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Nutritional iron defi ciency 
Michael B Zimmermann, Richard F Hurrell

Iron defi ciency is one of the leading risk factors for disability and death worldwide, aff ecting an estimated 2 billion 
people. Nutritional iron defi ciency arises when physiological requirements cannot be met by iron absorption from 
diet. Dietary iron bioavailability is low in populations consuming monotonous plant-based diets. The high prevalence 
of iron defi ciency in the developing world has substantial health and economic costs, including poor pregnancy 
outcome, impaired school performance, and decreased productivity. Recent studies have reported how the body 
regulates iron absorption and metabolism in response to changing iron status by upregulation or downregulation of 
key intestinal and hepatic proteins. Targeted iron supplementation, iron fortifi cation of foods, or both, can control 
iron defi ciency in populations. Although technical challenges limit the amount of bioavailable iron compounds that 
can be used in food fortifi cation, studies show that iron fortifi cation can be an eff ective strategy against nutritional 
iron defi ciency. Specifi c laboratory measures of iron status should be used to assess the need for fortifi cation and to 
monitor these interventions. Selective plant breeding and genetic engineering are promising new approaches to 
improve dietary iron nutritional quality.

Epidemiology 
Estimates of occurrence of iron defi ciency in industrial-
ised countries are usually derived from nationally 
representative samples with specifi c indicators of iron 
status.1 By contrast, estimates from developing countries 
are often based only on haemoglobin measurements 
from restricted regions or target populations, and should 
be interpreted with caution. Prevalence estimates of iron 
defi ciency anaemia (ie, iron defi ciency and low 
haemoglobin) based on haemoglobin alone are over-
estimations because they fail to account for other causes 
of anaemia, such as nutritional defi ciencies (eg, 
vitamin A defi ciency), infectious disorders (particularly 
malaria, HIV disease, and tuberculosis), haemo-
globinopathies, and ethnic diff erences in normal 
haemoglobin distributions.2,3 For example, in Côte 
d’Ivoire, iron defi ciency was detected with specifi c 
indicators of iron status in about 50% of anaemic women 
and children.4 Even in industrialised countries, 
haemoglobin alone, which is used to detect iron 
defi ciency anaemia, has poor sensitivity and specifi city.5 
Anaemia is regarded as a public health problem when 
the frequency of low haemoglobin values is more than 
5% in the population.6

WHO estimates that 39% of children younger than 
5 years, 48% of children between 5 and 14 years, 42% of 
all women, and 52% of pregnant women in developing 
countries are anaemic,6 with half having iron defi ciency 
anaemia.7 According to WHO, the frequency of iron 

defi ciency in developing countries is about 2∙5 times that 
of anaemia.6 Iron defi ciency is also common in women 
and young children in industrialised countries. In the 
UK, 21% of female teenagers between 11 and 18 years, 
and 18% of women between 16 and 64 years are iron 
defi cient.8 In the USA, 9–11% of non-pregnant women 
aged between 16 and 49 years are iron defi cient, and 
2–5% have iron defi ciency anaemia, with more than 
twofold higher frequency in poorer, less educated, and 
minority populations.9 In pregnant women of low-income 
areas in the USA, the frequency of iron defi ciency 
anaemia in the fi rst, second, and third trimesters is 2%, 
8%, and 27%, respectively.9 In France, iron defi ciency and 
iron defi ciency anaemia aff ect 29% and 4% of children 
younger than 2 years;10 in the USA, 2% of children 
between 1 and 2 years have iron defi ciency anaemia.1 

Physiology
Human beings are unable to excrete iron actively, so its 
concentration in the body must be regulated at the site of 
iron absorption in the proximal small intestine (fi gure). 
Diets contain both haem and non-haem (inorganic) iron; 
each form has specifi c transporters. A putative intestinal 
haem iron transporter (HCP1) has been identifi ed, which 
is upregulated by hypoxia and iron defi ciency, and might 
also transport folate.11,12 Transport of non-haem iron from 
the intestinal lumen into the enterocytes is mediated by 
the divalent metal ion transporter 1 (DMT1).13 DMT1 
transports only ferrous iron, but most dietary iron that 
enters the duodenum is in the ferric form. Therefore, 
ferric iron must be fi rst reduced to ferrous iron, possibly 
by the brush border ferric reductase, duodenal 
cytochrome b (DCYTB),14 or by other reducing agents, 
such as ascorbic acid. Once inside the enterocyte, iron 
that is not directly transferred to the circulation is stored 
as ferritin and ultimately is lost when the cell is sloughed 
at the villus tip. Effl  ux of iron across the basolateral 
membrane into the blood is mediated by the transport 
protein ferroportin 1, and the iron oxidase, hephaestin. 
Ferroportin 1 also mediates export of iron from other 
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Search strategy and selection criteria

We searched PubMed, Current Contents Connect, and ISI Web 
of Science for articles in English, French, German, and Spanish. 
We searched for “iron”, “iron defi ciency”, “anaemia”, “nutrition”, 
“haemoglobin”, “bioavailability”, “supplementation”, 
“fortifi cation”, “plant breeding”, and “genetic engineering”. We 
mainly selected publications from the past 5 years, but did not 
exclude highly regarded earlier publications.
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cells, including macrophages.15 Iron defi ciency and 
hypoxia stimulate duodenal expression of DMT1, DCYTB, 
and ferroportin, and thereby increase iron absorption.14,16

Hepcidin is a regulatory hormone secreted by the liver 
that inhibits both the absorption and release of iron from 
macrophages and other cell types.17 Hepcidin seems to 
bind to ferroportin 1 at the basolateral membrane of the 
enterocyte, causing its internalisation and degradation.18 
The internalisation and degradation processes decrease 
iron transfer into the blood, and additional iron is lost in 
sloughed enterocytes. In iron defi ciency, hepcidin release 
from the liver is decreased, thereby increasing iron 
absorption to the maximum.19,20 In the erythroid iron 
cycle, senescent red cells are broken down mainly by 
macrophages in the spleen, and the extracted iron is 
returned to the circulation where it binds to transferrin. 
Transferrin binds to specifi c transferrin receptors (TfRs) 
on erythroid precursors in the bone marrow, and the cycle 
is completed when new erythrocytes enter the circulation 
in the following 7–10 days. Iron defi ciency increases iron 

transfer through the cycle to the maximum by stimulating 
increased ferroportin expression on macrophages,21 
hepatic synthesis of transferrin, and expression of TfR1 in 
the bone marrow and other tissues.22

Within cells, iron status upregulates or downregulates 
various proteins that are implicated in iron homoeostasis 
(notably ferritins and TfR1) at the post-transcriptional 
level by binding of iron regulatory proteins to specifi c 
non-coding sequences in their mRNAs, known as 
iron-responsive elements.23–25 Scarce data from DNA 
microarrays suggest that various genes are modulated by 
iron status, including those encoding retinoblastoma 
(RB), p21, cyclin D3, cyclin E1, v-myc myelocytomatosis 
viral oncogene homolog (MYC), cyclin-dependent kinase 2 
(CDK2), cyclin A, FAS ligand (FASL), and inducible nitric 
oxide synthase (iNOS); many of these genes are not 
directly related to iron metabolism.26,27 Additionally, 
haemochromatosis (HFE), TfR2, haemochromatosis 
type 2 (HFE2), and SMAD family member 4 (SMAD4) in 
hepatocytes have been identifi ed as regulators of hepcidin 
expression, and thus of intestinal iron transport and 
homoeostasis.28

During gestation, the fetus stores about 250 mg of iron. 
These stores are drawn on during breastfeeding, because 
breastmilk supplies only about 0∙15 mg of absorbed iron 
per day, whereas requirements for absorbed iron are 
about 0∙55 mg per day.29 Low birthweight infants do not 
store an adequate amount of iron during fetal life and are 
at high risk of developing iron defi ciency while being 
breastfed. During growth in childhood, about 0∙5 mg of 
iron per day is absorbed in excess of body losses; adequate 
amounts of iron during growth typically results in a 
70-kg man accumulating about 4 g of body iron.30 About 
2∙5 g of body iron is within haemoglobin and about 1 g is 
stored as ferritin or haemosiderin, mainly in the liver. 
Men absorb and excrete about 0∙8 mg of iron per day, 
and women, during childbearing years, should absorb 
almost twice as much (1∙4 mg per day) to cover menstrual 
losses.30 The usual diet of a population strongly aff ects 
iron bioavailability31 (see below); thus, recommended 
intakes for iron depend on diet characteristics (table 1).

Causation
Nutritional iron defi ciency arises when physiological 
requirements cannot be met by iron absorption from 
diet. Dietary iron bioavailability is low in populations 
consuming monotonous plant-based diets with little 
meat.32 In meat, 30–70% of iron is haem iron, of 
which 15–35% is absorbed.33 However, in plant-based 
diets in developing countries most dietary iron is 
non-haem iron, and its absorption is often less 
than 10%.32,33 The absorption of non-haem iron is 
increased by meat and ascorbic acid, but inhibited by 
phytates, polyphenols, and calcium.33 Because iron is 
present in many foods, and its intake is directly related to 
energy intake,30 the risk of defi ciency is highest when 
iron requirements are greater than energy needs. This 
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Figure: Regulation of intestinal iron uptake
Haem iron is taken up by the haem iron transporter (HCP), undergoes endocytosis, and Fe²⁺ (ferrous iron) is 
liberated within the endosome or lysosome. Non-haem iron includes Fe²⁺ and Fe³⁺ (ferric iron) salts. Fe³⁺ is reduced 
to Fe²⁺ by ascorbic acid in the lumen or by membrane ferrireductases that include duodenal cytochrome B (DCYTB). 
At the apical membrane, the acid microclimate provides an H⁺ electrochemical gradient that drives Fe²⁺ transport 
into the enterocyte via the divalent metal-ion transporter (DMT1). At the basolateral membrane, iron transport to 
transferrin in the circulation is mediated by ferroportin 1, in association with hephaestin. Hepcidin, produced by the 
liver, binds to ferroportin 1, causing its internalisation and degradation and decreasing iron transfer into the blood. 

