [Spi].

Theorem 3. (Stokes) Let G be an open subset of Cn, let η be a differential form
with coefficients in C∞(G, X) of degree 2n− 1. Let ∆ be an open bounded subset
such that ∆ ⊂ G and ∂∆ is a piecewise smooth surface. Then∫

∂∆

η =
∫

∆

dη.
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Corollary 4. Let τ be a differential form of degree 2n − 1 with compact support.
Then ∫

Cn

dτ = 0.

Theorem 5. Let U ⊂ Cn be a polydisc and let j : H(U, X) → C∞(U, X) be the
natural embedding. Then the sequence

0 →H(U,X)
j−→C∞(U,X) ∂̄−→Λ1[dz̄, C∞(U,X)] ∂̄−→· · · ∂̄−→Λn[dz̄, C∞(U,X)]→0

is exact.

A.4 Semicontinuous set-valued functions

Definition 1. Let X, Y be metric spaces, let Φ be a mapping which assigns to
each point x ∈ X a closed subset of Y . Let x0 ∈ X . Then Φ is called upper
semicontinuous at x0 if for every neighbourhood U of Φ(x0) there exists ε > 0
such that Φ(x) ⊂ U for all x ∈ X with dist{x0, x} < ε.

The mapping Φ is called lower semicontinuous at x0 if for every open set U
with U ∩ Φ(x0) �= ∅ there exists ε > 0 such that U ∩ Φ(x) �= ∅ for all x ∈ X with
dist{x, x0} < ε.

The mapping Φ is called continuous at x0 if it is both upper and lower
semicontinuous at x0. Φ is called upper (lower) semicontinuous or continuous if it
has the corresponding property at every point x ∈ X .

Definition 2. Let M, L be subsets of a metric space Y . Write

∆(M, L) = sup
m∈M

dist{m, L}

(supremum of an empty set is considered to be equal to 0). The Hausdorff distance
∆̂(M, L) is defined by

∆̂(M, L) = max
{
∆(M, L), ∆(L, M)

}
.

The most important set-valued functions for our purpose are those with com-
pact values. The semicontinuity of such mappings can be characterized easily:

Theorem 3. Let X, Y be metric spaces, Y locally compact, x ∈ X and let Φ be a
mapping which assigns to every point of X a compact subset of Y . The following
statements are equivalent:

(i) Φ is upper semicontinuous at x;

(ii) if xn ∈ X (n = 1, 2, . . . ) and xn → x then limn→∞ ∆
(
Φ(xn), Φ(x)

)
= 0;

(iii) if xn ∈ X, yn ∈ Φ(xn) (n = 1, 2, . . . ) and y ∈ Y satisfy xn → x and yn → y,
then y ∈ Φ(x).
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Theorem 4. Let X, Y be metric spaces, x ∈ X and let Φ be a mapping which
assigns to every point of X a compact subset of Y . The following statements are
equivalent:

(i) Φ is lower semicontinuous at x;

(ii) if xn ∈ X (n = 1, 2, . . . ) and xn → x then limn→∞ ∆
(
Φ(x), Φ(xn)

)
= 0;

(iii) if xn ∈ X (n = 1, 2, . . . ), xn → x and y ∈ Φ(x), then there exist yn ∈
Φ(xn) (n = 1, 2, . . . ) such that yn → y.

Theorem 5. (Michael’s selection theorem) Let X be a metric space, let Φ be a
lower semicontinuous mapping which assigns to each point x ∈ X a closed convex
subset of a Banach space Y . Then there exists a continuous mapping f : X → Y
such that f(x) ∈ Φ(x) for all x ∈ X .

A.5 Some geometric properties of Banach spaces

The first result is the solution to the so-called plank problem which is due to
Ball [B1].

Proposition 1. Let X be a (real or complex) Banach space, y ∈ X any vector
and f1, f2, · · · ∈ X∗ unit functionals. For each n ∈ N, let an be positive numbers
such that

∑∞
n=1 an < 1. Then there is a point x ∈ X such that ‖x − y‖ ≤ 1 and

|〈x, fn〉| ≥ an for every n.

A stronger result is known for operators on a complex Hilbert space [B2]. It
is worth to note that it is not true for real Hilbert spaces.

Proposition 2. Let H be a complex Hilbert space and f1, f2, · · · ∈ H unit vectors.
For each n ∈ N, let an > 0 be such that

∑∞
n=1 a2

n < 1. Then there is a point x ∈ H
such that ‖x‖ = 1 and |〈x, fn〉| ≥ an for every n.

The following Zenger theorem can be found in [BD], p. 18–20.

Theorem 3. Let X be a (real or complex) Banach space, let u1, . . . , un ∈ X be
linearly independent. Let αj (j = 1, . . . , n) be positive numbers with

∑n
j=1 αj =

1. Then there exist complex numbers w1, . . . , wn and f ∈ X∗ such that

∥∥∥ n∑
j=1

wjuj

∥∥∥ ≤ 1, ‖f‖ ≤ 1 and 〈wjuj, f〉 = αj

for all j = 1, . . . , n.
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A.6 Basic properties of H∞

Denote by P the normed space of all complex polynomials with the norm ‖p‖ =
sup{|p(z)| : z ∈ D}. Recall that A(D) denotes the disc algebra of all functions
analytic on D and continuous on D and H∞ the Hardy space of all bounded
analytic functions on D.

Let L∞ be the space of all complex bounded measurable function on T with
the usual norm. Then P ⊂ A(D) ⊂ H∞ ⊂ L∞ and A(D) is the norm closure of
P . The inclusion H∞ ⊂ L∞ follows from the following theorem.

Theorem 1. (Fatou) Let f ∈ H∞. Then the limit limr→1− f(reit) exists for al-
most all t ∈ 〈0, 2π) (with respect to the Lebesgue measure). If we write f(eit) =
limr→1− f(reit), then f(eit) ∈ L∞ and ess sup |f(eit)| = supz∈D |f(z)|.

Let L1 be the space of all integrable functions on T with the norm ‖f‖1 =
1
2π

∫ |f(eit)| dt. Since L∞ = (L1)∗, the space H∞ inherits the w∗-topology from
L∞.

The w∗-convergence of sequences in H∞ is easy to describe as the bounded
pointwise convergence.

Theorem 2.

(i) Let (fn) ⊂ H∞ be a sequence of bounded analytic functions. Then fn
w∗−→0

if and only if (fn) is a Montel sequence, i.e., supn ‖fn‖ < ∞ and fn(z) →
0 (z ∈ D);

(ii) H∞ is a w∗-closed subspace of L∞ and Pw∗
= H∞. Moreover, every function

f ∈ H∞ is a w∗-limit of a sequence of polynomials.

Of particular interest are the functionals on P that are w∗-continuous, i.e.,
the continuous linear mappings from (P , w∗) to C.

Theorem 3. Let ψ ∈ P∗. Then the following statements are equivalent:

(i) ψ ∈ P∗ is w∗-continuous;

(ii) ψ(pn) → 0 for each Montel sequence (pn) of polynomials;

(iii) there is a w∗-continuous functional ψ0 on H∞ such that ψ = ψ0|P and
‖ψ0‖ = ‖ψ‖;

(iv) there is an absolutely continuous measure µ on T such that ψ(p) =
∫

p dµ
(p ∈ P). By the F. and M. Riesz theorem, in this case each measure repre-
senting ψ is absolutely continuous;

(v) there exists f ∈ L1 such that ‖f‖1 = ‖ψ‖ and ψ(p) =
∫ 2π

0
p(eit)f(eit) dt for

all p ∈ P .

A subset Λ ⊂ D is called dominant if supλ∈Λ |f(λ)| = ‖f‖ for all f ∈ H∞. An
example of a dominant set is an annulus {z : 1−ε < |z| < 1}. However, a dominant
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set can be much smaller, even countable. Clearly Λ ⊃ T for each dominant set.
The next result is an application of the Hahn-Banach theorem.

Theorem 4. Let ψ ∈ P∗ be w∗-continuous. Let Λ ⊂ D be a dominant subset.
Let ε > 0. Then there are numbers λ1, . . . , λn ∈ Λ and α1, . . . , αn ∈ C such that∑n

i=1 |αi| ≤ ‖ψ‖ and
∥∥ψ − ∑n

i=1 αiEλi

∥∥ < ε, where Eλ ∈ P∗ is the evaluation
functional defined by Eλ(p) = p(λ) (λ ∈ D, p ∈ P).

For λ = reiθ ∈ D let Iλ = {eit : |t − θ| < 2(1 − r)}. The following result is a
particular case of a more general interpolation theorem of Carleson.

Theorem 5. There is a constant b with the following property: if F ⊂ D is a finite
set such that the sets Iλ are pairwise disjoint and |λ| ≥ 3/4 (λ ∈ F ), and cλ ∈
C (λ ∈ F ) are given, then there exists f ∈ H∞ such that f(λ) = cλ (λ ∈ F )
and ‖f‖ ≤ b · supλ∈F |cλ|.
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[BO] M. Berkani, A. Ouahab, Opérateurs essentiellement réguliers dans
les espaces de Banach, Rend. Circ. Mat. Palermo 46 (1997), 131–160.

[BS] R. Berntzen, A. So�ltysiak, The Harte spectrum is not contained in
the Taylor spectrum, Comment. Math. Prace Mat. 38 (1998), 29–35.

[Boe] B. den Boer, Linearization of operator functions on arbitrary open
sets, Integral Equations Opererator Theory 1 (1978), 19–27.

[Bo1] B. Bollobás, Adjoining inverses to commutative Banach algebras,
Trans. Amer. Math. Soc. 181 (1973), 165–181.

[Bo2] B. Bollobás, Normally subregular systems in normed algebras, Studia
Math. 49 (1974), 263–266.

[Bo3] B. Bollobás, Adjoining inverses to commutative Banach algebras, Al-
gebras in analysis (J.H. Williamson ed.), Academic Press, New York,
1975, pp. 256–257.

[Bo4] B. Bollobás, To what extend can the spectrum of an operator be
diminished under an extension, in: Linear and Complex Analysis Prob-
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[Mü15] V. Müller, On the regular spectrum, J. Operator Theory 31 (1994),
363–380.
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[Mü17] V. Müller, The splitting spectrum differs from the Taylor spectrum,
Studia Math. 123 (1997), 291–294.
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essential spectrum, 174
spectrum, 69

Hausdorff
distance, 403
measure of non-compactness, 220

Heuser, 232
Hilbert, 228
Hilbert-Schmidt operator, 155
homogeneous mapping, 252
homomorphism, 3

isometrical ∼, 3
hypercyclic

operator, 341
vector, 327, 341

hypercyclicity criterion, 343

ideal, 4
consisting of joint topological

divisors of zero, 29, 49
left, right ∼, 4
maximal ∼, 18
maximal left, right ∼, 16
non-removable ∼, 42, 80
proper ∼, 4
removable ∼, 80
two-sided ∼, 4

identity operator, 2
index

of a Fredholm chain, 308
of a Fredholm complex, 294
of an operator, 156

invariant subset, subspace, 327
inverse

Drazin ∼, 203
generalized ∼, 130, 134
left ∼, 4, 92
right ∼, 4

invertible
left, right ∼ element, 4
left, right essentially ∼, 160, 174
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isomorphism, 3

