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A B S T R A C T   

Sex differences between males and females can be detected early in life. They are present also later even to a 
much greater extent affecting our life in adulthood and a wide spectrum of physical, psychological, cognitive, 
and behavioral characteristics. Moreover, sex differences matter also in individual’s health and disease. In this 
article, we reviewed at first the sex differences in brain organization and function with respect to the underlying 
biological mechanisms. Since the individual functional differences in the brain, in turn, shape the behavior, sex- 
specific psychological/behavioral differences that can be observed in infants but also adults are consequently 
addressed. Finally, we briefly mention sex-dependent variations in susceptibility to selected disorders as well as 
their pathophysiology, diagnosis, and response to therapy. The understanding of biologically determined vari-
ability between males and females can have important implications, especially in gender-specific health care. We 
have the impression that it is very important to emphasize that sex matters. Males and females are differently 
programmed by nature, and it must be respected. Even though we as males and females are not the same, we 
would like to emphasize that we are still equal and together form a worthy colorful continuum.   

1. Introduction 

Males and females differ due to a combination of genetic and hor-
monal factors. The recognition of sex differences is possible early during 
development. First of all, to address properly the differences between 
men and women, it is necessary to distinguish between sex and gender 
and their respective effects on health. Gender refers to the continuum of 
complex psychosocial self-perceptions, attitudes, and expectations 
people have about members of both sexes, behavior, lifestyle, and life 
experience [1]. Sex refers to the biological differences between males 
and females. Two distinct sexes- males and females are determined by 
sex chromosomes and genes that form certain gonads, internal and 
external genitalia, and physiological hormones. Another crucial aspect 
that contributes to phenotypical sexual differences is epigenetics [2]. 
The various epigenetic modifications such as methylation, acetylation, 
ubiquitination, etc. regulate gene expression (activating or repressing it) 
without changing the DNA sequence. The inactivation of X chromo-
somes in females, genomic imprinting, and differential 
miRNAs/non-coding RNAs mapping on the X-chromosome are the main 
principal epigenetic mechanisms, involved in the determination of sex 
differences [3]. It is also important to note that some studies have 
demonstrated that genetic differences such as single nucleotide poly-
morphisms (SNPs) located on autosomes can be predictors of 

differentially methylated alleles. This explains why some functionally 
irrelevant variants can possibly be reconsidered and associated with 
some sex specific phenotype [4]. 

Many features of the brain and behavior vary by sex. Current 
research cannot ignore sex differences in brain anatomy, physiology, 
and neurochemistry, especially considering the different prevalence of 
many psychiatric and developmental disorders in males and females, 
signs, and symptoms of pathophysiology, and response to therapy. 

The aim of this paper is to bring an overview of sex differences be-
tween males and females pointing out that different genetic and hor-
monal environment code male and female developmental trajectory. 
Despite the complexity, we would like to overview that due to different 
underlying biological forces, males and females differ not only in 
obvious biological aspects but also in brain activity, sex-specific cogni-
tive and behavioral styles, and also susceptibility to illness and disor-
ders. Despite the complexity, biology matters in studying sex 
differences, especially considering males’ and females’ different vul-
nerabilities to many developmental and psychiatric disorders. This re-
view has the aim to show there is a biological basis for sex differences, 
and that biology plays its role. We would like to point out that sex cannot 
be ignored as a possible covariate in various domains and those we 
mentioned. In other words, this review wants to show why sex matters 
and regarding the aspect of biology men and women are not the same. 
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On the other hand, we are aware of the fact that under certain circum-
stances sex differences in adult neural structure or function could be 
shaped through experience, practice, and neural plasticity. 

Sex steroid hormones are the key regulators of sexual differentiation 
and development. The mechanism of their activity is complex and still 
not fully understood. Steroids are not the only origin of sex differences. 
Genetic and environmental factors modulate the expression of genes 
coding not only hormones but also enzymes involved in steroidogenesis 
and receptors for hormones. The whole mosaic is even more complicated 
by the nongenomic action of steroids. Environmental factors, such as 
diet or physical activity, education, or socialization must be also taken 
into consideration. It must be mentioned that under certain circum-
stances sex differences in adult neural structure or function could be 
shaped through experience, practice, and neural plasticity We are aware 
of the fact, that research on sex differences cannot be complete without 
consideration of both genetic/hormonal and social influences that fuels 
the development via complex nature-nurture interactions. However, 
here we focused more on the features of the brain and behavior that vary 
by sex and may be referring to different hormonal exposure [5] (Fig. 1). 

2. Sex differences in brain organization 

Animal studies with rats pointed out that the nucleus of the preoptic 
area (SD-POA) implicated in male copulatory behavior exhibits sexual 
difference. It represents one of the most characterized sex differences 
and it is 2.6 times larger in males when compared to females [6]. 
Sexually dimorphic regions are not always larger in males. The ante-
roventral periventricular nucleus (AVPV), part of the hypothalamus 
associated with the regulation of ovulatory cycles, is larger in females 
with a higher cell density in both mice and rats [7]. Other volumetric sex 
differences were also reported (for review see [8]). However, there are 
some concerns about the lack of internal consistency within a single 
brain in the animal literature. Human MRI studies allow the simulta-
neous assessment of multiple brain features in many individuals. The 
largest single-sample study of neuroanatomical sex differences to date 
performed on 2750 female and 2466 male participants from a UK bio-
bank (mean age 61.7 years, range 44–77 years) showed males having 
higher raw volumes, raw surface areas, and white matter fractional 

anisotropy; females had on the other side higher raw cortical thickness 
and higher white matter tract complexity. In other words, sex differ-
ences were reported, sometimes in favor of women and sometimes in 
favor of men. However, there was considerable distributional overlap 
between the sexes [9]. Another MRI study of more than 1,400 human 
brains (♂: mean age of 31.5, range 18–79; ♀: mean age 28.9, range 
18-75) similarly demonstrates that, although there are sex differences in 
the brain, human brains do not belong to one of two distinct categories: 
male brain/female brain. Most human brains have a mixture of char-
acteristics, such as tissue structure belonging generally to both men and 
women [10,11]. 

Previously mentioned studies looked only at the brain structure but 
not the function. However, functional connectome organization showed 
stronger connectivity for males in unimodal sensorimotor cortices, and 
stronger connectivity for females in the default mode network [9]. The 
connectivity profiles showed an early separation between the develop-
mental trajectories of the two sexes, with males displaying higher 
intra-hemispheric connectivity and females of the same age displaying 
higher interhemispheric connectivity. This implies that the average 
male brain is designed for better connecting sensory perception with 
motor activity and the female brain is predisposed to linking analytic 
and intuitive processing [12]. These observations support the formerly 
postulated callosal theory according to which prenatal testosterone 
mediates early axon pruning in callosal tissue, and thus the more 
testosterone a brain is exposed to in the uterus, the more lateralized the 
functions are [13]. It is also in line with one of the first works in this field 
that already in 1959 showed that prenatal testosterone affects the brain 
architecture. [14]. Authors back then assumed that these effects were 
more likely subtle, as they were reflected in function rather than invis-
ible structure. Organizational effects possibly produce permanent 
changes in the wiring and sensitivity of the brain areas [15–17]. This 
theory was later proved by more recent research [18–22] demonstrating 
for instance, how males’ and females’ brains worked differently during 
solving the same language tasks [23]. It can be speculated then that our 
brain might work differently in order to compensate for a different 
hormonal influence, caused by gonadal steroids. In other words, sex 
differences exist to enable more similar performance in certain tasks 
considering the different hormonal environment in males and females 

Fig. 1. Factors contributing to sex differences. Genetic and environmental factors such as diet, physical activity, education, socioeconomic status, or socialization 
modulate the expression of genes coding not only sex hormones but also enzymes involved in steroidogenesis and receptors for hormones. 
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[24]. 
Despite the intense research in this field, it remains challenging to 

precisely understand when sexual differentiation begins. Animal 
research reveals valuable information that helps to shed more light on 
the understanding of critical periods in brain development and their 
impact on further functioning [25]. Sexual differentiation of the brain is 
a unique critical window that corresponds with the onset of endogenous 
testosterone production from fetal testes. In rodents, the window starts 
to be open on embryonic days 16–18 [26]. Circulating testosterone 
levels fall within hours of birth and the critical period closes shortly 
thereafter as the process of masculinization irrevocably proceeds. Fe-
males are not exposed to endogenous testosterone as the ovaries are 
quiescent; therefore, gonadally derived hormone exposure is limited to 
the testosterone exposure from their littermates. During this window, 
the brain sex of a female can be converted to that of a male by the 
administration of exogenous steroids. Females remain sensitive to 
exogenous testosterone treatment for up to a week after birth, afterward 
female becomes insensitive to the masculinizing effects of exogenous 
testosterone indicating the end of the sensitive period [27–29]. Because 
of the unique synthesis of testosterone in males but the shared sensitivity 
of both sexes to this steroid hormone, males have a short critical period 
whereas females have a longer sensitive period [30]. Interestingly, at the 
time of birth, there is no visible difference in POA between males and 
females. The process is completed by ten days of age [30]. 

