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Modern cells embody metabolic networks containing thousands of elements
and form autocatalytic sets of molecules that produce copies of themselves.
How the first self-sustaining metabolic networks arose at life’s origin is a
major open question. Autocatalytic sets smaller than metabolic networks
were proposed as transitory intermediates at the origin of life, but evidence
for their role in prebiotic evolution is lacking. Here, we identify reflexively
autocatalytic food-generated networks (RAFs)—self-sustaining networks
that collectively catalyse all their reactions—embedded within microbial
metabolism. RAFs in the metabolism of ancient anaerobic autotrophs that
live from H2 and CO2 provided with small-molecule catalysts generate
acetyl-CoA as well as amino acids and bases, the monomeric components
of protein and RNA, but amino acids and bases without organic catalysts
do not generate metabolic RAFs. This suggests that RAFs identify attributes
of biochemical origins conserved in metabolic networks. RAFs are consistent
with an autotrophic origin of metabolism and furthermore indicate that
autocatalytic chemical networks preceded proteins and RNA in evolution.
RAFs uncover intermediate stages in the emergence of metabolic networks,
narrowing the gaps between early Earth chemistry and life.
1. Introduction
Cells are autocatalytic in that they require themselves for reproduction. The origin
of the first cells from the elements on the early Earth roughly 4 billion years ago
[1–4] must have been stepwise. The nature of autocatalytic systems as intermedi-
ate states in that process is of interest. Autocatalytic sets are simpler than cellular
metabolism and produce copies of themselves if growth substrates for food and a
source of chemical energy for thermodynamic thrust are provided [5–7]. In theory,
sets of organic molecules should be able to form autocatalytic systems [8–12],
which, if provided with a supply of starting ‘food’ molecules, can emerge spon-
taneously and proliferate via constraints imposed by substrates, catalysts, or
thermodynamics [13]. Autocatalytic sets have attracted considerable interest as
transitory intermediates between chemical systems and genetically encoded
proteins at the origin of life [13–17]. Preliminary studies have shown that coen-
zymes are often required for their own synthesis and are therefore replicators
with autocatalytic properties [18]. However, autocatalytic networks have not
been identified in non-enzymatic metabolic networks so far, and evidence for
their existence during prebiotic evolution is lacking.

Of special interest for metabolic evolution are a class of mathematical objects
called reflexively autocatalytic food-generated networks—RAFs—in which each
reaction is catalysed by a molecule from within the network and all molecules
can be produced from a set of food molecules by the network itself [19]. RAFs

http://crossmark.crossref.org/dialog/?doi=10.1098/rspb.2019.2377&domain=pdf&date_stamp=2020-03-11
mailto:xavier@hhu.de
https://doi.org/10.6084/m9.figshare.c.4862760
https://doi.org/10.6084/m9.figshare.c.4862760
http://orcid.org/
http://orcid.org/0000-0001-9242-8968
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20192377

2

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

14
 M

ar
ch

 2
02

4 
are a precisely defined type of autocatalytic set, for their emer-
gence from this ambient food set. Other autocatalytic networks
not food-generated (sometimes called pseudo-RAFs) have the
property of persistence but not of emergence from a food
supply. In a related class of objects named constructively auto-
catalytic food-generated networks—CAFs [20], catalysts must
either be present in the food set or produced before their first
requirement. By contrast, RAFs impose that all necessary cata-
lysts need to be produced by the network at somepoint, but not
necessarily at the first time they are required. This feature
models the emergence of specificity, speed, and efficiency in
autocatalysis. Depending on the order of non-catalysed reac-
tions, different routes can exist for the formation of an RAF.
By depending on food, and representing the emergence of cat-
alytic specificity, RAFs are an appropriate model for the origin
of metabolism. Small chemical systems resembling RAFs have
been constructed in the laboratory [7,21–23], although still far
from the scale of cellular metabolism, which is composed of
thousands of reactions. Modern cellular metabolism is
enzyme–based, but greater than 60% of enzyme mechanisms
described to date involve one or more cofactors [24] and 40%
of all proteins crystallised have a bound metal relevant to
their function [25]. RAFs can thus be identified in modern
metabolism [17] by attributing the catalysis of enzymes to
their metals and cofactors in prebiotic evolution [26–31],
generalizing the well-known observation that native metals
[3,32–36], flavins [37], pyridoxal 50-phosphate [38,39], S-adeno-
syl methionine (SAM) [40], NAD [41], CoA [42], thiamine
diphosphate [43], folates [44], and other cofactors [26,30,45]
can themselves perform catalysis in the absence of enzymes.
Also relevant to the inference of RAFs within metabolic net-
works are the numerous non-enzymatic, spontaneous
reactions that are known to occur inmetabolism [31,46]. If auto-
catalytic chemical networks antedate genetically encoded
proteins, cofactor-dependent RAFs might have been involved
and, if so, should have left evidence for their existence in
modern metabolic networks.