Children
 (1–3 years)

Children 
(4–6 years)

Women 
(19–50 years)

Women during 
pregnancy 
(second trimester)

Women during 
breastfeeding 
(0–3 months 
lactation)

Men 
(19–50 years)

15% 3·9 4·2 19·6 >50·0 10·0 9·1

10% 5·8 6·3 29·4 >50·0 15·0 13·7

5% 11·6 12·6 58·8 >50·0 30·0 27·4

Numbers are mg per day. Recommended daily intake for iron depends on the bioavailability of the diet: diet rich in 
vitamin C and animal protein=15%; diet rich in cereals, low in animal protein, but rich in vitamin C=10%; diet poor in 
vitamin C and animal protein=5%.31

Table 1: Selected recommended daily intakes for iron,31 by estimated dietary iron bioavailability
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situation happens in infants and young children, 
adolescents, and in menstruating and pregnant women. 
During infancy, rapid growth exhausts iron stores 
accumulated during gestation and often results in 
defi ciency, if iron-fortifi ed formula or weaning foods are 
not supplied. Excessive early consumption of cows’ milk 
can also contribute to early-childhood iron defi ciency.34 In 
a study of infants aged 6 months, frequency of iron 
defi ciency anaemia was lowest in infants fed iron-fortifi ed 
formula (about 1%) but occurred in 15% of breastfed 
infants, and 20% of infants fed cows’ milk or non-fortifi ed 
formula.35 In the USA, the introduction of iron-fortifi ed 
weaning foods in the 1970s was associated with a 
reduction in the frequency of iron defi ciency anaemia in 
infants and preschool children.36 In many developing 
countries, plant-based weaning foods are rarely fortifi ed 
with iron, and the frequency of anaemia exceeds 50% in 
children younger than 4 years.6 In schoolage children, 
iron status typically improves as growth slows and diets 
become more varied. 

The frequency of iron defi ciency begins to rise again, 
mainly in female individuals, during adolescence, when 
menstrual iron losses are superimposed with needs for 
rapid growth. Because a 1 mL loss of blood translates into 
a 0∙5 mg loss of iron, heavy menstrual blood loss (>80 mL 
per month in about 10% of women) sharply increases the 
risk for iron defi ciency.37 Other risk factors for iron 
defi ciency in young women are high parity, use of an 
intrauterine device, and vegetarian diets.38 During 
pregnancy, iron requirements increase three-fold because 
of expansion of maternal red-cell mass and growth of the 
fetal–placental unit.36 The net iron requirement during 
pregnancy is about 1 g (equal to that contained in about 
4 units of blood), most of which is needed in the last 
2 trimesters.39 During lactation, because only about 
0∙25 mg of iron per day is excreted into breastmilk and 
most women are amenorrhoeic, iron requirement is 
low—only half of that of non-pregnant, non-lactating 
women.30 

Increased blood loss from gastrointestinal parasites 
aggravates dietary defi ciencies in many developing 
countries. Infections with Trichuris trichiura (whipworm) 
and Necator americanus (hookworm) cause intestinal 
blood loss and are important causes of iron defi ciency 
anaemia.40–43 Revised estimates indicate that hookworms 
affl  ict more than 700 million people in tropical and 
subtropical regions.44 In endemic areas, hookworm 
infection is estimated to account for 35% of iron 
defi ciency anaemia and 73% of its severe form,45 and 
deworming decreases the occurrence of anaemia.44,46,47 In 
a trial in Nepal, women who were given albendazole in 
the second trimester of pregnancy had a lower rate of 
severe anaemia during the third trimester, gave birth to 
infants of greater weight, and mortality of infants at 
6 months decreased.48 Iron defi ciency anaemia can also 
be caused by impaired iron absorption. Gastric acid is 
needed to maintain ferric iron forms in solution, and 

achlorhydria might be a substantial cause of iron 
defi ciency, mainly in elderly people, in whom atrophic 
gastritis is common.49 Other common causes of lowered 
iron absorption and iron defi ciency are mucosal atrophy 
in coeliac disease50,51 and, possibly, Helicobacter pylori 
infection,52 although a study of iron absorption showed 
no eff ect of H pylori.53