In humans, a critical period for the organization of the brain is 
thought to be between weak 8 and 24 of gestation [31]. During this 
period, testosterone levels are high. Testosterone levels become 
increased from the 7th week of gestation, reaching the peak in the fetal 
serum between weeks 12 and 18 of pregnancy [32]. This developmental 
period is essential for normal CNS function, brain masculinization in 
male fetuses, and neurological health [33,34]. It appears that brains 
undergo different developmental trajectory prenatally during which 
activity of hemispheres is set up [35]. 

However, studies on human newborns and infants have limitations 
and bring puzzling information. There is some research pointing out the 
sex differences in brain volume and cortical thickness [36], while other 
papers found no significant effect in 1 to 6 years of age [37]. After birth, 
specifically from 4 to 12 weeks of postnatal life, there is a second peak of 
testosterone in male infants, sometimes called mini-puberty [24]. Ac-
cording to some authors, this time is of particular interest since it is 
presumed to be another critical period for the development of sex dif-
ferences in the human brain [38]. This time is of particular interest since 
it is presumed to be another critical period for the development of sex 
differences in the human brain. Moreover, it provides the opportunity to 
directly measure parameters of interest with minimal impact on the 
social environment [24]. However, this is just a speculation at this 
moment, since to date, no evidence suggests the postnatal period is 
sensitive to sexual differentiation. Based on the current state of knowl-
edge, the process seems to be entirely prenatal [30]. Future studies on 
primate models might answer this question, whether there is a second 
and later sensitive period for differentiation of the primate brain [39]. 

Before any physical signs of puberty, there is a quiescence period 
when endogenous gonadal steroids remain in relatively stable low 
concentrations [40]. A wide spectrum of endocrine changes is associated 
with the maturation of the reproductive functions during the adolescent 
period [41,42]. We now know that also brain structures can be modified 
during this time of puberty [43]. Steroid hormones activate specific 
processes such as the production of new cells, dendritic growth, spine 
density, myelination, and brain plasticity and also contribute to the 
activation of sex-specific behavior [44–47]. Sex steroids were found to 
change gene expression in neurons, modulating their possible responses 
to incoming signals [48]. 

3. Sex differences in temperament and cognition 

To a certain degree, previously mentioned brain differences translate 

to behavioral differences. Many of these cognitive and behavioral dif-
ferences appear early in life, and they are biologically determined rather 
than learned (see below). On the contrary, one can argue that observed 
sex-associated differences in cognition and behavior in humans are due 
to the effects of cultural influences. However, there is a large body of 
research pointing to the biological basis of sex-based cognitive differ-
ences that cannot be ignored. Prenatal and neonatal testosterone expo-
sures, together with genetic factors affecting androgen signaling, are 
strong candidates for having a causal role in shaping human behavior 
[49]. Moreover, many cognitive processes were proved to be influenced 
by circulating hormones throughout life [50–52]. 

Remarkably, sex differences in behavior are detected very early, at 
an age when children show few if any signs of recognizing either their 
own or other children’s sex. A study of rhesus monkeys, for example, 
showed that males strongly preferred toys with wheels over plush toys, 
whereas females found plush toys more likable [53]. A much more 
recent study found that boys and girls 9 to 17 months old showed 
marked differences in their preference for stereotypically male versus 
stereotypically female toys [54]. Girls that are affected by higher fetal 
testosterone levels displayed a typical male pattern of play [55,56]. The 
sex-typed play has been intensively studied and many research groups 
have reported links to prenatal testosterone exposure [57–60]. While the 
complex involvement of social influences on toy preference of human 
subjects is always a factor, a primary role for organizational hormones in 
toy preference seems likely. 