In search of RAFs, we investigated different levels of
ancient metabolism preserved in modern cells. Starting with
the biosphere level of the KEGG database, we first removed
all eukaryote-specific reactions, and then peeled back one
more layer of time by examining anaerobic metabolism. The
detection of a large RAF in anaerobic prokaryotic metabolism
prompted us to ask whether RAFs are also preserved in the
metabolism of ancient anaerobic autotrophs that trace to the
last universal common ancestor, LUCA [47]. As far back as
we could look in metabolic evolution, RAFs were found.
They were found in the metabolism of the acetogenic bacter-
ium Moorella thermoacetica and the methanogenic archaeon
Methanococcus maripaludis, lineages thought to be primitive as
they live on the simplest source of carbon and energy
known, theH2-CO2 redox couple [1,5,29,47–49], they assimilate
geochemically generated carbon species [50,51], they generate
ATP from CO2 fixation [5], their core bioenergetic reactions
occur abiotically in hydrothermal vents [48,52], and under lab-
oratory conditions [3], their ecology and gene trees link them to
LUCA [53], and they still inhabit primordial habitatswithin the
crust today [54]. The RAFs of themethanogen and the acetogen
furthermore intersect in a primordial network that generates
amino acids, nucleosides, and acetyl-CoA from a starting set
of simple foodmolecules, shedding light on the nature of auto-
catalytic networks that existed before the first cells arose from
the elements on the early Earth.
2. Results
(a) Two-thirds of global prokaryotic metabolism can be

annotated with small-molecule catalysis
In search of RAFs in 4-billion-year-old metabolism, we started
from all 10 828 KEGG reactions and purged the set of non-
primordial reactions in two pruning steps. First, looking at
the 8352 reactions assigned to enzymes, we removed reactions
that occur only in eukaryotes. Such reactions are unlikely to be
primordial, because eukaryotes arose less than 2 billion years
ago [2]. Second, from the resulting set we excluded O2-
dependent reactions, because O2 is a product of cyanobacterial
photosynthesis, which arose about 2.4 billion years ago [55].
These pruning steps left 5847 enzyme-associated reactions,
66% of which involve at least one cofactor, and the remaining
33% were assigned an operational catalyst named ‘peptide’
which is attributed to reactions catalysed by enzymes to
which no cofactor or metal is currently associated in the data-
bases. From the initial set of 10 828 reactions, we identified,
retrieved, and added to the previous set 147 spontaneous reac-
tions, generating a global network comprising 5994 reactions
and 5723 metabolites (electronic supplementary material,
figure S1 and dataset S1A). The cofactors involved in this
ancient anaerobic network are distributed among the six differ-
ent enzyme commission (EC) classes as shown in figure 1.
Cofactors can be both catalysts and substrates or products in
reactions (for example, NAD) or just catalysts (metals). Metal
catalysis is widespread across all classes of metabolism, and
NADs dominate the oxido-reductase reactions. The resulting
prokaryotic O2-independent network contains 70% of all
8352 reactions associated with enzymes before removal of
O2-dependent and eukaryote-specific reactions, indicating
that a great part of metabolism was invented in the anaerobic
world [56].

