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Extended Real Intervals and the
Topological Closure of

Extended Real Relations

Introduction

The set of real numbers is:
IR={Xx:—00 <X < o0}. (1)

The set of extended real numbers is the real numbers augmented with signed infini-
ties:

IR* = IRU —oc0 U +00. 2

The goal of this paper is to develop tbesed system of interval arithmetic opera-

tions and relations on the set of extended intervals with extended real endpoints. No
undefined operator-operand combinations can exist in a closed system. Because the
results of division by zero and indeterminate fotmase not single points neither

1 An indeterminate form is an expression such-asc) — (+oo) %, £ 0x (+00), (+00)0, 09, or (+1)F), for which

there is no single defined value. An indeterminate form may result from replacing the limit of a composite function, such as
limy_so f (g(x), h(x)), by the composite of its limitsf (Iimxﬁo g(x),limy_soh (x)). For examplefimy_,o § =1, but% is
indeterminant.



(400) = (400) | (+00) X 0 | (400) + (+00)
(=00) + (400) | (=00) X 0 | (=00) + (+00)
(400) + (=00) | 0% (+00) | (400) + (=00)
(=00) = (=00) | 0x (=00) | (=0) = (=00)

TABLE1 Indeterminate arithmetic forms.

the real, nor the extended real number systems are closed. For example, in addition
to division by zero, the operand-operator combinations in Table 1 are undefined.

Closedinterval systems exist because intervals are not single points, but compact
sets of points. In the title ofifiterval Arithmetic as a Closed Arithmetic System

on a Computer,” [ 7], Hanson implies a closed interval system is defined. However,
division by zero and the indeterminate forms in Table 1 are specifically excluded.
In “A More Complete Interval Arithmetic,” [?], Kahan defines a closed interval
system, including division by intervals containing zero. However, a detailed justi-
fication of the proposed definitions has not been developed and the Kahan system
produces intervals that are neither as narrow as possible nor as convenient to rep-
resent as the intervals in other possible closed interval systems. For example, the
decision to include open intervals leads to an internal machine representation re-
quiring extra bits in addition to a pair dfoating-point values. Nevertheless, it

is a significant achievement that Kahan recognized exterior intémvatsbe used

to sharply bound the set of values resulting from division by intervals containing
zero.

Interval Analysis Overview from a Mathematical Per-
spective

This section contains an informal overview of the main points in the development.
After analysis and relation preliminaries in Sections and, Section defines notation
and terms used in the remainder of the paper.

The central problem of interval analysis is to bound the set of results from the point
evaluation of an expression at every value in the argument intervals. A real expres-

2 An exterior interval is the union of two semi-infinite intervals, as[irco, a] U [b, +oo] with a < b.
3 An interval bound isharpif it is as narrow as possible and still a bound.



sion of n singleton set arguments, {x}, is denoted:
f({x}) = f({xd},...,{Xa})- A singleton set has exactly one member. The ar-
guments of expressions that produce set-valued results are sets.

The components of the expressions of interest when evaluated at a particular point,
Xp are:

= argument valuegg of the real variablesy;;

= the basic arithmetic operations (BAO§) —, x, and—;

® constantsand

= other functions or relations.

An interval vector K] = ([X4],-..,[Xn]) is simply a vector of real intervals,

[Xi]- All intervals are enclosed in brackets to distinguish them from sets, which are
represented using unbracketed, uppercase letters. In this papé&s,gn interval

andX is a set that may or may not be an interval. Braces always surround singleton

sets to distinguish them from intervals, which are enclosed in brackets, and points,
which are not enclosed in braces or in brackets.

When evaluated over a sep, an expression is simply the union of expression
values at every point in the range set:

f (Xo) = {Z

Ze f({XO}) } . (3)

Xo€ Xo

The central problem of interval analysis is solved with an enclosu¢gXo]) , for
the range setf (Xp) of f over the intervakKg:
f ([Xo]) 2 hull (f (Xo)) 4
given the interval hull of the seR, is
hull (R) = [inf (R), sup(R)], (5)
and
[Xo] € D, (6)

the natural domain of f. An expression’s domain isatural if it is the intersection
of operator and intrinsic function domains in the given expression and is formally

Extended Real Intervals and theTopological Closure ofExtended Real Relations 3



defined in Section , item 3 on page 9. In (3), as is customaryntuple [X] is
identified with the Cartesian producX{] ® - - - ® [ Xn] (a box inn-space), so that
X € [X] is a simple way of writingx; € [X;] for eachi.

Provided Kq] is a subset oD+, the required enclosure is produced by itfiterval
evaluation of f at [Xo]. The resulting interval may be an inaccurate approximation
of hull (f (Xp)), but is a guaranteed enclosure. In the interval literat@irg X])

is usually writtenf (X). This practice is natural in the context of overloading the
meaning off to operate on interval instead of real data items. Because this pa-
per is primarily mathematicalf (X) represents the range set, as is customary in
mathematics.

From a mathematical perspective, the goal of this paper is to extend the meaning of
f ({x}) to points outsideD, in such a way that the process of interval evaluation
continues to give valid enclosures when the process is defined as the interval hull
of f at the pointxg. In practice, extension is necessary because interval arguments
are not always confined ®©;.

The first step is to precisely define all the needed analysis and relation preliminaries,
notation, and terminology. Care with this step is required because points, sets, and
intervals are all used in the development. Without clear notation, opportunities for
ambiguity will make the exposition cumbersome at best, and unclear at worst.

The key is the introduction of the concept of thantainment set* of f atx,: the
minimum set of values that ([Xo]) must contain, whether or nay C Ds. In
other words, the interval valuation dfmust unconditionally succeed and yield an
enclosure off 's containment set.

Development begins in Section with a specification of the properties that the con-
tainment set of an expression must satisfy. From these properties, the following
main resultlow:

1. Thecontainment constraint that containment sets must satisfy is defined in Sec-
tion .

2. Thecontainment set is defined in Section .
3. The containment-set closure identity is proved in Se@®Theorem 1.

4. Containment sets of basic arithmetic operations are derived in Section .

4 For the defining properties of the containment set of a relation, see Section on page 18.



5. Containment sets of the,lexp, and ex@y In x) functions are derived in Section

6. The distinction between variable and value equality is elaborated in Section .

7. Containment-set-equivalent expressions are introduced in Section .

The IR* system is the mathematical foundation for closed interval systems in gen-
eral, and in particular, the interval system describedTine” Smple’ Closed In-

terval System,” [ ?], operationally defined inlfplementing the ‘Smple’ Closed
Interval System,” [ ?], and implemented inForte™ Developer 6 Fortran 95,” [ ?].
Because this system is closdhating-point runtime exceptions are logically im-
possible. Hereafter, the “Simple” Closed Interval System is referred to as the Sim-
ple System.

The development applies standard mathematical principles outlined in Sections
and . The individual mathematical principles are well known, but they have never
been combined with the specific aim of constructing closed interval systems.

The term “closed” is used in two ways:

= The system consisting of a set of members and binary operations is closed if any
binary operations in the system on members of the set produces another member
of the set.

® A topologically-closed set or closed interval contains all the accumulation points
in the set or interval.

