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Abstract. Pick n random points x1, . . . , xn uniformly and independently in
a disk and consider their convex hull C. Let P

n,m
D be the probability that

exactly m points among the xi ’s are on the boundary of the convex hull of
{x1, . . . , xn} (so that P

n,n
D is the probability that the xi ’s are in a convex

position).
In the paper, we provide a formula for P

n,m
D .

1 Introduction

All the random variables are assumed to be defined on a common probability space
(�,A,P). The expectation is denoted by E. The plane will be sometimes viewed
as R2 or as C and we will pass from the real notation (e.g., (x, y)) to the complex
one (ρeiθ ) without any warning. For a set A in R

2, |A| denotes the Lebesgue
measure of A. We denote by ∂B the boundary of a set B . For any n ≥ 1, any z,
notation z[n] stands for the n tuple (z1, . . . , zn) and z{n} for the set {z1, . . . , zn}.
For H a compact convex domain in R

2 with non empty interior and for any n ≥ 0,
P

n
H denotes the law of n i.i.d. points z[n] taken under the uniform distribution

over H . An n-tuple of points x[n] of the plane is said to be in convex position if
the xi ’s all belong to ∂ConvexHull(x{n}). Further we define

CPn,m = {
x[n] : #

{
i : xi ∈ ∂ConvexHull

(
x{n})} = m

}
the set of n tuples x[n] for which exactly m are on the boundary of
ConvexHull(x{n}). Hence, CPn := CPn,n is the set of n-tuples of points in con-
vex position. Finally, we let

P n
H = P

n
H

(
z[n] ∈ CPn

)
, (1)

P
n,m
H = P

n
H

(
z[n] ∈ CPn,m

)
. (2)

The aim of the paper is to establish a formula for P n
D , the probability that n i.i.d.

random points taken under the uniform distribution in a disk D are in convex posi-
tion; we will also compute P

n,m
D the probability that exactly m points among these
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Figure 1 Representation of typical SEG(θ,R) for 0 < θ < π and π < θ < 2π .

n points are on ∂ConvexHull(z{n}) in other words the distribution of the number
of points on the convex hull boundary. To compute P n

D we need and obtain a result
more general than the disk case only, a result for what we will call bi-pointed seg-
ments (BSEG). This will play somehow the role of the bi-pointed triangle (see (9))
as studied by Bárány et al. (2000), central also in the approach of Buchta (2009/10)
of the computation of P

n,m
T and P

n,m
S where T stands for triangle, and S for square

(see (10)).
For θ ∈ [0,2π ], R > 0, the arc of circle AC(θ,R) is defined by

AC(θ,R) = {
Reiν, ν ∈ [−θ/2, θ/2]}.

We denote by SEG(θ,R) the segment corresponding to the convex hull of
AC(θ,R) (see Figure 1), which coincides with

SEG(θ,R) = {
λReiν1 + (1 − λ)Reiν2, λ ∈ [0,1], ν1, ν2 ∈ [−θ/2, θ/2]}.

Now consider w1(θ,R) = Re−iθ/2 and w2(θ,R) = Reiθ/2 the two extremities of
the special border [w1(θ,R),w2(θ,R)] of SEG(θ,R). Let z1, . . . , zn be i.i.d. and
uniform in SEG(θ,R). Set

Z[n, θ,R] = [
w1(θ,R),w2(θ,R), z1, . . . , zn

]
,

and define the crucial bi-pointed segment case (BSEG) function

Bn,m(θ) := P
(
Z[n, θ,R] ∈ CPn+2,m+2

)
, θ ∈ (0,2π),1 ≤ m ≤ n. (3)

The value of R has no importance (since there exists a dilatation sending
SEG(θ,R) to SEG(θ,R′), and dilatations conserve convex bodies and uniform
distribution) but it will be useful to have the two parameters (θ,R) for subsequent
computations. Again, we write Bn instead of Bn,n and below Ln instead of Ln,n.
Clearly, for any θ ∈ (0,2π), B0(θ) = B1(θ) = 1. Now for any n ≥ 0, θ ∈ (0,2π)

define

Ln,m(θ) = Bn,m(θ)(θ − sin(θ))n sin(θ/2)

n! . (4)

Hence,

L0(θ) = sin(θ/2), L1(θ) = sin(θ/2)
(
θ − sin(θ)

)
. (5)
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Notice that 0 as well as 2π , which corresponds respectively to the flat case and the
disk case, are excluded from definitions (3) and (4). The main contribution of this
paper is the following theorem which allows us to compute P

n,m
D .

Theorem 1.

(i) For any n ≥ 1,

P n
D = lim

t→2π− Bn−1(t).

(i′) For any n ≥ 2,

P n
D = (n − 2)!

2n−2πn−1

∫ 2π

0

n−2∑
k=0

Lk(φ)Ln−2−k(2π − φ)dφ.