(b) Autocatalysis in global metabolism expands with a
small set of cofactors

The largest possible RAFs (maxRAFs) in a network are of
interest because they represent its largest component of autoca-
talytic complexity. Figure 2a shows a schematic of an RAF
within a metabolic network. The RAF algorithm, first intro-
duced in [19] and refined in [57] and [58], starts with the full
reaction network, and iteratively removes reactions that fail
to have all their reactants and at least one catalyst able to be pro-
duced from the food set via the current reaction set. For this, the
‘closure of the food set’ needs to be computed at each iteration
(electronic supplementary material, Methods). The algorithm
ends when nomore reactions can be removed. If the remaining
set of reactions is non-empty, it comprises the maxRAF, i.e. the
union of all possible RAFs in the original reaction network.
If the remaining set is empty, there was no RAF in the
original network.

The maxRAFs in the global prokaryotic O2-independent
network were identified for different food sets, that is,
molecules provided by the environment (electronic sup-
plementary material, table S1). An inorganic food set
containing H2O, H2, H

+, CO2, CO, PO 3�
4 , SO 2�

4 , HCO �
3 ,

P2O 4�
7 , S, H2S, NH3, N2, all metals, FeS clusters and other

metal clusters, a generalist acceptor, donor, and metal pro-
duced a minute maxRAF with eight reactions linking
ammonia, carbon, and sulfide transformations. The addition



Figure 1. Catalysts in global oxygen-independent prokaryotic metabolism. The catalysis-annotated network separated by enzyme commission (EC) classes with the
corresponding cofactors for each. Cofactors are grouped (legend, top right) according to their function in catalysis. NADs, Cobalamins, Folates, Flavins, and Quinones
are each a group of equivalent catalysts with common properties and common biosynthetic pathways (for example, NADs stands for NAD(P)(H); all pooling reactions
are detailed in electronic supplementary material, dataset S1A).
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of formate, methanol, acetate, and pyruvate, which are central
metabolites with experimental evidence for synthesis from
CO2 and metals [3], doubles the maxRAF size to 16 reactions.
In principle, the addition of organic cofactors (electronic sup-
plementary material, table S1) to the food set should
generate larger maxRAFs. Sequential addition of the eight
most frequent cofactors identified in the LUCA’s proteins
[47] to the metal–CO2 food set expanded the maxRAF from
16 to 914 reactions (figure 2b). The addition of all cofactors ger-
mane to the anaerobic network generates amaxRAFwith 1335
reactions spanning 25% of the starting anaerobic network.
Sequential addition of the eight compounds that were most
frequent in that maxRAF, to the metal–CO2 food set, expands
the maxRAF from 16 to 1066 reactions, whereas sequential
addition of the five compounds with the greatest impact
(upon removal from the food set) on anaerobic maxRAF size
followed by the three most frequent in the largest maxRAF
yields a final maxRAF of 1248 reactions (figure 2b). These
results indicate that RAFs can grow in size through sequential
incorporation of organic cofactors (figure 2b). RAFs can thus
provide structure, contingency, increasing complexity, and
direction to interactions among molecule food sets, given a
sustained geochemical source of carbon, energy, and electrons.
(c) Autocatalytic networks point to an early autotrophic
metabolism

If autocatalytic sets were instrumental at the origin of metab-
olism [13], lineages with a physiology very similar to that of
the first cells should harbour the most ancient RAFs.

Several lines of evidence indicate that methanogens and
acetogens reflect the ancestral state of microbial physiology in
the bacteria and archaea, respectively [1,3,5,29,47–52,54]. By
investigating the metabolic networks of one archaeon and
one bacterium that each satisfy both their carbon and energy
needs via H2-dependent CO2 reduction, we can identify their
conserved common features. From comparative physiology
[59] and from the standpoint of genes that trace to the LUCA
[47,53], their shared features should reflect a state predating
the divergence of the two prokaryotic domains. Subsets of
the global prokaryotic O2-independent network were obtained
by parsing the genomes of the acetogen Moorella thermoacetica
(Ace) and the methanogen Methanococcus maripaludis (Met).
These were completed with reactions from corresponding
manually curated genome-scale metabolic models [60,61],
resulting in 1193 reactions for Ace and 920 for Met (electronic
supplementary material, dataset S1B and S1C). Both the
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acetogen and the methanogen metabolic networks contain
RAFs. When all organic cofactors are added to the food set,
the maxRAFs contain 394 and 209 reactions for Ace and Met,
respectively, spanning major KEGG functional categories
(figure 3; electronic supplementary material, table S1 and
figure S2 and S3 and dataset S2).

