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CHAPTER 1

Curves

1. Examples, Arclength Parametrization

We say a vector functioh (a, b) — R3is €% (k = 0,1,2,...) if f and its firstk derivativesf’, f’, ...,
(k) exist and are all continuous. We skig smoothif f is ek for every positive integek. A parametrized
curveis aC? (or smooth) ma: I — R3 for some intervall = (a,b) or [a, b] in R (possibly infinite). We
saya isregularif a’(r) # Oforall 7 € I.

We can imagine a particle moving along the pathwith its position at time given byea(z). As we
learned in vector calculus,

, da . a(t+h) —alt)
o) = dar }lano h
is thevelocityof the particle at time. The velocity vectow’(z) is tangent to the curve at(r) and its length,
le’()]], is the speed of the particle.

Example 1. We begin with some standard examples.

(a) Familiar from linear algebra and vector calculus is apaatrized line: Given point® and Q in
R3, we letv = @ = @Q — P and seix(t) = P +tv,t € R. Note thate(0) = P, (1) = O,
and for0 < ¢ < 1, a(¢) is on the line segmer® Q. We ask the reader to check in Exercise 8 that of
all paths fromP to Q, the “straight line path& gives the shortest. This is typical of problems we

shall consider in the future.
(b) Essentially by the very definition of the trigonometnimétions cos and sin, we obtain a very natural
parametrization of a circle of radius as pictured in Figure 1.1(a):

a(r) = a(cost,sint) = (acost,asint), 0=t <2x.

a cost, asint)
(acost, bsint)

/?'

b

|

~—a—— \\Raa
(

b)

FIGURE1.1
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(c) Now, ifa,b > 0 and we apply the linear map
T:R?> - R2, T(x,y) = (ax,by),

we see that the unit circte? +y2 = 1 maps to the ellipse?/a>+y?/b? = 1. SinceT (cost, sint) =
(a cost, b sint), the latter gives a natural parametrization of the elligseshown in Figure 1.1(b).
(d) Consider the two cubic curves R? illustrated in Figure 1.2. On the left is thmuspidal cubic

=tXx

y2=xX34%2

y2=x3

(@) (b)
FIGURE 1.2

y2 = x3, and on the right is theodal cubicy? = x3 4 x2. These can be parametrized, respectively,
by the functions

at)= %13 and  «() = (% —1,1(2 - 1)).

(In the latter case, as the figure suggests, we see that the lia rx intersects the curve when
(tx)?> = x2(x + 1), s0x = 0orx =12 —1.)

FIGURE 1.3
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(e) Now consider théwisted cubidn R3, illustrated in Figure 1.3, given by
a(t) = (t,1%,13), teR.

lts projections in thexy-, xz-, and yz-coordinate planes are, respectively= x2, z = x3, and
z2 = y3 (the cuspidal cubic).

(f) Our next example is a classic called thgcloid It is the trajectory of a dot on a rolling wheel
(circle). Consider the illustration in Figure 1.4. Assumithe wheel rolls without slipping, the

“

O

FIGURE1.4

distance it travels along the ground is equal to the length@tircular arc subtended by the angle
through which it has turned. That is, if the radius of theleiis ¢ and it has turned through angle
t, then the point of contact with the-axis, Q, isat units to the right. The vector from the origin to

ah

C a7
P t>acost
P"a"éi'n'f'/

FIGURE 1.5

the pointP can be expressed as the sum of the three ve@)sQ—C), andag (see Figure 1.5):
0P =00 + 0C +CP
= (at,0) + (0,a) + (—asint,—a cost),
and hence the function
a(t) = (at —asint,a —acost) = a(t —sint,1 —cost), t€R

gives a parametrization of the cycloid.

(g) A (circular) helixis the screw-like path of a bug as it walks uphill on a rightular cylinder at a
constant slope or pitch. If the cylinder has radiuand the slope i$/a, we can imagine drawing a
line of that slope on a piece of pap®ta units long, and then rolling the paper up into a cylinder.
The line gives one revolution of the helix, as we can see infeid.6. If we take the axis of the
cylinder to be vertical, the projection of the helix in therizontal plane is a circle of radius and
SO we obtain the parametrizatiesfr) = (a cost, a sint, bt).
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—
—

2ma

2nh

FIGURE 1.6

Brief review of hyperbolic trigonometric functions. Just as the circle? + y? = 1 is parametrized
by (cos#, sinf), the portion of the hyperbola? — y? = 1 lying to the right of they-axis, as shown
in Figure 1.7, is parametrized ljgoshr, sinh¢), where

t —t t -t
coshr = % and  sinfr = & 2e

I _ sinht
By analogy with circular trigonometry, we set tamk- cosh

1
d sech = ———. The followi
and sec coshy e following

//(cosht, sinht)

FIGURE 1.7

formulas are easy to check:

cositt —sinktz =1, tankt 7 +seclHr =1

sinH (1) = coshy, cosh(z) = sinht, tanH(r) = secH ¢, secl(r) = —tanhr sechy.
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(h) When a uniform and flexible chain hangs from two pegs, &gt is uniformly distributed along
its length. The shape it takes is called¢atenary! As we ask the reader to check in Exercise 9,
the catenary is the graph ¢f(x) = C cosh(x/C), for any constanC > 0. This curve will appear

FIGURE 1.8

numerous times in this course. \Y

Example 2. One of the more interesting curves that arise “in naturehésttactrix.>2 The traditional
story is this: A dog is at the end oflaunit leash and buries a bone (@t 1) as his owner begins to walk
down thex-axis, starting at the origin. The dog tries to get back tolibee, so he always pulls the leash
taut as he is dragged along the tractrix by his owner. Hismuthe leash taut means that the leash will be
tangent to the curve. When the master igza0), let the dog’s position béx(z), y(¢)), and let the leash

¢(0,1)

(x,y)

FIGURE 1.9

make angleé (¢) with the positivex-axis. Then we have(¢) = ¢ + cosf(t), y(t) = sinf(¢), so

dy ()  cosh(t)d' ()

tanf(t) = — = = :
anbt) = 5 =Y = T=sinb(e ()

Therefore,0’(t) = sinf(¢). Separating variables and integrating, we hgwéd/siné = [ dr, and so

t = —In(csch + cotf) + ¢ for some constant. Sincefd = n/2 whent = 0, we see that = 0. Now,
1 + cosf 2c0s(6/2) L
. = — = cot(6/2), we can rewrite this as= Intan(8/2).
siné 2sin(6/2) co96/2) 16/2) 6/2)
Thus, we can parametrize the tractrix by

«(f) = (cost + Intan(6/2),sinh), 7/2<6 <.

since cs® +cotf =

1From the Latincat'enachain.
2From the Latirtrahere, tractusto pull.
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Alternatively, since ta(@/2) = ', we have

. _ 2¢! 2
sinf = 2sin(6/2) co96/2) = T = e = sechy
. 1—e? et —ef
cosh = co(0/2) —sin?(6/2) = il e —tanht,

and so we can parametrize the tractrix instead by
B(r) = (¢ —tanhz, secty), ¢ > 0. v
The fundamental concept underlying the geometry of curwvéisa arclength of a parametrized curve.

Definition. If a:[a,b] — R? is a parametrized curve, then for amy< ¢ < b, we define itsarclength
t

froma tor to bes(r) = le’(u)||du. That is, the distance a particle travels—the arclengthtof i
trajectory—is the integral of its speed.

An alternative approach is to start with the following

Definition. Letea: [a,b] — R3 be a (continuous) parametrized curve. Given a partifica {a = 1o <
t1 <--- <ty = b} of the intervalla, b], let

k
Lo, P) =) flee(ti) —ati-1)|l.
i=1

That is,£(e, P) is the length of the inscribed polygon with verticesdt;), i = 0, ..., k, as indicated in

the length of this polygonal

Given this partition, P, of [a, b], .
path is £(e, P).

FIGURE1.10

Figure 1.10. We define therclengthof « to be
lengthlee) = supl(ee, P) : P a partition offa, b]},
provided the set of polygonal lengths is bounded above.

Now, using this definition, we caprovethat the distance a patrticle travels is the integral of itsesp
We will need to use the result of Exercise A.2.4.
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Proposition 1.1. Leta: [a, b] — R3 be a piecewis€-' parametrized curve. Then

b
length(er) :/ o/ (1) dt.

Proof. For any partition of [a, b], we have

t
/ o (1)dt
ti—1
b

so lengtlfer) < / e’ (t)||dt. The corresponding inequality holds on any interval.

k

k
. P) = lle) —ali-)ll =)
i=1

i=1

k t; b
=3[ leold = [ laolar,
i=1v%i—1 a

Now, fora fal‘ < b, defines(¢) to be the arclength of the cureeon the intervala, ¢]. Then forhz > 0
we have
e + 1) —a@] _s¢+h)—s@) 1 [
h - h ~hJ;
sinces(t + h) — s(t) is the arclength of the curwe on the intervalz, r + h]. (See Exercise 8 for the first
inequality and the first paragraph for the second.) Now

o e+ —a@]
h—0+ h

llee’ )|,

. ) 1 t+h )
le" () = hl% E/, lloe” (u) || du.
Therefore, by the squeeze principle,

im s(t 4+ h)—s(t) _
h—0+ h

lle” (D)1

A similar argument works fok < 0, and we conclude that(z) = ||&’(¢)||. Therefore,

t
s<z)=/ I Go)lldu, a<i<b,
a

b
and, in particulars(b) = length(er) = / llo/ ()| dt, as desired. O
a

If |e’()|| = 1 forallz € [a,b],ie., a always has speet] thens(t) = r — a. We say the curve is
parametrized by arclengthi s(z) = ¢ for all . In this event, we usually use the parametet [0, L] and
write e (s).

Example 3.  (a) Leta(r) = (3(1 +1)%2, 11 —1)3/2, %l),l € (—=1,1). Then we have!/(¢) =

G+ -1 -2, %) and|le/(r)|| = 1 for all 7. Thus,& always has speetl
(b) The standard parametrization of the circle of radius «(z) = (acost,asint), t € [0,2x],

soa’(t) = (—asint,acost) and ||e’(z)|| = a. It is easy to see from the chain rule that if
we reparametrize the curve 8(s) = (acods/a),asin(s/a)), s € [0,2ma], then B'(s) =
(—sin(s/a),coss/a)) and ||B’(s)|| = 1 for all s. Thus, the curves is parametrized by arc-

length. v
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An important observation from a theoretical standpointast tany regular parametrized curve can be
t
reparametrized by arclength. Fordfis regular, the arclength functiorir) = / lo’ (u)||du is an increas-

a
ing differentiable function (sinc&'(r) = |le’(¢z)|| > 0 for all ¢), and therefore has a differentiable inverse
functiont = t(s). Then we can consider the parametrization

B(s) = a(t(s)).
Note that the chain rule tells us that
B'(s) = &' (t(s))t'(s) = &' (¢(5)) /5" (t(s)) = &' (t(s))/lla’ (t ()]

is everywhere a unit vector; in other worggsmoves with speed.
EXERCISES 1.1

*1. Parametrize the unit circle (less the poirtl, 0)) by the (signed) lengthindicated in Figure 1.11.

(x,y)

(-1.0)

FIGURE1.11

#2.  Consider the helix(r) = (a cost,a sint, br). Calculatea’(r), ||a’(¢)||, and reparametrize by arc-
length.

— (L 1 gins L 1 _ 1 g ’ / -
3. Le.toc(l) = («/5 COSt + —= SiNZ, —= COSI, —= COSt — —= sinr). Calculatex/(7), [’ ()], and reparam
etrizea by arclength.

*4. Parametrize the graph = f(x),a < x < b, and show that its arclength is given by the traditional

formula ,
Iength:/ V1+ (f/(x))zdx.

5. a. Show that the arclength of the catenafy) = (¢, coshr) for 0 < ¢ < b is sinhb.
b. Reparametrize the catenary by arclength. (Hint: Findraerse of sinh by using the quadratic
formula.)

*6. Consider the curve(r) = (¢!, e, +/2t). Calculaten’(¢), ||’(¢)||, and reparametrize by arclength,
starting att = 0.
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7. Find the arclength of the tractrix, given in Example 2rtgtg at (0, 1) and proceeding to an arbitrary
point.

#8. LetP,Q € R3 and leta:[a, ] — R3? be any parametrized curve with(a) = P, a(b) = Q. Let
v = Q — P. Prove that lengtte) > ||v|, so that the line segment from to Q gives the shortest
b

possible path. (Hint: Considef «’(¢) - vdt and use the Cauchy-Schwarz inequalityv < ||u|||v]|.

Of course, with the alternative definition on p. 6, it's evasier.)

9. Consider a uniform cable with densityhanging in equilibrium. As shown in Figure 1.12, the tension
forcesT(x + Ax), —T(x), and the weight of the piece of cable lying oJet x + Ax] all balance.
If the bottom of the cable is at = 0, Ty is the magnitude of the tension there, and the cable is

;c X +§Ax
FIGURE1.12

the graphy = f(x), show thatf/” (x) = i—g\/l + f’(x)2. (Remember that tath = f’(x).) Letting
0

du
C =Ty/g6, showthatf (x) = C coshx/C)+c for some constant. (Hint: To integrate| —,
/g Wt tf ( )_ hx/C) ( g N
make the substitution = sinhv.)
10. As shown in Figure 1.13, Freddy Flintstone wishes toedhig car with square wheels along a strange

road. How should you design the road so that his ride is pgyfemooth, i.e., so that the center of his
wheel travels in a horizontal line? (Hints: Start with a sguaith vertices a(+1, 1), with center

FIGURE1.13

C at the origin. Ifa(s) = (x(s), y(s)) is an arclength parametrization of the road, startingDat1),
consider the vectoOC = OP + PQ + QC, whereP = «(s) is the point of contact an@ is the
midpoint of the edge of the square. U8# = sa’(s) and the fact tha@ C is a unit vector orthogonal to
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y'(s),

@D). Express the fact th& moves horizontally to show that= ———; you will need to differentiate
XS

unexpectedly. Now use the result of Exercise 4 to fing f(x). Also see the hint for Exercise 9.)

(t.tsin(z/t)), t#0
(0,0), =0
£(a, Py) with Py = {0,1/N,2/2N —1),1/(N —1),...,1/2,2/3,1}.)

11. Show that the curve(r) = has infinite length orf0, 1]. (Hint: Consider

12. Prove that no four distinct points on the twisted cubee(Example 1(e)) lie on a plane.

13. Consider the “spiralé(r) = r(t)(cost, sint), wherer is ! and0 < r(r) < 1 for all t > 0.

a. Show that itx has finite length o010, co) andr is decreasing, then(zr) — 0 ast — oo.

b. Showthatifr(z) = 1/(t + 1), thena has infinite length o0, co).

c. Ifr(t) =1/(t + 1)?, doesa have finite length off0, oc)?

d. Characterize (in terms of the existence of improper natég)) the functions: for which & has
finite length on[0, co).

e. Use the result of part d to show that the result of part ashelen without the hypothesis thabe
decreasing.

14. (a special case of a recefmerican Mathematical Monthlgroblem) Suppose:[a,b] — R? is a
smooth parametrized plane curve (perhaps not arclengthwgdrized). Prove that if the chord length
llee(s) — ee(2)|| depends only ors — ¢|, thenae must be a (subset of) a line or a circle. (How many
derivatives ofx do you need to use?)

2. Local Theory: Frenet Frame

What distinguishes a circle or a helix from a line is theurvature i.e., the tendency of the curve to
change direction. We shall now see that we can associatehosesooth €*) arclength-parametrized curve
o a natural “moving frame” (an orthonormal basis ®* chosen at each point on the curve, adapted to the
geometry of the curve as much as possible).

We begin with a fact from vector calculus that will appeaotighout this course.

Lemma 2.1. Supposd, g: (a,b) — R3 are differentiable and satisfyt) - g(t) = constfor all t. Then
f'(t)-g(t) = —f(¢) - g (¢). In particular,

|f(t)|]| = const ifand only if f(r)-f'(r) =0 forallt.

Proof. Since a function is constant on an interval if and only if ksidative is zero everywhere on that
interval, we deduce from the product rule,
-9/ =1@)-90) +1@)-d @),
that if f - g is constant, theh- g’ = —f’- g. In particular,||f|| is constant if and only ifif||> = f - f is constant,
and this occurs ifand only if- ' = 0. O

Remark. This result is intuitively clear. If a particle moves on a sph centered at the origin, then
its velocity vector must be orthogonal to its position vectmy component in the direction of the position
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vector would move the particle off the sphere. Similarlyposef andg have constant length and a constant
angle between them. Then in order to maintain the constaglé aasf turns towards), we see thayy must
turn awayfrom f at the same rate.

Using Lemma 2.1 repeatedly, we now constructRrenet frameof suitable regular curves. We assume
throughout that the curwe is parametrized by arclength. Then, for starterss) is theunit tangent vector
to the curve, which we denote Bly(s). SinceT has constant lengthl’(s) will be orthogonal toT (s).
AssumingT’(s) # 0, define theprincipal normal vectomN(s) = T'(s)/||T'(s)|| and thecurvaturex(s) =
IT'(s)||. So far, we have

T'(s) = k(s)N(s).
If k(s) = 0, the principal normal vector is not defined. Assumingt 0, we continue. Define thikinormal
vectorB(s) = T(s) x N(s). Then{T(s), N(s), B(s)} form a right-handed orthonormal basis #®f.

Now, N’(s) must be a linear combination @%(s), N(s), andB(s). But we know from Lemma 2.1 that
N’(s)-N(s) = 0andN’(s)-T(s) = —T'(s)-N(s) = —«(s). We define theorsionz(s) = N’(s)-B(s). This
gives us

N'(s) = —k(s)T(s) + t(s)B(s).
Finally, B’(s) must be a linear combination f(s), N(s), andB(s). Lemma 2.1 tells us th&/(s)-B(s) = 0,
B'(s) - T(s) = —=T'(s) - B(s) = 0, andB’(s) - N(s) = —N'(s) - B(s) = —1(s). Thus,

B'(s) = —t(s)N(s).

In summary, we have:

Frenet formulas

T'(s) = (s)N(s)
N'(s) = —k(s)T(s) + 17(s5)B(s)
B'(s) = —1(s)N(s)

The skew-symmetry of these equations is made clearest whestate the Frenet formulas in matrix
form:

| | | | | | 0 —«x(s) O
T'(s) N'(s) B'(s) | = T(s) N(s) B(s) k() 0 —1(s)
| | | | | | 0 ) O

Indeed, note that the coefficient matrix appearing on tHa rfggskew-symmetric. This is the case whenever
we differentiate an orthogonal matrix depending on a patan{ein this case). (See Exercise A.1.4.)

Note that, by definition, the curvature, is always nonnegative; the torsion,however, has a sign, as
we shall now see.

Example 1. Consider the helix, given by its arclength parametrizaijeee Exercise 1.1.2y(s) =
(acogs/c),asin(s/c),bs/c), wherec = v/a? + b2 anda > 0. Then we have

T(s) = %(—a sin(s/c),a cogs/c), b)
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T(s) = Ciz(—a cods/c),—a sin(s/c),O) = Ca_z (— Cos(s/c),—sin(s/c),O) .
——

K(S) N(S)

Summarizing,
_ a
 a? + b2

Now we deal withB and the torsion:

K(s) = Ca—z and  N(s) = (—cos(s/c). —sin(s/c). 0).

B(s) = T(s) x N(s) = %(b sin(s/c). —b cogs/c),a)

B'(s) = Ciz(b COS(s/c),bsin(s/C),O) = —Cb—zN(s),

b
a? + b2’ . o -

Note that both the curvature and the torsion are constarite tdrsion is positive when the helix is
“right-handed” ¢ > 0) and negative when the helix is “left-handed’ & 0). It is interesting to observe
that, fixinga > 0, asb — 0, the helix becomes very tightly wound and almost planar, ang 0; as
b — o0, the helix twists extremely slowly and looks more and mdke & straight line on the cylinder and,
once againgz — 0. As the reader can check, the helix has the greatest tordiemiv= «; why does this
seem plausible?

In Figure 2.1 we show the Frenet frames of the helix at someapoints. (In the latter two pictures,

BT
N
B
T =N
T B
B
N N

FIGURE 2.1

so we infer that (s) = % =

the perspective is misleading, N, B still form a right-handed frame: In the thirdl,is in front of N, and in
the last,B is pointing upwards and out of the page.)V

We stop for a moment to contemplate what happens with theeEfermulas when we are dealing with
anonarclength-parametrized, regular cueveAs we did in Section 1, we can (theoretically) reparametriz
by arclength, obtaining (s). Then we havec(t) = B(s(¢)), so, by the chain rule,

() o' (1) = B'(s()s' (1) = v(O)T (s(2)),
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wherev(t) = s'(¢) is the speed. Similarly, by the chain rule, once we have the unit tangetoreas a
function of¢, differentiating with respect to, we have

(Tos) (1) = T'(s(1))s" () = v()x(s(1))N(s(2)).
Using the more casual—but convenient—Leibniz notatiordfmivatives,

4T 4T 14T

dT dTds
= = vkN or KN—X— Q EW

dr — dsdr
Example 2. Let’s calculate the curvature of the tractrix (see Exampie Section 1). Using the first
parametrization, we hawg () = (—sinf + cscf, cost)), and so

v(0) = ||’ (0)| = \/(— sinf + csch)? + cog § = Vcs@ 6 — 1 = —coth.

(Note the negative sign becau%ef 0 < =.) Therefore,

T(O) = —ﬁ(— sinf + csch, cosd) = —tanf(cotd cosh, cosd) = (—cosh, —sing).

Of course, looking at Figure 1.9, we should expect the foenfat T. Then, to find the curvature, we

calculate

_dT % _ (sin®, —cost)
ds 3_5 —cotf

Since—tanf > 0 and(sin8, — cos0) is a unit vector we conclude that

kN = (—tanf)(sinf, —cosh).

k(f) = —tanf and N(6) = (sinf, — cosh).

Later on we will see an interesting geometric consequenteecdquality of the curvature and the (absolute
value of) the slope. V

Example 3. Let’s calculate the “Frenet apparatus” for the parametriagrve
a(t) = 3t —13,3t2,3t +13).
We begin by calculating’ and determining the unit tangent vecioand speed:

o (1) = 3(1 —12,2t,1 + 1?), SO

v(t) = o/ (O] = 3y/(1 = 12)2 + 202 + (1 + 22 = 3,/2(1 +12)2 = 3v/2(1 + ) and

1 1 1 (1—=¢2 2t
— 1—22001+t) = ———,——.1).
ﬁ1+z2( ) ﬁ(1+z2 1+1? )

T() =

Now
aT
_dT _ 4T 1t
ds % v(t) dt

B 1 L( —4t  2(1—1?) o)
T 3V2(1+12) V2 N (1 +12)27 (1 +12)?

3v is the Greek lettempsilon not to be confused with, the Greek lettenu.

kN
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B 1 1 2 ( 2t 1-1? o)
T 3201+ V2 1+2\ 1421427 )
K N

Here we have factored out the length of the derivative veaiar left ourselves with a unit vector in its
direction, which must be the principal normid} the magnitude that is left must be the curvatdreln

summary, so far we have
2t 1 —1¢2
and NO)=-——,——.,0].
® ( 1+¢27 1412 )

K= 53050

Next we find the binormaB by calculating the cross product
1 1—12 2t
Bt)=T@)xN@t)=—|— ,— ).
@) ©)xN® ﬁ(l—i—zz 1412 )
And now, at long last, we calculate the torsion by differatntig B:

_N_9B_G _ 148
ds % v(t) dt

_ 1 L( 4t 2(t2 - 1) )
32014 12) V2 N 41227 (1 +12)2

_ 1 2 1=
T30 +2)2\ 14271427 )
T N

1
SOT(I) = K(l) = m

Now we see that curvature enters naturally when we competetheleration of a moving particle.
Differentiating the formulax) on p. 12, we obtain

" (1) = V'(OT(s(1)) + v T (s(1))s"(2)
= V()T (s(1)) + v(0)* (ke (s())N(s(1))).
Suppressing the variables for a moment, we can rewrite thiat®on as
(%) o’ = v'T +kv>N.

The tangential component of acceleration is the derivathapeed; the normal component (the “centripetal
acceleration” in the case of circular motion) is the prodfdhe curvature of the paténdthe square of the
speed. Thus, from the physics of the motion we can recoverthature of the path:

lloc” > "

Proposition 2.2. For any regular parametrized curvewe havec = TIE
o

Proof. Sincea’ xa” = (vT) x (V'T +kv?N) = «v3T x N andkv? > 0, we obtairkv? = ||’ xa” ||,
and s« = ||’ x a||/v3, as desired. O

We next proceed to study various theoretical consequeridbs &renet formulas.

Proposition 2.3. A space curve is a line if and only if its curvature is everyvdie
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Proof. The general line is given by (s) = sv + c for some unit vector and constant vectar. Then
a'(s) = T(s) = vis constant, s& = 0. Conversely, ifc = 0, thenT(s) = Ty is a constant vector,

N

and, integrating, we obtaia(s) = / T(u)du + a(0) = sTo + «(0). This is, once again, the parametric
0

equation of aline. O

Example 4. Suppose all the tangent lines of a space curve pass throughdagoint. What can we
say about the curve? Without loss of generality, we take #eslfpoint to be the origin and the curve to be
arclength-parametrized ly Then there is a scalar functidnso that for every we havex (s) = A(s)T (s).
Differentiating, we have

T(s) =o' (s) = M ()T(s) + AT (s) = ()T (s) + A(s)k(s)N(s).

Then(A'(s) — )T (s) + A(s)x(s)N(s) = O, s0, sinceT (s) andN(s) are linearly independent, we infer that
A(s) = s + ¢ for some constant andk (s) = 0. Therefore, the curve must be a line through the fixed point.
\Y,

Somewhat more challenging is the following

Proposition 2.4. A space curve is planar if and only if its torsion is everyveh@r The only planar
curves with nonzero constant curvature are (portions of)as.

Proof. If a curve lies in a plané’, thenT(s) andN(s) span the plan&, parallel to? and passing
through the origin. Thereford®@ = T x N is a constant vector (the normal &), and soB’ = —tN = 0,
from which we conclude that = 0. Conversely, ift = 0, the binormal vectoB is a constant vectds.
Now, consider the functiorf'(s) = a(s) - Bg; we havef’(s) = a/(s) - Bo = T(s) - B(s) = 0, and so
f(s) = c for some constant. This means that lies in the plane<- By = c.

We leave it to the reader to check in Exercise 2a. that a coctadiusa has constant curvaturg/a.
(This can also be deduced as a special case of the calculaiorample 1.) Now suppose a planar cuse

1
has constant curvatukg. Consider the auxiliary functiof(s) = a(s) + —N(s) Then we haves’(s) =
Ko
o (s) + —( ko(s)T(s)) = T(s) — T(s) = 0. ThereforeB is a constant function, sg§(s) = P for all s.
Now we cIa|m thatx is a (subset of a) circle centeredRtfor ||a(s) — P|| = |le(s) — B(s)|| = 1/ko. O

We have already seen that a circular helix has constant tcmevand torsion. We leave it to the reader
to check in Exercise 10 that these are the only curves wittaoh curvature and torsion. Somewhat more
interesting are the curves for whielix is a constant.

A generalized helixs a space curve with # 0 all of whose tangent vectors make a constant angle with
a fixed direction. As shown in Figure 2.2, this curve lies oreaegalized cylinder, formed by taking the
union of the lines (rulings) in that fixed direction througdich point of the curve. We can now characterize
generalized helices by the following

Proposition 2.5. A curve is a generalized helix if and onlyidf«k is constant.

Proof. Supposex is an arclength-parametrized generalized helix. Theretlsea (constant) unit vector
A with the property thal - A = cosf for some constari. Differentiating, we obtaimN - A = 0, whence
N - A = 0. Differentiating yet again, we have

(1) (—«T +tB)-A = 0.
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FIGURE 2.2

Now, note thatA lies in the plane spanned Ay andB, and thusB - A = +sinf. Thus, we infer from
equation t) thatt/x = + cotf, which is indeed constant.

Conversely, ift/k is constant, set/k = cotf for some anglé € (0, 7). SetA(s) = cosOT(s) +
sinfB(s). ThenA’(s) = (x cos — tsinf)N(s) = 0, SOA(s) is a constant unit vectok, andT(s) - A =
cosf is constant, as desired.

Example 5. In Example 3 we saw a curnwe with k = 7, so from the proof of Proposition 2.5 we see

. 1
that the curve should make a constant artjle- = /4 with the vectorA = —2(T + B) = (0,0,1) (as

should have been obvious from the formula Torelone). We verify this in Figure 2.3 by drawingalong
with the vertical cylinder built on the projection afonto thexy-plane. V

FIGURE 2.3
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The Frenet formulas actually characterize the local péctira space curve.

Proposition 2.6(Local canonical form) Leta be a smooth@® or better) arclength-parametrized curve.
If 2(0) = O, then fors near0, we have

2 I
—[s—Eoy3 Ko 2 ko3 KoTo 3
oc(s)-(s 25 +...)T(0)+(2s + s )N(0)+( ; ...)B(O).
(Herexy, 1o, andk,, denote, respectively, the valueskofr, andk’ at0, andlim ... /s 3=0)

s—0

Proof. Using Taylor's Theorem, we write
1
a(s) = a(0) + sa'(0) + 5 2 ”(0)+ 3 (0) + ..

where lim... /s> = 0. Now, «(0) = 0, &’(0) = T(0), andoe”(O) = T/(0) = xoN(0). Differentiating

s—0

again, we have’(0) = (kN)'(0) = xyN(0) + ko(—«oT(0) + 70B(0)). Substituting, we obtain

a(s) = sT(0) + %szon(O) + és3 (—,3T(0) + kyN(0) + koT0B(0)) +

2 /
_ <s—%s3+...)T(O)+("—2"s2+% )N(0)+( °6° $3 4 ...)B(O),

as required. O

We now introduce three fundamental plane®at «(0):
(i) the osculating planespanned by (0) andN(0),
(ii) the rectifying plane spanned by (0) andB(0), and
(i) the normal plane spanned byN(0) andB(0).
We see that, locally, the projectionsainto these respective planes look like
() (u—G/6u> + ..., (ko/2)u?* + (ky/6)u® + ...)
(i) (u—(kg/6)u® +....(koT0/6)u> +...),and
(iii) ((ko/2u? + (kp/6)u> + ... (kKoTo/O)U> +...),
where I|m ./u® = 0. Thus, the projections af into these planes look locally as shown in Figure 2.4.
The osculatlng (“kissing”) plane is the plane that comesedb to containing near P (see also Exercise

NS V.

T T

osculating plane rectifying plane normal plane

FIGURE 2.4
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25); the rectifying (“straightening”) plane is the one tlcatnes closest to flattening the curve néarthe
normal plane is normal (perpendicular) to the curvé a{Cf. Figure 1.3.)

EXERCISES 1.2

1. Compute the curvature of the following arclength-paraimed curves:

a. oa(s) = (% COSs, % COSs,Sins)

b. als) = (VIT52InG + V1T 52)

e als) = (314532, 11 —9)32, %s),s e (1,1

2. Calculate the unit tangent vector, principal normal, amdvature of the following curves:
a. acircle of radiug: a(t) = (a cost,a sint)
b. «a(t) = (¢, coshr)
c. a(t) = (cost,sin’t),t e (0,7/2)

3. Calculate the Frenet apparatis £, N, B, andt) of the following curves:
Ya as) = (31 +9)32 L1 -9)%2, —55),s € (=1,1)
b. a(t) = (3¢'(sint + cost), 1e!(sint — cost), ')
o at) = (VI+22,6,In( + V1 +12))
a(t) = (e! cost, e’ sint, e?)
a(t) = (coshy, sinht, 1)

a(t) = (t.12/2, V1T + 12 +1In(t + V1 +12))

a(t) = (t — sint cost, sin? ¢, cost), t € (0, )

Q@ -~ o 2

L/
(1 + f/2)3/2'
#+5. Use Proposition 2.2 and the second parametrizationefréictrix given in Example 2 of Section 1 to
recompute the curvature.

#4. Prove that the curvature of the plane cupve- f(x) is given byx =

*6. By differentiating the equatioB = T x N, derive the equatioB’ = —N.

#7. Suppose is an arclength-parametrized space curve with the propleatyie(s)|| < ||ec(so)|| = R for
all s sufficiently close tasg. Prove thatc(so) > 1/R. (Hint: Consider the functiorf(s) = |le(s)||?.
What do you know abouf”(s¢)?)

8. Leta be aregular (arclength-parametrized) curve with nonzareature. The normal line t@ ato(s)
is the line throughw (s) with direction vectoN(s). Suppose all the normal lines éopass through a
fixed point. What can you say about the curve?

9. a. Prove that if all the normal planes of a curve pass thr@ugarticular point, then the curve lies on
a sphere. (Hint: Apply Lemma 2.1.)
*b. Prove that if all the osculating planes of a curve passugh a particular point, then the curve is
planar.

10. Prove that ifc = kg andt = 1o are nonzero constants, then the curve is a (right) circuddix.h
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*11.

12.

13.

14.

15.

16.

(Hint: Start by solving forN. The only solutions of the differential equatiorf + k?y = 0 are
y = cycodkt) + cpsin(kt). )

Remark. Itis an amusing exercise to giveandb (in our formula for the circular helix) in terms
of kg andy.

Proceed as in the derivation of Proposition 2.2 to shuat t

o - (o "

= (" x a)
||Ot/ X Ot”||2

Leta be aC* arclength-parametrized curve with# 0. Prove thatx is a generalized helix if and only
if o - (e x ™) = 0. (Herea ™) denotes the fourth derivative af)

Suppos&t # 0 at P. Of all the planes containing the tangent linedtat P, show thatx lies locally
on both sides only of the osculating plane.