(ii) For any θ ∈ (0,2π) and any n ≥ 1,

Ln(θ)

2
=

∫ θ

0

sin(θ/2)2n+1

sin(φ/2)2n+1

∫ φ

0

n−1∑
k=0

Lk(η)Ln−1−k(φ − η)dη dφ. (6)

Analogous results can be obtained for P
n,m
D :

(iii) For any θ ∈ (0,2π) any k, and any l ≥ k + 1, Lk,l(θ) = 0. For any θ ∈
(0,2π), any n ≥ 1 and any 1 ≤ m ≤ n

Ln,m(θ)

2
=

∫ θ

0

∫ φ

0

sin(θ/2)2n+1

sin(φ/2)2n+1

× ∑
n1+n2+n3=n−1
m1+m2=m−1

(sin(η) + sin(φ − η) − sin(φ))n3

n3!

× Ln1,m1(η)Ln2,m2(φ − η)dη dφ.

An alternative form can be given using

sin(η) + sin(φ − η) − sin(φ) = 4 sin
(

φ − η

2

)
sin(φ/2) sin(η/2).

(iii′) For any n ≥ 2 and any 1 ≤ m ≤ n

P
n,m
D = (n − 2)!

2n−2πn−1

∫ 2π

0

∑
n1+n2=n−1

m1+m2=m−1

Ln1,m1(φ)Ln2,m2(2π − φ)dφ.

(iv) For any n ≥ 1 and any 1 ≤ m ≤ n,

P
n,m
D = lim

t→2π− Bn−1,m−1(t).



Random points in a disk 323

From (ii), one can compute successively the Lj(θ)’s, and by (4), this allows one
to compute the Bj(θ)’s. By (i) it suffices then to take the limit when θ → 2π−.

Despite great effort we were not able to find a simpler formula for Bn than
that presented in the theorem. Nevertheless, explicit computation can be done but
closed formula for the first Lj given below shows a rapid growth in complexity
(L10 would need one page to be written down). The effective computation of the
first Ln is complex and very few can be computed by hand. In particular, the sin-
gularity apparent in (6) is difficult to handle since the terms in the sum need to be
combined to compensate the singularity.

In Section 3, we present an algorithm allowing one to compute the Lj ’s. With
this algorithm we have computed the first 32 values of Ln, before running out of
computer memory, which allows the computation of (P n

D,1 ≤ n ≤ 33). They can
be found at Marckert (2015). This is just a matter of power of computer/computer
algebra system, or code optimization, to go further. L0 and L1 have been given in
(5); writing for short S and C instead of sin(θ/2) and cos(θ/2) respectively, one
founds

L2(θ) = −2

3
S5 − 2S3 + 1

2
Sθ2,

L3(θ) = 2CS6

27
+ 7S4C

27
+ 35CS2

9
+ S3θ

2
+ Sθ3

6
− 35Sθ

18
,

L4(θ) = −10CS2θ

9
+ S9

270
+ S7

81
+ S5

216
+ Sθ4

24
+ 155S3

24
− 305Sθ2

288
,

L5(θ) = − CS10

10,125
− 17S8C

40,500
− 73CS6

81,000
+ 4427S4C

64,800
+ CS2θ2

16
− 473,473CS2

43,200

+ S5θ

108
+ Sθ5

120
− 305S3θ

144
− 61Sθ3

144
+ 473,473Sθ

86,400
.

We can also compute Lm,n(θ) for small values of m,n (they are available at
Marckert (2015), for all n ≤ 12). For any n ≥ 2,

∑n
k=1 Bn,k(θ) = 1. Since B2,2 =

B2 is known, so do B2,1. The next ones are

L3,1(θ) = 2

3
CS6 − 5S4C − 2S5θ + 5

2
S3θ,

L3,2(θ) = i

54

(
32S6 + 54iS2θ + 168S4 − 54S2θ2 − 105iθ − 302S2

+ 27θ2 + 105
)
S + S(16S4 + 92S2 − 27θ2 − 105)

108iS2 + 108SC − 54i
,

L4,1(θ) = 4

3
CS6θ − 7

3
S4θC + 4S9

15
− 38S7

9
+ 14

3
S5.

The next ones are too large to be written here. Using these formulae, one finds the
following explicit values for P n

D , given in Table 1 and below.
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Table 1 First values of Pn
D

n 4 5 6 7 8

1 − Pn
D

35
12π2

305
48π2

305
24π2 − 473,473

11,520π4
2135
96π2 − 2,900,611

23,040π4
427

12π2 − 185,227
480π4 + 62,664,108,221

48,384,000π6

1 − P 9
D = 427

8π2 − 1,826,293

1920π4 + 221,424,913,259

43,008,000π6 ,

1 − P 10
D = 305

4π2 − 7,956,347

3840π4 + 275,822,571,959

12,902,400π6

− 11,959,334,618,379,662,657

163,870,801,920,000π8 ,

1 − P 11
D = 3355

32π2 − 15,780,457

3840π4 + 10,435,892,451,347

154,828,800π6

− 116,756,045,890,280,952,727

327,741,603,840,000π8 ,

1 − P 12
D = 3355

24π2 − 14,549,381

1920π4 + 35,864,761,139,141

193,536,000π6

− 153,063,833,227,904,154,127

81,935,400,960,000π8

+ 24,568,177,984,436,193,008,990,903,477

3,815,698,848,546,816,000,000π10 .