There are also sex differences in the motif, color choice, figure 
composition, and use of motion in children’s pictures (age from 5 to 9 
years) [61,62]. Girls draw flowers, butterflies, the sun, and human 
motifs significantly more often than do boys, who more often draw 
mobile objects such as trains and cars. Girls use color more often and 
more diffusely; they tend to arrange their figures in a row and draw each 
figure equally. Boys tend to use blue and gray; draw 
three-dimensionally, and magnify or emphasize a central figure or 
theme more often than girls [63]. The masculine index was significantly 
higher in girls with congenital adrenal hyperplasia producing a higher 
amount of testosterone due to enzymatic disturbance. This indicates that 
androgen exposure during fetal life may contribute to shaping masculine 
characteristics in children’s free drawings [63]. 

Sex differences in spatial-visualization ability were detected as early 
as in 3 and 5-month-old infants [64,65]. Male infants showed an 
advantage in mental rotation performance and also exhibited greater 
visual attention to the object [66]. Sex differences in young infants were 
further demonstrated in multiple age groups during infancy [67]. Boys 
also react earlier in infancy to experimentally induced perceptual dis-
crepancies in their visual environment [68]. Infant girls, even newborns 
respond more readily to faces. In adulthood, women remain more ori-
ented to faces, while men to objects [69,70]. Sex differences in visuo-
spatial skills are well documented mainly in the adult population, 
generally favoring men [71]. Visual information processing relies on at 
least two separate abilities [72,73] Firstly, coordinate processing spec-
ifies precise spatial locations of objects in terms of metric units and gives 
exact distances, particularly useful for guiding actions and navigation. 
Secondly, a robust description of the shape that would rely on categories 
of spatial relations (e.g., above/below, etc.) is useful for recognizing 
objects [74]. Men are better at visualizing what happens when a 
complicated two- or three-dimensional shape is rotated in space and 
may be biased towards a coordinate processing approach while females 
to categorical judgments [75]. Due to different spatial processing, in 
navigation tasks, male and female brains use different strategies to solve 
the same problem. Females tend to rely on landmarks, while males more 
typically rely on more effective strategies of “dead reckoning”: calcu-
lating one’s position by estimating the direction and distance traveled 
[76,77]. Functional MRI studies identified consistent differences in 
activation patterns during visuospatial tasks reflect a true sex-based 
difference in visuospatial processing. A study on a young population 
(7 and 15 years of age) showed that males may engage regions that are 
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associated with a visuomotor network, and females utilize areas indi-
cated in spatial attention and working memory [78]. Adult studies are in 
line with data published on younger populations suggesting 
gender-specific differences in the neuropsychological processes involved 
in mental rotation tasks [79,80]. Studies have shown that gender dif-
ferences in mathematics performance (493,495 students 14-16 years of 
age) are non-existent or that male or female advantage relates mainly to 
certain subskills [81]. In this regard, there are evident 
culture-dependent differences; for example, although males seem on 
average to outperform females in mathematics across all OECD coun-
tries, females score better than males in Finland [82]. But the truth is 
that males overrepresent females at the highest performance levels [83]. 

Studies on early language development were mostly conducted on 
children of various ethnicity and race in the first three years of life, in 
heterogeneous socioeconomic environment and countries. Study on 
Croatian toddlers showed that girls acquire language faster than boys. 
Boys represent more than 70% of late talkers and just 30% of early 
talkers [84]. Girls on average have a larger vocabulary. For example, at 
16 months, girls have a vocabulary of 95 words, while boys have a vo-
cabulary of 25 words [85]. The differences are not observed only in the 
development of the language system but also in the development of 
overall social communication skills. Independently on race, ethnicity, or 
socioeconomic status, boys lag behind girls in the development of many 
communication features – eye contact, gesture use, gesture imitation, 
joint attention, social referencing, etc. perhaps due to different roles 
they have had in social groups during evolution (for review see [84]). 
Some research showed that adult females (aged from 20 to 30) out-
performed men on the verbal fluency task [86]. A meta-analysis of 98 
studies (N = 11,528) assessed verbal fluency through narrative writing, 
and a robust female advantage became evident. It was associated with 
the reproductive life stage and variations in current estradiol concen-
trations [87] However, some papers raises also doubts. Verbal abilities 
in adult populations differ by just 0.1 standard deviation between males 
and females so it becomes rather difficult to replicate the sporadic 
findings of significant sex difference [88] Moreover it was shown that 
the results must be interpreted with caution [89]. In more selected 
samples, female advantage can disappear because of greater male 
variability. 

