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Abstract

In order for vortex equations on moduli spaces of Z,, orbifolds with
N = 1 spacetime supersymmetry of hyper-Kahler Hirzebruch surfaces
fibered over a lens space to be gauge mediated, one requires,
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This identity is proved via the thrice iterated application of integration
operators, and by evaluating non-trivial zeros of real valued second degree
polynomials of a single variable.

1 Proof

To begin with, we first want to prove that the sequence of partial sums (s,)
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of the sum ) [(—=1) W' in R satisfies the property that 3 some z € R
such that Ve >0, 3N e N: |s, —z| <e Vn > N.
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for odd n.



Thus,
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However,
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which is from the Taylor series expansion of el®!, and the result follows from
application of the Squeeze theorem.
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The exact same argument can be used to show that ) (—1) Gomyt also

has the same properety that the sequence of partial sums (s,,) satisfy the con-
dition that in R, 3 some = € R such that Ve >0, IN e N: |5, —z| <eVn > N.

Now, when we have,
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we get an intriguing result. Since both sums are absolutely convergent they can
be summed,
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Let § = mr. Then since Y, oy (—1)" 51 = —1 and
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For the second part of the proof, consider the set of rational numbers r such
that r < 0, or r < 0.9, or r < 0.99, or r is less than some other number of the
form 1 — (§5)". This set is the number 0.999... € R. Every element of 0.999...
is less than 1, so it is an element of the real number 1. Conversely, an element
of 1 is a rational number ¢ < 1, which implies
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Since 0.999... and 1 contain the same rational numbers, they are the same set.

Finally, given what was deduced above and since,
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Barnett’s identity can thus be seen as an immediate collorary of Brady Haran’s
astounding result [1]. Thus,
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