Analysis Preliminaries

The needed basic notions from analysis are reviewed here. An irgigiience of
pointsxy, X2, X3, . . . is denoted by parenthesé€s;). A subsequence of () means
a sequencex;;) whereiy, iz, i3, . . . is a strictly increasing sequence of indices.

A metric space is a setS on which a real-valued distance functid(x, y) > 0 is
defined, such that givex, y, z € S, the following three laws are satisfied:

1.dx,y) =0iff, x=y;
2.dx,y) =d(y, x); and,

Extended Real Intervals and theTopological Closure ofExtended Real Relations 5



3.d(x,y)+d(y,2 2 d(x,2).

The functiond (x, y) is said to be a metric fos.

By definition, a sequencg;) in Sconverges tx € S (equivalentlyx is the limit
(in the usual sense) @k;)), iff

d(xi, x) » 0inIR. @)
Thatis, im_ . X = X, orx — X, are equivalent ways to write (7).

A subsetX of Sis aneighborhood of a pointa € Siff for somee > 0, X contains
the ‘e-ball’ {x € S| d (x,a) < ¢} arounda. A point x is anaccumulation point of
a subsei of Siff it is the limit of some sequence of points X; equivalently, if
every neighborhood of meets (has nonempty intersection wi¥) A set isclosed
iff it contains all its accumulation points. A setapen iff it is a neighborhood of
each of its points.

The closure of X, denoted by the customary notatidh consists of all accumu-
lation points ofX. The closure ofX containsX, since every is the limit of the
sequence in which all elements egual Theinterior of X is the set of points of
which X is a neighborhood. Thieoundary of X is the set of points that are X’s
closure and not in its interior. Basic, and not quite trivial, facts are that a set’s:

® closure is closed,
= interior is open,

® boundary is the points common to its closure and the closure of its complement,
and

= complement irSis open iff Sis closed.

Examplel In IR, let X be the union ofl, 1/2,1/3, 1/4, ...} and the open interval
(—1, 0). Then the set of accumulation pointsXfi.e. its closure, iX U {—1, 0}.
The interior is the open intervét-1, 0). The boundary i$l,1/2,1/3,1/4,...} U
{—1,0}.

A space in which a definition has been made of exactly which sequences are conver-
gentis calledretrizableiff there is a metric on it that generates this same meaning
of convergence.

The Cartesian product X ® Y of metric space, Y consists of all ordered pairs
(X, y) with x € X andy € Y. The definition of convergence is thég, yi) —



(X, y) iff x; > xandy; — y. Convergence and a metric in the prodiet® . . . ®
X, of n metric spaces are defined by the obvious extension of these constructions.

An essential role is played by the notion @impactness. A subsetX of a met-
ric spaceS is compact iff every sequence of points iX has a subsequence that
converges to a limit that itself is iX. When this is applied to the whole spaBe
one can say more simpl\§ is compact iff every sequence has a convergent
subsequence.

The Cartesian product of compact spaces is compact.

The spaces of primary interest here #e IR*, and Cartesian products of them.

The usual metric otR is d(x, y) = |x — y|. A metric onIR" is defined below. A

key property is thaevery closed bounded subset of IR is compact. This property
distinguishedR from ‘thinner’ sets of numbers like the rationals, and is equivalent

to the property that every bounded subset has a least upper bound. Either of these
properties may be taken as the foundation of real analysis.

Convergence in the extended redi®;, = IRU {—oc0, +0c0}, is defined as follows.
The sequenceéx;) converges to a finita iff the x; are all finite from someé = ig
onward, and converge toin the usual way. The sequeng) converges te-oo iff
for any realc no matter how large, there existsigrsuch that;; > cforalli > iq.
Convergence te-co is defined similarly. This makelR* topologically equivalent
to the closed interval = [—1, 1], in the sense that there is a map IR* — |
such thatx, — x in IR*iff (X)) — ¢(x)in |. For instancey can be the function

-1 ifXx=—o0,
¢(x) = 1 tanhx if x is finite, 8)
1 if X = 4oc0.

This equivalence provdR* is metrizable, a possible metric beid¢x, y) = |¢(X)—
¢(y)| for X,y € IR*. Sincel is compact, it follows thatR* is compact. Hence
also, (IR")" is metrizable and compact, a possible metric on it belpgy) =

S ld () — o ()l for anyx = (xq, ..., Xn) andy = (yu, . .., Yn) in (IRH)".

Relation Preliminaries

Following standard, set-theory notation:

1. A relation between the se&(the source) and T (the target) is by definition a
subsetF of the Cartesian produ@® T. If F is such a relation and X is a

Extended Real Intervals and theTopological Closure ofExtended Real Relations 7



subset ofS, the notationf (X) means the set
f(X) ={y e T | there existx € X such that(x, y) € F}. (9)
Note thatf (X) is always defined but may be the empty set.

2. The domain D¢ of F is the set ofk € Ssuch that there is at least ogewith
(X, y) € F, equivalently such that ({x}) is nonempty.

3. Therange R+ of F is the set ofy € T such that there is at least omewith
(x,y) € F. Thatis,R¢ = f (Dx).

4. Whenx € Sis such thatf ({x}) is a singleton sety}, f is said to bea function
at x. Then, and only then, is the function notatipe= f (x) used. Thatisf (x)
is the member of ({x}) when this is unique, and undefined otherwi$ds said
to bea function if it is a function at each point of its domain. Thus, fifis a
function,

| the singleton setf (x)}, if x € D¢, and

Fixh) = { the empty set, otherwise. (10)

5. Given another relatio® C T ® U, then thecomposition or composite relation
G o F is the relation betwee8 andU defined by

(11)

GoF — {(x, 2) e SoU ‘ there existy/ € T such that }

X,y)e Fand(y,z) € G

This corresponds to the usual meaning of a composition of functions. Namely, if
f andg are functions, the o F is the composite functiog( f (x)) wherever it
is defined.

Notation and Terminology

The analysis of containment sets and topological closures includes humerous op-
portunities for notation ambiguity. The notation described in this section is strictly
enforced to distinguish between: variables and particular values they can take on
between points, sets, and intervalad between functions and relations.

1. The subscript, Ois used to denote a specific value of a variable. For example,
Xo = Yo denotes the specific valueg, andyy (of the variablex andy) are the
same. The fact thagy = yo does not necessarily imply the variableandy, or



the expressions they represent, are identical. Two expressions are identical if they
have the same domain and the same values for all arguments in their common
domain. Therefore, equality &b andyp does not necessarily imply the variables

x andy can be interchanged. However, if the variablesindy are identically

equal, they are also interchangeable. The consequence of the distinction between
value andvariable or expression equality is seen in subsequences used to define
accumulation points and in interval expressions. For examplg, i y; for

all j, the sequencelx;) and(y;) are identical and have the same limits. If only
their limits are equal, the sequences can nevertheless be different. Two identically

equal intervals are dependent and have the same value. Two intervals that only
have the same value need not be dependent.