Adverse eff ects
The high frequency of iron defi ciency anaemia in the 
developing world has substantial health and economic 
costs. In an analysis of ten developing countries, the 
median value of physical productivity losses per year due 
to iron defi ciency was about US$0∙32 per head, or 
0∙57% of the gross domestic product.54 In the WHO 
African subregion, it is estimated that if iron fortifi cation 
reached 50% of the population, it would avert 
570 000 disability adjusted life years (DALYs) every year.55 
During the fi rst two trimesters of pregnancy, iron 
defi ciency anaemia increases the risk for preterm labour, 
low birthweight, infant mortality, and predicts iron 
defi ciency in infants after 4 months of age.56,57 Estimates 
are that anaemia accounts for 3∙7% and 12∙8% of maternal 
deaths during pregnancy and childbirth in Africa and 
Asia, respectively.58 Data for the adverse eff ects of iron 
defi ciency on cognitive and motor development in children 
are equivocal because environmental factors limit their 
interpretation.59–61 Several studies reported adverse eff ects 
of iron defi ciency anaemia on infant development that 
might be only partly reversible.59,60 Other studies suggest 
that no convincing evidence exists that iron defi ciency 
anaemia aff ects mental or motor development in children 
younger than 2 years, but that iron defi ciency adversely 
aff ects cognition in school children.61 Anaemic 
school-children have decreased motor activity, social 
inattention, and decreased school performance.60 Whether 
adverse eff ects of iron defi ciency on neuromotor devel-
opment are due to anaemia or absence of iron in the 
developing brain is unclear.62 Iron defi ciency anaemia 
increases susceptibility to infections, mainly of the upper 
respiratory tract, which happen more often and have a 
longer duration in anaemic than in healthy children.63 A 
recent study showed no positive eff ect of iron supple-
mentation on physical growth during childhood.64 The 
response to iodine prophylaxis is reduced in goitrous 
children with defi ciencies of both iodine and iron,65,66 
probably because of impairment of the haem-dependent 
enzyme, thyroid peroxidase.67 Iron supplementation can 
increase low serum retinol concentrations in iron-defi cient 
children.68,69 Iron defi ciency might increase the risk for 
chronic lead poisoning in children exposed to 
environmental lead.70 In adults, physical activity is 
reduced,71 and manual labourers in developing countries 
are more productive if they are given iron and treated for 
hookworm and other infections.72 Iron defi ciency, even in 
the absence of anaemia, might cause fatigue and reduce 
work performance.73,74
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Laboratory diagnosis
Table 2 shows useful indicators for diagnosis of iron 
defi ciency anaemia in population studies. The major 
diagnostic challenge is to diff erentiate between iron 
defi ciency anaemia in otherwise healthy individuals and 
anaemia of chronic disease. Infl ammatory disorders 
increase circulating hepcidin concentrations,90 and 
hepcidin blocks iron release from enterocytes and the 
reticuloendothelial system,17 resulting in iron-defi cient 
erythropoiesis. If chronic, infl ammation can produce 
anaemia of chronic disease. The distinction between 
anaemia of chronic disease and iron defi ciency anaemia 
is diffi  cult because increased serum ferritin 
concentration in anaemia does not exclude iron 
defi ciency anaemia in the presence of infl ammation. A 
widely used marker of infl ammation is the C-reactive 
protein (CRP), but the extent of increase of CRP 
concentration that invalidates the use of serum ferritin 
to diagnose iron defi ciency is unclear; CRP values higher 

than 10–30 mg/L have been used. Moreover, during the 
acute-phase response, the increase of CRP concentration 
is typically of shorter duration than the increase of 
serum ferritin. Alternative markers such as α1-acid 
glycoprotein (AGP) might be useful because AGP tends 
to increase later during infection than CRP, and remains 
high for several weeks.90 A distinct advantage of the 
soluble transferrin receptor (sTfR) is that it might 
diff erentiate iron defi ciency anaemia from anaemia of 
chronic disease.79,91 Thus, in surveys in developing 
countries with a high frequency of infection, in addition 
to serum ferritin and haemoglobin measurements,80 
laboratory assessment should include sTfR, zinc 
protoporphyrin (ZPP), and CRP, AGP, or both,4 although 
the sensitivity and specifi city of sTFR and ZPP are low 
in these settings.78 In an anaemic individual with high 
CRP, AGP, or both, high sTfR and ZPP concentrations 
are likely to mean concurrent iron defi ciency, despite 
high serum ferritin.