Leta be a regular curve witk £ 0 at P. Prove that the planar curve obtained by projectinigto its
osculating plane aP has the same curvature Atasc.

A closed, planar curv€ is said to haveconstant breadthu if the distance between parallel tangent
lines toC is alwaysu. (No, C needn'’t be a circle. See Figure 2.5.) Assume for the resti®ptioblem
that the curve is arclength parametrized W§?dunctiona: [0, L] — R2 with « # 0. To sayC is closed
meansx(0) = a(L) and the derivatives match as well.

(the Wankel engine design)

FIGURE 2.5

a. Let’s call two points with parallel tangent lines oppesitProve that ifC has constant breadth
u, then the chord joining opposite points is normal to the ewat/both points. (Hint: 1§8(s) is
oppositex(s), thenB(s) = a(s) + A(s)T(s) + wN(s). First explain why the coefficient ¢ is u;
then show that = 0.)

b. Prove that the sum of the reciprocals of the curvature posipe points is equal ta. (Warning: If
«a is arclength-parametrizeg, is quite unlikely to be. It might be helpful to introduce thetation
T andNg for the unit tangent vector and principal normalgf How are they related t& and
N?)

Leta andB be two regular curves defined @n b]. We sayg is aninvoluteof « if, for eachr € [a, b],
(i) B(z) lies on the tangent line @ ate (¢), and
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(i) the tangent vectors t@ andp ata(z) andp(z), respectively, are perpendicular.

Reciprocally, we also refer @ as anevoluteof §.

a. Supposex is arclength-parametrized. Show thatis an involute ofe if and only if B(s) =
a(s) + (c —s)T(s) for some constant (hereT (s) = a’(s)). We will normally refer to the curv@
obtained withc = 0 astheinvolute of«. If you were to wrap a string around the curvestarting
ats = 0, the involute is the path the end of the string follows as yownap it, always pulling the

string taut, as illustrated in the case of a circle in Figui 2

NI

FIGURE 2.6

b. Show that the involute of a helix is a plane curve.

c. Show that the involute of a catenary is a tractrix. (HinduXdo notneedan arclength parametriza-

tion!)
d. If e is an arclength-parametrized plane curve, prove that theegugiven by

1
B(s) = a(s) + ——N(s)
K(s)
is the unique evolute af lying in the plane ofx. Prove, moreover, that this curve is regular if
k' # 0. (Hint: Go back to the original definition.)

17. Find the involute of the cycloid(¢) = (¢ + sinz, 1 — cost), t € [—m, ], using?t = 0 as your starting
point. Give a geometric description of your answer.

18. Suppose is a generalized helix with axis in directigh Let 8 be the curve obtained by projectiag
onto a plane orthogonal #®. Prove that the principal normals @fand g are parallel at corresponding
points and calculate the curvaturefin terms of the curvature of.

19. Leta be a curve parametrized by arclength withr £ 0.
a. Suppos lies on the surface of a sphere centered at the origin (ies)| = const for alls).

Prove that
/

) -
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(Hint: Write « = AT + uN + vB for some functionsi, u, andv, differentiate, and use the fact
that{T,N, B} is a basis foiR3.)

b. Prove the converse: & satisfies the differential equatior)( thene lies on the surface of some
sphere. (Hint: Using the values df i, andv you obtained in part a, show that- (AT + N+ vB)
is a constant vector, the candidate for the center of thereplaéhe nature of this argument puzzles
you, review the latter part of the proof of Proposition 2.4.)

20. Two distinct parametrized curvesandg are calledBertrand matesf for eacht, the normal line tax
ata(z) equals the normal line t@8 at 8(z). An example is pictured in Figure 2.7. Suppesandf are

FIGURE 2.7

Bertrand mates.

a. If a is arclength-parametrized, show thats) = a«(s) + r(s)N(s) andr(s) = const. Thus,
corresponding points @f andg are a constant distance apart.

b. Show that, moreover, the angle between the tangent geiior and g at corresponding points
is constant. (Hint: IfT, andTg are the unit tangent vectors éoand B respectively, consider
Te-Tg.)

Cc. Suppose is arclength-parametrized ard # 0. Show thatx has a Bertrand majg if and only if
there are constantsandc so thatrk 4+ ¢t = 1. (Hint for =: Interpret the result of part b using

your formula forg’ from part a.)
d. Givena, prove that if there is more than one cupso thate andf are Bertrand mates, then there

are infinitely many such curvg® and this occurs if and only & is a circular helix.

21. (See Exercise 20.) Suppasandg are Bertrand mates. Prove that the torsiow @nd the torsion of
B at corresponding points have constant product.

22. SupposeY is a G2 vector function onfa, b] with Y| = 1 andY, Y’, andY” everywhere linearly
t
independent. For any nonzero constandefinex(t) = c/ (Y(u) x Y'(u))du, t € [a,b]. Prove that

the curvex has constant torsioh/c. (Hint: Show thatB =aj:Y.)

23. (See Exercise 20.) Supposés aC? arclength-parametrized curve on the unit sphere. For angato
constantz and0 < 0 < /2, define

a(t) =a (/Ot Y (s)ds + coté /Ot (Y(s) x Y'(s))ds) .

Show that the curve has a Bertrand mate. (Hint: Show thhit= +Y’.)



22

24.

CHAPTER1. CURVES

a. Leta be an arclength-parametrizgtine curve. We create a “parallel” cury@ by taking =

C.

a + ¢N (for a fixed small positive value aof). Explain the terminology and express the curvature
of B in terms ofe and the curvature at.

Now leta be an arclength-parametrizegacecurve. Show that we can obtain a “parallel” cue
by taking = o + s((cos@)N + (sin@)B) for an appropriate functiofi. How many such parallel
curves are there?

Sketch such a parallel curve for a circular helix

25. Suppose is an arclength-parametrized curve, = «(0), and«(0) # 0. Use Proposition 2.6 to
establish the following:

26.

27.

*a.

Let 0 = a(s) and R = «a(t). Show that the plane spanned By Q, and R approaches the
osculating plane ok at P ass,t — 0.
Theosculating circleat P is the limiting position of the circle passing through Q, andR as
s,t — 0. Prove that the osculating circle has cerifle= P + (I/K(O))N(O) and radiusl /«(0).
Theosculating spherat P is the limiting position of the sphere throughand three neighboring
points on the curve, as the latter points tendPtindependently. Prove that the osculating sphere
has center

Z =P + (1/k(0))N(0) + (1/7(0)(1/x)'(0))B(0)

and radius

\/(1/16(0))2 + (1/7(0)(1/k)'(0))>.

How is the result of part c related to Exercise 19?

Supposg is a plane curve andy is the circle centered g(s) with radiusr (s). Assumingg and

r are differentiable functions, show that the cir€lg is contained inside the circl€; whenever

t > sifand only if || B’(s)|| < r/(s) for all s.

Leta be arclength-parametrized plane curve and suppasa decreasing function. Prove that the
osculating circle a#(s) lies inside the osculating circle aiz) whenever > s. (See Exercise 25
for the definition of the osculating circle.)

Suppose the front wheel of a bicycle follows the arclesggrametrized plane curee Determine the
path 8 of the rear wheel] unit away, as shown in Figure 2.8. (Hint: If the front wheetusned an

FIGURE 2.8

angled from the axle of the bike, start by writing — g in terms of6, T, andN. Your goal should be
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a differential equation thal must satisfy, involving only. Note that the path of the rear wheel will
obviously depend on the initial conditiagh(0). In all but the simplest of cases, it may be impossible to
solve the differential equation explicitly.)

3. Some Global Results

3.1. Space Curves.The fundamental notion in geometry (see Section 1 of the Agip® is that of
congruence: When do two figures differ merely by a rigid mw?iolf the curvea™ is obtained from the
curvea by performing a rigid motion (composition of a translatiamdaa rotation), then the Frenet frames
at corresponding points differ by that same rigid motiorgd #re twisting of the frames (which is what gives
curvature and torsion) should be the same. (Note that a tieftewill not affect the curvature, but will
change the sign of the torsion.)

Theorem 3.1(Fundamental Theorem of Curve Theorywo space curve€ andC* with nonzero cur-
vature are congruent (i.e., differ by a rigid motion) if armhyoif the corresponding arclength parametriza-
tionse, a*: [0, L] — R3 have the property that(s) = «*(s) andt(s) = t*(s) forall s € [0, L].

Proof. Supposax* = Wox for some rigid motiond: R3 — R3, soW(x) = Ax + b for someb e
R3 and some3 x 3 orthogonal matrix4 with detA > 0. Thena*(s) = Aa(s) + b, so|a*(s)| =
|Ae/(s)|| = 1, sinceA is orthogonal. Thereforex™ is likewise arclength-parametrized, afid(s) =
AT (s). Differentiating againg™(s)N*(s) = «x(s)AN(s). SinceA is orthogonal,AN(s) is a unit vector,
and soN*(s) = AN(s) andk*(s) = k(s). But thenB*(s) = T*(s) x N*(s) = AT(s) x AN(s) =
A(T(s)xN(s)) = AB(s), inasmuch as orthogonal matrices map orthonormal basethtmormal bases and
det4 > 0 insures that orientation is preserved as well (i.e., riidgmidled bases map to right-handed bases).
Last,B*'(s) = —t*(s)N*(s) andB*'(s) = AB'(s) = —t(s)AN(s) = —1(s)N*(s), sot*(s) = 1(s), as
required.

Conversely, suppose = «* andt = t*. We now define a rigid motiow as follows. LetA be
the unique orthogonal matrix so thdfl (0) = T*(0), AN(0) = N*(0), and AB(0) = B*(0), and let
b = a*(0) — Ax(0). A also has positive determinant, since both orthonormalshaseright-handed. Set
a = Woa. We now claim thate*(s) = a(s) for all s € [0, L]. Note, by our argument in the first part of the
proof, thatt = x = «* and? = v = ¢*. Consider

F(s) =T(s)- T*(s) + N(s) - N*(s) + B(s) - B*(s).
We now differentiatef’, using the Frenet formulas.
F1(s) = (T'(s) - T*(s) + T(s) - T*(5)) + (N'(s5) - N*(s) + N(s) - N*'(s))
+ (B(s) - B*(s) + B(s) - B*(s))
= k(s)(N(s) - T*(s) + T(s) - N*(5)) — & (s)(T(s) - N*(5) + N(s) - T*(s))
+ 7(s)(B(s) - N*(5) + N(s) - B*(s)) — z(s)(N(s) - B*(s) + B(s) - N*(s))
=0,

since the first two terms cancel and the last two terms caBgetonstruction,f(0) = 3, so f(s) = 3 for
all s € [0, L]. Since each of the individual dot products can be at nhpdgte only way the sum can Befor
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all s is for each to bd for all s, and this in turn can happen only whéis) = T*(s), N(s) = N*(s), and
B(s) = B*(s) for all s € [0, L]. In particular, sincé’(s) = T(s) = T*(s) = a*'(s) and&(0) = a*(0), it
follows thata(s) = a™(s) for all s € [0, L], as we wished to show.

Remark. The latter half of this proof can be replaced by assertingitfigueness of solutions of a sys-
tem of differential equations, as we will see in a moment.oAlse Exercise A.3.1 for a matrix-computational
version of the proof we just did.

Example 1. We now see that the only curves with consta@indt are circular helices. V

Perhaps more interesting is the existence question: Gimetincious functionsg, z: [0, L] — R (with «
everywhere positive), is there a space curve with thosesasiitature and torsion? The answer is yes, and
this is an immediate consequence of the fundamental exestiieorem for differential equations, Theorem
3.1 of the Appendix. That is, we let

| | | 0 —«x(s) O
F(s) = | T(s) N(s) B(s) and  K@G)=|«k(s) 0 —1(5)
| | | 0 () 0

Then integrating the linear system of ordinary differdnéiquationsF’(s) = F(s)K(s), F(0) = Fy, gives
us the Frenet frame everywhere along the curve, and we needwgintegratingT (s).
We turn now to the concept dbtal curvatureof a closedspace curve, which is the integral of its

curvature. That is, ik: [0, L] — R? is an arclength-parametrized curve wit0) = a (L), &’ (0) = (L),
L

ande”(0) = «”(L), then its total curvature i$  «(s)ds. This quantity can be interpreted geometrically as

0
follows: TheGauss mapf « is the map to the unit spherg, given by the unit tangent vectdr. [0, L] — X;
its image,I', is classically called the&angent indicatrixof . Observe that—provided the Gauss map is one-

T y 4
— /I \
i i
i \
\ \
\/\/
FIGURE 3.1

L L
to-one—the length of is the total curvature af, since lengthl’) = / 1T (s)|ds = / k(s)ds. More
0 0

generally, this integral is the length Bf“counting multiplicities.”
A preliminary question to ask is this: What curvEsn the unit sphere can be the Gauss map of some

N
closedspace curvee? Sinceo(s) = a(0) + / T(u)du, we see that a necessary and sufficient condition
0

L
is that/ T(s)ds = 0. (Note, however, that this depends on the arclength pareai@n of the original
0
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curve and is not a parametrization-independent conditiothe image curv& c X.) We do, nevertheless,
have the following geometric consequence of this conditir any (unit) vectoA, we have

L L
0=A / T(s)ds = / (T(s)-A)ds,
0 0

and so the average value Bf A must be0. In particular, the tangent indicatrix must cross the gogate
with normal vectoA. That is, if the curvd” is to be a tangent indicatrix, it must be “balanced” with extp
to every directionA. It is natural to ask for the shortest curve(s) with this ey

If & € T, let &+ denote the oriented great circle with normal vedor(By this we mean that we go
around the circlg* so that atx, the tangent vectof points so thak, T, & form a right-handed basis for
R3.)

Proposition 3.2(Crofton’s formula) LetT be a piecewis€-' curve on the sphere. Then

1
length(T") = 3 / #I NEL)dE
=
= 7 x (the average number of intersectionslotvith all great circley.

(Hered & represents the usual element of surface areg.pn
Proof. We leave this to the reader in Exercise 1721

Remark. Although we don't stop to justify it here, the set®for which #T" N gL) is infinite is a set
of measure zero, and so the integral makes sense.

Applying this to the case of the tangent indicatrix of a ctbspace curve, we deduce the following
classical result.

Theorem 3.3(Fenchel) The total curvature of any closed space curve is at leasénd equality holds
if and only if the curve is a simple closed (convex) planaweur

Proof. LetT be the tangent indicatrix of our space curveClfs a simple closed plane curve, thEns
a great circle on the sphere. As we shall see in the next sectimvexity of the curve can be interpreted as

sayingk > 0 everywhere, so the tangent indicatrix traverses the gneé @xactly once an?’ kds = 2w
. . c
(cf. Theorem 3.5 in the next section).

To prove the converse, note that, by our earlier remarksiust cross+ for aimost eveng € ¥ and
hence must intersect it at least twice, and so it follows firoposition 3.2 thatf «ds = length(I") >

1 : o C L
Z(2)(4n) = 2. Now, we claim that ifl" is a connected, closed curveihof length< 2z, thenT liesin a

closed hemisphere. It will follow, then, thatlifis a tangent indicatrix of lengthr, it must be a great circle.
L

(For if " lies in the hemispheré - x > 0, T(s) - Ads = 0 forcesT - A = 0, soI is the great circle
A -x = 0.) It follows that the curve is planoar and the tangent indigdtaverses the great circle precisely
one time, which means that> 0 and the curve is convex. (See the next section for more damithis.)

To prove the claim, we proceed as follows. Suppose lgith 2. ChooseP andQ in I' so that the
arcsl'y = PAQ andI', = QAP have the same length. Choa¥ebisecting the shorter great circle arc fram
to Q, as shown in Figure 3.2. For convenience, we rotate themgistuthatV is the north pole of the sphere.
Suppose now that the cunig were to enter the southern hemisphere Ilgtdenote the reflection dfy
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FIGURE 3.2

across the north pole (following arcs of great circle thtong). Now, I'; U T'; is a closed curve containing
a pair of antipodal points and therefore is longer than atgriecle. (See Exercise 1.) Sindg U T'; has
the same length ds, we see that lengtli") > 27, which is a contradiction. Therefoil@ indeed lies in the
northern hemisphere.d

We now sketch the proof of a result that has led to many iniegeguestions in higher dimensions. We
say a simple (non-self-intersecting) clodepace curve iknottedif we cannot fill it in with a disk.

Theorem 3.4(Fary-Milnor). If a simple closed space curve is knotted, then its totalature is at least
4.

Sketch of proof. Suppose the total curvature @ is less thand4nr. Then the average number
#T N &) < 4. Since this is generically an even number2 (whenever the great circle isn't tangent
to I'), there must be an open set&$§ for which we have #I" N £+) = 2. Choose one suclg,. This
means that the tangent vectord@as only perpendicular t§, twice, so the functiory'(x) = x- &, has only
two critical points. That is, the planes perpendiculag gowill intersectC either in a single point (at the
maximum and minimum points of) or in exactly two points (by Rolle’s Theorem). Now, by mogithese
planes from the bottom af to the top, joining the two intersection points in each platith a line segment,
we fill in a disk, soC is unknotted. O

3.2. Plane Curves.We conclude this chapter with some results on plane curiesv we assign a
sign to the curvature: Given an arclength-parametrized cure (re)defineN(s) so that{T (s), N(s)} is
a right-handed basis fdR? (i.e., one turns counterclockwise from(s) to N(s)), and then sek(s) =
T'(s) - N(s), from which it follows thatT’(s) = «(s)N(s) (why?), as before. So > 0 whenT is twisting

counterclockwise and < 0 whenT is twisting clockwise. Although the total curvatuf |« (s)|ds of a

c
simple closed plane curve may be quite a bit larger #yanit is intuitively plausible that the tangent vector
must make precisely one full rotation, either counterclask or clockwise, and thus we have

Theorem 3.5(Hopf Umlaufsatz) If C is a simple closed plane curve, thgn kds = +2m, the +
c
occurring wherC is oriented counterclockwise ardwhen it's oriented clockwise.

The crucial ingredient is to keep track otantinuousotal angle through which the tangent vector has
turned. That is, we need the following

4To be more careful here, i:[a,b] — R3 is a parametrization witke(a) = a(b), thena(r) = a(u) occursonly when

{t,u} = {a, b}.
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FIGURE 3.3

Lemma 3.6. Leta: [a, b] — R? be aC!, regular parametrized plane curve. Then thered$ &unction
0:[a,b] — R so thafT (¢) = (cos@(z),sin 9(1)) for allt € [a,b]. Moreover, for any two such function8,
ando*, we haved (b) — 0(a) = 0*(b) — 6*(a). The numbef(b) — 6(a))/2x is called theotation index
of a.

Proof. Consider the four open semicirclég = {(x,y) € S! : x > 0}, U, = {(x,y) € S! :
x <0}, Us ={(x,y)eS':y>0},andUs = {(x,y) € S! : y < 0}. Then the functions

V1a(x,y) = arctany/x) + 2nx
Yo n(x,y) = arctar(y/x) + 2n + D

Y3n(x,y) = —arctanx/y) + 2n + 4)n
Yan(x,y) = —arctar(x/y) + 2n — )«

are smooth map@; ,: U; — R with the property thafcos(v; » (x, ¥)), Sin(¥i » (x, »))) = (x, y) for every
i =1,2,3,4andn € Z.

Definef(a) so thatT (a) = (cos@(a),sin@(a)). LetS = {r € [a,b] : 0 is defined and®! on[a, 1]},
and letrp = supS. Suppose first thay < b. Choose so thatT(zg) € U;, and chooser € Z so that
Vin(T(t0)) = lim;5 6(¢). Because is continuous aty, there is§ > 0 so thatT () € U; for all z with
|t —to] < 8. Then settingd(¢) = ¥, »(T(¢)) forall o <t < t9 + & gives us a! function @ defined on
[0, 7o + 6/2], so we cannot havg < b. (Note thatf(r) = v¥; »(T(z)) forall tp —6 <t < to. Why?) But
the same argument shows that whgr= b, the functiond is €' on all of [a, b].

Now, sinceT(b) = T(a), we know thatd(b) — 6(a) must be an integral multiple &fz. Moreover,
for any other functior®* with the same properties, we ha@&(¢) = 6(¢) + 2z n(t) for some integen(z).
Sincef andf* are both continuous; must be a continuous function as well; since it takes on artlyger
values, it must be a constant function. Thereférgp) — 0*(a) = 6(b) — 6(a), as required. O

Sketch of proof of Theorem 3.5.Note first that if T(s) = (cosf(s),sinf(s)), then T'(s) =
L

L
6'(s)(—sinf(s), cosf(s)), sok(s) = #'(s) and f K(s)ds = f 0'(s)ds = O(L) — 6(0) is 27 times the
0 0

rotation index of the closed curee
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Let A = {(s,¢) : 0 < s <t < L}. Consider the secant mapA — S! defined by

T(s), s=t
h(s,t) = 4 —T(0), (s.0) = (0.L)
a(t) —al(s) .
m, otherwise

Then it follows from Proposition 2.6 (using Taylor’s Theoré¢o calculatex () = a(s) + (r —s)a’(s) +...)
thath is continuous. A more sophisticated version of the proof @mima 3.6 will establish (see Exercise
14) that there is a continuous functi@nA — R so thath(s, 7) = (cosf(s, ), sind (s, 1)) for all (s, ) € A.

It then follows from Lemma 3.6 that

/ kds = 0(L) —0(0) = (L, L) —6(0,0) = 6(0, L) — 6(0,0) + 6(L, L) — 6(0, L).
¢ Ny N>
Rotating the curve as required, we assumedfi@y is the lowest point on the curve (i.e., the one whose
y-coordinate is smallest) and, then, tldD) is the origin andT (0) = e, as shown in Figure 3.4. (The

a(t)

h(s, )

o(s)

@ (0) T(0)

FIGURE 3.4

last may require reversing the orientation of the curve.)WwN§; is the angle through which the position
vector of the curve turns, starting@and ending air; since the curve lies in the upper half-plane, we must
have Ny = n. But N, is likewise the angle through which the negative of the pmsivector turns, so
N, = N1 = n. With these assumptions, we see that the rotation indexeofuhve isl. Allowing for the
possible change in orientation, the rotation index musefloee be+1, as required. O

Corollary 3.7. If C is any closed curve with nonzero rotation index (e.g., a Bnofpsed curve), for
any pointP € C there is a poinQD € C where the unit tangent vector is opposite thaP at

Proof. Let T(s) = (cosf(s),sinf(s)) for aC' function6:[0, L] — R, as in Lemma 3.6. Saf =
a(sg), and letd(sg) = 6. Sinceb(L) — 6(0) is an integer multiple o2, there must be; € [0, L] with
eitherf(s1) = 6p + w orB(sy) = g — w. TakeQ = a(sy). O

Recall that one of the ways of characterizing a convex foncfi: R — R is that its graph lie on one
side of each of its tangent lines. So we make the following

Definition. The regular closed plane cureeis convexif it lies on one side of its tangent line at each
point.
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Proposition 3.8. A simple closed regular plane curée is convex if and only if we can choose the
orientation of the curve so that> 0 everywhere.

Remark. We leave it to the reader in Exercise 2 to give a non-simplseti@urve for which this result
is false.

Proof. Assume, without loss of generality, th&f0) = (1,0) and the curve is oriented counterclock-
wise. Using the functiol# constructed in Lemma 3.6, the condition that 0 is equivalent to the condition
that6 is a nondecreasing function with(L) = 2.

Suppose first thel is nondecreasing and is not convex. Then we can find a poiAt= «(sg) on the
curve and values;, 55 so thate(s}) ande(s}) lie on opposite sides of the tangent line@oat P. Then,
by the maximum value theorem, there are valueands, so thata(s,) is the greatest distance “above”
the tangent line and(s,) is the greatest distance “below.” Consider the unit tangentorsT (sg), T (s1),
andT(s,). Since these vectors are either parallel or anti-paratefie pair must be identical. Letting the
respective values ofbes™ ands** with s* < s**, we haved(s*) = 0(s**) (sincef is nondecreasing and
6(L) = 2m, the values cannot differ by a multiple &f), and thereford(s) = 6(s*) for all s € [s*, s**].
This means that that portion 6f betweenx(s*) ande(s**) is a line segment parallel to the tangent line of
C at P; this is a contradiction.

Conversely, supposE is convex and(s;) = 0(s,) for somes; < s,. By Corollary 3.7 there must be
s3 With T(s3) = —T(s1) = —T(s2). SinceC is convex, the tangent line at two @{s,), a(s2), ande(s3)
must be the same, sayats*) = P anda(s**) = Q. If PQ does not lie entirely irC, chooseR € PQ,

R ¢ C. SinceC is convex, the line througlR perpendicular tc(P_Q) must intersecC in at least two points,
sayM andN, with N farther from<P_Q) than M. SinceM lies in the interior ofANPQ, all three vertices
of the triangle can never lie on the same side of any line tjinad . In particular,N, P, andQ cannot lie
on the same side of the tangent lineCoat M. Thus, it must be thaPQ C C, sof(s) = 0(s1) = 6(s2)
forall s € [s1, s2]. Thereforep is nondecreasing, and we are donél

Definition. A critical point ofk is called avertexof the curveC.

A closed curve must have at least two vertices: the maximuwmanimum points of. Every point of
a circle is a vertex. We conclude with the following

Proposition 3.9(Four Vertex Theorem)A closed convex plane curve has at least four vertices.

Proof. Suppose thaC has fewer than four vertices. As we see from Figure 3.5, eithmust have
two critical points (maximum and minimum) ar must have three critical points (maximum, minimum,
and inflection point). More precisely, suppose thdhcreases fromP to Q and decreases frof to P.
Without loss of generality, we may tak® to be at the origin. The equation fﬁ’Té isA -x = 0, where we

chooseA so thatx’(s) > 0 precisely wherA - a(s) > 0. Then/ K’ (s)(A - a(s))ds > 0. Integrating by
c
parts, we have

/Clc/(s)(A-cc(s))ds = —/CK(S)(A -T(s))ds = /CA “N'(s)ds = A - /C N'(s)ds = 0.

From this contradiction, we infer th&t must have at least four verticesOO
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FIGURE 3.5

3.3. The Isoperimetric Inequality. One of the classic questions in mathematics is the following
Given a closed curve of length, what shape will enclose the most area? A little experintemtawill
most likely lead the reader to the

Theorem 3.10(Isoperimetric Inequality) If a simple closed plane curvé has lengthl. and encloses
areaA, then
L? > 47A,

and equality holds if and only € is a circle.

Proof. There are a number of different proofs, but we give one (dug.t8chmidt, 1939) based on
Green’s Theorem, Theorem 2.6 of the Appendix, and—not ®ingly—relying heavily on the geometric-
arithmetic mean inequality and the Cauchy-Schwarz inéiyu@ee Exercise A.1.2). We choose parallel

y
(x(5), y(s))

o (0) ¢ c

'\/ “(SO)

\\(a‘c(s),y‘(s))
X
/.
C
R >

FIGURE 3.6

4R

8

lines¢; and{, tangent to, and enclosing,, as pictured in Figure 3.6. We draw a cirdleof radius R with
those same tangent lines and put the origin at its centdr,théty-axis parallel tof;. We now parametrize
C by arclength by (s) = (x(s), y(s)), s € [0, L], takinge(0) € £; anda(sg) € £>. We then consider
«: [0, L] — R? given by

(x(s).—vVR2—x(5)2), 0<s<s0

a(s) = (7(5)»y(s)) = {(X(S), R2 _x(s)z), so <s=<L ‘
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(@ needn’t be a parametrization of the cirdle since it may cover certain portions multiple times, but'tha
no problem.) Lettingd denote the area enclosed Byand A = 7R? that enclosed by, we have (by
Exercise A.2.5)

L
A =/0 x(s)y'(s)ds

L L
A=naR?>=— / ()X (s)ds = — / V(s)x'(s)ds.
0 0
Adding these equations and applying the Cauchy-Schwaguality, we have

L L
AR = [0y 0 =FOx)ds = [ (56.56) - (7).~ 0)ds

L
(+) S/O 1(x (). YO (). =x(9)) llds = RL,

inasmuch ag/(y'(s), —x'(s))|| = [|(x"(s), y’(s))|| = 1 sincee is arclength-parametrized. We now recall
the arithmetic-geometric mean inequality:

b
vab < 4 er for positive numberg andb,

with equality holding if and only iz = b. We therefore have
—— A+ nmR?> RL

\/Z 7TR2 < +T]T < 7,

sodrA < L2

Now suppose equality holds here. Then we must have 7R? andL = 2z R. It follows that the

curve C has the same breadth in all directions (sidc@ow determinesk). But equality must also hold

in (x), so the vector&(s) = (x(s),?(s)) and (y’(s), —x’(s)) must be everywhere parallel. Since the first

vector has lengttk and the second has lengthwe infer that

(x(5).7(s)) = R(¥'(5). =x'(5)).

and sox(s) = Ry’(s). By our remark at the beginning of this paragraph, the samseltravill hold if
we rotate the axes/2; let y = yq be the line halfway between the enclosingrizontallines ¢;. Now,
substitutingy — yo for x and—x for y, so we havey(s) — yo = —Rx’(s), as well. Thereforex(s)? +
(y(s) — y0)2 = R?(x'(5)®> + y'(s)?) = R?, andC is indeed a circle of radiug. O

EXERCISES 1.3

1. a. Prove that the shortest path between two points on tihephrere is an arc of a great circle con-
necting them. (Hint: Without loss of generality, take onénpdo be (0, 0, 1) and the other to be
(sinug, 0, cosug). Leta(r) = (sinu(t) cosv(t), sinu(z) sinv(z), cosu(t)),a <t < b, be an arbi-
trary curve withu(a) = 0, v(a) = 0, u(b) = up, v(b) = 0, calculate the arclength of, and show
that it is smallest when(z) = 0 for all ¢.)

b. Prove thatifP andQ are points on the unit sphere, then the shortest path betiveenhas length
arccogP - Q).
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2. Give a closed plane curve with ¥ > 0 that is not convex.
3. Draw closed plane curves with rotation indi€eg, —2, and3, respectively.
*4.  SupposeC is a simple closed plane curve with< ¥ < ¢. Prove that lengtfC) > 2x/c.
5. Give an alternative proof of the latter part of Theoremt8/Tonsidering instead the function
f(8) = [T@) = T*®I? + INGs) = N*()|* + [1B(s) = B*(5)|1*.
6. (See Exercise 1.2.15.) Prove thatifis a simple closed (convex) plane curve of constant breagth
then lengthiC) = mpu.

7. Suppos& is a convex simple closed plane curve with maximum curvatyrd’rove that the distance
between any pair of parallel tangent lines(dfs at leas/kg.

8. A convex plane curve with the origin in its interior can ketetmined by its tangent lingsosf)x +
(sinf)y = p(60), called itssupport lines as shown in Figure 3.7. The functign(9) is called the
support function. (Heré is the polar coordinate, and we assup(@) > 0 for all 6 € [0, 27].)

FIGURE 3.7

a. Prove that the line given above is tangent to the curvesghdimt
a(0) = (p(0)cosh — p’(0)sinb, p(6)sinb + p’(6) cosh).
b. Prove that the curvature of the curve@b) is 1/(p(6) + p"(6)).
2n
c. Prove that the length ef is given byL = / p(0)deo.
0

1 2
d. Prove that the area encloseddis given byA = 5/ (p(0)* — p'(6)%)db.

0
e. Use the answer to part c to reprove the result of Exercise 6.

9. LetC be aC? closed space curve, say parametrized by arclengtia: By, L] — R3. A unit normal
field X onC is aC! vector-valued function witk (0) = X(L) andX(s) - T(s) = 0 and||X(s)| = 1 for
all s. We define théwist of X to be

1 L
tw(C, X) = E/o X'(s) - (T(s) x X(5))ds.

a. Show that iX andX* are two unit normal fields o', then tw(C, X) and tw(C, X*) differ by an
integer. The fractional part of &, X) (i.e., the twist modl) is called thetotal twistof C. (Hint:

Write X (s) = cos8(s)N(s) + sind(s)B(s).)
L
b. Prove that the total twist & equals the fractional partGZL / Tds.
T Jo
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10.

11.

12.
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c. Prove that if a closed curve lies on a sphere, then its taiat is 0. (Hint: Choose an obvious
candidate foiX.)

Remark. W. Scherrer proved in 1940 that if the total twist of everyseld curve on a surface (s
then that surface must be a (subset of a) plane or sphere.

(See Exercise 1.2.24.) Under what circumstances ddesedcspace curve have a parallel curve that is
also closed? (Hint: Exercise 9 should be relevant.)

(The Bishop FrameSupposex is an arclength-parametrizé® curve. Suppose we ha@ unit vector
fieldsN; andN, = T x N alonge so that

T-N1:T-N2:N1-N2:0;

i.e., T, Ny, N, will be a smoothly varying right-handed orthonormal fransenge move along the curve.
(To this point, the Frenet frame would work just fine if the \®@imere@* with x # 0.) But now we
want to impose the extra condition thd - N, = 0. We say the unit normal vector fieM; is parallel
alonge; this means that the only changeMf is in the direction ofT. In this event,T, Ny, N, is called
aBishop framdor «. A Bishop frame can be defined even when a Frenet frame cagugot\yhen there
are points withe = 0).

a. Show that there are functioks andk, so that

T = kiN1 4+ k2N;
N, = —kT
N, = —k,T

Show thak? = k? + k3.
Show that ife is €3 with k # 0, then we can tak&l; = (cosf)N + (sinf)B, wheref’ = —z.
Check that; = « cosf andk, = —« sin6.

d. Show thaix lies on the surface of a sphere if and only if there are cotsfanu so thatik, +
uks + 1 = 0; moreover, ife lies on a sphere of radiug, thenA? + u? = R?. (Cf. Exercise
1.2.19))

e. What condition is required to define a Bishop frame glgbati a closed curve? (See Exercise 9.)