Traditionally, men have shown a prevalence in gross motor perfor-
mance and women in fine motor performance, due to gender roles and 
the work they are accustomed to carrying out more frequently [90]. 
However, with time, these differences have become more insignificant 
due to changes in male/female roles in some societies (especially in 
western societies) [91]. Recent research on fine motor tasks performed 
by 220 Spanish participants (ages: 12–95) reported sex differences in 
precision. However, more effects were observed according to age groups 
rather than sex. [90]. Moreover, it can be argued that sex differences in 
motor behavior could reflect the existing differences in personality [92] 
and individual cultural differences [91]. 

Individual differences in cognitive abilities can be generally 
measured by the intelligence quotient (IQ). No differences were found in 
the mean IQ of males and females. However, maleś performance is more 
variable, they form a higher percentage in intellectually gifted but also 
in mentally challenged individuals [93,94]. 

Notably, investigations of visuospatial or verbal variability between 
males and females also have practical importance in the interest of 
particular occupations. Spatial abilities and mathematical reasoning 
skills are both strong domains typical for males. They are relevant to 
science, technology, engineering, and general mathematical compe-
tence [95,96]. Those are likely to be necessitated in various professional 
fields, for instance, architecture, engineering, navigation, science, and 
medicine [97]. It is proved that teenagers who excel in the tasks 
requiring high mathematical and spatial demands are more likely to 
major in technical disciplines in college and are over-represented in 
technical positions [98]. Studies have found a disproportionately higher 
number of males scoring in the extreme right tail of the distribution, 

from which many talented technical professionals are sourced [99]. 
Apart from cognitive differences, males and females differ in 

temperament and personality. Large sex differences were documented 
for empathy (for review see [100]). It is noteworthy, that a recent study 
with over 10,000 participants concluded that sex differences in empathy 
were all due to sex-stereotyped norms and expectations [101]. However, 
several behavioral studies with infants and young children provide 
objective evidence that females experience greater empathy than males 
[102–104]. Studies with children are especially valuable in this field 
since they point towards the biological origin of the sex differences due 
to the fact that socialization pressure and social expectations had less 
time to exert their influence. Also, females generally tend to display 
more of social competence than males inside as well as outside of the 
family. They are more caring, sensitive to the needs of others, and 
prosocial [105,106]. Published literature provides evidence that there 
are sex differences in caregiving emerging early in development. Studies 
investigated how infants manipulate objects, such as dolls, that tradi-
tionally are handled differently by boys and girls [107]. Female play 
more often involves caring for another individual (e.g., pretended baby), 
male play does not [108]. This was shown not only in humans but also in 
primates [109,110]. Regarding the animal kingdom, there are also other 
studies that reported sex differences in behavior whether the individuals 
come to the aid of others in need. For example, female mice were more 
likely than male mice to approach mates who were restrained and in 
pain [111]. In another study, females rats were shown to behave in 
prosocial ways without training or reward and act intentionally even 
when prosociality decreases food intake [112] According Cordoni et al., 
who studied behavior of western gorillas, providing comfort to victims 
of aggression or individuals who are otherwise upset is a domain of fe-
males [113]. Studies in nonhuman animals and younger human pop-
ulations (infants/children) offer converging evidence that sex 
differences in prosocial behavior have phylogenetic and ontogenetic 
roots in biology and are not merely cultural by-products driven by so-
cialization (for review see [114]. It can be explained by a lower potential 
rate of reproduction, larger certainty about biological relatedness to 
their offspring, and a larger investment from the start of gestation in 
their evolutionary trajectory [114]. These traits of females are reflected 
in more careful and protective parental behavior and also in their 
occupational interests [115]. 