Selected cutoff  values to defi ne iron 
defi ciency

Comments

Haemoglobin (g/L) 6 months–5 years <110
6 years–11 years <115
Non-pregnant women <120
Pregnant women <110 

When used alone, it has low specifi city and sensitivity

Mean corpuscular 
volume (MCV) 
(cu µm)

Children older than 11 years and 
adults <82

A reliable, but late indicator of iron defi ciency 
Low values can also be due to thalassaemia

Reticulocyte 
haemoglobin content 
(CHr) (pg)

In infants and young children <27·5
In adults ≤28·0 

A sensitive indicator that falls within days of onset of iron-defi cient erythropoiesis75,76 
False normal values can occur when MCV is increased and in thalassaemia76 
Wider use is limited because it can only be measured on a few models of analyser

Erythrocyte zinc 
protoporphyrin (ZPP) 
(μmol/mol haem)

5 years or younger >70 
Children older than 5 years >80 
Children older than 5 years on washed 
red cells >40

It can be measured directly on a drop of blood with a portable haematofl uorometer77 
A useful screening test in fi eld surveys, particularly in children,78 in whom uncomplicated iron 
defi ciency is the primary cause of anaemia
Red cells should be washed before measurement78 because circulating factors, including 
serum bilirubin, can spuriously increase values
Lead poisoning can increase values, particularly in urban and industrial settings70 

Transferrin saturation <16% It is inexpensive, but its use is limited by diurnal variation in serum iron and by many clinical 
disorders that aff ect transferrin concentrations27,79 

Serum ferritin (SF) 
(μg/L)

5 years or younger <12 
Children older than 5 years <15
In all age groups in the presence of 
infection <30

It is probably the most useful laboratory measure of iron status;80 a low value of SF is 
diagnostic of iron defi ciency anaemia in a patient with anaemia
In healthy individuals, SF is directly proportional to iron stores: 1 μg/L SF corresponds to 
8–10 mg body iron or 120 μg storage iron per kg bodyweight81 
As an acute-phase protein, SF increases independent of iron status by acute or chronic 
infl ammation; it is also unreliable in patients with malignancy, hyperthyroidism, liver 
disease, or heavy alcohol intake27 

Serum transferrin 
receptor (sTfR)

Cutoff  varies with assay, and with 
patient age and ethnic origin

Main determinants are the erythroid mass in the bone marrow and iron status; thus, sTfR is 
increased by enhanced erythropoiesis and iron defi ciency79,82 
sTfR is not substantially aff ected by the acute-phase response,79 but it might be aff ected by 
malaria,83,84 age, and ethnicity78 
Its application limited by high cost of commercial assays and lack of an international 
standard

sTfR-to-SF ratio This ratio is a quantitative estimate of total body iron; the logarithm of this ratio is directly 
proportional to the amount of stored iron in iron-replete patients and the tissue iron defi cit 
in iron defi ciency85 
In elderly people, this ratio might be more sensitive than other laboratory tests for iron 
defi ciency86

This ratio cannot be used in individuals with infl ammation because SF might be high 
independent of iron stores
This ratio is assay specifi c85 
Although it is only validated for adults,85 this ratio has been used in children4,32,87,88 

Table 2: Indicators of iron defi ciency anaemia 
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Strategies 
Three main strategies for correcting iron defi ciency in 
populations exist, alone or in combination: education 
combined with dietary modifi cation or diversifi cation, or 
both, to improve iron intake and bioavailability; iron 
supplementation (provision of iron, usually in higher 
doses, without food); and iron fortifi cation of foods. A 
new approach is biofortifi cation via plant breeding or 
genetic engineering. Although dietary modifi cation and 
diversifi cation is the most sustainable approach, change 
of dietary practices and preferences is diffi  cult, and foods 
that provide highly bioavailable iron (such as meat) are 
expensive. 

Supplementation 
Iron supplementation can be targeted to high-risk groups 
(eg, pregnant women), and can be cost eff ective,55 but the 
logistics of distribution and absence of compliance are 
major limitations. For oral supplementation, ferrous iron 
salts (ferrous sulphate and ferrous gluconate) are 
preferred because of their low cost and high bioavailability. 
Standard therapy for iron defi ciency anaemia in adults is 
a 300-mg tablet of ferrous sulphate (60 mg of iron) three 
or four times per day. Although absorption is enhanced 
when given on an empty stomach, nausea and epigastric 
pain might develop. If these side-eff ects arise, lower 
doses between meals should be attempted, or iron should 
be provided with meals, although food reduces absorption 
of medicinal iron by about two-thirds.79 Alternatively, oral 
iron supplements can be supplied every few days; this 
regimen might increase fractional iron absorption.92 In 
studies supported by WHO in southeast Asia, iron and 
folic acid supplementation every week to women of 
childbearing age improved iron nutrition and reduced 
iron defi ciency anaemia.92 In industrialised countries, 
universal iron supplementation of pregnant women is 
widely advocated even though so far little evidence exists 
that it improves maternal or fetal outcomes. However, in 
two controlled trials of prenatal iron supplementation in 
iron-replete, non-anaemic low-income pregnant women 
in the USA, iron supplementation increased birthweight, 
reduced incidence of preterm delivery, or both, but did 
not aff ect prevalence of anaemia during the third 
trimester.93,94 Iron supplementation during pregnancy is 
advisable in developing countries, where women often 
enter pregnancy with low iron stores.1 

