Relay. Let n be a positive integer and C_{i} a family of sectors for $i \in\{1, \ldots, n\}$. Let $(T)_{i j}: C_{i} \rightarrow C_{j}$ be a matrix of calcs, the travel matrix. Let $R:\{(i, c): i \in$ $\left.\{1, \ldots, n\} \wedge c \in C_{i}\right\} \rightarrow\{1, \ldots, n\}$ be a map, the route function. Define the relay sequence $\left(i_{k}, c_{k}, T_{k}\right)_{k=0}^{\infty}$ started at $\left(i_{0}, c_{0}\right) \in \operatorname{dom} R$ with travel matrix $T=T_{0}$ and route function R as follows: for non-negative integers k, it consists of indices i_{k}, elements $c_{k} \in C_{i_{k}}$, and travel matrices T_{k} such that, for $i=i_{k}$ and $j=i_{k+1}$, we have $i_{k+1}=R\left(i, c_{k}\right), c_{k+1}=\left(T_{k}\right)_{i j}\left(c_{k}\right)$,

- $\left(T_{k+1}\right)_{i j}=\left(T_{k}\right)_{i j}^{c_{n}}$, and
- $\left(T_{k+1}\right)_{i^{\prime} j^{\prime}}=\left(T_{k}\right)_{i^{\prime} j^{\prime}}$ for $\left(i^{\prime}, j^{\prime}\right) \neq(i, j)$.

Note that these conditions imply that $\left(i_{k+1}, c_{k+1}\right) \in \operatorname{dom} R$ when $\left(i_{k}, c_{k}\right) \in$ $\operatorname{dom} R$, so by induction it holds for all natural numbers k.

Inuitively, $\left(i_{k}, c_{k}\right)$ is a message routed between kingdoms C_{i} undergoing translation T_{k} in travel while the translator retains memory of the message through the shift operator. The route function R specifies the future destination $R\left(i_{k}, c_{k}\right)$ of the message c_{k} given its current location i_{k}.