By Theorem 1, we can also compute the first values of P
n,m
D presented in Ta-

ble 2. We have computed P
n,m
D for all (n,m) such that n ≤ 13 (they are available

at Marckert (2015)).
Some explicit results for bi-pointed half disk are in Table 3. Again, the method

we have provide all the results till n = 33.
The value P

4,4
D = 1 − 35/(12π2) is due to Woolhouse in 1867.

The1 values P
5,3
D ,P 5,4

D and P
5,5
D as well as the values P

n,3
D for arbitrary n are

due to Miles (1971). Buchta (1984) computed the expected area Vn of the convex
hull of n uniform and independent points in a disk with unit area, and found

V5 = 175

72π2 − 23,023

6912π4 .

1This paragraph is due to one of the referees of the paper. We thank her/him for these precisions.
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Table 2 First values of P
n,m
D

n \ m 3 4 5 6 7 8

4 35
12π2 P 4

D 0 0 0 0

5 15
16π2

65
12π2 P 5

D 0 0 0

6 1001
320π4

15
8π2 + 19,019

1280π4
65

6π2 − 17,017
288π4 P 6

D 0 0

7 35
32π4

777
40π4

105
32π2 + 106,099

7680π4
455

24π2 − 184,583
1152π4 P 7

D 0

8 138,567
35,840π6

875
192π4 + 4,110,821

64,512π6
7413

160π4 − 203,739,679
2,688,000π6

21
4π2 + 803,747

8640π4 − 22,301,758,193
20,736,000π6

91
3π2 − 457,751

864π4 + 1,233,200,111
518,400π6 P 8

D
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Table 3 First values for the bi-pointed half disk case

n 2 3 4 5 6

1 − Bn(π) 16
3π2

26
3π2

305
12π2 − 20,992

135π4
305
6π2 − 97,091

240π4
2135
24π2 − 3,102,211

1440π4 + 960,925,696
70,875π6

By Efron (1965),

3P
6,3
D + 4P

6,4
D + 5P

6,5
D + 6P

6,6
D = 6(1 − V5) = 6 − 175

12π2 + 23,023

6912π4

and since P
6,3
D + P

6,4
D + P

6,5
D + P

6,6
D = 1 and Miles’ result P6,3 = 1001

320π4 the fol-
lowing relations hold

P
6,4
D = P

6,6
D − 1 + 175

12π2 − 151,151

5760π4

and

P
6,5
D = 2 − 175

12π2 + 133,133

5760π4 − 2P
6,6
D .

Of course, the result Table 2 we obtained are compatible with these relations.
Besides these results and those exposed in Theorem 1, the only explicit results

in the literature concern triangles and parallelograms (we here discuss only results
known for any n, in 2D). Valtr (1995) showed that if S is a square (or a non flat
parallelogram) then, for n ≥ 1,

P n
S =

((2n−2
n−1

)
n!

)2

, (7)

and in a second paper, Valtr (1996), he proved that if T is a (non flat) triangle then,
for n ≥ 1,

P n
T = 2n(3n − 3)!

(n − 1)!3(2n)! . (8)

Buchta (2009/10) goes further and gives an expression for P
n,m
S and P

n,m
T as a

finite sum of explicit terms.
For the bi-pointed triangle, Bárány et al. (2000) have shown the following. Let

T = (A,B,C) be a (non-flat) triangle, and let (z1, . . . , zn) be P
n
T distributed, and

let z[n] = (A,B, z1, . . . , zn) be the n + 2 tuple obtained by adding A,B to z[n].
For any n ≥ 0,

P
n
T

(
z[n] ∈ CPn+2

) = 2n

n!(n + 1)! . (9)

These results are at the start of several works concerning limit shape for convex
bodies in a domain (Bárány et al. (2000), Bárány (1999)) and for the evaluation of
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the probability that n points chosen in a convex domain H are in convex position
(see Bárány (1999)).