Untargeted iron supplementation in children in tropi-
cal countries, mainly in areas of high transmission 
of malaria, is associated with increased risk of 
serious infections.95,96 In a region of endemic malaria in 
east Africa, untargeted supplementation with iron 
(12∙5 mg per day) and folic acid in preschool children 
increased risk of severe illness and death.97 Although iron 
supplements were thought to be the cause, provision of 
folic acid might have reduced the eff ectiveness of 
anti-folate antimalarial drugs,98 and thereby contributed 
to morbidity.99 A similar study in Nepal, which is a 

non-malarial area, showed no eff ects of iron and folic acid 
on infection-related morbidity.100 A recent WHO report 
stated that iron and folic acid supplementation should be 
targeted to children who are anaemic and at risk of iron 
defi ciency, and concurrent protection from malaria and 
other infectious diseases should be provided.101 

Fortifi cation 
Iron fortifi cation is probably the most practical, 
sustainable, and cost-eff ective long-term solution to 
control iron defi ciency at the national level.55,102,103 Overall 
cost-eff ectiveness for iron fortifi cation is estimated to be 
$66–70 per DALY averted.103 Fortifi cation of foods with 
iron is more diffi  cult than it is with other nutrients, such 
as iodine in salt and vitamin A in cooking oil. The most 
bioavailable iron compounds are soluble in water or 
diluted acid, but often react with other food components 
to cause off -fl avours, and colour changes, fat oxidation, or 
both.33 Thus, less soluble forms of iron, although less well 
absorbed, are often chosen for fortifi cation to avoid 
unwanted sensory changes. Fortifi cation with low iron 
doses is more similar to the physiological environment 
than is supplementation and might be the safest 
intervention.101,102 Iron fortifi cation of milk or cereals does 
not increase infection-related morbidity in children 
younger than 18 months.95 In an analysis of four studies 
of infants receiving iron-fortifi ed foods, the regimen did 
not cause visible adverse eff ects and signifi cantly protected 
against the development of respiratory tract infections 
(incidence rate ratio 0∙92, 95% CI 0∙86–0∙98; p=0∙02).96 

Industrialised countries
Although little direct evidence exists, the reduction in 
occurrence of iron defi ciency in young children in 
industrialised countries has been attributed to iron 
fortifi cation of infant formulas and weaning foods. 
Iron-fortifi ed foods distributed through the Special 
Supplemental Nutrition Program for Women, Infants, 
and Children (WIC) have probably contributed to the fall 
of iron defi ciency in underprivileged preschool children 
in the USA.104 At present, the low frequency of iron 
defi ciency anaemia in adolescent and young women in 
the USA might be at least partly due to consumption of 
iron-fortifi ed wheat fl our, although other factors, 
including open-market fortifi cation of food products, and 
use of vitamin and mineral supplements, have also had a 
role. More-specifi c evidence is provided by retrospective 
studies from Sweden that reported decrease of iron 
intake105 and increase of iron defi ciency in young women106 
since iron fortifi cation of wheat fl our was discontinued 
in 1994. By contrast, fi ndings from Denmark, where iron 
fortifi cation of wheat fl our was discontinued in 1987, 
suggest no change in the frequency of iron defi ciency in 
adults older than 40 years,107,108 but the data might have 
been confounded by the eff ects of increasing bodyweight, 
alcohol consumption, or both, contributing to increased 
values or serum ferritin.
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Developing countries 
Universal iron fortifi cation is generally recommended 
for countries where the risk of developing iron defi ciency 
is high for all groups other than adult men and 
postmenopausal women.102 Up to now, no clear indication 
of effi  cacy of iron fortifi cation in developing countries 
existed, because of several factors (panel 1). However, 
recent studies have shown convincingly that iron 
fortifi cation can be eff ective.66,88,109–112 The iron compound 
and type of fortifi cation should be chosen on the basis of 
the fortifi cation vehicle, iron requirements of the target 
population, and iron bioavailability of the local diet 
(panel 2). Effi  cacy should be monitored with measure-
ments of serum ferritin and, when possible, serum 
transferrin receptor, in addition to haemo globin.66,80,88,109–113 
Iron fortifi cation eff orts have been accelerated by the 
Global Alliance for Improved Nutrition (GAIN), an 
alliance of United Nation agencies, national govern-
ments, development agencies, and the private sector, 
funded mainly by the Bill & Melinda Gates Foundation. 
GAIN has awarded $38 million in grants to food 
fortifi cation programmes in 14 countries, including iron 
fortifi cation of soy sauce in China, fi sh sauce in Vietnam, 
and wheat and maize fl our in South Africa. 