. Customary notation in both the mathematical and interval literature uses upper-
case letters to denote sets and intervals, respectively. For clarity when working
with both sets and intervals, it is necessary to distinguish between them. Because
this paper is primarily concerned with sets rather than intervals, unbracketed up-
percase letters represent sets and all intervals are enclosed in brackets. That is,
[X] is the closed intervallx, X] = {z| x < z <X} . The setX is not necessar-

ily an interval, although it can be. Singleton sets are lower-case and enclosed in
braces to distinguish them from points, which are neither enclosed in brackets
nor braces. The singleton sét} , has only one element, the poirt,

. The evaluation of aexpression is any computation defined by the execution of a
code list (or Wengert list). The following are important to distinguish:

a a segment of computer code,
b the expression defined when the code is executed, and

c the relation or function defined by this expression.

Irrespective of whether the code includes branches, loops and subprogram calls,
array references, or overwriting of a variable’s value by a new value, any partic-
ular execution is a finite code list of operations where each new computed value
is given a different name:

Inputxy, ..., X.
Computex; = g (earlierx;), fori =n+1,...,q+m. (12)
OutputXg+1, - - ., Xg+m-

Extended Real Intervals and theTopological Closure ofExtended Real Relations 9



10

There aren inputs,(q — n) intermediate variables, amd outputs. Eacle repre-
sents one of the four basic arithmetic operations (BAOs) or some other ‘intrinsic’
function. Constants may be treated as zero-argument intrinsic functions.

Only the casem = 1, a scalar function of several variables, is treated in this
paper. By successive substitution, the intermediate variables can be eliminated
to give an expressiof for the output, which is uniquely determined by the code
list:

Xg+1 = f(Xla L) Xn)-

For instance, if the input i6;, X2), and if the code list is

X3 = X1 + Xo (13a)
X4 = X2/X3 (13b)
X5 = X4 + X3, (13c¢)
where the output igs. Then
f (X1, X2) = 2 _ (X1 + X2). (14)
X1+ X2

The expression must be sufficiently parenthesized to make the order of evaluation
clear. Note that information is lost about ‘common subexpressions(Xike x,)

above, but this is irrelevant for the mathematics that follows. The function value
f (Xg) exists alxg = (Xo1, - - - , Xon) iN IR" iff, for each ‘compute’ step in the code
listin (12), the arguments to each basic operagdie in the domain ok . The

setD; of suchxg is called f’s natural domain provided operator’s and intrinsic
function’s domains are used to define the domairf on IR". If only the four

BAOs are usedthen everyf defines arational function of the inputs. In this
case,D; is the set of pointx €IR", for which divide-by-zero does not occur
while evaluatingf atx.

. The pointx, is the single member of the degenerate intervglx] (or equiva-

lently [x]), and is also the single member of the singleton{sét Brackets and
braces establish context for the interpretation of symbols used to represent ex-
pressions. For example, when evaluated either at the xgiat the singleton set

{xo}, or at the degenerate interva}], the expressiorf is represented:

a f (xp) is the function,f, evaluated at the poinky, € D¢, whereDy is the
natural domain off,



b f ({Xo}) is the relation,f, evaluated at the singleton de, € IR*}, and

c f ([xo]) (or equivalentlyf ([xo, X0])), is the interval evaluation of the expres-
sion, f, at the degenerate intenad € IR*].

Because a code list evaluation can yield a single value or multiple values, the
neutral termexpression is used to refer to the object of a code list evaluation. The
present development extends the mathematical foundation under interval arith-
metic by using the set-theoretic properties of intervals to define bounds on ex-
pressions (whether functions or relations) for any argumerit*in

. Bold letters are used to represent vectors of points, sets, and intervals. In partic-
ular,
X=Xy, -5 %Xn), (15a)
X} = {1, -, %)}, (15b)
X =(Xy,---,Xn),and (15c¢)
[X] = ([Xa], -, [Xn]) (15d)

are respectively:

a a point inn-dimensional Euclidean spadg’,
b a singleton set, the only element of which is a paikt (IR*)",
¢ the Cartesian produgtX; ® - - - ® X, € (IR*)", of sets, X;, and

d ann-dimensional box,X1] ® --- ® [Xs] € (IR)".

From (15b) and the identification of thetuple, X, with a Cartesian product in
(15¢),

{x} = ({xa}, -, {(xn}). (16)

6. Including an argument in the symbolic representation of an expression (for exam-
ple,  ({(x1, X2)})) implies that bothx; andx, appear in the defining expression
for f. For example, all the elements of the vectar,appear in the defining
expression forf ({x}).

5 The n-tuple X = (Xl, S, Xn) is treated the same as the Cartesian prodct --- ® Xp, because they carry the same
information except when any of th¢ are empty.

Extended Real Intervals and theTopological Closure ofExtended Real Relations 11
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7. As with points, expressions of point, interval, and set vectors mean different
things. Thatis,f (x), f ({x}), andf ([x]), are respectively:

a the function,f, evaluated at the pointe D¢ € (IR)",

b the relation,f, evaluated at the singleton ged , given the pointx € (IR*)",
and

c the interval evaluation of the expressidnat the degenerate interva[.

In the interval literature, the definition df ([x]) is traditionally limited to single-
valued functions with domai®¢ € (IR)" . Although complex intervals are also
considered in the interval literature, complex variables and intervals are not con-
sidered in this paper.

8. BecauseX denotes a set of points imdimensional space, the notatidn(X)
denotes the relatiorf, evaluated over all singleton se{g} € X, that is:

ze f({x}) } (17)

X e X

f(X):{z

9. BecauseX] is a box inn-dimensional space, ii{] C D, the notationf ([X])
denotes an interval that must be an enclosure of

{z ze f(ix) } (18)

X € [X]
The question to be answered is: What is the containment set of valuds({ixgh
must enclose, ifX] £ D+?

Interval Arithmetic Preliminaries

1. The BAOs in thdR* system are relations. Evaluating an expression is always on
set-valued arguments producing a set-valued result. Normal function evaluation
occurs when evaluation at a singleton se&ff produces a singletofyo}. Then
and only then is the notatioypy = f (Xo) used.

2. Each extended basic arithmetic operation is the topological closgt@ ), of
(the graph of) the corresponding operation regarded as a subigét of



3. The containment set of a relation evaluated at a point can be disconnected com-
pact sets, not necessarily a single interval. To make an implementable system,
the easily described family of extended closed intervi®S,is used. As it must
be, the whole ofR* is in IIR*. Whenever an expression is evaluated, the resulting
containment set is replaced by the latter’s interval-hull, resulting in an unsharp,
but more easily manipulated enclosure.

A machine-implementable interval arithmetic is obtainedRf comprises all
closed intervals with IEEHoating-point-representable endpoints (includiagp).

Tables 2 through 5 on page 15 display containment sets for the four BAOs. The
notation used to represent a BAO’s containment set is:

cset(x opy, {(Xo; Yo)}) » (19)

where

m cset is the containment-set relation,
= op is one of the BAOs, and

® {(Xo, Yo)} is the singleton set, the single member of which is the ppityy) at
which the containment set is evaluated.