Carbon fixation and biosynthetic pathways are represented
and amino acid biosynthesis is highly enriched in all maxRAFs,
recovering autotrophic components of early autocatalytic
metabolism. Note that, none of the food sets described so far
in these analyses contained ‘peptide’. Addition of the generic
‘peptide’ catalyst to the food set increases the maxRAF sizes
obtained with the global anaerobic network, Met, and Ace by
93%, 47%, and 25%, respectively (electronic supplementary
material, table S1). This indicates that adding protein
catalysis expands cofactor-supported autocatalytic sets, but
it does so to a much lesser degree in the metabolism of
Met and Ace than it does in the global O2-independent
prokaryotic network.
(d) Metabolism at the origin of LUCA was autocatalytic
and autotrophic

The intersection of the Ace and Met maxRAFs should be
more ancient than each of them individually. Three-quarters of
the (smaller) Met maxRAF overlap with the (larger) Ace
maxRAF in a connected network harbouring 172 reactions and
175 metabolites (figure 4; electronic supplementary material,
figure S4; individual maxRAFs from Ace and Met in electronic
supplementary material, figure S2 and S3). Six metabolites are
disconnected, meaning the species interconvert them using
different pathways; one example is that of glucose, catabolism
of which arose after LUCA [62]. Highly connected food metab-
olites in the primordial network (more than 13 edges) include
H2O, ATP, protons, phosphate, CO2, NAD+, pyruvate,
ammonia, diphosphate, coenzyme A, and AMP; highly con-
nected non-food metabolites (more than eight edges) include
ADP, NADH, and other pyridine dinucleotides, glyceralde-
hyde-3-phosphate, and acetyl-CoA (electronic supplementary
material, dataset S3). The network is able to produce six
amino acids—asparagine, aspartate, alanine, glycine,
cysteine, and threonine—plus the two nucleosides UTP and
CTP. Cytochromes and quinones do not figure into the
network.

A different look at the primordial network reveals a
hierarchical and highly connected organization (electronic sup-
plementary material, figure S4) with a half-moon core structure
with node degree varying from 49 to 4 (electronic supplemen-
tary material, dataset S3). Food molecules cluster in the most
connected area, suggesting that autocatalytic metabolism is
initiated by a handful of central substrate molecules with
degree higher than 10.
(e) Primordial metabolism is enriched in metal
catalysis, ancient genes, and autotrophic functions