The foods most often used for mass fortifi cation are the 
staple cereal fl ours. Iron is only poorly absorbed from 
high-extraction fl ours because of the presence of phytate 
and other inhibitory factors.114,115 Dried ferrous sulphate 
can be used in wheat fl our that is consumed shortly after 
it is milled, but in most developing countries fl our is 
stored for longer periods. Thus, elemental iron powders, 
which are less reactive, are widely used, despite their lower 
bioavailability.109,115,116 Findings from an effi  cacy trial in 
Thailand suggest that two forms of elemental iron, 
electrolytic iron and hydrogen-reduced iron, might be 
useful for fortifi cation, but their bioavailability is 
only 50–79% that of ferrous sulphate.109 Two other forms 
of reduced iron, carbon-monoxide-reduced and atomised 

iron, are poorly absorbed and unlikely to be useful for food 
fortifi cation. A trial in Sri Lanka failed to show a reduction 
in anaemia occurrence after 2 years of fortifi cation of 
low-extraction wheat fl our with either electrolytic or 
reduced iron, but fortifi cation was probably too low.117 
Wheat fl our fortifi cation with ferrous sulphate in Chile at 
30 mg/kg has probably contributed to a strong decrease in 
iron defi ciency.118 Fortifi cation of maize fl our in South 
Africa with ferrous fumarate has shown eff ectiveness in 
lowering anaemia, and improving iron status and motor 
develop ment of infants in poor settings.119 Clear guide -
lines on wheat fl our fortifi cation have recently been 
published.120 

Sodium iron ethylenediaminetetraacetic acid 
(NaFeEDTA) has shown eff ectiveness as a fortifi cant in 
sugar in Guatemala,121 curry powder in South Africa,122 
soy sauce in China,123 fi sh sauce in Vietnam,110 and maize 
fl our in Kenya.124 NaFeEDTA is absorbed 2–3 times more 
than ferrous sulphate from diets high in phytic acid,125 
but is approved as a food additive only at 0∙2 mg iron a 
day as NaFeEDTA per kg bodyweight, which limits its 
usefulness as a fortifi cant for infants and children.126 
NaFeEDTA does not promote fat oxidation in stored 
cereals and is the only soluble iron compound that does 
not precipitate peptides in fi sh and soy sauces. Use of 
micronised ground ferric pyrophosphate, a white-coloured 
iron compound with good bioavailability, has allowed 
successful fortifi cation of colour-sensitive food vehicles, 
such as low-grade salt in Africa66,113 and rice in India.88 A 
micronised, dispersible ferric pyrophosphate127 and 
ferrous bisglycinate, an aminoacid chelate,111 are iron 
fortifi cants particularly useful for liquid products. 

Infants and young children in developing countries are 
at high risk of iron defi ciency and might not be reached by 
universal fortifi cation programmes. Chile has shown 
convincing evidence of the benefi t of targeted fortifi cation 

Panel 1: Failure to determine the eff ectiveness of iron 
fortifi cation programmes in developing countries3,33 

Failure of eff ectiveness
• Use of iron compounds with low bioavailability or failure 

to enhance absorption from inhibitory diets
• Inadequate iron fortifi cation
• Consumption of fortifi ed food too low to deliver 

adequate iron
• High frequency of parasitic infections that cause blood 

loss (eg, hookworm)
• High frequency of infection, infl ammation, or both, that 

impairs iron metabolism and erythropoiesis (eg, malaria)

Failure to detect eff ectiveness
• Failure to defi ne iron status with specifi c indicators clearly
• Failure to recognise other causes of anaemia
• Poor programme control and enforcement

Panel 2: Iron compound that can be used for iron 
fortifi cation of food in order of preference102

Most foods (eg, cereal fl ours) 
• Ferrous sulphate
• Ferrous fumarate
• Encapsulated ferrous sulphate or fumarate
• Electrolytic iron (at twice the amount vs ferrous sulphate)
• Ferric pyrophosphate (at twice the amount vs 

ferrous sulphate) 
• NaFeEDTA

For high phytate cereal fl ours and high peptide sauces 
(eg, fi sh and soy sauce)
• NaFeEDTA

