
INTERSTELLAR PROBE

Humanity's Journey to Interstellar Space

Traveling far beyond the Sun's sphere of influence, Interstellar Probe would be the boldest move in space exploration to date. This pragmatic near-term mission concept would enable groundbreaking science using technology that is near-launch-ready now. Flying the farthest and the fastest, it would venture into the space between us and neighboring stars, discovering uncharted territory. It would provide the first real vantage point of our life-bearing system from the outside, allowing us to better understand our own evolution. In an epic 50-plus-year journey, Interstellar Probe will explore questions about our place in the universe, enabled by multiple generations of engineers, scientists, and visionaries.

BASELINE MISSION CHARACTERISTICS

Launch

Mass

Trajectory

2036

860 KG

Passive Jupiter Gravity Assist To (-22°S, 180°E)

Peak Exit Speed

7.0 au/year

Telecommunication

X-band with 5-m fixed antenna capable of sufficient downlink (~10 Mbit/week) at 1000 au using Next Generation Very Large Array or equivalent resource

Two Next Generation Radioisotope Thermoelectric Generators for 300 W (electric) at end of mission

Mechanical

Spin-stabilized, 50-m PWS wire antennas

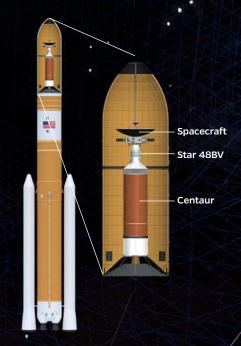
Launch Vehicle

Super Heavy-Lift Launch Vehicle with additional third and fourth stages

50-year lifetime drives reliability and longevity, requiring a multigenerational approach to staffing be built in from the beginning

Launch Opportunities

Every 13 months, from 2036 to 2042, exiting forward hemisphere of heliosphere at similar speed to baseline trajectory


Technology Horizon

Could be ready to launch by 1 January 2030 (independent of funding and policy constraints)

SPACECRAFT MASTER EQUIPMENT LIST SUMMARY

Equipment	Mass (kg) (includes contingency)
Payload (including accommodation hardware)	100.5
Telecommunications	83.4
Guidance and Control (G&C)	16.8
Power	169
Thermal Control	70.8
Avionics	12.8
Propulsion	37.2
Mechanical/Structure	150
Harness	29.3
Propellant	106
Total	776
Margin	84
Launch Mass	860

Example Stack Configuration

TOP VIE

ESTIMATED COSTS (FY25\$)

Phases A-D without launch costs

Phase E

~\$230M/decade*

\$1689M*

*without reserves

BASELINE EXAMPLE PAYLOAD

87.4 Kg | 86.7 W

INSTRUMENTS

30%

CHARGED PARTICLES

Plasma Subsystem (PLS) Pickup Ions (PUI) **Energetic Particles (EPS)** Cosmic Rays (CRS)

19%

FIELDS AND WAVES

Magnetometer (MAG) Plasma Waves (PWS)

14%

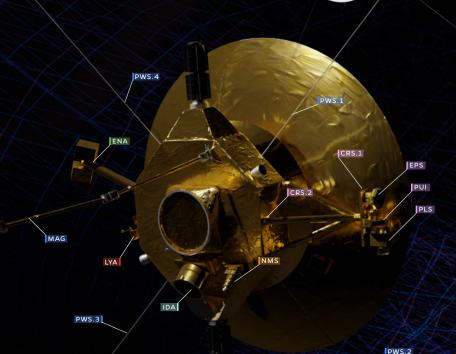
ENERGETIC NEUTRAL ATOM IMAGING

ENA Imager (ENA)

DUST

Interstellar Dust Analyzer (IDA)

NEUTRALS


Neutral Mass Spectrometer (NMS)

LYMAN-ALPHA

Lyman-Alpha Spectrograph (LYA)

PERCENTAGE OF PAYLOAD MASS

BOTTOM VIEW