In searchof thedistinct contributions forautocatalysis,we tested
for enrichment in individual catalysts, functions, and ancient
genes encoding for reactions in the primordial network. There
is a significant enrichment for metal and metal–sulfur cluster
catalysis (figure 5a), whereas thiamine diphosphate (a carrier
ofC2units inmetabolism) is the onlyorganic cofactor that is sig-
nificantly enriched in catalysing the primordial network when
compared with the global network, even though several
others are present and essential for the network to grow
(figure 5b). The primordial network is also enriched in reactions
for amino acid biosynthesis, carbon metabolism, and 2-oxocar-
boxylic acid metabolism when compared with the global
network (figure 5b). Comparing reactions in the primordial net-
work to those catalysed by genes that can be traced to LUCA by
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independent phylogenetic criteria [47] uncovers highly signifi-
cant enrichment relative to both the global network and its
maxRAF (figure 5c). The maxRAF obtained within the primor-
dial network contains 120 reactions and is enriched in amino
acid and carbon metabolism but produces cysteine as the sole
amino acid, which is noteworthy because cysteine is the hub
of sulfurmetabolismandalso is the sole ligand for incorporating
Fe–S andFe–Ni–S clusters inproteins (electronic supplementary
material, figure S5).
( f ) Autocatalysis, ATP, NAD, and monomers
Crucial catalysts can be identified by removing them from the
food set. NAD+ is strongly embedded in the RAF and its
removal reduces the size of the maxRAF by approximately
50% (electronic supplementary material, figure S6). The role of
NADs, which we use to collectively designate NAD(P)+ and
NAD(P)H, in the food set of the largest maxRAFs is striking. It
exhibits the strongest effect we observed for any cofactor.
NAD donates and accepts hydride for redox-dependent reac-
tion catalysis. The strict dependence of the largest maxRAFs
uponNAD reflects the circumstance thatmicrobialmetabolism,
without exception, always involves redoxreactions [63]. Though
Fe–S clusters are more ancient redox cofactors than NAD(P)H
[64], they perform one-electron transfer reactions and have
been replaced in evolution byNAD and other two-electron car-
riers [65,66]. Fe–S clusters also heavily impact maxRAF sizes,
together with pyridoxal-5-phosphate and divalent metals.
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Surprisingly, when we remove ATP from the food set of
organic cofactors, this has no impact on the size of the
maxRAF (the number of reactions in the maxRAF remains
unchanged), both for the individual networks (electronic
supplementary material, figure S6) and LUCA’s network
(electronic supplementary material, figure S4). Why does ATP
removal from the food set with organic cofactors have no effect
on RAFs? ATP is an essential intermediate in the maxRAF, but
it is not required to kick-start it when other organics are present.
This reflects the increasingly evident role of alternative energy
currencies in primordialmetabolism [6], such as acyl phosphates
[29], thioesters [7], and reduced ferredoxin [49,67]. Alternative
energy currencies are particularly common in anaerobes [49].

RAFs provided with a food set containing catalysts can
generate amino acids and bases (figure 4), but the converse is
not true: adding amino acids and bases to the simplest food
set, which includes inorganic catalysts and CO2 (electronic
supplementary material, table S1), produces a miniscule
33-reaction maxRAF (electronic supplementary material,
figure S7). The maxRAF contains 47 metabolites, 27 of which
are foodmolecules. This indicates that primordial autocatalytic
networks embedded inmicrobialmetabolism generated amino
acids and bases using small-molecule catalysis.

3. Discussion
Autocatalytic networks are objects of molecular self-organiz-
ation [8–12]. Their salient property in the study of early
biochemical evolution is the capacity to grow in size and com-
plexity. Compounds generated from the food set become part
of the network, hence autocatalytic networks can start small
and grow, in principle to a size approaching the complexity
of metabolic networks of modern cells [15], and very little cat-
alysis by individual elements is required for autocatalytic
networks to emerge [19,20]. Reflexively autocatalytic and
food-generated networks—RAFs—are a particularly interest-
ing formalization of collectively autocatalytic sets, as they
capture a property germane to life: they require a constant
supply of an environmentally provided food source in order
to grow [19]. In that sense, RAFs reflect metabolic networks
in real cells, in that growth substrates are converted to end pro-
ducts, a proportion of which comprises the substance of cells.
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But RAFs are far simpler than metabolism because they can
start very small.

RAFs have not been applied in the study of the evolution of
chemical networks that led to the metabolism of modern cells,
themselves large natural autocatalytic networks. By embracing
the simple and robust premise that reactions catalysed by
simple molecules and inorganic compounds preceded meta-
bolic reactions catalysed by enzymes [17,26,30], we have
retooled RAFs into an analytical instrument to investigate the
nature of metabolic evolution.

Our analyses started with the enzymatic and spontaneous
reactions charted in modern metabolism and used RAFs as a
filter to uncover elements with self-organizational properties,
to address the nature of processes in the earliest phases of evol-
ution, before the origin of eukaryotes and before the
appearance of oxygen. We found evidence for a role of autoca-
talytic networks at the onset of metabolism. The largest RAF
thatwe identified in thewhole prokaryotic anaerobic biochemi-
cal space has 1335 reactions and points to early autotrophy.
This RAF is larger than the genome size of the smallest free-
living archaeon, Methanothermus fervidus [68]. With a genome
coding for 1311 proteins and 50 RNA genes, M. fervidus lives
from H2 and CO2 as carbon and energy sources (the food set)
and requires only inorganic, geochemical nutrients, no other
cells for survival [69]. H2 and CO2 were present in abundance
on the early Earth andmay have given rise to the firstmetabolic
pathways that brought forth the first archaeal and bacteria cells
[3,6,47]. Our anaerobic RAF is, however, smaller than the reac-
tion network in the smallest genome of bacteria that live from
H2 and CO2, which is found in the acetogen Thermoanaerobacter
kivui, encoding 2378 proteins [70].

