Differentials. Let A and B be monoids, X a set, and $:: X \times A \rightarrow X$ a right action of A on X. A differential on X taking values in B is a map $d:\{(x, x a): x \in$ $X \wedge a \in A\} \rightarrow B$ such that $d(x, x)=1$ and $d(x, x a) d\left(x a, x a a^{\prime}\right)=d\left(x, x a a^{\prime}\right)$ for all $x \in X$ and $a, a^{\prime} \in A$. NOTE: d is not necessarily a total map on $X \times X$.

Prop. Let X be a set, A and B be sectors, a right action of A on X, and d a differential on X taking values in B. Then the map $e_{x}(a)=d(x, x a)$ is a calc.

Proof. We have $e_{x}(1)=d(x, x)=1$ and

$$
e_{x}\left(a a^{\prime}\right)=d\left(x, x a a^{\prime}\right)=d(x, x a) d\left(x a, x a a^{\prime}\right)=e_{x}(a) d\left(x a, x a a^{\prime}\right)
$$

for all $x \in X$ and $a, a^{\prime} \in A$.
Prop. Let A and B be sectors, $e: A \rightarrow B$ a calc, and let A act on itself on the right by multiplication. Then the map $d:\left\{\left(a, a a^{\prime}\right): a, a^{\prime} \in A\right\} \rightarrow B$ defined by $d\left(a, a a^{\prime}\right)=e^{a}\left(a^{\prime}\right)$ is a differential.

Proof. We have

$$
d\left(a, a a^{\prime}\right) d\left(a a^{\prime}, a a^{\prime} a^{\prime \prime}\right)=e^{a}\left(a^{\prime}\right) e^{a a^{\prime}}\left(a^{\prime \prime}\right)=e^{a}\left(a^{\prime} a^{\prime \prime}\right)=d\left(a, a a^{\prime} a^{\prime \prime}\right)
$$

and $d(a, a)=e^{a}(1)=1$ for all $a, a^{\prime}, a^{\prime \prime} \in A$.