The general form of the containment set of the expresdipoevaluated at the point,
Xo, IS:

cset(f, {xo}) - (20)

Using the results developed in Section , these and other containment sets are derived
starting in Section . Some explanations are needed regarding the tables of contain-
ment sets: All inputs are shown as singleton sets and results are shown either as sets
or intervals. To avoid ambiguity, the following customary point arithmetic notation

is not used:

(—00) + (—00) = —ox, (21a)
(—o0)+y=—00, if y < +00, and (21b)
(—00) + (+0) = IR*. (21c)

Extended Real Intervals and theTopological Closure ofExtended Real Relations 13
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Instead, the tables show results for singleton set inputs to each operation. As seen
in equation (17), expression values for a general set input ilRtheystem are sim-

ply the union of single-point-argument expression values as single-point arguments
range over input sets.

In “Interval Arithmetic: From Principles to | mplementation,” [ ?], Hickey, Ju, and

van Emden give an alternative mathematical model and guidelines for implementa-
tion. Their model is similar in many ways, but their Principle 1 requires variables to
range only oveiR, so that an interval is defined to be a closed, connected, possibly-
empty subset ofR. Thus, their intervals have the fornh][N IR where [1] is a
compactlR*-interval in thelR* model. Infinities are a notational device for denot-
ing intervals, not points in the number system. In the resulting interval arithmetic,
{1/0} is the empty set instead of the $etoo, +00}. As a consequence, evaluating
the expressiofil/ (1 + 1/x)} whenx = 0, results in containment failures.

In “ New Computer Methods for Global Optimization,” [ ?], Ratschek and Rokne de-
fine a two-point compactification of the extended real numbers to permit the starting
box in the interval global optimization algorithm to be unbounded. However, they
leave undefined both expressions at singular points and indeterminate forms.

Expressions and Functions

The words ‘variable’ and ‘argument’ as used herein mean a quantity that can take on
a scalar value or a set of valueslior its extension|R*. A quantity whose value

is a (set of) vectors, i.e. a subsetl@f or (IR*)", is a vector variable or argument.

If Xq4,..., X, are sets of scalars arfdis a relation ofn arguments, the notations
f(Xy, ..., Xp) and f (X) are used interchangeably, whéte= X; ® -- - ® X, is

the Cartesian product of th§ . Xp is the setXo1 ® - - - ® X, Of particular values

of the argumentsy;.

Expressions that aragebraically equivalent, that is equivalent according to the
rules of high school algebra, are not necessarily the same function if, for example,
they have different domains. The following are different real functions of real vari-
ables. However, for arguments in the intersection of their domains of definition,
they produce the same values.

f1 (Xg, X2) = X2/(X1 + X2) (22a)
f2 (Xl, X2) =1- l/(l + X2/X1) (22b)
f3 (X1, X2) = 1/(1 + X1/%2) (22c)



TABLE 2

TABLE 3

Containment set for addition: cg9et+ v, {(Xg, Yo)}) -

| csetix+y, {(x0. yo))) || {—o0} | freal: yo} | {+o0} |

{—o0} {—o0} {—o0} IR*
{real: xg} {—oo} | {Xo+ Yo} | {400}
{+o0} IR {+o0} | {400}

cset(x — v, {(x0, Yo)}) || {—oo} | (real: yo} | {+o0} |

{—o0} IR* {—o0} {—o0}
{real: xg} {400} | {Xo— Yo} | {—o0}
{+o0} {+o0} | {400} IR*

Containment set for subtraction: céet- v, {(Xg, Yo)}) -

In general, an expressioh is different from the function orR" that it defines,

although they are generally given the same name.

Expression Closures

The definition of an expression’s closure is:

Definition 1 The closure of the expressidn evaluated at the poind is denoted

TABLE 4

csel(x x y, {(x0, yo)b) || {—oo} | {real: yo <0} [ {0} [ freal: yo > 0} | {+o0} |

{—o0} {00} {00} IR* {—o0} {—o0}
{real: xg < 0} {400} {x xy} {0} {x xy} {—o0}
{0} IR* {0} {0} {0} IR*
{real: xg > 0} {—o0} {x x vy} {0} x xy} {400}
{+oo} {—o0} {—o0} IR* {+oo} {+oo}

Containment set for multiplication: cget x vy, {(Xg, Yo)}) -

Extended Real Intervals and theTopological Closure ofExtended Real Relations 15
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| csetx+y,{(x0. yo))) [ (o0} [ {real: yo <0}

{0}

{real:yp > 0} ‘ {400} ‘

{—o0} [0, +-9] {+o0} {—00, +00} {—o0} [—o0, 0]
{real: xp # 0} {0} x=+y} {—00, 400} xX=+y} {0}
{0} {0} {0} IR* {0} {0}
{+o0} [—o0,0] {—o0} {—00, 400} {400} [0, +00]
TABLE5 Containment set for division: cset =y, {(Xg, Yo)}) -
T ({xo}), and is defined: iko € D¢, then
zelimj_ . Yj
Toxan = 12| Vi€ F (i}
f ({(xoh) =12 X, €Dy . (23a)
lim ;5 ocXj = Xo
Otherwise, ifxo & D, then
(o)) = 4. (23b)

The closure off is always defined, but may be the empty set. The domaih of
is the set of argument values for whidh({X,}) # @, which is the closure of the
domain of f, D¢. That s,

D+ =Dj. (24)

Given the conditions on the right-hand side of (23a) are satisfied, the closure of
an expression is the set of all possible accumulation points in the subsequences

whose members are elements of the setf{x;}). If xo € Dy, all subsequences
of the sequencéx;), have the common accumulation poixg, If Xo ¢ D, then
f ({Xo}) = #. Definition 1 imposes no restrictions on the poipt

Interval Expressions

When interval arithmetic is used to evaluate an expression at the degenerate interval
[X] =[(X1, ---, Xn)], the code list in (12) becomes:



Input [X4], - .., [Xn].

i=n+1...,9+m
Compute K;] = e ([x;] and/or earlierKy]), for} 1<j <n
n+1<k<aq.

Output[Xg+1] s - - -» [Xg4m]-

(25)
Eachg in (25) represents one of the four basiterval arithmetic operations
(BIAOs) or some other ‘intrinsic’ interval function. The interval expression value
f([x]) exists at[x] = ([x1],-.-, [xn]) in IR" iff, for each ‘compute’ step in the
code list (25), the arguments to the basic interval operaidie in the domain of
g. If only the four BIAOs are used to defink then everyf defines the enclosure
of arational function of the inputs.D+ is the set of pointg, for which division by
an interval containing zero does not occur while evaluafirag [Xo].

An interval expression is agextension of a real function if the interval expression
produces the value of the real function when evaluated using degenerate interval
arguments within the domain of the function. The following are interval extensions
of the corresponding functions in (22a), (22b), and (22c) on page 14.

fr([xa], [X2]) = [%2] /([xd] + [x2]) (26a)
fa([xa] s [%2]) = 1 — 1/(1 + [%2] / [x1]) (26Db)
fa([xd], [*2]) = L/(1 + [xa] / [%2]) (26¢)

When different interval expressions are evaluated using non-degenerate interval ar-
guments, they can produce different width intervals, although the resulting intervals
must contain the set of all possible values of their respective underlying point ex-
pression. For (26a), (26b), and (26¢), if interval inputs are not degeneratefonly
and f3 always produce sharp bounds on their respective function’s range over the
domain subset defined by argument intervals. Multiple occurrences of arguments
in f; can cause returned intervals to be unnecessarily wide. In the interval litera-
ture, this is known as ‘the dependence problem’, because interval arithmetic fails to
recognize the two occurrences of the interval variab¥] [n (26a), are the same
variable and therefore dependent.

