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Biological processes such as embryogenesis, wound healing and cancer progression, crucially rely
on the ability of epithelial cells to coordinate their mechanical activity over length scales order of
magnitudes larger than the typical cellular size. While regulated by signalling pathways, such as
YAP (yes-associated protein), MAPK (mitogen-activated protein kinase) and Wnt, this behavior is
believed to additionally hinge on a minimal toolkit of physical mechanisms, of which liquid crystal
order is the most promising candidat. Yet, experimental and theoretical studies have given so far
inconsistent results in this respect: whereas nematic order is often invoked in the interpretation
of experimental data, computational models have instead suggested that hexatic order could in
fact emerge in the biologically relevant region of parameter space. In this article we resolve this
dilemma. Using a combination of in vitro experiments on Madin-Darby canine kidney cells (MDCK),
numerical simulations and analytical work, we demonstrate that both nematic and hexatic order is
in fact present in epithelial layers, with the former being dominant at large length scales and the
latter at small length scales. In MDCK GII cells on uncoated glass, these different types of liquid
crystal order crossover at 34 µm, corresponding approximatively to clusters of 21 cells. Our work
sheds light on the emergent organization of living matter, provides a new set of tools for analyzing
the structure of epithelia and paves the way toward a comprehensive and predictive mesoscopic
theory of tissues.

Detecting orientational order in epithelia [1, 2] has
been the focus of several recent studies [3–6]. The task is
commonly approached by tracking the longitudinal direc-
tion of individual cells by diagonalizing a rank−2 tensor
− i.e. the so called structure tensor [7] or equivalently the
shape tensor [8, 9] in case of segmented images− that em-
bodies the geometry of the polygonal cells (Fig. 1a). The
resulting two-dimensional orientation field is then used to
identify topological defects [3–6], which in turn provide a
fingerprint of the underlying orientational order. Liquid
crystal defects (also known as disclinations) are isolated
singularities in the orientational field and can be classified
according to their winding number or “strength” s, de-
fined as the number of revolutions of the orientation field
along an arbitrary contour encircling the defect core [10].
Because in a two-dimensional liquid crystal with p−fold
rotational symmetry (i.e. symmetry under rotations by
2π/p) this number must be an integer multiple of 1/p, de-
fects such as vortices, asters and spirals, for which s = 1,
are a signature of a polar phase (i.e. p = 1); comet-
and star-shaped disclinations, whose winding numbers
are s = 1/2 and s = −1/2 respectively, are representa-
tive of a nematic phase (i.e. p = 2); whereas 5−fold and
7−fold disclinations, with s = 1/6 and s = −1/6, are the
elementary topological defects in hexatics (i.e. p = 6).

Although inferring order from defects represents a con-
solidated strategy in liquid crystals science since the
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times of Georges Friedel [11] − who used it to deci-
pher and classify phases such as nematic, cholesteric, and
smectic − this specific protocol, based on tracking the
cells’ longitudinal direction, becomes progressively less
reliable as p increases. To illustrate this issue we show
in Fig. 1b how applying the same protocol to a perfect
honeycomb lattice can lead to the misdetection of a pair
of ±1/2 nematic disclinations. This originates from the
fact that, while regular hexagons are invariant under ro-
tations by 60◦, the orientation field constructed from the
longitudinal direction of hexagonal cells cannot discrim-
inate between the three equivalent directions defined by
pairs of opposite vertices. Similarly, in Figs. 1c and 1d
we show how detecting an elementary hexatic diclination
correctly yields a topological defect, but with incorrect
winding number s = 1.

To overcome this difficulty, here we introduce a gen-
eralized rank−p shape tensor, able to capture arbitrary
p−fold rotational symmetries, with p any natural num-
ber. Given the polygonal contour of a cell, whose V
vertices have coordinates ri = {xi, yi} with respect to
the cell’s center of mass (Fig. 1e), our generalized shape
tensor can be defined as

Gp =
1

∆p

s V∑
i=1

ri ⊗ ri ⊗ · · · ⊗ ri︸ ︷︷ ︸
p times

{
, (1)