Buchta (2006) proved the following fact: For any n ≥ 1, any 1 ≤ m ≤ n,

P
n
T

(
z[n] ∈ CPn+2,m+2

) = ∑
C∈Comp(n,m)

2m
m∏

i=1

Ci

SCi(1 + SCi)
, (10)

where SCi = C1 + · · · + Ci and Comp(n,m) is the set of compositions of n

in m non-empty parts (Examples: Comp(2,3) = ∅, Comp(4,2) = {(1,3), (3,1),

(2,2)}).
Additional references

The literature concerning the question of the number of points on the convex hull
for i.i.d. random points taken in a convex domain is huge. We won’t make a survey
here but refer to Reitzner (2010), Hug (2013) and to the papers cited in the present
paper. We will focus on what concerns the disk.

Blaschke (1917) proves that for the 4 points problem (the so-called problem of
Sylvester), for any convex K ,

2

3
≤ P 4

T ≤ P 4
K ≤ P 4

D = 1 − 35

12π2 .

Bárány (1999) has shown that

lim
n→+∞n2(

P n
K

)1/n = e2A3(K)/4, (11)

where A3(K) is the supremum of the affine perimeter of all convex sets S ⊂ K .
For the disk one gets

log
(
P n

D

) = −2n logn + n log
(
2π2e2) − 2ε0

(
3π4n

)1/5 + · · · , (12)

where the last term, not really proved in the mathematical sense, has been ob-
tained by Hilhorst, Calka and Schehr (2008). Central limit theorems exists also for
the number of points on ∂ConvexHull(x{n}) under Pn

D (and for more general do-
main, under the uniform or Poisson distribution), see Groeneboom (2012), Buchta
(2013), Pardon (2012), Bárány and Reitzner (2010).

2 Proof of Theorem 1

Beyond the appearances, the proof of Theorem 1 is quite simple and it relies on a
paradigm of combinatorics that can be stated as follows: always try to decompose
the structure you are studying! But how can we decompose P n

D? The two main
ideas of the paper are the following:

– Bn(θ) can be decomposed,
– with Bn(θ) one can compute P n

D .
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2.1 Proof of (i)

Throughout this section, n ≥ 1 is fixed. Take a closed disk B = B((0,0),Rc), with
center (0,0) and radius Rc = 1/

√
π , that is with area 1, and pick n i.i.d. uniform

points U1, . . . ,Un in B . Now consider the smallest disk B((0,0),Rn) that contains
all the Ui ’s. Clearly

Rn = inf
{
r : #

(
B(0, r) ∩ {U1, . . . ,Un}) = n

}
.

Proposition 2. Conditionally on Rn = r , there is a.s. exactly one index J ∈
{1, . . . , n} such that UJ belongs to the circle ∂B((0,0), r). Conditionally on
{J = j,Rn = r}, Uj and (U1, . . . ,Uj−1,Uj+1, . . . ,Un) are independent, Uj has
the uniform law on the circle ∂B((0,0), r), and U1, . . . ,Uj−1,Uj+1, . . . ,Un are
uniform in B((0,0), r).

Proof. A.s. the points U1, . . . ,Un belong to different circles with center (0,0), and
by symmetry conditionally on Rn = r and J = j , Uj is uniform on B((0,0), r).
Now, conditionally on Rn = r and J = j , each variable U� (for � �= j ) are just
conditioned to satisfy ‖U�‖2 ≤ r , and this conditioning conserves the uniform dis-
tribution. �

Proof of Theorem 1(i). Theorem 1(i) is—or should be—intuitively obvious, tak-
ing into account Proposition 2. But of course, a formal argument is needed. Con-
sider the three following models:

(a) n points i.i.d. uniform in a disk B((0,0),R),
(b) one point uniform on the circle ∂B((0,0),R) and, independently, n − 1 i.i.d.

uniform inside the disk B((0,0),R),
(c) one point is placed at (−R,0) and n−1 are taken uniformly and independently

in B((0,0),R).

We claim that these three models are equivalent with respect to the probability to
be in convex position.

The equivalence between (a) and (b) follows Proposition 2. Indeed, dilatation
conserves uniform distribution and convexity. Therefore, conditionally on Rn =
r , and J = j , since Uj is uniform on ∂B((0,0), r) and the other U ′

i s are i.i.d.
uniform inside B((0,0), r), by a dilatation, the probability that these n points are
in a convex position is the same as in the case where Uj is taken on ∂B((0,0),R),
and the other ones taken independently and uniformly inside B((0,0),R) and this
is true for any fixed R and j .

Now (b) and (c) are equivalent for the following reason: Consider the rotation ψ

with center (0,0) which sends Uj on (−R,0). This rotation conserves convexity,
and the uniform distribution on B((0,0),R). Hence, the random variables ψ(Ui)’s
for i �= j are independent and uniform on B((0,0),R).
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Hence, we have establish that the probability that n points are in a convex posi-
tion is the same in the model (a), and in the model (c). We will then work on this
third model.