How is this question related to Exercise 1.2.247?

Prove Proposition 3.2 as follows. Let[0, L] — X be the arclength parametrization Iof and define
F:[0, L] x [0,27) — X by F(s,¢) = &, where§ is the great circle making angfewith I" ata(s).
Check that- takes on the valué precisely #I" N gL) times, so thaF is a “multi-parametrization” of

¥ that gives us
L p2n
[#raghas= [ [
P 0 0
oF
X

F
N g—qu = | sing| (this is the hard part) and finish the proof. (Hints: As pietliin

oF dF

Compute tha
as

Figure 3.8, show(s, ¢) = cos¢T(s) + sing(a(s) x T(s)) is the tangent vector to the great cirglé
F
and deduce thdi(s, ¢) = a(s) x V(s, ¢). Show that§—¢ anda x ? are both multiples o¥.)
N
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FIGURE 3.8

13. Generalize Theorem 3.5 to prove thatf'ifs apiecewise-smootsimple closed plane curve with exterior

14.

L

anglesej, j =1,....¢, then/ kds + ZE]' = +2x. (As shown in Figure 3.9, the exterior angle

c o

FIGURE 3.9

ata(s;) is defined to be the angle betweeh(s;) = lim_a’(s) anda’, (s;) = Iim+ o/ (s), with the
S—)Sj

—>g
N Sj

convention thafe;| < m.)

Complete the details of the proof of the indicated stepemroof of Theorem 3.5, as follows (following
H. Hopf’s original proof). Pick an interior poirgy € A.

a.

Choosé (s) so thath(sy) = (cosf (%), sinf(s)). Use Lemma 3.6, slightly modified, to deter-
mined uniquely as a function that is continuous on eachg@for everys € A.

Since a continuous function on a compact (closed and leal)rstA C R? is uniformly continu-
ous, given anyg > 0, there is a numbefy > 0 so that wheneves, s € A and||s— S| < 8y, we
will have ||h(s) — h(s)|| < &¢. In particular, show that there & so that wheneves, s € A and
s—<|| < 8o, the angle between the vectdres) andh(s) is less thanr.

Consider the triangle formed by two radii of the unit archaking anglé. Give an upper bound
on @ in terms of the chord length Using this, deduce that giver> 0, there i) < § < §¢p so that
whenever|s—§|| < §, we haveld(s) — 6(S) + 2 n(s)| < ¢ for some integen (s).

Now chooses’ = s; € A arbitrary. Consider the functiofi(u) = 6(sy + u(s— S)) — 0(so +
u(s; — S)). Show thatf is continuous and’(0) = 0, and deduce thatf (1)| < =. Conclude that
n = 0in part ¢ and, thus, thdt is continuous.
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Surfaces: Local Theory

1. Parametrized Surfaces and the First Fundamental Form

Let U be an open set iR?. A functionf: U — R™ (for us,m = 1 and3 will be most common) is called

: . : . of of . . o .
el if f and its partial derlvatlve?)— anda— are all continuous. We will ordinarily use:, v) as coordinates
u v

in our parameter space, afd, y, z) as coordinates iR3. Similarly, for anyk > 2, we sayf is ek if all its
partial derivatives of order up tb exist and are continuous. We shig smoothif f is ek for every positive
integerk. We will henceforth assume all our functions &k for k > 3. One of the crucial results for

02f 02f
differential geometry is that if is @2, then = (and similarly for higher-order derivatives).
oudv  dvdu
Notation: We will often also use subscripts to indicate partial deves, as follows:
of
fu <> @
of
fl) <> %
; 9°f
e —
92f
fuv = (fu)o <> 09u

Definition. A regular parametrizatiorof a subset c R3 is a (¢*) one-to-one function
x:U - M C R? sothat X, XX, # 0

for some open sdt/ C R2.! A connected subse C R? is called asurfaceif each point has a neighbor-
hood that is regularly parametrized.

We might consider the curves avf obtained by fixingy = v and varyingu, called au-curve, and
obtained by fixingu = uy and varyingv, called av-curve; these are depicted in Figure 1.1. At the point
P = X(ug, vg), we see thak,, (ug, vg) is tangent to the:-curve andx, (ug, vg) is tangent to ther-curve.
We are requiring that these vectors span a plane, whose heeatar is given byx, x X,.

Example 1. We give some basic examples of parametrized surfaces. Nat®ur parameters do not
necessarily range over an open set of values.
(@) The graph of a functionf: U — R, z = f(x, y), is parametrized byx(u,v) = (u, v, f(u,v)).
Note thatx,, x X, = (— fu, — fv, 1) # 0, so this is always a regular parametrization.

1 For technical reasons with which we shall not concern ouessh this course, we should also require that the inversatifun
x~1:x(U) — U be continuous. We shall also often be sloppy and use subs#tat are not quite open. The interested reader can
easily repair things by adding some companion parameitrizat

35
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FIGURE 1.1

(b) Thehelicoid as shown in Figure 1.2, is the surface formed by drawingzbatal rays from the axis

FIGURE 1.2

of the helixa(t) = (cost, sint, bt) to points on the helix:
X(u,v) = (u cosv, u sinv, bv), u>0, vek.

Note thatx,, x X, = (b sinv, —b cosv, u) # 0. Theu-curves are rays and thecurves are helices.
(c) Thetorus (surface of a doughnut) is formed by rotating a circle of uadi about a circle of radius
a > b lying in an orthogonal plane, as pictured in Figure 1.3. Tdgufar parametrization is given

9
252050

977 5
,’/{ 577
,/ S

FIGURE 1.3
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by
X(u,v) = ((a + b cosu) cosv, (a + b cosu) sinv, b sinu), 0<wu,v<2m.

Thenx, x X, = —b(a + b COSu)(COSu CoSv, cosu Sinv, sinu), which is neve®.
(d) The standard parametrization of the unit spi&ie given by spherical coordinatég, ) < (u, v):

X(u, v) = (Sinu cosv, sinu Sinv, CoSu), O<u<m 0<v<2m.

Sincexy X X, = sinu(sinu cosv, sinu sinv, cosu) = (sinu)x(u, v), the parametrization is regular
away fromu = 0, 7, which we've excluded anyhow becaustils to be one-to-one at such points.
The u-curves are the so-called lines of longitude andihsurves are the lines of latitude on the
sphere.

(e) Another interesting parametrization of the spherevisgbystereographic projection(Cf. Exercise
1.1.1.) We parametrize the unit sphere less the north(pole 1) by thex y-plane, assigning to each

FIGURE1.4

(u, v) the point & (0,0, 1)) where the line througio, 0, 1) and(u, v, 0) intersects the unit sphere,
as pictured in Figure 1.4. We leave it to the reader to dehiedallowing formula in Exercise 1.:
2u 2v u? +v? — 1)

b bl v
w24+ v2 4+ 1 u2 4+ 02 +1 u2+0v2 41

X(u,v) = (
For our last examples, we give two general classes of swthee will appear throughout our work.

Example 2. Let / C R be an interval, and let(u) = (0, f(u), g(u)), u € I, be aregular parametrized
plane curvé with f > 0. Then thesurface of revolutiorobtained by rotatinge about thez-axis is

parametrized by
X(u,v) = (f(u) COSv,f(u)Sinv,g(u)), uel, 0<v<2m.

2Throughout, we assume regular parametrized curves to beenmee.
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Note thatx, x X, = f(u)(—g'(u)cosv, —g'(u)sinv, f'(u)), so this is a regular parametrization. The
u-curves are often calleprofile curvesor meridians these are copies of rotated an angle around the
z-axis. Thev-curves are circles, callguhrallels V

Example 3. Let/ C Rbeaninterval, lei: I — R? be a regular parametrized curve, anifdef — R3
be an arbitrary smooth function wi(u) # Ofor all u € I. We define a parametrized surface by
X(u,v) =) +vBWw), uel, velk.

This is called auled surfacewith rulings B (1) anddirectrix . It is easy to check thag, x X, = (&’ (1) +
vB’(u)) x B(u), which may or may not be everywhere nonzero.
As particular examples, we have the helicoid (see Figurgah@ the following (see Figure 1.5):

(1) Cylinder: Herep is a constant vector, and the surface is regular as lorg iasone-to-one with

a # B.
(2) Cone: Here we fix a point (say the origin) as the vertexelbe a curve withe x o’ # 0, and let
B = —a. Obviously, this fails to be a regular surface at the vertelighv = 1), butx, x X, =

(v—1)a(u) x &’ (u) is nonzero otherwise. (Note that another way to parametnizesurface would
be to takex* = 0 andpf* = «.)

(3) Tangent developable: Letbe a regular parametrized curve with nonzero curvatureledfd= o’;
that is, the rulings are the tangent lines of the curveThenx, x X, = —ve/(u) x &’ (u), so (at
least locally) this is a regular parametrized surface awamy tthe directrix. \Y%

FIGURE 1.5

In calculus, we learn that, given a differentiable functipnthe best linear approximation to the graph
y = f(x) “near” x = a is given by the tangent ling = f/(a)(x —a) + f(a), and similarly in higher
dimensions. In the case of a regular parametrized surfaseeims reasonable that the tangent plane at
P = Xx(uyp, vg) should contain the tangent vector to theurvea (1) = X(u, vg) atu = ug and the tangent
vector to thev-curvea; (v) = X(ug, v) atv = vg. That is, the tangent plane should contain the vectprs
andx,, each evaluated &it¢, vg). Now, sincex,, x X, # 0 by hypothesis, the vectors, andx, are linearly
independent and must therefore span a plane. We now malantbi$icial

Definition. Let M be a regular parametrized surface, andlet M. Then choose a regular parametriza-
tionx:U — M C R3 with P = x(ug,v9). We define theangent planeof M at P to be the subspace
Tp M spanned by, andx, (evaluated afuy, vo)).

Remark. The alert reader may wonder what happens if two people pick different such local
parametrizations oM near P. Do they both provide the same plafig M ? This sort of question is very
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common in differential geometry, and is not one we intendeialbor in this introductory course. However,
to get a feel for how such arguments go, the reader may workciEeel 5.

There are two unit vectors orthogonal to the tangent plEsn#f/. Given a regular parametrizatiof
we know thatx,, x X, is a nonzero vector orthogonal to the plane spannes,bg&ndx,; we obtain the

corresponding unit vector by taking
Xu X Xy

B ”Xu X Xv“ ‘

This is called thaunit normalof the parametrized surface.

Example 4. We know from basic geometry and vector calculus that thenoitnal of the unit sphere
centered at the origin should be the position vector its€lfis is in fact what we discovered in Example
1(d). V

Example 5. Consider the helicoid given in Example 1(b). Then, as we sgyv,x X, =
1
(bsinv,—b cosv,u), andn = 2—(b sinv, —b cosv, u). As we move along a ruling = vy, the

+
normal starts horizontal at = 0 (where the surface becomes vertical) and rotates in the egthogonal
to the ruling, becoming more and more vertical as we movetmutuiling. V

We saw in Chapter 1 that the geometry of a space curve is bdstsinod by calculating (at least in
principle) with an arclength parametrization. It would heen analogously, if we could find a parametriza-
tion x(u, v) of a surface so that,, andx, form an orthonormal basis at each point. We’'ll see later ttmat
can happen only very rarely. But it makes it natural to introe what is classically called thiest funda-
mental form1p(U,V) = U -V, forU,V € Tp M. Working in a parametrization, we have the natural basis
{Xy, Xy}, and so we define

E =1p(Xy,Xy) = Xy - Xy
F = |P(Xu»xv) =Xy - Xy = Xy - Xy = IP(Xv»Xu)

G = |P(Xv,xv) = Xy * Xy,

and it is often convenient to put these in as entries of a (syma) matrix:

b — E F
P=1F 6|
Then, given tangent vectot$ = ax,, + bx, andV = cx, + dX, € Tp M, we have

U-V =1p(U,V) = (aXy + bXy) - (cXy + dXy) = E(ac) + F(ad + bc) + G(bd).

In particular,||U||?> = 1p(U,U) = Ea? + 2Fab + Gb2.

SupposeM and M* are surfaces. We say they doeally isometricif for each P € M there are a
regular parametrizatior: U — M with x(ug,v9) = P and a regular parametrizatiofi: U — M™* (using
the same domaity C R?) with the property thatp = I’>« wheneverP = x(u,v) and P* = x*(u, v) for
some(u,v) € U. That is, the functiof = x*ox~1:x(U) — x*(U) is a one-to-one correspondence that
preserves the first fundamental form and is therefore dist@neserving (see Exercise 2).
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seal

:

FIGURE 1.6

Example 6. Parametrize a portion of the plane (say, a piece of paper(byv) = (u,v,0) and a
portion of a cylinder byx*(u,v) = (cosu,sinu,v). Then it is easy to calculate th# = E* = 1,
F = F* =0,andG = G* = 1, so these surfaces, pictured in Figure 1.6, are locally &om On the
other hand, if we let: vary fromO0 to 2, the rectangle and the cylinder are gtabally isometric because
points far away in the rectangle can become very close (otichd) in the cylinder. V

If () = x(u(z),v(t)) is a curve on the parametrized surfadewith «(z9) = X(ug,vo) = P, then it
is an immediate consequence of the chain rule, Theorem 2tz #&ppendix, that

o' (t0) = u'(to)Xu (Uo. Vo) + V' (10)Xy (U0, Vo).

(Customarily we will write simplyx,, the point(ug, vo) at which it is evaluated being assumed.) That is,
if the tangent vecto(u’(7y), v’ (¢9)) back in the “parameter space” (8, b), then the tangent vector

at P is the corresponding linear combinatiar, + bx,. In fancy terms, this is merely a consequence of
the linearity of the derivative of. We say a parametrizatiot(u, v) is conformalif angles measured in the

FIGURE 1.7

uv-plane agree with corresponding angleg M for all P. We leave it to the reader to check in Exercise
6 that this is equivalent to the conditiois= G, F = 0.

Since
| |
E F | | Xyu-Xy Xy-Xp | “ x “ x
F G| | XXy Xp-% | |77 R
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we have

X XX Xy Xy Xy-Xp 0
EG — F? = det {” woou ”D:det Xy - Xy Xp Xy O
Xy * X Xp * X
v U v v 0 0 1
T 2
| | I

=det] | x, Xy n Xy Xp N = |det| x, X, n
\L | | | o |

which is the square of the volume of the parallelepiped sparyx,, X,, andn. Sincen is a unit vector

orthogonal to the plane spanned Xy andx,, this is, in turn, the square of the area of the parallelogram
spanned by, andx,. That is,

EG — F? = |y X Xp||*> > 0.

We remind the reader that we obtain theface areaof the parametrized surfaceU — M by calculating
the double integral

/||Xu XXUIIdudv=/ VEG — F2dudv.
U U

EXERCISES 2.1

1. Derive the formula given in Example 1(e) for the paramzation of the unit sphere.

#2. Suppose(r) = x(u(t),v(r)), a <t < b, is a parametrized curve on a surfade Show that

b
lengthie) = / \/I“(,)(oe/(z),oe/(z))dz

b
= / \/E(u(t), v(O) @' ())? + 2F (), v (v (1) + Gu(0), v() (v (1))?dr.

Conclude that ife € M anda™ C M* are corresponding paths in locally isometric surfaces) the
lengthle) = lengthlee™).

3. Compute | (i.e.E, F, andG) for the following parametrized surfaces.
*a. the sphere of radius. x(u, v) = a(sinu cosv, Sinu Sinv, COSu)
the torusx(u, v) = ((a + b cosu) cosv, (a + b cosu) sinv, b sinu) (0 < b < a)
the helicoid:x(u, v) = (4 cosv, u sinv, bv)
*d. the catenoidx(u, v) = a(coshu cosv, coshu sinv, u)

4. Find the surface area of the following parametrized seda
*a. thetorusx(u,v) = ((@ + b cosu) cosv, (a + b cosu) sinv,bsinu) (0 <b <a),0 <u,v <2n
a portion of the helicoidx(u, v) = (u cosv,u sinv,bv), 1 <u <3,0<v <2xn
a zone of a sphetex(u, v) = a(sinu cosv, sinu sinv, cosu),0 < ug <u <u; <,
0<v<2m

3You should obtain the remarkable result that the surface afréhe portion of a sphere between two parallel planes dipen
only on the distance between the planes, not on where yoteltioam.
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*5.  Show that if all the normal lines to a surface pass throaflked point, then the surface is (a portion of)
a sphere. (By the normal line tf at P we mean the line passing throughwith direction vector the
unit normal atP.)

6. Check that the parametrizatiau, v) is conformal if and only ifE = G andF = 0. (Hint: For—,
choosetwo convenient pairs of orthogonal directions.)

*7. Check that a parametrization preserves area and is iwoafaf and only if it is a local isometry.

*8. Check that the parametrization of the unit sphere byesigaphic projection (see Example 1(e)) is
conformal.

9. (Lambert’s cylindrical projectioniProject the unit sphere (except for the north and south podekally

outward to the cylinder of radiusby sending(x, y, z) to (x/+/x2 + y2,y/+/x2 + y2,z). Check that
this map preserves area locally, but is neither a local isgmer conformal. (Hint: Letx(u, v) be

the spherical coordinates parametrization of the sphew cansidex* (u,v) = (cosv, sinv, cosu).
Compare the parallelogram formed Xy andx, with the parallelogram formed by}, andx;.)

#10. Consider the “pacman” regio¥l given byx(u, v) = (u cosv, u sinv,0),0 <u < R,0 < v < V, with
V < 2. Letc = V/2n. Let M* be given by the parametrization

X*(u,v) = (cucosv/c),cusin(v/c),v1—c?u), 0<u<R, 0<v<=V.

Compute thall = E*, F = F*, andG = G*, and conclude that the mappihgs x*ox~1: M — M*
is a local isometry. Describe this mapping in concrete geénakerms.

11. Consider the hyperboloid of one she¥f, given by the equation? + y? — z% = 1.
a. Show thak(u,v) = (coshu cosv, coshu sinv, sinhu), u € R, 0 < v < 27, gives a parametriza-
tion of M as a surface of revolution.
*b. Find two parametrizations a¥/ as a ruled surface(u) + vB(u).
c. Show thak(u, v) = (uv + 1, -y , utv
uv—1 uv—1 uv—1

parameter curves are rulings.

) gives a parametrization @ff wherebothsets of

#12. Given a ruled surfac® parametrized bx(u, v) = a (1) + vB(u) with &’ # 0 and||B| = 1.

a. Check that we may assume thdfu) - B(u) = 0 for all u. (Hint: Replaceo(u) with e(u) +
t(u) B (u) for a suitable function.)

b. Suppose, moreover, that(u), B(u), andp’(u) are linearly dependent for eveny Conclude that
B’ (u) = A(u)a’(u) for some function. Prove that:
(i) If A(u) = 0forallu,thenM is a cylinder.
(i) If Aisanonzero constant, the is a cone.
(i) If A andA’ are both nowhere zero, thé is a tangent developable. (Hint: Find the directrix.)

13. (The Mercator projectionMercator developed his system for mapping the earth, asrpittin Figure
1.8, in 1569, about a century before the advent of calculus.waht a parametrizatiox(u, v) of the
spherey € R, v € (—m, ), so that thex-curves are the longitudes and so that the parametrization i
conformal. Letting(¢, 6) be the usual spherical coordinates, wite= f(u) and6 = v. Show that
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14.

15.

16.

43

FIGURE 1.8

conformality and symmetry about the equator will dictdie) = 2 arctanie™). Deduce that

X(u, v) = (sechu cosv, sechu sinv, tanhu).

(Cf. Example 2 in Section 1 of Chapter 1.)

A parametrizatiox(u, v) is called aTschebyschev n#tthe opposite sides of any quadrilateral formed

by the coordinate curves have equal length.

a. Prove that this occurs if and onIya = B_G = 0. (Hint: Express the length of the-curves,
ug < u <uq, as an integral and usevthe faclf that this length is indeperade .)

b. Prove that we can locally reparametrizest§yi, 7) so as to obtairE = G = 1, F = cosf(ii, 1)
(so that thei- andv-curves are parametrized by arclength and meet at #&)glgHint: Choosei
as a function of: so thatk;; = xu/(dﬁ/du) has unit length.)

Suppos& andy are two parametrizations of a surfagg nearP. Sayx(ug,vg) = P = Yy(so, ).
Prove that Spaix,,, X,) = Spanys,Y:) (where the partial derivatives are all evaluated at the aisvi
points). (Hint: f = x~loy gives aC! map from an open set arourisy, 7o) to an open set around

(1o, vo). Apply the chain rule to shows,y; € Sparn(Xy, Xy).)

(A programmable calculator, Maple, or Mathematica Wél needed for parts of this problem.) A
catenoid, as pictured in Figure 1.9, is parametrized by

X(u,v) = (a coshu cosv,a coshu sinv,au), u€R, 0<v <2m (a> 0fixed).

*a. Compute the surface area of that portion of the cateniviengby || < 1/a. (Hint: cosfu =
3(1 + cosh2u).)
b. Find the numbeR, > 0 so that for everyR > Ry, there is at least one catenoid whose boundary
is the pair of parallel circles? + y2 = R?, |z| = 1. (Hint: Graphf(t) =t cosh(1/1).)
c. ForR > Ry, compare the area of the catenoid(s) veithR? (the area of the pair of disks filling in
the circles). For what values & does the pair of disks have the least area? (You should gispla

the results of your investigation in either a graph or a table
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FIGURE 1.9

d. (For extra credit) Show that @& — oo, the area of the inner catenoid is asymptoti@tdR? and
the area of the outer catenoid is asymptotid #a.

17. There are two obvious families of circles on a torus. Fritlird family. (Hint: Look for a plane that
is tangent to the torus &vo points. Using the parametrization of the torus, you shoel@lble to find
equations (either parametric or cartesian) for the curvehich the bitangent plane intersects the torus.)

2. The Gauss Map and the Second Fundamental Form

Given a regular parametrized surfakg the functionn: M — X that assigns to each poift € M the
unit normaln(P), as pictured in Figure 2.1, is called t&auss mawf M. As we shall see in this chapter,

n(P)

FIGURE 2.1

most of the geometric information about our surfd¢es encapsulated in the mapping

Example 1. A few basic examples are these.

(@) On a plane, the tangent plane never changes, so the Gapss enconstant.

(b) On a cylinder, the tangent plane is constant along thagsil so the Gauss map sends the entire
surface to an equator of the sphere.

(c) On a sphere centered at the origin, the Gauss map is nbes{pormalized) position vector.

(d) On a saddle surface (as pictured in Figure 2.1), the Gaagsappears to “reverse orientation”. As
we move counterclockwise in a small circle arouhgdwe see that the unit vectarturns clockwise
aroundn(P). v
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Recall from the Appendix that for any functiofi on M (scalar- or vector-valued) and any tangent
vectorV € Tp M, we can compute the directional derivatig f'(P) by choosing a curve: (—e, &) > M
with «(0) = P andea’(0) = V and computing foa)’(0).

To understand the shape &f at the pointP, we might try to understand the curvaturePabf various
curves inM. Perhaps the most obvious thing to try is variowsmal slices of M. That is, we sliceM
with the plane through? spanned by(P) and aunit vectorV € Tp M. Various such normal slices are
shown for a saddle surface in Figure 2.2. kdie the arclength-parametrized curve obtained by takinly suc
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FIGURE 2.2

a normal slice. We have(0) = P ande’(0) = V. Then since the curve lies in the plane spanned (@)
andV, the principal normal of the curve @& must betn(P) (+ if the curve is curving towards, — if it's

curving away). Sincénea(s)) - T(s) = 0 for all s near0, applying Lemma 2.1 of Chapter 1 yet again, we
have:

) +1(P) =«kN-n(P)=T/(0)-n(P) = —T(0) - (near)’(0) = —Dyn(P)-V.
This leads us to study the directional derivatgn(P) more carefully.

Proposition 2.1. For anyW € Tp M, the directional derivativ®yn(P) € Tp M. Moreover, the linear
mapSp:TpM — Tp M defined by
Sp(V) = —Dyn(P)
is asymmetriclinear map; i.e., forany,V € Tp M, we have
() Sp(U)-V=U-Sp(V)
Sp is called theshape operataat P .

Proof. Forany curvex: (—e, &) — M with «(0) = P anda’(0) = V, we observe thatea has constant
length1. Thus, by Lemma 2.1 of Chapter Dyn(P) - n(P) = (nee)’(0) - (neer)(0) = 0, soDyNn(P)isin



46 CHAPTER2. SURFACES LOCAL THEORY

the tangent plane tdf at P. ThatSp is a linear map is an immediate consequence of Proposit®af2zhe
Appendix.
Symmetry is our first important application of the equalifymixed partial derivatives. First we verify
(¥) whenU = x,, V = X,. Note thatn - x, = 0, so0 = (n . xv)u = Ny - Xy + N+ Xyy. (REMember that
we’re writing n,, for Dy, n.) Thus,
Sp(Xu) - Xy = =Dy, N(P) - Xy = =Ny - Xp = N~ Xy
=N-Xyp = =Ny Xy = =Dy, N(P) - Xy = Sp(Xp) - Xu.
Next, knowing this, we just write out general vectddsandV as linear combinations of,, and x,: If
U = axy + bxy andV = cx, + dX,, then
Sp(U) -V = Sp(axy + bxy) - (cXy + dXy)
= (aSP(Xu) + bSp (Xv)) < (eXy + dXy)
=acSp(Xy) - Xu +adSp(Xy) - Xy + bcSp(Xy) - Xy + bdSp (Xy) - Xy
=acSp(Xy) - Xy +adSp(Xy) - Xy + bcSp(Xy) - Xy + bdSp (Xy) - Xy
= (aXy + bXy) - (cSp(Xy) + dSp(xy)) = U-Sp(V),

as required. O
Proposition 2.2. If the shape operatdp is O for all P € M, thenM s a subset of a plane.

Proof. Since the directional derivative of the unit nornmails O in every direction at every point, we
haven, = n, = 0 for any (local) parametrization(u, v) of M. By Proposition 2.4 of the Appendix, it
follows thatn is constant. (This is why we assume our surfaces are corthgctel

. - 1
Example 2. Let M be a sphere of radius centered at the origin. Than= —x(u, v), so for anyP,
a

1 1 . : . .

we haveSp (x,) = —n, = ——X, andSp(Xy) = —nN, = ——Xy, SO0Sp is —1/a times the identity map on
a a

the tangent plan&gp M. V

It does not seem an easy task to give the matrix of the shapatopith respect to the basjs,,, X, }.
But, in general, the proof of Proposition 2.1 suggests tleadi@fine the second fundamental form, as follows.
If U,V e Tp M, we set

p(U,V) =SpU)-V.
Note that the formulaf() on p. 45 shows that the curvature of the normal slice in dwad/ (with ||V|| = 1)
is, in our new notation, given by
+k =—Dyn(P)-V =Sp(V)-V =1lp(V,V).

As we did at the end of the previous section, we wish to give @ixt@presentation when we’re working
with a parametrized surface. As we saw in the proof of PrajoosR.1, we have

=1l p(Xy, Xu)= =Dy, N+ Xy = Xyygy + N
m = ”P(Xu,xv)= _Dxun Xy = Xpu N =Xyp-N= ”P(Xv,xu)

n=Ilp(Xy,Xp) = —Dx,N- Xy = Xpy * N.
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(By the way, this explains the presence of the minus signénatfiginal definition of the shape operator.)

We then write
{ m Xyu -N Xyp - N
p = = .
m n Xuv M n va M n

If, as beforeU = ax, + bx, andV = cx, + dXy, then
Hp(U,V) =l p(axy + bXy, cXy + dXy)
=acll p(Xy,Xy) + adll p(Xy, Xy) + bell p(Xy, Xy) + bd 1l p(Xy, Xy)
= {(ac) + m(bc + ad) + n(bd).

In the event tha{x,,, X, } is an orthonormal basis fdfp M, we see that the matrix pl represents the
shape operatafp. But it is not difficult to check (see Exercise 2) that, in gethethe matrix of the linear
mapSp with respect to the basix,,, X, } is given by

. EF| ' [¢m
IP”P:FG m n |

Remark. We proved in Proposition 2.1 th&t is a symmetric linear map. This means that its matrix
representation with respect to an orthonormal basis (orergenerally, orthogonal basis with vectors of
equal lengthill be symmetric: In this case the matrix is a scalar multiple of the identity matrix and the
matrix product remains symmetric.

By the Spectral Theorem, Theorem 1.3 of the Appendix, has two real eigenvalues, traditionally
denotedk (P), ko (P).

Definition. The eigenvalues ofp are called theprincipal curvaturesof M at P. Corresponding
eigenvectors are callgatincipal directions A curve inM is called aline of curvatureif its tangent vector
at each point is a principal direction.

Recall that it also follows from the Spectral Theorem thatphincipal directions are orthogonal, so we can
always choose an orthonormal basis Tg¢rM consisting of principal directions. Having done so, we can
then easily determine the curvatures of normal slices iitrarp directions, as follows.

Proposition 2.3 (Euler's Formula) Let e;, e, be unit vectors in the principal directions At with
corresponding principal curvaturés andk,. Supposé/ = cosfe; + sinfe, for someb € [0,2x), as
pictured in Figure 2.3. Thethp (V,V) = ki cos 6 + ko sin? 6.

=)

\Y

e

FIGURE 2.3

Proof. This is a straightforward computation: Sinfg (e;) = k;e; fori = 1,2, we have

Hp(V,V) = Sp(V)-V = Sp(cosfie; + sinfle;) - (cosbe; + sinde;)
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= (cosfkie; + sinbk,e,) - (cosbe; + sinfey) = ki coS 6 + k, sin? 6,
as required. O

On a sphere, all normal slices have the same (honzero) avevdn the other hand, if we look carefully
at Figure 2.2, we see that certain normal slices of a saddiacguare true lines. This leads us to make the
following

asymptotic direction.

Definition. If the normal slice in directiotY has zero curvature, i.e., ifgV,V) = 0, then we calvV
anasymptotic directiort A curve inM is called amasymptotic curvéf its tangent vector at each point is an

\Y%

Example 3. If a surfaceM contains a line, that line is an asymptotic curve. For themabrslice in
the direction of the line contains the line (and perhapsratiiegs far away), which, of course, has zero
curvature.

Corollary 2.4. There is an asymptotic direction Btif and only ifki1k, < 0.

direction. O

Proof. k, = 0 if and only if e, is an asymptotic direction. Now suppoke # 0. If V is a unit
Sokiky, < 0. Conversely, ifk1k, < 0, takef with tané = +./—k;/k,, and thenV is an asymptotic

asymptotic vector making angfewith e, then we havé; cos 64k, sin* 6 = 0, and sotahf = —k;/ka,

Example 4. We consider the helicoid, as pictured in Figure 1.2. It isladwsurface and so the rulings

are asymptotic curves. What is quite less obvious is thaffahely of helices on the surface are also
asymptotic curves. But, as we see in Figure 2.4, the nornta Elngent to the helix & has an inflection
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FIGURE 2.4

point at P, and therefore the helix is an asymptotic curve. We ask théarto check this by calculation in
Exercise 5. V

40f courseV # 0 here. See Exercise 22 for an explanation of this terminology
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It is also an immediate consequence of Proposition 2.3 kieaptincipal curvatures are the maximum
and minimum (signed) curvatures of the various normal sliéessumek, < k1. Then

k1coS 0 + kysi? 0 = ki (1 —si?0) + ko si? 0 = ky + (kp — k) sin? 0 < k;

(and, similarly,> k,). Moreover, as the Spectral Theorem tells us, the maximuinn@inimum occur at
right angles to one another. Looking back at Figure 2.2, eltiee slices are taken at angles in increments
of /8, we see that the normal slices that are “most curved” appetirel third and seventh frames; the
asymptotic directions appear in the second and fourth fsaif@ef. Exercise 8.)

Next we come to one of the most important concepts in the gagraesurfaces:

Definition. The product of the principal curvatures is called ®aussian curvatureK = detSp =
k1k,. The average of the principal curvatures is calledrttean curvature H = %tr Sp = %(kl + k»).
We sayM is aminimal surfacef H = 0 andflatif K = 0.

Note that whereas the signs of the principal curvaturesgiérwe reverse the direction of the unit normal
n, the Gaussian curvatui€, being the product of both, is independent of the choice dfnormal. (And
the sign of the mean curvature depends on the choice.)

Example 5. It follows from our comments in Example 1 that both a planeanglinder are flat surfaces:
In the former caseSp = O for all P, and, in the latter, deip = 0 for all P since the shape operator is
singular. V

Example 6. Consider the saddle surfagés, v) = (u, v, uv). We compute:

Xy = (1,0» U) Xyu = (0’0’0)

Xy = (0, 1, u) Xuv = (0’0’ 1)
1

n—= —(_U,—u, 1) X = (0’0’0)’

and so
1

E=1+v* F=uv, G=14+u?> and t=n=0m= —— .
V14 u? +v?

Thus, withP = x(u, v), we have

1+v2  uv 1 0 1
uv 14+ u N1+ uz24+02 |1 0

so the matrix of the shape operator with respect to the agix, } is given by

So = I51p = 1 —uv 14 u?
P 1)_(1—1—1,12—1—1)2)3/2 1+v2 —uv |’

(Note that this matrix is, in general, not symmetric.)
With a bit of calculation, we determine that the principah@iures (eigenvalues) are
—uv + /(1 +u2)(1 + v2) —uv — /(1 + u2)(1 + v2)

ki = and ky = ;
1 (1 + u2 + v2)3/2 2 (1 + u2 + v2)3/2
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andK = detSp = —1/(1 4+ u? + v?)2. Note from the form of Ip that theu- andv-curves are asymptotic
curves, as should be evident from the fact that these arg [IWgh a bit more work, we determine that the
principal directions, i.e., the eigenvectorsXf, are the vectors

V14 u?x, £ V1 4+ v2x,.