where ∆p =
∑V
i=1 |ri|p, and the operator J· · ·K has the

effect of rendering its argument symmetric and trace-
less [12]. For p = 2, Eq. (1) gives, up to a normaliza-
tion constant, the traceless part of the standard rank−2
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Figure 1. Topological defects and p−fold rotational symmetry. a A typical configuration of the nematic orientation
field (white rods), obtained from a sample of MDCK GII cells upon diagonalizing the shape tensor [8, 9]. Yellow rods represent
the interpolated nematic field. Here and in the following positive and negative defects are marked in red and blue respectively,
regardless of the magnitude of their winding number. b Because of the 6−fold symmetry of regular hexagons, there is no well
defined longitudinal direction, thus it is possible to construct a defective configuration, featuring a pair of ±1/2 disclinations,
even though the lattice is defect free. c,d Disclinations in a hexatics consists of pentagonal (i.e. s = 1/6) and heptagonal (i.e.
s = −1/6) site embedded in an otherwise 6−fold background. Attempting to detect these elementary defects by tracking the
longitudinal direction of the cells (with rods), correctly yields a defect at the center of the clusters, however, because of the
mismatch between the 6−fold symmetry of the configuration and the 2−fold symmetry of the order parameter both defects
are detected with the incorrect winding number s = 1. e Graphical representaiton of the p−fold order parameter, Eq. (2), for
a generic polygon (heptagon). The quantities ri = {xi, yi} and φi = arctan(yi/xi) represent, respectively, the position of the
vertices of the polygon with respect to its center of mass (i.e. com) and their orientation with respect to the horizontal direction
(i.e. polar axis). Inset shows the nematic (top) and hexatic (bottom) order parameter ψp superimposed on the polygonal shape
of the main panel. f Example of the ψp order parameter, Eq. (2), for an elongated hexagon. The irregular heptagon in panel
(e) is closer in shape to a regular hexagon, thus the order parameter ψ6 is an order of magnitude larger than ψ2. The outcome
is reversed in the irregular hexagon in panel (f), which, as a consequence of its elongation and despite being 6−sided, yields
ψ2 > ψ6. In both panels, the blue rods and the 6−legged stars corresponds respectively to the 2−fold and 6−fold orientations
of the polygons and are oriented in such a way that maximizes the overall probability of finding a vertex in the direction of
the legs. h,i Correct recognition of the hexatic disclinations shown in panels (c) and (d) using ψ6. In both panels one of the
legs of the order parameter has been colored as a guide to the eye. By following the order parameter along a positive oriented
(anticlockwise) close loop encircling the defect core, the red leg rotates anticlockwise for the positive defect in panel (e). After
an full rotation, the colored legs rotates of an angle 2π/6 corresponding to a winding number s = 1/6. Conversely, in panel (i)
the blue leg rotates clockwise and covers and angular displacement of −π/3 corresponding to a winding number s = −1/6.

shape tensor [8, 9]. Regardless of its rank, the tensor
Gp has only two linearly independent components in two
dimensions [13, 14], from which one can extract infor-
mation about the cells’ orientation and anisotropy. In
particular, using a generalization of the spectral theorem
to tensors with arbitrary rank [15, 16], one can show that
all elements of Gp are proportional to either the real or

the imaginary part of the complex order parameter

ψp =
1

∆p

V∑
i=1

|ri|peipφi = |ψp|eipϑp , (2)

where φi = arctan(yi/xi) the angular coordinate of the
i−th vertex of a given cell (Fig. 1e). The angle ϑp, on
the other hand, corresponds to the p−fold orientation
of the whole cell with respect to the horizontal direc-
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Figure 2. Symmetry of MDCK cells in confluent monolayers. a,b Confocal image of a confluent MDCK GII monolayer
(green, E-cadherin and blue, nuclei). The dashed yellow lines trace the contour of the cells as identified after image segmentation.
The white rods a and stars b respectively mark the 2−fold and 6−fold orientation of cells and have been obtained from the order
parameter ψp, Eq. (2). c Probability distribution of the magnitude of the order parameter |ψp| for p = 2 (blue) and p = 6 (red).
Experimental data points are obtained by averaging over 68 different images with each containing 140±31 (mean ± s.d.) cells.
The mean value of the distributions are 〈ψ2〉 = 0.370± 0.030 (mean ± s.d.) and 〈ψ6〉 = 0.49± 0.05 (mean ± s.d.). The boxplot
in the inset shows the average magnitudes of the order parameters of 68 imaged monolayers. 〈ψ2〉 and 〈ψ6〉 are significantly
different with a p−value of p < 10−4, calculated by using the two-sided Wilcoxon rank sum test. Dashed and dotted lines
are obtained from numerical simulations of the multiphase-field (mpf) and Voronoi models. d Probability distribution of cell
coordination number for experiments and simulations. The hight of the bar represents the mean of 68 analyzed images. The
mean values of the coordination number distributions are 5.8± 0.9 (mean ± s.d.) for experiments and 5.9± 0.9 (mean ± s.d.)
for multiphase field simulations and 6.0± 0.6 (mean ± s.d.) for Voronoi simulations. In c and d, error bars are computed from
the standard error of mean. e Contour plot of the local cell concentration of a multiphase-field simulation with 360 cells in
a magnified region of the simulation box showing approximately one third of the system. Darker regions correspond to areas
dense with cells and lighter regions to areas where cells are sparser (see legend box). f Configuration of a numerical simulation
of the Voronoi model. The cells in red (blue) have 5 (7) neighbors while others have 6.

tion. In practice, this is equivalent to the inclination of
a p−legged star centred at the cell’s center of mass and
oriented in such a way to maximize the probability of
finding a vertex in the direction of either one of the legs.
Some example of this construction is shown in Fig. 1e
and 1f, where ψp is computed for more or less elongated
irregular polygons. When applied to defective configu-
rations, our method yields the correct winding numbers
s = ±1/6 (Fig. 1g and 1h).

With the tensor Gp in hand, we next investigate the
emergent orientational order in confluent monolayers of
MDCK GII cells (Figs. 2a and 2b). After segmenting
the images, by taking advantage of the previous label-
ing of E-cadherin, we track the cells’ contour and from
the coordinates of the vertices we compute the order pa-

rameter ψp, Eq. (2). We analyze a total of 68 images of
confluent monolayers (see the Methods for details) with
each one of them comprising 140 ± 31 cells (mean ±
s.d.). Fig. 2c shows the probability distribution of ψp
for p = 2 and 6. Interestingly, the distribution of ψ6

is symmetric and spreads over a broad range of values;
conversely the distribution of ψ2 features a peak at ap-
proximatively 0.35, with a decreasing tail at larger val-
ues. The MDCK GII cells analyzed in this study are,
therefore, more prone to arrange in isotropic rather than
elongated shapes. This results in a disordered and yet
orientationally coherent tiling of the plane, where a ma-
jority of hexagons coexists with large minorities of pen-
tagons and heptagons, as indicated by the distribution of
the number of neighbors in Fig. 2d. We compare these
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Figure 3. Coarse-graining and multiscale features of confluent cell monolayers. a Illustration of the coarse-graining
procedure entailed in Eq. (3). A disk ΩR = ΩR(r) (encircled in gray), with radius R and centered at the point r (in general
not coincident with the center of mass of any specific cell) is superimposed to a segmented image of the cell monolayer and
the cells in its interior are used to compute the coarse grained filed Ψp. The large yellow star at the centre of the disk shows
the orientation of the whole cluster. b, c Nematic (top row) and hexatic (bottom row) coarse grained fields Ψ2 and Ψ6 versus
the coarse graining radius R, expressed in units of the average cell size Rcell = 7.4µm. In both panels positive and negative
defects are marked in red and blue respectively (±1/2 for nematic and ±1/6 for hexatic). d Defect density at varying the
coarse graining radius R. e A mismatch between the defect charge and the symmetry of the p−atic liquid crystal gives rise to
unphysical singular line (see Sec. SII in Ref. [16]). Top (bottom) panel shows a pair of nematic (hexatic) defects of winding
number s = ±1/2 (s = ±1/6) f Magnitude of Ψ2 and Ψ6 versus the coarse graining radius R measured from experimental and
numerical mpf data. Both data sets fit the power law |Ψp| = 〈ψp〉(R/Rcell)

−ηp/2, with ηp a non-universal exponent [13, 14],
with the following fitting parameters: (experiments) η2 = 0.41±0.01, η6 = 0.49±0.01; (mpf) η2 = 0.43±0.02, η6 = 0.48±0.01.
In both experiments and multiphase field simulations, the |Ψ2| and |Ψ6| order parameters crossover at the length scale R×,
with: (experiment) R×/Rcell = 4.6 ± 1.0; (mpf) R×/Rcell = 5.0 ± 1.2. In d and f the error bars correspond to the standard
error on the mean.

observations with numerical simulations of two different
theoretical models of epithelia: i.e. a continuous mul-
tiphase field model (mpf) [17–19] (Fig. 2e) and the dis-
crete Voronoi model [20–23] (Fig. 2f), both in qualitative
agreement with experimental data.

In order to quantify the amount of orientational order
in the system, we next compare the orientation of each
cell with that of its neighbors, by means of the following
coarse-graining procedure. Given a disk ΩR = ΩR(r),

with radius R and centred at r, and letting rc be the
position of the center of mass of the c−th cell, we define
the coarse grained order field Ψp = Ψp(r) as

Ψp =
1

N

N∑
c=1

ψp(rc) = |Ψp|eipθp , (3)

where N is the number of cells whose centre of mass lies
within ΩR, while |Ψp| = |Ψp(r)| and θp = θp(r) are re-
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spectively the magnitude and phase of the complex order
parameter Ψp, conveying information about the amount
and direction of p−fold orientational order at the length
scale R (Fig. 3a).

The outcome of this analysis is shown in Figs. 3b and
3c. At length scales comparable with the average cell
size − i.e. R <∼ Rcell, with Rcell = 7.4± 1.9 µm the aver-
age cell radius computed as half of the distance between
the cells’ centers of mass − both the nematic (Fig. 3b)
and the hexatic (Fig. 3c) coarse grained fields are popu-
lated by topological defects. For p = 6, in particular, the
monolayer appears organized into regions characterized
by spatially uniform hexatic order, separated by arrays of
±1/6 disclinations, similarly to grains and grain bound-
aries in polycrystals [24]. Increasing R has the effect of
smoothing the Ψ6 field, thereby absorbing neutral pairs
of disclinations into a gently varying 6−fold orientation
field, resulting in a power law decreasing defect density
(Fig. 3d).