Extended Real Intervals and theTopological Closure ofExtended Real Relations 17
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The Containment Set

The analysis of containment sets is connected to the presence or absence of a vari-
able in an expression or sub-expression. Therefore, care is taken to ensure that the
presence of a variable in the set of expression arguments means that the variable ap-
pears in the expression’s definition. Recall item 6 on page 11 in the list of notation
and term definitions.

Let thens arguments of the expressioh,({x}), be partitioned:x ;= (Xn, Xg).
Further, leth ({x,}) be an expression of tha, variablesx, = (xhu, xc) and let

g ({(y,%g)}) be an expression of thg, + 1 variables,y, Xq) = (Y, Xg,» X¢). The
only common arguments to bothh andxgy are those irxc.

For a giverx, andh ({xn}) , consider all the possible compositions having the form,

f({xih) =a({(y,xg) I yeh{xnh}). (27)

Depending on the form of the composition in (27), different memberg, afre in

Xc and therefore ix4. Denote the containment setlaf evaluated at the poirkg,:
cset(h, {Xon}) . The interval evaluatigrh ([Xon]) , of the expressioh must contain
cset(h, {Xon}). The value of cseth, {xon}) can cause a containment failure to occur
if there exists a composition having the form in (27) and

cset(f, {xor}) Z cset(g, {(y, Xog) | Y € cset(h, {xon})}). (28)

Relation (28) is a containment failure because the composition of containment sets
on the right-hand side fails to contain all the elements in C&¢txor }) . This con-
ception of a containment failure is motivated by the following considerations:

® Relation (28) is the basis for defining tbentainment constraint that containment
sets must satisfy.

= Relation (28) is the essential event that containment sets must prevent. That is,
when used as an argument of asjpsequent expression, containment sets must
not cause a containment failure.

® Unlike expression (18) on page 12 for the containment set over a set within the
expression’s domain, equation (28) begs the question of what containment sets



are. Consequently, equation (28) admits containment sets with arguments at sin-
gular points and indeterminate forms.

Definition 2 Thecontainment constraint on the set of value¥, of the expression
h of ny, variables, evaluated at the poiat and denotedh ({xgn}) , is that:

cset(f, {xor}) C {z
using any possible composition of the form,

cset(f, {xi}) =g ({(v;Xg) | y e h(Ixn})}), (30)

and anyxos € (IR)"", for which

T ({xor}) # 0. (31)

;Oeeg \ﬁo{ (Yo, Xog)}) } , (29)

A trivial way to satisfy the containment constraint and therefore avoid containment
failures is to letYp in Definition 2, and therefore csét, {xon}), be the entire set

of extended real numbertR*. Because unnecessary members of @s€xon}) are

not wanted, the containment setloét (xo,) must be the smallest set that satisfies
the containment constraint in Definition 2.

The Central Problem of Extended Interval Analysis

For any extended intervaXp] C (IR*)", the central problem of interval analysis in
(4) on page 3 is solved with an enclosure, over the inteiXgl [ for the contain-
ment set off evaluated over all points in the interva{]:

f ([Xo]) 2 cset(f, [Xo]) (32)
given
eset(t, b = {7 2 <5 " 0P | @3)

The next question to be answered is: Are there any additional restrictions that must
be imposed to complete the containment set definition? The answer is yes. Con-
tainment sets must satisfy two conditions in addition to the containment constraint
in Definition 2:
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1. To satisfy the containment constraint, the containment set must contain any de-
fined value off at the pointxy. Therefore, for any value of within the domain
of f, cset f, {Xo}) must contain all values of ({xg}). If Xq is outsideD;, either
f ({xo}) may be empty, or iff is a relation,f ({Xo}) may be a set of values.

2. Containment sets must have a kind of continuity. Supagé is a sequence in
(IR)" converging tax,. Choose an arbitraryo; e csetf, {xo; }) for eachj such
that theyp; converge to somgy. Thenyo must belong to cséf, {Xo}).

Condition 2 is not as obvious as condition 1, but is no less reasonable. In effect,
condition 2 requires containment sets to use the topology of the system within
which distance between points and convergence of sequences are defined. It would
make no sense if containment sets used a different topology.

Interestingly, the identity of containment sets and closures follows directly from
Condition 1 and 2, alone.

Lemma 1 Given the expression (function or relatior),of n variables< = (xg, - - - , Xp)
with domain,D ¢, the point Xy that may be outsid®;, and the following two con-
straints on the relatiory, ({Xo}):

i. Forallxg € D¢, then the seY ({Xg}) must satisfy.Y ({xo}) 2 f ({Xo}).

ii. For any sequencexo;) with Xo; € D that converges &, and any sequence

(Yoj) , whose members satisfyo; € Y ({Xo;}) 2 f ({Xo;}) and converge to
some valueyy, thenyy € Y ({Xo}) .

ThenY ({Xo}) = T ({Xo}), the closure off , evaluated at the poim.

Proof. The first step is to prove that ({Xo}) must containf (xo). Begin with any
Yo € f(Xo). By definitionyy is the limit of a sequenceypj) whereyo; € f({Xa})
for somexo; whose limit isxo. From applying condition to the members of the
sequencéXo ), it follows that f ({Xoj}) € Y ({xo;}) so anyyo; € Y ({xo;}). From
conditionii, it follows thatyo € Y ({xo; }), completing the first step.

The second step is to prove that expression closures satisfy conditiomsi.
From Definition 1 of an expression closure on pageflfxo}) contains all defined



values of f at X, thereby satisfying condition Conditionii is also satisfied,
because an expression’s closure is the set of all possible accumulation points in the

subsequences whose members are elements of the sequence(dfdets} )), for
all subsequences of any seque(nqe) with common accumulation pointg. This
completes the second step and the prgof.

Because the hypotheses of Lemma 1 are containment-set conditions, it follows at
once that containment sets must be simply expression closures. While satisfying
the containment constraint is the motivation for defining the containment set of
an expression, Lemma 1 and the hypotheses therein are sufficient to require the
containment set of an expression to be the expression’s closure.

It remains to prove that expression closures satisfy the containment constraint. Be-
cause Lemma 1 requires an expression’s containment set to be the expression’s
closure, if closures satisfy the containment constraint, they are the smallest sets
that do so.

To prove expression closures satisfy the containment constraint, start with simple
compositions having the form:

f ({xh) =g ({x}). (34)

Lemma 2 establishes that closures of the compositions in (34) are subset-equal to
the corresponding composition of their closures. In Lemma 3, Lemma 2 is gener-
alized to compositions having more general form in (35):

f(xh=g{y, 9 yeh(xhh (35)

from which any arbitrary expression can be built up. Note that because closures of
expressions are defined at all poirgse (IR*)" (see Definition 1, page 15), Lemma
2 holds, even iff ({Xo}) = @.