Jacobson radical, 76
Johnson, 77
joint

regularity, 58
spectral radius, 311, 387

jump, 291

k-regular function, 291
Kakutani, 76
Kaplansky theorem, 375
Kato, 235

decomposition, 164, 187, 204
essentially ∼ operator, 189
operator, 118
spectrum, 121

kernel, 396
Kolmogorov numbers, 236
Kordula, 233
Koszul

chain ∼ complex, 244
cochain ∼ complex, 244
complex, 239

Kračkovsǩı, 233
Kronecker symbol, 397
Kuratowski, 81

Labrousse, 234
Lay, 235
Lebow, 230
Leja, 391
lemma

Auerbach ∼, 397
Dash ∼, 143

linearization, 146
Liouville theorem, 399
Livčak, 233
local

capacity, 384
functional calculus, 147
spectral radius, 140

locally quasialgebraic, 387

Mantlik, 146
Markus, 145, 229
maximal ideal, 18

space, 18, 77
maximum principle, 400
measure

Hausdorff ∼ of non-compactness,
220

spectral ∼, 95
Michael

problem, 77
selection theorem, 404

modulus
injectivity ∼, 86
minimum ∼, 86
reduced minimum ∼, 97
surjectivity ∼, 86

Montel sequence, 361, 405
Moore-Penrose inverse, 147
multiplicative functional, 18, 50
multishift

weighted ∼, 94
Mytiagin numbers, 236

Nagata-Higman theorem, 388
van Neerven, 389
Neubauer, 233
norm

equivalent ∼, 11
equivalent algebra ∼, 34
essential ∼, 172

normed
algebra, 2

nuclear operator, 155
numbers

approximation ∼, 236
Berstein ∼, 236
Gelfand ∼, 236
Kolmogorov ∼, 236
Mytiagin ∼, 236
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Oberai, 235
open mapping

theorem, 394
operator, 393

Browder ∼, 179
compact ∼, 149
completely continuous ∼, 229
diagonal ∼, 95
elementary ∼, 144
essentially Kato ∼, 189
essentially Saphar ∼, 233
finite rank ∼, 149
Fredholm ∼, 155
Hilbert-Schmidt ∼, 155
identity ∼, 2
index of an ∼, 156
inessential ∼, 229
left, right essentially invertible ∼,

160
locally quasialgebraic ∼, 387
norm, 2
normal ∼, 95
nuclear ∼, 155
of class C00, 355
of class C0·, C·0, 355
of class C11, 355
of class C1·, C·1, 355
polynomially bounded ∼, 360
power bounded ∼, 355
quasi-Fredholm ∼, 210
Riesz ∼, 231
selfadjoint ∼, 95
semi-regular ∼, 146
strictly singular ∼, 229
upper, lower semi-Browder ∼, 179
upper, lower semi-Fredholm ∼,

155
Volterra ∼, 155
weakly compact ∼, 230

orbit, 327, 389
polynomial ∼, 378
weak, 348

paraclosed subspace, 145
partition of unity, 401
Pazy, 389
Pearcy, 390
permanence

spectral, 305
permanently singular

element, 35, 79
Pisier, 390
plank theorem, 404
Poisson kernel, 367
polynomial

bound, 360
orbit, 378

polynomial orbit, 389
polynomially convex hull, set, 23
preannihilator, 395
projection, 397

non-linear ∼, 254
property, 59

property
Q, 74
(P1), 61
(P2), (P3), (P4), 55
projection ∼, 59
single value extension ∼, 139
spectral mapping ∼, 53, 54, 60,