For liquid milk products
• Ferrous biglycinate
• Micronised dispersible ferric pyrophosphate
• Ferric ammonium citrate
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of powdered milk with ferrous sulphate and ascorbic acid, 
with frequency of anaemia decreasing from 27% to 9%.128 
By contrast, distribution of a milk-based iron-fortifi ed 
weaning food in Mexico for 1 year did not improve iron 
status, possibly because of the poor bioavailability of the 
reduced iron used as a fortifi cant.129 Complementary food 
supplements that are added to the infant’s food immediately 
before consumption have been developed. Three types of 
supplements have been tested: powders (sprinkles), 
crushable tablets, and fat-based spreads.130–132 Iron status 
was improved in Ghanaian infants with home fortifi cation 
with powder containing encapsulated ferrous fumarate.132 

Biofortifi cation
The variation in the iron content of cultivars of wheat, 
bean, cassava, maize, rice, and yam133–137 suggests that 
selective breeding might increase iron content of staple 
foods. However, although diff erences in iron content 
exist in wheat (25–56 mg/kg) and rice (7–23 mg/kg), 
most of the iron is removed during the milling process. 
Thus, to increase iron concentration in milled wheat up 
to 40 mg/kg, which is the fortifi cation level commonly 
used in wheat fl our, might be diffi  cult.120 This problem 
was evident when the eff ectiveness of a rice cultivar high 
in iron was tested in a feeding trial in Filipino women 
consuming either the high-iron rice (3∙21 mg/kg) or a 
local variety (0∙57 mg/kg) for 9 months.135 Possibly 
because the high-iron rice added only an extra 1∙5 mg of 
iron a day to the diet, no clear benefi t of iron status was 
seen. Iron absorption from other cereals and legumes 
(many of which have high native iron content) is low 
because of their high contents of phytate and 
polyphenols.138 Donangelo and colleagues139 compared 
iron bioavailability from two varieties of red beans: an 
iron-rich genotype (containing 65% extra iron) and a 
low-density genotype. Only a small amount of iron was 
absorbed from both cultivars, probably because of their 
high phytate and polyphenol content. Decrease of the 
content of these inhibitors in high-iron cultivars might 
be needed to have a positive eff ect on human nutrition. 
Genotypes of maize, barley, and rice have been identifi ed 
that are low-phytic-acid mutants, with phytic acid 
phosphorus content decreased by up to two-thirds 
compared with wild type.140 Although such reductions 
might improve iron absorption from diets containing 
small amounts of meat and ascorbic acid,141 phytic acid 
content might be needed to be lowered by more than 
90% to increase iron absorption from the monotonous 
cereal-based diets seen in many developing countries.142

Because of these limitations, genetic engineering 
might prove to be the most eff ective way to have a useful 
amount of absorbable iron in plant foods.143,144 Iron 
content in rice can be increased two-to-three fold by 
introduction of the ferritin gene from soy bean145 or 
phaseolus vulgaris.146 Iron uptake from soils might be 
increased by introduction of a ferric reductase gene into 
plant root systems.147 To lower the phytic acid content of 

rice, Lucca and colleagues146 introduced a phytase from 
Aspergillus fumigatus that was developed to withstand 
food processing. Although phytase activity increased 
seven-fold, it proved to be unstable and was destroyed 
when rice was cooked. Overall, these studies suggest that 
iron content can be increased in staple foods by plant 
breeding, genetic engineering, or both.  

Conclusions
Nutritional iron defi ciency is still common in young 
women and children in developing countries where 
monotonous, plant-based diets provide low amounts of 
bioavailable iron. The high prevalence of iron defi ciency 
in the developing world has substantial health and 
economic costs. However, more data are needed on the 
functional consequences of iron defi ciency; for example, 
the eff ect of iron status on immune function and 
cognition in infants and children needs to be clarifi ed. 
Continuing rapid ad vances in understanding the 
molecular mechanisms of iron absorption and 
metabolism might enable development of new strategies 
to combat iron defi ciency. Although technical challenges 
limit the amount of bioavailable iron that can be added 
to many foods, evidence from controlled trials has 
shown that iron fortifi cation can eff ectively control iron 
defi ciency. Whether iron fortifi cation can be successful 
in tropical areas without concurrent control of malaria 
and hookworm infections remains to be seen. Specifi c 
laboratory measures of iron status—eg, serum ferritin, 
sTfR, and zinc protoporphyrin—should be used to 
assess the need for fortifi cation and for monitoring. 
Because of fi ndings showing the risks of untargeted 
iron supplementation in young children, development 
of new strategies are urgently needed to provide 
additional dietary iron to susceptible infants and young 
children in developing countries who might not be 
reached by universal fortifi cation programmes. New 
methods to enhance native iron content of plant-based 
staple foods are also needed. Selective plant breeding 
and genetic engineering are promising new approaches 
to improve dietary iron bioavailability; however, a major 
challenge is to show that they can increase iron content 
to nutritionally useful levels and that the additional iron 
is bioavailable.
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