The scenario differs dramatically for p = 2 (Fig. 3b).
In this case, many of the defective structures identified in
the configuration of the hexatic field at the small length
scales are replaced by very sharp and yet defect-free tex-
tures. This peculiarity originates precisely from the mis-
match between the actual 6−fold symmetry of the con-
figuration at the cellular scale and the 2−fold symmetry
of the order parameter used to describe it, in a similar
fashion as using a (polar) vector field to describe a ne-
matic disclination gives rise to singular lines where the
polar field “jumps” by an angle π (Fig. 3e). Conversely,
at larger length scales, the majority of nematic defects is
replaced by regions where the nematic field Ψ2 smoothly
varies across the sample, with exception for a small num-
ber of isolated ±1/2 disclinations (Fig. 3b and 3d). These
observations are further supported by the scaling behav-
ior of the magnitude of the fields Ψ2 and Ψ6 as the coarse-
graining radius R varies (Fig. 3f). In particular, both
|Ψ2| and |Ψ6| are finite at all length scales in the range
1 ≤ R/Rcell < 10, but, while |Ψ6| is prominent at small
length scales, this is overweighted by |Ψ2| at large length
scales. For our MDCK GII cells on uncoated glass, the
crossover occurs at R×/Rcell = 4.6 ± 1.0, correspond-
ing to clusters of approximatively 21 cells. The same
crossover is also observed in our numerical simulations
of the multiphase field model, with the crossover scale
R×/Rcell = 5.0± 1.2, while it is not found in simulations
of the Voronoi model, where hexatic order is dominant
at all length scales (Fig. 3f).

Taken together, our experimental and numerical re-
sults demonstrate that epithelial monolayers behave as
multiscale active liquid crystals, with 6−fold hexatic or-
der characterizing the spatial organization of the cells
at small length scales, while nematic order dictates the
large scale structure of the monolayer. The crossover
length scale is, as intuitive, non-universal, but depends

on the molecular repertoire and the material properties
of the specific phenotype, as well as on the mechanical
properties and the surface chemistry of the substrate.

In conclusion, we have investigated the existence of ori-
entational order in epithelial layers, as a possible route
toward complementing the complex network of regula-
tory pathways that tissues have at their disposal, with
a minimal toolkit of physical mechanisms, whose pri-
mary effect is to coordinate the activity of individual
cells to achieve multicellular organization. Upon intro-
ducing a novel tensorial descriptor of cellular orienta-
tion − i.e. the generalized shape tensor Gp − we have
demonstrated that multiple types of liquid crystal order
can coexist in epithelial layers at different length scales.
In particular, hexatic order (i.e. p = 6) is prominent
at the small scale (i.e. in clusters of up to 21 cells in
our MDCK GII samples), whereas nematic order (i.e.
p = 2) characterizes the structure of the monolayer at
larger length scales. This novel approach creates the
basis for a correct identification of topological defects
− whose biophysical role in epithelia has recently fo-
cused great attention [3–5], especially in the context of
morphogenesis [25–28] − and further provides the nec-
essary knowledge for the foundation of a comprehensive
and predictive mesoscopic theory of collective cell migra-
tion [29]. In addition to advancing current techniques
for the interpretation of in vitro experimental data, our
findings highlight a number of potentially crucial proper-
ties of epithelia in vivo. First, collective cell migration in
epithelia relies on both remodelling events at the small
scale − such as cell intercalation and the rearrangement
of multicellular rosettes [30, 31] − as well as large scale
flows [26]. Therefore the underlying hexanematic mul-
tiscale organization and the specific magnitude of the
crossover scale R× are expected to have a profound im-
pact on how the geometry of the environment affects the
specific migration strategy. E.g. metastatic cells trav-
eling through micron-sized channels in the extracellular
matrix during cancer invasion [32] will more likely rely on
local hexatic-controlled remodelling events, whereas un-
confined wound healing processes [33] are more likely to
leverage on system-wide nematic-driven collective flows.
Second, as both hexatic and nematic liquid crystals can
feature topological defects, these are expected to interact,
thereby affecting processes such as the extrusion of apop-
totic cells [4], the development of sharp features during
morphogenesis [28, 34] and, in general, any remodelling
or morphogenetic event that can take advantage of the
persistent pressure variations introduced by active de-
fects [5]. Finally, in the light of what said above, it is
evident that understanding how the crossover scale R×
can be controlled, either chemically or mechanically, may
ultimately represents the key toward deciphering tissues’
collective dynamics.
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METHODS

Cell culture

Parental Madin-Darby Canine Kidney (MDCK) GII
cells stably expressing E-cadherin-GFP [35] (kindly pro-
vided by M. Gloerich, UMC Utrecht) were cultured in a
1 : 1 ratio of low glucose DMEM (D6046; Sigma-Aldrich,
St. Louis, MO) and Nutrient Mixture F-12 Ham (N4888;
Sigma-Aldrich, St. Louis, MO) supplemented with 10%
fetal calf serum (Thermo Fisher Scientific, Waltham,
MA), and 100 mg/mL penicillin/streptomycin, 37 ◦C,
5% CO2. For experiments, cells were seeded on uncoated
cover glasses, grew to confluence, and nuclei were live-
stained with 2 µg/mL Hoechst 34580 (Thermo Fisher,
H21486) before imaging.