280
superposition ∼, 281

punctured neighbourhood theorem,
171, 231

quasi-inverse, 72
quasialgebraic, 387

locally ∼, 387
quasinilpotent, 77, 388
quasisimilar, 358
quaternions, 75
Quigley, 79

radical, 17
Banach algebra, 388

radius
essential spectral ∼, 172
joint spectral ∼, 387



434 Index

local spectral ∼, 140, 327
spectral ∼, 8
spectral ∼ formula, 8

range, 396
transfinite ∼, 146

Read, 80
reflexive, 394
regularity, 51

joint ∼, 58
residual set, 142
residuum

analytic ∼, 139, 267
resolvent, 6, 83
Riesz, 76, 155, 228

operator, 231
Rolewicz, 389
Rotta, 387

Saphar
element, 134
operator, 130

Schauder, 228
Schechter, 230

spectrum, 218
Schmoeger, 146
Scott Brown technique, 359, 390
selection, 254

Michael ∼ theorem, 404
semicharacter, 82
semicontinuity

lower ∼, 403
upper ∼, 11, 403
upper ∼ of spectrum, 55, 57, 65,

76
semidistributive Banach algebra,

284
semiregularity

lower ∼, 211
upper ∼, 215

semisimple algebra, 17
sequence

exact ∼, 115
set

analytic ∼, 116, 300, 304

residual ∼, 142
shift

weighted ∼, 93
Shilov, 79

boundary, 25, 26, 31, 50, 68, 79
spectrum, 33, 68

Sinclair, 390
S�lodkowski, 81, 146, 305
space

Hardy ∼, 94
maximal ideal ∼, 18, 77

span, 397
spectral

essential ∼ radius, 172
joint ∼ radius, 311
mapping property, 53, 54, 60, 280
mapping theorem, 13, 53
measure, 95
permanence, 305
-radius-preserving, 57, 68
radius, 8

formula, 8, 314, 321
subspace, 16
system, 59, 62

spectrum, 6, 22
approximate point ∼, 29, 52, 69,

90, 172
axiomatic theory of ∼, 51, 59
Browder ∼, 185
defect ∼, 90
essential ∼, 157, 172

approximate point ∼, 235
defect ∼, 235
left, right ∼, 172, 174
surjective ∼, 172
Taylor ∼, 299

exponential ∼, 218
Goldberg ∼, 219
Harte ∼, 69
Harte essential ∼, 174
left, right ∼, 52, 69
local ∼, 137, 139, 266, 267
lower semi-Browder ∼, 181
lower semi-Fredholm ∼, 157
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point ∼, 52
Schechter ∼, 218
semi-Fredholm ∼, 214
surjective ∼, 90
T -Weyl ∼, 235
Taylor ∼, 238, 284
upper semi-Browder ∼, 185
upper semi-Fredholm ∼, 157
Weyl ∼, 218, 235

split
regular, 245
spectrum, 245

Stokes theorem, 402
Strang, 387
subadditivity, 78
subalgebra, 3
subharmonic function, 76
submultiplicativity, 78
subspace

invariant ∼, 327
paraclosed ∼, 145

sup-norm, 2
SVEP, 139, 306

Taylor, 145, 146
essential ∼ spectrum, 299
regular, 238, 284
spectrum, 238, 284

theorem
Banach open mapping ∼, 394
Banach-Steinhaus uniform

boundedness ∼, 395
Carleson corona ∼, 24
Fuglede-Putnam ∼, 95
Kaplansky ∼, 375
Michael selection ∼, 404
Pitt ∼, 155
punctured neighbourhood ∼, 171,

231
spectral mapping ∼, 13, 53
Stokes ∼, 402

theory
axiomatic ∼ of spectrum, 51, 58

topological algebra, 73

topology
w∗-∼, 393
weak ∼, 393

Tshebyshev constant, 323

uniform boundedness
theorem, 395

unit ball, 394
unit element, 1
unitization, 72

Vasilescu, 147, 308, 391
Volterra

operator, 155
von Neumann inequality, 360
Vrbová, 147

Waelbroeck, 79
Wang, 387
weak orbit, 348
weak topology, 393
w∗-topology, 393
weighted multishift, 94
weighted shift, 93
Weiss, 390
West decomposition, 231
Weyl spectrum, 218, 235
Wiener, 24
Wolff, 79

Yood, 231

Zabczyk, 389
Żelazko, 80, 81
Zenger theorem, 404
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