K as a Summation of K Elements

The Waterbed Principle

Let

$$\sum_{i=1}^{K} a_i = K$$

where K is an integer greater than 1. One solution is $a_i = 1$, what can be said about other solutions? In the case that all terms are equal, $a_i = c$, and

$$\sum_{i=1}^{K} a_i = \sum_{i=1}^{K} c = Kc = K$$
$$\longrightarrow c = 1$$

Therefore, if all terms are equal, they all equal 1. If any term does not equal 1, then the terms cannot all be equal.

Assume all terms equal 1 except for one term $a_j \neq 1, 1 \leq j \leq K$. Then

$$\sum_{i=1}^{K} a_i = (K-1)(1) + a_j = K$$
$$\longrightarrow a_j = 1$$

By contradiction, there cannot be exactly one term that is not equal to 1. Therefore, if any term is not equal to 1, at least 2 must not equal 1.

Assume that not all terms equal 1. Then at least 2 terms must not equal 1, and the terms cannot all be equivalent. Therefore, there is a minimum term a_m and maximum term a_M such that

 $a_m \le a_i \le a_M$ $a_m \ne a_M$

Then,

$$a_m \le a_1$$

$$2a_m \le a_1 + a_2$$

$$\vdots \qquad \vdots$$

$$Ka_m \le \sum_{i=1}^K a_i = K$$

$$a_m \le 1$$

By similar logic, $a_M \ge 1$.

Rearranging the original equation:

$$\sum_{i=1}^{K} a_i = K$$
$$\sum_{i=1}^{K} a_i - K = 0$$
$$\sum_{i=1}^{K} a_i - \sum_{i=1}^{K} (1) = 0$$
$$\sum_{i=1}^{K} (a_i - 1) = 0$$

Assume a limiting case $a_m = 1$. Then $a_i \ge 1$, and $(a_i - 1) \ge 0$. Since not all $a_i = 1$, at least two terms must not equal 1. Since all terms $a_i \ge a_m = 1$, at least two terms must be greater than 1. Then

For all terms $(a_i - 1) \ge 0$ For at least two terms $(a_i - 1) > 0$ This implies that $\sum_{i=1}^{K} (a_i - 1) > 0$

By contradiction, $a_m \neq 1$. By similar logic, $a_M \neq 1$.

In summary, if $\sum_{i=1}^{K} a_i = K$ and any term $a_i \neq 1$, then there exist a minimum term $a_m < 1$ and a maximum term $a_M > 1$, and $a_m \leq a_i \leq a_M$. If a waterbed with an initially flat surface somewhere sinks, then elsewhere must rise.