Now if we come back to the BSEG considerations, when θ → 2π , the points
w1(Rc, θ) and w2(Rc, θ) become closer and closer, and the line passing by these
points lets all the other points in one of the half plane it defines. It is intuitively
clear that replacing w1(Rc, θ) and w2(Rc, θ) by a single point close to them (for
example, at position (−Rc,0)) will not dramatically change the model nor the
probability to be in convex position. This is the essence of Theorem 1(i).

For sake of completeness, let us give a formal proof. Take R > 0 and consider
the two sets S(ε) = SEG(2π − ε,R) and S = SEG(2π,R) = B((0,0),R). These
two sets are closed for the Hausdorff topology when ε is small. We always have
S(ε) ⊂ S, and |S \ S(ε)| goes to 0. This property implies that if we fix ε′ > 0, for
ε small enough, for z1, . . . , zn chosen uniformly and independently under PS ,

P
({z1, . . . , zn} ⊂ S(ε)

) ≥ 1 − ε′. (13)

Conditionally on the event �ε := {{z1, . . . , zn} ⊂ S(ε)}, the zi ’s are i.i.d. uniform
in S(ε). Let w1(ε) = w1(Rc,2π − ε), w2(ε) = w2(Rc,2π − ε), w = −R.

We want to show that P((z1, . . . , zn,w
ε
1,w

ε
2) ∈ CPn+2|�ε) → P((z1, . . . , zn,

w) ∈ CPn+1). Consider the following sets (subsets of Sn):

E1(ε) := {
(t1, . . . , tn) ∈ S(ε) : (

t1, . . . , tn,w1(ε),w2(ε)
) ∈ CPn+2

}
,

E2 := {
(t1, . . . , tn) ∈ S : (t1, . . . , tn,w) ∈ CPn+1

}
.

It suffices to prove that |E1(ε)| →
ε→0

|E2|. First E1(ε) ⊂ E2 since if (t1, . . . , tn,

w1(ε),w2(ε)) belongs to CPn+2 and since the segments [w1(ε),w] and [w2(ε),w]
are chords, then (z1, . . . , zn,w1(ε),w2(ε),w) is in CPn+3 from what we deduce
that E2 is in CPn+1.

To end the proof, take (t1, . . . , tn) ∈ E2. We show that when ε is small enough, it
is in E1(ε). More precisely, we will see that it is not the case only if the ti belongs
to a null set (for Lebesgue measure). We assume that n ≥ 2 since for n = 1 the
result is clear.

First, for ε > 0 small enough, if the ti ’s are different and different to −R,
all the ti belongs to S(ε). Since (t1, . . . , tn,w) ∈ CPn+1 draw the convex poly-
gon p passing by these points, and relabel the t ′is as t�1 , . . . , t�n clockwise around
p so that the neighbours of w are t�1 and t�n . Again, up to null set, the angles
(w, t�1 , t�2 ) and (t�n−1, t

�
n,w) are not 0, and it appears clearly that for ε small

enough, (t1, . . . , tn,w1(ε),w2(ε)) ∈ CPn+2. We then have E2 = ⋃
ε E1(ε) and the

E1(x) ∪ E1(x
′) if x′ < x, so |E1(ε)| → |E2| when ε goes to 0. �

2.2 Proof of (ii)

For any θ ∈ [0,2π ],R > 0,

∣∣SEG(θ,R)
∣∣ := R2

2

(
θ − sin(θ)

)
(14)
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and then for

Rθ =
√

2

θ − sin(θ)
, (15)

the area |SEG(θ,Rθ)| = 1. Fix θ and denote for abbreviation by SEGθ the seg-
ment SEG(θ,Rθ) with unit area. The size Lθ of the special border [w1(θ,Rθ),

w2(θ,Rθ)] for this segment is

Lθ = 2Rθ sin(θ/2). (16)

In this section, we fix θ ∈ (0,2π) and search to express Bn(θ) with some com-
binations of Bj(ν), for ν < θ and j < n. To get the decomposition, we will “push
the arc of circle” AC(θ,R) inside SEG(θ,Rθ) till it touches one of the zi ’s doing
something similar to the Buchta’s method (for the computation of P n

S and P n
T ).

Here it is a bit more complex: we need the arc of circle to stay an arc of circle dur-
ing the operation in order to get a nice decomposition, and also we need to keep
the bi-pointed elements. The arc angle and radius will change during the operation.
This will lead to a quadratic formula for Bn. Almost all quantities appearing in this
section should be indexed by θ . In order to avoid heavy notation, we won’t do this.
Draw SEGθ in the plane. We consider the family of segments

Fθ := (
SEG[φ],0 ≤ φ ≤ θ

)
having as special border the special border of SEGθ , that is [w1(θ,Rθ),w2(θ,Rθ)],
and lying at its right, such that the angle of SEG[φ] is φ (see Figure 2).