Lemma?2 Given the composite expression,f, of n variables, with
f (X)) = g(h({x})), then for anyxg € (IR*)", the closure off atx, satisfies
the following subset inequality:

Tx) STyl Yo eh(ixoh})- (36)

Proof. Take anyzy € f({xo}). S0z = lim;- o zj wherez; € g({y;}) for some
yj € h({x;}), and for some sequen¢g;) which converges to.

Extended Real Intervals and theTopological Closure ofExtended Real Relations 21



22

By compactness dR*, and by taking a subsequence, assuthat they; converge
to someyy. Then by the definition of the closure of a relatiag, € g({yo}).

Similarly yo € h({Xo}). Sozo € G({Yo | Yo € h({xo})}), proving the resultn

The Analysis of Dependence

Extending Lemma 2 for the simple compositions in (36) to the general form in
(35) requires an analysis dependence between multiple occurrences of expres-
sion arguments. The term dependence in the interval literature is used to describe
an expression in which at least one argument is used more than once. Because in-
terval arithmetic does not recognize dependence, every expression is evaluated as if
each occurrence of a variable is independent of every other occurrence of the same
variable. For example, instead of computing a sharp enclosure of the expression:

X
X+Yy

37)

at the point(xo, Yo) , interval arithmetic computes a sharp enclosure of the expres-
sion:
z
X+y

(38)

at the point(xo, Yo, Zo) = (Xo, Yo, Xo) -

In the following three sub-sections, the range of possible dependencies in a single
composition is examined.

The General Case.

Letthen arguments of the expressioh({x: }) , be partitionedx = (Xn,, Xg,» Xc)-
Further, leth ({xn}) be an expression of thm, variablesx, = (xhu, xc) and let

g ({(y,Xg)}) be an expression of the, + 1 variables,y, Xg) = (Y, Xg,, X¢). The
arguments irx; are the only common arguments to bgghandxy. The arguments
in Xp, andxg, appear only irh andg, respectively. Whether there are common
arguments withirx, andxg is unspecified for the time being.

6 This is the customary compressed way to express the following argument. Recall that a subsequence means gpequence
where j1, j2, j3, ... is some strictly increasing sequence of indices. Takectineesponding subsequences of thg s andx;s,
namelsz-k ande-k. These still onverge tazg andxg respectively. So, renaming these subsequences with the original names (i.e.
naminngk asx;j, etc.) results in sequences with all the original properties and the extra property thas tenverge tgyp.



The Single-Use Case.

One extreme is the case when there are no arguments ifhen thens argu-
ments of the expressior, ({X{ }) , can be partitioned such that= (xp, Xg), with
h ({xn}) an expression of they variablesx,, andg ({(y,Xq)}) an expression of
theng + 1 variables(y, Xg) . There are no commax;, arguments i, andxg.

The Total Dependence Case.

The other extreme is when all arguments argdrand there are no unique argu-
ments Xy, Or Xq,, associated witlh or g. In this case:

9

and f ({xt0}) = g ({(h ({xf0}),Xr0)}), S0 no partitioning of the arguments &f
is needed.

Regardless of the degree of dependence, Lemma 2 extends to the general composi-
tion in (35):

Lemma 3 Letthen; arguments of the expressioh({x:}) , be partitionedx = (Xx,, Xg,, Xc).
Further, leth ({x,}) be an expression of tha, variablesx, = (xhu, xc) and let

g ({(y,%g)}) be an expression of thg, + 1 variables,y, Xq) = (Y, Xg,» X¢). The
members oK. are the only common arguments to bathandxy. The arguments
in Xp, andxgy, appear only irh andg, respectively.

Consider the composition having the form,

f(x1) =g ({(y,%g) |y e h({xaD}). (40)
Then regardless of the number of common arguments,in
T ({xro}) €T ({(%0, X00) | Yo € N (Ixro1)}) (41)

The proof parallels that of Lemma 2, using the single-use and total-dependence
cases defined above.

Proof. Take anyzo € f({Xto}) = f({(Xn,0, Xg,05 Xc0)}). From Definition 1,z =
limLz; where z; e g({(yi, %)) = 9((¥i,XgjsXe)}) for some

yi € h({xnj}) = h({(Xn,j» X¢j)}), and for some sequend@sj) = (Xn,j> Xguj» Xcj ) »
which converge tx+o.
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In the single-use case&, contains no members. Except for the fact tgatas
argumentsxg, in addition toy, this is precisely the same situation as that in Lemma
2. The expressiog depends on the membersgfonly throughh. By compactness

of IR*, and by taking a subsequence, assume that/fheonverge to somep.

Then by the definition of the closure of a relatiap, e G({(Yo, Xg0)}). Similarly

Yo € h(fxno}). S0z € G({(Yo, Xg0) | Yo € h({xno}}), proving the result in the
single-use case.

In the total-dependence case, equation (39) is true. When computing the closure
of f, members ok, that are common to both andh are taken into account. In
contrast, when computing the composition of closures, the fact that the members
of X, are common t@ andh is ignored. The composition of closures can take on
more values than the closure bfoecause the membersxgfin g andh are free to

vary independentlyThis case is the same as the single-use case, with eguat

of the variables ixg andxy. That is,Xq0 = Xno, but with the variables themselves
unequal —recall item 1 on page 8. The remainder of the proof in this case is exactly
the same as in the single-use case.

Since the two extreme cases bound all possible degrees of dependence, the required
result is provedn

Example2 From Lemma 3, the following expression closures of the functions in
(22a), (22b), and (22c) are subset equal to the corresponding compositions of BAO
closures:

Toxa), X)) C (X} /(Ixa} T {%a)) (42a)
Toixa), (X)) C 171/(1F {2} / {xa}) (42b)
Taxa), (X)) € T/(AF (xa} 7 Ix2}) (42c)

The values in Table 6 illustrate how function values, expression closures and com-
positions of BAO closures are related. The first row contains column headings.
The first column contains argument values. The second column contains defined
function values forf,, fy, and f3 if arguments are contained in the function’s nat-

ural domain. Question marks denote undefined values. “na” means not applicable.
Column 3 contains the value of the expression’s closure. Note that expression clo-
sures are always defined and that all three expressions have the same closure values.
From the identity of containment sets and expression closures, these values are the
containment sets of the expressions that must be enclosed by their interval evalu-
ation. Column 4 contains the values of the right-hand sides of (42a), (42b), and



(X1, X2) (f1, f2, f3) | (f1, f2, f3) | expression clsosure compositions
o [ R i
(1,0 (0,0,? {0} {0}
0,1 1,721 {1} (1}
-1 ?,2,7 {—o0, 400} {—0c0, +00}
(0,0) (22,7 IR* IR*
(400, +00) (?2,?2,7 [0,1] ([0, +o<],[0, 1], [0, 1))
@202 | | {553 | ((£5551].{3.3].{33))
wann| w | 18 | (IR

TABLE6  Sample values of expressions (42a), (42b), and (42c).