Regarding the process of evolution, males adopted different repro-
ductive strategies compared to females. Males (young adults, from 
western societies) are more focused on finding mates which more 
strongly enhances male-male competition to gain access to females 
[116]. A metanalysis of 150 studies (analyzing participants from age 9 to 
21) showed males are expected to be more prone to risk-taking than 
females but this difference was decreased by age [117]. Males also more 
often engage in dominant behavior intended to non-aggressively achieve 
or maintain power, status, and resources. Even though males are not face 
orientated, interestingly, they show a stronger response to angry facial 
expressions. The angry face is possibly perceived as a challenge [118]. 
Males are more utilitarian than females in moral dilemmas. They make 
decisions that are viewed as more rational and are aimed at maximizing 
overall welfare. They act according to the proverb: “The ends justify the 
means”. Females are driven by emotions, making more deontological 
decisions according to the phrase: “The means are more important than 
ends” [119]. Males and females also differ in the ability to produce 
humor. Men’s humor output was rated as funnier than women’s more 
due to evolutionary and cultural factors rather than biology [120]. 

4. Sex differences in pathology 

Sex and gender are increasingly recognized as major influencing 
factors in literally all disorders (Fig. 2). It is beyond the scope of this 
review to discuss all differences. We will point out some of the main 
fields in which gender plays a significant role. Sex differences must be 
considered and be included as the main topics in the development of 
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guidelines. However, compared to other fields, guidelines in neuropsy-
chiatry are lagging behind. A growing body of evidence (for review see 
[121]) clearly indicates the need to integrate sex and gender in clinical 
guidelines since those are potential drivers of much of patient diversity, 
affecting disease etiopathogenesis, presentation, diagnosis, and treat-
ment. Taking such diversity into consideration might help improve 
preventive measures, increase diagnosis efficacy, enable more effective 
and targeted patient therapy, and/or reduce complications and related 
disability [1,121]. 

One of the neurodevelopmental diseases in which sex difference 
matters are autism spectrum disorders (ASD). ASD is a set of heteroge-
neous neurodevelopmental conditions, characterized by difficulties in 
social interaction and communication (both verbal and non-verbal), 
repetitive behavior, and unusually narrow interests that appear during 
early childhood. The worldwide population prevalence is about 1 %, 
however, the male-to-female ratio is about 3:1 (and even more than 10:1 
in ASD individuals without intellectual deficits) [122–125]. The male 
bias might be partly explained by the fact that the most widely used 
diagnostic tools for ASD also present a certain male bias when assessing 
ASD traits in girls, who may perform slightly differently from boys [126, 
127]. Especially, girls with autism spectrum disorder who are verbally 
fluent and with average or above-average intelligence may be camou-
flaging their deficits, which could result in them being underdiagnosed 
[128] and, therefore, girls may receive other diagnoses such as per-
sonality disorder, anxiety disorders, or anorexia nervosa instead of ASD. 
This delays proper diagnosis and therapy [122,129]. Another hypothesis 
suggests that fetal testosterone (fT) and other factors (for review see 
[125]) might possibly lead to extreme expression of the psychological 
and physiological attributes that are on average more typical for the 
male brain, particularly with respect to systemizing (so-called extreme 
male brain theory). Since positive correlations between fT levels and the 
number of autistic traits such as systemizing, attention to detail, or 
narrow interests as well as inverse correlations between fT and eye 
contact, language development, or quality of social relationships were 
shown, the boys (at least partly due to the higher fT exposure) would be 
more at risk than girls [125]. 

Sex differences can also be seen in the domain of drug abuse It has 
been established that females are more vulnerable than males to alcohol 
and most illicit drugs (such as cocaine, morphine or amphetamine, or 
opioids [130,131]. Clinical reports indicate that women are more likely 
than men to initiate drug abuse at an earlier age, engage in binge-like 
patterns of drug intake, report greater difficulty in quitting, exhibit 
greater vulnerability to drug craving and relapse, and resume higher 
levels of drug use following relapse. During the phase of drug with-
drawal, however, males experience more severe withdrawal effects than 
females, suggesting that males are more sensitive to the negative effects 
of drugs, while females are more responsive to the rewarding effects. 
Thus, elevated sensitivity to the drug abuse in females may not only be 
due to their greater sensitivity to rewarding effects but also to their 
resilience to the negative effects of drugs. It has been proved that es-
trogens may facilitate the drug abuse in women [132]. 