When φ goes from θ to 0, the center O[φ] of (the circle which defines) SEG[φ]
moves on the x-axis from O[θ ] = 0 to (−∞,0). Comparing the distance from
O[φ] to the special border, we can compute the coordinate of O[φ]:

O[φ] = Lθ

2

(
cot

(
θ

2

)
− cot

(
φ

2

))
(17)

Figure 2 Representation of the family Fθ . The angle φ < θ and SEG[φ] ≤ SEG[θ ]. The angles are
taken at the center of the circle that defines the segments.
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and the radius of SEG[φ],
R[φ] = Rθ

sin(θ/2)

sin(φ/2)
. (18)

Since the special border of all the SEG[φ] is the same one sees that if φ < φ′ then
SEG[φ] ⊂ SEG[φ′]. When φ goes to 0, SEG[φ] goes to [w1(θ,Rθ),w2(θ,Rθ)]
(for the Hausdorff topology). One also sees that SEG[θ ] = SEGθ , and for φ < θ ,
by (14) and (15),

∣∣SEG[φ]∣∣ =
(

sin(θ/2)

sin(φ/2)

)2 φ − sin(φ)

θ − sin(θ)
(19)

and then the other segments of the family Fθ have area smaller than 1 (see Fig-
ure 2).

Again θ is fixed. Let z1, . . . , zn be n ≥ 1 i.i.d. uniform random points in SEGθ .
Denote by

� = min
{
φ : #

({z1, . . . , zn} ∩ SEG[φ]}) = n},
and let J the (a.s. unique) index of the variable zj on ∂SEG[φ]. Finally, let � be the
(signed) angle ((+∞,0),O[�], zJ ) formed by the x-axis and the line (0[�], zJ )

(see Figure 2). We have the following proposition.

Proposition 3. The distribution of (�,�) admits the following density f(�,�) with
respect to the Lebesgue measure

f(�,�)(φ, γ ) = n
sin(θ/2)2n

(θ − sin(θ))n

(φ − sin(φ))n−1

sin(φ/2)2n+1

× (
cos(γ ) − cos(φ/2)

)
10≤φ≤θ1|γ |≤φ/2.

Proof. First, the density of zJ = (x, y) with respect to the Lebesgue measure on
|SEGθ | is ndx dy|SEGx,y |n−1 where |SEGx,y |n−1 is the area of the unique ele-
ment of the family Fθ whose border contains (x, y) (indeed zJ = (x, y) if (a.s.)
all the points z1, . . . , zn are inside SEGx,y except one of them, which lies exactly
at (x, y)). We then just have to make a change of variables in this formula.

We search the unique pair (φ, γ ) such that

x + iy = R[φ]eiγ + O[φ].
Since by (19) and (17) everything is explicit, we can compute the Jacobian∣∣∣∣∣∣∣∣∣

det

⎛
⎜⎜⎜⎝

∂x

∂φ

∂x

∂γ

∂y

∂φ

∂y

∂γ

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣
= sin(θ/2)2

sin(φ/2)3

(cos(γ ) − cos(φ/2))

(θ − sin(θ))
.

From what we deduce the wanted formula, using (19). �
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Figure 3 Decomposition of the computation of Bn(θ), and definition of the two sub-segments ap-
pearing in the decomposition.

Now, it remains to end the decomposition of our problem. Conditionally on
(�,�,J ) = (φ, γ, j), the points z1, . . . , zj−1, zj+1, . . . , zn are i.i.d. uniform in
SEG[φ].

The triangle T := (w1(θ,Rθ),w2(θ,Rθ), zj ) is inscribed in SEG[φ] and
SEG[φ] \ T produces two segments S1 and S2. Since we may rescale SEG[φ]
to be SEGφ (to get area 1), the question now is that of the area of the two
rescaled segments. After rescaling, S1 and S2 appear to be SEG[φ/2 + γ,Rφ]
and SEG[φ/2 − γ,Rφ] by identification of the angles. Using (14)

∣∣SEG[α,Rφ]∣∣ = α − sin(α)

φ − sin(φ)
. (20)

We keep temporarily notation S1 and S2 instead of SEG[φ/2 + γ,Rφ] and
SEG[φ/2 − γ,Rφ] for short. The following proposition is a consequence of the
fact that uniform distribution is preserved by conditioning. It is the “combinatorial
decomposition” of the computation of Bn(θ), illustrated on Figure 3.

Proposition 4.

(i) Conditionally on (�,�,J ) = (φ, γ, j), the respective number (N1,N2,N3) of
points of z{n} \ {zj } in S1, S2 and SEGφ − (S1 ∪ S2) is

Multinomial
(
n − 1, |S1|, |S2|,1 − |S1| − |S2|).