(It is worth checking that these vectors are, in fact, ortmad.) The corresponding curves in the-plane
have tangent vectos/1 + 2, £+/1 + v2) and must therefore be solutions of the differential equatio

dv _i«/1+1)2
du VIi+u?

If we substitutev = sinhg, [ dv/+1+ v? = [ dq = q = arcsinhv, so, separating variables, we obtain

/ D _ i/ du__ i.e., arcsinhh = +arcsinhu + ¢
Since sinlix 4+ y) = sinhx coshy + coshx sinhy, we obtain
v = sinh(+ arcsinhu + ¢) = £(coshc)u + (sinhe) v 1 + u?2.

Whenc = 0, we getv = +u (as should be expected on geometric grounds)c #aries through nonzero
values, we obtain a family of hyperbolas. Some typical liolesurvature on the saddle surface are indicated
in Figure 2.5. V

FIGURE 2.5

Definition. Fix P € M. We sayP is anumbilic® if k; = k. If ky = k, = 0, we sayP is aplanar
point If K = 0 but P is not a planar point, we sak is aparabolic point If K > 0, we sayP is anelliptic
point, and if K < 0, we sayP is ahyperbolic point

Example 7. Onthe “outside” of a torus (see Figure 1.3), all the norniaésl curve in the same direction,
so these are elliptic points. Now imagine laying a plane gndba torus; it is tangent to the torus along
the “top circle,” and so the unit normal to the surface staysstant as we move around this curve. For
any pointP on this circle andv/ tangent to the circle, we havep (V) = —Dyn = 0, soV is a principal
direction with corresponding principal curvatude Thus, these are parabolic points. On the other hand,
consider a poin® on the innermost band of the torus. At such a point the sulfaies saddle-like; that is,
with the unit normal as pictured in Figure 2.6, the horizboile (going around the inside of the torus) is a

5From the LatinumbilTcusnavel.
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M

<

FIGURE 2.6

line of curvature with positive principal curvature, ane trertical circle is a line of curvature with negative
principal curvature. Thus, the points on the inside of thrasa@re hyperbolic points. V

Remark. Gauss’s original interpretation of Gaussian curvature thasfollowing: Imagine a small
curvilinear rectanglé® at P € M with sidesh; andh, along principal directions. Then, since the principal
directions are eigenvectors of the shape operator, thedrofff under the Gauss map is nearly a small
curvilinear rectangle at(P) € X with sideskih; andk,h,. Thus,K = kik, is the factor by which
distorts signed area as it maps to X. (Note that for a cylinder, the rectangle collapses to adiegment;
for a saddle surface, orientation is reversedl@and so the Gaussian curvature is negative.)

Let's close this section by revisiting our discussion of thevature of normal slices. Supposés an
arclength-parametrized curve lying a# with «(0) = P anda’(0) = V. Then the calculation in formula
() on p. 45 shows that

p(V,V) =«N-n;

i.e., llp(V,V) gives the component of the curvature veotd of « normalto the surfaceM at P, which
we denote by, and call thenormal curvatureof & at P. What is remarkable about this formula is that it
shows that the normal curvature depends only on the directi@ at P and otherwise not on the curve.
(For the case of the normal slice, the normal curvature igpupsign, all the curvature.) What's morg,
can be computed just from the second fundamental form M ofWe immediately deduce the following

Proposition 2.5 (Meusnier's Formula) Let e be a curve onM passing throughP with unit tangent
vectorV. Then

Hp(V,V) =k, = K COSP,
whereg is the angle between the principal normé/,of « and the surface normai, at P .
In particular, ifec is an asymptotic curve, then its normal curvatur@ & each point. This means that,

so long asc # 0, its principal normal is always orthogonal to the surfacenma, i.e., always tangent to the
surface.

Example 8. Let’s now investigate a very interesting surface, callegl geeudosphereas shown in
Figure 2.7. It is the surface of revolution obtained by rotthe tractrix (see Example 2 of Chapter 1,
Section 1) about the-axis, and so it is parametrized by

X(u,v) = (u — tanhu, sechu cosv, sechu sinv), u>0,vel02n).

Note that the circles (of revolution) are lines of curvatuggher apply Exercise 15 or observe, directly, that
the only component of the surface normal that changes as we around the circle is normal to the circle
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FIGURE 2.7

in the plane of the circle. Similarly, the various tracte@e lines of curvature: In the plane of one tractrix,
the surface normal and the curve normal agree.

Now, by Exercise 1.2.5, the curvature of the tractrix is= 1/ sinhu; sinceN = —n along this curve,
we havek; = k, = —1/sinhu. Now what about the circles? Here we have= 1/sechu = coshu,
but this is not the normal curvature. The angldetweenN andn is the supplement of the angfewe
see in Figure 1.9 of Chapter 1 (to see why, see Figure 2.8)s, ThyuMeusnier's Formula, Proposition 2.5,

q;N\
L

/ tanhu
n/ N

FIGURE 2.8

we havek, = k, = xcos¢ = (coshu)(tanhu) = sinhu. Amazingly, then, we hav&k = kik, =
(—1/sinhu)(sinhu) = —-1. V

Example 9. Let’s now consider the case of a general surface of revalpuparametrized as in Example
2 of Section 1, by
X(u,v) = (f(u) cosv, f(u)sinv, g(u)),
where f'(u)? 4+ g’(u)®> = 1. Recall that thei-curves are calledneridiansand thev-curves are called
parallels Then

Xy = (f'(u)cosv, f'(u)sinv, g'(u))
Xy = (—f(u) sinv, f(u) COSU,O)

n = (—g'(u)cosv, —g'(u) sinv, f'(u))
Xuu = (f"(u) cosv, f"(u) sinv, g" (u))
Xuv = (— f'(u) sinv, f'(u) cosv, 0)

Xpv = (—f(u) cosv, — f (u) sinv, 0),
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and so we have
E=1, F=0, G=fw? and {=f'wg"w)—f"weg'w), m=0 n= fuyg m.

By Exercise 2.2.1, theky = f'(u)g” (u) — f"(u)g’'(u) andk, = g’(u)/ f(u). Thus,

g _ ')
ORNIOR

since from £/ (u)? + g’(u)?> = 1 we deduce thay”(u) 1" (u) + g’(u)g" (1) = 0, and so

f'g' wg"w) — f"wg' w)? = —(f')? + &' )?) f"(u) = —f" (w).

K = klkz = (f/(u)g”(u) - f//(u)g/(u))

Note, as we observed in the special case of Example 8, thatesy surface of revolution, the meridians
and the parallels are lines of curvatureV

EXERCISES 2.2

*1. Check that if there are no umbilic points and the parameteves are lines of curvature, théh =
m = 0 and we have the principal curvatures = ¢/F andk, = n/G. Conversely, prove that if
F = m = 0, then the parameter curves are lines of curvature.

#2.  a. Show that the matrix representing the linear lSap7p M — TpM with respect to the basis

{Xu»xv}ls
-1
=l — E F t m
p TP = F G m n |’

(Hint: Write Sp(Xy) = axy, + bx, andSp (Xy) = ¢Xy + d Xy, and use the definition df, m, and
n to get a system of linear equations fgrb, ¢, andd .)

)
b. DeducethaK:M.
EG - F?

3. Compute the second fundamental form df the following parametrized surfaces. Then calculate the
matrix of the shape operator, and determih@and K .
a. thecylinderx(u,v) = (a cosu,a sinu, v)
*pb. the torus:x(u,v) = ((a + b cosu) cosv, (a + b cosu) sinv,bsinu) (0 < b < a)
c. the helicoid:x(u, v) = (u cosv,u sinv, bv)
*d. the catenoidx(u, v) = a(coshu cosv, coshu sinv, u)
e. the Mercator parametrization of the spheter, v) = (sechu cosv, sechu sinv, tanhu)
f. Enneper’s surfacex(u,v) = (u —u3/3 + uv?, v —v3/3 + u?v,u? — v?)
4. Find the principal curvatures, the principal directioasd asymptotic directions (when they exist) for

each of the surfaces in Exercise 3. ldentify the lines of atume and asymptotic curves when possible.

*5.  Prove by calculation that any one of the heliegs) = (a cost, a sint, bt) is an asymptotic curve on
the helicoid given in Example 1(b) of Section 1. Also, cadtalhow the surface normalchanges as
one moves along a ruling, and use this to explain why thegslare asymptotic curves as well.
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10.

11.

12.

13.
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Calculate the first and second fundamental forms of tleeiggasphere (see Example 8) and check our
computations of the principal curvatures and Gaussiaratuirs.

Show that a ruled surface has Gaussian curvaure0.

a. Prove that the principal directions bisect the asytigptiirections at a hyperbolic point. (Hint:
Euler's Formula.)

b. Prove that if the asymptotic directionsMf are orthogonal, theM is minimal. Prove the converse
assumingM has no planar points.

Letk, (6) denote the normal curvature in the direction making afighéth the first principal direction.

1 2w
a. Showthatd = —/ kn(0)d6.
21 0

1
b.  Show thatt = 3 (Kn(e) +n (0 + %)) for any .
(More challenging) Show that, more generally, for ayand m > 3, we have

H=1 (Kn(9)+lfn(9+2—n) +"'+Kn(9+m)).
m m m

Consider the ruled surfadé given byx(u, v) = (v cosu, v sinu,uv), v > 0.

a. Describe this surface geometrically.

b. Find the first and second fundamental forms and the Gauessiaature ofM .

c. Check that the-curves are lines of curvature.

d. Proceeding somewhat as in Example 6, show that the otes 6f curvature are given by the
equationv+/1 + u2 = c¢ for various constants. Show that these curves are the intersectiotof
with the spheres? 4 y2 + z2 = ¢2. (It might be fun to use Mathematica to see this explicitly.)

. . dv V()
The curvex(r) = x(u(t), v(¢)) may arise by writing— =
du  u'(t)

and solving a differential equation to

relateu andv either explicitly or implicitly.
a. Show thatx is an asymptotic curve if and only #(u’)?> + 2mu’v’ + n(v’)> = 0. Thus, if
4 2m% 4 n(9)? = 0, thena is an asymptotic curve.

LEUW + Fv' Fu' + Gv'

b. Show that is a line of curvature if and only i = 0. Give the appropri-

Lu' +mv' mu’ + nv’
ate condition in terms afv/du.
c. Deduce that an alternative condition éoto be a line of curvature is that
W) v )?
E F G |=0.
14 m n

a. Apply Meusnier's Formula to a latitude circle on a sphef radiusa to calculate the normal
curvature.

b. Apply Meusnier's Formula to prove that the curvature of anrve lying on a sphere of radius
satisfiesc > 1/a.

Prove or give a counterexample:Mf is a surface with Gaussian curvatuke> 0, then the curvature
of any curveC C M is everywhere positive. (Remember that, by definitiory;, 0.)
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t14.

15.

16.

17.

18.

19.

20.

Suppose that for ever§ € M, the shape operatdfp is some scalar multiple of the identity, i.e.,
Sp(V) =k(P)VforallV e Tp M. (Here the scalakt(P) may well depend on the poiRt.)
a. Differentiate the equations

Dy n = n, = —kXy

Dy,n = ny, = —kXy
appropriately to determink, andk, and deduce that must be constant.

b. We showed in Proposition 2.2 thaf is planar wherk = 0. Show that wherk # 0, M is (a
portion of) a sphere.

a. Prove thak is a line of curvature inV if and only if (neat)’() = —k(t)a’(¢), wherek(z) is the
principal curvature at(¢) in the directionx’(z). (More colloquially, differentiating along the curve
o, we just writen’ = —ka'.)

b. Suppose two surfacdg and M * intersect along a curv€. Suppose is a line of curvature i/ .
Prove thatC is a line of curvature i/ * if and only if the angle betweeM and M * is constant
alongC. (In the proof of<—=, be sure to include the case thet and M * intersect tangentially
alongC.)

Prove or give a counterexample:

a. Ifacurve is both an asymptotic curve and a line of curegttiven it must be planar. (Hint: Along
an asymptotic curve that is not a line, how is the Frenet fregtaded to the surface normal?)

b. Ifacurve is planar and an asymptotic curve, then it must lree.

a. How isthe Frenet frame along an asymptotic curveaela the geometry of the surface?

b. Suppose&(P) < 0. If C is an asymptotic curve witk(P) # 0, prove that its torsion satisfies
|t(P)| = /—K(P). (Hint: If we choose an orthonormal bagid, VV} for Tp (M) with U tangent
to C, what is the matrix folSp? See the Remark on p. 47.)

Continuing Exercise 17, show thaidf P) < 0, then the two asymptotic curves have torsion of opposite
signs atP.

Supposé/ C R3 is open anc: U — R3 is a smooth map (of rank) so thatx,,, X,, andx,, are always
orthogonal. Then the level surfaces= const,v = const,w = const form ariply orthogonal system
of surfaces.

a. Show that the spherical coordinate mappitg, v, w) = (u Sinv cosw, u Sinv Sinw, u COSV)
(u>0,0<v<m0<w < 2x) furnishes an example.

b. Prove that the curves of intersection of any pair of sesdcom different systems (e.@.,= const
andw = const) are lines of curvature in each of the respective sesfa(Hint: Differentiate the
various equations,, - X, = 0, Xy - Xy = 0, Xy, - X = 0 with respect to the missing variable. What
are the shape operators of the various surfaces?)

In this exercise we analyze the surfaces of revolutian @ine minimal. It will be convenient to work
with a meridian as a graply (= h(u), z = u) when using the parametrization of surfaces of revolution
given in Example 9.
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21.

22.

23.
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a. Use Exercise 1.2.4 and Proposition 2.5 to show that tineipel curvatures are

k1 = h and k _ 1 !
ERIEN DY TR AwRe

Deduce thafd = 0 if and only if z(u)h” (u) = 1 + K’ (u)>.

c. Solve the differential equation. (Hint: Either subgBtu(x) = In () or introducew (u) = h'(u),
find dw/dh, and integrate by separating variables.) You should fintd/tha) = %cosr(cu +b)
for some constants andc.

By choosing coordinates R3 appropriately, we may arrange thAtis the origin, the tangent plane
Tp M is thexy-plane, and the- and y-axes are in the principal directions &t
a. Show that in these coordinatésis locally the graplr = f(x,y) = 3(k1x? + ky?) + €(x, y),

where lim €(x,y)
x,y—0 x2 + y2

fx.y) = f(0.0) + /x(0,0)x + £,(0.0)y +
3 (fxx(0,00x% + 25 (0,0)xy + fy(0,0)y%) + €(x, y),

= 0. (You may start with Taylor’s Theorem: If is @2, we have

where fim <) _ )
x,y—=>0 x4y

b. Show that ifP is an elliptic point, then a neighborhood Bfin M N Tp M is just the origin itself.
What happens in the case of a parabolic point?

c. (More challenging) Show that iP is a hyperbolic point, a neighborhood 8fin M N Tp M is
a curve that crosses itself & and whose tangent directions Atare the asymptotic directions.
(Hints: Work in coordinategx,u) with y = ux. Show that in thecu-plane the curve has the
equation0 = g(x,u) = %(kl + kou?) + h(x,u), whereh(0,u) = 0 for all u, so it consists
of two (C') curves, one passing through, \/—k;/k,) and the other through0, —/—k1/k2).
Show, moreover, that if two curves pass through the samd paing) in the xu-plane, then the
corresponding curves in they-plane are tangent &b, 0).9)

LetP € M be a non-planar point, and K > 0, choose the unit normal so thatn > 0.

a. We define thé®upin indicatrix to be the conic ifl'p M defined by the equationgiV,V) = 1.
Show that if P is an elliptic point, the Dupin indicatrix is an ellipse; # is a hyperbolic point,
the Dupin indicatrix is a hyperbola; and K is a parabolic point, the Dupin indicatrix is a pair of
parallel lines.

b. Show thatifP is a hyperbolic point, the asymptotes of the Dupin indicadrie given by Ip (V,V) =
0, i.e., the set of asymptotic directions.

Cc. SupposeVM is represented locally nedt as in Exercise 21. Show that for small positive values
of ¢, the intersection oM with the planez = ¢ “looks like” the Dupin indicatrix. How can you
make this statement more precise?

Suppose the surfadd is given nearP as a level surface of a smooth functigh R3> — R with
VF(P) # 0. Aline L C R? is said to have (at leasi-point contactwith M at P if, given any
linear parametrizatiom of L with «(0) = P, the functiond = Foa vanishes to ordek — 1, i.e.,

%Here we have “blown up” the origin in order to keep track of diféerent tangent directions. TH#owing-upconstruction is
widely used in topology and algebraic geometry.
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F0) = F(0) = --- = F&D(0) = 0. (Such aline is to be visualized as the limit of lines thagisect

M at P and atk — 1 other points that approach.)

a. Show that. has2-point contact withM at P if and only if L is tangent to\f at P, i.e.,L C Tp M.

b. Show thatl. has3-point contact withM at P if and only if L is an asymptotic direction af.
(Hint: It may be helpful to follow the setup of Exercise 21.)

c. (Challenge) Assume is a hyperbolic point. What does it mean fbtto have4-point contact with
M atP?

3. The Codazzi and Gauss Equations and the Fundamental Theem of Surface Theory

We now wish to proceed towards a deeper understanding ofsi@ausurvature. We have to this point
considered only the normal components of the second dieBgat,,,,, X,,», andx,,. Now let’'s consider
themin toto. Since{x,, X,, n} gives a basis foR3, there are function§ %, I,2,, [\, = T %, T,% =T,
ry, andl’, so that

va = FUZ:)Xu + FUI;)XU + nn.
(Note thatx,, = X, dictates the symmetrieE,’ = I')5,.) The functionsI',, are calledChristoffel
symbols

Example 1. Let's compute the Christoffel symbols for the usual parain&tion of the sphere (see
Example 1(d) on p. 37). By straightforward calculation wéaitp

Xy = (COSu cosv, cosu Sinv, — sinu)
Xy = (—sinu sinv, sinu cosv, 0)
Xyu = (—Sinu cosv, — sinu sinv, — cosu) = —Xx(u, v)
Xyv = (— COSu sinv, cosu cosv, 0)
Xyy = (—Sinu cosv, — sinu sinv, 0) = — sinu(cosv, sinv, 0).

(Note that thes-curves are great circles, parametrized by arclength,isait surprise that the acceleration
vectorx,,, is inward-pointing of length. Thev-curves are latitude circles of radius &inso, similarly, the
acceleration vectax,, points inwards towards the center of the respective cjrcle.

FIGURE 3.1
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Sincex,, lies entirely in the direction oh, we havel');, = T',;,, = 0. Now, by inspectionx,, =
cotuxy, sol',;, = 0 andI’,;, = cotu. Last, as we can see in Figure 3.1, we hayg = — sinu cosuX, —

H u
sirfun, sol' %,

—sinucosu andI';, =0. V

Now, dotting the equations irf Y with x,, andx, gives

Now observe that

(»)

X‘l)‘l)

.Xv

Xuu Xy =T, E+ T, F

qu

Xuv

Xuv

Xyv

XUU

e

.Xv

Xy

'XU

%(Xu “Xu)u
%(Xu “Xu)v

%(XU : Xv)u

(Xu 'Xv)u — Xy * Xyv =

(Xu 'Xv)v — Xuv " Xy

= Fuqu + Ful;)F
= Fuqu + Fuva

= FU%E—FFUI;)F
= FU%F—FFUUUG.

%(XU Xp)y = %Gv

Thus, we can rewrite our equations as follows:

E F|[rx
| F G|y |
[E F [
(1) F G F",,”
E F|[rx
| F G||T} ]

What is quite remarkable about these formulas is that thestoffel symbols, which tell us about the

=
—
Gu} _

F o ]
Lo
v

[ u

1

v

u
FUU

v

LI
M M mXm
- QT QT
I 1 I 1

F

G

tangential component of the second derivatixgs can be computeplist from knowing E, F, andG, i.e.,

the first fundamental form.

Example 2. Let's now recompute the Christoffel symbols of the unit sph@nd compare our answers

with Example 1. Sincé& = 1, F = 0, andG = sin® u, we have

Fu
Lo

T
Fuvv

||
Il

1

1

0
0 csCu

Jls]-[

0 0
0 cs@u || sinucosu

]
[

|
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Lyl |1 0 —sinucosu | | —sinucosu
r2 | |0 cs@u 0 B 0 '

Thus, the only nonzero Christoffel symbols dtg = I' )}, = cotu andI'};, = —sinu cosu, as before.
\

By Exercise 2.2.2, the matrix of the shape operdtpwith respect to the basi{x,, X, } is

—1
a c| |EF t m| 1 LG —mF mG-—nF
bd| |F G m n| EG-—F2| —{F+mE —mF +nE |’
Note that these coefficients tell us the derivatives @fith respect ta: andv:

Ny = Dy,N = —Sp(Xy) = —(axXy + bXy)

(F) Ny = Dy,N = —Sp(Xy) = —(cXy + dXy).

We now differentiate the equations)(@gain and use equality of mixed partial derivatives. Tatstee
have
Xuuv = (Dyp)vXu + TygXuw + (Do )uXo + Ty Xow + £on + €Ny
= () vXu + Ty (TyoXu + T Xe + mn) + (T vXe + Dol (TuoXu + Ty X + 1)
= ((Fuz)v + Fuz Fuuv + FJ&FJ@ - ZC)Xu + ((Fulit)v + Fulftrul;) + Fu1;4 Fvli) - Zd)XU

+ (Tyym + Tyon + €,)n,
and, similarly,
Xyvu = ((Fuuv)u + Fulz) Fuz + Fuvvrulz) - ma)xu + ((Fuvv)u + Fulz) l—‘uvu + Fuvv Fuvv - mb)Xv
+ (£T,5y + mT,, + my)n.
Sincexyyy = Xuvu, We compare the indicated components and obtain:

(Xy): )y +T LT —le=T%)y + T LTH% —ma

uu/v UU- VU uv/u UV~ UV
) Xy): )+ LT + 0000 —4d = (T))u + T 0T, + T, 00 —mb

(n): Ly + mDy, +nl,), =my + LT}, +ml,),.
Analogously, comparing the indicated components,gf, = Xy, We find:

(Xu): ) + 0T + T 0T —me = (Tf)u + T TH + T 0008 —na

uv/v UV~ UL UV VY vv/U VU UU
(Xy): e+, —md = (T ))u + T ), —nb

(n): my +ml} +nl,, =ny + LT} +mIl).

The two equations coming from the normal component give @s th

Codazzi equations

by —my = LT, + m(l"u'; — Fu’;) —nlY

uu

my —ny = L0y +m(C, —T,0t) —nl).
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. n —m? . . .
UsingK = n—n;z and the formulas above far, b, ¢, andd, the four equations involving the, and

X, components y_ield the

Gauss equations
EK = (Fu’it)v - (Fuvv)u + l_‘uuu 1_‘uvv + 1_‘uvu Fvli) - l_‘uuv 1_‘uvu - (Fuvv)2
FK = (Fuuv)u - (Fuuu)v + l_‘uvvl_‘uuv - Fulitrvuv
FK = (Fuvv)v - (Fvvv u + l_‘uuv 1_‘uvv - erf) l_‘uvu
GK = (erf))u - (Fuuv)v + l_‘vuvl_‘uuu + 1_‘vvvl_‘uuv - (Fuuv)2 - 1_‘uvv 1_‘vuv’

For example, to derive the first, we use the equatibnabove:

(Fu1;4)v - (Fuvv)u + Ful;r‘ul;) + 1_‘uvul_‘vli) - Fuuvrulit - (Ful;))z ={d —mb
1 E(tn —m?)

=56 _F EG — F2
In an orthogonal parametrizatiod (= 0), we leave it to the reader to check in Exercise 3 that

{(—mF 4+ nE) +m(F —mE)) = = EK.

1 E, Gy
() K:_A@E(Q@?L+«;%5L)

One of the crowning results of local differential geometyhe following

Theorem 3.1(Gauss’s Theorema EgregiumThe Gaussian curvature is determined by only the first
fundamental form. That is, K can be computed from judt, F, G, and their first and second partial
derivatives.

Proof. From any of the Gauss equations, we see fhatan be computed by knowing any one Bf
F, andG, together with the Christoffel symbols and their derivesiv But the equationg show that the
Christoffel symbols (and hence any of their derivatives) loa calculated in terms &, F, andG and their
partial derivatives. [

Corollary 3.2. If two surfaces are locally isometric, their Gaussian ctures at corresponding points
are equal.

For example, the plane and cylinder are locally isometnit] Bhence the cylinder (as we well know)
is flat. We now conclude that since the Gaussian curvature sgfhare is nonzero, a sphere cannot be
locally isometric to a plane. Thus, there is no way to map Hréhe‘faithfully” (preserving distance)—even
locally—on a piece of paper. In some sense, the Mercatoegtion (see Exercise 2.1.13) is the best we can
do, for, although it distorts distances, it does presenggtesn

The Codazzi and Gauss equations are rather opaque, to ségatite We obtained the convenient
equation §) for the Gaussian curvature from the Gauss equations. T® @itit more insight into the
meaning of the Codazzi equations, we have the following

Lemma 3.3. Suppose« is a parametrization for which the andv-curves are lines of curvature, with
respective principal curvaturés andk,. Then we have

(%) (o= 2o k) and (ko) = S (ki — ko)
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Proof. By Exercise 2.2.1{ = k1 E,n = k,G,andF = m = 0. By the first Codazzi equation and the
equations ) on p. 58, we have

(ki)oE + k1Ey = £y, = ki ET i, —koGT,), = 2 Ey(ky + k2),
and so

E
(k1)y = ﬁ(kz —k1).
The other formula follows similarly from the second Codagguation. O

Let's now apply the Codazzi equations to prove a ratherisgikesult about the general surface with
K = 0 everywhere.

Proposition 3.4. SupposeM is a flat surface with no planar points. Thehis a ruled surface whose
tangent plane is constant along the rulings.

Proof. SinceM has no planar points, we can chodége= 0 andk, # 0 everywhere. Then by Theorem
3.3 of the Appendix, there is a local parametrizatiodb®o that the:-curves are the first lines of curvature
and thev-curves are the second lines of curvature. This means figt tfat F = m = 0. (See Exercise
2.2.1)) Now, sincé; = 0, forany P ¢ M we haveSp(x,) = 0, and son,, = 0 everywhere ana is
constant along the-curves. We also observe that= 11 (X, X)) = —Sp(Xy) - X, = 0.

We now want to show that the-curves are in faclines Sincek; = 0 everywhere(k;), = 0 and,
sincek, # ki, we infer from Lemma 3.3 thak,, = 0. From the equations:] it now follows thatl’,}}, = 0.
Thus,

Xuu = TyyXu + T Xe +€n = T L Xy
is just a multiple ofk,,. Thus, the tangent vectay, never changes direction as we move alongtieairves,
and this means that thecurves must be lines. In conclusion, we have a ruled sukidaese tangent plane
is constant along rulings. O

Remark. Flat ruled surfaces are often callddvelopable (See Exercise 10 and Exercise 2.1.12.) The
terminology comes from the fact that they can be rolled out“developed”™—onto a plane.

Next we prove a strikingjlobal result about compact surfaces. (Recall that a subsRe a6 compact
if it is closed and bounded. The salient feature of compastisehe maximum value theorem: A contin-
uous real-valued function on a compact set achieves itsrmawiand minimum values.) We begin with a
straightforward

Proposition 3.5. SupposeV C R3 is a compact surface. Then there is a pdint M with K(P) > 0.

Proof. BecauseM is compact, the continuous functiof(x) = ||x|| achieves its maximum at some
point of M, and so there is a poit € M farthest from the origin (which may or may not be insite,
as indicated in Figure 3.2. Lef(P) = R. As Exercise 1.2.7 shows, the curvature of any cuwtve M
at P is at leastl/R. Applying this to any normal section o¥f at P and choosing the unit normal
to be inward-pointing, we deduce that every normal cureatfrM at P is at leastl/R. It follows that
K(P) > 1/R? > 0. (Thatis,M is at least as curved & as the circumscribed sphere of radiRgangent
toMatP.) O
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FIGURE 3.2

The reader is asked in Exercise 19 to find surfaces of reeolutf constant curvature. There are,
interestingly, many nonobvious examples. However, if warigt ourselves to smooth, compact surfaces,
we have the following beautiful

Theorem 3.6(Liebmann) If M is a smooth, compact surface of constant Gaussian curv&tLiieen
K > 0 andM must be a sphere of radilig~/K .

We will need the following

Lemma 3.7 (Hilbert). SupposeP is not an umbilic point ané;(P) > k,(P). Supposé; has a local
maximum atP andk, has a local minimum aP. ThenK(P) < 0.

Proof. We work in a “principal” coordinate parametrizationear P, so that theu-curves are lines of
curvature with principal curvature; and thev-curves are lines of curvature with principal curvatiee
Sincek; # k, and(ky)y = (k2), = 0 at P, it follows from Lemma 3.3 that, = G, =0 at P.

Differentiating the equations<§, and remembering th&k),, = (k2), = 0 at P as well, we havat P:

E

(k1)vo = 2;’; (ko — k1) <0 (becausé; has a local maximum ag)
G

(k2)uu = 2"G" (ki —k) >0  (because, has a local minimum aP),

and soE,, > 0 andG,, > 0 at P. Using the equation«) for the Gaussian curvature on p. 60, we see
similarly thatat P

K = ! E G
= —m( vo + uu),

as all the remaining terms involvé, andG,,. So we conclude thak'(P) < 0, as desired. [

Proof of Theorem 3.6. By Proposition 3.5, there is a point whelg is positively curved, and since the
Gaussian curvature is constant, we must hve 0. If every point is umbilic, then by Exercise 2.2.14, we
know thatM is a sphere. If there is some non-umbilic point, the largarggpal curvaturek;, achieves its
maximum value at some poit becauseVf is compact. Then, sinc&€ = k;k, is constant, the function
k> = K/kq must achieve its minimum &t. Since P is necessarily a non-umbilic point (why?), it follows
from Lemma 3.7 thak'(P) < 0, which is a contradiction. [J

7Since locally there are no umbilic points, the existenceushsa parametrization is an immediate consequence of Timeore
3.3 of the Appendix.
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Remark. H. Hopf proved a stronger result, which requires technidu@a complex analysis: 1M is a
compact surface topologically equivalent to a sphere amthhaonstanimeancurvature, them/ must be
a sphere.

We conclude this section with the analogue of Theorem 3.1haipEer 1.

Theorem 3.8 (Fundamental Theorem of Surface Theori)niqueness: Two parametrized surfaces
x,x*: U — R3 are congruent (i.e., differ by a rigid motion) if and onlylif= 1* andll = +II*. Ex-
istence:Moreover, given differentiable functiors, F, G, £, m, andn with E > 0 andEG — F? > 0 and
satisfying the Codazzi and Gauss equations, there existallff) a parametrized surfacéu, v) with the
respectiva andll.

Proof. The existence statement requires some theorems from|mhffigiential equations beyond our
reach at this stage. The uniqueness statement, howeveucts like the proof of Theorem 3.1 of Chapter
1. (The main technical difference is that we no longer arkyiienough to be working with aorthonormal
basis at each point, as we were with the Frenet frame.)

First, suppose* = Wox for some rigid motion¥: R3 — R3 (i.e., ¥(x) = Ax + b for someb € R3
and some x 3 orthogonal matrix4). Since a translation doesn’t change partial derivatimesmay assume
thatb = 0. Now, since orthogonal matrices preserve length and datyatp we haveE* = ||x*|?> =
A%, |2 = |[%u|I?> = E, etc., so I= 1*. If detA > 0, thenn* = An, whereas if det < 0, thenn* = —An.
Thus,£* = x5, - n* = AXyy - (£4An) = ££, the positive sign holding when ddt> 0 and the negative
when detd < 0. Thus, IF = llifdet A > 0and II* = —Ilifdet A < 0.

Conversely, suppose=+ 1* and Il = +£I1*. By composingx* with a reflection, if necessary, we may
assume that I&= I1*. Now we need the following

Lemma 3.9. Suppose anda™ are smooth functions d, b], viv,v3 andviv;vi are smoothly varying
bases folR3, also defined ofp, b], so that

Vi(t) -vj(t) = Vi) Vi) = gij(t), i,j=1,2,3,

3 3
()= pi(Vvi(t) and  a¥(@) =Y piV] ().
i=1 i=1
3 3
Vi) = qijvi(0) and  Vi'(0) =) qyVvi@), j=12.3.
i=1 i=1
(Note that the coefficient functions; andq;; are the same for both the starred and unstarred equations.)
If «(0) = a*(0) andv;(0) = v7(0),i = 1,2,3, thena(t) = a*(t) andv;(t) = v:(t) for allt < [0,b],
i=1,2,3.