Epidemiological data show that, in the majority of psychiatric dis-
orders, rates of illness, clinical presentation, and treatment response 
may differ between men and women. Some of the diseases are more 
common in males (such as attention deficit hyperactivity disorder 
(ADHD), Tourettés syndrome, and Parkinsońs disease), whereas in 
others, female prevalence is higher (e.g. multiple sclerosis, Alzheimeŕs 
disease, anxiety, or depression) [133,134], even though this might differ 
in different countries (e.g. in Alzheimeŕs disease) [135]. As already 
mentioned, sex difference plays a role in the symptomatic presentation, 
e.g., females more frequently exhibit depressive symptoms [136], while 
males tend to have a greater vulnerability to negative symptoms in 
schizophrenia (based on the Positive and Negative Symptoms Scale, 
negative symptoms include symptoms such as blunted affect, apathetic 
social withdrawal, lack of spontaneity, etc.) [137]. Alzheimer’s disease 
(AD) also exhibits divergence in the clinical pattern of the disease with 
studies showing greater having greater cognitive decline for female 
patients in the areas of verbal processing, semantic and episodic memory 
than male AD patients [138,139]. Other diseases where sex bias can be 
observed are reviewed in [134]. The above-mentioned differences might 
be explained by the complex interactions between sex hormones, sex 
chromosomes, and epigenetic factors [134]. 

Even though we mainly discussed and emphasized the human brain, 
highlighting the developmental, behavioral, emotional, and cognitive 
differences between males and females, sex-specific differences in other 
somatic illnesses should also be mentioned. Many diseases, such as 
cardiovascular diseases (CVDs), liver diseases, osteoporosis, infectious 
and autoimmune diseases, and cancer show a differential susceptibility 
between males and females [139,140]. Sex is an important factor that 
influences immune system response to multiple antigens. On average, 
females have stronger innate and adaptive immune responses than 
males [141]. The risk of malignancy is higher for males (such as the 
esophagus, lung and bronchial, hepatocellular, or colorectal cancer) 
[142,143] and males are generally more susceptible to the infections 
than females (e.g. bacterial such as Legionella pneumophila, Campylo-
bacter jejuni or fungal such as Cryptococcus neoformans) [144,145]. 
Antibody responses to bacterial and viral vaccines are often higher in 
females than males [146,147]. This could mean that the effective vac-
cine dose is lower for females than for males [147]. However, increased 
immunity may also lead to a predisposition of women for the loss of 
tolerance to their own antigens and the development of autoimmune 
disease [148]. The overall prevalence of autoimmunity is approximately 
3–5% in the general population [149], with some diseases having more 
than 85% of patients females [150]. Women possess a double dosage of 
genes associated with X-chromosome compared to men. One copy of the 
X chromosome is randomly deactivated to equalize gene expression 
between males and females. However, it is thought that up to 23% of 
X-linked genes escape deactivation, including those that affect immune 
functions. Thus, the X-chromosome inactivation escape may cause im-
mune responses to be amplified in women [152]. 

Estrogens also show protective effects on bone and cardiovascular 
system physiology and disease. The rapid decline in their synthesis after 
menopause is manifested in the faster loss of bone density and strength 
than in men of the same age [140,151]. Women aged 50 years and older 
are thus diagnosed with osteoporosis at four times the rate of men, and 
osteoporotic fractures are more frequent in women than men [152]. 
However, the literature indicates that male osteoporosis is under-
estimated, underscreened, underdiagnosed, and undertreated [153]. 
Furthermore, estrogen has the potency to decrease the risk of cardio-
vascular diseases because of its antioxidant, vasodilatatory, and 
anti-inflammatory properties, and the ability to enhance lipid profile 
[154]. Population studies show that there are lower rates of stroke in 
premenopausal women. Women also have better outcomes in ischemic 
stroke than men. There is also a lower prevalence of hypertension in 
women compared to age-matched men, and males have a significantly 
higher risk of developing coronary artery disease with a higher mortality 
rate than females, particularly at younger ages. Differences seem to be 

Fig. 2. Sex differences in disease. Sex and gender are increasingly recognized 
as major influencing factors in many disorders. The complex interplay between 
sex chromosomes, sex hormones, and epigenetic factors can influence inci-
dence/prevalence, etiopathogenesis, response to therapy, and/or prognosis of 
the diseases. 
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dependent, at least partly on hormonal levels because of the rapid rise in 
stroke after menopause, as estrogen levels decline. The same trajectory 
can be observed in atherosclerosis and hypertension [154–157]. 