(42c). As Lemma 3 predicts, subset equality holds between expression closures
and compositions of BAO closures. As expected, compositions of BAO closures
for f; may include unneeded values because the composition of BAO closures does
not recognize dependence between multiple occurrences of

Containment-Set Closure ldentity

The containment-set closure identity follows at once from Lemmas 1 and 3:

Theorem 1 Given any expression ({x}) of n variables and the pointy,, then the
containment set,

cset(h, {xo}) = h ({Xo})

is the smallest set that satisfies the containment constraint and conditions i and ii in
Lemma 3.

(43)

Proof. Expression closures are uniguely determined by Lemma 1. Lemma 3 guar-
antees that expression closures satisfy the containment constraint in Definiion 2.

Theorem 1 establishes that the containment set and closure of any expression are
identical. Therefore, containment sets inherit all the properties of expression clo-
sures.
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Basic Arithmetic Operation Containment Sets

Having established that containment sets are closures, the containment sets of the
BAOs and other intrinsic functions are established using Theorem 1, the containment-
set closure identity, and Definition 1 of the closure of an expression.

Addition

Let f, (X,y) = x 4+ y. Then from the containment-set closure identity and the
definition of an expression closure,

cset( 4, {(Xo, Yo)}) = T, ({(Xo, Yo)}) (44a)

lim - ocXj = Xo
=1z

liMm;5oYj = Yo
Points that are inf,, but not in f., include those values for which at least one
of Xg or yg, must be—co or +co. Without loss of generality (because addition
commutes), lexy € {—o0, 00} .

(44b)

® If Xo = oo andyp € IR, thenx; +y; = oo.
® |f Xo = oo andyp = oo, thenx; +y; — oo.

m |f Xo = oo andyp = —o0, thenx; + y; can approach any finite or infinite value.
For example:

* To get any finitez, lety; =z — Xx;.
* Togetz = —oo, lety; = —x? — ;.

J

" To getz = 400, letx; = y? — y;.



uo = tanh({xo}) , vo = Tanh(lyo}) ,
FIGUREL g = cset(tanh(x + ), (X0, Yol -

The case oky = —co is similar. Therefore, the following closure of addition and
subtraction as shown in Tables 2 and 3 is justifiedkfpoe {—oco, +oc0}:

cset(x + Y, {(—o0, Yo)}) = {—o0}, for yp < 400,
cset(x + Y, {(+o0, Yo)}) = {+o0}, for yp > —oo,
cset(x + Y, {(—o0, Yo)}) = IR*, for yp = +o0.

The graph in Figure 1 depicts the closure of addition. 0he-, andw-axes are the
mappings oo, Yo, and csetx + vy, {(Xo, Yo)}) onto the interval {1, 1] using the
hyperbolic tangent map. To properly illustrate that ¢get y, {(—oo, +c0)}) =

IR*, the graph should actually contain vertical lines framo, w) = (1, —1, —1)
to(1, —1,1) and from(—1,1, —1)to(—1,1,1).
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Multiplication

Let f« (X,y) = x x y. Then following the same justification as in the case of
addition,

cset(f, {(Xo, YO)}) = T ({(x0, Yo)}) (45a)

liMm;jeeXj = Xo
=1z

liMm;5eYj = Yo
limj Lo (X x yj) =2

Points that are irf ,, but not in f,,, include those values for which at least one of

Xo OF Yo must be—co or +oo. Without loss of generality (because multiplication

commutes), lexy € {—o0, 00} .

(45b)

® If Xo = 00, Yo € IRandy # 0, then:

ey —o0, ify <0
IXYI 7 jeo, ify>0

® |f Xo = oo andyy € {—o0, +0o0}, then the results in the previous case hold.
® |f Xp = oo andyp = O, thenx; x y; can approach any finite or infinite value. For

example:

* To get any finitez, lety; = X—ZJ

" Togetz = —oo, lety; = —=.

* Togetz = +oo, lety; = —=

i

s %

The case okg = —oo is similar. Therefore, the following closure of multiplication
as shown in Table 4 is justified fag € {—o0, +00}:

cset(x x Y, {(xo, Yo)}) = {signum(xo) x signum(yo) x oo}, fory + 0 and
cset(x x Y, {(xo, Yo)}) = IR*, for yo = 0.

Similar to Figure 1, Figure 2 depicts the closure of multiplication using the hy-
perbolic tangent mapping o, Yo, and csefx x vy, {Xo, Yo}) onto theu-, »-, and
w-axes, respectively. To properly illustrate that ¢gek v, {(0, +co0)}) = IR,

the graph should actually contain vertical lines fraimn= —1 tow = +1 at

(Xo, Yo) = o, -1, 1 0, O, D, and(-1, 0).



up = tanh({xo}) , vo =anh({yo}),
FIGUREZ ) = csetitanh(x x Y) , (X0, Yo)) -

Division

Let f. = (x = y) then

cset( f., {(Xo, YO)}) = f. ({(Xo, Yo)}) (462)
liM ;500 Xj = Xo
=17 Iimj_m yj = Yo . (46b)

limj 5o (Xj +Y)) =2

Points that are irf ., but not in f., include those values for which at least one of
Xo Or Yo must be—oco, +o0, or yp = 0.

® |f Xo =00, Yo € IR, andy # 0, then
lim (x; = yj) =

J]—>0o0

—o0, fy <0
Yoo, ify>0

Similarly, if Xo € {—00, +00}, X; =+ Y; = signum(Xg) x signum(yo) x (400) .
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® If Xo = 400 andyp = +o0, thenx; + y; can approach any non-negative finite
or infinite value. For example:

* Togetzo =0, lety; = xl?.
" To get any finite O< zo < oo, lety; = 2.

" To getzp = +oo, letx; = y?.

* To provezy cannot be negative, it is sufficient to prove that;liga, (%) #+ 2
if zg <O.
Proof. For sufficiently largej, sayj > jo, bothx; andy; are positive. Thus,
forj > jo, % >0 and‘% — zo‘ > |z0] > 0. Therefore% cannot approach
20 < 0.1

Similarly, if Xo € {—o0, +00} andyp € {—o0, +o0}, then limj,o (Xj + yj) =
signum(Xo) x signum(yp) x [0, o] .

" If Xo € IRandyp € {—oo, +oo}, then lim .. (X; + yj) = 0. For example:
* Togetzo =0, lety; e {+]jx;}.

" If X0 € IR, Xo > 0, andyp = 0, then limj_, o (Xj = yj) = {Foo}.
* To getzy = —oo, lety; = —*.

* To getzg = +o0, lety; = 5JL

* To provez, cannot be finite, it is sufficient to prove th%t = |§—j| - Zp if
2y # 0.

Proof. For sufficiently largg), sayj > jo, X; > 0,]yj| < X and‘li—jl — |zo|‘ >

|Zo| > 0. Therefore |§—j| cannot approach zy if
1zo] > 0. 0

Similarly, if xo € IR, Xo < 0, andyp = 0, then limj (X} + y;j) = {00} .



" If Xo = +o00 andyp = 0, then im0 (X} + Y;j) = {Foo}.

" To getzg = —oo, lety; = ;—Jl

" To getzg = +oo, lety; = 2.

X

Similarly, if xo = —oco, andyo = 0, then lim; o (X; <+ yj) = {#0c0}

= If Xo = 0 andyp = 0, thenx; + y; can approach any finite or infinite value. For
example:

* To getzy = —oo, lety; = —signum(x;) x x?.

* To getzy = +oo, lety; = signum(x;) x x?.

* To get any finitezo # 0, lety; = .

z

" Togetz, =0, let |x;| = y.

Therefore, the following closure of division as shown in Table 5 is justified:

cset(x + Y, {(Xo, Yo)}) = {0}, for xp € IRandyg € {—o0, 00},

cset(x = Y, {(Xo, Yo)}) = signum(yo) x signum(yo) x [0, oo] ,
for xg andyg € {—o0, +oo},

cset(x =y, {(Xo, 0)}) = {Fo0}, for Xo € IR. andxg # 0, and
cset(x = vy, {(0,0)}) = IR".

The graph in Figure 2 depicts the closure of division using the same hyperbolic tan-
gent mapping employed for addition and multiplication. To properly illustrate that
cset(X Y, {(+00, +00)}) = cset(x + Y, {(—o0, —o0)}) = [0, oo , and csex + y, {(—oo,
cset(x =Y, {(+o0, —00)}) = [—o0, O] the graph should actually contain vertical

lines fromwy = —1 towe = 0 at(ug, v0) = (-1, —1), and(l, 1), and from

wo = 0towp = 1 at(up, vo) = (—1,1), and(1, —1). Finally, to properly illus-

trate that csetx — v, {(0, 0)}) = [—o0, +00], there should be a vertical line from

(UO’ 00, wO) = (oa o’ _1) to (oa o’ l) .
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up = tanh({xo}) , vo = tanh({yo}),
FIGURE 3 wo = cset(tanh(x =), {Xo, Yo}) -

Irrational Expressions

Similar treatments is used to define the closure of irrational expressions.

In
In this case,
cset(In, {Xo}) = In ({Xo}) (47a)
liMiL 00X = X
:{y‘ Iim;_mlnjxj —z } (47D)

Points that are ifn, but not in In include those values for whicky is 0 or +oo.

® |f Xo =0, then lim - «InXj = —oco.



® |f Xo = 00, then lim;_; In Xj = oo.

Therefore, the following closure of the natural logarithm is justifieddoe {0, +o0}:
cset(Inx, {0}) = {—o0}, and
cset(Inx, {+o0}) = {+o0}.

exp

In a fashion similar to the natural logarithm, the following closure of the exponen-
tial function is justified forxg € {—o0, +0c0}:

cset(expx, {—oo}) =0, and

cset(expx, {+oo}) = +o0.

exp(yInx)

Let fexayinx) = €xp(yInx). Points that are irTeXp(me), but not in fexyyinx), iN-
clude those values for whichy € {—oc0, 0, +00} andxg € {0, 1, +oo}, excluding
(Yo, X0) = (0, 1)

® |f yp = 00, Xp € IRandx # 1, then

0, ifx<1
exp(y; Inx;j) — Voo ifx>1

" |f yp = oo andxg € {0, +oo}, then the results in the previous case hold.

" If yo = co andxo = 1, then exp(y; Inx;) can approach any non-negative finite
or infinite value. For example:

* To get any finitezo, letx; = exp("‘f_l) .
. _ N 1
Togetzy =0, letx; = exp(ﬁ) .

* To getzp = +o00, letxj = exp(viy_j) :
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The cases ofp € {—oo, 0} are similar. Therefore, the following closure of exgn x)
is justified foryy € {—o0, 0, 400} andxy € {0, 1, +oo}, excluding(yo, Xo) =
(0,1). Including yop = 0 is needed becaustTe({xo}) can be infinite wherxg €
{0, +o00}.

® Foryg € {—o0, +oo} andxq € {0, +oo},

cset(exp(yInx), {(xo, Yo)}) = {exp(signum(y) x signum(x — 1) x co)}.
(48)

" Foryg € {—o0, +oo} andxg = 1, or yp = 0 andxg € {0, +oco},

cset(exp(yInx), {(Xo, Yo)}) = [0, +00] . (49)

Variable and Value Equality

Theorem 1 establishes the identity of containment sets and closures. Therefore,
the distinction between the equality of variables as contrasted with equality only of
their values applies both to containment sets and closures. For examp{g,-€set{Xq})

(or equivalently, csex — y, {(Xo, Yo) IX = Y})), and csetx —y, {(Xo, Yo) X0 = Yo})
are different. The following examples are illustrative.

Cset(X — X, {Xo}) = cset(x —y, {(Xo, Xo)} | X =Yy) = {0} (50a)

cset(x X (%) , {xo}) = cset(x X (;1/) , 1(Xo, X0)} | X = y) ={1} (50b)

cset(g, {XO}) = cset(§ s 1(%0, X0)} | X = y) ={1}. (50c)

Alternatively,

{0} forallxg € IR

cset(x — Y, {(Xo, Yo) IXo = Yo}) = { R* if xo € {00, oo} * (013

1 {1} forallxpe IR—0
Cset(X X (;/) ’ {(XO’ XO) |XO = yO}) = { IR* if Xo € {—OO, 0, —I—OO} ’ (51b)



and

X {1} forallxo e IR—0
cset(—, (X0, Xo) X0 = yo) =1 IR* if Xo=0 . (51c)
y [0, +00] if Xo € {—00, +00}

Containment-Set-Equivalent Expressions

Two expressions areontainment-set equivalent if they have identical contain-

ment sets for all possible values of their arguments. The interval evaluation of
containment-set-equivalent expressions produces an enclosure of their common
containment set. Therefore, containment-set-equivalent expression exchange can-
not cause a containment failure. This result can be used to choose the “best”
containment-set-equivalent expression for a particular purpose.

Without loss of containment, expressibitan replace expressidnin any expres-
sion, if for all {xo} € (IR)", cset(f, {Xo}) C cset(h, {Xo}).

Example 3 The functions,f;, fy, and f3 on page 17 are containment-set-equivalent
expressions. Therefore, the interval expression

fa ([Xa], [Xa]) N fa([Xa], [X2]) (52)

is a sharp enclosure of the common containment set of the functionfs, and
f3. In (52) f1 is not needed, as the width &f exceeds that of the intersection of
f, and f3.

Conclusion

Traditional interval analysis is defined for single-valued operations and functions
with operands and arguments in their natural domains. Because intervals are sets,
interval systems can be extended to:

1. permit interval argument endpoints to be any valuetRi whether partly or
totally outside an expression’s natural domaind,
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2. permit interval expressions to be enclosures either of functions or of relations.

The key new concept needed to make the required extensions dgertiaenment
set of possible results that an enclosure must contain, including argument values
for which point expressions are not defined. The containment-set closure identity

provides an operational definition of the containment set of any expression, whether
a function or relation.

The practical consequences of these results are:

1. Interval arithmetic can be used to bound the range of relations as well as func-
tions.

2. Closed interval systems can be implemented on a computer so that no undefined
events, or IEEE exceptions, are logically possible.

3. Containment-set equivalence defines the set of expressions within which substi-
tutions can be made without loss of containment.
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