Fix a pointug € U. By composingx* with a rigid motion, we may assume thatuy, we havex = x*,
Xu = X5, Xy = X;;, andn = n* (why?). Choose an arbitrary; € U, and joinug to u; by a pathu(z),
t € [0,b], and apply the lemma with = Xou, Vi = X,°U, Vo = Xy°U, V3 = nou, p; = u;, and theg;;
prescribed by the equationg)@nd (). Since I= 1* and Il = I *, the same equations hold f@¥ = x*ou,
and sax(u;) = x*(u;) as desired. That is, the two parametrized surfaces ardaedent
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Proof of Lemma 3.9. Introduce the matrix function af

| | |
M(t) = | vi(t) va(r) v3() |,
| | |

and analogously fod *(¢). Then the displayed equations in the statement of the Lenaméie written as
M'(t)y=M@)Q) and  M*(t) = M*(1)Q(1).
On the other hand, we hav#f(1)"M () = G(t). Since thev;(¢) form a basis forR3 for eacht, we
know the matrixG is invertible. Now, differentiating the equatiai(r)G~1(¢t) = I yields (G~1)(t) =
—G~1(t)G'(t)G~1(t), and differentiating the equatici(r) = M (t)" M(t) yieldsG'(t) = M'(t)"M(t) +
M@)"™M'(t) = Q(t)"G(t) + G(t)Q(r). Now consider
(M*GT'M™)' (1) = M*' (GO ' M@®)" + M* )G~ OM@)T + M*(0)G(@) "' M'(t)"
= M*() Q)G M@)" + M* () (=GO GG )M@)T
+ MG OO ™M)
= M*() Q)G M) = M* (GO QW)M@) = M* () Q)G M)
+ M*)G@)" Q@)™ M) = O.
Since M(0) = M*(0), we haveM*(0)G(0) "' M©0)" = M©O)MO)"'M©0)""'M@0)" = I, and so
M*()G(@t)"'M@)" = I for allt € [0,b]. It follows that M*(r) = M(¢) for all t € [0,b], and so
a*'(t) —a'(t) = Ofor all t as well. Sincex*(0) = «(0), it follows thate™(r) = «a(¢) for all ¢ € [0, 5], as
we wished to establish. O

EXERCISES 2.3

1. Calculate the Christoffel symbols for a coré@y, v) = (u cosv, u sinv, u), both directly (as in Example
1) and by using the formulag).

2. Calculate the Christoffel symbols for the following pauetrized surfaces. Then check in each case that
the Codazzi equations and the first Gauss equation hold.
a. the plane, parametrized by polar coordinai€s; v) = (u cosv, u sinv, 0)
b. ahelicoid:x(u,v) = (u cosv, u sinv, v)
fc. aconex(u,v) = (ucosv,usinv,cu),c #0
#*d. asurface of revolutionx(u, v) = (f(u) cosv, f(u) sinv, g(u)), with £'(w)? + g'(u)? = 1

3. Use the first Gauss equation to derive the forms)egiven on p. 60 for Gaussian curvature.
4. Check the Gaussian curvature of the sphere using the farfuon p. 60.
5. Check that for a parametrized surface with= G = A(u,v) and F = 0, the Gaussian curvature is

1 2 2
given by K = —ﬁvz(ln A). (HereV? f = 9 vl is the Laplacian off".)

—5 +
duz  Jv2
6. Prove there is noompactminimal surfaceM C R3.
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7.

10.

11.

12.

13.

14.

15.

16.

Decide whether there is a parametrized surfdaev) with
a E=6=1,F=0{=1=-nm=0
b. E=G=1,F=0,{=e*=n,m=0
c. E=1,F=0,G=cofu,{=cofu,m=0,n=1

a. Maodify the proof of Theorem 3.6 to prove that a smootimjgact surface wittk > 0 and constant
mean curvature is a sphere.

b. Give an example to show that the result of Lemma 3.7 failgeifassumeé; has a local minimum
andk, has a local maximum ag.

Give examples of (locallyjon-congruenparametrized surfacesandx™ with
a. I=1*
b. Il = II* (Hint: Try reparametrizing some of our simplest surfaces.)

Letx(u,v) = a(u) + vB(u) be a parametrization of a ruled surface. Prove that the tangane

is constant along rulings (i.e., the surface is flat) if antyoh o’(u), B(u), and B’(u) are linearly

dependent for every. (Hint: When isSp (x,) = 0? Alternatively, considex, x x,, and apply Exercise
A2.1)

Prove thatx is a line of curvature inV if and only if the ruled surface formed by the surface normals
alonge is flat. (Hint: See Exercise 10.)

Show that the Gaussian curvature of the parametrizéacesr

X(u,v) = (u cosv,u sinv, v)

y(u,v) = (ucosv,usinv, Inu)

is the same for eachu, v), and yet the first fundamental formsdnd |, do not agree. (Thus, we might
expect that the converse of Corollary 3.2 is false; it talkghtty more work to show that there can be
nolocal isometry.)

Suppose that through each point of a surf&€ehere is a planar asymptotic curve with nonzero cur-
vature. Prove thatf must be a (subset of a) plane. (Hint: Start with ExerciselZ2.and apply
Proposition 3.4.)

Suppose that the surfagg is doubly ruled by orthogonal lines (i.e., through each pofn\ there pass
two orthogonal lines).

a. Using the Gauss equations, prove tkiat 0.

b. Now deduce tha¥ must be a plane.

(Hint: As usual, assume that, locally, the families of limeeu- andv-curves.)

Prove that the only minimal ruled surface with no planaints is the helicoid. (Hint: Consider the
curves orthogonal to the rulings. Use Exercises 2.2.8baid 1.2.20.)

Supposé/ is a surface with no umbilic points and one constant pridapavaturek; # 0. Prove that
M is (a subset of) a tube of radius= 1/|k1| about a curve. That is, there is a cueweso thatM is
(a subset of) the union of circles of radiugn each normal plane, centered along the curve. (Hints: As
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17.

18.

19.
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usual, work with a parametrization where theurves are lines of curvature with principal curvature
k1 and thev-curves are lines of curvature with principal curvatise Use Lemma 3.3 to show that the
u-curves have curvaturé, | and are planar. Then defilmeappropriately and check that it is a regular
curve.)

If M is a surface with both principal curvatures constant, ptoeeM is (a subset of) either a sphere,
a plane, or a right circular cylinder. (Hint: See Exercisg P4, Proposition 3.4, and Exercise 16.)

Consider the parametrized surfaces

X(u, v) = (—coshu sinv, coshu cosv, u) (a catenoid)

y(u,v) = (ucosv,u sinv, v) (a helicoid).

a. Compute the first and second fundamental forms of botasesf and check that both surfaces are
minimal.
Find the asymptotic curves on both surfaces.
Show that we can locally reparametrize the helicoid irhsuway as to make the first fundamental
forms of the two surfaces agree; this means that the twoasgfare locally isometric. (Hint: See
p. 39. Replace with sinhu in the parametrization of the helicoid. Why is this legiti@)

d. Why are they not globally isometric?

e. (for the student who's seen a bit of complex variables) Asna to what's going on here, let
z = u+ivandZ = x + iy, and check that, continuing to use the substitution from par
Z = (siniz,cosiz, z). Understand now how one can obtain a one-parameter famioofetric
surfaces interpolating between the helicoid and the cateno

Find all the surfaces of revolution of constant cunatur

a K=0
b. K=1
c. K=-1

(Hint: There are more than you might suspect. But your answalf involve integrals you cannot
express in terms of elementary functions.)

4. Covariant Differentiation, Parallel Translation, and Geodesics

Now we turn to the “intrinsic” geometry of a surface, i.e.etbeometry that can be observed by an

inhabitant (for example, a very thin ant) of the surface, whn only perceive what happens along (or, say,
tangential to) the surface. Anyone who has studied Euclige@mmetry knows how important the notion of
parallelismis (and classical non-Euclidean geometry arises when aoneves Euclid’'s parallel postulate,
which stipulates that given any linke in the plane and any poin® not lying on L, there is a unique line
through P parallel toL). It seems quite intuitive to say that, working just®d, two vectorsV (thought of

as being “tangent ak”) and W (thought of as being “tangent ét”) are parallel provided that we obtaiif
when we moveV/ “parallel to itself” from P to Q; in other words, iW = V. But what would an inhabitant
of the sphere say? How should he compare a tangent vectoe gicimt of the sphere to a tangent vector
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AreV andW parallel?

FIGUREA4.1

at another and determine if they're “parallel? (See Figlie) Perhaps a better question is this: Given
a curvea on the surface and a vector fiexddefined alongx, should we sayX is parallel if it has zero
derivative alongx?

We already know how an inhabitant differentiates a scalaction f: M — R, by considering the
directional derivativeDy f for any tangent vectov € Tp M. We now begin with a

Definition. We say a functiorX: M — R3 is avector fieldon M if
(1) X(P) € Tp M foreveryP € M, and
(2) for any parametrizatior: U — M , the functionXex: U — R3 is (continuously) differentiable.

Now, we can differentiate a vector fieklon M in the customary fashion: ¥ € Tp M, we choose a
curvea with «(0) = P anda’(0) = V and setDyX = (Xea)’(0). (As usual, the chain rule tells us this is
well-defined.) But the inhabitant of the surface can onlytbeé portion of this vector lying in the tangent
plane. This brings us to the

Definition. Given a vector fielX andV € Tp M, we define theovariant derivative
VX = (DyX)I = the projection ofby X onto 7p M
= DyX — (DyX-n)n.
Given a curvex in M, we say the vector fielX is covariant constanor parallel alonge if Vo ()X = 0

for all . (This means thaDy )X = (Xea)' () is a multiple of the normal vectar(a(t)).)

Example 1. Let M be a sphere and let be a great circle inM. The derivative of the unit tangent
vector ofa points towards the center of the circle, which is in this dhsecenter of the sphere, and thus is
completely normal to the sphere. Therefore, the unit tangector field ofe is parallel alongx. Observe
that the constant vector fiel@, 0, 1) is parallel along the equatar = 0 of a sphere centered at the origin.
Is this true of any other constant vector field?v

Example 2. A fundamental example requires that we revisit the Christsfymbols. Given a parametrized
surfacex: U — M, we have

quxu = (qu)” = Fuuuxu + Ful;lxv

vxvxu = (Xuv)” = Fuuvxu + Fuvvxv = quxm and
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Vi, Xp = (va)” = TyyXu + TyypXp.  V
The first result we prove is the following

Proposition 4.1. Let I be an interval iR with0 € I. Given a curvar: I — M with «(0) = P and
Xo € Tp M, there is a unique parallel vector fielddefined alonge with X(P) = X,.

Proof. Assuminge lies in a parametrized portior: U — M, seta(r) = Xx(u(z),v(t)) and write
X(a(t)) = a(®)xy (u(t),v(t)) + b(t)xy(u(t),v(t)). Thena'(r) = u'(t)x, + v'(¢)%, (Where the the cum-
bersome argumertt:(¢), v(¢)) is understood). So, by the product rule and chain rule, we hav

VX = (X' (1) = (%(a(z)xu (1), v(0)) + b(1)xw (0), v(z))))”
a
dt
= @/ (0% + b (0% + a(t) (' (¥ + 0 (%) + B (0 ()Xo + V' (O)Xo)!
= a'(0% + b'(O% + a ) (@ (T + Do) + ' (O % + Do)

+ b0 (@ (O + %) + ' (O Jgxu + Tx))
= (d'() + a@) Ty () + Do’ () + DO (1) + Tfyv'(1)x

+ (' (1) + a(e) (T2 (t) + T2 0" (1) + b()(T2u' (t) + T 50" (1)) Xy

I I
=a' ()% + b'(1)Xy + a(r) ( Xu (u(2), v(z))) + b(t) (%xv(u(z), v(t)))

Thus, to sayX is parallel along the curve is to say thau(z) andb(z) are solutions of the linear system of
first order differential equations

a'(t) +a@)(Tpu' () + T v () + b)) (T hu'(t) + T v’ () =0

&
&) b'(t) + a(e)(T,2u' (1) + T, (2)) + b@)(Tou' (1) + T v (1) = 0.

By Theorem 3.2 of the Appendix, this system has a uniqueisolwn / once we specify:(0) andb(0),
and hence we obtain a unique parallel vector fi¢bdith X(P) = Xo. O

Definition. If e is a path fromP to Q, we refer taX(Q) as theparallel translateof X(P) = Xo € Tp M
alonge, or the result oparallel translationalonge.

Remark. The system of differential equationd) that defines parallel translation shows that it is “in-
trinsic,” i.e., depends only on the first fundamental form\éf despite our original extrinsic definition. In
particular, parallel translation in locally isometric fages will be identical.

Example 3. Fix a latitude circla: = ugy (o # 0, ) on the unit sphere (see Example 1(d) on p. 37) and
let's calculate the effect of parallel-translating theteed(, = x, starting at the poinf given byu = uy,
v = 0, once around the circle, counterclockwise. We paramethigecurve byu(t) = ug, v(t) = t,
0 <t < 2m. Using our computation of the Christoffel symbols of theesghin Example 1 or 2 of Section
3, we obtain from &) the differential equations

a’(t) = sinug cosugh(t), a(0)=0
b'(t) = — cotugal(t), b(0) = 1.



§4. COVARIANT DIFFERENTIATION, PARALLEL TRANSLATION, AND GEODESICS 69
We solve this system by differentiating the second equatgain and substituting the first:
b"(t) = —cotuga’(t) = —coS uph(1), b(0) = 1.

Recalling that every solution of the differential equatipfi(r) + k2y(t) = 0 is of the formy(r) =
c1co9kt) + casin(kt), c1, ¢ € R, we see that the solution is

a(t) = sinug sin((cosug)z), b(r) = cos((cosuo)t).

Note that||X (e(¢))||> = Ea(t)® +2Fa(t)b(t) + Gb(t)? = sir® u, for all . That is, the original vectoX
rotates as we parallel translate it around the latituddegiend its length is preserved. As we see in Figure
4.2, the vector rotates clockwise as we proceed around titiedia circle (in the upper hemisphere). But

FIGURE 4.2

this makes sense: If we just take the covariant derivativi®fvector field tangent to the circle, it points
upwards (cf. Figure 3.1), so the vector field must rotatelslase to counteract that effect in order to remain
parallel. Sinceb(27) = co92m cosug), we see that the vector turns through an angle®t cosugy. V

Example 4(Foucault pendulum) Foucault observed in 1851 that the swing plane of a pendwgated
on the latitude circle: = u( precesses with a period @f = 24/ cosuy hours. We can use the result of
Example 3 to explain this. We imagine the earth as fixed aaahsport” the swinging pendulum once around
the circle in24 hours. If we make the pendulum very long and the swing rathertsthe motion will be
“essentially” tangential to the surface of the earth. If wevm slowly around the circle, the forces will be
“essentially” normal to the sphere: In particular, lettiRgdenote the radius of the earth (approximately
3960 mi), the tangential component of the centripetal @&aébn is (cf. Figure 3.1)

. 27\? 272R
R sin cos — <
(R sinug) cosug ( ) =g

o ~ 135.7 mi/hr? ~ 0.0553 ft/sec ~ 0.17%g.

Thus, the “swing vector field” is, for all practical purposgarallel along the curve. Therefore, it turns
2

through an angle d@rz cosug in one trip around the circle, so it takes hours to

(27 cosug)/24 - COSu
return to its original swing plane. V

Our experience in Example 3 suggests the following
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Proposition 4.2. Parallel translation preserves lengths and angles. ThaKsandY are parallel vector
fields along a curve from P to Q, then||X(P)|| = | X(Q)|| and the angle betweéf( P) andY (P) equals
the angle betweeX(Q) andY (Q) (assuming these are nonzero vectors).

Proof. Considerf(t) = X(a(z)) - Y(«(z)). Then
@) = Kea)'(t) - (Yoa)(t) + (Xoa)(t) - (Yoa)' (1)
=Dy)X-Y + XDy )Y E_-l——) Vae)X Y +X-Ven)Y _L_Z__) 0.

Note that equality (1) holds becauXeandY are tangent td4 and hence their dot product with any vector
normal to the surface & Equality (2) holds becausé€ andY are assumed parallel along It follows that
the dot producX - Y remains constant alorg. TakingY = X, we infer that||X|| (and similarly||Y|) is
constant. Knowing that, using the famous formula&aes X - Y /| X]||Y| for the angled betweenX and
Y, we infer that the angle remains constantl

Now we change gears somewhat. We saw in Exercise 1.1.8 #hahtirtest path joining two points
in R3 is a line segment and in Exercise 1.3.1 that the shortestjpiating two points on the unit sphere
is a great circle. One characterization of the line segn®tiidt it never changes direction, so that its unit
tangent vector is parallel (so no distance is wasted byrgjni{\What about the sphere?) It seems plausible
that the mythical inhabitant of our general surfademight try to travel from one point to another M,
staying inM, by similarly not turning; that is, so that his unit tangepttor field is parallel along his path.
Physically, this means that if he travels at constant spg®dacceleration should be normal to the surface.
This leads us to the following

Definition. We say a parametrized cureein a surfaceM is ageodesidf its tangent vector is parallel
along the curve, i.e., Vg a' = 0.

Recall that since parallel translation preserves lengthsiyust have constant speed, although it may not
be arclength-parametrized. In general, we refer to an anpetrized curve as a geodesic if its arclength
parametrization is in fact a geodesic.

In general, given any arclength-parametrized cwMging on M, we defined its normal curvature at
the end of Section 2. Instead of using the Frenet frame, iafgral to consider th®arboux framefor o,
which takes into account the fact thatlies on the surfacd/. (Both are illustrated in Figure 4.3.) We take

TheFrene and Darboux frame:

FIGURE 4.3

the right-handed orthonormal bagig, n x T, n}; note that the first two vectors give a basis fgrM. We
can decompose the curvature vector

kN = (kN-(nxT))(nxT)+ (kN-n)n.
N e’ —

Kg ken
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As we saw beforex, gives thenormal component of the curvature vectar; gives thetangentialcom-
ponent of the curvature vector and is called ge®desic curvatureThis terminology arises from the fact
thata is a geodesic if and only if its geodesic curvature vanistf@ghenx = 0, the principal normal is
not defined, and we really should wrig€ in the place ofcN. If the acceleration vanishes at a point, then
certainly its normal and tangential components are Bgth

Example 5. We saw in Example 1 that every great circle on a sphere is aegandAre there others?
Leta be a geodesic on a sphere centered at the origin. 8inee0, the acceleration vectar”’ (s) must be
a multiple ofec(s) for everys, and sox” x & = 0. Thereforea’ x & = A is a constant vector, splies in
the plane passing through the origin with normal ve&oiThat is,« is a great circle. V

Remark. We saw in Example 3 that a vector rotates clockwise at a consdte as we parallel translate
along the latitude circle of the sphere. If we think aboutuh# tangent vectol moving counterclockwise
along this curve, its covariant derivative along the curgas up the sphere, as shown in Figure 4.4, i.e.,
“to the left.” Thus, we must compensate by steering “to tightfiin order to have no net turning (i.e., to

FIGURE4.4

make the covariant derivative zero). Of course, this makasesalso because, according to Example 5, the
geodesic that passes throughn the same direction heads “downhill,” to the right.

Using the equations¥), let's now give the equations for the cur€&) = x(u(z), v(z)) to be a geodesic.
SinceX = a/(t) = u/'(t)X, + v'(t)Xy, we havea(t) = u/(r) andb(t) = v’(¢), and the resulting equations
are

w”(t) + T2 ()% + 205 (' (1) + T2V ()2 =0

(‘*) " V2 v,/ / v 0\2
v(t) + Iu ()" + 20, ,u ()v' () + Ty,v' ()" =0.

The following result is a consequence of basic results derdifitial equations (see Theorem 3.1 of the
Appendix).

Proposition 4.3. Given a pointP € M andV € Tp M,V # 0, there exist > 0 and auniquegeodesic
a:(—¢,&) > M witha(0) = P ande’(0) = V.

Example 6. We now use the equationdd) to solve for geodesics analytically in a few examples.
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(a) Letx(u,v) = (u,v) be the obvious parametrization of the plane. Then all thes@iifel symbols
vanish and the geodesics are the solutions of

u'(t) =v"@1) =0,

so we get the linea(r) = (u(t),v(t)) = (a1t + b1,axt + by), as expected. Note thatdoes in
fact have constant speed.

(b) Using the standard spherical coordinate paramemwizatf the sphere, we obtain (see Example 1 or
2 of Section 3) the equations

(%) u(t) — sinu(t) cosu(t)v'(t)? = 0 = v (¢) + 2 cotu(t)u’ (t)v'(¢).

Well, one obvious set of solutions is to takér) = ¢, v(t) = vo (and these, indeed, give the
great circles through the north pole). Integrating the sdaogquation in £) we obtain Inv/(r) =
—2Insinu(¢) + const, so

, . C
YO = o

for some constant. Substituting this in the first equation ir)(we find that

yo  coosu(t)
O SEen

multiplying both sides by/(¢) (the “energy trick” from physics) and integrating, we get

/ 2 2 C2 / _ 2 62
u@) =C S’ and so u(z)_ﬂ:JC 7Sin2u(t)

for some constant’. Switching to Leibniz notation for obvious reasons, we obta

dv _v) _ coscu ;  thus, separating variables gives
du  u'(t) CZ=c2cs@u’ '

c csC udu ccs@ udu
dv ==+

=+ )
VC2 —c2cs@u V(C2 —c2) —c2cou
Now we make the substitutioncotu = +/C2 — ¢2 sinw; then we have

do — + ccs@udu — ~dw
V(C2 —c2) —c2colu ’

and so, at long last, we hawe = +v + a for some constant. Thus,

ccotu = VC2 —c2sinw = vC? —¢2sin(+v 4+ a) = v C? — ¢2(sina cosv + cosa sinv),
and so, finally, we have the equation
ccosu + vC? — c¢2sinu(Acosv + B sinv) =0,

which we should recognize as the equation of a great cirtlerd’s a hint: This curve lies on the
planev/C2 — ¢2(Ax + By) + cz = 0.) \Y

We can now give a beautiful geometric description of the gemd on a surface of revolution.
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Proposition 4.4 (Clairaut’s relation) The geodesics on a surface of revolution satisfy the equatio
(<) r COS¢ = const

wherer is the distance from the axis of revolution afids the angle between the geodesic and the parallel.
Conversely, any (constant speed) curve satisfifrigthat isnot a parallel is a geodesic.

Proof. For the surface of revolution parametrized as in ExampleSeation 2, we havé = 1, F = 0,
G=fw?*T2=Tp2 =fw/fu, % =—f(u)f'(u),and all other Christoffel symbols abe(see
Exercise 2.3.2d.). Then the syste#&) of differential equations becomes

(1) W~ fFI? =0
(t2) o %uv _o.

Rewriting the equationff) and integrating, we obtain

V() 2f @)’ (@)

V() Su(@))
Inv'(r) = —2In f(u(r)) + const
V() = ———
T f(@)?

so along a geodesic the quantiffu)?v’ = Gv’ is constant. We recognize this as the dot product of the
tangent vector of our geodesic with the vectgr and so we infer thax, || cos¢ = r cos¢ is constant.
(Recall that, by Proposition 4.2, the tangent vector of thedgsic has constant length.)

To this point we have seen that the equatidy) (s equivalent to the conditioncos¢ = const, provided
we assuméla’||? = u’? + Gv'? is constant as well. But if

u' (1) + Gv'(1)? = u'(1)* + f(u(t))*v'(t)* = const

we differentiate and obtain

' (" (0) + f @) (" () + fu@) f @) @' )* = 0;

substituting fory” (¢) using (,), we find

W () (" (1) = @) f' D) (0)?) = 0.

In other words,provided u’(r) # 0, a constant-speed curve satisfying ) satisfies ;) as well. (See
Exercise 6 for the case of the parallelsI

Remark. We can give a simple physical interpretation of Clairauggtion. Imagine a particle with
massl constrained to move along a surface. If no external forceseting, then the particle moves along
a geodesic and, moreover, angular momentum is conservedude there are no torques). In the case
of our surface of revolution, the vertical component of thgwar momentunk. = & x «’ is—surprise,
surprisel—f 2v’, which we've shown is constant. Perhaps some forces noorthketsurface are required
to keep the patrticle on the surface; then the particle sol@s along a geodesic (why?). Moreover, since
(e xn)-(0,0,1) = 0, the resulting torquestill have no vertical component.
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Returning to our original motivation for geodesics, we namsider the following scenario. Choose
P € M arbitrary and a geodesje through P, and draw a curvé&’, through P orthogonal toy. We now
choose a parametrizatiotiu, v) so thatx(0,0) = P, theu-curves are geodesics orthogonaldg and the
v-curves are the orthogonal trajectories of theurves, as pictured in Figure 4.5. (It follows from Theorem

FIGURE 4.5

3.3 of the Appendix that we can do this on some neighborhoa®l. pf
In this parametrization we havé = 0 andE = E(u) (see Exercise 13). Now, éf(r) = x(u(z), v(z)),
a <t < b,is any path fromP = x(0,0) to O = X(up,0), we have

b b
length(er) :/ \/E(u(t))u’(l)z + Gu(r),v())v'(t)2dt z/ VE@u@®))'(t)|dt
> /uo v EW)du,
0

which is the length of the geodesic ardrom P to Q. Thus, we have deduced the following.

Proposition 4.5. For any pointQ ony contained in this parametrization, any path frénto Q con-
tained in this parametrizatiois at least as long as the length of the geodesic segment. ddboguially,
geodesics anecally distance-minimizing.

Example 7. Why is Proposition 4.5 a local statement? Well, considereatgcircle on a sphere, as
shown in Figure 4.6. If we go more than halfway around, we olisfy have not taken the shortest path.

\%
short

FIGURE 4.6

Remark. It turns out that any surface can be endowed withedric (or distance measujdy defining
the distance between any two points to be the infimum (usub#yminimum) of the lengths of all piecewise-
! paths joining them. (Although the distance measure is miffefrom the Euclidean distance as the
surface sits ilR3, the topology—notion of “neighborhood’—induced by thistnestructure is the induced
topology that the surface inherits as a subspad’of It is a consequence of the Hopf-Rinow Theorem (see
M. doCarmo,Differential Geometry of Curves and Surfac@sentice Hall, 1976, p. 333, or M. Spivak,
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Comprehensive Introduction to Differential Geomethjrd edition, volume 1, Publish or Perish, Inc., 1999,
p. 342) that in a surface in which every parametrized geodgsiefined for all time (a “complete” surface),
every two points are in fact joined by a geodesic of leasttlenghe proof of this result is quite tantalizing:
To find the shortest path frorR to Q, one walks around the “geodesic circle” of points a smallatise
from P and finds the poink on it closest toQ; one then proves that the unique geodesic emanating from
P that passes througR must eventually pass through, and there can be no shorter path.

We referred earlier to two surfacd$ andM * as being globally isometric (e.g., in Example 6 in Section
1). We can now give the official definition: There should berction /: M — M* that establishes a one-
to-one correspondence and preserves distance—foPa@y € M, the distance betweeR and Q in M
should be equal to the distance betwegdP) and f(Q) in M*.

EXERCISES 2.4

1. Determine the result of parallel translating the ve¢ton, 1) once around the circle? 4+ y? = a?,
z = 0, on the right circular cylindex? + y? = a2.

2. Provethak? = k7 +kp.

3. Supposex is a non-arclength-parametrized curve. Using the formulg on p. 14, prove that the
velocity vector ofe is parallel alongy if and only ifkg = 0 andv’ = 0.

*4. Find the geodesic curvaturg of a latitude circlex = uo on the unit sphere (see Example 1(d) on
p. 37)

a. directly

b. by applying the result of Exercise 2

5. Consider the right circular cone with vertex anggeparametrized by
X(u,v) = (utang cosv,utang sinv,u), 0<u <ug, 0 <v <2m.

Find the geodesic curvatukg of the circlex = uo by using trigonometric considerations. Check that
your answer agrees with the curvature of the circle you gairiyglling the cone to form a “pacman”
figure, as shown on the left in Figure 4.7. (For a proof thas¢heurvatures should agree, see Exercise
2.1.10 and Exercise 3.1.7.)

6. Check that the parallel = uq is a geodesic on the surface of revolution parametrized Bsaposition
4.4 if and only if //(ug) = 0. Give a geometric interpretation of and explanation fos tieisult.

7. Use the equationsh), as in Example 3, to determine through what angle a vectoistwhen it is
parallel-translated once around the cirgle= uo on the conex(u, v) = (u cosv, u sinv, cu), ¢ # 0.
(See Exercise 2.3.2c.)

8. a. Prove thatif the surfacdg and M * are tangent along the cureg, parallel translation along is
the same in both surfaces.
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b. Use the result of part a to determine the effect of parabeislation around the latitude cirale=

uo on the unit sphere (once again, see Example 1(d) on p. 3rig osly geometry, trigonometry,
and Figure 4.7. (Note the Remark on p. 68.)

FIGURE 4.7

*9.  What curves lying on a sphere have constant geodesiatus?

10. Use the equationskg) to find the geodesics on parametrized surfage v) = (e cosv, e* sinv, 0).
(Hint: Aim for dv/du. Use the second equation &) and the fact that geodesics must have constant
speed.)

11.

Use the equationgké) to find the geodesics on the plane parametrized by poladowies. (Hint:
Examine Example 6(b).)

12. Prove or give a counterexample:

a. A curve is both an asymptotic curve and a geodesic if angdibitlis a line.

b. If acurve is both a geodesic and a line of curvature, thewit be planar.
#13. a. Suppos# = 0 and theu-curves are geodesics. Use the equatid)(to prove thatE is a
function ofu only.
b. Supposeg” = 0 and theu- andv-curves are geodesics. Prove that the surface is flat.
14. Supposd&’ = 0 and theu-curves are geodesics. Prove that the length otitearve fromu = ug to
u = u is independent of. (See Figure 4.8.)
u=u
U =1uy
FIGURE 4.8
15. a. Prove that an arclength-parametrized carea a surfacel with ¥ # 0 is a geodesic if and only
if n = +N.
b. Leta be a space curve, and I&f be the ruled surface generated by its binormals. Proveltleat t
curve is a geodesic oM .
16.

a. Suppose a geodesic is planar and«has 0 at P. Prove that its tangent vector & must be a
principal direction. (Hint: Use Exercise 15.)
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b. Prove that if every geodesic of a (connected) surfaceaisgp) then the surface is contained in a
plane or a sphere.

17. Show that the geodesic curvaturePapf a curveC in M is equal (in absolute value) to the curvature at
P of the projection ofC into Tp M .

*18. Use Clairaut’s relation, Proposition 4.4, to analyhe geodesics on each of the surfaces pictured in
Figure 4.9. In particular, other than the meridians, in ezage which geodesics are unbounded (i.e., go
off to infinity)?

() (b)

FIGURE 4.9

19. Check using Clairaut’s relation, Proposition 4.4, tiraat circles are geodesics on a sphere. (Hint: The
result of Exercise A.1.3 may be useful.)

20. LetM be a surface an® € M. We sayU,V € Tp M areconjugateif Il p(U,V) = 0.

a. LetC C M be a curve (with the property that its tangent vector is nayenincipal direction with
principal curvature). Define theenvelopeM * of the tangent planes # alongC to be the ruled
surface whose generator Bte C is the limiting position ag) — P of the intersection line of the
tangent planes td/ at P and Q. Prove that the generator &tis conjugate to the tangent line to
CatP.

b. Prove thatiiC is nowhere tangent to an asymptotic direction, thehis smooth (at least neér).
Prove, moreover, that/ * is tangent taVf alongC and is a developable (flat ruled) surface.

c. Apply part b to give a geometric way of computing paraltehslation. In particular, do this for a
latitude circle on the sphere. (Cf. Exercise 8.)

21. Suppose that on a surfakethe parallel translation of a vector from one point to anothindependent
of the path chosen. Prove tha must be flat. (Hint: Fix an orthonormal bas, € for 7p M and
define vector field®;, e, by parallel translating. Choose coordinates so thawuticerves are always
tangent toe; and thev-curves are always tangentdg. See Exercise 13.)

22. Use the Clairaut relation, Proposition 4.4, to desctit®geodesics on the torus as parametrized in
Example 1(c) of Section 1. (Start with a geodesic startingrat making anglep, with the outer
parallel. Your description should distinguish betweendases) < cos¢g < er’; and cospy > %.
Which geodesics never cross the outer parallel at all? Aésoember that through each point there is a

uniquegeodesic in each direction.)
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23. Use the proof of the Clairaut relation, Proposition 4o4show that a unit-speed geodesic on a surface
of revolution is given in terms of the standard parametigzain Example 9 of Section 2 by

+ const

v = c/ du
) rw VT =c2

Now deduce that in the case of a non-arclength parametizaté obtain

_ [ VW) + g w)?

v=-c du + const

F@)V fu)? —c?

*24. Use Exercise 23 to give equations of the geodesics opdbedosphere (see Example 8 of Section 2).
Deduce, in particular, that the only geodesics that are umihed are the meridians.

25. Use Exercise 23 to show that any geodesic on the pardoolet x2 + y? that is not a meridian
intersects every meridian. (Hint: Show that it cannot apphoa meridian asymptotically.)

26. LetM be the hyperboloid? 4+ y2 — z2 = 1, and letC be the circlex? + y2 =1,z = 0.
a. Use Clairaut's relation, Proposition 4.4, to show thathwhe exception of the circl€, every
geodesic on is unbounded.
b. Show that there are geodesics that approach the €iregymptotically. (Hint: Use Exercise 23.)

27. LetC be a parallel (witht = uyg) in a surface of revolutiordf. Suppose a geodesjcapproache”

asymptotically.

a. Use Clairaut’s relation, Proposition 4.4, to show thanust approach “from above” (i.e., with
r>ro = f(uo)).

b. Use Exercise 23 to show th@t must itself be a geodesic. (Hint: Consider the Taylor exjgsns
f@) = f(uo) + f/(uo)(u —uo) + 5 " (o) (u —uo)* + ....)

c. Give an alternative argument for the result of part b bygishe fact that the metric discussed in
the Remark on p. 74 is a continuous function of the pair of {goityou will also need to use the
fact that when points are sufficiently close, there is a unisjuortest geodesic joining them.