Microscopy

Samples were imaged at high resolution on a home-
build optical microscope setup based on an inverted Ax-
iovert200 microscope body (Zeiss), a spinning disk unit
(CSU-X1, Yokogawa), and an emCCD camera (iXon 897,
Andor). IQ-software (Andor) was used for setup-control
and data acquisition. Illumination was performed using
fiber-coupling of different lasers [405 nm (CrystalLaser)
and 488 nm (Coherent)]. Cells on over glasses were in-
spected with an EC Plan-NEOFLUAR 40 × 1.3 Oil im-
mersion objective (Zeiss). Images were taken in three
focal-planes within a distance of 352 nm for a maximal
intensity projection.

Analysis

Shape order parameter

Cell boundaries of confluent monolayers were analyzed
using a maximum intensity projection of z−stack images.
Cell segmentation and vertex analysis were performed
using home-build Matlab scripts (Mathworks, Matlab
R2018a). The number of nearest neighbors corresponds
to the number of vertices surrounding a cell. The centroid
of the polygon was calculated by rc =

∑V
i=1 ri/V , where

V is the number of vertices and ri their positions. For
each cell, the shape order was derived by using Eq.(2).
On average, we analyzed 140 ± 31 cells per image. For
the probability distribution of the shape order for each
analyzed image, we choose a binning of 20 ranging from
0 to 1.

Coarse graining

The radius used to construct the coarse grained field
given by Eq. (3), was chosen according to the typical

cell radius Rcell = 7.4 ± 1.9 µm, calcualted as half of
the average cell-cell nearest neighbor distance. For cal-
culating the crossover point, we set the center point of
the disk equal to the center point of the image. The ra-
dius of the disk in which the complex order parameters
were averaged ranged from Rcell to half of the image size
(176× 176µm2). For computing the nematic and hexatic
coarse grained director field, we set the grid-distance to
Rcell.

Topological defects

Topological defects were identified by first interpolat-
ing the p−fold orientation field on a square 22× 22 grid
by means of the coarse-graining procedure in Eq. (3) and
then computing the winding number along each unit cell.
That is:

s =
1

2π

∮
�

dθp =
1

2π

4∑
n=1

[θp(rn+1)− θp(rn)] mod
2π

p
,

(4)
where the symbol � denotes a square unit cell in the
interpolation grid and the mod operator constraints the
difference θp(rn+1)−θp(rn) in the interval [−2π/p, 2π/p].

Statistics

In total, 68 images of confluent monolayers (nine cov-
erslips, three independent experiments) were taken and
analyzed. In total, 9496 cells were considered for the
analysis.

Numerical simulations

We make use of two different numerical models for
ET previously intrduced in literature: (i) the multiphase
field model and (ii) the Voronoi model.

Multiphase field model

This model has been used to study the dynamics of
confluent cell monolayers [17] and the mechanics of cell
extrusion [18]. It is a continuous model where each cell
is described by a concentration field ϕc = ϕc(r), with
c = 1, 2 . . . Ncell and Ncell the total number of cells. The
equilibrium state is defined by the free energy F =

∫
dAf

where the free energy density f is given by

f =
α

4

∑
c

ϕ2
c(ϕc − ϕ0)2 +

kϕ
2

∑
c

(∇ϕc)2

+ ε
∑
c<c′

ϕ2
cϕ

2
c′ +

∑
c

λ

(
1− 1

πϕ2
0R

2
ϕ

∫
dAϕ2

c

)2

. (5)
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Here α and kϕ are material parameters which can be
used to tune the surface tension γ =

√
8κϕα and the in-

terfacial thickness ξ =
√

2κϕ/α of isolated cells and ther-
modynamically favor spherical cell shapes. The constant
ε captures the repulsion between cells. The concentra-
tion field is large (i.e. ϕi ' ϕ0) inside the cells and zero
outside. The contribution proportional to λ in the free
energy enforces cell incompressibility whose nominal ra-
dius is given by Rϕ. The phase field ϕi evolves according
to the Allen-Cahn equation

∂tϕc + vc · ∇ϕc = −M δF
δφc

, (6)

where vi = v0(cos θc ex+sin θc ey) is the velocity at which
the c−th cell self-propels, with v0 a constant speed and θc
an angle. The latter evolves according to the stochastic
equation

dθc
dt

=
√

2DWc , (7)

where D is a constant controlling noise diffusivity and
Wc = Wc(t) is a Wiener process. The constant M in
Eq. (6) is the mobility measuring the relevance of thermo-
dynamic relaxation with respect to non-equlibrium cell
migration. Eq. (6) is solved with a finite-difference ap-
proach through a predictor-corrector finite difference Eu-
ler scheme implementing second order stencil for space

derivatives [19]. Simulation details and scaling to physi-
cal units are given in Table I.