Methanothermus fervidus and T. kivui harbour primitive
forms of methanogenesis and acetogenesis in that they both
lack cytochromes and quinones, suggesting that they rep-
resent energy metabolic relics from the earliest phases of
biochemical evolution on the primordial Earth, before
anaerobic respiratory chains had evolved [29]. To investigate
this aspect further, we examined the best annotated metabolic
networks existing for H2-CO2-dependent archaea and bac-
teria, the methanogen Methanococcus maripaludis and the
acetogen Moorella thermoacetica. Remarkably, a food set con-
taining only small abiogenic molecules and a handful of
organic cofactors generates sizeable RAFs in each of the net-
works, with 209 and 394 reactions, respectively. The inclusion
of organic molecules as catalysts in our food set is in line with
a premise common to all scientific theories for the origin of
life, namely that the environment provided starting material
from which metabolism and life evolved. The small sizes of
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maxRAFs compared to full metabolic networks in the
genome-scale metabolic models are contingent upon two
aspects. First, all reactions in the maxRAFs presented here
require small-molecule catalysis. This excludes important
edges in the network catalysed by peptides only, that allow
for significant expansion, when the generic catalyst ‘peptide’
is added to the food set (electronic supplementary material,
table S1). Moreover, in genome-scale models, a method
known as gap-filling allows genome-scale metabolic models
to be connected to the necessary degree for the production
of all biomass components [71]. To avoid the introduction
of noise and over-fitting of our model for autocatalysis, we
have not performed gap-filling at any stage in this work.
Note that the genome-scale models used here also require
organic cofactors to produce biomass [60,61].

RAFs uncover elements of metabolic evolution that pre-
date the divergence of archaea and bacteria from the LUCA.
The intersection of the RAFs of M. maripaludis and M. thermo-
acetica uncovers commonalities—a core, conserved network
with 172 reactions that is enriched in metal catalysis and
carbon-metal bonds [72] that points both to early autotrophy
[5] and to the origin of the genetic repertoire of LUCA [47].
This conserved network does not produce all 20 amino
acids, even though LUCA probably used all of them, given
the universality of the genetic code. This apparent contradic-
tion is reconciled by the virtual certainty that LUCA, before
it became a free-living cell, was auxotrophic for some amino
acids (and other components) that were provided by the
environment [73]. Ourmodel does not include catalysed trans-
port reactions, and these would be an interesting addition in
future formulations. Our results indicate that some enzyme
catalysis had to be invented to allow for a sustained pro-
duction of several amino acids. Our results also show that
the kick-start of autocatalysis in anaerobic metabolism does
not require ATP in the food set, even thoughATP is an essential
intermediate in all maxRAFs. This relates to the use of alterna-
tive energetic currencies in anaerobic prokaryotes [49] and
recent findings that suggest that complexity in early metabolic
reaction systems could have emerged without phosphate [6].
More importantly, NAD plays an essential role in kick-starting
all sizeable maxRAFs obtained here. This underscores the
special role of redox chemistry in primordial catalysis [49,74].

An important insight uncovered byRAFs is the observation
that although a food set with organic cofactors sparks a large
autocatalytic metabolic network that generates amino acids
and bases, the opposite does not occur: adding amino acids
and bases to the simplest food set (which includes inorganic
catalysts and CO2) only produces a minute RAF with 33 reac-
tions. The result that autocatalytic networks detectable in
microbial metabolism as RAFs generate amino acids and
bases using small-molecule catalysts is in accord with the
recent report of amino acid synthesis catalysed by native
metals [35], and with the physiology of extant anaerobic auto-
trophs: amino acids and bases are sequestered end-products of
H2- and CO2-dependent metabolism, they are polymerised to
make the substance of cells.