28. Consider the surface= f(u,v). A curvea whose tangent vector at each poit= (u, v, f(u,v))
projects to a scalar multiple &f f(u, v) is a curve of steepest ascent (why?). Suppose such aeurve
is also a geodesic.

a. Prove that the projection af into theuv-plane is, suitably reparametrized, a geodesic irutie
plane. (Hint: What is the projection af’?)

b. Deduce that is also a line of curvature. (Hint: See Exercise 16 whda not a line. The case of
a line can be deduced from the computation in part c.)

c. Show that if all the curves of steepest ascent are geagléken / satisfies the partial differential
equation fy, fo(fov — fuu) + fuv(f,2 — f2) = 0. (Hint: When are the integral curves §ff
lines?)

d. Show that if all the curves of steepest ascent are geajlékilevel curves of are parallel (see
Exercise 1.2.24). (Hint: Show thi¥ 1’| is constant along level curves.)

e. Give a characterization of the surfaces with the proptivay all curves of steepest ascent are
geodesics.



CHAPTER 3

Surfaces: Further Topics

The first section is required reading, but the remainingi@estof this chapter are independent of one
another.

1. Holonomy and the Gauss-Bonnet Theorem

Let's now pursue the discussion of parallel translation W began in Chapter 2. Léff be a surface
anda a closed curve inM. We begin by fixing a smoothly-varying orthonormal basjse, (a so-called
framing) for the tangent planes @i in an open set oM containinge, as shown in Figure 1.1 below. Now

FIGURE1.1

we make the following

Definition. Leta be aclosedcurve in a surfac@f. The angle through which a vector tunedative to
the given framingis we parallel translate it once around the cuis called theholonomy arounde.

For example, if we take a framing arouady using the unit tangent vectorsdaas our vectorgy, then, by
the definition of a geodesic, there there will be zero holopanound a closed geodesic (why?). For another
example, if we use the framing on (most of) the sphere givethbytangents to the lines of longitude and
lines of latitude, the computation in Example 3 of Sectiorf €lbapter 2 shows that the holonomy around a
latitude circleu = ug of the unit sphere is-27 cosuy.

To make this more precise, for ease of understanding, |et& w an orthogonal parametrizatiband

define a framing by setting
Xy Xy

vE VG’
Since (much as in the case of curves)ande, give an orthonormal basis for the tangent space of our
surface at each point, all the intrinsic curvature inforiorat(such as given by the Christoffel symbols)

e =

and e =

Lfrom holo-+-nomy the study of the whole

2As usual, away from umbilic points, we can apply Theorem 3tB®Appendix to obtain a parametrization wherethand
v-curves are lines of curvature.

79
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is encapsulated in knowing hoej twists towardse, as we move around the surface. In particular, if
a(t) = X(u(),v(t)),a <t < b,is a parametrized curve, we can set

d
P12(t) = 5(61(140)»1)(1))) e (u(t), v(t)).

which we may write more casually @(¢) - e (¢), with the understanding that everything must be done in
terms of the parametrization. We emphasize fhatdepends in an essential way on fegametrizedccurve
a. Perhaps it’s better, then, to write

$12 = Vo€ - 6.
Note, moreover, that the proof of Proposition 4.2 of Chaptanows thaVy e;-e; = —¢12 andVye;-e =
Vw € - € = 0. (Why?)

Remark. Although the notation seems cumbersome, it reminds uspthais measuring hove; twists
towardse, as we move along the curee This notation will fit in a more general context in Section 3.

Let's now derive an explicit formula for the functiah ,.

Proposition 1.1. In an orthogonal parametrization with = x,/~E ande; = x,/+~/G, we have

1
P12 = 2\/ﬁ(—Evu’ + Gyv').

Proof. The key point is to take full advantage of the orthogonality,pandx,,.

b1z = d [ Xy Xo
2= N NG
1
= (quu, + Xuvvl) * Xy

VEG

(since the term that would arise from differentiatinge will involve Xy, - X, = 0)

1
- 2JEG

(—Eu’ 4+ Gyuv'),
by the formulas®) on p. 58. O

Suppose now that is aclosedcurve and we are interested in the holonomy arotndf e; happens
to be parallel along, then the holonomy will, of course, lie If not, let's consideiX(¢) to be the parallel
translation ofe; alonge (r) and writeX(t) = cosy (¢)e; + siny (¢)e;, takingy (0) = 0. ThenX is parallel
alonge if and only if

0= Vg X = Vy/(cosye + sinyey)
= coSY Vy€1 + Siny Vg€ + (—Sinye; + cosye)y’
= COSY¢12€ — SiNY 1261 + (—sinye, + cosye)y’
= (¢12 + ¥')(=sinye; + cosye).

Thus, X is parallel alongx if and only if y/(1) = —¢12 (7). We therefore conclude:

b
Proposition 1.2. The holonomy around the closed culeequalsAy = — / d12(t)dt.
a
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Remark. Note that the angle/ is measured frone; in the direction ofe,. Whether the vector turns
counterclockwise or clockwise from our external viewpalepends on the orientation of the framing.

Example 1. Back to our example of the latitude circle= uo on the unit sphere. Thesy = x,, and
e = (1/sinu)x,. If we parametrize the curve by taking= ¢, 0 < ¢ < 2=, then we have (see Example 1
of Chapter 2, Section 3)

Vo€ = VaXu = (Xup)! = cotugx, = cosupe,,

and sog1, = cosug. Therefore, the holonomy around the latitude circle (dedncounterclockwise) is
2

Ay = — cosugdt = —2m coSug, confirming our previous results.

Note t%at if we wish to parametrize the curve by arclengthwdkbe important shortly), we take
s = (sinug)v, 0 < s < 27 sinug. Then, with respect to this parametrization, we hayg(s) = cotuy.
(Why?)

For completeness, we can use Proposition 1.1 to calcglgteas well: WithE = 1, G = sin? u,

. . 1
u = ug, andv(s) = s/ sinug, we havep;, = (2SInu0 COSug - o ) = cotug, as before. V

2sinug Ug

Suppose now that is an arclength-parametrized curve and let’s waife) = x(u(s), v(s)) andT (s) =
a'(s) = cosh(s)e; +sinf(s)es, s € [0, L], for a@! functiond(s) (cf. Lemma 3.6 of Chapter 1), as indicated
in Figure 1.2. A formula fundamental for the rest of our waskhe following:

FIGURE 1.2

Proposition 1.3. Whene is an arclength-parametrized curve, the geodesic cuevalisr is given by

kg (s) = ¢p12(s) + 6'(s) =

2\/1E_G(_EUM/(S) + Guv/(s)) +6'(s).
Proof. Recall thatcg = kN-(nx T) = T’ - (n x T). Now, sinceT = cosfe; + sinfe,, n x T =
—sinfe; + cosfe, (why?), and so
kg = V1T - (—sinfe; + cosbe,)
= Vr(cosfe; + sinfey) - (—sinfe; + cosbey)
= (cosfVre; + sinfVrey) - (—sinbe; + cosfe;) + ((—sind)’(—sind) + (cosd)b’(cosh))
= (COS 6 + Si? 0) (12 + 0') = ¢12 + 6,

as required. Now the result follows by applying Propositloh whene is arclength-parametrized.[d
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Remark. The first equality in Proposition 1.3 should not be surpgsim the least. Curvature of a
plane curve measures the rate at which its unit tangent vaatos relative to a fixed reference direction.
Similarly, the geodesic curvature of a curve in a surfacesmess the rate at which its unit tangent vector
turns relative to a parallel vector field along the cufemeasures its turning relative &, which is itself
turning at a rate given by,, so the geodesic curvature is the sum of those two rates.

Now suppose that is aclosedcurve bounding a regioR C M. We denote the boundary & by dR.
Then by Green’s Theorem (see Theorem 2.6 of the Appendixhave

L L 1 ) . 1
/0 P12(s)ds = /0 2\/ﬁ(—Evu (s) + Gyv (s))ds = /BR 2\/ﬁ(—Evdu + Gudv)

//( Nﬁ (ng_G) )dudv
) )Jﬁdudu

(t)

://Rzﬁ( M)+(W

—/ KdA
R

by the formula §) for Gaussian curvature on p. 60. (Recall from the end ofi®edt of Chapter 2 that the
element of surface area on a parametrized surface is givéd by || x, x Xy ||dudv = VEG — F2dudv.)
We now see that Gaussian curvature and holonomy are intynatated:

Corollary 1.4. WhenR is a region with smooth boundary and lying in an orthogonahpeetrization,
the holonomy aroundR is Ay = [[ KdA.

Proof. This follows immediately from Proposition 1.2 and the foten(i) above. O

We conclude further from Proposition 1.3 that

/ Kgds = / ¢12d§ + H(L) - 9(0),

aR aR —_—
A

so the total angle through which the tangent vectatRdurns is given by

A9:/ Kgds+/ KdA.
OR R

Now, whenR is simply connected (i.e., can be continuously deformed poiat), it is not too surprising
that A@ = 2x. Intuitively, as we shrink the curve to a poim, becomes almost constant along the curve,
but the tangent vector must make one full rotation (as a cuesece of the Hopf Umlaufsatz, Theorem 3.5
of Chapter 1). Sincé\d is an integral multiple ox that varies continuously as we deform the curve, it
must stay equal t@sr throughout.

Corollary 1.5. If R is a simply connected region lying in an orthogonal parairegipn and whose
boundary curve is a geodesic, thfg KdA = A9 = 2.

Example 2. We takeRr to be the upper hemisphere and use the usual spherical catasliparametriza-
tion. Then the unit tangent vector alodg is e, everywhere, sd\d = 0, in contradiction with Corollary
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1.5. Alternatively,C = 0R is a geodesic, so there should be zero holonomy ar@urfdomputed with
respect to this framing).

How do we resolve this paradox? Well, although we've beepsiaabout this point, the spherical
coordinates parametrization actually fails at the nortte gsincex,, = 0). Indeed, there is no framing of
the upper hemisphere witly everywhere tangent to the equator. However, the readeresaiassured that
thereis some orthogonal parametrization of the upper hemisphege, |y stereographic projection from
the south pole (cf. Example 1(e) in Section 1 of Chapter 2).

Remark. In more advanced courses, the holonomy around the closed eus interpreted as a rota-
tion of the tangent plane o at«(0). That is, what matters iay (mod2x), i.e., the change in angle
disregarding multiples dfz. This quantity does not depend on the choice of franeing,.

We now set to work on one of the crowning results of surfacerthe

Theorem 1.6(Local Gauss-Bonnet)SupposeR is a simply connected region with piecewise smooth
boundary and lying in an orthogonal parametrizatiorC & dR has exterior angles;, j = 1,...,¢, then
14

/ Kgds+// KdA+) e =2m.
OR R

J=1

FIGURE 1.3

Note, as we indicate in Figure 1.3, that we measure extenigiea so thafe;| < = for all ;.

Proof. If dR is smooth, then from our earlier discussion we infer that

/ Kgds—i—// KdA = AO =27
OR R

But whenodR has corners, the unit tangent vector tulessby the amounEf=1 €;, SO the result follows.
(Technically, what we need is the correction of the Hopf Widatz when the curve has corners. See
Exercise 1.3.13.) O

Corollary 1.7. For a geodesic triangle (i.e., a region whose boundary stief three geodesic seg-
ments)R with interior angles, t», t3, we have/]R KdA = (11 + 12 +13) — 7, theangle excess

Proof. Since the boundary consists of geodesic segments, thegiecdevature integral drops out, and

we are left with
3 3 3
// KdAZZT[—ZGj :2n—2(n—tj):ZLj—n,
R j=1 Jj=1 j=1

as required. O
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Remark. It is worthwhile to consider the three special cages= 0, K = 1, K = —1, as pictured in
Figure 1.4. WhenV! is flat, the sum of the angles of a trianglenris as in the Euclidean case. Whah
YN
N
K=0 K=1 K=-1
FIGURE 1.4

is positively curved, it takes more thanfor the triangle to close up, and whed is negatively curved, it
takes less. Intuitively, this is because geodesics seetmoww Hut” whenkK > 0 and “bow in” whenkK < 0
(cf. Exercise 3.2.17).

Example 3. Let's consider Theorem 1.6 in the case of a spherical cagh@srsin Figure 1.5. Using
the usual spherical coordinates parametrization, we bave: < uy. By Proposition 1.3 and Example 1,

Lo
—_

FIGURE 1.5

sinced = n/2 along thev-curve, we have, = ¢12(s) = cotuy (cf. also Exercise 2.4.4). Therefore, we

have
// KdA =2n —/ Kgds = 2m (1 — CcOSuy),
R OR

which checks, of course, sindé = 1 and the area of this cap is indeed

2 uo
/ / sinududv = 2 (1 — coSuy). \Y%
o Jo

Remark. Notice that the sign ok, depends on both the orientation @fand the orientation of the
surface. If we rescale the surface by a factorcpthen the integralf,, ¢ ds does not change, as the
arclength changes by a factor ofand the geodesic curvature by a factorlgé. Similarly, the integral
[z KdA does not change when we rescale the surface: Area changedabyon of ¢2 and Gaussian
curvature changes by a factor bfc?2.

We now come to one of the crowning results of modern-day nmadiies, one which has led to much
subsequent research and generalization. We say a sufaceR? is orientedif we have chosen a con-
tinuous unit normal field defined everywhere dfi. We now consider a compact, oriented surface with
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P

FIGURE 1.6

piecewise-smooth boundary, as pictured in Figure 1.6. @6Raoved in 1925 that any such surfal#ecan
m

be triangulated. That is, we may writé = | J A, where
A=1
() A, isthe image of a triangle under an (orientation-presejvinthogonal parametrization;
(i) Ax N AL (A # p)is either empty, a single vertex, or a single edge;
(i) when A, N A, consists of a single edge, the orientations of the edge arestip inA, and
A, and
(iv) at most one edge ok, is contained in the boundary o1 .

We now make a standard

Definition. Given a triangulatiorU” of a surfaceM with V vertices,E edges, and- faces, we define
theEuler characteristicy(M,T) =V — E + F.

Example 4. We can triangulate a disk as shown in Figure 1.7, obtaining 1. Without being so

V-E+F =5-8+4=1 V-E+F = 9-18+10=1

FIGURE 1.7

pedantic as to require that eashj be the image of a triangle under an orthogonal paramewizatve might
just think of the disk as a single triangle with its edges @difdut; then we would have=V — E + F =
3—3+1=1,aswell. We leave it to the reader to triangulate a spherehadk thaty(X,7) =2. V

Remark. It's important to note that by choosing the orientations loa ttriangles” A, compatibly,
we get an orientation on the boundary Mf. That is, a choice ofi on M determines which direction we
proceed ordM. This is precisely the case any time one deals with Greeréoiem (or its generalization
to oriented surfaces, Stokes’s Theorem). Nevertheleiswing up on the Remark on p. 84, the sign.Qf
on oM is independent of the choice of orientation & for, if we changen to —n, the orientation oM
switches anch x T stays the same.

The beautiful result to which we've been headed is how tHewdhg
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Theorem 1.8(Global Gauss-Bonnet)Let M be a compact, oriented surface with piecewise-smooth
boundary, equipped with a triangulatidras above. I€;, k = 1,..., ¢, are the exterior angles 6M , then

L
/ Kgds+// KdA + Zek =2my(M,T).
oM M k=1

Proof. As we illustrate in Figure 1.8, we will distinguish verticen the boundary and in the interior,
denoting the respective total numbersipyandV;. Similarly, we distinguish among edges on the boundary,
edges in the interior, and edges that join a boundary veat@ntinterior vertex; we denote the respective

interior edge

interior/boundary edges

FIGURE 1.8

numbers of these b¥;, E;, andE;,. Now observe that

//M KdA:é//m KdA

since all the orientations are compatible, and

m
Keds = / Kods

because the line integrals over interior and interior/lolaum edges cancel in pairs (recall that changes
sign when we reverse the orientation of the curve). d;et j = 1,2, 3, denote the exterior angles of the
“triangle” A, . Then, applying Theorem 1.6 b, we have

3
/ Kgds+// KdA+Y € =2,
3AA Ay

j=1

and now, summing over the triangles, we obtain

m 3
/ Kgds+// KdA+ > e;; =2wm =2nF.
oM M

A=1j=1
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Now we must do some careful accounting: Lettigg denote the respective interior angles of trianglg,
we have

(%) D= ) (1) =nQEi + Eyp) - 21V;
interior interior
vertices vertices

inasmuch as each interior edge contributes two interidicesy, whereas each interior/boundary edge con-
tributes just one, and the interior angles at each integotex sum t@®z. Next,

L
() Z €) =7rE,-b+Zek.
k=1

boundary
vertices

To see this, we reason as follows. Given a boundary vertelenote by a superscript) the relevant angle
or number for which the vertex is involved. Note first of all that any boundary vertexs contained in
El.(l’)’) + 1 faces. Moreover, for a fixed boundary vertex

Z ®) T, v a smooth boundary vertex
L = .
A : .

/ 7 — €, v acorner ofdM with exterior angles

Thus,

Z € = Z (r =) = Z n(Ei(Z)-l—l)—( Z Ly + Z L,U)

boundary boundary boundary v smooth v corner
vertices verticesv verticesv

L
=nk;p+ Z €k-
k=1

Adding equations%) and ¢x) yields

)2
ZE)U-: Z €r; + Z E)tjzzﬂ(Ei-l-Eib—Vi)-i-Zék.
Aj

interior boundary k=1
vertices vertices

At long last, therefore, our reckoning concludes:

)2
/ Kgds+// KdA—i—Zék:ZJT(F—(Ei-i-Eib)-l-Vi)
oM M k=1

=2n(F — (Ei + Ejp + Ep) + (Vi + Vp)) =22(V — E + F)
=2mx(M,7T).
(Note that because the boundary cudvé is closed, we havé), = E,.) O
We now derive some interesting conclusions:

Corollary 1.9. The Euler characteristig(M,T) does not depend on the triangulatidrof M .

Proof. The left-hand side of the equality in Theorem 1.8 has notlihgtsoever to do with the trian-
gulation. O
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It is therefore legitimate to denote the Euler charactertsy y (M), with no reference to the triangulation.
It is proved in a course in algebraic topology that the Eularacteristic is a “topological invariant”; i.e., if
we deform the surfac@/ in a bijective, continuous manner (so as to obtahbeneomorphisurface), the
Euler characteristic does not change. We therefore deduce:

Corollary 1.10. The quantity

L
/ Kgds+// KdA+) ¢
i M k=1

is a topological invariant, i.e., does not change as we defbe surfacé .

In particular, in the event thatM = @ (so many people refer to the surfake as aclosedsurface), we
have

Corollary 1.11. WhenM is a compact, oriented surface without boundary, we have

//M KdA =2ny(M).

Itis very interesting that thiotal curvaturedoes not change as we deform the surface, for example, agshow
in Figure 1.9. In a topology course, one proves that any cetpaiented surface without boundary must

S

[y KdA = 4n

FIGURE 1.9

have the topological type of a sphere or of-#oled torus for some positive integgr Thus (cf. Exercise
4), the possible Euler characteristics of such a surface,@xe-2, —4, ...; moreover, the integrgl,, Kd A
determines the topological type of the surface.

We conclude this section with a few applications of the Ga&msnet Theorem.

Example 5. SupposeV is a surface of nonpositive Gaussian curvature. Then ttzemeat be a geodesic
2-gon R on M that bounds a simply connected region. For if there were,lBofem 1.6 we would have

02// KdA =2n — (61 + €2) > 0,
R

which is a contradiction. (Note that the exterior angles trbesstrictly less tham because there is a unique
(smooth) geodesic with a given tangent direction.y

Example 6. SupposeV is topologically equivalent to a cylinder and its Gaussiarvature is negative.
Then there is at most one simple closed geodesi#f/in Note, first, as indicated in Figure 1.10, that if
there is a simple closed geodeaiceither it must separat® into two unbounded pieces or else it bounds
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RO

o must be like one of these

FIGURE1.10

a disk R, in which case we would have > ([ KdA = 2xx(R) = 2m, which is a contradiction. On
the other hand, suppose there were two. If they don’t intéréken they bound a cylinde® and we get
0> [[r KdA = 27x(R) = 0, which is a contradiction. If they do intersect, then we weeha geodesic
2-gon bounding a simply connected region, which cannot hapgeExample 5. V

*2.

EXERCISES 3.1

Compute the holonomy around the paralle:= u( (and indicate which direction the rotation occurs
from the viewpoint of an observer away from the surface ddwenxtaxis) on
*a. the torusx(u, v) = ((a + b cosu) cosv, (a + b cosu) sinv, b sinu)

b. the paraboloic(u, v) = (1 cosv,u sinv, u?)

c. the catenoic(u,v) = (coshu cosv, coshu sinv, u)

Determine whether there can be a (smooth) closed gendasi surface when

a K>0
b. K=0
c. K<0

If the closed geodesic can bound a simply connected regieman example.

Calculate the Gaussian curvature of a torus (as paraeetn Example 1(c) of Section 1 of Chapter 2)
and verify Corollary 1.11.

a. Triangulate a cylinder, a sphere, a torus, and a twedhimrus; verify thaty = 0, 2, 0, and—2,
respectively. Pay particular attention to condition fii)tihe definition of triangulation.
b. Prove by induction that g-holed torus hag = 2 — 2g.

SupposeM is a compact, oriented surface without boundary thatosof the topological type of a
sphere. Prove that there are pointsinwhere Gaussian curvature is positive, zero, and negative.

Consider a surface witk > 0 that is topologically a cylinder. Prove that there cannotviee disjoint
simple closed geodesics both going around the neck of tliecsur

Supposé and M * are locally isometric and compatibly oriented. Use Prajpmsil.3 to prove that if
a anda™ are corresponding arclength-parametrized curves, tr@nghodesic curvatures are equal at

corresponding points.
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8.

10.

11.

12.

13.
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Consider the paraboloif parametrized by(u,v) = (ucosv,usinv,u?), 0 < u, 0 < v < 2.
Denote byM, that portion of the paraboloid defined By< u < r.
a. Calculate the geodesic curvature of the boundary cirddecampute / kgds.

M,

b. Calculatey(M,).
c. Use the Gauss-Bonnet Theorem to compplife KdA. Find the limit asr — oo. (This is the

total curvature of the paraboloid.) My
d. CalculateK directly (however you wish) and compu K d A explicitly.

M
e. Explain the relation between the total curvature andrttage of the Gauss map &f.

Consider the pseudosphere (with boundddyparametrized as in Example 8 of Chapter 2, Section 2,
but here we taka > 0. Denote byM, that portion defined b9 < u < r. (Note that we are including
the boundary circlee = 0.)

a. Calculate the geodesic curvature of the citcle: 1y and compute/ kgds. Watch out for the
M,

orientations of the two circles.
b. Calculatey(M,).

c. Use the Gauss-Bonnet Theorem to compflife KdA. Find the limit asr — oo. (This is the
M,
total curvature of the pseudosphere.)

d. Calculate the area a@ff, directly, and use this to deduce the value/ff KdA.

Explain the relation between the total curvature andrttage of the Gauss map of.

®

Give a different version of the accounting to prove Theod.8 as follows.
a. ShowthaBF = 2(E; + E;p) + Ep, and conclude th&F = 2E — V3.

b.  Show thad i ierior verticestAj = 27Vi andX:boundary verticeéAj = TVp — > €k
c. Concludetha}’; ;ex; =3nF =3, ;u1; = 2n(E —V) + € and complete the proof of the

theorem.

a. Use Corollary 1.4 to prove th#f is flat if and only if the holonomy around all (“small”) closed

curves that bound a region M is zero.
b. Show that even on a flat surface, holonomy can be nontav@lnd certain curves.

Reprove the result of part a of Exercise 2.3.14 by conisigiéhe holonomy around a (sufficiently small)
quadrilateral formed by four of the lines. Does the resultlifthere are two families ofeodesicsn
M always intersecting at right angles?

In this exercise we explore what happens when we try tdyahp Gauss-Bonnet Theorem to the
simplest non-smooth surface, a right circular cone. R eenote the surface given in Exercise 2.4.5 and

dR its boundary curve.
a. Show that if we make& by gluing the edges of a circular sector (“pacman”) of cdrdargle 3,
as indicated in Figure 1.11, theﬁ kgds = 2w sing = B. We call 8 thecone angleof R at its

dR
vertex.

b. Show that Theorem 1.6 holds férif we add2z — g to [[, KdA.
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FIGURE1.11

c. Show that we obtain the same result by “smoothing” the qmiet, as pictured in Figure 1.12.
(Hint: Interpret ([, Kd A as the area of the image of the Gauss map.)

X7

FIGURE1.12

Remark. Itis not hard to give an explici€? such smoothing. For example, constru@Zaconvex
function f on [0, 1] with £(0) = f’(0) =0, f(1) = f'(1) = 1, and (1) = 0.

14. Suppose is a closed space curve with# 0. Assume that theormal indicatrix(i.e., the curve traced
out on the unit sphere by the principal normal) is a simples&tbcurve in the unit sphere. Prove then
that it divides the unit sphere into two regions of equal afeant: Apply the Gauss-Bonnet Theorem
to one of those regions.)

15. Supposéd C R3 is a compact, oriented surface with no boundary wkth> 0. It follows that M is
topologically a sphere (why?). Prove thet is convex; i.e., for eacl® € M, M lies on only one side
of the tangent plan&p M. (Hint: Use the Gauss-Bonnet Theorem and Gauss’s origmatgdretation
of curvature indicated in the remark on p. 51 to show the Ganggsmust be one-to-one (except perhaps
on a subset with no area). Then look at the end of the proof ebfigm 3.4 of Chapter 1.)

2. An Introduction to Hyperbolic Geometry

Hilbert proved in 1901 that there is no surface (without btany) inR3 with constant negative curvature
with the property that it is a closed subset®? (i.e., every Cauchy sequence of points in the surface
converges to a point of the surface). The pseudospherdHailstter condition. Nevertheless, it is possible
to give a definition of an “abstract surface” (not sittingidesR3) together with a first fundamental form.
As we know, this will be all we need to calculate Christoffghols, curvature (Theorem 3.1 of Chapter
2), geodesics, and so on.

Definition. The hyperbolic planeH is defined to be the half-plangu, v) € R? : v > 0}, equipped
with the first fundamental form | given b = G = 1/v?, F = 0.
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Now, using the formulasi on p. 58, we find that

E E 1
FJL:%:Q Fu1;4=—ﬁ=;
E 1 G

L =26~ 7% fwv =56 =
Gu Gv l

Fu:——: U:_:__'

vy 2E 0 v 2G v

Using the formula ) for Gaussian curvature on p. 60, we find

1 E G 2,02 2 2
K== (G (G - 35 ), =5 5=

2WWEG EG/v EG/u 2 v3 v 2 2
Thus, the hyperbolic plane has constant curvatureNote that it is a consequence of Corollary 1.7 that the
area of a geodesic triangle ihis equal tor — (¢1 + 12 + t3).

What are the geodesics in this surface? Using the equada®¥dn p. 71, we obtain the equations
u// _ zulvl — U// + l(uxz _ UIZ) =0.
v v

Obviously, the vertical rays = const give us solutions (with(r) = c1e°?’). Next we seek geodesics with

d ! . D
u’ # 0, so we start W|thd—v = U—, and apply the chain rule judiciously:
u u

du?  du \ v u'? u’

“ ()= ()
_%(H(Z_j) ):_%(H(j_;) )

This means we are left with the differential equation

du? du) — du\ du)

and integrating this twice gives us the solutions

d?v d (v’) uwv" —uv 1

u? +v?> =au+b.

That is, the geodesics iH are the vertical rays and the semicircles centered onsthris, as pictured
in Figure 2.1. Note that any semicircle centered onitkexis intersects each vertical line at most one
time. It now follows that any two point®, O € H are joined by a unique geodesic. #f and Q lie on

a vertical line, then the vertical ray through them is thegumei geodesic joining them. P and Q do not

lie on a vertical line, leC be the intersection of the perpendicular bisecto@ and theu-axis; then the
semicircle centered & is the unique geodesic joinin and Q.

Example 1. Given P, O € H, we would like to find a formula for the (geodesic) distartieP, Q)
between them. Let's start withR = (ug,a) andQ = (ug,b), with 0 < a < b. Parametrizing the line
segment fromP to Q byu = ug,v =t,a <t < b, we have

b b
d(P, Q) :/ JEW©)? + G/ (1)2di = % —mnl.

a a
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FIGURE 2.1

Note that, fixingQ and letting P approach the:-axis, d(P, Q) — oo; thus, it is reasonable to think of
points on thes-axis as “virtual” points at infinity.
In general, we parametrize the arc of a semicicalg + r cost, r sint), 6; <t < 6, going fromP to

0, as shown in Figure 2.2. Then we have

FIGURE 2.2

d(P.Q) =

" Eu'(t)? + Gv'(t)?dt
[V

%2 dt
/91 sint

/92 rdt
g, Isint

El

= |In (ﬂ g)
8P/ BO

1 + cosb, 1 + cosb,
sin6, sin6,

N 2co961/2) [2co962/2)
2sin(61/2) / 2sin(6/2)

where the lengths in the final formula are Euclidean. (Seedisee12 for the connection with cross ratio.)

v

It follows from the first part of Example 1 that the curwes= @« andv = b are a constant distance apart
(measured along geodesics orthogonal to both), like ghtales in Euclidean geometry. These curves are
classically callechorocycles As we see in Figure 2.3, these curves are the curves orthbgmthe family
of the “vertical geodesics.” If, instead, we consider a#l tieodesics passing through a given pgntat
infinity” on v = 0, as we ask the reader to check in Exercise 5, the orthog@jattories will be curves in
H represented by circles tangent to thaxis atQ.

Example 2. Let's calculate the geodesic curvature of the horocycle a, oriented to the right. We
start by parametrizing the curve la(z) = (z,a). Thena/(r) = (1,0). Note thatv(¢) = |a/(?)| =
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FIGURE 2.3

VE(1)% + G(0)2 = 1/a. By Proposition 1.1,

$12 = ;(261_3 1) = l
2,/ a
(Heree; = v(1,0) ande, = v(0, 1) at the point(u, v) € H. Why?) To calculate the geodesic curvature,
we wish to apply Proposition 1.3, which requires differatitin with respect to arclength, so we’ll use the
chain rule as in Chapter 1, multiplying thealerivative byl /u(z) = a. Note, also, thak’ makes the constant
angled = 0 with e, sof’ = 0. Thus,
1 1
Kg:Tt)lez:a'E: I,

as required. (Note that if we move to the left, the sign charagelk, = —1.) V

We ask the reader to do the analogous calculations for thkegitangent to the-axis in Exercise 6.
Moreover, as we ask the reader to check in Exercise 7, evewe ¢u H of constant geodesic curvature
kg = %1 is a horocycle.

Remark. It seems somewhat surprising to find in Example 2 that = 1/a, ase; certainly doesn't
appear to be turning as we move along the path. However, assaxesded in the Remark on p. 71, at any
point of v = a the geodesic with the same tangent vector is a semicircléifiggéto the right,” and so this
means thag, is turning to the left, i.e., towards.

The isometries of the Euclidean plane form a group, the Beah groupE (2); the isometries of the
sphere likewise form a group, the orthogonal grad8). Each of these is a-dimensional Lie group.
Intuitively, there are three degrees of freedom because ugt specify where a poin® goes (two degrees
of freedom) and where a single unit tangent vector at thattp®igoes (one more degree of freedom). We
might likewise expect the isometries Bf to form a3-dimensional group. And indeed it is. We deal with
just the orientation-preserving isometries here.

We considetl C C by letting (u, v) correspond ta = u + iv, and we consider the collection lofiear

fractional transformations
b
T(z):az+ , a,b,c,d eR, ad—bc =1.
cz+d

We must now check several things:

(i) Composition of functions corresponds to multiplicatiof the2 x 2 matrices[a
C

z} with
determinantl, so we obtain a group.
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(i) T mapsH bijectively toH.
(iii) 7 is an isometry offl.
We leave it to the reader to check the first two in Exercise 8,va@ check the third here. Given the point

z = u + iv, we want to compute the lengths of the vectdysand T, at the image poinf'(z) = x + iy
and see that the two vectors are orthogonal. Note that

az+b (az+b)(cz+d) (alu+iv)+b)(c(u—iv)+d)

cz+d lcz + d|? N lcz + d|?
(ac(u? +v?) + (ad + be)u + bd) + i ((ad — be)v)
N lcz +d|? '
v
soy = ———. Now we havé
Y ez dp
. _ (cz+d)a—(az + b)c 1
= — = T/ = = y
Xu F iyu = —ixXy + Yo (2) (cz 1 d)? cz 1 d)?
so we have 5 5
- xZ4y 1 1 1 1
E="%""%— 17")’P=— - —— = — =E,
32 yzl )l 2 Jez+df 02
s Xyt yy
and, similarly,G = ——— = G. On the other hand,
y
F= XuYu 'vayv _ Xy (—xyp) '2" Xy (xy) —0=F,
y y
as desired.

Now, as we verify in Exercise 12 or in Exercise 14, linear fia@al transformations carry lines and
circles inC to either lines or circles. Since our particular linear fiaweal transformations preserve the real
axis (U{oo}) and preserve angles as well, it follows that vertical lined semicircles centered on the real
axis map to one another. Thus, our isometries do in fact mageggcs to geodesics (how comforting!).