Voronoi model

This model portrays a confluent tissue as a Voronoi
tesselation of the plane [20]. Each cell is characterized
by two dynamical variables: the position rc and the ve-
locity vc = v0(cos θc ex + sin θc ey) with v0 a constant
speed and θc an angle, with c = 1, 2 . . . Ncell and Ncell

the total number of cells. The dynamics of these variables
is governed by the following set of ordinary differential
equations

drc
dt

= vc − µ∇rcE , (8a)

dθc
dt

= ηc , (8b)

where µ is a mobility coefficient and E = E(r1, r2 . . . rN )
is and energy function defined as

E =
∑
c

[
KA (Ac −A0)

2
+KP (Pc − P0)

2
]
. (9)

Here Ac and Pc are respectively the area and perimeter
of each cell and A0 and P0 its preferred values. The
variable ηc in Eq. (8b) is white noise, having zero mean
and correlation function

〈ηc(t)ηc′(t′)〉 = 2Drδcc′δ(t− t′) , (10)

with Dr a rotational diffusion coefficient. Simulation de-
tails and scaling to physical units are given in Table I.
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Table I. Physical scaling of simulation parameters. The table provides the parameters used to perform simulations
for both the multiphase field and the Voronoi model, together with their dimensions and scaling to physical units. For the
multiphase field model, scaling is performed by equating the mean cell radius Rcell (' 7.4µm) measured in experiments with
the nominal cell radius R and a typical migration speed of cells in MDCK monolayers [6] (' 2µm h−1) with that measured in
our simulations (' 0.0011∆x/∆t). This allows us to find the physical scaling of the lattice grid unit ∆x and the iteration unit
∆t. For the Voronoi model, we equated the mean cell radius Rcell in experiments with that measured in simulations (' 1).
The time-step was derived with the same procedure as described for the multiphase field model.In the table, simulation values
are given in both lattice and physical units, in column four and five, respectively. Notice that we did not introduce an energy
scale as this cancels out with the mobility parameter M in Eq. (6) and µ in Eq. (8), respectively.

Numerical model
Multiphase field model

Model parameter Dimension Simulation value(s) Physical scaling

Lattice parameters

Ncell — 361 —
∆x L 1 0.685 µm
∆t T 1 1.414 s
Lx, Ly L 380 246.6 µm

Free energy parameters

Mα 1/T 0.006 0.0042 s−1

Mkϕ L2/T 0.012 0.0040 µm2 s−1

Mε 1/T 0.01 0.0071 s−1

Mλ 1/T 600 424, 4 s−1

ϕ0 — 2.0 —
R L 10.86 7.4 µm
ξ =

√
2kϕ/α L 2 1.37 µm

Mγ = M
√

8/9kϕα L/T 0.008 0.0039 µm s−1

Dynamical equation parameter Dpf
r 1/T 0.0001 0.00007 s−1

v0 L/T 0.0035 0.00169 µm s−1

Dimensionless numbers Peclét number Pe = v0/(DrR) — 3.22 —
Cell deformability d = ε/α — 1.66 —

Voronoi model

Lattice parameters
Ncell — 22500 —
∆t T 0.01 0.53 s
Lx, Ly L 150 2220 µm

Energy parameters

µKA 1/(L2T ) 1 0.0086 µs−1

µKP 1/T 1 0.98 s−1

A0 L2 1 219.04 µm−2

P0 L 3.9 57.72 µm

Dynamical equation parameter v0 L/T 0.1 27.8 µm s−1

D′r 1/T 1 0.019 s−1

Dimensionless numbers Peclét Pe = v0/(D
V
r

√
A0) — 0.5 —

Shape index p0 = P0/
√
A0 — 3.95 —
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S1. THE p−FOLD SHAPE TENSOR

A. Definition and basic properties

In this supplementary Section we explicit the relation between the p−fold shape tensor Gp, Eq. (1), and the complex
order parameter ψp, Eq. (2). To build up intuition, we start from observing that the standard rank−2 shape tensor
for a V−sided polygon, is given by8, 9

S =
1

V

V∑
i=1

ri ⊗ ri , (S1)

where, as in the main text, ri represents the coordinate of the i−th vertex with respect to the center of mass of the
cell. The spectral theorem allows one to represent S, as well as any other symmetric tensor, in terms of two irreducible
components, one diagonal and the other traceless:

S = λ̄1 + ∆λ

(
e1 ⊗ e1 −

1

2
1

)
, (S2)

where we have set

λ̄ =
λ1 + λ2

2
, ∆λ = λ1 − λ2 ,

with λ1 > λ2 the two eigenvalues of S, e1 = cosϑ ex + sinϑ ey the unit eigenvector associated with the largest
eigenvalue λ1 and 1 the rank−2 identity tensor. The two terms in Eq. (S2) entail information about the polygon’s
size and anisotropy. The latter property can be further highlighted by introducing the tensor

G2 =
JSK

1
V

∑V
i=1 |ri|2

=
∆λ

1
V

∑V
i=1 |ri|2

q
e⊗21

y
, (S3)

where the operator J· · ·K has the effect of rendering its argument traceless and symmetric13, 14 and the (· · · )⊗p implies
a p−fold tensorial product of the argument with itself: i.e.

e⊗p1 = e1 ⊗ e1 ⊗ · · · ⊗ e1︸ ︷︷ ︸
p times

. (S4)

In two dimensions, the tensor G2 has only two linearly independent components and expressing it in the basis {ex, ey}
readily gives

G2 =
∆λ

2
V

∑V
i=1 |ri|2

[
cos 2ϑ sin 2ϑ

sin 2ϑ − cos 2ϑ

]
. (S5)

∗ These authors contributed equally
† giomi@lorentz.leidenuniv.nl
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Furthermore, explicitly diagonalizing Eq. (S1) gives