Moreover, men and women may differ in the symptoms, clinical 
evolution, and/or prognosis of a disease [1,140]. Pertaining to coronary 
heart disease (CHD), it was found out that women are less likely to have 
typical angina and are more likely to have atypical or non-anginal pain 
than men. Consequently, CHD in women is very often underdiagnosed 
[140,158]. Women also experience aphasia as a consequence of a stroke 
more frequently than men, which can be explained by the fact that 
women tend to suffer embolic strokes more often, and those are more 
likely to cause aphasia than lacunar strokes (which are more frequent in 
men) [155]. Sex can also determine the course of the disease and its 
prognosis, such as in atrial fibrillation where, women, compared to men, 
have a more functional impairment, greater limitation in their daily 
activities, and lower quality of life scores [159]. 

Lastly, onés response to the therapy might fluctuate based on sex. It 
has been estimated that women have nearly a twofold greater risk than 
men for exhibiting adverse drug reactions (ADRs) across all drug classes 
and are significantly more likely to be hospitalized secondary to an ADR 
[160]. In general, this might be the result of anatomical and physio-
logical differences, which influence pharmacokinetics (e.g. absorption, 
distribution, metabolism, or elimination), and/or pharmacodynamics 
(e.g. enhanced sensitivity) of drugs. Other factors such as variability of 
immune system response and polypharmacy (higher rate in women), 
possibly leading to drug interactions, might also contribute to the dif-
ferences [1, 160–162]. It is known that females have longer drug elim-
ination times than males (women have relatively lower glomerular 
filtration rate compared to men), and/or enhanced sensitivity to some 
drugs [140,160,162]. Most drugs in adults are not administered based 
on weight but as a “one size fits all” dose, leading to higher exposures in 
women [160]. It should be noted that plasma concentrations of some 
drugs might undergo variations in relation to the different phases of the 
menstrual cycle: higher concentrations in the follicular phase with a 
higher risk of side effects, and lower concentrations in the luteal phase, 
resulting in minor therapeutic efficacy [1]. Despite the need for studies 
to address the impact of sex differences on the adverse effects of drugs, 
the female sex still remains underrepresented in clinical studies [163, 
164]. 

5. Conclusion 

This review aims to summarize the sex differences between males 
and females reported from an early age until adult life. Males and fe-
males differ not only in obvious biological aspects but also in brain ac-
tivity, sex-specific cognitive and behavioral styles as well as 
susceptibility to illness and disorders. Trying to assign the relative 
contributions of “nature” versus “nurture” is tough at best. Human in-
dividuals are very complex, and the role of culture is definitely not zero. 
It must be also mentioned that many sex differences are not rigid and 
resistant to change. They are affected by numerous factors interacting 
over time, including socialization by parents, siblings, and teachers as 
well as education, lifestyle, environmental factors, and self-socialization 
based on an individual’s understanding of sex and gender. But the whole 
story cannot be explained without taking the biologically affected sex 
differences into consideration, the emphasis of which is the main task of 
this review. The biological differences originating from different genes 
on the sex chromosomes, together with hormonal influences prenatally, 
during mini-puberty or adolescence cannot be disregarded. The period 
of mini-puberty is particularly of interest and can bring more light to this 
topic in the future. The understanding of the biologically determined 
variability between males and females can have important implications. 
To give a complex overview of the sex differences, we discussed not only 
the differences in the human brain, emphasizing the developmental, 
behavioral, emotional, and cognitive differences between males and 
females but also sex-specific differences in somatic illnesses. The 

biologically programmed sex differences between males and females 
affect the epidemiology, manifestation, pathophysiology of many 
widespread diseases, and the approach to health care. The knowledge of 
these differences has crucial clinical implications. Gender-specific 
health care, prevention, management, and treatment of many common 
diseases should reflect the most obvious and most important risk factors 
for the patient: sex and gender. This still remains underestimated and a 
challenge for the future [1,153,165]. There is a limited amount of papers 
that bring a complex summary of the sex differences in the physiology 
and pathophysiology of the brain and other somatic systems of our body. 
We would like to point out that sex cannot be ignored as a possible 
covariate in various domains and those we mentioned. However, the 
findings on sex differences need caution in the interpretation. It would 
also be incorrect to doubt the role of the social environment and other 
types of influences not discussed here. We are aware of the fact that 
under certain circumstances sex differences in adult neural structure or 
function could be shaped through experience, practice, and neural 
plasticity. Research on sex differences cannot be complete without 
consideration of both genetic/hormonal and social influences that fuels 
the development via complex nature-nurture interactions. 
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