If we think of H as modeling non-Euclidean geometry, with lines in our gaoyrieeing the geodesics,
note that given any liné and pointP ¢ £, there arenfinitely manylines passing throug® “parallel”
to (i.e., not intersectingy. As we see in Figure 2.4, there are two special lines thraBghat “meet? at

FIGURE 2.4

infinity”; the rest are often calledltraparallels
We conclude with an interesting application. As we saw in ghevious section, the Gauss-Bonnet
Theorem gives a deep relation between the total curvatusesofface and its topological structure (Euler

3These are the Cauchy-Riemann equations from basic compéeysis.
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characteristic). We know that if a compact surfadeis topologically equivalent to a sphere, then its total
curvature must be that of a round sphere, nardely If M is topologically equivalent to a torus, then (as
the reader checked in Exercise 3.1.3) its total curvaturst tme0. We know that there is no way of making

>

FIGURE 2.5

the torus inR3 in such a way that it has constant Gaussian curvakiiee 0 (why?), but wecanconstruct a
flat torus inR* by taking

X(u,v) = (cosu, sinu, cosv, Sinv), 0<u,v <2m.

(We take a piece of paper and identify opposite edges, asaitedl in Figure 2.5; this can be rolled into a
cylinder inR? but into a torus only iflR*.) So what happens withzholed torus? In that casg(M) = —2,

so the total curvature should betr, and we can reasonably ask if there’®-aoled torus withconstant
negative curvature. Note that we can obtaitrlaoled torus by identifying pairs of edges on an octagon, as

FIGURE 2.6

shown in Figure 2.6.

This leads us to wonder whether we might have regulgonsR in H. By the Gauss-Bonnet formula,
we would have argak) = (n—2)7—) _;, S0 it's obviously necessary that :; < (n—2)x. This shouldn't
be difficult so long as > 3. First, let's convince ourselves that, given any pahe H, 0 < « < &, and
0 < B < (r —a)/2, we can construct an isosceles triangle with vertex angle P and base anglg. We
draw two geodesics emanating frafwith anglea between them, as shown in Figure 2.7. Proceeding a
geodesic distance on each of them to point® and R, we then obtain an isosceles triangleP? QR with
vertex anglex. Now, the base angle of that triangle approacties- «)/2 asr — 01 and approaches
asr — oo. It follows (presuming that the angle varies continuousithw) that for some-, we obtain the
desired base ang|g. Let's now apply this construction witth = 27/n andf = n/n, n > 5. Repeating
the constructiom times (dividing the angle aP into n angles of2x/n each), we obtain a regulargon
with the property thad " :; = 27, as shown (approximately?) in Figure 2.8 for the case 8. The point
is that because the interior angles add upsto when we identify edges as in Figure 2.6, we will obtain a
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~

r

Q

& 27¢g

FIGURE 2.7

l// n\\v’\ ~— (’\// w

FIGURE 2.8

smooth2-holed torus with constant curvatué = —1. The analogous construction works for tfdoled
torus, constructing a reguldg-gon whose interior angles sum2a.

EXERCISES 3.2

1. Find the geodesic joining and Q in H and calculatel(P, Q).
a. P=(4,3),0=(-3,4
*n. P=(1,2),0=(0,1)
c. P=1.0,7),0 =(16,15)
2. Suppose there is a geodesic perpendicular to two gesdedit What can you prove about the latter
two?
3. Prove the angle-angle-angtengruencetheorem for hyperbolic (geodesic) triangles: A4 ~ £ A,

/B~ /B',andZC =~ ZC’,thenAABC =~ AA’B’C’. (Hint: Use an isometry to mové’ to 4, B’
along the geodesic from to B, andC’ along the geodesic from to C.)

4. a. \Verify Local Gauss-Bonnet, Theorem 1.6, for the regiohounded by = A, u = B, v = a,

andv = b.
b. Verify Local Gauss-Bonnet for the regighbounded by the segment= a, A < u < B, and the

geodesic joining the two endpoints.
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c. Use Local Gauss-Bonnet (and the analysis of part b) toagethe result of Example 2.

Show that the circles tangent to theaxis at the origin are the orthogonal trajectories of thailia
of geodesicsi? — 2cu + v2 = 0, ¢ € R (together with the positive-axis). (Hint: Remember that

orthogonal lines have slopes that are negative reciproEtilsinatec to obtain the differential equation
dv 2uv . . . _ .
T and solve this “homogeneous” differential equation byssitlttingv = uz and getting

a separable differential equation twiandz.)

a. Prove that circles tangent to tir@xis havec, = 1.
b. Prove that the horocycleg +v2—2av = 0 andu?+v?—2hv = 0 are a constant geodesic distance
apart. (Hint: Consider the intersections of the two horteyevith a geodesig? — 2cu + v2 =0

orthogonal to them both.)

Prove that every curve iH of constant geodesic curvaturg = 1 is either a horizontal line (as in
Example 2) or a circle tangent to theaxis. (Hints: Assume We start with an arclength paramation

(u(s),v(s)), and use Proposition 1.3 to show that we have £ + 0’ andu’2 + v'2 = v2. Obtain the
v

3/2
= (@) @

and solve this by substituting= dv/du and getting a separable differential equationdoydv.)

differential equation

b _
LetT,peq(z) = ‘”j:d,a,b,c,d e R, withad — be = 1,

CcZ
a. Suppose’,b’,c’,d’ € Randa’d’ — b’¢’ = 1. Check that

Ta’,b’,c’,d’oTa,b,c,d = Ta’a+b’c,a’b+b’d,c’a+d’c,c’b+d’d and
(@a+becyc'b+d'd)y—(a'b+bd)ca+dc)=1.

Show, moreover, thaly 5 ., = T bc 4+ (Note that?, g = T4 p, ¢, —a- The reader
who's taken group theory will recognize that we're definimgisomorphism between the group of
linear fractional transformations and the gratip(2, R) /{41 } of 2 x 2 matrices with determinant
1, identifying a matrix and its additive inverse.)

b. LetT =T,p..q.Provethatifz =u +ivandv > 0, thenT(z) = x + iy with y > 0. Deduce
thatT mapsH to itself bijectively.

Show thateflectionacross the geodesic= 0 is given byr(z) = —z. Use this to determine the form
of the reflection across a general geodesic.

The geodesic circle of radiug centered afP is the set of pointg) so thatd(P, Q) = R. Prove that
geodesic circles iffl are Euclidean circles. One way to proceed is as follows: Téwmdgsic circle
centered at? = (0, 1) with radiusR = Ina must pass throug{0, a) and(0, 1/a), and hence ought to
be a Euclidean circle centered (@t %(a + 1/a)). Check that all the points on this circle are in fact a
hyperbolic distanc&® away fromP. (Hint: It is probably easiest to work with the cartesian &ipn of
the circle. Find the equation of the geodesic throdgand an arbitrary point of the circle.)

What is the geodesic curvature of a geodesic circledifisaR in H? (See Exercise 10.)
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12. Recall (see, for example, p. 298 and pp. 350-1 of ShsfAb'stract Algebra: A Geometric Approach

13.

14.

that thecross ratioof four numbersd, B, P, O € C U {00} is defined to be

0—-A4,0-B

[A:B:P:Q]=P_A B

Show that4, B, P, andQ lie on aline or circle if and only if their cross ratio is a reaimber.
Prove that ifS is a linear fractional transformation with(4) = 0, S(B) = oo, andS(P) = 1,
thenS(Q) = [A: B : P : Q]. Use this to deduce that for any linear fractional transttrom 7",
we have[T(A) : T(B): T(P): T(Q)]=[A:B: P :0Q].
Prove that linear fractional transformations map lined aircles to either lines or circles. (For
which such transformations do lines necessarily map taHpe
Show that if4, B, P, andQ lie on a line or circle, then

AQ /BQ

|[A:B:P:Q]|=E 3P

Conclude that/(P, Q) = |In[A : B : P : Q]|, whereA, B, P, andQ are as illustrated in Figure
2.2.

Check that iff" is a linear fractional transformation carryingjto 0, B to oo, P to P/, andQ to
Q’,thend(P, Q) =d(P’, Q).

LetO be any point not lying on a circl€ and let P and Q be points on the circl€ so that
O, P, and Q are collinear. Letl' be the point onC so thatOT is tangent toC. Prove that
(OP)(0Q) = (OT)>.

Defineinversionin the circle of radiusk centered at by sending a poinf to the pointP’ on
the rayOP with (OP)(OP’) = R?. Show that an inversion in a circle centered at the originsnap
a circle C centered on th&-axis andnot passing througlO to another circleC’ centered on the
u-axis. (Hint: For anyP € C, let O be the other point of collinear withO and P, and letQ’ be
the image ofQ under inversion. Use the result of part a to show t&/0Q’ is constant. IfC

is the center of2, let C’ be the point on the-axis so thaiC’Q’||CP. Show thatQ’ traces out a
circle ¢’ centered aC’.)

Show that inversion in the circle of radidscentered aD maps vertical lines to circles centered
on theu-axis and passing through and vice-versa.

Prove that every (orientation-preserving) isometiif can be written as the composition of linear
fractional transformations of the form

1
Ti(z)=z+b forsomeb eR, Tr(z)=-—-, and Ts3(z) =cz forsomec > 0.
zZ

(Hint: It's probably easiest to work with matrices. Showttlyau have matrices of the form

[a 0 ] [1 b}, [O _1}, and therefore{1 0}, and that any matrix of determinahtcan be
0 1/a 01 1 0 b 1

obtained as a product of such.)

Prove thafl, maps circles centered on theaxis and vertical lines to circles centered onthaxis
and vertical lines (not necessarily respectively). Eithethis algebraically or use Exercise 13.
Use the results of parts a and b to prove that isometriésrofip geodesics to geodesics.
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15.

16.

17.
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We say a linear fractional transformatién= T, ; . 4 is elliptic if it has one fixed point, parabolic if it

has one fixed point at infinity, and hyperbolic if it has two fixgoints at infinity.

a. Show that is elliptic if |a + d| < 2, parabolic ifla + d| = 2, and hyperbolic ifa + d| > 2.

b. Describe the three types of isometries geometricallyint(Hin particular, what is the relation
between horocycles and parabolic linear fractional ti@nsétions?)

SupposA ABC is a hyperbolic right triangle with “hypotenuse” Use Figure 2.9 to prove the follow-

ing:
sinha tanhb

_ COS/A = ——, coshe = coshu coshb.
sinhc tanhc

(The last is the hyperbolic Pythagorean Theorem.) (Hirart®ty showing, for example, that cosh=

sinZA =

A

FIGURE 2.9

csch, coshe = (1 — cosy cost)/(siny sint), and cog — cosy = sint cotf. You will need two
equations trigonometrically relating andr.)

Given a pointP? on a surfacéf, we define the geodesic circle of radilentered aP to be the locus
of points whose (geodesic) distance frdtris R. Let C(R) denote its circumference.
a. Show that on the unit sphere
im 2nR — C(R) _ 1
R—0+ 7R3 3
b. Show that the geodesic curvaturg, of a spherical geodesic circle of radiug is
cotR~ (1-& 1 ).

The Poincaé diskis defined to be the “abstract surfad®’= {(u,v) : u? + v < 1} with the first

4 4r?

fundamental form given, in polar coordinatesf), by F = ——, F = 0,G = ———. This
g p ) y (1 _ r2)2 (1 _ r2)2

is called thehyperbolic metricon D.

c. Check that ifD the geodesics through the origin are Euclidean line segmennclude that the

and sor = tanhB. (Remark: Other geodesics are semicircles orthogonal to the um'tecrithe
“virtual boundary” ofD. This should make sense since there is a linear fractioaastormation
mappingH to D; by Exercise 12c, it will map semicircles orthogonal to thaxis to semicircles
orthogonal to the unit circle.)

d. Check that the circumference of the hyperbolic circle 37 sinhR ~
27 (R + %3 +...), andso

Euclidean circle of radiug centered at the origin is a hyperbolic circle of radRis= In 1 + r),

_ 2R—C(R) 1
im —m8M8M~ = ——.
R—0+ 7R3 3
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e. Compute (using a double integral) that the area of a diskypérbolic radiusR is 47 sint? § A
TR?*(1 + If—; + ...). Use the Gauss-Bonnet Theorem to deduce that the geodegaturex, of
the hyperbolic circle of radiu® is cothR = %(1 + RTz +...).

18. Here we give another model for hyperbolic geometryeciie Klein-Beltrami model. Consider the fol-
lowing parametrization of the hyperbolic disk: Start withhet open unit disk,
{x? + x3 < 1, x3 = 0}, vertically project to the southern hemisphere of the upitese, and then
stereographically project (from the north pole) back touhé disk.
a. Show that this mapping is given in polar coordinates by

X(R,0) = (r,0) = (L 0).

14+ V1—R?
Compute that the first fundamental form of the Poincaré imem D (see Exercise 17) is given
. 1 - - R?
in (R, 0) coordinates bhf = ——  F =0, G = . (Hint: Compute carefully and
(R.6) ¥ = gy - ( p y

economically!)
b. Compute the distance frof, 0) to (a, 0); compare with the formula for distance in the Poincaré
model.

c. Changing now to Euclidean coordinatasv), show that
2

A 1— A A 1—u?
:—U, F:L’ G:—u’
(1 —u2 —v2)2 (1 —u2—12)2 (1 —u2—2)2
whence you derive
2u
u __ v o_
b =752 2 F =0
u __ v v o__ u
1_‘u”_l—uz—vz’ l_‘"v_l—uz—vz’
2v
u __ v o_
v =0 b = T2

d. Use part b to show that the geodesics of the disk using steffindamental forn are chords of
the circleu? + v? = 1. (Hint: Show (by using the chain rule) that the equationsafgeodesic give
d?v/du® = 0.) Discuss the advantages and disadvantages of this masepéred to Poincaré’s).

e. Check your answer in part ¢ by proving (geometrically?at tthords of the circle map by to
geodesics in the hyperbolic disk. (See Exercise 2.1.8.)

3. Surface Theory with Differential Forms

We've seen that it can be quite awkward to work with coordirdb study surfaces. (For example, the
Codazzi and Gauss Equations in Section 3 of Chapter 2 areofartieautiful.) For those who've learned
about differential forms, we can given a quick and elegadttnent that is conceptually quite clean.

We start (much like the situation with curves) witmeving framee;, e,, €3 on (an open subset of) our
(oriented) surfacé/. Hereg; are vector fields defined ol with the properties that

(i) {e1, e, €3} gives an orthonormal basis f&2 at each point (so the matrix with those respective
column vectors is an orthogonal matrix);
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(i) {e1,e} is abasis for the tangent spaceMfande; = n.

How do we know such a moving frame existsxil/ — M is a parametrized surface, we can start with
our usual vectors,, X, and apply the Gram-Schmidt process to obtain an orthonobasik. Or, ifM
is a surface containing no umbilic points, then we can ch@psande, to be unit vectors pointing in the
principal directions; this approach was tacit in many of prgofs earlier.

If x: M — R3 is the inclusion map (which we may choose, in a computatieatiing, to consider as
the parametrization mappiig — R?3), then we defind-formswi, w, on M by

dX = w1€] + w28;

i.e., foranyV € Tp M, we haveV = w1(V)er + oz (V)er, sow, (V) = 1(V, g,) fora = 1,2. So far,w;
andw, keep track of how our point moves around &h Next we want to see how the frame itself twists,
so we defind-formsw;;, i, j = 1,2,3, by

3
de = Za)ijej.
Jj=1

Note that since; - €; = const for anyi, j = 1,2, 3, we have

3 3
0=d(g -ej) =deg ‘€ 1+ 6 ~dej = (Za)ikek) -6 + (Za)jkek) -6
k=1 k=1
= wjj + wji,
sow;; = —w;j foralli,j = 1,2,3. (In particular, sinces; is always a unit vector;; = 0 for all i.) If

Ve TpM, w;j(V) tells us how fasg; is twisting towardse; at P as we move with velocity/.
Note, in particular, that the shape operator is embodieddretjuation

des = w318 + wne = —(wi3e] + Wr3e).
Then for anyW € Tp M we havew;3(V) = 11 (V, e1) andw,3(V) = I (V, &). Indeed, when we write
w13 = h11w1 + hip0;
w23 = ha1w1 + hasws

for appropriate coefficient functiorig,g, we see that the matrix of the shape operatewith respect to the
basis{e;, &} for Tp M is nothing buff /44 ].
Most of our results will come from the following

Theorem 3.1(Structure Equations)
doi1 = w2 Awy and dwy = w1 N w12, and
3
doj =Y wy Ao foralli,j =1,2.3.

k=1

Proof. From the properties of the exterior derivative, we have

3 3
0= d(dX) =dwi1€ + dwyes — w1 A (Zwljej) —wy N (szjej)
j=1 j=1
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= (da)l —wa A 6021)91 + (da)2 — w1 N 6012)62 — (601 ANwWi13 + wa A a)23)e3,
so from the fact thafe,, e;, e3} is a basis foiR* we infer that
dw] = w2 Awr] = —Wy A W12 = W12 A Wa and dwy = w1 A w12.

Similarly, we obtain
3 3
0=d(de) = d( Z wikek) = Z (da),-kek — Wik N Za)kje])
k=1 =1 j=1
3 3 3 3
= Zda),-jej — Z ( Z Wik /\wkj)ej = Z (da),-j - Z Wik /\wkj)ej,
j=1

j=1 k=1 j=1 k=1

bl

3
sodwij — Y. wik ANawg; =0foralli,j. O
k=1

We also have the following additional consequence of thefpro
Proposition 3.2. The shape operator is symmetric, ile; = h»;.

Proof. From thee; component of the equatiaf(dx) = 0 in the proof of Theorem 3.1 we have
0=w1 Aw13 + w2 Awzz = w1 A (h1101 + h12w2) + 02 A (ha101 + haows) = (h12 — ha1)w1 A w3,
SOhip —hy; = 0. O

Recall thatV is a principal direction ifdes;(V) is a scalar multiple o¥/. Soe; ande, are principal
directions if and only ifi;, = 0 and we havev,3 = k1w andw,3 = kow,, wherek, andk, are, as usual,
the principal curvatures.

It is important to understand how our battery of forms changeve change our moving frame by
rotatinge;, e; through some anglé (which may be a function).

Lemma 3.3. Suppos&; = coste; + sinfe, ande, = —sinfe; + cosbe, for some functiort. Then
we have

w1 = cosbw; + sinbw,
w, = —Sinfw; + cosbw,
w1y = w12 + dO
w13 = CO0SAw13 + SiNBws3
w3 = —SiNfwi3 + cosbw,3
Note, in particular, thab, A Wy, = w1 A wy andw13 A W23 = W13 A W23.
Proof. We leave this to the reader in Exercise 1]

It is often convenient when we study curves in surfaces (aglidién Sections 3 and 4 of Chapter 2)
to use the Darboux frame, a moving frame for the surface adagu thak; is tangent to the curve. (See
Exercise 3.) For example, is a geodesic if and only if in terms of the Darboux frame weehay, = 0 as
al-formone.

Let's now examine the structure equations more carefully.
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Gauss equation: dwir = —w13 A w23
Codazzi equations: dwiz = w12 A W23
dwry3 = —w12 A 013

Example 1. Toillustrate the power of the moving frame approach, weaepiProposition 3.4 of Chap-
ter 2: Suppos& = 0 and M has no planar points. Then we claim thdtis ruled and the tangent plane
of M is constant along the rulings. We work in a principal movingnie withk; = 0, sow;3 = 0.
Therefore, by the first Codazzi equatiafyp;3 = 0 = w12 A w23 = w12 A kaws. Sinceks # 0, we
must havewi, A wp = 0, and sow1, = fw, for some functionf. Therefore,wi2(e;) = 0, and so
dej(e1) = wi2(e1)e + wr3(e1)e; = 0. It follows thate; stays constant as we move in edirection, so
following the e; direction gives us a line. Moreovefes;(e;) = 0 (sincek; = 0), so the tangent plane to
M is constant along that line. V

The Gauss equation is particularly interesting. Firsteribat
w13 A w23 = (h1101 + h12w2) A (h1201 + haowy) = (hi1hay — h3,)w1 A wy = KdA,
whereK = det[haﬂ] = detSp is the Gaussian curvature. So, the Gauss equation reatlg:rea
(*) dwip = —KdA.

(How elegant!) Note, moreover, that, by Lemma 3.3, for any tmoving frame®y, e, &3 andéy, &, €;, we
havedwi1, = dw12 (Which is good, since the right-hand side f loesn’t depend on the frame field). Next,
we observe that, because of the first equations in Theorerwg: Tan be computed just from knowiragy
andw,, hence depends just on the first fundamental form of the ceurfdf we writew;, = Pw; + Qwa,
then the first equation determin@sand the second determin€k) We therefore arrive at a new proof of
Gauss’s Theorema Egregium, Theorem 3.1 of Chapter 2.

Thel-form wq; is called theconnection formand measures the tangential twisepf Just as we saw in
Section 1, thenYy e, is the tangential component 6fye; = dej (V) = wi12(V)e + w13(V)es, which is,
of coursewi2(V)es. In particular,w;,(e;) recovers the geodesic curvature of gaecurve.

Example 2. Let’'s go back to our usual parametrization of the unit sphere

X(u,v) = (sinu cosv, sinu sinv, cosu), O<u<mn, O0O<v<2m.
Then we have

dX = Xy du + Xy dv = (CoSsu cosv, cosu Sinv, — sinu) du + (— sinv, cosv, 0) (Sinudv).

er €

Note thate; = x, ande; = Xv/\/E, as we might expect. So this gives us
w1 = du and wy = Sinudv.

Next,dw; = 0 anddw, = cosudu A dv = du A (cosudv), so we see from the first structure equations
thatwi, = cosudv. Itis hard to miss the similarity this bears to the discussib ¢, and Example 1

in Section 1. Now we havdwi, = —sinudu A dv = —w1 A w3, SO, indeed, the sphere has Gaussian
curvatureK = 1.
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Let's now compute the geodesic curvatugeof the latitude circles = uo. We obtain a Darboux frame
by takingg, = e, and&, = —e;. Now, w12 = —w>1 = w12 (this also follows from Lemma 3.3). Then
kg = w12(81) = wi2(€). Now note thatv;, = cosudv = cotuw,, SOkg = COtuy. V

To illustrate the power of the differential forms approaalte give a proof of the following result (see
Exercise 2.3.16).

Proposition 3.4. SupposeM has no umbilic points ankl, is constant. TheM is (a subset of) a tube
of radiusr = 1/|k;| about a regular curve.

Proof. Choose a principal moving frangg, e,. We havew;3 = kiw; andw,3 = k,w,. Differentiating
the first, since; is constant, we geb1> Awz3 = kiwi2 Aws, SOw12 A(ka—k1)wa = 0. Sincek, —k1 # 0,
we infer thatw1, = Aw, for some scalar function. Now lete; = e, &, & be the Frenet frame of the
e;-curve and apply Exercise 3. Since bail, = 0 andw;sz # 0 when restricted to (pulled back to) an
e;-curve, we infer that co@ = 0 andf = +x/2 all along the curve. Them,3 = Tw; = 0 on thee;-curve,
sot = 0 and the curve is planar. But thew, = @01, = w13 = tkiw1, SOk = |k1] is constant and the
€;-curves are circles.

Now considefr = X + k—eg. Then
1

1 1 k
do =dX+ —de; = w161 + w26 + —(—k1wi1€1 — krwr8) = (1 — —2)0)262,

SO« is constant along the; -curves andie # 0, which means that the image efis a regular curve, the
center of the tube, as desired

From the Gauss equation and Stokes’s Theorem, the GauseBonmula follows immediately for an
oriented surfacéd/ with (piecewise smooth) boundady/ on which we can globally define a moving frame
That is, we can reprove the Local Gauss-Bonnet formula, fEmed..6, quite effortlessly.

Proof. We start with an arbitrary moving framg, e,, e; and take a Darboux framg, €,, €; along
dM. We write€; = cosfe; + sinfe, andeé, = —sinfe; + cosfe, (wheref is smoothly chosen along
the smooth pieces @fM and the exterior angle; at P; gives the “jump” of6 as we cross?;). Then, by
Stokes’s Theorem and Lemma 3.3, we have

S P R R

(See Exercise 2.) O

EXERCISES 3.3

1. Prove Lemma 3.3.

2. Letey, e, e3 be the Darboux frame along a curee Show that as a-form one, wi> = kgwi. Use
this result to reprove the result of Exercise 3.1.7.

3. Supposex is a curve lying in the surfacds. Let e, e, e; be the Darboux frame along (i.e., a
moving frame for the surface witly tangent tax), and lete; = e;,€,, €3 be the Frenet frame. Then,
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*4,

*8.

10.

11.

12.
13.

14.
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by analogy with Lemma 3.3, €; are obtained frong,, e; by rotating through some angte Show
that, asl-forms one, we have:

w12 = kwp = CO0SOwiz + Sinfwi 3
w13 =0 = —sinfwiy + cosbw3

W3 = TW1 = wa3 + dO.

Use Exercise 3 to prove Meusnier's Theorem (Proposi@idgnof Chapter 2).

Use Exercise 3 to prove that@ c M is a line of curvature and the osculating planeCofnakes a
constant angle with the tangent planeMt thenC is planar.

Use moving frames to redo Exercise 2.2.14. (Hint: Use th@aZzi equations to show thék A w =
dk ANwy =0.)

Use moving frames to redo Exercise 2.2.15.

Use moving frames to compute the Gaussian curvatureedioitus, parametrized as in Example 1(c) of
Chapter 2.

The vectore; = v(1,0) ande, = v(0, 1) give a moving frame atu,v) € H. Setw; = du/v and
wy = dv/v.

a. Checkthatforany € T, ,)H, 01 (V) = 1(V,€1) andwz (V) = I(V, &).

b. Computaw;, anddw;, and verify thatk = —1.

Use moving frames to redo
a. Exercise 3.1.8
b. Exercise 3.1.9

a. Use moving frames to reprove the result of Exercisd 2.3

b. Use moving frames to reprove the result of Exercise 2.4Tlat is, prove that if there are two
families of geodesics i that are everywhere orthogonal, th&his flat.

c. Suppose there are two families of geodesicsfirmaking a constant angke Prove or disprove:
M is flat.

Use moving frames to redo Exercise 2.3.17. (See PrapoSit4.)

Recall that locally any-form ¢ with d¢ = 0 can be written in the fornp = df for some functionf .

a. Prove that if a surfacé/ is flat, then locally we can find a moving franeg, e, on M so that
w12 = 0. (Hint: Start with an arbitrary moving frame.)

b. Deduce that ifM is flat, locally we can find a parametrizationof M with £ = G = 1 and
F = 0. (That is, locallyM is isometric to a plane.)

(The Backlund transformBupposeM and M are two surfaces ilR? and f: M — M is a smooth
bijective function with the properties that

() theline fromP to f(P)is tangent taV at P and tangent td/ at f(P);

(i) the distance betweeR and f(P) is a constant, independent oP;
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(i) the angle between(P) andn( f(P)) is a constan®, independent of .
Prove that both\/ andM have constant curvatut€ = —(sin? 8)/r2. (Hints: Write P = f(P), and
let e, e, €3 (resp.€;, &, &) be moving frames aP (resp. P) with & = e; in the direction ofP—?).
Letx andX = fox be local parametrizations. How else arandX related?)

4. Calculus of Variations and Surfaces of Constant Mean Cursature

Every student of calculus is familiar with the necessarydioon for a differentiable functiory': R” —
R to have a local extreme point (minimum or maximum)atWe must haveyV f(P) = 0. Phrased slightly
differently, for every vectoW, the directional derivative

f(P +eV)— f(P)

&

Dy f(P) = lim
e—0
should vanish. Moreover, if we are given a constraint Bet= {x € R"” : g1(X) = 0,g2(X) =

0,...,gr(X) = 0}, the method of Lagrange multipliers tells us that at a cansdd extreme poinP we
must have

k
Vf(P)=) AiVgi(P)
i=1
for some scalard, ..., A;. (There is also a nondegeneracy hypothesis herévbatP), ..., Vgi(P) be
linearly independent.)

Suppose we are given a regular parametrized sukade— R3 and want to find—without the benefit
of the analysis of Section 4 of Chapter 2—a geodesic flore= X(ug, vo) to Q@ = X(u1,v1). Among all
pathsa: [0, 1] — M with «(0) = P anda(1) = Q, we wish to find the shortest. That is, we want to choose
the patho(¢) = x(u(t), v(¢)) so as taninimizethe integral

1 1
/0 le’ (1)1t = /0 \/E(u(t),v(l))(u’(l))2 + 2F (u(t), v())u' ()v' (1) + Gu(r). v(1) (v (1)>dt

subject to the constraints th@i(0), v(0)) = (ug,ve) and (u(1),v(1)) = (uy,v1), as indicated in Figure
4.1. Now we're doing a minimization problem in the space bf@}) curves(u(¢), v(r)) with (1(0), v(0)) =

(ug,vy)

FIGUREA4.1

(1o, vo) and (u(1),v(1)) = (u1,v1). Even though we're now working in an infinite-dimensionattisg,
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we should not panic. In classical terminology, we hafer&tional F defined on the spack of ! curves
u:[0,1] - R3, i.e.,

1
) o) = [ feuo.wer.
0
For example, in the case of the arclength problem, we have
St @), v(@), @' (0),v'(1)) =
\/E(u(t), v(@) @' () + 2F (), v(e)u' (v’ (1) + Gu(t), v(1))(v' (1))

To say that a particular curv€ is a local extreme point (with fixed endpoints) of the functbF given
in () is to say that for anyariation &: [0, 1] — R? with £(0) = £(1) = 0, the directional derivative

F(u* +¢eé§)— F(u*) i

Dg F(u*) = lim . T F(U* + ¢§)

e=0

should vanish. This leads us to the

Theorem 4.1(Euler-Lagrange Equationsj)f u* is a local extreme point of the functionBlgiven above
in (%), then atu™ we have
of d (of
u  dr (%) ’

evaluating these both at,u*(t),u*'(t)), forall0 <t < 1.

Proof. Let£:[0,1] — R2 be aC! curve with&(0) = £(1) = 0. Then, using the fact that we can pull
the derivative under the integral sign (see Exercise 1) laed the chain rule, we have

d
% o F(u + SE) d_
/ f(r, u*(t) + €€ (1), u™'(t) + €&'(1))dt

f af

/0 (—(r WSO, (D) - §(0) + 50 (LU0 U™ (0) - () ) di

/ @t u*(t) + e&(1),u* (t) + &' (t))dt

and so, integrating by parts, we have
0 i)
[ Zos0-2 (i) §0)dr + L5 0]]
0

- () o

Now, applying Exercise 2, since this holds fif ¢! ¢ with £(0) = &£(1) = 0, we infer that

of _d(of\_,
au dr\ou) 7

as desired. O
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Of course, the Euler-Lagrange equations really give a systfedifferential equations:

of _d (of
%_E(W)
of _d (df
%_E(W)'

Example 1. Recall that for the unit sphere in the usual parametrizatterhaveE = 1, F = 0, and
G = sin? u. To find the shortest path frog, vo) = (1o, vo) to the point(uy, vy) = (11, vo), we want to
minimize the functional

(%)

1
F(u,v) :/0 \/(u’(z))z + sir? ut)(v'(1))2dt.

Assuming our critical patlu* is parametrized at constant speed, the equati@gie usv’(r) = const
andu”(¢) = sinu(t) cosu(t)v’(t)?. (Cf. Example 6(b) in Section 4 of Chapter 2.)V

We now come to two problems that interest us here: What is thface of least area with a given
boundary curve? And what is the surface of least area congam given volume? For this we must
consider parametrized surfaces and hence functionalsededim functions of two variables. In particular,
for functionsx: D — R3 defined on a given domaiB C R?, we consider

F(x) = // Xy X Xy ||dudv.
D

We seek a functiom™ so that, for all variationg: D — R3 with & =00n0D,

F(U* +e§)— Fu*) d
& de
f(¢)-f'(¢)

Now we compute: Recalling thaé,td; If(r)|| = ———— and settingx = x* + <&, we have

f)]
d _ 1 * * * *
Je 0||Xu XXv||—W((EuXXv + X5, X &) - (6 X X7))
e= u v
= (&, x Xy + X, x &) - n.

F@U* +¢§) = 0.
e=0

Dg F(U®) = lim
§ () e—0

Next we observe that
(Ey xXxp)-n=((Exx})-n) —(&ExX) -n—(&ExX))-ny
(X X Ey)-n=((x; x &) -n), — (X5, x &) -n—(x; x &) Ny,
and so, adding these equations, we obtain
(& x Xy + x5 x &) -n=((& xx5)-n), + (0 x &) -n), —((€xxp) Ny + (X x &) -Ny)
= ((E xx3)-n), — (& xx3)-n), — (& xX3)-ny + (x; X §) - ny)
= (Exxp)-n), —((E xx5)-n), —&-(Xy x Ny + Ny xX).
At the last step, we've used the identityy x V) - W = (W x U) -V = (V x W) - U. The appropriate

way to integrate by parts in the two-dimensional settingigapply Green’s Theorem, Theorem 2.6 of the
Appendix, and so we leP = (¢ x x})) -nandQ = (§ x x;) - n and obtain

//D(Eu X X5 + X5 x &,) - ndudv
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= //D ((@ xxy)-n), —((&xx;)-n), )dudv — //Dg (X5 x Ny + Ny x X5 )dudv
Qu Py

:/ (ExX)-ndu+ (& xx:)-ndv—// £ (X5 x Ny + Ny x X3 )dudv.
aD s 5 D
Sinceé = 0onaD, the line integral vanishes. Using the equatiofg On p. 59, we find that} x n, =
a(x; x Xy) andn, x X = d(x;; x X3), so, at long last, we obtain

// Xy X Xy ||dudv = // (&, X X5 + X5 x &) - ndudv
e=0JYD D

= —// £ - (X5 x Ny + Ny x X5 )dudv
D

= —// (a+d)§- (X xx3)dudv = —// 2HE -ndA,
D D
sinceH = 3tr Sp.