ϑ =
1

2
arctan

(∑V
i=1 |ri|2 sin 2φi∑V
i=1 |ri|2 cos 2φi

)
, (S6a)

∆λ =

√√√√( V∑
i=1

|ri|2 sin 2φi

)2

+

(
V∑
i=1

|ri|2 cos 2φi

)2

, (S6b)

where φi = arctan(yi/xi) denotes the angular position of the i−th vertex with respect of the centre of mass (see
Fig. 1e of the main text). This construction implies that all components of the tensor G2 are proportional to either
the real or imaginary part of the complex order parameter

ψ2 =
1

∆2

V∑
i=1

|ri|2e2iφi =
∆λ

∆2
e2iϑ , (S7)

so that

|ψ2| =
∆λ

∆2
, ϑ =

Argψ2

2
.

Now, the same construction can be carried out for a generic rank−p shape tensor, by defining

Gp =
1

∆p

s V∑
i=1

r⊗pi

{
, (S8)

where ∆p =
∑V
i=1 |ri|p. As for the rank−2 tensor defined in Eq. (S3), this tensor has only two linearly independent

components, that are

g1 = Gp,xx··· x =
1

2p−1∆p

V∑
i=1

|ri|p cos (pφi) , (S9a)

g2 = Gp,xx··· y =
1

2p−1∆p

V∑
i=1

|ri|p sin (pφi) , (S9b)

and can be cast as in Eq. (S3), that is

Gp =
∆λp
∆p

q
e⊗p

y
, (S10)

where the positive scalar ∆λp and the unit vector e = cosϑp ex + sinϑp ey are analogous to the difference λ1 − λ2,
quantifying the anisotropy of the polygon, and the eigenvector e1 associated with the largest eigenvalue. This problem
ultimately relies on a generalization of the spectral theorem for tensors whose rank is larger than two. A possible
strategy to achieve such as generalization was proposed by Virga in the context of rank−3 tensors15 and consists
of defining ϑp as the inclination of a p−legged star oriented in such a way to maximize the probability of finding a
vertex of the polygon in the direction of either one of the legs. The latter task is equivalent to solving the system of
equations

Gp � e⊗p−1 =
∆λp
∆p

e , (S11)

where � denotes a contraction of all matching indices of the two tensors on the left hand side. After some lengthy
calculations, partially summarized in Sec. S1B, one finds

ϑp =
1

p
arctan

(∑V
i=1 |ri|p sin (pφi)∑V
i=1 |ri|p cos (pφi)

)
, (S12a)

∆λp =

√√√√( V∑
i=1

|ri|p cos (pφi)

)2

+

(
V∑
i=1

|ri|p sin (pφi)

)2

. (S12b)

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted February 4, 2022. ; https://doi.org/10.1101/2022.02.01.478692doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.01.478692


3

As in the case of the rank−2 shape tensor, one can then express all components of Gp in terms of the real and
imaginary parts of the p−fold complex order parameter

ψp =
1

∆p

V∑
i=1

|ri|peipφi =
∆λp
∆p

eipϑp , (S13)

so that

|ψp| =
∆λp
∆p

, ϑ =
Argψp
p

.

B. Derivation of Eqs. (S12)

For sake of completeness, here we elaborate on the solution of Eq. (S11), leading to Eqs. (S12). The strategy,
pioneered in Ref.15, consists of mapping the diagonalization of a rank−p tensor to an optimization problem where
∆λp ∈ R is the Lagrange multiplier subjected to the constraint |e|2 = e2x + e2y = 1. This task requires computing
the tensorial power e⊗p−1, which, in turn, amounts to constructing all possible order−(p− 1) products of ex and ey.
The latter is facilitated by the fact that, as previously stated, the two-dimensional tensor Gp has only two linearly
independent components, proportional to the functions g1 and g2 introduced in Eqs. (S9). In particular, depending
on whether the number of y−indices of the generic element Gi1i2··· ip , with ip = {x, y}, is even or odd, the element
is proportional to g1 and g2 respectively. Taken together, the aforementioned considerations result into the following
expressions for the components of the e vector:

∆λp
∆p

ex = g1

[ ∑
k∈even

(−1)
k
2

(
p− 1

k

)
ep−1−kx eky

]
+ g2

[ ∑
k∈odd

(−1)
k−1
2

(
p− 1

k

)
ep−1−kx eky

]
, (S14a)

∆λp
∆p

ey = g2

[ ∑
k∈even

(−1)
k
2

(
p− 1

k

)
ep−1−kx eky

]
− g1

[ ∑
k∈odd

(−1)
k−1
2

(
p− 1

k

)
ep−1−kx eky

]
. (S14b)

Despite their apparently complexity, these equations can be considerably simplified leading to

∆λp
∆p

cosϑp = g1 cos [(p− 1)ϑp] + g2 sin [(p− 1)ϑp] , (S15a)

∆λp
∆p

sinϑp = g2 cos [(p− 1)ϑp]− g1 sin [(p− 1)ϑp] . (S15b)