(ii) Conditionally on (�,�,J ) = (φ, γ, j) and (N1,N2,N3) = (k1, k2, k3) the
points z1, . . . , zn are in convex position with probability 1k3=0,k1+k2=n−1 ×
Bk1(φ/2 + γ )Bk2(φ/2 − γ ).

Putting everything together, we have obtained

Bn(θ) =
∫ θ

0

∫ φ
2

− φ
2

f(�,�)(φ, γ )

n−1∑
k=0

(
n − 1

k

)
|S1|k|S2|n−1−k

× Bk(φ/2 + γ )Bn−1−k(φ/2 − γ )dγ dφ
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Set η = φ/2 + γ , dη = dγ , η goes from 0 to φ (and φ/2 − γ = φ − η), giving

Bn(θ) =
∫ θ

0

∫ φ

0
f(�,�)(φ, η − φ/2)

n−1∑
k=0

(
n − 1

k

)
(21)

× ∣∣SEG[η,Rφ]∣∣k∣∣SEG[φ − η,Rφ]∣∣n−1−k

(22)
× Bk(η)Bn−1−k(φ − η)dη dφ

from which we get

Bn(θ) =
∫ θ

0

∫ φ

0
n

sin(θ/2)2n

(θ − sin(θ))n

cos(η − φ/2) − cos(φ/2)

sin(φ/2)2n+1

n−1∑
k=0

(
n − 1

k

)
(23)

× (
η − sin(η)

)k
Bk(η)

(
(φ − η) − sin(φ − η)

)n−1−k

(24)
× Bn−1−k(φ − η)dη dφ.

Now, cos(η − φ/2) − cos(φ/2) = 2 sin(η/2) sin((φ − η)/2). Finally setting Ln(θ)

as done in (4), we obtain Theorem 1(ii).

2.3 Proof (i′)

Recall Proposition 2. To compute P D
n we can work under the model where

n − 1 points z1, . . . , zn−1 are picked independently and uniformly inside the disk
B((0,0),Rc) (with Rc = π−1/2) and one point on the boundary. We place this last
point at position −Rc which is allowed since rotation keeps convex bodies and the
uniform distribution.

Now take a family of circles G = {B[r],0 ≤ r ≤ Rc} such that B[r] as radius r ,
its center at position −Rc + r , implying that −Rc belongs to all these circles (see
Figure 4).

If r ′ < r , B[r ′] ⊂ B[r]. Let r� be the largest circle such that exists 1 ≤ k ≤ n−1,
zk ∈ ∂B[r�]. Denote then by φ the angle such that zk = (−Rc + r) + rei(−π+φ). If

Figure 4 Decomposition of the computation of PD
n . The big cross is the center of the initial circle,

the small one, the center of the smallest circle containing all the points.
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we denote by (X,Y ) the (Euclidean) position of zk , the density of the distribution
of (x, y) is

(n − 1)1(x,y)∈B((0,0),Rc)

∣∣B[r]∣∣n−2
dx dy,

where B[r] is the unique circle in the family G which passes by (x, y). We can
then compute the Jacobian and find the distribution of (r, φ) to be with density
10≤r≤Rc,0≤φ≤2πr(1−cos(φ))(πr2)n−2 dr dφ. Once zk is given, we can once again
normalise the problem, and come back on a circle of area Rc. We then get, using
1 + cos(φ) = 2 sin2(φ/2)

P n
D = (n − 1)

∫ Rc

0

∫ 2π

0

n−2∑
k=0

(
n − 2

k

)
2 sin2(φ/2)r

(
πr2)n−2

× Bk(φ)Bn−2−k(2π − φ)
∣∣SEG(φ,Rc)

∣∣k∣∣SEG(2π − φ,Rc)
∣∣n−2−k

dφ dr.

The integration with respect to dr gives

P n
D = 1

π

∫ 2π

0

n−2∑
k=0

(
n − 2

k

)
sin2(φ/2)Bk(φ)Bn−2−k(2π − φ)

×
(

φ − sin(φ)

2π

)k(2π − φ + sin(φ)

2π

)n−2−k

dφ

since once φ is known, the convexity follows that on the pair of bi-pointed seg-
ments with angles φ and 2π − φ, and the number of elements in these segments is
binomial(n − 2, |SEG(φ,Rc)|).

2.4 Proof of (iii)

The proof is the same as that of (ii) except that in Proposition 4 we need to follow
the number of points falling in the triangle. We then get

Bn,m(θ) =
∫ θ

0

∫ φ

0
f(�,�)(φ, η − φ/2)

∑
n1+n2+n3=n−1
m1+m2=m−1

(
n − 1

n1, n2, n3

)

× ∣∣SEG[η,Rφ]∣∣n1 |SEG[φ − η,Rφ]|n2

× (
1 − |SEG[η,Rφ]| − |SEG[φ − η,Rφ]|)n3

× Bn1,m1(η)Bn2,m2(φ − η)dη dφ.