RAFs can serve as a guide for the identification and con-
struction of larger, biologically relevant autocatalytic reaction
networks. The synthesis of compounds characteristic of the
metabolism of acetogens and methanogens, intermediates
and end products of the acetyl-CoApathway, and of the incom-
plete citric acid cycle fromCO2using only the catalysis of native
metals [3,32–36], aswell as the demonstrated catalytic power of
organic cofactors without their enzymes including flavins [37],
pyridoxal 50-phosphate [38,39], SAM[40],NAD[41], andothers
[42–45] encourages the investigation ofmore complex autocata-
lytic networks in laboratory reactors. Individual reactions in the
maxRAFs presented here can be tested in independent exper-
iments with the catalysts assigned (electronic supplementary
material, dataset S2). Though we have not explored subRAFs
[75] embedded within the (larger) maxRAFs in the present
work, this may be an interesting route for further investigation,
amenable to laboratory experiments and/or the incorporation
of experimental data [58]. The increasing availability of large-
scale kinetic, thermodynamic, and inhibition data for metab-
olism will allow further exploration of RAFs [58]. The
plausibility and sustainability of RAFs under various scenarios
has been explored in extensive simulations [76].

Our results are directly relevant to two deeply divided
schools of thought concerning the nature of chemical reactions
at the origin of life: genetics first andmetabolism first. The gen-
etics first school, or RNAworld, holds that the origin of RNA
molecules marked the origin of life-like processes, and that
RNA both self-replicated and possessed catalytic abilities that
led to the emergence of biochemical reactions [77,78]. In that
view, the origin of the bases that drove that process forward is
decoupled from biochemical processes that are germane to
modern cellular metabolism. Proponents of the RNA world
[77,78] might criticize that we did not investigate the possible
catalytic role of RNA in the metabolic networks presented
here. However, no reactions in KEGG have RNA catalysts
assigned in Uniprot, an observation concerning both the
nature of catalysis in microbial metabolism and the limitations
inherent to current databases. If we count RNA-related cofac-
tors as representing the RNA world [26], the participation of
RNA-like bases in RAFs is ubiquitous, but as monomers, with
polymers playing no role. Hence, addition of a generic polymer
‘RNA’ has no impact on RAFs while the generic catalyst ‘pep-
tide’ does, whereby we note that KEGG does not include the
full processes of transcription, splicing, and translation, which
require the genetic code, an innovation that arose subsequent
to the phase of biochemical evolution probed here by RAFs.

The metabolism-first school holds that spontaneous (exer-
gonic) chemical reactions preceded reactions catalysed by
genetic material, and that those exergonic reactions continu-
ously gave rise to substrate-product relationships [29,79].
From such reactions, more complex interaction networks
with autocatalytic properties arose [16,80], in which elements
of the set intervened in reactions of the set, providing struc-
ture and direction to product accumulation. Our results
indicate that RNA monomers can readily arise from autocata-
lytic networks—though the converse is not true—and the
nature of the products accumulated in RAFs will include
nucleic acids. In other words, RAFs applied to ancient auto-
trophic metabolism reveal a vector of autopoietic genesis that
detects RNA as emergent from metabolism.
4. Material and methods
Detailed methods including annotation procedures and algor-
ithms can be found in the electronic supplementary material.

Data accessibility. All biochemical data used here is publicly available in
KEGG, Uniprot, and in the publications of the genome-scale meta-
bolic models of Moorella thermoacetica [60] and Methanococcus
maripaludis [61]. The curated and annotated networks are provided
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in electronic supplementary material, dataset S1. A custom-made
implementation of the maxRAF algorithm was used for the analysis
in this paper and is available at https://www.canterbury.ac.nz/
engineering/schools/mathematics-statistics/research/bio/downloads/
raf/. An example of an input file (global prokaryotic O2-independent
network, food set with all small molecules, abiotic carbon, and
organic cofactors) is given in electronic supplementary material, data-
set S4. A more general-purpose and interactive RAF analyser can be
found online at https://github.com/husonlab/catlynet, including
several more examples and explanations.
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