If g1 = 0, Eqs. (S15) reduces to

cotϑp = tan [(p− 1)ϑp] , (S16)

which has 2 p solutions in the range 0 ≤ ϑp < 2π given by

ϑ(k)p =
2k + 1

p
π , k = 0, 1 . . . 2p− 1 . (S17)

Conversely, when g1 6= 0, setting % = g2/g1 and solving Eqs. (S15) with respect to ϑp gives

cotϑp =
cos [(p− 1)ϑp] + % sin [(p− 1)ϑp]

% cos [(p− 1)ϑp]− sin [(p− 1)ϑp]
, (S18)

from which one can readily find

% = tan pϑp , (S19)

whose solution is given by

ϑ(k)p =
arctan %+ kπ

p
, k = 0, 1 . . . 2p− 1 , (S20)
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thereby completing the derivation of Eq. (S12a). To compute ∆λp one can use again Eqs. (S15) and express g1 and
g2 in terms of coordinates. This gives, after some direct calculations

∣∣∣∆λ(k)p

∣∣∣ = |g1|
√

1 + %2 =
1

2p−1

√√√√( V∑
i=1

|ri|p cos (pφi)

)2

+

(
V∑
i=1

|ri|p sin (pφi)

)2

. (S21)

Note that, because of the periodicity of ϑ(k)p , then ∆λ
(k)
p = −λ(k+1)

p , whereas the sign of λ(0)p depends on % and g1.
Finally, to cast the tensor Gp in the form given in Eq. (S10), one can write g1 = ∆λpĝ1 and g2 = ∆λpĝ2 where

ĝ1 =
1

2p−1∆p
cos pϑp , ĝ2 =

1

2p−1∆p
sin pϑp ,

are the two independent components of Je⊗pK /∆p. Then, using the expression of ϑp given in Eqs. (S17) and (S20),
one obtains

∆λp = 2p−1
∣∣∣∆λ(k)p

∣∣∣ , k = 0, 1 . . . 2p− 1 , (S22)

which completes the derivation of Eq. (S12b).

S2. DEFECT REPRESENTATION IN p-ATIC LIQUID CRYSTALS

In two-dimensional liquid crystals topological defects consists of point-like singularities in the orientational field,
that is points where the orientation of the director field is not univocally defined, and can be classified in terms of
the winding number s defined in the main text. In liquid crystals with p−fold rotational symmetry, the latter is an
integer multiple of the elementary winding number 1/p. By contrast, it is impossible to correctly describe a defect of
winding number s = ±1/p in terms of an orientation field with rotational symmetry other than p−fold.

To substantiate this statement, we consider here the common case of a pair of ±1/2 disclinations in a nematic
liquid crystal (p = 2), respectively located at positions r+ = x+ex + y+ey and r− = x−ex + y−ey. The far-field
configuration the phase ϑ2 = Arg(Ψ2)/2 is given by

ϑ2 =
1

2

[
arctan

(
y − y+
x− x+

)
− arctan

(
y − y−
x− x−

)]
. (S23)

In turn, the 2−fold orientation field can be visualized as a the standard headless nematic director − i.e. a 2−legged
star − as in Fig. 1a of the main text. Now, as illustrated in Fig. 3e, attempting to describe the same 2−fold symmetric
configuration with a, say, 1−fold symmetric orientation filed − i.e. a standard vector field − results in a discontinuity
of magnitude π of the associated phase ϑ1 across the x−axis.

The same issue occurs while attempting to describe a pair of s = ±n/p defects (with n a real number) in by means
of a q−fold orientation filed, with q < p. In this case, the far-field configuration of the phase ϑp is given by

ϑp =
n

p

[
arctan

(
y − y+
x− x+

)
− arctan

(
y − y−
x− x−

)]
, (S24)

and it can be graphically represented by a p−legged star oriented at angles ϑp+2πn/p, with n = 1, 2 . . . p, so that the
order parameter Ψp = |Ψp| exp ipϑp is continuous everywhere, but at the defect position. Next, we attempt to describe
the same configuration in terms of the order parameter Ψq = |Ψq| exp iqϑq corresponding to q−legged stars oriented
at an angle ϑq + 2πn/q, with n = 1, 2 . . . q < p. For the purpose of this discussion, and without loss of generality, we
set y+ = y− = y0 and we compute the variation of Ψq while crossing the line the axis y = y0 in the region comprised
between the two defects (x− < x < x+). Since the q−legged star associated with the order parameter Ψq is invariant
under rotations by 2π/q, the inclination of the leg closer to the x−axis undergoes a discontinuity of magnitude

|∆ϑq| = 2πmin

(
n

p
,
|p− nq|
pq

)
. (S25)

Thus, the field ϑq is continuous everywhere, but at the defect position (|∆ϑq| = 2πm/p with m any natural number)
only when p = q or nq is an integer multiple of p. In particular, describing a defect of winding number s = 1/6 (n = 1
and p = 6) by means of a nematic field with q = 2 would result into a jump of magnitude |∆ϑ2| = π/3 as shown
in Fig. 3e in the main text. The resulting configuration of the nematic director features a singular line connecting
defects of opposite charge.
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