Using the notation introduced in (4), we get (iii).
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2.5 Proof of (iii′)

Copy the arguments in Section 2.3. In the same way, for n ≥ 2, 1 ≤ m ≤ n

P
n,m
D = 1

π

∫ 2π

0

n−2∑
k=0

∑
1≤m1≤n−2

(
n − 2

k

)
sin2(φ/2)

× Bk,m1(φ)Bn−2−k,m−m1−2(2π − φ)

×
(

φ − sin(φ)

2π

)k(2π − φ + sin(φ)

2π

)n−2−k

dφ

with the condition that Bk,k+l = 0. (iii′) follows.

2.6 Proof of (iv)

The same proof of (i) does the job.

3 Effective computation of Ln

We explain in this part how to effectively compute the sequences Ln and Ln,m.
There exist maybe some “simple close formulae” for these functions that can be
proved by recurrence, but even with the 30 first Ln in hand, we were not able to find
one. So, the method we propose allows one to make the successive computations
of the Lj ’s with a computer algebra system as Maple, Mathematica or Sage: addi-
tionally to standard polynomial computations, the needed operations are: Laplace
transforms, inverse Laplace transforms, and integration. We wrote a program for
Maple helped by Salvy (2013) (the code of the program is available at Marckert
(2015)). Here are the main lines of the algorithm.

Instead of computing Ln(θ) we compute Mn(θ) = Ln(2θ) which satisfies a
simpler recurrence:

Mn(t) = 8
∫ t

0

sin(t)2n+1

sin(φ)2n+1

∫ φ

0

n−1∑
k=0

Mk(η)Mn−1−k(φ − η)dη dφ.

Since B1(θ) = B0(θ) = 1, L0(θ) and L1(θ) are known by (4), and thus M0(θ) and
M1(θ) too.

Denote by Jn(t) = ∫ t
0

∑n−1
k=0 Mk(u)Mn−1−k(t − u)du, and by T Jn, T Mn the

Laplace transform of Jn and Mn. We have

T Jn(s) =
n−1∑
k=0

T Mk(s)T Mn−k−1(s).

A computation of Jn by integration seems difficult to the computer algebra system,
but T Jn can be computed easily, and the computation of the Laplace inversion of
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T Jn which gives Jn works without any harm with Maple. Maple provides Jn(t)

under the form of a polynomial of cos(kt), sin(kt), t (for a fixed n, several k are
involved). We linearize cos(kt) and sin(kt) (replacing them by some polynomi-
als in cos(t), sin(t)). Using cos(t)2 + sin(t)2 = 1, it is possible to rewrite Jn as
polynomial of degree at most 1 in cos(t) (for this, we take the rest of Jn(t) by the
division by cos(t)2 + sin(t)2 − 1). This reduction step is important as it provides
much shorter formulae for Jn, and allows one to compute Ln for larger n.

It remains to compute Mn(t)/ sin(t)2n+1 which is equal to 8
∫ t

0 Jn(v)/

sin(v)2n+1 dv. Again, Maple is not able to make this integration directly, and needs
some help. We then observe that Mn is solution to the following ordinary differen-
tial equation:

sin(t)M ′
n(t) − (2n + 1) cos(t) − 8 sin(t)Jn(t) = 0, lim

t→0

Mn(t)

sin(t)2n+1 = 0, (25)

the last equation following from (4). Now, the form of Mn can be guessed: this
is a polynomial in sin(t), cos(t), t . The degree in cos(t) can be taken equal to
1, and some bounds on the degrees of sin(t), and t can be guessed (by trial and
error, for example). Plugging Mn(t) = ∑

k1,k2,k3
ak1,k2,k3 sin(t)k1 cos(t)k2 tk3 into

(25), replacing cos(t) by C, sin(t) by S, and again taking the rest by the division
by C2 + S2 − 1, we get the nullity of a polynomial in C,S, t . This provides a
linear system on the coefficients ak1,k2,k3 , easy to solve. This provides a close form
for Mn.

The method is a bit demanding in computer resources mainly because Mn be-
comes more and more complex as n grows, which implies that Laplace transform
and inverse Laplace transform devours the memory resources of the computer.

A similar change of variable provides a formula for Mn,m(θ) = Ln,m(2θ). The
computation of Mn,m is possible using the same algorithm, except that some com-
plications arise since some polylogarithm terms (of the type polylog(n, eiθ ) +
polylog(n,−eiθ )) appears in some intermediate computations. We are able to com-
pute Ln,m for n ≤ 12 (which provides the values of P

n+1,m+1
D for the pairs (n,m)

such that n ≤ 13). Here, the computation are slow, and we renounced to go further
for a matter of time (several hours are needed to compute the case n = 13).
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