We conclude from this, using a two-dimensional analoguexeair€ise 2, the following

a4
de

Theorem 4.2. Among all (parametrized) surfaces with a given boundaryeuhe one of least area is
minimal, i.e., hasd = 0.

This result, indeed, is the origin of the terminology.

Next, suppose we wish to characterize those closed surfaoegpact surfaces with no boundary) of
least area containing a given volurfie To make a parametrized surface closed, we requirethab) = Xg
for all (u,v) € aD. But how do we express the volume constraint in termg?iThe answer comes from
the Divergence Theorem and is the three-dimensional analofjthe result of Exercise A.2.5: The volume
enclosed by the parametrized surfads given by

vol(V) = %//DxmdA.

Thus, the method of Lagrange multipliers suggests that $éarface of least area there must be a constant
S0 that// (2H —X)&-ndA = Ofor all variations§ with & = 0ondD. Once again, using a two-dimensional
D

analogue of Exercise 2, we see thaf — A = 0 and hencdd must be constant. (Also see Exercise 6.) We
conclude:

Theorem 4.3. Among all (parametrized) surfaces containing a fixed voluilne one of least area has
constant mean curvature.

In particular, a soap bubble should have constant meantcuevaA nontrivial theorem of Alexandrov,
analogous to Theorem 3.6 of Chapter 2, states that a smawtipact surface of constant mean curvature
must be a sphere. So soap bubbles should be spheres. How dgplain “double bubbles”?

Example 2. If we ask which surfaces of revolution have constant meawature Hy, the statement of
Exercise 2.2.20a. leads us to the differential equation
h" 1

(1 + 1232 h(1 + W'2)1/2

= 2H,.



§4. CALCULUS OF VARIATIONS AND SURFACES OFCONSTANT MEAN CURVATURE 111

(Here the surface is obtained by rotating the graplt about the coordinate axis.) We can rewrite this
equation as follows:

—hh" 4 (1 +h/2)
(1 +h/2)3/2

+2Hoh =0

and, multiplying through by,

,—hh" + (1 + 1'?)

[
TEWOLE +2Hohh' =0

h ! 1,
— 2Ho(=h*)' =0
(\/1+h/2) - 0(2 )

(T) ﬁ —+ H0h2 = const

We now show that such functions have a wonderful geometicagiterization, as suggested in Figure
4.2. Starting with an ellipse with semimajor axisand semiminor axi®, we consider the locus of one

FIGURE 4.2

focus as we roll the ellipse along theaxis. By definition of an ellipse, we ha\HeITQ)H + ||@|| = 2a,

and by Exercise 7, we havey, = b? (see Figure 4.3). On the other hand, we deduce from Exercise 8
that@) is normal to the curve, and that, therefoye= ||ﬁé|| cos¢. Since the “reflectivity” property

of the ellipse tells us that F; QP; =~ £F,QP,, we havey, = ||@|| cos¢. Since co® = dx/ds and

FIGURE 4.3

ds/dx = /1 + (dy/dx)?, we have
b2

dx
y+ —=y+4+y,=2acC0Sp =2a—
y ds
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and so
dx 2ay
0=y%2—2ay— +b>=y> - —— +p%>=0.
ST Y e

SettingHy = —1/2a, we see that this matches the equatibnapove. V

EXERCISES 3.4

! 0
#1. Supposez:[0,1] x (—1,1) — R is continuous and leG(s) = / g(t,e)dt. Prove that ifa—g is
0 &

1 e 1
continuous, theiw’(0) = / a—g(t,O)dz. (Hint: Consideri(e) = / / a—g(t,u)dwlu.)
0 de o Jo de

1
#2. *a. Supposef is a continuous function oft, 1] and |  f(z)&(r)dt = 0 for all continuous functions

0
£ on|0, 1]. Prove thatf = 0. (Hint: Takef = f.)
1

b. Supposef is a continuous function off), 1] and/ f(@®)E(@)dt = 0 for all continuous functions
0
g on|0,1] with £(0) = £(1) = 0. Prove thatf = 0. (Hint: Take¢ = f for an appropriate
continuous functiony.)
c. Deduce the same result f@} functionst.
d. Deduce the same result for vector-valued functiossdé .

3. Use the Euler-Lagrange equations to show that the shqédis joining two points in the Euclidean
plane is a line segment.

b
4. Use the functionaF(u) = 2ru(t)4/ 1+ (u/(t))?dt to determine the surface of revolution of least

area with two parallel cirdlés (perhaps of different rads) boundary. (Hint: You should end up with
the same differential equation as in Exercise 2.2.20.)

5. Prove the analogue of Theorem 4.3 for curves. That is, shatof all closed plane curves enclosing
a given area, the circle has the least perimeter. (Cf. The@®d0 of Chapter 1. Hint: Start with
Exercise A.2.5. Show that the constrained Euler-Lagrangetions imply that the extremizing curve
has constant curvature. Proposition 2.2 of Chapter 1 wiii.he

1
6. Interpreting the integra)[ f(t)g(t)dt as an irlmer product (dot produdt), g) on the vector space

0
of continuous functions of0, 1], prove that if/ f(t)g(t)dt = 0 for all continuous functiong with
1 0
/ g(t)dt = 0, then f must be constant. (Hint: Writ¢ = (£, 1)1 + £+, where(f+,1) = 0.)
0

7. Prove theedal propertyof the ellipse: The product of the distances from the fochttngent line of
the ellipse at any point is a constant (in fact, the squaree&emiminor axis).

8. The arclength-parametrized curegs) rolls without slipping along thec-axis, starting at the point
a(0) = 0. A point F is fixed relative to the curve. Le#(s) be the curve thaf traces out. As
indicated in Figure 4.4, lef(s) be the anglex’(s) makes with the positive-axis. Denote byRy =
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FIGURE4.4

sind  cos#
Show thaB(s) = (5,0) + R_g(s) (F — a(s)).
Show tha’(s) - R_g(s)(F —a(s)) = 0. That is, asF moves, instantaneously it rotates about the

contact point on the-axis. (Cf. Exercise A.1.4.)

[COSQ —sing the matrix that gives rotation of the plane through artjle
a
b

9. Find the path followed by the focus of the parabpla= x?/2 as the parabola rolls along theaxis.
The focus is originally af0, 1/2). (Hint: See Example 2.)
10. Generalizing Exercise 8, prove that the result remains if & rolls without slipping along another

smooth curve. (Hint: Parametrize the other curveplly), wheres is arclength ofx. Note that if the
rolling starts at(0) = y(0), then the fact that the curve rolls without slipping tellsthist s is likewise

the arclength oy .)



APPENDIX

Review of Linear Algebra and Calculus

1. Linear Algebra Review

Recall that the sefvy,...,vy} of vectors inR” gives a basis for a subspateof R” if and only if
every vectowv € V can be writteruniquelyas a linear combinatiom = ¢1vy + --- + ¢ V. In particular,
V1, ..., V, Will form a basis forR” if and only if then x n matrix

| |
A=1|Vy Vo -+ Vy

is invertible, and are said to hmositively orientedf the determinant ded is positive. In particular, given
two linearly independent vectorsw € R3, the seffv, w, v x w} always gives a positively oriented basis for

R3.

We sayey, ..., e € R" form anorthonormalset inR” if g; -; = O for all i # j and|g;| = 1 for all
i =1,...,k. Then we have the following

Proposition 1.1. If {ey,...,e,} is an orthonormal set of vectors R, then they form a basis fd"

and, given any € R", we havev = i (V-g)g.
i=1

We say am x n matrix A4 is orthogonalif ATA = I. It is easy to check that the column vectors of
A form an orthonormal basis f@&” (and the same for the row vectors). Moreover, from the basmdla
Ax-y = x- A"y we deduce that i¢;, . . ., g, form an orthonormal set of vectorsIkf* and A is an orthogonal
n X n matrix, thendey, ..., Ae, are likewise an orthonormal set of vectors.

An important issue for differential geometry is to identifye isometries ofR3 (although the same
argument will work in any dimension). Recall that @mometryof R3 is a functionf: R3> — R3 so that for
anyx,y € R3, we have||f(x) — f(y)|| = ||x — y||. We now prove the

Theorem 1.2. Any isometryf of R3 can be written in the forrf(x) = Ax + ¢ for some orthogona x 3
matrix A and some vectar € R3.

Proof. Letf(0) = c, and replacd with the functionf — c. It too is an isometry (why?) and fixes the
origin. Then|[f(x)|| = |If(x) —f(0)|| = ||x — 0| = ||x||, so thatf preserves lengths of vectors. Using this
fact, we prove that(x) - f(y) = x -y for all x,y € R3. We have

If0) =t = Ix=y[* = x—y) - (x—=y) = [X|* —2x-y + |lylI*;
on the other hand, in a similar fashion,

IF) = FWII* = IFEOII* — 2f(x) - F(y) + IFW)IIZ = X1 = 2fC0) - F(y) + lIylI.

114
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We conclude that(x) - f(y) = x -y, as desired.
We next prove that must be a linear function. Ldkey, e, &5} be the standard orthonormal basis for
R3, and letf(ej) = v;, j = 1,2,3. It follows from what we've already proved thét,v,, v3} is also an

orthonormal basis. Given an arbitrary vectoe R3, write X = i x;6 and f(X) = i y;Vj. Then it
follows from Proposition 1.1 that = =

yi=fX)-vi =x-6 = x;,
sof is in fact linear. The matrixd representind with respect to the standard basis has ag'itsolumn the
vectorv;. Therefore, by our earlier remarkd,is an orthogonal matrix, as requiredd

Indeed, recall that if": R” — R” is a linear map an® = {vi,...,V;} is a basis foilR”, then the
matrix for T with respect to the basiB is the matrix whosg ™ column consists of the coefficients Biv;)
with respect to the basiB. That is, it is the matrix

n
A= [aij], where T(Vj) = Zaijvi.
i=1

Recall that if4 is ann x n matrix (or7:R" — R" is a linear map), a honzero vectoiis called an
eigenvectoiif Ax = Ax (T'(x) = Ax, resp.) for some scalar, called the associatezigenvalue

Theorem 1.3. A symmetric2 x 2 matrix A = [Z b] (or symmetric linear maff: R> — R?) has
c
two real eigenvalues{ andA,, and, provided\.; # A,, the corresponding eigenvectors andv, are
orthogonal.
Proof. Consider the function

iR >R,  f(X) = AX-X = ax} + 2bx1xz + cx3.

By the maximum value theoreny has a minimum and a maximum subject to the constrap) =
x% + x% = 1. Say these occur, respectivelyvatandv,. By the method of Lagrange multipliers, we infer
that there are scalafs so thatV f(v;) = A;Vg(v;), i = 1,2. By Exercise 5, this meansv; = A;v;, and
so the Lagrange multipliers are actually the associatezhegjues. Now

A1(V1-V2) = AVy -Va =V - AV = A5(Vy - V2).
It follows that if A1 # A, we must haver; - v, = 0, as desired. O

We recall that, in practice, we find the eigenvalues by sgl¥ar the roots of theharacteristic polyno-

mial p(t) = det(A — ¢I). In the case of a symmetritx 2 matrix A = [Z b}, we obtain the polynomial

C
p(t) =t? — (a + c)t + (ac — b?), whose roots are

A =%((a+c)—\/(a—c)2+4b2) and Azzé((a—i-c)—i-\/(a—c)2+4b2).
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APPENDIX. REVIEW OF LINEAR ALGEBRA AND CALCULUS

EXERCISES A.1

Suppose{vy, Vv, } gives a basis foR?. Given vectorsx,y € R?, prove thatx = vy if and only if
X-V;i =y-Vv;,i =1,2.

The geometric-arithmetic mean inequality states that

Vab < a4 -; b for positive numberg andb,
with equality holding if and only it: = b. Give a one-line proof using the Cauchy-Schwarz inequality
[u-v| < ullllv] for vectorsu andv € R",
with equality holding if and only if one is a scalar multiplétbe other.
Letw, x,y,z € R3. Prove that
WxX)-(yx2z)=(W-y)(x-2) - (W-2)(X-y).

(Hint: Both sides are linear in each of the four variablesjtssuffices to check the result on basis
vectors.)

Supposed () is a differentiable family o x 3 orthogonal matrices. Prove thatz)~!A’(¢) is always
skew-symmetric.

If A= [Z b} is a symmetriQ x 2 matrix, setf(x) = Ax-x and check thaV f(x) = 2A4x.
c

2. Calculus Review

Recall that a functionf: U — R defined on an open subsgt C R” is ek (k =0,1,2,...,00) if

all its partial derivatives of ordex k exist and are continuous dn. We will use the notationa— and f,
u

interchangeably, and similarly with higher order derivas:

on.

2
;va]; = %(%) is the same ag,,, and so

One of the extremely important results for differential gratry is the following

o , *>f _ Pf
Theorem 2.1. If f is aC” function, then—— = or fuy = fou):
Judv  dvou

The same results apply to vector-valued functions, workiit component functions separately.
If /:U — Ris C! we can form itsgradientby taking the vectolV f = (fxl,fm, .o fx,) Of its

partial derivatives. One of the most fundamental formutedifferential calculus is thehain rule

Theorem 2.2. Supposef :R" — R anda: R — R” are differentiable. Thef ca)'(t) = V f(ee(2)) -

o (1).

In particular, ife(0) = P anda/(0) = V € R”, then(feoa)'(0) = V f(P)-V. This is somewhat

surprising, as the rate of change pfalonga at P depends only on the tangent vector and on nothing more
subtle about the curve.
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Proposition 2.3. Dy f(P) = V f(P) - V. Thus, the directional derivative is a linear functiorMaf

Proof. If we takea(t) = P + tV, then by definition of the directional derivativd)y f(P) =
(fea)(0) =V f(P)-V. O

Another important consequence of the chain rule, esseht@lighout differential geometry, is the following

Proposition 2.4. SupposeS C R” is a subset with the property that any pair of pointsSofan be
joined by aC! curve. Then &' function f:S — R with V f = 0 everywhere is a constant function.

Proof. Fix P € S and letQ € S be arbitrary. Choose @' curvea with «(0) = P anda(1) = Q.
Then(fea) (t) = V f(a(t)) -a’(t) = 0 for all t. It is a consequence of the Mean Value Theorem in
introductory calculus that a functiog: [0, 1] — R that is continuous o10, 1] and has zero derivative
throughout the interval must be a constant. Therefgf&) = (foa)(1) = (foa)(0) = f(P). It follows
that / must be constant ofi. O

We will also have plenty of occasion to use the vector vessmiithe product rule:

Proposition 2.5. Supposé, g:R — R3 are differentiable. Then we have

f-9'@)=1F@)-9(0)+ft)-dt) and
(fxg) @) =1@)xg@) + ) xd ().

Last, from vector integral calculus, we recall the analogtihe Fundamental Theorem of Calculus in
RZ:

Theorem 2.6(Green’s Theorem)Let R C R? be a region, and IgiR denote its boundary curve,
oriented counterclockwise (i.e., so that the region is $o'lift”). SupposeP and Q areC! functions

throughoutR. Then
/ P(u,v)du + Q(u,v)dv =// (B_Q_G_P) dudv.
OR R ou av

d+

A

OR

FIGURE 2.1

Proof. We give the proof here just for the case wh&és a rectangle. Tak® = [a,b] X [c,d], as
shown in Figure 2.1. Now we merely calculate, using the Fometdal Theorem of Calculus appropriately:

//R(E;—g—z—i)dudv:/cd(/‘zbg—gdu)dv—/ab(cd%_idv)du
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d b
=/ (Q(b,v)—Q(a,v))dv—/ (P(u,d)—P(u,c))du

=prw¢mu+[dQ@mmv—me%dwu—Ldeva

:/’Pmmmu+Qmeu
OR

as required. O

EXERCISES A.2

#1. Supposd: (a,b) — R" is @' and nowhere zero. Prove thit|f|| is constant if and only if' (r) =
A(t)f(¢) for some continuous scalar functidn (Hint: Setg = f/||f|| and differentiate. Why must

g-9=07)
2. Supposex: (a,b) — R3 is twice-differentiable and. is a nowhere-zero twice differentiable scalar

function. Prove that, «’, anda” are everywhere linearly independent if and only.éf, (Ae)’, and
(Ae)” are everywhere linearly independent.

3. Letf,g:R — R3 be@! vector functions with the property th&f0) andg(0) are linearly independent.
Suppose

f'(t) = a(Of(t) + b()g(1)
g(t) = cOf() —a®)g)

for some continuous functions b, andc. Prove that the parallelogram spanned @y andg(z) lies in
a fixed plane and has constant area.

#+4.  Prove that for any continuous vector-valued functiofa, ] — R3, we have
b
/ f(¢)dt
a

#5. LetR C R2 be aregion. Prove that

1
ared R) :/ udv = —/ vdu = —/ —vdu + udv.
AR R 2 Jor

b
< / ().

3. Differential Equations

Theorem 3.1 (Fundamental Theorem of ODE'sfupposey C R” is open and C R is an open
interval containingd. Supposey € U. If f:U x I — R”" is continuous and Lipschitz in (this means
that there is a constafit so that||f(x,t) —f(y,?)|| < C|x—y]| forallx,y € U and allt € 1), then the



§3. DIFFERENTIAL EQUATIONS 119

differential equation

dx
I =f(x,1), x(0) = Xg

has a unique solution = X(t, X ) defined for allt in some interval’ C I. Moreover, Iff is Gk, thenx is
¥ as a function oboth: and the initial conditiory (defined fort in some interval andy in some open
set).

Of special interest to us will be linear differential eqoat.

Theorem 3.2. Supposed(t) is a continuous x n matrix function on an interval. Then the differential

equation

dx

— = A@)X(), Xo = Xog,
= AOX0). X0 =%
has a unique solution on the entire original interkal

For proofs of these, and related, theorems in differentabéions, we refer the reader to any standard
differential equations text (e.g., Hirsch-Smale or BirfRota).

Theorem 3.3. Letk > 1. Given twoC¥ vector fieldsX andY that are linearly independent on a
neighborhood/ of 0 € R?, locally we can choos€* coordinatesu,v) onU’ C U so thatX is tangent to
theu-curves (i.e., the curvas = cons)) andY is tangent to the-curves (i.e., the curvas = cons}.

Proof. We make a linear change of coordinates soX@ andY (0) are the unit standard basis vectors.
Let x(z, Xo) be the solution of the differential equatiatx/dt = X, x(0) = X, given by Theorem 3.1. On
a neighborhood o®, each poinfx, y) can be written as

(x.y) = X(z.(0,v))

for some unique andv, as illustrated in Figure 3.1. If we define the functiffn, v) = x(z, (0,v)) =

coordinatesi(,v)

x(t,(0V))

X0 Jwo

FIGURE 3.1

(x(t,v), y(t,v)), we note that; = X(f(z, v)) andf,(0,0) = (0, 1), so the derivative matrix>f(0, 0) is the
identity matrix. It follows from the Inverse Function Theon that (locally) we can solve far, v) as ack
function of (x, y). Note that the level curves ofhave tangent vectof, as desired.

Now we repeat this procedure with the vector fi®ld Let y(s, yo) be the solution of the differential
equationdy/ds =Y and write

(x,y) = y(s. (u,0))
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for some unique andu. We similarly obtain(s, u) locally as aC* function of (x, y). We claim that(u, v)
give the desired coordinates. We only need to check that antabe neighborhood of the origin they
are independent; but from our earlier discussion we have- 0, v, = 1 at the origin, and, analogously,
ux = 1l andu, = 0, as well. Thus, the derivative matrix ¢f, v) is the identity at the origin and the
functions therefore give a local parametrizatioril

EXERCISES A.3

1. SupposeM(s) is a differentiable3 x 3 matrix function ofs, K(s) is a skew-symmetri@ x 3 matrix
function ofs, and
M'(s) = M(s)K(s), M(0)=O0.
Show thatM (s) = O for all s by showing that the trace ¢/ ™M)’ (s) is identically0.

2. (Gronwall inequalityand consequences)
a. Suppose':[a,b] — Ris differentiable, nonnegative, anfia) = ¢ > 0. Suppose: [a,b] — R
is continuous and’’(¢) < g(¢) f(¢) for all t. Prove that

t
f(@® fcexp(/ g(u)du) forall ¢.

b. Conclude that iff'(a) = 0, then f(z) = 0 for all ¢.

c. Suppose now:[a,b] — R” is a differentiable vector function, and(¢) is a continuous: x n
matrix function forz € [a, b), andV'(tr) = M(t)v(t). Apply the result of part b to conclude that if
v(a) = 0, thenv(z) = Ofor all . Deduce uniqueness of solutionsliteear first order differential
equations for vector functions. (Hint: Let(z) = ||v(¢)||?> andg(r) = 2n max{|m;; (¢)|}.)

d. Use part ¢ to deduce uniqueness of solutions to linBasrder differential equations. (Hint: Intro-
duce new variables corresponding to higher derivatives.)



111
114

116
121
1.2.3

125
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1.2.25

ANSWERS TO SELECTED EXERCISES

_42
() = (15 13):

We parametrize the curve by(z) = (¢, f(t)), a < t < b, and so lengtfw) =
2 e 0)llde = [ T+ (702 dt.
B(s) = (%(\/52 +4+5), %(\/sz +4—5),V2In((Vs2 + 4 + s)/2)).

_ 1
Ok =i
a T= 3(VT+s5—VI=5v2), 6 = o N = 1/V2(V1 =5, V/T+5,0), B =
2= V1+S’Vl_sv[)1fzm1 c. T= F(Zv1+t21)xz =
2 _ 1 _ 1
1/2(0+1%),N = —==(1.0.~1), B = —=——(- t, V1412, —

k = 1/sinht (which we see, once again, is the absolute value of the slope)

B=(TxN)Y=TxN+TxN =&N)xN+Tx(—«T + tB) = t(T x B) = 7(—N),
as required.

b. If all the osculating planes pass through the origin, themglare scalar functions and

u so that0 = « + AT + uN. Differentiating and using the Frenet formulas, we obtain
0 =T+ «kAN+ A'T 4+ u(—«T + tB) 4+ u'N; collecting terms, we have = (1 + 1’ —
k)T + (kA + w')N + prB. Since{T,N, B} is a basis foiR?, we infer, in particular, that
ut = 0. (We could also just have taken the dot product of the enkipgession withB.)
w(s) = 0 leads to a contradiction, so we must have: 0 and so the curve is planar.

We haver’ x a” = kv3B, soa’ xa”’ = (o' xa”)’ = (kv3B)’ = (kv3)'B + (kv3)(—=tUN),
so (e’ x a’”) - a” = —k?tvb. Therefore,r = o - (¢” x &)/ (k*v®), and inserting the
formula of Proposition 2.2 gives the result.

a. Consider the unit normah; ; to the plane througl? = 0, Q0 = a(s), andR = «(?).
Choosing coordinates so that0) = (1,0,0), N(0) = (0, 1,0), andB(0) = (0,0, 1), we
apply Proposition 2.6 to obtain

als) xa(t) =
st(s —t) 2 , 3
(—KgTost + ..., 2k0T0(s + 1) + ..., —6ko + 2k5(s +1) — kst +...),
t .
S0A;; = M — A = (0,0,—1) ass,t — 0. Thus, the plane througR with
lloe(ss) x e (2)]]

normalA is the osculating plane.

121
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1.2.25

134

2.1.3
2.1.4
2.15

2.1.7

2.1.8

2.1.11
2.1.16
221

2.2.3

SELECTED ANSWERS

a. cont.Alternatively, let the equation of the plane through Q, andR beA;; -x = 0
(where we choosé\,; to vary continuously with length). We want to determinéd =
limg ;-0 As,:. For fixeds andz, consider the functio ; (1) = A; ;- a(u). ThenFs(0) =
Fy1(s) = Fy.(t) = 0, s0, by the mean value theorem, therefrandé; so thatFy ,(§1) =
Fg,(§2) = 0, hencen so thatF’,(n) = 0. Now Fy,(0) = Ay, - T(0) and F{,(0) =
A - koN(0). Since§¢; — 0 andn — 0 ass,t — 0, we obtainA - T(0) = A - N(0) = 0, so
A = +B(0), as desired.

Let L = length(C). Then by Theorem 3.5 we haer = fOLK(s)ds < fOLcds = cL, so
L >2m/c.

aE=d>F=0G=d?sir*u;d. E=G =da?cosfu, F=0
a.4r?ab

Say all the normal lines pass through the origin. Then theeefunction) so thatx = An.
Differentiating, we havex, = An, + A,n andx, = An, + A,n. Dotting with n, we
get0 = A, = A,. Therefore is a constant and sfx|| = const. Alternatively, from the
statemenk = Anwe proceed as follows. Sincex,, = n-x, = 0, we havex-x,, = X-X, = 0.
Therefore(x - X), = (X-X)» = 0, so||x||? is constant.

Forx to be conformal, we must have = G andF = 0; for it to preserve area we must have
1=+EG-F? s0E =G = 1andF = 0, which characterizes a local isometry with the
plane. The converse is immediate.

We check that? = G = 4/(1 + u? + v?)? and F = 0, so the result follows from Exercise
6.

b.One of these isx(u, v) = (cosu + v Sinu, Sinu — v cOSu, v).
a.lf a cosi(1/a) = R, the area i€n (a + RV R? — a?).

If u- andv-curves are lines of curvature, théh = 0 (because principal directions are or-
thogonal away from umbilic points) and = Sp(Xy) - Xy, = k1Xy - Xy = 0. Moreover, if
Sp(Xy) = k1x, andSp (Xy) = k2Xy, we dot withx,, andx,, respectively, to obtaid = Ek;
andn = Gk,. Conversely, settingp (x,) = ax, + bX,, we infer that if F = m = 0, then
0=Sp(Xy) Xy = Fa + Gb = Gb, and sab = 0. Thereforex, (and, similarly,x,) is an
eigenvector ofSp.

1/b 0
b. £ = b, m = 0, n = cosu(a + bcosu), Sp = / ,
0 cosu/(a + bcosu)
— 1 1 _ . _ _ _ —
- 5 5t a—:l(;scl(l)su)’ K = b(a—(fz—obsgosu). d £ = -am = 0,n = a, Sp =

,H =0, K =—(1/a)?sectt u.

H
(l/a) sech u 0
(1/a) secht u
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2.2.5 We know from Example 1 of Chapter 1, Section 2 that the pridaijermal of the helix points
along the ruling and is therefore orthogonalntoAs we move along a rulingy twists in a
plane orthogonal to the ruling, so its directional derivatin the direction of the ruling is
orthogonal to the ruling.

2.2.6 E =tankfu, F =0,G = seciu, —¢ = sechutanhu = n,m =0
232  dT2 =T2 = f'(u)/f@), Tt = — f(u)f'(u), all others0.

2.4.4 kg = Cotup; we can also deduce this from Figure 3.1, as the curvaturtove®N =
(1/ sinug)N has tangential component(1/ sinug) coSugX,, = cotug(n x T).

2.4.9 Only circles. By Exercise 2 such a curve will also have camtstarvature, and by Meusnier's
Formula, Proposition 2.5, the anglebetweenN andn = « is constant. Differentiating
a - N = cos¢ = const yieldsr(« - B) = 0. Eithertz = 0, in which case the curve is planar,
or elsea - B = 0, in which casex = =N, sot =N B = +a'-B = £T -B = 0. (In the
latter case, the curve is a great circle.)

2.4.18 a.Obviously, the meridians are geodesics and the centrdéaire= rg is the only parallel
that is a geodesic. Observe that if we have some other geptlesir cosg = ¢ ande < ryp.
The geodesic witlr cos¢ = ¢ will cross the central circle and then either approach one of
the parallels = ¢ asymptotically or hit one of the parallets= ¢ tangentially and bounce
back and forth between those two parallels. In either exserdy) a geodesic is bounded. (In
fact, if a geodesic approaches a parallel asymptoticilyt, paralleimustbe a geodesic; see
Exercise 27.)

2.4.24  The geodesics are of the form cdsh+ (v + ¢1)? = c§ for constants; andc;.

311 a.2m sinug

3.1.2 a.yes, yesh. yes, yesg. yes, no.

3.2.1 b.The semicircle centered &2, 0) of radius/5; d(P, Q) = In ((3 + +/5)/2) ~ 0.962.
3.2.11 kg = cothR

3.34 We havex, = ll(e1,e1) = —des(e))-e = wiz(er). Sincee; = sind&, + coshes, the cal-
culations of Exercise 3 show thaf; = sinfw;, +cosfw13, SOw3(€;) = Sinfwiz(€) =
k sinf. Hered is the angle betweess andes, so this agrees with our previous result.

3.3.8 We havew; = bdu andw, = (a + bcosu)dv, SOwi, = —Sinudv anddwi, =

cosudu A d COosu cosu
—cosudu v=—|—--+— _
b(a + b cosu) b(a + b cosu)

3.4.2 a.Takingé = f gives usfo1 f(t)?dt = 0. Since f(t)?> > 0forall ¢, if f(t) # 0, we have
an interval[tg — 8, to + 8] on which £(¢)?> > f(t9)?/2, and sofo1 f(H)2dt > f(t9)?8 > 0.

)w1 Awy, SOK =

3.4.9 y = 1 cosh2x)
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SELECTED ANSWERS

Considerz = x —y. Then we know that-v; = 0,i = 1,2. Since{vy,V,} is a basis
for R2, there are scalars andb so thatz = av; + bv,. Thenz-z = z- (avy + bv,) =
a(z-vy) + b(z-vy) =0,s0z =0, as desired.

Hint: Takeu = (/a, v/b) andv = (v/b, Ja).

Letv = fab f(t)dt. Note that the result is obviousvf= 0. We have||v||? = v - fab f(t)dr =
[Py f@yde < [P VIIf@)llde = V]l [2 [f@)]ldt (using the Cauchy-Schwarz inequality
u-v < |jull|lv]]), so, ifv # 0, we have|v| < fa” |f(r)||dt, as needed.



angle excess, 83

arclength, 6

asymptotic curve, 48, 51, 55
asymptotic direction, 48, 54, 56

Backlund, 106
Bertrand mates, 21
binormal vector, 11
Bishop frame, 33

ek, 1, 35,116
catenary, 5
catenoid, 43, 66
Cauchy-Schwarz inequality, 116
chain rule, 116
characteristic polynomial, 115
Christoffel symbols, 57
Clairaut’s relation, 73, 77, 78
Codazzi equations, 59, 63, 104
compact, 61
cone angle, 90
conformal, 40
connection form, 104
convex, 28
covariant constant, 67
covariant derivative, 67
Crofton’s formula, 25, 33
Cross ratio, 99
cubic

cuspidal, 2

nodal, 2

twisted, 3
curvature, 11
curve, simple closed, 26
cycloid, 3
cylindrical projection, 42

Darboux frame, 70, 103, 105
developableseeruled surface, developable
directrix, 38

Dupin indicatrix, 56
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eigenvalue, 115
eigenvector, 115
elliptic point, 50

Euler characteristic, 85
exterior angle, 34, 83

first fundamental form, 39

flat, 49, 60, 61, 65, 77, 84, 90, 104
Foucault pendulum, 69

Frenet formulas, 11

Frenet frame, 11

functional, 108

Gauss equation, 60, 63, 104
Gauss map, 24, 44
Gauss-Bonnet formula, 83, 86, 96, 105
Gauss-Bonnet Theorem, 95
global, 86
local, 83
Gaussian curvature, 49, 51, 53, 57, 60, 82, 104
constant, 62, 92
generalized helix, 15
geodesic, 70
geodesic curvature, 71
globally isometric, 75
gradient, 116
Green’s Theorem, 82, 117
Gronwall inequality, 120

H, 49

helicoid, 36, 48, 65, 66

helix, 3

holonomy, 79, 82

horocycle, 93

hyperbolic plane, 91
Klein-Beltrami model, 101
Poincaré model, 100

hyperbolic point, 50

inversion, 99
involute, 19
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isometry, 114 rotation index, 27
ruled surface, 38
K, 49 developable, 61, 65, 77
k-point contact, 56 ruling, 38
knot, 26
second fundamental form, 46, 53
Laplacian, 64 shape operator, 45, 53
line of curvature, 47 smooth, 1, 35
linear fractional transformation, 94 spherical coordinates, 37
locally isometric, 39 stereographic projection, 37
support line, 32

mean curvature, 49

meridian, 38, 52

metric, 74

Meusnier's Formula, 51

minimal surface, 49, 64, 65, 110

moving frame, 101 tangent indicatrix, 24
tangent plane, 38
Theorema Egregium, 60, 104

surface, 35

surface area, 41
surface of revolution, 37
symmetric, 45

normal curvature, 51
normal field, 32

ol 17 torsion, 11
normal plane, torus, 36
oriented, 84 total cu_rvature, 24, 88
total twist, 32

orthogonal, 114
orthonormal, 114
osculating circle, 22
osculating plane, 17, 22

tractrix, 5, 13
triply orthogonal system, 55
Tschebyschev net, 43

osculating sphere, 22 twist, 32
pacman, 42, 75, 90 u-, v-curves, 35
parabolic point, 50 uItrap_araIIeIs, 95
parallel, 38, 52, 67, 75, 95 umbilic, 50

unit normal, 39

parallel translate, 68 :
unit tangent vector, 11

parametrization

regular_, 1,35 variation, 108
parametr!zed by arclength, 7 vector field, 67
parametrized curve, 1 velocity, 1
pedal property, 112 vertex, 29
planar point, 50
Poincaré disk, 100 zone, 41

positively oriented, 114
principal curvature, 47
constant, 65, 66
principal direction, 47, 54
principal normal vector, 11
profile curve, 38
pseudosphere, 51

rectifying plane, 17
reflection, 98

regular, 1

regular parametrization, 35



