Line-Forms

$\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots=\sum_{n \geq 1}^{\infty} \frac{1}{2}=\left.\frac{x}{1-x}\right|_{\frac{1}{2}}=1=$| | | |
| :--- | :--- | :--- | :--- |

$$
\frac{-1}{2}+\frac{-1}{4}+\frac{-1}{8}+\ldots=-\sum_{n \geq 1}^{\infty} \frac{1}{2}^{n}=-1=
$$

Consider:

Globally translating the lineform one unit to the left or right corresponds to multiplying by 2 or $1 / 2$ respectively. Locally translating a cell up or down corresponds to adding or subtracting a power of 2. However, global vertical translations have no obvious meaning; they would involve manipulating divergent series of powers of 2.

Assume global vertical translation has no effect. Then, all global vertical translations of a given lineform are equal. So:

Likewise:

$\ldots+0\left(2^{2}\right)+0\left(2^{1}\right)-2^{0}+\frac{0}{2}+\frac{0}{4}+\ldots=-1=\ldots+2^{2}+2^{1}+0\left(2^{0}\right)+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\ldots$

Interestingly:

